Created
September 2, 2024 21:59
-
-
Save Entreprenerdly/b99aae837b49fd495a522b5ad43eba25 to your computer and use it in GitHub Desktop.
Entreprenerdly.com - Earnings Transcript Due Diligence with FMP, Groq, Llama, Llama_Index.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "provenance": [] | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| }, | |
| "language_info": { | |
| "name": "python" | |
| }, | |
| "widgets": { | |
| "application/vnd.jupyter.widget-state+json": { | |
| "34fd2a90d1ce4c11b7ba4e7e31ff3f3d": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_95a0607581c44f2fb47d3b4085085a05", | |
| "IPY_MODEL_658cd2cc9b834d43bf44abe37b77d2c6", | |
| "IPY_MODEL_18a01d69173544cdbe480d9c5afa6d93" | |
| ], | |
| "layout": "IPY_MODEL_a6453d75d46948d888f0fdf551e3635b" | |
| } | |
| }, | |
| "95a0607581c44f2fb47d3b4085085a05": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_70c41667d3b94e72a11a43a944f9fa9d", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_e04561a1babe42e2b6818f99b243c3a5", | |
| "value": "Parsing nodes: 100%" | |
| } | |
| }, | |
| "658cd2cc9b834d43bf44abe37b77d2c6": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_6b2b0516bb824284a7690a90f11d5b43", | |
| "max": 30, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_8118053d2460489ba96b18f0d8c60565", | |
| "value": 30 | |
| } | |
| }, | |
| "18a01d69173544cdbe480d9c5afa6d93": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_4120527f1a42476d89fcfbd9435181d0", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_facad56ccfc646d9b3575cf25533c9d4", | |
| "value": " 30/30 [00:00<00:00, 253.16it/s]" | |
| } | |
| }, | |
| "a6453d75d46948d888f0fdf551e3635b": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "70c41667d3b94e72a11a43a944f9fa9d": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "e04561a1babe42e2b6818f99b243c3a5": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "6b2b0516bb824284a7690a90f11d5b43": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "8118053d2460489ba96b18f0d8c60565": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "4120527f1a42476d89fcfbd9435181d0": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "facad56ccfc646d9b3575cf25533c9d4": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "ccef6835fcbb4c23bd92a07bab025855": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_1f604198702a4c13a6b52cf7c3f50358", | |
| "IPY_MODEL_e89b3acf714d421fb9392b72caca9c60", | |
| "IPY_MODEL_5b1414015c5042928091279404c81488" | |
| ], | |
| "layout": "IPY_MODEL_e29a24daa5004b07b749200f70086dc5" | |
| } | |
| }, | |
| "1f604198702a4c13a6b52cf7c3f50358": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_d76d85d2cc17435d9b7d981678741583", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_6e138610d6dc4bed909d321f530faa7d", | |
| "value": "modules.json: 100%" | |
| } | |
| }, | |
| "e89b3acf714d421fb9392b72caca9c60": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_ed63dd4da58940a2b09d0ddc179f69df", | |
| "max": 349, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_8d780e1be11d46779694564decbb5c8a", | |
| "value": 349 | |
| } | |
| }, | |
| "5b1414015c5042928091279404c81488": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_acd89cc80be144059a25deb952114e80", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_a6b23bff1ea9428fb11b40c426718fd8", | |
| "value": " 349/349 [00:00<00:00, 15.9kB/s]" | |
| } | |
| }, | |
| "e29a24daa5004b07b749200f70086dc5": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "d76d85d2cc17435d9b7d981678741583": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "6e138610d6dc4bed909d321f530faa7d": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "ed63dd4da58940a2b09d0ddc179f69df": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "8d780e1be11d46779694564decbb5c8a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "acd89cc80be144059a25deb952114e80": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "a6b23bff1ea9428fb11b40c426718fd8": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "e66ad528758d41bc8d86a9c4f6e62686": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_0ec4bd66c6a944539d4b77f188a38054", | |
| "IPY_MODEL_fa291c2abada4e11a8bf27e563b575de", | |
| "IPY_MODEL_26db8cd3434c494bbd37ed0b1a29e405" | |
| ], | |
| "layout": "IPY_MODEL_5a861dbbcb7b4174b38d81281fb7e86f" | |
| } | |
| }, | |
| "0ec4bd66c6a944539d4b77f188a38054": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_0e81ed92aab8481ebc6c65f223b67b11", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_aafcb004a39740e39e84cf5aefd505f5", | |
| "value": "config_sentence_transformers.json: 100%" | |
| } | |
| }, | |
| "fa291c2abada4e11a8bf27e563b575de": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_cd7350fb5a454499b15b132b7df15436", | |
| "max": 116, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_48117fee87544595876679e91f0306c7", | |
| "value": 116 | |
| } | |
| }, | |
| "26db8cd3434c494bbd37ed0b1a29e405": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_d05db0ee011547abbb3b26a9ab2ff411", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_0742d21b295f41e5a5a79207774d55b0", | |
| "value": " 116/116 [00:00<00:00, 6.10kB/s]" | |
| } | |
| }, | |
| "5a861dbbcb7b4174b38d81281fb7e86f": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "0e81ed92aab8481ebc6c65f223b67b11": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "aafcb004a39740e39e84cf5aefd505f5": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "cd7350fb5a454499b15b132b7df15436": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "48117fee87544595876679e91f0306c7": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "d05db0ee011547abbb3b26a9ab2ff411": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "0742d21b295f41e5a5a79207774d55b0": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "dbf630927a74409f843912c555d0dec6": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_c9802d9471474511aab857e585d7a7bf", | |
| "IPY_MODEL_72e8fb1d7bc1434b88ab1f0a0b2b8260", | |
| "IPY_MODEL_7efe1efac2aa46ee9c1f5a069851c04b" | |
| ], | |
| "layout": "IPY_MODEL_317571abea2b4da4a6caa69f1e9e17db" | |
| } | |
| }, | |
| "c9802d9471474511aab857e585d7a7bf": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_428a2843e0ab472da6d5f6d2e20ff16d", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_69c15743b9c9440d8dc80e982a65e4de", | |
| "value": "README.md: 100%" | |
| } | |
| }, | |
| "72e8fb1d7bc1434b88ab1f0a0b2b8260": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_6c29cdeb85e8413a834cbf7751a5550b", | |
| "max": 10659, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_bde7fd0ddb2a4bf0a0d27e2c267299df", | |
| "value": 10659 | |
| } | |
| }, | |
| "7efe1efac2aa46ee9c1f5a069851c04b": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_f07c2dec5e6141f5ba4d6cad49883490", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_ea71c3fcc28741bb95edb350eb037c58", | |
| "value": " 10.7k/10.7k [00:00<00:00, 509kB/s]" | |
| } | |
| }, | |
| "317571abea2b4da4a6caa69f1e9e17db": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "428a2843e0ab472da6d5f6d2e20ff16d": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "69c15743b9c9440d8dc80e982a65e4de": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "6c29cdeb85e8413a834cbf7751a5550b": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "bde7fd0ddb2a4bf0a0d27e2c267299df": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "f07c2dec5e6141f5ba4d6cad49883490": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "ea71c3fcc28741bb95edb350eb037c58": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "ab57847f199c41948cd7e2b49cffac2b": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_a35446e42a3b4423a02d6d87f113e659", | |
| "IPY_MODEL_0a9c9751f56b49db82109a0af5287a52", | |
| "IPY_MODEL_71411b101b69463db150fa7e5db43503" | |
| ], | |
| "layout": "IPY_MODEL_87955a8efeb24cd1a2a8ebce7e1e078f" | |
| } | |
| }, | |
| "a35446e42a3b4423a02d6d87f113e659": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_8d181eb031254e969db66ff090023ee6", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_5a7cabea3c0d4596849f5e83733dabac", | |
| "value": "sentence_bert_config.json: 100%" | |
| } | |
| }, | |
| "0a9c9751f56b49db82109a0af5287a52": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_656260a7da4247b2876f64fb36a444f5", | |
| "max": 53, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_538d2781c9b84e6a919161910680f68a", | |
| "value": 53 | |
| } | |
| }, | |
| "71411b101b69463db150fa7e5db43503": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_584cc270553b4f21bdf5172392ebe018", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_7be12e80a68943d2bd8b6951a828628e", | |
| "value": " 53.0/53.0 [00:00<00:00, 1.66kB/s]" | |
| } | |
| }, | |
| "87955a8efeb24cd1a2a8ebce7e1e078f": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "8d181eb031254e969db66ff090023ee6": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "5a7cabea3c0d4596849f5e83733dabac": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "656260a7da4247b2876f64fb36a444f5": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "538d2781c9b84e6a919161910680f68a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "584cc270553b4f21bdf5172392ebe018": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "7be12e80a68943d2bd8b6951a828628e": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "be1d0deb4b0e4e2380691f75edb9bf9a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_4d9d31a9dcf24f5586d2c67a906cd6bc", | |
| "IPY_MODEL_2c2d4d95c5f84d9fbf18bda4c74663bc", | |
| "IPY_MODEL_fb27415c0be243b7895cbd514359a4b2" | |
| ], | |
| "layout": "IPY_MODEL_b1418cb49a2145c39eeeaf193201e1d3" | |
| } | |
| }, | |
| "4d9d31a9dcf24f5586d2c67a906cd6bc": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_38cbf10800c34586b49bb262c7932371", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_14f6ee28cb01489190f9314d4712768e", | |
| "value": "config.json: 100%" | |
| } | |
| }, | |
| "2c2d4d95c5f84d9fbf18bda4c74663bc": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_ed06411624bd48cd8ea8ddd85c5da28d", | |
| "max": 612, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_b91c21a5962541b18aafdf33811d38c6", | |
| "value": 612 | |
| } | |
| }, | |
| "fb27415c0be243b7895cbd514359a4b2": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_c6d6cb86ba8642eb9a67be195cdc5e50", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_869aab823769433d97416be6e7122b2c", | |
| "value": " 612/612 [00:00<00:00, 16.8kB/s]" | |
| } | |
| }, | |
| "b1418cb49a2145c39eeeaf193201e1d3": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "38cbf10800c34586b49bb262c7932371": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "14f6ee28cb01489190f9314d4712768e": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "ed06411624bd48cd8ea8ddd85c5da28d": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "b91c21a5962541b18aafdf33811d38c6": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "c6d6cb86ba8642eb9a67be195cdc5e50": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "869aab823769433d97416be6e7122b2c": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "3b5859e925014eb0a37bfa32edddedf1": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_ba4ef09070bf46f6b8fa40c13ae3ac22", | |
| "IPY_MODEL_b89eeec4b3c74363869c58655e097e87", | |
| "IPY_MODEL_fcb0f5e4911d4bb1a2c9b2207bb2fba0" | |
| ], | |
| "layout": "IPY_MODEL_25b1f112d70a47a8b630a0fd79c0e35e" | |
| } | |
| }, | |
| "ba4ef09070bf46f6b8fa40c13ae3ac22": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_482da678e6c84b51a60074be855a1628", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_80cd7b8307264de896858c4b4bae522e", | |
| "value": "model.safetensors: 100%" | |
| } | |
| }, | |
| "b89eeec4b3c74363869c58655e097e87": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_ddbb8844c1f3426685e60b783aa2ab54", | |
| "max": 90868376, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_9d4c2f3803994559a20f56bb63bd7ccd", | |
| "value": 90868376 | |
| } | |
| }, | |
| "fcb0f5e4911d4bb1a2c9b2207bb2fba0": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_5a4d550c37274afc9e6eabe8b3137f2b", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_6b2858fc000a4276bc998d7897f028e0", | |
| "value": " 90.9M/90.9M [00:01<00:00, 100MB/s]" | |
| } | |
| }, | |
| "25b1f112d70a47a8b630a0fd79c0e35e": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "482da678e6c84b51a60074be855a1628": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "80cd7b8307264de896858c4b4bae522e": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "ddbb8844c1f3426685e60b783aa2ab54": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "9d4c2f3803994559a20f56bb63bd7ccd": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "5a4d550c37274afc9e6eabe8b3137f2b": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "6b2858fc000a4276bc998d7897f028e0": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "e22f728a0b7c4b4c8df0059892cbaf1a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_dbcdc700229a44e28b157ce6fd2f262d", | |
| "IPY_MODEL_9af32ba8a55a492ab4fa95985e2a73fa", | |
| "IPY_MODEL_14e49578bdd64d02a21647bd64fd7348" | |
| ], | |
| "layout": "IPY_MODEL_63aac4536ee34fc2b83c56bc354dc6fb" | |
| } | |
| }, | |
| "dbcdc700229a44e28b157ce6fd2f262d": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_f7eef2e114e2461b8aa6fb72f18f06c1", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_06b3be5c9f934a85a17a2b3df189ff1a", | |
| "value": "tokenizer_config.json: 100%" | |
| } | |
| }, | |
| "9af32ba8a55a492ab4fa95985e2a73fa": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_5dc36326be5946578f44bffbd66bc005", | |
| "max": 350, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_7667ed2134b745768bdf41874394304f", | |
| "value": 350 | |
| } | |
| }, | |
| "14e49578bdd64d02a21647bd64fd7348": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_b03199a1c1a94489b23ffffef39fcda5", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_24cf99e265f14cb2ac7444df953af523", | |
| "value": " 350/350 [00:00<00:00, 5.47kB/s]" | |
| } | |
| }, | |
| "63aac4536ee34fc2b83c56bc354dc6fb": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "f7eef2e114e2461b8aa6fb72f18f06c1": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "06b3be5c9f934a85a17a2b3df189ff1a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "5dc36326be5946578f44bffbd66bc005": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "7667ed2134b745768bdf41874394304f": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "b03199a1c1a94489b23ffffef39fcda5": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "24cf99e265f14cb2ac7444df953af523": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "f7a72d85fcb046c2aa30573cd9ebda67": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_75c009d2df8c49e699d38bafb23f3227", | |
| "IPY_MODEL_da1232365951487abc1bf3c66543faa2", | |
| "IPY_MODEL_6dcb4dca198144d3a8f42bf1cce942db" | |
| ], | |
| "layout": "IPY_MODEL_2fdefff0a1894d2cbf441b6ec7b49014" | |
| } | |
| }, | |
| "75c009d2df8c49e699d38bafb23f3227": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_730fabf8a6b84b3aabda67b1c376ad6b", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_d8c1fa548ff0472796baa768bea843fc", | |
| "value": "vocab.txt: 100%" | |
| } | |
| }, | |
| "da1232365951487abc1bf3c66543faa2": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_107b3a33a9ca48099948fef4339502d7", | |
| "max": 231508, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_d184cf032e1645a19c0b77288931d566", | |
| "value": 231508 | |
| } | |
| }, | |
| "6dcb4dca198144d3a8f42bf1cce942db": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_5a8fab4df6b94772aecfc6cd9e4da927", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_cbbaf327c36d4836b71400adb94aae54", | |
| "value": " 232k/232k [00:00<00:00, 2.16MB/s]" | |
| } | |
| }, | |
| "2fdefff0a1894d2cbf441b6ec7b49014": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "730fabf8a6b84b3aabda67b1c376ad6b": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "d8c1fa548ff0472796baa768bea843fc": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "107b3a33a9ca48099948fef4339502d7": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "d184cf032e1645a19c0b77288931d566": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "5a8fab4df6b94772aecfc6cd9e4da927": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "cbbaf327c36d4836b71400adb94aae54": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "e77d61a2687548a88d5bc9c9ae36a093": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_b1b8738e1f7c4410a195ff15102cc3b2", | |
| "IPY_MODEL_412873f20fb94029b5642efc8272d2c0", | |
| "IPY_MODEL_90209d7f66964712a7a370f5e62bfa44" | |
| ], | |
| "layout": "IPY_MODEL_74f2722d490f4a4890d4145aa0e50631" | |
| } | |
| }, | |
| "b1b8738e1f7c4410a195ff15102cc3b2": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_8548c29eaa694f9ea963c428da9141f5", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_8b79ea1f18114e9a97bb29dbfcb801bb", | |
| "value": "tokenizer.json: 100%" | |
| } | |
| }, | |
| "412873f20fb94029b5642efc8272d2c0": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_572f326c7b4b4d46b36d327d6903cf53", | |
| "max": 466247, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_ffe83c9f3cc248829ee948c7f6c1c752", | |
| "value": 466247 | |
| } | |
| }, | |
| "90209d7f66964712a7a370f5e62bfa44": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_ccc9d07a0a0e4572927c81b83c4c8918", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_5ac50c16cf57483bbe60539ef052c7bc", | |
| "value": " 466k/466k [00:00<00:00, 5.93MB/s]" | |
| } | |
| }, | |
| "74f2722d490f4a4890d4145aa0e50631": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "8548c29eaa694f9ea963c428da9141f5": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "8b79ea1f18114e9a97bb29dbfcb801bb": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "572f326c7b4b4d46b36d327d6903cf53": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "ffe83c9f3cc248829ee948c7f6c1c752": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "ccc9d07a0a0e4572927c81b83c4c8918": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "5ac50c16cf57483bbe60539ef052c7bc": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "d03ffd2b75ea4a32877bf2af050d7c86": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_fbb2e8b630c149a4a5f42b9c203f23a7", | |
| "IPY_MODEL_69287907d58140549aa94f66c1441f6b", | |
| "IPY_MODEL_15a84d3ce9d84049bd5218e2ccbce369" | |
| ], | |
| "layout": "IPY_MODEL_521b6f1a4a874bd9ade89335ea703dca" | |
| } | |
| }, | |
| "fbb2e8b630c149a4a5f42b9c203f23a7": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_ea2b6925fea741339a37a19e5c9f6e60", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_a731b46f0c9040258e4026b9a3ffa1f5", | |
| "value": "special_tokens_map.json: 100%" | |
| } | |
| }, | |
| "69287907d58140549aa94f66c1441f6b": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_c89685330c0948dc85de7d41d9a2c2f5", | |
| "max": 112, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_b376021ea22440eba127c7dcd69a4773", | |
| "value": 112 | |
| } | |
| }, | |
| "15a84d3ce9d84049bd5218e2ccbce369": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_0e535609f6b54d2db4eb59b3aac3fbcc", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_9f909c7c8d194334927d8b7c279c9d3a", | |
| "value": " 112/112 [00:00<00:00, 1.40kB/s]" | |
| } | |
| }, | |
| "521b6f1a4a874bd9ade89335ea703dca": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "ea2b6925fea741339a37a19e5c9f6e60": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "a731b46f0c9040258e4026b9a3ffa1f5": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "c89685330c0948dc85de7d41d9a2c2f5": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "b376021ea22440eba127c7dcd69a4773": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "0e535609f6b54d2db4eb59b3aac3fbcc": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "9f909c7c8d194334927d8b7c279c9d3a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "f93b89b94b16463cbc7efd3809288284": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_c65dc32e80c84b98b98092f2aa24634e", | |
| "IPY_MODEL_3b4a7eb0f81c4d54be9886823d3afeda", | |
| "IPY_MODEL_3697d19a74ec4f1ab71e9cbcf9db3991" | |
| ], | |
| "layout": "IPY_MODEL_838c1d60d9c14eeeb45583037b84a9d1" | |
| } | |
| }, | |
| "c65dc32e80c84b98b98092f2aa24634e": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_178bc63497a24bc3af1fdf55f4e5f0f8", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_64934b5766654c189e39884c851c3491", | |
| "value": "1_Pooling/config.json: 100%" | |
| } | |
| }, | |
| "3b4a7eb0f81c4d54be9886823d3afeda": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_72183374829b4afd9abd81ff21f37921", | |
| "max": 190, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_0e3f8b5cccca49b7923b08dac539387b", | |
| "value": 190 | |
| } | |
| }, | |
| "3697d19a74ec4f1ab71e9cbcf9db3991": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_41006dd29db146d68f58dff6fdb37653", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_4aea2067ceb945b6a530d7df9a7ee56d", | |
| "value": " 190/190 [00:00<00:00, 1.35kB/s]" | |
| } | |
| }, | |
| "838c1d60d9c14eeeb45583037b84a9d1": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "178bc63497a24bc3af1fdf55f4e5f0f8": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "64934b5766654c189e39884c851c3491": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "72183374829b4afd9abd81ff21f37921": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "0e3f8b5cccca49b7923b08dac539387b": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "41006dd29db146d68f58dff6fdb37653": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "4aea2067ceb945b6a530d7df9a7ee56d": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "02a91b54064e46ec9561e43199357050": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_b56ee4e2072c45528bb1c424b0f6a91a", | |
| "IPY_MODEL_d74c594f6b7e4a82b64563545bc43b7b", | |
| "IPY_MODEL_706a65555f87464fae449379e2eba63a" | |
| ], | |
| "layout": "IPY_MODEL_e046bd84698a4052b960f0302dc344a6" | |
| } | |
| }, | |
| "b56ee4e2072c45528bb1c424b0f6a91a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_3e911d25f0084840bf34c16e507a5669", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_5227dd9cdac44ac28840975ca7cfff76", | |
| "value": "Parsing nodes: 100%" | |
| } | |
| }, | |
| "d74c594f6b7e4a82b64563545bc43b7b": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_50379b38c0854a27b56b57516da4391e", | |
| "max": 30, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_b836ba160ee445689ac8468887b56e77", | |
| "value": 30 | |
| } | |
| }, | |
| "706a65555f87464fae449379e2eba63a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_4e790a80ba18450688e6d5d0bc147f5e", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_7287a4164cc84998810633b0ca0831fa", | |
| "value": " 30/30 [00:00<00:00, 270.43it/s]" | |
| } | |
| }, | |
| "e046bd84698a4052b960f0302dc344a6": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "3e911d25f0084840bf34c16e507a5669": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "5227dd9cdac44ac28840975ca7cfff76": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "50379b38c0854a27b56b57516da4391e": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "b836ba160ee445689ac8468887b56e77": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "4e790a80ba18450688e6d5d0bc147f5e": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "7287a4164cc84998810633b0ca0831fa": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "ccfc2f53400c44df9749adef6a18d6ee": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HBoxModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HBoxModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HBoxView", | |
| "box_style": "", | |
| "children": [ | |
| "IPY_MODEL_65113d4467084397a603b07ff97af07a", | |
| "IPY_MODEL_5348fb3e716d4486b4483ed486520bdc", | |
| "IPY_MODEL_984eda6157b94411b7739caab4559914" | |
| ], | |
| "layout": "IPY_MODEL_00f225f0f7fb48b0994306de100a5242" | |
| } | |
| }, | |
| "65113d4467084397a603b07ff97af07a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_6b126166974b4f98a8ac6e05434974ec", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_63669f65614b48a28d4ac17a62488b1a", | |
| "value": "Generating embeddings: 100%" | |
| } | |
| }, | |
| "5348fb3e716d4486b4483ed486520bdc": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "FloatProgressModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "FloatProgressModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "ProgressView", | |
| "bar_style": "success", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_df0bfe931b0443f5b2faccac1efa0d90", | |
| "max": 45, | |
| "min": 0, | |
| "orientation": "horizontal", | |
| "style": "IPY_MODEL_fff69a9f8dad4407ae74a0c30974efa2", | |
| "value": 45 | |
| } | |
| }, | |
| "984eda6157b94411b7739caab4559914": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "HTMLModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_dom_classes": [], | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "HTMLModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/controls", | |
| "_view_module_version": "1.5.0", | |
| "_view_name": "HTMLView", | |
| "description": "", | |
| "description_tooltip": null, | |
| "layout": "IPY_MODEL_5e81bab7a42145b7a488d93f21101d92", | |
| "placeholder": "", | |
| "style": "IPY_MODEL_2b54914356c04003a7169cab32d8af05", | |
| "value": " 45/45 [00:06<00:00, 7.28it/s]" | |
| } | |
| }, | |
| "00f225f0f7fb48b0994306de100a5242": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "6b126166974b4f98a8ac6e05434974ec": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "63669f65614b48a28d4ac17a62488b1a": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| }, | |
| "df0bfe931b0443f5b2faccac1efa0d90": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "fff69a9f8dad4407ae74a0c30974efa2": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "ProgressStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "ProgressStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "bar_color": null, | |
| "description_width": "" | |
| } | |
| }, | |
| "5e81bab7a42145b7a488d93f21101d92": { | |
| "model_module": "@jupyter-widgets/base", | |
| "model_name": "LayoutModel", | |
| "model_module_version": "1.2.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/base", | |
| "_model_module_version": "1.2.0", | |
| "_model_name": "LayoutModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "LayoutView", | |
| "align_content": null, | |
| "align_items": null, | |
| "align_self": null, | |
| "border": null, | |
| "bottom": null, | |
| "display": null, | |
| "flex": null, | |
| "flex_flow": null, | |
| "grid_area": null, | |
| "grid_auto_columns": null, | |
| "grid_auto_flow": null, | |
| "grid_auto_rows": null, | |
| "grid_column": null, | |
| "grid_gap": null, | |
| "grid_row": null, | |
| "grid_template_areas": null, | |
| "grid_template_columns": null, | |
| "grid_template_rows": null, | |
| "height": null, | |
| "justify_content": null, | |
| "justify_items": null, | |
| "left": null, | |
| "margin": null, | |
| "max_height": null, | |
| "max_width": null, | |
| "min_height": null, | |
| "min_width": null, | |
| "object_fit": null, | |
| "object_position": null, | |
| "order": null, | |
| "overflow": null, | |
| "overflow_x": null, | |
| "overflow_y": null, | |
| "padding": null, | |
| "right": null, | |
| "top": null, | |
| "visibility": null, | |
| "width": null | |
| } | |
| }, | |
| "2b54914356c04003a7169cab32d8af05": { | |
| "model_module": "@jupyter-widgets/controls", | |
| "model_name": "DescriptionStyleModel", | |
| "model_module_version": "1.5.0", | |
| "state": { | |
| "_model_module": "@jupyter-widgets/controls", | |
| "_model_module_version": "1.5.0", | |
| "_model_name": "DescriptionStyleModel", | |
| "_view_count": null, | |
| "_view_module": "@jupyter-widgets/base", | |
| "_view_module_version": "1.2.0", | |
| "_view_name": "StyleView", | |
| "description_width": "" | |
| } | |
| } | |
| } | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# Earnings Announcements Due Diligence with FMP, Groq, Llama 3.1, and LlamaIndex\n", | |
| "\n", | |
| "\n", | |
| "\n", | |
| "<p align=\"center\">\n", | |
| " <img src=\"https://entreprenerdly.com/wp-content/uploads/2024/03/logo-com.png\" height=120>\n", | |
| "</p>" | |
| ], | |
| "metadata": { | |
| "id": "T-VU8M45XrQM" | |
| } | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "## Install and Load Libraries" | |
| ], | |
| "metadata": { | |
| "id": "xFnKoSD3Pwd1" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "id": "pSw4bC_b9KOW", | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "%%capture\n", | |
| "%pip install llama-index==0.10.18 llama-index-llms-groq==0.1.3 groq==0.4.2 llama-index-embeddings-huggingface==0.2.0" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "!pip install python-docx pypandoc\n", | |
| "!which pandoc\n", | |
| "!apt-get install pandoc\n", | |
| "!apt-get install texlive texlive-xetex texlive-latex-extra" | |
| ], | |
| "metadata": { | |
| "id": "wL2AHjUaPuLX", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "collapsed": true, | |
| "outputId": "4f311811-3b63-4d3c-c0df-465d592c6a7b" | |
| }, | |
| "execution_count": 5, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "Collecting python-docx\n", | |
| " Downloading python_docx-1.1.2-py3-none-any.whl.metadata (2.0 kB)\n", | |
| "Collecting pypandoc\n", | |
| " Downloading pypandoc-1.13-py3-none-any.whl.metadata (16 kB)\n", | |
| "Requirement already satisfied: lxml>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from python-docx) (4.9.4)\n", | |
| "Requirement already satisfied: typing-extensions>=4.9.0 in /usr/local/lib/python3.10/dist-packages (from python-docx) (4.12.2)\n", | |
| "Downloading python_docx-1.1.2-py3-none-any.whl (244 kB)\n", | |
| "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m244.3/244.3 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
| "\u001b[?25hDownloading pypandoc-1.13-py3-none-any.whl (21 kB)\n", | |
| "Installing collected packages: python-docx, pypandoc\n", | |
| "Successfully installed pypandoc-1.13 python-docx-1.1.2\n", | |
| "Reading package lists... Done\n", | |
| "Building dependency tree... Done\n", | |
| "Reading state information... Done\n", | |
| "The following additional packages will be installed:\n", | |
| " libcmark-gfm-extensions0.29.0.gfm.3 libcmark-gfm0.29.0.gfm.3 pandoc-data\n", | |
| "Suggested packages:\n", | |
| " texlive-latex-recommended texlive-xetex texlive-luatex pandoc-citeproc texlive-latex-extra\n", | |
| " context wkhtmltopdf librsvg2-bin groff ghc nodejs php python ruby libjs-mathjax libjs-katex\n", | |
| " citation-style-language-styles\n", | |
| "The following NEW packages will be installed:\n", | |
| " libcmark-gfm-extensions0.29.0.gfm.3 libcmark-gfm0.29.0.gfm.3 pandoc pandoc-data\n", | |
| "0 upgraded, 4 newly installed, 0 to remove and 49 not upgraded.\n", | |
| "Need to get 20.6 MB of archives.\n", | |
| "After this operation, 156 MB of additional disk space will be used.\n", | |
| "Get:1 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libcmark-gfm0.29.0.gfm.3 amd64 0.29.0.gfm.3-3 [115 kB]\n", | |
| "Get:2 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libcmark-gfm-extensions0.29.0.gfm.3 amd64 0.29.0.gfm.3-3 [25.1 kB]\n", | |
| "Get:3 http://archive.ubuntu.com/ubuntu jammy/universe amd64 pandoc-data all 2.9.2.1-3ubuntu2 [81.8 kB]\n", | |
| "Get:4 http://archive.ubuntu.com/ubuntu jammy/universe amd64 pandoc amd64 2.9.2.1-3ubuntu2 [20.3 MB]\n", | |
| "Fetched 20.6 MB in 1s (29.6 MB/s)\n", | |
| "Selecting previously unselected package libcmark-gfm0.29.0.gfm.3:amd64.\n", | |
| "(Reading database ... 123597 files and directories currently installed.)\n", | |
| "Preparing to unpack .../libcmark-gfm0.29.0.gfm.3_0.29.0.gfm.3-3_amd64.deb ...\n", | |
| "Unpacking libcmark-gfm0.29.0.gfm.3:amd64 (0.29.0.gfm.3-3) ...\n", | |
| "Selecting previously unselected package libcmark-gfm-extensions0.29.0.gfm.3:amd64.\n", | |
| "Preparing to unpack .../libcmark-gfm-extensions0.29.0.gfm.3_0.29.0.gfm.3-3_amd64.deb ...\n", | |
| "Unpacking libcmark-gfm-extensions0.29.0.gfm.3:amd64 (0.29.0.gfm.3-3) ...\n", | |
| "Selecting previously unselected package pandoc-data.\n", | |
| "Preparing to unpack .../pandoc-data_2.9.2.1-3ubuntu2_all.deb ...\n", | |
| "Unpacking pandoc-data (2.9.2.1-3ubuntu2) ...\n", | |
| "Selecting previously unselected package pandoc.\n", | |
| "Preparing to unpack .../pandoc_2.9.2.1-3ubuntu2_amd64.deb ...\n", | |
| "Unpacking pandoc (2.9.2.1-3ubuntu2) ...\n", | |
| "Setting up libcmark-gfm0.29.0.gfm.3:amd64 (0.29.0.gfm.3-3) ...\n", | |
| "Setting up libcmark-gfm-extensions0.29.0.gfm.3:amd64 (0.29.0.gfm.3-3) ...\n", | |
| "Setting up pandoc-data (2.9.2.1-3ubuntu2) ...\n", | |
| "Setting up pandoc (2.9.2.1-3ubuntu2) ...\n", | |
| "Processing triggers for man-db (2.10.2-1) ...\n", | |
| "Processing triggers for libc-bin (2.35-0ubuntu3.4) ...\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_loader.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc_proxy.so.2 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind.so.3 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_0.so.3 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_adapter_level_zero.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc.so.2 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbb.so.12 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_adapter_opencl.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_5.so.3 is not a symbolic link\n", | |
| "\n", | |
| "Reading package lists... Done\n", | |
| "Building dependency tree... Done\n", | |
| "Reading state information... Done\n", | |
| "The following additional packages will be installed:\n", | |
| " dvisvgm fonts-droid-fallback fonts-lato fonts-lmodern fonts-noto-mono fonts-texgyre\n", | |
| " fonts-urw-base35 libapache-pom-java libcommons-logging-java libcommons-parent-java\n", | |
| " libfontbox-java libfontenc1 libgs9 libgs9-common libidn12 libijs-0.35 libjbig2dec0 libkpathsea6\n", | |
| " libpdfbox-java libptexenc1 libruby3.0 libsynctex2 libteckit0 libtexlua53 libtexluajit2 libwoff1\n", | |
| " libzzip-0-13 lmodern poppler-data preview-latex-style rake ruby ruby-net-telnet ruby-rubygems\n", | |
| " ruby-webrick ruby-xmlrpc ruby3.0 rubygems-integration t1utils teckit tex-common tex-gyre\n", | |
| " texlive-base texlive-binaries texlive-fonts-recommended texlive-latex-base\n", | |
| " texlive-latex-recommended texlive-pictures texlive-plain-generic tipa xfonts-encodings\n", | |
| " xfonts-utils\n", | |
| "Suggested packages:\n", | |
| " fonts-noto fonts-freefont-otf | fonts-freefont-ttf libavalon-framework-java\n", | |
| " libcommons-logging-java-doc libexcalibur-logkit-java liblog4j1.2-java poppler-utils ghostscript\n", | |
| " fonts-japanese-mincho | fonts-ipafont-mincho fonts-japanese-gothic | fonts-ipafont-gothic\n", | |
| " fonts-arphic-ukai fonts-arphic-uming fonts-nanum ri ruby-dev bundler debhelper gv\n", | |
| " | postscript-viewer perl-tk xpdf | pdf-viewer xzdec texlive-fonts-recommended-doc\n", | |
| " texlive-latex-base-doc python3-pygments icc-profiles libfile-which-perl\n", | |
| " libspreadsheet-parseexcel-perl texlive-latex-extra-doc texlive-latex-recommended-doc\n", | |
| " texlive-luatex texlive-pstricks dot2tex prerex texlive-pictures-doc vprerex default-jre-headless\n", | |
| " tipa-doc\n", | |
| "The following NEW packages will be installed:\n", | |
| " dvisvgm fonts-droid-fallback fonts-lato fonts-lmodern fonts-noto-mono fonts-texgyre\n", | |
| " fonts-urw-base35 libapache-pom-java libcommons-logging-java libcommons-parent-java\n", | |
| " libfontbox-java libfontenc1 libgs9 libgs9-common libidn12 libijs-0.35 libjbig2dec0 libkpathsea6\n", | |
| " libpdfbox-java libptexenc1 libruby3.0 libsynctex2 libteckit0 libtexlua53 libtexluajit2 libwoff1\n", | |
| " libzzip-0-13 lmodern poppler-data preview-latex-style rake ruby ruby-net-telnet ruby-rubygems\n", | |
| " ruby-webrick ruby-xmlrpc ruby3.0 rubygems-integration t1utils teckit tex-common tex-gyre texlive\n", | |
| " texlive-base texlive-binaries texlive-fonts-recommended texlive-latex-base texlive-latex-extra\n", | |
| " texlive-latex-recommended texlive-pictures texlive-plain-generic texlive-xetex tipa\n", | |
| " xfonts-encodings xfonts-utils\n", | |
| "0 upgraded, 55 newly installed, 0 to remove and 49 not upgraded.\n", | |
| "Need to get 182 MB of archives.\n", | |
| "After this operation, 572 MB of additional disk space will be used.\n", | |
| "Get:1 http://archive.ubuntu.com/ubuntu jammy/main amd64 fonts-droid-fallback all 1:6.0.1r16-1.1build1 [1,805 kB]\n", | |
| "Get:2 http://archive.ubuntu.com/ubuntu jammy/main amd64 fonts-lato all 2.0-2.1 [2,696 kB]\n", | |
| "Get:3 http://archive.ubuntu.com/ubuntu jammy/main amd64 poppler-data all 0.4.11-1 [2,171 kB]\n", | |
| "Get:4 http://archive.ubuntu.com/ubuntu jammy/universe amd64 tex-common all 6.17 [33.7 kB]\n", | |
| "Get:5 http://archive.ubuntu.com/ubuntu jammy/main amd64 fonts-urw-base35 all 20200910-1 [6,367 kB]\n", | |
| "Get:6 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libgs9-common all 9.55.0~dfsg1-0ubuntu5.9 [752 kB]\n", | |
| "Get:7 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libidn12 amd64 1.38-4ubuntu1 [60.0 kB]\n", | |
| "Get:8 http://archive.ubuntu.com/ubuntu jammy/main amd64 libijs-0.35 amd64 0.35-15build2 [16.5 kB]\n", | |
| "Get:9 http://archive.ubuntu.com/ubuntu jammy/main amd64 libjbig2dec0 amd64 0.19-3build2 [64.7 kB]\n", | |
| "Get:10 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libgs9 amd64 9.55.0~dfsg1-0ubuntu5.9 [5,033 kB]\n", | |
| "Get:11 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libkpathsea6 amd64 2021.20210626.59705-1ubuntu0.2 [60.4 kB]\n", | |
| "Get:12 http://archive.ubuntu.com/ubuntu jammy/main amd64 libwoff1 amd64 1.0.2-1build4 [45.2 kB]\n", | |
| "Get:13 http://archive.ubuntu.com/ubuntu jammy/universe amd64 dvisvgm amd64 2.13.1-1 [1,221 kB]\n", | |
| "Get:14 http://archive.ubuntu.com/ubuntu jammy/universe amd64 fonts-lmodern all 2.004.5-6.1 [4,532 kB]\n", | |
| "Get:15 http://archive.ubuntu.com/ubuntu jammy/main amd64 fonts-noto-mono all 20201225-1build1 [397 kB]\n", | |
| "Get:16 http://archive.ubuntu.com/ubuntu jammy/universe amd64 fonts-texgyre all 20180621-3.1 [10.2 MB]\n", | |
| "Get:17 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libapache-pom-java all 18-1 [4,720 B]\n", | |
| "Get:18 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libcommons-parent-java all 43-1 [10.8 kB]\n", | |
| "Get:19 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libcommons-logging-java all 1.2-2 [60.3 kB]\n", | |
| "Get:20 http://archive.ubuntu.com/ubuntu jammy/main amd64 libfontenc1 amd64 1:1.1.4-1build3 [14.7 kB]\n", | |
| "Get:21 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libptexenc1 amd64 2021.20210626.59705-1ubuntu0.2 [39.1 kB]\n", | |
| "Get:22 http://archive.ubuntu.com/ubuntu jammy/main amd64 rubygems-integration all 1.18 [5,336 B]\n", | |
| "Get:23 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 ruby3.0 amd64 3.0.2-7ubuntu2.7 [50.1 kB]\n", | |
| "Get:24 http://archive.ubuntu.com/ubuntu jammy/main amd64 ruby-rubygems all 3.3.5-2 [228 kB]\n", | |
| "Get:25 http://archive.ubuntu.com/ubuntu jammy/main amd64 ruby amd64 1:3.0~exp1 [5,100 B]\n", | |
| "Get:26 http://archive.ubuntu.com/ubuntu jammy/main amd64 rake all 13.0.6-2 [61.7 kB]\n", | |
| "Get:27 http://archive.ubuntu.com/ubuntu jammy/main amd64 ruby-net-telnet all 0.1.1-2 [12.6 kB]\n", | |
| "Get:28 http://archive.ubuntu.com/ubuntu jammy/universe amd64 ruby-webrick all 1.7.0-3 [51.8 kB]\n", | |
| "Get:29 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 ruby-xmlrpc all 0.3.2-1ubuntu0.1 [24.9 kB]\n", | |
| "Get:30 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libruby3.0 amd64 3.0.2-7ubuntu2.7 [5,113 kB]\n", | |
| "Get:31 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libsynctex2 amd64 2021.20210626.59705-1ubuntu0.2 [55.6 kB]\n", | |
| "Get:32 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libteckit0 amd64 2.5.11+ds1-1 [421 kB]\n", | |
| "Get:33 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libtexlua53 amd64 2021.20210626.59705-1ubuntu0.2 [120 kB]\n", | |
| "Get:34 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libtexluajit2 amd64 2021.20210626.59705-1ubuntu0.2 [267 kB]\n", | |
| "Get:35 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libzzip-0-13 amd64 0.13.72+dfsg.1-1.1 [27.0 kB]\n", | |
| "Get:36 http://archive.ubuntu.com/ubuntu jammy/main amd64 xfonts-encodings all 1:1.0.5-0ubuntu2 [578 kB]\n", | |
| "Get:37 http://archive.ubuntu.com/ubuntu jammy/main amd64 xfonts-utils amd64 1:7.7+6build2 [94.6 kB]\n", | |
| "Get:38 http://archive.ubuntu.com/ubuntu jammy/universe amd64 lmodern all 2.004.5-6.1 [9,471 kB]\n", | |
| "Get:39 http://archive.ubuntu.com/ubuntu jammy/universe amd64 preview-latex-style all 12.2-1ubuntu1 [185 kB]\n", | |
| "Get:40 http://archive.ubuntu.com/ubuntu jammy/main amd64 t1utils amd64 1.41-4build2 [61.3 kB]\n", | |
| "Get:41 http://archive.ubuntu.com/ubuntu jammy/universe amd64 teckit amd64 2.5.11+ds1-1 [699 kB]\n", | |
| "Get:42 http://archive.ubuntu.com/ubuntu jammy/universe amd64 tex-gyre all 20180621-3.1 [6,209 kB]\n", | |
| "Get:43 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 texlive-binaries amd64 2021.20210626.59705-1ubuntu0.2 [9,860 kB]\n", | |
| "Get:44 http://archive.ubuntu.com/ubuntu jammy/universe amd64 texlive-base all 2021.20220204-1 [21.0 MB]\n", | |
| "Get:45 http://archive.ubuntu.com/ubuntu jammy/universe amd64 texlive-fonts-recommended all 2021.20220204-1 [4,972 kB]\n", | |
| "Get:46 http://archive.ubuntu.com/ubuntu jammy/universe amd64 texlive-latex-base all 2021.20220204-1 [1,128 kB]\n", | |
| "Get:47 http://archive.ubuntu.com/ubuntu jammy/universe amd64 texlive-latex-recommended all 2021.20220204-1 [14.4 MB]\n", | |
| "Get:48 http://archive.ubuntu.com/ubuntu jammy/universe amd64 texlive all 2021.20220204-1 [14.3 kB]\n", | |
| "Get:49 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libfontbox-java all 1:1.8.16-2 [207 kB]\n", | |
| "Get:50 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libpdfbox-java all 1:1.8.16-2 [5,199 kB]\n", | |
| "Get:51 http://archive.ubuntu.com/ubuntu jammy/universe amd64 texlive-pictures all 2021.20220204-1 [8,720 kB]\n", | |
| "Get:52 http://archive.ubuntu.com/ubuntu jammy/universe amd64 texlive-latex-extra all 2021.20220204-1 [13.9 MB]\n", | |
| "Get:53 http://archive.ubuntu.com/ubuntu jammy/universe amd64 texlive-plain-generic all 2021.20220204-1 [27.5 MB]\n", | |
| "Get:54 http://archive.ubuntu.com/ubuntu jammy/universe amd64 tipa all 2:1.3-21 [2,967 kB]\n", | |
| "Get:55 http://archive.ubuntu.com/ubuntu jammy/universe amd64 texlive-xetex all 2021.20220204-1 [12.4 MB]\n", | |
| "Fetched 182 MB in 4s (45.7 MB/s)\n", | |
| "Extracting templates from packages: 100%\n", | |
| "Preconfiguring packages ...\n", | |
| "Selecting previously unselected package fonts-droid-fallback.\n", | |
| "(Reading database ... 123822 files and directories currently installed.)\n", | |
| "Preparing to unpack .../00-fonts-droid-fallback_1%3a6.0.1r16-1.1build1_all.deb ...\n", | |
| "Unpacking fonts-droid-fallback (1:6.0.1r16-1.1build1) ...\n", | |
| "Selecting previously unselected package fonts-lato.\n", | |
| "Preparing to unpack .../01-fonts-lato_2.0-2.1_all.deb ...\n", | |
| "Unpacking fonts-lato (2.0-2.1) ...\n", | |
| "Selecting previously unselected package poppler-data.\n", | |
| "Preparing to unpack .../02-poppler-data_0.4.11-1_all.deb ...\n", | |
| "Unpacking poppler-data (0.4.11-1) ...\n", | |
| "Selecting previously unselected package tex-common.\n", | |
| "Preparing to unpack .../03-tex-common_6.17_all.deb ...\n", | |
| "Unpacking tex-common (6.17) ...\n", | |
| "Selecting previously unselected package fonts-urw-base35.\n", | |
| "Preparing to unpack .../04-fonts-urw-base35_20200910-1_all.deb ...\n", | |
| "Unpacking fonts-urw-base35 (20200910-1) ...\n", | |
| "Selecting previously unselected package libgs9-common.\n", | |
| "Preparing to unpack .../05-libgs9-common_9.55.0~dfsg1-0ubuntu5.9_all.deb ...\n", | |
| "Unpacking libgs9-common (9.55.0~dfsg1-0ubuntu5.9) ...\n", | |
| "Selecting previously unselected package libidn12:amd64.\n", | |
| "Preparing to unpack .../06-libidn12_1.38-4ubuntu1_amd64.deb ...\n", | |
| "Unpacking libidn12:amd64 (1.38-4ubuntu1) ...\n", | |
| "Selecting previously unselected package libijs-0.35:amd64.\n", | |
| "Preparing to unpack .../07-libijs-0.35_0.35-15build2_amd64.deb ...\n", | |
| "Unpacking libijs-0.35:amd64 (0.35-15build2) ...\n", | |
| "Selecting previously unselected package libjbig2dec0:amd64.\n", | |
| "Preparing to unpack .../08-libjbig2dec0_0.19-3build2_amd64.deb ...\n", | |
| "Unpacking libjbig2dec0:amd64 (0.19-3build2) ...\n", | |
| "Selecting previously unselected package libgs9:amd64.\n", | |
| "Preparing to unpack .../09-libgs9_9.55.0~dfsg1-0ubuntu5.9_amd64.deb ...\n", | |
| "Unpacking libgs9:amd64 (9.55.0~dfsg1-0ubuntu5.9) ...\n", | |
| "Selecting previously unselected package libkpathsea6:amd64.\n", | |
| "Preparing to unpack .../10-libkpathsea6_2021.20210626.59705-1ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libkpathsea6:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libwoff1:amd64.\n", | |
| "Preparing to unpack .../11-libwoff1_1.0.2-1build4_amd64.deb ...\n", | |
| "Unpacking libwoff1:amd64 (1.0.2-1build4) ...\n", | |
| "Selecting previously unselected package dvisvgm.\n", | |
| "Preparing to unpack .../12-dvisvgm_2.13.1-1_amd64.deb ...\n", | |
| "Unpacking dvisvgm (2.13.1-1) ...\n", | |
| "Selecting previously unselected package fonts-lmodern.\n", | |
| "Preparing to unpack .../13-fonts-lmodern_2.004.5-6.1_all.deb ...\n", | |
| "Unpacking fonts-lmodern (2.004.5-6.1) ...\n", | |
| "Selecting previously unselected package fonts-noto-mono.\n", | |
| "Preparing to unpack .../14-fonts-noto-mono_20201225-1build1_all.deb ...\n", | |
| "Unpacking fonts-noto-mono (20201225-1build1) ...\n", | |
| "Selecting previously unselected package fonts-texgyre.\n", | |
| "Preparing to unpack .../15-fonts-texgyre_20180621-3.1_all.deb ...\n", | |
| "Unpacking fonts-texgyre (20180621-3.1) ...\n", | |
| "Selecting previously unselected package libapache-pom-java.\n", | |
| "Preparing to unpack .../16-libapache-pom-java_18-1_all.deb ...\n", | |
| "Unpacking libapache-pom-java (18-1) ...\n", | |
| "Selecting previously unselected package libcommons-parent-java.\n", | |
| "Preparing to unpack .../17-libcommons-parent-java_43-1_all.deb ...\n", | |
| "Unpacking libcommons-parent-java (43-1) ...\n", | |
| "Selecting previously unselected package libcommons-logging-java.\n", | |
| "Preparing to unpack .../18-libcommons-logging-java_1.2-2_all.deb ...\n", | |
| "Unpacking libcommons-logging-java (1.2-2) ...\n", | |
| "Selecting previously unselected package libfontenc1:amd64.\n", | |
| "Preparing to unpack .../19-libfontenc1_1%3a1.1.4-1build3_amd64.deb ...\n", | |
| "Unpacking libfontenc1:amd64 (1:1.1.4-1build3) ...\n", | |
| "Selecting previously unselected package libptexenc1:amd64.\n", | |
| "Preparing to unpack .../20-libptexenc1_2021.20210626.59705-1ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libptexenc1:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Selecting previously unselected package rubygems-integration.\n", | |
| "Preparing to unpack .../21-rubygems-integration_1.18_all.deb ...\n", | |
| "Unpacking rubygems-integration (1.18) ...\n", | |
| "Selecting previously unselected package ruby3.0.\n", | |
| "Preparing to unpack .../22-ruby3.0_3.0.2-7ubuntu2.7_amd64.deb ...\n", | |
| "Unpacking ruby3.0 (3.0.2-7ubuntu2.7) ...\n", | |
| "Selecting previously unselected package ruby-rubygems.\n", | |
| "Preparing to unpack .../23-ruby-rubygems_3.3.5-2_all.deb ...\n", | |
| "Unpacking ruby-rubygems (3.3.5-2) ...\n", | |
| "Selecting previously unselected package ruby.\n", | |
| "Preparing to unpack .../24-ruby_1%3a3.0~exp1_amd64.deb ...\n", | |
| "Unpacking ruby (1:3.0~exp1) ...\n", | |
| "Selecting previously unselected package rake.\n", | |
| "Preparing to unpack .../25-rake_13.0.6-2_all.deb ...\n", | |
| "Unpacking rake (13.0.6-2) ...\n", | |
| "Selecting previously unselected package ruby-net-telnet.\n", | |
| "Preparing to unpack .../26-ruby-net-telnet_0.1.1-2_all.deb ...\n", | |
| "Unpacking ruby-net-telnet (0.1.1-2) ...\n", | |
| "Selecting previously unselected package ruby-webrick.\n", | |
| "Preparing to unpack .../27-ruby-webrick_1.7.0-3_all.deb ...\n", | |
| "Unpacking ruby-webrick (1.7.0-3) ...\n", | |
| "Selecting previously unselected package ruby-xmlrpc.\n", | |
| "Preparing to unpack .../28-ruby-xmlrpc_0.3.2-1ubuntu0.1_all.deb ...\n", | |
| "Unpacking ruby-xmlrpc (0.3.2-1ubuntu0.1) ...\n", | |
| "Selecting previously unselected package libruby3.0:amd64.\n", | |
| "Preparing to unpack .../29-libruby3.0_3.0.2-7ubuntu2.7_amd64.deb ...\n", | |
| "Unpacking libruby3.0:amd64 (3.0.2-7ubuntu2.7) ...\n", | |
| "Selecting previously unselected package libsynctex2:amd64.\n", | |
| "Preparing to unpack .../30-libsynctex2_2021.20210626.59705-1ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libsynctex2:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libteckit0:amd64.\n", | |
| "Preparing to unpack .../31-libteckit0_2.5.11+ds1-1_amd64.deb ...\n", | |
| "Unpacking libteckit0:amd64 (2.5.11+ds1-1) ...\n", | |
| "Selecting previously unselected package libtexlua53:amd64.\n", | |
| "Preparing to unpack .../32-libtexlua53_2021.20210626.59705-1ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libtexlua53:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libtexluajit2:amd64.\n", | |
| "Preparing to unpack .../33-libtexluajit2_2021.20210626.59705-1ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libtexluajit2:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libzzip-0-13:amd64.\n", | |
| "Preparing to unpack .../34-libzzip-0-13_0.13.72+dfsg.1-1.1_amd64.deb ...\n", | |
| "Unpacking libzzip-0-13:amd64 (0.13.72+dfsg.1-1.1) ...\n", | |
| "Selecting previously unselected package xfonts-encodings.\n", | |
| "Preparing to unpack .../35-xfonts-encodings_1%3a1.0.5-0ubuntu2_all.deb ...\n", | |
| "Unpacking xfonts-encodings (1:1.0.5-0ubuntu2) ...\n", | |
| "Selecting previously unselected package xfonts-utils.\n", | |
| "Preparing to unpack .../36-xfonts-utils_1%3a7.7+6build2_amd64.deb ...\n", | |
| "Unpacking xfonts-utils (1:7.7+6build2) ...\n", | |
| "Selecting previously unselected package lmodern.\n", | |
| "Preparing to unpack .../37-lmodern_2.004.5-6.1_all.deb ...\n", | |
| "Unpacking lmodern (2.004.5-6.1) ...\n", | |
| "Selecting previously unselected package preview-latex-style.\n", | |
| "Preparing to unpack .../38-preview-latex-style_12.2-1ubuntu1_all.deb ...\n", | |
| "Unpacking preview-latex-style (12.2-1ubuntu1) ...\n", | |
| "Selecting previously unselected package t1utils.\n", | |
| "Preparing to unpack .../39-t1utils_1.41-4build2_amd64.deb ...\n", | |
| "Unpacking t1utils (1.41-4build2) ...\n", | |
| "Selecting previously unselected package teckit.\n", | |
| "Preparing to unpack .../40-teckit_2.5.11+ds1-1_amd64.deb ...\n", | |
| "Unpacking teckit (2.5.11+ds1-1) ...\n", | |
| "Selecting previously unselected package tex-gyre.\n", | |
| "Preparing to unpack .../41-tex-gyre_20180621-3.1_all.deb ...\n", | |
| "Unpacking tex-gyre (20180621-3.1) ...\n", | |
| "Selecting previously unselected package texlive-binaries.\n", | |
| "Preparing to unpack .../42-texlive-binaries_2021.20210626.59705-1ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking texlive-binaries (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Selecting previously unselected package texlive-base.\n", | |
| "Preparing to unpack .../43-texlive-base_2021.20220204-1_all.deb ...\n", | |
| "Unpacking texlive-base (2021.20220204-1) ...\n", | |
| "Selecting previously unselected package texlive-fonts-recommended.\n", | |
| "Preparing to unpack .../44-texlive-fonts-recommended_2021.20220204-1_all.deb ...\n", | |
| "Unpacking texlive-fonts-recommended (2021.20220204-1) ...\n", | |
| "Selecting previously unselected package texlive-latex-base.\n", | |
| "Preparing to unpack .../45-texlive-latex-base_2021.20220204-1_all.deb ...\n", | |
| "Unpacking texlive-latex-base (2021.20220204-1) ...\n", | |
| "Selecting previously unselected package texlive-latex-recommended.\n", | |
| "Preparing to unpack .../46-texlive-latex-recommended_2021.20220204-1_all.deb ...\n", | |
| "Unpacking texlive-latex-recommended (2021.20220204-1) ...\n", | |
| "Selecting previously unselected package texlive.\n", | |
| "Preparing to unpack .../47-texlive_2021.20220204-1_all.deb ...\n", | |
| "Unpacking texlive (2021.20220204-1) ...\n", | |
| "Selecting previously unselected package libfontbox-java.\n", | |
| "Preparing to unpack .../48-libfontbox-java_1%3a1.8.16-2_all.deb ...\n", | |
| "Unpacking libfontbox-java (1:1.8.16-2) ...\n", | |
| "Selecting previously unselected package libpdfbox-java.\n", | |
| "Preparing to unpack .../49-libpdfbox-java_1%3a1.8.16-2_all.deb ...\n", | |
| "Unpacking libpdfbox-java (1:1.8.16-2) ...\n", | |
| "Selecting previously unselected package texlive-pictures.\n", | |
| "Preparing to unpack .../50-texlive-pictures_2021.20220204-1_all.deb ...\n", | |
| "Unpacking texlive-pictures (2021.20220204-1) ...\n", | |
| "Selecting previously unselected package texlive-latex-extra.\n", | |
| "Preparing to unpack .../51-texlive-latex-extra_2021.20220204-1_all.deb ...\n", | |
| "Unpacking texlive-latex-extra (2021.20220204-1) ...\n", | |
| "Selecting previously unselected package texlive-plain-generic.\n", | |
| "Preparing to unpack .../52-texlive-plain-generic_2021.20220204-1_all.deb ...\n", | |
| "Unpacking texlive-plain-generic (2021.20220204-1) ...\n", | |
| "Selecting previously unselected package tipa.\n", | |
| "Preparing to unpack .../53-tipa_2%3a1.3-21_all.deb ...\n", | |
| "Unpacking tipa (2:1.3-21) ...\n", | |
| "Selecting previously unselected package texlive-xetex.\n", | |
| "Preparing to unpack .../54-texlive-xetex_2021.20220204-1_all.deb ...\n", | |
| "Unpacking texlive-xetex (2021.20220204-1) ...\n", | |
| "Setting up fonts-lato (2.0-2.1) ...\n", | |
| "Setting up fonts-noto-mono (20201225-1build1) ...\n", | |
| "Setting up libwoff1:amd64 (1.0.2-1build4) ...\n", | |
| "Setting up libtexlua53:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Setting up libijs-0.35:amd64 (0.35-15build2) ...\n", | |
| "Setting up libtexluajit2:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Setting up libfontbox-java (1:1.8.16-2) ...\n", | |
| "Setting up rubygems-integration (1.18) ...\n", | |
| "Setting up libzzip-0-13:amd64 (0.13.72+dfsg.1-1.1) ...\n", | |
| "Setting up fonts-urw-base35 (20200910-1) ...\n", | |
| "Setting up poppler-data (0.4.11-1) ...\n", | |
| "Setting up tex-common (6.17) ...\n", | |
| "update-language: texlive-base not installed and configured, doing nothing!\n", | |
| "Setting up libfontenc1:amd64 (1:1.1.4-1build3) ...\n", | |
| "Setting up libjbig2dec0:amd64 (0.19-3build2) ...\n", | |
| "Setting up libteckit0:amd64 (2.5.11+ds1-1) ...\n", | |
| "Setting up libapache-pom-java (18-1) ...\n", | |
| "Setting up ruby-net-telnet (0.1.1-2) ...\n", | |
| "Setting up xfonts-encodings (1:1.0.5-0ubuntu2) ...\n", | |
| "Setting up t1utils (1.41-4build2) ...\n", | |
| "Setting up libidn12:amd64 (1.38-4ubuntu1) ...\n", | |
| "Setting up fonts-texgyre (20180621-3.1) ...\n", | |
| "Setting up libkpathsea6:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Setting up ruby-webrick (1.7.0-3) ...\n", | |
| "Setting up fonts-lmodern (2.004.5-6.1) ...\n", | |
| "Setting up fonts-droid-fallback (1:6.0.1r16-1.1build1) ...\n", | |
| "Setting up ruby-xmlrpc (0.3.2-1ubuntu0.1) ...\n", | |
| "Setting up libsynctex2:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Setting up libgs9-common (9.55.0~dfsg1-0ubuntu5.9) ...\n", | |
| "Setting up teckit (2.5.11+ds1-1) ...\n", | |
| "Setting up libpdfbox-java (1:1.8.16-2) ...\n", | |
| "Setting up libgs9:amd64 (9.55.0~dfsg1-0ubuntu5.9) ...\n", | |
| "Setting up preview-latex-style (12.2-1ubuntu1) ...\n", | |
| "Setting up libcommons-parent-java (43-1) ...\n", | |
| "Setting up dvisvgm (2.13.1-1) ...\n", | |
| "Setting up libcommons-logging-java (1.2-2) ...\n", | |
| "Setting up xfonts-utils (1:7.7+6build2) ...\n", | |
| "Setting up libptexenc1:amd64 (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "Setting up texlive-binaries (2021.20210626.59705-1ubuntu0.2) ...\n", | |
| "update-alternatives: using /usr/bin/xdvi-xaw to provide /usr/bin/xdvi.bin (xdvi.bin) in auto mode\n", | |
| "update-alternatives: using /usr/bin/bibtex.original to provide /usr/bin/bibtex (bibtex) in auto mode\n", | |
| "Setting up lmodern (2.004.5-6.1) ...\n", | |
| "Setting up texlive-base (2021.20220204-1) ...\n", | |
| "/usr/bin/ucfr\n", | |
| "/usr/bin/ucfr\n", | |
| "/usr/bin/ucfr\n", | |
| "/usr/bin/ucfr\n", | |
| "mktexlsr: Updating /var/lib/texmf/ls-R-TEXLIVEDIST... \n", | |
| "mktexlsr: Updating /var/lib/texmf/ls-R-TEXMFMAIN... \n", | |
| "mktexlsr: Updating /var/lib/texmf/ls-R... \n", | |
| "mktexlsr: Done.\n", | |
| "tl-paper: setting paper size for dvips to a4: /var/lib/texmf/dvips/config/config-paper.ps\n", | |
| "tl-paper: setting paper size for dvipdfmx to a4: /var/lib/texmf/dvipdfmx/dvipdfmx-paper.cfg\n", | |
| "tl-paper: setting paper size for xdvi to a4: /var/lib/texmf/xdvi/XDvi-paper\n", | |
| "tl-paper: setting paper size for pdftex to a4: /var/lib/texmf/tex/generic/tex-ini-files/pdftexconfig.tex\n", | |
| "Setting up tex-gyre (20180621-3.1) ...\n", | |
| "Setting up texlive-plain-generic (2021.20220204-1) ...\n", | |
| "Setting up texlive-latex-base (2021.20220204-1) ...\n", | |
| "Setting up texlive-latex-recommended (2021.20220204-1) ...\n", | |
| "Setting up texlive-pictures (2021.20220204-1) ...\n", | |
| "Setting up texlive-fonts-recommended (2021.20220204-1) ...\n", | |
| "Setting up tipa (2:1.3-21) ...\n", | |
| "Setting up texlive (2021.20220204-1) ...\n", | |
| "Setting up texlive-latex-extra (2021.20220204-1) ...\n", | |
| "Setting up texlive-xetex (2021.20220204-1) ...\n", | |
| "Setting up rake (13.0.6-2) ...\n", | |
| "Setting up libruby3.0:amd64 (3.0.2-7ubuntu2.7) ...\n", | |
| "Setting up ruby3.0 (3.0.2-7ubuntu2.7) ...\n", | |
| "Setting up ruby (1:3.0~exp1) ...\n", | |
| "Setting up ruby-rubygems (3.3.5-2) ...\n", | |
| "Processing triggers for man-db (2.10.2-1) ...\n", | |
| "Processing triggers for fontconfig (2.13.1-4.2ubuntu5) ...\n", | |
| "Processing triggers for libc-bin (2.35-0ubuntu3.4) ...\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_loader.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc_proxy.so.2 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind.so.3 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_0.so.3 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_adapter_level_zero.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc.so.2 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbb.so.12 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_adapter_opencl.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_5.so.3 is not a symbolic link\n", | |
| "\n", | |
| "Processing triggers for tex-common (6.17) ...\n", | |
| "Running updmap-sys. This may take some time... done.\n", | |
| "Running mktexlsr /var/lib/texmf ... done.\n", | |
| "Building format(s) --all.\n", | |
| "\tThis may take some time... done.\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "!pip install pdfkit\n", | |
| "!apt-get install wkhtmltopdf" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "collapsed": true, | |
| "id": "2Yn8VecpMD97", | |
| "outputId": "01cca57e-297a-4827-8dbe-6d8f4f5e599b" | |
| }, | |
| "execution_count": 7, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "Collecting pdfkit\n", | |
| " Downloading pdfkit-1.0.0-py3-none-any.whl.metadata (9.3 kB)\n", | |
| "Downloading pdfkit-1.0.0-py3-none-any.whl (12 kB)\n", | |
| "Installing collected packages: pdfkit\n", | |
| "Successfully installed pdfkit-1.0.0\n", | |
| "Reading package lists... Done\n", | |
| "Building dependency tree... Done\n", | |
| "Reading state information... Done\n", | |
| "The following additional packages will be installed:\n", | |
| " avahi-daemon bind9-host bind9-libs geoclue-2.0 glib-networking glib-networking-common\n", | |
| " glib-networking-services gsettings-desktop-schemas iio-sensor-proxy libavahi-core7 libavahi-glib1\n", | |
| " libdaemon0 libevdev2 libgudev-1.0-0 libhyphen0 libinput-bin libinput10 libjson-glib-1.0-0\n", | |
| " libjson-glib-1.0-common liblmdb0 libmaxminddb0 libmbim-glib4 libmbim-proxy libmd4c0 libmm-glib0\n", | |
| " libmtdev1 libnl-genl-3-200 libnotify4 libnss-mdns libproxy1v5 libqmi-glib5 libqmi-proxy\n", | |
| " libqt5core5a libqt5dbus5 libqt5gui5 libqt5network5 libqt5positioning5 libqt5printsupport5\n", | |
| " libqt5qml5 libqt5qmlmodels5 libqt5quick5 libqt5sensors5 libqt5svg5 libqt5webchannel5\n", | |
| " libqt5webkit5 libqt5widgets5 libsoup2.4-1 libsoup2.4-common libudev1 libwacom-bin libwacom-common\n", | |
| " libwacom9 libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-render-util0 libxcb-util1\n", | |
| " libxcb-xinerama0 libxcb-xinput0 libxcb-xkb1 libxfont2 libxkbcommon-x11-0 libxkbfile1 modemmanager\n", | |
| " qt5-gtk-platformtheme qttranslations5-l10n session-migration systemd-hwe-hwdb udev usb-modeswitch\n", | |
| " usb-modeswitch-data wpasupplicant x11-xkb-utils xfonts-base xnest xserver-common\n", | |
| "Suggested packages:\n", | |
| " avahi-autoipd mmdb-bin gnome-shell | notification-daemon avahi-autoipd | zeroconf\n", | |
| " qt5-image-formats-plugins qtwayland5 qt5-qmltooling-plugins comgt wvdial wpagui\n", | |
| " libengine-pkcs11-openssl\n", | |
| "The following NEW packages will be installed:\n", | |
| " avahi-daemon bind9-host bind9-libs geoclue-2.0 glib-networking glib-networking-common\n", | |
| " glib-networking-services gsettings-desktop-schemas iio-sensor-proxy libavahi-core7 libavahi-glib1\n", | |
| " libdaemon0 libevdev2 libgudev-1.0-0 libhyphen0 libinput-bin libinput10 libjson-glib-1.0-0\n", | |
| " libjson-glib-1.0-common liblmdb0 libmaxminddb0 libmbim-glib4 libmbim-proxy libmd4c0 libmm-glib0\n", | |
| " libmtdev1 libnl-genl-3-200 libnotify4 libnss-mdns libproxy1v5 libqmi-glib5 libqmi-proxy\n", | |
| " libqt5core5a libqt5dbus5 libqt5gui5 libqt5network5 libqt5positioning5 libqt5printsupport5\n", | |
| " libqt5qml5 libqt5qmlmodels5 libqt5quick5 libqt5sensors5 libqt5svg5 libqt5webchannel5\n", | |
| " libqt5webkit5 libqt5widgets5 libsoup2.4-1 libsoup2.4-common libwacom-bin libwacom-common\n", | |
| " libwacom9 libxcb-icccm4 libxcb-image0 libxcb-keysyms1 libxcb-render-util0 libxcb-util1\n", | |
| " libxcb-xinerama0 libxcb-xinput0 libxcb-xkb1 libxfont2 libxkbcommon-x11-0 libxkbfile1 modemmanager\n", | |
| " qt5-gtk-platformtheme qttranslations5-l10n session-migration systemd-hwe-hwdb udev usb-modeswitch\n", | |
| " usb-modeswitch-data wkhtmltopdf wpasupplicant x11-xkb-utils xfonts-base xnest xserver-common\n", | |
| "The following packages will be upgraded:\n", | |
| " libudev1\n", | |
| "1 upgraded, 76 newly installed, 0 to remove and 48 not upgraded.\n", | |
| "Need to get 43.8 MB of archives.\n", | |
| "After this operation, 155 MB of additional disk space will be used.\n", | |
| "Get:1 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libavahi-core7 amd64 0.8-5ubuntu5.2 [90.8 kB]\n", | |
| "Get:2 http://archive.ubuntu.com/ubuntu jammy/main amd64 libdaemon0 amd64 0.14-7.1ubuntu3 [14.1 kB]\n", | |
| "Get:3 http://archive.ubuntu.com/ubuntu jammy/main amd64 liblmdb0 amd64 0.9.24-1build2 [47.6 kB]\n", | |
| "Get:4 http://archive.ubuntu.com/ubuntu jammy/main amd64 libmaxminddb0 amd64 1.5.2-1build2 [24.7 kB]\n", | |
| "Get:5 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 bind9-libs amd64 1:9.18.28-0ubuntu0.22.04.1 [1,256 kB]\n", | |
| "Get:6 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 bind9-host amd64 1:9.18.28-0ubuntu0.22.04.1 [52.6 kB]\n", | |
| "Get:7 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 avahi-daemon amd64 0.8-5ubuntu5.2 [69.7 kB]\n", | |
| "Get:8 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 libqt5core5a amd64 5.15.3+dfsg-2ubuntu0.2 [2,006 kB]\n", | |
| "Get:9 http://archive.ubuntu.com/ubuntu jammy/main amd64 libevdev2 amd64 1.12.1+dfsg-1 [39.5 kB]\n", | |
| "Get:10 http://archive.ubuntu.com/ubuntu jammy/main amd64 libmtdev1 amd64 1.1.6-1build4 [14.5 kB]\n", | |
| "Get:11 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libudev1 amd64 249.11-0ubuntu3.12 [78.2 kB]\n", | |
| "Get:12 http://archive.ubuntu.com/ubuntu jammy/main amd64 libgudev-1.0-0 amd64 1:237-2build1 [16.3 kB]\n", | |
| "Get:13 http://archive.ubuntu.com/ubuntu jammy/main amd64 libwacom-common all 2.2.0-1 [54.3 kB]\n", | |
| "Get:14 http://archive.ubuntu.com/ubuntu jammy/main amd64 libwacom9 amd64 2.2.0-1 [22.0 kB]\n", | |
| "Get:15 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libinput-bin amd64 1.20.0-1ubuntu0.3 [19.9 kB]\n", | |
| "Get:16 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libinput10 amd64 1.20.0-1ubuntu0.3 [131 kB]\n", | |
| "Get:17 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libmd4c0 amd64 0.4.8-1 [42.0 kB]\n", | |
| "Get:18 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 libqt5dbus5 amd64 5.15.3+dfsg-2ubuntu0.2 [222 kB]\n", | |
| "Get:19 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 libqt5network5 amd64 5.15.3+dfsg-2ubuntu0.2 [731 kB]\n", | |
| "Get:20 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxcb-icccm4 amd64 0.4.1-1.1build2 [11.5 kB]\n", | |
| "Get:21 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxcb-util1 amd64 0.4.0-1build2 [11.4 kB]\n", | |
| "Get:22 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxcb-image0 amd64 0.4.0-2 [11.5 kB]\n", | |
| "Get:23 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxcb-keysyms1 amd64 0.4.0-1build3 [8,746 B]\n", | |
| "Get:24 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxcb-render-util0 amd64 0.3.9-1build3 [10.3 kB]\n", | |
| "Get:25 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxcb-xinerama0 amd64 1.14-3ubuntu3 [5,414 B]\n", | |
| "Get:26 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxcb-xinput0 amd64 1.14-3ubuntu3 [34.3 kB]\n", | |
| "Get:27 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxcb-xkb1 amd64 1.14-3ubuntu3 [32.8 kB]\n", | |
| "Get:28 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxkbcommon-x11-0 amd64 1.4.0-1 [14.4 kB]\n", | |
| "Get:29 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 libqt5gui5 amd64 5.15.3+dfsg-2ubuntu0.2 [3,722 kB]\n", | |
| "Get:30 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 libqt5widgets5 amd64 5.15.3+dfsg-2ubuntu0.2 [2,561 kB]\n", | |
| "Get:31 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libqt5svg5 amd64 5.15.3-1 [149 kB]\n", | |
| "Get:32 http://archive.ubuntu.com/ubuntu jammy/main amd64 libhyphen0 amd64 2.8.8-7build2 [28.2 kB]\n", | |
| "Get:33 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libqt5positioning5 amd64 5.15.3+dfsg-3 [223 kB]\n", | |
| "Get:34 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 libqt5printsupport5 amd64 5.15.3+dfsg-2ubuntu0.2 [214 kB]\n", | |
| "Get:35 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libqt5qml5 amd64 5.15.3+dfsg-1 [1,472 kB]\n", | |
| "Get:36 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libqt5qmlmodels5 amd64 5.15.3+dfsg-1 [205 kB]\n", | |
| "Get:37 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libqt5quick5 amd64 5.15.3+dfsg-1 [1,748 kB]\n", | |
| "Get:38 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libqt5sensors5 amd64 5.15.3-1 [123 kB]\n", | |
| "Get:39 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libqt5webchannel5 amd64 5.15.3-1 [62.9 kB]\n", | |
| "Get:40 http://archive.ubuntu.com/ubuntu jammy/universe amd64 libqt5webkit5 amd64 5.212.0~alpha4-15ubuntu1 [12.8 MB]\n", | |
| "Get:41 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 udev amd64 249.11-0ubuntu3.12 [1,557 kB]\n", | |
| "Get:42 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libavahi-glib1 amd64 0.8-5ubuntu5.2 [8,296 B]\n", | |
| "Get:43 http://archive.ubuntu.com/ubuntu jammy/main amd64 libjson-glib-1.0-common all 1.6.6-1build1 [4,432 B]\n", | |
| "Get:44 http://archive.ubuntu.com/ubuntu jammy/main amd64 libjson-glib-1.0-0 amd64 1.6.6-1build1 [69.9 kB]\n", | |
| "Get:45 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libmm-glib0 amd64 1.20.0-1~ubuntu22.04.3 [263 kB]\n", | |
| "Get:46 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libnotify4 amd64 0.7.9-3ubuntu5.22.04.1 [20.3 kB]\n", | |
| "Get:47 http://archive.ubuntu.com/ubuntu jammy/main amd64 libproxy1v5 amd64 0.4.17-2 [51.9 kB]\n", | |
| "Get:48 http://archive.ubuntu.com/ubuntu jammy/main amd64 glib-networking-common all 2.72.0-1 [3,718 B]\n", | |
| "Get:49 http://archive.ubuntu.com/ubuntu jammy/main amd64 glib-networking-services amd64 2.72.0-1 [9,982 B]\n", | |
| "Get:50 http://archive.ubuntu.com/ubuntu jammy/main amd64 session-migration amd64 0.3.6 [9,774 B]\n", | |
| "Get:51 http://archive.ubuntu.com/ubuntu jammy/main amd64 gsettings-desktop-schemas all 42.0-1ubuntu1 [31.1 kB]\n", | |
| "Get:52 http://archive.ubuntu.com/ubuntu jammy/main amd64 glib-networking amd64 2.72.0-1 [69.8 kB]\n", | |
| "Get:53 http://archive.ubuntu.com/ubuntu jammy/main amd64 libsoup2.4-common all 2.74.2-3 [4,008 B]\n", | |
| "Get:54 http://archive.ubuntu.com/ubuntu jammy/main amd64 libsoup2.4-1 amd64 2.74.2-3 [287 kB]\n", | |
| "Get:55 http://archive.ubuntu.com/ubuntu jammy/main amd64 geoclue-2.0 amd64 2.5.7-3ubuntu3 [111 kB]\n", | |
| "Get:56 http://archive.ubuntu.com/ubuntu jammy/main amd64 iio-sensor-proxy amd64 3.3-0ubuntu6 [34.4 kB]\n", | |
| "Get:57 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libmbim-glib4 amd64 1.28.0-1~ubuntu20.04.1 [191 kB]\n", | |
| "Get:58 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libmbim-proxy amd64 1.28.0-1~ubuntu20.04.1 [6,130 B]\n", | |
| "Get:59 http://archive.ubuntu.com/ubuntu jammy/main amd64 libnl-genl-3-200 amd64 3.5.0-0.1 [12.4 kB]\n", | |
| "Get:60 http://archive.ubuntu.com/ubuntu jammy/main amd64 libnss-mdns amd64 0.15.1-1ubuntu1 [27.0 kB]\n", | |
| "Get:61 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libqmi-glib5 amd64 1.32.0-1ubuntu0.22.04.1 [772 kB]\n", | |
| "Get:62 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 libqmi-proxy amd64 1.32.0-1ubuntu0.22.04.1 [6,072 B]\n", | |
| "Get:63 http://archive.ubuntu.com/ubuntu jammy/main amd64 libwacom-bin amd64 2.2.0-1 [13.6 kB]\n", | |
| "Get:64 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxfont2 amd64 1:2.0.5-1build1 [94.5 kB]\n", | |
| "Get:65 http://archive.ubuntu.com/ubuntu jammy/main amd64 libxkbfile1 amd64 1:1.1.0-1build3 [71.8 kB]\n", | |
| "Get:66 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 modemmanager amd64 1.20.0-1~ubuntu22.04.3 [1,094 kB]\n", | |
| "Get:67 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 qt5-gtk-platformtheme amd64 5.15.3+dfsg-2ubuntu0.2 [130 kB]\n", | |
| "Get:68 http://archive.ubuntu.com/ubuntu jammy/universe amd64 qttranslations5-l10n all 5.15.3-1 [1,983 kB]\n", | |
| "Get:69 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 systemd-hwe-hwdb all 249.11.5 [3,228 B]\n", | |
| "Get:70 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 wpasupplicant amd64 2:2.10-6ubuntu2.1 [1,482 kB]\n", | |
| "Get:71 http://archive.ubuntu.com/ubuntu jammy/main amd64 x11-xkb-utils amd64 7.7+5build4 [172 kB]\n", | |
| "Get:72 http://archive.ubuntu.com/ubuntu jammy/main amd64 xfonts-base all 1:1.0.5 [5,896 kB]\n", | |
| "Get:73 http://archive.ubuntu.com/ubuntu jammy-updates/main amd64 xserver-common all 2:21.1.4-2ubuntu1.7~22.04.11 [28.6 kB]\n", | |
| "Get:74 http://archive.ubuntu.com/ubuntu jammy-updates/universe amd64 xnest amd64 2:21.1.4-2ubuntu1.7~22.04.11 [712 kB]\n", | |
| "Get:75 http://archive.ubuntu.com/ubuntu jammy/main amd64 usb-modeswitch-data all 20191128-4 [33.2 kB]\n", | |
| "Get:76 http://archive.ubuntu.com/ubuntu jammy/main amd64 usb-modeswitch amd64 2.6.1-3ubuntu2 [46.0 kB]\n", | |
| "Get:77 http://archive.ubuntu.com/ubuntu jammy/universe amd64 wkhtmltopdf amd64 0.12.6-2 [173 kB]\n", | |
| "Fetched 43.8 MB in 1s (29.5 MB/s)\n", | |
| "Extracting templates from packages: 100%\n", | |
| "Selecting previously unselected package libavahi-core7:amd64.\n", | |
| "(Reading database ... 160661 files and directories currently installed.)\n", | |
| "Preparing to unpack .../00-libavahi-core7_0.8-5ubuntu5.2_amd64.deb ...\n", | |
| "Unpacking libavahi-core7:amd64 (0.8-5ubuntu5.2) ...\n", | |
| "Selecting previously unselected package libdaemon0:amd64.\n", | |
| "Preparing to unpack .../01-libdaemon0_0.14-7.1ubuntu3_amd64.deb ...\n", | |
| "Unpacking libdaemon0:amd64 (0.14-7.1ubuntu3) ...\n", | |
| "Selecting previously unselected package liblmdb0:amd64.\n", | |
| "Preparing to unpack .../02-liblmdb0_0.9.24-1build2_amd64.deb ...\n", | |
| "Unpacking liblmdb0:amd64 (0.9.24-1build2) ...\n", | |
| "Selecting previously unselected package libmaxminddb0:amd64.\n", | |
| "Preparing to unpack .../03-libmaxminddb0_1.5.2-1build2_amd64.deb ...\n", | |
| "Unpacking libmaxminddb0:amd64 (1.5.2-1build2) ...\n", | |
| "Selecting previously unselected package bind9-libs:amd64.\n", | |
| "Preparing to unpack .../04-bind9-libs_1%3a9.18.28-0ubuntu0.22.04.1_amd64.deb ...\n", | |
| "Unpacking bind9-libs:amd64 (1:9.18.28-0ubuntu0.22.04.1) ...\n", | |
| "Selecting previously unselected package bind9-host.\n", | |
| "Preparing to unpack .../05-bind9-host_1%3a9.18.28-0ubuntu0.22.04.1_amd64.deb ...\n", | |
| "Unpacking bind9-host (1:9.18.28-0ubuntu0.22.04.1) ...\n", | |
| "Selecting previously unselected package avahi-daemon.\n", | |
| "Preparing to unpack .../06-avahi-daemon_0.8-5ubuntu5.2_amd64.deb ...\n", | |
| "Unpacking avahi-daemon (0.8-5ubuntu5.2) ...\n", | |
| "Selecting previously unselected package libqt5core5a:amd64.\n", | |
| "Preparing to unpack .../07-libqt5core5a_5.15.3+dfsg-2ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libqt5core5a:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libevdev2:amd64.\n", | |
| "Preparing to unpack .../08-libevdev2_1.12.1+dfsg-1_amd64.deb ...\n", | |
| "Unpacking libevdev2:amd64 (1.12.1+dfsg-1) ...\n", | |
| "Selecting previously unselected package libmtdev1:amd64.\n", | |
| "Preparing to unpack .../09-libmtdev1_1.1.6-1build4_amd64.deb ...\n", | |
| "Unpacking libmtdev1:amd64 (1.1.6-1build4) ...\n", | |
| "Preparing to unpack .../10-libudev1_249.11-0ubuntu3.12_amd64.deb ...\n", | |
| "Unpacking libudev1:amd64 (249.11-0ubuntu3.12) over (249.11-0ubuntu3.10) ...\n", | |
| "Setting up libudev1:amd64 (249.11-0ubuntu3.12) ...\n", | |
| "Selecting previously unselected package libgudev-1.0-0:amd64.\n", | |
| "(Reading database ... 160760 files and directories currently installed.)\n", | |
| "Preparing to unpack .../00-libgudev-1.0-0_1%3a237-2build1_amd64.deb ...\n", | |
| "Unpacking libgudev-1.0-0:amd64 (1:237-2build1) ...\n", | |
| "Selecting previously unselected package libwacom-common.\n", | |
| "Preparing to unpack .../01-libwacom-common_2.2.0-1_all.deb ...\n", | |
| "Unpacking libwacom-common (2.2.0-1) ...\n", | |
| "Selecting previously unselected package libwacom9:amd64.\n", | |
| "Preparing to unpack .../02-libwacom9_2.2.0-1_amd64.deb ...\n", | |
| "Unpacking libwacom9:amd64 (2.2.0-1) ...\n", | |
| "Selecting previously unselected package libinput-bin.\n", | |
| "Preparing to unpack .../03-libinput-bin_1.20.0-1ubuntu0.3_amd64.deb ...\n", | |
| "Unpacking libinput-bin (1.20.0-1ubuntu0.3) ...\n", | |
| "Selecting previously unselected package libinput10:amd64.\n", | |
| "Preparing to unpack .../04-libinput10_1.20.0-1ubuntu0.3_amd64.deb ...\n", | |
| "Unpacking libinput10:amd64 (1.20.0-1ubuntu0.3) ...\n", | |
| "Selecting previously unselected package libmd4c0:amd64.\n", | |
| "Preparing to unpack .../05-libmd4c0_0.4.8-1_amd64.deb ...\n", | |
| "Unpacking libmd4c0:amd64 (0.4.8-1) ...\n", | |
| "Selecting previously unselected package libqt5dbus5:amd64.\n", | |
| "Preparing to unpack .../06-libqt5dbus5_5.15.3+dfsg-2ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libqt5dbus5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libqt5network5:amd64.\n", | |
| "Preparing to unpack .../07-libqt5network5_5.15.3+dfsg-2ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libqt5network5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libxcb-icccm4:amd64.\n", | |
| "Preparing to unpack .../08-libxcb-icccm4_0.4.1-1.1build2_amd64.deb ...\n", | |
| "Unpacking libxcb-icccm4:amd64 (0.4.1-1.1build2) ...\n", | |
| "Selecting previously unselected package libxcb-util1:amd64.\n", | |
| "Preparing to unpack .../09-libxcb-util1_0.4.0-1build2_amd64.deb ...\n", | |
| "Unpacking libxcb-util1:amd64 (0.4.0-1build2) ...\n", | |
| "Selecting previously unselected package libxcb-image0:amd64.\n", | |
| "Preparing to unpack .../10-libxcb-image0_0.4.0-2_amd64.deb ...\n", | |
| "Unpacking libxcb-image0:amd64 (0.4.0-2) ...\n", | |
| "Selecting previously unselected package libxcb-keysyms1:amd64.\n", | |
| "Preparing to unpack .../11-libxcb-keysyms1_0.4.0-1build3_amd64.deb ...\n", | |
| "Unpacking libxcb-keysyms1:amd64 (0.4.0-1build3) ...\n", | |
| "Selecting previously unselected package libxcb-render-util0:amd64.\n", | |
| "Preparing to unpack .../12-libxcb-render-util0_0.3.9-1build3_amd64.deb ...\n", | |
| "Unpacking libxcb-render-util0:amd64 (0.3.9-1build3) ...\n", | |
| "Selecting previously unselected package libxcb-xinerama0:amd64.\n", | |
| "Preparing to unpack .../13-libxcb-xinerama0_1.14-3ubuntu3_amd64.deb ...\n", | |
| "Unpacking libxcb-xinerama0:amd64 (1.14-3ubuntu3) ...\n", | |
| "Selecting previously unselected package libxcb-xinput0:amd64.\n", | |
| "Preparing to unpack .../14-libxcb-xinput0_1.14-3ubuntu3_amd64.deb ...\n", | |
| "Unpacking libxcb-xinput0:amd64 (1.14-3ubuntu3) ...\n", | |
| "Selecting previously unselected package libxcb-xkb1:amd64.\n", | |
| "Preparing to unpack .../15-libxcb-xkb1_1.14-3ubuntu3_amd64.deb ...\n", | |
| "Unpacking libxcb-xkb1:amd64 (1.14-3ubuntu3) ...\n", | |
| "Selecting previously unselected package libxkbcommon-x11-0:amd64.\n", | |
| "Preparing to unpack .../16-libxkbcommon-x11-0_1.4.0-1_amd64.deb ...\n", | |
| "Unpacking libxkbcommon-x11-0:amd64 (1.4.0-1) ...\n", | |
| "Selecting previously unselected package libqt5gui5:amd64.\n", | |
| "Preparing to unpack .../17-libqt5gui5_5.15.3+dfsg-2ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libqt5gui5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libqt5widgets5:amd64.\n", | |
| "Preparing to unpack .../18-libqt5widgets5_5.15.3+dfsg-2ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libqt5widgets5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libqt5svg5:amd64.\n", | |
| "Preparing to unpack .../19-libqt5svg5_5.15.3-1_amd64.deb ...\n", | |
| "Unpacking libqt5svg5:amd64 (5.15.3-1) ...\n", | |
| "Selecting previously unselected package libhyphen0:amd64.\n", | |
| "Preparing to unpack .../20-libhyphen0_2.8.8-7build2_amd64.deb ...\n", | |
| "Unpacking libhyphen0:amd64 (2.8.8-7build2) ...\n", | |
| "Selecting previously unselected package libqt5positioning5:amd64.\n", | |
| "Preparing to unpack .../21-libqt5positioning5_5.15.3+dfsg-3_amd64.deb ...\n", | |
| "Unpacking libqt5positioning5:amd64 (5.15.3+dfsg-3) ...\n", | |
| "Selecting previously unselected package libqt5printsupport5:amd64.\n", | |
| "Preparing to unpack .../22-libqt5printsupport5_5.15.3+dfsg-2ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking libqt5printsupport5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Selecting previously unselected package libqt5qml5:amd64.\n", | |
| "Preparing to unpack .../23-libqt5qml5_5.15.3+dfsg-1_amd64.deb ...\n", | |
| "Unpacking libqt5qml5:amd64 (5.15.3+dfsg-1) ...\n", | |
| "Selecting previously unselected package libqt5qmlmodels5:amd64.\n", | |
| "Preparing to unpack .../24-libqt5qmlmodels5_5.15.3+dfsg-1_amd64.deb ...\n", | |
| "Unpacking libqt5qmlmodels5:amd64 (5.15.3+dfsg-1) ...\n", | |
| "Selecting previously unselected package libqt5quick5:amd64.\n", | |
| "Preparing to unpack .../25-libqt5quick5_5.15.3+dfsg-1_amd64.deb ...\n", | |
| "Unpacking libqt5quick5:amd64 (5.15.3+dfsg-1) ...\n", | |
| "Selecting previously unselected package libqt5sensors5:amd64.\n", | |
| "Preparing to unpack .../26-libqt5sensors5_5.15.3-1_amd64.deb ...\n", | |
| "Unpacking libqt5sensors5:amd64 (5.15.3-1) ...\n", | |
| "Selecting previously unselected package libqt5webchannel5:amd64.\n", | |
| "Preparing to unpack .../27-libqt5webchannel5_5.15.3-1_amd64.deb ...\n", | |
| "Unpacking libqt5webchannel5:amd64 (5.15.3-1) ...\n", | |
| "Selecting previously unselected package libqt5webkit5:amd64.\n", | |
| "Preparing to unpack .../28-libqt5webkit5_5.212.0~alpha4-15ubuntu1_amd64.deb ...\n", | |
| "Unpacking libqt5webkit5:amd64 (5.212.0~alpha4-15ubuntu1) ...\n", | |
| "Selecting previously unselected package udev.\n", | |
| "Preparing to unpack .../29-udev_249.11-0ubuntu3.12_amd64.deb ...\n", | |
| "Unpacking udev (249.11-0ubuntu3.12) ...\n", | |
| "Selecting previously unselected package libavahi-glib1:amd64.\n", | |
| "Preparing to unpack .../30-libavahi-glib1_0.8-5ubuntu5.2_amd64.deb ...\n", | |
| "Unpacking libavahi-glib1:amd64 (0.8-5ubuntu5.2) ...\n", | |
| "Selecting previously unselected package libjson-glib-1.0-common.\n", | |
| "Preparing to unpack .../31-libjson-glib-1.0-common_1.6.6-1build1_all.deb ...\n", | |
| "Unpacking libjson-glib-1.0-common (1.6.6-1build1) ...\n", | |
| "Selecting previously unselected package libjson-glib-1.0-0:amd64.\n", | |
| "Preparing to unpack .../32-libjson-glib-1.0-0_1.6.6-1build1_amd64.deb ...\n", | |
| "Unpacking libjson-glib-1.0-0:amd64 (1.6.6-1build1) ...\n", | |
| "Selecting previously unselected package libmm-glib0:amd64.\n", | |
| "Preparing to unpack .../33-libmm-glib0_1.20.0-1~ubuntu22.04.3_amd64.deb ...\n", | |
| "Unpacking libmm-glib0:amd64 (1.20.0-1~ubuntu22.04.3) ...\n", | |
| "Selecting previously unselected package libnotify4:amd64.\n", | |
| "Preparing to unpack .../34-libnotify4_0.7.9-3ubuntu5.22.04.1_amd64.deb ...\n", | |
| "Unpacking libnotify4:amd64 (0.7.9-3ubuntu5.22.04.1) ...\n", | |
| "Selecting previously unselected package libproxy1v5:amd64.\n", | |
| "Preparing to unpack .../35-libproxy1v5_0.4.17-2_amd64.deb ...\n", | |
| "Unpacking libproxy1v5:amd64 (0.4.17-2) ...\n", | |
| "Selecting previously unselected package glib-networking-common.\n", | |
| "Preparing to unpack .../36-glib-networking-common_2.72.0-1_all.deb ...\n", | |
| "Unpacking glib-networking-common (2.72.0-1) ...\n", | |
| "Selecting previously unselected package glib-networking-services.\n", | |
| "Preparing to unpack .../37-glib-networking-services_2.72.0-1_amd64.deb ...\n", | |
| "Unpacking glib-networking-services (2.72.0-1) ...\n", | |
| "Selecting previously unselected package session-migration.\n", | |
| "Preparing to unpack .../38-session-migration_0.3.6_amd64.deb ...\n", | |
| "Unpacking session-migration (0.3.6) ...\n", | |
| "Selecting previously unselected package gsettings-desktop-schemas.\n", | |
| "Preparing to unpack .../39-gsettings-desktop-schemas_42.0-1ubuntu1_all.deb ...\n", | |
| "Unpacking gsettings-desktop-schemas (42.0-1ubuntu1) ...\n", | |
| "Selecting previously unselected package glib-networking:amd64.\n", | |
| "Preparing to unpack .../40-glib-networking_2.72.0-1_amd64.deb ...\n", | |
| "Unpacking glib-networking:amd64 (2.72.0-1) ...\n", | |
| "Selecting previously unselected package libsoup2.4-common.\n", | |
| "Preparing to unpack .../41-libsoup2.4-common_2.74.2-3_all.deb ...\n", | |
| "Unpacking libsoup2.4-common (2.74.2-3) ...\n", | |
| "Selecting previously unselected package libsoup2.4-1:amd64.\n", | |
| "Preparing to unpack .../42-libsoup2.4-1_2.74.2-3_amd64.deb ...\n", | |
| "Unpacking libsoup2.4-1:amd64 (2.74.2-3) ...\n", | |
| "Selecting previously unselected package geoclue-2.0.\n", | |
| "Preparing to unpack .../43-geoclue-2.0_2.5.7-3ubuntu3_amd64.deb ...\n", | |
| "Unpacking geoclue-2.0 (2.5.7-3ubuntu3) ...\n", | |
| "Selecting previously unselected package iio-sensor-proxy.\n", | |
| "Preparing to unpack .../44-iio-sensor-proxy_3.3-0ubuntu6_amd64.deb ...\n", | |
| "Unpacking iio-sensor-proxy (3.3-0ubuntu6) ...\n", | |
| "Selecting previously unselected package libmbim-glib4:amd64.\n", | |
| "Preparing to unpack .../45-libmbim-glib4_1.28.0-1~ubuntu20.04.1_amd64.deb ...\n", | |
| "Unpacking libmbim-glib4:amd64 (1.28.0-1~ubuntu20.04.1) ...\n", | |
| "Selecting previously unselected package libmbim-proxy.\n", | |
| "Preparing to unpack .../46-libmbim-proxy_1.28.0-1~ubuntu20.04.1_amd64.deb ...\n", | |
| "Unpacking libmbim-proxy (1.28.0-1~ubuntu20.04.1) ...\n", | |
| "Selecting previously unselected package libnl-genl-3-200:amd64.\n", | |
| "Preparing to unpack .../47-libnl-genl-3-200_3.5.0-0.1_amd64.deb ...\n", | |
| "Unpacking libnl-genl-3-200:amd64 (3.5.0-0.1) ...\n", | |
| "Selecting previously unselected package libnss-mdns:amd64.\n", | |
| "Preparing to unpack .../48-libnss-mdns_0.15.1-1ubuntu1_amd64.deb ...\n", | |
| "Unpacking libnss-mdns:amd64 (0.15.1-1ubuntu1) ...\n", | |
| "Selecting previously unselected package libqmi-glib5:amd64.\n", | |
| "Preparing to unpack .../49-libqmi-glib5_1.32.0-1ubuntu0.22.04.1_amd64.deb ...\n", | |
| "Unpacking libqmi-glib5:amd64 (1.32.0-1ubuntu0.22.04.1) ...\n", | |
| "Selecting previously unselected package libqmi-proxy.\n", | |
| "Preparing to unpack .../50-libqmi-proxy_1.32.0-1ubuntu0.22.04.1_amd64.deb ...\n", | |
| "Unpacking libqmi-proxy (1.32.0-1ubuntu0.22.04.1) ...\n", | |
| "Selecting previously unselected package libwacom-bin.\n", | |
| "Preparing to unpack .../51-libwacom-bin_2.2.0-1_amd64.deb ...\n", | |
| "Unpacking libwacom-bin (2.2.0-1) ...\n", | |
| "Selecting previously unselected package libxfont2:amd64.\n", | |
| "Preparing to unpack .../52-libxfont2_1%3a2.0.5-1build1_amd64.deb ...\n", | |
| "Unpacking libxfont2:amd64 (1:2.0.5-1build1) ...\n", | |
| "Selecting previously unselected package libxkbfile1:amd64.\n", | |
| "Preparing to unpack .../53-libxkbfile1_1%3a1.1.0-1build3_amd64.deb ...\n", | |
| "Unpacking libxkbfile1:amd64 (1:1.1.0-1build3) ...\n", | |
| "Selecting previously unselected package modemmanager.\n", | |
| "Preparing to unpack .../54-modemmanager_1.20.0-1~ubuntu22.04.3_amd64.deb ...\n", | |
| "Unpacking modemmanager (1.20.0-1~ubuntu22.04.3) ...\n", | |
| "Selecting previously unselected package qt5-gtk-platformtheme:amd64.\n", | |
| "Preparing to unpack .../55-qt5-gtk-platformtheme_5.15.3+dfsg-2ubuntu0.2_amd64.deb ...\n", | |
| "Unpacking qt5-gtk-platformtheme:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Selecting previously unselected package qttranslations5-l10n.\n", | |
| "Preparing to unpack .../56-qttranslations5-l10n_5.15.3-1_all.deb ...\n", | |
| "Unpacking qttranslations5-l10n (5.15.3-1) ...\n", | |
| "Selecting previously unselected package systemd-hwe-hwdb.\n", | |
| "Preparing to unpack .../57-systemd-hwe-hwdb_249.11.5_all.deb ...\n", | |
| "Unpacking systemd-hwe-hwdb (249.11.5) ...\n", | |
| "Selecting previously unselected package wpasupplicant.\n", | |
| "Preparing to unpack .../58-wpasupplicant_2%3a2.10-6ubuntu2.1_amd64.deb ...\n", | |
| "Unpacking wpasupplicant (2:2.10-6ubuntu2.1) ...\n", | |
| "Selecting previously unselected package x11-xkb-utils.\n", | |
| "Preparing to unpack .../59-x11-xkb-utils_7.7+5build4_amd64.deb ...\n", | |
| "Unpacking x11-xkb-utils (7.7+5build4) ...\n", | |
| "Selecting previously unselected package xfonts-base.\n", | |
| "Preparing to unpack .../60-xfonts-base_1%3a1.0.5_all.deb ...\n", | |
| "Unpacking xfonts-base (1:1.0.5) ...\n", | |
| "Selecting previously unselected package xserver-common.\n", | |
| "Preparing to unpack .../61-xserver-common_2%3a21.1.4-2ubuntu1.7~22.04.11_all.deb ...\n", | |
| "Unpacking xserver-common (2:21.1.4-2ubuntu1.7~22.04.11) ...\n", | |
| "Selecting previously unselected package xnest.\n", | |
| "Preparing to unpack .../62-xnest_2%3a21.1.4-2ubuntu1.7~22.04.11_amd64.deb ...\n", | |
| "Unpacking xnest (2:21.1.4-2ubuntu1.7~22.04.11) ...\n", | |
| "Selecting previously unselected package usb-modeswitch-data.\n", | |
| "Preparing to unpack .../63-usb-modeswitch-data_20191128-4_all.deb ...\n", | |
| "Unpacking usb-modeswitch-data (20191128-4) ...\n", | |
| "Selecting previously unselected package usb-modeswitch.\n", | |
| "Preparing to unpack .../64-usb-modeswitch_2.6.1-3ubuntu2_amd64.deb ...\n", | |
| "Unpacking usb-modeswitch (2.6.1-3ubuntu2) ...\n", | |
| "Selecting previously unselected package wkhtmltopdf.\n", | |
| "Preparing to unpack .../65-wkhtmltopdf_0.12.6-2_amd64.deb ...\n", | |
| "Unpacking wkhtmltopdf (0.12.6-2) ...\n", | |
| "Setting up liblmdb0:amd64 (0.9.24-1build2) ...\n", | |
| "Setting up session-migration (0.3.6) ...\n", | |
| "Created symlink /etc/systemd/user/graphical-session-pre.target.wants/session-migration.service → /usr/lib/systemd/user/session-migration.service.\n", | |
| "Setting up libproxy1v5:amd64 (0.4.17-2) ...\n", | |
| "Setting up libxcb-xinput0:amd64 (1.14-3ubuntu3) ...\n", | |
| "Setting up libhyphen0:amd64 (2.8.8-7build2) ...\n", | |
| "Setting up libmaxminddb0:amd64 (1.5.2-1build2) ...\n", | |
| "Setting up libxcb-keysyms1:amd64 (0.4.0-1build3) ...\n", | |
| "Setting up libxcb-render-util0:amd64 (0.3.9-1build3) ...\n", | |
| "Setting up libxcb-icccm4:amd64 (0.4.1-1.1build2) ...\n", | |
| "Setting up libxcb-util1:amd64 (0.4.0-1build2) ...\n", | |
| "Setting up libxcb-xkb1:amd64 (1.14-3ubuntu3) ...\n", | |
| "Setting up libxcb-image0:amd64 (0.4.0-2) ...\n", | |
| "Setting up xfonts-base (1:1.0.5) ...\n", | |
| "Setting up libxcb-xinerama0:amd64 (1.14-3ubuntu3) ...\n", | |
| "Setting up qttranslations5-l10n (5.15.3-1) ...\n", | |
| "Setting up libnotify4:amd64 (0.7.9-3ubuntu5.22.04.1) ...\n", | |
| "Setting up libxkbcommon-x11-0:amd64 (1.4.0-1) ...\n", | |
| "Setting up usb-modeswitch-data (20191128-4) ...\n", | |
| "Setting up udev (249.11-0ubuntu3.12) ...\n", | |
| "invoke-rc.d: could not determine current runlevel\n", | |
| "invoke-rc.d: policy-rc.d denied execution of start.\n", | |
| "Setting up libqt5core5a:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Setting up libmtdev1:amd64 (1.1.6-1build4) ...\n", | |
| "Setting up libsoup2.4-common (2.74.2-3) ...\n", | |
| "Setting up systemd-hwe-hwdb (249.11.5) ...\n", | |
| "Setting up libmm-glib0:amd64 (1.20.0-1~ubuntu22.04.3) ...\n", | |
| "Setting up libqt5dbus5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Setting up libnl-genl-3-200:amd64 (3.5.0-0.1) ...\n", | |
| "Setting up libmd4c0:amd64 (0.4.8-1) ...\n", | |
| "Setting up libavahi-glib1:amd64 (0.8-5ubuntu5.2) ...\n", | |
| "Setting up libjson-glib-1.0-common (1.6.6-1build1) ...\n", | |
| "Setting up usb-modeswitch (2.6.1-3ubuntu2) ...\n", | |
| "Setting up libxkbfile1:amd64 (1:1.1.0-1build3) ...\n", | |
| "Setting up glib-networking-common (2.72.0-1) ...\n", | |
| "Setting up libqt5sensors5:amd64 (5.15.3-1) ...\n", | |
| "Setting up libdaemon0:amd64 (0.14-7.1ubuntu3) ...\n", | |
| "Setting up libavahi-core7:amd64 (0.8-5ubuntu5.2) ...\n", | |
| "Setting up libnss-mdns:amd64 (0.15.1-1ubuntu1) ...\n", | |
| "First installation detected...\n", | |
| "Checking NSS setup...\n", | |
| "Setting up libxfont2:amd64 (1:2.0.5-1build1) ...\n", | |
| "Setting up libevdev2:amd64 (1.12.1+dfsg-1) ...\n", | |
| "Setting up libgudev-1.0-0:amd64 (1:237-2build1) ...\n", | |
| "Setting up libmbim-glib4:amd64 (1.28.0-1~ubuntu20.04.1) ...\n", | |
| "Setting up libwacom-common (2.2.0-1) ...\n", | |
| "Setting up gsettings-desktop-schemas (42.0-1ubuntu1) ...\n", | |
| "Setting up glib-networking-services (2.72.0-1) ...\n", | |
| "Setting up iio-sensor-proxy (3.3-0ubuntu6) ...\n", | |
| "Setting up bind9-libs:amd64 (1:9.18.28-0ubuntu0.22.04.1) ...\n", | |
| "Setting up libwacom9:amd64 (2.2.0-1) ...\n", | |
| "Setting up x11-xkb-utils (7.7+5build4) ...\n", | |
| "Setting up libqt5positioning5:amd64 (5.15.3+dfsg-3) ...\n", | |
| "Setting up libmbim-proxy (1.28.0-1~ubuntu20.04.1) ...\n", | |
| "Setting up libqt5network5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Setting up libjson-glib-1.0-0:amd64 (1.6.6-1build1) ...\n", | |
| "Setting up libinput-bin (1.20.0-1ubuntu0.3) ...\n", | |
| "Setting up wpasupplicant (2:2.10-6ubuntu2.1) ...\n", | |
| "Created symlink /etc/systemd/system/dbus-fi.w1.wpa_supplicant1.service → /lib/systemd/system/wpa_supplicant.service.\n", | |
| "Created symlink /etc/systemd/system/multi-user.target.wants/wpa_supplicant.service → /lib/systemd/system/wpa_supplicant.service.\n", | |
| "Setting up libqt5qml5:amd64 (5.15.3+dfsg-1) ...\n", | |
| "Setting up libqt5webchannel5:amd64 (5.15.3-1) ...\n", | |
| "Setting up libwacom-bin (2.2.0-1) ...\n", | |
| "Setting up xserver-common (2:21.1.4-2ubuntu1.7~22.04.11) ...\n", | |
| "Setting up bind9-host (1:9.18.28-0ubuntu0.22.04.1) ...\n", | |
| "Setting up libinput10:amd64 (1.20.0-1ubuntu0.3) ...\n", | |
| "Setting up libqt5qmlmodels5:amd64 (5.15.3+dfsg-1) ...\n", | |
| "Setting up libqt5gui5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Setting up libqmi-glib5:amd64 (1.32.0-1ubuntu0.22.04.1) ...\n", | |
| "Setting up libqt5widgets5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Setting up qt5-gtk-platformtheme:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Setting up libqt5printsupport5:amd64 (5.15.3+dfsg-2ubuntu0.2) ...\n", | |
| "Setting up avahi-daemon (0.8-5ubuntu5.2) ...\n", | |
| "invoke-rc.d: could not determine current runlevel\n", | |
| "invoke-rc.d: policy-rc.d denied execution of force-reload.\n", | |
| "invoke-rc.d: could not determine current runlevel\n", | |
| "invoke-rc.d: policy-rc.d denied execution of start.\n", | |
| "Created symlink /etc/systemd/system/dbus-org.freedesktop.Avahi.service → /lib/systemd/system/avahi-daemon.service.\n", | |
| "Created symlink /etc/systemd/system/multi-user.target.wants/avahi-daemon.service → /lib/systemd/system/avahi-daemon.service.\n", | |
| "Created symlink /etc/systemd/system/sockets.target.wants/avahi-daemon.socket → /lib/systemd/system/avahi-daemon.socket.\n", | |
| "Setting up xnest (2:21.1.4-2ubuntu1.7~22.04.11) ...\n", | |
| "Setting up libqt5quick5:amd64 (5.15.3+dfsg-1) ...\n", | |
| "Setting up libqt5svg5:amd64 (5.15.3-1) ...\n", | |
| "Setting up libqmi-proxy (1.32.0-1ubuntu0.22.04.1) ...\n", | |
| "Setting up libqt5webkit5:amd64 (5.212.0~alpha4-15ubuntu1) ...\n", | |
| "Setting up modemmanager (1.20.0-1~ubuntu22.04.3) ...\n", | |
| "Created symlink /etc/systemd/system/dbus-org.freedesktop.ModemManager1.service → /lib/systemd/system/ModemManager.service.\n", | |
| "Created symlink /etc/systemd/system/multi-user.target.wants/ModemManager.service → /lib/systemd/system/ModemManager.service.\n", | |
| "Setting up wkhtmltopdf (0.12.6-2) ...\n", | |
| "Processing triggers for man-db (2.10.2-1) ...\n", | |
| "Processing triggers for dbus (1.12.20-2ubuntu4.1) ...\n", | |
| "Processing triggers for fontconfig (2.13.1-4.2ubuntu5) ...\n", | |
| "Processing triggers for hicolor-icon-theme (0.17-2) ...\n", | |
| "Processing triggers for libglib2.0-0:amd64 (2.72.4-0ubuntu2.3) ...\n", | |
| "Processing triggers for libc-bin (2.35-0ubuntu3.4) ...\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_loader.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc_proxy.so.2 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind.so.3 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_0.so.3 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_adapter_level_zero.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc.so.2 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbb.so.12 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_adapter_opencl.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_5.so.3 is not a symbolic link\n", | |
| "\n", | |
| "Setting up glib-networking:amd64 (2.72.0-1) ...\n", | |
| "Setting up libsoup2.4-1:amd64 (2.74.2-3) ...\n", | |
| "Setting up geoclue-2.0 (2.5.7-3ubuntu3) ...\n", | |
| "Processing triggers for libc-bin (2.35-0ubuntu3.4) ...\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_loader.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc_proxy.so.2 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind.so.3 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_0.so.3 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_adapter_level_zero.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbmalloc.so.2 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbb.so.12 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libur_adapter_opencl.so.0 is not a symbolic link\n", | |
| "\n", | |
| "/sbin/ldconfig.real: /usr/local/lib/libtbbbind_2_5.so.3 is not a symbolic link\n", | |
| "\n", | |
| "Processing triggers for dbus (1.12.20-2ubuntu4.1) ...\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "!pip install pymupdf" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "Zu6eiv46_kBP", | |
| "outputId": "78452160-de77-428c-c98f-89063cc61448" | |
| }, | |
| "execution_count": 8, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "Collecting pymupdf\n", | |
| " Downloading PyMuPDF-1.24.10-cp310-none-manylinux2014_x86_64.whl.metadata (3.4 kB)\n", | |
| "Collecting PyMuPDFb==1.24.10 (from pymupdf)\n", | |
| " Downloading PyMuPDFb-1.24.10-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.metadata (1.4 kB)\n", | |
| "Downloading PyMuPDF-1.24.10-cp310-none-manylinux2014_x86_64.whl (3.5 MB)\n", | |
| "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.5/3.5 MB\u001b[0m \u001b[31m14.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
| "\u001b[?25hDownloading PyMuPDFb-1.24.10-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (15.9 MB)\n", | |
| "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.9/15.9 MB\u001b[0m \u001b[31m21.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
| "\u001b[?25hInstalling collected packages: PyMuPDFb, pymupdf\n", | |
| "Successfully installed PyMuPDFb-1.24.10 pymupdf-1.24.10\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "from llama_index.core import (\n", | |
| " VectorStoreIndex,\n", | |
| " SimpleDirectoryReader,\n", | |
| " StorageContext,\n", | |
| " ServiceContext,\n", | |
| " load_index_from_storage\n", | |
| ")\n", | |
| "from llama_index.embeddings.huggingface import HuggingFaceEmbedding\n", | |
| "from llama_index.core.node_parser import SentenceSplitter\n", | |
| "from llama_index.llms.groq import Groq\n", | |
| "import warnings\n", | |
| "warnings.filterwarnings('ignore')\n", | |
| "from pprint import pprint" | |
| ], | |
| "metadata": { | |
| "id": "usLk31Vs9-mz", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "7dfff322-4323-4d79-d5cb-d6144723316e" | |
| }, | |
| "execution_count": 12, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stderr", | |
| "text": [ | |
| "[nltk_data] Downloading package punkt_tab to\n", | |
| "[nltk_data] /usr/local/lib/python3.10/dist-\n", | |
| "[nltk_data] packages/llama_index/core/_static/nltk_cache...\n", | |
| "[nltk_data] Unzipping tokenizers/punkt_tab.zip.\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "## 1. Get Earnings Data and Store in Directory\n", | |
| "\n", | |
| "\n", | |
| "We download three different types of files and saves them in a directory called \"earnings_announcement_data.\"\n", | |
| "* The code first creates the directory if it doesn't exist.\n", | |
| "* The code then performs three distinct tasks: it downloads and converts an HTML file to PDF, retrieves an earnings call transcript via the FMP API, and directly downloads a PDF file.\n", | |
| "\n", | |
| "These scripts are used to download a Tesla 10-Q SEC filing, the earnings call transcript from Financial Modeling Prep, and a Tesla quarterly presentation update PDF." | |
| ], | |
| "metadata": { | |
| "id": "UHxOywfV917h" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# Create a directory for saving the files\n", | |
| "directory = \"earnings_announcement_data\"\n", | |
| "if not os.path.exists(directory):\n", | |
| " os.makedirs(directory)" | |
| ], | |
| "metadata": { | |
| "id": "q0XmfF0Lgpzz" | |
| }, | |
| "execution_count": 10, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "import os\n", | |
| "import requests\n", | |
| "\n", | |
| "# Step 1: Set up API details\n", | |
| "api_key = '' # Replace with your actual FMP API key\n", | |
| "symbol = 'TSLA'\n", | |
| "year = 2024\n", | |
| "quarter = 2\n", | |
| "text_filename = os.path.join(directory, 'tesla_q2_2024_earnings_call_transcript.txt')\n", | |
| "\n", | |
| "# Step 2: Construct the API URL\n", | |
| "url = f'https://financialmodelingprep.com/api/v3/earning_call_transcript/{symbol}?year={year}&quarter={quarter}&apikey={api_key}'\n", | |
| "\n", | |
| "# Step 3: Send the GET request to the API\n", | |
| "response = requests.get(url)\n", | |
| "\n", | |
| "# Step 4: Initialize the variable to store the transcript text\n", | |
| "transcript_text = \"\"\n", | |
| "\n", | |
| "# Step 5: Check if the request was successful\n", | |
| "if response.status_code == 200:\n", | |
| " transcript_data = response.json()\n", | |
| "\n", | |
| " # Step 6: Save the transcript content into the variable\n", | |
| " if transcript_data:\n", | |
| " for transcript in transcript_data:\n", | |
| " transcript_text += f\"Date: {transcript['date']}\\n\"\n", | |
| " transcript_text += f\"{transcript['content']}\\n\\n\"\n", | |
| "\n", | |
| " # Step 7: Save the transcript to a text file\n", | |
| " with open(text_filename, 'w', encoding='utf-8') as file:\n", | |
| " file.write(transcript_text)\n", | |
| " print(f\"Transcript saved as {text_filename}\")\n", | |
| " else:\n", | |
| " print(f\"No transcript available for {symbol} in Q{quarter} {year}.\")\n", | |
| "else:\n", | |
| " print(f\"Failed to retrieve data: {response.status_code} - {response.text}\")\n" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "grPBvFE7hJr2", | |
| "outputId": "df1bf31e-7b23-4f6c-bda1-1d8ddd57b637" | |
| }, | |
| "execution_count": 13, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "Transcript saved as earnings_announcement_data/tesla_q2_2024_earnings_call_transcript.txt\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "transcript_text" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 105 | |
| }, | |
| "id": "E1pQTBLppRfB", | |
| "outputId": "fe1d116c-c3f8-4275-a89f-50eb4fd317a3" | |
| }, | |
| "execution_count": 52, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "\"Date: 2024-07-24 01:45:26\\nTravis Axelrod: Good afternoon, everyone and welcome to Tesla's Second Quarter 2024 Q&A Webcast. My name is Travis Axelrod, Head of Investor Relations and I’m joined today by Elon Musk, Vaibhav Taneja, and a number of other executives. Our Q2 results were announced at about 3.00 p.m. Central Time and the Update Deck we published at the same link as this webcast. During this call, we will discuss our business outlook and make forward-looking statements. These comments are based on our predictions and expectations as of today. Actual events or results could differ materially due to a number of risks and uncertainties, including those mentioned in our most recent filings with the SEC. During the question-and-answer portion of today's call, please limit yourself to one question and one follow-up. Please use the raise hand button to join the question queue. Before we jump into Q&A, Elon has some opening remarks. Elon?\\nElon Musk: Thank you. So to recap, we saw large adoption exploration in EVs, and then a bit of a hangover as others struggle to make compelling EVs. So there are quite a few competing electric vehicles that have entered the market. And mostly they’ve not done well, but they’ve discounted their EVs very substantially, which has made it a bit more difficult for Tesla. We don’t see this as long-term issue, but really -- fairly short-term. And we still obviously firmly believe that EVs are best for customers and that the world is headed for a fully electrified transport, not just the cars, but also aircrafts and boats. Despite many challenges the Tesla team did a great job executing and we did achieve record quarterly revenues. Energy storage deployments reached an all-time high in Q2, leading to record profits for the energy business. And we are investing in many future projects, including AI training and inference and great deal of infrastructure to support future products. We won't get too much into the product roadmap here, because that is reserved for product announcement events. But we are on track to deliver a more affordable model in the first half of next year. The big -- really by far the biggest differentiator for Tesla is autonomy. In addition to that, we've scale economies and we're the most efficient electric vehicle producer in the world. So, this, anyway -- while others are pursuing different parts of the AI robotic stack, we are pursuing all of them. This allows for better cost control, more scale, quicker time to market, and a superior product, applying not to -- not just to autonomous vehicles, but to autonomous humanoid robots like Optimus. Regarding Full Self-Driving and Robotaxi, we've made a lot of progress with Full Self-Driving in Q2 and with version 12.5 beginning rollout, we think customers will experience a step change improvement in how well supervised full self-driving works. Version 12.5 has 5x the parameters of 12.4 and will finally merge the highway and city stacks. So the highway stack is still at this point is pretty old. So often the issues people encounter are on highway, but with 12.5, we are finally merged the two stacks. I still find that most people actually don't know how good the system is, and I would encourage anyone to understand the system better, to simply try it out and let the car drive you around. One of the things we're going to be doing just to make sure people actually understand the capabilities of the car is when delivering a new car and when picking up a car for service to just show people how to use it and just drive them around the block. Once people use it at all they tend to continue using it. So it's very compelling. And then this I think will be a massive demand driver, even unsupervised full self-driving will be a massive demand driver. And as we increase the miles between intervention, it will transition from supervised full self-driving to unsupervised full self-driving, and we can unlock massive potential in [V3] (ph). We postponed the sort of Robotaxi the sort of product unveil by a couple of months where it were -- it shifted to 10/10 to the 10th October -end because I wanted to make some important changes that I think would improve the vehicle -- sort of Robotaxi, the thing that we are -- the main thing that we are going to show and we are also going to show off a couple of other things. So moving it back a few months allowed us to improve the Robotaxi as well as add in a couple other things for the product unveil. We're also nearing completion of the South expansion of Giga Texas, which will house our largest training cluster to date. So it will be an incremental for 50,000 H100s plus 20,000 of our hardware 4 AI5 Tesla AI computer. With Optimus, Optimus is already performing tasks in our factory. And we expect to have Optimus production Version 1 in limited production starting early next year. This will be for Tesla consumption. It's just better for us to iron out the issues ourselves. But we expect to have several thousand Optimus robots produced and doing useful things by the end of next year in the Tesla factories. And then in 2026, ramping up production quite a bit, and at that point we'll be providing Optimus robots to outside customers. That will be Production Version 2 of Optimus. For the energy business, this is growing faster than anything else. This is -- we are really demand constrained rather than production constrained. So we are ramping up production in our U.S. factory as well as building the Megapack factory in China that should roughly double our output, maybe more than double -- maybe triple potentially. So in conclusion, we are super excited about the progress across the board. We are changing the energy system, how people move around, how people approach the economy. The undertaking is massive, but I think the future is incredibly bright. I really just can't emphasize just the importance of autonomy for the vehicle side and for Optimus. Although the numbers sound crazy, I think Tesla producing at volume with unsupervised FSD essentially enabling the fleet to operate like a giant autonomous fleet. And it takes the valuation, I think, to some pretty crazy number. ARK Invest thinks, on the order of $5 trillion, I think they are probably not wrong. And long-term Optimus, I think, it achieves a valuation several times that number. I want to thank the Tesla team for a strong execution and looking forward to exciting years ahead.\\nTravis Axelrod: Great. Thank you very much, Elon, and Vaibhav has opening remarks as well.\\nVaibhav Taneja: Thanks. As Elon mentioned, the Tesla team rose to the occasion yet again and delivered on all fronts with some notable records. In addition to those records, we saw our automotive deliveries go sequentially. I would like to thank the entire Tesla team for their efforts in delivering a great quarter. On the auto business front, affordability remains a top of mind for customers, and in response in Q2, we offered attractive financing options to offset sustained high interest rates. These programs had an impact on revenue per unit in the quarter. These impacts will persist into Q3 as we have already launched similar programs. We are now offering extremely competitive financing rates in most parts of the world. This is the best time to buy a Tesla, I mean, if you are waiting on the sidelines, come out and get your car. We had a record quarter on regulatory credits, revenues, and as well. On net, our auto margins remained flat sequentially. It is important to note that the demand for regulatory credits is dependent on other OEMs plans for the kind of vehicles they are manufacturing and selling as well as changes in regulations. We pride ourselves to be the company with the most American-made cars and are continuing our journey to further localize our supply chain, not just in the U.S., but in Europe and China as well for the respective factories. As always, our focus is on providing the most compelling products at a reasonable price. We have stepped up our efforts to provide more trims that have estimated range of more than 300 miles on a single charge. We believe this, along with the expansion of our supercharging network, is the right strategy to combat range anxiety. Since the revision of FSD pricing in North America, we've seen production rates increase meaningfully and expect this to be a driver of vehicle sales as the feature set improves further. Cost per vehicle declined sequentially when we removed the impact of Cybertruck. While we are experiencing material costs trending down, note that there is latency on the cost side and such reductions would show up in the P&L when the vehicles built with these materials get delivered. Additionally, as we get into the second half of the year, it is important to note that we are still ramping Cybertruck and Model 3 and are also getting impacted by varying amounts of tariffs on both raw materials and finished goods. While our teams are working feverishly to offset these, unfortunately it may have an impact on the cost in the near-term. We previously talked about the potential of the energy business and now feel excited that the foundation that was laid over time is bearing the expected results. Energy storage deployments more than doubled with contribution not just from Megapack, but also Powerwall, resulting in record revenues and profit for the energy business. Energy storage backlog is strong. As discussed before, deployments will fluctuate from period to period with some quarters seeing large increases and others seeing a decline. Recognition of storage gigawatt hours is dependent on a variety of factors, including logistics timing as we send units from a single factory to markets across the world, customer readiness and in case of EPC projects on construction activities. Moving on to the other parts of the business, service and other gross profits also improved sequentially from the improvement in service utilization and growth in our collision repair business. The impact of our recent reorg is reflected in restructuring other - on the income statement. Just to level set, this was about $622 million of charge, which got recorded in the period. And I want people to remember that we've called it out separately on the financials. Sequentially, our operating expenses excluding surcharges reduced despite an increase in spend for AI-related activities and higher legal and other costs. On the CapEx front, while we saw a sequential decline in Q2, we still expect the year to be over $10 billion in CapEx as we increase our spend to bring a 50k GPU cluster online. This new cluster will immensely increase our capabilities to scale FSD and other AI initiatives. We reverted to positive free cash flow of $1.3 billion in Q2. This was despite restructuring payments being made in the quarter and we ended the quarter with over $30 billion of cash and investments. Once again, we've begun the journey towards the next phase for the company with the building blocks being placed. It will take some time, but will be a rewarding experience for everyone involved. Once again, I would like to thank the entire Tesla team for their efforts.\\nA - Travis Axelrod: Great. Thank you very much, Vaibhav. Now let's go to investor questions. The first question is, what is the status on the Roadster?\\nElon Musk: With respect to Roadster, we've completed most of the engineering. And I think there's still some upgrades we want to make to it, but we expect to be in production with Roadster next year. It will be something special, like the whole thing [Indiscernible].\\nTravis Axelrod: Fantastic. The next question is about timing of Robotaxi event, which we've already covered. So we'll go to the next question, when do you expect the first Robotaxi ride?\\nElon Musk: I guess that, that's really just a question of when can we expect the first -- or when can we do unsupervised full self-driving. It's difficult, obviously, my predictions on this have been overly optimistic in the past. So I mean, based on the current trend, it seems as though we should get miles between interventions to be high enough that -- to be far enough in excess of humans that you could do unsupervised possibly by the end of this year. I would be shocked if we cannot do it next year. So next year seems highly probable to me based on [quite simply] (ph) plus the points of the curve of miles between intervention. That trend exceeds humans for sure next year, so yes.\\nTravis Axelrod: Thank you very much. Our third question is, the Cybertruck is an iconic product that wows everyone who sees it. Do you have plans to expand the cyber vehicle lineup to a cyber SUV or cyber van?\\nElon Musk: I think we want to limit product announcements to when we have a special -- specific product announcement event, rather than earnings calls.\\nTravis Axelrod: Great, thank you. Our next question is, what is the current status of 4680 battery cell production and how is the ramp up progressing?\\nLars Moravy: Yes, 4680 production ramped strongly in Q2, delivering 51% more cells than Q1 while reducing COGS significantly. We currently produce more than 1,400 Cybertrucks of 4680 cells per week, and we'll continue to ramp output as we drive cost down further towards the cost parity target we set for the end of the year. We've built our first validation Cybertruck with dry cathode process made on our mass production equipment, which is a huge technical milestone and we're super proud of that. We're on track for production launch with dry cathode in Q4, and this will enable cell cost to be significantly below available alternatives, which was the original goal of the 4680 program.\\nTravis Axelrod: Great. Thank you very much. The next question is any update on Dojo?\\nElon Musk: Yes, so Dojo, I should preface this by saying I'm incredibly impressed by NVIDIA's execution and the capability of their hardware. And what we are seeing is that the demand for NVIDIA hardware is so high that it's often difficult to get the GPUs. And there just seems this, I guess I'm quite concerned about actually being able to get state-of-the-art NVIDIA GPUs when we want them. And I think this therefore requires that we put a lot more effort on Dojo in order to have -- in order to ensure that we've got the training capability that we need. So we are going to double down on Dojo, and we do see a path to being competitive with NVIDIA with Dojo. And I think we kind of have no choice because the demand for NVIDIA is so high and the -- it's obviously their obligation essentially to raise the price of GPUs to whatever the market will bear, which is very high. So, I think we've really got to make Dojo work and we will.\\nTravis Axelrod: Right. The next question is what type of accessories will be offered with Optimus?\\nElon Musk: There's -- Optimus is intended to be a generalized humanoid robot with a lot of intelligence. So it's like saying what kind of accessories will be offered with a human. It's just really intended to be able to be backward compatible with human tasks. So it would use any accessories that a human would use. Yes.\\nTravis Axelrod: Thank you. The next question is, do you feel you're cheating people out of the joys of owning a Tesla by not advertising?\\nElon Musk: We are doing some advertising, so, want to say something?\\nVaibhav Taneja: Yes, I would say something. Our fundamental belief is that we need to be providing the best products at a reasonable price to the consumers. Just to give you a fact, in U.S. alone in Q2, over two-thirds of our sales were to -- deliveries were to people who had never owned a Tesla before and which is encouraging. We've spent money on advertising and other awareness programs and we have adjusted our strategy. We're not saying no to advertising, but this is a dynamic play and we know that we have not exhausted all our options and therefore plan to keep adjusting, but in the latter half of this year as well.\\nTravis Axelrod: Great. Thank you very much. The next question is on energy growth, which we already covered in opening remarks, so we'll move on to the next one. What is the updated timeline for Giga Mexico and what will be the primary vehicles produced initially?\\nElon Musk: Well, we currently are paused on Giga Mexico. I think we need to see just where things stand after the election. Trump has said that he will put heavy tariffs on vehicles produced in Mexico. So it doesn't make sense to invest a lot in Mexico if that is going to be the case. So we kind of need to see where the things play out politically. However, we are increasing capacity at our existing factories quite significantly. And I should say that the Cybertaxi or Robotaxi will be produced here at our headquarters at Giga Texas.\\nTravis Axelrod: All right. Thank you.\\nElon Musk: And as well Optimus towards the end of next year for Optimus production Version 2, the high volume version of Optimus will also be produced here in Texas.\\nTravis Axelrod: Great. Thank you. Just a couple more. Is Tesla still in talks with an OEM to license FSD?\\nElon Musk: There are a few major OEMs that have expressed interest in licensing Tesla full self-driving. And I suspect there will be more over time. But we can't comment on the details of those discussions.\\nTravis Axelrod: All right. Thank you. And the last one, any updates on investing in xAI and integrating Grok into Tesla software?\\nElon Musk: I should say Tesla is learning quite a bit from xAI. It's been actually helpful in advancing full self-driving and in building up the new Tesla data center. With -- regarding investing in xAI, I think, we need to have a shareholder approval of any such investment. But I'm certainly supportive of that if shareholders are, the group -- probably, I think we need a vote on that. And I think there are opportunities to integrate Grok into Tesla's software, yes.\\nTravis Axelrod: All right. Thanks very much. And now we will move on to analyst questions. The first question comes from Will Stein from Truist. Will, please go ahead and unmute yourself.\\nWill Stein: Great. Thanks so much for taking my question. And this relates a little bit to the last one that was asked. Elon, I share your strong enthusiasm about AI and I recognize Tesla's opportunity to do some great things with the technology. But there are some concerns I have about Tesla's commercialization and that's what I'd like to ask about specifically. There were some news stories through the quarter that indicated that you redirected some AI compute systems that were destined for Tesla instead to xAI or perhaps it was to X, I'm not sure. And similarly, a few quarters ago, if you recall, I asked about your ability to hire engineers in this area, and you noted that there was a great desire for some of these engineers to work on projects that you were involved with, but some of them weren't at Tesla, they were instead at xAI or perhaps even X again. So the question is, when it comes to your capital investments, your AI R&D, your AI engineers, how do you make allocation decisions among these various ventures and how do you make Tesla owners comfortable that you're doing it in a way that really benefits them? Thank you.\\nElon Musk: Yes, I mean, I think you're referring to a very -- like an old article, regarding GPUs. I think that's like 6 or 7 months old. At Tesla, we had no place to try them on, so it would've been a waste of Tesla capital because we would just have to order H100 and have no place to try them on. So it was just -- there was -- this wasn't a, let's pick xAI of Tesla. There's -- there was no -- the Tesla data centers were full. There was no place to actually put them. The -- we've been working 24/7 to complete the South extension on the Tesla Giga factory in Texas. That South extension is what will house 50,000 H100s and we're beginning to move the H100 server racks into place there. But we really needed -- we needed that to complete physically. You can't just order compute -- order GPUs and turn them on, you need a data center, it's not possible. So I want to be clear, that was in Tesla's interest, not contrary to Tesla's interest. Does Tesla no good to have GPUs that it can't turn on. That South extension is able to take GPUs, which is really just this week. We are moving the GPUs in there and we'll bring them online. With regard to xAI, there are a few that only want to work on AGI. So what I was finding was that when trying to recruit people to Tesla, they were only interested in working on AGI and not on Tesla's specific problems and they want to start -- do a start-up. So it was a case of either they go to a start-up or -- and I am involved or they do a start-up and I am not involved. Those are the two choices. This wasn't they would come to Tesla. They were not going to come to Tesla under any circumstances. So, yes.\\nVaibhav Taneja: Yes, I mean, I would even add that AI is a broad spectrum and there are a lot of things which we are focused on full time driving as Tesla and also Optimus, but there's the other spectrum of AI which we're not working on, and that's the kind of work which other companies are trying to do in this case, xAI. So you have to keep that in mind that it's a broad spectrum. It's not just one specific thing.\\nElon Musk: Yes. And once again, I want to just repeat myself here. I tried to recruit them to Tesla, including to say like, you can work on AGI, I if you want and they refused. Only then was xAI created.\\nWill Stein: I really appreciate that clarification. If I can ask one follow-up, it relates to the new vehicles that you're planning to introduce next year. I understand this is not the venue for product announcements, but when we think about the focus, I've heard on the one hand that the focus is on cost reduction. On the other hand, you also said that the Roadster would come out. Should we expect other maybe more limited variants like, similar to the cars that you make today, but with some changes or improvements or different, some other variability in the form factors. It should -- we expect that to be a significant part of the strategy in the next year or two?\\nElon Musk: I don't want to get into details of product announcements. And we have to be careful of the Osborne effect here. So, if you start announcing some great thing, it affects our near-term sales. We're going to make great products in future just like we have in the past, end of story.\\nTravis Axelrod: Right. The next question comes from Ben Kallo from Baird. Ben, please go ahead and unmute yourself.\\nBen Kallo: Hi. Thanks for taking my question. When we think about revenue contribution and with energy growing so quickly and Optimus on the come, how do we think about the overall segments longer term? And then do you think that auto revenue will fall below 50% of your overall revenue? And then my follow-up is just on the last call you talked about, distributed compute on your new hardware. Could you just update us and talk a little bit more about that, the timeline for it and how you would reward customers for letting you use their compute power and their cars? Thanks.\\nElon Musk: Yes, I mean, as I've said a few times, I think the long-term value of Optimus will exceed that of everything else that Tesla combined. So, it's simply -- just simply consider the usefulness utility of a humanoid robot that can do pretty much anything you ask of it. I think everyone on earth is going to want one. There's 8 billion people on earth, so it's 8 billion right there. Then you've got, all of the industrial uses, which is probably at least as much, if not way more. So I suspect that the long-term demand for general purpose humanoid robots is in excess of 20 billion units. And Tesla is -- that has the most advanced humanoid robot in the world, and is also very good at manufacturing, which these other companies are not. And we've got a lot of experience -- with the most experienced with the world leaders in real world AI. So we have all of the ingredients. I think we are unique in having all of the ingredients necessary for large scale, high utility, generalized humanoid robots. That's why my rough estimate long-term is in accordance with the ARK [ph] Invest analysis of market cap on the order of $5 trillion for -- maybe more for autonomous transport, and it's several times that number for general purpose humanoid robots. I mean, at that point, I'm not sure what money even means, but in the benign AI scenario, we are headed for an age of abundance where there is no shortage of goods and services. Anyone can have pretty much anything they want. It's a wild -- very wild future we're heading for.\\nBen Kallo: On the distributed compute?\\nElon Musk: Yes, distributed compute, that seems like a pretty obvious thing to do. I think the -- where this distributed compute becomes interesting is with our next generation Tesla AI truck, which is hardware viable or what we're calling AI5, which is -- from the standpoint of inference capability comparable toB200 -- and a bit of B200. And we are aiming to have that in production at the end of next year and scale production in '26. So it just seemed like if you've got -- even if you've got autonomous vehicles that are operating for 50 or 60 hours a week, there's a 168 hours in a week. So you have somewhere above I think a 100 [indiscernible] net computing. I think we need a better word than GPU because GPU means graph express in unit. So there's a 100 hours plus per week of AI compute, AI advanced compute from the fleet, from the vehicles and probably some percentage from the humanoid robots that it would make sense to do distributed inference. And if you're -- if there's a fleet of at some point a 100 million vehicles with AI5 and beyond, because you have AI 6 and 7 and whatnot, and there may be billions of humanoid robots that is just a staggering amount of inference compute or that could be used for general purposes at computing. It doesn't have to be used for, the humanoid robot or for the car. So I think, that's just -- that -- that's a pretty obvious thing to say, like, well, it's more useful than having to do nothing.\\nTravis Axelrod: All right. Thank you. The next question comes from Alex Potter from Piper Alex. Alex, please go ahead and unmute yourself.\\nAlex Potter: Perfect. Thanks. I wanted to ask a question on FSD licensing. You mentioned that in passing previously, was just wondering if you can elaborate maybe on the mechanics of how that would work. I guess presumably this would not be some sort of simple plug and play proposition that presumably an OEM would need, I don't know, several years to develop its own vehicle platform that's based on FSD. I imagine they would need to adopt Tesla's electrical architecture, compute, sensor stack. So I, correct me if I'm sort of misunderstanding this, but if you had a cooperative agreement of some kind with another OEM, then presumably it would take you several years before you'd be able to recognize licensing revenue from that agreement. Is that the right way to think about that?\\nElon Musk: Yes. The OEMs not real fast. There's not really a sensor suite, it's just cameras. But they would have to integrate our AI computer and have cameras with a 360 degree view. And at least the gateway, like the what talks to the internet, and communicates with the Tesla system, what that you need kind of a gateway computer too. So it's really gateway computer with the cellular and Wi-Fi connectivity, the Tesla AI computer, and seven cameras, or not cameras, again, a 360 degree view. But this will -- given the speed at which, the auto industry moves, it would be several years before you would see this in volume.\\nAlex Potter: Okay, good. That's more or less what I expected. So then the follow-up here is, if you did sign an FSD licensing agreement with another automaker, when do you think you would disclose that? Would you do it right when you signed the agreement or only after that multiple years has passed and the vehicle is ready to be rolled out? think it depends on the OEM. I guess we'd be happy either way. Yes, it depends on, what kind of arrangement we enter into. A lot of those things are, we are not resolved yet, so we'll make that determination as and when we get to that point.\\nElon Musk: And the kind of deals that are obviously relevant are only if, some OEM is willing to do this in a million cars a year or something significant. It's not -- if it's like 10,000 or a 100,000 cars a year. We can just make that ourselves.\\nTravis Axelrod: All right, thank you. The next question comes from Dan Levy from Barclays. Dan, please go ahead and unmute yourself.\\nDan Levy: Hi, good evening. Thanks for taking the questions. First, wanted to start with a question on Shanghai. You've leveraged Shanghai as an export center really due its low cost, and that makes sense. But maybe you can just give us a sense of, of how the strategy changes, if at all, given, the implementation of tariffs in Europe. Also to what extent, your import of batteries from China into the U.S., how that might change given the tariffs. Thank you.\\nElon Musk: Yes. I think I covered some part of it in my opening remarks, but just to give you a little bit more, just on the tariff side, the European authorities did sample certain other OEMs in the first round to establish the tariffs for cars being imported from China into Europe. While we were not picked up in our individual examination in the first round, they did pick us up in the second round. They visited our factory. They -- we worked with them, provided them all the information. As a result, we were adjusting our import strategy out of China into Europe. But -- and one other thing to note is in Q2 itself, we started building right hand from model wise out of Berlin and we also delivered it in U.K. And we're adjusting as needed, but we will keep adjust. We're still importing Model 3s into Europe, out of Shanghai. And we are still evaluating what is the best alternate manage all this just on the examination by the European authorities. Like I said, we cooperated with them. Well, we are confident that they, we should get a better rate than what they have imposed for now. But this is literally evolving and we are adjusting as fast as we can with this. It is -- I would also add that, because of this, you've seen the impact that Berlin is doing more imports into places like Taiwan as well as, U.K I just mentioned. So it will keep changing and we will keep adapting as we go about it.\\nDan Levy: Great. Thanks. Yes, thank you. As a follow-up, wanted to ask about the Robotaxi strategy and specifically the shareholder deck here notes that the release is going to be -- one of the gating factors is regulatory approval. So maybe you could help us understand which regulations specifically are the ones that we should be looking for? Is it FMVSS, that's standard? And then to what extent does the strategy shift? You've done with FSD more of a nationwide, no boundary approach. Is the Robotaxi approach one that's more geofenced, so to speak, and is more driven by a state by state approach?\\nElon Musk: I mean, our solution is a generalized solution like what everybody else has. They, if you see like Waymo has one of it, they have a very localized solution that requires high density mapping. It's not -- it's quite fragile. So, their ability to expand rapidly is limited. Our solution is a general solution that works anywhere. It would even work on a different earth. So if you're rendered a new Earth, it would work on a new earth. So it's -- there's this capability I think in our experience, once we demonstrate that something is safe enough or significantly safer than human. We are fine that regulators are supportive of deploying deployment of that capability. It's difficult to argue with if you -- if you've got a large number of -- yes, if you've got billions of miles that show that in the future unsupervised FSD is safer than human. What regulator could really stand in the way of that? They would -- they're morally obligated to approve. So I don't think regulatory approval will be a limiting factor. I should also say that the self-driving capabilities of this are deployed outside of North America are far behind that in, in North America. So with the -- with Version 12.5, and maybe a 12.6, but pretty soon we will ask for regular regulatory approval of the Tesla supervised FSD in Europe, China, and other countries. And I, I think we're likely to receive that before the end of the year, which will be a helpful demand driver in those regions obviously.\\nTravis Axelrod: Thank you. Just to …\\nElon Musk: Go ahead, Travis.\\nTravis Axelrod: In terms of like, as Elon said, in terms of regulatory approval, the vehicles are governed by FMVSS in U.S., which is the same across all 50 states. The road rules are the same across all 50 states. So creating a generalized solution gives us the best opportunity to deploy in all 50 states, reasonably. Of course there are state and even local and municipal level regulations that may apply to, being a transportation company or deploying taxes. But as far as getting the vehicle on the road, that's all federal and that's very much in line with what you was just suggesting about the data and the vehicle itself.\\nVaibhav Taneja: And to add to the technology point, the end-to-end network basically makes no assumption about the location. Like you could add data from different countries and it just like perform equally well there, just like almost like close to zero US specific, um, code in there. It's all just the data that comes from the U.S\\nElon Musk: Yes. To, to that end of the show, it's like, we can go as humans to other countries and drive with some reasonable amount of assessment in those countries. And that's how you design the FSC software. Yes, exactly.\\nTravis Axelrod: Great. Thanks guys. The next question comes from George from Canaccord. George, please go ahead and unmute yourself.\\nGeorge Gianarikas: Hi, everyone. Thank you for taking my questions. Maybe just to expand on the regulatory question for a second. And I could be comparing apples and oranges, but GM canceled their pedal less, wheel less vehicle. And according to the company this morning, their decision was driven by uncertainty about the regulatory environment. And from what we understand, and again, maybe I'm wrong here, but the Robotaxi that has been shown at least in images of the public is also pedal less and wheel less. Is there a different regulatory concern just if you deploy a vehicle like that that doesn't have pedal -- pedals or a wheel, and that may not be different from just regular FSD on a traditional Tesla vehicle. Thank you.\\nElon Musk: Well, obviously the real reason that they cancel it is because GM can't make it work, not because the regulators, they're blaming regulators. That's misleading of them to do so, because Waymo is doing just fine in those markets. So it's just that their technology is not far.\\nGeorge Gianarikas: Right. And maybe just as a follow-up, I think you mentioned, that FSD take rates were up materially after you reduced the price. Is there any way you can help us quantify what that means Exactly? Thank you.\\nVaibhav Taneja: Yes, we shared the [indiscernible] that there we've seen a meaningful increase. I don't want to get into specific because we started from a low base and -- but we are seeing encouraging results. And the key thing here is, like Elon said, you need to experience it because words can't describe it till the time we actually use it. And that's why we are trying to make sure that every time a car is getting delivered, people are being showed how this thing is working because when you see it working, you realize how great it is. I mean, just to give you one example, so again, there's a bias example, but I have a more than 20 mile commute into the factory almost every day. I have zero interventions on the latest stack, and the card just literally drives me over. And especially with the latest version wherein, we are also tracking your eye movement, the steering wheel lag is almost not there as long as you're not wearing sunglasses.\\nElon Musk: Well, we are fixing the sunglasses thing. It's coming soon. So you will be able to drive -- you'll be able to have sunglasses on and have the car drive.\\nGeorge Gianarikas: Yes.\\nElon Musk: So -- but there's number of times I've talked with smart people who like live in New York or maybe downtown Boston and don't ever drive and then ask me about FSD, I'm like, you can just get a car and try it. And if you're not doing that, you have no idea what's going on.\\nTravis Axelrod: Thank you. The next question comes from Pierre from New Street. Pierre, please unmute yourself.\\nFerragu Pierre: Hey, guys. Thank you for taking my question. So it's on Robotaxi again, and I completely get it that with a universal solution, we will get like regulatory approval, we'll get there eventually clicking up miles and compute, et cetera. And my question is more, how you think about deployments, because I'm still like, I'm thinking once you have a car that can drive everywhere, that can replace me, it can replace a taxi, but then to do the right hailing service, you need a certain scale. And that means a lot of cars on the road and so you need an infrastructure to just maintain the cars, take care of them, et cetera. And so my question is, are you already working on that? Do you have already an idea of what, like your plan to deploy looks like? And is that like a test Tesla only plan or are you looking at partners, local partners, global partners to do that? And I'll have a quick follow-up.\\nElon Musk: Yes. This would just be the Tesla network. You just literally open the Tesla app and summon a car and resend a car to pick you up and take you somewhere. And you can -- our -- we'll have a fleet that's I don't know, on order of 7 million dedicated global autonomy soon. In the years come it'll be over 10 million, then over 20 million. This is immense scale. And the car is able to operate 24/7, unlike the human driver. So, the capability to -- like, if there's this basically instant scale with a software update. And now this is for a customer on fleet. So you can think of that as being a bit like Airbnb, like you can choose to allow your car to be used by the fleet, or cancel that and bring it back. It can be used by the fleet all the time. It can be used by the fleet some of the time, and then Tesla would take -- would share on the revenue with the customer. But you can think of the giant fleet of Tesla vehicles as like a giant sort of Airbnb equivalent fleet, Airbnb on wheels. The -- I mean, then in addition we would make some number of cars for Tesla that would just be owned by Tesla and be added to the fleet. I guess that would be a bit more like Uber. But this would all be a Tesla network. And there's an important clause we've put in, in every Tesla purchase, which is that the Tesla vehicles can only be used in the Tesla fleet. They cannot be used by a third-party for autonomy.\\nFerragu Pierre: Okay. And do you think that scale is like progressively so you can start in a city with just a handful of cars and you grow the number of cars over time? Or do you think there is like a critical mass you need to get to, to be able to offer like a service that is of competitive quality compared to what like the -- like Uber would be typically delivering already?\\nElon Musk: I guess I'm not -- maybe I'm not conveying this correctly. The entire Tesla fleet basically becomes active. This is obviously maybe there's some number of people who don't want their car to own money, but I think most people will. It's instant scale.\\nTravis Axelrod: Thank you. Our next question comes from Colin from Oppenheimer. Colin, please unmute yourself.\\nColin Rusch: Sorry about that guys. I've got two questions around energy storage. With the tight supply and the stationary storage, can you talk about your pricing strategy and how you're thinking about saturation and given geographies given that some of these larger systems are starting to shift wholesale power markets in a pretty meaningful way quickly?\\nVaibhav Taneja: So, I mean, we are working with a large set of players in the market and our pipeline is actually pretty long. And there's actually very -- there's actually long end in terms of where you enter into a contract where delivery started -- starts happening. And so far we have good pricing leverage. And now Mike, chime in on this too.\\nUnidentified Company Representative: Yes, I mean there's a lot of competition from Chinese OEMs just like there is in the vehicle space. So we're in close contact with our customers and making sure that we're remaining competitive in where they're needing to be competitive to, to secure contracts to sell power and energy in the markets. We had a really strong contracting quarter and continue to build our backlog for 2025 and 2026. So we feel pretty good about where we are in the market. We realize that competition is strong, but we have a pretty strong value proposition with offering a fully integrated product with our own power electronics and site level controls. So …\\nVaibhav Taneja: Yes, and again, the aspect which people miss do not fully understand is that there's also a whole software stack, which comes with from Megapack, right? And that is a unique proposition which we -- which is only available to us, and we are using it with other stuff too, but that gives us a much more of an edge as compared to the competition.\\nElon Musk: Yes, we find customers that they can sort of put together a hodgepodge solution. And so, and then sometimes they'll pick that solution, and then that doesn't work. And then they come back to us.\\nUnidentified Company Representative: Yes, and we're not really seeing saturation for like, on a global scale. There's little pockets of saturation in different markets, but we're more seeing that there's markets opening up given demand on the grid just continues to increase more than anyone expects. So that just opens up markets, really across the world in different pockets.\\nVaibhav Taneja: Yes, I mean just even on the AI computer side, right? These GPUs are really powerful already and the amount of new pipeline, which we're getting for people for data center backup and things like that is increasing at a pretty large scale.\\nColin Rusch: Yes. Thanks. And then the follow-up here is 4680 process technology and the role to role process. There's some news around your equipment suppliers. Can you talk about how far along you are in, in potentially qualifying an incremental supplier around some of that, those critical process technology steps?\\nLars Moravy: Yes, I can talk about that. As you're probably referring to the lawsuit that we have with one of our suppliers, look, I don't think this is going to affect our ability to roll out 4680. We have very strong IP position in the technology and the majority of the equipment that we use is in-house designed and some of it's in-house build. And so we can take our IP stack and have someone else build it if we need to. So it's, that's not really a concern right now.\\nElon Musk: Yes. I, I think people don't understand just how much demand there will be for grid storage. They really just like the [indiscernible] I think are underestimating this demand by probably orders magnitude. So that the actual energy, total energy output of, say the U.S grid is if the power plants can operate a steady state is at least two to three times, the amount of energy it currently produces, because there are a huge gap. There's a huge difference in the -- from peak to trough in terms of energy of power generation. So in order for a grid to not have blackouts, it must be able to support the load at the worst minute of the worst day of the year, the coldest or hottest day, which means that for the rest of the time, the rest of the year, it's got massive excess power generation capability, but it has no way to store that energy. Once you add battery packs, you can now run the power plants at steady state. Steady state means that basically any given grid anywhere in the world can produce in terms of cumulative energy in the course of the year, at least twice what it is currently producing in some cases, maybe three times.\\nTravis Axelrod: All right. Thank you, Elon. The next question comes from Colin Langan from Wells Fargo. Colin, please unmute yourself.\\nColin Langan: Oh, great. Thanks for taking my questions. Do you hear me?\\nTravis Axelrod: Yes.\\nColin Langan: Yes. Sorry. I guess when we are going to ask, if Trump wins, there's a higher chance that IRA could get cut. I think Elon, you had commented online that Tesla doesn't survive on EV subsidies. But when Tesla lose a lot of support if IRA goes away? I think model Y3 and Y get IRA help for customers, and I think your batteries get production tax credits. So, just one, can you clarify if the end, if IRA ends, would it be a negative for your profitability in the near-term? Why might it not be a negative? And then, any framing of the current support you get, IRA-related?\\nElon Musk: I guess that there would be like some impact, but I think it would be devastating for our competitors. But -- and it would hurt Tesla slightly. But long-term probably actually helps Tesla would be my guess. Yes -- but I've said this before on earnings calls, it -- the value of Tesla overwhelmingly is autonomy. These other things are in the noise relative to autonomy. So I recommend anyone who doesn't believe that Tesla will solve vehicle autonomy should not hold Tesla stock. They should sell their Tesla stock. You should believe Tesla will solve autonomy, you should buy Tesla stock. And all these other questions are in the noise.\\nVaibhav Taneja: Yes, I mean, I'll add this just to clarify a few things that -- at the end of the day, when we are looking at our business, we've always been looking at it whether or not IRA is there and we want our business to grow healthy without having any subsidies coming in, whichever way you look at it. And that's the way we have always modeled everything. And that is the way internally also even when we are looking at battery costs, yes, I --, there are manufacturing credits which we get, but we always drive ourselves to say, okay, what if there is no higher benefit and how do we operate in that kind of an environment? And like Elon said, we definitely have a big advantage as compared to a competition on that front. We've delivered it and you can see it in the numbers over the years. Like, so there is you cannot ignore the fundamental size of the business. And then on top of it, once you add autonomy to it, like even said, it becomes meaningless to you think about the short-term.\\nTravis Axelrod: Okay. I think that's unfortunately all the time we have for today. We appreciate all of your questions. We look forward to talking to you next quarter. Thank you very much and goodbye.\\nElon Musk: That's excellent.\\n\\n\"" | |
| ], | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "string" | |
| } | |
| }, | |
| "metadata": {}, | |
| "execution_count": 52 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [], | |
| "metadata": { | |
| "id": "Aw-HLBgapot8" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "\n", | |
| "pdf_url = \"https://digitalassets.tesla.com/tesla-contents/image/upload/IR/TSLA-Q2-2024-Update.pdf\"\n", | |
| "pdf_filename = os.path.join(directory, \"TSLA-Q2-2024-Update.pdf\")\n", | |
| "\n", | |
| "response = requests.get(pdf_url)\n", | |
| "if response.status_code == 200:\n", | |
| " with open(pdf_filename, 'wb') as file:\n", | |
| " file.write(response.content)\n", | |
| " print(f\"PDF downloaded and saved as {pdf_filename}\")\n", | |
| "else:\n", | |
| " print(f\"Failed to download the PDF from {pdf_url}. Status code: {response.status_code}\")" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "Gld0YIZIid7W", | |
| "outputId": "06025e65-b9fd-4f4a-a3f3-59d9d230d60e" | |
| }, | |
| "execution_count": 25, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "PDF downloaded and saved as earnings_announcement_data/TSLA-Q2-2024-Update.pdf\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "import os\n", | |
| "import requests\n", | |
| "import pdfkit\n", | |
| "\n", | |
| "# Step 1: Download the SEC HTML document\n", | |
| "sec_url = \"https://www.sec.gov/Archives/edgar/data/1318605/000162828024032662/tsla-20240630.htm\"\n", | |
| "html_filename = os.path.join(directory, \"tsla-20240630.html\")\n", | |
| "pdf_filename = os.path.join(directory, \"tsla-20240630-10Q.pdf\")\n", | |
| "\n", | |
| "headers = {\n", | |
| " 'User-Agent': 'YourCompanyName ([email protected])',\n", | |
| " 'Accept-Encoding': 'gzip, deflate',\n", | |
| " 'Host': 'www.sec.gov'\n", | |
| "}\n", | |
| "\n", | |
| "response = requests.get(sec_url, headers=headers)\n", | |
| "\n", | |
| "# Check if the request was successful\n", | |
| "if response.status_code == 200:\n", | |
| " html_content = response.content.decode('utf-8')\n", | |
| "\n", | |
| " # Step 2: Save the HTML content to a file\n", | |
| " with open(html_filename, \"w\", encoding='utf-8') as file:\n", | |
| " file.write(html_content)\n", | |
| "\n", | |
| " # Step 3: Convert the HTML file to PDF\n", | |
| " pdfkit.from_file(html_filename, pdf_filename)\n", | |
| " print(f\"PDF saved as {pdf_filename}\")\n", | |
| "else:\n", | |
| " print(f\"Failed to download the HTML document from {sec_url}. Status code: {response.status_code}\")\n" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "DRlTMRPLL8L0", | |
| "outputId": "ee3f9275-bb3d-48a7-fbb0-299d826f7f5d" | |
| }, | |
| "execution_count": 20, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "PDF saved as earnings_announcement_data/tsla-20240630-10Q.pdf\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "import fitz # PyMuPDF\n", | |
| "from IPython.display import display, Image\n", | |
| "from IPython.display import IFrame\n", | |
| "\n", | |
| "def pdf_to_images(pdf_path):\n", | |
| " # Open the PDF file\n", | |
| " doc = fitz.open(pdf_path)\n", | |
| " images = []\n", | |
| " for page_num in range(len(doc)):\n", | |
| " # Get the page\n", | |
| " page = doc.load_page(page_num)\n", | |
| " # Render page to an image\n", | |
| " pix = page.get_pixmap()\n", | |
| " # Save the image to a temporary file\n", | |
| " img_path = f\"page_{page_num}.png\"\n", | |
| " pix.save(img_path)\n", | |
| " images.append(img_path)\n", | |
| " return images\n", | |
| "\n", | |
| "path_to_pdf = \"earnings_announcement_data/TSLA-Q2-2024-Update.pdf\"\n", | |
| "images = pdf_to_images(path_to_pdf)\n", | |
| "\n", | |
| "# Display each image\n", | |
| "for img in images:\n", | |
| " display(Image(filename=img))\n", | |
| " os.remove(img)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 1000 | |
| }, | |
| "id": "gUBLA2dVqc55", | |
| "outputId": "401cffb2-b85b-45da-a7b5-ba111c935682" | |
| }, | |
| "execution_count": 54, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABjAAAAN7CAIAAABkokShAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAxF0lEQVR4nOzdeZNU5d344edNyMzIKsO+CC5oRFAWEUSRRQyDCMg2ARwUBAFBQVxAVBBZBI3RUstSEzVGLS0TlxJNouUaccEkRo0oRGQJ+AKeU3T9Tp1f93RPzzB8R3yu6y/tc5/73KcHC+dTfe7+nxMAAAAAIMp///vf/2npNQAAAADwf4ggBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAAABCCVIAAAAAhBKkAAAAAAglSAEAAAAQSpACAAAAIJQgBQAAAEAoQQoAAACAUIIUAAAAAKEEKQAAjkplZWW3bt06derU0gsBAI4bghQAAEdl3bp19x4xd+7cll4LAHB8EKQA4Keld+/el1xyybx586677rqFCxdOmzZt9OjRnTt3Ppo5zznnnNra2iVLllx77bUzZ85M/rW5VpvVqVOn8ePHL1iwYNmyZXV1dRMmTKiurm7CPFVVVeeff/6cOXOWLl2azHb55Zc3YcHNtZg83bt3/8UvfnHGGWcc5U8kJ5kkmbB169aNOiu5teSsNm3aHP0Cmss999yTC1LJH7CWXgsAcHwQpADgJ6FLly5r1qz55JNPfqzPoUOH3nzzzeXLl7dr1678OQcOHLht27YvvviicMKvvvrqxhtvbN++/dGvvE2bNvPmzXv55ZcPHjxYuOwXX3xx+PDhZU5VXV29efPm3bt3Fy74s88+W7Vq1Yknnhi2mDytW7fevn17dsKnnnqqaVPlzJo1KxdxtmzZ0rFjxzLPuuKKK3Jn3XPPPc0SxZqFIAUANJYgBQAtrLKycunSpd999129KSrPl19+OWfOnAbn7Nix46OPPtrgbB9++OHpp59+NIufOHFivcErrwStWrWqwamGDx/++eefl57qrbfeOuWUUwIWU+jGG2/Mm+pvf/tbE+ZJXX311ff+P927dy/zrOSnn57Vu3fvo1lAMxKkAIDGEqQAoCW1bdv2+eefL+wm+/bt27lz55dffnno0KHCoxs2bCg9beGchw8f3r9/f+FUn3zySZOfZRs2bFgybd6EBw4cKHwxsXDhwhJTnXPOOXv37s2u9uOPP37ppZdeffXVvFT3/vvv1/vBrmZcTKGTTz45u7wcQSoVEKTatWu3ePHiW265ZcWKFWedddYxugoAEEaQAoAW06ZNm9dffz3bON59992FCxf26NEjHVNRUTF48OD169fnPch29913l5g5/aDQZ599tnz58uQX+GSeE45sgXTNNdf8+9//zk7VYN4qpq6uLjdD8v8TTzzxRLpPU2Vl5fnnn//MM89kr/LDDz8Uyy4dO3bcuXNnOvKFF17IFoeqqqp58+Z9//336YDf/OY3x24x9UomzJ24Y8eOXbt2CVJ5AoJUcrPpjU+cOPEYXQUACCNIAUCL2bBhQ5pIDh8+fNttt1VWVhYb3KdPn1deeSU7fsyYMcUGv//++99+++28efNyHSrPaaed9s0336RTff/99w3uzVSvKVOmJKc/++yzxZ7727hxYzYDrVy5st5hq1atSsc8//zzVVVVhWPGjx+fjjl48GDybhyjxRQaPXp0elayjC+//FKQyiNIAQCNJUgBQMs4//zzs4/jLVu2rMFT2rZt+5e//CU9ZefOncUC1pAhQ7p161ZiqgULFmTrzMiRI5twC23atBk1alSJASeeeOI//vGP9Cp//OMfC8ckN5XWse+//75Xr17FZnv88cfTqdavX38sFlMoeYc/+OCD3Cm///3vk1cEqUKCFADQWIIUALSM7ENkTz75ZJln9e3bN7sV1GWXXda0q3fu3DkbpGbMmNG0eRq0ZcuW9Co7duwoHHD55ZenA7Zt21ZiqgsuuCAd+c477xyLxRRaunRpbvy+ffty+6kLUoUEKQCgsQQpAGgByW/Xyd/Bua5x8ODBfv36lX9u8st/WlVeeOGFJq9hz5496Ty1tbVNnqe0NOgkPv3008IB9913Xzrg4osvLjFVq1atvv3229zIw4cPd+3atdkXk6d79+7p1l233npr7sWffpAaNGjQ6NGjhw4dmrxj6Ys9evSoqampq6tbvHjxlVde+ctf/rL0Z+jyVFdXJ3POnj372muvnT9//pQpU7Jfd1hmkGrfvv3gwYOnTp2aLGPJkiULFy5MVjJu3Li+ffsWO6VLly6Dj0iGpTeevHWDM5L7LfGsa/ImnHrqqRMnTkyuldz7Nddck/xpv/DCCzt27Fj+7QMAzU6QAoAWsHz58rSMPPfcc406N/kNPD13//79rVu3bsICKioqsg8Mjh07tgmTlOPWW29Nr7J9+/bCATt27MgdTdbTrl270rO9+OKLR7PmBheT5+GHH84N3rlzZ5s2bXIv/sSDVLLOdEDu+cfq6uqFCxfeW59ktgb//CQDpk+fvm3btsLTr7322s6dO59QRpA644wzFixYsHXr1nqXkUj+i6g3kGXfpRLOO++8eq971lln3XzzzfWekixm1qxZ9X5jIwAQQJACgBbw9NNPp2Vk3rx5jT09bSKJYr+Kl9azZ88fMwYOHNiEScpx//33p1dJ7jrvaGVlZfpJsY8//rjB2bIbk9fV1TXvYvKMGDHi8OHDucGTJk1KXz+OglQyoH///nfffXeJlLNy5coSW9onsyUDSpy+YcOGU089tXSQmjhxYhlN6d5knYVNavHixeWce+GFFxZet6ampsET16xZ06VLlzLffACgGQlSANACvvjii7SMnH322Y09/bnnnktPv+aaa5qwgOzOTXv37m3at+yV4913300vdOONN+YdPf3009Ojf/rTnxqcbcmSJen4NWvWNO9islq1avX222/nRr744ovZQ8dRkJo0aVKaitavXz99+vSxY8cmL95yyy3ZKJPMWexyeR+tuu6662pqai655JIrr7xyy5YtuRc3bdqUfn6q3iCVXDp3NFlM8sd11KhR/fv3P+OMM84999ypU6du3Lgxnb9wa/9hw4Zde8T111+fDrvtttuuzVi0aFHh85vjx49PxycrnDx5cr9+/bp163byySePHDly1apV6dHk3aj3ix0BgGNKkAKAaNkNxZO/iZvwzF32g0K33357E9bwu9/9Lp3hqaeeasIM5Tj77LNLfw7r4osvTo8+8cQTDU44a9asdPx9993XvIvJmj9/fm7YgQMHzjjjjOyh4yhI5Wzbtu2yyy7LNsdWrVpNmjQpO6BPnz6FU5177rnpmC1btgwaNCh7tLq6etGiRXnXqjdIrV27dtOmTRMnTjzppJMKjyb3ftddd6UzFPuaxUZtap7cTlri1qxZU5irkncg+05OmDCh9IQAQLMTpAAgWr9+/dIs8uWXXzZhhuwWVFu3bm3CAg4ePJjOMHr06CasoRwPPfRQepXXXnutcEBNTU064P77729wwuz4hx9+uHkXk+rcufOuXbtyI9etW5d39PgKUskfjyFDhtQ71YIFC9Jhs2fPLhyQ/VDSRRddVDigVatWM2bMaDBI9erVq0OHDiVuasyYMekM9T58d0Ijg1R6a/fcc0+xwlVVVbV69ercsOSnXFFRUXpOAKB5CVIAEG3o0KFpGdmxY0cTZkh+305nePTRRxt7+pNPPpme/tJLLzVhAeUYOHBgdt/0Cy64oHDM9OnT0wH33HNPg3OOHTu2UZ+oatRiUr/+9a9zw7744ovCTa+PryA1fPjwYlNlE89dd92VV2S6du2aHl29enX2C/vyzJ07t3SQalDPnj3TGaZOndrgaksHqS5duqS7p5f++shsCDv99NObsHIAoMkEKQCINnr06LSMvPvuu02Y4corr2xal0lMmjQpPXf//v39+/dvwgIaVFlZ+de//rXBajZnzpx0zObNmxucdtSoUen4Z555pnkXkzN48OA0Xc2YMaNwwHEUpBYsWFB6tltvvTUd3KNHj+yhCy64ID1U+om2ioqKNAA1LUhl11wsIZUfpEaOHJmOPOuss0qM7NOnTzry2H3RJABQL0EKAKKNGDEijSPlfLVcoUWLFqUzNGorpV69en311VfpuUuXLm3C1ctx2223pVf5+9//3rFjx3qHzZw5Mx127733NjjtuHHj0vGPPfZY8y4m54033siNfPXVV+sdcBwFqRK7lRfOlrdF1PTp09NDebtoFSr9LXsNqqysbHDN5Qep7E0VfsAt66STTkpHJvfbhJUDAE0mSAFAtAEDBqR9pGl7SK1atSqd4c477yzzrKqqqu3bt6cnPvfcc024dDlqamoOHz6cu8qBAwdKPB+X/bK/Bx98sMGZL7vssnT8Aw880LyLScyePTs3Mvk/pGK7nv+cgtTkyZPTwaNGjcoeym5YXu9m5FmNClIdO3Y888wzhw4dOnLkyIuPyD46d/RBavny5enI5Af6q+KuvPLKdGTyzw2uHABoRoIUAETr06dPWlUOHTqU/fqzMj3wwAPpDMuWLSvzrEceeSQ968MPP2ywMjTNoEGD9uzZk16orq6uxODx48enI8t59nDGjBnp+HIe8WvUYjp27Jh+fGzLli3Fhv2cgtS4cePSwcnPInsou6N5gxt+lxOkknucNm3a2rVr7y3p6IPULbfcUvoS9RKkACCYIAUA0aqqqvbv359WkgafhyqU/aDTmDFjyjll/fr16Slff/31MdrC+dRTT017TWLjxo2lxw8ePDgdXOwRuaxly5al4xt83rCxi7n99tvT96fEY33HIkgV+ya4QnV1delZebs+5TQqSGW3W8oLUjfddFN6qMSO5jmlg1Ry+pQpU9J9pko7+iB1xx13NLZGJevPe2IRADjWBCkAaAFvv/12GkpmzpzZqHPbt2+/b9++3LmHDx8uvSNSzg033JBebvfu3YMHD27qwkvp2bPnp59+ml7okUceafCULl26pOM/+eSTBsdv3bo1HV+6SjRhMR999FH6Fv2tuOR/nnLD9u/fn75Y4hNVxdTW1qZBpPw+mH2SrkOHDoUDGhWkRo8enQ7Oe2RvxYoV6aHSOzGd0FCQyn6qK/kJzp8/P7nWgAED+vXrd9oRZ555ZjMGqewnpJK3qF0ZqqqqSt8gANDsBCkAaAHZZ+4efvjhRp07ZcqU9Nz33nuvwfELFixIx+/bt+/CCy9s6qpL6dKlywcffJBe6A9/+ENlZWU5J37//fe5Uw4dOtRg+HjxxRfTS5x55pnNu5ivv/76x6bavXt3OTebdfnll6fdZMSIEWWelX4v3tatW+t9kq5RQeqKK65IBw8dOjR7aMmSJemhej+KlVUiSA0YMCCdZ82aNfVO1bybmmcfNmzbtm3plQMALUWQAoAWMHny5LRl7Nmzp7q6uvxzX3/99fTcBjeQqq2tzW7pfemllx7Vuos46aST3nrrrXRVL730UuvWrcs895VXXklPvOiii0qMbNeuXfrRsH/961/Nvphsw2qsHTt2lHm/qeHDh6fdZPbs2eWc0qFDh/SUFStW1DumUUHquuuuSwfnPTY4a9as9NCAAQNKz1MiSGWfTDz11FPrPb15g9TcuXPTkX379i29cgCgpQhSANACTjzxxG+++SbNGWvXri3zxOzX0v3www+lS9akSZPS58uSf5g8eXJzrD1f27ZtX3vttXRVyT+3a9eu/NNXr16dnlt6n/LkdtKRDz30ULMvpl+/fpPL8N133+Um/+KLL9IXm7ARWKdOndJusmnTpnLWeckll6SnJO9GvWOyQer6668vsR958l6lISl55/NGZp/mmzJlSolVnXzyydu2bSsWpNKPdN11113FZignSPXq1avBe8+56KKL0pHjxo0rMRIAaEGCFAC0jOwu48nfx+X85ty/f//du3eXmW/Gjh2bbp1+6NChxu5UVaYTTzwx+xjdn//858Z+ed+wYcPS03ft2lViS6zsZ6nq3cr96BdTjuba1PyE/3+fplmzZpUeXF1dfdddd+UGb9u2rWfPnvUOywapxK9+9atiE2bz1lVXXZV3NBuAkj+rxXZZ6tKlS3YT8cIgtW7dutyhDRs2FFtJ165dGwxS2TElbirRrVu3NJCtXr26zEdHAYBgghQAtIwOHTp8/vnnaT3Zs2dPbW1tifE1NTXZTY4++uijEvvjjBgxYu/evbmRhw8frqurOwZ3cEJFRcWTTz6ZLumdd95p1LOHqTfeeCOdpNiOWkuWLEnHvPnmm8duMQ1qxiB1zjnnZONR8iMuNjK5l1WrVpXoR6m8IHXvkecBC6NMjx49Nm3alI4ZOHBg4VTph5sS9X68Lplk7dq12WsVBqkbb7wxPVpvROvatWt2kmJBKntfycKK3X5Oduv3K664ovTgVq1a2dQcAOIJUgDQYsaOHXvw4MEfM1555ZW6urq+ffvmtj2qrKzs3bv3zJkzsx/8yRk5cmSxabt167Zr16505NNPPz2uDOV8W1+eNWvWpFfZu3dvbW1tg1cZNGhQ4TyXXnpp9taeeOKJ7GZDnTt33rhxY3o0ecfqvffmWkyDmjFInXBky/ls0LnhhhsGDx6cTY09e/acMGHChg0b0jF33nlniR9WYZDKTZv9Ir+BAweuX78+PVpsJ7Jhw4ZlJ5k8eXIyee5QVVXVRRddlPxccoe2bNlSLEhNmTIlu4y8bwYcMmRI9tZKBKnEbbfdlg5LPyJXUVHRv3//vGlPPvnkdEmJ5L+p5E9R4YQ9evSoqam54447Fi1aVOyiAMAxIkgBQEuaMGHCDz/88GN99uzZk+5HXujdd9/t169fvXPOnj272Fkl3H///Y1d/M6dOxt7leSOevfuXThV9gHG3LAdO3a89tpryW2m22DlLFy48FgvprTmDVKtW7fOfoYotWHDhjvvvDNbVdLXi20NnpMNUjfddNPdd9+d/mvyJq9cuTKbonITFvsSvVatWi1evDg7eNOmTSuPyH66au7cudOmTSsWpKqrq7ODk/XMmTOnpqZm+vTpt9xyS+7FrVu33nzzzQ0Gqez3EibuuOOO5K3LRbELLrggb3B2J6l7jzzkmAyuq6ubMWNGbW3tokWLkrc3PVpsh3gA4NgRpACghQ0dOnT79u3lBJR9+/bt2bMn/df//Oc/V199deGECxYsaGyaSTz33HONXXn2EcLyJfdbOFVFRcXdd99dIsD9eORzTyWePWzGxZTWvEHqhCNbX9XW1hY2qUIrVqzo2rVr6dnyvmWvd+/et99+e7EJ161bV/p76JLZrr/++mKnb926taamplWrVlOnTs29UhikTjjyZGK6e3qh5Oc+cODAyZMnp2sutpi2bdvmPSGYqvdDc8kPd/PmzaXf0pxk/aXfVQCg2QlSAPCTkPxi//jjj2cftcvasWPHmjVrevbsefbZZ//zn//MHnrzzTfzfhtPfr3/9ttvG5tmVq5c2dg1P/jgg4cOHWrUVb7++usSj5uNHj362WefzXuM8ccjJe6xxx4r/U12zb6YYt57773c6S+//HJjzy2hd+/ec+bMSbctz9q8efOiRYsGDBhQzjx5QSr3yrRp07IfU8ploOnTp5fz1X4VFRXjx4/P7lyeS1ELFixIY1YyIPd6sWKY3N3ChQvTvcZzNm7cOGvWrNzG8+PGjcu9WPob/aqrq+fPn583z+rVq4v9HJPJkwnzFp9au3ZtbW1tE74hEQA4eoIUAPyEtGrVasCAAWPGjJk2bdpVV101Y8aM5Bf17t27Z8f06NHj5Zdfzmsrr7766s/mG+47d+48cuTIqVOnJu/AzJkzhw8fXmL79ngVFRV9+vTp1avXsZg8+QOQzJz8GRh+xMCBA/v27duo74krDFI5rVu3Puuss5I5hwwZcvrppzf2u+eShSUrGTRo0IgRI5J5CgNQhw4dGtxFvl27dv3790/WMGzYsDPPPDNvK/FyZshp3759soahQ4eee+65xb5tME/yH9HZZ5+dXDdZ/znnnHPaaaflbTsFAAQTpADg+FNRUbFs2bK8zacOHTrUp0+fll4aLaxYkAIA+EkRpADgeHXKKac8+eST2SZVuLUz/9cIUgDAcUGQAoDj23nnnffb3/72wIEDP/7442mnndbSy6GFCVIAwHFBkAKAn4Pq6uomfGEcPz+CFABwXBCkAAB+PgQpAOC4IEgBAPx8CFIAwHFBkAIA+PmoqqratGlTLkhNnTq1pZcDAFA/QQoA4GeldevW3bt379SpU0svBACgKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAACCUIAUAAABAKEEKAAAAgFCCFAAAAAChBCkAAAAAQglSAAAAAIQSpAAAAAAIJUgBAAAAEEqQAgAAgP9t7455mlrjOI6/DBeiW+VORgaJ78EuDMQBQqKCCN6VCVbbAm8A43In4+Dq6gB6oxECW0fTpBBK0bQj0z0Xc28aGXroDb/cyOcz9Tnp/3nO/E3PKRAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAABAlSAEAAAAQJUgBAAAAECVIAQAAAL++vb294+Pjk5OT09PTXq93fO7Lly9lZj99+tTpdE4GFMvPnz8PHdza2iqO+/79e7fbLY4rPheDHz9+LHnP/X5/dXW15JcHTU1N/XnB3NzcCFtdEUEKAAAA+PXdu3dvYWFhaWnpw4cP29vbi4uLxbK4WGb27t27jx49WhhQLCcmJoYOvnr16uvXrysrK0+ePJmfn3/8+PHs7Oz4+HjJex45SBWmp6fnBjx8+PDGjRujbXUVBCkAAADgGmk0GvV6/VIjlUpl/ILbt28PHXz58mWz2axWq7/9o+TgDyMHqTt37vx+wf3790fY6ooIUgAAAMA1sr6+/uLFi0uNbGxs7OzsDD7+Viw3NzfLnLW/v7997scvsw4ODprNZslzRw5S09PTvV5v8IZ3d3efP38+wlZXRJACAAAArpHGuUuNjI2NVS4oLg4dvHXr1k9TtVqt1WqVPPe/BKnDw8PBK+/fv19bWxthqysiSAEAAADXSKPRqNVqlxr56QVS/75GaujgzZs3Z2ZmFs89e/bs6dOnb9++bbfbJc/t9/tv3rxZXl5eGjA/Pz90UJACAAAA+B+p1WplnrYbVK/X2+324L/sFcv19fWhg+/evWu1Wqenpz/+1O/bt2+dTufo6Kjkuf0Lut3u69evhw5WKpUHDx4MXqlWq5OTkyXPDRCkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiBKkAAAAAIgSpAAAAACIEqQAAAAAiPo7SP0BAAAAAClnZ2d/ASORvNmDRF+iAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<IPython.core.display.Image object>" | |
| ] | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABjAAAAN7CAIAAABkokShAAAACXBIWXMAAA7EAAAOxAGVKw4bAACrZElEQVR4nOzde3cUxaI34PdLQEi4hBCQyMUY7iHKBhRxAYKKAgf14EaUjYoLNyLXLSKIeJAtIiggG7mjUQjhEqOA3CHJtznf4K2Veu13nJlMJhA6qM/zBytTXV1d3cOa7vlNV/X/6QUAAAAAafnf//3f/9PTfQAAAADgL0QgBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBQAAAECqBFIAAAAApEogBfBAKC0traiouIsV586d29raevjw4WIqnzp16s6dO08//XRmYWVlZdj6XWw6b2sAAACdEkgBdLNBgwZ9+eWXu3fvHjJkSN4Ky5cv379//3PPPZeUVFRUXLlypa2t7dVXX+3q5l555ZWw4qlTp4qp/PPPP4fKzz//fFLy7rvvhpLm5uaSkpKubjq3NQBIzdChQ1euXHns2LGmpqaGhoZdu3bNnj07b81JkyZt3Ljx5MmTP/3009mzZwvUBCA1AimAbvboo4+2tRs3blzeCt9++21Yum7duqSkuro6rrJ27dqubu4eA6nt27fHTQ8YMKCrm+5SIFVXVxeu/svLy7u6FQDINXny5EuXLrXl2Lp1a1bNHTt25FYLNm7c2CM9ByASSAF0s7sIpIKlS5euXbt25MiRXd3cPQZSoZPr169/+eWXu7rdvK0VcO7cuVB5wYIFd7EhAMg0ZMiQixcvhtPKwYMHa2try8rKwgl08+bN8fy7aNGizJqh5Icffli4cGGoM3DgwGnTpoWTZqw5ZcqUHtwLgL84gRRAN7u7QOqu3WMgdS8EUgD0iDVr1oRzyvnz5/v165dZvmfPnlDe1NSUjEPv06fP/Pnzs4al19TU3PWNyQB0F4EUQDe7u0AqXCuXlZXlrV9ZWTlhwoTRo0fnrZAVSIVL81g575xQeSOkvn379u7dO7dyaCFcstfW1lZVVeXtWFZrI0aMmDhx4uDBg/NW7jSQCrsZVg8HraPjAABRPAEtWbIkq3zatGnxFBxOKMW0kDu+D4DUCKQAutndBVJnz54NhTNnzswsHDVq1L59+5LZLlpbW+/8Zv/+/bFOEkj169dv7dq1169fj5UvXrw4f/78rE3nBlKhTig5ceJEZrWSkpJwlX/58uVk03cyJAMcktYmT5783XffJZ3cvXt3EkuFpq5cuRLWiktbWlpiI+fPn082V1NTc+DAgWRbt27d+vjjj/v06VP8MQfgr2P06NHxfDFmzJisRaWlpfGMs3jx4gIthHPTtWvXQrUVK1bcz54CUIhACqCb3V0glXd2p5guHT9+fO3atdu2bbt582Z4efXq1fr6+i1btsRqMZBqamo6cuRI+OPChQuHDx9OYqlZs2YV3kreEX+ffvppKAyNfPLJJ2HTSdjU2NgYNl1bW5vZ2hdffBGu/m/fvh06cObMmVjz2LFj8a6rcNH/ww8/hO7FbwiXL19uanfo0KHYSGVlZZwH5MSJE6tXr964cePp06fDy+rq6rs7/gD8uc2ZMyeea0pLS3OXhlNVp+PiX3vttfgLSm6kBUBqBFIA3SwJpBYsWDApn/r6+mICqTgRxo4dO5LxdHV1dXfu3Llx48awYcOSajFRijcxLV68OFauqqpqaGiIYVbhreQGUhMnToytjR8/PpaENnft2hUKP/jgg9zWYvw0YsSIWLh06dJYOGPGjMzKHQ3Ze+ONN2I/M4cNhnXzfs0AgCVLloQTx82bN/MuPXjwYFj66aef5i4KZ5ZRo0atWbPm9u3boc5bb711n3sKQCECKYBulgRShXUaSMX7oSZNmpRZ7fDhw6Hwv/7rv5KSmCi1tra++OKLmTUXLFgQyzMnfC0mkFq2bFko2bdvX2ZrTz31VFv79LG5fT5x4kT//v2Twt69e8dfp1etWpVZuaNAasOGDaE8ueELAAp7++2329pHpudd+vXXX4elO3fuzCzcvXv3nTt3wjkxnoIbGhqefvrpVDoLQIcEUgDdLAmkTp8+/V0+cTxd4UCqtLQ0NlJTU5NZLU4p9cYbbyQlMVEK28rqxsiRI2ML4Y+OttIrXyD13nvvhZLPPvsss7VJkyaFwmvXruX2ee7cuVmb3rZtWygP/2YWdhRILVq0KLY8ffr0XgDQmRUrVoQTR3Nzc96lX331VRxOnlm4efPmcBpKxo+3tY9/DyfTvM/0ACAdAimAbtZdc0jFac7/+7//OympqKi4cuVK1mi4vJNA9Wqfmyl2Y/To0QW2krt6nOb8/PnzmYPm3n333WIGAEYbN24M5f/+978zCzsKpMJWTpw4Ebu6b9++2bNn530+IABEb775Zlv7pIR5l8anZOQdsterfWbDcHYOZ6h43lm/fv397CkAhQikALpZdwVSCxcujD/hLl68ODQ1Y8aMo0ePhpIzZ85kPoGuo0Bq0KBBdxdIlZaWxrnJ9+7d+8QTT9TW1r799tu3bt3KGiqYt7XoX//6V/GBVNC/f/8PPvggbqKtfer0adOm5T10ABBvrW1pacn7A0Z8EEfhSc2Dzz77LA5szzxLApAmgRRAN+uuQGrVqlVt7ZOLZ8481dDQkDWIr9sDqaqqqkuXLmVtN1z3r1y5MmsT3RVIRZWVlUuXLm1ubo57nTV5FgBEM2fOjOemzEd8JK5duxYWLVq0qHAjf/vb32Ijf//73+9PNwHohEAKoJt1SyD18MMPt7S0NDY2VlVV/fd///fatWvfe++9WbNm5f4a3O2B1ObNm0PJwoULp02b9vbbb69fv37JkiWZE1EVaC26u0AqKi8vP378eO70HwAQDR8+PJ7gnn322axFEyZMiIuSB8V2pLa2NtbsNLoC4D4RSAF0s24JpKZPnx5efvfdd51OqNTtgVQcGDhnzpxO97RLgVRDQ0MoXLJkSafNxsf8HTp0qNOaAPw1xaHluT9dxEkMs54Jm1eciCqYPHny/ekjAJ0QSAF0s24JpKqqqm7evBlKzp49Gy64t23b9uGHH77//vuLFi0aNWpU5ordHkht2LAhlNy+ffubb7757LPPtmzZEkreeuutOXPmZE5znre1KG8gdfDgwbb2acvjy2QarFWrVtXV1SXVSkpKYs3NmzfnPXoAsHjx4niOe+mll5LCefPmtbS0hMJwaksK16xZ8/XXXz/55JOZD9SbPXv2jRs3Qs36+noP2gPoKQIpgG7WXXNIhb/b8mltbd20aVNSrdsDqbKyspMnT+bddFNTU21tbYHWoryB1NKlS2Mj4er/wIEDYd1YHn/l/u677z7++OPNmzc3NjaGl9evX8+aKgsAEsmvF/EUtmfPnngfbu7Z55///Gcs/+WXX8L5d+/evXEIeVv7c/rGjBnTU7sAgEAKoJuNGDGipaWltbW1o0hl37594Tr4vffeyyw8f/58KJw1a1Z8OWjQoLNnz4aSpUuXDh8+PDQ1YcKEp556as2aNaHltoxJWBcsWBADnaytlJeX37lzJ1R+5JFHOtpK3tXfeOONeH0fLtOrq6vHjh37+OOPz58/v76+PpT/9NNPyX1Sua1FoZOhfNu2bZmFYa3t27cn2dbRo0dj+YwZM+ITkRJfffVVR1keAET9+vXbsGFDnMI8am5uXrZsWdYdT6HaP/7xj3gKS1y/fn3r1q1VVVU91XkAegmkAO6Hvn37hivgjpaWlJQMHDgwq7C0tHTAgAHJy9WrV4cr5p07d+au/umnn7b9fuKM8vLyvFNN5XYjayu5q1dUVNy6dSu0n/uj8SOPPJJ151fe1qKwg3kHQQwZMqSurq6mpiZraSh/7LHHJk2aFP7I2yAA5ApnunDCmjx5cnV1deFZFwcNGhTOX6Hm6NGjO52fEYAUCKQAHkQHDhxoa2tbvnx57qLPP/88LPr444/vx3anTJkSGr9161buxXq44o+BVN7HbAMAABRPIAXwIIq3QTU2NmbeqVRSUvLKK6/EIXvTpk27H9tNboNasWJFWVlZUj5s2LD49D0PvwMAAO6dQArgQTRq1KhLly7FbKixsfHbb789fPjw5cuXw8uWlpa8d051l/jM7ODatWsnT578z3/+8+OPP8bnFjU0NAwfPvz+bRoAAPiLEEgBPKCGDBmyYsWKI0eOXLx48datW7/++mt9ff2HH344YcKE+73pmTNn7tixo7Gx8erVqzdv3mxubt67d++iRYv69u17vzcNAAD8FQikAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAAAAAEiVQAoAAACAVAmkAHpMZWVlaWlpT/eiy+6626dOnbpz587TTz/d7V0CAAD+WARSAN2sT58+69at257PJ598kkQ57777bltbW3Nzc0lJSc92uEvupds///xzWPf555/vtObIkSPDMTx58mTYUGNj465duxYsWPBHDO8AuH+GDh26cuXKY8eONTU1NTQ0hJPF7NmzO11r4cKF+9q98847KXQSgI4IpAC6WXV1dVvHHnrooVht+/btsWTAgAE92+EuuZduFxlIPfPMMzdv3sw9dF9++eXd9hqAP5vJkydfunQp92SxdevWAms9+uijt2/fjjVPnTqVWm8ByCWQAuhm4WI3XukuXbp0zu/NmDEjqTZu3Lj169e//PLLPdjVu3Av3S4mkBoyZMi1a9dCtSNHjoQvGxUVFSNHjlywYMH37e621wD8qYSTxcWLF8PJ4uDBg7W1tWVlZeFksXnz5nj+XbRoUUcr7t27N0ZRAimAHieQAuhmSSA1bty4nu7Lg6WYQGrx4sWhzo0bNyorKzPLe/fuXV1dfZ87CMAfw5o1a8LJ4vz58/369css37NnTyhvamrKO6589uzZYWl9ff2SJUsEUgA9TiAF0M2KD6T69u3bu3fvzJJwAZ05U9KIESMmTpw4ePDgAo0MGjRo/PjxtbW1Q4YMyVvhLtqM1SZMmDB06NBiul1kT4oJpDZs2BDq/Pjjj4W71ytnvzJlfT+JfU7+HjhwYOjksGHDsupUVFSE8pEjRxazufAuh/e3f//+WdVqamrCcSswnjG0U11dXVdXN3r06D59+uStk9nbUC0c1VizwC5nrQXw5xZPKEuWLMkqnzZtWjwFhzNd1qLwIXnu3LmwaOrUqa+++qpACqDHCaQAulmRgdT8+fNDnRMnTmQWhmvllpaWhx56aPLkyd9//31sp7W1dffu3VkRUp8+fV577bX6+vrMiTPCyyeffDJrQ8W32av9RqSlS5c2NzcnbYbr9RdeeKFAt4vvSTGB1MqVK+MdUp1GZlevXg01w05llW/ZsiWUr1+/PilZsGBBKNm4cWP//v0//PDDW7duJZ2sra0NFQYMGPDRRx8ls4qE8vHjx3d0GMO3nYaGhljz5s2ba9asifHc9OnTk/KwidWrV2fFduH/w/bt22O3o7CbH3zwQVZ8lvR26NChR44ciTXj/Fm//vpr+DvveMlt27bFtQofNIA/gdGjR8fPxjFjxmQtKi0tvXPnTli0ePHirEUrVqwI5eFzOPwtkAJ4EAikALpZkYHUK6+8kns1HCObcNHc0tJy+/btI0eOnDlzJrZ27NixzIBj9erVoTBcdh86dGjbtm07d+6MacWtW7eyLtCLb7NXxpzl9fX1u3fvThKWqVOndtTtrvakcCA1adKkuMXjx493dKdVFL9yTJ8+Pas87sLmzZuzDvWuXbtOnDgR/gi7H/6Iq1++fLmmpiamaWFnk/KLFy8OGjSoo8N448aNsLO//PJL7GooDN9tWltbr1+/nlme+fymioqKGIQ1NTWFnnzyySdhB2O1+O0oq7eff/55nOLk2rVrYXMHDhwIi0JhW/vsWlm73L9//1AnLHr22WcLHDGAP4c5c+bEz8+8N402NjaGRevWrcssHDFixM2bN8OndFVVVS+BFMCDQSAF0M3uPZCKUVG4eo6FS5cujYWZc6IvW7Zs9erVyTP7gsGDBzc1NeXeJlN8m3Pnzg0lLS0t8+bNSwqnTJnS0NAwa9asjrrd1Z50+pS9jz76KPbt6tWrb775Znl5ed5qXQ2kgtu3bye3F02dOjW2cOvWrVC+cOHCrPJwiHI7Hxw+fDh+nwlfhL766qvYQvj30KFDcYRjUn7lypVkUF5FRcX+/fvD0c5MAN9666229rvVMqO32NvwLsRIK9QPDcY3Lqwe+5A1rvCFF16ImysrKyt8bAH+BOIMUDdv3sy79ODBg2Hpp59+mln4xRdfhMJwwoovBVIADwKBFEA3SwKpr7/+evvvZY4gKBBInThxInNyot69e8ffe1etWlV403G8W9YdNMW3efTo0VCybdu2rGYzpzrK2+0u9aTTQKqkpGTdunWtra1JLPXuu+/mxlJdDaRCg3Pnzs2s+eWXX8by5557LrM8zombdeNS7Pzx48czR9hNmDAhCfsyyydOnBjLw3+GAntaVlYWg6fMvUjis9zxd+HIxG4sX748s3zXrl2hcMuWLQW2BfCn8fbbb8dbWfMuDSffsHTnzp1JSfiMjbfBJndUCaQAHgQCKYBulgRSuf7zn/8k1QoEUlm5Sa/fZgjKjYqy3EubAwYMiOFI5j1TRW6iSz3pNJCKJkyYsHv37uTQnTt3LpRkVuhqIHX69Omsmu+8804o/+GHH7LKY5p26NCh3M5nHcaSkpLYjayxcuE7TwzUpk2bVng3Y7OZiVjsbfiilTs1e7B27dqsfSkvL4+3aE2ZMqXwtgD+HOJsUM3NzXmXxntUv/jii/gyfCDH4edPP/10UkcgBfAgEEgBdLMkkFq0aNH036uurk6qdSmy2bhxYyj/97//nVVeWVn53HPPvfXWW6tXr163bt2+ffvuus1x48blHQ6WpaNA6l56UsDYsWPjV4sgrB62kizqaiCV2+e///3vbe2zZWWVx/GM3333XTGdv3TpUiifM2dOVvn169dDeTLUMerdu3ddXV34j7Fy5cp17a5du5bVbOHILxyQeDTidOy9fpsE/cKFC3nrA/z5vPnmm23tkwDmXXrgwIG2jCF7//jHP9rapxHMrCOQAngQCKQAutm9zyGVm3r861//ygqkysrKPvzwwxjKZLm7NqdMmRJXL/x4u9xu33tPOrVs2bLYYOYktfceSMUvJLmB1BtvvFF8IHXx4sW8gVRMmjIDqalTpyaTxGcpPpAKTp48mXko4uCUTodzAvxpLFq0qK19rr2SkpLcpeHTO/mQDGe08Gl88+bNrN9aBFIADwKBFEA3SyeQirHL5cuXlyxZMmbMmMrKyvLy8sWLF991m3V1dbHbycTnRXb73ntSjDi/VeakVH+sQGrs2LFxYN3u3bunTZs2fPjwgQMHhgP1008/dTWQeu2119rax6r07t170KBB8TiMHj26o/oAfzIzZ86MJ6xhw4blLo0fv4sWLQp/z549O9a883txiHosv337dvIkWQDSJJAC6GYpBFJDhw6NUxRljQhbuHDhXbdZVVUVu505y0an3e6WnhRj586dYd2jR48mJXFMXNZ85MFnn332AAZSmzZtamufEz3zKXtBfBxhlwKpysrK8PUp1HnyySdj5ZMnT3ZUGeDPZ/jw4fGElTV/X6+MZ02MHz8+vJw0adLVq1ev5Yi/EITzV/g7VHj88cd7Yj8A/uoEUgDdLIVAKlw6x01UVVVlVnv99dfv5a6r8+fPt+WbOr1///7JQ+6yut0tPcn08MMP5xaWlZXF4CbzQXLxKYFr1qzJrBm+gcQk6EELpPbu3duW8yC80tLSuHqXAqlevz1W7+OPP45TpYSjXaAywJ/PmTNn2jJmLk/E6RHD6azw6obsATwIBFIA3SyFQOrhhx+OmwiNJHXmzJlz48aNewmkli9fHn8xXrBgQVI4Y8aMCxcuvPTSS3m73S09SZSUlLS0tOzatWvy5MlJ4ZAhQz7//PPYscceeywp37p1ayj89ddfx44dG0umT59++fLl2J8HLZDasmVLeNnY2Jg8O6+ioiJO/3QXgVQchBI2EQ7XnTt3HnrooQKVAf584sDwIDk9BfPmzYtj8TJPSXkJpAAeBAIpgG6WzhxS27Zta2uf0nXHjh3vv/9+vFOmvr7+Xtrs27dvnAs2NrJ37954z1QwY8aMjrp97z3JlGzxypUroTM//vhjHFgRvPXWW5k1R48eHRfdvHkzdPX48eNt7U/i27x58wMYSI0ZMyaGdGfOnFm3bt2mTZvCirdv3z59+vRdBFJ9+vSJ2w3CvheoCfCnVFJScvDgweSEtWfPnuSpEblPpM0lkAJ4EAikALrZiBEjWlpaWltba2pqClRbsGBBbuoR45is+ZiCNWvWtP1+MF3//v03btyYPNvu+vXr77//flVVVdj0XbfZq/22na1btyYZUFv7/ESZ6+Z2+957kims+MEHHyRpS3T06NEkEcs0bdq0c+fOxTphczt37gyrx6cvhUYK9Dl66aWXQvmxY8eyyuMXlcwJ1At0Po4lzO1e3IXMOddDb2P8FB0/fnzSpEkbNmwIfz/zzDOd9jZLOMixnXnz5hWuCfCn1K9fv/ARGtP/qLm5edmyZVlT9eUVP/9NwAfQswRSAN2vb9++ycisAsrLy7MeWV1aWjpgwIC8lQcOHJh7kR0KJ02aNHHixGRz4Y8+ffrcS5u92jOm2tra0PLQoUOL6fa99yTXyJEjQ4N1dXWVlZWFa44ePTrUHDJkSGYPi+lzl8o76nxXy2tqaiZPnpw8gDwc/9xqHfUq04svvhjjv/BmFa4J8CcWTrhjxowJn6vV1dWdfnJmKuaTFoD7SiAFAH88caxK7gz0AADwhyCQAoA/mJqamjg+5amnnurpvgAAwN0QSAHAH8zatWvjbCnGmwAA8AclkAKAP5gjR45cuXJl6dKlPd0RAAC4SwIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkALgnpSWllZUVPR0L35n7ty5ra2thw8f7umOAAAA+QmkAO6jGTNmbN68+cSJExcuXDh//vzx48f/9a9//e1vf+vpfnWbioqKK1eutLW1vfrqqz3dl//vlVdeCV06depUpzVHjhy5bt26kydPNjc3NzY27tq1a8GCBaWlpSl0EoB7NHTo0JUrVx47dqypqamhoSF8hs+ePbtA/dra2o0bN8aTcvjM37dv32uvvda7d+/UOgxAJoEUwH0xYsSIQ4cOtXVg586d/fv37+k+dsHAgQPDVX5dXV1WeXV1ddyjtWvX9kjH8ioykHrmmWdu3ryZ++58+eWX6fQTgLs2efLkS5cu5X6Gb926NbdySUnJxo0bkzotLS3J36NGjUq/8wD0EkgB3A8jR45sbm4Ol7m3bt1at27dpEmTqqqqHnnkkdmzZ+/bty9eAR86dChcH/d0T4u1YMGC0Odz587lLlq6dOnatWvDLqffq44UE0gNGTLk2rVrodqRI0fCt5qKioqwC2E3v2+XWlcBuAvhM/zixYvhM/zgwYO1tbVlZWXhM3zz5s3xDLto0aKs+ps2bQrlt2/ffvfdd4cPHx5KwioTJ058++23Bw4c2BN7AIBACuA+CNfH4cL36tWrubcUBf/85z/jFfOyZcvS79vdKRBIPYCKCaQWL14c6ty4caOysjKzvHfv3tXV1fe5gwDckzVr1oTP8PPnz/fr1y+zfM+ePaG8qakp8yefSZMmxbuiZs6cmXpPAeiQQAqgm02bNi3mTfPnz++ozuHDh0OF5ubmzCvm8HefPn2Sl1VVVbW1teHfwpt7+OGHJ06cOGrUqI5mPurbt2/y9+jRo8ePH5+5lWjQoEGhPGxuyJAheRspEEiFbpeVlXXUvcrKytDyhAkTBg8e3FGdzB72798/VA79LHD7WFhUXV1dV1cXquXuS6/iAqkNGzaEOj/++GOBOsnmOjq2WV+Eev1+XwYOHBgO6bBhw7LqVFRUhPKO7inL2tyjjz46bty43AGeNTU14UANGDCgQM87fVs7+r9RYJez1gLoET///HP4DF+yZElWeXIKDmfGpHD79u2hZNu2ben2EYBOCKQAutmnn34af54tME/q888/H6+YMyc4P3fu3O3bt/v37//4448fO3Ysmd7i6NGjY8eOzW3khRdeOH36dFLt6tWr69aty4pIYpC0cePGoUOHHjlyJGuOpD59+rz22mv19fWZs2+El08++WTSwj/+8Y87d+4k023c+c3ChQtjhbNnz4by3J+dZ82adfz48cyWv//++9zpZpMehp6H/l+/fj1WvnjxYm6iN27cuPC9Iuxp0uaNGzc++OCDrL0uJpBauXJlXL1AUhbFzU2ePDmrfMuWLaF8/fr1ufsS3sQPP/zw1q1bySGtra0NFQYMGPDRRx+FdzkpHz9+fFaz4b9BONoPPfRQ+FrV0NAQa968eXPNmjXxf9T06dOT8rCJ1atXZ/1PK+Zt7VXw/8avv/4a/n755Zdzj0b4RhfXKnzQAO6f0aNHx4+sMWPGZC0qLS0NZ6iwaPHixbGkb9++8VM392McgJ4lkALoZufOnQsXvps3by5QZ9CgQfFi+rXXXksKk997Y+JzuF1Mgi5fvpx1Q03MU1pbW3fv3v3+++9v27YtRjkHDx7MvLcoRjOff/75qVOnwh/Xrl27cePGgQMH4tLVq1fHjOnQoUOhhZ07d8Yk4tatW8lV/ssvv9zU1BQ6EGs2/WbOnDmZ3X7++eczu7dixYq4gxcuXAjNhk7GloM33ngjs2bs4a5du2J6FeqHvU5iqVmzZiU1KyoqYsQTth7qf/LJJ0ngtX379tw2CwdScQRHEBrp6AaiKH63mT59elZ5/Mk9841O9uXEiRPhjzNnzoQ/4urhANbU1MSQqKGhISm/ePFi+M+Q2Ww8nuEAhrc+vFnhrfnll19iV0Phq6++Gt70cHwyy995553MFop5W3sV/L8RCtvaZ9fK2uX+/fuHOmHRs88+W+CIAdxX4QQUP/3y3svZ2NgYFq1bty6+fOyxx+LpssDNvAD0CIEUQHfq169fbtKUV4x4Mh9OF5OI4OTJk8k0RnV1dTGd2bFjR1LziSeeiIlDkgoFjzzySMwdXn311aQwhg4x1XrnnXd69+4dLt9HjBgRly5btmz16tUPPfRQUn/w4MFNTU25t8AUGLKXG0glIybefffd5OadcGR27twZuz169OisHsbyxYsXx/pVVVXxJqDjx48nNSsqKvbv3z9jxozMG4Leeuut+E0jM1Qq8il7H330Udz01atX33zzzfLy8rzVuhpItbXPm5vcXjR16tTYwq1bt0J5cmdZUr506dLc4xkcPnw4DtgMb9lXX30VW2hrnw5/6NChmeVXrlzJHLpY5Nta4P9GOMixD1kx6AsvvBA353sd0IOWLFnS1n7raN6lcRrHTz/9NL6Mn3XNzc3hkzCcZb744otwkj1x4sTnn3/+4osv/oGeLgLw5yOQAuhOVVVV8Zt8uMwtXPPMmTOh2pYtW5KSmER89913WRMDrVq1KoYRyURCe/fuzVo3ivclZYY4SURS/BireO9V1t0xXQqkvvnmm5inZNUM/Y/D3z744IOsHra2tmYdsbjFUJ47T1OmsrKyGKlkBkZFBlLhe8i6devCJpJY6t13382NpboaSIUG586dm1nzyy+/jOXPPfdcZnmcfDfr9q54PMObmLnjEyZMiJ08duxYZvnEiRNj+aOPPlp4Z3Pf1gL/N8KRid1Yvnx5ZvmuXbvy/scDSNPbb7/d1n6Had6lX3/9dVi6c+fO+PLNN98ML6+3a8uxb9++AlPmAXBfCaQAutPIkSPjNW5WJJEr3gH00UcfJSUxAshdsa6uLrY5adKkXu0RTLxT5umnn86qOX369HirUXIPUQwdwlV74VgnU940p/hAKmwoJjjz5s3Lrbx169aw6Icffsja3OnTp7NqJkeyo8m/szqQmfUUGUhFEyZM2L17d/LlJOxjKMms0NVAKndf3nnnnay9jmJIdOjQodzdyfpvUFJSEruRNVYufI+Kgdq0adMK72buMSn8f2Pt2rVZ+1JeXh7/402ZMqXwtgDuq/jrS3Nzc96l8dbRL774Ir6MP+rEQP+//uu/hg8fHk6j4cyybt26WP7WW2+l2HcA/j+BFEB3Gjx4cLzAzTshdKY4AdDq1auTkryTMfVqH6qWGXLV1NTEl998880Xv/ef//wnLgqrxHWLiWYqKyufe+65cEUeOhMu0Pft23cvgdS4ceNiH+I03ln+8Y9/xF+qk5KOehh6FdvJHN8X9O7du66ubtGiRStXrlzX7tq1a1nHrUuBVDR27Nj4HSYIexS2nizqaiCVu92///3vbe3TimeVL126tK39nrjMwo7+G1y6dCmUZw7SjOJv/pmTbUWdvq2Fj1I4IFnvY/w/cOHChbz1AVITb3q6fPly3qUHDhxoyxiyF6P/xsbG3Jr79+/v6skCgG4kkALoTn369IlP83nvvfcKVBswYED8tr9o0aKksKMkonfv3rHyggULev02P2tb+yC+m/nU19cnk2IUDh3Kyso+/PDDGLhkuetAasqUKbGFYcOG5VZeuHBhW/vgtaSkox4m875nBlJTp05NHjCX5R4DqWjZsmWxtWQ23F7dEUi9+uqreQOpN954o/hA6uLFi3kDqZjHZQZSRb6tnR6lkydPZh6KOApm1apVHdUHSEc4dba1T4GXdwao8KGa+dkVP9jznr/ih3M4JZlJCqBHCKQAulm8FE6eZJfXrFmzsm4/6dVxEpHcdTV79uzwcsyYMfFl1siyvAqHDjFSuXz58pIlS0KzlZWV5eXlixcvvpdAKhlgOG7cuNzK8YtB5s/axQdSY8eOjUPGdu/ePW3atOHDhw8cODB0+KeffuquQCo4evRo2+/nWvrDBVJFvq2dHqXXXnutrX1QTO/evcPbEY9D1g1rAOmbOXNmgV8+4qdi8ntP/CEk7wzoc+fOje307dv3/vYYgHwEUgDdbPXq1W3tEzkNHz68ozpx0qKzZ89mFnY0h1R8pl6SBZSXl8dpg5555plOO1MgdBg6dGhsJ2u0V7x2zxtInT9/PredrABlyJAhsbdZE3hHcQ6pgwcPdtrD3EBq06ZNbe2zfWc+ZS+Iz4/rrkAqPgrw6NGjSUkcE5e7O5999tkDGEgV/7Z2epQqKyvj7X5PPvlkrHzy5MmOKgOkJpxe4wkia1q9XhmPgBg/fnwsSX4mSR5fm4jjpn/99dc0Og1ADoEUQDerqamJz33bvXt3VnQSzZs3L14cL168OLM8JhGHDh3K+ql2y5YtofyXX35JxhTEm7C2bt3aaWcKhA6PP/547EZVVVVm+euvv567ygsvvBAKr1y5kttOboASR9Xt2bMnq+agQYNiuBO+A3Taw9xAKu+zBUtLS2NS09VA6uGHH84tLCsri/FW5lYaGxtDyZo1azJrhq86MQl60AKp4t/WYo5SfKzexx9/HOdkCY0UqAyQmvik2mTm8sTGjRuzfj4Jp9T4gNdly5ZlVY4n09xGAEiHQAqg+61fvz6GAl9//fXYsWOT8sGDB7/33ntx6NOhQ4ey4qqYRATffvvt0KFDY+GMGTNi/cxJqZKZmMIfmS2UlJRMnz79scceS0oKhA4PP/xw3FyokxTOmTPnxo0buatMnTo1Vv7b3/6WbCuz25kBShwdFixZsiQpHDhw4J49e2Kylsy5XqCHuYFUDOYaGxuTp8KFduLERl0NpELnW1padu3aNXny5KRwyJAhn3/+eTywmccw3tX166+/Jm9lOMiXL1+O233QAqni39ZiAqnZs2eHOmET4XCF/4cPPfRQgcoAqUlONC+99FJSOG/evPiDUOYHYPDhhx9mfYyHs0BypvbkUICeIpAC6H59+vSJ8/hEP//883fffdfY2JjMM/3tt9+Wl5dnrRWTiGPHjoV/b9y4sX///jifUfDjjz8OGDAgs3IcWRb88MMPW7Zs+eijj/bs2RNTksxppwuHDtu2bWtrnxd2x44d77//frwLpr6+PneVsrKy+JS3a9eu7du37+zZs6+99lpmtzMDlN69eyc5Udjr0NWvvvoq/kB9/fr1J554IrPl4gOpMWPGxFTlzJkz69at27Rp08WLF2/fvn369OmuBlLB+fPnY/tXrlwJ7044wnGCqracR4CHDsRFN2/e3Lt37/Hjx+N7unnz5gcwkOpV9NtazFEK/5PjdoOw7wVqAqSppKTk4MGD8dMpfI6FM2DyyIt///vfWZUrKyvDaSssCqeM8JEYKsRbX4MVK1b0SP8B6CWQArh/5syZc+jQocyHnbW2th47dmzhwoV5h/IlScT8+fOTFCCsvmPHjsGDB2dVDi28/vrrFy5caMsQ1vr4449HjBiRVItzP2VFHon+/ftv3Lgx6eH169fff//9qqqqlpaW3FWmTZuW3MMVKsyYMSOWx2Qna8aiPn36LF++PNmLuCO7d+/OnRK7ox6Wl5eHVcIRe+SRRzL7EOOn6Pjx45MmTdqwYUPb72fUKrzXUdjNDz74ILOHbe1TRyX7lbXv586dS/Z9586dYfX4mKfQSKfbfemll9rao8as8hhUZU6g3quD49nrt6mycrsXdyFzzvUi39ZijlIQ1o3tzJs3r3BNgDT169cvfP7HUD5qbm5etmxZ3jPssGHDPvvsszjFXlRfX58b8QOQJoEUwP1VXl4+ZsyYyZMnjx07NnOoWq7MW2NKS0tra2sfe+yxwqsEI0eOnDRp0sSJE/NOihQ7UPiB1gMHDowtJEPhwh99+vTJrRnaCfsSamb2KnQ16+6tTI8++mjY9wkTJuTeEdZpD/v27Zt0KVNNTU1oM+x4fBm+e+R2oNO9TsQDWFdXV1lZWbjm6NGjQ80hQ4ZkbqXI7RZf3tHx7Gp5MW9rMUfpxRdfjKlW//79C9cESF84U8STbHV1dacfaIMGDXr88cfDZ2NHZ0wA0iSQAnhQdDRWC3pQHBSzbdu2nu4IAAB/KgIpgAeFQIoHTU1NTRzb8tRTT/V0XwAA+FMRSAE8KARSPGjWrl0bp2UpcvwjAAAUSSAF8KA4fvz41atXp02b1tMdgf/nyJEjV65cWbp0aU93BACAPxuBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFAAAAACpEkgBAAAAkCqBFMAfxty5c1tbWw8fPlxM5dLS0oqKiq5u4tSpU3fu3Hn66ae73ru/hMrKynBge7oXAADwhyeQAuhOO3fu/Oabb6ZPn16gzuzZs0Odf/3rX11t/JVXXmlrazt16lSnNSsqKq5cuRIqv/rqq13axM8//xzWev7557vat04NGjRo8eLFu3fv/v7778Mu7Nu37+233x42bFi3b+j+effdd8PBaW5uLikp6em+ANBr6NChK1euPHbsWFNTU0NDw65du8IZNqvOc889t72gN998s0c6D4BACqA7hcvitra2ffv2Fahz6NChUGfbtm1dbbz4QKq6urqt3dq1a7u0ifsUSM2fP//y5cttOe7cubNixYru3db9E763xG4PGDAgKayrqwvff8rLy3uwYwB/QZMnT7506VLumWXr1q2Z1T7++OPcOpkaGhp6ahcA/uIEUgDdacmSJTFnGTJkSN4KVVVVra2toU7hu6jyKj6QCpYuXbp27dqRI0d2aRP3I5BavHhxvOg/f/7866+/PmnSpAkTJjz33HO7du1qaWkJ5f369evGzd0/48aNW79+/csvv5xZeO7cubALCxYs6KleAfwFhZPsxYsXw8fvwYMHa2try8rKwvlu8+bN8XSzaNGipOaYMWNe6UD8AA8nox7cEYC/MoEUQHd66KGHYsiSeTWcKaYz4TL6LoZ9dSmQujvdHkiNGzfu9u3boc0DBw70798/a+nEiRO/+eabPn36dNfm0ieQAkjfmjVr4u8cWT9p7NmzJ5Q3NTV1epJ99NFH4+9DM2bMuJ89BaBDAimAbrZ///74m23epXG83saNG/MuffjhhydOnDhq1Ki8M2dnBVLhKnzChAmjR4/Oe9kdCsvKyjrq5IgRI8K6Q4cOzSovHEgV7l5eu3btCg1evny5srKyyFVCz6urq+vq6sKudZRV9e3bN/PvsWPHjhkzpsD+FtNmoqODE7fVu3fvzJKOAqncmpmd+UNncAA9Lp6tlixZklU+bdq0eJNUOFsVbuHDDz80Xg+gZwmkALrZwoULwzVua2trVVVV1qKhQ4fG32MnTZqUteiFF144ffp0MqXF1atX161bl/XDbxJIhfK1a9dev349Vr548eL8+fOzGjx79mxYNHPmzMzC3r17L126tLm5OdlQaC1sOqnQUSBVTPdyhf2N94v985//LFwzGjdu3Pbt20PjyYZu3LjxwQcfZG1owYIFYdF7771XVla2atWqpH74Y8WKFVnxXJFtFnNwwkEOhSdOnOjVHipduXLlzp07sWbYzTvtzp8/3+u3kZvh79yssKam5vbt2wUGdQJQ2OjRo+Nn75gxY7IWlZaWxk/mxYsXF2hh0KBB4VzQaTUA7iuBFEA3Gzhw4K1bt/L+chvH68XMItPKlStjhrV79+73339/27ZtMWw6ePBgZqIRA6mmpqYjR46EPy5cuHD48OEklpo1a1Zmm3mjpWRa7vr6+rCthoaG+HLq1KkF1iqye7lCO7H9cePGdXrcKioq4nELO7hr165PPvnk+PHjcfXQ7cya8TiEbsQp5EP9/fv3//TTT7Hyhg0b7qLNYg5O5h1qYcd/+OGH0Gz85nP58uWmdocOHerVPmVJXDd3prD4qL4ff/yx0wMCQF5z5syJn7F5b9dtbGwMi9atW1eghbfeeiv+jJH5kAoAUiaQAuh+O3fuDFe6R48ezSr/9ttvQ/mqVasyC5944om29nnQwxV2UvjII4/8+uuvofzVV19NCmMgEisvXrw4jgirqqqK0cnx48czm82NlubOnRvv5Zk3b15SOGXKlLB6EmblrlV893KFPQ11bt26VcyEWRUVFfv3758xY0bmSLf4naG1tTXzfqLM47B06dLYeJ8+ff7nf/4nVh49enRX2yzm4OSdw6ujIXsx+cp9lmJ8s5YtW9bpAQEgr3gX6s2bN/MuPXjwYFj66aefdrR6aWlpPNkVDq0AuN8EUgDd79lnn42JyYgRI5LCZLxe1hCDvXv3hsItW7ZkNbJixYqsmCkGIqGRF198MbNmHMIWyjOHoeVGS0ePHs0bkWTOZ5S7VvHdyxXWCnWam5sL1CmsrKwsDvrLvNUoCaSyYqDy8vJ4P9TKlSu72mYxB6dLgVS8G+7atWuZb8r48ePjOzVs2LBO9hyADrz99ttt7cPV8y79+uuvw9KdO3d2tHo8aYYTQVcfRAtA9xJIAXS/srKyOGlR5o0wMaH44YcfsmrGDOXpp5/OamT69OnxJqDk7p4YiJw+fTqrZrikjgFN5rV1VrQ0YMCAmMIUfpxQ1lpd6l6uOAgud4hil8QuPffcc0lJR8ch+Oqrr8Kiffv2danNIg9OlwKpQYMGxUM3d+7cpPD9999va3/gYOHuAVBA/EWko1874ongiy++6Gj1+vr6UGHXrl33rYMAFEUgBXBfbN26NVzvnjx5MimJ4/XefPPNzGo1NTUxS/rmm2+++L3//Oc/cVFFRUWsnDcQCSorK2PNZKhar5xoady4cbmhVa6stbrUvVwfffRRW/v8Sp0fr9/07t27rq5u0aJFK1euXNfu2rVrWTdtdXQcgg0bNuRmVZ22WeTB6VIg1eu3kZu7d+/Oqrxw4cIijgQA+YUzaYGTy4EDBwoM2Usew/fEE0/czz4C0DmBFMB98dRTT8VL3urq6l4Z4/WGDx+eWe2xxx6L1W7dunUzn/r6+mQCpo6CmEGDBnUaSE2ZMiXWGTx4cIFuZ63Vpe7l+uc//xlXr6ysLOagTZ06NZlKPEuRgVT82fzcuXNdarPIg9PVQGrWrFlh0e3bt8MbFF7W1dW1tU96Ul5eXszRACCvRYsWtbWPuct7Avruu+/aOp4fKg7oCyev+9xHADonkAK4L8JV8i+//BKuepcvX97rt/F68RFsmZLHsU2YMKHTNu8lkIppSNvvp7XKlbVWl7qXKyYywbPPPttp5bFjx8Yxbrt37542bdrw4cMHDhxYXl4eH59XZCC1cePGsOj777/vUptFHpyuBlLh/8DFixfD0vDdKbwM347C3zt27Oj0UABQwMyZM+OHdt75+OI9sPGDN8uoUaPij0MvvfTS/e8mAJ0QSAHcL3H4WMwv4ni93GfSlZeXx4vjZ555ptMG7yWQqqqqinVyZ4PKlLVWl7qXK6x+/fr1tuJmTdq0aVNb+yzpWZNSNTU15Q2k8s4hFR+u9O9//7tLbRZ5cLoaSAXr168PS8O7HzoQN5o8sw+AuzN8+PCOfu2YMGFCXDR+/PjcFTdv3tzWPht63759U+kpAIUIpADul2S82/Tp01tbW+/cuZN3RFgcXLB169ZOG7yXQCo4f/58W74HyfXv3z8ZRJa7VvHdyyvestTRj9UlJSULFy4sLS3t1cHj/MKieJNRbiDV0tIye/bszMrDhg2L8dnixYtjSfFtFnNw8h7/OB5wyZIleXc/zk4VejV//vzwx6VLlzIf2wfA3Tlz5kxbvpnL40kn78M0win45s2bbZ09iRWA1AikAO6js2fPhmvfeGvM119/nbfOwoULY2aRNdd1SUnJ9OnTH3vssaTkHgOp5cuXxw1l3s4zY8aMCxcuJIMXctcqvnt5VVRUxPFxoYUNGzYkU2j17dt37ty533//fdtv82pt2bIl/N3Y2NivX79k3TjZR95Aqq19ZqukV2Gtffv2hcKrV68mU1YV32YxByfv8Y/3ZCXP9cvNm+I+xqcuhm9KhQ8XAMWIA+GzBt/NmzcvPjI1fFznrhInGbxz505VVVWKPQWgQwIpgPto5cqVbb8JF8odVYuPYwt++OGHLVu2fPTRR3v27Ll8+XIoWbVqVVLtHgOpvn37xtudYiN79+6NtwUFM2bM6Git4rvXkVGjRl24cCE5DpcuXQovb9++HV+eOHEihjhjxoy5ceNGKDlz5sy6des2bdp08eLFUO306dN5A6mwNPa/oaHhq6++ijc9tf3+GXbFt1nMwcl7/JcuXRqr1dfXHzhwIBzArN1fsmRJsu+PP/54p4cLgE6VlJTE3wPix3I4KyXPr0hGbWcqKyuLp4nt27en31sA8hJIAdxHNTU1cVLtS5cuDRgwoKNqvXv3fv311zNTmxi4fPzxx5nTbC9YsCCUf/fdd1mrl5eX37lzp7W19ZFHHkkKY56SNWNRRUXF1q1bY5eikydPZtbJu1aR3Ssg7PvKlSvjdEtRS0vLoUOHXnrppcxnJE2bNi1GRdHx48cnTZoUp+LKnMQqCYaGDBny5ZdfJvWbmprmzp2bteki2yzm4OQ9/qWlpeHrTbLK0aNHszowePDgOMNuY2NjMccKgGL069cvfJjHD9ioubl52bJlWZMGRrNnz25rv6+2trY2/a4CkJdACuD+Ki0traioyPto6lwjR46cNGnSxIkTH3744bwVysvL8zbVt2/fZFRast2OIrD+/fuHK/KwoaFDh+b2tkBw1mn3OvXQQw+NGzeuuro6q7eZampqJk+eHLYVX4avFlldyrpTKXTmb3/726hRowpst9M2EwUOTq+Oj/+QIUPq6urCVvJ+EYq/269YsaJADwG4C+H0N2bMmPAJH84shU+14WO/rKwstY4B0CmBFAB/MB0NXXwwTZ06Nf50n3n/GgAA/MUJpAD4g/ljBVJxQN/hw4d7uiMAAPAAEUgB8AfzBwqkKisr46RUixYt6um+AADAA0QgBcAfzJw5c65evbpv376e7kjnZs6cef369dOnT1dUVPR0XwAA4AEikAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAAAAAFIlkAIAAAAgVQIpAHrG3LlzW1tbDx8+3LPdOHXq1J07d55++ume7QYAAPylCKQA7qOpU6du3Ljx0KFDDQ0Nx44d27p16+zZs0tKSnq6X//f66+/vr0IEyZM6PZNv/LKK21tbadOner2lrvk559/Dt14/vnne7YbAHTV0KFDV65cGU6vTU1N4Ty7a9eucJLNW7N///5LlizZv3//+fPnw8d+fX39pk2bxowZk3KHAcgkkAK4LyorK7/++uu2fE6dOlVdXd3THfx/Dh8+nLeTWV5++eVu37RACoC7Nnny5EuXLuWesLZu3ZpVc+TIkY2NjXHprVu3bty4Ef++c+fOvHnzeqTzAPQSSAHcD5WVladPnw4Xu62trf/zP/8za9as8ePHT5kyZfny5U1NTaF89erVPd3H/2fChAlzMmzYsCF0r6WlZc7vVVRUdPumBVIA3J0hQ4ZcvHgxfHofPHiwtra2rKxs5MiRmzdvjknTokWLMisfOnQoFDY0NDz++OOxZNy4cceOHQuF169fvx8nOACKIZAC6H47duyIP73mjh0oLS1dter/snenXVFc69/HXwVDI4LQIK2CiCBjRBzQRBFjjEM4evAQIqLGhXEEByROGNQgg2hABBEkOCARAQVlkLFf1b0X1z91V6q6mwabIibfzwMXveuqqt2Fq6v4de1dpw3Xyn8fu3fvlp5bsC8CKQDA3Jw7d059dHd3dwcHB+vba2trVXtPT482Oj4mJkZSqo0bN+ortfbt27db128AgA6BFAD4WFJSklzjFhUVzWpFu92u1k1OTo6IiHBZoC6vbTab/BwWFpaWlhYVFWUuW7RoUUJCQkpKSmRk5Gw7730g5f1eQkJC1qxZEx8fHxQUpG83BFLqjwr13lWZuzm21B61nxcvXuy5WKilsbGx6kDFxcUFBga6rPEQSHmzulapatTRcDgcLnvu7+/vbkXPWwYAmMlHd35+vqE9MzNTTsGpqanSsm7dOmkxfz6Pjo6q9q+//tqKHgMATAikAMDHLl++LKMAQkJCvFwlKyurtbVVPwXG77//br676vXr15OTk0uXLs3NzZUpMKamplJSUrSCqKio8vJybXYMRW12/fr13nfem0DK+72sXr363r17amtSplZRK2oBlhZIBQcHFxcXqyMmZf39/Xv37jVsat++fWpRaWmpKi4pKfFc7Ded7qniwcFBrZPDw8NlZWWq3VDpMpDyfvWAgAD1F9H79++1ygkddVjUUvka35ydxcXFjY+Pq7I5RIcA8K8VHx8vn7fmWcltNpucdPLy8qTF4XBIsTrB6StTU1NliHp0dLQ13QYAGBBIAYCPvXjxQl3jVlVVeVlfVFQk18pv3ryprKysqan58OGDtBw6dEhfKdHJiRMnJIqSyVwzMjJkqbqklgmq1L+XLl0qLi5++vSp5CNfffWVl52ZMZDyfi/qWn9oaEgtUv/W1dU1NjbKS/WDFEggpbbz+PFjefvNzc1a0pSVlaXfmhSroyrJnedi1cnu7m7p1cOHD2/fvq3lfV1dXYYb0MyB1KxWv3nzpuSPN27cUEejvb1dq+zo6EhJSVF/L0nLli1bDAdTfpXPnz+f+RcDAPjTjh075HNVu2tYT+YvLykp0Vqqq6vlC4wvvvhCWtQnufqIVo1Xr161qNMAABMCKQDwpeDg4KmpKXWNe/z4cW/qtcEFJ06c0EZ1qY1UVlZKIBIfH68VS3QyOTnZ2dkpz+lbsWKFdjne2NioljY0NISGhmqrXLx4UTX29fW5vGo3mzGQ8nIv6r1IMNfc3BweHi6NISEhxcXFbW1t8lIyJtldXl6evH2Hw6Hendx1pd/vrIofPXokkdCqVau0xk2bNkmAVVFRoS82B1Lery5fsKsuJSUlaW+8qqpKNV66dEkrkzyrvLzccDCl84WFhe6ONgDATO48HR0ddblUzlM3b97UWiIjI589e+acfsTe2bNnv/76a/nWobq62suTIwBgPhBIAYAvaUMDDhw44E19fX29pDaG9sWLF8v9RPpcQ6IT1R4TE2OoX7t2rVo0Pj5uWBQaGirb2bp1qzf98RxIeb+XL7/8Um7jkuBMT7v6l4xJ1RiGUcjoPNWun6rW++KMjAz5FWzevNmw6+PHj8u70w+RMwRSs1q9sLBQtTx48EBfplZ0To/R01ry8vKc04P+9O9I5hpTPV++fLkfAMBrx44dkzueXC6tq6tTSysrK/WNS5YsKSsrk2+MxOHDhy3pLADALQIpAPClVatWyZXuvn37ZiwODg6WqS727NljXnr9+nW16NmzZ1qLRCcFBQXmYhn319LSYl6kGr2/Y8tzIOX9XuT5R4YblwwkY3r58qWhXXvykT728r749OnTcn+TeY/Lly+XYv0UtoZAalarnzp1Sr28deuWviw9PV3iJ60lPDx8bGxMNe7atUtrPHPmjNxr5vroAADckJNRX1+fy6X37t1TS+/evatvdDgcFRUVcoKTT3L14Z+Tk2NJfwEArhFIAYAvRUVFyZWuNp2qB4mJiVKsn5hcc/jwYef05ERai4fnwd2+fVst6u3tvWsia124cMGb/nsOpLzfiwxbMw9S0zM8ZU9jt9vlsOiHK3pfLLuuqalxuVOZi10f6hmO6qxW37t3r9wMpR/0ITNDGcI4GYOp3+zr169VC38OAcBsHTlyRH1+vn//3uXShoYGw5C99evXy6Mn1Cd8TExMamqq1Cg3btywqtcAACMCKQDwJe35PhcvXpyxWF0iywWxy0FbOTk5MqRLa/EQSMkIhcnJyVFXhoeHvbljy2+mQMr7vci1fmlpqYd9ucuYwsPDvQ+kzMWy62vXrrnc6Zs3bwz3ixmO6qxWV7/uV69eqZb79+9v3LgxJSXl2LFjcjPUd999p18xKyvLOT3aUWbUSktLc05PgKKfigsA4I3c3Fw5GZmfXqrIwyW0Sc2jo6Plu4SioiJ9maRaTq+H2AMAfI5ACgB8TJ46px9q546kEkpiYqJ5qcxPpP8G2EMgJTfgVFdXf0rP/WYKpLzfi0RXnr95nqdAyuVgDc3o6Kjh/jXDUZ3V6g6HY2BgQBsAItTfSCdPnjSsqP5q6u/vV0vV31HqpfpLSf18+/Zt94cHAODatm3bPHydMzw8rH3YKupM5HQz2PzXX391/nXKPwCAlQikAMDHTp48KRfKGRkZnisjIyOlcufOnealModUY2Oj1uIhkJKAo729/RM77zmQ8n4vV65ccfcHgGaeAqnLly+rl8+fPzfvccWKFVK8YcMGrdFwVGe1urzNnJyczMzMY8eOnT9/Pj8/3zzlvFBLVfGjR4/8/f17enrUz1lZWR6ODwDAJe3TWD8hoEhOTpZF2sNP5ZGv586dM2/n4MGD8i3CvPcYAOAKgRQA+NiyZctk0Ja6CA4LCzMXxMXFZWZmys+dnZ2qsra21lATHh4+MjLi9Djbkd727dvlqjo6OvpTOu85kPJ+L999953TzVP2HA6H/DBPgdS3334rLampqYZimUd8YGAgKChIazQc1VmtLlO579ixw/PREDJlmDomMvOU2k5gYKA3KwIADGS4tPlu1tLSUsNNTzKC786dO+aNyBdIPT0989tXAIAbBFIA4Hsy2k7p7Ozcvn27NuP1qlWrLly4MDY2dv36dWnJy8uTyvz8fG31JUuW1NbWqsZ3797pIy0PgVRAQIBMkt3S0hIZGalf5HA4vJ8gw3Mg5f1eQkJCPnz4IJV2u10a1Q9lZWXapf88BVJBQUG9vb2qpaOjQz+aIysrSwbcHT16VL8Fw1Gd1erqt+mcnhmqvr7+1q1bV69eVS2qYMeOHfppzjW///67qh8aGnLONMEWAMAD7ez5n//8R2vcs2fP5OSk86/TQhUXF8t5LTs7W7+FlJQU+TT28qEfAACfI5ACgHlx7tw555/GxsbevHkjj/iRy+Jdu3ZJmb+/v0y3pHR1dVVWVt67d08ukUdGRjZu3KjfpodASklPT5ebqtS/VVVVpaWlFRUV7e3tU1NTqtFlPmLmOZCa1V7UpqRRVdbX17e0tMi0strj5+YpkFI2bdok4ZE68mrXd+7c6ejokLLq6mrDJLjmo+r96kFBQTJlmFlPT4/54Yn5+flawdq1a90dZACAZ+qjuLGxUT5O1amhtrZW7jg23wxlt9v/+OMPWdTW1lZeXn716lW1rpyh1LryrAkAgPUIpABgvmzYsKGurk6G74n+/v4rV66sWrVKXxYYGPjjjz/KjNdaYlVTU6NPWER3d7fT48RDapXq6urx8XH9plpaWvbv3+9ln3fs2CG38Hio8X4v27dvl1EVQm22tLRUu2Fq3759TlczUoWGhqoNqj8VVq5cqTXOqthv+qvv+vp6+apcS4jy8/PNj2RyeVS9XP3QoUPy90xCQkJsbOyaNWvWrl27d+9eCbB6e3sNOWBERITMttvV1eXhCAMAZhQcHHzhwgX5UBV9fX2FhYX+/v6GSvXZe/ny5cHBQf3XBuq0e+7cOR51CgALiEAKAObXokWLVq5cmZiYaBjjZrZq1aqMjIzk5GR318c2my0kJGTGPS5evDgpKUltKj4+Xl2vz7bDahfe3E7l/V5iYmJUmToC5s2qd+ryod3qoJm3OatiERYWlpKSsm7dOkNcpefhqHpeXS2VtDEhIcGwSNXLHzzm5yfKd/iGp48DAOZGnQLUh7A6y8TGxro8R2jUUjnPpqenu3v6BADASgRSAADMxfr162VYn/lPIPXXkQRShkeSb9iwQdo9BGQAAADAvwGBFAAAc6HdBlVUVKR/bN/y5cvl6XtNTU2GVSoqKlR7c3OztT0FAAAA/nYIpAAAmCN5vrgyPDz89OnThw8fPn/+XGae6uzsXLFihb7YbrfLEL/c3NyF6jAAAADwN0EgBQDA3G3btu327dtdXV1DQ0Ojo6N9fX3379/Pzc1dtGiRuXJkZOTly5dhYWEL0lUAAADg74NACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQA4DOwa9euqamp5ubmhe7IXNjtdpvNNocVX7x4MTEx8eWXX86tWO00LCxsDvv9rI82AAAA8FkgkAKAebR169YrV660tbW9efOmu7u7tbX14sWL69atm+12Dhw44HQ6X7x4MR+d9N5///vf3377LS8vz+XSlStX1tXVVVZW6uOnEydOqJ739fUFBATMdndv375V637zzTdzKA4LCxscHFQtBw8enO1+/yZHGwDgWVRU1MmTJ588edLT09PZ2VlVVZWdne2yMjQ09OjRo48ePVLnYlXc2Ni4b98+f39/izsMANAjkAKAeREdHd3U1OR0o7KycvHixYZVlixZoq6k09LSzFv7m0QkFRUVqht37951uXTTpk3y7tR1v2EVJSQkZLa7+5RAKjY2VvZbXFw82/3O9mirX5n6xenfNQBgvmVkZAwMDJjPsNevXzdUJicn9/X1ydKJiYmpqSn5ub6+PjAwcEE6DwDwI5ACgPkQExMj175jY2MlJSXp6ekOh2PlypXZ2dkPHjyQ6+CmpibDTUP79u1T7a9fvzZv8PMNpBITE8+fP79///457O5TAimloKCguLhY/S5mu9/ZHm31K1P16tc32x0BAOYmMjKyv79fffY2NjampKQEBQWpT/srV67IaSg3N1erVKeknp4e1djV1bV27VrVEhwcrAomJiZU49mzZxfuTQDAvx2BFAD4nro+Vpe5Q0NDLm93+umnn+SKubCwUN/+jwykPsUnBlJzRiAFAH9z586dUx+83d3dwcHB+vba2lrV3tPTo33lc+jQIdUyPj6+YsUKfaWMKFdnavMNywAAaxBIAYCPZWZmSi6zd+9edzXNzc3mmZW8D6TU9XdycnJ8fLzniZkWLVqUkJCQkpISGRnpskCtrs33FBYWlpaWFhUV5WGDcwukVDdcztOh9h4XF6e653A4XG7QkDFFR0enpqZGRER4UyzbDwoKcllst9vlALosmO3R9hxIqbVWr16tju2yZctcFgAAZks+8/Pz8w3t2ilYnS+k5f79+y7PXOrMKGP33E07BQCYbwRSAOBjN2/elK9nPcyW+s0338gVs0xwfvjw4YmJicnJSW2GC5GTkyP1WkQSHBxcXFw8MjIilf39/S5jr6ioqPLy8o8fP2pzarS2tq5fv95Q9vr1a7XTpUuX5ubmSrG6Ok9JSXHX7TkEUqp7qqWtrU1fGRAQoP6KeP/+vda9CR2tn1rGlJGR0d7eLpWqhzU1NeZYyhxI/fHHH6pl27Zt+rLVq1droyZla9p+f/vtt1kdbfUuBgcHZdCHoo6kbKe7u1urKSws1L/Nzs5O9ceSu8MLAPBGfHy8fKgmJCQYFtlsNvlY1p6/8fLlS3dD89RnslpUVFQ07z0GALhCIAUAPib3y1y5csVDTXh4uFxMf//99+rl/v37e3p6JLlQV9I9f9qxY4fUS0SiWh4/fqx+ePPmTXNzsxaUZGVl6TceHR0t82Wofy9dulRcXPz06VPZ8ldffaWvlBBHhi1MTU3J7LAZGRnuuj2HQMrl8DfJ7FT/b9y4obqnhU1dXV0dHR1aIibdU7tTPR8fH1fv/dWrV1L55MkTQ95nDqTMLYmJiXLQWltb1X7Ly8tHR0ed00M21H6vXr06q6MdEBDw7NkzVSZ//Khfn/zWmpqapOD48eOq/ePHj9evXz9z5ox6I2NjY+oYuju8AABvqJOjfCDrH+qqUacStaikpEReqhOQennx4kVzZV1dnVqkTknz210AgBsEUgDgS8HBwfqkyQOJn/TPgJtxyJ6ESnl5eZLFOBwO+Xa3tbVVXywzWDU0NOiDIXUt7pweJKi/fJfIZnJyUm0nNjZWtaxYscLl9b2QQEptP92V/Px8bwKp1NRUeSNJSUnSot5OVVWVarx06ZJ+d9I9iZ+io6OlsaCgQBq3bt1qLvYcSMncIrdv39bCrLS0NNWTjx8/Ll++fG5H28/NkD25f8oQFy5dulQdKHeHFwDgDTndjI6OulwqJ0EtZrp3757Lj27lzp07apE6Ac1jXwEA7hFIAYAvORwOyTJ2797tuVJu9tHuyvHzIpCampoybFZWUe3arK5r1651Ts/eani6XGho6NDQkCHHkchGtXv5KDoJpGbkOZAqLCxULQ8ePNBvefPmzc7p6Wn1jdK9trY2/Yyz/v7+8u336dOnzcWeAym5H8oQCcl8Xt99952hz94cbeEykAoLC5OjwdRRAOBbx44dc04Po3a5VO57qqyslJcHDx6UT+OCggKtJiAgYO/evXI3seF8BACwDIEUAPhSTEyMXPju2rXLc6XcbvPzzz9rLTMGUi9fvnS3Oy1RKioqUi9bWlrMG1GNatHx48e1Fols9NfonkkgNTg42O6K5EQzBlKnTp1SLbdu3dJvOT09XTUODw/rG6V75iNZXl6u2tW/5mIPgZTNZpPuxcXF6VeUKaUOHTpk6LM3R1u4m9RcOqD+KAoJCfEDAPiInOn6+vpcLpVborTR5erDXxsYrs681dXV9fX1+tn93I1DBwDMNwIpAPCliIgIucDdv3+/58p37945/zrNqvdP2dPY7XbZXXx8vLTcvn1bvezt7b1rIvnIhQsXtNXNIY5nPplDSqY57+7u1o8NlHmsDEMq3HWvtLRUtd+5c8dzsbtpzv/73/9qLWFhYTKwTn/jmPdHW7gLpHbu3CmPcBoYGDh58qR+VCAAYM6OHDninJ65z+XShoYG519nhlqyZMnFixf1IZQ6HaiPZRnHff36das6DgD4CwIpAPClwMDA8fFxdYF76tQpD2UhISFyTZybm6s1ziGQ0iZH1yISGaowOTk56srw8LA+N1mQQMpms8lwxfv372/cuDElJeXYsWNjY2POv46b89A9mQ9rDoFUTk6Oc3qIYl5eXmJi4tatW+WuMdUf9Yvz0GdhPtrCXSDlN/0A8o6ODllrYmKirKxMP/wQADAH6tQpZ7qAgADzUrkfSpvUXOPv7+9wOGJjY+12u7TU19fP6jZhAIBvEUgBgI/JpXBDQ4OHmqysLAkptCfK+fkokKqsrFQvq6urvenqggRS6u+BgYEBeTKdRv1dcfLkSS+7N+dA6vTp0xIM6Xfd2dlpGMTnw0BKbNiwQR00uVuqtrbWXRkAwBvbtm2TT2OXd54ODw8bvu9xKTAwUO6QVR/R89NNAMAMCKQAwMfOnj0rqceKFSvc1dTU1MiQAX2jBFKGib2F9xFJSUmJetne3u5NVxckkLpy5YpqycnJyczMPHbs2Pnz5/Pz813Oqu7bQGrZsmWTk5NdXV0Oh+O///1vcXHxqVOnsrKyzF+w+zyQErt375bVExMTPVcCADxQp1f5OP36668Ni5KTk2WR9iBXd+SboXfv3nl4tiwAYF4RSAGAj8XFxU1OTqrL3JqaGn9/f3PBnj175HI5Ly9P3/7tt986p6cMN6/ifUSyfft2ueEoOjp6xq4uSCAlo+R27Ngx5+7NLZDasmWLRHUuh3jozTaQkvnp8/PzZ3xHHz9+VJWZmZkzVgIAPJCh3+bzkUwy6PKrHb3g4ODnz5+ryhMnTsxbHwEAMyCQAgDfO3/+vCQXdXV1a9as0dojIiJOnTolQ8aampoMcdWGDRtkrXXr1kmLFp14H5GoVeSGnZaWlsjISH2xw+FQ29G3LEggdeHCBdUyPj5eX19/69atq1evqpajR4/u2LHD8DW1bwMp9fZHR0flxjT1FsrLyy9fvnzmzJnc3NzVq1frNzXbQKqxsdGpe3C4TEeVnp5+5MgR9TePVrZ582ZVNjU1pXri8gACALyUl5cnH8j/+c9/tMY9e/bIF0L6k5366DZ8yMfExKhTsHP6ASBhYWHWdRoA8FcEUgDge4GBgZLdiLdv37a3t3d1dWmzFz169Eif2oigoKCBgQG1dHh4+MGDB3/88cf3338vi2YVkaSnp4+MjKhG9W9VVVVpaanqjOqAzGGkD30WJJBSb/Pp06dOV3p6evSTavl8Din1s8v9qiNTVlbmoc/CXSBVUFAg7R0dHQ0NDWq/fn8O0BsaGlK/gkuXLlVXV8tv/+rVq64PLgDAawEBAfJlgHxc19bWys2q5rOD3JX85s2buro6tailpUXOhuqzmgHUALCwCKQAYL7s2LGjqalJP4W2ugh+8uRJTk6Oy6F8ftMPZZMYxTk97G7r1q3SLtNLmWeGCg0NVdtXm125cqW+PT4+vrq6Wp73J1SZugrfv3+/vqy7u1stysrK8vIdXbt2TdVXVFS4XJqenu6cvvVJf1uQueeHDh2Svx8SEhJiY2PXrFmzdu3avXv3ytPoent7tcjMXffOnTun2svLyz2/F0NLeHj4H3/84Zx+oNKKFSvi4uKSk5M3b96stiZ/nPzvf/9z12fh7mirDuvzR3Wc/aYfpFhWViZz64r+/v7CwkL94/wAAHOmzjUXLlzQf8z29fWpj1nDGTYmJkYeNqIZHBy8ePGi9qw9AMBCIZACgPkVGhqakJCQkZGxZs0ab4YGBAQEqPrU1FRDsdqOy8mPFi1apA+A9BYvXpyUlKR2HR8f77LGZrOFhIR49z7+z5IlS9ylabLHoKAgQ6O+5+pNjY2Nqb8H1Hs0lK1cuVL+VNC+svbQPXM3zMWGFplsvrKy0ry1mzdvOv9659ccjnZkZGRaWlpcXJy+Y/LbXL9+vfrtE0UBgM+pj2U5ycbGxnqYItBut6uPaFVm+JQGACwgAikAgHXWr1/vdDrHxsbMfzaovygkkHL5GO9P19DQoDb+448/mhf9+uuvatG1a9fmY78AAAAAzAikAADW0W6DKioq0t9LtXz5cnn6XlNT0zztWm6D6urq0t+cFRAQcODAARmyx8PvAAAAAMsQSAEALCXP5HZOz93+9OnThw8fPn/+XJ6L1NnZuWLFinna7+rVq2XOeImlHj161Nzc/P79e5muy+WdUwAAAADmCYEUAMBq27Ztu337dldX19DQ0OjoaF9f3/3793NzcxctWjSv+42MjCwqKnr8+HF/f//Y2NiHDx86OjouX76cnJw8r/sFAAAAYEAgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAAAAAAAALEUgBQAAAAAAAEsRSAEAAAAAAMBSBFIAAAAAAACwFIEUAPzTvHjxYmJi4ssvv/yH7QsAAADAPwaBFADMo61bt165cqWtre3Nmzfd3d2tra0XL15ct27dvO707du3Tqfzm2++mde9WL8vAADMoqOjb9261dzcnJWV5aEsOzv77t27L1++7OnpUafj06dPR0VFWdZJAIAZgRQAzAt1fdzU1OR0o7KycvHixZ+y/bS0NHVtHRoaal5EIAUA+DcICAj44YcfRkZG5NxaWFjorqyiosJ8Lh4YGEhJSbG4zwAADYEUAPheTExMX1+futgdGxsrKSlJT093OBwrV67Mzs5+8OCBXAc3NTWpS+Q57+L169dqI/v27TMvIpACAPzjJSYmtra2qnPQ8PDw6Oioh0Dqp59+kjNyXl6e3W4PCQnJysrq6elRjd3d3UFBQRb3HAAgCKQAwPcaGxvVZe7Q0FBaWpp5qVwZe7h09gaBFADgXyssLGxsbEydgH755ZeoqCg5J7o8q0ZERHz8+FEtPXjwoL5dnaDlXHzgwAGreg0A+AsCKQDwsczMTLnG3bt3r7ua5uZmVdDX16e/SUr9bLPZXNYHBwcbWuYcSNnt9qSkpOTkZHWN7vmNqP7ExsaqS/a4uLjAwECXNe72Ze4wAAC+EhYW1tjYmJGRIS89BFK5ubkyOs98V7KMrK+trZ3v3gIAXCKQAgAfu3nzprrA7enp8ff3d1fzzTffSGiln+B8aGhItWiX15qrV6+q9vPnz/tNh0SDg4MTExOy+uTk5MS07u5urd5dSJSVlSWjGzS///57dna2uXt2u720tFTtSKscHh4uKytT7YZK877i4uJ6e3u1DgMAMN88BFJ37txRi3799VfzohMnTqhF79+/n/8OAgBcIJACAB+Ty+IrV654qAkPD5eg5/vvv9caJWbasmWLoVimYpUNBgQEPHv2rKenR4rVZXTPtKamJq3eZSBVVFQke3zz5k1lZWVNTc2HDx+k5dChQ/rK6Ojo7u5u1a528fDhw9u3b2sxVldXl+G+KsO+HA6H2r5qaWtrCwsLm8VRAwBgrjwEUh0dHWrRqVOnzIv27NkjZzeXTwgBAMw3AikA8KXg4GBz0uTS+/fvVVlxcbHW4k0gpZnVkD1tFOGJEye0+7ZUVysrKyV4io+P14ofPXok2dOqVau0xk2bNsljjFRn3O0rLCzs+fPnpFEAAIt5CKTkbl+XizZu3Cgnx5UrV85/HwEARgRSAOBLDodDrm53797tufLVq1eq7OrVq1rL/AVS9fX1qqW5udlQuXjxYhkneOnSJWnJyMiQ/m/evNlQfPz4cUmvIiMjzftatGiRTIxFGgUAsJiHQErOrbm5ueZFX3zxhZzyEhIS5r+PAAAjAikA8KWYmBi5ut21a5fnys7OTlX2888/ay3zFEgFBwfLlvfs2WMuvn79ulr07NkzeXn69Gm5PcpcuXz5cnlrX3/9tWFfass1NTWkUQCABeEhkJIzl8tH6WkP2ktMTJz/PgIAjAikAMCXIiIi5Op2//79nivfvXunys6ePau1zFMgpa6zpUspKSnm4sOHD6tFIyMj8rKqqkq9rKmpcdlneXJ2QUGBYV9dXV3q3/Hx8aioKM/vGgAAn/MQSI2NjalFeXl55kXaTcEM2QOABUEgBQC+FBgYOD4+7m7+VE1ISIhcBOsHEcxTILV+/XrZ1/Lly83FOTk5atHU1JS8bGhoUC+vXbvmstsyYfnx48cN+zp9+vTo6KhhBCIAANbwEEj19/erRUVFReZF27dvZ1JzAFhABFIA4GPt7e3q6rahocFDTVZWlvmupXkKpDwPSVCX707dQ6/v3bunXt69e9dltyV10n/PrO3rP//5j+zlu+++8/DGAQDwOQ+BVFtbm7svWg4dOqQW9ff3z38HAQAuEEgBgI+dPXtWJv9esWKFuxqZcemPP/7QN8pj7Hbu3GkovnXr1qcEUpGRkRIVmbfs9+ccUo2NjfLy8uXL6uXz58/NlertyHY2bNjgcl83btxQP4+OjjIZBwDASh4CKcNUiXrV1dVqUVVV1fx3EADgAoEUAPhYXFzc5OSkzMTk7+9vLtizZ48kO4YpLWQmpnPnzukbk5KShoeHzYGUzImen59v3r75KXtSXFtba6gMDw+XFEybFurbb7+VvqWmphqKz5w5o9oHBgaCgoJc7is4OLijo0OmlGL4AwDAMh4Cqd27d7u8TXj58uVy229OTo5V3QQA/AWBFAD43vnz5+Xyt66ubs2aNVp7RETEqVOnZGheU1OTIa6Sb3E/fPigrbJly5b379/LpgyBVGNjo2p88OCBvAwMDNQWmQOpvLw82Yg+wFqyZEltba1qfPfunfZovKCgoN7eXtXY0dGhn3MqKytLLtyPHj2q74ZhX6tWrRoaGuILZwCAlTwEUjabra+vzzn9HFh1FpbGyMjIR48eqcbu7m5VYG1nAQD/h0AKAHwvMDBQJn4Sb9++bW9v7+rqkihKUdfB5nuI4uPj5WFAo6Oj9+/fb21tlXWvXLliDqQKCgpkUx0dHQ0NDapMW2QOpPz9/evq6qRedaOysvLevXuSHI2MjGzcuFG/5U2bNkn2pDpTX19/584due9Jqa6uDggI0Beb96V+lmL9w/gAAPAhdTJ6/vx5z5/k9KrOa/JSnemWLFmiFW/ZskXuXFanvN9++62xsVFuPVYv09LSFvBdAMC/HIEUAMyXHTt2NDU1aSGUc/phdk+ePMnJyXE5lE/JzMyUr3kVdfVcWVnpcDhyc3PVy0uXLukrbTabPvNqaWnRFnV3d6uWrKwsfX1gYOCPP/4oDxsSqmM1NTXx8fHmbqSkpNTX18vlu1DX9/n5+YY0yt2+5AaxsbEx7cYrAAB8SJ3U5GsVl9QJyG636+s3bNggjxzRzrD379+Pi4tbqP4DAPwIpABgvoWGhiYkJGRkZKxZs8bLgCY+Pj49PT0yMlK/EZeVqiYtLU1dUusTLpvNFhIS4m7jq1atUp1JTk6ecZon1duUlJR169atXLnSXY27fanG4OBgz9sHAMBKDodj7dq16tQWHh6+0H0BABBIAQAAAAAAwFoEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQAAAAAAAAsRSAFAAAAAAAASxFIAQAAAAAAwFIEUgAAAAAAALAUgRQALKQXL15MTEx8+eWXC92ReWGz2TIzM/Py8goLCw8cOJCUlDSvu9u1a9fU1FRzc/O87gUAAADApyOQAgAfCwgIOHv2bIXO1atXCwsLU1NTzcVv3751Op3ffPON9f2cb9nZ2fLu9Orr68PCwua2wQ0bNpSWljY1NXV2dj558uT69etqF+poawUHDhxQu3jx4oWP3gEA4DMQHR1969at5ubmrKysGYvVmUKdR6qrqy3oGADAMwIpAPCx2NhYpxtVVVWLFy/WF89fIJWWlpadnR0aGurzLXtj3bp1ExMT6q09ffr0yJEj//vf/27fvj01NaVa1A+z3Zrdbq+rq3N5SF+8eKEOuJQtSCC1sMcZAP7NAgICfvjhh5GRETkjFBYWeihetWpVY2OjVI6OjlrWSQCAOwRSAOBj6pJXrndzc3O3bNmydevWnJycmpoaaXz48KG+eP4CqdevX6st79u3z+db9kZVVZXae3t7u/4OpgsXLqjG8fFxfeOM7Hb7y5cv1YpTU1O//PJLVlZWUlLS+vXrf/zxx56eHtV+9uxZqVyQQGphjzMA/GslJia2traqT+Dh4eHR0VEPgVRgYOCxY8fGxsZUTX9/P4EUAPxNEEgBgI9pgZS6Vta3HzlyRNq3bdumNf5TA6muri619zNnzugbd+3aJUcgODjY+03dvn1brTIxMZGdnW1YZLPZTp8+nZubKy8JpADgXyIsLEwCpl9++SUqKko+it0FUmfPnlVLe3t71WlIfVwTSAHA3wSBFAD4mLtAKjAw8MOHD6q9rKxMazQEUtHR0ampqREREZ53Ybfbk5KSkpOTPVR6E5QEBATExsampaXFxcWp7nkoW716tSpbtmyZ545p5Ftrw+i88vLy2QZG6m3KwSwqKpqx2BBIBQcHq0MUHx/v4YYs7QioMndHYNGiRdrPqkx1SV/p+TjP4dABAGYUFhbW2NiYkZEhLz0HUseOHTtz5owMmSeQAoC/DwIpAPAxd4GU358xTWVlpdaiBVLqqrq9vV1WnJqaqqmpcRk2ZWVlyUY0v//+u/7WoYCAgMHBQZm/SZmcnJyY1t3drd+O3W4vLS1Vldp2hoeHy8rKVLthj+r6/v3791pZZ2dnZmbmjAfh+PHjqnhsbCwmJkZa8vPzZQvbt2+fcXXN5cuX1SojIyMhISEzFmuBVHBwcHFxsTarSH9//969ew3F6rdTUVExNDSkvbWPHz9eunTJcPeW/OmijlVUVNTjx4+lsrq62pvjPLdDBwCYLc+BlB6BFAD8fRBIAYCPeQik+vr6VPvVq1e1Fgmk7t69OzExMT4+/vjx41evXsnqT5488ff3169eVFQki968eVNZWVlTUyO3XCmHDh2SmoCAgGfPnvX09EhW8v79+55pTU1N2naio6O7u7tlHNzDhw9v376thVxdXV36IExypY8fP16/fv3MmTOqn2NjYxUVFTMehNDQUJmno76+fvny5TKllHqD+/fvn9XBfPHihXN6MnhviiWQUm9WkiN1lJqbm7VYSv/0JW2shypWG79x44Z2BAzvTrb566+/Sk+Gh4fV0WhoaJjxOM/50AEAZotACgA+RwRSAOBj7gKp9PR0adcP75JASuKn6OhoaSwoKJDGrVu3apWZmZnSeOLECS2oCg4OrqyslGgpPj5evzsPQ8kePXok2ZPqqta4adMmyW600ERuAjJEOUuXLlVvxJvjsGPHDumwRDYdHR0pKSnerKhR704ezHf8+HFv6iU8kj3m5eXJUXI4HJ2dnaqxtbVVqwwLC/vtt9/U4dVHfkePHnVO354WGRlp2Obk5KR0Q9XbbDbtN+Xn5jh/4qEDAMwKgRQAfI4IpADAx1wGUikpKTLPd29vr35QmARSbW1tMreF8Pf3l+LTp09rjfX19aqlubnZsDu1oow7u3Tpkr7dXSCVkZEh3du8ebNhkdzUMzExIYlMWFiYVM5t/qOcnBy5C8k5PZmUYSKnixcvNjQ0eI6oHA6HrH7gwAFv9ijh0dTU1O7du/Xt8ueHavc8mXpQUJAET1u2bDFs0zk9as/lWi6P8yceOgDArBBIAcDniEAKAHxMC6Rqa2vLy8tv3brV3NwsScfw8LDhHhkJpHbt2mXYiMz/rf6Vl8HBwXKf0Z49e8x7vH79ulr07NkzfaO7QOr06dNye5R5O8uXL5eef/311/ruVVZWejOFkyYwMPDmzZuSbcndSWNjY9rUs0LGDOpvIDLTjqSXz7CT8Ojly5eG9piYGNmONqGVO/J+d+7cadhmf3+/uzDL3XGe26EDAMwBgRQAfI4IpADAx7QYRU9d+1ZUVKxcudJQbHjKnqa0tFS137lzR14mJibKdlzeUnT48GHn9Mzf+kZ3QYlM51RTU+Oy8x8/flRLCwoK5OXOnTtl0NzAwMDJkyeXL1/uzRG4ePGipG8ZGRlhYWEy+9Lg4GBSUpIUBAYGqgOiGpOTkz1sJyoqSt51Xl6eN/s1PGVPY7fbZTuGUY3+/v5paWm5ubnqrZVMU302/DrcbVPj7jjP7dABAOaAQAoAPkcEUgDgY1oglZubu2XLlo0bNyYmJtpsNpfF7gIpyXS0QGr9+vWyTZe5Rk5OjgxJ0ze6C0oaGhpU+7Vr11z2582bN86/ztmUmZnZ0dEhe5+YmCgrK9OPLjSLiYmRm7m0XTscDrkfamBgQDIpGTY4MjJiGMdnoA6abEodDQ9lGnfhUXh4uDmQ2rBhg9y9ZeaTQMpv9ocOADA3BFIA8DkikAIAH/PwlD0zLwOptLQ0D9tUl+DO6Qe96RvdBSX37t1zTj/Xz2V/5MYl8x1JGzZsUKvILT+1tbUe3lFubq7kL4GBgVpjTEyMRF2qk1988cUvv/yiflb/etiOePr0qdM0GtEd7wOpNWvWyPxWNTU1mZmZK1asWLJkSWhoaG9vrw8DKeH9oQMAzA2BFAB8jgikAMDH5iOQioyMlG3qpzfSyBxSjY2N+kZ3Qcnly5dV+/Pnz83bWbFihexlw4YNLnu7e/fuGd+azIw+NjZmuPtJbVxmah8ZGZmampqcnPQ8Xk+cPHlS9miYgsol7wOpsrIy5/Rz9/RP2VN6enp8HkgJbw4dAGBuCKQA4HNEIAUAPjYfgZQi48vMt9iEh4ePjIw4dRM/6evz8/MN9d9++610LzU11bDozJkzMrAuKCjIXYdlkqnMzEx3BXv27JHtb9q0ybAoMjJS5pNSHj165G4LesuWLZNbmdSKYWFh5oK4uDitM94HUvfv31cvr169qi+z2Wz9/f2zDaTcHWezGQ8dAGBuCKQA4HNEIAUAPjZPgVReXp5sVp99LFmypLa2VjW+e/fOkNc0Njaq9gcPHshLbQBdUFCQDEzr6OjQz0iVlZUl4/WOHj0qLenp6UeOHNE/XW7z5s3O6cmqHA6Hu3cUEhIyNDSkytSfB2lpafr2EydOyJxQQvU8MjJyxkMkAxKVzs7O7du3a7NxqeN84cKFsbGx69evS4v3gdTVq1ed048a1N6dOnp1dXVSNqtAyuVxntuhAwDMDYEUAHyOCKQAwMfmKZDy9/fXEpOurq7Kysp79+5J9DMyMrJx40bDFgoKCqS4o6OjoaFB7UhbtGnTJsmexsbG6uvr1V60uberq6u1oXYyykztoqqq6tKlS2qRxEmGG4vMsrOzJycnJX958eJFbW1tU1OT3Oik2s+cOXPw4EF5OTw8POPWlHPnzmkxllrxzZs379+/l5eqS7t27ZIy7wOphIQEuV/p1atXJSUlZWVl/f394+PjL1++nG0g5fI4z/nQAQC8oU5Vz58/7/mTfMaqT115qc6SS5Ys0YrVJ7lWqZ0+tBbtaxgAgMUIpADAx6KjoycnJ6emplatWjVjsTx+Lisry9AuEUx5ebm+MTAw8Mcff5RhZVocU1NTo394nMZms1VUVGiVLS0t+qUpKSn19fUSG2mX5vn5+fqJn0JCQsrKyoaHh7UatevCwkL9bOXupKam3r9/f3x8XFt3cHDwl19+SUhIkIKkpCTVJQnXZtya3/TU4HV1dRJjaZ25cuWK/iDL997t7e2GdUNDQ9WBUr+RlStXao2ZmZkSP4nW1tb09PQLFy6on7dv3z7jNjUuj/OnHDoAwIzUx6l8JeOSOlnY7XatWLvT1qWSkpIFfCMA8G9GIAUAvrdo0SL9cC0PbDZbSEiIy0VLliwxTLmtWbVqVUZGRnJycmhoqOftR0ZGpqWlxcXFudxUWFhYSkrKunXr9EmNQUBAQEJCwvr169esWTPbPEUdhNWrV69duzYmJsYwx7mIj49ftmyZ9xtUB1Z1NTEx0d1YP3VAXO7I3W9EHRl1JFX35KU6SuZfh7tt6rk8zp9y6AAAAIB/NgIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAAAAAABgKQIpAAAAAAAAWIpACgAAAAAAAJYikAIAAAAAAIClCKQAAH8XNpstLCxsoXsBAAAAYN4RSAGAj4WHh1dXV9fU1ERGRhoWff311/fv3799+7aV/UlPTy8vL6+oqDhz5syMcU9ISEhJSYkqVqskJCRY00Oh+jY4OOh0Og8ePGjlfgEAn6Pg4OADBw6os21nZ2dvb++TJ09++uknu93urj47O/vu3bsvX77s6elpbW09ffp0VFSUlR0GABgQSAGAj61atco5LTExUd/+xRdfjI2Nqfaff/7Zyv7cvHnT+afy8nLPxRcuXNCK1cX63Pa4ZMkSdd2flpY2q7ViY2Nlv8XFxXPbLwDgX2LdunXv3r1zmvT19amzsKE4ICCgoqLCXDwwMJCSkrIg/QcA+BFIAYDPuQykIiMje3t7VWNTU5PNZrOyP3IV/ubNG/Xv2NiYh2+PQ0JChoeHVVl3d7f69+zZs3Pb4759+9Tqr1+/nu2KBQUFxcXFMTExc9svAOBf4ueff1Ynmrq6uj179qSkpHz11VfqZzn5trS0GIp/+uknOQPm5eWpk6A62WVlZfX09Mj5LigoaEHeAgCAQAoAfMwcSAUGBjY1NUlG4yEPmicSSN24cUPtXf1QUFDgrlJdqauChoaGBw8eLEggBQCAN7Zt27Z+/XpDo5xqldjYWK0xIiLi48eP5vHgaWlpUnzgwAEregwAMCGQAgAfMwdSpaWl6uXQ0JCHWZkWLVqklqakpJhnnpKl/v7+LlcMCAgIDAz00B8JpK5fv/7jjz+qH169euWu8sWLF6pg586dngMpz1318xhIqd5qN4iFhYWpvwf0U3iope6+qQ4JCVmzZk18fLy7Arvdnpqaqo4533UDwL/TwYMH5fz75Zdfao25ubkyOk+dYgz1EmDV1tZa2ksAwJ8IpADAxwyBVE5Ojvp5cnJy69atLuujoqLKy8vl+1vR2tqq/+I3Pz9fhhWYL6bj4uLGx8cnJibcZUN+ukDK4XCobqifN27caC5TjWrR27dvAwMD3QVSM3b18OHDqjOyF2XiT+ogSMHr16/V0qVLl6q/EGQ7U1NT2hQef/zxh2rZtm2bfqerV6++d++e2ohsU62l+qB/v+ogNDQ0aF0aGxu7du2a55AOAPDPI1+HKOnp6VrjnTt3VMuvv/5qrj9x4oRa9P79ewv7CAD4/wikAMDH9IFUWlqaTGSen5/vsjg6OlqmsVD/Xrp0qbi4+OnTpxLlfPXVV1KTkJAgG9yyZYthdbmYfv78uYf+aIGU+vnevXvq51u3bpnLKisr1aKTJ0+qn10GUt50df/+/WqpuriX9p4/7dixQwrevn2rFkm3p6amBgYG1A8ZGRn6pd98842209TU1KGhIbm/rK6urrGxUV6qH6TAbrf39/erlra2NtXh0tLSly9fGsZrAAD+DdQpTE6X+ntvOzo6VMupU6fM9Xv27JH60NBQC7sJAPg/BFIA4GNaILV582ZJcK5cueKuuLGxUaZt0l8NX7x40Tn9qCBtdFtra6vT1TPyOjs7VXthYaGH/ugDqezsbKerqc0dDofc2bRixQo/N4GUl1318zhkTyIntSPVc8mM1B61dQ2BlL+/v4wibG5uDg8Pl8aQkJDi4uK2tjZ5eejQIblRSz+kcevWrRbPHA8AWHDyhYQ6I+gbBwcH3Z0o5dZgZeXKlVb1EQDw/xFIAYCPaYGUDEB79+6du3Bk7dq1qmB8fNzwXLnQ0FC5D0gb5SfTjQ8PDwcHB2tlSUlJcp/R8uXLPfRHH0gFBgbKc7INU5vLE4hqamrkpTmQ8r6rfl4EUmoVl4/SMwRSX375pbxB8+1O2iG9cOGCqrl69aqHIwAA+MfbvXu3nHyzs7P17TLiOzc317zKF198Iat4mOERADB/CKQAwMe0QOr48ePyw6FDh1xWFhUVOV09oFpRjbIFeRkeHi5D/3bt2qXVnDlzRm5Z8twffSClnD171vnXqc1tNpskQVqoZA6kvO+qnxeBlLsn/RkCqXPnzpm/6zaQ2WqHh4fN4xkBAP8SERER8nVLdXW1YZGciF0+Sk970J72EBIAgJUIpADAx/RzSMn9OxMTE2vXrjVX3r59Wy3t7e29ayLRjFpdK5Y5nrSbmPymJwhXLdp84e4YAqm4uDjpnja1+a5du5zTk6Zro97MgdSsujpjIKWfJcrD0qqqKpcDFfVsNltbW5u8I9Xt7Oxs89TvAIB/sMDAQHm0hTqRGQakK/J1Tl5ennnFjIwMhuwBwAIikAIAH9MHUjabTWb+fvPmjTYLkqaurk4mVBp1ZXh4eN++fVpxVlaWDJqT7cj3uqpsxqlYDYGU8ujRI9Vy+/ZteSnPvT569KhWYA6kZtVVXwVS8gdGaWmp5ze4ePHiS5cuyZ8cSldXV2ZmpudVAAD/GOXl5XKrrMsbneTBF0VFReZF27dvlxMHk5oDwIIgkAIAH9MHUuplbGysukpWL2traw2VctOTeXyBSwEBAXJVLRNhlJSU6EMlD8yBlARG4+PjERERqpNyD9fSpUu1AnMgNauu+iqQkhTsxo0b3uzUbrcXFBT09fXJ29E/8xsA8E8ldyKPjY1t2rTJZYHcRXvt2jXzInkshjq3znMfAQCuEUgBgI8ZAik/3YOlDU/5kVCpvb3dyy2fP39e1T969Mjf31+e35eVlTXjWuZAKjg4WGYiP3z48M8//6x+uHPnjn4VcyA1q65KINXd3W1eNKtA6sqVK+4mrnInNDRUnkh49+5d79cCAHyOTp48KV9CbN++3V2NOv2pmmfPnpkXVVdXq0VVVVXz2UcAgFsEUgDgY+ZAyu/PC2J10bxu3TqtUQYLTE5ORkdHe7NluZtpampq79696oeBgYHAwMAZ1zIHUkpZWZlkRiMjI/r5pIQ5kJpVV7/99ltVPDg4aF40q0Dqu+++c7p5yp7D4XC398LCQrVWU1PTjP0EAHy+Dh8+LCcmd+cUoT19zzCgb/ny5aOjo95MxQgAmCcEUgDgYy4DqeDg4JcvX6rGnp4ebcrVgIAAmZi8paUlMjJSvxGHw+HykUC///67qpf7m2acXEm4DKRSU1Odf+rs7DSsYg6kZtXVDRs2yJa19E2baHxWgVRISMiHDx9kp9pBUz+UlZWpwygvT58+nZaWpu9nY2OjWuXKlSszHxoAwOcpJydHvrHQz2Doks1mk9HcbW1tERER0qhOZDKdYnd3tyqY//4CAFwgkAIAH3MZSPlN398kX8bW1dVpjenp6XKPkvq3qqqqtLS0oqKivb1dXWSrRvNVcn5+vhYkuXxyn5nLQMrvz2xL+eGHHwyLzIHUrLoaFBQ0MDAgU8yqTf3xxx/ff/+9LJpVIOU3/c22bF/ttL6+vqWl5ePHj+pla2urFLx69UrGEl67du3KlStdXV1SHBcX583BAQB8jnp7e53uqbPA4sWLteItW7ZMTk5K+2+//dbY2ChzO6qX+q80AAAWI5ACAB+Ljo5WF75TU1PmTOTAgQMTExPqInjDhg1aY3x8fHV19fj4uHYlrWpaWlr2799v3nhERIRcRnd1dXnZHxktaL6dSnVGbrYKCwszLKqpqVGLTpw4YWj3vquZmZmSLsl4iq1bt0p7d3e30/3UVy6Xbt++XVInoTqs3ot2w5Tacnt7u/7vkHv37rl80BIA4B/D8Mlv8PHjR30g5Td9665+FXViun//Pl9dAMDCIpACAN9btGhRcHCwy0VBQUEhISHmdnXpnJSUlJGRER8f725d0dnZ6XTzBGuX/P39lyxZ4nKR6onLoQoBAQHuVvG+q2ojCQkJqamp+sBL7c7l259xaUxMjNpjYmKiyw5HRkZ+8cUX6enphuGEAABoHA7H2rVrU1JSwsPDF7ovAAACKQD4rGjTM61cuXKh+wIAAAAAc0QgBQCfE5kQqrm5eaE7AgAAAABzRyAFAJ8Nu90+NjbmdDpzc3MXui8AAAAAMHcEUgDw2di2bdvIyMjLly/N05ADAAAAwGeEQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAAAAAAAAYCkCKQAAAAAAAFiKQAoAAAAAAACWIpACAAAAAACApQikAGDB2O12m8220L2YtTl3+8WLFxMTE19++aXPuwQAAADg80IgBQA+FhgYWFJSUuHKjRs3tCjnxIkTTqezr68vICBgYTs8K5/S7bdv36p1v/nmmxkrY2Ji1DF8+vSp2lFXV1dVVdW+ffs+x/AOADBPgoODDxw4UFNT09nZ2dvb++TJk59++slut7ssTklJOX/+fGtra09PjzqtVFZW8u0IACw4AikA8LHY2Fine0uXLpWyiooKaQkJCVnYDs/Kp3Tby0Bq+/bto6Oj5kNXXV2tL1uyZEl2dnZaWtpsu6GnVlcbCQ0N/ZSN/G355BABwN/QunXr3r17Zz5T9PX1rVq1ylB88+ZNl2fk4uLiBek8AEAQSAGAj6lLYbnSLSgo2PFXW7du1coSExPPnz+/f//+BezqHHxKt70JpCIjI4eHh1XZ48ePMzIywsLCYmJi9u3b9/s0faVqVGWvX7+eQ080anW1EbWpT9nI35ZPDhEA/A39/PPP6vOtrq5uz549KSkpX331lfpZTr4tLS36yqioKNX47t27EydOZGZmpqWl/fDDD0NDQ1K8ZcuWhXoLAAACKQDwMS2QSkxMXOi+/L14E0jl5eWpmo8fPxqGXfj7+8fGxupbCKRmRCAF4J9q27Zt69evNzQ2NTXJ+Vd/vrDZbEeOHDHc1btlyxaprKiosKK7AABXCKQAwMe8D6QWLVrk7++vbwkICNDPlBQdHZ2amhoREeFhI+Hh4UlJSSkpKZGRkS4L5rBNKUtOTo6KivKm29qO1N8AaWlp8fHxgYGB5gJvAqkLFy6omufPn3vunp8XacuM/fHzLpBS7zchIcH7I6z+A6hf/eLFiw1lcXFx6pDOONRx2bJl6he0evVql3Nmzeq3OeMhstvtanXV26CgIM+9AoC/v4MHD8r515v5ofr7+823UwEArEQgBQA+5mUgtXfvXlXT1tamb3z9+vXk5OTSpUszMjJ+//132c7U1FRNTY0hdAgMDPz+++87Ojr002Gol5s2bTLsyPtt+k3fiFRQUNDX16dt88WLF99++63nbqt3WlFRoY2AkFucLl26FBwcrC/zJpA6efKkrO4hMjt8+PDExIR6U7KviT/l5OR42Z+AgIDBwUG1iixVm5ItdHd363cUFRVVXl6u1tW209raav5OXjvCmZmZnZ2dUjk6Onru3DlJ7rZs2aK1j42NnT171mWip47zy5cvtX2p/peUlBiOoZe/zRkPUVxcXENDg7Yv1atr1665i+0A4LMgKbySnp4+Y7F8IfHgwQMLOgYAcIlACgB8zMtA6sCBAxL36BslsikqKpqcnBwfH3/8+PGrV69ka0+ePNGnGGfPnpWgoampqby8vLKy8sOHD5IsJCQkzG2bfro5yzs6OuTRRfJyw4YN7rodFhamdqoae3p6qqqqbty40draKmsZhkJ4E0ipvyK06MfdHUn79+9X+3r//r0cgZ4/7dixw8v+BAQEPHv2TBVIJqU2JVtQB1PbS3R0tGqR7Vy6dKm4uPjp06eyx6+++srdEf748aPaiDbVrmo8ePDg1NTUyMiIvv348eOGNyVJnERLZ86cUb9TtYpqaWxs1D/Q0MvfpudDZLfb5daAtrY29R+ptLRUgjDDoEgA+LzIB6ni8vZevUWLFqmPUFX5888/W9M3AIAZgRQA+NinB1ISLkRHR0tjQUGBNOrnRC8sLDx79qz2zD4lIiJCApTS0tK5bXPXrl3O6duF9uzZozWuX7++s7MzKyvLXbfDwsJ+++03tR19tnX06FGJV/ShkpdP2ZOpauUWoSNHjrh7BJ678Wje98fP45C9xsZGtaihoUHfgYsXLzqnn+KkHzenHeHm5maHw+E3PWXJvXv3JB9U/zY1NclfR1r74OCg/nakjRs3SnIkgZFYuXKlhIwHDx4072vG36aHQ3To0CGJ/PSHSK3rcpAgAHwuJFtXH24zVn777bcuPzYBAFYikAIAH9MCqbq6uoq/ysvL08o8BFJtbW36GYj8/f27urpU++nTpz3vWr4cfvz48dy22dLSolrKy8sNm9VHJy67bRYUFCTjxfQPMPIykAoICCgpKZmamtJiqRMnTphjqVnN2O2yP37uA6m1a9eq9vHx8ZiYGH276oaMBNT/DSPvS/0JpB9el5ycrCVH+vbU1FRp1z+Y/P79+6rl6tWrhm4UFRUZ/ria1f8Qd4dIJuoy7w4APl+7d++WT9fs7GzPleoso85iqvLp06fW9A0A4BKBFAD4mBZImT18+FAr8xBI7dq1y7DN8vJyl1GRwadsMyQkRCIbz18XexlIafvduXOnoWXGQEokJyfX1NRoh+7169eqRV8w20fImfvj5z6QkiTI5WS3Etvpx9y5PMLqDx4ZD/j111/r2202m2RtmZmZ0hIUFCQ3Upln4ZXnQKntaLcyzep/iLtDlJubq9qHh4d53jmAf4aIiAgZE11dXT1jsXzCq4/WtLQ0C/oGAHCHQAoAfEwLpNSf/Vv+Sj9Hj4fwyBzZlJaWqvY7d+4Y2u12+86dO48ePXr27NmSkpIHDx7MeZuJiYnSbcM9QQbuAil/f391Za/e8smTJ0umDQ8PG/Y7q0BKrFmzRsa4KWp19X61RZ4DKW/64+c+kLp9+7Zq7+3tvWsi7+LChQszvq+BgQHVrh+FJ2RyKG0UZFxcnLzB+vp6w74ePnwoi8LCwjzvy+X/EHeHyGaztbW1yZbV/5ns7Gz9NFUA8HkJDAyUpzR0d3frTxMuqXOxfPty+PBha7oHAHCHQAoAfOzT55Ayxw0ydZE+bggKCrp8+bL2nDi9uW1z/fr1srqHx9u56/aGDRu06c8NPjGQEoWFhbK1kpISrdFDIOVlf/zcB1J1dXXO6em0Rl0ZHh7Wr+LufcnE4eZASqIxLZD64osvpG9jY2Mud9fR0aEFRt7/D/F8iBYvXnzp0iW5M0vp6urS7tgCgM+L3CKqPlo9n3b9pu+9lWHXM95xDACwAIEUAPiYNYGUPA7v/fv3+fn5CQkJdrs9NDQ0Ly9vzttMS0uTbmtTZXvZ7TVr1kiuUVNTk5mZuWLFiiVLlqjO9Pb2+iqQ8vtzoJx+eix3aYv3/fFzH0hVVlY6vRv64eF9eRlIqV+fHHnDmMRZ7Wu2gZRQ/20KCgr6+vqc06NXvHlQOgD8rcikeOpjf9OmTZ4r4+Li5GP53r17+rkRAQALhUAKAHzMgkAqKipK5iHSQg2Rk5Mz5206HA7ptnkmI8/dLisrc5oe2abII/98FUhJQqSf1EnSlu7ubkOl9/3xcx9IlZSUqPb29nZv+vaJgVRoaKj8Nrdv3z7nfXkIpMyHyEB1QB0uVXn37t0ZOwAAfx/yKI+JiYkZPz9XrFghZ4HGxkb9gyYAAAuIQAoAfMyCQEqeAac4HA592Q8//PApd111d3e7HMiwePFi7SF35m67fEKczWaTOGa2gdSyZcvMjUFBQfKHhH4v8tDuwcFBQ7H3/VFkZF9+fr5hI+pvGxmy5/l+Mc/vy8tASmlvb1ct169fn/O+XAZS7g6RmQyKbGpqmrESAP4mDh8+LB/UM37PsXTpUnkU6eP/1969PVdVHX4A/yu4BCIhhJsKYiSiIRiiQlEE8VKptTJQARFRB+uAwKiIBsELFQEvKCKKeAEBUcAL0igIJJm207752HHGdmq1HX3s02/9sn7u3/acnHACZJHWz+eByVln7bXW3ps5l+/Za+3XXsvfohSAs0sgBXCGJQikzj333NhFaCSrM2PGjKNHj55OIHX33XeHkra2tvwVQ1OnTj1w4MCvfvWrUsNubm6OixBlvzlXV1fHNZi6G0j169cvfLXYsGFDU1NTVjhs2LCnn346DmzChAlZ+RVXXBG7mDhxYrZ5t8YTbN26tb1jYe/4MJvEEZqKF09t3749DCC/yciRI/OHvYv9Kj+Qipe2hR0MfxQckClTpuT3uluBVKlDtGTJkvy9pUJhPA6PPvpoH4D/BNnLZvElrgUGDRq0a9euUPnNN98cPHhwmuEBUA6BFMAZlmYNqbiGa2tr67p165YuXRpvMLRz587TaXPgwIHxUp3YyAsvvBCvmQqmTp1aath1dXUxCHv33XdXrFixatWqQ4cOHT9+fM+ePadwhVTWY0tLSxjMO++8ky28vWjRonzNAQMGxNvYffbZZ5s3b37vvffmzp3brfEECxYsiI2HQxeOYRhh9lRjY2O8HV74d8OGDStXrnzyySfDkOL0uoqKipPuV/mBVJ8f5iQG4YtTc3PzI4888uyzzx4+fDiULFmy5KR9dRpIlTpE4ci0d0xIXL169aOPPhovHAi7WVtb28WpAeg94rKApYQXtOxKqFtvvbWLmsHixYvP7r4A/GQJpADOsFGjRrW2tra1tXX99T6u71OwSlGMYwqiimDZsmXtP55MFz5qr1y5MrvLXvjwvXTp0pEjR4auT7nNPh0XEz322GNZBhR/Us5v2+mwJ0+eHOOeaMeOHY2NjXGh2fy6HqVGkhd24aGHHopRTmb79u1ZIlbQbwxo2juyuaxOmePp0zGVLy4Pn3WUf3bs2LEbN248fvx4ViEc8FAnfL0p5wjHaYbFI497N2XKlHxh375958+ff+DAgfyOh5qrV6/OTxvs1tksdYjCv1nyGD333HMnvTsVQO9R8CJW4OjRo1kgde2118YfEkq59957z+6+APxkCaQAzryBAweWs2ZqVVVVnEKVqaioGDRoUKeVBw8eXLBKdyxsbGwcP3581l34o+DmQd1ts09H2lVfXx9aHjFiRDnDjmpra5uamkaPHh0fhpYL+u1iJMVCO2EADQ0NNTU1XVQLI6mrqwtHoLq6urvjyQwbNix0FOqXOhqXXHJJaGrs2LGdntZS+9Xd8ijueNijTpfTOoWzWeoQhb2eMGFC6KtgTiIAACQgkAIAAAAgKYEUAAAAAEkJpAAAAABISiAFAAAAQFICKQAAAACSEkgBAAAAkJRACgAAAICkBFIAAAAAJCWQAgAAACApgRQAAAAASQmkAAAAAEhKIAUAAABAUgIpAAAAAJISSAEAAACQlEAKAAAAgKQEUgAAAAAkJZACAAAAICmBFAAAAABJCaQAAAAASEogBQAAAEBSAikAAAAAkhJIAQAAAJCUQAoAAACApARSAAAAACQlkAIAAAAgKYEUAAAAAEkJpAAAAABISiAFAAAAQFICKQAAAACSEkgBAAAAkJRACgD+X1VVVU1NzdkeBQAA/JcTSAH0XsuXL29paVm8ePFJa44cOfKjjz768MMPq6urs8KKior8w5Pqbv0Edu/efeLEiauuuipBX1dffXXorr3DwYMHx4wZk6DT9HrhWQYA4CdIIAXQs5qbm7ds2fL000+fQgrw5JNPtre3P/rooyeteeGFF8YkZeTIkbEkdNfS0hJK5syZU05f3a2fxkcffRSGdMMNN3RdbdasWS+++OJtt912yh1ddNFFx48fD30dOnRox44dR44cSZOCJdY7zzLAKaisrAwv/ps2bdq7d+8HH3zw+uuv/+Y3vyl1ies555wzb9688E6xf//+8M6yc+fOVatW1dXVJR4zAHkCKYAe1NTU1P6DU4gATieQGjNmTCxZvnx5vmZDQ8O1115bVVVV0EKp+mdXmYFUPFDPPPPMKXe0YsWK0MKePXvCl5Y+Hd9z+vfvf8qtnXX/WWcZoLsmTpz48ccftxf58MMPwxtiQeXRo0fv27cvVjh27NjRo0fj3ydOnJg5c+ZZGT8AfQRSAD3qkUceCR95jxw5Ev597bXXurv56QRSwYIFC5YvXx4+iOdrvv/++6HazTffXNxIp/XPrmSB1JYtW0ILS5YsOeUWepX/rLMM0F3x7fX555+fOXNmfX391VdfHf6O74Pbt28vqLxt27ZQvnfv3ssuuyyWjBs37vXXX49v0GYxA5wtAimAnlJRUfG73/0ufN6dPXt2/JR8wQUXdKuF0wykOtVFVNELJQuk3nrrrdDCggULTrmFXuU/6ywDdNc111xz+eWXFxTG4CnILwI4evToWHjllVfmK2fl06dPTzFiAIoIpAB6yowZM8In3Z07d4a/Dx48GP4+6fLkI0eOHD9+/LnnnhsfdhFIDRgwoK6ubty4cQMHDuxTIpDq169fqFawYRdRRaf1s6fC5/uGhoba2tpSc9lCnYqKiuzhqFGjwr4MHTq0i/0dMmTIJZdcUl9fP2zYsE4rnE4g1a3xhNMUWpg7d24XvdTU1ITRXnrppaUayfdYXV0dDteIESNKjSecsnD64gzBvHCEQxeDBg0qNYzsXIwdO7bUuehVZxkgjTlz5sS3wvwigBMnTiz1g83nn38eyq+77rq0wwTg/wikAHrKhg0bwifdO++8M/x9//33h7/37dtXqvJll122Y8eObBWMbdu21dXVdRpIVVRUhNY+++yzWPPTTz+9++67x44dW/yB+7333gsl11xzTZ+OHKGlpeXEiROxWmtr64kO+/fv77R+pqamZuXKlXEl7Ch0vWrVquKFY99///3Q7PDhw5uamt5+++1Yua2tbdOmTQWBRf/+/efOnRszoEx4OGnSpII2TyeQKnM8H3/8cfFhCUc439S0adPyZycIDV577bWljsDs2bPjGiWhu/r6+oJnJ0+evHfv3thO+Dq0bNmyvn37hgpTpkzJyo8dOxbGEMsz48aNC3sazng2jNDLQw89VFlZGSv0qrMMkNjNN98cX5QaGxuzwvC2GAtvuummfOXx48fH18lRo0alHigAHQRSAD1iyJAh8a5tcbGecePGxQ/E2QIWeeGjc/yd9siRI1u2bHnnnXdiIrBnz57iQGrjxo2xqd27d4fKMZ7I4pJ8IJVPc/r167dr166DBw/GtOLw4cMHO2zbtq3T+lH4mL5///72jpVfX3755XXr1mUd7du3ryCAiJsvXrw4fL4P+/7aa6+9++67sfLrr7+ez1ZiPBfaDL2vXbt2/fr1cW7jsWPHCu55dDqBVJnjefPNN7PD0tLSEg/LokWLsnZCC3GrAwcOhKFu2rQpjja4/fbbi3u89957Y0bzySefhD+ampqKx3P06NGw79mKvKFwzpw5YZPwHyBffs8992SNV1dXh+MTCsPwNmzYsGbNmuxchN2PdXrVWQZI7L777osvR/mrU/v88L556NChCRMmxJLwyhZ/FGlubj4bIwXgfwmkAHpEXDcqv7Tq7t27Q8nKlSuLK+/atSs8Ff7NZq5dddVVhw8fjh+s84HU9ddfHwt//etfx5LBgwc/8cQT2YUtpQKpTBeTuYrrv/LKKzGVyN+0aNKkSXGZ9iwHyW8eg4nsB+cFCxbEwqlTp2Y1Fy5ceP/99w8fPjwrCd8N4qzGguNz+oFUOePpU3rK3uTJk2P9e++9N0tbKisr169fHxOcsWPHFvTY2tq6d+/euILJ+eefn01wy8bz6quvxtMUnnruuediEtfecVlc/BKVlbe0tGRT56qrq1988cUw7Hzos2jRohh+Fcx57A1nGSCx+CvOjh07CsrDK2R8n40Xn1533XUxhd+4cWN+DjIAiQmkAHrEq6++WhBw3HXXXaHkk08+KVidp7GxMX6Zv+KKK/LlF198cZxClQ+kNm/eHEpefvnlgu5Wr159xgOppqam2ObPfvazgpr33HNPjGPyOUjc/I033sivi9S3b994s+2T3sAu/rJdcC/C0w+kyhxPqUDqpZdeihFSQXloM16b9tBDDxX0GMo7vYddfDZ8U8pm2AWXXnpplu/ky+NckqD4/uV5AwYMaG1tDdWmTJmSL++1Zxmgh9x0003x1ax4PnWfjh9vVq1a1dbWlv1+c8cdd6QfJAB5AimAMy/eu6e1tTU/ayC7oc+0adPyleNFLgcPHixu56mnnsoHUv369YsrE916660FNWtra894ILVkyZL2EutenXfeebG7/FqwcfMbb7yxoPLatWtDefi3uJ28WbNmtXfMQ+xiSKV0EUiVOZ5OA6nKyso4923mzJnFnT722GPtHde1FfRY6lZ9nY4nnNPYRcGquhUVFfGL0+TJk0vudq7Z66+/Pl/Ya88yQE8YOnRonOy8cePGTiuEN8f4TpGtshdezW655ZbE4wQgTyAFcObFS0u2bNlSUL59+/ZQvm7dunxhvLhp8+bNxe0ULGqeBQT55VqjTu+yd5qBVFyUfdOmTZ3uY4zG8uFLqfBo5cqVofy3v/1tQXlNTc3111+/aNGi+++/f8WKFfHirzMeSJU5nk4DqWzlr2xh8rw77rijvWPZrzJHW+rZuNTUjBkzCsrjjLmC+LJv374NDQ2zZ8++7777VnSIy9v32rMM0NP69+8f3nDDS9D+/fuLb8UQXH755XEWfHjFGz169Pjx42P9YM2aNekHDEAkkAI48+Iyzy+//PJvfmzbtm3tHTdWq6qqyio//fTTxSlVVBBI1dXVxQ/QtbW1BTV7IpCKn9dXr17d6T4eOHCg/cerbpeKKh588MGCqGLAgAEPP/xw9jN1XoJAqng8fUoEUuE7TBzVeeedV9zpLbfc0t6xflOZoy317KFDhzoNpGLSlA+krrjiiuw2fAV64VkGSCNeoRleM8eNG1f87KhRo2K2vnjx4nz5nXfeGV8/Z82alWqkAPyIQArgDJswYUKnkUFefppAXJL8+eefL26qIJAaM2ZM3Dy7T1CmJwKpuK52QcqTibcFvO2227rurk9nUUXcr8OHD8+bN6+urq6mpqaqqio01dsCqYaGhnhUO/2Ss3DhwrgXZY72NAOpiy++OK59vmnTpsmTJ59//vmDBw8Ox+2DDz7onWcZIIEHHnigvWO18kmTJnVaYc2aNe0/vsdIJv4gtH///h4eIwCdE0gBnGFx7tLbb799U2dCefuPZ/MtXbo0lLz//vvFTRWsIVVZWRnXFSoOGnpiDamHH344PHznnXeKa55//vmxu/xC7GVGFSNGjIh7UTAZLV5w1KsCqWHDhsXdLFihKYprSG3durXM0Z5mILVq1ar2jjXR83fZC+LdCXvbWQZIIN4N48SJE9OnTy9VJ97idtmyZcVPzZkzp71jwceeHCMAJQmkAM6k/v37xyWBiu/XFsXrgNra2rJZYDNmzOj0MpyGhoa4ilD+LnsxN9mwYUO+Zt++fdetW1dmIBXnfM2bN694bAX1f/7zn8c2x48fX1AzhmhhTwcMGNB1d32KoorLLruseKjB/Pnze1sg1eeHw/Xss88WlA8ZMiSenXLWV+r62TIDqRdeeCE8bG5uztepqKiIm/e2swzQ0+JCfq2trV2/R7z11lulXp1intXpTUUASEAgBXAmTZs2rb3o/np5Q4cOjWsnLVy4MJZUVlbGDOuVV14ZNGhQLJw6dWpLS0tMCvKBVJwm1tbWlt3Wuqqqav369e0/OGkgtXXr1vbcGur9+/cvVX/AgAFxOtjOnTvziyiFfYwzuRYtWpRvucyo4txzz41DzS/bMWPGjLjGR28LpGKAWBDuDB48+Nlnnw2FH3/8cXV1dZmjPc1Aqrm5ub3jdnjhP0wsCV0///zzcXi97SwD9KhsFb9OLwXNW758ebyKKnvfjOrr6z/99NPw1AMPPNCTIwWgJIEUwJkUvpC3dyxn3kWdGCLkJ0mFz9MxVjh06NBzzz0Xw5Hwd5z9lw+kKisrd+3aFStv3749NBU/Tz/yyCMffvhhOYHUggUL4uahly1btoQ6XdSfNGlSTCWOHTv20ksvhb2LY2vvuLV2v3798i2XH1XEBWhbW1vXrVu3dOnSuK52bLm3BVJ9+/bNQp99+/atX78+nKB4zI8cOXLllVeWP9rTDKTq6upiZvfuu++uWLFi1apVYcPjx4/v2bOnd55lgJ4Tk/RSwuvzOeecE2vW1NS89957sfyNN94Ib0DNzc1bt26Nk8fDm86QIUPO7r4A/GQJpADOpHhZ0y9/+csu6tx4443xk3E+PPrFL34Rv+rHpOaZZ54Jz86cOTM8XLlyZX7zYcOGbdiwIX6SDsKH8rhE+r59+0Lh0KFDs5r79+9vL1qqqaKiIsY3WarVdf36+vqXXnopDCnb5ODBg/PmzSvIKUptHixbtiyUh+8AWUn4nhB2KrvLXvjmsHTp0rC/oZe33nqrnDYLrF69OlQL+3Vq4wl27NjRXuJeS/3797/77rtjbBSFkW/atGns2LFlHoGun42LQE2dOrWgPPY4ZcqUrGTy5MkxforCmBsbG+OCvgXrp/SGswzQc+JEvFKOHj2aBVJ9Oq5Nfvjhh7PrjqPwGhteuPI3vQUgMYEUwJk0cODA/IfgUgYNGlRcLXz5r6ura2xsHDZsWFYYPisXLGIdhTqhZqifRQYVFRXZZK6sJJsDWLx5Q0NDbW1tvvEu6ldXV9fX10+cOPGCCy4otVNdbD548ODivQiFYRfGjx+fDTv8kZ9c1nWbJ+2iW+MJh/GkX0suvPDCpqamSy+9tFTNrkdb6tnuloezFoYxevTo+DDsSG8+ywC9RHidjy/j4a0newkF4CwSSAEAAACQlEAKAAAAgKQEUgAAAAAkJZACAAAAICmBFAAAAABJCaQAAAAASEogBQAAAEBSAikAAAAAkhJIAQAAAJCUQAoAAACApARSAAAAACQlkAIAAAAgKYEUAAAAAEkJpAAAAABISiAFAAAAQFICKQAAAACSEkgBAAAAkJRACgAAAICkBFIAAAAAJCWQAgAAACApgRQAAAAASQmkAAAAAEhKIAUAAABAUgIpAAAAAJISSAEAAACQlEAKAAAAgKQEUgAAAAAkJZACAAAAICmBFAAAAABJCaQAAAAASEogBQAAAEBSAikAAAAAkhJIAQAAAJCUQAoAAACApARSAAAAACQlkAIAAAAgKYEUAAAAAEkJpAAAAABISiAFAAAAQFICKQAAAACSEkgBAAAAkJRACgAAAICkBFIAAAAAJCWQAgAAACApgRQAAAAASQmkAAAAAEhKIAUAAABAUgIpAAAAAJISSAEAAACQlEAKAAAAgKQEUgAAAAAkJZACAAAAICmBFAAAAABJCaQAAAAASEogBQAAAEBSAikAAAAAkhJIAQAAAJCUQAoAAACApARSAAAAACQlkAIAAAAgKYEUAAAAAEkJpAAAAABISiAFAAAAQFICKQAAAACSEkgBAAAAkJRACgAAAICkBFIAAAAAJCWQAgAAACApgRQAAAAASQmkAAAAAEhKIAUAAABAUgIpAAAAAJISSAEAAACQlEAKAAAAgKQEUgAAAAAkJZACAAAAICmBFAAAAABJCaQAAAAASEogBQAAAEBSAikAAAAAkhJIAQAAAJCUQAoAAACApARSAAAAACQlkAIAAAAgKYEUAAAAAEkJpAAAAABISiAFAAAAQFICKQAAAACSEkgBAAAAkJRACgAAAICkBFIAAAAAJCWQAgAAACApgRQAAAAASQmkAAAAAEhKIAUAAABAUgIpAAAAAJISSAEAAACQlEAKAAAAgKQEUgAAAAAkJZACAAAAICmBFAAAAABJCaQAAAAASEogBQAAAEBSAikAAAAAkhJIAQAAAJCUQAoAAACApARSAAAAACQlkAIAAAAgKYEUAAAAAEkJpAAAAABISiAFAAAAQFICKQAAAACSEkgBAAAAkJRACgAAAICkBFIAAAAAJCWQAgAAACApgRQAAAAASQmkAAAAAEhKIAUAAABAUgIpAAAAAJISSAEAAACQlEAKAAAAgKQEUgAAAAAkJZACAAAAICmBFAAAAABJCaQAAAAASEogBQAAAEBSAikAAAAAkhJIAQAAAJCUQAoAAACApARSAAAAACQlkAIAAAAgKYEUAAAAAEkJpAAAAABISiAFAAAAQFICKQAAAACSEkgBAAAAkJRACgAAAICkBFIAAADAf78//vGPf//73//xj398++2333333d87/P73vy9n27a2tq+//vofOeFhe3v7STfcvHlz6O5f//rXN998E7oLf4cNjx8/XuaYv//++wceeKDMynk33HDDiSKzZ88+haZ6iEAKAAAA+O83bty422+//c477zx27NjRo0fvuOOO8DAUlrNtbW3tbbfddntOeHjRRReddMMtW7b85S9/Wbp06bx58+bPnz937txZs2aNHDmyzDGfciAVzJw5c3bOzTff3K9fv1NrqicIpAAAAICfkMcff3zt2rXd2mT48OEji4wYMeKkG7744otffPHF9OnTz/1BmRtGpxxIjRkz5u4i9fX1p9BUDxFIAQAAAD8hTzzxxGOPPdatTZ588snPP/88P/0tPHzqqafK6etPf/rT0Q7xyqw///nPX3zxRZn9nnIgNXPmzO+++y4/4D/84Q933XXXKTTVQwRSAAAAwE/I4x26tUllZeXwIqHwpBtWVVUVbLVmzZovv/yyzH5PJ5D661//mi9paWl58MEHT6GpHiKQAgAAAH5CHn/88TVr1nRrk4IFpLJlpE664aBBg2699dY7OixcuHDBggW7d+/+6quvyuz3+++/f/vttxctWnRnzvz580+6oUAKAAAAoBdZs2ZNObPt8tauXfvVV1/l77IXHj7xxBMn3fDgwYNffvnlt99+G2/q989//vPrr7/+29/+Vma/3xf55ptv3nzzzZNuOHz48GnTpuVLpk+ffskll5TZbwICKQAAAACSEkgBAAAAkJRACgAAAICkBFIAAAAAJCWQAgAAACApgRQAAAAASQmkAAAAAEhKIAUAAABAUgIpAAAAAJISSAEAAACQlEAKAAAAgKQEUgAAAAAkJZACAAAAICmBFAAAAABJCaQAAAAASEogBQAAAEBSAikAAAAAkhJIAQAAAJCUQAoAAACApARSAAAAACQlkAIAAAAgKYEUAAAAAEkJpAAAAABISiAFAAAAQFICKQAAAACSEkgBAAAAkJRACgAAAICkBFIAAAAAJCWQAgAAACApgRQAAAAASQmkAAAAAEhKIAUAAABAUgIpAAAAAJISSAEAAACQlEAKAAAAgKQEUgAAAAAk9b+B1KsAAAAAkMq///3v/wG0YGw4Qy41mQAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<IPython.core.display.Image object>" | |
| ] | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABjAAAAN7CAIAAABkokShAAAACXBIWXMAAA7EAAAOxAGVKw4bAAKZ9ElEQVR4nOyd93cVt/a33z94TAngUEwH01uAhF5CSBzTy6KEdmkOJZTQDRcMphdTzQVMjN/POvuLlqKZ0Tk2x4Oxn+cHr+MZjbq29t4jaf5fAgAAAAAAAAAAUBT/+9///t/XzgMAAAAAAAAAAAwgcEgBAAAAAAAAAECh4JACAAAAAAAAAIBCwSEFAAAAAAAAAACFgkMKAAAAAAAAAAAKBYcUAAAAAAAAAAAUCg4pAAAAAAAAAAAoFBxSAAAAAAAAAABQKDikAAAAAAAAAACgUHBIAQAAAAAAAABAoeCQAgAAAAAAAACAQsEhBQAAAAAAAAAAhYJDCgAAAAAAAAAACgWHFAAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcUgAAAAAAAAAAUCg4pAAAAAAAAAAAoFBwSAEAAAAAAAAAQKHgkAIAAAAAAAAAgELBIQUAAAAAAAAAAIWCQwoAAAAAAAAAAAoFhxQAAAAAAAAAABQKDikAAAAAAAAAACgUHFIAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcEgBAAAAAAAAAECh4JACAAAAAAAAAIBCwSEFAAAAAAAAAACFgkMKAAAAAAAAAAAKBYcUAAAAAAAAAAAUCg4pAAAAAAAAAAAoFBxSAAAAAAAAAABQKDikAAAAAAAAAACgUHBIAQAAAAAAAABAoeCQAgAAAAAAAACAQsEhBQAAAAAAAAAAhYJDCgAAAAAAAAAACgWHFAAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcUgAAAAAAAAAAUCg4pAAAAAAAAAAAoFBwSAEAAAAAAAAAQKHgkAIAAAAAAAAAgELBIQUAAAAAAAAAAIWCQwoAAAAAAAAAAAoFhxQAAAAAAAAAABQKDikAAAAAAAAAACgUHFIAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcEgBAAAAAAAAAECh4JACAAAAAAAAAIBCwSEFAAAAAAAAAACFgkMKAAAAAAAAAAAKBYcUAAAAAAAAAAAUCg4pAAAAAAAAAAAoFBxSAAAAAAAAAABQKDikAAAAAAAAAACgUHBIAQAAAAAAAABAoeCQAgAAAAAAAACAQsEhBQAAAAAAAAAAhYJDCgAAAAAAAAAACgWHFAAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcUgAAAAAAAAAAUCg4pAAAAAAAAAAAoFBwSAEAAAAAAAAAQKHgkAIAAAAAAAAAgELBIQUAAAAAAAAAAIWCQwoAAAAAAAAAAAoFhxQAAAAAAAAAABQKDikAAAAAAAAAACgUHFIAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcEgBAAAAAAAAAECh4JACAAAAAAAAAIBCwSEFAAAAAAAAAACFgkMKAAAAAAAAAAAKBYcUAAAAAAAAAAAUCg4pAAAAAAAAAAAoFBxSAAAAAAAAAABQKDikAAAAAAAAAACgUHBIAQAAAAAAAABAoeCQAgAAAAAAAACAQsEhBQAAAAAAAAAAhdJvHVK1tbW//fbbqFGj/IszZsxYu3ZtZvh169ZNmzYtEuGsWbM2bty4e/fuxsbG6dOn5wX75ZdfgnhGjx6tnIwYMSIdeNGiRT/99FN3S+EzePDgxYsXb926ddeuXUp67NixlceTWRtjxoz5OQelFQT+7rvvdF11smHDhvHjx0cKAgAA0L+pqalZsmTJzp07t2/fPnv27Mwwi0sEFxcsWLB06dJ04EGDBq1evXrlypVDhw5N39UUbHczE1q4cKGm+Lq6usy7yqfuZmomDuknDQ0Nw4YNi4RRWUxDWLNmzcyZMzPDTJkyRRrI8OHD/YvKtnIYiRkAAAAGAv3WITVnzpyurq5Fixb5F/fv3//+/fvM8P/8888ff/yReWvs2LE3btxQbM+fP79z587Lly/1u7m5WapnJfFIpVP4GTNmpANfvXr11q1b3S2FY/78+c+ePfv06dPDhw9bW1vfvn3b2dm5e/fuCuPJrA0pqa8+o9g6Ojrcv4E/a8KECbrY3t6uymlra1PgyZMnR8oCAADQXxkyZMjNmzc/fvyov/fv39ecu379+nSw6yWCi3///ffdu3fTgWfNmtVV4vDhw+m7R44ckQKgu5leJ03fuqWcpG+tWLHCHsx7RSeGDRv24cMHhdmwYUNeGKHySo+UDiB9wJIbN25cEGbq1KlKbteuXe7K9OnTy8YMAAAAAwEcUv9HnkOqtrZWmtbr16/9V5ozZsw4c+ZMesVQZjy95JCaPXu20rpz587EiRPtSk1NzdKlSw8dOlRhPJHaMJ49e3bq1Km8u6dPn37x4oV7v6piRlZyAQAA9GN+/fVXzbNuldDUqVNnzZqVDtYth5TN3QovXe27777zbw0fPlwz+JUrVxQgc3G0NAQ9qLtz584Nbt24ccMe/Pnnn/OKs27dOsUvFeX27dt5YZJ/6zxKqKOj49y5c+lgZ8+effv2rVtspX9fvnw5ZMiQSMwAAAAwEMAh9X/kOaQOHTr06dOnvIXolcTTSw6pe/fuvXr1KtBQuxXPFzqk7ty5I6W2ktQBAAD6N5pSpQCUdbL0wCG1du1a6SG//PKLf6uxsfHt27fr1q2LOKR27NiRnsenTp2qR5YuXRp3SDU3N//1119KVMEmTZqUFyzQea5cudLW1pYOZouktm7dqt+KrbOzk+VRAAAAkOCQcmQ6pGpqatrb26UpVp5uMQ6padOm6frGjRsrzFVvOKSamppU2LzTKwAAAAYOa9as0Tx74MCBQYMGRYL1wCGlv9euXWtpafFvPXr06NChQ5qCIw6p7du379ixo6Ojo7a21l0/evTovXv3Ro0aFXFIjRkzprOzc+nSpSNGjNDjmUcBuFScziOV6fHjx3lvqs6ePfv69eshQ4ZIeWB5FAAAABj93CF16dKlox5SwrrlkBo3bpwi2bx5s/0rzWzWZ6ZOnZoXj9RKP9HLly9X3SFlL0VdnFJGXcYyFdPu1oYRd0hJnZVCrGivXLkyb968SDwAAAD9m5qamr///ltz4sOHD9euXZt5ymTSU4fU6tWr9cN9UOWHH37Qv5MnTy7rkKqrq+vs7HSvr2yjn33kJOKQ2rJli7RD8xkpb1IG8kqtVM6ePfvTTz+pyNJ2FLlymxnSFkkp5o6OjsbGxrwIAQAAYEDRzx1Sd+7cuewhpapbDqn6+npFItXN/pXq1vUZ6VWZb0EVj1LxE21tba26Q2rDhg3+Kvo///zTZezmzZtfXhtG3CGVlD7xs2vXrrdv3ypyheSFJwAADGSkJzx58sQm3Ew/Uc8cUppe29vbjxw5YtfPnTtnkZR1SOnHpUuXHj16ZBcbGxs17w8bNizukLp//770Cvu9YsWKzIOoXCofPnyQKqkw+hE/3+Ds2bOdnZ0sjwIAAABHP3dIfeGWvbq6OkXiL1avKbFz505dz9SoitmyZ1sDfvjhhyBjzc3NmRH2xpY9x/Dhw5uamhT/nj17ygYGAADox2gubmxs7OzszHw/dP369fSmtrIOqaR0ouW7d+++++47W/Rk++UrcUgtW7ZMYWwh86NHj44ePZqU1jjnOaTsVdzGjRvrS9gXVOypzFRM55k6derz589v376dtzRMzJw5UzFv27YtLwAAAAAMNHBI/R95h5pLwbp3715wUUre13VITZgwQdfTH9TLi7BXHVLG48ePW1tbKwwMAADQjzl+/Lim3eHDhwfXL168qOkyuNjS0pJeNpX82yFlfqJffvll9+7dr1+/tu/8VuKQGjRokMJrNreNftOmTUuiDinpBl0p3r59W/bLwsuXL1dI/c2rE+XTipAXAAAAAAYaOKT+jzyH1NatW9PHh391h1RS+pZNR0dH8FXpIh1SwY7Fhw8fBkeuAgAADBCCOfHIkSOdnZ3pL+Hu3r1b1/1jKMeOHavZfO/evek4fYeUuH37dmtr66tXr5yaUYlDSuzbt09J+Guo8xxSNTU1L1++/PPPP2s8zNO0bNmyzFT8Q83b2tqUSkbtfC4pDikAAADwwSH1f+Q5pKRiXrt2zc5IUmzTpk2TZtbS0qIrZd8WGnGH1OPHj5d6BBptxCFVV1f3/PnzDx8+SItVMMW/fv166ZGRM6Sq6JAaPXr0ixcvNm3apHSnT59+9OhRxb9mzZpIbAAAAP2Vu3fvHjhwYN68eVOmTGlsbPz48ePx48fTwTR3S/HS9Lpy5UqF1Lz/4MGD9vZ2zarpwIFD6tdff7UjLMePH29XKnRITZo0yRY6OQ9UnkNq4cKFaW1hyJAhb9++PXfuXGYqvs5jBxq4Ay4DcEgBAABAQL91SM2ePTs4ZUlIbVKBM8NHPmw8ePBgaXVtbW3uOPP79+83NDRUGM/ixYvdIvmAU6dO+UviFXOgVmaWwiGFUvqunSkupBc2NzdnBu5ubRhPnjw5ceJE3t39+/e7pF+/fu2OfgcAABhorF279tmzZzYnShM4ePBg3tHdM2bMuHXrlpv3b9y4UV9fnxnS5m63FHr48OHv3r27fPmyC2AnjtfV1aWfVR62bt3q/r1+/Xp7e/vQoUPt35EjR2a+Rjp69OirV6/S32yRsqEI0yUKdB7lRKrIrl27Motj53KuW7cu8y4AAAAMQPqtQyopvdNLX8xc1hS57iMFbvz48ekV+GXj+ZIPypR9tqamZvTo0ePGjYsXoVu1YUgljZxOaklLv8x8rwsAADDQGDVqlKbj+NRp1NbWTpw4ccSIEfFgwdydnpfzlIRgftdTgZsp88FBJSrJSWYqdiVSfL6vBwAAAD792SEFAAAAAAAAAAB9EBxSAAAAAAAAAABQKDikAAAAAAAAAACgUHBIAQAAAAAAAABAoeCQAgAAAAAAAACAQsEhBQAAAAAAAAAAhYJDCgAAAAAAAAAACgWHFAAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcUgAAAAAAAAAAUCg4pAAAAAAAAAAAoFBwSAEAAAAAAAAAQKHgkAIAAAAAAAAAgELBIQUAAAAAAAAAAIWCQwoAAAAAAAAAAAoFhxQAAAAAAAAAABQKDikAAAAAAAAAACgUHFIAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcEgBAAAAAAAAAECh4JACAAAAAAAAAIBCwSEFAAAAAAAAAACFgkMKAAAAAAAAAAAKBYcUAAAAAAAAAAAUCg4pAAAAAAAAAAAoFBxSAAAAAAAAAABQKDikAAAAAAAAAACgUHBIAQAAAAAAAABAoeCQAgAAAAAAAACAQsEhBQAAAAAAAAAAhYJDCgAAAAAAAAAACgWHFAAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcUgAAAAAAAAAAUCg4pAAAAAAAAAAAoFBwSAEAAAAAAAAAQKHgkAIAAAAAAAAAgELBIQUAAAAAAAAAAIWCQwoAAAAAAAAAAAoFhxQAAAAAAAAAABQKDikAAAAAAAAAACgUHFIAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcEgBAAAAAAAAAECh4JACAAAAAAAAAIBCwSEFAAAAAAAAAACFgkMKAAAAAAAAAAAKBYcUAAAAAAAAAAAUCg4pAAAAAAAAAAAoFBxSAAAAAAAAAABQKDikAAAAAAAAAACgUHBIAQAAAAAAAABAoeCQAgAAAAAAAACAQsEhBQAAAAAAAAAAhYJDCgAAAAAAAAAACgWHFAAAAAAAAAAAFAoOKQAAAAAAAAAAKBQcUgAAAAAAAAAAUCg4pAAAAAAAAAAAoFBwSAEAAAAAAAAAQKHgkAIAAAAAAAAAgELBIQUAAAAAAAAAAIWCQwoAAAAAAAAAAAoFhxQAAAAAAAAAABQKDikAAAAAAAAAACgUHFIAAAAAAAAAAFAoOKS6x5AhQ2bPnr1gwYKhQ4d+STwTJ05UPIqtiiEBAAAAAAAAAL4J+rlDatKkST9/ZsWKFRMnTvyS2EaNGvX48eOuEvtLvH79eseOHT2I6vnz54pk+fLl6VvK56tXry5dupQOGdwCAAAAAAAAAPgW6ecOqatXr3b9mytXrtTW1vYstt27dyuGFy9e7Nq1a+XKlTdv3tS/586ds7tr1649cODA9OnTK4kq4pDas2ePbrW3t6dDBrfmzJlz8ODBzEi+UUaMGLF69eqvnQsAAAAAAAAA6F36uUPqv//9b1dX19WrVxsaGg4dOtTZ2al/T5482bPYzp07p8f/+OMP+3fSpElr1qypq6vz09qwYUMlUUUcUrW1tYp2xowZ6ZDBLXOQ/f333z0rTh9k8eLFL1++/Nq5AOgPDB48eM6cOfPnzx80aNDXzgtUjVGjRn3hUl9DvULd47vvvvvyqCpk3LhxkydPLiw56FMU398i1NfX95GcZDJ06FDl8Gvn4ovoU83dB5kwYYIk+dfORa8QL9qIESN++OEH/8392LFjFy1apNmhKqkzy0Bh0Nmqy4BwSO3fv9/+PXLkiP59+/ZtUjqbadu2bRKLMtiampqWLFliYb7//vuNGzceP3782LFjDQ0Nw4YNs+u//fbbo0eP9Pjly5c3bNggqaoHt2/fPmvWLN1VyGfPnunu+fPndXfKlClJSatYvXr1oUOHTpw4sW/fPrtomJtpxYoVCqC0lENnY4wfP14ZW7lypR/SHFL+LWXY1n/dv39fKUqgz5gxQ/lxBRFz585V+JkzZ/ZiFVcPTWMHDx5UNWauMpNmo0q22o6jplm/fv3u3bu3bNnitDoZ52vWrLHNm6rAqVOnlo1HskaNvmvXLsWzcOHCTKv+p59+8jtJgGZl3VU/Ca4rM2p3t5O0WjNxYaizacionqsVoTrwnj17qhVbAdTU1EiYqEf17HF1ZrX7zp071UvXrl2bXrOpnmN9WH97tqJzyJAh9+7d++eff96/f69IepbPgUzVO3m1OHr0qITkl8czadIkTR+SYF8eVYX89ddfd+7cKSy5r4g6z5dUrKYnKSF79+7dunXr7Nmz0wEWLFiwY8cOTe760fNcFku8vxU5BUi6KieafItJrgdIRVEOZah/7Yz0nOLFy7eFrIk///yzN2JWt5HF4d5bF49ftGAalWRrb2//8OFDR0eHFP6ktLNEWooMUVk6STXkQD+YZfq+PtxntaOqIwn2cxZmVveDztanGFgOKSl5+rezs1O/f/nlF/2+du2apKFbNqVO9vbtW3+LX1tbW11d3aBBg4Ktf/Pnzz916pR+/Oc//5HtF9zdvn27YpNB6F9Uus43YW4m82EZb9680RTuMnb//n0/pDmk/FstLS1+5FevXrW7alF3ArqGiq6o1AVWeU9Q9WpgK6uvS+iH/vUD/Pjjj2oIf3laHhIfmvBUsRcuXLh582Zra6tdl1pv2y2fPHmiKtLvM2fO1NTUZEaiCjx27JjaS1Hdvn1bj+i34gw8R8OGDdPMGlkWZ1ssVaLAmWWZefXqlQr1/v37T58+HT9+PC8zX53x48fv3LnTd7rt2rVLFVKVZRrGjRs3TB35Vhg6dKg0KkmAHjy7cOFCNf3Hjx/vlNAPdUh/seSyZcsUubqNFDvrhL4vu0JWr16tPlZfX69+Za+pJR/6mnkgc7qxsbFvxlz1Tl4teuaQkgjSKPY7Eg6p3kPT8a1bt3rwoKYe0yskDzV/2ex/6dKl4cOHuzCKWUqLhIPpKuoP1ct4LxLvb0VOATikKuELRSgOqTi955BSw6nmNd3bv2n9rbfxixZMo1J0NcylkEiDMo338ePH58+fT0rqdFINOeDPMulZrw+SHmh9Xx/us9pRhVQ+KNQWr0qY2Sg73f41r8LAUWmKYQA5pKTq2alPt2/fTj47d4QE4vbt223ZkZ1ZfvHiRRlyshtNHTRflaxEczCdO3duzZo1kqfOIaW7siftWV3UXdMkzpw5o1Tq6upGjhypOH0/i8Uss3Pjxo0Kb5plU1NTUrFDas6cOX///bf+1XhQDLNmzZLOqgh1ZenSpQqgdPX706dPblNhn6WhoUHS7YcffrB/J0yYsHbtWnd3z5496qaqKIWJO6T04Pv37zUXOueO+6HqMjei/bt582ZboZYZz4ULF6TxK4x7XHV48ODBYH3WunXrlJzMA+tRaWQ32iq2H3/80b9umVm0aFFSmjLNb9Vnl7GoOyl79jrLUd2l+KqEb+47kk6j6hZS0zVIW1tbR48ebVdkHWnO+/jxo1u1t2rVKuefWrx4cVdp3WV3E9J0++HDB//K3bt3e+ZB6z00pnpJ8apKzH1zv0nPHFKaHXwrJcEh1Zv02CGlyUvTnCZEd0WTuyaj06dP27+SOYcOHTLpIRF0/fp18ztXJdu9Sry/FTkF4JCqhC8UoTik4vSeQyr598yVqb/1KkHR/Mw0Nzf7H2WSNJNw27Jli7vy5XLAn2XSs14fJD3Qvgl9uG9qRxXSg0Gh+SL9yMBRaYphQDik2trapLfZ0htpe7Lxks/OnXfv3jl/zYwZM8xF5WzF33//Xf8+ffrU/r18+bL+laVn//oOqaTcGVJSMXX35s2b9q+5mVzgHTt2WD6Tih1SSdYZUrbO6OzZs/rd2Njop9iXaWpqevPmTd7dFStW2I50TV1xh5Q0dbVypigPHFI2Ubmm9DFRtXnz5rLZ1uSqCrdGsdVtPvPmzdP1yZMnq1mdOeFnxhxSSWlWbm9vd6fjB9TW1truLfUWX0PVfKCkVVglsW3bNk3q6a1/SkJl3Lp1q79F0R7UXymLu3btcm85lCuFVFdUZ3OultmzZ2u+tAqRaWRJjB8/ft26dRbGxaYktm/fvmnTppEjR/p5+P7775V/Ratga0rIjgryOXfuXOezk8Q377Ayr+zpqWB9mdpu1apVinDt2rV+VPGK0t9p06bpqd9++81ejKgsqjdlWDn041eVKmbFoxEUOQpBmVSE9lttrSLoQU1ayrNJmEwkNNSNnYQxlFvJpTz1VBLADfk0ma22ZMmSixcvfvjwQbW9bNkylV0/1A8lDfTDHNaGCqhi2s7BwYMHu+tWIjWlIk+7SvO6UKTqZDOrCymfyrBdUTauXLny9u1b6xWm36hW1QHUlxTtwoULk89fSnXxqDMoab990/0hM+YFCxa4EZeUXMw2fOzfdLp+J3cBVCEbN25UWsGe30o6eV5jJRX0HxtcGuPKdtwhpbZQl1YTWAPZRZXl119/tXceypvtAnMWY97ITbopQHxUOo1oPaieMGbMGLto2pu6WWYxVXw1nJJTMVUbZZOT3NNI1xBWu6tQ/l71vF6dlDy8qn8VVnWSV4dfju+QKishHSrap0+fDh8+HFxXq+l65s5um33KftjEtgC7HRY2iPwaUGOpE7p/M9s9IK+9jJkzZ6p1dMsJyXh/86cAQ8GUAcXvD1s1aHAEgdQD96IoIn/slvqP6kriN88hZbOP6kfThLqWe4Ue6VE9no+C/qwkFFLlVXHiDinVjM34kgbKsGt95UQp+tOZGsjf8qm0VAqbVf01d+lSZ4rQSA2nY/AdUtK7/EknKUlCf8D2oPJ/+OGHIAbF6aeS2X+SqCQvO9d0a4JLI+Gj/Kh0qs+0Qypv0Km7ynywruvPRxIIamvlRE/5iSpydQPLXqb+Fk/OR31Yk6CSVipx6z2vaG4a1dBQBp48eWJv0JVhZUa33Ft8iz8tBzIlSaSZnI8gc9bLLGN1FezMbpwnLTMHWrf04cg86BPX9DJ1j4iwzTQBAoGmfCq8rqTPjYmMwWqp65F6iwyKCBGHVJ5KE6l2yGRAOKSMjo6O5uZmd+ZC4NxJSoOt6/MJU4bmPPNh2cDrrkNKMlePvHz50nYFCqekBoea64flMJ2xbjmkbD2F4tEYVmEjDrI+hWS0slr2+3plHVIPHz48fvx45q3AISURnLdCSvX5+vXrsrJDVpY6hqYTafmqcLVFEODYsWN3797VD+X5w4cP/urQwCEllOKFCxcys20LRK9du6a/79+/d33GFL59+/bp4o0bNxRDe3u7m7PVY0+fPv3u3bvz58/rrqpO84f/oMweZfvFixfmelNnVjyaGtVjFVh/LfD+/fsVxtyy0jNMxGuS0BWbOy22Q4cO2WIx/VWPdZbGlClTNKAksi0zSlF1kl6y579nUOQqy8mTJ9+8eaOLqmTlyoVUchpQKqm5mNXiFVaUcihh19LSotK1traq6e1fNY3Me6edS/lTDlWEM2fOKHIlkffdTLdq1/Kv4aYHpW/ZSXOaOzOfUs4zv0KgNjJ/dIAmUdWba46AvFZTJSghVZ0yozJqxtUPVb6KrB9Ky4JJF1ElK9sqrIqj2nb1oBIp2sePH+u6KiFIN7MLRarOVnmo4LqlPJjap2yob9jmI2FqgZKTLqtGUW1YRdliRqeIB6sbMvtDZswXL16UiHZFCEy+dLp+J7cAJ06cUEKqJf1WwZ0wqbCT5zVWUq7/qPbUlKbKK3713jyHlOyWjx8/KgbVhtLSmDVHuQprC3iVc921fmuNKPmQOXK7K0B8ZHvcvHlTd1XhSlcxm+9DxVQplP90MdXPVSg1pcSgMqNb0vIjydnJI2pThVflqBs7KRHp1ZLJ6n6SLap85SGzDquC75CKS0gfTdYK6WS4w/bguPr3samz7NGK6ucK5hZeqevq3yNHjti/muyUK2n/SbTdfSLtJQ4cOKAraujbt2+rdWzWiPe34FWzlHj1ZFWjBqPa3U3rytK9e/dcMI2yT58+Wbki8kcdUplRPHrcZEWeQ8pmn7Nnz6qfKKQdxBPpUT2ej4L+bDJEqSiHls88h5TUJCcNlMlz5845aWCvVN1K8+Tfa1Vkdas1NTDVZMqwsu0clOlSZ4rQSA2nY/AdUtKZlWffXFT+g7d03a18aVyK0x9HEjUKE+8/SVSSx+ea7k5wARI+XaX9GSb9bMaxW3FhqwjVapJamptcZvS4IlTNKEIVXFURyGer+Uz9rcIxXl9frwnxwYMHKpfyrPr0fdYVFs1No1KYVWmqbY0FhZHdJOXZZiU7ncBO5AzkQKYkiTeTiyFz1gvoDQU73Y0j0jJzoFWuD0fmQZ+4ppene0SEbdoESGuD0jxVdRKMilYP+rZbZAxWS12P1FvmoChLnkMqT6WJVztkMiAcUurc6ffVaYfUokWLnFfIWLZsmX+lWw4pzUm2ga6pqenXX3+VgI44pOxFgQZJOmPdckhJSkrqdZXOjeosEazF6JtIrmlIK9uSgMFrRp+yDimVV3L50qVLEvE2i7j5w3xAUsElLjXHSBTmua4060u+22/V5ywP/9WELAF3XJeaIDARdV15sKXImtcD9TdwSJkn1N+mYSg5iTkJdKsQxalZU0LWnwaUW3sjoYbWLZdz9Sh1P/cBiL179yq3Jg3tQWXP3ktYoX788UfnMjPJ655Nr25Nz0YqvgVQhWvucTaq5mzNIvZ74cKFaqD0UrIkNQF3lT4dYPGbkeZO6FQNaBaxlySqEDsfrZKK0lOmJtpYU/EtTmsLtwhIE5g0MKsKRasupGjTGU5SDilFsmvXLvtXRoJqO72hr7a21lScdGySD6q39CPmqs5bcx5pNY0U37eepLbsWaVJLbB/pdkrvBNuViIpmspS+jj/zC4UqTrJPfdtU1lBrpjpxeqqVcVsuqlFG9c+M/tDZsxlHVJBummHlAaUvbdUGX0pUWEnjzRWpP8MHjxYIl26lOVqyZIlMgwyHVKSA5KQrnepaHrQub3ytuzljdzuChCfHTt2qBKcl8R9izY+TPz3/xoOzg2amZyK5kbfnj17XFtHerWEg3LlaqBn3wqokLRDKq+efaRL+F3OYe4kV28OVZcMhkxHdhoNf9djTXNwD9qLN6veSLsH5LWXvezZtGmT/atuYC6SeD34U4D1ZGfgmWJmFosteXCHwmi8K6Q1ZUT+NDY2Ki0zpxXA9tHnOaS6SscgqMhWuric7PF8FPRnjQWpf+ayUQA7MTPt15A0ULA8aRB3SKkh3FoA/fB3hqZLnWSJ0EgNp2Pw3SJKTvXvdGPLZ3o1Qbcq3+J3RVB30r+2PCTSf5KoJI/PNT2Y4Bxqa0VlPt+kNKz0r2uayKDTbzdOlagbiXYMpZVXySknMn1NHQ02S6b1twrHuIS2W3ilpH1/X+VFC6ZRVZRvsNjxu/5bc18O5EmSCh1SSbkte72kYGeOpjxpmWQNtMr14bx5MF3MuKaXOSlHhG3aBEhrgyqjEzh2LIlTCSJjsFrqerzeqrhlL6/24tUOmQwIh1SmazztkFJX6yrhZkp1d/3runjcIWUrklzXNINHo8X+tfPUA4eUuq/1XWkYLqHKHVLKiZ89QwaJLtph23m2dB9Eo1fiz05hb29vz9yDEHdISe7oWQnoLVu2SPlYsWKFtDFN0iatTJBJKVedKJX3799Lscv8RJGkhpt3JU+7PGwvj6FWcJOueZT8hbjmR3DiWN1AU527a5nRxKzOo05lfrS0EmMvxv1MKgPOk2WC268oxaYqsniCid+UBtPI7UHJ67yatABuFFTikPKzISnsnH03b950tWSHmgXr5430BOzMRXvKPAWa4KXXphcfdauipC/qX//YAvU3ExEqkSrQ/wiALBlXpQGBQ8qXJMqtknA7lRxWlsw56fDhw7oV2PbqujI21Gkzv/AYELRaWYeUqen+cgyJIwkxVyJJnrx1gukuFK86dW/1ivT0n+mQCrTeiPaZ1x8yYy7rkArSTTuknKhPSruo3BKbCju5T9BYkf5jO399yaOkMx1Smnok9n13hrRA1Y9ZKXkOqbyR+yUCpLW1NfM9bWYxM1+ZWOX79pWfnIaDyuXOGVQ8rpiRXq0upBGhrljAW8q0Qyqvnn3UsvbFlYDvv/9eMaS/u2S78vNOQgyw7mGmV0tLix1AacbGgQMHXI+KtHsEv7009DS9pkVHvB78KSAtuySizeKV9JYd7rQsl9u4/FEH8M8usEEacUj5DuVIj/qS+cjvz3aSjt++6tuZDqm4NIg7pAIk0Jw2lS51khKh8RpOxxC4RWQrOq+9dNT0l14yI4lPUuowbrXv3r17pexZnJH+k0QleWSu6dkE51Dq6re+cJbJ7ZomMug2bdqkB9MTSlAKUzhNBS3rkOrZGNf86Fqw8qJ9iUMqT5JUyyHVSwp25mjy8aVlUplDKlMfjsyDPmU1vTzdI0/YJlkmQDBBq6L8XSMK2dHRoUFq/0bGYLXU9Ui9JVV1SOWpNPFqh0xwSP3rcBZby61KkeVmDibfbIg7pKRadZUOpVKw9evXm3Kg4SF9RePQVksFDinbUyND0RIykVq5Q8p6v2SQtH+3/F4qpnOgpBfd9H1mzpypOpEcTJ/xEXdI2dxm3zc0TCLYxBxs2ZOYu337trSi9GosSUbfcK0pYXscnFpgi54kCutLzJ49W3nzv3Z0/vx5laL+M+obamvnobDMKJWzZ8/qqbxd3/aCwjfYTKpas6YPDTWnp71lVdGUpfefMQelvZHIPG1UM7c6qtS7x48f23LWiEKTno382DSVusP7NfRevnw5ceJEaRUye5SNzL0q6QnYaTDmZ7TZzmb9tAHWrYpSawY6kBR6G8WTJ0/uKq2IdPWm32q4zI9xBA4pf5250srUSEw9OnToUDo2e7XiX1E+peZKsY7MmpFWK+uQslPt1CKusOow7nj++GGN6UaPV506gIaDbWrwP0ed6ZAKxHVE+8zrD5kxl3VIBemmHVJ+AP3WFfe7kk4eaaxI/zEh75umeWdInT59WjH7V8ystbe4lRxq7o/c7goQH6mMbj7yiQ8T9XMNQ02RksCKISJhLKvXrl1ToSTJVaUu2nivlqT9X4nDhw9Hjof7ctIOqbx69rGDLdLf0rZ+HnwtV8anhpiv1seZPn26taDi18DUPCsD3hYoPXz4UElbsEi7B+S1l0SZew/nE68Hv2/I9JVW895D/7qlf5Ih1s81KHTdhn9c/iiHvl8mcqh5MOqTaI+qynyUlLb/B/nJO0MqLg3KOqSUhLRTKZB6RJXjBFq61ElKhMZrOB1DUEzTXW2xSVtbW+Yk2K3KT0qrHtQBTK1SE7vD1+L9JyLJI3NNzyY4hzTAQGj7TRMZdFJQL126pH9bWlr8nhaUwhaI+XtjI/pb5WN83rx5Gpi2SVwhM1WCeNG+xCGVJ0mq5ZDqJQU7czTlScukModUpj6c5M+DPt3S9IJJOVPYJuVMAA2HrtQZLE+fPnXv/CJjsFrqerzeeulQc7/24tUOmfRzh5StzU6vdU8+T+3BAJYhYXtxzaEjMeHvL7WXim73b1NTU5fn7dIg1JCzB00C7tmzx06PUqfUU4rWLVlSyI8fP2p42/f1FMzFE2RM8suNz+CW7B8JI0vRNzXtY4LBBvtvCPP+pPXFslv2NOZ9RcdEmznFA4dUUjpSoSvr9A3VpJomMFeCTXZqrK4Uakp7mVNbW6sY0gHc9oT0GVKZmAT0tU8rkfWu9DSwfft294ZEFrKm8zEebt7NNPA0U2riWb58uTQbO4msKg6p3bt3a6ZRw6k36kdwsqmjwgl4/PjxXd5bjp5VVGSGs3lUzeTXW97Wnh44pJJSu6Q/vzVo0CDFFrw8kXhRf847idOItFpZh5T1f3VFv7Cu2rvrkCpbdap2tb7mY3UGN+gqd0i51+m+9pnXHzJjvnjxor9KoooOqQo7eaSxIv1n1apVQV/Kc0jJBgiuWxFs5HbXIdVdAeKjmrcvxgZEiilLQCq+rOWFCxfKzrfFvxGHlH0Y+1MJdWy3dSLeq5PSqkNpiiqdHu+9pVI9c0hZ5tPzgq2E8pcw1NfXa3SfPXu2Wx/6VJFltC9btkwWkR60t262CtjNjJF294m018mTJzPP56rcIXX69GllY8y/cRLA1iNrEEkyuF3zcfkjC9mv8G45pCI9qirzkcuPv8QgzyFl0sD/jEDaIeWvn/JdA5oRNKGo8yvYlClTfIFWiUMqXsNlHVIad1KDpYprRtP14JDjvEjiw1n1JpG7ceNGK7ibK+P9p6xDKnOu6dkE5zeTSyXdNGUHnapLxnyXt38tKIWplO4zIHH9rcIxrhhUvQcOHFDkGuOaQDNVgnjRvsQhlSdJIs2UdMch1UsKdrobR6Rl8mUOqbx50Kdbml6gu2YK26ScCWB7zAMBq07i9M+qOKS6JZGKd0iVVUUgTT93SCUlkZd3K+/D7SNGjJDUyPwKT7CgJvhXsWko+sJdAlFzv7lsBw8e7JIbVMKyp7QCo9fPmH74RUjneeTIkUFWba2WdOK8gvc1gsXbZq2lXzyWdUjJ4PSlg2lv/t5j3yEl3SjQ7QypNRLubjel4buQ7KAuzbg1HrZkWrp+8lkUStH3A9wrkY4tgqlubkWuxay8mbwzwe0UlKS08dN9EVKtn/lyKanghYb96wKYkPWnusodUppm1q1bp5DpM559KpyAbSWwv/jCek4lFVXJDKfYpDSnv3KVSc8cUsp8Wh23qcvP/6FDhzo6Ovx33WnirZZ2SCmH/q4064R5+32665CqsOokymQUubXcqsDgxPS0Y8heYzqt0ZbZm66T1x8yY5aV4vtr7BidqjikKunk8caK9B/ZNn7fUO+VDprpkNq2bZvsB/+TMWpuSSr7bePIXzMbH7ndEiAB169fD541WRopZvCy2v7NkzB2RSXV3Bd8cyfeq4NgmVu2q0LPHFIqvp1Q61/UjP/48WMZZm4+UoRm3nT3qz0anuo5Gi8mB9QbldzWrVvNP+VyntfuPpH2krkVfEjURmXlDikZfsEZ2D6SIVJbJd9aWlqc3zMuf1RXbmZMPm/MqdAhFelRVZmPktLokFT0fbh25EraIWXSwLnAAmlgUsWVS6NDLet7PfyNov7pM5kOqUCExmu4rEMqKb3qUzfW1BYs5IxEUnY4S+fRQNu3b5/vuYj3n4gkj881PZjgHPbxARez8uY3TYWDTsHcFkXl2f8MjoS/OpjFH9R8Wn+rMLlgya3+zVQJ4kX7EodUniSJNFMQQ3rW8+klBTvdjSPSMsnSVSrUhyPzoE+3NL1Ad80Utkk5E0BySYPFX5tpq5mcP6gqDqluSaTAIZUeFGXprkOqQlUEfPq/Q2qgMWzYMM2IkdcCfZBHjx5JVZJ+vHjx4o0bN9r3CJwbThOPnSkuJePkyZP64Y7Z08T/5s0bZwfasnBp2HpEUb148cIJC5MOkmvz58+XPiqVRQb/pUuXMvNjvirNnStXrqyvr1d4255pL6D8feYOO8X83LlzSckvll4Fo1x1fT44tkKHVFI67ENz1ZIlS1QiZUYzvdPgTXBrwpZCoLu2nNgtwrI3AAcPHtR0JVk8Y8YMt9U0PX8MHz5c8ahuVQoJXNvo6gLY/kT7nquZu5U7pKQzqTc2NzefP39e85MymbkqofI3QseOHVPDrV+/3r7qqsnJTKmyFVXJDJd89gQpfs3xtbW1amtpD5lN0zOHlB2NKaQkqWLVLurDHz9+vH//vrMJTcPTRLvII72RJ95qaYeUmkAjQmPHvb9tbW1ta2tTGRWVMqYB6Ppkdx1SkapTuY4eParCKp+KX6N41apV9oidNPnjjz9Onz7dWjztGFKv0yMyoa3FVXX612mfef0hHbMTDurDGgsmJKvikKqkk8cbK95/pPiqmWxdg7R5+9BMulFU7cqGBoL0bPtGsirKX3ah/iDLXKmrLTIb0R+53RIgAepI9qxCSt5ev37dXD+RYtpLCOVWzafAtqUxT8KoMp8/f676l4UgkavepRTd8Mnr1dOmTVMR1OJDhw41UyfuJf8SeuaQSj77Sc+ePatKUHOrFdSgvl6rkWVlX7ZsmRMOzsGtEkml+/333zMjt5lLAexQWEWlHmKfHXRhIu3uE2kv1bAEmoaDhp56mkaoLVGv3CGlUtiA0uOKUxJAw9m3BGQaad7v+vcbpojotgVHe/fuVcxr1qzR7KDWr9AhlUTl5JfPR4b6sLKkVlb4PXv2BNLJJ5AGakEnDZS0bj18+FBdXTqG5hTfLFSWdEWVo6nE3ovEHVJpERqp4UocUtb9lCV3nNMXVn7yeVeyOoO/DSLefyKSPD7X9GCC87Ok9pW8Uszz5s1TG/lNExl0KpcSkshS3lQP7lwI+wqHRq6uK1GN4uBY6Ij+VuEY37dvnzKp1pflr6ZR/jNVgnjRvsQhlSdJ4s0UzDLBrBfQGwp2uhtHpGWSNdAq1Ifj86BP5ZpeWnfNFLZxEyApdR474En1M3fu3Hv37klMOZuuKg6ppDsSKbAj0oNCbaRBlHl4sdFdh1S82iETHFL9DbO7NErTFmyfRTqifSZc84r0LdnSfubtaHmfR48e2S0Z7XrEXyDmjuvSdc3Q7i3Z5MmTbfukzTFPnz5VyMj6SamGkiafPn2yRyT3Dxw4YAvibIly+kjO48ePK2lbrdrY2Bjc1XVlySZUezMTX/9iSFbaF6At26oKd56RCW7NgvZpW0UuJcDPVUNDg00k1h9k5Nh1O7w/+MaNuo0dtaC/ktqamH3R+VfpWxJdn19DaQJQSKuNdGya493SXM0cT5480bQk81iTt+b+tKsuKb07dedl+pEnpQUC+td9VkMd49KlS9YuEl5OtY1UVJBDzXCqK7+B7LWt/daUKWXdulBX6Xx9/zxFH2kVbr2en//ks/6Rtx5Y1y9cuOB6o6397ip9mMZec+luVwpbfBcQaTVZNWp9P7BMFDu8wBkwUiVlObtOrnpwjwclShch3YUiVaeRaPugVWp3Wk1SMok13u26VZdfqw77vIsNQ83uane3RiCvP6RjHjx48OnTpy1v6oS2pNG5JNLpBv0wCKDf9lHUpOJOHmmseP/RSLeN2zbGN23alLmRISmZfBayq7SDODhu+ffff7dqNGshPnKTbgqQAOmjtm1ZKarabTDGiym5qgKqftQ/lbR+50kYXVc80sJV52pxacxKxR2YmterJYFlkLvO6b8YrzrKmzuwrGw9B0g02cGR1uLq3vbJcDtqUEaLK5rDrb21U43yVgRodlDBFafzdJjMDA4xzGv3gLz2SkoeSRM1NtZMQY/XQ9A3zLJ1laBIfO+h7lq6vvUVF93qHiaCzELQDJ651TcY9UZETn75fGRIFbEjSrtKh0vKOvWlk48vDdQEwUZdGY1W8xIyEhSaSty6hlmzZtnH++y8SyXnBFpmqdMiNFLD6RjSxVRjKau6mLn5oAeVb/WmalcOg6Xukf4TkeRJdK7pwQTnoxn83bt3XaVzZjdv3nzmzBl/yUneoNu+fbudTyQkVdxeCnXgEydO2NeQbJSN+XxEabrmA/0tkpyP0rLTP1T5169fl0jPnNfiRQvaVBH6aWlSVr35DvRADmRKkngzBTEEs15AbyjYmd04Ii3TA61CfTg+D/pUrumldddMYRs3ASxvqi6n5aqSfSdXZAxWS12P2xFJalDY5sSIVmAH5vgr0MvWXlx2QRocUv0NzdDSSiMLOPssx48fzzzqMk76VHJNcpIIVfHHaXKS8hRUpttumcbeAKSz5DLmZHpkJ2kazVjStwL3mXuToDjzyqtb40oEGc5MXdlTYS3z6QIqD/4aeD+GIDY9a8VMf73F9qalzwhXeD/FIMJ0bpUZFTm9YyWzospG6DLsB1A8mQcrOPzWDPKfmecA1bOK4LrWqlWrNJvKivBPAKmESKul60cB1BmC6+o5KmywazhdooC8AuZV3fDhw1XezKekSbslRX6tph+3W5ntntkf/JgN9WFnjfuZyUw3EsDVT+WdPMlvrLL9RwH0oBvj8aaRGqTayAyjpP1lF2UHQrcESICtTfDroWwxFdi1ckQgSD3VSPHF7OnTp1tbW/0wmb06+dwBunX0Ug+IC7R0PafRCHJdWlLCzq/M/Hahj8xXWaqRuU9J+8MkOBDAv57Z7gF57WX/6lZwimWkHjIFjlVC5nsjRZVZhxHRrWrRIMqTIXmZ9B/P7FHJF89HDmXb+U0iQ8yXBukT5WwNphMyQS2p81sR7CSBsllKi9C8Gk7HkL4iu9Q/yC9NDyo/oo9l9p88Se6IzzU9mOD8Z13TBPWfRIWtngpawa0xyTwBKlNlCvYwVjjGNYRdn4yEjBTNz0ymrhXkqhJJkuQ3UzqGYNZLU4yCHZGWyb8HWoX6cCXzoE+Fml7mQI5rR3nd3nSAtDUaH4PVUtcrsSP8QVH2gKd0DJXUXkR2QQAOKegrXL58OW81CqQpu3Hmq2PLYrdu3WoiWxNGc3Oze5kPAZqxtm3b5q+Lhr4Pnbx4NmzY0NnZ6UbKtGnTXr582YOXGd8WCxYscF8Ky0T69Js3b/LO1Id+Sd4nDvogdo5M3hZ46BbpPeZQXfq+gj0w50Hox+CQgr7CyJEj+QZB5fT9+TIpHUv57t27jx8/2tckb926lT5FHuCbhk5eMEOHDj179qx0cfc15b/++itvXerAQQZ/3mY96K98Qw6pAwcOfFtHSfRlcEj1Nn1fwWYehH4GDimAb5Kamho7R/NrZ6QMyqGmdmU1vegaoH9AJy+e4cOHTy3BawwYsEjgdOvj5V+RMWPG9N5nBAYabALqbb4VBZt5EPoNOKQAAAAAAAAAAKBQcEgBAAAAAAAAAECh4JACAAAAAAAAAIBCwSEFAAAAAAAAAACFgkMKAAAAAAAAAAAKBYcUAAAAAAAAAAAUCg4pAAAAAAAAAAAoFBxSAAAAAAAAAABQKDikoJ8wefLkBQsWfO1cAAAAAAAAAEB5cEjBt0F9ff2iRYtGjBiRF+CPP/44ffp0kVkCAACAIqmtrZ09e/bXzgVA9ZkwYcKoUaPsN/28b+K3UX9l0KBBc+bM+e677752RqrGuHHjJk+eXJWoBg8erMqZP3++aqkqEYKBQwq+AY4dO9bV1aXOeurUqfTdmpqa6dOnNzc3X7hwQUInuDtjxozt27fv3r17xYoVZcXHvHnzLPCaNWuGDBliF0ePHv3zZ5YvX65/q1IoAADof2g++vnfTJo06WtnKgNNnUuWLNm5c6dmvW/I9P3tt9+kD1TRWNqwYcOePXuqFVsfZNGiRU1NTZH3eVAY8bZ49OjRn3/+ab+r3s+rRb8fL3H8NvIZO3bsiRMnZHH0LFo1tIwUSWMZIGvXrq2trQ0CjBo1av369bqrv+m73SXeiJqw1Pd++umnCmNbuHDhrl27duzYIRuqkvBTp079/fff58+fHw82a9asjRs3qsiNjY2aVf3kVq9e7YeUvabx4odJSjXW0NBgY+2vv/66c+dOhcWJoITu3bv3zz//vH//Xg3x5RGCA4cU9HXq6uo+ffok6anfw4YNS99tbW3t7Ox88eKFerNkqKSSu7t161ZdUYCbN28qzPXr1wcPHpyZiqTMhQsXJGWam5svXbr0/Pnz5cuX261t27YpkidPnjx79qyjo+Pjx48Skb1SVAAA+Ma5cuWKponnHlKLv3amQjTlaVpUPvX3/v37muOcej1+/HjZRenZto9QdUP9xo0baqNqxfbVSTefbEXpPxMnTvyKuRILFiyQYfl18/DVibfFV3dI/fLLL4EbIt1q/Wy8dJc8h5QqSu2lCuxBnAsXLnz16pWk8Z0S+iFzxtkgYtmyZbI+Xr9+rdTVf9rb26dMmdLzMvy7EQcNGiSJ4UdYuUOqpqbmzJkzyrBMp5aWFj31xx9/xB/R1CNjSmbd1atX88KMHTtWOVRsyqQq5OXLl/qtJJSc7h48eFCV4Ht1Fy1apACaef1INm/erFRGjhyZVM8htXr1aiVUX1+vnPRBZ/E3DQ4p6OvMmzdP43/mzJmZd8+ePdvW1ibhZf/OmTNHkt1+S7xKGDnhKIGueH7//ffMeI4ePSoR77/cMMEntm/frgfttyTpuXPnJAr7/ZJdAADoAdKzb9269bVzUYZff/3Vn1inTp06a9Ys+7106VLdmjBhwtfLXYyqG+qyx9yC6H5AZvP1BdtJZuRAdmQ4Im3x1R1Sd+/eDTYipFutn42X7pLnkEp6OsomTZrU0dHR2trqtl/Ivrhx48bHjx8llu3KqlWrnH9q8eLF6hjnz5/vQVoOvxGHDx8euNIqd0itX79eIRctWmT/yuDSv/HNcTt37nz69Ol///vfPIdUbW2tzLrXr1+rpO6irLMzZ87YkgJZeUpFNp27a+l++PDB75lXrlxpaWmx39VySCnzSuXL44E0OKSgr2Db5TTapU65i1KR9+3bJ0GjW2vWrEmL+ydPnpw9ezYzQkmof/75Z+jQoX7ga9eupUNK+itk3ron3yGVfNb2KlyYCgAAA4qIQ2rlypUTJkwYOXKkppsdO3Y4e8OhK1u3btU86FR8/0Hd3bVrl3vp8v3338seUDyyJdaU0Hw3f/58fw5NSu9plixZEiS0f/9+zXppw3L27NkyQTXHbd68WRH6u+Az52i7PnfuXBVKOXfLrGRUrFu3TrltbGwMnCOZ2bZbys/atWttj0beWx9nqP/www+KX//6isGCBQv8qqurq1MqrpgWv55SBmSG2UVl/scff7TfyqqqOim9clcwPRvs9I/ksL6+XpWmcqnC3UUZmQ0NDYpK9qR7yxWgSlZCetA3wMTEiRM3bdqktHTXL2Mkk5nNN378eLWFpa54LDb1JbWm4rcVBIYM0Z9//tn9q2gV2L3w60HxHeozsg/fvn1rLe6KoyRWrFihUmzbti3vvaMhK3fDhg0KpgwoBtelM4dGktNdp0+frsfdv2odv25VRaqotCvWKlxZVWdTBmz1mapCMSv+LVu2qAu5wFbDuqsMK7Du+oPIbwtDja5IrBtnOqTUUdVd1ZPdIxovujJmzJhIdbnI1SJqZaXrX1fPUaIasE4EKSHValtb282bN/XDKi2z1bo1XvJazSevJgMy5UxmWRzqUUpd0U6bNs2/Hh9ZQUMn+W3ko1vKlRsUZUW949SpUxLFwWEgGnSdnZ15nq/nz5/fv38/ff2nn36SVHT/zpgxQ4PL/Wub/oJGVMewlxNNTU1qINu77RxSmVLCR/bXw4cP3b8S+58+fVJb5BVWY+HDhw+K+WqJzDCHDh1SJBFpoA7z/v37I0eOuCstLS22ospJgMGDBysh9Un71xxSuij5pouBpA3IE0rqvRcvXlS0qijfHQZVAYcUfH00N0vsSvhKpty+fVui+dq1a6ah7t27V5JXUubZs2eaBtLrnC9fvqzJMlPWS3AEHnGJzpcvX6ZDauZQEnmze+CQ0tSiHLJCCgAA0kQcUq9evTpx4kR7e7vmJv3u6Ojwz9GQkf/x40c9/vfff+vW8ePH/Qc1S0oVlsWou0lpCbDmPsVz+vTpd+/eKfzdu3dltcpwCtbwPnnyJP3FD6nUmtcOHDgQGJD79+9/8eKFbj19+lRzrlmbkTk6Ken6slofP36sTL5+/Top+SaU1QcPHiirSl2Fcq9w8rKdlLwD+q0Z/8yZMzJyFFVwJohhhroSffPmjYwQxaDYnHdJ8/5///tfF9gmd3Op2PEfyo/Kokecsee/PFfkSvfkyZOKXBdVZH8bSCSHqk9Vi8qrW1KsLUXZdfotC18RquF8X49Dlo/qRxqOyqJKc1ZWQ0ODrqsJrl+/LutLzeFOIotkMrP5/LU2ZmrK5FOc6qX6q+I4a3Pz5s2669wl6kX612W7u8X3UenU7grzqIT5aBShepTyoDLqor+kPWDt2rV6Vo174cIFlVcFd0VOD41Id1U8KpHbnaTBon+tlpKS6zbzdaNVuBRIFc2W0mvUqMmkTyo/qkY95Yxwq+F9+/apXCq1HtQjziESrHuyA1KVSXVL1YCVJQgpFNV//vMflx8bvGX3YCpyZVj9RHqy4reLqhwbeufPn1f2VDnr1q1LSp4CZUCjSY/oh27ltVrl4yXSao5ITQak5UxeWQwJNzuyQ9Wr1F0rlx1ZfkPH28gnWFUUF/U+CmP9NkAlUpdOX1eNqchq0/StpqYmpeX+VQE1ptxcIFtG5TXvvGtEVYuqVDnXgyqdBIgri2o1U0r4NDc3B3aWmjLPjyYU56VLl5LSLJnpkFKb5lWIj3qLsm2/JfzVvqp5PWj5F6ptFcEt+1V51XzqDNaIurVt27bMmCNCSWJESSgtXXdrr6Ba4JCCr4+mEF+OL1y4UCJgy5Yt9q/tDZaCm/msrmuS0zykacl/OZaUXObB5CdVT7NCOhLT4Pfs2WPzsfS5Xbt2OTXdHFJS1JQliXvpPT3bJQ4AAP0e6dlSyvd/RnOHu2WWib2aHjZsmOwNWWt2S+alb1DZxOdsGD2of2WIJiWDRH815TmdWHOfpjAzq2Q0ulMXk9JLcj2YfiEsvV9Kv249fPhQdqO/ZCO95ys+R0vX112ZbYrE8lZXV+eWyeiKLIczZ87Yv3nZFjJrHzx4YKsS9JTsMZkE6eo1Q132mIW07RtugXPEIWVV6paKuIOBAwPbIjeXgapR/7q9/JEcymzTXfs9YsQIq8+9e/c6k1LhndfMoVSkhashLLxsIesA1hn27dtnwZR/9ShngsYzmW6+tEPq2bNnFmDatGlqStdF4w6p7hY/IL35S4/I/ncLiKSD+Takjw0oF8yPJz00It1Vja4u58qrrqKQJ06csH93794tfTKdeatA83u6u/6SN1ng5iJxNax2N4eR2lS33DD322Lq1Kn6vWPHDrul3qJ/M7fsKYeKxCmliq2sPTx06FCV1CmrrrerciSC3KYqJaoe6HpmJVv2Kh8vkVbzyavJgLSciZRl7ty5Crxp0ya7pU5lS4cqGVl+Q8fbyCftkMoT9T5qF3Nfpm8pFfXbdG9UdeUdVmVj3+pfHeDjx4/6180p6u3nzp1zlekaMW/LXp6U8Dl8+LCK6RzQ6gYqad52QklgBbY48xxSkgZmcNm/EiazPuOvPGhoaHCCXXWuNlUla5a5d++eBQjGsnUet2BK9aCukimm4kLpjz/+ePv2bWbp4AvBIQVfnxsl/Cs3b950b5jjDikxcuRISRkJQQW7f/++k1lSgi9cuOCH1MwqAZ2OQVOmnpWEWrZs2YIFC2w3sntLYw6p6yUk7Oy1W/oFIAAAgPTs9vb2s585dOiQuyUrxV/p0NTU5FYupDVdReIMIT3ofDqGZklnF9XV1fkHeWg+dfaqTB3flA34+eeflQGzwdyklvZoxOdo6foyNfM+GCKUc5efvGzLkgk2zjc2NupKnnfA/87UgwcPnG0TcUhNnz7dbMsgzrSB7SK3HJqzI55DKRuqyWC3l+xhqRzB7kufJUuWKP70Jw6l0nz48MHfTCS7SDahrW6IZDKpzCHln5esbLu1eBGHVA+KHxC4NtQn9bjsRndFSchelc0fPKiQKrvbaqeSuqpIsoZGvLuaLpeU3AS2qst5QFpbWzN9DVaBkW9lWgDLUrqGNeRdRfltoa6o7uG38tOnTzMdUnZgtrmVZaLrqbLHwys5yRO1S+AGVT34y0/M4eIWhfXMIZXZFeOtlodfkwFpORMpi7L9/v37tFCqZGT5DR1vI5+0QypP1PtYje3cuTN96/Dhw7oViG512mfPnqmZMkX60KFDVTqLTb1FNdDc3GynmqjbyHhxzVGJQypPSvhoyL8poW6jtrAFRMF4NNQWjx49cp/2y3NIydbr8j5OJeHT9Rk1kyu1+a0sz7LgbHTrX120zY+64vdkldff5GhrDNPfTC8rlHBI9R44pODr8/Lly2PHjvlXJLudilDWIeWQ6in565Zx3rt3L5B3SuXFixfpByViJEP9K5JlTlgHW/Zsx4EtOgUAAPCJb9lzSwaSkibtdlhIiZfC/d5D/7o358GD9qymzokTJ0rRP3DggOwQt6XC9HJboNHW1uZ7xNLIcJVxqxlQRrtdSXs04nN05nmxMgt1XRa+zCeVxQXIy/bkyZOVqFR/V3z9Vq7SH/tLH/YsQ8idYxJxSCWl1+aKU3WyZcsWZ6ymDWwXuX446yieQ5VI5pY5ONwKEdmHUhX0VEtLi3+Yi0M1r7vpvTCnT592moxhe81sMUgkk0llDin/uGKVXTVgvyMOqR4UPyBwbegRRRh8vl3WfqY1q0xeu3ZNlrPs6hs3bvj9LT004t1148aNyqeiUiXIBDI3pfKswmrEBeejpSvQoRr+z3/+o5EuW112eKSGlaKu2M4pPypZ+BodfpyRQ83Vac3AXrdunfKfd6aPz5IlS/5X4vDhw27flurBPlpvaAAqFXcmVM8cUnldMdJqldRkQFrORMpy7ty5Bw8epCPp1shKyrWRT9ohlSfqfcwZlCmibRWPf0UD88KFCzJAIp5fBbh9+7alKGEoCaNIBg0aJEmo0Zq5LLSSQ819KRGgrrVt27YjR45s3bp15syZ6i2+J84hkatbbqN3nkPKPHS+S6imhO2u9T2VkvmWJc0y5ucaM2aMwqhBbROfL1uCzqOiZbqYywolHFK9Bw4p+PpI3Afy3d6E2O/KHVLJ5xMBTPuUIugftpeUvrmQOSOaEuZ/Q1TSx73NCBxSSWlK4zsLAACQpmcOKU0rMqTH/Bv3QjhtdUtl10XZY9K89cM3pIcNG2bnuc6ePbsr/xu1PrK7FNIWU6Q9GvE5Om0oSt1Xrg4cODBnzpypU6f65znmZdssAc3FfvH9ZVCOtNF4+fJl501TWu53knJIJaVNOnv37u3o6HALqCs0sMvmUFaTimOHFvn7zlT/0ij8DUQOcx3651Ubqu3ADLaMWaP0tkPK9TrfIdXj4jsC14YaosvbD2ioSwQOEcO+Uv+pxN27d/3PeKWHRry7qmaU7ooVKw4dOmR7i3RLquO6des0avzP4GRWoKEme/36tTrewoUL1cNN88yrYemQwRocC3n06NHASRFxSGng2NIe6bGVvxCVKGhoaJBgURltdOv3uXPn/Eb014lU1yEVabVKajIgLWciZTl58mTmiqRujaykXBv59MwhZaVIzxcagwrf3NzsX2xqanr//n16QaWPRIpqe+TIkffu3duwYYP19nnz5p04ccLfAV1Fh5TP999/r9QzD8trbW393//+9+QzH0roR/poLfUZt/POYYaY75DS/KKeY5tw3VHuDx48UAdesmSJ731LKnZIlRVKOKR6DxxS8PXR/OrPHBLEkkdO9sUdUsGy1X379pksTkpLcyWS3PykiVmiXJNrOhI7hMIXvppy3H7vtENKYj3zcHQAABjg9MwhpYkmOIw88qBdkQkt2yntzkhKX27SrCqTO1gO4AimziNHjih1s8RMWfetx/gcnTYUg2UI+tcFyMu24pR9cvjw4czc+pjR6I7TlokiC0GmmkvLNzhlxgcOKcNq2yqhQgO7whzaF6D8N/yGekWwjyz5fPKuO245+dwu27ZtU/b8r7OdOXPGaR1xL0C6+Sp3SNn3tlx12U4xM8++sPhJqbf7xwPV1NQoQt+2t0VYriAOy7NqQ6qdLN7gbnpoxLtrUrJale7Dhw8bGhqS0tr5lpYW1XDeUcppP4VVlFMv7V+/hn3no/Lz9OnTdFRbtmzxa1tjv729Pc8hZZ4FW94VrOAoix3WrtZMSv0wc+mQoc4QrFALWi2peLzEW80RqcmAtJyJlGXnzp3Bp+t6MLKScm3k02OHlGRv+rXB+vXrbbGPuyJh3tHR4X9ELxPVtgqobMsUMiEgUSzLSKn7+239yrRWs7GQWZakYofUnj17NPzTh+UlpS2Ev3g8LKEf6bV+W7du7fKOBTTSDilVRVfpWChVi/Mjy8RTd7UFd/7jFTqkygolHFK9Bw4p+PpITmnAHz9+fMqUKVOnTpVCKXnqPoMScUiNHz9eE4lUn2XLlkm+SFJoBnIKk6YcySmpAjNmzFBsFy5ckKB0B5pev37diSfJIKmwmthmz55ti4eVovs8rcnB+SWUihRf/evOcwUAAHCYmTTfw9kzESulrq7OjvzQZCcLYeLEifZ+O/PBpLQ1w8KfP39eCrTUd98MsLcs0q3dKVQBd+/ePXDgwLx58zQ52tf93BEhdoqHFH3lwSy3+BydNhRl/yjp6dOn2wfUNS+7AJFsm8UlS0wmSm1trYog6zSdc4tQVsfy5ctVsSdPnuzyzlG2NUcyaZRzGaVKy9mTa9asWbdunWKWeXzx4sVHjx6l8x/39eTlUCrE0aNHVW+yl6SxqHJWrVqVlN6KKYyMJdVkW1ubwgRl0YOyyp4/f66nFGbz5s12vrLiV85bWlqkk6ggZkW7bMQzmW6+yh1SesSOgFHHW7lypSpZ/7r1At0tfoCdeP3jjz+qY1hm1E/sXCrlc+7cuffu3ZMmlj4/SD1EVaQhIHXu3LlzSmv16tVuX2F6aMS7a1Iym2X8uHUxS5cuVYB3797532jzSfspLAldVzYWLFhgXzb0a1jlkpaojmf79dwhzX5UGvIKpkIpGxqJ6gm+MZxO9ObNmwqgjuEv47KjKtxX/By6ov6vDCiweWfMBWwL6GS3q84VuQaOf4CRRqXKorpya9zSrVbheIm3WiU1GZCWM5GyqOCSaZIzyrZ65rFjx+xA626NrLJt5NNjh5Qdey8aGhqUVZVCRo0yf//+fVdd5heTdbPIw9/V4aN+ou7tzidR/Vhv991wQWW+fftWkkdlNFOrcoeUqlctqCIocjv/231PI/m3nRWQt2UvKbkOr127pqhOnTqlYqonS9SryXTFPxRMv9WUGrb+yi8zGHUxmPgqdEgl5YQSDqneA4cU9Ak0+DXIu0o8ffrUl4OmWPvKhEPCWoJbqr9mFE0SElhSj/wJT/G8fPnSog2Whuop/z2qpLDkjoXUtOEvXrU3FYZSaW1t1ZXqFh8AAPoHUqO7/s2BAwfslowE/8P2+u0fa2gGjz2iSe3WrVtuGVHwYFI6KVmTmqZO2VT2Wth/J2xvWbq8j8oFrF271gJ0lQ4GUgy+I8C+SdTlbV6IzNEqb/DNr9raWhlFXaVjaGUtSMV3eYtkWxmwL+FaKu3t7ZkvfjT/Kgbl36ws2ST+Ac+yUk6fPm0xKGb7IpVVowwn+yJbV+nbgs6H5edfkSvPzuDXD/3rZvxIDi9evKgmM0+EW4i9fft2O9dGyKbN3IEo3UPaiIVpa2tzexil+dh580I173+kPJ7JdPP54W2hjf/VRZXd36Vla3AU5vnz58qDKtkdl97d4geo+FZShTFPkLIk296SEzdu3Mg0ERXMPpqsvMnObGpq0iPumOH00Eii3TUpfXpSFeJWUX333XdqJpUr72CmoMKNo0ePqsi6rnHU0NCg3xbAjPmdO3c+fvzYBrLK6BYkBlEtW7ZMxrOZ0Js3bz5z5oxb65dO1L4e6L5maNgxZOndcGPHjr1//75rKX+tjXL75s0bN/bt0Gtjzpw5doqTU4/TrVbheIm3WiU1GZCWM/GyrF692spiosB1rcpHlhFpI59gZMVFffrZCxcuuIFgWxG7Sp/zs8VlutuVQhnLjG3Tpk1dJYes/WvrHGW5RCrz999/t9TN11ZWSjgkr5yIk8QIXLqBneVzpURehUiMS3jat6psHlFn9tdwGWruLu8LVElJRklkqQsFixiC8pobNPMorrhQ2rNnj/pbXrbhS8AhBX0FTdiSDpm7D8p+mEMTf55oll4+bty4dLRKLv0BDqkjCpz5KVAAAIAvQZOOP7+475f7jB49WlNhsEYgeDD4Nlby+cWJfwS4NGn/NKVMRo0alTflyRAN9g/mzdGZpUhK86kLbAEqybam+4kTJ6a/fxTkJClZDspPpu2qnLtVaYH+oPIG5QryH4RPqx95ORw+fLjyk35cFzP3sPioovz1C/51PZ6u3rKZDJrPDxAEVuRBB7CC2MW0mtSt4qcZM2ZMUBu2HjCyq6uxsTFYFnT69GlnYAdDwy9XnkpppfCfGlQiku3Mcqnfuopyj7vVJbquu+llLJk9xEpn5zfnhTTPwsKFC/2LV69ejRj2NhDS9WOKsUiXWld0PWh3v9UqHC/xVgvIrMl0njNvxcuiaDP9jBWOLHcxr43ynq1E1AeYQHMDYdWqVe3t7arDoMUrIZCKQW/PzI8e8bc2l5USDpVU4zfzy+OZdlbZCH3UduPHj89cMeeyXUmi6fLGJVVEKEW+JwtfAg4p6A98+PAh8xBNAACAfoZty9q6dasp2aNHj25ubvYPgrWTLzK3vH1FymYbIM2GDRs6OzvdCvdp06a9fPky/u3Ir0h6u1O1OHPmzIsXL3wzXnqvrLhMX8BX59tqtb5JbW3ttm3b0sd+A/Q/cEhBfyDzFRAAAEC/ZOfOne/evfv48aNtTbp169bEiRPd3QMHDnR0dOQdMvIViWcbIM3QoUPPnj3b2dn5vsQ///zz119/Za6M6wv0kkOqtrZWoybYnKhUFi1aVN2EqsW31WoA8HXBIQUAAADwjTFkyBBZv/X19ek9KWPGjMnbrPTViWQbII/hw4dPLRHZv9MXqKmpsfPdqx6tyv7NbRf6VloNAL4uOKQAAAAAAAAAAKBQcEgBAAAAAAAAAECh4JACAAAAAAAAAIBCwSEFAAAAAAAAAACFgkMKAAAAAAAAAAAKBYcUAAAAAAAAAAAUCg4pAAAAAAAAAAAoFBxSAAAAAAAAAABQKDikAAAAAAAAAACgUHBIAQAAAPQKo0aNmjhx4hdGMmjQoDlz5nz33XdVydIAp7a2dvbs2V87F98MVenAA5aBVnv19fWLFi0aMWJEtSIcPHiwRN/8+fMlA6sVp6N/iIJx48ZNnjzZfjNTFEb/6Dx9BxxSAAAAAL3C0aNHnz179oWRTJo0qaur66effqpGjgY6v/32myozYrNt2LBhz5491UqupqbmyJEja9asqVaEBVOVDjxgGVC1d+zYMY0sGZanTp2qSrcfMmTIvXv3/vnnn/fv369fv75a+XSUFQXfBH/99dedO3fs98CcKRYuXLh69Wr/inqOGnf69On+xVGjRjU0NFTLW9o/Ok/fAYcUAAAAQK8w0BxSv/zySx/PZ2BILFiwoLGx0Q9w48aN58+fVyu5oUOHdnR0yESvVoQFM6BcKlVn4NReXV3dp0+fNmzYoN/Dhg0Luv2gQYN27tw5ZcqUbsW5evVqDdX6+vqampovt/zHjx+vPChv7kr/8Cn0V4dUWjLncfDgwc7OTt/TtGjRItXDlStX/GCbN29WFx05cmRVstc/Ok/fAYcUAAAAQK8w0BxSd+/e7ePOl8CQkDETuJ9kPA8ZMqSKKco4l0VdxQiLZOC4VHqDgVN78+bN07CaOXOmu+J3++HDh+vuL7/80q04d+7c+eHDh2rlcOnSpcrDhAkT3JX+4VPorw6ptGTOY+HChSr1smXL3JU//vhDV9R5fEl+5cqVlpaWamWvf3SevgMOKQAAAICqMXXq1O3bt2/ZsqWuri5tkeru1q1bZWstWrTIv75y5cpx48Z9//33jY2Nujtnzhx3K21m1NbWrl+/fvfu3Rs2bBg7dqxdlNWni0rUBZNNqCtjxoxJShbj3LlzpaDLLNyxY4fFL4tR6e7atWvx4sXpUuTlU0bdyJEjN27cqHgUzK5LNV+zZk1bW9vNmzf1Q+afXVeKa9euVRLKiXIYrzpFouzprwqrR9z5OxaJyqvKGTVqlP9IfX395s2bXYlcPagmXRhlxp334RsSui4r5e3bt2tK2EXV0o8//miBVVKVNym9cld+lLfgLJvJkyerCbZt26bsKYYlS5akC6UYpk2bZr9dK/z888+Z1e6wpJWcMqz43cqOvHZJSqfJWOMG0Wb2lngSkQ7sl0sxKLAKIpvQXVfGlD1l0vWNESNGZPZMdyWvfePVpQp3SYiZM2cuX77cD5BXV5X0SXUnPavKVJy+P7FsC1ZYe6p2VaDib2hosO5nTZPXKHmNKEaPHq1IlJkgq8qb4t+0adP48ePTGVBCVl1qO1WRYvBXD1kxNcxVCf52OQ1JRahs2Di1i7Nmzdq3b5+GlQruxpHr9kr9119/1d2mpibddSMxL9uGhtLFixc/fPigR3xfQ2YGIvVmKNGDBw8qD5IVilAjJfFEQd7ojoidgMxc/fDDD4FAUKdygjEpJ2ODkaUklA3Lp99pK3RIRfp8esAa8S6qH0pID65YscKaT6XLrEZVnXKuylEGBg8e7K5HhlKmZM5DMbx///7IkSPuSktLy40bN1QVrvaUrvqSUimbqwCNu3Xr1ulBBY54M/M6s6pC9aPr6pO+uxYCcEgBAAAAVAdpz52dnU+ePJGR8O7du9bWVt8ilVL78ePHq1ev/v333x0dHcePH3e3Xr16dezYsTdv3ty+ffvx48eKRHqw3QrMDOn9r0pcu3ZNf6WLm2Ep5Vi///Of//iZ0YPm1pHd0tzcfO/evYcPHz5//vzTp08yA6T0t7W1KTkF8/dHxPN54sSJ9vZ2FVC/dXf+/PlJyRvy6NEj/SvNUj9kDySfT4FRbfz5558Kr7/x2rOSHj58WPG8ePFC1mNS0vXv3r2rPJ85c0aZf/36tTscRAX8559/lEndUrpmL82YMUORyBp00So/LmnfkFAmZfMohkclzEz1DTwFVnInT55Uu+iiGsXfBiJLRs/KbL5w4YJuKUywScTV2P79++23tYKKozpRisqJDJXMqrCkz549q3KptlWoeLvI7NEtdTYVSqaXM8/yekteEvEOHJRLtaq01IWUn6Tk3zx9+rSeOn/+vLKhyrE+rNpWsEOHDrlnbTeWHcYcad94dakssifdv4H3J6+uKumTp06dUuRqzcuXL6sU+utuxbNUYe0NHTpUMaje1LUUQJHcv3/fXBWZjRJpRA0Zhbx586aiUoQa1HZdwkTXdVGZV37SeVBCqnPr22osVZFy61wVKqaKL8mg5JQfuyiTW1WqUl+/fl15ePr0qVLX9b179yoqlUJl0V0TOK7br1y50iSMruiuXczLtkMlVfFVmXrELWzJy0BevTmUqOSJ8qBH9Lj5U0wU6JHM0R3plgF5uVLnVJz+HjHVg2Kz33EZG4ys9evXqx+quiRqVLqXL1+6HWqVOKTy+nzegE0q6KIaI8qGLuqWJh31AclSRa6Z5dy5cy7pefPmqXoVlQqucimA38fyhlKmZI6galHd2m/Fr2pXJaiinODVJKX4Z82aVTZXPvX19WqFBw8eqBWUSbWXHrRb/jyS15nVhdR11SXUMVQK1cwff/wRL8iABYcUAAAAQBUYPHiwdHRZNfaKeMmSJeYjsLuy03yN3865MG9OUjJCFNjeqMtOkAorjdl2HPhmhmKWZqy7MhiSkqUhy03mgWnGJ06c0G/3gvrixYvOlpP2r0h27NiRlIwNMwBkmVhg5Vk5rzCfMp9sDdGwYcOkfysVVwPBlj171i3QqK2tjVeglVSmiL2rt7xJy5dJYEsedEW2iopv4W/duqW79lsWmr2artwhlWRtDAkcUgosk97Cb9iwQf86W1c15gyePXv25G0wCRxSisG9qJflJkU8c0OfJW2WkgWItIuyp3hkNVlIGUIWLN5b0knEO3C6XHrcDq628EpUfcN980s2qnJllp7sXoV3JVVWW1tb7XekfePVFXFIReqqkj6p7u2W2Mi8dL6zeJYqr71ff/1Vhq65KtRv/UO7040Sb0RVssagPauQVtsKKZvcbZHLLKMlpNxaSTVebAGRX8xjx44pD1Ycq9J9+/ZZgLFjx6qwzlVntSoD3sXvd/v0lr3MbAfIepcocP/GM5Cut4C8LXt5ozvSLX0iuTJp1tDQYLemTZumf03Cl5WxwciaNWuWc8rohxrXRVuJQyqvz0cGbNkuKrFv05MqSv9qOFvg7du3u7cg1nU1K9mDCqAG3blzp8t5ZHRXvmUvKfkEFZW9kFDxVbdquDNnzty7d88CSFBoPvUHVF6ufOrq6tzCWz3l+xP9eSSvM6tmNE5dw2mO8J1i4INDCgAAAKAK2EEq/valpqYmZ5EG9pVob283D1FSMkL8xU3Lly9XVHPnzk3+bWYsWLBAv/XXhbQTNGzTh921vQ+yImQPu3VP0v7v37/vnjp06JBsDKf9K5hTr7uVTxXQX38ROKSmT59uXrAKD1GykkrXd1eUJVkXGzdudFeUVV2xCC9cuKDUfSMz6QWHlLPfZJ/4huKnT5/Wrl1rt3RR/2YePhU4pPxWsCVstqcywJJ2C0CSaLvIylXg9GfI470lnUS8A6fL5cwz49atW7agw5g6dapiszUF6r0uJzLYZAZbm8bbN15dEYdUpK561ifdfqJIliqvPZmm/nX1Ydm09vv/s/fmb1UczwPuPzyKBFFERYkK7rvGGNe4hCioqI9K/LgrUYlicCGIolFxR4nCFwGB+95T17qd6Zk+Ax6BaL0/8HBmenrv6qqa7h6/UcKNWFdXxzCP7fmiaBSf0RHYJBvr20C5/vrrLy0m48LdynTs2LH+/n538xSl0D4/WodUYrZjxBoxnAG/3mKkOaRio1u+1xbuli7hXCFJZK1olHNbvH//XhxMeWVsbGTFIICutcnikErr84EBm7eLar1JxaqfRSKRPEiv0A3LUc7r1NbWpjkPjO5ROaQqKiq0g9HrKFeU+8IGF8vLy6WkOjGFcxWARtEXPO48ktiZaWg6jCugCIzc02o0XMwhZRiGYRiGUQBEpXZPeHGNZNRZDJUPDvzUV+uu/RZ9ep0uW0tcM0NOYxElWxA7Sl+Yd3V1iea9a9cuFGLdMOLaLVHujbFrEckyELExRpVP/ueK/vQPNZd9K+Tq4MGDgaM6BN+gWrBgAVfQ4zUz/E+EsnKhsrLy+fPnsmtPlzYU3CGlgfnH9ZcRDAMeY7u0tBSz061el5hDyg0mbppEK9o/NDfQLuJP9D8gFe4tfhLhDhwol/Du3TvaQrOHoU5sspgO84y7xBbltjrSgnIoT7h9w9UVcEiF+3DePkmb1tfX06YvXryQrV7aJwNZyl57PEV+Nm3aNGXKFHE9a/x+o4Qbsbi4+NatW/zEVN6yZYuGIfL/y3Hu3LnE84/8hBhEjJTEYka5NW66K0qgHXXt2GgdUmnZdol5bcIZyHvIdN5Dzd3RHe6W2atl//79NLQ4WV6+fElbSJhRyVgBEX379u3Ozk56FDlJFCmBM6QS+3xgwGbvorK2Tpue/s9P2VIqC5eIVpMguYcPH/o5j7zRPSqHFDx79owI+efRo0cnTpzgH6qdCGkO2cQnrsa8uYqxatUqopW9t4RMnBoSOzNzk/o3lVevXoVdjd8s5pAyDMMwDMMoANu2bYv5F1yLFNOlu7t79r/R7XUxI2TFihW62sI1M8Rz5Bq9cleNPQwPeWN/584dtGQNlt0hNap85nVIRTkTpaGhAYuupaUlXIG+QSVq/YEDB9zMuMs6sJcwNTEnMCrkLb04pNyFKl/IIdXe3i6ncQEF150vMQrlkAq0i6wFcE8NF8K9xU8i3IED5RLIXnNzs5s9142CNd7T00OGb968qYf1hNs3r0NKLE8/q+E+HOXrkx0dHS9evMCorq6u3rBhQ0aHVPbaw4bv6+tjAGInkwd3u5DfKHmHfJQ70B1Dl4t1dXV6saSkBNubeqCX+kul/IRaW1vv37+fWExgBMXKIjGIi2e0DqlAtpWYQyqcgcI6pPKKnYy5mjVrFk1cW1srQknXMI5KxkpV0NtpTeJZuHBhmkgJf2XP7/OBAZu9iwYcUnv27OF/5jI3CX2wsA6pU6dOvXv3jjYiw/o24unTp8xHmzZt4qI2XzhXLmSJB4mZwIsWLUJwpU0NkdeZpR5ih6PRcJP8K7QThTmkDMMwDMMwCsCyZcvklaz8nDJlSnt7u5orhw8f1oUhPqiqrm1cX18/PDwsVqhrZmDSuElEOc2YkKrHYwgRABPo48eP7uvZ7A6pvPkMOKRIIu0NsEQb+wBTDN+gInx/f7+uLEhDPrQk62XEmFRLoKysrKenJ80hRf71zGYho0NKslpRUUH87hf9fArlkAq0ixzZK+vpBKnncG/xkwh34EC5hNbWVizAlGr4/zKzbdu2wcFB2fYY5WvfcHVhTrvHM9+9ezfjWFMS+2RsaYP8zOKQyl57RHLlypWioiIGeCx1v1HyDnmF+tcNYoq4tt0df25CelA3IwibsLGxMbGYUU4iUVfu8dKMdD14LuyQkoGjqzizZDvyHFLhDOR1SElLuV7jwOjOKHby5irKHc/X0dFx8uRJd2vzqGRslOvq7qnn7ul12R1SbtLS6wIDNnsXDTikpO+lrYALj25fMoeRbBw7dmxgYEBOW4tyXi0iOXv2rGziE8K5coktf+NnwCElaGdm+NOF3G8myLI7d0O6oZhDyjAMwzAMozCg33d1dcl77D///BOVVC3SOXPmfPjwoa2tDd0dRRZDd//+/frGXg6yxQbgOtYd+pkeFh4zMx48eICSvWnTJlT/rVu39vT0yFYF5f79+7IfQfXyaDQOqbz5DDikbty48fbtW8oui5V27Nixa9cuop05cybF0Q1BZJsk3FM8EksqnDlzBhtjz549ZWVlRLVu3bq9e/dGOY3/woULZBJbmhrDytq2bZtcpwmePXtG/NgenZ2drmEQMyTkJOONGzdimcvFjA6p6dOnv3nzhrJjcDY3N5OT7du3Jx5LVCiHVKBdSFc+nkg9cP3AgQN62HOgtyTaVIEOHCiXIItQMAKxz4mWSGJHBWOTk5nYmTtp7Zu3uuRbeFzkCk2Qcayl9UmFlv348SMjkX7FI/fu3cvokMpee7W1tXRXmqalpYVSMBjVo5HYKIFGxAKnxhjplJGkZVMkPZ+aJzDX+Yfi+KvnJCGipdVInWyMOEd6+w4pWocqJSfLly8nvDhi1LoOO6QAaUOfpD4lTGK2Y8QcUuEM5HVIka44LEhRaju8/jHQLbNXS/RpB9/79+/19O5olDI2ynUA5BhplZaWnj9/nghH5ZBK6/OBAZu9iwYcUlFuAx3tS+0xrMrLyxGSetZSeCj5klkOJvd7slBUVESV9vX1uWfPS7fkop7PlTdXLidPnmQIk4GpU6dSasZR4tSQ1pl5XE4io+pWrlz55MkTpEHiOYOGOaQMwzAMwzAKA/o0VjeqKtr877//XldX574YX7Vq1bNnz0ZyEKCjo0PVa4yQy5cv37lzR+5ya/an411l0ZMeq4x2297eLsHEco6dbILtIb4t9yJGhR7IGuV0aMxa/SlncuunxAP5fPv2rfvtav7niv5csWIF0Y7kPgDPT/IsjjYgQjV35cwjf49brKQCGjw2GMahxEP8Bw8elFsYV2RP6gGzSh9ZvXq1ZAMThSbAptKlH1iYlFRddRhpT58+lRjEIHQrKhaYf/gpX5vif4LRXtgbWDvETwyJB9a6NRZrBdkOFjuUPTFpIdAuGIRSEMAokg+0R8HekphEuAOnlUupqanBaJTkaLLr16+7d6kov2cG2jdcXZT98ePHklXGzuHDh7OMtbQ+6bJ792451oe/WJ5kSe3VcJYy1p44ZMkwJT1x4kRnZ2dvb6+sl0lslEAjEokc/TOS+2Se+JTnzp1LnFqf7uoqRSxq/mIKykjRDyD4xRSwuqV0I7lPYdbX17u3uLhw4UK9Eusev/76KzkfyX3ZMy3bMagZ+lLGDCTWWwz5rNvIp+WTgdEdBbtl9mqJPn0Bk7LLh+eU7DI2yi2+Y1BL61+4cOH27duJIiVRfkbBPp82YLN3UVmeKd9FjT4dcKbyh5+tra2ElySoqIxDyZfM586do6L0W4E+ZJ7whw4d0iuy7o+nXFdpOFcu5OH+/fsEIOTdu3dPnjypK63cSkjrzNylt0u3B4Zw4ND9bxxzSBmGYRiGYRSMKVOmoDSrc8ffpFZeXo6GHXuZr2/FYyfvCP5rVbReLJzEFQHyWS73ECXJVSwnseOc/SQS88lT7jogP1p+Yj+7kfMztjkFY0BPEYqR9gKZ65TXr5np06eTSf8pWd4iBgNZcvPsB6bO9ZCdWIligfUn1ntsDVpTU9OjR4/8nLs15ldX4IV52q3EdhEwtNzdQ0pab0lMIm8HFmI9wX28Ikfig2kug8T2zVJdJKQWYMaxFiX1yRiUjkrQ/pM9S1lqr6enx107JrsCN23alFZGIdCIlNE/JYoCzp07N+1jgrrEwx0pgWIq9DHC+3dj2fa7B0m4J2GlZTsWyZgzkAh16LZ72uh2rySKney5inJ9IK0ys8hYhdqTrj4lh1wMyyuXtD6fOGBH1UXzViPDgRhibscso9uVzFG69AgEIIm0j2kk5sqnrKxMfYVpVR3ozLICLryt2zCHlGEYhmEYxgST+GWlsXHt2rW3b99m/Kr9+LNs2TK0T9c0/S+yf//+oaGh1atXy8/q6uru7u4zZ85MbK6M/wS9vb3Nzc1ivmJCnz59ur+/X1dEjg9597gZ3zKToYsa3w7mkDIMwzAMw5hgCuWQmjFjxuDgoL+XavLwww8/JO6P+G+BkXb9+vWhoSH9cPgff/yR9wW+YUS5s3u6urroPPIVM/7XtSfjhjmkjACToYsa3w7mkDIMwzAMw5hgsuwdyMKUKVMWLVqUtknBKCzTp09flMMMe2NUyM6+6urqiVoqWFJSouf+GIbPhHdR49vBHFKGYRiGYRiGYRiGYRjGuGIOKcMwDMMwDMMwDMMwDGNcMYeUYRiGYRiGYRiGYRiGMa6YQ8owDMMwDMMwDMMwDMMYV8whZRiGYRiGYRiGYRiGYYwr5pAyDMMwDMMwDMMwDMMwxhVzSBmGYRiGYRiGYRiGYRjjijmkDMMwDMMwDMMwDMMwjHHFHFLGJKK0tHT79u0TnQvDMAzDMAzDMAzDML4s5pAyJhEbNmzo7u6e6FwYhmEYhjHZWbx4cXl5+eSJ53OYP3/+rFmzJjYPU6dOXbFixXfffTfmGGbMmLF8+fLPzEZxcXFVVVWWkBUVFQsWLPjM5Iz/Cm5zF6SnGcYEMhlk/uTBHFLGZIGRefr06devX6Ma+nfRkGpqapYtWxaIgbnq53+jKmZRUdGOHTvk4tatWxctWpQ3P8T2yy+/HDt27ODBg+vWrUNR88P88MMP5KqkpCQxBgQNd1evXh27Tma2b98umdmyZQsJ5c1MYVm/fn1jY2Npaek4pztmpkyZcv78eVpwzI+vXbu2vr6+oaFh37599LRYANRfGoK23r9/v2m3hmEYE8jcuXMvX768ZMmSvCH/+eef//3vf5+fYqHi+RyeP3/++++/+9ez18bn8/3334+MjKDYJN7NojmgNRHD57i0ACWNSCh43pB//PHH33//nT17o+UzdY8CRkWVoqUcPXr0+PHjO3funDFjRiwACueePXu4y1//7teB29wF6WlGXtCKT5w4MdG5+P+ZbPn5HNJk/reJOaSMiWfq1KlMM0wt73LwDz/dABs3buzq6uL6b7/9FoinoaFhaGio1wEFRW4tX76cx9++ffvy5Us6Pf9fu3YN/SAxnmnTpl28eJGoenp6Hj58yCP8//r165jnqKSkpL+/n6iQj4nxIDSlUDFnlmQGDZhCffjwYXh4+NKlS2mZGRtr1qzZt29f2t1jx45RosrKygKm+EUpLi4eGBi4evXqGJ5FqX306BEV/vTp046ODnoFZaeraIB58+Z1d3fTEAQglY8fPxZE+zQMwzDywvyImb1w4UK9wvyFxN69e3feZ78Fh1T22vh8wg6pLJrDBDqkvoRi8zm6RwGjWrduHV10cHDw7xz8gx77008/aYDNmzcTOdomvUh0V3dAfTWYQ+pL49sO7e3tb968Gc88oJMzI6S96R///Hw5zCHlYg4pY+KpqalhBl27dq38nD9//s6dO/XuiRMn6Ka1tbWECTukuNvR0ZF4a8WKFUxduljpwIED/NyyZUti4JaWlo8fPxJGnURz5sw5ffp0bH3Wrl27Pnz4QIoPHz5MjOf169etra0ktHHjRj8z4ixDFxe/1Z49ewJFGy3kNiyy/3OzOMrcGHx206ZNQ+KjnFHncqWoqOjMmTNU+N69e+XKokWLaGvij3LeK1Q6whcw54ZhGEYa06dP9x0uGWeob8EhFY3jfB12SGXJyQQ6pLJkbwyMTfcoYFQ0ysDAwKNHj3TJ/6xZszDLBwcHdbH/tm3b1D+1YcMGau/GjRsFyfOkwhxSXxrfdsBIQZEezzz8+OOPtKy/lWGi8vPlMIeUizmkjImnsbHx/fv3aXe3bNkim2w/fvxYKIeUaMBHjx71Q4ooPHDgQN5st7W1MTuiRhMejSF2d9WqVVxfsGBBV1dXU1OTnxldvYWC0tPT09zc7CeBWoZQLisrq62tPXLkiL/TkCuHDh2iIBqbFOHOnTu9vb07cvgT9rx583bt2iWKEXcpAn+J6vDhw3V1dSTnBibYxo0bSWXfvn2zZ8/W68wKss2tvr5+6dKlfrZRnqjGgwcPysqykpKSX3/9lVL4L+4SS+FXRXV1tfxP5PyMckv0yQD5T9xQCXv27En0PL58+fL169eJj1y9epVHvtYV74ZhfGlQl3fu3IloQv4w1+h1JD+CDhmI6ah26eLFi90XMIhNEcjyk2DI6kTVvLKyEpksAtBNJUZVVRVymETVKS8wq/K4bP8pKipybyGQkeqI7jlz5pC0GrqkQolmzpypIZlrYse4IJOR5BTTna0CswyT0d69exG5qAHMVhIbIUlID9egPkmIaMnSypUr3eTSHEnMv4QkFXLivuxJm2skHsT+/v37uesfDkBtk22qy22dKOcs+Pnnn/UnMxEB1JOSdwbfsGEDyWFaE2eacRKrjbxxCjRrbF5mHnTLldhS6pBK1AdczUEgCWqMdtHZ2XcTBHqaC8G08n2HVFokrofCzV64+DJCiY043TNcRLWgESkFQ0DWaLi6R+DZKH2sKW5U0kWJjf7DKKYnpNUMOgnab+yMMypnaGgozZp98+ZNZ2dnWoSJgihKF1wxyDl9g5ZiVOrFtWvXbtq0KZaKGyBt6El/5i7prlu3Ti6mCbfsDinUTp6ljLGKTRvIebVK4iE2nqWbyZXw2Nf2lWxIl6C2SSWxudN6eJooU+gYNTU1xBlrzXCEiR0v0XYgsL5T11pCRNCUjClJkdIlVlp4oCXWNlPA6dOnxQojD/6RJm5+dGZhWFHJdAkZszzF+KWx3NmKghO5nN9CopIBJbEfRmPt7YnSVcgi879NzCFlTDxoM0ifvN/XK6BDComWtkLqzz//fPfuXUBtEmbPno02gAAqLS0dGBhA4MYCXLx48fHjx5Kr/v5+d/VpzCEFpNjS0uKngpZ8+fLlnp4e5mD+JyH3RCpE/ODgYGtrK3nm1qVLl+R6e3s7MwrV9TyHL9DdiVwU0DNnzshqL/6iyqgOWlxcfP/+fSK/d+/eixcvuCuTMVPggwcP+Hn37l2SGB4edptGs/3w4cP/y4EIfv369ZMnT7hFbbhqcVop/KpQw4P8U2NXrlx5//49NUNDMIkmPnXjxg2y4b+TZMqh1Imnd92+fZtyFXYHpWEY3wio4Ai6ly9fomginVTdxKpEsCCpkDAIZ/7KdfR1ZJG66VFV+am6skwW6MSxVLBMiAThzMSBiOvu7k48OgfNm2CI1mvXriGHXWMJ4ckMxXVEK/lUq4+JGIlK/rnII83Nzeq7X7JkCZnRtczRv1/wIjObmpr6+vqQusxBpLtr1y65FZhlKCkzi+xhJzYR8u46HQwVMkABKSnPch0tXzOQ5pDCcKWqiZkATBZyMTDXEKytrY2QzFk8RQ24XkLsPR4ke8x3ZP7Vq1f6CkpWW+t8gdHFTzVTwzM4SgKB5VgAIidAonESW7UUjlOhCeiH+nPOnDlM0xQkS0txPVEfiLkATp06xc9Hjx5RBGpMOm0sTKCnudD/UVoISX4oEX9dh1QgkjQPRaD4aC9ERbmI7dmzZzS6nlsqqsX169fp+dSwnNvl9rHAs2ljzcWNipzT5YhNWp+cY0L7jwA5IVr/OmXs6uryrzNkaFyVMDHSBFGa4HKh53Cdtkb9o9F5/K+//pLV5ejAXHfdl4wjqkL+Dw894kQtpCxSzIBwy+iQQrcnOeQGVUTM58+fl+uBgRzWKhmqtCl3qS6qSC6Gx760L1VKP6HD0P24RZwUUySeuzMu3MN9UaaQfzJGXZE3YtbUwxGmdbxE2yFW5+SBLkSjdHZ28uzZs2cbGhp4ijCU0X2znnegJdY2A+Tt27fETOuQh5jbKJYfnVmoBPokOUcc0fryk6anD7gFp/kIQMG5K29BNFq/H46ttweka5RZ5n+bmEPKmHiYUeSUH0YvWqAMeJ8sDinZRY+svHfvnivIRK1nWmIKOXnyJJNcmuMDYXTz5k35H8myzMH1/R88eJDBIwtHEV6x5TZcR0ATJsq9NHNnqchzSCE9+SmqUgxRN+VtQElJiZu3yspKV9IRm+txC2/Z8x1S5F9ewldXVzOp6AKxI0eOIHbVf4TKhWLHP0wk1LM6dGTXoQaTbMtLBsknccq7HRQLHtQlY+FSxKrCdUgRjKlFirB//35+Jp75ypSZuKGS5khMiBmUnFO6tKozDMMIIEJM36LrWkvEuL6WEPkj308gADJWRS4zF7cuX74sP1F8Udl9/zjCVsUv/xBD4gzS0dGh0gzZK/EwkaENaxJo1cxWsl64qKgIYwDbQCa7TZs2iV0nIcMOKcQ4wlM/CoGVwhQpxkB4lvG37MVcMO6bf5JzrbKAQ4oY0P55UMoSnmtkzpIUeQR7lVRkfpcHURsk5Ny5c1Ew1IzP65BKm8EXLVpESGZYrS5+ZnRIpcXpIuvO1NFZW1tLKaQ3jrmlXM1B3urV1dXJLTqkdAw3TKCnxcCOpePJGgryIGeGik8nHEmahyJQfEbE06dPZTASOWonze3GINa7tqnbxwLPJo61GDGHFGkdO3ZMa4BW8J8izwTT7udCb6F1/EcYL4FDx9IEUZrgcqHnuF0RHY8MiKIrPUelED2Hn7KKJO/Q46cc3ClDNSDcsjikuEJNopZLzaDUSdLhgRzQKjFJyIPWp9ZMXoeUDnBiENcPTSZlRMbqJ8Xz9vCYKHNh8KpTkrsyirNEmNbxfNvBr3MEjshGOry4pMU1c/jwYX7qIW55B1qaDh/esuc7pF69eiWyQvonhZWoxNTSZWVScD0QnbnVTdTvh2Pr7QHpml3mf5uYQ8qYFDD+USCQMozPnp4e97BGJa9DChmxdetWxAdTApLO3Xkngunx48cIRFL58OED2s+aNWv8SJBl+laHuXDEwV3G2dnZqXJEPEruVgJRCHRORSj/9ddfelcyw3x59uxZ8slU19LSkqa+EEZ/NjY26ssZqoKsuoGpN5V0o3VIuRVOEuqtY6bxFx/RWLSFuyiMqBDBelJ4LNtPnjxxX9Yx/+l0Ei5FrCpiDilVC+bMmaMTSQzK0tbW5l+XJnMbVPPW19c3/t89NAzj62Dx4sWidAZWWYrU1b0Sd3NEOf+CLLJQnwsSOIvCinhMnByZWZCBMc1eDEJ3FxJyT+Sk7DR3BSOTTkaHFAa5u45DlG9Z2xWeZfI6pFxE+OsZIgGHFDOgu9I5PNfE5iyZIGSXDZZbf3+/a/di0mCZSB7yOqTSZnCSHhwcdKPFrMrokEqL06W0tJT41ex0W2fMLeVqDugY6FH+WnI3TKCnuVB7dHv3y1mybFCMzHAkaR6KtOJzl7Rqa2s1tn379nFFWlBiiJ3AoH0s/GziWIsRc0i5u+pQYEjaPRVBEPUm0Yt37tw5bsWcFMgQBiy6bto5Bi6uIMoiuNpzuFfu37+v+xJoCL2LNvj+/XvJQ96hpyp3Iq5wy+KQ2rRpE9djW4mjfAM5oFVSIeSf9o0t7svrkHLbV9aHamB6TsZh4osyl7q6Ovp5bBdk3ggDHS+LQ0prSTxH+ipaJIlIqiwDLU2HH61DSuUVo56f4jMS6GlpI05cvYF+OLbeHpCu2WX+t4k5pIzJxdKlS9FxGbT6okbJ65CKgVxAxMj/sS17iK2HDx+i9PursVAp7t27pz+n5ODBEWdNkyx6QtRW5WDmI28XLlzQp27cuEEpqj6BPjc0NKQSXzJDKtevX+ep2FZkl5i2zf9aIkQnU+kHB37qy5/ROqRc1R85q185RJrramelsrJyxNtiiWBVaR7LNiV1BTTyV2eFcCnSqiKmiPAPP7noP4U5567bV0QbcCfsKKdekHraUfeGYRhZkPX8XV1daMZqSGDM1NfXo8K+ePFCtiSo1JXlGwTgCjqZWIZLlizBwkEiuSdTuMh7F2Qp9ifJJfplkNXMROLk0lfBNTU1xI9tplKXALKSVIwTd7cRM1RGhxTzKfFonPIJWlnIE55l8jqksEzOnj3LhM7szJTkCv+AQ8o96zrKN9fE4pE33rLIuqmpiSZzoxJ3ibwDz+uQSpvB0QpiC6vTzhPxHVJpccag0SXnNKg7tY25pdyZFxP36dOnfqJumEBPc0E1Gvn3KnL3DKlwJAEPRWLxaTXCDAwMaGz8z/CRdRyJPg6t8PCziWMtRswh5XZR6tz3hUWfRseZM2f82GRti3uFftjS0tLb2xvwiwUEUaLgcunu7r548aJ7pbGxUb3n+/fvp55F0WWonjt3Tq6PaugJacIti0NKtLvYWahRvoEc1irR0uX0CQqlZyHldUi57Uvdul45WZsmHpnsPdwHE+bWrVs8/uDBAx3go4ow1vGyOKS0lpgL+ImNIz8ZaOoeGtVAi9X2aB1S2oFpi5F/f/ec/qPue78maVA13Px+OLbeHpCu2WX+t4k5pIxJh3h/XO1EGK1DSl4fyduPmEMq+nTctX926dWrVwcHB2NnVcY22SG2RjyYbGQKZ44hBj9AbLlW4ABvJaB6MrkiLmf/G30nViiHFJG4u6wFmXViDUTG9HvG2R1S4VKkVUV2hxTxMwv6h1agyTFPuCoXxWF2cWcywzCMsYGQbGhoQPjo4YAdHR2YQyjr1dXV8hks1+EykjvTELNTvo2F4D169OiuXbsQU4l72JkKUXYxPDB9Fy5cGPhIHDo6+r0cgSHzncx9TEOu1BVxum3bthFnz0WU5JBy10+5+jSSHLnqxqnHMH+OQ2rOnDmo+FinpLto0SI5Y2sMDqnwXBOLh4rSklLAmBUhE5DYS2KUajzZHVJUbMyRVHCHlKzzor+RST1hIPqMlnJn3itXriSuzHLDBHqai1SaO4O7DqlwJAFrObH48jqNK25sulIj7JAKPxsljbUYY3BIRbn28k9HpcvJwWfuRbQ1xIK/OMglIIiiJMHlwkCIdVFZvyP/045DQ0O1tbUiKDQboxp6UVC4ZXFIyYeG5HAJl/BAzqtVlpSUkCUKQnlFpQyP/ewOqew9PI2lS5deu3Zt5NMW2lFF+IUcUqMaaBPlkMJS04WZfj8cW28PSNfsMv/bxBxSxsTjf8xiJOnE8dE6pO7du6eyw3dIybHWruYtIFbkZD533bLrQuI6EgchMsVB9uht3rw5+iRqKyoq3ABPcvixhQmonocPH0Yaxhxnbkj/+EMlu0Pq7t27sbegUhzMJFeMyssQnU6yO6TCpXAZm0NK9Fp3Ba8Umb7k5p/ORjbITN5sGIZhZETkGxNcbFWp/HSlLmIWifTs2TM5luLixYsPHjzAxkg8zDjKab3uMYj8THNICVjj2Hiyz1omoMSloOKI0a0TiPr29na14iTbanGVlZX19PSoIG1tbU1cMhPlm2VEgLtnYLnh5TAg1enl5xgcUuG5hnhcC5wpAzVAHCL19fU86O7jpl30/BfJj64pW7NmTUaHlHzLRR8kY25luozZIUWjo+KjNdGX3BdLY24pd+Y9evRo7NNvosi5YQI9zYVuRud0cyinUkrlhCMJWMuJxSeTaC+6nCFG2CEVflZxx1qMsTmkzp8/z63YRwPF6eAevX/mzJmBgQF3AaNPXkEkqOCKXb9z547rhSQAOrZ2DwnQ0dFx8uRJN1jeoeevTEkTblkcUvJK2z1DVgoSHsgZtUrpjXLcR3jsZ3dIZe/hYRjXsolsVBHGOp5vO4zNITWqgRarbcmSHsMUyP9oHVJv377V99PYeu4I8vvh2Hp7QLpml/nfJuaQMiae58+fM/0wR27YsKG2tlY+CaFv8xi9cqY4c8mVK1f4Rw+qlANf5U0IUgadY926dfxctGiRTOEqmERA85O5ijBMkMzct27dSsyP+KoQNExpiFrCX716Vd+X8td3J8kp5vKBCXebsXLo0CGeki+AFsQhRTFRetra2sgh0hzFgtLpKwU5I3Djxo2LFy/2J+zsDikahbunT58mGFV39+5dmYkRwbI/nNl95cqVT548Qe6nnesRcEiFS5FWFdkdUnI8LVltaGig51D/qHFENTg4ONvZQclPMkn3W/+J8EkQhmEYiezYsWPXrl1YGjNnzrx58yazW5SbnpBCzF8ISWSLnFzuSl0scLQxfS38448/Mt/19fW5H+hxwcZGipaVlZWWlspk5/tlkH4XLlxAtJIoMo0It23bJrcePXrU1dXFXEbGysvLkfM6H6FMc0vWJiC3eUodUkTIrWfPnlVXVyM2yYD7ZkJeazNZMCkgk4lBD74JzzJR7ujG27dvU3axbdzw8oIK8U7qzD6yyWgMDqnwXEM8NBATPdexsmgLPSmcSuZBKhwDRr4mTp3odEN4fmLZyofMseX4mcUhRX5IEZOGB1etWkWtxl7zKGN2SEW5JTPoSLG3cWNuKXfmRTFj3qQ+0TGo0osXL8qBTbHZOdDTXOio1AYmNNEyFqhw13ILRBL2UCQWXxw3aAK0LOOUaPfu3ZsWQ6zC054NjLW0qLI7pCjyuxw1NTUkQXuh+lL5DEB9byq2Lvb/egf/y5sBQZQouGLIYERdRzigTTU1NVFSVcijT5vgqHM9vSvKMPRiQzgg3LI4pKgT+bAdNUBaBw4ckDNMwwM5oFUi7hgg9Mbi4mLxw4rRER772R1SUeYe7kM98xQZIzPEoBvQskcY63i+7TA2h1Q0moEW0+HlUBSKRqH8E10/xyE1kvtkgViRmC3usS1+Pxxbbw9I1+wy/9vEHFLGxMNEeP/+fdlgjDb822+/ufOofMfBRWdKZl8ekdOmECuMc0a7hEEWu6r8ggUL9Bb/vHr1qqGhIfF7sQKKEQJ9eHhYHmFuO3XqlEguWXXpvztCbFEEkcju91wFrpNVEVvimA+/yBJQvt1FYfzPFf0pEk1ySOQdHR26ShnpT01KYX3fCjMERZPiyG4RPV43ymkDuvkuyvmeZAciUSGRZQc4zyJGtUrb29tdRSqW7bt377rfgkVHdM91CpQirSrc/Etm9Ct+PrQyE5IYe4BGwrTENEBC4h+sra0d8Ug8ssEwDCMMslS+1wNINj1NZvfu3XJ4Cn/RvHt6elzLnGDc0hetSC1kFBOKfxKKgEotXyKT4wuxuBKXD2NYIlQlGCqyXkfGtra26gRHupoZJDk/RRoTc2yfC4a9nOJEKerq6lpaWtyFLRjMYv+P5E4PuX79ulzPO8v8+uuvMpuIdh4LTzbIDLklJyTB/yr8Y3ONQuQkEbsYmGu6u7spDnUid7k12zleGlNK6mQktzdfv5IuyBFgoicQkrlGl5iFZ/DNmzf39fXxIH8xm7Fs/Q3yfm2E4/SLLPUWO6l6bC0Vm3mxcqUzSI2JDhALE+hpLnR4+RDNSO54TezhEWfXVSASt6FjSacVf9q0aefPn6fUEhtF0DXUfgyxCg88mzbW0qKKdVGxftPehHGdsaYal2wLkvEyc+bMKHekuq/GyJr9GGmCKE1wxaC3MwQkGIp0bHWVfOGOfMY2HwSGnj+EA8It3NxKVVWVKMAjOVtAj+ELDOSAVon23tnZqS3urkoLjP1Y+6L886z+JBjxq6WTsYf7HD58WE4pAiwg95jwjBHGOp5vOwTqXBajiSIdfTqbXGs7+0DzdXhxHo0kHd7i5icmrxjm9C7X/qLgqswT5+PHjxmb2mSunzpxKhlbb0+TrlFmmf9tYg4pY7Jw6dKlMXgBYrMRP5FQiR6NMVBSUjJv3jyZ75WpORLDyxKhxAkyyn1RW7UiXUwUxn0kyklbP+ny8nKKnOhcQ6X2j0/yMxDLDEnElFd5qaWfCo5dj9WPn+1YhKMtRWKcsTznrU9SRKugY0gkixcvRsOwbXqGYXwJKioq/C0qCDEmFJkgfBmIEIuJzbzfyUKmiQUiO6kTwzAFIFoTJSTmEALc/747UZFPMZbcM6Q0n0SopYily8+KHLHM551liNA9TD0WntmHROURN+bYvOBmI632EucaPU+QOWK296UzvcWDidFKJUtO3KMJ887gbmUGGtGtjSxaQezZtCoaQ0v5d8l/zG3qd7a0nhaDplHlLWMkseL7T6UVn+vE5m45TIvB72NpzwbGmh9VYmdIe1AQ/VY1rm3btmHkf/jwwf9ecJiAIEoUXDGk0dPU7IDgSht6iQ2UKNzyNrcLOUz8YnLaQA5rlVQLWfKzmjb2/faNnRM/th7uIzIkUdXPGKGfE9d2CNd5XlU840DzHyTbiV1xVPlxxZcuraJa6P+xpkzrh2Pr7WnSNcos879BzCFlTBZu374dO+vHML4czBM///xz4kY/wzAMI0pySBmGMUnAaK+vr3cXehiGkUj207iMCcEcUsZkoaysLLBAxjAMwzCM8cQcUoZhGMZ/HXNITXLMIWUYhmEYhmHEKSsrsy88GIZhGP9pysvLE7dwGpMEc0gZhmEYhmEYhmEYhmEY44o5pAzDMAzDMAzDMAzDMIxxxRxShmEYhmEYhmEYhmEYxrhiDinDMAzDMAzDMAzDMAxjXDGHlGEYhmEYhmEYhmEYhjGumEPKMAzDMAzDMAzDMAzDGFfMIWUYhmEYhmEYhmEYhmGMK+aQMgzDMAzDMAzDMAzDMMYVc0gZhmEYhmEYhmEYhmEY44o5pAzDMAzDMCYXVVVV33333TgkVFFRsWDBgnFIKMaMGTOWL19ekKjGra4mM1TC+vXrS0tLJzojxpelqKhoxYoVq1evnjp1qlyh0deuXbt48eLxyUABR+7Xwbcw9GbNmlVZWelfpxPSGz9T/FqPMswhZRiGYRiGMYlA+x8ZGfn555/HIa0//vjj77//HoeEYvzyyy+U8fMdSeNZV4Vi//79J06cKGCEFy9epBLQ6a9evTplypTz58/v2LGjgPFnpODlKiATWC0FZNq0aU+ePPn48eOHDx/27NnDlUWLFvX09PT39w8MDMyfP38c8lCQkTt37tzLly8vWbKkULmaKNyhN9F5+X/5QhV74cKF169f+9e///57iv/DDz8kPpVRIGTvUZNZwhifgzmkDMMwDMMwJhHmkMrO2Opq3rx5R48eLSkp0StTp07lysKFCz8zPz5r1qzZt2+fe6W9vf3NmzeFin/OnDnDw8OYavxPiYqLiwcGBibEPC5suT6T3bt3u3byeFaL3+KFYvv27fT2qqqqKVOmyNi5dOkSdc7/FJCLY4jTHwvhuwUZuVQRkdBGnxNJQficxooNvYLm61/EOnOAL1SxY3NIZRQI2XtUdgnz5eR5gC838L96zCFlGIZhGIYxiTCHVHbGVlc//vgjT7krSqZPn/6FLOTTp0/HjCiMpWnTphUq/lWrVpHzpUuX6pUx+yY+k8KW6zN5/PhxzP00btXit3ihwMbu7+93r7S1td26detz4vTHQvhuoUbuJNlm+zmN5Q+9L4TfmQN8iYodm0Mqo0DI3qOyS5gvJ88DfLmB/9VjDinDMAzDMIzCgLqMCYfdePDgwZUrV7q3tm7dil1XVlZWW1t75MiRRYsWxR7cuXPnsWPHfvrpp/Ly8kQny6xZs/bs2aOHlaCdo3DPmzdPA2zcuBEbSX+uX7+enBw6dCiWlkvMIVVZWblv3z6yQczo9Hp9zZo1xKY/58yZQwC1DcJFA2y2/fv3UyfV1dVyRY0QopXk9Ewct0KOHz9Ofij4aOsqUJzly5djOfDUgQMHduzYUVFRQR3u3buXK42NjVyRA03IG0/xF3OLGPQIlRUrVlClFJPUYw4Okti2bRu3yF5xcXGUs+fv3LnT29u7I4cYXXQMWop/FixYQBJFRUUaA5mhibUqKDj5pxKI0A2mLFu27OTJk+T88OHDGj/NofVMfyA5aowqohQbNmyI1WRid9Wy05TEXFdXR+O6D1JwikA9kL3Zs2fLRS1XlhhmzpxJSakrgknlSI3FoCq2bNlCzuvr62OWP8WkuoiHPFAE2kWTJraurq779+/zDwXU8FoteWMO9Ge6XE1NjXQ/38OV2OLh5DIWedOmTTdv3uzv7yfazZs3U1388/LlS8Yv/2jxq6qq6NhkW68IiX3JHwvuI4l3P2fkKjxO6+tdqXAqloToipJQSUnJr7/+SkHcdS7Sr0iCsUP9aGAlTYJFmYenD4OIPkwf074UpQy9GAw3kqPzq5QmDxScTqthiNM9QSn2SFpnDoxct2LDwz/KbflkFBOPK971FkUjfqR9XodU4jB3BUKU69g0NKVj+EiFz507N8rQoxIjDEiYRHkeKG+aqA/0ZH+UZexLRiLmkDIMwzAMwygAqNFo7d3d3S0tLR0dHSjE6L56959//rl8+XJPTw8GJP8PDAysXr1abmEdPXr0iCvt7e0EuHv3bqKTBfWd62jz8pPH+Xn+/Hn5iZH54cMHVOQo5y9oamrq6+u7ceMGcX78+HHXrl2JeXYdUlgyhMTyIf9kg4Ko8wtL+N69e/oUdgVJizkRLhqcOnWKwBTw4cOHQ0NDPBt9MkKuX7/+/v17nuI62rw+gmn6+PHjN2/eXLt27dmzZ+/evdMzmzPWVaA4//vf/96+fctTr169ev78+dYcL1684AqZ5woBok+21rlz50iL8JgfXLx69SqVTFZv375N5PzV5AhPEpIlMky2o9weE0wUQj7PIcaz1rnsr9m8ebNGcunSJSIRNwfGJJVDPVAJZIxHYgY2NDQ0UEtEQscjfjGlCCxFkLTa2tqI5OXLlwQgJGa83Ap0Vyn7mTNnKCy3+Esqau/RBNQq1UKXoN64K8az25fCMSxcuJBqIbD0UqIih9i9sdLRDR48eMCzVCmZHx4e/u233/Quxbx48SJVRL8iG3Qh6eRUMoGJEyOHf2gCDa/VkjfmtP5MuYiW4l+5cqWrq8vveIktHk4uY5H/+usvskQxuU6Y2bNn08fIG4G5cvbsWcJgCZP0n3/+SZ8hnzpC0/qSPxbczCTeHfPIdYmtrNEKpyn/L8eGDRvonE+ePOFWf3//smXL3AdPnjxJqalq4ucp9TMGJFj24enCSPz9998pIxVO3ghJK4gzK3HoudA5KQj9BCnB6JOLS5Ys4ZG1a9dqMJ4libRHEjtz3pGrFRsY/rBv377BwcHW1lY6DEkgfPQWHYlSi7uTEYrIDTikmGUSh7krEKg0ssGQoXRExVOdnZ3iXwv3KJeMEiZRngfKmyjqAz05cZTl7UtGAHNIGYZhGIZhFAZ30QRmBlqs3hLLVl7wlpSUoJrfvHlTbqEoY3nK4iZuoTGnOVlQkfWp48ePE4x45CdGDj9lNQeWOWnp5/OwnVD4fHdG9G8VH6tP1Wj+wTBQ51deh1Ra0VauXEnIuro6TUKMMTFCsLvkTfL+/fv5qWfxYrQ8ffpUjmXB+kLXx4wcbV0FipNly55YKdgYUqXy0p4y6mExJEoArWQsVex2Wfswbdq02tpaue7v49A6p6tg/2DVyHWSwGA+deqU/I81iJUutzC0yMnRo0f9Yq5fv17OFdIrMYcUd48dOyY/m5ub6QnaRdO6q5Qdu1GqCIOfOhc7DY4cOUJlqo8A80x8Sb65mBZDU1MTFr78v27dOmIjvF80ugFZ0kY8ceIEcWq6FBPzctOmTVKT9BAMWl215+9ycqslb8xp/ZmhpCOONkocU36Lh5PLHvK3336jG7jhMcUxjN2fxCD/l5aWSuOG+9LYtuyNYeS6+A4pKpyeEOWWOGHV01vk1HZKQYXQYdwHaQJxAJWXl3NXWycw5LMPTxcEqZtPckjGDh48KD/9oacUFxeTusqTGTNmyD8Bh1TaI1FSZw6PXNchlTb8pZ71RYWURRyvRUVF3d3dd+7cEaHHEGOgBRxSacPcFQh79+7t7+8XhxFtqqfyR/l6lEt2CePL80B5E0V9oCcnjrLItux9BuaQMgzDMAzDKDyiZ6uFjNElqxiExsZGfW3e1tZ2//59vYV5n+ZkwbRArZdX9Jj02KKElC0tp06dUpshZqaiZxPM3c2nBM6QIsO6OiOvQyqtaOjo2B7+djOpHDW6pMjbt2+PchsosBzUYoxyTiiuiN6fva4CxcnukCKfaRFKANkFw+OYQ+7qAyXgkIpyi1BoULHExEaS5R7u/wLGJGX348/rkOrs7NRbO3bsILBusnNxu6sUDaNX79KguqDg0aNHiUsYfHMxLQZaUFeFSAv6O4YwAmn048eP6xVqaWBgoKGhQYvp9jrSIh7dvhRwSI02Zrc/19XVYZz7uXWJtXje5LKHzOuQamlpIasx71K4L43NITWGkeviO6TcCn/y5Im79pDcBvoVDyYmETlDflTD06U9h3uFrkudy/8BhxT5oaVojpjLMuCQSnskyneGlD9yXYdU2vD3+1JPT48ssJWzscQ/KDAEAg6ptGHuCoQTJ064MRBMe3WgR8XILmF8eR4ory/qwz05cZRF5pD6DMwhZRiGYRiGURhQUjGQsFhQWNF33bNaXTdBlPNEcEX+J7Da51HwoO7Fixdza+PGjaWlpUNDQ0uXLn3//r28Fn727BkKsQR79+6dfBte6O/vl6f8CGMOKRLFFMSGwXggfs1wXodUWtEwJp8+feqnGzvIln/UJFiwYAH/y14kgf/JjLyszl5XgeJkd0jFzuslGGYtNuqLFy9kN5MEEJffli1b/DyEHVJYszy4bdu2KGf1aV3V1NRwnYbTSqBBHz586Mef1yHlti+5JbAuR0rrrn7ZiYSo5H9C6kbRtHKFYyB73d3dlZWVRUVFp06d0qUTLtz17dJXr17pgrJYr6uuria8bjoLOKRGG7Pbn4uLi2/dusXjDx48SGzuyGvxvMllD5nXIUUMz58/l/1EusYk3Jc+81Dz7CPXxXdIuRWOqHELxXhXr4rfr2pra7miR/wkDvlRDU8XeunFixfdKwxSXY4UcEhFuYVFsv3w3Llzmr3wlr3ER6Kkzpxx5AaGP51qeHj4gwM/T548GX3yW6l4j0ZzqLk7zN3UCUP8FHDKlCniO9anAj0qRnYJ48vzQHn9qMI9OXGUReaQ+gzMIWUYhmEYhlEA5syZg62CObRu3TpMoKNHj2Z0SKHdqiYd5XOyoPJirmzevBk7BOUeQ6Wtra2iokI3IEQ5O6q5uXm2Q3l5eWJsroqPuYvmjfmKkr1w4UI3wzdv3nTXJWV3SF25ckVXl7gEjBAxyw8cOODmX9+fZ6+rQHHG7JDCAnzx4gUGVXV19YYNGzTAvHnz+B9Dzs9G2CEFT58+xbCZOnVqb2+vngWzZ88eIlyxYoVbCYkH5Y7ZIRXormFjj+Jglvs5yW4uHj9+nExi0WHj8Y97VrQiJ6bFWpbAapnHeh115S7rCDikRhuz25+FpUuXYt+OOHtRXWItnje57CHzOqSi3EIb6lMOPJK9fuG+VECHVHjkuhTQIXX48OHh4WFZH5Q25Ec1PF1ev37tur+jXCfX8GGHVJTb70lmkMY8IuuexCHlLj5yHVKJj0ReZ84+cgPDv6mpiVRm/xvZrbZt2zbXbR0VwiG1du3avr4+ei9DfmBgwN19PD4OqUB5/ajy9mR/lEXmkPoMzCFlGIZhGIZRAOTLPur6kZ9ZHFKYFq9evdJbmBkBh9S5c+ewDc6fPy/rJrZv345OfOjQIfFPSZjW1tbEdUk+roqPvu6ea8tPzTDavGuQyPFVWRxSGB5kz3WHiQ0QMEII0N/fTzETM5y9rgLFEcNMj3/SDOiJM1G6laILWOSnBJDNVu66If1QFIm6R4lFnpVI22GhES12tVapuFfS1uC4jNkhFeiuYWPv7t27sd4lHS+7uUgOd+3aRVr+QeZunHQD11aXZQtqqRJJS0uL3q2vr3crkORiS5C0WrLEHHZICYyy2H4uDe+2eN7ksofM4pASpk2b9uHDB9n9F+5L/lgI3x3zyHX5TIeU6we8c+eOCoS0IT+q4elC5K4/nafevHmj3TivQ0qQ+l+zZk30SWiovCorK0Nux3xesUcirzNnH7mB4X/48OGhoaHEzyAuW7aMYDt37pSfdEv6+Wc6pPj/ypUrRUVFjNDYR/S+hEPKl+eB8vpRZezJ7iiL8vUlI4A5pAzDMAzDMAqALJlBk0aDx5aQLV1ZHFKy4KihoQH7fMeOHZgomE9pDilxwaDAyaGwM2bMQM+WbzNpGFnXcPr06YqKCjKwZMmSxPOwo3+r+A8ePMDww0YqLS3FeCMGzfDu3btHct9yIkKiQgvP6JAizODgYFtb2+LFi7HcLl68KCfsho2QM2fODAwMUEAyQwEpMkbXaOsqUBzZKCdf+NZTkDH1b9++PX/+fLEwfStl+vTppEU9Y4cQDLPZDUDRJM/cIpPYb+KmkTN6N27cSA1IeWNWIlU0PDyMJRM7/vnRo0ddXV2UnXQxPrdv3554dNGYHVKB7ho29siJ9C6CrV69mmyL5ZzdXGxpaaEL0Stu3LiBNV5bW5t4OvjJkyflJBfaaOXKlU+ePKFW3UPZSILmoBGpBIaAHm4NxEyJFi5c6B5VrtWSN+a0/kyfoUWKi4tJlNa5cOGCn22/xcPJZS9y2CFFO5IfegLhqRDEgmwFjYJ9KXEsKP7dMY9cl890SFFFBw8eZODIfj09yjow5LMPTxcZI5cuXaIjLVq0qKmpiVqVM/uioEOquroaOUkO6SrilBffK4nSEM+ePSPAihUryK26INMeibzOnH3khhdIyhgk/zxL+1IVuhTu6dOn5FMWmtEWZPIzHVK0lHyskLF/9erV48ePa2f7Eg6pyJPngfImLoZN68mBURbuS0YAc0gZhmEYhmEUBlRVNNTh4WHU95qaGv6XA8gBs8H91jv/c0V/NjQ0EHgk9wEpdF8stMQNJtGnb7ERWP1B7e3tPCifG1NI/f379yM5UKyvX7+eGBu2gX7vDGuH1MXeoyBo85rhoqIijDGJDRtYDgFReylcNKxfOeVEnhVzCEWfWtLK4R/9rlaUe/OMPUm25Ske1y9bZa+rQHGiT9+fclcr/Prrr4TkitiH2Cojn84sV3bv3i2Hj/AXk4mMqWGPDXzr1i1uibtQjsuNch5DrDvJhtg/bp0LmEkE0C9ACVRva2urRAgvX75MdEiJg1KN5FhzxNISU1bNzrTu6pedSNxNQydPnhwcHJRC0THkaBU3rXAMZ8+epTjYqPX19adPn3737p0eFO1CZmgLaRSgn7vbiGj3y5cv37lzR7uWe1g71r70OjWk3WoJxxzoz4cPH5YT2YCkE/ej+S0eTi57kU+cOMGgdsPfv3/fHdo3b96UoUEMeqJclK8v+WPBJXb3c0auEusesQq/e/duc3Oz/mxsbHzy5In8L76Do0ePvnjxgn8oLNWlK24CQz778IxBL+3t7ZXivHr1ynVb+ENPQTh3dnZqJehqI1i9erX0TGRIXV1dS0uLbIANPOJ35owjNzz8V61a9ezZM0mRGBhBKtKpZzqJ1jD5TNx5HR7mbupbt26lvAwf+gPdmJJSq7JeKdyjXLJLmMiT54HyJor6QE9OG2V5+5KRhjmkDMMwDMMwCgbGOcqofnBdrxcVFbmfguL/2M4FTKZ58+ZJGP+zdC486AbgkcTVFlyvyBFLKBYmdhe7SMzsKTncW9gP6gVzU8xbNH5SJ7GDq2N59ovAlcrKysTTr7LXVaA4XI/t4MAWco/yTaxVkiNpMZ/8iiVOSupnafbs2boIyK+ftLSiXEmphETHR9qzbnP4acUCp3XXWDBuxWpPVhm451XH0kqLwf/moxxy5B997SY0c+bM2HVdVpN2RBop0vm1LWK9NBBzuD/L+rjEJV0ubouHk/MJhIx1Lb9dSJTsJXanQF/yx0Lg7ueM3MSnYhUeK5Rb/7qYhYsUkxL5MYeHfN7h6SPiK3F7adqwFURg+l8AlC6kMsQNkPZIrDNH2UZu3uEPNBPx+Ct6eBZBpzWcNokEBIWbek9Pj7tKV7Yu6kuUvD0qsTh5ZVRMnguJ5U1LMa0nB0ZZuC8ZiZhDyjAMwzAMwzCM8UB2gR06dEhsS4y9trY2XQKTndg+L+NbIHF3lTH56e3tbW5uFk9NcXHx6dOn+/v73SWNxreMOaQMwzAMwzAMwxgnjh492tfXNzg4KJuhOjo6KisrRxuJOaS+Qcwh9R/lxx9/7OrqGhoakg/t8X9sj7nxLWMOKcMwDMMwDMMwxo9p06Z9//33VVVVsY2c2cm7k9H4+pgyZYqcJz3RGTFGjewBrK6u9rfRGd845pAyDMMwDMMwDMMwDMMwxhVzSBmGYRiGYRiGYRiGYRjjijmkDMMwDMMwDMMwDMMwjHHFHFKGYRiGYRiGYRiGYRjGuGIOKcMwDMMwDMMwDMMwDGNcMYeUYRiGYRiGYRiGYRiGMa6YQ8owDMMwDMMwDMMwDMMYV8whZRiGYRiGYRiGYRiGYYwr5pAyJhGlpaXbt2+f6FwY3xx0vJMnTy5ZsmSiM2IYhmEYhmEYhvGtYA4pYxKxYcOG7u7uic6F8W2xYsWKBw8ePHv2bOvWrROdF8MwDGMSUVxcXFVVNdG5CDF//vxZs2ZNYAYWL15cXl4+gRkYH+gG33333UTnwphgvpHePqmoqKhYsGCB/D916lSU9sSR6AYbFV+oTRHLlZWVBY/2a8UcUsZkAaXq9OnTr1+/RjT4d5E+NTU1y5YtC0dSWlq6e/fu48eP79+///vvv9frRUVFO3bs+DnH1q1bFy1aVODcfwbI0F9++eXYsWMHDx5ct24d0jYWYMqUKXv27CH/aTEg9aic1atXx65T6u3bt0upt2zZQkKFz30QWuHEiRPjnOhoYcLA5Pjjjz/SHFKfUwrabu3atfX19Q0NDfv27aOT+2HWrFlz5MgRwvDP2FIxDMPwYUKJLTqeNm0a001skpUZhNlzfHP3pVi/fn1jY2OhisO8MDIyMnfu3ILE9iV4/vz577//PoEZ+Oeff/73v/9NYAbGAcYI3QBVSn7+J3SbceAb1I6+aG+P1YnvztiwYcPP/0YFHdJ+586dc+bMSYx506ZN3P2vCHnq4fz582r1oJ///fff8j+WHSPxhx9+8J9yg42KQJsi+S9fvjy2/RMXLlzApB3Dg98m5pAyJp6pU6ciRxAx73LwDz/dABs3buzq6uL6b7/9Foinurq6p6fn5cuXzc3Nz549GxoaQv7KreXLl/P427dvuUun5/9r164h8r5cobKAbXDx4kXySbYfPnxI3vgf+RXzHDHNjORIe0+LQiC1F3NmSakRtdTehw8fhoeHL126VNhS7969O3FiENrb29+8eVPA5L4cAYfUmEvBTPbo0SOa4OnTpx0dHb29vbQveoYbhusfP37EouAuIZnAxpJ7wzD+myC0jx49unDhwi8R+enTp5E5rhGyfv165MydO3fcYAcOHGB2KCsr+xJ5GH+OHTtGqQv1atocUnnJaKLPmzePrl5SUjIOWSo4MYeUqxV80SE8yfnqtSNfxf1yDqnEOomlNTg42NfX98ZB3y4MDAzwbGdnpx/zli1bkPDcVZtoshGr5+LiYopz9epV+TmBDqk1a9aQHNkbQ7TmkBoV5pAyJp6amhrE7tq1a+Xn/PnzXaF54sQJumltbS1hwg4plGzkuDpl2traXr16Jf+vWLECmaJriNC/+YmMLnxhRkNLSwvTLZlRJ9GcOXMwIWILwS5fvvzgwQMmoZMnTybGg8hrbW2lRBs3bnSvS6mxQKKcziR+qz179hSwCI8fP9Y5w4dEp02bVsDkvhwBh9TYSsEjKFI9PT20glwpKio6c+YMTbB37165QrtzRZYKMwHfvXs34HY0DOPrY/r06WPWd/MiLzM2b96sV5hDudLf3+/KNKZOppgvkYGJooBbq8whlZeMJvqPP/5ITSYuhJn8xBxSrlbwRYfwJOer1458FfcLOaQCdbJv3z4NhsmQZgdxS2pp5cqVsVvt7e0IebcDTzb8eqbR1TKaQIdU9BmziTmkRoU5pIyJp7Gx8f3792l3t2zZIucjBASxgDS/ceOG/jx37hxSRv6POaREgTh69KgfCdqSOCbWr19/7NgxlIzYsiN+kiVu1dfXL1261L3FgzxeVlZWW1t75MiR8MZAUc4OHDgQCBPlhPKHDx9++eWXK1euvH371l/ftGrVKuJZsGBBV1dXU1OTe8t1SEW5CZ7Zrrm52U8lb86JhOo6dOiQ3kJG79ixg0Tv37/PPxTHj5Z5UX1keSuWRtm2bRup79y5k1Lr9bQKJwNEwt/q6mqeoork1WtFRQUh6+rqZs6cmbcUSsAhNapSKHv27El0er58+TJtiiI2Hvnpp58S7xqG8Z9AxClCBhGxbt06uVhZWYldIUIDWScX582bhwHGqGcSRIouX75cI0kTVlhoNTU1xIOgyLvcFSOH6eP8+fN65cGDBxgnpKgZw+zp7+8nQvcphPDx48fJcNrhRCp+MQx4VpcjBZ4ltwhSSsSt2bNn6/XAlBrlXlDzCPJ8Rw55W6OpUzmHDx/mrru8i1rdtWuXVA6zww4Hd68i2SMnZJUMUwluotzav38/9U9yAYdUYkNHwYmGAhLzwYMHyZh7nXmcgvBUbCblOhMQpSM292XShg0bCMysRyWkOaTG0EZMmqTCfMqDUmMyF9MKqkhEuTdnBFBPRMycQ/Egt0TidlH69unTp0XnIVp3GXha2WPViyFKom5LEUnaFCy3yAMVNebakFsy1hh3rj2vWkFgCKcVRK/7/aS0tJT6d3ddUf/ulbROK/2EDJNDUtFSC2TM7Yp0wpiawV2yQWbcVnZrgDyo1HKZJNpRonQVqqqq6HL0BHX0+MyYMYMsyVkfOtLTVFzp7aPSlqP07pelTtw1aGGHFPmhAmOeHbJBzGJxuA4pOgnhEZ704bRqQZCS29iGSmloGhf5g9DWNY8BieoSa5G0eiYJFZKjckiRMR22sQBpOQy0KdmjaVQyhAdalKttpBkSnjEbdkjRB6h8MiMdQ69nH0dfGeaQMiYehi7yJe/39fI6pM6cOTM4OCgrrZBZvb29urk95pBCoKStkELCvnv37sqVK+/fv0e0DQ0NubsbUEpQ6FHx7969ixY4PDzsZgmhdvny5Z6eHh7k/4GBAf9cJ+XPP/8koYDUFqgWCo6aiOAjz7qOTLl48eLjx4+j3Ktv7Ap3PXzMIQWk2NLS4qcSyDkKZVNTU19f340bN7BkyAxTVJRT+KgBQiJE+IdbfrTuLBKuWNqru7ubDFCxBHv27JlcD1S4TEs0OhkgDBl79OgRbSo/qQpmAlVN0krhZjXNIZW9FC4kRHF8i5EJhmwnnuclAyHvQWmGYUxmEKG///47IgglGzkf5YwNZA4KN+IXsYCsk210yJwXL17Ixmrkm1j1AWGF0EO+EQ8iiMizvO4mRZKQ/5GHiCxUefKgHgREvSt2ELlMKJhA165dQw4j7hJPdRTxe+7cOaaAt2/fypuVwLPY1WSbwPfu3SM/iHSxgsJTKrMbt6gNwpAcIl3mdBX+3O3o6OAviapPCinNXVHxsZdefoLIqTcJg12BDCe3ZJXKR5jrZLFw4UKUB+5S+WRY/HeJDim/ocMTzalTp4iKeerhw4c0hMw4PEIk/KSMXOeRv/76S1/JMPswxVBjpEV9arUQj2zzp9IkG5/fRlJwqkKKwFOEFFfIzZs3aTiNOeakcx1SGMM0B3m+ffs2ZeGvXCcAeeCpV69ekecsZY9Vr3RU18hsbGwkTr/gqAGogvQWmoDHxSE7hh5LS0kHEM3EtedVK0gcwmPuJ3RagtGx9Vk0QHnjGAU7Lflpa2vjlnQJHqHnayS0CHav/ozZyZjoVFdrayt5o7yXLl2S61jdT548IUIyT1qJfWwyaEdp0jXKeeK4RbmoMSRn4ihGT/4nB32Pv9SV9LE0FZcwVLWUMaO2HKV0v+x1ov6gsEPq8OHDR44cIYkZM2bodZqbdowt8UOGUC4aixFKE/uxVVVV0RWfPn1K7RGAHkL3k1vS0NevXycG8iznKwU6p4vfIoF61tGU3SFFVgnJX5kyKKbeDeQw0Kax5MIDjdLR7SUPdAMESJpDqqamhiolBgQLXQ6pqKceZx9HXxnmkDImHuZg2TiNJIqtjnHJ65Bi+kREMnqbm5vp2UzqKtzFNYNewjRw8uRJZKhOujFEl0VGizq7f/9+fuqBdsgIJIXOl7IJTudIEWTyvqikpATlAzUuLbfuXfK5zMF1h9/OEeVeI5N0TCegyGiQTNVRbv6IvQCJOaTQ0viJHPQzE8g5Eyq39NMVDQ0N1K3K8fCWvZiyEqhYVAEksqxpolC1tbVyPVDhMk/wlCgZ5JOf1IbEKWXXV8qBUlAtlIIHKXWi3M9eCpfOzk40bP86DeT6RhX6AEoDeUirTMMw/hMgThnjciCrCHNElgox/mGSUjns7/cJCCv+VxFBzIkafwwSUt8BWjXTKBIejRxpIwGwVFF8da5E5GKEyIsNkmBSRmP2oxXxi9iUl8lSzMCzmEmUWudKKkc8HQEJX1lZ6VoCGJw610jq6Ppip1VXVw8PD6uN5zqklM2bNxNGbCryhs1w+fJluVVWVkZBdMU0+gMWo7wSJyE5vzLNIRVr6EDbyWuwuro6uUUZ5fWSzFxazHXr1pFPmdOj3OwjZhUNJEnIegfqU5PgZ8Ahlb2NxPGn2aC91EbK7pBCi9C3YjLZaW34W/bCZferlxbXVfBcQZHzzzGg3alzLF7p0uXl5eIUGG1t7Nu3TzsMAeRUBN8hFWXYsjeqfkIrEF7HIwVBPY7ydVrpJ7rOUXRgjSTgkGKUuX4TOWNO9BP5X5fPuD4OZTJoRwHp2tHRoT7o0tJS390jtUqji92B8okuikRS6ZG4ZW8M2nJi9xtDndBYDNL/fcJdVCgOKeQqNaAqNKnLHgvXIUVhCaM9NrFliUfXlJHbFy9eMGvIT2locehIlYY7p0tai4S3RmZ3SHFLu7rMJuJiDucw0Ka+QyptoBUVFXV3d2NESONu2rRJ3OJ+PmXQqexCkPKg+u6zj6OvDHNIGZMCBvDevXuROAw8lIzEdbl5HVLAg/RphAuBkWW6pFzcE4g8Jh5SQUCjcSZ+tkNkgQpohLKrSRCtO68jL5BiehAj6Z49e1bvNjY26psH2WkvyBWkocp3JtERB13UjdAkRT1R6/z58319fa7DjvK6L5RQrZhN9a6UGoWGXCHdmIFaWloSd3kEcs78Ie/0BNGG9VXJaB1SiRXLrIbm575n0EoLVLjME9pVmNv4qbosuKsAwqUIk7EUMajAtrY2/7q4Bd11+wLqb9qqPcMw/kMgTlW2pwXQucy3ZgPCqq6uDh03tq0mjEwuEj/ykMijT/tf5HwWrqgMR8AictWYiXJyiSv+rCHiF3moV8LPYlT77v6whJcDsNTrwawkmY884R/l5K2+ZPIdUswOaPz6tlwsbXfTHHaFiGtyS5bcD4cx/wYcUrGGDrTd6dOnUTz8NdHtOdwr9+/f15Iy+7x588Z96siRI/QBt3SvXr0KOKSytxHpajwytWlPy+6Q8jOgu1p8h1S47H71YgdSdln/gvVIbP6GKexArvtb50ZbG/QHMqO3pELG7JDK3k8wfflftFNiZjhIDgOdVvLjnmaNTkJg3RgbcEghiNBF3byhOIm7E0teXJ+BrcGTUDtypSsaL2kFji2TI6tdW0DEjvb8REdJTFvWJaiBZvW7X4xwnWh+5JT3659wt/GKQ4p/bt26RRi5SNXR+iUlJa5Digal0amcLK80BDqwequlod3vmIc7p0taixTKIeWOgpkzZxJS6iScw0Cb+g6ptIEmx6e4vZd4Eh1SyLH+/n5XhjPjYASJeZh9HH1lmEPKmFwsXboUSYrO4e9qzuuQYpD39fWJkrp9+3Y69927d2UqjW3ZQ6F5+PDhu3fv/NVYMV2Wf3QWkRe2sa2F6IKqasTUMv7XQ6xkbacgkgWh7Gp4U3LIonSde/bv3z80NISYq8ohedu2bZs+dePGDWKu+gQaOeFVC5FSkwrzFioIilpa1QVyTi1R8x8+gRgdcU5PH61DKrFiZdr2tY1whcfmCWqPn9SYhmQm0DkmXIowGUsRAwNM1yC4iGoVO0Bk5cqV6J3ujGgYxn+URPscS+D27dvossgl99tJvjUbEFZMWBgb/MQ2yO68fvbsmXy4FqEkrhbmiJHcF5dkE5/K2AULFnAdWaSp8z8B/C+j+VZB+FmsXPcoKyEs4cvKyig7k/7UqVOJnGrRSvNTR0Trx3l9hxQzY3d3t1pfsmqMyDWrVLgsT5CacRcaB86Q8hs60HbYP0+fPvUjcT1lAmaM7s7zj+mlLDEjJ+0MqdG2EWUhMzRKUVHRqVOnyLzugszukKKS6+vr29vbsehkj55mwHdIhcvuVy9q4cinhc9XrlxJ/KCYzLD+JyNHWxuyVU0Dx3Y8jdYhlb2fyFp4+aIcI5T8yGK9QKeNvH4iXi11GQQcUow1LOEPDvzUtRs8RQa6uroOHjyYeL7EJNGO0qQrnZnRIXvEEteYyPlf4poXxP7XNVZ5DzXPqC0H3ChZ6kR3kubdshflVoOqI4ziS1+KdWDMgf/Lce7cubSDAomB9pV9ZxQnraGjfJ3TJa1FCuWQiklLCijzTjiHgTb1HVJpA02cU+5MkXaGVFNTkzq8BHntIWvrso+jrwxzSBmTDnHK+KdjhB1Ssk7V/RqFjHBx7sQcUtGnEwT9HekBWYCg8TOG2FIxGhBqPLvwE+IF46nBwcHYTBDbZCdLxmLoUtIZM2YQgx9Ady74Z0ilEcg5KiOa9GwHd/IuiENKtEz/DUC4wkflkAqXIszYVC6mHLQo/wUU2WBSdHW7qqqq3t7e69ev5z2i2DCMyY9vfzJzoQGjE6OCMwXEDPiYNZtXWC1duhQzcsTZ/xXm1KlTWErMF+7XbJ8+fYogxSzhor6MFQ8RM4ibeuKGDt8qCD/75s2bxsbGWCRhCV9WVvb+/XseJIcEo05U8I7KISWLINxPDcrsz/zoZlXCi9nmivRROaQCbXflypXEs1qYp2LuJFkVpf/HTCyMHJ2dhewOqXAbHT9+XFaXU+H84+4GQutwlwsFHFIdHR3YWj/99FN1dbUcfBlwSIXLnujYlV1106ZNw3pxF0QrsvrPPRd8bLVBrWqPigrtkAqP8XPnzvX09EydOpVq13WFgU4bZXBIuYv+XDsZRYXMzP437oYyWrmhoQFlJvH40cmgHQWka5TTDOl4ckKZr/DLhjh3dEs/0dYclUMq0Kx5HVKBOuG6bq3I4pASnybZRtqrgy/WgaPc3jQqjTwz4vx0ySpygLmDLrdo0SK6YsAhFe6cMRJb5As5pKg66fnhHBbEIbVt27aRfy8cS3NIIfRi16VKRTaaQ8owJozYbmpRYvzXv2GHlDhfXBWKyYkrcnam75CSkwL9T10EZAFilMnS1Z/kDZtKioBQ81m+fPnw8DCTjTvRui4kkYPytSDlzJkz1IO8/ZOsVlRUuAGe5PBjCxPIeWtra+J7XQHRHNicklFZkY0b7vtz6RLhCh+VQypcijBjU7lEZY9pzOSZkrol4gqqw+3bt/Meb28Yxn+CRPvTPbWQnxpAZIh7tF9GYUWwxE9J+IhZwpSHdq6Lgk+fPo3kQULqDqkoJ3gRudjDeeP0rYLws3fv3o0VSiasgITnb1dXF2HmzJkTs22yO6Qo78uXL2PflpWZMXGJGclh3Lq+MzmIJKNDKtB2R48eRfi7fgeZ5u7cueM6qriIfahl8U0sOd1Z84Od2dPTk9EhFW4jioO+Qb353hysZdeCOn78eKJDKrbkLXYKmBhvesJO3rInOqR2796N4iSLx/18Rp/eaLqfKJF6Hm1tMCm/evVKf8pOrkSHlD+EY4yqn0Q55XAktxZ+cHBQX9QFOm2UzyGFwNEeQg9nMGprHj58WBdhBZBg/slHk0E7CkhXRb436i4TE6Sq9VgMKQUdTKvOV3HHpi3ndUjJ1ry8dZLFIQUnT55E2re1tal49x1SgvQr/wCT2CoefgYcUuHOmUisRcL1nN0h9fbtW3WuLV26VBs3nMOCOKSWLVvm9iUGGhN0okOqvr6e0eQe3k/Z6bfyvzmkDGPCeP78OdMJSsyGDRtqa2vl8wf6QgClR476ZgBfuXKFfxYuXCi35DRWUUoYtPKRuMWLF/M/Sg9zA3fFdyPCCCUGZQXFAqmNsL5165afmbAsQMrLoQOIkpUrVz558gRxk/bx47BDKvrkFGPCYHquqqoiY1evXh35tAkZPdh/YSIiTxaCuactKIcOHRr5dLBCQRxS8lYT64UiUxtLlixxjyq8ceMGEwAtkvj1k+zKysWLFynsnj175Iun1Kr46QIVPiqHVLgUYcamconaR+YbGhqoHFqE0lGrqJizP+2pnDFjBvo3Fzdv3rz+E/6Hzw3D+A/h258PHjzo7OxkMiotLT1//jxCww3Q29uL0YXoYxaIgsJKPhtfXFyMqd/V1SV7MaJ/T4U+mHOo/n19fe7x5HKmBhf1eGzhzJkzIorJLQKK5Pbu3evHmWgVBJ6Vj4VRKB5kFiYnYgIFJDy2IrGhHty8eRN9nWcJkJZ6mkOKGiN+BKxoEao8PHr0iAokh8yw5eXlZE8nSmqVRzBd0D2Yham67A6pQNsRA8IfExEVhYZmypOTceUNHCoQeWOawPBD1dF8+g4pWpns3blzhw6zatWqZ8+exZx6Y26jlpYWCksOmdaJkEZR9UOWHaFdUC5KFKsTrQfCkzf0NFqQ7N27d8/NgHx3Rb55L8ZYuOyJDimS6M+ReEJNlJt5qRMmVhqUhA4cOCCnBY+2NsRpwvRNhe/YsQP1kqIlOqQibwjHGFU/EV6+fPnu3bvYQTOBTht2SMmnD7nIFVmFpHYypZNGJ+ekRY2hRMlKDUq9a9cuqmXmzJmMQT2WyGUyaEdp0pVUGMuUi97Is3Qt97wL93GqetOmTfRnGp2GdlfG+Sru2LTlvA6ptDqhElx3IQEYJqsddJC6DilJzvVAuQ6p6upqMkZ5mUrEUe7PHUhm+gnCaurUqTQiYQIOqSjYOd0yprVIuJ6zO6Qkn8wdRPX48WP3YJZADgvikIpy645JQlbq/fnnn+5Ac6GvMujoeOSTriL+KR0p5pAyjAmDaU8+CM2YZDz/9ttv+tHWKLfQfeTf6Lx47tw5HtHTphjb7h63jo4OFW0LFixATsl1/nn16hVCP3FBKXPA8PCwijD+4aceHMhPFDWNqr293V2fiTx1313wf+I3iV3QepGSJCERMvecOnVKUqeYsfe6wosXL5i3ZHZxtygKzDHUiWi68vJH92gECOe8pqYGa0dySDNdv35db61YsYL5eyT3wSM/WtQgPQcxXLG0+K1bt6QekEpqIwUqHJ1pxDkwlakutmcTlc79fHKgFGGylyIGHezs2bMURxJlBmIyY4qiZ4rHkMlem15JPEfAMIz/CjFxGuVeJMjH2hBlaOTYrm6AX3/9VUScuhXShBX2hpxLAnfu3NHtRbGp0IcYxKGgV2TTE0/FTGiuY9SRqKSCeE/cGBUTv1mexcKRPeZiU8lJPQEJL+sjEKEHDhxgRqPSkJaSop86Ilp3fLhSWvY2+soDBlhra6uKXyYLNU6Q26Ql1+/duyeHZyc6+/yGjoITDSaQTJein2hJa2tre3t75TrKiWtrubOPgone19c3kvMnUjmU0d8OOYY2oqqpBzKDgSQL6PSNV1FREU2mOZevqWiduPWwe/duOYfoQ+7bXsTv2qXyjaoRx04OlD2xeqNPOqF+GM6HLo0mKXEy7mTh/Bh6LFqibBcVOxYbVdcrxdrFH8Iuo+0nUe7oeq7r98iEQKeN5Uc8fbo7kgcxzrlCcS5fvowYcRemiVtT4iQA7SstSyTyfUAgQOIZTJNBOwpI15s3b0oLcosunZiTiooKxI7EL+5U98g8X8Udm7ac2P3CdcLjDLqY5JFz2Vz0cFjCuxIeM4Gca3OUlZWNfDoZAzOhs7NT+7y7QExhcsEuIwCtQFRIb5UGsYYWAp3TJa1FwvXsdrNATVJddG+ilcGIPeVuiwnkMNCmseTCAw2RTrQyjhAFdXV1idu0o9yKSwk5kvv2ovtNp1GNo68Jc0gZk4VLly657oOM+KeST58+HemQtns5C7riKfFnlJs2KisrZ86cGbuO0ubuv9PvNOeF+Q9bIhahn24sWr/sfjbSIhltzrlSkcMvEVe4nrimOhZP3oplCqTt/KjSKjwcIUnHzh0IlCLAaEsRg2eZ/pkLJTOoWagCTFf6LsswjK+JmDhVkAPiQpLdau4thHlsDU6asJK1J/6RH2nTQSAAMafthSEVRG74oL000Rd4ViS5f0R6ooT3v9OEkXDq1KnE1GPSPuPEV1paSrqJh2SRfzUF02JLa+jwdEnz+Uduy3Xf7ZWmRUg3kDb1u5MbLO16rI38L8/KqStuY82aNUt7qRtzrB74iT4jefMzT23HNoillT2teo8fP97f35/3A2FE6G6KicbUY+khlEU/667X/Xbxh3DegoQVkrQRndhp/fz4hSUhfcpPkeInas48FdjQN3m0ozTpKhZB3pzwLLWaaDjEVNwxa8sZhZLUCb0uY3glJszzdgkZzuGjS5FUOjADDa0EJKqS1iKBeg53M0WbnmyQRGLREnMYblM3uby1SgDaThdVhG0N6pZ8+mFGO46+DswhZUwWbt++nfgm1jC+Mph+fv75529hCa5hGMbY+PPPP1++fKk+hW3btmGpumeTGwVE9tMdOnRIrKPy8vK2trZJuFwXe6+7u7upqWmiM2J8EUw7MoxvE3NIGZOFsrKyz1nWZBiGYRjG10FlZeXDhw9lR8Pg4KC7ldv4Ehw9erSvr4+qlj10HR0d/ldfJpxNmzbl3fpkGIZh/Lcwh5RhGIZhGIYx6SgvL6+urq6srBzVPmtjbEybNu3777+vqqryNxVOEqZPn+4e3GkYhmF8BZhDyjAMwzAMwzAMwzAMwxhXzCFlGIZhGIZhGIZhGIZhjCvmkDIMwzAMwzAMwzAMwzDGFXNIGYZhGIZhGIZhGIZhGOOKOaQMwzAMwzAMwzAMwzCMccUcUoZhGIZhGIZhGIZhGMa4Yg4pwzAMwzAMwzAMwzAMY1wxh5RhGIZhGIZhGIZhGIYxrphDyjAMwzAMwzAMwzAMwxhXzCFlGIZhGIZhGIZhGIZhjCvmkDIMwzAMw/gPs379+sbGxtLS0onOSJz9+/efOHFitE9NmTLl/PnzO3bs+BJZmijGVhWGYRiG8XVjDinDMAzDMIz/DPPmzTt69GhJSYleOXbs2NDQUGVl5QTmKpH29vY3b96M9qni4uKBgYGrV69+iSxNFGOrivFk9+7dP/zww0TnwjAMw/i2MIeUYRiGYRjGf4Yff/xxZGRk/vz57sXvvvtuovITYOrUqdOmTRvDg8XFxVOmTCl4fiaQMVfFuPH48eOvzAloGIZhTH7MIWUYhmEYhlEYtm7dOn/+/PLy8gMHDhw8eLCiooKLJSUlv/7665EjRxYuXBgLv2jRokOHDh09enT9+vWxW7Nmzdq3b9/x48d37txZVFQkF5cvX3769OmRkRHi37Fjh8Q/b968Xbt2iQfnu+++2717N3+J+fDhw3V1dWVlZW60M2fO3LNnD5kh2I4cxcXFfkGmTZtGuqROHsiJXqd0lJF/fvjhB7K9ZcsWSXfFihXHjh0jzqlTp2rglStXbty4UX9WVVWRbZImsF6krmpqanj2p59+UicUSVRXV7v5WbVqFcUhxR9//DF2nVTI7c8//0wkGzZscO8mRu4i7UVdEWbdunV6neYgLZqGW7FH5NbevXupN1KnReT6999/Tx40GPVAbcydO9evCqlDAvzyyy/19fW62C2xxd0yEqHWHsUhEr/IUXqnksLSH2pra4lHi0ZvoRt0dXXdv3+ff7SGpQ+QBB1m+vTpfu0ZhmEYxmdiDinDMAzDMIzC8M8//1y+fLmnp+fhw4f/l2PDhg2vX79+8uQJt/r7+5ctW6aB9+3bNzg42Nra+ueffw4MDFy6dElvrVq16v37948fP7527RoP/v333+IR+N///vf27duRkZFXr149f/5cfEO//PILV2SR1Pfff8//Z86c+fDhQ0dHB3/fvHmjPqmFCxf29vYSW1NTU19fH4mSxJw5c2KlKC8v5zoPkvqzZ8/evXu3ePFiuUVa/Lx69Wp3d3dnZydpnT17tqGhQaIdHh5ubm7WeP744w8uyv87duz4+PEjJSVOqkU8NeSW/+/fv3/lypWuri516FBkSir/T5ky5ffffx8aGnrw4AG1SiR//fWXOtFIoq2tjdy+fPmSCiE/9fX1cist8lh7ETntQgDyJslJ5dy4caO9vZ3kdu3apeHPnz9PEmSD5KgZapjH5daBAwe4pW6vWbNm8VMTdatC6vD69etkj66yZMmSQItrGelCpEijUMlEe+fOHfL84sULUqEjZelU2jmJnP+5u3r1aq5XVFRQdfwkP/xDqaOcN4oUKSYFJLwW0zAMwzAKiDmkDMMwDMMwCoPY+bLWprKy8uPHj8PDw3v27OFnaWnpu3fvmpqaJKTcVWfH+vXrR0ZGxEEwderUly9fXr58WW6VlZX19vYePXpUfvpb9nyH1OvXryVAdXU1GThw4ICEJPUHDx7I/2RyaGiI8H4prly58vTpU1m5Q2ba29vv3r3rpnXz5k3ZgEZIfj569Eh8XocPH+annmblemE6OjoILP9TFeK4aWho6OrqkoskpC4Y1yFFFRGnHm9EtinRwYMHNQnuHjt2TH42Nzej2oYjj7UXj8sB6rK2i+RowQULFkgAIiFCeXbRokUkfeTIEb3Fs2NzSHFLXE4SPtziUkZJt7i4WPxupCsZvnPnTnd3t4QMdKroU+eUhVo0LpVDO2pVxLbsybPz5s2TnzNmzPBrzzAMwzA+E3NIGYZhGIZhFAZs/rNnz+rPJ0+e3L59W382NzerV+K3337r7e11n+3p6RGng/gC3D1rPNjW1ib/Z3FI/fTTT3r35cuXukzm/v376kCZM2cOIf2tgsTz8ePH2tpavbJv3z6uiOtE0lL3hGRGl30tWrTIdR65XpiWlhZyEjv6qq6ubnBw0M+D65Bqz+HepRQdHR2aRGdnp97asWMHGZg9e3Yg8lhC165dc68QsyyVcku0atUq/qd1iNA9ruvVq1djdki5rsBwi8fKKMvfNCFaR1s/0Kkir3M2NjbSIvoz5pBavHixeMG+ssO8DMMwjEmFOaQMwzAMwzAKg+tJgXv37rnejd9//109C9euXRseHv7gwM+TJ09yq6amZmRkpL+/X299/Pjx4cOH8mAWh5T7ubS///77jz/+kP/JW3d3d2VlZVFR0alTp0gidsIULFiwgBgGBgY0df4fGhqSBVNuWrB27Vp+VlVVyc+5c+e67jDXC0Oiz58/l117skktyq33uXXrFo88ePBgy5YtidVIhi9evOjmsLGx8d27d34SUe5kK/X1pEXuEmsvIGYyqWWniohBVhVdunTp9evXbmBKNGaHlOvYCrd4rIzHjx93vU4koS7CQKfyC8v/XNGf/qHmJES7d3V1HTx40D3TyjAMwzAKhTmkDMMwDMMwCkN2h1RTU1N3d/fsfyObsPbs2TMyMrJixQr3lvovPschdfz4cXL48ePHoaEh/okdEC5UVlbKoelu6rokaswOqSh3PBMpyjlQ7llaS5cuvXbtGg/W1dX51fj69evYAUZE++bNm8QkXIdUWuQuvkOKRmlubnbLXl5eLrcuXLigm+ME3yGlZ7qPyiEVbvHsDqlAp/ILm9chFeUatKGhYWBgoKWlxa89wzAMw/hMzCFlGIZhGIZRGLI7pA4fPjw0NOR+wE5ZsWLFyMhI2qIe8bnoIUfRaBxSZG/Xrl2E9A8yV6ZOndrf33/u3LnEu5/jkBKmTZv24cOH48ePx663trbq1jy3Gu/cuePuLCN7b9680RLldUj5kbv4DilCPn36NLHsBw8eJHKtOtqup6dHHVJ79+7lrn5Wb82aNdkdUuEWz+6QCnQqv7AxhxRJxHYvKhKt+/1EwzAMwygI5pAyDMMwDMMoDNkdUnPmzPnw4UNbW1tVVdV3331XWVm5f///w955f0WxPG38H14QFBARCUryKiJiwIQgolxA8iHoNYGigoiCgIKgFxCJgoSXDO9zto51+jszOwy4LF59Pj9wJvR0V1dX904V3T2lOu9paGhoeno6JycnKioqLi7uxo0buhcS0ss23ngkISHBt5OAVGdnpxT65s0bCFNWVua41fejR49WV1eLiopiY2NjYmIgxu3bt+XW7gJSYWFhzc3NSBYREYGKbGxs5OXl4TpqgcwjIyNRF9QXaexqvHDhAvJ89uxZSkpKampqW1sbHsexpQjBDEgFytylvXw/JqA9fPgQukU1T548qZuLo8nW19e7u7vRTFlZWV+/foUkGpBCKThtb2/H3evXr8/NzeHUY0DKvcW9B6Tcjco9IAWTmJmZgWJl8lp+fn5hYSGyPXz4cFdX19jYmJY+Pz/vEtAkhBBCvMOAFCGEEEJIcIBLf+/ePT3t6+vr6OjQ05aWlpGRET2VoMaWn42NjcHBQfXzcdDb27u5uSl3JyYmzM255bNrOgGnqKgIKSMjI3GclJSE6xcuXNDEnz590qVYjx8/RlZlZWVVVVUPHz6cm5vT3cFNIiIimpqaVldXpZSFhQX9qp1ZFjh79iwSpKamqtg41ZWAKFc/6tfV1YU64u76+jqKlovV1dWySRPo6enRhYEWNULgxcVFSTY5OWmG28wifD+iVxKCCZS5S3sJxcXF8/Pz8iCU8Pr1a7115cqVpaUlXMdfJDOX7ImcqB3ufvv2LScnBy/Z8v0+i5wWHarqArW4pY51dXVoET1FEXgqOjpaTl2MylJZHOOKnmZmZiLbLf8nGkWT8glCgAx1268nT54gW/36HiGEEPIzMCBFCCGEEBIcDhw4YH6VLDw83DzFsX3dU1xcXFJSkmW+jBAdHZ2cnOwYScFFc2VWRESE47Epg/nBOEG2LpLdyu0gH5SuOygFyt/l1FLfqKgo1NSeHhctE7UsapRaIJl9Yo5dpRZV2DN3L0izTfBjb6/IyEithSUgpXWUPM2NwC1yWpSgOLa4vY6WLcbtuTkalaWy9mxxiiqbmePUvgDQEkojhBBCdg0DUoQQQgghvz+y1q+yslLCEHFxcR8+fDBnbJGdYg9IEUIIIcQ7DEgRQgghhPwR1NbWLi0tra2tyQq4wcHB5OTk/RbqPwwDUoQQQsjPwIAUIYQQQsifQkRExPHjx9PS0mJjY/dblv88iYmJgT5pRwghhJBtYUCKEEIIIYQQQgghhIQUBqQIIYQQQgghhBBCSEhhQIoQQgghhBBCCCGEhBQGpAghhBBCCCGEEEJISGFAihBCCCGEEEIIIYSEFAakCCGEEEIIIYQQQkhIYUCKEEIIIYQQQgghhIQUBqQIIYQQQgghhBBCSEhhQIoQQgghhBBCCCGEhBQGpAghhBBCCCGEEEJISGFAihBCCCGEEEIIIYSEFAakCCGEEEIIIYQQQkhIYUCKEEIIIYQQQgghhIQUBqQIIYQQQgghhBBCSEhhQIoQQgghhBBCCCGEhBQGpAghhBBCCCGEEEJISGFAihBCCCGEEEIIIYSEFAakCCGEEEIIIYQQQkhIYUCKEEIIIYQQQgghhIQUBqQIIYQQQgghhBBCSEhhQIoQQgghhBBCCCGEhBQGpAghhBBCCCGEEEJISGFAihBCCCGEEEIIIYSEFAakCCGEEEIIIYQQQkhIYUCKEEIIIYQQQgghhIQUBqQIIYQQQgghhBBCSEhhQIoQQgghhBBCCCGEhBQGpAghhBBCCCGEEEJISGFAihBCCCGEEEIIIYSEFAakCCGEEEIIIYQQQkhIYUCKEEIIIYQQQgghhIQUBqQIIYQQQgghhBBCSEhhQIoQQgghhBBCCCGEhBQGpAghhBBCCCGEEEJISGFAihBCCCEkRISHh2dmZh48eDCIKS0kJCScOHFiV9KRP5TIyMi0tLT9lmJPiImJOX369H5LEWr2q0H3d/DZ9Zj580Db58+fj46ODn3R+87PNzp/s/5wGJAihBBCCAkmBw4cuHDhQmVlZV1d3a1bt44dO6a3jh8/vrW1denSpW0z8Z7SwqtXr/7991/HW5Dq5v8CDyoqKqq4uDgpKcmSGD4tricnJ+9UgP8EpaWlDQ0N+y3Fr8L169dhbKah/jbcuXMHVfMSpPhJk0hNTS0rK2tsbETHdwyBZWdn19TUVFVV4WDXpXjEpUH31PIDDT7nz59vaWnZ63jNrsfMn+Tp06coF051a2trKMstLCxMT0+3XDxx4kRJSQksraCgICYmRi7iJyk/P98c+fPy8oIlhssvTlhYWFNTE4redQ4/A/STlZVlXkGPwI/akSNHzIsZGRlQSNBLJ95hQIoQQgghJGicPXt2ampqc3Pz69evQ0NDi4uLGxsb9fX1cnd/A1Jra2tLS0vfDPAuDl99ZWXl5cuXlsTwWCAAEuxUgKCTmJhYW1t76NChXeeQnZ0NJ8280t/fj+r/tGg/xa1bt0LvPDviEr+wq+5Xxm4q3gNSuzaJiIiI1tZWlILHBwYG8BfH7969i4qK0jSDg4Pr6+tjY2MYEHC3ubl5FwV5x6VBd1rNHRlAoMGnrq4Ow+BeR7f3JSAVHx+P0b60tBTHPzNG7QJY1L179/Q0PDz86dOnEGZ+fn50dBSj+vLy8sWLF3Hr9OnT0Ayu68g/MTERLDFcfnEiIyNXV1e3jdPtUUAKv7+WbKEu6KGystK82NXV9eXLl6CXTrzDgBQhhBBCSHDAez+cBLwEq+sVFhZ2+fLlR48eyen+BqQsDoz5CN4I4VebFzs6OuA/77T0vQAKhCrsc7i88/DhQ4sTDufNUt/QMzw8HOIpFYFwiV/YVfcrYzcV7wGpXZvE8+fPNzY2iouL9Up+fj76Wltbm5xiEMAIEBcX5/O76H19fRBpT5fUuTToTqu5IwNwGXxCsJJuXwJSWVlZKPSvv/4KZaGCZTyHjUloDPbm81taWVnZ3bt3cZyZmQkhz58/vxdiuIeTIIbIs+scdk1DQwMUotPEwKdPn6CHDx8+6BV0h+Xl5fv37we9dOIdBqQIIYQQQoLDyMjI9+/fXVwvu8uE1+WioqL6+no4Eo6L+3BQXV1dUVFhcS+Tk5NLSkpkVaA5F2MXAanc3FyUBWder8i0qdraWntiePtXr17FQU5ODhLAD7fMC4C7W1BQgBpBPHNxBB6En+zzr98RseEMmA8iMR7Bg3j8wIEDcvH06dNwiSFeeXk5/PyEhATNCo/fuXOnqqpKBEC5qAJEgq7OnDmj2eJiT0/P4uJivh9pHSSQuQMKHEvoGY+bepDrSIzMb968CbEvXLjgqFufPwoAwVJTU5EMytHrqC+yraysxC1VLySZnp4eGBjAgZaIY00D4OWKquURaAx/YRLIXyKe28rmqFK9BZODYKdOnQoUv3BUnc/vxV27dg0lQvnurnh2djYqDq9YckBZgeriki2SnTt3Tk9PnjyJZGZF0IOQm6OpaEAqkNUppklsa6sKhIfT++TJE8v1lpYWXBcZLCA3iKQta8/QsV976T7bNqjPZvlpaWlQV01NTWZmpj1xIANAYjQrnkItzHCDOfggcWFhodhzYmIijjWl9JTY2NiysjJkYto8OHz4MBoU11FHKTcyMtIum11yHTORIfoyrA5FeNGt9CMkRqVQtF5HPrgClQYK5UDV9+/fR6EoTvUTaBwINMJI+ri4OFQHY5fYDMa0v//+G7VLSUlxLNr3v+N5fHz8xsbG69evHVN6CUhFR0ej7shHr0Dt5pVAg4k0Oq44jkKonbmuEGrPy8uTFYXarPbfLPuYKUBL+MVBKRbDcwRtilrrWAGVQmP9/f1ra2umJSPN2bNn9SmXMZPsEQxIEUIIIYQEAbx249UWLpZLGktACm/D3/28f/8ef5eXl9VNlZQdHR24iHfoubm5+fl5nVUBPwHv1gMDA52dnQsLC7Ozs7o/yy4CUvBskYlO6PD9mGHhuMQGHv63b99evnwJeSDY6urq0NCQendwGIaHh5Ggvb3969evEFsX/eFBnMqDkBDuE3xdzRbeGq7jWTwIVSCB5PnPP//MzMxAmMnJybGxMfHJJSt4X3iRheQnT55EFaampqAHKGRwcNBclwEh4VHLgikg/p6pJTg2Msnl06dPnz9/Rko0h+ksffjwAYJNTEzgceRcVVXlqF6IjXxWVlamp6ffvn0rOUOrS0tLb968gRjIGW65z7+JL7KC6iA/DnBLckBb6+pO0NzcjErJsdjDkydP8BQUAt91W9kCqRTAy4VOtAXx1zF+4ag6NDEUBVH7+vpwcXNz09GofP69dZAMGpCJCaiL7F7kWBeXbFtaWiC/ZosEuKuxTjj5eCoiIiKQqeAKTMXR6kxMk3C3VZPS0lLkb9/KJzs7G9eluS1UVFTglsTmLLj0a3eRPDaopZoykwu2CguBKXo0gNbWVigcpXd3d+MW/tozhyePTgSBZbNqyzw1tOaLFy9QQSTGMQTWiIBUBNel4+AWDNiMkrhILnaFvgbxMAjgLwYijUm5j5mozvj4OISBzHKxpKRkbW2tt7cXpUCMZ8+e2ZXZ2NgoKzRh29CPDJiO44DLCKPawK3/83PhwgVkKP/eQD6OpuL73/FcNGzZMknxEpCSf0LoZF5w48YNPCUt6DKYQHsYf/Ar4DgKITE6phyjgaB21BRdGHrGD4TmYI7GjmOmPA7loAXRC6DbbTd+QlawJW24ixcvoglkRpv+BNfW1iJPje26VJPsHQxIEUIIIYQEAbw340335MmTcgof6dQP1NMzA1J4CcYbPF7NxTOBRy0unLhtkhJuiTg5cNdxC66U5IM8dfIFDswVQ+4BKXhE//zA/Ee9xA7UR+ro6IB35JiJeD7w32Re0rlz52ROityFqzA6Oiq3UEF4FKig+SDcV6mgePKiLlEFvDJJCR8SjoTOzwq0Dku8Bf0/ufk/c7h/6lj6nJYdmVqShlMXJScnZ3Nzs6KiQlPibl1dnWoGb8+O/5yHA4OUsoOveDjIGa6sfkAK7iueVQ/HvmRv24AU1CJTBiR/F9ncVYqUMzMzEtNBzvDuvC/ZQxNDt2p+DQ0NjuEV2K2pVbiRWlnHurhkKwYgpgITXVtbM2M9Hz9+RHXkOJCpOFqdBUtAyuNTjx8/dlwSCGWaTaOgdUZGRqBwe1Y+137tLpL3BjWrOTg4qJvHRUdHO1q13QDg2OukyJs3b2rMQjNHPvDn0Zo6vcUekEK/kIlayArSdnV1yS0JX8oxeiI0gOrYpXKUXMdMMYD09HR0ZB2a3MdMPIgxEPmINcJ6zVDI+fPnLfNoFLllLsB0HAdcRhjRhsylknJxVyZqoWpQo/mvAhMzICV2aJkRpkhACkaig79l5pGAgiCMmsHbt2+HhoZ82w0m7iOkGZDCD9zk5OThw4d9/t87/eeNZTQONGbiWDsORPISKoId6hAKMcS0IJLG3czRw72aZO9gQIoQQgghJAiIi6ju0/Pnz7d+AG9cLpoBKZlDYX5yCz6J/h9bUprrep48eQIPxLFovGGrZ+IekBobG3v9A3NxCnwtXd0g/yoPNNVLfEtzY44vX77A05AHUYT5YElJCa6Ic2J5MD4+Xt02cerMaSZwEnSnj0BRBkdP1Uyge+W4B6T6/Zh30V7weDWlueUtBEbOR48etReKVoD/Y15BJjJFQoATaM5i2EVACvWy1CKQbC4qRXOgUcxPrRUUFHgMSMFnw7OmkGh0OJDwFS0PijFrni0tLapSe13cs42MjNQFpBcuXICWUBFZnQSPfWNjA/LLU4FMxWJ1N27csNfUHpBytFULqBcEsF+H141H7N+zQ48wlxG5Y/ZrF5F21KBmNTs7O+GBu+/O5r6HlDSlrtKSzDFSmdEon1NA6vHjx3oXOtQ9ttH1MHKadXSc1+MouX3MRBrHmU0+25iJOprrs3BrcXHRTL+wsFBTU2PPxzEgZRkH3EcYizZGRkbMSWfotl5mvMrPTaCFpRKQ+vjxow7+jis08cOkP0lRUVHogDKYu4/PjqOQ7JjmMwJSyHBzc9NxeqklSBpozLx79+7a2tqOdsKSgGliYiKOUYSMJy9fvpTtEeUH69atW5LYvZpk72BAihBCCCEkCMiLuLnZTZgfvNFaXHEJSN2+fdt8cff9cMDk//b23abgG5j/A8erNvwWeAJTU1NwifW/0LtYsifAJRMn//r168jQFMzEvks0/Ad5vz9x4gRuwY1Z/gGOkZXMp7A8iAONSqDKOJbPQgkQVadoedypGgng10HV8ELhPZoJ3ANSs7OzT58+Ne/CQ9YJVhZ9is/mGAsz5wIIyAQV0UqhgnhWd/DZRUDKsmGzi2wuKj169ChumQtevG9qLvOeLAGdyclJiwfu888vQOmwNzjJMAyowly5Y6nLttl2dnaK8Mikq6urpKREFtqIrWqYZltTMa3Ogj0g5eUp2bVKF38p4khborpnzpxBjzCjD3YC9WsXkXbUoGY1oXb0XFn75jj/y+fUd6Kioqqqqvr7+8fHx2WNpDalRHZgbDrrxFF4S0/BsS7JxDH6IwQ7cODAgwcPYEKOs34cJbfbFWoKkfTU+5gJw9vc3Fw2wKnj1teOASnLOOA+wljSf/z40YzIPH/+PNA34OwzpBxb3Od5U3N0KEgln4AsKCiAimTOnfv47D5Cau2kRziGYs0cXMbMyMjId+/e4fTTp08eQ7qQHw0H85PItUxDk19q6ArZmv9dcK8m2TsYkCKEEEIICQJwg/E6a+7BIfT29joGpOSft/aNzOUftnbnqrKyEu/WMusHfghel/ECDWcsJSXFdGl2HZBCDngXh9P4+vVrl38L24NBqKBMAZOwQnl5+VEDDRa4eNRFRUU4htdkPqgpvQSk4uPj4cnA24TLAc+ntrbWe0AK3qlOytC7mv5nAlJwROGZm5Uyw3yOASlznsvPBKRcVAonzRJe8R6QkpVolt1bUHH75wJjY2PlM/PwA2W5kDaHvS7bZotOAeNHniMjI6WlpdLXsrKyXrx4oWtCffsRkBI92119mQll7umTlpa2uLiIzuWyGbNLv3YRaUcNarEZ+QyobGzkuFeRve9gNBsfH7969Wp6evqFCxcsASlkLnsPmZ8d9B6Qqq+vxzGEgdngwLL/t4ldcveA1I7GzLa2NnTeo/+L4/wjLwEp9xEmKAEpscNA6vL+lb0nT54sLCygpl1dXbpJmfv47DEglZiYGGiaoeXfAy5jps//qYf29nZkJR8Q3JahoSF0OmhmbW1N1qRjGJFFkbBtjCea0r2aZO9gQIoQQgghJDjgDX51ddXi1wUKSJ0+fRrHutrI53fb8KIsr/KS0nznfvfu3eTkpBzjrd1cioLTnw9IZWRkoES8lK+srOgqBjviW+pW5REREXibbGlp8fn/wY5n7V8cMx909KjFXwr0T2/xcHRXEXtWPtt0MznVBFCOuaWU73+1hFbTFUNSC/iK6sf+TEAKTT86OupYKZ/fW7ZMLEI7quMKf7uvr2/XASkXlSJneObSZIJs2OQYv7CoDs+iiU3vWqbF2YM1uDI9PY308fHxFqfOXpdts4UPubGxUVFRgQ4iljA+Pn7//n3o3JyFtK2pBD0gBZNDt9ItkAT4vRAPRqWxJ1RZAqbu3+1y6dcuIu2oQR3HB/Riy+w8xWIAlrlslp3CNPPm5mb4/zoSeg9I4aCwsBAp7RuZO2JK7h6Q2tGYWV1drfOD3PESkHIfYYISkEIHwU/Pp0+fzKiZ9D7fTgJS8quUl5eH5tPgkfv47DEgJctym5qaTD3Yc3AfMxUks6yCDARsY3Fx8fHjx2Z6iVKNjIyYa43dq0n2DgakCCGEEEKCA97+4WnAtcZrLt5uT548WVRUBM/HcQ8pAP8Bzl5ubi5cx+vXry8sLKiXIinhY1RWVuKuTLjQDXrxILwUOCHR0dF4xcctjwGptra2swaWfWHHxsYgA1wR+xIkRXxLiH358uWEhITW1tYtY3PlR48eQWbUGrLFxMTk5OTcvn3bfDCQkw8PYXp6GukhEpx8eLzqPsHZ2/JvmgvvV7YltgekZKYGrsMHy87OlpVEmkC297p48WJGRoZcNLUkz8JZTUlJSU1NhYrgi+rX1n8mICUTdh4+fAixUS60ZG6R++bNG8iJgtRvl++XoQjk39HRAUPadUDKXaXNzc0wBrheMK2GhgYUGih+YVfd/fv3ZacwVOrMmTNw6iCkbtelwLOFJcCiurq62tvboQQkdqnLttmiE8FvgcbkFBniFPnoTtU+D6YS9ICUz+/xbvk/5AfDQ2ui0eWrgurZoiNgWIB5XLly5fwP/vrrL3tWLv3aXSTvDarVRE/BU9AYlAx5YPN5eXn29BYDgC2hoJcvX+KppKSkjx8/OgakcBcHqLXsYO09INXZ2Sl7hKF3PH/+HPZg37s6kOTuAakdjZkYyUUMlAKxYU4yL8+uHy8BKfcRJigBKd+PNd14HGaAHoRBGJWSAJCEWioqKnTkD/Q9Pp9/4y0M7zJbVi+6DCYeA1I+/6cz5NcBmsTvHTq4RGzNHFzGTPRrCBAZGYnmgDCytNDn/+xmoJ88rfvS0pL5hQGZLre5uWnRg0s1yd7BgBQhhBBCSNA4cuQIHI/FxcUtP/AZ4NXoxlKy1Ej3AMY7t3ygXVLCzdPPV8nUA3iw4+PjOIADA89E/6V86tQp+ZAWnsJ7eXd3t3omra2t+pkqCxKmMcnNzTUTVFVVbflXV7lUUHxL/JVwAF7rS0pK9C5cRLhA8Dok/4WFBf2YFPwQOAD6IT8c6MekfH4PsLe3F1fkQThFpicgH3La+rGqy5KVAD1AS7gOP6e4uBjHmiAmJmZ0dFTUJV6lRUvw5bTJJicnTZ/WklJ8S0fXFOq1T0CDJPPz85Iz1CK7dAnwlGSvK406QQnDw8PS3C9evKiurtaJFRbL8SKbi0rh6cFm5Do8WNlLxXFOil110CpMEafyOAzYMTwnc4IeP35cXl4OVxDFQRKR37Eu22Z79+5d8erlVL4JIF8BM3E3FYvVBVKm96cEdIFv375JuWi7d+/eoU1nZ2elf2VkZGgrKOZaIcWlX7uL5L1BzWp2dXXJgkoU9/DhQ8eq2Q3g1q1b4szjL8YB2LDalZk5BjfcEoO3CG/pKTjWOCMMBoaK/oixCCLBhHR6qYmj5Ha7gjC66nOnY2ZWVtbXr1+1TSGGoz5l836NLtlrJ7iMMJb0fX195gjc0tLiaCoA44llUhtsHtqTUpaWljCGyKTREydOaM/SGgX6r0NNTQ0S6EcMBZfBxH0UMmuHEtE1JBP8fOgm8ZYcAo2ZGA9lS6kt/2dedTE47FOHUDthYWHfv39HoeY+7jjGFVy3LMN0/xkiewQDUoQQQgghQQYvwfAE4JLZV+jY55LgxTo5Odm+V4WkRFZ4uXd0Ho4dOyYv5bJ7uhYd6FtLXrBEeezoZAeZIuGYHrdQI/u26Ja621WBauJB8xN+Ci6aK2jsz/r8n5CHSKIKuxKOHj2qsy3sWsIpnrX7nPaUjkUDtLXj9kC4mODHLhKu2I0EV1QD5iP2cr3I5qJSNJDWN1ClBFN1gkwbkfkvjtg/UAXX9MGDB+7FuWdrMTZk4qhwd1MJVLRFmR6fMoE+YULSmqjC27dvxXPe9kELjv3ai0heGtRSTTQrZN62dhYDQB0TExOlOSxrxMzTcD92eSw9RZ+yfIbS92NbHw3TmzhKbjlFthYL2emYKW3qvpGQpdBA40CgEcaS3iKzi2yBln/C9iC2y1Zl2xLoV8BxMHEfhezawOPaTQLlEGjMlB8dy1iENO4rYZGb3cIDNZPPdcwkewEDUoQQQgghxCuOX7gjxMLbt28nJiZ0PV1eXt7GxsaVK1f2V6oQk52d7fhpNuKIrLisrKyUMERcXNyHDx8CzQ8ihPweMCBFCCGEEEK8woAU8UJycvLnz59hKouLi2tra+YKHUICUVtbu7S0BIORBW6Dg4MwpP0WihCyhzAgRQghhBBCvHLo0KHU1NT9loL8N4iLi0tPT09OTv6ZZaTkjyIiIuL48eNpaWmxsbH7LQshZM9hQIoQQgghhBBCCCGEhBQGpAghhBBCCCGEEEJISGFAihBCCCGEEEIIIYSEFAakCCGEEEIIIYQQQkhIYUCKEEIIIYQQQgghhIQUBqQIIYQQQgghhBBCSEhhQIoQQgghhBBCCCGEhBQGpAghhBBCCCGEEEJISGFAihBCCCGEEEIIIYSEFAakCCGEEEKCQ0ZGRlxcXCgfDC7h4eGZmZkHDx7cb0H+UBISEk6cOLHfUuw5wbX2n8wtWDaflpb2+3WcyMhI1CtYucXExJw+fVpPd9dwv34f+fUlJOSXggEpQgghhJDg8P3793/++ecnHywtLW1oaAiqXF45fvz41tbWpUuX9qX0/eLAgQP5+fk3DfLy8nx+bRQXF9ujDImJiY7Xf77hXr169e+///5MDsElLCysqakJyglutrvuJjvN7dixYy9evDh58qTL40Gx+SNHjiATWM7uHvci575w/fp11Avi7ToHs1PcuXMHuWnH2Z0ZuPeRX0GTe9SL96gzErLvMCBFCCGEEBIcghKQ6u/v//btW1DlciY8PLy2tjYlJUWv7No5t2f1H+L06dOo9fz8/LcfTExM4Hp2djauFxYWWtI3NzcvLCygypbrO2045F9SUmJe2feA1K1bt8zWj4yMXF1dbW1tDW4pIQtISQuiUi6P/woBKS9y7gs/H5AyO0XQA1L2YWePNGnpF94lDCJ71BkJ2XcYkCKEEEIICQ5BCUjBy4qIiAiqXM5ERUVZnLddO+f2rP5DZGZmQvjz589broeFhc3Ozvb09Fguzs3NNTc32/PZacM9fPjQEsDa94DU8PCwxeOFG4wqB7eUkAWkwLbL6H6FgJTPg5z7ws8HpMxOEfSAlOOwsxeatPcLF/auF+9FZyRk32FAihBCCCEkOIiLFRMTU1paWltbe+rUKUuC1NTUyspK3LKEP0zf7MyZMxcvXjTvIjEewYN4XK5ER0cXFRXFx8drGvgq5hU4gQUFBfX19SUlJfCW7aImJibevn0b7lxLS0t+fr7s7aLOOQqqrq6+e/dubGys+VRycjIyrKurgxMIb9AlKwvQSWFhIR7E40lJSYEUCAc4ISHh8OHDSIYqZ2Zm6i0Uhwrill65fPmyloU88Sy8Xzi9VVVVhw4dkuuoO7KCHqCNAwcOOBYaKCAFHjx4sL6+bhYqUzCysrLsiS0Nl5aWVl5eXlNTY9bCFL6np2dxcTHfj3jR4spCzps3b0JXFy5csDzlpTo+fxTg2rVryAGq+Ouvv8xbgTQMASDG9PT0wMAADiCepk9PT5dj1Bp1hGmh9bVe8JCRxi4tkiETFFFRUYGnzFuOkYhz587l5uaaV5C/iuHbru/AUMvKyiCV9hGpFGzGtH/UXYRXae0BKY9Kli6Gil+9ejUuLs4SkHLpgHbDsMsJM0Nl0QHFPGQkQTIIj7+BuqdJoB4nPcXnH1WkI1vm+kEMHb4CBaQyMjJQOz1F9UUwOYVJoGgp1OwUHgNSaBFTkxAPmasMGu5xHHYsmtyRxTpqLFC/8AW2E5UQFUG55i0xP4vCYXswfj09efIkOq9ZCmokSnPsjIHGCgtID5tBs5pVgOSW8QFFmz9b9p8en2GHkBxF40fBXhyG67y8POgcReC3Sa9DyagOlAYbM+1qW9u29xovvwg+v3pRBdRLYnl43NHsA3VYx18W7fsQQH8HLaAg6A0CY3www4henv3TYECKEEIIISQ4wMX68OHD3Nzc58+fx8fHNzY2TLcNb7pra2u9vb1v375dXV199uyZ+aD6ZuY/2PEi29bWtrS09ObNm/7+/vX1dVlBhhf3lZWVR48eaQ43btyAbyab6cI/HB4e/vbtW3t7+9evXyEPHEiLqHjJhoR4BEWPjY1J6eKco6zl5eXBwUH8RSbqGOAFGgLAMevs7FxYWJidnY2Ojg6UlQl8CUg7OjqKik9MTEAJjgEd0cPTp0/n5+dVgbpiDn4aijA9N5T1/PlzOYa3gGq+fv0ar7aQTTaRQSnICqqAHpAztOroALgEpKRQ+L16pbm5OdC6PLPh4LtCV6gvioZIdpcerbm4uIg0Y37gqUoO0M/Q0BD+4iKKhgukj3isDlr/06dPaLu+vj5ksrm5ee/evW01DAGQGGYJaXEA8TS9aZkw75GRERgVlICc4Qz39PTAXRcD0BWI8N+mpqZgITAVGBJuwTczZbAbCVxBCGN6ocgTNZVj974DqVAjKATHuHv27Fm5ZQk2wSlFJhAMtYNBNjU12dN4VDJ8bDQTykJWsDeo2gxIuXRAR8OwyIAGQvOh46MdcR0CyzZMkgy93rF7mrj0OOkpL1++FI1B5+YcwJSUFJglbqFeUjvHgBSGNVzXtXJw+HEq/r/vR4eSEs1O4TEgVV5ejmTqw1tmn2mGLiOYatK7xQbSWKB+4WInKiHsEEVcvXpVq9bS0jIzM2OpLy4iBz2FLUFOjYlUV1ejoWWWmb0zQgDHscIEmsQ4iYaGOaHXw/zev38vQSJUB8rRlPHx8Si6uLjYF/inR5X85MkTqAXVQXtZSkQC9H3pFzA2KF+uwzC++4EA+It6qXLcbdux13j5RWhtbYUkX758QcrHjx83NjbCvNE6qGZHR4c+6NJh7b8saAsoDWpHWchKSzRBuagCLK27uxuS469c9/LsHwgDUoQQQgghwUH8YXGH8EIvr+PiSyQnJ5vv9OfPn8crsnrOgQJSSI8M9ZtNeJ/Gq5t4PvAW8JS6bXhZh4csx/A24VnJ/3LDw8PhTkASu7SBluzBAZYJAunp6XhxV3/j1KlTEjfx+f00eDjiujhmZQI/R/+tDXnMQINdgXAFZaaMKBBenyhwW/cDd8UtFJ2gILz3v3jxQhLAt4ErAs/ZXqj4z/BP/vmBOR0A0sLxk2NZr3f//n1H4c2Gg0+FVpDj6Ohox4U2jkv2IEldXZ2cQiQ0906rg3IhpLZUQ0MD8tRZDy4a9jktTbJYJrKqqanx+SMy4gajCWSuAbwv+H76oDkvAGkgkmOeitieWhRsD6ci57Z9B31EpuHA5qenp7u6usw8pT8ePHgQykQ3EanggkqGZhrvSi4pKUHXkJgFCu3t7TWDJi4d0NEwTBlQWTOkMjAwoC3i3j1NXHqc9BR4yBIYKi0txanuAg6Tm5mZkWgIioMyHQNSMTEx6P5a9MePH5FM9VZfXw+jkqrtXUDK52HRsXeLdR+jLP3C3U5MCdFYb9680acWFhbso8fly5e1CSAkuqe5dR10q6ETe2d0HCssICtTJzk5OTCbiooKHMsUMw0slpWVoaOhcX2uPz2iZFRZxkn7bnrv37+fnJyUuUsYW5CtKg0dQWJhuI5kGBbEHtxt27HXePlFwFAggxsexyl+IiXIVV1djVOd2+XSYe2/LDL+JCYmSgJRlwUMRzpLF6ar/yvy8uwfCANShBBCCCHBAQ7D48eP9fTatWt4+xQ/5969e3iDNxPDORFPyRc4IIUXcbjQ+ggcAJ16AAcDx9nZ2T6/YwbnQd778X4Pp0KOBTjPuGL3VQK5c+a/9OFCmLNRLJXVqTc72kMKnt6nT58C5WkqEJIgW1nw5cX9gPx6V179dYWLz++zaWjJRAJScPxe/8BcZAc/E763uOiyXs/M08RsuM7OTqjOZXGiL0BA6suXL3qan5+P4uLi4rxXB94U2rq+vl6vwB5gG/An5dRFwz4PASlTPJnOoHYFMzPDDSbSOhr2ChSJgPZ0BgoEnp+fF193275j1qilpWV8fFyOzfBEbm4uju3rSc003m0GFwcGBvQ0Pj5egybuHdDRMEwZcnJyzBgQqoNBwEzmsXuamD1O2kI9YZFcvt0GCSGn+aVImQnluIdUnx+fPx4ns1c05gi3XzvmvgekdmexljHK0i/c7cSUsK6ubm1tTWaSXrx4EU+ZwW4hMjJyZWVF4lkXLlyAhMgKo5DPH3wxp9m6dEYZK44ePWqvS78f8wpMV4wK+UM8jWqZPzcuPz2iZLSmvSyfv1E2Nzft07Vk8JQfLEFMXaamutu2Y6/x8ougdi5RP43LS3U0VO3SYe2/LBkZGRLl9Lifl1RN1lTu9Nk/BAakCCGEEEKCg8XFklkespIFHg5e05cNcKr/LQ8UkIKPhzdjfQR+CzKUySDw1XV3bXgsGjQ5ceIE0qyurupTOMZd/Yet4mVTc0gCefQUbmF3dzccoampKeSpMm8bkIIng3zgqeJBiBRo018XBXpxP0zfsri4GFegMdUDNPn582d7oS5L9nw/Zqz8/fffOG5qakKhgepoNhyeQkpx1AN9hH7bTc0l5ii+kMfqiLQ3btwwL05OTup0DxcN+zwEpEzx6uvrzTiRTARQDxDe4+PHj+HWwpNcWFjwEokoLS1FpxCnGk89efJErnvvOwDHugDKtGeJPtgXuJlpvNuMLLrRUzNo4t4BHQ3DlAESQoB79+6hgyMr9HGt3bbd0yRQj7P0FBxocAGa3/rfnbBcNjWX2TTo+JAH/qR42qgRVIHW0Y2K9j0g5d1iXcYoS79wtxOz0MTERKQsKiry+afhmCEkk87OTnkcCunq6oKtQqUwAOgflqMSunRGc6ywMDs7+/TpU/NKS0uLRg9hhxLARSuj4XT7KpefHvfvAEisx9wGS5DZWBJeFyQYKpMi3W3bsdfs6BcByXCalpYmp6isxr/cO6z9l8X3Y33x9PR0RUWF4zZzsMyqqqr+/n7odmZmxqzats/+gTAgRQghhBASHCwu1qlTp/AmmpOT4/OvsINjcPR/0cUOgTwNPNLR0WE+Yr7Qw2OHq49M4MPoRjASkoBTZz7luDRgpwEpOMl4WYf/AE8gJSXFlNk9IIUM8Qr+4MGDzMxMuCuQ1mNASkJFokBxP+RYcA9IwQmU6WmmHhxnQ7gHpHw/Zu7AQ4Z4OjHHjsVFRHq45bJpi317e98OA1IeqyOOluVzbxBb3WkXDfuCF5CCqwmHtru7GzmjxWWPoW0jEUeOHIGdlJWVSVvrbCbvfccXOCAF48Sx+R0AexrvNgPbMyNBZtBk2w5oNwxLQGp+fh6GAVVs+VeSqgDeA1IuPc4lICW1MGe+uASkkpKSJO7w6NEjWZUGmdHQhYWFKysruo/1rgNS2r6hCUi5j1GWfuFuJ5ZCZf1XREQEvG5ZKGcHVdjc3ETTj4yMlJaWim6zsrJevHhhrrbeXUBqamrKslcRntWRR6bxpqenQ+2QUKcxuvz0uAekJAYnc+5MRNumLUk+0nzb2ra91+zoF8ElIOXeYR0DUpJDY2Pj6upqZ2enXQmDg4Pj4+PIH4q9cOGCpWruz/6BMCBFCCGEEBIc4DCYr5hwP+BmyCt4dXW1TmJyfNDR0+jt7R0dHQ1UHDx2vOnm5eWtra2pAwBHDg6hzi5xQXxR3bXHt51XABfFXB+EU5XZnpVJW1ubrqKSU5eAlKnAqqoqVaC4DeqXwnlbWFhwCUhJqMX+j3o72wakysrKIIYsinFZhef4uXc4eMvLy+YaOgXaM3dWsudgOpkeqwO3Da1v+p/y/3+NMrho2Odvbsv2XrsLSFlmQ8jptpEIn39bH/hy9+/fn5iY0Ive+44vcEBKdpjWuWC+H3vfmGm820x3d/fk5KSeyuIjMU6PHdA0DFMGtNT09DTaMT4+3uIGew9IufQ4l4AUCoVILS0t+qBsQOYYkAIYmmBpX79+lY7/9OnTT58+wX7MpV67CEiJtWihstTLMSC17Qjm3WLdxyhLv3C3E0uhEmwqLS2FDdvjoQJGM9yV3wvZbAjCoBdAReZSst0FpNCnzN4E+/z27ZuajUTK7t27h7Yzm97lp8c9ICWrhuWLAXrF9+PXyvzKB+wB9RWZPdq22Wt29IvgEpBy77CBAlKCDE2WXbQs01Qtu8K5P/tnwoAUIYQQQkhwgMOAd/HW1la8g+INGK9Zur8yXBHZHATvxHi7RQL5T7g+6OhpyM4XDx8+TEhIwFMnT560bLEMT2Nubg7v0+Yb86NHj1ZXV4uKivCODncL3rL5nTgTuGdwrSGGvKm7ewXwWL58+YI8o6Oj4W8gpelPWrIygWcFCTMyMuTj2VCRS0AK2b58+RL6OX/+vKlAeMtw1OH9pqenwyGEJGbkxdFtGBoawiOoflRUVFxcHDwEx6iTuJfwBs/+wPIRQDwLzwHeTqCtrwRtOIja3NwMPcB9Qol4Ni8vz55e9pO+ePEiNCOSuzuZHqsDbcuWKLCZM2fOjIyMTE1Nmfs3BdIwePPmzczMTEpKirkJ+i4CUjIpAI0CVWRnZ8uiFS8BKdm0aH5+Xve18e2k7/gCB6QgiXxqDbVGDuXl5fLpK4vNe1SyTB1qbGyEbPn5+bAN6Fx940AdMJBhmDLAb8ezY2NjaJf29nb0fd3hy3tAyqXHuQSkfP6PSCLxtWvX4LE3NDRA7S4BKSSA/WiUFoMVarS0tKQbcvt2FZBC6yAf1B3ZQs8Y33DqGJDybTeCebdY9zHK3i9c7MRSKBKs+HHcjEwZGBiAMvUbfGh30a1+ncC324CUdMZnz55B/tTU1La2NuhTNzL3+VfwocdtGR8K8Ln+9LgHpHz+0KTYv7Qgxh9ZgInxE62Zm5sLi8J19Bq1XhfbDtRrdvSL4BKQ8rn+Ytp/WdDfYeFIdvjwYXRS+yJutDjsB2MsBIYGZMt/qdq2z/6ZMCBFCCGEEBIcZmdn7969K5/cAoODg+Yus1lZWXh7llt4q8Zd/Yc5/BDdILy1tdUMfBQXF4u3sOXf50I2u1VqamokvmBexHtwU1MTEstTeO8PtFTk77//xqvzlv/LU74fy3Bk+1UBkuhaFThj8tUtPAIPAX6gymzPygTv33C3cGtzc7Ovrw++n+7TbAEe14sXL3p6ehwVCH9JdiOCnww9d3Z26r/04Usgc10oJEC9aAtcl9wmJiYcgwsnTpwQyRW0juxDrIhI+pF4R8yGg7MhS66QM5w6x/RQy+joqKQRl97S9OJJauTFY3WgBDSB1qi/v990U901DL9ONAwfUq64WGZdXR0S6yl8LcimeoOFQAO4gqxgwzjW1jHztCDfwoPw+gEswWPf8fkXlqpXb7FnuKOicABLln2OLGk8Ktnn33ZdmlgCE1CszlJ06YCOhmHKgMaC0/748ePy8nJoGL0Mwsgt9+5p4tLjLD0FBziVTY5E/yhRxIYjLftwB5rXc/LkSTyrs2/w7MrKCmptbtRl2oylaBczkA2qUPS3b9+gW5iE6tZihO4jmHeLdR+j7P3CxU4shfp+fOLNjNPZwYAmYSM5lXlh+uFUu8bcxwq7PhcXF0XUyclJSywJnUv6qWWn7UA/PXY7tACVvnv3TpSDttNlzgkJCRiOJEMJ2ejOhu62HWg49f6LIBMkdUd52b5Kdzpz6bD2XxYIKWF9gEHJcYvAW7duyVZ3+Hvnzh1kKObh5dk/EAakCCGEEEKCg+5Rivddxw8e+fzTbfDybZnLgwfVGcCBZRo/riT4cZzeb4nCKHjJhldv7jnlCB43Z0DoVBoBJVq8FCSWOQVhflyysgA3VT3bQOsUdAqAZbcsUzxoT6pskc0iuQLvCHr4yQ9so6BAejbTmPWKioqCqIGkUlBT+Zi6PQefU6U8VkdmEsmX10221TAEgKWpJbtbpmVTXou08DahAXncfNDM01GAQOaxbd+xC2lXIIzQnHXimMajkpEsMTFRSrfvTxyoAzoahp7av+s3MzPz4MEDR1Ht3dMkUI8LVLQCmfVBdwPGXVMAe9u5NIe7GYiW7Lq1G6HLCLZTi3UZoyz9QnC0E3uh9fX1Kysr2s0DYRlhLLr1bdcZ3VsKiaHPQLFFe1laiuNPz7bDms8f40OJ9n6B61CafRGcu20HGk69/yJsa/aBOqxjZaGTQIuIBVQcg4MKtqNn/zQYkCKEEEIIIb8ELou5SFCghn9x3r59OzExoSGzvLy8jY2NK1eu7K9UZNeEhYXNzs62tbXttyCE/KIwIEUIIYQQQn4JGC7Za6jhX5zk5OTPnz9vbW0tLi6ura2ZK57If5Hc3Fz3BW6E/OEwIEUIIYQQQn4Jfn5tHXGHGv5PEBcXl56ejsbiR7j+60RFRTnuNU4IERiQIoQQQgghhBBCCCEhhQEpQgghhBBCCCGEEBJSGJAihBBCCCGEEEIIISGFASlCCCGEEEIIIYQQElIYkCKEEEIIIYQQQgghIYUBKUIIIYQQQgghhBASUhiQIoQQQgghhBBCCCEhhQEpQgghhBBCCCGEEBJSGJAihBBCCCGEEEIIISGFASlCCCGEkL0iISHhxIkT+y2FM+Hh4ZmZmQcPHtxvQf57/MrNGgLS0tJoNl44cuRIcnKyl5QZGRlxcXFBFyAohpqUlISKBEUeQgixwIAUIYQQQshe8erVq3///Xe/pXDm+PHjW1tbly5d2m9B/nuEoFnDwsKampry8/P3tJRdcOTIEZjNzZs3Q1zuL6sQF5qbm6empryk/P79+z///BN0AYJiqGNjY8+fPw+KPIQQYoEBKUIIIYSQ4JCdnV1SUmJe+XUCUuHh4bW1tSkpKXqFAaldE4JmjYyMXF1dbW1t3dNSdsF+BaR+WYW4wIAUIYS4w4AUIYQQQkhwePjw4bdv38wrv05AKioqamtr69atW3qFAaldE5pmjYyMDAsL2+tSdsp+BaR8v6pCXGBAihBC3GFAihBCCCEkCFy+fLmnp2dxcTHfj2yyIw7hgQMH4MDX1dVduHDB8hTc+5KSkvr6+oKCAiRzzDkpKen69es4uHTpUm1t7bVr18Qtz8zMRJ63bt0KDw+XlDdu3Pjrr7/MZ5H45MmTiYmJt2/f3traamlpgWynT5/2GQGp1NTU6urqu3fvxsbGms+mpaWVl5fX1NSgoEC1Tk5OxoOQH2KY+wqpzOfPn7cI6Vg73L1z505VVdWhQ4dwMSIiAvpEZSsqKs6cOaOJUYQUFEjmw4cPFxUVQWYkk4aIjIyUW8gTSoaoULj3PXGg6osXL1ZWVuKpo0ePykX3Zt1WeOgcT+nuQidOnCgtLUXdIR4Ezs3NletQS3p6uhxnZWUhK+QcyJCys7MhJBQitT516pS9LrvWqqgO5V69ejUuLs4lIBXIZpAzxEPRsAfzOuoIA8BdZJ6TkwNVQBKzIyQkJKBBxXhMhfj8Mda8vDyUBdm0lX3e+pTP330gEh5Hpcw4l6gaGsBdFL1tFSyIDqHh+Ph4e0AqUCYSkIqJiYEl4K7ZfKgmxIBh6xU0onRh33YdzQxIoX0LCwshgN7FIygL8pgXBRgYbqFL4ikGpAghewcDUoQQQgghQaC/v39xcXF9fX3MDxxpn98hnJiYGBoawl9chCdfVVWlj8D1nZ+fHx4ebm9vh0cK1xHOpz1nuIVzc3Otra2zs7NfvnxBJo8fP25sbERxeGRzc7Ojo0NS9vX1IYE+CJcYd2/fvg2XdXx8HA+iFIghczEkIPXmzZvl5eXBwUH8/fbtm0Yi8vPzUZe3b99CNrwvHjt2zC5YcXHx2toaMkS5eHxychJ5mjK/fPkSFYSQGxsbPT09jnqTlK9fv0YpCwsLJ0+ehEcNNx6V7ezshGAQEj6zJBaZHz165ChzSkqK6KStrW1paWl1dRW6hRJwKy4uDsdIjOp8/foVJWZkZGzbppGRkQMDA8jn48ePUCCKS0xMdG/WbYV/8uQJMpyZmSkvL8fFgoIC6LmrqwvpoSWoSxVlzppBiR8+fEAVHA3p6dOnkA21/vTpE25BgIaGBktddq1VKAE1hcywcDQQ2jpQQCqQzZSUlMBOent7cQv5PHv2TB9BHZ8/f76ysjI9PY272dnZyPzKlSuaAIkhswSMTIVAZlwXedCaaFO57rFPoTehmlB1d3c3ZMZfvQVV4zqaG48j522rYNEAGhFthHJhgdCbGZBy1wPaF8V9/vwZRSMTGIbcQo+ATs6dO6eJzQiRe0fTgNSBAwfev3+PlLLHOfQpfQTdH80KDRQWFupTMCeUCEnE2KSNHOtLCCE/CQNShBBCCCHBwXHJHly7uro6Oe3o6MC7l3jX4eHh8PdevHght+D/Ly4u1tbW2rOFz4lMurq6IiIicArnE6fwdSVkUF1djVOZbgOvEsdpaWnyYHl5ORzg6OhoX+Ale3CYk5KScJqenr65uSlREjA4OIiC5Bg52JdKoUT4sffv35fTY8eOzc7OqmMvMuNUpk2VlpbiFK51oNpJ4EBLMSetwBnWuIC7zBKRkeOcnBw45xogQ11GR0dl+hU0Dye8r6/PLoyFmpoaZKLTVfLz8yW85dKs2wqPVpYJKTKTBUrTIEtDQ4NpP5aAVKAS0RDm0suBgYFAGy3tTqslJSU4zcrKwjEU2NvbGygg5WgzYica7zh//jweP3v2rNYRp7JVORSCR2ZmZtrb2+UuriwsLDx48MCukPfv309OTsq8IfSLsrIy30761MWLF8UYAOoCGfRrdKLqp0+fQhhpI/cqKAcOHEBr9vT0yFO5ubnofRqQ2lYPq6ur0ogoV6Js0t+3DUi5dDQJSCFDqBQZ6kwoiIHitMqNjY0wJ4ncIQ1ygOXrLZwyIEUI2SMYkCKEEEIICQ6OASlzyhIcb3h38n138UjNJUgdHR0fPnywZys+Z0xMjJxevnwZpxolEQdSXFk4pcvLyxok+vz5s06eChSQunr1ql6BM6+zNjo7O3EqEQpH6urqVlZWzGV6DQ0Nm5ub4kVbZI6Pj9e4g2PtNHIUKIFk6y7zwMCAes5SoiyMgpDr6+sSsxBKSkpwZdsNiYaGhhwndrk067bC44reDQ8Ph8Z0LgzyUQX6bAEpe4myhDAnJwfHOh2ppaVlcHDQvV6OggXSKmwSitVboljHgJSjzdy7d29xcdG8srCwoPEO1FHDTwKqrHZl6SOqEBgzFGXOERO89ykTqb6ugoSq0YvNtX7uVVCysrKQD5pDr6AtNCC1rR4eP36st65du4asZNmjl4BUoI4mAaknT56Y0SifP3T49u1bPZUxRGKOEGltbc3s15OTkwxIEUL2CAakCCGEEEKCw7abml+6dEmDL8XFxTiG7738g/X19c+fP9uzFZ9TXUS4puY0qGPHjpnRhJcvX0KGsLCwxMREc/WTl03NISoEluPk5GT4vbICy3FmU1tb2/j4uHmloKBAZ5pYZMaBJRYTqHZCUlIS/HO4zRMTE/DbNYG7zP/888/s7CwkP3DgwIMHD6BbmUQGkfDU6uqqqhrHGxsbOkcmECi6qanJft2lWXckvMj//v17tE50dHR/f7+ZrSUgFahE1BE1vXfvXnh4OGo6NzcXaHvs3WkVic14hMum5o42097evrm5uWyAU42Z2jfzhmEj/7y8PJ8/oDM6OmpXiARQrl27ZhHAe5+CwquqqqBw2PDMzIxZfftG4O5VUCRKaC5uNfeQ2pEe0tPTkZVsDuUlIBWoo0lwDWVpYFqAkUAzKgk0hqcuXrzo86+RtOx7xT2kCCF7BwNShBBCCCHBYUcBqaKiIpkEcdTAEpcRdhSQkl14zp49C397cXFRp9vsNCDl8y8dunz5Mvx5+K72TbLho1ocV5FTJsj8TEAqPj4eDnN3d3dOTk5qamptba3H0El9fT0ce0i7sbGBAwgv12VRW3l5ualqnVTiAlqzpaXFft2lWXckvM+/9RhK2fQzPDysq6h8OwlIzc/PIxPUGhc7OjocrWjXWh0bGzOtwv0re3abaWtrm52dPfq/6Mbbjl+XGx0dffv2LdLAgHWjKzOxBFvtE+6896nBwcHx8XH0mvT09AsXLrgHpNyroOTl5Vnm+pkBqR3pAarTyVYSkDInXu0oIIW63LhxAxeLi4s1B0gCOzEl0fl9kBnCmPViQIoQsncwIEUIIYQQEhzgUuq+PIJLHAFus+MsDzs7CkiB6enpZ8+ejYyMPH36VC+Kp2o6pdsGpISIiIjl5eX6+nrL9aqqqo2NDdm7XWhvb4ej6yjzjgJS8kFA9ZDl1EvoBI50YWEhUspOTwrc/pWVlSdPnthLd6evr8+coePzB1x8rs26I+HlCnQYGxtrfkZNq+MlIAUFosUhGGrtGHwxJdmFVru7uycnJ/WWrBAMFJASTJuprq6GnQT6rKFjQKqysnJ1dfXGjRubm5vmhCNNjAZdX183J69JZMdjn5IAJfI3T10CUu5VUCSKpAsw0SL9/f0akNpWD52dnXpaUVGhdRfxVOEwlYWFhR0FpHz+MNPa2pqGlXt7ey2GbRZtzvOCwGZxhBASXBiQ8kpkZOTp06fNty5CCCGEEBPZUfjixYsZGRniIrqv7RoaGpqenoaHHxUVFRcXBw/Z8YvyOw1INTQ0yBoc2RRGWVxc7O7uTkpKkmddwhDwpeHBIllERAREgiMtS6hM4BgvLy9/+vRJXpAkPqWe8M8EpGTGCq5DjOzsbFlR5SV0ApceIn348OHNmzdwocvKyvQLa48ePVpdXS0qKoLYMTEx0Pnt27flVnx8PF6I//77b7tsMrXk4cOHKPfs2bN9fX2Qx+farDsSHuJ9+/bt+/fvPT09HR0d0DlK1J2tPAakoH9UbWxsrKurq729HdKeOXPGXpdda/X69eu429jYCEXl5+cvLCysr6/bA1KBbAZPSaPgFopLTk5GN9F9phwDUjDpzc3Nubk5y8bzZuKnT59KgyIrSDg1NSV689KncAtVePnyJUTF4x8/fnQPSLlXwWR0dBSlnzx5MiUl5e3bt+iGGpDaVg8QqbW1FdfRwWGQaE1VLPL8+vVrenp6Zmbmly9fkO1OA1KoKQ5gbBL3lH3oYCrouXgEAuvW75ATksAgIRsGEJRrFgcrgmzmaEMIIT/DHxGQwq9OQUFBg58rV67YZ9h64datWxi4ze0kCSGEEEJMYmJi4JHihQEenbia8DD1u2++H0EB9ULh+/X29sL33vIzMTHhGJCC1400kZGRcnr27Fkk1i2KZRtjXZ7m80+p2NjYgBNryefvv/+GYFs/vpkFMbaMvZwBRNUPtMEfliVgeASOq2N94fZDZhF+cXHR3GTaIjMOcIqL29ZOaG5uRum4Dn++uLgYx5LAXebHjx9DnrKyMkgCmefm5nR7bzjkTU1Nq6urIu3CwkJFRYXckg2JzLljJvfv319bWxM9tLW1ybZT7s3qXXhcRz5w/iFzTU1NS0sLSmlsbJS7MzMz9+7dk2OXEo8fP46aou7l5eV1dXXd3d0o2izlJ7Xq839qTYxBYj3fv3933J8+kM1IXEM0jwRoFJ3CZtbR5MOHD0is36SzJ46Ojn737p30Hfgzuju4xz6FF3vZxQl/79y5A3vQZBZVb1sFE7SF9AikQS+7e/cuTr1kMjs7i8TyBUOAW7JjvYAuL3t+QVok6+zs1JWk7h3NrEtCQgIyef36tZzCAObn56U49Au9DuAuLS0t4Tr+wqja29u1ONltXWeBEULIT/L7B6TwfiYjuII3xW0/qmKHASlCQsmNGzfkO+WEEPKfA56kTszRL8cruqmTguEuOTnZfUsjy1PupygdjmtDQ4M9H/ir5hooy4MQ1XxHQj5JSUl2gS3AqUYy+z/83IXc9tahQ4eQrchjZh5IZvNLYYLsKGTuXI5noWrL5/Cqq6u/f//u8qMj81nMfLZtVo/Cl5SUoKXMYFxbW9vQ0JAcHzhwQJvDpUT7h+RmZmYePHjgWJedalWBfhITE+Wi+QU6Cy42A7XjlmVRoVlHC/ZM7InRa5CnXR4vfQpPoUaifFMVdlW7V8GCfE9AzcmeVSA9yAF6kxmKUmQyl0pr6sGlo1nqEu7HvJvgx7HzanFhfvSWe/UJIWRH/OYBqVOnTsl/AqenpysrK+/evdvV1YVTfU30DgNS5FcjIyPD8QvTjuBFJzMz8+zZs/IuguN9fJ8whXFMgNcgdDe8SoZYMEII+T2QVTzm5sp/AvJ1NrzvyY8LfiI/fPgwMjLi/hR+Defn5835ZaGktLR0Y2MDP4hymp6ePjs7++jRox1l8vbt24mJCd1WIi8vD3nq1xUJIYSQX5bfPCAl032/f/9u7iCo+/nhxUVmRz99+rSoqMj878qlS5cePHiAWyUlJeK3a0Dq2LFj9+7dwy3dCpEEhbCwsHPnzlVVVTU2NkLtv04wAi+Ljv9k3ncct11wJCIiAm/k8n1fmLrjV35ChkUYe4LY2Fj5cDIktPzTD322vLy8vr4eCVz+PStER0cjfySuqKjQnVZ8/mUON/0gk6ysrED/mEVPf/HiheOXzr2AcePatWu1tbUQoKCgwP5PWgxKIh7+evnSEyGEeGdoaMi+5uhPAKPu0tLS2tra4uKirHva9nXixIkTgRbrhYDIyMjXr19vbGws+8GP46tXryyrF7cFdfz8+bOsmkTdzfVrhBBCyK/M7xyQgo8nC8irq6vtd69cubL1v7x//15uPXjwQJZ2y4ag8poiASn80kNl+ohjzmQXwPnH27MsqMTrI/QM/XuMtgSX7OzskpIS84p8jzn0kmyL94CU7MmalpYWFhZ28ODB/Q1IWYSx3L179y5epuFOzMzMwAageQ0YoWPiymc/yGFkZMTllR21W1hYmJqa6uzsHBgY0OUPAPnj1sTEBBQoUebY2Fh7DvLddPP76N6R/TVQ0L9+xD0wdwDF+LO6ujo3Nzc2NoZKQZ6UlJRdFEQIIY4kJyf/saueIyIi8DOHXxnHsf3XJCoqKtXPz0xejouLS09PR9PvbrNUQgghJPT8zgGprKwsCRs57mUIf/XZs2enTp3CGxsSSOgKbzDwfiUOJf9SO336tMytkIAUgHN77dq1np4e2REz1LX6HcG7I9xyKDMzM1OuHDhw4NGjR9CwJTYUAh4+fGgJP+HFbtvtM/YF7wGp2tpaWLWe7m9AyiKMCd7F0RNramokCBUTEwMD0IAUjhMTE+VYvmPluKOqz7856/Ly8vPnz82tN/Tu+vq6fkoGJofTQB8C351jAPWurq4ODQ3pgsojR4709/evra3pDsR5eXkan5KNad+8ebOLsgghhBBCCCHkP8rvHJCSD+KCbRfdwFmVuRI5OTk4hSuL46amJvPzGRKQmpmZkUkZyFMy51qbn0f2HL127Zrl+sTEhMaGDh48iCaIiIg4ceJEVVVVRUWF7pWgnD9/vra2trKyUt1+fRB/YQ91dXU6dT8zMxMpa2pqrl69qtGKy5cv9/T0LC4u5vuReMSZM2cuXrwoCeTTwlIWckPOlv9DQrzS0lJIWFBQgBxyc3Mdqwzh8SxKN79oA1sqLCxEtiUlJZZvCcfFxRUXF+OWKa0EpGJjY+XTPGatTSBDV1fXysoK5JEdJewBKRQty8cgvLnZLYQ0Z+4gK/NL0unp6favgAtQCxoUAkMVf/31l4swJrJSz8tcIalCeXm5491Hjx7Nzc0FCiOaASkwPDxs2QtWQOtDJ7raF+2ORtlW2z7/F21QhGV7L2hVPrjj+AjsnPvTEUIIIYQQQv4ofueAlM6QcvzwLZxVuN+jo6PmEjyZS1VSUiITpuBAtrW1yQ7olk3N5RPLwNydiuyON2/eLCws2Lfyqaur2zI+aYzj+/fvLy8v9/f3z83N4ZH09HRJiWfRUktLS8gKd9fX1/U7wfLgkydPVldXZ2ZmJITR2tqKfHp6erq7u5EYfyUxnl1cXMSVMT8S83r16tW///4rCe7cuYOiX758OT8/j4uwEGSiAhcUFODZrq6uzs5O3EIa865y7dq1tbW1qakpFLeystLU1OTz746EYxikbE2KBPqdIFQBVjowMIByp6enb968Kde/f//+4cMHkQTHqKDuimry/v176AryoEaypYglIJWZmfndD1LiLzSjk3cmJyf1M8DoMpDw69evmnNvb69jKCcuLg4FIZ++vj4Uit6kH2m2C2Ny6tQpCNbc3LztdzDLysqQ8vTp0453IeSzZ88CPWsGpNC70eKOM6QsWoJmXrx4AeHdtQ2QBo1ov47mtn+C3ecP3sF01QgJIYQQQggh5E/gdw5I6R5SDx8+tN9tamrCLXj+FRUVhYWFsvmlLu5LS0uDQwufExdbWlp8toDU0aNHGZAKFtDq58+f7ddv3rwJDYvbL9EB+PMyxSkuLm5ubq6rq0tSogXRWCdOnJDTxsZGWLZEEuVBtK9MaZEJTRcvXtSPN0sp+qx9yZ4lIIXE3d3dMnlKFo7pFLzZ2VldQ9fQ0OC48xQehGxv376VmAsqIrGz+Ph4XbEIIcfHx9vb27U6GsjALf1GpIRFZPYWqoM0qhAL9+7dgwb01Ay1IEP0gr6+Ppn6FxER8f79e+hWKghtQFpR2rlz58TmJU6HBCjdcU3ly5cvkYNOYYMq8JR+TMAijIWnT58iMaqPjmnvXPn5+eXl5W1tbQsLC4GmR4GNjY3Ozs53796hIIlgauzS5w9I9fT04PG6ujrY3qdPnxznOdoDUl60jawkcmq/9fz5c4xI9ljb1atXd71ZFSGEEEIIIYT8R/mdA1I+/wwOeHpwI3WSVGxsLHxF+N5jY2O6TAz+NvxnDUjpTslmEIoBqb1jYmLCcaINWkcbRaID5rbQjx8/Xl9fF/d+cHDQnJOSmpqKxDLDSB68c+dOoNIlgVqIl4CUxi9kopzsZAQr2tzcLCgokFu4iFP7qrHc3FyXqT1Ke3u7TiCSfb7tW6F9//4dStDTlpaW8fFxx9xcAlKydTf+6t2cnBxV+9mzZzUmiEzQTBgyZJt/qYi5vk+AHtAu9fX1ekVCV42NjY7C2EFbdHV1rfuxfN+wo6MDbT07Ozs/P9/U1KSxORMUB8GQpqKiApLDitDZkV5DkMh2amqqr68PWcmMMMfYlj0gZdE27Nb+lJiEuSRQefLkCW5Z1nhCKggzPDzMPWgJIYQQQgghfxS/eUAqJSVFNoQC8CdHR0fh2OM4NjYWHi8OPn78CO96YGBAl+wdOXIE3jJ83bKysk+fPuGibPvCgNTeMTQ0NDIyYr9eUlICDWdkZPictj2SRVui/7m5ufX19eUfyLb0MpnFcQPvqKioqqqq/v7+8fHxmZkZM4GXgJTudS2xD412Idn79++ReXR0NDLXp+yVcvz0T1ZWFsqCNqamplALfTwyMvLdu3d4CgZp7rRl2dQcx7hiz9bnGpC6ffs2js0NjySkIlGnsLCwhYUFme8DecrLyzs6OmRmEPrI8PCwvazk5GQ8fuPGDfPi5OSkTvjaNiClYrx9+zbQzuXIf2NjA+qy34qIiNj63y9gol+bTWwu2QsPD5fJkuZGV4I9IOVF22h9PPXo0SP7LagOA655Bert7OyENixbhhFCCCGEEELIb89vHpDy+SfL9Pb2wnfVsFRNTY3P723KJKkt/4fz2traZCYIHNTBwUHdVaq7u1umw8h2yxojOHLkyIYfbmr+80D5q6ur9tkucOBxXSYZ2eNK1dXVOgVpdnYWiY8aaITFMSCFJh4fH7969Wp6erp84ywoAan+/n48u+lneHhYlwGaSGTT3C9fgAAwpwcPHmRmZsJou7q6LPGsv/76q729Hc/evXtXrgQlICUrFs2JTnJXV5C1traOjo7CziFeWloarq+srEDt09PTjvOAkBUe142uVFTk4yiMC7JrVaCNwD98+BDoa33Ly8tmSEhqpIEty6bmEkGrqKiwZLK7gJTPb40wMMtFDCyy55d5saWlBaJuO12OEEIIIYQQQn4/fv+AlBAVFXXixAlLFCAsLCwhIUHnJpirq44cOZKammoJNkVGRpr7v4T72Uup/xRkaZ4lInD8+PH19XUNRkh0QGMxoKenZ3JyUo57e3tHR0cdM7cHpCxTeORUE/zzzz9zc3NmDh4DUlIQLCo2Nvbw4cOBKiuL4ORTfYJYUVtbm7ngDqeOE6xQ0/7+fjkOSkDq9OnTONaVhlLHzc1NpJFTbR3JPC4uThoCf82NmRT0EUsUCV3PDNu5BKQsHQrddm1tzXHHcZ9/xlagfAYGBkzt5eXlmVt9WQJS0iJFRUWWTHYdkHKcciWfkjT1/OjRo9XV1XPnzjlmQgghhBBCCCG/N39KQIr8yoSFhfX19a2vrzc2Np46dSo1NRXeO7z9b9++6YpIiQ4gTUVFxbFjx2S9nm79c/ny5S3/7vUJCQkHDx48efKkRhzsAamoqCjk8/Lly4iIiKSkpI8fP5oJZJ/yixcvZmRkSODJY0AK2UJgiN3T09PR0dHc3Hzjxg37Dta48vXrV6Q8f/58cnIyqiCfV7t///7KygoKDQ8PR4aQUAutq6vLycmJjIxE+unpaeQs14MSkAKfPn2am5vLzc2FYq9fv76wsGAuhZMdoDBS6BSn4eFhnDp+ME5AXSA/2gjNcebMmZGRkampKQ34ugSk0ChdXV1ofSinsLBwaGgIBUnIGOqFnAUFBTiF/CjC3KrpwoULSKlbjMk0tMrKStQIt2ZmZsz4lAQ6z549m52djbLQFkgQHR1tEWbXASnZcR8UFxenpaXBGuvr69fW1r58+aL2ADPe8n/88byBXQZCCCGEEEII+V1hQIr8Ehw8ePDx48cwR1kpubq62tbWZs5ok+hAbW3t+Pg4DjY2Np4/f25OqIHzPz8/r4+/fv1ariclJZl7lgu3bt1aXl7e3NzE3zt37iwsLOiW4TExMaOjoxL8klBIa2ur7i9eVFSEp3TbexzgVCbX4BjJenp6ysrKampqWlpaJMRmr2xaWpoUseX/buDly5elXNnLDBn29fXdv39fl31VV1fLrlgA+evEvZmZmXv37mm2OMYVR/U2NDRAOXpq0UlCQkJ/f7/kL6E63f9b6OzsNJe81dXVbQX4eKWqBa2DrCRPZK7zrezCmJw6dUr2VBLNQPPyUUWfP5DX3Ny8tLQkeSINlKzxHZnGZc4/gublK5kwla6uLnOvN9k1TG59//4d9bVvzW7Xkndty7OoiGpAlpRu+Tekk9lzolILV65cCZQhIYQQQgghhPxmMCBFfiHCw8OPHTuWmJho/zidTlcJCwuDt+84l0TWYALLyi97buDAgQMoSEJL9qWXR48e1T2tkK2ZwJKbnpaUlCwvL2usyudfdjc0NBSosvHx8RDVcjE2NlbDcJZCUWvLNluogjkDyyKnBSR2FFuJiYlJTk7WyV8WLOnNagYCWSFDx9WLFmEs3Lhxw3GTe5+/jrAQcwt2szh7KYFMxSNmrXekbQFaggCqgby8vIWFBRhJTk7OrkUihBBCCCGEkN8DBqTIfwPHvcl/KUpLSzc2Ns6ePSun6enps7Ozjl9bI+5UVFTIMsbfj5iYmKqqKjUSQgghhBBCCPljYUCK/Df49QNSkZGRr1+/3tjYWPazvr7+6tUrLzOJiIVDhw657ApPCCGEEEIIIeQ3gAEp8t8gLCwsLS3NcfHdL0VUVFSqn0Br3wghhBBCCCGEEMKAFCGEEEIIIYQQQggJKQxIEUIIIYQQQgghhJCQwoAUIYQQQgghhBBCCAkpDEgRQgghhBBCCCGEkJDCgBQhhBBCCCGEEEIICSkMSBFCCCGEEEIIIYSQkMKAFCGEEEIIIYQQQggJKQxIEUIIIYQQQgghhJCQwoAUIYQQQgghhBBCCAkpDEgRQgghhBBCCCGEkJDCgBQhhBBCCCGEEEIICSkMSBFCCCGEEEIIIYSQkMKAFCGEEEIIIYQQQggJKQxIEUIIIYQQQgghhJCQwoAUIYQQQgghhBBCCAkpDEgRQgghhBBCCCGEkJDCgBQhhBBCCCGEEEIICSkMSBFCCCGEEEIIIYSQkMKAFCGEEEIIIYQQQggJKQxIEUIIIYQQQgghhJCQwoAUIYQQQgghhBBCCAkpDEgRQgghhJA/hcjIyLS0tEB3Dxw4kJmZefbs2fDw8FBKRch+kZSUdOTIkdCU5d77LCQkJJw4cWJP5dl39n3Ayc3Nzc7O3pei9xHTDlNSUoqKiuxpcPH+/fuhlesPhQEpQgghhJDgkJ6eftNPQUEB3vLhbOy3RL86paWlDQ0NoSzx+vXrW1tbx44ds9+KiIgYGRlZX19fXl52dFF+NWBvf//9d3JysuX6+fPnL126ZE8fFhbW1NSUn5+/bc7bpkQRLS0t0dHRO5XZuww/w0/aVWpqallZWWNjY2Vl5enTp+0J0Ltramqqqqo8OvNweouLi+EGmxevXbuWm5trXoFyYHhIvGvJd8HY2Njz589DU5ZL77Pz6tWrf//9d69FsgDZXrx4cfLkyRCU5T7gZGRk3PxfDh06JLcOHjyI0/r6eth5YmKi/RH8AGEEiIuLcxcgKipqaWkpLy9Pr6D6GFLQdwoLC3fRu/eO4P5SmHaI8XNzc9PS4uiDw8PD379/tz8bmhHsj4IBKUIIIYSQ4NDT07O6ujo1NTU7O4v3Xfx19Gb/WOC9l5SUmFf6+/u/ffsWShlcXOIbN27gVlpaGlwOuHyhlGp3DAwMQOA3b95Yrvf29g4ODtrTR0ZGwj5bW1u3zdmSEk5vbW2t+sOgrq5uY2PDHguzc+vWLTM65l2Gn2HXdhUREQHZoFU8DvXiL47fvXsH113TQLfr6+tjY2OLi4u429zcvG22ubm5SGnqAQYmkQhzagy8YiS7evXqLiTfNb9IQMo+OOxLQApiQEIYbQjKch9w8GsCC/lukJqa6vPPaMPxwsICjHx6ehrdUOeR4ZG1tTUYLRLgWWTe2dnpMv2ttLQU+eg/TmB4eBy/X8gZto3fr72p924I7i+FxQ77+vpevnxpJsAQCktwDEiFZgT7o2BAihBCCCEkOJiBgOPHj+MFGg4DF38pDx8+tDgVUE5EREQoZXBxiWtra1dWVkIpzM+QkJCAisDk4ENa5jIECkj5/N4UvF8v+ZspL1++jLLgCZsJPMbshoeHLc6bdxl2za7t6vnz5/Dwi4uL9Up+fj58+7a2NjmF5I8ePZK5J6gIXFmJKbhnC12hmfCgXrlw4cKWn6ysLL1YWVmJsszgVwj4RQJS9sFhXwJSPs+G/fO4DziBejFMcWZmRrv8pUuXNORkPgL7LygogKs/Pj5uhpJNBgYGzL45Ozvb2dkpfVMe31W19oTg/lJY7LCsrAyK0vxxt7m5Gd3QMSDlC8kI9kfBgBQhhBBCSHCwuBClpaV469V/a+M1F2/Vd+7cqaqqUg8hJiamqKhIFl9Y/DQkxiM1NTVwj/P9SIJAWcEtKSkpQVZwJCyrBeH9Ip+7d++a6zvgRZeXl+N6ZmZmoBr99ddfEKyioiI9Pd28Di+6uroaDtXly5ct18+cOYM3+5s3b9bV1aFcvYWUPT09i4uLUhfx+pD44sWLkkDq5fMvB8Ozt27dMmN52dnZuK6n8fHxSGC6KC7Vxy3UAtKeOnUqkEucm5vb1dUF/xCyXblyRa8nJydDb8gWxZmeaqBWMMHda9euoS5IAE2at1CKGIbqWefFoBQpC64mng00CwkNBwcSd1Gd27dvm7dcAlKQWZvSpbHMlKdPn3748CFKgbVA7ISEBJ9/zlRhYaF6ZcgE7QsNw1SQp1YE6aenp+H34kBNRXM+d+6cZc0aTNG0KKiosrIS2ZpN7/vhLUNm9B3H8I13uzKRxTtPnjyxXG9pacF1qbgF5OZxTtP79+9HR0f19P79+yMjI/DEzIVIaLi+vj7zKciM6kMJprVYQO1QRyRA7XJycrw8i7bGLZgu2sgMSB0/fhzGoMmgKFTQ7CzQdl5eHmwP+jdXIP5k73McHCQghdwc7dO9UAWakdaBZiADxlKzq0oXiI2NhZZk0RyKxoE5qwjtDiWgyhYBAhmnhUCDQKABRwnUi6GT/v5+x7Lsj6BoKBxjtT3x4cOHYdXoxXKKiiMllGlPiUaHTpBer6C9dPKvu4Z9P3orckZjmYq1DKFHjx5FKRjYNQEMTK+YPdoX+Mdrd3aIpsSptCP0gI6J32WXgJT3UZR4gQEpQgghhJDgYPEH8GqO19yMjAwc4517bm7u9evXePdaWFiQHSvwMi1rMeCs4u/y8rJ6tngXHx4ehjP/8uXLqakp5PPlyxfx1R2zwmvx/Pw8Hmlvb0dWcFrUUX/69ClSIp/u7u6JiQm5KPM+3r59i/S46zhn4cGDByh3aGjo8+fPGxsb4tWHhYXJLJJPnz7hOjKB8Oqawof88OEDxEBBcHTxODwNuSXLQGStExD33pwEIfWCnKgILqII+KgqDJy3jx8/6qnFo3CpfkpKCsrFXQiwurqKv44uMWoBZaJQyIaqaQuura3hSl9fH1pncnISHrspraUVTOLi4pAPnsKzyAG+37179/Qurpu+X3NzM1pZjlEEJHzy5AmknZmZgd9lbxowPj7+8OFDHKAUUzM+14AUlPPPP//IsUtjmSnxF2LgLqqPZGIGqD6uSOAALqUsU+3s7ES5uA5H3ef35JEetYCKcKBetOYMDUDhsbGxZqXQgnIMxxLKR11gpcjk2bNncl123oHMsEM0tOPsHu92ZSIRZEvs1fdjGZe67iYVFRW4BRfXMUOTu3fvIiW8bjlF37l//z6qpnKiXqgmMpRTdLS2tralpaU3b95Adeg4jgL4/PqEElZWVjBcIMNtn8WAAEkggLS7PC63YGy4pXFG+PA41RAVLBOtDGuHSUOlX79+les/3/sCDQ6QEOOPo326FGqC1v/27Zu0vsiADDUlioAxwOqQA2rk+9H7dHHltWvXdBUbNNzU1CTX/5+98/6qKlna8D+8DXyKAdN4FcQcxzHH0UEQEHWhyCgGZFAuoig4gIijiAFBRvBKUPyedWpRq92hzwZRUev9gXXO3h2qq6v79Ft0VycZZwieSSB2wnGRNIrr6upQlAzDNFloHU2OJpY9evLzJEDP9G80hJmcJN22bZs+cZ2Yfg2jAfqIBHQTBoOStcbQFLpp0yY07O4ilCONciDRHdFJP15TtkNmMHrzzJkzIhU/tZcvX6ZPkSc2rnn6WdSQBuaQMhgMBoPBYJgeuHwgJycHysf6XrZjCIGXJbLwPZ6zhIWoiDcHOgpFYYEuJP/48eOshoWr5+bmulFvk4qqr6+XBORi8X327FkRA86jIVEWLFggH5BTo2ZQfvQAAvSAWmDR8hXKLYQEZusStu3bt8OylEWzOudtZWWlfG1qamKtqYX7T+VIu1paWkQD4h1QR4/HIeVpvsjw+vVr+c88bBPSnnRoCK5IRv26cuVKaI8SErLQm4iX1AshoF56U7fVnD9/3vVcZHVIIYlsbIndzkM5WhqKCu3fSe+Q8nSWmzJ6ZM91SAWZ6DOaEaYq3F4QPbKnJUtL9XzcmjVr+Cp7pkT56kbZsWMHr7Zs2aKfda+fmrSL9HblAhbqNkpB17uKUtDk7u5uLCpaVBTwagqRY1DYDKPy119/pe30new9YXzphsogM9BgzhoeqKqqit6J9bmgTzJKlGWxFk9e2Qwi3Fte8TWlQ4oJqre3V6Rlvjp58mQwfaMvdnJIsk9/pS6k91tbW2XbjihZnbxSRW1tLcWK6lyHFJZAjXfu3JFK8/LyxCA9xhmCfxIITTghMIp7enrWT0D9OChTHB80yj3vGSQMfPTGbBMtX3yprkXRBNpL065fv+7OJ1kdUh4NowFaIa/QcEdHh+4BjE6hDQ0NGLOaH5pXV5o7omN/vD7TDmmRuMLp5W0ZMOlRgu73dJF+FjWkgTmkDAaDwWAwGKYH8AGWqjArFusseVlm6SVcsvjW/TXBxLYL95au7du368EBqIt6KILM/66hjklFCSNyd3awLG5rawsynJlVdXNzc4jK8oQyQ1GBXNAKaEz0IExHBu6Tzs5OZUGszp8+faqvIMnurpA0Din1LyxdulRpduB1SPmbD79yT0UdPnw4pUMKjjEyMuK6JyhnfHxczglGe8EF7Ih6XZcT5YyOjmonZnVIUX5syYLLly9reljWhw8f1MUQTMYh5emsSTmkXMgrPU3pcUgFn54/QjmDg4PiF4hy9aGhIWkjzFxcKh7Wl96uXNTV1aHJ6POFCxeSJXrJV3FxMc/37duXJEYIdJkQ6d9++w3zQHsrVqygBNntQvPd0UEPynYngTiSQg4IAfrUbWVZ86K3sbExt+N6e3vTOKSYQDD+6O6P6Rp9sZND1D4lepen0hBCvQ8o8++//9YqqNSd5VyHlISij15M4TFOF1kngawOqY8OyOiWw+wkMfUZXDrWYgd+bW0tPR4tn9qj1r58+XJMFLHJIg7HIJ1DKlbDErlfywkyQ4YnYmDRKRS1628i9kaTNa87omN/vD7TDtEb2nMLRICksO7pZ1FDGphDymAwGAwGg2F6wIoWZnLr1i1IwtmzZ914GVECf/z4ceVXAqHKsmGEpTn0D0bEYnrv3r3upqRoUXI2cGRkZHgCrL8fPXokbynkfxlcuXJFRVq5ciWkQg4+xO4WYTXvhrxRsEaH4bhPoPG6IyYUh1gIhlKONA4pbZfENFG/jMch5Wk+xMDd4hF4wyqH+GFDQ8OLFy/cBEJjZOOJxyMTZNTL24MHD7oPYf7qOMjqkHJvZAsBoovCsbGCCTx58oTe1ATpHVKezpqUQ4pXly9fplKIIkPAfeV3SMn2LuFv5NX4TSiK58MO+Kq71eSsX19fX3l5eWzwoPR25UJCZUVvuxeHjsurg8wWQggzrY6Wk4SrV68KxaWizs5OeUirGUFB5hCfO7LoYrmGT4B5I4MbRkfh6jNr3uvXr7ue7uBT54LHISVKiHrfpmv0ZQ1q7tqnf8ZzER2nzHg6WKJx093RJw5H90ipwG+ciqyTQFaHVFdX19wJRO18/vz5WI7rKo0d+LQ39n46FO46uVwwnOXsrYQkS+OQitWw7AqkFlUUnxm5smEqmlFmNrm2ksmWlPqD5fZU7I/XZ9phe3t7NDJXkss7/SxqSANzSBkMBoPBYDBMDzyOgOjim/VxaE0sXEiO17H6f/fuHXSFRTmLePc0SrSoY8eO8WTjxo1LHLgJIACs1yHDMBPdKsVqe/fu3RIHKhoE58aNGxpwygVsNhS1R3YZ6Ocv55BSDh98yig8zRdG7Xof0jukaGaIuouE4pfxO6TkkJdLgYIMjVHXDHzJ/Y/9pBxSotUolJt9ZYfU0qVLoZEtLS3Q1/z8fGw1vUNKtnedPHlSSK/uRmloaMBcl3wK9/QiGq6qqmJoNDc3R5s5NYeUGFI0RrU4JtzdSQUFBZjKrVu3JnU2R3bcrF69Gp2oO/LKlStyaRp6cAO60/ympia3+a7z2kXUIeXJi6WFQjVHHVKqZ9chJZu5ojvLpmv0TcohlXXGU0THKaNDZxK/Q0oi1rthtgVZjVOQdRLI6pBKGsUu3BBR0Sxz5swZHBzEUKMZKysr3b4OQZw4EqVOxqYbL9/vkFINi0sOo3IVpXupYqdQhsPQ0BBSMeG7sd5CPRX98fpMO0SH1BiriijMITW9MIeUwWAwGAwGw/RgUg4puPfHiZgymmZ8fFzWsixzb9y4AZ1g0RziDNGiWIXHbl4IQZK5hwSDTCyY0G4dwdmzZ1nruxxYxIAkuI4qHkIjkVa++lfnLOLd6ELBZBwHkEDXPYTAyig8zYe30DrZgSKQMC5pHFIVFRUfPnxwY6k0NjbqIQ6/Q4p6R0ZGXM+dbBbQ5lCOviVxe3t7eocUSuvt7UXzsyYA46KzNB7wtDuk5JXGJAo1P7TXT76qZqgidKAs5EDBopC2urratavTp0+7+yOSIMmipHpqDimagBpDvDQnJwfOj2zqe0JF4oBLutktCXJiS7Z36TAUL9WZM2eo2r2eTEIIpSk26pDy5JXIQWr/aBj+r6Yofadv5VixuFTkAJpG9Q4mJoTpGn3+ySH41D5TznjBRO9rACamO9iviuR3SG3ZsuXjxIFKt8kpjTPrJDA1h1TI2p89e6Yx0aNZGFbROV8gfa3utpBrVZw4EoJd/ErqWVu0aJFrMx4NIyoaiF5b6WYMTaHys3jgwIGxsTHX+xntqeDTH6/PtEMGUWjnrwfmkJpemEPKYDAYDAaDYXowKYdUkLkfDQ4GI2VlDO1hla+enZMnT8pNds3NzTdv3mTNrZ6R2KIeP37c19e3ffv2+fPnw6sPHjwoGz3WrFlz9uxZyodXi48JBsIC/dq1awUFBSzoSUZFEICQwGSBErS1tcE0SMliXeK2yt1M169fX716dX5+fkNDA9n1Yib/6lziSe/cuZMy3ZvdY9sVchzIboVTp06hBxoCwXAZRVLzg8yWEFoNUSExPCSU0UWIH8K7SEwXwJGoVPxTKo/fIRVkqKDETyHvpk2buru7X716pdFe6FMKRz8op6mpCdqW0iE1b948ErsX9glaWlqwJSGr0+6QwgA+ZgL3Qk3FDt3mi0nwBLuC+sqVfKqZ27dv8wQL0V14IQeKHIQcHBx0o4ZjpegH86NqiqJejEe2aEFTjx49umDBgoULF969e9c9q6iYmkMqmHB03rp1i4Yg8+7duzEAl+hSb39/P03Ys2fPjgmsW7dOs9OQ6J4aBV3z7t270dFRtQSJs8PDUAgk2ZV26dIlFE6atWvXxgbtjurTnxfZqK61tRVlbt68+dmzZ67TBD1j5I2NjbxlRsKi+KqeCCYBJD927Ji8xWLFizEto88/OQQR+/RU6kJ6n4agE7TBuHP3EvodUrQO/dDdlIxmysrK5E4Dj3GG4J8EpuCQoqWMptLSUpqAolCvu22NLAi8bds2hiQTJr38MS4Yv0AuRlClocBHjx5RFLP6li1b5F5R0TZ6QNWUzK/Jxo0bnz596tqMX8M1NTViM0ynjB366/jx427G6BT68uVLSgvF79Oe8vx4TdkOEcwzJ0RhDqnphTmkDAZDWqxatSr2fywGg+FbwUblTAMEwI1z5IIV+fj4uFyop2D5LvdPA5bLN27c0C0S8D0WzadPny4vL2cBDQeAusj/5GOLgiPBRngupbGml7U4a27yysOhoSHdkAWTZykv9cq5jChY0Es8IAA10kU2/Eri6YLe3l7XdQIbca8wF1eFUjXW/T09PVKpPHTTh9rFB77q3YJz5sxpaGhQYSSuljL/pOYHGcIPjZTn9A6M92PcMZwg82/zwcFB9wnchqIkL012IzrH9oILXsHZaKlkp6NdloIAT5484Tm9UF9fT0fr/iA0w3NUF1sshkEW+FjouQTTlau+PHYIm1Vnlr+z3JTBxGVSulEi1Hz4HlLxBL5dVFTEZ30FgxUrUo9bqGS5ywxFQexdUcVdIpVSIJ0uvYaccq8cIEFsBLT0dhVFcXFxf3+/1nvv3j0kHxgYkOv/CgsL1cwU3d3dkvfKlStk0RsAozhx4sTHzJVk7kNxHFBvKDGaxCClClh97MGrIKLPrHn37Nnz7t07nvO3rKyssbHR3TzC6BajRQnYP12j/o7c3Fy0Ic3nuYbxnpbR558cgoh9eip1IV4P/iIwH5hUXT2Hqggio4+BJlKBvr4+PVOZZJwh+CeB6ITjImkU//nnnzr9vnnzxnWjiDNIdIjF3rlzxz1nF4JsL1JP5aJFi5qamjAVNWn33kA+yygmS2lpaXNzs9qMX8PUcvXqVS2WQvRK1qQpFLsipd6jp03Tnkr68ZqyHYoXSf+tkhXpZ1FDGphDymCYOiAS7vZ1P1hJsyZjQp+dAZ89/1adLObPn88qmSUFv22xVwKnAT+6TNzRWJ4KJl/IwFRl/NHAwvTrOwJcK/rKVRtmJn7mUXn8+PH0y8evBr07PBb6j/EQYGJQ8dCPAgt3d0OEHJoQSuwpijmclO6FR4LFixcvW7YsdCiD3wvWzUlFCWgOaaJhfeV5lINFNRAtf8mSJW4cKzd9KHE0rzQk6W1S84PMzgKV1tPk2ENYZKSx0Z71q04gGygWLlwY+5aFhErr0UPKepXaeeyQBqoZ+DvLTSlAVPeYUkiMefPmoSW9gt19xVdaqrqNlixLo1iB6TiKjS6ZKNBzZmqydpVUr8hM98Hto46kWHh8lJ7ak0SiIcsz8EwsUX1mzUt1tE5ElVOf7luZGeRhdERgBqoZF58/+gLv5BCb11OpQLfhuE1WxI6UaC0I7x7dVSQZZwieScBz6tMzinmFSEkxxdID4hDahCVaiuUCrgLlvLA892tY86KBqMBZpzJFSBueH68p2OHly5dD91f4kX4WNaSBOaQM3x6M6kOHDh1xEHup7QxE7HnmWDA3dXd3y40nx44dyxoeYrLYu3dvSUkJert///7169enUEJtba38vysUeVTAbFtYWNjW1tbc3Bz7k7xx40YE8If25Lfq4MGD586dKy0tzc/Pd19RuHT94cOHd+7c6flpp5bovcspgXjbtm2rqKioqqoqLi6O/vuC3799+/ZVVlZSi9/VyA/hu3fvoidc6NOioiI3BoTg6NGj7k20CmhVfX197H93owhZUZoshh8Y/lGJUZ0+fZrhhklndV8ydUhipmJdSLFu0zmZGcaz8P2iozLIBDE5c+YMaUIu4IaGhvQhSL9HvH37tqmpSbgZs9OlS5dGRkbsMmmD4VuBKSh6k5phhiPr0dqfGdu3bx8fH//M7Tzfu4ZZI/3777+nTp361oL8vDCHlOHbQ8LXsfL+dwKhXZozFukdUgcPHqSNBQUFsC+m7Gl3SCkOHDiQ5kqOEJYuXcoPEqwyyPyHM/r28ePHHz58eP36tWzHdbcH5+bmXr9+XfbHev4nwK/dmzdv6Fz4s4QkcOP4tra2QrRevnzZ39/PKxIkOSU7OjpiL6/NimXLltEKhOzp6UFFcnEVHFgTrFixYmBgYHh4mASjo6Pv37+PXiWjQFdDQ0Oh/2tJXA+qEE26oLTodvpgIlyo3KiVFSErSpMlK2j12bNno53++eAHnpJn4AaWHwP+Ucm6iick6OzsJE17e3vS/2AZs83NzdgnA/PevXsMrr1798qriooK2fH+6tUrRsTY2FjoynPFlxuVgOeI9/z5czmhILdBC7Zs2fL5K+mZjN27d/f19aET0QyfdXuUwWAwGNLge3eXfGk8evQoKTZZSnzvGoaOsY7yHBAxfGmYQ8rw7SHXIsQe/J7hSO+QYq4fGRnRr1/OIXU5g8nm2rx5M/JoSM4Qbt26BRHSIxL0l55IhxWLj+nGjRt+h9Tq1auPHj0qW6jmz59Pge5lOvfv34czy+e8vDxeJd0OM3v27ClshSULhHZoaAjh5Qn8vKamBpk1tmJ+fn5ZWZlsEqaxb968IX1SgfD86FYyGjg8PAx/5tc99CrJIRVkNo6lbEXIiqYF0Zu8pwv0cnpfm2Gy8IxKxtr4+Lja2549e+iIEydOxJZz7do17Nzdo6f7HE+fPk1G+cwIampqSrpU6MuNSoThiWzOYmwyS4hPVt+S/cf+ryZtXLFixZo1a2JjABsMBoPBj3nz5oV25RumFz+Ahv0nPAxfGuaQMnx7eBxSmzdv3rRp06JFi6Ac7hklEkPOeRidAXnCc976PVyw5QMHDpw5c+bw4cN6UBmCBD8nb3l5OfW66XlFysrKSsTQw+3ikIJEHTlyhFdJ8Ud37dp19+7dkZGRQ4cOQQ6DOIcUjE4Oi1VUVLiOIdJs27ZNv8Ib3QtNIYfIox6NwsLC/v7+aKQPhRzMoYEalDHI3LIhl8LyCgljb7tIiqMJURR5hLumJ6WNjY3Dw8P61XVIgUuXLkF9YzPSLzt37pTPcslLkLEHVPf7778nHU1CSx/j7oKV3R+xWSQwZOwR9IULF0L4jx49Gnre1taGScg9UKH7NZIcUmgb2ZTki8GjxqhFRa2IvNTFX4xEbj6SlAwohgC2vXfvXvcnNmrDGzZsQNVIW1ZWRrFy7Eu0iib/+OMPrFE2T8mtK1oUJqr7aPRJSUkJA0dOJkKh5Trhuro68lJRkBl0VO3GUMAO5VVSvUHGyIuLi8+dO4fwnlALCI82aLWrtKQRLarj7apVq6iLt9Ejb7GTDDK4e/fkIptQRkp294XRcW7V6EdPenomHEZWUVERnRXqRIVnVGJp2Jsbf4HEf//9dzSl3BOftO/JdUgFE77L2K2LX21UyuByba+pqWkKe0INBoPBYDAYDDMB5pAyfHt4HFLQ+9bW1hcvXvz7779v3rwJMj7shoaGd+/e3b59u6OjAzbl+gUgrmNjY/fv379z587o6GhSNKX//Oc/AwMDQ0ND7e3tFPvs2bMg4xKSW1Sam5thOB8zd0tLeondA03666+//vnnH73oFPF4+PjxY/4+f/6cLO79OwqoIHV9+PCBNHIRQ8ghBfnk+fDwMPKQxt3dAJ+n7VoUCXir/gsYI7nEDbRs2TLE0DuVQ0BviC03iD969Ai9IZVQ1qqqKrlNhuZTe+iOmyBzk/Tbt2/9//2YlENq3rx51OhGBg05pJAtaYdU6CJnuu/GjRuDg4M8pHVJ0UaxFrogSuwhzIgdGxWLVqPbWF+A3KBRWFjoPlyyZAkCQNpzc3OxvXPnzrlvkxxSIUugdW1tbU+ePIlaVJIVXblyhepev35dVlYWTNwjjh6Qn0rlfuIgwYb//PNPuZy7t7eXYsWPIFq9desWPw+6d4Yy3RZdu3bNdRlcvHhRDohhWki4PwOGLQ+xXkqWy3Epiieug5VX7rXB0Xo3b95M56KQxsZGikLy2Jj9+/btY+AjEnPCyMjI1atXA++IFtVVV1fTLrLIbjgN8uWZZOrr68kiETFXrVpFpdFLglGmuopQO/LIDCPA1OVib794KKGzsxPb7uvr0/u2XXhG5d27d0M7N5GHiqIp6SbqTYpJFHJInTlzBlXE7pD6aqOyvLycV+4sh1TYv8X4NxgMBoPBYPgeYQ4pw7eHOKROnjy5fgK6x0fuGK6trdUrDGCG0A8NOF1VVYURC0dduXKlSx137NjxceL+4xDg9pBG2akBY9QNAu5mBHiyuMC0KL3EV3fNiHjQJ/na1NSEMLEujAsXLsAe9WvIDQF5oy4lYOfPn1fSJbsShJzn5ORAgPmqbXzw4AGVBpmdDj09PUlbtERvbo0SxVAvXpUGRu+QFvAcboluYelJ18emcUjRQbLV5eXLl0junkCBpfOwrKysoqICpg15TvKshagvlZJednWVlJSorkJ4+vRp9BgdgOrHGkleXh5mlhTLTFhxyDPCQ3pfNHDnzp3QFo/0DimPRcVakXolZIDs3LlT9xZJ62SwJNlw9MieaFVcP1q1xyG1adMm0peWlspXOk5cTtEje1kdUqF6aRFWUV9fLwmYFmhsNNKB3BeOziUXfacDJGlEi+r6+vrE/UoWXml4bM8kw6QxNDQkg66jo6OzszOI4NKlS6SX7qCxcsewjG5EpWS9DjlJPGpENvlMObE+OM+o7OrqCvmA5MblaCEo88OHD0w4dIS4NbE9de7IoGZUYtt1dXUjIyNJBzC/zqhEV93d3aoZgfjUQhsSDQaDwWAwGAzfBcwhZfj2EIeUC90pAM/p7+93z+k8fPgQ5qlfoeJ6iiRE14PMndlnzpwJVQe7Gx8fj93K5EJolfgXCgsL+UxRIWcT4sGp9OuhQ4dIFnsXlcchBf2DVbpsX1irRPbNycmBBwoJ//XXX4eHh9va2mT/RW5uroYGp3wJCi6IbnnoyMB9ApfWoy5+h1SQ8QXAVKGCJKPJ0X0ZaRxSO3fufPDgAdkRFc7sus/u37+Pftrb2xES+WnXzZs3Y0uLUl/1rSxdupSvsZHIKVO2pYSwb98+skS9bE1NTe/evYvdoxFktB09UUi71LcixbqHsNI7pKIWpb0Za0XRHTqhBKLnJBtOckiFGL7HIXXp0iXeRg/TTc0h5dYrZuneTki/RPtx165dJNOjf0lwR7Roxj35dfnyZfpIlOOZZIIJ3y72SfrYkO1btmxRfwpdhsD80BYVFamoscGAXPFKS0vHxsayhtVLGpUvXrxobm52U9JHFBgt4c8//yQvWt2zZ8/WrVuR1p1+ZVC3Z9Dd3S37K2OF/zqjsri4OHrET4xEo1AZDAaDwWAwGL4jmEPK8O0hDimo2twJKGeORg1/8+aNXHsvkEvNJHxJY2Pj+Pj4sAO+Ri/oFXoZDVwSZKKfwEuhozCloaGhj86dEbBxueSovLxcuXdIvN9++y3pf/Ueh9TKlSv5fPDgQTd9b28vzZHPcEvZRwB7vHv3LqxM9l/s378fkWKDHEUxMDBQW1vrPqmrqwttAfM4pBRUimJhvKHnkzqyt3jxYjkJpRQ6dGRPHDG6gctFlPpqH/EhyUHz+PFjGHX0uVBc1+UBysrKsJxYCxFA70P7TVCd7PIryGDDhg20zr0OLL1DymNR/n12gvnz51dUVKBe+kiO42mCWBtOckiFQol5HFJNTU2x5yun5pBy6y0qKuIJY1xHNGqM7qmRTowNnZY0oqOqo+94IufRPJOMoKuriydJtwdIpG2ZeehNzAkVyfarq1evPnnyJKt4OTk59+7d4ysVeexQERqVmDoDyk3A2McYohmjrlWEUQsMHdlbvXo15odg0XK+wqjctGkTgy6qc3H/bd26NVqOwWAwGAwGg2GGwxxShm8PfwypkENqYGAAdrfEge5Iamho4O2STxGNLbJixYrY/9gvXboUItrS0rJ9+/b8/PyzZ8+G6PGyZcuqqqogRbr7YFocUhTL51CYmH///VcvcYPSj4+Pw7chbyUlJZBY2a9RX1/vOnH8ePXqlTJ/FV5vak/vkAoyx3yiuzwmG9Rc7vXTvRghh1SQ6WiNfxQSewrUF9ug46JHn7ClkZERd3cPHYG20bNHeIlx45qW7DQJgR7Xkr+aQ+rhw4cvXrzYu3cvfF5iXbkJojac3iF1/vx5/eo6pG7cuOFemKhIcki5O1/8DikJes384I7oaNB9CXQtcZ1ceEZ0VHUYMP0uBuyZZESHaIOOoNVJBs/g7enpWbBgwYcPHxhWSIiZkbivr0+PHGadcNatW9fY2PjROQ7pgTsq792750atAq2trbH3gZaVlZHLveqYGrU3Qw6pIDOOYu95/NKjEh2i8Fu3bkUPRMums9gjgQaDwWAwGAyGGQ5zSBm+PSblkLp//35SuGvoU9Kt5C7kiJyEPdYn/JVLwZR5ytco+5VaJMu0OKSgWLAv11u0atUql8ItWrSIGsvLyyHMEtfmxYsX1dXV//77b9L1WFHASF2vAfL39/cjv3z1O6RCTj2qFgeZ+3CyDinRlfp9Qg4p1A7nh69GM06N+kqgmdCWK3oBS3A1v2/fPlRNW/zCi22oB4QeHBgYoJxZDvbu3UsauQ4v+FoOqdBuO/ka8lgFn9qwVKHxkoIEh5Q0UNtLZ6lD6uzZs7TOddlIydIdclTNlUd9r5jQ0NCQxyElM0PWLUKyR0YisrsCeEa0qM519DBAent75bNnkgky7p6nT58WFhbSatdJ50IOnWFvciMBMkh17saflBMOwoQO27ptVLijsrKykv7VkufNm8dounTpUrSQ7du3hyzk+fPnGksr6pCi32ODo3/RUckT8dzF3rEo1cUelDYYDAaDwWAwzHCYQ8rw7TEph5Rs6IBcLV++HKqzdu1ad8eBhFgqKCjgFexX9hNFi62trR0dHT127JjcUA61hmPLdhLoDZ+3bt0qx52EVh06dOjo0aMLFixYuHAhbA3OFive1BxSQYZMyuXrNGrTpk3d3d2I5Dp3Ojs7Gat66EaiJn9MuIgqFtK669evr169Oj8/v6GhAcqqEXA8DqkVK1ZAQc+dO7dnzx4Elhvlr1y5Im/RlcShv3btmuzb4rNueYC+qn4ooaamhr6mmxDm5cuXcHX1asG6nzx5siUDyPyDBw+oJTYuzNSor/hQKLOqqgoJ0QC9jwBjY2MaoYnq+ErViLdjArH2QwmuxQqrDxkw3UePS/Tr4Gs5pNA8Fd24cYPakZy2aIIkG5bDhpWVlYwXMadYh5Rc3kdRVCobWNQhtWzZMvTGuCssLKQ0BpcGZUfalpYWJBHTohf6+vqePXu2Zs0atC3RxDwOqSBzqossaJim5eXlHTx4MDpRUCxl9vf384pWlJWVyd46z4gW1aGr8vJy5JfzenJNYeCdZMSHIvGkSJAURkrCwDFIdZ8j5s1XNyC3RzwUSJNzcnJoDlncs58C/6hEbGpvbW1FcsRrbm6m7zSevTsqqZp+7Onp2bBhg5wf/Jg5PS1vxSElo5Ja6urqov4jwZcblVgsPctDWqqjct26dVoIMrv3kBoMBoPBYDAYviOYQ8rw7QEX+vhpZBkFdE5uuHdRVFQ0ODgop6LgXXrDepA5CAY1lVcfPnx4+PBh9CBPkAkHfu/evfHxcZIxBjTwOcSPXDyHpFELn+GEQYY6wnmkWMrX4yEh8YRhxrowzp8/j8z6VY7daVRvaoGWQ8ykio6OjpBXS/ZWXL9+Xb5CX/kKV4/VZxJg3W/fvpUqent7XUeGuFRiqTWkEd4LZUUbEoz8+PHjenAG6vsxAt2rQi51W9A1cHJJgIZpoxsjBk1qdnrk/v37GkM6BFfn0FeKkj4SNfKVh7EZIcZwV3HkASg6LJoWYSQSykq8EiHU1NREi5o7dy7Z1UmB2WAe0cOh9Bf2KY5FPrgxmBQhS/BblN+KBL///rtET+PvH3/8MTQ0JB6cJBsOJq72+zixdymkVQHjSLoPM6ivrz99+rS74e7gwYMSAgmgT7XeEydOiFWr12nLli2SEvGw6ubm5rq6OnmVVC/GIEMVUGms57qgoABjkzR9fX27d++W50kjWhxS9OCLFy+kUUjo9mDsJENedKh3L86bN+/169ehaE0KmvbRORosxzxD25SSxEO9ErgKtLa2RuPE+UdlkHFlDgwMqNLcG+vcUSmq6+7ulpS0zj1iKUcmBdTChJM0uL7cqCwsLNTeV7iRp/755x/3J8BgMBgMBoPB8B3BHFKGGYGko15QrCjPl+fLM4h9m5eXB1ePHn4JAZpHstAxEEgmD/XWefcV1YXOA0bF85xZC1UUTSm7uhYuXBibPUTU3dDv6YG0tC7WSZf1tB3UXQ+gpa8u1Orc3FwESH+yL4qQzkNFZS2ZvMuWLUMDoj3o7tOnT9Mc0wuhsbFR7yicnUFsMpUn9rRRVOasFpXViiTNihUrxGCy2rCAseA+T1Ij2dU5EipZTCsaWRwxQuHGZPeWiueacVK9mA1DI2v8fro1umcwdkTr5jKe89YNoqSInWRCEpImZc8GkSHsES+Y0FI0vlIInlEp8kcHe3RUBpnjkySewpSidX2TUclsSbLQjRA/Cegv96StISUYVknn+jG8b3L2c7q6khnGHwiStzt27Iid7mYmvlWPGJLwOT1iU9akwIIn693BU4ZnGpyZYJGwcePGrLTO8P3CHFIGgyEVRkZG1q9f/62lmH7wO3fkyJHYI0UebN++fXx8PHY3nGHmIzYe/PeIn3xUFhcXDw0NzbRFKrT/8OHDIdq2du1a3bg3LYieZ88KDL6oqGjevHnTKIYfJSUlSXHWvhXcixRC+Pfff//888+vLE8wpa6MhRwoDv0DQFFbWysbkPUc8bcCEtbX16e5iOBb9chPix07dtTV1Xlclp/TI9Nl5z8JYoMYTBc80+C3wpIlS44kYM6cOT/Mms2QBHNIGQyGVGAROeUNFD8kHj16pKf2DN8XfpjFzU8+KqE3GrBs5qC1tRXrevr0qds1ly9fjr2MMiW2bt1aXFzsPpksu5s3b56cA/VfITq96Ojo0LtcZwh+TofU0qVL9fbYL+qRjBpqbJqPn17AmoTJ9ghl/gCz+jeEXIixcuVK+RrVZ/oe+fwp6yfHz+aQ2rVr178TwAhHR0f16+LFi3+YNZshCeaQMhgMBsPPhVmzZhUUFHzO0VHDTMDMdMbdv3//1atXrJ7dyFmf6ZC6dOlSyLMzWXZ39OjR4eHhhw8fPnr0aMpiTBazZ8+eaaPs53RIbd68mVfubQBfCFFDjUVKmj3ZHnny5Mk33//1vcPtmqg+0/fI509ZPzl+NoeUC35AQ4ZnDqkfHuaQMhgMBoPBYJge3L9//9atW62trZA3pRNRh9SCBQuOHTt27ty5kpIS14kgd7/Onj0bQlJRUTFv3rzdu3dT2tu3bw9lIGUKu5szZ86RI0cqKytDlxtE0dbWRpbff//9Y+QqWKqj0ry8vLKysvLycgnERr0nTpw4c+ZM9LKLHTt2nD179tSpUxJ4XoBUFM5fOIPc2snDTZs27dy5U9PMmjWLr2QsLi7WixQBiXlCLkrwxE3buHEjeRFp7969ri9y8+bNVDR37twkVfAEgdEn4qV3SCVVRxe4DV+3bh0JQkogwenTp0tLS0Nh9WI1kLUrFy9eTHpM5fDhw6EAcLzCfmjd+vXrkxxSvKquruYVIqn9SKcjp9zpqYljO1fAE57zNvZmiSBzP2nUUKV30AN5xUXLcz5oCBs6jowUi+2R0i0w1CNohu5Aq3pnqIIyqbGvr6+zs5MP7vHYpIEWRayet23bphePCjAMt/yUw2HLli2hQ7uU45ZMGppG7ZJRn8uEIBXJGAkFcPSYh6CwsJBX+pWR7laBTR49elTiD6BYPvMkSZ/SI/TmyZMn6YuokQimNmVlbchnaoO55cCBA4jNKzekIxbIE7KQMRRZKdbkUGBRURG1uzODx4xDYy2rJQjUIZXUUv986I44bUt0GqS9pNFDmlRBRW5jma/0iqGkiTqpxqwzRhI8DqmkqTVInrti+ytIZ2+GrwZzSBkMBoPBYDBMD+7fv3/79u2CgoIPHz7oqd6QQwouIYcR/v77b/4ODw+rUwPC8ObNm1u3brE+GxoaWrt2bUdHB9Tu/fv3zzMQhxHsjgIfP37MXx6yWK+oqEgSacmSJQgDC4J4RG/8RID6+nrqevTo0f8ygLpACbq7u3nlxiljNd/Q0PDu3TsaiFSIBH2VV0IYrly5QvmvX78uKysLPt0TAQOE3PL2wYMHL168oMlCeyAwlMOr5uZmZBgYGIgNYQM/IQsst6WlhfT81VfU0tbW9uTJk1hVSOwkmiZvaVEah5SnOp67Crx27ZpeWylKqKmpkc1o/O3v71filKQBf1dC9gYHB2ldY2MjEqJPpYKrV6/GMHhLX1Asf2MdUlVVVYjBK+SkfPEVih7o3L6+vjt37vg7N8jEaxsbG8O2SUxdeueviyRDRY20lxox7ODTzQ4QYKSi0+l9NMZz+GRsj9CPWOaNGzfoi+hmQ+qiRgQjDR+QRJ57BloISXqmrxk7LvulLaTxayw6HJgKKMf1d9AKsstnCDPqRfL29naE7O3tVa+xTAg0HPGQikLQZxrzUMC3PzrXKCPJR+c2ZFTEV3E6qBMkSZ9UwVgTSfhMAvcK16yWMDU7dzFlbaBPzIwZBg1TwrNnz+R5Xl4e6RkgZOEhrwoLC+VVrMlRDg8ZyDxn7MjdxFnN2B1rfktwW0o5/BDEttQ/H4ZGXJA8DTJd8Bzzk2T0Jl+vXr0qX+fMmUMtchG5Z6KOrTHNjJGEJIcUAy12avWPxGh/BantzfDVYA4pg8FgMBgMhumBLMH5wIqfdbMQD9chBXvhM7xI/ks/d+5c2DLreNlHIDxE1sf679zY8y8k0xBaTU1NrOeSzjCWl5fzVk7PIZs6UARCLGWbzMqVK1nNj4+Pyz+6oRwIpmSJVT4p9aqsqqoqipV1vBAGWKj8d1r+me86pGA1cCr1bR06dEiugOSJXo7JB9IoO3Kxc+dODX4EqaAuFcOjCoThlRAqEZivaRxSnuqyOqT4KvtN1qxZgybFN+fRgEd+MZX6+np5BQFDw+rlJOXr16/FwKgaupV0ZG/Hjh28cu/go7E8QYZgorM8nStWoRxPSov1RCQZKnxY7+IMnb5xty3QNUpo3R5hpKA6DTuVdONq6IiZf6C58OhZpFWbpE/5KvtZJjUcsG0N4xVkbjkggewSEvVWV1fLK3oQtq8uBpkQ+CpiUwJfJSS83zwUqAvtqR0+ePCAEjQXxgwzly4IHROLPbJHk2XbIwMEk7t7925sX0xqykrZkM/RBl3f29sr11hjCSdPnpTnN27c6OnpkcFOCR0dHRhMkGxy9DKtls+kVy+G34zdseaxhJQtDVLMh+6I80+D9LJ2IsbAK23gtm3b+Co27JmoozWmnzFikeSQSppaPSMxtr/S25vhq8EcUgaDwWAwGAzTA3VILVmyZGRkhGV68KlDSoI681ezbN++nSdyrkF4SOhUXSy7e/r0qX6F7ZAr6UZ2Uir92LdvHyndQyXwJcTTr93d3e7/2+GN6lR6+PChNE0gPEf2VghhCF2M6DqkHj9+7P6HPwkIc+HCBX8aqUspXKwq5EAcHGxsbMx1QEBKJxtDKlRdVoeUuweHTtetAUka8HSlEDnYl76lO9ra2oLMpgAon3uJoWyESe+Qkm0+Ck/n0iMQNjfx0NCQ8lsXsYbKE/dEjCccjBi/xh3THqGxCNDc3OzfxRByoPgHmguPnoPM5Qm6RQh+Ozg4KKx7ssOBQrq6uuRzdXX1mzdvpJzKykomCtdK6Vb4tuhBdKIOkaVLl6p3wy+2i/YMgowXCbNBbPWYYJY6ItI4pNy5oq6u7sWLF9HqgklOWekbMjVtYDboM7qHlJaiDXVOBZl9PTyZlUGsyZWWljKl+M+gRc04NNaSLCFrSw8ePBitLjofhkacfxoU8xOnLVJhG7qf7uLFi6H/XijciTpaY/oZIxZJDqmkqdUzEmP7K729Gb4azCFlMBgMBoPBMD1Qh1SQIZYfPnxgce86pI4fPx5yHgnZkH84x8ayzRohGHofdWMJCgoKeAXpKshgw4YNMK5r165pgpAj5sGDB+7iHt6iNBLiRN7hCci1fbJdItbL4AoJIdGTICEcOXKkpaWFWuAhqCvWKwQthE9C5CDAr1+/duvyqALGEiJUKWNIearL6pBylYBgiOfXgEd+TILP6Fl1jv4lLP2SJUt4pSdQAm9Q81iHVEjPns6FTsPnhx3wVXf0uEgTyjqkpV9++YXRAaVkgKAi1/hdIXft2iXnSa9cuRIK9KMIOVD8A82FR89BZnMK7RUXJ0IiQFaNxQ4HieAmRyb7+vpqamrkeUNDQ8itI75F2fERmhD4oK4uv9guGP68wqoRCR0WFhbKdhs0SdM0pFEah5RrNnzmSWxfTGrKSt+QqWlDPBT79u0LlYaGeT46OqpZ+MwUJJuPYk0uJyfn3r175Orq6nILTGnGgiRLSNnSYDLzYZBtGhRjwG5zc3Np+7p16wYHB2Xz0bNnz+hHzZU0UUdrTD9jxCJNUHN3avWMxNj+Sm9vhq8Gc0gZDAaDwWAwTA9chxTEhrUyX12HlJywcB0HstqW4yHT7pCCNnyM4O3bt/oP7fQOqYGBgaampiUOlO1ndUghf11dXVS8CxcuwAdgCNDj1atXJ21TgulBvfbu3btmzZpff/01pUPq2rVrIcKc0iHlqQ5p3X1J6R1SSRrwyH/s2DE+b9y40dW52AYMObQH5zMdUp7ObWho4O2STxHd0xFM3iG1dOlSBggsd/v27fn5+RLeKInJM5qwEyShititUiEHin+gufDoOcioGvp98uRJOV21YcOGrBqLHQ7IDweurKykhI/OpYcYZMhfIJOAnE7yOCb8YrugKPHI1NTU3L59O8hYI9o+evSo7o6J1vXVHFLpGzI1baxYsUI3UrlYuXIlz8vKytws7oHQJJOj7xobG8lbWloaTNKMg2RLSNnSYDLzYZBiGqR1V65c2bNnz9DQ0KxZs+j0tra25cuXf3TO2Xkm6miN6WeMWEzWIeUZiYJQf6W3N8NXgzmkDAaDwWAwGKYHrkMqmPhnbGdnpzqkhIS4915BM8bHx4WbxTqkWPq7QUmC1A4p2AWLdbjHLAfQGBJDPyRNeocUTevp6YltdVaHVHt7eyivhFxBPDfeLV+jDinhjXpcRb6mcUiVl5e7LonFixfDuLI6pPzViT61CbQrpUMqSQMe+SXgdHRnh+SFH7oervPnz3+OQ8rTuadPnw6FYU5CVkMNPtVSaBOTfPUw+WBCJ+5BPAUVuWej/AMtWmasngWtra0PHz6srq5246lPdjgEmVjUlFBTU+NuiaqoqEC9GqAnyGwwwcxU5iTHRFaxXSAqdvvs2TPZIFZbW9vV1UVF7mAP1RXSZzAZh9Skpqz0DZmaNmbPnv3+/Xt3f6I4R/g7MjKiW96SkGRyGICc5ZyCGcdaQsqWTmo+DFJMg2iASQz9SHdTMuo6deqU+KckjWeijtaYfsaIxWQdUp6R6EL7a1IDx/B1YA4pg8FgMBgMhulByCEF54EEsvx1qSxUELa2a9cuSML+/ftZ9+vaOtYhJRFtd+7cWVhY6N6hrgmSHFKxQXPmzp379u3bpqYm+ZreIbV7925Ku3TpEuQZMdauXauBYLM6pCA5kpeUW7ZsaW9vF4KHKih/0aJFubm5MCLSRMnb/PnzIUg3btxA8l9++UWiMqdxSC1dupSMra2t5Nq8eTMdAf/M6pDyVyf3W/GVKtAhBaZ0SCVpwN+Vjx8/7uvrox+RCsZLIdqb165dQ05oFVZ0/vx5pPoch5Snc1Ejhbe1tVECryDAGKTs3wkhq6GGtCSbO7B5eC/akMNHUSa/Zs0ahKFpOTk5fKDVEg8+hNu3b1PC6tWrNXK8Z6CF4NFzMHGGbnBwUGNy+zWW5JCS8YjNuPF0MH7Ui6gbNmygKPFP6V4Y/04Zv9gusBAon268QnhqeffunXuXYqiuqD7TO6QmO2WlbMiUtVFbWzs6Onrs2DGajyUwZsXVUlNTI8/phQULFpD3+PHjQbLJYQCk4SGjgLrk7HNKM3YRawkpWzqp+TBIMQ2KMJiH3GUhUfDlhkFN45moY2v0zBhMfaH0IUzWIeUZibH9FUxm4Bi+DswhZTAYDAaDwTA9YN2vvh7Bli1bIAAaxTbI3FLU0dHxMQOhFnplEpRgfHxcD9EIYAg9PT2SWJb1rNfdAoURRX0Eclgjelbi+vXr0DAJuwt9cuOIwxZc+evq6rq7u/VrUVERtFwkp4Rbt27JczkTFLorKiRkdXX12NiYtKKhoUGaDNeV6+EkslVLS0tsUPPff/9dApHwF1Y2NDSk/MGvij179sC6ecLfsrKyxsbG2HNzIT14qoNrPXnyhALhbPX19adPn1ZXY1QJCOYyq1gN+OWnuvv37yOJ6Jy6VBKoF+qS55BSyD8fYj01QjglUHG0sYqkzg0yt6SLX1Ua/vDhw9iKshpqVEt0OgXSQFgoAvBZjV+FXLZsGWRYaqcv3E1PLjZu3Cjhe9RF6BloIXj0HGRUDV+iBIn7k1VjscMhyOxrQzZerVixwn1OB1GjlPP27Vs3/HZoQuCDXoKZVWwXsHSSqa3SIiYlZF60aFFSXVF9hsyGzzyJrW6yU1bKhkxZG7m5uffu3ZNXdKW6gZgDr169ih7UusrLy4Nkk2O8S4giwFSv5/vSmLGLJEtI2dL086HAPw3yA0EJyKzubBk1cpukwDNRx9bomTEwjKRY6QL3CjxB1qk1aSQm9Vf6gWP4OjCHlMFgMBgMBsP0gMW9HnNQyFm50EMWx/DbaOgKvZ4phCVLlmgcE71g259rdgaxpWn6OXPmuLKF5I9WxJPlGWQVIJpX/lsedQpAhIQqxCpK5YS8CUNzi82qCtlHIBn95buvkqoT0HzlNu7bUNVRY4hqIE1XQqfJ5Ua3UeTl5SnTS7Kc6KtQY11hYjtX60KTWYOt+A01KgzaoFiRx00cEnLx4sXYSVL3CciO8O6FX0HyQIvCo+ekoZR+OAig+p2dnbGv6Ef0kFVdkzKPUMbQSM9aV0ifoR6J7VwXk52y0jTkc7TBQzQcMg8phCzRW0pjTU7mk2gUs5RmrPBYQmzTokM45Xzoip00DZLFVQtvYw04dqL2mEHsjBGqK4rY39CsU6tnJMb2V5B64Bi+AswhZTAYDAaDwWAwGAxfEHKtmxwKM/zMMEswGFyYQ8pgMBgMBoPBYDAYviAuXrw4Ojqam5v7rQUxfGOYJRgMLswhZTAYDAaDwWAwGAxfEEuWLImNvWX42WCWYDC4MIeUwWAwGAwGg8FgMBgMBoPhq8IcUgaDwWAwGAwGg8FgMBgMhq8Kc0gZDAaDwWAwGAwGg8FgMBi+KswhZTAYDAaDwWAwGAwGg8Fg+Kowh5TBYDAYDAaDwWAwGAwGg+GrwhxSBoPBYDAYDAaDwWAwGAyGrwpzSBkMBoPBYDAYDAaDwWAwGL4qzCFlMBgMBoPBYDAYDAaDwWD4qjCHlMFgMBgMBoPBYDAYDAaD4avCHFIGg8FgMBgMhrQoLCzMy8v71lIEOTk5BQUF31qKmQ5U9H//93/fWoqZha9vOTNkyPgxXULOmTNn48aNW7ZsmT179ueXlhKLFy9euXLlV6suDXJzc7dt24ZWv7Ughk/A2N+xYwe940+G9WLGNnl+HZhDymAwGAwGg8GQFv/++++ff/75raUI9u/f//Hjx2XLln1rQWYuYOmo6MiRI99akJmFr285nzlkELW+vn7t2rXTKFIU0zKu586d293d/f79++Hh4WPHjk2LYGlw7dq1V69eTSHjF9Jtfn7+0NDQyMjI6OjoL7/8Mr2F/4TYsWNHXV1dVi9SVtTW1jL2//e//928edOf8j//+Q8pf/vtt+irwsLCI59i3rx58mrWrFm7du06e/bs6dOnN2zYoFny8vIk5eHDh/fs2UPhn9mQHwzmkDIYDAaDwWAwpIU5pCaF33//PZbVpMSKFSugN0p4JgVzSMXiu3NIbd26FYExpGkUKWqW0zKuDx48iKgFBQUw86+5uySlQ2r27NmMptWrV+uTL6FbcP369f7+fjSQk5ODKqa38J8QlZWVHz58+MxNcEuXLh0fHy8pKeFz1hnV45BqbW19//79vw7y8/ODjDe2s7NzbGyMv0+fPiW7+mQrKir4+vr164GBgZGRET53d3evX7/+c5rzI8EcUgaDwWAwGAyGtDCH1KTw5MmTrP+N92D37t00c2qbLMwhFYvvziEFpt25EzXLaRnXZ8+ehW9/ZiFTQEqH1Pz586Pupy/hOGtra7t37960F/sz4/O7afPmzfT+unXr0iT2OKTu37//8OHD6PPjx4+75efn56vL6fTp07yaO3dukNlFtWXLlp6eHkbKmjVrptiYHwvmkDIYDAaDwWCYHsB1ly9fvnDhwuLiYrjZxo0b9RXraYgQf1njVlZW6j97Z8+evW/fPp5UVFRE18pbt249depUaWnpoQxkgZtUFNWR+MyZM3v37nX/LY9Uv/zyS15eXllZWXl5ORIGmX8RnzhxgsTufoEgc7igqKiIYkOFKIS4Llq06OTJk2SXfw4rFixYcPToUbKjAXWjrFq1CoHnzJmjyZDh2LFjGmVm8eLFpD937tzhw4fdZCGQrKSkBMWih6hbIakQeMimTZsgA8iAwNIpNI0SkPPXX38N1UITkI1yqMstn+aQJcicHyEjpYWi5FAU5dNZK1asCDLdRJf19fV1dnbyYffu3W53oDcK2b59uzyM7bsNGzZcunSJZtJxlCAdF2T+FU8bkZD20mpXBnkl3UdXehxSIWmDDAdzE9M62uhqAD5/4MABclFFTk5O1ueebo3WHmTCu9BS7aMoYq0rcEYEWoX7USz26Wb0W46LpEEkVkSxvHUPo1EjTygZq4gtMIj4ehiwyC8mhOrkIRxVLUQl2bVrl7SOGrWjxX6SBiC9RgKeM4pl0gi1NMks/eM6yJg9zaSx0VcCpL179y40m2L37NnjtpcewQykj/S539502JImdpxKXzOhLV26NOSQirUTLE1cBnV1dUgoJ6pCug2SJ+SsNibA/in85cuX//zzDx9cS6ZFZESHoY5OMq1QvWvWrKFf/vjjD9ndw2yAhIjBz00oy2QrSmPDk/oRCZKtZWpDmL4jl4zHrB2BQmgdUpFMhgCdwsCvrq6m98nCE7FDPrji0d2Mevk8BYcUw+f9+/fidQrBdUgJMNrR0VGKiib+CWEOKYPBYDAYDIbpAaSutrZ2cHDw0aNHL168+PDhA8toeSUL3CtXrrAMff36Ncv6IOP96erqGh4ebm9vf/78+fj4+IULF7Q0iuJVQ0MDacgL4zp//nxSUTdv3iRxa2trS0sLy2L+ulLV19cPDQ0h1f8ygN1RWnd3N68gkPqPXErmLUz1xo0bUNZYXwZZ2traaCOMi8/IAJeWVwUFBZTW09Nz584dKNnY2BgUKJg4F+Ny1OvXrw8MDAjBIA2lPXnypLGxkQIpVlm6CzjP27dvSdnR0UGl/HXdCp5C/vvf/yIwjX327Fl/fz9Kpl0oigbSRxQCNdJaIJByCuPvv//mLypVigIVfPPmDZqRttO5FOJ2FqrjLZqn7UGGMdKniMpzPiCwKvCvv/5CUQiAojx9B8Ohf5Gwt7eXEsQdhs3QTBpCS2kRImngZHjX48ePRTl0N0aV5JCKSgswJNKrFya0wQrboMukWCqlav9zT4/E1g45pO0ohPS8jTqMkqwrmBgRNTU1qBGuyF/0ozTVbzkuPIMIK+I5BkNbaKY8xHIQA1aJSJSMVUfLDD51SEGVKZkh1tzcjNJQnUTGgb1jUa5nhDYy9oMIN9bhHB2AGAAKx67QLQOcXE+fPg15JTxmmTSuMQkkeffu3e3bt0mP/DqtuWDIIBWtoFimLHlYVFSEiniCeaBbLFkD6PjtTYYtzUEPZOdVRUWF1oW1UJH4fRAMs1eHVJKdMHxkvNM6CpQeCenWMyH7bUyxZMkShgDaIwElXL58WRTIkEdgCmcSRoHoSl23saal0HrpL7KTl8bu27dPvtJSGq4jawoVpbfhlD8iHmuZ8hBm7uWteJHSDHasQmSgRZjQ0qVLq6qqSCY/o/SL/BeHvOfOndM2um7NKTiksEmyXLx4MRrOP+qQCjI/gvTU5wfG+gFgDimDwWAwGAyG6QFLcxbZsq+BdTmsBoIny1BZ4LJWln/JypoV3ggx0J0v58+fJ42s7FkxuwtiGKwesYktaufOnRoXA1JHglWrVqlUrMtlMw7FwhAgWvIfclbDCCC8F7Bqh83KZ4qNdQxJaVQXZP5DTvq7d+/KK9b9uiOA7DCfxsZGUcXr16/ls7yC2LBwl88wE6iOvIJX0C7IebTepqYmChHGjgaoV90K/kKgYaQ8c+ZMkGHsQm6hbaI3GNrAwIAKRjn0mlA4Og46h36ECAkpamlpka8lJSV8lXDIpIda6FGgBQsWqNixZ6PICHtJ03fRI3vYDIxO0pMdyofA8gpuSc8KxyMBxCnWIZUkrd9BgCp6e3tlOwaaOXnypOe5p0eSaofj0TT5jFlGd+clWVcwMSIgk6KoNWvWoAdx1AZeywnB0xFiRbW1tQgmvSZDScn2jh07SKBOHBeuQ4rRreOdD6iiqKhIPmuAG4BdUZpsC4o6pJIG4PHjxyH8Qs7RoSeyeKxZJhVLG3mlqmCWgEDGTg4XLlygo/WrqKi6ulq+onPGmrr5sjqk+FpZWSlf6UQqlcRz5syhHEaudATzLbOuuhI8dhI9shfSrWdC9ttYCBiz+JpVgW4tTMXkLS8vd1vqmpYLqZchJhYrRaFkmXloqRuraLIVTcqGU/6IeKxlykM46pBKSin/v9HmM77UASqtc2/YnLJDihl4/QT0/wFolU4n17Nnzw4fPuzOYLEOKaZr/QX5yWEOKYPBYDAYDIbpAat2+Ze4YO/evaw4N23aFEwscFlY61tW5Czr3QUxC26W8qzgg8xi2qXNdXV1+l/ZaFEhSAI95BKSqru72936AdP7559/5HNpaSnUznNwI1oagsErYlNCNpQbQMihysIohBhI+Az3s8rT1tYWKorFPbqSDWICVvyqH38h0LCnT5/qK/nXurIFYQUimOzk4q8mll4QhQgpUgcK5Er9SpQGRWxubo6y9FjmrzQsilDfhRxSyIke1Bkk8vNEmkOTOzs79ZVIGHVIJUnrcRCQEtbnblERJD339EhS7Tx5+fJl+mhZrnWJ0nQvW5DZXiR7PfyW40GoI7Ci/v5+9+BhyPkChoaGxO8Zgic8E690D05HR4e2qLq6GpIvXoOoQyo0AHWXGc10T67xXCaTKGLNMmlch9wr+fn5yKN7W1yEdFJZWamjXiXEYISZZ3VIucNWtp8sWbIkmAgGpMddRdqkGFKunfgdUv4J2WNjUYQ01pGBm4BxqvN51LRchOrNzc3lq/qYgozVqXVNtqJJ2XDKH5H01pJyCAdxDqmklLT3r7/+ks8yAerP2TQ6pD46wELctxgw8vAchegkE+uQkhsA3Mv4flqYQ8pgMBgMBoNhehBinhByVpxy0iq6wJU9UKxK3RJ6e3vFW7Fo0SK4HIQBmrRq1SrYqZYcu1aGa1VUVMBGoJFyzstlsK5UDx48cAkDy3clfjk5Offu3SMvPGHfvn1p2shnnuhXiAe0R07QsNxXlgINoNgDBw4EGfbY09Mjz4uKinhOS4cnACd89OhRqFKIaMi34kYC8heCPCoGgIG4HEw2woibSULM5OXl6VuhNLKHxSVFQYasum7BXbt2yUmWK1euuAev0kSP9vRdyCGFJQgF0pby+cOHD7KvByKkZCzwBjWPldbjIBBWGTWJpOf+HomtneHw/PlzObWXtGsgybqiI4JXpAyyWU4Ino4IWVGQodPj4+PDDviqu4FchHocYSDzDDpaQd/pq99//50a5TBRX19fTU1NbOs8A5A0yIB66UTxhifd8JjVLN1imXzoF22mXBMme6lCCDk4GhoaQt5q8QbK9pmsDilX4TSEt7LbRZxTbg+GYkgl2YnfIeWfkD02FkXIKTMwMFBbW+smYA7UQ3NR03IRqhd18VV30gHaqK6iyVY0ZRv2/Ij4rWUKQziIc0glpURIlEBXzpkz5+LFi7phMJhWhxS/j3MnEPUk0kfFxcUMbf33QKxD6uTJkx+nemHFDwZzSBkMBoPBYDBMD0KrdjlPIf/Jjy5wIVRRfwElCFFkGT04ONjf38+6lmRNTU3qColdK0OB4H6w0DVr1vz6669Tc0gJ1q1bB1GhhNLS0qxtDPFhpIUG0PD8/Py7d++6/EdCh8yePRvKeurUKXl47NgxKiL9EgfRC5WErLqbwly3gr+Q9A4p+ewSXVG1MFi/QyrIHHQqKiqCDtFruv0njUPK03chh5RwZpi821LdtPX8+XOXIftv2YtKKw4CN9K8Zl+xYoVuB3OR9Dxrt8bqCiJHeyX2TfROdI91eTiq33JC8HRElMw3NDQg/5JPET1yFXza4xcuXIAG0/a1a9euXr3afYVO4M+VlZUbNmz46FzXld4htW3btnfv3mHeKGp0dDT26KtgUg4pmsn84zbTddq6CDmkmFtCG5dkEIk9e+wt8DqkDhw4oJ8FrivBYyd+h5R/Qv4chxSyuZ7iYGKzUmxLQ5iUQ2qyFU3NhgPvj4jHWqY2hIPJOKSY3hGVCYSK+OAGUIt1SLl7Jz8zhlQI169fpwSZ3GIdUs3NzdGQYT8nzCFlMBgMBoPBMD1gBcwqU79WVFSMj48L9Y0ucKEW8E+XP8j+FyHP/O3r6yPN0qVLQw6arJutQvGnJuuQErDsDp3+iC3NJa6hDRF8dfnPqVOnIMkIqToJJnx2SbuxFOgB8lBXV6dPJLyLlOMvJL1DShwBhw8f1rf0AtIK9c3qkHJbpOf+qDp0QC9655qn74SHa0AWuCI2c+XKldiWtrS09Pb26lc5b5jkkIpKKxvEtGvkAKNkl9NMV69e1YzCWpOep+zWkK4E0LbQzgWBx7o8HNVvOS78HREl85DMUBjyJLg9Dl13z3nx1TWGmzdvvnz5sqamxm1peocUQt64cWPOnDm0LtatoMhqlm6xEjQnazODiEOKCRAVaUimILMlR0O2eewt8Dqk1q9f745TupiZSl0JHjuRMSsbHgWubv0T8uc4pFpbW/VYZZAZI/39/Zp3Gh1Sk61oajYceH9EPNYytSEcTMYhhZxHjx4lJb+bodqjDilMUbtbYj5+jkMqNOKYFdGtyBx1SMlmRg2R9pPDHFIGg8FgMBgM0wOJVw0nhM2y/GWZpYGBYxe41dXVEhIIzrZp06bu7m4WxLJs3bBhw+jo6PPnzykBFnfp0iWJRRVb1Pz58ymHesn7yy+/wBam5pBifbx9+/acnBzk7+vru3btWmwbk4grzYHRFRYWsjSHQiCSy39gnizB37x5o0G4BY8fP6Yu6qUVeXl5Bw8ejA1ihTAUuG/fPso5f/788PCwy2Y9haR3SIGuri4k3LVrFyXv379/aGgolhQFnzqk1qxZc/bsWbKgOj4gp9Kh27dvv379evXq1brlJ6RAf9/JUUf6hR4RYl9TU4NhHDt2bNGiRYhNkyH2klj2/lRVVVH7oUOHEJ6Sow6pJGmpAgaFsSEGRaEHvmr22tpaqVfeYqhy2CrpeVKPxNZOFvqXxqIEklGvnO504bEuP0f1W07KjoiSecSmqLa2NsTGGNBeSUlJ7AEct8cxMIYbfZebmwtlpQrXGMSHSDPdOD7pHVLMJHLDWnNz882bNzF11xnkIqtZusXKNj2mIEqjpWvXrk3aexVySNFMVIQ8zGbkFf+U+nD99uZxSAWZ7ZZYl+wyYzaTy+bklX8WQryWlhZqFMdESLeeCflzHFKy2+769etIm5+f39DQQEv5HNvSECblkJpsRVOz4cD7I+KxlikP4fQOKSxfWoSFIxVdqRswow4puVWToiizqanJtaIpOKSePHly8eLFzZs3o3C5u1Bdz+KQoncY4MxsdXV1tJ1ykgKH/Wwwh5RhBoHf5tDJbYPBYJiZsPnKEAu5G7u1tfVjBixbJQovYJX/0YmRLICTs2hmbSrpOzo6lHHxAYYG0ygrK6usrIREjY+PS/bYon7//XeJAMJflu9DQ0PqkYF5auBk0N7ezuJbv7I4hnfJZ9bNEvID0Ar3tjhFqDQ+80Q+k76zs5O8iEEt0I/Qwh2ewNvQnfGQIpbmZJF6X758GeuQgo2gBEkDHdq5cycf1O/jKQTWoaFzg4zTDeXo10OHDpFL796GRNELUoi4J/TatWPHjpFS71Dng94ztWzZMviY5KJwd4/Vxo0befIxcy1UrAIDb98FE3dj6eYR6PHVq1dHR0e1OjfCcVVVlZzxFGcQBhk9T+eRFv4m1tjf3092eIJmR0X37t0TDfNcPSZJz5N6JKn2u3fviuQIAJuNGoDHuqIjgh7XI2l+y0nZESErEkA+nz17JiUjPPLEFuv2+Pr16+WaP5p57do1BHONYdasWdgJb1esWKEPQ63zDMD9+/cjOaMYkzh//jx6fvv2bez+l6xm6RYbZIKCDQ4OSkuxvVu3bkXLDDK7z0jmPsGKJMbzx8zdcKH49x57CylcXC3qK2F6lGJRO1NoaWmp7gzyz0InTpyQGmVrTEi3ngnZb2MhIEBIRbSU5kuxvb29rqcj1rQUoXqxEJpcXFysCWRL3ZQrmoINB94fkSDZWqY8hN2515+SX0wUghKwNKYRfkO1CvH2qnsuyMxRT548kYbzw83AUSuK/ZEV8MvINBJ9zlQmg1daTe26JUqOMEtF9A52dfz48ehFoj8tzCFlmEFg2Os+XoMhCYWFhUnBC74Q5B9HX7PG7xcrV67kN7ixsdH9990PCZuvDLHQfyPHhlkJhZBQyL+mFy5c6D6MXjYHJbh48aKnqDlz5sBjZdXuHh/gubv25ZX7NXTXuGwPib3TPba06FXlixYtUkoTPTeUpITc3FyUEOsCc4FWtfBoUbGFRCUM/V86Wg4lUE505g+lDH2F+S9btixKM6h9+fLlWmlIgfowtu9UnpBbgaqRMPbXECVQlFTh+Q98krR0PQaQlB1JeJv+eVK3xtYuVSdZiCDJukK5QkYeZLMcRVJHRK3ILRmxPeuEaI/TdtHJrAzcV5BV96rEqMCeATg0NOTuXZJTh7t27YqVym+W0fbyZHkG/sOAsSaH5lFRbMYke4sKEOo1EtBT6kpOPwvRue7+uKgxxE7I0ZRRG/O/4iEtjbp7PKYVW29WMaZQ0WRt2P8jEnitZWpD2H2blDJ6o594gvSfCrEDHyF1gvLI42msC2Y2CjRn06RgDinDTAHzIDz21atXhYWF7nOG9I4dO85k4L+IOsjMccXFxefPn//jjz/cxTTT6KFDh45ksH//fiaspBKooq6uTn/evl/8MA2JwnN98peAJyjsD6zkKePkyZO//vrrunXrXrx4EY0ewnC+evVq9N/1KUH2bdu2VVRUVFVVMdKju8pZZVJpZWVlSUmJhlz5EpjafMVS7+jRo0xQZWVlnntVfvvttyMRaHNQrzxBjay6bNEz0zCNE9SdO3devnypJ24OHDjw4cOHPXv2TEvhBoNhBkKCFukZzMni7du3TU1NsgDmB5HfqZGREd2kaTD82JADzqdOnRKHUV5eXltbm7t1yzAzYQ4pw7cHs4ZsR3+TAR/cI9n//PPP8PBwR0eHbM11I0GGsGXLlsHBQSjivXv3hoaGBgYGdB0vYUpfv35NIRg9nxsbG2OJHFSWFb/cuftd44dpSBQzxyH1TZTMeDl79qy75fjrYMWKFdSr/2XKips3b548eTL0kPXx6Oho0hZ3P5YtW/b48WP6oqen5+HDh3KLUFVVlSsho57pggTU8v79+yTP12Tb4mLK8xULIx4i9t9//42cY2NjSf+1pnXuHcxyfkojX5KR+Y2iJFaRxCKZQkMMXwjTOEExtzx69EjOudDv7mEog8HwQ+LixYv8fk35H127d+/u6+uTY0H85XPSD43B8EOC1d27d+/4xZRziyyofkgq9IPBHFKGb4+ioiJ+Nbdt2yZff/nlF/fiDGYW+VcPn5uampKO/cMSX7161d7eLtt9SQNXVKIo17hs2bJFvspFs0mXv/wwh7N+mIaEMHMcUsG3UHL00uKvg9DV40lgJP76668MMYh0rKMkJydnCpt65s6d+/z586GhIcayPGGk19TUuP9Jzs/Pp145Z7Fs2TJmADdMzBTaEospz1eNjY2Dg4Pyleagn4GBAf8ufYFEKdZo1u/fv9cTGWiDr0n3bRm+CdIcOpsU8vLy1qxZQ7FprMVgMHzXWLJkSewqNz3kIBuTRjRqu8HwM4Al1n/+85+CggL7d933AnNIGb496urqQhEQkyCXLKxduzb6avXq1byCuekTyOrIyIhQ35BDSih97BUh/IofPXpUcv3f//0ftJ+/EN3Tp0+XlpaGpjaS7dy589SpU8XFxW7YWsSQ+yMqKip0FwaFkJJKQwd5mDehxzwvLy9Xzqmv4LqVlZXHjh1zTyDK83PnzlFv0l2tbkOCDKdFMOQ/efLkmTNnPIcWg0wkCGqk/JKSEndBgww8dw/VI/mGDRv8DXexfPlyVIoAbphAjwZgYvB/NLB3715tizik0rTFU7JfIap56kWGJIdUSmtZtWoVr9zICOgBTSq9pBPpShROpaHgCygK8ShN4pvyV65JZtQcOnRIlK9VswAlMfoX5cuNNuSNxkHACFELBuk23NMEKrp06RL1lpWVUa/uPeT3nidUqn4istMQxHvy5ElI56p55JTPmzdvJg3aRr1oOzZ4pECiAESdyC9fvtSArCHcvHnzo3NzliKpLSIPDUczmE2SJFObr+iR9+/fnz9/Xt/S166byYOurq7Hjx/rV9chFWRudQmFGTIYDAaDwWAwGL4LmEPK8O1RXl4OMUtzX9WdO3eGhoZi96TAJD9+ej2nMFjxp4QcUpDApB1S0YtFa2pqhoeH5RBNf3+/UvScnJzOzs7R0dEHDx68ePGCt+IyoIQ3b97cunWL0YW0Qkfl+s/79+/TBLLoQR7Z2DUwMNDc3EwVcvJZXsHSu7u74dt//fXXP//8I7eBBBkfDRQUSRobG589e0ZdoSg20YYEExc/IQ9F8RkZVBshoKt/M/j777/5S7v27t0rr2gLZereEPD8+XMVLLbhLlA4SqC9HR0dIyMjV69e9WsA/VMUSr5x40ZfX5+6hJAKBj44OOhvi6dkv0LoWfg/T5CTBO3t7UkOqZTWsnXrVl65kV8wAAQTTxamS1voUzoUSZBHnY+1tbVogOa3tLTIxR/79+/H2CiNlChfdopp1STu6up6//498qNt+Sq32GqZVNrQ0PDu3bvbt2/TQBLrdVeeJlDR69ev5cYW6hXP76FDh8iOSSM5dYX+GcsAjL0W193g9t///peupO20jmIpP3T/jgJp6Yvo1qrKykpyxV5rjdJoQjRLbFtIhiXLbdmPHj2iXdi/3qXlYmrzlYwdd4ISH7rcz+WBzF3uHViuQ4puffv2re2QMhgMBoPBYDB8jzCHlOHbA8ImoWGgx/CuEAnk7YkTJ6Cp7e3t8Ort27fHFrJ48WLI5LVr1/RJcXExZRYUFAQTpO7q1atlZWXV1dWwxKRYVFEXA5XK0Z41a9aMj49TgqQ8c+YMNa5fv16+Qs5ll7WUIG4FIcMrV650af+OHTtc75i79wdK/ObNGzeZ3vurGz1u3LjR09MjW2Bmz56N0tCMvyFBxgswOjq6c+fOILNZo6+v7+7du9FcFPjy5UsKlF6YO3cutByRXFLtcUiFGu6CEphuoOjyKi8vTxWSpIGqqirkVMHUpZKyLZ6S/YVgOXS0XNLBq/v376d3SMVaCzK8fv26sbFR24IFylVZovD6+np5tWjRordv34q7gS7AwPRonhpA9MieVN3b2ysuIRQrQWfEJyjGr44P3tJwjZCNkukX0a3f4KPH3B4+fIg1yufc3FxRtSYoLy+/d+9eVGkhh5QbHampqQlhYg/0PX369NGjR9Hn9Is7mhQYGM1U8UKItkWUpg4j5hna7t6krpjafCX3Vet2wiDT1yEnaSzQCRpz980xmbS2ttIv6A21dHV1Te8BMYPBYDAYDAaD4evAHFKGGQFo+fHjx//55x8YGlxdt+QEGWL54MEDXkGwoe5Kj6OQYziwxL/++gvuCpnnKxw7mODkT548gSVK1OHXr19v3bo1WkjUxeAKgwDqyYKUQguTSpB6BRcuXEB4Nw1tjI1NK3nlntHCwkI+k8zl5wgGHXVjRRcXF/MkyuGjDqnLly/r27q6OtlxE4Ls5XE1A6PmiRwzTOOQchvuYteuXSFCHgtXA6WlpWNjY9GryqJtefHihb/YUMmxhahC2tra3BuXly5dmt4hlWQtf/7558jIiKQUV6McW3M/C/Sid/oUs2lubg5dvp7kkNKqc3Nz+eo6U7A39QE9fPjwzp07+sq9ItffhKgTB9lIEIrE1NDQ0N3d3dXVxXCLjbweckg9ffpUXx06dIgqYu8DoqLYg2n79u0jS9RPjRrfvXsXu3Mqti0dGbhpsIHYHV7BlOargwcPktjdzCj9mLQjTID8zGOhw8WMd4mXh3iyh9EzKxoMBoPBYDAYDDMW5pAyzCysW7fu+fPnY2NjujNIMXfuXIlh/McffyRl/+233y5dugTdPXr0aElJiUaQCR3Zg7E/evTozZs30SM5UReDe8oGnqmB0iGicujMU4KgsbFxfHzcvTaLr9XV1fIWVnz58mW4JfSVMt28586dk0tSysvLZYuE3Ac8OjqqRfGZNNGATVGHlBsInM88iQov8Ykg1fpE3DFFRUVBOodUUpBv2bAWG18wSQP0zr179/ja1dXlnq9M2RZPyf5C5JikvvIENU9vLXIT7YEDB4KM86unp0eeo1iej4yMaIe+f/9etwLt2rXrfxlcuXJFg4UlOaS06lmzZvEV+9cEr169Uu8bZk8VoRvcZKeYvwlRJ87KlSsxADm1557QpONCTjQXIYcUVegrqk7yaT5+/Dj24l6xK9ejF2RuLWCIJd1aENuWgYGB2tpaNw3d5G6pi0X6+Upq1EhbQcZ1lfXIHrMZAzwUJ849sjd79mxmIcpBEr+oBoPBYDAYDAbDTIM5pAwzDlu2bEni/7Av6FnsvqQoYOAa7TjkkAomIkzpgTtFehdDf38/lDVab9Qv09DQAN1d8ikkoLXcBtjS0rJ9+/b8/Hx4ZijvsmXLqqqqaHVzc3OQcQF8zARjdouKPbAzNYeUHIBygwGJEsT9IQ4pdzdKeocUJXyMuyExqwZg2o2NjTwsLS2dVFv8JXsKoVHay8E0OaRAT0/PnTt36Pe3b9/qQS2xQ+zT7VC3+fPmzSsqKsJ+sDfx8nymQ4qimpqa3OrU/zhZh5TUxXMJuhQdTbGYmkOKQcQoiPq5aMvIyIh7oo2eGh8fd5sfRbQtqMj1Qops6Dxrc1LOV5jxx09vXdiwYUNI2yHQ2Hfv3ulxTkUoqLnMCbGnCw0Gg8FgMBgMhpkMc0gZvj1CV1lLsJXY3Q0wtA8fPty+fTtrmQsXLsS4z507J1+jDimJhQyXC2VM72Job2/XfS4COTcX9cucPn0asWOvwwvtSJKvUZ+OlDA7A+h3mhjGU3NICUl2IyhTDvRefARCfZV7L1q0aGhoKKVDSni7S8il31Nq4P79+3qiamq7vUIlewppaWnp7e3VV3Jo8fMdUqdOnRodHT148CD6VJefWKZnL4+bTI5SUp3uWRNMyiGFJkN2m1ROqAniLdLgUy7mzp07PDysw82PqTmksJyo24WU79+/dx1JaJKRwnjxyxBtS2trq3uIFePs7+93u8995X5NOV+hInrfDXLHFITw0QsQFWVlZaFTfoKQQ0pGVtbg6AaDwWAwGAwGw0yDOaQM3x7Pnz+/fv06RB1qd/LkSbloTGL9wBuhczt37oTAr127tqWlBYKnfiUI8ODgoG66OXLkyOrVqxctWkQCyoRe6tYh4fNQdF5t374dvgo5jI24nN7FIEFhLl26RDKKbW9vF39B1C+DhND1tra2goICnq9cuRJJZHeGsFmyzJo1i+xy+ZfkPXTo0NGjR2kClPXu3bu0SEqrqalBePgnLeUtzTl+/Li/IcFkjrl1dXW9efNm165d6Hz//v1DQ0PaZITs6+t79uzZmjVrUOnTp09HRkZSOqTIS0ZI/o4dO9AAZJve9GsAxk7rcnJySE+9SuZTtsVTsr8Q8X1UVVXRcfQCGnj//v3nO6TQ5/j4OLoNBaF//PgxraOl8+fPz8vLw64kbBZKPnv2LLnQAB+QQU397du3aA8Tkpj9k3JIyeYg7Hb58uVIzrBS70aaU4d0Ct1BXmqhR3jIUEVgBqYcSMyKqTmkqA69oQT6Zf369fn5+QwBihobG9OYU9gkXx88eEDX75hAaEtXbFuCCWthImIOofCGhgZaFBsDa8rzVW1tLeIxqKkRXTEn6JlfxjiGQadoLbNnz8YqQmGtBOKDo1isGiUwprDt3Nzc7Ko3GAwGg8FgMBhmEswhZfj2gPN3dnZKLKSenp4LFy4ouYKfQ+ogYB8zePnypbsT4cqVK2TR6C0PHz6UZDxsbGx0T4etWrVKC+FDb28vtDbWdQLBGx8fl9hSUFnSQzv1bVdX182bN/VrdXU1DFPKhMFKICe3BMXmzZufPXum4iGqiger5wlZXr16VVRUxGfJS71wXclCXo3RA/WFx6IueTU0NBR7WickBpQVxepbPvMktjtgy9Bg1dWNGzfcAFXQYAnGBJ0uLS1tbm7Wc4uxDXdRUFBA/0rJkO3du3f7NXD69GmJcARaW1vVvZi+LUklZy0E85Cg+OIqoiOw0mj5k7KWIBMunTR6vaAAS7h//z7lqJGLQ2rZsmVPnz7VXna3rZ04cULsWbyBoapnzZqF8MXFxZqeMmtqavQrqhgcHJSSMaRbt27J86xNkEvxdL/Y3bt3RUsI4zpT/HA1T+FUoa/EKxTrQgoyW8MuX77Mj5bIgAUiDxbCaMrPzyfByZMnP0bgNtxFqC2S/e3bt/KQKSLpMN2U5yvkZ14SjTFv1NbWaoh9Moa2eonfcNeuXbEK1JkEy2SEumdsDQaDwWAwGAyG7wXmkDLMFFy/fj2JOkL44aixWwBC7o/FixevXLkyGuF7UlCWGPocZLYthO6zkx1PoRpDuRTQThoSdYSRnedScuhA0PLly2PP+lEF9brRx/0NmTNnjis5n0MVhbBgwQLKj/XZUSzSiuZDCklquIulS5dG7z5L0oDUFYocNKm2JJWctRDsbcWKFZLGDVEUwqSsJZrGrQ6FR8OB0fvLli2LloP+XTdEqNiskvB1eQahVmfNiISuQdI1qDdNvytczUfVnrUo0tNwrEgKKSwsfPr0aZpjelGE2iKF05xopLMopjZfBRmNxY4scoVUPSmtGgwGg8Hw9cGvsH8tOnPA8mPjxo1btmzxL4BnAgoKCnbs2CELie9IwwLUi56TDkzMQLAYjo1H8TkpDZOCOaQMMwUtLS0Wl9dgMEwWLH2OHDniuXzzS8DmK8N3BIhNXV3dNJ7rLCkpOX/+/HSVFsXRo0c3b97sPlm2bFlRUVHIgwxPiz1MbZiZmDVr1tWrV2O3G39fmHJD8vLyjnwKjWRKmbt27Tp79uzp06c3bNigWebMmUNFknjfvn3r16+fac6UUACEGYu5c+d2d3fLLcMzPOpibW3tx48foeiyRf170bAiGv9hhiMUPsJFaLC7KflVqq+vd++YNkwZ5pAyzBQsWrToO/KmGwyGnxk2XxlmLFasWAGtdfftVlZWfvjwIXqJR0ps3brVPQIMOjo60txBOWU8fvw4RA8uXLgAw9H7SQV37959+vTplxPjC2H27Nl0UGyIOkFU4T8GcnJyRkdHQyfZv0dMuSEVFRWY8b8O5F8pc+fO7ezsHBsb468c1VePiVw1Mzg4+Pr1azmxTq6p+WF///33kI9gWiztC7lLpn0USODXgoKCWbNmzeSf76VLl+pNwTKNT4uGv9ysEp3QfiSHVGiwuylR6Ufnzusfdd7+OjCHlMFgMBgMBsMPAglAForF9jkE7NKlSyH3Ewzkix4pPX/+PJTMPcLc1dVFo9ra2lwZhoeHq6urv5wYXwjz5893aUwUUYX/MIieTf5OMbWGnD59mq6Pjh25BXjdunXyNT8/f/369fJZ7uSRyJJB5rLj5uZmnsTeZuPHkydPQk60abG0L+SQmvZRcPbs2ZGRkWks8Ath8+bNrjEE06ThLzerRCe0H8khFXw62EMp3R/WH3je/gowh5TBYDAYDAbD9GD//v2//PJLXl5eWVlZeXm5hMybN2/eiRMnzpw5E90XA8MsLS09d+4cC3p3dUshFBVkDtxVVlbyNnRUZ/HixcXFxWQ8fPiwxrnbsGEDy2LIALUfOnRIal+xYsXRo0dlSY1ghxy4lxhAfU+dOoWQe/fu1fX37t27W1tb3759K+lFwk2bNu3cuXNaWhELyqcJeicA2nv//n1HR8fY2JgWLkRdb7FMUkgsEAZ2SmPlPgQBudxzgtu2bRPlUCNiz507d9WqVRUVFdqnWQsUQCxLSkrItWbNmiDTF+J9qKurQ5/u4SxBrMKDjAMOhaBDZHDJagjISUNIduzYsVD4RY+QPOE5b9XxEVsyspGGttBB7iux+UWLFp08eRL7iZbvphQ9BBniTTkUe+TIEQR2TVGAntE8Beor6Qv+wnXlmlS31XQ9BhA610kaHorthRRCsRSO3erdOOm1MamGKJIcUn/++ScWHuvkDTmkgswZou7ubiwk1su8YMECBjti0Gr1SpMSW+rr6+vs7OSDXCmTZGmx84Ag2iPBhLska+8n9V36aSfwdnRBQQGTHuVQYLT2Xbt23b17d2RkhNL27Nmjz/0TF4Pujz/+YMTFhqZF1Ywy8jLA3ZiemBnPFy5cqE9ojo50f8nr16+vrq6mxzEVbXjUITXZsZykTxdJ/e6ZUoKECU0dUghDQ9Aw5hHK6GmCi1iTizXyIMVcnTQbiJuJTpGWogE3lzvYXYcU1aETscOohvlt0rubVMOxN9UYAnNIGQwGg8FgMEwXIA/19fVDQ0OPHj36XwaspF+9egWH5BWMSPc+BJkrL8fGxp4/f97e3j48PNzb28tSXl5BV968eXPjxo3BwUFWwB8+fGC9qxnhwDx/8uRJY2MjxZJAltfwFrmHkaIoVpxBFMUTISFbt259OQGEgaNKgTdv3kQAqpCbIvkrzzs6Olhk8+R5BrK+D/2XeMqtSAJ0iEqvX78uX3fu3ElG2Tig/3WHzKBbdW8lKSRackNDw7t3727fvk3TaJdee0qvIbzcaQCfoUVynErIFSyRt2ShOXSu8hNPgeDixYvkffz4McZAE/Zn8OLFCzl4hcaiGx9iFZ6Xl9fV1YUAaJiH4+Pj7i2xComSQ8/+9ddfaEAv7vQLCUOjsffv379z587o6Kiq3QV6xoYHBgaam5vlRmP3+KTaPJXymUJcR6ELl1pjRW1tbXQZAtMoyoRDasp9+/YhFZUiMIZ69epV7YsrV65QBXZeVlYmyqGQ/v5+uv7Zs2d0UGFhoRQCXaSxnZ2diI14yK+R1Gpra7EfLBNTR4BJaWNSDXGR5JCCwfIca4m6a6MOKU0fJbcFBQXoqqenB+ERhoaIjxUrQjCaQ5P5gEqDBEtLmgeSekRUQfNlgHt6P7bvJjXteDoahZCYVvOKNkZvnv37778xAMYgpendvlknrlu3blEaGaNxgugXOXRJyfwlu3oxSExLt23bpompQgejv+SqqioaSHb0TC5x27nGNrWxHKtPF0kdkTSlKGInNOlrJKRMpgv+0ij1Sfmb4CLW5JKMPMg2V3tmA4YwRdFA/spuXOYHFSM02PW3z90IFtUwv1DYm+s2pXAaHttSgzmkDAaDwWAwGKYHQsm2b98eZP4fywp1fHxcIsKw/GWJrEtSeauHziBRLJGVCYgXia/iSCopKeGrsBdYK0vb+vp6SclCn6Uwy1/5Gj2y5zqkFFT3/+yd+X9N1/f//+GjKDHEVEVQQ83VUkMNVVNMD2NRihqqNDGnQSNiDEq8JSHyfX7u+lqP3TPse5NcifJ6/nAfZ9hn77XXHs5e6+69D6P23bt32+myZcv8v/offviB8P4toexKhHBQ3u9cxMGwxA6xY4wBsyHRrX/d8q+//rpw4YIdxxUSguVD6XjWMP8YB5vrauzYsVgpFifWBXaLhTGro7293YxDrGIKsbGxsWyENs9r27ZtdmvOnDlmo/Zjyd6ZM2dI1M3I/fv3E0Po2TSWLFnCdZ/v42seI0Ja8blBaDHkOhTCeRPYpcjjt6zO26Q5ahG6cv2kSJl2pLV37147RfNIZUlQWzjG4PRpfSahlQWFa7MqzH2DcrBOrfZyhbK7ceOGxYmKXGkcYB9u2rQpKa3B4diLwBVVuTYqzEgKc0hhP895hzmnCExmuXXv3r21a9eGz+Y6pMi+zYJMxT9x4kSfH4QqHjx4QDvyu5Us2SvqB4pKJKm49HPLrk/dTqSgb968yV07ppvNVf7BgwdJ3U8r6bjMr52NzTocUrfvTVOI165do0VYL1fWIRWJOXlX6+rq6vxKWNn63ZbjC8qKCqKoSwkpWrJHB26voZkzZ/IS9OoayUJIUZWLVPJ4X13UGyTvmvC+ffvs1DpYd3dW4pDKapgkfC+w5F2tiEyf/MSRQ0oIIYQQojoweP3ll1/8tLW1NZxlgLHqw1ks2K6urtBPZHsnmY1qdosbAIzCObVv/ZiR4H/8WrS+v1KFDimkwrrLXUBn42wfOscdUv3ORRwziswQIi2MlqRkkWLaJSVbBdPLTaC4QkIwXLFw/NQMe/+DHYOHU4x2IvfFlaaNcBEH5UsAM5MiEaK3zs7O7OLBvjqkKCOSc2PJso9FZzoJwYIi5t27d6cM3YiQKSsdOjo63E1ZhBWrz/RJ1flTp06Fc45CUqZduCe9zfqZMGFCUlpgxXF2PaOVRfhNVasJW7du9SubN2/20smmbjPLbApeQ0NDygyuXBsVZiSFOaRCwjxS59GbeSt8jk+uQwpLOzIPy8FQ99lASd/3kAr7gaISSfJK/8GDB0WxRb6HG+924gVNUaK61MZ5KVKFW0nH5ROmUthu1vz6lcWLF3sxVeKQKoo5KeeQ6ndbrnyHo7AgirqUkCKHVNhnUjo+XSveCTuRKhcSVvJ4X53Ce4Mk04THjh1rqyY9ZD8cUknpjw2X7dChQ8+fP//QPpH54SCHlBBCCCFEdUjt9/HXX3+Fg2/MEh/4njt3LmW5rV271v+aTnmROHBzbtOmTRxjTXW+gzH37du3LWQlDils5p6ennCsj1GBfcsAGpFs0V9knB0Oyvudizjjx4/HOCRkTU0NotqMMzP1sdWXLVsW2vxxhYRgEth33w0e4cFwPyxbrxEa2NkNerGKuWJrMSIRXrhwoa2tLStDXx1SU6dOJfzq1avDMI8ePQonvzj79u1DXe3t7fX19e4LiwhJJOi5M4DT3K3iqVGoBWMS2xJDNyzWVJ3nmCu5WSsy7QANu6G+efNmjrP7zmTLgmrGle7ubpefYzQQTve4fPkyje7x48dc99Qxd21F7bFjx3xZTeXaqDAjKcwhRQUY8Y5UACxn8o6cPkEv1yE1c+bMoiqEYY88LS0t5Bf5Q8EqcUgV9QNFJZJUXPq5G11X3u3EC5o2cv/+fVu1VzQBM+Wv6VPHlcJ2TaqtrfUr5mq3GTeVOKQiX5mIO6T63ZbjDqlIQeR2Kalncx1SYVlTD6mWZbMQEqlyRZU83lcnxb1BdlNzeoZwUWr/HFLohAA2XQsF+vRekUUOKSGEEEKI6lC5Q4pjX5VmmK1ivqSIK2fDhg0cY6lOCPCQZR1SY8eOffHiRWpwfPPmTUyRFStWYOsuXbq0codUv3NRFuyNP/74g+y8fv3alsZgnNj6R0RqbW31kHGFhDx79uzChQthsNCqtGWMWK0PHz50Z0HWyNm1a5fPpIhEeObMmdyJQn11SCEV4TGlwjBUs5RzIQx/4MABzPWGhoayucYs5+6Ef5P9Gx97GzMSW27x4sUzZszYs2fPe3VImSFn+3mFZMvCvHXbt28P5fcZeQcPHqRAN23aNHv27OnTp6fkHDVqFLfIPtq2qVIVaqPyjKQo2kMqxcmTJ81vlRQ4pLZt28bF7BcSSBoz+/DhwzxFMTU2NvbVIVXUDxSVSDIwh1Tl3U68oJOSL4++4vbt22/evMmuZk0yDqk+dVwpbP5muFOV5c4atTmkzIduVNEh1e+2HHdIRQoiyetSQvrqkIp3wk5RlYtU8nhfHekNsg4pMrt//3477rdDih6mq6tr7969c+fO7f33lxNFCjmkhBBCCCGqQ+UOqZ07dzKwDveXPX/+PIN1O464csxG9Y/QpTB72HfoyEaF3dLe3h5aRKk5OHbq42yyE24YlPx7UN7vXJRl3759GJC//PKL7cFsmJeqtbU1XLAWV0jI1atXc2ctGZcuXaJ0Zs2ahU3r1ohZHb4VFFy5cuXRo0dlI9yzZw/xhLaWGYemBN++JEtK4VjaWDXhdsI2WySuRiwxysVSjAhpwVIfLMuSmhJip+/PIbVgwQKObUt+wzKSNTi5jnKOHTuWmxz1MNyVnNPsLvJWeWz5VYXaqDwjKYocUimf1/HjxxHD1Jt1SE2aNInq4dsnhaRm/XAaCsZxalZdqqZF+oGiEkkG4JDqU7cTL2gH3XZ2dobrW52UQ6pPHVcK8y+sXbvWrxD+7du3VuiWEfcgjxs3rqOjo1oOqX635Ww37sQLIhV/1j+b7dDiDql4J+wUVblIJY/31ZHeANmePn3qC3i/+uqrsHwrdEjlavjs2bMPHz48evRo7jpW4cghJYQQQghRHSp3SGGoYDvdunUL8wa7yAwk9zLEXTktLS3t7e2LFy9mDF1bW4st4SYrlkxvaYtl7Aozt1Jf2eN4z549vq1yUvqL+82bN2fOnMGc++KLL5A5HGfbTuTLli2bNWuWRRIOygeSC4zq1P/SIWaKv3r1yreLTt79y43tl9pzJKKQEJs+duTIEURFmNmzZ/ve51g+vcH2T76NlFkdnNbX10+aNMnWgPgGvZEICfz69evr16+jNwrlxIkTnhEM48uXL6Pq0Ox0sgo/dOiQbaBDKvPnz29tbX38+HHux9rWrVs3ZsyYsWPHNjY22n5bcSEnTpyIPhESSbhFnSH17F48NmmCghs2bBhVyBb1vD+HFKncu3fvyZMnFCIioW3biC13lg3GXnd394YNG6iK5J06sHHjRrtFtaS5cb2mpub48eM8a6nPnDkTDVBAI0eONL+hTcSoUBuVZyRFkUPqzp07hw8fpu5R5exDaW45WyvYsWMH+fruu+/279/f0dFBVc9+KC0p1ZOuri6qDaY7hUW+QsEuXrxIwZGETyBK1bRIP1BUIskAHFJ97XaKChrZfv31V4qMeBCP/mfVqlVZAVIOqT51XFl48Pnz58uXL6cW0XVQKO5wQR4KCHVRzSg+amDoUB6gQ6rfbTmrz0oKoqhLSZHq0OIOqUgWQoqqXKSSx/vqot4gKTVhi4fKQAOhPVK4Ni03qdghlath21wMgctuzPeJI4eUEEIIIUR1wOTzrVKTks/FPwaXlHb8DdeaMVq1bYx7S9+fCncpxu56+/atj4k58K/1JSXb4+rVq1yxZ4kk9L/YN4P8X/owKttuyeG6/aO+fv16c/Twyygf+8ojxBppa2uzgb6ZN2fPng03S+53Log2tWomBIMES4Dw/k2lpGSfc4XrqT/q4woJQQMvXrywYNi3f/zxhwlGnP6hrlGjRlGORJi8szowmezr5lit2JZh6rkRGqtXr7btluDmzZvupPjpp59QJhezn1HPVTjiEdIegaamplx/x9KlS8mFhcGWCzfTiQj59ddfE9hukTvkzF2Zhc3PXTRMkREbx16sqTrPMVdylR+GTNUi83m5/Yxla0roLX02CyM2Ke1j1Zv5UhVWNOYlmbLAKBxz1G7NmTOHZ02TyI9Ba6ljrGKaevhwqkuF2qg8IyE7duwgzuxGPAiAVr10sNXdaTVt2jQv91evXmEq79u3L/djZ0mp5jQ3N1u7pufBdEd+v0vbsdrojS5b0yL9QG6JJBWXfm7Z9anbiRR0Y2MjirXAaC9XOfv376cJhFcq77iyTJ48mWZoz5o3x7ctS0qze0zV5Gvbtm0NDQ30/BXGbC6McD1mSsP9a8tZfYYUFUSkSwlJdWjZsqaBhMtFI1kIya1ykUoe76uLeoOkNM3q9OnT9j8EAZ48eRJ+W7Oosaeymath3mLWtP1LhSIXOaSEEEIIIaoD1mb4TR9Gw+Epx7kb9DB+zV5PzaTITqyoqamZOnVqrnXKxXDtRtlta0xyBs1mKWWFmTBhgq9oqFYuCJy7S65DQlnJUxoOiSgkFe3kEqG0qYQIY7L53+BcIYMkUWGEBld4Krs1L3oO96DJEircsFkPY8eOjecOMXKX7USETEofbkPOyMSNpOSnI4wpP4wkVSK51SMbMhssW9ZUqtRUoKKazHWUk7sZDXq2KjGshF9HS9zKrUtltdHXjFRyC3nIbORzZhVCZXM3REowTkki1ehSNS3eD2RLpPLSz8175d2OR5Jb0ASjyOIdXW5vU2HHlQv1CmFy64nNNvJ8hSoqG3MqQLbH63dbzuozTKWoIIq6lJBUh5bKQkoDZbMQkq1ySUElr6Svzu0N/JhHvItzIo09W5RZDTc1Nfk3CkQRckgJIYQQQgiRQ+4yMSGEEB8UH2Bfbfv9+SJiUYQcUkIIIYQQQuTwARo5QgghUnyAffXhw4e7u7tz52qJEDmkhBBCCCGEyGHYsGG2X/JQCyKEEKKQD7CvnjBhQu4mdCKFHFJCCCGEEEIIIYQQYlCRQ0oIIYQQQgghhBBCDCpySAkhhBBCCCGEEEKIQUUOKSGEEEIIIYQQQggxqMghJYQQQgghhBBCCCEGFTmkhBBCCCGEEEIIIcSgIoeUEEIIIYQQQgghhBhU5JASQgghhBBCCCGEEIOKHFJCCCGEEEIIIYQQYlCRQ0oIIYQQQgwedXV1n3/++VBLIT4SampqFi1aNGvWrEoCE6y2tvZ9iySqyxdffDF+/PhqxTZ8+PB58+YtWLDgs88+q1ac74+stH2q8EJ8+MghJYQQQghRBYYNG3b8+PE1a9YMtSAfNBiWvb29P/zww/tOSMXxKTBjxoyOjo6urq7u7u4vvviibPh//vnn559/HgTBhpZJkyadPn169uzZQy1Idbh///5vv/1WlahGjBjR2tr65s2bzs7ODRs2VCXOFFVUflbavlZ4IT585JASQgghhKgCI0eOxEg4e/bsUAvyQTNoDikVx6fAyZMnnzx58vnnn1Pcw4YNS91dv379N998E175RBxSCxcupJWR/aEWpDpU0SG1evVqNFNXV0dtKTtPEzVu3ry5r0mklD9lypQ9e/aMGjWqKtLGK7wQ/0XkkBJCCCGEqA4yEsoyaA6pRMXxCXD9+vVLly4V3b1z507KI/mJOKTgY1oVW0WH1J49e7q6uioMfOTIkSdPnvQjlVD53377LT1e/2YzZaWNV3gh/ovIISWEEEIIUR2+//77mTNn2vHXX389f/78ESNGrF+/fvfu3fPmzUtK68gIs3fv3qVLl6YenDx58tixYzdv3owRYoENbBti4Pebb77hwalTp9r1zz77bOXKlVzZuXPnV1995eHXrl0bngLB5syZY8fIQ4B9+/aRUGpblrq6uu3bt7uoWcaMGbNu3TpS5NnQvnIJZ8yYsWvXrm3bto0bNy580BLlwRUrVtTW1uY6pGbNmkUYPyWYxWmn6I2kw0SXLFmConbs2EGiudImBcVB0ln9A/q3kvJbRZqP6JAwXCQwD44ePTq8VaRe5CcX5IUcFWWEFDFrCVNfX08u/DqCLVq0yE9nz55NWfspsm3YsMF0WBSDaQnFIgZiL1682K/narjCsq68gnndQNSUxhwqHneJc8uWLZMmTbKLI0eOXLNmzcOHD//++28OUlpFQi62t7c3NzdzQN7tujmkkHnr1q1Ikq08lRQHIOqqVauIAeGRJC5qXG/Tpk3j1vDhwz0wVZFIfM+gIpGs4HLzQkLEEOqfY0oEwRA4TKsf7aJPiqJcCMbjtP3QOxwR3iA5Iv/xxx/JS8QhRUexadMm61s8/qLavnz58sbGxq6uLqrEd999F88LMVy5cuXly5drSiDGggULvCJ57ogzJVKo/Llz5x45coQej5pPJCgzm4WinjwlbaTCx5tqqvtCsSicGjhlypSsMFRshOdNFOqBXPhpX/ux3O6l7LtGfFLIISWEEEIIUR3C+Re///779evXW1tb79279+TJk7dv32LyYeFgJD948AATJVwMwoMnTpx48eLF7du3udvT07Nu3Tq79eWXXxL42LFj3d3dT58+ZRyflMywW7dudXZ23rhxA2uNyA8ePGjhm5qaSNRjnjhxInex2eypO3fuIMz58+eR6vnz574zLhbOmzdv/vzzT24xOgxtaQMTAtOora2NMBhFr1+/xpQNJTx69Cjy3Lx5k1+ScHsbO6qlpQXhEayjowOBcx1S2Mlcnz59up1i2HCKMWOn2C2cWoqYnefOnXv16tXFixeJE7FdV2WLg+wjPBojNsw/D4lBSI4eP35MhGTz+PHjEc0X6RBDDmGam5sbGhrI6bNnz2pqauLqpQ6Q7tWrV7lFKidPnszmAnsVwYiNaFEvImH42a1Tp06RRw+Jbilrd0Ps2rWLssA4j8RgWsLaJ9fUTMSIazhe1n2tYLZFDiWCAJjZuU4Hiv6fEteuXeOXFFesWMH1CRMmkARK4woF+ssvv4RPYflzkbukxQG58MxSDWhoJMcxARYsWOBPVVIcpgSUaZWZPCJGXNS43myFV+gfIV3iN/dKRCSSOH36NGJk82LJ+XJFGg5ZpmhQPiEJ776/frSLyhV19uxZckqnd/nyZUqf30qEBzpDJKEzNKmsiuYWBOVLiztz5gy113qVSG2nXEiR3pU46T/jeSHLL1++ROz7JahRdEo8G7r5EI+WkpXKlU//Q9fB6aNHj4jEOzQn0pOnpM2t8GWbaqr7QrFoDHVRFgifVens2bN5KnRzh97AfvRj2e6l7LtGfGrIISWEEEIIUR1SHhBG9rt3705KThkz9hia28QHjDRMpvBBBvT2Zzs2BsYJBiTmevLOrsA0sn+/7XEsCixh/799//79hLFpUBs3bgw9O1u3bmX0P2bMGHuqra3NdjMhHgwYErJgWG7cteOamprsSreJEyf6v9k8++DBA8wJOzUJMQJtBtPMmTMxq8z+SUq2CqfmSyJpjJZchxQSYnr5U3/99RfBMFntdN++fSjEpMLiwuaZNm2a3Tpw4ADD2dzJNdni2Lt3r51euHCBpyzCzz//nGMMJDvFRDSjrkjzRTpE/14iHJAd8wMWqXfq1KmhAblkyRKSC81yJ5z9QRWi6O3YVgPZ9snUMaoQpx4hOiSb8RhMSzxlu79bHiMajpd1XyuYZdlnalgtDSESzGYisVlItAisdIT3qXNEa1ZuLrlL9sjasmXLklJtxEhubGy0W5UXBzI8evTIZpEgEk2srKgRvaGKp0+femsino6OjsOHD5cVKZKX0CdignlTGjduHFV6z549dtqPdlG5opDN906iyRPMK1VEeJqb95xJqfpZz5mNn1s86HrzTiBS2w8ePEj2/TSel9SSPRo1pbZlyxY7Nd9Ndk5ZyhsYX7IX6cmz0iaZCl+2qYbdFzWTTsk3t8o2t6ScQ6of/Vi2eyn7rhGfGnJICSGEEEJUh5QH5O7du37LJkf44Hvz5s0M092u5sFwigcGFXdtsYnZFT/++KPfZViPAbBv3z6/QjyYJVgjSWmI//r1a7cw3YAhDE+Z8ewycMVEamhowGqtfKMT7GefYmAS+mSQpDRxwP8kv379enNzs9+aOHFi0R5SN0okJQPV/kJ3S7KlpSU0ikKTzMxXn64VEikODCSemjBhQlJaGsNxuCwlzFeo+bgOs6n7ZIdc9WatzY6ODrfDi0AepDJnJRZmV1eXORcwjKlgaPuPP/5IStUA4zNcBZkbg8np3hAjouFIWfejgs2aNctcD0VGqc0e4tevLF68mCu+LKgfDqmwoZ06derBgwd2XGFxYO2/ffs2nEZUiajxNkItpRytNzB73paaxkXK5sXnvIQ+kTBC48KFC9QTO+5Hu+hfvTWR3H0TEZ6o6MHCbZgePXqU65Datm0bIeNrBlO1PSV8PC/ZPaSampq83zt06BAdlK+sTOW0EodUvCfPFS9V4cs21bD7opURGy2xaG1sUs4h1Y9+LNu99PVdIz565JASQgghhKgOKQ/I33//7bewOsJRu80X8P+oU3stYz36grWUeZOU/pHmyurVq8Oksdl83I+JYmb2pEmTMJ5tX6Fp06bxlK34MDju6emxKQzEieFhbqCiD5Zj55CplpaWx48f87jnLishtwhpx7Ygy29FNjW3yVwYS0TFCNW8FQjDI+TCd2/BCLTvoBtY8gSzqRYpIsVBEjyF5Mk752BqL6TcfMV1mJSK9fLly1j4qIjrnnqueikv8tUZwClWbjYjGG9Y7xifKBNjL3RlYt3dvn07KTk1GhsbyQuqw9Cl8iCAV7BIDNl9viMajpR1/yoY7YIw7e3t9fX14d5Ghk33q62t9Svm0AynnvXVIRVmlmNf81hhcZjNH+7VVYmo8TZSV1fH3VWrViUl10xbW1slIkXyEiaHABxTiB4JpWB1JulXu6i83tKWd+7c2dTURHdkK9dcAxHhT548SfMJ4ynaQ2rkyJGXLl0i2lu3boUlEqntKe9JPC9Zh9T69euJzfZjotIePXo0K1XlDqmyPXlZh1SfmmpScjL+r8SxY8dSW7wZcYdUP/qxbPdSybtGfFLIISWEEEIIUR2q5ZCyLZNsC9isXTFp0qSsT4cY3PbGNrM5Edu3b2eoZ7MDzPjhyoSAcNXGsGHDsJ2wVDEVfM2IgwA9PT2HDx9GNmzyxsbGCh1S2B5+nEQdUthsZupj5l28eJErWIN79uxZt24dhpZvHf3s2bMLFy6EuQi9ACmdVOKQMiNz4sSJqceLXIFFOsR6xBjD/sfKmj59eqpMs+o9d+4ceZnwb7ITLhAMs/Py5cvUBzRvu2u5gY3wmH/jxo1rbW3dsmWL6fDrr78+ffq0L5eLx5C1GCMajpR1vysY9fnAgQPd3d0NDQ2pvFszCXeZMQF82VEVHVIVFseUKVN8CVLlosbbCNjubCRHL+F7HsVFqtAhtWHDBo5ptmEkXvr9aBcVKioplc6DBw9WrFhBX7R06dIKHVK//vpruDNaUu4re1999dX58+eJfNu2bUm52p5y8cTzknVIjRo1ir5o7969c+fOJdrU5yOMyh1SZXvysg6pPjVVzwJ9FA+StexUKXNIhR83SCm/r/1Y7nct4+8a8akhh5QQQgghRHUYiEMqtMZ37tz59u1bM26zdgWjeYyi0EiwySm+OmPEiBGM8DBmbt26derUKbuIhcBTx44di2eBZzs7O8NVJAZWhy9ustMKHVJYho8ePfJbto4p1yGVlMxy8nXv3j2bV3LixAmygLUZ2mBXr171KSRxKnRILViwoDfYQD15t9dJNl9xHWKVhbv5cpq1xEL17tq1K7VHci6pqTd26gb2uHHjiKS+vp4KY1vJUEyHDh0i7756Lh5D1mKMaDhS1gOsYKaNlF/DzP5w4SGVnJxawSXlHFLIllouFPGDVFgctszKt/dO3tWWuKhlHVI7duzo7u5evXq1N/yyIlXokDLvdnZKl9GPdlGholLTf+y0EocUlTl07ZFQR0dHxCFlUGlt6/p4bU+5eOJ5Qapw/ynj7NmzDx8+PHr0aNgfhqTK2lTq2zyFlO3Jyzqk+tRUQ6xWhCtMDSsm75/pXnKVX3k/luuQykYiPmXkkBJCCCGEqA4DcUhxeubMGeyBJUuWMD7L3Z/YOXTokO3XM3ny5Pnz57e2tj5+/Nj3SUlKC39evHjR++/NhjGiMHo3bNiAmUHSixcvxlpLSnbRr7/+WldXRwykjnVhq4dSKWI7zZo1C6MUe4nUK3RIYdBy98CBAxMnTlyzZg3mDc8WOaT2799P3n1Cwbfffoswr169Cr+jZzMOjhw5Qt6xM2fPnu07NFdeHKHhTfbtS4jkHf1v377dPgeWq/kiHcKtW7fu3r3L9ZqamuPHj/OspV6kXhRiuz5xi4yQtE1xSuXCppagc+LBgLSlT+EOO83NzSiN63aKZkyHvlNyPIasxRjRcLys+1rBqA+ULCHHjh1Lhb9//362ENHq8+fPly9fPmnSJOoS9Sf048QdUhcvXiSz06dP91kYET9IhcWRlPyklk3uIhJNz/bAioha1iFlq2t53Oe1lRWpQodUUtqCrb29neIYPXp0bW3t6tWrfd+lfrSLChVFWrR0+jQKnbv2mYJKHFLEz4NXrlzhqa+//hoZUl4bZ+/evWRq5MiRyEAGqWNJudqecvHE88KxrYCj3/MYzKWOSEXbZqWUb+sxEZXIvUk68Z68rEOqT0115syZ3KWmoTEOSDc7/Q2loUl0TuB58+bRobny+9ePZSeK5kZCD0DlJyO5KhUfN3JICSGEEEJUB4wf38f67Nmzvv1tUrKdMFD9FFMc+7OmpsZO7SPo2GC9JbA6JpT2FU7eLWRLfcsJiwIjAYvCwjc1NfmcEQNDjvjdVDawAY4fP44tbU8hT319vd1qbGzENuAiceZaBWPGjGlubiYA0WIzY0chZJGEZDxcKnXgwAGL3KxiMptd8WRgUBG/b2+MeYM5hMCpjWw2bdpk7rbe0qZFto13lkhxmNXqVhMGUltbm0WIkLZfVa7mIzqcM2cOz5oOMbqw3j31IvWavW1REQCVZk3EpLSIibtWoOSdY1/AmJS2duZxn5xlu2u3tLRUGEOopbIajpd1XysY8ZgrFtBD7oYyWNpUbwtjDg7fsSspOeOKSj8pTQOxLYR8T6JUZjl2R15ScXHQbC9duoQyCYYp5Y6JiKhl20hS2v6/N/hIYlmRInlJJccjV69eNYGB9uUOqX60i8oVtX79ettRiN8ff/yRsvB04wXx3XffvXr1isj53b59+/nz532mZ8iuXbts1ySg83T/fqS279+/n4pdoYaJ0LJPabpO6FGJtjf4OmSKbFnbpwx782aGxnvyrLTZCl95U500adLdu3e9beZ+8SApzYyzVkOp0bc0NDS48vvRj2W7l9xIamtrOS07D058lMghJYQQQghRHYYPH+4OIA5S649SezaHE5r8b+QJeTsihSFD7O9o+/x8Fp7K/XgZ13kqm8ro0aOxYYrSMsaNG+eWRpi71FPcSiWNDY/9Zheze1dHxP6sRDYYYSaXyL1rxIsjm1OylprCUKSNIh0mJavPDONhJfx6RL3Ew61w0lOWUaNGEcYizGY59E8lBUVfFEOopZAiDZct675WMJIou/4LlRJnVkXZ1LMBiN+rXCqz2VqRVFYcJhLBspW5SNSyesuGiYsUz0s2KtoggoW7emWfyn0w2y4iUqVASBq+1c9IrcsVg8jtwVRTygbL7oUUaS+5/U8kL/TJqfibmprCL4fmSpW6gtojlTzSk6ekza02FTZVAzHoo+KtJlR+KsW+9mO53UtuJCQXl0p8rMghJYQQQggxxEQ22hBCCPGBYNs8+UJdIcQAkUNKCCGEEGKIkUNKCCE+fA4fPtzd3e2rrYUQA0QOKSGEEEKIISa7lEYIIcSHxoQJE3I3zBJC9A85pIQQQgghhBBCCCHEoCKHlBBCCCGEEEIIIYQYVOSQEkIIIYQQQgghhBCDihxSQgghhBBCCCGEEGJQkUNKCCGEEEIIIYQQQgwqckgJIYQQQgghhBBCiEFFDikhhBBCCCGEEEIIMajIISWEEEIIIYQQQgghBhU5pIQQQgghhBBCCCHEoCKHlBBCCCGEEEIIIYQYVOSQEkIIIYQQQgghhBCDihxSQgghhBBCCCGEEGJQkUNKCCGEEEIIIYQQQgwqckgJIYQQQgghhBBCiEFFDikhhBBCCCGEEEIIMajIISWEEEIIIYQQQgghBhU5pIQQQgghhBBCCCHEoCKHlBBCCCGEEEIIIYQYVOSQEkIIIYQQQgghhBCDihxSQgghhBBCCCGEEGJQkUNKCCGEEEIIIYQQQgwqckgJIYQQQgghhBBCiEFFDikhhBBCCCGEEEIIMajIISWEEEIIIYQQQgghBhU5pIQQQgghhBBCCCHEoCKHlBBCCCGEEEIIIYQYVOSQEkIIIYQQQgghhBCDihxSQgghhBBCCCGEEGJQkUNKCCGEEEIIIYQQQgwqckgJIYQQQgghhBBCiEFFDikhhBBCCCGEEEIIMajIISWEEEIIIYQQQgghBhU5pIQQQgghhBBCCCHEoCKHlBBCCCGEEEIIIYQYVOSQEkIIIYQQQgghhBCDihxSQgghhBAfFZMnT542bZodjxkzZu7cuUMqzv9RU1OzaNGiWbNmDbUgQpSnrq7u888/H2op3hcfd+6KGEhP+CFrbPz48VOnTh1qKYToP3JICSGEEEJUk9ra2g0bNuzfv3/Pnj3ffvvt8OHDB1mA33///e+//7bjH3/8sbe3d2itqRkzZnR0dHR1dXV3d3/xxRdDKMkgs2TJklOnTtXU1Ay1ICLNli1baKG5t7DwaTI//PDDIIs0OLyP3A0bNuz48eNr1qypYpwpBt6U+t0TpjQWqTlDwq+//vr48eN+P/7+ym7cuHHr1q3bvXv3pk2bst1+JW9JLi5dunTHjh179+5dv379pEmTUpIvX76cx3ft2vUh/Oki+o0cUkIIIYQQVWP79u3d3d0vX768efPmvXv3sGQePXpUV1c3mDJ8aA6pkydPPnnyBBlGjhyJFTGEkgwy2FE9PT2av/AB0tTURJ3MvTXkDqkpU6ZgZo8aNep9RF6V3K1fv/6bb77xU9o1nd7Zs2cHLF0hA29K1XJIRWrOkDBAh9R7Kju03VXi7t27vA3fvn1LCfrdSt6SCxYsIF88SICWlhYCUwH27dtnd0eMGNHc3Pz69Wt+SYIYNmzYUN0siEFDDikhhBBCiOqA0cLI+MyZMwyX7cqsWbOePXvW3t4+mC6hD80hdf369UuXLg2hAEPIB7vS5xPns88+80aaYsgdUt9++y0CvKe5hFXJ3Z07d1IujEHwNQ+wKVXLIRWpOUPCAB1SyXsoO6vA1BDX9vLly3/77Tc7ruQtOXfu3Ddv3vAWcxckEhLt0aNH7XTjxo1E8tVXX9npjBkz5syZU8UsiMFEDikhhBBCiCrAiJkh9d27d1PX165dy9B5/fr1HC9atIiheXh33rx5jLP9dMmSJXv27NmxYwcjbL/IMJ3H+f3mm2/27t3rY3SeJeTu3btXrFgRWhT9dkh9/fXXu3btsjUU4fWFCxcimJ9OnDgRedyc+P777zGeERjZFi9eHD6IqbNmzZqHDx8iDwcIXDYtGD169KpVq8gXqiMGu8jjoU4wRci1n9bW1m7atAkBUqoIk5s/f/64cePQWPhfOnFyBTHCDHqmiHb79u319fWTJ0/m4qhRo3766ScEmz59ehiYEtm8ebOtK0F4vz5lypR169aZPF6IpEjGt23bhjBhJHV1daRF5KGWUpAQD+7bt8+i8uuIisBJqf6YGJjNRZEgz7Jly8g1Mk+YMMGv88jKlSt5fOfOnW7p9VUblk3qxrRp04jHA5fVlRUQD2Kvcnfp0qV+a/Xq1Sl5kHP27NnZrGHZUmf8FIFDRZFxisMcPaSFEjwk6fKg1R+eSrls7C5qR/Lx48dXUbGeLnXStIEpfuTIEQRA1dT5lPaS4t4gImQkd/GmnZQ2pOMKpWwlQrpIRUfX3NzMgTdeasjMmTMrybLVJSr/1q1biTZs1BHCplQ2ktyCCHtCVI3Cx44d64+QkXDZV0RjYc0p2+5oBVu2bEEJxIa6Up2/0deuyW7Rh9C4KK/QIfXll1+G9RZhUivdcrvWsOyqkqP79+8/efIkdxVeJW9JaG1t/eeffyKvrZ9//vnNmzdlPYPolmJFEkQlO5a1EFoKlYRWgwChwEWFIt4HckgJIYQQQlSBuro6htQYSKnrDJp9TQQD356entAT8eDBg/Pnzyelkfq5c+devXp18eLFpqYmRtsYYBYGM4OYjx07RjxPnz7FUuUiEXZ2dl65cuXy5csE5tfj7IdDitR/++03ZLt169bt27eJ8Nq1a26xNDY2/vXXXx6YYT1xup2D5cCzXV1dWBp//vlnGC3W4L179xAbUbFSfvnll7Jpkdlnz551dHTcuHHj+fPnPG7XicHXayT/nhfAI4xosZDPnDmDDLmzP9AJukLbSEu0dhFT5PXr11evXkVshDx58qSHJ9jp06cRAwn/VwKDnBTNUiKz/oc85gpZIPWGhgbCI7zvdBMq3wrx6NGjZOTmzZv8YrN5TcBeIhLEoDKQVmq3FGPTpk1IixrRDI8/evSIOD0hMkX2X7x4QdGjWzKbW9DoGVHJLAWKNogHUz8p+W4oDk6JnCTevn178ODBfmjDsnno0CGiohojFU+5uRvRFQV0/fr1O3fuPHz4EAGIBKPXbiFSaMFihCPexo0bs7kzs9YdZBjznLoVOm/ePE4xNZN/txF00tLSgk4Q2Cpe6IBAM0hFYVE01EZylLs3fz8US8+AAskvzQFhbAoJljZt3BYxET5rQuf2BhEh47mLN+2VK1dS5ShonqWUjx8/PnnyZKQiNuoAB1z3GoLkrrFK6hJZ5pioFixYkNVnilQ/FomkqCDCGGbPns3xokWLPH7k9Ck8cY2letdIu6M2UtvRMLWdW4TJbZV97ZroK4jNvPy8LxDVe0IqA6K62y41t6uoaw3LbuA5svpJ08stx0reknQXuWFCUAJhDh8+HPG8JyXd8mZERaiLOskjp06d8rt0BWSBhkOrQQnk113kuYUi3hNySAkhhBBCVIEVK1Yw3g2nXTgYDNgAybvB+qZNm+y6jbztT+Z169YxIvev4x04cIBRmo2P7amXL1/aRAAbgpOQ7zJjiyD82X44pEidYL4vzOLFizEj6+vr7bSsQ4pT2xY31zy4efNm6KiKp3Xt2jVMcZu8gJXiZknEIYWu2tvb7RgBwnk3Djoh0RMnTmCtmZBTp04NvX5LliwhgJu1ZuXahC8LiZD2V3lNTQ0myrlz5yzknDlzfBoLB9hpXr5ZhxQy2wwdip4IzZtgKsIItGPiz07yMhkOHTpkpygf29K9kJYQp5bWli1bOM2dQ7R7924kdP8RpTZx4kQOSJ1MeUb2799PDB6scm1YNikOm7lTW1vLXepPWV1ZAflGMxcuXKD+mx6swvgWMygNWz13f+sxY8YQp2uVSsuDp0+ftlPqD/anxRm2EYx/smOOKtrU1atXQzMezbS1tVlbo+Y0NTVZWx64Yq3KmbvEhLeD+JK93N4gImQ8d5GmTV2iCGi5pjGK0htLdsle6NSopC5ZP4k8VBWvHhGyDqmiSIoKonKHVFxj2d61qN3RQl0nKKFo56k+dU3Dhw8n2itXrlhI3h3mMbSQcYdUUdeackgNMEf2Hsw6UsO78bektXdPlNo45x3+0iGP1EyC3bt3b+3atUVLDk23vgk9PYDHjAIfPnzoncO4ceNoU+5HyxaKeH/IISWEEEIIUQXsP1szY1JgK968edOOMWZ8WsGBAwewkG28m/LaYG16bGaCYioUJW0BfJVTPxxSTSXCK83NzS5zWYeUTfIqIpW1SFqjR4/GFPSpMSERh9S2bduwyrILW0LQSWoVycGDB7FAwjAdHR1Ys54pm89ltLa2hnPQLly44BpOwYM+HyTrkAqXGWIO+cSHhoYGTiPbBu3du7erqyssR6wsdGWLViwh92hggbuLMEVLS0t2UgM1EAM4VC8JYfBTP/uqjWw2eZDIcy3GUFcUUDgNylqTrbdCGErfnXG3b98mRTumQEe8w67cKJGUXAk26cwnOJB3dzqEbeT69evUQE/atGdmPEkTSThZY/PmzbnZ6YdiZ82aRUJUuVRslTikwt4gLmQkd0m0aS9fvpzj3O+XRRxSfa1Lp06doubn5jQk65AqiiS3IJK+OKTiGsv2rrntDj3QPH0BKRe9taboU9fEG4EkwpXR5L0Sh1Ska806pAaSI/t3JNRtSCVvSfOC+fRPyqX3HWG5WFqUO9cpkdxZpalehXxZi0veufnCdab0KhS9P1i06lBUHTmkhBBCCCGqgNlv3333XfYW5kRDQ4MdM9pmHG+WNoPpY8eO2XXMZgy5znd0dXX5P8lmgoaftUpKBgbWRVNT04MHD2yNjwfoh0Pq2bNnJ06cCK9g57glX9Yh5fZMLimHVCQtc8OtXLkyG0nEITVy5MhLly7x4K1bt3KfTf6tE+P8+fMURGcAp+71SGWK7IdZwEYK7RzsosuXL3MFkXp6elLWXeiQCgsReZDKjqdOnYpJbA6U3JlN586do6DDK7Y8zabFpUqZgyIPJlXx+PHjqYukTvjVq1eHFx89euR+xsq1kc3m1q1bueK7GhXpKlVAxBAapWfOnME+xNKeMmWKtzKztx2bCENyqJHWQQzYOeb0QaUEpnx9z6MwOVs050mHZjzq5djWnBocI3b2E3j9U6yt4W1vb6+vr3frtxKHVKjhuJCR3CXRpr1582aOUzudGRGHVF/rEsdcyc1pSNYhVRRJbkEkfXFIxTUW6V1T7Y5g165doyrW1NTQURe5sPvUNZlDJ3S+hD1hxCEV6VqzDqmB5MjmQIVbuYVU8pa0PIalM6zE9evX/T+S8BYVldqe8lUZWd3SJ6CxpLQCmlR4z7qS6Tdu375d9KB4f8ghJYQQQghRBcwSC3dLMcwS8LUAGAmMnjGbzSjyCQjPnj27cOHChIDa2lq7leuQYmj+4MEDRv8zZ85cunTpAB1SmDShDZa8+4vYjrFaw+H+AB1SkbTM3ZA7tQeDwVdeJHnflvrqq68w5Hh827Zt2cezBsa5c+fQ+YR/46szKnfBUOLIhnlDgU6fPr3Iuos7pJJ3n5GyTbWyX4wixVR+LXJzW1TukELP4S4qBkXZm/nyGhlxp8NAHFK7du3ymRQRXcUdUgsXLuwtrVrauXPny5cvfV7GtGnTpr/DrqAQM7yPHj168eJFyzKtb926dRifvlVZmNz9+/fDggjNeGvU2PlhJfH5IwNXrIU5cOBAd3e3+6z76pCKCxnJXRJt2uvXr3c3X4qIQ6qvdanqDqncgkjyHFLhPKPQIRXXWOUOqaamJoR5WwKN+ZLqFH3qmlatWhW2iyTPIeWdWCh5pGut3CFVSY6sNh45ciQ3s5W8Ja0J+wf1nKtXr2YdUsbJkyd5JLtYO6vb169f23tkw4YNPDJv3rxQyZ5xOaQGEzmkhBBCCCGqQ1tbG4ZEaliMJfbmzZvQvLxy5QoD60OHDoVrVRht83hutEUmqE9DsNOBOKQQKRQGkwbDw60yDKTQG2I7cfTbIRVJy9b7hBMc3LhCsW4xDhs27MaNG7kfO0eNqfWARtbA2LVrV09PT9FH0yp3wSBYuOVwuM1KnxxSxogRI1JzwYydO3cibfjNtfPnz5NWNqEk6pBCb6lqZrMPurq6Qi+hTbrxGPrqkAp9ghT3o0ePyuoq7pCC9vZ2nm1tbU1Nr8tCBhHp3r17tkEV4W/duoW6QpnD5C5fvuwSJqVNzdyMp/qhGZ/GGKF/inWsNlptt7wX+S+yFSkuZCR3SbRpL1iwoPffmwF5Y0R1qVW6XkP6Wpeq7pDKLYhUDNZhuhLGjRvX0dHhMsc1VqFDyoqJBkvk4ef8svSpa5ozZ044/4is0d15CW7cuDHsmc2N6zW5qGut0CFVeY5aWlr+97//pVyZLlUlb0k6je7u7pRfPnRIpfZ1Il9oLPuaQ7dPnz71tObOnevas08cVD6jVrw/5JASQgghhKgOS5YsYVh8586dFStWTJ8+HYsOe49RLwZGGMwWW7148cK3cE7eTYs4cuQII34G1rNnz/ZJVVkTlBE2w/czZ86MGDGCQbxt3lyJQwp7Pne/J5tjhcGP2DNmzEBsMuKzTmyuxI4dO5ANqTo7OwfikIqndeLECUyRDRs22AfIsbXMnrSvCpJHtHHhwgWMXjfDUCNG48iRI7Ez29vbbUVGiqyBgb1EhNevX6+rq0M/PLtlyxa3iCp3wdy6dYtjjLSamhrsIrLWV4cUGURmxKA0rQqtWrUqJT/xIy1pYVNRCuafciO/cofU6tWrrZohD/UT6x2rleuHDh2yfYiIfP78+dQT1OsTkfrqkCKq+vp6aoit1/NdxiO6KuuQ2r9/v61jzd2AJoSQWDg+yYiWha5evXrlu0SnkrNpQQcOHKBKrFmzpqOjA/ndAXH06FGrkIg9ZswYalruB/76oVjSQiTixLxvbGy8f/++RWVfIqNWUydDF2So4dR8yYiQ8dxFmjbV8t69e0+ePKFOIgmF6BuHXbx4ETufNhtuVe5F2ae6lHJIFXVQlTukigoijIGs0VGQu5kzZ86bN486GTrR4hqr0CFFF43qkOrKlSv0VzRwBMvdSa2vXVNbWxvC2xxDmmHYExKSqo4CrfN8/vw5py55UddaoUOq8hzRR5EQQlIJUe/KlSsJ717CSt6SaIC0yBqlQAxkFrGfPXvms/l4/PDhw3QFxGBfJAw93aFue0s7TFFRCUntQic+TbKlpQUhaSxkrba2luz4RoRySA0mckgJIYQQQlQNRrcMZHvf8eDBg9TqleTd56swcuxLZM6mTZtevHhhDzKg/+OPP+y6LWHwPcsNLEnbW4RfDAasJh9Mnz17FsvfjhnHE8aH4AQr2oAcA/Lly5eW+qNHj0KLd/jw4WYzwM2bN22XEP8DHNM0uwQjBCvC81I2rZqamkuXLiEzt9CS7zJOchghXMSYOX36NNaLT7Pi2FwVgLGUu6Iq1ImDPYNRag8SLVkryhRmrW+knZQ2vcK2sWNMHawa88JgpGG0+4Oh8rOFiDy+jqmxsREBLJKi1S5ULdvBt7f0kbVwf+JUKXPgX8HLcujQIew3S4titZ2GeASDnCsWf1NTU+gMqlwb/tF3ar5plWh9OkNEV6kCMq9lOK/QjG3/nGIEzFey79WD5kb1oEGF2yGlksPuNf2bgYrV7YubRowYcfz4cR43zdCC/IuQA1QsebQvVPaWPhYW7h1mhnRvZu1bUtAbxIWM5C7etOvq6tra2uwuz/oOXPPmzSOJ3tJXI+1KWEP6VJc45oqfFnVQqRoejyS3IFIxLFiwwLJA/7lt27aGhoZwoV9EY5HeNWx3HBOM7oi+jk6MyBHGd3YP6WvXhDKtH7DGhfDhhFPbQ427T548QXK6UJe8qGsNlVmVHCUln9Rff/1laRHs6tWrX331ld+t5C05fvz4kydP+muCSK5fv+4bS61du5a65+9K+syiDeN5a3DXdeLfUU1K7xQEMyEBNea+Q8X7Rg4pIYQQQogqw9Af+zl3P2DjsxLZ68OGDZtcInU3d7SNMTllyhQzHsLwqS9V+7OYkdgw/EakwtzN3TUmKVkIPisqlAcxir667dFmA8TTGjNmDHezHzlCM+5vSuWR8Nk9RJzI17tra2t5NrXcI5WpVBaysaEZE8wWaoWC5R5n40R4xMgt6BA0RrBsXlIPxuOxaRfZnbntenY9TuXa8Pk7XEROGkI29VxdZVWaygL6Se0jFoFnUwKnIs8mh6i0JnsqW/GIEM34tm5F9FWxSalK5y7OQkVF60mLCjciZDx3RU3boMplJ2qhPS56VNlOoMK6FBZEvIOK9DnZ0swtiGwboYp6/5mSv0hjRb1r6nTz5s1UV/fsJKXVkS0tLdl89bVrskeQzRtX6nHrSYrKOtu1ppQ58Bw5SE7lKaquZd+SSSmnKCGsaSHUW25F3j4+0SkszVwxUn9jRApFVB05pIQQQgghPgkuX75cNPtGiKqQu6CsKthionCujfjI+Jg6qC1btvT09Ph8nJkzZz579iy7Ufd/iP9ijrTy7j+BHFJCCCGEEB8/I0aM2Lt3b/j/thBV5/05pFpaWrSI5iPmI+ugyMgff/zR09PTWeLNmze///77fzp3/8UcySH1n0AOKSGEEEIIIUQVGDZsmO3OXvWYp06dmrsAUIgPltGjR88oUfY7p/8V/ls5suV+Qy2FKIMcUkIIIYQQQgghhBBiUJFDSgghhBBCCCGEEEIMKnJICSGEEEIIIYQQQohBRQ4pIYQQQgghhBBCCDGoyCElhBBCCCGEEEIIIQYVOaSEEEIIIYQQQgghxKAih5QQQgghhBBCCCGEGFTkkBJCCCGEEEIIIYQQg4ocUkIIIYQQQ8Znn302b968zz//vN8xjBkzZu7cudWTSLx3vvjii/Hjxw+1FP+fSP2ZNWtWbW3t+0iU7E+dOvV9xNxX1HxyGdoqOnny5GnTpg1V6lVk5MiRdXV17y/+99dCP0DQ5JIlS2pqaoZaEFFl5JASQgghhBgyvvzyy97e3m+++Sb3LuPvU6dOxYfgP/74IzEMxKU1+AwbNuz48eNr1qwZakGGhvv37//22292HC/iQVBUpP78888/P//88/tI9Ndff338+PH7iLmvVL35bNmyZf/+/dWKbagIq+jg8/vvv//999+DkFAlHexA+P7776ldkyZNek/xv78W+qFx4sQJNPm///3v7Nmzg5/6zJkzf/rpp6wPnfpT9O4WlSOHlBBCCCHEkBF3SO3du7enpyc+l+S/6JAaOXJkd3f3kJgW/WDhwoWbN2+uYoShtZ8q4vXr14eVYRAUJYdUdZtPU1PTkydPqhXbUPFROqSmTJmyZ8+eUaNG+ZVKOtiBIIeUk1V+5UycOPHt27dbtmzhuH8xDJDm5mbK8eLFi6nrV69evXnz5uDL85Ehh5QQQgghxJARd0hBWVP5v+iQSkqulmHDhg21FBVx5MiR6roYUtZ+WHZ37txJuZ/et6LkkKpu8/nss89GjBhRrdiGio/SIfXtt99S1l988UV48b32nHJIObnKr5Cvv/6aZ7/66quqS1UJkydPJvWrV6++fv06NZlODqmqIIeUEEIIIUQVWLt2bWrEvHLlyjlz5vjpkiVL9uzZs2PHjhkzZvhFd0hxcdeuXdu2bRs3bpzfnTJlyrp160J/BEls2bKlvr5+5syZdiVrURMVqZAWKVYu/8KFC3kKAdaUMMmJdv369fwi4d69e30qAVY3uePKzp07w1wTbNGiRX46e/Zsgvnp+PHjN2zYYKJiqnkWsDfmz5+PGf/DDz8Q59KlSyuRLcuYMWOIf9++fagoNAJHjx7N9bFjx/oVrCPfOQgbCWHIEZokO6l/4Al55cqVly9fWtImvAlMSSEVMXvqFBbyb968OWt3kSlKhCSIIbT2vYi5Tvzt7e3Nzc0ckK4FCBUV0byFJF2k2rp16+7du8NqFhGvrEOqrxEW6dNqOFV34sSJoUOKCjZ9+nR/fPny5ejWT8n7qlWr4ikW1VJqFK2S+kD4oh2RPPvUW561AvK7VLywESE5Cbm/yeLnKeoAdcwuIvyyZctSguW27riEdXV127dvR+3z5s1LhU+lmIqQmkNNQ8+hGpNy1SMprqIpUC/SIgNZS8lANSbvNAoCTJgwwa8TjEIkUYQfOXKkXyfLhCT7XB8+fLhfzzqkcjvPonJHY4QkuRUrVnjnSXs/cuQIZY1WaV+TJ09O/t3Bli0sOhDUTrQEs94gzEuYKfofpKWbyjqkcrNM3aPah5GQBe8BkuIuPeWQincOZJkskDrxhJXKM05bI3dUAGuzhCce9BD2nElxpbWGb4Vl1QN5IsrPQr+K5hEvzDtqPHToEM9yy3vgFEUZH0jP76CTZ8+eUbuQYePGjeEtOaSqghxSQgghhBBVoKmpqbW11U9tlcGmTZuSkp127ty5V69eXbx4kWBv3rzBCrJg5pDiemdnJ0Nbfp88eeKGUMpZcPjwYU5bWlpu377d09Njo/9UGIyE169fM1D+888/u7u7T548WYnwJ06cIGmEvHXrFrE9fvzY9sEx8Y4dO0ZUT58+xZzgYm1tLcEIf+PGDQxXsnnw4EGL59SpU9hIHi0BuOtGCxYFT5k9H5pS2J/Xr1+/c+fOw4cPiZAUMQ/KypYCE+ufEteuXeOXRzBH7dbs2bN5MPSUhfY2Cnz+/Pkff/zBsLijo4PAYbSU18uXLymy+yXMlELgK1euPHjwgIR4Nim5D7q6utra2lA7uaAIMK7CLCAApWYZ5KkwdSs+YuYWekYMDkjXAoSKimjeQp4+fZosYMxzTFQLFiywWxHx4g4pyuXFixd9jTCrTyxJaiwhiYqGQB12h9SjR48IbMfUDaK9d++ey0BNRoZ4ikW1lBpFazp//jwRItKsWbOyebTsU6BkE50TAxK6n6WxsfGvv/7ywKF/AVFp70hCUfKIF2joTDHBjh49mtu6IxKiLqocOeUWaoyn6GBao1WM54aGBpIj6R07dlRSPZJoFQ3BvEew5uZmkiAq0vI5IyNHjuQ60aIxmgaZnTJliimBYASm0pJHL1yKD52jAfJIcqHaQx2W7TxT5X727FmSpnlevnyZwPxaYBoRYQhPfSOD2c4zXljTp0+nH0AqE4YUkZxOPqUfC+Z1id/QIVWU5X379tE6Qv8XCiSMHUe69D51DhQxqVPERE5yKTWScWoaMaA0mufKlSvtlEZHpfKiiVRaa/hnzpyxHoMkKIWI8kMoZeobj5AiEiID3bj5+w4cOEBy1vPzbHZ9ZSTjA+n5w7I4cuQIB6QS9gaJHFJVQg4pIYQQQogqsHHjRsa+Ptdj69atjKrHjBnDMUN/DAn/bhQjbEZgNsQ3Y4Chts34mDlzJuNps6ySf9tL8+fP53jbtm12a86cOTbODsMwWA8NtiVLlnArNDtzsf9+fdkgVqWvGjPxMLFsYoL9443JwTje/+Xev38/YWzWkq3LsJE95gR2FKcuD6P5Cxcu2HHKIUWwvXv32ilh0I9NW4jIFoJgGNIYJGbDYLpjzyCkqaWsWcJdMw5zF8dll+yZwBh4hDedYJr6pAOuhPYkqiPw7t277ZTS5zTrkLLT7JK9UFERzVtIqplNzxk1alR7e3tjY6PdiogXd0j1O8JQn8OHD3/27BnWqelq+fLlVAx3SKFeittuUUa9JSyPSIUAtoFXJMWiWtrW1mazHrjS1NRE9cjm0aS9fPmyhVy8eDGnNF67G3FIWeMyn0tSmr1lB1mHVFHrjkiIlctdO66pqTE1FqUYEs4Joo6Zt7RsacaraAiVzasfBz09PeZzT0oTSTj12rhmzRrz19ASHz16ZLNUaJimW2uwp0+ftsDjxo2j+Pbs2ZPVYdnOM1XuZNCnuvzwww8E8Gezq8ayDqmiwjKHuB1TScgp4bP6oe96+vSpueAJgJK9wkSybEm7JkmaU5szFe/S+9Q50OgsTmoINe3Fixf234ClThmZnKRlWrVunEbHqc8DjVRab0qmzy1btvi7IFf5IZao9/NoGOXX19eHuS76XmEk4wPs+ZNShffYyBFShdO75JCqCnJICSGEEEJUAexGRvzuVWGc+ueff2aPk3fmn83vMGPA5/IARov/Bx7aS9jtnZ2d4cKWbJiDBw9iSIR3Ozo63M4swoxw/xv/1KlTPsg28UjCA2OEYCDt27fPr5jXAEMxKTmhurq6zMpaunQpAl+/ft3mv6AfrLi1a9faUymH1N27dz1CTFkStSU/EdlCFi5cSDB+U5myFS6VmCW55qWR65DiSrYsnPPnz7v5iv6pGKHHB9uvHw6puOYt5C+//OJ30RV1qax4cYdUKsIHDx5UGGGoT9sChhIJo3KHFNa129hUYCoM9okZ59jPRVvwhClmaynZQVfuV0pK00y4kjU7TdrQuYO9jZ1pxxGH1KxZs8yJk4oz65DKbd1xCRsaGgiZst6LUizCsuYLDCPVI15FIxCnz0ZpaWnxGTEOpj42fDjh0TAXQ7gW9cKFCzYVLvm3Dst2nmG5p7AAvgS4EodUUVfc3NzsCpk4caL3LSGUCyUYzt+ku0t5MIuyTH59UiQt+sWLF+Zfi3fp/e4cyCbC2KLOVMbpqDl1Z5ClaKnEK22qKZmW/AuhcYdUU4nwCgr3rj7ikIpnfIA9P6A076nGjx/PKyx8n4YOKZQw4h3/le0RPxDkkBJCCCGEqA4YTmaxY4Fghvn2Sc+fP2fQ3PmOrq4uxsE2VSG7qTmWCfaYHYf2EtYLpnI20TAMVjrpdgZweujQobjY48aNQyQsHwb306ZNQ1p3FWXFsylLq1evDmPAfPXpKtjSt2/fTkrLNLDnsVhs/gvGPKN5N1dSDqlwyxiSczshIluITU+rra31K2YOmV+jErMksrdxrkMqu+kyRjLXbTEamvcA2LSpDbwjqUccUmU1n9pQhuNw+WSReJVvat7vCM3DGPqVwj2kMN6weK2WEsn27dup6jZ55/jx4yikbIrZWkpV4Qp2qTcEjql+2W1istLSin1ZWcQhlbxbadXe3o717t7JrEMqt3XHJaSsqSS2ai9cSZSbYggGPyY0RvLDhw/Rapi1SGnGq2iKH3744fLly3fv3uURhPE4SY7ySgU2/1G4kZxBw+Q6TduzT2at30jpsE+dZ1Jyge3cubOpqYmu2JaJeYBKHFJFXTHZtI2EUPvhw4cRI7XDFEyYMIEY0I9fCStMPMs2+8a88JTdsWPH7Hq8S+9352CTsGzpXCrjtEdO7ZN2BgVtzqx4pU01JQ5Cd2HcIYVuT5w4EV45deqUz++LOKTiGR9gz89LBxnokOveQXdEDB4gdEjRp/W+A+GL4hRZ5JASQgghhKgO2F32HzhGNWMsn5vAaBsbe0KAu04qd0idOXMmd8JLGObcuXOkNeHf+M6yRWBZvXjx4smTJ5gWRIWoPkbPiodxlTK6kpK1426U9evXYzIRZ2trK1YNFojNaDh9+nS4Zqpyh1SRbCG2Nid0eZjkCJO8M0vCGTpVd0ghMxJiqc6bNw8jvLGx0QNgqIR+nHjqEYdUWc1HPA4R8frnkOpThKtWrUrNREh9ZY8stLW1jRkzhjix+ig17HaaT3t7uy/jiqRY5DalGYYNIXeNW1bay5cvNzc32zGp+HGS99E0jg8cOIBZ3tDQYFcqdEiVlXDYsGHY8LafTriLfzZFZ+LEidjPyE9VR0WorkKHVLyKhhw8eLCzs3PTpk20qenTp4dx0kaydviUKVPCaTLOhg0buE5Rhtl3UUMd9qnzTEozqh48eLBixQr64aVLl1bLIbVv3z4yS1lQCTkId912xo8fn5qxFVaYeJZt9s3WrVuts/KNt+Nder87B1uIZ11i5Q6peKUdiEOKJFL1zWah2nHEIRXP+AB7fnsTZXEfceiQGjt27PR3ZJ2VIoIcUkIIIYQQ1QETmqEVNtutW7dC24xha+7kpqQvDinMS8yhcBKQmSVhmF27dmHVFH1QrAhiwPLHDsGgTY3Os+IRrKurKzQe7G9zNzwYiyNDfX3927dvbfcW7MNDhw5hJIRrPSp0SEVkC8F+4xFfD2gPIoBFYnaUGy1I2NHRUblZgpzhXjxZgZOS3RguZ+PUA6CK0ItB6URS5ymf1JBSVFnNRzwOEfH655DqU4S2D4uXDhlpamoKHVLmyUVRFj+VvLe0XVpvsMQpkmK2ltI00JVPM4lg0vrGzDThly9feuMllVDOffv29eYtIbR2Z+2xQodUhRIiT2dnZ7giKZuik5onaKeVOKTiVTTk2bNn4abanHqcN27cSPVytsMavVY4c8pkNodIduaUEeqwT51nar5Magc661h8S6mkLw4pdLVu3TpCZjcyD/NLYYU9v+1nZIqNZxmuXLly8+ZNusrwj4d4l96nziH0YO7cuZPu0QSr3CEVr7Rxh1RW+am8h7kmoSdPnrjyIw6peMYH2PMjwKNHjxBm2DsoCOrz0aNHLYD2kKoKckgJIYQQQlQNrJEXL170/nsrcftz+MiRI5MnT2b4O3v2bJ/3UblDCuPh9evX169fx3hmaH7ixAnbryoMg7Fk2zYRgCsMx22OksWGUYEBmZV57ty53d3d9+/fb2xsPH/+PHL6B+Nz5yBgMtlOImSHkK2trVgsPh0sKW3/wRDz6dOndmq7Vve+26naqNAhFZEtxa1bt54/f758+XIU9f3332N4uBoxJNrb2+/duzdz5kzMwrt374Y2TFmzxHbnXbZsGZq3YFmHFDohTgLYR8TRjwegUDjF4qIgvv76a8SIpH7x4kX0Nn369HA3YldUXPMRj0NEvP45pPoaYVtbG0Vg02r+/PNP+3SX37VtX6gkPqHjzp07nPJIJRrOraUYjcS5YcMGrNAxY8YsXrw49cl2l5aoqDkrVqyg5pw5cyacAbF+/fre0rfqUDhtlsbl/oU1a9asW7eOmMeOHUvl9IU8FTqkIhJSXX/99VeaMCWLKd7T07Nq1apIio5NCCJHxLBw4UJbsFaJQypeRUNoZTQfBK6pqTl+/Djxe5yrV6+2Xo5c0/vduHHD9nSjp7JsEjkNk3K3HXZaWlooX3I9evTo2tpaHvddmUId9qnzJCoyQiGiOpL766+/wgCotLf08QQ6RuuLKndINTQ0WNdKC0UztEH/8FwIBYcAK1eupJLs378/rDDxLCfvNpzi9eEbESbluvQ+dQ5EjmaIgURpXL6lfeUOqSTarOIOqazyQ6zqnjx5kv5hxowZ586do9r7F0Lim5pHMj6Qnn/UqFG2Wjx1/fLly3QX5leVQ6oqyCElhBBCCFE1MOfevn3rRpezadMmc1T1lvbg8O/c24o233Y3KZl8bpYz7ic2+3JcUjL5bF8YYBxsLptUGLMnLQxjeoL5X/oXLlxIzfQxiIfrmBzbt2/HYGDATYQmUla8pLRzOWN6bABLpampKbUvrM1t8ZkUtuM4xlgYBmvZx/rk1zeoTt4ZJ2Z0RWRLgTViH1kHM0rDDYOwkE11WHeIh3npExlSCsyC3dXW1mbRmlQpgS1Mc3MzYYgKUxwbKTRUvvvuu1evXnGXXzJy/vz5otSxmkxO99eEioprPgyZlFZXuU8wIl4k+1WMEDkfPnxodZIsUASp9aeUSG+wtouyNjdEJRrOraVYpMePH6etma7QarhPs4O0SLJ27VrzmVI97KN+xvDhw7GNvcXZVtDWoEjOjHygxbkPK6wb8dYdkbCxsdHWqFLWroSiFEN+/fVXHrQuiD6HYy+ISGkm0SoaMmfOHPtyHIKRFu0xjJNCsQ9rche9WQOsqam5dOkSInEdJfue0KgRe96uA6Xg3plU+6q880xKPkTbaInfH3/8Ea2GTh/7PqbPmgnraryw6IKQcOvWrTt37qRE6JRyPRGff/45OrEk/vrrr2XLlnmFiWfZnkU/qG7q1KlhnJEuvfLOgZpz+vTpK1eueGW2/aqyGefNRSphK0BOnxMUqbSphs8Bp/55vqzyU6Dbly9fWoBHjx6FnkH7QoX7p1LEM97vnt82Pcx6wWxHPPvDCX2Ge8yJ/iGHlBBCCCFENSn6yA4XJ5dILbQJ5xYlpdUK4ePZu9gPqS0qUmGS0qIngoX//XLMuHzHjh1ZwcKPPRnYOYcPHy6K3CPEcLKvuWdJjfKzOsHU9yu2tCc3R3HZsowZMwapcv/0tkkTJlhcyblgv/mciKzABuXitmI2R566rf4oSp0HqSS+ZXWoKKNI86mQWSGLxCvKfnUj5PEpU6bU1NRkw+c+lWso9jULXEdX4ULXLBYPyXkBpRg/frxPckklREmlllOltBRv3REJqWzIk81XNsUUo0aN4kFLJZSkbGlGqmgKtGE7B2WDWeXMbh5PeCLPbsROfSB8anuvrGwVdp6eU2qat/SsJKECwxiKCiv8tJ9hG0Jls2lQml5LsxLmZtlTLNryL9ulJ33pHHwuVbgJl5MSst+VNh5PklF+Cnu75S6KLNtFR95H/e75i+56L1H0IhB9Qg4pIYQQQoiPn/r6+r///jt39Pznn38+fPjQl1GsWrWqp6fnu+++G1wB8/mQZRNCfArYcrMdO3ZY/1lbW3v9+vXW1tahlqsPpBZsCvHhIIeUEEIIIcTHz+bNm1MrQRyu3759G4vr5cuXr1+/DpfVDDkfsmxCiE+EPXv2vHr1ii7IlpXdvHmzqDv9MJFDSnywyCElhBBCCCH+72//mTNnYmV9gGsQPmTZhBCfAiNGjPjyyy/r6upSK6b/ExQtEhRiyJFDSgghhBBCCCGEEEIMKnJICSGEEEIIIYQQQohBRQ4pIYQQQgghhBBCCDGoyCElhBBCCCGEEEIIIQYVOaSEEEIIIYQQQgghxKAih5QQQgghhBBCCCGEGFTkkBJCCCGEEEIIIYQQg4ocUkIIIYQQQgghhBBiUJFDSgghhBBCCCGEEEIMKp+EQ6qmpmbNmjX79+8/cuRIfX39rFmzhlqi/2PlypX//PPPpUuXhloQIYQQQnygfPbZZ/Pmzfv8889z744ZM2bu3Ln9iHbkyJF1dXUDkqxffPHFF+PHjx/8dKvCUCntg2Ly5MnTpk0bzBQZt9fW1g5mikMC1sqiRYuqa6T0u38YfGhZRb1c5XyUVeVD63bowKdOnTrUUoiPio/fIfX999+/fPmy999cuHCB5j2YYkyYMOHnn3/esWOHX9m/fz+SdHR0DKYYokL+0yPmj4ZqvYM/ygFKluHDh2O1LliwAPN1qGXpD/+hcbMQg8mXX37JaOGbb77Jvfvjjz9ytx+GHKMjHpw0adKABewb9+/f/+233wY50WoxVEojxdOnT8+ePXtwkqOy/ZDHV199xd3ff//977//HhxJjH/++YchdD8eHDZs2PHjx9esWTNoD/abGTNmYBF0dXV1d3czBE3dXbp0qRUBIlkpVEi/+4eqULkaGXIjJxkcYIr9riofMkPV7RTx66+/Pn78eKilEB8VH7lDCtusp6eHZsy7k0557dq158+fN5/UiRMnBlOSRYsWkejLly/9CtYXffSgDS8+ZDCkUYW9a1etWpV9Ew8+/+kR80dDtd7BH+UAJcWIESNaW1vfvHnT2dm5YcOGbIDp06fv2LFj3759aJUxYtkIx44dS5+5evXqeLDJkycTbO/evfX19YsXL3ZfGMlt2rQp5fdfuXLl8uXLwytIgrQETvoybl6yZMmpU6dqamrKhsyFcf/WrVsPHDiAQnJdYMizbds2MoWu/qPePfExIYdUioULF27evLla8vSJoVIaWSbd9evXD05yTU1N/5TASCDdFy9e2Km9ST9khxQqClsK76Du7u6zZ8/2NcV+P9hvTp48+eTJExoySWff0a9fv6Ys2tvbUQUlcvfuXV6+lUQ7EIdUSpn9oHI1fmoOqSlTpuzZs2fUqFGVBJZDSnz0fOQOqVu3btGGW1paQruITp+LWG7jxo3jdN26dTayWbVqFbcOHz7M4C+MZM6cOYcOHWL8hC0XzlHkwS1bthAzdsuxY8csCSylgwcPEviXX35ZunSphZw1a9bx48dJtKuri0dsSEFntHPnTnoZjxAriKjsWSw3fyGRKCGJhNfP/v37scRSViIvDMTmOhkZqr9BBgI2IcrhLcK71kY/Fy5cGD58+BCK9LE6pIZwHN8PPjWH1EBKhz4BXdXV1dFvZDuBrVu30uNhQly9epXR4Y0bN8q2L0yOt2/f8lRRgBEjRpw4caKnp6ejo+P27dsPHz7kmDGKjZKXL1+eMqGRyvxloYtn9uzZBFuxYkXSl3Ez/SRp9WPGODIzMiYVxv3Nzc38cnzp0qXRo0d7GHp7Mk5G7G7q9SHE4COHVIojR47QPKslT58YQstwSEZ3P/zwA/lN/U34ITuk7ty5k3J/5Pp3KqHfD/aP69evRzbx4O2JcWHH8+fP5z3OOLmSaAfikMoqsx9UqMZPzSH17bffZltWEXJIiY+ej9khNW7cOJsMlergZsyYYdfpDjhlWINtQ8/uC/qwr3x5PPahXaT3t1//R93MlcuXL1sAzLCjR4+m1gbu3r2bkLxFwotm461fv97+5bDYNm7caJO5nCtXrpjlZiGvXbuGLed3d+3aZQ8ePnyYU57t6uriYNOmTYOg2+oyb948JF+yZElSmjGB8czp0PpNPlaH1BCO4/vBp+aQGkjp7Nmzhx4g9xbWLH3OgQMH7JSGhlYZpEZiW7BgAY+cO3cu4pBqaGjg7vbt232sOXHiRLIwZ86cpGQ7vX79mi7Rwy9dutT6rq+//tov7tixg0jMH9SncXP/htc0arrKsJNcs2aN5dSv0LX6Fh7WdW/ZsqUfaYlPGYwrXmH79u1bu3Zt6Pyl8mNMjhgxgmHJ3r17/V8rg+sMS2jL9fX1BPPr7pDigPrJ3bBXzDacotTtFvWZJGinkQ6WWwxpxo4dSzwE5h3tt0iIMQm/yEMW3C/McGXlypVc2blzZ3ZJETklHkTlwfD1So7CERqREHkoEp3DqlWrGEqRF3MNoyJGRy9fvlxTwjNOEgTbtm3blClTcoqkNC193bp1SEimQjuQY/trkL6RuwiQmhdZodKS0iY4dImIEWosKQ076euIwcY5oZ5Jnbuku3jxYkaepB4WGaWwYcMG5CGbHIQ7CWQ149IWlX5ZFWWJOKSIPLcaJ6W/UUkFGayq+PWyxY0GUDVVCOEpXJ9Ray9xRvWMD8kCGsuKSkI80t7e3tzczIGN8JOSkmfOnGnHXtbUXorD//qlvLJFn/tgUSVZuHAhRUyurVraezALlZByRDNk0zNO8fHIw4cP0SoHqcpjhA4poAmQ0zBAkc69f1i0aBGSWxsMH8xtuUXKLOqjqL2p/9d9Nl+oxhTERkGT9IoVK2pra1P2mt0lR9TnsOZTFvYnFokiCS/0cJ5RdrxHr0u3SUjPRVIa5ISnSakOWH3rUyWJy1lUZzAkGSyRX7oL1Js72S3e7UReMURu605slnc22n68m5JSJ2ZvH0Z6KYcUZUcpWDkWOR9za34SvFAsfuqwTRYRnxofs0OK1mX2T2qDQFqgXTeXh/mVuru7rV+wDadstEQbw8bDrDInFE2FW01NTRaPPQi0TN4TNCdek/QdvHFramo4sFk/SalXMsOG2PwVGzqk6Ix42XC6f/9+3sc0Wju1Dt1CAi8GekbeQ72lGdRJyX1jfigbFCLnB7XvXYWEDimDTJ05cyYMw11Uyvs+OxDhDUoHRy+ZeuflvoSSd90uXR6xhYubikbMWeKDy8iYqcJRqV3EGEA84qEC2BCHUUvkJZoi+4YoGsdHDIlcwahstB17v4ZTS5Li0WQSHSWHvI93cGqAUpTf1atXp7JPMFtU29cBSj9e+UWlE1IkOXpubGy07uW7775LPfXTTz+hxvAd39raevny5Wz8ngr9Ehqj+RQ5pOzPPfrMokjg2rVrbW1tfnro0CHS5ZVDL+cXr169euPGDTv2cXPRiN/BmsKwtCKofDRDvX379u2xY8dS10+dOsX13BEh5Y5Iv/zySySbQqSgmfOCvnPnzvnz5+l8MDK9n8SSv379OrcwPnnLULtoy3aL2s4Q/9mzZw0NDTdv3uSWbzppDqkLFy50dnYyAnn+/Dnx+7s+5ZCKpI6VSA/DXSJhzMNvkW+FB0+cOEHI27dvP3jwoKenhxYXCkM7IoanT59aJ8Dr5tatW4hHcyZfNKjQeCYqHrF5lNwlcn+98ji33IZJzZIgLRTS0dFBtOT63r17SWk1Gbmga7pfwlouSdC3MGygZyOVbI5QFz0kPdKff/5JAMZ17hlHgUTOs+QXdZFZumJ/sHKlmXeb+NE8wngY3gUkR1/HLWI4efJkqGdUgWBY/ty1dXlhH05gNIB+UrPkcjUTL/2yKsqlyCFFDC0tLdlqDAw8yC/XkY0q8ejRI192EC9uXpcokHcZTYBSICNeEOSFhmMFxDFqZCyUEpWaQKLcIpsc+Fg9HABYWZ89exbt8Zqz7v3AgQMUMTFTb8NpR9kHiyoJuiWn586ds2UZNOTwNecwYLCVj7wc+eURc6xMmDCBEkRyriB57hsndEihQFqlZzCuc+sfKDKvw2GtKGq5ucqM9FH0D73v/uZnhEPFIMWsGkMY0FKFrE1ZTQ4rA4JRjbGzqMkoB+W7KUeOuG5lYTkiHs9RmByKsn+hyCP9DzpE8+a9ZSDH9dB/hMz211SfKklczqI6g4R0nsRMSaHerNso3u3EXzE0cGubVhsZ4Xi0/Xs3JaXODfnNZ/rq1Svid4cUNY1Kgn1KTunHcue4FdX85N0L5ejRo1ykUvGLMuWT+gT5mB1S/od8dmWHuXu2bt2avPMr+X/g5kiyfx5sqg4dwZgSGNs2v8nepvbgkSNHclOnN7HUzabK7iEVOqTsJU0X4Hf/+OMP70csJJ2XdaO2yAXsPwGbNnX8+PGJEydWSXODTcohRZ/LKca8naJtXhL0gBcvXqQs0L+PjJN3E8ToHHnZ0F1atx55CSWlbpe3Aq9zukXeFnYxMmJOER9cnj59mjdr7pip8lFp8u5tRDyWd8LznqCIIy/RkNw3RO44Pm5IZAUzbykxMyIhp7ywfSufyGgy8hYMeU/v4HCAEskvV3zGYlKa78PdjRs3Jn0coPTvlZ9bOiERyanelAU65zphUg/u3r07NYGCChOZbk1niNh0LxGHFJUBhcTX/W3bto10GWrbKY3r0KFDPOhrPRi2Usr19fV2auNmur7cEX9IaIFXPpohX4TM/lVrRmDYqzhz5swJx9xClIU3Pq2bF4GdUhVp1/TbdkoPQI3au3evndJv0FG7fR7+vUzH668nq+S0WRvM0BVwi27W7obNIZ46yTGQsNcHcdKrRxxSvK3sHwVEos+hVdJgXRiitX9cbITDiwaRvNeyb7bYJBGbk26zxYFu0//zS8p5KOjZMNjGjh2blLoLG7MlmcmkvNzpLnxGBqO1bI7oz33iCTIzAKB/DhXIG8R0aB2F7+9ZudLof/yPNF6LlimKLBy02ARVHxjYfkC25TNS8QhpuWBcoWNnkJNklm3maiZS+pWoKJcih1RRNbb80tXbLRTFS9P//4gXNyH9TU0VCovYBlTLli3jmHcTpcBII1fg7CqzlF+JFHnWKjPlZQNIe2XYv85uMmQfzK0khA+LhtFR7jI3Kx2ako1FEYBCpNX4q5n6Y6OsXNAqL0dSYaCFGLzpvD7Hde6Sm8mwePFiN3+SaMvNVWZRH5WURlC2BxajdyqeD1OLHFIMiRnGmF8Y2Rgbh5UBwdra2kxmVMcAKfXfFcMDu2vmlf89FiZnbjIvGvJOijbkIMscu+lnhpX9R9inSlJWzqKOJb5kL9LtVPKKcX8oZeGJ9vvdxEiPGuWrdngv8HbwMSRduk/WI0B2bB+v+f52M1UwQqNc4n92io+Sj9khZW4OSE1/5RVu120QYH4ld9Zy0FuaMMVxdgke0FSsvaUeTEojHjpo2pXNWjKsR4s7pGyHqfBVZJ0ItmuSWdxHKhazdVXWp/eWVu1hZ+ba+R84VlJ0i3Rz9OAY1QwW3aTkjUJx+CJK+j5qrWVz/vz5PIjda7d4iaLnJPoSSt51uydOnKCrte41PmIOKTu4LBoz9WlUmpRcBu5ZQH4K1/7virxEQ4reENlFYfHhSFYwbnlgDsIFUEWjyfhbMOR9vIOTfw9QIvm1auPzDngj8tI1d1vlA5SBmKPxJXvxkjp48GDYvYSsXLmSkP4XHMkxri0KjMCIZCUecUiFdZsI5wT4tCbz4DN6TkqrS6gqVFRqCxXY7CjrFX0iYXz0FpJ1SFUymvnll19685YEmgfcCyX1CGJ/CJ9ZEP8VrG8P/Z40c3uVJ6UeIPR609B6A6dtiFXy0AcUDjaOHTvmbTNsDpHUaac8Ek7coG1GHFLhNA0bF9kKHRMmXPNLkydm/w8pKc1b5FVoy4R5sdKRhu3u0aNHlTik6DRoy+G/9E6qq+RxOrSGhobKxz/nz5/3N6wp0H00NsSyPrBPSkMAOv9Ud5HtmTs6OnywgZ7d/WTwqmIAmS3N0CFVpJl46fdVRUaRQypbje1TtnSkLr+B9pDWanKkuKlFBLP3hcXpTyWZCnnq1ClGibkCV+KQ8rI2p4C/Rm0o6EPHyINhJTEXj1cJZLt582ZWMPvng1+/Yg/6f7FlHVIo1nZZ5SCcIh3XeUpyaGtru3r1alKu5eYqMyTso5JSFeVZRhe093DxQZFDiprZ3Nzsp6ZSqwy246R7zZKSpeOzAbI5ojZeu3Ytm1xTiTBRUvTS4ZZ3AocOHWJ8ZaOXyitJn+QM60wSdUjFu50+vWJI3a2bfr+bbL2RL5JISpXcHVKYYJR4atlHSLzmZ99u9KLhH/biE+FjdkhZO+zN/L9tDdsNyJRfyYxSrOKkNOjpLX2h7/sAc3lkH0xKvbx5kX766af6+vrKHVK2oC+cDmC+MPuLI+WQooMIHVJJaS46rdd2uQonhvxXMIcUddEceffv3w+/n5V6SdvLwP5UoYA6Ozuz0zTiLyG6XcoufCo+Yg4pO7hMjZl8YnxfR6UI7ALYa8y7+6KXaEjRGyI1ji87HMkKloIANk8nMpqMvwWd9/QOToIBSjy/HFOd/G/G27dv+7ynygcoAzFHIw6psiUVcUjxLJ2YrSU5d+6c7T5uq4mzUOt8jBhxSJGWV4zJkyf3BoSjFoYsNmUA5RAVMk+ZMsW9Ywgf5jd39Jb7mb+sQ6qS0QztkYxnr9tfFNkVFrNmzULm7BI/ISJs2rTJLMbOd1CL6Ezsbmo3aNoFgX1xDcYJbxBeVdRhXhCpSh5uam7Tt80hHjaHSOo2cgjXU0S2Q0rZkHRo3myzwtgMkVRT5R1qXQSNMTUfM1wRH/FQWL+6cuXKrHjZrnL58uX/K0GDDWcQhzBsQP+22ATNeEGk1jxy4B63PikNPZA162ndk44SeBV2BnDqb5msrc5wjvhXrVqVlLosX/Ucqr1IM/G6V4mKslSyqXlYjXnFpFxF9h63/xTjM6SI89q1a6NHj2YEyDgnTCKlKI6LXmGVOKS8rG1k7v9C2Z8T/jaJPBhWEpohOucVzKuWbDIky/W/bNy40d12hr3j/C+9sg4pG2tR+lR+itXVGNd5do85UrE1nvGWm6vMoj7KoGJzpbW1NXykyCFFDOEwO6wM9m+WrWE0OOb1bRORcnPkS0zC5J49e5b6ojptymd1mW1llmB7+/9j773bqkieuO83PAqsioqRVcGw5vBD15xWMYDKZVzFNaNrFl1F0FXMi7qCtyIq9+c+9VhP7/RMnzmHQ9L6/nGuOTMdqqurq6tqunu69MjL7EJSEJ2uzETBgFRY7RQ0xUQ5P//06dOFZnQHtViqrtJzz5CqqKi4desWCXBMEtV1WPL9CQUydL+n4cfB9xyQinKue3/uICd9CY/qkUCSOl3y9+bNm+LVy6pRWXIpo4gE+gbARSwgJcpUbUQx4DQgJQFmBr/GQdwwk1yjHXQBNpq6/9tL+3BASneixZKNIrhb9uAnXJI16gImD/k4l0CCVrIKCVffPaRGEZ6EfH0dtphdFGRcujZToVYpf2kF4orAwA1arUvG0iZRF2kzRMyOz2uOJFoSTJOtra1IGkxj6tUEadZkeBZUDNIc7LYib3tbWlrgD3aexE30LI/sBspA3NFAQCov5YGAVJRbcU0T8EMOHTpEpdiviYpiwYIFUKvRtEBACgV1//59/TsmhyVLlvT/9zC4U6dOIcbSNFW55JW4OWxxx2nYenPhB6SyWDPygsENdgvEu3NfckY5HwP2QmGi8jcY0rBt27b+3LrsKQ5UqgMaABudSQrVunz5cmRSTg9IE/LGxsbYCghJGahdTBR3QGUPSMkcLbFmnxhRgLGjQyhBXFn0cCx24Aek9J2K65SKEtYFBS4SVSVOIOoXhcMjfx0QBDNbMZnSFtiLyZclIFUQ06KcJsTPlIMC5I0FyhaSpvwX2t7EGVYOuiINKj12jpiwPY0zYdnLy6JEFBqQkl0CbmJhr5QQ6O4oZ7FD2NccHj9+rOvifUaNtIBUd3e3fB+pP3fWW+IRkMJJV3KkT3UfZcaAVPRtxaLSGea5H75Bych0HB65PjMDOirKCf+jR48Q2r6+vtmzZ7sFJgak0APuTO0Kgxg8SIsryfqyym8RjpsaGG51sCVmycsLablmOGCq4WfJl7510Vl2ISmIzuwBqbDaKWiKAXSHvG8rem5av369a6lGSV/Zg3uYo/3OnhVFWPItIGUQfOcBKUaIrBtiQOI+ycE0/bmVSqou9WxylGNnZ6dci05ErcgbAO4zno8dO3b37l1dNBELSKGLZTEtvhbqSXYbaUBKzqPpz623ksU7bvxIKxLtKSutIFIiyoGAFCAZXh/elBydMxq/DRc7Q+rkyZP0l0bTMZ7guatA9VFLS0vi2ZzhScjX12GL2UVBxqVrMxVqlR46dIibmCCymMU9yDxtEvXhzxAxOz6vOeIThkn08eNHjNp58+YxiGKroxOtybxWsmCQ5mC3FXnbK0uLlyxZsm/fPkaWBiOyGyhFT/l+77jIS3k4IBUDyiRRvCEAkXv5DaKUuNDtrgrqhcOx1+z+1wnq6uq4g5wgD7q8648//njz5s2ECROQbVewBzsgJV3jLxuUT6m63/7DVcOwRgnYyZqGQiGjIPFFcRTUALHXyPLXFXLX0L9169arV6/k2h0OgdoxUVDd7hpq2fabFpDSM6oA+hCtLin9EScfV3FViiwckMErq8W1FpQGikUTSzP1qWhg3cOFOsK80WJ1xkSfu4fXuBAOuNtDBLFVJPzNEpAqiGkKJg5yicbbv39/7NhHF4m+emNjI5bqhg0blOfRf9mexpmw7CnSWJSIQgNSiArtdc9AxAiR1xJRsLulgWRE68qrWRfZA1IQFlvWPdgBKX4x+BEV7PzA51/FYNNV5JKRLlYDIHtAirqoUVdeh3kulOtJ2wgnpoKIdHjk+swM6KgoN9IpjekeC9x9X5UWkGptbVUlFn3bxqVjn6LSlif7LcL50kHqVnf79m3XR6BYTCzXPMCSIUFzc7OrHLILSRY600waGTVu1FURVjt5pxjsKw03u1JX9Nwkh2mq6EIe1n7iOaR37tyJbU+J8km+BaQMgu88IBXlfPJ79+7Ji4v+3BolzCw30CtxpbNnz3Z3d0sCV3WSXaNUEiTS00lkEZM7itasWSMuHCMNVYIP5i6Jkk3d/bklV9G3NZA6/nHv3YoePHig6xRiKbFsvuRQWVmJNpRPXQjQ79nPqhw5iPmxmD4wSvdboeASl0FFuRPo4bC7EFTMsvAk5Acvwhazi4KMS9dmKtQq5c6WLVuYwBLPqk+cRNPgzhAxOz6vOeIThpXj7ofSc6MC1mRGK3mQ5mC3FXnbG+UWndFABmNg8U7AQCl6yo+CXlZeyrMHpMTs063HLtA5Wx1gHMs5uP63O+GwHOXufuLXD0jJvkIcM8pR/0eiVAxwBq/7tebBDkihKOTQffdmRUUFg4jRpA2h2Pb2doyt0fuZCMPw4tGjR6gRBhoaCanbsGGDDoqABpDPsCDbiCKDRb7B5Ao5Q6mxsRFtIyFUNUViAydQ++nTpxkCaCcKQbvKF1HSAlI8amlpqa6uJjuWog4cf8RFua06cpYKU8CiRYvQn4wgfRvHIyZlZvbFixc/e/bMVWWUj3LA6ZUvmaIA+auRd5Qwrd62bZs8pUwZp3LA3KpVq3BKaTiKC2OAhjCcxSrwBy8UUi/psQfgGGmyBKSyMw3CSImqpNVwjFbItjsoIcvdu3d5RMm0F+I1vpPoq1M42hVW6OnIPtvTOJPW+2ksQuroXHfLcwyFBqQwAGgvFixzBMIgsRJlZqC7IRg7DYYgKswsMBPiVS1nD0hdu3aNsTN79mz3KMxBDUjRUvri+fPnjBGaduLECTltzQdsocnMgFRE87Ez3akqe0Aq+vb9pSw8F2mnXtpFvXICpm4pDYxcn5kBHUV2xpfY7TLF6zFSaQEpeeN45MgRRBE3B25AiY597FuRcFqHX4NIyxdmtC9o0erVq6kXe7g/5cxQIRiLjibMmTPn0qVLcMZdvSXmkFKe2NdhIclLZ5pikc25Bw8eZFD4H7EJq53wFCMOI11GS+lQGKU7aYqbm6Lcsk0yyntopBSOaUBKvsFNFTSENLo1wUVA8i0gZRB8/wEpAWOPUYTc+68vdKETKhiF5W/oiHKeDLojpjLQyP5ujrKyMmqRuIOema3A+2LEai4GsOvOaUV+2CKWcmwO+pf0UD4aQ1EC34+Vr3VIk2VdK3M8/Kf7UIh6RDSqra+vD1MPKxO+YaLJJsfwJOQHpMIWcyxlduPStZkKtUpv3Lgh6TEIoARzwV1gnziJukibIWJ2fJTPHPEJY1558uQJUy8jRQ7jlwRhazIwC7oYpDnYbUW4vVEuCibbQt0lMwUZKEVP+X7vuAhTHghITZw4ERrIBTGbNm368OGD+03AQ4cOdXd3JwZfAlv2opyMQS02NOYFrKC9Yhe6Z0hFuXiofCZSSZVzQLkZO0dssANS0bfT7q9cuYIxjZygW2RhqRtAvHXrFuTt2LFjxTfEWmQwhMFoQuzl/VN/bo2hagDGiPsdTJmqdCJAATJVkZGhjQRyLUpMNoasWbPmxYsX/bkPmDApqA2AL0QWVXeB2hkyra2tcv/+/fuoGi4Sx758MRZlLokZ5lO+HXUHtf3elzSoHZLk+8X9uW8Tu6/9oJzxzn1+9+7di9PuvnhAp0lGZhDGmn5UIcp9q47xKG3hvs53WDuykJyM0IMGlo+fAlwd91W8gizt7e39ufeFGBioUz1WMsZALvir7nR2pt28eVPefUKV+/1lMSqkBBJQr2bHpXejDAp0Y/9/P/0ZY3saZ9J6P41F8smLRI4J5IVozPoNizGdKO9r+3MvcWOHr6d1N2ynTESOBDQHCSGZHpIYYxTXctKrD+xJ3XDg5431tWwz1zM95GgbXbcbyOgKCaKOvXHy5Elkm2kRaeGR/6mZKBe1kYNEREhaWlrcVzLIJ3NTYqOAvNrRv2K16rc4AjyHSB7RxbKHA7Oqvr5en4ZHrs/MNB2FyYp20lmev5Ahc3SakEe5cyRlyIjJhNrRsU9RWJiyqUWENvZBXn4TWxSrDnGCEink1atXsUg6NioN4dGMGTNcjmUXkgCdYcUSfTNc+73F71E+tRNQ8pT5+PFjWe0uo8z92HfRcxNSIQIms8+ePXv0rT+Gon7Ii/Gb6IoGJN+fUCAjcJS+4XvFjxKQCsA/m9wwxJD1LO6SDdmxrGqUaU/Wr/Xn3hK7czaetsyXYjTrVBqYhGJqVxC2mF1kNy5jNlNBVinGDeqeVmBYMLVg7rjfbUmcRF2kzRAxOz7KZ474hC1YsEC2o5IF04QpUxKErcnALOhikOZgtxXh9kbfXuHqNwoFBRkoRU/5fu+4CFN++PBhxojP0ujbuQ+SC9ONlNqQKLeBjvYmCpLsHEksU4Az8+jRI20pbD9+/LhbONi5c2f/f7/YEOXWMHLTNSKjDNZbYspCrRkq1W3aNBynjqH09u1b+cJ9lJsU+/8LkvlbSAyGMCZMmIAyiVnn/muq2GstzHREWkL5bkpJxn2e+q/N/HdjibULqqqqVKmmHZGmQXx3j3ygOoG8a0kcLGSBchmzcuSc+3T8+PHaav8rJbSCp/59aHPf00yePHnatGmxkmOYNGmStt1nb6CBWZimDUlMQAk8ir1poFFpBPuF+HfSOJPW+4ksCuwyS6s3rxhHuXkH2vwvrkQp3Y1mZnpyp49Lly4xv8h1jFE+AS54hAOsJcfyhvva/Zsxo/+RFkwO9yDUGOgXesdnO2QHpNfvZV940ngud+CtjsEYAiM3xswoRUf5xCh/AkIe5WQV8yNt7FMIhMVUkL6RcrWKwq8OIkmWtuQZU8r92F+M+Cx/0+jMkhFhCHxhIKx2Eoe5vvV0GZslY95BLYer6uwT059wOO+xdGmSH6soPBAM3yssIGUBqRGBvLYX6ml6DolzLarQP+0lbRJKM2XCFnMMWYzLxIqyZHS/JCiQ42/cl2mJk6jfnMQZImbHR+nmSJolgVErk5kyKmxNCgI+kouSz8F+KwLmF5yRqE3sfqEGSnFTfpTUOxkp9405F3RZousSOR9GKLRMAWIJzwMhm0T3LMvNgOPnPirCmpFhKK2D8uvXr/tRM4Phh0XaLhuDYZCwa9euL1++6Juk2trat2/fJn6zZaSB6ePly5e6iGz9+vU0RL+IYig5/EPNi4YcfaCb7L4D+FtADIZRAQtI/T/PBJVk4VjDyIHsLW9sbJTgBSJ69+5d90u6I3ASHV5rsoRzsNg6sWVThu8eS5cu1a9eGgw/OCwgZRhiVFRUXLlyBStCv07LtB54WTJyUF1d/fDhw/7cXrm+vj53B6VhMFDCgNTx48c/ffqUeFTLKIUFpAyjFBaQMhhGIpqamj58+IBxIxsPOzo6MHr06QicRIfXmizhHPzo0SN/R6fBYDD8OMiylNVgKDnGjx8/J4eShBuGElVVVbW1tQycwF5CQ0kwbtw4PTBhgJgyZcp39vUS5NA/It1gGPmwgJTBMEJRXl7+888/19TU+LsRR+wkOlzWZAnnYAzKERXpMxgMBoPBYDAYDIbvEhaQMhgMBoPBYDAYDAaDwWAwDCksIGUwGAwGg8FgMBgMBoPBYBhSWEDKYDAYDAaDwWAwGAwGg8EwpLCAlMFgMBgMBoPBYDAYDAaDYUhhASmDwWAwGAwGg8FgMBgMBsOQwgJSBoPBYDAYDAaDwWAwGAyGIYUFpAwGg8FgMBgMBoPBYDAYDEMKC0gZDAaDwWAwGAwGg8FgMBiGFBaQMhgMBoPBYBhBmD59+qxZs0pebGVl5S+//FLyYgtCSZpWU1Pz008/lYQeQwwzZ86cPHnycNU+duzYhQsXWucOHCNhsI98GJeyY5BmpSJgWuL7gwWkDAaDwWAwGEYQ/vzzz7///rvkxf7222/9/f0DtON37dp1+PDhorMPvGmTJ0+mFZs3bx5IIYY0PH/+/Pz588NV+88//0zn/u9//xsuAr4blGSwf/dI49K0adMuXLgwb968wSZgzJgxp06d2rhx42BXNHAM0qxUBMJaYsWKFefOnZswYcIQU2UYCCwgZTAYDAaDwVAaLF26tL6+foCFjOSAVFtb2+vXr4vObgGpolES0cqL0RKQGhpujF5YQCoL0riEdHF/69atg01ARUXFp0+fLl68ONgVDRzDFZAaO3ZsU1PT7Nmz9U5YSxw8ePDLly/V1dVDRaChBLCAlMFgMBgMBkNpcOLEiYHEawQjOSCFe1BeXl50dgtIFY2SiFZejJaA1NBwY/TCAlJZEODSkLGuoqJizJgxQ1PXQDBcAanx48fHgoN5tYSJ/aiDBaQMBoPBYDAYSoDVq1ffvn37/fv3G3NQs7i8vHzTpk2HDh2qr6+PHdCDK7Jq1arGxkYeTZkyRW6K6V9WVrZ58+aDBw+uXLnSzbJu3bqZM2dOmjRp9+7dBw4cmDNnToyM6urqPXv2UB1GvGua+95XWkowceLEbdu2UT6PpDk4TtxftGgRBIfpl5K5A/Fkx6PQ+wGvprKycsuWLWQhIw10HwkDefTrr79WVVVpQGrZsmV1dXVuyoULF9IL4QK5hodRbnOHUDh27Fi3EAhev349badSabWAvqMo2MV9ekfvL168GLZAJEWRCxqEM9Tid1+Wcvx+TxMtl0WkaWpqamhooBD3UV6BoSIyIh4UmxaQEqbBKJLt27dv3Lhx4baAWbNm7dq1i8Q8gmbtKa5dGubPn0+3yrXvasJMpAuySaN+exo3IG/t2rWwjkop1mcC9fJ0+fLlVERnuQRPnz7dl4QoXYqolPSwnWZSHWynBJdd0ijqgrc7duxQjkXfOpoeoWmMMvf+/v37Sa8yHBUr5BkDUjTBXXtCRa7w1NbWMhD0L9yDYMhj4ATKTOyyQKvzFjt37lxESP+iAVx9RRVwQNueXQYij0sQLDRwBwpVVwcGptRIybSXXhaBnDZtmptgwoQJlDZ16lS9g1bRO+SFz/ooTfEW2jSl3JeoKDgGhcO0RfSt9qCq7uxjJ0qfYvIqYcGMGTO2b99OH507dw6a5cAv1RI0gdZRPkLlZkEelOzEthhGGiwgZTAYDAaDwVACtLW14SR//vz5eQ7ioGIQP378+PXr15cvX3727Nm7d+/wryQ9nkZ7e/unT5/u37//4sWLjx8/YkxHOdP/5cuXjx494pdyML7xQLSWf//998KFCz09PbgHXJN9yZIl+hTju6+vj1z37t2jwFevXmG+y6OY9xVIiY9KQyj/0qVLHz58oAqaIO6TG1FKox+HCibw6MaNG9D59u1bPdEjLSBVU1PT29v79OnT69ev02oIw5XSWmAFtcBeSoNaDUjh53z58sX1RiADPocLhA/0QktLS3d3N8RQwu3bt7UEmADBUhHJ6DK5T3bSwwfKh+1k1EAbjbp7925nZyeJ6eivX79CHmV2dXVBD9S6m8vylsMjv98TRUuBL/fPP/9ANgzv6OggIx5+RoE5c+YM6R8+fCiVkiAxICVMu3LlCp4DRcnxOoG2bNq0CWpv3rwJSXCYZMpk5ISO05JPnz4N8cp8NyB18eJFEpOxtbWV0vgNcIOB9uDBA9LTcdykF44ePeoygXYhEnQKIgEHqMh1wvF437x5E2t1QIqE1GPHjlEj9MAc2KKRBdiFJIiM8RSeI8NuR9MoZAOqyBjloiqQB6NoAn1B0/766y+JRBQt5FkCUox6+lSuy8vLKU0FHty5cweBlGtkmPK5Q1005+zZs4kFpnVZYqszFoss0RYNnDU1NfFXwhlRLv7FX2l4QTIQ45LwWYqNyWFgYNJH3KdA+hox5tGTJ09i0R/Kp9Lm5ma9s2HDBlLKGeFQ9fvvv8v9gOIttGkBiYryjUHGONqbFlGarkVV1Z1x7ET5JqOAElbQHaJCaSDlCKOkd65du0aZqDt+GWs6QNw+TWuLYaTBAlIGg8FgMBgMpYG/kwhTGI9R1keMHTsW7xTrXB4dOHAAQ3zBggXyd+PGjRr0waQ+ePCg3L969Srmmr7dlZiCLFOiWOxs3H55VF1djeOBkyx/p02b9vbtW/UJXUs9nBJ3CDdGrpcvXw6R6ki4EaU0+rmjERMuSINn4md3QUZZWCRcUpc7yrmseF/icNJefFcNSIlnooXX1tbyV5aTBAoUPtBYYcWuXbv4qwcY47bhOE2cODHKuei7d++WEvBFL1y4IGlwfvAbcYy1UZQAN6KcgyouK96gvPPH0YK3SknectL6PbxJzX3/T9Xq8EdBgZkzZ45SDo4cOSKU++UL0yTkJBWF20KT1c0+fPiwS3n2gBQ068Iielx9+ERuMNBotQoelZJehRMm8FdOj5Z+oVJ8WnnKnZ6eHh0OioAUCakwU06rqaqqonZlrLCLrhf6ly1bxt+9e/fKU+noM2fOwEkhZsuWLW7DGXTIfENDQzQwIc8bkIKNyJjQIEQC4SF5ERuJpYq6gEjJtWLFCpK5YU1FoMv8VmcstrKyEh2i3Lt//z7JVPCQpe7ubpHJQmVAubRz506q2LBhg6T0A1JpA3P79u29vb0SDZkwYQKy7S7+UqBRqV1H6PXr1x89eqRU6UgJKN5CmxaQqCg4BlECSLVcU5QbRVXVnWXsZJmM0pSwi7Qte9Agy+IYETRNxcOV/LS2GEYaLCBlMBgMBoPBUBrE/GTMYoxyCWoIcPC4I54JPknia2FM/ydPnuhf3AwsbDxe+YvvcfLkSX167ty5ly9fyjUuE96R64Xit2Csy6lPrqUeTtne3q5RCZxeculuGtctSaM/BgjWl/kZDyLBr1bH7O7du9Cjj4QefddNaW1tbXKN+4Frmrj1wy1Q+ICX6xYovhweC0xw16MJxFV2d9bglOrikVh/NTc34++p80mPK9sLKkf6XTdCZj81SRqoR30FBObAgQN9fX2uGLx69SoQkFL3ONwWugA26jYrGqKiFRUSkHIhj3S3VIwb1MiwcouVeAoioUzQYI2AIUDbZe3eqlWrKNzfzBiDK0VCj7tOBCbr0I7JGKBn//rrL7mmoyHe3fTUloNbFzLf0dEh10ULed6AlKx2kRgQg5TuwzOU4FddXR2PZPcZj96/f+9m7Onp0ThmGmJd5rc6e7H3cohyEVWYfP36dQ25ooVEYouQAeHS1q1byajRqCgpIJU2MFGbKr2AkaXVuaAosixdujTKKRmo0knBDUilKd4imhaWqMAY3LNnD+PC3z7pqu4sYyfLZJSohGNIC0i5Qw+269o6V/LT2mIYabCAlMFgMBgMBkNpEPOTZ82ahXGM5/DxG7j+8uWLLCLA+zp16pRfSCxqI86MxgJcBwZwzR25vnTp0osXL9yiZLeLLFJwLfVwSsp8+/ZtdXU13uPx48d1CUCMtjT6o9ziiNbWVrw4/BzaqwQHAlKLFy/mKe4lWWCUJsPZcEMksUPNd+3ahZMjziEp//jjj7wFxnx1LvjLzejbiqG1a9fGaMNF5z580H7EP3z48GFio/D0XDdb1omI61VQObF+DwekZs6cefLkSRxOmEC/uA0MCAxenOtOR+mHmvsBjnBbaMhff/2FM4nXimPstit7QIrs+/btIzuy+ubNG/dRjBvIKk/dmEKUC66plx5jQpQ7a4Yssp6lpaXFjTi4SJMiP3a2e/du7sjBQz67rl+/Dm/l2h8FDLczZ864d86dO6cxl4ELeRrGjBmjy1vIu3fv3qtXr8o6L4b248ePJRlshICPDvjrL4qJgl3mtzp7sfAW6aJwSsN3nTt3riyogdtkkS1yRciAcIl+6erqcg/58gNSaQOTawioq6uDk7/++mtaOHXs2LH0JqIe5TQtKlEPqHKpSlO8RTQtLFGBMVhRUXHr1i2qe/DggasJXSZkGTvZJ6Pov0o4hiyHmkMY5Mm1W3JaWwwjDRaQMhgMBoPBYCgNEv1k3LwpDvS1MClxEvxCig5InT9/PhZfEOtctja4lno4Jb4KZeIB4jhx4R6J4tKWRv/Ro0dxeHbs2IHHOHv2bJfgtIAUbaQufLCFCxfOmTMHl1iT4S6qsxF5ASn+khF/lbq4L6fehgsM+ELiaPkv6nG9uE9Rbj9qCdkDUgWVkz0gNXXqVFzN1tbW5cuX01g5ZCdLQApHVK+V2xkDUuG2tLW1yXFa4PHjx7pvK8o5w4cPH9a/gYBUR0cHPi1+fm1t7cqVKwMBqWnTpvV7316kaRcvXkxkghJ579698vJy3CHdzeQiIEW+V7x///7E1YiCO3fu6EI/fxTAgRjbZT2RXA9cyAOARU+fPpVtcTU1NXj+vb29tKKrq0s3YF66dOnt27dT/ovEVVqBLvNbnb1Y9JJEipubm2WzGMyBvC1btkCtHI1UhAwIl+AqMqlnaUWFBKSWLVv24cMHxjvc+/Tpk3LMxx9//NHT00Pr6CZ3YalLVZriLaJpYYkKjEHB/PnzL1++TKV79uxJZELesZN9MooGLSCV1hbDSIMFpAwGg8FgMBhKA7wC9/ge3A/8JXdFgwsMelxB947s9yk6ILVv3z48GffEawxxPcDItdTDKSkQT4+U7pehBC5tafRTjns4sXucUFpAKvY6nb+arLW19dWrV/po+fLlMd8M7w43+NixY7oTLVxgwBeSrTHusi9xj+Xg5LR37NkDUgWVE+v3mGi5kA9R6aZO+ZslIIUnqduyolzgA585Y0Aq0BbxGJGuSZMmyWlcLpAHrQKBQYoSA1KxVSHyV73QGDcoh4HmUi6LE9XFTQxI4eV+/fp1165djAVf1KOgFAmprouLHKqgCrv08wXit2v01h8F5HWlF6l7/fq1G4cdoJAHQA+SEkkQqZCvWNIudz/m/v373UU9aQh3md/qjMUKUDX077Nnz2RH4ZkzZx48eIDWkjO8o6JkQLm0bt06LpAEuZ89IMWjlpaWsrIyBlFiKE3xyy+/kGv9+vV9fX1uyNulKk3xFtG0sEQFxqCLO3fu6L6/GBPyjp3sk1EUDEjJIz1DLSo8IOW3xTDSYAEpg8FgMBgMhtJADmddtWoVvqjYxM3NzZ8+fdq2bRvOeWVl5fLly7dv3y6J5VtLJ06cwMJesmQJXoEcMlJ0QIoqPn78iJ+G84MnIC6BWvmupR5OeePGDZ7evXv32rVr+C27d+9OPNo2jX6KffLkCVVMmDDh1KlTpMkbkMLTxuOCaThOkPH582dNJr7ikSNHcHtw5Hp6enjqBqRkJ0h3d7eeOhwuMOwL4ehKf8mHyfHT9MCvrq4uug9W4LTT9sRztaJgQKqgcmL97ouWQpai0ARIpQtkq1SWgBQshTP4rjR28eLFePsxv1eR6OaltYW/eL/UQslXr149ffo0j/RQLfkQG62jaTylxsSAFIVAG95+eXk55MlR1uqF+tygx+W8NuR50aJFnZ2dFOsepOUHpKiiNwc9xiuGgBQJqdxpaGiYNm2a7NeLnaz87t271atXQw9N7nfObPZHgfTg2bNnZ8+ePWfOnEuXLjEe9bty0YCF/OTJkxoLiEFOI8Ih1OU2jx8/5q+eBh3l5EQUQk1NDemrq6vhvyx1ifEz0GV+qzMWKzh8+DBU6RIbGAuLPnz4oGeiR4XLgMslOQJMDonPHpCiLvmSHToTBjL2Y1/AdPHy5UtEInaykktVQPEW2rSwRAXGIALGiK6oqKA7kAHZZugzIe/YyT4ZRcGAFECdtra20u/ISVRIQCqtLYaRBgtIGQwGg8FgMJQGlZWVT58+FU9VHCd8hlOnTuHy9efQ09PjbnDAzejr65P0+Axyjgnegh5OHH1zLdRPe/PmjfvBb67dT25jf+P2SF3Y8e753Nu2bfv69at++TuQEt+MRzg/3Dxx4gROlJ6GG6Mtkf4FCxZg/ctNfAB8CSU4lt3lW3t7O1mg8N69exSrNUa5g5xxZvpzHzWDbLwvd4kBvgfmLHXJ987yFhjjAxf81W9jTZgw4datW9whL8XqEcs4z3fu3JH7AP5oICnWKLwgeln/ypHecgBwQeXE+t0XLRfwGRZRLI7ljh07uNYGhgVmzZo1ePUUy+/evXsvX76cuA0zxrRwW0hGQ27fvo0IwUAKhGY9gJlcjx8/Jj1EXrhwYf/+/bqUQ3Zm6THYW7dulXOF+MXPhKvKK58bVIoPz18hpq2tzT2CPcYERUtLC4ndoIaLgBSJV9zU1CSfpact+l3F6JtXzK/EUKBfPlcnSBwF8IphKMS/evUqdhTRAIX86tWracvrolwcpN/ZqYoAS6DZTSPxSiGPxlJR4rqYQJcltjpjsWDevHkUq6ICQ3p7e9GrerxdVLgMuFwqKyuDPNLQiTE5DAzMdevW0VJkGK1++PDhJ0+e0Ilpa74YC2RE5NybLlUBxVuEeAckKjAGuYaxkoshrJF0v/vCYycqZDKKKeEYdu7cKQ2XWHmsd6LcKxANp7olp7XFMNJgASmDwWAwGAyGUmLKlCmxL0yXl5fjSeqmKheyNMA9Ulc/i+5m12scJ11skpg4yvkbWO3+fbectJRysDeOot6R04KEQr86n37BtGnTxAEYk0OAWgW+pbqjsWQTJkyYMWOGlON+qEsTJxabVmCMDz5boBy2+BVBBo2NOTZ+o2IZ/fIzluNn9EVLQRdAs7DILSevwMh6FnHh3M6KwScmrS319fV46W706tKlS/qde8H06dM1S6BrIJ5+l6L8Lva5IdLo7xOMMUFx6NAhXNbw9+ATpUiXaVAs3NOAo0CXabi8VaSNAgmFpEVkihZyyOjp6WlsbAy0Mcb2GMEKNBgUhncCpnVZYOxnKVaIdDsxjSEFyUCaKnDvBwYmjHXPjZJdinV1dWlN8BmrVIUVbxFNi/JJVGAMkis2KHwmZBk7UebJKE29COCb7iz2E1O423z3aWJbDCMNFpAyGAwGg8FgMPx/qKmpwQvCfRUXAl/x7t27nZ2dw02XYdRATpZZsmSJ/K2trX379m1zc/PwUuUDJxbCLl26VERef9+Qi+xHOA0BGhoa/v777/AJR4bi8P79+6tXr0q8o6Ki4sSJE729vfI9xEIxuhTvQMaOwRCDBaQMBoPBYDAYDP8/mpqaPnz40NfXJzs+Ojo63I1CBkMYeOZXrlz58uXLxxw+f/78559/pi26GUbU1dXF9v5kxygKSNXX19v4HSSsXr26q6sLUZcP7XEdWB6VF6NI8Q5k7BgMMVhAymAwGAwGg8HwH5SXl+Ny19TUuEe0GAzZMX78+Dk5jJC4jA8odA/iKQhjxoxhdKTtMxo3bhwNHwBphlEDJGHGjBm1tbXunrKiMVoU70DGjsEQgwWkDAaDwWAwGAwGg8FgMBgMQwoLSBkMBoPBYDAYDAaDwWAwGIYUFpAyGAwGg8FgMBgMBoPBYDAMKSwgZTAYDAaDwWAwGAwGg8FgGFJYQMpgMBgMBoPBYDAYDAaDwTCksICUwWAwGAwGg8FgMBgMBoNhSGEBKYPBYDAYDAaDwWAwGAwGw5DCAlIGg8FgMBgMBoPBYDAYDIYhhQWkDAaDwWAwGAwGg8FgMBgMQwoLSBkMBoPBYDAYfkSMHTt24cKFP/3003ATMtSYPHlydXX1cFNRepS2QysrK3/55ZeSFGXwYew1jARUVFTU1NQMNxU/NCwgZTCUEj+OaTtt2rQVK1ZMnz59uAkZBpgJNUhAnGbNmjXcVAwRysrK0BVLlixBaQxx1RheDN4JEyYMvKi5c+dWVVUNvBzDSMaYMWNOnTq1cePGQSqf2eTChQvz5s0bpPLD+Pnnn/v7+//3v/8NS+3ZUfJeOH369D///FOq0oYAaK1z587lVVyl7dDffvuN0obAqGPuq6+vP3DgwKZNm7AxBru6EYIhY68hERnH1HePdevWIYfMRMNNyI8LC0gZRgowtpYtW7Zv374jR44wKw/wxd1wGbijxbQdIDCYPn/+jPp4/fr1YNe1a9euw4cPD3YtBcFMqEHCn3/++ffff2dPP9h+8uChvLy8s7OTQfTx48dt27YNZdVnzpxBehm8Fy9eLCJ7TLX++++/v//+u1yHh+rwBh1+QIwdO7apqWn27NkDL6qiouLTp08qMCUsWbB06VJkcuvWraUqMAwqcufoYZ+1M/Iz1gsDx2AEpGbMmEFbxo0bNxhFHTx48MuXL3mNw1EXkEIAUMtfv37t7u5++vRpb28v88KqVasGr8bhgt+nZk0NLzKOqe8eAw9IlXxa/NFgASnDiABa4NGjR6gDJuOOjo7379+jItXPyQtfEQyxgasYdtN2aPDixYtr165xURK7M4y2trbShr2Qjfr6+oGUMCwmVMyJ+i5RaECq5B7akGHDhg2IUE1NzZgxY4ZSkKZOnYrbs2vXrqjYwRtTrW5Ayh2qI0cn/7AYP358CRnOWENWB6NkwVCOgsePH7tKY9hn7ez8dHth4BiMgNTq1atpy8yZMwepqCxyMuoCUs3NzaKWpXPp5d27d+/Zs2fwahwu+H1qAalhhzE/KkVAajCmxR8KFpAyDD/Ky8ufP3/e09OzcOFCuVNWVsYMzdjOGDhIVATDomSH3bQdAmAzff78uaGhYWiqw7NFQkpY4IkTJwYY4RoWEyrmRH2XKDQgFZXaQxsyNDU19fb2Dn29ixcvRnTnz58/kEJcyXcDUu5QHTk6eVhQWVm5bdu2Q4cO4WS6Ni4cgCdwadasWfv27UOLurue8dN+/fVXLpYvX46E7NixIxY0hMNr1649ePAgeWOdiD1N9jlz5vCU7DNmzNi+fTtdcO7cuY0bN8oWY6anzZs3u6VBjJKHbCxatAjaSEMhK1eujJVfW1sb5dY4xEqmWMph1tbENIo7iXtRly5d2tjYiLO9MYcFCxYIW2DX5MmTuV62bFldXZ2bBcMAP1b/rlixAuZQCI2NMZZfbu7fv5/yJ02a5NdOAirt6upqb2/nQorVWTuQN7FSH2n9znDg/sSJE/UOVUunJPYUqKqqQgDoCERCVZz2Anc2bNiw8Ru4dvkPkZAKwZAdo1DaiOBNnTo1LSAVllIB0kI5VOF2DcQzvdKWvXv3QpWbK5GBSCwtkqe01JWZxKLg1ZYtW5QbUEjtFAuFiK4Wm2aGhUWruroag1PIoL80jTvdB/ox3NIA6IgvX75cuXIlkCaR21G+MRt9G4kHDhzQR+EmSI/QC7Sarhf9E9Mt4ZYGRmJin7rsRYxjag11F15USy/TrfqXxGTRv6gUGqvzDozatGkTw5OOFm2TCEYxYkZjSebGzhKZI7WQkmIp3B2GLlTUIRimQaSIMRIYk3wB92EsHecO/+hbX8DS3bt38zQmY2mURzltT16yoFVEaYiCcsdUXi2K2MBPCiGZFIIB5jc2bZ4qQvZcIO0khsPUS+HCzxhnfClNGztRruNQ1DxiGooFpKjC5S2tkKnZvUNeNE/atOizxRCGBaQMww80FMPYnUUEL1++1MBBwEJKVASugRt9U1VYeEyEmhd9t3PnTnSr+xo/r8FRU1NDIeTS8JkLtYS4ELPPj7in2SsBXZ82OeU1R9yUAVUepc+pUgXTEgRAHqxj9qKNFy9epCid87J7SlGBczO169r1gP0qQDyYJKCBVkBezPqMcr15+/bt9+/fC4fVUknjsFgw1EXb1UiNBaTIonZ/ohfhIs2GjtKnwEQnShD2ewOGRd7+yjJYBNjxlA8NUqPeD3u/AHGlQPIyhOWOBqRkGGKpa2LGAnemTJkSq109tKiQ4aDpi7PyA/6eizQmI5Y3b97s7e2lN9esWZOYtwjPNspn0mF1HTt2DNGl1Sr8AYGMPKsr8lSrG5DSoZpFJ0dB9yCsZkc4oPnfHP766y9+P378qLasTBD0Ajfb2trevXvX09OjvKXXmPJaWlq6u7t5+unTp0ePHqnaYUg+ePCAjPfu3Xv+/PnXr1+PHj2qlVLR+fPnESoUxfXr1xGDFy9eUBf3SSx9BEu5o3oJnvNXBymj7+7du48fP2bmJQuPECG3fCnEL3nJkiX8de11+v3Nmzc+Z86cOQP9ly5doiFk+eeff2SPpxtBQB7wz119RXWXL1+OclEY8n748OHatWvw5/Pnz0xGLmObm5spv6Ojg1846ceV0GbQDGOxfbmgEM1LmYl5A5Vm73f8ZKpwPWdqp78S+SkkQSEKH2GgQ7WPtBeQChK/zAERIrtaRIymvr6+O3fuIAa09OzZs1opgxHekgU1S4uQrsSAVFhKYQiUUw6d+PDhQxhCe8VWgTb6nbyvXr2CPJmsAwxE4ClcBB6SKJPZWR4lFuXOvGg5iH/79u2NGzfoNe6jk136/YBUQLRQTRAGwymNxlKsnqrjVhrox4JExYWUz6ST+DTA7SjfmGX2QRLgEsSgGU6dOpW3CdIjV65cQfzggwSDYrol3NLASMzbp2i2J0+eKGGynpepJMA9VA3k6V9KIIvOJsx0ECCvSdCfMApi6PFnz57RzLlz5/oFMvXQ0qdPn9JSuAoDtWsSmcNTpJeSKRZKEGM3mqmQvJjNiBZtpMknT548cuQItihZoPnq1auamGSQzVhobW2Ft/zqI6q4cOECtZOLawY46jcv5QgMFNJ9jDXkgdqhQcwel/9hLYrtJ9RK11M1ZbpGmiAwTxUhey6QdliB1qJ1MoPQ+y5nfCkNjB1pjk61/LoBKehHXWjhsdj98ePHSQwlFEv563Lw1bihIFhAyjD8YEpD+/jeO46cLu4NWEhp9pxrkagSR338nxxwMtEvnZ2dPEKFyXvaKJ/GxJ5DqaHsmHsoxA82Sb1MLUon+k6/3RCYxQO6PjA5hc0RF2FVHphTyUjVcJj7NIc5TLjNNTXK8T0FeUpRgXOzu2omYL9G3062wtXHpuQRadynAthOLSR7noMY8WkcloN+4Bj0U507ceoULjaumFZpXoQiYENH6VNgohMVZfB70wyLvP2VcbCAHTt2YPdQCEVRIIYmVcujsPeLa0rJMApuw+FYX8NbSkMqtCIkjez+SQduQCT7cBiIlR/w91wEmExdsJfauU8aP29xnm2Uz6RjiCEGEgggF8wMC6RvdUVJqtXlv3RfFp0ccA/yqtmRDFiK2NDpIk7oEDqR1rkWP8pBJBkm8AiVJXlFsaCIJJJIL8tqAnnKYCGxxh0OHz7MUx2MsJq/opAlTO8vUssbkOIv0678RQnDfE3sdrRfMlIkm7ildmSPyTrGGZrsCgB6Upd8urIh1ygWecQsz195tcB0yYjT7x4gz1AoU5XkggwxGMjFiFPWxZC4ZS8tb6BSF+F+Dw9bn5/UgpBoyVqd2wsCOogRSl3KZNeuWLFiBSWLy1pWVsZIR7pEPGCpRCt8/oSlVN5IaT8uX74cdumKaX9PVoCBIvBMAcKlXbt28Ve1Vt7tXe5bH5gJkS79fkAqIFqMIx1ZXKDuNFn2gFRGUYmBaY4yExf0Rfm4HRizEMw1WlT+0okiFXlnEJ6KBeiO/ZhuKXokhvtUGqsGM7kQ0fB521KgyAxDj/T8Vfm/f/++GpPoz6dPn4pqpRXYUYxWv0Csbn0LQjINWSYyR0Y99pIkoBMxL5uamvxiJS+DSKJjECNzq/T7/v37XfNm1apV+jIJ/cwjZbUEoeTFD2kYpDowA5Rv374dy03qgp/uyZV+QCqt7+RFglwjh4wRNfZcBOapImTPhUi7nlOJteyqi0QpDYwdBOPNmzcSu6QhcDJjQGrRokWk1B21NE1aZFv2BggLSBmGH0+ePMHh8e+LIhZbKmwh+YrA95pQ4rI8Ryw2FJNoZLQzRaFqJWVYY+KzoW3lmoy+0lSF7tKJsydPA7N4QNcHJqewC+EioMrDc6pkPHPmDMWKlmdC5Y4cQyMo1FMqaG6OBaQC9ivWthrr0JC2L8/fspfGYbHmdf2OfvhGp/CdO3fSUxs2bJD7aV6EizQbOsr3TibmRGXxe9MMi7z9lXGwyFP1PJnL6QIN5wW8X2iGbzpglbFuXyOQ1KUr4JCWxNhNLCCScTgUbeUH/L0Ywkw+evQoo8zPFQ3Ms81r0gnB7ueN0wQyzerKEpCKMujkgHuQV82OZMhRWfzqHaSLO7KYTpjgLibCHUWipI3Sfe4HtpgcJdYAi0jm6gfkgXGKzpG/dIS6H4IiAlLu8gQJAeuaxHBAisGiriPqlKf+fiXhg1r8586do6PlOiYbSJGG3Wlgd3e36AHSyysNAVX0f1ta4jOWQZQWLE4MSKXlDVTqItzvhQakGHfw01+A6Qek0Fq4murh+4qlp6fnwIED0bftuu5mFrogEJBKk9K2HNz07e3t2pV+xCHAwJjA41GrqZBYVGCzvDwSiyJwckKaaMUAn/X9QfaAVEZRiYHsJEv71mqY24ExW1dXx7W/dSjLDBILNPi6peiRGO5TeRGlFgV+gftuMhHMksi/2KsrV64k+927d2X/I+oIM2PTpk1SMgK8e/duzVhfX68iHQANV8PDZ47Mp7p4MMpZCxDglxMTdeGD2gPCwESJFX7qMm36wn1RxxDW93kByjE/3JFOFp04/IBUWt8heConMlR9BRWep4qQPRcxaYeZpBflFiVJaWDsyMEj7jdYkJOMASk8CJ76ezMtIDVAWEDKMPxA5SVq8LVr12a047MEpFwl3tnZ6a4zYgpRPyqsMW/cuAG1gQM7fTr/+OMP6JTrwCyeRddH3uQUdiFcBFR5eE4l4+vXr13lGwtIFeEpFTQ3+wGpRPsVMr5+/SrGh7CCv4mHT4XPkHI5PHfuXOFSzGoRMpA3Gq7RqCjdi0iDa0NHBQakCvV71bDI0l8ZBwteKLag6x4wwSvbA94vN/GaGE2xmJ3b19JA6QgsSxibeKJcLCCScTgUbeUH/D0XeZkcCEgNxLPNa9L5ASkXrkCmWV0lCUiF3YO8anYkQ/YqVlVV6R1RU7LgwneVYQJ35D2t728zX9C/0bflRa62Aa9evVLV6ocqighIuSe4QaQrS+GA1IwZM7gjYeuWlhZ3+CgmTZqEukDyGR2zZs169+6dFhhjC5MLakRGHJLAHCr3ySIfphRQGrlksYDPWNpCi3wyogyHmrt5A5W6CPd7oQEp3Oxbt25xE5fSPc0g1suMEehxz3NEHmDdRwf8FQ9f9Ji73jDtDKmwlL59+/bMmTNuerxiDWT7EYcAA2MCzwV/uZlWVCw9j5iq0Nu6b9H1qxPd+zTRinLvopjpEF144n5UJ3tAKqOoxCArpNLWgYa5HRizaNT+pIVXWWaQWMjP1y1Fj8S8fYr2wDxDR4lKSdvS7oL5Ql5pQ+TNmzdpOJ6tHJlEP4q5iMKhNKZgpZlrniZ+2QObHIJlQyspY/anyxxGN3fkq4gC2JL4fj2WV1a/6kRM77sGGwph3759mCgvXryQTY6JE6402d2xmEY52RH7uro6GEstboF+QCqt76gLaWQmwio4fvy4LrlyEZ6nipA9F/4Zo3Q0SiyRM1Fw7KAB3Lkv8g41D1jj2MBPnz71ybOA1ABhASnD8APtidPr35cJVfZxhC2kLAEpV1Xdv3/fDQyhENWADmtMtC1/ZTtJ4lGLaXSK4g7M4gFdH5icwi6Ei4AqD8+pfsZYQKoIT6mgudkPSKXZryT766+/YNeECRNgV9rx2H5AKsBh2ZHX1dWF0a/OuZCBJHDfNWjSvAgXaTZ0VGBAqlC/Vw2LQvsrMFguXboEx9xy5C2TrC8Le7/YRrIfEJdAT3yICRvslSZv2bIFmUzc1JAWEImCw6FoKz/g77nIy+RAQGognm1ek84PSKUJZJrVVZKAVNg9yKtmRzJkiaXrXkrDhRX+wNy/f7/GcP3uu3PnTnt7e/RNK8Z2AcN81QnZA1K6FqOEAakoF+S9d+8eDWFQJ37ygvHb3d2N7qWj+3Mb27WlMbZAGGmYOkXadZUHw5ZcUxzoMBm8gFSgUhfhfpeGuKuTwgEpwfz589EY/c5CxVgvw3DMJ/d9CToZgqf8F9Lj69evj+nD7AEpV0rJopQL5K2VXPsRhwADBxKQQiuisVtbW+HqnDlzmpqasgSk0kQLhYwWQsdyf/bs2S6f/YBUWj9mFJUY5BBV/8RlQZjbgTGLOHHtH/ETbkLGgFTRIzFvQErexyxZsgSTjCkyywdtaCnCiXrBj8AupfD+3IveCxcu6KpbmZFRgC7N7lpUl4dICEb4woULkaubN28GAlLSd6R0iw2s4Mto9DIdY1nxt7a2duXKlRkDUgHKqe7Dhw/y+XKmWndTYfaAFNYpdTEvUwgXiRIbnqeKkD0XvjPS19enq5x8KQ2MHZn7VNVESQEpd/2UqypbWloSV6VZQGqAsICUYfiBCYWK9Pc3MeFxP20NtmshlTwglaYxo9ziDhSxnDvjHqaTWC9obGxUOgOzeEDXByangQSkVJWH59S8AakiPKVBCkjJV+e/5oDLoRsbY/ADUgEOCz1HjhxBFHXrpZCBqDBp+R/H8b0IRcCGjoJTYOQ5UYX6vWpYFNpfgcHCdcyfEc6IuRn2fqPcCQg4AAwKukOGf0zYGBSyAuv27du3bt2KklBcQKpoKz/g77nIy+RAQGognm2hAamAQKZZXSUJSOV1D8JqdiQDF5em6VLNKNcpaCSRH2GCqxmQ7VevXmnK/m/vYKKcpsVEk8P+YAhjwRVaCeqp9vPVrKhHPQon+hbrVNES36+IgJRfcvTNLWReYArz3WBpXVdXFw3haUxEfX0FW1DLx44dc4Xwzp07iUHSxBICASkeuYt2w3kDlboI97sIvLIa57mnp0d7M5GfCgjQ5ZxuLzBxw+rYwczYRdxM/IIY48ilkI6g2EBAKk1KuXY7Be2H5lR2idi4k2+AgeEJ3S/KTR8L3MvfvAGpKEW00OruBk93+79babgfM4pKDBSCdfHgwQN3HpFhEuXjdmDMyqcG3M/XSPnhJmQMSBU9EsN9KkBL0BednZ2xl0ZpoAnIfENDA8NNSsaco38hWxfh0nb0p7sgLg2x12z8DQSkMJv7k77I5CO70Rt7mxU7ei8QkApQDv+Z0MvKyqgoZq5kD0hR0ZYtW0iZqN4F4XmqCNlzASVv3rxRVzGmcn0pDYwd6MTedg/SlUMVdHJEA7gfK7h3756qSswkzBI31iwsDatxQ15YQMow/JCtebF3qmhGxrxqhLCF5CuCogNSYY2pwFWIrWdJoxNHWukMzOJpuj48ORUUkEpT5eE5NW9AqghPaTACUsL56dOn02XuN8h8QIx7clOYwwox9N0zsKhdXqq4x2kpXC9CEbCho+AUGHlOVBa/N9GwKLS/AoNl37598MT9tjcU0gq3dWner0LET3aoxYRNXnViU8a2RrooLiBVtJUf8Pdc5GVyICA1EM+20IBUQCDTrK6MAamwTs7oHqSp2REOfEs0TF1dHcKPiqCDVLSECTBWPsAq62f1cDfpPvl2BMPq4sWL/c4ZebhYss+RR4sWLcJhQz/oCgJfzQJkrLW1lXEkPY7wIL0MUvkaIxXxt4iAlF9ylAtB9uaQuAE/ygk2jvfz589v3rwJDSdOnNCvOvr6StZadnd361Fu0bflFWSEAwgYnNFX/QUFpK5du8ZsOHv2bIl1ZlnTkVhpDIF+RyHgZj979qy2thaNhwqN6YcYP+WLtBUVFXQZGf1tKRMmTJBdzwu+QSZ37Ac5RodyoJbssmZEsmN+UJosAkKrQ0MgIJUmpfLO5uzZsxQyZ84c/F6kSL++Sr39uQP4qFqmhgADwwEpvyg3vZDBHXjL9CFLm7MEpBJFi76jU1CnMPbUqVMkSAxIhfsx0FJsEmSDR4kkCYeZajHDGBTbtm1DAuWjeGFuB8YspEIn8xo6HwbSfbL1PtyEjAGpokdiuE8Fhw8flt0D7vFbDCgE2z1ZwkV7ezverH7ZE8L42+98ehI0Nzejf+AtvVxZWcn4Svx+H2qW2ufOnSsfq2UUBAJSUW6HB/ykNAYg0yWGSuKhDdmNXsqh0paWFnQ7IxepyBiQClCOgMknXNAYTCtMqcqZ7AEp8opuQX8iMJSZeExqYJ4qQvZc/Jk73BOSUHcMAUpmTOm3aHwpDY8dlCp0MuJgPiJH01x7Vb50JB9Mv3r1qqsqSdPX1wcfYDU9eObMGdUk/rRoyA4LSBmGH+J7oxqOHDmCokFxMGegXJhK1fELW0iRpwiKDkgFNCaPUGGUj25lykG1rV+/PtYWqZdpr7GxETpl12HsCyOJs3iarg9PTgUFpAKqPDCn5g1IRYV7SoMRkIJyBIa6bt++zfxBT9GKxBMr5Sj0VatWMZ1QQoDDGzdu3LJlC7YL1iROlBzmEiNDzjKTj5ukeRGKgA0dBafAyHOiogx+b5phUVB/BQYLhh0EQwauJkVJfErdiYD3y+BC8iEbXkngQ+KwvrBhaMpmUpXVGIoLSBVt5Yf9PRdhJgcCUtEAPNtCA1IBgUyzujIGpKJ8OjnNPciiZkc46HH5hrTMWegW3dgrTEDm5SuEtI6+01fW0n38ijeFpLnnpjEESEyBUjJVuLJN37nfyhTs3LlT0quESHiXO2hLeE5FeoY0+sf9boDIhsp2rHy/5Ojb5ynSPnUPtUg1CpMJEVlCNr5+/SqHxEnoWc9GjL59I4wqYh/W3LFjR3d3t3AA+dEFqn4JtMVdUuqCgSO7U0XB5s2bVmkMgX6PcitWpFK6dc+ePcz47vv5GD/3798vPnl/7quLunhQewFlJTsfFboWBjce/SA3SdPR0aFvueiCly9fquBBRmAVZJqURjkpYnRLFa9evYqFfsTY6Hfi5mkMZPgjA6rbudAPaCQWFUuPooA27tCPVMG1PPI71EWiaDGryme2uE+xCKdKe6zScD+mtRSzyn3D6oMGSteADx8+XLhwQV8GBLgdHrNo0adPn0pGWqfr7gNNiDVWkKhbih6J4T6NvlkO+n0YgdjSacveaYVM6PJX3n5h1rppmFBOnToFqVI7HEjcWcxYw+ogAVThmDCP6+GSicxhcN25c4f7UiydmBiQ8qWo3/nyg+zK1w7aunWrnAbAL9MBpGqZsb7gWsNwAcolnIdWocmHDx/GbECixL1yCQv3Haqb1iGNWHp4MShzLd9FeJ4qVPZcIDmPHz+map3C3O/JJEppYOygBxjm8ggrV77FoaqSC+oS7cdghHWuqsS5kFYAmKANTJwWDRlhASnDiACqAWUnVrhMb7iI7lqhvBZSTBHEFGtMVaGs3Y93oBDdQ6wCGvPmzZtiBVJX4ssuWb+wZs2aNDrTZvGArg9MTmFzxEVYlQfm1FgVUe7r0bQLhuudQj2lguZml4CA/co1ybDd4eGBAwfoMglx+qxg2hYrjQTCqzQOw0/5RCDAxNelCi4ZcIN6aSO9nOZFuEizoaN8U2DMiYqC/k/YsCiov8KDBZ9WzWgmfqTXbWya9ztt2jRMIrULdTWQL2zyOTz95poPl9rswyEagJUf8PdchJmMUYgeSGtU0Z5tXpNOzkfX0FsUFMhEqyugWmN8C+vkgHuQV82OCjD8mQ7S9qaNGTMGhsS+aK7xRAmOJ/ajhEH9RaAoosT4O4XEzkseP348hUti99B6/Y6qwj3AxS/fL1n22KZ9597//hTCc/z4cb8uwdgc/HIgY3oOAWole+ATWjylBG1+3rxplfpI7HetRbvVryLGT0kcY2ZaL/uoqqoiu0+GHBetgpfYnLCUakYepW3egQmxZaQZe80Xg1hRsQQoRhVmt+Tw2UNpogX/ZdYek0OAyEA/prWU9Hn7jnFNx/nJ0rgdHrMCcrkLhfI2wS8hTeqKHonhPkXmY8cXRLkl59hUPg2KmLakzESauc/wzHu216RJk5TbWeSKMUKxiSZfWt7wX3jOONUOcu+77fIFIJFypld3Xaf4KXV1dX7VaX3nfzJSzvpIPBU+Sp+nogJlz4W+8YLbMCfWv2lSGtZUSII+8mtHtrVPY3yWYv2DTf1p0ZARFpAyjCAwwhnJKBpfL2SxkHx7Tq9jqiqmBBMn9TSNKdZ8QG/q2tQ0Ov1ZPK+uT5ucspgjgrAqFyTOqX4VabUU5Clln5tjBKSlrK+vj62juXTpUuwVmYspU6a4tn4ah6PcnORv0UojI9GLiCHNhtbqAlOg60QJ0vyfvEZhxv7KO1iinMlLixJN/DTvN8qdKsWADRcurzrdI5MC1GYfDtq0oq38NH8vhoBZ5n/ALobiPNu8p8D6CQICmWh1palWn28Bnax3Et2DvGp2lCK8mSjvAreRDHr/7du3aN20BNevX3/58qX6xuvXr//y5UuWr2gZhhhhKTUYBhX+t2IXLFiAs2p+ftF4//791atXxS5lUj5x4kRvb++UpA8Qp0H2WjY2NsoUz5R99+7dxK9RDR78FfSG7wkWkDKMDnzfFtIQ6PrvXpXLYbq67Ku2thbvqLm5eXipMgwQly9ffvPmTcZFAQbDCMd3HJCqq6vrT98nFeVeyz98+FCWUvb19WF9HjhwYCgpNGTE921uGUY4Hj16FFsojSgm7oMzZMTq1au7urqwkOVDe1zr8qjsaGpq+vDhA6pblpZ3dHTE9lMPNr57L+YHhwWkDKMD372FNNi6/rtX5RUVFVeuXGGula/If/78mSYH9i4ZRj4qKysZEf65AAbDKMWYMWPkeKzEp+PGjdOdy6MO48ePTzyvLYaqqqra2lpmt7x73wzDhbCUGgyDCpRD4t4Cw0Age3XRvQNZaIZOQMmjHPytakMA5g5/86nhu4EFpAyjAz+ChTSouv4HUeU4RXNyGKWrDAwuGPV0Zd6tbQaDwWAwGAwGg2E0wgJSBoPBYDAYDAaDwWAwGAyGIYUFpAwGg8FgMBgMBoPBYDAYDEMKC0gZDAaDwWAwGAwGg8FgMBiGFBaQMhgMBoPBYDAYDAaDwWAwDCksIGUwGAwGg8FgMBgMBoPBYBhSWEDKYDAYDAaDwWAwGAwGg8EwpLCAlMFgMBgMBoPBYDAYDAaDYUhhASmDwWAwGAwGg8FgMBgMBsOQwgJSBoPBYDAYDKMJNTU1K1asmDBhQjjZ2LFjFy5c+NNPPw0NVUNJychpmmE0YvLkydXV1WlPy8rKkK4lS5YgZkNJlWGEYO7cuVVVVcNNhWEUYPr06bNmzZLrysrKX375pYhCKioqmNNLSdZogwWkDAaDwWAwGEYNzpw509/fjwF38eLFcMqff/6ZlP/73/+4HjNmzKlTpzZu3DhIVO3atevw4cNZKCkJSl7g94TB7uuMmDZt2oULF+bNmze8ZCTi9OnT//zzT+Kj8vLyzs7Oz58/f/z4cdu2bUNGUngE/TgYCdL777///v7778NIQHEoWoTyZhzJYzmGISb1zz///Pvvv+X6t99+Y1Yq4jXJunXryAjlpaZu1MACUgaDwWAwGAwjEUuXLq2vr3fvTJ069evXr/gPXI8bNy6c3Y3aVFRUfPr0KW8Mq2i0tbW9fv1arseOHdvU1DR79uxESkqCYQlIzZgxg3blZfuwo1R9XVB7/U5HeumjrVu3DpCMwUAgILVhwwbIrqmpGTNmzFAuwXNH0I+MwdZUWTBKA1JFi1DejCN5LMcwcFIL0nsWkCoJLCBlMBgMBoPBMBJx4sSJmJ+wePFiLNf58+dnyR6L2uDp4WOXnsocxo4dW15eLtfjx4+PuQTfR0Bq9erVVDpz5syhrLQ4lKSvC2qv3+lgxO6pDASk8EV7e3uHlpz/B3cE/eAYVE2VBaM0IFW0CGXJOGLHso8BklqQ3rOAVElgASmDwWAwGAyG0gDLcvr06RMnTqyvr8ezXbhwYSxBdXX1nj17Dh06hOvuWq6Yv+TFMcCo3bdv37hx4zCLb9++/f79+405kHjBggXHjh3Dct2/f7/ckbyVlZXbtm2jzF27drlGbSxqQ/m1tbX6lLrWrl178OBBqkuLcJF32bJl+nfevHlk0b+TJ0+mXiFj0aJFq1atinKvl7dv3069586dg0g5U0MpmTNnDsTDgUmTJqXxkOZs2bIFwuBhmlfgB6QCzaHhlEONu3fvPnDgADS4T8lIAu7v2LFDWJ3oGNCQEydOUOnevXtJQy/roxUrVtDXjY2Nbsl+hyolVVVVFNLQ0CCF8Gjnzp0Q4C4v8pFdciKvr/E2N23aRF5YSq/F8koTYB0l66lJae2FDAqRxOPHj5ebiZ0OkYiHW12aoJJSGpVFPBIJCLdFIIXD9qlTp6YFpOrq6m7evNnb20sr1qxZk5f5UW6LGZJP70PVlClT5ObSpUshQ9NQIxnV55fugEi4oU3QEZSFIWgY8iIzJBOhraio8JtT9KCIgebQQMiQulBELpEMQ6rQM7nSepnEroTDapqsfxHX9evXK20qvYsXLyYZHNu8eTO1rFy5MgttMSQyHKCfyUvzf/31VzcE5gekEsc4YCyjNyg5VkIilGO0jkoZsDJaGVx0EE2gW930ieTBQ9W60Tdui3i4IqTDgd6BcsRASqBMf3S4GWnpRgci0rGxXBKNGuU6F/GGPCY79354+EjtVEpDli9f7jM5O6l+9xWk96J8ASnIIBdjAfErKytzq+YRA4S2I7EWkLKAlMFgMBgMBkNpgCdz5syZ7u7uhw8fvnjx4suXL1u2bNGn2L59fX3Pnz+/d+/ex48fX7169fPPP8sjbNl3795duXIFy6ynp2fevHltbW3v37///Pnz8xywjI8cOfL69WssV3xp7ogHiIPxbw5//fUXvxSLbS1lxqI2rpeFIf7gwQMSQwlFff369ejRo35zzp07Ry79S2JSqq2PL0EJ4ieoXY5tTcOpl4yULDUKJdeuXSN9R0cHvzQkMehQU1PT29v79OnT69evv3z5EnbhtPjJYk0LNwdKLly4AFehkOtPnz4tWbJEHuHGP378uKurq6WlBa5S5pMnT2LekYCGvHnzhgT0GlWIs4cPc+nSpQ8fPtA0+ovO0u72O9SlBPH4PzngYFNvZ2cnj2h4ojsdFSg5fl/TRhh++fLlZ8+ekXju3LluXtqOxMIcxPX27duB9uLp0cb29vYbN25Q19u3b+Vk/UCnax/lFdTm5ua84pFGQLgtAN+SO0gUj+ivR48eJQakoI1iSUkrkKi8zEd+IAaJun//Phzg6YwZM7h/8+ZN7mixrsMpZ1RByfnz5yGGX0njerZhhsyePRvNQGKRPWqnf3HaY20pelDEgEKjEOqiNFE+ct6QEPnHH3+QF1HBgQ/3MnxDSuUaJiDtSKPWcufOnbt37yptKr2whfs0EI7RCmrct29fXtpcpDH84sWL5EVIWltbESp+XeYoAYExDgcYdAgAUocO2bx5cyIDFdqt5IJgikIO165dK39hCPRrsCONPApBGilEk8FYCUfGgiMMB54yRtBp1Hvy5ElmEJEchOHq1atKmJtRFC+QuUYa608lA9SocJWOYKDRcJQhDURgNKgaGD5SO3lhF7VAbSKTs5Ca2H0F6T2f525AipkLXQQ3ULxUTTLtXBnCPEWiIIlfC0hZQMpgMBgMBoOhBMDuxFuoq6uLcjY3riBGp4RsqqurMWqPHTsmKbE+sWvVzRBbVmxWfRnub9lbsWKFHHAjf8eOHYvnQC1iylMRZj1+iNjEgYAUJjjJ9PUvXhwp/WiIbF6QGAdV0DR1UQA+g3o1rl2etmUP/0RWPNXW1uIRiQcbA361LiujdTj5WPN+sljTws0RP0SWAIwbNw7fA4dHHm3fvh3HRlx9fIzwOdb+Vg5YQcn6lSX8PQxr8ToSO1Qokbf6Ig/wQWqkdpqA6+vXW4TkxPr66dOnshYDluL8IDBuXooSgdm1a5d2d2J7YakymQv8yR07dsjf8D7NLIKaRTwCBATaUlZWBsfw7WVVCMMTSU7bsnf06FF8xYzMP3DgADSopG3cuFECQwGPWoawxK2i3AoXufADUmkMkfiLXCNLEKABMhdFDwoXNN8daPjkerqTEAmvZNXJ2BwCvYw2Y3RIFyxbtqw/ByGPBBCj5+XFAlIkO3jwoPxF4VCIyHmANhdpDKftek7Q5s2bSaMD2SUgMMa5hm9yn3a5C2cSIRx79eqVSAIlCwNFStF7/FX9EyAPbtDpc+fOFTbqYiI/OEKfyuyDMPD30aNHouv279/PX13U5mZUNDc303fCLn8qGaBGlbZrgYgxEt7Q0CB/8wak+CvH3vvfwcxOalr3FaT30gJSMhYuXLggj2AIHd3U1CR/EeM3b97Iqx0IhgwLSFlAymAwGAwGg6EEwPw9efKk/v31118xNGVnCl4Elrq7nh8XEStcHAaxZWOOZd6AlBzgyq8mwLJXFyUtIIWtjI996NAhzSUOIQZ6rDk4ltAsZvTKlSvxLu7evSvLHHA2sMs3bdokKbMEpHStBMBYP3v2bF5+Xr58WX1vF7FgR7g5sU45d+4ctcs1XeAGJrivucrKysq/Qe74jkpHR4f7ih7PnASypCuxQ2OUdHZ2uusy8FJ8tzAqSnK0r8kFc3bv3q2PcPu5Iy695FUXferUqerpJbY3BmrRRTfhgFQWQS1CPFwCAm2Rk9fc3T3IQMaAVJj5ePjuOixFwKOeO3cu1wcOHIjt8PIDUmkMaW9v12U+0kx3f5NgIIPChXSTusokQ+ZdImG7Jg738pIlS7iW9SkwGU2CFyqOfV1dXSzi4Aaknjx5ogXSoaSUfWQB2lykMdyFtEX3A7oEBMb4nj17+vr6fOaHa9FuRYXyV6MwoKenJ/Hsqhh5yN6LFy9QjPy6IWw/OKLDQcayhiOlFTo1+AGpX375BfW+YcMGlwB3KilCo7poy8G9g1Rr9+UNSCW+pSiU1LTuK0jvpQWkZKZ2902j3mUNIHLI2HSX8jGNWkDKAlIGg8FgMBgMJUDs8BHsUQxNWfaP54D/4CYWM1Teeyeeh5o3ICUH91RVVWkCcVDFzUsLSMnKAnU2BK9evUq08m/cuPHw4cMot5cBP6G+vl6WOdAoPJbE9R1ZDjUnMVkSeYizxyPZVPXx48fEGI1bYN7mxDqFa92HSAlfv37FH8ZJkOihlDl58uR+B7LsxXdU3r17h2vx8Rt6e3tJIG/jEzs0RglOl+vrnj9/3vW9FUVIjlZEGp5++vRJieSajpPFF7G8XLghhkTHbPPmza2trdBJ71CONifc6QUJahQUjzQCAm2RKIbr7wUONY8FpMLM7+npOXXqlF9I2KM+dOgQlHd1dTU0NOjJMn5AKo0hNPnt27eIPXmPHz+uC1JcDGRQuKBkyocnDHmajMBrLp/IcC8zxGCXrDWjOXv37sVFl+Uq8PDx48eaKxaQcjUA1Wn4NUBbDIkMR2L37dvX1tZG/8ourcTFpIExXlFRcevWLf4+ePDAPVwvDTGOwRD+yidTBcikRk8C5EW59VPcgTD3jLbA9jFZS6UTB6LohsZiTIZFT58+pWlplBehUWNAgM+cOePeOXfuHKyW67wBqcCR89lJTeu+gvReGs+Rea6RFpUcOktm0ilTpvDI3eBpZ0hZQMpgMBgMBoOhNIiZv7ILQ5ZmnD9/PuYDi/0qhm9xASnZyuEfZC5xgTTTXLyR2IknPE3c8EJROBj4fp2dnfhOUCsLBC5cuKA7v6LSBaRIg7mPmw3r5syZg2eSNyCVtzkBnwQ/7cOHD+/fv6fST58+6ZaKKBfKmf0Ncsd3VHCrcKqnOFBvvIQBqSIkJxZ8xPl3idQwYqEBKZx/PCt8rXnz5sEWtznhTi9IUKN08QgQEGjL+vXr+/+7iCx7QCrMfIYnjrRfCHLb3t6uf32Hk+sjR44gcjdu3JA72QNShw4douH4twgtF4lHng1kULhg4Hd3d9NM6qJApF057BMZ7uUod+DR06dPET9KQ4lxH4+9vLy8q6vLHXrZA1JptCUyJMbwjo6OFy9e/Prrr7W1tStXrkyLYgTGuGD+/PmXL18m+549e9JqT+RYOCAVIA+QDCmNjbhSBaQOHjzIKAt8H6M4jeqCluoqP6VBJ7vw8ClVQErgd19Bei+N59u2beOaWcyVHHkkbzvcpYUWkLKAlMFgMBgMBkNpgKmqDg/Yt2/f169fxdDkGhvd/TobdjDejlwnhhWwevWlsSAWkPrll1/4q/vmpBxqFIctzTTHEcIPdP0BWUfjmsgKvD7IbmhooFhZFYKbdOzYMUpzN4K5drnEAvSUDZ+SKD3iEFuQwt+8Aam8zQn4JNDQ0tJSVlZGH/nHkcQgzrCe5BLlTmLGwU5MXMKAVBGS427PhDl//PFHFiJjASm/vVTq7qTjrzYn3OkFCWqULh4BAgJtWbBggVs7AtPW1pYxIBVm/r1792ICIPvCkFu3/EOHDiU6nPv376dwEbzsASk6d8uWLTTQP8jcJaPoQeGC9F1dXZRGXTEZ84kM9zJYu3Ztf26TmtRVVVUlgYD+/25uyhiQCtCWBmV4bAVZ7Dgql4DAGHdBstgeNB/ZA1Jh8pBnWrFu3TpEEVnV9XElCUjNnj27r69Pz/NKpHzgGvX27dvuFlFSvn79WiU8PHxKG5ASuN1XkN5L47m8i0pcN0e/f/z40Q1ky/luFpAyGAwGg8FgMAwUct4qFjkuxIoVKzCz9AhV3AbM0AcPHuC2yXe+cSrUP0wMK8jBzKtWrZo7d657MoX6FYAC3717V1dXhzmLi9LT06NmfcA0P3bsmBwtBCWLFi3q7OzEAdDDkmJob2+nIW/evJG/cjhx/7cDiQUxvxE3qbW1debMmUJq9ogDhOFI015cFHgCkXkDUnmbE/BJyCJferpx48bFixfxfNxGxUBb+nPnK9O5kkzepcMQ/tJB8+bN0xUBJQxIFSE5bkXNzc2fPn2Sb8NXVlYuX758+/btiXljASm/vdAAhZQzYcKEU6dO8dRtTrjTswtqlC4eAQLCbXn69GlXV5cscIDn8kUzv/zIC0iFmb9hwwYRAJqwZMmSe/fuyQlKW7du5X5jYyNZEAlKUIdz48aNW7ZsoSMmTpyIcnj+/LkUlT0ghazKaW7Xrl1DZpDhxOO0ix4ULmg1wgORkHr58mVaKifiJRIZBXs5+naOFdpDF2o9fvyYv3q2tE9bICAVoM1FIsPhGMxBUcMQJJaRmKYqA2OcocFoqqioYIDQhNOnT8v9kydPasjSRfaAVIA8FCNDQE4jmjJlinxk0OdV0QGptrY22rJw4cIFOUjQM3uUJ6NGlTVfZ8+eZTzOmTOHJpBL16IGho9fe5jJAVLTuq8gvRfg+aNHjyiWKujNqqoqdIWeV0Vd9O/atWtp1OHDh2MN/AFhASmDwWAwGAyG0kA+Mn379u3+HDo6OuT8XQG26cuXL+URTq/7/fJt27Z9/fpVv3stwInCke7PnRUiOwjkHF813KPcR3/ko9GSDB9Gv80k2+v0KNw3b97oUaxUhCtLeslICYkf6hLIEgZ9RSxHF2Ntu2nwPdzTx3fu3CmFyxqNGCVRzsRP3CFIk9vb20kMN3DvcaoTDyqOFRhujtvwKBdx0OAaPjPOwP79+xsaGnAM8DroF/dYlhjkm1/9zmaoHTt2dHd3y03cY/2wfWKHxiihge7H18+dO9fZ2ZlYb6GS41aET4sTBW2SvaenR89RjuXlQr/6l9heHFT5IBSsxqdqbW11mxPu9OyCGqWLR4CAcFuQB2Egfi/kIdKJZ3hHudUKdGhG5ke5uI98fRKS8KulUWVlZVyrEpDDdMS3p5kStgbPnj3Tbxq6IyjMkJMnT0IPnj+UnDhx4t27d4ljpOhB4YIslE+Ne/fuxUWH4XBVCPOJjIK9LLhx40a/c3A+ZUq4x03j0hZTLBLIEGUYoM1FGsO3bt3K2CcLv7/99hvjQuMFMeakjXH0hhwpBdD5uhOWQR1b2SqIcWzMmDFIo7sWiW5tbm4Ok0e/u1/9E+UsXyZ1eRUbDnKivHwPMfp2tpdu9nQzQnm/AwnTBKaSqFiNSkNk12F/7suDbmQzMHz82sNMDpCa1n1RIXovwHMIvnPnDnekKDpXBeynn36iELl///59OREssODxu4cFpAwGg8FgMBhKA30f6x81osDuxGj2tzOkLVCiKHcFRGIyjOnq6mp/34qbGCs/9p0p0pNr4sSJqe35hli8g2JjRfE31iKyuK98Y2STOPDRq0mTJql1nrbvw+dDWnNiDXdJxc1zTzmRrTF1dXVphEU5Vsf8KwqcnkOMVJ/CGCUxJvg8jCG75Ph9TRpa58tkLK9flN9eulWctzE5uI/CnR5lE9Qon3ikERBuCylnzJgxYcIErSKtfD332kUa86NvgheLvES5w2KUGzFikBZfitzC0xjifuVNIKfV+LW7tBU0KFzop8EU+PPHjx9PJFKR1suJuWK6JUabT5hmD9MWg89wqQiREALcWvzhExjjSIWrn2k1WqWxsTGRjLCIxsQ+kbwAQ8IiFPibV/NEwamkaI1KLriXFohJGz5+7xRHapTUfYqMei/M8yj3LUWY4Ea7FGhjbXvaUPpBYAEpg8FgMBgMhtIgvJvAMNLw/v173FpxSHD8Tpw40dvb6y5qMxhGFGQ/UWNjo7jB+LR3795NW1g3cFy/fv3ly5e662r9+vVfvnxZs2bNIFVXEEYmbQ0NDX///Xfe+M73CtOohiJgASmDwWAwGAyG0sACUqMLq1ev7urqwo+Vz0JxHV4eZTAMO5qamj58+NDX1yc7njo6OqqrqwepLkp++PCh7FWkRvzGAwcODFJdhWJk0lZfXz943THyYRrVUAQsIGUwGAwGg8FQGqQtzjeMWMhOrtra2h/5TFnD6EJ5efnPP/9cU1OjX1gbVFRVVTFAUG4jcOHPSKbtx4RpVEOhsICUwWAwGAwGg8FgMBgMBoNhSGEBKYPBYDAYDAaDwWAwGAwGw5DCAlIGg8FgMBgMBoPBYDAYDIYhhQWkDAaDwWAwGAwGg8FgMBgMQwoLSBkMBoPBYDAYDAaDwWAwGIYUFpAyGAwGg8FgMBgMBoPBYDAMKSwgZTAYDAaDwWAwGAwGg8FgGFJYQMpgMBgMBoPBYDAYDAaDwTCksICUwWAwGAwGg8FgMBgMBoNhSGEBKYPBYDAYDIbSYO7cuVVVVcNNRZGYOXPm5MmTh5uK7wo1NTUrVqyYMGGC/C0rK1u4cOGSJUvGjh07vIQNBqZPnz5r1qzs6V3mjOqBM7oQk0mDgCHJ2Pzpp5+GmxCD4YeDBaQMoxWjZeaorKz85Zdf8ib7zkyxUvXOyGdLrKUjn+CBY7QMvSjz6DMYSoh///33999/H24qisTz58/Pnz8/3FSUALt27Tp8+PBwUxGdOXOmv78fU/vixYv8LS8v7+zs/Pz588ePH7dt2zZt2rQLFy7MmzcvUEKWNCMHf/75599//50xcYw5I3bgrFix4ty5cyMqfDMQqYix3aD4+eef4cz//ve/4SbEYPjhYAEpwwjCkiVLGhoa9u/fX1dXV1ZWFk48WmaO3377DTrzeu8j1hQrDqXqnZHPllhLXYJLbsVWVVVt/i8YMtxftmzZhg0b/PSLFy9OvB9AFpoHe+iV0AHLOPrCmDRpEuVMnDjRvTl+/HhuBoKP8+fPR5sdOnQIbZZlKcQA/ec5c+bs3r37yJEjjY2NiTG4pUuXHjhwYN++fVwUXYshC0a+1gpglAakkOr6+nr3Tltb2+vXr4eLHsHUqVO/fv3K0OZ63Lhx/KKQ0Ug1NTVjxoxBL0E2f7du3RooJEuaLPBZNBjIHpDymTOoAwcl3NTUNHv27CLyHjx48MuXL9XV1SWnKoAwwUVLhc/2MKhi5JvZxcHn8GhxKwyG7w8WkDKMCEyePLm9vZ2Z4J9//nn58uXnz5+7urrwSwNZSjtzzJgxg5kpy/RcKH6EgNTgzeulZctg9HIgIFVyK3bfvn3U9ebNm9ffIG84qYj7tC6WHt/yxo0bBVWRhebBNtqKNrX9/i1JQGrJkiUUIrE/BS4lN1evXp2YBRng6ePHjzs6Ovr6+i5dupS3lqL95/LycsSA6siOFuWX61u3bo0fP17TQAZKFXl4//49T0+fPl1ERYaMGNXKfJQGpE6cOBEbPsxKDI3hokewePFihtv8+fP1Dgqqt7fXTZNFO5VkOarPosFA9oCUz5xBHTjow4HE9YZ+RXBegosjyWd7GMxi3+tCKp/DFpAyGIYLFpAyDD8wHLFg8JT01f3kyZNxmZg4A7lKO3PgWFLazJkzS1Kaix8hIDV483pp2TIYvRwISEWltmL3799PXb6XJTQ0Nja6N+fMmcPNdevWFVpLXpqHwGgrjm9+/w5LQKq6uppHDQ0N8nfSpEl1dXV5aynafz5//vyXL1927NihdzZu3Pj582eNgo0ZM6a5uVkWc1VUVNy7d0/WaBRRlyELRAlUVlbu2rWrqalpwYIF7lPub9my5eDBg/X19TFdRKfs3bv3wIEDCxcudO8zIZL40KFDmzZtCqwdJhdKgOy//vorna73mUkXLVqEdG3evJl6V65cGcvIHehksDBSAgEpRBR9QvkI28Yc3JdGK1asoBAIQPPoTQpkXuCXm6ivPXv2MBxixYYzomegWUPkiW1kGN6+fRsTQqiS8U6TV61alZGMWbNm0Vn79u2Dw5SQOGBhIE8hZtu2bRrtRRnCVZdFVCRsod+PHTvGWKNGoYpib9682dvby981a9YIYZTmHto1ffp0SqCB2k1+mjR5CHR0IotigJ9wDPZS+JQpU/R+mlwlMkQCUlCVJmwCnzmRN3vCzLVr11II/eIGUBCJZcuW6d958+aRzGUO9MQaOGPGjO3bt1PduXPnqM5dQwrToAEJTHu7INkZs9L2gCwhRTxye4TehBhdIRsYyDAKDlOavFgKECyISUXeMS5IZDsX7tCD1XS0VMGjrq6u9vZ2LpQ/aemj9GErokLDaX7giLqJEyfSKPhAISKoTFjaOviMHJJA01M+HKNYqVSZTBpd5S1D0n1dh5BTYCKH1bYJ6CuDwTAYsICUYfixfv165gDXoVIwPfgTPHeYY3Tm4IKZA/fPX1GV0dJlKjpx4gSl4QwwM1FFlDvbFeObijDTsYdk2UVgJtY72LUQU1tbK3diLjHpocpvadiHSWtLWqVRutsj7YpyVh0FYsmJmYXRSWLhrVt4Xkui6Hk90KLsbCEvJfAoxlXfVk7s5UTETMMwwYGAVEYrVpBmirlIC0iBR48ePX782L1Dl338+NEvBCAANJ8a6VNa5Hq/Ls0C30GKNZnsZJHrpUuXuh0xdepU8grBwgGusdoZUIhrWhfETG2oRWhh1+7duyEjTVoS+1dHH1QlincWV7/QgBSc4VGhO+MK8p8VqK+vX7/+8ccfsfsMRu4ncpiSIS+muAwlBErg7t277969e/jw4YsXL758+YJ0ySPEpre39+nTp9evX3/58mVfX5++d5EwIvcvX76MZabTGQm6u7sZ3dynZLx9d+2b4uLFi4z327dvt7a2Ug6/+ujPP/+EHkqgxufPn9P7DEB9KgfKQKo8pYrEgBSahBLwTltaWv755x+yPHnyROQfdXHp0qUPHz5cu3atra2N2lUhiK5obm6Gto6ODn5fv36twpw3I4L96dOnN2/eMKgDbSTv+/fvZQ0gELF3l+qEyaB3yHvz5s0bN27QWXCbKmLNl7OfYBHMoVhlEYRRsipM9Al/JUR15MgRWa4Iu6CKofrXX3/19PRQBX8fPHgQebqU6RiRID0tQk5OnTrlpwnIQ6CjE1kU69/29na4ff/+fYQWFsn0l8bzNIZAAzeZjxKFTeEzJ/rv7FlVVQWLqPrevXskQJsdPXpUHqHcSKlFkYCnOl+gMMkVmyWZRGgU1ZGR0qQWek2i+VSE/NM6OihxxnStuIAsydpeCTUKzp49+/btWxGPQMcxBhnyjCzYC9/SCHYRk4rwGA+znSYwA2qa06dP8zTKTf2kQSSgjQtESBKkpY9Shi1dCWHUS8OfPXuGYpw7d65P2+zZsxFR2CI6gRLIhQkhrUMCYQjcILukx2VgsEAYAgBJr169ovYot+XfdShk+pahFOU+KUBiDIlEDgv9qKNERWEwGAYPFpAyDD+YpbC9Et1smUtc3wlbhHku+jZzXL16lTmDmZJZisleX/sXZOkyFXHBTaY0ZiaJ12CCUOaVK1cYJBiRcqJNYCYGx48fpxBMMYwbrBwtR00Z8ur9GAI+TKAtaZUG3B5pF1YmdhIeBXlPnjyJmSKmAIYdLNXCs1gSRczr4RZlZAuor6+naXfu3KGZ9CbGn9xPtJUTe9mHbxqGCQ4EpDJasVHQFHMRCEiJXyQGmYA2pq20h0iayXhRrmpzYvHTvA7SihUr4IYGRHDq8Ge0IphMSnGtJdexY8d0wDKs3BCqwmfphQsXSAx/uIY5sdiQIG0Uc4dRTGPJTktdVzOjq19oQAo7noqwkgs6Piy7/+xi165dpPTZKK5R4rBqaGjgkR/bNZQKIqUiwKgOJAFpl2HLoNb479ixYxl9yJ78paNRO3KN5IgTSxq0EPIv95EBFEVTU5Nf6apVq3Sz6ubNm+li/dgZosXfgwcPyl80PCpOypd1lLhn8oiJgL+JAant27ejAUQIIU/O5JZHiBnt1eoohPJlKIkko0DkpQiCyhQjbmqWjDRWAtASRw600d+P5g+oNDKYClVpHz58OHFfG4rO3RZdWVkpF4GAlOZyVyMePXqURulfV9ehdWk+c5mUxuQr49dNE5aHQEcnssgFMoDWUrWwceNGmYDSeJ7GkDANPktd5rizJ2OBUaOBM/pFtZashBWTrKKighnK1XVMQK4No/DXcZPFnWiWL1+OVOjKVhf+VJ4oSzSTOUhHNJ3FtIWFFgU7jibAeSVMORnesucHpIpme9is9bfs5Q1IxYYtXYktKlLEHWZ/VKJPGMaPRGmjXF/AE7VnpHUYLbRIyqyursbwwJyQBNgYjGKNlkIzpohcQyp5u7q65O+yZcv4K+SlLe1PUxQGg2HwYAEpw/DjyZMnz549S3vK3HDt2jW5lgleJiGdOeQlD9Yb5ouemFOopZu22Ud8VJ3XAzPxokWLSL9nzx75i+Ukq8rVlNm5cydTbNoh0wEfJtCWtEoDbo/Qw2wthWMrSDxLPA0JeehC64yWRKHzeqBF2dkiFomaoWJmSdQgzVbOu2UvzTTMK04ZA1JpDAmYYi6kd/Arfs+BgaCRoylTppBLHUvxM3XFjc9VjHjZliJc7e7uFq66NOd1kJA3RoS+e4wyBKSwC90Bq1ajC5+lMF/agihSQmKuKH0UY6dKiyR8I55Mdle/iDOk6Fn6F2VFjyQKto/s/rOLkydP9iftSZS3xOqfKOjKzs5Otc4NgwEkln7Rv2vXrqUvYrvwBKhlHfhMXghkTDuJKnMDjria/7e9c3/Sorj+/5/7TVJDwHBbNLqsK7AsiFFcREDAGBG5CCgi6EcugkQ0UatiNCaRSlW8hrLK0vhRQuXL9/WdU3uq7dszz7P7DAu8Xz9QD7MzPd2n+1z6TE/Pxx9/XK+AjR9f0sjQwsn6X/fv389f7Z0sxiemIBw/165dyyakTp8+HU5TqSpm0H5fvXoVK+F/MuNjj0CsJuEjJS70JwcDL0R/O7axS0IqWw3sAMrlzzkQDv9Nk/4zMzOWuYsm+YuYkMIg8zt9OSt6AFAZD5WOzooohBggXReWrYnJvCSQbB2yH3+oJKToFJx7GGsxRPECNuRw09evXzdbTWXwQUjg3XffbdpUafTUykmjlL+1hOd88sknjMn02tSVl4Y09adudmbYWZWOQ4AMCdQ/8hTDJqQqXR/SQ0IqVFtEQVceOXLEjxw6dIgjabIM4bvlIYKlHF9tTesYuuESZlyby9nAQLnm2l9tsRsGFiNDabbJ6euvv+61LQWupc4VQowPJaTErQf3EE5iI3AtRMy21oBJqT/cSD3HhQsX8HP2e9hItzSVjfICFU9MtMdf07d+rBx8HnWrfPKsMoeptKV004hw2mP1iXI0/lzUCvcHth0jiWH9eqVF3cUSRfZg8/+mHCunvYzoVszTlEPDgcOpY0KqJJBKKBZiCan333//3XnCNTh//etfP//8c/uN1iCN0sfdIqlSK4rdtm1bVOf6BImZGLcIs1FNh4RUKAHqkB1OqUjD2l6+fNlXrkWUtNhHu8nW1LD7VH+EhFTTJouZ7XDOt99+2+X1vY7z5wikwQQsPb527VpKSD/bhwpzPNxyRSw60VY4jLGbwW5u2A36mvk/vgPr7Z0+NTX15Zdf2lt7/onJgwcPci2Tqx/n4YR//OMf6U0xWSdOnGDIffXVV7ZUMJyshvtM2yul5toYVOHksylvas5VzPewCSisWQwvnxFOrbyG1Naz4el+c9SE+oxwYb2NXRJSpWrw+y9/+QuFY04pvLQnty1w/vrrr48dO+Y+dxETUqab6ULI8Jz6eKh0dFZEIakxNyoyzwqkXoeQSkLKtuGL4qVr1675czV8tLWa83E6iI7JjO1xRpXc4EcNiaKUb7755tKlS+E5mFN/IywkdeWlsWR+Ye/evVaae+R6x6FW/9tCEOvvHg6bkBpZ7IuekAqFMz09zZH//Oc/3nB+00fpt2XoSnqErmcsvf76674eM21d0z7DY0CGR55++umb88v3LALEkliCcnZ29rvvvrMnOl988QWKYJd02fw07FwhxPhQQkrcej777LMoJg6ZnJzEQ9jbAVeuXPGnQKnnOHLkiMdzw0a6HbdDrnhiZrMefIRYOUT5xG2V77tV5jCVtpRu2pSnPVG7bAGzRye2sMJmwt0jiWH9eqVF3cVCbMoE6ccA/utLuLOxctTLNnlw7A2FbGjYfTjVE1IlgVRCsZDKK3uAjvhjQKKuypfUKlIN61yfIDGkkXD0stjAhFSqsOnGZPV94vkdbiASMlCL+eHJ6O5TfUtIRUklE1olIWWgX9SW4bR27dr6md3nzyG2bVb6bqDlTMNsctPmyFDhMLsnxkE0Yrds2UJfbN++vWknimgNOv7www/TR+hLONFatmwZI8q2s7GHBKbUnHxfQHZH6qtXrzJDw3QzMufm5jpOVrESkTaVElKM5B9++OH777+n/oyicC0htgtPFNbQV8TUR/JQF9bbuJCElH3g8v+2MP32lbApmLIzZ87QfF+LbQmpcNfqkRNStrlb+qZ2eE59PCwkIcWfLl++nB6vyDwrkEVJSFkcEu4Wb3/1zAiyorPwTZ9++unhw4ex+TfbR0RvvfVWdhF3k4tSCI2ioW4rcdJru7tysK0SGBJ0tH9pZKAiE1bhktAIKmDPw/pMSIWPLrokpErnp8Kx3CJqEjY8mzEkZqOLMX1YGH6EvjVNSNFx0azB+si9P2IkhNu1a9e///1v7CpN+Pjjjx944IGbwbMlJaSEWDooISVuPe+8807poZZhb4oxD2e8+hv+qefA9/uS3WEj3e4JqZInvnLlSnbhhpWzefNmrrVV5Vkqc5hKW0o3rUx7uiekukcSw/r1Sou6i4VhQzn3/ZRwTVAaK6e9zNzjoXn8YBoadh9OoyWkKqFYSD0htXr16hs3blAUbblZWHGWlSqDxKUa1rk+QdqzZ49t1BWuJmOkffLJJ/7fekKK5mTfjuknIdV9qo/y3kwe19vcLLubVQQXcubAD+2NlpCyVqTr6SyZGI4BdJwJEiYou7GIWEQYn25zmnbTLsa5aUH0YJ//putx0Ah/8mG6OXBFW7SixP7bZbJqG4r5Burr1q1j/pZNSFEI7mb58uWcHC29/Oijj0rPReojeagL623ELERrWzoqlP2JmerExMTArLGB4cJQmxDsgx4uQNu7bbSElCW+w80N7RbhOfXxUM9KpCIKCRfYGhiKusyzAlmUhBS3vn79ejgO7fGYL2yns7ijaZYlEFGr1157jRKiLLxjxj/8eM6HH34Yhk/UH4+fNbNDJaQIRIk6EJprfdNZke00e/iRVjhkERNShDcuanuFP8z1UKwvTBt4fiocpEpXpp/dSKHvnnnmGVqdhhxpQurEiRMMgHBvfipJxfy/3JFavfHGG1Z5uoP4iq6x/JSdk0pYCSkhbhVKSIlbj70ZZFs/OrgKz33Y07DDhw/jgdxXmefw7ZPggw8+uHbtmv0eKtJt5v13+Gg0m5CqeOKTJ0/i8MLEisVnXo5NzmlFtlaVOUylLaWbVqY93RNS3SOJYf16pUURFbFYEFz5hLARxsppL1cIQ8Puw2m0hFQlFIvaUklINe2LDPT7qVOnKk/Cm0SqxHYu1bDOAydIzE9skyk/gZEWxrK2n2iYkAoVlvmAK2zIyAmpgVocJqQ6zhCadssSJhhRUE6ky8Hs/lDRdN0Uv/Qdbme0hBS6bx8IiyrMMGCu5ZE3BTIX/fOf/zzw9V6xcCy5/Pbbb6MgGFh0xDuIOTNGdWZmxr7fymnW6fTUxYsXscNoNzNGTJa99dO0m/t8/fXX27dvZ7DR3cys0vwjf6KoK1eucPn69ev//ve/d5ysYnC4EE3kqkceeeSLL76IEgEO83z7Hhmmg6ah2j4btETw2bNnOYKKbd682ddP1UfyUBfW22jbw+3YsQPZmr53VCiKxVrSZQjhvffeoxeQcJq03b9/PyaamGTt2rX05pdffmnH6WLEgnGwz9eiZfx3tIQUN0X+VIarKPaFF16wTZqjylfGQz0rkYooxPLm9AXnY/mJbfB9FZmXBLIoCamm1RTbMYCxsW3btk8//RTPEvq+Tz75BM2yT9w07fov/mu5xfReBpJHpDTEbmoPFd58882HHnpow4YN9mQ0fDTlDJWQwt/hTxkJ0VqtUsdt2rSJYc9V2G2L6DwMiCocsogJKfuQon2xGhXAAoRO/P3330fIiMU3dqicn42uz507h6989tlnJyYmGDBI4MCBA2nFMCy2HRh3xATR9eHnI6OEFEVxMuZo69at9Ljlp8KNOLgLNWFI2NsV3JcT7Hs1YTmRhOudy4ChBH2gVohxoISUWBLYpoM4IZwlYdDx48dxgT5XxC1dbwl3eDHPgZ/jZHy5rQjwfX+HinSb+Tf/mckTCEYfjA9Pq3hi6nDjxg1qSLRHaZcuXbIdhcNybNOc7O62lTlMpS2lm5amPWm7KgmppnMk0Qzp1yst6i4WgjYLX7gjhXCCLd1vyrFy2ssRpdCw+3AaLSFVCcVCLCFFL/xmnihOtdyHb/xfgkpyGpEZckDjQqmGde4yQbJdvXzdoi2qQiURFCKiUVFCCpFyMkfsfb3sRt0jJ6QGanGYkGq6TfX9pjfbT3MS/tL7zCqJbv0z5E2bevvuu+9stDCnfffdd6n/9PQ0qsQtPvvsM5tKVSLa0RJSzXzWjztiOZk2MFYJ08NcG4pgU+5du3Y9Ps/s7Gy2NLFwvvnmm6NHj3700Uc3W65evXrf/O7C9AUTaQ4yZWW+ip76JsroIIPKdMR3OWlaQ0dRnG+l/etf/8qOUlTPXlvmX0Y4RsBPw376HoLN/DzcFxIyKn744QeO8C/6+Mc//jH76ha2hZIxQejv6dOnGdLYfH8ecPDgQca/1RCX4WuB7V2qMBtLTcI3gLpfWG8jgv38889Neta0sNWVamDq+f3hhx9ikV566SXaTgm+X3soNDObgFX0Tb6aNlXHJRxHyzAmKDgOyP5ks+Iwx4HoaK//N6oYFsxacbP9/oMtlY3OqYyHekenIopgNNoX6zjhnXfesXfzSzIvCaReh5BUOER9blTpF1yhCRb+9re/RekVVMzSSfZfW5uGSU9v5Dz//PNWoKdc6TuGsd3i2rVr6eIvgxAICdgm2QOHNODKbyYfOS11HN7QvndsvjvckT2tsBNVYyFip2L//Oc/OYj9eeutt9DxcOEY8Sq1utl+ZGPg+Vm1xffZ8xtvY/ZThoTHlEOPnDhxAgP47bffum2MWucN4Xwrk07kqvCv9gUkauiL1GxLx2ipciTheudatJPdMl8IsUCUkBJLguXLlxOImNsDAnpmleHDfPsYXOjgbfU4wfRXX31lrhGPEq5NGCrSbea/LHtzfr19GII4dc/NhNabgCu1+Ckshxbh3oi60t2mK3OYSltKN61Me6J22SoY2ye+md/12V8Z6xhJNEP69XqLuovFHunbn+gR/moZgcrkIerliEpo2HE4hSF19yi2EoqF2PtZIVH8zb1sk5f0gWoIwmH0MgdLpRoNjy4TJCrsd2SEM5PxYm3zY+sUS7KcPHmypLBORaRNu8TAn4qn1LWYH/zXP1ffcarftNEtM0l7Am9jI9oy/8KFC7TIPuw4OztL261Y/v3Tn/7k2c9KRNtx/pzl0KFDTIZdET744AMmD+iOBd8zMzPeRufTTz8tlSYWiHsuBth9uQ9dTUxM+CKIUAVWrVpF12eXQK5evRqXV3mx3e7LCLTRHhbr30p3olvY+he7cFlLWjhjPnxsYP43nN1x1QMt9Xvx16j8jhfW22ggbU/lR60uVQPd+fHHH0NHjwUr5TWoZHZNrnWcFRgtQkxbMfAExkb0vCQ9JzseBnZ081MRpdijnWibyIrMU4F0qUPpT9woGhtWn9KrlFF4RmkD30fmEs9QGNSWvquvTY6qOnBIp+c4JUVGjFQsLSetcPYWCxG7QVd6raKi+C9/jcZt6fzSfTlOw0ubM6RftrFox4Zi2jqHjqP7sn/lYFhnCsnWLZJwvXOzL/ULIRaOElJiCYHdx12V9ju8fv16FEj5l9FwSOm2vs2QkW7T5nHC6Kp0Wt1zU5loH+g0+k/LHDiHKbWldNOmPO2p1yetXj2ScIby6/UWOQPF0rRvLdH8NFAoTR6iXk4phYZdhlMUUneJYuuh2LBEQVgWX3OU3b1rhAlS9F8TYPQnX/VTUdhsgZFIK7GpUdfijlO7LKZoiCI77YlmR6XkQimi7Th/rmCKYL3PFM6WnQ78lLsQXfj+++/fe+89c8EM9bNnz+KRSzb5NsK2AvDN4DZt2vTNN9+cO3fu1tZKiLsKW918/Phxc4L4so8//lhPTYS4e1BCStwGMBMjRnznnXdudUWEWHz6D8Wil+D6IfuqrBgrjz76aP3lTSE68uSTT3799df//e9/bQ0mvwfu039bcM8997z77ru0yD+1+Yc//CFKLgshxs3Jkyd/+OGHGzdu2EuUV69enZqautWVEkL0hBJS4jbAdj0fuCuwELcpPYdiSkgJIYZl2bJlk5OTmzZtKr1DdPuyatWqDS16JUeIW8WKFSuIEzZu3Jiu9xdC3NkoISVuAwgWs58LEeKOoc9QrOMbaosLs1n7iFjP9xVCCCGEEEIsTZSQEkIIIYQQQgghhBC9ooSUEEIIIYQQQgghhOgVJaSEEEIIIYQQQgghRK8oISWEEEIIIYQQQgghekUJKSGEEEIIIYQQQgjRK0pICSGEEEIIIYQQQoheUUJKCCGEEEIIIYQQQvSKElJCCCGEEEIIIYQQoleUkBJCCCGEEEIIIYQQvaKElBBCCCGEEEIIIYToFSWkhBBCCCGEEEIIIUSvKCElhBBCCCGEEEIIIXpFCSkhhBBCCCGEEEII0StKSAkhhBBCCCGEEEKIXlFCSgghhBBCCCGEEEL0ihJSQgghhBBCCCGEEKJXlJASQgghhBBCCCGEEL2ihJQQQgghhBBCCCGE6BUlpIQQQgghhBBCCCFEryghJYQQQgghhBBCCCF6RQkpIYQQQgghhBBCCNErSkgJIYQQQgghhBBCiF5RQkoIIYQQQgghhBBC9IoSUkIIIYQQQgghhBCiV5SQEkIIIYQQQgghhBC9ooSUEEIIIYQQQgghhOgVJaSEEEIIIYQQQgghRK8oISWEEEIIIYQQQgghekUJKSGEEEIIIYQQQgjRK0pICSGEEEIIIYQQQoheUUJKCCGEEEIIIYQQQvSKElJCCCGEEEIIIYQQoleUkBJCCCGEEEIIIYQQvaKElBBCCCGEEEIIIYToFSWkhBBCCCGEEEIIIUSvKCElhBBCCCGEEEIIIXpFCSkhhBBCCCGEEEII0StKSAkhhBBCCCGEEEKIXlFCSgghhBBCCCGEEEL0ihJSQgghhBBCCCGEEKJXlJASQgghhBBCCCHEnc+OHTv2tDw1D7/n5uY6Xmvn++X8eOKJJwZeuHnz5r179+7evXvPPFzb5UKDa2dmZjqeHLJ69eqZhLVr145Q1JhQQkoIIYQQQgghhBB3PitXrrz33nvvu+++7du3z83N2e9f/epXXa6955577HyH/3Jw4IWzs7N79uyZnp7m/HXr1vHvxMTEihUrOtZ55IQUrFmzZm0A/x2tnDGhhJQQQgghhBBCCCHuIqanp6empoa65Gc/+9n/SeDgwAu3bt365JNPrlu3Lrq2431HTkitWLHi3oQuGbTeUEJKCCGEEEIIIYQQdxHT09MPPvjgUJfMzMzsaJmbm/MfmzdvHnjhxo0bn3zyyfCqJ1s63nfkhNSaNWseeeSR8H29LVu2rFu3boSixoQSUkIIIYQQQgghhLiLGCEh9Ytf/MIXSfkPDg688Oc///nPfsqGDRv27NnT8b4LSUg9/PDD4ZFNmzb9+te/HqGoMXHnJ6QmJydXr14dHaQbli1bdkvqI4TozqpVq9KVtPfff/+S2opPiNuX7DO9Lg/6hBAjk6rYPffcw7zollRGCCHuWkZISEUbSPk2UgMvXLZs2cTEhJ/Pv4888shQCanHHnvsoZ/SpfJKSN16jh07tnz58hUrVuzbt++FF16wg48++uiiBNzbtm2bnJzscuYvf/nLXbt28e/Cb7pAZmZmGM2LVdqqVavqSw27i2gE6MclteBw4XTf2c4hij148OA4KtORjRs37t+/H9M2jsIx01NTUwyho0ePnjx50gYbnc4dx3G7hUNtt27dWj/HJdbl5NsUrG7PdxxoaogDsBhIniBgsezSWO1bD2A9jhw5wg9CokOHDr388ssMTv773HPPrVy5ciElL2XnOG69G+gWF86wnmJpDtSsBx/BCd52uN7B+vXrz58/b49YPEYdmcWSXim4Qk9v66e5Jce0BNs1mg/d0DKOk5cyCzTpY/UIpcIrqopDXKD/FUPx4IMPDvswgEgp/Ewe7N69u0tigQk4Z+7du5cL9+3b55d3vO/eBK7FXA+8EBNHZBIe4b/aQ6o/Vq9e/fzzzzftaHvggQdefPFFO46qHz582E/D7r/66qv/Mw9xecfyiR62b9/e5Ux6/e233+64e3/E/fffz1T88uXLZ8+eZdoQVfjEiROhItHkgwcPXrhw4eLFi8zh03zt6dOnS4p33333DeuSkeobb7xROaG7iEaAtszOzo6p8H4gDPVR8dBDD7311lsjREUvvfTSIq5oGGoYcPKbb76ZZnhHGEtZTGfNc2NPUYHwuIPOuv4y7Bd+35HZsWNHaFtSQokNPPk2IuxxXGzUQT0w0NQQB2A2MaHMzBfLLo3VvvUAgbI9n7B8EI7ywIEDTfshmLBdTFowMkOV3I9zHI1x691At7hA6Cw8xVAB9GgDdbHMeInUg4/sBOtQIG1Z3DKdEaTkegcMRfzXxMQEv3/729+Gj6x37tx5/vz5+lM3FMfXC48wMEqUgitiUWbLCy//llBxTEutXSP70P379zOKxnHyorOI5mUEkx7G3mP1CNnC64aOEHHR7dW4jbkQC+QOT0jNzMz4QjhcdWjfcbf+G6tEQGwv90H3yLifmJs5NnGJRVRbtmzxChO4YFL5E8bLZ+yvvfbakSNHOJOGUDdMYVgUl1y4cKF0o0uXLhFJD1U3JaQWCJ3lfUT33X///SMUgoQX0ZsONQy2bduWnamOMJZS0JqwcOLyEydO2G/aaxG8cebMGcQ40ZK+otsnAyObUGJ3UkIq7PGVK1eGvdMPA03NgQMH3B0oIWUwISEybtqc78MPP/z888/b2m88xXPPPeenYWZxQ0OVrITU+Mq3Wwy1pmy0gbooZrxC6sFHdoJ1KJMwadGLNUaQkuvdo48+igQwTWYwH3/8cXvoaJw9e/bVV1/dvXt3pSguCddVDTswSpSCK7xwn6q6uFQc01Jr18g+9DZKSC2ieRnBpIexd/8JqbqhG0dCatzGXIgFskQTUps3bz516tTFixeZZ462fZeBa8db2+8oIUX5/tvyO+E8lpP37t1rz52WL1/+1FNP2cI2PPQzzzzDf+1kD/Kmp6ctVdS0b5b6TfEonExRmB6PuZctW/ab3/yGcnbu3Onr5aampn7bkhqp9JGXVdhW3zGR4LcZr8cee+zcuXOVLDh39PVftAtDSSQ0NzfHfwl6fv/73/Nff0xEwLRv3z48Vriml4Zz5rPPPmvtDSNv7p6+t4WIkAZ/ouQw0uJyJEB77Q2RtD4lQXHaE088wYVMnLIxE33HHakh5VhkxrWU/Lvf/Y5yPObYtm0bQqP7OJM6cC9+cy9vLD3Ccf7LhdzRl09TAuVwJnVzmXBHSnv66afpbl8VGfUp1bCKIVXrLwRia9yYJ69Zs4Zywhc9+KsNNvdMFIiEqRVVonXe0Qy5y5cvV/q9dGHalnQYOKkY6YJjx44RNFP/8CluVEjacGrid6Ri1omUGflLFNDfa6AruZc/PabO4ckYiujtaGsyMqTCNni4qXVQuGwwe9CZnJy0iM3edkGdaRrtopt8IEW9bMEHusORUNRGJLEwUknFS4FuSWi4B0+Whk5rW6GiAsyIOM5vP5mDCASx2JQpFSb/RSz85lprYNTjvka9pBpmGCnBFjynM4HI0qZ3BHqcI5xji9vN1JjWpGaBBjK1wwVwO8ZSOD+n66m/aYEVzuVuyja32O/QzhthOancUGqOMPK9hIqdj0xrkzOSpS6LFDnrv2haunTiueeeM53iNJqMkKl/067lDme5YUKKSvJX/uXMUAfH5xxTMYYsupLW+yW1ZmkNzS3SWFtOH62TN9LR0rT2gSPcjlaYoCjZld261ZyavdPBtaFXNV3L1rA+ULMOIlLq1EGHpGO15HTqHjx0gulIY+T7ZhmUgzTML6dmPOwRFIEfxFHovmnNQO+/iFKyxySRuEzvGJ+2hN8TUojR7TyKg8niyOuvvx5eGyoa5xw/fhzdpGkmmcrAyDYqJNs1yAqtoXzLi9m7n4g03PQEsVigXoqObOllZPQircwaCnuwyn+tf0NJpp0eVjUrgfDlqch9hO+0ph6hKds9JxJUKopm3ujRZLw/49x0mSNuqbynIh8aCjAbtHB37sW//MlzTLQo+0pO9uRsq4edrZSklM4mSqGmxwyUb57LfnOav+OWWhsPpRjDlGySqYz2KPYueYRs871FHVUsW3ho6NI5S5iQqseoqSiyetRlfleK1pryZASott2C3xah+VXZsBN5uqJZCc0g5yLuEpZoQoqhacsLUZ7Kip6B4FBLK6SYwfrvaIWU2QvUzCJygh6zdCgVJgzNpFb2XoMHeVgWCyyadgJjhaONRKWo8WOPPfbaa695zH2oBfOBEXnllVeadobJmbMt4TTDYE5ORBKGSlZhrjKFJ2qxOjPXrT/uoCFuBDETBw8exCphqigHO3L58mUslBkU2nXu3Dl+U3nqZge5L92BCaOSCJM+8oQUwqEaaeSNiDgBA2fl+BSFgIzG2k3Nb0X1yQoKcCFEYPSCvcaYzjz5Kzcl2qAHuSk+DOnRX3h3SuO3WXzOOXv2LJ1LzQlVaQ5tt9+WW0GwnIBIudepU6dsDFhpDABqxSW2kxH1v3jxIudgain25ZdfzvYpBWLQsb/cCDFSDWI4hgr9i1iIisLsHrd76aWXaAUDGOdkk0arEregSowof+uY3sfZVHany16YbUs0DJysGAlH+E2B1B+n7idHhaQNR8KcsH79egYMorOwBld06dKl8KaMN1tMRAMZG+5xTT5hCixNSFmTGS02L2UkEGEjcHwnd7Q5c/agQwhIfagVp1mf0nzOpCFI0l4MzPYyRaV9ZEQS8ygqK16CCUaj6QK9c+XKFQuducrzdAYXvhSAKg3su2ZeBUw36ReLKhiE58+fp/K0iL/aBDsUJl2GitFYS1JYAJH2uLUrqxrUh1twO0owexJtphBZWmqb3pG20HdYRe7IQGrmTQ2lIVtUJhwtTRv6YEM4h8YynNx0Y/bpZdpF+Zxg27FRpj+x4KA7C8t5hcV6OVm50dFM8KiJ5RQqdj41rVkjme2yrCKn/svyPtEUIgrWEbUlnjAm4c50YUIK2SIQeoHu5rc5tfE5x1SMIeNQ0nq/pNYsrSGdhUGOhn1IdrTQ48iT8vGAHDRBEfd7CBQuJbMZi11iSRkUE3OBEcvWsD5Qsw4iUurUQTvZsVryVnUPHjrBdKRxa18ky4UU2xTMeNgjSIa70yNIwOY/A73/IkrpaEs0AEzv6MGDLeivqRs1dM9rSVU6l7b7lz0iRaOeaDehFxeaalcGRrZRIdmuMVnRLsuU2UDC5oS1ssRZKTqiQ+lHusMMtZFqZdZQ2OX0L6qEiKi/jedsp4dVLamGGcOs+6h4hOxojKQX3j0ritDoITEGpBVC3TzX4HnA0IeGAsw2nNpyO9qCGlI3nwWYbYzqmT251OphZytZKWVnE6VQ02IGbCbj8OUWDKn9tlqVrA3iMs9OhflRH+1R7F3yCFl/ZHRXsWzhoaGL5ixNkJCqx6hZUWT1qMv8LhutNeXJCCUgQK6lBEwHVo4L8TiWgS2FnZzpPe4L9CrORdw9LNGElIOGoEUj7487MTFhC4JMb1EVnEHTOoZjx475aZbfQWFea7EHTRaJ4lHMCmDgUMUo0V6PuT1EbtqsuYWSOB7svq+pRpNpowWdpU3saD7hC96L0sxIWYXfaGGaihUzEWG5cFoVgWBr3BbY9DL8a7ikk1b7jM4eJvCDwqP3s8yqUmY2G2Uiwgjab2QV5gENOsJMcFSfrKA4iBzMYPEnDGIUzuKwGTDh/BY7Hs4H6GXLXFAx4lE7SPjlm2Tz2+wpBhdxWaYPsSNnxE5LfeRgl+0tABul1n1r1qyha6hAvU9phYUg4bJhd1GUTIEe8TB06WKrkreFUCBc5Ycoohl4SPbCbFuawsrekhgpxGcIIaXlwd5wAmuGK67OhwftTbfd9ari3Q+32LoPuilc18C4Ig4w/TV/T5P57eOHvvBomEJM5tmDDsIpffmCq2yWmPZypY+MUGIedJbESxNshNNAdNAOEuBGgSCTqAcCoj1HKirgwkcHTTexYz7t95dBImE64YrLsMfDYDpVDaTn2Q17ehaWmbW06R2xFXRQOAbC5hAG+W+HprmFcdONArodYGih5vZYgvgSg8aYZFzRNCpP82lL9HlHLycrN0Z7+PWTik1ITWuIG8lsl2UVOfJfJlj8YLQaCFtnJVMsQqMcs354sdCVRAkpXz7GWLJP1o7POaZijCQzDiV16v3i1iyqYXbYhxdmRwsD24ei+8p6QqppLb+ZCESammKvYX2glgQSKnUaMGTxsZotc6AHjxJS0UjDsplimrisPlkzHvVI9MreQO+/iFKizukKKdc7w1dIEelZWxAOxZolJwCwwDWraNEre5WBkW2UU+oaTrMUs4vOBhITSJtM2q6IhKCl6MjTfCGpVpYSUqiSx5ZcYpP8bKdHVU0l4I4p6z4qHqHJjcaoReHds6LIGr2mQ0IqFGApkvHwj4PhCqk0cZY9OdvqEWYrWSllZxNNIUoMjeeGDRsYk9b7/KZDo5NDa0NbGJOWjWoGjfYmeWUva6yy/sjpqGLZwt3QpXOWJtDieoyaFUVWj5oO87us2+oyGSHkdmPIb8sblsLObEKqo3MRdzZLNyGFTbEtycOdLEaAaDKdR6GBYVY+fWXPQL05bnqCjeZ3ZIXrMbe9Y2IHPZTkr1jYM/NgIyxsIuDARhCOlN5jp3rczt7IC1/Zo0r4MJuEE065U8nCHX0qi69iko/J8Jci3WBRcthYgjk8YtOGTdEKLM7nKlvvYEfm5uYsU2b+OHxTgOmQL4FB/vwJK8YRuzaqT1ZQ/CncyiRd8G8v5oRH6IKwzjgh69CwYhz0+vvv6MVvPDRyoIPsTVJgim7uKoyh6R0fS1GfMgaYOx0/fpxWI097nplNSG3dujVsBSKNwqmmXXAbigJzX9lOK3thti1NIUooibFLQirbcARlU/16uplKplkqYvfow4L2UG5ti0k7ehuOTqGN1lh8PJXPHgzLTEVKUEifvvjii/SOj+Solyt9ZGQTUiXxos4oHfqIajAsaTUhggcNDrdeHRDZkC4q4LqJTmFkTCbclF5rEl2gXZg7rI09IrODpYRUqhpUnpOJL4l1orWfTcHSpnfkBGw7NfQ18GFzGG8WNoVkE1Ke8vNWmEFmrGJMtmzZggOiLfQaAVy482BUTlZuTDsZG1wevmqatfOpaW1yRjLbZSVFDv1XCYaW9yBDy2do1Cd8QSBKSPm6fXqEKHPczjEVozMmJXXSfslas6iGJY/gZEfLK6+84ss8XVADE1KYCEvRog72Ckm2hvWBWhJIqNRpwBCSjtVsmQM9eJSQikZa0yqmLXzmrziCkhmPeiRNSNW9/5ik5IR6F+LZTywPFbBPetObtAWlzipaKSGVDoxso5xS10S7j/l/sYc2Mnfv3m1R+sDoKCLSysoKKb8Evaa9pU6PqppKwHuw4j5KHiE7GkPCu2dFkTV6TbcVUuFVUcNt1w63MPVtoUonZ1s9wmwllVJpNtGUE1LeXk52Gx7+zlobmuDmrhk02pvyHlKu2qXmOx1VLFu4NzOds7gYB8aoWVEMTEiVeiTrtrpMRjjo1sx/l8LObEKqo9kUdzZLNCFlEzBMHqq4wC+GoP/RM+2mnfCH0+BSQgrnh56jzyin2fHoSZd7oCeeeMIV0k3AU0895XbB3Q/1SdP8hu2Yk53eG5a0pg5hQqppZ19m+NDtdMoUgocIHTbtIu7B9pmdxWDZ5D9qLF1gkQfmI8oPmgmzxavuCZa1RCIyydhuCNgj6snMgdOOHj3q4WBYn6ygmLuGr3Cm4SzmzD/EZuzbty9MXuA5fK1B94SUdR/yR9RphrQy/Qj71LKr9BrnIOpKQmrTpk1h2wn4zO1V5lHWC02B7IXZtjTBMOgixkpCygvJNtz69/z589GmPBEIMF0ss379+mjHxzO5V/a8ycSCV65ciZQ3ezCE+WG4RwBQW5sLWR42rKT38mgJqZJ4bTpK0+wROiaRAZ8u2UCJ/icg2kGziwq4bmIiolZHjULyFpkhwDAQCXu8npCiBEIcTrD3YaN7pZa2dMemHQkUlc5GuiekbIG619DnBrYUy7ZqopLc1Db3icr0crJya1rTwVXU3x+BZu18alqzRjLbZSVFDv1X+lcnW+3oYCkhZSv5e3COqRiNMSmpk/ZL1ppFNRyYkMqOFg56pO6CYoSj9ZGgmqAX7Am2vQRty1uyNawP1EqqJfQFUcDgZMdqtsyBHryUkLKR1rT5F34TwtGQpmrGwx4ZNiE1DilFpOVbTtZraBsFGJTGn7KKVkpIpQOjZKOMUteUElI0k/ORA1G6PVQYGB2lhFqZNRT2GlFYKwxyqdOjqqYSiJ6sZN1HySNkR2Pp7llRZI1e067m81R7PSFViWQ8pRVuC5VSOjnb6hFmKwO9g88mmkKoOTAhVbE2u3btQiu7jPamQ0Kq0nyjo4rVE1LpnMXFODBGzYoiq0dNh/ld1m11mYxwX7+j/y6FnUR9bm/DsdrRbIo7mCWakHIwZ2hR+Ob5OMgmpLDOaDIW4Uz78nbTugpbf8T5/s6LeSB7nIWe8ydMkpmAjRs3+ut+aJ25H6BFvqjVjII96Gta2xQly7E13MtmFOgzBUYrpHAMXGKvLWDC8G1U0raw5S7hsvCmfd7rq9PDJwmWFKAJHg+9/PLLZikoB/tiK8apHhWw3YIonFu7CbP30tO3fxER0vA3/G2WiBkyb00TsM5mnqL6ZAXFQRpoa00RC8Y6CmcpEN9gJyANrD+/fek7Awl7ZwnKLgkpN47MTm27CgpEAp7itFpl7Xjap7TLfBXV8Cc5mGzvES9n5cqV3NqaRosQrHVQKSC24MaETIXTF/tL7jZtSzQMnJIYSwmpsJC04bZVDQ2kXfhCExQVqL9wWqGekGpadxi+G2h3zB506BdbX0mfokcmZGs1hVtslPbyaAmpknibds02rbP9TRmECHPYfR8rKkCdUWcaSJRgD2+xJLTa8vW03QZV2CjPg3AVBz0QCXu8npDiNMTCKEVoaTzaJJY2e0diQbOKdJNZp9ESUkwSsHWW5qDaHr1ZFoxI0RadITTqkD7O9XJSuTEwTKf4gaVCkSt2PjWtWSOZ7bKsIqf+i0uIJkf7klQ9IZV2WbN4zjEVY1ixxVVS5jPhXnjZfkmtWVrDgQmprJYhQA6af3dB8SdbnMtxhkSakGpa68f5/vJs1tFUBmpFIKFSpwGDkx2r2TIHevCBCSnbrgWd9dgmNeNZ1bOX7u20gd5/EaXEmfWHLikEANFrbmi63TpVNDQ9fAxZGRjZRjmlriklpJq23ykfD2WmeGB0FJJqZdZQcDlj3lze1NQUYrHys747qmoqAe/BivsoeYShElJZUWSNXtO6dRt1eHkaWElIlRp+6tQpe0nCvqPtk3yCjdRnZU/OtnrY2UpJStnZRFMINQcmpOrWBrdoP+qjvflp7F0yVmnzI7qoWD0hlc5ZQjHWY9SsKLJ61HSY35XWsw+cjGQTUqWwk3t5COfDLzWbmPfKrrjijmSpJ6SadoCOe+N9VBdP/NY8r7zyCpqM57AtG5nho0u2Xx3aiAqhtBYMHT161H5gephk2gSGoN9NAJMibA2GYOfOnVxl7sdSzjghSuNeaL4tfqal58+fj5YsYgKwHVSP+mBxLD9iFTa4EKvkryVu2LABJ0EwQUNwPFEuD//kO7tT4ddb8KN2ObM1amvZ+nvvvZe6UWfui7V1O4j54BzqSa1sH25/3EE5/vzHQURUj/baPoVmoDG1HDnd4vsEp/VJBdW04RetppLUCt+T+jMmuvYWIedYDzLNoAcpyjcgCPuuKSekqDD35SqudUnSlbYYm4Nux10IVNJev0/7lGiDCzlCtekjs7b0F3XjHNv9x8vhkvMttMXXZaAI7vnCgHh6epoz7TfRapohKl2YtiUaBiFZMTKi0rXQUSFpw2mR77BAbe3DXrbFdVpUFyjcv56TNrlpE7uog62mZjiZ8LMHHbTVlBotMK9P+GLpIVuy3sy/thD2cknUTiix8OSseJt2KoIu2/pqQpP6E7MS2cJRNEIKW4tK4OJf7USLbR9ZGmXJzbCeBFsESbQLxTxw4IAHJWGP+/lZ1WB6b4EITbN4LqptZGmzd7TvXXA5I8oEEmo0cWG0s3vz0/0d/GQsmy1AoLE0OVx5xx3dkmMHUo0Iy0nlZut8z7S7m5kKV+x8k5jWrJHMdlmTKHLWf1EmIWb2Sz0DYcxYRr5Jphymd+NzjqkYQxZRSakn8vF9mkv9klqztIbZYR+WmdUyCrePC9N2Ku+CYq5oFaBw3yc47AVcFTX3iVPW0VQGakkgzU+VOnXQTnaslsqse/BQdNmR1rRa4BtCNzkznh0z1N+CmaaD919EKTF+Qk/UhfCjCgZaTJOxhKmiMbRsrbHFyZWBkW1USLZrQllF/52cnGRsh7v11aOjkFQrs4bC1jlSbU6mab6EMOu7o6qmEvAerLiPkkcojcasZLKiaFqjh4Q5QpzmCSnkbLdj+BGfm9izPrTUcDqCcyiBP/mXUpt2s/lIIKWTS60earZSklJpNpENNcP20jpfH+e/69YGK0qBjJOBoz2MvUuqnZ2DhHRRsWzhYTPTOYuLsR6jZkVRcrgD53cltzVwMsJ9w+SU/86GnbSIOtgQIkiz4ZeaTU7QF/fuNpZiQspW7tmgtPW6t2QJXxhyhb+xd/7fyDzhXexIeJyD9tghOplywrcPbM+s0rsVlu3uXnm/aQSBmu9b2eQy7lwVvsxoDxujQmh+WJlQOGn9XSBp/dNtEdP6NImgmnZK7N8IT9topDus2ysM2apmf4fbDWTLL42QcHhEfcqfrIHRQRdOFOiHgy2tqv+J4MafieF+0u02Sxdm29IkwyA6ORJ7ZdB6IVHDsyXYR4WyRQ0kW4f0IFVKezN70KHa4fDzRoUfBo56uSLq9ISokql4m7ItGpaocHuim9VN7hJpUGrr0uNhj/vxtPKMVZ/DhG8uRESDP71j1HEDh2VF7Gl7m5++ehz+rtwlLYexEVnIip2PTGuTGJ9KlzU/VeRU7ES9lffBB5Lt0NSpjcM5NokYIxZFSWdnZ0u7m6cuLzXjUQ276Gx21JmShq9aWIsiQUVlpv+NajhwoJasVqjUWQftpFa0VGbdg2fH8EDtTs14Omayg3AoszCslDjfnyMORd0LpIGBt70+MJrCqHPSrqlLPju2K9FRVFRqDKM+8lUbfjyk7gKyd+/oPlIp1QPd0sE0uDKjFzk+N+nZ0ZgKMB3tlrsPL5yYmDh//nzWU6Qn+42yY6P7bKUipexsIhtqdjGkFWsTOuv6aA8NeyVsS/1Rqbalm2YLT+PwUpn1GDX7p6ytGzi/q6htfTIybEzrdfY/Rc5lIYGuuE1Zogmpw4cP2zezwt2yxaJw6NCh6DOrIkv0zteSBX05d+6cPU7ZuHFj+JWZ2wjiG3td5VZX5C4ifcGhH+ybiXNzc7ZYLLu5r8iykC5Dv9LtFIVz4sSJaGe6W0iUkBK3KbOzs/5akBiB+hZUty+VJzGLxdNPP1350I0QQiwplmJCyqgntsXIrFmzZtx7ct0ZTE5Opu8DLkGWL1+eXRIlRB2iVX91v2empqYef/zxHTt2RJ/YE3VuYZeJPpmYmPA9hoW4a1m5cuUd+Ux62bJlO3fu1DIQIYQwlm5CSgghhBBCCCGEEELckSghJYQQQgghhBBCCCF6RQkpIYQQQgghhBBCCNErSkgJIYQQQgghhBBCiF5RQkoIIYQQQgghhBBC9IoSUkIIIYQQQgghhBCiV5SQEkIIIYQQQgghhBC9ooSUEEIIIYQQQgghhOgVJaSEEEIIIYQQQgghRK8oISWEEEIIIYQQQgghekUJKSGEEEIIIYQQQgjRK0pICSGEEEIIIYQQQoheUUJKCCGEEEIIIYQQQvSKElJCCCGEEEIIIYQQoleUkBJCCCGEEEIIIYQQvaKElBBCCCGEEEIIIYToFSWkhBBCCCGEEEIIIUSvKCElhBBCCCGEEEIIIXpFCSkhhBBCCCGEEEII0StKSAkhhBBCCCGEEEKIXlFCSgghhBBCCCGEEEL0ihJSQgghhBBCCCGEEKJXlJASQgghhBBCCCGEEL2ihJQQQgghhBBCCCGE6JX/n5A6LoQQQgghhBBCCCFEX9y4ceP/AU0DfsksF74XAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<IPython.core.display.Image object>" | |
| ] | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABjAAAAN7CAIAAABkokShAAAACXBIWXMAAA7EAAAOxAGVKw4bAAJ3aElEQVR4nOydB3QVxfv+FREpShW7Itiw/ux+ESsQwCiIKBhAEUFEFKlKVBQRBQsaiHSCQui9I70kAUJooSUEQicESCCFhECk3P/jfQ/zX7flBpN795Lnc3JydmdnZ2fn3Zl557mzs1e4CCGEEEIIIYQQQgjxIlf4OgOEEEIIIYQQQgghpGhBQYoQQgghhBBCCCGEeBUKUoQQQgghhBBCCCHEq1CQIoQQQgghhBBCCCFehYIUIYQQQgghhBBCCPEqFKQIIYQQQgghhBBCiFehIEUIIYQQQgghhBBCvAoFKUIIIYQQQgghhBDiVShIEUIIIYQQQgghhBCvQkGKEEIIIYQQQgghhHgVClKEEEIIIYQQQgghxKtQkCKEEEIIIYQQQgghXoWCFCGEEEIIIYQQQgjxKhSkCCGEEEIIIYQQQohXoSBFCCGEEEIIIYQQQrwKBSlCCCGEEEIIIYQQ4lUoSBFCCCGEEEIIIYQQr0JBihBCCCGEEEIIIYR4FQpShBBCCCGEEEIIIcSrUJAihBBCCCGEEEIIIV6FghQhhBBCCCGEEEII8SoUpAghhBBCCCGEEEKIV6EgRQghhBBCCCGEEEK8CgUpQgghhBBCCCGEEOJVKEgRQgghhBBCCCGEEK9CQYoQQgghhBBCCCGEeBUKUoQQQgghhBBCCCHEq1CQIoQQQgghhBBCCCFehYIUIYQQQgghhBBCCPEqFKQIIYQQQgghhBBCiFehIEUIIYQQQgghhBBCvAoFKUIIIYQQQgghhBDiVShIEUIIIYQQQgghhBCvQkGKEEIIIYQQQgghhHgVClKEEEIIIYQQQgghxKtQkCKEEEIIIYQQQgghXoWCFCGEEEIIIYQQQgjxKhSkCCGEEEIIIYQQQohXoSBFCCGEEEIIIYQQQrwKBSlCCCGEEEIIIYQQ4lUoSBFCCCGEEEIIIYQQr0JBihBCCCGEEEIIIYR4FQpShBBCCCGEEEIIIcSrUJAihBBCCCGEEEIIIV6FghQhhBBCCCGEEEII8SoUpAghhBBCCCGEEEKIV6EgRQghhBBCCCGEEEK8CgUpQgghhBBCCCGEEOJVKEgRQgghhBBCCCGEEK9CQYoQQgghhBBCCCGEeBUKUoQQQgghhBBCCCHEq1CQIoQQQgghhBBCCCFehYIUIYQQQgghhBBCCPEqFKQIIYQQQgghhBBCiFehIEUIIYQQQgghhBBCvAoFKUIIIYQQQgghhBDiVShIEUIIIYQQQgghhBCvQkGKEEIIIYQQQgghhHgVClKEEEIIIYQQQgghxKtQkCKEEEIIIYQQQgghXoWCFCGEEEIIIYQQQgjxKhSkCCGEEEIIIYQQQohXoSBFCCGEEEIIIYQQQrwKBSlCCCGEEEIIIYQQ4lUoSBFCCCGEEEIIIYQQr0JBihBCCCGEEEIIIYR4FQpShBBCCCGEEEIIIcSrUJAihBBCCCGEEEIIIV6FghQhhBBCCCGEEEII8SoUpAghhBBCCCGEEEKIV6EgRQghhBBCCCGEEEK8CgUpQgghhBBCCCGEEOJVKEgRQgghhBBCCCGEEK9CQYoQQgghhBBCCCGEeBUKUoQQQgghhBBCCCHEq1CQIoQQQgghhBBCCCFehYIUIYQQQgghhBBCCPEqFKQIIYQQQgghhBBCiFehIEUIIYQQQgghhBBCvAoFKUIIIYQQQgghhBDiVS5zQSomJmahhpUrVxrjrF+/Pjo62hh+9uzZpUuXIgVt4Llz5xYsWJCSkmJzUaQ2e/bsU6dOWUW4tJTPnDkTGRk5bty4KVOmbN++3TSO1b0oEhMTZ82adfDgQZs4f/31F6LZRLDh/Pnza9asCQ8PRz6tMjl//vw9e/boAhcvXpyQkGCMjGJZtmzZ8uXLT58+bTyak5ODklyxYoXphTZs2IBkrYp09erVixYtysrKsrmdPE3p0jxjS5Ys2bFjx4ULF4xx9u3bN2fOnOzsbG0gso0c2qRMCCGEEEIIIYRcrlzmglTdunUDAwPfvMg777xjjPPZZ5998sknxvC4uLhabrR6R0ZGBkKWLFlidcVTp07Vr18fcaZPn24V5xJS3r59+9tvv127du1WrVo1bdoUMbt27WrUPqzuRfHpp5/i3G+++cYmTp06dUaMGGETwYrc3FykjzLH/zZt2uBC8+bNM0ZDeHh4uC6wQYMGgwYNMkaOj4+XshowYIDxKALl6LFjx4xH69Wrh0OtW7c2Hlq5cqWcuHjxYqvb8cSULvczhswHBQU1btxYLnfkyBFdnD179uDQqFGjVMiuXbvyTJkQQgghhBBCCLlcucwFKU+0FSsRZ9u2bbVq1QoKCmrWrFlubq4E5ilILVy4MDAwsEOHDu3bt7eKk9+Ujx49+tprr7Vt2zY5OVlC9uzZExwcrM7N814EnI5LIE7dunVPnjxpFe2SBam5c+ci/R07dqhMqm0t+RKkpKw6d+6MEsjJydEeys7ORlF3794dEVBEpjeCE3F069atukOdOnWSE2Evq9vxxJSufxcXLlSvXr2ePXsao/Xq1athw4ZqshV233rrLaMFCSGEEEIIIYSQogAFqTwEqXnz5uH/lClTJDBPQapr1669e/f+66+/EM3qzbj8phwSEoJDe/futb8Rm3sRxowZ06RJk0OHDiG1uXPnWkW7ZEFq6NChODdPkeUSBKlFixbh//z587WHZsyYgbMWLFhgI0jhlps3b96nTx9tuMxXioqKshekPDGly1Bc3bt3DwoKMkaTi06cOBHbBw4cqF27NqdHEUIIIYQQQggpslCQykOQ2rNnT8+ePRs2bChTiuwFqdTU1Nq1a69atSorK6tevXp//PGHabT8pty4ceMuXbrY34X9vQgtW7YU0efjjz/u2LGjVbRLFqSQedzCkCFDzp07ZxPtEgQp/O/WrZtuptJ77703cODA5cuX2whS48aNGzt2LGyRmZmpwkNCQj744IMTJ07YCFIemtL17+LCjaOQO3XqZBqzV69eMGVubu4vv/zSpEkTTo8ihBBCCCGEEFJkufwFqb59+8Zf5PDhw8Y49oLU7t27Dx06FBAQMHToUFdegtTEiRMbNGggQsM333zTrFkz0yWu85WyhPfv39+T+7URpHbs2KHep5s+fTq21QuAOi5ZkDp//jzuGim3atVq8eLF2DWNdmmC1LJly7Cxa9cuCd+4cSN29+/fn6cglZKSgo1p06ZJYFZWVmBg4Jw5c9LS0mwEKQ9NKVfp1atXdHQ0bjk4OBiJI7emMffu3SuTpOrVqzdjxgzTOIQQQgghhBBCSFHg8hekamno3r27MU6eghS2Bw4cWK9evSNHjtgLUm3atPn5559lW5bNNq5elN+Ujx49inCbGTqe3Av4/fffmzdvLtsnTpxAyYwdO9Y05iULUuDChQsLFy5s0aIF8tyuXTtTnejSBKnc3NzXX39dCXM9e/bs3LkzNvIUpLDxxRdfvPfeexI4Y8aMwMDAU6dO2QtSHppSrlK/fn3kH3FeeeUV02WzFL169UJ8To8ihBBCCCGEEFLEufwFqaFDh+ZexPRVMk8EqYyMjAYNGvTu3dtGkJJFgqZNm7bbzfbt2wMCAkJCQv5jypmZmQhX4og9VveCG3/jjTf69Omz+yJt27Zt2bKlaSL/RZBSl5sxYwbS+fTTT41Hdd+bE/IUpFxu8e7VV1/NycmRSU/Lly93eSZIyXJRW7Zscblf9BOj2AhSnpvSpSkunPX222+3b9/eamqY6+I8tfHjx1tFIIQQQgghhBBCigKXvyD1H9eQEtnI5X6HC7sbNmywEqSGDh1ay0DDhg3//vvv/5hykyZN2rZtm+fN2txLdHS0MW8gISHBGPm/C1LCr7/+iktkZWXpwgMDA3FIG3L69GnTaVOufwtSohPNnz//jz/+aNy4sRSsJ4LU2bNnEb9Pnz7yol9iYqLLVpDy3JSufxdXZGQkYkZERFiVicx3063OTgghhBBCCCGEFDUoSHkqSOXm5gYFBX366aemstH58+ebNGny008/ndMg8kRUVNR/SRkMGTIEh1avXq0NTElJMU74srqX3r17t2jRQps3eWtv4MCBxsiXLEjp8tO/f38klZOTo4vWqVMn3K/2nbUVK1bgBtevX29MUytIgfbt23/44YeNGzdWOfREkALDhg2rV69ely5dVPlYCVL5MqXr38WFc3FrXbt2NSkdNxSkCCGEEEIIIYQQFwUpl8eClOviV+RMZSOZ37Ru3TptYG5uboMGDXr27PlfUgYnT55s1qxZ/fr1R40atWXLlujo6EGDBmE3PT3dk3s5deoUIhvLITg4uHHjxkZVC4WGPK+6SGxsrDFLprRt23bIkCHI4b59+2bMmFG3bt1+/foZo61ZswZ32qVLFxTanj175syZ07BhQ2TbZgF4JUjNnTtXCkqtT++hIHXw4EE5USlQVoJUvkzpMjxj4eHhOB2XMyshClKEEEIIIYQQQsg/XOaCVL169fJcDrx79+4dO3Y0hsfFxdWqVWvv3r0q5MKFC1999RUCY2JidJFDQkJMxZ1+/fohD7oVrPOVspCamtq7d28kJapKmzZtli5d6uG9LF++vHbt2lr9SxAVzKg3NWnSRPuqWosWLUyzZGTx4sXNmzeXs5DVQYMGWS3djcw3a9ZMxezTp09mZqZpTCmr+Ph42c3Ozn711VeDg4NVBFlxPCUlxXguUp44caLa7dy5c6NGjc6cOSO76enppgpgvkzpMjxjx44dCwgIMC6SJSCfVu8JEkIIIYQQQgghRYfLXJD6+++/TefdaJF3skwPmeopZ8+e9TwRXN00Ec9T1oLbOXbs2KlTp6wimGbDKg9AqTMFSFpa2pEjR6yKVEtKSsqhQ4fy/N6cLgJKSbdquFUKOuvjLF0Jm56YX1ManzGE2Kxrzu/rEUIIIYQQQgghl7kgRQghhBBCCCGEEEKcBgUpQgghhBBCCCGEEOJVKEgRQgghhBBCCCGEEK9CQYoQQgghhBBCCCGEeBUKUoQQQgghhBBCCCHEq1CQIoQQQgghhBBCCCFehYIUIYQQQgghhBBCCPEqFKQIIYQQQgghhBBCiFehIEUIIYQQQgghhBBCvMrlL0jt3r174cKFvs7F/+f06dPI0oULFwowTaSGNHNycrB96tSpyZMnZ2dnF2D6hBBCCCGEEEIIIQXI5S9Ide7cOSQkRLb37Nkzf/58XYSDBw/Omzfv3Llz3snP8uXLa9WqdfToUWzj/08//bRz587/mGZaWhrSFN3t/Pnzb7/99pQpUwogr4QQQgghhBBCCCGFwGUuSO3Zs6dWrVpK8QkPD8euLs706dMRmJWV5Z0saQWp2NhYbCuNDBtr1qy5hDS1gpTLfZvNmjUr2ElYhBBCCCGEEEIIIQXFZS5IjRw5smnTpmrXaYIUkPfshLZt2/bp0+cS0tQJUomJidiNi4v777klhBBCCCGEEEIIKXAuc0GqTZs2P/30k9rNU5DKycmZP38+/u/du3fcuHFTpkxJS0vTRt62bdvEiRPHjh0bERGh3vLDuTgrIyNDRVu1apVWDzpx4gSugqvv2LFDK0jJ5XAJbCxZsiQoKKhDhw7YwOnq3HXr1uFEXBRZ0uYkNzd30aJFo0aNioyMPH78uFaQunDhQqNGjcLCwv5DyRFCCCGEEEIIIYQUFpezIJWTk1O7du2pU6eqkDwFqYMHD2J74MCBgYGBn3zyCf43bdo0PT1dYvbp0wchn3/+eXBwcEBAAP5L+M6dO3HWxo0bVZrvvfeeEsL27dvXsGHDRo0aderUqV69evivBCm5XHR0dHJyMk7B0ddeew0biONyrwb1/fffv/rqq9988w1CcEUlOZ0+ffrDDz+U1JBy586dtYIU6Nq1a7du3Qq0OAkhhBBCCCGEEEIKhstZkNqxY0etWrVWr16tQjwUpJo3b56UlOS6+O7b5MmTJebatWtPnTol2wsXLsSh/fv3u/ISpL799tsmTZqcOHFC0g8KCjIKUhJT98reggUL6tWrJ5cAYWFhDRo0kM/nzZw5Eydu2bLF5f6s3meffaYTpEJCQho3bvzfyo8QQgghhBBCCCGkULicBal169Yp1UbwUJCKjIxUR1u0aNGvXz9j4gcOHEDMmJgYl60gdf78+YCAgJEjR6pDixcv9lCQ+uSTT77++mu1u3fvXnU7Xbt27dChgzp07NgxnSA1YsQIXNeTUiKEEEIIIYQQQgjxMpezILVq1Srd2t4iSOk+Pzdt2jSdIKUUItCuXbvevXvLdnZ29vjx4zt16tSyZcsmTZqomDaCVGpqqk4q0q4hZS9INW7cuE6dOoEXeeWVVxB57dq1OPTOO+9o18bSLWoORo0ahRC1yhUhhBBCCCGEEEKIc7icBanY2NhatWpt2LBBhUyePBkhqamp2mjDhw+vU6eOaDdGQeqjjz4SQerChQsdOnRo2bJlREREYmJiTEyMTpDSXkgJUidOnMChOXPmqEOeC1JNmjTp2bNnqobjx4/LIWRDyWQuM0Fq8ODBgYGBl152hBBCCCGEEEIIIYXG5SxIidyzePFiFbJp0yaEzJ49W4WcO3euTZs26vU3G0FKDi1dutQYU7aVHpSent6oUSP1yl5gYOAvv/yiEhw5cqSVINWuXbvvvvtOxfzss8/ef/9901sLDg5u0aKF2t2wYYNOkEKeW7Zs6XlZEUIIIYQQQgghhHiNy1mQOn/+/CuvvBIWFqZCLly40L59+8DAwClTpuzevTs2NrZHjx5qKSiXrSCVnZ0dEBDw448/5ubmJiUldezYUcU8d+5cUFBQq1atEhMTt23b1rp16/r166tX6kJCQnDiypUrjx49OnLkSFzdSpD65ptvmjRpsm/fvvj4eOxGRUXh6KBBg5KTk3Nycnbu3BkeHi4xZZoVbi0lJWXJkiWNGjWqU6eOVpBq06aNdgoVIYQQQgghhBBCiHO4nAUpl3uSUZcuXbQh6enp3333XUBAQC0377777sqVK9XRpKQkrT4FPv74Y/Ua3fz580VOwv85c+a8/vrr69atk0OxsbGNGjWSQ1OmTOnRo4daCj0nJyc4OFgu17Fjx7Vr12IjJSXFeLnt27cjTYQ0a9ZMQmbPni3Jgnr16vXq1UtlLCwsrE6dOggPCgrasGFD48aNlyxZIoeysrJwaNasWQVXkIQQQgghhBBCCCEFxmUuSM2ZMycgIODUqVO68JycnIMHD6olmbTk5uZqd8+5Ubt///334cOHz5w5g+2zZ8/qTkxKSjp9+rTxLJd7dXMRoXSXMF7uyJEjuIoKOX/+fHJyMgJ1l3O5hSdkRi6kPSUyMtK4VBYhhBBCCCGEEEKIQ7jMBamsrKzAwMAFCxb4OiNepWfPnt27d/d1LgghhBBCCCGEEELMucwFKTBs2DDdW3uXNydPnqxbt+6mTZt8nRFCCCGEEEIIIYQQcy5/Qcrlfg/O11nwKkXtfgkhhBBCCCGEEOJfFAlBihBCCCGEEEIIIYQ4BwpShBBCCCGEEEIIIcSrUJAihBBCCCGEEEIIIV7lshWkLly4cJYQQgghFpw/f97XWSCW0DpOhtZxLOfOnaN1HMs5N77OBTGH1nEyaNZ8La4UIpetIIUatW7dulWEEEIIMSM3N5cdpWOBJ+PrLBBzNm3alJOT4+tcEHPi4uLS09N9nQtizr59+5KSknydC2LOkSNHdu/e7etcEHOysrJ8La4UIpetIPX333//8ccfoYQQQggxIzs7mx2lY4En4+ssEHPGjRuXnp7u61wQc2bPnn3w4EFf54KYg3H1xo0bfZ0LYs62bduWL1/u61wQc44dO+ZrcaUQoSBFCCGEFEUoSDkZFwUpp0JByslQkHIyFKScDAUpJ0NByi+hIEUIIYTYQEHKybgoSDkVClJOhoKUk6Eg5WQoSDkZClJ+CQUpQgghxAYKUk7GRUHKqVCQcjIUpJwMBSknQ0HKyVCQ8ksuQZAaNmzYggULCukxIoQQQhwFBSkn46Ig5VQoSDkZClJOhoKUk6Eg5WQoSPkl9oLU8OHDIyMjBw0apA2cOXMmvPPCf6I8YsKECWFhYbI9atSoMWPG+DY/pMgyePDg8ePH+zoX/6oR3qfAC2HIkCFogoYOHVqAaRKSXyhIORkXBSmnQkHKyVCQcjIUpJwMBSknQ0HKL7EXpNauXZuWlqYNGT169KZNmzIzMzHuNT3lzz//jI+PtzpaIGzZsmXhwoWyjXGCarJ37tx59OhR2V65cuW6desKLw+E6Pjrr79QofD8+zYb2hrhfQqjEE6ePBkZGVmACRKSX3woSA0ePHj+/PnR0dExMTGLFi0aNmyYLsLYsWMjIiLQWaP2DRw40D61adOmrVmzBkMdbOgO4QbRb65fv37ZsmW6q9hcYvz48aieyBs65TyvXki4fCdIhYWFLVmyBM4GDDRnzhxjCcycOXONG2zYJzVo0CAYGoUMKxh/WrOxjo1NfW4d3wpSuDqeWxQaCmfy5MlW0fB4Y2xpLD0t9taBx7t69WqUM+L8/vvv2kM21vH82SgkfCtIeWId+BKIM3LkSPukRowYsXTpUpQ//g8fPlx3FLcJw6GGTp06VRtub1MBpsGzER4e7vFtFRi+FaSmT5+ODMA6K1aswLhPd9STolPY91BW1rG3qeBD6/iLIIXCR5eh+00XtpsxY4bNWehijAU7ZcqUxYsXF0ouCxoKUn6JjSCFbvXUqVNqKIjdnTt34pRTbrCBXeNZ6HRxCC5aIT1naAfPnj27Y8cO2bUSpJKSkjCOLaQ8OBZ0Ieg8fJ2LfOOn2dZBQSrU40KAUwL/Az2lJ2kiZmZmZgFkjpBLxVeCFLxGXPrcuXPH3GDjzJkz8+bNUxE2bNhw4cIFVBD0d6h6iDN48GCr1JKTk8+fP5+Wlnb69GlE3rp1qzqERhjOANLBADU3NzcrK2vUqFF5XmLTpk1I8KgbHEpNTdXNp/YOLh8JUvCO4I3AIijYEydOIBvp6ena4RmKBYUJbwThOIoxjFVSKG0YGiY4fvw40kSpql/dQm2tY2NTJ1jHV4IU7hReIu4aDy2KSB7dffv2GSfbImZGRgae8AMHDlilZm8djNulXhw+fBjpHDp0SI26bazj+bNRePhKkPLEOhhxoH6hzHHIXrCbO3cujIJRCcoZ5Z+Tk6NcCySyd+9emADlDNshqfXr18she5sKSAdNLs5avXp1gRaAR/hKkEJPJ+N5lAysg/YNhaPKLdSzolPYdB821rGxqcK31vEXQQotMApw7dq1KmTChAkotJUrV9qchRqKXgZNmTYE5ti9e3ch5rXgoCDll9gIUnCFEUFJ46h7aDjgGMkuwq3aoCFDhhTGE6bQOlVWghQcAp94xr4FDqg/ynB+mm0dFKRCPS4E+J0uj2Xr8ePHI7LN79uEFDY+EaTGjBkDpxyulXoJd8SIEfDd4YUr7xy+uJqPDG/eZetoxsbGSlLoHOFrIjK81VB3d4kWGMNpmdyB+otByK5du/K8xIoVK5QygkAcshmZFB4uXwhSixYtwnXj4+OVp4FSwnOSnp6uQqKjo9UYOzExEfGtniIYQi2PgDhw/U+fPi2H7K1jZdNQZ1jHV4JUXFwchmHaESPuHR5sQkKCLiZslJGRgeK1EaRsrIOaiAtpB9IoZ3VdG+t4/mwUHr4SpDyxDiyCJycmJsaVlyAFr0Np9LNmzUJ8NWzGJXAhBMouzIGj0nja2FQBk+3YsQMZKzqCFArkxIkTKIopU6ZICNofKbelS5dKiCdFp7DpPmysY2NThW+t4y+CFEBnAQOpgTl20U/lOUDG3aHY1WMgxnLCsiSeQEHKL7ERpDZv3qydmLB9+/acnJw8n4PBgwdjnAm/WXbRrIwePRq7ERERa9asUZ2xDsSZP39+qLuDRD8t2wCj0LVr1yJB7SxoHFW1wkqQQi1SzVyou0mV+aVo4idOnKjLLf6jEUSjhkyqnAtIBNlGuHLs7MHp8AJ1M+RnzJiBclBxcC3tUBwpYxdX0WY41D0ZFUWBDGt/GUBBSTONNHEUbYRqZeAJ7d+/H+3OQjfG38mnTp2K8kSucBRFoQo5zyvKLPRly5bhkLocihH9SlRUlK6FsklEjopBVeGYZhtt5Zw5c5AO0lcNojB8+HApLvyXU1TDalr4kprcMjpUq9WIcBXkGcmieNXDlufjAV8ThYB8Tpo0yUaLwSGEI+fIHiIbtZV8lbz26ngAcF/aPEuNsKpxprcZerGeIjJSU1N5pdxQnsi27sY9LATc8uLFi5GmdtY3HngYAtHQpCB9VRqIgGjyeOjMhJZH+wMdIV7GJ4IUvO1z587ploRD5YJfiBGdMT5qEKoVOm5PEkctQ2TpTdD+YFs7hx918+zZs8bXK2wuMWbMGBzyydu1Ll8IUidPnkxNTdUFokFDZhYtWmSMj2YchzxczUDmj8iLKp5bR2tTHb6yjk8EKTylqCNbtmzRhaPcEK7to7GNkoTbecCNh+lrrYOOCZVU627hfk1VHhvr5OvZKEB8Ikh5aB04CfBA4LG48hKkdKBiHj9+XLaTk5MPHz6sDqENR2rwf4xnaW0qwJnJzc0dOXJkkRKk5Ck1jg7wVGdkZJieYiw6K3Tdh+fW0dpU8Ll1/EiQkklSeJxC3R0BtrW/WlmNjmWSFEZnoe65bJmZmf4yPSqUgpSfYiNIHTlyZM+ePWo3KioK8fP8vl54eDiioZ+TXfjx8fHxGE/i+Th16hT6ftMX9dEf4yjaNcSHk+dyt1no6U+fPn306FHUn8TERBVZK0JZCVLabTj0uBc0XocOHZL5n2pwK7mNjY1FOaBxxH80fGrsjRbnzJkzyBXqpCdO1dSpU3GnKSkpu3btwu0gAzKuxpgcV5k7d26ou5IjKfW2IxoCeDOo6klJSbi66qQTEhKQYdR/+T1cvbiLgkIOkSVcCIfk93O5CnZRXGidT7gxKiO4KG4E8ZEBFIjLrQioozZXxL3gjlAUSF98pk2bNrnck2/FOkpus09EngQ5RZo502xL24emEI8fjIILSUsa6tby5JGQC+H2UdryAFsVPgocgbhlDOEQaDqQQ3kitf1ukG2VN/vHQzKjDIH/LgtBCk8pniW5d+QEt699EztfJa9AvyKviqBUUVxqCIRr4Tk3rXFWtylnoWTkBqXWo9ag3LCLxwZ2QVKm7rJNIaAXlEndSBB3jSvKGgF45uUlBVwUKUv9hfeJZwC3g8hIDdbXrpNy0I3x6oR4B58IUqhZ2i5YYfVC+qRJk7StpT3SoeOUUPerZ9jWSt7y66hx6RCbS0RERLh8NJPR5XVBCo0bLopb1oXLkgJok42nwJQwqM0LlVr27duHxlO2PbeO1qY6fGUdnwhSMh3M+GO+LCih7XzR7aKosZEvQUprnb1796Kr1R5Fl43+y3iWjXXy9WwUID4RpDy3Tqj7JzRXfgQpeI/i5MguzKTTdODJGGfJhf7bpqHuHyPV4pVFSpBCjYADplsHLdS9oDAMYfrDvK7obNB1Hx5aR2fTUGdYx48EqVB3o4SyRfeEQR9aJ/Urvs3oOPRiRwPPf+HChX40PSqUgpSfYiNI4dCmTZvULvwhsTG8Ye20FB1GQQr+mcz9QQoYOaP/Np4lPxDhkCQLf87l1jtk8I/mxqVxv/IrSCE1VEXVkq5bt8510S2Q3GZkZEjiqG+oddLMISfYVlOZ8pT/Bw4cCMdLeaLI+ZkzZ6Kjo2UXtR0NKJrRmJgYhMt9oUCwjQ5AWn80DdIZ4z8KTS1FgQYC0URekYJC0yzu6fTp012anz3t332TJcDUWu8yF1pUhjyvqGSv0IsugvLFUZLyImeeiaDfkmyLR6LEeGO2tb8ixsXFwXyyjb4Kradsz5gxAwaSVfdsCl9+XlbWN7Ujnk/l7suLGHIXNo9HqHuaPVp2mb+AmPKGvJUgde7cuTlz5oS6O1cRjORRz1fJa0FMNYERaao4NjXO6jblLNfFFzrkaURhHj9+XOIjBLVe+z65wqYQ0LBoZ32jt1OvmRhf2cNTpGyEDd18/q1bt6pngBDv431BatiwYagjGzZsMB6SF16M4Zs3b0a4UacwJSUlRTUguAoaKO3R+fPnu8z0C+Ml0GigSUTLjDbNVx8fcHldkEIPhYvqJjULKFXVVKL9RDuGARhC0I/YryOrGDlypHahTM+to7Wp4HPr+ESQwlOK8jHqO+iYEK6WU4FvgHKWh9lzQUpnHTgk2qFyqPurO4hgPFFnnUt7NgoWnwhSHlpHyK8gJRVTXAu4WC6Deg6vRmevUINNQ93+1YkTJ2QSYpESpFJTU9XQSYt4jMb5BMais0HbfXhuHa1NBSdYx78EKXmzOCoqCsbSrthrMzoOddtIJkBgGKKdFOJ8KEj5JVaClDQWusmTqP9Lly6VBTLh35jOPTYKUtrp/du3bzf1TmTsreZEyHv4qlagLunS9FyQQp7RYMXExKhroSNEnRQZWHKrvRFkT80bOnPmzJ49ezz85LwIH1oJGRVYdfa4EC6KATk8S/Um9pw5c1xmbqXME1G7cvsyu0QKSquqoP9QV8lTkNLOekUiysR5XlG7UCuukpuba3xfIM9ElH1laq5az8I+23KuyDeHDx9WU5wkEfFUbApfFvDDbRp/8zFFXm2QZO0fD5hS+yVHeVnDSpDS1gLpX0WsyVfJa4mIiEAGjI6ahzVOe5tylvYbBagjqDXa3//Rh+FyxjL0vBCQvhIT81xDCn2k9ocaeS3CKjIhhY33BSlp39RPGlow4sUhXQuMhg51VvsijCykKOhSQHV2ad7LgG+NJl0bwbRvMl4i1N3SohHLysqCS4BDHnaXBYvL64KUNHS6z0IJshKwbGO0hj4LzjF8CbTDWklImcbYk6JIYQ41SPDQOjqbqqR8ax2fCFLy8pcxXHwe6bDkNxLVeekEKWUdY5ensw4S0U1jhD9j7K2M1rF5NryGTwQpT6yjMBWkrKwjv8ClpKSon3hdhmmMOGqUPHQ2HT16NCyoJMIiJUjhUTT96VFEcKNsqis6lLxVp6PrPjy0js6moY6xjn8JUqHuSVIoK+30KPvRsSCLR/vX9KhQClJ+ipUgJSNGq8n/EydOPHHiBBoF4wROoyClbVKxjRBjgjL2Vr+ZyMQfVQHklxOlC+RLkJL86N40zMjIkMkautzKc6xG5nD7zrhBG6pbyMOITG5EeeZeRD5woyJs2LDB5f7SjQoRH8W4Og9G4zhXpSPfGZEfY3UFFeqe7A1byHaegpTupw/cmnz2JV9XRA+ke507v9lGH4NdBFplG13O5s2b4Umjd4Qnrc6V5wdH0ZLiLFxCSs++8NHgYhe9WlRUlOmnr/G041FPSkqCc4n2Wj0SNo8HvEnXv9cKsVlDSlcLZJVuec8xXyWvBZ3Kvn37EOHIkSNaN9emxlndpvEskavQM6mMybdUdOtY5VkIGLChuFBoKHzcmrKIqSCFdHBHeLQQGdfS5kemi3soKRJS4HhfkJI6EhsbazyEFhhNtzYEzSA6NdQv7VR8bUevzTzGeKjOWtkaV9ENodFjuv79UpjxEjpwCqqt6bd3CxuX1wUpkYTkNXwdpi9aotBkyV7p9aSdFHR6TWRkJLx/bZPuiXWMNtXhK+v4RJCSJQW0L32rzLgujoHhDMikdTmkFaTgFCnraJc1CDWzDobKuqlVGKnqXtmzt47u2fAmPhGkPLGOwihIWVkH7oG8+ajqhTShOrUCzo9uOo/RpvBDtPNBipQgBW/NuDRe6MXRik6VMBadfGxU0H5Cwdh9eGIdo01DHWMdvxOkMGzXDertR8cC7IXyN2q4DoeClF9i88oeGhrdjxVa5H1v4+KdThOk5FxdPnGWtHpGxQFnaZ02mVYN9wK+i/2vi7JOM7rPkRrUAB4Nq/wUpv1AkiwfaCx/XA4NrjYdJYcZRQo4Q+r32PwKUmp6S76uiKIzdTE9TwQbLmtBSj7bgV5nxowZ8FGio6PVuTExMbDdeTeIIy/B5Vn4kub69evhFJquyYICREeIBwyPnHzRw0qQUo+HjPe0HqTngtTkyZNdF39rylfJG0EfI29iKjfOpsZZ3abxLFl7Et6GNmPGtx3tCwGJw0wwLu4Xz/zevXttBClYB20R6hruCJFhXG1+ZFKeTTkQUqj4ZA0pNA6qbVcMHDgQmdEOI1Gb0Lmgaut+2xgzZszYi6hA1H34l/A4tfKurG6jPV2+ZK+aUKtL6Dh06JDpy0qFjcvrgpS0kMYvLcig2nRdXhgOhSOePbx8ZRptlwFHRbfibKgH1jG1qRGfWMcngpT4A8bpwzKolnltamqScNYNNuDZoqdT1tEWu6l14KioXwQFWalT7XpiHe2z4U18Ikh5Yh2FUZCyss727dvhQuimDWoXZlUhWtfCaFNxTuCBqGcDu7AgrFzYHxDX4RNBKiEhAY+icbADN1X3IQXT6oDWTFlH+a5W3Uee1jHa1DnW8TtBSsbCWq/bfnSsyMzM9PCVTOdAQcovsRGk8Fzqfn/QHpUBrfFbDE4TpJBt3KN2KWuZ/SGj6DwFKUEUBFkpyQrpOI0FIsi7u2ijUbfVdyVE1NOeIoV84MAB0ylIoYavscCvhVOlzISisFlqB/eFEY7qaeSm5EeMPK+olUWio6PPnz8/cuTI/GbbSpDSZVv8FZW+7Mq5MPfixYvR8egeWvvCV6xevRo9qO5J1v1KoH0k7B+P3NxcbQWRt6+tBCmtEAY/A9mQW8hXyVuBRJKSktS1TGuczW0az4LbYfQVTLEpBHg22qEIdlX1lCly2u5c1n3X7mrzgzKHN5NnZggpJHwiSMmredoP34Re/BlDOZFoH5KTk9GteJI91HrR+nUTRaUn0n4KFu1JSkpKfi+BCm7z/e/Cw+WLr+yh3cZToRu5yWfITZf+RUwcsvlQEfov01/77a1jZVMjPrGOTwSpsLAwlKRuuVI8xjKClV14sEs0yDdVtF+I1mFlnbVr16I3Vz8joWvTrr7qoXXyfDYKCZ8IUp5YR+HhGlKxsbFwsI0u+qFDh7RyoVQl9UOmlU3hZGqfDdgXpjH9dGah4hNBSl7Nw4BFG4hBEwpKO4yyKjojNt2HvXWsbOoQ61wGgpT96FhBQcppFEVBav/+/dqfZzEgRA3EgBZ9Q0REBHpZmNw4e99pglSo+105WRAHbiK6N1laUnJuozjg6tHR0bg0ciUSjBQUGmIMwk3fp5VXk2bMmAH3YuTIkVJWoe5FmlHO8qupTPVXy0ihOT558iSiISeRkZHyE5ksoQWfBifCv5kwYYJaSUQKCoWPOMibfG9V6VOyWDg8LYQYfy6QqTS4wUmTJo0dOzY1NVU+u+DJFbWyCK577tw59CWIhnLAUyHrUHqeiE6Q0mVbtE4cRXOJLkpeLpNz9+zZg5LEpdEDoRmFTdV4wKrwFy5ciA5s2LBhw4cPhw9k1DUQH7cTHx+Pohg9evThw4ddnglSW7duxYl4HvBgrFu3Tt62sxKkcAjGQvrI1ZkzZ5Q3lq+S14Iyx83iqCwlLq9ehlrXOJvbNJ4VetEbEAcdpYdrqYdWi00hoN4hBdwRfHHcC6JpJ+hhaAQ3HTnBiCXUvTQsHkhcC/mUcbg2Pzjkk1eBCBF8Ikhh5HbKDRxfVJOJEyfGxMSgHmlfqUAlQt+ECDMvYrU6MmoxGgrcCNocFVmpXeiJpP1EQyRvyCp93+oSqKqothgJoBbDkZV30k0XvSpsXL4QpFAOKBa4E/BM0J+iq0pISEBOlI6P1hX9FLozPDkoZ3TuGDuZfmU41D3whmXRLM/UoF5UsbKOjU0dYh2fCFKhF7/ZsmvXLjiTsA78LvmysNWvVvaLmttYBxaRyU3o6XAhcVFEkbSxTr6ejcLDJ4JUqGfWQTg8Vfk9Ep4etq1aYJlCiHqntY68Eigvt8KXgJs0depUuH/Hjx+XnyTta5yWIvXKXqhbJ8Itr1+/HmWO+gsnUD7Lo34k9rzoQm17KBvr2NhUB1/Z8xCjIBVqOzpWUJByGkVRkEIlR0erHk0M7JOTk2UpGbQaaK1MX2GTqezqB42srCzd4sSmH8QVnVuNvUUpVy8ayPKuar0GbZrabdQZtWqydhu3EBcXhwZUbjkpKUktFK3Lbah7YCx1DxfFbcopOTk56nVomVdsutQ0ToFPgxuRs+CHScry2XtVkvJStAhG48ePV1dBtVc/DqClk7WTXO6lfNQ7vSJS4P+ZM2fEfNovJgwfPlxSg42M3QOG9GhuNm3ahKOIA1dJ6wBZXVFnGgEdiYqMp0KVhoeJYEP3BUNdtrdu3XrBDcoEaWJDSm/z5s0oSbSe6KpxIxiqKc3UqvDh8yGaBMKtV+KdFuQkNzcX5+I/yhbWkXNtHo9Q92+hsooTQN8sOpppbUJ3Hh8fD6dTlZh2flm+Sl4h1VPOQsqqq7apcVa3aTwr1F1r5GtBqgrofjTLsxCQJZG9cEW4OOj5tAK3rJWIo/L7DFwf2FqeAVgfaar8yK/H/tX3k8sMnwhSoe4mCP2F6rzkDV+pNfIKrXQEWlDdTL8liqZPNY8KpW1hSCCfK3G534DQdis2l0BVRWMigYjm+bcjChaXLwSpUPeXXrWOL7pXeBdoM2WxQjTyaJmV7dAl2czhRafmMqBWELOyjr1NnWAdXwlSoW5XTb76Kk8s+hR0MajIysvSst+NVVL21pk9e7b8bCZWVm6VjXXy9WwUHr4SpEI9sI46qlC/uulAC2m0jhov4LGX38kAblY14/Y21YIabbWcbqHiK0EKTh08bdXso/QwdsB/+G8yKPO86ELz6qGsrGNvUy2+so7fCVIyjpYvuStsRscK7RfM/QUKUn6JjSCl+w6XgEpo1e4otPKqcaKy1dRlnShrs6tNQbv9uxvjtoCBPZx7o6euu5DuxBEjRvz555/akAMHDti/6o/xM9xHrZaPTOoyo7soTGA6s2bUqFEI196jmjUj81xM15eFr2OqFapZY8ib6TsFplc05lbAHSEDpvPbPUnEmKYu2+gUlaYmSWm/QCfIr2fauWDGwheQH/tl6XEJZFtypc25/eMh2VY1yGq5XzX/SBZjMo3jeclrj6KIdLa2r3FWt2lTK3EJqzwrbAoBT4g6ZKySusYHu2I7bcx58+bBg8kzD4QUHr4SpARd5/XXX3/l5OSg7y7wT8WjkUT7kOfLX1pQVdFw+bZ6unwkSAlosmAd6YZQGuvWrTt//jyG09I5mrbSl4Y/WseHgpSAQpOvoIS6f/qSga7RhTP27PkF5ZzfJqIAn41Lw4eClOChdf4jUs6mMr0n5KvGFSC+EqQEaTrUIz1hwoTjx4/DEyvw6Uh+ah2/E6RCrQcUVqNjwVcl/F+gIOWX2AhS4PDhwzpldN++faYTJYoIkyZNOnPmjA9HJp6vK2TEuKi5fyEfp0MnLe0jXJlDhw6ZfhDEaRhfiCOek5iY6Hff+CCXGb4VpIwMGzYMLaH33/FxJi6fClJGwsPDN23aZL8AfBHB54KUkenTp2/YsMHXuXAEPhekjNA6Ct8KUkZ+//33RYsWef9bkM7EHwWpogMFKb/EXpBCd4UIWlUVPtalqSGXByiQPJdXLFSKsiAV6l5PPTc399y5czINODk5Ga6/rzOVNxSkLhkMvGFu++8JEFLYOE2QIlpcDhOkiMKBghRROFCQIgqnCVJECwUpJ0NByi+xF6RCDW/ZEN8yZMgQ7Te880VYWJjpi4H+xaBBg8aMGTN+/Hg/+v05PDz8kickEzZBxOdQkHIyLgpSToWClJOhIOVkKEg5GQpSToaClF+SpyBFCCGEFGUoSDkZFwUpp0JByslQkHIyFKScDAUpJ0NByi+hIEUIIYTYQEHKybgoSDkVClJOhoKUk6Eg5WQoSDkZClJ+yfnz5w8dOrSfEEIIIWacO3cuKSnJ17kg5rjcX+YiDuTw4cN///23r3NBzMGw7fTp077OBTEnLS0tMyNj/759/HPg38mTJ0+cOOHrZ4SYI6sMX65ctoLUhQsXzhBCCCHEgvPnz/s6C8QSeDK+zgKxhHXHsfz999+0jmM5e/bs36eyc44d458D/86ezkH18fUzQsxBs+ZrcaUQuZwFqVOnTmUTQgghxAz4N+woHQs8GV9ngZiDWoO64+tcEHNOnz597tw5X+eCmJObm3smPS1zdyL/HPiXezLzzJkzvn5GiDlo1nwtrhQiFKQIIYSQoggFKSfjoiDlVChIORkKUk6GgpST/yhIORkKUn4JBSlCCCHEBgpSTsZFQcqpUJByMhSknAwFKSf/UZByMhSk/BIKUoQQQogNFKScjIuClFOhIOVkKEg5GQpSTv6jIOVkKEj5JRSkCCGEEBsoSDkZFwUpp0JByslQkHIyFKSc/EdByslQkPJLfCtIrV69evfu3b66OiGEEJInFKScjIuClFOhIOVkKEg5GQpSTv6jIOVkKEj5JVaC1LRp04abERERUYAPzQ033NCxY8cCTNAJxMfHN2/ePCoqytcZIYQQUgAUWUFq7969AwcO7N69O/4fOHDAGGHJkiX9+vU7efKkTSLr16//8ccfv/jii/Dw8PT0dN3RQ4cOySW+//77tWvXqvCMjIxx48Z9/fXXvXv3/uuvv2zSdxVhQSorKwulioLShaelpY0cOfLzzz/v27fvli1b7BPZvHnzTz/9hMghISF79uxR4VaG2759u84ztPplsSgLUvaPvZXhtEyYMEFbyDNmzNBFMDUcKuPs2bO/cYMNm/SLuCB19OjR/v37r1y5UoWgzRkxYoRx4IM2yvT0UaNGBQcHw8rr1q1T4XD+jSloW7DY2FjYy6ZRFYq4IHV4y+aQ775bPn2aLnztgr964Yn/5OPRv4em7UywOv1Ewo4xgwb26NwZkeeOG6vCV86aOfSXn3V/2ggLJk74/ovgLzt2RPrHd8RTkCps7OsL+ppff/0VtfLYsWPas1B30L5ZpUlByi+xEqSeffbZG9yULVv2iiuuqFSpkuzmqR+h3+3Rowd6Yk8exIIVpPJ16QJk8ODBU6dOVbuoSCgxBHo5G4QQQgqDoilIYTxcokSJ66+//p577rnyyisrVqyo7V6TkpLee++9K9ycOHHCKpFOnTohwh133HHrrbdi45FHHklJSVFH0XVWqFChSpUqr7zyyjPPPIOjEn7kyJGHHnoIhxo0aABvBCfiWlaXcBVVQWrjxo01atRA4Tz11FPa8MTExAcffLB8+fIBAQFVq1YtXrz4lClTrBL56quvEOHRRx8NDAy8//7727VrJ+E2huvWrVuxYsXKabASPoqsIGX/2FsZTktaWhoilC5dWhXy888/r41garisrKzHHnusTJkyNWvWrFatGlJo1aqV1SWKsiA1ffr02267DeXTtWtXFXjgwAEMecpoQAOIOAsWLNCdvnXrVjSMGMLAKNhA8xgWFiaHOnfuXObfIIXnnntOjmJocNVVVz355JMNGzasXLkyLmc1ZinKgtTUkWG33Xwzyq1zuw+14T/26IHSe/TBB1969tkSJa6u+fRTqfFxxtOTNsc+VL16+XLlXgsIqPHkk0inZZMmcqhT2w/KlC6t/cNRpCNH33nrTdSp2s8/X/ell64pUeLB++47sm0rBalCxaa+xMfHwwdAy4ZaBvdAnbJq1So0jGvWrLFKk4KUX5LnK3vDhw/Hw4HG18Nn6/Dhw57LMQUrSOXr0gXIww8//Pbbb2tDjh496uU8EEIIKSSKpiA1evTo8ePHY4iL7RkzZqB7bdCggRzauXMnuu8XXnghKCjIXpDq2bPn6tWrZbtLly6I3K9fP9ndsmUL3MoWLVqoCVaZmZmy8d1332HgsWPHDtnF2BsnJiQkmF7CVSQFKYyoS5Ys2bp168cff1ynazRt2rRSpUqJiYnZbl0Dzv3NN9+ckZFhTGTUqFE6r0mZwMZwGMPbKClaiqwgZVN6NobTgjqFs2bNmmV61MpwqEo9evRITk6W7YYNGyIaaqtpIkVWkPr888+vu+66n376qVixYlpBysgHH3xQtmxZ3eyMbPf0t6FDh0qZY+hx++23V61a1TSFXbt2FS9eXGZzID5avPfff18OHTp0COPtd9991/TEIitIdWvf/rpry/T96itYRytIrV+0EJ1Cl3btZHfGn3/i2R7wfW9jCr0++wwxt0dGyO6XHTsiZlxUpDHmjlVRsM7XXTpje+nUqYj2R/8QOTR//HjsDv+1HwUpb6KtL2hFX3zxRWzs27cPttiwYQO2U1NT77vvPngINolQkPJLLlmQOnDgwMCBA4ODg3/55Zf4+HgJ3LZt2++///6PGt2y5R9//LF8+XIJ37x586+//vrll1+i+0TbrRKxEaSWLFnSu3dvPJTjxo1THhJAstrJsREREfCYbS4NFi5ciMcaHu2kSZPEtxbCw8NxX7t37+7Tp8/3338fFxeX7f5hNiQk5Ouvv9b9apGenj5mzBjcQq9evdR7i0ePHsW1brvttmeeeQYbSB+B6LoGDRq0d+/epKQkFJHWFUhJScEhFYI4v/32G8owLCwMXqNpOUgmY2Jivvjii7lz50ogPBWcghNxOhKRwHnz5k2ePFl77tKlSydOnKh24dmgEFCq2gLEkAD3JUfFQNq55ValbZ8miI6O7tu3L8yHPJjeFyGE+AtFU5DSccstt9x///2yjX5z7Nix2W6X0V6Q0oK+DJE//PBD2f3oo4+uv/5603MxXC9fvrzaxbVw4saNG02TdRVJQQp9q6wM8NJLL+l0jUqVKmEgrXbhBqD0VqxYYUzkwQcfDAwMzPNaOsNRkMoXutKzMZwWe0HKQ8MNGDAAiVitIFFkBSm0J/KG41VXXWUjSB08eLBUqVIdOnTIM8HGjRuXKVPG9FCXLl1KlCiBETW2cVGtNAmqV6+Oc01PLLKCVPjAgbui12AD1tEKUr/2+haltztmrQp5qHr12s8/b0yhVVBQ+bJltQnixPWLFhpjdv6wbYkSV0uafw7oj2ir582VQ3vXxWC3f28TwYuCVOGhrS9t27Zt2rSphF999dUyUbFdu3Y1atSwXyWAgpRfcmmC1JIlS+QNvhdffBH/0RCLTjFmzJi77roL8RF47733fvrpp9nuVz3RrDzzzDPoPitWrHjTTTep97GtBCk8gkizVq1aderUKV68OP6rQwjv3r272m3Tps0dd9xhdenMzMwWLVoUK1bsiSeeePzxx5ENZDg1NVVdvXnz5sgSDpV1M3PmzCpVqjz00EOVK1cuWbKkcuDgfCMFXPr555+/55571Czf7du341qoPNdddx02nn32WQRu2rQJEaZNm3b06FF0ZvC5VW7/dCv6ovIuWrQIXuPDDz/8xhtv4HKPPfaYVqpTIJPvvPMO0rntttteffVVyQzOwtgA3dh9990Hh15+iAsODsadSjUWUCBIPNv9Q9lbb7117bXXNmjQoGbNmijSYcOGSZzQ0FCk0KxZM2QGebjyyitr166dZ2nbp/nHH39g97XXXsPVUTJKrySEEH+EglRGRgZae21fLORLkFq5ciUi9+7dW3bRf1m9iDdhwgTElJ9Jjxw5gj5aO2Nfh6tIClIKna6RlZUFV0frWW3evPmfn/qHD9edKD87o7/O8xI6w1GQyhe60lNcsiDlueHgNFaoUME4wUcosoKUwl6Q+vbbb+ESw8+3TwQN1K233qr1nBUo+fLly8OHVyEYX9x5553iFY8ePRp2tHrdtcgKUupPJ0j16NwZxZW8dYsKeavBa3fceqvxxHFDBiOmzHtK2hz72MMPP/3YY8ZoSKp82bIt3mwsuztWRZUqWbLeyy8f3b4Nu+83Cyp33XV7YmIoSHkNXX3p0aOHDKulxYuLi0NlwaAyzypJQcovuQRBKj09vWrVqs8995woO+g1X3zxxeuvv17eUzO+N4fOWD092ED73r9/f9m1EqSmT5+OJl6bARFxsm0lEuOlhw4dKtqQ7M6ZMwe733//vbr6Nddcg8Bst8eGtg9HBw4cmO1eHQN31KRJE4nZrFkz7Kq7+Pzzz7W/N+pe2VOCFLbfeustXEVJuXAO/u///k/KsFq1as2bN5cZW6hs5cqV++qrr4xFgdOR2siRI7PdQwLJTPXq1aV8EILqKisLyHVV2a5Zswa7snIEyqFEiRKqDLt161a2bFmZ1B0aGopoAQEBYr5+/fphNzIyMs/Stknz6aefDgoKknCUpHaCGyGE+B0UpMa7318YMmSILjxfglS7du3gAMga2+j7ihUrFhgYWLduXfigpUuXrlmzpnZVCAzg0SnD04C/AR9j//79Vsm6KEj9W9eAh/Dggw+qyc4xMTG6eRnCwoULEf7BBx888cQTKH9YAZ6M9jcthdZw2W5BShYXu/HGG2vUqBEeHq6de66FglS2ofQUnghSFStWrFSp0l133QXva9euXXLI3nDw5UJCQnr16oW6U6VKFTWz3ggFKRtBKi0tDY+3eknZSGxs7G+//QYPGQ0UaoHpL6+IAEtFR0erEAyqH3jgAQyqX3/9dfjMI0aMsEqfgpROkJKJTqNCB8hu+q6dr9evp50Jpf3r9fnnOL3m00/decftL9aosXedia7U79t/Oq9Vc+eokJmjRlUoX/7O229/7pmnceLKmTOs8kZBqjDQ1ZetW7eijmA4+eSTT77xxhsHDx686aab1NQHGyhI+SWXIEjJot3z589XIejwlMyf50JOlStX7tKli2x7sobUxo0bkeDMmTNlN1+CFBxckVcV//vf/55++ml1dbV+Z7b7h4uAgAC1i97isccey3aLR2jXgoOD1aFjx47BG+vWrZvs2ghS+I9t+V5AcnIyzvr555+z3W+6IVzrfONyL7zwgvH2kUnthF5cGpmRRARU4OLFi4vogwzjliUc2YMfIy4pnB6ZXSWsW7cOV1+0aFH2RUEK9VwO7dy5U/vLm01p26T5yiuvoIf2fN0xQghxMkVckDpy5AhafvR0xnWIPBekVq9ejc6rbdu2sothM07EkO+HH35YsGDBmDFj7r33XvRZ6rco9I/Vq1e//vrrES0wMNBqAalsClIGXWPcuHEo6nvuuadFixYvv/zyNddc889iKwMG6E6c6l4z5dFHHx06dOjChQtDQkIwTjZO9NAZLtvt5ISHh+N0+Id16tRBIn379jXNGwUpY+kp7AWpbPfE/0mTJo0fP/7rr7+uUKHCLbfcIq8X2BsuMTGxRo0aOFquXLlq1arBNFZyIQUpG0FqxIgRpsuZK6ZPn45yfuCBB0qWLPnEE08Yv4F48uRJeMK6pejhk3/lXh2pkhubsRIFKZ0gdSJhx6MPPYTxzqt16rzV4LU777j9yiuvrFypkum5UXNmV7/77usrVoQRX6ldy7iAVPqunUjhuWee1gbujln7WkDAtWXKlLzmmgfuvXfhpIkUpAqcExfRfXvUtL7s2LEDvQzqGo42atSoQYMGx48f79SpE6re+++/r4auOihI+SWXIEjJUk3ar/zCU1Rzc4yqEPpCJBIQEHD//ffDqUVDrEQoK0EqOTm5V69eNWvWvPvuu292f2pBzXLKlyAFZ1ctHyi8++67cHBNr47n+7XXXlO78ORkvYzY2Nh/VPlRo7Tp3HnnnfI2XLatIAX3HZdr3bo1tsPCwnDv8uI6ygpxSpUqpT4rgJb38ccfNxaFLpMbNmzAiSVKlNB+BATJihP/yy+/4Kj8jIaKrXwg5AHpq1NwXURDDc++KEipGd0ySEBgnqVtkyZKDK4wjqI8rRYvIIQQf6EoC1KZmZmBgYHly5c3TvHI9liQ2rdvHzpN9HHwJiUEGzgRp6s4s2fPRoh8snbmzJnXXHPNl19+mZaWFhERgQ4FXaGaIaLDRUHKoGusWbOmW7du7dq1g1eAQTUKVrf+Y7a7kBG+ZMkSFYJTEKL9KovRcDrg4OHqsI7p0SIuSNmXXp6ClBb5qoD4Zp4YLts98Gvfvr3Wo9NBQcpGkHrYjSeJ7N27F6MVJBUTE6MNnzRpEgpf1pYV0Ja++OKLaM0QMzU19bPPPkME7a/dWihI6QQp/KXGxw34vvcHLVp8/snHk0cMf6vBaw/ce6/xxOl//nFNiRLBn3ZA/BUzpt9dteoN11+/Y1WUNs6EYf+8QIP/KiQuKvLWm256pXatvetiElavqvfyy8WLF0dSFKQKkPDw8CsuovsOgLG+aMEIGr3M/v37MSJ+9tlnV61aFRAQYLX+GgUpv+QSBCkJ0U5PFQlGlCCjKtSlS5fSpUv3798/MjJy/fr1lStXthek4N88/fTTd99997hx4+BUSTesFaTQiKvI9oIUDrVo0UKb+JtvvnnLLbeYXt1KkMKdGtdfwLlKhLIRpLLdq7JVrFgxIyOjfv366iesge6pp/Andmkw/TafLpOyGESfPn20Jx44cECOol8sVqzYzz//HBUVhWhqZfebbrqpYcOG2lOUnqgTpLChE6SsStsmzWx3v4tmRdbtMl1LlRBC/IUiK0ihO3733XfRgy9btsw0gieCFLrmRx55BMMw3etgSBYDZrUrs6Hl/fRq1aqhf1GH0AtfeeWValayDhcFKVtdQ163NL5SBJcM4dovn8ga2Oq7K1aG0wEnx+oZKMqCVJ6lly9BCiMxtXppnoZTpKenlyhRwnR5o2wKUtaClLwI4snLQYK8RKn78lfNmjWrVKmiXX35jz/+QDStboXWFU57SkqKMU0KUkZBSvf3wL33Nm/c2Bhe9Y47GtStq3a3RaxE96E+zyd/zz71VJXbbkvftVOFtGzS5MbKlVPi4mT3RMKOu6tWferRRylIFSCpqanrLyJfElMY64sCnVfZsmVlxkP16tWHDh2a7V5oUs0v0UFByi+5BEEKjilCtG8+S18oX8CRKTZqJaNs9zSlVq1aaXftBSmZkfTnn39qd5W+g9OVxoQH9/nnn1cSifHStWrVqlq1qpqunJGRccstt7z55pumV7cSpDIzM0uVKqVdlVCmKSnV5tFHH1WzpbINgtTy5cuxO3r06Kuvvlpc7Wz3qvAIlK8U2aPLJNwLZMZ0+rcAzwMuTufOnbXaM/we1GHT+PaClE1p26SpgIdapkwZq99/CCHELyiyglT79u0xoJ03b55VhDwFKfQpzzzzDDoO42j5f//7H3pPtStL/GKwjS4bF9VqVQhBV9KmTRvTS7goSFnrGui4n332Wbg3xkMwDdwS+QKM0Lp1a5SzuEw2htOBxNXvfDqKrCDlSenlS5CSlTHkB1d7w2k5fPhwsWLFrBZCoiBlJUjVr1/f6gOgpsjqHNpl2kQ01C6vke1eJR2BSUlJKqRPnz4IUR/L1kJByl6QmjV61D9rxYwJ14VnJO4qUeLqj95rqQ0pU7r0+82CVMjKmf9MdPixRw/tiS/VrPlQ9erakLovvXRPtWoUpLyAaX0R0IU999xzqvevUqWKDKVnzZpVrlw509QoSPkll/aVvSeffBKN9eTJk3fs2DFmzJgKFSoolQeUL18+ICAAp6xduxa7TzzxxAMPPLBv3z60wh988AFSsxekkpOTixcv3qxZM3QGW7Zsga+j1Xfefvvt0qVLT506dePGjQ0bNixZsqSSSIyXltlV77333vr169etW/fWW2+hb8a26dWtBCnQuXNnWblp+/btixcvfuihh3BR1Vehs7/55puRrEwF0glS2e6351BcpUqVUnOg4Dc88sgjt99+O5wMeAyJiYl//vmn6edUjEUEN/2aa64ZNGgQivTgwYNz5sz5/fff1dGwsDBcvVKlSl9++aUKlK8+f/zxx8g/8hAVFdWjRw85ZC9I2ZS2VZpoO+AbRUdHHz9+HHd05ZVXYphhvC9CCPEXiqYg9cMPP6CRb9u27SwNsopNZmbmCjdo7RFn4cKF2JaPWmS7v0mvfqSpW7cues+QkBCVAvosGTkPGTJEphXEx8fPnDkT3eijjz4qh15++WX05tOnT0ea6B87dOigW7lSi6tIClJwqMQEjz/+ePXq1WVbSg/uB7bhIcARCgwMhMOwcuVKOWvnzp3XXXcdzCG7QUFBZcqUQW8OX27AgAFXX321+si9leHgsbz77rtwXRISEmJiYsSpM66YLhRZQcrmsbcxnNY6v7mBYwnTTJgwAe7irbfeqnxIK8PB9PBIUXEQjjFenTp14INZLYRUZAUpFI4UO0YEKElsqHFB9kUf/osvvtCdhcEOylzWfg0ODv7oo4+WLl2KWoC2q1q1apUrV9ZOhWvSpMm1116rmkRBforGFcVtRrN52223YbBtmskiK0htj4xYNm0q/mCdt19/HRsxCxYgfO+6mJEhIVtXrti5ZvXwX/tdW6aMdhrU6N9Dy5QuHTVntkhL5cuWnToy7FBsbMLqVZ+8/z6Kfc7YMSryWw1ew+k4qr1uz25d/3kB5asv98TE7N+4AZfAUDT40w4UpLyAaX0R4IfcddddahYhxvgyJwM19KWXXjJNjYKUX5KnIDVy5Mgr3F9b1AaiMa1Zs6a8BYoai+ZVLUQK0JvKF+tkcg08IXSl2EVgmzZt8DCpXyTggKoFzrUMHjwY7T5OwX/0tRUqVFBiDTrshx9+GIfQyzZv3vzbb7/VTgXSXRr89NNP5cqVk6zeeeedsj6F6dXRK7z++utqt2XLlg899JBsp6amvvPOO7hTSefZZ5+V6WAC+iTkEOEi1mzZsuUKzSrs4Ouvv0ZIs2bNtPeIG4HPrV6mRX9m+vFXYxGdOHECtbFEiRJyYsWKFVFd1VF0cnBoUAibN2/WntW/f/9KlSrJKXBP1Whh0KBBCFFVHRvYRaAnpW2VZv369RFfno1PPvnEakFNQgjxC4qmIBUYGHiFAYyNs90+gPFQeHi4nIheSXUH6I900dA7qE/mdevWTfoyBNarV0/WWATYwLha+hGAYZuaX2zEVSQFKfmIsA55cR4+gyq6J554QrvYkHx+RE0kP3z4sLJyyZIlP/74Y7XQrJXh4A7Vrl1bHC0xjbxAYUqRFaRsHnsbw2mtM3r06JtuukmOYmTeuHFj7UuXVoZLTEysU6eOclbhsNnMxC+yghS8cV3533vvvepo+/btS5UqpdoihXwCTD4tvWjRIvGNBd0XQvft24cKAu/XeGlYXxbGVWY1nR6VXYQFqaBGjXTWkWlKcVGRskg5KF2qVNePPjq6fZs6Sz6Zt27hP9LVrug1rwUE/P/u4+abR/z6q4q5JyYG1vn4/Va666btTOjQunVp93q44NoyZTq3+xCBFKQKG5v6snbtWlRG9YMKiIqKQg1C21ilShXt9yu1UJDyS/IUpLLdi4+ahh84cCA2NtZ05aOUlJQdO3YoJQIb2JX18DMzM9U7omlpaabvi8qhbdu2wfXJdr+npj2E1OANy8JJ2NYd1V062/2m3tatW43f6NFdHdHkW3UCDulSPnbs2ObNm00/Po1z4+LikKDsGktMbsRIUlISytDqSwHGTCpwCWQGzodpZnQ5F5AOyg351B3VTUvW7dqXtlWaycnJKHOrJ4cQQvyIoilIXRpLly7FSAD/PYyPPg6dhfY1FgV6ELgBNv2j4CqSgpQ96II3bdpkXL3o22+/rVy5sq60jxw5smXLFisvxRRExik2nz4UiqwgdWkYrbN7924rNzvb2nAIsapTWoqsIGWP0fkXXn75Zd1qXChhlL+po2vv/aJiwnM2vYqiyApSNn8Zibu2RayMXbY0NT5Od+ilmjVrPf+cNuRY3PbNy5ft37DemA4OWV0ibWdCXFRkwupV2uWlKEgVNlb1BaPLiIgIY7haOtkUClJ+iSeCFCGEEFJkoSDlOQEBAR9//LE3r+iiIOUZx44dq1SpknYx7MKGgpTneN86FKQ8Z8WKFdddd92OHTu8dkUKUp7/LZs29bpry2yPjPDaFSlIORkKUn4JBSlCCCHEBgpSHnL8+PEvv/wyX3Nt/jsuClKesWHDBu1XX7wABSnP8b51KEh5ztSpU01X1Sg8KEh5/jd5xPCZo0Z584oUpJwMBSm/hIIUIYQQYgMFKSfjoiDlVChIORkKUk6GgpST/yhIORkKUn4JBSlCCCHEBgpSTsZFQcqpUJByMhSknAwFKSf/UZByMhSk/BIKUoQQQogNFKScjIuClFOhIOVkKEg5GQpSTv6jIOVkKEj5JRcuXDhHCCGEEAvYUToZeDK+zgKxhHXHyZw/f97XWSDmwDTnz549m5PDPwf+wTSsO44FnY6vxZVC5HIWpE4TQgghxAK4nmfOnPF1Log58GR8nQViDmoN6o6vc0HMyc3NxeDN17kg5vwNsrNOHUnmnwP//s45Bfv4+hkh5qDT8bW4UohczoIU30QghBBCrOAre07GxVf2nApf2XMyp/nKnoPhK3tO/uMre07mHF/Z80coSBFCCCE2UJByMi4KUk6FgpSToSDlZChIOfmPgpSToSDll1CQIoQQQmygIOVkXBSknAoFKSdDQcrJUJBy8h8FKSdDQcovoSBFCCGE2EBBysm4KEg5FQpSToaClJOhIOXkPwpSToaClF9CQYoQQgixgYKUk3FRkHIqFKScDAUpJ0NBysl/FKScDAUpv4SCVBFn69ate/bs8XUuCCHEuVCQcjIuClJOhYKUk6Eg5WQoSDn5j4KUk6Eg5ZfYCFK7d+8e/m8WLFjg5afqsqFfv36fffaZr3Nhwr333tuiRQtf54IQQpwLBSkrlixZgt7t5MmTVhG2b9+ucyTgWqijR48eHTZsGDrHPn36bNmyRXtiWlrayJEjP//88759++oO6XBRkLIgT+ssW7ZMa5qwsLDMzEw5ZG+4ffv2/fbbbzDcgAEDDh8+bJU+BSkrsrKywsPDx40b50nkdevWhYSEaD1w2HT27NnfuMGGLv6hQ4eGDBkSHBwM62/cuNEqWQpSVnhunUWLFn377bfdu3dHY3X8+HEJRLM2atQolP+PP/4I22nj29Q4HRSkjH/pu3bOHDXq6y6d8YcN+5iTRwzv3uGTrzp1WjBxgjHC1pUrfuzRI2H1KtPTkfhvvXptXLKYgtQlYNXvREVFSWUZM2ZMRkaG9lBCQsIvv/zSrVu30NDQgwcPqnB0Q7/++uuIESOOHTumjT9w4EA0fVYZoCDll9gIUr169briiituvvnmWy7y9ttv5/vBLJJs27btq6++OnLkiAqpWbMmCtCHWbIiX4JUenp6jx491q9fX6hZIoQQR0FBykhSUtJ77713hZsTJ05YRYOLWaxYsXIa1Ph59+7dVatWRciLL7540003XX311ZMnT5ZDiYmJDz74YPny5QMCAhCnePHiU6ZMsbqEi4KUAQ+t8/TTT5coUUKZplKlSkpdsjHcggULELNKlSp169atWLHijTfeGBcXZ5o+BSlTNm7cWKNGDZjmqaeeyjPy8ePHUdSI/NJLL0lIVlbWY489VqZMGTiW1apVw6FWrVqp+GvWrKlQoQJqzeuvv37ffffBiBjOmaZMQcoUD60DuwQGBqJpev7551ER4OGLgLV169brr7/+hhtuQDg2rrzyyrCwMHWWTY3TQUFK95eRuOvRhx4qU7r0s089VfWOO2Cg95o2NY2ZtjOh3ssvX3XVVYhZ/e67EbNzuw+1R3/48otSJUsifMaffxpPj/5rPsyKo9907UJBKl/Y9Du9e/dG4COPPPK///0PleK5555LS0uTQ/Pnzy9duvTtt9/+wgsvoFmDM7B9+3aEx8fHoylr164dqtIzzzyjklq1ahXio6GzygYFKb/ERpDq2bOnvStDrJg0aRKKDt2SCklPT3dmSeZLkELHifsaPHhwoWaJEEIcBQUpHTt37sSIC+5jUFCQvZ/QtWtXq3HdG2+8gfEYksI2Unj88cdvvPFG9JXYbdq0KQ4lJiZmu6dKwXm9+eabdb+pKlwUpP6N59aBaWAg00NWhoOBqlSpghGCDCcSEhIw6n7zzTdNE6EgZWT69OklS5Zs3bo1HnhPBKmvvvrqzjvvrFGjhhKkTp482aNHj+TkZNlu2LAhrCz1CNSuXbt69epSWbKysmApnG6aMgUpI55bB3EwWo6MjFQhMiVk/fr1Q4cOlXlP8JkxzK5ataqKY1PjdFCQ0v2l79r5VadOh2JjZbtB3bp47OOjoowxQ777DoemjgyT3XYtW2I3+q/5svu/J564847bP/v4YytB6rlnnm7SsMFVV11FQSpf2PQ7qBQI6dKli+xOmDABuyEhIdnuDuWWW25B+yZNVlxcXNmyZRs1apTtViFefPHFbPeEXMTfsGEDtlNTU++7777vvvvOJicUpPySSxOkwsPDt27dikfk559//uabb2JiYnQRZs2ahU60d+/e2tmqW7ZskXl6oaGhvXr1kglEeBYRiET69+//h5v4+PgFCxZMmjRJm+DSpUvVb6da9u/fP2jQoK+//nrIkCFyOh5WObR3797ffvstODg4LCxMCbEFm/kDBw4MGzbsiy+++PXXX9U7BcuWLfvY3dL17dsX+RGhd/HixejnVGpy119++SWSioiIUOHHjh0bPHgw/uPSKP8ff/wR+TTetbB582ZcF4ngFO1vLIsWLcLlYLjhw4cjbzNmzNCdOHPmTNwgbgQXshGkcCLKB3nYtm1btnva1++//477atmyJe5r+fLlKubChQuRW6QJq8EB0t3LtGnTkMnY2Nhs96gDceBL/fDDD8ik9nKmT4IcwlkwIkwJg8KsprmVu0ZxoZ3CI6HCjdZEo4anRftIwEY4RY12bB4AOSplLgMnAbnVRoZNx48fr82eaZqEEL+AgpSO3bt3jx07NtuDH66sdA30ocWLF//8889VCBp5JCX9QqVKlT744AN1aOLEiTi0YsUK00u4KEj9G8+tcwmClAwtpDcU2rdvX6pUKdMXAylIGYE3GxUVhY2XXnopT0EKw7OSJUtOnTr1JTemcQYMGACLSJrgnnvuadCggTratm3bypUrm55IQcqIh9aBI4rm66effsozwcaNG5cpU0btUpAqqL/+7hk3K2fNNB568tH/e+bxx9VuXFQkYn7dpbPshvb5ISUubtHkSaaC1KjQAdeWKZOwehUFqfxi0+/gmUd9SUlJUSFVq1YVsQmDI0SeO3euOvTuu++i0cMYDW1X06ZNJfDqq6+Wd5bbtWtXo0YNm/fQsylI+SmXJkjdcMMNzZs3r1ix4qOPPoqurkSJEurldjwlb7311rXXXosesWbNmngEhw0bJodCQ0Ovv/76Ro0alS1btkKFCmj0U1NTH3744dtuuy0oKEjmJN9///1wPTF0L1asmFZ6qFatGpLVZQOOUfny5R977LEmTZrgitdccw1SS0hIyHbLE/BosfvGG28gh4ijJJuCyvzatWvhhFWvXv3VV19F9lBbcFHE/PTTT2+++Wbcy5133nnvvfeK3/bmm28iD5IUKu0TTzyBLur555+H64CYqn/atGkTduHelS5dGv0W/t9yyy2mmtTAgQPRXD7zzDOBgYG4l5tuuunQoUNyCNd64YUXcO/IlaTfq1cvdeL777+PkMcffxzNAY6iBEwFKUTDncIuderUQToIwY3cddddOBcFiPvCbSIwMzMTp8NYuCOkiSyhiRFNUO4FDQpKGAXSt2/fjIyMO+64A1l95ZVXcHc42rt3b7mc1ZMgxYVDKAf06/fddx+ssHr1amOGcde1atVCDpE9xLGx5vz585H+hAkT1LmtWrW68cYbT7qxfwCaNWuG5wqmvPLKK2vXrq1SgDW7d++udtu0aYM7zfOhIoT4BRSkrLhkQSoy8p9BAkbaKkSUDnRtWVlZ6Eo6duyoDm3evBmHhg8fbnoJFwUpCwpDkIKfgzSnTZumQmCyf6YqXPwBSQsFKRs8EaTgNtStW1ciWwlScEHhlKo1Vj766CO4o/Pmzct2v31Wrlw5qwVMKUjZYG8d+MN45nft2mWfyJEjR2699Vatr0hBqqD+AmvXLl+uXPLWLcZDpUuV6tC6tTakUsUKbzV4TRtiKkghtVtuuvH7L4KxTUHqkjH2O/Xq1cOIWxsHY3MMBrHRp08fRD569Kg6FBISghB0+j169Hj22f/H3nuAVXHs//9C6AJSBQsgIoid2AGxYwzGbjS2WKKxxBo1ihg19oJii713L/ZesIJiQxApgsaOoqAUz703+f5uLv+3Z/7Os9ndsxyN4p7L5/Xsc57dmdnZPTM7M59578xsgObtCKnk5OQDBw7Y2NiwcR4KkCBlkBQqSA0dOnSElpEjR/InBn1+MzMzNuQHFa6bmxueNua1YsUKeLGRdRrtMgS2trZsaDG69IgQD2VGRgZ66TA6lyxZYmFhwQSXx48fo1fPxrbgaUPI+fPns0iio6PfVBySkT7o59epU4cNyTl48KCRkdGNGzc02rE2FStW7NGjB/NC/GiSJ06c+GFvPi0t7dSpUywkrlipUiUUMHYonbInFKS6d+/u5OTES9S4ceP4u18m4nh4eLDxVpcuXcIhiqs0d86dO8djwA7+e0REBL8WzpowYcJrLe3atUMBZuOHr1y58mZetHYpOHjhD+JQKkhlZWUhwuXLl7PDhw8fsh3plD2kmNA2RS7gcPr06fy/2NnZsTFBubm5uOLWrVu5sI3rMuUI6HoSWHL5+vqyIWmIBNVTUFCQNEHYv+7Xrx/iZ2OddOUmApQpU4ZnFgI7ODgMGzZM4RTN2wcgODiYlQI8nDjko7UVBCmFOAmCMAhIkNKFPoIUKkBU9S4uLv7+/ps2bWLtMhp0nHj69GkekhmdbCg+6vxq1arxUais5eImgYgCEqR0oI8gZW1t7ejoWL58+TZt2sCu4F66Mu7evXvGxsZo43jI8PBwXOXy5cvS+EmQUqBQQWr//v3IAmYNigQp2CHotk2dOrVRo0awGIXjC7Kzs2HewISD7QdjY8iQIbpGE5AgpYBy7qCrjFIwduxYb29vc3NzmJShoaG8voqPj1+wYAFsQk9PT5QdoVarUOJEkCAl3TJuJoRPnTJl7JjA+vU8ypffv2mjNExm0i1URwgjdKxcyat5UKNCBanRgwZ5V6yYnZpCgtTfQdruoKvevHlzYRg2WAE7o0aNMjU1FXoxtffMmTPoRLOBEXXr1kWd9ujRI1dXV33e6JMgZZAUKki1bdu2gxY8DU+ePGFepUuXHjRoEA/57bffskE0Gm1ti0qWe129ehWRsKFDrEsv/OTHuHHj0JTyQ9Td6K6z/cDAQDzBbH/kyJGwiqTrRzRs2LBXr15sPy0tDZGzRTfZCEDhgmft27dv3Ljxh715EZ06dUKZYfsKghRaLFRz48eP517Pnz9HsWR/nIk4wtleSJM+ffrouijH2dmZz87FtapUqcK91q5dy9/kTJo0CSVf+LWCChUqSAUpmC+lSpUKCQkR6SZSQQrZxARsDjKlfv36/L8sWrRI1z2zcebsuyS6ngTcKpJr7ty53AvNvImJifS7JPjX5cqVE07EU8jNESNGWFpasnTAM8OflkIfAP71B/a8rVu3jh0qCFIKcRIEYRCQIKWLQiUPNASbNm2KjIxctWpVy5Yt2WR2uG/YsAH7MTExPCRrX9h43q1bt6LmR2cPzVOzZs3Q5VNoTQpIkNJBoblz7NgxJPWuXbsWLlxYuXJlpDmfjK8r4wBblABNP3Kndu3aRkZGuqwjEqQUUJY8YMzg+edzWkWC1J07d/z9/f38/GCqwYJF1vDVEjTa4oOOHMxCGEvDhw/nX38TQYKUAsq5g1TFM4+exfbt248cOQLzm4vpGu1CVMidqlWrWlhYoCMjfJuuUOJEkCAl3W5fjGlYp45ftWqlbGw83d1nhE7IvZMuCpN26eKbF/kTQ4WONapUadYoUFmQuhF1Cv2j/Rv//4/3kSD13kjbnUqVKn355ZfCMGhEmA7Vr18/a2troRfrQbOXVampqWiAUKDQLe3QoUPbtm1Rm40cORLlCycKv8cnhAQpg+S9p+wJh9OjaoYL23dyckIxLvkWdPsRCRuOxLr0QjVk9+7dcPnHP/6BR23btm3CAfzLly9nY/bQyrq5uQ0ePFh6G7gHFxcXhEHLPWzYMFyLDbGJiIjAuTjkt4Fbgtn0YW9eo107qXPnzrVq1XJ3d7eysuJjoBQEqfj4eHjBFhfGU6FCBTZgh4k4wsHwMDhklwtFsqCUBgcHV6lSBVc3Njbmf0o4GgsgSREnGzvWp08fLpQwdK0hhfbSVsvAgQN/++035igVpJD+qBSEJ/bu3ZuNe5L+F432+yODBg1CM+/p6eng4MCTVNeTcP36deybmZnxTME+/qzwC4ay/1qjmJuxsbHY37hxI7thX1/fQk8RPQCZmZk4hCM7VBCkFOIkCMIgIEFKF+/08RM0W6j8WYPLloXio4w12tnZcOFjYy9dujRmzBi0F/PmzUMvTvSqRkgBCVI6eKfcefDgAcwYXfYGzzgGGmj0KGA+rVy5EhkkfFsjhAQpBZQljxkzZpQrV46vuqJryh4yd8iQIUJrJDQ0FB28rVu3ItfWr19vY2MTFBQkO0iKBCkFlHNn9OjRMESFLvXr1xdNStJohxMGBgbCApQuVqtRLHEaEqQUtxfJyYP7vFmqfNH0aSKvhzfiSkg+kOdVocLX7doqC1LBTZq0++ILfkiC1HsjbXeqV68uqr7QcyxTpoxGuwShiYmJ0Iu9rOLrMjPWrFmDBghFBl3dgICAmJgY9H87deokewMkSBkkH0SQwj63VFxdXdu1a5cuAFYm85JqOocPH0bDWapUKdTsZmZmfFadRjuZDl13tKynT5/GWcKVvznjx4/HdVFr4HRnZ2e+Djpb0QCWrvA2hPMNP8jN7969G9cdNmxYVFTU1atXW7durY8glZKSIl0LAzfQrVs3jZyIg7Nkmys0h2jJIiIiLly4cO3aNfx9XYIU03qYINW/f3+hTalR/MoesmDhwoVIk7Jly7KhUlJByt3dXXQ6ro7wsv+FfY4HlcihQ4fQPIeFhfEk1fUksKVDZs6cKcwUPoVQdF2RIKWQmxrtlJA2bdrk5OTY2dnx91r6PwDYEQlSwmUahIKU8m0QBKF+SJDSxbt+jXfgwIEsPNr0En9dG/vMmTMl/rqqFIe9pZBdpUhDgpRu3jV30Czq6oTzjJN6DRo0SPSii0OClALKkkfNmjVtbGwqvsVCC3b4mqccmDGwmthCRbCyjIyMwsPDuS/7VgCbPSCCBCkFlHOHLXzDZ41otJMkhF/T4xw/flw4eEqEQokjQUp5y05NMTMzFU3EY5ulhUX/Ht35YU56GlxEq0qJBKnH2rECzo6Onu7ubHuz5EipUt4VK2bcTCBB6p2QtjutWrWqXLmyMAzqKybgzpgxA4GFayX/ov1IonDYAZp+W1tb9iIfRWbFihUa7af6+KovIkiQMkg+uCCFSpyPNxEh1XQ6d+7cvXv3V69epaamCr9ZxujWrRta38GDB1eqVEk2QlwUz2VmZmZaWppwuPKpU6dwIbba/8e7+S5dunh5eQkPuSDCBiXxZYM0ArkkLy/P0tKSzzTUvB0ExKQN/QUpFxeXvn37Cg/1EaSmT5+OfaQ287p37569vb0uQYoRFRWFU44cOaJ5OyyIL1YFmjdvjjaYJ35ubm7ZsmXZDUv/C/tIH/uSNz9kSarrScA+kgumsMIdyv5rjWJuarRVHmw4psTzBNH/ARAJUkh/noz5+flBQUHcQFe+DYIg1A8JUrp4V8nD39+fvbHIzs42NzcXLkU0YcKEzz777MGDB6JTUKMGBATgRF1xFpAgpYN3yp2nT5+itWXvxqTwjBOB/LKxsREOEBZCgpQCypLH3r17fxVQWQt2pF+5ycjIMDY2Zl/WYwYb+yAMg309YNOmTdJLkCClgHLuHDp0SKiewwb28fHhy9EKYRa47Pp3yiWOBCnl7VH8DTz2XwUHS70C69fz8fLih4e2bkEWbF+5QkGQyklPWz53ztJZs/hmZGTUpmXLFfPmwosEqXdC2u6EhoYiPfnL+GfPnllZWQ0dOlSjncQqqqACAwNr1KjBD2EANGrUiJsKHh4ea9eu1WgX5ylVqpTsDZAgZZAUKkgdPHjw2Fv4opUKmg4bh4/nLCkpKTMzMzo6OiwsjHlJNZ05c+agQqlbt25ISEjXrl3Hjx8vXDyf1fgWFhaTJk2SvUOchWcanX+0xL169Zo7dy4byIO2oWbNmm5ubogBTfWdO3fWr1+PZ/fD3vyoUaNwbzExMTk5OfA1MTHhgggSqoR2WfH4+Pjk5GTNX+USnMjWRcJVTp48Wb16dXd3d1Z09Rek6tSpU7VqVZgmT548GTBgAM7SR5BKS0vDpVu0aJGYmHj8+HHYN/gLUkHq0qVLEydOTElJefHiBXZwCk5kXnZ2dsHBwTidPQxsYdo+ffpcu3bt6tWrXbp0QYZiX/a/sMBIq7y8vKNHj7JvEbIkVXgShgwZgn7LsmXL8GcfPXqEB3LJkiXSBJEKUgq5qdHOTIavk5MTajp9TlEWpGBS4FGEdRIXF9euXTukKheklG+DIAj1Q4KUCNThZ7X0798f9RtaE+zzNQerVavGJqGj/e3duzca4tu3b1+5coU1Vbxv1q9fP1NT05UrV6Ju3LhxI6pQBGBeaDgQIep8NDRoFNAEKKz+W0CC1F9RyB005TY2NgsXLtRoewJjx45Fwqanp8MUgSkFM4Z9qUM541atWoVWHrmDGLy9vT09PXWt5UGClBTYbCx3ateu7evry/bZWz1h7ogQTtlD6YDRu2fPHpgxyK+WLVuis8dGTsHGsLe39/Pzg2kKK+X69es4y9HRUfZjzSRISVHInc2bN5csWZKtN4oiho4xApw5c+bmzZvff/89CsiuXbs02qkbgwcPjoqKQtnZt29fxYoVnZ2dWforlDgpJEiJtn+sWf1VcHDk2jVJF86f27e3RVAQHvvD27Yy341LFpe0soo+eAD76yLefKZt+HffXT954tiO7ZU8Pat4e79Ku81Cxh49cnp35KIZb17Pzw4Lw35KdLT0cjRl711RaHfQxKMRb968OXpAaDtY5/3WrVsard6Erih6TOjcwSU0NFQ0dHrGjBleXl588jJ6oGyMArrYuj48SoKUQaIgSC1btqzEX6lVqxbzKlOmDF9CW6OdPsbmgjIiIiLQ/rFT8Ajyz5mxCPlTpXlbv0+ZMmX69OmopqtUqWJnZ8dXLMJj6q4dNsmeWiloA2AJzZ07d+rUqT/88IOTkxNbTlujbdebNWvG7xxNAh+x/KFuHhZYw4YNWUi0KyNHjhS+TmEffeOz87p27cqXPM/KyurVqxfaIRYgICCArwaKhg0uaMN4PDgL50r/O5o0Nzc3BEal+d1336GI8k/JCq8FEFsJwXTc7du3W1tbwwW/s2bN6tSp07fffiuKHFYO8oLdnoODw5o1a7gXTCVcsYTg23xz5swpVaoUC1yhQgX+ykj6X9Co41bZAqjIWUSFfaSGRvFJePnyJfscA78fVE/SBBH9a4au3GQ0btwY7mzwZ6GniB4A7JQQLHeC561GjRpwwT/q0aMH/ohw8LbybRAEoXJIkBLBvoQrgr/kRC3NajlU7y1atGBNBihfvrywvkWHGQ2QsbExvExNTfv168dXX0a7zFoKUKdOHeFSU1IKSJD6Kwq5w76qwYY5Y79atWo8AAwYdJJZDMoZB0OLuSPvkNHoeOu6ExKkpLBvE4tgYweEuSOihRa2f+fOnZYtW3IbEsaGcELAmTNn/Pz8hNmqS8wlQUqKQu4sWLCghGDqw+XLl3nxcXZ25p+lPnHiBLMGGYGBgfwLSwolTgoJUqLt9sWYFloJj6VeBXe3TUuXct/5U94Mobh6/Bg7DBs1ykq7YCto3LBh0oXzPGR57btwIf26fyO9nJmZ6dSxY0mQ0h9lqwB9Q1dXV+YomnocHx9fu3Zt5oWun3DGMUqZpaWlsAaLjo5Gnx1ReXh4xMbGyt4JCVIGiYIgpcCrV6+ESyRiXzThDi54NJOTk0XuoqHjMFuFo0XYgkH/+Mc/uEtAQEDDhg1l74G13MePH+cubOko4bzTJ0+e4EEXvbv7UDfPuH//Phs99Pr1a9F3AHHde/fusf28vDyRL2xx/F/p9ATR91BwlvSLcgxcMTU1lf07hOF/SnotUZw4vHnzJlOC8rTIxo+bT0lJkfq+ePEC1xXOkcTlEhMTpVap7LddkEEIzO6Wp3ChTwKigiOf7idF+q8ZunJTo01A2TvU8wEQHSI2nMXWt8K+ng8VQRDqhwQp/YmKijIyMsIvd0FbgxZHl2yRkZGBup0v8sh5+vTpjRs3ZEd2iCggQUpvpkyZgs6zcO2bx48fw0ySmiIaxYyDeYCzpF8XEUGC1DshzR2O1BRE7sCUkg2s0RYf+Iq+wyOCBKl3olmzZlwT5KCCgmknXTMe+YKyI2thKpQ4ISRIyW6ZSbcSTp9+eCNO5N40MFC0ntTz5KT401H3rl55vwtlpSRLP+FHgtTfAcUEnSDRGjuc33777datW6IuEsLLLiEtu5QwhwQpg+T9BKkPAp5IOzu7du3awR7VaBvXH374wcLCIj09nQVgiyvJzs/SvP1Q2rRp09jje/fu3aCgoGrVqhXZ/RMfikKfBIIgiE8ICVL6ExwczNaGKDIKSJDSj+fPnzs6OgoXGPrYkCClP0WfOyRI6c/Zs2dtbGz4eqNFAAlS+m+nd0faWJcUDoP62BsJUmqGBCmD5BMKUhrt1+jKly9vZGRkZ2eHXzc3N+GgmGHDhpmbm+t6/wMmTpxobW1tamrKpozVq1cvPj6+SG6c+MAoPwkEQRCfEBKk9CQ7Ozs0NJQNvy0yCkiQ0o/r16/LTgf7eJAgpT9FnzskSOlPZGSk7JcKPx4kSOm/7Vq9at+GDUV5RRKk1AwJUgbJpxWkNNohfLdu3bp06ZL0i87p6el8LW1dvHz5Mi4uLjY2Vp+B/YSaUXgSCIIgPiEkSKmZAhKk1AoJUmqGBCk1Q4KUmjcSpNQMCVIGyScXpAiCIAhCzZAgpWYKSJBSKyRIqRkSpNQMCVJq3kiQUjMkSBkkJEgRBEEQhAIkSKmZAhKk1AoJUmqGBCk1Q4KUmjcSpNQMCVIGyX//+9//EARBEAShA2oo1QwsmU99C4ROqOyomT///PNT3wIhD7Lmz//3//7fv/5Fmwo3ZA2VHdWCRudTiysfkf9lQerfBEEQBEHoAKbn77///qnvgpAHlsynvgVCHpQalJ1PfReEPH/88Qc6b5/6Lgh5/g9oXv/z2VPaVLj937/+ifz51M8IIQ8anU8trnxE/pcFKZqJQBAEQRC6oCl7aqaApuypFZqyp2b+TVP2VAxN2VPzRlP21Mx/aMqeIUKCFEEQBEEoQIKUmikgQUqtkCClZkiQUjMkSKl5I0FKzZAgZZCQIEUQBEEQCpAgpWYKSJBSKyRIqRkSpNQMCVJq3kiQUjMkSBkkJEgRBEEQhAIkSKmZAhKk1AoJUmqGBCk1Q4KUmjcSpNQMCVIGCQlSBEEQBKEACVJqpoAEKbVCgpSaIUFKzZAgpeaNBCk1Q4KUQUKClDKJiYm//fbb34/n4sWLd+/e/fvxEARBEEUMCVJqpoAEKbVCgpSaIUFKzZAgpeaNBCk1Q4KUQaIsSKWmpi5cuHDs2LErVqx4/PjxB3xcUlJSevToER0d/QHj/Bj4+Pj07Nnz78dTunTpESNG/P14CIIgiCKGBCkp9+7dW7p06U8//YTfhw8fKgd+/fr1pk2btm7dKnRMSkpa9VeEr23y8/MjIyMnTJgQFhZ24sQJhcgLSJCS8E65k5mZGRERce7cOakXDD8Wz/Tp0y9fvqynF4cEKVmuXbs2e/ZsPNsoFDk5OcqBFXInISFhzpw548aNg6EuenWqT+6QICWLnrmTlZW1efNmBJs3b97169dFvvHx8cgU2QKo4CWEBCnplnsn/dDWLZNGj5oydgx2lAO/vJ26aenS8cOHTRw5cu/69UKvc/v3TR7z49ihQzcuWYJgQq+4UyfDp06B1+KZM+5fu0qC1IdCubxodFR0MBLCw8NXr179/PlzoTvKzs8//6zrWiRIGSQKghRsR1NTU3d398DAQDs7O1dX1/d6COU5evRoiRIlfv311w8Y58fg/QSpI0eOLFiwQOhCghRBEISBQoKUiO3bt5uZmTk5OXl7exsZGTk4OKAXpytwXFycv78/Wvx69eoJ3ceMGWNsbFxKwIEDB5hXXl5e69atP/vsM5gfvr6+OPfHH3/UFX8BCVJ/5Z1yZ8+ePeXLl5dN4cjISHt7ew8Pjy+//LJBgwY1a9bUx0sICVJSRo4cidSGaV2uXDnsIOlevHihK7BC7kycONHExMTPzy8kJKRKlSqDBg3iXnrmDglSUvTMnVu3brm4uFhZWaF2Mjc3R021du1a7ouuDVzq1q3brl07Z2dnW1tbXgAVvESQICVVo+r61ULqVfL0tLO1Re706/6NrsDxp6N8vLwQLLhJkyb+/jbWJbm6NHXcuDc5W7VKg9q1UT0G1q+XlZLMvJbOmoX469Sq1bZVK2dHR1tr68vHjpIg9fdRLi8aHRVdSkoK6jHUbEFBQajHuHtMTAyiunTpkq7LkSBlkCgIUnh60Jjl5+dj/+XLl2vWrPm7j+RfyczM/LARfgzeT5AaOnRo2bJlhS4kSBEEQRgoJEiJ2Lhx47Zt216/fo39vXv3wo5s27atbEgYmhYWFv37969du7ZIkILpKXLhREREIE6cyw4HDx6Mw6tXr8oGLiBB6q/onzvjxo2zsbGZM2eOsbGxSPK4efMmjH7YP8wI1GhVwkK9RJAgJWXy5MkXL15k+6NHj0buzJ8/XzakQu5s2LBB9E73PXKHBCkpeubOlStXZs6cmZWVpdFOJXFyckLPmXkhtZH+/fr1Y4ePHz+GV+/evZW9pJAgJdpy0tMG9/k27dJF7Gcm3WrUoD5y5+LhQ9KQr9JuV67kVatqVS5CwYXtXD72ZjDEqO8HssOty3/FYfjUKSyMlaVl327dmNeDuOt2pUr16tKZBKm/j0J50eiu6FAYmzRpgp379+8jm9i4KkRSuXLlX375ReFyJEgZJLoEqefPnyP7x48fryu/9+/fP3HixGnTpgltRDSEmzdvzs3NXbx48dSpU2/fvr106dK0tDQe4MWLF8uWLYML4sfOvXv3uFdSUhIa159//hn2EzOkFC4EYmNjZ82ahfBRUVGyd/jw4cOVK1dOmDAhPDwcN8bdT5w4cfLkyZcvX65atQq+uJzoxH379uGK+Au4SWVB6vjx4ygwCLxz505+zzt27GjRooWdnd06LWycIROkUKjmzp2Le0bhfI/0fPbsmfAUxIwUw+/u3btDQ0Pj4+OZO1J1wYIFyLs1a9a8evWKOWL//PnzwtO3bNnCx0YywRGn4ERhpiikVUZGBnLwwYMH3AWJcObMGX6oK06CIAjDggQpZcqWLVulShVZLzTQbG5+06ZN9Rek4N6wYUN+CFsCBomuIfoFJEgpopA7MAPYVK/PPvtMJHkMHjwY3Qa049KzFLxEkCClTGJiIh7s77//XtZXIXeqVasWEhIie5b+uUOClDLKuSOkW7duCMnm3yHLRDKWr69vp06dlL2kkCClvC2dNQuJuXnZUqkXk5kuHDgg9Ro16HsTE5NntxK5SwV3tyb+/thJj72Es+b+PIl7+Vaq1DEkhASpD46wvGh0V3QDBw7s2rUr2zc1NT127Bh2Bg0a5O/vz9V2WUiQMkgURkh5enq6uLhIR5PiOejSpYu1tXXbtm0DAwNRtleuXMm8Fi9ejIawQ4cOtra29vb2J06csLS0ROvIz12/fj2TOW/cuIGd3bt388eRTw/EKQMGDFC+0Lp163D41VdfdezY0cbGJiUlRXSTly9fRjyo69u0aVOxYkVEzheh6Ny5c+PGjWvUqAF3b29v3MbUqVP5if369YNL7dq18ffh6+zsLCtI5eXlwd3Y2LhOnToIjFLUpEkTpv4GBATY2dnBxUdLcnKyRitIBQUFOTo6+vn5IU4zMzNWtN4pPUVLbrE0RIlFbGXKlJk1a5ZGKyHhKvh3SBlc6PPPP8/IyGB3BQuGn5uWloZzIyIisH/37l2Eh82KdrFy5cq4In9BpJBWuBkcHj58mMcpFO8U4iQIgjAsSJBSIDc3F+1Xy5YtlYO9kyBlZWU1fPhwoQsaka+//lo2cAEJUrrRM3ekkgca7j59+sgGVvASQYKUMufOnYMdNW3aNOVgotxh4wVgBssG1j93SJBSRs/cAcHBwaiyeCe5evXqFSpUYB2TjRs3IhI+GVnBSwQJUsrbLz/9hNQ7vTtS6tW/R3dPd3fZs1o1bepXrZrQpcOXrV1Ll2b71X19K7i53Tp/DvvrF70ZpbtvwwYSpD44ovLCEVV0YWFh6Lpq3tZ46E2jsKDLn5SUpBw/CVIGiYIgdezYMWS8iYlJ3759hdm/YsUKMzMzvibZmDFjbG1tnz59qtEKKHho/Pz8MjIy8Ki9fv26S5cupUuX5o9dmzZtatWqpXkrpjBBKjMzEzF89dVXbFzx3bt3mSKjcKH69et/8803zP3JkyfSAclpaWmnTp1i+zk5OZUqVerYsSM77Ny5My49YcKE11ratWuHv8liuHLlCn8NCy9cEYeyghTuTSioHTx4EIfTp09nh7JT9vBf2ASEZ8+eubm5ffHFF++RnsI4WRra2dmxQVWwO/FPK1as2KNHDxYSZbhUqVITJ07E/pIlSxCYy4tz585FzjJ9unv37r6+vmz4FSJB+Q8KCio0rZQFKYU4CYIgDAsSpBTYtm0b2oLly5crB5MVpNhSRy4uLv7+/ps2bWItV1ZWluhFkUY7lKBFixayMReQIKUbPXNH1BNARhgbG4eEhLRq1Qo2BjoPgYGBbM0OBS8pJEgpM2jQICMjI+EQfllEuXP8+HHk6YABA+rUqYP0Ry5069YN9p7mHXOHBCll9MydO3fuoB7jXRKAnnPVqlVhLbdv3x72/OrVq/XxEkGClMKWk55W3dfXrWzZ3DvpUt+gBg2qeHv36NTJtXRpC3NzHy+vjUsWM6/aNWs2axQoDPxdzx5mZqZsP/Hc2ao+PjbWJdt98YWttfXK+fN03QAJUu+NtLxwRBVdYmIiyghC1q1bF134R48eubq68hEbCpAgZZAof2UPVWf37t3xiJiams6ZM4c5wqZs06YND3P16lU0jWz8ERNQ4uLiuO/u3bvhcvToUew/ffoUT+HcuXM1fxWkdu3a9UbnPn1adHWFC3355Zeenp54WAt9LhmdOnXCA832O3fuLBy+vnbtWkSbnp6O/UmTJuGfChfzr1ChgqwghTaeCbechg0b1q9fn+3LClLCJSe//fZbLy+vQv+mND2FsDRctGgRd9m/fz9chMYH2rzGjRtrtJPV8dcmTJjA3HGr7KL4s8hflimMBQsWmJiYMNVJIa0UBCnlOAmCIAwLEqR08ezZM3d39xo1auTm5iqHlApSaMI2bdoUGRm5atWqli1bokFh43zv3r2L/dmzZwsD4xLNmzeXjbmABCkd6J87op5AZmYmssDFxWXGjBnHjh3bvHkz2ndHR0dEqOAljZYEKQUuXryIZB84cGChIUW5gyLDXlWuWLHi+PHjCxcutLGxYXLtO+UOCVIK6J87MLOtra2Fr+1zcnImTpxobGzsqEW41JeClwgSpBS2+VMm4znftFRmvh42v2rVzM3Mhvbru2/Dht3r1rZu3gyBT0X+A15eFSrgUBh4SN8+6Byx/ezUlNARI5A7Dvb22JbOmkWC1AdHWl440oG6qampMA/27NmTn5/foUOHtm3bZmdnjxw50t/fv1+/fo8ePZK9BAlSBomyIMW4efMm7EiU54MHD2q0I+fx0JR8i6WlJV98lAkoQkEHZhDC9+/fX6NdxgjlnM0UFQpS4eHh2Gevd4QoXCg+Pt7b2xu+X331lWgiGwftdOfOnWvVqgWDzMrK6vPPP2fucOT7mrdNO+4H+3369EFgYSS61pBCe88XJmT07t0bN8z2C13UfPjw4XAp9G9K01OIaNqj5u1CsIiBx4aYa9euzXyRVpUqVdJoSziCbdmyBfvXr1/HvpmZGT8F+8gmZr4opJWCIKUcJ0EQhGFBgpQseXl5ISEhdnZ2hQ4i0MgJUkJev34NX9YsPnnyBC3I5MmThQHQePHlJEQUkCAlxzvljqgnAKNflAUHDhyAC2wABS9ptCRI6QIWb4UKFWCeIT0LDSzKnX379r3pYL+dBKDRjqyHS2Zm5jvlDglSutA/d2bOnMnNaQbKXZMmTdBDuXLlSlZW1tixY/mCvApeUkiQ0rUd37nDzMx0YK9eugLUqVWraUAAP3ySEG9qajqsf/887aQ8oRe2vt26lXFxydMuat7E37+Sp+elI4czk279qP2SxrgfhpIg9QGRlhchUkGKs2bNGpgHDx48QFc6ICAgJiYmODhY1/prJEgZJPoIUiA9PR3P0A8//IB9V1fXdu3apQu4e/cuCyYroAwcONDBwSE3N7d169Z8yL1QTFm+fDn2hWufMxQupNHW7Dt37mTrN509e1Z0LmI2NjYeNmxYVFTU1atXcWldghQbw8VElv79+3OdiKFLkHJ3dxe5I1ouQhUqSGGfX+hd05MjFaSWLl3KzBRhbPxrhqgC2PipWbNm2drasoY2ISEBjqgjhKfwpeYU0ooJUkyjFKWVcpwEQRCGBQlSUl6/ft27d28rKyvp6GZZlAUpjdZUQMPBFmPmS0ky8vPz4SJaVYpTQIKUhHfNHWlPAOcOGTKEH8bFxSF32Le6FbxEkCAlS0ZGRs2aNb29vaUvYmUR5c6FCxeQ4Dt27OAuixYt4la0/rlDgpQs+ufOqlWrpJ/hW7duHRyFXy5CSUR/5MWLFwpe0shJkJLdYg4dtLO1bd/6C/7hPOnWqmnT6r6+QhdnR8feX3fBTnCTJj5eXkKv5kGN2KpSaxYseNNFOnKYe/Xq0vnNq3TBCugkSP0dZMuLEF2CVEpKCjqtbKCGr6/vihUrsLN9+3Y+CkQECVIGiS5BSjS76t69e3iMRo8erdGalXggZB8CWQHlzJkzcNy4caOpqSlvFIViyrFjx958K2HzZn4KG16ucCEOjNeSJUtK3zB06dKFz4ljh/oIUtOnT8d+amoq/9f29vayglTz5s09PT35ok644bJlyyJmdgi7WVROFASpd01PjlSQOnXqlIL2nJ2djSKN0l6nTp1vv/2WOebk5MDQ1zUsWSGt4uPjsY/6hXmh5XZwcGBppRwnQRCEYUGClBR0es3MzISDZJUpVJDy9/fnL3IaNWpUuXJl7nX06Jtvde/cuVP2xAISpCS8a+5IewINGzb08/Pjh2wB5gsXLih7iSBBSgosugYNGri7u0vfwupClDuIAea0UJ/t378/LGFmkeqfOyRISdE/d2BpGxsbiwZygilTpiDBnzx5wl3YqBB0KBS8pPGTICXdrp884eTg0LJx46yUZIVgY4YMMTExeRB3nR2mxkQbGRlNnzAe++OHD8N+2qWLzOtJQryVpeWQvn2wP3nMj8iLhzfieDw4BS53LseSIPX30VVehMgKUvn5+bAHvvvuO3bo4eHBlIT9+/eXKlVKNh4SpAwSXYLUhg0bateujVy/evXqsWPH8DRYWVkxJWLHjh0ookOHDk1KSsrMzIyOjg4LC2Nn6RJQPD09nZycLC0t+WgdoZiCpw2mZ7ly5Q4cOBAfH48Kmn0RRteFEB6tb2xsbHZ2Np5IVC5ocUVXHDVqlIWFRUxMTE5ODu4KdZM+ghRaIJSHFi1aJCYmHj9+HHeFSGQFqb179+KsPn36XLt2DUnUpUsXlDS+ZPj8+fPZtDvcAPvLCoLUe6SnNA0ZMEdq1qzp5uZ26NChjIyMO3furF+/HknEA/Tu3dvR0RFn8W/8abSWq7m5+bJly+7fv//o0aODBw8uWbKk0LTKy8vDhZBEly5dOnXqVJUqVYRppRAnQRCEYUGClIgZM2aU0H7jdb+Ax48fM99q1arxr4ig93VWCywKX19fto+mCi0U2iM0Vbdv375y5cqAAQOE705hgeAQDSWamxMnTnh7e6OJ0bUKYQEJUn9FIXdg5NjY2CxcuJCFTE1NZTkCA+abb77BDjdj2ND1X375JSUlZd++fWXKlPHz82OSh4KXCBKkpLRq1Qp2JrKAZw0MJJZ6+ucODkuWLAnrEWEWLVr0ZkbSsGHMS//cIUFKikLubN68GWnOFmmF0Ys09/f3RwrzkGxZW/ZiGBnETHp0JcqXL48+lLKXFBKkRNuD69fKubqWdnLauvzXvevXs+3s3j3Md+OSxSWtrKIPHmC6FTp9Hb788tqJ4xcOHAioV8/GumRKdDS8bp49Y25m1qxR4Ln9+64cO/Zli+ZWlpYJZ07D68Suncidbu3bI0zGzYSj27eVL1MmsH492ZshQeqdUCgvGsWKTqNtzry8vPgowuDgYDbcYcKECU2bNpW9HAlSBokuQer+/fvt2rUzMzMroQX2pVDCiIiIYLoGMDc356bnsmXL4CIdfTpp0iS4d+/enbvcvHkTLng02WFsbCxMVRahm5sbfxGq60KtW7c2MjKCIyqdH374QdrWPnr0qGHDhuzEoKCgkSNH8nezXbt25Quca97OxueLLGzfvt3a2hou+J01a1anTp34YCIRc+bMKVWqFLtEhQoVhFP0Hz58yP4OGjZW5GATsPFlDOzD5b3TUzYNGTBomjVrVuItFStWFH5Tln2cxd3dXfi5zZcvX6J487x2cHBA+dcnrfBIIDBcrKysZs+eHRISwtNKIU6CIAjDggQpEajtS0hA68l8UeHzVox9kVbE3bt3s7KyWrRogSaSuaBjxsbhc2A2oGVhvo0bN+Yjl6UUkCD1VxRyh301BSYHCwmrTBTMx8eHxzNmzBjWiMPc+uKLL9gCoIV6CSFBSoqNjY0ozZGGDx480LxL7mRkZPBctrCwGDp0aE5ODr+EnrlDgpQUhdxZoJ3Sxb6IDftfWsQGDx7MIkFVBgufOaKPjX4EHwOl4CWCBCnRdv7AfmmaV6tcmfmyZc6vHj/G9SknbfeEhWErmrNt1+pVrqVLMy9Pd/fD27Zyr1/nzCnj4sJzp2NIiOzwKBKk3hXl8qJQ0V2+fNnS0vLcuXM8qujoaJQgV1dXDw+P2NhY2cuRIGWQKK8hlZ2dnZiYKBxfysnPz09KSkpOTha2ghqtEiEbFaxPaeQil9u3byNCkbqk60JPnz7FvSmvOHj//n027BZx8q/M5OXlib44I4oEhzdv3mQ3nKdFV/yIB/eA25b1TU9Px02y/VevXgk1IOyL/s67pqfsnXOQZfHx8bIfIECEsv8IUSUkJNy5c0foWGhaITakFZPMEFIUs2ycBEEQhgUJUvoTFRWFLhx+9QmMdhYtiK42lLXFrDeoQAEJUnozZcoUZ2dnWaNOFpguuoxABS8OCVLvxLvmzrNnz7ixKkKf3CFB6p1o1qwZXwZXH9ABgVUvMukL9eKQIPVOW9PAwOZBjYQuOelpt86f47PzRF6J586mREfn3kmX+v525crNs2eyU1MULkeCVNGATvH58+el7sqrEpMgZZDouag5QRAEQRRPSJDSn+Dg4KFDhxblFQtIkNKP58+fOzo6ChfD/tiQIKU/RZ87JEjpz9mzZ21sbBTGaX5wSJDSfzu9O9LGumTShfNFdkUSpNQMCVIGCQlSBEEQBKEACVJ6kp2dHRoaKjtk4+NRQIKUfly/fp1PBysaSJDSn6LPHRKk9CcyMlK4/EURQIKU/tuu1av2bdhQlFckQUrNkCBlkJAgRRAEQRAKkCClZgpIkFIrJEipGRKk1AwJUmreSJBSMyRIGSQkSBEEQRCEAiRIqZkCEqTUCglSaoYEKTVDgpSaNxKk1AwJUgYJCVIEQRAEoQAJUmqmgAQptUKClJohQUrNkCCl5o0EKTVDgpRB8t///vdPgiAIgiB0QA2lmoEl86lvgdAJlR01Q7mjWpA1/0XH+o8/aFPhRsVGzaDofGpx5SPyPytIEQRBEARBEARBEARBEOqEBCmCIAiCIAiCIAiCIAiiSCFBiiAIgiAIgiAIgiAIgihSSJAiCIIgCIIgCIIgCIIgihQSpAiCIAiCIAiCIAiCIIgihQQpgiAIgiAIgiAIgiAIokghQYogCIIgCIIgCIIgCIIoUkiQIgiCIAiCIAiCIAiCIIoUEqQIgiAIgiAIgiAIgiCIIoUEKYIgCIIgCIIgCIIgCKJIIUGKIAiCIAiCIAiCIAiCKFJIkCIIgiAIgiAIgiAIgiCKFBKkCIIgCIIgCIIgCIIgiCKFBCmCIAiCIAiCIAiCIAiiSCFBiiAIgiAIgiAIgiAIgihSSJAiCIIgCIIgCIIgCIIgihQSpAiCIAiCIAiCIAiCIIgihQQpgiAIgiAIgiAIgiAIokghQYogCIIgCIIgCIIgCIIoUkiQIgiCIAiCIAiCIAiCIIoUEqQIgiAIgiAIgiAIgiCIIoUEKYIgCIIgCIIgCIIgCKJIIUGKIAiCIAiCIAiCIAiCKFJIkCIIgiAIgiAIgiAIgiCKFBKkCIIgCIIgCIIgCIIgiCLlf1aQ+i9BEARBEIRhQpYMQRD/i/z53z9pU+VGqJtPLa58RP6XBal///vf/yIIgiAIQo4///zzU98CoRNYMp/6FgidUNlRLb///vt//vOfT30XhDz/93//90d+3utHj2hT4fZ/mtd//PHHp35GCHlQrX1qceUj8r8sSP3zn//UEARBEAQhBzrV1FCqFlgyn/oWCHlQalB2PvVdEPL8+9//Rs/tU98FIc8ff/zxe86rvLt3aFPh9kd+3u+///6pnxFCHhKkDBISpAiCIAhCARKk1EwBCVJqhQQpNUOClJohQUrNGwlSaoYEKYOEBCmCIAiCUIAEKTVTQIKUWiFBSs2QIKVmSJBS80aClJohQcogIUGKIAiCIBQgQUrNFJAgpVZIkFIzJEipGRKk1LyRIKVmSJAySEiQIgiCIAgFSJBSMwUkSKkVEqTUDAlSaoYEKTVvJEipGRKkDJJPK0hdvHjx7t27n+rqBEEQBFEoJEipmQISpNQKCVJqhgQpNUOClJo3EqTUDAlSBokuQWr37t2r5Dh//vwHfGhKly49YsSIDxghQRAEQXxYiq0gde/evaVLl/7000/4ffjwoWyYAwcOLFy4MD4+Xlck9+/fX7BgwdixYxctWpSRkSH0unbt2uzZsydMmLBp06acnBzuLmuBXL9+XTb+guIqSOlKPZCeno7UHjduXEREBNJfVwz5+fnIvp+1YEfolZSUJEp/4evDzMzMlStXIk9nzpx58+ZNXfEXZ0FKV+4oJ6wUJDUy8dy5c1KvhISEOXPmIJdRAH/77Te45Obmrl69Wlp2Hj9+LD292ApSr1+/Pnr0KJ75qVOnYkc2AHJt69atCpEgXzZs2DB+/Hjk8tWrV0W+t2/fnjdv3pgxYxYvXvzo0SPpubrylFNsBancO+mHtm6ZNHrUlLFjsCP0OhX5jxXz5vJtVfj8V2m3ZSPZuvxXYcjd69YKfc/t3zd5zI9jhw7duGTJy9upQq/k6AtzJk0aPWjQounTHly/RoJUEaBQHlFbhoeHo057/vy50B0GCcLripAEKYNElyAVEBBQWoutrW2JEiUcHR3ZYaH6EdrdsLAwtMT6PIUkSBEEQRAqp3gKUtu3bzczM3NycvL29jYyMnJwcJC27OiJmZiYwEiYPHmybCTHjh2D/eDh4dGqVSvE4OLikpyczLxGjhyJE93d3cuVK4edmjVrvnjxgnnVr1+/pABLS0sECA0Nlb1EQbEUpBRSDx1pU1NT5FqjRo3Mzc1hxclqeegGfP7550jewMDAihUrIpK+fftyX/SljY2NSwngitXdu3c9PT3h0qRJE1dXV1xr165dsjdZbAUphdxRSFgpe/bsKV++PGL48ccfRV4TJ05E0fPz8wsJCalSpcqgQYPg+PDhQ2S3sOygCON0FENp5MVTkMJjX69evc8++wwFxM7ODonz3XffCQPExcX5+/vDHcF0RZKYmIiKEV2YoKAg7KB6XLNmDfc9cuSIlZWVm5tb48aNkQUoI+hXc1+FPBVSPAWp3Dvpdf1qIXcqeXraabuf/bp/w33r+fmZmZmWsrFhm4O9/aP4G9JIslKScaKVpSUPGdSgAfedOm7cmyJZtUqD2rWRcYH16yE88zq4ZTPOcitbtnHDhiWtrFxLl7559gwJUh8VhfKYkpJib2+Pmg2lrEGDBvyUmJgYlK9Lly7pipMEKYOk0Cl7q1atwvOBylfPZysjIwPhf/31V30CkyBFEARBqJziKUht3Lhx27ZtsBexv3fvXrTsbdu2FYWBpdi1a1dYk7KCVE5OjoeHB8K8evVKox01gM5b586dmS9OuXjxItsfPXo04p8/f77snWzevBm+J0+elPUtKJaClELq7dixgwsQCINO17fffiuNIT8/Pyws7OnTp2y/Xbt2iCQtLY35oresq0PesWNHR0dHFvLly5e1a9d2cXERDdFiFFtBSiF3FBJWxLhx42xsbObMmWNsbCwSLzZs2CCytPPy8mQjGTBggK2trWh8AaN4ClJ41IcMGcJGpWVlZaF2QkpevnyZ+e7Zs8fCwqJ///54qhWy6dq1aytWrGBpjl6Pm5ubp6cn80JBKFu2rL+/f25uLg6Tk5OR/h06dGC+CnkqongKUjnpaYP7fJt26SL2M5NuNWpQH7lz8fAh5lvXr9aoQd8XGsmL5DeC1N7166Vel48dhdeo7weyw63Lf8Vh+NQp2M9OTSnr6tKwTh02Zirx3Flba+v2rb8gQeqjolAeUYs2adJEox1kDUf2WgVhKleu/MsvvyjESYKUQfLegtTDhw+XLl06fvz4efPmpaSkMMdbt24tWbIE4WH9rFu37syZM8w9ISEhPDw8NDQUzadwxL4uQerEiRMwPfEI4plbtmwZd9+/f//EiROnTZvGx8fiAV2+fDkzdhlJSUk4hbUEGu37W4THWTiXh0HbjDvBL3zxxM+ePVs4pv3o0aPCF1awuhAYVhd3kY1To31tuHDhwgkTJsCI12UcEARBEIZF8RSkRKCXVaVKFaHLpk2brK2t79y5o0uQQrcN9sDmzZu5C0xPS0tL2KCikLAxEPL777+XvXTdunVr1aql68YKiqUgJUQ59ZydnVu3bl1oJIsWLUIk0dHR7FCXbvLs2TMTExP0q7nLmjVrdMmFxVaQEiLKHf0FqS1btrCJeChfIvGiWrVqISEhhcbw6NEjFLdhw4bJ+hZPQUoEzHvkDp+dFxUVxYpA06ZN9cwm0KlTp5IlS7J99AsQ4aFDh7hv7969LSwsWD9FIU9FFE9BSrQtnTXrTQuybOmHEqRwOqqvZ7cSuUsFd7cm/v7YQXictX/TRu7Vq0tnC3NzPn6KBKkiQFgeBw4c2LVrV+ZuamrK3rIMGjTI399fakIIIUHKIHk/QerUqVNsBl+TJk3wi4p427ZtGu1rTC8vL4SHo4+Pz/DhwzXaqZ6oeRs0aIDm08HBwdXVlc9m1yVIde7cuXnz5ogKAZycnDRaDbVLly6wfdu2bRsYGIgKZeXKlRrtyFhcbvv27fzcvn37uri4sIc1PDwcD3GzZs3atGljZmbGh6PfuHEDZ8EytrKyQpODX5jaXJOC6YbHnUcImxuBueimK864uDgbGxv8ze7du7u5uSHdFFKVIAiCMBRIkMrNzUX727JlS+7y/PlztJszZ87UaDtXsoLUiRMn0Hru3r2bu8AeELannHPnzsF92rRp0kjQRYTX6tWrdd1bQbEXpBRS7+LFi/BSfp/MgEljb2/Ph9Lo0k0uXLiACCMjI7kLkx2Rs9LAJEhpJLmjvyDFEYkXbLzAunXrCj1xypQpRkZGwvliQkiQAtOnT0dinj17VuSuvyD17NmzcuXKtWjRgh2iSkSEmZmZPMDChQvhkpCQIDyLBCl9tl9++glJd3p35IcSpFo1bepXrZrQpcOXrV1Ll8bO9AnjcVbGzQTutWDqVLjciDpFglSRISyPYWFhAQEBmrc1XnJy8oEDB9DR1lWhcUiQMkjeQ5DKycnx9PRs1KhRVlaWRjtgu0mTJk5OTqz+lU7ZQ2PMnx7soHWMiIhghwqC1JuZw/365efns7FOK1asMDMz4+sgjBkzxtbW9unTpwhQpkyZjh07MncEdnBwYK+D4uPjUePjROaF55hPpGeClIeHB1uM89KlSzhkhrVGUZBSiBO35ObmxmY34DbYMHiCIAjC0CFBatu2bWjsli9fzl3Q5Pn4+LCJWroEqXv37hkbGwuXaAkPDxdOkOEMGjQItoHs8tjt27d3dnYWjoMWUVDsBSlp6h09enT+/PmDBw92dHTs2bNndna27Ikw29Bbnjp1Kiw6WETCYR3oLbMVxFxcXGARwRASTt48ffo0D8l6C7KaFwlSGknu6EpYBUTixfHjx5HgAwYMqFOnjpWVlZ2dXbdu3aRL16PI4BLSabYcEqTQg6hevTo33YUUKkihO7BgwYKffvoJHSLkIxfZR40aZWpqKgzJZhzzKSMMEqQK3XLS06r7+rqVLZt7J50LUtYlSzrY25cvUyakRYsze3YrCFL2dnYIWdHDo1/3b1JjoplX7Zo1mzUKFAb+rmcPMzNT7IwcOAAZJ/TaqJ3xExUZSYJU0SAqj4mJiejpf/PNN3Xr1kU3/9GjR66urmwwijIkSBkk7yFIwdCBy5EjR7gLjBi4sGluha4hBcty9OjRbF9BkCpXrpzQAEXD0KZNG3549epVXOXEiRPYRwyWlpbstR5TiNhSZ6jrS5UqJWxmHBwcJk2apHkrSLFRXQy0KH369GH7CoKUQpyzZ89GXaawOCVBEARhiBRzQerZs2fu7u41atTgc+ETEhLQ3h08eJAd6hKkwNChQ9GABgQE9OzZs7Z2EVkcxsXFCcNcvHgRMQwcOFB6elJSkrGx8cSJExVur6B4C1KyqYfsaNiwoZeXF6wjmDS6voF4584dWDt+fn4wbCpWrDhr1ixu3sBMgvETGRkJI7Bly5bINfhq3q5eFBMTwyNhVt/UqVOl8ZMgJc0dXQmrgEi8wLk4C7m2YsWK48ePL1y40MbGho/Q4axevVrXcuYMEqQWLFiAJNqyZYvUq1BBas+ePSg7VatWtbCwqFOnzt69e5l7v379rK2thSF37twp0nA1JEjpsc2fMhnptmnpUu5yZNu2zcuW7li5MnzqFB8vL6ShrFqk1ZIWb1+5Ysuvy8JGjbIrVaqsq8uDuOtw96pQoXXzZsKQQ/r2YTpU327drEuWFHohBtzAqch/kCBVNEjLY2pqKupJlLX8/PwOHTq0bds2Ozt75MiRKHooaNLvVzJIkDJI3kOQYqtECb9Te/v2bbiwcU9SQQr2DSIJDg6uUqUKjFoYl1yEUhCkPv/8c6GLk5MTqh7RN3fwjMIrNjYW+xs3btRop2r7+vqyUzp27Ah34ddGcIjnWPNWkBLOI0DTzldaVRCkFOLMyspq1aoVDuvWrSvbvBEEQRCGSHEWpPLy8kJCQuzs7IQDcNDYtW/fnh8qCFIabf956NChw4cPX7ly5bx589BKCu3I+/fvV6hQoXbt2rKjeHCimZnZvXv3FO6woBgLUsqpp9EOAHd2dobppSsA4+XLl0OGDEHWLF68WOrLPoQEg02jXTH9TSft1CnuC2sQLsLlPjnFXJAqNHeECauASLzYt2+fKAvGjBkjmiYGamhRiLaYC1InT55E3aJr5TX9p+yhdgoMDEQeXblyRaNdJs/ExEQYgGm4ouGfJEgpb8d37jAzMx3Yq5euAPeuXrGytOzUpk2hUe1etxbpv2j6NOxX9/VtGhAg9O3brVsZFxfsDO7zLTJO6LUu4s1cy/jTUSRIFQHK5XHNmjWoJx88eDBixIiAgICYmJjg4OBOnTrJBiZByiB5D0GKuQjXgGD6DhOhpILU6NGjraysIiIiLly4cO3aNdhG7yFIubq6tmvXLl2AUBHz9fVt06ZNTk4OjGY+bvzrr792cXFJ/ytsfoFUkMLlhIKU8AOTQkFKIU7G+fPnUUIQfvbs2QqpShAEQRgKxVaQQoe5d+/eaMGFr/efPn2KNg5NecW3vJkfYW/v4+Mj6hJLGTRokLu7Oz+EwVCzZk1vb2/phCPma21t3aNHD+U4C4qrIKWcepywsDDpjCEpsGTQH5AOtGEMHDgQkbx8+RJGjmihesQsWlWKU5wFKT1zhyesQhiReMGW8dqxYwd3YQvS8y8kat5OZVCe3lKcBanY2Fj0Fzp06KDrA0TvtKg5m0TJeh8zZszAvjDT4Q6XZ8+eCU8hQUphizl00M7Wtn3rL16l3VYI5lupUl2/WoXGdu/qlTdf1tMuPhXcpImPl5fQt3lQI7aq1LTxb9arunvlMveaOnYsXJ4kxJMg9bFRLo/ogNva2rIxKOjvs2Vztm/fztaYlkKClEHyHoIUDFPRCqOsLWSD8GGP8tFSDBcXF77yNzt8D0EKbQMf+iQF1T0MKfYWIjU1lTlOnjzZ2NiYfc9ChLIg1aVLF6HFPH78eC5IKcQppFmzZmwlNoIgCMLQKbaC1JAhQ9C2Hj58WOiYn5+Pju6vAoyMjL766itYC8rfvnnw4IGNjc1PP/3EDp8/f96gQQO0tsKOtJBZ2k8sXbx4UfkmC4qlIFVo6nFgZcmu2yUiIyMD5o2uJYf8/f3Lli2LnezsbHNzc+G6YBMmTEDvGpkrPavYClL65w5PWAVE4gUiNzU1ZV8NYvTv379kyZLC1SRat26N3pqyzlVsBSl0AZA4wcHBCivTvZMghd4Eitj8+fOxf+zYsTcTzTZt4r6BgYHSoWokSOnarp884eTg0LJxY9nP2/HtcXy8pYVF1/btCo1w/6aNb766MGsW9scPH4bWKu3SReb1JCHeytJySN8+2D+8bSuCbVi8iJ8YUK9ejSpVZOMkQeoDolweYVQ0atSItzgeHh5r167VaD9nWapUKdkISZAySN7vK3t169bF07Nr167U1NTNmzfb29tzNQfY2dnhwcIpzACqU6dO1apV79+//+TJkwEDBiC29xCk2CjxoUOHJiUlZWZmRkdHh4WFcV/cBnxxS3hquSPsALTQjRs3xm3glISEhHnz5rE/oixIsa9OTps2DdeaOHGilZUVF6QU4gwNDT106NCLFy/i4+PLly8P+0AhVQmCIAhDoXgKUuxV/8CBA/cL4B/JFSKasletWjX+pRGYENeuXYMBgH6at7e3p6cnn6/XqlUrnLhw4UIe+cGDB3mnOjc3Fy0p+nKF3mdBsRSkFFLvyy+/nD59+pUrV5KTk5cvX25paQmjhZ0FG8bGxgZnabS96LZt2+7ZswcW1IULF1q2bImuGltyKCMjo3fv3jBpbt++jXiY5cb62xrtKjmmpqYrV66EjbRx40bYSAgge5PFVpDSlTvKCSvMHY3Wsj2rxdjY+JtvvsEOihLzwiFsURjGCLNo0SJkB/uYD4OZuBMmTFC+yeIpSKH+KVeuHHof27dv57lz/vx55ot+Ckvz2rVr+/r6sn1WrNDZQZqzNWrHjx8/ePDgqKgo5OO+ffsqVqzo7OzMRkWh/1y5cmV3d3fk+K1bt9A1EI4oVMhTEcVTkHpw/Vo5V9fSTk5bl/+6d/16tp3du4cJRj8OHnxmz+7UmOjjO3c0alDfxMTk3L697MSNSxaXtLKKPnggT7v4FLbLx44mXTiPeNzKlkWc7PN5N8+eMTcza9Yo8Nz+fVeOHfuyRXMrS8uEM6fztGuo+3h5uZcrt3/jBriMHz7szWowSxaTIPVRUS6PGq0d4uXlhc41OwwODmZL8qF+a9q0qWycJEgZJIUKUmvXrmVfWxQ6wgqBmVhCC2oE1KrCwahoTdESw6tnz54a7Vf23NzccAjH7777Dg8Tfy1QpkwZvsC5kK5du9atW1fkGBER4ejoyC5qbm7O7V0G7C248+/fMY4fP46GgZ0CS6tevXpoPOB+8+ZNuKAV4SFxOVyU7b969apLly7srPr167OvC/HXXLrihDluYWHB3Fu0aKFrrTWCIAjCsCieglRISEgJCbAapSHNzMyEH1lzcHDgDTTaUHYiOmBwZM0lA31vUeRoUvlAG/YWateuXYXeZ0GxFKQUUm/RokUwrpijqalpjx49+AQi9kEYNob9zp07LVu2hAnHQnp6evLlL7OysmDGMEMOlC9fXmhcPX/+vFOnTshQFn+/fv10rZFUbAUpXbmjnLDC3AHdu3cXReLj48O8MjIyePGE5Tl06FDh2hFDhgyxtLQsdCx/8RSkYmJipNVatWrVmC+yQ+rLVghhKy6zj32fOHGiRo0aPAA6REyoYsTHx9euXZt52dnZhYeHcy+FPBVRPAWp8wf2y+RO5crwij16pNrbzheo61fr+M4d/ES2AvrV48ewv35RhGvp0izYm3YnJOTW+XM85K7Vq7ivp7v74W1buVfcqZOfv81WO1vbeZN/1nWfJEh9KJTL4+XLl1GVnTt3joePjo5G6+bq6urh4REbGysbJwlSBkmhgpRGO0Jb1v3hw4eodmXXjHjx4kVqaip/1YkdHDKNJi8vj4/qf/XqlewIf4ThX/MRgsBJSUnJycnCppdfQtd9oi25efMm+wyfrj+Fy4lmrqIt57P/pMOeZeNEMDjCUJC9DYIgCMIQKZ6ClP6gKefNfVRUFPre+OW+9+7dg6kgWkJFH5QnHHEKiqUgVSiwUmAsiQybKVOmODs7P3nyhLtkZWUlJiYKXYReMGmEGqIQmDoJCQnKq4YVW0FKGV0JK80dZVCmEA9iE7nDVJYayVKKpyD13jRr1ky0whpyCumvq+uBTsStW7f0yQhZiqcgVej2IO563KmT965eEbk3DQxsHtRI6JJ26SJCsoFRoi0nPS3x3NmU6OjcO+lS3/TYSwlnTmenpijcBglSRQOaMOFoKc7Dhw8VziJByiDRR5AiCIIgiGILCVL6ExwcPHTo0KK8YgEJUvrx/PlzR0dH4WLYHxsSpPSn6HOHBCn9OXv2rI2NDX9LXQSQIKX/dnp3pI11yaQL54vsiiRIqRkSpAwSEqQIgiAIQgESpPQkOzs7NDRUOmTjo1JAgpR+XL9+XfjBmSKABCn9KfrcIUFKfyIjIw8cOFCUVyRBSv9t1+pV+zZsKMorkiClZkiQMkhIkCIIgiAIBUiQUjMFJEipFRKk1AwJUmqGBCk1byRIqRkSpAwSEqQIgiAIQgESpNRMAQlSaoUEKTVDgpSaIUFKzRsJUmqGBCmDhAQpgiAIglCABCk1U0CClFohQUrNkCClZkiQUvNGgpSaIUHKIPkvQRAEQRCEYUKWDEEQ/5v8+SdtatwIdfOpxZWPyP+yIPWvf/3rnwRBEARByPHnn39SQ6laYMl86lsg5EGpYaMLCRXy+++//+c///nUd0HI82aEVF5u/oP7tKlw++N1PorPp35GCHlohJRB8l+askcQBEEQuqEpe2qmgKbsqZV/0pQ9FUNT9tQMTdlT80ZT9tQMCVIGCQlSBEEQBKEACVJqpoAEKbVCgpSaIUFKzZAgpeaNBCk1Q4KUQUKCFEEQBEEoQIKUmikgQUqtkCClZkiQUjMkSKl5I0FKzZAgZZCQIEUQBEEQCpAgpWYKSJBSKyRIqRkSpNQMCVJq3kiQUjMkSBkkJEgRBEEQhAIkSKmZAhKk1AoJUmqGBCk1Q4KUmjcSpNQMCVIGyacVpC5evHj37t1PdfUi49WrV1FRUceOHcvJyfnU90IQBEG8GyRIqZkCEqTUCglSaoYEKTVDgpSaNxKk1AwJUgaJLkFq9+7dq+Q4f/78B3xoSpcuPWLEiA8YoQrJzs6uXr36Z599VrJkyWXLlh04cKB3795Pnjz51PdFEARB6AUJUgqgUVu4cGF8fLysb1JSksiKEL6Fio2NnTlz5vjx49etW/fq1Svhienp6YsWLRo3blxERMT9+/cVbqCABCkd5OfnI8GXLl2akZGhECwzMxOJfO7cOe6Sm5u7evVqqQX4+PFjFgA7y5cvR8bNnz8/Li5OV8wkSCnw4MEDPOHr168vNOTVq1dRxI4dO8ZdkLModz9rwY4ovJ65Q4KULAqVkpQTJ05MmTLlp59+Wrt2Lax97n7t2rVp06Yhks2bN+fl5YnOSkhImDNnDio3ZOtvv/0mGzMJUgpb7NEj4VOnHN62VVeArct/XTFvLt92r1vL3M/t3yd0Z9uhrVv4iXGnTiLmsUOHLp454/61qyRIFRnSZkijtR/Cw8PRGD1//lzojkYNVZ+uqEiQMkh0CVIBAQGltdja2pYoUcLR0ZEdFqof5eTkhIWFoS7W5/krDoIUrA0kIFo4GBAoURMmTDAyMkJrpHnHtCIIgiA+CSRI6QJdZRMTE7RxkydPlg0wZswYY2PjUgJ4/3nYsGHwqq0FMVSrVi0rK4t5bd261dTU1Nvbu1GjRubm5rBDrl+/ruseCkiQ0sHixYtLaDl16pSuMHv27ClfvjzC/Pjjj9zx4cOHSPOSAszMzBCGaSKXLl2yt7f39PRs37595cqVkYnoMMhGToKUAp07d0aSfvbZZ8rBsrOzPTw8ELJp06bM5fXr159//jkyJTAwsGLFivDq27cvD69/7pAgJUWhUhKBfAkJCUHtFxQU1KpVq7Jly6LWYl5z585Ftvr5+SHLUHBQiQmFrYkTJ+Is+OL0KlWqDBo0SDZ+EqR0bc+Tkzy0VVbTgADZAFkpyfC1srQsZWPDtqAGDZjXyIEDSlpZCTeEDKxfj/kunTULGVenVq22rVo5OzraWltfPnaUBKkiQLYZSklJQVWGAoIi1qBBA+4eExNjZWWFik5XbCRIGSSFTtlbtWoVHpHExEQ9n6qMjAyE//XXX/UJXBwEqbCwMEtLS34IS4ILve+UVgRBEMQngQQpXcBS7Nq1K4x4XYIU7Mt69erJeoWHh9+6dYvtz5s3D63h2rVr2eGOHTv4eJCLFy8aGRl9++23uu6hgAQpOR49euTg4NCjRw8FQWrcuHE2NjZz5sxBJ1zYE5AyYMAAW1tbZr20aNHC19c3NzdXozVp8AxUqFBB9iwSpHSBx9vExKRLly6FClITJ05E8vr7+3NBKj8/H4bl06dP2X67du2QxWlpacxX/9whQUqKQqUkon///ugtX7hwgbsgL/AbFxeHPB0zZgxz3L9/PyJZvHgxO9ywYYPI7JeOn2KQIKVrCx0xooKbW8M6dXQJUi+S3whSe9evLzSq1JhoFMNJo0dh/1XabStLy77dujGvB3HX7UqV6tWlMwlSHxtdzRCMiiZNmmDn/v37yFD2UiorK6ty5cq//PKLQoQkSBkk7y1IPXz4cOnSpePHj0eVnZKSwhxRjy9ZsgThYTuuW7fuzJkzzD0hIQG1fGhoKGph4dBxBUHqwYMHy5YtmzRp0vLly9dpYa8pNm3ahJu5cuXKhAkTDh06xALn5ORs3rwZ8U+dOlU0qTA2NnbWrFk///xzVFQUd7x79+7ChQsRw7Zt26SNQWZmJi6anZ2Npx8RTp8+PSkpifueOHHi5MmTKB4oD7hD7n78+HEUHpgOO3fuhBHAHHft2tW6dWtLS0vc//bt21kSrVixAu2WrrQiCIIgVAUJUrKgOba2tr5z5877CVJC0ItDa4jGWtbX2dkZLamucwtIkJLju++++/zzz2GZKAhSW7ZsYTOGkIMKgtSjR49gxgwbNowdent7t23blvsOHDgQGSR7IglSsuTm5lapUmX48OEoNcqCVHJysoWFRWRkZFMtsmEWLVqELI6OjmaH+ucOCVLKKFRK9+7dMzExQRda6oXOBc4SzjKuXr16y5Yt2X61atVCQkL0uToJUrJb4rmzFubmu1avahoQ8PcFqVHfDzQzM7175TL202Mv4ay5P0/ivr6VKnUMCSFB6mOjqxlC3dW1a1e2b2pqyt5RDRo0yN/fn4m/uiBByiB5P0EKxg2bwdekSRP8lixZctu2bXDfvHmzl5cXwsPRx8cHza1GO9UTD1mDBg1QCzs4OLi6uvJlCHQJUteuXbOzs4Mt9fXXX8PeNTc3r1Gjxu3bt9kpvXr1gm1Uvnz5Nm3aaLTqUp06dXAPQUFBaImFQ/7WrVuHNuOrr77q2LGjjY0NE87QxmAf99O9e3c3Nzf8QdHVb9y4gUhGjhxpZWUVGBjo5ORkb2/PBwd27ty5efPm+Ju4E3hptO83evbsaWxsjNuoXbs2/iyShcln2MG5RkZGSI26detq3g6hf/78uWxaEQRBEGqDBCkpaMXKli07c+ZMjdaO/JuC1Ny5c9Eayr6YuXjxIrwU3ogWkCAlAYmGTDl37hysNeUpewxlQWrKlCkwY/ibucGDB6N7cPjwYY3WoCpVqtTYsWNlTyRBSpb58+fD8Hv27FmhglTbtm1btWqFHQVBCpYw7Ew+9F7/3CFBShmFSgkGPLzS09OlXpMmTWJGPndBR8bd3V3zdqAHOib6XJ0EKdntq+Dg4CZNsPP3BamniTftbG17du7EXar7+lZwc7t1/hz21y+KQCT7NmwgQarIEDVDYWFhAQEBmrcFJzk5+cCBA+i/C8eIyEKClEHyHoJUTk6Op6dno0aNmOby8uXLJk2aODk5ZWZmauSmocEk4k8PdmDWREREsENdglSXLl3q1KnDxhkdPHgQp9y4cYOfwsfQsjHJ3bt3x9X5JcaNG4cAZ8+exX79+vW/+eYb5v7kyRM2GGrMmDFubm4scsTAhj0LYYIUwrBVWu/evYv4+etZNu2/X79++fn57AZWrFgBl927d7MAuGEcTp8+nR2idMEg4JFzQUo2rQiCIAi1QYKUFLSkPj4+7NOxyoKUmZkZ2lAXFxd/f/9NmzbxEcQATfmsWbPQ4js4OIhGIhw9ehT9dvSuHR0de/bsKVwwWEQBCVJ/BSncoEEDNsnx7wtSr169Qt4JB90gLzp27AjDrF27dra2tkOGDNH1vpoEKSnoXCHRmBGrLEjt378fZefmzZsaiSAFe3vhwoVTp06FKe7h4cGnC2jeJXdIkJJFoVLioKtsbGw8duxYb29vc3PzMmXKhIaGsspwy5YtKHGo6FhIJH6HDh3s7Ow02okU8BowYAA6OFZWVnDs1q2bri82kCAl3fauX29mZhp/OkofQcrezs7B3r6ih0e/7t+kxkRLg82fMhnBYg4d5C6J585W9fGxsS7Z7osvbK2tV86fp+tOSJD6GIiaocTERNRg6MXXrVsXddqjR49cXV1XrlxZaDwkSBkk7yFIwUyEy5EjR7gL2kK4sJVKCxVZnJ2dR48ezfZ1CVINGzbs1asX209LS+ORs1M6derEQ6IBwBM8fvx47vL8+XM04Wz+9pdffunp6Ska3jV79mxTU1Ppd0k4TJDiyxNqtEMETUxMWKPeuXPncuXKCVcoDAwMZCKu8P7r16/P9kmQIgiCMGhIkBKRkJCAZvTgwYPsUEGQQnuKvllkZCRsiZYtW4qmwLRv375evXqwMh0dHdFPE74fQoRoSb28vCwtLVu3bq3rK34aEqQkrF69GlYH6+j+fUEKsfHlzDkwkNBVgDkH02j48OG65EISpKTAuMWDzfYVBCkYmd7e3uPGjWOHIkHqzp07/v7+fn5+yOiKFSuiTAl1Xj1zhwQpWRQqJQ5SFYUCIbdv347eEDo1fBRnbm7u559/ziZnfP311+iDGBkZsVmTqAYRDLm2YsWK48ePL1y40MbGpkWLFrK3QYKUaMtKSa7k6TlmyBB2qCBIYdu4ZPH2lSu2/LosbNQou1Klyrq6PIi7LgyQk55Wwd2tUYP6Qsfs1JTQESOMjY0d7O2xLZ01iwSpokTaDKWmpsJy2LNnDxN227Zti9ps5MiRqP369ev36NEj2XhIkDJI3kOQYisfCb/cfPv2bbiwcU9SkQXNJCIJDg6uUqWKu7s7ijoXoXQJUnB0cXGByYsmediwYbBH+TsE0SkwUnG5DRs2CE+vUKFCx44dmS9adDziaBj4BPusrKxWrVrhrLp1627ZskV6dSZI8RFPmrcDd+/du6fRClJobIThcasoGEKX3r17s9l8GhKkCIIgDBwSpESgDUVnjB8qCFJCYAygp4dGXOq1fv162AZoXqVely5dQncOxoOufnUBCVICnj17huRasGABO/z7glQNLUKX0NBQa2vrrVu3IkORcehUBwUFyQ7DIUFKxNmzZ5HUfAkIBUFqxowZ5cqVe/HiBTvUNWXv5cuXQ4YMES6brX/ukCCljEKlNHr0aHgJXerXr+/n58f20XNBdgwcOHD8+PGRkZFff/111apV4b5v3z5RYRwzZgxc2PwSESRIibZp438q5+r67FaiPoKUcNu9bi0SedH0aULH7SvfTG3BL3d5lXa7ib9/JU/PS0cOZybd+nHwYAQY98NQEqSKDIVmaM2aNbAcHjx4MGLEiICAgJiYmODgYOHwFCEkSBkk7yFIMRe+kLnmrYLDhBWpyIKK28rKKiIi4sKFC9euXYOpVKgghUocXng0UeMj/M6dO7mX6BTcBi4nWgcKYbp168b28/LycDpb2onN42OcP38ejzLOnT17tujqUkFqypQpcEHDr5ETpGAo9+zZU+iCMGXLlmX7JEgRBEEYNCRICXn69ClaLjTNFd/yZn6Evb2Pj49sz0oIOmm8MRWBbrOFhYVwoAcnLCxM12IuGhKk/squXbuQVjBLWNaUKVMGh/ht166dwlm6egJsRLxwlsTt27eNjIzCw8O5C7oKwmHsQkiQEvHDDz+YmJjwgoNSg6TDDl/kgVOzZk0bGxse0kILdkRD1TTaiQJmZmZsoM075Q4JUoWiq1KaOXMmUvXJkyfcBR0KT09P2UiqVq3K+gjoBOGsHTt2cC+2ID3/QqIQEqREW82qVWysS3q6u7PNwtwcG3aObNumfOK9q1eQyKMGfS90DKhXz6N8+Zz0NO6yZsECBLt05DB36dWlMzqhXAIjQepjo6sZQk/f1tZ2z5492Pf19V2xYgV2tm/fzkd+iCBByiB5D0Hq9OnTcFm9ejV3YVVqXFycRjuznY+WYri4uPTt21d4WKggBXc8cIgK1bSoJRCdkpeXZ2lpyef3gevXrwtfFjFg/pYsWVI4s4/RrFkz0Ww7zVtBSihUNW/enH83VypIwRftEL/P3NzcsmXL8pcqCoKUNK0IgiAItUGClJD8/PyVK1f+KgB94K+++grWgvK3b4C/vz9/WyMCDStbaUUKGn20lZcvX5b1LSBBSsC9e/eEWcMmE+F33759Cmfp6gm0bt0aRr9QQIyKihJ1qlk3my+aI4QEKRGXLl0S5g5KDcoOdmJjY0Uh9+7dKwxZWQt2pEsOZWRkoNvMFvl6p9whQapQdFVKbKGSyMhIdgj738fH54svvpCGZKvKsjXmYfmbmpoKP2HUv39/9E1kVXgSpETb7nVrl86axTcfLy9s2GHfyFPY9m/aiCwQzr87t2/vm15eWJgw2OQxP8Lx4Y047jJ9wni43LkcS4JU0SDbDMGoaNSo0XfffccOPTw82AJ8+/fvF3auhZAgZZC831f26tatCxtl165dqampmzdvtre3Fw5qRfUdHByMU5j5WKdOnapVq6IRffLkyYABAxBboYJUSEiIlZVVUFAQmthevXrNnTuXz+KWnjJq1Cg8xAiTlJR08uTJ6tWru7u7w37CQ4y6Hs18dnY2Hly0+hs3btRoxzOjLXnx4sX/x957gFVx9G//YgTpIFiwoGLF2LCLWKNExRIVo0ZjjDF2EzUWbIlYYwu2WLHHGuz6WCLYKxZEBcQW7A3Fcn7v+8vzf57wvz3zOtdm95zlWIKLuT/XXueanZmdnbOzs/Ode2dm4+LiChUqhDiqswtBCmmOHz8ef1DM15PLXmgFKdgNiNClS5eTJ0/Gxsa2bdsWxgHcIlRHkNJeK0IIIUaDgpQ+qil7ZcuWFbPm0VXu3LkzGtyLFy+eOHFCGABTp04VQbANFi5cGB8ff/r06f79+yNo5MiRIoWmTZuOGzcOhyQkJMydO9fJyalu3brWzp5OQco62il7snRM5hU69pmB0dKhQwc4pOliemkLDRs2TJngvXv3YPIFBAQcPnwYlsypU6fq16/v7e1tcW1mClL6qKbsJScnu7m5RUREaGMqp+ytX78etvGGDRtQfAcPHmzUqBHsWzFy6pVKh4KUCv2HEjo7Li4uYrrl06dP0TH29/ffu3cvIvfo0QMx0SdCUEpKypIlS/DgunLlSmRkpKurq3JwImoZElmzZg3KbsaMGfb29v369bOYGQpS+ptqyt6yWTNdnJ0Pbd3y1LxaObbjO3dcOHhg5dw5vgUKFPTxuR1/VkZu26K5q4vLzbg4ZYK7161FIbb/5JP4fXsRecfqVYXy5w+qXs3i2SlIvUX0myH0xIsXLy4nL6PL3L17dzjQMFn78CgFqSxJhoLUokWLxNcWlZ4XLlwICgrKZiZHjhy4ge7evStD0ZqiiUWQGKS6f/9+X19fIfF069YNN5NUQPPnzy8XOFeCh7ufn9/kyZPDw8P79u2bO3duuUa49pCHDx9+/vnnyIbIT61atcRYLZP55R7aaZFJpCPeQsACcHR0FJEbNmyoXRRNGGFohFAH4EAK+CPi8xmgXbt2VatWVR0yadIkDw8PkWbRokXlaxOT+at/sAbk7s8//4w4smqprhUhhBCjQUFKHwcHB7Ggr8DLy0tIHmid0ciKNg4UKlRIDLY3mV97wh5Ab00EoQEdNWqU+BKuyTzsWsw1A+izdezY0dq3qEwUpHRBh1k121GWjsn8keJsf6VUqVIyZu/evZ2cnK5evapNMyAgQB5SrVo1mHkWz05BSh/UGtQduRsbG2tt1HxDM8J9+fLlRo0aSaMX1rJyOVTbS4eClAr9h9JP5ildp06dErvHjx8vW7asiJknT565c+cK/4sXL6LPIvydnZ0HDx4svkguuH37dkhIiAhFT6RPnz6yc6GCgpT+9lGd2tjkrvhkXuyunXAvmTHdx/xBdpA9e/bWISHnD+yXMa+eOIEmqU/XL7Vpzpk0KX++fMoDLQ6PoiD1dtFphlDL0AYpn2CHDh2CbeDj41OkSBHtwFIBBaksSYaClMn8EVmL/tevX4+Li7O4ZsSDBw+SkpLkMFQ4sCukHzzc5aj+x48fa0f4iyZ5165d0mf27NnwEZqXxUNM5qGwZ8+eTUlJUfnfuXPn3Llzqr/w6NGj+Ph4NAwW/5dcQwonwrE3b95UhiL/T5480R4FT0RGU6Tyx39XfpJPnF25q7pWhBBCDAUFKX3QxskmLDo62s7ODr8yFP0xNLjaxtFkbk8TExPRwbaY7JUrVxISEmSH0BrpFKR0Udo/2tLRASaQtd6y6aVxJYd7W4SClD4q+3D06NF58uRRrkwkgYWpqgioVrj+FiObbCsdClIWsfZQatCggfaLeL///vuFCxdUvRIUK1LAQ09l/EvQnUGoUqjSQkFKf3t0Melx8kW5Wz8oSKlPYUs+euT0nt+UA6Pkdj/hgk7KV0+ciN+3NzUpUScOBanMAQbAgQMHtP7Xr1/XOYqCVJbEFkEqkzl27Fi2bNnGjh0rLCGYpHXq1ClbtmymZUC7qDkhhJB/LBSkbCc4OLhPnz6ZecZ0ClI2k8mlQ0HKdu7fv+/t7a1c/unvhoKU7ezbt8/NzS0pKSnTzkhByvYtZn2Um6vLhYMHMu2MFKSMDAWpLIkBBSkwYsQIV1dXe3t7MQ+uWrVqcXFxmXZ2ClKEEEIkFKRsJDU1dfjw4fpv/t866RSkbCPzS4eClO2cOnUqkz9xQ0HKdqKioix+qfDvg4KU7du6hQs2LV2amWekIGVkKEhlSYwpSJnM89pOnz597NgxnZUj/iaePXuG81r8LjUhhJB/GhSkjEw6BSmjQkHKyFCQMjIUpIy8UZAyMhSksiSGFaQIIYQQI0BBysikU5AyKhSkjAwFKSNDQcrIGwUpI0NBKktCQYoQQgjRgYKUkUmnIGVUKEgZGQpSRoaClJE3ClJGhoJUluTPP/9811kghBBCCCGEEEIIIRZ4nwUpvvglhBBCrMERUkYmnSOkjApHSBkZjpAyMi9GSD1Je3rtKjcDbhwhZWQ4QipLQkGKEEII0YGClJFJpyBlVChIGRkKUkaGU/aMvFGQMjIUpLIkFKQIIYQQHShIGZl0ClJGhYKUkaEgZWQoSBl5oyBlZChIZUkoSBFCCCE6UJAyMukUpIwKBSkjQ0HKyFCQMvJGQcrIUJDKklCQIoQQQnSgIGVk0ilIGRUKUkaGgpSRoSBl5I2ClJGhIJUloSBFCCGE6EBBysikU5AyKhSkjAwFKSNDQcrIGwUpI0NBKkvybgWpI0eOXLly5V2dnRBCCMkQClJGJp2ClFGhIGVkKEgZGQpSRt4oSP0dvC1NgIJUlsSaILV+/foFljhw4MCb3yuSvHnzfvvttzoRLly4MHPmzGHDho0fP37r1q1PnjxRRbh27VpERMTOnTutpYA/Mn369Lt376r8N23aJP7R0qVLDx069Np/4X3i2bNn3bt3X7x48bvOCCGEGAgKUkoSEhImT558+fJllX9cXBya46FDh86ePfv69evWDn/48OGKFSvQrE+ZMuXUqVPKoL179/7444+//vqr0vP58+e9evVat26dtQTTKUgp0JYOLBytLbdjxw6Lhz9+/HjRokVDhgyZOHFifHy8Mug1SoeClIo9e/ZMnToVtpb0eaXSATdv3kT9Qi0bN27c8ePHhSdKYfXq1SidgwcPKiOjGn7yyScwpC0mRUFKhbZ0LHaFVE8tFSkpKTNmzFiyZIn0QQdk3rx5eDYmJSUpY8bExLRt2xZlZzEdClLK7cnlS0tnzljx82yV/6OLSfAcOWBA+JAh21b+opNCwqGDk0aNGtiz54xxY1NOnZT+t87GzZk0aVr46AsHDyjj74n6NbR5c5yXgpSNoD8uHk1aA+DevXvoa4eFheEZFRsbay2FDDUBG6EglSWxJkjVqlUrrxl3d/ds2bJ5e3uL3QzvlbS0tJEjR548edKWm0YnwdTU1K5du9rZ2eXKlaty5crFihWDu3DhwjC2lNFgNiF7uXPn1mpVJnMz4OjoiAhoY1RBDg4O+Gu+vr5IHxGqV6+OumRLnt9j0E/ImTNn+/bt33VGCCHEQFCQEjx9+nTixIlOTk5oNDdv3qwMmjNnzgcffFC1atWWLVvmyZMHzatFM+D8+fP58uVzdnb29/dHc4NDFi1aJILQo0ZTPnjwYD8/P/zKQ6ZNm1akSBHtWyVJOgUpM9ZKZ8CAAS5/BRFq166tTeHy5ctly5b19PQMDg5GKeTIkUPKT69XOhSkJLdu3erSpUs2M48ePZL+tpcOiIqKgsmKC960adMaNWpUqFBB+Pfp06dcuXJIytXVddOmTTI+KmOrVq2sZYmClMRa6aBroCwaUbmGDx+uk1RoaCji4Mkmdp89e1axYsVmzZp9/vnnKLurV68K/zt37qBHExERYS0dClJyO7l7V80qVXBVqwZUVPrfOhtXzt/f08OjeXBwYNWqiPDFp59aTGHrLyucnZx8CxSoW7Omi7OzT9688fv2wj/tUnLFDz8MadiwU2gbpHPp2FER/2ZcXOGCBX8KD7eWJQpSKtBAoFuNNqJkyZLorXt5eUkD4Ny5c/BHf79OnTpwIDQyMtJiIhSkbOEfJ0hJFixYgEqO+8nG++D27duID9vUlsjWbr7nz5+HhITAGJowYQJsLOGZnJzct2/fffv2KaPhgV6/fn2cccOGDdp05s+fD8MXLUrlypVVQWgtvvvuO+Feu3YtzvXpp5/akuf3m4cPHyrfDhFCCKEgJQgMDPTz8xs6dKhK8kAzjaa2a9euYvfmzZvoenXu3FmbwokTJ9Cso6GBOykpCeYpYoogNOXff/89HCtWrIC/8Dx16hT6gXv27NHJVToFKTPWSkfFpUuXYPCIS62iXbt23t7eYnTV48ePa9eunT9/fvG27/VKh4KUAOYrzN26det26NBBJXmo0Cmd+Ph41LJOnTpJI02Yx/hFV/C3336Du3v37q1btxahMIB9fHxu3Lhh7VwUpAS2lw5ufkQQl9oiO3fuRPG1bdtWClKoHU5OTqhNcPv7+0+fPl34d+zYsVGjRjq5oiAltqhFkY45c37ZoUOl8uVVglT44MG4znJk0/Bvv0XpJBw6qEohNSmxgE++mlWqPLqYhN1z+/e5u7p+0qQx3LvXrXVydHyYmAB36RLFI8aMEYd81rp1wzp1dHJFQUrFsmXLVq1aJYb7bdy4EQXRokULEXTy5Ml58+aJh9Xt27d9fX3RTllMhIKULVCQUgtS169fnz17dlhY2JQpUxITE4Xn+fPnZ82a9UKl/uKLxYsX7927V/ifPXt22rRpw4cPnzNnDm7HDG++NWvWIJGJEyfq33O7d+9GNJhEhQoVQgOgjYAGJjQ0dO7cuYh25swZZZBSkAKoOV5eXtoU0tLS0ALBOEArstiM+LOwDOAPQ23mzJnh4eHy9WBcXNyPP/6Iy4KT3rt3T6aTmpoaGRmJK4CLprwCqLdIHIfg0ln8g2j5cCyu26hRo6Kjo03m9y1ivoPyPZjJXCKwP+CPS60caS8S+f3338eMGfPzzz8Lz5SUFLiRJvIp/pfoISDlo0ePijjLly9HuePAyZMnI5PoSGhzSAgh7z0UpARov9BbQxdLJXlcvXpVNRIZXa82bdpkmGD79u1xoBjej0NECxUTE2NnZ4eWDu1vxYoVleNxLJJOQcqMtdJRMXDgQAcHB7Ts2iBvb++vv/5a7gpLTLwFfL3SoSAluHLlyi+//ALHDz/8oC956JROr169cufOrT0WkZGmsPpgjtapU8dknrnp5uamcxuYKEi9xPbSqVq1Ku55a6HoEZQpU+abb75BOlKQglGdP39+4f7oo49GjBgBB7ru6HHoL5dDQUpsv/26bv/mTXDUr1VLJUh92aGDp7u73F0+ezaK7+TuXaoUNi5Z8uKRuHyZ9Pm8bahjzpwPExOWzZqVP18+4dmgdtDwb7+F45c5P+fy9Ew+eoSC1GtToEAB1AWLQTAMXFxcLAYJTQD2wJQpU0aOHKkcgILn28qVK+HYtm0bKpHFpXgkFKSyJK8nSMHiETP46tWrh1/cW3i8msxP3uLFiyM+PEuVKoXnsslsJOHRXKNGjZCQEDyCfXx8bt68qbz5tCdt1qwZ2l3xSkGHrl27li9f3mRuwh0dHVV356VLl2A2rV279tatW2jghw4dqgxVCVKtW7d2dXVVpf/w4UOkX6hQoQ4dOhQpUgT/CxUMJhqCZs6ciRy2atXK3d09V65cYhUq1BB7e/uSJUvWrl0b16Ro0aKnT582mdWocuXK+fn5derUqVKlSviV+cfhSLxRo0bFihXT/sHQ0NC6devi2NKlSxcsWBAZQHGgSfP19S1RogR2p02bJmIeP37cyckJJiMuHZJCNnbv3i0TwSEoF1xt8WLz5MmTnp6eyMmnn36Kf50zZ078zYsXL6pKBO6OHTuiyAICAvLkyYNrqLNWFyGEvK9QkFJiUfJAO4UmT7ywWbZsGSJs2bIlw6SCg4OdnZ3FiA90pMPCwkxmQ6Jw4cJwDB48uEKFCmlpafqJpFOQUqAvSN2/fx+t/+eff64Nev78OewipUl29uxZYXWYXrd0KEip0Jc8dEoHwA7s0qWL1v/Jkyc5cuT417/+ZTKPkBJDqGrVqtWjRw/9zFCQUqFfOtHR0QhduHChtcOnTp0Ksxk9EaUgtWvXLhjPDx48MJlVXdSmK1euwK4WvWsdKEipNq0gtXLuHJTIqIEDnpqn71UqX756pUraA8cNC0O02/Fnpc9P4eEvhilE79mxepWDg/3d8+eemkdIzZsyOfnokVyentrFqihI2Q6eSOhaWhwAiNqBzmzDhg0tHigGKqKjWrlyZXRas2fPLif3odNdoEAB9Je9vb2DgoJQp9D6KId3KKEglSV5DUEK9oefn1/t2rXFmBo8u+vVq4cbSAwI0k7Z279/v1xSEQ47Ozs5ZtWaIFWoUKHGjRsL99OnT/e9BEnJtaJwXg8Pj3HjxsF97NgxaTZJEOTu7i6alubNm8OEUq4dqBSkkCtUHjnOWTJr1ixHR0fxqurmzZsuLi5yhBHqBs4YEBCA/4u2HynDdEOa/fv3FxGSkpJ8fHxgbcMNuxyR5Rgo8TYYVw+XYu7cuUpPFWIuuhi8jfglS5bELqwNXAScEVUapxAxk5OT5bB5FFCJEiXk3xGJdO3aFfkUV69t27ZVqlQRV2Pr1q3Ihhw+phKkUOfFXEg8RHx9fWWhEELIPwcKUkosSh4JCQkffvihm5vbJ598gpZXp9smuXz5MpoYmJhid8WKFWjT0aOGARAREYGzODs7668fLEinIKVAX5D66aefEAqTyWIoOsxly5aVGtOJEyfkwLfXKx0KUir0JQ+d0oHBhu5ZSEjIxx9/7OnpiYuPXpkcz45ygdX31Vdf5cqV6+DBg2PGjClVqpQw0XWgIKVCv3TwZMuTJ4+1N+XoKeC5J1bEUwpS6MKgTtWpU6dVq1ZFixZFRwkd9Y4dO2aYGQpSGQpS2MKHDMGlDqperWhh33qBgddiT2gP7N/9a3t7e6XPMvNUnuioqMfJF8uWLl2nRo1PmjQu6ut7O/5swzp1PmvdOsPMUJDSYdWqVbi8sntrMk8ewsNt6NChfn5+gYGBclqVCtHrjIqKMpkrTu3ateWYUNHp/uijj8TQk+3bt+vMo6IglSV5DUFqx44d8BFvYwTbtm2Tr0MzXEMKD/SBAwfKm8+iIAW7R472h5mbTQHOJfzFHS/XOIchVa9ePWUiMI7liybtxG88wipVqtS7d+/WrVvDhkYlkWsNSoYMGVKkSBG5iziDBg0SblE3xAAowbBhwxwdHe/fv688HHFSU1OPHDnyQsUfNUquh2Uyz7zD34R5cefOHWvXKjQ0FP9C7iK3Li4uMhFhuyjPKMHVq1q1qkykYMGCyka0Zs2a8sokJycrX2WrBKmePXvKo7744guLw7gIIeT9hoKUEouSR1pa2ogRI9Bn9jZjyzqS6OC5uroqPwF2+PBhHHjgwAEYnWh8p06dmpSU1K5dO/S90ceztr5hOgUpBTqCFC4gzBgxpcsiK1euhGlUsmTJTp06NWjQIGfOnEhqxowZIvQ1SoeClAodyUO/dO7du4cD8+XLN378+J07d8KmLVWqFCqa6J49f/4cJT5//nzUpqNHjzo7Ox86dAjRmjRpgi6cmI+mhYKUCp3SwYXFw01MuLMIjGqY1jIdKUiZzGWH8lq2bNmtW7ciIiJ8fX1h9qMTgbLGM1B+KlEFBSlbBKlDW7f4lyiR28sLBde04UfaBaSwfdm+vSu6Tgqf1fPnIf6eqF/hvh1/dtmsWUtmTL9+5vRP4eG+BQrcjIubMW5snRo1WjZufGT7NgpSWvCwevQSZcfWZB6+ULhw4fLlyys/NbZhw4bAwED0Z9FNrlKlysaNGy0mi16nclwnHlwvisk82EJ0upVDN5CaqtcvoSCVJXkNQUqsEqWc/Hzx4kX4iHFPWkEKLSUSCQ4OLlOmDG5TPNOVkodFQUpoqHL3qRk0rkozq0WLFjCbjr2kS5cudnZ2ly5dEqF4xCPy5MmTRWhMTEyOHDm++uormaawulq1aoVWBDm32AKtX78eifz666+oe0L/EsKt6WXdUIpBbdu2LVGihPLwyMhIscQV3GFhYfjjaIfGjRsntaF169a5m+nevbtWDjOZtaRKlSrJ3aFDh3p4eMhdUTSyfu7atQvxK1asiIsMc0QeqEoE4JrDrDl79ixy0q9fPycnJ7lggUqQUpbON998Ax9tJgkh5P2GgpQSreSBBhqmIZrUEydOPHz4cPDgwYggZnhZY8KECYhjravcuXPn+vXrw3hA49WrV6+9e/cWKlRIKiMq0ilIKdARpNauXYsg/OocfvTo0UGDBvXs2XPKlCnC6BILMiixvXQoSKnQkTz0Syc1NRWhOFz6iKH30iiV0fz9/b///nsYdej7LVq0aPXq1TA+LY5loyClQqd0+vTp4+DgYO1j3Pv27UOfQg5YUwlSkjNnzri4uMBWR+cid+7cv/3225AhQ+R3A1RQkMpQkNqwZHFOB4ewb/o9TEzYt3FDCT+/vLlzJx0+pDqwV5cv0AFU+iyeHoGCjouJVnqe+m23i7PzjtWrfo1c6O2Va9faNYN6986fL59YCp2ClJJu3brJYSJffPGF9IclEBIS4unpqVzIWAlqUFBQEGqHxVWJVb1OVCikv2LFCpOlTnezZs1KlSpl8SwUpLIkryFICR/liDs8ZKUIpRWkBg4c6OzsPH369IMHD548eTJPnjwZClLt27e3t7dXaTRKM+vGjRuIkE0DbFwR+Vvz1xZUoJJIMUi1hpRFtm/f7urq6uHhgeYcTZHy3Yi2bnTq1EksrKCKIy9dUlIS7Dyk07RpUxnn7t27ERERPj4+BQoU0A6Vsl2QQvOGTPbr1y86Ojo2NrZJkyY6ghT6CbjyuAI4BMWhNIB0BCm4KUgRQv6BUJBSopU8Fi9eDB+lidm5c2e0L2LlFC2i8VIugq5kzZo1aKwvXbqUkpKCaGIIVa9evbTT6gXpFKQU6AhS6AkUKVLE9g/pivdwqukVr1Q6FKRU6EgeGZYODOnevXvL3dOnTyMpMUdMggjVq1dHt/CXX34pVKiQ8CxbtqxcKEMJBSkV1koH/Rr0BXTm2fXt2zdHjhzFXpIrVy6kA4dYVETw5MkTmOIDBgwwmadYfvbZZybzYiDyvbUKClIZClJ+hQu3+PhjuXv+wH47O7uBPXuqDhwb9uLDo1dOHJc+4eZXJrfOxkmfRxeTAsqV69/9a7i/7tSpQ6tWcKScPoVosbt2UpBSgYf/yZfIAQ3Pnz9Hu4/HVExMjM6xu3btwlUdM2aMNkjV69y3bx9ibt261WSp092gQYMaNWpYPAUFqSzJawhSuNWy/XVhvxkzZsj5a2JcsbLxy5cv35dffqnczVCQEqdo2bKlciig0swStyYsoacKypUrh3bXZB5M6OPj06lTJ2WoMK1Wr14tUrNFkAoNDUWb8fjx46SkJNXKndq6ER4ejkehnEJoMs+bQzaUC1eB0aNHI5rqfYhYK1E5C1JmwEZBqm3btsWLF5dB2NURpHDZ582bh5JKTk5WZY+CFCGEqKAgpUQreaBde2Hf37olfcQAKIsDCtBVzp49u3KshxIc4u3tvXz5cpP5LQ4SQTsFN9rr5s2bWzwknYKUAmuC1MGDB8WwcRvTEQtjK8eqm169dChIqbAmedhSOjVr1gwICJC74tMBOFD6bNu2zdXVVZjrMNHlt9WrVas2ZcoUbYIUpFRYK52JEyfC/8iRI9YOPHr06BwFqAuw8+FQLgcWFhaGTop4Kf7555+LcSU4VzYrq4ZRkNIXpJ5cvuTgYN+ryxdKHxdn566fdVAduH3VSlzkpTNnSJ9a1aqVL1NGGWdI3z7l/P0fJibA3Sm0TedP28LxwLxizOFtWylI2ULv3r0dHBy2b9+uH03MPbL4Ogp9TOWIjfHjxyMmGhrTy0734cOHRVBqaqq7u3vnzp0tnoKCVJbk9b6yV7Vq1dy5c69btw43yooVK3LlyhUaGipDPT09g4ODcYiYGl2lSpUPP/zw999/h7X69ddfI7UMBSmTeUkmxKxevTpMHzyst27d2q5dO6mVomFGE6s6ZOzYseIlrVjTSmWQiUXQW7ZsKXZtEaQmTZoEuxl/NiQkBGdHcyJXu9AKUviDLi4uiLx3715EE/oUoiFo0aJF8+fPv3HjRkpKSuPGjUuWLGkyN2AjRoxITEx88OABHMiPMOyU2C5IDRgwwNHREXU1LS0NJ82RI4eOIIW/4+zsXKdOnRYtWqBdhA0kB2dRkCKEEBUUpASxsbH79u0T0/bRcMAtmi0hgnTo0AFt371793bt2lWoUKHatWuLo+CQHWnEtLe3DwwM3LRp0+aXKA0MNJFobYUbzRmMTtgYz58/RyLWNKx0ClJmrJWOQHxUVzsQW1k66CrgKBgzMN5gJ+TMmXP//v3KyK9aOhSkBPLjPF999RVKBxUEbmVZWCwdWIywtPv27St2586dK0YWwG5E9cmfPz8KTr5TvHnzJnzkh3dQcLADL126BMMbxSQ/eqOEgpRAv3SePHmCp1lQUJDqKFXpKNFO2YuJiYHVjRoqdseNG1e2bFmkvGPHDjc3N4sjSSlIie36mdMx66OwVSpf3r9ECeF+cvnSC4kqKMjT3T1qUeTNuLiLRw737dr1RSfxlxVPzbP53F1dxcfy0i4llypevHDBgpuXLT27Nybsm36ItmzWTHmKPVG/Ojs5HdvxL7E7ZujQsqVLP7qYtG3lL26uLuIbfBSk9BHiUffu3TcrwEPJZJZie/XqFR0dffHiRTy4ihUrlidPHjmuSomYu9O+ffu4uLjt27fjwdWkSRMRJDrdqHFr1qxJSEgQgoD4wL0WClJZkgwFqUWLFmVTrB0ugNGJp7OYB4c2D2aoWFhREBERgVsqm/l7cCZzu+jr64tdeHbr1i04OFgqQWg+5QLnWmDoVKxYUU64K1CgQL9+/fDgvnr1KnanTZumip+UlJQ9e/bhw4fjLLjdtbOyu3Tp4uDgkJqaCjccQ4cO1fnjIgMuLi6jR49G4zF48OAyZcp4enqKiYRo9ZEHVSuydetWPz8/kVsPD4/w8HDhv3HjRuRH+JcuXVpUIeQWCQpPLy8v+W1LJahycm1ygL+GmHJXFI2o8Ddu3KhZs6ZIrU6dOv3795eCnSoR0KNHD+QTBityiNYUNbx69eoiSFkiqtKBGz76V4wQQt4/KEgJ0DFTTYRHayuC5s2bhwZCeKIhbtOmjRwe5e/vLz8PMmnSpGwaYK2KUBidBQsWVI60QrLosKEBRbum9FeSTkHKjE7pwPqHAWax86wsHbTydnZ24tgqVaqoVIzXKB0KUgLYzNrbXgw0M1kvnStXrsBffoIGiGUfcCyKqXHjxsp1LUJDQ5WDC8CXX36JHl2uXLmU6wQroSAl0C8ddICxu27dOtVR2tKRjBkzBsUkd+/fvw+T+8cff5Q+sNthdcP2RuksXrzYYq4oSIltjqUmI/noEQRdOna0eXCwfGQVyp9/4bRp4qjls2fDZ/7UKWL39J7fKpUvL6J5urtP+eF7mf6dc/FFC/tOGDFc+qScPlUtICC3l5enh0fkTz9ZzBUFKRUhISHaYhJzknbv3l3+5cUHys+DqvDx8UE1adCggYiJOiIXhhaC1IwZM/BMg8PZ2VkrAkgoSGVJMhSkTOahcRb9r1+/HhcXd+/ePW3QgwcPkpKS5KsbOLB748YNk/ldhJwk//jx4wyXM7h79+758+dTUlKUntY+Z4sEkf4TM9pQZEP+F8RUzVbT4uXlNXLkSLl79uzZbOY1zsWutU/DJicnnzt3TjXFD+dKSEjQrlwOkz0xMVH1kQKJ+C/KRFRfnFXlAWaNeCOKmPJAVSKxsbHZzK+ApM9s84NbSIrKElGVDtyqP0UIIf8EKEjZCNog9O5ULQV2rX0rXcXBgweVH90ToP2yJkUJ0ilI2YA1Q05VOnfu3Dlz5ozF19evUToUpGzEWunAllYZySgsWJjaa75ly5bbt29rD7dmLZsoSNmMNWtfWzoCla0O6xqlo+1x3Lx505rxb6IgZfN2P+HC2b0xKadOqvxvx59V+Vw6dhQxU5MSlZ63zsZtWrpUDLlSbimnTz1OvmjtpBSkXhU8suLj46096ASy1qAnK6UogZyWhBSQjs5jzURBKotiiyD1zwSNh6enZ8uWLUUbj7u/b9++jo6OqkqS5Th27Bhq9dixY0Wf4cqVK3Xq1BFrbxFCCNFCQcrIpFOQMioUpIwMBSkjQ0HKyBsFqUxGu06ODhSksiQUpHRYu3ZtoUKF7OzsPD098evr6yuHR2VpRowY4erqam9v7+HhgRperVq1uLi4d50pQggxKBSkjEw6BSmjQkHKyFCQMjIUpIy8UZDKZChISShI/UN59uzZ+fPnjx49qvrycVbn0aNHp0+fPnbsmMWR+YQQQiQUpIxMOgUpo0JByshQkDIyFKSMvFGQymTu3r0rvwmQIRSksiQUpAghhBAdKEgZmXQKUkaFgpSRoSBlZChIGXmjIGVkKEhlSShIEUIIITpQkDIy6RSkjAoFKSNDQcrIvBCknqQ9vXaVmwE3ClJGhoJUluTPP/9811kghBBCCCGEEEIIIRZ4bwUpQgghhBBCCCGEEGJMKEgRQgghhBBCCCGEkEyFghQhhBBCCCGEEEIIyVQoSBFCCCGEEEIIIYSQTIWCFCGEEEIIIYQQQgjJVChIEUIIIYQQQgghhJBMhYIUIYQQQgghhBBCCMlUKEgRQgghhBBCCCGEkEyFghQhhBBCCCGEEEIIyVQoSBFCCCGEEEIIIYSQTIWCFCGEEEIIIYQQQgjJVChIEUIIIYQQQgghhJBMhYIUIYQQQgghhBBCCMlUKEgRQgghhBBCCCGEkEyFghQhhBBCCCGEEEIIyVQoSBFCCCGEEEIIIYSQTIWCFCGEEEIIIYQQQgjJVChIEUIIIYQQQgghhJBMhYIUIYQQQgghhBBCCMlUKEgRQgghhBBCCCGEkEyFghQhhBBCCCGEEEIIyVQoSBFCCCGEEEIIIYSQTIWCFCGEEEIIIYQQQgjJVChIEUIIIYQQQgghhJBMhYIUIYQQQgghhBBCCMlU3ltB6k9CCCGEkKwJLRlCyPvJf//LzYgbMTbvWlz5G3mfBan/+Z//MRFCCCHEEv/973/ZUBoWWDLvOgvEMqg1qDvvOhfEMv/3//7f//znP+86F8Qyf/zxx/+mPX565TI3A25/PHv6v//7v+/6HiGWwWPtXYsrfyMUpAghhJB/IhSkjEw6BSmjQkHKyFCQMjIUpIy8UZAyMhSksiQUpAghhBAdKEgZmXQKUkaFgpSRoSBlZChIGXmjIGVkKEhlSShIEUIIITpQkDIy6RSkjAoFKSNDQcrIUJAy8kZByshQkMqSUJAihBBCdKAgZWTSKUgZFQpSRoaClJGhIGXkjYKUkaEglSWhIEUIIYToQEHKyKRTkDIqFKSMDAUpI0NBysgbBSkjQ0EqS5KhIHX//v0VK1aMGDFi6NCh8+fPT0lJybRbyhpbtmzp3LnzrVu33nVGCCGEvP9QkNLy8OFD2AbDhg2bMmXKqVOn9CM/f/58+fLlK1euVPlfunRpxowZQ4YMmT59+u+//6498NmzZwsWLJg9e/bt27etJZ5OQUrDtWvXcNFgtuH3+vXrGcaPjY2NiIjYuXOnyt9awQlgEKL4lixZYi1ZClIWsbF0cPPD3P3eDBzSH7VmgYalS5eqDs+wdChIWeTkyZM//vgjnmy489PS0qxFW716tfL6b9y4UQah1uzYsQOlFh4eDofyqJiYGOVRkZGRT58+tZg+BSmL24mdOyeMGD60X9+lM2ekJiXqxNy8bGnYN/1GDRywY/Uq6bl/86Z5Uyartm0rfxGhaZeSNy1dikOwwUFB6i1y7949PKPCwsJQudDcqEJR6caOHYtQGBXKGnHhwoVp06YtXLjw/v37yvh4cqJ+WTsXBaksib4gtW3btrx589rb2weYgcPV1VXb7P2toD0YOXIkblbpg3bCzs7u7NmzmZkNQggh/0woSKk4f/58vnz5nJ2d/f39c+bM+cEHHyxatMha5NOnTwcGBmbLlq1atWpK/5UrV8KoKFmyZO3atZGIu7u7VtiaOXNmNjN79uyxln46Bam/gq6yg4ND7ty5cW1hLHl5eSktKC2pqalFihTBRa5fv77S31rBSUJDQxGK0reWMgUpLTaWzvPnzytVquTi4hIUFFSsWDFc5y+//FIERUVFufwVFAGSUkkbGZYOBSkt/fv3x0UrXLhwwYIF4ahQocKDBw+00R4/foxQPAA9XlKnTh0RhIJDfcFlR/l6enoiWrdu3eSB1atXR+nLo7y9va1J7RSktNu3X3/9onRQNj4+L0rnwzJ3z5/TRku7lNyqaVM0LnVr1qxcoQJiDujZQwT17/61i7OzckNoUPVqCHpy+VJAuXLwqVWtml/hwvDv0q4dBam3wrlz5/DEy5s3L6oJHHhYRUZGytDJkyejvgQEBKABQu2APYD6Bf/ExMRcuXL17NkTR9WoUUPGP3z4MKre0aNHrZ2OglSWREeQgi0CGxGP4ytXrgifa9euoWnEfXPkyJG3c5PaAB7WeC7MmTNH+uBxr9JKCSGEkL8JClIqTpw4MWHChIcPH8KdlJQEExOGo8WYGzZscHR0/OqrrypXrqzSNdasWSOH5MCogJH6xRdfKCPcuHED3fWOHTtSkHolli1btmrVKlhKcG/cuBFXr0WLFjrxR4wYUbRo0cDAQKUgpVNwApRdjhw52rZtS0HqlbCxdJ49ezZy5Mg7d+4Id8uWLREzOTlZGxNJ+fv716tXT+lpS+lQkNLyww8/yA7OwIEDcc2nTp2qjfbo0SMEbd68WRuEwurdu7foN+EJib40Yh4/flyEoip99913tuSEgpR2+/67gQe3bBHuAT2648JO/n6UNtqsiRMQJIc4DejZA7uxu3ZqYyYdPoRqMmrgACFjjejf/2ZcnHC3+PhjHJV46BAFqTfn5MmT8+bNE4o5OvW+vr5+fn4i6PTp03hGDRo0SOyiTuGyz5w502SujOKx9vvvv8NTvK9CnSpduvSYMWN0TkdBKkuiI0i1a9cOFVWqUYLExERYjR06dBC7u3fvjomJefz48eLFi4cNG7ZixQrRykpwb8HWGTt2rHKEXnx8PGI+efIE91x4ePjdu3fhef369fnz5yORadOmIYKIef78+VmzZuFGhJ2KU+zdu1d44s7GQ18mJU40fPjwOXPmqEbY7tixA2f/8ccfFy1ahBT2799v8c8ie4iGrCobmIULF+IPyt3t27eLQbk4qRjBvm3bNhwyffp08Rck165d++mnn8LCwiIjI4XQK1i+fPm5c+dQtSZPnvz999/DplcedezYsYkTJ8I/Ojo6w2uoE58QQshbhIKUPu3bt0czbXHyEZqnQ4cOwVG/fn1rA20EefLkadKkidKnW7dulSpV2rVrFwWpN6FAgQJlypSxFpqQkODo6BgVFVXfjPTXLzjYb0jzm2++QZ+BgtSboF86khkzZqAWiBJRsWnTJgT9+uuv0sfG0qEgpQ/MdVzYHj16aIN0BCkV6JUgppz0SkHqbW1nY2JwYbt//rk26JMmjUsVLy53U06dRMzwIUO0MQf06O7gYH/lxHFt0PSxY3HU/s2bKEi9ddq0aePi4iLcERERuM7KCfvlypVr1KgRHN27d2/Xrp3wtLe3F6+vevbsGRgYKBQAa1CQypLoCFK5cuVq1qyZ1j8oKAgtqHCHhobivqlQoUKxYsWqVKmCu6pz584iCLdL27ZtXV1dW7RogUNy5Mgxf/58ETRz5szcuXO3atXK3d0dZ0ETe/z4cScnJ39/f5wRSeHOE0rQihUrihcvjmTz5s1bqlQptK+ml2P4xSApkdRnn33m7e0Ny9XOzq5hw4Yyq127dsVNj2xUrVpVjMIdMmSI9h9NmzYNZ2zQoAHO7uDgIMdFd+zY0dnZ+eLFi3CfOnUKcYRqi19cgQ4dOuCk+Gs4BFdADrtFzuFfvnz51q1bw8JGrmQQ/gXS9PLyCggIQBAOlO+HFy9ejEvUvHlzHOXm5paYmKh/DS3GJ4QQ8tahIKVPcHAw2kp9G1FfkDpy5AjaaOVrT/igL71///49e/ZQkHptnjx5AhNC2PcWgXXx8ccfm8wFpJqyJ7BYcFOnToU9c/fuXQpSb0KGpSOBdQpr2eLkANiufn5+ytpnY+lQkNIHDx88ecaOHasNsl2QGjduHGLu27dP7FKQelvb3g3rrclMdWvWDChXTunjg85XmzaqaHfOxXu6u3cKVfuLLaRhQ08PD8ShIPV2wXOpYMGCsqs+atQo2aMXfPrpp+itwzFy5MhatWqZXo6QSkhI2LJlCzq8Fy5c0D8FBaksiTVB6saNGyj+/v37a4M6deqEINH4iTnqgwcPFgOjhg4dKt/hzJs3z8HBQS4JMWjQIHd3dzH8WChKAQEBt2/fRjo4Njk5WZqbaWlpJUqUaN26tdjVTtlTCVJwwxq+d++eydwMY/fgwYNwx8XFwb1+/XpxVI0aNaTUqgTR0GAjt2IXtzuOEjpRSkqKl5dXy5YtkcOgoKCaNWuKvylO+tFHH4mBUdu3b8fuxIkTReaLFSvWsWNHERO1yMPDY8SIESJxmAi4Jhs2bDCZ66Svr2/jxo1FUPXq1eW4s1u3bomRjTrX0GJ8Qgghbx0KUjpcvnwZ7ZRsj6xhUdfYsWMHWu1evXp5e3vDtEhNTRX+aEDRZIsZfBSk3oRVq1bh6s2dO9diKHrUKDsxJt12QQqGDUwRsWoYBak3Qb90YNZGRESEh4fXrl27SJEi27Zt08Y5ceKEalqZ7aVDQUqfnj172tnZyRkbSoQghQ4CHlzFixfv1q3bpUuXtNHQwSlXrhxMfTl3BFXJ1dUVRxUqVKhZs2bWJm2YKEhltPXo3BmlExcTrQ36ulMnBwf78wf2i93b8WcL5c/fPDhYFW3q6B9QiIe3bZU+iDktfPTowYOCqlcrUqjQ5uXLrJ2dgtSrgr72Tz/9NHToUD8/v8DAQDmK4pdffkEpLF++XOyiyrRq1crT09NkHqKIRxlMi6pVq7Zu3frGjRs+Pj5yWIYOFKSyJNYEqeTkZNwiI0eO1AZ17/5i4q6YiRYaGqocbHz9+nUEiaXv8dhVDrCKjY1FkBj3JASd06dPW7uZ2rRpg/tPuG0RpHCbKrO9ePFik3k+HdxJSUkiCKZt9erVtef67rvvPDw8lDMN0caMGjVKuHHrI5H27dvnyJFDLjwpTqqcnvDhhx+Kma5i+qtyrbVPPvmkbt26wp03b160cDIIWSpWrJhwN23aFLUU1U+ZN51raDE+IYSQtw4FKR3QxqGLleFLS4uCFDrMNWvWRI/OycmpSZMmsFmF/8KFC9Eui2H8FKRem7t37xYuXLh8+fJPnjzRhsKKK1mypBw2brsg9fnnn6PUhJuC1GujXzoms9SLnltAQADqAmzFiRMnqtbEMJnLws3NTblqhO2lQ0FKBzFCE/0daxFWrFixdu3aVatWob+QK1euAgUK3Lx5UxUHPXA8u9Dllj47d+5cuXLlunXrIiIiSpcujVOIpUi0UJDS2Q5u2YJL93WnThZDz8bEeOXKhe3Tli2aNWrk6eFhZ2fXOiREGSftUnLRwr61a1RXel48crhmlSoBZct6uLn5FS48fviwJ5cvUZB6K2zYsAFPM3SWHR0dq1SpIr9KiadfpUqVxIyfTz/9FB1bFFaePHlEKLrwCxYswLFCqGrRokVqamr//v2RVNeuXWXfXwUFqSyJNUHqzp07eIz26tVLG9SyZUu0f8IdGhqKO0kZ6u7uLr4okTt3bjwv5EdAYG4iQTE4SKkoSXbt2oXUKlasiBba2dlZJmuLICWTunfvnlwODbYsTvrdd9/hdj916hTyI2b8qWjdujUOUX6vRDU0TExFVApJ2vw3a9asVKlScEyfPh1BOK/y6yeVK1cW0fLmzfvtt9/Ko5Af+Ag3DHGYhoiMOimXCdC5hhbjE0IIeetQkLLGhAkTVD0ua+hP2Tt69ChsULT+MDfRu4YbfTkRREHq9Xj69GlISIinp6fFIR5g/PjxBQsWlB8Rs1GQ2rdvHwwP+daNgtTrkWHpKHn06FHv3r2lcSu5du2ag4NDnz59pM8rlQ4FKWug+1C0aFGY7nLMpj5icXpV6fz2228oHYtLUAlSUlLQ2UHHx2IoBSlr25UTx4v6+lYqX/5+wgVrcS4fPzZ68KBunTqGDx68b+OGgj4+PTp3VkZYPX8eigy/Fg9/kJDQq8sXiDBj3FgKUm8X+Xk0uYzy48ePUXe6d+8eFhYWFRX16aeffvjhh6qjIiMj0V9GlUEnulatWocPHw4ODm7Tpo3FU1CQypLorCHl4+OjNR/T0tLEhxvFrkqQev78ub29/eDBg8XhLVu2vKRAro+uFXTWr1+fPXv2fv36RUdHx8bGNmnS5PUEKTiUgpS3t3eBAgWQMjyRGYvT73Hr58uX79JfkSujJyUlubi4iNdTsmXS5r9Bgwbim5SzZ88WprMyNTGd0KQRpOCWgpTJbKCsXbsWTSAqqphwrnMNLcYnhBDy1qEgZZEFCxZY+wqVlgwXNR85ciRS27t377p168Saj8XM5M+fH7v4RWto8cB0ClIaYIx17twZ3d2YmBhrcSpUqODm5lbsJY5m4JBLWwpUBde3b98cOXLIo3LlyoXSgWPcuHHaU1CQsogtpaMCRqmDg4NyjVQwbNgwOzu78+fPS59XKh0KUhZBpwNVo2TJksqFlvVBPxnXWbk41LFjxzw9PVu1aqW/noa/v7+1pyIFKYvbjbgzFT4sU8LP7+qJEzYeci32xbTWeVMmKz1rVXsxKS/tUrK1o1KTEh0c7D+qU5uC1FtHfKjE2pfyPvzww06dOil9EhMT3d3dxWgMVBmxxs7q1atz585tMQUKUlkSHUFKTM07cOCA0vPnn3+GJ8xQsRsaGgozUaxqBGLMXz2IjIw0mY0Y3DcWU9YKOm3bti1evLhyVwpSYtDT9OnTLR6uI0jht1ChQs+ePUtOTrYoRQl++OGH7NmzX7161WLoxx9/XKZMGTF2V45sFyc9fPiw2E1NTUVVEau5i3e51l4X6wtSgkePHrm4uISFhZl0r6HF+IQQQt46FKS0oJlD04kG1Mb4GQpSaBDF99GvXbs2R4H4+Dp+N23aZPHAdApSGnr37u3g4LB9+3adOBs3blRe59Jm4FD1w1UFd/ToUeVRzZs3t7OzgwM9cO0pKEhZxJbSUXH79m1UtxYtWkgfWJ7e3t6qTw+9UulQkNKCzkKNGjUKFy6MjoPtR4kVQuSL8zNnzqCrHBwcrPzKthZ0nZycnNq3b28xlIKUdrtzLr56pUqFCxZMPHTI9qO+69XL2cnpRtwZ6bN/04sRbT+OHKlzFOKjxmlXnqIg9easX7/e2qusrVu3Ikj5bEQvvnbt2mLqFShSpIhYIG/z5s0eHh4W06cglSXREaSuXLmS28z06dNhIx48eDAsLMze3r5hw4ZyHrtY1LxSpUr79+8/efJk2bJlEf/hw4cIWrNmDYL69Olz4cKFe/fuHTp0SK5IpRWkBgwY4OjoePjw4bS0NITmyJFDOfDK09MTT/Zz584hGyabBamYmBg0+aVKlWrcuHGbNm369u3722+/af8mWh0XF5e6desiceTz7NmzU6ZMEWszLV++HKnt2rXL9PK9k1hGSpwU/xT/MSEhoV27dnIpd1yZChUq+Pr6on2CAXH58uUlS5bIL3FYE6RQ37766itYDLAwEBkGxLJly3SuobX4hBBC3joUpFTs2bMHxkBgYOCmTZs2v0SuaQhLQH6W5NatW/vMVK5c2d/fX7iFCdG0adNx48adOHECzejcuXPRN5PrLarOxSl7r8T48eNffBC9e/fNCuQCN8rSUaKasqdTcEo4Ze9V0SkdmKNubm4REREmc5+tRYsWGzZsSEpKgvndqFEjWHrKwWtiPP6OHTt0zsUpe6/Kxx9/jCuGIpBFgx6yuO2VpfOTGfQIUDqrV6+GzV+wYEExGeLGjRtww7aHv0xEvNpH8Q0ePBjdpUuXLqE/UqdOHXQrxFeYtFCQ0m7B9eqhdH4KD9+4ZInYNi9bKpZ5WjZrpouz86GtW+A+sGXzhiWLk48eid+3d5B5ruvk70cp02nbormri8vNuDil56+RC5sHB0ctirxw8MD+TRsb1qmDGrd91UoKUm9OWFhYr169oqOjL168CJuhWLFiefLkEW8+UlJS0E2GDXDlypXIyEhXV1fVUGg8MIsXLy6nlgcHB4uV3YYNG2ZxjrmJglQWRUeQAvHx8SEhIXhiZjPj7e09aNAg5Zzq0NDQ8uXL9+3bF88IRMBTWNleTp8+HYeIY3PmzCltIDHMSt5eJvMTvGbNmiImntH9+/dXvpFDAyDSF6P4lIerkoIDu/CE+/Tp07lz5+7Ro8eECROGDx+O5hxBFl+x7tq1q3Tp0uLseADh1KgzDx8+RIWRXw66e/du/vz5xd0vBKkZM2a4u7vD4ezsPG3aNJkaGq0GDRpkewkq3pYtW0QQUhg4cKCMCTd8hLtJkyY4NeLjauN6SrPP2jW0Fp8QQsjbhYKUikmTJmXTIBed9PLykk3VvHnztDHF3HO0oWI6HrC3t+/YsaPFOTJ79+4VU/msZSadgtRfgdmmveboHotQZekoaWhG7uoUnJIxY8Y4ODhYywkFKS06pSM+XCMmBFy+fBlWqzS//fz8VEPvy5UrV7FiRf1z6ZcOBSktbm5uqqKBpY0+s+mvpbNs2TIfHx8RIXv27G3atJFfDTt8+LC2fMuWLStSgEN6oq9h8TW5gIKUdnNzddGWzrXYF3P3xCfzYnftfGpeH8oxZ04RoYBPvrmTJykTuXriBHqUfbp+qUr84pHDDc0SoTiwaGHf5bNnW8sJBalXYvfu3eXLl5elFhQUJNe5Q3cbXXXhj9704MGDxaAWwfHjx52cnJQfozx06BDMBtS+IkWKWBz4aaIglUXRF6QEDx48iI+PT05OfvbsmSpIriF18+bN8+fPayPA58KFCwkJCXJVJsGjR4+0J4IxKkbJPn/+XPXZEeQhKSlJyi7Kw1VJyd1PPvlErnUlwE3cr18/a38Tlhb+pnLclmo5w6dPn4rxt3JYFiLgEGXlkdy6dSsuLk71CQAcrrxEcCsvy507d86dO6ddQ9HaNbQWnxBCyFuEgpTtREdHo5OAXxvjo+VF66a/0op+M5dOQcpmdEoHRpd+KVgEVpnOvCQKUq/E6NGj8+TJA+tR+sC8hJmn9JHAINSa3Cr0S4eC1CuhLR08u2Dny1VibQTdJRwlRC4dKEi90lY/KEi53tPDxIQz0XsuHDxg8TN5Oquh37tw/mxMzPUzp/VPR0HqNUDdQZdZ25rjMZWYmIgg7cMKtoFq4SCB8jP3WihIZUlsEaR00H5lzzg0b968WLFiuJtN5tt92bJlsMPkS8I3weJXAgkhhLyXUJCyneDgYOVnvzKBdApSNpPJpUNBynZgUnp7e69ZsybTzkhBynYyv3QoSNm+xayPcnN1uXDwQKadkYKUkaEglSV5jwWpuLi4ypUrZ8uWzcPDw97e3s3N7fvvv38rKVOQIoSQfw4UpGwkNTV1+PDhFkcN/32kU5CyjcwvHQpStnPq1Cnl13syAQpStpP5pUNByvZt3cIFm5YuzcwzUpAyMhSksiRvKEiJwfZv8TZ66yCHR48ejYuLU80BfBPu3r0bGxv7tlIjhBBiZChIGZl0ClJGhYKUkaEgZWQoSBl5oyBlZChIZUneUJAihBBC3m8oSBmZdApSRoWClJGhIGVkKEgZeaMgZWQoSGVJKEgRQgghOlCQMjLpFKSMCgUpI0NByshQkDLyRkHKyFCQypL8+eefaJP+DyGEEEIsgU71u84CsQosmXedBWIV1h3Dgh41em7vOhfEMv/+97//ePb0+Y0b3Ay4/dv0/I8//njX9wixDAWpLMmff/75X0IIIYRYgQ2lkYEl866zQKzCumNkWDqG5U9RNv/f/8fNgNufrDsGBkXzrsWVv5H3WZDiTARCCCHEGv/llD0Dk84pe0aFU/aMDKfsGRlO2TPyxil7RoYjpLIkFKQIIYQQHShIGZl0ClJGhYKUkaEgZWQoSBl5oyBlZChIZUkoSBFCCCE6UJAyMukUpIwKBSkjQ0HKyFCQMvJGQcrIUJDKklCQIoQQQnSgIGVk0ilIGRUKUkaGgpSRoSBl5I2ClJGhIJUloSBFCCGE6EBBysikU5AyKhSkjAwFKSNDQcrIGwUpI0NBKkvynglSjx8/jo6O3rlzZ1pa2rvOCyGEkPcBClJGJp2ClFGhIGVkKEgZGQpSRt4oSBkZClJZEh1BKjY29ueff37+/Hkm30mvTWpqarly5T744AMXFxfk/F1n552xZcuWzp0737p1611nhBBC3gcoSGl5+PDhihUrhg0bNmXKlFOnTunEPHbs2IQJE8LCwhYvXvz48WNlEHYXLVo0ZMiQiRMnxsfH2xikIp2ClBX27NkzderUZ8+eWQx98uTJwoULF2i4efOmjAP37Nmzhw4dOm7cuOPHj6tSQMqIjwi3b9+2eAoKUha5du2auKr4vX79uk7Mixcvon4NGjRo5syZN27cUIWePXt20qRJqCMRERFXr15VhaakpMyYMWPJkiXWEqcgZQ10fJYvX75y5coMYyYkJEyePPny5cvS59KlS9o6tXTpUuVR9+7dmz59+v79+3VSpiBlbXty+dLSmTNW/Dw7w5g716z+YdB3g/v0WTht2v2EC9J//+ZNwn/ZrFmPLiZJ/z1Rv86bMlluC6ZNfZx8kYLUWwH3PGoBzIAff/wxNjZWGYR2BP3W783AoQy6cOHCtGnT0E7dv39f6Y8nJyJbOxcFqSyJjiD1ww8/ZMuW7dGjR29wB2YqaHeRYdi+uLlV9+57TFpa2siRI0+ePCl90EOws7ODpfIOc0UIIe8NFKRUnD9/Pl++fM7Ozv7+/jlz5vzggw8WLVpkMWa/fv2yZ89e2Qwa6LJlyz58+FAEoReHXU9Pz+DgYD8/vxw5cvz6668ZBmlJpyCl4datW126dMlmxpoVd/36dXd3dxcFDg4OiL9z504RISoqKleuXEWKFGnatGmNGjUqVKigSmHmzJniFHv27LF4CgpSWlavXo3rnDt37pIlS8JU8/LyUtpvSv71r3+hivn6+tatWxel4+Pjg+6ZDB0xYgTqRUBAQEhISJkyZXr27Kk6PDQ0FEWDumktJxSkLHL69OnAwEBcumrVqulEe/r06cSJE52cnBBz8+bN0h+1xuWvoAhQ0IgvImzYsKFQoUI46rvvvtNJn4KUxe3k7l01q1TB1asaUFEn2v2EC00bfoQKUqdGjeB69Qr45JMCVviQITi8wodlalSujHIJql7tYWKCCKoWEODgYO/h5iY2r1y5bsSdoSD15pw7dw5PvLx589apUwcOXPbIyEgR9Pz580qVKqGaBAUFFStWDEXz5ZdfiqDExEQ0QHiy4Sg0QDK1w4cP48F49OhRa6ejIJUleZ8EqZEjR6JteNe5yGxu376NYpozZ470QfX+5+hxhBDyd0NBSsWJEycmTJggpKWkpCSYmDAcLcacNm3a+fPnhXvKlCloraR01a5dO29vbzG44PHjx7Vr186fP/+TJ0/0g7SkU5D6K8nJyTD969at26FDh1ey4r7++mt3d3dhP8THx8Po79SpkxxgJXvUghs3bnh5eXXs2JGC1CuxbNmyVatWickHGzduxNVr0aKFNlpaWlqBAgUCAwPFbZ+QkICiadWqlQhdunSpyvBTlc7OnTvRG2/bti0FqVdiw4YNjo6OX331VeXKlfUFKRSNn5/f0KFDVYKUChS0v79/vXr1xO6QIUPc3NwmTZqUPXt2ClKvukUtinTMmfPLDh0qlS+vL0ghjqeHx/5NG6VP2qVk/B7fuQPlNaBHd+G5cu4c7E4LHy12keaAnj1syQkFqVfi5MmT8+bNE88odFp9fX1Rd0QQ2hd03u/cuSPcLVu2RImgCTOZVQhRcX7//Xd4ioHYsDpKly49ZswYndNRkMqS2ChIwUBBy4ff2NhY+P/444+4P5SRcYehlf3+++8jIyMfPHgg/ePi4hA5LCxs7ty59+7dk/67d+/+7bffUlNTkeyoUaOio6PFvSimAGzatEmVGZx37NixI0aMsPbcX7duXZMmTZycnBYvXrx69WqT2ZxCamjLZ86cGR4efvfu3bebJSU6acbExMCeRq6QCJJSTYG0+L/k1V6/fv3w4cORuMn8MnP+/PlIBPa9nL8AQ3/WrFkopi+++AKn2Lt3r/BEzVeO0t+1axdKDWdZu3atMgPLly8/d+4cinLy5MkoO/QxlHk7duzYxIkT4S8uBSGE/DOhIKVP+/bt0QzpTz4ymYceIBqaFbHr7e399ddfy9A1a9YgdN++ffpBWtIpSP2VK1eu/PLLL6ZXfK1448YNWFD9+vUTu7169cqdO7fOsd26datUqRKsCwpSb0KBAgXKlCmj9YdNiAu7bds26dO5c2dHR0cx6bVs2bIhISHW0oTdizS/+eYb3AAUpF4JmLuHDh2Co379+vqC1OzZs1E7cOfrC1LoOyCCHOCJiikmV6JcKEi96vbbr+v2b94ER/1atXQEqcvHj+XIkWPiiBHaoAE9eyDo7vlz0qdoYd96gYEUpDKTNm3auLi4WAyaMWMG6ouog927d2/Xrp3wt7e3F0N3e/bsGRgYaG0euoCCVJbERkHqzJkzcPfu3dvZ2RnPaPyiEZWaFELz5cuXK1cuMRivdOnSwn/69Om4h0qWLFm7dm3cfEWLFoU9KoJCQ0Pr1q1brlw5RC5YsCASX7BgwUcffeTr61uiRIkXivW0aTIncCOdBg0aNGvWzMHBQQ7nU1KvXj1kwM7OrlSpUlWrVjWZB5MjM61atXJ3d0eQuL/fVpaU6KfZqFGjChUqFCtWrIp5lClMigz/l7jaqIrwzJ8/P8z348ePw1L09/dHTCSFo3bv3o2YK1asKF68OCLnzZsXfxz2h+nlKHrxkvPp06edOnXKnj07zl65cmU0gbhQcsYEjurYsaOXl1dAQECePHlwOjlWf/HixXhqN2/evHXr1m5ubomJiVYqPiGEvOdQkNInODgYVoG+jQgmT56Mtkm8OHn+/Dnao2+//VaGnj17VjS7OkEWk02nIGWFVxKkRo8eDQtKTgqDIdSlSxdrkY8cOYIy2r9/v+iQU5B6PZ48eeLq6gorURs0YcIEXFjlC86IiAj4oC6I8QIw0qwlO3XqVFh3d+/epSD12mQoSAkyFKRg4fv5+WmfjRSk3mTTF6SWzXrRCUo6fEgb9HH9+gFlyyp9WjVt4pM3LwWpTAPPJXSxGzZsaDEUnVx02EUHduTIkbVq1TK9HCGVkJCwZcsWdEiVM5ctQkEqS/JKglSRIkXE2JyjR49iF+2liFmvXr2iRYumpKSYzCuLT5o0yWS2IPHA7d+/v4iTlJTk4+MDs1XsisntYk2yhw8flixZErudOnVC8wxjFHcqIouYcXFxSGfevHliF7ejco0DJXi4e3h4yF2hywQEBNy+fRuNAZJ9W1lSYkuagwcPFuOSxOBeIY3p/C9xtT09PcXCb8hAcnKyNPjS0tJKlCjRunVrsaudsqcUpJA+3OvXrxdBW7duxe64cePELkwWBweHDRs2mMzPCF9f38aNG4ug6tWrd+jQQbhv3bqlGg1OCCH/HChI6XD58mW0I7K90LJo0aKJEye2bdvWy8tLDo8C/v7+ZcuWlZ/EPXHiBJon9KX1g7SkU5Cygu2C1OPHj/PlyyfnjsFiyZ49e0hIyMcffwxTxNnZOSgoSK7ZgdAaNWp88cUXppcdcgpSr8eqVatw9ebOnasNGjBggL29vdJnxYoVQs8Vo9K+/vrrKlWqoGhQQO3bt5dviOFwd3cXE2MpSL02b0WQ0nlwUZD6+wSpEf37v5gR2atXCT+/nA4O+fPlC/umX2pSIoIqV6jQoHaQMnK3Th0dHOylIOXq4uKVK1eh/PlDGjbcu2E9Bam3Bfq8P/30E3rBfn5+gYGBylEO9+7di4iICA8Pr127dpEiReSw0HPnzuFRBtOiatWq6PPeuHED/ev58+dneC4KUlmSVxKk0HbKUNxS4u2ZEERwJ6kOHzZsmKOjo3IxoyHmleRSU1NNZqXmww8/lEG9e/d2cXGRqgfuWimpCJlJOdEMRu2oUaO0GbYoSMnBSm8xS6/0N5WDsa9fvy41L53/Ja72jBkztP9R0KZNGzEKzJSRIAUjUgjMkpo1a1avXl248+bNq1wIE/ZlsWLFhLtp06YoYjwOrOWBEEL+IVCQ0uGTTz5xdXXVeWmJCOjawZQUE/HEahFg5cqV6JWVLFmyU6dODRo0yJkzp2z4dIK0pFOQsoLtgtTChQuVr/rQQ8Buvnz5xo8fD88VK1aUKlUKxSeWPkBkWC9CAaEg9drgYhYuXLh8+fIWF0fr2rUrqpXSZ+3atbjUMTExUVFR4m3rvHnzdu3ahb6cm5ubHHHw+eefw8wTbgpSr81bEaRQFigauWCIEgpSf58g1e+rr1AoLRs3Xjl3ztZfVgzo0f1FL3XwYAQVL1q0yUcNlJF7f9nF3v7/CVL/WrVqxc+z18yfPy18dKnixVFG0VFRFKReg0cvkW+VNmzYEBgYiF42usxVqlTZuHGjjHz58mUE4YGGZgWd0IkTJ8qucVJS0oIFC3Dss2fPWrVq1aJFC3Su+/fvj/h4Qmo/PCqgIJUleSVBSg60Abh1QkNDTS/fAMBeUR3etm3bEiVKKH0iIyPlsmQ4tlKlSjJo6NChSi0J959ckKJ169ZwK79YgV05IkmJRUFKKRW9rSy99t8E7u7u3bp10/9f2qttMq8DhdQqVqwIC8bZ2Vkmqy9IwaBEpVWm07lz59y5cwt33rx5ldMivvnmG/gId1xcHDoDeBw3b95cDOkihJB/JhSkrCEmFokVizJkyZIl2bNnF5aD4OjRo4MGDerZs+eUKVN27typfO+lE6QinYKUFWwXpMqbkbsw+nEgDpc+YhB3VFQUetd58uT56aefhD8Fqdfj6dOnISEhnp6ecklQFb17986RI4fSRyxkjvhiWSLlNUdNEfP79u3bB7NNjmWjIPXavLkgde3aNQcHhz59+lg8kILU3ydIDejRHQ2N0qcauqzmmXrl/P1xrDLoy/bt8+fLp03kWuwJZyenNs2aUZB6VZYvX57tJXLxcgnqRVBQEO5/1bLFJrOMhecejkI3VhWEnjX6pykpKei01qpV6/Dhw8HBwW3atLGYAQpSWZLXFqQqVaokzMrz589nU3w3R9KpU6fChQsrfYRQIgbd2K7+fPrpp/ny5bv0V6TmqiRDQeptZem1/+bz58/t7e0HDx6s/7+0VxtuPF779esXHR0dGxvbpEkTGwUp5A05VGYPWSpQoIBwqwQpuKUgZTIbTGvXrhUrT1lbTZYQQt57KEhZRDSL1mbSWaROnTqOjo6qj3sIxPQli+sV6gSZKEhZx0ZBaseOF1+eUk2FcHZ2Rt9A7ooF6WHprVu3Dg6YFsXM5M+fH7v4bdmypTZlClIWwf3fuXNnXOGYmBhrccaPH48Lq/x80JgxY+Bz9+7dgwcPwrFmzRoZJFYCTk5O7tu3b44cOYq9JFeuXPCHQy7UoISClA5vLkgNGzbMzs5OfmNUBQWpv0+QGjcs7EV/7cxp6dM6JKRoYV84guvVK1W8uDLyR3Vqq1aVkpt/iRLWzkJBSoeHDx+efElCQoI2gph0bPFLeegFOzg4qFaYQtPv7u4ulpfx9/cXa92sXr1ajq5QQUEqS/LmghTuHrR/yg/iiOHH4eHheBYr78U2bdr4+PgIS9R29QfZyJ49u/gshT4ZClJvK0tKMkwThpqcoQDjA4lERkbq/y/t1W7btm3x4sWVuzKrYmj99OnTLf7xjz76yM/PT1r/KJoCBQrIF9T6gpQAN4CLi0tYWJg2n4QQ8k+AgpSWX375BU2YchCNLaDl8vT01Po/e/asVq1agYGBrxQkSKcgZQUbBakmTZpoP6hXs2bNgIAAubts2TIkdfDgwWvXrs1RMHDgQPjj1+KXiClIWaR3797odG3fvl0njhgVuHz5cukTFBQkRrHBurO3txcfsRF89dVXsNNg6R09elRZOs2bN4eBCsexY8e0p6AgpcMbClKpqane3t7NmjWzdiAFqb9PkNq8/MXDat3CBWL3yeVLJYsV+7h+fbjDvumHGpF89IgIunU2ztnJqfeXXbSJ3IyLc3J0bPdJSwpSbx10b629yrp9+zbsCrmaoclsANSuXVtMLQJFihQRI2BQ6ZSddCUUpLIkby5Imcxz3dG4zp49Oz4+Hs0nbpenT5/+/vvvaCCrVq26d+/eCxcuCOFGDsOzXf1JTk5GOnXr1j1+/Pi9e/fOnj07ZcoUi2sbZShIva0sKckwTRyFZPfv33/y5MmyZcvC7BMfudP5X9qrPWDAAEdHx8OHD6elpSHxHDlyKLMK+z44OBjHIinVH9+4cSPcXbp0wdljY2Pbtm2Lqg63ONCaIIX6D/sGFgzaVNR5/CMYo9oLTggh/wQoSKlANwxd4sDAwE2bNm1+iWyX0dKJz27AuKxSpcrChQthG5w+fbp///5oj0aOHCmioY3bt28f2lC0XCEhITlz5kRDmWGQlnQKUn8FBtg+M1+Z11LZtWsX3PLFmCwdgbA3hg0bpkpk7ty54iV2YmIiSjl//vwBAQHaoW2csveqiKFP3bt336zg5s2bJrNZ6ObmFhERYTKbYaVLly5cuPDWrVvPnz8/fPhw5eIYHTp0gAG5Zs2apKSkGTNmoDL269dPey5O2XtVbt26JepO5cqV/f39hVvc9srSAbCoETRr1iyUy+TJk+FGBJkOOkTw37Fjhyp9lJdIE6Y4ChEOaZCroCCl3a6fOR2zPgpbpfLl/UuUEO4nly89NX9Zz8XZ+dDWLXA/Tr5YpFAhRIiOioqLie7++ecvRhTOn4+g+H17czo4NKgdtH/zphM7dzZt+JGzk9PZvTEI2r5q5Xe9eu3dsD7p8KFda9fUrlEdXa39mzZSkHpzwsLCevXqFR0dffHiRbQmxYoVy5Mnjxj+iba+RYsWGzZsQNU4ePBgo0aN0OVUfrgMD8zixYs/ePBA7KK3i4enyTwCsX79+hZPR0EqS6IjSMEQwW3x+PFjuGFNoj4r34BVrVq1Xbt2wo2m9OOPPxbzRfG8liuOox318/MT/h4eHsqFz3GsXJYboK318vKSu4sWLcIhooU2mUf3oWEW6SBL1apVwz2tzfCQIUO8vb3l7s8//4z48iZ+u1myMc3Q0NDy5cv37dsXNgFCCxYsqKxm1v6X9mrfuHGjZs2aImadOnVg1itf3aCBFOmL2XmqPz5p0iTkShxbtGjRqKgoeSBMzIEDB8pduOEj3E2aNEGWcAieyMi/xRkWhBDyT4CClAo0K9k0wOIUoWg6heSBTnW3bt1cXV1l+wjzQH4qBC2OaGVAlSpVlKKGTpCWdApSf+XChQva0pFjbWTpCHr37u3k5GRxsPagQYMcHByEfdK4cWOLcfbu3ZvN/Ok3izmhIKUlJCREWzqrV682mTWObIoB73FxcZUrVxYRPD09p02bJhO5ffu2TMfR0bFPnz4WF7KAGY8StJYTClJaxJepVVy5csWkKZ1ChQqposlBHKBcuXIVK1bUpv/ZZ5+pjipVqpTFnFCQ0m5zLLU7YrjT1NEvhlDE7topYh7Zvq3sy+5VHm/vn3/8USaybuECn7x5RZBf4cLbV60U/sd2/EseAqoGVNy1do21nFCQeiV2796NvrC8tspvtl6+fLlRo0boaf6/EvHzUy5Jefz4cTRPytdRhw4dQkfVx8enSJEiFgd+mihIZVF0BKnnz58LNUogPhsnefLkiTQrBdevX4+Pj1ceIkhOTj537pyqscSxyg+LqM5lMs8UU6WDJgHpa79z90qJvN0sZZimHHV18+bN8+fPwzrXHmjxf6mutuD3338Xb2CQN9VnWR48eJCUlCRlI1VWERl506p4+IPKLMGtzP+dO3dwlMWcEELIPwcKUrYTHR1tZ2eHX+mDtjUxMRF2pzYyWpkzZ84oF8qxJUhFOgUpm9GWjqrdVwEjAWbArVu3dNLUMRIoSL0So0ePzpMnj+pqX716FdajxTK6e/curEcx6N4iWjtWCQWpV8Ji6VgD5WXR4LcdClKvtNUPCvqoTm2V55UTx+P37U27lKzyh8+5/fsSDx0So6uUW8rpU6f3/HYt9oT+6ShIvQaoO3heWWwv8BCz2NAkJCQcOHBAG187XUkJBaksiY4gRd4c7Vf2CCGEZC0oSNlOcHCwtQ9L/U2kU5CymUwuHQpStnP//n1vb2/lUuV/NxSkbCfzS4eClO1bzPooN1eXCwcPZNoZKUgZGQpSWRIKUn8rFKQIISSrQ0HKRlJTU4cPH64zZOPvIJ2ClG1kfulQkLKdU6dOKb9OkwlQkLKdzC8dClK2b+sWLti0dGlmnpGClJGhIJUloSD1t3LlyhWL37wkhBCSVaAgZWTSKUgZFQpSRoaClJGhIGXkjYKUkaEglSWhIEUIIYToQEHKyKRTkDIqFKSMDAUpI0NBysgbBSkjQ0EqS0JBihBCCNGBgpSRSacgZVQoSBkZClJGhoKUkTcKUkaGglSW5M8//0Sb9H8IIYQQYgl0qtlQGhZYMu86C8QyqDWoO+86F8Qyf/zxB3pu7zoXxDL//ve//3j+zHT7FjcDbv/+nxeK4bu+R4hl0Oi8a3Hlb+R9FqT+SwghhBArsKE0MrBk3nUWiFVYd4wMS8fQ/Oc///njD24G3P78z3/e9c1BrILH2rsWV/5G3mdBijMRCCGEEGv8l1P2DEw6p+wZFU7ZMzKcsmdkOGXPyBun7BkZTtnLklCQIoQQQnSgIGVk0ilIGRUKUkaGgpSRoSBl5I2ClJGhIJUloSBFCCGE6EBBysikU5AyKhSkjAwFKSNDQcrIGwUpI0NBKktCQYoQQgjRgYKUkUmnIGVUKEgZGQpSRoaClJE3ClJGhoJUloSCFCGEEKIDBSkjk05ByqhQkDIyFKSMDAUpI28UpIwMBaksCQUpQgghRAcKUkYmnYKUUaEgZWQoSBkZClJG3ihI/R0cOXLkypUrb54OBaksSYaC1P3791esWDFixIihQ4fOnz8/JSXlze+VN2TLli2dO3e+devWu87Ia5LV808IIf8oKEjZwsmTJ8eOHRsWFgab4enTp/qR/3/2zgOsimN//0IABUG6XREbRLAl1iCJib1HicbeTdRETaKIvXcFe+y99xh77A0VC4igFHtDIwLqub/k5uaG/5szf/fZu3vOckQDi76fZ5/z7M7Mzs7Z2Zn5zrszswcOHBg9ejTsiqVLlyYnJwvHI0eOTJ48efPmzfKQL1686N2796ZNm8xFlU5BSpOTJ08uUrF3715z4dPS0tasWTN06NDhw4f/9NNPknsmcoeClIWgOEycOBGWNspOamqquWA3b96cO3cuSg1+79y5I7kjF9avX4/cOXHihDw8wrRo0SImJsZkbBSkMuTRo0dLliyRFxz0mU2GxE1WFDGpa5253KEgZeH2NO7aqrlzQ/p9O2zAgO3Ll5sLdmrXz+OHhAR/03dJaOiTq7GS+/2oyPlTpswYMzrmxHF5+INbNgc1bZqWmEBBSk5CQsKsWbOCg4Nnzpx569YtuRcKy4oVK2AA4FGPiIiw0EtO/vz5+/fv//qJpCCVI9EWpHbt2oXnw9bWtpIR7Dg6OuKpev3HxXLQNsMqgqUruQwZMsTKyioqKiork/EGyenpJ4SQdwoKUhkyderU9957D3ZC7dq17ezsatWqlZKSYjJkcnJy48aNbWxsAgMD69evX7hw4bVr18IdfTYPD49BgwZ5e3vjVwo/Y8YMLy+vpKQkc5dOpyClyXfffZf3f8mVKxcyyGTgy5cv+/j4uLi4IGs++eQTJycnIXxkLncoSFlCp06dUBzq1q3boEGD3Llz+/n5/frrr+pgyAKULORCmTJlYEO6ublJhnHfvn39/f2R0TDRd+zYIZ3SvHnzzz//3Nx1KUhlyM6dO1FY8uXL5/wSdKpNhhw4cKC1tbWzDJwrvDKXOxSkLNkiDx8qW6qUS7589VBb1azp5Jj31vkIdbBvunVD7lQuXx4bMtTPx+dRzBW4pybEVyxXrnGdOh2CWrk4OyecCRfh70VGFi9SJHTMGHPXfTcFKbTUtra2qH/QfKCmQrm4cOGC8IqOjkbVlD9/fjTr2EEFtWTJkgy9FFCQsoR3UZC6ePEiHrgKFSpIMv/NmzcDAgJgdJp7RfBP8ODBA1Qf8+fPl1xevHjx+PHjLEvAGyenp58QQt4pKEhpA2sBhgG6ZOLwp59+Qqs9e/Zsk4G7d+/u6uoqHyzw/Plz/NauXXvkyJHYWb16NcxW4QV7N2/evAcPHtS4ejoFqVchISHBxsZG3GoFz5498/X1rVixojT6RhrplrncoSCVIUeOHEFhkV707tu3D4cmO2wrV65ct24dDEjsb9++HcGaNWtmMOaRnZ3dL7/8gv1evXq1bNlShF+4cGHBggXv3r1r7tIUpDJEVGVPnz7NMOQPP/xQtWpVtXumc4eCVIZbSnycT+lSFcuVk0QouJgMOW3UyKgjh8X+lBEjkKeLZ8zA/oFNG+3z5BEDphBV2NixIky7li3rBAZqXPrdFKQ2bNiACkrsnz592srKqnPnzuLw/PnzCxYsEO0Fuu3FihXz9vbO0EsBBSlLeBcFqTZt2sBqUcznvHr1Kh7Btm3bisMDBw4cPnw4JSVl2bJlQ4YMgaUiGkuJiIiIcePGDRs2TD7w+/Hjx/Pnz8fv1q1bhw4dGhkZCUfU+Bs3bhw+fPiECRNE3Q2uXLkyZ84c1B146HEJtNzCEQ+3MGGlqHChUaNGTZ48WTGGcO/evUgA3JcuXYoYjh07pvibUgzh4eEjRoyYNWuWeNcXGxs7ZswYnKiYpQjbCxHCMlu7dq1kq5n8R+au/krpJ4QQkr1QkNImLCwMzbS88fL3969bt6465M2bN2FXTJkyRe3l6+s7b9487MCogJmBJjI1NbVixYry8TgmSacg9Sp8//336CGbtDTWr1+PfDT5xjFzuUNBKkNWrlyJe3727FlxCIMThzBEMzyxcOHC77//PnaQlTjl8uXL2IfVGhgYaDBasE5OTnLDWw0FqQx5fUEq07lDQSrDbe2P83FvT+zc+UpnnT+wH2dNGDoE+yvnzClUoIBw/7RWwND+/bGzZv48VxeX+PDTFKS08fT0bNiwoUmvVq1a5c2b91W9hCB1586dadOmDR8+/OjRo5IXSpAYSb1r165hw4bNnDlTY9A0BakciYYg5erq2qRJE7V7QEAAGkKxHxQUBKOzQoUKJUuW/PDDD1HIO3XqJIWcMWOGra3tp59+inhgAHXt2lW4X7p0CSF79eoFx0KFCk2aNCktLa148eIFCxZs1KgR6nT4jhs3zmB8F1eqVCkc4jEtW7Zsv3794Dh79my4iEFGIqo+ffo4ODjgRPwibZKl1a1bNzz3X3zxRZUqVRAMlwgODlb8HRFD79690TzgL8BWxt9Zs2ZNvnz5cGhvb4+zHj58KAK3adMGEX722Wf412KItbl/pHF1y9NPCCEk26Egpc0I4ztn+cjf1q1bo8lTh0SbjpAJCQlqL3TVxHQYhBHnDho0CM2xxpI6gnQKUhaDPHJxcenYsaNJ3549e8KWM+mVudyhIJUhKAuwM9Gve/LkCQ579Ojh7OycoREIm9nR0VGYoNiHObpnzx6DcQxOhw4dnj9//tFHH3311VfakVCQypDXF6QynTsUpDLcurdv5128+KueNXn4cOTpoS1bsL93/To7O9ukK9HPjCOkFkybGh9+2tXFZfW8udqRUJA6ffo0buPYsWPVXklJSUWKFKlTp84reRmMgtTHH3/s4eHxwQcfoO9vbW0tjRVFxxm947Zt27q7uwcEBKCvjdbnwYMHJuOhIJUjMSdI3b17F4/agAED1F6oT+ElBvgEBQVhH3aJGBg1ePBgHJ48eRL7kZGR77333oIFC8RZYia2GOwnVBhYRWJtM9TXOH3t2rUiTnEJaUy4esqeWtDx8vIS7x/Cw8NxOHHiRJEA7G/dulWcVb169TZt2qj/joihRIkSV69exSESLNImJhQcOnQIh3PnzhWBt23bJomyixYtgpeYQKv+RxpXtzD9hBBC9AAFKW3WrFmDlmvVqlXiEE35559/jgZRHXL48OGwMmEzlClTJnfu3IUKFRo6dKgQNVavXo2uOPpsRYsWDQsLO3jwoIODg7REhQbpFKQsJjQ0FDl15swZk76BgYHvv/8+DLCCBQvmyZPHx8cHmSK8Mpc7FKQsAeaxm5sbrFDcf29vb8XS1yZZt24d8vHHH38Uh8iX0qVLS5Nh0UssW7asULg0oCCVIUKQQj8ZXRI/P7/Ro0ebXN7LYBSkxApfBQoUqFmzJipDab5I5nKHglSGW2D16u+XKdO+VauC+fPnyZ27bKlSK+fMNhd48YwZE4YOCWra1NXFRQyPemac4ufn44N4WjRsUKJYsQeXo+oEBrZr2TLDS7+zgtTevXunT5/eu3dvd3d3tBTSB0kMxk432pfBgwejEkMREH3qDL3koKChEG3ZssVgnOtaq1YtFCghB4uO82effSb64Lt378ahGPyhhoJUjsScIBUfH4/Mhu2o9kLdCi+xXmlQUJAYMyy4c+cOvMRCA6idYb7IZ/ChxR0xYoThpQqjMSYZXgggHnRLBCm0zZIvHvcuXboYjOP64HXt2jXh3rlz52rVqqmvpYjh/v37OBw/frw82SYntV68eBEhxQqF6n+kcXUL008IIUQPUJDSJi0trXLlyjY2Nk2bNm3dujVaMSsrK09PT3XIfv36oclr0aLF+vXr9+zZ8/3338vfsp46dQpt/fHjx2F0enl5wfBFG9qmTZuAgIBRo0ZJr6wUpFOQsgzcQGSNmDRkkkqVKuXOnfubb77ZuXPn9u3bGzVqhNw5fPiw8M1E7lCQsoRbt241a9bM0dExT5485cqVk9asMAfuf/HixcuXL49yJ1xgaf/0008LFy6MiYkJDw93cHA4efLkvn37GjZsiC7cmjVrTMZDQSpD0CNYtmwZesirVq3q2bOntbV1gwYNTIaEMY8wCLlo0aK6devKe8uZyx0KUhlulfz8ctvZ9e3WdceKFVuXLW342ae47Qe3bDYZuHmDBlUqVSyYP7+bq2v39u3uRUYK9weXo1bOmbN81sw7ly6GjhlTrHBheM0aPy6wenWccnr3rndWkEKV/vQl0gI1qOpr1KhRqlQpMa5TWqDGYByxUbNmTdRgqMc+/PBDtCCWeMnJnz+/fOSgeNEl1igUHWf5p0UR2yeffGIyHgpSORJzgtTDhw/FRDa1V/PmzZ2cnMR+UFAQzFC5b758+Xr06IGdli1bIgbFh13EkCuhwkijhwTR0dFff/111apVYTC5ublJko0lgpQ8KlhUSJXB2MajwPzwww9osy9cuODh4SFm/ClQxIBSh8Np06ZJAdDwSyUEt2XMmDEwv0qXLl2oUCHpRHUyNK5uYfoJIYToAQpSGZKSkoKmrVevXiEhIeiVtW7dGvaiOtj333+PTp3cpVq1amj1FME6depUu3ZtdORgYMAOOXLkSNGiRc29xEqnIGUZGzduhL2BX3MBqlSpgtsuHSYlJdna2qoNJ8tzh4JUhsTFxRUpUqRx48a3b99OTExEH8/Gxkb+LTYFsFER2MXFRQyrV5CcnOzr6zty5EiYoOj7LV26dP369ShxJseyUZB6Vb777juUINjt2sFQNNCXQe9a4f5KuUNBKsPtw4oVa3/0kXR4PyoS9dW33btrn7U0LAz3vFWTJgr3C78cyOvgsHf9us1LFru7ue7fuGFgnz6FChR4Gnft3RSk0JfP9RJp8XKJ8PBwT09PdJDlg6QE0gfQzp07Z7mXQbWouZgzJEbpyjvOgiZNmpQtW9ZkyilI5Ug01pAqWLCgekZ0amqq+HajOFQIUqiFUR2IRS5hjxYoUCDhfxEj89UqDJpkDw+PevXq7dq1C4/pcOMU38wJUkiPJEi5u7sXLlwYVQ/CNG/e3OS37SwXpPDvYDqXLl167dq1KCfiKycagpS5q1uYfkIIIXqAgtSrUq5cuQ4dOqjdJ06ciCbv/v37kkurVq0U39zZsGED+tswGMQCzzExMXDs3bu39IEqBekUpCwDPQEvLy9zA81AgwYN/P395S7ocii6Iq+UOxSkMqRLly4wlaVVitLS0sqUKWNyOL/BaIV26tTJwcFBGramoE+fPjgXduyaNWuKFi0qHP38/GbOnKkOTEHqVRFDNrQXIxeIqSSKxadeKXcoSGW41a9d29/XV+7i6e7eqfUXGZ4YWL16nty50xITJJencdcq+fsP6NUT+z07dGj7+efYuX3xAjIxYv++d1OQQg1//iUmV7UTXXXxtTEF+/fvN7fClIaXQpA6evQoQv78888GU4LUp59+Wr16dZMppyCVI9EQpER9evz4cbnjvHnz4Lho0SJxGBQUVKhQIWnNb7SRuV5+sHbUqFHW1tY3btxQx6xWYcSn9BITE+WH4sl79OgR9uX1tYWCDoKhxoftFR8fb1KKMpkYDUFKLAu1fPly4S5fJUqdDI2rU5AihJAcBAWpVwIWJNq13bt3q73EZHaxSITB2MEuW7asfBbMzZs33d3dxXJU165dQ2C0oQbjIgBNmzY1ebl0ClIWcOLECdzMqVOnaoQJDg62sbG5d++eOExISLCyspIvavmquUNBKkPQrVKIgCgO5t789+nTx87OzmTJMhgLl6OjY3R0NPYXL14s6bxVq1aV27QSFKReFRQQPPPiDmtTs2ZN6etPglfNHQpSGW4D+/RBfXX74gVxeO3USdRX44eEZHhiJX9/l3z55C7B3/T19/V9cjUW+x2CWglV69fYWGT3qV0/v5uCVIb0798/l+wLoXLQq4XX9OnTX8krf/78jRo1kg4nTJggLX0jOs6nTp0SXsnJyfny5ZN/RU0OBakciYYgdf36dQ8jM2fOxAMHayYkJMTW1rZOnTrSylBiUfPKlSsfO3bs/Pnzfn5+CC/W6oOZkjdv3o8//hjnPnr0KCoqCnWuqIvVKowYbYQH7tmzZ3v37hWz4SQdx8XFpV69ejhXPPcWCjqHDx9Gyy2M3VatWn3zzTcmZ+ZbLkg9fPgQdV+7du2ePn16+fJltDcagpTG1SlIEUJIDoKClDa3b99evnx5bGwszIYlS5ag39W8eXPJd/Dgwe7u7nFxcQZjC+vl5eXr63vkyBE0o2hb0QJu2rRJCowWU/oASGpqKozO1atXw+SoVavWqFGjTF49nYKUBbRu3Rr5Ir0+lMCNlaZMwiCBkdOyZcuLFy+ePn06ICDAyclJSE6CV80dClIZMnr0aBSByZMn37p16969eyg+yIKhQ4cajMUKFjWsRxFSdM969er1kwxJPcQOLOd58+aJQ9jkiCchIeH+/fvIJrEOiwIKUhnSp08fPOHRRkJDQ2HVN2vWTHjJc+fBgwfoG+/atQu13Llz53r27KnocmcidyhIZbhd+OUAbuPnjRqdP7D/xM6dH1Wt6uSY9+rJk/DatnxZPkdH8bG8u5GXPqhQYeH0aZGHDyFkf2PuDBswQIrn4JbNDvb2Z/buEYdjBw/28/F5Gndt19o1iFB8g4+CFGjUqNH48ePxhKOt//HHH+3t7dHHF14hISG9e/c+dOgQisCOHTtKlizp6ekpxlVpeCnInz//e++99+WXX0ZGRu7evRtFo2HDhsJLdJxR4jZs2ICroxnK9fITamooSOVINAQpAHuxcePGKPBiEilsyoEDB8rniwYFBZUvXx41Mp4hBChSpIj4jp5g//79Pj4+4lwrK6uqVasKkxTRSsuBC2DQ9OjRA2HgXrx48bCwMOxLH6HAoYhfTAEQo7TEpy7UUVWpUkUYTLCo8OzC3p04cSJad7HKoHpmviIGmMu4NBoeKYC3tzfaJLE/f/58sRgWfmfNmuXq6irG7qqToXF1C9NPCCFED1CQ0kZMuhdtvYODw6BBg+TfkEIX2tra+sqVK+Lw7Nmzfn5+IjAMU+lLYQaj0QkrQj6hb8GCBU5OTggWGBgod5eTTkEqI2D9w4iSpA05vr6+Xl5e0iG631JWIpvkU8MykTsUpDIENme/fv1QasQ9d3R0/OGHH8QSwtevX0eudezYUYSENZ5Lxfr164UvrHH54ALQtWtX9OhgpsrXCZZDQSpDBgwYIGx+YfYHBwdLX9mT5w6quzp16oh+CihatKj0hXFBJnKHgpQl28o5sz2Miw7/XV/5+Egrmq+aOxcuC6dPw35qQny3dm0dX+ajs5PT8O++S4mPEyEfRl8uUbzYxGFDpThvX7xQtVIlROvi7LwkNNTkdd9NQQrdXjFeBNja2rZv317SlQ4cOFC+fHmpXgoICAgPD8/QS0HBggUnT5786aefipDVqlVLSEgQXkKQQgJQaoSZMWPGDHPppCCVI9EWpASofy9fvhwfH69eekBaQ+revXswN02uTYBaG6crpq2pV0EzGFfQjI6OFpGI1abkabh27Zo0Mks+MVsRVVpammjLW7RoofiaDArSt99+q76uIgZELv84IFIi/18pKSn4p8LalidSEYn21S1JPyGEED1AQSpD0GhevXoVbb34Aq/CS/2tdBiyMTExCpvhxIkTYk0iOWgTzUlRgnQKUhZg0ugyGM0YRZYhU5CVsNwUITOROxSkLARWX1xcXGJioqJEoOBorPklZ+fOnQ8ePFA44nS5NKyAgpQlIGtiY2PRN1H0Sgyq3MGtRgUo3rsryETuUJCycEtNiL9y/Fh8+GmF+4PLUfLDlPg4BIs7fUoR7H5U5I4VK+TrSUmylCRaUZCSg6YBJcJkRxVtAYqAybZGw0tCaoni4+MlKUogTS1CDIhHo+AYKEjlUCwRpDRQf2VPPzRt2rRkyZIoNgajQbxy5UorKyvpbdLbfXVCCCFvCgpSeiadgpReoSClZyhI6RkKUnre3mVBKltQL2quAQWpHMlbLEhFRkZ+8MEHf4/PdHa2tbV1cnIaOXLkO3J1QgghbwoKUnomnYKUXqEgpWcoSOkZClJ63ihIZTEUpCQoSJlGjNzL9OlZAFIYHh4eGRmZlpb2rl2dEELI60NBSs+kU5DSKxSk9AwFKT1DQUrPGwWpLCYpKSkiIsLCwBSkciSvKUgRQgghbzcUpPRMOgUpvUJBSs9QkNIzFKT0vFGQ0jMUpHIkFKQIIYQQDShI6Zl0ClJ6hYKUnqEgpWcoSOl5oyClZyhI5Uj++uuv3wghhBBiBnSqYX1mdyqIaWDJZHcSiGlQalB2sjsVxDT//ve/0XPL7lQQ0/wBDC/+lfSQmw63P/7vX8if7H5GiGnQ6GS3uPIP8jYLUoQQQgghORFaMoSQtxB0rP/8k5sON2RNdj8cRIvsFlf+Qd5aQYoQQgghhBBCCCGE6BMKUoQQQgghhBBCCCEkS6EgRQghhBBCCCGEEEKyFApShBBCCCGEEEIIISRLoSBFCCGEEEIIIYQQQrIUClKEEEIIIYQQQgghJEuhIEUIIYQQQgghhBBCshQKUoQQQgghhBBCCCEkS6EgRQghhBBCCCGEEEKyFApShBBCCCGEEEIIISRLoSBFCCGEEEIIIYQQQrIUClKEEEIIIYQQQgghJEuhIEUIIYQQQgghhBBCshQKUoQQQgghhBBCCCEkS6EgRQghhBBCCCGEEEKyFApShBBCCCGEEEIIISRLoSBFCCGEEEIIIYQQQrIUClKEEEIIIYQQQgghJEuhIEUIIYQQQgghhBBCshQKUoQQQgghhBBCCCEkS6EgRQghhBBCCCGEEEKyFApShBBCCCGEEEIIISRLoSBFCCGEEEIIIYQQQrIUClKEEEIIIYQQQgghJEuhIEUIIYQQQgghhBBCspS3VpD666+//kMIIYQQM6Ch/PPPP7M7FcQ0sGSyOwnENCg1NDJ1C3NHz/wX/PHHHwYDNx1u/zVmUHY/I8Q0qNayW1z5B3mbBal//etfBkIIIYSYAqYnG0rdAksmu5NATINSg7KT3akgpvntt9/+/PPP7E4FMc2///3v31NTnl1P5KbD7d/Pn/3+++/Z/YwQ06Bay25x5R+EghQhhBDyLkJBSs+kU5DSKxSk9AwFKT1DQUrPGwUpPUNBKkdCQYoQQgjRgIKUnkmnIKVXKEjpGQpSeoaClJ43ClJ6hoJUjoSCFCGEEKIBBSk9k05BSq9QkNIzFKT0DAUpPW8UpPQMBakcCQUpQgghRAMKUnomnYKUXqEgpWcoSOkZClJ63ihI6RkKUjmSNyhIRUdH37hx441E9TrcvHkzKioqu1NBCCHkLYGClJ5JpyClVyhI6RkKUnqGgpSeNwpSeoaCVI7EEkFq69atM2fOTEpK0g5WtmzZDh06iP1169Z17do1JSXlzTxcr0KPHj2KFy+udkdili1btkjGypUrhdf169clR6Q8MTFRfmJERMS8efNevHiRkJCwyAwpRqT4V69effTo0bS0NJMpDA8PDwsLi4yMfOP/nRBCyBuHgpQGO3fuzLBFu3fv3ty5cwcPHjx+/PizZ88Kx0ePHi1ZskTekp4+fVo6BQ3urFmzgoODYX7cunVLI/J0ClIqLLl7MFEWL16stmeQWfCNiYlRuMNSkp+7du3aESNGjBs3bu/eveaSQUHKJJY/2+fPn8cdDgkJgVX57NkzyV07d86cOTNx4kScBaNUww6nIGUSC+/e8+fPUfWNNIIdhS/qQ9SKqPFQ7925c0d9+u3bt/EMLF++3Fz8FKRMbqd2/Tx+SEjwN32XhIY+uRqrHXjfhvWjBv4wqG/fxTNmPI6Ngcu1UycXTJuq2JbNDFOceGbvnhljRu9et5aC1JsCnWi0FCgsY8aMMdlkwB5AfXjs2DG5Y1JS0oIFC1CUrl27Jnc/fPjwF198gThNXouCVI4kQ0EKT0OePHly5co1ffp07adNLkj16tXLxsbm7t272qeYY8+ePaGhoZk715wghccX/8Ld3b3wS0qWLCm8UDzghUMvL6/cuXPb2tpOnTpVOnHUqFHwffr06aZNm/K/xNraGiGlwxs3bkjxFypUyMnJCfuenp6wEtQpqVGjBnybNWuWuT9ICCEkK6EgZY6IiAi09WjR0FCaC7NlyxZXV1c0r40aNapevXqFChWEO3pxODFfvnzOL0EnUHitXbsWDXGZMmVq1aqFphZhLly4YC7+dApS/4uFdw/9ZHjllWFnZ4cc2bdvH3wHDhwIO8dZhtTrhlno7++PPIUZ89FHH+GULl26mEwJBSk1lj/bMETfe++9SpUq1a5dG1mD8JI+opE73377Lbw+MIKs8fPze/Lkicn4KUipsfDuoSdcuXJlFJmAgAD0HRCya9euku/8+fORcVWqVGnevDk6Asji8+fPK2IICgrCWQhmLiUUpNTbN926IXcqly+P7e/c8fF5FHPFZMjHsTGN6nyGtimwevV6n3xSuGCB1fPmwn3T4kV5HRzkG7LAysoqJT5Ofq5X0aKIv/ZHH1GQeiOgvFStWhW3GvWei4sL7i266vIA27ZtK2q85z/88IPk+Pz584oVKzZp0qRjx45obqQ5WA8fPkQ3PywszNzlKEjlSDIUpBYuXOjg4FCtWjXUztoPnFyQwmP066+/aofXoG/fvoULF87cueYEqYMHD+JZ/+mnn9ReQnIS+8nJyS1atECVJz36kiAlPwWX+PLLLzXij4qKaty4MVzmzJkjDxYTE/N3NVe7NiwS8R6SEEKInqEgZY7AwMA2bdrA0DQnSF2+fBkmBGwDWAXCRRrogeZS3bYKNmzYIGQRcPr0aXQYOnfubC4N6RSk/pdXuntyevbsic7z48ePsY+OAboQJoONHTsWOS69sh42bBjyMS4uTh2SgpQaC3Pn4sWLuMkDBw4Uh6KwzJ49Wxxq5M6MGTOuXLki9qdNm4azli5dajIkBSk1Ft491GbDhw9Hx1jsN2/eHCHj4+MNxvoNNV63bt1ESNj56Et36tRJfjoeABsbmy+++IKC1Ctt00aNjDpyWOxPGTEC93zxjBkmQ3Zt29bF2fnYju2SS2pCvDpYWmKCT+lSn9SsKXcc2r9/iWLFanz4IQWpNwXKSJ8+fcQozidPnsBsQN5JY6WDg4OdnJymTJmCrrdckEK32t7eXqjwvr6+M2fOFO7t27evW7euxuUoSOVIMhSkPv7446CgoB9//BFPz6VLlxS+O3bsgC2CNhIWjFyQioiIWLZsmdjHWfKBQqmpqfPnz7969ao4TE5OXrJkydChQ+fOnfvgwQODsbWuU6eOi4vLMiPCNjIYF4cKDQ0NCQlBeMUw2nPnzo0ePXr8+PEwiV5TkAIbN27E4f79++W+rypIGYwl0M/Pz9nZWfoLYMSIEQULFoyKilJrVYQQQnQIBSmTrFq1ytHRMTExUUOQ6t27t4eHh0nVSUOQUuDp6dmwYUNzvukUpDTRvnsSd+/ehfX/7bffikMNyaN79+6w0KTDNWvWIB8vXryoDklBKkPM5U5YWBjuqnxCn7+/v9QN08gdOcgURDJp0iSTvhSktNG+e3JmzZqFkCdPnsT+jRs3FHNK0Jdu1aqVdJiWlvb+++/369cPdSYFqUxv5w/sx32eMHSI2ivx7BkbG5tJw4ZlGMm25csQycZFiySX6GNH8+TOvWnxotoffURB6h9i/vz5uO1r164Vh2hBxBAQFAe5ILV69epChQqJ/c8++2zYsGEG44pAbm5u8hnKaihI5Ui0BamEhAQrK6uNGzfev3/fzs5u8ODBct9u3brhkfrggw+8vb3LlCmDZlUSpPDc5M6dW+yjNkcw6aXozZs3cSgkquTkZDSxOB0nVq5cWZz+0UcfwdbBc1nWSGxsLBwPHDjg7u5evnz5li1b4kIILNQrsHTpUiSyZMmScIRxXLFixdcUpEaOHImrv+YIKcGyZX9Xdps3b5ZcSpcu3bdvX+xUqVKlZs2apu46IYQQHUFBSs3jx48LFy48ceJEg9GONCdI+fj4mJvPZaEgdfr0aQQbO3asuQDpFKTMk+Hdkxg9ejRMqZiYGHGoIXmsX78eccJSMhin78EIrF69usmQFKS00cidEcYBIPLXma1bt5aMWwsFqalTpyKSI0eOmPSlIKWN9t2T06RJE1dXVymz0K8pUaKEeO++cuVKRCJfZGr69On58+dHwaEg9Trb5OHDcWMPbdmi9lo5Zza8rp06mWEktQMCShQvJh881bRevXqffPK3FwWpf4zx48cjg44ePapwVwhS+/fvt7OzE9OtfH19xUp5bm5ukpJlDgpSORJtQQoPTb58+YS92LRpU7SF0hJi586dkywSOA4cOBCHrypIiSUkpPGx0sp/iil7qampJUuWbN++vbj6rVu3nJ2dhVaakpJSoECBOnXqiBXEN23aZGtrqyFItWjRov9L8BeEl5CckM4JEyZ07tzZ3t5+/vz50omvI0iJuyS9YDl27BgOxZptYjCwZPwRQgjRJxSk1KDRL1u2LFpng3lBCk22tbV148aN69ev7+Li4uDgEBAQEB4eLnyFIIW+mYeHh5+f3+jRo+Uz/ffu3YueW+/evd3d3WFaJCcnm0tJOgUpFZbfPYEwpeRLW6JjgM4AsgbuNWvWXLVqlXwF2XHjxiHTa9Wq5e3t/cknn9y+fdtktBSkTGJJ7ohxZ7jt4vD58+eff/65NDBNO3eWLl0Ks/OLL75A501jgA8FKZNYePcePXoUFhY2ZswYlAIvL69du3ZJXrGxseXKlXNyckKPA32oxYsXS17ov8BFTAOkIJWJbfGMGROGDglq2tTVxcXk8ChswwYM+HvyV+/epb29c9vZFSpQIKTft8nXriqChe/ZjSI2deQIyWX78uV2draRhw9RkPrnQFXm7+9frFgx9ZLkCkHq2bNnMAwCAwNR9ZUoUQIlrm7duu3bt8/wEhSkciTaghSq1I4dO4r91atXo+j+8ssv4nDEiBG2trbytzd4XF5VkBJvhxCV/OshBpUgJcxWyYoFqOU//vhjg3HkFLx+/vlnyatTp04aghRa7s9fcujQIeElJCc89GhX8PSjIvvwww+l9RFeR5C6fv06HNFiicOvv/4a7ZbYv3HjBi4kFD1CCCG6hYKUgqioKBgAUstrTpCCBYkWEH3mCRMm7Nu3D1ZE2bJl0QkXH+29f//+smXLtmzZgu50z5490SA2aNBAOhcR1qhRo1SpUvb29g0bNtT4il86BSkVlt89AfrM0nLmgkuXLiFfkDuw1tANUMxdgj3m6+vr4eEB98aNG5tcQMpAQcoMluROWlpa5cqVbWxsmjZt2rp1a29vbysrK09PT+GrnTuwkKtWrVqwYEGUNZQssdSRGgpSJrHw7iUmJqJDUalSJWdn55IlS+L+Sx3s1NRUdIJQobkbkb/hRpcKWS/2KUhlYmveoEGVShUL5s/v5uravX27e5GR6jDfdu+OEoGQa3+c//Oa1d991evvjtigQYpgHYJaOTnmvR/1/2N4cjW2tLf3wD59xCEFqdchJSXl6UsUXqGhociONWvWqM9SCFIGowkBs2HlypWwFsLCwooVK4byOHv2bHTYUU6lVagUUJDKkWgIUsjpv8XjqVPPGDl8+DCaxu7duwvfLl26KHQf+RpSFgpSICQkBLU2HrLx48dLK0MpBKmZM2fiFLTc0rdg8NSKRdbFnDhpRSrDay9qbjB+ZxcNTP369eW+mROkYLTBUbRGMC9gvbVp0+bMS8qXL1+mTBl1egghhOgHClIK0D7CHJQOzQlSycnJig/wiWHR6EirA3/33Xcml6pEM4p+ONpcc8N80ilImSfDuycob8Scr/hGUv78+cXhjh07YOANHToUNtvx48dhxsArISFBfSIFKW20cwe3F12vXr16wU5GkWndunW5cuXUwRS5I2f58uUwsIOCgkxenYKUNtp3TwK9gz59+khLzqOz88knn6BQnDt37smTJ4MGDYKX+H7o0aNHUVVKL9cpSL3OtjQsDLnTqkkTtdd3X/WCl9ylaqVKlfz85C6JZ8/Y2dn26dpFchkXMrhIwYJJV6IpSL0mYhk1CbHYv+CXX36xs7P76quvTJ6oFqQkYBig779///6tW7eiK414goODCxUqJGZHKaAglSPREKT69++fS4WLi4uQjbp3765o/7QFKTGw36ASpMC1a9cGDhyIZ7RRo0bCRSFIzZ07F6ccPHgwQcajR48ML6dny03Y1xekDMa5+vb29nLfzAlSkydPhqP44CtKkfp+ghMnTqiTRAghRCdQkJLz8OFDtFzoSJd8CQ5dXV1hA4h2WY6DgwN6a9KhWCfY5IerxBwlk230cONyIeYWc0mnIKWJ9t0zGGeQIcDChQs1IunVq5dkCCHHmzdvLnldvXrVyspK+h6cHApSGZJh7kiUK1dOsrEVyHNHQWBgYJ48edSzYwwUpCxA4+7JQQcHXZg6deoYXr4ml5YEMRjnbVhbW//666/ffPONjY2NVG2izkRI7IwfP14dJwWpDLfA6tXz5M6dlpigcB8/JAQ39s6li5JLy8aNSxQvJg8z+NtvUGtJ3+zDVqHc+06Oeb2LFxcbYsaGnT3r1lGQelUuXLhw/iVS8Tlz5oyLi8vnn3+umBQlYU6QEsNFv/vuO4OxrmvXrp3B+P1K5DIupA5PQSpHYk6Qev78ecGCBdH4PZOxbt06ZP/69esNL9ckk+a13bx5E3WrSUFqzpw58kFMe/bsUQhSArGgphA7+/Xr5+HhIXkJrcfkAD+xKtOSJUvEIRIZEBDw+oJUrVq18PflvpkQpPCX8S8QlTgMCgoqUaIE/qB0P2/cuIHi17t3b3WSCCGE6AQKUnJgHixcuHC+DLTdTZs2RbMOL0XgGjVqVKpUSToU75BMvoYJDg6GV3R0tNpLvB4zNz4/nYKUJtp3DzRs2NDclxAlatasKV4ToneBvrdcZIRL3rx5e/TooT6LglSGZJg7gp9//hnBdu/ebdJXyh016MjJP4koh4JUhmjcPTkPHjywtrYWS7ChL4Ocun//vuQ7ceJEuKCXFB4eLq82UWei5sQOOurqOClIZbhV8vd3yZdP7f7Tqr9bmU2L//+389ISE8qULFm/dm0pwOPYGDdX18Z16sjP2rps6dxJk6StbKlS2LBz/dxZClKvz6VLl9DK1KtXT5oLpcacIBUSEuLv7y9O7NixY+fOnQ3GkYnIZZNlh4JUjsScILVr1y61fIPsd3Z2Fm/G4uPj8ejUqVMH5uP+/ft9fHzy5MljUpCKiopCnduyZcvLly+vWrUKTyQOhSC1dOlS2LV37969fft2gwYNpPlr06dPx9W3bdt26tSpR48ewdypUKFCsWLFkCrU+4mJicuXL5fS5uvrW7RoURi458+fb9KkCZKhIUiJlSwEBw4cEF5CchKOW7duxbMuQsp9LRSkxo4di0SuX79+0KBBbm5uSLP4SmBSUhISpi5pdevWxQ0xOeaQEEKIHqAgpY1iyt5XX31VoEABsf/jjz+KlvHq1as7duwoVKhQpUqVxCvTPn36rF69OtpIaGionZ2dtKh2o0aNxo8ff+7cOTSgiMHe3l6sGmmSdApS/4v23fPz84M9Jh2in4AMGjJkiDwGGFqdOnWCMRMXF4d4evbsmUv2JftPP/0UvXRYaA8fPoQ99u2338J3z5496pRQkFKjkTuwq52cnMLCwrAPqxiGLsJcv359yZIljo6O0qg0jdyB14cffrh48WLY2xcvXhwwYAC8hg8fbjIlFKQUaN89ee6gp4DKCkXg2rVr6H3Akke/RizBJvoCbdu2jYmJQf8F/SP0UKQ303I4Ze+VtruRlz6oUGHh9GmRhw+dP7C/v/GxHzZggPBdOWd2XgeHkz/vxH5KfJxX0aK+pUsf2rIFgXt17IiQGxYulKKaPXECXHatXaNxOU7Ze4Ogm1+kSJH8+fOjd/zTS44fPy58UYiOGrG2tkbBwY6YVyQ4fPiwg4NDRESEOETliSYMvea9e/eiPMo/hCJBQSpHYk6Q6tGjh6enp1oo6dKlC6xGMd0dDxbaSJRq/E6aNKlVq1ZCtjT8ryAFpkyZgmoXIfFEohHFMyRG7G/fvh1XETPXfHx8Tp48KcLfuXPH19cXjjhLvC9FSwAbSJrmVrJkSekrqjCnvL294YhHuWPHjpMnT8ah+h9duHDBxsZGPlcO4cVLjHnz5kmOMA4qVKgAF+lEWNJoaRSaLi6hWOpfHj9uSPny5UNCQlAIhe+qVasQiVrKFYN75SuJEkII0RUUpLSBVSD/dH2LFi3kY5zFlHy0dGgEGzRocOPGDeGO/l7evHlFo4md4OBgybicNWtWoUKFhJetrS1a21u3bpm7ejoFqf9F++65ubnJBak+ffrA7JEyRfDkyZM6deoIsw2gR71gwQLJF4HRG0duSr4m52AaKEiZQiN30OmC48yZM7EfFxcn1owH6I8NGjQImSKCaeTO8+fPYb0Lyxw4OzurvxokQUFKgfbdk+dOYmJi3bp1JZsfPQL5HA5kh5TFf69z1KrVzZs31ZdDnYmK0VxiKEgpttSE+G7t2jq+bDKcnZyGf/ddSnyc8J0++u+hAxH794nD07t3+fn4iJCe7u7zJk+WR+Xv61uxXDnty30WWAsbBak3wqlTp3Kp8PPzE77t2rVTeJUtW1Z4PX78GIUL/Xopqnv37lWrVg11o6urK3rQJi9HQSpHYk6QSjOidn/x4oV88UXsX758WTSTYhqacB88eDDsS/mJDx48iI6OFgHk4g4ijI2NVRhDgoSEBMXnLe7fvx8ZGSmpPBJoRa5cuYLHVEQorVf1RkCE6hGGuIR6boJ2JObGw0tGBiGEEB1CQUobNJHSOhGPHj2CpSjXp0QAGADyaSwCmAQwAOBlstW+fv06fM11pyXSKUiZwuTdO3TokJWVlfSJYYPRfDJnMsE4gYFn7gt6MP9gd6ntMTkUpMxhMndGjx7t6ekpFROUqatXryILTE5y0cgdRIsTExMTtdNAQcok5u6eIncMxiwwWa0Jbt26FRMTo9EfMdm5kKAgZXJLiY+7cvxY3OlTCvfaAQFq/ej6ubOXjx5JTYhXuCdfu6p2VGxP465JahcFqewiKSlp586d6kXc0N/XMAwoSOVINBY1zxxpaWl37typUaNGhQoV3mC0hBBCSLZAQcpyxo8fX7ly5aych55OQcpi6tWr17dv3yy7HAUpy3n8+LG7u/uGDRuy7IoUpCwn63OHgpTl2+GtW5wc88acOJ5lV6QgpWcoSOVI3rggJeag5c6de/PmzW8wWkIIISRboCBlOTNmzIiKisrKK6ZTkLKM5OTkoUOHZuWgbApSlnPhwgUxHSzLoCBlOVmfOxSkLN82LV60Y8WKrLwiBSk9Q0EqR/LGBanU1NSIiIikpKQ3GCchhBCSXVCQ0jPpFKT0CgUpPUNBSs9QkNLzRkFKz1CQypG8cUGKEEIIeZugIKVn0ilI6RUKUnqGgpSeoSCl542ClJ6hIJUjoSBFCCGEaEBBSs+kU5DSKxSk9AwFKT1DQUrPGwUpPUNBKkfy119//U4IIYQQM6BTnd1JIGaBJZPdSSBmYdnRLX/88QdzR7f85z//+eNfhv97/JibDrf//PZ/KD7Z/YwQ06Bay25x5R/kbRak/kMIIYQQM7Ch1DOwZLI7CcQsLDu65c8//2Tu6BZ0qv/8499/vHjBTYfbf//4A8Unu58RYhpUa9ktrvyDvM2CFGciEEIIIebglD09k84pe3qFU/b0DKfs6RlO2dPzxil7eoZT9nIkFKQIIYQQDShI6Zl0ClJ6hYKUnqEgpWcoSOl5oyClZyhI5UgoSBFCCCEaUJDSM+kUpPQKBSk9Q0FKz1CQ0vNGQUrPUJDKkVCQIoQQQjSgIKVn0ilI6RUKUnqGgpSeoSCl542ClJ6hIJUjoSBFCCGEaEBBSs+kU5DSKxSk9AwFKT1DQUrPGwUpPUNBKkfyBgWp6OjoGzduvJGoXodff/31zJkzL168yO6EEEIIeRugIKVn0ilI6RUKUnqGgpSeoSCl542C1D/B6dOnr1+//vrxUJDKkVgiSG3dunXmzJlJSUnawcqWLduhQwexv27duq5du6akpLz+g/WqrFq1KleuXFevXlW4IzHLli1bJGPlypXCCwVAckTKExMT5SdGRETMmzfvxYsXCQkJi8yQYkSKf/Xq1UePHk1LSzOZwvDw8LCwsMjIyH/i72cO3K727dufPHkyuxNCCCG6g4KUnEePHsEkOHbsmMIdjRqatsGDB8+dO/fOnTsmz0Uro25A9+7dK3xjYmJmzJixePHix48fy89ChCNHjjSXnnQKUjJiY2OnTp2qMGMEUVFRU6ZMCQ4ORjZpvz40GcmRI0cmT568efNmuSNMo969e2/atMlkPBSkFJi8sevXr5cXh+3bt5s8F6a4uuxcuHDBYMwFRILcOXHihPwUFMMWLVqgWJmMkIKUgoMHD06fPv358+dyRwtzB9y6dSs0NHTQoEGzZs168OCB5J653KEgpdgObNo4deSI1IR4tRccF0ybOnvihLuRl7QjuRlxbua4cUvDwiSX+1GR86dMmTFmdMyJ4/KQB7dsDmraNC0xgYKUSXbu3KnoyT558gSd3yFDhkybNk3USwoybIDy58/fv3//108bBakcSYaCVFJSUp48eXLlyoVqWvsJkAtSvXr1srGxuXv3buYepitXrgwbNixDCcwk5gSpw4cPw93d3b3wS0qWLCm8xowZAy8cenl55c6d29bWFhaDdOKoUaPg+/TpU5hc+V9ibW2NkNIhipYUf6FChZycnLDv6emJ1kudwho1asC3WbNmmfh3/xDoDyBJ8+fPz+6EEEKI7qAgJbFt27aiRYuivfjhhx/k7mg+3nvvvSpVqjRv3hxtX758+c6fP68+/bvvvsv7vyCqWrVqGYzvRVxdXb/++uvAwMDq1atLp5w6dcrBwSE8PNxcktIpSBl59uzZpEmT7O3tcUt/+uknhS9sKlhllSpVaty48fvvv4/7/EqRoEft4eGBzra3tzd+JfcZM2bAcDJnrVGQkjB3Y1NSUuCCJ9z5JXj+TcZQrVo1ecERUQ0dOhReffv29ff3R+FydHTcsWOHdAoK4+eff24uSRSkJO7fv9+lS5dcRmDtS+6W586+fftg/6Ms1K9f383NrUCBArGxscIrc7lDQUra7ly62Ll1a5E7v8bGqgPMGj9O+B7YtFE7qlZNmiAYmqpnL5WsiuXKNa5Tp0NQKxdn54Qz4cL9XmRk8SJFQseMMRfPOy5IRUREoDXBnUQHWbig245nHiXF19cXvWPc4aVLl8pPsaQBoiBlCe+uILVw4UI8YWgIP/jgA+0nQC5IPX/+/Ndff830w7Rx40Y86NHR0Zk415wgdfDgQZNWmuGl5CT2k5OTW7RoYW1tLcm3kiAlP6V48eJffvmlRvxRUVEodXCZM2eOPFhMTAwca9eubWtre+/evUz8wX+IR48eZXcSCCFEj1CQEgQHBzs5OU2ZMgVNpFyQQmcbdkK3bt3EIZo2V1fXTp06ZRhhQkICjFQx+glN7SeffGIwDjRAKylesT558sTHx2fs2LEakaRTkDJSs2ZNb2/vwYMHq02dFStWKN45IcteKRIYLSKbVq9e7eHhIRyRR3nz5oXxYy5JFKQkzN1Y2JbmTFNtkBE48ZdffkFW2tnZYcdgfBncsmVLEQDWe8GCBTVeDFOQEsTHx6Mn/PHHH7dt21Zh7VuYO6mpqV5eXoGBgWJeSFxcHMpIUFCQwVjQMpc7FKTEdvXkyfweHh/XqPFlixYmBanbF867uri0a9kyQ0Fq97q1aG6CmjaVBCmEt8+T58nVv+P0KV0qbOxY4Y7Y6gQGakT1jgtSeNTbtGmD2ygJUufOnZs4cSLaa+xfu3YNzz9sACm8hQ0QBSlLeHcFKdTRqFV//PFHPEyXLl1S+O7YsWPYsGGzZ89+/PixXJCKiIhYtmyZ2MdZ8oFCqLjxUEqCUXJy8pIlS4YOHTp37lwxxvXw4cN9+/bF5SZNmoRIpOGsaBgQMiQkJDQ09ObNm/Jk3LhxY/r06UjJsWPHXlOQMryUw/bv3y/3fVVBymBU5fz8/JydneWzD0aMGIFGKCoqSq1VycG/iI6Ovn79Okr4+PHjxZuWpKSksLAwxKB484xLjxs3Dsbi2rVr5YVcRIJqYsiQIbt27RKOsCBxr8aMGYObidsrht8jhfPmzRN3FfvIIPwiE/HfJ0+ejO6BuXQSQshbDwUpwZo1a8SrGliickEKjoph1L6+vq1atcowwu+//x69NdHEoLcGG1e429ra7tu3Dztff/01evKKSTQK0ilIGYERBUPFpKkDU6Rx48avEwkyFEaCwWihWVlZIUdgy1WsWFE+WkoNBSkJczc204JUlSpVcP8NLwXcy5cvG4zj/cUQHhiNTk5O2tFSkBLA0kbNZjBl7VuYO7DJEWz16tWSS58+fezt7VFMMp07FKTEFh9+etXcudgZ+cP3JgWpbu3aVvL337t+nbYg9TTu2vtlynzbvTvikQSplXPmFCpQQOx/WitgaP/+2Fkzf56riwuuS0HKJOhaOjo6JiYmygUpBeggIzukmfsWNkBCkMJZ06ZNGz58+NGjRyUvlCD0cLGDziw6+9rrCFGQypFoC1IJCQmwPDZu3Hj//n1YjYMHD5b7duvWDQ/cBx984O3tXaZMGU9PT0mQwuOSO3dusT9p0iQEk4SSmzdv4lBIVMnJyf7+/jgdJ1auXFmc3q9fv0KFCiFMiRIlypYtK6p4NBjly5cvXLgwbFwfHx8PD4/Tp0+LCNESuLi4uLu7f/TRR7hoQEDAawpSI0eORDF7zRFSgmXLlsFRvuZC6dKl+/btazAaE7Czzdz4v4tl+/bt3dzccHvzGdmxY4eXlxduF+5znjx5pIIKCz5v3ryfffZZ3bp1bWxs8CuPpGPHjmgUixYt2qRJE7gsWbIEf61BgwaoGpCzuGl16tQxGEVDpHPr1q3SPlpTBweHqlWr4he3nZoUIeSdhYKUAoUgBdA2ockWLe/KlSvRiOzcuVM7ksePH6PtRiMlDmGAohE3vOxgo8+GGNBtM7fGikQ6BSkZalNE3E/pHWHmIkFHOiQkxGAcmAP7BzuDBg2qUKFCamqqRjwUpBS8KUHq0KFDOGvx4sXYT0tLg+23Z88eg1HVhSH9/PlzFKWvvvpKOxIKUgoyLUgdOHBAMqEFc+fOFT2RTOcOBSnFZlKQOrFzJxqjI9u2Hti0UVuQmjpyRH4Pj/tRkXJBau/6dXZ2tklXop8ZR0gtmDY1Pvy0q4vL6nlztRPzzgpSaLXRJZw4caLBaAaYE6Tq1auHzqN4k2R5AyQGKqKDj55vqVKlrK2t0WkVXrNnz8Z127Zti34ruvl2dnZofeQrtcmhIJUj0Rakxo8fny9fPlE7N23aFFaI9PW6c+fO4QkTQ7jhOHDgQBy+qiAFcxP7V65cEV6SmKqesteuXTtfX18hiKJ+R20uTeRu0aJFoUKFhH506dIlsbyFOUEKgfu/BH9BeIlGCOmcMGFC586d7e3t5QMLX0eQEncJMYvDY8eO4VCsBTtt2jTsmzO1USxxA3/++WeDcfYfij0Co4UzGOe6o7i2bt1ahNy2bZukE+OuSjMdRCQ4FPN4xQrrBQoUkMZDwppE8Rb7akHKy8tLvNIJDw/Hoah9CCHkHYSClAK1IBUbG1uuXDknJyc0sjAbRFdZm9DQUDQuZ86cEYdo8XEiLM4qVaq0bNny7t27BQsWXLhwYYbxpFOQkqE2Rfbv3w+Xnj17fvjhh+gkuLi4wHrRfsmkjmT16tXOzs7oUcPECgsLQwBEZXLlWjkUpBSYE6Tc3NzQ0UIfrEePHgkJCRnGg1Lm6ekpfTgI+VK6dOnu3bu7urqeOHFi7NixZcuWFdNnNKAgpcCcIJVh7qBfg84zfCWXGTNm4MSzZ88aMps7FKQyFKTSEhOqVa7cqfUXz4yT7zQEqevnzuZzdFw8Y4aIRxKkUuLj/Hx8AqtXb9GwQYlixR5cjqoTGNiuZcsME/POClLo7OPpFe8hzAlSiYmJdnZ2aMrFoeUNEDqtOHHLli0G45y+WrVqobcryuPs2bMRyWeffSY6vLt375Z3rhVQkMqRaAtSsC+lt5fSfHVxOGLECFtbW/lktBIlSryqIHX69GnsIyrFbFKFIIWr4LmXLzQOQ9bGxgZnPX/+HDvyQeNLlizREKRq1qz5+UsOHTokvEQjFBgYiKffz88P7QqKzbVr1+S+mROkrl+/DscxY8aIw6+//trLy0vs37hxAxcy9+UgFEv5km/+/v716tWTDmGLVK5cWX3WxYsXcTlp0UREIp80gRpEeqUGli5disPk5GSDKUFq3bp10one3t5dunQxmU5CCHnroSClQC1IoX1Bu49Gzd1Ihp/IQNuNlkWxQjCaXdgG27Ztgy/a6GbNmqGFGjBgABrubt26mVtvJZ2ClAy1KQL7Hi6VKlVasGAB+gZhYWFOTk5icLTlkRiMq8sjW48fP44uASyZ6dOnI7/atGkTEBAAM8nktEoKUgpM3lhY1zB6YXTBGHZ1dS1cuLD2AqMxMTEoaChuksuLFy8Q58KFC+EVHh6OXt/Jkyf37dvXsGFDdOHEfDQ1FKQUmLT2LcwdsdLIRx99hH7QBx98YGVlhUPY5IbM5g4FqQwFqYXTpzk7Od04dy5DQapDUKvqH3wgxSMJUtgeXI5aOWfO8lkz71y6GDpmTDHkb2TkrPHjAqtXb96gwendu95ZQQpV+tOXiE56VFQUOv5iqITBvCCFLqqjo6M03sLyBgidVvnIQRQNnCjWKBSClPzrveXKlROLTqqhIJUj0RCkzp49i+yfOnXqGSOHDx+2sbHp3r278O3SpYsYti0hX0PKQkEKhISEoGUtVqzY+PHjpbc9CkHqwoULOLSzs5M+L4J9nAWrKCEhQR6b4bUXNTcY5wA6OzvXr19f7ps5QUoMLxKmeVpamoeHB6y3My8pX758mTJl1OkxqJZ2gznetGlT6RD3+f333xf7Dx8+HDNmDCzC0qVLi6mO0rBh9fpwlStXRgF+8OABGlScggpCuKsFKfnYYwQTqzMSQsg7CAUpBQpBCu07WhY0Z+fOnXvy5MmgQYPQiIgZXuYQrTx+TfouWbIE7dft27fRhKGPd+rUqXr16plblCqdgpQMtSmyY8cOyawXiCHtGl8y0bCXQKdOnWrXro1uNiyK3r17HzlypGjRorNmzVKHpCClQPvGgu3btyMAel8akfTt2xc2sGIpVUFycrKvr+/IkSNv3bqVJ0+epUuXrl+/HtayybFsFKQUmLT25WjnDjreyJp+/fotXLhQzIFQaOivlDsUpLQFqftRkZ7u7tNHjxKHGoLU4a1b0GCd/HmnSUFK2i78ciCvg8Pe9es2L1ns7ua6f+OGgX36FCpQ4GnctXdTkOrRo0eul3Tu3Bku6Be3aNFCCmBSkJo4cSLCy2VWyxsgRadV9KDFuj1CkJIPgmnSpEnZsmVNppyCVI5EQ5DCY5FLhYuLi5CNunfvjkdHHl5bkJIWGlAIUgbjS1E8nWhfGzVqJFwUgpRYAhxPeYIMIZSKtVTlzcPrC1KgdevW9vb2ct/MCVKTJ0+Go1iDfOvWrer7CU6cOKFOkoWCFCzCatWqlS5deu3atSi6orE0J0ghcEBAQJEiRcR1y5cvL7WC2oIUjE4KUoSQdxYKUgoUgpRYLVGaBW8wahboaGl8bBeNkZeXl8lhNWi+8+XLt23bNoNxLe0FCxZgBz036eNuCtIpSMlQmyKwMeCyYcMGyWXWrFlwiY+PtzwSCcQDOxA22O3bt3O9XHagd+/e0ufD5FCQUpChICXuqmL4oZwHDx44Ojq2b9/epG+fPn1gEz579gwdwqJFiwpHPz+/mTNnqgNTkFKQoSCVYe5IfP3114p39oZXzB0KUtqC1IaFC3FYvEgR7+LFsRUqUACH+G1Wv77ixL7dutrY2Ihg2FycnRESO2MHD5bCPI27Vsnff0Cvntjv2aFD288/x87ti38PhojYv+/dFKTwtJ9/ya1btx4+fIi74enpWfIlOHR1dUXfX5KWxLox8s+bGF6lAVJ0Wo8ePYpgYkCWWpD69NNPq1evbjLlFKRyJOYEKZiJBQsW7NChwzMZ69b9/RUD2IUG4/JS2Jfmtd28eRPPpUlBas6cOXKFaM+ePQpBSjB69GgrKyux1JEY4CfJJampqfb29r169TKZzrx588o/Lx0cHPz6glStWrXw9+W+mRCkkAYY0IhKHAYFBZUoUQJ/ULqfN27cgFkPS06dJAsFqcjISFx0+fLlwl0cmhOkhNIE8xE1Cyoa+eUoSBFCiDkoSClQCFJovtFq3L9/X3IRr0lNDuIwvLRQ5dPwJdCmo9GUVmPx8vISyyCibXV2djYZWzoFKRlqUwRGvK2tbb9+/SSX7t27w3CSlgS1JBIBMtTd3X3VqlUG46tEqVOBh0FuokhQkFKQoSC1a9euXP/7fXQF4hWv9FUfxbmOjo7iVe7ixYu9vb2Fe9WqVadNm6YOT0FKQYaCVIa5I4CB7eTkpPgM1KvmDgUpbUEq8eyZuZMmSdt3X/WCL363LV+mOPHkzzvlIZvUrYvOJnZO7fpZChP8TV9/X98nV/+OvENQK7EuFa6FOOXB3ilBSgGa5oULF86XgduIah/defFiac2aNdbW1uoxU5Y3QOi0SgNTwIQJEySdQQhSp06dEl7Jycn58uWT9/3lUJDKkZgTpES1q2g1UU3DImzevDn2YYXAJK1Tpw6q1/379/v4+OTJk8ekIBUVFYWntmXLlpcvX4Yd4+HhgUMhSMHQxPN99+5dVN8NGjSQ5q+J2YJDhgyJjIyMjY01GF8sIMJ58+bdunUL4X/++ec5c+aIwLBcbWxsVq9ejac2ODjYwcFBQ5DC873vJQcOHBBeohESjlu3bu3cubMIKfe1UJAaO3Ysbt369esHDRrk5uZWrFgxkf6kpCTcH/V7lbp16+KGCBlOjoWC1MOHD/Hf27Vrh+Th9iKYhiCFwEWKFPH09ESutWjRAvdtxYoVYiolBSlCCDEHBSkBGtmjRmB3tm3bFjti/K9o/uASExPz6NEjmARFixaVXsagY+bu7h4XFyfF07p1a/TN0CSpL4GWt1SpUtLQqnr16ol3UbAHateubTJV6RSkjERERCBHxCvAqVOnYl96BY2sQQdgw4YNyMFZs2ahe/Dtt98KL2STNHlfOxIAO61NmzZiPzU1FV0CmF7oVyASk4uJUJCSMHdjQ42gHCFrYDrCaISdJo04UOQObEWUrICAAHX89+7dK1SoEIxkcXjs2DEYhwkJCffv30c2yefLSFCQEsAMFtUa+snIHVRf2Be1k0buoNsC6/2bb74RkaBTIwaSoB+Bvoy3t7d8vl4mcoeClNhS4uMOb92CrWvbtsidvevXYf9eZKQimGLK3s2Icx5ubn27dTUpbCmm7B3cstnB3v7M3j3icOzgwX4+Pk/jru1au8bJMa/4Bh8FKTXyKXt4htGsoBO6Y8eOn14izXPSaIDkoNOKONG5Rt9/9+7dKBoNGzYUXkKQQolDJOhWoxnC4cmTJ00mjIJUjsScINWjRw9PT0+1UNKlSxc7OzuxEjZqZ9iUeCbwO2nSpFatWolZpob/FaTAlClTxHfiUJXv2rXLyclJvPPcvn07riJmkPn4+MifraCgIOEupKunT5/CKsWlhaObm5skGKFtgM0q3FEYtm3bZnIo4IULF9AAyOfKwaQWb3TRSEiO9vb2FSpUkJoNMHbsWCsrK2l9KwEaG8WQaXn8uCHly5cPCQmRGqRVq1YhEulzQhJipgMaMIU7mq7vv/9eOoRRIp+4i/vs7+8v9ufPn49yjkjwi3Lu6uoqyYiKSGDif/jhh3Xq1EF2jBw5slOnTsiUgQMHwuvy5cu5Xq6GLt8XVKlSRbJBCSHkXYOClKBdu3a5/hdpEYcFCxaIRQxF2wp7QBoehbYbLtLndNFnQ9MjdeTknD17Fk2w+BCtAFYBoi1YsKCXl5e6ARWkU5AyIj4xLEcaaPbgwYPGjRsLxzx58vTt21daRcHX11f61op2JOgSwISTj4NDpsOcgxUXGBgod5egICVh7sauXLkSj7e84MjfpypyB50xBNu0aZM6ftjM8sEFoGvXrujRwSaUrxMsh4KUICYmJpcKMQxQI3euX7+Oekz67lO1atWkYC1btpTr74ZM5Q4FKbFdPnpEnTsrZs9SBDtknFiDX3EYH34audMhqJU6wjGDBtnZ2UqHD6MvlyhebOKwoZLL7YsXqlaq5OHm5uLsvCQ01GSqKEgBdMnRQRb76Feqs0maAKTRAMlBWZs8efKnn34qQqJMSR+1FIIUOrkoNdhxcHCYMWOGuYRRkMqRmBOk0oyo3V+8eCHUKAH2L1++LD5fKqahCffBgwfnzZtXfiIex+joaBFALu4gwtjY2Bs3bqivdffuXcWAf1wuKioqMTFRHRiOkgilMeA2EyCFCjXKYHw3aHLxC41IzKXK5MdfcUV5/GKin3QIL3lhRmDY+iIehbs8ktDQUGSKfFGP1q1bV6xYUewrslWeGMXVCSHknYKClIXcunULvTuFrYnmT7GYlKKJkYAxcPz4cbW7/Ns6atIpSFlGUlKSZLBJILPUFo5JTpw4IX04SQLmgUkpSkBBykKuX78eGRmpXuVXnTvmLMmdO3fCzFY4otyZtDAFFKQsxFzu4PbKbWx0WBBMfJZeQSZyh4LUq26PY2Pkh0lXolMT4tXB0hITxNQ8sd2PityxYgUcFcFuX7yQEh9n7loUpAzGPqbGvG81JhsgRYRiB915SYoSSGtIyWUHc1CQypFoLGqeOWCdwHasUaNGhQoV3mC05PWZNm2atbW1NBorPDy8QIECJlewIoQQIkFBSs+kU5DSKxSk9AwFKT1DQUrPGwWpLEa9qLkGFKRyJG9ckBJz0HLnzr158+Y3GC15fX799deWLVtaW1s7GHnvvfeCgoI0voJECCHEQEFK36RTkNIrFKT0DAUpPUNBSs8bBakshoKUBAUpS0lNTY2IiDA5ZpXogQcPHpw7dw55ZGHBJoSQdxwKUnomnYKUXqEgpWcoSOkZClJ63ihIZTFJSUnot1oYmIJUjuSNC1KEEELI2wQFKT2TTkFKr1CQ0jMUpPQMBSk9bxSk9AwFqRwJBSlCCCFEAwpSeiadgpReoSClZyhI6RkKUnreKEjpGQpSOZK//vrr34QQQggxAzrV2Z0EYhZYMtmdBGIWlh3d8scffzB3dMt/wP/967fkJ9x0uP3n99+QP9n9jBDToFrLbnHlH+RtFqQIIYQQQnIitGQIIW8n//0vNz1uRN9kt7jyD/LWClKEEEIIIYQQQgghRJ9QkCKEEEIIIYQQQgghWQoFKUIIIYQQQgghhBCSpVCQIoQQQgghhBBCCCFZCgUpQgghhBBCCCGEEJKlUJAihBBCCCGEEEIIIVkKBSlCCCGEEEIIIYQQkqVQkCKEEEIIIYQQQgghWQoFKUIIIYQQQgghhBCSpVCQIoQQQgghhBBCCCFZCgUpQgghhBBCCCGEEJKlUJAihBBCCCGEEEIIIVkKBSlCCCGEEEIIIYQQkqVQkCKEEEIIIYQQQgghWQoFKUIIIYQQQgghhBCSpVCQIoQQQgghhBBCCCFZCgUpQgghhBBCCCGEEJKlUJAihBBCCCGEEEIIIVkKBSlCCCGEEEIIIYQQkqVQkCKEEEIIIYQQQgghWQoFKUIIIYQQQgghhBCSpVCQIoQQQgghhBBCCCFZCgUpQgghhBBCCCGEEJKlUJAihBBCCCGEEEIIIVnKWytI/UUIIYQQkjOhJUMIeTv573+56XEj+ia7xZV/kLdZkPo3IYQQQsyAhvKPP/7I7lQQ08CSye4kENOg1NDI1C3/+c9//vvf/2Z3Kohp/vzzz//89tvvKSncdLj9+fvvKD7Z/YwQ06Bay25x5R/kbRak/vWvfxkIIYQQYgrYN2wodQssmexOAjENSg3KTnangpjmt99++/PPP7M7FcQ06Ff/npry7HoiNx1u/37+7Pfff8/uZ4SYBtVadosr/yAUpAghhJB3EQpSeiadgpReoSClZyhI6RkKUnreKEjpGQpSORIKUoQQQogGFKT0TDoFKb1CQUrPUJDSMxSk9LxRkNIzFKRyJBSkCCGEEA0oSOmZdApSeoWClJ6hIKVnKEjpeaMgpWcoSOVIKEgRQgghGlCQ0jPpFKT0CgUpPUNBSs9QkNLzRkFKz1CQypFQkMp27t69e+TIkX/6KqdPn75+/Xo2JoC8KubyJS0t7eDBg48fP37VCLVPjI6OvnHjxiun0mI2b968Z8+efy5+C9lhJLtTQXIYFKT0TDoFKb1CQUrPUJDSMxSk9LxRkNIzFKRyJBqCVGpq6vLlyxWdN/RpFyxYEB8f/zrPyvPnz3v16rVs2bLXiSRHM3369EGDBon92bNn58qVKxP6wiuRP3/+/v37m/TKmgSQV8Vcvly6dAnuW7dufdUItU8sW7Zshw4dMpNQC3j48KGjo+PKlSvljikpKdu3bx87duzQoUPnz59/9epV9Ynh4eFhYWGRkZEmo7158yZ89+3bp3C/fv36IiOLFy/evHnzvXv3JK+5c+e6u7snJye/9n8i7xAUpNQ8efJk9erVQ4YMmTZt2oULF8wFQ4WzSIUUHsbAli1bEMnw4cMPHDggP/HRo0crVqwICQmZPHlyRESERkrSKUiZITY2durUqYmJiRphUD3++OOPuM8wSy5evCi54/4vWbJEnmunT5+WfBMSEmbNmhUcHDxz5sxbt26Zi5yClBrtEqHg/Pnz48aNQ+6grD179kzhhaKBsrNq1SqY63Ivc3mqgIKUBgcPHsTdQwWlHQzFBEXg2LFjcscXL17s3bt35MiRY8aMwY7iFJSX0NBQdAFQgh48eGAuZgpS5ra0xIQVs2etnjfXksA7VqwIHTPm4sFfxOG1UycXTJuq2JbNDJPCI+SMMaMH9e07e+KEW+cjKEi9cdCaK+z2w4cPyytDtDtSXZeUlLRgwQKEv3btmjwSnPLFF1+goJm8BAWpHImGIHXkyJFcRtAQSo537tyBiyVa0p49e1DnmvSCIZs7d+4vv/wyw0j0j/pvavxxiYCAgMKFC4v9TOtBV65cGTZsGIqrJYHfuCA1f/58dCRe6ZR3B1iH6F/BXnydSN4mQQqGnZubW0pKiuSC1qh48eJIj4+PT4UKFZydna2srGBAK06sUaMGwjRr1sxktOgOwdfDwyMtLU3uPnbsWLgXK1YMpczGxga1zZw5c4QX7mfevHnRwr3R/0fecihIKUDrU6BAAQcHB19fX5Sv9957b+nSpSZDVqtWLa8Me3t7lM2hQ4fCC0Znw4YNcS4aRMQD9x9++EGcFR0djXKNZiswMBA7qBxgpJpLTDoFKRW4t5MmTRJ3+6effjIXLDw83NXV1dvbu0WLFqiKra2tFy9eLLx27tyJc/Ply+f8Eql+Xrt2ra2tbZkyZWrVqoXcRxhzegoFKTUaJULB1KlTUToqVapUu3ZtOzs73G2pDR0wYADOQhtapEgR7KAN/fXXX4WXRp4qoCBlkvv373fp0kV0f54+faoRctu2bUWLFpVXXAajGlW1alVkHAqIi4sLfHv06CH5wvJxd3f38vKqX78+jCLUorGxsSYjpyBlcjt/YH+NDz/EXa1SqWKGgc/s3QMLEIFH/vC9cNm0eFFeBwf5hpxC+5ISHwffuZMm4fDDihWb1a/v6e6ez9Hx7L69FKTeIMnJyXj4kSOo0yRHVImo36SGBgVECLXPnz+vWLFikyZNOnbsiDpNmsPx8OFDVH1hYWHmrkJBKkeiIUgdPHhQdOqQ8VKlbLkg1bdvX0lzUfPkyZMM3zzkCNR/U/uPC1JTU6VbmmlBauPGjTgRhrslgd+4IFW+fPm3Q1L8J0Blils6f/7814nkbRKkqlevLn9aDh8+DCsBdrY09AndJzzPffr0kZ8VExMj2i10fuSjnAQw+1A1wRdhYBfKvUaNGiWZkjAuP/vsMxjlUpcJzVudOnXe+H8kbzEUpBScO3du4sSJaMexf+3aNQ8PD9iLlpy4evVqlM1ffvkF+zNnzpQX3t69e+NQDIY6f/78ggULxGtSVKewQ9DBNhdnOgUpFTVr1sQdGzx4sLYghZrQ19dXCPqoUQMDA0uUKCG8cJa5DvmGDRuk99unT59Gd65z584m46cglSHyEiHn4sWL6BsPHDhQHIrsgFUgDtHGSQPWvv/+e3hNnz5dHGrkqQIKUmri4+NhLX/88cdt27bVFqSCg4OdnJymTJkC60IuSKFrA0tGLJGBGhL3H/GcPXvWYLT80RuHixAW4+LiUHMGBQWZjJ+ClHrbsnRJnty5u7ZtW7l8eUsEqVrVq7Vu3gzlSBKkFFtaYoJP6VKf1KyJ/ZT4OAd7+65ffim8bl+84OLs3PGLIApSb5Bhw4ahOkLzJBekqlatKi9BEgcPHrS3txeFBXUaDAbh3r59+7p162pchYJUjiRDQWru3Ln4nTx5snBUC1I3b94MDQ0NCQlZsmSJ9PYG9goaRRcXl2VG1J1qtMHh4eFi/8CBA2iMUe8vWrRoyJAh27dvVwQ+fvw42trx48dLpxiMNTsiGTp06JgxYxBAcse15s+fj18EHjFixKxZs8QYotjYWITEH7l9+7Y8cpPpVxMVFTVjxgwxt0gaZKv+myb/+KpVq6Kjo2HB49/t2rULLvi/khUudIdHjx7t3r0bAXCIfem6iEQ+WwH/dN26dQZjl75v3744cdKkSQiDrruUa+PGjRs5cuTatWvlA7yFIIXsmzZt2vDhw48ePSp5qYUPmD6oNRCPyYkSSB6uWLRo0erVq2Nn48aNkldkZCTuMG7mjz/+KP8XCpAw/H3EjzufkJAguSN5eN5wOhIpn8B1+fJlMUxvy5YtSBj2hZp56NAh5AiuJQ2QedXcz/Apwh2A5YcTNWYlnDlzBrmAe470GIxjB+bMmYNbChsd90e+DtT+/fsRG/4CbppirClyEFdEJHj+hZciX5Chol8h6Urm0mbuT6kFqR07diAxuBCuohCkUB5RIpAXyCOUEcldlFZccezYsfPmzTN5BxTgnuO6CxcuFIf4d/7+/nggNZ4QAXKwYMGCKHo4XRriJE8J3C9cuIBH8YsvvpB7yQUpAFsQh9K4RezAQOEc1f/H3nvAVXGs///gtSBNEQhYUEBRxBJbbAgaFbtYQuzG3mOPBTXXgi0WNLFFjTUxxmvUELsRuxJbKCIgiNdeIgmWc783uTcJv4/n+TP/ye6e5RxFOOQ+79d5ndeW2dnZqc98dmaWMR8WpPTp3r07ihgq8Bxd1qtX780336RtmKENGzYUp9A9e/Eq+8MP1Vd17drVwcHBlJ9ZLEipQEuKCpCsOB1Bys/PTx5/OmTIEHd3d9rWEaQU4JI2bdponmJBKkfkEiETGRmJ+Jcbd7Sbmt0wmJdwOXToUNrVSVMFLEipuX79+ueff25QWRFq4IyGbMCc0OxOE7Dr4A/sN4NRZ1dMOhkxYgS63Jqv51mQUv+O/GPHiW/2YKNZ48Y5ClKbPl7u6OCQcvaMjiC1a+MGpMhXa9diOzXmHLY/+nCGOOtfqVKXdu1YkMot0BGzs7NDP66ZEXHclCCFklK6dGnabt68OXor2EAXuFSpUqbWRCZYkCqQ5ChIoS8XGhpasmRJGqGgEKTQJ3R1da1Ro0aXLl3Q5tWuXZvEmsaNG+MS1AKVjaiHpMoDdt55553g4GB44uvri6YU/qMjLVy+//77NCC5Tp06tra2W7ZsMRjbjLp168JCDQoKoktEbqZe9/Dhw52cnOCmcOHCuBYth7OzM3ZR9ZcvX/7+/fv64VcA2w7P0qBBg3bt2qEkoJNMsaF+TM0Hx8P26dMHt0bPuX379vTIuBd5TroDjiAkgYGBRYsWxSkRQjzj5MmTRUgGDRqE8GNj9OjRKKi40NvbGzeiFq5bt25wj3ILqwUPLtsu9M7Hzc0N0VixYsVChQqJGRCy8IF2EX17R0dHGDQIDDwROoIgMTERd0Q4EcPYwCPT8WXLlolh/AgGAqa5eMHjx4/RCcHljRo1Qkjs7e2vXLlC+e0NI02bNsU/fCDpjUKIkKPP4+HhERAQgNAOGzZs4sSJiGrEFXaRRV8i9XPMRbAVEDzUlfgvU6aMpiaFsoC7dOjQAVkIN01KSkJa4LlwOZ4C8YOUMhg1uN69eyPacUckAXIIHpPGFxiMlg2iDmFDnCOQgwcPVqTLlClTcC1lfgobEkgzbDk+lBCkBgwYgF0ExsfHBy6R/4UgBU9QKOAt+oFVqlRB5IuXscioyGB4QDwdjmvGgCKKdu/ejRsJH86dM7b6H32kjkwFlSpVGjlypMFosiO3KM4i/Aikwfh+GI2cPHdVYUqSFShUdVKy1G+kGcYULEjpExISgooox1HPR48eRdETE4hwCVWPAlQp7777ruIqFO2yZcvqjGrMYkHKBDkKUmgr0fTs27fPYBySU6JECbG6pZmCFCp2OJs9e7bmWRak9FGUCJkZM2Yo3hSiaJD5p+DEiRNwOWfOHNrVSVMFLEjpkKMgJdAXpCIiIuAPvQMm20N+KUiv/DUX0GRBSueXoyB1PyG+jKdHxNQp2NYRpJoFBnqX98pMvUa71f39vb28rpw8ge2Ny18M4N2zaRMLUrkFui2tWrXChpmC1KFDh9BVpMnI/v7+a9euRd8EfXCSd3VgQapAkqMgFRMTExcXhw4n6UeyIJWZmenr69urVy8a0IEuMVo+kjANOc1cUwhS8HPq1KnPjYSGhqJbS6N70GmUe5Jod6mV7dmzJyxXMSyIlpKhGp963d7e3lTFr1mzBrslS5Y8deqUIbv5RxuQY/hlcF9xL2zY2tqKoYPmTNnDw+KmtMQGjeVRC1ItW7akHvXevXuxu3DhQjprSpAyaE3Z27Vrl+iWo+jS+BERBhRsWvUJcdukSRNEILW1svCB6IIzcdXEiROdnZ2FgiOjmLKHTIJKf+zYsbSbnJzs6emJXor6wg8//LBQoUJiDUjkpZSUFKSFj48PQkUaDQLWtGlThJAG0VAI27RpQ2tRI/VJoyQVZubMmdhFAAyWpL7BjFxUoUKF+Ph4Q7aGMm/ePPXj1K9fv0ePHrR99+5dMcdEMWWPQiIMkW+//Ra7sFQMxhFniOQOHTrQtahwSQQU6RIZGYkY27hxI12rH7YcH4rCcP78eTEYAfkfCY1dIUjBE9T+lJeQYxs3bhwUFESnqLQOGDAAnU/KzJoxIDN37lxcInIRRQWlCGWV49nIyxaSkU35ZNGiRdgWD0U5BKWVIhB1FM4iw4uzClNy6NChiEA8Mu3euHEDZ5cvX65OTYbRhAUpHdLS0tBqiEpAh06dOrm7u9NIZFT1ipdPBqPRKYSn2NjYpUuXovlD09CoUSPNPhuRxYKUCXIUpNCkdunSBSYN7C40QyNGjBCqIglS9OKhWrVqaGfFKkXgwIEDixcvHj58uKurKxoOU5+JYEFKH7lEKPj8888R//QWymB8Wdi5c2cYM2qXw4YNQwqSPWDQTVMFLEjpkCuCFGK+evXqXl5e1MuA7QFTRF5SasmSJWJCnwIWpF5FkBo/bJifr29GcpKOIHVu/z7FkKiEE8cDKld2cnQIbd3a2dHx08WLTPnPgpSloEGBnUDVlFqQcnR0RFNCgzZE9xC9CTQ96H2g6kO3Dn0l9JTRZ8/xXixIFUjMEaQMxlcuyElXr16VBSmyV+RpdGhcg4ODadsiQapq1ari1GeffQZvaSbXqFGjHBwcFK11ZmYm6hd5/WN02hE8mmxPvW4xuAY9ZNHzJ0qVKkW31g+/DjAgxo8fb+oxNQWprl27ykfUgpQ82QFGuSirFglSMpcvX36h7md/JBFhECO6Ddm2DpLY8GdBCvUCjeEiLly4gFOKjx8RCkFq6tSpdnZ28ts8kkLUdmrNmjWbN2+uOAjrFo73798vjpAwFxUVJUJ4+/ZtOrV9+3YhVYhAks5ifupblIsAOkX9+vVTx0Pbtm1xSpEKakEqMDBQDCUjGjZsWL9+fWzs2LEDjqOjoxU+01OvXr26cOHCQo0yFbb+/fub+VAUUTNmzChSpIicXqjuSZDCQXgij2BCtxBhIKUJWbds2bJykdSMARnYajCOxS6pS2L0HG5qk408fwdGdoUKFWg7PT0dZpw8lwePD/di6CWKTNOmTcVZMiWR4VFeUNBwd/H22GAUs3AW/StTAWYYBSxI6YB2E9akrBdrAgcoxeKVz/Xr1+W3TQSaFdE67Nq1q1GjRgEBAWhZ6tatq57LL8hiQcoEOQpSBuNkcGdnZ1g1qORHjx4tmmy0nrD0du7cuWXLlsGDByPtWrduLa5CHYvqumLFisWLF2/Tpo2pD6GyIKWDokQoePLkCRovGn387rvvopFFQ6aefHf27Fm010OGDJEPmkpTBSxI6ZArghRsJ3hCcwAJWmoD1iAsH5r2IZtDMixIvbQg9cPR72DffrP5/xvcZEqQ6v1OVydHh7txseJIRnJS+JgxKJWlXFzwWzF/PgtSLwf6CD9lQ7t+fn7oFdJZhSB18OBBVFnoCkVGRlapUgXpJZY6efjw4datWzdv3oz2CGe9vLzu37+PzlFQUBAMD00l18CCVAHFTEHq1q1baN7QF5UFKVqRFOaI+FwIshFqWLrcIkFKqDMG4zpB8BadZ2yHhoaiq6m4FqYPHGzatEk+iO50ly5dDKp5SehFYxd9YOGyfPnyJM3oh1/m+fPna9euDQkJqVq1Ki5HbSUCb6YgpVhQXC1IydJA+/btUSZp2yJBCgV11qxZgYGBlSpVogl9Ih4UYaBhNTTRTw6Am5sbIkHx/RfFitGEQpAKCwvDTWUH69evl4doCVxcXBTGE6BFl+RZwbSeCI1EU0TRvn37RM4ESUlJNtlT9M1PfYtyEahVq5bm2pPwB/UsIg1W4+nTp+mgWpDy8PAYMGCAfGHfvn1pyhu9IlPPB6Snrly5MqpgeT6aTtjMf6h+/fopBv+LNaSQZHBWtGhRkQ2wjTxPYVCUVlMxIIMSAR/ELinONNTRYCxcT40EBwe/9dZbdBC2OCKnW7duMdkgv+EuwpOOHTtiV5zF48CwE+uRkSkJNwgtzHH5a+V0R5xVf9GPYUzBgpQp5s2bp+hxmYLqAbEgHb0tQFGV3aARQalXXIhL0KihhhGDHBVksSBlghwFqfDwcEdHR7SeqBU3btzo5OQEQ19zQM24ceOEYSYDW8Ld3R2tiabqwYKUDooSoQa9OJgBsJfQWsEwfvfddwMCAmQHMBvQvsNqlSPf/DRlQUqHVxekjhw5gvSV3wQTSEokPSyTTz/9lN7PibetMixIvbQgFdK0aWjr1mJXU5BK+z6maNEiI/r3E0d+vpbStFGjSj4+5/bve5h4ZYLxIxuTRo1kQcpS0tPTbSSuXbs2d+7csmXLijG2CkFK5ubNm/b29ureFpoedEYOHTqELgx6ByhckyZNQj9X8YltggWpAomZgpQheyI0jVshQYomP8NZqoRYqPilBSnkNmH39OjRQ/1tHRIg5Bk65CHpI+ZLEvrhlxk/fjxKyLJly06dOnXx4kWYX69VkGrZsmWDBg1oGyVQnv+vI0jB+Khfvz4MehgisBFp4R5TgtTx48dx9ttvv1UEwNPTMzQ0VI4QU0vHKQSp3r17KwQO8lY9cAa1kvqLPDTBUJ6UQelIms7rEKQsykUA6WXqYyj0hThaGYomx6kFKdxX8Q07+Eb5ZPXq1VRlK7ylpz59+jTyAClKcsxohs38hxo4cCCOy86EIEWLiKOfKWcDMYJPLUhpxoAM7GN4mJmZSbvx8fE2xnW+FM7QPglBiioBNTTRD9ZbkSJF1GfFvEV9U/L+/fs2xq8BaJ5lGDUsSGlC9bb4vJcOqBLRSVYMthfr5RHoM+OIYlUpAmaojemFirJYkDKBviCVkpJia2u7ZMkScYReI9HAZAU0qlrTq+nTp+OU/PkOAQtSptAsEfoEBATIVgR8qFmzpp+fn/w2y6I0ZUFKh1cUpGCglixZsnPnzupFDGSGDRumuS6YgQWplxWk7hjfy7q7uvqUL08/7JYsUcLP1/defJxwNvn9USgpcceixZH1xuFs5/bvE0f6hL3z4l3slQQWpCzl0qVLF7NB5xQ1lZOTk282dkawIb7WKuPv7y/6AgQNFx03bpzB+JWGnj17YuPOnTuagx4MLEgVUMwXpDIyMsqVK9ewYUMhSJEDU69GYVbSABBNzBSkpk2bhro+LS1Nzpeo32G29unTRxykMR30QVzzJQn98Mt4eHjQlCixKwKvfkz1EXMEqTNnztAu2j80Y3379hX3EiYI7PWgoCDRetFQMlEaaXSMmNtFu7Ig1bZtWxEAWtaHluyR5Z5mzZqph6RpUqtWLVklmTVrFip3efX6rl27enp6Kr4lB/AI8i1ogEx0dLTNn5f2XL58uU32SObXIUhZlIsMuoIUgYRzcHCgcTcPHz60yR7eRTRv3tzHx0fEBrJxmTJlyEPUyDZ//vAKSf7iqbds2SI/hU7YzH8o0pfFmk03btxwcXGhnJaZmQlP1KPYCE1BSh0DMjT8DYayONKiRYuiRYsqpCtZkMJdvL29qbAT6enpqApIxqKYSUxMfCpRvXr1atWq0eX6piTFg2IcGcPowIKUGjSdMNYVQ5xMMX/+fBvpywZEkyZNxFhgQ/bEbfmzrQKyCkwpX1ksSJlAX5CiRRW3b98ujpw6dcpGWrdIhubga07NhnljY2IdHBakTKFZInSgdSfFyGIYBg0aNIA9o3iVZVGasiClw6sIUrAx0AsICQnR+XK3wTgYBL10eQ6EDAtSLydIZaZeW/3RwhXz54sf+ibtW7Zcs+gjsXj5o6uJpVxc2rVoIV/494kTkOK3frgsjkRMnYIjad/HsCD1iuzevXuVRBUj2FBPDbl//z46IPJwB4Pxs06w8Kk0oYNDYxpo8Q3RE5RhQapAYr4gZTCuP00jEUiQItXTy8tr79699+7dS0tL27hxozB9YDvaGGd7nTlzRj3syExBKikpqUiRIkFBQfAEIRkwYMDUqVMNxtHjtMwNOqVHjhxBTkXDTC2H+ZKEfvhl6tatGxAQgJJz9+7dwYMHw0MRePVjqo/kKEjhWdB6bdu2Dc9LK3aLqU8olvb29jt37rx8+XJoaKidnZ0QpOhj9oiQ2NjYq1evohgXLlwYlyMe4uPjGzVqpBCkcBf4BsewaZydncV3mmW5h5ZnGjlyJCIWgUcwpk+frpk9OnbsWLp06YsXL5KsgMhxcHCoV6/esWPHcC3pU6SDKNi0aRPdAk908OBB9Elo6Shci0jYsWNHcnLy1q1bXVxchAD0OgQpgyW5yGBCkHr27NnAgQMRkoyMDOQcPPLmzZvpVMmSJWGOwHwnM50GrPXr1w8xduHChbCwMPTlsE2eoGouW7ZsVFQUUmfevHn0eUT5qRFmJC6t+aUfNjMfClYsnLVo0QIhPHToEAKArCWkzxEjRhQrVmzlypVI1tu3b8MU/uSTT+iUorTqxICAhuPJb2hTUlLKlCmDVmfixIl4KGSzFStWeHh40MDABw8eIDDqV46IFuSQJ0+eNGzYUPH+BMyZMwd3oUk9+qYkrT+lnnvCMKZgQUoBii2aZrQye/bs+SYboVagvkJxFo5RZsuVKxcYGKjwhNoCNI4ojIcPH/bz86tatSoNKIABOnz4cPSuUVfgFr6+vu7u7prfOTWwIKUFWhlUvPQyAM0BtoVyUa1aNXqZhCYe7WytWrVgq6ChuXTpUrNmzVxdXSme0QqgIU4wsnTp0qJFi6LRJx/atm0bERGByhaGx+rVq1GTm1p8kwUpTUyVCIOUOjdv3oRFihi+fv36+vXrHR0dxdeEQatWrdCCR0ZGitKHZho2rX6aKmBBSg3qH/rECgwblB1YR9imT7KgBDk5OSHOyaX4HgtsuR49emCDLDqYTDDnYHJ/+eWXInVOnjxJV61duxbOkBywflHj+fj4aM7XM7AgpfW79cPl6K934le7Rg3/SpVo+0laKk4lnT7t5OiwZNZM9VXqKXsfz3vxSn7vF5/LBw/veDHppHunTvHHj92Ljzvw5bZypUsH1n9LMyQsSL0K8pQ9FIQPPvjgxIkTqamp6LOgv4/OjvjqEYiOjkYvGC0a7aLpQSWJKvTAgQMoj/KnNgQsSBVIdASpY8eOoXCKTGAwKjht2rSxkZbKRgX99ttviykzsBpFt/PWrVv+/v44iLpA/VatdOnSYl3wbt261atXT5yC57hKfDEENmupUqXIf/RCacjM48eP+/Tpg1xLxxs3biwWBaQJQSKEaF3QSYY5JfxHAwBLK8fwy6CoeHl50bMMGjQoJCRE9JbVj6k+Ij+s+pHRFUeQ1q1b5+zsjKtQ8OTh1ghhjRo1cBxP0atXr5kzZ8pzGOmTZzbZs7RWrVrl4OCAXfwvX74cdonQ1zw9PRcsWCAetn79+mLBnZUrV+KIKNXLli2D+ULOihUrJg+DkkFXAf7DjRDIYA8hbHRhiRIlFJ9PEiAXjR07lqZcIYrCwsJocaLExETYZ3Q5UhYNvFg4SRFCGlIkciaiSLwStCj1zc9FBqNepl7cBKBE0LKU8GfUqFFiDBSsFjydjfTpuoULFyJa6F7e3t70xUMiJiaG8gxATqMxAvJT//zzzwgAMlJmZqZ+2Mx/KFhLsHFxBP/z58/v2rWrmEr5008/DRkyBD0Q8gQFcO7cuXRKUVp1YkBAI6cUS7emp6f3799fRAiuRZeGXv9u2bIFHqrfe5AgTnKSXEYIWIewC8PDw7E9e/Zs+GDq5SQ6wG5ubjl+op5hBCxIKUBtZqNCzMPt1KmTPEyY3nPs2LFD7c+MGTPQ5NHlqAHEmM3Dhw9Tw0egaZA/P6IgiwUpFeXKlVOkjvi2F+pz0azDzKtVq5ZwAxNLfC0EzTSZE2RRTJo0STTBsC5okUqAphyWiSmtkAUpTXRKhEidlJQUFCKKZJQR9NnoG8QEemKK9EWTd/PmTYNumipgQUoNDFF1zUbjy+j7OWLkO708lqlcuTKOnzlzRu2DGL4N25uOwFxBQssjxxWwIKX+rdJqd66dO4tTMQf2Yzty9mz1VUWLFpn1wQfyker+/m8GBGj6X9rD4/9PoHbtNIdHsSD1irQwQtsoVigdcn115MgR4fLRo0fotckfP7lz5w4KEepG9EBpcIwaFqQKJDqClME4TU99UKwFI7h7925sbKymzJ+amio+9y6DvqLoED59+lSxLJnivjiLvrTa4kFOjYuLozZY53L0h+VOMsKv6IvqhF8AH2ArkxsEWOGD+jHlI/LDEvIjw2eKUlgbeEzZ5hAO0EbSIj7CsQBBkhfFxL2uXLlCnsguRef82rVrQooSKMaSILS449WrV9VpLYNHgBtFtx/+JyQk6F9oyE47ea1uAo+JtFAPqVOEUJ3EOqf0U9/MXETTxzSfBQmNR1YXFpjvyDPy3eEJXJoyQXAc8Sm7l58Lx8VujmEz86GwK7IcTXxTnIUn8oRZg1ZpNZiOAUHXrl3VY5rIN/ivyEXykyqgoKrLCAFP6BHgg85Q+YCAAHkGLsPkCAtS5kNjNBTrPenMfKFaSF1ZGYxNM07pVCxEFgtSZnP06FFbW1v8ywepApcXsiRQnaJyNtWgX79+HWf1l8hhQcoUmiVCkTpoyJKSklAE9Gd+aWIqTWVYkLKImTNnuru7o1J6RX9gscPKVVu/CliQsuj394kT3F1d5Ql34vc46SqNohK/jOQkMX1P/Us/fz7++DG40bkdC1KvgrrPcufOHRQKtRmAYhIVFaV+zw33Ok0PC1IFEn1BimEY5tWhjyForj+Sx5w/fx4hiY6Ozu+AMAUJFqTMJyIionbt2prfvnlNZLEgZTYhISEjR47Ms9uxIGUReZw6LEiZz6NHj1xdXeXFuV43LEiZ/7ufEF/KxWXbmtV5dkcWpKwZFqQKJCxIMQyTB9SpU0cxay9fGDNmTJMmTfI7FEwBgwUp81myZElcXFxe3jGLBSnzyMjICA8PNzXC9HXAgpT55H3qsCBlPpcuXZI/U5MHsCBl/u/CoYOak/Ve348FKWuGBakCCQtSDMPkAc+N5HcorCUYTMGCBSlrJosFKWuFBSlrhgUpa4YFKWv+sSBlzbAgVSBhQYphGIZhdGBByprJYkHKWmFBypphQcqaYUHKmn8sSFkzLEgVSFiQYhiGYRgdWJCyZrJYkLJWWJCyZliQsmZYkLLmHwtS1gwLUgWSP/744z8MwzAMw5gADeV///vf/A4Fow0smfwOAqMNSg0bmVYLUuf333/P71Aw2qBT/dsvv/z69Cn/rPD326+/In3yO48w2qDRyW9x5TXyVxakfmUYhmEYxgTotuV3EBiTwJLJ7yAwJuGyY7Wg58apY7X8F/zfv/6d8Zh/Vvj77y//Rvrkdx5htEG1lt/iymvkryxI8UwEhmEYhjEFT9mzZrJ4yp61wlP2rBmesmfN/MpT9qz4x1P2rBmeslcgYUGKYRiGYXRgQcqayWJBylphQcqaYUHKmmFBypp/LEhZMyxIFUhYkGIYhmEYHViQsmayWJCyVliQsmZYkLJmWJCy5h8LUtYMC1IFEhakGIZhGEYHFqSsmSwWpKwVFqSsGRakrBkWpKz5x4KUNcOCVIGEBSmGYRiG0YEFKWsmiwUpa4UFKWuGBSlrhgUpa/6xIGXNsCBVIGFBKt+5ffv2sWPHXvddzp49e/369XwMAGMpptLlyZMn33333aNHjyz1UP/ChISE9PR0i0NpNjExMZ9++unr89+q2GMkv0PB5BosSFkzWSxIWSssSFkzLEhZMyxIWfOPBSlrhgWpAomOIJWZmblx40ZFtwp92jVr1ly7du0Vs8vixYs/+OCDV/Sk4CI//scff2xjY/MS+oJFvPHGG2PGjNE8lTcBYCzFVLr88MMPOP71119b6qH+hZUrV+7du/fLBNQ8mjRpMnDgwNfnvyl+/vnn3bt3z549Ozw8fNWqVUlJSWo3586di4yMjI2N1fTh2bNnK1eu3LBhg+L49evX1xpZt27dP/7xjzt37ohTK1ascHV1zcjIyMUHYfIRFqTUoFxERUV9aAQbObr/7rvv0PDhKk2vUI5Qau7duycfP3z48Lx586ZNm7Z161YYJKZ8zmJBSsXjx48RaVOnTl20aNGlS5d0XMbExCCSp0yZgioOtaXagWbCwRT84osvZsyYMWfOnAMHDpjynAUpTW7cuIHcPnnyZPzfunUrR/c3b95cvnw5DHL5IFqc1atXI+GQOpcvXxbHHz58uH79+rUSZ8+e1fSWBSkddOorIjo6Wo5kxPnTp0/FWf1ihbSjDBAREfH9999r+s+ClKnfk7TUTR8v37pyhb6zy98dWTJr5gcjR348b+4/L15QnL0XHxc5e/axXV8rjp8/eHDetPDJ74/CLTKSk1iQynUuXLgAe/vgwYPywYsXLy5YsAAN1pYtW+S2/sGDB2vWrIH75ORk2T1KX1hY2PPnzzVvwYJUgURHkDp27JiNEZg14iDaThxR983U7N+/f+nSpabOBgYGlilTJkdPrB/1Y+o/OCE//kvrQSi006dPRzE2x3GuC1Lo2+/cudOiS/53sChpTPFXEqRgcuHWp0+ffk3+mwJtXvny5XHrKlWq1KxZs0SJEra2trARFc4aNmwINx07dtT0ZO/evVQTKgzH2bNn46CXlxfKcuHChYsVK/bJJ5/QKaSag4MD2tHX8VBM3sOClAIYgrVr10YmR1vm6+uLgtC/f39Tju/evduvXz8qRD/99JPaAdV1AJ1AcbBv374oVi1btmzdujUKV7Vq1X788UdN/7NYkPozV65c8fDwsLe39/f3R9T97W9/++yzzzRdvv/++4UKFapjBPGPSH78+LE4ayrh0EmoXr26i4sL6szGjRvjLJxp+s+ClJovv/yyaNGibm5ufn5+aI9KlSqVo6nwzjvvIJKRjuLIuXPnEP8+Pj6dOnVC64ZEXLduHZ2KioqCY2dn5xLZqJs8ggUpTXKsr4j69esjHUUku7q6Cj1dv1jBckbaVahQoW3btg0aNIBlouk/C1Kav4uHDzWsWxexWq/WmzrOVsyfj/JS9803O7Zq5e7q6uzo+P3BA+Lszs/WlytdGp6MGzZUvmrM4ME4WL5s2bKentioGVD1wZUEFqRykYyMDOR8xG2zZs3EwbFjx76I9vIvIv5FtNesSW39s2fP3nzzzfbt2/fp0wdFRszhuH//PhxHRkaaugsLUgUSHUEKpiF1t5DwolI2X5AaOXKkjuSEHrtORV+AUD+m/oMT8uO/tCCFxg8Xrlq1yhzHuS5I1ahRo3v37hZd8r+DRUljir+SIPXBBx/kvQAdHR2NDm2tWrXE0KenT59+9dVXI0aMkJ0lJiZS61ikSBF5lJOgV69e9erVc3R0RKspH//73/8uDFaYsM2bN4cNKgYjoBFt0aLFa3kwJs9hQUoBLMXp06fDLqTt0NBQlAXNodM4iNYnODi4R48emh2827dvo0+OUiYLUvQ+bNOmTbR78OBB7K5fv14zMFksSP2Z8+fPz5s3j/rAycnJbm5usOY1XS5ZsuTKlSu0vWjRIkSykK50Em727Nno7IlX1tOmTYODlJQUtf8sSKnZvHnztm3b6N3+7t27dd6FEMj8aMjCwsJkQQqNi7+//5MnTwxGdTgoKMjb25tOffPNN/pKioAFKTU51leCt956a8KECZqndIpVfHy8vb09bC0x9koeVyXDgpT6t/Oz9XbFivXv0aN2jRo6gtTP11Lsixfv37077d68fKlkiRJ9wt6h3YkjRjg5OsyfNg0Gm0KQ+nDC+FNRUbQ9bugQJNxHH85gQSoXQWOBmqpRo0ayIAVbWoziHD9+PKJ98eLFBqMKUbx4cRpgiOpu2bJl5AbWQsuWLXXuwoJUgSRHQWrFihX4X7BgAR1UC1I3btxYunTplClTYCyKganbt29He1myZMkNRtSd6iNHjuzatYu2Dx8+jF3U+2vXrp06dSpaaIXjkydPIndGREScO3dOHMzMzNy6dWt4ePisWbPgQBzHvVatWoV/OJ4xY8by5csfPHiA41evXoVLPMjNmzdlz3FfhBzhx1PgWUzl77i4OLQxNOtHvAZRP6bmg2/ZsiUhIQE2Ip5u7969iscn3eHhw4f79u2DA+xiW9wXnly4cEGOCpgyBuMr0E8++QQXvvfee3AjFhvSDKchW5BC8qF1REfi+PHj4pRa+IBBg1pjzpw58q0FCB7uWK5cuQYNGmADPXxxCj1/xDAic/Xq1fJTKEADjMeH/4jz1NRUcRzBQ37D5QikPLUKTTgN09u5cydN36C2/OjRo3hS3IvMMoJi+/r167DIkWeQ7gbjG93IyEjkB8WryBxzEWIAdSUe6p///Kepx4mJiZk/f/6HH36I8BhMJw04dOgQfMMjINIUY00TExNxR3iC/E+nFOnyxRdfIF0Mkq5kKmymHkotSO3ZsweBwY1wF4UgZapcUGnFHdEnWblypWYMqAkICEATInYpjeDJRx99hKtQNBTuTUVUjhcKcFX16tWR7XXyIYFc4enpiYKDyBFDnAQ//vijg4MDogjmaenSpeUB/LIgZcgeBSZGR2ID/QeeCfvXgAUpfdDOmhoCiar4888/N6jKi2DQoEG1a9dGkZcFKXTa5TGJaLWxi7to3j2LBSldunfvjtjLcWrY5cuX4Qw1Oe3qJNzAgQNh5IhdOIMDedaYgAWpHClTpkzVqlVNnYVtg7OjR49GKsiClJ+fnyxjDRkyxN3dnbZZkHoVcqyvBDqClIyiWA0fPtzNzc2c1GFBSv078o8dJ77Zg41mjRvrCFKpMecUWpJ/pUpd2rWj7S0rVsABNlCgFIKU/IuLjoYnQ/r0YUEqt0B3zM7ODv24ZkY03cDCR7QPHToU2+jIwOqm482bN0ePABvoApcqVcrUmsgEC1IFkhwFKViEoaGhMD5o7IBCkELv1NXVtUaNGl26dEFzCLOSRJDGjRvjEpT2ykZIFJB555134FhsBwcHwxNfX1+0svAfHWnh8v3336chfHXq1LG1tUWP1GBsM+rWrYuOYlBQEF0iGgbqdaPSd3JygpvChQvjWjQwzs7O2C1evHj58uXpvS75g/vCIOjatWuVKlXQTmhOtl+xYgWepUGDBu3atUNJQPeVYkP9mJoPjl5xnz59cOty5cq1b99e8fikO+AIYjIwMLBo0aI4JUKIZ5w8ebIICWx3hJ8KasWKFXEhPMeNYK/ohJPCgEjGAyIacWGhQoXE22ZZ+EB/OywszNHREbYOAoPYUy9EnZiYiDsinIhhbOCR6fiyZcuKFCmC5GjSpAmC7e3trWmhPn78uGHDhri8UaNGCIm9vT29SkJ+e8NI06ZN8Q8fSHqjECLksKo9PDwCAgIQ2mHDhk2cOBFRjbjCLrKo8B/X9urVC4+PJ3U2smfPngoVKlSvXh1ZFLWhEONyzEUjRoxA8GB24B+ZRFOTQllALHXo0AFFABGSlJSkmTRPnz7t3bs3oh13RMCQTHhMMYob+RNRh5RFnCOfDB48WJEuU6ZMwbWU+SlsSCDNsOX4UEKQGjBgAHYRGB8fH7hE5AhBSqdcIKOiYcAD4ulwXDMGFFH08OFDlNyFCxeq06hWrVq4LzKDmE+uH1E6Fyo4d85okXz0keZZmUqVKo0cORIb9erVQ55UnN20aRPCgP4wchE83LdvnzilMFgvXrwoa/eoG7F75MiRHAPAWD8sSOmDds3FxUVfftXs4KFiQfk6ceIE2RtCkEpNTUVN2KZNGyr7aPhKlChh6q1AFgtSuoSEhKCZ0FkNh0BtiSRQf0lDnXBffvkljnz44YcG48seVNSwOjT9ZEFKnydPnsDc0nnbv3jxYrR6iGSFIAUTFzYDtUcwtFA6xLKkLEjlCrklSCmKFQwqU/NbFbAgpfPTF6Twq+7v7+3ldeXkCWxvXL4MSbBn0yaFG31B6tiur1/0RidNYkEqt0C3pVWrVtjQEaRgDCDa58yZYzC+mYaRT9P3/P39165di74J7P8vvvhC/0YsSBVIchSkYmJi4uLi0OGkCV+yIJWZmenr64v+IQ1hgLGIRpEkTENOM9cUghT8nDp16nMjoaGh6NbSKFZ05+Q+HnIqNcA9e/ZEZzgxMZGOT5o0Cc5IaKBet7e3N3WM16xZg92SJUueOnXKYBxTQ8O+6EL4g1xOQ6hgGTRu3BjdeM0SIu6FDfSuxdBBc6bswZ4QQ3ZpLI9akIJFQsGgBWtE792UIGXQmhemE06EAQWbVn1C3DZp0kS8pZGFD0QXnIlpRxMnTnR2dhbqmIxiyh4yCSp3MacpOTnZ09MTdrD6QlixhQoVQlBpF3kpJSUFecnHxwehou4HAta0aVOEkIa3UAjROaFVopFqpFFS/2TmzJnYRQDEkxYrVuzbb78VoRIpfvfuXfj57rvvksscc1GFChXi4+MN2erGvHnz1I9Tv379Hj160Db8p3yrThrKh0IMQvCwGxERYTDqNYjkDh060LWocEkEFOkSGRmJGBMLmuqHLceHojCcP39e9ChQ6JDQ2BWClE65oNI6YMAAdG8oM2vGgMzJkydxyY4dO8QRyo00SBB38fLyat26dY4RpX+hAvKHSr3BmCGPZyMvjkiNH+VGGlovoo4IMULxgIiVB5EpDNahQ4cimcSgrRs3buiM6WAKFixIqUHFhapp1qxZqLdRHdHgXx3UHTzUPA0aNHjvvfcM2faGvIZUVFQUTE805ah80DqIsqwmiwUp06SlpaHOFFW0Glgm8+fPDwsLQ2yLcRwymj1zdBjQtiLpkTRorBUDzwUsSOmzbds2xO3q1as1z8LCgW1ApqNCkIIt1KVLF9h4MJjhZsSIEUJwJEGK3hhVq1YNBpKpxddYkNLBHEHK0dHR1dWV3jQLm5bQLFao8WAktGvXDt1y9Ers7e0DAwPlmR8yLEi9iiCVcOJ4QOXKTo4Ooa1bOzs6frp4kdqNviA1tG9flK/Y6KMsSOUKqJfQElG3RUeQGjZsGKKdnKE3gRoMBkDnzp1hCcDkQE9ZnmxhChakCiTmCFIG49sY5KSrV6/KghQ1e3Jl2qlTp+DgYNq2SJCSRyyjHoe3NJNr1KhRDg4Oik9UZGZmoh6Rl2lEpx3BQ6fakN3rFoNr0EOWO7QAzQOJa7gK/shjKJYuXVq4cGFTM7oF7u7u48ePN/WYmoJU165dTT0+6Q7ycHp/f39RVi0SpHTCiTDQGEiCxtiT9S8LUmhiaQwXceHCBZw6fPiw2nOFIDV16lQ7Ozv5DTlJIeoPjdWsWbN58+aKgwcOHIDj/fv3iyMkzNHHmyiEt2/fplPbt28XIoIIpJAw8KSo0YQ/1atXl3UxZFGKeYtyEYDZrfleq23btjiVkJAgH1QnDcwOMZSMaNiwYf369bGxY8cOOI6Ojlb4TE8NUxV5Uv68jmbYaEVhcx6KImrGjBlFihSR0wvVPakt+uUCWbds2bJykdSMARmqKORcpEgj9Eh9fX1zjCj9CxGkn7IxZKtLYoweHs0mG3gofIBv6EvTdnp6OoxFEukI9AcQFWKx2CFDhsAAFcY9GawoVjTnCI0ovdUhEAycRWfAVLQwBQgWpNSkpaU1atSoVq1aJUqUQDFEp8vUJ28IdQcPJUuMe1ILUjjesWNHlDi0LAEBATqDDbNYkDINmjzEoUJnVzhAu+/p6Ymu9eDBg9XvnzR75jD8YKi4ubnhFDrYmgtIGViQ0uXBgwcw52BKyWsOyPTp00e0VgpBymCcxe/s7AwzD63z6NGjha0Foxcm+s6dO7ds2YIERaNm6rUNC1I65ChIHTx4EEkA+y0yMrJKlSpIHXl0oWaxQo8afnp4eMydOxeXb926tXLlynBAL/8UsCD1KoJURnJS+JgxyPylXFzwWzF/vkWC1KmoKJwd3Lu3Kf9ZkNJHYZBj18/PD71COmtKkKIR07C0xREUGRSTzZs3o1pDQfPy8kJRQucoKCgIRczUFypZkCqQmClI3bp1Cy0f+qKyILVs2YthkMWLF3fIBjmpTp06dLlFgpTYNhjXCYK36DxjOzQ0FEaP4trY2FgbablTAt3pLl26GFTzktCLxi56p8IlLACSZi5duoRT6K6L8GMb9Ze6bYCdvXbt2pCQkKpVq+JyuBELhJspSCkWFFcLUrI00L59ezRvtG2RIKUTTkUYaFgNLcwkBwD2JRJRRAgSF6fEclcyCkEqLCysUqVKsoP169fjWvUHp11cXOTqhqBFl+RZwTBwcYRGeCmiaN++fSJngqSkJOyKMZyKJ0WXqUOHDmK3d+/epH5alIsA+l1INXU8wB/Us4g03EUsoaJOGpggAwYMkC/s27cvTXlbsmQJHKtno9BTw15BFSznSZ2wmf9Q/fr1ExmJEGtI6ZcLRWk1FQMyX331lWImiCKNYEzjSI4RpXNhenq6jcS1a9dI1xYz7FA0nhoJDg6GmUgHadBTt27dYrJBrsazCP8XL15sa2t76NAhOkspgqaRzpLBij4z4gQhUcz2xR1x1tTnjZiCBQtSOsDiHDFiBHI7CoiOM0UHD/UJ+tJizTWFIIX6v2zZsu3atbt582ZaWlqbNm3Q696zZ4+mz1ksSJlg3rx5iFVaEydHNm7ciHpe3cype+ZIiGLFioWHh6ObcfLkSdSZqIfl5SAFLEiZAo0RsnfJkiVpLICa48ePo1UVb3wVghQi39HREWYPGhoknJOTE3pomrMyx40bJyxqBSxI6ZCjICWDasre3l7TRJSLVUZGBvyEz+IsfRJR84vVLEi9tCD187WUpo0aVfLxObd/38PEKxOGD0ckTxo10kxB6vr57729vGrXqPHoaiILUi+B2iCfO3cuGnTxNldTkEInCL2VOnXqqMcxGIz9F3RGYI2jCwO7/ciRI5MmTSpdurSmms+CVIHETEEKREREYJfGrZAgReudw1mqhFhC+KUFKeQ20Xz26NHDx8dHcS0JEGvXrpUPwh4ifcR8QYqWMYbFJodfc+HP8ePHo7FZtmzZqVOnLl68CDP6tQpSLVu2FCsyoASKpQEMOQlSOuFUhAG2Dq6leW1yADw9PUNDQ+UIMbV0nEKQ6t27t0LgIG/VA2dQK9EcDRmkJhzLyw9ROtLTvQ5ByqJcBJBemtaGIfvbbbTgEU2OUycNIkfxDTv4Rvlk9erVNlofqKKnPn36NPIAKUpyzGiGzfyHGjhwoNCACCFI6ZcLtSClGQMy9IUseUaPIo2wLQKjE1H6F166dOliNrDRYeXbGNeSUwQGraAQpKiqUSMmB9EKZQrE22Z9g/X+/fs20lKmTIGGBSl9MjMzixYtqv9ZSUV5oZGhKO++RkobP8KNf1oQsF+/fh4eHsIxjE4/Pz8xUlJBFgtSWlCrSp8rMpOgoCA7OzvFSDd1RYf0ktdtRLtja2tL43AVsCClCWK4b9++sNbUI6MFo0aNKly4sG82Li4uSAVswBRPSUlBhC9ZskQ4pvd/NKJcAQ2Hpy+iKGBBSgeLBCmDcWaDMC0UyMUKiS5/55eWPBff4JNhQeqlBan1S5ciVs/t3yeO9Al758Vb1SsJOQpSt2N/qBlQtZKPT/r58zoBYEFKH4VBXrNmTScnJ1Gb2RnBhlgEFp0muEErr7lSJAwAWOPjxo0zGGcq9OzZExt37tzRHPRgYEGqgGK+IJWRkVGuXLmGDRsKQYocmHr5Nnr0aDGuQY2ZgtS0adNQZaSlpcn5Er3f4sWL9+nTRxykMR30etZ8QQo2NPxRj9ZRA8uYpkSJXdErVj+m+og5gtSZM2doF+1fyZIlYayIe4n++bNnz9CwCd2HRv+KVaL0w4kwtG3bVpyaO3curqXFdGS5B9119ZA0TWrVqiWrJLNmzYKFJK9e37VrV09PT/UkDjyCfAsauhJt/J6FmBtlyP5sE025eh2ClEW5yKArSBFIOAcHBxoRo06a5s2b+/j4iNhANi5Tpgx5SHoNjVYTZ+Wn3rJli5yHdcJm/kORvixWU7px4wbsXcpp+uVCU5BSx4AMjduSP9muoyvpRJT+hWrQPUYnWSGQyYIUvPX29qYqhUhPT0eFQzIWRdenn376VAKn4ICaTH2DlS5XjFZjCigsSOkDaxLmvv7X6xXlBXXOKgn62DP+aRjU22+/Xb16dfny1q1bV65cWdPnLBakVMAwQ4rIYzHMAXW7/Pk8QpFwqJxRr8qdahxBzT9o0CC1hyxIaYLYQxzKn8hQc+7cObmAwIyBiYUNWD60Fur27duF41OnTuEIffZEAS2eoDmnngUpHSwSpO7fvw+rSX5HKyMXK/ShYDyLU/Q5Uc0F8liQemlB6u8TJyBWb/1wWRyJmDoFR9K+j9EXpO4nxNevXbt82bJJp0/rB4AFKYvYvXu3XJtVMYINsqXRzWnQoAH6tuoX8wS6FbAHaKkQdHBoTAMtiyF6gjIsSBVIzBekDMb1p2mMAAlSpHp6eXnt3bsX9mhaWtrGjRvFe5jFixfbGGd7nTlzRv3ldTMFqaSkpCJFigQFBcEThGTAgAFTp041GAch0zI3iYmJR44cQU5FVqaWw3xBymA0C4oVK7Zy5UqUitu3b3/77bfq776DunXrBgQEwM3du3cHDx4MD0WvWP2Y6iM5ClJ4Fjc3t23btuF5acVuMfUJLZy9vf3OnTsvX74cGhpqZ2cnD0RCIxcSEgJTg2bS6oQTYcBd4FtsbCzMIGdn5zZt2ogACLmHlmcaOXIkIhaBRzCmT5+ukTmMn0soXbr0xYsXqcOPm8IkrVev3rFjx3At6VOaMzjQRadb4IkOHjzYpEkTWjoK1yISduzYkZycvHXrVhcXFyFDvA5BymBJLjKYEKSePXs2cOBAhCQjIwM5H48s5nMpkgbVMTzs168fYuzChQthYWHoLWCbPEHVXLZs2aioKKTOvHnz6Js78lMjxxYuXJjms+iHzcyHQr0PZy1atEAIDx06hAAgawnpU6dcKEqrTgzIbmCrye/PdXQlnYjSv1BNSkpKmTJl6NaIOmTmFStWeHh40PDDBw8e4JHVX8lB5CMfPnnyBHY8+gz02VABDS2kV9P6BiutVqs5UYIpcLAgpQDVCJoANHOortGbQqlB2RdvO1FfoaDRNppg+pgAKgqUCNQ22FYvVKSYskefqliwYAGqoDt37qxfvx4VYHh4uGZgsliQ+jOIRhhOaPv27NnzTTZCkqhWrRq9TELlBpth3bp18fHxaI7Hjh2LOBctvk7Cvf3222jgkPrYheFHn0KWl4AUsCClhl4HDhky5BsJ8UFkkToK5Cl7sM1gINWqVQtGJiyES5cuNWvWzNXVlXp3aL5hQSUYWbp0KVoxU0oxC1JqdLI9rCYnJ6fIyEiD8T3iBx98cOLEidTUVBha6KSggiJdSb9Y0Yj42bNnw3BF8YQVjXTUXH2PBSn179YPl6O/3olf7Ro1/CtVou0naak4lXT6tJOjw5JZM7F9eMeLZSK6d+oUf/zYvfi4A19uK1e6dGD9t8iTxFMn6ULYlnCDjfMHD9KpkKZNUcqWzpq1e+NG+n2zeRP5z4JULqKYsteqVStEO0qWqA/R6RCFIjo6Gr1gdAdoNyIiApUkTPQDBw6gPGp+sYEFqQKJjiB17NgxFGmRCQxGBapNmzY4KJZyQAUN00RMZvH19RVjhm/duuXv74+DyGfqlzPdunWrV6+eettgXJ4AV4l59Zs2bSpVqhT5/9Zbb9GQmcePH/fp0wcNAB1v3LixWL2YpuqIEKJ1gaEsFqowGFeAFi/30JmEWYAGm/zBjWArqKMCrY6Xlxc9y6BBg0JCQkQ/Vv2Y6iNocsTi4upHRicZQULr5ezsjKtQ8OSR2IjhGjVq4DieolevXjDT5TmMKMD0FTmSEnTC6enpCeNeJFb9+vXFig8rV67EEVGqly1bBsuGnBUrVkzTNjIYv1dIY8iFQIYaBGGjC0uUKDFr1izNC5GL0ELDXKZwhoWF0eJEiYmJgYGBdDlStkePHmLhJEUIaUiRyJmIIvltoSK2mzRp0qlTJ7H73nvviRfv5ucig1EvQ6qpHwclAklDYR41apSoQxVJAxYuXIhooXt5e3vLqwbExMRQngFIwa+++krx1D///DMCgEfLzMzUD5v5D/Xll186OjriCP7nz5/ftWtXMZVSp1woSqtODMig7ZG/X6lII2zjiNjViSj9C9Wkp6f3799f+IYQBgcH03vpLVu2INjqtyskuyOPVa5cWZ6WIqhYsSIyFTZgU8IHxScXBGPGjHFzc8vxU+tMgYAFKQVpaWktW7YU9QxqfnmsNKpcMUwYFbuNCvVQDrI3xEpzaLhHjx6N1pDco45CW2bqeyNZLEj9GVSh6jgX85dRn1OzjtoJdgK1AtRqz5gxQ0SyTsKhXu3YsSNV+6BcuXKac44MLEhp0a5dO3XEojmmsyJ1FKC5QYssdlFSatWqJS6HbSw+8wL7ysHBgY5jY9KkSfyVPfPRyfb0/Rwa+Y5t9Irl+BdfXdAvVgbj16vJuEIJat26NUqTZkhYkFL/VmnVbNfOncWpmAP7sR05e7ZwWdrDgxwUKlSoS7t2YnhUj86dFT74+frSKSdHB8UppNGNCxpz91iQehVaGBG7Tk5O6minL7c+evQI1gV6r8LxnTt30IGFgYEeKA2OUcOCVIFER5AyGKfpqQ+iS6w4cvfu3djYWPERNJnU1FT1u1CD0dwUS5HJ25r3xVn0pdUzS5FT4+Li1N8bVlyO3rXcSUb4Fb1EuIc/8sRANfAhOTmZnhEBVvigfkz5CLqsCvfyI8NnitLHjx/jMfGvvjXaSFrERzgWwNRAwMQDmgqn6DZfu3ZNvfioYpQHrsIdr169qk5rGTwC3Cg65PA/ISFB/0JDdtqp14/HYyIvqYfUKUKoTmKxrYhtmpAldnFKETYzc5HCHxkkNB5ZXVgUSUOewKWpDxLhOOJTdq/4RLrYzTFsZj4UdkWWoylpirPqcqEurQbTMSBYvnw5+q4iuRVppE4UUxGV44WaIMx4CkVeleNTAUWIot6QfaOb4qwpNQoEBATI82eZAg0LUpqgpKCcwgCQD9LwDfSfLfVNXYGgrKESQOHVF3azWJAym6NHj8LWx784gkhOSkrSt380QXpduXJF0/ATsCBlEerUEWg2N9TyyiuQEkhTtHc5WmIsSFnEzJkz3d3d5eoOfWPYq2pDy5BTsUJSqmtOBSxIWfT7+8QJ7q6u8jQ9/NLPn48/fiwjOSnXb8eC1Kug059SgF5DVFSU2hRH0dPxgQWpAom+IMUwDPPqwPBycHBYs2ZNfgckjzh//ryNjY3OgrVMwYIFKfOJiIioXbu2qS/Zvw6yWJAym5CQkJEjR+bZ7ViQsog8Th0WpMzn0aNHrq6u8rpdrxsWpMz/3U+IL+Xism3N6jy7IwtS1gwLUgUSFqQYhskDxo4dK8/a+2szZswYmtbH/DVgQcp8lixZEhcXl5d3zGJByjwyMjLCw8PVo7BfHyxImU/epw4LUuZz6dIl+TM1eQALUub/Lhw6KCbr5c2PBSlrhgWpAgkLUgzD5A1mjtH9C/DcSH6Hgsk1WJCyZrJYkLJWWJCyZliQsmZYkLLmHwtS1gwLUgUSFqQYhmEYRgcWpKyZLBakrBUWpKwZFqSsGRakrPnHgpQ1w4JUgYQFKYZhGIbRgQUpayaLBSlrhQUpa4YFKWuGBSlr/rEgZc2wIFUg+eOPP/7LMAzDMIwJ0FDCxMnvUDDawJLJ7yAw2qDUsJFptXDqWDO/g//85z8GA/+s8Pe7MYHyO48w2qBay29x5TXylxWkGIZhGIZhGIZhGIZhGOuEBSmGYRiGYRiGYRiGYRgmT2FBimEYhmEYhmEYhmEYhslTWJBiGIZhGIZhGIZhGIZh8hQWpBiGYRiGYRiGYRiGYZg8hQUphmEYhmEYhmEYhmEYJk9hQYphGIZhGIZhGIZhGIbJU1iQYhiGYRiGYRiGYRiGYfIUFqQYhmEYhmEYhmEYhmGYPIUFKYZhGIZhGIZhGIZhGCZPYUGKYRiGYRiGYRiGYRiGyVNYkGIYhmEYhmEYhmEYhmHyFBakGIZhGIZhGIZhGIZhmDyFBSmGYRiGYRiGYRiGYRgmT2FBimEYhmEYhmEYhmEYhslTWJBiGIZhGIZhGIZhGIZh8hQWpBiGYRiGYRiGYRiGYZg8hQUphmEYhmEYhmEYhmEYJk9hQYphGIZhGIZhGIZhGIbJU1iQYhiGYRiGYRiGYRiGYfIUFqQYhmEYhmEYhmEYhmGYPIUFKYZhGIZhGIZhGIZhGCZPYUGKYRiGYRiGYRiGYRiGyVNYkGIYhmEYhmEYhmEYhmHyFBakGIZhGIZhGIZhGIZhmDzlLytI/cEwDMMwDFMwYUuGYZi/IL///sfvv/HPKn+/53fmYPTIb3HlNfJXFqT+zTAMwzCMCX7//fdffvklv0PBaANLJr+DwGiDUoOyk9+hYLT59ddff/vtt/wOBaPNf4Dh+b8e3OefFf7+83//Qvrkdx5htEGjk9/iymvkryxI/etf/zIwDMMwDKMF7BtuKK0WWDL5HQRGG5QalJ38DgWjDXpuv/32W36HgtHm119//SXz56fX0/hnhb9fnz395Zdf8juPMNqgWstvceU1woIUwzAMw/wvwoKUNZPFgpS1woKUNcOClDXDgpQ1/1iQsmZYkCqQsCDFMAzDMDqwIGXNZLEgZa2wIGXNsCBlzbAgZc0/FqSsGRakCiQsSDEMwzCMDixIWTNZLEhZKyxIWTMsSFkzLEhZ848FKWuGBakCCQtSDMMwDKMDC1LWTBYLUtYKC1LWDAtS1gwLUtb8Y0HKmmFBqkDy1xOknjx58t133z169Oi13uX27dvHjh0zdfbs2bPXr19/rQFgXgJT6ZKYmHjp0qVc9BD8+OOPMTExz58/fwlvXwXcEffVzP8v/ZgWkZCQkJ6ebursP/7xj/3797/uMOTIHiP5HQqmwMCClDWTxYKUtcKClDXDgpQ1w4KUNf9YkLJmWJAqkOgIUj///POGDRvWSmzevJlOoRNOR9atW4ce5p07d+QLHz58iFOTJ09etGjRlStXXnvWMxiSkpJ69ep1+vRpbP/www82NjZff/31a73jxx9/jLuYkr3eeOONMWPGvNYAMC+BqXR55513ateunYsegi1btiCHIGe+hLevwo0bN3BfFEBsP3v2bMiQISjFdOqlH9MiKleu3Lt3b81T9+/fd3R0FNUIgXpm9+7ds2fPDg8PX7VqlWaMoTgvW7bswYMHmt7ikSMjIw8ePKg4rlNNrVixwtXVNSMjw7JnY/5XYUHKUlJSUmAATJw4EW3l7du3Nd2gXK9VIYvmhw8fnjdv3rRp07Zu3ZqZmWnqXlksSFkIjKWZM2fCSEPEPnnyRNMNDLn169fLSXP27FlxNjU1dfny5ZMmTULN/M9//tPUjViQspTHjx8jUaZOnYrio/8C6eLFiwsWLIBLGBty6cixWAlYkLIU2FQ7d+5EnE+fPh21k47LmJgY1F1TpkyBAQYjR+3g5s2bKEEbN2405QMLUpb+7sXHrf5o4YThwyOmTomNPpqj+5gD+5fMmrlv2xfywfMHD86bFj75/VGbPl6ekZzEglSuc+HCBU2LHSY6LHO0ShEREd9//z0dhNm/Zs0auE9OTpYdR0dHh4WFmXrlz4JUgURHkEJ6o2eLbluZbHx9fekUeo845eXlhYOFCxcuVqzYJ598Qqfi4+Pd3d1dXFwCAwPLlStXqFAhiwZloFlFRY+GVueImgMHDiA86M0aXk2Qgg9obMxxmeuC1JUrV2B2m+pyM/v371+6dOkrevK/JkjBtEXZ7N69O50y/zHNLwhqdASpxYsXlypVSjbO0CaVL18eAa5SpUrNmjVLlChha2sLG06+CoXCzs4ObnC5prfoFOGsm5ubomelU02h5Do4OKCde7lnZP7XYEHKIlBd29vbo+gFBwejoHl6eiYmJqqd1a9f30GiePHiKLDh4eF0tm/fvii2LVu2bN26NQpvtWrVfvzxR83bZbEgZQlz5sxBPKO+bdiwIerbJk2aaHaYo6Ki4MzZ2blENqJm/uKLL4oUKeLn54drkTRwY8rMY0HKImAHenh4oOz4+/sjYv/2t7999tlnmi7Hjh2L1EHrWbZsWUpNUTr0i5UMC1IW8fTp0zZt2iBR0LtBAiFWJ0yYoOny/fffR9+njhE4Q90FY0zhBvYYTsE3U7djQcqi37VzZ73Le5VwcmraqJHnG2+ggtr+6ac67h9dTaxQrhySoFnjxuLgmMGDXxQrFCpPzxfFKqDqgysJLEjlIhkZGRUqVHgR7c2aycfR43BxccGptm3bNmjQABWawaj/vvnmm+3bt+/Tpw/OirkX9+/fR9UXGRlp6i4sSBVIdASp7777Dpnmm2++UZ/6+9//jlM//fQTtu/evdu8eXMhPIWFhZUuXRoHyeXXX3+NHrL5mfXevXtCWjJ1RJOHDx/SxqsIUjVq1BC9d31yXZD66quv4GFCQoJFV/3vMHLkyDJlyryiJ/9rgpTBqEmhTqdt8x/T/IKgRkeQQjMjexsdHY0OZ61atWJjY+kIDD4UhBEjRshXffrppzDQYWTDtlP7+fz5c7RMaNvw1Lt27ZJP6VRTAI1cixYtXu4Zmf81WJAyn8zMTNTVjRo1IoH46tWrzs7OnTt3zvHCrVu3osAeOXIE28eOHcP2pk2b6NTBgwexu379es0Ls1iQMpuLFy8iJsePH0+7X375JXY1LXvYfqL+VLB9+3bxfvvs2bO2trbvvfee5u1YkLKI8+fPz5s3j8SL5ORkNzc3dMM0XaJ1EwPWkJo6L2zkYqWABSmLWLZsmWxmDB8+HLsXLlxQu1yyZImYHbJo0SI4UwiLKD4wftBdYkEqt36d27Yt5eKSdPo0tn+8erV2jRoe7u46Q5zCx4zx9vJqWLeuLEh9OGH8qago2h43dAgS7qMPZ7AglYtMmzbN29sb5oEsSMXHx8PIR8dB9FbQFzAYVYjixYvT+xJ/f38UQDrbq1evli1b6tyFBakCyasLUuD777/HLg1gQY+3cePGOWbKW7duoZ85depUVNzIi3QQNfgnn3wCr2DcbNiwASap+gjlXRpn/vHHH8+aNevBgwePHj1auXIlKV9CkLp8+TLCOXfuXFkUOHDgQFRUlNi9du3aqlWr8CAPHz6E/+XKlUOfGRvoFeuE05AtSOGqffv24Sx2hSJmUOkUCBgiZ8qUKbCnNV9Fomc+cuRIeDh//nzcXbxMhmWPJw0PD8djnjx5Uic+cRbmSERExLlz5+Tjhw4dQiSgCsATyYMbt2zZkpCQcP36dVg/uAp9BoNxKAoM0xkzZsjj0Q4fPgxTJiMjAxGFU0ePHjUYdWsaVa5eiCc2NnbBggV42NWrV8txQv4gqteuXYsLd+/ebepZECoEA262bdtGtRLM3xYtWpQsWXKDEaEDInVWrFiBe6HJV0g/uBB2w5w5cxDzqampdFBOF0Qy8gzNNSClBkljKmymolGR0Onp6UgFODtx4oRakILhgvDgrFym8CyIWPwjxyKhSZpBbCOrYBdPd+/ePVMRJUCsrlu3jmIMsScLUkgmkSVkQcrSgmAq/ASyAY6jFOBBTAlSN2/eRMBQmmgX0Vi9enVEoJxJNAkODkbIkZ1wOUq34izyFY5funQJYYZ5J5/SqaYANmALvu7F5pi/BixImQ8JGXv37hVH+vbta2dnp9n2ydSrV+/NN9+k7c2bN8MTMW6fao/ly5drXpjFgpTZTJgwAT1heayZj49P06ZN1S51BCkF7u7ubdq00TzFgtSr0L17dyQB7Bx9Z7Dl4Gzo0KGaZ+VipYAFKYt46623GjZsKHZTUlIQ7R9++KH+VeiJkG0vjqDzUrVq1dGjR8NEYUEqV35342JRrU0cMUIcWbtkMaL90FfbNd0nnDhuV6zYjnVrmzVuLAtS8i/OOEloSJ8+LEjlFuhpwhLYuXNnMyPi+PDhw93c3NRtDfovpUuXpu3mzZujl4ENdHNKlSqlv0wzC1IFklwRpOid24IFC7D93nvvoYZFNtLJK7Ayixcv7u/v3759e19f3yJFitBkbFxVsWJFeIVuKrq1qK/VRwxGMQh5t3Pnzs7Ozi4uLqdPn5ZHRdF2p06dHBwcAgMD4dLV1VXYtTCbGjVqJEIiVIPExET4X7RoUScnJ2yQpmYqnIZsQQr9ZHiOu+BCdPXv379PZ2WdApfATY0aNbp06QK7Dc7UEgOeC6UOHnp7e+PuFHsob3Xr1sVTBAUF+fn56Q8PpjHbderUsbW1xUMZjIpM7969CxUqBE9wHIkCo1MMG0YIe/XqhVKNU85G9uzZU6FCherVqyOQqDKOHz9OLvGMwcHBOF6lShUaHL527VpUDV5eXpUqVcLukiVLREiWLVsmRvIj5HgcNMayP4gHxCQ9zqxZs9TPAvdIggYNGvTs2RO3IGEFyVGyZEk8QmUjJJ8hf75hBM+Ff9wO9RR5gseE3YBEQVoj/9jb29PbKpEuycnJiHAYaqRHIGwwyhGB6rDlGI0ioVEKEEikNUJbrFgx5ApZkEIsIWbefvtt5CUErH///nScsuuQIUNwEEGC1ZKRkYHYRnhwX+QWU6ONBOhaIOS4HHdEgiLmZUFKDqEsSFlUEHTCDwYMGIBrETkIM2IP+UczzLt374Yz8VL33LlzL94+ffSR/tOlpqYiS3/11Vd3797FfSdPnqxwgLsjUxmMb4mRb+VJrzrVlCFbydJ8b8wwCliQMp958+bR2xpxJDIyEkfi4uJ0rjp69CjcrFu3jnZR8NH4opqiynbQoEElSpQwtVZRFgtSZtO6detatWrJR2CZeHp6ql2aKUihSoez2bNna55lQepVCAkJgfUiRg2Y4sSJE0iCOXPmqE8pipUCFqQsAmlBfRAB+hfvvvuu/lUwcpAE8keQFi9eDMMMtgoLUrn1O7HnhXm5Y91aceS8cVDtx/PmarrvgKLVtCk2dASpY7u+ftEXmDSJBancomPHjq1atcKGQpBC77Jfv35q94cOHYLZT69P0BNHvwb9YnRzvvjiC/0bsSBVIMlRkOrUqdOYbM6fP0+nFD29oUOHosdOZ9PT06lL37x5c1Nr/l27dg2e03ZmZmalSpVgEtGuOVP2SAyCUYVTaKqfP3+uFqTKly9P5i+yL9qMdu3a0bWm+uG0q5ippBNOCkPLli2pA7x3717sLly4kM4KFQBX+fr69urVi4bVwJ6GVU0qrwL1lL2ePXsi5GK0FC2UI3QiAXrUcjcbpsm+ffuwsWbNGnnq4rfffovdiIgIEcJixYrhILYRUWgUcXbFihUG4+QmuZWlie70Fgh9A0rc3r17P3nyBA/VokULYcuSP2PHjqXd5ORknEK1L/szderU50ZCQ0OdnJxoAJTMxIkTvby8KLpwC6HxKabsIWJ9fHyaNGlC3RVkxaZNmyLY1AtCaJEhERXkeMOGDSkpKSJdbt26Vbly5Xr16gnPdcKWYzQKuQclpXTp0jTJGZmwnHF2OmWt2NhYxIxYsYjW5qApD5RdS5YsSQO/8ch0Voz3zvHt6NKlS1+8CDp0yGAc4/b222+/iiBFu4qCoBN+lHqRPRB1SD7KHupwzp07F6dEnFPEnjp1inaRW45nIy9eiKh2dnamqqZDhw4o1/IINRxHgaLkiImJkR/coFtNGbLnNpoac8EwMixImc+4ceOKFCkiH6FJQzrfpTUY6093d3d5FBXqGZie3t7eQUFBqO1FXaEmiwUps6lbty5sM/kIvQ5RuyRBCi0IGtZq1arNnDlTHld14MAB9KuHDx/u6uqKCt/UByJYkHpp0tLSkC49evTI0eWwYcNsbW3lIfwCdbGSYUHKfGBqql+jopNsauL/Z599Nn/+/LCwMFRi8vAo9AJg0tAMPhakcuv39YbPkDrf7fyHOJJuNE1nffCB2vHujRuLFi1Cq57rCFJD+/ZFsTK1ODoLUpaCBgUVGlVTsiAFkx6WOTrprVq1QlfI3t4+MDCQJnagF4amBwZA586dYQmgf4dONzrUOd6LBakCSY6CFHqtnbOh6VqG7J4eOniDBg1CFxeFVn45g0yDvj06inDTrVu3HN+wde3atV69erRtviAlht4Y/rxuFG3LAirsrcKFC1M/1qJ+uE44KQyyWICWSRQwoQKQSSdPo4N9EBwcrPZcIUhlZmaioZJXd3706BEKMzr8igtHjRrl4OCgNjhQpBVzJxs2bFi/fn0RQhgx4lT16tWFckSBFMrFO++8ExAQIE6NGDECtxNCEqkhNM4IiW5nZyfPgSIRjUxV+FO1alVxCu0xTonJdIIFCxagMyPPJiMUghQtY79//35xhDRBurBmzZoKm1s8NXJsPSNCGTEVNpiDBjOikRL62bNnyGMffPCBcLZ+/XqRtSZMmIDiICspsFFmzJhhyM6usixCL5xxVq3WaYLs1KBBA7FLw8hzV5DSCT/+kV5yoqPZ0BSk4AkqCrFLCyuIUoxLbLKRR8Uj7/Xp04e21WthbNu2DUdoxJzBWAbluSf61RTqJZxFL0sdVIZRwIKU+QwYMMDR0VE+Qq1bdHS0qUsSExNhkipe1aDn1rFjR3iFZgX1gM5gxiwWpMymUqVKbdu2lY+gbVUIiMTdu3c3bNiwc+dOtA6DBw9GArVu3VqcRe2KirpixYo0kE2sA6iABamXBmYYMr/m1wBkYDDAVoSVqz6lWaxkWJAyH1oMQbz6JWApaZqaBmPyvfXWW56enq6urig+wuCEPSMsHBakcuu3YdmLQbgno74RR27HvjCtZ34wUeHycdLVSj4+YnKfKUHqVFQUkmZw796m7siClD7ok/6UDe36+fmhS0hnZUHq4cOHSCkPD4+5c+cePHgQdn7lypVRami0B87iyObNm9EeRUZGenl5oSihAx4UFIQiJiY/KWBBqkDyKlP2YCyiizt69Gj5Y8CCe/fu9e3bF85EFpQ5dOgQrn3zzTfLly9vb28v+snmC1JyH1gtSMmLmtOIWRrtb6kgZSqc6jC0b9++SpUqtC1UAFoEERab+OIJ6jjNtZkVghTMOxtpSVcCXX0xREsQGhqKfrjaQxRvdAzkI0gONzc3RQgJxEmHDh3Ebu/evYVAo1gJe/LkySVKlBC7a9euFcJcWFgYjF35jiTK0DLSCn9g5tpoLQn0+PHjVq1a4VS9evU+//xzcVwhSNHKYvIsYhJiaNE7FxcXTfuMJn4qphnqh83MaExNTVUMz5GzFlIN2/KHb7BLQ8k01+CfMmUK7EjUvBERETkuvOLr6ysLQIpFzXNFkNIJf79+/VA05PCYWkMKKSi/hyfVj0bzGYwvSZ4aCQ4OhhlHB2nVJ5TfGCO0CPrAgQOFJ6iC0MjFZIPA2NraCpVTv5rCHXFW8UU/htGEBSnzGTFiBMqpfAQNGcqa5ggOgioH+fsnqM/Lli3brl27mzdvpqWlob6Cn+olC4ksFqTMpnr16orPG6GBE+t06DBu3DjNJvvcuXPu7u5oBTQHSbEg9XLQvFfZBNIEZi3MQpiUmpGvLlYKWJAyH/SHkSIwKuSDsHi7deumf+HGjRthzsEIwfbx48fRBRCvqFmQyq3ftjUv1hg9vOMrceTauRdvdj+ZP0/hcs6UyWU9PcW38zQFqevnv/f28qpdo8ajq4ksSL0E6enpNhLXrl2bO3cuGnQxxlYWpFB3KUoWTcJQfOkbTQ+6HuiSo7uELtiRI0cmTZqElkvxcW2CBakCSa6sIaUD6mv6fKMM8hMq6Pfff//o0aMXLlyArflaBSn6yDGFFveSh5Po98N1wqkOQ8uWLYXPQgVYsWLFi3Gk332XKqG5irNCkEKQFAIHeasewNWjRw8fHx+1hzAQFboAWkSh6bwOQQpXKbQJiiV6KIU/iFtN65Y4efJk165d5fdRCkGK7isvGU7pTvkEFZ/mR3/oqfv16wcr7cyZM3LMmAqbmdFI9S+eVziTs9a7777r4eGR+mcyMzMNpj8KmZycPHHiRIRT8TZbjZ+fH9k6hPmClPkFQSf8AwcOxC3k8JgSpMLDw3ELuspg/DQBdocPH65whlZKCFIIuY2KkiVLkkh3+/btIkWKqB3AlKfL9aup+/fv2/x5qVGGMQULUuZDk3Pl9Z5mz56NI/L6bjJo4h0dHRXj8FFLo84RhRdGJyo6MTRVQRYLUmbTqlUr8eaMaNGihWJVKU0+//xzUwbh9OnTbUxMyWRB6iUg88bUV/MEKDiwrlEuNNdW0yxWCliQsojixYsPHjxY7D579gxHFKtKaRIUFGRnZ/f8+fNRo0YVLlzYNxsXFxckNDbEKhAyLEiZ/zu+exdicvMnH4sjR43vleVVpehXM6Cqk6ODT/ny9LMrVgw/bOzfto0c3I79AW4q+fiknz+vc0cWpPS5dOnSxWyQ81FTOTk5iZxvZwQbtPSHvb29/HFt+g6A/GFKGADovIwbN85gnPPUs2dPbNy5c0eMeFDAglSBJNcFKYVaCdNHTHMThIWFVaxYUd4V/WQavCc+7qh5xBxBSh5YCwvM29tb3EsWTaZMmSL3w2GWyUOQdMJJYRCiBqIC/eS+ffvSrlABKA5zfM1lyB6VI4rW06dP0dSJyUoGY/FWSB7EtGnT/va3v9H8MoKSoHnz5j4+PmKaFQ6WKVNGKBevQ5CaNWuWra2tmD9lME5y9PT0pDBYJEgRb7/9tpguh1ZfjEsyGL9LaPPnpTqXL19ukz0FDM2/PGqMRt+Ip87IyEDlWKFCBVRnms8oh83MaIRp4uDgIDKAIXu6ImUtlJdChQrR8lIKTAlSxMyZMxGlmm8ABCEhISJ7G7KnLuYoSFlUEHTCD0MKF4pVn27cuAEbS1OQokFttJgXgY5Q0aJFFcuiCUEKUYrMA6+eStAcvS+//NKQXQYTExNlB9WrV69WrZoIto4gRTGvGITIMJqwIGU+B42rydK3NYjAwED68oAm8+fPt5E+d0Cg8kdZlo+0bt26cuXKmj5ksSBlNuHh4WhTxODiBw8eoDMwcuTIHC+kFk1e5lJAbw40Z0+wIGUpMBfR2ipG4qiBAdygQQM04teuXdN0oFmsFLAgZRFNmjSRxVxaOEL+ErEpYHehg2AwDidcJQGrG4URGzExMeqrWJAy//foamKxokUH9Owhjkx+fxR6RjcuKEWlrzd8tmL+fPGrXLEifti4fv57nL2fEF+/du3yZcsmnT6tf0cWpCxi9+7dcs6vYgQbJKY3bNhQfilC39iVV41EDwX2AL2KRr+YBhzQshuaZYcFqQJJjoIUzeokxCLlpnp6sHJKly69YMEC5CQ0hIMGDYKzDRs2KJyNGzfOzs7uzJkzmZmZ6FUWLlxYlgNQcaOPDbtH2DeKI+YIUsWKFZszZw76yUuWLJHHQaAA2Bg/R4J+7LRp02CKyf3wjh07IvwXL16kTrJOOLGLys7NzQ09ZFzes2dP+HP69Gk6K1QAEoa9vLz27t177969tLS0jRs3amp8NDtp6tSpsbGxpOng7rjFRx99hKAeOXIEpRHGhzrOcfciRYoEBQUhnCiZAwYMgCeG7I+a9evXD49z4cKFsLAwWDnYVoSQyBVBCjWLg4NDvXr1jh07hjCTPiUUNDMFKZjLiKsff/wR8VCuXDkxP2vx4hffcN21axcek4aY4UaI/x07diCVt27d6uLiInQimiECI/vy5cvItzAjaLUp8dTIS87Ozujh5CiWmR+NyO3IIQgJwgPbXc5aMBkRM8HBwUhlBD4uLm7RokVk2asFqc8+++zTTz+9ffv2zZs3EUI/Pz86PnToUA8PD4MKGtw0ceJE3AVlrVSpUsg2OQpSFhUEnfDjFG7XokUL7B46dAhtDIqMpiAFr2yyF/kiUlJSypQpU7x4cQQetQ2Kz4oVK/CMNHSLlDVFYaFVzENDQw3GNkyMpRLQcEhauVxfkCJtS18SZRiCBSnzefbsGeoBtFbffvvtlStXaGik+PAuamPZ9Hzy5Anq+cDAQIUnM2fOpBdLaFbu3Lmzfv161K7wSvOOWSxImQ0qfFhHzZs3R32LGr5du3biK7SGP6fOiBEjkGoJRpYuXVq0aFG0C3Sqbdu2ERERqGZhq6xevRp1uObKmAYWpCwE7SDMOdhje/bs+SYbamphD8DgGTVqFLls1aoVWt7IyEjhDMVNfnOmWawUsCBlEWRYwqCC2YDeEGwz2Mn0slNOHZj6devWXbduXXx8PEzQsWPH4qrp06erPeQpe7n469+9O8rO6o8Wxh8/tnH5MvvixQf26kmndm3c4OzouHXlCvVViil7IU2bIkWWzpq1e+NG+n2zedOTtFQWpHIXxVf20IjYGD/Vij4Iqj70PtAMidosOjoajRR998lgfAterVo1VHEHDhxwcnKSP7UhYEGqQKIjSF26dAkmoDwXBl3xu3fvGowj8G1tbdWr2yADobIuWbIkuUcFrfkRK3S20ZkkN0FBQaiv5Y4lmlj66Jvo1iqOrFy5EttyLqTpP7TABHrLNIaiYsWK2EA4cZWYKIQwh4WF0a3r169PnVLxiuno0aM0hpYGj+iEEz1nHx8fNDnOzs44i9IiL0uE4jR+/Hjahuf04TPC19dXvWI3Qd96E8NbHj9+3KdPH5EEjRs3ltdxl0EzWapUKXKGEApnCxcupKXlgbe3tzwjVw6hwWiGdurUSey+99574u10t27d5DFu6BLgXmKXVgISQ41gEiFa6I64tfxFEoU/SCwbrVVF0ELb2dmRDy1atEAS0PFbt275+/vjIHIC2WcwrGFvkUvEUo8ePcSUEORDJBbN54J7pDidkp96+/btyBvIWjmGzcxofPjwYUhICDmDQblr1y45a5FYQ2dxXyQTjRWSsy6xe/dud3d3colLhMqJBJLHiMlMnDgRZRPuvby8kAS4XAx2lUMoP6ZFBUEn/ABlzdHREcfxP3/+/K5du2rOl/zpp58cHBwUC6ymp6f3799fRC/SER0bWlhq0KBBeBD16DCacYmOkI1qLTCDcaojooI6rqaqKQI1FeIzxy9qM4yBBSkLiY2NrVOnDhVq2ANyOUU1XqFCBbGLehhuduzYofAB3bzRo0eTUE51y4QJE0x95yGLBSlLQBPm6ekpDBKaNEHIqYM2lJYLtDEuIDhp0iRhdMGuQ8tCp9DO9urVS3PWmIEFKQuBsWGjgia2X79+HcaMGDWPnpjCGRq7mzdv0llTxUoBC1KWMmPGDFEpwVYRY8Pl1IFRAeuFjCKyhE19owYmiuYHLgkWpCz63U+I79KuHVnCqJT6d+8uVoDaYlw75dPFi9RXNQ9qgp/YdXJ0UBcr9TArFqRekRZG5CO0RAlFeOvWrcWEjEePHqFTKc95Qn8TfRZY7+ikqMe7ECxIFUh0BCkd0OHXWWsZ1TE6q/KC05rAgqEOMHxTdDth96Cil7/qpTiiHvUgr+lIZxGMhIQEoZXIIK+LhkThFUKCvq78dJrhxDaJXI8fP46Pj8e/7AkuV3R07969CxtdyCumgAPFCpQojXFxccLOMAUChmCojUIcRyTI86Q0QwhncnuJU0LCw3E5ddRJr04LRBduKnzQ9Mfw5yRTeIhnuXfvnvpUamqq/HU8g1GoQsRqLstFUScvXKJ4arGbY9jMjEaD8VPNQtbRHEKIR5MH96nvZTBGMjKhPEUOD4jKF+aL+jEJZLArV65QIsoJJIdQ/ZgWFQRT4adHEKWAps5pBrJr167qMU10CeJNcbsnRtSOETkUY4pCJ4AnFAD9aiogIKB///6mzjKMDAtSLwGqF1RKioYAuzm2IAIUZNS6qBz0heMsFqQsBPGJ+hZNlWxlGVSpg/iHM3VrTqA5wFn9r8GyIJWLwAw2/w2KOWu8siD1EpC1o7bJFamDcpGUlCQvpqFG30RhQeolfrdjf/jh6Hf34uMUx9VH6PdTSvLP11Je4kYsSL0Kii4ngbKAtoZGvQjQg4uKilK0UwajLKXT9LAgVSB5OUGKYZi8JCIionbt2vqLSVk/NAtPcxWSPOb8+fM2ut+hZxgZFqSsmSwWpKwVFqSsGRakrBkWpKz5x4KUNcOCVIGEBSmGsX6WLFkSFxeX36HIBerUqaOYtZcvjBkzpkmTJvkdCqbAwIKUNZPFgpS1woKUNcOClDXDgpQ1/1iQsmZYkCqQsCDFMEye8dxIfofCWoLBFBRYkLJmsliQslZYkLJmWJCyZliQsuYfC1LWDAtSBRIWpBiGYRhGBxakrJksFqSsFRakrBkWpKwZFqSs+ceClDXDglSBhAUphmEYhtGBBSlrJosFKWuFBSlrhgUpa4YFKWv+sSBlzbAgVSD5448/fmcYhmEYxgTcUFozsGTyOwiMSbjsWDOcOlYNOta//MI/K/z98dtv+Z05GJOgWstvceU18lcWpP7973//H8MwDMMwWsDE4Yby/7H3HmBVHG3/v6IgXRBRLCBYsXcsoEYssUSNxhh77xp7wxJ7r7Ebe4+xolE01kjsBVQsYFdUNNjP+77P8/6e5+H/9dyv85/s7lkOirjk3J/rXOfanZ2dnZ2ZnbnnuzOzhgWWzOeOAqMNnho8O587Fow2//znP//1r3997lgw2vzv//7vP9++MT2K558Bf//7X++GsH3uMsJo82/za6q/K39nQYpnIjAMwzCMJf7NU/YMTBJP2TMqPGXPyPCUPSPDU/aM/OMpe0aGp+ylS1iQYhiGYRgdWJAyMkksSBkVFqSMDAtSRoYFKSP/WJAyMixIpUtYkGIYhmEYHViQMjJJLEgZFRakjAwLUkaGBSkj/1iQMjIsSKVLWJBiGIZhGB1YkDIySSxIGRUWpIwMC1JGhgUpI/9YkDIyLEilS1iQYhiGYRgdWJAyMkksSBkVFqSMDAtSRoYFKSP/WJAyMixIpUv+foLUq1evDh48+PTp0096lQcPHhw5csTS0RMnTty6deuTRoD5ACzlS0xMzPnz5z8gQJ0Tnz17durUqbdv335AsB/J5cuXb9++rXb/4NtMlasTv/zyy969ez91HAzCTjOfOxZMKsCClJFJYkHKqLAgZWRYkDIyLEgZ+ceClJFhQSpdoiNIvXjxYuXKlcsk1qxZQ4fQqyeXn376CT3Mhw8fyicmJCTg0LBhw2bMmHHlypVPXvRMpmvXrrVu3ToyMhLbFy9ezJAhw7Zt2z7pFX/88UdcxZLslSNHjn79+n3SCDAfgKV8+eabb8qWLfsBAeqcuHbtWpQQlMwPCPYjKVy4cJs2bWh75syZQ4YMoe0Pvs0PvrqCx48fu7q6imokLUFttmPHjvHjx4eFhS1atEgzX1BpzJ0798mTJ5oh3LlzZ86cOREREQp3ncpwwYIFXl5eiYmJqXgjzGeBBamUcuPGDRgAgwcPRlv54MEDHZ+7d+/GUzlmzJj9+/erj169enX69Ok3b97UCSGJBakUAmNp7NixMNLWrVv36tUrHZ84un79emTQqFGjdu3apTh64MABCmfFihWaFR0LUh+ANbmD1mqZCsULp4MHD8IAePPmjaULsSCVUpCYW7duHTFiBB4HFP5k/d+7d2/evHmrVq0SLjExMYpcs/T2mgWplP5exsVu+WnZsL59RvbvH7F5kyVvB7f+smTGdPFbNmvmi9gb4uiZiIjJI8MQyOof5yVev8aCVKqjfijAqVOnJk+ePHz48JUrV8JcF+5v377dtGnT1KlTjx8/Lvu/f/9+kyZN8DRpXoIFqXSJjiB1+PBh9KjRocr9nvz589Mh9OtwyNfXF46ZM2fOkiXL/Pnz6dClS5e8vb09PT2Dg4Pz5s1rZ2eXokEZL1++REV/7tw5HRc1+/btQ3zQzzR9nCCFENDYWOMz1QWpK1eujBw50lJnmNm7d+/s2bM/MhAbFKTwGOIhpW3rb9P6B0H/6gpgHGfLlk1ubNKGiIgIPz8/ZEeRIkVKlSqVNWvWjBkzouWT/eDRc3R0hB9EUjOQoUOH4mj27NkVPQSdyhD1g4uLy5IlSz7RfTFpBgtSKQLVtbOzMx6K6tWr4xHw8fHRNBzRu2vatKm9vT28lS9fHs/RoEGDxNHXr19PmTLFyckJ7mopRCaJBamUMGHCBCQpasLKlSujJgwJCbFUJ8OcQ53p4eFRt27dGjVquLm5oRtAhxITExs0aIAar1q1ajiK2m/Dhg3qEFiQSilW5k5QUJCLBD0mYWFhdDQ+Pr5Dhw4ZzDx//tzStViQShGokerVq5cpUyaYVYGBgYr6ShMYXfCGU4TL4MGD0S3KKhEeHq55LgtSKfq9iL3xZc2aSOqqFSsGFiyIZB/Qo7umz4plyjg42Gd1c6NfNk/PB1EX6VC/rl1xol+ePHl8fN49hsWKPrlymQWp1EX9UPTt2xcPRTkzOFS8ePE///yTDvXu3btEiRIDBgxwdXWVJxw0btz466+/tnQJFqTSJTqC1MGDBy0Zgj/88INo59DyhYaGCuGpefPmuXLlgiP53LZt2507d6wvqY8ePRLSkiUXTRISEmjjYwSpkiVLfvfdd9b4THVB6ueff0aAly9fTtFZtgNqJSGsfDA2KEi9fPlS2KPW36b1D4L+1RVUqlTpg4P9YA4fPoxeU5kyZaKiosgFZiUet169esneli5dii40rHy0iOpA3r596+fn98UXXyBPt2/fLh/SqQxBw4YNa9Wq9UlujElDWJCyHtQ5qKurVKlC0u3Vq1fd3d01bceFCxfi2RH9MfTusCueHYQQEBAwbNgwFqRSkXPnziE9Bw4cSLubNm3C7pw5c9Q+UU+i1126dGkhQsFFHO3cubOnp6f81lpzJA4LUinC+txRsG7dOvj87bffsB0bGwtTp3r16i1btmRBKhWZO3eubAD07NkTu2fPnrXkPyIiArYH+kRy3xu1XMWKFa25HAtSKfrNMb8a3LpiOe32aN8eu6f27VX7rFCmtCWtasyggcfDw2l7QPduCGH6mNEsSKUimg/FrFmzxGyqGTNmINlXrFhhMrc4Dg4OVK1169atadOm5Afmuo+Pj87Iaxak0iUfL0iB06dPY5cGsKDHW7Vq1WQLJc5Fn3DUqFGTJk2i0mYyjxKaP38+gmrfvv3KlSuPHDmidjGZ39rRSOYff/xx3LhxT548efr0KUxbUr6EIHXhwgXEE+HLosC+ffvk1xFouRctWoTIJCQkIPy8efOiz4wNxI08wBRD0R8xYgQeGFxXnEiCFM769ddfcRS7QhEzqYQPRAyJM3z48OXLl2u+7EKfuXfv3ghwypQpuLp4mQzLHncaFhaG2/z999910hOn4EbGjBmzY8cOed2i/fv3IxFGjhyJO5Ld165de/ny5Vu3bk2ePHnixInoM5jMg0Rg+owePVoej3bgwAFkUGJiIsLHoUOHDpnMpicihhtXL5GDbv/UqVNxs4sXL5bThMJBUi9btgwnIp6W7gXXQkLhrhcsWPDo0SO4bN68Gb16Dw+PlWaEDojcgR9cC1WYQvpBRQa7YcKECUj5uLg4cpTzBSmGMnP37l3Te6UGWWMpbpZuSiHx3L59e+bMmUjtY8eOqQUpGC6ID47KzxTuBQmLf5RY3DKJJuoUSBZkBEJGOURQsiSENBf2kxzblD4IluKvf3WZe/fuIUHwNAkXKoTIgunTp6PonjlzRnGKfunVOVGAs0qUKIF8l3NNE5jvSB/kLyKJOkRxFKWXuspIGTSl8iGdyhBgA+3up17SjvnUsCBlPagf8Ajs2bNHuLRr187R0VHd9n399ddFihQRu7AvcSIqGdpF7YfHSscOESSxIGU16A+jP/Ds2TPhEhAQUKNGDbVPUkNOnDihPgSTBoFMmzYt2cuxIJUirM8dBRUqVChdujRtw65bv369SdU2qWFBKkVUrFixcuXKYvfGjRtIXlggmp7RQylatOj333+PXGBBKg1+FcqUrlSunNi9GnkcuTN64IAUCVLyL9o8Sahb27YsSKUWlh4KGfTcqS+MbRj52KauN3rB1apVM5lfcbm5uembBCxIpUtSRZCitzrosWO7ffv2KGfr1q3TL5R+fn4+Pj7169dH1SxsUJxVoEAB7KIDiW4tSq3axWQWg7Jnzw5b1t3d3dPTMzIyUh4VRdtNmjRxcXEJDg6GTy8vL/QS6dL16tWrUqWKiIlQDWJiYhC+g4MDCjo2SFPDWU5OToGBgQ0bNsyfP7+9vb2YNE6CFHqwCBxXwYno6j9+/JiOysIHToGfkiVLNm3a1NvbG97UEgPuK1euXAjQ398fV6fUg1VRvnx53AUewkKFCukMD4bxgbghSRETRLhr164msyLTpk0bOzs7BFKuXDlkCswaMQwSMWzdunW2bNlwyN3Mzp078+XLh947IonOw9GjR8kn7hF9dbij55AnTx5EY9myZaGhob6+vgXNw2JnzZolYjJ37lzEBLENCQlBzHE7qFzkcJAOSEm6HdQv6ntJTEzEtWCEIfJIK5I2kB0eHh64hcJmSD5D+cxhBveFf1xu48aNFAhuE3YDMgV5jfLj7OxM6rvIl+vXryPBYcORUoC44YqlSpXSjJv+TQmJB08BIom8RmyzZMmCvJAFKaQSAqlZsybKEiLWsWNHcqfi2q1bNzgiSqiFNVNAn06dOiEQZCXOQjyRg+IsOYbydooeBJ34619dZseOHYrujSiEZcqUwVkIVqzQZGXpVZ+o4OTJk+/ecU2frp+AcXFxGTNm/Pnnn+Pj4xHasGHD1CmMoouNgQMH4umQp9bqVIam90qW0NyZdAoLUtYzefJkelsjXObMmQOX6OhohU+0CIoxm7AKFLUHC1Kpy5dffolqU3aBZYJkV/uEISFWaVBA43HEmx4dWJBKEdbnjsyhQ4eQHT/99JPCnQWp1AWWJPVBBOhffPvtt5qeZ86cCUMFpgILUmnzc3Zy6tu5s+zilc2zeaOvPliQOrJ927u+wNChLEilFpYeChmY60h2Gn3y6tWrzJkz03eQ0EuCbfDmzRv0Srp3765/IRak0iXJClJNmjTp9x4xEkHRzqFwoOtIR2/fvk1d+tDQUEtr/r19+3bDhg1igDcKGap12rZmyh6JQWi2cQiBIDS1IOXn50fm761btxB4gwYN6FxL/XDaVcxUio2NRSLQ9suXLwsWLChGDFIcateuTV3TPXv2YFe8MBTCB86CSYfOM43vuHv3btasWUeOHKlOE/WUvVatWiHmYrQULWEjdCIB7H53d/evvvqKhtPjfmkQypIlS+Spi7t378buxIkTRQyzZMkCR2wjoVA14OiCBQtM5mlHcitL033pLdCff/5JmYssQ02Bm6pVq5awliic/v370+7169dxqE6dOnI4I0aMeGumcePGbm5u8hQAIjw8HN7E6E0xWUAxZQ8JGxAQEBISQiIFimKNGjUQbeoFIbYokMeOHSPPK1euvHHjhsgXhFm4cOEKFSoIAVEnbsnelOhQ4UnJlSsXfWAOhTBv3ryiaEVFRSEQsZYQ3SNpKFRcPTw8aOA3UtVSClgCz53IIER+8ODBlEHqGFojSNGu4kHQib/+1WUmTZqEQyLNKTscHBxoABeeI19fX5jjdCjZ0mvpRAUUjphXguw7+h5sC28IGQ8RVWh4lFB7yAOy4I7Hlq5+6tQp0mTFUZ3K0GQeSoCj8+bN04wek15gQcp6BgwYYG9vL7uQfqH+Li0J8aLaQe2NarNRo0ayHxakUpfy5cvDNpNdKBfUPqtVq1a0aFFU5mjyHB0dixQpIl40jho1CrXckCFDYA/AkEDDFxYWhkZZHQgLUinC+tyRge3h7e2tHoHIglQqAlNT/Ro1MDBQc0o+TH1YFDTtSC1IIUNhrObMmRM2GEwvS99iZkHK+l9CzBXkztghg2XHIgULhFYL0RSkXF1csnl65s2Vq0GtWke2b9MMs3u7dhkzZow6fIgFqVRB56EAcJ8yZUrz5s2zZctGw6MIVIDoeosZ4uPHj0f3TbyctgQLUumSZAUp1Jhfv4ema5net3PoenXp0gVdXDy0Ypi9yWxWom+PLhz8tGjRQqc5JNBbg0/6RIv1gpQYpWL667pRtC2vr4kCnTlzZqr0U9QPV9CsWbMKFSrIcZDFArRMX3zxBW0LQYomL5w8eVJ4g+lQvXp1deAKQQq2HR5Xed3lp0+fohlDh19x4pYtW3Di4cOHFe7BwcGKuZOVK1cOCgoSMezRo4c4VKJECSGyUCRlFaNYsWLiUK9evVxcXISQNHv27Azv19JCpsNslWcnkYhGOYtwYN2KQ6h9NF+xnjhx4t0429GjFVqVQpCiZexJOCdIE6RpaKVKlVJYdeKuUWIrmJGVEc240Xedkr0pSqg3b96gjInv2YHly5eLogUTBI+DbHagzsU9mt4XV1mwsJQCloBPdP/kGPr7+6euIKUTf/2ryyAQVBSyi6IQtm/fXryQT1HplU+EUf78Pab309FFXYGIZXiPPPYeJbxt27a0LS/GQWzcuBEuNC7PZH7S5TkU+pUhovHOTho7Vp0gTDqCBSnr6dSpk6urq+xCrZu6kUJ752UGdsJXX30FixOPD9pZ2Q8LUqkLjPv69evLLmhbFQIiUaZMmSxZsvTp0wet6o4dO3CWyMTvv/+e3lZu2rQJrfDAgQOxi66COhAWpFKE9bkjiImJsbOz03zNyYJUKnLr1i157DMBS0nT1IQ5IQwMRd8bJh/Mra1bty5btqx27dpidpIaFqSs/8WefGc2Tx4ZJjuWLFq0Zkiw2vPejRvXLVyweenSWePGFi5QALlzaOtWhZ/j4eFw79qmjaUrsiClj8IUN+k+FCZzr7NixYo+Pj6wB7p27So6aOh3oPVfunQpKjp0pZ2dnSMjIyMiItCFwaNHc5PVsCCVLvmYKXuNGjVCFxemieYqA48ePWrXrh28oQOvPgpLFF1KlL+AgAB0boWoYb0gJfeB1YKUvKg5jQCk1YJSKkjt378f91i6dGk/Pz88CaI/r45Dw4YNxXIYQpCiRRCdnJzEx1DwEGqumqwQpKKiorC7evVq2Q+6+mKIlmDWrFni7mRy5syJjoHsguwQI9EUq1whTdAfELvotwuBRrFM0rBhw7JmzSp20aYKYa558+Ywp+QrkihDi9QqwkF7nEFrsR4wfPhwGFi+vr4TJ04UL/0UghStLCZ/Lpfm8yPBsY2OTbdu3dQh08TPDH+dZqgfNytvKi4uTjFwRi5ayDVsy9/EwS6NutJcg18zBSzRoUMHFE7ZRV7FKVUEKZ34619dBjmoeNOrKISoSeBC2ykqveLE27dvZ5CIjY0lbfHXX38ln2jbXpupXr26GDZPqz6hljhlhhZB79y5swgfFV2hQoVOvQe3jG6z0FL1K0NcEUcVX/Rj0h0sSFlPr1698ATJLmjIMrxfCULBnTt3xo0bh+p6/Pjxv//+e548eWSt2cSCVGpTokQJ8eaMQE2bK1cutc8KFSrIPp88eWJvb09TlgYOHIgWSvYcFBSkmGtGsCCVIqzPHQE1rJrfDmJBKhWJj49HYiJJZUcYhy1atFD4PHr0KOx88R5aZ3YSzAPYIcLsUcCClPW/+xffLTw0ZtBA2bGAv/+3jRvpn3jn7BlnJ6dmDRvKjrfOnPb39S1bsuTTqzEsSH0AalPc+odi1apVaFxgTivcExMTAwMDx4wZg96uo6MjbPtNmzbJXxCSYUEqXZIqa0jpgPq6VKlSCscbN26gb1mnTp09e/acOXNm1KhRn1SQos/oUmzRD69UqZI4pN8PRyAo7n379j106NDZs2dxro4gVbt2bRGy6DAvWLAA3pCScRKa6ysrBClESSFwULDqAVy0DDMeeIW7n5+fQhfAEy40nU8hSOEshTZBqUQ3pQgHaWtJkDKZp1YNHjwYZpZ4W6gQpOi68pLhlO9UTtCrad++vTpYuusOHTog5D/++ENOGUtxs/KmqP7FIeFNLlrffvttzpw54/4KTXCw9FFIdQpYonPnzgqDxkpByvoHQSf++leXCQsLwyXkaR2KQohtEVSKSq98Ihqnc++BtYc+MC7as2dPRWRg9AtBCqdnUOHh4UFS4IMHD9ANU3uYPHkyna5fGT5+/FjnFSiTXmBBynpocq78jmS8+ftH8sprmtB3DxStHgtSqUvdunXlheRBrVq1NLWkL7/8skSJErKLt7c3Nay0TJj4mLLJPH48ICBAHQgLUinC+twhYB67urq2bt1a8ygLUqmLWKGVePPmDVwUq0qBPn36ZM6cOf97PD09kQvYEGsOyHTr1s1SHrEglaKfk6Nj59atxO7LuFi4KFaV0vwFFixYoUxpsfsg6mKpYkULBgTcPnNG5ywWpPRRmOIpeiiqVavm6OiomMraq1evoKCg169fr1+/Pm/evORYvHhxGoWggAWpdEmqC1L0pWcBGlcxzU1Aw1toSpTYJXEnISFBjHMh1C7WCFLywFq08f7+/rTdvHlzWV8YPny43A9Hwy8PQYLnAgUKyLsKQUqIGkgK9GDbtWtHu6LDTGloaVShDI3KEVovnjo0dWIakcn8eCskDyIiIgLu8irylAWhoaEwEMUjDUf054Xq/CkEqXHjxmXMmFHMbDKZjVQfHx+KQ4oEKWLs2LEIkG4Hrb4YIGMyf5cww19X8aSJnzQ5C9VZYGCgOETjYsRdJyYmlipVKl++fA8fPtS8RzluVt4UTBMXFxdRAEzvZ/ZR0cLzYmdnR8tLKbAkSKlTwBKo0BGCWBHpzp07qOuTFaRS9CDoxF//6jL0mNNiXoSOrpSi0iufqAYGvYODg2LxNSFIIeNoHeXXEjRHb9OmTab3T3pMTIzsAf00NIQicXSMfspfxVBHJt3BgpT1UJO0du1a4RIcHEzfBNBnyJAhzs7Oio9+sCCVuoSFhaFNEYOLnzx5gjTv3bu32ieaMHQhRCtJX34gIZ4myMNooUOoqAsXLqy5kB8LUinC+twhpkyZksHClxBNLEilNiEhIbJcSAtHyF8iJk6ePLlIAqY18hQbp06dUocJ21t+1SrDglSKfsFBFQsXKCB292xY/86KW7pE/6yHUVFOjo4tmjSm3ceXLwWVLeuXJ8+1yEj9E1mQShEpeijQT0GHWnZBi+Pq6krjANDvEy8/YMbPmDFDHQILUumSZAWpSZMmRbxHLFJuqZ1DO5orV66pU6ceP34cbWSXLl3gbeXKlQpv9L0t9PTQtUOdTh+YEwITCmKdOnVQ8sSn8RQu1ghSWbJkmTBhAvrJNKNNjFDAA5DB/FE/9DBHjhyJxl7uhzdq1AiROXfuHHVfBwwY4Ojo+Mcff7x8+RIXhXEmC1KZMmXKnj07+q44vVWrVggnMjKSjooOMwy1UqVK+fr64nGCnX3z5s1Vq1Zp2tY0b2jEiBFRUVEkf+DquMT06dMR1d9++w19YD8/P3Wao0dN378LDw/HubAXa9euLRK5Q4cOuJ2zZ882b97czs4O24oYEqkiSN29e9fFxaVChQpHjhxBnEnKEQqalYLUihUrli5d+uDBg3v37sHALVSoELnPnDkT/rdv347soCFmuBDSf8uWLcjldevWeXp6CsGCZojAjLtw4QLKLcwIWm1K3DXKkru7O8JPViyz/qZQ2lFCEBPEB6a8XLRiY2MRSPXq1ZHLiHx0dDTqUKpb1YKUpRTo3r17zpw5TSoQOMpJrVq1EOD+/ftRGFBokxWkUvQg6MRf/+oyCCrD+0W+CB1dKUWlV1+QunHjBgw+JyenwYMHo07DQ7pgwQKkJA0Qo56V4pGkVcwbN25sMq9dpf4mDg26pJXL9Y1+0rb0hVfG+LAgZT3UJKG12r1795UrV2hopHhlgtpYjPhAZb5z506YDaiFSMFHPS/CwYOPSoOEbLSD2FYPBCaSWJCyGiQ1rKPQ0FDUhKhRGzRoIL5Ca/pr7qDWQovWtGlTNKMw54KDg93c3CgLYLnly5cvMDAQzeKlS5fQNiGP0BarL8eCVIrQyR3YAzB4+vTpIzy/evUqb968yBdFIMgd+nBH586dkS9ol7EtL5opYEEqRZBhCXsDjwZ6Q7DNYCfTy0517gjk2Um0kgmsDpglsB+6du2qqPRkWJBK0W/l3Hffcv2+S5fzvx2I2LypYEBA0UKFXsTewKHtq1a6u7quW7gA279u3DCoZ88j27dd/yNy/8+bQyoFoZY7tnMHBVKnRg1k1uxx43asWkW/XWtWv7oZx4JU6qJ4KMqXL//TTz+hKUFb079/f+TjqFGjhOeHDx+iP7Jw4ULaPXbsGLIsLi4uPj4e/Tjx5TEZFqTSJTqC1Pnz55Hr8iwV9AlpkPb48ePRLVevboPuPSprDw8P8o8KWvPzUvCG3jtCyGD+HN6cOXOwLZbNxy599E10axUuKJfYfvbsmQiQJubAtDWZP4tGoxsKFCiADYSMs8REIcQZnVuKXlBQEHUXhZl76NAhGklIg0cePHiA7ih5rlatGp4T0TVFnzYgIACPEJ4HHIXRIC9LhIdn4MCBtI3Aa9asKdIwf/78cp9chr71JuYsIEHatm0rsqBq1aryOu4yp06dgmlI3nx9fcUbm2nTptHS8sDf31+8z1TE0GQ2Q5s0aSJ227dvL8bqt2jRQh7jht5FtmzZxC6t0SNeoqIHgmShK+LS8hdJFOEgszJorSqyY8cOb29vCgG9GqHx3b9/n+4RJYGkEJhuMMXIJ1KpZcuWYkoIChgyi2ZawT9ynA7Jd71582aUDRStZONm5U0lJCTUqVOHvFWpUmX79u1y0SKxho7iuihINFZILrr6KYAMkseIyaC0u7q6wj/+p0yZ0qxZMzFjUY6hvJ2iB0En/vpXl3n+/LmLi4u89qqiEGJbXizD+tKrOFHN7du3O3bsKEJDaalevTotLIWKCKmtHoNG8zqvXr2aQbXimMk8oRKVIZ4Fk+XKkEB9iFwTXxRl0iksSKWIqKiocuXK0eMGe0B+glCN58uXj7bRVDk6OpK33Llz0/dhBfShUhk8rZqXS2JBKiWgLvXx8REGCX0vlZBzx2T+wgOqL/JZvHhxeVn606dPw4UOoQpdvHix5rVYkEoplnLn1q1bMGbkUfOwYTJo6YAwjTKokEcsCliQSimjR4+mt3cAVoQYG67OHQEsBLF6Jqz6WrVqUXcGoIoTHy9Ww4JUSn+jBgxwdnL6v9ypXDnm+O/kvta8dsrSmTOwfWrf3uLvTVlQoUzp/T9vFiG4ubooHhxYd3fOaszdY0HqY5AfCpjHaNmpE0GdLMU3ndA1VixdAnseXW90Urp3764ZPgtS6RIdQUoHdPh11lpG8UJnVV5wWpMnT55cvnyZumqKDwY/e/YMFb08g1Thoh6PQF89k48iZIQvtBIZdFBFQ6IICl1T9ELlu7t79y511HF10XHFNsUZDcylS5cUH6HE6YouaHx8PGz0Bw8eWEoNAh4Ui1M+ffo0Ojr63r17+ieazCNBEHPFtFtEGIkgz5PSjCG8yc8/DokcgbvcXVdnvTovkFy4qCJPFeGY/pplMrgEbkRzglhcXJziRd/9+/eRsJrLclHSyQuXKO5a7FoTNytv6ubNm0LW0RxCiNIiD+7TvJY6BXCDqHw1P2MkAhHlkKaVqWOojm2KHgRL8de5uoJmzZrJo40U2SGXOhEHa0qv+kRNECvkjuKmXplRe0YWUL5Y+r4sAqHb1K8MixUrhrYz2bgxBocFqQ8A1cuVK1cUzyZ25ecF26ilFc19SkliQSqFoM5ETYimSpHsitwhn9euXbNkzsE6iomJ0RHcWZD6ACzlDsxgRVJbs5CrDixIfQBk7ahtcnXuEGoLgXoNasNGAQtSH/B7ejUm6vAhtYT06FK0vHvvwvkLB3/TVJqs/LEg9TGoHwqY02hoxEo+MuHh4YqJ/Cbz42bJODexIJVO+TBBimGYtGTixIlly5bVX0zK+ND8OLFy/9+eM2fOZND62j2T7mBBysgksSBlVFiQMjIsSBkZFqSM/GNBysiwIJUuYUGKYYzPrFmzoqOjP3csUoFy5crJs/b+3vTr1y8kJORzx4JJBViQMjJJLEgZFRakjAwLUkaGBSkj/1iQMjIsSKVLWJBiGCbNeGvmc8cijbCpm/17w4KUkUliQcqosCBlZFiQMjIsSBn5x4KUkWFBKl3CghTDMAzD6MCClJFJYkHKqLAgZWRYkDIyLEgZ+ceClJFhQSpdwoIUwzAMw+jAgpSRSWJByqiwIGVkWJAyMixIGfnHgpSRYUEqXfKf//zn3wzDMAzDWIAbSiMDS+ZzR4GxCD87huU/Zj53LBht/i9v/t//458Bf//hms3AIGs+t7jyCfnbClIMwzAMwzAMwzAMwzCMMWFBimEYhmEYhmEYhmEYhklTWJBiGIZhGIZhGIZhGIZh0hQWpBiGYRiGYRiGYRiGYZg0hQUphmEYhmEYhmEYhmEYJk1hQYphGIZhGIZhGIZhGIZJU1iQYhiGYRiGYRiGYRiGYdIUFqQYhmEYhmEYhmEYhmGYNIUFKYZhGIZhGIZhGIZhGCZNYUGKYRiGYRiGYRiGYRiGSVNYkGIYhmEYhmEYhmEYhmHSFBakGIZhGIZhGIZhGIZhmDSFBSmGYRiGYRiGYRiGYRgmTWFBimEYhmEYhmEYhmEYhklTWJBiGIZhGIZhGIZhGIZh0hQWpBiGYRiGYRiGYRiGYZg0hQUphmEYhmEYhmEYhmEYJk1hQYphGIZhGIZhGIZhGIZJU1iQYhiGYRiGYRiGYRiGYdIUFqQYhmEYhmEYhmEYhmGYNIUFKYZhGIZhGIZhGIZhGCZNYUGKYRiGYRiGYRiGYRiGSVNYkGIYhmEYhmEYhmEYhmHSFBakGIZhGIZhGIZhGIZhmDSFBSmGYRiGYRiGYRiGYRgmTfnbClL/YRiGYRiGSZ+wJcMwDMMwDPG5xZVPyN9ZkPrv//7v/2IYhmEYRot///vf3FAaFlgynzsKjDZ4avDsfO5YMNr84x//+Ne//vW5Y8Fo889//vMfr1+9uXeXfwb8/fPtGzw+n7uMMNqgWvvc4son5O8sSCHzTAzDMAzDaEGd6s8dC0YbWDKfOwqMNv9lFnM/dywYbf7nf/4HPbfPHQtGm3eC1MsXr2/d5J8Bf/988/of//jH5y4jjDYsSKVLWJBiGIZhGB1YkDIySSxIGRUWpIwMC1JGhgUpI/9YkDIyLEilS1iQYhiGYRgdWJAyMkksSBkVFqSMDAtSRoYFKSP/WJAyMixIpUtYkGIYhmEYHViQMjJJLEgZFRakjAwLUkaGBSkj/1iQMjIsSKVLWJBiGIZhGB1YkDIySSxIGRUWpIwMC1JGhgUpI/9YkDIyLEilS9K1IPXgwYMjR4587lhYxeXLl2/fvp3Ss549e3bq1Km3b98q3F+9enXw4MGnT5+mUuwYhmEYi7AgZWSSWJAyKixIGRkWpIwMC1JG/rEgZWRYkEqX6AhSL1++XLVq1c6dO2XHV69eLVmyJDY2Nk0KVTL8+OOPGTJkMIguEx4e3q5du/j4eM2jhQsXbtOmTUrDXLt2LW7w2rVrCveLFy/Cfdu2bR8SUaOin4Bpz5s3b7p167Zy5cqP8TNz5swhQ4akfuQYhklDWJBSg9oPlfYYM9jQ97l169YRI0aMGjXqwIEDag9wHDt27LBhw1asWJGYmEiOmzZtWiaxY8cOS+EnsSClIiEhYfXq1cOHD586derZs2d1fMbFxc2bN2/o0KFz5869e/eufEg/4+AyefLkkSNHrlu3DuaiZuAsSOmDB2fOnDlRUVGWPJw6dQqJjHyEmfHixQvhDvNvmYrz58/T0WSfOIIFqY/k3LlzeL6QzrDVNR+Be/fu4eFCT0p2vHPnzoIFC1Dd4f/+/fuWAmdBSvN3/Y/IuRMmDO7Va8748bfOnNb3fPHQwSkjR8LzrHFj406dlA+9uhm3+sd56xYuUJxyJiJi8siwYX374Gji9WssSKUub9++xcOyYcMGhfvDhw8XL16Mig6dpgsXLsj+YQngKTt+/LjsHw9OkyZNYmJiNK/CglS6REeQOnLkSAYzsDbkQgAX/V46ceXKFVgqT548SdbnB2MoQQptUsaMGaOjozWPsiClAI03TCU058JFPwHTgEWLFsGGE7t//vlnlixZvvvuO51TFH7UZT44ODh37tyfKMIMw6QNLEgpgJlYtmxZFxcXVHH58+dHe9SxY0dNn69fv65Xr16mTJngMzAwED4HDRokjiYmJjZo0CBz5szVqlWrW7cuaksyVdH3hk9nZ+es74EHS5FJYkHqr1y+fDl79uw5cuRAomEDDevy5cs1fSK17e3tCxUqFBISgrbM3d1diBr6GdeuXTvkWu3atb/88kucWLx48WfPnqnDZ0FKh7NnzyINkbA//PCDpoe+ffva2dmVMwNvSGSYHHQoKCjIRcLJyQkewsLCTMllnAwLUh9D//79kbZ+fn558uTBRqlSpdSPwDfffINDyAvhgt61g4MDnko8dHgws2XLJpvBMixIqX/rFi5AfVUwICA4qGIWBwd3V9ez+yMseQ7r1w/PV5nixevXCi1aqFD3du3EoXMH9lcuXx5ZU6FMafmUfl27vstT5KiPz7s8LVb0yZXLLEilFhcuXKhSpQoStmLFirL7yZMnPT09AwICmjRpUqRIEVR6P/30Ex3q3bt3iRIlBgwY4OrqKo+Pady48ddff23pQixIpUt0BKmDBw+i3Pj6+qLCff78OTlaL0j9/PPP8AnDKFmfH4yhBCkY6DoxYUFKwaNHj3ALixYtEi76CZgGlCxZUiE/wfh78+aN/lmyH3WZf/nypXh2GIZJp7AgpQCV3qhRox4/fkzbsA5R9WkOnZ47dy4Obd++nXZ79uyJXTFmp3PnzrBE5ZefVJ2i2oS3Xbt2WROZJBak/gq6uEuWLHn9+rXJ3NTCioOtr+lz8+bNERERtH3ixAn0kNu3b0+7OhlHbytXr15NhxACdjU1LxakdKhWrVqLFi0yZcpkSZCaNWvWlStXaHvGjBlI5BUrVmj6XLduHY7+9ttvpuSeOBkWpD4G5BoeGdoeOHAgEnnmzJmyBzwXmTNnbt68uSxIrVmzZuPGjbQQx44dO3BWo0aNNMNnQUr927hk8d6NG2n7eHg46qt23zbX9Lly7hyk7YIpU4TLi9gbtLF1xXLHLFk6tmxZtmRJhSA1ZtBABEvbA7p3QwjTx4xmQSpVQI3k6OiIFr9cuXIKQapWrVqBgYGvXr0ymXuCqBj9/f1NZm3dwcGBqrVu3bo1bdqU/C9dutTHx+fBgweWrsWCVLokWUFqwYIF+J86dSo5qgUpGI4wRIYPHz579uw7d+6Q4+HDh3v37g2fU6ZMgWfNYXWwk1A1jxkzBqeLFwsIH0VtxIgRaIkvXbok+z916hRCg/9Dhw6RCwlSCQkJMFvDwsIWLVpkadz4gQMHEKUXL14gMggcjbdYmOnp06c4Ef/btm1DIGLsNGKCe8d9wQ4QktD58+cXL14sD5zGrS1cuBAPEuwGmICyfrFz586RI0cikghcIUhpJhpx+/ZttGo48dixY8kKUhcuXECjOGnSJOEHTeDPP/8se0ZybdmyRTNZ9u/fj9NxLZwir1SF6169evXevXuIHnodIsEFSHCcNWHCBNnKQX4hYZEUuOVx48bRQCHNDEVazZ8/H7cA2xc5QguByQlIQdGFNHN23759uDqKJewzhIC0Ut+dTllSlD0UIQSSN2/eSpUqYUMkIOJw8uRJbMDb77//Loewfv16uqjwo1nmUZMKu9Ckm+8wTRAf3JEwQBmGMQgsSOkzb948VH2RkZHqQzA9K1euLHZv3LgBn6jrTOapK+iwTZs2TX0WC1KpSLNmzVxcXKzx6e3tXa9ePdrWyTi0ntg+ffo0HYKpgF2UAXWALEhZAlaWq6vrzZs3dQQpGRh7ZF1oHq1QoULp0qVpWyfjFLAglVpcvnwZidy9e3fhAku4aNGi33//PTJXFqQU5M6dG940D7EglezP28vry5o1NQ8VL1Kkfq1QzUO//bLl2K6d2PiialWFICX/og8fRp52a9uWBalUAR1JshC++OILhSBVqFAhWZbt1q0bWiJs3L17F1lA3Td0KmmUNDqnbm5u+rYBC1LpkmQFKdgcjRs39vDwePjwoUklSN26datkyZKoUmHxFClSJHv27PTGALVwrly54NPf379w4cLypD/i4sWLOXPm9PT0pCHlOBeOuJaTk1NgYGDDhg3z589vb28vZr/jirBcv/rqq6ZNm6Iskv5CghRcvLy8ypYtmzFjxlq1amneyzfffFO7du1SpUoh2PLmgZrt2rUTMXlX6XTr5uDggDhTe497z2GmRo0a+Icxt3HjRrjv3bsXnjdt2iRC7tixI27kzZs3iuFanTp1wm65cuUCAgLwsOHpEoKUpUQzmV9sIqlxO1WrVs2SJUtwcLCOINWkSROaMYEQcApZhyNHjrSzs5PFDtxy8+bNFSG8fv0a8YFPpAYiifYSdypGg+OWEX+EiUMFChRAwi5dupQO4U4RGgwpVB+4NDJFHEIKICZff/21u7s7chZVj6UMRXlAsLgFXAjFA6XF9NfxbhRUq1atNHMWccONIxowwmjI9NChQxU3qFOW1GUvJiYG0UABQNHCBhJfpEO/fv2wAZfixYuLwGNjY3HduXPnyn40yzwKHuKfbL7jjpBoLVu2RClFbE0MwxgJFqT0QTWLGlVziKuzszPV8AJUfd9++63p/bCOuLg49VksSKUWT548yZMnjyXTSAbtEdJ8/PjxtKuTccgyNK/16tUjm6FLly5Zs2ZVrD9FsCClCZ4UWAKTJ0/GtpWC1PTp05E7mp/xQU8Ph8QkF52MU8CCVGpx7NgxZMGECROEy8yZM2Ec4unTEaRevXoFWxpWn+ZRFqT0f8fDw5Hm44YMUR+6deb0uzGbs2frh6AvSB3Zvu1d+EOHsiCVuqgFqZ49e6KP9uuvv5rMyjtaE1p7Fw8I+pjod5vMKhU6reiBojsmK7+asCCVLklWkDp16lR0dDTKBPW6FYJUq1at0OensTAoOigoYqEH/Sl7NWrUQL/93r17JvMqEvSOFP18XJQ8vHz5smDBgmKEXlBQELrrtB0fH09j0UnCqFOnTkJCgsncAGBXsfIZQRO5UcRpHNCwYcPE61wSdzw8PGiwD+4Clw4ICAgJCSFjC5YxYosWHVfBw5ArVy4RK3jOli1b3759TX/VU86cOSNeSeGKgwcPxq4QpHQSrUmTJgifvseHiOXNm1dHkPLz86MVl27duoXoNWjQwGQesSWPHMY9Yle9HOySJUvkSX+7d+/G7sSJE2kX7ShqBxpXhaRG9Ly8vGjqGU50cHAQy0zg1tzd3WniBqVAmTJlHj16hITCjetkqHrKnkKQspSzUVFRcswrVarUokULdY7rXFqz7Jm0puwJsYnGc4mp/jAN8UTQapTCj0mrzMuClKV8RzHLmDHj4sWLyZvOIpcMw3wWWJBSg8p5zpw548aNQ1uZL1++PXv2qP2gcntn048bJzuiGiR9ZNSoUXZ2dmiXCxUqlCVLFrR9YWFhNBiWBCk0r2h6ChQo0KVLF03dikhiQUoFGsrZs2fD1IExU6VKFbUVIdi3bx9aWHQJkNSwUmhRef2MM5lX40buoCVFK4ZLaNpdJhakLADDqXDhwlTU9QWpFStWTJkypXnz5khtS8OjYDd6e3vTyP1kM06GBanUokePHrDixEj8u3fvwjCm+ZU6gtTGjRuRWcL2U8CClOZvz4b108eM7tG+fTZPz9bNmj29GqP2s2/Tu4Tt3LpVuVKlnJ2cPNzdWzRpfPvMmRQJUt3btUOeRh0+xIJU6qIWpNDooIOG1G7cuDEenF69eonJRt26dUP3TUztHz9+PGpOMXjCEixIpUusEaRMZv3SwcHh6tWrsiD19OlT1LPonItTYACho05qkY4gRWKEoslU06xZswoVKtB2/fr1YfQoQiPZQswjpXEriu9ZEN988408LJbuggQjEnfk0eawz+BCoiwBUxsu9CGhfv36OTk5kW4SblboacaWrKeMHj3a3t5efl0Mu40EKZ1EwxOIDfmjbMuXL9cRpOTvFOChxbkktwUHB5cvX57c+/fvnz17dpqaKwM/YhwQUbly5aCgINrOkSOHrEBTq0nzeFGPNGzYUBw6e/YsDtHgI0oB+fsICuQMtUaQUuQslTrKi+vXr9Oh9u3bi2jrIC6tU/Z0BKmHDx8iQ0eMGEHuuKJIBCsFKf18z5o1a4MGDUjXYxjGaLAgpebmzZtVqlQpU6YMqq/8+fOjtyzP+yZu3bolT/knUNOGhoaazKNKaajvpk2b0ODSOixihM66detQo6L1QXsKYzR37tw0TFtNEgtSKrZv347cKVasmKOjI+wBnW8UosOM1r9AgQI06IlWLdDPOJO5y92oUSNXV1eEj6uQeaCGBSk10dHRMCd2795Nu/qCFJ4OGF0+Pj5eXl5du3ZVGwkxMTF2dnYjR46k3WQzToYFqVThxIkTyEQY4cKlbdu2YtakJUHqyZMnfn5+yBq1fU6wIKX5GzNoYKVy5fLny+fk6PhlzZoXDv6m9rPlp2Xv3o4XL75o2rR9mzbOHjfOzdUltFqI9YLU8fBw5FrXNm0sRYMFqQ9GLUiZzJ/XcHd39/b2RrcIhoH42C6Mil27di1duhQVHfrazs7OkZGRERERaKpQp61fv17zEixIpUusFKTu37+PsoLetSxInT9/HtsODg7iSx/YRtNIY0B0BCkaQKSex2cyr2qEq5QuXRo1NUqeGF0CI6lQoUKoIL766iuxUIVillxCQgJ24agOVh6oQuB2unTpYtJaIJyGw6BdFy40CZ+maCFBsL1mzRqT+UMzgYGB6sh06NAB8ZcvJ9aQ0km0uLg4HFq2bJk4y/pFzWk4N42ZX7x4MbZh9OBJ9vX17dmzpzpBcubM2alTJ9kF95I9e3balkUWk/kLCAgQkTGZx34jFxTfdqFlkjTXmLeUodYIUpo5i3vERQcNGoRWHImJ+ChGp+tfWqfs6QhSAAWvYMGC2Lh+/TpCEPWglYKU/sOyZcsWdzOwaWh8HMMwxoEFKR2eP3/eq1cvzcY3Pj4+g+ojYqhIaVjrwIEDUQfKh4KCgsqUKaO+BK3+q9m4m1iQ0uXOnTvBwcFotdH26ftEQ4/+AJpLdAb0Mw4WUZ48eRo0aHDv3r2bN2+ib4BehPwJJAELUmrq1q3bpEkTsWvllL1Vq1bhYYFFoXDv3bs3bAmxSoN+xilgQerjgUXq7+9frlw50YU+evQo8pReVJssCFKvX7/G4+Ph4aFY3lSGBSn9X+TucG8vL788edSDpLavWvnuTfmWn4XLwB494PLoUrQ1gtStM6f9fX3LliypOfyKBamPRC1IhYWFubq6btiwAZ1WVHRubm7VqlVTfFEKzxe622PGjMET5+jouGLFik2bNqFKFPN1ZFiQSpdYKUiBiRMnYpfGp5AgFR0dje3JkyfHSYgJRzqC1JUrVzJofS5k27ZtKF59+/Y9dOjQ2bNnYeXIKhJqcIRJCx6hxjepZAtsWClIodDb29vTWCS1uLNs2TKFDER+hHpCKxO9fPkSzYl4nStHpnPnzjly5JAjIAQpnUS7ffu2Iv7WC1ITJkyAC82qe/LkiZOTE57ww+Y1+RSrcRMwOhVf/UMS5c6dm7YVghStUEAv9Hx8fBo3bixHXih3akFKJ0NTJEjJOYvKyMvLC1FFyHBEZDQXLrF0aUtlz5ScILV+/XoaDTdlyhR3d3dhfFgpSOk/LCZzrs2ZMwfJi1vjoVIMYyhYkNIHrSF6xZrTgtAYde3aVezCyoQLvUVAfYhaEV1ocbRZs2aa34OjZbMtfb0+iQUpXfbv3y8PPdNh1KhRGd4vVKSTcR06dMiZM6f4gOyrV68KFSqkOVSZBSkFaNyRwt7e3vnfg11PT0+YiLRAgQ7opKEnJo9DhB2Fjlzr1q1lbzoZp4AFqY8E6V+qVCkUfnkBtT59+mTOnFnkLzIXWYwNsSYGcrBdu3bOzs4w0XUCZ0Eq2d/I/v2Rtoe2blW4H9v57gXGxiWLhctccxfpWmRksoLUg6iLpYoVLRgQoJ7ix4JUqqAQpG7cuJExY8ZZs2YJF5obRHOSBL169UIT8/r1a/TF8ubNS47FixenkSIKWJBKl1gvSKEHjkJQuXJlIUjBBkU7J49Tldm6dSt8aoqXOBH1tdxk0pjV5s2bFyhQQDhiVzGsyWR+Gevi4jJ8+HBTCgWpXLlyiX4+KTX0lWK1uENHxQqRpvefEBKT0WDYwfhevXq1PHdMjgyJd+LQnTt30CaRAKSTaLAbcGtitXUwdOhQHUFKHpVdt25d+kwm8d1336H969mzJw3qURMaGgq7X1g2SP/cuXOLl285cuSoX7++8Dxu3DhxO6hKxKAwBWpBSidDadCTXJVYKUjhH+UQaRUbG6spRelf2lLZA2XKlBHrTIl0EGITyr+7uzt6ROXLlxcfxlb4UZd5IUjpPywC0v7k6aIMw3x2WJDSBx0zOzs7ze+Xh4SE0EdLCJoRT18ypfdbqDbpENojdMu//PJLdSDkU36BIZPEgpQuMG8yqL5JrwnasgzvP5+nk3E1a9YsUaKEfCJyDXmnDpAFKQUwXZYuXbpIAp2xr776atmyZYoRAWpgS3h4eMguU6ZMQaaIr6MQOhmngAWpjwH2Z6VKlfz8/GCLyu4nT56U8xeZiyzGhuhMoWuNHgQt4awDC1LJ/r7v0uVd+f91j8L98eVL9vb2fTt3Fi4dW7Z0cXZ+dTNOX5DCiUFly/rlyaOQrliQSkUUghT1ejZv3ixcjh8/LiblEDAAXF1d6WU/+ubirRXCmTFjhvoSLEilS6wXpEzmT91lMCMWNUfFmiVLloULF969e/fBgwe7d++eP38+HYJNA58jRoyIioq6evWqIvBOnTqhRl6wYMGlS5dQ7PLly/f69esBAwY4Ojr+8ccf6L3/+OOPmTNnps482unOnTsjJomJibt27ULlTjPmUiRI4RBCO3bs2Llz54oXL549e3ZaF00tSJnM39CFhy1btly/fn3dunWenp7ySGmatAUPaPiFoxwZtE+ZMmWqVasWnp/9+/fDOMB9iRFJOonWpUsX3DWuiEsMHTrU2dlZR5BCIBMmTIDPWbNmZfjr94DJfMdFR48erZm5NAOiQ4cOSI2zZ882b94c3QmxaHeOHDlwtGXLltHR0eHh4W5ubuJT0Kg1cKh3794xMTEJCQmRkZGjRo1SpwBhKUMJmFZ16tRBEpH5a6UgdfjwYZQc6rc0a9asT58+mqtX6Fxas+zBHb2pXLlyIRFo/J1JNVKsXbt2Xl5eiElERIRwlP2oy7w8NM9SvsN8GTlyJHL52bNn2EDJUdg3DMN8XliQUoAWExXm9u3b0QDBfKxduzbaZVExoglzcXGhSSv05gaVJJqtAwcOFCpUqGjRolTl4h/Vb2Bg4JEjR1Abd+/eHT7pYxqzzaA2RvibNm3y9fXNkyePpSEkSSxI/ZXhw4f37NkThv6NGzd27tyZP39+b29vMYgD6ZwzZ07arl+//sSJE8+cOYMGa/HixU5OTtWrV6dDOhk3duxYeiWGMB8+fLh8+XK0sGFhYeqYsCCVLIope7BO6cXYo0ePypcvj94XHo0LFy70Nw8GEeaWyfwuLW/evMHBwYoAdTJOAQtSH0PdunWRd3PmzNn1Hhh16nX0FFP2Jk2alMH8Xe9dEpqr47Egpf7VC605ftiwk3t/vXzs6MKpU50cHatXrkyHrkVGurm6zBo3lna/a9LExdl545LFMcd/nzthgr29fZ9OnejQ/YsXDm/bil/ZkiUDCxakbdKq6tSogcyaPW7cjlWr6LdrzWqFjMWC1IcRHx9/1Ey5cuXQ6NM2nhc06+hilylTBv019PXOnz//xRdfoKslGiw8HeiaoetEu+jFo7mJi4tDgO7u7uLrVTIsSKVLdAQp2IioN+nbcwSKTr169eAoFgt4/vw5KlZ070moypYtG2pb4Z9koAx/XRdJlDDU5nTUzc2NdBP00mkEFqhWrRoaYCGj4rqwd+GOgtinTx+q9FFA4YJuPPnBBnZFqZVBTEqWLIkTUdfAD0xbYTqjsZfviIiJiUEzTzHBFVu2bElr/QhgtOHQkiVLhIsiMrChXV1d4YL/KVOmNGvWTAyr0Uk0PJl16tQh9ypVqsDcx4ZanqD5X7hEgQIFsIGUadOmDX2xhXjz5o2fnx8OXblyRZ0axLRp07JmzUrX8vf3F6+pTWaRpXXr1qGhoXQ0KChI/sLR3LlzSZchUUyMKlKkgEk3QwEacsoOkurk03VyFpZZ9uzZYVJPnjwZFjA6Qurs07+0ZtkzmXV6Glwt1v9CJThw4EARJk18wFH5TabCj6LMt2jRQqzjbinf0eOCvSgcaeAewzDGgQUpBTdv3kTdi8aRKq6AgAB5edHZs2dnkMaKoo6llysATacYO2wyi/jogdMhb29v8cGpNWvW+Pj4kLudnR0aUJ3vxCWxIPVXDhw4AIMnw3tgzIgVbUzmdbLFepHz5s1DE0be0GdDuy9PPrKUca9fv/7+++/FIRg5gwYN0pQ8WJBKFpgE8mxK2ABkU8HM6NKlC5mRANYaskNOZHo7SAKuAp0nToYFqY8B1mOGvwJTnD7fLEMzKsRugwYNMqiAMa8OnwUp9W/uhAm5cuYU9VWrpk3FxLpT+/bCcc748bT7IOpi/Vr/14VxzJKlV8cOidev0aFF06apsyD25AkccnN1UefpnbMac/dYkEop9G13BbTky5EjR8qUKSMc0Vk7duyYOBG9KnnKDujYsaO7uzv6a/LXt2RYkEqX6AhSJvM0JbWjLHwIb9HR0bBQ1Z4fPHggVltUc//+/UuXLtHXagWwh0iCefv2rfz5icePH1++fFkRJbGKgeauQAxUefjw4ZUrV9SLpVmKXlRUlOZbWcRNfZbi6vCAu6NxWK/NKI5aSjQ4ChHK0h2RO24EaaL5dqVq1ariMx+WQPLi9Bs3bijcxaifuLg4zRjiujExMVevXlUUBs3YWspQk1lpgqkk3inJp1vKWRjT1apVkw/Bnu7bt6/mDepcWrPswQ9uSjhiQ1FUEA1FPqr9yGUenhXXtZTvOAU9Lk2bnmGYzwsLUpqgdUMLIi8CRdSsWVOxnhS1hureGoGKGg2KesoSrFVLTbBMEgtSWiBfkOYKQ4VeRyvWk0I6o+HTbH10Mg7+YTygLdOZa8aCVLLAhBAm0KFDh9ABxr84ikSGYaBphpks24em5J44ggWpNACZq7AzrYQFKUu/2JMnLh87+iL2huz4w+BB3l5e9y9ekB3jo6OiDh9KiLmS6nFgQSrVoT6+eiWW8PDwR48eKRzReaTOtSYsSKVL9AWpvw3qr+z9vaFvuomZgClFMVXNUHz11Vf58+enCXFo6desWQMDTvP9EsMwTKrAgpT1HD161M3NzdKgjE9BEgtSVjNx4kTYQpa+NJ/qsCCVIurUqdO7d+80uxwLUkaGBSnrf48vX8rm6SmvYv6pfyxIGRkWpNIlLEj9Lenbt2+WLFnUL66txMiCVFRUVLly5WgEu729PXo+Y8aM+dyRYhjm7wwLUtazdetWxfdxPjVJLEhZzaxZs6Kjo9PscixIWU9iYmJYWJjOa/9UhwUpI8OClPW/s/sjxGS9tPmxIGVkWJBKl9iIIEUj0j93LNKOuLi4j1kYOyoq6v79+6kYn1QHGXry5EnEM83e9DIMY7OwIGVkkliQMiosSBkZFqSMDAtSRv6xIGVkWJBKl9iIIMUwDMMwHwYLUkYmiQUpo8KClJFhQcrIsCBl5B8LUkaGBal0CQtSDMMwDKMDC1JGJokFKaPCgpSRYUHKyLAgZeQfC1JGhgWpdMl//vOfzx0FhmEYhmEYhmEYhmEYRoO/syDFL34ZhmEYxhI8QsrIJPEIKaPCI6SMDI+QMjLvRki9evn6zm3+GfDHI6SMDI+QSpewIMUwDMMwOrAgZWSSWJAyKixIGRkWpIwMT9kz8o8FKSPDglS6hAUphmEYhtGBBSkjk8SClFFhQcrIsCBlZFiQMvKPBSkjw4JUuoQFKYZhGIbRgQUpI5PEgpRRYUHKyLAgZWRYkDLyjwUpI8OCVLqEBSmGYRiG0YEFKSOTxIKUUWFBysiwIGVkWJAy8o8FKSPDglS6hAUphmEYhtGBBSkjk8SClFFhQcrIsCBlZFiQMvKPBSkjw4JUuiS9CFInTpy4devW546Ftdy5cyc6Ovpzx4JhGIZJBWxWkJozZ86lS5c+bxx2mtHxkGSTgtT9+/cnT56cmJj4eaOhnzs2K0gZJHfmz59/7tw5S0dtVpA6derU0qVLP3cskskdmxWk/tize/H0aZ83DvHRURNHDH8YFWXJAwtSRoYFqXRJsoLU27dvIyIiJk2aNHbs2F9++eXFixcfU0pmzpw5ZMiQDzgxR44c/fr1+5hLpyVdunTx8/Oj7fDw8Hbt2sXHx3/eKDEMwzAfhm0KUmj67ezsYmNjaffOnTsLFiwYNmwY/tHf1jkxISEB/T209eiTq/Wshw8fUjgTJ048ffq0cH/z5s3WrVtHjBgxatSoAwcOCHd49vLy0unbJ9mkIBUWFlaoUCGxa33uEGfPnp0zZw6yWOFuKXcs5al+7tisIKXInXPnzk2dOhVle+3atS9fvrR0Fh4BWIxjzGBDcfTGjRszZswYPHjwjz/++ODBA8VRzYz79ttv69WrZ+lyNitIhYSEdO7cWexakzuRkZHLVOzbtw+H4uLi1IdWr15NJ+rkqX7u2KwgFRxUsWPLlrT96mbcng3rRw8cMHbIYGzonHXz9KkfJ08a0rs3/u+eOyvcj+3auWTGdMVPDgoefhg8CCeumT//+Y3r5PgyLjaPj8+ksBEsSKUub9++xVO2YcMGhbul9gX+N23ahMfz+PHjsn+0cU2aNImJidG8CgtS6RJ9Qer27duVK1fOkCGDn59f/vz5M2XK5Ovre+3atQ8ui8HBwblz56Zt1PuwO3XeD8ikX0EKjVzGjBlpwFSKbplhGIYxArYpSDVq1Ej0l2AUOjg4ZM+eHd1stGjZsmWz1JDdunUrICAga9asNWrU8PHxsbe337Jlizi6detWT0/PfPny1a9fv1KlSqVKlSL3169f41qwMWAkBAYGwuoYNGgQHXr69KmLi8uSJUssxTPJ9gSpV69eIS+mTJlCu9bnDpGYmIgsQCJ/8cUXsrul3NHJU/3csU1BSpE7/fv3Jys6T5482ECqPnv2TH0Wul5ly5ZFYuIRgL0Nnx07dhRH9+7d6+zsDAu8evXq8INckDtjljIuIiIC4Vy+fFkznrYpSJ0+fRppEhkZSbtW5s6AAQNc/go8h4SEmMyJrziEegyPIeo0/TzVzx3bFKRO/LoHaXJs105SoyqUKY3ELBgQ4OHuDvdOrVpqnrVh8SIHB3uvbJ7wiZT39PA4HbGPDvXv1tXF2Vn+IZzgoIp0dNzQoe8yvVjRSuXK4US4/3ntKh0K69cPZQJxYEEqtbhw4UKVKlWQ4BUrVpTdddqX3r17lyhRAk+fq6urPBS3cePGX3/9taULsSCVLtERpNCmoiZFEaGXACbzK7guXbrs37//g4vjy5cvnz9/TtuPHj1CuVy0aJE1J6ZfQQoNEiw22k7RLTMMwzBGwAYFqSdPnjg4OIjWas2aNRs3bkRzhu0dO3agIWvUqJHmiU2bNvXy8qJxVWjuy5UrlzNnThp3cOnSJXSq27Rp8+bNG/KMPhttzJ07F2Fu376ddnv27Inds2fP0m7Dhg1r1aplKapJtidI7d69W+7KWp87xMiRI/39/dE3kAUpndzRyVOTbu7YpiClyJ0ffvjhxIkTtD1w4EAcmjlzpvosJPuoUaMeP35M2+hxwSelOZI6d+7cyC+Y5di9evWqu7u76I/pZBxcPD09x48frxlP2xSkhgwZIt6Lm6zOHQVxcXGZM2ceM2aM+hAew8DAQHStTbp5akoud2xTkBrUs2dun5y0/TIutmeH9rEnT2A7IeZKSKUgpN6JX/eoz1o1b+76RQtJPNq2cgW8fVWnjmb41/+IRMaNHjgA26cj9sHngO7dhKqF3VnjxtJu5O5w7B7aupUFqVQBjbujo2Pnzp3RfCgEKUvtC+oxGCG//fYb3Lt16wZv5H/p0qU+Pj7qUaICFqTSJTqCFEwcPI1z5syxlOUHDx6cMGECauQNGzaI9i8hIWHx4sWJiYnnz58fN27cxIkT5dc4KFhkcV65cmX+/PkIv3379itXrjxy5Ah5iI6OnjVrVlhYGOzgR48eiRN1BCkU3+XLlw8fPnz27Nl37twhx3Pnzi1cuBCRoV0UXOzevXsX22vXrkVzfu/ePfhHU3Ho0CFFgLt27YK5hlsT1rDJ3OSvW7eOjlL0FCN7z5w5M3bsWNzvjRs3ZEEKd7pkyRI0PJq3fPHixWXLlolAECZCFmPQEFXYNAh5xIgRe/bs0blfApYosmPq1Km4lmZaMQzDMCnFBgWpjRs3orVCW6l5FD26okWLqt2fPHkCc3/o0KHCBa0VwiGbsmfPntmzZxcvpWRgoVauXFnsohnFWaK/h8YuU6ZM4tWOgiTbE6R69Ojh6+tr6ail3CGQp+gYbN269Qszwt1S7ujnqUk3d2xTkNLJHVh0SLru3bsnG8i8efPEQB6YndgWRiBo164dMpHW0NB5rECTJk2CgoI0D9mmIFWsWLHWrVtrHrI+dwYOHIiuMvUpFOzcuROB/PLLL+pDcp4SOrljm4JUscKFWzVtqnlowZQpSL11CxckG0hun5xFCxXSPDSgezcHB/tbZ06/2+7RHTXbkyuXxVF/P98aVarQ9qubcdk8PQf26MGCVKqAvjaVfDQ6siCl077g+cIGzeAbN25ctWrVTOb2y83NDVWizrVYkEqX6AhSzZo1Q4NnaWmAFi1auLi4hIaG1q5dG4UJ/+R+8eJFFKD+/fs7OzsHBwejmfT09Dx58iQd/eabb8qWLYuNdevWFShQAD5z5MhRuHDh77//3mRejABmTaVKlRo0aJAtWzYfH5+HDx/SiZYEqVu3bpUsWRLmF2JbpEgRXI7edSAa9vb2vXr1Im/fffedv7//n3/+SUF16tTJy8urXLlyiEPGjBnF6oZv3rxp3ry5q6tro0aNEHnclzj0448/IvBWrVrhRNwCzpJfCa5YsQIu+fPnxyGcXrp0aSFI4UTcJmw1zVueYq5hhZx3584d7AqJCj7btm3r5OSUN2/ehg0b6twvwE25u7u3bNkSeYGYWHhOGYZhmJRhg4LUgAEDYPZpHnr16hWaOdHoyxw/fhxN2NatW4XLuXPn4ILGHdtoszp06KAZJgwGahMFaN2+/fZb2j5w4ICsgChIsj1Bqnz58jCTNA/p5A4B86Zu3bomc8dAFqQs5Y5+npp0c8c2BSmd3Dl27BjSasKECckGApMPxjPJfJMnT8ZZ4g2ryfy1AbjQWhA6jxUYPXp0lixZaGiVAhsUpJCGsNWnTZumedTK3EGmeHh4wDjXPFqzZs2AgAAxWk1GzlNCJ3dsUJB6dCkauTNl5EjNo+OHDUPuHN6mPWRJ/J7fuO7q4lKrWjX1oceXL3m4u7f5phnt1v3iizLFi8sevq5fzydHDrFbvXJloU+xIJVaKAQpnfYFzwW64Xv37jWZR0jRINCqVasmKxmzIJUu0RGkihYtinbOUn5v3779yZMntL1s2TKUnvPnz5veC1K+vr5RUVEms4ACs1KsQyEEKZPW/DU0BmI4FTZQMc2dO5d2LQlSrVq1CgwMpJig7KKkkoZqMi8qaWdnd+LEiV9//RUXEnoqghIzVF+/fg3/Xl5e9HJpyZIlDg4OdCNg8ODB7u7uNNqWdKU6deqQTTBz5kzs0iprL168yJkzZ61atahRQcgIXy1Iad5ysoIUdlesWEF3p3O/f/75J5Jr8eLFdKI1a5oyDMMw1mCDglTdunXFSjQKaPCUaG5kaL7Y4cOHhQu95Bw/fvzbt2/RIqOjjpDRnaNXVvSyCu0X/IwbN04OCi2deOtDLeO8efM045Nke4KUk5NTnz59NA/p5I7JPNYGRg69c5YFKZ3c0clT2tXJHdsUpHRyp0ePHjDVLH25EublnDlz8CCEhITky5dPDIkaMGAArErZ57p165DmR44c0ck4Yu3atfB54cIF9eVsUJD6/fffkRryqnYy+rkjmD17NgI5deqU+tCZM2cUk/4s5Smhkzs2KEgd3bEdqbF56VL1oZdxsSUCA31z57a0qJP4rV+0EIEsnDpVfWjm2B9w6I89u2m3XKlSNUOCZQ9d2rR2cLAXu51atfT28mJBKnVRCFL67Uu3bt0KFizYuXNnT09P9LjhWLhwYRpcogMLUukSHUHKz8+vSpUq1hQvVKYoPbTeGAlS8hL6qOIzZ85Mrwv0BSkF3t7eAwcOpG1NQerp06eZMmWaPn26cEE7gWuRvvP8+XOU4/LlyxcoUEC8aKWgZHmVrDd6uYeHhAYiEWfPnsUh+twP6UpizmpsbCx2V65caXr/enD37t3ixHbt2qWWINWsWTNr7hfJmzVrVhglJJ8xDMMwqYUNClJoDatXr652f/LkCVq3kiVLar7VX7169TuL/48/hAu1euiPoWOGjZw5c06aNCkiIgI9aliWXl5eCPDWrVs4NHXqVDkoXCI0NJS20ZrDw9ixYzWjmmRjghSlxujRo9WH9HPnxYsXhQoVEpMjZEFKJ3d08lSOj2bu2KAgpZM7J06cgAmHLpalc2/evAmru0yZMjDn8ufPD/uQ1gXr1KmTq6ur7PPnn3+mXpxOxpFPmu6nXpvCZJOCFKWG/BFPQbK5Q8DYDggIEG++FbRt29bNzU0kvslynsrx0cwdGxSkdqxahdSI2LzJkpa0dkEy8/Xio6P88uQpWbSo+F6e+L2Mi/X38w2pFCRcCvj71wutKfvp1bGDvf3/L0jRnD4WpFIXhSCl377gYcEzsnTp0piYmJMnTzo7O0dGRqKiq1evHsyD9evXa16CBal0iY4gVaxYsXz58lkqUo8fP0ZxCQ4OLliwYK5cuVB6tm3bZnovSNE2MX36dLjQakf6ghRK3rJly+rUqVO0aFEYVXZ2dkKE0hSkzp8/jxAcHBzEty2wjbNEY7B9+zu5HW2MvNaSIigU8XfV3Nq1JvMcAXgWoTk5OYllVmVdyfTeeoMjtleuXIlt+eOD8hpSHylIyVHVv98tW7a4m0GDevv2bUsZxzAMw6QIGxSkSpYsqV6pGk1VgwYNPDw8LA0i2Lx5MxqpgwcPChcSmxYuXJiYmIiNH374QRwKDw+nsfrx8fGKQwCmRYsWLWgbtgE8DB8+XPOiSTYmSJEhoV4LOdncmTRpUp48ecRHxGRBSid3dPKUdnVyxwYFKUu5c/fuXX9//3LlyllaB0Pm+fPnvXr1EkYmttExlj1QLw4ZrZNxtEufcqNpLwpsUJAiIU+sWiuwPncoBPyrD8GAh03eu3dvzRMVeUro5I4NClKbli7JoLWO+P6fNzs42Hdr21b/9BexN+rXCvVwd486fMhS4PgXLiUCA7+oWlX20/G773LlzCl2h3/fF6cgWBakUhGFIJVs+0LgwQwMDBwzZgweVUdHxxUrVmzatAn9XzGlSYYFqXSJjiD17bffIrM1J3/B/ggKCoK9uGHDhpMnT9KIO0uC1NixY+FCc+L0BamBAwc6OzvPnTv3+PHj586d8/b21hekoqOjEcLkyZPjJOQI9+jRI2vWrIqrKII6dOiQGN/k4+PTuHFjOTQ8GORNIUhhQ7QrtPo7blyEmVJBSqyPri9IJXu/T548mTNnDu4id+7cPFSKYRgmVbBBQSokJEReZdxkbvfbtWuHNloeXa+AZsTQB0AI9P1E9xjnioUdTe/HVtOcdCcnp65du4pDb968gYtYVQrNGXyiudS8aJKNCVJInIwZM8qrwJqsy51SpUq5ubnlf4+jGWygV2yynDv6eWrSzR0bFKQ0cwe2HxK/UKFCmstgawKz0MHBgUThSZMmIYXlc8ePHw8Xehmp81iZzK8qM/x1IW2BDQpSJAAp5s2lKHeCg4Pz5cunuUTUiBEjkPU63xSS85TQyR0bFKR+3bgBqbFr7RrZ8Y89uz3c3ZvU+1JTGBK/Vzfj2jb/xtnJ6eDWXzQ9VK1YMV/evC/jYoVLnRo1ChcoIPsJrRYiryrVu1NHF2dnzdBYkPpgFIJUsu0LgSouKCjo9evX69evz5s3LzkWL15cLOwjw4JUukRHkPrll19QJvr27Ss7JiQk3L9/PyoqCodWrVpFjrQrC1Ly2PvQ0FB/f3/algUpGmQkF6acOXN27NhR3tUXpFC5w2a1NML26NGjaBvWrl3brFkzDw8P0dIgqPr16wtv48aNQzSuX79uMj8ngYGBmqHpCFK0DuLy5cvpEB4YtFiagpT6lum7e2J01d69e3UEKf37FZDEpvnKhWEYhkkpNihINW/eXDTcBCxC9KZ+/fVXnbMSExOzZMnSpUsX4YJOWqZMme7du4ftypUrlylTRhyidzm0FGNISIi8ZuW+ffvkYQhkV6xevVrzokk2JkiZzNZRu3btZBdrcmfHjh2LJIqYwQZZR5ZyRz9PTbq5Y4OClEmVOzD/KlWqBJuQvmtuJY8ePbKzs2vUqJHpvYxCA/kJGJklS5akbZ3HyvTeBBXvVmVsUJCi3oow100pzB1agFleN0OAx8TLy0te9EONnKeETu7YoCB14eBv73pAs2YKl/O/HcieLVvt6tX/vHZV/9yeHdo7ONiHr1urefTYznfDJqaOGiU7Dv++LzqJsSdP0G58dJSzk1Ovjh2Eh2YNGxbw92dBKnVRCFLJti9gz549rq6uly9fxvZPP/0UEBBA7ghnxowZ6kuwIJUu0RGkTOZPQuAZbtOmza5du/bu3TthwoRcuXKtW7fu8ePHmTNnbtWq1fPnzy9dulSlShWFIIXCNGnSpOvXr9N8PfHqTBakgIeHR506dVDITp8+bTJ/mqRYsWKwjeLj47t27YoT9QUpk9kIQ1FeuHAhznrw4MHu3bvnz59vMms3CIqWwIiLi3NxcRHLSNFK4S1btoyOjg4PD3dzcxNrrtPQwd69e8fExCQkJERGRo4aNYoO6QhSJvPyq3nz5qWBXUg0R0dHTUFKfcuIAyrEpk2bIhlhbWTPnh27lgQpnfs9efLkyJEjr1279uzZM2wg/VNk+jAMwzCWsEFBCs09GiOxeiiN0ejWrdsuCfEZ3OLFi6MVo+1OnTrZ29vTog/oGzs7O4uhT4sXL6bZTGiqdu7cCXMCHWlaUYWmIKG9gwlx4MCBQoUKFS1aVExmp6Ue5WHIMkm2J0jVrl1b/lq8Tu7AEoCRM2fOHHUgiq/s6eSOTp6adHPHNgUpRe7UrVsXJhmyQGQNLDdKWDl3YEI3atRo+/btsJxhTCIQPIA0eO3NmzdFihSBVYkTr1y5EhYWJo8p0Mk4k3migLe3t2Y8bVCQoqGXgwcPFi46uYMURt9BXiEe/Qh0jDXnHyxYsAC5sG/fPtlRJ08JndyxQUHqZVysk6PjwB49aPfe+XN5fHxyZM++YfGiHatW0e/oju10dM38H12cnSN3h2N7wvB3H+Dr2qaN8IbfvQvnRcjNG33l6uLyMCpKvtylo0eyODjUDAk+tmvnmYiI+rVCnZ2coo8cFh6KFS7crGFDFqRSBfTrj5opV64cusy0bU37goYMdZqYwXfs2LHMmTOjX48A3d3d5bl+Ahak0iX6gtSLFy8GDRqULVu2DGZ8fHzQEMIRhxYtWoSaGo74nzdvnqenJ33GjgSpUaNGFShQABuofNu0aSOmpLVo0aJChQoifLQBaAlI86Jy5uvrS3pWly5d6tSpg6uTTxRHscC5zPPnz2GEOTg4UAwRVVhmcJ82bZr8vbypU6eKSao5cuRo3bp1aGgonQK7ASVbBDh37lwvLy86lCVLFmFk42GAi1h8ARvyHFfcdUBAAFzs7Ozatm2LywkFV3Gi4pYpquSSJ0+ePXv2wDoRY63Vd23pftHawXwXjvL7H4ZhGOZjsEFBCs0lWhPRd2rQoEEGFZs2baKjaHREW/n06dNmzZqhKYQHWJmwNeVlWdAVpPYLtsGXX34pL3c4evRoWKIUcvXq1WnYMtGvX7/s2bNrTpMx2aQg9cMPPzg6OoqE1ckd+jaL5ryGWmZkF0u5o5+nOrljm4KUIndg1CmyBslL7//l3Ll582bt2rXR1yI/sCHlJXujoqLQkaNDHh4es2bNkq+o81iVLVv266+/1oynDQpSJrMOKy9JrpM79DU90Y+4e/cubHVL308sUaJE6dKlFY76eWrSzR0bFKTw+6JqVbHu+O/hu9TVWvEiRegoLXN+dn8EtuvXClX73LB4Efm8feYMMq53p47qy235aZmPeYzCu9zx8/t14wZx6EHURZw1a9xYFqRShSVLlqjziMYG6rcv33zzjTyrCXTs2NHd3d3T01P+QJkMC1LpEn1BioCdgUKjXkzqxYsXV65coTeoQnISa0jhrMuXL4s3qMTr168VH3959uwZ7E7xMgcb2KWP2dHH48S1LBmjJvOQv+joaFT98oVElIQfuooYdhQXFyefIt9vTEzM1atXFSHQMliWdnEWUoPuFxeSz1X4VNyyyTyOF2lFb4NJ79O/a/X9Enfu3Ll27Zp4q8wwDMN8PDYoSKGFypkzp3gnpMOhQ4fQhVN8KAqNGhqphIQEtX+0a2jv4uPj1YfQtF26dEkeq08UK1ZMns6vIMn2BClaJ4jeAuozduxYb29vzdSGMaa2FnRyx1Ke6uSObQpSH5M7sKgtpT+4ffs27EyFaUpoZhweJTybYnkNBbYpSM2bNy9z5szyh/AsUbNmTYViq7PkOTLFUifFUp7q545tClJzJ0xA7sRHRyXr84vg4NBqIVYG+/RqjKVDL+NiLx87ei0y8tXNONl9/aJ3gwmu/xHJglTaYKl9CQ8PxyGFI/rRYvi2Ghak0iXWCFIpQr2oudGwNPuPYRiGYdTYoCAFhg4d6uvrK7870aROnTqWPiyVKpw5cyaD+Qv3ljwk2Z4gZTKvHNSqVSt9P0+fPvXy8tq8efOni4Z+7timIGUyTO7MmjXL09NTLBmhwDYFqfj4eBcXlyVLluh7O3r0qJubmzxOM9XRzx3bFKTuX7zg4uy8aNo0fW+Ht211c3WJOf77p4tJo7p1dQQvFqSMDAtS6RIWpBiGYRhGB9sUpO7evevs7CyveKImMTExLCxM513lx4P2OiQkRMdDkk0KUrCykDv6KX/+/HnNyXqpiH7u2KwgZZDcKVu2LB5PS0dtU5AC/fv3l2ftabJ169bw8PBPGg393LFNQQq/fl27ill7ln5bflq2c/XqTxeHexfO29vb716/zpIHFqSMDAtS6ZJUF6TevHlz6tQpxSQ1QxEVFaWefsgwDMMwmtimIGUyT37/3FF4N3lQf5RWkk0KUqb0kDs2K0iZjJE7+nGwWUHKlB5yx2YFKfxexN4weBxYkDIyLEilS1JdkGIYhmGYvxM2K0ilC5JsVZAyPrYsSBkfWxakjI8tC1LG/7EgZWT+v/buAyyKq1EfuBUpggIiWLBj1xiNij32ks/6GVvUxESDGo0xqFhiiWiMXWPvNRo1thhjb7GLBVARlNgigoICssm93715wv91z/X8JzOzI6JZh+z7e/bhmZ3OnJ05Z96dmWUglSUxkCIiIjLAQMrM0hlImRUDKTNjIGVmDKTM/GIgZWYMpLKkP//883WvAhERERERERER6fgnB1L84peIiMgWXiFlZum8QsqseIWUmfEKKTN7eoVUSnLqzV/4MuGLV0iZGa+QypIYSBERERlgIGVm6QykzIqBlJkxkDIz3rJn5hcDKTNjIJUlMZAiIiIywEDKzNIZSJkVAykzYyBlZgykzPxiIGVmDKSyJAZSREREBhhImVk6AymzYiBlZgykzIyBlJlfDKTMjIFUlsRAioiIyAADKTNLZyBlVgykzIyBlJkxkDLzi4GUmTGQypIYSBERERlgIGVm6QykzIqBlJkxkDIzBlJmfjGQMjMGUlnSPyyQOnnyZGxsbAZHvnbt2o4dO65evfqiExIRkeNgIGVm6QykzIqBlJk5bCA1a9asiIiI17sOYWFh8+bNMxiBgZSZXwykzIyBVJZkEEidPHlyyV/Fx8fb+VP1ogoWLPjpp59mZMxly5blzJnT3d29SJEiLzQhERE5FAZSthw4cGD69OlPnjwxGCc6OnratGnBwcFz5869e/euclBCQsLixYuHDRs2efJk5SnilStXVM0Pg2+M0hlIvYRLly7h/HzEiBE4Pb5z5452hHPnzmGEPXv2KHv++uuvCxcuDAkJQelfuHDB1swZSOkKCwubMmXKyJEj16xZk5ycbDDm8ePHx48fj9JZu3ZtSkqKamh4ePjXX389fPhwFNAvv/yiGqpbcEqOGUhhg+TIkSMmJka8TUxMxLZFWeAYdf78eVtTGR+Rrl+/PmfOHBTE7Nmzb926pZ1ce5zEfpctWzaUr60lMpCy9YqLCJ/15ZeHt35vMM61E8dnT5wYPGAAxow9e0Z3nO2rVs2cMOHCgf2yT8KVy6u/+WbEoE++/uKLc3v3MJB6hVDXr1q1ClUGDn04NOmOs3PnThyysGvIPtjvZsyYsXTp0gcPHijHRG01duxYW8tiIJUlGQRSTZo0yZUrV0GFs2fPZupzaD8Zz5VKly7dtm1bdIiUjYEUERHpYiClde/evffffz+b1aNHj2yNtnv3bldXV39//4YNG7q5ufn5+aGJKQbhjK5kyZL58uVr1KgR+ufOnXvTpk1iUHBwME4a8ymgqWprEekMpDJrwYIFOXPmfOutt9q1a+fj4+Ph4REWFqYcISkpqXjx4ijit99+W/Y8deqUp6cnyq59+/blypVDSeGEQXf+DKS0hgwZgu1ZrFixIkWKoKNq1aoPHz7UHXPixIlihMDAwOzZs9evX//x48dy6OjRo9FEr1atWps2bSpUqBAUFKScVrfgVBwzkELLv1WrVqL78uXLvr6+OECVL18+T5482BeWL1+uO5XBEWn9+vU4dgUEBKCAMBPsRMpgy+A42aBBg+7du9taTwZSuq8ty5cVLVQIG/OzoI9tjbN2/jyUSJmSJevVqpnHyckjb15tunT6p93YfTCfsZ8PFX3CDx/y9fFxdXEpV6Y0psKHYemMGQykXonIyMgCBQrgRBufeXTgaLZs2TLVOOfOnRMlMm7cONEnKioKFQ2ObJiqdu3acswTJ05gn0U1ZGtxDKSyJINACtVYzZo1X/pzaFcZzJWePHmCY82kSZNedEIiInI0DKRUYmJiUGk2bNiwW7duBoFUcnJy4cKF69SpIy7uuHr1Ks7WOnToIIZ27NjR29tbXKqAOVSvXh0nh+KCkc8//zzjzY90BlKZkpqaimZ9nz59xNtff/0Vrf9evXopxxk9enSJEiVQgspco2nTpjiBF2WalpaGswWMo7sIBlJaON06efKk6B46dCh2n+nTp2tHCwsLwyCMIN5u2LABb2fNmiXerlq1Cm8XLFggx0dpKifXLTgVBwyk4uPjnZyc5HY7e/bs5MmTExMTLdaHeOBUGbuA7oQGR6SNGzfKy9BQsjjZ7t27t3hrfJycOnWqu7u7rYMnAyntK3jAAPe8bl+NHp0jRw6DQOrbRQt3f/ut6P55506USK93O6vGqV+71rvt2uJMUAZSp3b/GDoyJOHKZXRf+fmYt5dn/nz5GEi9EjiaLVq0SByj4uLi/P39S5YsqRoH9UiXLl1QIjKQQkejRo3QcevWLew+IufF3lquXLkvv/zSYHEMpLKkTARSERER4uLhuXPnTpgwQd7Hd+7cuYkTJ6IW3LFjh2oSg0FKx44dQ8UcGhqqDD4PHDiAaceOHbt+/XpljZuUlLRs2bJRo0bNmzcPn2/RU+RK+OziQI9JdC/pQpsYOwY+3F27dl2xYkVkZKRFE0ihTYz/ETPHP4i1Ej3R8EI1pvz+cPPmzfv375dvsdqrV682+AeJiCjLYSClEhsbu27dOou1yWgQSKHGx9Bdu3bJPr169XJ2dn78+DFaDrly5Ro+fLgchAodI4sqlYGUHfzyyy+qNKR8+fKdOnWSb9FYQmFt2bLlbSvZPyAgQFxgLvTr18/Hx0d3EQykjKH9iSL4+OOPtYOwC2AHUV48hVM4cXoGlSpVatOmja3Z2io4FQcMpL799ltscPHoWC2cFGCo7o2rGT8iYV+QV2AZHydxZoSetq79ZCClfa2ZN+/66VPoyJkzp0EgpXr5eHu3bNxY2WfV3Dl53dyiT55QBlKqV5f27VA6t8LOMZB65VDLuLm5KfusWbMmb968N27cUAZSqFm6dOkiunPnzi1i36CgoDp16hg/JYCBVJaUiUBq7ty5BQoU6NChg4eHh6enp7gFesaMGfi4NG7c+J133nFycvrggw/k+AaDlAYNGiQuTq5evXr27Nnx6URPfBbxqW3SpEmzZs1QN+OvGDkpKaly5cqont97770333wTf0V/cUGgt7d3tWrVUCtgcdr75zdu3FimTBksC/9F2bJlxQW6ykAKVUiNGjWwXMwKDS+MiapIDCpRokTHjh3lOqDKL1eunJwz/seGDRva3keIiCjrYSBli3EgNXnyZAxNSEiQfWbNmoU+4eHhP//8MzpwziwHiUtCxIN+GUjZB9pRaNVERUWhe/Xq1arT47Zt27Zo0cJibQ0qc43+/fujUffjjz+i+8KFC/ny5Rs2bJju/BlIGTt69Ci2+cSJE7WDWrZsiXassg8an35+fpZn1wusWLHC1mxtFZyKAwZSn332mbu7u62hzZs3d3V11T3XzeAR6eTJkyga7eUbusfJlJQU7Ee2HoXDQMrglfFA6uedO7HlJwwbJvvcj4wo7OcbOjJEzMdWINWsYUNXF5fk6zEMpF6t+Pj4IkWKNG3aVPZ58OBB4cKF0VpAtzKQGjNmTN26dS3PjnhXr15F9YT9V971bwsDqSzJOJAqX778kWfkNcZz587FJwM1ZVxcHA7caWlply5dwmdo0aJFYoSd1v1fJEEGg5T279+P/lOmTBFvUUmLts7WrVvlFVhLliyR1+yJ+Vy+fFkMkl9oFCxY0MnJCVOJD72/vz8qde2/hloBk0+bNk32UQZS3bt3L1CggPzEDx8+HCNjC6B74MCBHh4e4kp1rKG4LVyMiT0Ki54xY4bhbkJERFkMAylbjAMpnP7hjEvZZ+3atRj/8OHD27ZtQ8ehQ4fkINHoFOdyOP1DfYqK2NfXt06dOmvWrEFLw9Y6pDOQyiw08StWrIgmfvv27dG2UT4KaseOHSgC8aR5Va6RlJTUsWPH7Nmzt2vXDlMNGDDA1vfVDKSMBQUFYTPq/uJbjRo1mjRpouzTr18/lAg69u7diz2lb9++GMfV1TV//vxdu3aVz9I2KDgVBwykWrRoUbVqVd1BN27cwHbr1q2b7lDjI9JPP/00ffr0/v37e3t7v/fee9hBVJPbOk6WLVtWeU2iEgOplwmkdq1fN3XsF0G9e3t5evbo1OnB1Sty0NCgoIBSpZKuRRkEUtEnTzg55e7avr2t+TOQelGXLl2aOXPmiBEjSpYsiT1IfAsiBAcHY0cQd+srA6nIyEjUL9gl33rrLdQ4d+/e9fPzW7x48XOXxUAqSzIOpLIpiIrQ8iyQUv6uCo7U+fLlUx6dvby8vvjiC+NBSp988ombm5vyeY1aWCKWu337dsuzbyEwH9Vt8wULFlQ+2bF3796lS5fWzsogkMIugf0hJCREDhJJE3YYi/XnOWSgNnTo0AYNGqAlJ+7q37x5MwYp9zEiIvoHYCBli3Eg1adPn7x58yr7fPfddyKHEg/BOXHihBwUFxf39KvsCRPQffHiRZzybdmyZcmSJc2aNUP/r776ytY6pDOQyiw0eEZbH8jibSWfrYPGWEBAgLyhUptrrF+/HqcKPj4+uXLlGjx4sPYMXGAgZQDtWLQ2+/Xrpzu0TJkyrVu3VvYZOHCgiHexX4hvhRctWrR37140QdEQFVccPLfglBwwkKpZs6at+xjat2+Pg5Wtiy+Mj0g4DAYGBuJ0w8XFpVWrVsqfCZMj6B4nsT6NGzfWXSIDqZcJpMZ+PrR29eqlihd3cXZu2bix/Cm9iwcPYCfasXqVnI9uINWuZcu8bm4RRw4zkHpVtm7dWqdOnYoVKzo7O9eoUWPbtm2if3h4OErkhx9+EG+VgZTF+mQ37HGY9smTJx06dGjbti3qmiFDhmBWaF2ofrRXYiCVJRkHUvjQPHpGpkUikFL+BGPHjh3Rx00Bb/GJMR6k1K5du/Lly2vX4f79+2ie1qtXD3VzIesPK3z//fdiUEhICFpR/v7+oaGhct1Uj4JCOwl9tLM1CKTET7GirawcX96pl5qa6unpKdYfrQFUSFhzcRFW3759q1SporsliYgo62IgZYtxIDVgwIBcuXIp+4gcKiIiYuPGjeg4cOCAHBQbG4s+8+fPV80kLS0Np226VbmQzkAqU9CeadSoUUBAwNmzZxMTE4cNG4btL76NmzRpUpEiReQDjFS5xqhRo3Dqvn79ehTNypUr3d3dGzRooHuRFAMpW27duoWGZfXq1W1leZUrV1ZlSTgBQzMYHdu3b1ftO8HBweLeWOOCU3HAQAqtdOW9QpK4uVg87+m5DI5Ip06d8vHxKVasmKpYbR0n69evL25K0mIg9TKBlHwd/2Gnj7d3sSJFxEVSzRs1wjmbcj7aQCp0ZAgKa828eQazZSCVaTdv3sRJPba8eMpzixYt2rdvL4eqAilp2bJl2ONu376NU3XsMidOnGjevLmtqwsZSGVJmXuGlCqQevfdd319fa//lbj6zmCQUrdu3bSP3MdBv1atWmXKlEG7B0d5cYW/DKQs1ugU1bCTk5P8HkkVSKH7RQOpqKgoDFqyZIlyfAzt2rWr6EZH+fLl79y5kz179jNnzixYsMDZ2Rl1j7+//+jRo3W3JBERZV0MpGwxDqRwevz0ubDPbiaCL7/8En3i4+OPHTuGjrVr18pBhw8fVj1VSurXr5/BUtIZSGXKihUrsFWVv/3Sq1evHDlyPHz4sGrVqu7u7qWecbZCx549e6Kjo9H4UT6dQDyNXvfZzAykdMXFxWELBwQEKHcNFZynKR9RarH+uKF4qpR4/trGjRvloDlz5qBPTEyMQcFpF+GAgVT9+vUDAwNVPcXzQHR/69AWgyPSmDFjxF3Jyp62jpMoL/kEdBUGUq8kkMJr9JAh2PgHt2z51XrBgY+3d8lixcQLb/PnyxdQqlRcRLgYedG0qeg5dewXxvNkIPUyxE3HaAzcv3//aYn4+MhDFt56enqWLVtW+ehJnJh7eHiIp/HgBFw8BWjDhg0FChTQnT8DqSzplQRSONSiEfPLL79oRzYYpDR69GgcX27cuCH7pKSkiIuVVq5cKfqIt8pAShg/fjyaR+K5Ti8fSKWmprq4uPTs2VMOOn/+PEbGfy3erlu3Dm9DQ0OxC6WlpWGdxdOv8Ff544BERPTPwEDKFuNAStzkLn6iRKhXr564lDgpKSlPnjwfffSRHDRy5Eg0A27fvq2dT506dQoXLmxrHdIZSGUK2k4onXv37sk+4jqRmzdvbtu2bYFCOSt03Lp16+DBg6o0ROQjylKWGEhpofFcu3btYsWKxcTEGIw2atQotGxjY2PF2/j4eFdX14EDB4o55M6de/DgwXLkDz/80M3NDS1Sg4LTLsIBA6nOnTuXKFFC2QdNepyk6F6UYcDgiIRTCewOZ86cUfa0dZzEqUefPn1058NA6lUFUoM/+ggb/+SPu5Kvxyyc+vW8r76SL+xi7zRrtmjaVPHw8jXz5uHDYOsx5wykXhWcyIsI+MmTJ4sXL1YeslAi//rXv5YsWSIvuUVH/fr1ZVOhePHi4rfIduzYkS9fPt35M5DKkl5JIIVqFXVhw4YNcQhOSEgIDw+fNm1aZGSk8SClqKgo1K8NGjQ4ceLE6dOncYBG2/T+/fu5cuXq3r07DuIRERGoAGQghY8jPsR3795F47Vly5YBAQFiPi8fSFmsz2HFwW7q1KlXrlzZv39/5cqV0XSQFQn+CycnJw8PD/lrlGhe423RokV1NyMREWVpDKRUUlNTxa+d4EwYlenevXvRjSpbDK1UqZK4yR1NSZwPowL94YcfLl++jHNs5VVRqOhR76MqR1W7evVqnG/37dvXYr1+pFevXrt27YqOjj579ix6Gl+/kM5AKlMOHDiADdutWzdsfzRsUIhoxqDprx1TeecXxvT09KxWrRpaa2gHnj9/HoO8vb11Iw8GUlotWrRAC3PWrFk7nsHeIR60il0DDWbx1SYKJU+ePE2aNDl+/HhYWFibNm2wg8hf8kGpYcyNGzdeu3Ztzpw52I8GDRqkXRZv2VOZOHEizngTExPFW+wC2HQ4udi+fbssDnmGIo9jxkek1q1bh4aGov/Vq1cXLlzo4uIiH1NlfJzEKYzy224VBlLa15Wfjx36fgteOXLk6Nq+PTrO7tkjBvXr2dPXx0d0t2rS+MsRI07t/jHy6JH5U6a4ODs3DAy0FWzJ+Gnfpu/wYQisUWPryhXbVq4Ur/BDhxhIvbyQkJD+/fsfPHgQexD2tVKlSvn4+OhWGdpb9iZNmlS6dGl5G3Lz5s3Fc/dGjhxp6+DGQCpLMgikmjZtisO0tv/8+fNxDJUfDgHHWbQ7xePPcbivWbMmPnbPHaS0atUqLy8vMRrGEQ9NX7BggXjsFP6i0kUzCLUF+m/btg2fZjEyZo4KW8ykUKFCQ4cOlfNEt7jlXuXx48dYE/Ewcu2EqKt69uyZK1cuMf+6desqn+BusVY/2RS/uYu9Am8/+eQT3c1IRERZGgMpFZwtZ9OQ18igKhcnchbrpc3Vq1cXI+TPn195q9eDBw86deqEUwsMwplAnz59xINXUAWj+YGGqZiqaNGi8od6daUzkMosbFjxdE5AQaA4bt68qR2tqZV8e/jw4WrVqslyR4Pt6NGjuvNnIKXl7u6u2nHQHBUXBs6cOTPbs9+StlgfXu7n5yfGUd12FxcX16ZNGzHI2dl54MCB2kdhWDQFp+KAgZQIYeWW/Prrr7XHMZw5i6HyOGZ8RMK5idyJcBzr0aOHPNM2Pk6K60TCwsJ0V5WBlPbVrUMH1cYMKFVKDGrXsmUBLy/RPXvixEK+vrJEunfs+MvZs7ozdHLKPWHYMNH91ejR2sIK6t2bgdTL27dvX5UqVeRWrVevnq07ipycnMQv7QpnzpxxcXFR1i8438fuhgNj8eLFT58+rTsTBlJZkkEglZqaKu6D07J1fX5sbGxERITy4qmMDJKwOIyjCk0fP358+fJl8YWGssZNS0u7evWq6mZAjKx8sia6dStp7b+gmtBibSuHh4fr3j6ARaseWCi/byEion8YBlIZd/DgQZxg46+yJ2pq1OO61TFOrVHVKh8YIaBWRXtA9+srlXQGUi8HjS6cOdtqLFmsbTPVLxpbrL85ExkZadyoYyD1Qho3bqzKj9AuRUM3JiZG+VvVUnx8PPYRg/anbsFJDhhIYTP6+vp+/vnnzx1TexwzPiLhHAclZbC1tYKCgnR/B1xgIJXxV1xEeP58+WS0JF4xp05GHj3yOCbaYMLEqKspN65nYokMpDLh3r172INs/YyDgJNx5bEO+9SxY8e0o925c8dgJgyksiSDQIqIiIgYSGVc8+bNxZNu7CadgZRZMZDKuCNHjri7u1+7ds1uS3TAQAqGDx/u7++vG/Ap/d3HsZSUFB8fH+XFICoMpDL++nLEiGqVKz+Kvma3JTKQMjMGUlkSAykiIiIDDKQyKCkpadSoUXa+ZDidgZRZMZDKuC1btuj+UuHfxzEDqVu3brm6uur+7KBkh+PY999/7+HhofxJARUGUhl/TRs39uLBA/ZcIgMpM2MglSUxkCIiIjLAQMrM0hlImRUDKTNzzEDKYn0gyetehadUzwlRYSBl5hcDKTNjIJUlMZAiIiIywEDKzNIZSJkVAykzc9hAKktgIGXmFwMpM2MglSUxkCIiIjLAQMrM0hlImRUDKTNjIGVmTwOplOTUm7/wZcIXAykzYyCVJf3555+vexWIiIiIiIiIiEjHPzmQ4he/REREtvAKKTNL5xVSZsUrpMyMV0iZGW/ZM/OLV0iZGa+QypIYSBERERlgIGVm6QykzIqBlJkxkDIzBlJmfjGQMjMGUlkSAykiIiIDDKTMLJ2BlFkxkDIzBlJmxkDKzC8GUmbGQCpLYiBFRERkgIGUmaUzkDIrBlJmxkDKzBhImfnFQMrMGEhlSQykiIiIDDCQMrN0BlJmxUDKzBhImRkDKTO/GEiZGQOpLImBFBERkQEGUmaWzkDKrBhImRkDKTNjIGXmFwMpM2MglSXZJ5C6e/fu4cOH/+6l6EpJSTlw4MCDBw9ey9Jf0pUrV86fP/+61yKTbt68GR4e/rrXgojoZTGQMrN0BlJmxUDKzBhImRkDKTO/GEiZGQOpLOm5gdStW7cWLVr0xRdfzJ49OyIiInMfjrlz52bLlu21pEIXL17Eor///nv7LxqmT58+bNiwTE/+73//+80333x1q2NXH330UbFixbT9o6KievTocfz4cfuvEhFRJjhsIHXz5s158+aNGDECf+/cuaMcdP369Tlz5gwfPhxtA7QTDGYSHR09bdq04OBgtATu3r0reqakpCxdunSJxq+//mqxfhmj6h8bG2tr/umOGkiFhYVNmTJl5MiRa9asSU5OVg3FFl63bt2oUaPGjBmzY8cOWzPRLR0UrrZoVq1aZXlewak4ciBlUDrYX2bOnInGIfaguLg4g5mgpTR+/HjsgGvXrsWWV81/4sSJISEhGJSamqqd9ty5c7NmzdqzZ4+tmTtsIJWWlvbTTz+NHTt2woQJ6NCOgA+zOO6FhoaeOXPG1nz27ds3efLk0aNHowi0OyCGirJbvnx5UlKS6PnkyZOdO3eOtUKHwUo6bCAVFxG+Yvas4Z8MnDx61OmfdquGXj3+89dffDE0KGhO6MTb58N057B52dJF06aqXuf27hFDE65cXv3NNyMGfYL5yJ7ydXTH9nHBnw8bOBDjPIq+xkDqVUlISEANguMVjoo4NGVwEFoCM2bMQI2jChCwe2IPsrUsBlJZknEghQaKi1WFChXy58+fLVs2VK6Z+CA6bCBVr169woULZ3ryVxJILViwYMuWLS85k0ywFUih+keJYK3stiZoKKBFjtab3Zb4uhZKRH8HxwykNmzY4OTkVKBAgYCAgOzZs3t5eckD2vr163Pnzo3+9evXz5Mnj4eHh62LeXfv3u3q6urv79+wYUM3Nzc/Pz80MdH/zp07mMpNActC1SDOn4ODg3PkyJFPweDkLd0hA6khQ4Zgc6GSLVKkCDqqVq368OFDOTQiIqJcuXJotrVo0aJRo0bu7u6qPFGwVTpoM7j9Vc6cOfEZSE1NNS44FYcNpAxKBxvK29u7ePHiKBrsU76+vlevXtWdycSJE8W0gYGB2PjY1x4/fiwGTZ06FSVSrVq1t99+G9tfOUhISkrCIjA5RrC1ko4ZSKWlpdWsWRNbD4cvcV6DxqpyBHz4PT09sfVat25du3ZtbH/d+fTq1StXrlzNmjVr2bIljoGVKlWSRYyN36ZNGwxt0KABShlnAThgikWjSY9dBqcGpUqVwqI/+OADW+vpmIFU+KFDBby8ChYo0KB2bW8vT3zsl8yYLof+sG6tq4uLf+HCDQMD3Vxd/QoWjDhyWDuTmtWqYah8uTg7Y1OHDB70dP6HD/n6+GAm5cqUzuPkhI/B0hkz5IQThg9/usdVrFC7enUsul6tmolRVxlIvbzIyEg0JAoWLIg9Ah3YtsuWLXvuoKioKOyJQUFBGIQ9Uc7txIkTqLZOnTpla3EMpLIkg0Bq48aN2DO7dOmSkJBgsR5JN2/e3LNnz0x8Fh02kEpOTn706FGmJ38lgVSVKlW6du36kjPJBFuBlMUah9tzTeLi4uwcgb2uhRLR38ExA6nVq1d/++23qPrRvW3bNhzQ2rZtKwaheSADiJMnT6IR2bt3b+0cUAPiZKxOnTri4g6ceHt4eHTo0EF3cX379sVQ0U74/PPPcdKYwfVMd8hAaty4cdjyonvo0KEonenTp4u3qamp5cuXf+ONN2QIpXsFTcZLB58BzLBRo0a6a6IsOBWHDaRslQ62efHixXF+JfKj6OhonIOhpaedQ1hYGKbCtOLthg0b8HbWrFnovnDhAk6kg4ODxaAdO3ZgEJrZyslHjx5dokQJFC4DKZUnT54MGDBAXHGZmJiIssDWk5dBRURE4Fz3vffew2iij+6+c/jwYUwlrhm0WENGvJUn0h9++CFOpH/++WflQsXfMWPG3L9/X3S3a9cOU8XExOiup2MGUmf37Fnw9dePY6LRfffSRf/ChUsU8xeDkq5FFfbzDaxRQ1y4FHn0iEfevO1btXzuPFd/8/QMdO93G9F9avePoSNDEq5cRveVn495e3nmz5dPjHZmz9Mvyz/7uJ94u37hArydMWE8A6mXh6PZokWLxK6EkyN/f/+SJUs+dxCOoqLSuXXrFspCfOmFfbZcuXJffvmlweIYSGVJBoFU2bJl0VhRfesioaGzePHikSNHzpgxQ3UrH1quY8eOnTJlyuXLl0UfEUglJCSg4hw1ahTO0rVXt+rCZ3Tr1q0TJ06cOXPm9evXRc9Hjx599913OKxPmjRp//79yvFRx6DCxlqhGS0+3zKQOnfuHD7cWCvjmwuwhqjIsUTVdYNY6NKlSzFnNMQt1pa6+FIL+8/8+fNv374tx8S6yQdmYfWw/ujAjrRw4ULlxrxy5QomFA3B8PBwbEaxZZTXb6sCKawDKryQkBBsjZs3b8r++/btw4IwdMmSJVhDbH/RHxt8xYoVRYsWrV27NjqwYra2koqtLYyCXrt2rdhKuuV49uzZ8ePHh4aGopllK5BCsxX/uFh/dGMm+KstnR9//HHTpk3KCQ8ePCg2vmCrpE6fPv3VV1/hE4jx8RYfwm+++QafAZwvYSOIopH/yJYtW8Tl1qK5gEnwf6GkVNfGY22xzbHlsf2VhbhmzZrIyEis89SpU7FE/Puiv+5CtetGRFmCYwZSKmgPVKhQQXeQj49Pq1attP3FqfKuXbtkn169ejk7O2vbFXfv3nVxcRk0aJB4y0DqhaAawnb++OOPxVsRXshAxJaMl8727dsx5ubNm7UzURWcisMGUkrK0hExk2h+CAMGDMAGlPGHhF0gV65cyqvecJ4mTs/QfsNMlE3ZypUrN2vWTL5F6xTliObN21a2VswxAykVNEGxMcUVTNC/f/8CBQo894tknAIoYyycAuDtnDlzLNbmIgru66+/fu6iMT6msvX8CscMpFSvjm3auLm6iu5tK1dic+1Ys1oO7dn538558ti6iEm+arzxxhsVK+oO6tL+aSZ4K+wcuj8L+hgFF385Ug4tUcy/UZ06DKReuU6dOrm5uT13UL9+/bp06SK6c+fOLb4DCwoKqlOnjvaAqcRAKkuyFUhduHABe+mYMWN0CxtHYdSg5cuXf+edd0qVKoUPyr59+8SgPn36eHh4dOvWDbUjBomeIpDq2LGjt7f3m2++mT179qZNmz73I5uYmBgYGOjk5IQPX+nSpV1dXXGen5KSUqxYMT8/v9atW6PBitlOnDhRrrO7u3vt2rW7d+/u7++/ZMkSy7NAqm3btpgc4+MvWtW6mRQ+3507d86bNy9GrlevHg5MixcvlmtSrVo1rAn6e3l5tWvXDv+jmD/qEsz/xx9/lPMpW7bse++9J7plorR7926MhmaiHO2DDz7w9fXFQufNm5czZ06sdps2bTBz/GvyWQzKQCo2NrZKlSpYeeyu5cqVQ5Upm5sYrWHDhhiKDR4QEIAFTZgwwWLNvLAyWG1sFnTUrVvX1lZSMtjCKEcsFxPqluPy5cvRB+uAQdiMqAJ0AynlNWuiGw0ybemEhITkyJFDWVL4DOAjZFxSK1aswNt//etfGBP/ZlRUFFp+mBBLKViwIDbC4MGD5T/StWtXFEHFihUxFMe44ODg/PnzY+XxFkUsl4vPNv5fbF7ME+ddGEGGhphnjx49UGr4eGAQNrU4YuouVLtu2o1DRCbEQAr1Ag65ypNeCTURjnW631hOnjxZfBcl+4hzae3vXYwfPx7Vh7hfzMJA6gUdPXpUWVP37dtXtr4MZLx0GjduXLJkSd1zAFXBqTCQsvy1dNCcUF2zjxYg+mjbAy1btkS7QtkHLQc0zNDxxRdfqO45ePfdd5XNLTSNWrRogQ4GUs8VGhqKjXnkyBHxFq3r999//7lTXb9+HSdBrVq1wtmBxXpDQL58+UR7Fc0/zFB+g24AJ1Cenp627h1hIHUv/FIRP78mDeqLt6EjQ7Bh4yLC5QgzJ0xAn4sHDxjMZP/mTRhn8fRpukObNWzo6uKSfD0G3S3efrtapUrKoR1at/IrWJCB1KsVHx9fpEgR3RBANWjMmDHivFVcIXX16tWdO3fi7MlWdSMxkMqSbAVS69evV32NoxQTE3PgwAHRnZycXKZMGZEU4NCMpsnChQvFIHm5uAikmjdvLpo+06dPx1vl5ay6xo4dmyNHDtTl4i3O56Ojo9PS0rBusmH03nvvFShQQHQHBwf7+/uL+wvQehaXxYrIo3jx4uIyrlOnTuEt2mHaxS1atMjJyUk+CANz8/DwEDMRrbS9e/darDsMGmd4+0KBFFa4UKFCYiuJ1fPy8hJfKuIflHsXOrABZ8+erZocunfvXr58eSxdTI69tEGDBnI08XivNKt27dphj5WXPqlu2dPdSkoGW9igHB8/fuzr64vjiLi2aNOmTblz585gIKVbOmKQ3BRikPiG1qCkatWq1a1bN9H/3r178ipQ1d1z4h9BY0I8aRLbVjypQbQn0MKWjXJ8vNGy79Gjh9hiGAHNjtGjR4v5FCxYEGsiLoJD0WDDohEpBmkXqrtuRGR+DKS+/fZbHNBk5W6xPg0QVUD//v29vb1RTcin9ip99tlnqAiUfcTZmupXd0X1Ie8HtFgDKfH4KvSvU6fOmjVrxBFYV7rDB1JBQUFoOchr1dE2qFChAgrFz8/P2dkZ59i6bbkMls7Zs2eV9wMqaQtOhYGU5a+lc/PmTTRrlQ8tmjFjhvJaG6lGjRpNmjRR9unXrx92CnSsW7cOk2CnEP3RWuvQoUP+/PnF2x07dmA0sTgGUsaw6SpXriybxPiL0mnTpk2LFi2wPV1dXevVq2frUTU4N0YzvkSJEtjdSpYsKc9ocBaNmQwbNiwgICBPnjxo+Y8aNUreTIDGM04oJkyYUL9+fTR9ldcnqjhsIHXhwP7p48cNGziwRDH/wBo1Lh87KvoP6dcXxyvlmKutNyIc3LLFYG7tWrb08fbWvYoq+uQJJ6fcXdu3F2+rV63auH495QgfvdcDIzCQeiUuXbo0c+bMESNGYGdBna6M4G0NioyMFBe4vPXWWzh9vnv3Lmo0ef2BAQZSWZKtQGrJkiWqnMVAp06d8HGxWA/uOF3H0VwVc4jzf/kDLjExMXi7cuVK49lWrVpVVR9riUteRVN4ypQpOFqpHn0qcg00pmUffOJ1nyNYs2bNd955R749d+4cJhRXfjVs2FD5QLXo6OgXDaTg008/dXFxEV+GYCUxlW495+PjI58aICfHVDlz5pw6daocDXtvrly5RKiB0ZR3Uixfvlz5/YwqkNLdSgaUW1i3HFesWGF59r3fDz/8ICfs1atXBgMpVenIr6fwv6M1ILqDg4Nx2iMqdYOSat26NeaAo5hyibYCKfmPiMelyehTzFCsobipQVlS7du3x+dBdBcsWBBtTTmod+/e8ntp7UJ1142IzM/BA6n4+HgczFGVKO9lHjduXGBgYOnSpcWVAmhTaifs06dP3rx5lX2+++47HBgPHTqk7Ll06dJsf30qNqoGnG9v2bIF9WyzZs0w9KuvvrK1eumOHUidPHkSzYN+/frJPtWqVcOZ8CeffIKKftu2bah6tNvckuHS6dmzp7u7u/gyTEVbcCoMpLSlM3DgQGy0unXroqFY3frsZLy9cOGCasIyZcqg4JR9MKEIELEbonUkLrh+99130a7ATNB0tFgjwoCAgOHDh4tJGEgZQ0MaG3/dunXibUJCAt76+vpOmjQJn+q1a9eiPY+Wp+6H/9atW23btsUe5OzsXLFiRfl0i8GDB2MmaChu2LBh9+7d4gli8gLSGzdu4JQbeyjOldBcxGHNVtTusIHUluXLAmvUqFi2rHOePNWrVv1+xXLR/4OuXfO6uSnH3LB4EbbtgS2bbc0q4sjhHDlyjPr0U1tZFWYoH4teukSJVk0aK0cY8MH7qgiMgVSmbd26FZ987CnYX2rUqCGfLWM86Nq1a2gDYAQRu2OPw9nokCFDMD7qL3kSp8JAKkuyFUiJr0PR2rD12dq7d++///1vcVuWq6urjF02bdrkYYUK+JdffhE9VQ81Fwd91SMYtTw9PZW1uIRT+qCgoJo1a6Ia9vLyknNOTExs0aIF3r711luygtE+1Bw1ge4jJAsUKIB2g/zhGDSyMaG4+AXVhsyYLNbvuDIRSJ0+fRpjrl692mINa8qXLy/6ozbCrJo3b16hQgVsTBw9P/30U9Xk58+fx7ROTk7K37XBmKKaVD1qCo34p1exXrwo3qoCKd2tlMEtbFCOK1asUF12busZUtpAylbpTJs2TSZrWBP5YTAoKZwUoTWGoWioyTvzbQVS8h9B8eEtCki8xX+R7dkzBWbPno1uLEL5Y0NoRIoxCxYsKAvLYm2IoI+thequGxGZnyMHUqmpqW3atMmfP7/qYZHSqVOncDKMo732IqkBAwbgtFnZZ9WqVTgwqmZVxcrWCohfxZKHVq10Bw6kcFZcokQJVEnKjY/KXRlDoJ2A0ypx57hSRkoHrR00NgYOHKi7dOOCszh8IKVbOhZrIw2bFCWyePFi0c7RnllVrlxZlSXhBKxQoUKi+/Hjx2jGoFEUEhKCub377rs4nUP/SZMmFSlSRD55ioGUgf379+OzLZ+8ZrH+Oh7KYty4cbKP+PJY+0PV0dHR2M44MN6+ffvGjRutWrXCrrR9+3aL9Rn2aJwrR65Vq5bq7kuL9VGt2AENToUcNpCSrxtnTte1/h7iqd0/4m3/93s//RpeMcKK2U9vXrl06KCtOQz44H0np9yYj3aQuAFwzbx5sk/l8uXfrltXOc4HXbsW8vVlIPVqoU6pV68eilU+dTcjg5YtW4Y2AHY3nHPVrVv3xIkTOGvu1KmT7iIYSGVJtgKp8PBw7Ku2WiHff/89DriDBg06ePDguXPncCxWBiJo/cyaNcvPz69w4cLiUinV+T86MhJI4XCv/eEe8aMk+CDu2rULH9kxY8ao7qU/duwYPqPoOWXKFIte5IFV1Q2ksMLt2rW7riB+hgMCAgI6d+4sx9QGUsorg2wFUiCeupWcnIzGvfzCBLWXq6vr7Nmzf/7557CwMLTstYGUKI7JkycrV0/eEalaCv5Zg0BKdytlcAsblKN4xKNcqCWzgZSydMTF7VOnThUbWd5HYFBSFuvp03fffYcmIA5q4rkALxNIiec7HDhwQLk4+dANVSCFboNASnfdiMj8HDaQSktL69WrF2oo7fU1SqKaUN3qZbGeHmf769OXUfGhj/KKg59+evrbRsbX4ePEG+PYetJwuqMGUqhlqlativaJ6rGYLVu2rFy5srIP2hXa1lRGSmfkyJHZs2eXP1CjlJGCc+RAylbpqAQFBem2lFq0aFGuXDlln6ZNm2pzDaFixYqi2Ykluru7l3rG2QodulexOXIghfYe2uEdOnRQPTwBx7oBAwbIt+JxusuXL1dN/v777/v6+sojUkpKCgq6Vq1almePZrt3754cGY1t+cNhSjgXcHJysvVEXQZSeP204em1EROGDUP3xJAR6I49e0YORf+nmzr8ku60dy9dzOvm1r1jR+2gRdOmYsKpY79Q9mzeqFHZ0qWVfZo0qK96qhQDqVdi79692Ww8d1J3EE7KPDw8xGUHOI9etGiRxfrbHfJ5MioMpLIkg1/Ze+ONN/AJiI6OVn0s8Ldz586lS5eWPfFWGYgIBw8exKdq9+7dlswGUg0aNJCXEVmsLWPUHOLHy27cuCF6irfahwI2btxYPAst44HU22+/rVycUvPmzZWPCN21a5cMpC5duiS7LdYvxLy8vGwFUtjHUP2ILyGvXbsmeqJWU95CiLfaQAr1louLi+71YtqlqAIptGDks6tU5FZSMtjCBuUoHtspf/UWJVWvXr2XDKQs1hZYzZo1P/vsM2V1blBSEhoKbm5uISEhlmdXcsnHUWn/EYNA6sCBA8orulUMAintQnXXjYjMz2EDKZyboc567s37OPRl03sOjvg1dPmwG0C9oLqmplWrVs/9Was6deoULlzY1tB0hwykUH/Vrl0blaz2Z+OHDx+eK1cu+eso169fz549u/bRmc8tnaSkJG9vb+UN8koZKTiHDaQMSkfp9u3b7u7uI0aM0A4aNWoUSk1+2RYfH+/q6qr7JfEPP/wgr9Pftm3bAoVyVujQDcUcNpBCy1N87ar9QcnAwEBl6ie+atU+8RaNZ1Xm27Jly7Jly1qenSDIi6pw5oL+8umiSnFxcTly5LD1CDYGUnhtXrZUJkc/fvv00car5s6RQ+vWrFmlQgVb004aNfJp2e3cqeq/Zt48bPaxnw9V9Q8ZPAh7XMypk+LtvfBLri4uAz54n4HUKyfOUnWfS6gd9OTJk/r168vn7hUvXlwExDt27MiXL5/u/BlIZUkGgdShQ4fQEi1atOg333yD0/K1a9e2a9dOBAGfffaZs7PziRMnkpOTcW6Ppo8IRE6dOjV69Giczz98+BAdOXPmFJWxcSD18ccf+/r6aldABDeogC9cuICWEz6Ru3fvRnUrpk1NTf3pp58KFSok54z6GzUBFn3p0iWs9ocffmh5kUBKPEgIi7ty5UpCQsLx48fljwyixYZBw4YNw7+zYsWK/PnzyxAKq+Hv748qH/87tlKFChWwZWwFUteuXcOEqAjxv8ieNWrUqFixIpoL9+7d69u3L0bQBlIW64lBnjx55s+fjzHv3r2LJgjKRXcpqkAKtR22UlhYmLgkR3crKRlsYeNyxGcDMxTXeaEJi+3w8oHUsmXLMALaxFjt55YUDlv4d06fPo1mNA5VqFrEDZKAIkPjIzIyUpwyZTyQQmOiatWqKGJsNLQebty4sXLlSsxcjGkQSKkWarBuRGRyjhlIiSto+vXrt0NBxBytW7cODQ09e/bs1atXFy5c6OLiIp+sB5UqVZK/iIrKERUBKqzLly/jMJ7trz+WIqqAkSNHKpeLI22vXr1wyI2OjsYiRLWo23gV0h0ykGrRogWaWLNmzZJFg40snkeDrYpWGYoAbaeTJ0/Wq1fP3d1dNMbwF92YypKB0hEXCKMZoF26bsFpOWwgZVA6aDqijYSGHJq1AQEBJUuWVD6XU5YOmjdo8jVp0gQtHIzfpk0b8UvTFmuMhXYIdr3Y2Fi0kfLmzav8XWAl3rKnha1dpEgRNNU2bNggS+fYsWNiKI5m4gINtAO3b9+OBnC1atVEwWHXcHNzE08UFT99M2XKFJQjDokoBexxopmKljPOmdEePnz4cEREBE5wMOamTZss1sY5GuRbt27FuQCays2aNUNT0NYj2BwzkBr+ycCg3r33b9509fjPW1euKFmsmI+39y9nz2JQ8vWYsqVLFytSZMfqVeGHD4UMHoQNu/qbuWLCfj17+vr4yPk8ir5WtFChujVrqua/b9N3uXPnDqxRAzPftnKleIUfOpRqfeBUHienxvXrHd2x/eyePa2bNnF1ccGCGEi9vJCQkP79+x88eBB1OnarUqVK+fj4yF9UtzVIQDukdOnS8jZknFWJizNQ+9g6uDGQypIMAimLNZOqU6dONitUrih7cdTGAT0wMFD0b9CgwZAhQ8QvNOMgW6FCBdHfy8tLXi8zf/589JGfJ3TgLXqKt+3bt9e97g51AOaMY4dYeufOnePj49Hzo48+Eo+BREMKNTe6xQ+vjhs3ztnZWSy9adOmoo5HfYC34tZu4a233urSpYvu/zt79mxvb28xBzQFlBcWBQcH58iRI5v1J+HEL9HIq6JQnYgHLaG5gPoJ7QZ5bTwWJB73LqHVjjHFBYfC0aNH/f39xf+Ifw072+eff66d/NGjR+I3VuTmxV6quxT8s9kUj4HAfu7p6Sk2l62tpNrstrawcTmihYqmFfpgQ/Xs2RObQvcqZWWJPLd0EhIS0D7DllH9ELWtkmrVqpVYczQOPvnkE/m0SPwXmAn6i6xQ9Y+IL4rPnTsn3oqHtW/cuFG+Fb+rKOBwKR8Jj8aKfAK9xXr3pXzEg3ahttaNiEzOMQMp1GXZNHAWZ7H+2IX4rgJQR/fo0UPZgkT1JI/Jly5dql69uhgzf/78M2bMUC5iwIABLi4u8nGTAqob1E3i4AlFixZV1pha6Q4ZSKFmVBUN6pfbt2+LoWiloFkl+leqVEnecSl+skNeumtcOpUrV37jjTd0l65bcFoOG0gZlE6tWrVEH7SUsJso70JQlc6WLVv8/Pxkw0MmF+K5CqI/mp3Dhg0TLTStpla2VtIxA6kTJ05oD2vYR+QIaO2LljaKrGXLlvJDLp6ALn7fOTU1dfDgwdj4YvK8efOi3S7v/jtz5gxmKAbh7Fr+OOmNGzeaNWuGFqAYhBayravvLY4aSO3ZuKHKs7NIqFuz5vEf/v8lThcO7H+zSpX/O155eEwbN1YOateyZQEvL/n220VPg8WNixer5v/V6NHa0g/q3VsM3bR0iV/Bgv9XOsWK/fjtelvryUDqhezbt6/Ks4ID5Y9XGgyyWHclVDTyJ6cs1ufkoO2BAyNOxuVlBCoMpLIk40BKSEhIQP2nvTAbDVDxnRtOrZU/vnPz5s2oqCjVjdmqyeVbzNzT01P3VlLhwYMH4eHhqh+5wNvIyMgnT55YrLezKWcbERERFxenHFn1OEmsqmrdlDDPK1euXL16VTlb4ddff718+TL+WeUzpJTLFQGHcv7oUG4Zi3VbaZ/8ip7Xrl0T2RAmEf+X7uSYFltD3k9nMJrqX8Z/JC9O1t1KKgZbWDma6i3GxyYSX6Hjn9JuQ+3qPbd00Ed3PrZK6v79+1hz7UZG6WAjyxhIteaq8bWf9nv37qHtrsrvsEllYYlVUq2MaqG21o2IzMwxA6nnio2NxRFYdcQ+ePAgTuTwV9kTJ3WoGrRHcu0xU8I5Nuop1UMDdKU7ZCD1XNi2aIkpH7BosV7ZgTNk5QNuLLZLB32UFZxq5rYKTslhAyljaEOiOaH97TZt6WA7YxdDS1v1DRbeonCxg2hvOlMybu46ZiCVEdiqaKqpdpPGjRur0j1sWxyg0CDX3U1wioQ2qnYQjmzamWs5ZiAlXncuXrh06OCDq1d0h14/fSr88KGka1GyT1xEeP58+cSjpuTrIeqmF1908vWYyKNHoo4fT7lx3WA0BlKZgM88Dlm6Z0C2BuHoJ69eVJLPUNbFQCpLykgg9bcKDQ198803VXmKyWkDKSIi+qdiIJVxzZs3t/VzKH+TdAZSGfPgwQNvb2958a8dMJDKOPuXDgOpjDty5Ii7u7t89qsdOHIg9aKvL0eMqFa58qPoa3ZbIgMpM2MglSW99kBqxowZqruxzI+BFBGR42AglUFJSUmjRo2ydQPR3ySdgVTGnD9/Xvd3Nv4+DKQyzv6lw0Aq47Zs2SKf1WAfDKQy/po2buzFgwfsuUQGUmbGQCpLeu2BVBZ15swZ+QQiIiL6B2MgZWbpDKTMioGUmTGQMjMGUmZ+MZAyMwZSWRIDKSIiIgMMpMwsnYGUWTGQMjMGUmbGQMrMLwZSZsZAKkv6888/f//999+IiIhID06qWVGaFloyr3sVSB/2GhHmkgnhjBpnbq97LUjf00AqNeXJ7Vt8mfD1n7Qn2H1e92eE9DGQypL+JCIiIiIiIiLKyl53uPI3+scGUkREREREREREZE4MpIiIiIiIiIiIyK4YSBERERERERERkV0xkCIiIiIiIiIiIrtiIEVERERERERERHbFQIqIiIiIiIiIiOyKgRQREREREREREdkVAykiIiIiIiIiIrIrBlJERERERERERGRXDKSIiIiIiIiIiMiuGEgREREREREREZFdMZAiIiIiIiIiIiK7YiBFRERERERERER2xUCKiIiIiIiIiIjsioEUERERERERERHZFQMpIiIiIiIiIiKyKwZSRERERERERERkVwykiIiIiIiIiIjIrhhIERERERERERGRXTGQIiIiIiIiIiIiu2IgRUREREREREREdsVAioiIiIiIiIiI7IqBFBERERERERER2RUDKSIiIiIiIiIisisGUkREREREREREZFcMpIiIiIiIiIiIyK4YSBERERERERERkV0xkCIiIiIiIiIiIrtiIEVERERERERERHbFQIqIiIiIiIiIiOyKgRQREREREREREdkVAykiIiIiIiIiIrIrBlJERERERERERGRXDKSIiIiIiIiIiMiuGEgREREREREREZFdMZAiIiIiIiIiIiK7YiBFRERERERERER2xUCKiIiIiIiIiIjsioEUERERERERERHZFQMpIiIiIiIiIiKyKwZSRERERERERERkVwykiIiIiIiIiIjIrhhIERERERERERGRXTGQIiIiIiIiIiIiu2IgRUREREREREREdsVAioiIiIiIiIiI7IqBFBERERERERER2RUDKSIiIiIiIiIisisGUkRERERERET0D/fo0aMEq3irBw8eoDspKSmD04rx4YEVOh4/fvzcCZOTk8USE57BtOiZwXXGhP/zP/+TwZGVLBbLbY0nT55kYlZ/HwZSRERERERERPQP91//9V8Pn0lKShJ/0TMj0/73f/+3mAQSn0HP506YkpKCCS0Wi5gcU6Hjf//3fzO4zpkOpNKtmdQThbS0tD///DNzs/qbmDeQwrY7f/58bGzs614RIiIiIiIiIvqHiI+Pj4uLe9FJ7mmg53MnfPLkSWJi4m+//aacMONLz3QghamSNTKSoNmTeQOpy1ZRUVGve0WIiIiIiIiI6B/ivtULTWKxWJKTkx9byY7ffvvtuROmpaWJkVOsRHcG7xNMf7lb9mJiYpT368XGxmb8VkH7MGkg9fDhw6ioqLi4OAZSRERERERERPSqxMfHZyKQkg+fktDzuROmpqYm/NWjR48SExMzvqqZDqRu3Lih7HPnzh0sOhOz+vuYMZD6448/zp8///vvvzOQIiIiIiIiIqJXKBNXSCUlJSUmJiqfIYWOjOQ7f/zxx+PHj8VUDx48EFPhbwaXGx8f/9tvv/3vX2Gez52QgVQm3bp16/bt2+hgIEVEREREREREr1BcXNyLBlJpaWkPHz5U/soe/P7778+dMCUlJT4+XkybmJgoLrN6oUBKBcvNyK2Cf/zxh2o0vP3Pf/6TweXah+kCKZTo+fPnReDHQIqIiIiIiIiI6J/HdIHUgwcPTj9zyurixYuve6WIiIiIiIiIiOiVMV0gpcQrpIiIiIiIiIiI/nnMHkhdu3btda8FERERERERERG9SqYOpP60et1rQUREREREREREr5KpAykiIiIiIiIiIvrnYSBFRERERERERER2xUCKiIiIiIiIiIjsioEUERERERERERHZFQMpIiIiIiIiIiKyKwZSRERERERERERkVwykiIiIiIiIiIjIrhhIERERERERERGRXTGQIiIiIiIiIiIiu2IgRUREREREREREdsVAioiIiIiIiIiI7IqBFBERERERERER2RUDKSIiIiIiIiIisisGUkREREREREREZFcMpIiIiIiIiIiIyK4YSBERERERERERkV0xkCIiIiIiIiIiIrtiIEVERERERERERHbFQIqIiIiIiIiIiOyKgRQREREREREREdkVAykiIiIiIiIiIrIrBlJERERERERERGRXDKSIiIiIiIiIiMiuGEgREREREREREZFdMZAiIiIiIiIiIiK7YiBFRERERERERER2xUCKiIiIiIiIiIjsioEUERERERERERHZFQMpIiIiIiIiIiKyKwZSRERERERERERkVwykiIiIiIiIiIjIrrL9SUREREREREREZC/p6en/D7LKVtiqQREvAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<IPython.core.display.Image object>" | |
| ] | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABjAAAAN7CAIAAABkokShAAAACXBIWXMAAA7EAAAOxAGVKw4bAAHNXUlEQVR4nOzdd5wVRdr/fYKA6K4iiiQXVjCtu66u8dbVNaCAKKjcgiACiml1VcDsLrDkKCAZiUoQAVEEyTkrQZA8Q04DjOQ4DMyc3/c510097Qk9h2CD8Hn/Ma/T3dXV1dXVfbqu6a6TLQQAAAAAAAAEKNuZLgAAAAAAAADOLwSkAAAAAAAAECgCUgAAAAAAAAgUASkAAAAAAAAEioAUAAAAAAAAAkVACgAAAAAAAIEiIAUAAAAAAIBAEZACAAAAAABAoAhIAQAAAAAAIFAEpAAAAAAAABAoAlIAAAAAAAAIFAEpAAAAAAAABIqAFAAAAAAAAAJFQAoAAAAAAACBIiAFAAAAAACAQBGQAgAAAAAAQKAISAEAAAAAACBQBKQAAAAAAAAQKAJSAAAAAAAACBQBKQAAAAAAAASKgBQAAAAAAAACRUAKAAAAAAAAgSIgBQAAAAAAgEARkAIAAAAAAECgCEgBAAAAAAAgUASkAAAAAAAAECgCUgAAAAAAAAgUASkAAAAAAAAEioAUAAAAAAAAAkVACgAAAAAAAIEiIAUAAAAAAIBAEZACAAAAAABAoAhIAQAAAAAAIFAEpAAAAAAAABAoAlIAAAAAAAAIFAEpAAAAAAAABIqAFAAAAAAAAAJFQAoAAAAAAACBIiAFAAAAAACAQBGQAgAAAAAAQKAISAEAAAAAACBQBKQAAAAAAAAQKAJSAAAAAAAACBQBKQAAAAAAAASKgBQAAAAAAAACRUAKAAAAAAAAgSIgBQAAAAAAgEARkAIAAAAAAECgCEgBAAAAAAAgUASkAAAAAAAAECgCUgAAAAAAAAgUASkAAAAAAAAEioAUAAAAAAAAAkVACgAAAAAAAIEiIAUAAAAAAIBAEZACAAAAAABAoAhIAQAAAAAAIFAEpAAAAAAAABAoAlIAAAAAAAAIFAEpAAAAAAAABIqAFAAAAAAAAAJFQAoAAAAAAACBIiAFAAAAAACAQBGQAgAAAAAAQKAISAEAAAAAACBQBKQAAAAAAAAQKAJSAAAAAAAACBQBKQAAAAAAAASKgBQAAAAAAAACRUAKAAAAAAAAgSIgBQAAAAAAgEARkAIAAAAAAECgCEgBAAAAAAAgUASkAAAAAAAAECgCUgAAAAAAAAgUASkAAAAAAAAEioAUAAAAAAAAAkVACgAAAAAAAIEiIAUAAAAAAIBAEZACAAAAAABAoM7xgNQPP/ww1mPq1KnRaebNmzdnzpzo+UePHp04caJy8M48duzYmDFjUlNTfTaq3L799tuDBw/GS3ByOaelpU2fPn3AgAFDhgxZunRpzDTx9sVZtWrV8OHDN27c6JNm9OjRSuaTwMehQ4dUz7179x42bNiWLVtiphk1atSaNWsiZo4fP37lypXRiVUtkyZNmjx58uHDh2NuTjU5ZcqUmBuaP3++so1XpbNmzRo3btz+/ft9difLQ5menj5hwgRrXSpkvF1et27diBEjDhw44J2pYquEPlsHAAAAAOBcdY4HpEqXLl2uXLn/Pe65556LTvPuu+/+61//ip6/bNmyh8K88Y49e/ZozoQJE+Jt8eDBg2XLllWaYcOGxUtzEjkvXbr0mWeeKVWq1PPPP1+5cmWlfPvttzMzMxPcF+fNN9/UuvXr1/dJ8/DDD/fo0cMnQTybN2+uWLHiE088Ubt27SpVqiif9evXRydTAT7//POImeXLl+/cuXN04uXLl1tdffLJJ9FLNdOWbt++PXppmTJltKhWrVrRi6ZOnWorjh8/Pt7uJHIodVyUQHut/dUu6HODBg3S09Mjkq1Zs0aL+vbt6+YkJyf75wwAAAAAwDnsHA9IJRJbiRfEWbJkyUMPPVSlSpWqVaseOXLEZmYZkBo7dmy5cuXeeOON1157LV6aE81527Ztjz/++Msvv5ySkmJz1qxZ88EHH7h1s9wXo9W1CaUpXbr0vn374iU76YBUkyZNKlWq5J45mjNnzq5du6KTnVBAyuqqTp06qoFDhw55Fx04cEBV/f777yuBqijmjmhFLV28eHHEotq1a9uKOl7xdifxQzl37lx9zsjIGDp0qCa//vrr6JQNGzasUKGCe9hKk08//XT0EQQAAAAA4HxAQCqLgNR3332nv0OGDLGZWQak3n777caNG48ePVrJ4r0Zd6I5t2vXTovWrl3rvyM++2L69etXqVKlTZs2KbeRI0fGS3bSAal//vOftWvXzjLZSQSkxo0bp7+jRo3yLvr666+11pgxY3wCUtrlZ599tlmzZt759rzSjBkz/ANSiR9KC0hJZmZm2bJlW7RoEZ3SNjpo0CB93rBhQ6lSpXg8CgAAAABw3iIglUVAas2aNQ0aNKhQoYI9UuQfkPr5559LlSo1c+bM/fv3lylTpnfv3jGTnWjOFStWrFu3rv9e+O+LqVGjhgV9Xn/99bfeeitespMOSLVp00brxhvRyTmJgJT+vvPOOxFPKtWsWbNTp06TJ0/2CUgNGDCgf//+OhZ79+5189u1a/fSSy/t3LnTJyB1QofSBaRUDE326dMnZuKGDRvqUB45cqR169aVKlXi8SgAAAAAwHnr3A9INW/efPlxMcec9g9IrV69etOmTY888ki3bt1CWQWkBg0aVL58eQs01K9fv2rVqtHDPJ1ozja/ffv2ieyvT0BqxYoVykd/9XnYsGH67F4AjHDSAamdO3fWqFFDOb/33ns//fRTvGQnF5CaNGmSPiQnJ9v8BQsWaHL9+vVZBqRSU1P14auvvrKZ+/fvL1eu3IgRI3bt2uUTkDqhQ6ndmT17tvKsWbNm9erVd+/eHTPPtWvX2kNSZcqUiflaHwAAAAAA54lzPyD1kMf7778fnSbLgJQ+d+rUqUyZMlu3bvUPSL344outWrWyzzZsdvToRSeasz10E+8JnQT3RTp27Pjss8/a5507d6pm+vfvHzPlSQekQuGfvevbt68N792sWbOYDwGdXEBKWT3xxBMuMNegQYM6deroQ5YBKX348MMPa9asaTO//vrrcuXKHTx40D8gdUKH8vHHH3/00Uf1oUaNGj6Dc4XCD0mpVDweBQAAAAA4z537Aalu3bodOe7YsWPRaRIJSO3Zs6d8+fKNGzf2CUjZIEFfffXV6rClS5c+8sgj7dq1O8Wc9+7dq/kuOOIv3r5ox5966qlmzZqtPu7ll1+uUaNGzExOJSBl9u/f37p1axW7V69e0Usjfm/OZBmQCoWDd4899tihQ4fsoafJkyeHEgtI2XBR9tBWzZo17aD4BKRO9FDOnTs3MzNz+vTp2mLXrl19asaeUxs4cKBPGgAAAAAAznnnfkDqFMeQsrBRKPwOlybnz58fLyDVrVu3h6JUqFAhPT39FHOuVKnSyy+/nOXO+uzLnDlzossmK1eujE586gEpU6NGjVdeeSV6frly5T7++GPvnMOHD8d8bCr0y4CUxYlGjRrVu3fvihUrWsUmEpA6evSo0jdr1sxe9Fu1alXINyB1oofSjSHVsWPH0qVL//zzz/HqxJ53ixidHQAAAACA8w0BqUQDUkeOHKlSpcqbb74ZM2yUkZFRqVKlli1bHvOYPn36Q+FfczuVnKVr165aNGvWLO/M1NTU6Ae+4u1L48aNq1Wr5i2bvbXXqVOn6MQnHZCKKM/zzz//+uuvRyerXbu29tf7ztqUKVO0g/PmzYtO7A1IyWuvvfbKK69UrFjRlTCRgJR07969TJkydevWdfUTLyB1EofSBaQ2b96syX79+sWonTACUgAAAAAAhAhIhRIOSMmECRPsYZnosJE93+QCE+bIkSPly5dv0KDBqeQs+/btq1q1atmyZfv27fvTTz/NmTOnc+fOmowePDvmvhw8eFCJo+vhgw8+qFixYnRUS5WmMs88buHChdFFirZjx45KlSoNGTJk5cqVycnJ7dq1i7c7s2fP1qK6deuq0tasWTNixIgKFSqo2D6jhruA1MiRI62i3Pj0CQakNm7caCu6CFS8gNRJHEpvYu1X5cqVY74cGiIgBQAAAABA2DkekCpTpkyWw4G///77b731VvT8ZcuWPfTQQ2vXrnVzMjMz//3vf2vmDz/8EJG4Xbt2MYM7bdq0URkiRrA+oZzNzz//3LhxY2VlUZUXX3xx4sSJCe7L5MmTS5Uq5Y1/GYuCRcebKlWq5H1VrVq1ajGLFEG70K1btwoVKthaqo0RI0bES6zCV61a1VJqp5o1a7Z3796YKa2uli9fbpMHDhx47LHHPvjgA5fARhxPTU2NXlc5Dxo0yE3WqVPnySefTEtLs8ndu3fHDJmdxKFcsGCBm2MBsnhRPJUz3nuCAAAAAACcP87xgFR6enrM52687J2smIti/hTa0aNHE89EW4+ZSeI5e2l3tm/ffvDgwXgJYhYjXhnERWdOl4yMDJVwx44diSROTU3dtGlTlr83F5FAtaSt+CRwIo6+1oqo4Zgrnvqh9N8jfl8PAAAAAIBzPCAFAAAAAACAsw0BKQAAAAAAAASKgBQAAAAAAAACRUAKAAAAAAAAgSIgBQAAAAAAgEARkAIAAAAAAECgCEgBAAAAAAAgUASkAAAAAAAAECgCUgAAAAAAAAgUASkAAAAAAAAEioAUAAAAAAAAAkVACgAAAAAAAIEiIAUAAAAAAIBAEZACAAAAAABAoAhIAQAAAAAAIFAEpAAAAAAAABAoAlIAAAAAAAAIFAEpAAAAAAAABIqAFAAAAAAAAAJFQAoAAAAAAACBIiAFAAAAAACAQBGQAgAAAAAAQKAISAEAAAAAACBQBKQAAAAAAAAQKAJSAAAAAAAACBQBKQAAAAAAAASKgBQAAAAAAAACRUAKAAAAAAAAgSIgBQAAAAAAgEARkAIAAAAAAECgCEgBAAAAAAAgUASkAAAAAAAAECgCUgAAAAAAAAgUASkAAAAAAAAEioAUAAAAAAAAAkVACgAAAAAAAIEiIAUAAAAAAIBAEZACAAAAAABAoAhIAQAAAAAAIFAEpAAAAAAAABAoAlIAAAAAAAAIFAEpAAAAAAAABIqAFAAAAAAAAAJFQAoAAAAAAACBIiAFAAAAAACAQBGQAgAAAAAAQKAISAEAAAAAACBQBKQAAAAAAAAQKAJSAAAAAAAACBQBKQAAAAAAAASKgBQAAAAAAAACRUAKAAAAAAAAgSIgBQAAAAAAgEARkAIAAAAAAECgCEgBAAAAAAAgUASkAAAAAAAAECgCUgAAAAAAAAgUASkAAAAAAAAEioAUAAAAAAAAAkVACgAAAAAAAIEiIAUAAAAAAIBAEZACAAAAAABAoAhIAQAAAAAAIFAEpAAAAAAAABAoAlIAAAAAAAAIFAEpAAAAAAAABIqAFAAAAAAAAAJFQAoAAAAAAACBIiAFAAAAAACAQBGQAgAAAAAAQKAISAEAAAAAACBQBKQAAAAAAAAQKAJSAAAAAAAACNS5HJBatmzZl8cNHTp0/vz5x44dO9OFAgD8Jh06dGjJkiVnuhQAAADAOeJcDkg9+eSTBX7pjjvuWLZs2ZkuF3DmqWu9adOmM10KZCE9PX3r1q2ZmZlnuiD4/6xatapt27ZnuhTAGbN///4dO3bEXJSSkrJv377Tu7nTleexY8c2bty4bt26LP8ruWvXrtTUVPvMtyQAAAE4lwNSjz32WIECBZ5++ul+/fp9/PHH119/vSYfeOCBM10uwE9ycvKiWDZv3nwatzJ//vxGjRodOXLkNOZ59vj+++8nTZp0pktxGixdulSHaffu3dGLMjMz1b+aNm3ajBkz9MG7KC0tbeHChXPnzt2zZ493vrpkX331VXR4a/Xq1YsXL/bOSU9PVwvZvn27T9nUW5s3b15E73TDhg3adHRRR40aFbGJxG3btm3OnDkTJ06cOXOmdiE683j1cHrt3Llz7Nixn3zyiTrJ3vmqq2XLlk2ZMkWtznVljUrrPYV/+umnjIyMmJmvWLHCm3LVqlVukTbnVtfFIZFzNvFDE+HkWgIScYpnwVniu+++0ykQc5HussaPH396N3da8jx69Gj37t0bN27cvHnzBQsW+CfWFbJHjx72+bR/S57eLyZ9L3zzzTdbtmw5XRkCAHBGnPsBqf/+97822a9fP3tO6sCBAzZHPXzd7rz55pv16tVTV8dm/vDDD+3bt/feA6kvpDmab5O6oVGeb7zxRosWLdasWWMzDx482LlzZ91uKvMuXbq89dZbnTp1UrfQlq5cuVL3cFpqk0qjxLpDcp0TzenTp0+dOnXefffdoUOH8mrh+axv374fh7Vs2VJ3w61bt7bJRO7Lf/zxx6SkpES2cm4HpFSH7dq1O9OlOA3iBaTUue3Vq5e6WLqStGrVSmnUUXSLPv3000GDBg0fPlyL9u/fb/N1OdJVaO7cudFb0Uzl4I3m6KKnOVu3bvUpm7p5quTPPvvMO0cN9csvv4xImZ6e3rRp06+//jrR3fZkOGzYMJVEG+rdu7f+6vPAgQPdpdWnHiLoojp16tSTC6zoQq1uqjJvE6YPmrRFu3btatu2rTq6uuxrH1WSn376ya2oMmtmy+N0Lh8+fDhm2ZSnMnEpvbXav3//Zs2adezYUV9Dyl8FWL9+vX+BEz80EU6uJSARJ30WnHaJf01E+1UDUmvXrnU3WqcrT1m8eLG1YV0usvzK+1UDUqf3i0nnqYqno2mT0bUHAMBvwnkUkOrZs6cm//CHP1gYaN68ecWLF9ecq666ygJV6sVpvro3+vynP/3JRYtKlSqlOd27d3eZuLX0V/mEwncGmrznnnvuuusu94bg008/bTkoZ02qPDa5atUqb2hMXRpbq0iRIja/Ro0aQVYUzk6LFi3S7ebOnTsTX0WtNMEOz7kdkFIPXz3wM12K08AnIDVmzBh7mUUd3c8++0zJtm3bFgo/CNOsWTMLanfp0sUuUPLNN98MGDAg5lYsfvH555/bpNbVZJbBi9Dx+IW26J2MGbxQIU/ixcPhw4crQ28QTX3Lxo0bu3iQTz1EOHz4sLfzdkJUAG1U/T2b1Cnpok7a1qxZs7Rpfd6zZ0+bNm1atWrlVtS3ycSJE7PMX/Wvsq1evTrm0n79+rnQkva0Y8eOXbt2TaTMCR6aiJKcXEtAIk7uLDjtEv+aiParBqTGjh0bEa85LQGpqVOn6pKYYOJfNSB12r+YvGWLrj0AAH4Tzv2AVOXKlb/44osmTZr88Y9/1KRuL0LhbsyDDz5oYSZ9nj17tj4rgXoUKSkpFhWy/zW5yU2bNuluvlixYkWKFFEfT2vpu1/zH3/88dDxgJTcdNNNgwYN+s9//mOTK1asCGUVkLLEtWrVSktL0yZuvvlmTU6fPv2MVRzODvECUgcPHlywYMHkyZO///57F6rQjan66u3bt+/du7c+rFy50iVeuHDhlClT1J69Wfncai9dulQp1dPWWu4ZQN1GqxOujSof99BNamqqevjeB/p27dqlsrlg7vbt22fOnKn+gLezrY1qLf3VUrVznX3uoUX5+eefteNuUpkrsTcio62rDCqJyhPvWUL1w5OTk+2z9kV7FAq/jqQ9iiiwlVkzp02bphPTuouuhMpEq7hXn3w2rS1qT5XJ8uXLva9lWb0pE1WL9+mYmPXptqIjq0rbvHmzzyt7XiqtkmnTofCPObhuSf/+/ZWPPmhR69atfUZjsYCFDZiiokYEL7Sz9lbajBkzvK+OWvzC4lzaa/VU4wUvtCMuQ2tgOuhz5sxRjcWMH4mqXcVwD5Y63377bbw68daDlw6xNXitq7PDOy6MtqIWqANhRzxmSbSWai/mogjq52srOuls8rQHpELhbmfjxo2zjGtkeWjWr1+vs0/NQ9cKb27+LSGmeOdLzEa+du1ad3UyGzdutC9Ko3pQqXQ2eR9n879o6PvXW3t79+5VYm/PP8uLhkruAo6yZcsW73CTWl1VYc1D2ar8KuGsWbNcvM/o/FLtqQYiLgKO9yxQ/Wt15WYXH3sXVQdCaZSD951N23el1PVWJ6BqRu3Zm60qXHtnF7eIR/A0uWTJEuWvHU9PT4/3NeFfRTpDVefarm6QsgxIqfHb5cudZbqkR1x1dfJqTkQVqQ3oetWqVavFYVbblqfPtSLmV4yX9lF3gM2aNVOe3mYWr/37B6RirqW7RO9zkWoG3ouJkukr2L58vV9MrgHo+y7iiBu1au2amroyV+Gj39nXJtQs7cyKWXuh+Ic18eYXit+wz43/+gAAzrhzPyDlXHnlld26dbN7CH1ha07RokV1N7Mz7M4779Qc3fRoably5dyjVX379tXnMmXK6LNW1+fy5cvbKklJSZosXLiwvuZdQMq6vvrOvvrqqzWpzkPINyCl8pQsWVKfdddl2b7xxhua1H3YGao2nC1iBqR0E2lv8H3++ef627x5c+t+q4vSuXPnpk2btmjRQh/UbkPhjoRuxLt27Tpo0KCOHTs2adLEvezjE5BStsOHD9eK6rdoxVD4frR79+7q3w4dOrRLly5t2rSxYXTUhVMm3rv8ESNGtG3b1s4y3Qdri+pOKxMVTIssjfonWmvMmDEqvHrs+qucXfdS999a6u56dT+tSReiUvlbt26twqgkKqd6DjHfgYroVKjA33zzjVbUTOWmG3eXUt1OFVJdLNWYdtle+LISjho1SsVW2VQk/00PGzZMe6Fs1f9Xbu5BJBu7RDWv+lR6/bX58eozFO5fqVOhDak82rr+JhKQUr/FBRFUTq1oz+woc1WdNqcMo8M0Xha/0JHSsVOBvcELrd6zZ0/t4GeffaampQ15gywWv7AumU/wwvukgz67w6HPKm3MsZ/UrY2Zob2oEnM4JG89eOmy3KlTJy3S5rQL48aNs/nz5s3T8dIc7Zp2sEOHDjr08bJNZPQfHXrl43qqv0ZASid+Ik9IheIfGp1caoqNGzfuGaYPytMaTMi3JcQT83yJ18jVN9YWveEkHRqlCYX7wzpzdQXTRtXydWjcUfa/aHzxxRd9+vRxGUaEcRO5aHz77bda5A6cPWrngmjTp0/XFlUzFtrTJU5bVDGUxr3srxKq5L1791bbVhpvVN3xngXaU1W7SqXK0ZXWrnK6hmhda6vu9Svbd62oMqha7Ck8dzQXLFig+tR2dci0myrboUOH3IqaVGLtjtbShmJ+TfhXkTUetQTN1Fq6mfEJSGmPtCE1Ku2Ce33VTljv9Ue1rcMXEVRVYVRUe/1W7PApTxU+3rUi3leMl4pkL/MqTx2yUFbtP15AymctqyI3ftzUqVM1abeCoXC8VZP2zevN3DUA1a1dV2fMmOGKPXLkSB1upbFmpjqPHnzKGoZFuGLWns9hPaHmF7NhqzzaXLwR7gEASNy5H5B69tln1Um455579PnRRx+1f+mo21kgFt3vho7Hj+688059rlSpkj7rC16fP/roo5hr7d271wWkXPjg9ttv16S+wkO+ASndN8TMs169emek0nD2iA5IHTt2TDevukG3+2A1ZusAuLhSxLsYapnuf/ha13X8QlkFpLTI+hIWGFIzVh/YBu7RHN37Wg/ZnhN0eWqRbn+tt6/7VN2tuv6kOttubBq7jVbn33ZNPStNzpo1y1L6BKRs91UY68no9GnZsqU9ARQhulOhi4DtrIU5bCBYzVEO6v3a5tSFtgJbCXV/b89oaKn/ptUlcKMa2VGzzonttXucwT04E68+ZfDgwapS6wmrGNZV8A9IqUg67uoqWNmUYbdu3ZThkCFDVMnaR+27XYj8Wfwieswgras25vZC/RBv0MfiF2p1usqp8PEyjwhIqfdo/Sgb2WrgwIHRq4wePTpmE1VtaP6UKVP86yFC9Ct71kRdqfbs2aPee8y3GlUG7Z1W15GyJ01i7qPaT8QgQepMqi+nk8Jiu/F+l8ACUq3DdJLq60lnrluq/rbans4L9VdVPBUywd83iHdo1MhdP1bWrFnjDayE4reEeKLPl1D8Rm6J3ZukdvrbkEYqmCrQdewnTpyos8xy8L9o+ASkErxorFy50l0WdHybNGniDXoqc6tAZbJ8+XLXwIYPH65Tw5XWew66C4JXREBKm5g2bZpt0UISylDrKpP+/fu733O0fVfm1vlXM9NGtcu2VI3BnZv64K1bfTuoxuyyo8Zg/28LRX1N+FSRFqkYKowdU9WShe9jNgM7r+1QKr1FwbRdZatiuMim8lRTmTBhQnQOMV/Zi3et8PmKiWANyU36t/94ASmftQ4dOqSSuNao1qJF7pI7efJknddWgREBKbuOZYapgelaYcns4VC3rd69ew8bNix6v7wBqeja82/5iTe/eA1b+679yvKfJQAAZOncD0jZg066WSlYsKAmrb8xZsyYAuHxpL7xUDfAvmvda3oLFiywcZ2sV1+vXj19LlWqlHct+0aPDkjdcccdEQGpRx991BZ5A1K6ubTPumPzZsuvGiE6IGX/ava+WmK3xe7ZCv/BQYYOHWr/Ig5lFZByMaZQuDeuu23XmQkd/7+03Tqrf9WsWTPLx7oE1oO1PoA3NKCbVztZ7Dba+w9z3Te7f277BKS8+RvdxLvxbryiOxXuqQF19d3TLtYLjf7htog+8wlt2ta1Vx50JbGbfu9rDj71qerSB+9/wu1/7/43/VpdabxvGGkTmlyyZMnhw4fnzp2r7oSubKoHdRFV7HivyFn8QmXzBi/Uq9Ec9am8mauLGPGQlNL4By8iAlKjR492i7799ls1gOhV7NW86OiSOtiaH/28QHQ9eEUHpNQVdE3XWKwt5nsoqgdVoD1hF+9xM+tSel+n0gmrlGpmqqIuXbqoluL9ivzSpUuVTInVWtRd14FwLbZfv342zHnfvn1VUSqAzvEEX5aJeWj6hnmTqQutTq+bjNkSfESfL/4XDVWjK4AakurTXibS1ckeyTT6EnSPlvhfNHwCUgmeueqTqzFYd10nb/PmzZVmyJAhoXDL0b7EfOJJu+wajC5c2sF4j7mZiIBUt27d3CJ7+MtdKKwxW+OM3nedPtpWzMCrNmGxHmvw3odunIivCZ8qUuVrkXtxOxQ+K30CUt7zWmdio+OjmOlcU4Ht8Zzk5ORGcQZ6ixmQirhWdOrUyT77fMVEiAhI+bf/eAEp/7U+CwuFo2ZqLWrGbdq0sbLp9s89GxsRkPI+6miXeotE29e6+41U7bX39HT8A1L+LT/x5pdIwwYA4FScLwEpqVmzpibvu+++UPir2sJA3reNvOytvUceeUR/H374YZup73JN/vWvf43+56d/QGrAgAH6fM0116h3rXsUN8KUvXHwl7/8RZ+999NAKFZAyu6PvSMB6Z7V2xWMDkipR6FbT3vPQneciQzXGjGObGpqqlI2bdq0+XH2a2J2FtijCkuWLAmF75vV67a1hg4d2ij8w2GOvXUSirqNDoU7qG6Yap+AlHX/1G90edoLFNG74DMOiD5oUjNDx2+7vW8PmegS+m9aVaGOn7or6izZL8G5de0FJVX+zJkzrdftU58WLPN2fbMcQ0r9Pa3u7bNF7IjyVxtQedRBUuJJkyaphDEHuJFZs2ZFROjsf/V2fJ0OHTp4Q5bqkLdq1cr7ImS0iICUt4GNGzcu5hvK6l95I4mOurL2/I53pn89hGIFpNRIXOfWRLx6E9PmzZs7d+6sHlrEOD5WdfHCYaFwHM3ewfHJ3Kxatco10VDUK3v2k2HucQx/MQ9N27ZtR44c6Z2jM9c96ePdnehYbUzR54v/RcOeUrS+d8eOHd0wYSqD0rhVdLq5bP0vGj4BqcQvGoMGDbL5apDKUBeHli1b6kxRblrFPd6oC7KaWa9evVTy1q1bu2tLenr6wIEDNalF8ZpBREDKXaNC4QuFN2hiF3/baPS+28Nr9hyl7iiUWPcYXbt21XXGPfRnp0nMkkR8TfhUkTU27/Un8UHN7avB3lyzR7cWLFgQCj865w2FeGU5qLn3WuHzFRMhIiDl3/7jfXf4r6UjokrTRSYpKUnbsn9FbNmyxb6/3FhdEQEpbwPQikpprwzrK0mHQ8VW89OppK24t4y9/ANS/i0/8eaXSMMGAOBUnEcBKX3jWhjInrJ+4okn9PmGG26oV6+evqqff/75m266ya2rOzb39pzrtOim6tprr9Wc+++/X7fXDRs2fPLJJ2vWrBnKKiC1Zs2aK6+80oJZf//73wuER55yASnd1NqcN998U5/195Zbbon5/1icV6IDUjbH2z2wW1LXzY7oaehWVfegupdVx3L79u3qZZ1EQMpCEuqg7vVw3TOxMarsRQz3D/lhw4bpDn7vL1lEJpGAlBt+1RuQsiGWN2zY4M0z5i4kGJCyMbC9r0d5a9VbQp9Nq0PYu3dvXSWWL1+uPphFE7zr7tmzR10LXTHsLRuf+rSddZGIUFYBKW1OdT5kyJCYASbNVCXY4xLq89u16NChQz4xl+gmZ+/HRVyO1EIi4p7qo/r/bpdPQEqfYwakrM6j/zNvYUQ3Glooq3ow0QGp4cOHR3Stralk+buW9qCit06s3r7//nv/FXWmuEcUfdgjYO4ZtIiAVCjcN473g4nRog+N5rhHNozOl4hAwAn9xGf0+eJ/0VA7t+en1GNv5Hn9U/s1ePBg7you+J5lQMr7CIn3rEn8omFXA30pd+vWTYdS+27NTCeOq3/7IUVVvr7Tt23bZqMFeXPbvHmzBUpsIK0IpysgNX36dPdklk5w3cDMmzdPlamLvNuExYC8g207EV8TPlW0ZMkSFyUxiQekdFi9T1fZO5sqc4sWLeKFU7MMSHmvFT5fMREiAlL+7T/ed4f/WtZali1bNmbMGHs5UYvUPBYuXNisWbOYA1RFNAB7cMwFpHQraE8paqZOipgt1j8g5d/yE29+xr9hAwBwKs7lgNTTTz9doEAB9y2rvoqNXP7ee++Fwv/Cfe655yxOJEWKFKlVq5ZbNyUlpVixYpqvv95f0tE96/333+9iVSVLlrThpXTvpawKFSrkOrf33nuvErj/2CuZvTN4zTXX6H5FmSix/fNft2j//e9///CHP7hsS5UqFe+1Gpw/ovuENjyqtyds/wV1HQbdYnofXYl4BiTBH7SO6APoFl+31NE/dubMmDGjadOm1nVxbxmoy6Sb6YjfjzP+fUsrmAvB2Ljptss6E/0fQklkT70BKYssuNFnQ8eHv4kuoc+mre/tRryOGP7DsT6kDUcVrz4zMzPVt/z222/dHHuJLGZASoW0vnG8nxpUH0M9T1uqrpRla8MVxXu3LrrJqcAqrbcnZg+/eKNmoV8nILVv3z41oYjhpdS1U5Pu2LGje1Uny3owdty9r5Wp3UbUrc4dNyS/V0Scy2KOrjHog8qZ5e+ipqWlqSb9a8nYCzsudhYRkNKOqJHEHFMmpuhD079/f28Fau/Uj414dOsUA1JZXjRUhl69ek2YMMH7tqb2NN547f4XDX3wRknU8t2RTfyiceDAgUbhUYFcxFYtTSVU43SP40U8oxrvKqodiXi9y5xKQMobCFDtdejQwT6rxXoH89akbUKHoEmTJvYrDcY144ivCZ8q2rx5szeqZWOB+QSk3MhWoeMP2blvBIv3eR+OizZu3LiIJ/V8rhU+XzERIgJS/u0/3ndHlmeNmq6uk126dLGLzMiRI9XCVc/et1ATDEhpu+3bt9e24gVPTcRJEVF7/i3/RANSJl7DBgDgVJzLASl9nUf8mI7uIfQV6+1v6PteX9jqYES/hWeJY/7Lfdu2berErl+/3puV7hu8g93qdjBi67q5X758uc1UtzDiPkOTSUlJShDvXg3nm5h9Qt3j6qZz5cqVutFXI2zVqpX3nvjLL7/UXfL27dvtoQP1ptQtTElJsRFw1D85iYBUKDzARNOmTRcsWKA+26FDh9Rh9sYj7LVBlcrbbVYztnFYdLJoKzt27LCHDkJZ9S0toKP7eCXWDipbF5DS6WbvHqoAOo/ULVy8eHHMsS0SDEgpQ/uNIWWi7aoHZQ+eRJfQZ9O6dKhiv/nmG53UKrONaGvrqiO3cOFC1ZiuJAMHDrTgtX99qgOp3HRRUq1OmjTJ3kOJDkhpLRVbR2rFihWrj/OOdb1x40at64aiUze7W7duupqtW7euRYsW8Ybljtnk1IrseZZdu3apk2MDh0eMYfRrBKRCxyMLQ4YMWbt2bWpqqpp9z549vb2sLOvBSyeLjq/2zsL9qnz7yTadLNo1i09FBNqMDpz6/EuWLNE3herBfq/KakAVouOlg65FrgBWgapqHUEVZm/4twV0diilDZsdOj7UsXXXfwjTwdKkdkSVqZ1yLVadQNX5ujDtuLalfNzLdMrW27GMFn1oLKCmPVKVaqM6WXR8I0YtjNkSRo8e7YY69oo+X0JZXTTs7UjVgHdweu27Zo4dO1aHQ7uvunJjMPtfNCzYoUauFbWK96xJ/KIRCo8erW65e8xEJdFkI8/vEri3Ke1Usvdz7UhpR7QJnVm6kujwRbzeZU4lIGXDZquF2Pt6Lj6lM0KntipZe6erRyPPa2sqgx0Cu5Z26NDB7mcivib8q8iukDoWai2DBg3SF4pPQEqFVGNTDeiE1e5441MWkJWYQ+8ZC1fpKOs7y2rV51rh8xUTISIg5d/+4313ZHnW6GS31mJlsAEKdbH1/h5oggEpnd06cLrs6FtDX4Vqh95/izoRJ0VE7fkf1sSbX7yGrdaoY8Gg5gCAU3cuB6SA37SYA1qra9S3b99GYeqX6u7fG0vVjaz9xLX1GdQPtPiIqOOqu3n3xpA9zx8zMKG+SsRPIKnvbb/pblmpGxnxzoV6BY08P0pl1q9fr85Mo+O0aet+29sNNuy30SLvEx82HofS6PZXt8K6p3f/olcnRP1zl2fHjh1j9i2VW7w91YdGx0czCYXf9nKFVKXZYB/RJfTftPrD1ge2d2d0CGyRcrCfLBRtxQUjfOrTfhTP5uvYWS8lOkhtY5REcCOzKBP7XTaXXi1BnW37wXj3MFe0mE1ONTZ8+HD73bFG4V+a877CY+znnOJlG/plo4poYPoc8Z6O1w8//GA/NWjUQ9Nhatu2rR0p/3qI4Eb4dg98qXXZMOGi/ljMEaBD4ZF0VHs2ClLXrl1VYPfPBosORLBfa1VnVSXxtn9vr1INQLlZpGPJkiXaI0ummeqCeg+BGrPLRIVUI/S+rqjyuIdlYop5aFRs6zw3Cv90nf0ymlfMljB48OCIB1hMzPPF/6KhJqrzOvpn43X62MBMjcJDUNmw4jE34b1oHDt2zH41THSkli9f7j1rErxohI6/L+weOLLHM9WrdwnUybegT6Pw5cJ+jtCuLdOnT7dBr6R///7RY5+FftnyvdeoULjbrx13k1b/lonFHaZOndqpUyfLXw3YPQ+4efNmlcRajsqmq4d72VOr2+g/jcKRETfgd8TXhH8Vaet2jih/bVdVFPMnCELhh7O01OWjAxFx4VI7bBT1NeF18OBBtWfbloV1/K8V8b5iIkyaNMlbtyHf9u/z3eF/1tj7p65y1MLVHtSGvWMUejOPaAAW8HL/s9GJNnr0aJ0yahj2jRBxfoWiToro2vM5rIk3v3gNW82s0S9f5wQA4OQQkALOXvF+S0u3nurIxXy+KSMjQ91I7+tLuiG2joF6U94n/uJlrnVj/n6T0muj3iHVHaWPl5vS6+Y4oqgRiTPCvHPU4ddaNjP6VSwtVUlidvliZhixueiiqhujSvPudbzdibdpFXLXrl3WdfEWWHkq55jvlfjUp2a6vlyCv6fmlZaWpo5H9EFUsX1GWfLfnD2DEP0Sh4nXZmImiEisz/5v24WOtyJLpjIMGjTIekf+a0XTAdKxjiiqqtpl7mPEiBEWaTohqvOY9aYyRISDtY/xTmofx8L8E8Q8NGoJ2uuYHXgT0RJUMO8gcf6JvfPjNXJ7fTV6vkqrUyniIha9ieiLhs4ytzvR5cnyomEiDoryia49nV+qOpvvLaQ9IxnxZLSX91hElD/6LHC74B6EURrlH70Lmq8dt/n2Y53epWp70c07+msiFL+K7IjYfJ+z1c234YqiE0yePLlZs2bRT6NH0LouTSLXiphfMRHlj14rXvv3/+7wP2uU2LtudAv3Zh7dgN22Bg8eHDFsXLt27WKOax7dzr21Z2Ie1sSbXyhOw9YqJ3qxAgAgJgJSAIDfmLVr10Y8x/drGzBggP0gxvlJ+96jR48sA5o47WK+Efmbo5bTtm3bRH5lEl9++WXHjh3dO6c2PmO8n4QGAOC3joAUAABZOHDgwPn8RMAPP/wQ8XodgnFuBKSSkpJivneGaDrRbLC8li1bNmnSxPu6JQAA5x4CUgAAAGejzMzMrVu3nsSru2eVtLQ0xhs6Ifv27dNx37FjB48lAgDObQSkAAAAAAAAECgCUgAAAAAAAAgUASkAAAAAAAAEioAUAAAAAAAAAkVACgAAAAAAAIEiIAUAAAAAAIBAEZACAAAAAABAoAhIAQAAAAAAIFAEpAAAAAAAABAoAlIAAAAAAAAIFAEpAAAAAAAABIqAFAAAAAAAAAJFQAoAAAAAAACBIiAFAAAAAACAQBGQAgAAAAAAQKAISAEAAAAAACBQBKQAAAAAAAAQKAJSAAAAAAAACBQBKQAAAAAAAASKgBQAAAAAAAACRUAKAAAAAAAAgSIgBQAAAAAAgEARkAIAAAAAAECgCEgBAAAAAAAgUASkAAAAAAAAECgCUgAAAAAAAAgUASkAAAAAAAAEioAUAAAAAAAAAkVACgAAAAAAAIEiIAUAAAAAAIBAEZACAAAAAABAoAhIAQAAAAAAIFAEpAAAAAAAABAoAlIAAAAAAAAIFAEpAAAAAAAABIqAFICTt3bt2uXLlwe5xR9//DElJSXILeIckJmZuWjRogMHDpzpgpw2wZ96AAAAwOlFQArAyXvmmWduu+22LJNlZGS89tprAwYMOPUtFixY8J133jnFTH788cfPfmnFihWnXrZfw5EjR0aPHt2iRYsGDRr06tVr/fr1Z7pEfsaNG/fCCy/s3r37TBck0rZt27Jly6YDHXPphg0bOnfu/NFHH/Xp02fXrl0Bl+3kJHjqJUjtqkaNGvPnzz9dGQIAAABZIiAFIFGTJk3q1KmTd06CveJDhw7lyZOnWrVqp77F0xKQeuSRR3LlylXUo0uXLqeY569hypQpxYsXz5Yt2w033HDLLbdceuml2bNnr1ev3pku1/9JT09v1KjR0qVL3Zz69eurhMnJyWewVDH5BKS++uorNQbV83333ZcvX77ChQvb/Oi9O6uc3oDU5MmTVT+9evU6XRkCAAAAWSIgBZyljh07tmzZsszMzDNdkP9f7dq1ixYt6p2TeK/40KFDGRkZp77F0xKQKlWq1F133XWKmfzaZs+efcEFF9x6661JSUk2R01i+PDhb7311pktmLNnz56IKIaa69n5WpxPQKpQoUKPP/64Nc60tLR+/frZ/Oi9O6uc3oCU7N+//zTmBgAAAGSJgBRwllq6dKn6w6tXr/ZJ8/PPP/fs2bNx48a9e/ceEHbo0CHNnz59+owZM1JTU1u0aKEELv20adOaNm3asGHD4cOHu1DXd999N3HiRJdm/vz5Q4YMcZNbt27t0aPHgQMHvvnmm9KlS+fLl882ZHEH6xUfOXJEXf369euPHj06XlEHDx68cOFC+2zFU+fff62YW7SA1Pbt29u3b9+kSZPFixdHrLVkyZKWLVtqH8eOHRuvMPECUtpEr1699FeZqKLatm2rDUWkUbbKXJtQGjdz1apV2sGjR4927969efPm+/bts/mTJ09WSuXTv39/7cIPP/ywcuVKHSzVmFt33bp12qjW9W5FR+evf/2rdjbLMIFPeWypveuXnp7uXcsiL/Xq1evUqdO2bdvc/JgtZ8eOHX379tWR6tixo3K2mWvWrPn000/VRGvVqqVdmzNnjs3s06ePN/KYlJSk3deGtNfefUmwDVhR1VwbNWrUunVrreLmZ3mwtOLnn3+uzIcNG5aSkhIzIKXVNT/6obOYe5fIHiVSdSbeyRsKh890XLQJHSNvU/GyU0+HVWmU/1dffeUW7dmzRzkrfzdHFejdhUWLFn388cc6fWbNmuXqQatYSzjpsyBmzqLK79Klix2IY8eOxdwdAAAAnIcISAFnqSwDUsuWLcuXL586pVWrVv3d736XJ0+em2++eePGjaFwZ/WRRx655pprChYseMUVV4TCD9fUrFkzR44cd9xxx+23354zZ86HHnrIOsAvvPDClVde6eJT999/v7a7detWm2zWrNlFF110+PDhe++9V5vTiteHrVu3zjZUokSJW265pWTJktddd51WbN68eczSep9s0loPPvigSuu/VswtKp8HHnjg8ssvv/XWW1Xs3LlzT5kyxa2ibn+uXLkefvjhChUqaNFLL70UszDxAlIrV65UYd566y3tshLob9GiRVNTU21pRkZGlSpVVNVPPvnkfffdd8EFF/Tt29cWde/evUCBAv/7v/97ySWXXHbZZTYWz8svv3zxxRdrlTvvvFPZFi9e/N///vfUqVP1WT1zt9FatWoVKVIk4lG4hQsXKln79u1jlj+R8ui4V69eXRWlFpI9e/bSpUu7FVNSUlT52rXKlSvfcMMNKvmPP/5oi6Jbzk8//ZQ3b94bb7xRVarjpeqdPn16KBxhVDIVUil1dN5++23brua4h6S6du2q9DrE//jHP1QVV199tRurK8E2cPToUdVb4cKFH3/8cR0RJWvZsmUiB+vgwYNqlmoDqpn8+fOrAPGekFIDLlSoUMSreTH3Lss9SrDqQr4nr9LoqGmyUqVKauFKs2fPnuhi26mnpcpZJ7WKqvZmi9T8NOmNMmsXdPrb5wEDBqipPPHEE8r/97//vY1KZpX53XffZVmxPq0uZs6qH32+++671RqLFSsWbxgvAAAAnIcISAFnqSwDUuoWqiNqgYzx48dnz55dPUlbpM6qdVDVe7RHb/r06eM6nJZek61atQqFn57Q53nz5oXC3Xh1mzXpOpl///vfn3rqKfsc85U9Ja5fv35mmFKq8xnzIYiIgFSCa8V8ZS937tyjRo3S53379qmLW65cOVuUlJSUM2dO7alNjhs3TluZOnVqdLalSpUqVKjQO8d9/PHHNt+64n/84x/tYRaLCrVp08aWKmdt2v202YcffnjJJZfs3bs3dDwQc+utt+7Zs0d1rp1SYbwVrg75s88+Gwo/+qT81Zm3+enp6Zdddtl7770XUUI7XnZQQuFRt78/Tp8TLE/ZsmXtEZ4OHTp4c6tevfqNN95oj3Gpedx7773333+/99B4W86mTZtmzpzpSnvttddWqlTJJqNfavMGpJKTk3U43n33XbcLhQsXVpG8G8qyDWjRV1995R65qlmzZoECBRI5WJ06ddLktGnTQuF28vDDD8cLSKmFaNMXXHDBSy+9tHbtWjc/eu8S2aMEqy7eyatkJUuWrFGjhi3avn37pZde2rBhw+hi2+b+85//WMp///vfmrTAon9A6n/+53+ee+45+7x7926r8+iA1EmcBTFzVgKdpFZIVYulBAAAAEIEpICzzezZs58Ie/DBB9UPLFWqlE0uWLAgIuU999zz/PPP22d1fZV43LhxNqnO6lVXXeV92ee+++679957I1ZXBzIUHt3pwgsvtE7vmDFjLr74Ym366aefDoV7lTly5Pj8889tlZgBqT//+c9usn///irGli1bovcrIiAVvdbmzZuj14oZkHrjjTfcZK1ata655hr7/MEHH6j37n3UKH/+/I0bN47OVrV62WWX/e9xblQm64p7H18qUaLEiy++aJ/vuuuuChUquEVLlixRYnvmxQIx3p/qmzBhgua44JHKabUdCo/8nStXLvspulGjRilZ9IuHn3zyiTfDmjVrZjtOBy7B8uzcudMWWfOwXzk8cOBAzpw5vc9ederU6YILLrDwQXTLiVC5cuU777zTPvsHpLSbalfeIaUsaHL48OHQibQBr27durkc/A+W2vDdd9/tFm3cuNHnV/bWrVtXvXp1VYuOS7t27eLtXZZ7lHjVxTt5x44dq8/u5VapWLGi9iU6t4gK/Pnnn7Vi06ZNQ1kFpB5//HFVVESkOzogdRJnQcyc27Ztq1p1lyYAAADAISAFnF0WL15cO6xatWrq6akbaZNuZGvnnXfeKVSoUHJysvrAdevWzZs3rxvqJXrAY6V0b/SYF154wT1sUr58+dtvv10f3n777ccee6xjx46XXHLJ0aNHBw8enCNHjh07dliyLAc1HzlypMrsHtTyighIJbhWloOaq8CaY58rVaqkfC720KR7nsXL/5U991iT3HrrrSqtfVZ15cyZ02WuCldie1Yr4lW1UPjZFiX44IMPVI3Lly/Xuu61rzVr1iixDTNUvXr1v/zlL9ElsQCNiylkZmYeC3vwwQddyRMvz/79+zWpmfqswuhz7ty53Yr6rKNsD0zFHCp72rRpmv+3v/2tePHiF110kUvgH5CqUqXKtdde682nX79+WmoP1yTeBlavXv3GG29or0uUKJE/f36Xv//BKlmypAvBhHwHNXdWrVplbwWOHz8+5t6d0B75V128k7dr167KUJPu6OgQ27kZIXpzOmf/+c9/hrIKSOlKct111ynbJ554wt4tDcUKSJ3EWRAz50OHDj366KNKc+eddw4dOtSn/gEAAHC+ISAFnKWyfGWvXr16BQsWVPcvR44cV1555fDhw92i6M6q+sPe/rmlcbEe9bq1LXWJb7rppg4dOmij9rpTjRo13MtcoQQCUurEnkRAymetLANS+uwCUlWrVlUnf/MvRQzmbRIPSKmcriteuHDhp556ypt5SkqKLYoZkLr88stVeB0dLdKK3qX33nvvP/7xj7S0tN///vetW7eOLsmqVau01ptvvulT8sTLY0N3W0AqOTnZ3sDyruhijtEtR7WhXahbt+6sWbOWLFny2GOPJRiQUntTq/NmZUutSSfYBjZu3HjFFVeULVt2woQJixcvbtSokU9AynuwrrvuOvc5lFhASlQVSlanTp2Ye3dCe+RfdfFO3h49eijDmTNneo9OzIHtozeXJ0+ejz76KHQ8IGVhNeMNSIWO/1yjjSX3/fffh7IKSCV4FsTM2cydO7dy5crKtm3btnHqHgAAAOcdAlLAWSrLgJQ6tH369FFnddOmTRFDYkd3Vh955JESJUq4ZEePHi1atKjrZG7fvj179uytWrVyj3tce+217733nrrK3ne73n77bfdQVcwNnfaAVPQWfQJSTZs2VffeDcfu4+QCUlrrxhtvjJlhdEBKc/7whz9kZGTo6HjnG4sAdujQQdWuBDHzLF26dO7cub29+oiSJ14eb0AqPT09b968r7/+eswVo1tOlSpV3EuRNukS2INXXbt2jbnd5s2ba+9sKHpTuXLlwoULWyNMsA3YT925l0BtMpGAVNmyZa+++mq3yN6gjA5IRYxaZXGr999/P+bendAe+VddvJN35syZ2mgiTxJpc0WKFHFDMs2dO1cr9uvXLxR+Usm7s6mpqfnz54+IR4fCv0J48cUX2y8MJh6Q8ml1MXP2evjhhyNeHAYAAMD5jIAUcJZasWKFuoXe3m+E8uXLX3TRRQ888MCTTz75/PPPt2/f3vVOo/vGo0ePVm4vvvjismXLlixZor5xjhw5vL8sdvfdd19yySXq4tpk7dq1NalVvMM829jYo0aNWrBggT218WsHpKK36BOQUt/eBsD66aeflDg5OfmTTz6JGdFTp/pPf/rTVA8b7Mm/K/7NN99oqWpGdaL858+f36hRI1sUHZCaPXt27ty5r7/++nLlylWuXLlOnTozZsxwS3WkLgyLOTyQ2bhxY9GiRfPmzfvhhx/OnDlTm+vRo0ehQoXc0EiJl8cbkJK33norT548PXv23L59+86dO8ePH//pp5/GPDTy3nvvqZyq//T0dOVwwQUXeBPky5evbNmyqmTVecR2U1NTdTjuvPPOOXPmqIQWzXFlSLANWLvVWseOHZs8ebLaZ4IBqS+//FJLVXVqFQMGDMifP3/OnDmjA1JffPHF7bff3r9/f50Uagb/+Mc/dE65YkTs3QntkX/VxTt5MzMzb7nllmLFik2YMGHPnj1btmwZOHDg2LFjo5uHNqc9UoYqjE7qm2+++YorrrDfzVRdKYcbbrhh4cKFajl//vOfVQwLSGVkZLzyyiuLFi06fPiwslX5Bw0aFDqRgFS8Vhcv5wYNGmhfDh48mJSU9Ic//EFpovcFAAAA5ycCUsDZK+brZs6//vWvEiVKqCurjnGdOnXUHXXDZj/77LNu+GSnXbt2l156qQ2MffXVV48cOdK7tG3bthaxsslJkyZpUn1jb5odO3bceOONmq+esAV6IjY0ZswYLbUf54pQpEgRe/DkhNaK3qI3H9FnF0QLhYfsUT/c9lFd4rvuumvjxo3R2aoA2X6pbt26oeMvyqk8LqXKab+OZ7p27Xr55ZfbKnny5LGh36Vnz56ao163S7lixQodER2jNm3aqE9epkyZiJyrV6+uOe43AWPaunXrSy+95I7aBRdc8OCDD3rHBkqwPPqQ7fioVaHwAyyvvfZa7ty5bcX8+fO71wajW87OnTvvueceS3n//fe/++673ofLOnfurEOTLTzYWfR2x48fryZq62ov1FC9hyCRNpCZmfnqq6/qUGpp8eLFu3Tpos8WdsnyYH344Yf2vmSxYsVUkiuvvLJ///4R+aempj711FOuKm666SbvzzJG7N0J7ZF/1fmcvJs2bbLfBDQlS5aMOSJ41apVa9SoUbt2bSvhVVdd5S35lClTbLytiy66SKd2+fLla9WqZYsee+wxq081J23ans/yVuZJnwUxc27atOmFF15oiUuXLu0G2gcAAAAISAG/SfbjVvar9sZGn7GhqY8dO2Y/PB9BM1evXh0zRhMKDz/snUxLS8vIyIhOtnnzZvcoVvSG7BfHoh05csTllvha0Vv05hMKP5cRHbZLSUlRpzr6RblERJRE5Yx4q0tbXLt27bp16yK2q+ryTlasWPGBBx7wzilSpIiFvUy9evXUUXf75UMF2LJli7YY8xfcEixPxGQovKfJyckRP4kYr+Vs377dXi3MzMyMSHDw4MENGza4986iN6QV1eoiindCbUCtWjnYcffmk+XB2r1795o1a2ymz+/fKR/lb797GCFi705oj0x01fmfvK7kSUlJPuEbG+ReH3bt2uUqx0sHQmeBBQcjakatTqtE1J538qTPgpg5W0n27NkTb18AAABwfiIgBfwmLVq0SD3Yli1bWocwJSXlgQceuOmmm850ufB/nnjiiZIlS9obl5mZmYMGDcqePfvXX39tS9W9L1y4cJUqVc5kEXGGcPICAAAAIQJSwG9Xw4YNf/e73+XKlcte6brrrruSkpLOdKHwf3Qsbr/9dnuxS8fo97//fZMmTdzSESNGRLwVhfMKJy8AAABAQAr4DUtLS1uxYsWiRYtSU1PPdFkQQ0pKysKFC5OSkiJe5tq7d68O3JkqFc4GnLwAAAA4zxGQAgAAAAAAQKAISAEAAAAAACBQBKQAAAAAAAAQKAJSAAAAAAAACBQBKQAAAAAAAASKgBQAAAAAAAACRUAKAAAAAAAAgSIgBQAAAAAAgEARkAIAAAAAAECgCEgB55edO3fOmTPnTJciC2vXrl2+fPmJrrV69eqtW7dmmew3UQMAAAAAcG4jIAX8tmVmZk6dOrV169bNmjUbMWLEkSNH/NN37949W7ZsBw4cCKZ4J+eZZ5657bbbTnSt66+/vmbNmlkm89bA+vXra9SoMX/+/JMoZDzjxo174YUXdu/efRrzBAAAAIBzDAEp4Dds69at99xzT7Zs2YoXL16yZMmcOXMWK1Zs/fr1PqucxoBUenp6o0aNli5deupZRQgsIDV58mR97tWr10kUMp769etnz549OTn5NOYJAAAAAOcYAlLAWerYsWPLli3LzMyMl+Do0aO33XbbpZdeOnnyZJuzbdu2V199ddq0aT7ZnsaA1J49e057NMcEFpCS/fv3n+iG/OmQneUPoAEAAADAGUdACjhLLV26NFu2bKtXr46XYNCgQUrQpUuX6EVTpkwZPny4d86sWbO+/fbb0PFwzP79+ydOnFi/fn1NRkRktm3b1qlTp3r16vXr18/7AuD06dNnzJiRmpraokWLnj17rlmz5tNPP1VWtWrVGjBggI3KdODAgV69eunvd99916BBg6SkJM3U0iVLlrh85s6dO2zYMO8WNadDhw6tWrVauHChzfEGpFS8Pn36LF68OGYljBkzpmHDhtoLbTQiIJWWlqZd0I5od7RTbr43IKW/2hct3b17d48ePTZt2uSSHTx4UIvcnASrRXNUMypwRkaGS6Pdb9mypco5duxYb+EPHz6s3FRR2vSePXti7iAAAAAAnJMISAFnqSwDUpUrV77wwgsPHz4cvahhw4Y5cuTwRmFKlixZpUqV0PFwzDPPPHP55Zffd999uXPnvu222/bu3WvJpk+frvk333xzpUqVrrzySi1ygRKt8sgjj1xzzTUFCxa84oorBg8erM/KSpPXX3/922+/rTQrV67UnNdff13ZFilS5OOPP9bMiy+++D//+Y8ryauvvlq8eHE3WbduXa1yyy233H777dmzZ//yyy9DnoDUkSNHHnroIW0u5hjnL7/8stbViiVKlLjuuutUYBeQSklJ0V4ULVpUtXTDDTcUKFDgxx9/tEXegJQV+Lvvvtu/f3/evHnffPNNl/nAgQO1yLabeLWEop7A6tixY65cuR5++OEKFSqoWl566SWbrwP317/+VSVXmZVhIs92AQAAAMA5g4AUcJbKMiD15z//+YYbboi5aO3atVq3Q4cONjl//nxNjh49OnQ8XFKmTJl9+/ZpcsKECZps165dKDwmVMmSJWvUqGHvCW7fvv3SSy9t2LChZfLMM88o5csvv5yRkXH06NFQrFf2LL6TL18+eyTKkvkEpGbMmKH0bdu2tckffvhh4sSJoeMBKW2oUqVKV1xxhfcBK2fx4sVat0mTJqHwW3IffvihJl1Yp3r16jfeeKPto4px77333n///bYoZkBKn6tUqVKwYEH3ZFOFChX+9re/nUS1ePNPSkrKmTNnnz59LPG4ceO0aOrUqe7zmjVrbNGOHTtiHkoAAAAAOCcRkALOLrNnz34i7MEHH8yWLVupUqVscsGCBREpixcv/ve//z1ePvfdd98dd9xhn999990CBQp4wyXe8MeNN96orejD2LFjtci9NycVK1ZUMezzM888c9VVV3nfVosXkOrWrZu3JD4BqTp16mhp9C8Dalu33nrr66+/Hi8aJY0bN86VK5d3tKarr77aAlKamTNnzvbt27tFnTp1uuCCC44dOxaKH5DSX322Abn27t2bO3duy+FEq8Wb/wcffHDppZd6BwLLnz+/Sq4PP/74o5Lps5UKAAAAAM4rBKSAs8vixYtrh1WrVs0e+bFJG4/J6y9/+csf//jHePn07t1bqycnJ2dmZhYrVsy9jBY9qHmFChXsSauuXbtqUd68eS8+LmfOnLfffrslix5oPF5AyuI7jk9A6qmnnvrTn/4UXXhtq2jRohdddJESxNvBF1980fvqX8gzqPny5ctVjNy5c7sd0eccOXLYA1PxAlJHjx694oorXnnlFX3u16+f0m/duvUkqsWbf6VKlfT5Yg9Nvvvuu5ayXr162oqOTqtWraKjcgAAAABwDiMgBZylsnxlr2rVqjly5Ij3qte+ffvy5s3boEGD2bNnK5+5c+fa/OiAVJkyZe6++2596NGjhxbNnDlzs4cb8vxUAlIfffSRm/QGpJ577rkSJUpEF962ZaM4xRy1XV555ZWCBQt657iAVHJyslZs06aNd0dcRcULSMnrr7+eP3/+o0ePPvbYY6VLl7aZJ1ot3vx1jAoVKrT5l9LT013iDRs2fPjhh7lz53788cdj7iYAAAAAnJMISAFnqSwDUiNGjFCCunXremfu37/fRV6qVatWsmTJN99889prr3UJLFziXgBMS0vLly/fCy+8oM8zZ87UoqFDh8bcXHTkRdtS+q5du7o5MQNShQoVckM7ZWRk3H///S4g1bBhw5w5c27ZssUltvcK3bZeffXVXLlyff/999HladWqlba1YcMGm9y2bdtll11mG0pPT8+bN+/rr78ec0d8AlJz5szR5KBBg7TR/v3728wTrRZv/k2bNnVPWvlo1qxZ9uzZbd8BAAAA4HxAQAo4S61YsSJbtmzr1q3zSVOhQgV7rW/s2LGTJk1q2bJlkSJFhgwZYkttwPILL7zQBi0y3bt3z5kzZ4ECBYYNG7Z+/frq1asrzfz580PhocFvueWWYsWKacU9e/Zs2bJl4MCBytlWjI68SL58+cqWLbt69eqffvopFCcgVa1atYsuumjkyJHao6eeekrlcQEpFSBXrlwPPPDAggULFi1a9PLLL9evX9+7rbS0tFtvvfWqq676+eefIza9adMm7Ujp0qW19WnTpt1www3K2UW+3nrrrTx58vTs2XP79u07d+4cP378p59+6mogXkBKSpQoccUVV+TNm9c9A3Wi1eLNX4W8+OKLH3zwQdWPMkxOTv7kk08syNi/f/++ffuqbNq1cuXKXXfddT4HGgAAAADOMQSkgLOX992umI4cOfLBBx/kz58/W1jhwoUbNGjgRiPKyMgoXry496fcQuEX0EqUKPH5559fcsklWnTRRRd17NjRLd20adPDDz+c7biSJUuOGzfOFj377LN33nlnRAE6d+6cM2dO9/N2q1at0ucxY8Z40yjPm2++WfOzZ89eo0aNZs2aeV/T++KLL1z577rrrhUrVkRsa926dZdddtnTTz8dvftff/317373O62ovx9//HHlypVr1apli9LS0l577bXcuXNbztpE69atbVHPnj015+DBgzEL3LhxY82pXr16xC4kXi3e/MWCZbaiakD7uHHjRs0fPXr0lVdeafOVwGKCAAAAAHCeICAF/OZlZGSkpKTEHEzq3nvvveeee7xzMjMzLc516NChVatW6W/0Wrt3705KStq5c6d35rFjx2K+U3bw4MENGza4H5I7fPhwdBotXbt2rZXQFcBRtirJ9u3b421Ln+PF5rQ5txfHwiKWJicne18JNGlpad40EUtj1knoRKrFm7/RAVI5vUN3hcJVsW7duixf6AMAAACAcw8BKeCcZT82515VAwAAAADgLEFACjhn1a1bN0+ePLt37z7TBQEAAAAA4BcISAHnrM2bN2/atOlMlwIAAAAAgEgEpAAAAAAAABAoAlIAAAAAAAAIFAEpAAAAAAAABIqAFAAAAAAAAAJFQAoAAAAAAACBIiAFAAAAAACAQBGQAgAAAAAAQKAISAEAAAAAACBQBKQAAAAAAAAQKAJSwG/Vzp0758yZc4qZ/PjjjykpKaelPMH7TRc+EZmZmYsWLTpw4MCZLggAAAAAnGYEpIDfqu7du2fLli1mtCIjI+O1114bMGBAlpkULFjwnXfe+RVKF4TfdOETsW3bNh3izz77LHQixxQAAAAAzn4EpIDfKp+A1KFDh/LkyVOtWrUsM/lNx3QSLPykSZM6deoUQHlOO29AKuKYrlmzpmHDhvv27TujBQQAAACAk0RACjhLHTt2bNmyZZmZmfES+ASkQuH4RUZGRpZbOR8CUrVr1y5atGgA5TntvAGp0C+P6fDhw7Vo9erVZ650AAAAAHDyCEgBZ6mlS5f6RxwsILV///6xY8c2aNCgV69e6enpbungwYMXLlzoJpcvX96hQ4fmzZv369dvwIABI0aMsPkW09m+fXv79u2bNGmyePHiiK0o84YNG7Zs2XLJkiVu5oEDB7Q5/f3uu++06aSkpIi1pk+fPmPGjNTU1BYtWvTs2dM/N1HJVWAVoGvXrgPC1q9fr/mTJ08eN26cS7Zp0yZtNy0tzVt4+6yZw4cPb9SoUevWrbVpt8o333xTunTpfPnyWbYufrdjx44ePXrUq1fvk08+sW2ZVatWqSRHjx5V9aq69u3bN3DgwLlz53pLO3To0Hnz5kUfkT179gwaNEh7oUo+ePCgzfzyyy91EFWx9evXnzBhgiut0mjrnTp12rZtmzcTLfr888+VeNiwYSkpKd6AlDums2fPrl27thZ9/PHH2qm1/4+98w6r4vjDPb0qAgoiKiqoIZbYRY3YNcaODXuLxpJiSWLJD33sxt6iid3YiRpbYu8hJkZjb6CgiMEuKBEQhHPfe+Y6d7N7znLsaN7PHzy70+c7s3tmXmZmY2JUJdHWQrgjL+SIfJH7o0ePhCOutRU8fPiwflFFFgZjm2q7H0qlbGKkj+oos4AvugE6A6JrLUkIIYQQQgh566EgRUg2xUJBqnXr1rlz565QoYK1tXWDBg2kr1KsWbZsma2tbaNGjZo2bYpgCC9DIlitWrXgUr58eW9vbwcHh3379gmvjIyMdu3a5ciRo0WLFsHBwXZ2dkuWLBFeFy5cQNb9+vVDeF9f3ylTpqjKFhoaWr9+/aJFiyL9PHny6KeWnJxcpkyZggULdurUqXDhwki5ZMmSGzZsgFfjxo3ff/99meyaNWvgK/UjWcf09PRChQrly5evSZMmQUFBCPPNN9+IMNWrV3d3d0f13zFy+fJlOEZEROQ1UqdOHfx1dXWVcgms6uXl1apVKzc3Nw8Pj6NHj9asWRPlkWW4evUq0p83b56qyrCJj48PoiA8UggMDJSF7Natm7OzMyrYrFkzuMTHx6O++fPnb9u2LYIh8LFjx0Tghw8fli1bFlaFiTw9PWvUqKEUpGR9Bw0aBLPDq0iRIqiUEIZUfUNVC4NRJURDI+s2bdqgrdFnEhMThYlKly4t48bFxSHluXPn6hcVWaBlO3fubLL7waT/+9//5G3v3r3RQPJ21qxZ9vb29erVg0FQ2Z49exoIIYQQQggh/zEoSBGSTbFQkGrYsGFSUhJuZ86ciVu5ckcpSPn4+MjrYcOGKfevIZiDg8Mvv/yC6wcPHvj5+TVq1Eh4LV68GF7nzp0Tt0OHDnVzc7t//77hiSDl7u4uVsGkp6eryhYaGooAvXr1ysjIEL46qc2bN8/JyenWrVu4vnfvnqurq1xUZaEglZmZuW7dOrmdrWvXrl5eXjKWasteWlqav79/jRo1kpOTDcYVQHXq1EF4YUZh1fLlyycmJiJBpLxkyRK4nDx5UkSfMmWKvb09yqmqMhIpUqTI7du3cZ2SkjJt2jRZSERfvny5NFTnzp1LlCghVi3BpXr16jVr1hSBZ8+ejcAHDhwQzVGvXj2TgpQhqy172lqg1gEBAV26dBGbQG/evJkrV66RI0cK+yPw2bNnRdzp06fb2dnduXNHv6j63U9HkIqMjLS1tUV/ELc7duxAxP3795usCCGEEEIIIeRthYIUIdmLQ4cONTdSu3ZtTNTr1q0rbv/66y9VSKEI3L17V9yKhS0rV64Ut1K8SEtLg/sPP/wg3JcvX47blJQUGezTTz+Vafbo0aNo0aLiOigoSKzoEZw+fRoRDx48aHgiSH333XfmahEaGlqgQAG5KUw/ta+//rpw4cLSy9/ff+jQoeLaQkFKBQqmrKNKkNq7dy989+zZI1127doFF7E3UFj1/Pnz0jcpKcnFxeWrr74StxUrVgwJCVHlmJiYiFjjx4/XFgaFbNu2rbz9559/bG1tp0+fLl1mz55tZ2f3+PFjXKPRq1atKr3EaqxnFqSUtdi+fTtclLs4W7ZsiewMRhHQ3t5++PDhwr1KlSqipfSLarL7yY8A6ghSQ4YMyZUrl/JwNE9Pz9GjR5usCCGEEEIIIeRthYIUIdmLU6dO9TfSsWNHzPC7du0qbrXnNKkONU9KSsItHMWtUryoUKFCnTp1EhMT7927FxwcXL58eZmIStMZNGgQXMS1l5eXra2t6xOcnZ2RvlhLJQSpn3/+2VwtQkNDkanSRSc1pIPrzZs3Z2RkrF+/HtdbtmwRsSwXpC5duvTpp58GBQX5+/t7enoqLaMSpMSCoPj4eOkidB+xSc3kUfGdOnVCCihedHQ0fH/66SdVfdFqcP/xxx+1plBZ+Ny5cwjp4OAgTYFrGxsbsQopICAALS4Dqw41f1pBSlkL1A4uMLvMF81RsWJF4du8efNixYrhIjY2FsHWrl2bZVH1u5+OINWmTRuEdFWA2y+//NJkRQghhBBCCCFvKxSkCMmmWLhlTyoCuDApSGVmZgYHBxcoUMDKSJkyZeS+OYNGLsG1FKTy5csXEhJyTYEUcZ5BkNJJbffu3Tly5MiVK5eNjY2Dg4PYRyZo3LixcsWQOUHq6tWrefLkadiw4a5du06dOjVq1CgdQWrp0qXKRGR1Fi5cqLWqYM+ePXDct2/f+PHjUU55qrpECFViX54KlYWjoqIQcvLkyUpTiP1xoHjx4jCdDPwCBan58+fDJSIiQpmv2G1nMJ5iLtZPTZkyxc3NTSwu0y+qfvdzdXUdNmyYzF0pSLVv397Hx+fav1EeiE4IIYQQQgj5L0BBipBsyosSpITaEhMTc+vWLXHCkRIdQapu3bolSpQwmfUzCFI6qSFw586dHz16FBsbqxIm2rVrpzwMOywszKQgJRY9/f3338Jd3ErLDBo0SHmk1KFDh5R7GA1PtviJDW4mBanMzMyCBQt+9NFH7733Xq9evbRVQLHt7Oz69OkjXeS5WioLI6Szs3O/fv1MmqJhw4ZFihSRt2IvoUlBasuWLfBSaotKtLWIiIiQS5+0pKSkuLm5DRkypFKlSj169LCkqPrdz8fHRy71ysjIqFmzpmzHsWPH2tjYXL9+3WSyhBBCCCGEkP8IFKQIyaacP38eM3zxVTiTWChI3b9/v0CBAt7e3g0aNGjZsmXv3r1XrVoljgEy6ApSGzZsQIL9+/ePiYlJSko6evToqFGjhNczCFI6qU2bNs3GxqZy5cpNmzbt0KFDWFgYwgivhQsXik/mwWXkyJEuLi4mBamtW7eKuqNee/fuFV+gk5YR523/8ssvf/31l1gThLy8vLw2bdoUGxsbHh7u4eEh1yWZFKQMxoOunJyc5LlXWnr16uXg4DB//vyLFy+uWbOmcOHCwsjag64+//xzR0fHBQsW3Lx58+7duzt37pTf7BNLwIYOHRoXF7dixQpPT09bW1uTgtTJkycRcvjw4ZGRkdpOoq1FZmZm2bJl/fz8du3alZiY+Pfff69cuXL79u0yQPfu3XPnzi0WgllSVP3u17FjRzTWli1b0I1DQkJgOilIoWqurq61a9dGFdAcUVFRM2bM0BFeCSGEEEIIIW8lFKQIyb7o72NasGCBlZXVw4cPxS0ucCu/T+fr6zt48GDhXqlSpQYNGkybNm3MmDHdu3e3tbWVp4bLYAJcw0Xezp07V4gUwNHRsXXr1sL94sWLcNm2bZu5snXo0KFy5coqR3OphYeHu7q6jhs3buLEicOGDStZsqS7u7tYQfPo0aN27dqJKFWqVBEnTMXFxakKn5mZ2bt3b2tra/gWKlRozpw5uBYf0QN37twpUaIEvFBxIXzExMQEBweLZO3s7Dp16iTORdJaVRIVFWVjY+Pn56c8jVvJvXv3PvzwQ5Fmzpw55SndKgsbjN/169u3r4ODgwjs6ek5adIk6YumQUZwR147d+709vaWOwFVSYlPGSqXUElM1gJ2E5/tEwQEBIhz3AUHDhwQ1pMfK9Qvqn73Q15lypSBCxqiS5cuaFx/f39lXoGBgSJNBAgKCrp69apJqxJCCCGEEELeVihIEfIGozrMSHn76NEjoSzMnj3b1dVVqU20b9++XLlyqmACXKtUMLjExMRcvnxZ5S6/YWeSx48fyz1rWabm6ekpV0sZnhxdtHnzZuly/fr12NhYnToKHjx4cOnSJeGi1fKuXbt2//59pcudO3ciIyPlOUoS7RFRBuNCMxcXl6+//tpkfZVpXrx4Ufl5QVUhJTAgaiq3GSpJSEiIjo4WC6z0k7p79+6NGzdMlsRkLUTiqLX8Op4qilw6Z0lRdbqfwagSoq3FmVO41rZIfHw8bKVdjEYIIYQQQgj5L0BBipC3nBkzZtjY2Mh9WMePH/fx8fnss89ea6H+P5mZme7u7iEhIYmJibhNTk4eMGCAk5PTtWvXXnfR/oU4Z+rChQuvuyCEEEIIIYQQ8jZAQYqQt5yHDx+2bt3axsbGxYitrW1oaKh2S9prZOPGjQULFrS2tnZ3d8dfPz8/5fKobEK5cuW0mxAJIYQQQgghhDwbFKQI+U+QmJh46tSp06dPZ88dUhkZGdHR0cePH5cHlmc3IiMjExISXncpCCGEEEIIIeQtgYIUIYQQQgghhBBCCHmlUJAihBBCCCGEEEIIIa8UClKEEEIIIYQQQggh5JVCQYoQQgghhBBCCCGEvFIoSBFCCCGEEEIIIYSQVwoFKUIIIYQQQgghhBDySqEgRQghhBBCCCGEEEJeKRSkCCGEEEIIIYQQQsgrhYIUIYQQQgghhBBCCHmlUJAihDw7MTEx586de92lePu5dOnS9evXX1Rq6enpERER//zzz4tKkBBCCCGEEEKeFgpShJBnJzQ0tEKFClkGy8jI6Nu374oVK54hiz///HPSpElhYWGbNm1KS0t7hhReRqleMe+8807Xrl3N+aIiu3fvHj9+/NChQ2fNmhUVFaWf2oULF6ysrH7++ecXXEpCCCGEEEIIsRgKUoQQS9mzZ8/s2bOVLhYKUsnJyY6Ojh07dnzaHAcNGmRlZVWmTJmgoCB7e/v27ds/bQovo1SvHh1BKjY2tly5crDSu+++CyvlypXL2toadsvMzBQB0tLSRo0adebMGRmFghQhhBBCCCHktUNBipBsyuPHj8+ePStlhexA//798+fPr3SxUJAyGNWfjIyMp8ouMjLSyspq0qRJ4vbWrVubNm16qhReRqleC+YEqZSUFHh5eHhEREQIl0ePHn322Wew26xZs4RLYmIibhcuXChjUZAihBBCCCGEvHYoSBGSTTlz5oyVldWlS5d0wty+fXvBggWjR49etGjRCiPJyclwP3jw4K+//nrr1q0JEyYggAx/4MCBsWPHjhw5cuPGjVLq+vnnn3fv3i3DHD169Mcff5S3169fnz9//j///LNhw4YGDRq4u7uLjMQJREKQevTo0dKlS4cPH75161ZzRQ0PDz9+/Li4FsVLTU3Vj4WCwQJ79uwx6Yvoy5YtCwsLmz179o0bN6T7xYsXkVd6evr3338/fvz4q1evovxxcXEywMOHD2ET4aIslcGo3axevXrMmDFIGcGkO9JHLsgL7qisdE9JSYHLiBEjkAXimixnVFTUrFmzEGbhwoXKMFkaYdu2bWgp1AKmNidIoSIw0dq1a5WOaNmAgIACBQrgOjo6et68eQjTo0cPtNrvv/9uUAhSp0+fRn+YOnXqzZs3n8G2Dx48MFllQgghhBBCCMkSClKEZFOyFKTOnj3r7u5eoUKF9u3b58iRw9HRsUyZMlevXjUYdaL69esXLVo0b968efLkMRjXW3Xt2tXGxqZSpUoVK1a0tbWtU6eOUK+6d+/u7e0t9amaNWsiX3mE9rhx41xcXFJSUqpXr47sEPEdI5cvXxYZ+fv7ly1bNiAgoHjx4og4fvx4k6VFSb744gtxjVi1a9dGafVjIQsUuEaNGvfu3VN5xcfHI3r+/Pnbtm0bGBjo5eV17Ngx4fX999/jtlWrVm5ubh4eHgcPHnR2dv7ss89k3JUrVyJHcRa7slQXLlzw8fFBFFgAKSBZ4Y4UcufOjezatGkDQ8HgQleCTd577z1UH4aFo0nBaP78+bBY1apVmzZt6unpmS9fPlkXfSP06tULLmgppA9f5Gsy/RYtWiBZNK7Kffjw4aLzhIeHoxvgGjVFqw0aNMjwRJBCXLRsUFAQ/sKSt27delrbHj16VFskQgghhBBCCLEEClKEZFOyFKTatWtXqVIlISTt3LnT2tr6woULwis0NBRxe/XqlZGRkZ6eDpfFixcrd2khPG4nTpyI640bN+L6yJEjBuPqIXt7e9wuWbJEhHz//fdDQkLEtcktewg8fPjwTCMImTNnTq0+YtAIUhbGmjJlCkJ6enqOGTPm/v370r1z584lSpQQK3RQwerVq9esWVN4ff/994hSvnz5xMREVB/pw1DIXW7Na9asWbly5bSlqlOnTpEiRW7fvm0wik3Tpk0zGA9gCggI6NKli7DzzZs3c+XKNXLkSFzv2LEDGUVHR4vod+7c0Zb/8OHDMTEx4hoXaKO5c+dmaYRTp07BC1U2GJc7DR06FLcmBalSpUpVrFhR67506VJE2bdvn8H8lr3ChQtfvHgRt8ePH8ft5MmTn8G22qwJIYQQQgghxBIoSBGSvTh06FBzI7Vr18bkv27duuL2r7/+UoWsVq1at27dxHVcXBwC79ixQ9yGhoYWKFBAubksODi4evXqquhVqlQxGM9RcnJyEiLLtm3bXF1dkXXr1q1xm5CQYGNj88MPP4goJgWpkiVLytvly5ejGH///be2XipBShvr2rVrJg3y66+/ovAI4OXlJbbv/fPPP7a2ttOnT5dhZs+ebWdnJ9QcIZqcP39e+oqtf3v37sX1/fv3HRwcZFxZKqHaaBdqbd++He7KbX0tW7aEfXBx7NgxeI0ePdqklGYSb2/vwYMHZ2kEpGlvby82RQqKFCliUpDy9/evVauW1n3t2rWyP5gTpNavX69Mp2fPnoanty0hhBBCCCGEPBsUpAjJXpw6daq/kY4dO4p1MeI2MjJSFfKLL77w8fGJiop69OjRwIEDnZ2d5UlA2rPGEbJXr15Kl+7du3t5eYnrpk2bioU2gwYNaty48axZs9zc3NLT08PDw21sbOTanywPNd+yZQvKLBdqKVEJUhbGkuzevdvb2xulun379rlz5xDewcHB9Qm4RjnFoh4hmijVHFQkT548H3/8Ma6XLVuGkHJDoiyVWJSkPDxLMHfuXLjDtjIvW1tbuSgpLCwMqfn5+U2cOFEp/0kyMzOXLl3asGHDkiVLFipUCIEtMcJHH32EwMp0zJ0hVbZs2dKlS2vd0YJITWy1s+RQ8/Lly6M8uHha2xJCCCGEEELIs0FBipBsSpZb9sLCwvLmzWtra2tjY+Pt7b1x40bppRWkChUqpFI0EEaqSwsXLkReN2/eLF269MyZM5Epbg8cONClSxe5XctggSAl1iI9rSClE0uJOPtp06ZNUVFRYovZNQVSNTMpmvTr18/T0zM9Pb1x48YNGjTQlio6Ohqxli9frsp0/vz5cI+IiFDmlZSUJAPExsYOHTrUwcGhSZMm2jIPHjzYxcVl7ty5R44cQYOimSwxwscff4yCKdMxJ0i1b9/e0dFRe556SEgI3FNTUw2WCVIoiRCknsG2hBBCCCGEEPIMUJAiJJuSpSCVN2/exYsXJyUlxcXFqU7z0QpS9evX9/f3l8HS09Pz588vNAiD8Wgka2vriRMnytO+ixUr9tVXX3l7eyt3bw0aNEguqjKZ0YsVpMTpV5Lw8HAE27ZtW1pamrOzc79+/UyaxaRo8vvvv8Nx9erV9vb2StVJlgpp2tnZ9enTR5V7RESE9jN2WsaNGwcDqgpsMC5ME1vh5K0lRhANERsbK7xu3Ljh4eFhUpD68ccfEXLSpElKx/Pnz9va2srw6CEII8+uMugKUs9gW0IIIYQQQgh5BihIEZJNOX/+PCb/4mN2JmnatKmLi0utWrVatGjRrVu36dOny2O/tYLU1q1bkdpHH3109uzZ06dPt2vXzsbG5syZMzJA1apV3dzcfH19xW3//v1xiyjyTG4wc+ZMuPzyyy9//fWXWCX0UgWpjz/+uFWrVvA9d+7cunXrChYsWLJkSbHq5/PPP3d0dFywYMHNmzfv3r27c+fOefPmiVjmRBN/f/88efI4Ozsr1zcpS9WrVy8HB4f58+dfvHhxzZo1hQsXfvz4cWZmZtmyZf38/Hbt2pWYmPj333+vXLly+/btBuOpT0uWLEHut2/fbtSoUfHixbW1rlSpUqlSpVDIhISEPn36oGCWGCEuLs7W1rZBgwaXLl06cOBAYGCgk5OTSUEqIyOjRo0aCDx06NDDhw+fOnUKNkGlChQocOPGDRnM3d29YcOGSO3kyZMGXUHq2WxLCCGEEEIIIU8LBSlCsi9paWk6vp988om/v//06dPHjx8/YMCAPHnyiEPKQYcOHSpXrqwKP23atFy5clkZKVKkyJYtW5S+U6dOFYqVuN2zZw9uy5Ytqwxz586dEiVKwN3W1lYs3VJltG3bNviKb7ep8PX1led5Wxjrzz//DAoKsnpC48aNpTyXmprat29fBwcH4eXp6SlXCS1YsAAuDx8+VKU2evRouHfu3Nlcqe7du/fhhx+KBHPmzInwwj0uLq5evXqyGAEBAeKw8K1bt3p7ewvHwMDAo0ePamt9+PBhPz8/YbHevXs3bNhwyJAhlhjhp59+ypEjB1zwd8qUKW3btu3Ro4c2fYNxARR6AgosSuLo6NiuXTuUWRnm22+/RQHkp/qQi1hrJgOgJCjPM9uWEEIIIYQQQp4WClKEvJGcPn1aHPMkXcRpR+Lw6cePH2u3jxmM29AuXbp09epVk2kmJycrb1NTUzMyMrTBrl27JpdiaTNKSUkxmfijR49kapbHMhi/i4cymwwAx6ioKO1H/cQqKi2qCqpKJbhz587Fixe1J5QnJCRERkbevXtX6ZiZmXn58mV5RLpJECY2NlZERMUtNwJuURJR5sdGdHJBUleuXImOjjZnyYcPH6IYcs+mKhiiq9J/WtsSQgghhBBCyFNBQYqQN5ITJ05YWVl98803YhVVfHx8rVq1TH5wjRBCCCGEEEIIyW5QkCLkTWXkyJE5cuSwt7cXG/GCgoIiIyNfd6EIIYQQQgghhJCsoSBFyBtMamrq+fPnT5w4cevWrdddFkIIIYQQQgghxFIoSBFCCCGEEEIIIYSQVwoFKUIIIYQQQgghhBDySqEgRQghhBBCCCGEEEJeKRSkCCGEEEIIIYQQQsgrhYIUIYQQQgghhBBCCHmlUJAihBBCCCGEEEIIIa8UClKEEEIIIYQQQggh5JVCQYoQQgghhBBCCCGEvFIoSBFCCCGEEEIIIYSQVwoFKUL+Q2RmZp44ceKff/55y/J6eaSnp0dERDxPLWJiYs6dO/cCi/T2oTTR3bt3f//999dbnpfH5s2b9+zZ8/LSnzdv3tmzZ3UC3LlzZ/LkySkpKS82X3byLC2vw6VLl65fv/5iy0PeMu7du7d79+6//vrrdReEvADejtERIYS8KChIEfIf4saNG1ZWVkuXLn3tecXGxn777bfDhg1bvHgxhtrSPSkpadWqVWFhYVOnTj19+rR037t374IFCx4/fixdUlNTv//++5MnT545cwYX9+/fV6YfHh6+c+fO56/FhQsXUIuff/7ZpO/MmTNRBf0UQkNDK1So8PwleYtRmghNCYOLkfqOHTu6d++ekJDwugpmSftaDrpojhw5Vq9erXTMyMhAx16xYoU2PJ4FPD7/+9//ZsyYER0dLd2PHz++1MiyZcv27Nnz6NEj6dW+ffvGjRvrlGHEiBHFixd/7qqosbCTx8fHL/03UVFRcF++fPmWLVuUIfF+mDNnzu3bt1UpvNgWeYFkaXkd3nnnna5du77Q4rwi0Hv79u1rsvc+VZi3jxfbUfFT6Onp6eTk5ODgcPHixdf1Ysy2T58he5dNywsZiV25cqVLly5Hjx59UaUihJDXBQUpQv5DZBNBat26dfb29oUKFQoODnZ3d8+XL59wv3TpkpeXV968eWvVqpUnTx5ra2tMuYVXeHg4Uvvuu+9kIt988w0CYHJ+6tQpeGGmLb2OHTsGF0zjn78W+oIUyp8/f379FChIZYk5QWr48OFoYqFZvBYsaV/LwZQJs0qlfgR27dplZeTkyZNKd0w7vb29PTw8UIaCBQva2NjIJUgNGjTAvBSPj4+PDyLi8ZFryvbv3w8XPEcmC5Ceno7na8qUKS+qRhILO/n48eNRPNQr7xPQ3HDv06cPKqgUoFFHWP7hw4eqFF5sizwze/bsmT17ttJF3/L6vHBBKjo6euTIkQ8ePHiBaZokOTnZ0dGxY8eOzxnmJaFtJq3LS8roxXbUnj17IjW8FfFEPH78+HW9GLPJ02d4+QZ/2byQkdjevXuRyMKFC19UqQgh5HVBQYqQ/xDZRJDCRLpJkyYZGRkG40InqTqdPXt28eLFYhlUYmKin5+fv7+/jFWzZs3cuXOLfwsj8Rw5cvTu3Vt4tWrVyt3dXU7AcIssXsi+JH1BKi0tDeXXT4GCVJaYE6QyMzNf76YGS9rXcqpWraqdlnfp0qVy5crozF9++aXSvV27dr6+vnIRBHog+ry4rlu3blBQkLhG/yxQoACeFBTVYFyN4uHhMWHCBJMF2Llz5zOLJvpY2MnHjh2LAmhNevfuXRS7Tp064nbr1q0ItmbNGm0KL7ZFnpn+/furZr/6ltfnhQtSGzdufEkNrSU5OVm8yZ8zzMtA20xal5eU0YvtqLVq1frwww/l7et6MWaTp8/w8g3+snlRI7GkpKQXUh5CCHm9UJAi5A0D8zTMNE6dOjV8+PBdu3ZJ9+3bt48cOfKbb75RLjQwGBWfH374AYHXr18fHx+vHAatWLFCGfjPP/9EGGVcuMycOXPixInHjx9XJrhs2bKwsLDZs2fLSXKWeUkwkoY7omdZ07Zt27q6uspbVNnGxgYjUVx/9NFHmP7duXNHeiFN1B3X58+ft7a2RrFVqe3evXvTpk1Kl99++23Dhg3yFqZACrAhLCkdpSAFX0ynp06devPmTen766+//vLLL/L28ePHuEUisMy1a9eEo3aubq6llMCSmFWOGjVq0qRJyEU4JiQkzJ8/Py4uTgZ7+PDhggULpAuaA1nDtmgg5Uock30mKipq1qxZI0aMWLhwYWJiojL3c+fOwYDjx49HOugkmzdv1reSipSUFEREyiitMmVzxTMnSEVHRy9evFhMZeGCcuKvyYYAt2/fhilGjx69aNGiFUYwDVYV7ODBg4cOHULW8IUpwsPDMbUTXjJ9tDVKHhkZabCsfXXqpSoe6rVkyRKlI5oPPRxV7tSpk6+vr3LSDoNUr17dZFJKQcpgXHiFlGVfatmyZZUqVUxG/PTTT/38/FSO2t549+5dNNzFixfFLUy0fPnyEydO6BjhOQUpMHfuXHihz6enp7/zzjs1atQwmYKyRVBCtCAutmzZgir8+OOPwoB4rtGC6AZISkbEI3D58mW0AoqNxwphlMniTYKmQZfAEyErbq6+eGk0aNDA3d1ddDMpDehYXsu2bdtQZjQ9oisFqb179+7YsUMGw6ONbqm0WJYPIHo4XpIw5pQpU1C8mJgY4Y4ZO0wEy+C5xovdXMF0DGXyGUETKH8d8LyvXr16zJgxeBbkAjdlGPEuwsM7ffp0BMNLSZk7ConAcEd/EOa9cuVKlsaMiIiATRBr3bp1clu3tplMNhzeCehUt27dmjBhAl4gIq7Ou1FbQZPJyo6a5e+O/s8BXmJI09/fv3z58rgQzfFUL0aTxsmyIUw+5iafPpRfGEpo4hL0ZERHefD2QMkPHz5ssu3w6OFtg5fnjBkzlG2N9FFgg3ENKeyD/iD/4aRvcMmBAwdgEMTFW0W+57OsOF50eHDgrnpFSEz+NBssaAhLRkeGJx0Sv6FIDT9nohhoa1gbcfHeUOaIHivGYLCSUsE/e/YsXoAmy08IIdkQClKEvGHkzZu3W7duzs7OBQsWbNasmcE4WGnXrl2OHDlatGgRHBxsZ2cn570YMZctW9bBwQHunp6emOYph0GYDP/vf/+TKffu3btQoULyduDAgQiM6BUrVrS2thbDHQykypQpkz9//rZt2wYGBnp5eR07dsySvJRgeO3j43PmzBmdamL0WaBAAYw7lY6ffPKJra3tqlWrUB6MUJVerVq1QmEwjOvevXu+fPm0y6Mw5LWxsVGOEYsWLdqmTRtxjemHvb19vXr1YFJUoWfPnsJdCFIwrIuLS1BQEP6i7pi9CF/lPBwzh2rVqiHu+++/j5QRUpz7owyj01JKMJFGQ6AWTZo0QaZSa0tKSkK7f/bZZzLkypUr4Ss2c2Egmzt3brQOKuXt7Y1M5VRK22cwB4Alq1at2rRpUzQW8pIneWGiBa9GjRrBC3ZGmrIVzFlJCSz/3nvvoYkxx0YZ5Exbp3jmBCnltWiIzz//3GRDYPyN+QkSad++Pczr6OiIjK5evaoqGzL64IMP0EsDAgIqVaqEBNFblA3dr18/1MvX11fsa7OkfXXqpUSs+pEPiwA9GabG5B/TDPhi7iq9evToAS8x5VOhEqTmzJmDuPK0Y8xhUH2lFiNBldGm8tZcb8TEqVixYuXKlRPTV8yL4CWmbZZ0ch10BCnkBRui22Cah+dUNUuUqLpKnjx5OnbsiJdJqVKlkPKnn346dOhQ0RNwGxISIiPiEejVqxdaCm8zlBwdWz56J0+exKNRokQJ9Gp0DPRwtKnwMlnf6tWrIwu0zjtGLl++nKXlVaAkKB5KgvoWL14c3UY+Jo0bN0ZeMiTeuggpJ+qWPICDBg1CB0asIkWKoHiiC+G9jdbHC79mzZrIEb5DhgwxWTYdQ5l8RhD+iy++kAHQFh4eHsgFb2P8QMg0ZRhcd+nSBe+c8uXLo+JIat++fdLa6AN4R3Xq1Klw4cLIq2TJkkrtxiQdOnRAverXr49HGx0Vf4W7tplMNhx6FOKipigYupNB991osoLmkhUdVed3x5Kfg2vXriEX9CvUEYmjhxue5sVozjhZNkSWj7l4+jp37oyuAkf0E+WPNboQ8kXtKleujOLh5+zrr7/Wtl1ERITYulunTh38RRT5LzGkj4qgJyB9GAeFwXtbvFr1DW4wvkzwQMHs6PPoxgiJ9OX/J3QqvmLFClipefPmaKCcOXNqxVBzP81ZNoTloyNUpHbt2vgNRbtjCCSCoQX9/PzwWsYtXgLKHMXybfQcXIuHBT/BeI8hHW3ihBCSPaEgRcgbBoZTGHksX77cYBwe4e/ixYsx0JFHzGBK5ubmJg75nj17NgIfOHDAYJR4MJOxUJD69ddfEXLq1Kni9vDhw2K2jAEoZm7if5XIHUNDDM1FGP28lOzfvx+jPYz8MKGS/8AXREZGIh2UClM1jIZVI0JMDDA8RbIYrin/2WswLhyA+8SJE2EKOWJTIkZvUsY6fvw4bsXaH2SKMSvMKLx27NgBLxRSxsLsSKybELEmT54sQioHwWPGjMEIWP4fGENbIYgow+i0lJLMzMx169bJ9TIYW2PyI64xxEcHkF6Yl5YrV85gXFmAMSjG2eJfwZj/5MqVa+TIkSKYts+gnNLyuFAKfJhxydnjsGHD5M4IHSspEe7yEG6xik2/eJYLUuYaAmbB3EMkvnPnTlQH4Q0akBFioVIiJLoZbsWhsCJ9zHPEOgVhpSzbV79eSiZNmoT0VW3d0IjIDrM75b6t69evC+EAUxGpjwiUghRmWZhxYYIklycICeP8+fPaMjg7Ow8YMEDe6vRGcToJniNMqDD9hpeOEQxPKUjhFfHHE5TiFKopjtMSs26TaLtK48aNhfqMV5MQ0MUkcNy4cbiV5+zgEbC3txdrVfDqEPt/Re5xcXGYGItgMCNmfVKnNldfkzu/dCyvRCznRMoG45MO2+LWEkHKwgfQYGrLHoyDd4h85L/++msEgP21cXUMZfIZUYpNmPYXKVJEHEWPRpk2bZpMUylIodeJxSz4mcA0u1GjRsJr3rx5Tk5OovnwqsfPk1yypAOSkmtn8HMjBXqDZVv2xDuhV69eeKlm+W40V0GTyYqOqvO7Y+HPAcDz3rx5c3lr+YtRxzg6DWHJYy7KgNeX2DUm1mkeOXLEYOyoyn3uVatW7dChg7ZSeNbwK1+jRg0hFaGPwbzopSJBkT7efqL8GH6IRX9ZGlwYVlkAsVUZY4MsK16lSpVOnTqJ64SEBNUYw6D706zfEJaPjkSHFO8HWEb8CiAjdE7k3qBBA3nmpuo8ATyqBQoUQK8ICwvDz5Bq9TohhGRnKEgRku1IfYJqDbwAw6m2bdsqXTBaFcteBEKaEZPY2rVrYzgovTCstFCQwsQVvqr9RxjrYEY0ffp06YJhlp2dnRi36eel4vLly5gjITVMfuSw3mAcQGM+VqpUKcxMKlWqtHXrVlXE4OBg5fxNSevWrTGMNrk8SoABK6KLa4z+MdESFh4yZAgGcMpV/Z6enqNHjzY8GfMpdzJiDC0XJigHwZgJY/SszVQZRqeldPjuu+8QTFQKo09c792712D8ahsG1qI5tm/fDnfl3pmWLVuiRcS1ts+o8Pb2Hjx4sME4SUA6P/zwg3Bfvny5zFrHSkrEifJwV47m9YtnuSClaoiPPvpIXFerVq1bt27iOi4uDiGV+54kyKhkyZLy9s6dO3LoL9JXnppvsKB99eulBNbDzFbpcvPmTfR/aeq+ffvmyJFDeYw3JmbDhw+HzZEFZnRSu6lbty4aFFMyPAWYTeXMmXPPnj2qImn3myC6aBfpot8bu3TpgpSbNGkCO8vFBZZ0ch2EIKVEHsduMM4AkaPOS8NgqqvcvXtX3G7YsAG3chYtqiNna7DYJ598ItNBR4KvcseNBE9K5cqV9etrUpAyZ3kVaAK89JRnABUpUsQSQcrCB9CgEaTwUKOnKXdJI3e8OqTOqETHUCafESk2JSYmwnf8+PEm01QKUkrBsUePHgEBAeL666+/xnxeeqHjmSyhDufPn0cZ5LYmCwUpTOPN7bQ1KN6NOhXU10fM/e5Y/nOQpSBl7sWoRGUcnYaw5DFXPX3irSu+pSg+1BAbGytTNrmVVajeyneXiChe3SJ9uSsfYFQgj5nTNzisrdrvjB8IWQadiovXneWHryl/mvUbwvLRESqCmsrbzz//HCMx+WMqhC1l08tXHG7xUGMUhNfL/PnzLawCIYRkByhIEZK9EDMQgfJIb4lycC/w8vLCfMP1Cc7Ozogr/gGIkZZSu1EdpakjSIWEhLz77ruqrM+dO4foGPTIvHBtY2Mj/oepn5dJLl68KNa979y5U+WF6BhWol7KzTtidoShOeb2co+S5M8//zQ3YRDMmDEDAcSJGLBtv379hHubNm3g7qoAt+KQae2h5uXLl5eL4ZWDYA8Pj759+2ozVYbRaSkVGBNj0AzjoJyYdsoxqFhK8/HHHxuMe+tg/OvXrxueHMGDBGXiyKhixYoiNW2fwbQWTdOwYcOSJUui0ZGODIDSYtyP2de9e/fQBKhvllZSIXap+Pn5TZw4Ucz09ItnuSBlriFQeB8fn6ioKGQ3cOBAZKQ6v0ObkcDNzU0cjW/y9Pos21e/Xkowg8LDonSZOXMmuvGBAwdOGBGVXb16tSoiGqJ79+7wknte6tati8K0atWqQ4cOo0aNEh1Asm/fPtU0T6YDd+Wp2/q98fbt205OTqopliWdXAchSKEkUnNX+qLD58qVq2bNmr6+vubObDbXVQxP1lDIs66uXLmCW3EMjUHzCIj1C/LUFbQCUi5XrhyeBRcXlywfapOClDnLq8AcVbkz2vDvQ811BCnLH0CVICVWrKxatUoZpkiRInIhmBIdQ5l8RmR4sfLrxx9/1E9Tlf6gQYPgIq6F2r558+aMjAzxqt+yZYs2NRX379/HOx9vqmLFiom9irKEFgpSqq5r7t2oU0H9ZM397lj+c5ClIGXuxahjHJ2GsOQxVz19SUlJuBUfzcS7F3UZMmQIfq0wZkA1kbg2tXnz5iFKfHy8dBEyjVhNpkrfYFwOjCdFXOsbHL8FvXr1UvriFSqXMulUHE9K8eLF0Siwtlg5q8XcT7N+Q1g+OlJ1SIzQ8FaUt2KZm9DptDnibQCX0qVLK2VrQgjJ/lCQIiR7kZycfOYJ8nQSJVpxIV++fCEhIdcUyEEeRlfKowS0gtSwYcOkr1KQ6tSpk1YOw4TfyrgKXZmX/B+mfl7mQAoIptxJJMEsUTmFhmUKFizYpEkTzGMLFy6s/H+jQExBdb6CjCJhdjF9+nSMNZWrM9q3b48h7LV/I/6JrR3zYbBoUpAqUKBAjx49tJkqw+i0lBKMy/PkyYMZ0a5duzALGjVqlHJojvkMxsEY62PuKo/tmD9/PsJEREQoE5ef4NH2mcGDB2PijaH/kSNH0NO8vb1FAAxkMXsRR1eAMmXKyC0eOlbSEhsbO3ToUAcHB7RXlsV7NkFK2RBhYWGoIyYSaF/UBRNyk6VSjfVRWXt7e/EIZClImWxf/XopGTFiBEIqzSXOOVIhN4+owHyybNmy4lp1hpSKTZs2WT3Zh6gEk3xra2vlSS76vXH9+vUInzNnTuWXAS3p5DronCF18uRJtN3UqVPR39COyveSuYyeR5D67bffpA6ORkfWAwcOhOPp06fxWGX5UJsUpMxZXsXHH38sJ8AClSClfLMpBSnLH0CVICVMoXoVowzabz4adA2lL0hFR0dbPdkXrJOmKn1cS2ugBXPkyIHpN5oDrw6TW19V4BGuUqUKng409PHjx8VJbc8pSJl7N+pUUD9Zc787Fv4cGJ5SkJIvRn3j6DSEJY+56ukT3yqRglTu3LlhENTayniUm0l9WWgryl35oi7iF1wrSNWrV08+GvoGxzBGtYYavjK8TsUNxm2qeHzEyVPaPa06P836v1CWj46eWZBCyfEbgcD4UTt79qw2ZUIIybZQkCLkDUMrLmCCWqJECZOBMXIqUqSIvBVL4uUwCNMbOW7DfLVmzZpSkMJkAAOyv//+W8ZNT0/H5MfZ2Vn+g/ep8pKozmUQIzOxJ0KF+Ie5/F4eRmZ2dnby007wWrlypTJ8loIUaNCgAQb3X331lVJuwzxZLjVSYbkgBesp15RhMiBqqgyj01JKxL+OpfHFrRyaYz4jltJg3ClnRxEREXBcu3atyQS1fQZNrzwRWZ4bJeobExNz69YtcVSKRMdK5hg3bpy1tTV6jn7xnl+QQgUXL16clJQUFxen889hhPf19ZWntBw6dAhpLlu2zGT6BgvaV79eSkQjynPWRXZLlix5rOCzzz7DQyfWdqnOxg4MDJT7yPQFKWE0kzNbtLI8xN2g2xsTExMxW+7du7fYkyIXMFrSyXXQEaSqV68eEBAg1tP16dPHwcHB5MaZ5xGkhDYqGD9+vNWTXUXt2rUrWrSo9MJtlg/1oEGD5IILiY7llUycONFKsaEJL0APDw/5HkbuyvVTYWFhctJu+QO4ZcsWK8VpQSgz3ttyT6vhyVpXIR+o0DGUviCFXwe8n9F20kv2YQsFKTRu586d0QeQnTmlW4VY/CV/CFSnF2mbSeui7brm3o06FcwyWZO/Oxb+HBieVZDSN45OQ1jymOsIUvhbsGBBjCjwNja31NHw5PUr9ywbnuyAE6ewifTlOuiUlBQ3Nzf5+tI3eP369WFn+UOAZsqfP7/yx0JHkBLgHeXq6qr9FrDOT7P+L5SFoyPDcwhSkyZNcnJyOnv2LF4g77//PhdJEULeIChIEfKGoRUXxOEp/fv3j4mJwZz86NGjo0aNEl7iH+xDhw7F0HDFihWenp6Y8cphUMeOHV1cXDB7wRAwJCQEoxk5F8IUyN7evlatWhgRYo7Xq1ev4cOHG4wnGjg6Oi5YsADT5rt372KmijGZJXlJVq1aVbFixeXLl58+fXr//v01atRAGcQR1Bj/YU7+22+/Yd6+bds2TFC9vb3FGbeYnWKOitxlOlWqVMGcWbkaxRJBatmyZQiTO3fuESNGSEcUGKPP2rVrnzx5EglGRUXNmDFDzIctF6RQL9EKMOa+fftQL7F5RxlGp6WUiH9lY0SOacDevXvFVgvlyB6j7Tx58mCSKauP0WfZsmX9/Pww0k1MTMSIGfMQ+WF4bZ+pVKlSqVKl0IgJCQmYYiF9EeD+/fsFChSA2TGDatmyZe/evVEvMRvRsZIStOySJUvQN27fvt2oUaPixYtnWbznF6SaNm2KXoTu2qJFC0y8p0+fbvJsYHFeLCIePnz4zJkzpUuXhhnFAUlZClIm21e/Xkr++OMPK8XJVl9//TX6s+p7fCLMrFmz4uPj0ehTp049cuTIsWPH0ApWT85nMWQlSH366adoPpNeH3zwgfIwF53eiBzxjKARMassX768PEbKkk6OJxdTR6kEKTEnSKFqVk8+EQXwyOfMmVN5vI7keQQp3Hbq1An9Fq2A9Bs3biy8vvrqK7z68KJLS0tDmnZ2dlk+1OII519++QWx5DOosjx6l8k9cXiO8GLE84Vn58CBA4GBgchdClJ4fVkZP92FRhk5ciR6tRSkLHwADcblZoiFN3ZkZKRYZos6iuP/kOyvv/763nvv4VVvUhnUMZS+IGUwflsNvXr+/PkXL17Ez0HhwoXFq8NCQWratGk2NjaVK1fG49yhQwf8HMjDxcPDw1F35WFtAjzmaK/OnTujLsgU83BlCbXNpHXRClLm3o06FcwyWZO/Oxb+HBieVZDSN45OQ1jymOsIUocOHYKV3nnnHbz/27ZtO2DAAJOHtQG0tZeX16ZNm2JjY9HEHh4e8pUu0sf7GVZCH0Z/sFIsP9Q3uPgB/eijj86ePYthRrt27dCv5Fd9zVUc77qPP/4YL5CUlBS8w62trbUbqHV+mvV/oSwcHRmeVZBCF8J4QJwoJ5Zq8hgpQsgbBAUpQt4wMAbSrieaO3eu+PwccHR0bN26tfTCGEisnMe0eefOnZgyyWU1GBuVKVMGXhh7denSZdy4ccr/32JUKo5IABgQi/9bYmjbt29fDDeFOwJMmjTJkrwkmG2GhITIFDBtkx+KOnjwoCiPIDg4WM5AMEoTM2SZDka9KDbKLF3EuaraL2crweAVUyyMBeXntwRiZijyRbKor1jMgnG8leIgWINxDC2/GYQLuW4lMzPzyy+/tLe3R3ikj0GwOFpLGUa/pSRIqnfv3iiGlfGD2XPmzMG1PFjaYDwXGV6YaShjofri2z2CgIAAKX9o+8zhw4fRRqKoyKthw4biM/APHz7EfAyzZUwOx4wZ0717dwSQRwubs5ISDNnR7iIMAssphE7xlCZasGABfMXZ3spr/Yb45JNP0HUx3x4/fjzmP5jGmDxGF70IHQwBUCmkVqBAAdn3tOkbLGtfnXopEf9yl7uQMFvDU6ANVrRoUUz/kBemSe7u7iJNzNmUJ0mjdZTHDKnAZKZVq1YmvcaOHevk5KQ88t9kbxQbixYtWiTCoKvgoUZcHSMoDbV27Vqrfy98kEyYMAHdRnWANOaB6J+qk+DFMiL58TuJua5ieHKEk/gAnOHJ20CKXOJb7/Xr1xeVRfcQZ/oAvFWqVasm3GvWrIkKSr3PXH0xISxRooRwlJKQyvJ4N5oUpMBPP/2UI0cORMffKVOmYNIud0jBOMhFFlIcpYS6CF9LHkCB0F6tnqzCwNujW7dudnZ2wrF69ermvgaoYyiTz4jy3XLv3r0PP/xQRMRrVh64rgyjehfhGi7iWqhOeKWj9YcNG1ayZEk8AmJFmDjLWa75UrJw4UJxnBb+4jHx8PCQirC2mbQuqvezwfy7UaeCWSZr7nfHkp8Dg/FMbmXXsvzFqGMcnYaw5DFXPX24wK34KiK6Ft7AeCdPnjx5xIgRH3zwgbbbCGJiYsRXSgA6Z6dOneQ3AYUghTK7ubnhwsXFRfnx3CwNjt8v8TkIUKRIEeVhZDoVb9y4sfjZRWHwM6FdZKTz06zfEAbLRkfaisCAeJPIW/GZEfRDVY5NmzbFb4eUmJs0aYJnx+TmcUIIyYZQkCLkDQMzFvnVYSVwxPDu8uXL2s0OCQkJ0dHR4n+5qtkgBliIJf7hhmtV3PT0dAx6tOdDY06LgbVyQ58lealSwDgSgU2mgExVX8pDwVSbmET6qg2AJv/nr0LsPTTpFR8fj6xVuwxUJUF0mSkuVKVCXFhGjqpNhtFpKSVIBCYSba0NqdSnlMB6kZGRSuXOYKbPoLljY2NFSBRSBMDED1MX5bfe2rdvX65cOWVEk1ZSpYzamdxbZLJ4KhMpG1F5ba4hxNepxBe1BeJoJ2UrCOQ/nzGgRy9V2UT7cUZL2lenXiratm0rlQ7Uy+SWCuQo2xrFu3r1qnYLmLZUktu3b2OCpNrKKhGf2VIt4NL2RhRMZQrVg5ZlJzc3EULKJp9QZKe1hskertNVDJoWVPrKZRHXrl0z+eLCW07oPiiJhY2OpORCPJXlf/vtN9zqfHEPRcVDJOooNmwqffHsyD19Wotl+QAK0BtVn34XFVFtxVWhbyjtM6J9t+DXBMVTvvyVYVThcS07HibeyiVC4sjCzZs3G4znB8nz8rQgTTzOwpjaV6WymbQuJp8mk+9GnQpakqy53x1Lfg6UPzoCS16MAnPG0WkIQZaPuapnytuWLVvWqlVL6eXr6ztw4EBztYM98fJUvTTkCizlk6IiS4PjB1Sr2OpXHAkilrkP9QrM/TTrN4TBstGRqiLoiqqQJpte9YrWvsMJISQ7Q0GKEELI/2PGjBk2Njb79u0Tt8ePH/fx8fnss89ea6Gy4MSJE1bGXU5iboDpOqZDpUuX1oa08Kijl4Q4N8Tyb4o/A7NmzfLw8NCRKqpVq6ZaWPcfQbtr9cWisnzDhg379+//8rJ7ebxsQ5kDU2h3d/eQkBCxjzU5OXnAgAFOTk7Xrl37448/cubMKRU6ks1p3rx5QECA2CuKZl29erW1tfVPP/30VIloDzUnhBDytkJBihBCyP/j4cOHrVu3trGxcTFia2sbGhqqXDCVPRk5cmSOHDns7e3FNo2goCBx+L2K1ytIgYoVK1ry7bBnBrVTHlKj5eeff0azmlte9xbzsnUWpeVTUlJw/YYa+XUJUgbjxwELFixobW3t7u6Ov35+fmJ51JYtW0xugyXZE7x78aLDe1h88S1nzpxjxox52kQoSBFCyH8HClKEEEL+RWJi4qlTp06fPv0GzQdSU1PPnz9/4sQJcQq+SeLj48X/7V8XmUZeXvqqHSLPHObtA5NksTH5JfHWWPVlG0qfjIyM6Ojo48ePi3PcyZsLXrZoR3Qnc/uL9Xnw4IE8D44QQsjbDQUpQgghhBBCCCGEEPJKoSBFCCGEEEIIIYQQQl4pFKQIIYQQQgghhBBCyCuFghQhhBBCCCGEEEIIeaVQkCKEEEIIIYQQQgghrxQKUoQQQgghhBBCCCHklUJBihBCCCGEEEIIIYS8UihIEUIIIYQQQgghhJBXCgUpQgghhBBCCCGEEPJKoSBFyJvNjRs3oqKinjn63bt3f//99xdYnv8aMTEx586de+bo6enpERER//zzz/OUITMz88SJE5Yk8pylJYQQQgghhJAXBQUpQt5sevfuXahQoWeO/v3331tZWQktY8eOHd27d09ISHhRZbty5UqXLl2OHj36tBEzMjI2b948atSosWPHHjp0SOl14sSJyZMnh4WFrVix4tGjR8LxwYMHc+bMOXbsmDIkIi5cuBAXS5Ys2bdvn9IrJiZm7ty59+7de9qCaQkNDa1QoYK5WvTt2xfl1Il+4cIF2P/nn39+njLcuHEDiSxdujTLkMrSzpw5c9iwYc+Tr5aXkSYhhBBCCCHkrYSCFCFvNi9QkBo+fLi1tfXzrLdSsXfvXiQuVCHLSU1NrVatmr29Pf6WKlUKKcyfP194DRw40MbGpqIRuJcuXTo5ORnujx8/Rkg/P7+UlBQR8v79+15eXiEhIbhu1apVzpw5lUJbs2bNfHx8ZODnQUeQQtkcHR07duyoE/01ClLBwcH58+d/nny1vIw0CSGEEEIIIW8lFKQIebN5gYJUZmbmc+4d05KUlPS0UebNm4ci/fnnn+L21KlThw8fFtezZs2Kjo4W1zNmzECw5cuXi9t9+/bhduzYseL2q6++cnR0vHz5skgBXmPGjBFep0+fxu3MmTOfvVYKdAQpg1GTysjI0In+GgWptLS01NTU58lXy8tIkxBCCCGEEPJWQkGKkDePU6dOjRs3buLEiVevXtUKUtu3bx85cuQ333xz+vRpVcQ///xz5syZiHj8+HHhohSkoqOjFy9eLAQUuCxcuBB/kcjYsWOnTp168+ZNVWo6GQkQfcGCBTdu3BC3a9asuXTpEtKZPn36mDFjUAuTsb744gtbW9ssdY3z58+j5FOmTJEubdq0cXFxuXbtGipib28/YsQI6dWqVStPT09Rzfbt25tcHrVs2TKpggnWrl0rtTCUBwHCwsJmz54ta2R4IvE8evRo6dKlw4cP37p1qzKF8PBwaWqDcasgrIq6I1hmZqbBlCCFxJEFMkJ2ck+iFpTnhx9+QI7r16+Pj49XCVLmElEKUr/++usvv/yCi3Pnzi1atEgZDOVEw6Wnp4tbtC9aGW2NFleWQTQo2hHF2LVrlzJNiblOcuLECbQdTPHbb7+ZqyMhhBBCCCHkLYaCFCFvGMuXL7e2tg4ICKhQoUKOHDnKlSsnBamMjIx27drBsUWLFsHBwXZ2dkuWLJERBw4caGVlVbZs2YoVKyKFNWvWGP4tSCmvhVDy+eefu7i4BAUF4W/+/Plv3bplSUYSldqSN2/eLl26eHp6li9f3tvb28HBQXW0k6wgYqG0UhAxyfTp0xFMeSL71atXnZ2dO3bsGBIS4ufnJ3bzCcSqqGnTpsXExNjY2JhcHlW9evXSpUvL27i4OESZO3curuPj48uUKQMLtG3bNjAw0MvLS55XFRoa6u/vD6uiRYoXL44o48ePl4mgyl988YW4Xrt2rb29PRoLFkM5+/TpozXRwYMHc+fOjbzatGkDE6GJExMTtUV9+PAhcoQBkRTsWaNGDaUgpZOIUpCS13v27EH0n376Sabfs2dPHx8fIU3OmjULxa5Xr16zZs2QI7yUtevWrRvqUrBgQfiq0tfpJCtWrMBt8+bNUcKcOXNeuXJFW0dCCCGEEELI2w0FKULeJB49euTj49OgQQMh1mzatEloHMJ38eLFDg4O8jNqQ4cOdXNzu3//vsG4dMXKymrq1KnC6/Dhw7t37zZkJUgVLlz44sWLuD1+/DhuJ0+enGVGSrSCFGKJFTQPHjzw8/Nr1KiRto4ZGRnNmzdHxMDAwGXLlqm2vC1fvnzKlCnt2rXz9PRULo8SjBkzxsrI+vXrVV6tW7eGoT7//PN8+fKZPD1KbBU8e/asuJ0+fbqdnd2dO3dw3blz5xIlSqDMBuN38apXr16zZk0RLDQ0FLGGDx+eaSQkJCRnzpyPHz+WVRaCVFJSEkyEegmv+Ph4oc4oTZSWlhYQENClSxexeOrmzZu5cuUaOXKktqizZ89GrAMHDghL1qtXTwpS+omYFKRgYV9f3zZt2gh3VBC2HThwIK4jIyNtbW3R3MJrx44dyGj//v2ydnLXpOiQyvR1OkmVKlU6deok3BMSEqS5CCGEEEIIIf8dKEgRku1IfUJaWprK6+DBg1ZWVjt37pQu3bt3l4JUUFCQWKgiEMuCEAXXAwYMcHV11W4B0xeklLKOv7//Rx99lGVGSrSC1Keffip9e/ToERAQYNICmZmZS5cuRY6IXr58eeUKmpYtWyL3fPny5c6du0+fPioVTCz2sba2lkdNqQppY2Mza9Ysk5neu3fP3t5++PDh4rZKlSqijjCIra3t9OnTZcjZs2fb2dkJGSU0NLRkyZLSSyzv+vvvv2WVhSC1adMmuKu+GKgy0fbt23Gt3OKHytauXVtbVDhWrVpV3l69elUKUvqJmBSkDMZtks7OzvJjizKFIUOG5MqVS2hbAk9Pz9GjR8vatW3bVlkwZZo6naRJkyZo3EuXLmmrRgghhBBCCPmPQEGKkOzFmjVrrJ6ASbvKd8WKFXBXCjTKM6S8vLxsbW1dn+Ds7IzAYkVSSEjIu+++q81OX5BSnm1Uvnz50NDQLDNSohWk5P41MGjQILjomOLx48ezZs2ysbGpVq2a1nflypXwkkUS4cuUKRMUFIRkmzdvro3y4Ycf5syZU+fjeohVrFgxXMTGxqLka9euNRiPWMK1g4ODrC+ukbVYMKU61HzLli0IjIqrqoyKwF3ueTRporlz5+IaxpQZwcgVK1bUljMgIKBr167yVnmouX4i5gSpEydOINbq1asNRolTdpU2bdrA3VUBbr/88ktV7STKNHU6SWRkZPHixeELgx89etRccxBCCCGEEELeYihIEZK9SE5OPvME8ZE4JatXr1bqHYZ/C1L58uULCQm5piA+Pl54derUSStvGZ5GkKpQoYJUf3QyUqIvSOFaX5AS9OzZE4mYPEqpVq1aTk5Ocv3OnDlzEPLIkSPz589XrSMTdO3aNX/+/Dp5rV27ViwOmjJlipubm5CuoqKixHZFZX3FVj6DRpBCZU0KUosWLYJ7XFycKkeliUSxIyIilBmZ/Exh8eLFlUqcUpDST8ScIAVKlCjRrFmztLQ0d3f3CRMmCEdxAPy1fyMX7ukLUvqd5PHjxxs3bqxYsaKtre0ff/yh0yiEEEIIIYSQtxIKUoS8SRw+fNjKymrZsmXiFrP64OBgKUjVrVu3RIkSJiOOHDkSM3+5lczw5NCfZxOkdDJS8myClOos8z59+tjY2JjUZVAkd3d3cX379m1cd+7c2WA0S8mSJQMDA1VJZSlIpaSkuLm5DRkypFKlSj169BCOaWlpzs7O/fr1MxnFQkFq//79cA8PD1dVU2miiIgIuSxLn4YNGxYpUkTe7tq1SwpS+onoCFITJkxwcHBYtWoVosfGxgrHsWPHwvjXr183mZq+IGVJJ0lNTXV1dQ0LC9MPRgghhBBCCHn7oCBFyBvGu+++W7BgwSNHjpw9e7ZZs2ZOTk5SkNqwYYOVlVX//v1jYmKSkpKOHj06atQo4XXlyhV7e/tatWr99ddfJ06c6NWrlzgs6dkEKZ2MlDybIFWmTJmBAwcePHjwzJkz4hNv4uyqxMTESpUq/fDDDxcvXjx//vyXX36JxGW+COPs7Hzt2jVxK45SUh78ZLBAkDIYN6zlzp0bcZVfAPz8888dHR0XLFhw8+bNu3fv7ty5c968ecLLQkEqIyMjMDCwQIECO3bsiIyMnDx58gcffKAyUWZmZtmyZf38/Hbt2oXK/v333ytXrkRFtIUU+zqHDh0aFxe3YsUKT09PW1tbIUjpJ6IjSIldinny5KlRo4Z0RPqurq61a9c+efIkGjoqKmrGjBny7Cd9QcpcJ4EpPv74Y3TClJQUFMza2lpsFSSEEEIIIYT8p6AgRcgbxoULF8Rp3zY2Nt26dZs6dapyL97cuXOFngIcHR1bt24tvVatWuXp6Sm8goKCzp8/D8cFCxbg9uHDh6rrixcv4nrbtm0yeuXKlTt06GBJRhJVIr6+voMHD5a+uIaLNtayZcsKFy4sU+7fv7/YOpeRkdG7d+8cOXIIr1y5co0ePVqcLC6OeVKJYg0bNnRzcxPVEfTo0cPPz0/fvAcOHEBShQoVUn7dLzU1tW/fvg4ODiJrmHHSpEnCCzaBZWRIVBYBxKcJVVU+ceLEu+++K1JAMTZu3Kg1UVxcnPhkniAgIGDHjh0myzl06FB0AJHUzp07vb29xdfu9BNRllZVcoPxrHSEl9/UkwYJDAwUSVlbW6PnXL16VVs7k2ma6ySNGzdGUnC0s7MbMGCA8tB0QgghhBBCyH8EClKEvHlkZGRER0ffu3fPYFwRo/oYH3xjYmIuX76s/Uhfenr6xYsXb968qXRMTU01ea06/BtxhfpjSUYmE3n06JFS5cG1TsQbN24gZVWOBuN2vCtXrij3HgqSk5NVLrCMqgr6OUpgBG2+BmNdoqKiVFkjpGpjoE6VDcYv4qFeSglGe8h6QkJCZGTk3bt39cuJYOgGoqja7yeaTERZWm3JtRaTxMfHo+eI1XM6tdOmaa6T3L9//9KlSzoHzBNCCCGEEELebihIEUIIIYQQQgghhJBXCgUpQgghhBBCCCGEEPJKoSBFCCGEEEIIIYQQQl4pFKQIIYQQQgghhBBCyCuFghQhhBBCCCGEEEIIeaVQkCKEEEIIIYQQQgghrxQKUoQQQgghhBBCCCHklUJBihBCCCGEEEIIIYS8UihIEUIIIYQQQgghhJBXCgUpQgghhBBCCCGEEPJKoSBFCCGEEEIIIYQQQl4pFKQIISS7c+/evVWrVr36fBMSEr788ssjR468+qwJIYQQQgghbzcUpAgh5DUTGxu7ffv2y5cvmwuwbds2Hx+fV1ii/0tERESlSpUCAwPXrFnzirMmhBBCCCGEvPVQkCKEPAUzZ84cNmzYi0rt2LFjS//NgwcPLly4MGfOnBs3bihDrl27dtu2baroGRkZffv2XbFixYsqz2th2bJltra2OXPmLFCggMkAly5dGjBgQKFChf766y+V19GjR8eNG/e///3vxx9/TE9PN5fFtWvXvvvuu6+//nru3Lk3b95Uem3dulVYHmY8cOAATCq9oqKiHj58GBoaSkGKEEIIIYQQ8sKhIEUIMUt0dPTIkSMfPHggXYKDg/Pnz/+i0q9fv76dnV1eBadOnbpy5YqTk1Pbtm1lsN9//93KymrWrFmq6MnJyY6Ojh07dnxR5XlmFi5cuGXLlmeLW7Ro0RYtWuBCaWdBenp6aGgo6p4nTx4vLy9c4Fb6fvPNN3ApW7ZstWrVrK2ta9So8ejRI23669ats7e3L168OALAXG5ubufOnZO+8PLw8AgICPD29kZqpUqVUilWFKQIIYQQQgghLwMKUoQQs2zcuNHKyurSpUvSJS0tLTU19UWlX7du3aCgIK37iBEjkO/BgwdxnZmZWbly5ZIlS5pcAZScnKxc1PO6KFOmzLPpYii8ra3tpEmTTPrOmTPHxsZm9+7d4hYNsWzZMnF95swZmGjw4MHi9qeffsLtt99+q01kw4YN+/fvF9fHjh2ztrbu0aOH9EXuI0eOFNcRERF2dnb9+vVTRqcgRQghhBBCCHkZUJAi5A1jzZo1ly5dunnz5vTp08eMGXPq1ClVgO3bt48cOfKbb745ffq00j0tLS08PBxR5s6du8LIlStXhFdERATCw2vdunWPHz8WjocOHerfv7+VldWUKVMQOCYmBo6//vrrL7/8gotz584tWrRIuSQHARYsWCBlI+SONFESlMdcXcwJUsnJyX5+fuXKlcvIyEDWKMPevXtNpoAaHT9+XGmZ+Pj4yZMnT5w4URzJ9ODBg2+//Xb06NFnzpyRsZKSklD4lJQU1GL8+PEILGonMWkQWc2FCxfCa+vWrZmZmUgKJSxYsGDVqlVxsXHjRpPlvHPnzvz588PCwmbMmCHNjhIuXrwYtevYsSPiKoU/QY8ePXLnzm0ywSFDhtjZ2T18+FC6+Pv716lTx2RgJd7e3o0bN5a3SkHKYFTWatWqpQxPQYoQQgghhBDyMqAgRcgbRt68ebt06eLp6Vm+fHlvb28HB4d9+/YJr4yMjHbt2uXIkaNFixbBwcF2dnZLliwRXsnJyWXKlClYsGCnTp0KFy5sZWVVsmTJDRs2wKtDhw6urq7169f/4IMPEAV/RZRBgwb5+voiZJEiRd55553w8HCDUZ6oUKECLvbs2QOvn376SRasZ8+ePj4+Yr3SrFmz7O3t69Wr16xZM5QQXibrYk6QMhg3miH9mTNn5s+fv02bNjrW+OKLL1SWqVixopuRbdu2obLvvfceDOXk5PTHH3+IkBcuXEDiX375pYuLCwyVJ08eDw8PKWyZM4jBeJQV6lWoUCHEcnZ27tOnT0xMDIyDOubMmRMX1atX1xYyIiJCbEisU6cO/iLx9evXG4xrl4oVK4aSeHl5Ie7y5ctVESdOnAjflStXatNs1KgROoDSpXXr1vny5TNnKMGxY8eQ4IQJE6SLUpC6f/++u7s7V0gRQgghhBBCXgEUpAh5w8ibN6+Dg4NYpvTgwQM/P79GjRoJr8WLF8NLnhA0dOhQNze3+/fv43revHlOTk63bt3C9b1791xdXRcsWCCCISl5etHSpUutrKxkCtote1KQysjI8PX1lVJRenq6p6fnwIEDcR0ZGWlra4vCCK8dO3YgEblrTEndunVLlCjxxxOOHTum8kVEZ2fnq1ev6lhDKUg5Ojru3LnTYDyQG2VA9Pnz5+M2ISEhT5487du3FyGFIAXToai4jY+P9/LykuuGzBkkKSkJ9mzevLlYM4VYUu/T2bKXlpbm7+9fo0aN5ORk3KamptapUwfZITVxi/RnzJhhMi7ClCtXDgGCg4OXLVsmUhBUqlSpfv36ysB9+/ZF65tMZ+/evTNnzvzss89y587dtWvXlJQU6QUrIZ0pU6aMGDGiVKlSSPbOnTvCa+3atahXrly5YKgGDRqYTJkQQgghhBBCng0KUoRkO1KfkJaWpvXNmzfvp59+Km979OgREBAgroOCgpo1aya9Tp8+LU9i+vrrrwsXLiy9/P39hw4dqk38/PnziCK/Z6cjSIEvvvjC2dn5n3/+MTxRncQioyFDhuTKlSszM1PG8vT0HD16tDY7ITlJVHpKWFgYHFE7ne/HqQQppWXee++9hg0bytuWLVvKkgtBat26ddIXEe3s7LTHUSkNsmnTJlwfOnRIWwwdQWrv3r2ItWfPHumya9cuuMBihqwEKYNRz5o3bx5KjmAwoyxzsWLFmjRpogzZv39/e3t7k4mMHTu2WrVqRYsWRXs1btxYyHACW1vbQoUK1axZs0qVKt7e3i4uLlOmTDFXGEIIIYQQQgh5UVCQIiR7sWbNGinQ+Pv7awMoJRiDcWMdXMS1l5eXra2t6xOcnZ2RiFhL9fPPP+N68+bNGRkZ69evx7X8Ktz9+/fHjx8fHBxcrFgxsUcPgYWXviB14sQJ+K5evRrX3bt3f/fdd4V7mzZt4O6qQOyP09albt26lSpVkgKc8kSqq1evovzNmjXT12tUgpTSMu+//37z5s3lbdeuXUuWLCmuhSAlqwmmT58Olxs3bugYZNasWbgWq8xU6AhS8+bNQ6z4+Hhl1eAyd+5cgwWClOTPP/9855137O3to6OjDUa5DdZTBujVqxdKq5/I8ePHvb29CxUqJBdJKbfspaen9+nTB+VBXlmWhxBCCCGEEEKeBwpShGQvkpOTzzxBHMutQiW74FoKUvny5QsJCbmmQOogu3fvzpEjR65cuWxsbBwcHKQGkZmZWaVKlWLFiq1bt+748eNbt261XJACJUqUaNasWVpamru7uzyZqH379j4+Ptf+jcnVXjpnSLVu3RqJJCUlITU3NzeTMpDhxQlS48aNg0tqaqqOQRYtWoTruLg4bTF0BCmx6U8eZC5zX7hwoeFpBCmwf/9+BEaCuP7www8DAwOVvg0aNFCdKmWSUaNGIZHff/9d3KoONY+KioLvxIkTLSkPIYQQQgghhDwzFKQIecPQEaTEkUwmY4WGhnbu3PnRo0exsbFKbSgyMlJ5bLa4lUrNli1blEdKGTSC1IQJExwcHFatWoVgSFk4jh071sbG5vr161nWxZwgtXv3biQoTqFCso6OjuaORX8eQWrq1KnSt379+kWKFNE3iNCDxOHuArmXsHz58uZOXj906BBi/fDDD9Llu+++g8v58+cNWQlSqr2KQh1bu3YtrkeMGGFtbS0FxwcPHri4uPTv399kOkpgIiRy8uRJcasSpPbt2ycP3iKEEEIIIYSQlwcFKULeMHQEqQ0bNlhZWfXv3z8mJiYpKeno0aOjRo0SXtOmTbOxsalcuXLTpk07dOgQFhaGMAbj9jQ7O7vOnTunpqZevHjx/fffVwpSJ0+exO3w4cMjIyPFci2VIBUbG4sAefLkqVGjhnSMi4tzdXWtXbs2oqMYUVFRM2bMUC6zkpgUpNLS0gIDA8uWLStPdBoyZIi1tTWqo2+NpxWkbG1tJ02ahCqI/Xri7CQdg6A8KFiBAgV27NgBg0yePFl+gK9Fixa+vr5nzpyRH/JTArN7eXlt2rQJeYWHh3t4eMCMwktfkCpevHjPnj1XrVq1bds2tKC3t3f58uURBV5oPkdHx/r168MsZ8+eRbO6uLiI3XwAzSFXSzVp0mTixImnTp1CCy5atMjZ2RlNI7OAEWCZ/fv37927d8GCBagdKpKQkGCyPIQQQgghhBDyoqAgRcgbhq+v7+DBg+UtrpUnB82dOzd37tziCCpHR8fWrVsL9/DwcFdX13Hjxk2cOHHYsGElS5Z0d3cXi5gWLlwojnnC3++++87Dw2P79u0ywdDQUJGa2CnWoUOHypUrK8tTu3ZtuZpJcuDAgcDAQBHR2to6KCjI5JfyGjRo8P7776scv//+e0TZt2+fdLl//763t3e9evX0raGyTI0aNVq2bClve/To8d5774lrIUiNGjWqaNGiooRdu3aVC8d0DHLixIl3331X1MvPz2/jxo3C/bfffkMwOBYqVEhbyJiYmODgYBHLzs6uU6dO8it+jx49Qu7ffvutNhZYsWJF1apV0Y42NjYlSpRA7ZRS0ZYtW/LlyyeSDQgIUFoMgeUZ9qiCOAkL2Nv/H/buPL6K6v7/OLtVXBAFFAFb3Nu6VFG0Fpe2Wh+2VamiaN1qtVb7tWrbb6st+CXsyL5vkR0ksivIKjsoKoZF1oQdAwFZQxIIJPf3ftzPg/Obztw7CSFeEng9/8jj3lnOnHPmzJk5n8zMrfzss896n390s5QNVbLy5n26EAAAAAC+IwSkgDLmyJEj3h+D02ff65k0ZePGjZs2bfJOr169urtbKnL8VUEffvihS3PDhg05OTmR6A1Kvi3u2bPH3vYtx44d8z1HVlBQ4N6Q7ZORkZGWlmY/wxdTMDXLv90E5FvS+8pzx1sbvppRylrLm6wrmnuHlCamp6fv3bs3mGxIhWzdulXV6/0ZQducJsbMpPn222/XrVuXlZXlmx4srM+LL7742muvxZyl/Guj27Zt82VGefblRPtCS3orBAAAAABOIQJSwOmvoKCgWrVqjRs33r9/fyT63vQ33njje9/73vbt20911k6N4EvNS7MHHniAt4wDAAAAOM0QkALOCBMnTqxbt2758uWrVaumv/Xq1XO3R52BylZAKjMzM+QuMwAAAAAoiwhIAWeK/Pz8DRs2pKam8pIgVcWyZcsKfVYOAAAAAPAdISAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIAUAAAAAAICEIiAFAAAAAACAhCIgBQAAAAAAgIQiIHUCcnNzP//88/nz52dnZ59MOhs2bPjiiy8OHz5cgksCAAAAAACUFadzQCotLW30cR9++GF6evrJpJaZmXnbbbfViPq///u/d95557rrruvcuXMxkrrhhhuUyOTJk4OzJk2a9MMf/rBp06bBJX2zAADfqZycnJUrV57qXAAAAACnp9M5IPXYY4/V+G9NmjTZs2dP8VJr27atUrj++uvbt28/ceLEBx98UF+fe+45m5uSktK8efMVK1YUJSkLM3300UfBWW3atNGsq666Krikb9aSJUuaNWsWMxEAZV1BQcGOHTuOHDlyqjNyssp0QdLS0or3XwcUW05OzrZt2051LgAA34n8/PwtW7aU0auCYsvLy9O1kK6ITnVGgNLodA5I/frXv65Ro8ajjz46ePDgf//737Vq1dLXV199tXipPf/881o9KSnJvmqg8sEHH2zfvt27rf79+xclqZCA1N69e5XssmXLgkv6ZlmA7Nlnny1ecVD66Wy9atWquXPnzp49OzU19SQfFC3ldJKeMmVKEUO6RZGenj5p0qTc3NySSjDBsrKy1Nu4473silcQNelNmzZ5p6iL++KLL3JyckJSy8zM/PLLL31PMX/99dcbNmwoofz+f3v27Jk2bVq3bt0yMjKCc/ft2/fpp58ePHgwPBFdeesonjNnjg5k7126OoMsi1Kb37x5c7yLVG1lwoQJ33zzTfGKsHPnTmVy1qxZCxcu3Lp1q2+uNqpdMG/evAULFvj2xSmk/asGE2+scpIVEvTZZ5998sknJZVaTGrSS5cuVTeuvaA9Em8xjVUWLVqkxdQkjh075qZrN61Zs2bx4sW+UuuMkJKSoqPmO8x6ySnxHj7xTr7tFbv7Kl5vWTqV7BFX4h3CGSgxdei9JNu9e7c6+fXr1xd99QR01N81HekqtWr7VGcEKI1O/4DU//3f/9nX//3f/9XXK664IhJ9N5OGGcuXL9f13+uvv65Rhy3z7bff9u3b94033vjb3/42aNAgDaVs+uDBg++44w6t/vjjj/fv318diq4su3btqmsLm3vLLbfYDVOaq2vHSPRicezYsW+//fZf/vKXFi1a2ERjYSZ1zePGjdO2lEN3OaJrDmVs4sSJ3iUtIOWdNXXqVLv/66677tIWLWCh/Gi624q6by3/1VdffXc1jO+OmkSnTp1atWo1IEof2rVrdzo9PaSWuW7dOvc1Ly+vdevW48ePL6n058yZo3O/juiSSjDBTvuA1AcffKAm7Y0Yvv/++507dz569GhIahrPKzXtXDclIyNDU9Td+ZbUkH7u3LkaARYjz/n5+eq9lWzHKH3QV+/cxYsXt2nTRtPDnwTfs2dP7969O3ToMHLkyKFDh6q8LqysI1rTe/ToocNc6ei8c+jQoWAK6vY1txjduKpR5xet26VLl/fee09/9VnZcIPhgoKC5OTkli1b9urVSznR3JhPkSeeNyAV3InFrpB4dPpW5ZRUakHq5VS93bt3HzVqlHZEvP9aTZ8+XftiYJS1B3WJNkvXJ/369Zs5c6baT1pamlslJSVFB9F3l/OTtHHjxiVLlrivJd7DJ97Jt72id18+xestSwNfM4iU9BFX4h3CGSgxdei9JCtGQOq77qiLKNiei46AFBDiDApI6QpPX2vVqqUL8REjRujz7373u0suucTdNqXu+Morr/Q+4veTn/zkm2++0Snf9+jfokWLXnnlFX3417/+pUsE31zrNO+++27vxJo1a2oty4mFmW6++WY395prrrELTctYo0aNvEtaQMo761e/+pU38UcffdTm1q9f3403fvGLX2iKSp3IOkeJ0Nla1+4aurj7LzSq1/lYI5aYN2uURRpi+QYnGrGU4M3MSqpM3xB+2gekbGw2b948+5qZmVmUgVkkOjbTCN91dPoac2CmnrnYF9mff/65jjVdetrXPXv2LF++3M0dNGhQjx49Zs+eHR6Qys/P7927t45iF4TSFDdX6c+dO9c+b9mypVWrVlOmTImZTvGa8cSJE5U9FcRNWbFihTbqIms6QKZOnWo9jA69IUOGaPmQ+3cSxhuQirkTS/a4Pnbs2Hc3qlfLadu2rfaF69m8bcBLgxx3r5OOApXampyW17lALUSf1ULGjBljy6SmpqrZl+YbZKZNm+YbQJZsD39KnHzbK2L35VPs3vKUCzaDEj/iyvSJvpRIQB16L8mKEZD6Tjvqogu256IjIAWEOFMCUrqutbc+3XfffZHjwR257bbbunbtOmHCBPWVDRs21JQnn3xSvcacOXMsGGSxqsmTJ1uA6bnnntMVoQYYLiBlc21dTdRcezLixRdf1Fa++eabXbt2KU3NfemllyxjlnKdOnX69u2ryxGLgv31r3+NFDkgpYvXZ555Rl9/8YtfaItLly49cOCAEtQUG9Vs377dCugeKkQZMm7cOA1QfU8D6TSmk5kL4mzatMk7GFYD0LDNTtg66+uz/up8r5Yc8y4hnd3tSaIFCxb4Gonav7alRq5mpjFz8EkfbVfTFy5c6L1zIeZGlZ+1a9dq4UWLFtmYypbU2FjH3XvvvacPWsBtd8eOHe6zxnKHDh369NNPdRXuGycr81pA07/44osVUcFzvEZ3GrPZ+EdJaXnLufKmfHqfiIlE+4eVK1cqQQ0C3Y0Jkeh9jvasjS79vZtwCa5bt06lU03ahlRXlr5v2JmVlaXKVDpK37dpL1XXsmXLlMLq1au1931xnJBEgvmP1wa0CS2jRJSUuwPUaAdpnyoRbd2bf1tFiagqvP+iD0kqvCCOer93333XLlLV5n0DM+V58eLFSt8K4qbb2ExZjRy/rg0OzLT3La4xadIkNQ/vO4niJeultZSxmLNE9aB8qrrCA1Jr1qzRAvEiyN6AVCQanx0yZEhwMeVQm3PVG35ceMuoTQcjXCpXvAti1YZmaX/FK45jedCmtX+9jxrF7BYi0SfRVOHKretJ1IpUKO8zyOoE3D5yAamYO/GEKsSOX01X6ayj8B7dRvvRjYsK7Sh8K8Y8XrymTp3asWPHEx1HWatWpemziqbP9u5L9dXWSLQH27VrV+jvtGzevHn+/PnaKapebySo0B5ee1BF8z1kGq9LiVkPavzDhw/v0KGDVbsdaN4eXnnTiq6j8N75FSlaD39CnXDMM1FIoXTZpl5FFa4uTlu3m3mLdzD6hHdfIefl8N4yRLxmoOmqK21RBdQWVRxfuDBmM4jE6QGK3gy8R1x4M4hEr3OUrI4F2xHBC1rvTnF7UzlXkbWW77ZTZUybVoJq+bpkctPjVbtLUO3WWqNFEtUataTS971IIeScaFTDSlCty01R0/I2SG3I3QivxHUNo1wpNd/bb4Odqq9O7GpQG1I+VV7vg71W56oZzVLVxavDIhZZh4yyZ0ec9/IguBXvJZk3IBXcrdoXwecHY3bURTn2w7u7ePmPxGotMdtzJHS/66sOcG1XZSQgBYQ4/QNSN91008MPP3zdddfZbUr2ELIFd77//e+7Xk+nQ4vguKsKjZb1tUGDBvb18ccf11c3SvEGpCKFvUNq0KBBmvvggw/aVwszDRgwwL526tTJ7saKFDkgFYn1DqmXXnpJU1544QV9HjhwoHeLKFt0wnv//feD0703LY8aNUrtys3ynursZK/haOvWrbW8DWy8Dh48qBaiJqThTa9evbTwrFmz3Fw1SDU5NXUt07NnT83VZYTN0ll/7NixGguNHj1amWnVqpWbFdyoTufdunXTdbOympyc7K7CdV2ijWoxpaMPSsdtd8aMGe7zhAkTlAcdJvqshd0bNDSk1Oi9a9eu48eP7969u5Lt06eP95FY473PQp81LHQJarquKtySyrkyqTpXbWix3r1723RdAHWKGjp0qP6qutxw3RJUBrRi3759leDHH3+sOlQiln5KSopLX1dm2q7yPGbMGKWjBWK+2UrlUgeikqpCtLzdseLiOCGJxMx/zDag/a4U9FWJaDEt7MIlGuGogKoW9TParfpr03WlpVV69OgxceJEbdQ9TRySVHhBvOz//BrOqUm0bNnSOzDTdbCyoeah1ZUx7WiVyM3V2MzG+ZMmTYo5MNPhYE1XdaVEpk+fXpRkHTVUrRv+vptCA1KTJ09WvcWb6w1I6Ypfuy/mHVK+/ySHHBdedouNG/w79miGO2a9rMhFeZu4tqtm0KZNGx2D1k2FdAuqQ33VdLUTLWAdlE672pa7AU20R1zTckduzJ1Y9ArRYMyOR7VtbVqz1GL379/vK45y7s7F4R2FV7zjxUeHxocfflholfroiHD7Qr2o0re6Uguxm61UyepwQlLQWlrSPQOoD+rEXDAupIePRP/dpS0OGzZMO1eV5vIfs0uJVw/KoSrfHggV2+/eHl7VrixZ32LnIA1cbVbRe/gidsLxzkTxCqWxpXI+cuRI1YDmqqKsGRTvYAyK132Fn5dDest4wpuBdoH2l/pq7QJ7UFT5cevGawaRWD3ACTUD7xEX0gxErVTJahnba9qJwbcIeXeKfZ46darW0ir6q33qYlIquC6ZVBb9VbPXXAvThFS7S1AdiJZR0VRdq1atat++vb6qBpQld7NbyDnRS03aPWmrXa9E3CWHqMJVIZFo4FKz1PJVw6ocbVrXALZMzE41WCc61lQo7QLlRHvBnQ5Un9pTqgHtR82KV4dFKfLSpUu1czVWUiZ1IHjv2QxuxXtJ5t2iql3FdJlXF61Z9joUr2BHXcQLsJDuLiT/MVtLzPYcst91zGp5pawV7YqIgBQQz+kfkDJ16tRp3Ljx/PnzbZYvuBOJ/uu4xvE3TJl58+bZI34Waz/RgJRO50888cSPfvQjeypQHnjgAZvle6m5PujrZZddFszYCQWkdKq2kmZlZT3yyCPemBfKEJ0R7WIiOMsew7H/BRUakNKJ0G5VCP73XpfROmu6f5qp5XjHovbuKrtxSevqckHN3i6adSLXadX9f09XALpMsauT4EaVz9WrV7t/uirzdl1igo/s+QJS2pBdryh9XQNpeGCzdC2iqyK7ylRd6UCw/7/5+AJS+qwjyL7acN0Fo3X9p2tE+7+fiqkr/kj0X6a6ClTZ7fJd07WY8u9NULvAqkX1qa86/C1X6mfcuxIsHbsHMxK930E15r01xlGPobXsolNF1oWpi+OEJxIz/zHbgFLQlZ/tL03R5ZG7K0dV7a4ytVGta3s5PT1dn11Tcf8dDUkqpCBBujTXztXlr3dgpqrTNZ9rDLpC1VzvmN/GZhpVqpHEe6FD8GmvQpN1tJe1N7W6yuW7ac4pNCBl19lq9tqKjTrsn7pGOdH1ugbAc+bM0SW1rpVj/mpBcAwc77jw0tV5Uqz3gttdlt5X2Bi1Kx2PSq0oT1TZS6/cA2WR0G5B1/ruMNceseWLGJCKxNqJRa8QDWBUq1aiDRs2aK2YwUffOCeko/CKd7z4alV7WUMdZUlHog0Og1FCR1Wq9qD8qL/1/hdhypQpGhHpMkCJKDMasau6YrZJR3vEW0tWfBeFCenh7RhxAzY7/C3OErNLCamH4LMtvoCUNcWCKA0gNQC2NE+ohy9KJxxyJopZKB2wLp86ObpSFO9gDIrXfYWflyNxessQ4c3AdoG2YjVjzyBbaw9pBpFYPcAJNQNfQCpeM7DbPF3m1ZOMGzcuWMZgMEVnQ7ufSMeavrp3ZeiSXoVyN+OsWLHCwtMh1e4StCsrq087DCPR+3H01TXOkHOilypE3aOVUX1gUpRtXd2OaxIHDhxwd07pAkA9gHtcN2anGqwTNRVr/wcPHlQBdaR461z9iSrc1o1Zh0UpsirT1Zs+aNYXX3wRbyvxAlK2CXcrgLo+9U7Bh5GDHXVRjv1IaHcXkv94rSXYnkP2u9qzFrZ7plTkrl27EpAC4jn9A1Jvv/12sGsLBqR0MraokLtqmTx5ssV37OsJBaTUa9sDdK+//rqGi6+99lpIQEoXrPp6/fXXBzN2QgEpnbR+/OMfa6KGFrVq1apZs2bItS9KLV2I6KQVM2ahkYlm2VMkhQak3JnVR6vrRKsG76bYZZD7r6DO395/v+tSXqnZtVFycrL31i27sLbQQ/hGI9GbU7SAu4wuNCDlzcOkSZPczSa6XtTVkpul6d5/IzvBgJTrB6yG7f4XG/F6/ytr7F4S75jZruYtAOFL0B7OctcuVi12sWWX8t4jUdco9i9QH03Uhab7av8ntDhOSCLx8h/cHaoK7XcLVxn7H3i8y1l7esLeuauLM+9i4UmFFCTI6kqpeQdmGp9oROqNp9ggwTsG09hMa4UMzIKxjKIk6+gw0V62f7eq2w8+y1ZoQErr6rDS9auWUWXqgNXy7nkBZV4DBl25qq7s/rvgnYyRWGPgeMeFlz2aF4wuZWdn2xDUN91iiKtWrYpXFi/lwQ2NTEi3oFIrh77nTUo2IBWvQtQ9ujTtkI+5s4LjnJgdRQjv8eKlImi6mqiGxOpPVL0qptqS70fWHB3Uqkktr2V0+eF9/bxyrmGbhkzqBNRUVIFKUHU7fPjwmHttcJR3imrDHZUhPbwFE70tR5mxVxcV2sP76qHQgJT3tojly5drXXsu5oR6+KJ0wj7eM1GwUDrwvf2VZcy78IkejDEFu69Cz8uROL1liPBm4NsF1jnYvg5pBpFYPYBXoc3AF5CK1wzshOtuaVT1ek8rvs15gynevlp7xN3bpevz4A2P4dXuS9C6IxfRs2qxJl3006tdWlh0b+bMmToFtGvXzl72t27dungBC1W4Ogf7HLNTDdaJtx7UUJUZ26Gq865du3ofRg6pw5AiB6lhqET2ObiVeAEpTVGf5lYcOHCg9/4mJ6SjDj/2Q7q7kPzHbC2RQHsO2e+qbX3wnm2teROQAmI6/QNS7qXmXsGAlE4Pdh+T6z5effVVfX3ooYfsa3hAyu5I6tChg32dMGGCvt555532VWPvYEDq+eefV2etPqtJkyb6+vDDDwczFhKQ6tixozd7pkWLFppYr1694CyUFRqHJEVvmQ7Osv8f2udCA1LxXhhp/3j0/WCfBgDuEtM7bIgc/zej3dyhVqezb9vj7IfGvNcxvo3qmkmXArqQ0vWTjp0kz10bhQakvHmYPn26pthnbULp6NLN/u9tn4PFDAak3KZtoGj3hNsbPYKDOlvF+xovC6zY0MWXoP2f0wWM7D4Uu6SzwY8qylWaPUARzLA9Fue+et8FHpJIvPwHd8euXbs0RZfaLhF9Vjo27tXfBQsWaPTSs2dP+0U2t64u1i16oqtSu74MTyqkIDGNHDlSrdobFdKlp7LhXcau5Lw3oejqM2YkzgnGMoqSbJA21KtXL11Zel/DESlCQErNftiwYe6rKkeJuIcHvY/s6eJ18uTJ3ktqJzgGjndceOmi2Xu97lhr8V49W0G0+8IfAfPy5SES2i2ot1Htae7o0aPdrUYlG5CKVyGargG/MqBGq+nuphuf4DgnZkfhE3K8OGrSmu7uy44cjyzH7K+8fK+f9ybYu3fvefPmqSAqjlqvRmJaMtiAVXD3Hy+j8by7LSikh9dZQJ/beiQdv103Zg8fUg+FBqS8d3DbUNxuYStGDx8J7YQj8c9EMQuljA0dOlRtT0eQiubyWbyDMaZg91XoedkEe8sQ4c3Atwukffv29lObIc0gEqsHOKFm4AtIxWsG1shnzZql7lEtXNl2nadXMJji3ZtK3B1HMR+LDq92X4LKSdJ/v/NLp0XrOcPPiV5KRDmxClT2Fi9erOs6u7dOla/rIrfk5s2blfn+/ftrK0rQVVTMTjVenRh7Cthu1Qnu95A6DClyJBor15ldY5M+ffpouvcG5OBW4gWkRJeCaiRKzW5TCj6fGwntqMOP/ZDuLiT/8R6i97XnkP1u/8/wXvnwDikgBAGp/+/hhx/WxB/84AevvPJK48aNLT7l/j0VHpB644037KVUTzzxxPDhw+2NVJdccon6OA1C7G4pX0CqVq1ad9xxxz333GMb0qklmLGQgJTOl7biY4899r//+782ce3ate4pRd9/xlCG6DrS/TfM0bBKZ1Z3M7D9iLibW/SAlJ2tfQECpezCQ77zt92kbe8uVcZ08XTAw4Vsghvdv3+/LiLVbrWuRsIafhc7IKXP7lpfFx+6Itels876OvfHvJUsUuSAlF0AeX9DzdhzB95LByugjY2Lfj20dOlS+3ect9Jivktbl5jeIag3jhOSSLz8B3eHXXkvWrTIm4g9JqbLMrUljSWUZ5UiLS0tuCvVE6q27bb/kKTCCxLTxIkTfSMWTVHP6Z1iFe79n7BVcsiP6AVjGUVJNib7n7avCIUGpDTG8I4uItFW7d7S4nupuVWp9x/RJnwM7D0uvKzBBPPmfZrSaHfryvuDDz6I91ruoOBwNKRbiESHNDox2Sts7EEYC0h5X4heUgEpb4XMnj1bn1tG6YP78QSfYgSkCj1eHI1PvP9asMwHj9Yg9fMajfvucVNS2q7qc9WqVV27drWJffv2Dd61pHbuDQpbMd1RFtLD29uyD/w3C0MHu5TwejihgJQFoSwSUYwePhLaCYeciWIWStdO9nCN6BB28b7iHYwxBbuvQs/LJthbhghvBr5d4L2hI6QZRAIFP9FmEBKQ8jaDQ4cO6Xpb66oZJEXfChTzvFn0gJT2qfclWSa82osenQk/J/oo8T59+tgtaWqQagY62I8eParUXGvXRlXw6dOn6/DMzMzUmddbUcFONV6dGHuKzeKYJRiQmjlzpro49T/q0pXJkAM8EhqQsoNX59kFCxbowI8Zby2pgJS3uwvJf8zWEgm055D9blc+3tMHASkgxOkckHrsscdq1Kih3i04S9ffmvXLX/7SO1Fd5NNPP12zZk0L6Nxwww0TJkxwc+1X7dwt2a+//ro32qXerUGDBraivZREJxh7e1TdunW1Vq1atdwtS1qydu3aH374of2+nhZ75513YmbM0rQu0jdLffHvfvc72+Irr7zi8mk/JqjNhf/bH6WZPZrnu13CBpnuykmnZ+/o2l4AUZSAlK4w1Di916n2Tx534tRZ2b1uIBL9aaek43fODxs2zHuDvVdwo76bjHzXELq28P3vt4gBKRVcB6YujpWlkN/AKmJASinoKtz+LezqJ3L8qsV7nWq3Kdm1ctGvhyxsUZSHodRveB9UsQcWLAMhicTLf3B3aEnt95j/9LOLKvdoku/lHY5d1Cr9kKTCCxJTcIhlTc573aamogGSd3xeaEDK9rJ3rF6UZI0vOmNDLF/9FxqQ0tDO+y4M+3+pe6GJLyBlMa/gu3KKNwbWQWdvZfZOzMvL06BRJyNXXiVuA/WQ4ygoGJAK6RYcjTF06W+PxlgDc03CRp4xA1LBnVj0CtGH1NRUpaCaD3k3VjECUkU8XiLRJ6S8o7KVK1cmxXkplY/WcjdcGx1H7dq1s+Cpqs5diiQnJwffbz18+HDvjlZ71iHmRuYhPbyOcbWcmD8QFi/GHa8eNJb2vjQwUuSAVDF6+EhoJxxyJgoWyqbs3btXzdIXUPhOA1KFnpfNCQWkwpuBBafcLTx2yrNoaUgziAQKfqLNoIgBKRW8a9euyny8f+GYogekhgwZ4n19uL3bKLzaix6dCT8n+uhUYv9+UE0qG/ZDtIsXL/Y2YN/9vMH4TuS/O9VgnXifAVdLcCflEgxI6ezpfdu99+VrJxSQUiVoXyupfv36+e7pi1kDJxqQitfdheQ/ZmuJBNpzyH7XKto73qiWvSKAgBQQ0+kckFJ3EPPXrIzGCTH/J6x+SmcLDQ98l7D66n0Cwvc1Eu24dUb3/vSvTjNr1qxxv6XqNqeziL2RVNlTp+l7EsSbMXV23iIE86xzpy+rdq/Wo48+Gq/gKP3sJZSikZhalAYwuubQ4FZXFW5f28+02w/6amRrN9UXJSAVif5fyJ5717oaV9v7jN1/peyVpePHj9eVpcbbGgW507k9qz9t2jStqCatjLlBdXCjNozXpYMarVqp3cnvriFGjx6tKZmZmd6XqRclIKVsK/P22ppx48apZnxHkCliQCoS/VWB1q1bL1261H5LWNdtdpRpE9oFa9euVZ+g6Rofukvbol8PaX/ZLfcaT+pY1p7VhXvMKIb992zWrFm6/tYyGqKrmDZoD08kZv5jtoGpU6fakhprqTNRalYJ9jSZBoFqA0pEo2i3rsYnGtVrYY3NRo4c2atXr/CkwgsSU3CIpTTtZ5LUNrRz7QrSNzArNCAVid51P2LECPuF8iIma1RMXaeuXLlSbVjtzX7W0B0g1mitDWiuPrtfENdVrPcBH9XqmDFj9CEjI2Pw4ME6lNySqhMVfFOUqlGX46qE4Amr2GNgi1B/8MEHapw6Tdi/071hNe01bVSr66BOP84FwbUTVVcx30IYDEjF6xbUbtU4lYiqzp5Ws0dj7FfPdLmvWep/+vTp4x0T+g4u304seoWof7BfzlJXo8S1p2K+vKkYAamQ48XHemm1NDVXtSXtYm3L+nB9bd++vfUS2u/aOzpGlJoKqFIk/fdrBLWztK73XcLKgNqSVlQiwfehWN+rNqxdr+aqMqq92Xu7I6E9vNJUpQ0dOlS1reJrAY1FLQoW7FLC68FeCa+vavxWpUUMSBWjh4+EdsIhZ6KYhbLjQmfblJSUyZMnq9HGjPKHtD31ljp36IgIZtubPV/3FX5eNjEDUn379o35UqfwZmCvndZeUHPSRCWiPNulaUgzCBb8RJtBEQNSupzWKUZdsc47Kp0qM+Z7f4oekLJwsNLRYmoG6hnsqeGQaj+h6EzIOdHHXlOlI9e9pl0b1Vd326PlSr2iKs3eZqgatoqK16kG60SFWrRoka5e7Hk9F58qwYCUei01G5VXHZE9dV68gFQkGqyxZ729N/B6nUxAKl53F5L/eK0l2J5D9rvS1I7TOVd7QQX0XqUD8DmdA1JnoKysrMsvv9zdpYWySxd2uhzXySwpSqN6jfC916a6TLELSnnvvffsXRs23NW6SbFesuvoolPXtS5xDZW9vz9lv2aty3GXuBtFR6I3Ctk7OJKiT867HzAOblRXTnaOT4r+4Mvnn3+uD+7HoXS5qaGmzbIpus52b5T0fo5EL87cVbgNlefPn79w4UKd4zWaVTrB/+XaDWW2Oe9nK36S524UXUPoktfyqYsV9+pW+5Vfm6660gWN99eOvQna7S3uQt/uhXHvQdBX+6U506NHj3i31WgX2+MJFnvSjnBP94QkEjP/MduA2o/9wLlrVO6GHQ2N7GrJ7mBXlVr6SsGu56R3797u5o6QpMILEjRp0iTfk3SR6P0gKqMlriv14LuirJK9P1cfpCZn2XDBjkKTNStWrFCzt5dBqIGp+XlDRe5xHsfdoaaFvXeHqa1qjGfL6MLXvdE8Em3hbnV7QiTmdapvP4YcF0FLlizxZlWNRPXcuXNne3jNXlfvo0y6dZPivF3LlwcTr1uwV7nbEaSLexdP1yFjy9vb3NXXuf8k+w4u304seoVo1KR9rcGY9rI2rR0R86XIGhO656PDOwqveMdLkD3r6naB66nsLgkXcVYT0sHrWqbvZwTU1Xv/yS8ffvihFtN24738SwXXApag2qT3NUzhPbwGhDrSXZNQ5djdBDG7lJB6yM7O1uGQFB0YWyzDu7O81R45HjqxxYrRw0dCO+GQM1GwUJquYaoqRxWovaBmqfzbqxuK3vbsFkXf43JeMbuv8POyidlb6lCK95bxkGagRtWvXz8dGnZ8qa9wv6MXid8MggWPnGAz8O76kGZg92+qeevMMmfOHF3TBptf5L93SnBvKnEX9FEzmDFjhlWvvaPNTugh1e5L0KIz3jfKq4dxz+SGnxN9rGN0t5WpgEnR8IdbQKd1C+3JkCFDlHPvS81jdqqOhXvmzp3bs2dPW1IFdDcb+uo8vA7Di7x9+3a1RqtPHWLaR+4lJ8GteA/Y4J6yH3YM+aXXkI46/AIspLsLyX+81hJszyH7/ciRI9ZuRXvT4q3ezhaAQ0DqtKLrXftlQGLwpwedcXXOC3nkRJfp7jLRG64qyktP7T+fwdccuP9/+t4F49i7J9XGfM9TxNyozuIqguXft7yudbyJ2Dv+g59ti24xne+DL9+J+dbbkAoJZlX1oHwGnxDRdG0i+MhAeILB9HNzc5VO8D3TwcVUtzYWDWYmJJFg/uO1AU1XIsE9q3W1abvI86ajytduivn4RrykCi2Il3fn+qgFxtwpbushyRoVRweI7/AJT9bRmD/mbwuEOBblnWK1F7OKisgXho53XMSjTbvCqpG8//77Ol5i/n6Q17Bhw+It48uDNzMxuwXrAYI7y+6nsPZmz854Z3mX9O3EolSI95f+jI1hYr5jOGTTIW0s3vESc0mVNHj7m69Xsf4wZlPR8D64el5UyHaVoLbrThBOoT185Hiz8eUw3u9RhtSDNuHq3LuzfNXuTbx4PXyhX+OdiXyLaezdtm1bb8VqJOx+QLnoB6NSCHlQNLhdJ955OeZWIscftfMGu33iNQN3y4lOKNqDMXMbsxnE7AGK3gy8uz6kGaSkpLg3ZpouXbrEfK95yIk+mL5Vb7AfiFftwUblLXuwKkLOiV5aK9jLBRc7dOiQxS/cI2MmXqdq3P1HWkuLBR/mCD4dEn6xFFJkfVbTsk3YT8sVbysqkY674C/Axst20Y/98O4uXv5NvNbibc9ui/H2uya6IFQRf44AOAMRkDqt6Oy1evVqdYunOiMow4KP5JQeulzo0KGDLlVteKZruGnTprVp04Z/OqHEjRgxIviW8dPAxo0bg7c4eW3btq1du3bBEWwZYj+l5H4XUkMCDW7d/V9nOHr4EJ999lnLli3dvUJqSJ07dz7RwHQiqZsKeTYwRMzXEpUeo0eP7tGjh/1vVa3CHqGK+ftr8Cn0pQ2lkPcdnSWrNHd3ABwCUgD+Syk/f69du9YeRHJP/BX6M+pAMRw6dCjkZbqnMR1QIS9rLyvmzp3brl27Vq1a2SNLycnJ/KvG0MOHyMvL++CDD1q2bGk/4m5P64TfiXYKHT16dM6cOcXLXikPSOlotdfe6fjVUex9mh7hymJAqn///sGfli4Rpby7A2AISAH4LyHPC5QS9nDQjh07eDQVQDwarmtspo7i0KFDpzovpQg9fKFyc3N37tyZmZl5GoekDx48WPpPoMqkmoFabMzfIEJMOnzsreenOiMnQLs45EeoTjLlUt7dAYgQkAIAAAAAAECCEZACAAAAAABAQhGQAgAAAAAAQEIRkAIAAAAAAEBCEZACAAAAAABAQhGQAgAAAAAAQEIRkAIAAAAAAEBCEZACAAAAAABAQhGQAgAAAAAAQEIRkAJKnb179+7atavUprlz58709PScnJzwxbTAtm3b7HN+fv6WLVuOHDlSIhkAAAAAAJR1BKSAUmfs2LEDBgwonWl+9NFHSUlJ7du3HzduXPiSX375pZa0INTu3bv1ef369SefAZOenj5p0qTc3NwSSa2goGDKlCkrVqwokdQAAAAAAIUiIAWUOicfPNq7d+/cuXMPHz5cgmnKgQMHkpKSPvvsM332Jh7TdxqQmjNnjhL89ttvSyS1vLy81q1bjx8/3r4Gaw8AAAAAULIISAGlzskHj9auXZuUlLRnz54STFM2b96sZLdv316Uhb/TgFRBQUHJPgCYl5enNO1zsPYAAAAAACWLgBRQ6ljw6NixY8uXL58zZ87q1att+uHDh5cuXXrgwAG3ZF5enm+KbN26ddq0aUlJSYsXL16xYsXevXu9aS5btkxppqWl+TaalZW1ZMmS2bNna6NaLJirbdu2zZgxQ8nOnz9fybp4UHZ2tvKgFT/77LN9+/a55cMDUjHXUh400b2dKj8//6uvvrL8G6WwefPmSPQmptTUVAshaRNaTH8zMzOVN5X60KFD3pzv2rVLW1mwYIGKppyvW7cuWLqvv/56x44d8WrPpKenz507d+HChdqQm7hnzx6tqw9KVnNXrVpluVI6qmdlTKVwCx89etT2qYrpfd5Q+zGYJQAAAAA4jRGQAkqdsWPH9ujRY8CAAfo7cODApKSkjz76KBKNvLRt2/bjjz92Sy5fvjz45Nr06dO7dOmi6d27d+/Vq5eFSyzN/v37668mau6CBQvcKps3b3733Xf79es3ZsyYTp06adPB1zPNmjXLku3WrZtSsI1u2bKlU9TQoUP1V9lz4bOQgFS8tfbv36/FPv/8c1ts06ZN+jp58mT7euzYMS05b968mIlPnTpVc5OTk/VX+XQxKVVRy5YtR44c+f7772sxFXP48OHBOlc2ZsyYEa/2CgoKVIHt2rUbPXr04MGDW7VqlZqa6orZsWPH8ePHd+7cuW/fvlpRO0h11aFDB1WjvqakpNiSR48eVQ2r/idOnKhZ+mvTN2zYoMW++uqrorQNAAAAADg9EJACSp2xY8cmJSXNnj3b7rX55JNP9DUjI0OfJ0yY0LFjR3fTzahRowYOHBhMIeYje5oyZ86cgqiUlJR27dpZOseOHevRo4dSts0dOnSoffv2c+fODSabnp6uROxOIrfikCFD7Aafo0ePDh06VNmzOFG8gFT4Wv369Rs5cqSlrxqw+Jd93bhxo77u3LkzZuLdu3e38ip7+rpo0SJbq3PnzhZpsprs0qVLzDp3AamYtZeamtq6dWv3M4WzZs1SFdlLpiwn2hEqiO0gfe3fv79FxObPn+8ihlZ77par7Oxs+7BlyxalZpEvAAAAADhDEJACSp2xY8f26dPHfc3OzrYH5SLHbxqyB+5yc3NbtWq1ZMmSYAoxA1LeNO3WqoMHD0YCYSZJSUkZOnRoMFnfkpaZjRs3ugXsZh8tFokfkApfa86cOW3atLFYVXJyst3WZJGg6dOnd+/e3VYJJu7uzJIePXp8+OGHkWjwS7OWLVvmLbVFjnzCA1KWE/c1MzNTC9jDg5YT95jhmjVrvK/ZsiWt4BkZGfo8b94870N8AAAAAHBmIiAFlDrBF5C3b9/enlwrKCjo1q3buHHjItHbdlq2bOl7X5Ip9KXm69at0wK7d+/W5y+++EKf27Rp0/Y4JRvzxitfQMpiMRbVMvbMnRKMxA9Iha9lURstmZubq2xs37793XfftdudevfuPW3aNO+m472gSiVVed3noUOHKrWcnJzBgwfHe7N7eECqY8eOyoyrH9WVrzjujVp2G5eron379nmDZbNnz1Y62oMLFy6M+aIuAAAAADhDEJACSp1gQKp169affPKJfZ49e3abNm2OHDkyfPhw93SbT6EBqfXr17uA1NKlS/V5y5YtBzxi/oadLyC1bNkyffW+yNxiQ/Y6pHgxo/C1pGvXrlOmTFmzZs27775bUFAwfvz4IUOGWGRn06ZNtkwRA1JaffDgwUowKapfv37usTuf8IBU586dU1JSvPXjAmonFJCKRKNvs2bN0g4dNWpUzJwAAAAAwJmAgBRQ6owdO7ZLly72iiLZvn17UlLS8uXL7euePXv09dNPP23ZsuXKlStjpmA3QHmDLyEBqS1btujzqlWrCs2YLyC1detW7wNxkeM3W1my8WJG4WvJlClTunXrNnny5DFjxuirytiqVasFCxZ06NDBPexWxICUzdq7d++hQ4fcO5ti8gakgrU3bNgw7wOPXicakDL2bime3QMAAABwxiIgBZQ6Y8eObdmy5YABA7Zt27Zr165+/fp17NjRXqtkBg0aZE/YeSd67dy5015h/u2339q9SCEBqYKCgv79+3fr1m3Dhg25ubkHDx5csWKFvdHJJ/i2qeTkZOVt7dq1+/fv//rrrzt06OCelQuJGYWsFTn+Sqn27dsvXbpUX3NyclQb+jphwgS3TBEDUocPH+7atWunTp2GDx+ekpIyefLklStXxgwDeQNSwdqzN0NNmzZt79692ug333zjXvpe9IDU8uXLU1NTVZzs7OyRI0f26tXLltmyZcu7775blIAgAAAAAJw2CEgBpc64ceMmTJgwbdq0li1bJiUlde3a1T2qZlJTUzXdG6AJsp/Vc/ciKc3k5GQ3Ny0tzftU2oEDB4YNG5Z0XI8ePWIGpCxUlJmZ6abs3bt38ODBtlarVq3Gjx/vbuyyJwEtZGZ3ddm72MPXikTfRN6hQweV3T3WZwuvXbvWLROSeCQa8LLXbGmBgQMHDh8+/NNPP503b96kSZOU7KxZs4JF69Kly8yZM+PVXiR6G9e7775rE1u3bv3BBx8EcxI5/sp2V0WqWH1ds2aN1XmnTp0shd69e3/zzTe2jIX5LPoGAAAAAGcIAlJAqZMfFYneHLRnz56CggLfAnYbzoYNG8LT0epZWVm+NJ3gj83l5uZ+++237gfjYor5E3XZ2dlaMfjaKe/CwRXjrWW59b7zWzUQXD0kcVfYJUuW+O4jGzduXP/+/YNb1OZ89eytPZeNvXv37tu3z/c+ct/WQ74qBa3uS1ZiVgIAAAAAnMYISAFlz5gxY7p06RIMVMHns88+a9mypbu/bMeOHZ07d546deopzRQAAAAAgIAUUNZkZ2e3atXK+3wZ4snLy/vggw9atmzZNkofxo4dG+/FWwAAAACAhCEgBZQx+fn5mZmZvqfGECI3N3fnzp2qNJ6MAwAAAIBSgoAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBQAAAAAAAASioAUAAAAAAAAEoqAFAAAAAAAABKKgBRwBikoKFi2bNmhQ4dOs219d44ePbpw4cKTKcXGjRtXr15dglk6Y6Wnp+/YseOEVqHyAQAAgFKLgBRwBtm5c2e5cuWGDBlyyre1ZcuWXr16vf3224MGDdq7d6+bnpWVNWrUqGbNmnXu3HnlypVu+uzZswcOHHjs2DE35fDhw/369Vu+fPnXX3+tDwcOHPCmn5KSMmPGjJMvxdq1a1WKyZMnx5zbvXt3FSE8hSeeeOKWW24p3tbz8/NV6hEjRgRnqaJUt//5z3+6deu2YcMGN33q1KlDolSNX375ZfG2Wzpdc801zz333AmtcjKVDwAAAOA7RUAKOIOUkoDU2LFjK1eufPnllzdq1KhatWqXXnqpTU9PT69Ro0atWrXuueeeiy++uHz58sOGDbNZKSkpSq1v374ukfbt22uB1NTUFStWaNY777zjZn311Vea0q1bt5MvRXhASvm/7LLLwlM4mZjIzJkzy0UtX77cOz0tLa1mzZoXXnihMlC3bt0KFSq4+4CqVKly/vnn16tXT3O14u23364dUbytl7i8vLykpKSvv/66eKsTkAIAAABOJwSkgDNIKQlIXXLJJb/5zW/y8/Mj0RudXNRp1apVgwYNstug9u/fX69evfr167u17r777osuumjfvn2W+Lnnnvvyyy/brEcffbRatWoHDx50X7WJ3Nzcky9FeEAqLy9P+Q9P4WRiIs8+++xtt92mkv7jH//wTm/atGnt2rWtKkTZc1GnihUr/utf/7LPEydOrFSp0pNPPlm8rZc47VNVZnJycvFWJyAFAAAAnE4ISAFlzOjRo9PT01esWNG8efOZM2e66dOmTWvRokX79u29T7pFohGfoUOHauFx48ZlZGR4g0QjRozwLvz5559rGe+6mtK9e/cOHTqkpqZ6Exw2bFizZs169uzpu/smZFvOoUOHNF2rF1rSxx9/vGrVqu6rilyhQoXXX39dn//4xz9eeOGF3377rZulNFV2fV6zZk358uWVbV9qq1evfu+9944cOeKmbNy4ceDAgUePHrWvqgqloDpUTbplXEBKc1u3bt25c+fMzEw3d8GCBVOmTHFfjx07pq9KRDWzfft2mxiMicTbUz7Z2dkqfr9+/Z5++unatWtb/M4owZ/97Gcx1/IGpOSRRx6pXr16zCUXLlyoPLRq1Wrs2LHeZyFzc3O1f995550BAwbs378/uOL8+fNVcO1r7Vzt648//ti3gPaL1tUu7tat2+bNm23ihg0b+vfvr8p84YUX1PA+/fRTt3zMmjdTp07VdFWCmk1IQGr9+vU9evRQnpOTk715tsrPy8tTiZRVlbQoWS1eUwEAAABwQghIAWVMrVq1nn/++bPPPrtu3boPPfRQJPqmoaZNm5577rmPPPJIo0aNKlWqNHjwYFs4Ozv7pptuqlKliqZXr179rrvu8gaJqlat+p///Mel/PLLL19++eXu65tvvqmFtXqDBg3Kly8/evRoTczIyLjxxhsvu+yyxx9//Nprr61Ro8ZXX31VlG151a9f/5JLLgl/dOvgwYN16tS5//77vRP/8pe/VKxYcdSoUcpPnz59vLMeffRRZSY3N/cPf/jDpZdeGrw96pNPPlF+xo8f76a8+OKLyoYFenr06FG5cuVf/vKXqlIVQbNsGQtIqWLPOeechg0b6q/KvmvXLpvrDTbl5OT89Kc/1bp33nnnlVdeqSXt1U7eZUL2VJCKqcLu3r176tSpysOsWbPcrBdeeEGzUlJSgmv5AlKPPfaYNhdc7KmnntLev++++371q18pG/pr01VvN9xwg3bQc889p2zHDACpRPfee6+awRVXXHH11Vcrb23btnVzFy5cWCvq5z//uf5qKxblVG5VLVpYE6+55pq//e1vtny8mpeXXnpJy6v5KT/aUM2aNWPmZ8CAASr1HXfc8dvf/lYNT3vfvZVMWdW6Koiyeuuttyo1pVloVovXVAAAAACcEAJSQBmjkbNGy8OHD49EfwNOfwcNGqSBsXuL0FtvvXX++efbS7579uyphefNmxeJhng0ii5iQGrBggVasnPnzvZ1yZIlFhB55plnfvjDH9rDcdr6z372s7vvvtuWCd+W19y5c88777xKlSppML9x40bvrHXr1ikd5ap+/fp33nmnu2nF7N2796KLLlKyN9xwg/emnkj0phVN79Chg6qiR48ewY3m5+fXrl27SZMm9lWZr169+ptvvmkbrVixoqrRZk2fPl1JKZOR4wGp73//+2lpafqampqqrx07drQlvcGmVq1aVahQQRVlX0eMGLF161bfMiF7KuiBKMvqxRdf7I3F7NixwyJB99133/z5871reQNSqttzzz33scceCyY+ZcoU94Sj9pGSslxZ2d1b0t09aF4qkZZp3rx5QVTjxo21N2135OXlacfdddddOTk5kegdcz//+c9r1KiRlZUVifXIXkjN211vqtVI9BcbVVf6GjMgpTp3rUgfvMFKy6qak1LQ13//+9/6aiHUkKwWr6kAAAAAOCEEpIBS5/BxGjMH59aqVevxxx/3TmnYsKHdKmUsNGNxinvvvfeOO+5ws7Zu3VrEgNQbb7yhud6nliLRp+00Gu/ataub0rNnz0qVKlkwInxbPps2bXrmmWeUWuXKlbt06eKmT5ky5c477/zxj3/8ve9979Zbbw0+DtaoUaN4gYnHHnusQoUKMW+PMn//+9/PPvtslSJyPJRgjyL+61//uuCCCyxmYapXr96yZcvI8YCU90nG+vXru5tivMGmm2666b777gtu1LtMyJ7yyczMVOUMHTrUvr7yyivnnntudna2WyArK6t58+bKtlJ46qmn3KustJY299e//rVJkybnnXeecrtjx46YteGsWbNGiUydOjVy/H3wKrsv3ucr0Y9+9CP3dfjw4VrFHlGcPXu2Pn/yySdurr2XXbUdiRWQCql5/VXbsJ1lfvCDHxTlHVI1a9b85z//GTOru3fvVgZat25daFaL0VQAAAAAnBACUkDpMnr06HLHeV/p7dSqVUujZe+UGjVqVKxYsepxGkhrXXu30RVXXOEdw/teNB4SkGrcuPF1113n2/Tq1au1epUqVdy29LlChQp2r034tmJKS0tr2LChFpsxY4ZvllZv1KiRyrVixQo3cdy4cVr44YcfLl++/NKlS32rfP75577Hx3yWLVumBd5//319/sMf/uAK2KRJE02v6qGv9h7x4EvNb7755ieeeMI+e4NNF1544SuvvBLcqHeZkD3l0717d5Vx3rx5y6L69evncu61f/9+FUSz/v3vf9sUpX/11Vc/+uijzz//fJ8+feK9c/3AgQOqKNXwVVddVbt2bW8ZmzVrpn1ar169Dh06+CKSwRLJRx99pNVVUfpsb4nKyMhwcy0uabcsBQNSITX/xz/+0fsAaST+S80LCgrUzB544IEf/ehHWkWZdwdI8AVe559//p///OdCs1qMpgIAAADghBCQAkqXnJycr4/btGlTcIFgQOrSSy9t3Ljxdg83zL766qtd9CQSKyD19ttvu7negNTTTz8dDIetX7/eHljzbss91RW+rXiUghZ74403grPmzZunWe3atXM1U7du3d/85jeHDx/+/ve/770by2zevLnQH3H74Q9/+NBDD+Xl5VWrVs2l/OSTT15yySXb/5vdnhYMSN1yyy0xA1J16tR54YUXglv0LhOyp3y0SrmABx98MObCV1111U033WSffe+QiqmgoOD222/XWmPHjk1NTf344499ZdyyZctbb71VpUoV1XZ4iSLR3/hzASl7+s/7oKVVoO2UYEAqpOb/9Kc/qal7txsvIPXPf/7znHPO6dOnzxdffKGjpmbNmiEBqbPOOsvafHhWIyfeVAAAAACcEAJSQBkTDEj94he/0OA55sIPPPDAD37wA/fVHkpyQSINrd0IPz8//+6773YBqRYtWlSsWPGbb75x6x49elQD77PPPvvVV18txrYc37NgFrdyz1h5WaTD/V7ef/7zn0qVKq1bty4SfUO2Zo0cOdK7fFECUu3atatSpcqoUaO05JYtW2xi69atK1SoEPPRtqIHpFR73nvKCgoKrKTeZUL2VHCjgwcPPubx2muvaY/Yb/y5n3sz11577W233WafixKQUh16a8++esto2rRpU758ed+2IqEBqcWLF+uze9JQ+vbtqylr1qyJRB8zdLcgmZCa79Chg3cfqZ1ceOGFMQNSasbeN4vrqzcgVbt2bfeWLruHbtiwYYVmNXLiTQUAAADACSEgBZQxwYDUhAkTNGZ+/fXXN27cqDH/l19+mZSUZLPsAcC33npr27ZtI0aMqF69esWKFV2Q6Pe///0555zz0UcfaRDeuHHj733vey4gtXnz5sqVK99zzz1Lly5dtmzZSy+91Lx5c03/61//etZZZw0cODAzM3PPnj0zZszo379/UbblaITfoEGD4cOHr1y5cu7cuXfddZfyYOGMZs2avfbaa4sWLdq6devUqVOvuOKKmjVr2k/apaenV6lSRVt36dx+++2XXnqpvS3b5bnQgNSWLVu0zMUXX6ztuonKcNWqVe+9997ly5crwfXr13fr1k1bjJxIQMoiF9oLqsw5c+YofXs/kXeZkD3l9e9//1uF3b9/v3fiZ599pnV79OiRkZFRu3btzp07f/HFF1999dXLL7+s6apwW6woAakDBw5UqlTpmWeeOXz4cFpa2p133unKqP0yePBg7dndu3c/+OCDV199dXD1kICU3HbbbTVq1Jg0aZKqOiUl5cILL/TeN1etWrUHHnhAdauqDq95zVJZ7r//fn2dN2/etddeq/YZMyB16623/vjHP1aD3Ldv35///GdlxhuQspdqffrpp6tWrbrxxhu16+0t5oVm9USbCgAAAIATQkAKKGNq164dvJ+oT58+9vNzctZZZ3l/WO2tt96qUKGCpterV2/GjBk1a9a0X+iLREfXGqJrVvny5Z999tk2bdp4H9MbNWpU9erVLc2GDRvanSOHDx9+5ZVXqlSpYtO1wLvvvluUbTm7du1q3LixS+H66693P1I2f/58y49p1KiRvUk6Eo0sqIB79uxx6SxevFjZVp7dFBXHbiwKr8B7771Xi7kfSjMW8rDtKlmV134jLy0trdzxF36b22677amnnrLP+uBuTSooKPjHP/5RuXJlLV+xYsWmTZvaq7W8y4TvKeeaa65RFQWnX3nllXfddZc29Pe//71atWqWSI0aNfr27euWUcV63wsWT3Jysr3/SH+1+oUXXjht2jRN//jjj7XXLGVVyJdffhlc11ciVY4Wtl8hjER/585ePC+VKlV6+umn3c/5Sa9evVQ55TyvpY9X8zJ+/Phzzz1X0/W3U6dOjz/+eMyHIpcsWaL2ZtX+8ssvP/DAAy4k9+STT6phv/7667bROnXqeH8RLzyrkRNsKgAAAABOCAEpoIw5cuRIfn5+cLomaoC9adOm4Btt9u3bt2HDBnuCzPea6oKCAq1l74HSZ9+6R48eTUtLs8fEvHJzc9evX+99oK8o2/KlkJ6eroVjpqCN+n4pTxkLPjum9H0PAMZ7h7eXihnvZ/gyMjK0ae8vu1lWvV+VDbdRffDlSuuqZrxxjeAyIXvKlcL7O27epNwqSmTr1q3BV1CpTmKuG6QltafsdiFvTrS68hbyVFqwRMH6VItat26d9/41Jzs7e8uWLb5Mxqx5S1nTLZP26GLMLCk1pWnxSi3jDhC3yt69e9XeYh44IVk90aYCAAAAoOgISAEAAAAAACChCEgBAAAAAAAgoQhIAQAAAAAAIKEISAEAAAAAACChCEgBAAAAAAAgoQhIAQAAAAAAIKEISAEAAAAAACChCEgBAAAAAAAgoQhIAQAAAAAAIKEISAEAAAAAACChCEgBAAAAAAAgoQhIAQAAAAAAIKEISAE44xw9enThwoWHDh061RkBAAAAgDMUASkApcj06dP/8Ic/7Nu37zvdytq1a8uVKzd58uTvdCsAAAAAgHgISAFnouTk5I8++qjEk83Ly0tKSvr666+LnULz5s3Lly+/fv36EsxVEAEpAAAAADi1CEgBZ6Ibb7zx97//fYknu3///nLlyiUnJxc7hYKCggQ8SUdACgAAAABOLQJSQBkzevTo9PT0FStWNG/efObMmW76tGnTWrRo0b59+5UrV3qXX7ZsWadOnVq1arVo0SJ9zcrKGjFiRN26de+44w59mDhxoiYeOnQoOTlZfydPnvzOO++sW7dOE2fPnj19+nSXzrZt27TM4cOH3ZTPP/+8e/fuHTp0SE1N1dcNGzb079+/XLlyL7zwglL+9NNPI9HQz5AhQ9wqeXl5SmTz5s32df78+QsWLNi1a1e7du0GDhxoiQwaNCg/P9+bK5WodevWnTt3zszM9BZt9erVykDbtm2HDRumLX744Ycxa2zjxo1KRzXw8ccfFxQURDwBqXgpL1y4UDWpVcaOHXvs2LHwyt+9e7cy37Jly/fee29EVE5Ojs3auXNnz549mzVrphweOXLEuwllRulr0ypyzGwDAAAAwGmMgBRQxtSqVev5558/++yz69at+9BDD2lKfn5+06ZNzz333EceeaRRo0aVKlUaPHiwLTxixAh9ffjhh5s0aXLeeedt3rx548aN11xzTZUqVfRVH372s59FjgdoXn31VU2vXbt2p06dNPHXv/71nXfe6bY7evRoLeNiSW+++aa+3nTTTQ0aNChfvrzmpqSkXHnllZqoHCrlv/3tb1pMSWmKi+ns3LlTX12I6oknnrjvvvu0lla5+OKLNaVfv35awG6Sslz99a9/Peeccxo2bKi/l1122a5du2zdYcOGVaxY8cEHH/ztb3+rDFx00UX3339/sLrGjBlTuXLlyy+/XDWjSvvzn//sUlZ1xUz5qaeeqlq1qjL2q1/9SrWnvyGVv2rVqmrVqt1yyy1PPvmkdsFZZ5114403bt26NRINtylX+qrKr1mzppbZv3+/pfPSSy+df/75Tz/9tBK/4oorTq5FAAAAAEDZQ0AKKGNq1apVrly54cOHR6K/Fqe/gwYNqlKlyurVq22Bt9566/zzzz9w4IA+33777U8//bRN37dvnwsM+R7ZswBNtWrV7O4qSzYkILVgwQJ97ty5s81asmTJrFmzIrEe2Ss0IKWvL730Un5+vm00GJD6/ve/n5aWpq+pqan62rFjR1v3kksu+fvf/26f33777csuuyxYV1lZWaqKhx9+2DKQkZFhobrwlKdMmXLw4EH7rKxqlqvbYOU3bdr01ltvtRuvZsyYUb58eSUeid4LdsUVVzz77LM2KzMz84ILLmjRooU+5+TkaLH33nvP0vz222/j7mwAAAAAOE0RkAJKncPH5eXlBefWqlXr8ccf905p2LCh3a1jVq5cWa5cufnz5+vzb37zm/r166enp/sSiRmQ6tu3r3eZkIDUG2+8UbVqVd8zaJFiBaTq1KnjTScYkBo3bpybq7L88Y9/jETDPZo1dOhQmz58+HB9zc3N9eVn0qRJmr548WLf9Jgpv/jii5GANWvWaMmpU6fa12Dl//SnP33++eft87Zt27SwPec4bdo0fbaHGc3vfve7e++9NxK9o+2CCy747W9/a0FDAAAAADgDEZACSheL+5j69esHF6hVq5a7M8jUqFGjYsWKVY87++yzte6UKVM0a926dVdffbXmPvzww19++aVbJWZAyveS75CAVOPGja+77rpg3ooRkLrlllu8KQQDUt5c3XzzzVrFPmvFn//859ri3r17GzVqpFnB/PTo0UMpuGfxQsrrTfnAgQNt27ZVmldddVXt2rW9SwYrX18vueSS9evXHzly5M0331Tl2+uo+vTpoxX11e0X7YUGDRrYWpMmTTo/6tVXX92xY0cw5wAAAABweiMgBZQuOTk5Xx+3adOm4ALBmMill17auHHj7R4ZGRlu7rFjxyZOnNigQYOKFSt+9tlnNrGIAak77rjDffUGpJ5++umYwbJ4ASl3q9dJBqS0sIWNCgoKGjVqVKdOHYvcqTjuqTqv9957T3O3bdvmmx6e8u23337VVVeNHTs2NTX1448/Dg9INWvWTBNVtxUqVKhZs6a9JF4GDBigFRcuXOjdL1lZWW7FgwcP9u7dW/vusssu41YpAAAAAGcaAlJAGROMifziF7/44Q9/GL7W4cOHq1at2qxZM/t68803N2nSxM2NGZBq2rTp5Zdf7r5qXReQatGiRcWKFb/55hs3116olJWVpWX69Onjptvv7rlXoX/yySclEpCyWRs3bty1a9fu3bvjlXru3LlaLCUlxZfPkJTXrVunWSNHjrTp9jUkIKUpgwYNUsG3bdtmr4syCxcu1IpjxoyJlzezaNEiLaZqCV8MAAAAAE4zBKSAMiYYE5kwYUK5cuVef/31jRs3ZmVlffnll0lJSZHou4r+9Kc/LVu2LDc3d9q0aeXLl3///fdtlUceeaR27dpff/213TMVMyCVnJysie3bt1eyLVq0OOecc1xoSX8rV658zz33LF26VOm/9NJLzZs3t7WqVav2wAMPpKenL1++XF/Xr1+v7TZp0iQtLW306NE1atTQ15MPSB04cKBOnTo1a9a8//77f/e737388sujRo1yDwY6qoFrr71WS06fPn3dunUdO3a0n8wLT7lSpUrPPPPM4cOHlec777wzPCD129/+VjWjqlCVPv/88127drXbnQoKCm666aZ69erNnDlz//7933zzzciRI7UXItF3qKs+VYfZ2dkW2gvewwUAAAAApzcCUkAZU7t27X/+85++iX369Lnooovs+bWzzjrrscces+m//vWvy5cvr4mVKlV644033C08ixYtuvDCCzXd7oFKS0vzvrrbHDlypGnTppbm7bffPm7cOO/jb6NGjapevbrNbdiw4Zo1a2x6r169KlasqInPPfecTenSpYtNqVOnzsyZM8877zz7lTp56qmnbrvtNu9GBw4cqCWzs7Nj5koLaxV90AK33nrr/fffr8RbtWr1hz/8QZt46623gtW1bNmy6667zvJZr149e6QuJOVINBJXtWpVLaC/ffv2VUVZIClm5f/lL3+pX79+165d27Ztqxq++OKLVVc2S3X1y1/+0r0R7IorrrD3nW/ZsuVHP/qRTVQdDhs2LJhtAAAAADi9EZACypgjR47k5+cHp2vixo0bN23a5PttvgMHDqSnpwd/ge7o0aNa2P3CXXABs2PHji1bttjnw4cP+1JIS0uzd3h7ZWdnaxXv82v79+9XHuwOJu9v6mmKPUPn5d2KL1da2BLp2bNn1apVLW5lnnzyyZ/85CcxiyBbt25VYb1ZipeyUSY3bNiQk5MTif6in3e6t/LtBw3nzZvnptirow4ePOim7Nu3b926dXv27PFlaefOnZs3bw7e1QUAAAAAZwICUgDKnm7dulWoUGHOnDn2NTU19ZJLLnnttdcSnI1ly5bZU40WtMrIyLjnnnuuv/76BGcDAAAAAMocAlIAyp7s7OzHHnusQoUK50RVrFjxiSee8N4wlTAtWrQ499xzK1eufMEFF9jTi+vWrUt8NgAAAACgbCEgBaCs2r9//4oVK1auXGkvQT9VDh8+vGbNmmXLlu3atesUZgMAAAAAyhACUgAAAAAAAEgoAlIAAAAAAABIKAJSAAAAAAAASCgCUgAAAAAAAEgoAlIAAAAAAABIKAJSAAAAAAAASCgCUgAAAAAAAEgoAlIAAAAAAABIKAJSAAAAAAAASCgCUgCARPjqq68yMjIStrmNGzeuXr36ZFJIT0/fsWNHSeXnZCS46gAAAIAEICAFlCX5+fmvvPLKiBEjTnVGTlb37t3ffvvtU52LErB58+Znn332yy+/PNUZKQNq1ar197//PWGbe+KJJ2655ZaTSeGaa6557rnn4s1N5K4vwaqbPHlynz59Dh486Js+aNCg1NTUEtlEiFatWrVv3/673goAAADKBAJSQFmSk5Nz1lln/f73vz/VGTlZjRo1uuyyy051LoojOTn5o48+cl9nz55drlw5TTyFWSorTrOAVCJ3fUlV3cGDB7/3ve8p2927d/fNqlix4r/+9a+T30S466677uabby726hs2bGjRokUwmgYAAICyiIAUUMbk5OTk5+ef6lycrLy8vMOHD5/qXBTHjTfe6AsIZmVlnarMlC2nWUAqksBdX1JVN3jw4HPOOef2229v0KCBb1ZiAlJHjhzRsV/s1SdOnFiuXLn09PQSzBIAAABOFQJSQBmTkpLinqyZP3/+ggULDh8+PGTIkObNm3/88ce+hT///PPu3bt36NDBrZKWlqYUjh492q9fv7Zt27p7DVauXNm+ffsWLVpMmzbNm4IS1yAwKSnp3Xff1ba8szIyMnr37q3tjhs37tixY276zp07e/bs2axZs2HDhmn8GbMUSmrKlClFLIWXRrMffPDBO++8o8yrdG56VlbWe++9l5ubu3r1as1SkTdu3OhbV0VTAVVMFdZNjFkhMUutTYwYMaJu3bp33HGHPmgBTTx06NDAgQNVZFtm9OjRGi1nZmZ27dq1VatWK1as8GZg9+7dWrhly5bK6oionJycYBm1dVWdKlDV6FLes2fPgAEDlFv7WlBQMHz48GXLllkRxo4dqw8zZ85UAYMPZMXbI+G5PdH9q8rXFO0a5XP//v3BcvmiKgsXLtS+0HaVeW/6litlRptWiQqtunj5cQGpOXPm2M5yFi1aNGnSpGAOZerUqapDNQbtWW9AKthOvLtem/a2RhkzZsySJUvsc8wdGjmRlm9V9+2333br1k3N8rPPPrPpBw4cUG1v27bNLalqUa62b98eM517771X1aI6LFeu3Nq1a72z4gWkwltXzJ0l8+bNa926tZZXzautuukzZsyYPXu2N/2YR6WoSaiL0HRVmhVn8eLFr7/+unLeqVMnNQB3gOso0BQ1JO3WeBUIAACAUoiAFFDGeEf1GltqhHnjjTdeccUVV199tYZqGiq7Jd98801Nuemmmxo0aFC+fHkNHTVRw+kaNWo8+uij559//oUXXmhvwOnRo0flypV/+ctfPvTQQ1WqVHnxxRctBQ2/L7/88ksvvfQ3v/lNw4YNlZp7/8uaNWvOO++8O+6445lnnqlXr55G1DZdY+yLLrpIWWrSpEnNmjVvueWWmLEJ790r4aXwysjIuPXWW6tWrXr33Xfbkm4IrdG1vv7jH/8455xzGjVqdPHFF6t0LgyXn5/ftGnTc88995FHHtHcSpUqDR482GYFKyReqTUAvuaaa1Q/Krg+/OxnP3PbnTx5sts7zz77bPXq1W+++WYVXwvPmTPHZq1atapatWoq9ZNPPqmcnHXWWSry1q1bg2XU9Msuu+zxxx+/9tprlbevvvoqEg1qXHXVVT/5yU8sdpOcnKxSWAhJRdDyTz/9tGpepdNGtdNdtYfskZDcnuj+zc3NveGGG+rXr//cc89pYswbi7xN96mnntJ+vO+++371q1+pIPrrXez5558/++yz69atqwYZXnUhpXNtrEWLFhUqVPBGgtTS1B6COXzppZe0N3W8qCBqYErQFSTYTry7Xo3h+uuvd+ls27ZNs/r06ROyQyMn0vJVJ1pSrVp5u/LKK1WcYcOGRaLxUFXj//zP/7glhw8frnTWrVsXTGT79u3qByZOnLhv3z7t6//85z/eufECUuGtK7iz1D5VacqhDlXlVsn+/Oc/d9FDHbluX4cclVr+pz/9qbZ15513qrw6qDds2PC3v/2tdu3aKt0PfvADHYApKSlacsSIEVrx4YcfVgNQi928eXPMCgQAAEApREAKKGN8ASkNz5o3b14Q1bhxYw3JLGCxYMECzercubMtuWTJklmzZkWiw0tNv/nmmzWk1IBQa2nsqkHjoEGDbMnp06drgblz50ait+GMHTvWPSGocaaG0/b5rbfeqlevnt37cPTo0QMHDkSity9paP3ss8/a9MzMzAsu+H/snXl4Tdf79jNHhCCGxhQVpUqVKqIqhhqqNUYNMU9V1aqpWkPpFUPVHOQrraGoqVSVVilSiqLVKpEYmiCGEGKImJNIcn73dZ7Xenf3PmcnQSP0/vyRa++11/CsZ619Ls9trbULBAcHG3uhE6Ts9UJHt27dYIBaGTFq1CgUlNUiog7AJAnF4+PjkbN58+aSE71DcKu+uQbjvby8xGajQ0x6bTFs2TMKUmhIFn9dv34d9rzxxhvyCLE3QnTxzJYtWxwdHXVLVFQfK1WqJItQ4Ni6desihpdHcmjR7NmzL168WKhQIfRC0qULTZo0kVIYaFlFkumImFib3fGVaXPixAkpfvnyZWPXtFMXjaqFNosXL0ZZNTrIhtulS5dK0yauM++dmmOYMNpTk/bt24db43KkyMhIpI8fP95infnwAG61gpRunmiHfu7cubg+fPiwZA4JCXFxcREnmAxo1me+jJQcXoYM9erVK1KkiGx6RfdxLY4CmPPwlbEGMHnyZEx7KdW6desyZcpo1y6ZCFL2ZpfNwcK7pn0jMF64RdNyqxWkTN5KjIKTk5NaYrZs2TLRH41b9mrXrt21a1e5vnr1qk3vEUIIIYSQ3AkFKUJyHcn3sHnYik6Qqly5snokiyNke8vgwYM9PT2NO+YkvDx69KhKQRSKMF4bmnp7e48bN87Y9Oeff46yd+7cwfX06dNdXV03b96szbBp0yZk0H6rq23btg0bNjRWpROk7PVCC7yBmHn06NEq5ebNmwhoRZcRdUD2FgkDBgxwcXERXcnf31+WbwhRUVHIvHPnTpsOMem1JQuClHa5Su/evcuVKyfXderU6dmzp1zLChqd96RH6GNISIhKCQ0NRS9UmN29e/f8+fO3aNHCz89PrTqRLmg1oOeff/7VV1+1ZDYiJtZmd3z379+PR5g2JoqAvYOQ4HyU/emnn1S2Dh06aDPYc51577RzLCAgQMk0w4YNK1q0qFJwFDAeXcYQqJSyZcvqBCntPNEOfWJiIsqOGTNGHtWuXVvmm/mAZnHmi0/ee+89dbt69Wrk3LVrl+WeTCn62tWrV2HG7NmzjTVYrLNCufGbb75BKe0mXHNByubsstgaLLhaFg8qMHxwiFxrBSmTt7JatWpNmjQxGmMUpORd4KlShBBCCCGPIxSkCMldrFy50uEeCLSMGXSClPbY5vXr16ujYQIDA5977jljcQkvtVF3+/btkeKpQfa+yVNEegMGDEDoCGO8vb1V2du3b7/++uu4rVWrFsJjyRwWFoYUDw8PVRWiXOPxyRaDIGWvF1qio6ORvmLFCm1i2bJlYb/FIAxZrKtUkCIbtYoWLQpLlFWwEI9kZZDRISa9tmRBkNJqLkOHDkWKXCPdx8cnJiYmJSVlyJAhsCEhIUHXxyNHjqA2Nzc3ZSqunZyc1GKiS5cuyVfS1qxZo0oZu4A4/9lnn810REysvY/xHT16NEz19fWdPHmyzbPDtM1du3Zt4sSJAQEB5cuXl31Y9nxo4jpze7TzSk5NQg0ZGRmw8P333zea16dPnzJlymhTtGdIGZ2sG/rWrVujL7g4ffo00sVp5gOaxZlv9MmBAweQU/asSY86d+5ssa45ggeM8wocPHgQRfBSRFjZs2ePi4vL22+/rTKYC1I2Z5fRMICR6tu3rzalV69eao2hVpAyeSsLFSrUv39/ozFGQQo/CxUqVEA98L9sQCaEEEIIIY8LFKQIyV3cvn370D1OnjxpzGAiSCE2VgFt165dbepZxvCyU6dOiCHP/hNZnHXmzJkiRYo0a9YsPDw8MjJy7NixurJ//PFHhw4d1N7AefPmycINbVU2v0RmIkhpe6Hl1KlTSFeHGSlviDxkFKQ+/fRTpMgGpeLFiwcGBmqtio+Pt+cQ815nS5DCtZJ4Ro8ejWtEzk5OTsWKFdMdsy3ExMSgtqlTp2pN1S5OWbNmjaOjY/78+bU2GLvQuHHjl19+2ZLZiJhYK2R3fE+fPj1ixAg3N7cWLVoYe6eay8jIqF27dvny5b/99tsDBw5s3LjRXJCy5zpze7Tz6vr16x4eHp988smePXtQRHcAufD222/rup8tQUpWLaE706ZN8/LykiV15gOaxZlv9Mnvv/+OnFu2bFH+Qe9gW5MmTV5//XVjcYt1cB0MFCxYUEmHWRek1OwyGgbKlCmjO0EM3SxZsqRcawUpk7eyVKlSvXv3Nhpj8yt7aWlpSJfzqtRx74QQQgghJPdDQYqQx4wsClLBwcEIz86dO6eeyh4lY3g5YcIExPnnz583tiUn46hK5Fa3mMhiDVBlk86uXbvU2hBz7kOQQtiJqFvtObLcW36CHlnuqQPqzCyA4Lxs2bJy3ahRo0qVKtm0xOgQ815Xr15d1mQJWRekcLFw4cIbN27ExcVpN0hqSU1NRR/fffddm0+TkpIQw/fr1092ESo9Qrrw119/ye2dO3e8vLx69eplyWxEMhWkhOyO76effuro6GjcE6eak8Vuy5cvl3S5NRGk7LnO3B7dvOrSpUu5cuXef/99WcdkZPLkyajt9OnTcnvhwoVChQplXZAStw8fPrxmzZpKTDEf0GwJUlqNb8qUKVpTjx8/Lquf8MrrlhAK6enpmDnoS5qGNWvWoNR3330necwFKZuzy2JrsPDe+fn5qWHCNChZsiR6KrdaQcrkrUQ27QJP1CabHGURmTp2SktycrKnp6d2Sy8hhBBCCMnlUJAi5DEji4LUqVOnXF1dGzRogEgyIiKib9++csCNMa5GkI9ArmHDhgcPHkTMHxMTM3PmTFmDIEtXUATR4LZt22RrlZT95JNPwsPDb926FR0dXbp0adn7g7ixWrVqvr6+eJSUlHTu3Lnly5dv2rTJ2Iv7EKTAhx9+KCfyxMbG/vrrry+88EKZMmVkDZSoA3iKWB2BuuzXU0cvr127FreDBg1CQfRx3759Y8eOlUdGh5j0GrRp0wYphw4d0h6mnhVBqmXLlnnz5sWIoIaePXvCQjm/WcfAgQPd3d3nz5+fkJBw5cqVLVu2zJ07Vx7169evcOHCSExPT69evbo6Rkq6UKRIEXTz5MmTnTt3xq1sXzIfERNrszu+S5cuXbRoEWy7dOnSG2+8UaFCBWPXVHPouIuLS7du3TB2x44de+WVV8wFKXuuM++dbl4hD1rJkyePzfPRLNYXAfOnadOmmPw7duyoWLEiMmddkLJY96ZhgJCoPlZoPqDZEqRgW5cuXTAcP//8s5eXlzqwX6hTpw6sxYuMITMWl77r3kQ4v0CBAoGBgXJrLkjZnF0WW4Mlr0+fPn0OHz4cFRUVFBTk5OSE90WeagUpk7dyxYoV8ujo0aNwZr169bZu3Wq5t/EQP2XwA4zBi4CZid+3O3fuoHeOjo5ff/21sQuEEEIIISR3QkGKkMeMEiVKfPTRR3KN4LBWrVrq0U8//YRoDRG+3CKok/OPgL+/v5zHjMAYt7qoVcJvyYmgDpnlm1YI+Pv164cUpJcpU2bOnDm4FhFkwoQJcpgRQAyPSFuqQlTfuHFjtSeoXLlyxqO7dZab90ILmu7Zs6eLi4tUXrduXXXItKgDCGifeeYZ6UWPHj20p8KHhYWJWADc3d3btWsn6UaHmPQa7N69u1ChQvI |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment