Last active
February 2, 2020 15:50
-
-
Save AfonsoArtoni/c3dd09c1061c26e33d1463d312e00f07 to your computer and use it in GitHub Desktop.
Tutorial-Machine-Learn.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "name": "Tutorial-Machine-Learn.ipynb", | |
| "provenance": [], | |
| "authorship_tag": "ABX9TyPN6MVgJUxS8zsHdsxnCiC3", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/AfonsoArtoni/c3dd09c1061c26e33d1463d312e00f07/tutorial-machine-learn.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "dYueam-KA7xh", | |
| "colab_type": "code", | |
| "colab": { | |
| "resources": { | |
| "http://localhost:8080/nbextensions/google.colab/files.js": { | |
| "data": "Ly8gQ29weXJpZ2h0IDIwMTcgR29vZ2xlIExMQwovLwovLyBMaWNlbnNlZCB1bmRlciB0aGUgQXBhY2hlIExpY2Vuc2UsIFZlcnNpb24gMi4wICh0aGUgIkxpY2Vuc2UiKTsKLy8geW91IG1heSBub3QgdXNlIHRoaXMgZmlsZSBleGNlcHQgaW4gY29tcGxpYW5jZSB3aXRoIHRoZSBMaWNlbnNlLgovLyBZb3UgbWF5IG9idGFpbiBhIGNvcHkgb2YgdGhlIExpY2Vuc2UgYXQKLy8KLy8gICAgICBodHRwOi8vd3d3LmFwYWNoZS5vcmcvbGljZW5zZXMvTElDRU5TRS0yLjAKLy8KLy8gVW5sZXNzIHJlcXVpcmVkIGJ5IGFwcGxpY2FibGUgbGF3IG9yIGFncmVlZCB0byBpbiB3cml0aW5nLCBzb2Z0d2FyZQovLyBkaXN0cmlidXRlZCB1bmRlciB0aGUgTGljZW5zZSBpcyBkaXN0cmlidXRlZCBvbiBhbiAiQVMgSVMiIEJBU0lTLAovLyBXSVRIT1VUIFdBUlJBTlRJRVMgT1IgQ09ORElUSU9OUyBPRiBBTlkgS0lORCwgZWl0aGVyIGV4cHJlc3Mgb3IgaW1wbGllZC4KLy8gU2VlIHRoZSBMaWNlbnNlIGZvciB0aGUgc3BlY2lmaWMgbGFuZ3VhZ2UgZ292ZXJuaW5nIHBlcm1pc3Npb25zIGFuZAovLyBsaW1pdGF0aW9ucyB1bmRlciB0aGUgTGljZW5zZS4KCi8qKgogKiBAZmlsZW92ZXJ2aWV3IEhlbHBlcnMgZm9yIGdvb2dsZS5jb2xhYiBQeXRob24gbW9kdWxlLgogKi8KKGZ1bmN0aW9uKHNjb3BlKSB7CmZ1bmN0aW9uIHNwYW4odGV4dCwgc3R5bGVBdHRyaWJ1dGVzID0ge30pIHsKICBjb25zdCBlbGVtZW50ID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnc3BhbicpOwogIGVsZW1lbnQudGV4dENvbnRlbnQgPSB0ZXh0OwogIGZvciAoY29uc3Qga2V5IG9mIE9iamVjdC5rZXlzKHN0eWxlQXR0cmlidXRlcykpIHsKICAgIGVsZW1lbnQuc3R5bGVba2V5XSA9IHN0eWxlQXR0cmlidXRlc1trZXldOwogIH0KICByZXR1cm4gZWxlbWVudDsKfQoKLy8gTWF4IG51bWJlciBvZiBieXRlcyB3aGljaCB3aWxsIGJlIHVwbG9hZGVkIGF0IGEgdGltZS4KY29uc3QgTUFYX1BBWUxPQURfU0laRSA9IDEwMCAqIDEwMjQ7Ci8vIE1heCBhbW91bnQgb2YgdGltZSB0byBibG9jayB3YWl0aW5nIGZvciB0aGUgdXNlci4KY29uc3QgRklMRV9DSEFOR0VfVElNRU9VVF9NUyA9IDMwICogMTAwMDsKCmZ1bmN0aW9uIF91cGxvYWRGaWxlcyhpbnB1dElkLCBvdXRwdXRJZCkgewogIGNvbnN0IHN0ZXBzID0gdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKTsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIC8vIENhY2hlIHN0ZXBzIG9uIHRoZSBvdXRwdXRFbGVtZW50IHRvIG1ha2UgaXQgYXZhaWxhYmxlIGZvciB0aGUgbmV4dCBjYWxsCiAgLy8gdG8gdXBsb2FkRmlsZXNDb250aW51ZSBmcm9tIFB5dGhvbi4KICBvdXRwdXRFbGVtZW50LnN0ZXBzID0gc3RlcHM7CgogIHJldHVybiBfdXBsb2FkRmlsZXNDb250aW51ZShvdXRwdXRJZCk7Cn0KCi8vIFRoaXMgaXMgcm91Z2hseSBhbiBhc3luYyBnZW5lcmF0b3IgKG5vdCBzdXBwb3J0ZWQgaW4gdGhlIGJyb3dzZXIgeWV0KSwKLy8gd2hlcmUgdGhlcmUgYXJlIG11bHRpcGxlIGFzeW5jaHJvbm91cyBzdGVwcyBhbmQgdGhlIFB5dGhvbiBzaWRlIGlzIGdvaW5nCi8vIHRvIHBvbGwgZm9yIGNvbXBsZXRpb24gb2YgZWFjaCBzdGVwLgovLyBUaGlzIHVzZXMgYSBQcm9taXNlIHRvIGJsb2NrIHRoZSBweXRob24gc2lkZSBvbiBjb21wbGV0aW9uIG9mIGVhY2ggc3RlcCwKLy8gdGhlbiBwYXNzZXMgdGhlIHJlc3VsdCBvZiB0aGUgcHJldmlvdXMgc3RlcCBhcyB0aGUgaW5wdXQgdG8gdGhlIG5leHQgc3RlcC4KZnVuY3Rpb24gX3VwbG9hZEZpbGVzQ29udGludWUob3V0cHV0SWQpIHsKICBjb25zdCBvdXRwdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQob3V0cHV0SWQpOwogIGNvbnN0IHN0ZXBzID0gb3V0cHV0RWxlbWVudC5zdGVwczsKCiAgY29uc3QgbmV4dCA9IHN0ZXBzLm5leHQob3V0cHV0RWxlbWVudC5sYXN0UHJvbWlzZVZhbHVlKTsKICByZXR1cm4gUHJvbWlzZS5yZXNvbHZlKG5leHQudmFsdWUucHJvbWlzZSkudGhlbigodmFsdWUpID0+IHsKICAgIC8vIENhY2hlIHRoZSBsYXN0IHByb21pc2UgdmFsdWUgdG8gbWFrZSBpdCBhdmFpbGFibGUgdG8gdGhlIG5leHQKICAgIC8vIHN0ZXAgb2YgdGhlIGdlbmVyYXRvci4KICAgIG91dHB1dEVsZW1lbnQubGFzdFByb21pc2VWYWx1ZSA9IHZhbHVlOwogICAgcmV0dXJuIG5leHQudmFsdWUucmVzcG9uc2U7CiAgfSk7Cn0KCi8qKgogKiBHZW5lcmF0b3IgZnVuY3Rpb24gd2hpY2ggaXMgY2FsbGVkIGJldHdlZW4gZWFjaCBhc3luYyBzdGVwIG9mIHRoZSB1cGxvYWQKICogcHJvY2Vzcy4KICogQHBhcmFtIHtzdHJpbmd9IGlucHV0SWQgRWxlbWVudCBJRCBvZiB0aGUgaW5wdXQgZmlsZSBwaWNrZXIgZWxlbWVudC4KICogQHBhcmFtIHtzdHJpbmd9IG91dHB1dElkIEVsZW1lbnQgSUQgb2YgdGhlIG91dHB1dCBkaXNwbGF5LgogKiBAcmV0dXJuIHshSXRlcmFibGU8IU9iamVjdD59IEl0ZXJhYmxlIG9mIG5leHQgc3RlcHMuCiAqLwpmdW5jdGlvbiogdXBsb2FkRmlsZXNTdGVwKGlucHV0SWQsIG91dHB1dElkKSB7CiAgY29uc3QgaW5wdXRFbGVtZW50ID0gZG9jdW1lbnQuZ2V0RWxlbWVudEJ5SWQoaW5wdXRJZCk7CiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gZmFsc2U7CgogIGNvbnN0IG91dHB1dEVsZW1lbnQgPSBkb2N1bWVudC5nZXRFbGVtZW50QnlJZChvdXRwdXRJZCk7CiAgb3V0cHV0RWxlbWVudC5pbm5lckhUTUwgPSAnJzsKCiAgY29uc3QgcGlja2VkUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBpbnB1dEVsZW1lbnQuYWRkRXZlbnRMaXN0ZW5lcignY2hhbmdlJywgKGUpID0+IHsKICAgICAgcmVzb2x2ZShlLnRhcmdldC5maWxlcyk7CiAgICB9KTsKICB9KTsKCiAgY29uc3QgY2FuY2VsID0gZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgnYnV0dG9uJyk7CiAgaW5wdXRFbGVtZW50LnBhcmVudEVsZW1lbnQuYXBwZW5kQ2hpbGQoY2FuY2VsKTsKICBjYW5jZWwudGV4dENvbnRlbnQgPSAnQ2FuY2VsIHVwbG9hZCc7CiAgY29uc3QgY2FuY2VsUHJvbWlzZSA9IG5ldyBQcm9taXNlKChyZXNvbHZlKSA9PiB7CiAgICBjYW5jZWwub25jbGljayA9ICgpID0+IHsKICAgICAgcmVzb2x2ZShudWxsKTsKICAgIH07CiAgfSk7CgogIC8vIENhbmNlbCB1cGxvYWQgaWYgdXNlciBoYXNuJ3QgcGlja2VkIGFueXRoaW5nIGluIHRpbWVvdXQuCiAgY29uc3QgdGltZW91dFByb21pc2UgPSBuZXcgUHJvbWlzZSgocmVzb2x2ZSkgPT4gewogICAgc2V0VGltZW91dCgoKSA9PiB7CiAgICAgIHJlc29sdmUobnVsbCk7CiAgICB9LCBGSUxFX0NIQU5HRV9USU1FT1VUX01TKTsKICB9KTsKCiAgLy8gV2FpdCBmb3IgdGhlIHVzZXIgdG8gcGljayB0aGUgZmlsZXMuCiAgY29uc3QgZmlsZXMgPSB5aWVsZCB7CiAgICBwcm9taXNlOiBQcm9taXNlLnJhY2UoW3BpY2tlZFByb21pc2UsIHRpbWVvdXRQcm9taXNlLCBjYW5jZWxQcm9taXNlXSksCiAgICByZXNwb25zZTogewogICAgICBhY3Rpb246ICdzdGFydGluZycsCiAgICB9CiAgfTsKCiAgaWYgKCFmaWxlcykgewogICAgcmV0dXJuIHsKICAgICAgcmVzcG9uc2U6IHsKICAgICAgICBhY3Rpb246ICdjb21wbGV0ZScsCiAgICAgIH0KICAgIH07CiAgfQoKICBjYW5jZWwucmVtb3ZlKCk7CgogIC8vIERpc2FibGUgdGhlIGlucHV0IGVsZW1lbnQgc2luY2UgZnVydGhlciBwaWNrcyBhcmUgbm90IGFsbG93ZWQuCiAgaW5wdXRFbGVtZW50LmRpc2FibGVkID0gdHJ1ZTsKCiAgZm9yIChjb25zdCBmaWxlIG9mIGZpbGVzKSB7CiAgICBjb25zdCBsaSA9IGRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoJ2xpJyk7CiAgICBsaS5hcHBlbmQoc3BhbihmaWxlLm5hbWUsIHtmb250V2VpZ2h0OiAnYm9sZCd9KSk7CiAgICBsaS5hcHBlbmQoc3BhbigKICAgICAgICBgKCR7ZmlsZS50eXBlIHx8ICduL2EnfSkgLSAke2ZpbGUuc2l6ZX0gYnl0ZXMsIGAgKwogICAgICAgIGBsYXN0IG1vZGlmaWVkOiAkewogICAgICAgICAgICBmaWxlLmxhc3RNb2RpZmllZERhdGUgPyBmaWxlLmxhc3RNb2RpZmllZERhdGUudG9Mb2NhbGVEYXRlU3RyaW5nKCkgOgogICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAnbi9hJ30gLSBgKSk7CiAgICBjb25zdCBwZXJjZW50ID0gc3BhbignMCUgZG9uZScpOwogICAgbGkuYXBwZW5kQ2hpbGQocGVyY2VudCk7CgogICAgb3V0cHV0RWxlbWVudC5hcHBlbmRDaGlsZChsaSk7CgogICAgY29uc3QgZmlsZURhdGFQcm9taXNlID0gbmV3IFByb21pc2UoKHJlc29sdmUpID0+IHsKICAgICAgY29uc3QgcmVhZGVyID0gbmV3IEZpbGVSZWFkZXIoKTsKICAgICAgcmVhZGVyLm9ubG9hZCA9IChlKSA9PiB7CiAgICAgICAgcmVzb2x2ZShlLnRhcmdldC5yZXN1bHQpOwogICAgICB9OwogICAgICByZWFkZXIucmVhZEFzQXJyYXlCdWZmZXIoZmlsZSk7CiAgICB9KTsKICAgIC8vIFdhaXQgZm9yIHRoZSBkYXRhIHRvIGJlIHJlYWR5LgogICAgbGV0IGZpbGVEYXRhID0geWllbGQgewogICAgICBwcm9taXNlOiBmaWxlRGF0YVByb21pc2UsCiAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgYWN0aW9uOiAnY29udGludWUnLAogICAgICB9CiAgICB9OwoKICAgIC8vIFVzZSBhIGNodW5rZWQgc2VuZGluZyB0byBhdm9pZCBtZXNzYWdlIHNpemUgbGltaXRzLiBTZWUgYi82MjExNTY2MC4KICAgIGxldCBwb3NpdGlvbiA9IDA7CiAgICB3aGlsZSAocG9zaXRpb24gPCBmaWxlRGF0YS5ieXRlTGVuZ3RoKSB7CiAgICAgIGNvbnN0IGxlbmd0aCA9IE1hdGgubWluKGZpbGVEYXRhLmJ5dGVMZW5ndGggLSBwb3NpdGlvbiwgTUFYX1BBWUxPQURfU0laRSk7CiAgICAgIGNvbnN0IGNodW5rID0gbmV3IFVpbnQ4QXJyYXkoZmlsZURhdGEsIHBvc2l0aW9uLCBsZW5ndGgpOwogICAgICBwb3NpdGlvbiArPSBsZW5ndGg7CgogICAgICBjb25zdCBiYXNlNjQgPSBidG9hKFN0cmluZy5mcm9tQ2hhckNvZGUuYXBwbHkobnVsbCwgY2h1bmspKTsKICAgICAgeWllbGQgewogICAgICAgIHJlc3BvbnNlOiB7CiAgICAgICAgICBhY3Rpb246ICdhcHBlbmQnLAogICAgICAgICAgZmlsZTogZmlsZS5uYW1lLAogICAgICAgICAgZGF0YTogYmFzZTY0LAogICAgICAgIH0sCiAgICAgIH07CiAgICAgIHBlcmNlbnQudGV4dENvbnRlbnQgPQogICAgICAgICAgYCR7TWF0aC5yb3VuZCgocG9zaXRpb24gLyBmaWxlRGF0YS5ieXRlTGVuZ3RoKSAqIDEwMCl9JSBkb25lYDsKICAgIH0KICB9CgogIC8vIEFsbCBkb25lLgogIHlpZWxkIHsKICAgIHJlc3BvbnNlOiB7CiAgICAgIGFjdGlvbjogJ2NvbXBsZXRlJywKICAgIH0KICB9Owp9CgpzY29wZS5nb29nbGUgPSBzY29wZS5nb29nbGUgfHwge307CnNjb3BlLmdvb2dsZS5jb2xhYiA9IHNjb3BlLmdvb2dsZS5jb2xhYiB8fCB7fTsKc2NvcGUuZ29vZ2xlLmNvbGFiLl9maWxlcyA9IHsKICBfdXBsb2FkRmlsZXMsCiAgX3VwbG9hZEZpbGVzQ29udGludWUsCn07Cn0pKHNlbGYpOwo=", | |
| "ok": true, | |
| "headers": [ | |
| [ | |
| "content-type", | |
| "application/javascript" | |
| ] | |
| ], | |
| "status": 200, | |
| "status_text": "OK" | |
| } | |
| }, | |
| "base_uri": "https://localhost:8080/", | |
| "height": 45 | |
| }, | |
| "outputId": "9bbdc358-6466-485e-92bc-f79bca7579b6" | |
| }, | |
| "source": [ | |
| "from google.colab import files\n", | |
| "arquivo = files.upload()" | |
| ], | |
| "execution_count": 4, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <input type=\"file\" id=\"files-67d695c4-573d-45bf-ba36-29e1d9fa2db4\" name=\"files[]\" multiple disabled />\n", | |
| " <output id=\"result-67d695c4-573d-45bf-ba36-29e1d9fa2db4\">\n", | |
| " Upload widget is only available when the cell has been executed in the\n", | |
| " current browser session. Please rerun this cell to enable.\n", | |
| " </output>\n", | |
| " <script src=\"/nbextensions/google.colab/files.js\"></script> " | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.HTML object>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "rfTP1jvVCilU", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "#importando as bibliotecas\n", | |
| "import pandas as pd\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "import numpy as np\n" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "G5rPH2HjDKgb", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "iris = pd.read_csv('iris.csv')" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "0NORUJfpDVw1", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "outputId": "50929ee6-a8a6-4ec1-93f4-71a93e4d0434" | |
| }, | |
| "source": [ | |
| "iris.head()" | |
| ], | |
| "execution_count": 8, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>SepalLength</th>\n", | |
| " <th>SepalWidth</th>\n", | |
| " <th>PetalLength</th>\n", | |
| " <th>PetalWidth</th>\n", | |
| " <th>Species</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>5.1</td>\n", | |
| " <td>3.5</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>Iris-setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>4.9</td>\n", | |
| " <td>3.0</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>Iris-setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>4.7</td>\n", | |
| " <td>3.2</td>\n", | |
| " <td>1.3</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>Iris-setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>4.6</td>\n", | |
| " <td>3.1</td>\n", | |
| " <td>1.5</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>Iris-setosa</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>5.0</td>\n", | |
| " <td>3.6</td>\n", | |
| " <td>1.4</td>\n", | |
| " <td>0.2</td>\n", | |
| " <td>Iris-setosa</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " SepalLength SepalWidth PetalLength PetalWidth Species\n", | |
| "0 5.1 3.5 1.4 0.2 Iris-setosa\n", | |
| "1 4.9 3.0 1.4 0.2 Iris-setosa\n", | |
| "2 4.7 3.2 1.3 0.2 Iris-setosa\n", | |
| "3 4.6 3.1 1.5 0.2 Iris-setosa\n", | |
| "4 5.0 3.6 1.4 0.2 Iris-setosa" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 8 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "XkXfyXolDdd-", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 191 | |
| }, | |
| "outputId": "750aafe9-a21c-4d08-9301-e1c4e9b78ee5" | |
| }, | |
| "source": [ | |
| "iris.info()" | |
| ], | |
| "execution_count": 9, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "<class 'pandas.core.frame.DataFrame'>\n", | |
| "RangeIndex: 150 entries, 0 to 149\n", | |
| "Data columns (total 5 columns):\n", | |
| "SepalLength 150 non-null float64\n", | |
| "SepalWidth 150 non-null float64\n", | |
| "PetalLength 150 non-null float64\n", | |
| "PetalWidth 150 non-null float64\n", | |
| "Species 150 non-null object\n", | |
| "dtypes: float64(4), object(1)\n", | |
| "memory usage: 6.0+ KB\n" | |
| ], | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "TqybV_YDDqU1", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 300 | |
| }, | |
| "outputId": "33172381-2218-4e81-8104-dbe91ced53e5" | |
| }, | |
| "source": [ | |
| "iris.describe()" | |
| ], | |
| "execution_count": 10, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>SepalLength</th>\n", | |
| " <th>SepalWidth</th>\n", | |
| " <th>PetalLength</th>\n", | |
| " <th>PetalWidth</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>count</th>\n", | |
| " <td>150.000000</td>\n", | |
| " <td>150.000000</td>\n", | |
| " <td>150.000000</td>\n", | |
| " <td>150.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>mean</th>\n", | |
| " <td>5.843333</td>\n", | |
| " <td>3.054000</td>\n", | |
| " <td>3.758667</td>\n", | |
| " <td>1.198667</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>std</th>\n", | |
| " <td>0.828066</td>\n", | |
| " <td>0.433594</td>\n", | |
| " <td>1.764420</td>\n", | |
| " <td>0.763161</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>min</th>\n", | |
| " <td>4.300000</td>\n", | |
| " <td>2.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>0.100000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>25%</th>\n", | |
| " <td>5.100000</td>\n", | |
| " <td>2.800000</td>\n", | |
| " <td>1.600000</td>\n", | |
| " <td>0.300000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>50%</th>\n", | |
| " <td>5.800000</td>\n", | |
| " <td>3.000000</td>\n", | |
| " <td>4.350000</td>\n", | |
| " <td>1.300000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>75%</th>\n", | |
| " <td>6.400000</td>\n", | |
| " <td>3.300000</td>\n", | |
| " <td>5.100000</td>\n", | |
| " <td>1.800000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>max</th>\n", | |
| " <td>7.900000</td>\n", | |
| " <td>4.400000</td>\n", | |
| " <td>6.900000</td>\n", | |
| " <td>2.500000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " SepalLength SepalWidth PetalLength PetalWidth\n", | |
| "count 150.000000 150.000000 150.000000 150.000000\n", | |
| "mean 5.843333 3.054000 3.758667 1.198667\n", | |
| "std 0.828066 0.433594 1.764420 0.763161\n", | |
| "min 4.300000 2.000000 1.000000 0.100000\n", | |
| "25% 5.100000 2.800000 1.600000 0.300000\n", | |
| "50% 5.800000 3.000000 4.350000 1.300000\n", | |
| "75% 6.400000 3.300000 5.100000 1.800000\n", | |
| "max 7.900000 4.400000 6.900000 2.500000" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 10 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "yw7xUfNwDy1a", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "from sklearn.neighbors import KNeighborsClassifier\n", | |
| "from sklearn.model_selection import train_test_split" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "4oLg7nPrEp36", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "X_train, X_test, Y_train, Y_test = train_test_split(iris.drop(\"Species\", axis=1), iris[\"Species\"], test_size=0.3)" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "gDV4FalpFfly", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 34 | |
| }, | |
| "outputId": "f5609ab8-955b-426f-a729-465349d9fe34" | |
| }, | |
| "source": [ | |
| "X_train.shape, X_test.shape" | |
| ], | |
| "execution_count": 25, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "((105, 4), (45, 4))" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 25 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "tOOFD4B_F1Nq", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "knn = KNeighborsClassifier(n_neighbors=3)" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "rYBkiO8FJ3q-", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "resultado = knn.fit(X_train, Y_train)" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "1EvFwMB-GPLj", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 69 | |
| }, | |
| "outputId": "8ca146c1-16a5-4d6d-e164-6c7adfb34b01" | |
| }, | |
| "source": [ | |
| "knn.fit(X_train, Y_train)" | |
| ], | |
| "execution_count": 27, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\n", | |
| " metric_params=None, n_jobs=None, n_neighbors=3, p=2,\n", | |
| " weights='uniform')" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 27 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "PjtkyIShG7IU", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 260 | |
| }, | |
| "outputId": "9c11d8fa-f10a-42f1-8238-09f3ee3f0105" | |
| }, | |
| "source": [ | |
| "knn.predict(X_test)" | |
| ], | |
| "execution_count": 28, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array(['Iris-setosa', 'Iris-virginica', 'Iris-setosa', 'Iris-versicolor',\n", | |
| " 'Iris-versicolor', 'Iris-versicolor', 'Iris-setosa',\n", | |
| " 'Iris-virginica', 'Iris-virginica', 'Iris-virginica',\n", | |
| " 'Iris-versicolor', 'Iris-virginica', 'Iris-virginica',\n", | |
| " 'Iris-virginica', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',\n", | |
| " 'Iris-virginica', 'Iris-virginica', 'Iris-setosa', 'Iris-setosa',\n", | |
| " 'Iris-virginica', 'Iris-versicolor', 'Iris-virginica',\n", | |
| " 'Iris-versicolor', 'Iris-setosa', 'Iris-versicolor',\n", | |
| " 'Iris-versicolor', 'Iris-setosa', 'Iris-versicolor',\n", | |
| " 'Iris-versicolor', 'Iris-setosa', 'Iris-versicolor', 'Iris-setosa',\n", | |
| " 'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor',\n", | |
| " 'Iris-versicolor', 'Iris-virginica', 'Iris-virginica',\n", | |
| " 'Iris-setosa', 'Iris-setosa', 'Iris-setosa', 'Iris-versicolor'],\n", | |
| " dtype=object)" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 28 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "AWz73JFDHD3H", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 34 | |
| }, | |
| "outputId": "35894e45-3bf1-4c88-c18a-7d491f32e570" | |
| }, | |
| "source": [ | |
| "teste = np.array([[5.1,3.5,1.4,0.2]])\n", | |
| "knn.predict(teste),knn.predict_proba(teste)" | |
| ], | |
| "execution_count": 29, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(array(['Iris-setosa'], dtype=object), array([[1., 0., 0.]]))" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 29 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "mpRPKiDtHlur", | |
| "colab_type": "code", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 141 | |
| }, | |
| "outputId": "5c44342b-6852-4ae3-8006-e57477a55baf" | |
| }, | |
| "source": [ | |
| "from sklearn import metrics\n", | |
| "print(pd.crosstab(Y_test, resultado, rownames=[\"Real\"], colnames=[' predito'], margins=True))" | |
| ], | |
| "execution_count": 33, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| " predito KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',\\n metric_params=None, n_jobs=None, n_neighbors=3, p=2,\\n weights='uniform') All\n", | |
| "Real \n", | |
| "Iris-setosa 17 17\n", | |
| "Iris-versicolor 15 15\n", | |
| "Iris-virginica 13 13\n", | |
| "All 45 45\n" | |
| ], | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "CneUOMFbCRj-", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "from google.colab import drive\n", | |
| "drive.mount('/content/drive')" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "8CyLT0_0LR-z", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment