Last active
October 14, 2020 06:54
-
-
Save DouglasOrr/44f4f84ec54d25ab95ea6e0168aa5597 to your computer and use it in GitHub Desktop.
2020-10-DoubleDescent.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "name": "2020-10-DoubleDescent.ipynb", | |
| "provenance": [], | |
| "collapsed_sections": [], | |
| "authorship_tag": "ABX9TyNnH98etzQu67fl+S/lJ5Di", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| }, | |
| "accelerator": "GPU", | |
| "widgets": { | |
| "application/vnd.jupyter.widget-state+json": { | |
| "05cf64c76333474e82ece4a4c87aa176": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "state": { | |
| "_view_name": "HBoxView", | |
| "_dom_classes": [], | |
| "_model_name": "HBoxModel", | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "box_style": "", | |
| "layout": "IPY_MODEL_25d36d1e540b4a03831273a8595e3c93", | |
| "_model_module": "@jupyter-widgets/controls", | |
| "children": [ | |
| "IPY_MODEL_b72b66b3569544a996ab0a9d4ae74125", | |
| "IPY_MODEL_b4ba91e1500d493da06a7c96f367adff" | |
| ] | |
| } | |
| }, | |
| "25d36d1e540b4a03831273a8595e3c93": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "b72b66b3569544a996ab0a9d4ae74125": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "state": { | |
| "_view_name": "ProgressView", | |
| "style": "IPY_MODEL_7189e5111bb3497eb31484cb1d15c373", | |
| "_dom_classes": [], | |
| "description": "", | |
| "_model_name": "FloatProgressModel", | |
| "bar_style": "info", | |
| "max": 1, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "value": 1, | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "orientation": "horizontal", | |
| "min": 0, | |
| "description_tooltip": null, | |
| "_model_module": "@jupyter-widgets/controls", | |
| "layout": "IPY_MODEL_6eb9966c73304bf3bf065c0cc7d3fd84" | |
| } | |
| }, | |
| "b4ba91e1500d493da06a7c96f367adff": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "state": { | |
| "_view_name": "HTMLView", | |
| "style": "IPY_MODEL_d73f0ef9e28c44339719bba1db1245b2", | |
| "_dom_classes": [], | |
| "description": "", | |
| "_model_name": "HTMLModel", | |
| "placeholder": "", | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "value": " 9920512/? [00:20<00:00, 2555964.28it/s]", | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "description_tooltip": null, | |
| "_model_module": "@jupyter-widgets/controls", | |
| "layout": "IPY_MODEL_8074bf5a5788431b88127751cb0e3d8b" | |
| } | |
| }, | |
| "7189e5111bb3497eb31484cb1d15c373": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "state": { | |
| "_view_name": "StyleView", | |
| "_model_name": "ProgressStyleModel", | |
| "description_width": "initial", | |
| "_view_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.2.0", | |
| "bar_color": null, | |
| "_model_module": "@jupyter-widgets/controls" | |
| } | |
| }, | |
| "6eb9966c73304bf3bf065c0cc7d3fd84": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "d73f0ef9e28c44339719bba1db1245b2": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "state": { | |
| "_view_name": "StyleView", | |
| "_model_name": "DescriptionStyleModel", | |
| "description_width": "", | |
| "_view_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.2.0", | |
| "_model_module": "@jupyter-widgets/controls" | |
| } | |
| }, | |
| "8074bf5a5788431b88127751cb0e3d8b": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "d6fa85583ab746ac92e7780afb66aaa7": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "state": { | |
| "_view_name": "HBoxView", | |
| "_dom_classes": [], | |
| "_model_name": "HBoxModel", | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "box_style": "", | |
| "layout": "IPY_MODEL_323c56b03dcc4ff7b532fd81c86d452c", | |
| "_model_module": "@jupyter-widgets/controls", | |
| "children": [ | |
| "IPY_MODEL_f192b52b9efd42b2b79d60768471902d", | |
| "IPY_MODEL_25ff7bcc3b1743d58db61d8f1479ae59" | |
| ] | |
| } | |
| }, | |
| "323c56b03dcc4ff7b532fd81c86d452c": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "f192b52b9efd42b2b79d60768471902d": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "state": { | |
| "_view_name": "ProgressView", | |
| "style": "IPY_MODEL_a81e7621fc25450f9b310e00694c8b78", | |
| "_dom_classes": [], | |
| "description": "", | |
| "_model_name": "FloatProgressModel", | |
| "bar_style": "success", | |
| "max": 1, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "value": 1, | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "orientation": "horizontal", | |
| "min": 0, | |
| "description_tooltip": null, | |
| "_model_module": "@jupyter-widgets/controls", | |
| "layout": "IPY_MODEL_c347e2c883614170a2462e45e1347d50" | |
| } | |
| }, | |
| "25ff7bcc3b1743d58db61d8f1479ae59": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "state": { | |
| "_view_name": "HTMLView", | |
| "style": "IPY_MODEL_adba98a7173c413c81acda1de3e8d066", | |
| "_dom_classes": [], | |
| "description": "", | |
| "_model_name": "HTMLModel", | |
| "placeholder": "", | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "value": " 32768/? [00:03<00:00, 10318.75it/s]", | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "description_tooltip": null, | |
| "_model_module": "@jupyter-widgets/controls", | |
| "layout": "IPY_MODEL_50b485c4213640b8b0ff458c31b294ac" | |
| } | |
| }, | |
| "a81e7621fc25450f9b310e00694c8b78": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "state": { | |
| "_view_name": "StyleView", | |
| "_model_name": "ProgressStyleModel", | |
| "description_width": "initial", | |
| "_view_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.2.0", | |
| "bar_color": null, | |
| "_model_module": "@jupyter-widgets/controls" | |
| } | |
| }, | |
| "c347e2c883614170a2462e45e1347d50": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "adba98a7173c413c81acda1de3e8d066": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "state": { | |
| "_view_name": "StyleView", | |
| "_model_name": "DescriptionStyleModel", | |
| "description_width": "", | |
| "_view_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.2.0", | |
| "_model_module": "@jupyter-widgets/controls" | |
| } | |
| }, | |
| "50b485c4213640b8b0ff458c31b294ac": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "f3ad95a5b5da4765bf5196b5d06af6df": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "state": { | |
| "_view_name": "HBoxView", | |
| "_dom_classes": [], | |
| "_model_name": "HBoxModel", | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "box_style": "", | |
| "layout": "IPY_MODEL_2e69178e0f094b6fb19f57c53d018d6b", | |
| "_model_module": "@jupyter-widgets/controls", | |
| "children": [ | |
| "IPY_MODEL_a43a7724917b488ba02bedda4cb256c3", | |
| "IPY_MODEL_d4437600fb704f7691ba52b723529b11" | |
| ] | |
| } | |
| }, | |
| "2e69178e0f094b6fb19f57c53d018d6b": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "a43a7724917b488ba02bedda4cb256c3": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "state": { | |
| "_view_name": "ProgressView", | |
| "style": "IPY_MODEL_979101cad88f411e91d8c2b1308a01a0", | |
| "_dom_classes": [], | |
| "description": "", | |
| "_model_name": "FloatProgressModel", | |
| "bar_style": "success", | |
| "max": 1, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "value": 1, | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "orientation": "horizontal", | |
| "min": 0, | |
| "description_tooltip": null, | |
| "_model_module": "@jupyter-widgets/controls", | |
| "layout": "IPY_MODEL_b4001b8909e447b3bf999730a4d1e009" | |
| } | |
| }, | |
| "d4437600fb704f7691ba52b723529b11": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "state": { | |
| "_view_name": "HTMLView", | |
| "style": "IPY_MODEL_7184afd916864514a47b2a697690e4c8", | |
| "_dom_classes": [], | |
| "description": "", | |
| "_model_name": "HTMLModel", | |
| "placeholder": "", | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "value": " 1654784/? [00:02<00:00, 665708.72it/s]", | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "description_tooltip": null, | |
| "_model_module": "@jupyter-widgets/controls", | |
| "layout": "IPY_MODEL_ed7517982a99480a8262ae4b179e64e7" | |
| } | |
| }, | |
| "979101cad88f411e91d8c2b1308a01a0": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "state": { | |
| "_view_name": "StyleView", | |
| "_model_name": "ProgressStyleModel", | |
| "description_width": "initial", | |
| "_view_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.2.0", | |
| "bar_color": null, | |
| "_model_module": "@jupyter-widgets/controls" | |
| } | |
| }, | |
| "b4001b8909e447b3bf999730a4d1e009": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "7184afd916864514a47b2a697690e4c8": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "state": { | |
| "_view_name": "StyleView", | |
| "_model_name": "DescriptionStyleModel", | |
| "description_width": "", | |
| "_view_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.2.0", | |
| "_model_module": "@jupyter-widgets/controls" | |
| } | |
| }, | |
| "ed7517982a99480a8262ae4b179e64e7": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "d42553e3e4f9450ebeedc222e6d3a8a2": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "state": { | |
| "_view_name": "HBoxView", | |
| "_dom_classes": [], | |
| "_model_name": "HBoxModel", | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "box_style": "", | |
| "layout": "IPY_MODEL_51ec75e0bee943f78a985b574169ab93", | |
| "_model_module": "@jupyter-widgets/controls", | |
| "children": [ | |
| "IPY_MODEL_ed80a9b8487145c49c82d4087842bfce", | |
| "IPY_MODEL_235b33bfcf174857bd6abe7a7ef282f1" | |
| ] | |
| } | |
| }, | |
| "51ec75e0bee943f78a985b574169ab93": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "ed80a9b8487145c49c82d4087842bfce": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "state": { | |
| "_view_name": "ProgressView", | |
| "style": "IPY_MODEL_4b55f927d7dc4fdca67fa38a40ae2089", | |
| "_dom_classes": [], | |
| "description": "", | |
| "_model_name": "FloatProgressModel", | |
| "bar_style": "success", | |
| "max": 1, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "value": 1, | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "orientation": "horizontal", | |
| "min": 0, | |
| "description_tooltip": null, | |
| "_model_module": "@jupyter-widgets/controls", | |
| "layout": "IPY_MODEL_d3cc62edb2dd463784e698c33b92395d" | |
| } | |
| }, | |
| "235b33bfcf174857bd6abe7a7ef282f1": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "state": { | |
| "_view_name": "HTMLView", | |
| "style": "IPY_MODEL_7036b26d13aa468990f1c889bd4968d5", | |
| "_dom_classes": [], | |
| "description": "", | |
| "_model_name": "HTMLModel", | |
| "placeholder": "", | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "value": " 8192/? [00:00<00:00, 10962.44it/s]", | |
| "_view_count": null, | |
| "_view_module_version": "1.5.0", | |
| "description_tooltip": null, | |
| "_model_module": "@jupyter-widgets/controls", | |
| "layout": "IPY_MODEL_efc656ed33d3472e9b74bc6daae278a0" | |
| } | |
| }, | |
| "4b55f927d7dc4fdca67fa38a40ae2089": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "state": { | |
| "_view_name": "StyleView", | |
| "_model_name": "ProgressStyleModel", | |
| "description_width": "initial", | |
| "_view_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.2.0", | |
| "bar_color": null, | |
| "_model_module": "@jupyter-widgets/controls" | |
| } | |
| }, | |
| "d3cc62edb2dd463784e698c33b92395d": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| }, | |
| "7036b26d13aa468990f1c889bd4968d5": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "state": { | |
| "_view_name": "StyleView", | |
| "_model_name": "DescriptionStyleModel", | |
| "description_width": "", | |
| "_view_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.5.0", | |
| "_view_count": null, | |
| "_view_module_version": "1.2.0", | |
| "_model_module": "@jupyter-widgets/controls" | |
| } | |
| }, | |
| "efc656ed33d3472e9b74bc6daae278a0": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "state": { | |
| "_view_name": "LayoutView", | |
| "grid_template_rows": null, | |
| "right": null, | |
| "justify_content": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "overflow": null, | |
| "_model_module_version": "1.2.0", | |
| "_view_count": null, | |
| "flex_flow": null, | |
| "width": null, | |
| "min_width": null, | |
| "border": null, | |
| "align_items": null, | |
| "bottom": null, | |
| "_model_module": "@jupyter-widgets/base", | |
| "top": null, | |
| "grid_column": null, | |
| "overflow_y": null, | |
| "overflow_x": null, | |
| "grid_auto_flow": null, | |
| "grid_area": null, | |
| "grid_template_columns": null, | |
| "flex": null, | |
| "_model_name": "LayoutModel", | |
| "justify_items": null, | |
| "grid_row": null, | |
| "max_height": null, | |
| "align_content": null, | |
| "visibility": null, | |
| "align_self": null, | |
| "height": null, | |
| "min_height": null, | |
| "padding": null, | |
| "grid_auto_rows": null, | |
| "grid_gap": null, | |
| "max_width": null, | |
| "order": null, | |
| "_view_module_version": "1.2.0", | |
| "grid_template_areas": null, | |
| "object_position": null, | |
| "object_fit": null, | |
| "grid_auto_columns": null, | |
| "margin": null, | |
| "display": null, | |
| "left": null | |
| } | |
| } | |
| } | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/DouglasOrr/44f4f84ec54d25ab95ea6e0168aa5597/2020-10-doubledescent.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "5EOHI-0PvYUO" | |
| }, | |
| "source": [ | |
| "# Double descent\n", | |
| "\n", | |
| "This is a very basic training setup for showing double descent, based on [Belkin et al, 2019](https://arxiv.org/pdf/1812.11118.pdf).\n", | |
| "\n", | |
| "It's good old MNIST digit classification in PyTorch, trained using softmax cross entropy & Adam. The model is a 2-layer fully connected network $y=W (F x)$. The first layer $F$ is \"frozen\" so will retain the random features from initialization. We allow the intermediate dimension `n_features` to vary in order to control capacity & observe double-descent.\n", | |
| "\n", | |
| "Using the notebook:\n", | |
| " - We recommend using this with a GPU (CPU will take a while).\n", | |
| " - Results are a bit unpredictable due to a small number of features - it's possible you won't see double descent every time you run it.\n", | |
| "\n", | |
| "Things you might like to try:\n", | |
| " - We start with 2000 training images - what happens if you increase/decrease that?\n", | |
| " - Does early stopping remove the double descent pattern?\n", | |
| " - Can you find a regularization scheme that removes the double descent pattern?" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "VoFcONYzsfDa", | |
| "outputId": "541a83a4-84e1-4024-e707-358f5f861e1b", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 420, | |
| "referenced_widgets": [ | |
| "05cf64c76333474e82ece4a4c87aa176", | |
| "25d36d1e540b4a03831273a8595e3c93", | |
| "b72b66b3569544a996ab0a9d4ae74125", | |
| "b4ba91e1500d493da06a7c96f367adff", | |
| "7189e5111bb3497eb31484cb1d15c373", | |
| "6eb9966c73304bf3bf065c0cc7d3fd84", | |
| "d73f0ef9e28c44339719bba1db1245b2", | |
| "8074bf5a5788431b88127751cb0e3d8b", | |
| "d6fa85583ab746ac92e7780afb66aaa7", | |
| "323c56b03dcc4ff7b532fd81c86d452c", | |
| "f192b52b9efd42b2b79d60768471902d", | |
| "25ff7bcc3b1743d58db61d8f1479ae59", | |
| "a81e7621fc25450f9b310e00694c8b78", | |
| "c347e2c883614170a2462e45e1347d50", | |
| "adba98a7173c413c81acda1de3e8d066", | |
| "50b485c4213640b8b0ff458c31b294ac", | |
| "f3ad95a5b5da4765bf5196b5d06af6df", | |
| "2e69178e0f094b6fb19f57c53d018d6b", | |
| "a43a7724917b488ba02bedda4cb256c3", | |
| "d4437600fb704f7691ba52b723529b11", | |
| "979101cad88f411e91d8c2b1308a01a0", | |
| "b4001b8909e447b3bf999730a4d1e009", | |
| "7184afd916864514a47b2a697690e4c8", | |
| "ed7517982a99480a8262ae4b179e64e7", | |
| "d42553e3e4f9450ebeedc222e6d3a8a2", | |
| "51ec75e0bee943f78a985b574169ab93", | |
| "ed80a9b8487145c49c82d4087842bfce", | |
| "235b33bfcf174857bd6abe7a7ef282f1", | |
| "4b55f927d7dc4fdca67fa38a40ae2089", | |
| "d3cc62edb2dd463784e698c33b92395d", | |
| "7036b26d13aa468990f1c889bd4968d5", | |
| "efc656ed33d3472e9b74bc6daae278a0" | |
| ] | |
| } | |
| }, | |
| "source": [ | |
| "import torch as T\n", | |
| "import torchvision\n", | |
| "import itertools as it\n", | |
| "import sys\n", | |
| "import pandas as pd\n", | |
| "import seaborn as sns\n", | |
| "import matplotlib\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "sns.set_context('talk')\n", | |
| "\n", | |
| "if not T.cuda.is_available():\n", | |
| " print(\"Warning - training on CPU - this'll take a while!\", file=sys.stderr)\n", | |
| "\n", | |
| "def freeze(layer):\n", | |
| " for parameter in layer.parameters():\n", | |
| " parameter.requires_grad = False\n", | |
| " return layer\n", | |
| "\n", | |
| "def to_device(model, batches):\n", | |
| " device = next(model.parameters()).device\n", | |
| " for x, y in batches:\n", | |
| " yield x.to(device), y.to(device)\n", | |
| "\n", | |
| "class Monitor:\n", | |
| " def __init__(self):\n", | |
| " self.count = 0\n", | |
| " self.incorrect = 0\n", | |
| "\n", | |
| " def __call__(self, scores, labels):\n", | |
| " self.count += int(labels.shape[0])\n", | |
| " self.incorrect += int((labels != T.argmax(scores, dim=-1)).sum())\n", | |
| "\n", | |
| " @property\n", | |
| " def error_rate(self):\n", | |
| " return self.incorrect / self.count\n", | |
| "\n", | |
| "transform = torchvision.transforms.Compose([\n", | |
| " torchvision.transforms.ToTensor(),\n", | |
| " torchvision.transforms.Normalize((0.1307,), (0.3081,)),\n", | |
| " lambda x: x.flatten(),\n", | |
| "])\n", | |
| "data_train = torchvision.datasets.MNIST(\"data/mnist\", download=True, transform=transform)\n", | |
| "data_test = torchvision.datasets.MNIST(\"data/mnist\", download=True, train=False, transform=transform)\n", | |
| "\n", | |
| "def create_model(n_features):\n", | |
| " return T.nn.Sequential(\n", | |
| " freeze(T.nn.Linear(28*28, n_features, bias=False)),\n", | |
| " T.nn.Linear(n_features, 10, bias=False),\n", | |
| " )\n", | |
| "\n", | |
| "def run(n_features, n_train, batch_size, epochs, learning_rate, n_valid):\n", | |
| " model = create_model(n_features)\n", | |
| " if T.cuda.is_available():\n", | |
| " model.cuda()\n", | |
| " opt = T.optim.Adam(model.parameters(), learning_rate)\n", | |
| " train_batches = list(it.islice(\n", | |
| " T.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True), n_train//batch_size))\n", | |
| " valid_batches = list(it.islice(\n", | |
| " T.utils.data.DataLoader(data_test, batch_size=batch_size, shuffle=False), n_valid//batch_size))\n", | |
| " for epoch in range(epochs):\n", | |
| " train_monitor = Monitor()\n", | |
| " for batch_x, batch_y in to_device(model, train_batches):\n", | |
| " opt.zero_grad()\n", | |
| " scores = model(batch_x)\n", | |
| " train_monitor(scores, batch_y)\n", | |
| " T.nn.functional.cross_entropy(scores, batch_y).backward()\n", | |
| " opt.step()\n", | |
| " with T.no_grad():\n", | |
| " valid_monitor = Monitor()\n", | |
| " for batch_x, batch_y in to_device(model, valid_batches):\n", | |
| " valid_monitor(model(batch_x), batch_y)\n", | |
| " yield dict(epoch=1+epoch, train=train_monitor.error_rate, valid=valid_monitor.error_rate)" | |
| ], | |
| "execution_count": 1, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to data/mnist/MNIST/raw/train-images-idx3-ubyte.gz\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "05cf64c76333474e82ece4a4c87aa176", | |
| "version_minor": 0, | |
| "version_major": 2 | |
| }, | |
| "text/plain": [ | |
| "HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Extracting data/mnist/MNIST/raw/train-images-idx3-ubyte.gz to data/mnist/MNIST/raw\n", | |
| "Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to data/mnist/MNIST/raw/train-labels-idx1-ubyte.gz\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "d6fa85583ab746ac92e7780afb66aaa7", | |
| "version_minor": 0, | |
| "version_major": 2 | |
| }, | |
| "text/plain": [ | |
| "HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Extracting data/mnist/MNIST/raw/train-labels-idx1-ubyte.gz to data/mnist/MNIST/raw\n", | |
| "Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to data/mnist/MNIST/raw/t10k-images-idx3-ubyte.gz\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "f3ad95a5b5da4765bf5196b5d06af6df", | |
| "version_minor": 0, | |
| "version_major": 2 | |
| }, | |
| "text/plain": [ | |
| "HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Extracting data/mnist/MNIST/raw/t10k-images-idx3-ubyte.gz to data/mnist/MNIST/raw\n", | |
| "Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to data/mnist/MNIST/raw/t10k-labels-idx1-ubyte.gz\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "application/vnd.jupyter.widget-view+json": { | |
| "model_id": "d42553e3e4f9450ebeedc222e6d3a8a2", | |
| "version_minor": 0, | |
| "version_major": 2 | |
| }, | |
| "text/plain": [ | |
| "HBox(children=(FloatProgress(value=1.0, bar_style='info', max=1.0), HTML(value='')))" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Extracting data/mnist/MNIST/raw/t10k-labels-idx1-ubyte.gz to data/mnist/MNIST/raw\n", | |
| "Processing...\n", | |
| "Done!\n", | |
| "\n", | |
| "\n", | |
| "\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "/usr/local/lib/python3.6/dist-packages/torchvision/datasets/mnist.py:469: UserWarning: The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:141.)\n", | |
| " return torch.from_numpy(parsed.astype(m[2], copy=False)).view(*s)\n" | |
| ], | |
| "name": "stderr" | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "_pXhcL5S5VNz", | |
| "outputId": "24906478-4788-44f9-98a7-34d8f6a0ed9d", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 119 | |
| } | |
| }, | |
| "source": [ | |
| "log = []\n", | |
| "for n_features in [25, 50, 75, 100, 200, 400]:\n", | |
| " for result in run(n_features=n_features,\n", | |
| " n_train=2000,\n", | |
| " batch_size=2000,\n", | |
| " epochs=10000,\n", | |
| " learning_rate=0.01,\n", | |
| " n_valid=2000):\n", | |
| " sys.stderr.write(f'\\rN={n_features:<3d} @{result[\"epoch\"]:05d}: {result[\"valid\"]:<4.1%} / {result[\"train\"]:<4.1%}')\n", | |
| " log.append(dict(n_features=n_features, **result))\n", | |
| " sys.stderr.write('\\n')" | |
| ], | |
| "execution_count": 2, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "N=25 @10000: 32.3% / 25.4%\n", | |
| "N=50 @10000: 26.0% / 13.2%\n", | |
| "N=75 @10000: 27.0% / 5.7%\n", | |
| "N=100 @10000: 28.6% / 0.0%\n", | |
| "N=200 @10000: 20.3% / 0.0%\n", | |
| "N=400 @10000: 18.3% / 0.0%\n" | |
| ], | |
| "name": "stderr" | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "aGWX-ehE9toH", | |
| "outputId": "58375069-2649-4d95-bedc-261f3e181e42", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 1000 | |
| } | |
| }, | |
| "source": [ | |
| "df = pd.DataFrame.from_dict(log)\n", | |
| "groups = df.groupby('n_features')\n", | |
| "\n", | |
| "plt.figure(figsize=(14, 8))\n", | |
| "for (n, g), col in zip(groups, sns.color_palette(\"rocket\", n_colors=len(groups))):\n", | |
| " g.plot(x='epoch', y='train',\n", | |
| " style='--', alpha=.5, color=col, ax=plt.gca(), label='_nolabel', legend=False)\n", | |
| " g.plot(x='epoch', y='valid',\n", | |
| " style='-', color=col, ax=plt.gca(), label=f'{n} features')\n", | |
| "plt.gca().set_xscale('log')\n", | |
| "plt.xlabel('Epoch')\n", | |
| "plt.ylim(0, .5)\n", | |
| "plt.gca().yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, _: f\"{x:.0%}\"))\n", | |
| "plt.ylabel('Error rate')\n", | |
| "\n", | |
| "plt.figure(figsize=(14, 8))\n", | |
| "dff = pd.DataFrame.from_dict([\n", | |
| " dict(n_features=n, train=g.train[-10:].mean(), valid=g.valid[-10:].mean())\n", | |
| " for n, g in groups\n", | |
| "])\n", | |
| "dff.plot(x='n_features', y='train', style='--', color='k', ax=plt.gca())\n", | |
| "dff.plot(x='n_features', y='valid', style='-', color='k', ax=plt.gca())\n", | |
| "plt.gca().yaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(lambda x, _: f\"{x:.0%}\"))\n", | |
| "plt.ylabel('Error rate')\n", | |
| "plt.gca().set_xscale('log')\n", | |
| "plt.xlabel('N features');" | |
| ], | |
| "execution_count": 3, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAH+CAYAAAD+lL2DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdd3yV1f3A8c95nruyQ0IWCRAS9kYQZCg4cOO24ujQOn+tdmi1Vbutxd1qa221arWuuicCLrag7Bn2DglJyE7ues7vjyeBAAkkuTc3CXzfr1deJvc+zznnhsTX/eZ8z/ertNYIIYQQQgghhIgco70XIIQQQgghhBAnGgnEhBBCCCGEECLCJBATQgghhBBCiAiTQEwIIYQQQgghIkwCMSGEEEIIIYSIMAnEhBBCCCGEECLCJBATQgghhBBCiAhrt0BMKTVJKaWb+Oh/2LXjlFLzlFLVSqm9Sqm/KqWiD7umu1LqU6VUuVJquVJqQiNzXq6UKlBKJbT16xNCCCGEEEKIpjjaewHAX4Alhz22p/4TpdRw4HNgDfBzIAu4C8gBpjS450UgDbgHOB94TymVq7UuqxvHAzwK3Fv/mBBCCCGEEEK0h44QiM3WWr93lOcfBIqBSVrrSgCl1DbgWaXUGVrrL+p2x04HJmqt5yqlXqy75xRgRt04dwNFwPNt8zKEEEIIIYQQonk6xBkxpVScUuqIoFApFQ9MBl6qD8LqvARUAt+p+9oDKKAUQGtdA9QA0XXj9MAOxO7QWuu2eh1CCCGEEEII0RwdYUfsZSAWCCilvgTu1FqvqntuCPYav214g9bap5RaDoyo+7pEKbUFuEcpdT9wKZAALKu75RHgHa31wuYsSClVeoxLEgANlDdnPCGEEEIIIcQJKR6wtNZHxF3tGYj5gLeA6dgpg0Oxz37NU0qdrLXeAGTUXZvfyP35wNgGX98KvAlcC1jYZ8G2KaUmAucB/cK8fpWQkCBFPxqjLfDW2p+7PaDqN141WJb9qWFGcD0aggH7c4fz4MO1XggEwOFAedzhmy8QQFsWyjTBDOPrtDT+yhoAHDEelGl/Xy2vHwDD6QBDHbw8aOGtsv8d3DEejLrrA3XXm04HqsH1JyKtNX6f/f1wupwo1bLvh2VZVFfWABqX24XL7WqDVQohhBCisyorK4MmshDbLRDTWi8AFjR46AOl1IfYu1+/xQ6oouqe8zYyRG2D59Faz6pLQRwA7NBa5yulTOBJ4E91X98G/AQ7jfEJrfUzTawt8WhrV0qVJiQkJJSWHmvj7MSktab6kR+ji/NxTroU93nftR+vrSSww97sdOSOQpnOow0TvvVUleNb8AkArvEXoKLjAKh4/R32P/p3zPRUMj96LWzz1S5aQu3y1TjSU4m9+LywjQvw5bn3s3/5FnpeM4mRj98MwLZXv6J6dxFdhueSMXnEgWu11jw+5V52rd7KqMtO5drHfwTA4je/omTXProN6MnQc0eHdX2djdaat196n5J9++kzKJfTzzutxWM89/iL/OvRFzAMgxc/+Sf9h/Ztg5UKIYQQojNKTEykrKys0Sy6DnFGrJ7WegXwGXBm3UM1df9tbLvC0+D5+vvLtdaLtNb1O2i3YJ8Te0IpdRZ2iuIvsc+LPaaUOj3ML0EASikcw+3uAYEV8zhwLM/pOXiRrzZyC4qKRZn23xx0xcGCma4hAwEI7i0ksK8obNMZyUn2uCX7CfeRxB5XnArA7g8X4dtvH5uMzU0HoHJL/iHzKaUY/93JACz7aCGVJfb/A9L7dgegcPMegoFgWNfX2SilGDRiAABb8rZRW93yn8vv//haevXNxrIsHrjzIQL+QLiXKYQQQojjUIcKxOrsBJLqPq8PqDIauS6DBmXuD6eUSgL+CPxMa+0Drgbe0lq/p7V+Hzst8tqwrVocwjnMDhj0/n1Y2/MA7GCoPiDyN7bJ2TaUYaBi7CxSq/LgLqarby6qLpXMt3Jt2OYzk7sAoH1+dEXlMa5umazLxuGIjSJQUcOaaf8DIDbH/vXwl1fjLTr0Dy4nXTQeT1w0QV+ARf/7CoC03pmgFAGfn+LtBWFdX2fUu38OLreTYCDIhrWbWny/0+Xkvkd/gVKKDWs28eq//tcGqxRCCCHE8aYjBmI5wL66z1cDAWBUwwuUUi5gOLD8KOP8EVistf6o7utuHBq47QEyw7FgcSQjLQsjIxuAwIq5Bx5Xdbti2h/BHTFAxdmBmK44GIgppxPXADuNzLsqfIGYkRBvnw8DgsUlYRsXwJ0Ux4BfXA7A1pc+Z//Krbi7xuNKiAGgcvOhxyldUW5GXzkRgAWvfIYVtHDHeEjungrA3o27wrq+zsjpctJnYG9iYqNxOFp3pm/oqMFc8YNLAHj2sRcp2F0YziUKIYQQ4jjUboGYUiqlkccmYPcDmwFQ13j5M+C7SqnYBpd+F7vS4ptNjD0EuB74aYOHC4D+Db4eAOwN4SWIYziQnrhyATpop8DVB2IEfBFdi4pNRDVSIKQ+PdG3al345jIMzKREjOgodBukqeXecDbx/bJAa1b86gXQmqRRfUg7fSjx/bOOuH78tXZ6YsnOQtbPWQFAj2G59D11KH3GDgr7+jqjUeNHMPWmKxg4fECrx7jtlzeRlJKEt9bL09P+FcbVCSGEEOJ41J47Ym8opT5SSt2rlLpZKfUkdtBVBPyuwXX3ASnAV0qpW5VSDwB/A6ZrrT9rYuwngae11nkNHnsLuFgp9aBS6kFgCiA5RG3IMcwOxHRlGcHNdpEOI6UnjtyTMVJ7RXQtRmYuztMvx1kXHNZz1wVi3nV5aL8/bPPFXHQu8d/9Dq6+uWEbs57hdDDsz9cDULJkE9vfmEPSSb1JHtUXV2LsEden5naj74QhAMx/eSZgpyfmjOpHVN1O2onO7XFjhljhMjYuhtvuuRGA6W/PYs2y8AX3QgghhDj+tGcg9h52gHUn8HfgcuBV4GSt9Y76i7TWS4GzsCsnPgHcBDwLXNnYoEqpK7F3u/7Q8PG6FMX7gO8DPwB+pbWeHtZXJA5hdEnFyLY3IQMr5gGgHC6U6WhxmfBQKdNEGUf+uLuH2oEYPj++vM3hm8/RtgVJU8YNoPtl4wBY/cfX8JUe/Sza+OvsXbF1Xy6XdMRj8NZ68da27gzjhVedS99BvQF4/DdPhb1YixBCCCGOH+0WiGmtn9Raj9FaJ2utnVrrTK31DQ2DsAbXztNaj9daR2mt07TWd2itq5oY902tdbrW+ogykVrraXXzdNNaP9wWr0scylFXtCOw+mu0P7LpiM1hdk3GzEgDwLtqTTuvpmUG/+ZaHDEefCUVrH3IztL1V1RTue3IAhyDzhpJSq90tNZ8/PDrBx73VtWyffkmglLpD4DFc77llX/+r9W7WaZp8rPf/xiAVUvWMOv9L8K5PCGEEEIcRzpisQ5xHHEMHQuGAbXVBPOWorXGqtyPtT8/opUTAaySAgIblhPcseGQx+vTE8NZOVFrjXfVWqq/mkewqDhs4zYUld6FAXfZhTu2/Oczdn+0mI3PfMLuD75GB61DrjUdJuffNRWA1bO+ZeuSPAK+ALOf/4R1Xy5j3zY5Llkv4A+wbmUelmUd++JGjBw3gknn2X+A+Nuf/kltTWR/zoUQQgjROUggJtqUEZuImTsUgMByOz0xmL+B4L5taG+jm5ptxiopJLh9PdbeQzddXUPsAg3e1WEs2KEU3lXr8OVtJrB337FvaKXcG88hrm8mWJoNT3+E1pqg10/17iODv2Hnj6H70BwAPpz2KqbTPFA9MT9vZ5utsTPpP7QfSimqKqrZsbn135Pb778Vh9PB3t0FUs5eCCGEEI2SQEy0uQPVE9d9C77ag5UTI7wjpmLrSthXlh5ydsc9xK4cGMwvCOvuVX0/sWBJeEvYN2Q4HQyvK9yxf+kmanbZjakrt+Qfca1Siim/vAaArd/ksfaLpaT3sassFm3bS8An6YnxiXFkZXcDYN3KvGNc3bTuvbKY+sMrAHjhry+xfuWGY9whhBBCiBONBGKizTkGjQGHEwI+AmsWg9MNRL6XmBGXaM8bDEDNwd04V7+DjZ29bdDY2SreH7YxG5MyfiBZl4wFIP/TJQRrfUf0E6vXZ9xg+p1q71B+/PDrdM1OxzANgv4A+7Y2fs+JZuAwu8DMzq27KS+taPU4N/zse2RlZ+Kt9XHPjb+mtKQsXEsUQgghxHFAAjHR5lRUDGa/kwC7ufPBps4RPjsTFXugl9gRjZ37h7+xs5mcBECwpBTdyvNGzTXkt3bhDn95NUUL1uEtqcBb0ngQceE9VwN2OuLKTxeT3NMuVrJ3g6QnAnTPySImLhqAdSvWt3qc2LgYHnruj7g9bvJ37eXXP/ojwbp+ekIIIYQQEoiJiHAOt4sXBDesgPpCEr7I7ogpwziQnmhVlh7ynGto+At2GEn2jpgOBLDKW7+z0hxRGUn0//mlAOxfvoXawlKqtjZegCNrcC9GTLFL309//H+kZKcDsG/bXgLe8PVS66wMw2DA0H4AbFizKaTgqc/AXO579BcALJr9Df969IWwrFEIIYQQnZ8EYiIizAEjwR0FVpDgFrtMvA54I95nSdWnJx4WiLkH2wU7fOs3hK2xsxEfh3La/cSCRW13Tqxe75vOI65PJmhNwecrKN+0p8lrz7vzOxgOk/27i9j09VoMh4kVCFK4pel7TiR9B/fBMBSJSQnUVNWENNa5l01m6o3158VeZs6M+eFYohBCCCE6OQnEREQopxvHoNEABNZ+Yz+oLQhEumBHfSB26Hmd+h0x7fXh2xCexs5KqQPpiVZJ254TAzBcDob9+QcA1OwppnTZliYD3ZTsdMZdcyYAXzzzIYkZyaTmdMMTG9Xm6+wMYuNimHrTlUyZej6x8bEhj3fHr29j+Bj7bN60Xz5GVWV1yGMKIYQQonOTQExETH1zZ2vzGrS3FuWKBiuyZ2ZUfBJGUhpGSuYhQYojpStmul3K3RfGc2KO7pm4crMx6gKytpY6YRCZU8YAsPujRfjLm37Df/btl+GKdlO1v4KibXs56eLxJNWVsxd2MBYuDqeD3z91H26Pm6KCYp7/y0thG1sIIYQQnZMEYiJizD5DIToOtEaXlOHIHoZyh+/NbnMYiV1xjjwdR9/hKKUOea6+sXM4Kyd6ThpK9FkTceVmh23MYxny++swo914i8pZ98hbTV4Xl5LIpBsvAGD2vz+hvLC0yWtPdOFoypyRlc73f2y3D3jt2TfZvmnHMe4QQgghxPFMAjERMcp04BhqF4kIruh452Tq0xPDWTmxPUR3S2bAzy8DYPPzMylds73Ja0+/6UJikuLw1XiZ+eTbaK2pKYtso+2OrKiwmA9e+5i3Xnw3LBUPr7vtajK6pxPwB3j8t09F/IykEEIIIToOCcRERDmH2c2drd2bsYo6VmGI+h2xcDd2rhfJN925N55DVLcksDTL7ny2ybk9cdFM/rFdbXHha5/z6RNvMvc/n+Kr9UVsrR2Zx+OmYM8+qqtq2L459PL+nig3P/vdjwFY+OVi5s5cEPKYQgghhOicJBATEWVkD0AlJIPTiX/pZwT3Nb1b01asgl34F83Cv+TLQx539esNLicA3lXrwjZfzfxFlL/2Nr7V4RvzWEyPi4xzRwF2Ofudbze9Azn+2skkZaVgBS1WzfgGK2hRuGl3pJbaocXGx9K9VyYA61fmhWXMiedOYMzEkwF44nd/w1sb4X56QgghhOgQJBATEaUMA8ewCeB0EtyzCau0IOLpWVoHscqL0eUlh8x9SGPnlWvCN19NLVZ5ZURK2DeUcc5I4vraQcSq37/SZOEOh9vJuT+/ErCbPJcV7Gfvxl0RW2dHV99TbNe2PZSXht4PTinFnX+4HdNhsnv7Ht76z3shjymEEEKIzkcCMRFxjuETIBBAV1dglReDFYjo/EZcfaNlP9Qceh7KXd/YOYznxIxke75gcduXsG8oLied1IlDUA4T774y1j36dpPXjrx4Ahn9ewCwccFqincU4gtDgYrjQfecLGLiogHIW70xLGNm9+nJZd+9CIAXn3yFygo5lyeEEEKcaCQQExFndMtBJaQAYO3dDr7ayC4gKhZlmEAjjZ3rzon51oWvsbOZZAdiVmkpOgwFH5orKjMZT2oiXU/pD8Dmf8+gbF3jlfoM0+CCu6cCULyjkKJt+RRs7lhn+NqLYRj0G9wHgA2rN4alaAfA9T/5Lp4oD2X7y3jtX2+GZUwhhBBCdB4SiImIU0rhGDYegkH03p1YvprIzm8YqNgEoJHGzkMG2I97ffg2bgnLfPVNnXXQwiotO8bV4aMMg9he6SSN6oMnNREdtFjxqxebTAUdePoIckfbr3/D/NXkr5fy6vX6De6DUoqqymo2r98aljG7piYz9cbLAXj1n29QWiztA4QQQogTiQRiol04h59qpyd6q7F2hifdqyVUbCIAVsWh6YKO1BTMtLrGzmHqJ6ZiojHcLiDy6Ymxueko0yB10hAAir5eT9H8xl+XUooLf2n3uSovLGXtF8vwVkd4t7KDikuII7tPD5wuB4ahjn1DM11329XEJcRSVVnNf/72atjGFUIIIUTHJ4GYaBdGSiYqzt4pCm5eEfH5VZwdiB2+IwYHz4nVLg3PupRSGF3rXmtJhAOx7HSUYRDdPYWEIdkAbHru0yavzz6pD4Mn29UWNy5cLU2eGxh/5ilcet1F9B6QG7Yx4xPj+O7/XQ3Amy++S8GewrCNLYQQQoiOTQIx0W7MXoMACO7aFNGzU3BwR4zqSrtoRwOesXZp8dr5i7Gqw5M2WX9OLNKVE80oF2lnDCN76kT6/uhCAPJnLKVyW0GT91x4z9UoQ1G9v5INc1dGaqkdXnRMNIlJCWEf96ofXk5SShI+r49/PfpC2McXQgghRMckgZhoN+aA0VBTgy4vJbgpsm/4VVwijtwh9lk1deivQfTpdnl97fVSM7vp/lst4czJJmr8GDyjR4RlvJZIGpFLdPcUMi8YbTd51potz89s8vq03pmMvnISADP++jbeKklPPJzP6+Or6XPZszM/5LGioqO48effB+DD1z9h2aLI7xALIYQQIvIkEBPtxtEtFxXTFUpLCayYF9G5ldOFmTMIIzULZZqHPGfExRI1fjQAVTO/bOz2FnOkp+Ie3B9HakpYxmsNw+kg5/qzAdj22lf4K5ve7Tv3p1fgdDupKCrjy2c/itQSO43ZM+axYc0mvvxkDrVhKPN/6XVTGDjcrm457e7H8Hl9IY8phBBCiI5NAjHRrpzDJgAQWL0I7e84bz6jzz4dgNqF3xIsK2/n1YTO8geo2LSH1FMHYUa5CFTUsOP1OU1en5iRzNhrzgLg86ffk7Nihzl5wkicLgdVFdV89uGXeGtDC8ZM0+Teh+/CNE22btzOy0+/FqaVCiGEEKKjkkBMtCvHkLFgGOCtJpi3NOLz64Afq/LIICPqtLGoKA8EAtR8MTc8c2mNVVnZLoFd4ZzV7Hx3AaVrdtD9Cjv43fz8DLRlNXnPmO9MwhnlIuAL8OFDUtGvocSkBMafcQoAe3bk8/6rH1O2P7R/176D+3D1TVcC8MKT/2X75p0hr1MIIYQQHZcEYqJdWbVlmENGQWws/mVN79C0ydz7duP/8h0C33x+RG8tw+MhauJ4AKpmfBGW+WrmLqT8lbfxfrMsLOO1RGxOOgC1+SVkXz0JgMote9n7edPnkTL696D/acMAWPLOXPZu3NXm6+xM+g7uw6TzTsU0DUpLynjvlY/YvSO0M2M33fUDMrLS8Xl9TPvlY032fBNCCCFE5yeBmGhX2luN6tYTXC6C65ega6sjNreKikWj7aqJNVVHPB9zjp2e6F2ygsC+opDnMxPsinuRrpwIEN09BdPjQmuNtixSTxsMwOajlLJXSnHK1DOIToxFa82Hf5ZdscP1HdSbC648l6hoD95aL9PfmsGG1a3vixcVHcXdf/4ZAEvmL+Pb+ZEP2oUQQggRGRKIiXalnB6M1EyUywMBP4E1iyI3eXQcyrALdehG0hM9p4zCiI8DrameNTvk6cyUZACCZeVYIZ4painDYRLfvzsAZau3k3vjuQAUzl5FeV7TO11Zg3rRd7wdtK39YimbFq5p+8V2MulZaVxy7YUkpyaRlZ2JJzoqpPHGn3kKw8cMBeD5v74UjiUKIYQQogOSQEy0K+XyoBxOjKxeAASWR656ojIMVKy9S9VYY2fldBJ15mkAVIeheqKZkoxSCoBgUXHI47VUwqAeANTuKyNxaDYxvdIA2PzvGU3eE5eSQM6YASRm2EHk+w++gnWUc2UnqriEOC6++gLOufQseuRkhTze9T/5LmDviq38ZnXI4wkhhBCi45FA7DjRac+SON0AGBk9AQhuWtFoUNRW6hs7WxX7G30+pq56om/1OgK79oQ2l9OJkWTPFyzYF9JYrRGVkYS7SxwA5et2kvvDcwDY8eZcfPsrG71HKUW3/j3od+oQAHat2sKyDxdEZsGdjMPpOBBoh+qUiSczYFg/AF548uWwjCmEEEKIjkUCsU7Oqi7Ht2w6/jXh6XcVacrpsf+bnA7RcWBZBFYtjNz8R9kRA3CfNBSzq70bFI6eYmZqVwCChZEPxJRSJAy2A96ytTvoceUEHLFRBGt8bHul6deW0a87iRnJpPXOBODjh1/HX9txWg10NFprCnYXUlLUeHDfHEoprr/D3hWb//nX5K3aEK7lCSGEEKKDkECsk7MKNhHck0dw+yqsisinu4XM6QYUyjQxB44EwB/B5s4qzt6horrSLtpx+POmSfTkifYlM0IPxOobOgcLi9plFzNhYA88KQkkj+6HI9pDz6vt17b5hZlYgWCj90QnxDLwzJO4+pFbMRwm+3cXMe+lptMZT3RffTqX91/7mOWLVoY0zmnnjCe3v52y+8KT/w3H0oQQQgjRgUgg1smZPYehohMBjX9dePpdRZJSBsrhAsDRdzgA1ta1WKWhVyls1vx1qYkaja5qvA9U9DlnAODfvBXfpq0hzVe/I6YDQXR1TUhjtYYzPpqcH0wm+eS+GE6HnZ6oFDW7i8mf/m2T9/UYmkvPEX0Yf91kAGb97T2qShtPZzzRdcuyWwVs3bid2prWF2UxDIMf3H4dAF98PJuP32y6wqUQQgghOh8JxDo5ZZg4B9gNeq192wju297OK2o5lZiGkZyF2Xs4KiYegECEdsWUy41z1Jm4Jl2KkZDc6DWuQf1xZGYAoRftMLokEnf5hcRffzVGTHRIY4VDbHYa6ZNHALDpKKXs6519x2V44qKoKa9i1lPvtPXyOqWcfr1wuZ0EA0E2rt0U0lhnXXQ6w0bb5/P+8NNpTH97ZjiWKIQQQogOQAKx44CRlouRZJ/f8a+bi9adq6qdmZSJmdwdIyYex9BxAASWR253z+iSgqorGtIYpRTRdUU7qmd8EVJKoVIKs2syymj/Xz1/ZQ21haX0vskuZV+8KI/9K5ve8fPX+ijLL2H4hWMBmPfSDIp2FERkrZ2J0+Ukt38OAHmrNoT082KaJk+8/BCDRw5Ea83vf/JnPn1nVriWKoQQQoh21P7vBkXIlFI4B9pl1nVFEcGda9t5Ra3nGH4qANaerVj7drfzag6KrmvuHNidj29NXjuvJnTF32xg0zOfsPezZaRMGHSgx9jmZ5veFdu3NZ9VM78hvmsiiRlJBP1BPnn49UgtuVMZMNSueFhSVErhntAKs8TGxfDkK48waMQALMvid3c8yMIvI9hvTwghhBBtQgKx44SRkIaZOQAA/4YF6EDnq2qntYXq3heVaJ+j8kdoV0wH/FhF+QS35zW5e+HqnYMzJxuwd8VCms/vx7dpKzULFqObKJDR1jypCWitqd5djG9/Jbk32qXsd72/kNp9jVeQTM3NxHQ6UIbilKlnArDso4VsXx5a+t3xqGtaMl3T7FTXbxcsJRAIhDRebHwsT776CP2H9MWyLO699fds3bgtDCsVQgghRHuRQOw44uw3DgwHeKsJbG668EJHo321BLYuJbBxMQoLxzD7zFtg+bzIVBasrca/bDaBDcugtrrJy+qLdlTP+godbH0ApQMBqj+fg3fVOoLFJa0eJxTRPVJxxttn1MrX7qD7ZeNxdYnF8gXY+p/PGr3H4XKQmtsNgMSMZDIHZgPwwYP/7bx97NpQ/6F9Adi9PZ/KstALm8QlxPHoiw/SNS2Zqooqfv69X1FaErmee0IIIYQILwnEjiMqKg5Hjl0CPrBlCVZNRTuvqJlMB9rvBTT4ag+kJ+qiPVi7t7T9/NFxKMO056wsbfqyuvTEYFEx3mWtL01uREVhxMXaY7VDPzGo6yk2sAdg9xQzo1xkX2cHmlv+8xlB75Gl/MHuKQawf08R5/70cvv6xetZPWtJBFbdufQb3IcBQ/uS0y+bxOTEsIyZmpHCoy8+iNvjZvf2Pfzq5t9gWZ3rTKgQQgghbBKIHWccuSPBHQ1WkEDe/PZeTrMo0wGmEwDt92JkZGOk2m/4/QvbvmS3MowD1Rp1RdOBmDOrG65B/YHQe4o56hs7F7RPIAYcCMR8ZVVU7ywi5/rJKNPAu6+M3R983eg9XXum44xyg9bEJifQf+IwAD6a9ioBX2jpd8cb0zQ59ezxnHnhpAOP+bw+1ixbF1Kq4sBh/fntX38FwJIFy1k0+5tQlyqEEEKIdiCB2HFGOVw4+9qVB4O712OV7m3nFTVPfdVC7a+1i4+MPx+AwLLZWOVtn76n4roAYB0lEIMG6YlfzEH7G981ag4zzW7sHNgXmX5pjXEnxxOVkQRA2drtRHdLJvPC0QBsenZ6o+mGhmmQ3seu0Lln/Q6m/OpalKEo3LKHf10/jZqyqsi9gE5CKQWA3+fnjX+/zfzPv2bzutB2es+acjojx9ttB97499shr1EIIYQQkSeB2HHI7D4QFVdX8GLd3E5xfkc5PfYn/loAHCMnoWITIBjAP++jtp8/NgE4emoiQPTkiaAUVlkFtYtan45nptj/PlZ5JVZN5Bs710sY1BOA8rxdWL4AuXWl7EtXbqN4cePVIbv1r7uncD/xqYlc8IupAGycv5q/XvFbSnYWRmDlnY/T5SQr2w5iV367JuTfy6k/vAKABV8sYvvmnSGvT9EwRccAACAASURBVAghhBCRJYHYcUgp40A5e6tkN9beze28omaoC8Tss2L2Dplz/AUA+L+eia5p250WFVd3hqe6Eh1oeqfLkdIV90lDAagKoXqi2TUZZdq/fsGC9tsVi++XheFyENMzlWCtj6SRfegy3O6B1VQp+8RuyaT37c6gs0bijvZw5m0Xc81j/4fpNCnYuIu/XPprdqzoBD9z7WDIqEEA7C8uZUeIwdOEyWPJ6J4OwJsvSHNtIYQQorORQOw4ZXbtgZHaCwD/+rloq33KpDdXw9TEes5TzgGXB7zV+Be3bRNbFWsHYhqNrjx6JbqYuvTEmq/mY9XWHvXaJudzmJjJdlpgsB3TEx3RbvrediHdLxmHMz4apdSBXbE907+leteRa1NKMfyCU+g+JAenxwXAyZefxq0v3UtUfAwVRWX87arfs/LTxRF9LZ1B19RksrLtypMrv10d0limafKd6y8D4KM3plNZIWmhQgghRGcigdhxzNn/VFAKXV1GcNuK9l7O0dWnJgZ8B4JGFR2Hc/RZAPjnfXTUnapQKZcb5YnBiE2AYwStUWecCqaJrqmlZm7jRS2aw9EtHUdm+oEKiu3FcDkO+Tpryil40hLRQYstLzQ/AO49dhA/eecPJPdIxV/r48XbnuCr5z7uFKmxkTTs5CEA5O8qoGBPaGmcU6aejyfKQ3VVDR+/MT0cyxNCCCFEhEggdhwz4pIwe9hpdP6Ni9C+9juLdCzKHY2ZloOZNRDqihsAOCdMAcNAl5cQWDanTdfgHH8BzrHnYSSlHfU6MzEBz9hRAFTPbH31RM+YkcReeA6u/n1aPUY4aa0JVNViuBz0+r4dAG/97+f4SpvugVW1v4J92w4WhEnrnclP332AniP6oLXm/Qde5p3fvkCwnRpXd0TdemQcaPYc6q5YfGIc5195NgCv/utNaqtbt0MrhBBCiMiTQOw45+wzBhwuCHjxb1zU3stpkjIdGAlpGNEJKHXwx9LokoJjmN1XzDfnfXQb9kxSRvN/HQ6kJ85fhFUZerPe9la5rYAtz89k+xtz0FqT872zcMRG4S+rJu/JDxq9Z9fqrcx98VNWz/zmkF5Wscnx/N9rv2bYBacAMO+lmTx/86N4qyRIADu1c2jdWbFtG3dQURZav79rbr4Kh9NB/q69PP/Xl8KxRCGEEEJEgARixznljsbR2y5JHty+EqtyfzuvqOWcEy8GQBfuIri+YzQOjjptHMrtAp+f6i/nhTxee6fvmVEuvCUVeIvLqS0oxd01nr4/ngLA5n/PoHrnkf3OkrunAuCtqj2iUqLL4+J7T93BGbdeBMDaL5bx1JW/o2p/J2ky3sZy+vWiW/d0zrpoErHxoaWm9sjJ4vs/ugaAl//xOpvztoZjiUIIIYRoYxKInQAc2cNRUfGgLfzr57b3cpqktUb7vWjfoTsnZkY2Zl+7Z5Jv9nttN3/AT2DTSvzL5hyzSqMRE03UqWOB0Jo7e9fmUfnOR9TOb9/CFp7URNxd7RL+ZWu2A9D75vPwZCRhef2smfa/I+6JSoihS6Zdhj9//ZEVAA3DYMovr+E7f74JwzTYvXYb//vVs+0edHYEhmFw4VXn0atP9oE+Y6H4wR3X0b1XJsFAkGl3P3bIDqUQQgghOiYJxE4AynTg6D8BAKtgC8HijtlzyCraTmDrUoKFR/5F3znpEvuabesIblvfNgswTKzteVhFe47ZTwwONneu/WYpwZLW7TTqmloC+4oJ7G3f3ltKKRIH9QCgfN1OdNDCEe1m4N12r6qdb89n/4ojmxBn9LPvKdi0m6A/0OjYY68+k6um3QzAyk8X8+07HfePAe0plODJ7XFzz59/DsCKb1ZxzZk3cP///YHpb8+UwFcIIYTooCQQO0GYGX0wEjMA8K+d0yHfnB1s6uw94jkzZzBGVi4AvjltsyumDAMVEw+Arjh2IBY1bjQqJgaCFtWfzW7VnGZqXWPnkv1of9tVhWyO+IE9UEoRqPFSuSUfgJ7fOY34Ad0BWP2HV4/4uUnvm4UyDAI+/yFFOw538hUTGXqunSL79m9foGTXkamOJ6qKsgpmvvc5i+eElnY7+rRRTJl6PgBb8rYy873P+e3tf+Ltl94PxzKFEEIIEWYSiJ0glFIHmjzr8n0Ed69r5xU1or6XWMB7xBt+pRSuiZcCEFz7DVbhrjZZQn1jZ6sZgZhyu4g+w95pbG31RDPFDsS01gT3FbdqjHBxxkYRk21XjCxbswMAZRoM+Y19/mjf/LXs/Wz5Ife4otwkdU8BoHDznibHVkpx5YM3Etc1AW9lDa/d9Q9Jn6uzcd0Wtm3aweqlayjeVxLSWPc9+gv+8t+H+NGvbmboqMEA/OV3f2fTOmmwLYQQQnQ0EoidQIwuGZjd+gLgXz+/TftytcaBHTFtQaCRXbHBY1BJaaA1vjmNV/ILeQ31jZ2bkZoIB9MTvctXE9hb0OL5DI8bM9E+mxUsbL/GzvUS6tITK7bkE6i2/w3STh9G6kS799XqP76KdVgp+rTemQAUbsnHCjYdXMUmxXPVw7cAsOnrtcx5XvpeAQwdNYiELvFYluaD1z5myYJl+Ly+Vo1lGAbjzjiF799+LX955WG69cjA5/Vx///9UUrbCyGEEB2MBGInGEe/8WCY4K0isLVjVCA8wOkG7MIFupH0RGWYuE6zKygGln6FVR7a7kFj6nfEqK5sVqDqGTUCo4t9T/XMr1o1Z316YqCw/dP14np3w3Q7Md1OfCUHKxwO/vXVoBQVG3az/fVD0zBTc7rh9LhIzcnAf4wAYtAZJ3HK1Xbw+vHDr5O/oWOeV4wkh8PBpHNPxe1x4/cFWLJgOa8/9xZrV6wPKYU4Ni6GB57+DabDZEveVp564JkwrloIIYQQoZJA7ARjRCfg6GVXIAxs/hZd23F6YClloBwu+wt/43+9d4w63T7HFQzgn/9J+NdQvyOGRleVH/t6h0n0WXbKZ9WML1o1Z30gFuwAgZjhdNDz6kn0ue0CorO6Hng8cXA2Pa6w0zDXPvwWgQY9wTyxUZx+yxSGnjsad7TnmHNccv/3SO6RSsDn55Wf/p2Ar/EiHyeStMxUpt54OcPHDMXhdFBb42XerIXMmTE/pBTOwScN5JZf3ADAW/95L+QG0kIIIYQIHwnETkCO3JPBFWUHM3kL2ns5h3LZb+QPL2FfTzndOMfZBQn8X3+Krq0O6/TK5Ua5o+w1tDA90Z+3Cf+2lu/wONLsM1ZWVQ1W5dHL5keCJyWh0ebWA3/5HQyPE29hKRv/8fEhzxktaIbtjvFwzeM/QhmK3Wu3MeMvb4a85uOB2+Nm9KkjmXrj5eT0ywbAMI2Qy9tfd9tU+g7qjdaaafc8RqCJ6pZCCCGEiCwJxE5AyunG2dfugRXctRarrH1Lpzek6gt2NJKaWM859jw7jbG2Gv/iWWFfg5HeEzOrNyo6vlnXu4cOwkyzmxu3pmiH0SURz8ihxJx7BsrjbvH9balhalx0ZjK9bzoPgA1Pf0Rt4ZGBqta6WTtcOaP6cWZds+fPn/mArUvywrTizi86JpozL5zEpPNOZdwZY0IOxBwOB/c+cheGYbBp3RZe/deRPeGEEEIIEXkSiJ2gzO6DUbFJAPjXze0w5eyNLpk4sodjpvdu8hoVE4dz9FkA+Od+GPaiI46+w3EMGIXRJaVZ1yvDIPrsSYCdntjS76UyTTyjRuDs2R3lcLR0uW3CV1rJnhlL2PLCLHSD1Lh+t1+EKymOYLWXtY+8dcg9W75Zz1fPfczmRWubNcc5P72SzIHZaEvzys/+jrdKiknUU0rRd1BvTNMMy3gDhw/gyuvtqqP/mPYcd11/H19O75htLIQQQogThQRiJyhlGDgHnAqAVbwTq5Emyu1BuTwoV1SjqXENOSdMAcNAl5cQWDEvQqtrWkxdemJg+078eZvaeTXhUbZqG97icio35x94zBkfzYCfXwbAtle+pDzvYBuBoD+It7KGgs17mvUG3+FycO0TP8J0OSjeUcj7D7wc/hdxHCgp2s+385eyfNHKkMa55e4f0qtPT4LBIHNmzOOeH/6ax379ZJhWKYQQQoiWkkDsBGakZGN0tcuV+9fNRVvBY9zRcRhJqTiGjgfAP/u9Q3ZtwkVbwSbPqh3O2a83jh5ZQOuLdmi/n0B+QZu8lpZyJcYS08vuKVay7NAeVL2+d6b9nKVZ/cBrBx5P7d0NgOr9FVQWH7vQCUBGv+5c8IupACx87XPWfrksHMs/ruzaupulC1ewZtm6kKso/ufTZ3ng6d8wasJJAPzv+XeY9UHrfl6FEEIIERoJxE5gSimcA04DFLpqP8Edq9p7SWit0bWVWOVFRz0nBuCceAkAVsFOgnlLw7qO4NZ1+L96l+D65o2rlDpQtKN65lctDqas6hrKX3yNyg8+xSrZ3+L1toWkk+z00KrthXiLDgZWhsvB4PuuBmDvrGXsm2+nIsanJBIVHwMcvbnz4Sb+8HxyxwwA4K37/41X+l0dontOXYBfWR1yw2dPlJuzLzmTv73+GGMmngzAg3c9wo4tbdMgXQghhBBNk0DsBGfEd8XsPggA/4av0U2UjY8UpRSB3esJ7t2Irqk46rVmt16YfYYD4Jv9XngX4nShgwGskr3NDqrq0xODBYV4V65p0XQqyoOKsitGBjpAY2eAmOw0XF1igSN3xbpdcDJJJ9vNwVf9/hW0ZaGUIjXX3hUr2LS72fMYhsFV027G4XKyf3cRM/7y1rFvOoEkJiUQl2D/O+zcGp6AyTAM/vC3+0nNSKGqsprf3v6AnBcTQgghIkwCMWFXUDSd4K8lsOmb9l5Og8qJxw4KnZPqdsW2riW4PXyV94zk9Lo1+NDNbBztzO6Os5+9i1Q9o2XVE5VSmCkdp58Y2GtKGpELQNna7QRrfYc8N+Q31wBQunIru95bCEBa70wAygv3U1PW/FL8Kb0ymHy7XUxi9r8/YfeabeF4CccFpRTde9m7YjvDuHPVJTmR3z91HwBrlq1j9qftf9ZSCCGEOJFIICZQnhgcve00pcC25VjVZe27HmddU+BmBGJm7hCMzBwAfHPeD98aomJQMQkAWMX5x7j6oPpdserPZ6MDLTtzZ9b1EwsWdIwdMYCEQT0xnA4sX4CytTsOeS755L50u2A0AGsefINgrY/Ebsm46po6F7QgPRHgjJunkNY7Eyto8b97n8UKtv9ZuY6iPhAr2LOP2pqjp+y2xMhxIxh/lt3K4p+P/Duk5tFCCCGEaBkJxAQAjl4noTxxYAUJrG/nv4zXBWLHOiMGdefc6s6KBdcswtrXsjf/R3NgV6x4b7PvqS9jb5WUUvttywpPOFLrArHSMrTXd4yrI8P0uEgYaBd0qd13ZIA++L6rUA6T6l1FrP/rexiGQWpOBgD797QsoHS4nVz5pxsB2LFiM/P/OzPE1R8/MntkYDpMtNbs3t78tM/muOWuGwDYvH4rn33Q8j54QgghhGgdCcQEAMp04OhvVyEM5m8kWBK+gKbFa2lBaiKAY/BYVFIaaB3WXbEDgVhZCdrXvF0IR3oa7mGDAahuYfVEMyX5QPPewL6OsyuWPKYfOT+YTLdzRh7xXGxOBn1uuwCADU99SOma7WSP7MvYa85k+AWntHiu3DEDGHPV6QB8/MgblO4NrTjF8cLhdNCtu/3zuCNM58Tq9R/al9PPPw2Ap6c9y+b1W8I6vhBCCCEaJ4GYOMDs1g+VYJcs96+b3X6H9+tTEwO+ZpXUV6aJ89SL7FuWfoVVEZ6qg6pLCsow0Wiskhbsip1jBxLVX8xr0c6WcjoxkhIBCBZ0jHNiAK6EGDwpCU0+P+DOy4jtnYEOBFn6s38SHR9DQlrSgaCypab86lpik+PxVtbw7u9fbOWqjz+9B+QycHh/+g5sutl5a9181/WYDpM9O/K5bvKNPPXAMwSDnaedhRBCCNEZSSAmDlBK4Rxo/2VclxYQ3BO+4hctWofLc/CLZqQnAjhHnQHRcRDw45//SXjWYTpQXVIB0BWlzb4v+qyJYBroqipqFixu0Zxmql2ww6pqfqGLSDu8iqTpcTHy8ZtBKUpXbmPjPz4OafyYxFgu+fX3AFg5fTGrP1sS0njHiz4Dc5lw1lgye3YL+9i5/XP46yuP0D0ni2AwyMtPv8ZbL7wb9nmEEEIIcZAEYuIQZlImRrr9F/dA3nx0MNAOi3CCMsF0ooP+Zt2iXG5c484HwP/1p2hvTXiW0ncYrglTcPQZ1vx7krrgOdlumFs9s2VnbjwnDSP++1OJPm1ci+6LhIrN+Wx79UsK56w+4rnk0f3IveFsANY9+jal63eSn7eT5Z98TcDbvH/Dhk66eDx9JwwB4O3fPI+3SnqLtbXRp47ktc9f4JxLzwLgmYf/TVFBcTuvSgghhDh+SSAmjuDsPwGUga6pILA1vI2Sm0MphSN3JM7cURjRTafEHc457jxwuqCmCv/iz8KyFiM2ERUV0+L76tMTa+YsxKpuflBoxMZgeNwtni8SvPvKqN5dTOmqbVj+IwP0QfdeRXT3FCyvn2V3PsvK6YvYm7eTfdubn9ZZTynFFQ/8EIfLSemeYj594s1wvITjgtaavFUbWLpwedjHdrld3PXAT0hMSqCqspq//uHpsM8hhBBCCJsEYuIIRkwijmy7UXJg87dob+TT5JRhtvyemHicJ58JgH/uB+2zm1cn+vQJ4HKivV5qZs9vt3WEU+KQbJRpEKz1UbZu5xHPO2I8jHjUrnq4f8kmXFsKgZY1d24oJTuds++4DIDZz3/CrtVbW7ny48uG1RuZPWM+Sxcup6gw/DtWCV3i+fF9twAw493PWDzn27DPIYQQQggJxEQTHH1G20UzAj78G75u7+U0m/PUi+zdvLJiAivCU4Zf11YT3LGBwKaVzb7HiI0lavwYAKpaWD0xWFRM7bKV+NZvaNF9bc0R4yG+f3cA9i/b3Ggxl7SJQ+h59SQAyj5YhFVaRdHWvQRb2FOt3ul1vcW0pXnuxkdY80Xkd2g7mt4Dc0lMSsCyNPNmLcDXBq0OLrzqPIadbKeGPnDnw1RWdNwzi0IIIURnJYGYaJRyenD2scuPB3esxqqIfDl1q6yQYP7GFjWYNpLScAy1z1f5Z78XlsqPuryEQN5SrG3r0YHmn3eKPttOT6xd+C3B0ua/Bv+W7dQuXoZv3cYWr7WtJY3IBaC2sJSa3Y3vxgz53bV40hKxav34ZizH7/VRsrOwVfM5XA6mPnwrTo+Lsr0lPHfDw7z8k6eoLC5v9Wvo7EzTPNCEuTC/iHf/+yElReGpFFrPMAzuf/we3B43e3cX8Jff/T2s4wshhBBCAjFxFGbPIaiYLoDGv25uxOe3ygqxKorQVS17k+mceLF9/94dBPNa1lS5MSopDaUMtLbQ+5sfUESdegoqOgqCQWq+aP73z6xv7Fxcgm7lTlJbicpIIiojCbB3xRrjSohh+EN2k2BrWyHBldsp2Nz6vnTZJ/Xh7hkP03vsIACWvj+faZPvZOn789uvxUI7y+yRwWlnj8c0Dcr2l/PeKx+xbeP2sM7RM7c7P7r3ZgA+eO1jFs3+JqzjCyGEECe6DhWIKaXuVkpppdQRp9CVUuOUUvOUUtVKqb1Kqb8qpaIPu6a7UupTpVS5Umq5UmpCI+NcrpQqUEo1vwrECUoZJs4B9rfQ2redYOG2yM5fV6hDt2BHDMDMzMXsPRSwd8VCXofDiUpIBsAqym/2fYbHQ9REe3euqgXVE+tL2OugRbC44zU07lK3K1a+YTf+ysYLkXQ7dxRZF9s7qr4vV7N32Sasw8ret0TXnun836v3c9W0m/HERVFVUsHLP3mK5258hNL8E7OyX/+hfZky9Xxi42MI+APM/nQegUaKqITiOzdcxrDRdori09OePWEDXyGEEKItdJhATCmVDtwPHHEYQSk1HPgc8AA/B54DbgHeOOzSF4Es4B5gJ/Bew4BLKeUBHgXu1Vq37N39CcpIzcFIzgLAv27uET2k2pKKjgdAe6vRgZadg3FOvASA4JbVBHeGnuJndM0AwCre26I3ozHnnAGAd8kKAvual95pREdhxMUCECzsOI2d68X3y8IR7UY5DGoLmu6vNuxPP8CZGANeP1XvL6J0T2gBk1KKU6aewT2zHmPwWSMBWPv5UqZNvouNC9aENHZnlZqRwsXXXIhpGgQCAfYVhDeF2DAMbr//VgDWrchjzozjo/CMEEII0RF0mEAMmAZ8W/dxuAeBYmCS1voZrfX9wI+BC5VSZwDU7Y6dDtymtf4H8B0gGjilwTh3A0XA8232Ko4zSimcA+qaPFcWE9wVuTe8yhNn9xMDdHXLzgSZfYZhZGQD4AvHrlhyur2Omkqormz2fZ4xIzES4kBrqmfNbvZ9jrpdsWBh5M/mHYvhMMm6dBx9br2AuNyMJq9zd41n+J+vByC4aS9l89aGZf7E9CRuePYuvve3nxCbHI+3soZX7/w7tRXVYRm/s4mJjeasi87g2luuIiMrPezjDx01mHFn2IVn/vno8yHtbAohhBDioA4RiCmlRgPXYe92Hf5cPDAZeElr3fAd8EtAJXbABfZumQJKAbTWNUANdjCGUqoHdiB2h5b8mhYxElIxswYC4M9biPZ7IzKvMgxUVBzQ8vREpdTBXbHVX7copbDR8eK6oFweAKyS5vfFUk4n0WfYgWx1C6on1qcnBjrgjhhAdLdkTLfzmNdlXTKW9LPt5tZr/vAq3qLwFNlQSjHiwrHc8fYfcHpclOaX8NHDr4dl7M6oZ253PNGeNhv/5l/YZ/42rd3MQ796guqqEzPoFUIIIcKp3QMxpZQCngL+o7VurEPpEMDBYTtlWmsfsBwYUfd1CbAFuEcpla2U+hmQANRXa3gEeEdrvbAZayo92kfduCcUZ79xYDrAV01gc+T6CjU8J9bS+NkxdByqSwpojW/uB6GtQymMul2xlgZ19c2dfWvW49/VvKIV9QU7rPJKrJrmN4RuDzrY9A6JUooRD92AIy4KX0kF397xj7Cmt6Zkp3Pez68EYP7LM9nyzfqwjS0OGjisP+ddPhmAd1/+gGvP+iGb1jVerEUIIYQQzdPugRjwPWAg9vmwxtTnPjX27jcf6Nbg61uBC4Gt2GfB7tNab1NKTQTOwz47JlpBeWJx5NjncgJbl2K1MFWwtYz6QCzghRbuxCnTYfcVAwLffoFV2fR5pmatJSULM60HRnrPFt3nHjEUs6td7KO6mUU7zK7JmMlJuPr1hmDHqpxYzwoEKZy3ho3PfExNQdOVLaMykhjx8A8BKPhiBRv+/lFY13HaDeeTNSQHgDfu+Rf+2vD31eoMaqtrWfr1Ct5/9eM2SR/89RO/5Ef33oLT5WT39j3cctkdLF/U/N56QgghhDhUuwZiSqk47LNh07TWTW0zRNX9t7F34bUNnkdrPQvogX0uLEtr/ZBSygSeBP6ktc5XSt2mlFqvlMpTSt3a2IRa68SjfQAnZKEPR84ocMeAFSSQF6FD++5ojLiumCnZYJotvt158pkQHQsBP/4F00NaipGWhWPoOMyMlgViyjSJnjwJgOoZzQvElMMk7oopRE8ajxEb29KlRoQyDSo27iFQ7W2ylH0915CemMOyAVg77X8UL84L2zpMh8nUh27BcJgUbtnDrL+9G7axOxO/38+S+cso2FPItk07wj6+w+Hg+z++hhc++gfJqUlUlFVy+9V3smLxqrDPJYQQQpwI2ntH7H7ABzx+lGvq87LcjTznafA8AFrrcq31ogaB3S3Y58SeUEqdhZ2i+Evs82KPKaVOD2H9JxTlcNopikBwTx5WafPPSrV6TqUwM/pgdMlAmcc+k3TE/S4PzrHnAeBfMB3tbZ80v+i66on+zVvxbdraLmsIN6XUgQbP5et2EqhueseyS2ZXPOeMQKXEo4MWi299Cm9JRdjWkjmwJ2fcMgWAz5/5gN1rw9tTqzOIS4gjs6edQPDV9Lls3bitTebpO7gPz33wNFnZmXhrffzihvvYtW13m8wlhBBCHM/aLRBTSmUAPwX+DqTVnevKxg6uXHVfd+FgSmJj5dkygCYP3SilkoA/Aj+rO1N2NfCW1vo9rfX7wFvAtWF6SScEM2sgKt4+v+RfO6dT9BVyjjsPHC6oqcT/bfMLZjRFa42ublkQ4RrUD0eWnUXbkqIdB+broN/nhIE9MD0urECQ4kVNn89yRbnpNrgX7otHo1wOavaUsOSOZ8J6Xuzs2y8jNacbViDI6/f8k2AHa4YdCePOOIW4hFgC/gCz3v+yzVIHM3tk8OSrj5CYlEBpSRk3XfJj/nz3oyz8clGH/VkVQgghOpr23BFLA1zAQ9hnuuo/xgAD6j6/B1gNBIBRDW9WSrmA4dgFO5ryR2Cx1rr+UEo3Dg3c9gCZob6QE0nDcvbW/j1YezdFbG7t96ID/hbfZ8Qm4hhlb3z657yPDra+6a2ursQ/7yN88z9G1za/cpxSiuiz7TVUffp5swIQ7fNRNf0zKl56A6u0Y2bDGi4HyaP7AlCybPNRd7l6Du+NkRyHc/IwAPZ+toyNz3wStrU4PS6+M+0mAHat2sKc58M3dmeRmJTAJddeSHpmKgCL5y5h28a22R3Mys7kkef/hMvtoriwhHf/+yE/ufZufnD+LcydOV8CMiGEEOIY2jMQ2wpc2sjHGmBb3ecv1TVe/gz4rlKq4WGZ7wKxwJuNDa6UGgJcj73rVq8A6N/g6wFA2+fXHWfMrt0x0uziCP51c0MKbJorsGutXSSkvLBV97tOvQiUgS4tIrByQesX4omGumDQKm5Z9cSY8+2qc8H8AmoXLz32DU4nwcIirFovwYKOWcYeIGlkH1wJMeigReGcps8Lxacm0iWzK47BPYgdPwCANQ++QcmS0Btu18sdPYDx19nf5+mPv0nhluZVqTyeREVHcf6V59Cth51E8PXsbwgE2uZ3dNjoIbwy69/c9ssbGT5mKGA36qAP2wAAIABJREFUfr7zB/fy/fNuabMgUAghhDgetFsgprUuq0sRPOQDu+Fy/XP1HWDvA1KAr5RStyqlHgD+Bkz/f/buMzCKqmvg+H9m+2ZTSEgghB5670gHKYJUFQTELjYE+6s+9sf2iGLvvQMqShGUIr0TeocQkkBCIL1ns7sz835YiMYkQJLdZBPv75PZmZ17NoZkztx7z9E07c8yhngX+FDTtL9XBVgAjJck6RVJkl4BxgI/eeUD1nKGNv3diU1BNq74fV4fTzK4eySVt7HzBXLdcPQd3L29nesXVfhpvSTLSMH13LGknSvXew1NG2Hq2hGAvMWXLhwiSVJRPzElxfcaO18g63WEDXR/rpzoM+SdKjtpbNylBQDKFS2xtWyA5lLYftd7ODIuv0n2pYx5fCpB4cE47Q5eu+r/+HrGWxxZuwf1ImX2axu9Xk//oVcgyxKFBYVkpFauYujFNGnRmNvuv4lPF77H54s/oPegngAc3X+MGdc/xKmTCV4bWxAEQRBqsuou1nFZNE3bDQzDXTnxLeBO4DNgUmnnS5I0Cfds1wv/uM5S3EndLcCtwH80TatcKb1/KdkWjK6J+wm4K3o7msO7RTCK+okVZFd4X5Fh0HgA1KQ4lOiKJ49y3fP9xNLOljsW24TRAOSv3YRyGcsNL/QTc53z3UQMwL91BNaIEMyhgUi6sn+t1IuMwGSzIOl11Lv3anQWEwWJqex68BOPLWUz+1uZ9uZ9WAL8UJwK+37fzqe3zeaFvvexdPa8f80sWVBIEFeOGczkO64jtH7dKhmzU88OvDdvDh//8g62ABup59K47/qHSEtJr5LxBUEQBKEm8blETNO0wZqmdSnl9U2apvXTNM2iaVo9TdPu1zQtr4xr/KxpWn1N00pMn2ia9qqmaRGapjXQNO01b3yGfwtDy96gN4HLgTN6u1fHkiwB7v/QVDR7xart6Rq1RBfZAXDPilWUHOxOxDSXAy27fDeYlqEDkGx+4HKRt2zVJc+/MCOmpmegOcu/P66qSJJEw/F9aHbzUKwRIWWeJ+tkmnRpQb2WDWk8uBNd/ncrAEkrdnHiU889E2nRpz3Pb/+QG96cQYs+7QHIOpfB6o8WM3v4oxxYEeWxsXxZ81ZNMVvNRV+npaRXyd6tbn268O7c1/GzWTl3Jpln7nsRxUf74QmCIAhCdfG5REyoOSSjBX3LXgAo8ftQc7331FvSG5BMfgBo+RUvXGEYNAEA5cR+lISL974qMxaLH7LNPUNX3n1istmM36ihAOQuWnbJm2JdqDsR0zQNJSWtAtFWHb2fGUm+9K+U5j3b0HVMH+o0qEuTKYNoPGkAAAdfmkfKpkMei8doMdHz2oHcN+8Znt74LiPuv46g8GBURWXBM19iz7n8Yiu1QXpqBr9+u4QVC//02p6xv+vQrR3Pvv0fAHZu2s0Xb33r9TEFQRAEoSYRiZhQKfomnd3LBjUN55FNXh2raHliBfeJAehadUWu727IXJlZMSnEXQhBSy1/rRfb+KsBcMWewrH/8EXPlc0mdEHuz60k+/byxL+zJ2eSeejyCjV0efU2/FtGoDkVNt8wm4TF2zweT0ijMEY9PIlZP/8Xo8VEdnIGf7xZap2fWuvksVg0TePUyQQO7T5SJWMOuXogU+50ryD/5v0fSEoQtZEEQRAE4QKRiAmVIun07sIdgJp8EiX1tPfGupCI2XMrXKlRkqSiWTHXga2oaRW7MZRDzi9PtOeVOxZjm5YY27pLvucuunSJdV0996yYK9l3Kyf+XfbxRGK/Xc3ZVXtwXmTWSdM0UuPPUpBvp9/cx7C1CEd1uNhxz3seXab4d8ENQxlx/7UAbPxmOQkHa0dz7cvRvW9XOnRzV6vcu30/9oKyG3B70ozHpxNavy5Oh5NP53zFmdNJZGd6rpm3IAiCINRUIhETKk2u3wK5jrtZsfPIBjTNO9XpJIs/SDLIcqWKg+g790MKrAuainPjbxWLJSgUQ+8RGAaOR9Lpy/1+v/OzYvmr1qHmlrrVsYixVQusg/pi7tWtQrFWNVvTeuisJlSni+SNZS813PfHdnb+upGYHUexNgpl0JLnCe7ZCjSN/c9+x/7nvvdow+cLBt0xmnotG6KpGgue/gLVC2P4IkmS6HZFF4wmA4WFDq81e/4ns9XMnY/cCsCyn5YzofcUrh94E/Ex3ntoIwiCIAg1gUjEhEqTJAlDO3eTZy07BSXBO8ueJFmHvnEH9JE9kC3+Fb+OTo9hwFgAnDtXo+WWf8+ZpNMhBwQjSVKFYvAbOQTJbEaz28lbseai5+ob1MfYpmXREkVfJxv1hPY/XyDjUDwFSaXvHQxt6l7eee5EIvacfEzB/gz46UkaXO0uf37ik9+Juvd9lELPFinRG/VMfPF2AOL3nmDb/It//2sTs9VMl17uaqeH9hwmM71qGoWPmTyKpi0aF32dnprB/Tc8Smqyb+97FARBEARvEomY4BFyUH10Ddy9sp3HtqC5vFPhTzL5IUmV/7E19BoGFhs4HTi2Vn0HA9lmwzp8EHB5PcVqmqAOTTCHBQFwbu3+UouS1G/VEKPVjKaqnD7gXiKosxjp/dkDNL99BAAJi7execqrOLIuPmtYXi2uaEePa90PD5bNnkdOatUkJL6gQ7d2+PlbURSVhd8vIeboSa+PqdfreWfu6zz5+qO88snzmC1mkk6f5ZVHX/f62IIgCILgq0QiJniMvk1fkHVQmIfr5M7qDueiJJMFQ5+RADi3/IHmsJf7GpqmoZyNx3VoO2pu+RvmXija4Th8DMexE5ceKzMLlw83dv47SZapN9g985KfmErO8cQS5+j0Ohp1bAbA6QMnUVzu8uaSTqbzy7fQ4empAKRuPcKGcf8lP9GzsyfjnpyGJcCP/Kw8lr4616PX9mV6g57BIwdgtphwORXq1K1TJeOGN6zPhGljGTZ2CE+/8RgAm/7cyta13m19IQiCIAi+SiRigsfIlgD0zdz7mFwxu9DsuV4ZR83LREmOrXS5fEPfq0FvgPwcnDsrtjxNid6PciYWLaV8ZewBjJ3bo2/qXq51qaIdhTt2k/PjIuxbfTvB/Tu/JmH4t3DvHUzecADVVbKPVKOOzZFkGUe+nXPRCUWvS5JEq5lj6fHBDCSDjuxjCWya9DKOTM/9TPnXDWT0Y1MA2LFgPTE7qqaSoC+IaNKAyXdcx7BxgwmuokTs74aPv5Lu/boCMOeZd8lIK/+DDEEQBEGo6UQiJniUvkVPMFpBdeE8tsUrY6iZZ1Ezz6JVMhGT/YPQdx8CgHPDErRyNpyVJAm5rnufU3n7iV14v23CKADy/vgT1V52FTu5rrtJspKS5pUCFt4SNrADkizjzC6gILHkbJ7Z30pYpDtZO7WvZF+3xtf1p9/cx5FNBnJPnmXHve+jKZ77/H2mDqVx50gAvrnvHZKO/3sKSJjMJpq1bFr0tcvlYvPqbeTneb+/miRJPPri/ej0Ok6fTOCOsTN489n3WLlodZU0nBYEQRAEXyASMcGjJL0RQ+s+ACgJh1Gzkj0+hny+jL2an1XpmzbjwHEgSWgZybgObC1/LBfK2GemVmhfnN/oEaDXo+XmUbBmQ5nn6c+XsNdcLtT0jHKPU11MIQGEj+hG89uG49ekXqnnNOnSAoDMpDRyUkrOjIQN6EC3OdMBSF67n4Mvz/dYfLJOZspr92AJ8CMnJZMPprzwryppf4GmaaxZup5De46w7KcV5Oflk52Z49WZqsg2zXnl4+cxmY0kxCUy//MFPD3jBV578i2iNu0mOalmtGsQBEEQhIoSiZjgcbqG7ZH83TM4zsMbPP6E+0I/MVwOqEQZewC5bgN07XsD4Fy/sNyxSsH1kCQZTVPR0s+Ve3xdnSCsg/sBkLuo7KIdkp8fsp8FAFcNauwMENSxKabgsqtc1omoS0BYHVr264CtbumVIRtPGkDLe0YDEP3hUk794rnm4eGtG3HfvGfwC/YnLz2HD294ifg90R67fk0gSRKtO7ZCp5PJSMtk7ic/Mf/zBfz81UKOH7r4/sXKGHL1QD759V1GXjucDt3aAfDLN4u57/qHGNN9IvdOelAsWxQEQRBqLZGICR4nyTKGtu6KdGp6Amqyh6uyGS2gMwKg5Ve+2p3xfINn9Uwsyony9VaS9AakIPdsVUWbQ/tNcBftKNy9D2d86UvjJElCF+oeR6khjZ1Lo2laib1ikiTRa+IgInu1vWg7gPZPTyFscEcAdj/yGRl7PfdzFdG+KTN/fA7/0CAKsvP46MaXidn+79kzBtAkshHDxw9Fp9ehqn89kNiyZhu5OZ6tWvl37bq05YX3n+bzJR9wy8xpmMymomO7Nu/hk9e/8NrYgiAIglCdRCImeIUutAlyaBMAnEc2oqnl2391MZIkFVueWFm6xq2Qm7v7XjnXLyr3++WQ8/vEUpMqNPtn7tUNXbh72V7uRUrZ6+qFAqCcq1kzYhdkH03g5JcrSdt+rMQxvclQ7Ovc9OwS58h6Hb0+noVfs3qodifbbn8Te7LnZkvqt2zIrJ+eI6hBCIV5dj655X8cWbfXY9evCRo3b8j4G0Yz5OqBjJ86GovVjKPQyYFdZTfm9hRZlrnvybvYeHIlW+JXc/djdwCweO4yEuJKVt0UBEEQhJpOJGKC17hnxSS0vEyU+PLNNF2KZA0AQCvI9sjSxwuzYkr0PpTE8s20SHXP7xOz50F+TrnHlmQZ2/jzRTuWrkBzuUo9Tx92PhHLzEIrdJR7nOpmT86gMD2H9N0nymzSrGka0VsOsunblSTHnClx3Bhko89Xj6D3M1NwJp1td7zt0YbPoc3CmfXT84Q0DsNpd/D5Ha+x8ZvlHrt+TVA3LISW7SKpFxHGgOF96TWgO70H9gAgMz2Ltb9vYNXiNV4t6qE36Lnp3inUj6iH4lL46p3vvDaWIAiCIFQXkYgJXiP7h6Br3AEAZ/R2NGf5e3WVpWifmKqAB8rk61p3Q67vLiXv3LC4fLHYgpDDGqJv0dldDr8C/MaOBFlGTc+kYEPpRUN0oSHu2UCTESW75IyRrwvu3hLZoEexO8jcX3pBDE3VSE9IAU1j//Idpc6MBbRpSI8PZgCQHnWcfU9+7dF9iMENQ5n18/NEtG+Kqqj8+tzXLHjmSxRn6Qlybda0ZRO69O6ELLv/VEiSRPThGGKj49m+3rutFIwmIzfPvAGAlYvXkJvtnXYYgiAIglBdRCImeJWhVR/QG8FpxxW9w2PXlQwmZP+6yMENK5z8FLueJGEYOB4A1/7NqOUovCFJEobO/dE1a4tkslRofH29UMx9ewJl9xSTDAb8p16L/y1T0J/fL1aT6P3MBHVsCkBa1PFS+4rJOpkuo/tgsllwOZzs+W0LTnvJ2b8GI3vQ9rGJAMT9sJZTP5ZdcbIiAusFM+vn5+k0shcAm79byae3zSY/69+dDAQE+dO4eUMAog/HkHrOs022/2nkNcMwmU0U2gtZubhivf4EQRAEwVeJREzwKslkRR/pTjBccXtR8zy3p0cX3hJd3UZIBrNHrqfv3B8pMARUFefG3zxyzfKwnS/aYd8ahets6WX/ZX/bRQta+LqQnq2QdDKuPDuZB+JKPcfkZ6br2L7IOpm89Bz2r9hR6oxXmwcnED7KvWTu4Cs/4srz3IwrgMlq5pYPH2T4zGsAOL7pAG+Ne4plr81j3x/bSTud/K/reSVJEiMmDCW4bhAA2zdEefV7YAuwMXTsYMBdTbEqepwJgiAIQlURiZjgdfpmXZEs/qCpOI96ruy4p0l6A4b+YwFwRv2Jllf+5X+aw45WWLGS+pb+VyCH1AFNI++32rkvyRBgJbC9u4hLetTxMpszB9UPpt2V3QBIOZnEia2HS5wjyTKdX7oF2WygMDmT6I9Ln0msDFmWufrRydz49kz0RgOp8ef488PFfH3vW7w04H6e7nonPzz8IfF7ov81SZksy/Qa6H64khifxPGD3i31P/6G820LDp9g6pW3cfJ4nFfHEwRBEISqIhIxwesknR59a3evLPXsCZR0z1ZA0xRXhZopl8bQeziYreB04Nhcvht716HtONYvQok7WqGxJb0e25irAHf1RE0puXRP0zQcMXHk/7keJS29QuNUt5CerZAkCUdWHllHSy/XD9CwQzMan2/2HLP9MOdOlPy5sUaE0OJOd6GT6A+XYk+pfBXN0nSf0J8HF75I/1uuomm3lhjM7vYJ+Zm57Px1A29f8wxvjnuK7T+tw1HKUsraplGzCJpENgJg059bOXM6yWtjde3dmYdfmIXRZCTp9FlmTHyQ2Og4AFRVLbF3bNWSNSz9afm/JjEWBEEQai6RiAlVQtegNVKQu7qgJ5s8K+dO4jq5EzWjZIW9ipBMFgx93UsEnRsWoWaUo2eX2QpUvJ8YgN/56onK2WTsO3aXek5h1B4cMXE4Y+MrPE51MgX7E9C6IXqrCS7xc9BmYGfqRISiM+gpLGPpYetZ4zAG23Dl2Tn6xq/eCBlw9xq77r+38cCvL/Lqoa95bOXrTHzxdiLaNQUg4cBJ5j/2Mf+78qFaX/ZekiQGjxpAcN0gFEXl2AHvzopNmT6RL5Z8QECQP+mpGTx2+zNkpmXywA3/x5VtRnPn+Jks+GYRbz77Hk/d819eePB/rFy02qsxCYIgCEJlSeKpYflJkpQZGBgYmJnpuf1O/wZK+hkcW38CwNBlJPqINpW/Zuop1PREJJMf+iadKn09AM2eT/6cmWg5meg79sV846OX9T41MxVn1J8AGPuPRbL4VWj8c3c/TOGufViGDiR09nMljtu378K+9yC64CD8J42v0BjVzZVnRzbqkQ36S55bmG9HdSpYAsv+fp749A/2P/sdkk5m2PrX8G/RwJPhXpSmacTtPs6mb1ey7/dtKE73TGavSYOZ8PRNF427psvJyuHI/uP06Ne1qLKiNx3ac4Q7J8zEdZkVLHsP7MHDL86iWcum3g1MEARBEMoQFBREVlZWlqZpQf88JmbEhCqjC26ALrwlAK6jm9CUyi8nvFDGXivM88j1ACSzFePVtwDgOrAF14nL64EmBQQj6d1L1iozK3ahaEfB+i0o6RkljuubucvsK+mZKJneWYrnbXo/82UlYeAumnGpZKbZLcOwNg5FU1QO/e9HT4R42SRJoln31tz0ziweXzmH5r3cDxh2/LyO2SMerdWzY/6B/vQa0L1YEubNh3vtu7blvifvKvbaLTOnMfr6kfj5+yFJEu26tEF//mdr+4adTB50C8Pbj+O3+Z7fQygIgiAIlSFmxCpAzIhVnJqfReH6b0FV0Lfqi6Flr0pdT1NVXDFRoKnowlsh+4d4JE5N0yj4+GnUuCNIYQ2xPvgmku7SiYNr/xaUc6eQwxph6NyvYmMXOkgcdT1qdg5BD9xNwE3Xl4gt54cFqHn5mHt3w9ylY4XG8RVKgQNXvh1TSMAlz3U5XMTvjaZZ99bIuuLPkU4v2kLUPe8DMOi35wnp2cor8V6Kqqps/m4lS2fPw5FfiCRLTH71LnpfP6Ra4qlK8TGnObTnMMPHXYnBWPm2EqXRNI11f2wkOSmFVh1a0LV35xLnxByL5Y8FK/nhkx9RzrdJ0Ol0vDP3dXoN6O6VuARBEAShNGJGTPAZsjUQfdMuALhiotDseZW6niTL7oqMgJbvudkhSZIwjZ8OkoyWnIDzMgt3SCH13LGkn0VTSxbbuKxrmIxYRw0D3D3F/vmwRJIkDE3ds2Ku2FMVGsNXZOyPJfrT30laUfp+uL9TnC42f7+S6M0Hid11rMTxhuOuIKhTMwAOvji32oo1yLLMgFtG8tiK12nUqTmaqjH/sU9Y+2nVt0SoSrk5efz521oS4s6wefU2r40jSRJDrh7I5DuuKzUJA4hs3YyZT93Ne/Pm0G/oFQAoisKLD71KdmYOOzbsJC2lZha7EQRBEGoPkYgJVU7foicYzKA4cR7fWunrFS1P9GAiBqBr0AzDFe4qho4/f0TNvvSNmxwS7o7F5UTLqviNnm2Cu2iHK/40hfsOljhuOL880ZWcippbc5sMGwP9UB0u8hNTyT998cIoOoOeepERAMRsP1KiubIky3R89gYA0nYcJ2n5Tu8EfZlCGoUxY+4ztOzbHoAlr/zA0tnzam01P5u/H937uB+ynDweh9PhmaXCldGjXzfe+m42v26Zi9Fk5NyZZIa1G8PMKY8wedDNfPDKpxw/dKK6wxQEQRD+pUQiJlQ5yWDG0KoPAMrpQ6jZqZW6nnwhEXPa0ZyebeprHDEF/AKgsADHH99f8nzJbEW2BSJJMlp++fuQFY3bMhJju9YA5C1cVuK4LrwestkEgDOu7BLwvs7aOBRLA/dy0tRtly773+KKdpj9raguhcNr9pRIakL7t6feUHcycPCl+aiXWdTBW8w2C3d++Tgdr3L33Vr90WKWvHzpn6Oaqm3n1uh0Mi6ni1OxCdUdTpGGTSO47YGbir2WnZnDN+//wD3XPUBCXPHWCJnpNXPvpSAIglCziERMqBa6xh2Q/OoAGs4jlSxnb/IDnR6Q0Oz5ngoRAMnqj+mqaQC4dq9DiTtyyffoO/XDMPgadBGRlRrbdo27kW3+nxtQc0rO/pg6d8ByRQ8MTRtVapzqJEkSdXu7E87cuHMUJF18FlFvMtB2sDvRSo07W2pvsQ5PTwVZIjcmidhvqr+EucFs5JYPHqT39YMBWPf5MrbNX1O9QXmJyWwioom7YmWsjzVevu3+G3nnh9d45ZPn+WjB2wy5eiAAudm5PHDjYyz/dRXJSSm8+sQbjOgwjllTHmH31r2oaulNxwVBEAShskSxjgoQxTo8Qzl3EsfOJQAYe45HF9aswtfSCnLAaLmsghrlvraqUPDBE6gJMcgNmmGZ9RqSrPP4OP+k5uWTOHISWoGdOk88gP/EcV4fszpomkbsN39iT8nC2rAuTaYMQpKki56/e8lmUk4mYbJZGHDzVehNxQtD7HroU+LnrUPSyfT84D4aTujj7Y9xSaqi8sVdczi8ejc6g457f3iayF5tqzssjzt+MJp1yzehN+i5ecbUogqGvmj31r3MnPLIRcvhXzlmEM+8+QR+NmsVRiYIgiDUFqJYh+CT5LBmyCHu2RznkY1olXjyLFn8vZKEAUiyDtP4OwFQz8Ti2r7KK+P8k+xnxTp8MOAu2lFbSZJE2GB3D7j8hFSyDl+8AIkkSbQb3NXd5Dm3gOith0qc0/G5Gwjq1BRNUdkx431OL9zildjLQ9bJ3PT2TOq3aojiVPjqnjdJP51c3WF5XOPIxsiyhMvpYvXSddUdzkV169OFd+e+TpPIxkUl+GVZxupnwWK1ALBm6Xqu63sDB3cfrs5QBUEQhFpIJGJCtZEkCUM79/IgLTcd5XTJohS+Qte4FfoeQwEoXDEXLe/i+7/UnAxc0ftwxRyo1LgXlic6j0bjOHq89LHy8mv0PjEAW9N6BLRuCEDy+gOX3NtlCfQjsrd7NiknJbPE8jFjkI3+Pz3prqKoakTd9wGnftnkneDLwexv5Y7P/w9rkI289Bw+v3MOuWkV30voi8wWE01auIvJ1K3nmXYS3tSjXzd+3vgda4//zrtz5/DLlrmsi17Ouug/mPX0PZjMJtJTM5g19VEWfr8Ee0FhdYcsCIIg1BJiaWIFiKWJnuXYtwol4RAYLZgH34pkMFXoOpo9FzUvE8lo8Vg/sb9TczPJf30m2PPR9x6B+dp7yjxXOR2N6+guJKMZw8DxF11qdzGapnF28nScJ+OwTRxH8BMPFDvuTDhD3rJVSDqZgJsmI5mMFRrHFzhz8klYsp2wAR3waxx6yfNVReXciUTqt2pY5vfXkZXH5sn/I2PvSZAlerxzD40nDfB06OUWveUQH9/8CqpLIbB+MDe//wDNe7Su7rA8xuVycepkAsEhQQSFlFiJUaPEx5zmvusfIjnJXdWzfkQ9PvrlHSIah1dzZIIgCEJNIJYmCj7N0LoP6AzgKHA3Z64gNfMcatpp1CzvLPeSbUEYR0wFwLVjFUpCTNnnBtcHQHPY0XIyKjymJEn4TbgagLw/VqPai1eF1NcLRdLp0BQV52nfqVJXEQZ/K01vGHxZSRi4l/qFt2500STXGOhH/5+epE63FqBq7Lz/Y+Lnr/dUyBXWsm97bn7vfkx+ZrLOpvPB5P+y9rOltaa0vV6vp3mrpkVJmKZp5GbXzDYLTSIb8dGCt2nVvgUAZxPPMWPSg5xLrH3LSgVBEISqJRIxodpJZhv6yB4AuGL3oFawH1hRP7GCHDTNO5XODFeMRK7fBDSNwsWflb2vzWpDstjc8aSdrdSYflcPA4MBLS+P/D+LJxGSwYC+obtKnbOGN3cGiiVVmqaVKzFJjT9L1rmSVRcNAVb6//gEwT1agqax66FPfWLPWOdRvXl4ySuEt26Eqqgsefl73p/831KbVddkmWmZLP3xD3784heO7i99ea2va9SsId+v+oJPF76HxWoh6fRZXn/q7eoOSxAEQajhRCIm+AR9825gtoGq4Dq2uULXkKwB7v/QFLQC7zx9l3Q6TOOnA6CeOo5r97rSz5Mk5BD3rJiamlSpMXVBgViH9Acgr5SiHUXNnU8lormqt2+Wp9hTsoifv56sg/GXdf7JncfY+etGDqyIQnEpJY4b/K30m/c4wT1buZOxBz4mZculWxF4W1hkAx5c9BK9Jg4C4OSOo7x73XN8Pv11zkbX7BnOCwwmIwX5dhRFZcPKzezZvq+6Q6qwLr078dSc/wNgw8rNNTaxFARBEHyDSMQEnyDpDBha9wVAOXMcNaP8yYukNyIZ3SWmtQrOql0OXfP26Lu49xk5/vgOrSCv1PPkuu49JFpWGprTUakxbeeXJxbuPYgzrvjMl75JIyRZQnO5cCWcqdQ4viJtxzHyE1JJXn8ApeDS37uQxmFIskxuWjbRW0ov+mLwt9L3u0fxbxmB6nCx7bY3yD5esg9ZVTNaTEy2XB5XAAAgAElEQVSdcy/3fP8UjTo1B+DQn7t4a9xTZX6WmsTPZmXCtDE0bu4uxhK1cTfLfl7OT1/+ymkfavp8uYaNG0Kzlk0AePCmx/nktS94/oFXuH7gTfz4+YJas7xUEARB8D6RiAk+QxfRFikgDADn4Yo1eS5anujFRAzAePXNYDSj5WbhWDW/9FjqhCFJMpqmoqVXbj+JqUcXdBHuxC538R/FjslmE7pw9+xbbVieCBA2qCM6kwFXQSHJm0qWp/+nwLA6RPZqA0Dc7mgyElNLPc8YZKPvD49hCg3EmZXPlmmvYU/2jaI7rft35KHFL3PrRw9RJ6IujoJCPrttNkfW7a3u0CrNaDIyfPyVNGzqXkabGJ9EZnoWG1ZsxulwVnN05SPLMi+8/zR+/n6kp6Tzxdvf8vvPK4g7cYo3nn2PO8bOYOWi1cQcPUlcdDyKUnKGVhAEQRBAJGKCD/l7OXs1MwklKbr817iQiBXmoineW6YnB4ZgHDoJAOfWP1DOllxCJ+kNSHXchSfUtMotT5RkGdv4UQDkLV2J5ix+83pheaIz/jRaLbjxM9gs1O3rLk+fue8kBWcvXfCkea+2+IcGgaZxYGUULkfp///9GofS9/v/Q2cxkX86hS03vo4rz17quVVNkiQ6j+rNrJ+fJ7RZfZyFTr64aw4HVu6s7tAqTafTMXzclbRq34LINs3Q6XX4B9qwF/jG9748Wndsxde/f8Ko64bToXs7OvfsSFi4+9/6wd2HeXrGC0y98jauH3QzUwbfyo6Nu6o5YkEQBMEXifL1FSDK13tX4c7fUM/FIFkCMA26uVyNmjXFhevkTtA0dA1aI9uCvRan5nKS/9ZDaKln0DXvgPmu/5ao4KeciUXLyUQOi0CuE1ap8VwpqZwZPRVUlbqvPot12KCiY2pePjnzF6KPCMcy4ApkP2ulxvIFmqoS++1q7ClZWMKDaTptyCXbAOSkZLJ13mpURaVJlxa0HdK1zHOTVu1h6y1zQNWoP7wrV3z1MLJe5+mPUWFZyRl8NO1lzp3fK9bj2oGMeXwKgfW89zNdldJTM6gTElTh1g6+xuVyMe/Tn1n7xwYO7irZ/HnE+CvpNbAHS+b9ztWTruLam8ZVQ5SCIAhCVbtY+XqRiFWASMS8S83LoHD9d6Cp6CN7YmjTr1zvV5JOgCwjB9ZDMvt5KUo31/G92L94AQDTDQ9j6Nzfq+OlPPQ0BRu3Yu7Tk7D3Xi12THMpSD6USHhC/ukU4s6Xmw8f0Y06nZtf8j0xO44Qvdm9t6rnxEGENCo7AT757Wr2PvYFAJHTr6LzS7d4IGrPyU3L5rPbZ3Nqn7tVgtFq4qoHJjLkrjG1JoGpjXKzc3E6XSQlnOWtZ99nX1TJxu5NWzTm04Xv1fg+a4IgCMLFiT5iQo0i+9VxV1EEXDFRKGnl29CvC2+Brl5zrydhAPpWXdC17wWAY+nXaIUFXh3P7xp30Q771ijsO4vvHaptSRiAtVEoge3dhRFStxwpu13A3zTr0ZrA+sHojPpLJivNbx5Kq5ljAYj5fAUJi7ZWPmgPsoUE8MCvLzLplenYQgJw5Bfy2/9+YOmrc2tVUYizCeeIjY6r7jA8xhZgo05IEO06t+GThe/y7FtPUOcfCVfciVO89Ojr1RShIAiC4AtEIib4JH2rPn8V7ti7As3pu/tITGNuA70RLTsdx5pfSj1HUxTU7JI9rsrL0q83xvbuohRpL7yOml8y8dM0Da2UEu41VWi/dujMRmyR9VHL2Pf1d7Is02lUb7qP709ww0s3h27/5GTCBncEYPcjn5FzwrcqT8o6mb43DOPJtW/TfYJ7xnXNJ7+x+sPF1RyZZ+zZvo8l839n1eK1rFq8hpysnOoOyaNkWWbM5FH8unUe89Z8xYYTK7jxnikAbFixiX07Ss6WCYIgCP8OIhETfJIk6zB2HQmyHs2eg/PAmnLPAGia5tWCHRfIwfUwDr4GAOfGJagpxW/k1fRknOsX4opaXel4JJ2OkOcfA6MB5cxZMt/9tNjxwoNHyf1xEfao3ZUax5cYA/1oee9owkd0R2c2XtZ7/IJsxZIwxaWQk1p6JU1Jlun5/n2Yw4Nx5dnZPv0dXPmFHondkywBVm54YwadR18BwLLX57Ppu5XVHFXltWwbSYNG7qqfsdHx/Pz1IuJP1I7qn3/nZ7MS2aY5ZquZWc/cQ9vOrQF46t7/snPz7qLqii6ni0J7IfZ83334JAiCIHiGSMQEnyXbgjG0dxekUJKOoyRefgNeJS0BV8xO1JQ4L0VXnGHwBKQ6YaC4KFzyRbGkUbIFgqKgqQpaRkrlx2rWhKAZtwOQu2AJ9u1/VWTTCgtRsrJxxp6qVUvXKlNEQ1VU9i3bxrYf15RZ1t5UN4Den96PpNeRffQ0e5/4yie/f7JO5sa3ZtJmUGcAfnnmS3Yu3FjNUVWOLcDG6OtHMnTMIPxsVlxOF2t+X0/Upt1sXbu9usPzCkmSePqNxzGZTSQnpTBj0kOM7jaRO8fPpG+ToQxoPoIhba5my5ptAMTHnGbO0+9wOjYBl8vFsQPHsefb0TSNxFNJokS+IAhCDSUSMcGn6Rp1QK7nLtDgPLgWNe8yC6TIMqgutPzsKrmhlgwmTGPdyZFyfA/Kkai/jhlNSIHuSneVLWN/gf/U6zB2ag9A2gtzUHPdTaUvlLFXc3JR0yq/FNLXaIpKYVp2ud7jyLeTnZKJ4nCxc9FG0hNKT4ZDeraiwzNTATj10wbi562rbLheoTfque3jh2nW0z2jMu/Rj2p8eXtJkohs05xrbx6HLcAPp8PFnm37iKuFM2MXtGwXyeeL36dFW/fvt/SU9GJFPRSXwvsvf8LC75cwacCN/PTlr1zXbxojO03gpqvuZHzvyYzvNZlrrpjCW8+9X10fQxAEQagEkYgJPk2SJIydhoPJDxQnjr3LL6tgg3yhn5irEKpof5muXU90rdzl0gt/+wrN+dfyNinE3YxZTTvrkbEuLFGUTCaUc8lkvPURAHKdIHSBAUDtae58QW7sWaI/XsapBZsu62fgArO/lV6TBmEJ8ENxuNi1eBNnjsSXmqC3uGsUDUb3BGDvf74m80Ccp8L3KKPFxJ1fPE7DDs1QFZVvZr7N8c01f6+RxWphxPihWKxmbAF+NG3RuLpD8qrWHVvx/aov+HThe0y7ezLjpo6mZ//u9BvWB4ATR07yv8feKPae7Ez3HrqMtEzOJp4D4KcvfyUjTVTxFQRBqGlE+foKEOXrq56SEo9jx0IA9C17Y2jV56Lna5qG6+QuUJzowpohB9WvijBRU86Q/9aDoLgwDp+Ccdj17tczU3FG/QmAsf9YJItnKjrmzP+VjDkfABD6zitY+vXGvn0X9r0H0dUJxP/6CR4Zxxc4MnI58flyABpf1w9b8/Byvb8gK48dC9ZTkO2ePQxtHk77K7th9i/ec82Znc+aEU+RF3cOQ5AfvT9/kLD+7T3zITwsNy2b965/nuSYM5j8zMz88TkadmhW3WF5nKZpxJ2IR3EptGgbWd3hVIlFP/zGG8+8S6HdgU6n48Z7p2C1WZAlmYimDfjy7W85ceRksffcMnMadz16GwajoZqiFgRBEP5J9BHzMJGIVQ/n4Q24YncDEsY+k9AFN7jo+UpSNGpOKpItGH2D1lUTJFD4x3c41y0EvRHrI+8iB4ehqSrODYvQnA70bXuga9jCI2NpqkryPY9SuHsfutAQwn/8AtVuJ3fh7wD4T56ALijQI2P5gvgfN5B3KpmAlhE0nHDxZLw0hXl2Dq3eTXJMIgB6o4HuE/pTJ6JusfOyjpxi06RXKEzNRtLr6PK/W2l201CPfAZPy0xK453rniXzTBr+oUE8+OsLBF+kd1pNdGDXIbau3YHJZGT8DaP/Nb23khLOcnD3Ybpe0Zm6YSHFjtkLCjm6/xjHDkbzxjPvFr1+6/03MuOJO6s6VEEQBKEMoo+YUCvoW/dFCqgLaDj3Li+29K800oXliVW0T+wC45UTkQKCweWgcOlX7lhkGTnYPSunpnpmeeKF64Y8+yiSxYySkkbGGx+gC62L7Oee5XHGxntsLF8Q1Mk925MTk4Qrr/xLTk1+ZrqO7UPn0VdgtJoxmI34h5a8qQ9s25ghf7xIYLvGaC6FPf/3Bfue+RbVB9sCBIWHcPc3/8ES4EdOSiaf3PIqWckZ1R2WR7Vo2xyTyUhhoYNfvlvCgV2HfLKYiqeFN6zP8HFXlkjCAMwWE116d2LyHdfxycJ3adDYPUP89bvfM7rbdXz2xteo5VjCKwiCIFQ9kYgJNYak02PsMgpkHVpBNs5Day9+vtW9VwrVBYV5VRDh+XFNFoyjbwVAObQd13F342Wp7vmldJri0ZtIfcMGBD1wNwB5y1ZRsGFrUdEOV6Lnkj5f4N+yAXqLCU1VyTwYV6FrSJJEeKtG9L95BF3H9kVv1Jd6nrVRKIN+e57wq7oDEPPZcrbeNKdCCaC31W/ZkDs+exSdUU/yyTO8PPABFr/8HTkptWPW3mK1cNU1w7AF+KG4FLau3cGKhX/icrpwFDqqO7xq17V3Z+av/YYBw/sCkHI2lc/e+IpnZrxI4qkkzpxO4qPZn/PpnK+IjY4jNTntX5HICoIg+DqxNLECxNLE6uWK21eUhBm6jEQf0absc2P3oDnt6EKbItcp356iytA0jYJPn0U9eQgpNALrg2+6X7fnIds8v6xKU1WSZz5O4Y7dyCF1CPv0bWSDHl39MCS5dj1vObd2H2k7ozEG+RE5fSSSJHnkunkZORz6cxedRvXGbLMUva4pKgdfnk/0h0sBaDyxPz3en+GRMT3t4KqdzH/sE/Iy3AUdzP5WZv74HBHtmlRzZJ7hKHSwbV0URw8cL3rNZDZx/e3XYLFaLvLOfwdFUdiyZjtLf/yDtb9vuOi5rdq34NXPXqBh04ii1xJPJaG4FBo3b+jtUAVBEP41xB4xDxOJWPXSNA3HziWoybGgN2IaMK2oSuI/qfnZSAYjksFcxVGCkhRPwbuPgKpivPpmjIO8WzjDlXSOpCnT0fLysY4YQt1XnvbqeNWlMDWbmK/cjYybXD8Avyb1Kn1NVVHZ+M1yCrLysIUE0HPiIEzW4j8zxz9cysEX5gLQ4/0ZNJ7Yv9LjeoM9t4BN365k7SdLyM/Ko05EXR5a9FKpSzBrqgt7xgDGThlFeEP3st/U5DQUp0JYg1CPJeg1kaZpfPfhPD6a/TnKJZbThjeqj5+/HycOxwDuGeOvfv+Ydp3LfsB1KTs376bQ7iA9JR1bgI0Bw/uiN5Q+8ywIglDbiUTMw0QiVv20wnzsG74HRz5ynQYYr5jokzM/hUu+wLl5GRjNWB99Dznwr70emuJC0nn25iR30TLSX3LPvtV99VmswwZ59Pq+Im7uOpSCQuoN6VTu6ollSYk7y54lm1EVFf/QIHpNHITBbCw6rmkaW2+ew9lVe9D7mbly9f+wNa18EugtiYfjeXfiszjyC2navRX3zX0Gvan2VNOLORZLXnYezVs3xRZgA2D31r3s3LyH8Ib1GHXdiH/9zX92Zg6nYxPYvHobofVDGDFhGIu+/41lC1YUJV5leeSFWUy4cSyyLJdahfGzN77mxy9/ITDInydmP4okQdSm3Sz7aTnJScV79U1/+FbuevQ2j342QRCEmkIkYh4mEjHfoCTH4ohaDIC+VR8MLXtXc0QlaQV55L9+H1peNvouAzBPfQg1/RzKiQNgMGDo6tlESdM0Uh74D/YtUchBgdR98yXUjEzMvboiW2rP0i1XfiE6i9Hjsx7nTiSyd9k2NFUlKDyEHtcMKJa8FKZms3roE9jPZVKnaySDljyH7MM3+wdWRPHl3e4+VG0GdeaGN2bgX7f2VNH8p/1RB9m23t1MffCoAbRq75nqpLWNy+nil28WsXLxGpwOJ116dyLmaCxRm3aVONfqZ6Frny74B9ioHxHGjfdOJe5EPNPH3VeuMTv36sj4qaMZM3mUpz6GIAhCjSASMQ8TiZjvcBxahxK3FyQJU5/rS90HpjntaHmZIOuQA0KrPEZn1GoKF7h7fVnufhHJFohz3yYkJAz9RiNZbR4dz3UuhaTJd6Dl5qGPbIplyAD8BvfF2KaVR8eprc4cPcX+5TtA0zDZLDTt1pJGHZoXJWTJGw+y6fr/gabRatY4Ojw1pZojvrjVHy1m6ex5ANjqBjL19XtoN6RrNUflPauWrCH2eDyBQf4MHNmf+hH1/tXLFMtDURQWz13Gq4+/UeY5bTq15uj+Y0Vf+9ms5OXmF33ds393Aur4M2LCUBo0rM/08fdRaP+roMrsL15kyKiB3vkAgiAIPkgkYh4mEjHfoSkuCjfPQ8tJQ7IGYhowDUlvLHaOkhKPmnEGyWxD37hj1ceoqhR8+B/U09HI4U0w3/carm3L0ex56Jq0Qd+qi8fHzF26kvTnZwNguXIA1iH98Rs1zOPj+AJXnh2d1eTRm+2Eg7EcWr0b7Xz5797XDynWa+zgy/M5/t4SkCR6vHcvDcddgVxG9UVfsHvxZn5++gvsOflIksSE525h4K0jqzssrzh1MoHlv64q+rpzzw70HtSzGiOqeTLTs/jq3e/IynC3/jAYDJw8HsvBXYeLnXfP49MZOnoQP3+9EE3TuPHeKUX79S5IjD/DDx//yIJvFhW9dtsDN2E932IjJLQOV0+6CtkHl5YLgiB4gkjEPEwkYr5FzU6lcPM8UBV0Ddth7Dyi+PG8TJTEI4CEPrKHx/dlXQ4l4QQF7z8OmoZx3B3owpviijmAZDBiGDDO4zFpmkbqw89QsHErksmIbfIEgu6+DclkvPSbawjV6SJx2Q5yY87S5PoBWBt5drazICuPuN3Hyc3Ioee1fz3BzziTilLo5MCMD8nY495nYwiwUn9YF8JH9qD+sK7orSaPxuIJ6QkpfHf/u8TtjgZgxP3XMvKhSbVutkhVVX7+8leyMnOKXhs6ZhCRbZpXY1Q1n8vl4vYxM4rNhv2+51fq1ivZ46w0G1du5pFbnyz1WKPmDRk/dTQNGoeze8tefl+wgo49OtCgUfGkTtbJDB0zmA7d2mO2+N6/MUEQhNKIRMzDRCLme1yxe3AeXg+AsdvV6ML/WoanqQqumJ2gqejCWyP7B1dLjPZfPsK1YxWYrFhmzUbZtxlNU9G3742uQTOPj6ekppE06XbUnFz0jRsSMvtZTC0jPT5OdYr9fg0FSen4R4bT6Np+XhlD07RiyUrULxtIO3UOExLO33eTezAe/vZ71Na8PoOWPI+pboBX4qkMR0Eh38x8h8OrdwPQbVxfJr1yZ7Fy/bVBXm4+WRlZ7N2+H4ChYwZjMosb98oqtBeyY8NOuvTuhH+gf7nfv3HlZr79YB4ulwuAQ3uOVDiWhk0jGHhVP2Y9fQ/5ufm8/8qnnDmVRPPWTbn/mXvR6XQVvrYgCJ516mQC/oE20lMzqNcgDJu/X4lz8vPy+eOXVezespeTx2MZN3U0+6IO0LN/d04ei6Vh0wimTJ/Itx/MI6JJOE6Hk31RBzBbzJjMJpJOn+XqiVdxZP9Rlv+yiqfmPEannh2q4dOWJBIxDxOJmO/RNA1H1CLUlHjQmzANvBHZ8teNguv0IbSCbOTA+ujqeT7puawY83LIf2MWWl42uva9MXQdiHI2HjkgGEPvEZe+QAXkLV9D2tMvA2CbNI7gxx/wyjjVJft4IgmLtwLQZPIg/Bp7dw+g4lKI+mU9mWfSil4zSRINrFZS1x0gecNBNJdC3Sva0P+nJ31yuaLidPHTfz5jxwL3g4uw5g247ZOHqd+y9vWOcjqc6PS6omVvLpcLe0FhqTcBQtWz59v5+PUvWPD1ohKNua1+FvoP61P0dXzMaY4djL6s606YNob/vPYoq5euo16DMDp2b+/RuGsaVVVZvXQdeTn5DB0zCP9Af1KT09iwYjMupzspTohLZO3vG4oqZKqqSqceHejQrR06vY4Bw/sSFh5adK3Uc2n88PGPGP+2ykJVVVq1b0GPft0Ib1iPASP+ejimaRobV27hbOK5y47bYjUzdOzgomWs/7Rx5WaSEi7vegajnkEjB+AfYGP10nVk/23G/HKt/X09586kXPrEGiI/r4D0lPQSr0c0aUBi/BkAAusEkpWRVdWhecyao8uKqupWJ5GIeZhIxHyTZs/DvvF7cBQgB0dgvOI6JMl9A6akJaCmnUYyWNA38/yerMvl3LOBwvlvA2C85m60nAwADL2GFytt7ymappE84/8ojNoDRiPhC77C0KD+pd9YQ2iaRvy8deQnpmGpX4emN15ZJUvtclIySTgYS8KhOBSnC5PNQs9rB5K15Qjb73wHgKbThtB1znSfXPqnaRqbv1vJope+Q3G4CG1WnydWv1nr9+kcP3SC3Vv3MuGGMZitVd9bUCidpmlkpmehaRo2fz9knYxOpyvxb6cgv4C5n/zEz18tJD0147Kv/9Scx+g1sDtWPys6newTN2bepqoqKUmp5ObmMXXIrcWOybKMen7/q7dd+J1SmfFK+71UVfELNdvnSz6gU4/qnxUTiZiHiUTMdynnTuLYuQQAfZt+GCLdm/S1ghxcpw+6X2/WDclQPcuUNE3D/uVLKMf3IPnXwTBgHChOdG26e2V5IoAz6RxnJ92GZi/E1KUjYZ++6ZM91yoqPzGNuLlrAYgY05vAto2qbOyMxFR2LdqEy+HEYDHR45r+nPluLUfm/AJAp5dupsV03y2KcTLqKO9Neh6Ae75/itb9q76YTVVRVZXf5v/BuTPJhIWHMmLClWU+aRd8X0F+ASsWrmbB1wtRNY2howfRs393po+/dFn9JpGNcTgcDB93JX2G9CIoOLBoD6GmaUQfOkF6qvvve05WDsGhdWjeuhl1Qi7eFD3+xCk+e+MrCgsdrF++iYA6AXTu0YEhVw9k5LXDy9XXLjszh+jDJwD487e1qIrK8PFX0rx1M4Lr1rnoewvthVzb9wZSzqZechyzxUyDxu5qw5qm0bZzawLrBLBl9XZ0eh1nTiVhL7CX+t7INs0wW8yMv2EMifFn+PO3tZjMJk4ei73omM1bX/pv3aWuUZ7rlXWty4njn/Jz85l46wQCgnxv6Xl55eXk8f3H86nXIIwWbSNZMm8ZJrOJh/47s6hy6l2P3sb2DTvZt+MAAJNuvYafv15Y5jUbNYvgdGwi4BuzaX8eXkpAUPmXUXuaSMQ8TCRivs1xYA3Kqf0gyZj6TkYOqoemae59YqoLXb1I5MCwaotPzUgm/80HwWFH320wpuvuRdJ7t9Fu5vufk/31+RLm142lzhMP+ORMTUUlLNpKdnQixiA/Im+/CklXdYlmVnIGuxZuwpFvp1nPNrTq254dd79H4m/bQZbo8urt1OnSHGuDEIwh/j73fX930nPERh2j8+gruPWDB6s7HK+KOXqSNcs2oGkaeoOenv27/euXrdU2jkIHB/ccweV08fuCFfz+84rLep9Op+Ou/7uNj179vMxzIts0o1ufLkyYNpb4mFP0H9aXj1/7nJ2bdnPqZEKZCcsFXy79iA7d2pV5fP/Ogzx//ysknT6Loihlnte8dTN0Oh0aGmMnj+K6m8ezbV0UJrOR3Jw8/nPXcyXe07Zzax7/30Pk5vzVaqBuvRCat2p60ZjBnWAu+mEpp2MT6NK7Ex26taN917alNvoG95LTw/uO4nIV/wx6vY52XdpeVqEVTdM4sv8Yudl5ZZ6j1+to17nNZc1unzgSU5Rcm80m2nVtg17ve0vHayJN04g/cYqIJg0wGA0kxp+hTt0grH5WUs+lodPrSjzEyM3OJSc7t6jKakJcIonxZ/AP8ictOR17vh2Hw0FYeBjr/thApx4dKMi3s2rxmmL9Du978m52b91Dh27t+eyNr4qN8cgLs5g8faL3vwGXQSRiHiYSMd+mKU4KN81Dy01H8gvC1H8akt6AcjYGTXUhB9VHtlZvU1vHxt9wLHX/0rDc/SK65t6/Gcx440Ny5rlnavxvnkzQrDt9LimoqMK0bE5+/SeaqlJ/aBeCu1VtI9/c9GwSD8XRqn9HJEnClV/Ihgn/JXN/XLHzdFYTHZ+bRvNbfKeVQNQvG5j7yIfoDDqe3/YRtpCa/6T3YuKi41m3fCOOQieSJHHNTWOpG+b5ZcGCb8hIy2TNsvXs2bYPl8tFXPSpcs22eIOfzT0T63K5GHntcIJDg/nqne88Pk5QcCBf/PYhBoOBehFhteb3vSDUNCIR8zCRiPk+NSuZws3z3ZUSG3XA2Ml3bnzBXcmx4IP/oCacQAqNwPrAGyDrQJa99sdSU1XSX3yDvN+WAxA443YCb5/mlbGqQ9KqPSgFhYQN6ICxTvXvAYnbdIBTby4mY08MSkFh0es6q4mrtr2FOeziy5yqisPu4Ple91KQnce4J6cx5K6x1R2S19kLCln8w29kZeZgtpgYNHIATSKrbkmr4DuyMrJ58eHZxBw9iaqqyLKMrJO5ZtpY2nVpQ15uPnXrhbDwuyUs+mFpmde594np2PxtDB41gND6f/UcdDqc3Hr1PUXLDC9XWHgoU++cxLR7JqOqKisXrS6qPAewL+oAa5auL/P90x+6hbv+7/ZyjSkIgneIRMzDRCJWMzhP7sJ1ZCMAxu5j0NWv2lmSS1HOxFLw3mPu/mddB6ILb4q+fS/kug28N2ZeHmn/eRH7ligA6vzfLPwnT/DaeFVJU1Wf2fuWHHOG3Us2YwsJoPPVV2DS6cg7lczmqbNxpOfQ9KYr6fb69OoOs8gvz33Fpm9WENo8nMdXzkGnr/2lvxNPJbH8l5UoioreoOeGu64XvamEi4o5FltU+GL4uCu56pphSBJ07N6eoEvsH8tIy+TgrkNFnS6+/WAu+3e69y3r9Dq69O6E1WrhidmPFEvkLkZVVXZv3Ut+bgGqqiJJEpIk0SSyEU1aNK7w5xQEwbNEIuZhIhGrGTRNw7H9V9S002AwYx54I5LZ/dDuIdUAACAASURBVDRRUxUkufpvNguXf49z7a8gyeh7D0fXtA2GroO8MpbrzFnyfl+Fpig4DhzBvm0nAMHPP4ZtzFVeGfPf6vTBWI6s2Y2qqBjMRnpNHIR/aBAxX6xg31PfgCwxbN1rBLSKqO5QAThz9BSvj3wMgIG3jeKa526p5oiqRlpKOjs27KTbFV2oF1F9+0aFfx9N00iMP1O0bFAQhNrrYomYbzw+FgQvkCQJY5erwGAGpx3H3hUomedwxe5BSbq8fjTeZhw6CSkkHDQV5XAUasoZtPxcr4ylC6sLsgxIBNw+DVNXd4W89BfmkL9mo1fGrA6appF9NIGUTYeqLYZGHZrRa9JgTH5mnHYHUb9uJDc9m2Y3DcWv2f+zd97hUVxXH37vbNGueu8gEL13TMd0MLh3497juBHXL25xXBKHJO6OexzbuGIbjLHBgOnN9F4kqiRQ79Jqy8z9/hghkCWwgJV2JeZ9Hh7YmTtzfytWs3PmnvM7caBJtj//uc/0/ZbEzq0ZfZeekrjsvz+x+vNFPlbUNETFRDLp8vHGjbBBkyOEILlNkvHZMzA4xzECMYMWjbAF19SHaQUZqEf2IN1VSEcpUvq+D4mwBBBw+d0AyNJC1Ix01MzTqyVo8FxmM5bUNgB4DmUQ8/ILWLt2Ak0j/8/P46heIWvulO3JInPOGvLX7KYqz3fWueEJUfS/bAQWewCuyirWfbMMR2UV3Z+4FoDsnzeSt2qXz/T9lsmPXku3sf0AmPnUh/z69RLfCvIB5aXlzP9uIeWljfMwxMDAwMDA4ESMQMygxWOKb4+pld7QTz24GemsAE1FVp3cFrcpMbfrgXnAGAC0fdtQ921Dqp5GmcvasR0Antx8pMdDzGt/w5KaAh4P+Q89TdXmbY0yb1MS0jGRgMgQpJQ+XRUDCIkOo/9lwzEHWHGWO1g3cynhw7oQ2b8DANuenYH0k8akiknh+lfuJbFLCppH5fNH3ub7v81AU/1DX2OjaRo/zvyZQ/symPftAkqLy3wtycDAwMCghWMEYgbnBJauIxFBEXoKYM5+pKYiK33baPBEAi64CREcBqoHz/Y1qNmHG2UeU0IcSoheJ+feuw9TeBgxb/4Dc1IC0ukk74EncO3e2yhzNxVCUYgZprcDKEs/4tNVMYCw2Aj6XTIUk9VMVVklrkonPZ7R3SqLt+xn98uzfKrvRGzBdu798hk6j+wFwOJ35vDhXf+iqtzhY2WNj6IoDB41EEURFOYX88X7M/no9U9Z9csaPJ7GeTBiYGBgYHBuYwRiBucEwmzB2nsiCAWclWj5h/0qEBOBwQRcfAcAMv8onjUNa0J62vMIgbVjKgCuvfuQmoY5JprYt6ZjiolCVlSQe+/juA8capT5m4qQDokERIQAULDO94FlRGI0/S4eRtsBnYlIjCZqQEfaTB0FwK7pMzn05TIfKzyOPTSQ2z94lBG3TgJgx8INvHbFM5TltXxzolZtk5lw6diaPk8up5vtG3excfUWHyszMDAwMGiJGIGYwTmDEh6HudNgAGRJLmr+YaSm+ljVcUw9BmNq3xMAz5YVaCUFjTKPpb0eiGkVlahHsgEwJyUQ+9Z0lPAwtOIScv/4KJ7qfc0RoShEndcJgNJdGbhKfJ+GGpkcQ6dhPWpe93rxZqwd9VYFGx96j9xl/pMWajKbuPTpm7jyxdtRzCaO7j7MrOc+9rWsJqFV22Suvv1yLrxmEu06twVgx6adVFZU+liZgYGBgUFLwwjEDM4pzKn9UCJ1y3AtZx9acY6PFR1HCIH1ij+CNQCcDlw/N46rnik8DHNCHJbkRDCba7Zb2qYQ+8bfEUFBqLn55N7zCGp+4wSDTUFol1ZYQux6I+v1/uGSeSLZ+45guqAvSmwY0qOy5tZXKNnVOCmpZ8qQ68Zy5Qu3AbDx+1XsX7/Hx4qaBrPZTEJyPMPGDibAFoAQgqL8lr8iaGBgYGDQtBiBmME5hRAKlt4TQTGD6sG9cwn+1EvPFBGDddKNAHjW/4InvXFWSYImjyNo8jjM8bWtk62dOxLz6guIgAA8mUfIuWNas60ZU8ymGlOMsr1ZSD8znYhOicMWFYr18sEoYYF4yh38eufraC7/qkcaeOX5JPfQV1G/e/Z/aH5iLtIUBNgCGDNlJFfcdAlJKfrqZVFBMasXryXr8FEfqzMwMDAwaO74LBATQvQXQnwnhDgkhHAIIbKFEPOEEEPqGTtECLFCCFFZPe5VIUTgb8a0qj6+VAixWQgxrJ7zXC6EyBFChDXmezPwbxR7COYu+sdDluSiHtzsY0W1sQyagNJaT6tzfvMW0u30+hzCdPJm1rbePYj+57NgseDJyCL75vso/fQrv3H3Ox0ieqYSd35PUm8djzD513OngCAbfaYMxhwRhPWSgaAIytKy2PvmHF9Lq4WiKDUNnjO37efTB96goujccRRMbpNEcKhucKNpGpvWbGHbhp3M/WoeM/83i+8/n8sPX/7Ejk27UFX/SXU2MDAwMPB/fHln0g4wA+8B9wLTgVhgmRBi3LFBQojewCLABvwJeB+4C/jyN+f7CEgGHgMygFknBlxCCBvwT+DPUkr/cWkw8AmWNr0xJXcFwL17BVppvo8VHUcoCgGTbgBFQRbm4Frw24+6d9FK695U2wcPIP6/r2FunQweD8WvvEPefY83u1RFxWomakBHTAEWX0upl/CEKDqf3xslPgJzP721wO5XZlG2z79WW1L7d2LwtXqLhU1zVvHS+EfI2tm8DV3OBCEEJUXHvz4K84rIzsrlSEY2KxetYdaMH3yozsDAwMCguSH8KS2repVrP7BeSjmletuPQE+gs5SyvHrb7egB3Bgp5S/Vx5UDI6WUy4UQdqAAuFRKOb/6mKeBC4GB8izftBCiOCwsLKy42KgZaM5Ijwvn8hnIyhJESBQBQ69FmMy/f2ATICtKcXzyD7QDO0Eo2O+fjimxrVfn0MrKqZi/GK2wiJDrLkMJDq47xuGg6F9vUTHrRwCU8DCinnkE+/DBXtXSVEgpEUL4WkYtpJRsX7CBzE1pVH2wCFlaSczQrgyb+YRfaZVSsvrzRXz/wqc4K6oIi4vgge+eIyIx2tfSmgyPx8PeHekkpyRRWlxKbrb+AKekqIT0nfsJjwzjylsu9bFKAwMDAwN/Ijw8nJKSkhIpZfhv9/lVro6UshLIA8IBhBChwDjg42NBWDUfowdeV1W/tgECKK4+jwNwAIHV52kNPArcf7ZBmEELQiiYOw4GBLKsAPfuFb5WVIMICsXc93wIDAGp4Zz5FtLLaU8iKBDpcCClxJW2v94xit1O1JMPEf3SMyihIWjFJeRNe5LCl15Dq/J+ymRjoTpc5K3YwYH/LUTz+Ff6mBCCrqP7EN0hCet4vX9X3sqdHP5quY+V1UYIwZDrxnL/N3/FFmKnJKeI92556ZxKUzSbzXTt1ZnQ8BCS2yTRd1Av+g7qxahJI7jylksZOKJ/zVhN09i6frtf1aAaGBgYGPgXPg/EhBAhQohoIUQnIcSLQHf0VESAHujpi+tPPEZK6QI2A32qXxeir6Q9JoRoI4SYBoQBm6oPmQ58K6Vc3UBNxaf6U31ug2aOVpKLrChCiWkNgHpwM2ruAR+rOo45pTOmrvqNnZa1D/fKuV49v1AULO31VTb3nn2nvGEMHDOC+M/eJaCvHiiUfz2bnBvvwZVefwDnb6guN/lr91CVV0LJTv9yJgTdLr7PlCEkTx5I/MR+AGx9+mNKd2f6WFldEju35tZ3HsJkMXF0TwZvXP0sJTmFvpblc8Ijw0hp16rm9e6te1izZB2b1hg9yAwMDAwM6sfngRjwX/RVsN3AQ8DbwIvV+xKq/66vYOIokHjC67uBKcAB9FqwJ6SUB4UQI4FJ6LVjBgY1KIF6PC3C4hDh8QC4ti5AOv2jX5CIScQUl4KSpNcOuX7+HK3Qu3b71g76udWSUtTcU9fJmeNjif3PdMLuuRVMCu79B8m+8R7Kvpzl90/9rWFBhHbRb5ILf93rl8YjZquZXpPOo+8/biMgJgx3SSUrr/s7lVn+V5fXYUh3bnz9AUwWE9l7M3n9yr+cEw2fT4fiQr2WbP3KTWxau+Wccps0MDAwMGgY/hCIPQuMB24FVgIBwLHKenv13/XlQFWdsB8p5QKgNTAISJZSviSEMAGvAS9IKY8KIf4ghNgthNgjhLj7ZIKklOGn+gMYZh8tgYBAMJkRQmBpPxDMVnBW6sGYHwQWQlEwJbdD6dADAuzgduL89h2vajNFR2KKigTAnbbv9zWZTITdOpW4D17DnJQALjdF018nb9oTaOW+b5p8KqIGdATAWVTGkXkb8FRU+VhR/dhiwxn62WOYg204jhSy8pq/4Soq//0Dm5ieEwdy+wePYrUHUHA4lw/v/jfuKpevZfkNA4f3Jzg0CIB1yzcy86NZ7N2extHMbKoqa3/2HJWOOtsMDAwMDFo+Pg/EpJTbpJQLpJT/BSYA/dAdEEGv8wI9OPstthP2HztXqZRyrZTy2AraXeh1Yi8LIcaipyg+jl4v9i8hxCivvhmDZoUQomZVDM2Dpfto/Z+5B1APbfWhsuMoSakoFhumTn0BUNM249m0zKtzWDvqPaLc6QeQDayfCujehfgZ7xA0WTc4rVqxVm8AXVLqVW3exBYTRli3FABKdhwi/f155K/d7Xc1YwCB7ROwXTEYTAplaUdYdcN0vwwcO4/oxfWv3ocQgoMb9vLFY++g+Vm/Nl9htpgZfcFIQsNDAH2FbMm8Fcz54ieys46vbB/al8FXH3zLjHe/YvnPK5n92Vy++Xg2P3w1z+hVZmBgYNDCOe1ArLoG63YhxBNCiDbV26xCiNZCCOvZiJFSuoHZwGXVzofHvoUS6hmeABw5hc5I4DlgWnVN2bXATCnlLCnlbGAmMPVs9Bo0f4RdD8S0ylJMiZ0wJXUGwL1rGVqZ71PCRIAdJTYZU1wrlDZdAHDO+RBZ7r1FWUv7VIQi0JwuPIczGnycEhxE1LOPE/nUw6AouHbuIffuh1ALi7ymzdskTuxH/Ng+mO0BaC4Pucu2U7Qx3dey6mC1B5AwqjfWKXqNYOH6NFZO/YdfBmM9xvdn8qPXALBx9ko+f+Q/RjBWTXxyHFfdehnDxw8hITmuXhdMe6ANp9OF6lHZtXUvOUdyKcgt5Mjho/z49Xz27vC/z6eBgYGBgXc4rUBMCPESkAa8C/wVSK3eZQN2Avd4QZMd3QExBNgOeID+Jw6oDvh6oxt2nIzngF+llMcauyRSO3A7AiR5Qa9BM0YcWxFT3eCsxNJtFMIeCpqKa+vPSOn7G0pT+55Yhk3BNvUhsAVCZZkejHkpRVEJtGNOTkQJsJ6RE2LwxZOIfvFJMJlwp+0n545peHLzvKLN2whFIbJPO9rdPoGo/h2whgUR0budr2XVS6eRvQjq1w7rxD4AFKzZzSo/DcZG330R598xGYD13y7n6yfe94v0Xn9AURS69OzEhddcwO1/uok7HrqZlPata/bv2rKHhOQ4QsNDCAkLpk371gwaOYDYhGi69OpE2w4pPlRvYGBgYNCYNLiPmBDiLuA/6DVXPwA/A2OllL9U7/8MiJNSjmng+WKklHm/2RYKbAUUKWXr6m0/oTspdjmhj9ht6I2dx0kpF9Zz7h7AWqCPlHJP9baPgFAp5WXVr2cBRVLKWxr0A6h9fqOPWAtBSol6cBPS7USJTsEUmYhakIlrzUwALN1GYW7Ty8cqj+Ne+zPOb98GwDr2aqzjrvbKebXyCoTNhjCbzvgcjuWryXvsWXC5MSUlEPfWdL2OzI/RPCrKWbznxiYnPYtNc1bh2XwA13z9uVP04C4M/vghLCGBPlZXGyklP/z9M355Zw4Alz93K8NuGO9jVc2X3/a8275xJ6HhobROTfahKgMDAwOD08VbfcTuAb6TUj7IcVv4E9kKdDqN830phPhRCPFkdarjs+grYK2Bh08Y9wQQAywRQtwthHgeeAP4qb4grJrXgLeOBWHVzAQuFkK8WG2TfyHw1WnoNWiBCCEQgREIeyjCrGfWmqKSMSV3A8C9ZyWyyn+MEkz9x2DqORQA18IvcS2b7ZXzKsFBZxWEAdiHDyb25RcQNhtq1lFy7pyG+1DDUx19wbEgTEpJ6d4sshfWd2nzHXHtk+g4rAfmPqlYJ/QGIH/1LpZd+hxVuf71IEgIwZTHr6PX5EEAfPfs//j0wTfYvmD97xxpUB+/TWMszCti3rcL2LZhR802KaXhxmhgYGDQjDmdFTEHer3V20KIKHTL+RNXxG4D3pRS2hp4vluBG4GuQAR6M+Y1wD+llEt/M3YY8BLQFygFvgT+T0pZx6ZNCHEl8DrQUUpZ+pt9jwP3oac+viKl/EeD3nzdOYwVsRbEb588A0iXg6qlH4PLgSmhA9a+k32k7jhq1j7Ug7tR4tvgXj4bdZd+gxtw6V1YBk3w2jxSVRGmMw/KqjZvI++BPyMrKlGiIoh9czrW6n5l/krFoVwOfaWboKRcNYKglFgfK6pNUVY+W+f9StnKnbjmbQJNEtg6hqGfP05IO/9adXRWVPHqZU9xdM/xIPziJ2/g/Nt9/zvUXNE0jWXzV7J3RzqKIujZvzsej4eM/ZmUlZbTc0APBg7v52uZBgYGBgb1cKoVsdMJxIqA56WU/zpJIPZX4E4pZbwXtfslRiB2buDJ3Il7y88AWAdcgim2jW/17N6ImrEXERiCecBYnP/7G2r6VhCCgKvux9J35FmdX7rdVK3diDt9P0EXTqixtT8TnDt2k3ff42ilZShhIcS+8Q+sXTqelb7GRErJoc+XUpmVjz0+gjbXj67XWMGXuKtcFGTkIg/l8esdr6E6nAREhzJ60d+wx0X4Wl4tHKWVrPtmKRu/X8WhTWkATJx2JaPvuhCL7aw8nc5ZPG4P337yfU1/smMoimDS5eNJStHbarqcLn5dvoE+g3oRFOxf6asGBgYG5yLeSk38Fbi0vh1CCBtwA3ofMAODZsuJDyZMSV1QIvV6DPf2X5Cq21eydD2t2gMgK8ugtADbTY+jpHQCKXF+/Tqe7WvObgKzGU9mFprThStt/1mdKqBbZ2Lf+RdKZDhaSRk5dz+Mc/P2s9PXiAghiB3ZAwBHdhGluzN9rKguFpuV+A7JJIztw/BvnsASFogzv5QN97/tdw2q7aGBjLhlEn/8/Ck6Dtd/rvNe/poXR08jY/sBH6trnpgtZqZcPZGkFH0FNCgkkI7d2jNs7JCaIEzTNJb8tJydm3fzxfszKSsp86VkAwMDA4Pf4XQCsenAYCHEJ0DP6m3xQogJwBIgGfind+UZGDQNWkURnsPbUDN31mwTQmDpMRoUE9JRiidtrQ8VgggKRYmMA0DNSEdYbdhveRIlKRU0jarP/o1nz5nXOAkhsHTQHQTdafvP+ube2qEdce++jCkmCllRQe69j+FY4duf4akITIoitINupJq3Yrtf9hc7RmTf9nT8s27Ukrt0G+nv/uRjRfVjsVm57d2HGX7zREwWE8VHCnj3pr9xeMs+ygv9t+ecvxIYFMjkKydy4z3Xct2dV3H+pOF07nl8pVlTNcKj9Aeuqkdl9mdz8bg9qKqKqvrv59nAwMDgbJFSouYXIF0uPDl5eHLyGtwb1Zc0ODURQAhxJ/AqYEWvszp2sAv4g5TyI28L9EeM1MSWh1ZRhJq1GxCY2/VHmMw1+9x7V+tBmFAIGH4dSki073TmZOLeugKBwDx4AkpwOLKiFMfbT6HlZoDFiv3WpzCldjuz85eWUfr5twAEXTAWS6uz7/DgyTxCzj2PoB7JBkUh4uE/EnLVJWd93sbAWVjG/v8uQGoa8aN7Edmvg68l1cue5Vs5sH4PyordlK/chbCYGPjWvQREh2KyBxDesw1COe02kY3K0T0ZvHnNX6koOr5K03V0HyY/ei2JnXU7931rd7F57mqG3zSR2HaJvpLa7Fn+80p2bd1b89pkUrAGWLn0hosIDgnyoTIDAwOD2lT+spyKHxcg7HbC/3gr5vi43z1GSonnwCFMsdEowcGoRcVkjbu8zriE7z72yn3M2eKVGrGaA4SIB64EOqMHY2nAV1LKLG+IbQ4YgVjLQ2oqnn3rQWqYEjuhBB+vj5KqB+fyT5EVxSgRiVgHX+mz+iGpabhX/4SsLEOJbYWll+6gqJUW4nj7SWRBNgTYsd/xF0ytziyIKP9+Hp6jOVjbtyVwzAiv6FbzC8ib9iSuXfrNYci1lxH+4N1nZQrSWBxdsImizfsw2wNod/sETH5Y03TM1l66PPDNGhyHa/dt6/Lw5XR5uO6Xkq85tDmd9259iYrC2ilz0W3iSe3fifWzVqB5VIIiQrjjw0fxuD0sfGMWXcf0Yej141FM/hVc+itSSuZ+NY8jGdk124JCAply1STCIkJ9qMzAwMAAtEoHjmWrKHjyxTr7Qq6/kvAH7qLoxZdxbtmObeh5WNq1wdo+FXNyAuXf/EDx6+/VjDclJaBmHa13nhYZiBkYgVhLxZOxA+koRQmPxxRb2+VPzT+Ma62+UmTpMRZz6+6+kKhrOXoIz/bVupZBE1BCdKMGrTAXx9tPIEsKwB6M/a7nMCWcfjNY1+40KpeuQphMhN5wFSLAO4GI5nBQ8NTfcCzRS0ntwwcT9cITKIF2r5zfW3gqqkh/fx5CUWh16RACk323AnoypJSs/WoxxUcKCEah5P0FOAuOp/pZwoOYtPENzIEBPlRZP64qFyXZhWTtOMjcf3xO/qGcescpZhOKouBx6bWZXcf05fb3H/E7ExV/RdM08nMKyDiQSWlJGb0G9CAyWr9WeDwezGbz75zBwMDAoC7So1I+ay7O9ZuxtE8l+PIpmCLqxBcnRSstI3Pc5dBI6dLBV12CpV0bbAP7Yo6PRVgsjTLP6eAt10QVuEFK+dlJ9l8NfCal9L9H3F7GCMRaJmpBJlpBBsIaWG8TZ9fmeXr6oiUA28ibEAG+cSSTUuJZMw/pdmPuOgAl+rh9uZZ3RA/GyksQweHY734eJeb0Uryky0XpJ18jPR4CRw7G2tl7bodSVSl+/T3KPv0aAEun9sS88gLmGP8KdioO5WCLi/DL1bBj5B3MZsN3ywEYcMVIIpOicRaUMa/ffWguD33+eTttrx/tY5WnRtM0MrcfYNfizexeupmQmHDG/OFiZvzpTfL26084gyJCatIZH/rhbyR39+9WCP6OpmnM/24hUkqGjxtCSFiIryUZGBg0A6THgzv9AAV/eQl3em3TpZAbriJoygQsbVvXmxbv3L6L8pnfU/HDz3X2Wdq1Jeb1v1G1ej2Fz9W1mlBCQ9BK6xoPiaBAQq66GIRC6YczCLpwIlHPPHIW77Dx8FYgpgHXnyIQuwaYYQRiBs0VzVGGmqE7+5lT+9U0eD6GdFZStfR/4HZiSuqMtfdEX8jUtVSUgS2w3tQ+9ehBHO88DY5yRFg09j88jxJxen2xKhctw5V+AGundgSeP8xLqo9TNnMORdNfA1XDFBdDzMsvYO3YzuvztGSklKz9cjHFRwuIah3HgMv1NNL19/2Hw18vJ7RzK8Ys/nuzXEFyV7lY8sFccvcdZcrj1/LGlX8h/1AOEx68gokPXuFrec2ajas3s37lcVOfKVdPJLGVf/WiMzAw8C1SSnJuewDX1h1YUlMQQYG4tu1q0LERj96HEh5G2WffoObmoUSE496TXu/YpHlfYYqOqnldtWELpf/7HCUwkMALxmLr0xMlJBhPXj5F099AOl2E3nItAb26N6vvtqYKxB4F/lzfJC0NIxBrmUip6XVimoopvj1KaEydMZ7D23BvWwSA9bzLMEW3bmqZDULNSMPx7jPgqkJExesrY6EN7wumFhWDqqJERTbaxc6xeh35j/8VWVGJCLQT/eJT2Ied1yhznQ3uskqyF20mfmwfLMH+lUaZd+AoG2atAOC8q0YRkRRN0Zb9LJ7wJADDv3mSmKFdfSnRK8x67mOWfvAjyT1SeWhO3ZoCg4YjpWTzr1tZt3xjzbb2XVIZOLwfwaHBPlRmYGDgS6TTRcW8RRT+/VVM4aGoeQWnHB92z62UfzcX9Wj96eWnIv7LD066etYSOeNATAhxMXBx9cubgWVAfQ2GIoGxwAoppe+WCZoIIxBruXiydiMrilBCYzDFt6+zX0qJa/XXaEVHEEHhBAy/vpbDoi+QTgd43Iig2kX46v4dOD54DjwulLhW2O96rs4YX+NK30/eg0+gZueCohBy3eWE3X4DSrB/OLtJTWP/fxfgLCzDnhBJytUjUCz+U1sjpWTNF79Qkl1Iu/O60GGIXru45MK/ULhuL4kXDGDQh9N8rPLsSV+9gzevfQ6AZ9a8RXj8mTcbN9DZv/cgC79fXPPaZDYxbMwgOvXw38brBgYGjUfZ17Mpeum1evcpYaFoDgeRD98LVgtKaAiBI4bovVfdbip+XEDh8/8+5fltQ88j+sUnEYH2ZrWa5Q3OJhB7Bnim+qVEd0msj3JgDXCPlLL+9ccWhBGItVy0yhLQNIQ95KQBllZWgHP5DJAa5g7nYek4uIlVHkfNSEPduxkRFoW536g6FzfPno1U/e/voHpQktphv+MvCPvpBTlSSlxbdmDpkIoS5P26ODW/kLw/PYlr5x4AlKgIwu+7g6ALxvnF07Ly/UfJ+HYVUkrCurQmcfIAv/oSyT+cw85FGxkydRxmq/6ZzZy1ml/vfh0UQa+/3kjqrf7xszxTVLeHp/vfRWVJBaPvvogLH7/O15JaBDlZuXz/xY9IKQkKCaTXgB5069PFrz7fBgYGp4+UEve+g2jFxUiPiikyAlNsNKbwsDrjSj+YgXPLdtyHMvQ2MydgTk4kcdYnDZ7XffAwnqyj2Ab1R5hMOJavxr3/EMGXT0EJPndX3JskNfFcwgjEDNy7V+hpjIqJgOFTa9ndNyVaQTbujUsAsPQ9HyUqvs4Yz/Y1VM34J2gaSpsuCgXx5gAAIABJREFUejBmbriLUOUvy3Gl7cccH0vQlPGNYjkvnS5KZ3xN6YefIauqALD26ELEI/cR0LWT1+c7XQrW7SVnyVYAInqlEj+2t18FNh6nG3PA8f/TzO0H2PmHNylPOwJAzPBu9H/9HuzxEb6SeNbMe2Um81+Zicli4t4v/0JVWSX5h3MIDAum9+RBhrX9GVJeWk5lhQOPx1OnVizjQCYhYSGER4ad5GgDAwN/JPf+x6lata7O9pMZX5xI0EUTkZUOsFiIfOJPKDb/c99tbngrEEsB8qSUld4W2NwwAjEDqbpxLv1Et7uPTMY66HKfPEWWUuJZ/wtacR5KWDTmAWPq1eHeuBTnV6+BlFhGXUbAxOsbPIf7UAYV834BIKBb50at4/Jk51L82rtU/lydMiUEQRdPIvyeWzFF+i6IkFKSvWAjRVt0p6iQ9okkTRnoV2mKx6goKmPlpwuQDhfWzQcp+kUPIMN7tuH8H59DMTdPPyVXlYuXxj5EYWZenX1j/3gJkx+5xgeqWibOKifrV25ix6baxfkXXDGe5Da+78ljYGBwcsrnzKPw2emnfVzgBeOwpLQi+LLJp2VHb/D7nCoQa/AjRCnlISMIMzgXkFLqDoqFJ+9RLkwWLN1HAaAVZqJmNcxNyNsIITC166HrKMlHFtTf1NDSdySWkZcA4F7yHeqBnQ2ew5LSCls/3c7fuWM3rr37zlL1yTHHxxL94pPEvvNvLO3bgpRUzPqRI5fdRNkX3yI9jdN35PcQQhA/ri/R5+mrc2XpRzj01XJUh8snek6Fx+XGFhKItJhwDmhH+I3657R460H2fTDfx+rOHKvNyvWv3ktEkt7q4MQHDov+M5sDG/b4SlqLYu+OdP73xmd1gjAATTP6jhoY+DPS5aoVhIXfezvRLz1z0vFKWAihd9xA8pLvif7r44TdNtUIwpqY02roLISIAG4DzgMiqBvISSnlGO/J80+MFbGWjVZZgpqpByrmNr0R1pM75bk2zkU9mgZWO7aRN55ybGPi3rAYrTAHJTQS88Bx9a6KSY8bx5uPox05gIiIIfDBlxG2htV8SSmpnLcI9+EshMlE8CWTalnONgbSo1L+7RxK3v6oJpXCktqGiEfuxTagT6POfSoKN6aT88sWAlvH0PryYQg/TIlT3R7SVu/g4MY0kBLXz1vwbNqPYrMw8Os/kzjA9+meZ4qmaWTvySAoMoSgiFBevvgJjuw6RFTrWB756R8EBNl8LbFZs2bJOrau19t4BAUH0r1vV0qKShGKoM95PQkODUZKye5te2nVNpngEP8w1jEwMIC8h57CsXQVAJb2bUn44v2afWp+AWpxCdb2qb6Sd87izdTElUAiUAKEAoUcD8jygQopZYvvtmkEYi0bKSXqwU1ItxMlIgFTTJuTj62q0HuLeVyYkrth7TWu6YSegFacj3vdQgAsvYahxCbXPy4ng8rXHgGPC3O/Udiuuq/hc1Q5qZg1F7WkDCUkmODLJqPYGv+mVy0uoeStDyn/bi5UX6/sY0YQ8eDdmBPiGn3++ig/kI09IdKvGz4DFGbmse3ndVTmFOF4fyFUOAnqk8r4H59rMYYMR/dk8K8L/w/V5QEgpU8HOgzuSnynVvSZMsSoHTtNpJQc3p9JaXEpXXp2wvyb9FtnlZNf5i4l40AWZouZKVdNJDahbqsPAwODpqF81lwKn/83wm5DOqpqtrf6dYFf1TKfy3glNRF4HggHxgAd0B0Ur0YPyP4GlAHDz16ugYFvEUIgwvQbfK0kD6mdPB1O2IKwdBoKgJq545TpjI2JEh6NEq0X2qv7tnGyByxKXCusF9wAgGfDYjxbVzV8DlsAgePOR5jNaGXlOJY0/NizwRQeRuSfpxH/yX8I6KXbszsWLePoFbdQ8t7HaFXOJtFxIsFt4/0+CAOITI5h6NRxdJ04kPib9GSFik372fPabADK8orZMHsFeQfqT2ltDiR0asWUR6+teX1oUxoL35rNpw+8weznG+72ZaAjhCClXSt69OtWJwgDCLAF1Jh6eNweZs34gUPph5tapoHBOY30eHDtSSfv4adrbONPDMLiPnjtnAjCpJTkLtvGt/HX1fzJmvsrWXPWnvQ+yN84nRWxI8CXUsppQogoIA8YJ6VcVL1/FvqK2NRGU+snGCtiLR/pceM5sBGkhimuHUpY7MnHSg3nqi+RxTmI4EgChk9FKE1viKCVFqLu2YSpXQ+UyFPo1TSqPnweNW0zBAYTOO2V02r27ErfT9XajQSOPx9zTLQ3pDeYYymSxa++i5qvN5s0JcYTdudNBE0cg2hiIwopJaW7MynedoBWlw31ayMMKSXr7nmTzO/0ALrPv+7A3KsNOxasByHoMa4/Sd3a+FbkGSKlZN/aXZTll7Bn2RZ2Lt5MWZ5+fR56/Tg6DO2OxWal07AemPzQYKU5cij9MPNnLap5ndqpDYNHnUdQsPdbXBgYGOhIt5uqXzeS98Cf690fPf1ZLCnJWFLbNK0wH/Ft/KlbmVy070PMfpCu7q3URCd6n7APhBChQDFwkZTyh+r9fwSekVKe/A6whWAEYucG6tF0tLI8REAQptY9TpnKpZXk4lz5OUiJudMQLO0HNqHS00crLaTy5QehshxTh17Ybn3qtJ6eSY8HYfbdDa1WUUnphzMonTETPHpKmjk5kdBbpxJ0wdgm0+YqqWDf+/ORmkb86F5E9uvQJPOeKarTzeobppO7bDsogqQrh1MZH0ZVgAmhKHQd1YdWPVObfdqipml8ct9rbJ67ptb2Nn078MfPn65l9W9w5uzcsps1S9bhceu/g0HBgVx6w4UENkK/QQODcxHHmvXk3fsYSlQk1g6pVK1ZX+842+ABxLz2t2Z/7ZZSUr7vKBumvUuPZ64jomcqG6a9Q8L4fkQO6MC8vvdhT4xkwq+vMiv5ht893/jV/ya4bd22Pk2NtwKxTOBVKeV0of9PVwCPSinfqN4/DfirlDLEi9r9EiMQOzeQjjI8GXrRurlVd4T91B9t985l+iqaYiJgxA0oQf7tPOTZtpqqT3V3JetFt2EdOvmMziM9KrLK4ZNmje5DGZS8+7Fud199LTMlxhN2y3V6zzNL499wH12wiaLN+zDbA2h3x0RMfn6T7y53sPyy5yneeqBmm71/exjdHSEEUSlxdB3Vh6CI5n0p11SNhW9+x6oZC3E73VQWlwPQc+JApr5yL9ZmkFraHFBVlWU/ryRtxz7sgTYmXDqW2IQY3C43qqphsxs9iAwMThepqngyj3D08ptPOS709uuxtk8lcOzIphHmZVSHi8qsfPa+MYdDXyz1+vknrH2ZoBTf1JKfiLcCsfnofcSur369BIgFJqLXmv0ElEspB3hLuL9iBGLnBlJK1MPbkM4KlNAYTPHtTz3e49J7i1WVoUS3xjrwUp89ndKK89Ey0zF1HXDKNMmqr17Hs2ExmK0E3j8dJa7V6c1TXk7lz0uQbg/Bl16AsPrm5tZ98DAlH8ygcv4voGkAmOJiCbv9eoIunNioKYueiirS35uH5vYQM6QrMUO7Ntpc3sJd7uDARws59OVSyqqbPkdeM5yqFD3VVDEptO3fmfaDuzb7J6zHWPjmLOZO/wKAVj1TueXtPxGR2LSptS2ZrMNHCYsIrXFRzDiQyU/fLCA6LorAIDsx8dH0Hdy7xXyeDAwak6yLpqIeya61zdpVd7tVi4oJv+8O7CMGN4lhljco3JhO4fo02t0+AaEoHJm/gf0f/kzu0m1eOf+EX18lqLX/mgZ5KxC7B3gI6C6ldAghRgPzOW74IYHLpJTfe0m332IEYucOWmm+HoiFxSGsv3/BU3P24Vo/BwBLn0mYE5veJlw6KnCv+AGJxNxlAKbkdicfW1VJ5St/QhbloiS2xf7HvyPMDV/R8eTkUTFnHlLVsLZvi330cJ/eaLkPZ1L638+o+HEBqHpAZm6dTPg9t2IfM6LRtOWu2EH+6l0oVjPtb5/oFznpDUFKyYb7/sPhmStQrGZ6vnMfGUfycJRWEN+xFb0nD/K1RK8hpWTZhz8x+4VPkJrEZDUz4uaJTH70Wkx+XNvXXEnbuY/FPy6rta19l1RGT6795P7w/kzik2IpLiyhrLScth1SUM4BkwEDg5OhFhWTNe7yWttarVvodw8xMr5bxZY/f0Tbm8bS8d4LmdP+tgYdFz2oM/lrdntNx6VHPvV7YxKvBGL1IYToD1wHqMB3UsqmsVHzMUYgZnAqnOvnoOXsg4BAvbeYpelvyj071qIeOaC7Og65AGE6+Y2memAXjneeAqlhOf9SAib9ft71iTi378axci0AgSMHY+3c8ay0ewNP5hFK3v+EirkLalIWrV07EX7v7dgG9vX6fGqVi/T35qFWuYjs2574Mb29Pkdj4S53sHj8E5TvzyY4NZ4R3z9Dxt4MWvVIxRbS8mp9di3exIw/vUVFkd6brv9lI5j673t8rKrlUVRQzMqFq8nLycdd3VoAwBpg4eb7rq95PWvGD+Qezat1bOceHbEF2ujSsyMhYcdTZDVNw1FZhT3QZgRrBi2SnNsewLljd03tc8I3H2Funew3QZi7tJLibQdZfvnzXjtn9KDODHj7Pkq2H6TySCFtp45CmBSklHgqqrAE1+7PeuiLpSg2C4kT+mOyN48U87MOxIQQJiAJPfWwsBE0NiuMQMzgVGiOMpxLPwbVjal1T6w9Rje5BllZjnvVj0ipYe7cD1OrU5tIOOfNwL34GxAC+51/xZTareFzSUnlwqW49x/Smz1fegGmqIa7MDYmrvQDlLz1IY5lx58R2c7rR+RTD2OO966vUMG6veQs2YpQFFKuHkFgcvNJeyvedpAlk59Gc3mIPb8HQz59tJYDpKZqLaofl8vhZO70L1j24U8APDLvHyR2bu1jVS0Xj9vDh6/qrQRCwoK58pZLMZvNOCodzJrxA2Ul5XWOMZlNDBsziE49OrLqlzUcSDtERVllzf4rbr6EyOiIJnsPBgbexn0oA1N0FEpQICUffU7JG+/X2m9OaUXCzP/6NAjT3B6Ktx3EWVDGtmc/pTz97FudhHRIrEmJHzH7aaLP63zW5/R3vBGI2YBy4P+klNMbQWOzwgjEzj2kpiLLCsBqQ7GH/u54z/6NuHfpaTkBQ65GiUhobIl1Nexch5q1DxFgxzJ0MsJ0cidB6XHjeOv/0LL2I8KjCXzwZYQ9qMFzSaeLsm/noJWWYwoPI/iyyU1ilNFQnFt2UPzGezg36fnopthoYl5/CWu7Nl6bQ/OoHPz0FzwVVSRdOMiv89Xr49BXy9hw/9sApN4yjp7P3YhiNpGdlsnupVtIHdCZpK4pLcb+XdM0Xhr7MLn7j9Bz0kBuevNBY5WlEcnPKWDTmi1YrBaGjRuMudrZtCCvEEeFg/LSClYvWYvb5SEhOY6Bw/sTl6Q/LFn84zLSdu6r97xT777asMw3aFaoJaWUvPE+5d/NPemYmFdeIKBXd5SQpjfBOpG5Pf6AM6/kpPuD2yVQvq/+4OzCve9jCT3+u1mWloU9MarZpO57E2/ViGWjuyK+5W2BzQ0jEDv38BzZgywvRARFYE76/ac3UtNwrvwcWZqHCIkmYNi1Td5bTDoqcK+cq6+KdeyDKeXU9WpabiaVrz0MbhfmviOxXf3Aac3nyc2j4vvqerGO7QgcNexs5HsdKSWOpSspeOYlZEUlIiSYmH8/h61PT6/N4SouR5hNdVIpmgvbn/+cvW/oNY62hEja3DCa3CALVZV6o1CLPYCeEwYQ07bpHyw0Bmu+/IUvH3sXgI7DejD2nktalEFJS8BZ5WTB94s5mpFN244p5GXn11pBu+LmSwgMtLNnexoh4SG0apOExWrRzZY8ar1NqQ0MfIX74GGOXnHLyQcoCjGvvIB9SN0WOJqm4SxzACAUgTApaG71+AAh0DQN5YTrlzApyOp6aQDFbELzqLX2a6qKQKCYTZQdyGblhX9BWMx4So+vQJ9I7JjehHZtRYf7LkIx6efbPn8dttBA2g/uxsHlWyksKafvhUMRikCqWh0dmpQoQiCRKIpC0ZECdi/dTO8pg7EF2fXjNKnrrT5OMSloHhVhUmpKDvIOZrP/190kdWvDjkUbCIuLRAjBzsWbGH/fZbQd0MkvHrB5KxD7EIiXUl7gbYHNDSMQO/fQygpRj+4BBOa2vRtU96UVZ+Ncqbu0mTsPx9KuXyOrrItn9wbUjDSEJQDLsCm/a8ThWvUTrtnvARBw3UNYeg09rfmc23biWLUOU1QkwRdN8JmL4qlw7Ukn9/7/QysoBKuF6BeebLSgUUrZrG7qpaax6ZEPOPjZkpovurjxfQi+ejg5+7LQVA2hKHQb05fk7m19qtUbaJrGzCc/ZPVnC2u29Rg/gKkv/5GKojIikqIRQuCsqELzqNjDGr5KbOA9jt2nHPtdys7MYdHcJcTGxzDqghGUl5azYtEajhzWn8wHhwZRXloBQIdu7Rg1aQQAJUWlbF23jV1b99KtTxc6de+ANcBKaHjzbtVwLuFxuslJz0JKSVh8JCHRYScd66pykZueVWubUBTiOyT5ZGXffeAQR6+8te6OiAhISkTcehMism5a/8bvV1KYlc+W3/RF9DZCwjBn/UFLlkmSpArWWzUcvo9rGsxjC/5JfIdkX8vwWiAWDSwAtgL/BNKklFVeVdpMMAKxcw8pJZ4Dm8DjRIlIxBST0qDjXNsXox7aAiYzASNuRAn8/bRGbyKdDtwrftAbTfcZgRJ16saGUkqqPnwede8msAcTOO1llLCohs8nJa5de7F2bN+olvFniyfrKLn3PYbncBYoChGP3k/IFRd6d46KKrLm/kr0eZ38oo/J6VBxKJe0t+ey/78LAGh9xTC6vXAjG+espixPv+616plKp+G9MFub94qDlJLtCzaw+N05HFi/p9a+ziN6Ed02nrVfLsZis/KnOS8S1cq7tYUGZ4+Ukvf+9VG9+050apz79TyyDtVNowoIsNJ3SG969OtGUUExwSFBWKz6Q6v83AKCg4OwBZ576VS+QHV7SFu1A2dlFfbqFRZFUTiwYQ+zn/uEQ5vTa40ffvNE2p3Xpc55HKUVNavd9WEPDSKhs96uJaZNPFe+cDtV5Q72/7qb5B5tvd7aIv//nqNywZJa274sjeCIy0+unxKGOQWC4w8Od1r0lagyBVzN53liLZ5e9YZftCnxViCmoVvUi+q/60NKKf3kU9V4GIHYuYlakIlWkAEmC+a2fRtklyrdTqqWfgzOCpTYtlj7X9TkKyRaTgYiNLLBNV9aaSGVL0+DyjJMqd2x3fbUaVnaNxfUomLyHnwC1w7dRjfszpsIveMGr/3/ZHy3irL0I5jtAbSZOgprhG9z/c+EHX//ij2vzAIg6aJB9J5+G1sXbaDgUA4AIdFhDJ461i9SP7zBso/mMfu5j2tSYX5LcFQot733CFk7DrB72VZKc4sY/8DldBvtfSdOg9OjoryS8pJy9mxPI23XPtTq9KvzJw2nYze9B+SiH5awb/eBOscGBFjp3LMjA0f0Z8WCVTUrZjs27aoZExQSyOjJI0lIPvXDLIPT49DmdHYs2sCqTxdisVkoPlrXDy4kJrzmAVBTERobgWLSvwuqyh1Meuhqhlw3lr0rt5GTlllrrKZqLPrP9wQE1W5e3l0tZIBW2xH0GC/nn34N8YDLRxDVOo5uY/ryryn/B8AD3/wVi81KSW4R793yEgAPz/07UsqaMX/84mnsIYFkp2Xy6YNv0OX83kx+5BryDmbzzR9eoU18NDHFVbVSEY+M6Mi+X3dzzT/uIjstkyXvzWXMHy5m67y15B3I5o7/PlYz37TZL/DyxU8AcP7tkynIyGXb/HUnfR+teqaSsXU/0W3iyT+o90rrNXkQW+auYcQtk9g6by3FRwuZ8OAVzH9l5mn/nI4R1yGZxxf884yP9ybeCsQ+4uQBWA1SylMkv7YMjEDs3ER6XHgObAQpMcW3Rwlt2IVUPZqGa6NelGvtOwVTwqkbQ/sDnu1rqPrkHwCYuvTHdv0jZxSMqfkFuA8exta/j7clegXN4SD/8eeoqrbfD7nhKsLvv9MrwZiruJyDny7G43ASEBFCm6mjmo3V7jGklGx75lPS39XdBSP7d6DtzeOoCrKSsf8IvacMIjqlZd2Y5h/OIX31DtLX7CR91Q5MVgtJXVNOeWPRc9JAJj98DbHtEptQqcGpcDldWKyWWr/LHrcHKSVmixmX04WzykX67v3ExkeT3CaJ4oJilsxbUcdO/xgXXDGe5DZJABzJOEppURntu6Q2aR2apmmUFpchpWTPtjQ81TbnYRGh9OhX2+1WVdV6HSlDw0NqHp54PB5cTheBQYGUl1UQGGRvtAcrmqZRcDiX1Z8vwlXppCy/mK0//Xpa50jukcr5t11AUVY+i9+dA6e6VktJu/O6cu0//1CzaeZTH7Bj4QbMVgtBESHk7j9ypm/nlAQIjXuiCups3+sMYKEzApPdRmhcBH0vHkqviecRElPn/rwWthD7aX8vOfNL8VRUIaXEEhpIQGRIzfa8FTvYMO0dVIerznET171KYCv/M5vSNA3Vo+p1cIqCYlJQPSrWACtVlVUoJgUhBGaLGbfLjTXAf75vG62P2LmKEYidu6hH96KVFSBsIZhbd2/QMVJKXOtmo+UdBFuw3lvM7JsLhHRVgaYhbL/vMuZaOgvXjx8DYOo2ENvUh0/pvPhb1PxCymfNRaoagaOHYe1w8sbSvkR6PBQ8/Xcqf14MQPCVFxPxyL1eaRBZmVXA4a+WoXlUApOjaX3l8Fq28M0BKSVp/5nL9r9+Vmt73OhedLr/YqIHtXzrYY/Lw1f/9y7rvjneoDipWxtKcoooz9cdxVr1TGXa7BeaVU2gQW2klCz+cRklRcdd4oQQdOjaHovVQlJKIkHBgezcvIs929PIy9ZvtHv2706r1GTiEmNq3CAPpR9mz/Y03G43w8cNPes6NE3TWDZ/JXt3pNe7P7F1AlOumghAYX4Ra5b8SubB+oOMuMRYLrr2AoQQ5OcWMPPD73AcLaZg80EAIhKjaNW/Ix36dCIyIgxH9UrJzi27cFQ5CU+Jrfc6ltqxDZ16HO8jueSn5Xg8HlI7tWX9grWsnv7dSd9fREosllA7sd1TMNssRLZPoPRgHtHRes1UUHAgHc7rSlx7PRDOOFB7VcpsMROXGHvaQWR5YSl7l29DVfUVVHeVC4vt+Pfztnnr2PZz3Ycwyd3b1goCrZqbGJx0GdWbgN07Cdy8qdb4qk5dKJ04maSB3Uno1Oq0NJ4J+z6Yz5Yn/ldrmy0+AltsOMVb664KH6PDtEvp8diVdbYf3p9JVGwkVquFNUvXkZSSSFxiLLlHc4lLjOW7T+aQ0r41g0cNZPZnc1EUhYuvm8zmX7cC4HS42Lp+O1ffdjmzP/uBKoez5twjJwxl19Y95B7N99K717nwmkl+s4JtBGJexgjEzl20yhLUzJ0AmFv3RNgamO5XWYJz6SegeTC17oG1x5jGlFm/hqI8PNtWIWyBmPuPbpCLo2vxN7jmzQDA1H0Qtuv+1OBgTEpJ5fxfcB/KRFjMBF82BVP4yQurfYlUVQqf/zcVc+YBEHTRRCKf+NMpG2E3lNLdmWTO0Yusw7q0JnHygGZ5s370542kv/cTRRv34ak4Xh7c5vpR9PjL9VRWOAiL84/+cY1F8dEClrw/l+7j+tN+UFccJRXMeOgtdizcAEB0m3hMFjNdzu/FxAevJOActGk+F9ixaRcrF9VvnHAsFbK0uIxvP5mNy+kG9P5pPft3RyiC5JSkmsDM5XTx3Sff1zz4cbvc9OjXDbPFBELQqk0SIWEhuF1ufvjqp5rg7xgms4nWqclERkfQb4ieeZCdmcOsT+dQlp6D5tZXzMzBNsx2K2UH8+gypAeXTbsGIQTLv1nMd4++V8vRriHY4sII75yIEmDBHhdGxvcbCAi0YbfbkEjy9h/FGhYIQuAqrqj3HL0uOA8hBL0uGESpWWX3tr0nnW/Y2EF07X28Fuy9f31Effev4ZH6d8yVt1xac53dt+cAG1ZuqjP2GNYAC5dMPV4jvGvrHrat31HzWlNVKo4WIzWJEBDTPpGLpk7R91U5OTzxSpTy+t+jFIK0p59g7IWjarb9unwDB9MOnVRPQnIcw8cfN8pasXB1jRFNfaS0a8V5IwfUvJ731PtUvvfLScefiCcmGEff1oTM1+9r8qeNITwmgtRObeh9Xk++/fh7igtPbl//WxJbxXMkI7vB4xubOx/2jyS9UwViLb6ey8DAmwh7KEpINCIwDKwNv8lSAsMwdxyEZ/cK1MPbcAeGYWnXvxGV1oOmgrMKzelATduCudPv17VYR10Omobr589Rt6/B+fkrBFw7rUEBihAC+/lDUWfOQauopHLhUoIvuQBh9r/LjjCZiHzqIYTNSvnX3+s2/E4XUc8+dtZ6QzsnE1vSndxl2ynZdRhzsI3YkT2aXTCWML4vCeP7IlWNI/M3sPe12RRt3s/BTxeTsWATtutHMOLOC1u0s2B4QhSXPHVjzWt7WBC3v/8Ir1/1F/b/urum3iEnLZMtP65l8iPX0OfCIS2qGbYBdOvThc49O7Jl3XbWr9hYa5+zSn/SHxoeUhOEAZSVlNcK3o7dILqrXJTll+D2qKguD8U7Mtj77Ro0twdzkI3Kg3kMnTqO3pMHYbZYCLTb6Ny1PSkdUwiOCMEeaKeq3IG7ysW3f/mIVZ8tRHV5Tql/xfr9rHht9mm9Z5PVXOu8VTklZOfUvkF3lVRS9pvXvyUwKoRxT08lKjmmVirl/r0HCaheiZIStm3YgaKccI38zfVSOcHCXD0hiKwvaHA73acMJgJ+k8LmdDjrjg88/j3gcOgPohxr1pN372Oc7LdbAssnXUhwae30UEeF45R6frt6WlFWccrxMQnHzSgWjnyUyj3HVws90cF4EsII2HEEhEBU/6za3zlClOzXAAAgAElEQVSJiBtG8NNsPWBzdokHkwJCUFxYgqNCt8k/2bwp7VpxaF9G3e3tW/tNINZcWlcYK2JngLEiZnAmSKnh2vgjWraeWmLpOQ5zq26/c5R38ezbhrp/R/X8w1DiGmbr6lzwBe6FXwFg7jWMgKsfaPBqkSc7h4o585GaxNohFfuoYX4bhEgpKX71Hco+/RqAwHHnE/XCE2edpiilJHvBRv6fvbMMjOs42/Z1zp4l7YpZli2zjDIzxrHDzElDDTcNNG0DTZOmTZr3bVL63qRpm4aThtEBQ8yOGWSOWbbAYpZWCwfm+7G2bFmyRStbss/1b+fMzJkV7M595nnup2LLAZzJMaRdPxW5i3xJnAhhGOx7dS7b/+cjhKpjnTKQtDvPJ+OCxvVvznRqSqvYsWgjuqpTvD+f5W/Nrb/WPaM35z98Nc4IF67o8PrQqsK9eRi6QXJ69077/2DSPAV5hXhqPEiyjN/nJzElgdj4oyfDpUVlLJu/Al3T8db58Pv8REVHMGb4EJa8+m2TYW8tJTw+ivDYCPJ35bT7fQyYNozbXvkFWkBl17ItpA7pxcHMPVgUhYwLxmJ3OTB0g03frGLOXz5GsVsp3t8w9FGxWbnid7fy2VNv1LdFJccc0Uvc/sov6DmqP6FG13UO7s3G7z+a7zQwI73+/6qirJKCvBOLA4ssNwipLC0qo7iw6TxBAJvNSg8FCm+8p0G791cPYqQkY9m2A71fH0RS0C3XGeagV7+e9f0O5RQ0CH89Hne4mx69j3435x7Io6a6ca7fESKjI4l1hpH5yH8oXHj05C/xoYuJvrhx2ZyY2GiSUoNr27ZxB9WVNUTFRLJ+xUYGDE0nIjqcqJhIkrol1p9Sbt/4I917dSMyJhJZkknr252iQ8WsXLSG4eMyWLloDelD+jHtgsl8+/Fc8nMLmTxzPD6vn4BfpbS4jPycAhKS4+tzMGPioykvqSAyKhzdMKit9mB32OsfZjTFmCkj2ZG5k8EjB+L1eNmeedRQ51hxaLNbufXnN3UaIykzNDHEmELMpK0IXQvmi5XlAhK2URdjSTp15h3CMNA2LcMoL0JSrFjHnYcU1nzughCCwPcfoi4OOhgpI6Ziv+7BFhep9m/ZgXfNBgCcE0Zjzzi1ArQ1CCGoevVtql//LwDhN15N1C9/1u7NsjAMStfsJmZEny5n2nEy6otA2xSc951P3+nDz/qiyBtnr2Dlewsa2eFDMHxRHDYtAIjtkcCYq6eR1D+VgNdP2rC+punHGYoQgk9/9yar31vQofcZfdVUvNUeBkzNYNIt56H6VbIz97BjUSYFu3MZf8MMnOFH84RTh/TCHdv60iq6ppO9aS+BOj/OSBc9hvWpr7uXt/0APYb1aZBvdabgy9xK8T2PNGhL+fZDlKRTW9rCUDUKF29h36tzKV31Y4NrF255BWdi9Cldj8mJMYVYiDGFmAmACHgxasqQY7q1atMptAD+NZ8jqopAtmAbewWW2I5P3q2/v9+LumY+IuBDDo9GGTOzRadbQggC895HXfoFAMrI6div/XmLxJgQAu+SFQT2ZiFJEq4rL0KJP/21PU6EEIKKv75C7UfB5PKoh+8l4pbrQn6fQJUHxeXocgYexxKoqGXe2IfRarwo4/tjmzaYfpOG0Gds49o+ZxsHNu7mq2ffJWfL/haPsbsc3P/B05QfKsEVFU6/icGHFkIIfDVebE4bpdlFHNi4m5GXTcLmbGiZHfD669uOuIuZnDo8lbW8fscLHNpxEE3VSJ+SQXluCbVlVdRVNZ1HNOuBK/EeLkA9/oZzie4Wi67quGMj8FXX4fN4efna31NbVs3oq6YyeOZIdi/ferTMghDUllcTkRDNmGum0f0MKLbeGRH+AGV//At1cxfVt1n79yXpnX8gWU9tiRehG3zZ7eYmr4346930+sk5TV4zOT2YQizEmELMRKi+YIFnwJI6CDmsdSYUwl+Hf/WnCE8FKDbs469Bjjx1T9OM8mK0jUsQCCypfVEGtixfTQhBYM67qMuD+QXK6BnYr76/ZTXVNA3PN/NRunfDPmpYpz8xEYZB2ZN/pG7hMgBin30C10WzQja/v6ya7I+XY7FbST5/FGGpnVeYNsfOv33Bzhc/A0XGfsNklO7xjL9xBpEJ5hNZCJ4cIAS7lm+hOCuYdJ/QJwXFqrDhyxVs/PKHJo0HAPpNGkJkYjT71+6k4lBDVzFXdDjXv3AvvcekI8kSb933d/at3kHq0N5By/156+g/eSgzfnZ5fZlWSZJI7Jfa5QtxdyQBX4CS/fm44yLqDWgMw+DLP7zDinfmIysWrn3+TsZeM52asirsYQ4cbidrPl580iLCx3LeQ1cTkxrHqMsno9jPvDqNZxKGp47yP/61UUFm2+ABJL71ckgcdpsjf/5G8r8LhrHaol3se3Vug+uK20n3qybS547ziRjQspQDk1NHu4WYJEluYAvwshDi/3XAGrsUphAzAdBydyC81UjuGJSU9FaPN7zVBFZ9gvDVgs2JfcJ1yO5Tt3HVD/yItm8rckIqytAJLQ4zFEIQ+PZt1BXfAKCMmYn9qvtaJsZ0PSROhKcK4Q9Q/OAT+DO3gMVC/P/9D87xoTFZKc/cR9GSrQgj+FQ7elhvEqYOwdIFQ3k0j48lFzxFzd585HAntlumEdkriQk3zTSNKlpA0b5DSLJEXUUtb9z713pL/I7CFmbnymduY/z1M+rbCnbnUlNaSd8Jg1n36VI2fPFDfeXQsGg3Q2aOYvRVU8+436fqCzDv/33G4n9/DUB0t7gGgtfqsKH6GtdaOp7jzSyOJ3VILxR7sHbV9X+6h/C4zukga9KYkkefwbtkRYO2uL89R9jUiR1+b7W6jsxfv86hr5t26QS4bP+bKKZDa6cmVAWdK4FfCyFeD/UCuxqmEDMBMGpK0Qv2AhJKrxFIVnuzYxrPUY5/9Seg+pCc4dgnXo/kcId+sU0ghEAUH0JKaF1o5ZGxgW/eRF0ZLFStjDsP+5X3tnoerbAIS2JCpz4dM2pqKbr7F6j7DiCFOYn5zS8Iu+DckKzZV1xJwfyNeAsrAHCmxJJ23ZQuaeRRs7+ApRc+jVpdhxQfQfyDFzPq+hlntItiRxDwBSjedwi/x0fm1yvrRYAtzIEr2s2yN+aQMiiNAVMyWP3hIioLyhuM7zthMJ7yagp2N3Y0O57wuEiu+9M9BDw+3nv45Wb7S5LEVc/+lMm3nIeu6UiHXe2OD380dKPBCZ8kSW0ScBX5pWydtw7FFjwxGn3VFOxhodtw+mrqeG7ygycMGWwrE26aySWP30BtaTUAUSmxjUJITTo3wjAoe+p/8G/Zjl501Lgj5qlf4rrswg45BRNCIEkSwjAQusGK6/6X0tU7T9g/bvwAJn/22y4d2n62ECohNg84KIS4L9QL7GqYQswEgi6IWtYm0APIMalY4tqW52VUFuJf8znoKpI7FvuEa5FaYY1/uhBCEJj9GurqYO0t6+RLsF3y0xYJFCEE/syt+DZsxjEqA8foER293HahFZdQdMdD6IVBgwX78CFEP/ogtvT2G60Iw6A8cx/FS7chhOjStcaKlm5l1S1/Rqg6EQNSmfL5U9jbYAJg0jKEEFTml7Hm4yVsmbuWQecM55Ingk5hvlovVrsVYQjUY2zUS7ML+fzpN8ne3HRh4GOZcd9lqL4AOxZupDyvoYucJEn1YstiU5BlmR4Zfdi/rvHGMRgO2Y1BM0Yy+qopKFYFxW4lKjm2/u9cVzW+f/lLvNUe4nomsfHLH5rMrYvuFseQWaMp3p+P5le5++3H2yTOhBC89tMX2Ll0c4N2d2wEwhBEJERRV1lLVVFF/bWEPik8Nu9FVF+Al655poHYDYt0YXM5uOPVX9F9aO9Wr8ek82DUeij59e/wb2j4txHqUzBD1dBqfQQqalh6ye8JlNectP/Yfz9IysVj0L0BZKtyRpk+nemESogNBxYDvwLeFmdxcpkpxEyOoJfmYpTngcWG0nsEktS2p2R6STaB9bNBGEhRSdjHXY2knNq8AaMoF6O8CMuAUS0WAcIw8H/5Ktq6oAuY9dxrsZ93Y4vGelesxb9jFwCuWdOw9u7ZpnWfKrSiEir+9k+8i5YHG2QZ99WXEPWzO5AjmneebI6y9XsoWroVgITJg4mb0DXNLvLnb2TtXf8PoerETxnMpA+fMJ/YdjJ0TWfNh4v47Ok3G12TLTITb57FOXdfQkxqfH177rYs3n/kFYr2HQrZOi785bXMevAqvn3hw/rQwNZisVq46/XHSB3aC3dM86JfVzUOZu5l9vPvkbs1CwBnhIvfLPor4fGN9kgnpXh/PoZhkNTPzMk5E9ArKil99Bn8m7c3aI/5/eMo3ZJwjMgIyX3qDpVRMG8DW377Tov6T/7kNyRMHRqSe5ucHkIlxBYDaUBPoBzYDxxfrU8IIc5t33I7P6YQMzmCUP2HTTsEluR+yOFtN1zQC/YQyJwDgByfhm30ZS3O22ovRnkx6sZgYUdl0Bgs3fq0eKwwdPyfvIy2KShQbBfdim3aFc2P03U8cxag5RchKQruKy7EEhvT7LjTjW9dJuV/fhntQLB2jyUhjtjnnsQxali75hVCUDB/I5XbDhKV0Yvk80Z2yVMxgLyvVrPuvmCoW+yVE4i8ZAzpk4eaYYqdjKz1u1j1/kLC4yKZ+fMrsIc58FTW1BtUHE9dVS2v3vq/FOzOZfSVU5BkibztB3BGuNj9w1ZieyRQllNM2oh+XPir6+pP5DbOXsneldsozS5qNOclj9/Ity98eMI1Xvbbm0kb0Y+czfuY/cf3TtgvpnsCv1n412aNL2Y//x5LX/uu/rXVYeOPm14zQwfPcrTiEvIvuqFRe/w/XghZXjBAzb58Fkz+9QmvJ5yTgeK0kzRzBBHp3Yga2gvZNNbp8oRKiB2kPnX3xAghznjfVFOImRyLlr8bUVuO5Ixod4FmLXsr6vagILKkpGMdfsEp2YwLIdC2rsIozkWSLShjZyKHt9w4ROg6vvf/jL5jHQD2K+7BOuGCZscZXi+1X87BqKlFDnfjvvIiZKezze/jVCE0jZqPvqTq1bcRXh/IMhF3/oTIO29Basfpj9ANqvfkETGg6xf53fq799j3n6Czl/2aCYSP6sukm2dh6YL5byZHEUKgq/oJXRePtc8/ntryarSAhrfKw4vnP9ro+rXP30XfCYPY9M1qhp4/hphucTiOqXdlGAae8hqy1u8ib/sB9q/dSfamvUdt3IGMC8dy+z8f4dCOg2z6djWJfVJIn5pBZUE5az5azJqPFtf3TR7Qg4c/fxa7aXTQ5albtgr/5m04Rg3HOXlcq8YKf4DcSRc2aIt99olgLnAbcsE0jw+1xgtCkD9vI3W5JQTKa8j+aFmT/WW7FWdKDOet+luX/9w3aRrTvj7EmELM5FiMuipEdQlyZCKSs/0hauredWh7VgFgSRuGdfD0UyPG1ADqugWIuhqksHCsY2chWVsegy40Fd/b/4u+NxhXb7/+Iawjpzc7Ti8tp3b2XISmYYmNwXXJLGRH19gYqdm5lD75R9TdwXwb+4ihxD73ZEgLex5J4O5qGKrG8iufo3zDXnBYcdx+Dn1njaL/JDPExgRWvDufz3/3Vv3r61+4p4GLY2v41y3Ps+eHbfWvZcWCoeknHfPkkr8T3yu5Tfcz6TwY1TXkX3krRlV1fVv0Ew9TN38xckzDh4lKShJh506jbv5i9NIylLRUHGNHNSrOnLpkNnJ486ZZak0dRkDDHhuB5vGR+evXqdySRW1WYbNjY8cPYNpXv2vhuzTp6phCLMSYQsykIxFCoP64DP1gUNAo/cZj7T/+lNzbqC5HW78IYejICd1RMia2rlh1wI/3jWcxDu4EScZx869RhjS/dvVgDnULliIMgZIQh+vyjnGl6ghEIEDly69T8+HnAFgSE0j+6LUWfZE3R+X2g1RuPUCPa7umk6K3oJzFM5/EX1aNFO3Ccc1EJj98lWndbQJAyYECynKKiekeT0LvlDbP4/f42Lf2R16/48Vm+yb0TuGcey5h/A1tE30mpw+9tBzf+kwwBJ6FS1H3ZKEXFYf0Ht1Xz2tQnFmr87P+/n/gK6zAGu2m9+2z0Gq9lG/cR9ab3wNgj4/EX3LykhOJ5wwDWcLdM5HuV08ienjvLvMdZ9J+QirEJEmKAGYCR2yBsoAFQoiT272cQZhCzKSjEUKgbpmPfihoZmEdfA5Kz/blILUUPW8/2s5g4UglfSSWHv1bNV54PXhf+z3Gof1gUXDc9gRK+shmx6lZB6lbvIKwGZM7vXFHU3hXrKH0iecQPh+uKy8m9re/bNd8/vIast78HiEEEempdLt0XJc8GStZsYOVP3kRw6+CTSH6jplM/e1NZoiiScg5tOMgf7n4ifrXA6YOI2VQGsMuGofD7SQsyt0iQw+T04sQAuEPgBZ0+9RLKyh55Ldoua03inFddSnC56NuzoKT9lN1iW2F8diSYjF8AZBgxsL/ZdH0x1Grj7dDODm9b59F4rnDOfTNWg59s4bzVv0NZ3Lnz3826ThCJsQkSboL+CvgBo7sCARQC/xSCPFGCNbb6TGFmElTCCEQngpACklhZmHoBDZ+i1F8AADr8AtQug1o97zN3lcI9B1r0QsOIkky1kkXIzlbZ7IgPDV4X30KoygXFBvOO5/G0rv5/Dmjzosc1vlzxE5EzUdfUPGXVwBI+NdfcIxpny1/+ca9FC7eAkD8xEHETxrU7jWeDio2Z7Hqtr/gL6oEm0L8tZOIcDroc+f5uHslne7lmZxBGIZRn81+phWfPhMRQqDl5WOJiUZ2heHfsYui235+8kGSBEf2roqCLb0v8X97LmgAtWAZ/vwy8hZsJWdbGYY48jcgiHQEsFl0KrwONEPCadUIt6tUeu0E9NAYY5nFlU2aIlRmHZcBXxE8AXsJ2HH40mDgQYInZFcIIb4Jyao7MaYQM2kKvSQboyIfyRaGJS0jJKcXQlcJrP0SoyIfJBnb6MuwJPRs/2Kbu6+momUuRe7eHzmpR5vei1FdjvffTyPKCsDuxHn377F079fyNQiBf8t27APTkexdo16K0HWK7v4Fga0/onRLJumj19plPiKEoHBBJhVbgmK82yXjiBzYtnp1p5u6vFIWnf8UatnRXA5ntzimz/kDzsT2P7gwMTHpWgghKLz5vvocWzkyHKPqxMFVSs8exD3/20b1G2v25ZP9yXLyvlhFXV5ps/ed9PFv2Pnnz5AVC67eSSRMHsz+txYgHRbuZWt2NRpz4ZZXkGSZ8g17COsejy3KjSe7mLjxA6jLK6X2YBHxEwd2yRByk44nVEJsBRANjBNC1B53LRxYA1QIISaHYM2dGlOImTSF8HnQcoJ1oCypg5HDQhMCI1Qf/tWfIWpKwaJgG3cVlui251O0+L4hMIkwKorx/uspRFUpON0473oGS2rLrPG9K9bg37E7mDN20awuI8bUA9kU3HQvqCrhP7mG6Ed+1q75hG6Q8+kPeHJLkBULPa6fSlhKbIhWe2qp3JXL8iufA01HaDq6N0Dk4DQmffQEjngzb8zE5ExHCEHVq2/j+fZ79MKT53flV7voefclWD0VOM47l6K9lWR/vBxfUSV6nY++915EwfyNVGxqXPj7WHpcO4W4CQOIyuhFRP/UZu3ghRDU7i9A9waQFAsR/bvVizQTk7YQKiFWAzwrhPjzCa4/BjwthGi/bVwnxxRiJidCy9mO8NUgh8dhSW756U9zCJ8H/6qPEd5qsNqxT7gOOfzUbsaFYbQpudgoycf776cQtZVgc+C49XGUfs3nuwX2HcC7+AeEEF1OjFW98T5V/3oTZJmEV/+KffjQdolarc7PwQ+WEKioRQmzk3r5BMJS216z7nQidAMkKFqyldW3/gWhG7jSEpj04eO4e5sudiYmZyJGTS1lz/4Z75IVTV4vr7PjVYMCqcLrwKcdFUv9H7iUPf9oWbBVeL8UHInRJEwbSvcrJ3bZz0mTM4tQCbFa4A8nEWKPAr8zhZjJ2YxRXYJeuA8kCaXXSCQldMLB8FTiX/0J+OvA7sI+6QbkENjlN4fwe9F3bwJFQRk0tk1zGMV5eN94FlEZPNWzX/8w1mGTmh0X2JeFd/GKoBhLTsR18Swky6kpct0ehKZReOv9qHuCT2olux1LYjxKciKO8aMJu2AGSnzrNgj+smoOfrAUw6/S/ZrJuHsmdsDKTy3ZX60m86F/IQIarrQEps95FnusaaZgYnImIISg5p2PqPzH601e1w0JiyzYXRJNjb9135Xu3kko7mAulu5TSX/4cuyxESRMHWK6EZp0OkIlxFYCUcBYIYTnuGtuYC1maKLJWY4wDLQDmaCryLHdscSmhnR+o7oE/+pPQQsghcdin3AdkrXp4qmhQs/bh7ZzAwDW0TOQo9tWI8uoLMX35nNBAw9JwnbZndgmXtTsuMDe/dQtDj5FtWcMwjlhTJvuf6oJ7NpL8UNPYJQ38TkhyzjGjsR12QWEzWp5nTh/WTV1uaVED+9d36bV+bE4bV3OUVHXdNZ+soSKzH34P1oJmk7s2P5M/OBxrO6ua9hiYnI2oxUUEdixC+e0iZS/+DKeL79r1Cevyk2Jx4luHCOYJImeN59Dj2smY48Jx5kSy67/+4o9L33dYOyVh/5rhgmadDlCJcSuAL4A9hI06/jx8KUjZh19gauEELNDsupOjCnETE7GEdMOFDtKrxEh3yDrpTkE1n0FwkCO64FtzOVIcsedEgnDQFu/CKO6DMkViXX8eW2+n6irwfv2/2Bk7wbAeu612Gbd0OzPyLcuE9+mYMFW16xpXcbe3vB60bLz0IpK0AuLUfdlUbd4eYOEdOf0ScQ+81ib6o4JIch683tkh43EaUO7VBiOEILcbVnsXbkd7+YDBGavAyBqWG8mvf8Y9jjzZMzEpDNiBDT85cHPsOqdORQu3kLpwg2kJavYcvaccFx+tYv8ahdHTLcnf/ZbEiaf3E3XW1RB1pvfE5XRi5SLxnS5B04mJhBa+/r7gRcAF/UGsUiAB3hMCPGvEKy302MKMZOTIVQf2oHNgMCSnI4cHvr6IVrej6hbgsUkLakDsWac16FfUEZNBdraBQhhoPQZ2iIr+hMhAn587/8FfddGAJSxs7Bfec9JxZ0wDDxzFqAdKkR2Ogi/8aoGRTe7EkJV8a5cR+3sOfh+WAOA0i2ZuBd+h21A62q2ebKLyP7kBwBkm0Lv22Zii2p/IelTiaeylpXvziewKYvA/M1gCNx9kkm9YgKGqtH7tlk4k6PJ/mg55Zv2ETOyL5XbDmKPiyB+wkCskS4iBnY3N2gmJqeA7c9/xJ6Xj55SSQj6xVUQ4VBPOKap0MPpc54lZmTfE4wwMTmzCHVB5yhgFtDrcNORgs4nLyt+BmEKMZPm0IuywGpHjkhAUjpGMKh716LtWQ2A0m8c1v4TOuQ+R9D2bEbP3oUkW7BOuAAprO35aULX8H/+L7SNSwCwDB6H48ZHkKwnzhMwvF7qvl+KY+KYVudXdVZqZ8+l4sWXgsVLrVYibroa15UXY01tmSumEAJvXimHvl2HWuslLDWOtOundrkciV3Lt3Bw4x6MrCL8s9chAlr9NcXlwJEYRW1W4QnHO7vFYo+LJGZEH3pcP5Xo4b1NYWZiEmJ2v/w1O57/kNTIWsLtAfyahZgwf6N+hTVhVPuCn+UB3YI9vQ9Dn7mJqKG98OSW4O6dZIYfm5xVtFuIHc4B+xp4/2wp2nwyTCFm0hkQQqBuXYieFyzpZ82YhdK97SdVzd5PU1FXz0P4PMixSSgjprVrsyuEIDD3PdRlXwEg9x6M89YnTlo8OhSW+p2NwJ79lD7+B7TcQ/VtjrEjCb/1epzjR7dojtqsAnI+XwlA4rShxI5N75C1dhSqL8Cq9xfirfYgDpWhzdmELdyJ5vHhLz1adyxycBq1WYVEDknDm1+G91BZk/MpbieutASG/+mnxI5p3SmjicnZjhHQGli8B0rKybv7MZS8Aycd577+KrYsyKNiazYACdOGknLRGHrfNrND12ti0tkJpX39L0whZgoxk86DMHQC62djlOYECz6PuRxLfFqH3c8oOYS6ORgKpwyZgCW5/fcKLP+awHdvAyDFJOK4+VEs3XqffBAE61AVl6CkJLV7Dacbo9ZDzQefUzt7DnpRSX175H23E3HnzQ3Ep9B0/Ft34FuzAUlRcE4Zj3VAPwoXbKJiSxaSRabXzTNwJDT6vO/UeKvr2PjVD9SWVdM9ozeDzx1FoKKWvK/XoHl8RA/vQ/zEgfX9hRAITac2q5DiH7YTqKgl/7v1VO/Kre8jKRaG/v4n9Lnz/DNOwJuYtAVfSRUWhxXF7eTAu4uo2LQfb0E5xcu2kXLxGEpX7SRQUYssCYbdNRl5/mwkQz/pnJLdTuryb+odbY+UqOhqJ/MmJh1FqITYD8BaIcSvQ73AroYpxExaitBUjOoS5KjEDjPUEKof/+pPgwWfFRv2CdciR8R3yL0A1C0rkCQZS/oIJHtowkvUTcvxf/ZP0AKgWLFffjfWsSd+imrUevDMX4xRUYnrsgtQEjru/Z5KhK7jW72eqjf+S2DbTgDCZk0n6uF78G/cinfFGrxrNiBqahuMsyTG47r8IkpFLIFqL4rLQc8bp2OL7lr5YgFfgOzMvfQZPxD58CbOMAyqiyuxO+04I098WgqHi8XuyKZy60H2/vs7avYETxkz/ngrfe+6oMPXb2JyOqjNKqBqRw7uvslEDuzRZB+hG2S9s5AtT77d7HwW2WBESslJ+yR/8gZC1zGqarCPGmY+6DAxOQmhEmIzgC+BK4QQS0K8xi6FKcRMWoIwdLSsjWDoWBL7IEe2zfa9Rffy1uBb9TH4asHhxjHxeqQOqjEmDL1DRKWefwDff/+MKAvmAimjZ2C//G4kW2N7fhEIUPvlHPTKKmS3C/dVFyM7z5ycAxnUAcIAACAASURBVKGqlP/p//DMnnvCPtZ+vRH+AFpOXn2bpWcPPIMnYhvQjx5XT24QXtRV2TJ3LQW7clBsVsbfOAN3TMvcFDWPj/X3v0LB/I3YYsK5YP3/obgcHbxaE5OOQRgGCPDkFFO4cBNCNyhbv5eytbsahO8iS0iSxKDHryX9ocsRhoG3oIJVN72AlnWAcHuAmDAfLptGhddOmcdBpc8OSCT3dpEkDmFRG+d9GaMnkvTATSjxcSiJZ8aDLxOTU0WohNibwBhgELAF2APUHddNCCHubOd6Oz2mEDNpKXrhPozqEiS7C0uPoR3rbNigxlgc9gnXdniNsVAjvB58n76MviNoZS4n98Rx86PIccmN+urlFdR+OQehaciuMMLOmYzSrXG/rooQgpqPvqDy7/8Gw0ByOHCMHYlz8jgck8bVb4bUgznUfv4tNR9/CYYBskz4TdcQed/tyI6u9fs/nuriSlZ9sBAOf0+Fx0Uy/oYZWKwtE5i+4krmjX0Yw6cy5Okb6f/zSztyuSYmIUf3q2x/7gP2v/F9/f/ByRFIgEUWaIYESMQ4vfSOrW5uYOOZ3OFoN91Dr5+eh9zC/zkTE5PGhEqIGS3oJoQQHVfQqJNgCjGTliK8NWi52wFQug/psFOqI+gl2QTWzz4lNcaEEBiFORj5WSgjpobsPkII1OWzCcz7b1BY2MNwXP8gyuBxjfqqB3OoW/QDQtOQJAlbxiAco0cgKWfOx1Bg9z6Myirsw4ci2U/sKunfvovyZ/+MmnUQAKVHKjFPPoLonobFbu1ytvYAuqpRWViO6guwZc5ahGEwYOoweo5quQHH1mfeY9+rc81TMZNOT9XOXHI+WU714ZBaoesUL93WZN+w1Dis0W4QgqRzh2HbmYmSvQ+Lp6GBtVe14LSePMfreBxjR+K+7gqck8chKaYAMzFpLyG1rzcxhZhJyxFCoOdsQ/g9yBHxWJI6vm6KlrsDdesCACypg7BmzOqQkzjhqUZdNReBQOk7DEuvgc0PagV61g58H/wVURP8P7NOuRTbBTc3KgegV1bhXbICrbgUAEtsNK6LZiGHnTmhii1FBAJUvfUB1W9+AHpw82VERCH6DiDp8Xtx9mk6f6Qr8OOSTeRs3kdYlJspt1/Q4r/pY0/FEqYPpdsl44gd05+I9NQOXrGJyVF0v0r+3PW40hKx2K2UbdhLRL8U3H1TyHp7Abv++kWzc4z8+z24eyURlhrXoHh75atvU/3ae82Od197OZH33IqkKOiVVejFpdTOnou6aw9qVjbOqROxjxlOxI1Xt+u9mpiYNCRU9vUvAXOFEJ92wBq7FKYQM2kNRlUxetF+kGSU3iORLB1fiFjdsxpt71oAlP4TsPZrfJoUCrRdmei5e5AsCtZx5yO5QnviZ9RU4PvgbxhZQYt+Obkn9ht+gSWpoaAQuo5/01b8mduwJCfguvi8s9qxK7BnP+XP/43Ajl31bcLuIO4Pj+GaOe00rqzt1JZXs+Kd+QAMmjGSHsP6AEEzj8X/+poB04aROqRXk2O3/eF99v7ruwZtcRMG4u6bTNHiLcSO7kffey+ibO1uEs8dTkT/bh37ZkzOCoRu4CutYsuT75D/3bpWjU29ciLOpGgAIoekkXLhGJSwxqHGJb96Gu+yVY3aLXGxOKdNRApzgiQRNnMa9kFdq6yFicmZQqhCE+uAB037elOImbSOoGlHJhgaclwalpiWFett1z2FQN36PXpe0HnPOuw8lNRBob+PpgZPxfx1yO4olDHnhryAtdB1Aos+QV38OQgDFBu2i2/FOuHCRqciWmExsjsM2X00DM+o9SC7T+62dyYihEDdm0Xlp9/i/W4+UiCYgO+cMQXHqOHYBqdjGzygS7mdrf98OWU5RfQdP4i+E4I187SAxsJXvgQgrmcScWlJ9Bjep951EcBQNfb9Zy55s1fjzS9vaG5wHPa4CM5d8gKO+MiOfTMmZzT+smrmjX4I3Rto8ZiUi8cy/H9vb1HpCb28grJnXsC3en19W+Lbr2AfMqBN6zUxMek4QiXENhA8EXs61AvsaphCzKS16MUHMSoLkKwOLD2Hn5LNrzB0Auu+wijLDdYYG3sFlrjQh6YZFSVoG5cghIEluSeWweM65P3pB3fi++j/EBXFAFgGjMR+zQPI4SfetKh5+dTNXYg9YzD2kRlI1o4/jeyM5H+2GN9b76AU5TVod197OdGPPdhlxJinoob9a3cSl5ZIysBgDTvVF2DZG3PQAmp9v+hu8fQc2Y/4XsnIloYno8IwKF62jexPfkCt9ODJKaY2q7CBEUL0iD5M+uDxLmf/b9I5yHpnIZsff7NR+5Cnb6RwwSYkxULijGEUL91K6hUTiRrWi6jBLa/JWLd0BaW/fqZBW/hPriHqF/d1mf9lE5OziVAJseuAfwIThRB7QrzGLoUpxExaiwh40YsPBuuJuaJP2ZdlsMbYJ4iasmCNsYnXIYfHNT+wlejZu9H2bAJAGTgaS2rH5MIJrwf/16+jZS4DQHJFYL/2AZSBo5vs75m7EDUnmPguu104J41FSet+1m1WdG+A/W/Mg+2bcVQXYampQC8oAiDygbuIvP3G07zC9lFxqJRN364m4PU3EFR2l4NRV0whopkThkBFLYGKGiq3ZbPuvpdBCOInDWL8W7/E4rCdEWUAziaEEBh+FYvjxOY2LUGt9db/Pek+lb3//JbStbtJmjkcgEOz1+ArqcQa4cJXVNHk6Vf0yL6Mfuk+wrrFYXG2bT1CCOrmL6by/15FBAIYVTX11yS3i+RP3jhjaimamJyJhEqI/Q64kqB9/bfAXpq2r3+unevt9JhCzKQrYXhr8K/8CPwesLuwj70i5AWfhRDo21ajF+UgyRasky5GcoSF9B7Hom5Zgf+Lf4Mv+BGkjD8f+8W3N6o5JjQd/5bt+DdtQxw2r7CmpeKcPP6sC1es2pnDoW+DeSphKTG4f1xN3fzFAEQ9cBfuay5tENLZVSk5WEjO5n2UHCwkOiWWMVdPqz8V01WtWev73C9Wsv7+V+pfyzaFxHOHY4t0ETd+AGk3dM0cuzMJtboO2arUC5u63BL2/mcutkgXnpwScj5ZDgRzqyb+97H6XKuWovsCLLv8WSq3ZLVrnRnP3kLfey5scX9hGGi5h1C6pSApFoQQBLbsoOiuh5vs77rkPGKeeeyse7BkYtLVMO3rQ4wpxEy6GsfWGMNixTbiQiyJvUN6D6GpaJlLsfQciJzQ8Y50RkUJvk9eqjfykOK74bjxESzdGr8vvaoa38q1qLn5AMgOO87pk7Cmde/wdXYWhBAUL91K+cZ9JEwfSkxGT4of+g3+DZsBkOx2HBPHYhucjmNkBvaMwad5xe3DW+VBVizYXQ6EEORuy+LHRZmERbnpO2EwKQNOHKa7+TdvkfXWgiavnfP980RnNG0KYhJ6vAXl7Pifj6nLK6V09c4G14b98TZcvZPY9OjreA+VnXSeuAlBV1d7XASSLOErDtq8h3WPZ/iffkrt/gK2Pv0uAKVrdp1wHgBHYhSunonU5ZbgzS8ncmhPlDA7FZuziBjQnd63zyRxxjCciS0XgGpePgVX3FL/WrLbEZpW7356LPYRQ7ENHUT0Q/e0eH4TE5PTR6iEWIsCmIUQ2a1cX5fDFGIm7UH4atFLsrEk90NS2hc60xqM6hIC679G+IJhLcrAqSi9RoT0aaoQ4pQ+nRWGjrpsNoHvPwRDB4uC7fybsE65rJFrohAC7UA23uWrMfwBJKtC+I1XITvPLpt7X0kVtmg3smLBqK2l4u//pm7+EoTP16Cf85wpRD/68zMi5MnQDVa9v4DassMmHZLE6KumENcjscn+wjCo2ZOP7gtQvnEvFZuzKFm1E++hUiIGdmfC278irHscBQs2UbZ2NyUrttPnjvM73WmZMILPT7uag6gQAr3Oz48vfsq+V+e2erw1Igy1+viAndZjj41g4gePYQQ0Dry3GNlmoc+dFxA5MLQPcHybtlJ89yPN9kv59kOUpISQ3tvExKTjMeuIhRhTiJm0FWHoaAc2ga4iuWOwJPc/tcLF58G/8WtEZTA/yNJ9CNYh53RI0WchBKKyFDm64zfyet5+fB/+HVEaPPGy9BmC/bqHkKMa58MZtR7qFv+ArX8fbAP6dfjaOjNCCIoWbUarrCFKqQ2WANi+Cy07FwDJFUbUz+/EffWlSJauHexQWVjO1nnrqKsIPoiQFQtJ/VKJ65lEUr/URqYex3NoznrW3vF3ACxOG46kaDwHio52kCQmvvdrkmaO6LD30FICVR42PPDPemOIhGlDSX/wMuLGnzpHPSEEvqJKkMCZGI3m8SEpFvzFlVicduxxEY3G5Hy+gq1PvUugorbJOa2RYahVJxZYfe48n163zawvP1C0dCvrf/YPhG5gCbMjVB1/2VHHTEuYHb3O32CO8P7d6HbpOCL6daPb5eND8vksNB0MHb2yCuHzo6QkISlK8JT6/kfxr9/UoL8cHRU8DQMsMdFE/+JenFMmtHsdJiYmp4dTIsQkSQoDkoQQ7Quq7gKYQsykPRjVJeiF+wCwJPdHDo89pfcXuha0ts8Peu7IManYRl2CZHOE7h6airZ9DaIkH2XEFOS4U2DZH/Dh//ZttLXfBxucLmznXI0ycnojZ0VhGCBJ9Zssoaqo2blY+/Q6q/ItPNlFZH/yAwCpl40nIj01aAwwdyEVf/sXRmUwfMs2sD/OcyZj698HFAXZ4cCa3qdLniZ6qzys+2wZ3mpPfVv61Ax6jWq+xlLeV6vZ9NgbDU5bXGkJeLKDTp6OpGhG/uUuEqYNRW4mF62jEIbBssv+QPmGvY2uDXriOgb84oqQ3atqZy6lK3+kbMMeokf0oe/dFyDJMr6SKtbf/w9KfgiGDTuSovEVVjQanzB1CGE94vGXVFO1I5u6vNJGfayRYYx++X6SzxvZ6JowDAoWbEJoOsnnj0JWmn9Y4C2soGTFDmLH9MeREEXBgkx0bwBJloibNIiwlPZ9Hgt/gMDOPSipKeglpUiuMApvurfRibNjwpgG1vMA7msuI+aJpvPBTExMui5tFmKSJAWAW4UQHx1+HQ68D/xWCLHtuL4/Ad41c8RMTE6OEAI9fzfCUwEWK0rasJDX3mrJGrS9a9H2rgFAckVhG305srt1Se0nnN/Q0TYsxqgqQ7LagsWenafGHEPbsQ7f5/8Ez+En37IFy4BRWEfPwDJgJJKl8Qa5bukKArv3oyQl4JwyHktMaH4OnR0hBLlfrKQ2qxDF5aDPT8+rN0DQK6uofOk/eL6e1/Rgi4x92BCif/1AUKB1Ifx1PrLW7qS2vIaqwnKm3nEhNmfjYrlNUfVjDnv/PQdJluh120xiRvShNquAhdMfxwgETzEiB6cx5fPfYotq3vwkUFlL+cZ9xE8ejMXe9OdA0ZItbH/+IzAEPa6fSt97gjX0tDo/Bz9YQt7sNZSv34MjMQpD1QmUB0/9hv3xNgLVHna++Fn9XL1uPZeUC0cTMaA7zuQYAGr25VO6eiexY9OJSD95fqcnp4TiZVspmJ9J4cJNja7Hju1PxZYDGH61idEtw+K00//BS0k+f1SrbN1PF761G5FcLnzrM6l6pW2lVuP+9Duc5049qx4EmZicLbRHiBnAzUKIDw6/jgVKgJlCiMXH9TWFmIlJCxGqHy17a7DIc3gcluTTEyKn5e9G3fJ9ML9KsWMbdXHIao0JXx3qmvkI1Y8cEYMy+txTFt5mVJejLv4MdfMP4D168iG5I1FGTMM67jzk+OApndB0vEtXENh/MNhHlrANHYRj1LCzou6YWl3H/re+xwhoRA7sQdKsEQ0EgW/zNjxfzyOwfRdqTl7QzvtYAwGrFceYEahZB7Gl9yX68Ye6VF6Z6gtgPcbmPOD1o9itDQpCt4SCBZvY+rt368MV7bERRA3rRdWPOSROzyBp5ggSz8mgZm8++fM2gBDETRzEliffpnZ/AQCyw0rc+AEkTs+oLzpdvecQhd9nNrjXmH8/QO2+Anb9/UuE3rSPVq9bz2XEi3cC4MkuZv64XzS4bo1yETumP6VrdqHVeOvblXAncRMG1of3QVB8Vu3MJVBe02qBlTRzBOF9UyjbsAd7fCTh/VKo3HKA4mXBZ7mSRUZxOeh2+XjscRH0//mlWN1d56S1bvkqSn/ZsvKqEbffiG9dJpLTgW1gfwDksDAi7vgJUgtO80xMTLomphALMaYQMwkFRlUxetF+ACwp6cjumNOzjooC/Bu/AX8dSDLWIeeg9BgamrnLCtEylyEQWFL7nrDeV0ch1ADajnVoGxaj79vSoMaUpW8G1nHnYRk8FsmioObl41uxFr0quAGWXWE4JozB2jvtjH9KXZ65j8JFQfdE2aYQOSiNhKlDTnhCY1TX4MvcSuVLr6IdrtN2BDkygvCbrsExbiS2wQO6zM9OCMGBDbvZu2oHzogw+k0aQlK/1FavP/erVWT+8rVGuUehwBbjJlDedP4UBEXU4CeuI6x7HEkzRzQw6SjfuJeVP3kRtdJzwvGtwd07iYRpQ8l49hYki8zWZ/7L/tfmYU+Iwh4bztDf30zitNB8jnRGhK5TeMvPUPfsb3TNMWEMjlHDUA9kYxs6GOeE0Sjdkk/DKk1MTDoDnVKISZI0BrgdOAdIA8qAVcBTQoh9x/WdCLwIjASqgY+B3wgh6o7p0x14DZgIZAEPCCFWHDfP1QSLUvcXQlS1ZJ0nWLspxEzajRAC/dAuRF0lWGwoPYc1GTZ3KjC81UFHxZpgjoal1wisA6cgSe13W9MP/Ii2bysASvpILD36t3vOtmBUlKBlLkVdvxBRUVLfLoVHoYyZiW3SxeBwN6o7piTG47p41hl9OnbE2r5iywEMNRheFzumP4nTM046zvB6qX73E/TCIpTu3ah5/9MGxWZtQwcScftNOMaNRHaELgexo9g6bx35O48a/yb2S2XYheOaNfI4Hm9BObtfmo3nYDFqTR26L0DV9qPzuvskY6gadTnBv8OojF4Mevxa9vzjG0pX70S2W4mbMKA+jzF2XDpp102lLreEZVc8C0bwe7v7VRMZ+Ni1uHsmUrn9IO5eSSiuE/+ctTo/5Rv2EKj0UPB9Jv6yaiL6dyPxnGHEjulP2Ya9FH6fSU1WQf2YQHktlVuycHaLo//PLsbdN5m4cQPaXJy4KyGEwL8uE728AhFQQQiMmlo88xej7mqYg2ft15uoB+7C2r8PSnxjkyATE5Ozl84qxD4DJgGfAluBJOABwAWMFULsPNxvOLAa2AG8DqQCvwYWCCEuPWa+RUAi8ApwETAB6HNEcEmS5AB2An8UQrQtiPvovUwhZhIShOpHy9mGHJWEHJMSEuHT5rVoAQKb5mEUB/125IRe2IZfgGRtWe7MCecVAm3LSoySPACUIROwJJ++vA9h6Oh7NqOumY++a2P9KZkUFYfjp09hSeoRrDu2ZgPqwVysPbrhunDmaVvvqUT3BajceoDqvfmkXTsF2da6BwNaYTHV73yIb92meudFAKxW7BmDcE4Yg/v6KzqtyUfAF+DA+l1UF1dSlhMMMQyPi0Sx23BGhJFxwdg2z+3JLiZ/3gYsDhs9b5qOpFiCJh+GgatnIpIs4y+t5sB/F5NywWgiBjSdq1W6ZhclK3YEnf2ayecKFWpNHYrb2WVON1uD0LR6gw29opKwmdMwyivwzF1E5f/7d4vmcF9/JZF334IlKrKDV2ticnYhhIDAYaMbm+OEn0Ei4ENdtxCjMActcynYg98xYQ+8gBybdIpWe2I6qxCbCGwQQgSOaesHbAM+EkLcfrhtDpABDBBC1B5uu4vg6de5QojFhx0ba4FpQogfJElyEjxhu1IIMf/wmN8BlxIUee2yijSFmEkoEbp22k7CjkcIA23nCrQDwZwUyRmB0n88lpQB7apFJHQtGKLorcU6cjqSu3NsWIyKYtR1C1FXfBv8sHeE4bjlcZS+wZAqLb8QKcxZv8ESQuBbuQ6lZ3eUbsln5MYUgm50x/6+q3fl4UpLaNUpiG/TVqpeey9YMNo4msdk7d+H+L8+h5LcdA2vzsL+dTvZu3J7/euE3imMvHxS/etTXTPPJPTUfPIVFS++3LbBNitR99+J66KZZ425j4lJRyACfoz8A6jrFsCxn6lCoG1c0qCvMuqchn0AoygXI7exSyxA2KOvIMed/rDg9gqxD4AjmcJhwB+A/wDHv+tRwA3tzRGTJGkjoAkhxkmSFEFQUP1ZCPHkMX1sh9vfF0LcJ0lSzOHXGUfcHCVJKgPuEkJ8KUlSD+BHYJYQYnV71nd4blOImXQYnWGDp+VsR92+GMThgrCuaJR+47Ck9G/zqZ1QA6Cpp8w9sTXoh7LwvfU8oqYCLAr2a36OdWTj4rxaXj613y0AQI5wY0vvh61fb+Tw5t3xuir+smqy3lkYrKt06bhWjzeqa/Bt3IJv9XpqZ88B3UByuYi84ybCb7gK/7YfqX7/U0Rd0DBCCnMSft0VKKkpCI8H24DTE8oKcGjHQQ79eBCrw0b3jN7EpQWfrFYWlvPj4kxGXDIRZ0TYaVufSdvQKyopffwP+DO3NtvXPnYk8S8+Q2DfARAC2elAstmw9u7Z8Qs1MeniGBUl+L97Gzw1DdqliGikqDj0rB0YOXtCek85LR05KQ2lbwaW9BFI9tMfgdFeIdYaRHuEmBTcfeYCW4QQF0uSNAlYAVwthPjiuL4/ADYhxLjDr/cTDGF8CrgS+DPQVwhxUJKkjwG/EOLWFq6jOYUVGRkZiSnETEKJMAyM8jzQNSyJvU/3cjBqy9H2rqmvNwYguWOCgiwEhaiFGkD46hrV+DpdGBUl+N76I0ZRMKTOdt6NWGdc0+B9agVF+NZlohUWNxhriYvB2rMH1p7dkWOiT7uQDiWVO7LJnxOsd5R6+YQGbnqtxbdhE6VPPFdfn8ySmIBeWtbQhfE4Yp58BPdVl9S/FkKAEO06oW0v679YTll2EYrdxrCLxhGXlnhG/c7PVPSqagpvuAu9pKxBe9TD92IfPoSq197Dt2odAK6LZxHz9KOmm6FJh3DkcwxAlBxCL8xBGToekDCKc9H3Nv2QQHKEoQyfDJbjcpZ9dWhbVwYfeDY1zh2BkjEZJAlRVoi2O7OBeVVzqKvmgDCQnG6UkdMbXNMP7sTI3gXHR/ZoGqK2lftkWUYZPqXh2sOCxd9FXXVTI4IIsKQPRxneOUtAtEeINX4k3AxCiGWtHXPM/W4G3gNuF0K8I0nSNQRzyCYef5IlSdInwAQhRPfDr2cd7hsJGMCTQogXDr+Hb4B0IUQBLcAUYiangwYuit0GIrs6iUCpKQsKsoKjh+BSeCzWfuORk/q26UNPBHzBUEWfB2X0DGR353ivwuvB994L6PuDIWnK2FnYr7wHSW64GdMrKgns3oe6Zz+G92ihVktUJOHXh65gbmdACEHu5yupPRCsNZZ23VTscRFtnk+vqqb69feo+WR2vQCz9umFc8ZkAPwbtzQ8qVAUEl55EVFXR81HX+LbsBl0HfuYEUQ/dA+WlCQskW1fT1vI35nN1nnr6l8npXdn2IXjOuUG4GxGCEHd/CX4t/+IrU8v6hYsxbfuaCkAye0i4R8vYh8y4DSu0qQrIwy9gfkTsowUFY8kSQhPDcLnQXhr0TKX1UeYGDWV6NvaHZzV5bBOuwIMHfWHb8BxOJIg4McycDTW4VM6zelVR9BmIXYqkSRpALCWoHHHNCGEIUnSLcC7wCghROZx/d8FLhJCxB3TFgEMBHKEEAWSJFkIhlV+cFiU/Qx4GJCAvwshWpaJ23itZmiiScgRQqDn/YjwViMpdixpGZ0mdwzAqC5B3bMGo+ioXbMUHoe1/3jkxD6t2oQKTw3qhkWIgA/J7sQ6+lyksM4R3ic0Ff/n/wx+cQLK0InYb3i4yaLbwjDQi0pQD+agHszB1rsnjnGjTvWSO5xja40BhPdNIeWC0e1yzlOzc6l6/b9IioXoX92P7A7+/oUQBLb+iDB0yp//O9rBnGBOwIm+q2SZ8J9cQ+S9t51SZ8Z9q3dwaGc23qqgHXxEQjS9RqcTl5bYoC6ZScdjeOoI7NgVPJk+HDKo5uRReNO9CJ+vyTHHn7SamByP8NSgH9yJunpuo9MeOSEVS79h+N54tsmxkisC4TnJCU4LkKLikMLC618b+QdaNE5O6dXg9QnHhbmRo1pW81EE/IjSfOTkNGgiPUFoKkr6COTkno3X060PlqTQ1CftqnR6ISZJUhKwErAA44UQhYfbW3widoJ57wceAQYDU4GvgJsBQTD37RIhxJITjT/JvKYQM+kQRMAbLPQsDOTIxE4Rong8RlVxUJAddlcEkCISsKZPQI7v2WJBZtRUoG1YgtACSE431jHndpqnYUIIAnPeRV0+GwBL/+E4bnkMyXbijb4QIpj/dIaGMtUeKKRw0WYCFcE6VtHDepN83sgOvaeak0fpY79H3RfcSNhHDyf8mssQuk7lS/9BLzqmDIErjPAbryLyrltP2e9ACEHm1yspOcbuvdeYAaRPPnPrZ3U21OxcCq6+vUGbJS42GPLaFDYrSW++dFpzD006N+r6RQSWfoEobVEQVcuRLVgGjTn6MrE7St8MhK6B14PkjkTbthqjqgzruPNQ0kc0GC4MPSiqAieoUeh0ISc1rnspdA0jbz/oWn2bFB2PHJ0QuvdmclI6tRCTJCkSWAp0ByYJIXYfc63FOWJNzBtD0FDkNiHEt5IkvQFYjnFjfAdQhRB3tWHNLRJiQghKS0vx+XwYRmvT7UzOVoTfg/AFN7uSKxpJafvTdVmWcTgcxMXFhTxsyqgsDAqykoNH7xfTDSV9EpaYlJbNUVGCtmkZQteQ3ZEoo2Yg2dpnlx8qhBCoS78gMO99IJgA7Lz9ty06uROahnfZKqx9emLteeY8CRSGQema3ZSs3IEky/S95wKs4R1rViFUldrZ85Aj3ITNml7/oAOY1QAAIABJREFUdyw0Hb20lNovvqP63Y9BC24y7MOHIEdH4Vu1HinMiXPy/2fvzcPjqK78/fdWVa/a992SvNuSF7xhjFcMGLND2JJAcEgywWRhEoZkmHwDyUAgJCEk+WVmSAYGJ0CAQICwBUPAAuPdeN8t25Jsa7d2qbequr8/Smq5rc2LbEui3ufxY/WtW7dud1d333PPOZ8zE21YFtHXXoGa1P9F04O+AKWbizlWVkVUQgyFl0+zQxTPATIQpO7RX9PaLp7TE1puDunP/Q9mkyUWoMREo0TZAivnAillzzlChgGKgmyuR9+xDn3Dh5ZYUjvORV9Cm77Q6rpjHaGtn6LExONc9CVLmtww0Dd+ZHliCmci4iI/28IT3W0UQ8T8QkFkWzP6ZyuQActzKuur0bd+2qWviI5Hu2AusqUBffMncHy4uicK73d+CUhCGz+C9rEQAq1ghhWq6HAios5tCLXNwGHAGmLttb3ex1JcXCilXHvC8Tiglp5VE/8ipfxmD2P/FzBcSrm4/fE/gM0d4wghHgMmdxw/xXn3aYhJKTl69CjNzc24XC5UdWjuktv0P1JKMA0sx60ART3thZ1hGAQCAWJiYsjKyjorC0SzvoLQ3tWYxzrrRimp+TjGzEKJ7TvswaytQN+yEtmeCOyYPGfAyNsDhNYuJ/DGHy3FtPRcnFfdiTpyYq9iEb6Vawjs2odwaERft/isGADnC2mYlP9jIwkXjMCblXS+pwOA0dBI07IXaX7+lR77qOmpJP6/+3BNLsSorkVNTUFxuwgdKUdNTuz3sEbTMNldtBmhKAyfPhZ39MDw9g42pK5jVNeiZaYT2LGbllffxGxpxVe0KqKfiIpCtraGH3sWzCHhvnvQ0u1d/3ONNAzMikP4nnkY2pr7PuEsoQ4vRER3Gj+yPSdVqCpm4zHM0r09nQqANmUejplXoOaOOavztBn6DEhDrD1/6zWs4svXSSnf7aHfP4BCYNxxdcS+hlXc+TIp5T+7OWcCVr7ZBR0eNiHEMiBWSnlj++M3gHop5VdPY+59GmI1NTXU1taSlpZGYuLQWYTZnBukaSCD7XLequOMiirX1dVRVVVFcnIyKSknFw9+Ohi1ZYT2rEI2VoXb1MwxaKMv6lN4xKw+gr59DdI0UJIzcVww96zN83QIbfmUwMu/bTeQQSSm4Zi+0BIaie36+TbbfLS8/g5mSyuKx41n7kVDyjM2UPF9uo5jP3kcGQoR9/U7rLaVa7qVKdeyM1ES4ghu342akUbsnbfhufjCfqlvFmj1s+6VItrqrUVoUm4a028cWPf0YCB0+CjVS/8No7Ia4XEjfd3keykKsV/7MrF33oZ+pJzgjj14F84d0iUlBiL+157CPGqFq5tHik/5fBEViwz4rFzQ40LoziXqqMnhv7UL5uCYuuC8zMNm6DFQDbHfYAlnvAX89YTDLVLKN9r7TQFWAzuwjK9s4D5ghZTyyh7GXgF8JqX8t+Pargb+Djze3vRDrByxf5zG3Ps0xA4fPkwoFGL48IGX42MzOJB60PpBcri6qPadKgcPHsThcJCT02NKZb8gpcSsPEBo32pkS53VKARqTgGOUTMR7p4XR2ZTHcbezWiTZg+Y8MTj0Q/sIPjBS5iHdnU2KgralPm4rvxKl7ATo7aOlreXIwOWnLBzzEg8s6YjnENLyCHU3Eb5uxvJvnbmGYl39BcyEEQaBoq30wPV+t5H1D3+W2RzS+8nqwreS+cT86Uv4Bw5HOGyno8MhWj7oAjh8eCePtkKM3L1/FyllBxcv4f9qzsLQqePyWHs3EmfK8+Y6Q9Y+a6eyOcsDQPZfqz1vRXhcgYAwb3FOMeMwGxspvnFv/U6fvx99xBz2412KOg5RgYDYQVAo2Q3/v97pMe+Ii4J913/L/I3TEJo/QeI+GQrD8oTHVHGRPpaI8IUEQLhiUb6WiJFe1QNnC7wdXpCAYxDuzBOEKjQN3wYYeBpMxdZQwwbjZo3DpFol6CwOXsMVEOsCOhJHr9USpl3XN/ZWAbUFKAJeBl4QErZeuKJQoibgf8PGC2lbDrh2L8D38FSTfyNlPIXpzn3Pg2x0tJSAHJzc0/nEjY2dHw2++PH4Vzfj1KaGEf3oO9bg/S1h6YoGo6xF6PmTe7xOZ1YzFq2NIInGjGAQnvN6iOE1v+T0KYi6FDF8sbgunoJ2pTjcpikxKg8gn/jTvRyy0uoxETjXTgXLe3seSbPNWWvrKSlpIqo3FSGfWE2Qj1/9b16Q+oGRn09gQ2bMRqbaPvHh6jpqbgmjKftgyJCh0ojPS5C4J5+AWpaKv4NmzCOrx3ndBD39TuI/sI1CFVBiY5GBoKYfj9qXKz1d3MLSlICm99cTfXBcgASspKZev0cNOf5U0P1b9pGw2+eQk1LQY2PQ8sbhnv6BVYUdGws0u9HG5Z9xt87DX9YRtP/PgeAe9YMUn79CGZLC9IfoOpr92JUVfcxQiSxX/0SSnQUrkmFOMePBofDXjj3I1JK5LFKq85UsPNzIDQHUtexQuUh8PLvMCtKehzHuehLVjh9VKxV70pzDpj3SRq6VYOwj9wxG5v+ZkAaYoMZ2xCzOR+caKScCufrfpSGjlG2g1Dxegi2AaAkD8M58TKEJ6b3c32t1q6pJxpt0sUDRlGxA6mH0Df8k8B7L4Dfem7q8ELUURMxyvZhlu1DtjYhYhNRpl9HsKwRaRhoGWlEXbNowCxOzpTGXWUcfceqqZU4ZSTpCyf3ccbARIZCtC5fQfOfXyZ0sOSkzxNuN97FC/GvXo9RewzvZQvwb9iMWVdP1NWLwOulZvt+ykcUEIyNJ3NcLhOvmHH2nsgJSN2g8ZnnCWzaChICW7eD0bt4lGfBbJIff6jHPEizzYd/42bU2Fickwq63Mt6ZTXl134ZTlakyunANW4Mga2dHkTXpELQVGLvuBXP7G41uWzOEGnoGAd3IutrCPztv89oLCV/PJ7b7x9Q+b02NgMF2xDrZ2xDzOZcI00DQoHTDlM83/ejDAUI7foY40h7WJ/mwjHhErTMnpOgjaMHMXZtQCIR7ii0ybNRYhLO0YxPHrOpjuBb/4e+bXWv/dSpCzHc+XgvXRARNjcUqF65g9q1exBCMPyuy3El9m5kD2SklIQOlhLaV4x//SakbqAmJRBz07Wgqhi1x2j845/xr9lwauMqCmZMLFHTJpHy6I8swQDTROlF9KXLGLpB24cfY1RW41/3GaHDRwFLfCD2ztuIuv5K9NLDtK34FKFpGNU1tP3zY4yaHqTce0NVibrqMjzzLsYzZyZCUZBS4lu5htrv/zjczTVlIgk/+C7B3XvxXjIX4XZR873/h3/1+l4GB+9l84n9yq3gcOAYnmuNrxvoZYfRcrIQDttrcaZIQ0ff/AnS1yV4CGP3hnDh+tPBfdePw+HYSlI6whN12mPZ2Ax1bEOsn7ENMZtziZQSgj5LVVAo4PScsjdloNyPRmUxwe0fQrsQiZo5BkfhAoSje8U6s/oI+o61SENHaA60SbNREs9cTOFsoO/5jOAHL0EoiDJsNOqwMSjJGQT+8TxmmaXOJVKycN3wL5aalxAYDY0o0VEIbeAU7j4dpGly4OnlBBtbz0l9sfONlBL/qvWEDpVi1B6j9b2PEE4HjhF56IfKcE4cj3PMKJpffh2zvrFLUeG4u7+K99br2fDmWlxRbjxxUcSlJpA2KjsctmjU1tH84t8w29owautQU1MI7tpDcPvu05pz1NWXo2akocbF4l18KcLlQjg0pD9gKRNWVhPcuYeWt97rcg0lMR7XhPEENm8Py8CfDEmP/AfeyxfQ+s776OWVtL7+LkbtMbSsDFKefCRcfNnmzJBSYpYfQv9sRTiHSuoh9PW9S/tH4PIi3B60C+aiZo9EHVGI9LWib/0UkZCCNua4z7Tbe8Z5yzY2nydsQ6yfsQ2xc0NFRQX33HMPH3/8MfX19Tz77LMsWbLkfE/rvHCmKooD6X6U/laC2/+JWW0lUwt3NI5Jl6Mmd68qaDZbdVtkoA0hFNTCmajpg0eBUBoGoY9fJ/jBy2HVRSV3DI5Z1+Dbfhjh8eC9dB5q/OAO6anbVEzlh1tQNJWR/7IYLap/5eAHM6bPh3/Velre/Af+1ZYnTUZHU3zJNYRi4tBam0EIdG80Iy4cT8boLFp/+FBEqN7xOEbmo8TG4r5oGorXS/2v/9uqy9QNrqmTiLvry7gvnHpyc21uwffJGnyfrsW//jPMxq6Gl5qaTPTN19H4X8/0OE70jVeT+B/fO6lrfl6RhoF5eB8yFOxs1EPW/5rDKtxr6IikNNSsEZjHKjHrqiIHMU38f3qsT6VBJTO/6/X1EM6511m5rQMoD9fGZqhhG2L9zOfZENuwYQPLli1jxYoVlJaWkpSUxKxZs3jkkUcYOXJkRN/58+fz8ccfdxnj1ltv5aWXXurzWrfddhvvvfceDz74IKmpqcyaNavfVSj9fj8///nPmT9/PvPnz+/XsfsbGQoiDesHWzg9p7QjOdDuRyklRtl2Qrs/CS8g1PwLcIyZhVC7hiRJXyuhzZ8gWxsRCNSxU1BzRp3raZ8RxtEDBN78P8ySTm+DdMVhxuRBQh6eBfNwjsg7b/M7U8ygzv4/vIvhD5J4wQjSL73gfE9pwGEcq6Pm/ocIbutU3gx5o3G0WWqObSnptKZnEX9gb7gNlwtCIVyTC1GTEom66vIuOVNmUzPB/ZZ0OKqCGhuDmpyE2dp2xnL8bf/8mLaPViJDIdTEBNyzZljqnw4HodLDqIkJBPcdQPr8CI9lfAuXE+f4Mb3W2vs8IqXE/8x/IhstRVmz+nAfZ5w6Ii4JJbv9t1gIlNRsnJfdanuwbGzOI7Yh1s98ng2xm266iVWrVnHzzTczceJEKisr+f3vf09rayvr169n3Lhx4b7z58/n0KFD/OxnP4sYIy8vj9mzZ/d5rfT0dBYvXsyzzz7b78+jg4aGBhISEnjooYf4yU9+ctau0x90DVF0W/+fBAP1fjRb6wluWY5sqARAeGJwjJuLkj6yS/ilDAXQN6/EbKxFTRuGOuGiQSd4IaXEPLSL4IevYBR31raSQkVGZaJOmI1n8bUoroEn338y1Hy6k5o1u8m+ZiaxY7PP93QGJFJK2v75Mcd+9LM+xSy8N17NzrTRhJpbmXD1xaTkZ6AMUFVKm0j0neswyvZHtIWKXuv5BEU5eXGTEw1coSASUvDe81iXMho2NkMZq8xPqOcODs+A2BDqzRAb3IkJNuec73//+/zlL3/BeVwtpFtvvZUJEybw+OOPs2zZsoj+CQkJ3H777ad1rerqauLiBme4VjAYRFEUtH7M/RFCIB2uTmMs6EM63IN6p1OJSsB10S3oBzagF69H+poJbnoHJSkHR8F8lJikcF/hcKFNnY9Rsseq+zLIjDCw3kN1eAGe4QUYpXsJrV2Ovm01Qg8iWg4j17xI66Z30KZdgvuS6wadAlnyrHGoXhcxY7LCbYYviK+yjuj89PM4s4GDEIKoy+YjAwFa33gX94ypqKlJyGCItqJVGBWVqGlpRC1aQNQ1i8jZXMy+T7ez+a3VuKLczLxtIZ5Y7/l+Gp8rzKY6gsv/gnB7cS76MsLpQoYCmBWl6NtWIRvrUEdOQEnPxayrJPDSb/sc03nd1wGB8EShTbgoLKmu79kEpo46bjpmRQmyuQHZVIcMBRGKgjpmCkrC0Cl/YWNzspitDch29WUMg+Dmd8P55j3hmr8EEdXF9hlQ2B6x0+Dz7BHrialTp6JpGuvWrQu3zZ8/n4aGBjZu3Ijf7yc6uudivsezbNkyvvrVr3Zp77hX6+rqeOihh3j99depqakhLy+Pb33rW3z3u98N9w0GgzzyyCO88847FBcXo+s6U6ZM4T//8z9ZsGABACUlJeTnd42b7/COdYQqFhUVRRxfsmQJRUVFlJSURIzz61//GtM0+f3vf09ZWRkHDhwgLy+PnTt38uMf/5iioiJ8Ph+TJk3i4Ycf5rLLLguP2dzczI9//GPeeOMNKioqiIuLY9KkSTz++ONMmRIpfCANHRkKABKhORFa30V0B8P9aLY2ENr1cTh3DKGg5U1GG3VhrzlxZkMtIiZh0OY4SF8roS2fEPrkHWRdeecBhwvn/BtwzL0W4Ryc+VaB2iYOv7YKvdVP3pcX4E4d2D+IA5GWY02sfekj9KC166u5nCRkJpGcl07SsFSiE20PSH9iHD1oSbkrKpgmZvURS7H2NFHyx0d+R7vcuG/97qD9TNsMfmQogFlbZqkx94LQHCjJuQi1fzaUZdCPUVsWLgZ+spi1ZZ2Ky6eIa/4SlAFgiNkesQGCrutUV9Sc72mESc1I6RePjZSSqqoqJk2a1OXY7t27iYqKIhgMkpGRwbe//W3+/d//vVfJ5rlz5/Lcc89xxx13sGjRogiPWmtrK/PmzaOqqoq7776brKwsVqxYwb333kt9fT0PPfQQAE1NTTz99NN88Ytf5Bvf+AbNzc0888wzLFq0iPXr1zN58mRSUlL4wx/+wDe/+U1uuOEGbrzxRgAmTpx4Wq/D008/TSgU4p577kFRFKKjo9m+fTuzZ88mNzeXBx54ALfbzQsvvMDixYtZvnw5CxcuBODuu+/m7bff5tvf/jYjRoygpqaGlStXsmvXri6GmFA1EMLKreomn2qwokTF45p+HUbVIUK7ipBtjeiHNqGX78ExdjZqVlcvmFlfjb7pY0RyJtrEWYPTS+aJwnnRYpwXLSa0dzuBd1+G2gMQChD84CVCa5fjuOQLaONnoMQnh8+TpjkgQi56Q4t2gwBTNzj8+mryvjgfh+3NOSWik2KZ+7UrObrzEPs+3YEeCFJzqIKaQxVkTxhO4aUnJ8Jh04kM+Ait+wCQlshJ+8JQBnyEil7vt+t4vvsr1Kz+zWu2GXpIKa3wOikxyvcgQwHUlDzMuqOE9nwKJ7HZetxgEGpXaXX2UCalDy9SF3oapztCAbS8ydYaRXMhfU2WEdUezdPvKCrOadcg3N1vSPVVr3QgYHvEToPT9YiVH67g+gtvO+vzO1neWPcSmTkZZzzO888/zx133MGyZcu48847w+1f+9rXyM3NZcKECTQ1NfHiiy+yfPlyvvnNb/LUU0/1Oa4QgnvvvZff/OY34baHH36YX/7yl2zdujXCm7V06VKWLVtGeXk5CQkJGIaBYRgRIZQNDQ2MHTuWq666imeeeSbc1lOO2Kl6xOLj4ykuLiYpqTOcbuHChTQ0NLB27Voc7XVxOrxzXq+XtWvXAtZuyY9+9CPuv//+Pl+XnpCGDorarTEyGDxixyMN3TLCiteHxTyUxCwcExaiRCeG+xmle9H3bQZAHV6ANmLCeZlvfyJNE9nSRGjVW4Q+fbtTRQ1Q0nMRCSmYtRXIY5WIxFRcV38Vbdy08zjj3vFXN1DyYhFmUMeVGMOwW+fiiB5addTOFU3VDVQfLKe2xMqpnH7TPFRNpbWhhYo9ZWQX5uOKcg/KDYmzhdRDmLXl0L7U0bevJvThKyd1roiJBwQoKq6b7rG8Y3oQfcc6ZFM9jouvxHHxVV3zuxQFEAN+o8Sm/5GmgWytD99vPWIa6GXbkUEfZtWBczK3bnH1UP8t0LX23Dm5bk/oQdScArT8CxAd5woxaFIzbI+YzVljz549fOtb32L27NnccccdEcc6jJ0O7rzzTm655Rb++Mc/8r3vfY8xY3ou5tsTr776KvPmzSMmJoba2tpw++WXX85TTz3FunXruOKKK1BVFbU9VM00TRoaGjBNk2nTprFp06bTeKZ9c/PNN0cYYXV1daxYsYJHH32UxsbGiL6XX345Tz75JG1tbXi9XuLj4ykqKuKuu+6KGONkkUYIGQogVA2puQb9QkyoGo6RM1CzxqHv/gSjYj9m3VECK19AGzUTbfgUhKJa9bramjGOFGMc3InwxqJmDA5jsyeEoiBi43EtvgPHzEX433gW8+BWCPoxK0uhsjTcV9ZW4F/2KGrhTJzzrkdJy0G4BpaR406NJ+f6WRx+bRWBumZKnv+I7Otn4UkfeMW5BzqxqfHEpsYzcub4iPaQL0Dxmp0Ur9lJbFoCU669GPfn2NiVbc0YJXswaysIvrOsz/4iMa3d6AKEgmPaJTimL+zacfRkAJzzb+x6bJAsCG36D2mamHVHkf4W9NKtCEXDrDvS79dRswtQU0/ud81sqceoOohQNdTcSfS4FHB6URKzelwrSNPAPHYY9GC3x7vDqDyA2VhtGaLtKAkZIEHEJKGmDAN3NGpC5kmP+XnANsTOIakZKbyxrm/Z9nNFasaZJfxWVlZy1VVXkZCQwCuvvNJruGEH9913H6+88gorVqw4LUNs//79bNu2jZSU7udeU9MZ+vmnP/2JJ554gj179hAKdXoVussL6w9OHLe4uBgpJQ888AAPPPBAt+ccO3YMr9fLL37xC+68807S09OZMWMGV155JbfffvvJe7Dad2OloSOktEQ8BrkxBqB4YnBOuQqjppTQ9n8ifc3oe1dhVOzDOfEylLhU1DEXINuaMeuqMHatR3iiIkL4BjNGY4BQKAOZlYoiW1CUNhS3hpY7AiUlg9Dqf2AUb8PYsRbfDsu7KhJSccy9DsfMRQNmRz4qN5Xs6y/i6FvrCDX7KH35Y3JvnWcbY/1EfXnnplRTVT1rX/qIqdfPJiZ5cIm9nAnh6J5QkNaffaPPBaRz8R2oIyciYhNQYhN77Wvz+UVKiWyq6WJgyVAAff+6yLbTvIaaNQ4RnYCanAuKgnC4kYE2ECCik04pR0sFHKMu7LNfXwhFRU3JO6Vz1IzRAMigD+lrOuW5f16xX6FziKZp/RIKOBBobGxk8eLFNDY2smrVKtLTT04RLScnB7C8RaeDaZpcccUV3Hfffd0eLygoAKxwySVLlnD99ddz//33k5qaiqqqPPbYYxw4cHJhAEIIugvdNXoonOrxRO5Am+3G0Q9/+EMuvfTSbs/pMChvueUW5syZwxtvvMH777/PY489xqOPPsprr73GokWL+p6s5rTmqweRpnGcouLAWIifKWpKLsrcOwjtXY1RsgXZVENg1Ytow6ehjboQbeIsQuv/iWxrRt/6KY4ZlyE8pxj6MADRMtJQM9PQj1ZiilhMYsEPof1NqE1u1MnX4poyn+AHLyLrrU0IWV9N8O//i759Ne6bvoWSNDDUCqPz08n70gLK/vYpoaY2atfuJuf6Wed7WkOCYZNGIhDUVxyj5lAF/uY21r28gszxuaQOzyA5d2DcA/2JbBfS0D9bgWxrQd+0Atxe1KyRXYwwbfIcXNd+vbPB7R204j42fSP1UKe6npQYh3cie5M4B9TELERcKhi61V+2e7uaTjKvX3MiHG7LqPLGoqadRG6gUHoUohoMuU09IZwexKnklX3OsQ0xm1PG7/dzzTXXsG/fPj788MNT8mwdPGgVHe3Jo9UXI0aMwOfz9WjYdPDqq68yfPhwXnvttQjPUIeYRwe9eY0SEhLC8z2ejnyrvugoPu12u/ucL0BGRgZLly5l6dKl1NbWMmXKFB555JGTMsSEEFZCrxDIUAApTSsx1jm45e2PR2hOnAXzMTJGE9r2AbK1Hv3ABozK4rAxpm9cgQz60bd+ijZ94aDfjRMuJ9FXL8JsaiZUdhS97DB6eRXSMNArqjCO1eFe8kUcU+cjW5sxqg+jb/gQ/bMVmAd30var76COmoQ2eQ5awYzzHrboSo5l2BdmU7t+LxmX2QWf+wtVU8mbOpo8rDyyTW+uwt/cRtmWYlxe95AyxGQoQOjjvxP8oJvokrYWjP1bAFByRuGYcy3amAsQblsgZjBitjUi26ywfuGJQbhjMBur4AS1P+Po3rDhJQNtyMaqU76WUbKlzz7CGwdapECWEp2IY+Llg/63xub8Yd85NqeEYRjceuutrFmzhr///e/MnDmz235NTU24XC5cxxWmNQyDRx99FEVRTsow6Y6bbrqJhx9+mKKiorCYRge1tbUkJSVZtZradzullGFja926daxZs4Zhw4aFz/F4PAgh6E54ZcSIEbz77rvU1NSEDcetW7eyatWqsGevN1JTU5k7dy7/8z//w7e+9a0uxmfHuIZh0NLSElEzLTk5mezsbPx+/8m9MO0I1QEoyJAfkMigDxxDSyZZTcxEmfNl9OL16Ac2IlvrCW15D1xe1OR8qKlFJKYNqZwNJTYGV+FYXIVjkaEQ+tFK9MNHkIYZvr9FVAz6sQAyYxqu26YQfPdZZFMdxt5NGHs3EXA40cZNQy24EDVrOCI+BbPmKGb1UdRho1ESU8/Jc3Elx5J15fSIttp1e3CnJRCdl3ZO5jCUiU2NZ+atCziwfjeB1gDehJMrGzIYkIZB25PfQx6rjGgXsYnIloZwiLZITMPzjZ+c942HoYY0DYzKA6D3IOevORGi4/cHZCiIUboF1FNQ/eu4VrCt31X2lLQRXa/jb0Y2VvfcX0rUtOGoafmdIhE2Nv2IbYjZnBL33Xcfb775Jtdccw11dXU8//zz4WPR0dFcf/31AGzatIkvfelLfPGLX2TkyJG0tLTw17/+lY0bN/LDH/7wtPO0fvCDH/D3v/+dRYsWcddddzF58mSamprYunUrf/vb32hubkbTNK6++mpee+01brjhBq666ioOHTrEU089xfjx42lpaQmP53Q6mTBhAi+//DKjR48mMTGRwsJCCgsLueuuu/j1r3/NokWL+NrXvkZ1dTVPPfUUBQUFNDU1ndR8/+u//os5c+ZQWFjI17/+dfLz86moqGDlypX4/X4++eQTmpubyc7O5gtf+AKTJk0iJiaGjz76iDVr1vDEE0+c8mskVBWEB0J+yzM2BBGqhmPMLNSMUYT2r8OsPACBNoyjOy0lpZY4RH0KSntS8FDIl+tAOBw48nJw5EVuBhj1DQQ2b0eakgCgjb0G1ROE2oMYezdBKIi+bTX6ttVdB/VG4/n6Q6hZXRcqZ5uDVbg1AAAgAElEQVSmvUeo/mQHrsQYor562ZAJpz2fuGO8FCzslLU3DZOG8lr2r9nF5Ktm4ooa+JszMhRA+n3I1iYCLzyBWV/dpZ6XY+EtOC++EhFlSVfLtmZkwI+IiQ8XSB5qHL+5eNLnhAJg6pjNdZYAg5QIl9fK6TlhKLO5DrO2rPNxQwVmXbmlBNmuYDswOPE1kKh5kxHC+v4Q8ekoCZYnWAgFXFE9C1PoIWSo0+gTimobXTbnDNsQszkltmyx3PdvvfUWb731VsSx3NzcsCGWm5vLxRdfzN/+9jeqqqpQFIXCwsIuEvenSlRUFJ988gk/+9nPePXVV3nmmWdISEhg7NixPP7442FP2JIlS6isrOQPf/gDy5cvZ/z48Tz//PO88sorXeTo//jHP/Ltb3+b73//+wQCAR566CEKCwsZN24cf/7zn3nwwQf5/ve/z/jx43nuuef4y1/+0mWMnigsLGTDhg385Cc/4emnn6ahoYG0tDSmTp3KvffeC4DX6+Wee+7h/fff5/XXX8c0TUaOHMl///d/s3Tp0tN6nYSiIJ1uhGkM6ZAJJTYF19SrMX1NGKXb0Q/vgKAPo2IfRsU+lKRshBqHEpOEOnz8kC6iqsTF4r5wKoEtOzB9fvTaBnTAOWIm3huXYuzZiL7lU4zSPRA8ztMqBLS14Pvfn+D52oOoOaPO6bydiVYuRKCumcZdZXgyk3AlDt78iIFIy7Em1r/6MQBrX/qIGTfNwxM3MBaasq0Zs7IMEZ+MkpiGNE0Cr/0P+oYPezxHHV6I+19+2mVhLbwxCO/QvHf0Q5sJ7bLeQxGbHFHGozfMunKkv6XbYx3jnRRG5Kae8EaqcMu2hh6PC3cUasbpfK8IlNQ8EAKz+pBVI8vpRc0Y1a+ba0JzDFnD3WbgY9cROw1Ot46Yjc35orS0FCklObFOlJhExBALV+xAGjpGxX70ki2ReQJKFIozDjVvHGru2CH9oytNE6OiiuDufQQPlACgpSXjXXQJisdj1Smrr8asr0FJzoCAH9//PoRsrgfNiXPBjTjmXY9wnHo40ely+I3VNO8vDz9OnVtI8oVjz9n1hzpSSvav3sHB9XsAy2M2/QtziUo4P0aLUbaP4D//anlqj0MkpCLruw8T0ybPQZs8B+HyoOSNG5KeUxkKYNaWWSGAFfuQ7bWcZFvT2SmG2wsiKqFTMEJKlNQ8lKhE0BwoCZldXn9pmpj15WAaliz6EN4AtLE5VXqrI2YbYqeBbYjZDDZKS0uR/hayRBMIBSUxs/3HdOjkUZ2IUX2I0I4VSF9HGKmC0GJR3PFok2YPGYn7npBSEty+C//az5BS4sjOJOqqy7rta9aW43v6P8OLYJGUgfv2f0PNPDulHk7EV1lPyfMfhVVKhaqQf8dC3CmfH/n1c0HdkRo++/unGEEdh9vJ2HmTyRibc1KlR/oDGfQTePP/0Df886T6u7/yQ5TkLHC5z9vnVZpGZ7FmVev3MGez+RjBDW8gDQM6lP76QM0e3140+mQRqFljEQ6PJVyiOZGtjZaHqbvebu+Q3ayzsTkf2IZYP2MbYjaDjdLSUmTIT5bSEpZ2Fg4XSnIuIjpxSOVQHY80dPQDG9CLN0BHvpxwIjQPat44hDcO4fIgnF5ETPKQ3GUPHSwhsHMP3vmzUWJ6Fm6QAR/BD18htPItS5XM6cZ963fRCrsX5OlvWkur0dv81KzaRbC+hfgJeWReMe2cXPvzRENlHRtfW4kesL4HciaNYNRFBTg93ctonyyyrZngh68gAyd4bgI+y0t7dB8EThAfMgwIBFALZiBUB/q2VQCIzCy0WZcjXD0YA5oTx4jplkHR1tBnASfh9CDckaGYMtCG2VCFUXWAngYw68ojitMCqNnjQPT0PSGsTa7YTuEb4Ynu0ajRy/cR2vxu90O5vAjVgZpTYOW9ChU1e5wtC25jMwixDbF+xjbEbAYbHffjsOwszPpyzPqKsGEivHGoKXkI19CVeDZb6wntWBGRhH4iwhuPNnomauaYIWeYnkqCv1F+CP+fHkM2WEWCleEFOGddiVpw4TkxVFvLaqhasZXcW+aies5deOTnieaaBra9t57mWksavODSqWQX5lO2pZjU4ZknlT9m1tdglh/CKN6KWXUY48COHvuKnByUHgSa1KxxqBkjkf5WQBDauwZCJ+cZOhWENw7haRf18Ld0MbDOJiI2GSUqETWrs9SLWV+JfmBDRD/H5CsQ7mgrtG+IfQfZ2HyesQ2xfsY2xGwGGyfejzLow6gp7VyMCIGaORYlqst3xJBBSolZWYxeuh2zrtIS3dJUS4ntOHVJEZOMY8wslNT8LoshGfRjNlVjNlYjG6sxW+osQzZ9JGpq/qAQA9ErqhAeN2p8z2F/ZksD/ud/hXloV7hNHV6I6wtLrbyy45BSImvLMY4cQMnIRU3v/M4zDu1G+ltRx0w5JSNOGiZCHXreyYFGS50VthuVEMPalz6isbIOgAtvWUBCVvehgFJKgu+/SOijVzsbo6MR0dHImhqUtGGIjBxQQcogCBNcrtMyLNTMMZyojmfUlEDo1Mp69IWISUKJ6am2pUTNGI3ZUIH0dS96AWC2NSAbKns83htq/gU4xs21jS8bmyGKbYj1M7YhZjPY6Ol+NFvrMatLAYmaO2lIhuZ1h1l1GJGQinC6LEOipY7QvrWYlfvDfUR8Ooo3FulvQwZakYG2nuvnAAiBkpiNcHmtHff2f8LlRUnIbP+XAY7OEDDhcCMcZxYSdiqYrW20vPom0jDwzJmJc1TPcvXSNDGKtxFa/S7G7o1Wo+bEMf0S1IILMStKMEp2Y5Tsgdb2PDyh4Lz0FrQL5hJa9z6hj98AQEkfBgjM+mrUYWNQR09GHTnBykWJSehVGCTY2ErzvqMkTutfpTQby+AmaN3TpVuKKd5cghQKptCISY4jZ+IIUkdk4vTXE/qsCAI+fHu2oh07Yg2gqhCfiDJ+bJ/vjYhJxjXjhnBukwwFCG56xyrY2x4uDYDmQkTF45x4KUps98aR2VCJ0a6iJ6ITUVN6/p2VvmaMqoMRmy3WhIS1eRKT3G/CEtLQwQh1zrOxGvPYYfQDn3UpBNw+CRzjZqMNm9Av17exsRmY2IZYP2MbYjaDjd7uRylNCAUicg/MhkpweVHaQ3mGOh2he2ZjFaG9qzFrSnvpLRDRCShxqYjoRMyGKqu/eRo1doSCmlOANnL6OXmt9Zpa2pZ/hNlq5fE4crNxz5zWq3cMQN+zicBrTyEba3vupGqnVWdIxCbi/d6T3cqOB2qbKHmxCMMfJHHKSNIumWQbY6eBlBLzSDEAIj6Z4D//ilmyG7Oy+1DdZi2Rak8+Xr2RNN8BlONzqOLjEcnJEBeP8Hrp6+1QErNQcwp6DX+WUmIeO4ISnYBwD50C1DY2NjZgG2L9jm2I2Qw2TuV+lEEfeuk2kCZKbIoVojeE1RVlWwv6znVo46eHC8Max45gHNkJQkW4vO3/ohDuaGsH/YTdbWmEMGvK2nfpTYQ7xkrSd0Uh2xox68sx6sqhXY66C4qKmj0e4XAjfY2YbU0o0Ylooy5E8favcqDp9+MrWkWo1PJqCEXgmlSIa9rkXj2iMuAjtOFDQp++jayvRiSlW+UA8sZawicJqQT/8Ryh1e9aamxCwTHvOrSCCwl9tgLhjUFJzsA4uAtj32ZkU114bMfCm3Fd/sWu1zRNKt7fRMP2EgDiCnKJGpaCNzsZZ7y9YO9AGjrGvi0o2SNBDxIseh2zdE9YFc9sqAX/KeZddYQbBgIIl8t6nJHRrSFsmlBnJpM6Mgd8TQiHEzVrvFWfKS7NNp5tbGw+19iGWD9jG2I2g41TMsQCrRhVB8NFQEVHAc0hKOYhpURfuxyzpQHhicYx7RJL3vksXYtAmyWHbbVgVh8iVLyhVwNNy5uMNmJ6v+afSSnRD5XiW/cZZpP1PmuZaXgXzkPx9q7KJk0Tgv4eXyfZ1owM+Czj1du9sSSlRDbVEVr5FqGVb4LLS9QDf0B4uopESCmp/GAT9VsPRbR7MpOIL8glflLXXL6hjDQM9E1FmMcqQUqMkl2YJXsiOykKYvRoRFISmCayshJZUoJITQVNQ9bWoU2dB7GxqNkjQVGsnMfaCszqIyB1RGJCj3MwUfCrCQTUOA4e8uH3gW4qTFx8IZljh2GaJiF/EKfn9HLDbGxsbIYStiHWz9iGmM1g41TvRyklsqESo7bMyq0QKmpafo85G4MZs6EWfVMR0tARUbE4pi5AuM6dRLQ0dIyybehH9yBUZ7ukvhf96G7wHycO4I5G8cajxKeh5k7sF0+Z1A38GzcT2LoTAO+C2ThHW3ljekUVwf0HcF8wsVfZ+zO6fmszrT//pmXYJWeiFc5EGz8dJWdUhHdOSknt6t007T6M7gtg+K2cophRmWRfd9HnZrEv/W34//w4xoHt3XcQAuLjUfLzEdG9v2fCG2flZ50kwhuHiEnCMWK6levYjmma7PpoM4nZKWSOHQaAr6mNj595B29CDBMXTQfAGx99xhL5NjY2NoMR2xDrZ2xDzGawcbr3o/Q1Y1TsR7aLVChxaSgpuUMuVNE8Vom+ZSXSNFCi49GmLTinIhrdIY0Q+qHN6Ac2RooZACBQ0keipg23Ft9CoCZmd6mVdLKEDpWiV1bjuWh6uM2/cTP+z7YhNA339Mk4J4w/KwZP8OM3CL7754g2ER2POm4a2vjpqKMmIhwuSyK9ohRUlYA7i+ZDtaTMLkDzDs3FvVl1BFQFfd8W9K2foqTmIOurMQ7thKgoS+Jc1cDhRBkxAREbjVG55zhBGYE2dpb1GS7d1vcFnV6U2OOUEoWCNqwQHC6UhKxTEvJpqm5g9QsfdGmfcu3FpI7IPOlxbGxsbIYCtiHWz9iGmM1g40zuR2noGJXF7VL3AjWnAMXTVVhhsGPWHEXfugopTZTYJLSp87vkgp0PZCiA2VSDbGtEttRhlO8Nh41GoDlxTrkSNSWvX64bLD6Ef+2GsLCHe8YFuC+Y2C9jn4hxeD/6zvUYu9ZjVh2OPKg5wOmCts7nLOKTcV39VdRRk8DhBMMg+OnbGFs/RTbXI+KT0aZdguPCRZa0fskelGGjUJLSI4aW/jaM4m2IuGTU4QURhqbULfW77u4BqYesotfBAPqu9SjJmShZw9E3f0Jw1Tuow8bguuor4I6yDOVQu3GkOhBq100MGQpgHj1E4O1nkXVVyA4VyhPxeFAmTUI4neD04Bg3FzV9BMEtyzGrDnT2c3pxTrwUNW04UkqM8r2YjVWo6SMxju7FKNsG7micBfMRsSlWXqM3vt8MbdMwWfX8+7TWNXc55o2PZu5XF4cf+1t8aE4HmrN/lAttbGxsBhq2IdbP2IbYuaGiooJ77rmHjz/+mPr6ep599lmWLFlyvqc1KDnT+1FKiVlfDgjUxKG7o21UlmJsX4tEosSnoE2Z12/S1v2FNA2Miv0YJVsxfe2hZaFgu2qjQBs3By3/gn5ZVMtAEN/KNQQPlCBUhegbr0btJXeoPzCPVaLvXI++ewPmod2RsuOeaAj6I9UZVRXTEYXi72q8iJgEZPPJFe5VMvNRx00DwNi5HrPmKEiJOuYC1GGj0SZcROizFZhHDmAUb+8qh95lQAUULdKb6XSjjZkC7vbQ14APs/IwZvVhcLnA60XExSFraqC1M29QycxHehyIlCSEs+fNARGTjHPipYi4VIToRXjF0EFRz3pIp6Fb+ZCNlXVsfO0TTMPE4XaycOl1AFTsPcz29zdg6gae2CiSctNQVYXhM8bhihr4NflsbGxsTgbbEOtnPs+GWFFREQsWLOj22O7duxk7dmxE2+rVq/nBD37Apk2biI2N5dZbb+Wxxx7D6+1bEOG2227jvffe48EHHyQ1NZVZs2YxfPjwfnkeHfj9fn7+858zf/585s+f369jDyTOxv3YkUcm4tN6XfQNNoyjBy0vR2Ia2qTZA8Ir1hfS10zgs7eQjdUAqFnjcExY2C9GpNR1Wl59E6OxGS01mahrr+jWq3M2kK3NGCW7kXoIJSkdJWs4suYogbeexdi/NcIYkghCOdOJmT0bY/8W9I0fnZM5RiAEIjEd2VQLbrflDdN16+8T8fmsf5qGGDkSJTU18njIAE+0JZKjCGRzZ+kAbfRFmMcOY3bU8wKU9FG4pl51tp7ZGeNvbqO+4hiKopA2MguAPZ9speSzfV36umO8TFp8IfGZSQC0NbYSZatk2tjYDFJsQ6yfsQ2xBfzrv/4rU6dOjTh27bXXEhvbWQtpy5YtXHTRRRQUFPD1r3+dI0eO8Ktf/YrLLruMt956q89rpaens3jxYp599tl+fx4dNDQ0kJCQwEMPPcRPfvKTs3ad883ZuB+N2jLMuqMId4ylqniec6r6E7PmKCIxbcB5w3pDGjqhbR9glO8FrILUrqlX90tdJr28kpa3lgOgxsUQfdN1CO385gnKlkbMekvpr239GmqOxRN0JBE/MZ+4sdm4fEcw9m5CLZiJOny8pQYYOiHXTgiUlCzM6iOEPvk7+q4NluS7aaBNnoOaNw592+qwOIaIiUcdORF15ESUtBwAlMQ0zOYGqxZfTAJmSw2hbR/07THDUkA8FaNWScpBGzkDNTknXIgcIwRCQcQkDbrcTSklzTWNbF++nubaSOEQV7SHmbcsoKW+mS1vr2H4jLGMmDHuPM3UxsbG5vTpzRAbPKsMmwHFvHnzuP7663vt8x//8R8kJSVRVFREdLuCV15eHt/4xjf46KOPuOSSS3o9v7q6mri4/q2hdK4IBoMoioKmDeWPmAAE0t+MXrYNLWvckCnGqqRkne8pnDJC1XBMvgIRm4K+51NkQyX+lX/BMepC1GGFZ7RI1zLTcU+dRGDTNtTkpPNuhAGI6DjU6DjUnFHEFM6i/pWVBI8eo2HbIRq2HSKuIJfkObehJVr5jGp6z5sQas4o1C//W/ixNPSwEe6YuQh9zyZkS4PlIXU4I841W+owG8owag8jG6t6nrB23Hnt4YphI0xzhvO9UFSMw7uQwci6X0pCJmpqXufzFwIRk9Tz9QYBQghiU+OZdftlhPxBNJeD3UVbaDhay/Sb56MIwWevrwTgwLrd5E4aieYa+B5qGxsbm5Nl6MQT2Zxzmpub0XW922NNTU188MEHfOUrXwkbYUD48V//+tcex122bBlCCKSU/Pa3v7UWHMflMtTV1fGd73yH7OxsXC4XY8aM4Xe/+13EGMFgkAcffJCpU6cSFxdHVFQUc+bMYcWKFeE+JSUlJCRY+S4//elPw9fp8Iz1FK64ZMkS8vLyIsYRQvDkk0/yxBNPkJ+fj8fj4cgRK2xo586d3HjjjSQmJuLxeJg5cyYffBCpKNbc3My//uu/kpeXh8vlIjU1lcsuu4xNmzb1+Dqdb9TkHNSssaA6wNDRj+zuXkRikGPWV1sL8UEQPSCEwDFiGs7p11kL/2AboZ0rCBQtw6goPqOx3dMmE33LdbimTQ63mT4f0jB6OevcoDg0cm64mLhxw9Dac4sad5Zy8P/ep7W0+pTHO9ETqo2dgmPaJciQD6P2MGZDJVKaBHd9TOCT59APbIwwwkRsCs5p1+Ccfj3OqVfjXvQtPIvuCf9zL/4OzilXo2aOQc0cjWvu7WjDChFOD0JzouVPxjFmVsS/442woYYQAqfHhaIoFFwyhYvvuByn24nmcjDvrisBMHWDtS9/hGn07Wm0sbGxGSwM5e16m7PIHXfcQUtLC5qmsWDBAp544gkmTJgQPr59+3Z0XWfatGkR5zmdTiZPnszmzZt7HHvu3Lk899xz3HHHHSxatIjbb789fKy1tZV58+ZRVVXF3XffTVZWFitWrODee++lvr6ehx56CLAMwaeffpovfvGLfOMb36C5uZlnnnmGRYsWsX79eiZPnkxKSgp/+MMf+OY3v8kNN9zAjTfeCMDEiaenDPf0008TCoW45557UBSF6Ohotm/fzuzZs8nNzeWBBx7A7XbzwgsvsHjxYpYvX87ChQsBuPvuu3n77bf59re/zYgRI6ipqWHlypXs2rWLKVOmnNZ8zgVKVDwipwD98C4wguhHdqNljz9tGfWBhtlUR6g910jEJaJm5J3fCZ0kamo+rrl3oO9fh3FkJ9LXTHDT26jZBTgK5iE0Z9+DdDdufKSH2r9qPaHSI2hZ6bgmFaJlpPXH9E8L1eMk6+oZSCmp33yA2rV7iBs/DO8wq/adqRs07TkMEjyZibiSYvsYMRL90BZCu4q6PSbcMYi4VECixKWi5U/p9TUWioqaMRI1Y+QpzeHziCcuiqRhaRwrq6LlWBPv/+5vxKUncsE1s3BHn7t6fzY2NjZnAztH7DQ43RwxQzdorDh21ud3ssRlJKGeYojR6tWrefLJJ1m8eDHJycls27aNX/3qV0gp2bBhA6NHjwbg1Vdf5eabb2b16tVcdNFFEWPccsstrFmzhsOHD3d3iTBCCO69915+85vfhNsefvhhfvnLX7J161by8/PD7UuXLmXZsmWUl5eTkJCAYRgYhoHT2bkYamhoYOzYsVx11VU888wz4baecsQ6vGFFRUUR7UuWLKGoqIiSkhLA8ojl5+cTHx9PcXExSUmd4UILFy6koaGBtWvX4nBYITW6rjNlyhS8Xi9r164FrPjhH/3oR9x///29viany9nOWZRBX9gYQ9XQsoaGMSalRN+6CrPmCEJz4pi1+JwWe+4PzNYGQjs+wqwtsxoUFYQCmgPHiGmoed0rLFo5SPWYDRVg6KhZYxAOd8Tx5hdeCcvbA2gZabimTETLyjhjRT4ppSWr3h5SKdtzt04mb09KiTRMlOO+3+q3HqTi/U4Pc1RuKp6MRDwZiUQPT48sIK0H0YvXo5ftAMUqZm6U7ej2WmrGaByTFw26/KzBRGtDCyuf/UdEmyvaw4yb51Oxp4yohBjSRmahqHaQj42NzcDDzhEbIDRWHOPhOd8939MI8+OVvyMxJ7Xvjscxa9YsZs2aFX587bXXcs011zBt2jR++tOf8sILLwDg81mLM5erq4CD2+0OHz9VXn31VebNm0dMTAy1tZ0qYpdffjlPPfUU69at44orrkBVVdT2/AvTNGloaMA0TaZNm3bWwv1uvvnmCCOsrq6OFStW8Oijj9LYGJmIfvnll/Pkk0/S1taG1+slPj6eoqIi7rrrrogxBgvC6UHLGW8ZY9IEhsYGjxACbdxUQg01yFAAfdcGtMlzzrrsd3+iRMXjnHEDxqHNhPausupfYYARIrTrE4xjR1FT8zGbaxGaCzV7HIT8BLd/hGzqDOsLFa/HOWGhVUQa67WJvuFq9IpKgjt2o1fVoldUob/zAc6R+XgWzD6pIsDS0DHrjmLUlEDAyouSpolZfxSCPpSkHNTUPPSje5BNNSiJ2ZaSICBcUaiZo1Hi0zEbKtHL94K/FaO+PHyucHkRicNo3VNMVKqKDOro/hBtZZXhsEVnQhSpM/KIzonHqD6EXrw+Yo4dRpiIT8c18yaMsu3opdsQ7mgchQtsI+wsExUfzSV3X0tV8VHMdkn8xOwU6o7UULxmZ7hfyvAMtOPk/bMK8kge1r2XNugL4G/2EZ0ci3IKxaptbGxs+hPbELM5YyZNmsSll17Khx9+GG7zeCyvQSAQ6NLf7/eHj58q+/fvZ9u2baSkpHR7vKamJvz3n/70J5544gn27NlDKBQKtx/vSetPThy3uLgYKSUPPPAADzzwQLfnHDt2DK/Xyy9+8QvuvPNO0tPTmTFjBldeeSW33377oFLdFE4PWvY4y4sxREQ7AITLgzp2Cvr2NZi15ZiH96MOG32+p3VKCCHQhk9ByRiFbLI+I0bFfoyjuzGrDkQUA9aL10We7HBbNcoCrQQ3vomaOQbHuDmYbU2Y9eXIxkqcI7y4Js8lsH0venkVweJDoCh45l/cvbctFMCo2IdRfcjy1Bnd55oCmLVlnd48wDwW6UnXD21CxKV1K5Rh1pRYfxzZRVI0cNxtaUoVXyAeX71BdFw1jsN7CZzgpFfSRqBExaOXbQeh4Jx0OULV0PIvQMu/oMc52/Q/To+LnAmR5Uv2r9kV8bjmYEXE48Tszt+Jkk37qdxnvcH+Fh/+Zsvoz508knEL7PfSxsbm/GAbYueQuIwkfrzyd313PEfEZfSf5yUnJyfCEMvIyACsoswnUlFRQWbm6RUFNk2TK664gvvuu6/b4wUFBQA8//zzLFmyhOuvv57777+f1NRUVFXlscce48CBA92eeyIdgiEnYvQgTnCicWmaVlL5D3/4Qy699NJuz+kwKG+55RbmzJnDG2+8wfvvv89jjz3Go48+ymuvvcaiRYtOar4DgQ5PRQfSNEAPIpyDK5zvRJS0YajVRzGqyjD2bkZ4Y1CSM873tE4ZxRMDHktFUEnNR0nKJrRnlfU4NhnZUhcWXBExyTgKF6AkZCJ9TYS2f4hZW4ZRvjcskR+BqxjX5ItRU+IJbN2LcLu6GGFSSozDOwjtXQ3BSK+4iE9DielcOIvoRBRPDEbVQYyaEoQ7Bi13AmZTbbtXD8z6CmTLsbARJmKSUOIzEJ4YhDvaEtVobehivAEowiDKfYyoE99GITCjhmEkjscwHcQOz8E9+iJrg+E0c+tszg6Tr5pJyB+k5lAFjVV1nPh1HZUQE/7b39xGQzepAaVbismeMJyY5MGp0GtjYzO4sQ2xc4iqqaccCjhYOHjwYISXqrCwEE3T2LhxY1gEAyw1wy1btvClL33ptK4zYsQIfD5fj4ZNB6+++irDhw/ntddei1gMdoh5dNBbiFlCQgIHDx7s0t6Rb9UXHcWn3W53n/MFy3hdunQpS5cupba2lilTpvDII48MKkPseKRpYJTvRQba0LLHIVyDN2dMCIE6fjqyrRmzuR59+2ocs64cdPlixyOEQMspQM0eH34sTROzthQZCqBmjA6HFgpvnBXeeHgHod0rO+XXvfEo8WkY1b+2kLEAACAASURBVIcg0Ia+zVIDdQ1PwJETb4U7uqMRDneXOmeoGmracJSUfNSU3C5GfAdqxqgen4OUEqNkC/rhHajZ4y2RjOM/0znWxow0DSJW6XoQ/cgujCO7kCE/SnwG/z97dx4fdXUv/v91Pp/ZJ/tKFhJCwh5kFQEVUVS04r5Va9WirUtttdrWa/W61vpte+1ye7XKr97aol4XVGy1FjcQBQRF2UFDIJA9mWwzWWb7fM7vj0kmGRJWhSyc5+ORB8z5LHNmsszn/TnnvN+WgiloScNACPa+soq2dZHaYc2by8i79BR0pwrCBhpN17C7HeQWF5BbfOCZDmkFw7A6bZRv2oU0TQJtfgCGjR4eE7ApiqIcSyoQUw5LfX19r2mBH3/8McuXL+e6666LtiUmJnLmmWeyePFifvGLX0RT2C9evJjW1lYuv/zyI3r+yy67jEceeYQVK1b0Si3v8XhITU2NXDTr3Qv8uy7M1q5dy5o1a8jLy4se43Q6EULQV+KVwsJC/vWvf8W85o0bN7Jq1SqGDx9+0L5mZGQwZ84c/vznP/PDH/6w1/vWdV7DMGhtbY2pmZaWlkZubi5+v//Q3piBKBxEBtrBCHVmUxzkwZjFimXyqYQ+fR+9YNygDsJ66hm4CE1Dz+j7glYIgSVvInpmIabPgxafGv1+mu0thLat7JxmGIJgE6GNb0UO1HREUh6y3QN+H9CZ4GL8nK89hVUIcUjTBHut4dItWAunYy2c3uf+mq37o7GjupHdi9/HmuTGnppA0sQRODJ6rbdWBri0vEzS8jJjikJXbd9DW5MPTdcwTZP1r3+M3e0gsygH0zAxwwZWp42k7DRsDhWIK4ryzVOBmHJYrrzySlwuF7NnzyYtLY0tW7awaNEi0tLSemUdfPTRR5k9ezZz587lxhtvpKKigscff5xzzz33kEaI+vLzn/+cN954g/nz57Nw4UImT56M1+tl48aNvPrqq/h8PiwWCwsWLOC1117j4osv5rzzzmP37t089dRTjB8/ntbW7lpXNpuNiRMn8tJLLzF69GhSUlIoLi6muLiYhQsX8rvf/Y758+dzww03UFdXx1NPPcWECRPwer2H1N8nnniCU089leLiYm688UYKCgqorq7mo48+wu/3s3LlSnw+H7m5uVx66aVMmjSJ+Ph4PvjgA9asWcPjjz9+RO/TQNC1ZixcsX3oBGMOVyRz4iFk7huqhN2Fbs+LadNcidinn480DUzPXkIla5HNNZGNpoFs3N11NJZxp/QeuRpgci+cSbg9QHu5h6p/fUqwpY1gS1skuYeUDDszEviF2/wEm1px5ab1c4+VI5E9rnsNrjQlDXsjU1yrtsfOekjKTmXmlWcc074pinJ8OH6vJpQjctFFF/H888/z+OOP4/V6ycjI4Oqrr+bBBx+MGWkCmDp1Ku+99x533303P/nJT0hISOD73/8+jz322BE/v9vtZuXKlTz66KMsWbKEZ555huTkZMaOHcuvf/3r6EjY9ddfT01NDU8//TTLli1j/PjxPPfcc7zyyiu90tEvWrSI2267jTvvvJNAIMADDzxAcXEx48aN4+9//zv3338/d955J+PHj2fx4sW88MILvc6xP8XFxXz66ac8+OCD/OUvf6G5uZnMzEymTZvG7bffDoDL5eLWW2/lnXfe4fXXX8c0TYqKinjyySe55ZZbjvi9GgiE3b1PMLYNS864QZ3Mo2cQJqXErNiJll1wXAdnXYSmo2cUoGcUIEN+MAyCOz7F2LsJM6BjtLoRGRqWnBDYB+4Ig9A0rHFOEscNx5bkxldajRkM01paheiRIj3U2sGel1aSd9kpWJMiNxiscc6YfZTB4UA3BoQQGGHjsMu9KIqiHIyqI3YEjrSOmKL0l/7+eZSBtmgwhqaj54yLJI4Y5IxdWwmXbkZLSMEy6RSEo+91Tsc7o6mZ9mXLMVoiI8lC19Az0xFWG/qwdByTJx7kDANT4/oSaj7YGNOmO2y4clJBCNz5GSRPKQTAu6Mc75cV2FPiceVlIDQN57DkmGmQSv9rqvLg93XgTHAR7AiQkpuBpfN71FLbiG6xEHeYxcAVRTm+qTpiiqL0K2F3Yxk+IRKMhQOYtbsQ+ScM6Olph8RiRSAwvY2E1r2LZfKpaAkp/d2rAUdPTiLukvMIbNpKYOM2ZDhMuCoyDcxaNKJ/O/c1ODKTEbqGNMxom+EP4iutRmga7hGZ0Z/x1l01+Eqq8AGsjSQsscY5GXb2VOILB18GzqEqOXv/00x3fLiJpsp6dKsFV6IbnydSH9KZ4Gb4pEJGTh+z32ObqjyEAyHSC9T3WlGUbioQUxTlmOgq+mzUlKIPKxz8QRig541GuOIJb16NDHQQ/vR9LMUz0TIPnszleCNsNhzTp2CfOIFwZRXhOg+a24W1MJIcREqJDAQQuo6wWg9ytoHBlZvG6FsXYAQidQrNQAhfSRVGIIQ9LYHkE7oTnwiLjis3jYDHixkIIaUk1NpB+WurSJ40kow5xegqIcSA1lTZWYMvFI4GYQAd3jYs1u7LqU9e/CCaKl+3WTCCkTp5KbnppBdkEewIsG35F9SVVpGQnkTB9DFkFuX0er7PXv8In6eFE86ZERmFk1C5fQ9GMERybvp+i1UrijJ4qEBMUZRjRlgd6LnjY4KwnpktByMtLQvriWcS2vgxst1HePMaLBYrWuqw/u7agCTsNqwjR2AdOaLXto6VawiXlWMdU4TjpKloDsex7+Bh0h22mABqfxkVs+dPi3kcbG6l4o1P8Nc107a3LloqwAyG8ZZU4q9tJmVKIbbkwbuecqg5/QfnU1taGR0BrdtVTWtDC4E2P474SBbVTf9eF1OvrCsIA2isqEdKiabrJA1LpebLcpqrG/jin6tJzc9k1OxiXElx2By2SKDuDxJo7eDTJR/26kshRAMx0zCRUvbbGjYpJW2NPsKh7teq6xpxaYl91hJsbfBihA3iUxPQreoyVDm+qd8ARVGOqZggLBzCqNyOlpKDFv/NFRg/1kRcItYTzyT8+YruOmMzzkK4Bv86uGMlsHELod17AQjuKCFcthfHSdOwFhUgLEPvo8qWFMfwS2ZT8/4GUqYURdeKVS9bT8uOSAHqpi9KiS/MIq4wC1dumgrK+pnd7SDvhMLo4/wpvWvcjZ07GSNsUFtSQVJWKgXTxyC0yN+8pKxIeRWLzYLdHXuToWFPLQ17ItN1535/AY44J0aPwGZfzoRIcpigP0j5plJKVm1h/h2XfWM3tTq87Xz4zFvRx0lZ3X+f9x3BW/aHJfs9T/FZ06M13upKq/j8H6titidlpdJc3UDB9DGMOfUEIBKs1ZVWkZafqQI1ZchTP+GKovQb07MHGWjDqC4BaaIlpB/8oAFK2OxYJp1CaN27YISR7a0qEDsM9gljseblEq6qwf/pF5j+AO0frkasWodjxhTsE8f3dxe/cdZ4F8Mvmh3TlnH6CXhLIqMu0jTxllTiLalE6Bo5C04iYXTvKWzKwGFz2JiyYNZB98saM5ysMcNpKK/rNeLVNbJ1yrXz8fvaCXVOfQXQLDquRHc04Gosr6Nk1RYgEhC5U+IJ99j/lGvnY+0csa0rrcLX0D2lsks4GKZ8Yynjz5gSTelfX1Yds0/PUb5A+6HXtwx2BLqP6/H/fc/bUtuEEQqjWy1IKfnin6uBSImB4rOng4SKLbtJyEwmaVhkHW797mq89bFJ03RdZ9joXKwOG5pFP6TAdN8RxbrSKra8t56uQ8PBMLnFBdhcdgDiUxPJKMyOHn+ggBkiyYm0zhFvKSVm2OixUQyJbJxdif+63u99Z7p0PZZSEmwP4CmrIXNULro18tr9vg4aK+oZNjqXLe9+hhEymHL+rP2er0tHSxue8jogMkLsTHARDoZZv/QjknPSGH3ywE8EpQIxRVH6jZY+AhnsQPpbMWpKkSE/WkruoJ2qKJxuLJNOAV1Hi0/u7+4MKsJqRU9JRk9JxlqQj/+TzwjtKkOGw/jXrseSNQw9LXIBFq6pxfA0Yh05As01NAprd7HGORnzowswQwbNm3bj3VFOwONFGibVy9bjyknF4h74UzaVQ5M6PIOzb78UaZi01DbRVOVB63Fh7oh34TjA/ZyMwmxsLgfBzuCordG3331rSip61UjrqcPbHv2/M747A6zVYcPqtJMzPhKkJQ6LTUg06uRidIuFrDHDsdgsmIZJ6drtlG/ehTu5u/OJGcnRfW1OGx2+dso37UKaJuFgd/DoresOrqq274np89jTJkcDsdrSKio27+r1OnasjGQydcS7mHX1POwuBy21jZRv3t1rX09ZDX5fO5lFOUw5P3JTJCEzOfp+dtnzRUn0/9nj8qOBmGmY7Pr0S0rXbut17i4nXXl6NAlMq6eFVc+9G7Ndt1nIGhMp/+OIc1I0s/umU9WOvTRWRNYm2py26H6maWKxWmLe357rFoFIQC4gLiUhGoz7WzsI+YPRffytHTjiIn9D3SnxaJoWmT7qacEwzGiQ2LWfOzkerbM8R3NNI9Iw0a0WVj8feU1n3noR69/4mKZKD5O+NZO4lHiqduxl92df9npf9mzYGVlfabPS4W0D4MuPNkXf+z2fl1D9VTktNY0AWGxWRs2egDslntqdlfg8LTRXNcSc0xHvwu+L/Bw3VXoYNbt4wF9PqEBMUZR+I3QLes44jKovkR1ezIYKZFsLelYRwjo4Lza1pNisa0bNHjBNtKR0cLoH/IfCQKC5XbjmzcE8eQYdH64mVFYOPS5OzeYWOlatw7/2cxyzpmMbN3pIva+a1YJmtZA2cyxpM8cSbvNT+r/v4MpJjd55Dni8BFvasKfEqymLg5ymaaBppOSmk5J7eLMCNE3jtBu+xaa31xJoi1zACk0wfOJIhKbFTO1zJcXFTDGMIUCzdNe/Sy/I4pyfXH5IfSicMS7msW6FsadNYuxpk2LaEzKSSNhnDeW+xwIkZiYzcf4MNi9b12tbU2U9I6ZGpoS6Et0xr6fnqF1CZjKjT5mIxRZJ/NPe0tZn0Nalrak7gLXarcSnJ5E9Lg9ffQvtza0x+7qSIr9vUko+efEDvHVN+z3voTCC4Wjf4tMSYwKxpipPTL93rdsRc+zZt1+Kpml49tby2asr+zx/1/TQvqaG9jTvlgvROgO2fYPFLj2nzX7yf+/32r5t+Rc0VXoA2PivT/b7XED0fesZGPYMgLsC6i7hYIjtKzYc8JxdQVgXIxjGYh/YyZ9UIKYoSr/qCsbMhr2YTdVIv4/wnk3o6SMQCemD/gLbLNuB6Yt84Ai7Ey0pHZGUhkhOR7gTo0kalN40hwPXmacR2LAF2eGHpEQAhMuFsNuQgSAdH31CeG8FltwcrHk5aAlDbzqoxe2g4Np5WBNc0d+Hlm178HSlwU9wRdchWdxOci44CWvc0BopVPZPt+jR0ZwDKZo5PuYif6ASQpAzPp9ho3Op2LyL5s4RkeScNIZPHBndb+SJYxl54tjoYykl7c2thAIhhICEjOTo74sz3kXW2Lw+n09KSf6kouhj3Wrh5GvOOqR+zrh8Lq2N3gPuF9dj1MqVFMfMq+YBkcCiYvPu6O8uREZ0ekrMSCY8No/qHXv7PHc4GMbmsBHwdez3+buCk5TcdCYvmMWGtz6BA9QQPpT6wv7Wvp8vbcSwA466HmsDPQgDVdD5iKiCzspgM1h+Hs22ZozaUggH0eLT0IYVDepATEpJeOPHyKZ6ZDjYa7uwO7FMnI2WPHjXxvUXGQjS8fEnBHd2TzcSFgvOU2diG114gCOHhvqPt1K/Znuf2xLH5ZGzYMYx7pGiKEdLVxbNrmv2xop6NE2LJk0xQmH2bCwlJScNZ2Ikkcv25RsQmqD4rOnRKYZG2IhOA/X72vnin2sYN3cySdmp2Jz26Dquhr21dHjbySjMpqnSw44PNzL1gpOJS0uIrnfb9O91CE1j9CnFIMHqtIGEUCCIp6yW+t3VSCnJGZ9Pa6MPd1IcrY1ecosL0DQN0zT54p+rEULgSoqncutuTrrydNa+tByAuTeex+Z3P6NhTy1TLzyZPV/sxOdpwTRMRp44hmGjc1n5v2+TPjKL+l2xaxoBZl09j8TMgVHX80AFnVUgdgRUIKYMNoPp51EaIUxPOVpaHkIfGoP20jSRbV5kcz2yqR6z2YMMRO5SWsadiJ479AOHoyW4cxfBLdsxW3yY/kgygLgLz8EybOjXWDJDYVp31UTrmAUbvDR8VkLCmFyyv3UimkUn0ODF6AjizEpB6Gr0VVEU5Vg7UCA2NK5yFEUZMoRuRc8cGdNmej3I9ha0xAxwxA26UTKhaYj4JIhPguGjIsWLfU3IZo8Kwr4mW9FIbEUjI1kWl32AnpmOnpkR3S7D4SGZ/h4ia8kSxuRGH0spCTT6aNtThxkMo1l0GteX0LRxN0kTR5B9zvR+7K2iKIqyL3V7TBmwqqurufjii0lJSUEIwbPPPtvfXVL6gQwFMOp2YXrrCJdvwdizKbKWzAgd/OABSgiBlpCCnjc62iYNg/CWTzA9VUjT7MfeDU6aw477vLNxzpweDdSNFi/ev79E+4erMVtbD3KGwU8IwfBLTmbULedh6Uy1HfBEkhA0by5j19/fJ+RrP6Q1IIqiKMrRpwIx5bBcf/31CCH2+1VZWRndd+7cuX3u8+1vf/uQnusnP/kJy5cv57777mPx4sXMmTPnG389fr+fBx98kBUrVnzj51a+IRYreloewh5ZxCyD7Rj1ZYR3fY5RXYLZ3jIkLizN+gqM6jJCX6wktOotjLLtSOPA9WmUWGKfejyhHSXIUJjgjhJaX32TcFVNP/Xs2BFCxKQ/H37pyVickaDMX9tEyVP/Yu8rHw2J3xlFUZTBbmjO11COmptuuokzzzwzpk1Kyc0338yIESPIyYktNpqXl8ejjz4a0zZixIhDeq4VK1Zw8cUXc+edd36tPh+I3+/noYceAiKBozLwCKEhkoYhEjMh0IbZUofp84BpRP71edAzR0a2D2LC5kBLycRsrEX62wiXbESU70QvLEbLGjHopmMOBPbJExFuN4H1GzD9AdreegfbxPHo6WlYMtLQ4od+2nfdbqXg2nlUvrWO9opIWum2PXV0VDXiytlPKnNFURTlmFCBmHJYZs2axaxZs2LaPv74Y9rb2/nOd77Ta//k5GSuueaaI3quuro6EhMTj+jY/hYMBtE0DcsQXZvSH4QQ4IhDd8ShpecjfQ2YLXVgsSISBn/WQS0lEy0lE9nmwygvwazYGQnItq5FKy/BUjwT4U7o724OKsJuw148FmteDm3vLMdoaCKwcWtkmxA4TpqGfdKEfu7l0WdNcJH/7dMINrWy++/vY4bCaNbuUbPWslqCjT4SxuSqYtGKoijHkJqaqHxtL7zwAkIIrr766j63h8NhWg9jfcazzz4bTaH6xz/+MTqlsUtjYyM/+tGPyM3NxW63M2bMGP77v/875hzBYJD777+fadOmkZiYiNvt5tRTT2X58uXRfcrKykhOTgbgoYceij7Pgw8+CERGyPoaJbv++utjRvXKysoQQvD73/+exx9/nIKCApxOJxUVFQBs3bqVSy65hJSUFJxOJzNnzuTdd2OLJfp8Pu644w5GjBiB3W4nIyODs846i88///yQ37fjidB0tMQM9OET0LNGI8TQ+VMm3PFYxk7FOvtc9MxI3RvT2xgpDK0cES0hnrgLz8UxbRJ6YjzCYkG4XVhHxSaFkYHgkF2fJ4TAnhJP/rdPw5GZDD3+prburKLm/Q189eSb1HywETNs9GNPFUVRjh/qdr3ytYRCIV5++WVmz57d55TD7du343a7CQaDZGVlcdttt/Ef//Ef0ToUfZkzZw6LFy/mu9/9LvPnz48ZUWtra+O0006jtraWm2++mZycHJYvX87tt99OU1MTDzzwAABer5e//OUvXHXVVXz/+9/H5/PxzDPPMH/+fNatW8fkyZNJT0/n6aef5qabbuLiiy/mkksuAeCEE044ovfiL3/5C6FQiFtvvRVN04iLi2Pz5s2ccsop5Ofnc8899+BwOHj++ec599xzWbZsGfPmRQo73nzzzbz55pvcdtttFBYWUl9fz0cffcS2bduYOnXqEfXneLDvdD2zvQXp9aBljhz0U/mEKx7LCbPRmoowy3eiFwz8QqwDmbBacUyfjGP6ZKRhIP0BNFd30eO2d1cQ2rUHLc6NvXgcWlICwm5Hzxz8RcV7cg5LZuS182LaLD2KPzeuLyHkbSP3wllD6nUriqIMRKqO2BE40jpiZtigo6rxqPfvUDmzU2IWdR+JN998k/PPP58nn3ySW265JWbbDTfcQH5+PhMnTsTr9fJ///d/LFu2jJtuuomnnnrqoOcWQnD77bfzhz/8Idr2yCOP8Nvf/paNGzdSUFAQbb/lllt49tlnqaqqIjk5GcMwMAwDm80W3ae5uZmxY8dy3nnn8cwzz0TbkpOTeeCBB6IjYV26RsP2TeRx/fXXs2LFCsrKyoDIiFhBQQFJSUns3LmT1NTudRfz5s2jubmZTz75BKs1UuE9HA4zdepUXC4Xn3zyCRCpMXHvvffys5/97KDvy5EYTHXEjpQM+gnv2QTSQItP7SwGPXRGynoK79yMsFjQ8kYjtK/3O6xAaFcZbe9+2Oc2S0Ya7gvOQehD+30OtrRRt2Iz3q8iI/lps8aRfvJ4FYwpiqJ8TaqO2ADRUdXIshm393c3ouav+yPuvK+3tuaFF17AarVyxRVX9NrWFex0ue6667jiiitYtGgRP/nJTxgzZsxhP9+SJUs47bTTiI+Px+PxRNvPPvtsnnrqKdauXcs555yDruvonRdOpmnS3NyMaZpMnz79qE33u/zyy2OCsMbGRpYvX86vfvUrWlpaYvY9++yz+f3vf097ezsul4ukpCRWrFjBwoULY86hHAarHS05C7OxAtPXgJSgZw29YMz0NWOWbUdKE7F7O8KdgHAnoOWMREtK6+/uDUqWvFycJ58EmsBsbCJUWoYMG8hwmHCdh46Va3CeNhuhaXSs+RTCYeyTihEOO6LHzZ7BzJboJvfCmZT+9V0CnhY8a7bTvHEXo394fnSfkLc79b3FaUezqUsIRVGUr0P9FVWOWGtrK2+88Qbz588/5ODhrrvu4pVXXmH58uVHFIiVlJSwadMm0tP7DiDr6+uj///b3/7G448/zo4dOwiFumtO9RxJ+ybte96dO3cipeSee+7hnnvu6fOYhoYGXC4Xv/nNb7juuusYNmwYM2bM4Fvf+hbXXHPNkB7B+qYJIdBSI8VtzcYKZGsD4dJmhCMe4YxDc6cgHO5+7uXXJxwutNwizPISZDiIbPFAiwezZg+WGWeixSf3dxcHHWGxYC8eG33sPGUmUkqCW3cQ3LEzsnYsEACHAwyDwLavCGz7CqFrWLKGQefMAj0pEfu0SYO6gHTGnGKql60n3OZHs1tjtu3623sY/mBMW8KoHBInjiC+MOtYdlNRFGVIGLyfFoOQMzuF+ev+2N/diHJmp3yt45cuXbrfbIn7M3z4cCAyWnQkTNPknHPO4a677upz+4QJkQxozz33HNdffz0XXXQRP/vZz8jIyEDXdR577DFKS0sP6bm6EobsyzD6XsjudDpjHpudi/7vvvvuXin/u3QFlFdccQWnnnoqS5cu5Z133uGxxx7jV7/6Fa+99hrz588/pP4qke+ZnjYchMBsqADTQLY3I9ubQdPRh0IgZrVhGTsVmTcas8WDbPNhVpdFMixuWo11xlkI69AYpelPQgjsxeOwF4+LtkkpwWKJ/m2Qhkmooiq6PUQ5WK04ph7ZOtOBIL4wi/hbF+Cvb8EMHryOnbekEm9JJYXfOxt7msrqqSiKcjhUIHYMaRb9a08FHEief/554uLiuOCCCw75mF27dgHsd0TrYAoLC+no6NhvYNNlyZIljBw5ktdeey1mjUNXMo8uB1r/kJycHO1vT13rrQ5m5MhIRjaHw3HQ/gJkZWVxyy23cMstt+DxeJg6dSq//OUvVSB2BPTUXLSENGSHL/Ll96E5uy8SpWlgNlSgpeQg9MH5Z1C44tBdkTpYZkYO4U/fR7b7MCtL0UeMO8jRypEQQuCcOR37pAnIQJBwRTWm1wuA2dSCcDmHTDp8R3rv0iEF184DKTH8ITxrttO6uwZpRG44DdVsk4qiKEfT4LwCUfpdfX097733HldddRUul6vXdq/Xi91ux263R9sMw+BXv/oVmqYdUmDSl8suu4xHHnmEFStW9Eot7/F4SE1NjYyKdK4Pk1JGg621a9eyZs0a8vLyosc4nU6EEPSVeKWwsJB//etf1NfXRwPHjRs3smrVqujI3oFkZGQwZ84c/vznP/PDH/6wV/DZdV7DMGhtbY2pmZaWlkZubi5+v//Q3hilF2F1IKwO6KPGmOkpx2yuxvR50DMK0OK+3uhwf9MSUtDHTYegHy1/7MEPUL4WzekEpxM9KTZY6fn3Rpom4gDZYQcjW2L3iPLwi2cD0FHdSEdVg6o/piiKcgRUIKYckZdeeolwOLzfaYmff/45V199NVdddRVFRUW0trby8ssv89lnn3H33Xcf8Tqtn//859F1aQsXLmTy5Ml4vV42btzIq6++is/nw2KxsGDBAl577TUuvvhizjvvPHbv3s1TTz3F+PHjY2qa2Ww2Jk6cyEsvvcTo0aNJSUmhuLiY4uJiFi5cyO9+9zvmz5/PDTfcQF1dHU899RQTJkzA23kX/GCeeOIJTj31VIqLi7nxxhspKCigurqajz76CL/fz8qVK/H5fOTm5nLppZcyadIk4uPj+eCDD1izZg2PP/74Eb1PyoEJmwM0HcJBjKovkfFpaOkjEBbrwQ8eoPTs2N8paRgYO9ajFxYjHL1vlijfvJ4j7B0ffITR3ILmdGLJz8WaPxwtPq4fe3d0OLNScGZ138hoLatF0zVcw4fO7A9FUZSjRQViyhF5/vnnycjIxG1CzwAAIABJREFU2O/IVn5+PieffDKvvvoqtbW1aJpGcXExzz77LNddd90RP6/b7WblypU8+uijLFmyhGeeeYbk5GTGjh3Lr3/96+hI2PXXX09NTQ1PP/00y5YtY/z48Tz33HO88sorvdLRL1q0iNtuu40777yTQCDAAw88QHFxMePGjePvf/87999/P3feeSfjx49n8eLFvPDCC73OsT/FxcV8+umnPPjgg/zlL3+hubmZzMxMpk2bxu23RzJoulwubr31Vt555x1ef/11TNOkqKioz5IAyjdDSxqGcCdh1O5Ctrdg+jyY7V70zJFocUMj2YVZtQujahdmXQX62Klow/JVKvJjJFxbT7C0DACDJkIVVQQ+30T8lRcj7EN3/V7lm+vwlVZhBsNYE1y4ctOwpyWgO2wkFY9A6ENrhFBRFOXrUnXEjsCR1hFTlP6ifh77JqVEeusx6svAjCRh0RIzI6Njg3xamVlfSXjrOmQoAERGzPRx01XdsWNAmiah3XsxW7wYNbWEyiMJPaz5udinTUJPSx2SQXFrWS3lr67qc72YZrUw9o6Loo/D7QF0p21Ivg+Koig9qTpiiqIofRBCIBIzEK4EjJpSZIcXGWiHIXBxqKXnYJ11DuHtn2HWV2JU7UYGOrCccPKgnoI5GAhNw1Y4IvrYv2Ez/rWfE9pTQWhPBY4ZU3BMGbyZFfcnbkQmhTecTeuuGnwlVZhhg46qBgDMUGwGxtr3NxDydZB/5Rw1UqYoynFLBWKKohz3hNWBnjses6kaLS5lyNylF3YnlkmnYOzairFrC2ZDDeFP30cfOw0tWa3hOVbsk4rRnE78a9eDpmGf0J1QRYZC0ZT4Q4EtKY6UqUWkTC0CIiNf9au2YQa6azmG2wNIU9Je6aH6vS/Inj+tv7qrKIrSr1QgpiiKQmcNspTsmDbpb8VsqRvUUxWFEFg6E3YY2z/DbG2GnZsQ088YMhf/A50QAtuYIqyjRiIDAYQtsk5MSknbv99HT0/DOXN6P/fy6LC47GSdNSWmTXdYCTREEh41b9qNNExSTxyNNc6J7hy6a+gURVH2pQIxRVGUPkgjRLjqSwgHkcEO9KzRg3pKn54zEuFOwPjqC/TRk7vTrEuJsXUtWtYItNRh/dzLoU1oGqJH4ffw7j2Eq2oxquswWyKBiZ6WirWoAD1x6BZHFppG7kWzKH1mGQAtW/fQsjWyjjVlSiHDzpxyoMMVRVGGjH69xSuEyBJC/D8hxHIhhE8IIYUQc/ez7wVCiM+FEH4hxF4hxANCCMs++xQLIVZ3nmuVEGJ8H+e5SwixZd9jFUVRYmgWtKRIYCI7vBjlmyPrxwYxLSkNy4lnoiWmRtvMqt0Y1WWEPl9BaOMqZEdb/3XwOGPpTGkvpSRUVk6orBz/ZxtofWkp7StXI8NGf3fxqLGnxDPy+rNwZMZmKTU6gtH/Symp/3grlW+to3lzGc1b9xBuU7UVFUUZOvo7GBkD3A3sBDYBs/vaSQhxLrAU+AD4ETARuB9I63yMEEIHXgXqgJ8B3wVeFUIUSymNzn0yO4+7REoZ3vd5FEVRukSmKuYgrE6Mmp3IUIDw3i0IZxzC7ka4k9BciQc/0QCz73REkZCMlpSO2VyPWVdOqKEaLbsALDaEzY6WXTCoRwIHMqHruM8+nWBJKZgmZls7od17kVIS3F6CY8ZUhCWS5TJYUoqemoJwOAjvLcf0thKuqsb0tmLJy8U19+R+fjWHz5GeyMhr5xFu8xPytuP9sgJ7WmQk0Awb1H6wgeZNZUgpadm2N3pc9rnTSSoe0U+9VhRF+eb0dyC2HkiTUjYIIS4CXt/Pfv8FfAHM7xFUeYF7hBD/LaUsAUZ3fp0ppSwXQrwNlAFFwJed53kMeE9K+f5Re0WKogwpWnwKwjqhc5piANnegmxvQTPDMAgDsX1p8cmI6Wdg1uzFKNmADHRglJd0b2+qwzrplH7s4dCmp6XgTOsuiCwNg8AXmwnt3A10B83BLTsI13n6PEeobC8w+AKxLha3A4vbEVMYWrPouHLTaS/3IA0TIxDC8EdGy6re/oy23bXknH9SdP+O6kYA7KkJaDYL0jBp+PQrQr4O0mePw+J2HNsXpSiKcgj6NRCTUvoOtk/n9MLxwE1dQVinJ4F7gUuB/wd0TbzvKu7V2Pmvq/M8JwJXAhO+fs8VRTmeCIcbS/4JyLYmpL8NGWhDOOJj9pH+NoTD3U89/HqEEOhZ+Wjp2RhlO5AtkQt+6W1EH1ncz707vghdxzF9Mo7pk6NtUspetbn01BS0OBfCYkEaQ3MKY+L4PBLH50UfN36+k5r3NwCREbOeyp5fTlddVFuim2BLZIqt0DQcGYkkTxp5jHqtKIpy6Pp7ROxQdK3a/axno5SySghR0WP7l4AXuE8I8SSRKYte4CsRmYvzJ+BxKWXZwZ5QCLH/Ss0Rg/82uKIoh0XoFkRCOiT0TvtueusxanaiJQ1DS8sfvBkWLVYsRROjj2UoiLCqLHb9TQhB3IXnRhN6CIcDze3qc1+jqRktIR6hD73C3SlTi3DlptG0cXd0CmOXriAMiAZhAPGjskmcEClkH27z07RxN+4RGbiyU1EURelvgyEQy+r8t7qPbdVANoCUsk0IcRvw/wE/BwLAjZ3t13Xu9/+OQX8VRTmOSCkxfZ1Fa5trkO1etLQ8hDtp0KeH7xmEyVAA2exBS8/pxx4dv4TFgp6ast/tUkr8q9cR3Pol1jFFuE7rc8n1oOfISOqVDh9g7O0X0fDpVzRt3IXQBEkTC7AmuUkcn4cQgtayWuo/2kJHTRP1q7aSMaeYtJPG9vEMiqIox85gCMS6phwG+tjmp3PqIYCUcrEQ4l/AKKCkc+1ZPJEA7A7AL4R4ALgOaAUekFL2WpcmpUw6UIc6R8zUqJiiKJFpfdljMBsrMRsqkMF2jKodCGcCeno+whHX31382syWBsJffAjhMJYTZiPScwZ9kDnUCCEi0xSlJPTVTtpau0eFtIQ4HLNmRBN/DEWazUL6yeNJP7lXsmSgs3SA3j1SXbdyC3Urt5A8qYCUaaOwpw7dcgGKogxcgyEQ6+j8197HNkeP7QBIKRuAhh5N/wl8JaV8SQhxI3Az8B1gBPCSEGK8lHLnN95rRVGOG0II9NRcNHcyhmcvsr0Z2eElvHczIi4VPbMAoQ/ezIMiLhE0C1IGCW38GOGKR88fg5Y1AqEPho+R44N92mSCO0ow/QFCFVUx24TDgePE47c+lzsvHffVp9NR08Tuxd35upo27sb7ZSWFC89WCT0URTnmBsNChq4piVl9bMsCqvpoB0AIMQq4DfhxZ9NVwNNSyg+klP8LrAG+/Q32Veknjz32GCNGjEDXdebOndvf3VGOU8LhxpI7Dj1nHMLeOVjvbwVtcI9ECN2CZeoctNTIn2HZ7iO8/TNCK98g9MWHGOUlvZJJKMeesOi4zp2HY8rE6Jfm7AwueqwZMzwNBLd/hdnaigwE93O2ock5LJn8K+ZgjXOiWXScw5IpuvEcLG4HRkeQ2uUbY78+3Iy/rln9fCuKclQMhluZGzr/nQ583tUohMgGcnts78sfgL9JKTd2Ps4mNnCrAtSCh8NQXV3NH//4R9auXctnn31Ga2sry5cv32/w849//IMHH3yQbdu2kZGRwQ033MC9996LxRL7o9fc3MzPf/5zXn/9ddrb2znppJP43e9+x+TJk/s8b0///ve/+cUvfsH3vvc95s6dS1ZWXzH71/fiiy9SU1PDHXfccVTOrwwdmjsJ4UpE+hpAgBDd97xMb32kDpm972QLA5UWl4Q29TTM1mbMPV9hVpchwyGkpxpCIbScwv7uogJYMtKxZHQnlLFPnURo5y6sY4oACO4oof3D1dHtQhNYRuThPHUmmuP4GBFy52cw6pbzerUbwRANn5X0am9YF6mAkz5rHGknj1fTchVF+cYM+EBMSrlVCLED+IEQ4pkeKexvAUwiRZx7EUJ8C5gFXNujuRbouTp3HPuvXab04csvv+TXv/41RUVFnHDCCaxevXq/+7799ttcdNFFnHHGGfzpT39i8+bNPPzww3g8Hv70pz9F9zNNk/POO4/Nmzfz05/+lNTUVJ588knmzp3L+vXrKSw88AXeihUrsFgsLFq0qFeA90168cUX2bBhgwrElEMihEAkpMW0yZAfo3YXINGSstBScgbd1D4tLgltwgxk0UTMhhpkYy36yOJopkiz2YOxYz3oFrSckWjDBm8WyaFAWHRsY0dFH1tG5KFv3YHhiVR4kaYktGsPZkMjrrPmHjAhyFCnWXTiC7tv5LVXNkRrlwHYUuIx/SF0pw3vlxV4PtmBZrWQNHEE9oxEnJnJ/dFtRVEGsX6/AhBC3Nf533Gd/35XCHEK0Cyl/J/Otp8B/wCWCSFeAoqJTDl8Wkr5VR/ntAG/B+7vXDPWZQnwGyFEPZAPTCSyXkw5RNOmTcPj8ZCamsrSpUu5+OKL97vvT3/6U6ZMmcKyZcvQO6fFJCQk8Nhjj/HjH/+YUaMiFwdLlixh9erVvP7661x00UUAXHHFFYwePZqHHnqIv//97wfsU11dHW63+6gGYUdTe3s7LtfgGh1RjpARRljsyFAHZlMVpq8BS/aYQVl/TNid6NkFkF0Qu8EIY/qaADCb6xFlO7AUFiMyctVIwgCgOezEXbIA6WtFmibB7V8R2LQNo8WHb8k/ib90AXra8Zna3eJ2MPyS2MLY4TY/3q8qqVu5Gc1mQXfaou3+ukilm/bKSN09IQS2lHiyzztRBWWKohySgXCb8pHOr6s7Hy/sfPzTrh2klG8ClwCpROqBXQL8ku61X/u6nUiWxT/v0/5UZ9udwDnA96SUW7+RV3GciI+PJzX14B/S27ZtY9u2bdx0003RIAzg1ltvxTRNXn21eyBzyZIlZGdnc+GFF0bb0tPTueKKK1i6dCmhUGi/zyOE4K9//SstLS2REQghePbZZ6Pb//rXvzJ16lScTidpaWlcd9111NbWxpzjjTfe4LzzziM7Oxu73U5hYSGPPPIIRo8iqXPnzuWNN95gz5490ecZMWIEAM8++yxCCMrKymLOu2LFCoQQrFixIuY8kydPZt26dZxyyik4nU5+85vfANDR0cF9993HyJEjsdvt5Ofnc//99xMOh2PO++KLLzJt2jTi4+NJSEhg4sSJ/PGPf9zve6QMHMIRh55/AlrqcBAahAOEK7Zitrf0d9e+McIVj2X0FPTMSCFe2dZCaNMqQh/9g/CWTzDrKvq5h4oQAi0hHj0pEeesE3HPPx3Rx42swJbthCqqYmp0HW8sbgcpUwoZe/tFxPUYLXPlpmFNcGFL7L6JIqUk0OCl/JWPo23h9gAdNU0EGn3H9fuoKErf+n0IQUp5SLdIpZRLgaWHuO9vgd/20R4G7ur8OuZk2MCoq++Pp+6TnpF+1NIZf/HFFwBMnz49pj07O5vc3Nzo9q59p02b1utu+YwZM1i0aBE7d+5k3Lhx9GXx4sUsWrSI9evX8/TTTwMwe3akfs5DDz3Eww8/zFVXXcUPfvCD6Pq2Tz/9lPXr1+N0RiojPPvss8TFxXHnnXcSFxfHBx98wP3334/X6+W3v438GN177720trayZ88efv/73wMQF3dkacnr6+tZsGAB3/nOd7j22mvJy8vDNE3OP/981q5dy0033cTo0aNZv349jz76KOXl5fz1r38F4N133+Wqq67ikksu4Qc/+AHhcJht27axatUqbr/99iPqj3JsCU2LZFiMSyFcuQPCAYzKHTCsCC1+8I9ECKcbPX8MAJpvHEbpFsz6SmSgA6O6DISGlpHbr31UYllH5JFw3bcJV9egxcdH20M7dxOurceaPxzXWacNySLRh6PnZ5QjI4lRN30LiIyOte2po+7DzYRaO3Dmdv8et+2ppfLNddHHOQtOioycpcbjSFdVcBTleNfvgdjxxKirp+qCgTMTMvsfz2PJHnZUzl1dHUl22VfijKysLKqqqmL2PeOMM/rcD6Cqqmq/gdg111zDe++9x6ZNm7jmmmui7WVlZTzyyCP85je/4a67uuPuc889l9mzZ/O3v/2Nm2++GYAXXnghGpQB3Hzzzdx88808+eST/PKXv8Rut3PWWWfxxBNP4PF4Yp7nSFRVVfHMM8+wcOHCaNvixYtZsWIFq1at4qSTToq2jxw5kv/4j//g7rvvZuzYsbz11ltMmDAhZkRRGZyE3YVl+ASMyh2R2mPVJQi7C2FzHvzgQUKLT0abfCqyzYvZUIPZUIOWlh3dLqWEcAh0i1pH1s+ERcc6vDt3lQwEkeHIrIDQnnJ8Ly0l7pIFaI6+Kskc3yxuB4nj80gcn0e4zY8ZNva7b+Wba6P/T5s5loxTi49FFxVFGaDUJ59yVHR0RMq72e29P7QdDkd0e9e++9uv57kOx+uvv46UkksuuQSPxxP9KioqIisrK2a6YM8gzOfz4fF4OPXUU2lvb2fHjh2H/dwH43K5+O53vxvTtmTJEoqLiyksLIzp77x58wCi/U1KSqK8vJy1a9fue1plEBJWO/rwCQhHPFpa3pAKwnoS7gT0vNFYp8xBy+weDTNrywmueI3Q8lcJ79yspm4NIMJuI+6S87BPmgCA6WvF+7cXCWzaiun19XPvBi6L2xEzXTFhdC6jbvoWtuQ4LC47Fmf3Z52/rjn6Mx9u8xPweGO+wm3+Y95/RVGOLTUidgzpGelk/+P5/u5GlN4jxfE3rSu4CQQCvbb5/f6Y4MfpdO53v57nOhwlJSWYpsnIkSP73F5f3z1FdOvWrdx333188MEHeL3emP1aWr75tTu5ublYrbHFfUtKSti+fTvp6X1/T7r6e+utt/Lyyy8zc+ZMCgoKOOuss7j88ss588wzv/F+KseG0C3ow8fHpLjvujgbysktpJQYu7ZE/m8aGLu3In1N6DkjEek5Q/q1DxZC03CcNA3Z2kawtAyAjjWfEfxyJ/GXX3jggxUAhK5hTXBRdOM50TbvV5VUvLGGxHF5CCEwAiE6apqo/OdazFDsmmBbchy2RDfpc4qjCUBCvnYMf0hNbVSUIUAFYseQsOhHbSrgQNM1rbC6urrX9MTq6uroOq6ufbumMu67H0TWlR0u0zTRdZ233367zwu65OTIB1pzczOnnXYaCQkJPPzwwxQWFuJwOPj888+5++67MQ+hiOf+Lhh7Jvvoqa/A0jRNpkyZEk3csa+ugDIjI4MNGzbwzjvv8Pbbb/P222+zaNEiFi5cyDPPPHPQvioDU88gDMBsqED6PAhHPNjsCKsDYXWAzQGaZUgEKUIIrNPPQLa3YlbtwqjchempwvRUoWXkYimeddyvSRoIhBA4583BkpdLYNM2zMYm6DGN1PA00v7eh9jGjsI+WU2zOxQJo3MYfeuC6GPPJzuitcr2FWxqJdjUSuqM0dHHnk+207xlD3EFw0ieVEBcUfaQ+JugKMcjFYgpR0VXIebPPvuMqVOnRturqqqoqKiIKdQ8efJkVq9ejZQy5sNk7dq1xMXFUVRUdNjPX1hYiGEYjBo1KprdsC8rVqygoaGB1157jTlz5kTbd+/e3Wvf/X3Q9QzqetqzZ89h9Xfr1q2HNLJls9lYsGABCxYsQErJj370I5544gl+8YtfHLTmmjLwyQ4fZmMks6AM9Z6aJKxOtIwRaO6kY921b5ywOSJfiamIpHTM6jLMxlrMugrC65djmX46QlPBWH8TQmAbXYhtdCGmPwB0TyGVgQBGi5eOtesJ7tyF+5x5gETY7Yh9Rv6VbhZ3d/HszNMmknriaOgxNbcrbT6dNwOtCZHpjq1ltTRviXy2tO6uoXV3DQDDL5qFa3g6usN2rF6CoijfALVGTDkqJkyYwNixY1m0aFHMyNCf//xnNE3j0ksvjbZddtllVFVV8cYbb0TbPB4Pr7zyChdeeGGvaXyH4uKLL0bTNB5++OFe20zTpLExUsy0K7V+z7UpwWCQJ598stdxbre7z6mKXcHPypUro22GYbBo0aJD7u9ll13Gnj17+Nvf/tZrW2tra3SaZkNDQ8w2IQQnnHAC0D2VUxnchDMePXc8WupwtIT0yKiY3v07IEMdYIYPcIbBRwiBnl2AddrpWEZFbtKIuEQVhA1AmsOO5ugOIrTE7iyLRkMT3ueX4H3+VVr+9wXCVTX90cVByeKyY3E7ol+OjCQyTplAxpyJZMyZiC05kqU3ZUohI75zeq9pieVL19Cw7kvC7ZFp/v76FiqWrqF86Wq8X1USaj38tdaKohx9akRMOWy//OUvAdi+fTsQyfj38ccfk5SUxG233Rbd77e//S0XXHAB8+fP58orr2TLli38z//8TzQ9e5fLLruMmTNncu211/LTn/6UtLQ0nnzySUzT5MEHHzyiPhYVFfHwww9z3333UVpayvnnn4/b7aa0tJRXX32Ve++9lxtvvJHZs2eTnJzMddddx49//GOEECxevLjPpAHTpk3j+eef58477+TEE08kLi6O888/nwkTJjBz5kzuueceGhsbSUlJ4cUXX+xV/+tArr32Wl566SW+973v8e677zJr1iyCwSDbtm3j5ZdfZv369RQVFXHjjTfS2NjIGWecQW5uLnv37uVPf/oTkydP3m9mSWXw0VyJ4Iq90JJGGBnsQLY1IeK602Obbc3IDh9aQtqQSPahjxiLiE9CJHQXxDXKS5C+ZvSiiQib4wBHK8eaFhdHwrVX0PbmOxiNsbMCZI+/geHqWqRhYM09/KnmSixXdiojrz8LM2xQ9eY6vCWVAHjWRqY3ZsyZiNEeiLb7SiJZitNnjSNl2qhoUWpFUfqfUFmqDp8QojkxMTFx36loPXVNS8vPzz9W3Tpm9jdFLz8/v1dR46VLl/LQQw9FE1EsXLiQ//zP/8SyT/HQpqYmfvazn7F06VI6OjqYMWMGjz/+eMy0xv25/vrrWbp0aa+pgQAvv/wyf/jDH9i4cSOappGXl8fZZ5/NHXfcEf3erF69mrvuuouNGzeSnJzMNddcw7x585g/fz7Lly9n7ty5ALS3t3PTTTfx1ltv0dTUFPN6d+3axU033cRHH31EUlISN9xwA6effjpnnXVWzDnmzp1Lc3MzGzZs6NXXYDDIf/3Xf/Hcc89RWloanZZ50UUXcccdd+B0Onn11VdZtGgRGzZsoLm5mWHDhnHuuefy4IMPMmzY/tcfDuWfx+OdUf0Vpq8BEIi4FPSUHITDfdDjBpNw6WaMXVsRVhtaZh56wXiEw9Xf3VJ6kKZJcNM2zLY2hN2GDIWxjR2FnpxEcMdXtH+4JmZ/S84w7OPHYB05on86PISYwTDhNj9C17DEOxFCEGj0UfH6agKNvTNc2pPjKbxxPtA5G0TKXuUjjEAITInmsKr1Z4ryNSUlJdHS0tIipey1pkAFYkfgeA/ElMFH/TwOXUZDBdJbhwx1Zx7VkrLQ0vOHzAWUWVdBeOtaZDgEgHC4sU4/A+EcWgHnUBUsKaX9g4/73BZ/+QXoKZHRT7OtHRkKoSUmDJmf3f4mpaTpi1JqP9gYnelhcTuiyUKklFS/8zlGRwB3Xgb+umZatu5Fdq5NG/fTS6Pfi0CDFzNkdJ0YenyPdIcVW1LcMXxlijJ4HCgQU1MTFUVRBjE9NReZkoP0NWA2ViKD7ZjN1chgB3rWKIQ++P/Maxm5WBNTMavLMHZtRfrbCH36HvrI4shassRUdeE+gFmyMnHPPx1Mk2DJLkJl5QDoSYnRBBVmaxsdK1cTKq9Cc9ixjR+DlpKMJSMNLV5d4B8pIQQpU4tImVpER3Uj4dYOhKVzbbRh8tWTb2L4g0D3FMa+GIEQ3i8rqV+1tc/tCWNyyb1gJgCBRh/BBi+u3HQ6ahoxA5EpqrrLjmt4mvpdVZQeBv8ntKIoynFOCIFISEPEp2J69mI2VSHbmzHKt0YKRg+BYEzYnegjxiESUwlv+AgZ6CC8/VOExYb1pLPAFX/wkyj9QouLQ4uLBFNdUxH96zcSLq9ET00BILBpK6HySCBg+gP4P98UOdZuI/6qSxF2ta7p63JmpcQ8FrpG1tlTadq4i7Y9dd3tQpB0wgiSJhZE2yrfXEvrrkNLvtK2u4aaDzb2uW3YmVNImVJIe4WH6n+vxwyFsSa6iS/K6rVv/JjcmOLYijIUDf5PZ0VRFAXozD6Yno+wOTHqdiPiUmCIZR7UkjOwnjSf8Jfrkc0NWKbNRaggbNBxTJuEnNRdd8w5ewb2qZMIbNhMaOcuCBuYgSBmIIjvpdeJ/+4VaiTlKEgYk0vCmFykaWKGDIQQaLbel4bDLzkZMxgZ2WrbU0e4tYPEcXmgRb4nQuv+3nRUNe73+RxpCUBkdMyRnULL1j2EWjtor/T03jczKRqINXz6FcGmVtwjMkkYnXPkL1hRBhgViCmKogwxWmIGwpWIsNr7uytHhXDFYZ1yWq/28JZPEImpaLlF6qJ9EOiaItdFc9hxzpyOc+Z0ANpXrCL45U4sI4ZHv59GUzPCZkNzq2Qt3yShaej2/Vc0EkKg2yNlNA4WCGWfdyKGP0io1U/KtCKSJuRjhg3aymqxpURumthT4kmfPY5AfQtC7/t5NVt32Q5fSSXtlQ00bdyF7rDhykkladJINIuGMycNzTK0bjgpxw8ViCmKogxBPYMw2eHDqCmNPNB1hN2FsMdFpjMOoREzs6keWV2G1lCLnlOASMtWAdkg5pwzCy0+Ds3VXZYhuP0rApu3E3/lRZE1ZsqAIzSNvMtPjWnTdY2EMbkxbbakOEZed+YhndOenkR7ZaSOpuEP4iutxldaDUDK1CKGzZv8DfRcUY49FYgpiqIMcVKakULQACGQ/lagDuGtQ88Zi9APv2j6QCQcLqS/DbO+ArO+Ai09B8uEkxBWtb5oMBKahmPapOhjKSWGJzLtzffSUlzz5mAZlg4WK5pjaI7+KhFZZ00h9cRRNG8uo/GzEhACMxSZKhlXkBndr+z/VtBu+7kWAAAgAElEQVReEZnmaHE7SByfF93mzE5V0xqVAUcFYoqiKEOcsDnRM0eCBGkEkYF2ZGsT0t+KUb4NPXccwjL4gxXLtLkYX23ArKtEBtox6ysJrXsXvbAYLWN4r1pJyuAihEBLSoDqWgDa318Z3aYnxhN3yQLE/8/encdXVd2N/v989z5TBjIzJEyBoAShgoIToqJgRUtbbEV5etVSh062ir294o/761PbakXrWLz+rI/PFdHy9Do8tupVeFBBnCoOoAgiYxhCAmQgc3KGvX5/7JOTnAwYMHO+79crr+Ssvc7OOofFyf7utdZ3+fp+P1Zt86UlM+S8SQw5z11baIyhasdB/FlNI6MNJZWxn8M19ZR+uD32OOO0vFggVldcjp3g02QgqsdpIKaUUv2ceHxI6tC4MqeqlEjxzmi6+0PYWSN7qHWdRywbT/5UyJ9KpHA3kW0fY2qrCG9+H3tsFZ68SV99EtWrJZx7FmJZNGz5Mq48UlGFcRwaJ6LWrHoTp7oGb+4I7KFD8I7UkZD+RkRajXBlXzKVso+2U1tYyqC8+EyMzQO2otUfU3/4qLvW7FQ3O2T9oaPU7DtC6ikjyTorH4Da/UewAj4Cg3UarOoaGogppdQAZA3KBMvCKS/Cyux/F6n28LFISjqRXZ9DXTX26PGxY+Ftn2DqqrBHnoRkZus6sj5EbJuEGWcTOPsMnJoaTEMDoZ17wBjEblrvGCktw6muIVLalMEv4expGOPgn5iPePvHdFwVL+Xk4R2aflh/+CgAtYWlsbVnjRpK3KArWFFD6YfbqdpVhIgw5tpZeAclIh4Ly6uXz6pzaE9SSqkBykpKRxLT4gIRE2roN9kWrUHpWFPOw0TC8XupOWGckiKckiKstMF4Js9AfP3jNQ8U4rGxU91U6J4hg1sd944eQWhfIU5Vdays7p8fAeAbPy4WiNW9/yF2Vgae7GFYyTpNbaDI/W8XcuDv77fKtmgiDoEhaQB4ByVQV+QG8sYYdj/1eqyeP30QI79/Lr503WxcfT0aiCml1ADWPAhzaiuIFH6JlTkCOyOnB1vVuVpuaG0Ny8XU1eCUHcI5eoTQh6/jPe0CJFEvqvqLhBlnkwCYcJj6f34UN5UxcqgEK3ckxhhCu/fS8NlWAPyTJ+IZkgUeD57h2XEjbKp/SczJ5OSfzz1mHbEsRnznbPY9/w5OOBJ3rKG8inBdA770ZGoLSwlX17V6vicpQOKIrE5tt+p/NBBT/cLy5cv54x//yJ49exg+fDgFBQU93SSl+hzn6CEwEZySvYg/ASspvaeb1CWsjCFYGUNwDu0n/Pk/MbVVhD5ei/fsSzTDYj8jHo87lfGcM3AqKsG2sVLcvaycikpMXdMFdMOnW2ho9tzk730Lz2C9kB7IEkcOJv/WywlV1xGpCxIsr6Z610EQwZPoJ1xTT/2hcg69+SnGmFbPDwxJi0vRbyKO+4OgyYMUANoL1HH58MMPuemmmzjllFNISkpi1KhRLFiwgJ07d7ZZ/7333mPGjBkkJiYybNgwbrnlFmpra1vVa2hoYPHixeTk5JCQkMDZZ5/NG2+80aE2bd26leuvv54JEybwxBNP8NBDD32t19ieVatWcccdd3TJuZXqDexh45AEd7qXc7gA40S+4hl9mzV0JJ7TZyK2B1NfQ+jDN3COlvR0s1QXENvGzkjHTk2JjQLbaamk/OgHJM25CCs5KS4Fvng8hPfu76nmql7Gm5xAYHAqKScPJ+fSM8iZMw1fWjKH39lCyXtfYAd8eBL8sa+YFsHZl3/+B1888J98cf9/svPfXqPovz5h7/9ZT9F/fULtwaa1ak4oTENpJZXbDlD0X59Qs/cwxnG66+WqbqQjYuq43HPPPbz77rvMnz+fU089leLiYh555BFOO+00NmzYwIQJE2J1N23axKxZs5g4cSIPPPAABw4c4L777mP37t28/PLLcedduHAhL7zwAosWLWLcuHEsX76cSy+9lLfeeotzzjnnmG1av349juPw5z//mdGjR3fJ6wY3EHv44Yc1GFP9llgW9pAxhPdtxoTqccoPYmf2/WyKx2KlD8YefzrhrRugphJztATSdBRkoBDbxjt6JN7Rbj83kQi1q9/EN2kC3lHuBsROfQN1694FJ4JxDN6RwwntLwTAf8rJeMfm9lTzVQ/LuWQqXDK1VXlDSSWFr35IwrC0dp8bPFpD8OhuAGr2HSYhO4PEnEwAjGMofmMTNXsPA1D+qVsv77pv4s9MiZ0jVFlLQ0lF3Hn9g1PxDkr8ei9MdRsNxNRx+dWvfsXKlSvxNdur5aqrruIb3/gG99xzD8uXL4+VL1myhMzMTNatW0dysrv2Ijc3lxtvvJE333yTiy66CIANGzbwt7/9jQcffJBFixYBcO211zJp0iQWL17M+vVNe8W05fBh94MqNbVvppetra0lMVE/NFXvIP5ErPRsnLJCnLKDEAoiCYOQlMH9NrugPXwskuB+RlkZQ3q4NaoniW2TdNnFsceh/YXUrX8fp7omVhYuLIr9bOobYoGYU1kVC9DaOq93zGjEr1NfBwJ/Vgpjr53VqnzUVecTrqyjctt+sITKLw80HbTcz9eG0kr2PPMmTjDc6vm7/vd/kXPpNNIm5QJQvbuYojWftKrnTUnEsm1S8kcweMZEACL1QSq+cEd5LY/NoJNysAPaH3uaTk1Ux2X69OlxQRjASSedxMSJE/niiy9iZZWVlaxZs4Zrr702FoQBscfPPvtsrOz555/H6/Vyww03xMoCgQDXX38977zzDkVFTX/0WsrNzeW3v/0tAOnp6YhI3IjVK6+8wvTp00lKSiI1NZXLL7+81TTKt99+m/nz5zNq1Cj8fj8jR47k1ltvpa7Z2oGFCxfy8MMPA25yg8YvgHXr1iEirFu3Lu68BQUFiEhccLpw4ULS0tLYsWMHc+bMITk5mZ///OcAOI7Dfffdx4QJE/D7/WRnZ/PLX/6S6urquPOuWbOGGTNmkJaWRnJyMuPHj2fJkiXtvkdKHS8rY7ibOdE4OJWHcarL+m0Q1qhx3VijyME9BNf+J07JwR5sleppniGD8Z1yMoEpk/AMHYzYVlwSDyul6e9bpLSMunc+aPOr9q33qHru7z3xElQvkpiTSUr+CEbMO4cR3zmbCb/+Pif/fC75t15O2kR3Ro8/M4WTfzaXk3/e9OVLa8roGZc6X9ygyvLYcZ/RocpaN6FIbdOqx0hdkOLXN1L8+kYOrvqIL5e9xP4X32Pvs+vZ+qfnqTtU3vT86jpCVbWEqmpjAdyRd7ZgIg51xeUceXcrkbogDSWV7Hjs/7baAkB1nI6IdSMTiWAqek9nldTMTskKZYzh0KFDTJ48OVa2efNmwuEw06ZNi6vr8/mYMmUKGzdujJVt3LiR/Pz8uIAN4Mwzz8QYw6ZNm8jOjt+YsdFDDz3EihUrePHFF/nLX/5CYmIip556KuAm8LjuuuuYO3cu9957L1VVVSxbtowZM2bw6aefMnSou8Htc889R21tLT/72c/IzMxkw4YNLFu2jAMHDvDcc88B8JOf/ITi4mJWr17N008//bXer1AoxCWXXMJFF13EAw88QHq6mxDh+uuvZ+XKlVx33XUsWrSIHTt28Mgjj7B161Zef/11RIQtW7Ywd+5czj33XO666y5s22bHjh288847X6tNSjUnlo09chJO5RFMfTVW2rDYMWMMzpG9iNePJKUhvoQebGkXciKYcJDw5//EM+V8LJ2uOCCJ30fgtFM7VtfrxU5vPTMjUu5OHfOfPhljTL+/qaE6TkTwJAValVs+D5av6RJ93I2XEqyooWbvYQJDm6Y7pk8eS/rksbHH9UcqqGu21syfMajZSQV/ZgoNpZWxoqqdTTeagmVVJAx1r0f2rlxHsKJpFLiRAUred2+6H3lva6y8YOVaABJHZDFs9mmIbeFLT+6Rvm4ch1BFLd60pD7xf00DsW5kKkqpveenPd2MmMTFjyGdMA3nr3/9K4WFhdx1112xssZRrLYCqOzsbN5///24usOHt96AsfG5Bw+2f0d63rx5bNq0iRdffJErr7yStDT3A6q6uppFixZx0003sWzZslj9q666iokTJ/Lggw+ydOlSwF33lpDQdDH54x//mHHjxrFkyRL27dvHqFGjOOecc8jPz2f16tVcffXVHXpf2lNbW8vVV1/N73//+1jZ22+/zfLly3n++ef5/ve/Hys/44wzWLBgAatXr2bOnDmsWbOGQCDAmjVrsDW1supC4vFhZ7T+f2nqqnCORkepjwh29knu5tD9jKRkIGJhQkHCH76B57TzsLL6T0p/1fk8I3IYdOW8VuXGGOreeg87ZRAiQvjAQeo3fIJvYr77vOyhsUyOSrXHl5qE79Qxx6wTGJxKYHDbyzR8qUnkXfdNjDGUb9xF9Z7iWKBijMGT9NU31b4qsKk9UMLu5WtaledcdgYVmwsYdeV5hKrqCFfXkzg8/u9GsLyaQ2s/JX3KWJLHZhM8Wk2kLkhCdobbxohDzf4jJGRnYPvb3pA9XFPP3v94i4byKrIvPp30KWPbrNebaCCmvpZt27Zx0003MWPGDK655ppYeeO0Pr+/9SapgUAgbtpfXV1du/Wan+t4rFmzhoqKCq688kpKSpqyoA0aNIjJkyfHTSNsHoTV1NRQV1fH9OnTMcawceNGRo0addy//6v89KfxAfnzzz9PRkYGF1xwQVx7zz//fGzbZt26dcyZM4e0tDRqampYtWoV3/rWtzq9XUp9JQFrUBZObSVEgkSKdyIeH5LQvy4krZQMPNMuctPb11W7I2MTz8Ia3Do4VepYRITEmecC7swYp7qG8JFSwuvebarj80JjNsf0NJIumx3bdFqpziQiZJw+jozTx7VbZ9RV54NjCFbUUL3zIMGKGnxpyWSeeTIVX+wjWF7d7nPbcvDVDwH44v7/bPN46sTRVGzZC0DVriJ86cnH/TtaKlrziQZiKp6kZpK4+LGebkaMpH69u9jFxcV861vfIj09neeeew6r2Z4YjcFNQ0NDq+fV19fHBT8JCQnt1mt+ruOxY8cOwA1k2jJ2bNN/zn379vGv//qvvPTSS5SXl8fVq6ioaPnUr83v95OTE39nfceOHZSVlTF48OA2n3PkyBHAHdF74oknmDt3LtnZ2cyePZvLL7+cefPm9YkheNX3WQkpkJCCFQkR2bcFE6ojfGArEkjGShuKNaj/TOGz0rLwnj6T0Aer3ZGxTe/gOWOWTlNUJ86yiBwpwUpOwoRCmIYgACYYAsAzJAvfxPE92UKl8KW6a9J86ckk5w6NOzbuhjmxKbbN90478s4WSv657YR+X2MQ1ujrBmF9iQZi3Uhsu1OmAvYGFRUVXHrppVRUVPDuu+8ybNiwuOON0wrbSrRRVFQUF4hkZ2e3Ww9oFbR0hBPdb2PlypVtBjeNwV0kEuHiiy+mrKyMxYsXk5+fT1JSEoWFhSxcuDB2nmNpLwCKRNreg6lxpK9le7Ozs1mxYkWbz2l8DxISEli/fj1r167l1VdfZdWqVTz99NNcfPHFvPbaazpdUXUbsb3Yw8cT3r8FIiFMXSWRukrw+NxgrZ+QxGS8Z15MaNPbmNoqwp//09342aOjFer4iQgJ551D4+3FyNEKnKPNbvh5PHiGZyMiOPX11K19B9+E8XhGZCMevWRTvUPjdU/z658h500iZfwIdj/1OgCDxuVQtfNgp4xunYj2pi/2Nvq/Wh23+vp6vv3tb7N9+3beeOMNxo9vffdu0qRJeDwePvroI773ve/FyoPBIJs2beIHP/hBrGzKlCk8/PDDVFdXxyXs+OCDDwDikoB0VF5eHuAGeTNnzmy33ubNm9m+fTtPPfUU1157bax8zZrWc5zbC7gak20cPXo0rnzv3r1tVW+3vWvXruW8885rc5pmc5ZlMWvWLGbNmsX999/Pvffey+LFi1m3bh2zZrVOl6tUVxFfAp7cKZjaCpzyIiQxFQn0rymKAJKUgufU6YQ/fAN7RF4sCDOOQ/ijN5DEQdjjTkUCug2FOj52Wip2WhsJPkpKqf77q5iIQ2ifmxLfSkrEd9JY/KefqtMWVa8UGJLGKf/jilblkfogkfogGGgoqWD/399v49mdw5PoJ3VSLlln9o2RZQ3E1HGJRCJcddVVvP/++/zjH//g7LPPbrNeamoqs2fP5umnn2bJkiWxAOvpp5+murqa+fPnx+peccUV3HfffTzxxBOxfcQaGhp48sknOffcc09oROyb3/wmKSkp/PGPf2TGjBl4WtxJLCkpISsrKzaC1Hx43RgTS1XfXFKSO1R/9OjRWFIQgNGjR2PbNuvXr2fevKaF2o8++miH23vFFVfw6KOPsnTp0lg6/kYNDQ00NDSQkpJCaWkpmZnxU0qnTJkCNE3lVKo7ie1BBmUiyemI9N8dUaxB6XjPuRRJaEoj7RTvxakohYpSnCOF2KPzsUaOc1P/K/U1WJkZeHKGEdrflKzKqamlftPn1G/6nMDUyQSmTenBFirVcXbAF9uzzJeeHBesGcfBRByIbgvUeD0mIhjHQSyLyu0HqPqykKGzp+BJCsTq9YclGRqIqePy3//7f+ell17i29/+NmVlZTzzzDOxY8nJyXGByF133cX06dOZOXMmN9xwAwcOHOD+++/n0ksvZfbs2bF6Z511FvPnz+e2226jqKiIvLw8nnrqKfbu3Ru3B9fxSE1N5ZFHHuGHP/wh06ZN46qrriIzM5OCggJeeukl5s2bx5133kl+fj55eXn8+te/prCwkJSUFF544YVWa8UApk6dCsDNN9/MJZdcgm3bLFiwgNTUVObPn8+yZcsQEfLy8njllVdiG013xIUXXsgNN9zAHXfcwccff8ysWbOwLIvt27fz7LPP8te//pXZs2fzhz/8gfXr13PZZZeRm5vLkSNHePTRRxkxYgQzZsw4ofdKqc7QMggz4SBEwmBZiLf1dNy+qHkQBiDJqXhOmkxk1+eYcIjwrs3Ivi+xx0xEklKQlHTE1z9eu+peIkLSZRdjjCFcWER4734aPm9af2OlN90MbNi8lfD+QvzTpuAZ0vY6Y6V6K7EspFmOgeahldhueeqEUaROiE+c1h+CMNBATB2nTZs2AfDyyy/z8ssvxx0bPXp0XCB2+umn8/rrr7N48WJuvfVWUlJSuPHGG7n77rtbnXfFihX85je/YcWKFZSXl3Pqqafy6quvcu65555wW6+55hpycnJYunQpS5cuJRQKMWLECGbOnMmCBQsA8Hq9vPzyy9x8883cfffdBAIBLr/8cn7xi1+0mhL53e9+l1tuuYWVK1fyzDPPYIyJnWfZsmWEQiEee+wx/H4/V155JX/605+YNGlSh9v7+OOPM3XqVB5//HFuv/12/H4/Y8aM4cYbb4yNen3nO9+hoKCAJ598Mjaqd8EFF/C73/2O1NS2U9Yq1Z2M4+CUHcApK4yVSXImdtaofheUWCkZkJKBpA3G2bcdp7TITeqx3d0n0XvaBUhW23sgKtURIoJ3RA7eETkEpp9JpKSU4OYvsJLdmwKR0jJCe/cTLiwmtP8gVlJibC2ZJCeROPsCrICO0CrVW0nzKVmqY0TkaGpqamrLNUHNNa4PGj16dHc1S6l2aX9U3cU4DpF9mzHB2vgDlo09OBfxJfS7VPeNTLCeyK7PcYr3guPgmXIeVqabyMhEwmDZ/eYuruod6j/+lPqPNrV5zEoIkPjNmXiGDW3zuFKqe6SlpVFRUVFhjElreUxHxJRSSnUasSzsEadg6ioQfxKmvoZIyV4IB4kc2oUkpuEZMaGnm9klxBfAM2EaTJjW6lhkywZMbRUyOAdr8HB3NE2prykwdTKBqZOJVFQSOVgcW1/T8PGnSMAfC8KM49DwyWd4cobF9isDkIAfO73VtaFSqptoIKaUUqpTiceLRPcTE18CkphCpGgHpq4SwsHYImunqgSn7CCIhZU6GEkZ0i9HjJzKMiKH9rkPqsqJ7N6C55QzsIfn9WzDVL9hp6ZgpzZtG+EbPw6n3E2L71RXU7vuXcKFxfDxp62eK7ZF0rfn4Bmq68uU6m4aiCmllOpS4vFhjzgFIuH4/bfCIUxDDQCR+iqkvAhJzsTKyEGs/rMnnpWSgfe083GK9xEpKgAgsn0Tpq4GxMLOHo0k9s/pmqpniG1jZ7mjrpKYiKmta7euiTiYUKi7mqaUakYDMaWUUl1ORKDFJsiSkII1eDTU1+JUHcEE6zBlBzDBWjw5fWMPmI6ysnKwsnKw875B6P3XMOEQkT1b3WNpWRqIqS4jlsWgK+dhHCeu3NQ3ENq9F5xIbDQtfKSEYLPsjP4pk3TqolJdSAMxpZRSPUICSdgBN/ublZ6NU3EYp6IYU12GU3EYK3VID7ew80lCEp5pF7lBWCjoFnrd/XVMOIQpLW6qm5yGJGmApjpH8xThAJKYgH9SfuxxcOcewgcOEtqzFxMKu2Xbd2H5fdjDhpB48UzE7j8j1Ur1BhqIKaWU6nESSMLy52JC9Zjao62zLvYjVkoG1uQ29v1rqCf02buxh+Lx4p1+GeJP6MbWqYHKSk4CEbxjRxMq2I9pcG8UOA1BnL0HqP9wIwlnu4loIqVliNeLlaI3CpT6OjQQU0op1SuICPbQsUQKtyHJmT3dnO4nINHRMcJhd5PoTW9jn3waVromUlBdyzNsCJ5hTaPQkYpKQrsLqN+wMXq8KQ1+uOgwde9+gO/kPMTrXkp6c0dhDxuKeHTUTKmO0n3EToDuI6b6Gu2Pqi9p/LvUmEHRqa1ELAsJJPdks7pVZM8XhHe6Ge7E68N73ncQW++dqu5nQiHC+wuxh2RhJSfjVFZR8+rrRCoq26zvHZGD/4wpeIa4Nw8iZeU4NbVYiQnYmbptgxp4dB8xpZRSfUbzFPZOXRWRg27yAHv4BKx+uhl0S1ZuPh4gvPNTTCiIKT+CZGX3dLPUACReL96xubHHVsogfJPyiRQfBiBcdAgnmpXRSkzAHjoY8bqJeeo/2kj9x5/Fnc9OS0V8XpIuuxjx+7rnRSjVS2kgppRSqtcS2wOW7W4Ivf9zItKUcMDdr2wwdtbIHmxh1xAR7DETME6YyO4tcRknI8V7MTVV2CNPQnz+HmylGqj8kybApKaN2U0wSGjvfpyyo/jGj8Ma5I5eSyDQ6rmRo+7+ZtUvvcag+d/tngYr1UtpIKaUUqrXEl8CnhETiRzYigk3gGlKwW1CDUgofn+kxs2i+wtP3jew0ocgCUmxMlNSRKSoAFN2CPukyUhKRquMeEp1J/H58J3UeoNyT/ZQEi84Bzsrk0hJKSbsUPfuB+6xZuvR6j/5jEhpGTgOvgknx0bUTDCIlTJIU+irfksDMdUvLF++nD/+8Y/s2bOH4cOHU1BQ0NNNUkp1EvEFsHMnY+qrodm6ZlNfhSSkND12IkQKt2GlDUWSM/tNQGZlDG1R4CZDcI4ewfnwdcQXwMoZgySluD/rFEbVS9iZGbF1YXaWm4DHN3E8kZJSxNN0CRopPkRo/0EAQgX748+Rlsqgq+YBYMIRqv/xKuLz4ht/EgBWagqeoZrMRvVNegtNfS333nsvIsKUKVPaPP7ee+8xY8YMEhMTGTZsGLfccgu1ta3TUjc0NLB48WJycnJISEjg7LPP5o033uhQG7Zu3cr111/PhAkTeOKJJ3jooYe+1mtqz6pVq7jjjju65NxKqWMTy8ZKTMVKSot92ZkjsRJTY3Wckv2YukoiRTuI7NlIpHQ/xon0YKu7hj1hGvbYiUg0IDPBeiIFXxDe8gGRgi/i6ppgfauNfJXqSSKCZ3BW3CiXZ/RIrKS2t2lwml0zmHCISEkZ4YOHqF37DrVr36H6769S8e9/JVJ+FE1Ap/oaHRFTJ6y4uJg777yTpKSkNo9v2rSJWbNmMXHiRB544AEOHDjAfffdx+7du3n55Zfj6i5cuJAXXniBRYsWMW7cOJYvX86ll17KW2+9xTnnnHPMdqxfvx7Hcfjzn//cpVkBV61axcMPP6zBmFK9lJWR4+5DVlOOCTdgSg9gGmqxs0/uN6NjEL2QzfsGZuwkTEUpkb3bMJXl7jFf05ocE2wg9NGbSFIqnkln62a8qtfyT8zHPzHfDaSiwZSprSO07wDe0U1rQMXjwUoIQLQvO9U1bt1wmKpn/4EvL5fE2Rd0/wtQ6gRpIKZO2O233860adNwHIe2UvkvWbKEzMxM1q1bR3Kyu3A3NzeXG2+8kTfffJOLLroIgA0bNvC3v/2NBx98kEWLFgFw7bXXMmnSJBYvXsz69euP2Y7Dh93MTampqces11vV1taSmJjY081Qqs8Tjw/P8HxMsA7naDHO0WJMdRlO+UHsjOE93bxOJyJIWhZWWhubQwNO8V5MTSWmppLQP4+6QZrXj5U5FGvoyLigTaneQEQgetNEkpPwnzI+/rjHQ8q1V8UeO/X11PxjFZGjFSReMB3vSWMBCO7cQ7hgH4FzzsBK0r+vqvfSqYnqhGzYsIFnnnmGBx54oM3jlZWVrFmzhmuvvTYWhAGxx88++2ys7Pnnn8fr9XLDDTfEygKBANdffz3vvPMORUVF7bYjNzeX3/72twCkp6cjInEjVq+88grTp08nKSmJ1NRULr/8cnbu3Bl3jrfffpv58+czatQo/H4/I0eO5NZbb6WurikJwMKFC3n44YeB6MVP9Atg3bp1iAjr1q2LO29BQQEiwvLly+POk5aWxo4dO5gzZw7Jycn8/Oc/B8BxHO677z4mTJiA3+8nOzubX/7yl1RXV8edd82aNcyYMYO0tDSSk5MZP348S5Ysafc9UmqgEV8C9pAxWKnu2iqn9IC7vmyAsUaehOekyQCY2ip3TdmRA4S3fUzwrb+3mrKo07pUX2MFAiRf+V0GXfld7OyhiG1jgkFMdQ3BXQVUPvMclc88S+VTfyNSUYmJRHSqrupVdERMHTdjDL/85S/54Q9/2CsbXA4AACAASURBVO7asM2bNxMOh5k2bVpcuc/nY8qUKWzcuDFWtnHjRvLz8+MCNoAzzzwTYwybNm0iO7vtxecPPfQQK1as4MUXX+Qvf/kLiYmJnHrqqYCbwOO6665j7ty53HvvvVRVVbFs2TJmzJjBp59+ytCh7kXac889R21tLT/72c/IzMxkw4YNLFu2jAMHDvDcc88B8JOf/ITi4mJWr17N008/fWJvXFQoFOKSSy7hoosu4oEHHiA9PR2A66+/npUrV3LdddexaNEiduzYwSOPPMLWrVt5/fXXERG2bNnC3LlzOffcc7nrrruwbZsdO3bwzjvvfK02KdUfWYNHY2qOutMUIyH6z+TEjhER7NwJSEoG5mgJJhzCOXwAU1cdW1/WyCkpIrz1Q+wReVijTkaapctXqjcTkfisipZFqGBv7KFT495UrfrbiwD4J08k4Wz32sSprSO0ey++ieP71fRl1XdoINaNjONg6qt6uhkxEhh0QimPV6xYwdatW/n73//ebp3GUay2Aqjs7Gzef//9uLrDh7eeNtT43IMHD7b7e+bNm8emTZt48cUXufLKK0lLcz+Mq6urWbRoETfddBPLli2L1b/qqquYOHEiDz74IEuXLgXgnnvuISGhaZHwj3/8Y8aNG8eSJUvYt28fo0aN4pxzziE/P5/Vq1dz9dVXt9uejqitreXqq6/m97//fazs7bffZvny5Tz//PN8//vfj5WfccYZLFiwgNWrVzNnzhzWrFlDIBBgzZo12LreQ6ljEsvGyj4Jp3Q/kth0odY48jNQLrysjKHQmHnx5ClECrbhHCmMff6bUAPhze9hwiHCuzbDrs1YWTlYQ0diZecOmPdJ9Q/i8ZA871tESsqIlJVT/94GnIZgq3rGGExDA3XvfkDdux+QOOs8xN+0L5+VMgg7NaXV85TqTBqIdSNTX0XD2id7uhkx/gt/hCQe37qqqqoqbr/9dm6//fZ2R6mA2LQ+v7/1ZqOBQCBu2l9dXV279Zqf63isWbOGiooKrrzySkpKSmLlgwYNYvLkyXHTCJsHYTU1NdTV1TF9+nSMMWzcuJFRo0Yd9+//Kj/96U/jHj///PNkZGRwwQUXxLX3/PPPx7Zt1q1bx5w5c0hLS6OmpoZVq1bxrW99q9PbpVR/YyUMwhpxSuyxcSI4h/aAZWENGTMggww7Nx87Nz/2WLx+PFPOI7Lrc5xyd82tU3IQp+QgVuFu7FEnI4NzWo2iKdWb2VkZ2FkZ+E7OI3K0AlNfD4DVuCY74lC/4ZNY/do33m51jqRLLsKb2/82jFe9hwZi6rjceeed+Hw+fvWrXx2zXmNw09DQ0OpYfX19XPCTkJDQbr3m5zoeO3bsANxApi1jx46N/bxv3z7+9V//lZdeeony8vK4ehUVFcf9u7+K3+8nJycnrmzHjh2UlZUxeHDbe6EcOXIEcEf0nnjiCebOnUt2djazZ8/m8ssvZ968eQPyglKp42UqDuNUuf+fcCJYw8bp/x3ASh+CNe0inOqjOMX7cYoKMPU1OEePQCSMJ30w+DQQU32TnZYKxN94Fo9N4sUzqXlpFZGS0rhjJuLgGZ5N43zmcGER+Lx4Bmd1U4vVQKGBWDeSwCD8F/6op5sRI4FBx1W/qKiIhx56iD/84Q8cOnQoVl5fX08wGKSgoIDU1FTS09Njo2VtJdooKiqKC0Sys7PbrQe0Clo6wokuxl25cmWbwU1jcBeJRLj44ospKytj8eLF5Ofnk5SURGFhIQsXLoyd51jau4iLRNrev6hxpK9le7Ozs1mxYkWbz2l8DxISEli/fj1r167l1VdfZdWqVTz99NNcfPHFvPbaazpdUamvIGnDsMINOOVFOFUl7tox2+NO1U4ZjNgD+8+ilZyGNS4NkzcJZ89WnCMH8Zx2XizDoqmrQRLa3rJEqb5GLIvkeZe1Kncqq8Dnwwr4McYQLj5M/UebsJISsaObR1uDkgmcefoJLfFQqtHA/ovTzcSyjnsqYG9y6NAhgsEgixcvZvHixa2OjxkzhsWLF7N06VImTZqEx+Pho48+4nvf+16sTjAYZNOmTfzgBz+IlU2ZMoWHH36Y6urquIQdH3zwAQCTJ08+7rbm5eUBbpA3c+bMdutt3ryZ7du389RTT3HttdfGytesWdOqbnsBV2OyjZYp/Pfu3dtW9Xbbu3btWs4777w2p2k2Z1kWs2bNYtasWdx///3ce++9LF68mHXr1jFr1qwO/06lBiIRwcoaDZEITuVhTG0FBqCqFEr34xk7VafgEU2AMHYi9tiJceWhjW9BsAEJRKd3iYU1chx2zpgeaKVSXcNKabpR7ZQfpWHjZ+7PNbU4u5v+tge3fknKNVciXk1uo06MhvGqw8aMGcOLL77Y6mvixInk5uby4osvxoKZ1NRUZs+ezdNPPx2Xfr3x8fz582NlV1xxBaFQiCeeeCJW1tDQwJNPPsm55557QiNi3/zmN0lJSeGPf/wj4XC41fHGdViNI0jN0zYbY2Kp6ptr3Li6ZcA1evRobNtutd/Zo48+2uH2XnHFFQSDwVgCkeYaGhqorKwEoLS0tNXxxsyVjVM5lVLHJiJYQ8ZgZY7ESh2GNWgwiA1OJLaZrGrNhBrAGEyoAaeq3P2qLCW85QOC6/9BeNdmTLD1NHOl+jI7I53keZfhnzg+9tXIhMKYZksr6t75gMrl/0Hl8v+g4smV1K57F9MQbPpqfq2hqfQVOiKmjkNqairz5s1rVf7QQw/h8XhaHbvrrruYPn06M2fO5IYbbuDAgQPcf//9XHrppcyePTtW76yzzmL+/PncdtttFBUVkZeXx1NPPcXevXvj9uA63rY+8sgj/PCHP2TatGlcddVVZGZmUlBQwEsvvcS8efO48847yc/PJy8vj1//+tcUFhaSkpLCCy+80GqtGMDUqVMBuPnmm7nkkkuwbZsFCxaQmprK/PnzWbZsGSJCXl4er7zySmyj6Y648MILueGGG7jjjjv4+OOPmTVrFpZlsX37dp599ln++te/Mnv2bP7whz+wfv16LrvsMnJzczly5AiPPvooI0aMYMaMtjd1VUq1JpaFnTki9tiKhDDVZdBsmpFztBhTVw0eL5KcjvgSB/bURduLZ9xk9z0BwBDZvxNTX4NpqMMcLoTsMeDzuxeY4aBuGq36BTsrk4QZmbHHvvyTqHnlv8DjgWYbY5hwOC5DY/DLnQS/bNq7NHXhv4DfB0CoYD+1r7+Fb9wYAueeidXGsgXV/w3gvyiqq51++um8/vrrLF68mFtvvZWUlBRuvPFG7r777lZ1V6xYwW9+8xtWrFhBeXk5p556Kq+++irnnnvuCf/+a665hpycHJYuXcrSpUsJhUKMGDGCmTNnsmDBAgC8Xi8vv/wyN998M3fffTeBQIDLL7+cX/ziF62mRH73u9/llltuYeXKlTzzzDMYY2LnWbZsGaFQiMceewy/38+VV17Jn/70JyZNmtTh9j7++ONMnTqVxx9/nNtvvx2/38+YMWO48cYbY6Ne3/nOdygoKODJJ5+kpKSErKwsLrjgAn73u9+Rmtp3p70q1dPE9iLRDaABnMoSIocLgOgd7PKDIDZW+jCs9GzEHnhTkcSykKEj4sqsUeNx9n6JU34Yz8QzEX80uVJDHaEP30ACCVhDRiIJyUhKuq4vU/2CnZVJysJ/aVXumzge7+gRRCoqqf/gkzae2SRyxJ2ZE9y5h+DOPfjG5+HNHYU9bIgGZQOIGJ2GcdxE5GhqampqyylqzTWuDxo9enR3NUupdml/VOr4mPpqnIrD4Dg4dZUQbjblzrKxh47FGqQZ1NpiwiFC617EmNbTrtxATbAyh2KfciYigqmpxCk7hDVsNOL1dX+DleoCJhLBKa8gdjMHsDLSY8k9QrsLqFnzVpvP1bT5/UtaWhoVFRUVxpi0lsd0REwppZRqQQLJ2AE3eZBlDERCOBWHccqLwAljQg0YY9xAIhLGKdmP+BOQ1CGIDOzl1+Lx4p1+GZG97sbRRCKYsDtdyzTUIb6AO0oWTYDkVJYT3vYxsvMzPJPORhJTwB9APANv1FH1H2Lb2FkZ7R73js0l9cejCX7+BfUbNmKi69nF6yFUsFcDsQFCAzGllFLqGEQEPD7szBFYaUOJFG5DLE9TJlUnglNRDIBVV+VuFD2Q15IBkpiMZ8I0mDANcNPeO0ePgDFIQhJW+pCmyo57AWrCIUKbmjbV9Zx8Gtaok3WfN9VviQj+b5yC/xvupvP1n3yGZ0gWnhFukrJwYRENn23BRCL4TxmPlZEe3RNN9RcD+y+FUkopdRzE9mKPnBQLHgCwLMSXiAnW4lSV4NRWYKUNc9eRWRaSlK6BWUISdjvrw6ycsdh1tUT2bIkrD2/fiF1b5QZ0Sg0AgdNPjf0c3LaD8MFiwvsPunuZFbo3e8TjwUpOwkpLIfGbF+qNij5uYP9lUEoppY6TiECzZB1ie7FHn+puEl12wJ3GWLo/dtwemoekDmnrVAr3/fSM+wb2mAkQCuKUFhPeusE92GzNWOTgHiLbPsbO+wbWsFHg9emeb6rfsjLSsCoqkcQEqK/HRNw1lyYcJnK0Ajt7CITDoHuY9WkaiCmllFJfk4hgZ+RgpWThlB7A1FWCAROuh2Z3rI0TwTm8JzpFLwX8iYg/UQMKcEcNbQ/28LFYw0bjHNqHJDZtrEs4hImECW/fCNs3Au70RckciiSl6siA6lc8QwbjGTKYwFnu1jlOdbU7OuY4BLd+iZUyCPF6cSqrqPvgYwDs1BT806bEEoKo3k8DMaWUUqqTiMeHPXRs7HFjkgoAEwkTKdqBqY1m3K1y01dLYBD2iFP04qkZsW3snDHxZY2p8ZsJNwZkJ03Bzs3vlrYp1ROs5GR8E04GwD+xqa+bYIjQbjczcgio37iZpEsuxDNiOOLRGzy9nQZiXcSyLEKhUE83QykAIpEIXp2+oFS3E098OnZJTEG8AUyoDlNbAYCpryJyYAuSnImdkdMTzewTrKEj8c2aD3W1OIf2Ed61uemgzx/70TgRiETcjbh1lEz1cxLw4xufR/DLXbGymtVrAUj+9iV4cob1VNNUB2gg1kUCgQDV1dWUlZWRkdF++lKlulpZWRkNDQ0MGjToqysrpbqM2B7sjOGxx8YYnPKDOCX7MfXVmFBDXCBmgnXgRAABywJvYMAHFmLZkDQIe+xErDGnYCpKCW/9MDaF0YQaiOz5gsjebUhSCt6zL9Fpn6pfs5KTSJw5g4Rzz6Lq+ZdwKqtjx8IHi2KBWKSkDGwLK02n8fYmuqHzCejIhs7GGAoLC6mqqsLv92Pb+odAdb9IJBILwoYPH64fvkr1Qk5tJU75QQA8w90pRyYSJrJvMyZUH6snvgQkZTDiTXBjs2S9yddSpHAX4a0fxh5LIAlP/ulI+hDdl0wNCE5tHbVvrgfH4Dt5LL58dzpjxRPPYCIRAJIuuRB7yGCsxNbTfVXnO9aGzhqInYCOBGLgBmMlJSXU19fjOE43tU6pJpZlEQgEyMrK0iBMqT7EqSwhcmgntPc32rLxjjsTcP/WNNL/52Bqqwj9czUmEo4rt1Kz8J45O/Y4UvAFTkWZu4m03ixV/dzRvzzVqsxKSgTHIWnuN7Ez0nugVQODBmKdrKOBmFJKKXWijBOJBWKmrhKn4jCmvgoMbiA29nT3WDhEePdHYPuwktOQxPT4xBYiiDfQA6+g55i6GkKfrMPUVsXKJJCE77xvu8fDISK7txDZuw0AKznVHTXzJ2CNztfEKarfcerqqH72Hzj1Da2O+fJySZx9ASYYxKmtw0pO1kQfnehYgZiuEVNKKaV6oeZrmyQ546unIkaCOBWHoeJwfLntxZvXtClypKwQU1+NlToUK6nVdUG/IAlJ+M79FgBO2WFMfY27wXYjx8E51LTXm1NdAdVu8hQ7FMRz8pRuba9SXc1KSCDlhwsACB8pwSmvILh9J/7Jk/CMcNemhgr2U7v2HQB8+Sfhy8vFHjoY0WRfXabPBGIi4gd+D1wDpAOfAv/TGPNGszo3AbcBScD/AX5ljGlodtwCPgaeNcbc3Y3NV0oppbqGbWPnjMfUHHW/wq3veMdpqMVUlxGpKcfxBsD2IklpWEnpiD+xe9rcjayM1ptpi8+Pd8ZcTGkxkcJdgOAcdgOzyN5t2Ln5iG9gjSKqgcMzOAsGZ+E7OS/+gBOJ/RjctoPgth0A2GmpSFIiSXMuQjx9JnToE/rSu7kc+D7wELATWAi8JiIXGGPeF5HzgWXAA0Ax8BvgIHBXs3P8BBgUraOUUkr1eSIWkpwByRnuerFIKH5tWYt1Y5KUhgRrMQ21bmZG6typjyX7wPbgzTsjVtc4EZyyQsTjR5LSwOPrN+vQRATJysbKygbAKS0m9Mk67KGjYkGYCQVx9u/AhEMggjV4OJKSrpkYVb/kHTeWhGCIuvc/iiuPHK3ANzgTEw4jHg8mHAHb6jefBT2pT6wRE5EzgQ+AW40xD0XLAsDnwEFjzPkicg8wzRgzK3r8t8AcY8w50cfpwA7gR8aYl79me3SNmFJKqT7LOBFMdRkmVI+prcTUVboHmicBcRycQ7twohtPNx6XxMb01xaSNgQrIaX7X0AXMXU1mLpqrIyhmOoKInu34RTtxZj4hFtW5jB38+5TzohlYzQ1VZhgffwJPR4kOU0vWFWfFNq7H6e6htCO3XhyhhE483Sc+gbC+w5Qu/YdfHm5QHQvs/yTsDIztK+3oT+sEbsCd8PwJxoLjDH1IvLvwF0ikg0kAM0jozKg+RyLPwAffd0gTCmllOrrxLKRlMHug0wwxsHUVcWPpEWCgEQ3oI4GGI0BXLSK5fFCNBBzao66o3Ht/c5AMuLr3emyJSEJSUhyH1gWRCJIxlCoqcTU18TqOaXFANj5U2NlkT1biBQVtH3epFS8U2fGJ1FRqpfzjh4JgH9ifqwstGMXde+5W0QEdxXEyhu2fAlAwvQz8H/jlFh5zZp1EA7jHTcGDETKyvFPnoiVoP8XoO8EYqcB24wx1S3KNwACTAE+BH4kIhcBh4Af446iISLfAK6PnucrichXDXWlVlRUkJbWPxc5K6WUUq2ZFun0JX7ao3HaT7cPIFZ8/WbrUdpkWe7v6HD9FtMFj6u+ga/aZsaym16jAXBAbmx2ipavv8XIQPNMjG2+V83qy1e9ty3O3bK+4wDHaovEl31l/RZZJFu9t32pflv/1sf6tzLu+99Z9QX3/0KH67fsC8dbvwv6WmM7oPV72fL1OSb+FM3P3bIfRiLRz4kO1DfRf8eWfaGxvs9Pb1FRUQHQ5tSBvhKIZQOFbZQXRb/n4K4hmw80Ju/YBvwu+vPDwKPGmG2d2CZTUVFR2c6x5Oj3loHjidb9qjqp0e8VHfh9fcXxvId96fd3xnlP9BzH+7yO1tc+3L6e7Mf9sQ8f73P1s/jr08/izj+HfhZ3P/0s7vzz9O5+XFcPvacfpwBt3unpK4FYAtBWGqjGydgJxpgI8B0RGY+bNfFzY0xQRK4ATgHmichw4DFgKm72xJ8YYw62PGlbcziPh4isi55nZmfU/ao6jSN4X7fdvcnxvId96fd3xnlP9BzH+7yO1tc+3L6e7Mf9sQ8f73P1s/jr08/izj+HfhZ3P/0s7vzzaD/uHH1lx8I6oK0xxkCz4wAYY740xnwSDcISgPuAJcaYSuBv0brfxg3iVnZts5VSSimllFKqtb4yIlaEOz2xpcayVqNaUbcBh4EnRWQkMAMYY4wpEJHbgN0iMsIYc6DTW6yUUkoppZRS7egrI2KbgHwRSW5Rflb0+6ctnyAio4D/Adxs3Bz9OdFDB1t8H97JbVVKKaWUUkqpY+orgdjzgBe4obFARPzAj4B321rnhTsl8QVjzD+jjw9Fvzfm4JwQ/V7c+c1VSimllFJKqfb1iQ2dAUTkWWAe8CCwC/ghcAZwoTHm3RZ1ZwIvAeONMUXNyj8EbODfcYO6BmPM2d3yArpQX1qUqFRbtA+r/kD7serrtA+r/qAv9eO+MiIGcC1uGvprgT/jjpBd1kYQZkfr3dk8CItaAFQBS4FK4Add3WillFJKKaWUaqnPjIip9vWlyF+ptmgfVv2B9mPV12kfVv1BX+rHGogppZRSSimlVDfrS1MTlVJKKaWUUqpf0EBMKaWUUkoppbqZBmJKKaWUUkop1c00EBsgRGSIiKwSkVoR+VxE+nzafjXwiMjvRGSriDgisqCn26PU8RARv4g8KSIHRKRCRNaKyMSebpdSx0tE/j8RKRKRShHZLCJze7pNSp0IETknek1xe0/8fg3EBo7HgN1AJvAn4IXopthK9SU7gFuADT3dEKVOgAf3c/hsIAN4Gfh7j7ZIqRPzMDDGGJMC/Ah4RkTSe7hNSh0XEbFw9yf+sMfaoFkT+z8RGQSUAiONMYeiZduAW4wxq3u0cUqdABFZBzxmjPlbT7dFqRMlIj6gHhhsjCnt6fYodSJEZBrwNjDVGLO1p9ujVEeJyE+BCUAqsM0Ys7S726AjYr2QiGSLyNLotJUqETEiMrOdun4RuUdEDopInYj8U0Rmtah2EnC0MQiL2gyc0kUvQamu6MdKdatu6MPnAIc1CFNdqav6sYg8KiJ1uKMJrwNfdN2rUANZV/RhEckEFgG/7eLmH5MGYr3TeGAxMAL47CvqLgduBZ7BnbLlAK+JyDnN6iQBlS2eVwkkd0ZjlWpHZ/djpbpbl/VhEUkDHgeWdFZjlWpHl/RjY8zPca8jLgZeNzrFSnWdrujDdwEPGWOOdm5Tj48GYr3Tx0CWMeYk3PVcbRKRM4EFwG3GmNuMMY8DFwH7gHuaVa0BBrV4egpQ3amtVipeZ/djpbpbl/RhEQkA/wBeMcb87y5puVJNuuyz2BgTMca8DswWkUs6v+lKAZ3ch0XkNOAM4N+6tNUdoIFYL2SMqergVJUrgBDwRLPn1gP/DswQkexo8Q4gXUSGNnvuJEDncqsu0wX9WKlu1RV9WERs4G/AfuDXndtipVrrps9iD5D3tRqqVDu6oA9fgDvKVigixcBVwP8Ukcc6t+VfTQOxvu003MWFLUe2NgACTAG3AwOvAL8RkYCIXIM7IrauG9uqVHs61I8BRMQbHU2wAG+0P+vnmOppHe7DuHdgA8CPdCqX6mU61I9FJFlEro5+94jI94ELcRN2KNWTOvpZ/DgwLvp4CvASbibQxd3Uzhi9gOnbsoGiNsoby3Kalf0MN2lHGXA78H1jTEPXNk+pDjmefvxvQB1wHrAi+vP5Xdo6pb5ah/qwiIzGTfV9AVAuItXRr/O6p5lKHVNHP4sNcB1wADcj8xLgX4wxm7u8hUodW4f6sDGm1hhT3PiFey1RbYyp6KZ2xni6+xeqTpUAtBVM1Tc7DkA0Y6LO31a90fH044XAwq5vklLHpUN92BizF/eurFK9UUf7cQ3uuhulepsOX080F7226BE6Ita31QFtbcocaHZcqd5O+7Hq67QPq/5A+7Hq6/pcH9ZArG8rwh2Gbamx7GA3tkWpE6X9WPV12odVf6D9WPV1fa4PayDWt20C8kWk5X5gZ0W/f9rN7VHqRGg/Vn2d9mHVH2g/Vn1dn+vDGoj1bc8DXuCGxgIR8eMuBn/XGNPrIn+l2qD9WPV12odVf6D9WPV1fa4Pa7KOXkpE/t/ojxOi368RkRnAUWPMIwDGmA9E5Dng3ujeCLuAHwKj0YQGqhfQfqz6Ou3Dqj/Qfqz6uv7ah0W3MemdRKS9f5i9xpjcZvUCwB+Aq4F04DNgSXSne6V6lPZj1ddpH1b9gfZj1df11z6sgZhSSimllFJKdTNdI6aUUkoppZRS3UwDMaWUUkoppZTqZhqIKaWUUkoppVQ300BMKaWUUkoppbqZBmJKKaWUUkop1c00EFNKKaWUUkqpbqaBmFJKKaWUUkp1Mw3ElFJKKaWUUqqbaSCmlFJK9SIisk5ECnq6HUoppbqWBmJKKaX6PRGZKSLmGF/hnm6jUkqpgcXT0w1QSimlutF/AK+2Ue50d0OUUkoNbBqIKaWUGkg+McY809ONUEoppXRqolJKKRUlIrnRqYp3iMi/iMhnIlIvIvuiZa1uYIrIqSLyooiURutuFZHbRMRuo+4wEfmziOwWkQYROSwia0Tk4jbq5ojIf4hIuYjUishqETm5q167Ukqp7qUjYkoppQaSRBHJaqM8aIypbPb4O8BY4H8BxdHHvwVGAz9qrCQi04C3gFCzut8G7gEmA/+tWd1c4F1gKLAC+AhIAs4GZgNrmv3+JGA98E9gCTAGuAX4h4hMMsZETuTFK6WU6j3EGNPTbVBKKaW6lIjMBNYeo8r/NcbMjQZLe3DXjJ1hjPkk+nwB/hOYB5xjjPlntPxd4CzgdGPMZ83q/h9gPjDbGPNGtPxV4FJgjjFmdYv2WcYYJ/rzOuACYLEx5t5mdf4HcG9bz1dKKdX36NREpZRSA8njwMVtfP3PFvXWNAZhAMa9a9kYFF0OICJDgOnAS41BWLO6d7WomwHMAVa1FUQ1BmHNOMCfW5S9Gf1+0le+SqWUUr2eTk1USik1kOwwxrzegXpftFG2Nfp9bPT7mOj3Le0832lWdxwgwMYOtvOgMaa+RVlp9HtmB8+hlFKqF9MRMaWUUqr3OdYaMOm2ViillOoyGogppZRSrU1oo+yU6Pfd0e97ot8ntlE3H/dvbGPdnYABpnRWA5VSSvVtGogppZRSrV0sIqc3Pogm4Lgt+vDvAMaYw8B7wLdFZFKLuv9P9OGL0bplwGvApSIyu+Uviz5HKaXUAKJrxJRSSg0kp4vI1e0c+3uznz8F3hSR/wUUAd/FTTH/tDHm/Wb1bsFNX/92tG4xMBe4BFjZmDEx6he4gdtrIvIU8DGQgJt1sQBY/DVfm1JKqT5EAzGllFIDyb9Ev9pyEhCO/vwS8CXuyNZ44DDwh+hXjDHmIxGZDvwO+Dnu/l+7cYOq+1vU3RPdhFHLTwAAAHZJREFUd+w3wGXAtUA5btD3+Nd9YUoppfoW3UdMKaWUimq2j9jv/v/27eAEABiGgdjq3dzd4gpFmiDfI3jbeXoMAF+zEQMAAIgJMQAAgJgQAwAAiNmIAQAAxHzEAAAAYkIMAAAgJsQAAABiQgwAACAmxAAAAGIXvF8WZaCI5sIAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<Figure size 1008x576 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [], | |
| "needs_background": "light" | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAH3CAYAAADZm+xLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeZyP5f7H8dc1ixnryNowxjJGQ5KyhGwpmQiV5RypcBLlYGxFpFCZ7DPjOE3kUEm2RHEsKUVkOxGV7LvJbhjLmOX6/THj+7OMbczMPcv7+Xh8H/le93Xf87kPju/7e93XdRlrLSIiIiIiIpJx3JwuQEREREREJKdREBMREREREclgCmIiIiIiIiIZTEFMREREREQkg3k4XUBWZIyJJynEnnG6FhERERERybQKAInW2utyl9GqiXfOGJMIGB8fH6dLERERERGRTCo6OhrAWmuvexJRI2Kpc8bHx8fn9OnTTtchIiIiIiKZVMGCBYmOjk7xKTrNERMREREREclgCmIiIiIiIiIZTEFMREREREQkgymIiYiIiIiIZDAFMRERERERkQymICYiIiIiIpLBtHy9iIiIiEgWY63l+PHjXLx4kcTERKfLyVHc3Nzw9vamSJEiGGNSfR0FMRERERGRLMRay6FDhzh79ixeXl64u7s7XVKOEhcXR0xMDLGxsZQsWTLVYUxBTEREREQkCzl+/Dhnz56lePHiFCpUyOlycqSTJ09y5MgRjh8/TtGiRVN1Dc0RExERERHJQi5evIiXl5dCmIMKFSqEl5cXFy9eTPU1FMRERERERLKQxMREPY6YCbi7u9/V/DwFMRERERERkQymICYiIiIiIpLBFMREREREREQymIKYiIiIiIhke8YYhgwZ4nQZLgpiIiIiIiKSKaxZs4YhQ4Zw+vRpp0tJdwpi2cD69eu1o7qIiIiIZHlr1qxh6NCh6RLELly4wFtvvZXm100tBbEsbvv27dSsWZNKlSoxYcIEYmJinC5JRERERCRdJSQkEBsbe0fneHt74+HhkU4V3TkFsSxuyZIlAGzbto3u3bvj5+dH37592bNnj8OViYiIiIjcviFDhtC7d28AypYtizEGYwx79+7FGEOvXr349NNPCQoKwsvLi59//hmA0aNHU6dOHQoXLkzu3LmpVq0ac+bMue76184RGzJkCMYY9uzZw0svvYSPjw8+Pj506tSJ8+fPp/v9Zp5IKKnSo0cPHnvsMSIiIvjss8+Ijo5m7NixjBs3jhYtWhASEkLDhg0xxjhdqoiIiIiks7179970eNGiRcmbNy+QNKp04MCBm/a/99578fb2BiAuLo5Dhw7dtH+JEiXIlSvX7Rd8heeee45du3Yxbdo0xo0bR5EiRVw1AyxdupSZM2fyz3/+k4IFC+Lr6wtAeHg4LVq0oH379ly6dIkZM2bQpk0bFixYQLNmzW75c1u1akVAQAAffPABv/zyCx9//DHFihVjxIgRqbqP22at1esOX8BpHx8fm9kcP37choaGWj8/Pwu4XlWqVLEff/yxPX/+vNMlioiIiMhd2rt3r927d2+Kx678DJjSa86cOa6+x48fv2X/5cuXu/pv27btlv03b958V/c2btw4C9g9e/Zcd1/u7u5227Zt151z7WfcS5cu2cqVK9tGjRpdd4133nnH9f6dd96xgO3SpctV/Z599llbuHDhW9Z6s9+Hy3x8fCxw2qaQKfRoYjZSuHBhBgwYwO7du5k5cyZ16tQBYPPmzXTu3Bl/f38GDRp0y28yREREREQym0aNGlGhQoXr2nPnzu369alTp4iOjqZevXr88ssvt3XdV1999ar39erV48SJE5w5c+buCr4FPZqYDXl6etK2bVvatm3Lhg0bCA8PZ+bMmRw/fpzhw4czcuRIWrduTUhICLVq1XK6XBERERFJI7daJ+DyY34ABQsWvGX/e++91/XrsmXL3rJ/iRIlbqPK1ClbtmyK7QsWLOC9995j06ZNVy3gcbtTc/z9/a96f8899wBJoa5AgQKprPbWFMSyuerVq/PZZ58xcuRIIiMjiYyM5OjRo8yYMYMZM2ZQs2ZNQkJCaN26daqf5xURERGRzKFMmTK33dfd3f2O+nt6et5R/7R25cjXZStXrqRFixbUr1+ff//73/j6+uLp6cmUKVOYPn36bV3X3d09xfakpxnTjx5NzCF8fX0ZOnQo+/fv55NPPuHhhx8GYN26dbRv354yZcrw3nvvcfToUYcrFREREZGc6k4XmPvyyy/x9vZmyZIl/OMf/+Cpp57iiSeeSKfq0paCWA7j5eXFSy+9xIYNG1i5ciWtW7fGzc2NqKgoBg8ejL+/P//4xz/49ddfnS5VRERERHKYyys63u6Gzu7u7hhjSEhIcLXt3buXefPmpUt9aUlBLIcyxlC3bl1mz57Nnj17eOONN7jnnnuIjY1lypQpVK1alYYNGzJ37tyr/mCLiIiIiKSXatWqATBo0CA+++wzZsyYwblz527Yv1mzZpw/f57g4GAiIyMZNmwYjzzyCOXLl8+oklNNQUzw9/dnxIgRHDhwgMjISCpVqgTAjz/+6NpXYfTo0Zw6dcrhSkVEREQkO3vooYcYPnw4v/76Kx07dqRdu3YcO3bshv0bNWrE5MmT+euvv+jVqxdffPEFI0aM4Nlnn83AqlPHpPcktOzIGHPax8fH53aHTLMaay3Lli0jPDychQsXutrz5MlDhw4d6NmzJ0FBQQ5WKCIiIpJz7du3D4DSpUs7XEnOdju/DwULFiQ6OjraWlvw2mMaEZPrGGNo3LgxCxYsYPv27fTs2ZN8+fJx/vx5PvzwQypWrEhwcDCLFi0iMTHR6XJFRERERLIcBTG5qcDAQMLDwzl06BBhYWGUK1cOgCVLltC0aVMqVarEhAkTiImJcbhSEREREZGsQ0FMbkuBAgUICQlh+/btfP311zz++OMAbNu2je7du+Pn50ffvn1vucmfiIiIiIgoiMkdcnd3p3nz5ixbtowtW7bwyiuv4O3tTXR0NGPHjiUgIIBnnnmG5cuXp/smeCIiIiIiWZWCmKRa5cqVmThxIgcPHiQ0NBQ/Pz+stcyfP59GjRpRtWpVJk+ezIULF5wuVUREREQkU1EQk7tWuHBhBgwYwO7du5k5cyZ16tQBYPPmzXTu3JlSpUoxaNAgDh065HClIiIiIiKZg4KYpBlPT0/atm3LqlWrWL9+PS+88AKenp6cOHGC4cOHU6ZMGdq1a8eaNWucLlVERERExFEKYpIuqlevzmeffca+fft4++23KVasGPHx8cyYMYPatWvzyCOPMH36dC5duuR0qSIiIiIiGU5BTNKVr68vQ4cOZf/+/XzyySc8/PDDAKxbt4727dtTpkwZ3nvvPY4ePepwpSIiIiIiGUdBTDKEl5cXL730Ehs2bGDlypW0bt0aNzc3oqKiGDx4MP7+/nTq1IlNmzY5XaqIiIiISLpTEJMMZYyhbt26zJ49mz179vDGG29wzz33EBsby9SpU3nooYdo0KABc+fOJSEhwelyRURERETShYKYOMbf358RI0Zw4MABIiMjqVSpEgArVqygVatWBAQEMHr0aE6dOuVwpSIiIiKS1XTs2JEyZcq43u/duxdjDFOnTr3jc9ODY0HMGFPdGPOVMWafMeaCMeYvY8xiY0ydFPrWMcb8ZIw5n9wv3BiT55o+pZLPP2OM2WSMqZvCdVoZY44YY3zS897kzuTNm5euXbvy22+/sXTpUpo1awbAvn37eP311/Hz86Nbt278+eefDlcqIiIiIpI2nBwRCwA8gElAd2AUUAxYYYxpfLmTMaYq8B3gDfQBPga6AjOvud5UwA/oDxwA5l0ZuIwx3sBoYKC1Njp9bknuhjGGxo0bs2DBArZv306PHj3Ily8f58+f58MPP6RixYoEBwezaNEiEhMTnS5XRERERLKQ0qVLc+HCBV588UWnSwEcDGLW2pnW2ubW2vestZOttWOAusBxIOSKrsOBE0BDa22ktfYtkoLb08aYRgDJo2OPAa9Zaz8E2gJ5gFpXXOeN5Gv/J73vTe5eYGAgERERHDx4kHHjxlGuXDkAlixZQtOmTalYsSITJkwgJibG4UpFREREJCswxuDt7Y27u7vTpQCZbI6YtfY8cAwoCGCMKQA0Bj611l75iftTIIakwAVJo2UGOJ18nQvABZLCGMYYf5KCWE9rrU3/O5G04uPjQ69evdi+fTtff/01jz/+OADbt2+ne/fu+Pn50bdvX/bs2eNwpSIiIiJyN2bPno0xhlWrVl13bMSIEbi5uXHgwAFWrlxJmzZt8Pf3x8vLi1KlStG7d28uXLhw0+vfaI7YvHnzqFy5Mt7e3lSuXJmvvvoqLW/rhhwPYsaY/MaYIsaY+4wxw4HKJD2KCPAASY8vbrjyHGvtJWAT8FDy+5PAbqC/MaaMMaY34ANsTD5lFDDXWvvzbdZ0+mav5GtLBnJ3d6d58+YsW7aMLVu28Morr+Dt7U10dDRjx44lICCAZ555huXLl6OsLSIiIpL1NGvWjLx58zJr1qzrjs2aNYvatWtTqlQpZs+ezfnz53nttdcYP348TZo0Yfz48bz00kt3/DOXLl1Kq1atcHNzIzQ0lGeeeYZOnTqxYcOGW598lzzS/Sfc2hSgVfKvLwGRJD2OCOCb/N+oFM6LAmpf8f5VYDbQHkgkaS7YXmNMA+Ap4L40rlscUrlyZSZOnEhoaCiTJk1iwoQJHDx4kPnz5zN//nyqVKlCz549ef7558mdO7fT5YqIiIiku/j4eA4ePOh0GS5+fn54eNxZ1MiTJw9PP/00c+bMISwsDGMMALt27eKXX34hPDwcSBodu/IzXpcuXShfvjwDBw5k//79+Pv73/bP7N+/PyVKlGDVqlXkz58fgAYNGvDkk09SunTpO6r/TmWGIDYU+IikhTZeBLwATyAWuPy/cGwK51284jjW2m+TH0GsCOy31kYZY9yBCOD95PevkTT/zADjrLWRKRVkrS14s4I1KpY5FC5cmAEDBtC3b1+++uorwsPDWb16NZs3b6Zz587079+frl270q1bN0qWLOl0uSIiIiLp5uDBg5QtW9bpMlz27NmTquXf27Zty8yZM/npp5+oV68ekDQa5ubmRps2bQCuCmHnzp3jwoUL1KlTB2stGzduvO0gFhUVxaZNm3jrrbdcIQygcePGVKpUiXPnzt1x/XfC8UcTrbVbrLXfWmunAE2AaiStgAhJ87wgKZxdy/uK45evdcZau9Zae3kErStJ88TGGWOeIOkRxQEkzRcbY4x5LE1vRhzh6elJ27ZtWbVqFevXr+eFF17A09OTEydOMHz4cMqUKUO7du1Ys2aN06WKiIiIyE00bdqU/PnzM3Pm/y+QPmvWLOrWrYuvb9LDcvv376djx44UKlSIfPnyUbRoURo0aABAdPTtL46+b98+IGmRuGvdd1/6P0yXGUbEXKy1ccaY+cBbxpjc/P8jib4pdPcFDt/oWsaYQsC7QAdr7SVjTDtgjrV2XvLxOSQ9xrg8Le9BnFW9enU+++wzRo4cSWRkJJGRkRw9epQZM2YwY8YMatasSUhICK1btyZXrlxOlysiIiKSJvz8/DLV4mV+fn6pOs/b25vmzZvz5ZdfEhERwe7du9m0aRMTJkwAICEhgcaNG3Py5En69+9PUFAQefPm5dChQ3Ts2DFLbXGUqYJYstwkPTqYH/gNiAeqA3MvdzDG5AKqAtNvcp13gXXW2gXJ70vw/4t3QFKIq5p2ZUtm4uvry9ChQxk4cCAzZswgPDycjRs3sm7dOtq3b0+/fv3o1q0bXbp0oVixYk6XKyIiInJXPDw8UvUoYGbUtm1bpk+fzooVK1i9ejXu7u60bt0agC1btrB9+3Y++eSTqxbn+Pbbb+/451yeA7Zjx47rjm3bti2V1d8+xx5NNMYUTaGtANAGOGCtPZq88fIy4EVjTL4rur4I5CNpcY6Urv0A0AnodUXzESDoivcVgb/u6iYk0/Py8qJDhw7873//Y8WKFbRu3Ro3NzeioqIYPHgw/v7+dOrUiU2bNjldqoiIiIgAwcHBFChQgJkzZzJr1iwaNmzo+uL88h5gV66Sba11LeRxJ3x9falatSpTp07l7NmzrvZvv/2WP/744y7v4tacHBGbaYy5CKwmKRCVIik8+QF/v6LfoOQ+PxhjPk4+3hdYZK1ddoNrRwD/ttZeGWXnAPOTl8gHaA48nVY3I5mbMYZ69epRr1499u/fz4QJE5g0aRKnTp1i6tSpTJ06lfr16xMSEkLLli0zzUZ/IiIiIjmNl5cXLVu2ZNq0acTExDBx4kTXsaCgIAICAujXrx+HDh2iQIECfPnll5w6dSpVPys0NJRmzZrx6KOP0qlTJ06ePMn48eO5//77iYmJufUF7oKTi3VMI2khjZ7Ah0A34FfgMWuta/MAa+0vwBMkrZw4DngFmETSyNl1jDFtSBrtGnZle/IjioOADkBH4E1r7aI0vSPJEvz9/RkxYgQHDhwgMjKSihUrArBixQpatWpFQEAAo0ePTvVfaBERERG5O3/729+IiYnBw8OD5557ztXu6enJN998Q9WqVQkNDWXo0KEEBgby6aefpurnBAcHM3v2bOLj43nzzTeZO3cuU6ZMoXr16ml1KzdktPntnTPGnPbx8fE5ffq006VIGrDWsmzZMsLDw1m4cKGrPU+ePHTo0IGePXsSFBR0kyuIiIiIZJzLq/2l9z5XcnO38/tQsGBBoqOjo1PaHsvx5etFnGaMoXHjxixYsIDt27fTo0cP8uXLx/nz5/nwww+pWLEiwcHBLFq0KEutxCMiIiIimZeCmMgVAgMDiYiI4ODBg4wbN45y5coBsGTJEpo2bUrFihX517/+le7PDIuIiIhI9qYgJpICHx8fevXqxfbt25k/fz6NGjUCcI2YlSxZkj59+mSq/TpEREREJOtQEBO5CXd3d1q0aMF3333H5s2b6dy5M97e3pw5c4Zx48YREBDAM888w/Lly9F8SxERERG5XQpiIrfpgQceYNKkSRw8eJDQ0FD8/Pyw1rpGzKpWrcrkyZO5cOGC06WKiIiISCanICZyhwoXLsyAAQPYvXs3M2fOpE6dOgCuEbNSpUoxaNAgDh065HClIiIiIpJZKYiJpJKnpydt27Zl1apVrF+/nhdeeAFPT09OnDjB8OHDKVOmDO3atWPNmjVOlyoi6ejUqVPMnj2bbt268f7773PmzBmnSxKRbM7NzY2EhASny8jxEhIScHNLfZzSPmKpoH3E5EaioqKIjIwkMjKSo0ePutpr1qxJSEgIrVu3JleuXA5WKCJ3KzExkV9++YXFixezePFi1qxZc9UHouLFi/P+++/TsWNH3N3dHaxURLKrY8eOcfz4cYoXL06hQoWcLidHOnnyJEeOHKFIkSIULVr0hv1uto+YglgqKIjJrcTGxjJjxgzCw8PZuHGjq93X15du3brRpUsXihUr5mCFInInjh07xtKlS1m8eDFLlizh2LFjVx3PlSsXtWvXZv369Zw/fx6Ahx56iLCwMOrXr+9EySKSjVlrOXToEGfPnsXLy0tf+mSwhIQEYmNjyZ8/PyVLlsQYc8O+CmJpTEFMbpe1lp9++omIiAjmzp3r2hDay8uLdu3aERISQtWqVR2uUkSulZCQwLp161i0aBGLFy9mw4YN162MWr58eYKDg3nqqado0KABefPm5eDBgwwcOJDPPvvM1a9169aMHDmSsmXLZvRtiEg2Zq3l+PHjXLx40fX5QjKGm5sb3t7eFClS5KYhDBTE0pyCmKTGvn37mDBhApMmTeLKPzv169cnJCSEli1b6hstEQdFRUWxZMkSFi9ezNKlSzl16tRVx3Pnzk2jRo0IDg4mODiY8uXL3/Baa9eupVevXq45ol5eXvTp04c333yT/Pnzp+t9iIhI5qEglsYUxORunDt3jmnTphEeHs7WrVtd7aVLl6Z79+68/PLL3HPPPQ5WKJIzxMXFsXr1atdcr02bNl3Xp2LFijz11FMEBwdTr149vL29b/v61lq++OIL+vfvz8GDBwG49957CQ0N5aWXXrqrCd4iIpI1KIilMQUxSQvWWpYtW0Z4eDgLFy50tefJk4cOHTrQs2dPgoKCHKxQJPvZv3+/K3gtW7aMs2fPXnU8X758PPHEEzz11FM0adKE0qVL3/XPPHfuHKNGjWLkyJGufQarVatGWFgYdevWvevri4hI5qUglsYUxCSt7dixg/HjxzNlyhRiYmJc7U2aNCEkJIQmTZro23ORVIiNjWXlypWuuV5//PHHdX0efPBB11yv2rVrp9vKpgcOHGDAgAFMnz7d1da2bVtGjhyZJoFPREQyHwWxNKYgJuklOjqaKVOmMH78eHbv3u1qr1ChAj169KBjx47ky5fPwQpFMr9du3axePFiFi1axPLly12rGF5WsGBBnnzySYKDg2nSpAklSpTI0Pp+/vlnevXqxbp16wDw9vamX79+9O/fX3+/RUSyGQWxNKYgJuktISGBhQsXEh4ezvfff+9qL1CgAC+//DLdu3enXLlyDlYoknmcP3+eH374wRW+du7ceV2f6tWru+Z61axZEw8PDwcq/X+JiYl8/vnnDBgwgMOHDwNQokQJQkNDeeGFFzQCLiKSTSiIpTEFMclIW7ZsISIigmnTpnHx4kUAjDG0aNGCkJAQGjZseMulU0WyE2st27Ztcz1u+OOPPxIbG3tVnyJFitCkSROeeuopGjdunGn37Tt37hwjRoxg1KhRrr/fNWrUICwsjDp16jhcnYiI3C0FsTSmICZOOHHiBJMmTWLChAmuFdgAqlSpQs+ePXn++efJnTu3gxWKpJ+zZ8/y/fffu8LXvn37rjru5uZGrVq1XHO9Hn744Sw1qrRv3z769+/PzJkzXW3t2rXjgw8+wN/f38HKRETkbiiIpTEFMXFSXFwcX331FeHh4axevdrVXrhwYbp27Uq3bt0oWbKkgxWK3D1rLVu2bHE9brhq1Sri4uKu6uPr6+va06tx48bZYtuHVatWERISwv/+9z8gae+y119/nTfeeIO8efM6XJ2IiNwpBbE0piAmmcX69euJiIhg5syZrg+pHh4etG7dmpCQEGrVquVwhSK37/Tp03z77beu5eUvz526zMPDg0cffdQ116tKlSrZ8rHcxMREPvvsM958802ioqIAKFmyJB988AHPP/98lhrpExHJ6RTE0piCmGQ2UVFRREZGEhkZydGjR13tNWvWpGfPnrRp0ybdluQWSa3ExEQ2btzoetxwzZo1JCQkXNXH39/f9bhho0aNKFCggEPVZryYmBhCQ0MZM2aMaw7cI488QlhYmL5kERHJIhTE0piCmGRWsbGxzJgxg/DwcDZu3Ohq9/X15bXXXqNr166ZdtECyRmOHz/O0qVLWbRoEUuWLOHYsWNXHc+VKxcNGjRwha+goKBsOep1J/bu3csbb7zB7NmzXW3t27fngw8+wM/Pz8HKRETkVhTE0piCmGR21lp++uknwsPD+eqrr0hMTATAy8uLdu3aERISQtWqVR2uUnKChIQE1q1b55rrtWHDBq79dycgIMD1uGHDhg01F+oGVqxYQa9evVxfsuTOnZv+/fvz+uuvkydPHoerExGRlCiIpTEFMclK9u3bx4QJE5g0aRJX/pmtX78+ISEhtGzZEnd3dwcrlOwmKiqKJUuWsHjxYpYuXcqpU6euOp47d24ee+wxV/gqX768Q5VmPQkJCXzyyScMHDiQI0eOAODn58eIESNo165djh89FBHJbBTE0piCmGRF586dY9q0aYSHh7N161ZXe+nSpenevTsvv/xytlh1TjJeXFwcP//8s2uu16ZNm67rU7FiRdfjhvXq1cPb29uBSrOPs2fPMnz4cMaOHculS5cAqF27NmFhYdSsWdPh6kRE5DIFsTSmICZZmbWWZcuWER4ezsKFC13tefLkoUOHDvTs2ZOgoCAHK5Ss4MCBA67HDZctW8bZs2evOp4vXz6eeOIJ1/LypUuXdqjS7G337t288cYbfPnll662F198kdDQUG1jISKSCSiIpTEFMckuduzYwfjx45kyZQoxMTGu9iZNmhASEkKTJk20VLYASQvBrFy50hW+/vjjj+v6PPjgg67gVadOHa3UmYF++OEHevXqxa+//gokfbEyYMAA+vXrp43eRUQcpCCWxhTEJLuJjo5mypQpjB8/nt27d7vaK1SoQI8ePejYsSP58uVzsEJJbwkJCURFRXHgwIEUX7///jvnz5+/6pyCBQvy5JNPEhwcTJMmTShRooRD1Qsk/R5OmTKFQYMGubax8Pf3Z+TIkbRt21bzx0REHKAglsYUxCS7SkhIYOHChYSHh/P999+72gsUKMDLL79M9+7dKVeunIMVSmokJiZy7NixG4asAwcOcPjw4ev28EpJ9erVXYts1KxZEw8Pjwy4A7kTZ86c4f333ycsLMw1f+zRRx8lLCyM6tWrO1ydiEjOoiCWxhTEJCfYsmULERERTJs2jYsXLwJgjKFFixaEhITQsGFDfcOeCVhrOXXq1E1D1sGDB10fyG9HwYIFKVWq1FWvgIAAGjVqpH3ospBdu3bx+uuv89VXX7naOnbsyPvvv6/RSxGRDKIglsYUxCQnOX78OJMmTWLChAkcOnTI1V6lShV69uzJ888/rzko6ejs2bM3DVkHDhy47pHBm8mbN+91Ievalx5DzV6+//57evfuzebNm4GkPwMDBw6kd+/e+rsrIpLOFMTSmIKY5ERxcXHMnTuXiIgIVq9e7WovXLgwXbt2pVu3blql7Q5duHDhpqNYBw4cIDo6+rav5+XlhZ+f301DVsGCBTWSmQMlJCQwefJk3nrrLY4dOwYkbV0xatQoWrdurT8TIiLpREEsjSmISU63fv16IiIimDlzJnFxcQB4eHjQunVrQkJCqFWrlsMVOu/SpUscOnTopiNZJ06cuO3reXh4ULJkyRsGLD8/P4oWLaoP1HJT0dHRvPvuu0RERLj+7tarV4+wsDAefvhhh6sTEcl+FMTSmIKYSJKoqCgiIyOJjIx0rdIGULNmTXr27EmbNm2y5RLmt1ph8MCBAxw5cmdp410AACAASURBVITb/f9XYwy+vr43HckqXrw47u7u6XxnklPs2LGDfv368fXXXwNJfwY7derE+++/z7333utwdSIi2YeCWBpTEBO5WmxsLDNmzCA8PJyNGze62n19fXnttdfo2rVrllnkIS1XGLysaNGiNw1ZJUqUwNPTMx3vSiRly5Yto3fv3vz2229A0kbcgwYNolevXnh7eztcnYhI1qcglsYUxERSZq3lp59+Ijw8nK+++orExEQgae5Su3btCAkJoWrVqo7WlxErDF77yKA+0EpmFh8fz6RJkxg8eLDrcdmyZcsyatQonnvuOT3uKiJyFxTE0piCmMit7du3jwkTJjBp0iSu/LtSv359QkJCaNmyZZo/aqcVBkVS7/Tp0wwbNozx48cTHx8PQIMGDQgLC3P0CxQRkaxMQSyNKYiJ3L5z584xbdo0wsPD2bp1q6u9dOnSdO/enZdffpl77rnnlte5cOGCayXBG720wqDI3du+fTt9+/ZlwYIFQNL8sZdffpn33nuP4sWLO1ydiEjWoiCWxhTERO6ctZZly5YRHh7OwoULXe158uShQ4cOdOzYkYsXL163fPvl1/Hjx2/7Z7m7u990hcFSpUpphUGRW1i6dCm9e/fmjz/+ACB//vy89dZbhISE4OXl5XB1IiJZg4JYGlMQE7k7O3bsYPz48UyZMoWYmJg7OlcrDIpknPj4eD766CPefvttTp48CUBAQACjR4+mZcuW+jJDROQWFMTSmIKYSNqIjo5mypQpjB8/nt27dwNaYVAkMzp58iTDhg1jwoQJrvljjz32GGFhYVSpUsXh6kREMi8FsTSmICaSti7vy1WkSBGtMCiSif3555/07duX//73vwC4ubnRuXNn3n333SyzRYWISEa6WRBzc6IgEZErubu7a5l3kSwgKCiIhQsXsmjRIoKCgkhMTGTixIkEBgYyZsyYO9r6QUQkp1MQExERkTsSHBzM5s2biYiI4J577uHMmTP069eP+++/n6+//ho9bSMicmsKYiIiInLHPD096dGjBzt27KBHjx64u7uzc+dOWrZsyZNPPsmWLVucLlFEJFNTEBMREZFUK1y4MBEREWzevJkmTZoAsGzZMqpWrUq3bt04duyYwxWKiGROCmLZQGJiIm+++SaHDh1yuhQREcmhKlWqxKJFi1i4cCH33XcfiYmJfPjhhwQGBjJu3DjNHxMRuYZjQcwYU8MYM8EY84cx5pwxZr8xZoYxpvw1/X4wxtgUXjOu6VfKGLPYGHPGGLPJGFM3hZ/ZyhhzxBjjk973l5EGDRrEBx98QI0aNdiwYYPT5YiISA5ljKFp06Zs2bKFsLCwy6uF0adPHx544AEWLFig+WMiIsmcHBHrDzwHLANCgIlAQ2CjMabiNX33Ay9e8/rXNX2mAn7J1z0AzLsycBljvIHRwEBrbXQa34ujHnvsMQoUKEBUVBT169dnzpw5TpckIiI5mKenJyEhIezYsYNu3brh5ubG9u3bad68OcHBwfz+++9Olygi4jjH9hEzxtQBNlhrL13RFghsAWZYazsmt/0AFLTWVr3JtfIAMUADa+1KY0xu4ATwrLV2SXKft4HmQE17lzedGfcR27p1K08//bRrU9x3332XQYMGYYxxuDIREcnpfvvtN/r06cO3334LJG1Z8eqrrzJ06FAKFy7scHUiIuknU+4jZq1dfWUIS27bAfwOXDsihjHGwxiT7waX8wYMcDr5OheAC0Ce5HP9gTeAnncbwjKrihUrsnbtWurXrw/A4MGDeeGFF7h48aLDlYmISE5XuXJllixZwtdff01gYCAJCQlMmDCB8uXLEx4eTlxcnNMliohkuEy1WIdJGr4pDhy/5lBF4Bxw1hhz2Bgz0Bjjqt1aexLYDfQ3xpQxxvQGfICNyV1GAXOttT/fZh2nb/ZKvnamU6RIEb799ls6deoEwPTp03nxxRcdrkpERCRp/ljz5s357bffGDNmDD4+Ppw+fZpevXrxwAMP8N///tfpEkVEMlSmCmJAe6AkMOuKtl3A+8DfgY7A5uT3/77m3FeBp4E9JM0FG2St3WuMaQA8RdLcsWwvV65cTJ48mVGjRpE/f34GDhzodEkiIiIuuXLlok+fPuzYsYNXX30VNzc3tm3bRrNmzXjqqafYunWr0yWKiGQIx+aIXcsYEwSsJSloNbDWJt6k7yygNVDRWrvtivYCJI2e7bfWRhlj3IFfgOnW2hHGmNdIWhjEAOOstZGprDXTzRFLybFjxyhatKjrfVxcHJ6eng5WJCIicrXNmzfTu3dvvv/+eyBp/li3bt0YMmQIhQoVcrg6EZG7kynniF3JGHMvsBA4BbS5WQhLNoakMPXYlY3W2jPW2rXW2qjkpq4kzRMbZ4x5gqRHFAeQNF9sjDHmqvOzmytD2Pnz53n00UcZM2aMlg4WEZFMo0qVKixbtox58+YREBBAQkIC48ePJzAwkH/961+aPyYi2ZbjQSx5iflFJM27amKt/es2TjuQ/N8bflVmjCkEvAv0Tl4UpB0wx1o7z1o7H5hD0qOQOUJoaCjr16+nX79+vPLKK9pYU0REMg1jDC1btuT3339n1KhRFChQgJMnT9KjRw8efPBBlixZ4nSJIiJpztEglry31zdABeDpKx8zvIVyyf89dpM+7wLrrLULkt+XAA5fcfwwSfPRcoSBAwfSrl07ACZPnsyTTz7JiRMnHK5KRETk/3l5edGvXz927NhBly5dMMawdetWgoODadasGdu23e7HBBGRzM+xIJY8f2smUJukxxHXpNCngDHGK4XzBgKJJG0GndK1HwA6Ab2uaD4CBF3xviJwO6Nv2ULu3Ln5/PPPGTp0KAA//vgjtWrV4s8//3S4MhERkasVK1aMjz76iI0bN9KwYUMA/vvf/1K5cmV69+7NqVOnnC1QRCQNOLmhcxhJC2d8w9WrJALEWGvnGWMaAtOBL4CdQD6gLVAdGGGtHXCDay8H/met7XdF29PAfGBEclN/kkbhFqWi9iyxWMeNzJo1iw4dOnDx4kV8fHyYM2cOTzzxhNNliYiIXMday7x58+jXrx+7d+8GoHDhwgwbNowuXbrg4eHhcIUiIjd2s8U6nAxiPwANbnB4n7W2jDGmLDASqEHS/mKJwG/Av621n9zgum2A8UAFa+2Za44NAHqQtNBHmLV2ZCprz9JBDGDdunW0bNmSv/76i0ceeYTVq1fj5ub4lEEREZEUxcbGEh4eznvvvcfZs2cBuP/++xk3bhyNGzd2uDoRkZRlyiCWlWWHIAZw8OBBXn31VT766CNKlswx0+VERCQL++uvv3jrrbf4z3/+41oFuHnz5owePZoKFSo4XJ2IyNUUxNJYdgliKfnzzz/x9fXFx8fH6VJERERuaOPGjfTq1YsVK1YA4OnpSY8ePRg8eDAFC173eUdExBGZfh8xyRyioqJo3LgxtWvXdj2HLyIikhk99NBD/PDDD8yZM4cyZcoQFxfH2LFjCQwMJDIykvj4eKdLFBG5KQUxcdmwYQNHjhxh69at1KxZk5UrVzpdkoiIyA0ZY2jVqhVbt25l+PDh5MuXj+PHj/Paa6/x8MMP89133zldoojIDSmIiUvz5s357rvvKFy4MCdOnODxxx9n6tSpTpclIiJyU97e3rz55pts376dTp06YYxhy5YtPPHEEzzzzDPs3LnT6RJFRK6jICZXqVevHuvWraNSpUrExcXRqVMn+vfvT2JiotOliYiI3JSvry//+c9/WL9+PXXr1gVg/vz5VKpUiddff53o6GiHKxQR+X8KYnKdcuXKsXr1aoKDgwEYOXIkzz33HBcuXHC4MhERkVurVq0aK1asYObMmZQuXZq4uDhGjx5NYGAgEydOJCEhwekSRUQUxCRlPj4+fPPNN/Ts2RNIeg7fy8vL4apERERujzGGtm3bsnXrVt577z3y5s3LsWPH6Nq1K9WqVeOHH35wukQRyeG0fH0qZOfl61MyY8YMnn76afLly+d0KSIiIqly+PBhBg4cyCeffOJqe/bZZxk9ejTlypVzsDIRyc60j1gay2lB7FoLFiwgJiaGv//9706XIiIickfWr19Pr169WL16NQC5cuWiV69eDBo0iAIFCjhcnYhkN9pHTNLMli1baNeuHe3atWPIkCEoyIuISFZSo0YNfvrpJ7744gtKlSrFpUuXGDlyJBUqVGDy5MmaPyYiGUZBTO5IiRIlqF69OgBDhw6lXbt2WsRDRESyFGMMf//73/nzzz8ZNmwYefLk4ciRI3Tu3JkaNWqwYsUKp0sUkRxAQUzuSOHChVmyZAmdO3cGYObMmTRs2JCoqCiHKxMREbkzefLkYfDgwWzbto0XX3wRgI0bN9KgQQPatGnDnj17HK5QRLIzBTG5Y7ly5WLixImMHTsWYwzr1q2jZs2abNq0yenSRERE7pifnx+ffvopa9asoVatWgDMmTOHihUrMnDgQM6ePetwhSKSHSmISaoYY+jduzfffPMN+fLl4+DBg9StW5f9+/c7XZqIiEiqPPLII6xatYpp06ZRsmRJYmNjCQ0NpUKFCkyZMoXExESnSxSRbERBTO5Ks2bNWL16NaVLl+bVV1/F39/f6ZJERERSzc3Njfbt27Nt2zbeeecdcufOzV9//cU//vEP10IfIiJpQcvXp0JOX74+JSdOnKBgwYK4u7sDYK0lPj4eT09PhysTERFJvQMHDjBgwACmT5/uamvbti0jR46kdOnSDlYmIlmBlq+XdFe4cGFXCAOIiIigUaNGHDt2zMGqRERE7k6pUqX4/PPPWb16NTVq1ABg1qxZBAUFMXjwYGJiYhyuUESyKo2IpYJGxG5uz549BAYGkpCQQNmyZfnmm2+4//77nS5LRETkriQmJvL5558zYMAADh8+DCRt6xIaGsoLL7yAm5u+3xaRq2lETDJU2bJlmTlzJrlz52bPnj3UqVOHxYsXO12WiIjIXXFzc+PFF19k27ZtDB48GG9vbw4fPkyHDh2oVasWq1evdrpEEclCFMQkXbRq1YqVK1dSokQJzpw5Q7NmzRg/fjwagRURkawuX758DBs2jD///JO//e1vAKxfv55HH32U559/XisIi8htURCTdFOtWjXWr19PtWrVSExMpGfPnvzzn/8kLi7O6dJERETuWunSpZkxYwY//fQT1apVA+CLL74gKCiId955h3PnzjlcoYhkZgpikq5KlCjBihUraN26NQCTJk3Sxs8iIpKtPProo6xbt46pU6fi6+vLhQsXGDZsGPfddx/Tpk3T/mMikiIt1pEKWqzjziUmJjJkyBD8/Pzo0qWL0+WIiIiki5iYGEJDQxkzZgyxsbFA0kbRYWFh1KpVy+HqRCSj3WyxDgWxVFAQSxvx8fH8+uuvrsc5REREsou9e/fyxhtvMHv2bFdb+/bt+eCDD/Dz83OwMhHJSFo1UTKlkJAQatWqxccff+x0KSIiImmqTJkyzJo1ix9//JGHHnoIgM8//5wKFSowdOhQzp8/73CFIuI0BTFxxNmzZ1mxYgXx8fG88sor9O3bl4SEBKfLEhERSVP169dn/fr1TJ48meLFi3PhwgWGDBnCfffdx/Tp07WasEgOpiAmjsifPz+rV6+mWbNmAIwdO5ZnnnmGs2fPOlyZiIhI2nJ3d+cf//gHO3bsYMCAAeTKlYuDBw/Svn1710IfIpLzKIiJY/Lnz8/8+fPp06cPAAsWLODRRx9l3759DlcmIiKS9vLnz09oaChbt26lVatWAPz888888sgjvPTSSxw6dMjhCkUkIymIiaPc3d0ZM2YMkyZNwsPDgy1btlCzZk3Wrl3rdGkiIiLpoly5csyZM4fly5fz4IMPAvDZZ59RoUIF3n33XS5cuOBwhSKSERTEJFPo3LkzS5cu5Z577iE2NhYfHx+nSxIREUlXDRs25H//+x+TJk2iWLFinD9/nrfffpugoCBmzpyp+WMi2ZyWr08FLV+ffnbs2MHhw4dp0KCB06WIiIhkmDNnzvD+++8TFhbGpUuXgKSNosPCwqhevbrD1YlIamn5eskyAgMDrwph0dHRvP7661rmV0REsrUCBQowYsQI/vjjD5599lkAVq1aRY0aNejUqROHDx92uEIRSWsKYpJpJSYm8ve//53Ro0fToEED/SMkIiLZXkBAAHPnzuW7776jSpUqAEydOpUKFSowfPhwzR8TyUYUxCTTMsbQtGlT3Nzc2LBhAzVq1OCXX35xuiwREZF016hRI3755Rc++ugjihYtyrlz5xg0aBAVK1Zk9uzZmj8mkg0oiEmmZYyhR48eLFy4kAIFCnD48GHq1q3L3LlznS5NREQk3bm7u9OlSxd27NhB37598fT0ZN++fbRt25YGDRroy0mRLE5BTDK94OBgfv75Z8qWLcuFCxdo1aoVw4cP17eBIiKSI/j4+DB69Gh+//13WrRoAcDKlSupXr06L7/8Mn/99ZfDFYpIaiiISZZQqVIl1q5dS926dQEYNGgQI0aMcLgqERGRjBMYGMj8+fP59ttvqVy5MtZa/vOf/xAYGMgHH3zAxYsXnS5RRO6Alq9PBS1f75zY2Fi6du3KihUrWLt2LUWLFnW6JBERkQwXHx/PpEmTGDx4MCdOnACgbNmyjBo1iueeew5jjMMVigjcfPl6BbFUUBBzlrWW48ePXxXC4uLi8PT0dLAqERGRjHf69GmGDRvG+PHjiY+PB6BBgwaEhYVRtWpVh6sTEe0jJtmKMeaqELZ3714qVqzIwoULHaxKREQk4xUsWJCxY8fy+++/8/TTTwPw448/8vDDD/PKK69w5MgRhysUkRtREJMsr1u3buzatYsWLVowbtw4LeIhIiI5ToUKFfjmm29YsmQJlSpVwlrLxx9/TGBgICNHjiQ2NtbpEkXkGgpikuVNnjyZmjVrkpiYSJ8+fejatStxcXFOlyUiIpLhnnzySX799Vf+9a9/UahQIc6ePUv//v25//77mTdvnr6sFMlEFMQky/P19eWHH37gb3/7GwCTJk2iSZMmnDx50uHKREREMp6Hhwf//Oc/2bFjByEhIXh4eLBr1y6effZZHn/8cTZv3ux0iSKCgphkE7lz5+aLL77gnXfeAWD58uXUqlWL7du3O1yZiIiIMwoVKkRYWBhbtmyhadOmQNK/jw899BBdu3bl6NGjDlcokrMpiEm2YYxhyJAhfPHFF3h5ebFjxw7CwsKcLktERMRRQUFBLFy4kEWLFhEUFERiYiITJ04kMDCQMWPGcOnSJadLFMmRtHx9Kmj5+sxv7dq1jBgxgunTp+Pt7e10OSIiIplCXFwckZGRvPPOO5w6dQqA8uXLM2bMGJo3b679x0TSmPYRS2MKYlnThg0bqFq1Kh4eHk6XIiIi4qgTJ04wdOhQ/v3vf5OQkADAE088wdixY3nggQccrk4k+8iU+4gZY2oYYyYYY/4wxpwzxuw3xswwxpRPoW8dY8xPxpjzxpi/jDHhxpg81/QpZYxZbIw5Y4zZZIypm8J1WhljjhhjfNLz3iTzWbt2LXXr1qVFixZER0c7XY6IiIijChcuTEREBJs3b6ZJkyYALFu2jAcffJCyZcvSuHFjunXrxtixY/n666/5448/uHjxosNVi2Qvjo2IGWPmAI8Cs4HNwL1AdyAvUNNauzW5X1XgZ+B34GPAD+gHfGutbX7F9b4DigMTgKZAbSDAWhudfNwb2Aq8Z62dfJe1a0QsiwkNDWXgwIEAVKpUiQULFlC2bFmHqxIREXGetZZFixbRp08ftm3bdsN+xhhKlSpF+fLlXa/AwEDKly9PuXLlyJMnzw3PFcmpMuWjicaYOsAGa+2lK9oCgS3ADGttx+S2/wJVgCBrbUxyW2dgEvC4tfb75NGxGKCBtXalMSY3cAJ41lq7JPmct4HmJIW8u7ppBbGsacqUKa49xooUKcJXX31F3brXDZyKiIjkSHFxcaxatYpt27axc+fOq163MxpWsmTJq8LZ5VdAQAD58uXLgDsQyXwyZRC7EWPM/4B4a+0jxpgCJAWqUdbagVf0yZXc/rm19lVjTKHk91WstVuS+5wAOltrvzLG+AN/AI2ttT+nQY0KYlnUihUreO655zhx4gS5cuVi4sSJdOjQwemyREREMq3ExEQOHz58VTDbsWOH69fnz5+/5TV8fX1THEkLCAigQIECGXAXIs7IMkHMJC3VcwD41VrbzBjzKPAT0MpaO/eaviuBXNbaR5Lf7yLpEca3gGeBUUB5a+1eY8xMINZa+9Jt1nGrhOXj4+ODgljWtGvXLpo3b87WrVsBGDBgAMOHD9dKUSIiInfIWstff/11XTi7/D4mJuaW1yhWrFiKI2nly5enYMHrPruKZCk3C2KZbfm49kBJYFDye9/k/0al0DeKpHlgl71K0nyz9kAiMDA5hDUAngLuS5eKJcsJCAjg559/pm3btixdupTcuXMrhImIiKSCMQZfX198fX2pV6/eVcestRw9ejTFkbQdO3Zw5swZAI4ePcrRo0dZvXr1ddcvUqRIiiNp5cuXp1ChQhlyjyLpJdOMiBljgoC1JC3c0cBam2iMeRH4FKhmrf3lmv6fAk2ttUWuaCsAVAT2W2ujjDHuwC/AdGvtCGPMa0AIYIBx1trIVNaqRxOzgfj4eD7//HNeeuklBTEREZEMZK3lxIkTNxxJu7zH2c3cc889NxxJK1KkiP5tl0wh0z+aaIy5F1gFuAO1rLV/Jbe3JmmUq861c7uMMbOA2tbaUje5bjegN3A/UB+YB7wAWGA68LS1dnkq6lUQy6YiIiKoXbs2NWrUcLoUERGRHOvkyZM3nJN2/PjxW57v4+NzXTi7HNiKFSumkCYZJlMHseQ9vX4ASgGPWmu3XXHstueIpXDdQsAOoIO1doExZjLgfsVqjJ8AcdbazqmoWUEsG5ozZw5t2rTB29ubTz75hLZt2zpdkoiIiFzj9OnT163qeDmsHT169Jbn58uX74Yjab6+vgppkqYy7Ryx5L29vgEqkLQU/bWbV/wGxAPVgblXnJcLqErSqNaNvAuss9YuSH5fAth4xfHDydcQAaBy5coEBASwa9cu/va3v/Hnn38yePBg/R+yiIhIJlKwYEGqV69O9erVrzt25swZdu3aleJIWlRU0pIDMTExbNq0iU2bNl13fp48eW44klaiRAnc3NzS/f4k53ByHzF3ksJVU6Cltfa/N+i3CKgMVLxiH7GXSdrcubG1dlkK5zxA0nyzhy6HO2PMVKCAtfa55PfzgFPW2k6pqF0jYtnUiRMnaNWqFT/++CMA7dq1Y/LkyeTOndvhykRERORuxMTEsHv37uvmpO3cuZODBw/e8nxvb28CAgJSHEkrVaqUQpqkKFM+mmiMCSNp4YxvgFnXHI6x1s5L7vcwsJqk0bGPAT+gL7DcWtv0BtdeDvzPWtvvirangfnAiOSm/iTNEVuUitoVxLKxS5cu0a1bNyZPngzAI488wrx587j33nsdrkxERETSw/nz59m9e3eKI2kHDhzgVp+Xvby8KFeuXIojaf7+/ri7u2fQnUhmk6ZBzBhTBngCKE7Shsp7kx8VvBf4y1p76Tav8wPQ4AaH91lry1zRty5JAeph4AwwE3jTWnsuheu2AcYDFay1Z645NgDoQdKqiWHW2pG3U2sKP0NBLJuz1jJ27Fhef/11rLUEBgby+++/4+np6XRpIiIikoEuXrzInj17Ulzdcf/+/SQmJt70fE9PT8qWLZvivLQyZcrg4ZHZdpOStJRmQcwYMwLoQ9LqhpakRwO/T142/jDwlrU2LI3qzrQUxHKOb775hueff57IyEjat2/vdDkiIiKSicTGxrJ3794UR9L27t1LQkLCTc/38PCgTJkyKY6klSlThly5cmXQnUh6SZMgZozpCnwIRAALgKXAE9ba75OPTweKW2sfT7PKMykFsZzl6NGjFCtWzPU+Pj4ed3d3LeIhIiIiNxQXF8e+fftSHEnbs2cP8fHxNz3fzc2N0qVLpzgnrVy5cnh5eWXQncjdSKsg9iuw01rbyhhTGDjG1UFsANDdWuuXhrVnSgpiOZe1lg4dOuDp6cmHH36ob6pERETkjsXHx7N///4UR9J2797NpUs3n+ljjMHf3z/FkbRy5cppkbFMJK2C2AWgt7U28gZB7GVggrXWOw1rz5QUxHKuefPm8eyzzwLQoEEDvvzySwoXLuxwVSIiIpJdJCQkcPDgwRRXd9y5cyexsbG3vIafn1+Kc9ICAgLImzdvBtyFXJZWQewU8J61dswNgtgwoIu1NtsvLacglnNZa3nvvfd4++23AQgICGDBggUEBQU5XJmIiIhkd4mJiRw6dCjFkbSdO3dy4cKFW16jRIkSKY6kBQQEkD9//gy4i5wlrYLYEiCvtbbutUEseWPmrcAv1tpWaVl8ZqQgJrNmzaJDhw5cvHgRHx8fZs2axZNPPul0WSIiIpJDWWuJiopKcU7azp07OXfuusXGr1O8ePEUR9LKly+Pz/+1d+dxVtX1H8dfH0AWBWZAUREVSSTELTNQFgGXnwpiuCaWprhvpeW+RaaWlpVaWVaKWbnkLm6oiISIouGGqYDiiiIuM7KpLN/fH/dCM+MsjMzMmTvzej4e93HnnPO5577vMMDjM9/v+Z6iogb4FE1PXTViuwPjgRuB64AJwKHAR8CFwA7A4JTS1LoK3ljZiAng6aefZuTIkbz33nu0bNmSK6+8kpNOOinrWJIkSeWklJg3b16lI2mzZs1iwYIFNZ6jS5culY6k9ezZk06dOjXApyhMdbl8/bHAlUBrcvfiWvniL4ATUkrXr3ncxs9GTCu98847fPvb3+bZZ59lvfXW45VXXvGaMUmSVDBSSnz44YeVjqTNmjWL0tLSGs/RuXPnKkfS1l133Wa90nRd39B5Q+AgoDe5ZmwW8K+U0rt1EbYQ2IiprEWLFnH00Udz0kknMWjQshPdyQAAIABJREFUoKzjSJIk1YmUEh9//HGV16R99NFHNZ6juLi4ypG0Ll26NPkmrU4bMdmIqWYffvghpaWlbL755llHkSRJqheffPJJpSs7zpo1i/nz59f4+g4dOlQ5krbhhhs2iSatrq4RWw4cllK6sYrjBwM3ppRarlHaAmAjpup88cUX7L777rz00kvccccdDBkyJOtIkiRJDaq0tJTXXnut0pG0999/v8bXr7POOlWOpHXt2pUWLVo0wKdYc3XViK0ADq2mERsF/NNGTM3dK6+8wuDBg5k/fz5rrbUWf/rTnzjyyCOzjiVJktQoLFiwYFWTVnHa49y5c2t8fbt27dh8880rHUnbeOONG1WT1lCN2JnAuZW9SVNjI6aavPHGG4wYMYKXXnoJgNNPP51LL72Uli2b/O8pJEmSvrJFixbx+uuvVzqS9vbbb9f4+jZt2rD55ptz0003se222zZA4up95UYsIkYCI/ObRwD/Bl6vpLQzsDvweEpprzVO3MjZiGl1fPrppxxyyCHcf//9AHz729/mn//8J+3bt884mSRJUuFZsmTJqiat4mjaW2+9Rdm+5q233mKTTTbJMG3OmjRiY4Ax+c1EbpXEyiwEngROTCnNXsO8jZ6NmFbX8uXLOf3007niiisA2Hbbbbn//vvp1q1bxskkSZKajs8//5w5c+asas5++MMfNoopig0yNbE5sRFTbV1zzTWcfPLJ9OzZk6lTp1Jc3ORn8EqSJDV71TVirWpxnh5AzetQSvqS4447ji222ILu3bvbhEmSJInVHq9LKb2ZUlpcn2GkpmzXXXctd1+xV199lUsuuYQVK1ZkmEqSJElZqM2IGBHRCTgK2BHoxJcbuZRS2q2OsklN1ieffMKIESOYPXs2L7zwAmPHjmXttdfOOpYkSZIayGo3YhHRHZgCbASUAh2Bj/lfQ/YhsKgeMkpNTvv27dltt92YPXs2//rXv5gzZw533XUXG220UdbRJEmS1ABqs5TIxUAxsBuwBbkVFA8m15D9AlgA7FzXAaWmaK211uKPf/wjV1xxBS1atODpp5+mX79+TJ8+PetokiRJagC1acR2A/6SUppIbil7yK26uDildB7wInBZXQeUmqqI4JRTTuHee++lQ4cOvPvuu+y8887ccccdWUeTJElSPatNI7YuMCP/9dL8c7syxx8G/q8uQknNybBhw5g6dSqbbbYZixcv5oADDmD8+PFZx5IkSVI9qs1iHfOBzvmvFwCfAZuVOd6a8o2ZpNW01VZbMW3aNPbbbz/atm3LrrvumnUkSZIk1aPaNGIvAdtBbmnEiJgGnBgR95AbWTsWeKXuI0rNQ5cuXZgwYQKfffYZa6211qr9y5Yto1WrWi1wKkmSpEauNlMT7wb6R8TKUa+fkVu0Yw7wWv7ri+o2ntS8tGnThqKiolXbEydOZKuttuKll17KMJUkSZLqWqSUaq6q6sUR3wK+CywH7kwpPVFXwRqziCgpKioqKikpyTqKmrDPP/+cLbbYgrfffpsOHTpwyy23MGzYsKxjSZIkaTUVFxdTWlpamlIqrnhstUbEIqJlRGwaEZ3L7k8pPZNS+nFK6Yzm0oRJDaVNmzbcdddddOvWjQULFjBixAiuvPJK1uSXJ5IkSWocVndq4lrA68BR9ZhFUgXf/OY3mTZtGt/61rdYsWIFp556KieccAJLly6t+cWSJElqtFarEUspfQZ8CCyq3ziSKtpoo42YNGkSBx10EADXXHMNw4YN45NPPsk4mSRJkr6q2izWcT8wor6CSKra2muvzc0338wFF1wAwIQJE7j99tszTiVJkqSvarUX64iI9cjdtPkF4HJgVn6krNlxsQ5l6cYbb2Tq1KlcddVVRETWcSRJklSF6hbrqE0jtgJIQOSfK5NSSk3+hkc2Ympspk2bRr9+/bKOIUmSpDKqa8Rq0zTdQNUNmKSMXH/99YwePZpTTz2Vyy+/nJYtW2YdSZIkSTVY7UYspXREPeaQ9BWklLj33nsBuOKKK5g5cyY33XQTHTt2zDiZJEmSqlObxTokNTIRwS233MLpp58OwP3338/AgQN54403sg0mSZKkatmISQWuZcuW/OpXv+Kvf/0rrVq1YsaMGfTr148pU6ZkHU2SJElVsBGTmoijjjqKRx55hM6dOzN//nx23XVXbrzxxqxjSZIkqRI2YlITMmTIEJ566il69+7N0qVLWWeddbKOJEmSpEo0+aXmpeamZ8+eTJ06lYcffpiRI0dmHUeSJEmVcERMaoKKi4s56KCDVm2vWLGCc889l3fffTfDVJIkSVpptRqxiGgfEa9FxKn1HUhS3fvJT37CL37xC/r27cszzzyTdRxJkqRmb7UasZTSQmBdYGH9xpFUHwYPHkzHjh157733GDx4MLfddlvWkSRJkpq12kxNfBL4Vn0FkVR/9thjD5588km+9rWvsWTJEg466CAuvvhiUkpZR5MkSWqWatOInQ18JyJGR0TUVyBJ9WPLLbfkqaeeYvDgwQBccMEFHHrooXz22WcZJ5MkSWp+YnV/Ix4RjwLdgc2Aj4HXgMUVylJKabe6DNgYRURJUVFRUUlJSdZRpFr74osvOP744xk7diwABxxwgFMVJUmS6kFxcTGlpaWlKaXiisdqs3z914AEvJXf3qAuwklqWK1bt+baa69lyy235Gc/+xnnnntu1pEkSZKandUeEdP/OCKmpuKDDz5g/fXXX7W9bNkyWrXy9oKSJEl1oboRMe8jJjVjZZuwxYsXM3DgQH7zm9+4iIckSVI9q3UjFhEdI2L/iDg9/9g/Ijp8lTePiK4RcWlETIyIBRGRImJoJXVv5I9VfFxaoW7riHgif64pEdGnknOdFhEzIsJf+0tlXHrppUybNo3TTjuNY489li+++CLrSJIkSU1WraYmRsTRwK+B9sDKlRMTufuL/TildG2t3jzXdE0EZgMfAAOAXVJKj1WoewP4ELiiwilmpJSey9e0BP6bP88/gcOAzsDWKaXl+ZoNgJnA/imlCbXJWiGPUxPV5CxZsoSjjjqKm266CYChQ4dy2223se6662acTJIkqTBVNzWxNqsmfhu4C3gduAp4KX9oK+AH5Bbz2DelNG51g+VH0lqnlD6KiH2BO6m6EXsupbRvNefaklwjtmlK6e2I6A68AfROKb2ar7kOKEopHbC6Gat4LxsxNUkpJS666CLGjBkDQM+ePRk3bhy9e/fOOJkkSVLhqatrxM4EXga+kVK6KqU0If+4Cvgm8ApwVm2CpZQWpJQ+Wt36iGgTEWtXcbhd/nlld/Rx/nnt/Gv7AgcDp9Umo9ScRAQ/+clPuOWWW2jbti2zZ89mp5124pFHHsk6miRJUpNSm0ZsO+D6lNLCigdSSguAv+Vr6ssewCJgUUS8FhHHVjj+KvApcH5+NGxMfntm/gbUvwN+nVJ6o6Y3ioiS6h5AUV1+MKmx+c53vsOkSZPYcMMNKS0t5bzzzmPFihVZx5IkSWoyatOIRQ3H63OZtRfINVYHAMeQu17smog4e9Wbp7QIOBk4hdyUxJOBk/L7vw9sBFyKpNXSr18/nn76aYYPH87tt99OixYusipJklRXanON2BSgGOiXb27KHmsPPAV8klIa9JWCVHONWCW1LYHHgW2BjVJKpWWOrQtsAczKX3vWgdwCHacCtwIXAIeTW2BkTErpzq+Q1WvE1Gy98sordO3alaIiB4YlSZKqU1fXiP0K2BKYHhEnRcQu+cfJwH+A3vmaepdfBfEKctd/9a9w7KOU0pNlrj27AJiZUroFOBI4Hjg6//pbIqJnQ2SWmoL333+fPfbYg/79+/P6669nHUeSJKlgrfa9tFJKd+WbrsvIXW+1cigtyF27dXJK6e66j1ilt/PPnasqiIgtyE1RXNmsHQJck1J6NH/8cGAUcHE95pSajGeeeYb333+fpUuX0q9fP+6880523nnnrGNJkiQVnFpd9JFSuhrYhNzqg+fkH98BNk4p/bHu41Xra/nn+dXUXAH8LaX0fH57I2BumeNzgW71kE1qkkaMGMGECRNYd911+eijj9htt924/vrrs44lSZJUcFarEYuI9hHxaEQclVIqSSndmlL6Zf5xW9lrtOpaRHSOiBYV9rUFzgAWAFOreN1wciNh55fZPY/cFMqVtgTer9PAUhO38847M23aNPr06cPSpUsZPXo0Z511lqsqSpIk1cJqNWL5Jev71keAiDg/Is4HDsrvOiy/7+T89reBVyPiFxFxXEScCzxPbqGOMytbTj8iWgO/BX5S4T5ltwHHR8Q5EfEnYJv8Pkm18LWvfY0nnniCvfbaC4Bf/vKX7L///ixZsiTjZJIkSYVhta8RA54jN4JU1y6qsH1k/vlN4PfAi+RuFn0Y0AX4HJgOnJZSureKc56Sr6s4XfJPQA/gx+SuaxudUnppTT+A1BwVFRUxbtw4TjvtNK666ipSSrRu3TrrWJIkSQWhNsvX70puefl9U0oT6zVVI+fy9VJ5N910E/vssw/t27fPOookSVKjUd3y9bVpxK4jNz2xD7mpgTOBxRXKUkrpqDXM2+jZiEnVu++++1iwYAGjRo3KOookSVJmqmvEajM18YgyX38j/6goAU2+EZNUtRkzZjBq1CgWLlzIK6+8wpgxY4iIrGNJkiQ1Kqu9fH1KqcVqPFrWZ1hJjV/Xrl351re+BcCFF17IIYcc4iIekiRJFdRm+frrIuKgmqslNWfrrrsu48eP5+ijjwbglltuYejQobz33nsZJ5MkSWo8arN8/SigY/3GkdQUtG7dmj//+c/8+te/JiKYNm0a/fr147nnnss6miRJUqOw2lMTgf8Cm9VTDklNTETw4x//mHvuuYf27dvzzjvvMGjQIN56662so0mSJGWuNo3YL4ETIqJXfYWR1PSMGDGCKVOmsOmmm3Lsscey6aabZh1JkiQpc7VZNbE38DbwYkTcC8yi8uXrK96gWVIzt+222/Kf//yHTp06rdqXUmL58uW0alWbf4YkSZKahtrcR2zFapSl5rByovcRk9bcVVddxW233cYdd9zBeuutl3UcSZKkOldXN3Tuvjp1KaU3a5mv4NiISWtmzpw59OrVi2XLltGjRw/uvfde+vTpk3UsSZKkOlVdI1ab+4i9uTqPuo0uqSnq0aMHN998M+3atWPOnDn079+fBx98MOtYkiRJDaY2i3VUKyLWjoiv1dX5JDVtBxxwAJMnT2ajjTbi008/Ze+99+ZPf/pT1rEkSZIaRLWNWER8ERGjymx3iIh7ImKbSsr3I7eAhyStlh122IFp06axww47sGLFCk444QTOP/98VnfKtCRJUqGqaUSsVYWa1sAIoEu9JZLUrHTr1o1JkyYxfPhwAC699FJv/CxJkpo8142WlLl11lmHu+++m+OPP56ddtqJ7bffPutIkiRJ9cpGTFKj0KpVK/7yl78QEav2LV++nJKSEtZdd90Mk0mSJNW9OlusQ5LWVNkmLKXEKaecQr9+/Zg1y8tPJUlS02IjJqlReu2117juuut4/fXXGTBgANOmTcs6kiRJUp1ZnamJwyNiw/zXawMJOCgivlGhboc6TSapWevZsycTJ05k77335sMPP2SXXXbhlltuYcSIEVlHkyRJWmNR3TLREbGiludLKaWWaxap8YuIkqKioqKSkpKso0hN3syZM9lrr72YM2cOLVq04JprruHoo4/OOpYkSVKNiouLKS0tLU0pFVc8VtOI2C71lEmSVkuvXr2YOnUqw4cPZ/r06RxzzDG88847jBkzptw1ZZIkSYWk2hExVc4RManhLViwgIMOOojx48fTsWNHXnzxRTbddNOsY0mSJFWpuhExF+uQVBA6dOjAuHHjOOaYY7jzzjttwiRJUkFzROwrcERMajwWLlzIkiVL6NKlS9ZRJEmSynFETFKTtHTpUg466CAGDBjAa6+9lnUcSZKk1WYjJqlgPf/88zz22GPMnj2bAQMG8Mwzz2QdSZIkabXYiEkqWN/61reYMGECnTt35oMPPmDo0KE88MADWceSJEmqkY2YpII2YMAApkyZQvfu3Vm0aBH77LMP119/fdaxJEmSqmUjJqng9e7dm6lTp/KNb3yD5cuXM3r0aC6++GJcjEiSJDVWNmKSmoSuXbsyadIkdt99dwCuvfZaSktLM04lSZJUORsxSU1Gx44due+++zjppJN48MEHKS7+0kqxkiRJjYL3EfsKvI+YVFjeffdd2rRpw3rrrZd1FEmS1Ix4HzFJzVZJSQl77rknAwcOZM6cOVnHkSRJAmzEJDVxzz77LLNnz2bmzJkMGDCAZ599NutIkiRJNmKSmrZddtmFRx55hOLiYt5//30GDx7Mww8/nHUsSZLUzNmISWryBg0axJQpU9hkk01YuHAhw4cP5+9//3vWsSRJUjNmIyapWejTpw9Tp05lm222YdmyZXz/+9/nsssu815jkiQpEzZikpqNbt26MXnyZHbZZRcA7r77bpYuXZpxKkmS1BzZiElqVoqKinjggQc444wzGDduHK1bt846kiRJaoa8j9hX4H3EpKbnxRdfpFu3bnTu3DnrKJIkqYnwPmKSVI3XX3+d3XffnUGDBvHWW29lHUeSJDUDNmKSmr2XXnqJkpISXn75Zfr378/zzz+fdSRJktTE2YhJavb22Wcfxo8fT1FREXPnzmXnnXfm0UcfzTqWJElqwmzEJAkYOnQokydPplu3bixYsIC99tqLm266KetYkiSpibIRk6S8bbbZhqlTp7LVVluxdOlSvvvd73L55Zd7rzFJklTnbMQkqYxNNtmEyZMnM3jwYACmT5+ecSJJktQU2YhJUgWdOnVi/PjxXHLJJYwdO5aIyDqSJElqYjJtxCKia0RcGhETI2JBRKSIGFpF7bcjYnpEfBYRb0XEmIhoVaFm64h4In+uKRHRp5LznBYRMyq+VpLKatu2Leeeey5t2rRZtW/ixIl4/0BJklQXsh4R+zpwFrAx8EJVRRExDLgL+Bj4Qf7rnwC/LVPTErgdWA6ckd99e37/ypoN8q87JaW0rE4/iaQm7fHHH2fYsGEMGjSIt99+O+s4kiSpwGU9KvQfYL2U0kcRsS9wZxV1lwPPAnumlJYDRMSnwDkRcVVKaRbQK//YPaX0dkQ8ALwB9ARezZ/nF8AjKaUJ9faJJDVJc+fOZcWKFbz00kv079+fBx98kK233jrrWJIkqUBlOiKWUlqQUvqoupr89MI+wDUrm7C8q8nlPyC/3S7/vHLe0Mf557Xz5+kLHAycVgfRJTUz3/nOd3jggQfo0KED7777LoMGDWLSpElZx5IkSQUq66mJq2P7/PMzZXemlOYC75Q5/irwKXB+RHQHxuS3Z0buSvvfAb9OKb1R0xtGREl1D6CoTj6ZpIKy2267MXnyZLp27UppaSl77LEH//rXv7KOJUmSClAhNGJd88/vVXLsPWAjgJTSIuBk4BRyUxJPBk7K7/9+vu7S+g4rqWnbbrvtmDp1KltuuSVffPEFBx98MFdccUXWsSRJUoEphEZs5ZTDzys59lmZ46SU/g50A/oD3VJK/4iIDuQasDOAz/KrLb4eES9ExH6VvWFKqbi6B1Balx9QUmHp3r07jz/+OAMHDgSgtNR/EiRJUu1kvVjH6liSf25TybG2ZY4DkL/mrOx1ZxcAM1NKt0TE0cDxwPeAzYBbIqJPSml2naeW1KR17tyZhx9+mBtuuIFjjz026ziSJKnAFMKI2MopiV0rOdYVmFvVCyNiC3JTFH+Y33UIuUU/Hk0pXQdMBUbVYVZJzUi7du047rjjyt3w+eabb3aETJIk1agQGrHn8s/fKrszIjYid/+x5770iv+5AvhbSun5/PZGlG/c5pKbyihJa+zvf/87hxxyCIMHD+bdd9/NOo4kSWrEGn0jllJ6CXgFOLbszZmBE4AV5G7i/CURMZzctWLnl9k9D+hdZntL4P06DSyp2YoIWrVqxQsvvED//v3573//m3UkSZLUSGV+jVhErGyUtsw/HxYRg4CSlNLv8/vOAO4BxkfELcDW5KYcXpNSmlnJOVsDvwV+UuE+ZbcBv4yI+UB3YBty14tJ0ho79NBDWX/99TnggAN4++23GThwIOPGjWPQoEFZR5MkSY1MpJSyDRBRVYA3U0qblanbl9y9wbYE5gPXARellJZVcs4zgMOA7cveBDoiWgGXkVvOfhG5Ru2Gr5C5pKioqKikpKTmYknNzrPPPsuwYcOYN28ebdq04cYbb2T//ffPOpYkSWpgxcXFlJaWluZXXi8n80asENmISarJnDlz2GuvvZg5cyYRwe9//3tOPPHErGNJkqQGVF0j1uivEZOkQtSjRw+mTJnCTjvtREqJ4uIv/fsrSZKascyvEZOkpmq99dZjwoQJjB8/nv32q/T+8ZIkqZlyREyS6tHaa69drglLKXHFFVewYMGCDFNJkqSs2YhJUgMaM2YMP/rRjxgyZAjvvfdezS+QJElNko2YJDWgHj160LJlS5599lkGDBjAq6++mnUkSZKUARsxSWpAo0ePZty4cay99tq88cYbDBgwgKlTp2YdS5IkNTAbMUlqYMOGDeOxxx6jS5cufPzxx+y6667cfffdWceSJEkNyEZMkjLQt29fpk6dSs+ePfnss8/Yf//9GTt2bNaxJElSA7ERk6SMbL755kyZMoW+ffvSunVrevfunXUkSZLUQLyPmCRlaP3112fixIk899xz9O/fP+s4kiSpgTgiJkkZW2eddRg4cOCq7c8//5zzzjuPhQsXZphKkiTVJxsxSWpEUkocfvjh/PznP2fo0KHMmzcv60iSJKke2IhJUiMSEey22260aNGC//znP/Tv359Zs2ZlHUuSJNUxGzFJamSOOeYY7r77btq1a8ecOXMYMGAATz31VNaxJElSHbIRk6RGaMSIEUycOJH11luPDz/8kF122YV7770361iSJKmO2IhJUiO14447MmXKFHr06MGSJUsYOXIkt9xyS9axJElSHbARk6RGrFevXkydOpVvfvObdOnShX79+mUdSZIk1QHvIyZJjdwGG2zAY489xjvvvEOPHj2yjiNJkuqAI2KSVAA6dOjAlltuuWp7/vz5nHjiiSxatCjDVJIk6auyEZOkArN06VJGjBjBH//4R3bZZRfmz5+fdSRJklRLNmKSVGDWWmstRo8eTYsWLXj66acZMGAAr732WtaxJElSLdiISVIBOv7447njjjto27Yts2fPpn///jzzzDNZx5IkSavJRkySCtTIkSOZMGECnTt3Zv78+QwdOpQHHngg61iSJGk12IhJUgEbMGAATzzxBN27d2fRokXss88+3H///VnHkiRJNXD5ekkqcF//+teZOnUqw4cPZ/ny5QwcODDrSJIkqQY2YpLUBHTt2pVJkyaxaNEiioqKso4jSZJq4NRESWoiOnbsSNeuXVdtv/zyyxx++OEsXrw4w1SSJKkyjohJUhO0YMEC9tprL9566y1mzpzJuHHjWG+99bKOJUmS8hwRk6QmqEOHDpxxxhlEBE8++SQDBw5kzpw5WceSJEl5NmKS1ESdfPLJ3HrrrbRp04aZM2fSv39/pk+fnnUsSZKEjZgkNWkHHHAAjzzyCMXFxcybN48hQ4bw0EMPZR1LkqRmz0ZMkpq4QYMGMWXKFDbZZBMWLlzI3nvvzZQpU7KOJUlSs+ZiHZLUDPTp02fVvcY23nhjdtxxx6wjSZLUrNmISVIz0a1bN/7973/TqlUrWrXyn39JkrLk1ERJakaKiopYZ511Vm0//PDDjBo1iiVLlmSYSpKk5sdfiUpSMzV37lz2339/Fi5cyDvvvMM999xD586ds44lSVKz4IiYJDVTG220ERdddBERwZQpUxg4cCBvvvlm1rEkSWoWbMQkqRk79dRTufnmm2ndujWvvPIK/fv35/nnn886liRJTZ6NmCQ1c9/5zncYP348RUVFvPfee+y8885MmDAh61iSJDVpNmKSJIYOHcrkyZPp1q0bCxYsYNiwYbz88stZx5IkqclysQ5JEgDbbLMNU6dOZdiwYfzf//0fvXv3zjqSJElNlo2YJGmVTTbZhCeeeIL27dsTEav2p5TKbUuSpDXj1ERJUjkdO3akRYv//fdwzTXXcPDBB/P5559nmEqSpKbFETFJUpVmzJjBiSeeyIoVKygpKeHOO+8sd0NoSZL01TgiJkmq0lZbbcUvfvELAB5++GH23HNPSktLM04lSVLhsxGTJFUpIjjzzDP505/+tOrGz7vuuivz58/POpokSQXNRkySVKPjjjuOG264gZYtWzJ9+nSGDBnC3Llzs44lSVLBKohGLCKGRkSq4tG7TN1JEfFmRHwYEX+IiDYVztMiIp6NiHMa/lNIUmE79NBDufXWW2ndujUvv/wyQ4YMYcmSJVnHkiSpIBXaYh1XAP+psG8uQEQMBn4H/AZ4H7ggf+ySMrXHAR3yNZKkWtpvv/0YN24c++23H6effjrt2rXLOpIkSQWp0BqxSSmlu6o4tjcwMaV0OkBErAOMIN+IRUQn4CJgdErJNZgl6SvaY489mD17Nl27ds06iiRJBasgpiaWFREdIqKyBrIdUFJm+2Ng7TLbFwHPpJTG1Wc+SWoOyjZhKSUuvPBCnnzyyQwTSZJUWAqtEfs78CmwJCIeiohtyhx7GtgjInaNiK2AY/P7yNcdBZy6Om8SESXVPYCiOv1UklTArrjiCn7605+y++678+ijj2YdR5KkglAojdgXwG3AKcBI4EKgH/B4RPTK19wITAQmADPITbu8MH/sSuDqlNIrDRlakpqDffbZh+7du7No0SKGDx/Ovffem3UkSZIavUgpZZ3hK4mI7YBngH+llL5XZv/XgXWAGSmlLyLiQOD3QC9yC3X8CdiB3KIfx6WUar3+ckSUFBUVFZWUlNRcLEnNwDvvvMPuu+/Oq6++SqvI1xNzAAAZZUlEQVRWrfjHP/7BwQcfnHUsSZIyVVxcTGlpaWlKqbjisUIZEfuSlNLzwCPAbhX2v5pSmp5vwtoBlwPnppQ+BW4GlgD7AJ+RG0WTJK2hjTfemH//+99st912LFu2jEMOOYRrr70261iSJDVaBduI5b0NdK7m+JnAB8DYiNgEGAScmVL6T/7YkIjYuP5jSlLTt/766zNx4kR23HFHUkocffTR/P73v886liRJjVKhN2JfA+ZXdiAiNgXOAH6YcvMvN8ofmlvhuVu9JpSkZqRTp048/PDD7LLLLrRu3ZpevXrV/CJJkpqhgmjEIqJLJfsGAbsA46t42eXA7Smllespz8s/984/b5l/fr+uckqSoEOHDtx333088sgj7LHHHlnHkSSpUSqIxToi4lFgMfAE8CGwNbnl6UuBvimltyrUDwXuAb6eUnqvzP6ngZbAtcDRwOcppZ2+Qh4X65CkWli2bBljx47lqKOOokWLgvgdoCRJa6wpLNZxF9AFOA34A3AAuYU2KmvCWpJbrv7isk1Y3ihgAXApufuRfbeec0tSs7dixQqOPPJIjj32WA4//HCWLVuWdSRJkjLXKusAqyOldBVw1WrWLge2q+LYa8CQOowmSVoNnTvn1lX6xz/+waJFi7jpppto06ZNxqkkScpOoYyISZIKVIsWLfjtb3/L+eefD8Cdd97Jt7/9bRYvXpxxMkmSsmMjJkmqdxHBRRddxGWXXQbAQw89xJ577klpaWnGySRJyoaNmCSpwZx55plcffXVADz++OPstttufPTRRxmnkiSp4dmISZIa1AknnMANN9xAixYtmDNnDvPmzav5RZIkNTEFsViHJKlpOeyww2jfvj0bb7wxffr0yTqOJEkNzkZMkpSJ/fbbr9z2p59+ygcffEDPnj0zSiRJUsNxaqIkKXOLFy9mn332YeDAgTz//PNZx5Ekqd7ZiEmSMvfGG28wY8YMPvjgA4YOHcqTTz6ZdSRJkuqVjZgkKXN9+vRh0qRJbLjhhpSUlLD77rszceLErGNJklRvbMQkSY3C1ltvzeTJk9l0001ZtGgRw4cP57777ss6liRJ9cJGTJLUaPTs2ZPHH3+cXr168dlnn7Hvvvty6623Zh1LkqQ6ZyMmSWpUNtlkE/7973+zzTbbsGzZMn7yk5/wxRdfZB1LkqQ6ZSMmSWp0NthgAx577DEOPPBAxo8fT+vWrbOOJElSnYqUUtYZCk5ElBQVFRWVlJRkHUWSmpXS0lI6duxIRGQdRZKkGhUXF1NaWlqaUiqueMwRMUlSQXj//ffp27cv55xzDv4SUZJU6GzEJEkF4corr2TWrFlcdtllnHzyyaxYsSLrSJIkfWU2YpKkgnDxxRczevRoAK6++mpGjx7NsmXLMk4lSdJXYyMmSSoILVu25K9//Ss/+MEPALjhhhs4+OCD+fzzzzNOJklS7dmISZIKRosWLbjyyis599xzAbjjjjsYOXIkixcvzjiZJEm1YyMmSSooEcEll1zCpZdeCsD48eO54IILMk4lSVLttMo6gCRJX8VZZ51Fhw4d+Nvf/saYMWOyjiNJUq14H7GvwPuISVLjsWzZMlq1+t/vFVNK3mdMktQoeB8xSVKTVbYJmzFjBv379+fNN9/MMJEkSTWzEZMkNQlLly5l5MiRPPXUU+y8887MnDkz60iSJFXJRkyS1CSstdZajB07lg4dOvD2228zePBgXnjhhaxjSZJUKRsxSVKTMXjwYCZMmECnTp2YN28eQ4cO5amnnso6liRJX2IjJklqUvr27cukSZPYYIMN+OSTT9h999157LHHso4lSVI5NmKSpCZnm222YfLkyWy66aYsXLiQYcOGMX369KxjSZK0io2YJKlJ2mKLLZg8eTJbbLEFw4YNY9ttt806kiRJq3hDZ0lSk7Xpppvy+OOPU1RUVG6Ze0mSsuaImCSpSVt//fVp06bNqu2HHnqIP/zhDxkmkiTJETFJUjMyffp09t13X5YsWcKnn37KOeeck3UkSVIz5YiYJKnZ6N27N0OHDgXg3HPP5ZxzziGllG0oSVKzZCMmSWo21l57be666y4OOOAAAC699FJ+8IMfsGLFioyTSZKaGxsxSVKz0rp1a26++WYOP/xwAP7whz9w5JFHsmzZsoyTSZKaExsxSVKz06pVK6677jpOOukkAP72t78xatQomzFJUoOxEZMkNUstWrTgd7/7HWeffTYAPXr0oGXLlhmnkiQ1F+FFyrUXESVFRUVFJSUlWUeRJNWBBx98kD333JOIyDqKJKkJKS4uprS0tDSlVFzxmCNikqRmb6+99irXhN1+++18/PHHGSaSJDV1NmKSJJXxz3/+k4MOOoghQ4bw/vvvZx1HktRE2YhJklRGmzZtaNWqFTNmzGDw4MG89dZbWUeSJDVBNmKSJJVx4IEHctddd9G2bVtmzZrFoEGDmDVrVtaxJElNjI2YJEkVDB8+nAceeID27dvz9ttvs/POO/Piiy9mHUuS1ITYiEmSVImhQ4fyyCOP0KlTJ+bNm8eQIUOYNm1a1rEkSU2EjZgkSVXYcccdeeyxx1h//fX55JNPmDFjRtaRJElNRKusA0iS1Jhtu+22TJ48mUmTJnHkkUdmHUeS1ETYiEmSVINevXrRq1evVdspJV588UW23XbbDFNJkgpZwUxNjIg2EXFZRMyNiCUR8WRE7Fah5qSIeDMiPoyIP0REmwrHW0TEsxFxTsOmlyQ1JT/72c/Yfvvt+dvf/pZ1FElSgSqYRgy4HvgR8A/gFGAF8EBE9AeIiMHA74BbgUuBQ4HTK5zjOKAD8JuGiSxJamo+++wz7r33XlasWMERRxzB1VdfnXUkSVIBKohGLCL6AaOAM1NKZ6aU/gzsCrwFXJYv2xuYmFI6PaV0Oblma0SZc3QCLgJ+lFL6vEE/gCSpyWjbti0TJkxg5513BuCkk07isssuq+FVkiSVVxCNGHAgsBT468odKaXPgGuBQRHRFWgHlJR5zcfA2mW2LwKeSSmNq/+4kqSmrGPHjjz44IPsueeeAJx99tmcd955pJQyTiZJKhRRCP9pRMTDwAYppW0r7N8NeAQYDqwHXA2MBOYBNwNPpZSOjohtgGnA9imlV1bj/UpqKCkqKiqipKSmMklSU/b555/zve99j9tvvx2AAQMGMGXKlFXHb731Vv7xj39U+fqNNtqIP/7xj6u2r7vuOu6+++4q63v37l1u9O3KK6/k0UcfrbK+b9++nH/++au2L7roIp555pkq63fddVdOOeWUVdtnnnkmr776apX1++67L6NHj161fcIJJzB37twq6w877DAOPPDAVduHHnooCxYsqLL+xBNPXNXsAowcObLKWoCzzjqLAQMGAPDpp59y2GGHVVt/8cUXs8022wDw7rvvcuKJJ1Zbf9VVV9G9e3cAXn75Zc4+++xq68eOHUvnzp0BmDZtGpdcckm19bfddhtrrbUWABMmTOCqq66qsrZt27bccsstq7bvvPNOrr/++irr119/ff7yl7+s2r7hhhtW/dxWZvPNN+c3v/nflRx/+MMfeOihh6qs33777fnpT3+6avvSSy9l6tSpVdYPHjyY0047bdX2eeedV+3tIfbee2+OPfbYVds/+MEPeOutt6qsHzVqFIcccsiq7SOOOIJPPvmkyvpjjz2Wvffee9X2AQccwLJly6qsP+200xg8eDAAS5YsYdSoUVXWAvz0pz9l++23B2DevHnlPktlfv3rX9OzZ08AZs+eXe57VZk///nPbLDBBgBMnz6dCy+8sNr6m2++mXbt2gEwadKkcn/WFbVq1arcz8q9995b7mepok6dOpX7Wbzpppu4+eabq6zv3r17uZ/1a665hvvvv7/K+q233rrc36XLL7+cyZMnl6u54447aNmyZZXnaEjFxcWUlpaWppSKv3QwpdToH8AMYHwl+/sACTgKaAnck99OwMvAJvm6R4Ff1+L9Smp4pKKioiRJ0tKlS9P3v//9BKR111233LFLLrkklfl/6UuPXr16lav/8Y9/XG19//79y9Uffvjh1daPGDGiXP3ee+9dbf3hhx9ern6nnXaqtv60004rV7/FFltUW//zn/+8XH3nzp2rrb/mmmvK1VdXC6TbbrttVe38+fNrrJ84ceKq+ldeeaXG+hdffHFV/ZQpU2qsnzt37qr6e+65p8b6zz//fFX92LFjq61t3759ue/Nr371q2rru3fvXq7+7LPPrrZ+hx12KFd/zDHHVFu/xx57lKvff//9q60/5JBDytUPGTKk2vqTTz65XP1WW21Vbf2YMWPK1W+44YbV1v/ud78rV7/WWmtVW3/jjTeuqv30009r/LMdP378qvo5c+bUWP/MM8+sqn/66adrrJ8zZ86q+gcffLDG+gULFqyq/+c//1ltbevWrct9b6666qpq67t27VqufsyYMdXWb7311uXqTzrppGrrhwwZUq5+1KhRX6pZunRpaiyKiooSUJIq6TkKZfn6dkBl13V9tvJ4Smk58O2I+DqwDjAjpfRFRBxIrmHbNyK6AX8CdgD+AxyXUvrSr+5SZR1rGfkRs6Kv/GkkSU1Gq1atGDt2LEOGDOH1118vd6xv376ceuqpVb62S5cu5bYHDx7MihUrqqzfbLPNym3vsccedOrUqcr6rbbaqtz2yJEj2WKLLaqs79u3b7ntgw8+mJ122qnK+pXXya10xBFHMH/+/NU+//HHH8/ixYurrF85WrVSdd9LYNUIAuRGjGqq33jjjVd93alTpxrr11133VVfd+3atcb6ddZZZ9XXPXr0qLG+RYv/XTHSp0+fauvbtCm3MDQ77LBDtfUVf04GDhxYbf0mm2xSbnu33XYr93kq+vrXv15ue8SIEWy66aZV1n/zm98st33ggQeuGjGqzKBBg8ptH3bYYbz//vtV1lf8uT3mmGOqHX3dbrvtym3/8Ic/ZPny5VXWl/28a621Vo1/tmW/Fx07dqyxfv311y/3dU31HTt2XPV19+7da6xfOfIKuc9SXX3FkaVvfOMb1daXzQK5P4vq6rt27Vpue5dddimXr6LNN9+83PawYcPYcMMNy+2LiCpf35gUytTEGcC7KaU9K+zvA7wEHJ1SuraS17UjNzL2s5TSdRExGXiP3AIfZwNdUkpDv0KekqKioiKnJkqSJEmqSnVTEwtlROw9oGsl+1fuq2pC+pnAB8DYiNgEGAT0SCm9ERFnAq9HxMYppXfqPLEkSZIkVaFQVk18DugdEe0r7N8x//x8xRdExKbAGcAPU27Yb6P8obkVnrvVcVZJkiRJqlahNGK3AWsBR6/cERFtgNHAlMqu8wIuB25PKT2Z356Xf+6df94y/1z1BGNJkiRJqgcFMTUxpfRURNwK/DJ/z7DXgMOB7sARFesjYiiwF/D1Mud4IyKeAa6PiGvJNXVPpZTerP9PIEmSJEn/UygjYgDfB67MP19FboRseEppStmiiGiZr7s4pfRehXOMAhYAlwKfAt+t79CSJEmSVFFBrJrY2LhqoiRJkqSaVLdqYiGNiEmSJElSk2AjJkmSJEkNzEZMkiRJkhqYjZgkSZIkNTAbMUmSJElqYDZikiRJktTAbMQkSZIkqYHZiEmSJElSA7MRkyRJkqQGZiMmSZIkSQ0sUkpZZyg4EbECiKKioqyjSJIkSWqkSktLAVJK6UsDYDZiX0FELCM3mvhp1lmagPb554WZpmjcmsP3qJA/Y2PP3ljyZZWjId935W/nShvgvaT60Fj+vVDl/PNZPY3t+9QRWJFSalXxgI2YMhURjwGklIZmm6Txag7fo0L+jI09e2PJl1WOhnzfiCjJv1dxfb+XVB8ay78Xqpx/PqunkL5PXiMmSZIkSQ3MRkySJEmSGpiNmCRJkiQ1MBsxSZIkSWpgLtYhSVIdcLEOSVJtOCImSZIkSQ3MRkySJEmSGphTEyVJkiSpgTkiJkmSJEkNzEZMkiRJkhqYjZgkSZIkNTAbMUmSGkBEtImIsRHxTkSURsTEiNgq61ySpGzYiEmS1DBaAa8DOwGdgXHAXZkmkiRlxlUTJUnKQES0Bj4DuqSUPso6jySpYTkiJklSJSKia0Rcmp9CuCAiUkQMraK2TURcFhFzI2JJRDwZEbvV8Bb9gQ9swiSpebIRkySpcl8HzgI2Bl6oofZ64EfAP4BTgBXAAxHRv7LiiCgG/gycW1dhJUmFxamJkiRVIiI6AK1TSh9FxL7AncAuKaXHKtT1A54CfpRSuiK/ry0wA5ibUhpcob4tMB54JqV0Wv1/EklSY+SImCRJlUgpLVjNaYMHAkuBv5Z57WfAtcCgiOi6cn9EtARuBt4GTq/bxJKkQmIjJknSmtkeeCWltLDC/mlAAN8os+8vQFtgdHJKiiQ1a62yDiBJUoHrCrxbyf738s8bAUREd2A0uZUSP4mIlXXDUkqT6zukJKlxsRGTJGnNtAM+r2T/Z2WOk1J6k9wImSRJTk2UJGkNLQHaVLK/bZnjkiSVYyMmSdKaeY/c9MSKVu6b24BZJEkFwkZMkqQ18xzQOyLaV9i/Y/75+QbOI0kqADZikiStmduAtYCjV+6IiDbkFuaYklJyREyS9CUu1iFJUhUi4vz8l1vmnw+LiEFASUrp9wAppaci4lbgl/l7hr0GHA50B45o4MiSpAIR3sZEkqTKRURV/0m+mVLarExdW+Ai4FCgE/ACcG5K6ZF6DylJKkg2YpIkSZLUwLxGTJIkSZIamI2YJEmSJDUwGzFJkiRJamA2YpIkSZLUwGzEJEmSJKmB2YhJkiRJUgOzEZMkSZKkBmYjJkmSJEkNzEZMktTkRcTaEXFVRLwVEcsj4o2sM0mSmjcbMUlSoxMRQyMi5R/HVFGTIuLe1TzlWcAPgFuAI4BT6yZp5SJi34j4aX2+hySpsEVKKesMkiSVExFDgYn5zblAz5TSkgo1CbgvpTRiNc73BNA+pbRtXWet4v2uBw5PKUVDvJ8kqfA4IiZJasyeATZizUewNgQ+XvM42Yuc9lnnkCStGRsxSVJj9i/gP8BZEbFubV8cEUfkR856AEPKTHf8aZmab0XEnRHxYUR8HhGvRsR5EdGqwrn6RcT1ETEzIhZHxIKImBIR+1Woeww4PP91KvM4YuXxyq5Ri4jNKsm2cormERFxUkT8F/gMOL1MzcER8Xg+z+KIeCoiDqzk/HtHxKT851ySv17ujojoVdvvqyRpzbWquUSSpMwk4GzgYeA84Me1fP2/gcOA3wIfApfk978AueYEuAOYDfya3KhZf+BnwDeAg8qcaz+gN7nm8E1gXXIN1x0R8b2U0o35ukvI/aJz5/x7r/RELbOXdWr+/f4CvA+8nc9/Mbnvy4PABcCKfM5bI+LklNIf8nVDgHuAGcAvgBJyI427Az2BmWuQTZL0FXiNmCSp0SlzjdgZKaXLI+IhYDDw9ZTSm/ma2lwj9gbwRkppaJl9bYE3yDUhu6aUlpU59iPgN8AuKaXH8vvWSSktqnDetYFngeUppT5l9l9PFdeI5UfMNkspbVZh/2bAHODClNJPK3wfPgF6p5Q+KFP/TXKjhb9IKZ1b4Vx3AbsC3VJKCyLiN8CPgA3KnkOSlB2nJkqSCsFZQGvgojo85/8BGwBjgeKIWG/lA7g/X7PHyuKyTVh+Ofx1gbWBR4EtI6JjHWar6IZKGqjvkRsx/FvZ7Pn89wAdyI3uAZTmnw+oOOVSkpQN/zGWJDV6KaVnI+Im4HsRcXlK6YU6OO2W+efrqqnZYOUXEbE+cDEwEli/ktpi4NM6yFWZyqYObgkE8Eo1r1uZ//fkcl8NXBYRj5ObznhTSml+XQaVJK0eGzFJUqE4HzgQuAwYVgfnWzlt8AzguSpq5kJupULgIXLNz5XkVnMsBZYDo4HvsvqzTKq6JqC6/5MXV7Iv8ucals9RmZcAUkofRURfctet/R+5aZ6/BS6MiOEppamrE1ySVHdsxCRJBSGlNCci/gickr92ak3Nyj8vSik9UkPttsB2wM9SSmPKHoiIoyupr+4C7I+BHSrZ/7UaMlQ0C9gLeCul9HJNxSml5cBj+QcRsS25a8zOB/au5XtLktaQ14hJkgrJxeSm//2yDs41HvgAODsiOlc8GBHtIqJDfnPliFNUqNma3CqFFS3MH//SeclNM+wQEf3KnKcFucU0auPv+eefR0TLigcjouy0yvUqef0rwBKgsoySpHrmiJgkqWCklD6MiF9RB4t2pJQWRcT3gbuAVyPiOnLL2BeTW6Z+f3JN1mPAy+Sm+Z2ZXynxVaAXcBzwIl8e4XoSOBm4OiLuA5YCT6WU5gB/Bk4D7oyIK4EvyE25rNX/ySmlp/P3HPsp8FxE3EpuKmXXfJ7h5BY4AfhLRGxMbnrlm0A74GByC3rcUJv3lSTVDRsxSVKh+Q1wIrmGY42klMbnr506GzgU6EJuqfjX8u/zQr5uef6eY5eTu3fYOuTuyXU4uSmLFRuxm4DtgVHk7kXWgty1ZHPyUyz3BX5OrqH8iNzo1nVUv/BGZfkvjIhngB+Su9fYOuRG+Wbk9630d+CIfN4u5EYV/wscmFK6vTbvKUmqG95HTJIkSZIamNeISZIkSVIDsxGTJEmSpAZmIyZJkiRJDcxGTJIkSZIamI2YJEmSJDUwGzFJkiRJamA2YpIkSZLUwGzEJEmSJKmB2YhJkiRJUgP7f3IL0Z4ApRupAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<Figure size 1008x576 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [], | |
| "needs_background": "light" | |
| } | |
| } | |
| ] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment