Last active
November 27, 2019 00:55
-
-
Save AnthonyFJGarner/cab997e4276af17d3ffbd75f725cdd2f to your computer and use it in GitHub Desktop.
Rolling US TBond Futures
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Introduction\n", | |
| "This notebook takes the master data file produced in the earlier US_Future notebook ('..\\data\\Futures\\us_master.csv') \n", | |
| "and creates a concatenated file of futures contracts containing your chosen maturities. EG when do you want to roll? \n", | |
| "With short term interest rates you can trade up to 4 years out. With bond cotracts there is no choice - you must roll quarterly since there may not be enough volume in any further out contract even if listed." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 109, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "#Imports\n", | |
| "import pandas as pd\n", | |
| "import numpy as np\n", | |
| "from numba import jit\n", | |
| "import os\n", | |
| "import ffn\n", | |
| "from pandas.tseries.offsets import *\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "%matplotlib notebook" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 110, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "#read in the master data file produced in the earlier notebook which contains every contract maturity\n", | |
| "us_master = '..\\\\data\\\\Futures\\\\us_master.csv'\n", | |
| "\n", | |
| "future = pd.read_csv(\n", | |
| " us_master,\n", | |
| " header=0,\n", | |
| " parse_dates=[\"Date\", \"Start\", 'End'],\n", | |
| ")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 111, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Open</th>\n", | |
| " <th>High</th>\n", | |
| " <th>Low</th>\n", | |
| " <th>Close</th>\n", | |
| " <th>Volume</th>\n", | |
| " <th>Open_Interest</th>\n", | |
| " <th>Return</th>\n", | |
| " <th>VADI</th>\n", | |
| " <th>Contract</th>\n", | |
| " <th>Start</th>\n", | |
| " <th>End</th>\n", | |
| " <th>DStart</th>\n", | |
| " <th>DEnd</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>70563</th>\n", | |
| " <td>2019-04-11</td>\n", | |
| " <td>147.34375</td>\n", | |
| " <td>147.71875</td>\n", | |
| " <td>147.00000</td>\n", | |
| " <td>147.09375</td>\n", | |
| " <td>238198</td>\n", | |
| " <td>107</td>\n", | |
| " <td>-0.003388</td>\n", | |
| " <td>101.861069</td>\n", | |
| " <td>US2019U</td>\n", | |
| " <td>2018-12-19</td>\n", | |
| " <td>2019-09-15</td>\n", | |
| " <td>True</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>70564</th>\n", | |
| " <td>2019-04-11</td>\n", | |
| " <td>146.31250</td>\n", | |
| " <td>146.31250</td>\n", | |
| " <td>146.31250</td>\n", | |
| " <td>146.31250</td>\n", | |
| " <td>238198</td>\n", | |
| " <td>2</td>\n", | |
| " <td>-0.003406</td>\n", | |
| " <td>99.957301</td>\n", | |
| " <td>US2019Z</td>\n", | |
| " <td>2019-03-20</td>\n", | |
| " <td>2019-12-15</td>\n", | |
| " <td>True</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>70565</th>\n", | |
| " <td>2019-04-12</td>\n", | |
| " <td>147.87500</td>\n", | |
| " <td>148.06250</td>\n", | |
| " <td>146.81250</td>\n", | |
| " <td>146.90625</td>\n", | |
| " <td>238198</td>\n", | |
| " <td>945767</td>\n", | |
| " <td>-0.005500</td>\n", | |
| " <td>105.545577</td>\n", | |
| " <td>US2019M</td>\n", | |
| " <td>2018-09-19</td>\n", | |
| " <td>2019-06-15</td>\n", | |
| " <td>False</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>70566</th>\n", | |
| " <td>2019-04-12</td>\n", | |
| " <td>146.50000</td>\n", | |
| " <td>147.37500</td>\n", | |
| " <td>146.21875</td>\n", | |
| " <td>146.25000</td>\n", | |
| " <td>238198</td>\n", | |
| " <td>107</td>\n", | |
| " <td>-0.005736</td>\n", | |
| " <td>101.276780</td>\n", | |
| " <td>US2019U</td>\n", | |
| " <td>2018-12-19</td>\n", | |
| " <td>2019-09-15</td>\n", | |
| " <td>True</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>70567</th>\n", | |
| " <td>2019-04-12</td>\n", | |
| " <td>145.46875</td>\n", | |
| " <td>145.46875</td>\n", | |
| " <td>145.46875</td>\n", | |
| " <td>145.46875</td>\n", | |
| " <td>238198</td>\n", | |
| " <td>2</td>\n", | |
| " <td>-0.005767</td>\n", | |
| " <td>99.380871</td>\n", | |
| " <td>US2019Z</td>\n", | |
| " <td>2019-03-20</td>\n", | |
| " <td>2019-12-15</td>\n", | |
| " <td>True</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " Date Open High Low Close Volume \\\n", | |
| "70563 2019-04-11 147.34375 147.71875 147.00000 147.09375 238198 \n", | |
| "70564 2019-04-11 146.31250 146.31250 146.31250 146.31250 238198 \n", | |
| "70565 2019-04-12 147.87500 148.06250 146.81250 146.90625 238198 \n", | |
| "70566 2019-04-12 146.50000 147.37500 146.21875 146.25000 238198 \n", | |
| "70567 2019-04-12 145.46875 145.46875 145.46875 145.46875 238198 \n", | |
| "\n", | |
| " Open_Interest Return VADI Contract Start End \\\n", | |
| "70563 107 -0.003388 101.861069 US2019U 2018-12-19 2019-09-15 \n", | |
| "70564 2 -0.003406 99.957301 US2019Z 2019-03-20 2019-12-15 \n", | |
| "70565 945767 -0.005500 105.545577 US2019M 2018-09-19 2019-06-15 \n", | |
| "70566 107 -0.005736 101.276780 US2019U 2018-12-19 2019-09-15 \n", | |
| "70567 2 -0.005767 99.380871 US2019Z 2019-03-20 2019-12-15 \n", | |
| "\n", | |
| " DStart DEnd \n", | |
| "70563 True True \n", | |
| "70564 True False \n", | |
| "70565 False True \n", | |
| "70566 True True \n", | |
| "70567 True False " | |
| ] | |
| }, | |
| "execution_count": 111, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#Add columns which will trigger your choice of contracts\n", | |
| "#Don't worry about the nonsensical VAMI. Thgis will get updated when maturites have been chosen\n", | |
| "#and the datafile thinned out to only those contract you want to test / trade\n", | |
| "future['DStart'] = future.Date.eq(future.Date.shift(1))\n", | |
| "future['DEnd'] = future.Date.eq(future.Date.shift(-1))\n", | |
| "future.tail()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 112, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "#initialise variables\n", | |
| "#what length of expiration are you looking for in days?\n", | |
| "expiration = int(90)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 113, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "#Create a dictionary to store data as you loop through the master file\n", | |
| "#and a counter\n", | |
| "temp_futures = {}\n", | |
| "a = 0\n", | |
| "\n", | |
| "#loop through the master data file\n", | |
| "for i, row in enumerate(future.itertuples(), 0):\n", | |
| "\n", | |
| " if row.DStart == False:\n", | |
| " #for each trading day initiate the price series with the earliest expiry first. \n", | |
| " #Find your target expiration date\n", | |
| " #and how wide of your target this first expiry listed for this trading day is\n", | |
| " targetExpiration = row.Date + expiration * Day()\n", | |
| " targetExpirationDifference = abs(targetExpiration - row.End)\n", | |
| " expirationLocation = (i)\n", | |
| "\n", | |
| " if row.DStart == True and row.DEnd == True:\n", | |
| " #iterate through the different expirations trading each day\n", | |
| " #find the closest match to targetExpiration\n", | |
| " if abs(targetExpiration - row.End) <= targetExpirationDifference:\n", | |
| " #error correction routine - when diff between target expiration and expiration continues to decline,\n", | |
| " #algo chooses the closer expirataion\n", | |
| " targetExpirationDifference = abs(targetExpiration - row.End)\n", | |
| " expirationLocation = (i)\n", | |
| " #closest expiration to your target expiration has now been chosen. \n", | |
| " \n", | |
| " if row.DEnd == False:\n", | |
| " #Now you have reached the last contract trading on the relevant trading day\n", | |
| " if abs(targetExpiration - row.End) <= targetExpirationDifference:\n", | |
| " #error correction routine - when diff between target expiration and expiration continues to decline,\n", | |
| " #algo chooses the closer expirataion\n", | |
| " targetExpirationDifference = abs(targetExpiration - row.End)\n", | |
| " expirationLocation = (i)\n", | |
| " #You have now found the closest expiry to your target expiry for a given trading day...\n", | |
| " #So add a row for the day's data for that expiry to the dictionary\n", | |
| " temp_futures[future.Date[i]] = [\n", | |
| " future.Date[i], future.Close[expirationLocation],\n", | |
| " future.Return[expirationLocation],\n", | |
| " future.Volume[expirationLocation],\n", | |
| " future.Contract[expirationLocation],\n", | |
| " future.Start[expirationLocation],\n", | |
| " future.End[expirationLocation], targetExpiration,\n", | |
| " targetExpirationDifference\n", | |
| " ]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 114, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "#This function will calculate the VAMI each day from the return for that day\n", | |
| "@jit()\n", | |
| "def calculator(a):\n", | |
| " res = np.empty(rolling_future.VADI.shape)\n", | |
| " res[0] = 100\n", | |
| " for i in range(1, res.shape[0]):\n", | |
| " res[i] = res[i-1] +(res[i-1]* a[i])\n", | |
| " return res" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 115, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "#Create a dataframe from the dictionary temp_futures\n", | |
| "rolling_future = pd.DataFrame(temp_futures).T\n", | |
| "rolling_future.index.name = 'Date'\n", | |
| "rolling_future.columns = [\n", | |
| " 'Date', 'Close', 'Return', 'Volume', 'Contract', 'Start', 'End',\n", | |
| " 'targetExpiration', 'targetExpirationDifference'\n", | |
| "]\n", | |
| "rolling_future['VADI']=0.0\n", | |
| "#calculate the VADI for each day\n", | |
| "rolling_future['VADI'] = calculator(\n", | |
| " *rolling_future[list(rolling_future.loc[:, ['Return']])].values.T)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 116, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Close</th>\n", | |
| " <th>Return</th>\n", | |
| " <th>Volume</th>\n", | |
| " <th>Contract</th>\n", | |
| " <th>Start</th>\n", | |
| " <th>End</th>\n", | |
| " <th>targetExpiration</th>\n", | |
| " <th>targetExpirationDifference</th>\n", | |
| " <th>VADI</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Date</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2019-04-08</th>\n", | |
| " <td>2019-04-08 00:00:00</td>\n", | |
| " <td>147.625</td>\n", | |
| " <td>-0.00211238</td>\n", | |
| " <td>157099</td>\n", | |
| " <td>US2019M</td>\n", | |
| " <td>2018-09-19 00:00:00</td>\n", | |
| " <td>2019-06-15 00:00:00</td>\n", | |
| " <td>2019-07-07 00:00:00</td>\n", | |
| " <td>22 days 00:00:00</td>\n", | |
| " <td>410.303543</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-04-09</th>\n", | |
| " <td>2019-04-09 00:00:00</td>\n", | |
| " <td>148</td>\n", | |
| " <td>0.00254022</td>\n", | |
| " <td>223482</td>\n", | |
| " <td>US2019M</td>\n", | |
| " <td>2018-09-19 00:00:00</td>\n", | |
| " <td>2019-06-15 00:00:00</td>\n", | |
| " <td>2019-07-08 00:00:00</td>\n", | |
| " <td>23 days 00:00:00</td>\n", | |
| " <td>411.345804</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-04-10</th>\n", | |
| " <td>2019-04-10 00:00:00</td>\n", | |
| " <td>148.219</td>\n", | |
| " <td>0.00147804</td>\n", | |
| " <td>235953</td>\n", | |
| " <td>US2019M</td>\n", | |
| " <td>2018-09-19 00:00:00</td>\n", | |
| " <td>2019-06-15 00:00:00</td>\n", | |
| " <td>2019-07-09 00:00:00</td>\n", | |
| " <td>24 days 00:00:00</td>\n", | |
| " <td>411.953790</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-04-11</th>\n", | |
| " <td>2019-04-11 00:00:00</td>\n", | |
| " <td>147.719</td>\n", | |
| " <td>-0.00337339</td>\n", | |
| " <td>238198</td>\n", | |
| " <td>US2019M</td>\n", | |
| " <td>2018-09-19 00:00:00</td>\n", | |
| " <td>2019-06-15 00:00:00</td>\n", | |
| " <td>2019-07-10 00:00:00</td>\n", | |
| " <td>25 days 00:00:00</td>\n", | |
| " <td>410.564108</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-04-12</th>\n", | |
| " <td>2019-04-12 00:00:00</td>\n", | |
| " <td>146.906</td>\n", | |
| " <td>-0.00550032</td>\n", | |
| " <td>238198</td>\n", | |
| " <td>US2019M</td>\n", | |
| " <td>2018-09-19 00:00:00</td>\n", | |
| " <td>2019-06-15 00:00:00</td>\n", | |
| " <td>2019-07-11 00:00:00</td>\n", | |
| " <td>26 days 00:00:00</td>\n", | |
| " <td>408.305875</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " Date Close Return Volume Contract \\\n", | |
| "Date \n", | |
| "2019-04-08 2019-04-08 00:00:00 147.625 -0.00211238 157099 US2019M \n", | |
| "2019-04-09 2019-04-09 00:00:00 148 0.00254022 223482 US2019M \n", | |
| "2019-04-10 2019-04-10 00:00:00 148.219 0.00147804 235953 US2019M \n", | |
| "2019-04-11 2019-04-11 00:00:00 147.719 -0.00337339 238198 US2019M \n", | |
| "2019-04-12 2019-04-12 00:00:00 146.906 -0.00550032 238198 US2019M \n", | |
| "\n", | |
| " Start End targetExpiration \\\n", | |
| "Date \n", | |
| "2019-04-08 2018-09-19 00:00:00 2019-06-15 00:00:00 2019-07-07 00:00:00 \n", | |
| "2019-04-09 2018-09-19 00:00:00 2019-06-15 00:00:00 2019-07-08 00:00:00 \n", | |
| "2019-04-10 2018-09-19 00:00:00 2019-06-15 00:00:00 2019-07-09 00:00:00 \n", | |
| "2019-04-11 2018-09-19 00:00:00 2019-06-15 00:00:00 2019-07-10 00:00:00 \n", | |
| "2019-04-12 2018-09-19 00:00:00 2019-06-15 00:00:00 2019-07-11 00:00:00 \n", | |
| "\n", | |
| " targetExpirationDifference VADI \n", | |
| "Date \n", | |
| "2019-04-08 22 days 00:00:00 410.303543 \n", | |
| "2019-04-09 23 days 00:00:00 411.345804 \n", | |
| "2019-04-10 24 days 00:00:00 411.953790 \n", | |
| "2019-04-11 25 days 00:00:00 410.564108 \n", | |
| "2019-04-12 26 days 00:00:00 408.305875 " | |
| ] | |
| }, | |
| "execution_count": 116, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "rolling_future.tail()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 117, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "#Save your time series to csv for retrieval for later backtesting with your chosen program\n", | |
| "rolling_future.to_csv('..\\data\\Futures/rolling_US.csv', index=None)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 118, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "#Create a new dataframe to display the results\n", | |
| "US=rolling_future[['VADI']].copy()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 119, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>VADI</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Date</th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2019-04-08</th>\n", | |
| " <td>410.303543</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-04-09</th>\n", | |
| " <td>411.345804</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-04-10</th>\n", | |
| " <td>411.953790</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-04-11</th>\n", | |
| " <td>410.564108</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2019-04-12</th>\n", | |
| " <td>408.305875</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " VADI\n", | |
| "Date \n", | |
| "2019-04-08 410.303543\n", | |
| "2019-04-09 411.345804\n", | |
| "2019-04-10 411.953790\n", | |
| "2019-04-11 410.564108\n", | |
| "2019-04-12 408.305875" | |
| ] | |
| }, | |
| "execution_count": 119, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#Inspect the final results\n", | |
| "US.tail()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 120, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "application/javascript": [ | |
| "/* Put everything inside the global mpl namespace */\n", | |
| "window.mpl = {};\n", | |
| "\n", | |
| "\n", | |
| "mpl.get_websocket_type = function() {\n", | |
| " if (typeof(WebSocket) !== 'undefined') {\n", | |
| " return WebSocket;\n", | |
| " } else if (typeof(MozWebSocket) !== 'undefined') {\n", | |
| " return MozWebSocket;\n", | |
| " } else {\n", | |
| " alert('Your browser does not have WebSocket support.' +\n", | |
| " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", | |
| " 'Firefox 4 and 5 are also supported but you ' +\n", | |
| " 'have to enable WebSockets in about:config.');\n", | |
| " };\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", | |
| " this.id = figure_id;\n", | |
| "\n", | |
| " this.ws = websocket;\n", | |
| "\n", | |
| " this.supports_binary = (this.ws.binaryType != undefined);\n", | |
| "\n", | |
| " if (!this.supports_binary) {\n", | |
| " var warnings = document.getElementById(\"mpl-warnings\");\n", | |
| " if (warnings) {\n", | |
| " warnings.style.display = 'block';\n", | |
| " warnings.textContent = (\n", | |
| " \"This browser does not support binary websocket messages. \" +\n", | |
| " \"Performance may be slow.\");\n", | |
| " }\n", | |
| " }\n", | |
| "\n", | |
| " this.imageObj = new Image();\n", | |
| "\n", | |
| " this.context = undefined;\n", | |
| " this.message = undefined;\n", | |
| " this.canvas = undefined;\n", | |
| " this.rubberband_canvas = undefined;\n", | |
| " this.rubberband_context = undefined;\n", | |
| " this.format_dropdown = undefined;\n", | |
| "\n", | |
| " this.image_mode = 'full';\n", | |
| "\n", | |
| " this.root = $('<div/>');\n", | |
| " this._root_extra_style(this.root)\n", | |
| " this.root.attr('style', 'display: inline-block');\n", | |
| "\n", | |
| " $(parent_element).append(this.root);\n", | |
| "\n", | |
| " this._init_header(this);\n", | |
| " this._init_canvas(this);\n", | |
| " this._init_toolbar(this);\n", | |
| "\n", | |
| " var fig = this;\n", | |
| "\n", | |
| " this.waiting = false;\n", | |
| "\n", | |
| " this.ws.onopen = function () {\n", | |
| " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", | |
| " fig.send_message(\"send_image_mode\", {});\n", | |
| " if (mpl.ratio != 1) {\n", | |
| " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", | |
| " }\n", | |
| " fig.send_message(\"refresh\", {});\n", | |
| " }\n", | |
| "\n", | |
| " this.imageObj.onload = function() {\n", | |
| " if (fig.image_mode == 'full') {\n", | |
| " // Full images could contain transparency (where diff images\n", | |
| " // almost always do), so we need to clear the canvas so that\n", | |
| " // there is no ghosting.\n", | |
| " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", | |
| " }\n", | |
| " fig.context.drawImage(fig.imageObj, 0, 0);\n", | |
| " };\n", | |
| "\n", | |
| " this.imageObj.onunload = function() {\n", | |
| " fig.ws.close();\n", | |
| " }\n", | |
| "\n", | |
| " this.ws.onmessage = this._make_on_message_function(this);\n", | |
| "\n", | |
| " this.ondownload = ondownload;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._init_header = function() {\n", | |
| " var titlebar = $(\n", | |
| " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", | |
| " 'ui-helper-clearfix\"/>');\n", | |
| " var titletext = $(\n", | |
| " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", | |
| " 'text-align: center; padding: 3px;\"/>');\n", | |
| " titlebar.append(titletext)\n", | |
| " this.root.append(titlebar);\n", | |
| " this.header = titletext[0];\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "\n", | |
| "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", | |
| "\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", | |
| "\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._init_canvas = function() {\n", | |
| " var fig = this;\n", | |
| "\n", | |
| " var canvas_div = $('<div/>');\n", | |
| "\n", | |
| " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", | |
| "\n", | |
| " function canvas_keyboard_event(event) {\n", | |
| " return fig.key_event(event, event['data']);\n", | |
| " }\n", | |
| "\n", | |
| " canvas_div.keydown('key_press', canvas_keyboard_event);\n", | |
| " canvas_div.keyup('key_release', canvas_keyboard_event);\n", | |
| " this.canvas_div = canvas_div\n", | |
| " this._canvas_extra_style(canvas_div)\n", | |
| " this.root.append(canvas_div);\n", | |
| "\n", | |
| " var canvas = $('<canvas/>');\n", | |
| " canvas.addClass('mpl-canvas');\n", | |
| " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", | |
| "\n", | |
| " this.canvas = canvas[0];\n", | |
| " this.context = canvas[0].getContext(\"2d\");\n", | |
| "\n", | |
| " var backingStore = this.context.backingStorePixelRatio ||\n", | |
| "\tthis.context.webkitBackingStorePixelRatio ||\n", | |
| "\tthis.context.mozBackingStorePixelRatio ||\n", | |
| "\tthis.context.msBackingStorePixelRatio ||\n", | |
| "\tthis.context.oBackingStorePixelRatio ||\n", | |
| "\tthis.context.backingStorePixelRatio || 1;\n", | |
| "\n", | |
| " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", | |
| "\n", | |
| " var rubberband = $('<canvas/>');\n", | |
| " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", | |
| "\n", | |
| " var pass_mouse_events = true;\n", | |
| "\n", | |
| " canvas_div.resizable({\n", | |
| " start: function(event, ui) {\n", | |
| " pass_mouse_events = false;\n", | |
| " },\n", | |
| " resize: function(event, ui) {\n", | |
| " fig.request_resize(ui.size.width, ui.size.height);\n", | |
| " },\n", | |
| " stop: function(event, ui) {\n", | |
| " pass_mouse_events = true;\n", | |
| " fig.request_resize(ui.size.width, ui.size.height);\n", | |
| " },\n", | |
| " });\n", | |
| "\n", | |
| " function mouse_event_fn(event) {\n", | |
| " if (pass_mouse_events)\n", | |
| " return fig.mouse_event(event, event['data']);\n", | |
| " }\n", | |
| "\n", | |
| " rubberband.mousedown('button_press', mouse_event_fn);\n", | |
| " rubberband.mouseup('button_release', mouse_event_fn);\n", | |
| " // Throttle sequential mouse events to 1 every 20ms.\n", | |
| " rubberband.mousemove('motion_notify', mouse_event_fn);\n", | |
| "\n", | |
| " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", | |
| " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", | |
| "\n", | |
| " canvas_div.on(\"wheel\", function (event) {\n", | |
| " event = event.originalEvent;\n", | |
| " event['data'] = 'scroll'\n", | |
| " if (event.deltaY < 0) {\n", | |
| " event.step = 1;\n", | |
| " } else {\n", | |
| " event.step = -1;\n", | |
| " }\n", | |
| " mouse_event_fn(event);\n", | |
| " });\n", | |
| "\n", | |
| " canvas_div.append(canvas);\n", | |
| " canvas_div.append(rubberband);\n", | |
| "\n", | |
| " this.rubberband = rubberband;\n", | |
| " this.rubberband_canvas = rubberband[0];\n", | |
| " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", | |
| " this.rubberband_context.strokeStyle = \"#000000\";\n", | |
| "\n", | |
| " this._resize_canvas = function(width, height) {\n", | |
| " // Keep the size of the canvas, canvas container, and rubber band\n", | |
| " // canvas in synch.\n", | |
| " canvas_div.css('width', width)\n", | |
| " canvas_div.css('height', height)\n", | |
| "\n", | |
| " canvas.attr('width', width * mpl.ratio);\n", | |
| " canvas.attr('height', height * mpl.ratio);\n", | |
| " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", | |
| "\n", | |
| " rubberband.attr('width', width);\n", | |
| " rubberband.attr('height', height);\n", | |
| " }\n", | |
| "\n", | |
| " // Set the figure to an initial 600x600px, this will subsequently be updated\n", | |
| " // upon first draw.\n", | |
| " this._resize_canvas(600, 600);\n", | |
| "\n", | |
| " // Disable right mouse context menu.\n", | |
| " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", | |
| " return false;\n", | |
| " });\n", | |
| "\n", | |
| " function set_focus () {\n", | |
| " canvas.focus();\n", | |
| " canvas_div.focus();\n", | |
| " }\n", | |
| "\n", | |
| " window.setTimeout(set_focus, 100);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._init_toolbar = function() {\n", | |
| " var fig = this;\n", | |
| "\n", | |
| " var nav_element = $('<div/>')\n", | |
| " nav_element.attr('style', 'width: 100%');\n", | |
| " this.root.append(nav_element);\n", | |
| "\n", | |
| " // Define a callback function for later on.\n", | |
| " function toolbar_event(event) {\n", | |
| " return fig.toolbar_button_onclick(event['data']);\n", | |
| " }\n", | |
| " function toolbar_mouse_event(event) {\n", | |
| " return fig.toolbar_button_onmouseover(event['data']);\n", | |
| " }\n", | |
| "\n", | |
| " for(var toolbar_ind in mpl.toolbar_items) {\n", | |
| " var name = mpl.toolbar_items[toolbar_ind][0];\n", | |
| " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", | |
| " var image = mpl.toolbar_items[toolbar_ind][2];\n", | |
| " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", | |
| "\n", | |
| " if (!name) {\n", | |
| " // put a spacer in here.\n", | |
| " continue;\n", | |
| " }\n", | |
| " var button = $('<button/>');\n", | |
| " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", | |
| " 'ui-button-icon-only');\n", | |
| " button.attr('role', 'button');\n", | |
| " button.attr('aria-disabled', 'false');\n", | |
| " button.click(method_name, toolbar_event);\n", | |
| " button.mouseover(tooltip, toolbar_mouse_event);\n", | |
| "\n", | |
| " var icon_img = $('<span/>');\n", | |
| " icon_img.addClass('ui-button-icon-primary ui-icon');\n", | |
| " icon_img.addClass(image);\n", | |
| " icon_img.addClass('ui-corner-all');\n", | |
| "\n", | |
| " var tooltip_span = $('<span/>');\n", | |
| " tooltip_span.addClass('ui-button-text');\n", | |
| " tooltip_span.html(tooltip);\n", | |
| "\n", | |
| " button.append(icon_img);\n", | |
| " button.append(tooltip_span);\n", | |
| "\n", | |
| " nav_element.append(button);\n", | |
| " }\n", | |
| "\n", | |
| " var fmt_picker_span = $('<span/>');\n", | |
| "\n", | |
| " var fmt_picker = $('<select/>');\n", | |
| " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", | |
| " fmt_picker_span.append(fmt_picker);\n", | |
| " nav_element.append(fmt_picker_span);\n", | |
| " this.format_dropdown = fmt_picker[0];\n", | |
| "\n", | |
| " for (var ind in mpl.extensions) {\n", | |
| " var fmt = mpl.extensions[ind];\n", | |
| " var option = $(\n", | |
| " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", | |
| " fmt_picker.append(option)\n", | |
| " }\n", | |
| "\n", | |
| " // Add hover states to the ui-buttons\n", | |
| " $( \".ui-button\" ).hover(\n", | |
| " function() { $(this).addClass(\"ui-state-hover\");},\n", | |
| " function() { $(this).removeClass(\"ui-state-hover\");}\n", | |
| " );\n", | |
| "\n", | |
| " var status_bar = $('<span class=\"mpl-message\"/>');\n", | |
| " nav_element.append(status_bar);\n", | |
| " this.message = status_bar[0];\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", | |
| " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", | |
| " // which will in turn request a refresh of the image.\n", | |
| " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.send_message = function(type, properties) {\n", | |
| " properties['type'] = type;\n", | |
| " properties['figure_id'] = this.id;\n", | |
| " this.ws.send(JSON.stringify(properties));\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.send_draw_message = function() {\n", | |
| " if (!this.waiting) {\n", | |
| " this.waiting = true;\n", | |
| " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", | |
| " }\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_save = function(fig, msg) {\n", | |
| " var format_dropdown = fig.format_dropdown;\n", | |
| " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", | |
| " fig.ondownload(fig, format);\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", | |
| " var size = msg['size'];\n", | |
| " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", | |
| " fig._resize_canvas(size[0], size[1]);\n", | |
| " fig.send_message(\"refresh\", {});\n", | |
| " };\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", | |
| " var x0 = msg['x0'] / mpl.ratio;\n", | |
| " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", | |
| " var x1 = msg['x1'] / mpl.ratio;\n", | |
| " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", | |
| " x0 = Math.floor(x0) + 0.5;\n", | |
| " y0 = Math.floor(y0) + 0.5;\n", | |
| " x1 = Math.floor(x1) + 0.5;\n", | |
| " y1 = Math.floor(y1) + 0.5;\n", | |
| " var min_x = Math.min(x0, x1);\n", | |
| " var min_y = Math.min(y0, y1);\n", | |
| " var width = Math.abs(x1 - x0);\n", | |
| " var height = Math.abs(y1 - y0);\n", | |
| "\n", | |
| " fig.rubberband_context.clearRect(\n", | |
| " 0, 0, fig.canvas.width, fig.canvas.height);\n", | |
| "\n", | |
| " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", | |
| " // Updates the figure title.\n", | |
| " fig.header.textContent = msg['label'];\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", | |
| " var cursor = msg['cursor'];\n", | |
| " switch(cursor)\n", | |
| " {\n", | |
| " case 0:\n", | |
| " cursor = 'pointer';\n", | |
| " break;\n", | |
| " case 1:\n", | |
| " cursor = 'default';\n", | |
| " break;\n", | |
| " case 2:\n", | |
| " cursor = 'crosshair';\n", | |
| " break;\n", | |
| " case 3:\n", | |
| " cursor = 'move';\n", | |
| " break;\n", | |
| " }\n", | |
| " fig.rubberband_canvas.style.cursor = cursor;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_message = function(fig, msg) {\n", | |
| " fig.message.textContent = msg['message'];\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", | |
| " // Request the server to send over a new figure.\n", | |
| " fig.send_draw_message();\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", | |
| " fig.image_mode = msg['mode'];\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.updated_canvas_event = function() {\n", | |
| " // Called whenever the canvas gets updated.\n", | |
| " this.send_message(\"ack\", {});\n", | |
| "}\n", | |
| "\n", | |
| "// A function to construct a web socket function for onmessage handling.\n", | |
| "// Called in the figure constructor.\n", | |
| "mpl.figure.prototype._make_on_message_function = function(fig) {\n", | |
| " return function socket_on_message(evt) {\n", | |
| " if (evt.data instanceof Blob) {\n", | |
| " /* FIXME: We get \"Resource interpreted as Image but\n", | |
| " * transferred with MIME type text/plain:\" errors on\n", | |
| " * Chrome. But how to set the MIME type? It doesn't seem\n", | |
| " * to be part of the websocket stream */\n", | |
| " evt.data.type = \"image/png\";\n", | |
| "\n", | |
| " /* Free the memory for the previous frames */\n", | |
| " if (fig.imageObj.src) {\n", | |
| " (window.URL || window.webkitURL).revokeObjectURL(\n", | |
| " fig.imageObj.src);\n", | |
| " }\n", | |
| "\n", | |
| " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", | |
| " evt.data);\n", | |
| " fig.updated_canvas_event();\n", | |
| " fig.waiting = false;\n", | |
| " return;\n", | |
| " }\n", | |
| " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", | |
| " fig.imageObj.src = evt.data;\n", | |
| " fig.updated_canvas_event();\n", | |
| " fig.waiting = false;\n", | |
| " return;\n", | |
| " }\n", | |
| "\n", | |
| " var msg = JSON.parse(evt.data);\n", | |
| " var msg_type = msg['type'];\n", | |
| "\n", | |
| " // Call the \"handle_{type}\" callback, which takes\n", | |
| " // the figure and JSON message as its only arguments.\n", | |
| " try {\n", | |
| " var callback = fig[\"handle_\" + msg_type];\n", | |
| " } catch (e) {\n", | |
| " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", | |
| " return;\n", | |
| " }\n", | |
| "\n", | |
| " if (callback) {\n", | |
| " try {\n", | |
| " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", | |
| " callback(fig, msg);\n", | |
| " } catch (e) {\n", | |
| " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", | |
| " }\n", | |
| " }\n", | |
| " };\n", | |
| "}\n", | |
| "\n", | |
| "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", | |
| "mpl.findpos = function(e) {\n", | |
| " //this section is from http://www.quirksmode.org/js/events_properties.html\n", | |
| " var targ;\n", | |
| " if (!e)\n", | |
| " e = window.event;\n", | |
| " if (e.target)\n", | |
| " targ = e.target;\n", | |
| " else if (e.srcElement)\n", | |
| " targ = e.srcElement;\n", | |
| " if (targ.nodeType == 3) // defeat Safari bug\n", | |
| " targ = targ.parentNode;\n", | |
| "\n", | |
| " // jQuery normalizes the pageX and pageY\n", | |
| " // pageX,Y are the mouse positions relative to the document\n", | |
| " // offset() returns the position of the element relative to the document\n", | |
| " var x = e.pageX - $(targ).offset().left;\n", | |
| " var y = e.pageY - $(targ).offset().top;\n", | |
| "\n", | |
| " return {\"x\": x, \"y\": y};\n", | |
| "};\n", | |
| "\n", | |
| "/*\n", | |
| " * return a copy of an object with only non-object keys\n", | |
| " * we need this to avoid circular references\n", | |
| " * http://stackoverflow.com/a/24161582/3208463\n", | |
| " */\n", | |
| "function simpleKeys (original) {\n", | |
| " return Object.keys(original).reduce(function (obj, key) {\n", | |
| " if (typeof original[key] !== 'object')\n", | |
| " obj[key] = original[key]\n", | |
| " return obj;\n", | |
| " }, {});\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.mouse_event = function(event, name) {\n", | |
| " var canvas_pos = mpl.findpos(event)\n", | |
| "\n", | |
| " if (name === 'button_press')\n", | |
| " {\n", | |
| " this.canvas.focus();\n", | |
| " this.canvas_div.focus();\n", | |
| " }\n", | |
| "\n", | |
| " var x = canvas_pos.x * mpl.ratio;\n", | |
| " var y = canvas_pos.y * mpl.ratio;\n", | |
| "\n", | |
| " this.send_message(name, {x: x, y: y, button: event.button,\n", | |
| " step: event.step,\n", | |
| " guiEvent: simpleKeys(event)});\n", | |
| "\n", | |
| " /* This prevents the web browser from automatically changing to\n", | |
| " * the text insertion cursor when the button is pressed. We want\n", | |
| " * to control all of the cursor setting manually through the\n", | |
| " * 'cursor' event from matplotlib */\n", | |
| " event.preventDefault();\n", | |
| " return false;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._key_event_extra = function(event, name) {\n", | |
| " // Handle any extra behaviour associated with a key event\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.key_event = function(event, name) {\n", | |
| "\n", | |
| " // Prevent repeat events\n", | |
| " if (name == 'key_press')\n", | |
| " {\n", | |
| " if (event.which === this._key)\n", | |
| " return;\n", | |
| " else\n", | |
| " this._key = event.which;\n", | |
| " }\n", | |
| " if (name == 'key_release')\n", | |
| " this._key = null;\n", | |
| "\n", | |
| " var value = '';\n", | |
| " if (event.ctrlKey && event.which != 17)\n", | |
| " value += \"ctrl+\";\n", | |
| " if (event.altKey && event.which != 18)\n", | |
| " value += \"alt+\";\n", | |
| " if (event.shiftKey && event.which != 16)\n", | |
| " value += \"shift+\";\n", | |
| "\n", | |
| " value += 'k';\n", | |
| " value += event.which.toString();\n", | |
| "\n", | |
| " this._key_event_extra(event, name);\n", | |
| "\n", | |
| " this.send_message(name, {key: value,\n", | |
| " guiEvent: simpleKeys(event)});\n", | |
| " return false;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", | |
| " if (name == 'download') {\n", | |
| " this.handle_save(this, null);\n", | |
| " } else {\n", | |
| " this.send_message(\"toolbar_button\", {name: name});\n", | |
| " }\n", | |
| "};\n", | |
| "\n", | |
| "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", | |
| " this.message.textContent = tooltip;\n", | |
| "};\n", | |
| "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", | |
| "\n", | |
| "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", | |
| "\n", | |
| "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", | |
| " // Create a \"websocket\"-like object which calls the given IPython comm\n", | |
| " // object with the appropriate methods. Currently this is a non binary\n", | |
| " // socket, so there is still some room for performance tuning.\n", | |
| " var ws = {};\n", | |
| "\n", | |
| " ws.close = function() {\n", | |
| " comm.close()\n", | |
| " };\n", | |
| " ws.send = function(m) {\n", | |
| " //console.log('sending', m);\n", | |
| " comm.send(m);\n", | |
| " };\n", | |
| " // Register the callback with on_msg.\n", | |
| " comm.on_msg(function(msg) {\n", | |
| " //console.log('receiving', msg['content']['data'], msg);\n", | |
| " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", | |
| " ws.onmessage(msg['content']['data'])\n", | |
| " });\n", | |
| " return ws;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.mpl_figure_comm = function(comm, msg) {\n", | |
| " // This is the function which gets called when the mpl process\n", | |
| " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", | |
| "\n", | |
| " var id = msg.content.data.id;\n", | |
| " // Get hold of the div created by the display call when the Comm\n", | |
| " // socket was opened in Python.\n", | |
| " var element = $(\"#\" + id);\n", | |
| " var ws_proxy = comm_websocket_adapter(comm)\n", | |
| "\n", | |
| " function ondownload(figure, format) {\n", | |
| " window.open(figure.imageObj.src);\n", | |
| " }\n", | |
| "\n", | |
| " var fig = new mpl.figure(id, ws_proxy,\n", | |
| " ondownload,\n", | |
| " element.get(0));\n", | |
| "\n", | |
| " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", | |
| " // web socket which is closed, not our websocket->open comm proxy.\n", | |
| " ws_proxy.onopen();\n", | |
| "\n", | |
| " fig.parent_element = element.get(0);\n", | |
| " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", | |
| " if (!fig.cell_info) {\n", | |
| " console.error(\"Failed to find cell for figure\", id, fig);\n", | |
| " return;\n", | |
| " }\n", | |
| "\n", | |
| " var output_index = fig.cell_info[2]\n", | |
| " var cell = fig.cell_info[0];\n", | |
| "\n", | |
| "};\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_close = function(fig, msg) {\n", | |
| " var width = fig.canvas.width/mpl.ratio\n", | |
| " fig.root.unbind('remove')\n", | |
| "\n", | |
| " // Update the output cell to use the data from the current canvas.\n", | |
| " fig.push_to_output();\n", | |
| " var dataURL = fig.canvas.toDataURL();\n", | |
| " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", | |
| " // the notebook keyboard shortcuts fail.\n", | |
| " IPython.keyboard_manager.enable()\n", | |
| " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", | |
| " fig.close_ws(fig, msg);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.close_ws = function(fig, msg){\n", | |
| " fig.send_message('closing', msg);\n", | |
| " // fig.ws.close()\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", | |
| " // Turn the data on the canvas into data in the output cell.\n", | |
| " var width = this.canvas.width/mpl.ratio\n", | |
| " var dataURL = this.canvas.toDataURL();\n", | |
| " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.updated_canvas_event = function() {\n", | |
| " // Tell IPython that the notebook contents must change.\n", | |
| " IPython.notebook.set_dirty(true);\n", | |
| " this.send_message(\"ack\", {});\n", | |
| " var fig = this;\n", | |
| " // Wait a second, then push the new image to the DOM so\n", | |
| " // that it is saved nicely (might be nice to debounce this).\n", | |
| " setTimeout(function () { fig.push_to_output() }, 1000);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._init_toolbar = function() {\n", | |
| " var fig = this;\n", | |
| "\n", | |
| " var nav_element = $('<div/>')\n", | |
| " nav_element.attr('style', 'width: 100%');\n", | |
| " this.root.append(nav_element);\n", | |
| "\n", | |
| " // Define a callback function for later on.\n", | |
| " function toolbar_event(event) {\n", | |
| " return fig.toolbar_button_onclick(event['data']);\n", | |
| " }\n", | |
| " function toolbar_mouse_event(event) {\n", | |
| " return fig.toolbar_button_onmouseover(event['data']);\n", | |
| " }\n", | |
| "\n", | |
| " for(var toolbar_ind in mpl.toolbar_items){\n", | |
| " var name = mpl.toolbar_items[toolbar_ind][0];\n", | |
| " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", | |
| " var image = mpl.toolbar_items[toolbar_ind][2];\n", | |
| " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", | |
| "\n", | |
| " if (!name) { continue; };\n", | |
| "\n", | |
| " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", | |
| " button.click(method_name, toolbar_event);\n", | |
| " button.mouseover(tooltip, toolbar_mouse_event);\n", | |
| " nav_element.append(button);\n", | |
| " }\n", | |
| "\n", | |
| " // Add the status bar.\n", | |
| " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", | |
| " nav_element.append(status_bar);\n", | |
| " this.message = status_bar[0];\n", | |
| "\n", | |
| " // Add the close button to the window.\n", | |
| " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", | |
| " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", | |
| " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", | |
| " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", | |
| " buttongrp.append(button);\n", | |
| " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", | |
| " titlebar.prepend(buttongrp);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._root_extra_style = function(el){\n", | |
| " var fig = this\n", | |
| " el.on(\"remove\", function(){\n", | |
| "\tfig.close_ws(fig, {});\n", | |
| " });\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._canvas_extra_style = function(el){\n", | |
| " // this is important to make the div 'focusable\n", | |
| " el.attr('tabindex', 0)\n", | |
| " // reach out to IPython and tell the keyboard manager to turn it's self\n", | |
| " // off when our div gets focus\n", | |
| "\n", | |
| " // location in version 3\n", | |
| " if (IPython.notebook.keyboard_manager) {\n", | |
| " IPython.notebook.keyboard_manager.register_events(el);\n", | |
| " }\n", | |
| " else {\n", | |
| " // location in version 2\n", | |
| " IPython.keyboard_manager.register_events(el);\n", | |
| " }\n", | |
| "\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._key_event_extra = function(event, name) {\n", | |
| " var manager = IPython.notebook.keyboard_manager;\n", | |
| " if (!manager)\n", | |
| " manager = IPython.keyboard_manager;\n", | |
| "\n", | |
| " // Check for shift+enter\n", | |
| " if (event.shiftKey && event.which == 13) {\n", | |
| " this.canvas_div.blur();\n", | |
| " event.shiftKey = false;\n", | |
| " // Send a \"J\" for go to next cell\n", | |
| " event.which = 74;\n", | |
| " event.keyCode = 74;\n", | |
| " manager.command_mode();\n", | |
| " manager.handle_keydown(event);\n", | |
| " }\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_save = function(fig, msg) {\n", | |
| " fig.ondownload(fig, null);\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "mpl.find_output_cell = function(html_output) {\n", | |
| " // Return the cell and output element which can be found *uniquely* in the notebook.\n", | |
| " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", | |
| " // IPython event is triggered only after the cells have been serialised, which for\n", | |
| " // our purposes (turning an active figure into a static one), is too late.\n", | |
| " var cells = IPython.notebook.get_cells();\n", | |
| " var ncells = cells.length;\n", | |
| " for (var i=0; i<ncells; i++) {\n", | |
| " var cell = cells[i];\n", | |
| " if (cell.cell_type === 'code'){\n", | |
| " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", | |
| " var data = cell.output_area.outputs[j];\n", | |
| " if (data.data) {\n", | |
| " // IPython >= 3 moved mimebundle to data attribute of output\n", | |
| " data = data.data;\n", | |
| " }\n", | |
| " if (data['text/html'] == html_output) {\n", | |
| " return [cell, data, j];\n", | |
| " }\n", | |
| " }\n", | |
| " }\n", | |
| " }\n", | |
| "}\n", | |
| "\n", | |
| "// Register the function which deals with the matplotlib target/channel.\n", | |
| "// The kernel may be null if the page has been refreshed.\n", | |
| "if (IPython.notebook.kernel != null) {\n", | |
| " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", | |
| "}\n" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.Javascript object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<img src=\"\" width=\"699.999984827909\">" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.HTML object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.axes._subplots.AxesSubplot at 0x18def20c358>" | |
| ] | |
| }, | |
| "execution_count": 120, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#Chart the final results\n", | |
| "log=True\n", | |
| "US.plot(figsize=(7,6),logy=log,title='US Long Bond Futures Concatenated Price Series')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 121, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Stat VADI\n", | |
| "------------------- ----------\n", | |
| "Start 1977-08-23\n", | |
| "End 2019-04-12\n", | |
| "Risk-free rate 0.00%\n", | |
| "\n", | |
| "Total Return 308.31%\n", | |
| "Daily Sharpe 0.36\n", | |
| "Daily Sortino 0.60\n", | |
| "CAGR 3.44%\n", | |
| "Max Drawdown -49.11%\n", | |
| "Calmar Ratio 0.07\n", | |
| "\n", | |
| "MTD -1.84%\n", | |
| "3m 1.23%\n", | |
| "6m 6.84%\n", | |
| "YTD 1.05%\n", | |
| "1Y 3.10%\n", | |
| "3Y (ann.) -1.07%\n", | |
| "5Y (ann.) 2.39%\n", | |
| "10Y (ann.) 3.56%\n", | |
| "Since Incep. (ann.) 3.44%\n", | |
| "\n", | |
| "Daily Sharpe 0.36\n", | |
| "Daily Sortino 0.60\n", | |
| "Daily Mean (ann.) 3.99%\n", | |
| "Daily Vol (ann.) 11.03%\n", | |
| "Daily Skew -0.01\n", | |
| "Daily Kurt 2.28\n", | |
| "Best Day 4.06%\n", | |
| "Worst Day -3.21%\n", | |
| "\n", | |
| "Monthly Sharpe 0.36\n", | |
| "Monthly Sortino 0.66\n", | |
| "Monthly Mean (ann.) 3.97%\n", | |
| "Monthly Vol (ann.) 10.98%\n", | |
| "Monthly Skew 0.27\n", | |
| "Monthly Kurt 1.87\n", | |
| "Best Month 13.97%\n", | |
| "Worst Month -9.99%\n", | |
| "\n", | |
| "Yearly Sharpe 0.35\n", | |
| "Yearly Sortino 0.84\n", | |
| "Yearly Mean 4.13%\n", | |
| "Yearly Vol 11.83%\n", | |
| "Yearly Skew 0.18\n", | |
| "Yearly Kurt -0.74\n", | |
| "Best Year 27.53%\n", | |
| "Worst Year -17.51%\n", | |
| "\n", | |
| "Avg. Drawdown -2.92%\n", | |
| "Avg. Drawdown Days 98.08\n", | |
| "Avg. Up Month 2.52%\n", | |
| "Avg. Down Month -2.24%\n", | |
| "Win Year % 61.90%\n", | |
| "Win 12m % 63.88%\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "#Produce statistics for the final results\n", | |
| "stats = US.calc_stats()\n", | |
| "#Choose different start and end dates if you prefer as per the following coded out line\n", | |
| "#ffn.core.GroupStats.set_date_range(stats,start=' 1989-09-18 ', end=start=' 2000-09-18 ')\n", | |
| "stats.display()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 122, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "application/javascript": [ | |
| "/* Put everything inside the global mpl namespace */\n", | |
| "window.mpl = {};\n", | |
| "\n", | |
| "\n", | |
| "mpl.get_websocket_type = function() {\n", | |
| " if (typeof(WebSocket) !== 'undefined') {\n", | |
| " return WebSocket;\n", | |
| " } else if (typeof(MozWebSocket) !== 'undefined') {\n", | |
| " return MozWebSocket;\n", | |
| " } else {\n", | |
| " alert('Your browser does not have WebSocket support.' +\n", | |
| " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", | |
| " 'Firefox 4 and 5 are also supported but you ' +\n", | |
| " 'have to enable WebSockets in about:config.');\n", | |
| " };\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n", | |
| " this.id = figure_id;\n", | |
| "\n", | |
| " this.ws = websocket;\n", | |
| "\n", | |
| " this.supports_binary = (this.ws.binaryType != undefined);\n", | |
| "\n", | |
| " if (!this.supports_binary) {\n", | |
| " var warnings = document.getElementById(\"mpl-warnings\");\n", | |
| " if (warnings) {\n", | |
| " warnings.style.display = 'block';\n", | |
| " warnings.textContent = (\n", | |
| " \"This browser does not support binary websocket messages. \" +\n", | |
| " \"Performance may be slow.\");\n", | |
| " }\n", | |
| " }\n", | |
| "\n", | |
| " this.imageObj = new Image();\n", | |
| "\n", | |
| " this.context = undefined;\n", | |
| " this.message = undefined;\n", | |
| " this.canvas = undefined;\n", | |
| " this.rubberband_canvas = undefined;\n", | |
| " this.rubberband_context = undefined;\n", | |
| " this.format_dropdown = undefined;\n", | |
| "\n", | |
| " this.image_mode = 'full';\n", | |
| "\n", | |
| " this.root = $('<div/>');\n", | |
| " this._root_extra_style(this.root)\n", | |
| " this.root.attr('style', 'display: inline-block');\n", | |
| "\n", | |
| " $(parent_element).append(this.root);\n", | |
| "\n", | |
| " this._init_header(this);\n", | |
| " this._init_canvas(this);\n", | |
| " this._init_toolbar(this);\n", | |
| "\n", | |
| " var fig = this;\n", | |
| "\n", | |
| " this.waiting = false;\n", | |
| "\n", | |
| " this.ws.onopen = function () {\n", | |
| " fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n", | |
| " fig.send_message(\"send_image_mode\", {});\n", | |
| " if (mpl.ratio != 1) {\n", | |
| " fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n", | |
| " }\n", | |
| " fig.send_message(\"refresh\", {});\n", | |
| " }\n", | |
| "\n", | |
| " this.imageObj.onload = function() {\n", | |
| " if (fig.image_mode == 'full') {\n", | |
| " // Full images could contain transparency (where diff images\n", | |
| " // almost always do), so we need to clear the canvas so that\n", | |
| " // there is no ghosting.\n", | |
| " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", | |
| " }\n", | |
| " fig.context.drawImage(fig.imageObj, 0, 0);\n", | |
| " };\n", | |
| "\n", | |
| " this.imageObj.onunload = function() {\n", | |
| " fig.ws.close();\n", | |
| " }\n", | |
| "\n", | |
| " this.ws.onmessage = this._make_on_message_function(this);\n", | |
| "\n", | |
| " this.ondownload = ondownload;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._init_header = function() {\n", | |
| " var titlebar = $(\n", | |
| " '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n", | |
| " 'ui-helper-clearfix\"/>');\n", | |
| " var titletext = $(\n", | |
| " '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n", | |
| " 'text-align: center; padding: 3px;\"/>');\n", | |
| " titlebar.append(titletext)\n", | |
| " this.root.append(titlebar);\n", | |
| " this.header = titletext[0];\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "\n", | |
| "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n", | |
| "\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n", | |
| "\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._init_canvas = function() {\n", | |
| " var fig = this;\n", | |
| "\n", | |
| " var canvas_div = $('<div/>');\n", | |
| "\n", | |
| " canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n", | |
| "\n", | |
| " function canvas_keyboard_event(event) {\n", | |
| " return fig.key_event(event, event['data']);\n", | |
| " }\n", | |
| "\n", | |
| " canvas_div.keydown('key_press', canvas_keyboard_event);\n", | |
| " canvas_div.keyup('key_release', canvas_keyboard_event);\n", | |
| " this.canvas_div = canvas_div\n", | |
| " this._canvas_extra_style(canvas_div)\n", | |
| " this.root.append(canvas_div);\n", | |
| "\n", | |
| " var canvas = $('<canvas/>');\n", | |
| " canvas.addClass('mpl-canvas');\n", | |
| " canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n", | |
| "\n", | |
| " this.canvas = canvas[0];\n", | |
| " this.context = canvas[0].getContext(\"2d\");\n", | |
| "\n", | |
| " var backingStore = this.context.backingStorePixelRatio ||\n", | |
| "\tthis.context.webkitBackingStorePixelRatio ||\n", | |
| "\tthis.context.mozBackingStorePixelRatio ||\n", | |
| "\tthis.context.msBackingStorePixelRatio ||\n", | |
| "\tthis.context.oBackingStorePixelRatio ||\n", | |
| "\tthis.context.backingStorePixelRatio || 1;\n", | |
| "\n", | |
| " mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n", | |
| "\n", | |
| " var rubberband = $('<canvas/>');\n", | |
| " rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n", | |
| "\n", | |
| " var pass_mouse_events = true;\n", | |
| "\n", | |
| " canvas_div.resizable({\n", | |
| " start: function(event, ui) {\n", | |
| " pass_mouse_events = false;\n", | |
| " },\n", | |
| " resize: function(event, ui) {\n", | |
| " fig.request_resize(ui.size.width, ui.size.height);\n", | |
| " },\n", | |
| " stop: function(event, ui) {\n", | |
| " pass_mouse_events = true;\n", | |
| " fig.request_resize(ui.size.width, ui.size.height);\n", | |
| " },\n", | |
| " });\n", | |
| "\n", | |
| " function mouse_event_fn(event) {\n", | |
| " if (pass_mouse_events)\n", | |
| " return fig.mouse_event(event, event['data']);\n", | |
| " }\n", | |
| "\n", | |
| " rubberband.mousedown('button_press', mouse_event_fn);\n", | |
| " rubberband.mouseup('button_release', mouse_event_fn);\n", | |
| " // Throttle sequential mouse events to 1 every 20ms.\n", | |
| " rubberband.mousemove('motion_notify', mouse_event_fn);\n", | |
| "\n", | |
| " rubberband.mouseenter('figure_enter', mouse_event_fn);\n", | |
| " rubberband.mouseleave('figure_leave', mouse_event_fn);\n", | |
| "\n", | |
| " canvas_div.on(\"wheel\", function (event) {\n", | |
| " event = event.originalEvent;\n", | |
| " event['data'] = 'scroll'\n", | |
| " if (event.deltaY < 0) {\n", | |
| " event.step = 1;\n", | |
| " } else {\n", | |
| " event.step = -1;\n", | |
| " }\n", | |
| " mouse_event_fn(event);\n", | |
| " });\n", | |
| "\n", | |
| " canvas_div.append(canvas);\n", | |
| " canvas_div.append(rubberband);\n", | |
| "\n", | |
| " this.rubberband = rubberband;\n", | |
| " this.rubberband_canvas = rubberband[0];\n", | |
| " this.rubberband_context = rubberband[0].getContext(\"2d\");\n", | |
| " this.rubberband_context.strokeStyle = \"#000000\";\n", | |
| "\n", | |
| " this._resize_canvas = function(width, height) {\n", | |
| " // Keep the size of the canvas, canvas container, and rubber band\n", | |
| " // canvas in synch.\n", | |
| " canvas_div.css('width', width)\n", | |
| " canvas_div.css('height', height)\n", | |
| "\n", | |
| " canvas.attr('width', width * mpl.ratio);\n", | |
| " canvas.attr('height', height * mpl.ratio);\n", | |
| " canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n", | |
| "\n", | |
| " rubberband.attr('width', width);\n", | |
| " rubberband.attr('height', height);\n", | |
| " }\n", | |
| "\n", | |
| " // Set the figure to an initial 600x600px, this will subsequently be updated\n", | |
| " // upon first draw.\n", | |
| " this._resize_canvas(600, 600);\n", | |
| "\n", | |
| " // Disable right mouse context menu.\n", | |
| " $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n", | |
| " return false;\n", | |
| " });\n", | |
| "\n", | |
| " function set_focus () {\n", | |
| " canvas.focus();\n", | |
| " canvas_div.focus();\n", | |
| " }\n", | |
| "\n", | |
| " window.setTimeout(set_focus, 100);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._init_toolbar = function() {\n", | |
| " var fig = this;\n", | |
| "\n", | |
| " var nav_element = $('<div/>')\n", | |
| " nav_element.attr('style', 'width: 100%');\n", | |
| " this.root.append(nav_element);\n", | |
| "\n", | |
| " // Define a callback function for later on.\n", | |
| " function toolbar_event(event) {\n", | |
| " return fig.toolbar_button_onclick(event['data']);\n", | |
| " }\n", | |
| " function toolbar_mouse_event(event) {\n", | |
| " return fig.toolbar_button_onmouseover(event['data']);\n", | |
| " }\n", | |
| "\n", | |
| " for(var toolbar_ind in mpl.toolbar_items) {\n", | |
| " var name = mpl.toolbar_items[toolbar_ind][0];\n", | |
| " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", | |
| " var image = mpl.toolbar_items[toolbar_ind][2];\n", | |
| " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", | |
| "\n", | |
| " if (!name) {\n", | |
| " // put a spacer in here.\n", | |
| " continue;\n", | |
| " }\n", | |
| " var button = $('<button/>');\n", | |
| " button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n", | |
| " 'ui-button-icon-only');\n", | |
| " button.attr('role', 'button');\n", | |
| " button.attr('aria-disabled', 'false');\n", | |
| " button.click(method_name, toolbar_event);\n", | |
| " button.mouseover(tooltip, toolbar_mouse_event);\n", | |
| "\n", | |
| " var icon_img = $('<span/>');\n", | |
| " icon_img.addClass('ui-button-icon-primary ui-icon');\n", | |
| " icon_img.addClass(image);\n", | |
| " icon_img.addClass('ui-corner-all');\n", | |
| "\n", | |
| " var tooltip_span = $('<span/>');\n", | |
| " tooltip_span.addClass('ui-button-text');\n", | |
| " tooltip_span.html(tooltip);\n", | |
| "\n", | |
| " button.append(icon_img);\n", | |
| " button.append(tooltip_span);\n", | |
| "\n", | |
| " nav_element.append(button);\n", | |
| " }\n", | |
| "\n", | |
| " var fmt_picker_span = $('<span/>');\n", | |
| "\n", | |
| " var fmt_picker = $('<select/>');\n", | |
| " fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n", | |
| " fmt_picker_span.append(fmt_picker);\n", | |
| " nav_element.append(fmt_picker_span);\n", | |
| " this.format_dropdown = fmt_picker[0];\n", | |
| "\n", | |
| " for (var ind in mpl.extensions) {\n", | |
| " var fmt = mpl.extensions[ind];\n", | |
| " var option = $(\n", | |
| " '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n", | |
| " fmt_picker.append(option)\n", | |
| " }\n", | |
| "\n", | |
| " // Add hover states to the ui-buttons\n", | |
| " $( \".ui-button\" ).hover(\n", | |
| " function() { $(this).addClass(\"ui-state-hover\");},\n", | |
| " function() { $(this).removeClass(\"ui-state-hover\");}\n", | |
| " );\n", | |
| "\n", | |
| " var status_bar = $('<span class=\"mpl-message\"/>');\n", | |
| " nav_element.append(status_bar);\n", | |
| " this.message = status_bar[0];\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n", | |
| " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", | |
| " // which will in turn request a refresh of the image.\n", | |
| " this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.send_message = function(type, properties) {\n", | |
| " properties['type'] = type;\n", | |
| " properties['figure_id'] = this.id;\n", | |
| " this.ws.send(JSON.stringify(properties));\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.send_draw_message = function() {\n", | |
| " if (!this.waiting) {\n", | |
| " this.waiting = true;\n", | |
| " this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n", | |
| " }\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_save = function(fig, msg) {\n", | |
| " var format_dropdown = fig.format_dropdown;\n", | |
| " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", | |
| " fig.ondownload(fig, format);\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_resize = function(fig, msg) {\n", | |
| " var size = msg['size'];\n", | |
| " if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n", | |
| " fig._resize_canvas(size[0], size[1]);\n", | |
| " fig.send_message(\"refresh\", {});\n", | |
| " };\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n", | |
| " var x0 = msg['x0'] / mpl.ratio;\n", | |
| " var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n", | |
| " var x1 = msg['x1'] / mpl.ratio;\n", | |
| " var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n", | |
| " x0 = Math.floor(x0) + 0.5;\n", | |
| " y0 = Math.floor(y0) + 0.5;\n", | |
| " x1 = Math.floor(x1) + 0.5;\n", | |
| " y1 = Math.floor(y1) + 0.5;\n", | |
| " var min_x = Math.min(x0, x1);\n", | |
| " var min_y = Math.min(y0, y1);\n", | |
| " var width = Math.abs(x1 - x0);\n", | |
| " var height = Math.abs(y1 - y0);\n", | |
| "\n", | |
| " fig.rubberband_context.clearRect(\n", | |
| " 0, 0, fig.canvas.width, fig.canvas.height);\n", | |
| "\n", | |
| " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n", | |
| " // Updates the figure title.\n", | |
| " fig.header.textContent = msg['label'];\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n", | |
| " var cursor = msg['cursor'];\n", | |
| " switch(cursor)\n", | |
| " {\n", | |
| " case 0:\n", | |
| " cursor = 'pointer';\n", | |
| " break;\n", | |
| " case 1:\n", | |
| " cursor = 'default';\n", | |
| " break;\n", | |
| " case 2:\n", | |
| " cursor = 'crosshair';\n", | |
| " break;\n", | |
| " case 3:\n", | |
| " cursor = 'move';\n", | |
| " break;\n", | |
| " }\n", | |
| " fig.rubberband_canvas.style.cursor = cursor;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_message = function(fig, msg) {\n", | |
| " fig.message.textContent = msg['message'];\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_draw = function(fig, msg) {\n", | |
| " // Request the server to send over a new figure.\n", | |
| " fig.send_draw_message();\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n", | |
| " fig.image_mode = msg['mode'];\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.updated_canvas_event = function() {\n", | |
| " // Called whenever the canvas gets updated.\n", | |
| " this.send_message(\"ack\", {});\n", | |
| "}\n", | |
| "\n", | |
| "// A function to construct a web socket function for onmessage handling.\n", | |
| "// Called in the figure constructor.\n", | |
| "mpl.figure.prototype._make_on_message_function = function(fig) {\n", | |
| " return function socket_on_message(evt) {\n", | |
| " if (evt.data instanceof Blob) {\n", | |
| " /* FIXME: We get \"Resource interpreted as Image but\n", | |
| " * transferred with MIME type text/plain:\" errors on\n", | |
| " * Chrome. But how to set the MIME type? It doesn't seem\n", | |
| " * to be part of the websocket stream */\n", | |
| " evt.data.type = \"image/png\";\n", | |
| "\n", | |
| " /* Free the memory for the previous frames */\n", | |
| " if (fig.imageObj.src) {\n", | |
| " (window.URL || window.webkitURL).revokeObjectURL(\n", | |
| " fig.imageObj.src);\n", | |
| " }\n", | |
| "\n", | |
| " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", | |
| " evt.data);\n", | |
| " fig.updated_canvas_event();\n", | |
| " fig.waiting = false;\n", | |
| " return;\n", | |
| " }\n", | |
| " else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n", | |
| " fig.imageObj.src = evt.data;\n", | |
| " fig.updated_canvas_event();\n", | |
| " fig.waiting = false;\n", | |
| " return;\n", | |
| " }\n", | |
| "\n", | |
| " var msg = JSON.parse(evt.data);\n", | |
| " var msg_type = msg['type'];\n", | |
| "\n", | |
| " // Call the \"handle_{type}\" callback, which takes\n", | |
| " // the figure and JSON message as its only arguments.\n", | |
| " try {\n", | |
| " var callback = fig[\"handle_\" + msg_type];\n", | |
| " } catch (e) {\n", | |
| " console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n", | |
| " return;\n", | |
| " }\n", | |
| "\n", | |
| " if (callback) {\n", | |
| " try {\n", | |
| " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", | |
| " callback(fig, msg);\n", | |
| " } catch (e) {\n", | |
| " console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n", | |
| " }\n", | |
| " }\n", | |
| " };\n", | |
| "}\n", | |
| "\n", | |
| "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", | |
| "mpl.findpos = function(e) {\n", | |
| " //this section is from http://www.quirksmode.org/js/events_properties.html\n", | |
| " var targ;\n", | |
| " if (!e)\n", | |
| " e = window.event;\n", | |
| " if (e.target)\n", | |
| " targ = e.target;\n", | |
| " else if (e.srcElement)\n", | |
| " targ = e.srcElement;\n", | |
| " if (targ.nodeType == 3) // defeat Safari bug\n", | |
| " targ = targ.parentNode;\n", | |
| "\n", | |
| " // jQuery normalizes the pageX and pageY\n", | |
| " // pageX,Y are the mouse positions relative to the document\n", | |
| " // offset() returns the position of the element relative to the document\n", | |
| " var x = e.pageX - $(targ).offset().left;\n", | |
| " var y = e.pageY - $(targ).offset().top;\n", | |
| "\n", | |
| " return {\"x\": x, \"y\": y};\n", | |
| "};\n", | |
| "\n", | |
| "/*\n", | |
| " * return a copy of an object with only non-object keys\n", | |
| " * we need this to avoid circular references\n", | |
| " * http://stackoverflow.com/a/24161582/3208463\n", | |
| " */\n", | |
| "function simpleKeys (original) {\n", | |
| " return Object.keys(original).reduce(function (obj, key) {\n", | |
| " if (typeof original[key] !== 'object')\n", | |
| " obj[key] = original[key]\n", | |
| " return obj;\n", | |
| " }, {});\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.mouse_event = function(event, name) {\n", | |
| " var canvas_pos = mpl.findpos(event)\n", | |
| "\n", | |
| " if (name === 'button_press')\n", | |
| " {\n", | |
| " this.canvas.focus();\n", | |
| " this.canvas_div.focus();\n", | |
| " }\n", | |
| "\n", | |
| " var x = canvas_pos.x * mpl.ratio;\n", | |
| " var y = canvas_pos.y * mpl.ratio;\n", | |
| "\n", | |
| " this.send_message(name, {x: x, y: y, button: event.button,\n", | |
| " step: event.step,\n", | |
| " guiEvent: simpleKeys(event)});\n", | |
| "\n", | |
| " /* This prevents the web browser from automatically changing to\n", | |
| " * the text insertion cursor when the button is pressed. We want\n", | |
| " * to control all of the cursor setting manually through the\n", | |
| " * 'cursor' event from matplotlib */\n", | |
| " event.preventDefault();\n", | |
| " return false;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._key_event_extra = function(event, name) {\n", | |
| " // Handle any extra behaviour associated with a key event\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.key_event = function(event, name) {\n", | |
| "\n", | |
| " // Prevent repeat events\n", | |
| " if (name == 'key_press')\n", | |
| " {\n", | |
| " if (event.which === this._key)\n", | |
| " return;\n", | |
| " else\n", | |
| " this._key = event.which;\n", | |
| " }\n", | |
| " if (name == 'key_release')\n", | |
| " this._key = null;\n", | |
| "\n", | |
| " var value = '';\n", | |
| " if (event.ctrlKey && event.which != 17)\n", | |
| " value += \"ctrl+\";\n", | |
| " if (event.altKey && event.which != 18)\n", | |
| " value += \"alt+\";\n", | |
| " if (event.shiftKey && event.which != 16)\n", | |
| " value += \"shift+\";\n", | |
| "\n", | |
| " value += 'k';\n", | |
| " value += event.which.toString();\n", | |
| "\n", | |
| " this._key_event_extra(event, name);\n", | |
| "\n", | |
| " this.send_message(name, {key: value,\n", | |
| " guiEvent: simpleKeys(event)});\n", | |
| " return false;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n", | |
| " if (name == 'download') {\n", | |
| " this.handle_save(this, null);\n", | |
| " } else {\n", | |
| " this.send_message(\"toolbar_button\", {name: name});\n", | |
| " }\n", | |
| "};\n", | |
| "\n", | |
| "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n", | |
| " this.message.textContent = tooltip;\n", | |
| "};\n", | |
| "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", | |
| "\n", | |
| "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", | |
| "\n", | |
| "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n", | |
| " // Create a \"websocket\"-like object which calls the given IPython comm\n", | |
| " // object with the appropriate methods. Currently this is a non binary\n", | |
| " // socket, so there is still some room for performance tuning.\n", | |
| " var ws = {};\n", | |
| "\n", | |
| " ws.close = function() {\n", | |
| " comm.close()\n", | |
| " };\n", | |
| " ws.send = function(m) {\n", | |
| " //console.log('sending', m);\n", | |
| " comm.send(m);\n", | |
| " };\n", | |
| " // Register the callback with on_msg.\n", | |
| " comm.on_msg(function(msg) {\n", | |
| " //console.log('receiving', msg['content']['data'], msg);\n", | |
| " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", | |
| " ws.onmessage(msg['content']['data'])\n", | |
| " });\n", | |
| " return ws;\n", | |
| "}\n", | |
| "\n", | |
| "mpl.mpl_figure_comm = function(comm, msg) {\n", | |
| " // This is the function which gets called when the mpl process\n", | |
| " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", | |
| "\n", | |
| " var id = msg.content.data.id;\n", | |
| " // Get hold of the div created by the display call when the Comm\n", | |
| " // socket was opened in Python.\n", | |
| " var element = $(\"#\" + id);\n", | |
| " var ws_proxy = comm_websocket_adapter(comm)\n", | |
| "\n", | |
| " function ondownload(figure, format) {\n", | |
| " window.open(figure.imageObj.src);\n", | |
| " }\n", | |
| "\n", | |
| " var fig = new mpl.figure(id, ws_proxy,\n", | |
| " ondownload,\n", | |
| " element.get(0));\n", | |
| "\n", | |
| " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", | |
| " // web socket which is closed, not our websocket->open comm proxy.\n", | |
| " ws_proxy.onopen();\n", | |
| "\n", | |
| " fig.parent_element = element.get(0);\n", | |
| " fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n", | |
| " if (!fig.cell_info) {\n", | |
| " console.error(\"Failed to find cell for figure\", id, fig);\n", | |
| " return;\n", | |
| " }\n", | |
| "\n", | |
| " var output_index = fig.cell_info[2]\n", | |
| " var cell = fig.cell_info[0];\n", | |
| "\n", | |
| "};\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_close = function(fig, msg) {\n", | |
| " var width = fig.canvas.width/mpl.ratio\n", | |
| " fig.root.unbind('remove')\n", | |
| "\n", | |
| " // Update the output cell to use the data from the current canvas.\n", | |
| " fig.push_to_output();\n", | |
| " var dataURL = fig.canvas.toDataURL();\n", | |
| " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", | |
| " // the notebook keyboard shortcuts fail.\n", | |
| " IPython.keyboard_manager.enable()\n", | |
| " $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n", | |
| " fig.close_ws(fig, msg);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.close_ws = function(fig, msg){\n", | |
| " fig.send_message('closing', msg);\n", | |
| " // fig.ws.close()\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n", | |
| " // Turn the data on the canvas into data in the output cell.\n", | |
| " var width = this.canvas.width/mpl.ratio\n", | |
| " var dataURL = this.canvas.toDataURL();\n", | |
| " this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.updated_canvas_event = function() {\n", | |
| " // Tell IPython that the notebook contents must change.\n", | |
| " IPython.notebook.set_dirty(true);\n", | |
| " this.send_message(\"ack\", {});\n", | |
| " var fig = this;\n", | |
| " // Wait a second, then push the new image to the DOM so\n", | |
| " // that it is saved nicely (might be nice to debounce this).\n", | |
| " setTimeout(function () { fig.push_to_output() }, 1000);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._init_toolbar = function() {\n", | |
| " var fig = this;\n", | |
| "\n", | |
| " var nav_element = $('<div/>')\n", | |
| " nav_element.attr('style', 'width: 100%');\n", | |
| " this.root.append(nav_element);\n", | |
| "\n", | |
| " // Define a callback function for later on.\n", | |
| " function toolbar_event(event) {\n", | |
| " return fig.toolbar_button_onclick(event['data']);\n", | |
| " }\n", | |
| " function toolbar_mouse_event(event) {\n", | |
| " return fig.toolbar_button_onmouseover(event['data']);\n", | |
| " }\n", | |
| "\n", | |
| " for(var toolbar_ind in mpl.toolbar_items){\n", | |
| " var name = mpl.toolbar_items[toolbar_ind][0];\n", | |
| " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", | |
| " var image = mpl.toolbar_items[toolbar_ind][2];\n", | |
| " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", | |
| "\n", | |
| " if (!name) { continue; };\n", | |
| "\n", | |
| " var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n", | |
| " button.click(method_name, toolbar_event);\n", | |
| " button.mouseover(tooltip, toolbar_mouse_event);\n", | |
| " nav_element.append(button);\n", | |
| " }\n", | |
| "\n", | |
| " // Add the status bar.\n", | |
| " var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n", | |
| " nav_element.append(status_bar);\n", | |
| " this.message = status_bar[0];\n", | |
| "\n", | |
| " // Add the close button to the window.\n", | |
| " var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n", | |
| " var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n", | |
| " button.click(function (evt) { fig.handle_close(fig, {}); } );\n", | |
| " button.mouseover('Stop Interaction', toolbar_mouse_event);\n", | |
| " buttongrp.append(button);\n", | |
| " var titlebar = this.root.find($('.ui-dialog-titlebar'));\n", | |
| " titlebar.prepend(buttongrp);\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._root_extra_style = function(el){\n", | |
| " var fig = this\n", | |
| " el.on(\"remove\", function(){\n", | |
| "\tfig.close_ws(fig, {});\n", | |
| " });\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._canvas_extra_style = function(el){\n", | |
| " // this is important to make the div 'focusable\n", | |
| " el.attr('tabindex', 0)\n", | |
| " // reach out to IPython and tell the keyboard manager to turn it's self\n", | |
| " // off when our div gets focus\n", | |
| "\n", | |
| " // location in version 3\n", | |
| " if (IPython.notebook.keyboard_manager) {\n", | |
| " IPython.notebook.keyboard_manager.register_events(el);\n", | |
| " }\n", | |
| " else {\n", | |
| " // location in version 2\n", | |
| " IPython.keyboard_manager.register_events(el);\n", | |
| " }\n", | |
| "\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype._key_event_extra = function(event, name) {\n", | |
| " var manager = IPython.notebook.keyboard_manager;\n", | |
| " if (!manager)\n", | |
| " manager = IPython.keyboard_manager;\n", | |
| "\n", | |
| " // Check for shift+enter\n", | |
| " if (event.shiftKey && event.which == 13) {\n", | |
| " this.canvas_div.blur();\n", | |
| " event.shiftKey = false;\n", | |
| " // Send a \"J\" for go to next cell\n", | |
| " event.which = 74;\n", | |
| " event.keyCode = 74;\n", | |
| " manager.command_mode();\n", | |
| " manager.handle_keydown(event);\n", | |
| " }\n", | |
| "}\n", | |
| "\n", | |
| "mpl.figure.prototype.handle_save = function(fig, msg) {\n", | |
| " fig.ondownload(fig, null);\n", | |
| "}\n", | |
| "\n", | |
| "\n", | |
| "mpl.find_output_cell = function(html_output) {\n", | |
| " // Return the cell and output element which can be found *uniquely* in the notebook.\n", | |
| " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", | |
| " // IPython event is triggered only after the cells have been serialised, which for\n", | |
| " // our purposes (turning an active figure into a static one), is too late.\n", | |
| " var cells = IPython.notebook.get_cells();\n", | |
| " var ncells = cells.length;\n", | |
| " for (var i=0; i<ncells; i++) {\n", | |
| " var cell = cells[i];\n", | |
| " if (cell.cell_type === 'code'){\n", | |
| " for (var j=0; j<cell.output_area.outputs.length; j++) {\n", | |
| " var data = cell.output_area.outputs[j];\n", | |
| " if (data.data) {\n", | |
| " // IPython >= 3 moved mimebundle to data attribute of output\n", | |
| " data = data.data;\n", | |
| " }\n", | |
| " if (data['text/html'] == html_output) {\n", | |
| " return [cell, data, j];\n", | |
| " }\n", | |
| " }\n", | |
| " }\n", | |
| " }\n", | |
| "}\n", | |
| "\n", | |
| "// Register the function which deals with the matplotlib target/channel.\n", | |
| "// The kernel may be null if the page has been refreshed.\n", | |
| "if (IPython.notebook.kernel != null) {\n", | |
| " IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n", | |
| "}\n" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.Javascript object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<img src=\"\" width=\"799.9999826604674\">" | |
| ], | |
| "text/plain": [ | |
| "<IPython.core.display.HTML object>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.axes._subplots.AxesSubplot at 0x18de4754b70>" | |
| ] | |
| }, | |
| "execution_count": 122, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#Produce an \"underwater\" or \"drawdown\" chart\n", | |
| "drawdown = stats.prices.to_drawdown_series()\n", | |
| "drawdown.plot(figsize=(8, 5),logy=False,title='Drawdown')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 123, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "stats.to_csv(sep=', ', path='..\\\\data\\\\Futures\\\\stats.csv')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.8" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment