Skip to content

Instantly share code, notes, and snippets.

@AIboy996
Created June 1, 2024 06:21
Show Gist options
  • Select an option

  • Save AIboy996/48df0f723cfd921613ceab8590e35ef0 to your computer and use it in GitHub Desktop.

Select an option

Save AIboy996/48df0f723cfd921613ceab8590e35ef0 to your computer and use it in GitHub Desktop.
jupyter demo
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"id": "6909ee32-f3e2-41b9-b9bb-5b6903837e79",
"metadata": {},
"source": [
"## print?打印?"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "b36f1a25-d03d-4936-b201-7e7cf7615b19",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9796bc13-c5b2-4ff1-9666-199a692f33e8",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>x</th>\n",
" <th>y</th>\n",
" <th>z</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1.0</td>\n",
" <td>2</td>\n",
" <td>10.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" <td>2</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" x y z\n",
"0 1.0 2 10.0\n",
"1 NaN 2 NaN"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pd.DataFrame([\n",
" dict(x=1, y=2, z=10),\n",
" dict(x=None, y=2, z=None)\n",
"])"
]
},
{
"cell_type": "markdown",
"id": "33741322-5cd5-4e62-bb6d-989da15b76bb",
"metadata": {},
"source": [
"$$\n",
"y = \\sin(x) \\quad x\\in [0,10]\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "04acbc3f-7cda-4baa-92dc-3ec8ae511966",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x11765e7d0>]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAASwAAAESCAYAAABHDeioAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA0Q0lEQVR4nO2deXhU5dn/v2f2bDNJyB6yghAgKyBpohat0ahcKm/7ulVLpYiVH/zeInSR368vVG1furi0tbS2tohvqa3aV9RWCwVkqRC2LGyGsCchyWQhmZmss573j5lzSCDbJHPmLHN/rmuuK5l5zpz7zHnO93me+7mf+2FYlmVBEAQhA1RiG0AQBDFeSLAIgpANJFgEQcgGEiyCIGQDCRZBELKBBIsgCNlAgkUQhGzQiG1AoPF4PGhubkZUVBQYhhHbHIIgroNlWXR3dyMlJQUqlX99JsUJVnNzM9LS0sQ2gyCIMWhsbMTUqVP9OkZxghUVFQXA+2MYjUaRrSEI4npsNhvS0tL4Z9UfFCdY3DDQaDSSYBGEhJmIy4ac7gRByAYSLIIgZAMJFkEQsoEEiyAI2SCoYO3fvx/3338/UlJSwDAMPvjggzGP2bt3L+bOnQu9Xo/p06djy5YtQppIEISMEFSwent7UVBQgE2bNo2r/KVLl7Bo0SLccccdqKmpwerVq/HUU09hx44dQppJEIRMEDSs4d5778W999477vKvv/46srKy8PLLLwMAZs2ahc8++wyvvvoqysvLhTJTNHrtLphtA3C6PYiP1GNKpF5skwiRGXC60WTph7XfidwUE3Qa8toMRlJxWBUVFSgrKxvyXnl5OVavXj3iMXa7HXa7nf/fZrMJZV7AsPY78cb+i9h84BL6HG4AgEbFYHFRKlbcPg3T4iNFtpAINmbrAF74+2n845QZXNLymHAtHiz01olEo0FcAyWCpOTbbDYjMTFxyHuJiYmw2Wzo7+8f9piNGzfCZDLxL6kvyzl5xYo7XtqLX+05jz6HG5F6DWIjdHB5WPy18grKX92PD2uaxDaTCCLvV11B2Sv78MlJr1hF6NSIDteiq8+JLQcv44FffYbTzVaxzZQEkuphTYR169ZhzZo1/P9c2L8UOd1sxRN/OAxrvxPT4iPwnfIclM9JBMMwqGm04NWdZ7HvbDuefacGTjeLf5/n3zorQn58fKIFa987DpYFCtOi8aN/y8XsZCPcHhafne/Af31Si7OtPXj49Qr8bsl83DI9TmyTRUVSPaykpCS0trYOea+1tRVGoxFhYWHDHqPX6/llOFJejnO5oxdP/N4rVnPTo/HhqltxT24SvzyhMC0abz55Mx5bkAYPC3znr8ex6/PWMb6VkDOHLl7Fs+/UgGWBJ76Qjv9ZUYo5KSYwDAONWoXbZybgvWdKUZI9Bb0ON1ZsrcSVrj6xzRYVSQlWSUkJdu/ePeS9nTt3oqSkRCSLAoPbw+Lb7x1HV58T+VNN2PKNBYjU39i5VakY/GhxHh5bkAaWBZ57/wSu9tiH+UZC7nT02PHM1ko43B7cMycJzz+QC7XqxrV1pjAt3vrGAhSmRcM24MJ//LkaTrdHBIulgaCC1dPTg5qaGtTU1ADwhi3U1NSgoaEBgHc4t2TJEr78M888g4sXL+K73/0uzpw5g1//+td499138eyzzwpppuBsOXgZx+q7EKFT49ePz4XRoB2xrErFYMP9czAjMRIdPQ78/22nQFtHKo8ffVwLS58Ts5ON+PmjhcOKFYdOo8JrjxUhyqBBVYMFP991NoiWSgtBBevYsWMoKipCUVERAGDNmjUoKirC+vXrAQAtLS28eAFAVlYWPv74Y+zcuRMFBQV4+eWX8fvf/17WIQ2XO3rxsx1nAAD/b9EsTI0JH/MYg1aNVx4uhEbFYPtpM/52okVoM4kg8tm5DmyrbgLDABu/nAeDVj3mMWmx4fjxl/MBAL/ddxGXOnqFNlOSMErb+dlms8FkMsFqtUrCn7ViayX+ccqM0mlT8Keniv1KqfHzXWfx813nkB4bjt1rF0KrltQInpgAdpcb5a/ux+WrfXiyNBM/eGCOX8cvffMI9tS14768JPz68XkCWSksk3lG6QkQkM+bbfjHKTMYBthw/xy/8/88/cVsxEXq0dDZh3ePNQpkJRFM3q9qwuWrfYiP0mPt3TP8Pv579+aAYYBPTppR1dAlgIXShgRLQDhfw6K8ZMxM8j+7YrhOg5V3TAMAvLb7PAac7oDaRwQXl9uDX+89DwBYsXAaokbxZY5ETpIR/z7XG+7y40/OhJx/kwRLIE41WfHPz1vBMMDqspsm/D1fLU5HiskAs20Abx9uGPsAQrJ8dLwZjZ39mBKhw2ML0if8PWvungGdRoUjlztDrpdFgiUQv9l7AQDwQEEKpif437vi0GvUWPUlr+BtPnAJbk9otahKweNhsWmPt3e17LYshOnGdrSPRLIpDIsLUwAAmw9cDoR5soEESwBabQPYcdoMAHhm4bRJf9+X56YiOlyLK1392HOmbdLfRwSfT8+04UJ7L4wGDb72hYxJf9/SW7IAANtPmdFkGX7ZmhIhwRKAvxxphMvD4ubMGMxKnvxMpUGrxsPzvcuN/vtQ/aS/jwg+fz7iHc4/uiB9Qr6r65mVbETptClwe1j8d8XlSX+fXCDBCjAut4evnE8EoCXleKI4AwwD7D/bjovtPQH7XkJ4mi392FPn7Rk/enPg1rlyvay/HGlEn8MVsO+VMiRYAWZXbRvMtgFMidDhntykgH1v+pRw3DEzAQDwR+plyYp3jzXCwwJfyI5FdgBTB30pJwFpsWGw9jvxz9Ohse6UBCvAvO3rXT18cxr0mok7VofjayXeHtsH1U0hvZ5MTrg9LN456o2hm8zM4HCoVQy+4gtx+J+qKwH9bqlCghVA2rvt+OxcO4DAdv05bpseh7hIPbr6nNh/tj3g308Env1n29FiHUB0uBblcwLX4+b4cpFXsA6c74DZOhDw75caJFgB5OMTzfD48hplTIkI+Pdr1CrcX5AMANhWTUn+5ACXjHFxYeq41gz6S/qUcNycGQMPi5BI/EiCFUA+PN4MAHjQFyMjBIsLUwEAu2pb0WMPDUerXBlwurHTl9Ps/gLh6sSXfcPC96uaFB/5ToIVIBqu9qG6wQIVAyzKTxbsPPlTTciOi8CA04Mdp8yCnYeYPHvOtKHX4UZqdBjmpkcLdp778pKh06hQ19qNz1ukv6fBZCDBChAfHfd2x0unxSEhSrgNAxiGwYO+XtYHITAEkDN/96UFWpSf7PfCd38whWlxZ453BvkfJ5XdiJFgBYiPfMPBBwQcDnJwQ86DF67C0ucQ/HyE//TaXdh9xjcczBe+TnAhNNtPk2ARY3CpoxdnW3ugUTEonx34maDryYyLQE5SFNweFp/SUh1JsvtMGwacHmRMCUduqvB52e7ISYBWzeB8Ww/Ot3ULfj6xIMEKANxmEcXZsTCFT37ZxXi4e7Z3O7RQCRiUG5x/cVGesMNBDqNBi9Jp3h11dii4TpBgBQBuJuiuWYljlAwcd/l6cvvOtlOeLInhcHmwzxcnd9fs4NUJflio4MkYEqxJ0tnrwLH6TgBAWRArZ26qEckmA/qdbhw43xG08xJjc+RSJ3rsLsRF6lEwNTpo571rdiIYBjjZZFVsBgcSrEmyu7YVHhaYnWwc1wYTgYJhGBoWSpRdtd778aWceKhG2Q0n0MRF6nFzZiwA4J8Kdb6TYE0SfjgYxN4VBzcs3FXbSon9JALLsvzs4J1BdBFwcOENe+uUuXSLBGsSDDjd+Nc573BMDMEqzo5FlF6Dq70OnGyyBv38xI2ca+tBY2c/dBoVbrsp+NvK3+ETrEMXryrSt0mCNQmOXu5Ev9ONRKMec1KCv6WYVq3CLdO9D8U+hbaocoMbDpZOm4Jw3Y27ewvNTQmRSDEZYHd5UHHxatDPLzQkWJOAy5hw203xQZm6Ho6FM+O9tpwjwZICe8947wM3NAs2DMNgoS9v2l4FxuiRYE2C/We9w8EvzogXzQbu3NUNXbD2OUWzgwB67C5+F5uFM8QRLAC43deI7VVgCiISrAlitg6grrUbDOPNUyUWqdFhmJ4QCQ8LfEbhDaJy6MJVuDws0mPDkT4leDPG13PL9Dho1Qzqr/Ypbkt7EqwJwg3B8lNNiInQiWrLQl8vi5L6iQvXYIjhbB9MpF6D+Rne8Ia9dcoaFpJgTRBOHMQcDnJwgrXvbLvi8yFJGa4Ru+0m8esENyxUWlAxCdYEcHtYvjWVgmAtyIqFXqOC2TaAc220o44YNFn6cbG9FyoGKJk2RWxz+Nnjwxc74VJQ/n8SrAlwutkKS58TUXoNCtOixTYHBq0aC7K8Q4CDCmtR5QKXy78wLRqmsOAsgB+NWclGmMK06La7cEJBMXokWBPg4AVvfEtxdiy0amn8hF/I9rbqSoy9kQP7z3H+K/F73IB3R50Srk5cUE6dkMbTJjO4CsCJhBQo9Q1DDl3shIeW6QQVlmX5OnGryA73wdwy3VsnlOTHIsHyE6fbg6OXvdkZpOCr4MhLNSFSr4G136n4vN5S41xbDzp7HTBoVUHNzjAWJb78WMfquxSzTIcEy09OXLGiz+FGdLgWs5KCvxxnJDRqFe/HUtIQQA4c8g3D52fEQqeRziM1LT4CiUY9HC4Pquq7xDYnIEjn15UJXOUszooNauqQ8cD5LA5eUM4QQA5wdUJKPW7Au0znFl8v64BC6gQJlp9wvZcSCfmvOLgH5silTtrKPkiwLItDF70ugi9kx4pszY1wdUIpvW4SLD+wu9x8dlHOPyAlZvumsnsdbko3EyTOtnr9V2FaNfJSo8U25wa4iaGTTVb0O+TvxyLB8oMTV6wYcHowJUKHGYmRYptzAyoVg2KfH+vIpU6RrQkNeP9VZoyk/FccU2PCkGwywOlmUd0ofz+W9H5hCcOJQHF2rGjpZMZiAQlWUOEES0ohLoNhGEZRdYIEyw+4G87lzZYinG3HLlM8ltCwLIvDXCOWJf06QYIVQrg9LD81LGXBmpNiRLhODduAC3Wtyt1QUwpcaO9FZ68Deo0K+RKKv7oeTkyrGrrgcMl7MiYogrVp0yZkZmbCYDCguLgYR44cGbHsli1bwDDMkJfBYAiGmaNyxmxDt92FSL0Gs5KlE391PRq1CnPTYwCAD3AlhKHSNwFTmBYtSf8Vx/SESMRG6DDg9Mh+MkbwX/mdd97BmjVrsGHDBlRVVaGgoADl5eVoaxs5T4/RaERLSwv/qq+vF9rMMTnq607PzYiBWmLxV9ejpCGAlDl6Wfo9bsDrx7o509uIyb1OCC5Yr7zyCpYvX46lS5di9uzZeP311xEeHo7NmzePeAzDMEhKSuJfiYnB35HmerjKucB346UM52Q9ermT8mMJyDFfD3a+LOqEd1Lg8CV5x2MJKlgOhwOVlZUoKyu7dkKVCmVlZaioqBjxuJ6eHmRkZCAtLQ0PPvggTp8+PWJZu90Om8025BVoWJblh1fzJd6aAkBRejS0agatNjsaO5W5A7DYtHUP4PLVPjCMt9ctdRb46m1VfZesJ2MEFayOjg643e4bekiJiYkwm4ffmXbmzJnYvHkzPvzwQ2zduhUejwelpaW4cuXKsOU3btwIk8nEv9LS0gJ+HQ2dfWjrtkOrZiSR/2osDFo18lJNAIAj5McShEpfj3tmYhSMBvHzX43FrOQohGm9kzHn2+Wb5FFynsKSkhIsWbIEhYWFWLhwId5//33Ex8fjt7/97bDl161bB6vVyr8aGxsDbhM37s+fGg2DVh3w7xcCzq/COYaJwCIX/xWHRq3iG9tKGS+EFlSw4uLioFar0draOuT91tZWJCUljes7tFotioqKcP78+WE/1+v1MBqNQ16Bhtu6ab4Muv4c3DClqt4iriEKhVuiJQf/Fcc8X50gwRoBnU6HefPmYffu3fx7Ho8Hu3fvRklJybi+w+124+TJk0hOThbKzDHhHno5+Co4uNCGs23dsPbTfoWBpM/hwulmr69ULj0sAJiXyTViJFgjsmbNGrzxxht46623UFtbixUrVqC3txdLly4FACxZsgTr1q3jy7/wwgv45z//iYsXL6KqqgpPPPEE6uvr8dRTTwlt6rDYBpw42+YNwOREQA7ER+mRHhsOlgVqGi1im6Mojjda4fawSDYZkBIdJrY542Zumrf+XuzoxdUeu8jWTAyN0Cd45JFH0N7ejvXr18NsNqOwsBDbt2/nHfENDQ1Qqa7pZldXF5YvXw6z2YyYmBjMmzcPBw8exOzZs4U2dVhqGixgWSAtNgzxUXpRbJgo8zJi0NDZh6r6Ln4rMGLycC4COTVgAGAK1+KmhEica+tBVYMFd80WP1zIXwQXLABYtWoVVq1aNexne/fuHfL/q6++ildffTUIVo0PrnLOk1nlBIC56dHYVt3EXwMRGKp9v2dRerS4hkyA+ZkxONfWg8r6LlkKluRmCaUG56CUk/+Kg7O5psECt4xjb6QEy7KoarAAAIpk2YjJ249FgjUKHg/L+3/k1v0HvDFCETo1uu0unGujhdCBoP5qHzp7HdCpVchNle6a0pHgZgqPX7HIciE0CdYonG/vQfeAC+E6NXKSosQ2x280ahUKFBB7IyW4JHhzUo3Qa+QRkzeYrLgIRIdrYXd5cMYsv92VSLBGgXvI86eaoJHIhqn+Mo/isQIKH+Iiwx434F2nywWQynH2WJ5PYZColuls0GA4x3CNAtLjSgG5zhAOhhOsap8vTk6QYI0C1wLJ0bnKwW3seaG9lwJIJ0mfw4UzZq8vUI4zhBxcfaYeloLoHnDiXJt3kagcFjyPxJRIbwApAJy4YhHXGJlz4oo3YDTJKK+A0esp9DVilzp60dXrENcYPyHBGoGTV6xgWSA1Wn4Bo9cj5yGAlOB6JHJuwABvAGl2fAQA+fWySLBGoJqrnDLu+nPI2ckqJY4rqE4U+ZbpVMusTpBgjQDvv5J5awpce8BqGi2UgXQSKKWHBVyrE9UyWwVBgjUMLMsqqnLOTjZCq2bQ2eugDKQTpNU2gBbrAFQM+OSIcoZriI83WmSVgZQEaxiarQNo77ZDrWIwJ0X+ldOgVWO2b6cfJez+KwbccHBGYhQi9EFZgisoOUlRMGhVsA24cLGjV2xzxg0J1jDU+JzTOUlRCNPJL5p5OOQ8lS0FuN+tQML7D/qDRq1Crq8xltPsMQnWMHBBlkoYDnKQ431yHPc91EpwuHMUDBoWygUSrGE43ujdbFJJgpU/1duanm62wemW36JXMfF4WJxQYJ3gBeuKfDZXJcG6Dpf72u64SqqcmVMiYDRo4HB5UGemzA3+cLGjB912F8K0atyUECm2OQGjwNeIfd5sk03mBhKs6zjf3oN+pxsROjWy45VTOVUqBvk+/8txGfkspECNr3eVlyrfRfDDkR4bjuhwLRxu+WRuUM6vHyC4rn9uqknyW9L7Czcs5K6RGB+cU7ogTf4zxoNhGIafRJDLsJAE6zqO85UzWlQ7hOCaz8Iiqh1yg3uY8xUyQzgYblgoF8c7CdZ1nPBVTqVMXw+Gu6azrd3oc7jENUYmOFwe1Pq29FJknZDZTCEJ1iAGnG7UtngrJzd8UhJJJgMSovTwsOD31SNGp87cDYfbg5hwLdJi5ZuhYSS4XuP59h702KXfiJFgDaK2xQaXh0VshA5TY5RXOQH5tahiww2f86ZGg2GU5dMEvPtXpkaHgWW9GUqkDgnWIE7wvgqTIisnMMhnIYPKKQU4h3u+AtYPjgQ/GSMD3yYJ1iC41lSJzlUOPrSBeljjYnAjplTyOMFqkn4jRoI1iGsOd+VWTu7Ba+jsg7WPUiaPRp/DhbOt3iBbJc4ac3CTCTQklBE9dhcutHtTIiu5hxUdrkPGFG/K5JMyaFHF5HSzDR4WSDTqkWg0iG2OYHCLoBs6+ySfMpkEy8fpJm9K5BSTQfYpkceCy+dE8Vijww2bldyAAd6UyZkyacRIsHxwNypPwcNBDm5YKIchgJhwdULJDncOTpSl7ngnwfJxQsHRzNeTlxoNQPqtqdhwgp6vYP8Vx7WZQmnXCRIsH3wPKwRa09xUIxgGaLL0o6PHLrY5ksQ24OQzcYZCneCuUeqNGAkWAGu/E5dCqHJGGbTIjvNu8yT1CioWp3y/y9SYMMRG6ES2RnhyU01gGKDFOoC27gGxzRkREixcq5zpseGICYHKCVwb+pIfa3hOhkD81WAi9BpM96VTknI2DxIsXBu3h4LDnYPrSUrdZyEWJ3gXQbS4hgQRrv5LuddNggXgZJMFQGjMBnFwuZ2kPiskFqHWwwKu1X8SLIkTij2s2ckmqBigrduOVpt0fRZiYOlzoKGzD8C1oMpQII8PbbBKdsPdkBesrl4HrnR5NxfNDaEeVphOjZsSogCQH+t6uB5G5pRwmMK1IlsTPGYnG6FWMejosaPVJs3Z45AXLK5yZsdFwGgIncoJyGvRazDhetyh1IABXCPmc7xL1FVAgtUUmpUTGBR7I9HKKRZcjzMUQlyuR+rxWCEvWHy+oxDyX3FcmxWySdZnIQb8kpwQWPVwPVKPeA95wTrV5E0VHIo9rME+CzM53gEAV3vsaLJ4fZpzUo0iWxN8OMf7qSZpOt5DWrA6fJWTYYA5KaFXOQ3awT4LabaowSaUfZoAkJMUBY2KwdVeB5qt0mvEQlqwBlfOqBCsnMC1IcApifosgs2pEMraMRwGrRozErnZY4u4xgxDUARr06ZNyMzMhMFgQHFxMY4cOTJq+ffeew85OTkwGAzIy8vDJ598Iohdp0LYucpBEe9DOUF1QtJ+LMEF65133sGaNWuwYcMGVFVVoaCgAOXl5Whraxu2/MGDB/HYY49h2bJlqK6uxuLFi7F48WKcOnUq4Lbxyy9C0LnKwV37SYn6LIJNKGXtGIlcCc8UCi5Yr7zyCpYvX46lS5di9uzZeP311xEeHo7NmzcPW/4Xv/gF7rnnHnznO9/BrFmz8OKLL2Lu3Ln41a9+FXDbQnn6moPzWXT2Onhnc6jS3m1Hi3XA69MM4TqRP2hNodQaMUEFy+FwoLKyEmVlZddOqFKhrKwMFRUVwx5TUVExpDwAlJeXj1jebrfDZrMNeY2Htu4BmG0DIetw5xjsswh1P9apQT7NSL1GZGvEY2ZSFLRqBpY+J78KRCoIKlgdHR1wu91ITEwc8n5iYiLMZvOwx5jNZr/Kb9y4ESaTiX+lpaWNyzZrnxNz06ORm2JCRAhXTkDaPotgEsrxV4PRa9SYmeRzvEusEZP9LOG6detgtVr5V2Nj47iOuykxCu//n1vw0apbBLZQ+kjZZxFMQnVJznBINeJd0K5FXFwc1Go1Wltbh7zf2tqKpKSkYY9JSkryq7xer4deP/FdbpS6w7M/XO+zCNXfhEszFMo+TY681Gj8GY2ScxMI2sPS6XSYN28edu/ezb/n8Xiwe/dulJSUDHtMSUnJkPIAsHPnzhHLE5NHyj6LYNFmG0CrzR7yPk2OweEuUnK8Cz4kXLNmDd544w289dZbqK2txYoVK9Db24ulS5cCAJYsWYJ169bx5b/1rW9h+/btePnll3HmzBn84Ac/wLFjx7Bq1SqhTQ1ZpOyzCBbcdU+Pjwx5nyYAzEiKhE6tgrVfWo2Y4IL1yCOP4KWXXsL69etRWFiImpoabN++nXesNzQ0oKWlhS9fWlqKt99+G7/73e9QUFCAv/71r/jggw+Qm5srtKkhDZcKOFQd76G0L+V4GNyISalOBKUpWbVq1Yg9pL17997w3kMPPYSHHnpIYKuIweSlmvBnhG5oA8Xk3UjeVBNONllxosmCRfnJYpsDQAGzhERgkHKwYDA4wYc0kGBxcOItpUaMBIsAAMxIjOJ9Fo2d0vFZBINW2wDau+1QMd5c94QXKTreSbAIAIBOo0JOstdncVyCq/SFhPPR3JQQhTCdWmRrpMOMxCjoNCp0D7hQf7VPbHMAkGARg5DiECAYcGlUyOE+FJ1GhVnJ3hAPqeT9J8EieEJ1iQ5laBiZfIk1YiRYBA8X2nCqyQqPRxo+C6FhWTakNyIZC35nJYm4CUiwCJ6bEiOh16jQbXfh8tVesc0JCi3WAXT0OKBWMRThPgzXMtLaJNGIkWARPFq1CrN9D22oRLxzw98ZiVEwaMnhfj3T4yNh0KrQY3fhkgQaMRIsYgj5IZYymRvqFJDDfVg0ahXmpHD7V4pfJ0iwiCHwKZMlUDmDAS3JGRsp5f0nwSKGwPssmq1wS8BnISQsy/IPYb5vwoG4kXwJOd5JsIghTIuPRJhWjT6HGxfbe8Q2R1AaO/th7XdCp1bxC32JG+EE63SzDS63R1RbSLCIIahVDHJ9Ox4fl8AQQEi4iP5Zyd6IbmJ4suMiEanXoN/pxnmRGzG6S8QNXEs1YxHVDqEh/9X4UA1qxE40ituIkWARN1CQ5n2Ald7D4gQ51DedGA/cbyT2OlMSLOIGCnyVs7bZBodLXJ+FUHg8LE41ebeEo5QyYzM4/ZCYkGARN5AxJRymMC0cbg/qzN1imyMIFzt60GN3IUyrxvT4SLHNkTx8I9Zig93lFs0OEiziBhiG4VtUsYcAQnG8kVs/aIRGTY/BWEyNCUNMuBZON4szLeI1YnSniGGRUuyNEBznI9yjRbVDLngbsWgA4tYJEixiWK5VTmU63rkJhfy0aHENkREFU8WfjCHBIoaF63mcbe1Gn8MlrjEBxu5yo7bZ63AvpB7WuMmjHhYhVZJMBiRE6eFhvRHOSuJMSzccbg9iwrVIiw0T2xzZwIW7nGvzTliIAQkWMSJ87E2jRVQ7As3g+CuGYcQ1RkYkRBmQYjKAZcVbHE+CRYxIoUIDSGt8M4SUUsZ/CtOjAYg3e0yCRYxIgc8hXdPYJa4hAYbPgUUOd78pELnXTYJFjAg3JGzs7MfVHru4xgSIHruLX8BLS3L851ojZhHl/CRYxIiYwrSYFh8BQDkBpCcaLWBZIDU6DPFRerHNkR15qSaoGG8u/FbbQNDPT4JFjEphWgwAoKbBIq4hAaLa1zMopOHghIjQazAj0bfhrgi9LBIsYlQ4x3u1QmYKuaFMkc95TPgP58cSY1hIgkWMCtfDOt5oAcvKO2Uyy7Ko9vUUqYc1ccScKSTBIkYlJzkKeo0KtgEXLnWIv83TZGiy9KOjxw6NiqFNUycB18M60Rj8DXdJsIhR0apV/MMt1sxQoODsn5VspD0IJ8GMRG/e/267CxeCnDKZBIsYEzF9FoGEhoOBQaNW8dk8qhqCG6NHgkWMCeegrpb5TCE53APH3AyvbzPYdYIEixgT7gGvbbGh3yFetsnJ4HB5cMqX3pd6WJOnyPcbUg+LkByp0WFIiNLD5WFlm9DvjNkGu8sDU5gWWXERYpsje4rSvT2sc209sA04g3ZeEixiTBiGwVxfBa2S6bCwqt7bEyhMowwNgSA+So+02DCwbHADSEmwiHExL4MTLHkuhK70CS13HcTk4RqxYPqxSLCIcTE3IxoAUN3QJcsAUq6HRYIVOMTwY5FgEeNiTooJWjWDjh4HGjv7xTbHL8zWATRZ+qFiKKVMIBk8UxisRowEixgXBq0ac1LEib2ZLJy9OUlGROo1IlujHGYlG6HXqGDtd+JCe3BWQZBgEePmmuNdXoJVScNBQdCqVXxQMTfkFhpBBauzsxOPP/44jEYjoqOjsWzZMvT0jB7Kf/vtt4NhmCGvZ555RkgziXHC+bEqg1Q5AwUJlnDMz/T+pkcvdwblfIL2jx9//HG0tLRg586dcDqdWLp0KZ5++mm8/fbbox63fPlyvPDCC/z/4eHhQppJjBPuga9tsaHH7pLF8GrA6cbpZm/AKAlW4Lk5MxbABRwLUiMmWI2rra3F9u3bcfToUcyfPx8A8Nprr+G+++7DSy+9hJSUlBGPDQ8PR1JS0rjOY7fbYbdfS99rsylrSyopkWwKw9SYMFzp6kdVfRe+OCNebJPG5GSTFU43i/goPabG0JZegYZzE1zq6EVHjx1xkcJmcRVsSFhRUYHo6GherACgrKwMKpUKhw8fHvXYP/3pT4iLi0Nubi7WrVuHvr6+Ectu3LgRJpOJf6WlpQXsGogbWZAZCwA4FqQhwGQ5dtnb8s9Np4BRITCFazHTl4GU+62FRDDBMpvNSEhIGPKeRqNBbGwszGbziMd99atfxdatW7Fnzx6sW7cOf/zjH/HEE0+MWH7dunWwWq38q7GxMWDXQNzIfJ9gHQ1C5QwERy5dBcANXQghmOfzY1XWC9+I+T0kfO655/CTn/xk1DK1tbUTNujpp5/m/87Ly0NycjLuvPNOXLhwAdOmTbuhvF6vh15PmwkEiwVZvtibxi44XB7oNNKdaHZ7WN63Upw1RWRrlMvNmTF4+3BDUBoxvwVr7dq1ePLJJ0ctk52djaSkJLS1tQ153+VyobOzc9z+KQAoLi4GAJw/f35YwSKCy7T4SMSEa9HV58TpZiu/CFaK1Jm70T3gQoROjVnJUWKbo1jmZ3h7r6ebreh3uBGmEy45ot+CFR8fj/j4sZ2tJSUlsFgsqKysxLx58wAAn376KTweDy9C46GmpgYAkJyc7K+phAAwDIN5GbHYVduKY5e7JC1Y3HBwXmYsNGrp9gTlztSYMCQa9Wi12XH8igVfyBauNyvYXZw1axbuueceLF++HEeOHMGBAwewatUqPProo/wMYVNTE3JycnDkyBEAwIULF/Diiy+isrISly9fxkcffYQlS5bgi1/8IvLz84UylfATblh4ROKOd26IsiBTuqKqBBiGwfyMWETo1DBbhd2rUNBAmj/96U9YtWoV7rzzTqhUKnzlK1/BL3/5S/5zp9OJuro6fhZQp9Nh165d+PnPf47e3l6kpaXhK1/5Cr7//e8LaSbhJ/MHzRR6PCxUKunNvrEsywvqAvJfCc4PF+ciyqARvCcrqGDFxsaOGiSamZk5ZNFkWloa9u3bJ6RJRADITTEhTKtGV58TZ9u6kZNkFNukG7h8tQ/t3XboBuUfJ4QjJkIXlPPQwJ7wG51GxS/JOHThqsjWDM/RS97eVWFaNO2QoyBIsIgJwTlWKy5KU7AOcfFXWeS/UhIkWMSEKJnmFazDlzqDvpnmWLAsiwpfz690WpzI1hCBhASLmBB5qSaE69Sw9DlxxtwttjlDuHy1Dy3WAejUKlrwrDBIsIgJoVWr+OUuhyQ2LDx4oQOANx0O+a+UBQkWMWG4YaHU/FgHaTioWEiwiAnDOd4PX7wKt0T8WB4Py89clk6j+CulQYJFTJjcFCOi9BrYBlx8kjyxqWvtxtVeB8J1auT70vcSyoEEi5gwGrWKHxb+61yHyNZ44YaDC7JiJZ1JgpgYdEeJSXGbL+vo/rPtIlvi5eB5r3CWCLgAlxAPEixiUiy8yStYVQ1d6LG7RLXF7nLzPazbbpJ++mbCf0iwiEmRPiUcGVPC4XSzoi/TOXa5C/1ONxKi9JT/SqGQYBGT5rabvOED/zon7rBwb503YeTCGfGUv12hkGARk4YbfonteN/n86MtnEnDQaVCgkVMmtJpU6BWMbjY0YvGzpF3OBKSZks/zrb2QMUAt06ngFGlQoJFTJoog5Zfs/fpmbYxSgsD17sqSo9BdHhwcjMRwYcEiwgIZbO8W7rtqm0V5fz76nzDQRls7kpMHBIsIiCUzUoE4F0IbRtwBvXcA0437/C/nfxXioYEiwgI2fGRyI6PgNPNBj2I9MD5DvQ63Eg2GZCXSumQlQwJFhEw7vL1snZ9Htxh4Y7T3p3E756dSOEMCocEiwgYZbO9gvXpmTY43Z6gnNPtYbGr1uvov3vO+DfoJeQJCRYRMOamxyAmXAvbgAtHg7Rn4bHLnejsdcAUpsWCrNignJMQDxIsImCoVQzvfP/kZEtQzrnjtHf4eeesBGhpd2fFQ3eYCCj3F3h39f7kpFnwYSHLsrz/qpyGgyEBCRYRUEqnTcGUCB06ex185gShqKzvQpOlHxE6Nb5I2RlCAhIsIqBo1Crcl5cMAPioplnQc22rbgIA3JObjDAdbTYRCpBgEQHngULvsPCfp80YcLoFOYfd5cbfT3j9ZP9WlCrIOQjpQYJFBJx56TFINhnQbXfxKV8Czd66dlj7nUg06vk0zYTyIcEiAo5KxeABn/P93WNXBDnHtirvcPDBwlSoVRQsGiqQYBGC8MjNaQCAPXVtuNIV2JQzXb0OPisEDQdDCxIsQhCy4yNROm0KWBZ452hjQL/7L0cb4XB7kJtqxKxkY0C/m5A2JFiEYDxenAHAKzCBislyuT3YeqgeAPD1ksyAfCchH0iwCMG4a3Yi4iJ1aO+2Y3eA8mTtqm1Fk6UfsRE6PkiVCB1IsAjB0GlUeHi+15f1xr8ugWUnv539loOXAQCPLUiDQUuxV6EGCRYhKE+WZkKnUaGyvmvSke+nmqw4dLETahWDJ76QESALCTlBgkUISoLRgK8uSAcA/GLXuUn1sn62ow4AcH9+MpJNYQGxj5AXJFiE4DyzcBp0ahWOXO5ExcWJ9bIOXbyKfWfboVExePauGQG2kJALJFiE4CSZDHxc1k+318Ht8a+XxbIsfrr9DADgsQXpyJgSEXAbCXlAgkUEhZV3TEekXoOaRgv+WHHZr2P/dqIFVQ0WhGnV+L9fmi6MgYQsIMEigkKSyYDv3ZsDAPjpjjo0WfrHdVyzpR/f33YSAPDNhdlIMBoEs5GQPiRYRNB4fEE6bs6MQZ/Dje/+9fiYwaRuD4tn36mBbcCFgrRorLyDelehjmCC9aMf/QilpaUIDw9HdHT0uI5hWRbr169HcnIywsLCUFZWhnPnzgllIhFkVCoGG7+cD4NWhQPnr2Ltu8dH9Gd5PCxe+NtpHL7UiXCdGr94pJBSIBPCCZbD4cBDDz2EFStWjPuYn/70p/jlL3+J119/HYcPH0ZERATKy8sxMDAglJlEkJmeEInfPDEPGhWDj44343v/cwI9dteQMk63B2vercFbFd4lOD/6t1xkxpGjnQAYNhDhx6OwZcsWrF69GhaLZdRyLMsiJSUFa9euxbe//W0AgNVqRWJiIrZs2YJHH310XOez2WwwmUywWq0wGmlhrFT52/Fm/MdfqsGyQHyUHstvy8LUmHA0dPbhjxX1aLL0Q6Ni8PLDBXiwkDIyKInJPKMagWzym0uXLsFsNqOsrIx/z2Qyobi4GBUVFSMKlt1uh91u5/+32WyC20pMnvsLUhBp0OD5j07j8tU+/NcnZ4Z8HhOuxSsPF+KOnASRLCSkiGQEy2z27n6SmJg45P3ExET+s+HYuHEjnn/+eUFtI4ThjpkJKH12CrYeasChi1dh6XNArWLw5aKpeKAwhdYKEjfgl2A999xz+MlPfjJqmdraWuTk5EzKKH9Yt24d1qxZw/9vs9mQlpYWtPMTk0OvUWPZrVlYdmuW2KYQMsAvwVq7di2efPLJUctkZ2dPyJCkJO++cq2trUhOTubfb21tRWFh4YjH6fV66PX6CZ2TIAh54ZdgxcfHIz5emP3fsrKykJSUhN27d/MCZbPZcPjwYb9mGgmCUC6ChTU0NDSgpqYGDQ0NcLvdqKmpQU1NDXp6evgyOTk52LZtGwCAYRisXr0aP/zhD/HRRx/h5MmTWLJkCVJSUrB48WKhzCQIQkYI5nRfv3493nrrLf7/oqIiAMCePXtw++23AwDq6upgtVr5Mt/97nfR29uLp59+GhaLBbfeeiu2b98Og4GWYxAEEYQ4rGBDcVgEIW0m84zSWgeCIGQDCRZBELJBMoGjgYIb4VLEO0FIE+7ZnIg3SnGC1d3dDQAUPEoQEqe7uxsmk8mvYxTndPd4PGhubkZUVBQYhhm1LBcV39jYqBgHPV2T9FHa9QD+XRPLsuju7kZKSgpUKv+8UorrYalUKkydOtWvY4xGo2IqDgddk/RR2vUA478mf3tWHOR0JwhCNpBgEQQhG0JasPR6PTZs2KCoxdN0TdJHadcDBO+aFOd0JwhCuYR0D4sgCHlBgkUQhGwgwSIIQjaQYBEEIRtIsAiCkA2KF6xNmzYhMzMTBoMBxcXFOHLkyKjl33vvPeTk5MBgMCAvLw+ffPJJkCwdm40bN+Lmm29GVFQUEhISsHjxYtTV1Y16zJYtW8AwzJCXlBIi/uAHP7jBvrE2MZHyPQKAzMzMG66JYRisXLly2PJSu0f79+/H/fffj5SUFDAMgw8++GDI5xPdod3fZ3E4FC1Y77zzDtasWYMNGzagqqoKBQUFKC8vR1tb27DlDx48iMceewzLli1DdXU1Fi9ejMWLF+PUqVNBtnx49u3bh5UrV+LQoUPYuXMnnE4n7r77bvT29o56nNFoREtLC/+qr68PksXjY86cOUPs++yzz0YsK/V7BABHjx4dcj07d+4EADz00EMjHiOle9Tb24uCggJs2rRp2M8nskO7v8/iiLAKZsGCBezKlSv5/91uN5uSksJu3Lhx2PIPP/wwu2jRoiHvFRcXs9/85jcFtXOitLW1sQDYffv2jVjmzTffZE0mU/CM8pMNGzawBQUF4y4vt3vEsiz7rW99i502bRrr8XiG/VzK9wgAu23bNv5/j8fDJiUlsT/72c/49ywWC6vX69k///nPI36Pv8/iSCi2h+VwOFBZWTlkJ2mVSoWysjJUVFQMe0xFRcWQ8gBQXl4+Ynmx4fLhx8bGjlqup6cHGRkZSEtLw4MPPojTp08Hw7xxc+7cOaSkpCA7OxuPP/44GhoaRiwrt3vkcDiwdetWfOMb3xg1e4jU7xHHWDu0D8dEnsWRUKxgdXR0wO12+7WTtNls9nvnabHweDxYvXo1brnlFuTm5o5YbubMmdi8eTM+/PBDbN26FR6PB6Wlpbhy5UoQrR2Z4uJibNmyBdu3b8dvfvMbXLp0Cbfddhuf1+x65HSPAOCDDz6AxWIZdT9Pqd+jwUxkh/aJPIsjobj0MqHCypUrcerUqVH9PQBQUlKCkpIS/v/S0lLMmjULv/3tb/Hiiy8KbeaY3Hvvvfzf+fn5KC4uRkZGBt59910sW7ZMRMsCwx/+8Afce++9SElJGbGM1O+RlFBsDysuLg5qtRqtra1D3m9tbeV3mb6epKQkv8qLxapVq/D3v/8de/bs8Tv3l1arRVFREc6fPy+QdZMjOjoaM2bMGNE+udwjAKivr8euXbvw1FNP+XWclO/R4B3aBzPaPZjIszgSihUsnU6HefPmYffu3fx7Ho8Hu3fvHtKaDaakpGRIeQDYuXPniOWDDcuyWLVqFbZt24ZPP/0UWVlZfn+H2+3GyZMnkZycLICFk6enpwcXLlwY0T6p36PBvPnmm0hISMCiRYv8Ok7K92jwDu0c3A7tI92DiTyLI+KXi15m/OUvf2H1ej27ZcsW9vPPP2effvppNjo6mjWbzSzLsuzXvvY19rnnnuPLHzhwgNVoNOxLL73E1tbWshs2bGC1Wi178uRJsS5hCCtWrGBNJhO7d+9etqWlhX/19fXxZa6/pueff57dsWMHe+HCBbayspJ99NFHWYPBwJ4+fVqMS7iBtWvXsnv37mUvXbrEHjhwgC0rK2Pj4uLYtrY2lmXld4843G43m56ezn7ve9+74TOp36Pu7m62urqara6uZgGwr7zyCltdXc3W19ezLMuyP/7xj9no6Gj2ww8/ZE+cOME++OCDbFZWFtvf389/x5e+9CX2tdde4/8f61kcL4oWLJZl2ddee41NT09ndTodu2DBAvbQoUP8ZwsXLmS//vWvDyn/7rvvsjNmzGB1Oh07Z84c9uOPPw6yxSMDYNjXm2++yZe5/ppWr17NX39iYiJ73333sVVVVcE3fgQeeeQRNjk5mdXpdGxqair7yCOPsOfPn+c/l9s94tixYwcLgK2rq7vhM6nfoz179gxbzzibPR4P+5//+Z9sYmIiq9fr2TvvvPOG68zIyGA3bNgw5L3RnsXxQvmwCIKQDYr1YREEoTxIsAiCkA0kWARByAYSLIIgZAMJFkEQsoEEiyAI2UCCRRCEbCDBIghCNpBgEQQhG0iwCIKQDSRYBEHIhv8FmrRBQy/ub2QAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 300x300 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(3,3))\n",
"plt.plot(np.linspace(0,10,100), np.sin(np.linspace(0,10,100)))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment