Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save Imperial-lord/7d91c0af8e471bace61a6ddc20e52972 to your computer and use it in GitHub Desktop.

Select an option

Save Imperial-lord/7d91c0af8e471bace61a6ddc20e52972 to your computer and use it in GitHub Desktop.
German Credit Risk Dataset Analysis.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"colab": {
"name": "German Credit Risk Dataset Analysis.ipynb",
"provenance": [],
"collapsed_sections": [
"ou4BLTasKopV",
"CExsu6rUKopb",
"KbDWTElQKopc",
"9izJ4gW9Kopd",
"eiof8zCmKope",
"_h1RKlbLKopi",
"Y0i9m-wGKops"
],
"include_colab_link": true
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/Imperial-lord/7d91c0af8e471bace61a6ddc20e52972/german-credit-risk-dataset-analysis.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KWcJJ_7FKopL"
},
"source": [
"# **German Credit Risk Dataset Analysis**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ZGu60WZxKopN"
},
"source": [
"\n",
"The goal is to predict if this loan credit would be a risk to the bank or not?\n",
"\n",
"In simple terms, if the loan amount is given to the applicant, will they pay back or become a defaulter?\n",
"\n",
"Since there are many applications which needs to be processed everyday, it will be helpful if there was a predictive model in place which can assist the executives to do their job by giving them a heads up about approval or rejection of a new loan application."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IE4aOG7AKopN"
},
"source": [
"# Import Libraries"
]
},
{
"cell_type": "code",
"metadata": {
"id": "iWaVc5dWKopO"
},
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import matplotlib\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "tb3yRspfKopP"
},
"source": [
"#Reading the data into python\n",
"df=pd.read_csv('/content/drive/MyDrive/German Credit Data/train.csv')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 221
},
"id": "zL0cfOveKopQ",
"outputId": "1b25778f-de77-45eb-be4e-90daa7c1019e"
},
"source": [
"df.head()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>GoodCredit</th>\n",
" <th>checkingstatus</th>\n",
" <th>duration</th>\n",
" <th>history</th>\n",
" <th>purpose</th>\n",
" <th>amount</th>\n",
" <th>savings</th>\n",
" <th>employ</th>\n",
" <th>installment</th>\n",
" <th>status</th>\n",
" <th>others</th>\n",
" <th>residence</th>\n",
" <th>property</th>\n",
" <th>age</th>\n",
" <th>otherplans</th>\n",
" <th>housing</th>\n",
" <th>cards</th>\n",
" <th>job</th>\n",
" <th>liable</th>\n",
" <th>tele</th>\n",
" <th>foreign</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>A11</td>\n",
" <td>6</td>\n",
" <td>A34</td>\n",
" <td>A43</td>\n",
" <td>1169</td>\n",
" <td>A65</td>\n",
" <td>A75</td>\n",
" <td>4</td>\n",
" <td>A93</td>\n",
" <td>A101</td>\n",
" <td>4</td>\n",
" <td>A121</td>\n",
" <td>67</td>\n",
" <td>A143</td>\n",
" <td>A152</td>\n",
" <td>2</td>\n",
" <td>A173</td>\n",
" <td>1</td>\n",
" <td>A192</td>\n",
" <td>A201</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>A12</td>\n",
" <td>48</td>\n",
" <td>A32</td>\n",
" <td>A43</td>\n",
" <td>5951</td>\n",
" <td>A61</td>\n",
" <td>A73</td>\n",
" <td>2</td>\n",
" <td>A92</td>\n",
" <td>A101</td>\n",
" <td>2</td>\n",
" <td>A121</td>\n",
" <td>22</td>\n",
" <td>A143</td>\n",
" <td>A152</td>\n",
" <td>1</td>\n",
" <td>A173</td>\n",
" <td>1</td>\n",
" <td>A191</td>\n",
" <td>A201</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0</td>\n",
" <td>A14</td>\n",
" <td>12</td>\n",
" <td>A34</td>\n",
" <td>A46</td>\n",
" <td>2096</td>\n",
" <td>A61</td>\n",
" <td>A74</td>\n",
" <td>2</td>\n",
" <td>A93</td>\n",
" <td>A101</td>\n",
" <td>3</td>\n",
" <td>A121</td>\n",
" <td>49</td>\n",
" <td>A143</td>\n",
" <td>A152</td>\n",
" <td>1</td>\n",
" <td>A172</td>\n",
" <td>2</td>\n",
" <td>A191</td>\n",
" <td>A201</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0</td>\n",
" <td>A11</td>\n",
" <td>42</td>\n",
" <td>A32</td>\n",
" <td>A42</td>\n",
" <td>7882</td>\n",
" <td>A61</td>\n",
" <td>A74</td>\n",
" <td>2</td>\n",
" <td>A93</td>\n",
" <td>A103</td>\n",
" <td>4</td>\n",
" <td>A122</td>\n",
" <td>45</td>\n",
" <td>A143</td>\n",
" <td>A153</td>\n",
" <td>1</td>\n",
" <td>A173</td>\n",
" <td>2</td>\n",
" <td>A191</td>\n",
" <td>A201</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1</td>\n",
" <td>A11</td>\n",
" <td>24</td>\n",
" <td>A33</td>\n",
" <td>A40</td>\n",
" <td>4870</td>\n",
" <td>A61</td>\n",
" <td>A73</td>\n",
" <td>3</td>\n",
" <td>A93</td>\n",
" <td>A101</td>\n",
" <td>4</td>\n",
" <td>A124</td>\n",
" <td>53</td>\n",
" <td>A143</td>\n",
" <td>A153</td>\n",
" <td>2</td>\n",
" <td>A173</td>\n",
" <td>2</td>\n",
" <td>A191</td>\n",
" <td>A201</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" GoodCredit checkingstatus duration history ... job liable tele foreign\n",
"0 0 A11 6 A34 ... A173 1 A192 A201\n",
"1 1 A12 48 A32 ... A173 1 A191 A201\n",
"2 0 A14 12 A34 ... A172 2 A191 A201\n",
"3 0 A11 42 A32 ... A173 2 A191 A201\n",
"4 1 A11 24 A33 ... A173 2 A191 A201\n",
"\n",
"[5 rows x 21 columns]"
]
},
"metadata": {},
"execution_count": 416
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NL8b5R0AKopQ"
},
"source": [
"# Data description(Data Dictionary)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "IyfX4nbrKopR"
},
"source": [
"The business meaning of each column in the data \n",
"\n",
"* `GoodCredit`: Whether the issued loan was a good decision or bad\n",
"* `checkingstatus`: Status of existing checking account.\n",
"* `duration`: Duration of loan in months\n",
"* `history`: Credit history of the applicant\n",
"* `purpose`: Purpose for the loan\n",
"* `amount`: Credit amount\n",
"* `savings`: Savings account/bonds\n",
"* `employ`: Present employment since\n",
"* `installment`: Installment rate in percentage of disposable income\n",
"* `status`: Personal status and sex\n",
"* `others`: Other debtors / guarantors for the applicant\n",
"* `residence`: Present residence since\n",
"* `property`: Property type of applicant\n",
"* `age`: Age in years\n",
"* `otherplans`: Other installment plans\n",
"* `housing`: Housing\n",
"* `cards`: Number of existing credits at this bank\n",
"* `job`: Job\n",
"* `liable`: Number of people being liable to provide maintenance for\n",
"* `tele`: Is the Telephone registered or not\n",
"* `foreign`: Is the applicant a foreign worker"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Daros_9eKopS"
},
"source": [
"# Data Exploration - Aimed at understanding the overall data"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "L5BZUhomKopS",
"outputId": "cea3bcc1-0d17-402b-b717-d32dde110af5"
},
"source": [
"#Number of rows and columns\n",
"df.shape"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(1000, 21)"
]
},
"metadata": {},
"execution_count": 417
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 403
},
"id": "09lB1ymBKopT",
"outputId": "9385d524-93ca-4ecd-d1ad-3bfcc9d9540b"
},
"source": [
"##Descriptive statistics of the data\n",
"df.describe(include='all')"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>GoodCredit</th>\n",
" <th>checkingstatus</th>\n",
" <th>duration</th>\n",
" <th>history</th>\n",
" <th>purpose</th>\n",
" <th>amount</th>\n",
" <th>savings</th>\n",
" <th>employ</th>\n",
" <th>installment</th>\n",
" <th>status</th>\n",
" <th>others</th>\n",
" <th>residence</th>\n",
" <th>property</th>\n",
" <th>age</th>\n",
" <th>otherplans</th>\n",
" <th>housing</th>\n",
" <th>cards</th>\n",
" <th>job</th>\n",
" <th>liable</th>\n",
" <th>tele</th>\n",
" <th>foreign</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>1000.000000</td>\n",
" <td>1000</td>\n",
" <td>1000.000000</td>\n",
" <td>1000</td>\n",
" <td>1000</td>\n",
" <td>1000.000000</td>\n",
" <td>1000</td>\n",
" <td>1000</td>\n",
" <td>1000.000000</td>\n",
" <td>1000</td>\n",
" <td>1000</td>\n",
" <td>1000.000000</td>\n",
" <td>1000</td>\n",
" <td>1000.000000</td>\n",
" <td>1000</td>\n",
" <td>1000</td>\n",
" <td>1000.000000</td>\n",
" <td>1000</td>\n",
" <td>1000.000000</td>\n",
" <td>1000</td>\n",
" <td>1000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>unique</th>\n",
" <td>NaN</td>\n",
" <td>4</td>\n",
" <td>NaN</td>\n",
" <td>5</td>\n",
" <td>10</td>\n",
" <td>NaN</td>\n",
" <td>5</td>\n",
" <td>5</td>\n",
" <td>NaN</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>4</td>\n",
" <td>NaN</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>NaN</td>\n",
" <td>4</td>\n",
" <td>NaN</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>top</th>\n",
" <td>NaN</td>\n",
" <td>A14</td>\n",
" <td>NaN</td>\n",
" <td>A32</td>\n",
" <td>A43</td>\n",
" <td>NaN</td>\n",
" <td>A61</td>\n",
" <td>A73</td>\n",
" <td>NaN</td>\n",
" <td>A93</td>\n",
" <td>A101</td>\n",
" <td>NaN</td>\n",
" <td>A123</td>\n",
" <td>NaN</td>\n",
" <td>A143</td>\n",
" <td>A152</td>\n",
" <td>NaN</td>\n",
" <td>A173</td>\n",
" <td>NaN</td>\n",
" <td>A191</td>\n",
" <td>A201</td>\n",
" </tr>\n",
" <tr>\n",
" <th>freq</th>\n",
" <td>NaN</td>\n",
" <td>394</td>\n",
" <td>NaN</td>\n",
" <td>530</td>\n",
" <td>280</td>\n",
" <td>NaN</td>\n",
" <td>603</td>\n",
" <td>339</td>\n",
" <td>NaN</td>\n",
" <td>548</td>\n",
" <td>907</td>\n",
" <td>NaN</td>\n",
" <td>332</td>\n",
" <td>NaN</td>\n",
" <td>814</td>\n",
" <td>713</td>\n",
" <td>NaN</td>\n",
" <td>630</td>\n",
" <td>NaN</td>\n",
" <td>596</td>\n",
" <td>963</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>0.300000</td>\n",
" <td>NaN</td>\n",
" <td>20.903000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>3271.258000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>2.973000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>2.845000</td>\n",
" <td>NaN</td>\n",
" <td>35.546000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.407000</td>\n",
" <td>NaN</td>\n",
" <td>1.155000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.458487</td>\n",
" <td>NaN</td>\n",
" <td>12.058814</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>2822.736876</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.118715</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.103718</td>\n",
" <td>NaN</td>\n",
" <td>11.375469</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>0.577654</td>\n",
" <td>NaN</td>\n",
" <td>0.362086</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>4.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>250.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>19.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>12.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1365.500000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>2.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>2.000000</td>\n",
" <td>NaN</td>\n",
" <td>27.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>0.000000</td>\n",
" <td>NaN</td>\n",
" <td>18.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>2319.500000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>3.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>3.000000</td>\n",
" <td>NaN</td>\n",
" <td>33.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>24.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>3972.250000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>4.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>4.000000</td>\n",
" <td>NaN</td>\n",
" <td>42.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>2.000000</td>\n",
" <td>NaN</td>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>1.000000</td>\n",
" <td>NaN</td>\n",
" <td>72.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>18424.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>4.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>4.000000</td>\n",
" <td>NaN</td>\n",
" <td>75.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>4.000000</td>\n",
" <td>NaN</td>\n",
" <td>2.000000</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" GoodCredit checkingstatus duration ... liable tele foreign\n",
"count 1000.000000 1000 1000.000000 ... 1000.000000 1000 1000\n",
"unique NaN 4 NaN ... NaN 2 2\n",
"top NaN A14 NaN ... NaN A191 A201\n",
"freq NaN 394 NaN ... NaN 596 963\n",
"mean 0.300000 NaN 20.903000 ... 1.155000 NaN NaN\n",
"std 0.458487 NaN 12.058814 ... 0.362086 NaN NaN\n",
"min 0.000000 NaN 4.000000 ... 1.000000 NaN NaN\n",
"25% 0.000000 NaN 12.000000 ... 1.000000 NaN NaN\n",
"50% 0.000000 NaN 18.000000 ... 1.000000 NaN NaN\n",
"75% 1.000000 NaN 24.000000 ... 1.000000 NaN NaN\n",
"max 1.000000 NaN 72.000000 ... 2.000000 NaN NaN\n",
"\n",
"[11 rows x 21 columns]"
]
},
"metadata": {},
"execution_count": 418
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "AHz10MDoKopT",
"outputId": "1db227c3-c59f-4639-ee1f-8c107cbdbb68"
},
"source": [
"#Summarized information of data- Data types, Missing values based on number of non-null values Vs total rows etc.\n",
"df.info()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 1000 entries, 0 to 999\n",
"Data columns (total 21 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 GoodCredit 1000 non-null int64 \n",
" 1 checkingstatus 1000 non-null object\n",
" 2 duration 1000 non-null int64 \n",
" 3 history 1000 non-null object\n",
" 4 purpose 1000 non-null object\n",
" 5 amount 1000 non-null int64 \n",
" 6 savings 1000 non-null object\n",
" 7 employ 1000 non-null object\n",
" 8 installment 1000 non-null int64 \n",
" 9 status 1000 non-null object\n",
" 10 others 1000 non-null object\n",
" 11 residence 1000 non-null int64 \n",
" 12 property 1000 non-null object\n",
" 13 age 1000 non-null int64 \n",
" 14 otherplans 1000 non-null object\n",
" 15 housing 1000 non-null object\n",
" 16 cards 1000 non-null int64 \n",
" 17 job 1000 non-null object\n",
" 18 liable 1000 non-null int64 \n",
" 19 tele 1000 non-null object\n",
" 20 foreign 1000 non-null object\n",
"dtypes: int64(8), object(13)\n",
"memory usage: 164.2+ KB\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "agCK1sGUKopU",
"outputId": "8b422986-979e-41f2-cda4-dc3586711aa5"
},
"source": [
"#Number of Unique variable in each column\n",
"df.nunique()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"GoodCredit 2\n",
"checkingstatus 4\n",
"duration 33\n",
"history 5\n",
"purpose 10\n",
"amount 921\n",
"savings 5\n",
"employ 5\n",
"installment 4\n",
"status 4\n",
"others 3\n",
"residence 4\n",
"property 4\n",
"age 53\n",
"otherplans 3\n",
"housing 3\n",
"cards 4\n",
"job 4\n",
"liable 2\n",
"tele 2\n",
"foreign 2\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 420
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "aVXcuI2QKopU",
"outputId": "a02a0695-583b-46af-a7af-9201bf7be8ac"
},
"source": [
"#Any Null-Value\n",
"df.isnull().sum()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"GoodCredit 0\n",
"checkingstatus 0\n",
"duration 0\n",
"history 0\n",
"purpose 0\n",
"amount 0\n",
"savings 0\n",
"employ 0\n",
"installment 0\n",
"status 0\n",
"others 0\n",
"residence 0\n",
"property 0\n",
"age 0\n",
"otherplans 0\n",
"housing 0\n",
"cards 0\n",
"job 0\n",
"liable 0\n",
"tele 0\n",
"foreign 0\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 421
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "LJN-NTM_KopU"
},
"source": [
"# Removing duplicate rows if any\n",
"df=df.drop_duplicates()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7TOQp5mAKopV",
"outputId": "7a011575-228f-45d2-a41c-0d4aaccc7113"
},
"source": [
"#checking shape of Data after removing Duplicates\n",
"df.shape"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(1000, 21)"
]
},
"metadata": {},
"execution_count": 423
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UgjNYfGqKopV"
},
"source": [
"# Basic Data Exploration Results:"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ou4BLTasKopV"
},
"source": [
"Target Variable: **GoodCredit**\n",
"\n",
"**Predictors**: *duration, history, purpose, amount, savings*, etc.\n",
"\n",
"* GoodCredit = 1 means the loan was a good decision.\n",
"* GoodCredit = 0 means the loan was a bad decision.\n",
"\n",
"**Determining the type of Machine Learning -**\n",
"\n",
"Based on the problem statement I can understand that we need to create a supervised ML classification model, as the target variable is categorical."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yK4jWEwEKopW"
},
"source": [
"# -Looking at the distribution of Target variable "
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 239
},
"id": "L3oqmPpoKopW",
"outputId": "9790062b-5a05-4661-b6f1-bbffe4907cc2"
},
"source": [
"# Creating Bar chart as the Target variable is Categorical\n",
"GroupedData=df.groupby('GoodCredit').size()\n",
"GroupedData.plot(kind='bar', figsize=(4,3))"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f669d266b50>"
]
},
"metadata": {},
"execution_count": 424
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQcAAADMCAYAAAB+82ZkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAM4ElEQVR4nO3de6xl5V3G8e8DFMGCpYXpBIHpEJmCoGXACdK0QQGLXJRigg3YWKyYMQ3VEryAl6g0JtJ/rKWhKIEW0AJFFCVQKYRCamO5zADlNlCGy1gIl4ECbSEWW37+sd8Dm+M7zD7MPufM2fP9JDtnrXfts/d7OvTJWmuv/axUFZI03VbzPQFJmyfDQVKX4SCpy3CQ1GU4SOraZr4nALDLLrvU0qVL53sa0hZn9erVz1TVot62zSIcli5dyqpVq+Z7GtIWJ8m6DW3zsEJSl+EgqctwkNS10XBIsneSO4ce301yapJ3JLk+yYPt59vb85Pk7CRrk9yV5MDZ/zMkjdtGw6GqHqiq5VW1HPg54CXgSuAM4IaqWgbc0NYBjgKWtcdK4NzZmLik2TXTw4rDgYeqah3wQeCiNn4RcFxb/iBwcQ3cDOyUZNexzFbSnJnpR5knAJe25cVV9URbfhJY3JZ3A7499DuPtbEnhsZIspLBngVLliyZ4TQ2zdIzrpnT95trj551zHxPQRNg5D2HJNsCxwL/PH1bDb73PaPvflfVeVW1oqpWLFrUvQZD0jyayWHFUcDtVfVUW39q6nCh/Xy6jT8O7DH0e7u3MUkLyEzC4UReO6QAuAo4qS2fBPz70PhH2qcWBwMvDB1+SFogRjrnkOStwAeA3x0aPgu4PMnJwDrgQ238y8DRwFoGn2x8dGyzlTRnRgqHqnoR2Hna2LMMPr2Y/twCThnL7CTNG6+QlNRlOEjqMhwkdRkOkroMB0ldhoOkLsNBUpfhIKnLcJDUZThI6jIcJHUZDpK6DAdJXSOFQ5KdklyR5P4ka5K81/ZpabKNuufwGeDaqtoH2B9Yg+3T0kQb5b4VbwMOAS4AqKqXq+p5bJ+WJtooew57AuuBLyS5I8n5rRlqpu3Tr5NkZZJVSVatX7/+zf8FkmbFKOGwDXAgcG5VHQC8yGuHEIDt09IkGiUcHgMeq6pb2voVDMLC9mlpgo1yO7wngW8n2bsNHQ7ch+3T0kQb9Y5Xvwd8sd3Y5mEGjdJbYfu0NLFGbZ++E1jR2WT7tDShvEJSUpfhIKnLcJDUZThI6jIcJHUZDpK6DAdJXYaDpC7DQVKX4SCpy3CQ1GU4SOoyHCR1jdo+/WiSu5PcmWRVG7N9WppgM9lzOLSqllfV1Fe3bZ+WJtimHFbYPi1NsFHDoYDrkqxOsrKN2T4tTbBRa+LeX1WPJ3kncH2S+4c3VlUlmXH7NHAewIoVK2b0u5Jm30h7DlX1ePv5NHAlcBC2T0sTbZQ7Xr01yY5Ty8ARwD3YPi1NtFEOKxYDVyaZev4lVXVtktuwfVqaWBsNh6p6mMHNc6ePP4vt09LE8gpJSV2Gg6Quw0FSl+EgqctwkNRlOEjqMhwkdRkOkroMB0ldhoOkLsNBUpfhIKnLcJDUZThI6ho5HJJsneSOJFe39T2T3NIq6L+UZNs2/mNtfW3bvnR2pi5pNs1kz+ETwJqh9U8Bn66qvYDngJPb+MnAc2380+15khaYUW9qsztwDHB+Ww9wGHBFe8r0avqpyvorgMPb8yUtIKPuOfwd8MfAK219Z+D5qvphWx+un3+1mr5tf6E9/3Wsppc2b6MUzP4K8HRVrR7nG1fVeVW1oqpWLFq0aJwvLWkMRimYfR9wbJKjge2AnwA+w+BOVtu0vYPh+vmpavrHkmwDvA14duwzlzSrNrrnUFV/UlW7V9VS4ATgq1X1YeBG4Pj2tOnV9FOV9ce353vTGmmB2ZTrHE4HTkuylsE5hQva+AXAzm38NF67wa6kBWTU2+EBUFU3ATe15YcZ3Plq+nP+B/j1McxN0jzyCklJXYaDpC7DQVKX4SCpy3CQ1GU4SOoyHCR1GQ6SugwHSV2Gg6Quw0FSl+EgqctwkNQ1ShPUdkluTfLNJPcmObON2z4tTbBR9hx+ABxWVfsDy4EjkxyM7dPSRBulCaqq6vtt9S3tUdg+LU20kcpekmwNrAb2As4BHmLE9ukkU+3Tz0x7zZXASoAlS5Zs2l+hLcrSM66Z7ynMmkfPOma+p/CqkU5IVtWPqmo5gyLZg4B9NvWNbZ+WNm8z+rSiqp5nUCz7Xlr7dNvUa5/G9mlp4Rrl04pFSXZqy9sDH2BwWzzbp6UJNso5h12Bi9p5h62Ay6vq6iT3AZcl+WvgDl7fPv2PrX36Owzq7CUtMBsNh6q6CzigM277tDTBvEJSUpfhIKnLcJDUZThI6jIcJHUZDpK6DAdJXYaDpC7DQVKX4SCpy3CQ1GU4SOoyHCR1jdLnsEeSG5Pc19qnP9HG35Hk+iQPtp9vb+NJcnZrn74ryYGz/UdIGr9R9hx+CPxBVe0LHAyckmRf4AzghqpaBtzQ1gGOApa1x0rg3LHPWtKsG6V9+omqur0tf49BC9RuvL5lenr79MWttfpmBnVyu4595pJm1YzOObQb1BwA3AIsrqon2qYngcVt+dX26Wa4mXr4tVYmWZVk1fr162c4bUmzbeRwSLID8C/AqVX13eFtrSNyRj2Rtk9Lm7eRwiHJWxgEwxer6l/b8FNThwvt59Nt/NX26Wa4mVrSAjHKpxVhUBq7pqr+dmjTcMv09Pbpj7RPLQ4GXhg6/JC0QIzSPv0+4DeBu5Pc2cb+FDgLuDzJycA64ENt25eBo4G1wEvAR8c6Y0lzYpT26a8DG7rX5eGd5xdwyibOS9I88wpJSV2Gg6Quw0FSl+EgqctwkNRlOEjqMhwkdRkOkroMB0ldhoOkLsNBUpfhIKnLcJDUNUqfw+eTPJ3knqExm6elCTfKnsOFwJHTxmyelibcKO3TXwO+M23Y5mlpwr3Zcw6b1DwNtk9Lm7tNPiH5Zpqn2+/ZPi1txt5sONg8LU24NxsONk9LE26jBbNJLgV+EdglyWPAX2LztDTxRmmfPnEDm2yeliaYV0hK6jIcJHUZDpK6DAdJXYaDpC7DQVKX4SCpy3CQ1GU4SOoyHCR1GQ6SugwHSV2Gg6SuWQmHJEcmeaC1UJ+x8d+QtLkZezgk2Ro4h0ET9b7AiUn2Hff7SJpds7HncBCwtqoerqqXgcsYtFJLWkA2WvbyJvQaqH9++pOSrGRwbwuA7yd5YBbmsrnYBXhmrt4sn5qrd9oiTPq/3bs2tGE2wmEkVXUecN58vf9cSrKqqlbM9zw0c1vyv91sHFbYQC1NgNkIh9uAZUn2TLItcAKDVmpJC8jYDyuq6odJPg58Bdga+HxV3Tvu91lgtojDpwm1xf7bZVAYLUmv5xWSkroMB0ldhoOkLsNBUte8XQQ1qZLsw+By8d3a0OPAVVW1Zv5mJc2cew5jlOR0Bt8lCXBrewS41G+nLnxJtqgbQ/tR5hgl+RawX1X977TxbYF7q2rZ/MxM45Dkv6tqyXzPY654WDFerwA/CaybNr5r26bNXJK7NrQJWDyXc5lvhsN4nQrckORBXvtm6hJgL+Dj8zYrzcRi4JeB56aNB/ivuZ/O/DEcxqiqrk3ybgadFsMnJG+rqh/N38w0A1cDO1TVndM3JLlp7qczfzznIKnLTyskdRkOkroMhwmVZHGSS5I8nGR1km8k+bUxvO5NSVa05R2S/EOSh9p73JTk/1UCzuC1/yrJH7blTyb5pbZ8apIf39S5a2Y8ITmBkgT4N+CiqvqNNvYu4Ngxv9X5wCPAsqp6JcmeDBrHp88lVTWjj3Kr6i+GVk8F/gl4aRPnqxlwz2EyHQa8XFV/PzVQVeuq6rNJtkvyhSR3J7kjyaEAbzC+fZLLkqxJciWwfRv/KQbFwX8+9X/8qnqkqq5JsrTdt+Ri4B5gjyR/lOS2JHclOXNqXkn+LMm3knwd2Hto/MIkxyf5fQbXjtyY5MZZ/t9NQ9xzmEz7AbdvYNspQFXVz7bvgVzXPn7d0PjHgJeq6qeTvGfodfcD7nyDj2iXASdV1c1JjmjrBzG4XuCqJIcALzKoEVzO4L/F24HVwy9SVWcnOQ04tKrmrAVahsMWIck5wPuBlxncKuCzAFV1f5J1wLvb9t74IcDZbfyuN7iCcLp1VXVzWz6iPe5o6zswCIsdgSur6qU2T7tGNyMeVkyme4EDp1aq6hTgcGDRmN9j/3aHs54Xh5YD/E1VLW+PvarqgjHORbPAcJhMXwW2S/KxobGps/3/CXwYoB02LAEeeIPxrwFTJzV/BngPQFU9BKwCzmwnHWnnGo7pzOcrwG8n2aE9b7ck72yvfVw7r7Ej8Ksb+Hu+x2AvQ3PIcJhANbjs9TjgF5I8kuRW4CLgdOBzwFZJ7ga+BPxWVf3gDcbPBXZIsgb4JK8/J/A7DL6LsDbJPcCFwNOd+VwHXAJ8o73+FcCOVXV7e69vAv/B4LYGPecB13pCcm55+bSkLvccJHUZDpK6DAdJXYaDpC7DQVKX4SCpy3CQ1PV/iIhZgkGZHGoAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 288x216 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "C6AgI5WbKopX"
},
"source": [
"The data distribution of the target variable is satisfactory to proceed further. There are sufficient number of rows for each category to learn from."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "L6T786GAKopX"
},
"source": [
"# Visual Exploratory Data Analysis\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "pKfsXfpOKopX"
},
"source": [
"1. **Categorical variales**: `'checkingstatus', 'history', 'purpose','savings','employ', 'installment', 'status', 'others','residence', 'property', 'otherplans', 'housing', 'cards', 'job', 'liable', 'tele', 'foreign'`\n",
"\n",
"\n",
"2. **Continuous variables**: `'amount', 'age', 'duration'`."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5uOI4_3OKopX"
},
"source": [
"# Plotting bar charts for categorical variable"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "O_EMnFFJKopX",
"outputId": "c6988223-631b-4b17-b919-55a69d02b06a"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['checkingstatus'])\n",
"plt.title('checkingstatus Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAcBUlEQVR4nO3dfZgddX338feH8Kg8BMgaQh5YSlJtuJUAK2KpSEHloULQApIiiQgN3Bco9EYE1AoitChaFBB6RwMJFHlSgZgiSiOPVggJhJAE0RWCSUzIEggQKZGEb/+Y3w7D5uzuOZudc3azn9d1nWtnfvObme9ONudzZubMjCICMzMzgM0aXYCZmfUdDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s5FKxqkj4j6aESlrtY0kc6mbZQ0kG9vc7+TNLPJE3qpWV9SNLThfFO/y16uHz/+/UzDgXr0yJiz4i4r8x11PpGKGmapItLqiUk/UnSGkmrJM2S9Klin4g4PCKmV7ms0V31iYgHI+LdG1t3Wt8G26Ue/37WuxwKZn3PXhGxLfBuYBpwlaQLenslkjbv7WVa/+dQsA1IGinpJ5La0qfVqzpM/5aklyQ9K+nwQvsOkqZKWi5pmaSLJQ0qTP9HSU9JelXSIkn7VFj3X6XlTkjj+ad4SRdKulXS9WkZCyW1FObdR9Ljadptkm5p/+QqaYikmZJWS3pR0oOSNpN0AzAK+Gn6dP7F1P82SSskvSzpAUl7pvbJwAnAF1P/n6b2t30qL35q7mzd3f07RMQLEXED8H+B8yXtnJZ3n6RT0vBoSfenOl+QdEtqfyAt5olU56ckHSRpqaRzJa0Armtv67Dq96d/n5ckXSdp67TMDQ4ftv/eXWyX4r/fVpK+I+mP6fUdSVulae21nS1pZfobOqm7bWS9z6Fgb5PexGcCzwHNwHDg5kKXDwBPA0OAbwJTJSlNmwasA0YDewMfA9rfvI4FLgQmAtsDRwGrOqx7H+DnwOci4qZOSjwq1TMYmAFclebdErg91bATcBPwicJ8ZwNLgSZgKPAlICLiROAPwJERsW1EfDP1/xkwBngX8BhwI9kMU9LwN1P/Izups6jiuquYr92dwObAfhWmfR34BbAjMAK4MtV5YJq+V6rzljS+C9n22Q2Y3Mn6TgAOBfYA/hL4SncFVrldvgzsD4wD9kq/T3HZuwA7kP3NnQx8T9KO3a3bepdDwTraD9gVOCci/hQRr0dE8dPhcxHx/YhYD0wHhgFDJQ0FjgDOSvOtBC4Hjk/znUL2hvFoZFoj4rnCcj9E9iY/MSJmdlHfQxFxV1r/DWRvLpC92WwOXBERb0TET4DZhfneSLXulqY/GF3c+Csiro2IVyNiLVmY7SVphy7q6kpN665QyxvAC2Rv5pWWvRuwa4V/q0reBC6IiLUR8T+d9LkqIpZExIvAJcCEamvtxgnARRGxMiLagK8BJxamv5GmvxERdwFryA6hWR05FKyjkWRv/Os6mb6ifSAiXkuD25K9MW0BLE+HSVYD/5/sk3b7cn/fxXpPA/67ipOSKwrDrwFbp2PjuwLLOrzZLikMXwa0Ar+Q9Iyk8zpbgaRBki6V9HtJrwCL06Qh3dTWmarX3Uk9W5DtZbxYYfIXAQGz0+G0z3azuLaIeL2bPsXt9hzZtu0Nu6bldbbsVR3+7l4j+9uyOnIoWEdLgFGq/STkEmAtMCQiBqfX9hGxZ2H6Hl3Mf1pa7+W1lwzAcmB44VAWZEEEQPrUf3ZE/AXZIaj/J+mQ9skdlvUPwHjgI2SHM5pTuzrpD9kb2DsK47tUue5qjCc7LDe744SIWBER/xgRuwKnAler628cVbOHMrIwPAr4Yxr+E4XfUdIuvF13y/4j2YeHSsu2PsKhYB3NJnuDvVTSOyVtLemA7maKiOVkx7a/LWn7dBJ3D0kfTl1+AHxB0r7KjJZUfIN4FTgMOFDSpT2o+9fAeuAMSZtLGk/hGLykj6d1Cng59X0zTX4e+IvCsrYjC7hVZG+C/9JhXR37A8wD/iHtZRwGtP/e3a27U5J2knQC8D3gGxGxqkKfYyWNSKMvkb0xd/Z7Vet0SSMk7UR2HqD9fMQTwJ6SxqWTzxd2mK+79d0EfEVSk6QhwFeB/+hBfVYih4K9TTpWfyTZyeI/kJ0g/VSXM71lIrAlsIjsDepHZMfSiYjbyI5P/5AsAO6gwzHyiFgNfBQ4XNLXa6z7z8AnyU5QrgY+TXbCfG3qMgb4L7Lj1L8Gro6Ie9O0fyV7s1ot6QvA9WSHNpal3+XhDqubCoxN/e9IbWeSbbfVZMfO7yj072rdlTwhaQ3ZIadTgH+KiK920vf9wCOp/wzgzIh4Jk27EJie6jyui/V19EOygH+G7JDfxQAR8VvgovS7/A7oeP6i0nYpuhiYA8wHniQ7gV/K9R7Wc/JDdmxTJekR4N8j4rpG12LWX3hPwTYZkj4saZd0+GgS8D7g7kbXZdaf+IpG25S8G7gVeCfZoY9j0rkOM6uSDx+ZmVnOh4/MzCzXrw8fDRkyJJqbmxtdhplZvzJ37twXIqKp0rR+HQrNzc3MmTOn0WWYmfUrkp7rbJoPH5mZWc6hYGZmudJDIV32/7ikmWl8d0mPSGpVdr/7LVP7Vmm8NU1vLrs2MzN7u3rsKZwJPFUY/wZweUSMJrsVwsmp/WTgpdR+eepnZmZ1VGoopBt1/R3ZzdBINwQ7mOyeOJDdj//oNDw+jZOmH9LhjpdmZlaysvcUvkN2v/f2uzbuDKwu3DN9KdlTlkg/lwCk6S+n/mZmVielhYKkjwMrI2JuLy93sqQ5kua0tbX15qLNzAa8MvcUDgCOkrSY7Jm6BwPfBQYXHuAyguz2xKSfIwHS9B3o8AxfyJ4FGxEtEdHS1FTx2gszM+uh0kIhIs6PiBER0Uz2nN5fRsQJwL3AManbJLKHkkN2L/hJafiY1N83ZjIzq6NGXNF8LnCzpIuBx8kezEH6eYOkVrJn0R7fyfxmm4QDruz2gXYDxq8+96tGl2BJXUIhPYz9vjT8DIXHJBb6vA4cW496zMysMl/RbGZmOYeCmZnlHApmZpZzKJiZWc6hYGZmOYeCmZnlHApmZpZzKJiZWc6hYGZmOYeCmZnlHApmZpZzKJiZWc6hYGZmOYeCmZnlHApmZpZzKJiZWc6hYGZmOYeCmZnlSgsFSVtLmi3pCUkLJX0ttU+T9Kykeek1LrVL0hWSWiXNl7RPWbWZmVllZT6jeS1wcESskbQF8JCkn6Vp50TEjzr0PxwYk14fAK5JP83MrE5K21OIzJo0ukV6RRezjAeuT/M9DAyWNKys+szMbEOlnlOQNEjSPGAlcE9EPJImXZIOEV0uaavUNhxYUph9aWrruMzJkuZImtPW1lZm+WZmA06poRAR6yNiHDAC2E/S/wHOB94DvB/YCTi3xmVOiYiWiGhpamrq9ZrNzAayunz7KCJWA/cCh0XE8nSIaC1wHbBf6rYMGFmYbURqMzOzOinz20dNkgan4W2AjwK/aT9PIEnA0cCCNMsMYGL6FtL+wMsRsbys+szMbENlfvtoGDBd0iCy8Lk1ImZK+qWkJkDAPOC01P8u4AigFXgNOKnE2szMrILSQiEi5gN7V2g/uJP+AZxeVj1mZtY9X9FsZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZma5Mp/RvLWk2ZKekLRQ0tdS++6SHpHUKukWSVum9q3SeGua3lxWbWZmVlmZewprgYMjYi9gHHCYpP2BbwCXR8Ro4CXg5NT/ZOCl1H556mdmZnVUWihEZk0a3SK9AjgY+FFqnw4cnYbHp3HS9EMkqaz6zMxsQ6WeU5A0SNI8YCVwD/B7YHVErEtdlgLD0/BwYAlAmv4ysHOFZU6WNEfSnLa2tjLLNzMbcEoNhYhYHxHjgBHAfsB7emGZUyKiJSJampqaNrpGMzN7S12+fRQRq4F7gQ8CgyVtniaNAJal4WXASIA0fQdgVT3qMzOzTJnfPmqSNDgNbwN8FHiKLByOSd0mAXem4RlpnDT9lxERZdVnZmYb2rz7Lj02DJguaRBZ+NwaETMlLQJulnQx8DgwNfWfCtwgqRV4ETi+xNrMzKyC0kIhIuYDe1dof4bs/ELH9teBY8uqx8zMuucrms3MLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8uVeUVzn7DvOdc3uoQ+Y+5lExtdgpn1cd5TMDOz3Ca/p2C95w8XvbfRJfQZo776ZKNLMCuF9xTMzCznUDAzs5xDwczMcg4FMzPLORTMzCznUDAzs1yZz2geKeleSYskLZR0Zmq/UNIySfPS64jCPOdLapX0tKRDy6rNzMwqK/M6hXXA2RHxmKTtgLmS7knTLo+IbxU7SxpL9lzmPYFdgf+S9JcRsb7EGs3MrKC0PYWIWB4Rj6XhV4GngOFdzDIeuDki1kbEs0ArFZ7lbGZm5anLOQVJzcDewCOp6QxJ8yVdK2nH1DYcWFKYbSkVQkTSZElzJM1pa2srsWozs4Gn9FCQtC3wY+CsiHgFuAbYAxgHLAe+XcvyImJKRLREREtTU1Ov12tmNpCVGgqStiALhBsj4icAEfF8RKyPiDeB7/PWIaJlwMjC7CNSm5mZ1UmZ3z4SMBV4KiL+rdA+rNDtE8CCNDwDOF7SVpJ2B8YAs8uqz8zMNlTmt48OAE4EnpQ0L7V9CZggaRwQwGLgVICIWCjpVmAR2TeXTvc3j8zM6qu0UIiIhwBVmHRXF/NcAlxSVk1mZtY1X9FsZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeWqCgVJs6ppMzOz/q3L6xQkbQ28AxiSblzXft3B9nR9x1MzM+uHurt47VTgLLLnG8zlrVB4BbiqxLrMzKwBugyFiPgu8F1Jn4uIK+tUk5mZNUhVt7mIiCsl/TXQXJwnIq4vqS4zM2uAqkJB0g1kz0CYB7TfpC4Ah4KZ2Sak2hvitQBjIyLKLMbMzBqr2usUFgC7lFmImZk1XrV7CkOARZJmA2vbGyPiqFKqMjOzhqg2FC4sswgzM+sbqv320f1lF2JmZo1X7bePXiX7thHAlsAWwJ8iYvuyCjMzs/qr6kRzRGwXEdunENgG+Hvg6q7mkTRS0r2SFklaKOnM1L6TpHsk/S793DG1S9IVklolzZe0z0b+bmZmVqOa75IamTuAQ7vpug44OyLGAvsDp0saC5wHzIqIMcCsNA5wODAmvSYD19Ram5mZbZxqDx99sjC6Gdl1C693NU9ELAeWp+FXJT1FdhO98cBBqdt04D7g3NR+fboW4mFJgyUNS8sxM7M6qPbbR0cWhtcBi8nexKsiqRnYG3gEGFp4o18BDE3Dw4ElhdmWpra3hYKkyWR7EowaNaraEszMrArVfvvopJ6uQNK2wI+BsyLiFUn5tIgISTVdJR0RU4ApAC0tLb7C2sysF1X7kJ0Rkm6XtDK9fixpRBXzbUEWCDdGxE9S8/OShqXpw4CVqX0ZMLIw+4jUZmZmdVLtiebrgBlkz1XYFfhpauuUsl2CqcBTEfFvhUkzgElpeBJwZ6F9YvoW0v7Ayz6fYGZWX9WeU2iKiGIITJN0VjfzHACcCDwpaV5q+xJwKXCrpJOB54Dj0rS7gCOAVuA1oMeHrMzMrGeqDYVVkj4N3JTGJwCrupohIh7irSe1dXRIhf4BnF5lPWZmVoJqDx99luwT/QqybwMdA3ympJrMzKxBqt1TuAiYFBEvQXZVMvAtsrAwM7NNRLV7Cu9rDwSAiHiR7LoDMzPbhFQbCpu136MI8j2FavcyzMysn6j2jf3bwK8l3ZbGjwUuKackMzNrlGqvaL5e0hzg4NT0yYhYVF5ZZmbWCFUfAkoh4CAwM9uE1XzrbDMz23Q5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLFdaKEi6VtJKSQsKbRdKWiZpXnodUZh2vqRWSU9LOrSsuszMrHNl7ilMAw6r0H55RIxLr7sAJI0Fjgf2TPNcLWlQibWZmVkFpYVCRDwAvFhl9/HAzRGxNiKeBVqB/cqqzczMKmvEOYUzJM1Ph5faH9wzHFhS6LM0tW1A0mRJcyTNaWtrK7tWM7MBpd6hcA2wBzAOWE728J6aRMSUiGiJiJampqbers/MbECrayhExPMRsT4i3gS+z1uHiJYBIwtdR6Q2MzOro7qGgqRhhdFPAO3fTJoBHC9pK0m7A2OA2fWszczManjyWq0k3QQcBAyRtBS4ADhI0jgggMXAqQARsVDSrWRPdlsHnB4R68uqzczMKistFCJiQoXmqV30vwS4pKx6zMyse76i2czMcg4FMzPLORTMzCznUDAzs5xDwczMcg4FMzPLORTMzCznUDAzs5xDwczMcg4FMzPLORTMzCznUDAzs5xDwczMcg4FMzPLORTMzCznUDAzs5xDwczMcqWFgqRrJa2UtKDQtpOkeyT9Lv3cMbVL0hWSWiXNl7RPWXWZmVnnytxTmAYc1qHtPGBWRIwBZqVxgMOBMek1GbimxLrMzKwTpYVCRDwAvNiheTwwPQ1PB44utF8fmYeBwZKGlVWbmZlVVu9zCkMjYnkaXgEMTcPDgSWFfktT2wYkTZY0R9Kctra28io1MxuAGnaiOSICiB7MNyUiWiKipampqYTKzMwGrnqHwvPth4XSz5WpfRkwstBvRGozM7M6qncozAAmpeFJwJ2F9onpW0j7Ay8XDjOZmVmdbF7WgiXdBBwEDJG0FLgAuBS4VdLJwHPAcan7XcARQCvwGnBSWXWZmVnnSguFiJjQyaRDKvQN4PSyajEzs+r4imYzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLOdQMDOznEPBzMxyDgUzM8s5FMzMLFfarbPNzOrp/gM/3OgS+owPP3B/j+f1noKZmeUcCmZmlmvI4SNJi4FXgfXAuohokbQTcAvQDCwGjouIlxpRn5nZQNXIPYW/jYhxEdGSxs8DZkXEGGBWGjczszrqS4ePxgPT0/B04OgG1mJmNiA1KhQC+IWkuZImp7ahEbE8Da8AhjamNDOzgatRX0n9m4hYJuldwD2SflOcGBEhKSrNmEJkMsCoUaPKr9TMbABpyJ5CRCxLP1cCtwP7Ac9LGgaQfq7sZN4pEdESES1NTU31KtnMbECoeyhIeqek7dqHgY8BC4AZwKTUbRJwZ71rMzMb6Bpx+GgocLuk9vX/MCLulvQocKukk4HngOMaUJuZ2YBW91CIiGeAvSq0rwIOqXc9Zmb2lr70lVQzM2swh4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeUcCmZmlnMomJlZzqFgZmY5h4KZmeX6XChIOkzS05JaJZ3X6HrMzAaSPhUKkgYB3wMOB8YCEySNbWxVZmYDR58KBWA/oDUinomIPwM3A+MbXJOZ2YChiGh0DTlJxwCHRcQpafxE4AMRcUahz2Rgchp9N/B03Qut3RDghUYXsQnx9uw93pa9q79sz90ioqnShM3rXcnGiogpwJRG11ELSXMioqXRdWwqvD17j7dl79oUtmdfO3y0DBhZGB+R2szMrA76Wig8CoyRtLukLYHjgRkNrsnMbMDoU4ePImKdpDOAnwODgGsjYmGDy+oN/epwVz/g7dl7vC17V7/fnn3qRLOZmTVWXzt8ZGZmDeRQMDOznEOhF0g6WlJIek+h7W5JqyXN7ND3jHQLj5A0pP7V9n01bs8b021RFki6VtIW9a+4b6tlexamXyFpTf2q7B9q/NucKukJSfMl/UjStvWvuHYOhd4xAXgo/Wx3GXBihb6/Aj4CPFeHuvqrWrbnjcB7gPcC2wCnlF5d/1PL9kRSC7BjHerqj2rZlv8UEXtFxPuAPwBnVOjT5zgUNlJK/78BTib7Ci0AETELeLVj/4h4PCIW163AfqYH2/OuSIDZZNe2WFLr9kz3H7sM+GK9auwvevC3+UqaT2QfWPrFt3ocChtvPHB3RPwWWCVp30YX1M/1aHumw0YnAneXWVw/VOv2PAOYERHLyy+t36n5b1PSdcAKsr3ZK0uur1c4FDbeBLIb95F+Tuiir3Wvp9vzauCBiHiwlKr6r6q3p6RdgWPpJ29eDVDz32ZEnATsCjwFfKq80npPn7p4rb+RtBNwMPBeSUF2wV1IOid8AUjNero9JV0ANAGn1qfS/qEH23NvYDTQmh3x4B2SWiNidN2K7qM25v96RKyXdDPZIbnryq9243hPYeMcA9wQEbtFRHNEjASeBT7U4Lr6q5q3p6RTgEOBCRHxZp3q7C9q2p4R8Z8RsUvq2wy85kDI1bQtlRndPgwcBfymbtVuBIfCxpkA3N6h7cdkDwd6ELgNOETSUkmHAkj6vKSlZCdE50v6QV0r7ttq3p7AvwNDgV9Lmifpq/Urt8/ryfa0ymrdlgKmS3oSeBIYBlxUz4J7yre5MDOznPcUzMws51AwM7OcQ8HMzHIOBTMzyzkUzMws51CwTZKkaZKOKWs5kn4gaezGLr/DMr/Um/3MesKhYNYDEXFKRCzq5cVW+2bvULDSOBRskyBpYrpv/ROSbkjNB0r6b0nPFD/tSzpH0qOp/9e6WUZxHV9Pew6DJN2XbjGNpDWSLknzPSxpaGrfI40/Keni9ucTSBom6YF0sd0CSR+SdCmwTWq7MfW7Q9JcSQslTU5tb+snqVnSgkKNX5B0YRr+vKRF6Xe6GbNqRIRffvXrF7An8FtgSBrfCZhGdpXpZsBYoDVN+xjZw9WVps0EDqy0jPRzGtktDi4ju3q6/YLP+4CWNBzAkWn4m8BX0vBMsttvAJwGrEnDZwNfTsODgO3S8JoOv1d7DdsAC4CdO/YDmoEFhfEvABem4T8CW6XhwY3+d/Krf7y8p2CbgoOB2yLiBYCIeDG13xERb0Z2mGdoavtYej0OPEZ2S+MxXSwD4J+BHSLitIiodAuAP5MFAMBcsjdqgA+SBRPADwv9HwVOSp/o3xsRG9yLP/m8pCeAh4GRqc5azAdulPRpYF2N89oA5VCwTdnawrAKP/81Isal1+iImNrNch4F9k13yqzkjUJYrKebuw9HxANkeyfLgGmSJnbsI+kgsif0fTAi9iILsa0rLG4db/9/XOzzd8D3gH2ARyX5rsjWLYeCbQp+CRwraWfIb3PcmZ8Dn01P0ULScEnv6mYZdwOXAv8pabsa6noY+Ps0nD+pS9JuwPMR8X3gB2Rv2gBv6K1nTO8AvBQRryl7HvD+heUW+z0PvEvSzpK2Aj6e1rEZMDIi7gXOTcvrF88ItsbyJwfr9yJioaRLgPslrSf7VN1Z319I+iuyu6oCrAE+3ckyPlOY77YUCDMkHVFlaWcB/yHpy2TB8nJqPwg4R9Ibaf3tewpTyO6c+xjwWeA0SU8BT5MFDB37RcQJki4iexTpMt66PfOgtO4dyPaOroiI1VXWbQOY75JqVhJJ7wD+JyJC0vFkJ53HN7ous654T8GsPPsCV6WHrKwm+/Rv1qd5T8HMzHI+0WxmZjmHgpmZ5RwKZmaWcyiYmVnOoWBmZrn/BQnDvyRLEpRkAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "2jlXZIOOKopY",
"outputId": "c47423fa-dc59-4a75-96fe-da972cc0c828"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['history'])\n",
"plt.title('history Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAWMklEQVR4nO3dfZRkdX3n8fdHntQFHQZGhJnBNspqOGeV1QkhooZAEsGnIS4+YJSRJZnsWTVhdRNJchKVaFY3PqI5ZllQB6MCQZFR0agIqETUARFFRUeEZQaQ4WkACQr63T/q15ey6Zmpnumq6pl+v86pU/f+7u/e+tavu+vT99atW6kqJEkCeMi4C5AkzR2GgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhoLJJcm+R3N7HsGUmuHnVNs2G2a0/ymSQr2vQrknxlFrf9h0k+N1vb047BUNCcU1VfrqonbKlfkjck+edR1NT3ePcluavdfpDkvUn2newz27VX1VFVtWoWap9IUkl27tv2h6vq97d129qxGAqat/pfIGfgrKraA1gI/AHwaOCy/mCYpdqSxL9PjZy/dBqng5JcmWRjkrOSPBQgyWFJ1k12SvK6JOvbf+dXJzkiyZHAXwEvTnJ3km+1vvslWZ3ktiRrk/xx33bekOScJP+c5E7gpCT3JNmrr89TkmxIssvmCq+q+6rqKuDFwAbgtbNQ+0VJ3pzkEuAe4Nda2x/1PXTa3snGJN9PckTfgl85JDdlb+RL7f6O9pi/NfVwVJKnJflG2/Y3kjytb9lFSf4uySXtuXwuyd6bGyNtnwwFjdOLgCOBxwJPAl4xtUOSJwCvAn6j/Yf+LODaqvos8Pf0/nPfvaqe3FY5E1gH7AccA/x9ksP7NrkcOAdYALwduKjVMenlwJlVdd8gT6CqfgGcBzxjFmqffPyVwB7AddM85G8CPwL2Bl4PfDzJwgFKfWa7X9Ae86tTal0IfBo4BdgLeAfw6f7ABF4KHA88CtgV+J8DPK62M4aCxumUqrqhqm4DPgkcNE2fXwC7AQcm2aWqrq2qH023sSRLgUOB11XVvVV1BXAacFxft69W1Seq6pdV9e/AKuBlbf2dgGOBD83wedxA73DSVtfe54NVdVVV3b+JYLoZeFfbUzkLuBp4zgzrnc5zgB9W1YfaY38U+D7wvL4+H6iqH7RxO5vpf17azhkKGqeb+qbvAXaf2qGq1gInAm8Abk5yZpL9NrG9/YDbququvrbrgMV989dPWec8ei/ajwV+D9hYVV+f0bPobf+2bax9U/VNtb5+9SqW19F73ttqPx68ZzJ17Lb489L2z1DQnFdVH6mqpwOPAQp46+SiKV1vABYm2aOvbX9gff/mpmz7Xnr/9b6M3qGbGe0ltDeDnwd8eRtrn7a+aSxOkr75/ek9b4CfAg/vW/boGWz3hlZjv6ljp3nAUNCcluQJSQ5PshtwL/DvwC/b4p8AE5Nn6VTV9cC/Af8ryUOTPAk4AdjSqZ9n0Hs/4/kMGApJdk7y68BH6b34vmNbap+BRwF/mmSXJC8Efh04vy27AnhJW7aM3nsqkza0x/61TWz3fOA/Jnlpe24vBg4EPjXD+rSdMxQ01+0GvAW4hd7hi0cBf9mW/Uu7vzXJ5W36WGCC3n++5wKvr6ovbO4BquoSei+Yl1fVdG/u9ntxkruBjcBq4FbgqVV1wzR9Z1r7IL4GHNC2+WbgmKq6tS37G+BxwO3AG4GP9D3He1r/S5LckeSQ/o22bTyX3llUtwJ/ATy3qm6ZQW3aAcQv2ZEgyReBj1TVaeOuRRonQ0HzXpLfAD4PLJ3yJrU073j4SPNaklXAF4ATDQTJPQVJUh/3FCRJna25INicsffee9fExMS4y5Ck7cpll112S1Utmm7Zdh0KExMTrFmzZtxlSNJ2JckmT7328JEkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqbNdf6JZg/l/J/+ncZcw6/b/22+PuwRph+SegiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpM9RQSHJtkm8nuSLJmta2MMnnk/yw3e/Z2pPklCRrk1yZ5CnDrE2S9GCj2FP4nao6qKqWtfmTgAuq6gDggjYPcBRwQLutBN43gtokSX3GcfhoObCqTa8Cju5rP6N6LgUWJNl3DPVJ0rw17FAo4HNJLkuysrXtU1U3tumbgH3a9GLg+r5117W2X5FkZZI1SdZs2LBhWHVL0rw07GsfPb2q1id5FPD5JN/vX1hVlaRmssGqOhU4FWDZsmUzWleStHlD3VOoqvXt/mbgXOBg4CeTh4Xa/c2t+3pgad/qS1qbJGlEhhYKSf5Dkj0mp4HfB74DrAZWtG4rgPPa9GrguHYW0iHAxr7DTJKkERjm4aN9gHOTTD7OR6rqs0m+AZyd5ATgOuBFrf/5wLOBtcA9wPFDrE2SNI2hhUJVXQM8eZr2W4Ejpmkv4JXDqkeStGV+olmS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEmdoYdCkp2SfDPJp9r8Y5N8LcnaJGcl2bW179bm17blE8OuTZL0q0axp/BnwPf65t8KvLOqHg/cDpzQ2k8Abm/t72z9JEkjNNRQSLIEeA5wWpsPcDhwTuuyCji6TS9v87TlR7T+kqQRGfaewruAvwB+2eb3Au6oqvvb/DpgcZteDFwP0JZvbP0lSSMytFBI8lzg5qq6bJa3uzLJmiRrNmzYMJublqR5b5h7CocCz09yLXAmvcNG7wYWJNm59VkCrG/T64GlAG35I4Fbp260qk6tqmVVtWzRokVDLF+S5p+hhUJV/WVVLamqCeAlwBer6g+BC4FjWrcVwHltenWbpy3/YlXVsOqTJD3YOD6n8DrgNUnW0nvP4PTWfjqwV2t/DXDSGGqTpHlt5y132XZVdRFwUZu+Bjh4mj73Ai8cRT2SpOn5iWZJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1hhYKSR6a5OtJvpXkqiRvbO2PTfK1JGuTnJVk19a+W5tf25ZPDKs2SdL0BgqFJBcM0jbFz4DDq+rJwEHAkUkOAd4KvLOqHg/cDpzQ+p8A3N7a39n6SZJGaLOh0P7bXwjsnWTPJAvbbQJYvLl1q+fuNrtLuxVwOHBOa18FHN2ml7d52vIjkmSGz0eStA123sLyPwFOBPYDLgMmX6TvBN67pY0n2amt93jgH4EfAXdU1f2tyzoeCJfFwPUAVXV/ko3AXsAtgz4ZSdK22WwoVNW7gXcneXVVvWemG6+qXwAHJVkAnAs8cevKfECSlcBKgP33339bNydJ6rOlPQUAquo9SZ4GTPSvU1VnDLj+HUkuBH4LWJBk57a3sARY37qtB5YC65LsDDwSuHWabZ0KnAqwbNmyGuTxJUmDGSgUknwIeBxwBfCL1lzAJkMhySLgvhYIDwN+j96bxxcCxwBnAiuA89oqq9v8V9vyL1bVVr/oP/XPB8qr7cpl/3DcuEuQtIMbKBSAZcCBM3yR3hdY1d5XeAhwdlV9Ksl3gTOTvAn4JnB663868KEka4HbgJfM4LEkSbNg0FD4DvBo4MZBN1xVVwL/eZr2a4CDp2m/F3jhoNuXJM2+QUNhb+C7Sb5O7/MHAFTV84dSlSRpLAYNhTcMswhJ0tww6NlHFw+7EEnS+A169tFd9M42AtiV3qeTf1pVjxhWYZKk0Rt0T2GPyel26YnlwCHDKkqSNB4zvkpqu6bRJ4BnDaEeSdIYDXr46AV9sw+h97mFe4dSkSRpbAY9++h5fdP3A9fSO4QkSdqBDPqewvHDLkSSNH6DfsnOkiTnJrm53T6WZMmwi5MkjdagbzR/gN4F6/Zrt0+2NknSDmTQUFhUVR+oqvvb7YPAoiHWJUkag0FD4dYkL0uyU7u9jGm+60CStH0bNBT+K/Ai4CZ6V0o9BnjFkGqSJI3JoKekngysqKrbAZIsBN5GLywkSTuIQfcUnjQZCABVdRvTfFeCJGn7NmgoPCTJnpMzbU9h0L0MSdJ2YtAX9rcDX03yL23+hcCbh1OSJGlcBv1E8xlJ1gCHt6YXVNV3h1eWJGkcBj4E1ELAIJCkHdiML50tSdpxGQqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpM7QQiHJ0iQXJvlukquS/FlrX5jk80l+2O73bO1JckqStUmuTPKUYdUmSZreMPcU7gdeW1UHAocAr0xyIHAScEFVHQBc0OYBjgIOaLeVwPuGWJskaRpDC4WqurGqLm/TdwHfAxYDy4FVrdsq4Og2vRw4o3ouBRYk2XdY9UmSHmwk7ykkmaD3TW1fA/apqhvbopuAfdr0YuD6vtXWtTZJ0ogMPRSS7A58DDixqu7sX1ZVBdQMt7cyyZokazZs2DCLlUqShhoKSXahFwgfrqqPt+afTB4Wavc3t/b1wNK+1Ze0tl9RVadW1bKqWrZo0aLhFS9J89Awzz4KcDrwvap6R9+i1cCKNr0COK+v/bh2FtIhwMa+w0ySpBEY+JvXtsKhwMuBbye5orX9FfAW4OwkJwDXAS9qy84Hng2sBe4Bjh9ibZKkaQwtFKrqK0A2sfiIafoX8Mph1SNJ2jI/0SxJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6gwtFJK8P8nNSb7T17YwyeeT/LDd79nak+SUJGuTXJnkKcOqS5K0acPcU/ggcOSUtpOAC6rqAOCCNg9wFHBAu60E3jfEuiRJmzC0UKiqLwG3TWleDqxq06uAo/vaz6ieS4EFSfYdVm2SpOmN+j2FfarqxjZ9E7BPm14MXN/Xb11re5AkK5OsSbJmw4YNw6tUkuahsb3RXFUF1Fasd2pVLauqZYsWLRpCZZI0f406FH4yeVio3d/c2tcDS/v6LWltkqQRGnUorAZWtOkVwHl97ce1s5AOATb2HWaSJI3IzsPacJKPAocBeydZB7weeAtwdpITgOuAF7Xu5wPPBtYC9wDHD6suzW+HvufQcZcw6y559SXjLkE7kKGFQlUdu4lFR0zTt4BXDqsWSdJg/ESzJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOkO7dLYkbS/e+9pPjruEWfeqtz9vq9ZzT0GS1DEUJEkdDx9J89TFz/ztcZcw6377SxePu4TtnnsKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6sypUEhyZJKrk6xNctK465Gk+WbOhEKSnYB/BI4CDgSOTXLgeKuSpPllzoQCcDCwtqquqaqfA2cCy8dckyTNK6mqcdcAQJJjgCOr6o/a/MuB36yqV03ptxJY2WafAFw90kKntzdwy7iLmCMcix7H4QGOxQPmylg8pqoWTbdgu/uSnao6FTh13HX0S7KmqpaNu465wLHocRwe4Fg8YHsYi7l0+Gg9sLRvfklrkySNyFwKhW8AByR5bJJdgZcAq8dckyTNK3Pm8FFV3Z/kVcC/AjsB76+qq8Zc1qDm1OGsMXMsehyHBzgWD5jzYzFn3miWJI3fXDp8JEkaM0NBktQxFAaQ5OgkleSJbf4xSS5PckWSq5L8t2nWWZ3kO6OvdrgGHYskD0/y6STfb+1vGW/ls28mvxdJPpvkW639n9on+HcYMxyLpyb5druczSlJMr7KZ98Mx+LNSa5Pcvf4Kp6iqrxt4QacBXwZeGOb3xXYrU3vDlwL7NfX/wXAR4DvjLv2cY0F8HDgd/r6fBk4atz1j+v3AnhEuw/wMeAl465/jGPxdeCQNhafmee/F4cA+wJ3j7vuyZt7CluQZHfg6cAJ9E6Tpap+XlU/a112o2+Pq/V/DfCmEZc6dDMZi6q6p6ounOwDXE7vsyc7hJn+XlTVnW1yZ3ovEjvMGR4zGYsk+9ILyEur96p4BnD06Ksejq34vbi0qm4ceaGbYShs2XLgs1X1A+DWJE8FSLI0yZXA9cBbq+qG1v/vgLcD94yl2uGa6VjQli8AngdcMOqCh2jGY5HkX4GbgbuAc8ZQ87DMZCwWA+v61l3X2nYUW/U3MpcYClt2LL2L89HujwWoquur6knA44EVSfZJchDwuKo6dzylDt3AYzG5QpKdgY8Cp1TVNSOud5hmPBZV9Sx6hwp2Aw4fbblDNeOx2IFt92Ph5xQ2I8lCev/JbKC3u79Tu39M9Q1ckvcD5wOLgL8Bfk7vMMGjgH+rqsNGW/nsm+lYVNU5ffN3V9Wfjr7q4djasehrPw44uKZc7HF7tBV/I5cAF1bV5JuwxwKHVdWfjLr22bYtvxdJ7q6q3Udc8rTcU9i8Y4APVdVjqmqiqpYCPwaekeRhAEn2pHcM8eqqel9V7VdVE63tBztCIDQzGos2/ybgkcCJY6p5WGY0Fkl2b8fSJ/ecngN8f0y1z7aZ/o3cCNyZ5JB21tFxwHnjKn6WzfhvZC6aM5e5mKOOBd46pe1jwP8B7ktS9M6geFtVfXvUxY3YjMYiyRLgr+m9+F3ezjp8b1WdNsKah2WmY7EPsDrJ5JuMFwL/NMqCh2hr/kb+O/BB4GH0zj76zGhKHboZj0WS/w28FHh4knXAaVX1htGV/GAePpIkdTx8JEnqGAqSpI6hIEnqGAqSpI6hIEnqGArSNJJMTHeV2yQnJ/ndzax3dJIDh1udNDyGgjQDVfW3VfWFzXQ5GphRKLQPtElzgqEgbdpOSf5vuwb+55I8LMkHkxwDkOQtSb6b5Mokb0vyNOD5wD+0a+c/LslBSS5tfc5tn2glyUVJ3pVkDfDXSX6cZJe27BH989Io+R+KtGkHAMdW1R8nORv4L5MLkuwF/AHwxKqqJAuq6o4kq4FP9V376Urg1VV1cZKTgdfzwGU/dq2qZa3fBL3LX3yC3iWXP15V943kWUp93FOQNu3HVXVFm74MmOhbthG4Fzg9yQuY5lLpSR4JLKiqi1vTKuCZfV3O6ps+DTi+TR8PfGCbq5e2gqEgbdrP+qZ/Qd+edVXdDxxM73sRngt8diu2/9O+7V0CTCQ5DNipqna4r3LV9sFQkLZC+4atR1bV+cD/AJ7cFt0F7AFQVRuB25M8oy17OXDx1G31OYPe17i6l6CxMRSkrbMH8Kn2nsFX6H0FK/S+WOXPk3wzyeOAFfTeeL4SOAg4eTPb/DCwJ70vJZLGwqukSnNEO6tpeVW9fNy1aP7y7CNpDkjyHuAo4NnjrkXzm3sKkqSO7ylIkjqGgiSpYyhIkjqGgiSpYyhIkjr/H0qMFR8ajTBrAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "hQOiRnO-KopY",
"outputId": "5fd9c97e-1f7d-4297-bbed-b281c1adcde6"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['purpose'])\n",
"plt.title('purpose Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAY/ElEQVR4nO3debhkdX3n8fdHwI1FQFpktV1QB0xE6Ad3gzIZheg0GkQQWRSDUTD6yCQBSYaOSKJRNCwjBgUBccOFAYURkVFQImLDIDtCEALI0oLKZlTgO3+cXx+K5jZ9b99bVZfu9+t56qlTv7P8vrdu3fup8zunTqWqkCQJ4HHjLkCSNHsYCpKknqEgSeoZCpKknqEgSeoZCpKknqEgDVGSy5NsO0Pb2i3JdwYeV5LnzMS22/buSfKsmdqeHpvi5xSkqUsyF/g5cG9ruhf4CXB4VZ21nNtararun8J6BWxWVddOpb+27veBk6rqs1NdVys29xT0mJNklXHXMGDtqloDeCFwFnBKkr1mupMkq870NqWJGAoaiSTXJzkwyRVJfpXkc0me2ObtleSHSyzfD40kOT7J0UnOSHIv8OrW9ukkZyW5O8k5SZ4xsP7LkvwkyW/a/csG5u2V5Lq23s+T7DYw7x1Jrmw1njm4zUdTVbdW1eHAAuCjSR438HP/1za9TZKFSe5KcluST7TVz233v25DOC9tNZ6X5JNJ7gAWTPQ8ATu0n+WXST420O+CJCcN/Fxz23O6apJDgVcCR7X+jprgOX9KkhOTLEpyQ5K/G9j2Xkl+mOTj7Xn6eZLtJ/M8afYzFDRKuwGvBZ4NPBf4uyms+1bgUGBNYPE/xt2AQ4D1gIuBLwAkWRc4HTgCeCrwCeD0JE9Nsnpr376q1gRe1tYlyXzgg8CbgDnAD4AvTfFn/AbwNOB5E8w7nG54aS265+Dk1v6qdr92Va1RVT9qj18MXAes3372ibwRmAdsBcwH3rGsAqvqILqfbb/W334TLHYk8BTgWcCfAHsAbx+Y/2Lgarrn/p+BY5NkWX1r9jMUNEpHVdWNVXUn3T+5Xaew7qlVdV5VPVhV/9naTq+qc6vqd8BBwEuTbAL8GXBNVX2+qu6vqi8BVwFvaOs9CLwgyZOq6paqury1/yXwT1V1ZRvb/0dgy8nuLTS/aPfrTjDvD8BzkqxXVfdU1fnL2lZVHdl+ht8uZZmPVtWdVfUfwL8wted0Qm14bhfgwKq6u6quBw4Ddh9Y7Iaq+kxVPQCcAGxAF156jDMUNEo3DkzfAGy4nOs+oq2q7gHubNvcsG1/0A3ARlV1L/AWugC4JcnpSZ7flnkGcHiSXyf5ddtegI2mUOfiZe+cYN7edHtIV7UhrdcvY1sT/cyPtsxUn9OlWQ9YjYc/hzfw8Ofh1sUTVXVfm1xjBvrWmBkKGqVNBqY35aF31fcCT148I8nTJ1h3otPk+u0lWYPu3fkv2m3Jd/ebAjcDVNWZVfWndO9urwI+05a5EXhXVa09cHtSVf3bJH8+6IZzbqcbWnn4D1B1TVXtSje89FHga204a2mnAE7m1MBJPafAks/po237l3R7NYPPYf/8acVmKGiU9k2ycRvzPwj4Smv/KbBFki3bwecFk9zeDklekeTxdMcWzq+qG4EzgOcmeWs7sPoWYHPgW0nWTzK//TP+HXAP3XASwKeBA5NsAf3B1jdPppC23f2Ag+mGXR6cYJm3JZnT5v26NT8ILGr3y/MZgb9Osk4bNnsfDz2nFwOvSrJpkqcABy6x3m1L668NCZ0MHJpkzTZ89gHgpImW14rFUNAofRH4Dt3B038HPgxQVT8DPgR8F7iGhw4kT2Z7B9MN1WwNvK1t7w7g9cD+wB3A3wCvr6pf0r3mP0D3jvpOuoOo727rnUL3Dv7LSe4CLgOWdVbNr9sZUZcCOwBvrqrjlrLs64DLk9xDd9B5l6r6bRt+ORQ4rw1dvWSSPz/AqcCFdCFwOnBs+1nOoguIS9r8by2x3uHATu3soSMm2O576fY2rqP7fXwRWNrPpRWIH17TSCS5HnhnVX13hrZ3PHBTVU3lDCZJy+CegiSpZyhIknoOH0mSeu4pSJJ6j+mLbK233no1d+7ccZchSY8pF1544S+ras5E8x7ToTB37lwWLlw47jIk6TElyZKf+O85fCRJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6j2mP9G8pK3/+sSR9HPhx/YYST+SNGruKUiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKk3tFBIskmS7yW5IsnlSd7X2hckuTnJxe22w8A6Bya5NsnVSV47rNokSRMb5nc03w/sX1UXJVkTuDDJWW3eJ6vq44MLJ9kc2AXYAtgQ+G6S51bVA0OsUZI0YGh7ClV1S1Vd1KbvBq4ENnqUVeYDX66q31XVz4FrgW2GVZ8k6ZFGckwhyVzgRcCPW9N+SS5JclySdVrbRsCNA6vdxAQhkmSfJAuTLFy0aNEQq5aklc/QQyHJGsDXgfdX1V3A0cCzgS2BW4DDprK9qjqmquZV1bw5c+bMeL2StDIbaigkWY0uEL5QVd8AqKrbquqBqnoQ+AwPDRHdDGwysPrGrU2SNCLDPPsowLHAlVX1iYH2DQYWeyNwWZs+DdglyROSPBPYDLhgWPVJkh5pmGcfvRzYHbg0ycWt7YPArkm2BAq4HngXQFVdnuRk4Aq6M5f29cwjSRqtoYVCVf0QyASzzniUdQ4FDh1WTZKkR+cnmiVJPUNBktQzFCRJPUNBktQzFCRJPUNBktQb5ucUtJI751V/MrK+/uTcc0bWl7Qic09BktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQbWigk2STJ95JckeTyJO9r7esmOSvJNe1+ndaeJEckuTbJJUm2GlZtkqSJDXNP4X5g/6raHHgJsG+SzYEDgLOrajPg7PYYYHtgs3bbBzh6iLVJkiYwtFCoqluq6qI2fTdwJbARMB84oS12ArBjm54PnFid84G1k2wwrPokSY80kmMKSeYCLwJ+DKxfVbe0WbcC67fpjYAbB1a7qbUtua19kixMsnDRokVDq1mSVkZDD4UkawBfB95fVXcNzquqAmoq26uqY6pqXlXNmzNnzgxWKkkaaigkWY0uEL5QVd9ozbctHhZq97e39puBTQZW37i1SZJGZJhnHwU4Friyqj4xMOs0YM82vSdw6kD7Hu0spJcAvxkYZpIkjcCqQ9z2y4HdgUuTXNzaPgh8BDg5yd7ADcDObd4ZwA7AtcB9wNuHWJskaQJDC4Wq+iGQpczeboLlC9h3WPVIkpbNTzRLknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpN8xPNGuMXn7ky0fSz3nvPW8k/UgaDfcUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEm9SYVCkrMn0yZJemx71EtnJ3ki8GRgvSTrAGmz1gI2GnJtkqQRW9b3KbwLeD+wIXAhD4XCXcBRQ6xLkjQGjxoKVXU4cHiS91bVkSOqSZI0JpP65rWqOjLJy4C5g+tU1YlDqkuSNAaTCoUknweeDVwMPNCaCzAUJGkFMtnvaJ4HbF5VNdkNJzkOeD1we1W9oLUtAP4CWNQW+2BVndHmHQjsTRc6f1VVZ062L0nSzJjs5xQuA54+xW0fD7xugvZPVtWW7bY4EDYHdgG2aOt8KskqU+xPkjRNk91TWA+4IskFwO8WN1bVf1/aClV1bpK5k9z+fODLVfU74OdJrgW2AX40yfUlSTNgsqGwYAb73C/JHsBCYP+q+hXdZx7OH1jmJpbyOYgk+wD7AGy66aYzWJYkabJnH50zQ/0dDRxCd5D6EOAw4B1T2UBVHQMcAzBv3rxJH+OQJC3bZM8+upvuHznA44HVgHuraq2pdFZVtw1s8zPAt9rDm4FNBhbduLVJkkZoUgeaq2rNqlqrhcCTgD8HPjXVzpJsMPDwjXQHsAFOA3ZJ8oQkzwQ2Ay6Y6vYlSdMz2WMKvXZa6v9OcjBwwNKWS/IlYFu66ybdBBwMbJtkS7q9juvpLqNBVV2e5GTgCuB+YN+qemCi7UqShmeyw0dvGnj4OLrPLfzno61TVbtO0Hzsoyx/KHDoZOqRJA3HZPcU3jAwfT/du/z5M16NJGmsJnv20duHXYgkafwm+yU7Gyc5Jcnt7fb1JBsPuzhJ0mhN9jIXn6M7Q2jDdvtma5MkrUAmGwpzqupzVXV/ux0PzBliXZKkMZhsKNyR5G1JVmm3twF3DLMwSdLoTTYU3gHsDNwK3ALsBOw1pJokSWMy2VNSPwTs2S5eR5J1gY8zxesWSZJmt8nuKfzx4kAAqKo7gRcNpyRJ0rhMNhQel2SdxQ/ansKUL5EhSZrdJvuP/TDgR0m+2h6/GS9JIUkrnMl+ovnEJAuB17SmN1XVFcMrS5I0DpMeAmohYBBI0gpssscUJEkrAUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJvaGFQpLjktye5LKBtnWTnJXkmna/TmtPkiOSXJvkkiRbDasuSdLSDfN7lo8HjgJOHGg7ADi7qj6S5ID2+G+B7YHN2u3FwNHtXpqWo/b/5sj62u+wN4ysL2lYhranUFXnAncu0TwfOKFNnwDsONB+YnXOB9ZOssGwapMkTWzUxxTWr6pb2vStwPpteiPgxoHlbmptj5BknyQLkyxctGjR8CqVpJXQ2A40V1UBtRzrHVNV86pq3pw5c4ZQmSStvIZ5TGEityXZoKpuacNDt7f2m4FNBpbbuLVJK4RD37bTyPo66KSvjawvrXhGvadwGrBnm94TOHWgfY92FtJLgN8MDDNJkkZkaHsKSb4EbAusl+Qm4GDgI8DJSfYGbgB2boufAewAXAvcB7x9WHVJkpZuaKFQVbsuZdZ2EyxbwL7DqkWSNDl+olmS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEk9Q0GS1DMUJEm9VcfRaZLrgbuBB4D7q2peknWBrwBzgeuBnavqV+OoT5JWVuPcU3h1VW1ZVfPa4wOAs6tqM+Ds9liSNEKzafhoPnBCmz4B2HGMtUjSSmksw0dAAd9JUsC/VtUxwPpVdUubfyuw/kQrJtkH2Adg0003HUWtU/IfH/qjkfW16f+8dGR9SVo5jCsUXlFVNyd5GnBWkqsGZ1ZVtcB4hBYgxwDMmzdvwmUkSctnLMNHVXVzu78dOAXYBrgtyQYA7f72cdQmSSuzkYdCktWTrLl4GvhvwGXAacCebbE9gVNHXZskrezGMXy0PnBKksX9f7Gqvp3kJ8DJSfYGbgB2HkNtkrRSG3koVNV1wAsnaL8D2G7U9UiSHjKbTkmVJI2ZoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqTeuL6jWdJKasGCBStkXysK9xQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLU85RUaSVx5aH/d2R9/ZeDXjOyvpbHyV/dZmR97fzmC0bW10xwT0GS1HNPQZLG5IVfO3Nkff10p9dOajn3FCRJPUNBktQzFCRJvVkXCklel+TqJNcmOWDc9UjSymRWhUKSVYD/BWwPbA7smmTz8VYlSSuPWRUKwDbAtVV1XVX9HvgyMH/MNUnSSiNVNe4aekl2Al5XVe9sj3cHXlxV+w0ssw+wT3v4PODqaXa7HvDLaW5jumZDDTA76pgNNcDsqGM21ACzo47ZUAPMjjpmooZnVNWciWY85j6nUFXHAMfM1PaSLKyqeTO1vcdqDbOljtlQw2ypYzbUMFvqmA01zJY6hl3DbBs+uhnYZODxxq1NkjQCsy0UfgJsluSZSR4P7AKcNuaaJGmlMauGj6rq/iT7AWcCqwDHVdXlQ+52xoaipmE21ACzo47ZUAPMjjpmQw0wO+qYDTXA7KhjqDXMqgPNkqTxmm3DR5KkMTIUJEm9FT4UkuyYpJI8f4n2tZLclOSogbZvJ/lpksuTfLp9wnocdTw+yTFJfpbkqiR/Psoakjw5yemt78uTfGQm+p9qHa1t6ySXtsueHJEkY6jh0CQ3JrlnJvqeRh1vSXJJ+518dBw1DMw7LcllM1XDVOtI8v12OZyL2+1pI+p3wtdCkick+Up7nf44ydzlrWc5atq1/Y1c0v6HrTedvlf4UAB2BX7Y7gcdApy7RNvOVfVC4AXAHODNY6rjIOD2qnou3eU+zhlDDR+vqucDLwJenmT7GaphqnUcDfwFsFm7vW4MNXyT7tP2wzCpOpI8FfgYsF1VbQE8Pcl2o6xhoJY3ATMekFOtA9itqrZst9tH1O/SXgt7A7+qqucAnwSmG9qTfV2sChwOvLqq/hi4BNiPaVihQyHJGsAr6H5huwy0bw2sD3xncPmquqtNrgo8HpiRo/BTrQN4B/BPraYHq2ran6CcSg1VdV9Vfa9N/x64iO4zI9M2lTqSbACsVVXnV3dGxInAjqOsAaD1f8t0+51mHc8CrqmqRe3xd4Fp70FO9bloy38A+PB0+55OHePq91FeC/OBE9r014Dtlnevdoo1pd1Wb/2tBfxiefpdbIUOBbpf1Ler6mfAHW0o4nHAYcD/mGiFJGcCtwN30/1yR1pHkrXb5CFJLkry1STrj7KGCep5A3D2DNQw1To2Am4aeHxTaxtlDcM0lTquBZ6XZG57d7gjD/+g5yhqgO6d6mHAfTPQ93TqAPhcGzr6+2kMK87Ua2Ej4EboTq0HfgM8ddg1VdUfgHcDl9KFwebAscvZL7Dih8KudBfVo93vCrwHOKOqbppohap6LbAB8ARgpr59fCp1rEr3rvzfqmor4EfAx0dcA9Dvmn4JOKKqrpuBGparjiGYDTVMqY6q+hXdH/9XgB8A1wMPjLKGJFsCz66qU2ag3+Wuo9mtqv4IeGW77T6ifkdhKr+T1eheFy8CNqQbPjpwOp2vsJ9TSLIu3TvLRXTDQKu0+x/QvYgeBNagGyb6VFUdsMT6ewDbDF6MbxR10P1C7wHWrKoHk2xC965hi1HVsPi5SHIccE9V/dXy9j2dOujGSr/Xjm2QZFdg26p616hqGHxdJLmnqtZY3r5nqo62/j7Ac6rqb0ZVA3AD8PfA7+nevDyN7s3Ltstbw/LUMcFzsRcwb6p/qzP5WmgjDAuq6kftzdStwJya4j/Y5fidfB34SFVt19Z/FXBAVe0wlX4fpqpWyBvdlVT/dYm2c4BXDTzeCziqTa8BbNCmV6V7R7bfqOtoj78MvGZg3lfHUMOH2wvuceP6nbTHFwAvoRs3/T/ADqOuYaD9njE/F09r9+sAFwPPHeNzMRe4bBzPRfv7XK9Nr0Y3zPuX43wtAPsCn27TuwAnj+i52BC4hS6AoA3vTef3sSIPH+0KLLmb+3UeeTR/sdWB05JcQvcHdzvw6THUAfC3wIJWy+7A/qOsIcnGdGdAbQ5c1MZt3znNGqZcR/Me4LN0Y+r/ThcMI60hyT8nuQl4cjsdcME0a1iuOoDDk1wBnEf37vBnY6hhGKZaxxOAMwf+Vm8GPjOCfh/ttXAs8NQk19IdiF/eb42cUk1V9QvgH4Bz2/OxJfCPy9k3sAIPH0mSpm5F3lOQJE2RoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkK0gxon2KVHvMMBalpF5u7KskXklyZ5Gvpvlvi+sXXqE8yL8n32/SCJJ9Pch7w+SR7JTk13bX+r0ly8MC2P5DksnZ7f2tbPd33Vvy0tb+ltW+d5JwkFyY5s10tVhoJ391ID/c8YO+qOq9d++k9y1h+c+AVVfXbdg2ebei+j+M+4CdJTqe7ds3bgRfTXa7jx0nOobsc9i+q6s8AkjylXeDsSGB+VS1qQXEo3eXUpaEzFKSHu7GqzmvTJwHLuhjgaVX124HHZ1XVHQBJvkF3XfwCTqmqewfaXwl8Gzgs3beofauqfpDkBXShcla7GvQqdNe2kUbCUJAebsnrvhRwPw8NtT5xifn3TmL9iTuq+lmSrYAdgA8nOZvuujeXV9VLp1S1NEM8piA93KZJFv9DfivdVyJeD2zd2pb1bWd/mmTdJE+i+yKc8+gue7xjOz6xOvBG4AdJNgTuq6qT6L5qcyvgamDO4hqSrJZkuS+bLk2VewrSw10N7NuOJ1xB9x3RFwDHJjkE+P4y1r+A7qqWGwMnVdVCgCTHt3kAn62q/5fktcDHkjwI/AF4d1X9PslOwBFJnkL3N/ovwOUz+DNKS+VVUqUmyVy6sf0XLOf6e7EcX/YizSYOH0mSeu4pSJJ67ilIknqGgiSpZyhIknqGgiSpZyhIknr/H9hnjmi4SQc3AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "yM6bohxwKopY",
"outputId": "77b3dec0-3508-4128-ee14-c56c38878f54"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['savings'])\n",
"plt.title('savings Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYYElEQVR4nO3de7gcdZ3n8fdHwsU7IJlwCRIUhGUWQQwMrtcBZ7ysiusiiBciwsRnFlzvijOzyrK4jy4zq1yU2QhyURQQL0SHVRkUURfQMCAg6BAZGBIJCQgIgyjgd//o36l04klyTkh3nyTv1/Ocp6t+9evqb1dy+nPqV11VqSokSQJ43KgLkCRNHYaCJKljKEiSOoaCJKljKEiSOoaCJKljKGi9luSnSV4y6jpWluT/Jpmzjtb1wiQ/75u/NclL18W62/qm5DbUaMTzFKTJSVLAg0ABvwWuBeZV1flrua5dq2rhJJ5zK3BUVf3jWrzeWcCiqvqbyT5XGwf3FKS1s1dVPQnYDTgLODXJR9b1iySZtq7XKa2OoaChSfLBJIuT3J/k50kObO37Jbkiyb1J7khyapLN2rLTkvztSuu5KMl72nQ3lJLkuCQXJDmnvcZPk8zue94+Sa5py76U5PwkJ7Rl2yT5RqvhV0m+n2SNvx9VdVdVfQ74S+BDSZ7W1ndZkqPa9C5JvpfkviR3JTm/tV/eVvOTJA8kOTTJS5IsattqCXDmWNtKL71vkhuT3JPkzCRbtHW+NckPVtpe1WqYC7wJ+EB7va+Psw03T/LJJL9sP59MsnlbNlbbe5Msbf9WR6xpG2n9YihoKJLsBhwD7FtVTwZeBtzaFj8KvBvYBngecCDwX9qyLwKHJklbz1bAnwPnreKlXtOWbQnMB05tz9sM+Cq9v+q3buv9T33Pey+wCJgOzAD+it7w0ERdBEwD9htn2f8Avg1sBcwETgGoqhe15XtV1ZP6hp+2bTXuBMxdxeu9id42fCbwLGCNw0FVNQ84F/hf7fVePU63vwb2B/YG9mrvp3/d2wJPBXYAjgQ+1f5NtIEwFDQsjwKbA3sk2bSqbq2qXwBU1dVVdWVVPVJVtwL/B3hxe9736X04v7DNHwxcUVW/XMXr/KCqLq6qR4HP0ftgg94H3TTg5Kp6uKq+Avyo73kPA9sBO7Xl369JHHCrqoeBu+h9mK/sYXof8NtX1UNV9YNx+vT7PfCRqvptVf1mFX1Orarbq+pXwEeBwyZa6xq8CTi+qpZW1TLgvwNv6Vv+cFv+cFVdDDxAbwhNGwhDQUPRDqS+CzgOWJrkvCTbAyR5Vhu6WZLk18D/pLfXQPtgPo/lH3pvpPfX7qos6Zt+ENiijctvDyxe6YP+9r7pE4GFwLeT3JLk2Mm8vySb0tvL+NU4iz8ABPhRG9J62xpWt6yqHlpDn/7ab6P3/taF7dv6VrXuu6vqkb75B4EnraPX1hRgKGhoquoLVfUCen81F/Dxtug04Gf0voXzFHpDN+l76heBg5PsBPwJ8OW1ePk7gB3GhqGaHftqu7+q3ltVz6A3BPWesWMeE3QQ8Agr7n2MrXtJVf1FVW0PvB34dJJdVrOuieyh7Ng3/XRgbM/p34AnjC1Isu0k1/1Lev8+461bGwFDQUORZLckB7SDlg8Bv6E3TALwZODXwANJdqd30LZTVdfQG5o5HfhWVd27FiVcQW8I65gk05IcRN/4f5JXtYOxAe5rfX8//qpWeF9bJ3kT8Cng41V19zh9Xp9kZpu9h94H89i67wSesRbv5+gkM5NsTe84wNjxiJ8Af5xk73bw+biVnrem1/si8DdJpifZBvgw8Pm1qE/rKUNBw7I58DF6H+5LgD8CPtSWvY/esND9wGdY/gHX7wvAS9vjpFXV74DX0Ts4ei/wZuAb9M4zANgV+Ed6Y+RXAJ+uqu+uZpU/SfIAvSGno4B3V9WHV9F3X+Cq1n8+8M6quqUtOw44u33r6ZBJvKUv0Dt4fQvwC+CE9j7/GTi+vZebgZWPX5xB77jOvUm+Ns56TwAWANcB1wP/NLZubRw8eU0brSRXAX9fVWeOuhZpqnBPQRuNJC9Osm0bPpoDPBv45qjrkqYSz5bUxmQ34ALgifSGXQ6uqjtGW5I0tTh8JEnqOHwkSeqs18NH22yzTc2aNWvUZUjSeuXqq6++q6qmj7dsvQ6FWbNmsWDBglGXIUnrlSS3rWqZw0eSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpM5AQyHJlkkuTPKzJDcleV67/vwlSW5uj1u1vklycpKFSa5Lss8ga5Mk/aFB7ymcBHyzqnand6/cm4BjgUuralfg0jYP8Ap617Tfld7Nyk8bcG2SpJUM7IzmJE8FXgS8FbqbnPyu3fHqJa3b2cBlwAfp3c7wnHYP3SvbXsZ2XsXysfvX4/ccdQnr3NM/fP2oS5A2SIPcU9gZWAacmeSaJKcneSIwo++Dfgkwo03vwIo3I1/U2laQZG6SBUkWLFu2bIDlS9LGZ5ChMA3YBzitqp5D74bix/Z3aHsFk7p2d1XNq6rZVTV7+vRxr+ckSVpLgwyFRcCiqrqqzV9ILyTuTLIdQHtc2pYvBnbse/7M1iZJGpKBhUJVLQFuT7JbazoQuJHejcvntLY5wEVtej5wePsW0v7AfR5PkKThGvSls98BnJtkM3q3PzyCXhBdkORI4DbgkNb3YuCVwELgwdZXkjREAw2FqroWmD3OogPH6VvA0YOsR5K0ep7RLEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqDDQUktya5Pok1yZZ0Nq2TnJJkpvb41atPUlOTrIwyXVJ9hlkbZKkPzSMPYU/raq9q2p2mz8WuLSqdgUubfMArwB2bT9zgdOGUJskqc8oho8OAs5u02cDr+1rP6d6rgS2TLLdCOqTpI3WoEOhgG8nuTrJ3NY2o6ruaNNLgBltegfg9r7nLmptK0gyN8mCJAuWLVs2qLolaaM0bcDrf0FVLU7yR8AlSX7Wv7CqKklNZoVVNQ+YBzB79uxJPVeStHoD3VOoqsXtcSnwVWA/4M6xYaH2uLR1Xwzs2Pf0ma1NkjQkAwuFJE9M8uSxaeDPgRuA+cCc1m0OcFGbng8c3r6FtD9wX98wkyRpCAY5fDQD+GqSsdf5QlV9M8mPgQuSHAncBhzS+l8MvBJYCDwIHDHA2iRJ4xhYKFTVLcBe47TfDRw4TnsBRw+qHknSmnlGsySpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpM/BQSLJJkmuSfKPN75zkqiQLk5yfZLPWvnmbX9iWzxp0bZKkFQ1jT+GdwE198x8HPlFVuwD3AEe29iOBe1r7J1o/SdIQDTQUkswE/iNwepsPcABwYetyNvDaNn1Qm6ctP7D1lyQNyaD3FD4JfAD4fZt/GnBvVT3S5hcBO7TpHYDbAdry+1r/FSSZm2RBkgXLli0bZO2StNEZWCgkeRWwtKquXpfrrap5VTW7qmZPnz59Xa5akjZ60wa47ucDr0nySmAL4CnAScCWSaa1vYGZwOLWfzGwI7AoyTTgqcDdA6xPkrSSge0pVNWHqmpmVc0C3gB8p6reBHwXOLh1mwNc1Kbnt3na8u9UVQ2qPknSHxrFeQofBN6TZCG9YwZntPYzgKe19vcAx46gNknaqA1y+KhTVZcBl7XpW4D9xunzEPD6YdQjSRqfZzRLkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpM6FQSHLpRNokSeu31V4lNckWwBOAbZJsBYzdM/kpLL+NpiRpA7GmS2e/HXgXsD1wNctD4dfAqQOsS5I0AqsNhao6CTgpyTuq6pQh1SRJGpEJ3WSnqk5J8h+AWf3PqapzBlSXJGkEJhQKST4HPBO4Fni0NRdgKEjSBmSit+OcDexRVTXIYiRJozXR8xRuALYdZCGSpNGb6J7CNsCNSX4E/HassapeM5CqJEkjMdFQOG6QRUiSpoaJfvvoe4MuRJI0ehP99tH99L5tBLAZsCnwb1X1lEEVJkkavonuKTx5bDpJgIOA/QdVlCRpNCZ9ldTq+RrwsgHUI0kaoYkOH72ub/Zx9M5beGgNz9kCuBzYvL3OhVX1kSQ7A+cBT6N3PaW3VNXvkmxO72S45wJ3A4dW1a2TezuSpMdionsKr+77eRlwP70hpNX5LXBAVe0F7A28PMn+wMeBT1TVLsA9wJGt/5HAPa39E62fJGmIJnpM4YjJrrid/fxAm920/RRwAPDG1n42va+7nkYvZI5r7RcCpyaJZ1FL0vBM9CY7M5N8NcnS9vPlJDMn8LxNklwLLAUuAX4B3FtVj7Qui1h+X4YdgNsB2vL76A0xrbzOuUkWJFmwbNmyiZQvSZqgiQ4fnQnMp3dfhe2Br7e21aqqR6tqb2AmsB+w+1rW2b/OeVU1u6pmT58+/bGuTpLUZ6KhML2qzqyqR9rPWcCEP5Gr6l7gu8DzgC2TjA1bzQQWt+nFwI4AbflT6R1wliQNyURD4e4kb27DQZskeTNr+MBOMj3Jlm368cCfATfRC4eDW7c5wEVten6bpy3/jscTJGm4Jnrto7cBp9D7VlAB/w946xqesx1wdpJN6IXPBVX1jSQ3AuclOQG4Bjij9T8D+FyShcCvgDdM5o1Ikh67iYbC8cCcqroHIMnWwN/SC4txVdV1wHPGab+F3vGFldsfAl4/wXokSQMw0eGjZ48FAkBV/YpxPvAlSeu3iYbC45JsNTbT9hQmupchSVpPTPSD/e+AK5J8qc2/HvjoYEqSJI3KRM9oPifJAnpnIwO8rqpuHFxZkqRRmPAQUAsBg0CSNmCTvnS2JGnDZShIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjoDC4UkOyb5bpIbk/w0yTtb+9ZJLklyc3vcqrUnyclJFia5Lsk+g6pNkjS+Qe4pPAK8t6r2APYHjk6yB3AscGlV7Qpc2uYBXgHs2n7mAqcNsDZJ0jgGFgpVdUdV/VObvh+4CdgBOAg4u3U7G3htmz4IOKd6rgS2TLLdoOqTJP2hoRxTSDILeA5wFTCjqu5oi5YAM9r0DsDtfU9b1NpWXtfcJAuSLFi2bNnAapakjdHAQyHJk4AvA++qql/3L6uqAmoy66uqeVU1u6pmT58+fR1WKkkaaCgk2ZReIJxbVV9pzXeODQu1x6WtfTGwY9/TZ7Y2SdKQDPLbRwHOAG6qqv/dt2g+MKdNzwEu6ms/vH0LaX/gvr5hJknSEEwb4LqfD7wFuD7Jta3tr4CPARckORK4DTikLbsYeCWwEHgQOGKAtUmSxjGwUKiqHwBZxeIDx+lfwNGDqkeStGaD3FMYqee+/5xRl7DOXX3i4aMuQdIGzstcSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqTOwUEjy2SRLk9zQ17Z1kkuS3Nwet2rtSXJykoVJrkuyz6DqkiSt2iD3FM4CXr5S27HApVW1K3Bpmwd4BbBr+5kLnDbAuiRJqzBtUCuuqsuTzFqp+SDgJW36bOAy4IOt/ZyqKuDKJFsm2a6q7hhUfZI05tT3fn3UJaxzx/zdq9fqecM+pjCj74N+CTCjTe8A3N7Xb1Fr+wNJ5iZZkGTBsmXLBlepJG2ERnague0V1Fo8b15Vza6q2dOnTx9AZZK08Rp2KNyZZDuA9ri0tS8GduzrN7O1SZKGaNihMB+Y06bnABf1tR/evoW0P3CfxxMkafgGdqA5yRfpHVTeJski4CPAx4ALkhwJ3AYc0rpfDLwSWAg8CBwxqLokSas2yG8fHbaKRQeO07eAowdViyRpYjyjWZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUGdh5CtJU9PxTnj/qEta5H77jh6MuQRsQ9xQkSR1DQZLUMRQkSR1DQZLU8UCztJH63otePOoS1rkXX/69UZew3nNPQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUmVKhkOTlSX6eZGGSY0ddjyRtbKZMKCTZBPgU8ApgD+CwJHuMtipJ2rhMmVAA9gMWVtUtVfU74DzgoBHXJEkblVTVqGsAIMnBwMur6qg2/xbgT6rqmJX6zQXmttndgJ8PtdDxbQPcNeoipgi3RY/bYTm3xXJTZVvsVFXTx1uw3t15rarmAfNGXUe/JAuqavao65gK3BY9bofl3BbLrQ/bYioNHy0Gduybn9naJElDMpVC4cfArkl2TrIZ8AZg/ohrkqSNypQZPqqqR5IcA3wL2AT4bFX9dMRlTdSUGs4aMbdFj9thObfFclN+W0yZA82SpNGbSsNHkqQRMxQkSR1DYQKSvDZJJdm9r+3pSb6d5KYkNyaZ1drPSvIvSa5tP3uPqu5BmOS2OKZdsqSSbDOqmgdlktvijCQ/SXJdkguTPGlUdQ/CZLZF3/KTkzww7FoHbZL/L85tl/a5Iclnk2w6qrrHGAoTcxjwg/Y45hzgxKr6d/TOxl7at+z9VbV3+7l2iHUOw2S2xQ+BlwK3DbXC4ZnMtnh3Ve1VVc8G/hVY4aTMDcCkfkeSzAa2GmqFwzOZbXEusDuwJ/B44Kgh1jkuQ2EN2l90LwCOpPc1Wdo1maZV1SUAVfVAVT04uiqHY7LboqquqapbR1TuQK3Ftvh16xN6v/wbzDc8Jrst2nXOTgQ+MJqKB2ct/l9cXA3wI3rnZ42UobBmBwHfrKp/Bu5O8lzgWcC9Sb6S5JokJ7b/6GM+2oYJPpFk85FUPRhrsy02VJPeFknOBJbQ+8vwlJFUPRiT3RbHAPOr6o5RFTxAa/U70oaN3gJ8c/glr8hQWLPD6F2cj/Z4GL3zO14IvA/YF3gG8NbW50P0fun3BbYGPjjEWgdtsttiQzbpbVFVRwDbAzcBhw6x1kGb8LZIsj3wejasUOy3tr8jnwYur6rvD6fMVZsyJ69NRUm2Bg4A9kxS9E6qK+DLwLVVdUvr9zVgf+CMvr9+ftv+Mnzf8Ctf99ZmW4yq1kF7LNuiqh5Nch69oZMzh137urYW22IJsAuwsDeSxhOSLKyqXUZR/7q0tv8vknwEmA68fRR1r8w9hdU7GPhcVe1UVbOqakfgX4DNgC2TjF1l8ADgRoAk27XHAK8Fbhh+2QMx6W2xAZvUtkjPLtD9v3gN8LNRFD4Ak9oWVfUPVbVt6zsLeHBDCIRmbT4vjgJeBhxWVb8fRdErMxRW7zDgqyu1fZneAaT3AZcmuR4I8Jm2/NzWdj29y+SeMKRaB23S2yLJf02yiN7Bs+uSnD7EegdpstsiwNl9/y+2A44fXrkDtTa/IxuqtdkWfw/MAK5I7yvsHx5WsaviZS4kSR33FCRJHUNBktQxFCRJHUNBktQxFCRJHUNBWseSnN6udyOtd/xKqiSp456C1CfJE5P8Q7v3wQ1JDk3y4SQ/bvPz2hnKuyf5Ud/zZrUTk0hyWbs0NEkeSPLRtr4rk8xo7c9s89cnOSHtvgJJtktyeTuR6YYkLxzFdtDGy1CQVvRy4Jft3gf/nt5VK0+tqn3b/OOBV1XVz4DNkuzcnncocP4463sicGVV7QVcDvxFaz8JOKmq9gQW9fV/I/Ctqtob2AvY0O7HoSnOUJBWdD3wZ0k+nuSFVXUf8KdJrmp7AgcAf9z6XsDyq52uKhR+B3yjTV8NzGrTzwO+1Ka/0Nf/x8ARSY4D9qyq+x/7W5ImzlCQ+rTr4O9DLxxOaNei+TRwcPur/jPAFq37+cAhSZ7Ve2rdPM4qH67lB+4eZQ1XJq6qy4EXAYuBs5Ic/ljfkzQZhoLUp13v/8Gq+jy9u4Pt0xbdld5dtQ4e61tVv6D3Qf/fGH8vYXWuBP5zm35D3+vvBNxZVZ8BTu97fWkovJ+CtKI9gROT/B54GPhLll8CfQm94Z1+59MLj52ZnHcBn0/y1/SOW9zX2l8CvD/Jw8ADgHsKGiq/kiqNQJInAL+pqkryBnrX0z9o1HVJ7ilIo/Fc4NR20517gbeNuB4JcE9BktTHA82SpI6hIEnqGAqSpI6hIEnqGAqSpM7/B473uJzW4tbOAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "2euVKxlfKopZ",
"outputId": "2bc43158-078d-4d47-c3ea-8d42bdb71222"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['employ'])\n",
"plt.title('employ Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAY8UlEQVR4nO3deZRdZZ3u8e8jIGKLIlJiSNDYigN2a9BIozg1OCAOQS8ydKNA4413LWhlLW0V1+2G1qbbvg5ch9vcRlECKoggTVQcEGdaxaDIKBoZLolASkAEaZCE3/3j7OwcKpWkKql9TqXy/ax11tnn3e/e53d2KvXUnt6TqkKSJICHDLsASdL0YShIklqGgiSpZShIklqGgiSpZShIklqGgmakJHOTVJKth/DeL0xy7RSu76tJDm+mj0jygylc918n+cZUrU+bP0NBmoQkJyS5P8ldzeOXST6eZNbqPlX1/ap66gTX9ZkN9auqV1bVoimofa2grKrPVtXLN3XdmjkMBWnyPl9V2wM7Aq8DHgdc2h8MUyE9/h/VQPkDp4FKskuSc5OMJrk+yVv75p2Q5AtJPtP8FX5FkqckOS7JiiQ3JXl5X//vJPmXJJck+X2S85PsuJ73XZzk9iRLk/z3pv1xSe5J8pi+vs9u6ttmfZ+lqu6vqquAg4FR4O3N8i9Jsqxvfe9Ksrz5TNcm2TfJfsB7gIOT3J3k532f6cQkFwP3AH/atL35wR8nH09yZ5JfJNm3b8YNSV46Zpuu3hv5XvP8u+Y9nzf2cFSS5yf5SbPunyR5/pjt/b4kFzef5RtJdlrfNtLmx1DQwDR/9X4J+DkwG9gXODbJK/q6vQY4A3g08DPg6/R+TmcD7wX+fcxq3wT8DTALWAl8dB1vfxawDNgFOBD45yT7VNUtwHeAg/r6vhE4q6run8jnqqpVwPnAC8f5zE8FjgGe2+xdvAK4oaq+Bvwzvb2OR1TVs8a8/0Jge+DGcd7yL4BfAzsBxwNfXFcYjvGi5nmH5j1/OKbWHYGv0NuGjwE+DHylPzCBvwKOBB4LPBR4xwTeV5sRQ0GD9FxgpKreW1V/rKrrgE8Ah/T1+X5Vfb2qVgJfAEaA9ze/oM8C5ibZoa//GVV1ZVX9Afh74KAkW/W/aZJdgb2Bd1XVvVV1GfBJeoECsAg4rOm7FXAovWCajN/QO5w01ipgW2D3JNtU1Q1V9esNrOu0qrqqqlauI5hWAP+72VP5PHAt8KpJ1jueVwG/qqozmvc+E/gFvaBe7dNV9cuq+i/gbGDeFLyvphFDQYP0BGCXJL9b/aB3CGXnvj639k3/F/Db5i/x1a8BHtHX56a+6RuBbej9Bd1vF+D2qrprTN/ZzfT59H5pPxF4GXBnVV0yuY/GbOD2sY1VtRQ4FjgBWJHkrCS7bGBdN21g/vJ68EiWN9L7jJtqF9beM+nfTgC39E3fw4P/LTQDGAoapJuA66tqh77H9lW1/yasc9e+6ccD9wO/HdPnN8COSbYf03c5QFXdS++v3sPoHbqZ1F5Cc1jsNcD3x5tfVZ+rqhfQC8UC/nX1rHWsckNDF89Okr7Xj6f3GQH+ADy8b97jJrHe3zQ19mu3k7YMhoIG6RLgrubE63ZJtkryZ0meuwnrPCzJ7kkeTu+cwzl9exYAVNVNwH8C/5LkYUmeCRwF9F8OejpwBPBaJhgKSbZO8nTgTHq/fD88Tp+nJtknybbAvfT2dh5oZt9K73DYZP8fPhZ4a5JtkrwBeDpwQTPvMuCQZt58eudPVhtt3vtP17HeC4CnJPmr5rMdDOwOfHmS9WkzZihoYJpf1q+mdxz6enp/0X8SeNQmrPYM4DR6hzUeBrx1Hf0OBebS+2v4POD4qvpmX20X0/uF+dOqGu/kbr+Dk9wN3AksBm4DnlNVvxmn77bA++l91lvo/UI/rpn3heb5tiQ/3cB79vsxsFuzzhOBA6vqtmbe3wNPAu4A/hH4XN9nvKfpf3Fz+G6v/pU263g1vauobgPeCby6qsbueWkGi1+yo81Vku8An6mqT07R+r4FfG6q1idtjgY+BIA0HTWHsJ4NLBh2LdIwefhIW7wki4BvAseOuUJJ2uJ4+EiS1HJPQZLU2qzPKey00041d+7cYZchSZuVSy+99LdVNTLevM5CIcnD6A3AtW3zPudU1fFJTgNeTO9yPoAjquqy5macjwD707tT8oiqWu9lenPnzmXJkiVdfQRJmpGSrPOy6y73FO4D9qmqu5vRJn+Q5KvNvL+rqnPG9H8lvWuvd6M34NfJzbMkaUA6O6dQPXc3L7dpHus7q70AOL1Z7kfADpni8eklSevX6YnmZhiDy+iN6nhhVf24mXViksuTnNTc/g+9Qbf6BwJbxoMH4lq9zoVJliRZMjo62mX5krTF6TQUqmpVVc0D5gB7Jvkzerf4P43eMMo7Au+a5DpPqar5VTV/ZGTc8ySSpI00kEtSq+p3wLeB/arq5uYQ0X3Ap4E9m27LefCIl3NwdEZJGqjOQiHJyOovQ0myHb1x6n+x+jxBc7XRAcCVzSKLgTelZy96Y9rf3FV9kqS1dXn10SxgUfNNVg8Bzq6qLyf5VpIRIPSG+f0fTf8L6F2OupTeJalHdlibJGkcnYVCVV0O7DFO+z7r6F/A0V3VI0naMIe5kCS1NuthLjQx/++9fz7sEqbc4//himGXIM1I7ilIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqdhUKShyW5JMnPk1yV5B+b9icm+XGSpUk+n+ShTfu2zeulzfy5XdUmSRpfl3sK9wH7VNWzgHnAfkn2Av4VOKmqngzcARzV9D8KuKNpP6npJ0kaoM5CoXrubl5u0zwK2Ac4p2lfBBzQTC9oXtPM3zdJuqpPkrS2Ts8pJNkqyWXACuBC4NfA76pqZdNlGTC7mZ4N3ATQzL8TeEyX9UmSHqzTUKiqVVU1D5gD7Ak8bVPXmWRhkiVJloyOjm5yjZKkNQZy9VFV/Q74NvA8YIckWzez5gDLm+nlwK4AzfxHAbeNs65Tqmp+Vc0fGRnpvHZJ2pJ0efXRSJIdmuntgJcB19ALhwObbocD5zfTi5vXNPO/VVXVVX2SpLVtveEuG20WsCjJVvTC5+yq+nKSq4GzkvwT8DPg1Kb/qcAZSZYCtwOHdFibJGkcnYVCVV0O7DFO+3X0zi+Mbb8XeENX9UiSNsw7miVJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktTqLBSS7Jrk20muTnJVkrc17SckWZ7ksuaxf98yxyVZmuTaJK/oqjZJ0vi27nDdK4G3V9VPk2wPXJrkwmbeSVX1wf7OSXYHDgGeAewCfDPJU6pq1ca8+XP+7vRNKH16uvQDbxp2CZJmuM72FKrq5qr6aTN9F3ANMHs9iywAzqqq+6rqemApsGdX9UmS1jaQcwpJ5gJ7AD9umo5JcnmSTyV5dNM2G7ipb7FljBMiSRYmWZJkyejoaIdVS9KWp/NQSPII4Fzg2Kr6PXAy8CRgHnAz8KHJrK+qTqmq+VU1f2RkZMrrlaQtWaehkGQbeoHw2ar6IkBV3VpVq6rqAeATrDlEtBzYtW/xOU2bJGlAurz6KMCpwDVV9eG+9ll93V4HXNlMLwYOSbJtkicCuwGXdFWfJGltXV59tDfwRuCKJJc1be8BDk0yDyjgBuAtAFV1VZKzgavpXbl09MZeeSRJ2jidhUJV/QDIOLMuWM8yJwIndlWTJGn9vKNZktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktTqLBSS7Jrk20muTnJVkrc17TsmuTDJr5rnRzftSfLRJEuTXJ7k2V3VJkkaX5d7CiuBt1fV7sBewNFJdgfeDVxUVbsBFzWvAV4J7NY8FgInd1ibJGkcnYVCVd1cVT9tpu8CrgFmAwuARU23RcABzfQC4PTq+RGwQ5JZXdUnSVrbQM4pJJkL7AH8GNi5qm5uZt0C7NxMzwZu6ltsWdMmSRqQzkMhySOAc4Fjq+r3/fOqqoCa5PoWJlmSZMno6OgUVipJ6jQUkmxDLxA+W1VfbJpvXX1YqHle0bQvB3btW3xO0/YgVXVKVc2vqvkjIyPdFS9JW6AJhUKSiybSNmZ+gFOBa6rqw32zFgOHN9OHA+f3tb+puQppL+DOvsNMkqQB2Hp9M5M8DHg4sFNz6WiaWY9kw8f79wbeCFyR5LKm7T3A+4GzkxwF3Agc1My7ANgfWArcAxw5uY8iSdpU6w0F4C3AscAuwKWsCYXfAx9f34JV9YO+/mPtO07/Ao7eQD2SpA6tNxSq6iPAR5L8bVV9bEA1SZKGZEN7CgBU1ceSPB+Y279MVZ3eUV2SpCGYUCgkOQN4EnAZsKppLsBQkKQZZEKhAMwHdm+O+0uSZqiJ3qdwJfC4LguRJA3fRPcUdgKuTnIJcN/qxqp6bSdVSZKGYqKhcEKXRUiSpoeJXn303a4LkSQN30SvPrqLNQPXPRTYBvhDVT2yq8IkSYM30T2F7VdPN2MaLaD3xTmSpBlk0qOkNl+C8x/AKzqoR5I0RBM9fPT6vpcPoXffwr2dVCR1aO+P7T3sEqbcxX978bBL0Awy0auPXtM3vRK4gd4hJEna7H387V8adglT7pgPvWbDncYx0XMKDmMtSVuAiX7Jzpwk5yVZ0TzOTTKn6+IkSYM10RPNn6b3zWi7NI8vNW2SpBlkoqEwUlWfrqqVzeM0wC9IlqQZZqKhcFuSw5Js1TwOA27rsjBJ0uBNNBT+ht53Kd8C3AwcCBzRUU2SpCGZ6CWp7wUOr6o7AJLsCHyQXlhIkmaIie4pPHN1IABU1e3AHt2UJEkalomGwkOSPHr1i2ZPYaJ7GZKkzcREQ+FDwA+TvC/J+4D/BP7X+hZI8qnmnoYr+9pOSLI8yWXNY/++ecclWZrk2iSOqyRJQzDRO5pPT7IE2Kdpen1VXb2BxU4DPg6cPqb9pKr6YH9Dkt2BQ4Bn0LsP4ptJnlJVqyZSnyRpakz4EFATAhsKgv7+30syd4LdFwBnVdV9wPVJlgJ7Aj+c6PtJkjbdpIfOngLHJLm8Oby0+jzFbOCmvj7Lmra1JFmYZEmSJaOjo13XKklblEGHwsnAk4B59O53+NBkV1BVp1TV/KqaPzLiTdWSNJUGGgpVdWtVraqqB4BP0DtEBLAc2LWv65ymTZI0QAMNhSSz+l6+Dlh9ZdJi4JAk2yZ5IrAbcMkga5MkdXivQZIzgZcAOyVZBhwPvCTJPKDofVHPWwCq6qokZ9M7kb0SONorjyRp8DoLhao6dJzmU9fT/0TgxK7qkSRt2DCuPpIkTVOGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSpZShIklqGgiSp1VkoJPlUkhVJruxr2zHJhUl+1Tw/umlPko8mWZrk8iTP7qouSdK6dbmncBqw35i2dwMXVdVuwEXNa4BXArs1j4XAyR3WJUlah85Coaq+B9w+pnkBsKiZXgQc0Nd+evX8CNghyayuapMkjW/Q5xR2rqqbm+lbgJ2b6dnATX39ljVta0myMMmSJEtGR0e7q1SStkBDO9FcVQXURix3SlXNr6r5IyMjHVQmSVuuQYfCrasPCzXPK5r25cCuff3mNG2SpAEadCgsBg5vpg8Hzu9rf1NzFdJewJ19h5kkSQOydVcrTnIm8BJgpyTLgOOB9wNnJzkKuBE4qOl+AbA/sBS4Bziyq7okSevWWShU1aHrmLXvOH0LOLqrWiRJE+MdzZKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKkVmffvCZpevvui1487BKm3Iu/991hl7DZc09BktQyFCRJLUNBktQayjmFJDcAdwGrgJVVNT/JjsDngbnADcBBVXXHMOqTpC3VMPcU/rKq5lXV/Ob1u4GLqmo34KLmtSRpgKbT4aMFwKJmehFwwBBrkaQt0rBCoYBvJLk0ycKmbeequrmZvgXYebwFkyxMsiTJktHR0UHUKklbjGHdp/CCqlqe5LHAhUl+0T+zqipJjbdgVZ0CnAIwf/78cftIkjbOUPYUqmp587wCOA/YE7g1ySyA5nnFMGqTpC3ZwEMhyZ8k2X71NPBy4EpgMXB40+1w4PxB1yZJW7phHD7aGTgvyer3/1xVfS3JT4CzkxwF3AgcNITaJGmLNvBQqKrrgGeN034bsO+g65EkrTGdLkmVJA2ZoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJak27UEiyX5JrkyxN8u5h1yNJW5JpFQpJtgL+D/BKYHfg0CS7D7cqSdpyTKtQAPYEllbVdVX1R+AsYMGQa5KkLUaqatg1tJIcCOxXVW9uXr8R+IuqOqavz0JgYfPyqcC1Ay90bTsBvx12EdOE22INt8Uabos1psO2eEJVjYw3Y+tBV7KpquoU4JRh19EvyZKqmj/sOqYDt8Uabos13BZrTPdtMd0OHy0Hdu17PadpkyQNwHQLhZ8AuyV5YpKHAocAi4dckyRtMabV4aOqWpnkGODrwFbAp6rqqiGXNRHT6nDWkLkt1nBbrOG2WGNab4tpdaJZkjRc0+3wkSRpiAwFSVLLUJiAJAckqSRPa17/ZZLL+h73JjmgmXdakuv75s0bbvVTa5Lb4tQkP09yeZJzkjxiuNVPrclsi75lPprk7uFU3J1J/lwc0wxjU0l2Gm7lU2+S2+KzzbA+Vyb5VJJthlu95xQmJMnngV2Ab1XV8WPm7QgsBeZU1T1JTgO+XFXnDL7S7k1yWzyyqn7fzPswsKKq3j/wojsymW3RtM0H3ga8rqpmWkBO5udiD+AO4DvA/Koa9o1cU2qS22J/4KvN7M8B36uqkwda8BjuKWxA89ftC4Cj6F0iO9aBwFdX/8efySa7LfoCIcB2wIz5C2Sy26IZ1+sDwDsHVuSAbMTPxc+q6obBVTg4G7EtLqgGcAm9e7OGylDYsAXA16rql8BtSZ4zZv4hwJlj2k5sDpmclGTbgVQ5GJPeFkk+DdwCPA342ECqHIzJbotjgMVVdfOgChygjfk/MlNt1LZoDhu9Efha9yWun6GwYYfSG5iP5vnQ1TOSzAL+nN59FasdR+8X4HOBHYF3DabMgZjstqCqjqS3K30NcPBgyhyICW+LJLsAb2BmhWK/Sf9czGAbuy3+jd6ho+93XuEGeE5hPZrjf8uAUXqHPrZqnp9QVZXkbcAzqmrhOpZ/CfCOqnr1gEruzBRsixcB79wSt0WSVwGnAvc2q3g8cF1VPXngxU+xTfm5SHIDM+icwsZuiyTHA3sAr6+qBwZc9lrcU1i/A4EzquoJVTW3qnYFrgde2Mw/lLUPl8xqngMcAFw5wHq7NKltkZ4nr54GXgv8YsA1d2VS26KqvlJVj2v6zgXumQmB0Jj0/5EZbGN+X7wZeAVw6HQIBDAUNuRQ4LwxbefS+/KfufQG7/vumPmfTXIFcAW9IXL/qeMaB2Wy2yLAor5tMQt4b/dlDsTG/FzMVJPeFknemmQZvZOqlyf55ADqHISN+bn4v8DOwA+by1X/oesiN8TDR5KklnsKkqSWoSBJahkKkqSWoSBJahkKkqSWoSANyEwcHVUzj6EgSWoZCtI4khyW5JLmhqJ/T7JVkruTfCDJVUm+mWTPJN9Jcl2S1zbLHZHk/Kb9V80QBmPXnWY9Vya5IsnBTfvp6fv+hWas/QWD+9SSoSCtJcnT6Q3et3dVzQNWAX8N/Am9MfKfAdxF7271lwGv48F3a+8J/DfgmcAbmu9R6Pd6YB7wLOClwAea4VFOBY5oangU8HzgKx18RGmdth52AdI0tC/wHOAnvWGb2A5YAfyRNUMbXwHcV1X3N0N5zO1b/sKqug0gyRfpja+/pG/+C4Azq2oVcGuS7wLPrarFSf4tyQi9UDm3qlZ29SGl8RgK0toCLKqq4x7UmLyj1owL8wBwH0BVPZCk///S2LFjJjOWzOnAYfTG3T9yUlVLU8DDR9LaLgIOTPJY6A2JnOQJk1j+Zc0y29EbKffiMfO/DxzcnKcYAV5E71u3AE4DjgWoqqs34TNIG8U9BWmMqro6yf8EvpHkIcD9wNGTWMUl9EbHnAN8pqqWjJl/HvA84Of09iLeWVW3NO99a5JrgP/YxI8hbRRHSZWmUJIj6H1xzDEbufzD6Z2veHZV3TmVtUkT4eEjaZpI8lJ6X1v6MQNBw+KegiSp5Z6CJKllKEiSWoaCJKllKEiSWoaCJKn1/wEKewb3wpi59AAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "PQ1MHZWFKopZ",
"outputId": "e8ad5b38-9fac-4dbd-dcd8-02998b2aa0c1"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['installment'])\n",
"plt.title('installment Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUtUlEQVR4nO3de9RddX3n8fdHLqLDJWhSqgkaFcoMtgVsSlFm1AWjRWoBW+zgqIDSobOWWBg7ttq5lLpkCuMFUbs6xcYCSosIdmCoq8hS8FZRgyIIyDJQEBgg4abghWngO3+cX34eQx5ykjz7OXmS92uts87ev/3be3+fTTifs3/nnL1TVUiSBPCUaRcgSdpyGAqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFbZYkNyR5+Rzv8+VJ7hybvy3Jv53LGmbTbB7DJK9P8pmx+Uqy12xsu23vkSTPn63tactjKGizVNULq+qqzdlGklOTfHyWSpozSa5K8rtPsnxpe1F+pD3uTXJZkleM95vkGI5ta/sn61dV51fVKzfqD5l5n0/4+6pq56q6dTa2ry2ToSANb0FV7QzsB1wB/F2S42d7JxsKDGkShoI2y/jQTXvHf2GS85I83IZFlo31/aMkd7VlNyc5NMlhwB8D/669m/5W6/umJDe1vrcm+b0J6zk1ySeTfLyte32SX0jyziSrktyR5JVj/XdLsjzJ3a22dyfZri07PsmXkrw3yYNJ/inJq9qy04B/A3y41f3hDdVWVfdU1VnAqcAZSZ6ynmN4YJIVSX7Qzize31b/Qnt+qO3vxa2+Lyc5M8n9wKlra15n14e3Y3hfkveM7fdnztDGz0Zm+vvGh6PasTsvyeoktyf5r2PbnvHYactmKGi2HQFcACwALgXWvpjsA5wE/GpV7QL8OnBbVf0D8D+AT7Shif3adlYBrwZ2Bd4EnJnkRRPW8JvAx4DdgW8ClzP6t74YeBfwl2N9zwHWAHsBBwCvBMaHTH4NuBlYCPxPYHmSVNV/Ab4InNTqPmnC2gA+BfwcsM96lp0FnFVVuwIvAC5s7S9tzwva/r4yVt+twB7AaTPs7zXAMuBFwJHAmzdU4IR/34eA3YDnAy8DjmX032qt9R67De1b02UoaLZ9qao+XVWPMXphXvsi/xjwVGDfJDtU1W1VdctMG6mqv6+qW2rk88BnGL1zncQXq+ryqloDfBJYBJxeVf/MKLCWJlmQZA/gcOCUqvphVa0CzgSOGdvW7VX1kfb3nAs8i9EL8Ob4v+35GetZ9s/AXkkWVtUjVXX1hrZVVR+qqjVV9eMZ+pxRVQ9U1feADwCv28S6u3Y2dQzwzqp6uKpuA94HvHGs2xDHTgMzFDTb7hmb/hGwU5Ltq2olcAqjoZNVSS5I8uyZNpLkVUmuTvJAkocYvXgvnLCGe8emfwzc116Y1s4D7Aw8F9gBuDvJQ20/f8noXfwT/p6q+tHYuptjcXt+YD3LTgB+AfhOkq8nefUGtnXHBPsb73M7MONx3wgLGR2729fZ9uKx+SGOnQZmKGjOVNXfVNW/ZvRiXMAZaxeN90vyVOBi4L3AHlW1APg0MNtDD3cAjwILq2pBe+xaVS+ccP1NvcTwaxgNj938hA1WfbeqXscomM4ALkryL55kX5PUsOfY9HP46ZnKD4Gnjy37+Y3Y9n2Mzmqeu86275qgHm3BDAXNiST7JDmkveD/hNE79sfb4nsZDems/fe4I6OhptXAmvYB5ax8zXJcVd3NaFjqfUl2TfKUJC9I8rIJN3Evo/H0iSTZI8lJwJ8wGnZ5fD193pBkUVv2UGt+nNGxeHxj9jfm7Ul2T7IncDLwidZ+LfDSJM9JshvwznXWm/Hva2deFwKnJdklyXOBtwHz7qvF+lmGgubKU4HTGb3DvIfRO+G1L0KfbM/3J/lGVT0M/D6jF50HgX/P6EPrIRzLKIRubPu6iNHY9yTOAo5u36754JP0eyjJD4HrGQ2DvbaqPjpD38OAG5I80rZ/TFX9uA2/nAZ8uQ11HTRhjQCXANcwCoG/B5YDVNUVjALiurb8so38+97K6GzjVuBLwN8AM/1dmifiTXYkSWt5piBJ6gwFSVJnKEiSOkNBktTN6wtoLVy4sJYuXTrtMiRpXrnmmmvuq6pF61s2r0Nh6dKlrFixYtplSNK8kuT2mZY5fCRJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnq5vUvmiVprc+/dNIb5m39XvaFz2/yup4pSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkbPBSSbJfkm0kua/PPS/LVJCuTfCLJjq39qW1+ZVu+dOjaJEk/ay7OFE4GbhqbPwM4s6r2Ah4ETmjtJwAPtvYzWz9J0hwaNBSSLAF+A/irNh/gEOCi1uVc4Kg2fWSbpy0/tPWXJM2Roc8UPgD8IfB4m38m8FBVrWnzdwKL2/Ri4A6Atvz7rf/PSHJikhVJVqxevXrI2iVpmzNYKCR5NbCqqq6Zze1W1dlVtayqli1atGg2Ny1J27ztB9z2wcARSQ4HdgJ2Bc4CFiTZvp0NLAHuav3vAvYE7kyyPbAbcP+A9UmS1jHYmUJVvbOqllTVUuAY4HNV9XrgSuDo1u044JI2fWmbpy3/XFXVUPVJkp5oGr9T+CPgbUlWMvrMYHlrXw48s7W/DXjHFGqTpG3akMNHXVVdBVzVpm8FDlxPn58Ar52LeiRJ6+cvmiVJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gYLhSQ7Jflakm8luSHJn7b25yX5apKVST6RZMfW/tQ2v7ItXzpUbZKk9RvyTOFR4JCq2g/YHzgsyUHAGcCZVbUX8CBwQut/AvBgaz+z9ZMkzaHBQqFGHmmzO7RHAYcAF7X2c4Gj2vSRbZ62/NAkGao+SdITDfqZQpLtklwLrAKuAG4BHqqqNa3LncDiNr0YuAOgLf8+8Mz1bPPEJCuSrFi9evWQ5UvSNmfQUKiqx6pqf2AJcCDwL2dhm2dX1bKqWrZo0aLNrlGS9FNz8u2jqnoIuBJ4MbAgyfZt0RLgrjZ9F7AnQFu+G3D/XNQnSRoZ8ttHi5IsaNNPA14B3MQoHI5u3Y4DLmnTl7Z52vLPVVUNVZ8k6Ym233CXTfYs4Nwk2zEKnwur6rIkNwIXJHk38E1geeu/HPhYkpXAA8AxA9YmSVqPwUKhqq4DDlhP+62MPl9Yt/0nwGuHqkeStGH+olmS1BkKkqTOUJAkdYaCJKkzFCRJ3UShkOSzk7RJkua3J/1KapKdgKcDC5PsDqy9QN2u/PSaRZKkrcSGfqfwe8ApwLOBa/hpKPwA+PCAdUmSpuBJQ6GqzgLOSvLWqvrQHNUkSZqSiX7RXFUfSvISYOn4OlV13kB1SZKmYKJQSPIx4AXAtcBjrbkAQ0GStiKTXvtoGbCvVy2VpK3bpL9T+Dbw80MWIkmavknPFBYCNyb5GvDo2saqOmKQqiRJUzFpKJw6ZBGSpC3DpN8++vzQhUiSpm/Sbx89zOjbRgA7AjsAP6yqXYcqTJI09yY9U9hl7XSSAEcCBw1VlCRpOjb6Kqk18r+BXx+gHknSFE06fPRbY7NPYfS7hZ8MUpEkaWom/fbRb45NrwFuYzSEJEnaikz6mcKbhi5EkjR9k95kZ0mSv0uyqj0uTrJk6OIkSXNr0g+a/xq4lNF9FZ4N/J/WJknaikz6mcKiqhoPgXOSnDJEQdpyfe9dvzTtErYYz/nv10+7BGkQk54p3J/kDUm2a483APcPWZgkae5NGgpvBn4HuAe4GzgaOH6gmiRJUzLp8NG7gOOq6kGAJM8A3ssoLCRJW4lJzxR+eW0gAFTVA8ABw5QkSZqWSUPhKUl2XzvTzhQmPcuQJM0Tk76wvw/4SpJPtvnXAqcNU5IkaVom/UXzeUlWAIe0pt+qqhuHK0uSNA0TDwG1EDAIJGkrttGXzpYkbb0MBUlSN1goJNkzyZVJbkxyQ5KTW/szklyR5LvteffWniQfTLIyyXVJXjRUbZKk9RvyTGEN8AdVtS+jW3e+Jcm+wDuAz1bV3sBn2zzAq4C92+NE4C8GrE2StB6DhUJV3V1V32jTDwM3AYsZ3Zzn3NbtXOCoNn0kcF673efVwIIkzxqqPknSE83JZwpJljL6BfRXgT2q6u626B5gjza9GLhjbLU7W9u62zoxyYokK1avXj1YzZK0LRo8FJLsDFwMnFJVPxhfVlUF1MZsr6rOrqplVbVs0aJFs1ipJGnQUEiyA6NAOL+qPtWa7107LNSeV7X2u4A9x1Zf0tokSXNkyG8fBVgO3FRV7x9bdClwXJs+DrhkrP3Y9i2kg4Dvjw0zSZLmwJAXtTsYeCNwfZJrW9sfA6cDFyY5Abid0X0aAD4NHA6sBH4EvGnA2iRJ6zFYKFTVl4DMsPjQ9fQv4C1D1SNJ2jB/0SxJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1A15lVRJT+LgDx087RK2GF9+65enXYIazxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJ3Vb9i+Zfeft50y5hi3HNe46ddgmS5gHPFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVI3WCgk+WiSVUm+Pdb2jCRXJPlue969tSfJB5OsTHJdkhcNVZckaWZDnimcAxy2Tts7gM9W1d7AZ9s8wKuAvdvjROAvBqxLkjSDwUKhqr4APLBO85HAuW36XOCosfbzauRqYEGSZw1VmyRp/eb6M4U9quruNn0PsEebXgzcMdbvztb2BElOTLIiyYrVq1cPV6kkbYOm9kFzVRVQm7De2VW1rKqWLVq0aIDKJGnbNdehcO/aYaH2vKq13wXsOdZvSWuTJM2huQ6FS4Hj2vRxwCVj7ce2byEdBHx/bJhJkjRHBrsdZ5K/BV4OLExyJ/AnwOnAhUlOAG4Hfqd1/zRwOLAS+BHwpqHqkiTNbLBQqKrXzbDo0PX0LeAtQ9UiSZqMv2iWJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJ3RYVCkkOS3JzkpVJ3jHteiRpW7PFhEKS7YA/B14F7Au8Lsm+061KkrYtW0woAAcCK6vq1qr6f8AFwJFTrkmStimpqmnXAECSo4HDqup32/wbgV+rqpPW6XcicGKb3Qe4eU4L3TQLgfumXcRWxOM5ezyWs2u+HM/nVtWi9S3Yfq4r2VxVdTZw9rTr2BhJVlTVsmnXsbXweM4ej+Xs2hqO55Y0fHQXsOfY/JLWJkmaI1tSKHwd2DvJ85LsCBwDXDrlmiRpm7LFDB9V1ZokJwGXA9sBH62qG6Zc1myZV8Nd84DHc/Z4LGfXvD+eW8wHzZKk6duSho8kSVNmKEiSOkNhQEk+mmRVkm9Pu5b5LsmeSa5McmOSG5KcPO2a5rMkOyX5WpJvteP5p9Ouab5Lsl2Sbya5bNq1bA5DYVjnAIdNu4itxBrgD6pqX+Ag4C1eBmWzPAocUlX7AfsDhyU5aMo1zXcnAzdNu4jNZSgMqKq+ADww7Tq2BlV1d1V9o00/zOh/vsXTrWr+qpFH2uwO7eG3TjZRkiXAbwB/Ne1aNpehoHknyVLgAOCr061kfmvDHdcCq4Arqsrjuek+APwh8Pi0C9lchoLmlSQ7AxcDp1TVD6Zdz3xWVY9V1f6Mrh5wYJJfnHZN81GSVwOrquqaadcyGwwFzRtJdmAUCOdX1aemXc/WoqoeAq7Ez7821cHAEUluY3R150OSfHy6JW06Q0HzQpIAy4Gbqur9065nvkuyKMmCNv004BXAd6Zb1fxUVe+sqiVVtZTR5Xk+V1VvmHJZm8xQGFCSvwW+AuyT5M4kJ0y7pnnsYOCNjN6FXdseh0+7qHnsWcCVSa5jdN2xK6pqXn+VUrPDy1xIkjrPFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQraZiT5x01c76hJLr6X5NQk/7lNn5Pk6E3Z30bUdXySZw+5D217DAVtM6rqJZu46lHAlnhF1uMBQ0GzylDQNiPJI+355UmuSnJRku8kOb/9Ypokp7d7NlyX5L1JXgIcAbyn/WDuBUn+Q5Kvt3sRXJzk6RvY721J/qytvyLJi5JcnuSWJP9xrN/b23avW3t/gyRLk9yU5CPtvgefSfK0dhayDDi/bfdpQx03bVsMBW2rDgBOYXQG8Hzg4CTPBF4DvLCqfhl4d1X9I3Ap8Paq2r+qbgE+VVW/2u5FcBMwyS/Vv9cuPvdFRvfZOJrRfSHWvvi/EtgbOJDR/Q1+JclL27p7A39eVS8EHgJ+u6ouAlYAr291/Xgzj4cEwPbTLkCakq9V1Z0A7fLRS4GrgZ8Ay9vds2a67MMvJnk3sADYGbh8gv1d2p6vB3Zu94R4OMmj7RpEr2yPb7Z+OzMKg+8B/1RV17b2a1qt0iA8U9C26tGx6ceA7atqDaN36hcBrwb+YYZ1zwFOqqpfYvROf6eN2N/j6+z7cUZvzgL8WXvXv39V7VVVy2eqdYL9SZvEUJCadq+G3arq08B/AvZrix4Gdhnrugtwd7uU9+tnafeXA29uNZBkcZKf28A669YlbTbfcUg/tQtwSZKdGL1zf1trvwD4SJLfZ/RZwH9jdNe31e15s1+Yq+ozSf4V8JX2mfcjwBsYnRnM5BzgfyX5MfBiP1fQbPAqqZKkzuEjSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSd3/B6IfnMTjLq4zAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "TPgDopo0KopZ",
"outputId": "daeccea9-7872-4fa6-8660-1c5e0c655a19"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['status'])\n",
"plt.title('status Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAVb0lEQVR4nO3de7BlZX3m8e/DRVC5QweFBpsJRENGVGiFqPECRrnIZSguEkUkOJ2ZkihjjCFOlTqWk5EhE0aIIdUTFFAUEaOgEgYKUSIRY6NyUTS2DASaW8tNLiGK/uaP/fabTXO6+5zus88+p/v7qdq113rXu97126u79rPXWnuvk6pCkiSAjcZdgCRp9jAUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCtI0SPLmJFdM43jfT/KaNv3BJJ+axrHfl+Rvpms8rV8MBc1KU30jTPKaJHeOqJZzk/w8ySPtcXOS/5Fk6xV9quqCqnr9JMf68Jr6VdVvVdXX1rH0CfdLVf1ZVb19XcfW+slQkCbnf1bVlsA84ERgP+DaJM+ezo0k2WQ6x5OmylDQWCX5kyTL2ifwHyU5IMmBwPuAY5M8muSG1vfEJLe0vrcm+YPW/mzg74CdWv9Hk+y08qfylT81T7TtNdVbVU9U1beBw4DtGQQESd6W5BttOknOSHJfkp8luSnJv0+yCHgz8N5W45da/9taLTcCjyXZpLW9bmjTmyf5bKv1O0leNPQ6KsnuQ/PnJvnwavbLU47CkhzWTlc9lORrSX5zaNltSd6T5MYkD7caNl/jP6zmLENBY5Pk+cDJwEvbp/A3ALdV1eXAnwGfraotqmrFG+B9wBuBrRi8GZ+RZO+qegw4CLir9d+iqu5am21PtvaqegS4EvidCRa/HngV8BvA1sAxwP1VtRi4gMFRxxZVdejQOscBhwDbVNWTE4x5OPA5YDvg08AXk2y6hhrXuF+S/AbwGeAUBkdBlwFfSvKMoW7HAAcCuwF7AW9b3XY1txkKGqdfApsBeybZtKpuq6qfrKpzVX2lqn5SA18HrmDiN+Vp3/Yq3MXgTXplvwC2BF4ApKpuqaq71zDWmVV1R1X9yyqWX19VF1fVL4C/ADZncAprXR0LfKWqrmxj/znwTODlK9V2V1U9AHwJePE0bFezlKGgsamqpQw+oX4QuC/JhUl2WlX/JAcluS7JA0keAg4GdpiJba/CzsADE4z9VeAvgY+1sRcn2WoNY90x2eVV9SvgTmCq9U5kJ+D2lca+g8FrW+GeoenHgS2mYbuapQwFjVVVfbqqXgk8DyjgtBWLhvsl2Qz4PINPsjtW1TYMTnVkov7NY8CzhuafM8ltr1GSLYDXAX+/itd1ZlXtA+zJ4DTSH6+mztW1r7DL0LY3AuYzOFKBwRv1ql7nmsa9i8HrXzF22raWrWE9racMBY1Nkucn2b+94T8B/Avwq7b4XmBBewMEeAaD0z3LgSeTHMTg3D1D/bcf/poo8D3g4CTbJXkOgyODyWx7dTVvlmQf4IvAg8AnJujz0iT7tnP+j7Xxh1/Xv1vTdiawT5Ij27eTTgH+Fbhu6HX+XpKN20X6Vw+tN9F+GXYRcEi7wL8p8Edt7H9Yixq1HjAUNE6bAR8BfsrgFMWvAX/aln2uPd+f5Dvtwu47GbyJPQj8HnDpioGq6ocMLpje2r5FsxPwSeAGBheQrwA+O8ltT+S9SR4B7gfOB64HXt4u5q5sK+D/tDpvb+uc3padw+A6xkNJvria7a3sEgbn/x8EjgeObNcAAN4FHAo8xODbTX3cVewXhpb/CHgLcBaDfXEocGhV/XwKtWk9Ev/IjiRpBY8UJEmdoSBJ6gwFSVJnKEiSujl9860ddtihFixYMO4yJGlOuf76639aVfMmWjanQ2HBggUsWbJk3GVI0pyS5PZVLfP0kSSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKmb079oXpN9/vj8cZcwa1x/+lvHXYKkOcAjBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpG2koJLktyU1JvpdkSWvbLsmVSX7cnrdt7UlyZpKlSW5Msvcoa5MkPd1MHCm8tqpeXFUL2/ypwFVVtQdwVZsHOAjYoz0WAWfPQG2SpCHjOH10OHBemz4POGKo/fwauA7YJslzx1CfJG2wRh0KBVyR5Poki1rbjlV1d5u+B9ixTe8M3DG07p2t7SmSLEqyJMmS5cuXj6puSdogjfrPcb6yqpYl+TXgyiQ/HF5YVZWkpjJgVS0GFgMsXLhwSutKklZvpEcKVbWsPd8HfAF4GXDvitNC7fm+1n0ZsMvQ6vNbmyRphowsFJI8O8mWK6aB1wM3A5cCJ7RuJwCXtOlLgbe2byHtBzw8dJpJkjQDRnn6aEfgC0lWbOfTVXV5km8DFyU5CbgdOKb1vww4GFgKPA6cOMLaJEkTGFkoVNWtwIsmaL8fOGCC9gLeMap6JElr5i+aJUmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSupGHQpKNk3w3yZfb/G5JvpVkaZLPJnlGa9+szS9tyxeMujZJ0lPNxJHCu4BbhuZPA86oqt2BB4GTWvtJwIOt/YzWT5I0g0YaCknmA4cAf9PmA+wPXNy6nAcc0aYPb/O05Qe0/pKkGTLqI4X/DbwX+FWb3x54qKqebPN3Aju36Z2BOwDa8odbf0nSDBlZKCR5I3BfVV0/zeMuSrIkyZLly5dP59CStMEb5ZHCK4DDktwGXMjgtNFHgW2SbNL6zAeWtellwC4AbfnWwP0rD1pVi6tqYVUtnDdv3gjLl6QNz8hCoar+tKrmV9UC4E3AV6vqzcDVwFGt2wnAJW360jZPW/7VqqpR1SdJerpx/E7hT4B3J1nK4JrBOa39HGD71v5u4NQx1CZJG7RN1txl3VXV14CvtelbgZdN0OcJ4OiZqEeSNDF/0SxJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVI3qVBIctVk2iRJc9smq1uYZHPgWcAOSbYF0hZtBew84tokSTNstaEA/AFwCrATcD3/Fgo/A/5yhHVJksZgtaFQVR8FPprkD6vqrKkM3I4yrgE2a9u5uKo+kGQ34EJgewZBc3xV/TzJZsD5wD7A/cCxVXXbVF+QRuefP/TCcZcwa+z6/pvGXYI0Ems6UgCgqs5K8nJgwfA6VXX+alb7V2D/qno0yabAN5L8HfBu4IyqujDJXwMnAWe35weravckbwJOA45dmxclSVo7k73Q/Engz4FXAi9tj4WrW6cGHm2zm7ZHAfsDF7f284Aj2vThbZ62/IAkK05XSZJmwKSOFBgEwJ5VVVMZPMnGDE4R7Q58DPgJ8FBVPdm63Mm/XbDeGbgDoKqeTPIwg1NMP11pzEXAIoBdd911KuVIktZgsr9TuBl4zlQHr6pfVtWLgfnAy4AXTHWMCcZcXFULq2rhvHnz1nU4SdKQyR4p7AD8IMk/MrhWAEBVHTaZlavqoSRXA78NbJNkk3a0MB9Y1rotA3YB7kyyCbA1gwvOkqQZMtlQ+OBUB04yD/hFC4RnAr/L4OLx1cBRDL6BdAJwSVvl0jb/zbb8q1M9XSVJWjeT/fbR19di7OcC57XrChsBF1XVl5P8ALgwyYeB7wLntP7nAJ9MshR4AHjTWmxTkrQOJhUKSR5h8M0hgGcw+CbRY1W11arWqaobgZdM0H4rg+sLK7c/ARw9mXokSaMx2SOFLVdMt6+JHg7sN6qiJEnjMeW7pLbfH3wReMMI6pEkjdFkTx8dOTS7EYPfLTwxkookSWMz2W8fHTo0/SRwG4NTSJKk9chkrymcOOpCJEnjN9l7H81P8oUk97XH55PMH3VxkqSZNdkLzZ9g8OOyndrjS61NkrQemWwozKuqT1TVk+1xLuCNhyRpPTPZULg/yVuSbNweb8H7EknSemeyofD7wDHAPcDdDO5N9LYR1SRJGpPJfiX1Q8AJVfUgQJLtGPzRnd8fVWGSpJk32SOFvVYEAkBVPcAE9zWSJM1tkw2FjZJsu2KmHSlM9ihDkjRHTPaN/X8B30zyuTZ/NPDfR1OSJGlcJvuL5vOTLAH2b01HVtUPRleWJGkcJn0KqIWAQSBJ67Ep3zpbkrT+MhQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkrqRhUKSXZJcneQHSb6f5F2tfbskVyb5cXvetrUnyZlJlia5Mcneo6pNkjSxUR4pPAn8UVXtCewHvCPJnsCpwFVVtQdwVZsHOAjYoz0WAWePsDZJ0gRGFgpVdXdVfadNPwLcAuwMHA6c17qdBxzRpg8Hzq+B64Btkjx3VPVJkp5uRq4pJFkAvAT4FrBjVd3dFt0D7NimdwbuGFrtzta28liLkixJsmT58uUjq1mSNkQjD4UkWwCfB06pqp8NL6uqAmoq41XV4qpaWFUL582bN42VSpJGGgpJNmUQCBdU1d+25ntXnBZqz/e19mXALkOrz29tkqQZMspvHwU4B7ilqv5iaNGlwAlt+gTgkqH2t7ZvIe0HPDx0mkmSNAM2GeHYrwCOB25K8r3W9j7gI8BFSU4CbgeOacsuAw4GlgKPAyeOsDZJ0gRGFgpV9Q0gq1h8wAT9C3jHqOqRJK2Zv2iWJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUjeyUEjy8ST3Jbl5qG27JFcm+XF73ra1J8mZSZYmuTHJ3qOqS5K0aqM8UjgXOHCltlOBq6pqD+CqNg9wELBHeywCzh5hXZKkVRhZKFTVNcADKzUfDpzXps8DjhhqP78GrgO2SfLcUdUmSZrYTF9T2LGq7m7T9wA7tumdgTuG+t3Z2p4myaIkS5IsWb58+egqlaQN0NguNFdVAbUW6y2uqoVVtXDevHkjqEySNlwzHQr3rjgt1J7va+3LgF2G+s1vbZKkGbTJDG/vUuAE4CPt+ZKh9pOTXAjsCzw8dJpJktbo66969bhLmDVefc3X13rdkYVCks8ArwF2SHIn8AEGYXBRkpOA24FjWvfLgIOBpcDjwImjqkuStGojC4WqOm4Viw6YoG8B7xhVLZKkyfEXzZKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSepm+u8pSGpecdYrxl3CrHHtH1477hLUeKQgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpm1WhkOTAJD9KsjTJqeOuR5I2NLMmFJJsDHwMOAjYEzguyZ7jrUqSNiyzJhSAlwFLq+rWqvo5cCFw+JhrkqQNSqpq3DUAkOQo4MCqenubPx7Yt6pOXqnfImBRm30+8KMZLXTt7AD8dNxFrEfcn9PHfTm95sr+fF5VzZtowZz7G81VtRhYPO46piLJkqpaOO461hfuz+njvpxe68P+nE2nj5YBuwzNz29tkqQZMptC4dvAHkl2S/IM4E3ApWOuSZI2KLPm9FFVPZnkZOD/AhsDH6+q74+5rOkyp053zQHuz+njvpxec35/zpoLzZKk8ZtNp48kSWNmKEiSOkNhGiQ5IkklecFQ22lJbm6PY4faz0lyQ5Ibk1ycZIvxVD17TXF/XtBujXJzko8n2XQ8Vc9eU9yfJ7fbzFSSHcZT8ew1lX05tPzMJI/ObKVrz1CYHscB32jPJDkE2Bt4MbAv8J4kW7W+/6WqXlRVewH/DJw8wXgbuqnszwuAFwAvBJ4JvH3Gq539prI/rwVeB9w+hjrngqnsS5IsBLYdQ51rzVBYR+2T/iuBkxh8jRYG9266pqqerKrHgBuBAwGq6mdtvTB4E/NK/5C12J+XVQP8I4Pft6hZi/353aq6bRy1znZT3Zftfm6nA+8dQ7lrzVBYd4cDl1fVPwH3J9kHuAE4MMmz2iH4axn6YV6STwD3MPiEe9YYap7Nprw/Adppo+OBy2e64FlurfanJjTVfXkycGlV3T2ecteOobDujmNw8z7a83FVdQVwGfAPwGeAbwK/XLFCVZ0I7ATcAjztHOQGbsr7s/krBp/Y/n6mCp0j1nZ/6ukmvS+T7AQczRz80OfvFNZBku2AO4HlDE4Dbdyen1dDOzbJp4FPVdVlK63/KuC9VfXGmat69lrb/ZnkA8BLgCOr6lczXvgstS7/P5PcBiysqrlwc7eRm+q+BAKcAzzRFu0K3FpVu89k3WvDI4V1cxTwyap6XlUtqKpdgP8HvCrJ9gBJ9gL2Aq7IwO6tPcBhwA/HVPtsNKX92ebfDryBwac2A+Gpprw/tUpT2pdV9ZWqek7ruwB4fC4EAsyi21zMUccBp63U9nngbcC+g/d9fga8pd3GYyPgvPbthDA4H/mfZ67cWW9K+7Mt/2sG35T5Zlv+t1X1oRmpdvab8v5M8k4GF0afA9yY5LIVt7PfwK3N/805ydNHkqTO00eSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFaYqSnJLkWdPVT5pN/EqqNEWT/bWvvwrWXOSRgrQaSZ6d5Cvtb2Dc3G6psRNwdZKrW5+zkyxJ8v0k/621vXOCfo8OjXtUknPb9NFt7BuSXDPDL1F6Cn/RLK3egcBdVXUIQJKtgROB1w4dAfzXqnqg3Sr5qiR7VdWZSd69Ur9VeT/whqpalmSbUb0QaTI8UpBW7ybgd9tf1/qdqnp4gj7HJPkO8F3gtxjcY38qrgXOTfIfGdxoTRobjxSk1aiqf0qyN3Aw8OEkVw0vT7Ib8B7gpVX1YDsltPmqhhua7n2q6j8l2Rc4BLg+yT5Vdf90vg5psjxSkFaj3Rf/8ar6FIO/orU38AiwZeuyFfAY8HCSHYGDhlYf7gdwb5LfbDdG/A9D2/j1qvpWVb2fwa2Z/YM3GhuPFKTVeyFwepJfAb9gcFfb3wYuT3JXVb02yXcZ3AL9DganglZYPNwPOBX4MoM3/iXAFq3f6Un2YHDn3KsY3D1XGgu/kipJ6jx9JEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKn7/zCUz+4PzZCPAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "sruhuvjBKopZ",
"outputId": "c776035a-c24c-4a80-dcd0-698e0552799c"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['others'])\n",
"plt.title('others Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUYUlEQVR4nO3de7QlZX3m8e8jzSVcm0uPCU3HJkhUvESkVRRjXMKKIIFmWMTIiAIh03HF6+CoJDMrunIbUUcC6LhkIAIOIg5RwUtMGIRZEcc23ciAQBg7BOlubi3SSDCIjb/5Y7/9ujmebnbD2Wf35ftZa69T9dZbtX+165zz7KraVTtVhSRJAE+bdAGSpM2HoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlDQFiPJHUmOmHQd00nyhiR/N4PLuznJq9rw+5P8jxlc9h8lOX+mlqeti6GgzVKSC5P82aTrgF7Lo0keao/vJPkvSfZY36eqLqmq3xxxWU+4XlX13Kq69imWTpJXJVk1Zdl/UVW/91SXra2ToaBtTpI5T2K2D1bVbsA84FTgUOC6JLtsBrVJM8ZQ0MQkeU6Sa5OsbYdLjm3tS4A3AO9J8i9Jvjg02wuT3JjkwSSXJdlpaHm/leSGtrxvJHnB0LQ7krw3yY3Aw0nmtPHV7d3/bUkOf6Kaq+qRqvoH4FhgbwYBQZJTkny9DSfJWUnuS/LDJDcled6G1msDtU09VLZTW9+Hklyf5NeG1q2SPHNo/MIkf9YC62+Afdvz/UuSfacejkpybHv917bt8Zwpr9t/3NBrrq2PoaCJSLI98EXg74B/A7wNuCTJs6rqPOASBu/Od62qY4ZmfR1wJLA/8ALglLa8g4G/An6fwT/rTwBXJtlxaN4TgaOBucABwFuBF7c9gNcAd4xaf1U9BFwF/Po0k38TeCXwq8Aereb7n2C9em1VtW6aZS4G/iewF/Bp4AvtNdxYjQ8DRwF3tefbtaruGu6T5FeBS4F3MtgL+grwxSQ7DHWb9jXX1slQ0KQcCuwKfKCqHq2qrwFfYvDPcWPOqaq7quoHDELlha19CfCJqlpaVY9V1UXAj9vzDM+7sqr+FXgM2BE4KMn2VXVHVf3TJq7DXQz+SU/1E2A34NlAqurWqrp7hPVaX9t0llfV5VX1E+AjwE48ft2erN8BvlxVV7Vlfxj4BeDlU2qb7jXXVshQ0KTsC6ysqp8OtX0PmP8E890zNPwjBsEC8AzgXe0QyNoka4EF7XnWW7l+oKpWMHh3/H7gviSfSTLcdxTzgR9MbWwB91HgY23Z5yXZ/QmWtXLU6e01W8Xj1+3J2pfB6z687JU8fjts6DXXVshQ0KTcBSxIMvw7+MvA6ja8qbfvXQn8eVXNHXrsXFWXDvV53DKr6tNV9QoGgVLAmaM+WZJdgSOAv59uelWdU1WHAAcxOIz07ulq2FBt01gw9NxPA/Zj8BrC4B/1zkN9f3ETlnsXg/Vfv+y051q9wTm0VTMUNClLGfwze0+S7dtn8o8BPtOm3wv8yiYs778Db07y0naid5ckRyfZbbrOSZ6V5NXtnMMjwL8CP52u75T5dkxyCPAF4AHgk9P0eXGrY3vg4bb89cve1PVa75Akx7dPJ72TwaGxb7ZpNwD/Lsl2SY4EfmNovnuBvYc/PjvFZ4Gjkxze6n1XW/Y3nkSN2goYCpqIqnqUQQgcBXwf+G/Am6rqH1uXCxgc71+b5AsjLG8Z8O8ZHLZ5AFjBxk+I7gh8oD33PQxOdv/hRvq/J8lDwP3AxcBy4OXtZO5UuzMIqQcYHJq5H/jQk1mvIVcwOP7/APBG4Ph2DgDgHQxey7UMPt3Ul9tez0uB29tzPu6QU1XdBpwEnMvgtTgGOKZtH22D4pfsSJLWc09BktQZCpKkzlCQJHWGgiSp26JvvrXPPvvUwoULJ12GJG1Rli9f/v2qmjfdtC06FBYuXMiyZcsmXYYkbVGSfG9D0zx8JEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeq26CuaN8Uh77540iVsE5Z/6E2TLkHSU+CegiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVI31lBI8h+S3JzkO0kuTbJTkv2TLE2yIsllSXZofXds4yva9IXjrE2S9PPGFgpJ5gNvBxZV1fOA7YDXA2cCZ1XVM4EHgNPaLKcBD7T2s1o/SdIsGvfhoznALySZA+wM3A28Gri8Tb8IOK4NL27jtOmHJ8mY65MkDRlbKFTVauDDwJ0MwuBBYDmwtqrWtW6rgPlteD6wss27rvXfe+pykyxJsizJsjVr1oyrfEnaJo3z8NGeDN797w/sC+wCHPlUl1tV51XVoqpaNG/evKe6OEnSkHEePjoC+OeqWlNVPwE+BxwGzG2HkwD2A1a34dXAAoA2fQ/g/jHWJ0maYpyhcCdwaJKd27mBw4FbgGuAE1qfk4Er2vCVbZw2/WtVVWOsT5I0xTjPKSxlcML4euCm9lznAe8FTk+ygsE5gwvaLBcAe7f204EzxlWbJGl6c564y5NXVe8D3jel+XbgJdP0fQT47XHWI0naOK9oliR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUjfWUEgyN8nlSf4xya1JXpZkryRXJflu+7ln65sk5yRZkeTGJC8aZ22SpJ837j2Fs4GvVtWzgV8DbgXOAK6uqgOBq9s4wFHAge2xBPj4mGuTJE0xtlBIsgfwSuACgKp6tKrWAouBi1q3i4Dj2vBi4OIa+CYwN8kvjas+SdLPG+eewv7AGuCTSb6d5PwkuwBPr6q7W597gKe34fnAyqH5V7W2x0myJMmyJMvWrFkzxvIladszzlCYA7wI+HhVHQw8zM8OFQFQVQXUpiy0qs6rqkVVtWjevHkzVqwkabyhsApYVVVL2/jlDELi3vWHhdrP+9r01cCCofn3a22SpFkytlCoqnuAlUme1ZoOB24BrgRObm0nA1e04SuBN7VPIR0KPDh0mEmSNAvmjHn5bwMuSbIDcDtwKoMg+myS04DvAa9rfb8CvBZYAfyo9ZUkzaKxhkJV3QAsmmbS4dP0LeAt46xHkrRxXtEsSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSupFCIcnVo7RJkrZsG70hXpKdgJ2BfZLsCaRN2p1pvhVNkrRle6K7pP4+8E5gX2A5PwuFHwIfHWNdkqQJ2GgoVNXZwNlJ3lZV585STZKkCRnp+xSq6twkLwcWDs9TVRePqS5J0gSMFApJPgUcANwAPNaaCzAUJGkrMuo3ry0CDmrfjiZJ2kqNep3Cd4BfHGchkqTJG3VPYR/gliTfAn68vrGqjh1LVZKkiRg1FN4/ziIkSZuHUT999L/HXYgkafJG/fTRQww+bQSwA7A98HBV7T6uwiRJs2/UPYXd1g8nCbAYOHRcRUmSJmOT75JaA18AXjOGeiRJEzTq4aPjh0afxuC6hUfGUpEkaWJG/fTRMUPD64A7GBxCkiRtRUY9p3DquAuRJE3eqF+ys1+Szye5rz3+Osl+4y5OkjS7Rj3R/EngSgbfq7Av8MXWJknaiowaCvOq6pNVta49LgTmjbEuSdIEjBoK9yc5Kcl27XEScP84C5Mkzb5RQ+F3gdcB9wB3AycAp4ypJknShIz6kdQ/AU6uqgcAkuwFfJhBWEiSthKj7im8YH0gAFTVD4CDx1OSJGlSRg2FpyXZc/1I21MYdS9DkrSFGDUU/ivwf5L8aZI/Bb4BfHCUGduJ6W8n+VIb3z/J0iQrklyWZIfWvmMbX9GmL9z01ZEkPRUjhUJVXQwcD9zbHsdX1adGfI53ALcOjZ8JnFVVzwQeAE5r7acBD7T2s1o/SdIsGvkuqVV1S1V9tD1uGWWedtXz0cD5bTzAq4HLW5eLgOPa8OI2Tpt+eOsvSZolm3zr7E30l8B7gJ+28b2BtVW1ro2vAua34fnASoA2/cHW/3GSLEmyLMmyNWvWjLN2SdrmjC0UkvwWcF9VLZ/J5VbVeVW1qKoWzZvnRdWSNJPG+Qmiw4Bjk7wW2AnYHTgbmJtkTtsb2A9Y3fqvBhYAq5LMAfbAq6YlaVaNbU+hqv6wqvarqoXA64GvVdUbgGsYXBENcDJwRRu+so3Tpn+tqgpJ0qwZ9zmF6bwXOD3JCgbnDC5o7RcAe7f204EzJlCbJG3TZuUCtKq6Fri2Dd8OvGSaPo8Avz0b9UiSpjeJPQVJ0mbKUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6sYWCkkWJLkmyS1Jbk7yjta+V5Krkny3/dyztSfJOUlWJLkxyYvGVZskaXrj3FNYB7yrqg4CDgXekuQg4Azg6qo6ELi6jQMcBRzYHkuAj4+xNknSNMYWClV1d1Vd34YfAm4F5gOLgYtat4uA49rwYuDiGvgmMDfJL42rPknSz5uVcwpJFgIHA0uBp1fV3W3SPcDT2/B8YOXQbKta29RlLUmyLMmyNWvWjK1mSdoWjT0UkuwK/DXwzqr64fC0qiqgNmV5VXVeVS2qqkXz5s2bwUolSWMNhSTbMwiES6rqc6353vWHhdrP+1r7amDB0Oz7tTZJ0iwZ56ePAlwA3FpVHxmadCVwchs+GbhiqP1N7VNIhwIPDh1mkiTNgjljXPZhwBuBm5Lc0Nr+CPgA8NkkpwHfA17Xpn0FeC2wAvgRcOoYa5MkTWNsoVBVXweygcmHT9O/gLeMqx5J0hPzimZJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqRuzqQLkEZx5588f9IlbPV++Y9vmnQJ2gy4pyBJ6txTkDRWh5172KRL2CZc97brZmQ57ilIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEndZhUKSY5McluSFUnOmHQ9krSt2WxCIcl2wMeAo4CDgBOTHDTZqiRp27LZhALwEmBFVd1eVY8CnwEWT7gmSdqmpKomXQMASU4Ajqyq32vjbwReWlVvndJvCbCkjT4LuG1WC51d+wDfn3QRelLcdlu2rX37PaOq5k03YYu7zUVVnQecN+k6ZkOSZVW1aNJ1aNO57bZs2/L225wOH60GFgyN79faJEmzZHMKhX8ADkyyf5IdgNcDV064Jknapmw2h4+qal2StwJ/C2wH/FVV3TzhsiZtmzhMtpVy223Zttntt9mcaJYkTd7mdPhIkjRhhoIkqTMUZlmS45JUkmcPtX01ydokX5rSd/8kS9ttPy5rJ+BJ8sok1ydZ167v0CyZoe335iQ3Jbkhyde9cn92zNC2Oz3JLUluTHJ1kmfM9nqMm6Ew+04Evt5+rvch4I3T9D0TOKuqngk8AJzW2u8ETgE+Pb4ytQEzsf0+XVXPr6oXAh8EPjLGevUzM7Htvg0sqqoXAJcz2H5bFUNhFiXZFXgFg1+w169vr6qrgYem9A3waga/eAAXAce1/ndU1Y3AT2ehbDUzuP1+ONR1F8BPe4zZDG67a6rqR639mwyup9qqGAqzazHw1ar6f8D9SQ7ZSN+9gbVVta6NrwLmj7tAbdSMbb8kb0nyTwzeab59XAWrG8ff3mnA38xsmZNnKMyuExnc6I/288SN9NXmZ8a2X1V9rKoOAN4L/OcZqE0bN6N/e0lOAhYxOPy0VdlsLl7b2iXZi8Eu6fOTFIML9CrJu2v6i0XuB+YmmdPesXjbjwka4/b7DPDxcdWtmd92SY4A/hPwG1X14/GvwexyT2H2nAB8qqqeUVULq2oB8M/Ar0/Xuf2yXtPmAzgZuGJWKtV0Zmz7JTlwqOvRwHfHVrVgZrfdwcAngGOr6r6xVz4BXtE8S5JcA5xZVV8dans78BzgecCzgV0ZvEs5rar+NsmvMHgnuReDTz2cVFU/TvJi4PPAnsAjwD1V9dxZXaFtzAxvv7OBI4CfMPhky1u9pcv4zPC2+1/A84G726LurKpjZ29txs9QkCR1Hj6SJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJsgydwkfzA0/qqpd9iUtmSGgrRp5gJ/8IS9RpTEuwpos+IvpLQRSU4HfreNng8cChyQ5AbgKuDLwK5JLmdwIdRyBhc6Vbvp2kcYXBj1feCUqro7ybXADQzu2nlpkjuB9wGPAQ9W1StnbQWlKQwFaQPaP/VTgZcCAZYCJwHPa9+FQJJXAQcDzwXuAq4DDkuyFDgXWFxVa5L8DvDn/CxgdqiqRW0ZNwGvqarVSebO1vpJ0zEUpA17BfD5qnoYIMnnmP5+Od+qqlWtzw3AQmAtgz2Hqwa352c7fnZrBIDLhoavAy5M8lngczO8DtImMRSkp274TpmPMfi7CnBzVb1sA/M8vH6gqt6c5KUMbo63PMkhVXX/2KqVNsITzdKG/T1wXJKdk+wC/FsG7+p3G2He24B5SV4GkGT7JNPetDDJAVW1tKr+GFgDLJiZ8qVN556CtAFVdX2SC4Fvtabzq2p5kuuSfIfBt259eQPzPprkBOCcJHsw+Fv7S2C6u6F+qN1OO8DVwP+d4VWRRuZdUiVJnYePJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHX/H6QdLFZFtEXfAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "8pud9aqFKopZ",
"outputId": "cb16591d-f835-4489-d611-ead0965296af"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['residence'])\n",
"plt.title('residence Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZbklEQVR4nO3de5QmdX3n8fcHRCECItAhMIOOGzGKbhx1RFay0UBUxMsYjxBcL6i4ozl44WiMl5PdoCtR1yjiZd0dRQE1CooXVLLKctFoIjjoiFxkM0HIzDgyIzdBVxT47h/16/KhaWZ6LtXPNP1+nfOcrvrVr+r5dsE8n65f1VOVqkKSJIAdxl2AJGn7YShIknqGgiSpZyhIknqGgiSpZyhIknqGgrZbSV6Q5OsbWX5hkpfPZk1ba1O/0xZs7/IkT27TJyT55Dbc9luSfHRbbU9zg6Gg7VZVfaqqnjruOmYqyalJfp3klva6LMk7kjxgss9Mf6e2rbdvql9VPbKqLtzK0kny5CRrpmz7b6tqToWutp6hoEEluc+4a5hl/72qdgMmgJcCBwPfTnL/bfkm83C/apYYCtrmklyT5I1JLgV+keQ+SQ5O8k9Jbkryg8khj9b/JUmubn9d/zjJC0bavzXS7ylJfpTk5iQfBDLlfV+W5MokNyb5WpIHjyyrJK9M8i+thg8lycjy/9zWvSXJFUke29r3S3JWkg2tttfMZB9U1a+q6rvAs4G96ALiLr9TOiclWZ/k50l+mORRSZYBLwD+KsmtSb68kf16TZI/HXnrnZOc0X6P7yV59JR98NCR+VOTvL0F1j8A+7X3u7X93ncZjkry7DZcdVMbunvElP/mf5nk0vbf54wkO89kX2n7YihoKM8HngHsAewDfBV4O7An8JfAWUkm2gfS+4Gnt7+wnwisnLqxJHsDnwf+Gtgb+FfgkJHlS4G3AM+l+yv9H4FPT9nMM4HHA38IHAU8ra17JHAC8GJgd7oP8uuT7AB8GfgBsAA4DDg+ydNmuhOq6hbgXOA/TrP4qcAfAw8DHtBqur6qlgOfojvq2LWqnjWyTr9fq+r2aba5FPgs3X7+e+CLSXbaRI2/AJ4O/KS9365V9ZPRPkkeRrc/j6fbv+cAX05y35FuRwGHAw+h28cv2dj7avtkKGgo76+q1VX1/4AXAudU1TlVdWdVnQusAI5ofe8EHpVkl6paV1WXT7O9I4DLq+pzVfUb4H3AT0eWvxJ4R1Vd2T4s/xZYPHq0ALyzqm6qqn8DLgAWt/aX030Af7c6q6rqWroAmaiqt1XVr6vqauAjwNGbuS9+QvchPdVvgN2AhwNpta/bxLZG9+t0LhnZR+8FdqYbwtpafw58tarObdv+O2AXuhAfre0nVXUDXZgunmY72s4ZChrK6pHpBwNHtmGHm5LcBPwRsG/7K/XP6T7U1yX5apKHT7O9/Ua3Wd2dHKe+x8kj27+BbnhpwUif0RD5JbBrm96f7shjqgfTDamM1v0WuiOfzbGg1XMXVXU+8EHgQ8D6JMuT7L6Jba2e6fKquhNYQ7fvttZ+wLVTtr2ame1fzSGGgoYyevvd1cAnqmqPkdf9q+qdAFX1tap6CrAv8CO6v8anWkf34Q104/Gj8+09XjHlPXapqn+aQa2rgd+/h/YfT9nmblV1xDR9p5VkV+BP6Yaz7qaq3l9VjwMOpBtGesPkonvY5KZuazy6j3YAFtIdqUD3Qf07I31/bzO2+xO6kJzc9uT+X7uJ9TTHGAqaDZ8EnpXkaUl2TLJzuwRyYZJ9kixt5xZuA26lG06a6qvAI5M8t1158xru+qH2P4E3J3kkQJIHtHMFM/FR4C+TPK6d/H1oG3a6GLilndzdpdX+qCSP39QGk9wvyeOALwI3Ah+fps/jkzyhjfn/AvjVyO9+HfDvZlj/qMeN7KPj6fbpd9qylcB/ar/H4cCTRta7DtgrI5fPTnEm8Iwkh7V6X9+2PZPQ1RxiKGhwVbWa7gToW4ANdH+Bv4Hu/78dgNfR/SV6A90H1V9Ms42fAUcC7wSuBw4Avj2y/AvAu4DPJPk5cBndydOZ1PdZ4ES6E7O30H2Q71lVd9CdnF4M/Bj4GV2A3NMHJ3RXDN3SajwduAR4Yhsmm2p3uqOiG+mGZq4H3t2WnQIc2IatvjiT36P5Et1w3I3Ai4DntnMAAK8FngXcRHd1U7/dqvoR3Ynkq9t73mXIqaquojs39AG6/fAs4FlV9evNqE1zQHzIjiRpkkcKkqSeoSBJ6hkKkqSeoSBJ6s3pm2rtvffetWjRonGXIUlzyiWXXPKzqpqYbtmcDoVFixaxYsWKcZchSXNKkmvvaZnDR5KknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKk3pz+RrMkTfrGHz9p053miSd98xtbvK5HCpKknqEgSeoNHgrtIeHfT/KVNv+QJBclWZXkjCT3be33a/Or2vJFQ9cmSbqr2ThSeC1w5cj8u4CTquqhdA8XP7a1Hwvc2NpPav0kSbNo0FBIshB4BvDRNh/gUOBzrctpwHPa9NI2T1t+WOsvSZolQx8pvA/4K+DONr8XcFNV3d7m1wAL2vQCYDVAW35z638XSZYlWZFkxYYNG4asXZLmncFCIckzgfVVdcm23G5VLa+qJVW1ZGJi2gcHSZK20JDfUzgEeHaSI4Cdgd2Bk4E9ktynHQ0sBNa2/muB/YE1Se4DPAC4fsD6JElTDHakUFVvrqqFVbUIOBo4v6peAFwAPK91Owb4Ups+u83Tlp9fVTVUfZKkuxvH9xTeCLwuySq6cwantPZTgL1a++uAN42hNkma12blNhdVdSFwYZu+Gjhomj6/Ao6cjXokSdPzG82SpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqGQqSpJ6hIEnqDRYKSXZOcnGSHyS5PMlbW/upSX6cZGV7LW7tSfL+JKuSXJrksUPVJkma3pBPXrsNOLSqbk2yE/CtJP/Qlr2hqj43pf/TgQPa6wnAh9tPSdIsGexIoTq3ttmd2qs2sspS4PS23neAPZLsO1R9kqS7G/ScQpIdk6wE1gPnVtVFbdGJbYjopCT3a20LgNUjq69pbVO3uSzJiiQrNmzYMGT5kjTvDBoKVXVHVS0GFgIHJXkU8Gbg4cDjgT2BN27mNpdX1ZKqWjIxMbHNa5ak+WxWrj6qqpuAC4DDq2pdGyK6Dfg4cFDrthbYf2S1ha1NkjRLhrz6aCLJHm16F+ApwI8mzxMkCfAc4LK2ytnAi9tVSAcDN1fVuqHqkyTd3ZBXH+0LnJZkR7rwObOqvpLk/CQTQICVwCtb/3OAI4BVwC+Blw5YmyRpGoOFQlVdCjxmmvZD76F/AccNVY8kadP8RrMkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqWcoSJJ6hoIkqTfkQ3Z0L/Nvb/v34y5hu/Gg//rDcZcgDWLIx3HunOTiJD9IcnmSt7b2hyS5KMmqJGckuW9rv1+bX9WWLxqqNknS9IYcProNOLSqHg0sBg5vz15+F3BSVT0UuBE4tvU/FrixtZ/U+kmSZtFgoVCdW9vsTu1VwKHA51r7acBz2vTSNk9bfliSDFWfJOnuBj3RnGTHJCuB9cC5wL8CN1XV7a3LGmBBm14ArAZoy28G9ppmm8uSrEiyYsOGDUOWL0nzzqChUFV3VNViYCFwEPDwbbDN5VW1pKqWTExMbHWNkqTfmpVLUqvqJuAC4D8AeySZvOppIbC2Ta8F9gdoyx8AXD8b9UmSOkNefTSRZI82vQvwFOBKunB4Xut2DPClNn12m6ctP7+qaqj6JEl3N+T3FPYFTkuyI134nFlVX0lyBfCZJG8Hvg+c0vqfAnwiySrgBuDoAWuTJE1jsFCoqkuBx0zTfjXd+YWp7b8CjhyqHknSpnmbC0lSz1CQJPUMBUlSz1CQJPUMBUlSz1CQJPUMBUlSz1CQJPUMBUlSz1CQJPUMBUlSz1CQJPUMBUlSz1CQJPUMBUlSz1CQJPWGfBzn/kkuSHJFksuTvLa1n5BkbZKV7XXEyDpvTrIqyVVJnjZUbZKk6Q35OM7bgddX1feS7AZckuTctuykqvq70c5JDqR7BOcjgf2A/5PkYVV1x4A1SpJGDHakUFXrqup7bfoW4EpgwUZWWQp8pqpuq6ofA6uY5rGdkqThzMo5hSSL6J7XfFFrelWSS5N8LMkDW9sCYPXIamuYJkSSLEuyIsmKDRs2DFi1JM0/g4dCkl2Bs4Djq+rnwIeB3wcWA+uA92zO9qpqeVUtqaolExMT27xeSZrPBg2FJDvRBcKnqurzAFV1XVXdUVV3Ah/ht0NEa4H9R1Zf2NokSbNkyKuPApwCXFlV7x1p33ek258Bl7Xps4Gjk9wvyUOAA4CLh6pPknR3Q159dAjwIuCHSVa2trcAz0+yGCjgGuAVAFV1eZIzgSvorlw6ziuPJGl2DRYKVfUtINMsOmcj65wInDhUTZKkjZvR8FGS82bSJkma2zZ6pJBkZ+B3gL3bpaOTf/nvzsa/cyBJmoM2NXz0CuB4um8YX8JvQ+HnwAcHrEuSNAYbDYWqOhk4Ocmrq+oDs1STJGlMZnSiuao+kOSJwKLRdarq9IHqkiSNwYxCIckn6L6FvBKYvEy0AENBku5FZnpJ6hLgwKqqIYuRJI3XTL/RfBnwe0MWIkkav5keKewNXJHkYuC2ycaqevYgVUmSxmKmoXDCkEVIkrYPM7366BtDFyJJGr+ZXn10C93VRgD3BXYCflFVuw9VmCRp9s30SGG3yel2S+ylwMFDFSVJGo/Nfp5Cdb4IPG2AeiRJYzTT4aPnjszuQPe9hV8NUpEkaWxmevXRs0amb6d7OM7SbV6NJGmsZnpO4aWbu+Ek+9PdBmMfupPUy6vq5CR7AmfQ3UfpGuCoqrqxnas4GTgC+CXwkqr63ua+ryRpy830ITsLk3whyfr2OivJwk2sdjvw+qo6kO6k9HFJDgTeBJxXVQcA57V5gKfTPZf5AGAZ8OEt+H0kSVthpieaPw6cTfdchf2AL7e2e1RV6yb/0q+qW4Ar6R7MsxQ4rXU7DXhOm14KnN5OZH8H2CPJvpvxu0iSttJMQ2Giqj5eVbe316nAxEzfJMki4DHARcA+VbWuLfop3fASdIGxemS1Nfh0N0maVTMNheuTvDDJju31QuD6mayYZFfgLOD4qvr56LJ219XNuvNqkmVJViRZsWHDhs1ZVZK0CTMNhZcBR9H9Zb8OeB7wkk2tlGQnukD4VFV9vjVfNzks1H6ub+1rgf1HVl/Y2u6iqpZX1ZKqWjIxMeODFUnSDMw0FN4GHFNVE1X1u3Qh8daNrdCuJjoFuLKq3juy6GzgmDZ9DPClkfYXp3MwcPPIMJMkaRbM9HsKf1hVN07OVNUNSR6ziXUOAV4E/DDJytb2FuCdwJlJjgWupTsCATiH7nLUVXSXpG72ZbCSpK0z01DYIckDJ4Ohfddgo+tW1beA3MPiw6bpX8BxM6xHkjSAmYbCe4B/TvLZNn8kcOIwJUmSxmWm32g+PckK4NDW9NyqumK4siRJ4zDTIwVaCBgEknQvttm3zpYk3XsZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoNFgpJPpZkfZLLRtpOSLI2ycr2OmJk2ZuTrEpyVZKnDVWXJOmeDXmkcCpw+DTtJ1XV4vY6ByDJgcDRwCPbOv8jyY4D1iZJmsZgoVBV3wRumGH3pcBnquq2qvox3XOaDxqqNknS9MZxTuFVSS5tw0sPbG0LgNUjfda0NknSLJrxk9e2kQ8D/w2o9vM9wMs2ZwNJlgHLAB70oAdt6/qkWXPIBw4ZdwnbjW+/+tvjLkHNrB4pVNV1VXVHVd0JfITfDhGtBfYf6bqwtU23jeVVtaSqlkxMTAxbsCTNM7MaCkn2HZn9M2DyyqSzgaOT3C/JQ4ADgItnszZJ0oDDR0k+DTwZ2DvJGuBvgCcnWUw3fHQN8AqAqro8yZnAFcDtwHFVdcdQtUmSpjdYKFTV86dpPmUj/U8EThyqHknSpvmNZklSz1CQJPUMBUlSz1CQJPUMBUlSb7a/0TzrHveG08ddwnbjkne/eNwlSNrOeaQgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKk3mChkORjSdYnuWykbc8k5yb5l/bzga09Sd6fZFWSS5M8dqi6JEn3bMgjhVOBw6e0vQk4r6oOAM5r8wBPp3su8wHAMuDDA9YlSboHg4VCVX0TuGFK81LgtDZ9GvCckfbTq/MdYI8k+w5VmyRperN9TmGfqlrXpn8K7NOmFwCrR/qtaW2SpFk0thPNVVVAbe56SZYlWZFkxYYNGwaoTJLmr9kOhesmh4Xaz/WtfS2w/0i/ha3tbqpqeVUtqaolExMTgxYrSfPNbIfC2cAxbfoY4Esj7S9uVyEdDNw8MswkSZolgz15LcmngScDeydZA/wN8E7gzCTHAtcCR7Xu5wBHAKuAXwIvHaouSdI9GywUqur597DosGn6FnDcULVIkmbGbzRLknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqDPXltY5JcA9wC3AHcXlVLkuwJnAEsAq4BjqqqG8dRnyTNV+M8UviTqlpcVUva/JuA86rqAOC8Ni9JmkXb0/DRUuC0Nn0a8Jwx1iJJ89K4QqGArye5JMmy1rZPVa1r0z8F9pluxSTLkqxIsmLDhg2zUaskzRtjOacA/FFVrU3yu8C5SX40urCqKklNt2JVLQeWAyxZsmTaPpKkLTOWI4WqWtt+rge+ABwEXJdkX4D2c/04apOk+WzWQyHJ/ZPsNjkNPBW4DDgbOKZ1Owb40mzXJknz3TiGj/YBvpBk8v3/vqr+d5LvAmcmORa4FjhqDLVJ0rw266FQVVcDj56m/XrgsNmuR5L0W9vTJamSpDEzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJPUNBktQzFCRJve0uFJIcnuSqJKuSvGnc9UjSfLJdhUKSHYEPAU8HDgSen+TA8VYlSfPHdhUKwEHAqqq6uqp+DXwGWDrmmiRp3khVjbuGXpLnAYdX1cvb/IuAJ1TVq0b6LAOWtdk/AK6a9UI3397Az8ZdxL2I+3PbcV9uW3Nlfz64qiamW3Cf2a5ka1XVcmD5uOvYHElWVNWScddxb+H+3Hbcl9vWvWF/bm/DR2uB/UfmF7Y2SdIs2N5C4bvAAUkekuS+wNHA2WOuSZLmje1q+Kiqbk/yKuBrwI7Ax6rq8jGXtS3MqeGuOcD9ue24L7etOb8/t6sTzZKk8dreho8kSWNkKEiSeobCgJJ8LMn6JJeNu5a5Lsn+SS5IckWSy5O8dtw1zWVJdk5ycZIftP351nHXNNcl2THJ95N8Zdy1bA1DYVinAoePu4h7iduB11fVgcDBwHHeAmWr3AYcWlWPBhYDhyc5eMw1zXWvBa4cdxFby1AYUFV9E7hh3HXcG1TVuqr6Xpu+he4f34LxVjV3VefWNrtTe3nVyRZKshB4BvDRcdeytQwFzTlJFgGPAS4abyVzWxvuWAmsB86tKvfnlnsf8FfAneMuZGsZCppTkuwKnAUcX1U/H3c9c1lV3VFVi+nuHHBQkkeNu6a5KMkzgfVVdcm4a9kWDAXNGUl2oguET1XV58ddz71FVd0EXIDnv7bUIcCzk1xDd2fnQ5N8crwlbTlDQXNCkgCnAFdW1XvHXc9cl2QiyR5tehfgKcCPxlvV3FRVb66qhVW1iO7WPOdX1QvHXNYWMxQGlOTTwD8Df5BkTZJjx13THHYI8CK6v8JWttcR4y5qDtsXuCDJpXT3HDu3qub0pZTaNrzNhSSp55GCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEhbIMlHp7shX5KXJPngOGqStoXt6nGc0ri0L8elqmZ075qqevnAJUlj4ZGC5q0ki5JcleR04DLgvyT5bpJLJ58vkOT+Sb7anjtwWZI/b+0XJlnSpl+a5P8muZjuS3aT259Iclbb5neTHNLaT2jP2rgwydVJXjOyzovb+/8gySc2th1pCB4paL47ADgG2B14HnAQEODsJH8MTAA/qapnACR5wOjKSfYF3go8DriZ7h5C32+LTwZOqqpvJXkQ8DXgEW3Zw4E/AXYDrkryYeBhwF8DT6yqnyXZcwbbkbYpQ0Hz3bVV9Z0kfwc8ld9+oO9KFxj/CLwnybuAr1TVP05Z/wnAhVW1ASDJGXQf7gB/ChzYjUwBsHu7yyvAV6vqNuC2JOuBfYBDgc9W1c8AquqGjW1n5HkI0jZjKGi++0X7GeAdVfW/pnZI8ljgCODtSc6rqrfNcNs7AAdX1a+mbA+6J59NuoON/1ucdjvSEDynIHW+Brxs8i/5JAuS/G6S/YBfVtUngXcDj52y3kXAk5Ls1W7tfeTIsq8Dr56cSbJ4EzWcDxyZZK/Wf3L4aHO3I20xjxQkoKq+nuQRwD+3v+RvBV4IPBR4d5I7gd8AfzFlvXVJTqC7G+5NwMqRxa8BPtTuRHof4JvAKzdSw+VJTgS+keQOuqGsl2zudqSt4V1SJUk9h48kST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkSb3/DyEMlYg4wUcEAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "JCIHk-RTKopa",
"outputId": "d6a6ad4d-358a-4ed5-c2b6-050a7fc9c0e9"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['property'])\n",
"plt.title('property Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAX+klEQVR4nO3de5RlZX3m8e8jIBpBAbvk0g02Kl4whhZbgngjMoqgpsFBBBXR4LSzghpnqYOaRNTILJ2oGCUxgxcE5OotEEWiEhUlKjYMIldtFQIt0M0dRBkbfvPHeWtzLKq7q5s651RR389aZ5293/3uvX9nd3U9ta8nVYUkSQAPGXUBkqSZw1CQJHUMBUlSx1CQJHUMBUlSx1CQJHUMBWnAkjw3yZXTuLyvJzm0Db8uyfencdmvTvKN6VqeZh9DQXNakj2TXPsA5n9vkt8nuaO9fpbkmCTbjvepqu9V1ZOmuKzPr6tfVe1TVcdvaM1961uYpJJs3Lfsk6rqRQ902Zq9DAXNKP2/oGbRuk6rqs2BrYD9gW2AC/qDYTqkx/+zGih/wDRwSa5K8q4klyW5JclxSR7Wpu2Z5NokRyS5HjguyaZJPpbk1+31sSSbTuj/7iQ3tmW/um9dmyb5cJL/THJDkn9O8vA1rOsU4OvAdknubK/tktyV5NF9y9w1yaokm6ztc1bV76vqUuCVwCrgbf3r7VveEUlWtD2LK5PsleTFwLuBV7Y6ftL6fifJUUnOA+4CHtfa3vCHmzjHJLktyRVJ9pqw7f9L33j/3si57f3Wts5nTTwclWSPJD9uy/5xkj36pn0nyd8lOa99lm8kmbe2baSZz1DQsLwa2Bt4PPBE4G/6pm1D76/sxwJLgb8GdgcWAbsAu03Sfx4wHzgUODbJ+OGZD7blLwKe0Pq8Zw3rei2wD/DrqtqsvX4NfAc4sG+eQ4BTq+r3U/mgVXUPcAbw3InTWp1vAp7Z9i72Bq6qqrOB/0Vvr2OzqtplwvqXApsDV0+yyj8FftG2yZHAl5NsNYVSn9fet2jr/MGEWrcCvgZ8HHg08FHga/2BCbwKeD3wGOChwNunsF7NYIaChuWYqrqmqm4GjgIO7pt2L3BkVd1dVb+lFyDvr6qVVbUKeB+9X4z9/rb1/y69X1wHJgm9X57/o6purqo76P2iPWgt65rM8cBrAJJs1Go9cT0/76/phc9E9wCbAjsn2aSqrqqqX6xjWZ+rqkuravUagmkl8LG2p3IacCXwkvWsdzIvAX5eVSe2dZ8CXAG8rK/PcVX1s7YtT6cXxprFDAUNyzV9w1cD2/WNr6qq3/WNb8cf/kU8sf8tVfWbSaaPAX9E73j+rUluBc5u7Wta12TOoPdLe0fghcBtVXX+OuaZaD5w88TGqloOvBV4L7AyyalJtpvYb4Jr1jF9Rf3hky0nbq8NNfHfYXzZ8/vGr+8bvgvYbBrWqxEyFDQs2/cN70DvL+lxEx/V+2t6h3fW1H/LJI+YZPqNwG+Bp1bVFu31qKrq/0U1cV33e0xwC43T6e0tHMJ67iW0k8EvA7432fSqOrmqnkPvMxbwoTXVso72cfPbXtK4/u31G3pBOW6b9VjuxH+H8WWvWMd8msUMBQ3L4UkWtOPUfw2ctpa+pwB/k2Ssnbh8DzDxUs33JXlokucCLwW+UFX3Ap8Cjk7yGIAk85PsvZZ13QA8OsmjJrSfALwO+HOmGApJNk7ylFb/NvSOwU/s86QkL2gnzn9HL8Tu7atl4QZcYfQY4C1JNknyCuApwFlt2kXAQW3aYuCAvvlWtXU/bg3LPQt4YpJXtc/2SmBn4KvrWZ9mEUNBw3Iy8A3gl/ROin5gLX0/ACwDLgZ+Clw4of/1wC30/pI9CfjvVXVFm3YEsBz4YZLbgW8Ba7xHoM13CvDLdshpu9Z+Hr1fmBdW1WQnd/u9MsmdwG3AmcBNwDPaSeuJNqV3MvzG9jkeA7yrTftCe78pyYXrWGe/HwE7tWUeBRxQVTe1aX9L7+T+LfTOzZw8PlNV3dX6n9c+++79C23LeCm9q6huAv4n8NKqunE9atMsE79kR4OW5CrgDVX1rWlY1p7A56tqwQNd1hTW9e/AyVX16UGvS5ophnajkDSbJHkmsCuwZNS1SMPk4SNpgiTH0zvs9NZ2Was0Z3j4SJLUcU9BktSZ1ecU5s2bVwsXLhx1GZI0q1xwwQU3VtXYZNNmdSgsXLiQZcuWjboMSZpVkqzxMmsPH0mSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOrP6jmZJGvfd5z1/1CXMGM8/97sbPK97CpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoMLBSSPCzJ+Ul+kuTSJO9r7Tsm+VGS5UlOS/LQ1r5pG1/epi8cVG2SpMkNck/hbuAFVbULsAh4cZLdgQ8BR1fVE4BbgMNa/8OAW1r70a2fJGmIBhYK1XNnG92kvQp4AfDF1n48sF8bXtLGadP3SpJB1SdJur+BnlNIslGSi4CVwDeBXwC3VtXq1uVaYH4bng9cA9Cm3wY8epJlLk2yLMmyVatWDbJ8SZpzBhoKVXVPVS0CFgC7AU+ehmUeW1WLq2rx2NjYA65RknSfoVx9VFW3At8GngVskWTjNmkBsKINrwC2B2jTHwXcNIz6JEk9g7z6aCzJFm344cALgcvphcMBrduhwBlt+Mw2Tpv+71VVg6pPknR/G6+7ywbbFjg+yUb0wuf0qvpqksuAU5N8APi/wGda/88AJyZZDtwMHDTA2iRJkxhYKFTVxcDTJ2n/Jb3zCxPbfwe8YlD1SJLWzTuaJUkdQ0GS1DEUJEkdQ0GS1DEUJEmdQV6SOiM84x0njLqEGeOCv3/tqEuQNMO5pyBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqTOwEIhyfZJvp3ksiSXJvmr1v7eJCuSXNRe+/bN864ky5NcmWTvQdUmSZrcIL95bTXwtqq6MMnmwAVJvtmmHV1VH+7vnGRn4CDgqcB2wLeSPLGq7hlgjZKkPgPbU6iq66rqwjZ8B3A5MH8tsywBTq2qu6vqV8ByYLdB1SdJur+hnFNIshB4OvCj1vSmJBcn+WySLVvbfOCavtmuZZIQSbI0ybIky1atWjXAqiVp7hl4KCTZDPgS8Naquh34JPB4YBFwHfCR9VleVR1bVYuravHY2Ni01ytJc9lAQyHJJvQC4aSq+jJAVd1QVfdU1b3Ap7jvENEKYPu+2Re0NknSkAzy6qMAnwEur6qP9rVv29dtf+CSNnwmcFCSTZPsCOwEnD+o+iRJ9zfIq4+eDRwC/DTJRa3t3cDBSRYBBVwFvBGgqi5NcjpwGb0rlw73yiNJGq6BhUJVfR/IJJPOWss8RwFHDaomSdLaeUezJKljKEiSOoaCJKljKEiSOoaCJKkzyEtS9SDzn+9/2qhLmDF2eM9PR12CNBDuKUiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKkzsFBIsn2Sbye5LMmlSf6qtW+V5JtJft7et2ztSfLxJMuTXJxk10HVJkma3CD3FFYDb6uqnYHdgcOT7Ay8EzinqnYCzmnjAPsAO7XXUuCTA6xNkjSJgYVCVV1XVRe24TuAy4H5wBLg+NbteGC/NrwEOKF6fghskWTbQdUnSbq/oZxTSLIQeDrwI2DrqrquTboe2LoNzweu6Zvt2tY2cVlLkyxLsmzVqlUDq1mS5qKBh0KSzYAvAW+tqtv7p1VVAbU+y6uqY6tqcVUtHhsbm8ZKJUkDDYUkm9ALhJOq6sut+Ybxw0LtfWVrXwFs3zf7gtYmSRqSQV59FOAzwOVV9dG+SWcCh7bhQ4Ez+tpf265C2h24re8wkyRpCDYe4LKfDRwC/DTJRa3t3cAHgdOTHAZcDRzYpp0F7AssB+4CXj/A2iRJk5hSKCQ5p6r2Wldbv6r6PpA1TL7ffO38wuFTqUeSNBhrDYUkDwP+CJjXbjIb/yX/SCa5MkiSNLuta0/hjcBbge2AC7gvFG4HjhlgXZKkEVhrKFTVPwD/kOTNVfWJIdUkSRqRKZ1TqKpPJNkDWNg/T1WdMKC6JEkjMNUTzScCjwcuAu5pzQUYCpL0IDLVS1IXAzu3K4QkSQ9SU7157RJgm0EWIkkavanuKcwDLktyPnD3eGNV/flAqpIkjcRUQ+G9gyxCkjQzTPXqo+8OuhBJ0uhN9eqjO7jvEdcPBTYBflNVjxxUYZKk4ZvqnsLm48Pt6adL6H3FpiTpQWS9H53dvi7zX4C9B1CPJGmEpnr46OV9ow+hd9/C7wZSkSRpZKZ69dHL+oZXA1fRO4QkSXoQmeo5Bb/wRpLmgCmdU0iyIMlXkqxsry8lWTDo4iRJwzXVE83H0fsO5e3a619bmyTpQWSqoTBWVcdV1er2+hwwNsC6JEkjMNVQuCnJa5Js1F6vAW4aZGGSpOGbaij8BXAgcD1wHXAA8LoB1SRJGpGpXpL6fuDQqroFIMlWwIfphYUk6UFiqnsKfzIeCABVdTPw9LXNkOSz7UqlS/ra3ptkRZKL2mvfvmnvSrI8yZVJvFtakkZgqnsKD0my5YQ9hXXN+zngGO7/lZ1HV9WH+xuS7AwcBDyV3tVN30ryxKq6B+lB6tmfePaoS5gxznvzeaMuQc1UQ+EjwA+SfKGNvwI4am0zVNW5SRZOcflLgFOr6m7gV0mWA7sBP5ji/JKkaTClw0dVdQLwcuCG9np5VZ24get8U5KL2+GlLVvbfOCavj7Xtrb7SbI0ybIky1atWrWBJUiSJjPlp6RW1WVVdUx7XbaB6/sk8HhgEb2rmD6yvguoqmOranFVLR4b81YJSZpO6/3o7Aeiqm6oqnuq6l7gU/QOEQGsALbv67qgtUmShmiooZBk277R/YHxK5POBA5KsmmSHYGdgPOHWZskaeonmtdbklOAPYF5Sa4FjgT2TLKI3ld7XgW8EaCqLk1yOnAZvUdzH+6VR5I0fAMLhao6eJLmz6yl/1Gs44omSdJgDfXwkSRpZjMUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEmdgYVCks8mWZnkkr62rZJ8M8nP2/uWrT1JPp5keZKLk+w6qLokSWs2yD2FzwEvntD2TuCcqtoJOKeNA+wD7NReS4FPDrAuSdIaDCwUqupc4OYJzUuA49vw8cB+fe0nVM8PgS2SbDuo2iRJkxv2OYWtq+q6Nnw9sHUbng9c09fv2tZ2P0mWJlmWZNmqVasGV6kkzUEjO9FcVQXUBsx3bFUtrqrFY2NjA6hMkuauYYfCDeOHhdr7yta+Ati+r9+C1iZJGqJhh8KZwKFt+FDgjL7217arkHYHbus7zCRJGpKNB7XgJKcAewLzklwLHAl8EDg9yWHA1cCBrftZwL7AcuAu4PWDqkuStGYDC4WqOngNk/aapG8Bhw+qFknS1HhHsySpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjobj2KlSa4C7gDuAVZX1eIkWwGnAQuBq4ADq+qWUdQnSXPVKPcU/qyqFlXV4jb+TuCcqtoJOKeNS5KGaCYdPloCHN+Gjwf2G2EtkjQnjSoUCvhGkguSLG1tW1fVdW34emDr0ZQmSXPXSM4pAM+pqhVJHgN8M8kV/ROrqpLUZDO2EFkKsMMOOwy+UkmaQ0ayp1BVK9r7SuArwG7ADUm2BWjvK9cw77FVtbiqFo+NjQ2rZEmaE4YeCkkekWTz8WHgRcAlwJnAoa3bocAZw65Nkua6URw+2hr4SpLx9Z9cVWcn+TFwepLDgKuBA0dQmyTNaUMPhar6JbDLJO03AXsNux5J0n1m0iWpkqQRMxQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUmXGhkOTFSa5MsjzJO0ddjyTNJTMqFJJsBPwjsA+wM3Bwkp1HW5UkzR0zKhSA3YDlVfXLqvp/wKnAkhHXJElzRqpq1DV0khwAvLiq3tDGDwH+tKre1NdnKbC0jT4JuHLoha6/ecCNoy7iQcTtOX3cltNrtmzPx1bV2GQTNh52JQ9UVR0LHDvqOtZHkmVVtXjUdTxYuD2nj9tyej0YtudMO3y0Ati+b3xBa5MkDcFMC4UfAzsl2THJQ4GDgDNHXJMkzRkz6vBRVa1O8ibg34CNgM9W1aUjLms6zKrDXbOA23P6uC2n16zfnjPqRLMkabRm2uEjSdIIGQqSpI6hsIGS7Jekkjy5r+3sJLcm+eqEvie1R3dckuSzSTZp7U9O8oMkdyd5+7A/w0wyTdvz1UkuTvLTJP+RZJdhf46ZYjq2Z9/0ZyZZ3e4jmnOm6WdzSfvZvCjJsiTPGfbnmCpDYcMdDHy/vY/7e+CQSfqeBDwZeBrwcOANrf1m4C3AhwdX5qwxHdvzV8Dzq+ppwN/xIDjp9wBMx/Ycf/TMh4BvDKzSmW86tuU5wC5VtQj4C+DTA6v2ATIUNkCSzYDnAIfRu2wWgKo6B7hjYv+qOqsa4Hx6919QVSur6sfA74dS+Aw1jdvzP6rqltbth+Ptc810bc/mzcCXgJUDLXqGmsafzTvrvqt6HgHM2Ct8DIUNswQ4u6p+BtyU5BlTmantSh4CnD3I4mahQWzPw4CvT1+Js8q0bM8k84H9gU8OqtBZYNp+NpPsn+QK4Gv09hZmJENhwxxM72F9tPeD19K33z8B51bV9wZS1ew1rdszyZ/RC4Ujpq3C2WW6tufHgCOq6t5prm82mbafzar6SlU9GdiP3uHNGWlG3bw2GyTZCngB8LQkRe8mu0ryjr7dw8nmOxIYA944nEpnh+nenkn+hN7x2n2q6qbBVT4zTfP2XAycmgR6D3rbN8nqqvqXgX2AGWRQ/9er6twkj0syr6pm3MPz3FNYfwcAJ1bVY6tqYVVtT+8E53PXNEOSNwB7AwfP8b+6JjNt2zPJDsCXgUPa7v5cNG3bs6p2bMtYCHwR+Mu5EgjNdP5sPiEtXZPsCmwKzMg/WryjeT0l+TbwoarqP1b4FuApwB/Tu/JgM3r/4IdV1b8lWQ1czX0npr5cVe9Psg2wDHgkcC9wJ7BzVd0+tA80YtO8PT8N/Nc2DWD1bH9i5fqazu05YbmfA75aVV8c/KeYGab5Z/MI4LX0Lir5LfCOqvr+8D7N1BkKkqSOh48kSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZoBkuyZZI9R1yEZCtIUtSeGDmK5GwN7AoaCRs77FCQgyUJ6Dy+7ANgVuJTezUaXAacBLwT+NxDg3e39a1V1RJv/TuBTwIuA64GDqmpVkscD/0jvsQd3Af+tqq5oN4P9Dng6sIJeINwDrKL3ZNITgCdW1e+TPBL4yfj4QDeE5jz3FKT7PAn4p6p6CnA78Jet/aaq2hU4l953C7wAWAQ8M8l+rc8jgGVV9VTgu8CRrf1Y4M1V9Qzg7fQelDZuAbBHVb0c+Gfg6Kpa1B6i9h3gJa3fQfTujDUQNHCGgnSfa6rqvDb8eXrP0YfengLAM4HvVNWqqlpN7wtVntem3dvX7/PAc9qz+PcAvpDkIuD/ANv2re8LVXXPGmr5NPD6Nvx64LgN/1jS1PmUVOk+E4+ljo//ZgOX9RDg1vZtW5NZ43Kr6rwkC5PsCWxUVZdsQA3SenNPQbrPDkme1YZfRe8rGPudDzw/ybx20vlgeoeKoPd/6YD+eduDDX+V5BUA6VnT90bfAWw+oe0E4GTcS9AQGQrSfa4EDk9yObAlE75xrKquA94JfJveid8LquqMNvk3wG5JLqF3zmH8KaOvBg5L8hN6J6+XrGHd/wrs377YffzRzCe1Ok6Zjg8nTYVXH0l0Vx99tar+eAPnv7OqNpvmmg4AllTVZF8QLw2E5xSkGSjJJ4B9gH1HXYvmFvcUJEkdzylIkjqGgiSpYyhIkjqGgiSpYyhIkjr/H1/49wqanQ2lAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "D4I3Y9V3Kopa",
"outputId": "1fa037ab-5b93-444b-f6b9-d385aa58ebc6"
},
"source": [
" plt.figsize = (20,20)\n",
"sns.countplot(x = df['otherplans'])\n",
"plt.title('otherplans Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAatUlEQVR4nO3de7gddX3v8fdHLraCJVy2EZNovKQo9cIlRby1HrEV1Brs4VqVQONJPUWttaeKbc/RXuijtvWC9tDSUg1WBaRaUqUqjdBWqmhQioAgEcEkAtkCQYUiot/+sX4ZFpudZAf2rJ3L+/U861kzv/nNzHevSfZnz8yamVQVkiQBPGymC5AkbT0MBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1DQjEhyQ5IXjmhdz0+yZhTr2hJJnpfk2mlc3j8nWdyGT0zy+Wlc9iuSfHa6lqetl6Gg3iX5YJI/mek6RinJ25L8KMn32+sbSd6fZN8Nfarq36tqvyku6+8316+qjqiqZdNQ+/wklWTnoWV/uKp++aEuW1s/Q0HbtOFfXFuhc6rqkcBewMuBRwOXDQfDdMiA/5c1LfyHpGmR5ClJLk6yPslVSV7W2pcCrwDelOQHSf5paLYDklyR5I4k5yT5qaHlvTTJ5W15/5Hk6UPTbkjy5iRXAHcm2bm1vSXJ1UluT/KB4eVNqPWUJN9sf8FfneTlQ9NOTPL5JH/elvOtJEdMmH59m/dbSV6xuc+mqn5UVVcBxwLjwO+0Zd3vsFb7mda2ZV+b5LAkhwO/BxzbPr//bH0vTnJqkkuAu4AntLZX3/9Hzfvb53tNksMmfIYvHBof3hv5t/a+vq3zWRMPRyV5dpIvt2V/Ocmzh6ZdnOSPk1zSfpbPJtlnc5+Ttg6Ggh6yJLsA/wR8FngU8Drgw0n2q6ozgA8D76yq3avqV4ZmPQY4HHg88HTgxLa8A4G/A34D2Bv4a2B5kocPzXs88BJgVlXd29peAbwIeCLws8AfbKTkbwLPA/YA/hD4+wl/vT8TuBbYB3gncGb7a3w34DTgiLYH8Gzg8ql+TlX1Y+D8tu77SbIf8Frg59uyXwTcUFWfBv6UwV7H7lX1jKHZXgUsBR4J3DjJKp/ZftZ9gLcCH0+y1xRK/YX2Pqut8wsTat0L+BSDz2Jv4F3Ap5LsPdTt14CTGPx72BX4P1NYr7YChoKmw6HA7sDbq+qeqvoc8EkGv7g35bSq+k5V3cYgVA5o7UuBv66qS6vqx+04+Q/beobnXV1V/zXU9v7Wdhtw6sbWX1Ufa+v9SVWdA1wHHDLU5caq+pv2S3wZsC8wu037CfDUJD9dVTe1PYAt8R0Gh5Mm+jHwcGD/JLtU1Q1V9c3NLOuDVXVVVd1bVT+aZPo64D1tT+UcBkH3ki2sdzIvAa6rqg+1dX8UuAYYDvwPVNU32vY5l/u2rbZyhoKmw2OA1VX1k6G2G4E5m5nv5qHhuxgEC8DjgN9ph47WJ1kPzGvr2WD1JMsbbrtxQv9OkhOGDk2tB57K4K/pB9RVVXe1wd2r6k4Gh4BeA9yU5FNJnryZn3GiOcBtExurahXwBuBtwLokZyeZtP4hk30Gw9bW/e94udHPZAs9hgfumUzc3hvbttrKGQqaDt8B5k042flYYG0b3tJb8a4GTq2qWUOvR7S/SDeYbJnzJqz/OxM7JHkc8DcMDtXsXVWzgCuBTKWwqvpMVf0Sg72Ha9qypqR9Pr8C/PtGlv2Rqnoug1As4B0bJm2snM2sck6S4Z9r+DO5E3jE0LRHb8Fyv9NqHDa8vbUNMxQ0HS5l8Nfgm5LskuT5DH75nd2m3wI8YQuW9zfAa5I8c8Ox/CQvSfLIzcx3cpK57Zj37wPnTNJnNwa/9MYBkpzEYE9hs5LMTrKonVv4IfADBoeTNjffzkmeAnyUwS/fd03SZ78kL2jnTe4G/mto2bcA87Pl3zB6FPD6tk2OBp4CXNCmXQ4c16YtBI4amm+8rXtj2+wC4GeT/Fr72Y4F9mdwyFDbOENBD1lV3cMgBI4Avgv8f+CEqrqmdTmTwbHy9Un+cQrLWwn8L+D9wO3AKtpJ6M34CIOT3dczOMH6gGsjqupq4C+ALzD4Zfs04JIpLBsG/1/eyOAv5duAXwT+9yb6H5vkB8AdwHLgVuDgqnrAHgyD8wlvZ/D53czgF/pb2rSPtfdbk3xlirXCIKwXtGWeChxVVbe2af+XwQn52xmcbP/IhpnaIbNTgUvaNhs+l0NbxksZfIvqVuBNwEur6rtbUJu2UvEhO9oeJLkBeHVV/ctM1yJty9xTkCR1DAVJUsfDR5KkjnsKkqTO1nwzsc3aZ599av78+TNdhiRtUy677LLvVtXYZNO26VCYP38+K1eunOkyJGmbkmSye2UBHj6SJA0xFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktTp9YrmJL8NvJrBk66+BpzE4DGGZwN7A5cBr6qqe9oTp84CDmbw4I5jq+qG6arl4N89a7oWpU247M9OmOkSJD0Eve0pJJkDvB5YWFVPBXYCjmPw3Nl3V9WTGDz1aUmbZQlwe2t/N/c9n1aSNCJ9Hz7aGfjpJDszeEj4TcALgPPa9GXAkW14URunTT9swkPHJUk96y0Uqmot8OfAtxmEwR0MDhetr6p7W7c1wJw2PAdY3ea9t/Xfe+JykyxNsjLJyvHx8b7Kl6QdUp+Hj/Zk8Nf/44HHALsBhz/U5VbVGVW1sKoWjo1NeudXSdKD1OfhoxcC36qq8ar6EfBx4DnArHY4CWAusLYNrwXmAbTpezA44SxJGpE+Q+HbwKFJHtHODRwGXA1cBBzV+iwGzm/Dy9s4bfrnymeFStJI9XlO4VIGJ4y/wuDrqA8DzgDeDLwxySoG5wzObLOcCezd2t8InNJXbZKkyfV6nUJVvRV464Tm64FDJul7N3B0n/VIkjbNK5olSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSZ3eQiHJfkkuH3p9L8kbkuyV5MIk17X3PVv/JDktyaokVyQ5qK/aJEmT6/MZzddW1QFVdQBwMHAX8AkGz15eUVULgBXc9yzmI4AF7bUUOL2v2iRJkxvV4aPDgG9W1Y3AImBZa18GHNmGFwFn1cAXgVlJ9h1RfZIkRhcKxwEfbcOzq+qmNnwzMLsNzwFWD82zprXdT5KlSVYmWTk+Pt5XvZK0Q+o9FJLsCrwM+NjEaVVVQG3J8qrqjKpaWFULx8bGpqlKSRKMZk/hCOArVXVLG79lw2Gh9r6uta8F5g3NN7e1SZJGZBShcDz3HToCWA4sbsOLgfOH2k9o30I6FLhj6DCTJGkEdu5z4Ul2A34J+I2h5rcD5yZZAtwIHNPaLwBeDKxi8E2lk/qsTZL0QL2GQlXdCew9oe1WBt9Gmti3gJP7rEeStGle0SxJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqROr6GQZFaS85Jck+TrSZ6VZK8kFya5rr3v2fomyWlJViW5IslBfdYmSXqgvvcU3gt8uqqeDDwD+DpwCrCiqhYAK9o4wBHAgvZaCpzec22SpAl6C4UkewC/AJwJUFX3VNV6YBGwrHVbBhzZhhcBZ9XAF4FZSfbtqz5J0gP1uafweGAc+ECSryb52yS7AbOr6qbW52ZgdhueA6wemn9Na7ufJEuTrEyycnx8vMfyJWnH02co7AwcBJxeVQcCd3LfoSIAqqqA2pKFVtUZVbWwqhaOjY1NW7GSpH5DYQ2wpqoubePnMQiJWzYcFmrv69r0tcC8ofnntjZJ0oj0FgpVdTOwOsl+rekw4GpgObC4tS0Gzm/Dy4ET2reQDgXuGDrMJEkagZ17Xv7rgA8n2RW4HjiJQRCdm2QJcCNwTOt7AfBiYBVwV+srSRqhXkOhqi4HFk4y6bBJ+hZwcp/1SJI2zSuaJUkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1Ok1FJLckORrSS5PsrK17ZXkwiTXtfc9W3uSnJZkVZIrkhzUZ22SpAcaxZ7C/6iqA6pqwxPYTgFWVNUCYEUbBzgCWNBeS4HTR1CbJGnITBw+WgQsa8PLgCOH2s+qgS8Cs5LsOwP1SdIOq+9QKOCzSS5LsrS1za6qm9rwzcDsNjwHWD0075rWJkkakZ17Xv5zq2ptkkcBFya5ZnhiVVWS2pIFtnBZCvDYxz52+iqVJPW7p1BVa9v7OuATwCHALRsOC7X3da37WmDe0OxzW9vEZZ5RVQurauHY2Fif5UvSDqe3UEiyW5JHbhgGfhm4ElgOLG7dFgPnt+HlwAntW0iHAncMHWaSJI1An4ePZgOfSLJhPR+pqk8n+TJwbpIlwI3AMa3/BcCLgVXAXcBJPdYmSZpEb6FQVdcDz5ik/VbgsEnaCzi5r3okSZvnFc2SpI6hIEnqTCkUkqyYSpskadu2yXMKSX4KeASwT7tHUdqkn8ELyyRpu7O5E82/AbwBeAxwGfeFwveA9/dYlyRpBmwyFKrqvcB7k7yuqt43opokSTNkSl9Jrar3JXk2MH94nqo6q6e6JEkzYEqhkORDwBOBy4Eft+YCDAVJ2o5M9eK1hcD+7QIzSdJ2aqrXKVwJPLrPQiRJM2+qewr7AFcn+RLwww2NVfWyXqqSJM2IqYbC2/osQpK0dZjqt4/+te9CJEkzb6rfPvo+g28bAewK7ALcWVU/01dhkqTRm+qewiM3DGfwgIRFwKF9FSVJmhlbfJfUGvhH4EU91CNJmkFTPXz0q0OjD2Nw3cLdvVQkSZoxU/320a8MDd8L3MDgENJmJdkJWAmsraqXJnk8cDawN4Ob7L2qqu5J8nAGV0gfDNwKHFtVN0yxPknSNJjqOYWH8rzk3wK+zuB22wDvAN5dVWcn+StgCXB6e7+9qp6U5LjW79iHsF5J0haa6kN25ib5RJJ17fUPSeZOZT7gJcDftvEALwDOa12WAUe24UVtnDb9sNZfkjQiUz3R/AFgOYPnKjwG+KfWtjnvAd4E/KSN7w2sr6p72/ga7ntYzxxgNUCbfkfrfz9JliZZmWTl+Pj4FMuXJE3FVENhrKo+UFX3ttcHgbFNzZDkpcC6qrrsoRY5rKrOqKqFVbVwbGyTJUiSttBUQ+HWJK9MslN7vZLByeBNeQ7wsiQ3MDix/ALgvcCsJBvOZcwF1rbhtcA8gDZ9jymsQ5I0jaYaCr8OHAPcDNwEHAWcuKkZquotVTW3quYDxwGfq6pXABe1+QEWA+e34eVtnDb9c96qW5JGa6qh8EfA4qoaq6pHMQiJP3yQ63wz8MYkqxicMziztZ8J7N3a3wic8iCXL0l6kKZ6ncLTq+r2DSNVdVuSA6e6kqq6GLi4DV8PHDJJn7uBo6e6TEnS9JvqnsLDkuy5YSTJXkw9UCRJ24ip/mL/C+ALST7Wxo8GTu2nJEnSTJnqFc1nJVnJ4BtEAL9aVVf3V5YkaSZM+RBQCwGDQJK2Y1t862xJ0vbLUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdXoLhSQ/leRLSf4zyVVJ/rC1Pz7JpUlWJTknya6t/eFtfFWbPr+v2iRJk+tzT+GHwAuq6hnAAcDhSQ4F3gG8u6qeBNwOLGn9lwC3t/Z3t36SpBHqLRRq4AdtdJf2KgbPZDivtS8DjmzDi9o4bfphSdJXfZKkB+r1nEKSnZJcDqwDLgS+CayvqntblzXAnDY8B1gN0KbfAew9yTKXJlmZZOX4+Hif5UvSDqfXUKiqH1fVAcBc4BDgydOwzDOqamFVLRwbG3vINUqS7jOSbx9V1XrgIuBZwKwkG574NhdY24bXAvMA2vQ9gFtHUZ8kaaDPbx+NJZnVhn8a+CXg6wzC4ajWbTFwfhte3sZp0z9XVdVXfZKkB5ryM5ofhH2BZUl2YhA+51bVJ5NcDZyd5E+ArwJntv5nAh9Ksgq4DTiux9okSZPoLRSq6grgwEnar2dwfmFi+93A0X3VI0naPK9oliR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1+nxG87wkFyW5OslVSX6rte+V5MIk17X3PVt7kpyWZFWSK5Ic1FdtkqTJ9bmncC/wO1W1P3AocHKS/YFTgBVVtQBY0cYBjgAWtNdS4PQea5MkTaK3UKiqm6rqK234+8DXgTnAImBZ67YMOLINLwLOqoEvArOS7NtXfZKkBxrJOYUk84EDgUuB2VV1U5t0MzC7Dc8BVg/Ntqa1TVzW0iQrk6wcHx/vrWZJ2hH1HgpJdgf+AXhDVX1veFpVFVBbsryqOqOqFlbVwrGxsWmsVJLUaygk2YVBIHy4qj7emm/ZcFiova9r7WuBeUOzz21tkqQR6fPbRwHOBL5eVe8amrQcWNyGFwPnD7Wf0L6FdChwx9BhJknSCOzc47KfA7wK+FqSy1vb7wFvB85NsgS4ETimTbsAeDGwCrgLOKnH2iRJk+gtFKrq80A2MvmwSfoXcHJf9UiSNs8rmiVJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJnT5vcyFNm2//0dNmuoTt3mP/39dmugRtBdxTkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUqfPx3H+XZJ1Sa4catsryYVJrmvve7b2JDktyaokVyQ5qK+6JEkb1+eewgeBwye0nQKsqKoFwIo2DnAEsKC9lgKn91iXJGkjeguFqvo34LYJzYuAZW14GXDkUPtZNfBFYFaSffuqTZI0uVGfU5hdVTe14ZuB2W14DrB6qN+a1vYASZYmWZlk5fj4eH+VStIOaMZONFdVAfUg5jujqhZW1cKxsbEeKpOkHdeoQ+GWDYeF2vu61r4WmDfUb25rkySN0KhDYTmwuA0vBs4faj+hfQvpUOCOocNMkqQR6e0uqUk+Cjwf2CfJGuCtwNuBc5MsAW4EjmndLwBeDKwC7gJO6qsuSdLG9RYKVXX8RiYdNknfAk7uqxZJ0tR4RbMkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6vV28JkkAz3nfc2a6hB3CJa+7ZFqW456CJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOltVKCQ5PMm1SVYlOWWm65GkHc1WEwpJdgL+EjgC2B84Psn+M1uVJO1YtppQAA4BVlXV9VV1D3A2sGiGa5KkHUqqaqZrACDJUcDhVfXqNv4q4JlV9doJ/ZYCS9vofsC1Iy10tPYBvjvTRehBcdtt27b37fe4qhqbbMI2d0O8qjoDOGOm6xiFJCurauFM16Et57bbtu3I229rOny0Fpg3ND63tUmSRmRrCoUvAwuSPD7JrsBxwPIZrkmSdihbzeGjqro3yWuBzwA7AX9XVVfNcFkzbYc4TLadcttt23bY7bfVnGiWJM28renwkSRphhkKkqSOoTBiSY5MUkmePNT26STrk3xyI/OcluQHQ+OvSfK1JJcn+bxXfo/ONG2/X0jylST3tutzNALTtO3emOTqJFckWZHkcaOofZQMhdE7Hvh8e9/gz4BXTdY5yUJgzwnNH6mqp1XVAcA7gXf1UagmNR3b79vAicBHeqhPGzcd2+6rwMKqejpwHoP/f9sVQ2GEkuwOPBdYwuArtwBU1Qrg+5P034nBP9o3DbdX1feGRncD/LbACEzj9ruhqq4AftJrwepM47a7qKruaqNfZHA91XbFUBitRcCnq+obwK1JDt5M/9cCy6vqpokTkpyc5JsM/lJ5/fSXqklM2/bTyPWx7ZYA/zxdBW4tDIXROp7Bjf5o78dvrGOSxwBHA++bbHpV/WVVPRF4M/AH01ynJjdt208jN63bLskrgYUM9ia2K1vNxWvbuyR7AS8AnpakGFygV0l+tya/WORA4EnAqiQAj0iyqqqeNKHf2cDpPZYuet1+6tl0b7skLwR+H/jFqvrhSH6IEXJPYXSOAj5UVY+rqvlVNQ/4FvC8yTpX1aeq6tGt73zgrqF/lAuGur4EuK7n2jWN208jN53/9w4E/hp4WVWtG1H9I+UVzSOS5CLgHVX16aG21wNPAZ4KPBnYHbgVWFJVn5kw/w+qavc2/F7ghcCPgNuB13pLkH5N8/b7eeATDL7Zcjdwc1X93Eh+kB3QNG+7fwGeBmw41/DtqnpZ/z/F6BgKkqSOh48kSR1DQZLUMRQkSR1DQZLUMRQkSR1DQTu8JLOS/ObQ+PM3dtfMaVhXb8uWpoOhIMEs4Dc322uKkninAG2zDAXtcNo98a9srzcAbwee2J5PseFeNrsnOS/JNUk+nHa/gyQHJ/nXJJcl+UySfVv7xUnek2Ql8FtJPpjkr5KsTPKNJC+dpI5DknwhyVeT/EeS/Vr7iUk+3u71f12Sd7b2ndpyr2zP0/jtUXxe2rH4F412KO3umCcBzwQCXAq8Enhqez4FSZ7P4P43Pwd8B7gEeE6SSxncJG1RVY0nORY4Ffj1tvhdq2phW8YHgfnAIcATgYuSTLzNxTXA86rq3nY/nT8F/mebdkCr4YfAtUneBzwKmFNVT23rmDVNH4vUMRS0o3ku8ImquhMgyceZ/B44X6qqNa3P5Qx+wa9ncFuEC9uOw07cd7sDgHMmLOPcqvoJcF2S6xncTmHYHsCydi+rAnYZmraiqu5o678aeBxwFfCEFhCfAj67BT+3NCWGgjS54btf/pjB/5UAV1XVszYyz50TxifeQ2bi+B8DF1XVy5PMBy7e1Pqr6vYkzwBeBLwGOIb79lKkaeE5Be1o/h04MskjkuwGvJzB4aFHTmHea4GxJM8CSLJLkk3dyO7oJA9L8kTgCW3+YXsAa9vwiZtbeZJ9gIdV1T8weIbGQVOoWdoi7iloh1JVX2nH+7/Umv62qi5LckmSKxk8SetTG5n3niRHAacl2YPB/5/3MDisM5lvt/X8DPCaqrq7HXba4J0MDh/9wcbWOcEc4ANJNvwx95YpzCNtEe+SKvWgBc8nq+q8ma5F2hIePpIkddxTkCR13FOQJHUMBUlSx1CQJHUMBUlSx1CQJHX+G6G5ZtYO9mHNAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "_DY3ApAWKopa",
"outputId": "e8d7f5eb-108e-43ab-b4c0-00ed07fd1852"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['housing'])\n",
"plt.title('housing Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYDklEQVR4nO3de9RddX3n8fenINCKGkIiYgJGNANilajR4nUsTBXwEtpBlCpEjMauwdtqtaBrtdpaOzp1SkEtM4yowfECRRlSpVQn3uqFS1CKIqARYUgEEq4VUSr6nT/O79kckifJSXj2eXJ5v9Y66+z927/z29/z7OT5PPty9klVIUkSwG9MdwGSpG2HoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKGpsk1yf5T2Ne591JDhjnOofW/dwk107heP+UZHGbfnWSr0/h2K9M8oWpGk/bL0NBO7Sq2rOqrpvqcZO8K8kvk/y0PX6Q5INJ9h1a979U1YEjjvW/N9evqo6sqmVTUPu8JJVk16GxP1FVL3iwY2v7ZyhIW++cqnoYMBP4feBRwOXDwTAVMuD/VY2F/9A0bguSXJnkriTnJNljYkGS1yVZleT2JMuTPLq1b/CXbZKvJHltm358kq+2MW9Ncs5Qv0ry+Db9sSQfSvL59tf9JUkeN9T3BUmubeP8fRvztZt7Q1X1y6q6Cng5sA74kzbe85OsHhr/5CRr2rqvTXJ4kiOAdwAvb4e6/nXo/b0nyTeAe4ADht/z/UPmg63ea5IcPrTgAYfq1tsb+Vp7vrOt85nrH45K8qwkl7WxL0vyrPV+9u9O8o32Xr6QZNbmfk7aPhgKGrdjgSOAxwJPBl4NkOQw4L+25fsCNwCfHnHMdwNfAPYC5gIf2ETfVwB/0fquAt7T1j8LOA94O7A3cC3wrI2MMamq+hVwAfDc9ZclORB4A/D0tnfxQuD6qroI+GsGex17VtUhQy87HlgKPIzBz2N9vwP8CJgFvBP4bJKZI5T6vPY8o63zW+vVOhP4PHA6g5/F3wKfT7L3ULc/BE4EHgnsBrx1hPVqO2AoaNxOr6qfVNXtwD8CC1r7K4GPVNW3q+peBr+cn5lk3ghj/hJ4DPDoqvpFVW3qBOz5VXVpVd0HfGJo/UcBV1XVZ9uy04Gbt/TNAT9hcDhpfb8CdgcOTvKQqrq+qn60mbE+VlVXVdV9VfXLSZavBf6u7amcwyDIXrQVNa/vRcAPq+rjbd2fAq4BXjLU56NV9YOq+jlwLvf/HLWdMxQ0bsO/aO8B9mzTj2bor+Gquhu4DZgzwph/CgS4NMlVSV6zleu/cWj9Baxmy80Bbl+/sapWAW8B3gWsTfLpicNjm3DjZpavqQfe0fIGBu/jwXrAthgae3hbbOznqO2coaBtxU8Y/LUPQJKHMjh0sQb4WWv+raH+j5qYqKqbq+p1VfVo4PXA30+cR9gCNzE49DSx/gzPj6KdDH4J8C+TLa+qT1bVcxi8zwLeN7FoI0Nu7hbGc1qdE/Zn8HOEwc9s0p/XCOM+YFsMjb1mM6/TDsBQ0LbiU8CJSRYk2Z3BcfZL2mGWdQx+Ib0qyS5tT2D4BPHLkkz8Ar+DwS+9X2/h+j8PPCnJ0e2E9kk88BfpRiXZNckT2nt4FINj8Ov3OTDJYe29/QL4+VCNtwDztuIKo0cCb0rykCQvA54AXNiWXQG8oi1bCBwz9Lp1bd0b+/zGhcB/SPKH7b29HDgY+NwW1qftkKGgbUJV/V/gz4DPMPir/XEMTgpPeB3wNgaHlJ4IfHNo2dOBS5LcDSwH3ryln02oqluBlwH/ra3jYGAlcO8mXvbyts672npvA55WVT+ZpO/uwHuBWxkcenkkg/MmAP/Qnm9L8u0tKPsSYH4b8z3AMVV1W1v2Zwx+hncwOLH+yaH3ek/r/40kdyY5dHjQNsaLGVxFdRuDw3Mvbj8j7eDil+xIG2p/ta8GXllVX57ueqRxcU9BapK8MMmMdojnHQxOXl88zWVJY2UoSPd7JoPr/m9lcML46HbJpbTT8PCRJKnjnoIkqbPr5rtsu2bNmlXz5s2b7jIkabty+eWX31pVsydbtl2Hwrx581i5cuV0lyFJ25Ukk91LC/DwkSRpiKEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkTm+faE5yIHDOUNMBwJ8DZ7f2ecD1wLFVdUf7WsHTGHyB+j3Aq6tqS75wZJOe9razp2oobcLlf3PCdJcg6UHobU+hqq6tqgVVtQB4GoNf9OcDpwArqmo+sKLNAxzJ4Fuk5gNLgTP6qk2SNLlxHT46HPhRVd0ALAKWtfZlwNFtehFwdg1cDMxIsu+Y6pMkMb5QeAWDLzUH2KeqbmrTNwP7tOk5wI1Dr1nd2h4gydIkK5OsXLduXV/1StJOqfdQSLIb8FLu/3LyTg2+4WeLvuWnqs6sqoVVtXD27Env/CpJ2krj2FM4Evh2Vd3S5m+ZOCzUnte29jXAfkOvm9vaJEljMo5QOI77Dx0BLAcWt+nFwAVD7Sdk4FDgrqHDTJKkMej1S3aSPBT4PeD1Q83vBc5NsgS4ATi2tV/I4HLUVQyuVDqxz9okSRvqNRSq6mfA3uu13cbgaqT1+xZwUp/1SJI2zU80S5I6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqdNrKCSZkeS8JNckuTrJM5PMTPLFJD9sz3u1vklyepJVSa5M8tQ+a5MkbajvPYXTgIuq6iDgEOBq4BRgRVXNB1a0eYAjgfntsRQ4o+faJEnr6S0UkjwCeB5wFkBV/XtV3QksApa1bsuAo9v0IuDsGrgYmJFk377qkyRtqM89hccC64CPJvlOkg8neSiwT1Xd1PrcDOzTpucANw69fnVrkySNSZ+hsCvwVOCMqnoK8DPuP1QEQFUVUFsyaJKlSVYmWblu3bopK1aS1G8orAZWV9Ulbf48BiFxy8Rhofa8ti1fA+w39Pq5re0BqurMqlpYVQtnz57dW/GStDPqLRSq6mbgxiQHtqbDge8Dy4HFrW0xcEGbXg6c0K5COhS4a+gwkyRpDHbtefw3Ap9IshtwHXAigyA6N8kS4Abg2Nb3QuAoYBVwT+srSRqjXkOhqq4AFk6y6PBJ+hZwUp/1SJI2zU80S5I6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqdNrKCS5Psl3k1yRZGVrm5nki0l+2J73au1JcnqSVUmuTPLUPmuTJG1oHHsKv1tVC6pqYZs/BVhRVfOBFW0e4EhgfnssBc4YQ22SpCHTcfhoEbCsTS8Djh5qP7sGLgZmJNl3GuqTpJ1W36FQwBeSXJ5kaWvbp6puatM3A/u06TnAjUOvXd3aJEljsmvP4z+nqtYkeSTwxSTXDC+sqkpSWzJgC5elAPvvv//UVSpJ6ndPoarWtOe1wPnAM4BbJg4Ltee1rfsaYL+hl89tbeuPeWZVLayqhbNnz+6zfEna6fQWCkkemuRhE9PAC4DvAcuBxa3bYuCCNr0cOKFdhXQocNfQYSZJ0hj0efhoH+D8JBPr+WRVXZTkMuDcJEuAG4BjW/8LgaOAVcA9wIk91iZJmkRvoVBV1wGHTNJ+G3D4JO0FnNRXPZKkzfMTzZKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeqMFApJVozStpHX7pLkO0k+1+Yfm+SSJKuSnJNkt9a+e5tf1ZbPG/1tSJKmwiZDIckeSWYCs5LslWRme8wD5oy4jjcDVw/Nvw84taoeD9wBLGntS4A7WvuprZ8kaYw2t6fweuBy4KD2PPG4APjg5gZPMhd4EfDhNh/gMOC81mUZcHSbXtTmacsPb/0lSWOy66YWVtVpwGlJ3lhVH9iK8f8O+FPgYW1+b+DOqrqvza/m/j2OOcCNbb33Jbmr9b91K9YrSdoKmwyFCVX1gSTPAuYNv6aqzt7Ya5K8GFhbVZcnef6DrHN43KXAUoD9999/qoaVJDFiKCT5OPA44ArgV625gI2GAvBs4KVJjgL2AB4OnAbMSLJr21uYC6xp/dcA+wGrk+wKPAK4bf1Bq+pM4EyAhQsX1ij1S5JGM1IoAAuBg6tq5F/CVfV24O0AbU/hrVX1yiT/ABwDfBpYzOD8BMDyNv+ttvxLW7I+SdKDN+rnFL4HPGqK1nky8MdJVjE4Z3BWaz8L2Lu1/zFwyhStT5I0olH3FGYB309yKXDvRGNVvXSUF1fVV4CvtOnrgGdM0ucXwMtGrEeS1INRQ+FdfRYhSdo2jHr10Vf7LkSSNP1GvfropwyuNgLYDXgI8LOqenhfhUmSxm/UPYWJD59NfCp5EXBoX0VJkqbHFt8ltQb+D/DCHuqRJE2jUQ8f/cHQ7G8w+NzCL3qpSJI0bUa9+uglQ9P3AdczOIQkSdqBjHpO4cS+C5EkTb9Rv2RnbpLzk6xtj8+022JLknYgo55o/iiDexM9uj3+sbVJknYgo4bC7Kr6aFXd1x4fA2b3WJckaRqMGgq3JXlV+77lXZK8ikluay1J2r6NGgqvAY4FbgZuYnBr61f3VJMkaZqMeknqXwKLq+oOgCQzgfczCAtJ0g5i1D2FJ08EAkBV3Q48pZ+SJEnTZdRQ+I0ke03MtD2FUfcyJEnbiVF/sf934FvtqzRh8GU47+mnJEnSdBn1E81nJ1kJHNaa/qCqvt9fWZKk6TDyIaAWAgaBJO3AtvjW2ZKkHZehIEnq9BYKSfZIcmmSf01yVZK/aO2PTXJJklVJzkmyW2vfvc2vasvn9VWbJGlyfe4p3AscVlWHAAuAI5IcCrwPOLWqHg/cASxp/ZcAd7T2U1s/SdIY9RYK7Ws7726zD2mPYnAF03mtfRlwdJte1OZpyw9v3wctSRqTXs8ptJvnXQGsBb4I/Ai4s6rua11WA3Pa9BzgRoC2/C5g70nGXJpkZZKV69at67N8Sdrp9BoKVfWrqloAzAWeARw0BWOeWVULq2rh7NnevVuSptJYrj6qqjuBLwPPBGYkmfh8xFxgTZteA+wH0JY/Am/PLUlj1efVR7OTzGjTvwn8HnA1g3A4pnVbDFzQppe3edryL1VV9VWfJGlDfd7Ubl9gWZJdGITPuVX1uSTfBz6d5K+A7wBntf5nAR9Psgq4HXhFj7VJkibRWyhU1ZVMcnvtqrqOwfmF9dt/weBGe5KkaeInmiVJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktTpLRSS7Jfky0m+n+SqJG9u7TOTfDHJD9vzXq09SU5PsirJlUme2ldtkqTJ9bmncB/wJ1V1MHAocFKSg4FTgBVVNR9Y0eYBjgTmt8dS4Iwea5MkTaK3UKiqm6rq2236p8DVwBxgEbCsdVsGHN2mFwFn18DFwIwk+/ZVnyRpQ2M5p5BkHvAU4BJgn6q6qS26GdinTc8Bbhx62erWtv5YS5OsTLJy3bp1vdUsSTuj3kMhyZ7AZ4C3VNW/DS+rqgJqS8arqjOramFVLZw9e/YUVipJ6jUUkjyEQSB8oqo+25pvmTgs1J7XtvY1wH5DL5/b2iRJY9Ln1UcBzgKurqq/HVq0HFjcphcDFwy1n9CuQjoUuGvoMJMkaQx27XHsZwPHA99NckVrewfwXuDcJEuAG4Bj27ILgaOAVcA9wIk91iZJmkRvoVBVXweykcWHT9K/gJP6qkeStHl97ilIEs/+wLOnu4Sdwjfe+I0pGcfbXEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOr19R3OSjwAvBtZW1W+3tpnAOcA84Hrg2Kq6I0mA04CjgHuAV1fVt/uqTduf//eXT5ruEnZ4+//5d6e7BG0D+txT+BhwxHptpwArqmo+sKLNAxwJzG+PpcAZPdYlSdqI3kKhqr4G3L5e8yJgWZteBhw91H52DVwMzEiyb1+1SZImN+5zCvtU1U1t+mZgnzY9B7hxqN/q1raBJEuTrEyyct26df1VKkk7oWk70VxVBdRWvO7MqlpYVQtnz57dQ2WStPMadyjcMnFYqD2vbe1rgP2G+s1tbZKkMRp3KCwHFrfpxcAFQ+0nZOBQ4K6hw0ySpDHp85LUTwHPB2YlWQ28E3gvcG6SJcANwLGt+4UMLkddxeCS1BP7qkuStHG9hUJVHbeRRYdP0reAk/qqRZI0Gj/RLEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpI6hIEnqGAqSpM42FQpJjkhybZJVSU6Z7nokaWezzYRCkl2ADwFHAgcDxyU5eHqrkqSdyzYTCsAzgFVVdV1V/TvwaWDRNNckSTuVVNV01wBAkmOAI6rqtW3+eOB3quoN6/VbCixtswcC14610PGaBdw63UVoq7jttm87+vZ7TFXNnmzBruOu5MGqqjOBM6e7jnFIsrKqFk53Hdpybrvt2868/balw0drgP2G5ue2NknSmGxLoXAZMD/JY5PsBrwCWD7NNUnSTmWbOXxUVfcleQPwz8AuwEeq6qppLmu67RSHyXZQbrvt2067/baZE82SpOm3LR0+kiRNM0NBktQxFMYsydFJKslBQ20XJbkzyefW6/uxJD9OckV7LGjtr0xyZZLvJvlmkkPG/T52VlO0/Ra17XdFkpVJnjPu97EzmqJtd1CSbyW5N8lbx/0exsFQGL/jgK+35wl/Axy/kf5vq6oF7XFFa/sx8B+r6knAu9mJT4pNg6nYfiuAQ6pqAfAa4MO9VathU7HtbgfeBLy/vzKnl6EwRkn2BJ4DLGFwyS0AVbUC+Omo41TVN6vqjjZ7MYPPdKhnU7j97q77r/B4KODVHj2bwm23tqouA3455UVuIwyF8VoEXFRVPwBuS/K0EV7znnao4dQku0+yfAnwT1NapTZmyrZfkt9Pcg3weQZ7C+pXH//3dkiGwngdx+BGf7Tn4zbRF+DtwEHA04GZwMnDC5P8LoNQOHnDl6oHU7b9qur8qjoIOJrBIUD1a0r/7+3ItpkPr+3okswEDgOelKQYfECvkrytNvJhkaq6qU3em+SjQHdiK8mTGRyLPrKqbuu3ek319hvq87UkBySZVVU78g3Ypk1f225H5Z7C+BwDfLyqHlNV86pqPwYnjJ+7sRck2bc9h8FflN9r8/sDnwWOb7vD6t9Ubr/HtzaSPBXYHTDY+zNl225n4CeaxyTJl4H3VdVFQ21vAp4A/DaDXdU9GfxyWFJV/5zkS8BsIMAVwB9V1d1JPgz8Z+CGNtR9O+sdHcdlirffycAJDE5W/pzBVS5fH+sb2olM8bZ7FLASeDjwa+Bu4OCq+rdxvqc+GQqSpI6HjyRJHUNBktQxFCRJHUNBktQxFCRJHUNBGpJkXpLerklP8s2+xpamgqEgjVFVPWu6a5A2xVCQNrRLkv+V5KokX0jym0kWJLm43SDt/CR7AST5SpKFbXpWkuvb9BOTXNruxX9lkvmt/e72/Pz22vOSXJPkE0Ofcj6qtV2e5PT17/Uv9clQkDY0H/hQVT0RuJPBp8fPBk6uqicD3wXeuZkx/gg4rX1nwkJg9SR9ngK8BTgYOAB4dpI9gP/J4J5WT2PwqVppbAwFaUM/HvpSlcuBxwEzquqrrW0Z8LzNjPEt4B3tlhaPqaqfT9Ln0qpaXVW/ZnArhXkMbrlwXVX9uPX51IN4H9IWMxSkDd07NP0rYMYm+t7H/f+P9phorKpPAi9lcG+jC5McNsJ6vGuxpp2hIG3eXcAdSSbuqnk8MLHXcD0w8YUtx0y8IMkBDP7iPx24AHjyiOu6Fjggybw2//KtrlraCv5lIo1mMfA/kvwWcB1wYmt/P3BukqUMvkVtwrHA8Ul+CdwM/PUoK6mqnyf5L8BFSX4GXDZVb0AahXdJlbYxSfZst2kO8CHgh1V16nTXpZ2Dh4+kbc/rklwBXAU8gsHVSNJYuKcgSeq4pyBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6vx/yD5o58FHNx8AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "CGk5mysnKopa",
"outputId": "dae4e240-81bb-4e84-d623-12f0b84df071"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['cards'])\n",
"plt.title('cards Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAVyElEQVR4nO3dfbRddX3n8fdHkFIRCQ9XhCRMrDB2aKnKZJhYXGph2vKghnHU0RFIKU6cWdSlqz5Rp1Ww1odxqgXtYi2WqEEpivhASpmODFCsrSBBEeShQ4YBkvCQK88PSkW+88f5ZXMIN7k34e577k3er7XOOr/927+9z/eeldzP3b999j6pKiRJAnjWqAuQJM0ehoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoaJuX5NYk/66nfT+c5FemaV8fSPK51l6UpJLsOE373q/VusN07E/bLkNBmkCSVyd5ov0ifTjJ2iTnJfk3w+Oq6rlVdcsU9rV2stesqo9W1dueae3tNZ8ShFV1e6v1F9Oxf227DAVtM6brr+ohd1TVc4FdgSXATcDfJzl8ml+nj9qlrWIoaFZIsjDJN5KMJ7knyWdb/4uSXNr6fpLknCTzhra7Ncn7k1wLPJJkxyTHJbmtbfPfNnqdQ5KsSvJgkruTfGqy2mpgbVV9EPgc8Imh/VWS/Vv7qCQ3JHkoybok70myC/A/gX2Hjjr2TXJKkvOTfDnJg8Dvtb4vb/Tyv5/kjiR3JnnP0Ot+MclHhpa7o5EkXwL2A/66vd77Np6OajWsTHJvktVJ/vPQvk5pR0Vnt5/l+iSLJ3uftG0wFDRybZ77QuA2YBEwH/jKhtXAx4B9gX8FLARO2WgXbwGOBuYB/xI4AziubbMnsGBo7GnAaVX1POBFwHlbWO43gIPbL/uNnQW8vap2BX4duLSqHgGOpB11tMcdbfxS4PxW9zmbeL3fAg4Afgd4/1TOjVTVccDtwGvb6/33CYZ9BVjL4D16A/DRJIcNrX9dGzMPWAl8drLX1bbBUNBscAiDX07vrapHqupnVfVdgKpaXVUXV9VjVTUOfAp41Ubbn15Va6rqpwx+wV1YVd+pqseAPwGeGBr7c2D/JHtV1cNVdcUW1noHg6CaN8G6nwMHJnleVd1XVT+YZF/fq6pvVdUTrfaJnNrek+uALzAIwGckyULgUOD97b2+hsER0PFDw75bVRe1cxBfAl7yTF9Xc4OhoNlgIXBbVT2+8Yokeyf5SpuOeRD4MrDXRsPWDLX3HV5uf6nfM7T+RAZHEzcluSrJa7aw1vlAAfdPsO4/AEcBtyW5PMnLJ9nXmknWbzzmNgY/3zO1L3BvVT200b7nDy3fNdR+FNjZ8x7bB0NBs8EaYL9N/NL5KINfwge1KZ9jGfylPmz4Vr93MggZAJI8h8EU0mBg1c1V9Rbg+QzODZy/iamgTfn3wA9a2Dy1iKqrqmpp2/e3eHJqalO3Ip7KLYoXDrX3Y3CkAvAI8JyhdS/Ygn3fAeyRZNeN9r1uCvVoG2coaDb4PoNf5h9PskuSnZMc2tbtCjwMPJBkPvDeSfZ1PvCaJK9IshPwYYb+nSc5NslYVT3Bk3/tPzHBfhjaJknmJ/kQ8DbgAxOM2SnJW5PsVlU/Bx4c2u/dwJ5Jdpuk9on8SZLnJPk14ATgq63/GuCoJHskeQHwro22uxuY8PqJqloD/CPwsfZe/waDI6iNT3JrO2QoaOTavPVrgf0ZnCBdC/zHtvpU4GDgAeBvGJzo3dy+rgdOAv6KQdDc1/a3wRHA9UkeZnDS+c2bmc/ft417GLgKOAh4dVV9exPjjwNubdNc/wV4a6vpJuBc4JYk9yfZkimgy4HVwCXA/xh67S8BPwJuBb7Nk2GxwceAP26v9x6e7i0MTurfAXwT+FBV/e8tqEvbqPglO5KkDTxSkCR1DAVJUsdQkCR1DAVJUmdOX4yy11571aJFi0ZdhiTNKVdfffVPqmpsonVzOhQWLVrEqlWrRl2GJM0pSW7b1DqnjyRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJnTl9RfNk/vV7zx51CbPG1Z88fvJBkrZ7HilIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSp02soJJmX5PwkNyW5McnLk+yR5OIkN7fn3dvYJDk9yeok1yY5uM/aJElP1/eRwmnA31bVrwIvAW4ETgYuqaoDgEvaMsCRwAHtsRw4o+faJEkb6S0UkuwGvBI4C6Cq/rmq7geWAivasBXAMa29FDi7Bq4A5iXZp6/6JElP1+eRwguBceALSX6Y5HNJdgH2rqo725i7gL1bez6wZmj7ta1PkjRD+gyFHYGDgTOq6mXAIzw5VQRAVRVQW7LTJMuTrEqyanx8fNqKlST1GwprgbVVdWVbPp9BSNy9YVqoPa9v69cBC4e2X9D6nqKqzqyqxVW1eGxsrLfiJWl71FsoVNVdwJokL25dhwM3ACuBZa1vGXBBa68Ejm+fQloCPDA0zSRJmgF93yX1HcA5SXYCbgFOYBBE5yU5EbgNeFMbexFwFLAaeLSNlSTNoF5DoaquARZPsOrwCcYWcFKf9UiSNs8rmiVJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktTpNRSS3JrkuiTXJFnV+vZIcnGSm9vz7q0/SU5PsjrJtUkO7rM2SdLTzcSRwm9V1UuranFbPhm4pKoOAC5pywBHAge0x3LgjBmoTZI0ZBTTR0uBFa29AjhmqP/sGrgCmJdknxHUJ0nbrb5DoYBvJ7k6yfLWt3dV3dnadwF7t/Z8YM3Qtmtb31MkWZ5kVZJV4+PjfdUtSdulHXve/yuqal2S5wMXJ7lpeGVVVZLakh1W1ZnAmQCLFy/eom0lSZvX65FCVa1rz+uBbwKHAHdvmBZqz+vb8HXAwqHNF7Q+SdIM6S0UkuySZNcNbeB3gB8DK4Flbdgy4ILWXgkc3z6FtAR4YGiaSZI0A/qcPtob+GaSDa/zV1X1t0muAs5LciJwG/CmNv4i4ChgNfAocEKPtUmSJtBbKFTVLcBLJui/Bzh8gv4CTuqrHknS5LyiWZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSZ3eQyHJDkl+mOTCtvzCJFcmWZ3kq0l2av2/1JZXt/WL+q5NkvRUM3Gk8E7gxqHlTwCfrqr9gfuAE1v/icB9rf/TbZwkaQb1GgpJFgBHA59rywEOA85vQ1YAx7T20rZMW394Gy9JmiF9Hyn8BfA+4Im2vCdwf1U93pbXAvNbez6wBqCtf6CNf4oky5OsSrJqfHy8z9olabvTWygkeQ2wvqquns79VtWZVbW4qhaPjY1N564labu3Y4/7PhR4XZKjgJ2B5wGnAfOS7NiOBhYA69r4dcBCYG2SHYHdgHt6rE+StJHejhSq6o+qakFVLQLeDFxaVW8FLgPe0IYtAy5o7ZVtmbb+0qqqvuqTJD3dKK5TeD/wh0lWMzhncFbrPwvYs/X/IXDyCGqTpO1an9NHnar6O+DvWvsW4JAJxvwMeONM1CNJmphXNEuSOoaCJKljKEiSOoaCJKljKEiSOlMKhSSXTKVPkjS3bfYjqUl2Bp4D7JVkd2DDDeqex5P3LJIkbSMmu07h7cC7gH2Bq3kyFB4EPttjXZKkEdhsKFTVacBpSd5RVZ+ZoZokSSMypSuaq+ozSX4TWDS8TVWd3VNdkqQRmFIoJPkS8CLgGuAXrbsAQ0GStiFTvffRYuBA71oqSdu2qV6n8GPgBX0WIkkavakeKewF3JDk+8BjGzqr6nW9VCVJGomphsIpfRYhSZodpvrpo8v7LkSSNHpT/fTRQww+bQSwE/Bs4JGqel5fhWn2uf3DB426hFljvw9eN+oSpF5M9Uhh1w3tJAGWAkv6KkqSNBpbfJfUGvgW8Ls91CNJGqGpTh+9fmjxWQyuW/hZLxVJkkZmqp8+eu1Q+3HgVgZTSJKkbchUzymc0HchkqTRm+qX7CxI8s0k69vj60kW9F2cJGlmTfVE8xeAlQy+V2Ff4K9b3yYl2TnJ95P8KMn1SU5t/S9McmWS1Um+mmSn1v9LbXl1W79oa38oSdLWmWoojFXVF6rq8fb4IjA2yTaPAYdV1UuAlwJHJFkCfAL4dFXtD9wHnNjGnwjc1/o/3cZJkmbQVEPhniTHJtmhPY4F7tncBu2jqw+3xWe3RwGHAee3/hXAMa29tC3T1h/eromQJM2QqYbC7wNvAu4C7gTeAPzeZBu1ALkGWA9cDPxf4P6qerwNWcuT3/U8H1gD0NY/AOw5xfokSdNgqqHwYWBZVY1V1fMZhMSpk21UVb+oqpcCC4BDgF/d6kqbJMuTrEqyanx8/JnuTpI0ZKqh8BtVdd+Ghaq6F3jZVF+kqu4HLgNeDsxLsuGjsAuAda29DlgI0NbvxgRTVFV1ZlUtrqrFY2OTndaQJG2JqYbCs5LsvmEhyR5Mco1DkrEk81r7l4HfBm5kEA5vaMOWARe09sq2TFt/qd/0Jkkza6pXNP858L0kX2vLbwT+bJJt9gFWJNmBQficV1UXJrkB+EqSjwA/BM5q488CvpRkNXAv8OYt+DkkSdNgqlc0n51kFYNPDgG8vqpumGSba5lgiqmqbmFwfmHj/p8xCBtJ0ohM9UiBFgKbDQJJ0ty2xbfOliRtuwwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdXoLhSQLk1yW5IYk1yd5Z+vfI8nFSW5uz7u3/iQ5PcnqJNcmObiv2iRJE+vzSOFx4N1VdSCwBDgpyYHAycAlVXUAcElbBjgSOKA9lgNn9FibJGkCvYVCVd1ZVT9o7YeAG4H5wFJgRRu2AjimtZcCZ9fAFcC8JPv0VZ8k6elm5JxCkkXAy4Argb2r6s626i5g79aeD6wZ2mxt69t4X8uTrEqyanx8vLeaJWl71HsoJHku8HXgXVX14PC6qiqgtmR/VXVmVS2uqsVjY2PTWKkkqddQSPJsBoFwTlV9o3XfvWFaqD2vb/3rgIVDmy9ofZKkGdLnp48CnAXcWFWfGlq1EljW2suAC4b6j2+fQloCPDA0zSRJmgE79rjvQ4HjgOuSXNP6PgB8HDgvyYnAbcCb2rqLgKOA1cCjwAk91iZJmkBvoVBV3wWyidWHTzC+gJP6qkeSNDmvaJYkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVKnt1BI8vkk65P8eKhvjyQXJ7m5Pe/e+pPk9CSrk1yb5OC+6pIkbVqfRwpfBI7YqO9k4JKqOgC4pC0DHAkc0B7LgTN6rEuStAm9hUJVfQe4d6PupcCK1l4BHDPUf3YNXAHMS7JPX7VJkiY20+cU9q6qO1v7LmDv1p4PrBkat7b1PU2S5UlWJVk1Pj7eX6WStB0a2YnmqiqgtmK7M6tqcVUtHhsb66EySdp+zXQo3L1hWqg9r2/964CFQ+MWtD5J0gya6VBYCSxr7WXABUP9x7dPIS0BHhiaZpIkzZAd+9pxknOBVwN7JVkLfAj4OHBekhOB24A3teEXAUcBq4FHgRP6qkuStGm9hUJVvWUTqw6fYGwBJ/VViyRparyiWZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSZ3evo5T0uYd+plDR13CrPEP7/iHUZegxiMFSVLHUJAkdQwFSVLHUJAkdQwFSVJnVoVCkiOS/FOS1UlOHnU9krS9mTUfSU2yA/CXwG8Da4GrkqysqhtGW5mkueDyV75q1CXMGq/6zuVbve1sOlI4BFhdVbdU1T8DXwGWjrgmSdqupKpGXQMASd4AHFFVb2vLxwH/tqr+YKNxy4HlbfHFwD/NaKFbZy/gJ6MuYhvi+zl9fC+n11x5P/9FVY1NtGLWTB9NVVWdCZw56jq2RJJVVbV41HVsK3w/p4/v5fTaFt7P2TR9tA5YOLS8oPVJkmbIbAqFq4ADkrwwyU7Am4GVI65JkrYrs2b6qKoeT/IHwP8CdgA+X1XXj7is6TKnprvmAN/P6eN7Ob3m/Ps5a040S5JGbzZNH0mSRsxQkCR1DIUeJfl8kvVJfjzqWua6JAuTXJbkhiTXJ3nnqGuay5LsnOT7SX7U3s9TR13TXJdkhyQ/THLhqGt5JgyFfn0ROGLURWwjHgfeXVUHAkuAk5IcOOKa5rLHgMOq6iXAS4EjkiwZcU1z3TuBG0ddxDNlKPSoqr4D3DvqOrYFVXVnVf2gtR9i8J9v/mirmrtq4OG2+Oz28FMnWynJAuBo4HOjruWZMhQ05yRZBLwMuHK0lcxtbbrjGmA9cHFV+X5uvb8A3gc8MepCnilDQXNKkucCXwfeVVUPjrqeuayqflFVL2Vw94BDkvz6qGuai5K8BlhfVVePupbpYChozkjybAaBcE5VfWPU9Wwrqup+4DI8/7W1DgVel+RWBnd3PizJl0db0tYzFDQnJAlwFnBjVX1q1PXMdUnGksxr7V9m8D0mN422qrmpqv6oqhZU1SIGt+e5tKqOHXFZW81Q6FGSc4HvAS9OsjbJiaOuaQ47FDiOwV9h17THUaMuag7bB7gsybUM7jt2cVXN6Y9Sanp4mwtJUscjBUlSx1CQJHUMBUlSx1CQJHUMBUlSx1CQZlCSW5PsNeo6pE0xFKSeJJk1X3crTZX/aKUpSHI88B4GdxK9FjgP+GNgJ+Ae4K1VdXeSU4AXAb8C3N6+d/xcBnd0/R6Qtr9d2j4WMPhO8j+tqq/O5M8kTcRQkCaR5NcYBMBvVtVPkuzBIByWVFUleRuDO2S+u21yIPCKqvppktOB71bVh5McDWy4qv0I4I6qOrq9xm4z+TNJm2IoSJM7DPhaVf0EoKruTXIQ8NUk+zA4Wvh/Q+NXVtVPW/uVwOvbdn+T5L7Wfx3w50k+AVxYVX8/Ez+INBnPKUhb5zPAZ6vqIODtwM5D6x6ZbOOq+j/AwQzC4SNJPthLldIWMhSkyV0KvDHJngBt+mg3YF1bv2wz234H+E9tuyOB3Vt7X+DRqvoy8EkGASGNnNNH0iSq6vokfwZcnuQXwA+BU4CvtemgS4EXbmLzU4Fzk1wP/CNwe+s/CPhkkieAnwP/tccfQZoy75IqSeo4fSRJ6hgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoSBJ6vx/a4oOF6T3XT4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "m2TDWL0hKopa",
"outputId": "ffeb5dff-bfac-40e8-a53a-02b14029f538"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['job'])\n",
"plt.title('job Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAVu0lEQVR4nO3de5RlZX3m8e8jCI4X5NIVxO6GxsjSIUtBbAkqXpkZgWRsdAjC4tJBTI9r0EmWGSPxlnhJomNmuGgGF0vURo1GIUiPMiRMI2AiKI0SvKBDDyPSLdAtN2/RiP7mj/PW5tAUXdXN2XWqur6ftc46e7/vu/f5nb2q6qm999n7pKqQJAngUeMuQJI0dxgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoaB5Ick3k7x4mjEvTrJhxK/75iQfGuH6fpzkKW36o0nePcJ1fzDJ20a1Pi1MO4+7AGkmquo3Rr3OJFcChwG/AAq4GfgMcGZV/by97p9vw7o+XlVbDZCqevwjKHn49X4XeE1VHT607teOYt1a2NxT0EL3uqp6ArAP8IfA8cClSTLKF0niP2CaFwwFzQtJvpvk3yTZNclZSb7fHmcl2XWLsW9O8oO2zIkzWX9V/aSqrgReDjwX+K22rj9N8vE2/ZgkH09yV5J7k1yXZO8kfwa8APhAOzz0gTa+kpye5GYGeyGTbU8deulFSS5P8qMkVyXZr41b1sZ2YZLkyiSvSfKvgQ8Cz22vd2/rf9DhqCS/l2R9kruTrEny5KG+SvLaJDe39/JXow5CzU+GguabtzA45HMwcBBwKPDWof4nAYuAxcBK4LwkT5vpyqvqe8A6Bn/kt7QSeCKwFNgLeC3wz1X1FuCLDPY6Hl9Vrxta5hjgN4EDH+YlTwTe1Wq+AfjEDGq8qb32Ne31dt9yTJKXAn8BHMdgL+hW4FNbDPtt4DnAM9u4l0332trxGQqab04E3llVm6pqM/AO4OQtxrytqn5eVVcBn2fwB29bfB/Yc4r2XzAIg6dW1S+r6vqq+uE06/qLqrq7qv75Yfo/X1VXt3MYb2Hw3//Sbax3KicCH66qr7Z1/3Fb97KhMe+pqntbEH6BQdBqgTMUNN88mcF/vZNubW2T7qmqn2ylfyYWA3dP0f4x4O+AT7VDV/81yaOnWddtM+2vqh+3193WeqfyoO3U1n0Xg/c26Y6h6Z8CIzkJrvnNUNB8831gv6H5fVvbpD2SPG4r/VvV/kt/NoPDQQ9SVb+oqndU1YHA8xgcfjllsvthVjndbYi7vYIkj2ewh/J9YDLYHjs09knbsN4Hbae2TfYCNk6znBY4Q0HzzSeBtyaZSLIIeDvw8S3GvCPJLklewOAP92emW2mSxyZ5EXAJ8BXg0inGvCTJM5LsBPyQweGkX7XuO4GnbMf7OTrJ4Ul2YXBu4dqquq0dGtsInJRkpySvBn59aLk7gSVtual8Ejg1ycHtRPyfA1+uqu9uR41aQAwFzTfvZnAi+Ebg68BXW9ukO4B7GPyn/AngtVX17a2s7wNJfsTgj+xZwEXAkVX1qynGPgm4kEEg3ARcxeCQEsDZwLFJ7klyzja8n78G/oTBYaNnAycN9f0e8EYGh31+A/jSUN8VwDeBO5L8YMuVVtX/Bt7W3s/tDALl+G2oSwtU/JIdzQdJvgecVFVXj7sWaUfmnoLmvCQTwATw3TGXIu3wDAXNaUmew+DCr/e3j05K6pGHjyRJHfcUJEmdeX2TrkWLFtWyZcvGXYYkzSvXX3/9D6pqYqq+eR0Ky5YtY926deMuQ5LmlSS3Plyfh48kSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSZ15fUXzdJ79xgvGXcKccf37Tpl+kKQFzz0FSVLHUJAkdQwFSVLHUJAkdQwFSVKn11BIsnuSC5N8O8lNSZ6bZM8klye5uT3v0cYmyTlJ1ie5MckhfdYmSXqovvcUzgYuq6qnAwcBNwFnAGur6gBgbZsHOAo4oD1WAef2XJskaQu9hUKSJwIvBM4HqKp/qap7gRXA6jZsNXBMm14BXFAD1wK7J9mnr/okSQ/V557C/sBm4CNJvpbkQ0keB+xdVbe3MXcAe7fpxcBtQ8tvaG2SpFnSZyjsDBwCnFtVzwJ+wgOHigCoqgJqW1aaZFWSdUnWbd68eWTFSpL6DYUNwIaq+nKbv5BBSNw5eVioPW9q/RuBpUPLL2ltD1JV51XV8qpaPjEx0VvxkrQQ9RYKVXUHcFuSp7WmI4BvAWuAla1tJXBJm14DnNI+hXQYcN/QYSZJ0izo+4Z4rwc+kWQX4BbgVAZB9OkkpwG3Ase1sZcCRwPrgZ+2sZKkWdRrKFTVDcDyKbqOmGJsAaf3WY8kaeu8olmS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEmdXkMhyXeTfD3JDUnWtbY9k1ye5Ob2vEdrT5JzkqxPcmOSQ/qsTZL0ULOxp/CSqjq4qpa3+TOAtVV1ALC2zQMcBRzQHquAc2ehNknSkHEcPloBrG7Tq4FjhtovqIFrgd2T7DOG+iRpweo7FAr4+yTXJ1nV2vauqtvb9B3A3m16MXDb0LIbWtuDJFmVZF2SdZs3b+6rbklakHbuef2HV9XGJL8GXJ7k28OdVVVJaltWWFXnAecBLF++fJuWlSRtXa97ClW1sT1vAi4GDgXunDws1J43teEbgaVDiy9pbZKkWdJbKCR5XJInTE4D/w74BrAGWNmGrQQuadNrgFPap5AOA+4bOswkSZoFfR4+2hu4OMnk6/x1VV2W5Drg00lOA24FjmvjLwWOBtYDPwVO7bE2SdIUeguFqroFOGiK9ruAI6ZoL+D0vuqRJE3PK5olSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLU6T0UkuyU5GtJPtfm90/y5STrk/xNkl1a+65tfn3rX9Z3bZKkB5uNPYXfB24amn8vcGZVPRW4BzittZ8G3NPaz2zjJEmzqNdQSLIE+C3gQ20+wEuBC9uQ1cAxbXpFm6f1H9HGS5JmSd97CmcBfwT8qs3vBdxbVfe3+Q3A4ja9GLgNoPXf18Y/SJJVSdYlWbd58+Y+a5ekBae3UEjy28Cmqrp+lOutqvOqanlVLZ+YmBjlqiVpwdu5x3U/H3h5kqOBxwC7AWcDuyfZue0NLAE2tvEbgaXAhiQ7A08E7uqxPknSFnrbU6iqP66qJVW1DDgeuKKqTgS+ABzbhq0ELmnTa9o8rf+Kqqq+6pMkPdQ4rlN4E/CGJOsZnDM4v7WfD+zV2t8AnDGG2iRpQevz8FGnqq4ErmzTtwCHTjHmZ8DvzEY9kqSpeUWzJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOjMKhSRrZ9ImSZrftnqdQpLHAI8FFiXZA5i8a+luPHAjO0nSDmK6i9f+I/AHwJOB63kgFH4IfKDHuiRJY7DVUKiqs4Gzk7y+qt4/SzVJksZkRre5qKr3J3kesGx4maq6oKe6JEljMKNQSPIx4NeBG4BftuYCDAVJ2oHM9IZ4y4EDvZW1JO3YZnqdwjeAJ/VZiCRp/Ga6p7AI+FaSrwA/n2ysqpf3UpUkaSxmGgp/2mcRkqS5YaafPrqq70IkSeM3008f/YjBp40AdgEeDfykqnbrqzBJ0uyb6Z7CEyankwRYARzWV1GSpPHY5ruk1sBngZf1UI8kaYxmevjolUOzj2Jw3cLPeqlIkjQ2M/300b8fmr4f+C6DQ0iSpB3ITM8pnNp3IZKk8Zvpl+wsSXJxkk3tcVGSJX0XJ0maXTM90fwRYA2D71V4MvA/W9vDSvKYJF9J8k9JvpnkHa19/yRfTrI+yd8k2aW179rm17f+Zdv7piRJ22emoTBRVR+pqvvb46PAxDTL/Bx4aVUdBBwMHJnkMOC9wJlV9VTgHuC0Nv404J7WfmYbJ0maRTMNhbuSnJRkp/Y4Cbhrawu0j67+uM0+uj0KeClwYWtfDRzTple0eVr/Ee2aCEnSLJlpKLwaOA64A7gdOBb43ekWagFyA7AJuBz4v8C9VXV/G7KBB77reTFwG0Drvw/Ya4p1rkqyLsm6zZs3z7B8SdJMzDQU3gmsrKqJqvo1BiHxjukWqqpfVtXBwBLgUODp213pA+s8r6qWV9XyiYnpjmBJkrbFTEPhmVV1z+RMVd0NPGumL1JV9wJfAJ4L7J5k8qOwS4CNbXojsBSg9T+RaQ5RSZJGa6ah8Kgke0zOJNmTaa5xSDKRZPc2/a+AfwvcxCAcjm3DVgKXtOk1bZ7Wf4Xf9CZJs2umVzT/N+CaJJ9p878D/Nk0y+wDrE6yE4Pw+XRVfS7Jt4BPJXk38DXg/Db+fOBjSdYDdwPHb8P7kCSNwEyvaL4gyToGnxwCeGVVfWuaZW5kikNMVXULg/MLW7b/jEHYSJLGZKZ7CrQQ2GoQSJLmt22+dbYkacdlKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKnTWygkWZrkC0m+leSbSX6/te+Z5PIkN7fnPVp7kpyTZH2SG5Mc0ldtkqSp9bmncD/wh1V1IHAYcHqSA4EzgLVVdQCwts0DHAUc0B6rgHN7rE2SNIXeQqGqbq+qr7bpHwE3AYuBFcDqNmw1cEybXgFcUAPXArsn2aev+iRJD7XzbLxIkmXAs4AvA3tX1e2t6w5g7za9GLhtaLENre32oTaSrGKwJ8G+++7bW816qO+98xnjLmHO2PftXx93CVIvej/RnOTxwEXAH1TVD4f7qqqA2pb1VdV5VbW8qpZPTEyMsFJJUq+hkOTRDALhE1X1t635zsnDQu15U2vfCCwdWnxJa5MkzZI+P30U4Hzgpqr670Nda4CVbXolcMlQ+yntU0iHAfcNHWaSJM2CPs8pPB84Gfh6khta25uB9wCfTnIacCtwXOu7FDgaWA/8FDi1x9okSVPoLRSq6h+APEz3EVOML+D0vuqRJE3PK5olSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSR1DQZLUMRQkSZ1Z+ZIdSQ/1/Pc/f9wlzBn/+Pp/HHcJatxTkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUsdQkCR1DAVJUqe3UEjy4SSbknxjqG3PJJcnubk979Hak+ScJOuT3JjkkL7qkiQ9vD73FD4KHLlF2xnA2qo6AFjb5gGOAg5oj1XAuT3WJUl6GL2FQlVdDdy9RfMKYHWbXg0cM9R+QQ1cC+yeZJ++apMkTW22zynsXVW3t+k7gL3b9GLgtqFxG1rbQyRZlWRdknWbN2/ur1JJWoDGdqK5qgqo7VjuvKpaXlXLJyYmeqhMkhau2Q6FOycPC7XnTa19I7B0aNyS1iZJmkWzHQprgJVteiVwyVD7Ke1TSIcB9w0dZpIkzZLevqM5ySeBFwOLkmwA/gR4D/DpJKcBtwLHteGXAkcD64GfAqf2VZck6eH1FgpVdcLDdB0xxdgCTu+rFknSzHhFsySpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjo7j7sASRqFq174onGXMGe86OqrtntZ9xQkSR1DQZLUMRQkSZ05FQpJjkzynSTrk5wx7nokaaGZM6GQZCfgr4CjgAOBE5IcON6qJGlhmTOhABwKrK+qW6rqX4BPASvGXJMkLSipqnHXAECSY4Ejq+o1bf5k4Der6nVbjFsFrGqzTwO+M6uFbp9FwA/GXcQOxO05Om7L0Zov23O/qpqYqmPeXadQVecB5427jm2RZF1VLR93HTsKt+fouC1Ha0fYnnPp8NFGYOnQ/JLWJkmaJXMpFK4DDkiyf5JdgOOBNWOuSZIWlDlz+Kiq7k/yOuDvgJ2AD1fVN8dc1qjMq8Nd84Dbc3TclqM177fnnDnRLEkav7l0+EiSNGaGgiSpYyhspyTHJKkkTx9quyzJvUk+t8XYLya5oT2+n+SzrX1Fkhtb+7okh8/2+5grRrQ9T2zb8+tJvpTkoNl+H3PBKLblUP9zktzfriNakEb0s/n0JNck+XmS/zLb72FbGArb7wTgH9rzpPcBJ285sKpeUFUHV9XBwDXA37autcBBrf3VwIf6LXlOG8X2/H/Ai6rqGcC72AFO+m2nUWzLyVvPvBf4+37LnfNGsT3vBv4z8Jc91/qIGQrbIcnjgcOB0xh8dBaAqloL/Ggry+0GvBT4bBv/43rgTP/jgAV51n+E2/NLVXVP676WwbUuC8qotmXzeuAiYFMvxc4DI/zZ3FRV1wG/6LXgETAUts8K4LKq+j/AXUmePcPljgHWVtUPJxuSvCLJt4HPM9hbWIhGtj2HnAb8r1EVOI+MZFsmWQy8Aji3nzLnjT5+Nuc0Q2H7nMDghn205xO2MnbL5T453FBVF1fV0xn8EL1rZBXOLyPbngBJXsIgFN40kurml1Fty7OAN1XVr0ZY23w00p/N+WDOXLw2XyTZk8Fu4TOSFIML7SrJG4cOBU213CIGd4J9xVT9VXV1kqckWVRV8+GGWiMx6u2Z5JkMzs0cVVV39Vf53DPibbkc+FQSGNzk7egk91fVZ6dYxQ6pr9/1uc49hW13LPCxqtqvqpZV1VIGJzhfMIPlPldVP5tsSPLUtN+6JIcAuwIL6g8Zo92e+zI4sXdy291faEa2Latq/7aOZcCFwH9aSIHQjGx7zieGwrY7Abh4i7aLGHwp0BeBzwBHJNmQ5GVDY47nobuT/wH4RpIbGHzB0Ku29h/IDmqU2/PtwF7A/5j8mG9fRc9Ro9yWGuH2TPKkJBuANwBvbcvs1mPt283bXEiSOu4pSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoL0CCX50lb6XrzlnTSlucxQkB6hqnreuGuQRsVQkB6hJD/OwPuSfKN9n8OrhobsluTzSb6T5INJ/L3TnOW9j6TReCVwMHAQg3sFXZfk6tZ3KHAgcCtwWRt74TiKlKbjfyzSaBwOfLKqfllVdwJXAc9pfV+pqluq6pcMbn+wYL9hT3OfoSD1b8t7yXhvGc1ZhoI0Gl8EXpVkpyQTwAuBr7S+Q5Ps384lvIrBVztKc5KhID1yxeBumjcC/wRcAfxRVd3R+q8DPgDcxODWy1veeVOaM7xLqvQIJNkL+GpV7TfuWqRRcE9B2k5JngxcA/zluGuRRsU9BUlSxz0FSVLHUJAkdQwFSVLHUJAkdQwFSVLn/wMAwJrXdemM2gAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "8dGqjB0WKopb",
"outputId": "8160a410-6593-432f-d9a4-9919050627b1"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['liable'])\n",
"plt.title('liable Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAWwUlEQVR4nO3dfbRddZ3f8fdHAj6BBMw1QhIN1fjA2IKYUnwcx+iM0BlDXYo4OkSbWRlban3o6shMO6OO1oWtHUZ0BpsRNVhGRZTCKHWkwcdW0AsiCujyimISE3Ll+aFgwW//OL+7OdzcJDch+95L8n6tddb57d/vt/f9Xla4n7N/+5yzU1VIkgTwiNkuQJI0dxgKkqSOoSBJ6hgKkqSOoSBJ6hgKkqSOoaA5IcnPkry0tf80yUenud8nkrx3B+OV5Kl7qs5Jx35SkjuT7LeHjveRJH/W2i9OsnFPHLcd74VJfrSnjqe9l6GgOaeq3ldVfzibNSR5Q5L72x/9O5P8NMnHkzxtqM6fV9WBVXX/NI71zZ39zKp6U1W9Zw/V/6AwrKpvVNXT98SxtXczFKTt+1ZVHQgcDLwU+L/AFUmetad/0J4625AeKkNBc06SdyX570Pbn02yJcltSb6e5Dcm7bIgySVJ7kjytSRP3s5xH5nkA0l+nuTGtlzz6J3VU1X3V9VPqupfA18D3tWOt7S9Ip/Xtt+Q5PpWx0+TvC7JM4GPAM9tZxy3trmfSHJWkouT3AX81lRLYW0p7Zdtee11Q/1fTfKHQ9vd2UiSr7fu77Wf+ZrJy1FJntmOcWuSa5K8YmjsE0n+OskX2+9yeZKn7Oy/k/YOhoIeDv4nsAx4AnAlcO6k8dcB7wEWAFdNMT7hdOBpwNHAU4FFwJ/vYi2fB144uTPJY4EzgeOr6iDgecBVVXUd8CbaWUdVzR/a7feB/wQcBEy1vPTE9jstAlYBa5PsdAmoql7Umke1n/mZSbXuD/w98GUG/03fDJw76dgnA+8GDgHGWp3aBxgKmvOq6mNVdUdV3cvgVfpRSQ4emvLFqvp6G/8PDF6VLxk+RpIAa4C3VdXNVXUH8D4Gf/x2xS+AQ7cz9mvgWUkeXVWbq+qanRzrwqr631X166q6Zztz/qyq7q2qrwFfBE7axXqnchxwIHB6Vf2qqi4FvgC8dmjOBVX17aq6j0HIHr0Hfq4eBgwFzWlJ9ktyepKfJLkd+FkbWjA0bcNEo6ruBG4GDp90qBHgMQyuCdzalnG+1Pp3xaJ2/AepqruA1zA4K9jcll6esZNjbdjJ+C3tuBNuYNvfa3ccDmyoql9POvaioe0tQ+27GYSI9gGGgua63wdWMrjQezCwtPVnaE53VpDkQAav5H8x6Ti/ZHCh+Deqan57HNwuJO+KfwF8Y6qBqvqHqnoZcBjwQ+BvJ4a2c6ydfUXxIW1ZasKTeOD3uotByE144k6ONewXwJIkw///PwnYtAvH0F7KUNBcdxBwL3ATgz+C75tizglJXpDkAAbXFi6rqge9Cm+viv8WOCPJEwCSLEryOzsroJ2tHJHkQ8CLGay1T56zMMnK9kf8XuBOBstJADcCi1t9u+rdSQ5I8kLgd4HPtv6rgFcmeUx76+nqSfvdCPyj7Rzzcgav/v84yf5JXgz8HvDp3ahPexlDQXPdOQyWNjYB1wKXTTHn74B3MljWeQ7w+u0c6x0MLppe1pai/hewowu3z01yJ3A78FXgccA/rarvTzH3EcDbGbwKvxn4TeBftbFLgWuALUl+uYOfN9kW4JZ2zHOBN1XVD9vYGcCvGPzxX8e2F9ffBaxrS2UPug5RVb9iEALHMziD+hvglKFjax8Wb7IjSZrgmYIkqWMoSJI6hoIkqWMoSJI682a7gIdiwYIFtXTp0tkuQ5IeVq644opfVtWUH9x8WIfC0qVLGR0dne0yJOlhJckN2xtz+UiS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1HlYf6J5T3jOvz9ntkvQHHTFfzlltkuQZoVnCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkTq+hkORtSa5J8oMkn0ryqCRHJLk8yViSzyQ5oM19ZNsea+NL+6xNkrSt3kIhySLg3wLLq+pZwH7AycD7gTOq6qnALcDqtstq4JbWf0abJ0maQX0vH80DHp1kHvAYYDPwEuD8Nr4OOLG1V7Zt2viKJOm5PknSkN5Coao2AR8Afs4gDG4DrgBurar72rSNwKLWXgRsaPve1+Y/fvJxk6xJMppkdHx8vK/yJWmf1Ofy0SEMXv0fARwOPBZ4+UM9blWtrarlVbV8ZGTkoR5OkjSkz+WjlwI/rarxqvp/wOeB5wPz23ISwGJgU2tvApYAtPGDgZt6rE+SNEmfofBz4Lgkj2nXBlYA1wJfAV7V5qwCLmzti9o2bfzSqqoe65MkTdLnNYXLGVwwvhL4fvtZa4F3AG9PMsbgmsHZbZezgce3/rcDp/VVmyRpar3eT6Gq3gm8c1L39cCxU8y9B3h1n/VIknbMTzRLkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjp93qP56UmuGnrcnuStSQ5NckmSH7fnQ9r8JDkzyViSq5Mc01dtkqSp9XnntR9V1dFVdTTwHOBu4AIGd1RbX1XLgPU8cIe144Fl7bEGOKuv2iRJU5up5aMVwE+q6gZgJbCu9a8DTmztlcA5NXAZMD/JYTNUnySJmQuFk4FPtfbCqtrc2luAha29CNgwtM/G1vcgSdYkGU0yOj4+3le9krRP6j0UkhwAvAL47OSxqiqgduV4VbW2qpZX1fKRkZE9VKUkCWbmTOF44MqqurFt3zixLNSet7b+TcCSof0Wtz5J0gyZiVB4LQ8sHQFcBKxq7VXAhUP9p7R3IR0H3Da0zCRJmgHz+jx4kscCLwP+aKj7dOC8JKuBG4CTWv/FwAnAGIN3Kr2xz9okSdvqNRSq6i7g8ZP6bmLwbqTJcws4tc96JEk75ieaJUkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1DEUJEkdQ0GS1Ok1FJLMT3J+kh8muS7Jc5McmuSSJD9uz4e0uUlyZpKxJFcnOabP2iRJ2+r7TOGDwJeq6hnAUcB1wGnA+qpaBqxv2wDHA8vaYw1wVs+1SZIm6S0UkhwMvAg4G6CqflVVtwIrgXVt2jrgxNZeCZxTA5cB85Mc1ld9kqRt9XmmcAQwDnw8yXeTfDTJY4GFVbW5zdkCLGztRcCGof03tr4HSbImyWiS0fHx8R7Ll6R9T5+hMA84Bjirqp4N3MUDS0UAVFUBtSsHraq1VbW8qpaPjIzssWIlSf2GwkZgY1Vd3rbPZxASN04sC7XnrW18E7BkaP/FrU+SNEN6C4Wq2gJsSPL01rUCuBa4CFjV+lYBF7b2RcAp7V1IxwG3DS0zSZJmwLyej/9m4NwkBwDXA29kEETnJVkN3ACc1OZeDJwAjAF3t7mSpBnUayhU1VXA8imGVkwxt4BT+6xHkrRjfqJZktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktQxFCRJHUNBktTpNRSS/CzJ95NclWS09R2a5JIkP27Ph7T+JDkzyViSq5Mc02dtkqRtzcSZwm9V1dFVNXGzndOA9VW1DFjftgGOB5a1xxrgrBmoTZI0ZDaWj1YC61p7HXDiUP85NXAZMD/JYbNQnyTts/oOhQK+nOSKJGta38Kq2tzaW4CFrb0I2DC078bW9yBJ1iQZTTI6Pj7eV92StE/q9R7NwAuqalOSJwCXJPnh8GBVVZLalQNW1VpgLcDy5ct3aV9J0o71eqZQVZva81bgAuBY4MaJZaH2vLVN3wQsGdp9ceuTJM2QaYVCkvXT6Zs0/tgkB020gd8GfgBcBKxq01YBF7b2RcAp7V1IxwG3DS0zSZJmwA6Xj5I8CngMsKC9dTRt6HFMsd4/yULggiQTP+fvqupLSb4DnJdkNXADcFKbfzFwAjAG3A28cdd/HUnSQ7Gzawp/BLwVOBy4ggdC4XbgwzvasaquB46aov8mYMUU/QWcuvOSJUl92WEoVNUHgQ8meXNVfWiGapIkzZJpvfuoqj6U5HnA0uF9quqcnuqSJM2CaYVCkk8CTwGuAu5v3QUYCpK0F5nu5xSWA0e2dX9J0l5qup9T+AHwxD4LkSTNvumeKSwArk3ybeDeic6qekUvVUmSZsV0Q+FdfRYhSZobpvvuo6/1XYgkafZN991HdzB4txHAAcD+wF1V9bi+CpMkzbzpnikcNNHO4HsrVgLH9VWUJGl27PK3pLab4PwP4Hd6qEeSNIumu3z0yqHNRzD43MI9vVQkSZo103330e8Nte8DfsZgCUmStBeZ7jUFv8ZakvYB073JzuIkFyTZ2h6fS7K47+IkSTNruheaP87gzmiHt8fftz5J0l5kuqEwUlUfr6r72uMTwMh0dkyyX5LvJvlC2z4iyeVJxpJ8JskBrf+RbXusjS/djd9HkvQQTDcUbkry+vYHfr8krwdumua+bwGuG9p+P3BGVT0VuAVY3fpXA7e0/jPaPEnSDJpuKPxLBvdS3gJsBl4FvGFnO7XrDv8c+GjbDvAS4Pw2ZR1wYmuvbNu08RVtviRphkw3FP4CWFVVI1X1BAYh8e5p7PdXwB8Dv27bjwdurar72vZGYFFrLwI2ALTx29r8B0myJsloktHx8fFpli9Jmo7phsI/qapbJjaq6mbg2TvaIcnvAlur6oqHUN82qmptVS2vquUjI9O6rCFJmqbpfnjtEUkOmQiGJIdOY9/nA69IcgLwKOBxwAeB+UnmtbOBxcCmNn8TsATYmGQecDDTv24hSdoDpnum8F+BbyV5T5L3AP8H+M872qGq/qSqFlfVUuBk4NKqeh3wFQbXJABWARe29kVtmzZ+qbf/lKSZNd1PNJ+TZJTBRWKAV1bVtbv5M98BfDrJe4HvAme3/rOBTyYZA25mECSSpBk03eUjWgjsVhBU1VeBr7b29cCxU8y5B3j17hxfkrRn7PJXZ0uS9l6GgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjqGgiSpYyhIkjq9hUKSRyX5dpLvJbkmybtb/xFJLk8yluQzSQ5o/Y9s22NtfGlftUmSptbnmcK9wEuq6ijgaODlSY4D3g+cUVVPBW4BVrf5q4FbWv8ZbZ4kaQb1Fgo1cGfb3L89isEtPc9v/euAE1t7Zdumja9Ikr7qkyRtq9drCkn2S3IVsBW4BPgJcGtV3dembAQWtfYiYANAG78NePwUx1yTZDTJ6Pj4eJ/lS9I+p9dQqKr7q+poYDGD+zI/Yw8cc21VLa+q5SMjIw+5RknSA2bk3UdVdSvwFeC5wPwk89rQYmBTa28ClgC08YOBm2aiPknSQJ/vPhpJMr+1Hw28DLiOQTi8qk1bBVzY2he1bdr4pVVVfdUnSdrWvJ1P2W2HAeuS7McgfM6rqi8kuRb4dJL3At8Fzm7zzwY+mWQMuBk4ucfaJElT6C0Uqupq4NlT9F/P4PrC5P57gFf3VY8kaef8RLMkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6hoIkqWMoSJI6fd6Oc0mSryS5Nsk1Sd7S+g9NckmSH7fnQ1p/kpyZZCzJ1UmO6as2SdLU+jxTuA/4d1V1JHAccGqSI4HTgPVVtQxY37YBjgeWtcca4Kwea5MkTaG3UKiqzVV1ZWvfAVwHLAJWAuvatHXAia29EjinBi4D5ic5rK/6JEnbmpFrCkmWMrhf8+XAwqra3Ia2AAtbexGwYWi3ja1v8rHWJBlNMjo+Pt5bzZK0L+o9FJIcCHwOeGtV3T48VlUF1K4cr6rWVtXyqlo+MjKyByuVJPUaCkn2ZxAI51bV51v3jRPLQu15a+vfBCwZ2n1x65MkzZA+330U4Gzguqr6y6Ghi4BVrb0KuHCo/5T2LqTjgNuGlpkkSTNgXo/Hfj7wB8D3k1zV+v4UOB04L8lq4AbgpDZ2MXACMAbcDbyxx9okSVPoLRSq6ptAtjO8Yor5BZzaVz2SpJ3zE82SpI6hIEnqGAqSpI6hIEnqGAqSpE6fb0mV9BD8/C/+8WyXoDnoSX/+/V6P75mCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKljKEiSOoaCJKnT553XPpZka5IfDPUdmuSSJD9uz4e0/iQ5M8lYkquTHNNXXZKk7evzTOETwMsn9Z0GrK+qZcD6tg1wPLCsPdYAZ/VYlyRpO3oLhar6OnDzpO6VwLrWXgecONR/Tg1cBsxPclhftUmSpjbT1xQWVtXm1t4CLGztRcCGoXkbW982kqxJMppkdHx8vL9KJWkfNGsXmts9mWs39ltbVcuravnIyEgPlUnSvmumQ+HGiWWh9ry19W8ClgzNW9z6JEkzaKZD4SJgVWuvAi4c6j+lvQvpOOC2oWUmSdIM6e0mO0k+BbwYWJBkI/BO4HTgvCSrgRuAk9r0i4ETgDHgbuCNfdUlSdq+3kKhql67naEVU8wt4NS+apEkTY+faJYkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVLHUJAkdQwFSVJnToVCkpcn+VGSsSSnzXY9krSvmTOhkGQ/4K+B44EjgdcmOXJ2q5KkfcucCQXgWGCsqq6vql8BnwZWznJNkrRP6e0ezbthEbBhaHsj8M8mT0qyBljTNu9M8qMZqG1fsQD45WwXMRfkA6tmuwQ9mP82J7wze+IoT97ewFwKhWmpqrXA2tmuY2+UZLSqls92HdJk/tucOXNp+WgTsGRoe3HrkyTNkLkUCt8BliU5IskBwMnARbNckyTtU+bM8lFV3Zfk3wD/AOwHfKyqrpnlsvY1LstprvLf5gxJVc12DZKkOWIuLR9JkmaZoSBJ6hgKIsnHkmxN8oPZrkUalmRJkq8kuTbJNUneMts17e28piCSvAi4Ezinqp412/VIE5IcBhxWVVcmOQi4Ajixqq6d5dL2Wp4piKr6OnDzbNchTVZVm6vqyta+A7iOwbcfqCeGgqSHhSRLgWcDl89uJXs3Q0HSnJfkQOBzwFur6vbZrmdvZihImtOS7M8gEM6tqs/Pdj17O0NB0pyVJMDZwHVV9ZezXc++wFAQST4FfAt4epKNSVbPdk1S83zgD4CXJLmqPU6Y7aL2Zr4lVZLU8UxBktQxFCRJHUNBktQxFCRJHUNBktQxFKRpSHJnez48yfk7mfviJF/YztjPkizoo0ZpT5gzt+OUHg6q6hfAq2a7DqkvnilIuyDJ0on7TrT2N5Jc2R7PG5r6uCRfTPKjJB9Jss3/a0len+Tb7QNZ/y3JfjP2i0jbYShIu28r8LKqOgZ4DXDm0NixwJuBI4GnAK8c3jHJM9s+z6+qo4H7gdfNRNHSjrh8JO2+/YEPJ5n4o/60obFvV9X10H2NyAuA4WsRK4DnAN8ZfL0Pj2YQMtKsMhSk3fc24EbgKAZn3fcMjU3+/pjJ2wHWVdWf9FeetOtcPpJ238HA5qr6NYMvbRu+JnBskiPatYTXAN+ctO964FVJngCQ5NAkT56JoqUdMRSk3fc3wKok3wOeAdw1NPYd4MMMbh/5U+CC4R3bPYb/I/DlJFcDlwCHzUTR0o74LamSpI5nCpKkjqEgSeoYCpKkjqEgSeoYCpKkjqEgSeoYCpKkzv8Hvls3LY/WJwAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "O2escUkMKopb",
"outputId": "8db45d4e-2a85-4c8c-d442-2a6d26ba8cc2"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['tele'])\n",
"plt.title('tele Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUv0lEQVR4nO3dfbRddX3n8fcH4kNbxPAQERMwVmktrRU1C3Gq1sLUCtWGWmBgVCJmJjNr1OpytEWna3TaMkq1RdQODhXbYH1iUAZKGZSFOo4PqKFSHkTHlIpJBkh4CIpWLfqdP87v/jiEm+QE7r73Jvf9Wuuus/dv//be33PXyf1k//bZe6eqkCQJYK+5LkCSNH8YCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAXtMZJ8Jsm/GXD7NyR53gxt6yVJPjk2X0meNBPbbtu7J8nPztT2tHAYCpq3knwryb+chf0sb3+U72k/tyW5NMmvj/erql+sqs9MuK1FO+pXVR+squfPQPnThmFV7VNVN83E9rWwGArSfRZX1T7AU4ErgIuSvHymd7KzwJDmkqGgeSnJB4BDgb9p/3v/vdZ+VJIvJNma5O93NJyT5BVJbkxyV5JPJHn8JPuuqlur6mzgLcCZSfZq2+tHLkmOTLIuyXfakcWftdU/2163trqfleTlST6f5KwkdwBvaW2f22bXxyW5KcntSd4+tt+3JPnrsffVj0aSnAE8B3hP2997Wp8+HJXk0UnOT7Ilyc1J/mBs2y9P8rkk72i/p39McuwkvyftmQwFzUtV9TLg28CL2lDInyRZCvwt8MfA/sDrgY8lWbLt+klWAm8CXgwsAf4P8OFdLOPjwGOAn59m2dnA2VW1L/BE4ILW/tz2urjV/cU2/0zgJuAg4Izt7O+3gRXA04GVwCt2VmBV/SdG7+1VbX+vmqbbu4FHAz8L/CpwKnDa2PJnAt8ADgT+BDgvSXa2b+2ZDAXtTl4KXFZVl1XVT6rqCmAdcNw0ff898NaqurGq7gX+K3DEpEcLzf9rr/tPs+yfgSclObCq7qmqq3a2rap6d1XdW1X/tJ0+Z1bVnVX1beCdwCm7UOu0kuwNnAy8saq+W1XfAv4UeNlYt5ur6i+q6sfAWuBgRuGlBchQ0O7k8cCJbehoa5KtwLMZ/RGbru/ZY/3uBAIs3YX9TfW9c5plq4GfA76e5CtJXriTbW2YYH/jfW4GHjfBOjtzIPCwtr3xbY//Hm6dmqiq77fJfWZg39oNecJL89m2t/DdAHygqv7tBOtuAM6oqg8+hP3/NrCZ0dDK/Qur+iZwShubfzFwYZIDpqm5rzLB/g4BbmjTh3Lfkcr3gJ8e6/fYXdj27YyOah4PfG1s25smqEcLkEcKms9uYzQOPuWvgRcl+Y0keyd5ZJLnJVk2zbrvBd6Y5Behn2w9cZKdJjkoyauANzMadvnJNH1emmRJW7a1Nf8E2NJeH8w1Am9Isl+SQ4DXAB9t7dcAz01yaJJHA2/cZr1tf09dGxK6ADgjyaPa8NnrGP0upQcwFDSfvRX4gzYE9Pqq2sDoBOybGP3x3QC8gWk+x1V1EXAm8JEk3wGuB3b2rZqtSb4HXMfoPMWJVfX+7fR9AXBDknsYnXQ+uar+qQ2/nAF8vtV91C6834uBqxmFwN8C57X3cgWjgLi2Lb90m/XOBk5o3x561zTbfTWjo42bgM8BHwK29760wMWH7EiSpnikIEnqDAVJUmcoSJI6Q0GS1O3W1ykceOCBtXz58rkuQ5J2K1dfffXtVfWA28PAbh4Ky5cvZ926dXNdhiTtVpLcvL1lDh9JkjpDQZLUGQqSpM5QkCR1g4ZCksVJLkzy9fYErGcl2T/JFUm+2V73a32T5F1J1ie5NsnTh6xNkvRAQx8pnA1cXlVPZvTc2xuB04Erq+ow4Mo2D6OblR3WftYA5wxcmyRpG4OFQrvF73O5706PP6qqrYzucrm2dVsLHN+mVwLn18hVwOIk0z08RZI0kCGPFJ7A6PbGf5nkq0nel+RngIOq6pbW51bue+zfUu7/5KmNTPOUrCRr2gPT123ZsmXA8iVp4RkyFBYxegD5OVX1NEb3cz99vEON7tu9S/furqpzq2pFVa1YsmTaC/IkSQ/SkFc0bwQ2VtWX2vyFjELhtiQHV9UtbXhoc1u+idHjCKcsw0cGagH79h8+Za5L0Dx06H++btDtD3akUFW3AhuS/HxrOobRM2IvAVa1tlWMnjZFaz+1fQvpKODusWEmSdIsGPreR68GPpjk4YweBXgaoyC6IMlq4GbgpNb3MkaPQFwPfL/1lSTNokFDoaquAVZMs+iYafoW8Moh65Ek7ZhXNEuSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQNGgpJvpXkuiTXJFnX2vZPckWSb7bX/Vp7krwryfok1yZ5+pC1SZIeaDaOFH6tqo6oqhVt/nTgyqo6DLiyzQMcCxzWftYA58xCbZKkMXMxfLQSWNum1wLHj7WfXyNXAYuTHDwH9UnSgjV0KBTwySRXJ1nT2g6qqlva9K3AQW16KbBhbN2Nre1+kqxJsi7Jui1btgxVtyQtSIsG3v6zq2pTkscAVyT5+vjCqqoktSsbrKpzgXMBVqxYsUvrSpJ2bNAjhara1F43AxcBRwK3TQ0LtdfNrfsm4JCx1Ze1NknSLBksFJL8TJJHTU0DzweuBy4BVrVuq4CL2/QlwKntW0hHAXePDTNJkmbBkMNHBwEXJZnaz4eq6vIkXwEuSLIauBk4qfW/DDgOWA98HzhtwNokSdMYLBSq6ibgqdO03wEcM017Aa8cqh5J0s55RbMkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEnd4KGQZO8kX01yaZt/QpIvJVmf5KNJHt7aH9Hm17fly4euTZJ0f4tmYR+vAW4E9m3zZwJnVdVHkrwXWA2c017vqqonJTm59ftXQxf3jDecP/QutBu6+u2nznUJ0pwY9EghyTLgN4H3tfkARwMXti5rgePb9Mo2T1t+TOsvSZolQw8fvRP4PeAnbf4AYGtV3dvmNwJL2/RSYANAW353638/SdYkWZdk3ZYtW4asXZIWnMFCIckLgc1VdfVMbreqzq2qFVW1YsmSJTO5aUla8IY8p/ArwG8lOQ54JKNzCmcDi5MsakcDy4BNrf8m4BBgY5JFwKOBOwasT5K0jcGOFKrqjVW1rKqWAycDn6qqlwCfBk5o3VYBF7fpS9o8bfmnqqqGqk+S9EBzcZ3C7wOvS7Ke0TmD81r7ecABrf11wOlzUJskLWiz8ZVUquozwGfa9E3AkdP0+QFw4mzUI0manlc0S5I6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqZsoFJJcOUmbJGn3tsNbZyd5JPDTwIFJ9gPSFu3Lfc9WliTtIXb2PIV/B7wWeBxwNfeFwneA9wxYlyRpDuwwFKrqbODsJK+uqnfPUk2SpDky0ZPXqurdSf4FsHx8nao6f6C6JElzYKJQSPIB4InANcCPW3MBhoIk7UEmfUbzCuDwqqohi5Ekza1Jr1O4HnjskIVIkubepEcKBwJfS/Jl4IdTjVX1W4NUJUmaE5OGwluGLEKSND9M+u2j/z10IZKkuTfpt4++y+jbRgAPBx4GfK+q9h2qMEnS7JvoRHNVPaqq9m0h8FPA7wD/bUfrJHlkki8n+fskNyT5L639CUm+lGR9ko8meXhrf0SbX9+WL39I70yStMt2+S6pNfI/gd/YSdcfAkdX1VOBI4AXJDkKOBM4q6qeBNwFrG79VwN3tfazWj9J0iyadPjoxWOzezG6buEHO1qnXdNwT5t9WPsp4GjgX7f2tYxOYp8DrOS+E9oXAu9JEq+NkKTZM+m3j140Nn0v8C1Gf8R3KMnejG6k9yTgz4F/ALZW1b2ty0buu9vqUmADQFXdm+Ru4ADg9glrlCQ9RJN+++i0B7PxqvoxcESSxcBFwJMfzHbGJVkDrAE49NBDH+rmJEljJn3IzrIkFyXZ3H4+lmTZpDupqq3Ap4FnAYuTTIXRMmBTm94EHNL2twh4NHDHNNs6t6pWVNWKJUuWTFqCJGkCk55o/kvgEkbPVXgc8DetbbuSLGlHCCT5KeDXgRsZhcMJrdsq4OI2fUmbpy3/lOcTJGl2TXpOYUlVjYfAXyV57U7WORhY284r7AVcUFWXJvka8JEkfwx8FTiv9T8P+ECS9cCdwMkTvwtJ0oyYNBTuSPJS4MNt/hSmGdoZV1XXAk+bpv0m4Mhp2n8AnDhhPZKkAUw6fPQK4CTgVuAWRsM7Lx+oJknSHJn0SOEPgVVVdRdAkv2BdzAKC0nSHmLSI4VfngoEgKq6k2mGhiRJu7dJQ2GvJPtNzbQjhUmPMiRJu4lJ/7D/KfDFJP+jzZ8InDFMSZKkuTLpFc3nJ1nH6L5FAC+uqq8NV5YkaS5MPATUQsAgkKQ92C7fOluStOcyFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqBguFJIck+XSSryW5IclrWvv+Sa5I8s32ul9rT5J3JVmf5NokTx+qNknS9IY8UrgX+I9VdThwFPDKJIcDpwNXVtVhwJVtHuBY4LD2swY4Z8DaJEnTGCwUquqWqvq7Nv1d4EZgKbASWNu6rQWOb9MrgfNr5CpgcZKDh6pPkvRAs3JOIcly4GnAl4CDquqWtuhW4KA2vRTYMLbaxta27bbWJFmXZN2WLVsGq1mSFqLBQyHJPsDHgNdW1XfGl1VVAbUr26uqc6tqRVWtWLJkyQxWKkkaNBSSPIxRIHywqj7emm+bGhZqr5tb+ybgkLHVl7U2SdIsGfLbRwHOA26sqj8bW3QJsKpNrwIuHms/tX0L6Sjg7rFhJknSLFg04LZ/BXgZcF2Sa1rbm4C3ARckWQ3cDJzUll0GHAesB74PnDZgbZKkaQwWClX1OSDbWXzMNP0LeOVQ9UiSds4rmiVJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoGC4Uk70+yOcn1Y237J7kiyTfb636tPUnelWR9kmuTPH2ouiRJ2zfkkcJfAS/Ypu104MqqOgy4ss0DHAsc1n7WAOcMWJckaTsGC4Wq+ixw5zbNK4G1bXotcPxY+/k1chWwOMnBQ9UmSZrebJ9TOKiqbmnTtwIHtemlwIaxfhtb2wMkWZNkXZJ1W7ZsGa5SSVqA5uxEc1UVUA9ivXOrakVVrViyZMkAlUnSwjXboXDb1LBQe93c2jcBh4z1W9baJEmzaLZD4RJgVZteBVw81n5q+xbSUcDdY8NMkqRZsmioDSf5MPA84MAkG4E3A28DLkiyGrgZOKl1vww4DlgPfB84bai6JEnbN1goVNUp21l0zDR9C3jlULVIkibjFc2SpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR18yoUkrwgyTeSrE9y+lzXI0kLzbwJhSR7A38OHAscDpyS5PC5rUqSFpZ5EwrAkcD6qrqpqn4EfARYOcc1SdKCsmiuCxizFNgwNr8ReOa2nZKsAda02XuSfGMWalsoDgRun+si5oO8Y9Vcl6D787M55c2Zia08fnsL5lMoTKSqzgXOnes69kRJ1lXVirmuQ9qWn83ZM5+GjzYBh4zNL2ttkqRZMp9C4SvAYUmekOThwMnAJXNckyQtKPNm+Kiq7k3yKuATwN7A+6vqhjkua6FxWE7zlZ/NWZKqmusaJEnzxHwaPpIkzTFDQZLUGQp7uCTHJ6kkTx5ruzzJ1iSXbtP36CR/l+T6JGuTLGrtL0lybZLrknwhyVNn+31ozzNDn80nJ/likh8mef1sv4c9kaGw5zsF+Fx7nfJ24GXjnZLsBawFTq6qXwJuBqau4PpH4Fer6inAH+FJP82Mmfhs3gn8LvCOwatdIAyFPViSfYBnA6sZfcUXgKq6EvjuNt0PAH5UVf+3zV8B/E7r/4Wququ1X8XoGhLpQZvBz+bmqvoK8M+DF71AGAp7tpXA5e0f0x1JnrGDvrcDi5JMXTV6Ave/mHDKauB/zWyZWoCG+GxqBhgKe7ZTGN1YkPZ6yvY61ui7yScDZyX5MqP/rf14vE+SX2MUCr8/SLVaSGb0s6mZM28uXtPMSrI/cDTwlCTF6ILASvKG2s7FKVX1ReA5bf3nAz83tr1fBt4HHFtVdwxdv/ZcM/3Z1MzySGHPdQLwgap6fFUtr6pDGJ0wfs72VkjymPb6CEZHA+9t84cCHwdeNjauKz1YM/bZ1MzziuY9VJJPA2dW1eVjbb8L/ALwS8CTgX2AO4DVVfWJJG8HXsjoPwvnVNU723rvY3Ri7+a2qXu9Y6UerBn+bD4WWAfsC/wEuAc4vKq+M4tvaY9iKEiSOoePJEmdoSBJ6gwFSVJnKEiSOkNBktQZCtIuSrI4yX+YoN89s1GPNJMMBWnXLQZ2GgrS7sjbXEi77m3AE5Ncw+iOnZuBk4BHABdV1Zu3XSHJG3bWR5oPPFKQdt3pwD9U1RGMQuEw4EjgCOAZSZ473rndq2eHfaT5wiMF6aF5fvv5apvfh1EAfHYX+0jzgqEgPTQB3lpV//0h9pHmBYePpF33XeBRbfoTwCvak8RIsnTqjp5jJukjzQseKUi7qKruSPL5JNczegrdh4AvJoHRXTpfyujk81T/Tyb5hR31keYL75IqSeocPpIkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLU/X8iRsV3W3caLgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 295
},
"id": "rYOvw_hjKopb",
"outputId": "b59f0091-33c9-4ad1-a69d-13335025e84e"
},
"source": [
"plt.figsize = (20,20)\n",
"sns.countplot(x = df['foreign'])\n",
"plt.title('foreign Distribution')\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAV70lEQVR4nO3de5RlZX3m8e8jLRq8cO1BaYiNYsxgdFRKxXgXV6IkQzMOYXBJaJCEcS0vUVyOqEl0vCRozCCKS4cRFfAuamASoqNcTMwI2q0sjaDSQxS6ubXcvaCiv/ljv6WHtpq3CqvOqe7z/axVq/Z+97v3+e3uU/XUfvflpKqQJOmu3GPSBUiSlj/DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFlo0kD0tySZLbkrxkkbf95CTfWsxtLvD1X53kPYu4ve8neXCbfn+SNy7itt+d5C8Wa3vaPsT7LLRcJDkNuLWqXjbpWhYiyYXAgcBPgQIuBz4OnFRVP74b2/pAVc07WJK8H9hYVX++kNdq6x4N/ElVPWmh62q6eGSh5eRBwDfuzopJVixyLQv1oqq6H/BA4OXAEcC5SbKYL7IM9lNTyrDQspDkfODpwCltiOW3kuyc5Iwkm5N8N8mfJ7lH6390kn9JclKSG4DXJblXkrcmuTLJdW045Tda/6cl2Tjyeo9J8tU25PXxJB+dHcqZ7Zvk5UmuT3JNkmPmsx9V9YOquhA4BHgC8Adtm69L8oE2fe8kH0hyQ5Kbk3w5yZ5J3gQ8eeTf4JTWv5K8MMnlDEcts237jbz0Hkk+2/bn80ke1Pqtbn1/ETJJLkzyJ0n+PfBu4Ant9W5uy+80rJXkT5NsSHJjknOS7DWyrJK8IMnlbV/eudgBqeXBsNCyUFXPAP6Z4S/0+1bVt4F3ADsDDwaeChwFjP7SfjxwBbAn8CbgROC3gEcB+wGrgL/c8rWS7Ah8Cng/sBvwYeA/bdHtAe21VwHHAu9MsusC9udKYB3DL/8trW3b3gfYHXgB8KOqes0W/wYvGlnn0La/+2/lJZ8HvAHYA7gE+OA8arysvfYX2+vtsmWfJM8A/ho4nOGo6bvAR7bo9ofAY4FHtn6/33ttbXsMCy1LSXZgGMp5VVXdVlXfAf4W+OORbldX1Tuq6g7gduA44GVVdWNV3Qb8VdvGlg4EVgBvr6qfVtUngS9t0eenwOvb8nOB7wMPW+BuXM0QRlv6KUNI7FdVP6uq9VV1a2dbf93260dbWf4PVfVP7RzJaxiOFvZZYL1zeR7w3qr6Stv2q9q2V4/0ObGqbm4BeQFDWGs7Y1houdoDuCfDX7Kzvsvwl/6sq0amVwI7AevbcMjNwKdb+5b2AjbVna/uuGqLPje0EJr1Q+C+C9sFVgE3ztF+JvAZ4CNJrk7yliT37Gxry/q2uryqvt9ed6+td5+3vRj5P2jbvoE7/z9cOzJ9d/6dtA0wLLRcfY/hL/AHjbT9JrBpZL626P8j4OFVtUv72rmq5vrFdQ2waoux9cX4K/wX2l/1BzAMK91JO1r571W1P/C7DMM4R80u3some5ct/qL+JPdlOKK5GvhBa95ppO8DFrDdqxn5P0hyH4ajok1bXUPbJcNCy1JV/Qz4GPCmJPdrJ2yPBz6wlf4/B/4XcFKSfweQZFWSucbPvwj8DHhRkhVJ1gCPW4y6k+yU5KnA2QxDW+fO0efpSR7RhtpuZQjFn7fF1zGco1mog5M8qZ2PeQNwUVVdVVWbGX6xH5lkhyTPBx4yst51wN5tvbl8GDgmyaOS3IthaO/iNiyoKWJYaDl7McNfxlcAXwA+BLz3Lvq/EtgAXJTkVuBzzHGeoap+AjyH4cT1zcCRwN8DC7onYgunJLmN4Zfv24BPAM9qIbalBwBnMQTFZcDnGYamAE4GDktyU5K3L+D1PwS8lmH46QCGfZr1p8ArGIaPHg7835Fl5zNcrnxtku9tudGq+hzwF21/rmEImrnOA2k75015EpDkYuDdVfW+SdciLUceWWgqJXlqkge0Yai1DJd9fnrSdUnLlXeDalo9jOGcyH0YhrkOq6prJluStHw5DCVJ6nIYSpLUtWTDUEney3D9+PVV9TutbTfgo8Bq4DvA4VV1U7ve/WTgYIabeo6uqq+0ddYCs0/TfGNVnd577T322KNWr169qPsjSdu79evXf6+q5rqRdemGoZI8heERCWeMhMVbgBur6sQkJwC7VtUrkxzMcJnkwQzPvzm5qh7fwmUdMMNw89B64ICquumuXntmZqbWrVu3JPslSdurJOuramauZUs2DFVV/8SvPupgDTB7ZHA6w8PRZtvPqMFFwC5JHsjwQLLPtmfi3AR8FnjWUtUsSZrbuM9Z7Dlyxcm1DE8LheE5M6PPvtnY2rbW/iuSHJdkXZJ1mzdvXtyqJWnKTewEd3uI26KNgVXVqVU1U1UzK1fOOeQmSbqbxh0W17XhJdr361v7Ju78ILe9W9vW2iVJYzTusDiH4YNfaN/PHmk/KoMDgVvacNVngN9Lsmv74Jnfa22SpDFayktnPww8jeHjHjcyPOTsROBjSY5leEb+4a37uQxXQm1guHT2GICqujHJG4Avt36vr6q5Ph9AkrSEtss7uL10VpIWbiKXzkqSth+GhSSpy6fObsUBrzhj0iVoGVr/N0f1O0nbIY8sJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lS10TCIsnLknwjyb8m+XCSeyfZN8nFSTYk+WiSHVvfe7X5DW356knULEnTbOxhkWQV8BJgpqp+B9gBOAJ4M3BSVe0H3AQc21Y5FriptZ/U+kmSxmhSw1ArgN9IsgLYCbgGeAZwVlt+OnBom17T5mnLD0qSMdYqSVNv7GFRVZuAtwJXMoTELcB64OaquqN12wisatOrgKvaune0/rtvud0kxyVZl2Td5s2bl3YnJGnKTGIYaleGo4V9gb2A+wDP+nW3W1WnVtVMVc2sXLny192cJGnEJIahngn8W1VtrqqfAp8Engjs0oalAPYGNrXpTcA+AG35zsAN4y1ZkqbbJMLiSuDAJDu1cw8HAZcCFwCHtT5rgbPb9Dltnrb8/KqqMdYrSVNvEucsLmY4Uf0V4OuthlOBVwLHJ9nAcE7itLbKacDurf144IRx1yxJ025Fv8viq6rXAq/dovkK4HFz9L0d+KNx1CVJmpt3cEuSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lS10TCIskuSc5K8s0klyV5QpLdknw2yeXt+66tb5K8PcmGJF9L8phJ1CxJ02xSRxYnA5+uqt8G/gNwGXACcF5VPRQ4r80DPBt4aPs6DnjX+MuVpOk29rBIsjPwFOA0gKr6SVXdDKwBTm/dTgcObdNrgDNqcBGwS5IHjrlsSZpqkziy2BfYDLwvyVeTvCfJfYA9q+qa1udaYM82vQq4amT9ja3tTpIcl2RdknWbN29ewvIlafpMIixWAI8B3lVVjwZ+wC+HnACoqgJqIRutqlOraqaqZlauXLloxUqSJhMWG4GNVXVxmz+LITyumx1eat+vb8s3AfuMrL93a5MkjcnYw6KqrgWuSvKw1nQQcClwDrC2ta0Fzm7T5wBHtauiDgRuGRmukiSNwYoJve6LgQ8m2RG4AjiGIbg+luRY4LvA4a3vucDBwAbgh62vJGmMJhIWVXUJMDPHooPm6FvAC5e8KEnSVnkHtySpy7CQJHUZFpKkrnmFRZLz5tMmSdo+3eUJ7iT3BnYC9mgP9ktbdH/muItakrR96l0N9V+BlwJ7Aev5ZVjcCpyyhHVJkpaRuwyLqjoZODnJi6vqHWOqSZK0zMzrPouqekeS3wVWj65TVWcsUV2SpGVkXmGR5EzgIcAlwM9acwGGhSRNgfnewT0D7N/uppYkTZn53mfxr8ADlrIQSdLyNd8jiz2AS5N8CfjxbGNVHbIkVUmSlpX5hsXrlrIISdLyNt+roT6/1IVIkpav+V4NdRu//JjTHYF7Aj+oqvsvVWGSpOVjvkcW95udThJgDXDgUhUlSVpeFvzU2Rr8HfD7S1CPJGkZmu8w1HNGZu/BcN/F7UtSkSRp2Znv1VD/cWT6DuA7DENRkqQpMN9zFscsdSGSpOVrvh9+tHeSTyW5vn19IsneS12cJGl5mO8J7vcB5zB8rsVewP9ubZKkKTDfsFhZVe+rqjva1/uBlUtYlyRpGZlvWNyQ5MgkO7SvI4EblrIwSdLyMd+weD5wOHAtcA1wGHD0EtUkSVpm5nvp7OuBtVV1E0CS3YC3MoSIJGk7N98ji0fOBgVAVd0IPHppSpIkLTfzDYt7JNl1dqYdWcz3qESStI2b7y/8vwW+mOTjbf6PgDctTUmSpOVmvndwn5FkHfCM1vScqrp06cqSJC0n8x5KauFgQEjSFFrwI8olSdPHsJAkdRkWkqSuiYVFe2zIV5P8fZvfN8nFSTYk+WiSHVv7vdr8hrZ89aRqlqRpNckjiz8DLhuZfzNwUlXtB9wEHNvajwVuau0ntX6SpDGaSFi0z8L4A+A9bT4Ml+We1bqcDhzapte0edryg1p/SdKYTOrI4m3AfwN+3uZ3B26uqjva/EZgVZteBVwF0Jbf0vrfSZLjkqxLsm7z5s1LWbskTZ2xh0WSPwSur6r1i7ndqjq1qmaqamblSj9qQ5IW0ySe7/RE4JAkBwP3Bu4PnAzskmRFO3rYG9jU+m8C9gE2JlkB7IyfpSFJYzX2I4uqelVV7V1Vq4EjgPOr6nnABQyfkwGwFji7TZ/T5mnLz6+qGmPJkjT1ltN9Fq8Ejk+ygeGcxGmt/TRg99Z+PHDChOqTpKk10ceMV9WFwIVt+grgcXP0uZ3hKbeSpAlZTkcWkqRlyrCQJHUZFpKkLsNCktRlWEiSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1jT0skuyT5IIklyb5RpI/a+27Jflsksvb911be5K8PcmGJF9L8phx1yxJ024SRxZ3AC+vqv2BA4EXJtkfOAE4r6oeCpzX5gGeDTy0fR0HvGv8JUvSdBt7WFTVNVX1lTZ9G3AZsApYA5zeup0OHNqm1wBn1OAiYJckDxxz2ZI01SZ6ziLJauDRwMXAnlV1TVt0LbBnm14FXDWy2sbWtuW2jkuyLsm6zZs3L1nNkjSNJhYWSe4LfAJ4aVXdOrqsqgqohWyvqk6tqpmqmlm5cuUiVipJmkhYJLknQ1B8sKo+2Zqvmx1eat+vb+2bgH1GVt+7tUmSxmQSV0MFOA24rKr+x8iic4C1bXotcPZI+1HtqqgDgVtGhqskSWOwYgKv+UTgj4GvJ7mktb0aOBH4WJJjge8Ch7dl5wIHAxuAHwLHjLdcSdLYw6KqvgBkK4sPmqN/AS9c0qIkSXfJO7glSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktS1YtIFSFqYK1//iEmXoGXoN//y60u6fY8sJEldhoUkqcuwkCR1GRaSpK5tJiySPCvJt5JsSHLCpOuRpGmyTYRFkh2AdwLPBvYHnptk/8lWJUnTY5sIC+BxwIaquqKqfgJ8BFgz4ZokaWpsK/dZrAKuGpnfCDx+tEOS44Dj2uz3k3xrTLVNgz2A7026iOUgb1076RJ0Z743Z702i7GVB21twbYSFl1VdSpw6qTr2B4lWVdVM5OuQ9qS783x2VaGoTYB+4zM793aJEljsK2ExZeBhybZN8mOwBHAOROuSZKmxjYxDFVVdyR5EfAZYAfgvVX1jQmXNU0c3tNy5XtzTFJVk65BkrTMbSvDUJKkCTIsJEldhsWUSnJokkry223+UUm+mOQbSb6W5L+M9N03ycXtUSsfbRcZkOQpSb6S5I4kh01qX7T9WaT35/FJLm39z0uy1XsI1GdYTK/nAl9o3wF+CBxVVQ8HngW8LckubdmbgZOqaj/gJuDY1n4lcDTwoXEVramxGO/PrwIzVfVI4CzgLeMqfntkWEyhJPcFnsTwQ3UEQFV9u6oub9NXA9cDK5MEeAbDDxvA6cChrd93quprwM/Huwfani3i+/OCqvpha7+I4f4s3U2GxXRaA3y6qr4N3JDkgNGFSR4H7Aj8P2B34OaquqMt3sjw+BVpqSzF+/NY4B+XruTtn2ExnZ7L8DBG2vfZQ32SPBA4Ezimqjxi0CQs6vszyZHADPA3i1znVNkmbsrT4kmyG8Nh+yOSFMNNjpXkFcD9gH8AXlNVF7VVbgB2SbKi/fXmo1a0ZBb7/ZnkmcBrgKdW1Y/HuCvbHY8sps9hwJlV9aCqWl1V+wD/BjwZ+BRwRlXNjv9Sw12bF7T1ANYCZ4+5Zk2PRXt/Jnk08D+BQ6rq+jHuw3bJO7inTJILgDdX1adH2l4CvIzhr7LRx6gcXVWXJHkww3DAbgxXmBxZVT9O8liGH+BdgduBa9vVKtLdssjvz88BjwCuaf2vrKpDxrEf2yPDQpLU5TCUJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtpAZK8JMllST74a27nkCQnLFZd0lLz0llpAZJ8E3hmVW2cR9/Zu4qlbZ5HFtI8JXk38GDgH5O8PMnftc9KuCjJI1uf1yU5M8m/AGcmWZnkE0m+3L6e2PodneSUNv2Qto2vJ3ljku+39qcluTDJWUm+meSD7Smr0tgZFtI8VdULgKuBpwOrga+2z0p4NXDGSNf9GY4+nguczPBZC48F/jPwnjk2fTJwclU9guGpqaMeDby0bfPBwBMXbYekBfBBgtLd8ySGX/5U1flJdk9y/7bsnKr6UZt+JrD/yAHB/dvnNYx6Au0zGBg+SOqtI8u+NDvkleQShpD6wmLuiDQfhoW0+H4wMn0P4MCqun20wwJGk0aflPoz/JnVhDgMJd09/ww8D4ZzC8D3qurWOfr9H+DFszNJHjVHn4toRym0T4aTlhvDQrp7XgcckORrwIkMj8aey0uAmXYi/FLgBXP0eSlwfNvWfsAtS1Cv9Gvx0llpwpLsBPyoqirJEcBzq2rNpOuSRjn+KU3eAcAp7bLYm4HnT7ge6Vd4ZCFJ6vKchSSpy7CQJHUZFpKkLsNCktRlWEiSuv4/5ppimgydJPcAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CExsu6rUKopb"
},
"source": [
"# Bar Charts Interpretation\n",
"---\n",
"\n",
"These bar charts represent the frequencies of each category in the Y-axis and the category names in the X-axis.\n",
"\n",
"The ideal bar chart is where each category has comparable frequency. Hence, there are enough rows for each category in the data for the ML algorithm to learn.\n",
"\n",
"If there is a column which shows too skewed distribution where there is only one dominant bar and the other categories are present in very low numbers. These kind of columns may not be very helpful in machine learning. We will confirm this in the correlation analysis section and take a final call to select or reject the column.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ngd05xB7Kopb"
},
"source": [
"# Plotting histograms for continuous variables\n",
"\n"
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 695
},
"id": "C_8OdVbMKopc",
"outputId": "e4e2c5d4-b62b-4f77-9680-cc76a8a59194"
},
"source": [
"df.hist(['age', 'amount','duration'], figsize=(18,10), rwidth=0.95)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f6681857b10>,\n",
" <matplotlib.axes._subplots.AxesSubplot object at 0x7f6681ba7c50>],\n",
" [<matplotlib.axes._subplots.AxesSubplot object at 0x7f6681c42710>,\n",
" <matplotlib.axes._subplots.AxesSubplot object at 0x7f6682156ad0>]],\n",
" dtype=object)"
]
},
"metadata": {},
"execution_count": 442
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBQAAAJPCAYAAADMhoeSAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf5BlZ3kf+O9jjQAFYQSIdOSR7MFBTgpnNgLPYjkkTgvWNkiOhROHyGFBwmQnyUIWl8cbD/ZujH9QJe9aELPJ4pItjHCwhYIhqJC8QcZqu3AZMAIhIcmYAYaSJkIyvwQjMM7gZ//oM3A1mp7uM9Pd997uz6fqVp/znnPufd733p575tvnR3V3AAAAAMb4pmkXAAAAAMwfgQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNEECgAAwLZXVbuqqqtqx7RrgXkhUAAAAABGEyjAFlBV+6vq41X1paq6q6p+eGg/raquqqrPVNUnq+rlk8l7VT2+qq6pqvuq6lBV/WJVnTbd3gAAW9EJ9leuqKo/qqrXVtUXquoTVfX3hvZ7quqBqrp84nkeX1Vvqqo/r6pPVdX/UVXfNCx7VVX9p4l1H3bUQVUtVdUvDK/3pap6V1WdPaz+h8PPL1TV4ar6ns0ZGZhfAgXYGj6e5B8keXySn0vyn6rqnCT/S5LnJbkgyTOSPP+Y7d6Y5EiSpyZ5epLvT/IvNqdkAGCbWWl/JUm+O8ntSZ6U5LeSXJfkf8zyPsr/nOQ/VNWZw7r/z/Ac357kHyZ5cZKXjKjjnw/r//Ukj0ryk0P79w4/z+ruM7v7j8d2ELYbgQJsAd39n7v7v3X3X3X3W5J8LMkzk7wgya90973d/fkkVx7dpqoWklyc5Me7+6HufiDJa5NcNoUuAABb3An2V5Lkk939G939tSRvSXJekp/v7q9297uS/GWSpw5HUl6W5JXd/aXuPpjkqiQvGlHKb3T3n3X3V5Jcn+U/vAAnwQVHYAuoqhcn+Ykku4amM5OcneRbktwzserk9LclOT3JfVV1tO2bjlkHAGBdnGB/5WtJ7p9Y9StJ0t3Hth1d//Qkn5pY9qkkO0eU8umJ6S8PzwucBIECzLmq+rYkv5bkOUn+uLu/VlW3Jakk9yU5d2L18yam70ny1SRnd/eRzaoXANh+VtlfGeMzSf57lv8wctfQ9q1JDg3TDyX5axPr/40Rz90ja4FtzykPMP8em+UvwD9Pkqp6SZK/Myy7PskrqmpnVZ2V5KeObtTd9yV5V5Krquqbq+qbqupvVtU/3NzyAYBt4ET7K2s2nBJxfZJXV9XjhqDiJ5IcvRDjbUm+t6q+taoen+SVI57+z5P8VZavzQCsgUAB5lx335Xlcwf/OMuHC+5O8kfD4l/Lcmhwe5IPJbkpyxdh/Nqw/MVZvhjRXUk+n+StSY5eHAkAYF2ssr8y1r/J8pEIn0jynixfxPENw+vcnOVrMNye5NYk7xxR45eTvDrJHw13m7jwJOuDbaO6HdkD20VVPS/Jr3b3t027FgAAYL45QgG2sKo6o6ourqodVbUzyc8mefu06wIAAOafIxRgC6uqv5bkD5L87SxfHfnGJK/o7i9OtTAAAGDuCRQAAACA0ZzyAAAAAIwmUAAAAABG2zHtApLk7LPP7l27dm346zz00EN57GMfu+GvM4+MzYkZn5UZm5UZm5Vt5bG59dZbP9PdT552HUzfyezfbOXfDX2bT/o2n/Rt/sx6v1bav5mJQGHXrl35wAc+sOGvs7S0lMXFxQ1/nXlkbE7M+KzM2KzM2KxsK49NVX1q2jUwG05m/2Yr/27o23zSt/mkb/Nn1vu10v6NUx4AAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNF2TLuA7WjX/hunXcIj7Nt9JIvTLgIAWNEs7j8kycErL5l2CQBMiSMUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMtmqgUFXnVdUtVXVXVd1ZVa8Y2l9VVYeq6rbhcfHENq+sqgNV9dGq+oGN7AAAAACw+XasYZ0jSfZ19wer6nFJbq2qm4dlr+3uX55cuaqeluSyJN+Z5FuS/F5VfUd3f209CwcAAACmZ9UjFLr7vu7+4DD9pSR3J9l5gk0uTXJdd3+1uz+Z5ECSZ65HsQAAAMBsGHUNharaleTpSd43NL28qm6vqjdU1ROGtp1J7pnY7N6cOIAAAAAA5sxaTnlIklTVmUl+J8mPd/cXq+r1SX4hSQ8/r0ryYyOeb2+SvUmysLCQpaWlEWWfnMOHD2/K66xm3+4j0y7hERbOyEyMzayalc/OLDI2KzM2KzM2AADzb02BQlWdnuUw4c3d/bYk6e77J5b/WpJ3DrOHkpw3sfm5Q9vDdPfVSa5Okj179vTi4uJJlD/O0tJSNuN1VnPF/hunXcIj7Nt9JC+YgbGZVbPy2ZlFxmZlxmZlxgYAYP6t5S4PleSaJHd392sm2s+ZWO2Hk3xkmL4hyWVV9eiqekqS85O8f/1KBgAAAKZtLUcoPCvJi5LcUVW3DW0/neRHq+qCLJ/ycDDJv0yS7r6zqq5PcleW7xDxMnd4AAAAgK1l1UChu9+TpI6z6KYTbPPqJK8+hboAAACAGTbqLg8AAAAAiUABAAAAOAkCBQAAAGA0gQIAsG1V1WlV9aGqeucw/5Sqel9VHaiqt1TVo4b2Rw/zB4blu6ZZNwDMAoECALCdvSLJ3RPzv5Tktd391CSfT/LSof2lST4/tL92WA8AtjWBAgCwLVXVuUkuSfLrw3wleXaStw6rXJvk+cP0pcN8huXPGdYHgG1LoAAAbFf/Psm/TfJXw/yTknyhu48M8/cm2TlM70xyT5IMyx8c1geAbWvHtAsAANhsVfWDSR7o7luranEdn3dvkr1JsrCwkKWlpVHbHz58eMVt9u0+ctz2aVtrH0/Ut3mnb/NJ3+bTVu3bvPZLoAAAbEfPSvJDVXVxksck+eYkv5LkrKraMRyFcG6SQ8P6h5Kcl+TeqtqR5PFJPnvsk3b31UmuTpI9e/b04uLiqKKWlpay0jZX7L9x1HNtloMvXFzTeifq27zTt/mkb/Npq/ZtXvvllAcAYNvp7ld297ndvSvJZUl+v7tfmOSWJD8yrHZ5kncM0zcM8xmW/3539yaWDAAzR6AAAPANP5XkJ6rqQJavkXDN0H5NkicN7T+RZP+U6gOAmeGUBwBgW+vupSRLw/QnkjzzOOv8RZJ/uqmFAcCMc4QCAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADCaQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNFWDRSq6ryquqWq7qqqO6vqFUP7E6vq5qr62PDzCUN7VdXrqupAVd1eVc/Y6E4AAAAAm2stRygcSbKvu5+W5MIkL6uqpyXZn+Td3X1+kncP80nyvCTnD4+9SV6/7lUDAAAAU7VqoNDd93X3B4fpLyW5O8nOJJcmuXZY7dokzx+mL03ypl723iRnVdU56145AAAAMDWjrqFQVbuSPD3J+5IsdPd9w6JPJ1kYpncmuWdis3uHNgAAAGCL2LHWFavqzCS/k+THu/uLVfX1Zd3dVdVjXriq9mb5lIgsLCxkaWlpzOYn5fDhw5vyOqvZt/vItEt4hIUzMhNjM6tm5bMzi4zNyozNyowNAMD8W1OgUFWnZzlMeHN3v21ovr+qzunu+4ZTGh4Y2g8lOW9i83OHtofp7quTXJ0ke/bs6cXFxZPrwQhLS0vZjNdZzRX7b5x2CY+wb/eRvGAGxmZWzcpnZxYZm5UZm5UZGwCA+beWuzxUkmuS3N3dr5lYdEOSy4fpy5O8Y6L9xcPdHi5M8uDEqREAAADAFrCWIxSeleRFSe6oqtuGtp9OcmWS66vqpUk+leQFw7Kbklyc5ECSLyd5ybpWDAAAAEzdqoFCd78nSa2w+DnHWb+TvOwU6wIAAABm2Ki7PAAAAAAkAgUAAADgJAgUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRBAoAwLZTVY+pqvdX1Yer6s6q+rmh/SlV9b6qOlBVb6mqRw3tjx7mDwzLd02zfgCYBQIFAGA7+mqSZ3f3301yQZLnVtWFSX4pyWu7+6lJPp/kpcP6L03y+aH9tcN6ALCtCRQAgG2nlx0eZk8fHp3k2UneOrRfm+T5w/Slw3yG5c+pqtqkcgFgJu2YdgHMnl37b5x2Ccd18MpLpl0CAFtIVZ2W5NYkT03yH5N8PMkXuvvIsMq9SXYO0zuT3JMk3X2kqh5M8qQkn9nUogFghggUAIBtqbu/luSCqjoryduT/O1Tfc6q2ptkb5IsLCxkaWlp1PaHDx9ecZt9u48ct33a1trHE/Vt3unbfNK3+bRV+zav/RIoAADbWnd/oapuSfI9Sc6qqh3DUQrnJjk0rHYoyXlJ7q2qHUken+Szx3muq5NcnSR79uzpxcXFUbUsLS1lpW2umNUjCF+4uKb1TtS3eadv80nf5tNW7du89ss1FACAbaeqnjwcmZCqOiPJ9yW5O8ktSX5kWO3yJO8Ypm8Y5jMs//3u7s2rGABmjyMUAIDt6Jwk1w7XUfimJNd39zur6q4k11XVLyb5UJJrhvWvSfKbVXUgyeeSXDaNomfZatdg2rf7yFSOsnANJoCNI1AAALad7r49ydOP0/6JJM88TvtfJPmnm1AaAMwNpzwAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADDajmkXAGPt2n/jpr/mvt1HcsUqr3vwyks2qRoAAIDpW/UIhap6Q1U9UFUfmWh7VVUdqqrbhsfFE8teWVUHquqjVfUDG1U4AAAAMD1rOeXhjUmee5z213b3BcPjpiSpqqcluSzJdw7b/L9Vddp6FQsAAADMhlUDhe7+wySfW+PzXZrkuu7+and/MsmBJM88hfoAAACAGXQqF2V8eVXdPpwS8YShbWeSeybWuXdoAwAAALaQk70o4+uT/EKSHn5eleTHxjxBVe1NsjdJFhYWsrS0dJKlrN3hw4c35XVWs2/3kWmX8AgLZ+TrYzOL9SXTrW/hjNVfdxY+W9MwK79Xs8jYrMzYAADMv5MKFLr7/qPTVfVrSd45zB5Kct7EqucObcd7jquTXJ0ke/bs6cXFxZMp5bhWugvAvt1fy1XveWjdXmeso3cBWO1uAdOwb/eRvGB4D2axviQ5+MLFJNOpb9/uI7nqjhP/uhytb7tZWlrKev7+biXGZmXGBgBg/p3UKQ9Vdc7E7A8nOXoHiBuSXFZVj66qpyQ5P8n7T61EAAAAYNaseoRCVf12ksUkZ1fVvUl+NsliVV2Q5VMeDib5l0nS3XdW1fVJ7kpyJMnLuvtrG1M6AAAAMC2rBgrd/aPHab7mBOu/OsmrT6UoAAAAYLadyl0eAAAAgG1KoAAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADCaQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAtp2qOq+qbqmqu6rqzqp6xdD+xKq6uao+Nvx8wtBeVfW6qjpQVbdX1TOm2wMAmD6BAgCwHR1Jsq+7n5bkwiQvq6qnJdmf5N3dfX6Sdw/zSfK8JOcPj71JXr/5JQPAbBEoAADbTnff190fHKa/lOTuJDuTXJrk2mG1a5M8f5i+NMmbetl7k5xVVedsctkAMFMECgDAtlZVu5I8Pcn7kix0933Dok8nWRimdya5Z2Kze4c2ANi2dky7AACAaamqM5P8TpIf7+4vVtXXl3V3V1WPfL69WT4lIgsLC1laWhpVz+HDh1fcZt/uI6Oea7McrXe1+hbOmE4fxr4HJ+NE79u807f5pG/zZ177JVAAALalqjo9y2HCm7v7bUPz/VV1TnffN5zS8MDQfijJeRObnzu0PUx3X53k6iTZs2dPLy4ujqppaWkpK21zxf4bRz3XZjn4wsUkq9e3b/eRXHXH5u96Hq1vI53ofZt3+jaf9G3+zGu/nPIAAGw7tXwowjVJ7u7u10wsuiHJ5cP05UneMdH+4uFuDxcmeXDi1AgA2JYcoQAAbEfPSvKiJHdU1W1D208nuTLJ9VX10iSfSvKCYdlNSS5OciDJl5O8ZHPLBYDZI1AAALad7n5Pklph8XOOs34nedmGFgUAc8YpDwAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKOtGihU1Ruq6oGq+shE2xOr6uaq+tjw8wlDe1XV66rqQFXdXlXP2MjiAQAAgOlYyxEKb0zy3GPa9id5d3efn+Tdw3ySPC/J+cNjb5LXr0+ZAAAAwCxZNVDo7j9M8rljmi9Ncu0wfW2S50+0v6mXvTfJWVV1znoVCwAAAMyGk72GwkJ33zdMfzrJwjC9M8k9E+vdO7QBAAAAW8iOU32C7u6q6rHbVdXeLJ8WkYWFhSwtLZ1qKV+3b/eR47YvnLHyss1wtI/TrGElC2fMdn3JdOtby2dnPT/D8+Tw4cPbtu+rMTYrMzYAAPPvZAOF+6vqnO6+bzil4YGh/VCS8ybWO3doe4TuvjrJ1UmyZ8+eXlxcPMlSHumK/Tcet33f7iO56o5TzlBO2sEXLiZZub5p2rf7SF4wvAezWF8y3fFby2fnaH3bzdLSUtbz93crMTYrMzYAAPPvZE95uCHJ5cP05UneMdH+4uFuDxcmeXDi1AgAAABgi1j1z/VV9dtJFpOcXVX3JvnZJFcmub6qXprkU0leMKx+U5KLkxxI8uUkL9mAmgEAAIApWzVQ6O4fXWHRc46zbid52akWBQAAAMy2kz3lAQAAANjGBAoAAADAaAIFAAAAYDSBAgAAADDaqhdlBMbZtf/GaZdwXAevvGTaJQAAAFuIIxQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMtmPaBQCba9f+G9f1+fbtPpIrTvE5D155yTpVAwAAbBZHKAAAAACjCRQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAABsO1X1hqp6oKo+MtH2xKq6uao+Nvx8wtBeVfW6qjpQVbdX1TOmVzkAzA6BAgCwHb0xyXOPaduf5N3dfX6Sdw/zSfK8JOcPj71JXr9JNQLATBMoAADbTnf/YZLPHdN8aZJrh+lrkzx/ov1Nvey9Sc6qqnM2p1IAmF0CBQCAZQvdfd8w/ekkC8P0ziT3TKx379AGANvajmkXAAAwa7q7q6rHbldVe7N8WkQWFhaytLQ0avvDhw+vuM2+3UfGlrMpjta7Wn0LZ0ynD2Pfg5Nxovdt3unbfNK3+TOv/RIoAAAsu7+qzunu+4ZTGh4Y2g8lOW9ivXOHtkfo7quTXJ0ke/bs6cXFxVEFLC0tZaVtrth/46jn2iwHX7iYZPX69u0+kqvu2Pxdz6P17drA8du3+2u56j0Pjd7u4JWXbEA16+tEn8l5p2/zaav2bV775ZQHAIBlNyS5fJi+PMk7JtpfPNzt4cIkD06cGgEA25YjFACAbaeqfjvJYpKzq+reJD+b5Mok11fVS5N8KskLhtVvSnJxkgNJvpzkJZteMADMoFMKFKrqYJIvJflakiPdvaeqnpjkLUl2JTmY5AXd/flTKxMAYP1094+usOg5x1m3k7xsYysCgPmzHqc8XNTdF3T3nmF+pXs4AwAAAFvERlxDYaV7OAMAAABbxKkGCp3kXVV163CbpGTlezgDAAAAW8SpXpTx73f3oar660lurqo/nVx4ons4n+p9mk9kpXscT+v+x0et9T7N07BwxmzXl0y3vrV8drbr+K3H79U83nN3Leb1fsKbwdgAAMy/UwoUuvvQ8POBqnp7kmdm5Xs4H7vtKd2n+URWug/ytO5/fNRa79M8Dft2H8kLhvdgFutLpjt+a/nszPL7m2xcfevxe3W0tq1mXu8nvBmMDQDA/Dvp/wVU1WOTfFN3f2mY/v4kP59v3MP5yjz8Hs4AAMAxds3qHyOuvGTaJQAz7lT+rLiQ5O1VdfR5fqu7/7+q+pMc/x7OAAAAwBZx0oFCd38iyd89Tvtnc5x7OAMAAABbx0bcNhIAAADY4qZ3hUKAYziHFAAA5ocjFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADCaQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGG3HtAsAmBe79t84av19u4/kipHbnIyDV16y4a8BAADHcoQCAAAAMJpAAQAAABjNKQ8AAMCKxp7yt1mc8gfT5wgFAAAAYDRHKABsEf6CBADAZnKEAgAAADCaQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGg7pl0AAADAydq1/8aT2m7f7iO54iS3XYuDV16yYc8Ns8IRCgAAAMBojlAAAADYICd7BMWpWMvRF46gYD04QgEAAAAYzREKAGyKyb/QbPR5q2P4Cw0AwMlxhAIAAAAw2oYdoVBVz03yK0lOS/Lr3X3lRr0WAMBGs28DbEXTuMbDWjiCcD5sSKBQVacl+Y9Jvi/JvUn+pKpu6O67NuL1AAA2kn0bgOk4NvCYldMmBR7LNuqUh2cmOdDdn+juv0xyXZJLN+i1AAA2mn0bADjGRp3ysDPJPRPz9yb57g16LQCAjWbfBoBHWK9TRtb7yIvNOoKiunv9n7TqR5I8t7v/xTD/oiTf3d0vn1hnb5K9w+zfSvLRdS/kkc5O8plNeJ15ZGxOzPiszNiszNisbCuPzbd195OnXQTray37NkP7qe7fbOXfDX2bT/o2n/Rt/sx6v467f7NRRygcSnLexPy5Q9vXdffVSa7eoNc/rqr6QHfv2czXnBfG5sSMz8qMzcqMzcqMDXNo1X2b5NT3b7by74a+zSd9m0/6Nn/mtV8bdQ2FP0lyflU9paoeleSyJDds0GsBAGw0+zYAcIwNOUKhu49U1cuT/Ncs31rpDd1950a8FgDARrNvAwCPtFGnPKS7b0py00Y9/0na1FMs5oyxOTHjszJjszJjszJjw9zZpH2brfy7oW/zSd/mk77Nn7ns14ZclBEAAADY2jbqGgoAAADAFrZlA4WqOq+qbqmqu6rqzqp6xdD+xKq6uao+Nvx8wrRr3WxV9Ziqen9VfXgYm58b2p9SVe+rqgNV9ZbholPbUlWdVlUfqqp3DvPGJklVHayqO6rqtqr6wNC27X+njqqqs6rqrVX1p1V1d1V9j/FJqupvDZ+Zo48vVtWPGxt4uKp6blV9dPiu2T/telZzgn2tV1XVoYnf+Ysntnnl0L+PVtUPTLTPXN/HfOfVstcN9d9eVc+YeJ7Lh/U/VlWXT6s/E/Ws9G/yXL5vVfWGqnqgqj4y0bZu71NVfdfwOTgwbFtT7tv/Pexn3F5Vb6+qs4b2XVX1lYn371dX68M0v4dX6Nu6fQZrivvuK/TtLRP9OlhVtw3tc/W+HVd3b8lHknOSPGOYflySP0vytCT/V5L9Q/v+JL807VqnMDaV5Mxh+vQk70tyYZLrk1w2tP9qkn897VqnOEY/keS3krxzmDc2y30/mOTsY9q2/e/UxFhcm+RfDNOPSnKW8XnEGJ2W5NNJvs3YeHh84zH8bnw8ybcP/358OMnTpl3XKjWvtK/1qiQ/eZz1nzb069FJnjL097RZ7fuY77wkFyf53WEf68Ik7xvan5jkE8PPJwzTT5h234753B39N3ku37ck35vkGUk+shHvU5L3D+vWsO3zpty370+yY5j+pYm+7Zpc75jnOW4fpvk9vELf1u0zmCnuux+vb8csvyrJv5vH9+14jy17hEJ339fdHxymv5Tk7iQ7k1ya5Z3+DD+fP50Kp6eXHR5mTx8eneTZSd46tG/LsUmSqjo3ySVJfn2YrxibE9n2v1NJUlWPz/IXyDVJ0t1/2d1fiPE51nOSfLy7PxVjA5OemeRAd3+iu/8yyXVZ/h2ZWSfY11rJpUmu6+6vdvcnkxzIcr/nqe8r/bt1aZI3DftY701yVlWdk+QHktzc3Z/r7s8nuTnJcze76BOY/Dd5JTP9vnX3Hyb53DHN6/I+Dcu+ubvf28v/e3tTNvG76nh96+53dfeRYfa9Sc490XOs0oepfQ+v8L6tZNRncNr77ifq21DbC5L89omeY1bft+PZsoHCpKraleTpWf5L/EJ33zcs+nSShSmVNVW1fEj/bUkeyPI/mh9P8oWJf6DuzYl3Crayf5/k3yb5q2H+STE2R3WSd1XVrVW1d2jzO7XsKUn+PMlv1PLpMr9eVY+N8TnWZfnGl6ixgW/YmeSeifm5+q45Zl8rSV4+HJL9honDcVfq46z2fcx33rz17ajJf5OTrfG+Jev3Pu0cpo9tnxU/luW/XB/1lGEf5A+q6h8MbSfqwyx+D6/HZ3CW993/QZL7u/tjE21z/b5t+UChqs5M8jtJfry7vzi5bEh7tuVtLrr7a919QZZTzWcm+dtTLmkmVNUPJnmgu2+ddi0z6u939zOSPC/Jy6rqeycXbuffqSzfhvcZSV7f3U9P8lCWD0P7um0+PhnOX/yhJP/52GXbfWxgnh1nX+v1Sf5mkguS3Jflw3vn0Zb+zjvOv8lb5X17mHl/n+TEXkkAACAASURBVFZSVT+T5EiSNw9N9yX51mEf5CeS/FZVffNan29GxmlLfgaP8aN5eIg39+/blg4Uqur0LH/Bvbm73zY03z8cQnL0UJIHplXfLBgOyb4lyfdk+bCvHcOic5Mcmlph0/OsJD9UVQezfNjUs5P8SoxNkqS7Dw0/H0jy9iyHUX6nlt2b5N7uPvrXubdmOWAwPt/wvCQf7O77h3ljA99wKMl5E/Nz8V1zvH2t7r5/+MPFXyX5tSx/VyQr93Em+z7yO2+u+jZ42L/JW+V9G6zX+3QoDz+lYCb6WFVXJPnBJC8c/kOZ4XSAzw7Tt2b56OPvyIn7MFPfw+v4GfxsZnDffajnHyd5y9G2rfC+bdlAYTg/5Zokd3f3ayYW3ZDk6JVbL0/yjs2ubdqq6sn1jSvCnpHk+7J83uMtSX5kWG1bjk13v7K7z+3uXVk+DPD3u/uFMTapqsdW1eOOTmf5okAfid+pJEl3fzrJPVX1t4am5yS5K8Zn0rGpvLGBb/iTJOcPVyZ/VJa/g26Yck0ntNK+1tEd3cEPZ/m7Ilnuz2VV9eiqekqS87N80bGZ6/tJfOfdkOTFtezCJA8OhyT/1yTfX1VPGA7f/v6hbRY87N/krfC+TViX92lY9sWqunD4vL84U/6uqqrnZvnU3B/q7i9PtD+5qk4bpr89y+/TJ1bpw0x9D6/XZ3AIWWZx3/1/SvKn3f31Uxm2wvs2tatBbvQjyd/P8uEftye5bXhcnOVzat6d5GNJfi/JE6dd6xTG5n9I8qFhbD6Sb1xl9Nuz/Mt5IMuHvz162rVOeZwW8427PGz7sRnG4MPD484kPzO0b/vfqYkxuiDJB4bfrf+S5StFG5/lsXlslv9i8PiJNmPj4THxGPZT/izLf6H6mWnXs4Z6V9rX+s0kdwztNyQ5Z2Kbnxn699FMXC1/1vo+9jsvy1dh/49D/Xck2TPxXD827D8cSPKSafdtqOl4/ybP5fuW5VDkviT/PctHC750Pd+nJHuyvL/88ST/IUlNuW8HsnzdgKO/c786rPtPhs/qbUk+mOQfrdaHaX4Pr9C3dfsMZor77sfr29D+xiT/6ph15+p9O97jaFEAAAAAa7ZlT3kAAAAANo5AAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADCaQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADCaQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKMMOq6o1V9Yub9FovrKp3bcZrAQAA80+gANtQVe2qqq6qHUfbuvvN3f3906wLAACYHwIF2IKq6rRp1wAAAGxtAgWYIVX19Kr6YFV9qarekuQxQ/sVVfWeY9btqnrqMP3Gqnp9Vd1UVQ8luaiqLqmqD1XVF6vqnqp61cTmfzj8/EJVHa6q7zn2Narq71XVn1TVg8PPvzexbKmqfqGq/mio9V1VdfYGDQsAADCDBAowI6rqUUn+S5LfTPLEJP85yT8Z8RT/PMmrkzwuyXuSPJTkxUnOSnJJkn9dVc8f1v3e4edZ3X1md//xMbU8McmNSV6X5ElJXpPkxqp60jGv95Ikfz3Jo5L85IhaAQCAOSdQgNlxYZLTk/z77v7v3f3WJH8yYvt3dPcfdfdfdfdfdPdSd98xzN+e5LeT/MM1PtclST7W3b/Z3Ue6+7eT/GmSfzSxzm90959191eSXJ/kghG1AgAAc06gALPjW5Ic6u6eaPvUiO3vmZypqu+uqluq6s+r6sEk/yrJWk9L+JbjvPankuycmP/0xPSXk5w5olYAAGDOCRRgdtyXZGdV1UTbtw4/H0ry1442VtXfOM72fcz8byW5Icl53f34JL+apFZY91j/Lcm3HdP2rUkOrbIdAACwTQgUYHb8cZIjSf63qjq9qv5xkmcOyz6c5Dur6oKqekySV63h+R6X5HPd/RdV9cwsX/PgqD9P8ldJvn2FbW9K8h1V9c+rakdV/bMkT0vyztG9AgAAtiSBAsyI7v7LJP84yRVJPpfknyV527Dsz5L8fJLfS/KxLF90cTX/a5Kfr6ovJfl3Wb7OwdHX+nKWL+D4R1X1haq68JhaPpvkB5PsS/LZJP82yQ9292dOoYsAAMAWUg8/XRsAAABgdY5QAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGirBgpV9Ziqen9Vfbiq7qyqnxva31hVn6yq24bHBUN7VdXrqupAVd1eVc/Y6E4AAAAAm2vHGtb5apJnd/fhqjo9yXuq6neHZf97d7/1mPWfl+T84fHdSV4//FzR2Wef3bt27RpV+Dx46KGH8tjHPnbaZWwKfd16tks/E33diqbZz1tvvfUz3f3kqbw4AMAmWjVQ6OX7Sh4eZk8fHie61+SlSd40bPfeqjqrqs7p7vtW2mDXrl35wAc+MKLs+bC0tJTFxcVpl7Ep9HXr2S79TPR1K5pmP6vqU1N5YQCATbamayhU1WlVdVuSB5Lc3N3vGxa9ejit4bVV9eihbWeSeyY2v3doAwAAALaIWj6QYI0rV52V5O1J/k2Szyb5dJJHJbk6yce7++er6p1Jruzu9wzbvDvJT3X3B455rr1J9ibJwsLCd1133XXr0J3Zcvjw4Zx55pnTLmNT6OvWs136mejrVjTNfl500UW3dveeqbw4AMAmWss1FL6uu79QVbckeW53//LQ/NWq+o0kPznMH0py3sRm5w5txz7X1VkOIrJnz57eiofgbpdDixN93Yq2Sz8Tfd2Ktks/AQCmaS13eXjycGRCquqMJN+X5E+r6pyhrZI8P8lHhk1uSPLi4W4PFyZ58ETXTwAAAADmz1qOUDgnybVVdVqWA4jru/udVfX7VfXkJJXktiT/alj/piQXJzmQ5MtJXrL+ZQMAAADTtJa7PNye5OnHaX/2Cut3kpedemkAAADArFrTXR4AAAAAJgkUAAAAgNEECgAAAMBoAgUAAABgtLXc5YFtZtf+G0dvs2/3kVxxEtuNcfDKSzb0+QEAAFg7RygAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADCaQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGirBgpV9Ziqen9Vfbiq7qyqnxvan1JV76uqA1X1lqp61ND+6GH+wLB818Z2AQAAANhsazlC4atJnt3dfzfJBUmeW1UXJvmlJK/t7qcm+XySlw7rvzTJ54f21w7rAQAAAFvIqoFCLzs8zJ4+PDrJs5O8dWi/Nsnzh+lLh/kMy59TVbVuFQMAAABTt6ZrKFTVaVV1W5IHktyc5ONJvtDdR4ZV7k2yc5jemeSeJBmWP5jkSetZNAAAADBd1d1rX7nqrCRvT/J/JnnjcFpDquq8JL/b3X+nqj6S5Lndfe+w7ONJvru7P3PMc+1NsjdJFhYWvuu6665bj/7MlMOHD+fMM8+cdhmj3XHowdHbLJyR3P+VDShmwu6dj9/YF1ijeX1fx9ou/Uz0dSuaZj8vuuiiW7t7z1ReHABgE+0Ys3J3f6GqbknyPUnOqqodw1EI5yY5NKx2KMl5Se6tqh1JHp/ks8d5rquTXJ0ke/bs6cXFxZPuxKxaWlrKPPbriv03jt5m3+4jueqOUR+n0Q6+cHFDn3+t5vV9HWu79DPR161ou/QTAGCa1nKXhycPRyakqs5I8n1J7k5yS5IfGVa7PMk7hukbhvkMy3+/xxwGAQAAAMy8tfxJ+Zwk11bVaVkOIK7v7ndW1V1JrquqX0zyoSTXDOtfk+Q3q+pAks8luWwD6gYAAACmaNVAobtvT/L047R/Iskzj9P+F0n+6bpUBwAAAMykNd3lAQAAAGCSQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKPtmHYB29Gu/TdOu4TjOnjlJdMuAQAAgDnhCAUAAABgNIECAAAAMJpAAQAAABht1UChqs6rqluq6q6qurOqXjG0v6qqDlXVbcPj4oltXllVB6rqo1X1AxvZAQAAAGDzreWijEeS7OvuD1bV45LcWlU3D8te292/PLlyVT0tyWVJvjPJtyT5var6ju7+2noWDgAAAEzPqkcodPd93f3BYfpLSe5OsvMEm1ya5Lru/mp3fzLJgSTPXI9iAQAAgNkw6hoKVbUrydOTvG9oenlV3V5Vb6iqJwxtO5PcM7HZvTlxAAEAAADMmeruta1YdWaSP0jy6u5+W1UtJPlMkk7yC0nO6e4fq6r/kOS93f2fhu2uSfK73f3WY55vb5K9SbKwsPBd11133Xr1aWYcPnw4Z5555iPa7zj04BSqWd3unY9PcnL1LZyR3P+V9a7o4Y7WN20rva9bzXbpZ6KvW9E0+3nRRRfd2t17pvLiAACbaC3XUEhVnZ7kd5K8ubvfliTdff/E8l9L8s5h9lCS8yY2P3doe5juvjrJ1UmyZ8+eXlxcPInyZ9vS0lKO168r9t+4+cWswcEXLiY5ufr27T6Sq+5Y08fppB2tb9pWel+3mu3Sz0Rft6Lt0k8AgGlay10eKsk1Se7u7tdMtJ8zsdoPJ/nIMH1Dksuq6tFV9ZQk5yd5//qVDAAAAEzbWv6k/KwkL0pyR1XdNrT9dJIfraoLsnzKw8Ek/zJJuvvOqro+yV1ZvkPEy9zhAQAAALaWVQOF7n5PkjrOoptOsM2rk7z6FOoCAAAAZtiouzwAAAAAJAIFAAAA4CQIFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADCaQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMtmqgUFXnVdUtVXVXVd1ZVa8Y2p9YVTdX1ceGn08Y2quqXldVB6rq9qp6xkZ3AgAAANhcazlC4UiSfd39tCQXJnlZVT0tyf4k7+7u85O8e5hPkuclOX947E3y+nWvGgAAAJiqVQOF7r6vuz84TH8pyd1Jdia5NMm1w2rXJnn+MH1pkjf1svcmOauqzln3ygEAAICpGXUNharaleTpSd6XZKG77xsWfTrJwjC9M8k9E5vdO7QBAAAAW0R199pWrDozyR8keXV3v62qvtDdZ00s/3x3P6Gq3pnkyu5+z9D+7iQ/1d0fOOb59mb5lIgsLCx813XXXbc+PZohhw8fzplnnvmI9jsOPTiFala3e+fjk5xcfQtnJPd/Zb0rerij9U3bSu/rVrNd+pno61Y0zX5edNFFt3b3nqm8OADAJtqxlpWq6vQkv5Pkzd39tqH5/qo6p7vvG05peGBoP5TkvInNzx3aHqa7r05ydZLs2bOnFxcXT64HM2xpaSnH69cV+2/c/GLW4OALF5OcXH37dh/JVXes6eN00o7WN20rva9bzXbpZ6KvW9F26ScAwDSt5S4PleSaJHd392smFt2Q5PJh+vIk75hof/Fwt4cLkzw4cWoEAAAAsAWs5U/Kz0ryoiR3VNVtQ9tPJ7kyyfVV9dIkn0rygmHZTUkuTnIgyZeTvGRdKwYAAACmbtVAYbgWQq2w+DnHWb+TvOwU6wIAAABm2Ki7PAAAAAAkAgUAAADgJAgUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAPj/27v/WL3uug7g709W0GUl+8HwZummHXEZmVQGawZEQm5ZxMEIw4QsW1A3ROsfYCCpkeI/oIZk/oGIUUkmm8yoK3OKLNtElkmD/sGPDZCO4cLAzrXZWpExqBBM8eMf91x7vbRrT+997nP39PVKbnq+3+c853w+zz3/9H3P9zwAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAo22YdgGTsHnn3dMuIUmyY8vh3LCklr03XjXFagAAAGD1uEMBAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABjtuIFCVd1SVQer6sElc++pqv1V9cXh57VLXntXVT1SVQ9X1c9NqnAAAABgek7kDoUPJ7nyKPPv7+5Lh597kqSqLklybZKfGt7zJ1V12moVCwAAAKwPxw0UuvtTSb55gse7Osmu7v5+d/9bkkeSXL6C+gAAAIB1aCXPUHhbVX1pWBJx9jC3KcljS/bZN8wBAAAAM6S6+/g7VW1Ocld3v3AYzyX5RpJO8rtJzuvuX66qP0ry6e7+i2G/m5P8fXffcZRjbk+yPUnm5uYu27Vr16o0lCR79j+1asdaibnTkwPfOzLesunMJOunvuVWUt/yXidhsb5pO3ToUDZu3DjtMibuVOkz0essmmaf27Zte6C7t07l5AAAa2jDybypuw8sblfVnya5axjuT3LBkl3PH+aOdoybktyUJFu3bu35+fmTKeWobth596odayV2bDmc9+058hHvfdN8kvVT33IrqW95r5OwWN+07d69O6t5va5Xp0qfiV5n0anSJwDANJ3UkoeqOm/J8OeTLH4DxJ1Jrq2qH6mqC5NclOSzKysRAAAAWG+O+yflqrotyXySc6tqX5J3J5mvqkuzsORhb5JfS5Lu/nJV3Z7koSSHk7y1u38wmdIBAACAaTluoNDd1x1l+uan2f+9Sd67kqIAAACA9W0l3/IAAAAAnKIECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADCaQAEAAAAYTaAAAAAAjCZQAAAAAEYTKAAAAACjCRQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAox03UKiqW6rqYFU9uGTunKq6t6q+Ovx79jBfVfWHVfVIVX2pql4yyeIBAACA6TiROxQ+nOTKZXM7k9zX3RcluW8YJ8lrklw0/GxP8sHVKRMAAABYT44bKHT3p5J8c9n01UluHbZvTfKGJfN/3gs+neSsqjpvtYoFAAAA1oeTfYbCXHc/Pmw/kWRu2N6U5LEl++0b5gAAAIAZUt19/J2qNie5q7tfOIy/1d1nLXn9ye4+u6ruSnJjd//zMH9fknd29/1HOeb2LCyLyNzc3GW7du1ahXYW7Nn/1KodayXmTk8OfO/IeMumM5Osn/qWW0l9y3udhMX6pu3QoUPZuHHjtMuYuFOlz0Svs2iafW7btu2B7t46lZMDAKyhDSf5vgNVdV53Pz4saTg4zO9PcsGS/c4f5n5Id9+U5KYk2bp1a8/Pz59kKT/shp13r9qxVmLHlsN5354jH/HeN80nWT/1LbeS+pb3OgmL9U3b7t27s5rX63p1qvSZ6HUWnSp9AgBM08kuebgzyfXD9vVJPrZk/peGb3t4WZKnliyNAAAAAGbEcf+kXFW3JZlPcm5V7Uvy7iQ3Jrm9qt6S5NEk1wy735PktUkeSfLdJG+eQM0AAADAlB03UOju647x0hVH2beTvHWlRQEAAADr28kueQAAAABOYQIFAAAAYDSBAgAAADCaQAEAAAAY7bgPZQTG2bzz7mmXcFR7b7xq2iUAAAAzxB0KAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRBAoAAADAaAIFAAAAYDSBAgAAADDahpW8uar2JvlOkh8kOdzdW6vqnCQfSbI5yd4k13T3kysrE47YvPPuqZ5/x5bDueEoNey98aopVAMAADAdq3GHwrbuvrS7tw7jnUnu6+6Lktw3jAEAAIAZsqI7FI7h6iTzw/atSXYneecEzgPMmGndfXKsu04WufsEAAB+2ErvUOgkn6iqB6pq+zA3192PD9tPJJlb4TkAAACAdaa6++TfXLWpu/dX1Y8luTfJrye5s7vPWrLPk9199lHeuz3J9iSZm5u7bNeuXSddx3J79j+1asdaibnTkwPfOzLesunMJOunvuVWUt/yXidhvXx+x+p1vdR3LIv1nahDhw5l48aNE6rm6Kb12R3v+h372a1n0/i9TsM0+9y2bdsDS5YBAgDMrBUFCv/vQFXvSXIoya8mme/ux6vqvCS7u/vip3vv1q1b+/7771+VOpLpP7Rv0Y4th/O+PUdWlSzeNr1e6ltuJfUt73US1svnd6xe10t9xzL2tv3du3dnfn5+MsUcwzSXPDzd9TtLSx6m8Xudhmn2WVUCBQDglHDSSx6q6oyqes7idpJXJ3kwyZ1Jrh92uz7Jx1ZaJAAAALC+rORPynNJPlpVi8f5q+7+eFV9LsntVfWWJI8muWblZQIAAADryUkHCt399SQvOsr8fya5YiVFAQAAAOvbSr/lAQAAADgFCRQAAACA0QQKAAAAwGgCBQAAAGA0gQIAAAAwmkABAAAAGE2gAAAAAIwmUAAAAABGEygAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACMJlAAAAAARhMoAAAAAKNtmHYBwNravPPuE9pvx5bDueEE912pvTdetSbnAQAAVo87FAAAAIDRBAoAAADAaJY8AMyIE1nOspZLWRZZ0gIAMJvcoQAAAACMJlAAAAAARhMoAAAAAKMJFAAAAIDRJhYoVNWVVfVwVT1SVTsndR4AAABg7U0kUKiq05L8cZLXJLkkyXVVdckkzgUAAACsvUl9beTlSR7p7q8nSVXtSnJ1kocmdD6AiTuRr2WcBl/LCADANEwqUNiU5LEl431JXjqhcwHwDLCWgcyOLYdzwwmeTyADAHByqrtX/6BVb0xyZXf/yjD+xSQv7e63Ldlne5Ltw/DiJA+veiHTd26Sb0y7iDWi19lzqvSZ6HUWTbPPn+ju503p3AAAa2ZSdyjsT3LBkvH5w9z/6e6bktw0ofOvC1V1f3dvnXYda0Gvs+dU6TPR6yw6VfoEAJimSX3Lw+eSXFRVF1bVs5Ncm+TOCZ0LAAAAWGMTuUOhuw9X1duS/EOS05Lc0t1fnsS5AAAAgLU3qSUP6e57ktwzqeM/Q8z0ko5l9Dp7TpU+E73OolOlTwCAqZnIQxkBAACA2TapZygAAAAAM0ygsEqq6paqOlhVDy6ZO6eq7q2qrw7/nj3NGldDVV1QVZ+sqoeq6stV9fZhfhZ7/dGq+mxV/cvQ628P8xdW1Weq6pGq+sjw4NFnvKo6raq+UFV3DeNZ7XNvVe2pqi9W1f3D3Mxdv0lSVWdV1R1V9a9V9ZWqevks9lpVFw+/z8Wfb1fVO2axVwCA9USgsHo+nOTKZXM7k9zX3RcluW8YP9MdTrKjuy9J8rIkb62qSzKbvX4/yau6+0VJLk1yZVW9LMnvJXl/d/9kkieTvGWKNa6mtyf5ypLxrPaZJNu6+9IlXys4i9dvknwgyce7+wVJXpSF3+/M9drdDw+/z0uTXJbku0k+mhnsFQBgPREorJLu/lSSby6bvjrJrcP2rUnesKZFTUB3P97dnx+2v5OF/6Bsymz22t19aBg+a/jpJK9KcscwPxO9VtX5Sa5K8qFhXJnBPp/GzF2/VXVmklcmuTlJuvu/u/tbmcFel7kiyde6+9HMfq8AAFMlUJisue5+fNh+IsncNItZbVW1OcmLk3wmM9rrsAzgi0kOJrk3ydeSfKu7Dw+77MtCoPJM9wdJfjPJ/wzj52Y2+0wWQqFPVNUDVbV9mJvF6/fCJP+R5M+GpSwfqqozMpu9LnVtktuG7VnvFQBgqgQKa6QXvk5jZr5So6o2JvmbJO/o7m8vfW2Weu3uHwy3UZ+f5PIkL5hySauuql6X5GB3PzDtWtbIK7r7JUlek4UlO69c+uIMXb8bkrwkyQe7+8VJ/ivLbvmfoV6TJMNzPl6f5K+XvzZrvQIArAcChck6UFXnJcnw78Ep17MqqupZWQgT/rK7/3aYnsleFw23in8yycuTnFVVG4aXzk+yf2qFrY6fSfL6qtqbZFcWljp8ILPXZ5Kku/cP/x7Mwjr7yzOb1+++JPu6+zPD+I4sBAyz2Oui1yT5fHcfGMaz3CsAwNQJFCbrziTXD9vXJ/nYFGtZFcPa+puTfKW7f3/JS7PY6/Oq6qxh+/QkP5uFZ0Z8Mskbh92e8b1297u6+/zu3pyF28X/sbvflBnrM0mq6oyqes7idpJXJ3kwM3j9dvcTSR6rqouHqSuSPJQZ7HWJ63JkuUMy270CAExdLdwFykpV1W1J5pOcm+RAkncn+bsktyf58SSPJrmmu5c/uPEZpapekeSfkuzJkfX2v5WF5yjMWq8/nYUHuZ2WhfDt9u7+nap6fhb+kn9Oki8k+YXu/v70Kl09VTWf5De6+3Wz2OfQ1Uh/+wAAAHtJREFU00eH4YYkf9Xd762q52bGrt8kqapLs/CgzWcn+XqSN2e4ljN7vZ6R5N+TPL+7nxrmZvL3CgCwXggUAAAAgNEseQAAAABGEygAAAAAowkUAAAAgNEECgAAAMBoAgUAAABgNIECAAAAMJpAAQAAABhNoAAAAACM9r9wtJ40YRpChgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1296x720 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "KbDWTElQKopc"
},
"source": [
"# Histogram Interpretation:\n",
"Histograms shows us the data distribution for a single continuous variable.\n",
"\n",
"The X-axis shows the range of values and Y-axis represent the number of values in that range. \n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GK1OTDdIKopc"
},
"source": [
"# Missing values treatment"
]
},
{
"cell_type": "code",
"metadata": {
"id": "yxUTL2OjKopc",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "9a3555eb-5c3a-4ada-eed6-c13cabecd333"
},
"source": [
"df.isnull().sum()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"GoodCredit 0\n",
"checkingstatus 0\n",
"duration 0\n",
"history 0\n",
"purpose 0\n",
"amount 0\n",
"savings 0\n",
"employ 0\n",
"installment 0\n",
"status 0\n",
"others 0\n",
"residence 0\n",
"property 0\n",
"age 0\n",
"otherplans 0\n",
"housing 0\n",
"cards 0\n",
"job 0\n",
"liable 0\n",
"tele 0\n",
"foreign 0\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 443
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TFLfqRtFKopc"
},
"source": [
"We see that we have no `null` values so no treatment is needed"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "n50cxul0Kopc"
},
"source": [
"# Feature Selection:\n",
"---\n",
"\n",
"Now its time to finally choose the best columns(Features) which are correlated to the Target variable. \n",
"\n",
"We will do this by visualizing the relation between the Target variable and each of the predictors to get a better sense of data. \n",
"\n",
"Then we will directly measure the correlation values or ANOVA or Chi-Square tests."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "b2ZbuIfmKopc"
},
"source": [
"1. **Relationship exploration**: Box plots for Categorical Target Variable \"GoodCredit\" and continuous predictors"
]
},
{
"cell_type": "code",
"metadata": {
"id": "GKkX-BNkKopd",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 361
},
"outputId": "1461d129-5dd8-4152-e63c-9acabfc8d129"
},
"source": [
"ContinuousColsList=['age','amount', 'duration']\n",
"\n",
"fig, PlotCanvas=plt.subplots(nrows=1, ncols=len(ContinuousColsList), figsize=(18,5))\n",
"\n",
"# Creating box plots for each continuous predictor against the Target Variable \"GoodCredit\"\n",
"for PredictorCol , i in zip(np.array(ContinuousColsList), range(len(ContinuousColsList))):\n",
" df.boxplot(column=PredictorCol, by='GoodCredit', figsize=(5,5), vert=True, ax=PlotCanvas[i])"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABC4AAAFYCAYAAACcbL3dAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdf3xU5Zn38c+VBBIIKgIakajQrXUH06ftlqfb8rA2Yyq0apVt649gLWoe3ZR16hZ3RUx3a2tTjWzbdWMfqDQU7UrEakVWrGBJ0m7U/tBiXZbY+gOoAdQioBIkkHA9f5yTOAkJJObHmUy+79drXjPnPufMuebkcMhcue/rNndHRERERERERCQVZUQdgIiIiIiIiIhId5S4EBEREREREZGUpcSFiIiIiIiIiKQsJS5EREREREREJGUpcSEiIiIiIiIiKUuJCxERERERERFJWUpciIiIRMjM3MzeH3UcUTKzQjNrPML6IXmOzOwKM6sfxON1OI9m9j9mVjhYxxcRERkoSlyIiIgAZrbFzN4xs71mttvM1pjZKVHH1WawvwSnKzObaGZLzWx7+LN+2cyWm9lfDsKxzcy+YmYbzazJzBrN7Cdm9sGBOJ67n+nudeGxbzaz/xiI44iIiAw0JS5ERETe9Vl3HwNMBF4DKiOOZ8CYWVbUMQw2MxsPPAmMBv4GOAb4K+AXwDmDEMIdwHXAV4BxwAeAVcB53cSbOQgxiYiIpDwlLkRERDpx9/3AA8DUtjYzO87M7jGzP5vZVjP7mpllmNm48C/nnw23G2NmL5rZl8Ll5Wa2xMweN7O3zewXZnZaV8c9wjFiwBLgE2EvgT3d7D/FzH4ZHufnZvb9tr+ym9nkcMhFiZn9CagJ3/tr4bFeD499XLj9YcM3wl4pnwpf32xmD5jZyvB4vzOzDyVte7KZPRh+ls1m9pWkdaPC87LbzDYB/7sHP5Zzw94RO81sURj7SDPbldxjwcxONLN9ZnZCF+/xVeAt4HJ3f8kDe9z9R+5emfQeF4TDLPaYWV14/tvWxcK2PeE2FyStG29mq83sLTP7DfAXSetOB/4eKHb3Gndvdvd97n6vu98WbrPczBab2aNm1gTE+3Ie235eZvZp4CbgkvD6+X0PzreIiEjKUOJCRESkEzMbDVwC/CqpuRI4Dngf8EngS8CV7r4LuApYamYnAt8DnnX3e5L2vQy4BZgAPAvc282huztGA1AKPOXuY9x9bDf7rwB+A4wHbgYu72KbTwIxYBZwRfiIh8ccA9zZzXt35ULgJwS9B1YAq8xshJllAP8J/B6YBBQB/2Bms8L9vk7wpf4vwjjm9uBYfwtMI+ghcSFwlbsfAO4Dvpi0XTGw3t3/3MV7fAp4yN0PdXcQM/sAUA38A3AC8Cjwn2GSZET4udYBJwIJ4F4zOyPc/fvAfoIeO1eFjzZFQKO7/+Yon3MOUE7QG+RJ+uE8uvtjwLeBleH186GuthMREUlVSlyIiIi8a1XYm+FNgqEDi6C9y/6lwEJ3f9vdtwDfIUwMuPs6gi/w64Fzgb/r9L5r3P2X7t4MlBH0nOhQP+NoxzgaMzuV4C/u/+LuB9y9HljdxaY3u3uTu79DkFD5rru/7O57gYXApdbzYSTPuPsD7n4Q+C6QA3w8jOMEd/9mGMvLwNLw8wFcDJS7+y53fwX49x4cqyLc/k/AvxEkKADuBorNzMLly4Efd/MeE4BX2xbCnhV7wh4j68LmSwh+Xo+Hn+tfgVHA9PCzjQFuCz9XDfBIePxM4PME57/J3TeGsbUZD+zowed82N2fCJMrH6T/z6OIiMiQM+zGt4qIiBzBbHf/efgl9ELgF2Y2FXBgBLA1adutBH8Fb3MXcC3wbXd/o9P7vtL2wt33mtku4OTkdoIv1Uc7xpGcDOxy932djtu5wGjyMU/u4nhZQF4Pj5n8uQ6FQ0tOJjhfJ3ca0pIJ/FfScZPjSI7hqMcKtz85PO6vzWwfUGhmO4D303XCBuANgt4QbTGvBsaa2f/l3V4bHc5J+LleIfg5tACvdOqx0fYzOoHg3HX3uTocu4ef8zT6/zyKiIgMOepxISIi0om7t7r7T4FWYAawEzhI8EWyzanANmjvLXEXcA8wzw6furM9eWBmYwiGVmzvtM0Rj0GQDDiSHcC4cJjLYcdN/nhJr7d3cbwWgsKkTQRFLNviziT4cp4s+XNlAPnhe74CbHb3sUmPY9z93KRYk2M79SifrfNnOZWO5+9ugsTD5cADYY2SrqwHZoexdqfDOQl7cpxC8HPYDpzSaf+2n9GfCc5dd59rPZBvZtOOcGzo+PPpz/N4tOtHREQkZSlxISIi0okFLgSOBxrcvRW4Hyg3s2MsKK45H2ibXvImgi+GVxEML7nHOs4Ica6ZzTCzkQS1Ln4Vdu1v14NjvEbwxXdkVzG7+1bgaeDmsB7DJ4DPHuWjVgNftaCo5xjerYPQAvwRyDGz88LaDl8Dsjvt/1Ez+1w4tOQfgGaCuiC/Ad42swVhAclMMysws7bikfcDC83seDPLJ6gVcTT/FG5/CsHMHCuT1v0HQQ2MLxIkj7rzXYKf6Y/N7C/Cn/MxwIeTtrkfOM/MisLPfX34uZ4Efg3sA24Ia3kUEpzj+8Kf308Jzv/osKdOe80Jd38B+H9AtQWFT0eaWY6ZXWpmN3YTb3+ex9eAyUdJ2oiIiKQk/eclIiLyrv80s70EM0+UA3Pd/X/CdQmCXggvA/UExSiXmdlHCRIMXwq/vFYQJDGSv4yuICikuAv4KB2LSSbr8hjhuhrgf4BXzWxnN/tfBnyCYFjCtwi+3Dcf4fMuI6gH8UtgM0FhyQSAu78JzAN+SNCjoAlo7LT/wwQ1IXYT9Hb4nLsfDM/D+QQJgc0EvUl+SFB4FOAbBMMaNhMUuuyuJkXnYz1DUNx0DVDVtiJMAv2O4Lz/V5d7B9vtJKhTsZ/g/L4dvt8xwJfDbf5A8POpDOP+LME0uQfCYqCfBT4Trvt/BD/358NDXEtQA+NVYDnwo04hfIWg+On3gT3ASwQJl//sJt7+PI8/CZ/fMLPfHWE7ERGRlGPu6jkoIiIyUMxsOcFsEl+L4Ngrgefd/esD8N43A+939+6SMIPKzJYB26M4zyIiIjKwVJxTREQkTYRDCHYR/AV+JkGB0dsiDWoQmNlk4HPAR6KNRERERAaChoqIiIikj5OAOmAvwdSYX3b3DZFGNMDM7BZgI7DI3TdHHY+IiIj0Pw0VERERERERSUODOVzRzC4jqA01c6CPJcOPelyIiIjIkGdmk83MwxlORERkAHV1z3X3e5W0kIGixIWIiIiIiIi06zSlt0jklLiQIcHMbjSzl8zsbTPbZGZ/G7Znmtl3zGynmW02s2uTs79mdpyZVZnZDjPbZmbf0o1YRKT3jnAfvsLMnjCz75nZHjN72cymh+2vmNnrZjY36X2OM7N7zOzPZrbVzL5mZhnhupvN7D+Stu3wFz0zqzOzW8LjvW1m68xsQrj5L8PnPWa218w+MThnRkQkdZjZR8zsd+E9ciWQE7ZfYWb1nbZ1M3t/+Hq5mS02s0fNrAmIm9l5ZrbBzN4K7+c3J+1+2D238zHC/wt+a2Zvhs/Tk9Yd6X4uchglLmSoeAn4G4K5678B/IeZTQSuBj5DMMf9XwGzO+23HGgB3k9QbX4m8H8HJ2QRkbTS3X0Y4K+B54DxwArgPuB/E9x7vwjcaWZjwm0rw/d4H/BJ4EvAlb2IY064/YnASOAfw/azwuex7j7G3Z/q7QcUERnKzGwksAr4MTAO+Anw+V68xRygHDgGqAeaCO7RY4HzgC+bWdvv2ke855rZOGANQaHo8cB3gTVmNr7T8bq6n4scRokLGRLc/Sfuvt3dD7n7SuAF4GPAxcAd7t7o7rtJmvbPzPKAc4F/cPcmd38d+B5waQQfQURkSDvCfRhgs7v/yN1bgZXAKcA33b3Z3dcBB4D3hz3eLgUWuvvb7r4F+A5weS9C+ZG7/9Hd3wHuJ0hci4gIfBwYAfybux909weA3/Zi/4fd/YnwPr/f3evc/b/D5eeAaoKEc0+cB7zg7j929xZ3rwaeBz6btI3u59JjKmAlQ4KZfQmYD0wOm8YAE4CTgVeSNk1+fRrBzXuHmbW1ZXTaRkREeuAI9+FW4LWkTd8BcPfObW3bjwC2Jq3bCkzqRSivJr3eF76viIgEvxdv847TRm7tbuMudPgd2cz+muCPggUEPSKyCXpx9DSWzsfufL/X/Vx6TD0uJOWZ2WnAUuBaYLy7jwU2AgbsAPKTNj8l6fUrQDMwwd3Hho9j3f3MQQpdRCQtHOU+3Bs7gYMEieU2pwLbwtdNwOikdSf14r01v7uIDHc7gEmW9Bc7gnssdLq/mllX99fO99EVwGrgFHc/DljCu/f9o91zt9PxXt8Wy7YuthU5KiUuZCjIJbg5/hnAzK4kyPxC0K3sOjObZGZjgQVtO7n7DmAd8B0zO9bMMszsL8ysp13cREQkcKT7cI+FQ0nuB8rN7JgwITIfaCvI+SxwlpmdambHAQt78fZ/Bg4R1M4QERmOniKo7fYVMxthZp/j3SF9vwfONLMPm1kOcHMP3u8YYJe77zezjxHUpGhztHvuo8AHzGyOmWWZ2SXAVOCRXn8qEZS4kCHA3TcRjIF+iqA78geBJ8LVSwmSE88BGwhuki0EXZchKCg0EtgE7AYeANqKyYmISA8c5T7cWwmCv/y9TFD8bQWwLDzO4wQ1Mp4DnqEXv+C6+z6ConJPhLObfPw9xiciMiS5+wHgc8AVwC7gEuCn4bo/At8Efk5Qo6i+63fpYB7wTTN7G/gXgsRz27GOeM919zeA84HrgTeAG4Dz3X1nHz6iDGPWcQiUyNBmZp8Blrh7565pIiIiIiIiMgSpx4UMaWY2yszODbugTQK+DjwUdVwiIiIiIiLSP9TjQoY0MxsN/AL4S4Kq9WuA69z9rUgDExERERERkX6hxIWIiIiIiIiIpCwNFRERERERERGRlKXEhYiIiIiIiIikrKzBPNiECRN88uTJg3nIIa2pqYnc3Nyow5A0pmusd5555pmd7n5C1HEMJt23e0f/pmQg6frqPd235Wj070oGkq6v3uvuvj2oiYvJkyfz9NNPD+Yhh7S6ujoKCwujDkPSmK6x3jGzrVHHMNh03+4d/ZuSgaTrq/d035aj0b8rGUi6vnqvu/u2hoqIiIiIiIiISMpS4kJEREREREREUpYSFyIiIiIiIiKSspS4EBEREREREZGUpcSFiIiIiIiIiKQsJS5EREREREREJGUpcSEiIiIiIiIiKUuJixSUSCTIyckhHo+Tk5NDIpGIOiQRERGJSHV1NQUFBRQVFVFQUEB1dXXUIYmIiAyqrKgDkI4SiQRLliyhoqKCqVOnsmnTJhYsWABAZWVlxNGJiIjIYKqurqasrIyqqipaW1vJzMykpKQEgOLi4oijExERGRzqcZFili5dSkVFBfPnzycnJ4f58+dTUVHB0qVLow5NREREBll5eTlVVVXE43GysrKIx+NUVVVRXl4edWgiIiKDRomLFNPc3ExpaWmHttLSUpqbmyOKSERERKLS0NDAjBkzOrTNmDGDhoaGiCISEZGumNlhj3g83mW7mUUd7pCjxEWKyc7O5iMf+QgZGRnE43EyMjL4yEc+QnZ2dtShSRrReGkRkaEhFotRX1/foa2+vp5YLBZRRCIi0hV3P+xx2oJHumx396jDHXJU4yLFnHjiifzxj39k+vTpfPWrX+V73/seTz75JKecckrUoUma0HhpEZGho6ysjJKSkvZ7dm1tLSUlJRoqIiIiw4oSFymmsbGRM888k2eeeYaLLrqI7OxszjzzTDZt2hR1aJImksdL19XVUVhYSFVVFYlEQokLEZEU03ZfTiQSNDQ0EIvFKC8v1/06zZjZGcDKpKb3Af8C3BO2Twa2ABe7++7Bjk9EJGoaKpJi3J0nnniC/fv3U1tby/79+3niiSfUnUj6jcZLi4gMLcXFxWzcuJH169ezceNGJS3SkLv/wd0/7O4fBj4K7AMeAm4E1rv76cD6cFlEZNhR4iLFmBkLFy7s0LZw4UIVcJF+o/HSIiIiKa0IeMndtwIXAneH7XcDsyOLSkQkQhoqkmLOOeccFi9eDMC5557LvHnzWLx4MTNnzow4MkkXGi8tIiKS0i4F2qpm57n7jvD1q0BeNCGJiERLiYsUs3btWmbNmsWSJUtYvHgxZsbMmTNZu3Zt1KFJmtB4aRERkdRkZiOBC4CFnde5u5tZl2OHzewa4BqAvLw86urqBjLMtLJ3716dLxlQur76hxIXKagtSdFWOFGkvxUXF1NcXKxrTEREJLV8Bvidu78WLr9mZhPdfYeZTQRe72ond78LuAtg2rRprv/be06/C8mAemyNrq9+ohoXIiIpwMyWmdnrZrYxqW2lmT0bPraY2bNh+2Qzeydp3ZKkfT5qZv9tZi+a2b9bWCDHzMaZ2eNm9kL4fPzgf0oRETmKYt4dJgKwGpgbvp4LPDzoEYmIpAAlLkREUsNy4NPJDe5+SVKV+QeBnyatfqltnbuXJrUvBq4GTg8fbe+pyvQiIinMzHKBc+h4r78NOMfMXgA+FS6LiAw7GioiIpIC3P2XZja5q3Vhr4mLgbOP9B5hN+Jj3f1X4fI9BBXof0ZQmb4w3PRuoA5Y0PfIRUSkP7h7EzC+U9sbBLOMiIgMa+pxISKS+v4GeM3dX0hqm2JmG8zsF2b2N2HbJKAxaZvGsA1UmV5EREREhij1uBARSX2dxzzvAE519zfM7KPAKjM7s6dvdqTK9KDq9H2h6vQykHR9iYjIcKXEhYhICjOzLOBzwEfb2ty9GWgOXz9jZi8BHwC2AflJu+eHbdDDyvThe6o6/Xuk6vQykHR9iYjIcKWhIiIiqe1TwPPu3j4ExMxOMLPM8PX7CIpwvhwOBXnLzD4e1sX4Eu9WoFdlehEREREZkpS4EBFJAWZWDTwFnGFmjWZWEq66lI7DRADOAp4Lp0d9ACh1913hunnAD4EXgZcICnOCKtOLiIiIyBCloSIiIinA3Yu7ab+ii7YHCaZH7Wr7p4GCLtpVmV5EREREhqSj9rgwszPM7Nmkx1tm9g9mNs7MHjezF8Ln4wcjYBEREREREREZPo6auHD3P7j7h939wwTF4fYBDwE3Auvd/XRgfbgs/aC6upqCggKKioooKCigurpzL3ERERERERGR4aG3Q0WKgJfcfauZXQgUhu13A3XAgv4LbXiqrq6mrKyMqqoqWltbyczMpKQkGOpeXNxlT3IRERERERGRtNXb4pzJReLywgr2AK8Cef0W1TBWXl5OVVUV8XicrKws4vE4VVVVlJeXRx2aiIiIiIiIyKDrcY8LMxsJXAAs7LzO3d3MvJv9rgGuAcjLy6Ouru69RTpMNDQ00NraSl1dHXv37qWuro7W1lYaGhp07qTftV1jIiIiIiIiqao3Q0U+A/zO3V8Ll18zs4nuvsPMJgKvd7WTu98F3AUwbdo0Lyws7Eu8aS8Wi5GZmUlhYSF1dXUUFhZSW1tLLBZD5076W9s1JiIiIiIikqp6M1SkmHeHiQCsBuaGr+cCD/dXUMNZWVkZJSUl1NbW0tLSQm1tLSUlJZSVlUUdmoiIiIiIiMig61GPCzPLBc4B/i6p+TbgfjMrAbYCF/d/eMNPWwHORCJBQ0MDsViM8vJyFeYUERERERGRYalHiQt3bwLGd2p7g2CWEelnxcXFFBcXqxu/iIiIiIiIDHu9nVVERERERERERGTQKHGRgqqrqykoKKCoqIiCggKqq6uPvpNILyQSCXJycojH4+Tk5JBIJKIOSUREREREpEu9mVVEBkF1dTVlZWVUVVXR2tpKZmYmJSUlAKpzIf0ikUiwZMkSKioqmDp1Kps2bWLBggUAVFZWRhydiIiIiIhIR+pxkWLKy8upqqoiHo+TlZVFPB6nqqqK8vLyqEOTNLF06VIqKiqYP38+OTk5zJ8/n4qKCpYuXRp1aCIiIiIiIodR4iLFNDQ0MGPGjA5tM2bMoKGhIaKIJN00NzdTWlraoa20tJTm5uaIIhIRkSPREFIRERnulLhIMbFYjOnTp5ORkUE8HicjI4Pp06cTi8WiDk3SRHZ2NkuWLOnQtmTJErKzsyOKSGTo0xdLGShtQ0grKytZu3YtlZWVlJWV6RoTEZFhRTUuUkxGRgZPP/00F1xwAVdeeSU/+tGPWL16NR/84AejDk3SxNVXX91e02Lq1Kl897vfZcGCBYf1whCRnlFtIhlIyUNI26ZJr6qqIpFI6PoSEZFhQ4mLFLNx40aKiop46aWX+PznP08sFqOoqIiampqoQ5M00VaA86abbqK5uZns7GxKS0tVmFPkPSovL2fOnDkkEgkaGhqIxWLMmTOH8vJyfbGUPmtoaKCxsZGCgoL262vBggUaQioiIsOKEhcpxt158MEHOe6449r/svLmm28yduzYqEOTNFJZWUllZWX7NSYi792mTZtoampi2bJl7T0urrrqKrZu3Rp1aJIGTj75ZBYsWMC9997bfn1ddtllnHzyyVGHJiIiMmhU4yLFmBkLFy7s0LZw4ULMLKKIRETkSEaOHEkikegwG1QikWDkyJFRhyZpwt2PuCwiIpLulLhIMeeccw6LFy/GzIjH45gZixcv5pxzzok6NEkjiUSCnJwc4vE4OTk5JBKJqEMSGbIOHDjAnXfeSW1tLS0tLdTW1nLnnXdy4MCBqEOTNLB9+3Zuv/12EokEs2bNIpFIcPvtt7N9+/aoQxMRERk0GioiMswkEgmWLFlCRUUFU6dOZdOmTe3FOlXnQqT3pk6dyuzZsw+rcbFq1aqoQ5M0EIvFyM/PZ+PGje3D+2prazXbmIiIDCvqcZFiHn/8cb785S/j7tTW1uLufPnLX+bxxx+POjRJE0uXLqWiooL58+eTk5PD/PnzqaioYOnSpVGHJjIklZWVsWLFig7TVa5YsYKysrKoQ5M0UFZWRklJSYcePSUlJbq+RERkWFGPixTj7tx6660d2m699VYWL14cUUSSbpqbmw+b+rS0tJTrr78+oohEhra2mUOSe1xoRhHpL7q+hg8zGwv8ECgAHLgK+AOwEpgMbAEudvfdEYWYVsaMGUNTU1P7cm5uLnv37o0wIhE5EvW4SDEqzikDLTs7m2uuuYaCggKKioooKCjgmmuuITs7O+rQRIas4uJiNm7cyPr169m4caO+VEq/0vU1bNwBPObufwl8CGgAbgTWu/vpwPpwWfqoLWkxefJkfvzjHzN58mSampoYM2ZM1KGJSDeUuEgxbcU5582bx969e5k3b56Kc0q/+uQnP8m9997LWWedxcMPP8xZZ53Fvffeyyc/+cmoQxMRERmWzOw44CygCsDdD7j7HuBC4O5ws7uB2dFEmF7akhabN28mPz+fzZs3tycvRCQ1aahIilm7di2zZs1iyZIl7bOLzJw5k7Vr10YdmqSJbdu2MXv2bJYtW8bixYvJzs5m9uzZvPDCC1GHNqyZ2TLgfOB1dy8I224Grgb+HG52k7s/Gq5bCJQArcBX3H1t2P5pgr/aZQI/dPfbwvYpwH3AeOAZ4HJ317QXIiKpYQrBvf5HZvYhgvv0dUCeu+8It3kVyOtqZzO7BrgGIC8vj7q6ugEPeKi75ZZbqKurY+/evdTV1XHLLbdw+eWX69xJv9M11T+UuEgBRxoG4u6sW7fusG00h7u8Vw0NDWzYsIERI0a0V6g/ePAgOTk5UYc23C0H7gTu6dT+PXf/1+QGM5sKXAqcCZwM/NzMPhCu/j5wDtAI/NbMVrv7JqAifK/7zGwJQdJDxXNERFJDFvBXQMLdf21md9BpWIi7u5l1+Qugu98F3AUwbdo0LywsHOBwh75//ud/ZvPmze2/C02ZMgUAnTvpV4+t0TXVTzRUJAW4e5eP0xY80u06kfcqFotRX1/foa2+vl5T60XM3X8J7Orh5hcC97l7s7tvBl4EPhY+XnT3l8PeFPcBF1qQ+TwbeCDcX92NRYaQ6urqDnWJqqurow5J+l8j0Ojuvw6XHyBIZLxmZhMBwufXI4ovreTm5rJlyxamTJlCY2MjU6ZMYcuWLeTm5kYdmoh0Qz0uRIaZtqn1qqqqaG1tbZ9ar7y8POrQpGvXmtmXgKeB68Nq8pOAXyVt0xi2AbzSqf2vCYaH7HH3li62P4y6HL93bV2ORfrL+vXrufPOO8nOzsbd2blzJ/PmzWPTpk0UFRVFHZ70E3d/1cxeMbMz3P0PQBGwKXzMBW4Lnx+OMMy0sXfvXsaMGcOWLVu4/PLLAc0qIpLqlLgQGWY0td6Qshi4hWBavFuA7xBMjzeg1OX4vWvrcizSXy6//HJycnJYsWIFra2tZGZmMmfOHJYvX84tt9wSdXjSvxLAvWY2EngZuJKgd/T9ZlYCbAUujjC+tNKWpNB9W2RoUOJCZBgqLi6muLhY/1mnOHd/re21mS0FHgkXtwGnJG2aH7bRTfsbwFgzywp7XSRvLyIprLGxkXXr1hGPx9vv2ffccw8zZ86MOjTpZ+7+LDCti1XqWiMiw55qXIiIpKi2cc2hvwU2hq9XA5eaWXY4W8jpwG+A3wKnm9mU8C92lwKrPSiMUwt8Idxf3Y1FhpCampoONS5qamqiDklERGRQKXEhMgyp0FvqMbNq4CngDDNrDLsF325m/21mzwFx4KsA7v4/wP0EY58fA/7e3VvD3hTXAmuBBuD+cFuABcB8M3uRoOZF1SB+PBF5j8aNG8eiRYu46qqrWLNmDVdddRWLFi1i3LhxUYcmIiIyaDRURGSYqa6upqysrL04Z2ZmJiUlJQCqcxEhd+/q5HebXHD3cuCwiqru/ijwaBftLxPMOiIiQ8jo0aPZv38/N954IwcPHmTEiBFkZ2czevToqEMTEREZNOpxITLMlJeXU1VVRTweJysri3g8TlVVlWYVERFJQdu2bWP06NFMmjSJjIwMJk2axOjRo9m2TWVqRERk+FDiQmSYaWhoYMaMGR3aZsyYQUNDQ0QRiYhId0aOHMmsWbPIzc0FgikbZ82axciRIyOOTEREZPAocSEyzMRiMerr6zu01dfXE4vFIopIZOhT3RgZKM3NzcN6OMYAACAASURBVKxcubJDjYuVK1fS3NwcdWgiIiKDRjUuRIaZsrIySkpK2mtc1NbWUlJSoqEiIu+R6sbIQMrOzuYLX/gCy5Yto6GhgVgsxiWXXMIDDzwQdWgiIiKDRokLkWGm7YtUIpFo/yW4vLxcX7BE3qPkujF1dXUUFhZSVVVFIpHQvyvpswMHDrB27VrGjBkDQFNTE2vXruXAgQMRRyYiIjJ4lLgQGYaKi4spLi5u/5IlIu+d6sbIQJo0aRJ79+4FwN0BaGlpYdKkSVGGJSIiMqiUuBAREemDtrox8Xi8vU11Y6Q/5eTksGzZsvahSHPmzIk6JBERkUGlxIWIiEgfqG6MDKTt27ezfPnyDsP7br/9dq644oqoQxMRERk0SlyIiIj0QXFxMU8++SSf+cxnaG5uJjs7m6uvvlr1LaRfxGIx8vPz2bhxY/vwvtraWvXoERGRYUWJC5FhwMx6tX3bOGoRObrq6mrWrFnDz372sw6zikyfPl3JC+kz9egRERGBjJ5sZGZjzewBM3vezBrM7BNmNs7MHjezF8Ln4wc6WBF5b9y9y8dpCx7psl1Eei55VpGsrCzi8ThVVVX6Yin9ori4mPLychKJBLNmzSKRSGgmKJF+UF1dTUFBAUVFRRQUFFBdXR11SCJyBD3tcXEH8Ji7f8HMRgKjgZuA9e5+m5ndCNwILBigOEVERFKSZhWRgaaZoET6V3V1NWVlZe09mdp6ygFKCoqkqKP2uDCz44CzgCoAdz/g7nuAC4G7w83uBmYPVJAiIiKpqm1WkWSaVUREJHWpp5zI0NOToSJTgD8DPzKzDWb2QzPLBfLcfUe4zatA3kAFKSIikqraahDU1tbS0tLSXoOgrKws6tBERKQL6iknMvT0ZKhIFvBXQMLdf21mdxAMC2nn7m5mXQ6MN7NrgGsA8vLyqKur61vEw4zOlww0XWMifdPWrTh5ukrVIBARSV1tPeXi8Xh7m3rKiaS2niQuGoFGd/91uPwAQeLiNTOb6O47zGwi8HpXO7v7XcBdANOmTXONzeyFx9ZoLKsMLF1jIv1CNQhERIYOzdYjMvQcNXHh7q+a2Stmdoa7/wEoAjaFj7nAbeHzwwMaqYiIiIiISB+pp5zI0NPTWUUSwL3hjCIvA1cS1Me438xKgK3AxQMTooiIiIiISP9RTzmRoaVHiQt3fxaY1sWqov4NR0RERERERETkXT2ZVUREREREIlJdXU1BQQFFRUUUFBRQXV0ddUgiIiKDqqdDRURERERkkFVXV1NWVtZeRDAzM5OSkhIAjccXEZFhQz0uRERERFJUeXk5VVVVxONxsrKyiMfjVFVVafYDEREZVpS4EBER6SN15ZeB0tDQwIwZMzq0zZgxg4aGhogiEhERGXwaKiIiItIH6sovAykWi/GNb3yDVatWtU/bOHv2bGKxWNShiYiIDBr1uBARSQFmtszMXjezjUlti8zseTN7zsweMrOxYftkM3vHzJ4NH0uS9vmomf23mb1oZv9uZha2jzOzx83shfD5+MH/lOlJXfllIMXjcb797W/z/PPPc+jQIZ5//nm+/e1vE4/How5N+pmZbQnv38+a2dNhm+7dIiIocSEikiqWA5/u1PY4UODu/wv4I7Awad1L7v7h8FGa1L4YuBo4PXy0veeNwHp3Px1YHy5LP1BXfhlIK1asAOCEE04gIyODE044oUO7pJ14eF+fFi7r3i0ighIXIiIpwd1/Cezq1LbO3VvCxV8B+Ud6DzObCBzr7r9ydwfuAWaHqy8E7g5f353ULn0Ui8Wor6/v0FZfX6+u/NIvdu3aRUVFBTt27GD9+vXs2LGDiooKdu3adfSdJR3o3i0igmpciIgMFVcBK5OWp5jZBuAt4Gvu/l/AJKAxaZvGsA0gz913hK9fBfIGON5ho6ysjJKSkvYaF7W1tZSUlGioiPSbnTt3UlBQ0F7j4rzzzos6JBkYDqwzMwd+4O530cN7t5ldA1wDkJeXR11d3SCEmx727t2r8yUDStdX/1DiQkQkxZlZGdAC3Bs27QBOdfc3zOyjwCozO7On7+fuHv5i3N3x9AtwL0ycOJHLLruMq666ij/96U+ceuqpfPGLX2TixIk6d9JnZsaiRYsoLS3l5ptvpqamhkWLFmFmur7Szwx332ZmJwKPm9nzySuPdO8Okxx3AUybNs0LCwsHPNh0UVdXh86XDJjH1uj66idKXIiIpDAzuwI4HygKh3/g7s1Ac/j6GTN7CfgAsI2Ow0nywzaA18xsorvvCIeUvN7dMfULcO/t2LGD3NxcAHJzc5k6dap+UZF+cfzxx7N7924eeughfvCDH3DiiSe2t+saSy/uvi18ft3MHgI+Ri/u3SIi6Uw1LkREUpSZfRq4AbjA3fcltZ9gZpnh6/cRFOF8OexO/JaZfTycTeRLwMPhbquBueHruUnt0kfV1dVcd911NDU14e40NTVx3XXXUV1dHXVokgb27NlDaWkpu3fv5tChQ+zevZvS0lL27NkTdWjSj8ws18yOaXsNzAQ2onu3iAigxIWISEows2rgKeAMM2s0sxLgTuAYgi7DydOengU8Z2bPAg8Ape7eVqlvHvBD4EXgJeBnYfttwDlm9gLwqXBZ+sENN9xAZmYmy5YtY926dSxbtozMzExuuOGGqEOTNBCLxbjooovYv38/tbW17N+/n4suukjFX9NPHlBvZr8HfgOscffH0L1bRATQUBERkZTg7sVdNFd1s+2DwIPdrHsaKOii/Q2gqC8xStcaGxtZt24d8Xi8faz0Pffcw8yZM6MOTdJAWVkZl1xyCbm5uWzdupXTTjuNpqYm7rjjjqhDk37k7i8DH+qiXffuARJ0TOwoHJEpIilIPS5EREREUtj+/fvZtm0b7s62bdvYv39/1CGJDGnJSYuFCxd22S4iqUWJCxERkT7Iz89n7ty51NbW0tLSQm1tLXPnziU/P//oO4scxQ033EBGRgaTJk3q8KyhSCJ95+7MnDlTPS1EhgANFREREemD22+/nb/7u79j1qxZHDx4kBEjRpCTk8MPfvCDqEOTNNDY2MhJJ53EsmXLaG1tJTMzkzlz5tDY2Bh1aCJDWmlpKQUFBTQ0NBCLxSgtLWXJkiVH31FEIqHEhYiISB/l5OQwfvx4tm7dyqRJk2hqaoo6JEkj8+fP71BDZf78+epxIdJHS5Ysoaampj0hePbZZ0cdkogcgYaKiIiI9EF5eTkrV65k8+bN1NTUsHnzZlauXEl5eXnUoUmaKC8vZ8qUKRQVFTFlyhRdWyL95Oyzz6ampkZJC5EhQD0uRERE+qChoYEZM2Z0aJsxYwYNDQ0RRSTpZNy4cezatYu9e/dy6NAhXnnlFVpbWxk3blzUoYkMWRkZGRw6dAiAW2+9tUO7iKQm/esUERHpg1gsRn19fYe2+vp6YrFYRBFJusnIyGDChAkATJgwQV+uRPooFotRU1ODu1NbW4u7U1NTo/u2SArT/3wiIiJ9UFZWRklJSYdZRUpKSigrK4s6NEkDu3btYsGCBe0JiwkTJrBgwQJ27doVdWgiQ5bu2yJDj4aKiIiI9EFxcTEAiUSivTp9eXl5e7tIX3WeqlFTN4r0je7bIkOPEhciIiJ9VFxcTHFxcfusDyL9Zdy4cdx+++0sWrSIqVOnsmnTJv7pn/5JNS5E+kj3bZGhRUNFRERERFLU6NGjOfbYY6msrOTcc8+lsrKSY489ltGjR0cdmsiQVl1dTUFBAUVFRRQUFFBdXR11SCJyBOpxISIiIpKitm/fzvLly6moqMDMyM3N5Zvf/CZXXHFF1KGJDFnV1dWUlZVRVVVFa2srmZmZlJSUAGi4iEiKUo8LERGRPtJf7mSgxGIx8vPz2bhxI+vXr2fjxo3k5+dr9gORPigvL6eqqop4PE5WVhbxeJyqqirKy8ujDk1EuqEeFyIiIn2gv9zJQCorK+PCCy9k//79HDx4kBEjRpCTk8MPfvCDqEMTGbIaGhqYMWNGh7YZM2bQ0NAQUUQicjTqcSEiItIH5eXlzJkzh0QiwaxZs0gkEsyZM0d/uZN+8eSTT9LU1MS4ceMwM8aNG0dTUxNPPvlk1KGJDFmxWIz6+voObfX19erJJJLClLgQERHpg02bNrFixQoqKytZu3YtlZWVrFixgk2bNkUdmqSBpUuXsmjRIl599VVqamp49dVXWbRoEUuXLo06NJEhq6ysjJKSEmpra2lpaaG2tpaSkhLKysqiDk1EuqGhIiIiIn0wcuRIpk+fTiKRoKGhgVgsxvTp09m+fXvUoUkaaG5uprS0tENbaWkp119/fUQRiQx9bcP4ku/b5eXlGt4nksLU40JERKQPDhw4wIoVK9i5cyeHDh1i586drFixggMHDkQdmqSB7OxslixZ0qFtyZIlZGdnRxSRSHooLi7uUPRWSQuR1KYeFyIiIn2QmZlJdnY2o0aNIiMjg1GjRjF69Giam5ujDk3SwNVXX82CBQsAmDp1Kt/97ndZsGDBYb0wRERE0pkSFyIiIn3Q0tJCbm5uh7asrCyampoiikjSSWVlJQA33XQTzc3NZGdnU1pa2t4uIiIyHGioiIiISB+ZGQDu3mFZpD9UVlayf/9+amtr2b9/v5IWIiIy7PSox4WZbQHeBlqBFnefZmbjgJXAZGALcLG77x6YMEVERFJTVlYWBw8eBN5NWBw8eJCsLHVqFBEREekPvelxEXf3D7v7tHD5RmC9u58OrA+XRUREhpXW1lb27dvHO++8g7vzzjvvsG/fPlpbW6MOTURERCQt9GWoyIXA3eHru4HZfQ9HRERkaGmbDnXPnj24O3v27GH69OmMHDky6tBERCRkZl0+4vF4t+tEJHX0NHHhwDoze8bMrgnb8tx9R/j6VSCv36MTERFJcc3NzTz11FOMHTsWgLFjx/LUU09pVhERkRTi7l0+TlvwSLfrRCR19HQA7gx332ZmJwKPm9nzySvd3c2sy3/dYaLjGoC8vDzq6ur6Eu+wo/MlA03XWOows2XA+cDr7l4QtnVZT8iCPwXdAZwL7AOucPffhfvMBb4Wvu233P3usP2jwHJgFPAocJ3rN7M+y8rKOmw61FGjRilxIX3S27/26p+yiIiksx4lLtx9W/j8upk9BHwMeM3MJrr7DjObCLzezb53AXcBTJs2zQsLC/sl8GHhsTXofMmA0jWWapYDdwL3JLW11RO6zcxuDJcXAJ8BTg8ffw0sBv46THR8HZhG0FvuGTNbHRZPXgxcDfyaIHHxaeBng/C50lpLSwsTJkxg2bJltLa2kpmZyZw5czQdqvRJV4mIyTeuYctt50UQjYiISLSOOlTEzHLN7Ji218BMYCOwGpgbbjYXeHigghQRGQ7c/ZfArk7N3dUTuhC4xwO/AsaGSeRZwOPuvitMVjwOfDpcd6y7/yrsZXEPqk3Ub6688koSiQSzZs0ikUhw5ZVXRh2SiAxBZpZpZhvM7JFweYqZ/drMXjSzlWam4jkiMiz1pMZFHlBvZr8HfgOscffHgNuAc8zsBeBT4bKIiPSv7uoJTQJeSdquMWw7UntjF+3SR/n5+SxevLi9h0VTUxOLFy8mPz8/4shEZAi6DmhIWq4Avufu7wd2AyWRRCUiErGjDhVx95eBD3XR/gZQNBBBiYjI4Y5UT6g/qTZR70ybNo3Vq1djZrg7b775Jm+99RaFhYU6d9LvdE2lLzPLB84DyoH5YS2js4E54SZ3AzcTDPsTERlWelqcU0REotFdPaFtwClJ2+WHbduAwk7tdWF7fhfbH0a1iXrn2muvZeHChaxatYo333yTk08+mXnz5rFq1SrVkJH+pbpE6e7fgBuAY8Ll8cAed28Jl9VTTkSGLSUuRERSW1s9odvoWE9oNXCtmd1HUJzzzTC5sRb4tpkdH243E1jo7rvM7C0z+zhBcc4vAZWD+UHSVUNDAxs2bOBb3/oWdXV1FBYWcvDgQW699daoQxORIcLM2maUesbMCt/D/uop1wc6XzKQdH31DyUuRERShJlVE/SWmGBmjQSzg9wG3G9mJcBW4OJw80cJpkJ9kWA61CsBwgTFLcBvw+2+6e5tBT/n8e50qD9DM4r0i1gsxje+8Q1WrVpFQ0MDsViM2bNnE4vFog5NRIaO/wNcYGbnAjnAsQRTXo81s6yw14V6yg0E9WSSgaTrq98ocSEikiLcvbibVYfVEwpnBvn7bt5nGbCsi/angYK+xCiHi8fj3HrrrZxwwgm4Ozt37uTWW29l3rx5UYcmIkOEuy8EFgKEPS7+0d0vM7OfAF8A7kOz+InIMNaTWUVERESkG6tWreLYY49l1KhRmBmjRo3i2GOPZdWqVVGHJiJD3wKCQp0vEtS8qIo4HhGRSChxISIi0geNjY3cf//9bN68mfXr17N582buv/9+Ghsbj76ziEgn7l7n7ueHr19294+5+/vd/SJ3b446PhGRKGioiIiISB/deeedfPazn6W5uZns7GxmzZoVdUgiIiIiaUM9LkRERPogNzeX1atXM3r0aABGjx7N6tWryc3NjTgyERERkfSgxIWIiEgf7N+/H4CRI0d2eG5rFxEREZG+UeJCRESkD1pbWzn//PPZs2cPAHv27OH888+ntbU14shERERE0oMSFyIiIn1UW1vLxIkTycjIYOLEidTW1kYdkoiIiEjaUHFOERGRPjAzmpqaGDlyJIcOHeLNN9+kqakJM4s6NBEREZG0oB4XIiIifeDuALz99tsdntvaRURERKRvlLgQERHpo+LiYs444wwyMjI444wzKC4ujjokERERkbShoSIiIiJ9VFNTQ3V1Na2trWRmZipxISIiItKPlLgQERHpg/z8fF5//XXOPvvs9raRI0eSn58fYVQiIiIyED70jXW8+c7BHm8/+cY1Pd72uFEj+P3XZ76XsNKeEhciIiJ9MHXqVBobGzu0HThwgKlTp0YUkYiIiAyUN985yJbbzuvRtnV1dRQWFvb4vXuT5BhuVONCRESkD9avX4+ZcdJJJ5GRkcFJJ52EmbF+/fqoQxMRERFJC0pciIiI9EFraysXX3wx48ePB2D8+PFcfPHFtLa2RhyZiIiISHrQUBEREZE+WrduHQ8++GB7cc7Pf/7zUYckIiIikjbU40JERKSP9uzZw4YNG2hpaWHDhg3s2bMn6pBERERE0oZ6XIiIiPSBmeHuXH/99Ye1i4iIiEjfqceFiIhIH0yaNIkRI0Z0aBsxYgSTJk2KKCIRERGR9KLEhYiISB/s27ePlpYW8vLyMDPy8vJoaWlh3759UYcmIiIikhaUuBAREemDXbt2kZOTw65du3D3DssiIiIi0ndKXIiIiPTRoUOHjrgsIiIiIu+dEhciIiJ91NzczJgxYwAYM2YMzc3NEUckIiIikj6UuBAREekHu3fv7vAsIiIiIv1DiQsRERERERERSVlZUQcw3HzoG+t4852DPd5+8o1rerTdcaNG8Puvz3yvYYlIijKzM4CVSU3vA/4FGAtcDfw5bL/J3R8N91kIlACtwFfcfW3Y/mngDiAT+KG73zYoH2KYyMjI4NChQ+3PIiIiItI/lLgYZG++c5Att53Xo23r6uooLCzs0bY9TXCIyNDi7n8APgxgZpnANuAh4Erge+7+r8nbm9lU4FLgTOBk4Odm9oFw9feBc4BG4LdmttrdNw3KBxkG2pIVSlqIiIiI9C8lLkREho4i4CV332pm3W1zIXCfuzcDm83sReBj4boX3f1lADO7L9xWiQsRERERSWmqcSEiMnRcClQnLV9rZs+Z2TIzOz5smwS8krRNY9jWXbuIiIiISEpTjwsRkSHAzEYCFwALw6bFwC2Ah8/fAa7qp2NdA1wDkJeXR11dXX+87bCkcyf9TddUejKzHOCXQDbB7+cPuPvXzWwKcB8wHngGuNzdD0QXqYhINJS4EBEZGj4D/M7dXwNoewYws6XAI+HiNuCUpP3ywzaO0N6Bu98F3AUwbdo072mtHTmczp30q8fW6JpKX83A2e6+18xGAPVm9jNgPkE9o/vMbAlB4eXFUQYqIhKFHg8VMbNMM9tgZo+Ey1PM7Ndm9qKZrQz/GigiIgOjmKRhImY2MWnd3wIbw9ergUvNLDv8S93pwG+A3wKnh/fukQTDTlYPSuTDxPHHH9/hWUSkpzywN1wcET4cOBt4IGy/G5gdQXgiIpHrTY2L64CGpOUKggzw+4HdBBlgERHpZ2aWSzAbyE+Tmm83s/82s+eAOPBVAHf/H+B+gqKbjwF/7+6t7t4CXAusJbiX3x9uK/1k9+7dHZ5FRHoj/CPhs8DrwOPAS8Ce8P4Nqk0kIsNYj4aKmFk+cB5QDsy3oJz92cCccJO7gZtR1zURkX7n7k0E45uT2y4/wvblBPfrzu2PAo/2e4AiItJn7t4KfNjMxhJMe/2XPd1XtYn6RudLequn18zevXt7fX3peuxaT2tc/BtwA3BMuDyeHmaAdSM93EBd6Dq38vfrm2g62Lt9Jt+4pkfb5Y6A7xflvoeoRNKbmeHuHH/88ezevbv9+QhT1oqIdMvd95hZLfAJYKyZZYW/c6s20UBQ7RjprV5cM3V1db27vnQ9duuoiQszOx943d2fMbPC3h5AN9JOBupC10UuQNNja9hy23k93r4319jkG3WNiXRn1KhRHYaKjBo1iv3790cclYgMFWZ2AnAwTFqMIhgeWAHUAl8gmFlkLvBwdFGKiESnJz0u/g9wgZmdC+QAxwJ30MMMsIiISLrp3JvinXfe6XI5eTt3H/jARGSomgjcbWaZBDXo7nf3R8xsE3CfmX0L2ABURRmkiEhUjlqc090Xunu+u08mqEJf4+6X8W4GGJQBFhGRYcTd2x8rVqxgypQp1NTUcOo/rqKmpoYpU6awYsWKDtuJiHTH3Z9z94+4+/9y9wJ3/2bY/rK7f8zd3+/uF7l7c9SxiohEoac1LrqyAGWARURkmCsuLgYgkUjwp00NJH4Wo7y8vL1dRERERPqmV4kLd68D6sLXLwMf6/+QREREhpbi4mKKi4uZfOMaNvaizoyIiIiIHN1Rh4qIiIiIiIiIiERFiQsRERERERERSVlKXIiIiIiIiIhIylLiQkRERERERERSlhIXIiIiIiIiIpKylLgQERERERERkZSlxIWIiIiIiIiIpCwlLkREREREREQkZSlxISIiIiIiIiIpS4kLERH5/+3dfaxlVXnH8e8PGOvUISit3iBMHVJHBUXA3IANxo4gBMUWTIxBG8RKO42BKNE23tqmiNZ0TFqMGopOhTKm4khUysTBAUq5oSSgA4i8jZaRlzBkBC2KXCHy4tM/7p54gXtnzpk55559zvl+kpO799pr7/PsnXVW4Jm115IkSZJay8SFJEmSJElqLRMXkiRJkiSptUxcSJIkSZKk1jJxIUmSJEmSWmufQQcgSZIkSb1w+LlX8egTT3V1zoqpjR3V22/pEn5wzgm7E5ZGyL6HTHHYuqnOT1jXzbUBTuo2pLFg4kKSJEnSSHj0iae4b03n/+M3PT3NqlWrOqrbaYJDo+2xLWs6bmPdtC+wje2Mr4pIkiRJkqTWMnEhSZIkSZJay8SFJEmSJElqLRMXktRySe5LcnuSW5Pc1JTtn+TqJHc3f1/SlCfJ55NsTXJbkjfMuc7pTf27k5w+qPuRJEmSuuHknJI0HN5SVT+bsz8FXFNVa5JMNfsfA94GrGw+RwMXAEcn2R84B5gECrg5yYaq+vli3oSkZ+t2BYRuJm5zBQRJ0qgwcbHI+rV8jkvnSGPnZGBVs70OmGY2cXEy8JWqKuDGJC9OckBT9+qqegQgydXAicDXFjdsSXN1swKCs9NLksaViYtF1q/lc/yPE2mkFXBVkgK+VFVrgYmq2t4c/wkw0WwfCDww59xtTdlC5c+TZDWwGmBiYoLp6eke3cZ48HmpW522mZmZma7bl+1RkjQKTFxIUvu9qaoeTPIy4OokP5x7sKqqSWr0RJMYWQswOTlZ3fwL79jbtLGrfxGXumkz3Y64sD1KkkaFk3NKUstV1YPN34eBy4CjgIeaV0Bo/j7cVH8QWD7n9IOasoXKJUmSpFYzcSFJLZbkRUn23bENnADcAWwAdqwMcjpwebO9AXhfs7rIG4FHm1dKrgROSPKSZgWSE5oySdKAJVme5NokdyW5M8mHm/J5V5CSpHHjqyKS1G4TwGVJYLbPvqSqNiXZDFya5AzgfuDdTf0rgLcDW4HHgT8HqKpHknwK2NzU++SOiTolSQP3NPDRqrqlSVbf3Eyi/H7mX0FKksaKiQtJarGqugc4fJ7y/wOOm6e8gDMXuNZFwEW9jlGStGeakXHbm+3HkmxhdgLlhVaQkqSx4qsikiRJUkskWQEcCXyXhVeQkqSx4ogLSZIkqQWSLAO+CZxdVb9sXhMEdr6ClMtYP1s399/tMsPj/mw1y2WsF5+JC0mSJGnAkixhNmnx1ar6VlP8UJIDqmr7c1aQehaXsZ6jy2WAu1pm2CWGBS5jPSC+KiJJkiQNUGaHVlwIbKmq8+YcWmgFKUkaK464kCRJkgbrGOA04PYktzZlHwfWMP8KUpI0VkxcSJIkSQNUVdcDWeDw81aQkqRxY+JCGiH7HjLFYeumujtpXafXBjip25AkSZIkaY/sMnGR5IXAdcDvNPW/UVXnJDkYWA/8HnAzcFpVPdnPYCXt3GNb1nDfms6TC91MGLRiauNuRiVJkiRJu6+TERe/Bo6tqplmtuPrk3wH+Ajw2apan+SLwBnABX2MVZIkSZIW5OhTaTTtMnFRVQXMNLtLmk8BxwLvbcrXAZ/AxIUkSZKkAXH0qTSaOprjIsnezL4O8krgfODHwC+q6ummyjbgwAXOXQ2sBpiYmGB6enoPQx5+nT6DmZmZrp6Xz1bQXTuwjUmSJElqu44SF1X1DHBEkhcDlwGv6fQLqmotsBZgcnKyOs1ojqxNGzvO6naTAe7muhph2N8yuwAADL5JREFUXbYD25gkSZKktturm8pV9QvgWuCPgBcn2ZH4OAh4sMexSZIkSZKkMdfJqiIvBZ6qql8kWQocD3yG2QTGu5hdWeR04PJ+BipJ0iAcfu5VPPrEUx3X7/Qd6P2WLuEH55ywu2FJkiSNjU5eFTkAWNfMc7EXcGlVfTvJXcD6JP8IfB+4sI9xSpI0EI8+8VTHE705yZskSVLvdbKqyG3AkfOU3wMc1Y+gJEmSJEmSoMs5LiRJkiRJkhaTiQtJkiRJktRaJi4kSZIkSVJrmbiQJEmSJEmtZeJCkiRJkiS1lokLSZIkSZLUWiYuJEmSJElSa+0z6ADG0YqpjZ1X3tRZ3f2WLtnNaCRJkiRJai8TF4vsvjUndVx3xdTGrupLGj1JlgNfASaAAtZW1eeSfAL4S+CnTdWPV9UVzTl/C5wBPAN8qKqubMpPBD4H7A18uarWLOa9SJIkSbvDxIUktdvTwEer6pYk+wI3J7m6OfbZqvrnuZWTHAqcCrwWeDnwX0le1Rw+Hzge2AZsTrKhqu5alLuQJEmSdpOJC0lqsaraDmxvth9LsgU4cCennAysr6pfA/cm2Qoc1RzbWlX3ACRZ39Q1cSFJkqRWM3EhSUMiyQrgSOC7wDHAWUneB9zE7KiMnzOb1Lhxzmnb+G2i44HnlB/d55Al7cK+h0xx2Lqpzk9Y1821AXzlVJI0/ExcSNIQSLIM+CZwdlX9MskFwKeYnffiU8C/AB/o0XetBlYDTExMMD093YvLDrVOn8HMzExXz8tnq8e2rOHiE1/UUd2ZmRmWLVvW8bXfv+lXtjFJ0kgwcSFJLZdkCbNJi69W1bcAquqhOcf/Dfh2s/sgsHzO6Qc1Zeyk/Fmqai2wFmBycrJWrVq15zcxzDZtpNNnMD093XHdbq6rEdav9tXltSVJajMTF5LUYkkCXAhsqarz5pQf0Mx/AfBO4I5mewNwSZLzmJ2ccyXwPSDAyiQHM5uwOBV47+LchSRJi2fF1MbuTtjUWf39li7ZjWg0irpqYx22L7CN7YyJC0lqt2OA04Dbk9zalH0ceE+SI5h9VeQ+4K8AqurOJJcyO+nm08CZVfUMQJKzgCuZXQ71oqq6czFvRJKkfrtvTXfzuqyY2tj1ORpv3bQX21fvmLiQRoz/yjBaqup6ZkdLPNcVOznn08Cn5ym/YmfnaX79mjzRiRMlSZI6Y+JCGiH+K4PUe49tWdPx76SbOQi6TjJKGllJLgLeATxcVa9ryvYHvg6sYHZk3bub1aMkaezsNegAJEmSpDF3MXDic8qmgGuqaiVwTbMvSWPJxIUkSZI0QFV1HfDIc4pP5rcvn60DTlnUoCSpRUxcSJIkSe0zMWf1qJ8AE4MMRpIGyTkuJEmSpBarqkpSCx1PshpYDTAxMcH09PRihTYSfF7qJ9tXb5i4kCRJktrnoSQHVNX2JAcADy9UsarWAmsBJicnq9NJggVs2tjxpMpS12xfPeOrIpIkSVL7bABOb7ZPBy4fYCySNFAmLiRJkqQBSvI14Abg1Um2JTkDWAMcn+Ru4K3NviSNJV8VkSRJkgaoqt6zwKHjFjUQSWopR1xIkiRJkqTWcsSFJEm7sGJqY+eVN3VWd7+lS3YzGkmSpPFi4kKSpJ24b81JHdddMbWxq/oS9CcxBibHJEmjw8SFJEnSgJgYkyRp15zjQpIkSZIktZaJC0mSJEmS1FomLiRJkiRJUmuZuJAkSZIkSa21y8RFkuVJrk1yV5I7k3y4Kd8/ydVJ7m7+vqT/4UqSJEmSpHHSyYiLp4GPVtWhwBuBM5McCkwB11TVSuCaZl+SJEmSpLGS5Hmf+z/zjnnLkww63KGzy8RFVW2vqlua7ceALcCBwMnAuqbaOuCUfgUpSZIkSVJbVdXzPtdee+285VU16HCHTldzXCRZARwJfBeYqKrtzaGfABM9jUySJEmSJI29fTqtmGQZ8E3g7Kr65dzhLVVVSeZNGyVZDawGmJiYYHp6eo8CHjc+L/WbbUySJElSm3WUuEiyhNmkxVer6ltN8UNJDqiq7UkOAB6e79yqWgusBZicnKxVq1btedTjYtNGfF7qK9uYJEmSpJbbZeIis0MrLgS2VNV5cw5tAE4H1jR/L+9LhJIkSWNmoYnb8pn56/u+tCRplHUyx8UxwGnAsUlubT5vZzZhcXySu4G3NvuSJEnaQ07yJknSb+1yxEVVXQ8stF7Lcb0NR5LUT0lOBD4H7A18uapMOkuSJKnVOp6cU/2zs3V8HRKqXui2jdm+RlOSvYHzgeOBbcDmJBuq6q7BRjZ87LclabjYb0vDravlUNUfCw37dEioeqXbNqaRdRSwtaruqaongfXAyQOOaSjZb0vScLHfloabiQtJGh8HAg/M2d/WlEmSJEmt5asikqRnSbIaWA0wMTHB9PT0YAMaIjMzMz4v9Y3tS5I0rkxcSNL4eBBYPmf/oKbsWapqLbAWYHJyslatWrUowY2C6elpfF7qF9uXJGlc+aqIJI2PzcDKJAcneQFwKrBhwDFJkiRJO+WIC0kaE1X1dJKzgCuZXQ71oqq6c8BhSZIkSTtl4kKSxkhVXQFcMeg4JEmSpE75qogkSZIkSWotExeSJEmSJKm1TFxIkiRJkqTWMnEhSZIkSZJaK1W1eF+W/BS4f9G+cPj9PvCzQQehkWYb684rquqlgw5iMdlvd83flPrJ9tU9+23tir8r9ZPtq3vz9tuLmrhQd5LcVFWTg45Do8s2JvWWvyn1k+1L6j1/V+on21fv+KqIJEmSJElqLRMXkiRJkiSptUxctNvaQQegkWcbk3rL35T6yfYl9Z6/K/WT7atHnONCkiRJkiS1liMuJEmSJElSa5m4aKkkJyb5UZKtSaYGHY9GR5KLkjyc5I5BxyKNCvts9ZP9ttR79tvqJ/vt3jNx0UJJ9gbOB94GHAq8J8mhg41KI+Ri4MRBByGNCvtsLYKLsd+WesZ+W4vgYuy3e8rERTsdBWytqnuq6klgPXDygGPSiKiq64BHBh2HNELss9VX9ttSz9lvq6/st3vPxEU7HQg8MGd/W1MmSWof+2xJGi7229KQMXEhSZIkSZJay8RFOz0ILJ+zf1BTJklqH/tsSRou9tvSkDFx0U6bgZVJDk7yAuBUYMOAY5Ikzc8+W5KGi/22NGRMXLRQVT0NnAVcCWwBLq2qOwcblUZFkq8BNwCvTrItyRmDjkkaZvbZ6jf7bam37LfVb/bbvZeqGnQMkiRJkiRJ83LEhSRJkiRJai0TF5IkSZIkqbVMXEiSJEmSpNYycSFJkiRJklrLxIUkSZIkSWotExfquyQTSS5Jck+Sm5PckOSdPbjudJLJZntZki8l+XHzHdNJjt6Da38iyV83259M8tZm++wkv7unsUtSm9lvS9Jwsd/WqNtn0AFotCUJ8J/Auqp6b1P2CuBPe/xVXwbuBVZW1W+SHAwcOk8sqarfdHPhqvqHObtnA/8BPL6H8UpSK9lvS9Jwsd/WOHDEhfrtWODJqvrijoKqur+qvpDkhUn+PcntSb6f5C0AOylfmmR9ki1JLgOWNuV/CBwN/P2OTrKq7q2qjUlWJPlRkq8AdwDLk/xNks1Jbkty7o64kvxdkv9Ncj3w6jnlFyd5V5IPAS8Hrk1ybZ+fmyQNiv22JA0X+22NPEdcqN9eC9yywLEzgaqqw5K8Brgqyat2Uv5B4PGqOiTJ6+dc97XArVX1zALfsxI4vapuTHJCs38UEGBDkjcDvwJOBY5g9ndxC3Dz3ItU1eeTfAR4S1X9bDeehSQNA/ttSRou9tsaeSYutKiSnA+8CXgS2AZ8AaCqfpjkfuBVzfH5yt8MfL4pvy3JbR1+7f1VdWOzfULz+X6zv4zZjnVf4LKqeryJc8Oe3KckjQr7bUkaLvbbGkW+KqJ+uxN4w46dqjoTOA54aY+/4/Akey9w/FdztgP8U1Ud0XxeWVUX9jAWSRp29tuSNFzstzXyTFyo3/4beGGSD84p2zFL8P8AfwbQDE37A+BHOym/Dtgx4dDrgNcDVNWPgZuAc5OkOb4iyUnzxHMl8IEky5p6ByZ5WXPtU5r3+vYF/mSB+3mM2WyxJI0q+21JGi722xp5Ji7UV1VVwCnAHye5N8n3gHXAx4B/BfZKcjvwdeD9VfXrnZRfACxLsgX4JM9+J+4vgAlga5I7gIuBh+eJ5yrgEuCG5vrfAPatqlua7/oB8B1g8wK3tBbY5GRBkkaV/bYkDRf7bY2DzLZzSZIkSZKk9nHEhSRJkiRJai0TF5IkSZIkqbVMXEiSJEmSpNYycSFJkiRJklrLxIUkSZIkSWotExeSJEmSJKm1TFxIkiRJkqTWMnEhSZIkSZJa6/8BgiZl1HgRUnAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1296x360 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9izJ4gW9Kopd"
},
"source": [
"# Box-Plots interpretation: \n",
"These plots gives an idea about the data distribution of continuous predictor in the Y-axis for each of the category in the X-Axis.\n",
"\n",
"If the distribution looks similar for each category(Boxes are in the same line), that means the the continuous variable has NO effect on the target variable. Hence, the variables are not correlated to each other."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "arhQTh_hKopd"
},
"source": [
"# Statistical Feature Selection using ANOVA test"
]
},
{
"cell_type": "code",
"metadata": {
"id": "lO673aFZKopd"
},
"source": [
"# Defining a function to find the statistical relationship with all the categorical variables\n",
"\n",
"def FunctionAnova(inpData, TargetVariable, ContinuousPredictorList):\n",
" from scipy.stats import f_oneway\n",
"\n",
" # Creating an empty list of final selected predictors\n",
" SelectedPredictors=[]\n",
" \n",
" print('ANOVA Test Results \\n')\n",
" for predictor in ContinuousPredictorList:\n",
" CategoryGroupLists=inpData.groupby(TargetVariable)[predictor].apply(list)\n",
" AnovaResults = f_oneway(*CategoryGroupLists)\n",
" \n",
" \n",
" if (AnovaResults[1] < 0.05):\n",
" print(predictor, 'is correlated with', TargetVariable, '| P-Value:', AnovaResults[1])\n",
" SelectedPredictors.append(predictor)\n",
" else:\n",
" print(predictor, 'is NOT correlated with', TargetVariable, '| P-Value:', AnovaResults[1])\n",
" \n",
" return(SelectedPredictors)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "dMyjFrw8Kopd",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "77bfc205-faa4-40cf-9b1a-488a63a263b2"
},
"source": [
"# Calling the function to check which categorical variables are correlated with target\n",
"ContinuousVariables=['age', 'amount','duration']\n",
"FunctionAnova(inpData=df, TargetVariable='GoodCredit', ContinuousPredictorList=ContinuousVariables)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"ANOVA Test Results \n",
"\n",
"age is correlated with GoodCredit | P-Value: 0.003925339398278295\n",
"amount is correlated with GoodCredit | P-Value: 8.797572373533373e-07\n",
"duration is correlated with GoodCredit | P-Value: 6.488049877187189e-12\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['age', 'amount', 'duration']"
]
},
"metadata": {},
"execution_count": 446
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "R1NTHk2UKopd"
},
"source": [
"All three columns are correlated with GoodCredit but the P-Value of \"age\", it is just at the boundry of the threshold."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "378L8Lm4Kope"
},
"source": [
"# Relationship exploration: \n",
"Grouped Bar Charts for Categorical Target Variable \"GoodCredit\" and Categorical predictors"
]
},
{
"cell_type": "code",
"metadata": {
"id": "6fEc76t2Kope"
},
"source": [
"CategoricalColsList=['checkingstatus', 'history', 'purpose','savings','employ',\n",
" 'installment', 'status', 'others','residence', 'property',\n",
" 'otherplans', 'housing', 'cards', 'job', 'liable', 'tele', 'foreign']"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "jrzBDgCBKope",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 201
},
"outputId": "995fe54b-524f-44e5-ccfb-d2d0910366ba"
},
"source": [
"CrossTabResult=pd.crosstab(index=df['checkingstatus'], columns=df['GoodCredit'])\n",
"CrossTabResult"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>GoodCredit</th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" <tr>\n",
" <th>checkingstatus</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>A11</th>\n",
" <td>139</td>\n",
" <td>135</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A12</th>\n",
" <td>164</td>\n",
" <td>105</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A13</th>\n",
" <td>49</td>\n",
" <td>14</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A14</th>\n",
" <td>348</td>\n",
" <td>46</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"GoodCredit 0 1\n",
"checkingstatus \n",
"A11 139 135\n",
"A12 164 105\n",
"A13 49 14\n",
"A14 348 46"
]
},
"metadata": {},
"execution_count": 448
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "dnrcY_NUKope",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 231
},
"outputId": "f341987a-942c-484d-f404-793854829a59"
},
"source": [
"CrossTabResult1=pd.crosstab(index=df['history'], columns=df['GoodCredit'])\n",
"CrossTabResult1"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th>GoodCredit</th>\n",
" <th>0</th>\n",
" <th>1</th>\n",
" </tr>\n",
" <tr>\n",
" <th>history</th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>A30</th>\n",
" <td>15</td>\n",
" <td>25</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A31</th>\n",
" <td>21</td>\n",
" <td>28</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A32</th>\n",
" <td>361</td>\n",
" <td>169</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A33</th>\n",
" <td>60</td>\n",
" <td>28</td>\n",
" </tr>\n",
" <tr>\n",
" <th>A34</th>\n",
" <td>243</td>\n",
" <td>50</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
"GoodCredit 0 1\n",
"history \n",
"A30 15 25\n",
"A31 21 28\n",
"A32 361 169\n",
"A33 60 28\n",
"A34 243 50"
]
},
"metadata": {},
"execution_count": 449
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "CXO0Zq8sKope",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "20aede94-a978-4e82-b1ae-340441763641"
},
"source": [
"# Creating Grouped bar plots for each categorical predictor against the Target Variable \"GoodCredit\"\n",
"\n",
"fig, PlotCanvas=plt.subplots(nrows=len(CategoricalColsList), ncols=1, figsize=(10,90))\n",
"\n",
"for CategoricalCol , i in zip(CategoricalColsList, range(len(CategoricalColsList))):\n",
" CrossTabResult=pd.crosstab(index=df[CategoricalCol], columns=df['GoodCredit'])\n",
" CrossTabResult.plot.bar(color=['red','green'], ax=PlotCanvas[i])"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAABNZCAYAAACqWuywAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde5xV9X3v/9cnXESNJ0YdrWGIoHi/cRmsnhqOl9QLaUXbJKIn8ZqDSVCbNr/8qu35SbT6+5lLE+svlv5MNJLWSK2JShJjSZTG+jhVA5aggApRDEMMIokGfooKfs4fe0FGHJg9zHdm7xlez8djP2at7/qutT571mLPm3XbkZlIkiSp597V6AIkSZIGCoOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFTK40QUA7LXXXjly5MhGlyFJktSl+fPnv5SZLZ1Na4pgNXLkSObNm9foMiRJkroUEc9vbZqnAiVJkgoxWEmSJBVisJIkSSqkKa6xkiRJzenNN9+kvb2d9evXN7qUPjds2DBaW1sZMmRI3fN0GawiYhjwELBT1f+uzJweEbcB/w14pep6QWYuiIgA/g6YBLxatT/erXciSZKaQnt7O7vtthsjR46k9id+x5CZrFmzhvb2dkaNGlX3fPUcsXodOCkz10XEEODhiPhhNe1zmXnXFv1PBw6sXr8PzKh+SpKkfmb9+vU7XKgCiAj23HNPVq9e3a35urzGKmvWVaNDqlduY5bJwLeq+R4Bdo+IfbtVlSRJaho7WqjaZHved10Xr0fEoIhYALwI/CgzH60mXRcRCyPiqxGxU9U2HFjRYfb2qk2SJA0Qq1at4txzz2X//fdn/PjxHHfccdx99909Xu4JJ5yw+dmW69at45JLLuGAAw5g/PjxnHDCCTz66KNdLGHrPv/5z/PlL38ZgKuuuoof//jHANxwww28+uqrPa4d6gxWmbkxM8cArcAxEXEEcCVwCDAB2AP4y+6sOCKmRsS8iJjX3cNskiSpcTKTM888k4kTJ/Lss88yf/58Zs2aRXt7e9H1fOITn2CPPfZg6dKlzJ8/n29+85u89NJL76jlrbfe6vayr7nmGj74wQ8CDQhWm2Tmy8Bc4LTMfKE63fc68E3gmKrbSmBEh9laq7Ytl3VzZrZlZltLS6dPhZckaccU0RyvrXjwwQcZOnQon/zkJze37bffflx22WWsX7+eCy+8kCOPPJKxY8cyd+5cgK22v/baa0yZMoVDDz2Us846i9deew2An//85zz66KNce+21vOtdtbgyatQoPvShD7F8+XIOPvhgzjvvPI444ghWrFjBl770JSZMmMBRRx3F9OnTN9d13XXXcdBBB3H88cfz9NNPb26/4IILuOuuu7jxxhv55S9/yYknnsiJJ57Y401Xz12BLcCbmflyROwM/CHwhYjYNzNfqO4CPBN4spplNnBpRMyidtH6K5n5Qo8rlSRJTWHRokWMGzeu02k33XQTEcETTzzBU089xSmnnMIzzzyz1fYZM2awyy67sGTJEhYuXLh5uYsWLWLMmDEMGjSo0/UsXbqUmTNncuyxxzJnzhyWLl3KY489RmZyxhln8NBDD7Hrrrsya9YsFixYwIYNGxg3bhzjx49/23Iuv/xyvvKVrzB37lz22muvHv9u6rkrcF9gZkQMonaE687M/H5EPFiFrgAWAJti633UHrWwjNrjFi7scZWSJKlpTZs2jYcffpihQ4fS2trKZZddBsAhhxzCfvvtxzPPPMPDDz/caftDDz3E5ZdfDsBRRx3FUUcdVdc699tvP4499lgA5syZw5w5cxg7dixQuzZr6dKlrF27lrPOOotddtkFgDPOOKPo++5Ml8EqMxcCYztpP2kr/ROY1vPSJElSMzr88MP5zne+s3n8pptu4qWXXqKtrY3W1tZi6/jZz37Gxo0bOz1qteuuu24ezkyuvPJKLrnkkrf1ueGGG4rU0h1+pY0kSeqWk046ifXr1zNjxozNbZsu/v7ABz7A7bffDsAzzzzDL37xCw4++OCttk+cOJFvf/vbADz55JMsXLgQgAMOOIC2tjamT59O7ZgNLF++nB/84AfvqOfUU0/l1ltvZd262tOhVq5cyYsvvsjEiRO55557eO2111i7di3f+973On0/u+22G2vXri3xq/ErbSRJUvdEBPfccw9//ud/zhe/+EVaWlrYdddd+cIXvsDkyZP51Kc+xZFHHsngwYO57bbb2Gmnnfj0pz/dafunPvUpLrzwQg499FAOPfTQt10D9Y1vfIPPfvazjB49mp133pm99tqLL33pS++o55RTTmHJkiUcd9xxALz73e/mn/7pnxg3bhxnn302Rx99NHvvvTcTJkzo9P1MnTqV0047jfe9732bL6rf7t/NphTYSG1tbbnpmRWSJO3wmuWBnJksWbKEQw89tNGVNExn7z8i5mdmW2f9PRUoSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZKkAeX+++/n4IMPZvTo0Vx//fV9um6DlSRJ6h0RZV912LhxI9OmTeOHP/whixcv5o477mDx4sW9/EZ/x2AlSZIGjMcee4zRo0ez//77M3ToUKZMmcK9997bZ+s3WEmSpAFj5cqVjBgxYvN4a2srK1eu7LP1G6wkSZIKMVhJkqQBY/jw4axYsWLzeHt7O8OHD++z9RusJEnSgDFhwgSWLl3Kc889xxtvvMGsWbM444wz+mz9g/tsTZIkSb1s8ODBfO1rX+PUU09l48aNXHTRRRx++OF9t/4+W5MkSdqxZDZktZMmTWLSpEkNWbenAiVJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkjRgXHTRRey9994cccQRDVl/l8+xiohhwEPATlX/uzJzekSMAmYBewLzgY9n5hsRsRPwLWA8sAY4OzOX91L9kiSpScXVUXR5Ob3r52JdcMEFXHrppZx33nlF112veo5YvQ6clJlHA2OA0yLiWOALwFczczTwG+Diqv/FwG+q9q9W/SRJknrdxIkT2WOPPRq2/i6DVdasq0aHVK8ETgLuqtpnAmdWw5OrcarpJ0dE2cgqSZLUhOq6xioiBkXEAuBF4EfAz4GXM3ND1aUd2PTV0cOBFQDV9FeonS7ccplTI2JeRMxbvXp1z96FJElSE6grWGXmxswcA7QCxwCH9HTFmXlzZrZlZltLS0tPFydJktRw3borMDNfBuYCxwG7R8Smi99bgZXV8EpgBEA1/T3ULmKXJEka0LoMVhHREhG7V8M7A38ILKEWsD5cdTsfuLcanl2NU01/MLNBX28tSZJ2KOeccw7HHXccTz/9NK2trdxyyy19uv4uH7cA7AvMjIhB1ILYnZn5/YhYDMyKiGuB/wQ2VX4L8I8RsQz4NTClF+qWJElNrp7HI5R2xx139Pk6O+oyWGXmQmBsJ+3PUrveasv29cBHilQnSZLUj/jkdUmSpEIMVpIkSYUYrCRJ0jbtqPegbc/7NlhJkqStGjZsGGvWrNnhwlVmsmbNGoYNG9at+eq5K1CSJO2gWltbaW9vZ0f8lpRhw4bR2trarXkMVpIkaauGDBnCqFGjGl1Gv+GpQEmSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhXQZrCJiRETMjYjFEbEoIv6sav98RKyMiAXVa1KHea6MiGUR8XREnNqbb0CSJKlZDK6jzwbgs5n5eETsBsyPiB9V076amV/u2DkiDgOmAIcD7wN+HBEHZebGkoVLkiQ1my6PWGXmC5n5eDW8FlgCDN/GLJOBWZn5emY+BywDjilRrCRJUjPr1jVWETESGAs8WjVdGhELI+LWiHhv1TYcWNFhtnY6CWIRMTUi5kXEvNWrV3e7cEmSpGZTd7CKiHcD3wE+k5m/BWYABwBjgBeAv+3OijPz5sxsy8y2lpaW7swqSZLUlOoKVhExhFqouj0zvwuQmasyc2NmvgV8nd+d7lsJjOgwe2vVJkmSNKDVc1dgALcASzLzKx3a9+3Q7SzgyWp4NjAlInaKiFHAgcBj5UqWJElqTvXcFfgHwMeBJyJiQdX2V8A5ETEGSGA5cAlAZi6KiDuBxdTuKJzmHYGSJGlH0GWwysyHgehk0n3bmOc64Loe1CVJktTv+OR1SZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIV0Gq4gYERFzI2JxRCyKiD+r2veIiB9FxNLq53ur9oiIGyNiWUQsjIhxvf0mJEmSmkE9R6w2AJ/NzMOAY4FpEXEYcAXwQGYeCDxQjQOcDhxYvaYCM4pXLUmS1IS6DFaZ+UJmPl4NrwWWAMOBycDMqttM4MxqeDLwrax5BNg9IvYtXrkkSVKT6dY1VhExEhgLPArsk5kvVJN+BexTDQ8HVnSYrb1q23JZUyNiXkTMW716dTfLliRJaj51B6uIeDfwHeAzmfnbjtMyM4Hszooz8+bMbMvMtpaWlu7MKkmS1JTqClYRMYRaqLo9M79bNa/adIqv+vli1b4SGNFh9taqTZIkaUCr567AAG4BlmTmVzpMmg2cXw2fD9zbof286u7AY4FXOpwylCRJGrAG19HnD4CPA09ExIKq7a+A64E7I+Ji4Hngo9W0+4BJwDLgVeDCohVLkiQ1qS6DVWY+DMRWJp/cSf8EpvWwLkmSpH7HJ69LkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSpkcKMLkPq1iEZXUJPZ6AokSXjESpIkqRiDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgrpMlhFxK0R8WJEPNmh7fMRsTIiFlSvSR2mXRkRyyLi6Yg4tbcKlyRJajb1HLG6DTitk/avZuaY6nUfQEQcBkwBDq/m+fuIGFSqWEmSpGbWZbDKzIeAX9e5vMnArMx8PTOfA5YBx/SgPkmSpH6jJ9dYXRoRC6tThe+t2oYDKzr0aa/a3iEipkbEvIiYt3r16h6UIUmS1By2N1jNAA4AxgAvAH/b3QVk5s2Z2ZaZbS0tLdtZhiRJUvPYrmCVmasyc2NmvgV8nd+d7lsJjOjQtbVqkyRJGvC2K1hFxL4dRs8CNt0xOBuYEhE7RcQo4EDgsZ6VKEmS1D90+SXMEXEHcAKwV0S0A9OBEyJiDJDAcuASgMxcFBF3AouBDcC0zNzYO6VLkiQ1l8jMRtdAW1tbzps3r9FlSN0X0egKaprg37GkgvxsaWoRMT8z2zqb5pPXJUmSCjFYSZIkFdLlNVY7nGY5/AoegpUkqZ/xiJUkSVIhHrFqYnF18xw9y+kePZMkqSsesZIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqZDBXXWIiFuBPwJezMwjqrY9gH8GRgLLgY9m5m8iIoC/AyYBrwIXZObjvVO6pE3i6mh0CZvl9Gx0CZLUMPUcsboNOG2LtiuABzLzQOCBahzgdODA6jUVmFGmTEmSpObXZbDKzIeAX2/RPBmYWQ3PBM7s0P6trHkE2D0i9i1VrCRJUjPb3mus9snMF6rhXwH7VMPDgRUd+rVXbe8QEVMjYl5EzFu9evV2liFJktQ8enzxemYm0O2LKjLz5sxsy8y2lpaWnpYhSZLUcNsbrFZtOsVX/Xyxal8JjOjQr7VqkyRJGvC2N1jNBs6vhs8H7u3Qfl7UHAu80uGUoSRJ0oBWz+MW7gBOAPaKiHZgOnA9cGdEXAw8D3y06n4ftUctLKP2uIULe6FmSZKkptRlsMrMc7Yy6eRO+iYwradFSZIk9Uc+eV2SJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklTI4J7MHBHLgbXARmBDZrZFxB7APwMjgeXARzPzNz0rU5IkqfmVOGJ1YmaOycy2avwK4IHMPBB4oBqXJEka8HrjVOBkYGY1PBM4sxfWIUmS1HR6GqwSmBMR8yNiatW2T2a+UA3/Ctinh+uQJEnqF3p0jRVwfGaujIi9gR9FxFMdJ2ZmRkR2NmMVxKYCvP/97+9hGZLU5CIaXcHvZKcfy5IK6NERq8xcWf18EbgbOAZYFRH7AlQ/X9zKvDdnZltmtrW0tPSkDEmSpKaw3UesImJX4F2ZubYaPgW4BpgNnA9cX/28t0ShkiSpb8XVzXOkNaf3jyOtPTkVuA9wd9QObw8Gvp2Z90fET4E7I+Ji4Hngoz0vU5Ikqfltd7DKzGeBoztpXwOc3JOiJEmS+iOfvC5JklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqZDBjS5AktS34upodAmb5fRsdAlSUR6xkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEJ6LVhFxGkR8XRELIuIK3prPZIkSc2iV4JVRAwCbgJOBw4DzomIw3pjXZIkSc2it45YHQMsy8xnM/MNYBYwuZfWJUmS1BR6K1gNB1Z0GG+v2iRJkgasyCz/1NuI+DBwWmZ+ohr/OPD7mXlphz5TganV6MHA08UL6f/2Al5qdBHqF9xX1B3uL6qX+0rn9svMls4m9NZX2qwERnQYb63aNsvMm4Gbe2n9A0JEzMvMtkbXoebnvqLucH9RvdxXuq+3TgX+FDgwIkZFxFBgCjC7l9YlSZLUFHrliFVmboiIS4F/BQYBt2bmot5YlyRJUrPorVOBZOZ9wH29tfwdhKdKVS/3FXWH+4vq5b7STb1y8bokSdKOyK+0kSRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGqyYXEd6RobeJiEERcUlE/E1E/MEW0/5no+pS84mIXSLi/4yIz0XEsIi4ICJmR8QXI+Ldja5PzS8inml0Df2NdwU2gYjYY2uTgJ9lZmtf1qPmFhHfAHYBHgM+DvwkM/+imvZ4Zo5rZH1qHhFxJ7Xvbd2Z2leHLQH+GTgD+L3M/HgDy1OTiYi1wKZQENXPXYBXgczM/9KQwvoZg1UTiIiNwPP8bkeG2s4dwPDMHNqQwtSUImJhZh5VDQ8G/p7a93mdAzySmWMbWZ+aR0QsyMwxERHAC8C+mZnV+M827UcSQETcCOwOfC4zV1Vtz2XmqMZW1r/02gNC1S3PAidn5i+2nBARKxpQj5rb5qCdmRuAqRFxFfAg4OkdvUMVpu7L6n/S1bj/q9bbZOblETEeuCMi7gG+xu+OYKlOXmPVHG4A3ruVaV/sy0LUL8yLiNM6NmTmNcA3gZENqUjNat6ma6ky86JNjRFxALC2YVWpaWXmfOCD1ehPgGENLKdf8lSgJO2AIiLSPwDahojYFxhbfUWd6uQRqyYXEX/Y6BrUf7i/qBs+2HUX7cgy84VNocrPlvp5xKrJRcQvMvP9ja5D/YP7i+rlvqLucH+pnxevN4GImL21ScCefVmLmp/7i+rlvqLucH8pw2DVHD4AfAxYt0V7AMf0fTlqcu4vqpf7irrD/aUAg1VzeAR4NTN/suWEiHi6AfWoubm/qF7uK+oO95cCDFZNIDNP76w9Io4HnujjctTk3F9UL/cVdYf7SxkGqyYTEWOBc4GPAM8B32lsRWpm7i+ql/uKusP9ZfsZrJpARBxE7etIzgFeovZdXpGZJza0MDUl9xfVy31F3eH+UoaPW2gCEfEW8O/AxZm5rGp7NjP3b2xlakbuL6qX+4q6w/2lDB8Q2hz+hNoXpM6NiK9HxMm8/QuZpY7cX1Qv9xV1h/tLAR6xaiIRsSswmdph2JOAbwF3Z+achhampuT+onq5r6g73F96xmDVpCLivdQuGjw7M09udD1qbu4vqpf7irrD/aX7DFaSJEmFeI2VJElSIQYrSZKkQgxWknpNRNwWER/ureVExDci4rCeLn+LZf5VyX6SdiwGK0n9VmZ+IjMXF15svYHJYCXpHQxWkoqJiPMiYmFE/Cwi/rFqnhgR/ysinu141CkiPhcRP636X93FMjqu42+qI1iDIuLfIqKtal8XEddV8z0SEftU7QdU409ExLURsa5q3zciHoqIBRHxZER8ICKuB3au2m6v+t0TEfMjYlFETK3a3tYvIkZGxJMdavw/IuLz1fDlEbG4ek+zyv7GJTUbv9JGUhERcTjwP4H/mpkvRcQewFeAfYHjgUOA2cBdEXEKcCBwDLUHEM6OiInAmk6W0XEdXwJ2Ay7MzIx427MLdwUeycy/jogvAv8DuBb4O+DvMvOOiPhkh/7nAv+amddFxCBgl8z894i4NDPHdOh3UWb+OiJ2Bn4aEd/JzCs69ouIkdv41VwBjMrM1yNi97p+mZL6LY9YSSrlJOBfMvMlgMz8ddV+T2a+VZ2y26dqO6V6/SfwOLXQdeA2lgHwfwHvycxPZufPiXkD+H41PB8YWQ0fB/xLNfztDv1/ClxYHVk6MjPXbuV9XR4RPwMeAUZUdXbHQuD2iPgYsKGb80rqZwxWknrb6x2Go8PP/yczx1Sv0Zl5SxfL+SkwfsujWB282SFwbaSLI/KZ+RAwEVgJ3BYR523ZJyJOAD4IHJeZR1MLgsM6WdwG3v552rHPh4CbgHHUjnh5pkAawAxWkkp5EPhIROwJsI0ABPCvwEUR8e6q7/CI2LuLZdwPXA/8ICJ260ZdjwB/Wg1P2dQYEfsBqzLz68A3qAUfgDcjYkg1/B7gN5n5akQcAhzbYbkd+60C9o6IPSNiJ+CPqnW8CxiRmXOBv6yW9+5u1C6pn/F/TpKKyMxFEXEd8JOI2Ejt6M7W+s6JiEOB/6iuk1oHfGwry7igw3z/UoWq2RExqc7SPgP8U0T8NbVw9krVfgLwuYh4s1r/piNWNwMLI+Jx4CLgkxGxBHiaWkhjy36Z+d8j4hrgMWpHwJ6q+gyq1v0eakfpbszMl+usW1I/5FfaSBrQImIX4LXqYvcpwDmZObnRdUkamDxiJWmgGw98LWqHxl6mdhRKknqFR6wkSZIK8eJ1SZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVEhTPMdqr732ypEjRza6DEmSpC7Nnz//pcxs6WxaUwSrkSNHMm/evEaXIUmS1KWIeH5r0zwVKEmSVIjBSpIkqRCDlSRJUiFNcY2VJElqTm+++Sbt7e2sX7++0aX0uWHDhtHa2sqQIUPqnsdgJUmStqq9vZ3ddtuNkSNHEhGNLqfPZCZr1qyhvb2dUaNG1T2fpwIlSdJWrV+/nj333HOHClUAEcGee+7Z7SN1BitJkrRNO1qo2mR73rfBSpIkqRCDlSRJ6rZVq1Zx7rnnsv/++zN+/HiOO+447r777h4v94QTTtj80PB169ZxySWXcMABBzB+/HhOOOEEHn300e1e9uc//3m+/OUvA3DVVVfx4x//GIAbbriBV199tce1gxevS5KkbspMzjzzTM4//3y+/e1vA/D8888ze/bsouv5xCc+wahRo1i6dCnvete7eO6551i8ePE7aslM3vWu7h0ruuaaazYP33DDDXzsYx9jl1126XHNHrGS1Hci+vYlqVc8+OCDDB06lE9+8pOb2/bbbz8uu+wy1q9fz4UXXsiRRx7J2LFjmTt3LsBW21977TWmTJnCoYceyllnncVrr70GwM9//nMeffRRrr322s2hadSoUXzoQx9i+fLlHHzwwZx33nkcccQRrFixgi996UtMmDCBo446iunTp2+u67rrruOggw7i+OOP5+mnn97cfsEFF3DXXXdx44038stf/pITTzyRE088sce/G49YSZKkblm0aBHjxo3rdNpNN91ERPDEE0/w1FNPccopp/DMM89stX3GjBnssssuLFmyhIULF25e7qJFixgzZgyDBg3qdD1Lly5l5syZHHvsscyZM4elS5fy2GOPkZmcccYZPPTQQ+y6667MmjWLBQsWsGHDBsaNG8f48ePftpzLL7+cr3zlK8ydO5e99tqrx78bg5UkSeqRadOm8fDDDzN06FBaW1u57LLLADjkkEPYb7/9eOaZZ3j44Yc7bX/ooYe4/PLLATjqqKM46qij6lrnfvvtx7HHHgvAnDlzmDNnDmPHjgVq12YtXbqUtWvXctZZZ20+xXfGGWcUfd+d6fJUYEQMi4jHIuJnEbEoIq6u2m+LiOciYkH1GlO1R0TcGBHLImJhRHQeaSVJUr90+OGH8/jjj28ev+mmm3jggQdYvXp10XX87Gc/Y+PGjZ1O33XXXTcPZyZXXnklCxYsYMGCBSxbtoyLL764WC3dUc81Vq8DJ2Xm0cAY4LSIOLaa9rnMHFO9FlRtpwMHVq+pwIzSRUuSpMY56aSTWL9+PTNm/O5P/Ka76j7wgQ9w++23A/DMM8/wi1/8goMPPnir7RMnTtx8AfyTTz7JwoULATjggANoa2tj+vTpZCYAy5cv5wc/+ME76jn11FO59dZbWbduHQArV67kxRdfZOLEidxzzz289gwu6DAAACAASURBVNprrF27lu9973udvp/ddtuNtWvXlvjVdB2ssmZdNTqkeuU2ZpkMfKua7xFg94jYt+elSpKkZhAR3HPPPfzkJz9h1KhRHHPMMZx//vl84Qtf4NOf/jRvvfUWRx55JGeffTa33XYbO+2001bbP/WpT7Fu3ToOPfRQrrrqqrddA/WNb3yDVatWMXr0aI444gguuOAC9t5773fUc8opp3Duuedy3HHHceSRR/LhD3+YtWvXMm7cOM4++2yOPvpoTj/9dCZMmNDp+5k6dSqnnXZakYvXY1MK3GaniEHAfGA0cFNm/mVE3AYcR+2I1gPAFZn5ekR8H7g+Mx+u5n0A+MvMnLe15be1teWmZ1ZIGsD6+k69Oj7fJG3bkiVLOPTQQxtdRsN09v4jYn5mtnXWv67HLWTmxswcA7QCx0TEEcCVwCHABGAP4C+7U2hETI2IeRExr+Q5WUmSpEbp1nOsMvNlYC5wWma+UJ3uex34JnBM1W0lMKLDbK1V25bLujkz2zKzraWlZfuqlyRJaiL13BXYEhG7V8M7A38IPLXpuqmofUPhmcCT1SyzgfOquwOPBV7JzBd6pXpJkqQmUs9zrPYFZlbXWb0LuDMzvx8RD0ZECxDAAmDT41fvAyYBy4BXgQvLly1JktR8ugxWmbkQGNtJ+0lb6Z/AtJ6XJkmS1L/4XYGSJEmFGKwkSVLvaNAXq99///0cfPDBjB49muuvv74X3+A7GawkSdKAsXHjRqZNm8YPf/hDFi9ezB133MHixYv7bP0GK0mSNGA89thjjB49mv3335+hQ4cyZcoU7r333j5bv8FKkiQNGCtXrmTEiN89TrO1tZWVK9/xOM1eY7CSJEkqxGAlSZIGjOHDh7NixYrN4+3t7QwfPrzP1m+wkiRJA8aECRNYunQpzz33HG+88QazZs3ijDPO6LP11/PkdUmSpO7L7PNVDh48mK997WuceuqpbNy4kYsuuojDDz+879bfZ2uSJEnqA5MmTWLSpEkNWbenAiVJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhPm5BkiT1irg6ii4vp3f9XKyLLrqI73//++y99948+eSTRddfD49YSZKkAeOCCy7g/vvvb9j6DVaSJGnAmDhxInvssUfD1m+wkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiFdPm4hIoYBDwE7Vf3vyszpETEKmAXsCcwHPp6Zb0TETsC3gPHAGuDszFzeS/VLkqQmVc/jEUo755xz+Ld/+zdeeuklWltbufrqq7n44ov7bP31PMfqdeCkzFwXEUOAhyPih8BfAF/NzFkR8Q/AxcCM6udvMnN0REwBvgCc3Uv1S5IkbXbHHXc0dP1dngrMmnXV6JDqlcBJwF1V+0zgzGp4cjVONf3kiCj7hDBJkqQmVNc1VhExKCIWAC8CPwJ+DrycmRuqLu3A8Gp4OLACoJr+CrXThZIkSQNaXcEqMzdm5higFTgGOKSnK46IqRExLyLmrV69uqeLkyRJvSSz76+Vagbb8767dVdgZr4MzAWOA3aPiE3XaLUCK6vhlcAIgGr6e6hdxL7lsm7OzLbMbGtpael24ZIkqfcNGzaMNWvW7HDhKjNZs2YNw4YN69Z89dwV2AK8mZkvR8TOwB9SuyB9LvBhancGng/cW80yuxr/j2r6g7mjbQ1JkgaI1tZW2tvb2RHPLg0bNozW1tZuzVPPXYH7AjMjYhC1I1x3Zub3I2IxMCsirgX+E7il6n8L8I8RsQz4NTClWxVJkqSmMWTIEEaNGtXoMvqNLoNVZi4ExnbS/iy16622bF8PfKRIdZIkSf2IT16XJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIK6TJYRcSIiJgbEYsjYlFE/FnV/vmIWBkRC6rXpA7zXBkRyyLi6Yg4tTffgCRJUrMYXEefDcBnM/PxiNgNmB8RP6qmfTUzv9yxc0QcBkwBDgfeB/w4Ig7KzI0lC5ckSWo2XR6xyswXMvPxangtsAQYvo1ZJgOzMvP1zHwOWAYcU6JYSZKkZtata6wiYiQwFni0aro0IhZGxK0R8d6qbTiwosNs7Ww7iEmSJA0IdQeriHg38B3gM5n5W2AGcAAwBngB+NvurDgipkbEvIiYt3r16u7MKkmS1JTqClYRMYRaqLo9M78LkJmrMnNjZr4FfJ3fne5bCYzoMHtr1fY2mXlzZrZlZltLS0tP3oMkSVJTqOeuwABuAZZk5lc6tO/bodtZwJPV8GxgSkTsFBGjgAOBx8qVLEmS1JzquSvwD4CPA09ExIKq7a+AcyJiDJDAcuASgMxcFBF3Aoup3VE4zTsCJUnSjqDLYJWZDwPRyaT7tjHPdcB1PahLkiSVFJ39Ke8lmX23ribjk9clSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCugxWETEiIuZGxOKIWBQRf1a17xERP4qIpdXP91btERE3RsSyiFgYEeN6+01IkiQ1g3qOWG0APpuZhwHHAtMi4jDgCuCBzDwQeKAaBzgdOLB6TQVmFK9akiSpCXUZrDLzhcx8vBpeCywBhgOTgZlVt5nAmdXwZOBbWfMIsHtE7Fu8ckmSpCbTrWusImIkMBZ4FNgnM1+oJv0K2KcaHg6s6DBbe9UmSZI0oNUdrCLi3cB3gM9k5m87TsvMBLI7K46IqRExLyLmrV69ujuzSpIkNaW6glVEDKEWqm7PzO9Wzas2neKrfr5Yta8ERnSYvbVqe5vMvDkz2zKzraWlZXvrlyRJahr13BUYwC3Aksz8SodJs4Hzq+HzgXs7tJ9X3R14LPBKh1OGkiRJA9bgOvr8AfBx4ImIWFC1/RVwPXBnRFwMPA98tJp2HzAJWAa8ClxYtGJJkqQm1WWwysyHgdjK5JM76Z/AtB7WJUmS1O/45HVJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVMjgRhcgSb0lro4+XV9Ozz5dn6Tm4xErSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiFdBquIuDUiXoyIJzu0fT4iVkbEguo1qcO0KyNiWUQ8HRGn9lbhkiRJzaaeI1a3Aad10v7VzBxTve4DiIjDgCnA4dU8fx8Rg0oVK0mS1My6DFaZ+RDw6zqXNxmYlZmvZ+ZzwDLgmB7UJ0mS1G/05BqrSyNiYXWq8L1V23BgRYc+7VWbJEnSgLe9wWoGcAAwBngB+NvuLiAipkbEvIiYt3r16u0sQ5IkqXlsV7DKzFWZuTEz3wK+zu9O960ERnTo2lq1dbaMmzOzLTPbWlpatqcMSZKkprJdwSoi9u0wehaw6Y7B2cCUiNgpIkYBBwKP9axESZKk/mFwVx0i4g7gBGCviGgHpgMnRMQYIIHlwCUAmbkoIu4EFgMbgGmZubF3SpckSWouXQarzDynk+ZbttH/OuC6nhQlSZLUH/nkdUmSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqZAug1VE3BoRL0bEkx3a9oiIH0XE0urne6v2iIgbI2JZRCyMiHG9WbwkSVIzqeeI1W3AaVu0XQE8kJkHAg9U4wCnAwdWr6nAjDJlSpIkNb8ug1VmPgT8eovmycDMangmcGaH9m9lzSPA7hGxb6liJUmSmtn2XmO1T2a+UA3/CtinGh4OrOjQr71qe4eImBoR8yJi3urVq7ezDEmSpObR44vXMzOB3I75bs7Mtsxsa2lp6WkZkiRJDbe9wWrVplN81c8Xq/aVwIgO/VqrNkmSpAFve4PVbOD8avh84N4O7edVdwceC7zS4ZShJEnSgDa4qw4RcQdwArBXRLQD04HrgTsj4mLgeeCjVff7gEnAMuBV4MJeqFmSJKkpdRmsMvOcrUw6uZO+CUzraVGSJEn9kU9elyRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIYMbXYAkqZ+I6Nv1Zfbt+qQCPGIlSZJUiMFKkiSpkB6dCoyI5cBaYCOwITPbImIP4J+BkcBy4KOZ+ZuelSlJktT8ShyxOjEzx2RmWzV+BfBAZh4IPFCNS5IkDXi9cSpwMjCzGp4JnNkL65AkSWo6Pb0rMIE5EZHA/5eZNwP7ZOYL1fRfAft0NmNETAWmArz//e/vYRmSJKlZxNV9ewdpTm+eO0h7GqyOz8yVEbE38KOIeKrjxMzMKnS9QxXCbgZoa2trnt+IJEnSdurRqcDMXFn9fBG4GzgGWBUR+wJUP1/saZGSJEn9wXYHq4jYNSJ22zQMnAI8CcwGzq+6nQ/c29MiJUmS+oOenArcB7g7ak/iHQx8OzPvj4ifAndGxMXA88BHe16mJElS89vuYJWZzwJHd9K+Bji5J0VJkiT1Rz55XZIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklRIT7+EWRrwduRvaZcayX976o88YiVJklSIR6z6gP/rkiRpx+ARK0mSpEIMVpIkSYUYrNT/RPTtS5KkOhmsJEmSCjFYSZIkFWKwkiRJKmTHDFZeoyNJknrBjhmsJEmSeoHBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYX0WrCKiNMi4umIWBYRV/TWeiRJkppFrwSriBgE3AScDhwGnBMRh/XGuiRJkppFbx2xOgZYlpnPZuYbwCxgci+tS5IkqSlEZpZfaMSHgdMy8xPV+MeB38/MSzv0mQpMrUYPBp4uXkjz2At4qdFFaLu5/fovt13/5vbrvwb6ttsvM1s6mzC4ryvZJDNvBm5u1Pr7UkTMy8y2Rteh7eP267/cdv2b26//2pG3XW+dClwJjOgw3lq1SZIkDVi9Fax+ChwYEaMiYigwBZjdS+uSJElqCr1yKjAzN0TEpcC/AoOAWzNzUW+sq5/YIU55DmBuv/7Lbde/uf36rx122/XKxeuSJEk7Ip+8LkmSVIjBSpIkqRCDlSRJUiEGK0mSpEIa9oDQgSoiTgXOBIZXTSuBezPz/sZVJUnNKyIC+AiQwF3ASdS+Bu0p4B8y860GlqduiogHM/OkRtfRKN4VWFBE3AAcBHwLaK+aW4HzgKWZ+WeNqk09ExFXZeY1ja5DW1f9p6YVeCAzl3dovygzb21YYepSRPw9sDcwFPgtsBO1Zx9+CFjlZ2fzioiFWzZR+zv4NEBmHtXnRTWYwaqgiHgmMw/qpD2AZzLzwAaUpQIi4heZ+f5G16HORcT/DRwPPA78MXBDZv6/1bTHM3NcI+vTtkXEE5l5ZEQMAX4F7JuZb0TEYODxHfGPc38REbOpheFrgdeoBat/p/bvkcx8vnHVNYbXWJW1PiImdNI+AVjf18WoeyLit1t5rQXe1+j6tE1/DJyUmZ8BxgOnR8RXq2nRuLJUpw0Amfkm8NPMfKMa3wB4GrCJZeYZwHeoPRD06Opo8ZuZ+fyOGKrAa6xKuwCYERG78btTgSOAV6ppam4vAxMyc9WWEyJiRQPqUf0GV3+EycyXI+KPgZsj4l+onV5Sc/tVRLw7M9dl5mmbGiPi94A3GliX6pCZd0fEHOBvIuJidvB/cwargjLzceD3qw+DzRevZ+avGliW6vctYD/gHcEK+HYf16Lu+XlE/LfM/AlAZm4ELo6Ia4E/bWxp6kpmnr6VSWuBP+rLWrR9MvP/B/4iIo4Gjmt0PY3kNVaFVaGKzPxVRLQAHwCeyszFja1MGrgiYmeAzHytk2nDM3Nl31el7tjKZ+fTO/j3zPYLbru38xqrgiLiEuA/gEci4lPA96nd1XJ3dXhUTS4ifm/Th0REtETEn0TE4Y2uS9tWBar3dLbtDFXNbxufnd/1s7O5ue3eySNWBUXEE8DvAzsDzwOjqwT/XmBuZo5paIHapuoD4gpqFzt/gdp1cU9Su7vli5l5S+Oq07a47fo3Pzv7L7fdO3mNVVlvZuarwKsR8fNN11Zl5m9qT1xQk7sUOJytfEAA/nFuXm67/s3Pzv7LbbcFTwWWldVzWKB2KBSAiBjWoHrUPW9m5quZuQZ42wdEg+tS19x2/Zufnf2X224LBquyzqL2lQxkZnuH9gnAkE7nUDPxA6L/ctv1b3529l9uuy14KrCgzPzFpuGIGAucS+37r54D/qFRdalufkD0X267fszPzv7LbfdOBquCIuIg4Jzq9RLwz9RuEDixoYWpLn5A9F9uu/7Nz87+y233Tgarsp6i9h1Jf5SZywAi4s8bW5Lq5QdE/+W26/f87Oy/3HZb8Bqrsv4EeAGYGxFfj4iT8XvK+pOngJOofUAcX32J78YG16T6uO36Nz87+y+33RYMVgVl5j2ZOQU4hNot3p8B9o6IGRFxSmOrUx38gOi/3Hb9mJ+d/Zfb7p18QGgvq56j8xHg7Mw8udH1qGsRsSswmdpppZOofYfg3Zk5p6GFqUtuu4HDz87+a0ffdgYraRt29A+I/sxtJ6kRDFaSJEmFeI2VJElSIQYrSZKkQgxWkppWRIyMiCc7ab8mIj64jfnOjIjDerc6SXong5Wkficzr8rMH2+jy5lAt4JVRPjAZEk9ZrCS1OwGVc+mWhQRcyJi54i4LSI+DBAR10fE4ohYGBFfjoj/CpwBfCkiFkTEARExJiIeqfrcXd0xSET8W0TcEBHzgL+OiOc2fZlzRPyXjuOSVA//hyap2R0InJOZ/yMi7gT+dNOEiNiT2hcwH5KZGRG7Z+bLETEb+H5m3lX1Wwhclpk/iYhrgOnUHmQIMDQz26p+I4EPAfcAU4DvZuabffIuJQ0IHrGS1Oyey8wF1fB8YGSHaa8A64FbIuJPgFe3nDki3gPs/r/Zu/d4reo67/+vjyKiaAcFHWOT4DE8ImxMH6k/D5Ma9ROduzx055F+lKFOTTP35Nzzk2x0bsumHCfj/pk60uQhx1KpzKHMMudxJ4EhCihQYmwyISoHU0ro8/vjWuAON+7Td+/rwOv5eFyPva7vWutan+9ecPFmre9aKzN/UDXNAo7rtMhXO03fBFxYTV8I/Gu/q5e0TTFYSWp0v+80vZFOR9ozcwNwJHA38B7ggT58/u86fd5/AmMi4nhg+8x8zcB5SXo9BitJTSsidgHemJn3Ax8DDq9mrQN2BcjMF4DfRMSx1bxzgR9s+VmdfBm4HY9WSeoDg5WkZrYr8M1qDNUjwF9V7XcCfxMRP4mIfYHzqQ1mXwiMBz71Op95G/Bm4I6BK1tSq/KRNpLUSXW14ZTMPLfetUhqPl4VKEmViPgX4F3A5HrXIqk5ecRKkiSpEMdYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIa4j5WI0aMyDFjxtS7DEmSpG7Nnz//V5k5sqt5DRGsxowZw7x58+pdhiRJUrci4tmtzfNUoCRJUiEGK0mSpEIMVpIkSYU0xBgrSZLUmF555RU6OjpYv359vUsZdMOGDaOtrY0ddtihx+sYrCRJ0lZ1dHSw6667MmbMGCKi3uUMmsxk7dq1dHR0MHbs2B6v56lASZK0VevXr2f33XffpkIVQESw++679/pIncFKkiS9rm0tVG3Sl34brCRJUq89//zzvP/972efffZh4sSJHH300dxzzz39/tzjjz9+870tX3zxRT70oQ+x7777MnHiRI4//ngeffTRPn/2Jz/5ST772c8CcMUVV/Dd734XgOuuu46XXnqp37WDY6wkSVIvZSann346559/PrfffjsAzz77LLNnzy66nQ9+8IOMHTuWZcuWsd122/HMM8+wePHi19SSmWy3Xe+OFX3qU5/aPH3dddfxgQ98gJ133rnfNXvESlLvRfTtJaklfO9732Po0KF8+MMf3ty29957c+mll7J+/XouvPBCDj30UI444ggeeughgK22v/zyy5x99tmMGzeOM844g5dffhmAn/70pzz66KNcddVVm0PT2LFjefe7382KFSs48MADOe+88zjkkENYuXIl1157LZMmTeKwww5jxowZm+u6+uqrOeCAAzjmmGN4+umnN7dfcMEF3H333Vx//fX84he/4IQTTuCEE07o9+/GI1aSJKlXFi1axIQJE7qcd8MNNxARPPHEEzz11FOcfPLJLF26dKvtM2fOZOedd2bJkiUsXLhw8+cuWrSI8ePHs/3223e5nWXLljFr1iyOOuoo5syZw7Jly5g7dy6ZyWmnncbDDz/M8OHDufPOO1mwYAEbNmxgwoQJTJw48U8+57LLLuNzn/scDz30ECNGjOj378ZgJUmS+mX69Ok88sgjDB06lLa2Ni699FIA3va2t7H33nuzdOlSHnnkkS7bH374YS677DIADjvsMA477LAebXPvvffmqKOOAmDOnDnMmTOHI444AqiNzVq2bBnr1q3jjDPO2HyK77TTTiva7654KlCSJPXKwQcfzGOPPbb5/Q033MCDDz7ImjVrim7j8ccfZ+PGjV3OHz58+ObpzOTyyy9nwYIFLFiwgOXLlzN16tRitfSGwUqSJPXKiSeeyPr165k5c+bmtk1X1R177LHcdtttACxdupSf//znHHjggVttP+644zYPgH/yySdZuHAhAPvuuy/t7e3MmDGDzARgxYoVfOtb33pNPaeccgq33HILL774IgCrVq1i9erVHHfccdx77728/PLLrFu3jm984xtd9mfXXXdl3bp1JX41ngqUJEm9ExHce++9fOxjH+Mzn/kMI0eOZPjw4Xz6059mypQpXHzxxRx66KEMGTKEW2+9lR133JGPfOQjXbZffPHFXHjhhYwbN45x48b9yRiom266iY9//OPst99+7LTTTowYMYJrr732NfWcfPLJLFmyhKOPPhqAXXbZha985StMmDCBs846i8MPP5w99tiDSZMmddmfadOmceqpp/KWt7xl86D6Pv9uNqXAempvb89N96yQ1AT6eoVfA3zfSOqdJUuWMG7cuHqXUTdd9T8i5mdme1fLeypQkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJLeWBBx7gwAMPZL/99uOaa64Z1G0brCRJ0sCIKPvqgY0bNzJ9+nS+/e1vs3jxYu644w4WL148wB19lcFKkiS1jLlz57Lffvuxzz77MHToUM4++2zuu+++Qdt+t8EqIkZHxEMRsTgiFkXEX1btu0XEdyJiWfXzzVV7RMT1EbE8IhZGxISB7oQkSRLUnhM4evToze/b2tpYtWrVoG2/J0esNgAfz8yDgKOA6RFxEPAJ4MHM3B94sHoP8C5g/+o1DZj52o+UJElqPd0Gq8x8LjMfq6bXAUuAUcAUYFa12Czg9Gp6CvDlrPkR8KaI2Kt45ZIkSVsYNWoUK1eu3Py+o6ODUaNGDdr2ezXGKiLGAEcAjwJ7ZuZz1axfAntW06OAlZ1W66jatvysaRExLyLmrVmzppdlS5IkvdakSZNYtmwZzzzzDH/4wx+48847Oe200wZt+z0OVhGxC/A14KOZ+V+d52VmAr16bH1m3piZ7ZnZPnLkyN6sKkmS1KUhQ4bwhS98gVNOOYVx48Zx5plncvDBBw/e9nuyUETsQC1U3ZaZX6+an4+IvTLzuepU3+qqfRUwutPqbVWbJEnalmSvjrkUM3nyZCZPnlyXbffkqsAAbgaWZObnOs2aDZxfTZ8P3Nep/bzq6sCjgBc6nTKUJElqWT05YvUO4FzgiYhYULX9HXANcFdETAWeBc6s5t0PTAaWAy8BFxatWJIkqUF1G6wy8xFga7c7PamL5ROY3s+6JEmSmo53XpckSSrEYCVJklSIwUqSJKkQg5UkSWoZF110EXvssQeHHHJIXbbfo/tYSZIk9VZcubVr3/omZ3R/X6wLLriASy65hPPOO6/otnvKI1aSJKllHHfccey22251277BSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJUss455xzOProo3n66adpa2vj5ptvHtTte7sFSZI0IHpye4TS7rjjjkHfZmcesZIkSSrEYCVJklSIwUqSJKkQg5UkSXpdmYM/VqoR9KXfBitJkrRVw4YNY+3atdtcuMpM1q5dy7Bhw3q1nlcFSpKkrWpra6Ojo4M1a9bUu5RBN2zYMNra2nq1jsFKkiRt1Q477MDYsWPrXUbT8FSgJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSskjtHgAAIABJREFUJEkqxGAlSZJUiMFKkiSpEIOVJElSId0Gq4i4JSJWR8STndo+GRGrImJB9Zrcad7lEbE8Ip6OiFMGqnBJkqRG05MjVrcCp3bR/vnMHF+97geIiIOAs4GDq3W+GBHblypWkiSpkXUbrDLzYeDXPfy8KcCdmfn7zHwGWA4c2Y/6JEmSmkZ/xlhdEhELq1OFb67aRgErOy3TUbW9RkRMi4h5ETFvzZo1/ShDkiSpMfQ1WM0E9gXGA88B/9TbD8jMGzOzPTPbR44c2ccyJEmSGkefglVmPp+ZGzPzj8CXePV03ypgdKdF26o2SZKkltenYBURe3V6ewaw6YrB2cDZEbFjRIwF9gfm9q9ESZKk5jCkuwUi4g7geGBERHQAM4DjI2I8kMAK4EMAmbkoIu4CFgMbgOmZuXFgSpckSWoskZn1roH29vacN29evcuQ1FMRfVuvAb5vJKm/ImJ+ZrZ3Na/bI1YNzS93SZLUQHykjSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKmRIvQuQWlZE39bLLFuHJGnQeMRKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFdBusIuKWiFgdEU92atstIr4TEcuqn2+u2iMiro+I5RGxMCImDGTxkiRJjaQnR6xuBU7dou0TwIOZuT/wYPUe4F3A/tVrGjCzTJmSJEmNr9tglZkPA7/eonkKMKuangWc3qn9y1nzI+BNEbFXqWIlSZIaWV/HWO2Zmc9V078E9qymRwErOy3XUbW9RkRMi4h5ETFvzZo1fSxDkiSpcfR78HpmJpB9WO/GzGzPzPaRI0f2twxJkqS662uwen7TKb7q5+qqfRUwutNybVWbJElSy+trsJoNnF9Nnw/c16n9vOrqwKOAFzqdMpQkSWppQ7pbICLuAI4HRkREBzADuAa4KyKmAs8CZ1aL3w9MBpYDLwEXDkDNkiRJDanbYJWZ52xl1kldLJvA9P4WJUmS1Iy887okSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqpNvbLbSiuDL6tF7O6PWTeyRJ0jbEI1aSJEmFGKwkSZIK2SZPBTaN6NspS9JTlpIk1YNHrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEKG1LsASZIkACL6tl5m2Tr6wWAladDElX370swZjfOlKUmvx1OBkiRJhRisJEmSCjFYSZIkFWKwkiRJKsTB61KD6csAbwd3S1Jj8IiVJElSIQYrSZKkQgxWkiRJhRisJEmSCunX4PWIWAGsAzYCGzKzPSJ2A74KjAFWAGdm5m/6V6YkSVLjK3HE6oTMHJ+Z7dX7TwAPZub+wIPVe0mSpJY3EKcCpwCzqulZwOkDsA1JkqSG099glcCciJgfEdOqtj0z87lq+pfAnl2tGBHTImJeRMxbs2ZNP8uQJEmqv/7eIPSYzFwVEXsA34mIpzrPzMyMiC7vXJiZNwI3ArS3t3t3Q0mS1PT6dcQqM1dVP1cD9wBHAs9HxF4A1c/V/S1SkiSpGfQ5WEXE8IjYddM0cDLwJDAbOL9a7Hzgvv4WKUmS1Az6cypwT+CeiNj0Obdn5gMR8WPgroiYCjwLnNn/MiVJkhpfn4NVZv4MOLyL9rXASf0pSpIkqRl553VJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCunPQ5glSZLqLq6MPq2XM7JwJR6xkiRJKsZgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEK8KlCS1Fqib1eIkeWvENO2xyNWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRBvtyBJEo31IF81L49YSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRAHr7cgB2BKklQfHrGSJEkqxGAlSZJUiKcCJWlbE30bLkA6XEDqjkesJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiHebkGStuTtCLrkUx0ahH8+G5rBSvXjl4MkqcV4KlCSJKkQj1ip6Xg6QpLUqAxWklSIoV/SgJ0KjIhTI+LpiFgeEZ8YqO1IkiQ1igEJVhGxPXAD8C7gIOCciDhoILYlSZLUKAbqVOCRwPLM/BlARNwJTAEWD9D2JEnS6+jLqWpPU/de5ABcuh4R7wVOzcwPVu/PBd6emZd0WmYaMK16eyDwdPFCtm4E8KtB3N5gs3/NrZX718p9A/vX7Oxf8xrsvu2dmSO7mlG3weuZeSNwYz22HRHzMrO9HtseDPavubVy/1q5b2D/mp39a16N1LeBGry+Chjd6X1b1SZJktSyBipY/RjYPyLGRsRQ4Gxg9gBtS5IkqSEMyKnAzNwQEZcA/wFsD9ySmYsGYlt9VJdTkIPI/jW3Vu5fK/cN7F+zs3/Nq2H6NiCD1yVJkrZFPitQkiSpEIOVJElSIQYrSZKkQgxWagoRsVtE7FbvOiRJej0tH6wi4pSImBkRs6vXzIg4td51DbSIuKLeNfRXRLw1Iu6MiDXAo8DciFhdtY2pb3VlVH8+p27Zn4i4qD4VlRE1Z0bE+6rpkyLi+oj4SES05PdORHyv3jWUEhEjtnj/gWr/TYuI3j8XpcFExBmb/qMWESMj4ssR8UREfDUi2updX39V/xG9IiI+WP39+58R8c2IuDYi3lzv+vorIk6IiC9ExH0R8fWIuCYi9qt3XZu09FWBEXEdcADwZaCjam4DzgOWZeZf1qu2gRYRP8/Mt9a7jv6IiP8DXAfcnZkbq7btgfcBH83Mo+pZX39FxD8CxwCPAf83cF1m/ks177HMnFDP+vojIr4I7AEMBf4L2JHavezeDTzf7H/3ImLhlk3UvmueBsjMwwa9qII6//mLiL8HjgVuB94DdGTmx+pZX39FxOLMPKia/irwI+DfgT8H/ntmvrOe9fVXRNwPPAG8ARhXTd8FvBM4PDOn1LG8fomI/wX8GfAgcDrwDLAU+Ajwj5n573UsD2j9YLU0Mw/ooj2ApZm5fx3KKiYi/mtrs4CdMrNujywqISKWbW0fvd68ZhERTwBHVPd9exO1f7iezsyPRcRPMvOIOpfYZxHxRGYeGhE7AL8E9srMP0TEEOCxFgges6kFxquAl6n9nfshtaBMZj5bv+r6r/Ofv4h4DDg2M39X7c/HMvPQ+lbYPxHxdGYeWE3Pz8yJneYtyMzx9auu/zb1ofq3riMzR205r47l9cum75Zqegjwg8x8R3Uk7oeZeUh9K2z9U4HrI2JSF+2TgPWDXcwA+C2wf2a+YYvXrsBz9S6ugPkR8cWIeHtEvKV6vb06GvKTehdXwJDM3ACQmb+ldtTqDRHx79SO9DSzTf16BfhxZv6her8B+GM9CyshM08DvkbtpoSHZ+YK4JXMfLbZQ1Vlp4g4IiImAttn5u9g8/7cWN/Sivh+RHwqInaqps+A2ikm4IX6llbEdlXQGA3ssmmoQUTsTvN/t/yx03jbt1C7CTmZ+Rtq/8Gpu6Y+otEDFwAzI2JXXj0VOJraX5wL6lRTSV8G9gae72Le7YNcy0A4D5gKXAls+h9XB/AN4OZ6FVXQTyPi/8rMHwBUpzunRsRVwH+rb2n99suI2CUzX8zMzWMaI+LPgD/Usa5iMvOeiJgD/ENETKX5/8Hq7Dngc9X0ryNir8x8rvqHeUMd6yrlEuB/Up26BT4WEb+j9t1ybt2qKud/AU9V0xcBN1VD48ZR+z5tZv8I/CQilgIHAhdDbawc8Hg9C9ukpU8FblJ9mW/6h3lVZv6ynvVIANX/lsnMl7uYNyozW+7B5RExHBiemavrXUtJEXE4cHRm/u961zKQqjGOO2bmS/WupZSIeCO1o8dr611LSdW+imqowRBgPLV//5r+bEZ1xGofYHl1tL+htPqpQAAy85eZOT8z5wOX1buegVQNiG550QJXPWbmy1uGqk37r0VD1T9m5u9aLVQBZObjQFNfLNKdav9tbKVQBZCZL2Tm2lb77qz21aZT8huAv2iFUAWQmb/OzHmbQlWj7buWPhUYEdd30XxeROwCkJlNHbK66F8A57ZK/7rxQeBT9S6iP1p5/7Vy38DvFvvX2Fq5f83Qt5YOVsAZwA+AObw6qO0cYH7dKiqrq/6dTYv0r7urHgezlgHSyvuvlfsGfrc0O/vXvBq+by09xqoatP4P1O6n89eZ+YuI+Flm7lPn0orYBvr3c2BSZr5mcH5ErMzM0XUoq5hW3n+t3Dewf83O/jWvZuhbSx+xysx1wEerS4Zvi4hv0ULjylq9f7T4VY+tvP9auW9g/5qd/WtezdC3hipmoFSD1k+kdiO/H0bEMRFxQ53LKqZV+5eZf5+Zc7cy728Hu56B0qr7D1q7b2D/mp39a16N3LeWPmK1hfHAGGqPZmgDvl7Xaspr9f4Bm69M+rt61zEAWnn/tXLfwP41O/vXvBqyby0drCLiAGoDSs8BfgV8ldq4shPqWlgh20D/Gv7qj/5o5f3Xyn0D+9fs7F/zaoa+tfrg9T9Se37X1MxcXrU11CC3/tgG+reS11798VngrwEyc1adSiuilfdfK/cN7F+zs3/Nqxn61upjrP6C2qMZHoqIL0XESTTIs4QKafX+HUTtfySnAt+pgtS6zJzV7KGq0sr7r5X7Bvav2dm/5tXwfWvpI1abRO0xGlOoHTo8kdrVZvdk5py6FlbINtC/idSOVH0LuCQzx9S3orJaef+1ct/A/jU7+9e8Grlv20Sw6ixqT/x+H3BWZp5U73pKa9X+RUQAHwGOAv4/4JzMnF7fqspr1f0Hrd03sH/Nzv41r0br2zYXrNScIuII4P3U/vI8A3w9M/+lvlVJkvSnWvqqQDW3Zrj6Q5KkzjxipYbVDFd/SJLUWatfFajm1vBXf0iS1JlHrNTwGvnqD0mSOjNYqak02tUfkiR1ZrCSJEkqxDFWkiRJhRisJEmSCjFYSZIkFWKwktQyIsKbHkuqK4OVpIYSEWMi4qmIuC0ilkTE3RGxc0SsiIgR1TLtEfH9avqTEfFvEfGfwL9FxAURcV9EfD8ilkXEjE6f/VcR8WT1+mjVNjwivhURj1ftZ1XtEyPiBxExPyL+IyL2GvzfhqRm4//uJDWiA6ndcf8/I+IWag/gfj0HAcdk5ssRcQFwJHAI8BLw44j4FpDAhcDbqd1o9tGI+AGwD/CLzHw3QES8MSJ2AP4FmJKZa6qwdTVwUemOSmotBitJjWhlZv5nNf0V4LJulp+dmS93ev+dzFwLEBFfB46hFqzuyczfdWo/FngA+KeI+DTwzcz8YUQcQi2YfSciALan9hQASXpdBitJjWjLG+wlsIFXhy8M22L+73qwftcbylwaEROAycBVEfEgcA+wKDOP7lXVkrZ5jrGS1IjeGhGbQs37gUeAFcDEqu2/dbP+OyNit4jYCTgd+E9qD/Q+vRqvNRw4A/hhRLwFeCkzvwJcC0wAngZGbqohInaIiIPLdU9Sq/KIlaRG9DQwvRpftRiYCcwFbo6IfwC+3836c4GvAW3AVzJzHkBE3FrNA7gpM38SEacA10bEH4FXgIsz8w8R8V7g+oh4I7XvyuuARQX7KKkF+UgbSQ0lIsZQG+t0SB/XvwBoz8xLCpYlST3iqUBJkqRCPGIlSZJUSI/HWEXE9sA8YFVmvicixgJ3ArsD84Fzq3EJOwJfpjbIdC1wVmaueL3PHjFiRI4ZM6ZvPZAkSRpE8+fP/1VmjuxqXm8Gr/8lsAR4Q/X+08DnM/POiPjfwFRqA0ynAr/JzP0i4uxqubNe74PHjBnDvHnzelGKJElSfUTEs1ub16MxVhHRBrwbuKl6H8CJwN3VIrOoXdIMMKV6TzX/pGp5SZKkltbTwevXAf8D+GP1fnfgt5m5oXrfAYyqpkcBKwGq+S9Uy0uSJLW0boNVRLwHWJ2Z80tuOCKmRcS8iJi3Zs2akh8tSZJUFz0ZY/UO4LSImEztMRJvAP4ZeFNEDKmOSrUBq6rlVwGjgY6IGAK8kdog9j+RmTcCNwK0t7d7aaIkSQ3olVdeoaOjg/Xr19e7lEE3bNgw2tra2GGHHXq8TrfBKjMvBy4HiIjjgb/OzP8eEf8OvJfalYHnA/dVq8yu3v+fav730ns6SJLUlDo6Oth1110ZM2YM29KQ6cxk7dq1dHR0MHbs2B6v158bhP4t8FcRsZzaGKqbq/abgd2r9r8CPtGPbUiSpDpav349u++++zYVqgAigt13373XR+p69azAzPw+1TO6MvNnwJFdLLMeeF+vqpAkSQ1rWwtVm/Sl3z7SRpIkqRCDlSRJ6rXnn3+e97///eyzzz5MnDiRo48+mnvuuaffn3v88cdvvmn4iy++yIc+9CH23XdfJk6cyPHHH8+jjz7a58/+5Cc/yWc/+1kArrjiCr773e8CcN111/HSSy/1u3bo5alASZKkzOT000/n/PPP5/bbbwfg2WefZfbs2UW388EPfpCxY8eybNkytttuO5555hkWL178mloyk+22692xok996lObp6+77jo+8IEPsPPOO/e75m3ziFXE4L4kSWoh3/ve9xg6dCgf/vCHN7ftvffeXHrppaxfv54LL7yQQw89lCOOOIKHHnoIYKvtL7/8MmeffTbjxo3jjDPO4OWXXwbgpz/9KY8++ihXXXXV5tA0duxY3v3ud7NixQoOPPBAzjvvPA455BBWrlzJtddey6RJkzjssMOYMWPG5rquvvpqDjjgAI455hiefvrpze0XXHABd999N9dffz2/+MUvOOGEEzjhhBP6/bvxiJUkSeqVRYsWMWHChC7n3XDDDUQETzzxBE899RQnn3wyS5cu3Wr7zJkz2XnnnVmyZAkLFy7c/LmLFi1i/PjxbL/99l1uZ9myZcyaNYujjjqKOXPmsGzZMubOnUtmctppp/Hwww8zfPhw7rzzThYsWMCGDRuYMGECEydO/JPPueyyy/jc5z7HQw89xIgRI/r9uzFYSZKkfpk+fTqPPPIIQ4cOpa2tjUsvvRSAt73tbey9994sXbqURx55pMv2hx9+mMsuuwyAww47jMMOO6xH29x777056qijAJgzZw5z5szhiCOOAGpjs5YtW8a6des444wzNp/iO+2004r2uyvb5qlASZLUZwcffDCPPfbY5vc33HADDz74ICUfUXfwwQfz+OOPs3Hjxi7nDx8+fPN0ZnL55ZezYMECFixYwPLly5k6dWqxWnrDYCVJknrlxBNPZP369cycOXNz26ar6o499lhuu+02AJYuXcrPf/5zDjzwwK22H3fccZsHwD/55JMsXLgQgH333Zf29nZmzJjBpge4rFixgm9961uvqeeUU07hlltu4cUXXwRg1apVrF69muOOO457772Xl19+mXXr1vGNb3yjy/7suuuurFu3rsSvxlOBkiSpdyKCe++9l4997GN85jOfYeTIkQwfPpxPf/rTTJkyhYsvvphDDz2UIUOGcOutt7LjjjvykY98pMv2iy++mAsvvJBx48Yxbty4PxkDddNNN/Hxj3+c/fbbj5122okRI0Zw7bXXvqaek08+mSVLlnD00UcDsMsuu/CVr3yFCRMmcNZZZ3H44Yezxx57MGnSpC77M23aNE499VTe8pa3bB5U3+ffTSM8xq+9vT033bNiUAz2lXoN8DuWJKkvlixZwrhx4+pdRt101f+ImJ+Z7V0t76lASZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkDYyIsq8eeuCBBzjwwAPZb7/9uOaaawawg69lsJIkSS1j48aNTJ8+nW9/+9ssXryYO+64g8WLFw/a9g1WkiSpZcydO5f99tuPffbZh6FDh3L22Wdz3333Ddr2DVaSJKllrFq1itGjR29+39bWxqpVqwZt+wYrSZKkQroNVhExLCLmRsTjEbEoIq6s2m+NiGciYkH1Gl+1R0RcHxHLI2JhREwY6E5IkiQBjBo1ipUrV25+39HRwahRowZt+0N6sMzvgRMz88WI2AF4JCK+Xc37m8y8e4vl3wXsX73eDsysfkqSJA2oSZMmsWzZMp555hlGjRrFnXfeye233z5o2+82WGVmAi9Wb3eoXvk6q0wBvlyt96OIeFNE7JWZz/W7WkmS1Dzy9eLCwBgyZAhf+MIXOOWUU9i4cSMXXXQRBx988OBtvycLRcT2wHxgP+CGzHw0Ii4Gro6IK4AHgU9k5u+BUcDKTqt3VG3PbfGZ04BpAG9961v72w9JkiQAJk+ezOTJk+uy7R4NXs/MjZk5HmgDjoyIQ4DLgbcBk4DdgL/tzYYz88bMbM/M9pEjR/aybEmSpMbTq6sCM/O3wEPAqZn5XNb8HvhX4MhqsVXA6E6rtVVtkiRJLa0nVwWOjIg3VdM7Ae8EnoqIvaq2AE4HnqxWmQ2cV10deBTwguOrJEnStqAnY6z2AmZV46y2A+7KzG9GxPciYiQQwALgw9Xy9wOTgeXAS8CF5cuWJElqPD25KnAhcEQX7SduZfkEpve/NEmSpObindclSZIK6dHtFiRJknorroyin5czur8v1kUXXcQ3v/lN9thjD5588sluly/NI1aSJKllXHDBBTzwwAN1277BSpIktYzjjjuO3XbbrW7bN1hJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEG+3IEmSBkRPbo9Q2jnnnMP3v/99fvWrX9HW1saVV17J1KlTB237BitJktQy7rjjjrpu31OBkiRJhRisJEmSCjFYSZKk15U5+GOlGkFf+m2wkiRJWzVs2DDWrl27zYWrzGTt2rUMGzasV+s5eF2SJG1VW1sbHR0drFmzpt6lDLphw4bR1tbWq3UMVpIkaat22GEHxo4dW+8ymoanAiVJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKmQboNVRAyLiLkR8XhELIqIK6v2sRHxaEQsj4ivRsTQqn3H6v3yav6Yge2CJElSY+jJEavfAydm5uHAeODUiDgK+DTw+czcD/gNsOnR0VOB31Ttn6+WkyRJanndBqusebF6u0P1SuBE4O6qfRZwejU9pXpPNf+kiIhiFUuSJDWoHo2xiojtI2IBsBr4DvBT4LeZuaFapAMYVU2PAlYCVPNfAHbv4jOnRcS8iJi3Ld7NVZIktZ4eBavM3JiZ44E24Ejgbf3dcGbemJntmdk+cuTI/n6cJElS3fXqqsDM/C3wEHA08KaI2PRInDZgVTW9ChgNUM1/I7C2SLWSJEkNrCdXBY6MiDdV0zsB7wSWUAtY760WOx+4r5qeXb2nmv+93NYeiS1JkrZJPXkI817ArIjYnloQuyszvxkRi4E7I+Iq4CfAzdXyNwP/FhHLgV8DZw9A3ZIkSQ2n22CVmQuBI7po/xm18VZbtq8H3lekOkmSpCbindclSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKmQboNVRIyOiIciYnFELIqIv6zaPxkRqyJiQfWa3GmdyyNieUQ8HRGnDGQHJEmSGsWQHiyzAfh4Zj4WEbsC8yPiO9W8z2fmZzsvHBEHAWcDBwNvAb4bEQdk5saShUuSJDWabo9YZeZzmflYNb0OWAKMep1VpgB3ZubvM/MZYDlwZIliJUmSGlmvxlhFxBjgCODRqumSiFgYEbdExJurtlHAyk6rddBFEIuIaRExLyLmrVmzpteFS5IkNZoeB6uI2AX4GvDRzPwvYCawLzAeeA74p95sODNvzMz2zGwfOXJkb1aVJElqSD0KVhGxA7VQdVtmfh0gM5/PzI2Z+UfgS7x6um8VMLrT6m1VmyRJUkvryVWBAdwMLMnMz3Vq36vTYmcAT1bTs4GzI2LHiBgL7A/MLVeyJElSY+rJVYHvAM4FnoiIBVXb3wHnRMR4IIEVwIcAMnNRRNwFLKZ2ReF0rwiUJEnbgm6DVWY+AkQXs+5/nXWuBq7uR12SJElNxzuvS5IkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRChtS7gG1BXBmDur2ckYO6PUmSVOMRK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklRIt8EqIkZHxEMRsTgiFkXEX1btu0XEdyJiWfXzzVV7RMT1EbE8IhZGxISB7oQkSVIj6MkRqw3AxzPzIOAoYHpEHAR8AngwM/cHHqzeA7wL2L96TQNmFq9akiSpAXUbrDLzucx8rJpeBywBRgFTgFnVYrOA06vpKcCXs+ZHwJsiYq/ilUuSJDWYXo2xiogxwBHAo8CemflcNeuXwJ7V9ChgZafVOqq2LT9rWkTMi4h5a9as6WVPvR+LAAAgAElEQVTZkiRJjafHwSoidgG+Bnw0M/+r87zMTKBXz1HJzBszsz0z20eOHNmbVSVJkhpSj4JVROxALVTdlplfr5qf33SKr/q5umpfBYzutHpb1SZJktTSenJVYAA3A0sy83OdZs0Gzq+mzwfu69R+XnV14FHAC51OGUqSJLWsIT1Y5h3AucATEbGgavs74BrgroiYCjwLnFnNux+YDCwHXgIuLFqxJElSg+o2WGXmI0BsZfZJXSyfwPR+1iVJktR0vPO6JElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQV0m2wiohbImJ1RDzZqe2TEbEqIhZUr8md5l0eEcsj4umIOGWgCpckSWo0PTlidStwahftn8/M8dXrfoCIOAg4Gzi4WueLEbF9qWIlSZIaWbfBKjMfBn7dw8+bAtyZmb/PzGeA5cCR/ahPkiSVEDF4r21Yf8ZYXRIRC6tThW+u2kYBKzst01G1vUZETIuIeRExb82aNf0oQ5IkqTH0NVjNBPYFxgPPAf/U2w/IzBszsz0z20eOHNnHMiRJkhpHn4JVZj6fmRsz84/Al3j1dN8qYHSnRduqNkmSpJbXp2AVEXt1ensGsOmKwdnA2RGxY0SMBfYH5vavREmSpOYwpLsFIuIO4HhgRER0ADOA4yNiPJDACuBDAJm5KCLuAhYDG4DpmblxYEqXJElqLN0Gq8w8p4vmm19n+auBq/tTlCRJUjPyzuuSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklRIt8EqIm6JiNUR8WSntt0i4jsRsaz6+eaqPSLi+ohYHhELI2LCQBYvSZLUSHpyxOpW4NQt2j4BPJiZ+wMPVu8B3gXsX72mATPLlClJktT4ug1Wmfkw8OstmqcAs6rpWcDpndq/nDU/At4UEXuVKlaSJKmR9XWM1Z6Z+Vw1/Utgz2p6FLCy03IdVdtrRMS0iJgXEfPWrFnTxzIkSZIaR78Hr2dmAtmH9W7MzPbMbB85cmR/y5AkSaq7vgar5zed4qt+rq7aVwGjOy3XVrVJkiS1vL4Gq9nA+dX0+cB9ndrPq64OPAp4odMpQ0mSpJY2pLsFIuIO4HhgRER0ADOAa4C7ImIq8CxwZrX4/cBkYDnwEnDhANQsSZLUkLoNVpl5zlZmndTFsglM729RkiRJzcg7r0uSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpkG4fwiw1nIjB3V7m4G5PktS0PGIlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFdKv+1hFxApgHbAR2JCZ7RGxG/BVYAywAjgzM3/TvzIlSZIaX4kjVidk5vjMbK/efwJ4MDP3Bx6s3kuSJLW8gTgVOAWYVU3PAk4fgG1IkiQ1nP4GqwTmRMT8iJhWte2Zmc9V078E9uznNiS1iojBfUnSIOvvswKPycxVEbEH8J2IeKrzzMzMiOjyQWtVEJsG8Na3vrWfZUiSJNVfv45YZeaq6udq4B7gSOD5iNgLoPq5eivr3piZ7ZnZPnLkyP6UIUmS1BD6HKwiYnhE7LppGjgZeBKYDZxfLXY+cF9/i5QkSWoG/TkVuCdwT9TGMQwBbs/MByLix8BdETEVeBY4s/9lSpIkNb4+B6vM/BlweBfta4GT+lOUJElSM+rv4HVJ0rZisK+0zC6vfZIamo+0kSRJKsRgJUmSVIjBSpIkqRDHWEndiCsHd1xJznBciSQ1K49YSZIkFeIRK0mSVNS2fKTfI1aSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFeKzAiW1rG35eWWS6sMjVpIkSYUYrCRJkgoZsFOBEXEq8M/A9sBNmXnNQG1LktR6PJWrZjQgR6wiYnvgBuBdwEHAORFx0EBsS5IkqVEM1KnAI4HlmfmzzPwDcCcwZYC2JUmS1BAGKliNAlZ2et9RtUmSJLWsyCx/Tjki3gucmpkfrN6fC7w9My/ptMw0YFr19kDg6eKFNI4RwK/qXYT6zP3XvNx3zc3917xafd/tnZkju5oxUIPXVwGjO71vq9o2y8wbgRsHaPsNJSLmZWZ7vetQ37j/mpf7rrm5/5rXtrzvBupU4I+B/SNibEQMBc4GZg/QtiRJkhrCgByxyswNEXEJ8B/UbrdwS2YuGohtSZIkNYoBu49VZt4P3D9Qn99ktolTni3M/de83HfNzf3XvLbZfTcgg9clSZK2RT7SRpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrAZJRGyzV0g0i4jYPiI+FBH/EBHv2GLe39erLnUvInaOiP8REX8TEcMi4oKImB0Rn4mIXepdn3ovIpbWuwZ1LyIO6zS9Q0T8ffV37x8jYud61lYvXhVYUETstrVZwOOZ2TaY9ah3IuImYGdgLnAu8IPM/Ktq3mOZOaGe9WnrIuIuas8n3YnaI7KWAF8FTgP+LDPPrWN56kZErAM2/WMU1c+dgZeAzMw31KUwdavzd2NE/BOwO/CvwOnA7pl5Xj3rqweDVUERsRF4lle/GKD2ZRHAqMwcWpfC1CMRsTAzD6umhwBfpPa8q3OAH2XmEfWsT1sXEQsyc3xEBPAcsFdmZvX+8U37VY0pIq4H3gT8TWY+X7U9k5lj61uZuhMRP9n03RgRC4BJmfnKtvx3b8BuELqN+hlwUmb+fMsZEbGyDvWodzYH38zcAEyLiCuA7wGeTmoCVZi6P6v/MVbv/d9jg8vMyyJiInBHRNwLfIFXj2Cpsb0xIs6gNrRox8x8Bbbtv3uOsSrrOuDNW5n3mcEsRH0yLyJO7dyQmZ+idlh7TF0qUk/N2zSWKjMv2tQYEfsC6+pWlXosM+cDf169/QEwrI7lqOd+QO2U+3uAH0XEngAR8WfAr+pZWL14KlBSS4uISL/omkpE7AUcUT0aTWoqngosKCLeCqzOzPXV+eULgAnAYuBL1eklNSj3X/Pqbt8B7rsG1sX+OxWYEBF749+9hub35mt5KrCs+3n1d3oN8G7gUWAS2/ADKZuI+695ue+am/uvebnvtuARq7K2y8yXquk/p3Z1xB+Br0TE43WsSz3j/mte7rvm5v5rXu67LXjEqqyVEXFiNb0CGA0QEbvXrSL1hvuvebnvmpv7r3m577bg4PWCImI08GVge+AF4BhgAbX7s/x1Zj5Yx/LUDfdf83LfNTf3X/Ny372WwWoARMQ44ABqp1o7gB2BszJzel0LU4+4/5qX+665uf+al/vuVY6xGgCZuSQihgHvB94HPAN8rb5Vqafcf83Lfdfc3H/Ny333KoNVQRFxALXHn5xD7cZoX6V2VPCEuhamHnH/NS/3XXNz/zUv991reSqwoIj4I/BDYGpmLq/afpaZ+9S3MvWE+695ue+am/uvebnvXsurAsv6C2oPgH0oIr4UESfxpw9kVmNz/zUv911zc/81L/fdFjxiNQAiYjgwhdqh0ROpXTFxT2bOqWth6hH3X/Ny3zU391/zct+9ymA1wCLizdQG8p2VmSfVux71jvuvebnvmpv7r3lt6/vOYCVJklSIY6wkSZIKMVhJkiQVYrCS1JIi4qaIOKjedUjatjjGSpIkqRCPWElqOBExPCK+FRGPR8STEXFWRFwRET+u3t8YNW+LiLmd1hsTEU9U09+PiPZq+sWIuLr6vB9FxJ5V+77V+yci4qqIeLFq3ysiHo6IBdX2jq3H70FS8zFYSWpEpwK/yMzDM/MQ4AHgC5k5qXq/E/CezHwKGBoRY6v1zqL2SI0tDQd+lJmHAw8D/0/V/s/AP2fmodQeHLvJ+4H/yMzxwOHAgsL9k9SiDFaSGtETwDsj4tMRcWxmvgCcEBGPVkekTgQOrpa9i1qggq0Hqz8A36ym5wNjqumjgX+vpm/vtPyPgQsj4pPAoZm5rv9dkrQtMFhJajiZuRSYQC1gXRURVwBfBN5bHV36EjCsWvyrwJnVw2AzM5d18ZGv5KsDSjfSzQPoM/Nh4DhgFXBrRJzX3z5J2jYYrCQ1nIh4C/BSZn4FuJZayAL4VUTsArx307KZ+VNqYen/peujVf8/e/ceZWV95/n+/VVEBFlJBPQYygCCQVSQS2FDx3BQ02pML9DpdEQ7EbwcjEHNbbon9swRzegZE9PGcWIzY9SWTIwkY+IlN0OiJLZnTiBgIwooYEQpYgDpdAJLSAS/5496IBUspIr6Ve1d8H6ttVc9z++5/L67nnL74bn89tv5OfBX1fS0Fv0PAjZk5leBu1v0L0lv623/1SZJNTISuDUi3gTeAK4CzgeeA35N86W6lr5JcwAbQvt8Cvh6RPxHmu/j+m3VPhn424h4A9gKeMZKUps43IKkg1ZE9Aa2ZWZGxDTgosycWuu6JHVfnrGSdDAbB3wlIgL4N+CyGtcjqZvzjJUkSVIh3rwuSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCqmLcaz69++fgwcPrnUZkiRJ+7RkyZLXMnNAa8vqIlgNHjyYxYsX17oMSZKkfYqIl/e2zEuBkiRJhRisJEmSCjFYSZIkFVIX91hJkqT69MYbb9DU1MT27dtrXUqX69WrFw0NDRx22GFt3sZgJUmS9qqpqYm+ffsyePBgIqLW5XSZzGTz5s00NTUxZMiQNm/npUBJkrRX27dvp1+/fgdVqAKICPr169fuM3UGK0mS9LYOtlC1y/68b4OVJElSIQYrSZLUbhs2bODiiy/m+OOPZ9y4cUycOJGHHnqow/udPHny7kHDt27dypVXXsnQoUMZN24ckydPZuHChfu97xtuuIEvfelLAFx//fX85Cc/AeD222/n9ddf73Dt4M3rkiSpnTKT888/n+nTp/ONb3wDgJdffplHH320aD9XXHEFQ4YMYfXq1RxyyCG89NJLrFix4i21ZCaHHNK+c0Wf//znd0/ffvvtfPSjH6V3794drtkzVpK6TkTXviR1iieeeIKePXvy8Y9/fHfboEGDuOaaa9i+fTuXXnopI0eOZMyYMSxYsABgr+3btm1j2rRpjBgxggsuuIBt27YB8OKLL7Jw4UJuuumm3aFpyJAhfOhDH2Lt2rUMHz6cSy65hFNOOYV169Zx6623Mn78eEaNGsXs2bN313XzzTfz3ve+l9NPP50XXnhhd/uMGTN48MEHueOOO/jVr37FGWecwRlnnNHh341nrCRJUrssX76csWPHtrrszjvvJCJ49tlnef755zn77LNZtWrVXtvnzJlD7969WblyJcuWLdu93+XLlzN69GgOPfTQVvtZvXo1c+fOZcKECcyfP5/Vq1ezaNEiMpMpU6bw5JNP0qdPH+bNm8fSpUvZsWMHY8eOZdy4cX+yn2uvvZbbbruNBQsW0L9//w7/bgxWkiSpQ2bNmsVTTz1Fz549aWho4JprrgHgxBNPZNCgQaxatYqnnnqq1fYnn3ySa6+9FoBRo0YxatSoNvU5aNAgJkyYAMD8+fOZP38+Y8aMAZrvzVq9ejVbtmzhggsu2H2Jb8qUKUXfd2u8FChJktrl5JNP5umnn949f+edd/L444+zadOmon0888wz7Ny5s9Xlffr02T2dmVx33XUsXbqUpUuXsmbNGi6//PJitbSHwUqSJLXLmWeeyfbt25kzZ87utl1P1b3//e/n/vvvB2DVqlW88sorDB8+fK/tkyZN2n0D/HPPPceyZcsAGDp0KI2NjcyePZvMBGDt2rV8//vff0s955xzDvfeey9bt24FYP369WzcuJFJkybx8MMPs23bNrZs2cJ3v/vdVt9P37592bJlS4lfjZcCJUlS+0QEDz/8MJ/+9Kf54he/yIABA+jTpw9f+MIXmDp1KldddRUjR46kR48e3HfffRx++OF84hOfaLX9qquu4tJLL2XEiBGMGDHiT+6Buvvuu/nsZz/LsGHDOOKII+jfvz+33nrrW+o5++yzWblyJRMnTgTgyCOP5Otf/zpjx47lwgsv5NRTT+Xoo49m/Pjxrb6fmTNncu655/Lud7979031+/272ZUCa6mxsTF3jVkh6QDW1U/q1cHnm9TdrVy5khEjRtS6jJpp7f1HxJLMbGxtfS8FSpIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkqXPU6IvVH3vsMYYPH86wYcO45ZZbOvENvpXBSpIkHTB27tzJrFmz+OEPf8iKFSt44IEHWLFiRZf1b7CSJEkHjEWLFjFs2DCOP/54evbsybRp03jkkUe6rH+DlSRJOmCsX7+e4447bvd8Q0MD69ev77L+DVaSJEmFGKwkSdIBY+DAgaxbt273fFNTEwMHDuyy/g1WkiTpgDF+/HhWr17NSy+9xB/+8AfmzZvHlClTuqz/Hl3WkyRJOrhkdnmXPXr04Ctf+QrnnHMOO3fu5LLLLuPkk0/uuv67rCdJkqQucN5553HeeefVpG8vBUqSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCHG5BkiR1irgxiu4vZ+97XKzLLruM733vexx99NE899xzRftvC89YSZKkA8aMGTN47LHHata/wUqSJB0wJk2axFFHHVWz/vcZrCLiuIhYEBErImJ5RHyyaj8qIn4cEaurn++q2iMi7oiINRGxLCLGdvabkCRJqgdtOWO1A/hsZp4ETABmRcRJwOeAxzPzBODxah7gg8AJ1WsmMKd41ZIkSXVon8EqM1/NzKer6S3ASmAgMBWYW602Fzi/mp4KfC2b/Rx4Z0QcW7xySZKkOtOue6wiYjAwBlgIHJOZr1aLfg0cU00PBNa12KypattzXzMjYnFELN60aVM7y5YkSao/bR5uISKOBL4NfCozfxfxx0coMzMjYt/PQLaQmXcBdwE0Nja2a1tJklT/2jI8QmkXXXQRP/3pT3nttddoaGjgxhtv5PLLL++y/tsUrCLiMJpD1f2Z+Z2qeUNEHJuZr1aX+jZW7euB41ps3lC1SZIkdaoHHnigpv235anAAO4BVmbmbS0WPQpMr6anA4+0aL+kejpwAvDbFpcMJUmSDlhtOWP1PuBjwLMRsbRq+3vgFuBbEXE58DLwkWrZD4DzgDXA68ClRSuWJEmqU/sMVpn5FLC3MenPamX9BGZ1sC5JklQnMpOW91YfLJojTfs48rokSdqrXr16sXnz5v0KGd1ZZrJ582Z69erVru38EmZJkrRXDQ0NNDU1cTAOjdSrVy8aGhratY3BSpIk7dVhhx3GkCFDal1Gt+GlQEmSpEIMVpIkSYV4KVCSpINBVz7Vd5Dd6N6SZ6wkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFbLPYBUR90bExoh4rkXbDRGxPiKWVq/zWiy7LiLWRMQLEXFOZxUuSZJUb9pyxuo+4NxW2r+cmaOr1w8AIuIkYBpwcrXNP0bEoaWKlSRJqmf7DFaZ+STwr23c31RgXmb+PjNfAtYAp3WgPkmSpG6jI/dYXR0Ry6pLhe+q2gYC61qs01S1vUVEzIyIxRGxeNOmTR0oQ5IkqT7sb7CaAwwFRgOvAv/Q3h1k5l2Z2ZiZjQMGDNjPMiRJkurHfgWrzNyQmTsz803gq/zxct964LgWqzZUbZIkSQe8/QpWEXFsi9kLgF1PDD4KTIuIwyNiCHACsKhjJUqSJHUPPfa1QkQ8AEwG+kdEEzAbmBwRo4EE1gJXAmTm8oj4FrAC2AHMysydnVO6JElSfYnMrHUNNDY25uLFi2tdhqTOFtG1/dXB55tUN7ryv78D/L+9iFiSmY2tLXPkdUmSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRC9vmVNpIkAY6cL7WBZ6wkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpkB61LkCSOkvcGF3aX87OLu1PUv3Z5xmriLg3IjZGxHMt2o6KiB9HxOrq57uq9oiIOyJiTUQsi4ixnVm8JElSPWnLpcD7gHP3aPsc8HhmngA8Xs0DfBA4oXrNBOaUKVNqIaJrX5IktdE+g1VmPgn86x7NU4G51fRc4PwW7V/LZj8H3hkRx5YqVpIkqZ7t783rx2Tmq9X0r4FjqumBwLoW6zVVbW8RETMjYnFELN60adN+liFJklQ/OvxUYGYm0O47NjPzrsxszMzGAQMGdLQMSZKkmtvfYLVh1yW+6ufGqn09cFyL9RqqNkmSpAPe/garR4Hp1fR04JEW7ZdUTwdOAH7b4pKhJEnSAW2f41hFxAPAZKB/RDQBs4FbgG9FxOXAy8BHqtV/AJwHrAFeBy7thJolSZLq0j6DVWZetJdFZ7WybgKzOlqUJElSd+RX2kiSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgrpUesCpHoXN0aX9pezs0v7kySV4xkrSZKkQgxWkiRJhRisJEmSCjFYSZIkFeLN65IkqaiD+aEfz1hJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKqRDX2kTEWuBLcBOYEdmNkbEUcA3gcHAWuAjmfmbjpUpSZJU/0qcsTojM0dnZmM1/zng8cw8AXi8mpckSTrgdcalwKnA3Gp6LnB+J/QhSZJUdzoarBKYHxFLImJm1XZMZr5aTf8aOKa1DSNiZkQsjojFmzZt6mAZkiRJtdehe6yA0zNzfUQcDfw4Ip5vuTAzMyKytQ0z8y7gLoDGxsZW15EkSepOOnTGKjPXVz83Ag8BpwEbIuJYgOrnxo4WKUmS1B3sd7CKiD4R0XfXNHA28BzwKDC9Wm068EhHi5QkSeoOOnIp8BjgoYjYtZ9vZOZjEfEL4FsRcTnwMvCRjpcpSZJU//Y7WGXmL4FTW2nfDJzVkaIkSZK6I0delyRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEI6OvJ699Q8RETXSQeWl6T2ihu79rM6Z/tZrY7zjJUkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVEiPWhdwMIgbo0v7y9nZpf1JkqRmnrGSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklRIpwWriDg3Il6IiDUR8bnO6keSJKledEqwiohDgTuBDwInARdFxEmd0ZckSVK96KwzVqcBazLzl5n5B2AeMLWT+pIkSaoLkZnldxrxYeDczLyimv8Y8GeZeXWLdWYCM6vZ4cALxQupH/2B12pdhPabx6/78th1bx6/7utAP3aDMnNAawt6dHUlu2TmXcBdteq/K0XE4sxsrHUd2j8ev+7LY9e9efy6r4P52HXWpcD1wHEt5huqNkmSpANWZwWrXwAnRMSQiOgJTAMe7aS+JEmS6kKnXArMzB0RcTXwI+BQ4N7MXN4ZfXUTB8UlzwOYx6/78th1bx6/7uugPXadcvO6JEnSwciR1yVJkgoxWEmSJBVisJIkSSrEYCVJklSIwUpStxcRvSPi7yLibyOiV0TMiIhHI+KLEXFkretT+0XEqlrXIO0Pg1UXiYiD9tHT7iIiDo2IKyPiP0fE+/ZY9p9qVZfa5D7gGGAI8H2gEbgVCGBO7cpSW0TEloj4XfXaEhFbgKG72mtdn/YuIka1mD4sIv5T9Y+a/ycieteytlpxuIWCIuKovS0CnsnMhq6sR+0TEXcDvYFFwMeAn2XmZ6plT2fm2FrWp72LiKWZOToiAngVODYzs5p/JjNH7WMXqqGIuAN4J/C3mbmhanspM4fUtjLtS8vPxoj4B6Af8E/A+UC/zLyklvXVQs2+K/AAtQl4mT66UsUAACAASURBVOYgtUtW80fXpCK1x2m7/gccEV8B/jEivgNcxJ8eU9WpKkz9IKt/MVbz/uuxzmXmtRExDnggIh4GvkLzZ6fqX8vPxrOA8Zn5RkQ8CTxTo5pqymBV1i+BszLzlT0XRMS6GtSj9um5ayIzdwAzI+J64AnA+3Tq2+KIODIzt2bmZbsaI2IosKWGdamNMnNJRHwAuBr4GdCrxiWpbd4RERfQfGvR4Zn5Bhzc/6gxWJV1O/Au4C3BCvhiF9ei9lscEedm5mO7GjLz8xHxK7xPp65l5hV7aX8xIt7f1fVo/2Tmm8AdEfG/gDG1rkdt8jNgSjX984g4JjM3RMT/AbxWw7pqxnusJHV7ETEFmJ+Z22tdi9rP46cDiU8FFhQRUyLC09fdlMevW/sm0BQR/zMizouIQ2tdkNrF49dNVZ+bh9e6jnpisCrLD4fuzePXfT0PnAA8CXwW+FVE/PeI+D9rW5bayOPXfX0TWO/n5h8ZrMryw6F78/h1X5mZv8nMr2bmWcCpwArgFh8c6RY8ft2Xn5t78B6rgvYc66i6ee8jND+u35CZx9WsOO2Tx6/7ioh/ycxWb3aOiEGZ+XJX16S28/h1X35uvpXBqiA/HLo3j1/3FRGTM/OnrbSfDlyUmbO6viq1lcev+/Jz8628FFjWp1trrD4c/q6La1H7efy6qZb/U46IMRFxa0SsBf4zzZcqVMc8ft2an5t7cByrgvb8cAAuBv4aeAn4To3KUht5/LqviHgvzZceLqJ57Jxv0nxG/oyaFqY28fh1X35uvpXBqiA/HLo3j1+39jzwz8BfZuYagIho9V/Sqksev27Kz8238lJgWc8DZ9L84XB6Zv43YGeNa1Lbefy6r39H85cvL4iIr0bEWfj9jt2Jx6/78nNzDwarsvxw6N48ft1UZj6cmdOAE4EFwKeAoyNiTkScXdvqtC8ev27Nz809+FRgJ4iIPsBUmk+Nngl8DXgoM+fXtDC1icfvwBAR76L5Xo8Lq7GR1I14/LoXPzf/yGDVyfxw6N48fpLUPgf756bBSpIkqRDvsZIkSSrEYCVJklSIwUrSQSMitta6BkkHNoOVJElSIQYrSXUpIj4aEYsiYmlE/I+IODQitlbfI7c8In4SEadFxE8j4pcRMaXabkZEPFK1r46I2a3sO6r9PBcRz0bEhVX71yLi/Bbr3R8RU7vuXUvq7gxWkupORIwALgTel5mjaR7J+W+APsATmXkysAW4CfgL4ALg8y12cRrwV8Ao4K8jonGPLv4dMBo4FfgAcGtEHAvcA8yoangH8OfA9zvhLUo6QPldgZLq0VnAOOAXEQFwBLAR+APwWLXOs8DvM/ONiHgWGNxi+x9n5maAiPgOcDqwuMXy04EHMnMnsCEifgaMz8xHI+IfI2IAzcHs25m5o7PepKQDj8FKUj0KYG5mXvcnjRH/Pv84+N6bwO8BMvPNiGj5ebbnAH3tGbDva8BHgWnApe2qWtJBz0uBkurR48CHI+JogIg4KiIGtWP7v6i2OQI4H/h/91j+z8CF1X1bA4BJwKJq2X00f1cdmbmiA+9B0kHIM1aS6k5mroiI/wTMj4hDgDeAWe3YxSLg20AD8PXMXLzH8oeAicAzNJ/N+rvM/HXV94aIWAk83MG3Iekg5FfaSDqgRMQMoDEzr97P7XvTfP/W2Mz8bcnaJB34vBQoSZWI+ACwEvhvhipJ+8MzVpIkSYV4xkqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVUhcjr/fv3z8HDx5c6zIkSZL2acmSJa9l5oDWltVFsBo8eDCLF+/5jROSJEn1JyJe3tsyLwVKkiQVYrCSJEkqxGAlSZJUSF3cYyVJkurTG2+8QVNTE9u3b691KV2uV69eNDQ0cNhhh7V5G4OVJEnaq6amJvr27cvgwYOJiFqX02Uyk82bN9PU1MSQIUPavJ2XAiVJ0l5t376dfv36HVShCiAi6NevX7vP1BmsJEnS2zrYQtUu+/O+DVaSJKndNmzYwMUXX8zxxx/PuHHjmDhxIg899FCH9zt58uTdY1tu3bqVK6+8kqFDhzJu3DgmT57MwoUL93vfN9xwA1/60pcAuP766/nJT34CwO23387rr7/e4drBe6wkSVI7ZSbnn38+06dP5xvf+AYAL7/8Mo8++mjRfq644gqGDBnC6tWrOeSQQ3jppZdYsWLFW2rJTA45pH3nij7/+c/vnr799tv56Ec/Su/evTtcs2esJEmqNxH18dqLJ554gp49e/Lxj398d9ugQYO45ppr2L59O5deeikjR45kzJgxLFiwAGCv7du2bWPatGmMGDGCCy64gG3btgHw4osvsnDhQm666abdoWnIkCF86EMfYu3atQwfPpxLLrmEU045hXXr1nHrrbcyfvx4Ro0axezZs3fXdfPNN/Pe976X008/nRdeeGF3+4wZM3jwwQe54447+NWvfsUZZ5zBGWec0eFD5xkrSZLULsuXL2fs2LGtLrvzzjuJCJ599lmef/55zj77bFatWrXX9jlz5tC7d29WrlzJsmXLdu93+fLljB49mkMPPbTVflavXs3cuXOZMGEC8+fPZ/Xq1SxatIjMZMqUKTz55JP06dOHefPmsXTpUnbs2MHYsWMZN27cn+zn2muv5bbbbmPBggX079+/w78bg5UkSeqQWbNm8dRTT9GzZ08aGhq45pprADjxxBMZNGgQq1at4qmnnmq1/cknn+Taa68FYNSoUYwaNapNfQ4aNIgJEyYAMH/+fObPn8+YMWOA5nuzVq9ezZYtW7jgggt2X+KbMmVK0ffdGi8FSpKkdjn55JN5+umnd8/feeedPP7442zatKloH8888ww7d+5sdXmfPn12T2cm1113HUuXLmXp0qWsWbOGyy+/vFgt7WGwkiRJ7XLmmWeyfft25syZs7tt11N173//+7n//vsBWLVqFa+88grDhw/fa/ukSZN23wD/3HPPsWzZMgCGDh1KY2Mjs2fPJjMBWLt2Ld///vffUs8555zDvffey9atWwFYv349GzduZNKkSTz88MNs27aNLVu28N3vfrfV99O3b1+2bNlS4lfjpUBJktQ+EcHDDz/Mpz/9ab74xS8yYMAA+vTpwxe+8AWmTp3KVVddxciRI+nRowf33Xcfhx9+OJ/4xCdabb/qqqu49NJLGTFiBCNGjPiTe6DuvvtuPvvZzzJs2DCOOOII+vfvz6233vqWes4++2xWrlzJxIkTATjyyCP5+te/ztixY7nwwgs59dRTOfrooxk/fnyr72fmzJmce+65vPvd7959U/1+/252pcBaamxszF1jVkiSdNCrlwE5M1m5ciUjRoyodSU109r7j4glmdnY2vpeCpQkSSrEYCVJklTIPoNVRPSKiEUR8UxELI+IG6v2IRGxMCLWRMQ3I6Jn1X54Nb+mWj64c9+CJElSfWjLGavfA2dm5qnAaODciJgAfAH4cmYOA34D7Hqu8XLgN1X7l6v1JEmSDnj7DFbZbGs1e1j1SuBM4MGqfS5wfjU9tZqnWn5WHKxfiy1Jkg4qbbrHKiIOjYilwEbgx8CLwL9l5o5qlSZgYDU9EFgHUC3/LdCvZNGSJEn1qE3BKjN3ZuZooAE4DTixox1HxMyIWBwRi0uO1CpJkg5ujz32GMOHD2fYsGHccsstXdp3u54KzMx/AxYAE4F3RsSuAUYbgPXV9HrgOIBq+TuAza3s667MbMzMxgEDBuxn+ZIkqW5FlH21wc6dO5k1axY//OEPWbFiBQ888AArVqzo5Df6R215KnBARLyzmj4C+AtgJc0B68PVatOBR6rpR6t5quVPZD2MQipJkg54ixYtYtiwYRx//PH07NmTadOm8cgjj+x7w0LacsbqWGBBRCwDfgH8ODO/B/wH4DMRsYbme6juqda/B+hXtX8G+Fz5siVJkt5q/fr1HHfccbvnGxoaWL9+/dtsUdY+vyswM5cBY1pp/yXN91vt2b4d+Osi1UmSJHUjjrwuSZIOGAMHDmTdunW755uamhg4cODbbFGWwUqSJB0wxo8fz+rVq3nppZf4wx/+wLx585gyZUqX9b/PS4GSJEndRY8ePfjKV77COeecw86dO7nssss4+eSTu67/LutJkiQdXGo0KMB5553HeeedV5O+vRQoSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZKkA8Zll13G0UcfzSmnnFKT/h3HSpIkdYq4MYruL2fve1ysGTNmcPXVV3PJJZcU7butPGMlSZIOGJMmTeKoo46qWf8GK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSQeMiy66iIkTJ/LCCy/Q0NDAPffc06X9O9yCJEnqFG0ZHqG0Bx54oMv7bMkzVpIkSYUYrCRJkgoxWEmSJBVisJIkSW8rs+vvlaoH+/O+DVaSJGmvevXqxebNmw+6cJWZbN68mV69erVrO58KlCRJe9XQ0EBTUxObNm2qdSldrlevXjQ0NLRrG4OVJEnaq8MOO4whQ4bUuoxuw0uBkiRJhRisJEmSCtlnsIqI4yJiQUSsiIjlEfHJqv2GiFgfEUur13kttrkuItZExAsRcU5nvgFJkqR60ZZ7rHYAn83MpyOiL7AkIn5cLftyZn6p5coRcRIwDTgZeDfwk4h4b2buLFm4JElSvdnnGavMfDUzn66mtwArgYFvs8lUYF5m/j4zXwLWAKeVKFaSJKmeteseq4gYDIwBFlZNV0fEsoi4NyLeVbUNBNa12KyJVoJYRMyMiMURsfhgfIRTkiQdeNocrCLiSODbwKcy83fAHGAoMBp4FfiH9nScmXdlZmNmNg4YMKA9m0qSJNWlNgWriDiM5lB1f2Z+ByAzN2Tmzsx8E/gqf7zctx44rsXmDVWbJEnSAa0tTwUGcA+wMjNva9F+bIvVLgCeq6YfBaZFxOERMQQ4AVhUrmRJkqT61JanAt8HfAx4NiKWVm1/D1wUEaOBBNYCVwJk5vKI+BawguYnCmf5RKAkSToY7DNYZeZTQLSy6Advs83NwM0dqEuSJKnbceR1SZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCtlnsIqI4yJiQUSsiIjlEfHJqv2oiPhxRKyufr6rao+IuCMi1kTEsogY29lvQpIkqR605YzVDuCzmXkSMAGYFREnAZ8DHs/ME4DHq3mADwInVK+ZwJziVUuSJNWhfQarzHw1M5+uprcAK4GBwFRgbrXaXOD8anoq8LVs9nPgnRFxbPHKJUmS6ky77rGKiMHAGGAhcExmvlot+jVwTDU9EFjXYrOmqm3Pfc2MiMURsXjTpk3tLFuSJKn+tDlYRcSRwLeBT2Xm71ouy8wEsj0dZ+ZdmdmYmY0DBgxoz6aSJEl1qU3BKiIOozlU3Z+Z36maN+y6xFf93Fi1rweOa7F5Q9UmSZJ0QGvLU4EB3AOszMzbWix6FJheTU8HHmnRfkn1dOAE4LctLhlKkiQdsHq0YZ33AR8Dno2IpVXb3wO3AN+KiMuBl4GPVMt+AJwHrAFeBy4tWrEkSVKd2mewysyngNjL4rNaWT+BWR2sS5Ikqdtx5HVJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEJ61LoAqVuLqHUFzTJrXYEkCc9YSZIkFWOwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIcbkGSJLUqbqyTIWWAnN09hpXxjJUkSVIhBitJkqRC9hmsIuLeiNgYEc+1aLshItZHxNLqdV6LZddFxJqIeCEizumswiVJkupNW85Y3Qec20r7lzNzdPX6AUBEnARMA06utvnHiDi0VLGSJEn1bJ/BKjOfBP61jfubCszLzN9n5kvAGuC0DtQnSZLUbXTkHqurI2JZdanwXVXbQGBdi3WaqjZJkqQD3v4GqznAUGA08CrwD+3dQUTMjIjFEbF406ZN+1mGJElS/divYJWZGzJzZ2a+CXyVP17uWw8c12LVhqqttX3clZmNmdk4YMCA/SlDkiSpruxXsIqIY1vMXgDsemLwUWBaRBweEUOAE4BFHStRkiSpe9jnyOsR8QAwGegfEU3AbGByRIwGElgLXAmQmcsj4lvACmAHMCszd3ZO6ZIkSfVln8EqMy9qpfmet1n/ZuDmjhQlSZLUHTnyuiRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKqRHrQuQpINCRK0r+KPMWlcgHbA8YyVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmF7DNYRcS9EbExIp5r0XZURPw4IlZXP99VtUdE3BERayJiWUSM7cziJUmS6klbzljdB5y7R9vngMcz8wTg8Woe4IPACdVrJjCnTJmSJEn1b5/BKjOfBP51j+apwNxqei5wfov2r2WznwPvjIhjSxXbJSLq5yVJkrqV/b3H6pjMfLWa/jVwTDU9EFjXYr2mqu0tImJmRCyOiMWbNm3azzIkSZLqR4dvXs/MBNo9jG9m3pWZjZnZOGDAgI6WIUmSVHP7G6w27LrEV/3cWLWvB45rsV5D1SZJknTA299g9SgwvZqeDjzSov2S6unACcBvW1wylCRJOqDt80uYI+IBYDLQPyKagNnALcC3IuJy4GXgI9XqPwDOA9YArwOXdkLNkiRJdWmfwSozL9rLorNaWTeBWR0tSpIkqTty5HVJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklRIj1oXIKnj4saodQm75eysdQmSVDOesZIkSSrEYCVJklSIwUqSJKkQg5UkSVIhHbp5PSLWAluAncCOzGyMiKOAbwKDgbXARzLzNx0rU5Ikqf6VOGN1RmaOzszGav5zwOOZeQLweDUvSZJ0wOuMS4FTgbnV9Fzg/E7oQ5Ikqe50NFglMD8ilkTEzKrtmMx8tZr+NXBMB/uQJEnqFjo6QOjpmbk+Io4GfhwRz7dcmJkZEa2OFlgFsZkA73nPezpYhiRJUu116IxVZq6vfm4EHgJOAzZExLEA1c+Ne9n2rsxszMzGAQMGdKQMSZKkurDfwSoi+kRE313TwNnAc8CjwPRqtenAIx0tUpIkqTvoyKXAY4CHImLXfr6RmY9FxC+Ab0XE5cDLwEc6XqYkqRS/W1LqPPsdrDLzl8CprbRvBs7qSFGSJEndkSOvS5IkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEI6+pU26kSONSNJUvfiGStJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSqk04JVRJwbES9ExJqI+Fxn9SNJklQvOiVYRcShwJ3AB4GTgIsi4qTO6EuSJKledNYZq9OANZn5y8z8AzAPmNpJfUmSJNWFyMzyO434MHBuZl5RzX8M+LPMvLrFOjOBmdXscOCF4oV0f/2B12pdhLoF/1bUHv69qK38W2ndoMwc0NqCHl1dyS6ZeRdwV6367w4iYnFmNta6DtU//1bUHv69qK38W2m/zroUuB44rsV8Q9UmSZJ0wOqsYPUL4ISIGBIRPYFpwKOd1JckSVJd6JRLgZm5IyKuBn4EHArcm5nLO6OvA5yXStVW/q2oPfx7UVv5t9JOnXLzuiRJ0sHIkdclSZIKMVhJkiQVYrCSJEkqxGAldUMRcWJEnBURR+7Rfm6talL9iojTImJ8NX1SRHwmIs6rdV2qfxHxtVrX0N1483o3EBGXZuY/1boO1YeIuBaYBawERgOfzMxHqmVPZ+bYWtan+hIRs2n+3tYewI+BPwMWAH8B/Cgzb65heaojEbHnsEgBnAE8AZCZU7q8qG7IYNUNRMQrmfmeWteh+hARzwITM3NrRAwGHgT+Z2b+14j4l8wcU9MCVVeqv5fRwOHAr4GGzPxdRBwBLMzMUTUtUHUjIp4GVgB3A0lzsHqA5rEoycyf1a667qNmX2mjPxURy/a2CDimK2tR3TskM7cCZObaiJgMPBgRg2j+e5Fa2pGZO4HXI+LFzPwdQGZui4g3a1yb6ksj8EngPwJ/m5lLI2Kbgap9DFb14xjgHOA3e7QH8L+7vhzVsQ0RMTozlwJUZ67+ErgXGFnb0lSH/hARvTPzdWDcrsaIeAdgsNJumfkm8OWI+F/Vzw2YE9rNX1j9+B5w5K7/WbYUET/t+nJUxy4BdrRsyMwdwCUR8T9qU5Lq2KTM/D3s/h/nLocB02tTkupZZjYBfx0RHwJ+V+t6uhvvsZIkSSrE4RYkSZIKMVhJkiQVYrCS1KUiYr8exoiI8yPipDasd0NE/Ptq+r6I+PD+9NeOumZExLs7sw9J3YfBSlKXysw/389Nzwf2GaxqYAZgsJIEGKwkdbGI2Fr9nBwRP42IByPi+Yi4PyKiWnZLRKyIiGUR8aWI+HNgCnBrRCyNiKER8X9FxC8i4pmI+HZE9N5Hv2sj4r9U2y+OiLER8aOIeDEiPt5ivb+t9rssIm6s2gZHxMqI+GpELI+I+RFxRHU2rBG4v9rvEZ31e5PUPRisJNXSGOBTNJ+JOh54X0T0Ay4ATq5GBb8pM/838CjNgxaOzswXge9k5vjMPJXmr/e5vA39vZKZo4F/Bu4DPgxMAHYFqLOBE4DTaB6tfFxETKq2PQG4MzNPBv4N+KvMfBBYDPxNVde2Dv4+JHVzjmMlqZYWVWPmEBFLgcHAz4HtwD0R8T2ax3hrzSkRcRPwTuBI4Edt6G/Xd6E9S/O4cVuALRHx+4h4J3B29fqXar0jaQ5UrwAvtRhnbklVqyT9Cc9YSaql37eY3gn0qAY7PY3m70D8S+CxvWx7H3B1Zo6k+YxTr3b09+Yefb9J8z80A/gv1dmn0Zk5LDPv2VutbehP0kHGYCWprkTEkcA7MvMHwKeBU6tFW4C+LVbtC7waEYcBf1Oo+x8Bl1U1EBEDI+LofWyzZ12SDmL+i0tSvekLPBIRvWg+g/SZqn0e8NWIuJbme6P+b2AhsKn62eFwk5nzI2IE8P9V99FvBT5K8xmqvbkP+O8RsQ2Y6H1W0sHNr7SRJEkqxEuBkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUSI9aFwDQv3//HDx4cK3LkCRJ2qclS5a8lpkDWltWF8Fq8ODBLF68uNZlSJIk7VNEvLy3ZV4KlCRJKsRgJUmSVIjBSpIkqZC6uMdKkiTVpzfeeIOmpia2b99e61K6XK9evWhoaOCwww5r8zYGK0mStFdNTU307duXwYMHExG1LqfLZCabN2+mqamJIUOGtHk7LwVKkqS92r59O/369TuoQhVARNCvX792n6kzWEmSpLd1sIWqXfbnfRusJEmSCmlzsIqIQyPiXyLie9X8kIhYGBFrIuKbEdGzaj+8ml9TLR/cOaVLkqRa2bBhAxdffDHHH38848aNY+LEiTz00EMd3u/kyZN3Dxq+detWrrzySoYOHcq4ceOYPHkyCxcu3O9933DDDXzpS18C4Prrr+cnP/kJALfffjuvv/56h2uH9p2x+iSwssX8F4AvZ+Yw4DfA5VX75cBvqvYvV+tJkqQDRGZy/vnnM2nSJH75y1+yZMkS5s2bR1NTU9F+rrjiCo466ihWr17NkiVL+Kd/+idee+21t9Ty5ptvtnvfn//85/nABz4A1CBYRUQD8CHg7mo+gDOBB6tV5gLnV9NTq3mq5WfFwXpxVpJ2iaifl9RBTzzxBD179uTjH//47rZBgwZxzTXXsH37di699FJGjhzJmDFjWLBgAcBe27dt28a0adMYMWIEF1xwAdu2bQPgxRdfZOHChdx0000cckhzXBkyZAgf+tCHWLt2LcOHD+eSSy7hlFNOYd26ddx6662MHz+eUaNGMXv27N113Xzzzbz3ve/l9NNP54UXXtjdPmPGDB588EHuuOMOfvWrX3HGGWdwxhlndPh309bhFm4H/g7oW833A/4tM3dU803AwGp6ILAOIDN3RMRvq/X/JGJGxExgJsB73vOe/a1fkiR1seXLlzN27NhWl915551EBM8++yzPP/88Z599NqtWrdpr+5w5c+jduzcrV65k2bJlu/e7fPlyRo8ezaGHHtpqP6tXr2bu3LlMmDCB+fPns3r1ahYtWkRmMmXKFJ588kn69OnDvHnzWLp0KTt27GDs2LGMZFJerAAAIABJREFUGzfuT/Zz7bXXctttt7FgwQL69+/f4d/NPoNVRPwlsDEzl0TE5A73WMnMu4C7ABobG7PUfiVJUteaNWsWTz31FD179qShoYFrrrkGgBNPPJFBgwaxatUqnnrqqVbbn3zySa699loARo0axahRo9rU56BBg5gwYQIA8+fPZ/78+YwZMwZovjdr9erVbNmyhQsuuIDevXsDMGXKlKLvuzVtuRT4PmBKRKwF5tF8CfC/Au+MiF3BrAFYX02vB44DqJa/A9hcsGZJklRDJ598Mk8//fTu+TvvvJPHH3+cTZs2Fe3jmWeeYefOna0u79Onz+7pzOS6665j6dKlLF26lDVr1nD55Ze3ul1n22ewyszrMrMhMwcD04AnMvNvgAXAh6vVpgOPVNOPVvNUy5/ITM9ISZJ0gDjzzDPZvn07c+bM2d226+bv97///dx///0ArFq1ildeeYXhw4fvtX3SpEl84xvfAOC5555j2bJlAAwdOpTGxkZmz57Nrhixdu1avv/977+lnnPOOYd7772XrVu3ArB+/Xo2btzIpEmTePjhh9m2bRtbtmzhu9/9bqvvp2/fvmzZsqXEr6ZD41j9B+AzEbGG5nuo7qna7wH6Ve2fAT7XsRIlSVI9iQgefvhhfvaznzFkyBBOO+00pk+fzhe+8AU+8YlP8OabbzJy5EguvPBC7rvvPg4//PC9tl911VVs3bqVESNGcP311//JPVB33303GzZsYNiwYZxyyinMmDGDo48++i31nH322Vx88cVMnDiRkSNH8uEPf5gtW7YwduxYLrzwQk499VQ++MEPMn78+Fbfz8yZMzn33HOL3Lwe9XAyqbGxMXeNWSFJB6R6ehqvDj731X2sXLmSESNG1LqMmmnt/UfEksxsbG19R16XJEkqxGAlSZJUiMFKkiSpEIOVJElSIQar/5+9u4/SqyzzfP+9yAuRQIuQgsFUmgSCIbxJQgXDUVm8jIBxJoFeKsFRAsQTxQi2Oj0tfc4y4pG1QBykOdCZRQNNbJHIoEBEYIIhNk3PMemAIZBEksiLqRJJEYVOGiISr/NH7cQCKtRTqbvyPFX1/axVq/a+972ffe1wG3/ZL/cjSZJUiMFKkiSpEIOVJEnqG3X6AvEHHniACRMmMH78eK688so+PMG3MlhJkqQBY/v27cydO5f777+fNWvWcPvtt7NmzZo9dnyDlSRJGjCWL1/O+PHjOeywwxg+fDgzZ87knnvu6X7HQgxWkiRpwGhra2PMmDE715ubm2lra9tjxzdYSZIkFWKwkiRJA8bo0aPZuHHjzvXW1lZGjx69x45vsJIkSQPGlClTWL9+Pc888wyvvfYaCxcuZPr06Xvs+EP32JEkSdLgkrnHDzl06FCuv/56zjzzTLZv385FF13E0UcfveeOv8eOJEmStAdMmzaNadOm1eXY3gqUJEkqxGAlSZJUiMFKkiSpEIOVJElSId0Gq4gYERHLI+LxiFgdEZdX7bdGxDMRsbL6Ob5qj4i4LiI2RMSqiJjc1ychSZLUCGp5K/D3wGmZuTUihgGPRMT91ba/ysw739T/w8AR1c/7gPnVb0mSpAGt22CVmQlsrVaHVT9vNzHFDOA71X4/i4j9I+KQzHy+19VKkqR+Iy6Pop+X87qfF+uiiy7i3nvv5aCDDuLJJ58sevxa1PSMVUQMiYiVwCbgwcxcVm26orrd9+2I2LtqGw1s7LR7a9UmSZLUpy644AIeeOCBuh2/pmCVmdsz83igGTgxIo4BLgOOBKYABwB/3ZMDR8SciFgRESva29t7WLYkSdJbnXzyyRxwwAF1O36P3grMzJeApcBZmfl8dvg98A/AiVW3NmBMp92aq7Y3f9aNmdmSmS1NTU27V70kSVIDqeWtwKaI2L9afgfwIeAXEXFI1RbA2cCOG5mLgPOrtwOnAi/7fJUkSRoMankr8BBgQUQMoSOI3ZGZ90bEQxHRBASwEvhs1f8+YBqwAXgFuLB82ZIkSY2nlrcCVwGTumg/bRf9E5jb+9IkSZL6l1quWEmSJPVYLdMjlHbeeefx05/+lBdffJHm5mYuv/xyZs+evceOb7CSJEkDxu23317X4/tdgZIkSYUYrCRJkgoxWEmSpLfV8V7a4LM7522wkiRJuzRixAg2b9486MJVZrJ582ZGjBjRo/18eF2SJO1Sc3Mzra2tDMavnxsxYgTNzc092sdgJUmSdmnYsGGMGzeu3mX0G94KlCRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIh3QariBgREcsj4vGIWB0Rl1ft4yJiWURsiIjvR8Twqn3van1DtX1s356CJElSY6jlitXvgdMy873A8cBZETEVuAr4dmaOB34HzK76zwZ+V7V/u+onSZI04HUbrLLD1mp1WPWTwGnAnVX7AuDsanlGtU61/fSIiGIVS5IkNaianrGKiCERsRLYBDwI/BJ4KTNfr7q0AqOr5dHARoBq+8vAgV185pyIWBERK9rb23t3FpIkSQ2gpmCVmdsz83igGTgROLK3B87MGzOzJTNbmpqaevtxkiRJddejtwIz8yVgKXASsH9EDK02NQNt1XIbMAag2v5OYHORaiVJkhpYLW8FNkXE/tXyO4APAWvpCFgfrbrNAu6plhdV61TbH8rMLFm0JElSIxrafRcOARZExBA6gtgdmXlvRKwBFkbEN4CfAzdX/W8G/jEiNgC/BWb2Qd2SJEkNp9tglZmrgEldtD9Nx/NWb27fBnysSHWSJEn9iDOvS5IkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpkG6DVUSMiYilEbEmIlZHxBeq9q9FRFtErKx+pnXa57KI2BART0XEmX15ApIkSY1iaA19Xge+nJmPRcR+wKMR8WC17duZ+a3OnSPiKGAmcDTwbuAnEfGezNxesnBJkqRG0+0Vq8x8PjMfq5a3AGuB0W+zywxgYWb+PjOfATYAJ5YoVpIkqZH16BmriBgLTAKWVU2fj4hVEXFLRLyrahsNbOy0WytdBLGImBMRKyJiRXt7e48LlyRJajQ1B6uI2Bf4AfCXmflvwHzgcOB44Hngv/fkwJl5Y2a2ZGZLU1NTT3aVJElqSDUFq4gYRkeoui0zfwiQmS9k5vbM/CPw9/zpdl8bMKbT7s1VmyRJ0oBWy1uBAdwMrM3Mazq1H9Kp2znAk9XyImBmROwdEeOAI4Dl5UqWJElqTLW8Ffh+4FPAExGxsmr7G+C8iDgeSOBZ4DMAmbk6Iu4A1tDxRuFc3wiUJEmDQbfBKjMfAaKLTfe9zT5XAFf0oi5JkqR+x5nXJUmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqpNtgFRFjImJpRKyJiNUR8YWq/YCIeDAi1le/31W1R0RcFxEbImJVREzu65OQJElqBLVcsXod+HJmHgVMBeZGxFHAV4AlmXkEsKRaB/gwcET1MweYX7xqSZKkBtRtsMrM5zPzsWp5C7AWGA3MABZU3RYAZ1fLM4DvZIefAftHxCHFK5ckSWowQ3vSOSLGApOAZcDBmfl8tek3wMHV8mhgY6fdWqu255EGmoh6V9Ahs94VSJLowcPrEbEv8APgLzPz3zpvy8wEevQ3e0TMiYgVEbGivb29J7tKkiQ1pJqCVUQMoyNU3ZaZP6yaX9hxi6/6valqbwPGdNq9uWp7g8y8MTNbMrOlqalpd+uXJElqGLW8FRjAzcDazLym06ZFwKxqeRZwT6f286u3A6cCL3e6ZShJkjRg1fKM1fuBTwFPRMTKqu1vgCuBOyJiNvAc8PFq233ANGAD8ApwYdGKJUmSGlS3wSozHwF29YTu6V30T2BuL+uSJEnqd5x5XZIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhXQbrCLilojYFBFPdmr7WkS0RcTK6mdap22XRcSGiHgqIs7sq8IlSZIaTS1XrG4Fzuqi/duZeXz1cx9ARBwFzASOrvb5u4gYUqpYSZKkRtZtsMrMh4Hf1vh5M4CFmfn7zHwG2ACc2Iv6JEmS+o3ePGP1+YhYVd0qfFfVNhrY2KlPa9X2FhExJyJWRMSK9vb2XpQhSZLUGHY3WM0HDgeOB54H/ntPPyAzb8zMlsxsaWpq2s0yJEmSGsduBavMfCEzt2fmH4G/50+3+9qAMZ26NldtkiRJA97Q3dkpIg7JzOer1XOAHW8MLgK+FxHXAO8GjgCW97pKSVIxcXnUu4Sdcl7WuwSpqG6DVUTcDpwCjIqIVmAecEpEHA8k8CzwGYDMXB0RdwBrgNeBuZm5vW9KlyRJaizdBqvMPK+L5pvfpv8VwBW9KUqSJKk/cuZ1SZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFDK13AZJ6Ly6PepewU87LepcgSXXjFStJkqRCug1WEXFLRGyKiCc7tR0QEQ9GxPrq97uq9oiI6yJiQ0SsiojJfVm8JElSI6nlitWtwFlvavsKsCQzjwCWVOsAHwaOqH7mAPPLlClJktT4ug1Wmfkw8Ns3Nc8AFlTLC4CzO7V/Jzv8DNg/Ig4pVawkSVIj291nrA7OzOer5d8AB1fLo4GNnfq1Vm1vERFzImJFRKxob2/fzTIkSZIaR68fXs/MBHr8GlBm3piZLZnZ0tTU1NsyJEmS6m53g9ULO27xVb83Ve1twJhO/ZqrNkmSpAFvd4PVImBWtTwLuKdT+/nV24FTgZc73TKUJEka0LqdIDQibgdOAUZFRCswD7gSuCMiZgPPAR+vut8HTAM2AK8AF/ZBzZIkSQ2p22CVmeftYtPpXfRNYG5vi5IkSeqPnHldkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoZWu8CJEnSm0TUu4IOmfWuoN/xipUkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqpFfTLUTEs8AWYDvwema2RMQBwPeBscCzwMcz83e9K1OSJKnxlbhidWpmHp+ZLdX6V4AlmXkEsKRalyRJGvD64lbgDGBBtbwAOLsPjiFJktRwehusElgcEY9GxJyq7eDMfL5a/g1wcFc7RsSciFgRESva29t7WYYkSVL99fYrbT6QmW0RcRDwYET8ovPGzMyI6HI+/My8EbgRoKWlxTnzJUlSv9erK1aZ2Vb93gTcBZwIvBARhwBUvzf1tkhJkqT+YLeDVUSMjIj9diwDZwBPAouAWVW3WcA9vS1SkiSpP+jNrcCDgbui4xu4hwLfy8wHIuJfgTsiYjbwHPDx3pcpSZLU+HY7WGXm08B7u2jfDJzem6IkSZL6I2delyRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEJ6O/P6wNMxfURjSCeklySpP/GKlSRJUiEGK0mSpEK8FShJkroUlzfO4zE5r388HuMVK0mSpEIMVpIkSYV4K7CBeQlWkqT+xStWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiF9Fqwi4qyIeCoiNkTEV/rqOJIkSY2iT4JVRAwBbgA+DBwFnBcRR/XFsSRJkhpFX12xOhHYkJlPZ+ZrwEJgRh8dS5IkqSH0VbAaDWzstN5atUmSJA1YkVn+O+Ai4qPAWZn56Wr9U8D7MvPznfrMAeZUqxOAp4oX0v+NAl6sdxHqFxwr6gnHi2rlWOnaoZnZ1NWGvvoS5jZgTKf15qptp8y8Ebixj44/IETEisxsqXcdanyOFfWE40W1cqz0XF/dCvxX4IiIGBcRw4GZwKI+OpYkSVJD6JMrVpn5ekR8HvhfwBDglsxc3RfHkiRJahR9dSuQzLwPuK+vPn+Q8FapauVYUU84XlQrx0oP9cnD65IkSYORX2kjSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWDS4ifCNDbxARQyLiMxHx/0TE+9+07f+uV11qPBGxT0T8t4j4q4gYEREXRMSiiPhmROxb7/rU+CJiXb1r6G98K7ABRMQBu9oEPJ6ZzXuyHjW2iLgJ2AdYDnwK+KfM/FK17bHMnFzP+tQ4IuIOOr639R10fHXYWuD7wHTgP2Tmp+pYnhpMRGwBdoSCqH7vA7wCZGb+WV0K62cMVg0gIrYDz/GngQwdgzuA0Zk5vC6FqSFFxKrMPK5aHgr8HR3f53Ue8LPMnFTP+tQ4ImJlZh4fEQE8DxySmVmtP75jHEkAEXEdsD/wV5n5QtX2TGaOq29l/UufTRCqHnkaOD0zf/XmDRGxsQ71qLHtDNqZ+TowJyK+CjwEeHtHb1GFqfuy+pd0te6/qvUGmXlpRJwA3B4RdwPX86crWKqRz1g1hmuBd+1i2zf3ZCHqF1ZExFmdGzLz68A/AGPrUpEa1Yodz1Jl5kU7GiPicGBL3apSw8rMR4H/WK3+EzCijuX0S94KlKRBKCIi/T8AvY2IOASYVH1FnWrkrcAGUf2r8ixgDLAdWAcszsw/1rUwNSTHi2rlWFFPdDVeImIvx0vtvGLVACLi48B/BVYBpwL/m47btMcCn8zMVXUsTw3G8aJaOVbUE92Ml/+SmU/Usbx+w2DVACJiFTA1M1+JiFHAbZl5ZkQcB/yPzPw/6lyiGojjRbVyrKgnHC9l+PB6Ywjg1Wr534GDAKp/Tb6zXkWpYTleVCvHinrC8VKAz1g1hvuAByLiYTrubf9PeNuJQzW4OV5UK8eKesLxUoC3AhtEREwDjqJj0r4Hq7YPAhdk5uy6FqeG43hRrRwr6gnHS+8ZrBpMREwCPgF8DHgG+EFmXl/fqtSoHC+qlWNFPeF42X3eCmwAEfEeOr6O5DzgRTq+yysy89S6FqaG5HhRrRwr6gnHSxlesWoAEfFH4J+B2Zm5oWp7OjMPq29lakSOF9XKsaKecLyU4VuBjeEv6PiC1KUR8fcRcTpv/EJmqTPHi2rlWFFPOF4K8IpVA4mIkcAMOi7DngZ8B7grMxfXtTA1JMeLauVYUU84XnrHYNWgIuJddDw0eG5mnl7vetTYHC+qlWNFPeF46TmDlSRJUiE+YyVJklSIwUqSJKkQg5Wkfici/jIi9inVT5JK8RkrSf1ORDwLtGTmiyX6SVIpXrGS1NAiYmRE/DgiHo+IJyNiHvBuOubaWVr1mR8RKyJidURcXrVd2kW/rZ0+96MRcWu1/LHqsx+vvoBWknaLX2kjqdGdBfw6Mz8CEBHvBC4ETu10Jer/yszfRsQQYElEHJeZ10XEl97Ub1e+CpyZmW0RsX9fnYikgc8rVpIa3RPAhyLiqoj4YGa+3EWfj0fEY8DPgaOBo3p4jH8Bbo2I/xMY0rtyJQ1mXrGS1NAyc11ETAamAd+IiCWdt0fEOOC/AlMy83fV7b0Ru/q4Tss7+2TmZyPifcBHgEcj4oTM3FzyPCQNDl6xktTQIuLdwCuZ+V3gamAysAXYr+ryZ8C/Ay9HxMHAhzvt3rkfwAsRMTEi9gLO6XSMwzNzWWZ+FWgHxvTZCUka0LxiJanRHQtcHRF/BP4AXAycBDwQEb/OzFMj4ufAL4CNdNzW2+HGzv2ArwD30hGeVgD7Vv2ujogj6PjC2SXA43vgvCQNQE63IEmSVIi3AiVJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFNMTM66NGjcqxY8fWuwxJkqRuPfrooy9mZlNX2xoiWI0dO5YVK1bUuwxJkqRuRcRzu9rmrUBJkqRCDFaSJEmFGKwkSZIKaYhnrCRJUmP6wx/+QGtrK9u2bat3KXvciBEjaG5uZtiwYTXvY7CSJEm71Nrayn777cfYsWOJiHqXs8dkJps3b6a1tZVx48bVvJ+3AiVJ0i5t27aNAw88cFCFKoCI4MADD+zxlTqDlSRJeluDLVTtsDvnbbCSJEkqxGAlSZJ67IUXXuATn/gEhx12GCeccAInnXQSd911V68/95RTTtk5afjWrVv5zGc+w+GHH84JJ5zAKaecwrJly3b7s7/2ta/xrW99C4CvfvWr/OQnPwHg2muv5ZVXXul17eDD65IkqYcyk7PPPptZs2bxve99D4DnnnuORYsWFT3Opz/9acaNG8f69evZa6+9eOaZZ1izZs1baslM9tqrZ9eKvv71r+9cvvbaa/nkJz/JPvvs0+uavWLVWxH980eSpN300EMPMXz4cD772c/ubDv00EO55JJL2LZtGxdeeCHHHnsskyZNYunSpQC7bH/11VeZOXMmEydO5JxzzuHVV18F4Je//CXLli3jG9/4xs7QNG7cOD7ykY/w7LPPMmHCBM4//3yOOeYYNm7cyNVXX82UKVM47rjjmDdv3s66rrjiCt7znvfwgQ98gKeeempn+wUXXMCdd97Jddddx69//WtOPfVUTj311F7/2XjFSpIk9cjq1auZPHlyl9tuuOEGIoInnniCX/ziF5xxxhmsW7dul+3z589nn332Ye3ataxatWrn565evZrjjz+eIUOGdHmc9evXs2DBAqZOncrixYtZv349y5cvJzOZPn06Dz/8MCNHjmThwoWsXLmS119/ncmTJ3PCCSe84XMuvfRSrrnmGpYuXcqoUaN6/WdjsJIkSb0yd+5cHnnkEYYPH05zczOXXHIJAEceeSSHHnoo69at45FHHumy/eGHH+bSSy8F4LjjjuO4446r6ZiHHnooU6dOBWDx4sUsXryYSZMmAR3PZq1fv54tW7Zwzjnn7LzFN3369KLn3RVvBUqSpB45+uijeeyxx3au33DDDSxZsoT29vaix3j88cfZvn17l9tHjhy5czkzueyyy1i5ciUrV65kw4YNzJ49u1gtPWGwkiRJPXLaaaexbds25s+fv7Ntx1t1H/zgB7ntttsAWLduHb/61a+YMGHCLttPPvnknQ/AP/nkk6xatQqAww8/nJaWFubNm0dmAvDss8/y4x//+C31nHnmmdxyyy1s3boVgLa2NjZt2sTJJ5/M3XffzauvvsqWLVv40Y9+1OX57LfffmzZsqXEH423AiVJUs9EBHfffTdf/OIX+eY3v0lTUxMjR47kqquuYsaMGVx88cUce+yxDB06lFtvvZW9996bz33uc122X3zxxVx44YVMnDiRiRMnvuEZqJtuuokvf/nLjB8/nne84x2MGjWKq6+++i31nHHGGaxdu5aTTjoJgH333Zfvfve7TJ48mXPPPZf3vve9HHTQQUyZMqXL85kzZw5nnXUW7373u3c+VL/bfzY7UmA9tbS05I45K/qd/vqGXQP8d5ckNb61a9cyceLEepdRN12df0Q8mpktXfX3VqAkSVIhBitJkqRCagpWEbF/RNwZEb+IiLURcVJEHBARD0bE+ur3u6q+ERHXRcSGiFgVEV1PdCFJkjTA1HrF6m+BBzLzSOC9wFrgK8CSzDwCWFKtA3wYOKL6mQPMf+vHSZIkDTzdBquIeCdwMnAzQGa+lpkvATOABVW3BcDZ1fIM4DvZ4WfA/hFxSPHKJUmSGkwtV6zGAe3AP0TEzyPipogYCRycmc9XfX4DHFwtjwY2dtq/tWp7g4iYExErImJFyQnFJEmS6qWWYDUUmAzMz8xJwL/zp9t+AGTHnA09en8/M2/MzJbMbGlqaurJrpIkqT+IKPtTowceeIAJEyYwfvx4rrzyyj48wbeqJVi1Aq2Zuaxav5OOoPXCjlt81e9N1fY2YEyn/ZurNkmSpD61fft25s6dy/3338+aNWu4/fbbWbNmzR47frfBKjN/A2yMiAlV0+nAGmARMKtqmwXcUy0vAs6v3g6cCrzc6ZahJElSn1m+fDnjx4/nsMMOY/jw4cycOZN77rmn+x0LqfUrbS4BbouI4cDTwIV0hLI7ImI28Bzw8arvfcA0YAPwStVXkiSpz7W1tTFmzJ9unDU3N7Ns2bK32aOsmoJVZq4Eupq6/fQu+iYwt5d1SZIk9TvOvC5JkgaM0aNHs3HjnyYnaG1tZfTot0xO0GcMVpIkacCYMmUK69ev55lnnuG1115j4cKFTJ8+fY8dv9ZnrCRJknomezQTUxFDhw7l+uuv58wzz2T79u1cdNFFHH300Xvu+HvsSJIkSXvAtGnTmDZtWl2O7a1ASZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjTLUiSpD4Rl0fRz8t53c+LddFFF3Hvvfdy0EEH8eSTTxY9fi28YiVJkgaMCy64gAceeKBuxzdYSZKkAePkk0/mgAMOqNvxDVaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxOkWJElSn6hleoTSzjvvPH7605/y4osv0tzczOWXX87s2bP32PENVpIkacC4/fbb63p8bwVKkiQVYrCSJEkqxGAlSZLeVuaef1aqEezOeRvVbP8IAAAgAElEQVSsJEnSLo0YMYLNmzcPunCVmWzevJkRI0b0aD8fXpckSbvU3NxMa2sr7e3t9S5ljxsxYgTNzc092sdgJUmSdmnYsGGMGzeu3mX0G94KlCRJKsRgJUmSVEhNwSoino2IJyJiZUSsqNoOiIgHI2J99ftdVXtExHURsSEiVkXE5L48AUmSpEbRkytWp2bm8ZnZUq1/BViSmUcAS6p1gA8DR1Q/c4D5pYqVJElqZL25FTgDWFAtLwDO7tT+nezwM2D/iDikF8eRJEnqF2oNVgksjohHI2JO1XZwZj5fLf8GOLhaHg1s7LRva9UmSZI0oNU63cIHMrMtIg4CHoyIX3TemJkZET2aOawKaHMA/vzP/7wnu0qSJDWkmq5YZWZb9XsTcBdwIvDCjlt81e9NVfc2YEyn3Zurtjd/5o2Z2ZKZLU1NTbt/BpIkSQ2i22AVESMjYr8dy8AZwJPAImBW1W0WcE+1vAg4v3o7cCrwcqdbhpIkSQNWLbcCDwbuiogd/b+XmQ9ExL8Cd0TEbOA54ONV//uAacAG4BXgwuJVS5IkNaBug1VmPg28t4v2zcDpXbQnMLdIdZIkSf2IM69LkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpkJqDVUQMiYifR8S91fq4iFgWERsi4vsRMbxq37ta31BtH9s3pUuSJDWWnlyx+gKwttP6VcC3M3M88DtgdtU+G/hd1f7tqp8kSdKAV1Owiohm4CPATdV6AKcBd1ZdFgBnV8szqnWq7adX/SVJkga0Wq9YXQv8N+CP1fqBwEuZ+Xq13gqMrpZHAxsBqu0vV/3fICLmRMSKiFjR3t6+m+VLkiQ1jm6DVUT8J2BTZj5a8sCZeWNmtmRmS1NTU8mPliRJqouhNfR5PzA9IqYBI4A/A/4W2D8ihlZXpZqBtqp/GzAGaI2IocA7gc3FK5ckSWow3V6xyszLMrM5M8cCM4GHMvO/AEuBj1bdZgH3VMuLqnWq7Q9lZhatWpIkqQH1Zh6rvwa+FBEb6HiG6uaq/WbgwKr9S8BXeleiJElS/1DLrcCdMvOnwE+r5aeBE7vosw34WIHaJEmS+hVnXpckSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKmQboNVRIyIiOUR8XhErI6Iy6v2cRGxLCI2RMT3I2J41b53tb6h2j62b09BkiSpMdRyxer3wGmZ+V7geOCsiJgKXAV8OzPHA78DZlf9ZwO/q9q/XfWTJEka8LoNVtlha7U6rPpJ4DTgzqp9AXB2tTyjWqfafnpERLGKJUmSGlRNz1hFxJCIWAlsAh4Efgm8lJmvV11agdHV8mhgI0C1/WXgwC4+c05ErIiIFe3t7b07C0mSpAZQU7DKzO2ZeTzQDJwIHNnbA2fmjZnZkpktTU1Nvf04SZKkuuvRW4GZ+RKwFDgJ2D8ihlabmoG2arkNGANQbX8nsLlItZIkSQ2slrcCmyJi/2r5HcCHgLV0BKyPVt1mAfdUy4uqdartD2VmlixakiSpEQ3tvguHAAsiYggdQeyOzLw3ItYACyPiG8DPgZur/jcD/xgRG4DfAjP7oG5JkqSG022wysxVwKQu2p+m43mrN7dvAz5WpDpJkqR+xJnXJUmSCjFYSZIkFWKwkiRJKsRgJUmSVEgtbwVqAIrL+++3DOU8Z++QJDUmr1hJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCug1WETEmIpZGxJqIWB0RX6jaD4iIByNiffX7XVV7RMR1EbEhIlZFxOS+PglJkqRGUMsVq9eBL2fmUcBUYG5EHAV8BViSmUcAS6p1gA8DR1Q/c4D5xauWJElqQN0Gq8x8PjMfq5a3AGuB0cAMYEHVbQFwdrU8A/hOdvgZsH9EHFK8ckmSpAbTo2esImIsMAlYBhycmc9Xm34DHFwtjwY2dtqttWqTJEka0GoOVhGxL/AD4C8z8986b8vMBLInB46IORGxIiJWtLe392RXSZKkhlRTsIqIYXSEqtsy84dV8ws7bvFVvzdV7W3AmE67N1dtb5CZN2ZmS2a2NDU17W79kiRJDaOWtwIDuBlYm5nXdNq0CJhVLc8C7unUfn71duBU4OVOtwwlSZIGrKE19Hk/8CngiYhYWbX9DXAlcEdEzAaeAz5ebbsPmAZsAF4BLixasSRJUoPqNlhl5iNA7GLz6V30T2BuL+uSJEnqd5x5XZIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYV0G6wi4paI2BQRT3ZqOyAiHoyI9dXvd1XtERHXRcSGiFgVEZP7snhJkqRGUssVq1uBs97U9hVgSWYeASyp1gE+DBxR/cwB5pcpU5IkqfF1G6wy82Hgt29qngEsqJYXAGd3av9OdvgZsH9EHFKqWEmSpEa2u89YHZyZz1fLvwEOrpZHAxs79Wut2t4iIuZExIqIWNHe3r6bZUiSJDWOXj+8npkJ5G7sd2NmtmRmS1NTU2/LkCRJqrvdDVYv7LjFV/3eVLW3AWM69Wuu2iRJkga83Q1Wi4BZ1fIs4J5O7edXbwdOBV7udMtQkiRpQBvaXYeIuB04BRgVEa3APOBK4I6ImA08B3y86n4fMA3YALwCXNgHNUuSJDWkboNVZp63i02nd9E3gbm9LUqSJKk/cuZ1SZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKmQofUuQJKkhhBR7wp2T2a9K1AnXrGSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhTjdgqTu+Rq6JNXEK1aSJEmFeMVK0oAVl/fTK21AzvNqm9QfecVKkiSpEIOVJElSIX12KzAizgL+FhgC3JSZV/bVsSRJGqy85d1Y+uSKVUQMAW4APgwcBZwXEUf1xbEkSZIaRV/dCjwR2JCZT2fma8BCYEYfHUuSJKkhRPbBPC8R8VHgrMz8dLX+KeB9mfn5Tn3mAHOq1QnAU8UL0dsZBbxY7yKkPuY412DgON/zDs3Mpq421G26hcy8EbixXscf7CJiRWa21LsOqS85zjUYOM4bS1/dCmwDxnRab67aJEmSBqy+Clb/ChwREeMiYjgwE1jUR8eSJElqCH1yKzAzX4+IzwP/i47pFm7JzNV9cSztNm/DajBwnGswcJw3kD55eF2SJGkwcuZ1SZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgNYhFxBP1rkEqISLGRMTCiPjniPibiBjWadvd9axNKiUijoyI+yPixxFxeETcGhEvRcTyiJhY7/rUoW5faaM9IyL+YlebgP+wJ2uR+tAtwA+AnwGzgX+KiP+cmZuBQ+tamVTOjcDVwL7AQ8BfAxcC/wm4Hji9fqVpB+exGuAi4g/AbUBX/6E/mpn77eGSpOIiYmVmHt9p/ZPAZcB04H9m5uS6FScVEhE/z8xJ1fKGzBzfadtjjvPG4BWrgW8V8K3MfPLNGyLiP9ahHqkvDIuIEZm5DSAzvxsRv6Hj2x9G1rc0qZghnZavedO24XuyEO2az1gNfH8J/Nsutp2zJwuR+tBNwPs6N2TmT4CPAW/5R4XUT90QEfsCZObf7WiMiPHAT+pWld7AW4GSJEmFeCtwgIuIoXQ8zHsO8O6quQ24B7g5M/9Qr9qkUhznGgwc5/2DV6wGuIi4HXgJWAC0Vs3NwCzggMw8t161SaU4zjUYOM77B4PVABcR6zLzPT3dJvUnjnMNBo7z/sGH1we+30bExyJi53/riNgrIs4FflfHuqSSHOcaDBzn/YDBauCbCXwUeCEi1kXEOuA3wF9U26SBwHGuwcBx3g94K3AQiYgDAarZqKUByXGuwcBx3ri8YjWIZObmzv8jjIgP1bMeqS84zjUYOM4bl1esBrGI+FVm/nm965D6kuNcg4HjvHE4j9UAFxGLdrUJOHBP1iL1Fce5BgPHef9gsBr4Pgh8Etj6pvYATtzz5Uh9wnGuwcBx3g8YrAa+nwGvZOY/vXlDRDxVh3qkvuA412DgOO8HDFYDXGZ+uKv2iPgA8MQeLkfqE45zDQaO8/7BYDWIRMQk4BPAx4BngB/UtyKpPMe5BgPHeeMyWA1wEfEe4Lzq50Xg+3S8DXpqXQuTCnKcazBwnPcPTrcwwEXEH4F/BmZn5oaq7enMPKy+lUnlOM41GDjO+wcnCB34/gJ4HlgaEX8fEafT8QaJNJA4zjUYOM77Aa9YDRIRMRKYQccl5NOA7wB3ZebiuhYmFeQ412DgOG9sBqtBKCLeRccDj+dm5un1rkfqC45zDQaO88ZjsJIkSSrEZ6wkSZIKMVhJkiQVYrCS1O9ExP4R8blO66dExL31rEmSwGAlqX/aH/hct71qFBFOliypCP8ykdTwIuJLwEXV6k3AVODwiFgJPAj8GNg3Iu4EjgEeBT6ZmRkRJwDXAPvSMVv1BZn5fET8FFgJfAC4PSJ+BcwDtgMvZ+bJe+wEJQ0YBitJDa0KRhcC76NjMsRlwCeBYzLz+KrPKcAk4Gjg18C/AO+PiGXA/wvMyMz2iDgXuII/hbThmdlSfcYTwJmZ2RYR+++p85M0sBisJDW6D9Ax+eG/A0TED4EPdtFveWa2Vn1WAmOBl+i4gvVgRAAMoWPm6h2+32n5X4BbI+IO4IeFz0HSIGGwkjRQ/L7T8nY6/n4LYHVmnrSLff59x0JmfjYi3gd8BHg0Ik7IzM19Vq2kAcmH1yU1un8Gzo6Ifaqv8jiHjqtL+9Ww71NAU0ScBBARwyLi6K46RsThmbksM78KtANjypQvaTDxipWkhpaZj0XErcDyqummzHw0Iv4lIp4E7qfj4fWu9n0tIj4KXBcR76Tj77xrgdVddL86Io6g4yrXEuDxwqciaRDwK20kSZIK8VagJElSId0Gq4gYERHLI+LxiFgdEZdX7eMiYllEbIiI70fE8Kp972p9Q7V9bN+egiRJUmPo9lZgdLyjPDIzt0bEMOAR4AvAl4AfZubCiPgfwOOZOb/6monjqjdsZgLnZOa5b3eMUaNG5dixY0ucjyRJUp969NFHX8zMpq62dfvwenYkr63V6rDqJ4HTgE9U7QuArwHzgRnVMsCdwPUREfk2CW7s2LGsWLGi2xORJEmqt4h4blfbanrGKiKGVBPubaLj6yN+CbyUma9XXVqB0dXyaGAjQLX9ZeDALj5zTkSsiIgV7e3ttZ6LJElSw6opWGXm9uqrI5qBE4Eje3vgzLwxM1sys6WpqcuraZIkSf1Kj94KzMyXgKXAScD+nb4Rvhloq5bbqCbWq7a/E3D2YkmSNOB1+4xVRDQBf8jMlyLiHcCHgKvoCFgfBRYCs4B7ql0WVev/X7X9obd7vkqSJDWuP/zhD7S2trJt27Z6l7LHjRgxgubmZoYNG1bzPrXMvH4IsCAihtBxheuOzLw3ItYACyPiG8DPgZur/jcD/xgRG4DfAjN7chKSJKlxtLa2st9++zF27FiqLzMfFDKTzZs309rayrhx42rer5a3AlcBk7pof5qO563e3L4N+FjNFUiSpIa1bdu2QReqACKCAw88kJ6+YOfM65Ik6W0NtlC1w+6ct8FKkiT12AsvvMAnPvEJDjvsME444QROOukk7rrrrl5/7imnnLJzbsutW7fymc98hsMPP5wTTjiBU045hWXLlu32Z3/ta1/jW9/6FgBf/epX+clPfgLAtddeyyuvvNLr2qG2Z6wkSZJ2ykzOPvtsZs2axfe+9z0AnnvuORYtWlT0OJ/+9KcZN24c69evZ6+99uKZZ55hzZo1b6klM9lrr55dK/r617++c/naa6/lk5/8JPvss0+va/aKlSRJjSaiMX524aGHHmL48OF89rOf3dl26KGHcskll7Bt2zYuvPBCjj32WCZNmsTSpUsBdtn+6quvMnPmTCZOnMg555zDq6++CsAvf/lLli1bxje+8Y2doWncuHF85CMf4dlnn2XChAmcf/75HHPMMWzcuJGrr76aKVOmcNxxxzFv3ryddV1xxRW85z3v4QMf+ABPPfXUzvYLLriAO++8k+uuu45f//rXnHrqqZx66qm9/k/nFStJktQjq1evZvLkyV1uu+GGG4gInnjiCX7xi19wxhlnsG7dul22z58/n3322Ye1a9eyatWqnZ+7evVqjj/+eIYMGdLlcdavX8+CBQuYOnUqixcvZv369SxfvpzMZPr06Tz88MOMHDmShQsXsnLlSl5//XUmT57MCSec8IbPufTSS7nmmmtYunQpo0aN6vWfjcFKkiT1yty5c3nkkUcYPnw4zc3NXHLJJQAceeSRHHrooaxbt45HHnmky/aHH36YSy+9FIDjjjuO4447rqZjHnrooUydOhWAxYsXs3jxYiZN6pjEYOvWraxfv54tW7Zwzjnn7LzFN3369KLn3RVvBUqSpB45+uijeeyxx3au33DDDSxZsqTHUxN0d4zHH3+c7du3d7l95MiRO5czk8suu4yVK1eycuVKNmzYwOzZs4vV0hMGK0mS1COnnXYa27ZtY/78+TvbdrxV98EPfpDbbrsNgHXr1vGrX/2KCRMm7LL95JNP3vkA/JNPPsmqVasAOPzww2lpaWHevHns+AKXZ599lh//+MdvqefMM8/klltuYevWrQC0tbWxadMmTj75ZO6++25effVVtmzZwo9+9KMuz2e//fZjy5YtJf5ovBUoSZJ6JiK4++67+eIXv8g3v/lNmpqaGDlyJFdddRUzZszg4osv5thjj2Xo0KHceuut7L333nzuc5/rsv3iiy/mwgsvZOLEiUycOPENz0DddNNNfPnLX2b8+PG84x3vYNSoUVx99dVvqeeMM85g7dq1nHTSSQDsu+++fPe732Xy5Mmce+65vPe97+Wggw5iypQpXZ7PnDlzOOuss3j3u9+986H63f6zaYSv8Wtpackdc1ZIkjToNcqEnJmsXbuWiRMn1ruSuunq/CPi0cxs6aq/twIlSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZI0oDzwwANMmDCB8ePHc+WVV+7RYxusJElS34go+1OD7du3M3fuXO6//37WrFnD7bffzpo1a/r4RP/EYCVJkgaM5cuXM378eA477DCGDx/OzJkzueeee/bY8Q1WkiRpwGhra2PMmDE715ubm2lra9tjxzdYSZIkFWKwkiRJA8bo0aPZuHHjzvXW1lZGjx69x45vsJIkSQPGlClTWL9+Pc888wyvvfYaCxcuZPr06Xvs+EP32JEkSZL62NChQ7n++us588wz2b59OxdddBFHH330njv+HjuSJEkaXDLrcthp06Yxbdq0uhzbW4GSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpkG6DVUSMiYilEbEmIlZHxBeq9q9FRFtErKx+pnXa57KI2BART0XEmX15ApIkSTtcdNFFHHTQQRxzzDF1OX4t81i9Dnw5Mx+LiP2ARyPiwWrbtzPzW507R8RRwEzg/2fv/uO8ruu83z9eCkiiu6mM3IwhQDFFV0UcFbdiUc+qUQd0T5l2lYh4KCPdbbvOyfZcV2hnO0ezNbcrl7NkrnhlmFupVOZiiut6nU0bXER+qFBizKQysm3hKhn0uv6YDzSLg/Md5j3z/Q487rfb9/b9fN6fX6/v9E6ffn68P8cDbwN+GBHvyMztJQuXJEmNLa6NovvL+T2Pi3XppZfyiU98gksuuaTosWvV4xmrzHwhM5+oprcAa4E3e+nOTODOzPx1Zj4HrAdOK1GsJEnSm5k6dSqHHnpo3Y7fq3usImIccDLwWNX0iYhYGRG3RsQhVdtoYGOXzdroJohFxNyIaI2I1o6Ojl4XLkmS1GhqDlYRcRDwbeDPMvNXwALgKGAS8ALwV705cGYuzMyWzGxpamrqzaaSJEkNqaZgFRFD6QxVd2TmdwAy86XM3J6ZvwW+yu8u97UDY7ps3ly1SZIk7dVqeSowgK8BazPzxi7tR3RZ7QJgVTW9BLgoIg6IiPHA0cDj5UqWJElqTLWcsXon8BHgrF2GVvhCRDwVESuBM4FPAmTmauAuYA1wPzDPJwIlSdJAuPjiiznjjDN45plnaG5u5mtf+9qAHr/H4RYy81Ggu+cl73uTbT4PfL4PdUmSpEGuluERSlu8ePGAH7MrR16XJEkqxGAlSZJUiMFKkiSpEIOVJEl6U5kDf69UI9iT322wkiRJuzV8+HA2b968z4WrzGTz5s0MHz68V9vV8hJmSZK0j2pubqatrY198fVzw4cPp7m5uVfbGKwkSdJuDR06lPHjx9e7jEHDS4GSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoZUu8CpEEtot4VdMqsdwWSJDxjJUmSVIzBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYX0GKwiYkxELIuINRGxOiL+tGo/NCIeiIh11fchVXtExJcjYn1ErIyIyf39IyRJkhpBLWestgGfyszjgCnAvIg4DrgaeDAzjwYerOYB3gMcXX3mAguKVy1JktSAegxWmflCZj5RTW8B1gKjgZnAomq1RcD51fRM4Pbs9CPgrRFxRPHKJUmSGkyv7rGKiHHAycBjwKjMfKFa9CIwqpoeDWzssllb1bbrvuZGRGtEtHZ0dPSybEmSpMZTc7CKiIOAbwN/lpm/6rosMxPo1dDPmbkwM1sys6Wpqak3m0qSJDWkmoJVRAylM1TdkZnfqZpf2nGJr/reVLW3A2O6bN5ctUmSJO3VankqMICvAWsz88Yui5YAs6rpWcC9XdovqZ4OnAL8ssslQ0mSpL1WLS9hfifwEeCpiFhRtf0FcB1wV0TMAZ4HLqyW3QdMB9YDrwKzi1YsSZLUoHoMVpn5KBC7WXx2N+snMK+PdUmSJA06jrwuSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFdJjsIqIWyNiU0Ss6tJ2TUS0R8SK6jO9y7LPRMT6iHgmIs7tr8IlSZIaTS1nrG4Dzuum/UuZOan63AcQEccBFwHHV9v8TUTsX6pYSZKkRtZjsMrMR4B/rXF/M4E7M/PXmfkcsB44rQ/1SZIkDRp9ucfqExGxsrpUeEjVNhrY2GWdtqrtDSJibkS0RkRrR0dHH8qQJElqDHsarBYARwGTgBeAv+rtDjJzYWa2ZGZLU1PTHpYhSZLUOPYoWGXmS5m5PTN/C3yV313uawfGdFm1uWqTJEna6+1RsIqII7rMXgDseGJwCXBRRBwQEeOBo4HH+1aiJEnS4DCkpxUiYjEwDRgZEW3AfGBaREwCEtgAfBQgM1dHxF3AGmAbMC8zt/dP6ZIkSY0lMrPeNdDS0pKtra31LkPqvYh6V9CpAf5/LKkg/9nS0CJieWa2dLfMkdclSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEKG1LsASZLUmOLaqHcJO+X8rHcJNfGMlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVMqTeBUjSPiGi3hX8Tma9K5D2Wp6xkiRJKqTHYBURt0bEpohY1aXt0Ih4ICLWVd+HVO0REV+OiPURsTIiJvdn8ZIkSY2kljNWtwHn7dJ2NfBgZh4NPFjNA7wHOLr6zAUWlClTkiSp8fUYrDLzEeBfd2meCSyqphcB53dpvz07/Qh4a0QcUapYSZKkRran91iNyswXqukXgVHV9GhgY5f12qq2N4iIuRHRGhGtHZ1zF4YAACAASURBVB0de1iGJElS4+jzzeuZmUCvHzHJzIWZ2ZKZLU1NTX0tQ5Ikqe72dLiFlyLiiMx8obrUt6lqbwfGdFmvuWqT1I/i2sZ5lD/n+yi/pH3Xnp6xWgLMqqZnAfd2ab+kejpwCvDLLpcMJUmS9mo9nrGKiMXANGBkRLQB84HrgLsiYg7wPHBhtfp9wHRgPfAqMLsfapYkSWpIPQarzLx4N4vO7mbdBOb1tai6cnRkSZK0hxx5XZIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSpkSF82jogNwBZgO7AtM1si4lDgm8A4YANwYWb+om9lSpIkNb4SZ6zOzMxJmdlSzV8NPJiZRwMPVvOSJEl7vf64FDgTWFRNLwLO74djSJIkNZy+BqsElkbE8oiYW7WNyswXqukXgVHdbRgRcyOiNSJaOzo6+liGJElS/fXpHivgXZnZHhGHAw9ExNNdF2ZmRkR2t2FmLgQWArS0tHS7jiRJ0mDSpzNWmdlefW8C7gZOA16KiCMAqu9NfS1SkiRpMNjjYBURIyLi4B3TwDnAKmAJMKtabRZwb1+LlCRJGgz6cilwFHB3ROzYzzcy8/6I+DFwV0TMAZ4HLux7mZIkSY1vj4NVZv4UOKmb9s3A2X0pSpIkaTDq683rkqRBJq6NepewU8732SXtXXyljSRJUiEGK0mSpEIMVpIkSYUYrCRJkgrx5vUG5g2mkiQNLp6xkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFdJvwSoizouIZyJifURc3V/HkSRJahT9EqwiYn/gZuA9wHHAxRFxXH8cS5IkqVH01xmr04D1mfnTzHwduBOY2U/HkiRJagj9FaxGAxu7zLdVbZIkSXutyMzyO414P3BeZl5ezX8EOD0zP9FlnbnA3Gr2GOCZ4oUMfiOBl+tdhAYF+4p6w/6iWtlXujc2M5u6WzCknw7YDozpMt9cte2UmQuBhf10/L1CRLRmZku961Djs6+oN+wvqpV9pff661Lgj4GjI2J8RAwDLgKW9NOxJEmSGkK/nLHKzG0R8QngH4D9gVszc3V/HEuSJKlR9NelQDLzPuC+/tr/PsJLpaqVfUW9YX9RrewrvdQvN69LkiTti3yljSRJUiEGK0mSpEIMVpIkSYUYrKRBKCKOjYizI+KgXdrPq1dNalwRcVpEnFpNHxcRfx4R0+tdlxpfRNxe7xoGG29eHwQiYnZm/l2961BjiIirgHnAWmAS8KeZeW+17InMnFzP+tRYImI+8B46nwJ/ADgdWAb8MfAPmfn5OpanBhIRu443GcCZwEMAmTljwIsahAxWg0BE/Cwz317vOtQYIuIp4IzMfCUixgHfAv57Zv51RPxLZp5c1wLVUKr+Mgk4AHgRaM7MX0XEW4DHMvPEuhaohhERTwBrgFuApDNYLaZzkG8y8x/rV93g0W/jWKl3ImLl7hYBowayFjW8/TLzFYDM3BAR04BvRcRYOvuL1NW2zNwOvBoRP8nMXwFk5msR8ds616bG0gL8KfB/Af9HZq6IiNcMVL1jsGoco4BzgV/s0h7A/z/w5aiBvRQRkzJzBUB15up9wK3ACfUtTQ3o9Yg4MDNfBU7Z0RgRvw8YrLRTZv4W+FJE/H31/RLmhF7zD9Y4vgcctONfll1FxMMDX44a2CXAtq4NmbkNuCQi/rY+JamBTc3MX8POf3HuMBSYVZ+S1Mgysw34QES8F/hVvesZbLzHSpIkqRCHW5AkSSrEYCVJklSIwUrSoBURt0TEcd20XxoRX6lHTZL2bd68LqlhRETQee9nTU+rZebl/VySJPWKZ6wk1VVEjIuIZ6pXZ6wC/mtE/DgiVkbEtdU6IyLi+xHxZESsiogPVu0PR0RLNT07Ip6NiMeBd3bZf1NEfLva548j4p1V+zURcWu1j59WI9rv2OaS6vhPRsR/f7P9SFJXnrGS1AiOpvPR/98D3g+cRucYbksiYirQBPw8M98LO8dg2ikijgCupXOcpl/S+cqWf6kW/zXwpcx8NCLeDvwDMLFadiydr+w4GHgmIhYA7wD+C/CHmflyRBxaw34kCTBYSWoMz2fmjyLii8A5/C4UHURn6Pon4K8i4nrge5n5T7tsfzrwcGZ2AETEN+kMSAD/C3Bc51VGAH6vy8urv1+N8fTriNhE50C9ZwF/n5kvA2Tmv77ZfnaMgi9JYLCS1Bj+vfoO4P/NzDcMdBoRk4HpwF9GxIOZ+bka970fMCUzt+6yP4Bfd2nazpv/M7Hb/UhSV95jJamR/ANw2Y4zShExOiIOj4i3Aa9m5teBG4DJu2z3GPBHEXFYRAwFPtBl2VLgyh0zETGphxoeonPU6cOq9XdcCuztfiTtgzxjJalhZObSiJgI/HN1RukV4MPABOCG6qXBvwGu2GW7FyLiGuCfgX8Dur4a6irg5upF50OAR4CPvUkNqyPi88A/RsR2Oi9LXtrb/UjaN/lKG0mSpEK8FChJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUMqXcBACNHjsxx48bVuwxJkqQeLV++/OXMbOpuWUMEq3HjxtHa2lrvMiRJknoUEc/vbpmXAiVJkgoxWEmSJBVisJIkSSqkIe6xkiRJjek3v/kNbW1tbN26td6lDLjhw4fT3NzM0KFDa97GYCVJknarra2Ngw8+mHHjxhER9S5nwGQmmzdvpq2tjfHjx9e8nZcCJUnSbm3dupXDDjtsnwpVABHBYYcd1uszdQYrSZL0pva1ULXDnvxug5UkSVIhBitJktRrL730Eh/60Ic48sgjOeWUUzjjjDO4++67+7zfadOm7Rw0/JVXXuGjH/0oRx11FKeccgrTpk3jscce2+N9X3PNNXzxi18E4LOf/Sw//OEPAbjpppt49dVX+1w7ePO6JEnqpczk/PPPZ9asWXzjG98A4Pnnn2fJkiVFj3P55Zczfvx41q1bx3777cdzzz3HmjVr3lBLZrLffr07V/S5z31u5/RNN93Ehz/8YQ488MA+1+wZK0kaCBGN85H66KGHHmLYsGF87GMf29k2duxYrrzySrZu3crs2bM54YQTOPnkk1m2bBnAbttfe+01LrroIiZOnMgFF1zAa6+9BsBPfvITHnvsMf7yL/9yZ2gaP348733ve9mwYQPHHHMMl1xyCX/wB3/Axo0bueGGGzj11FM58cQTmT9//s66Pv/5z/OOd7yDd73rXTzzzDM72y+99FK+9a1v8eUvf5mf//znnHnmmZx55pl9/tt4xkqSJPXK6tWrmTx5crfLbr75ZiKCp556iqeffppzzjmHZ599drftCxYs4MADD2Tt2rWsXLly535Xr17NpEmT2H///bs9zrp161i0aBFTpkxh6dKlrFu3jscff5zMZMaMGTzyyCOMGDGCO++8kxUrVrBt2zYmT57MKaec8h/2c9VVV3HjjTeybNkyRo4c2ee/jcFKkiT1ybx583j00UcZNmwYzc3NXHnllQAce+yxjB07lmeffZZHH3202/ZHHnmEq666CoATTzyRE088saZjjh07lilTpgCwdOlSli5dysknnwx03pu1bt06tmzZwgUXXLDzEt+MGTOK/u7ueClQkiT1yvHHH88TTzyxc/7mm2/mwQcfpKOjo+gxnnzySbZv397t8hEjRuyczkw+85nPsGLFClasWMH69euZM2dOsVp6w2AlSZJ65ayzzmLr1q0sWLBgZ9uOp+re/e53c8cddwDw7LPP8rOf/Yxjjjlmt+1Tp07deQP8qlWrWLlyJQBHHXUULS0tzJ8/n8wEYMOGDXz/+99/Qz3nnnsut956K6+88goA7e3tbNq0ialTp3LPPffw2muvsWXLFr773e92+3sOPvhgtmzZUuJP46VASZLUOxHBPffcwyc/+Um+8IUv0NTUxIgRI7j++uuZOXMmV1xxBSeccAJDhgzhtttu44ADDuDjH/94t+1XXHEFs2fPZuLEiUycOPE/3AN1yy238KlPfYoJEybwlre8hZEjR3LDDTe8oZ5zzjmHtWvXcsYZZwBw0EEH8fWvf53JkyfzwQ9+kJNOOonDDz+cU089tdvfM3fuXM477zze9ra37bypfo//NjtSYD21tLTkjjErJGmv1EhP4zXAP/c1eKxdu5aJEyfWu4y66e73R8TyzGzpbn0vBUqSJBXipcBd+V+VkiRpD3nGSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJUv+o0wvE77//fo455hgmTJjAdddd148/8I0MVpIkaa+xfft25s2bxw9+8APWrFnD4sWLWbNmzYAd32AlSZL2Go8//jgTJkzgyCOPZNiwYVx00UXce++9A3Z8g5UkSdprtLe3M2bMmJ3zzc3NtLe3D9jxDVaSJEmFGKwkSdJeY/To0WzcuHHnfFtbG6NHjx6w4xusJEnSXuPUU09l3bp1PPfcc7z++uvceeedzJgxY8CO77sCJUlS/6jDO2+HDBnCV77yFc4991y2b9/OZZddxvHHHz9wxx+wI0mSJA2A6dOnM3369Loc20uBkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVEiPwSoixkTEsohYExGrI+JPq/ZDI+KBiFhXfR9StUdEfDki1kfEyoiY3N8/QpIkqRHUMtzCNuBTmflERBwMLI+IB4BLgQcz87qIuBq4Gvg08B7g6OpzOrCg+pYkSfuQuDaK7i/n9zwu1mWXXcb3vvc9Dj/8cFatWlX0+LXo8YxVZr6QmU9U01uAtcBoYCawqFptEXB+NT0TuD07/Qh4a0QcUbxySZKkXVx66aXcf//9dTt+r+6xiohxwMnAY8CozHyhWvQiMKqaHg1s7LJZW9W2677mRkRrRLR2dHT0smxJkqQ3mjp1Koceemjdjl9zsIqIg4BvA3+Wmb/quiwzE+jVuPWZuTAzWzKzpampqTebSpIkNaSaglVEDKUzVN2Rmd+pml/acYmv+t5UtbcDY7ps3ly1SZIk7dVqeSowgK8BazPzxi6LlgCzqulZwL1d2i+png6cAvyyyyVDSZKkvVYtTwW+E/gI8FRErKja/gK4DrgrIuYAzwMXVsvuA6YD64FXgdlFK5YkSWpQPQarzHwU2N3zkmd3s34C8/pYlyRJGuRqGR6htIsvvpiHH36Yl19+mebmZq699lrmzJkzYMev5YyVJEnSoLB48eK6Ht9X2kiSJBVisJIkSSrEYCVJkt5U5+3T+549+d0GK0mStFvDhw9n8+bN+1y4ykw2b97M8OHDe7WdN69LkqTdam5upq2tjX3x9XPDhw+nubm5V9sYrCRJ0m4NHTqU8ePH17uMQcNLgZIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoZUu8CpEEtot4VdMqsdwWSJDxjJUmSVIzBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBXSY7CKiFsjYlNErOrSdk1EtEfEiuozvcuyz0TE+oh4JiLO7a/CJUmSGk0tZ6xuA87rpv1LmTmp+twHEBHHARcBx1fb/E1E7F+qWEmSpEbWY7DKzEeAf61xfzOBOzPz15n5HLAeOK0P9UmSJA0afbnH6hMRsbK6VHhI1TYa2Nhlnbaq7Q0iYm5EtEZEa0dHRx/KkCRJagx7GqwWAEcBk4AXgL/q7Q4yc2FmtmRmS1NT0x6WIUmS1Dj2KFhl5kuZuT0zfwt8ld9d7msHxnRZtblqkyRJ2uvtUbCKiCO6zF4A7HhicAlwUUQcEBHjgaOBx/tWoiRJ0uAwpKcVImIxMA0YGRFtwHxgWkRMAhLYAHwUIDNXR8RdwBpgGzAvM7f3T+mSJEmNJTKz3jXQ0tKSra2t9S6jU0S9K/idBvjfRj1olP5iX2l8jdJXwP4i9VFELM/Mlu6WOfK6JElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhPQariLg1IjZFxKoubYdGxAMRsa76PqRqj4j4ckSsj4iVETG5P4uXJElqJENqWOc24CvA7V3argYezMzrIuLqav7TwHuAo6vP6cCC6luS1CDi2qh3CTvl/Kx3CVJRPZ6xysxHgH/dpXkmsKiaXgSc36X99uz0I+CtEXFEqWIlSZIa2Z7eYzUqM1+opl8ERlXTo4GNXdZrq9reICLmRkRrRLR2dHTsYRmSJEmNo883r2dmAr0+l5uZCzOzJTNbmpqa+lqGJElS3e1psHppxyW+6ntT1d4OjOmyXnPVJkmStNfb02C1BJhVTc8C7u3Sfkn1dOAU4JddLhlKkiTt1Xp8KjAiFgPTgJER0QbMB64D7oqIOcDzwIXV6vcB04H1wKvA7H6oWZIkqSH1GKwy8+LdLDq7m3UTmNfXoiRJkgYjR16XJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCulxHCtJkjTAIupdQafs9auA93mesZIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSChlS7wIk9V1cG/UuYaecn/UuQZLqxjNWkiRJhRisJEmSCjFYSZIkFeI9VpIkqVvev9l7nrGSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhTjcQgPzMVdJkgYXz1hJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQvo03EJEbAC2ANuBbZnZEhGHAt8ExgEbgAsz8xd9K1OSJKnxlThjdWZmTsrMlmr+auDBzDwaeLCalyRJ2uv1x6XAmcCianoRcH4/HEOSJKnh9DVYJbA0IpZHxNyqbVRmvlBNvwiM6m7DiJgbEa0R0drR0dHHMiRJkuqvr6+0eVdmtkfE4cADEfF014WZmRHR7btQMnMhsBCgpaXF96VIkqRBr09nrDKzvfreBNwNnAa8FBFHAFTfm/papCRJ0mCwx8EqIkZExME7poFzgFXAEmBWtdos4N6+FilJkjQY9OVS4Cjg7ojYsZ9vZOb9EfFj4K6ImAM8D1zY9zIlSZIa3x4Hq8z8KXBSN+2bgbP7UpQkSdJg5MjrkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmF9FuwiojzIuKZiFgfEVf313EkSZIaRb8Eq4jYH7gZeA9wHHBxRBzXH8eSJElqFP11xuo0YH1m/jQzXwfuBGb207EkSZIaQmRm+Z1GvB84LzMvr+Y/ApyemZ/oss5cYG41ewzwTPFCBr+RwMv1LkKDgn1FvWF/Ua3sK90bm5lN3S0YMtCV7JCZC4GF9Tr+YBARrZnZUu861PjsK+oN+4tqZV/pvf66FNgOjOky31y1SZIk7bX6K1j9GDg6IsZHxDDgImBJPx1LkiSpIfTLpcDM3BYRnwD+AdgfuDUzV/fHsfZyXipVrewr6g37i2plX+mlfrl5XZIkaV/kyOuSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGDV4CLioHrXIGnvERGH1rsGDR4RMaPeNQw2dRt5XTVbA7y93kWocUTECcBXgdHAD4BPZ+YvqmWPZ+Zp9axPjSMi3gncAvwWuAz4S+DIanzBCzPzn+tZnxpLRPzJrk3AzRExBCAzvzPwVQ0+BqsGEBF/vrtFgGestKsFwDXAj4DLgUcjYkZm/gQYWs/C1HC+BFxI5z9Hvg+cn5mPRsRk4L8B76xncWo436Rz/MlNdP77B2AE8L8CCRisamCwagz/D3ADsK2bZV6u1a4Ozsz7q+kvRsRy4P7qZecOTKeuhmbmUwAR0ZGZjwJk5hMR8Zb6lqYG9IfAdcCPM3MBQERMy8zZ9S1rcDFYNYYngHsyc/muCyLi8jrUowYXEb+fmb8EyMxlEfG/Ad8GvH9GXXX9D7PP7LJs2EAWosaXmT+OiD8GroyIZcCn8T/Wes2zIY1hNvCz3SzzreLa1fXAxK4NmbkSOBtP1es/+q8RcSBAZt6zozEijgJur1tValiZ+dvM/Gvgw8B/rnc9g5GvtJEkSSrEM1YNICL2j4iPRsT/XT3F03XZf6lXXWpM9hfVyr6i3rC/lGGwagx/C/wRsBn4ckTc2GXZro+/SvYX1cq+ot6wvxRgsGoMp2XmhzLzJuB04KCI+E5EHMDvHnmVdrC/qFb2FfWG/aUAg1Vj2Pl0TmZuy8y5wArgIRzHSm9kf1Gt7CvqDftLAQarxtAaEed1bcjMzwF/B4yrS0VqZPYX1cq+ot6wvxTgU4GSJEmFeMaqwVWDtUk1sb+oVvYV9Yb9pXaesWpwEfGzzPQlzKqJ/UW1sq+oN+wvtfOVNg0gIpbsbhFw2EDWosZnf1Gt7CvqDftLGQarxvBuOl8f8Mou7QGcNvDlqMHZX1Qr+4p6w/5SgMGqMfwIeDUz/3HXBRHxTB3qUWOzv6hW9hX1hv2lAINVA8jM93TXHhHvAp4a4HLU4OwvqpV9Rb1hfynDYNVgIuJk4EPAB4DngG/XtyI1MvuLamVfUW/YX/acwaoBRMQ7gIurz8vAN+l8YvPMuhamhmR/Ua3sK+oN+0sZDrfQACLit8A/AXMyc33V9tPMPLK+lakR2V9UK/uKesP+UoYDhDaGPwFeAJZFxFcj4mx84aV2z/6iWtlX1Bv2lwI8Y9VAImIEMJPO07BnAbcDd2fm0roWpoZkf1Gt7CvqDftL3xisGlREHELnTYMfzMyz612PGpv9RbWyr6g37C+9Z7CSJEkqxHusJEmSCjFYSZIkFWKwkqRKREyLiD+sdx2SBi+DlaRBJSL276f9DgGmAQYrSXvMm9clNYyIGAfcDywHJgOrgUuANXSOAv3HwBfoHFvnL6rv72fmp6vtXwG+CpwDvAhclJkdEXEUcDPQBLwK/O+Z+XRE3AZsBU4G2ukMVduBDuBKOh8zf0dm/iYifg94csd8v/4hJA1anrGS1GiOAf4mMycCvwI+XrVvzszJwCPA9XSOrzMJODUizq/WGQG0ZubxwD8C86v2hcCVmXkK8J+Bv+lyvGbgDzPzT4D/D/hSZk7KzH8CHgbeW613EfAdQ5WkN2OwktRoNmbm/6imvw68q5r+ZvV9KvBwZnZk5jbgDmBqtey3Xdb7OvCuiDiIzjNRfx8RK4C/BY7ocry/z8ztu6nlFmB2NT0b+Ls9/1mS9gW+hFlSo9n1/oQd8/++h/vaD/i3zJy0m3V2u9/M/B8RMS4ipgH7Z+aqPahB0j7EM1aSGs3bI+KMavpDwKO7LH8c+KOIGFndyH4xnZf9oPOfae/vum1m/gp4LiI+ABCdTtrNsbcAB+/SdjvwDTxbJakGBitJjeYZYF5ErAUOARZ0XZiZLwBXA8vovJl8eWbeWy3+d+C0iFhF5z1Yn6va/xMwJyKepPOG+Jm7OfZ3gQsiYkVEvLtqu6OqY3GJHydp7+ZTgZIaRvVU4Pcy8w/2cPtXMvOgwjW9H5iZmR8puV9JeyfvsZKk3YiI/wa8B5he71okDQ6esZIkSSqkIc5YjRw5MseNG1fvMiRJknq0fPnylzOzqbtlDRGsxo0bR2tra73LkCRJ6lFEPL+7ZT4VKEmSVIjBSpIkqZCaglVEvDUivhURT0fE2og4IyIOjYgHImJd9X1ItW5ExJcjYn1ErIyIyf37EyRJkhpDrfdY/TVwqX9KEQAAIABJREFUf2a+PyKGAQfS+Wb5BzPzuoi4ms4B+z5N56PJR1ef0+kc3O/04pVLkqR+95vf/Ia2tja2bt1a71IG3PDhw2lubmbo0KE1b9NjsIqI36fzBaeXAmTm68DrETETmFattojOt8B/ms4RjW/PznEcflSd7TqiGi1ZkiQNIm1tbRx88MGMGzeOiKh3OQMmM9m8eTNtbW2MHz++5u1quRQ4HugA/i4i/iUibomIEcCoLmHpRWBUNT0a2Nhl+7aqTZIkDTJbt27lsMMO26dCFUBEcNhhh/X6TF0twWoIMBlYkJkn0/kurqu7rlCdnerVSKMRMTciWiOitaOjozebSpKkAbSvhaod9uR31xKs2oC2zHysmv8WnUHrpYg4ojrwEcCmank7MKbL9s1V23+QmQszsyUzW5qauh1jS5IkaVDpMVhl5ovAxog4pmo6G1gDLAFmVW2zgB1vl18CXFI9HTgF+KX3V0mStHd56aWX+NCHPsSRRx7JKaecwhlnnMHdd9/d5/1OmzZt56Dhr7zyCh/96Ec56qijOOWUU5g2bRqPPfZYD3vYvWuuuYYvfvGLAHz2s5/lhz/8IQA33XQTr776ap9rh9qfCrwSuKN6IvCnwGw6Q9ldETEHeB64sFr3PjpfWLoeeLVaV5KkxjZYL3fV4Z2/mcn555/PrFmz+MY3vgHA888/z5IlS4oe5/LLL2f8+PGsW7eO/fbbj+eee441a9a8oZbMZL/9ejc05+c+97md0zfddBMf/vCHOfDAA/tcc03BKjNXAC3dLDq7m3UTmNfHuiRJUoN66KGHGDZsGB/72Md2to0dO5Yrr7ySrVu3csUVV9Da2sqQIUO48cYbOfPMM3fb/tprrzF79myefPJJjj32WF577TUAfvKTn/DYY49xxx137AxN48ePZ/z48WzYsIFzzz2X008/neXLl3Pfffdx1113cdddd/HrX/+aCy64gGuvvRaAz3/+8yxatIjDDz+cMWPGcMoppwBw6aWX8r73vY+f//zn/PznP+fMM89k5MiRLFu2rE9/m4Z4V6AkSRo8Vq9ezeTJ3Y//ffPNNxMRPPXUUzz99NOcc845PPvss7ttX7BgAQceeCBr165l5cqVO/e7evVqJk2axP7779/tcdatW8eiRYuYMmUKS5cuZd26dTz++ONkJjNmzOCRRx5hxIgR3HnnnaxYsYJt27YxefLkncFqh6uuuoobb7yRZcuWMXLkyD7/bQxWkiSpT+bNm8ejjz7KsGHDaG5u5sorrwTg2GOPZezYsTz77LM8+uij3bY/8sgjXHXVVQCceOKJnHjiiTUdc+zYsUyZMgWApUuXsnTpUk4++WSg896sdevWsWXLFi644IKdl/hmzJhR9Hd3x3cFSpKkXjn++ON54oknds7ffPPNPPjgg5QcPun444/nySefZPv27d0uHzFixM7pzOQzn/kMK1asYMWKFaxfv545c+YUq6U3DFaSJKlXzjrrLLZu3cqCBQt2tu14qu7d7343d9xxBwDPPvssP/vZzzjmmGN22z516tSdN8CvWrWKlStXAnDUUUfR0tLC/PnzyeoG/Q0bNvD973//DfWce+653HrrrbzyyisAtLe3s2nTJqZOnco999zDa6+9xpYtW/jud7/b7e85+OCD2bJlS4k/jZcCJUlS70QE99xzD5/85Cf5whe+QFNTEyNGjOD6669n5syZXHHFFZxwwgkMGTKE2267jQMOOICPf/zj3bZfccUVzJ49m4kTJzJx4sT/cA/ULbfcwqc+9SkmTJjAW97yFkaOHMkNN9zwhnrOOecc1q5dyxlnnAHAQQcdxNe//nUmT57MBz/4QU466SQOP/xwTj311G5/z9y5cznvvPN429ve1ueb1yPr8JjmrlpaWnLHmBWSJNWFwy10a+3atUycOLFfj9HIuvv9EbE8M7sbLcFLgZIkSaUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSeofEWU/Nbr//vs55phjmDBhAtddd10//sA3MlhJkqS9xvbt25k3bx4/+MEPWLNmDYsXL2bNmjUDdnyDlSRJ2ms8/vjjTJgwgSOPPJJhw4Zx0UUXce+99w7Y8Q1WkiRpr9He3s6YMWN2zjc3N9Pe3j5gxzdYSZIkFWKwkiRJe43Ro0ezcePGnfNtbW2MHj16wI5vsJIkSXuNU089lXXr1vHcc8/x+uuvc+eddzJjxowBO/6QATuSJEnat2QO+CGHDBnCV77yFc4991y2b9/OZZddxvHHHz9wxx+wI0mSJA2A6dOnM3369Loc20uBkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCHW5AkSf0iro2i+8v5PY+Lddlll/G9732Pww8/nFWrVhU9fi08YyVJkvYal156Kffff3/djm+wkiRJe42pU6dy6KGH1u34NQWriNgQEU9FxIqIaK3aDo2IByJiXfV9SNUeEfHliFgfESsjYnJ//gBJkqRG0ZszVmdm5qTMbKnmrwYezMyjgQereYD3AEdXn7nAglLFSpIkNbK+XAqcCSyqphcB53dpvz07/Qh4a0Qc0YfjSJIkDQq1BqsElkbE8oiYW7WNyswXqukXgVHV9GhgY5dt26o2SZKkvVqtwy28KzPbI+Jw4IGIeLrrwszMiOj5GcguqoA2F+Dtb397bzaVJEmDQC3DI5R28cUX8/DDD/Pyyy/T3NzMtddey5w5cwbs+DUFq8xsr743RcTdwGnASxFxRGa+UF3q21St3g6M6bJ5c9W26z4XAgsBWlpaBv4vL0mS9jqLFy+u6/F7vBQYESMi4uAd08A5wCpgCTCrWm0WcG81vQS4pHo6cArwyy6XDCVJkvZatZyxGgXcHRE71v9GZt4fET8G7oqIOcDzwIXV+vcB04H1wKvA7OJVS5IkNaAeg1Vm/hQ4qZv2zcDZ3bQnMK9IdZIkqe4yk+oEyz6lM9L0jiOvS5Kk3Ro+fDibN2/eo5AxmGUmmzdvZvjw4b3azpcwS5Kk3WpubqatrY2Ojo56lzLghg8fTnNzc6+2MVhJkqTdGjp0KOPHj693GYOGlwIlSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqpOZgFRH7R8S/RMT3qvnxEfFYRKyPiG9GxLCq/YBqfn21fFz/lC5JktRYenPG6k+BtV3mrwe+lJkTgF8Ac6r2OcAvqvYvVetJkiTt9WoKVhHRDLwXuKWaD+As4FvVKouA86vpmdU81fKzq/UlSZL2arWesboJ+D+B31bzhwH/lpnbqvk2YHQ1PRrYCFAt/2W1viRJ0l6tx2AVEe8DNmXm8pIHjoi5EdEaEa0dHR0ldy1JklQXtZyxeicwIyI2AHfSeQnwr4G3RsSQap1moL2abgfGAFTLfx/YvOtOM3NhZrZkZktTU1OffoQkSVIj6DFYZeZnMrM5M8cBFwEPZeZ/ApYB769WmwXcW00vqeaplj+UmVm0akmSpAbUl3GsPg38eUSsp/Meqq9V7V8DDqva/xy4um8lSpIkDQ5Del7ldzLzYeDhavqnwGndrLMV+ECB2iRJkgYVR16XJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhfQYrCJieEQ8HhFPRsTqiLi2ah8fEY9FxPqI+GZEDKvaD6jm11fLx/XvT5AkSWoMtZyx+jVwVmaeBEwCzouIKcD1wJcycwLwC2BOtf4c4BdV+5eq9SRJkvZ6PQar7PRKNTu0+iRwFvCtqn0RcH41PbOap1p+dkREsYolSZIaVE33WEXE/hGxAtgEPAD8BPi3zNxWrdIGjK6mRwMbAarlvwQOK1m0JElSI6opWGXm9sycBDQDpwHH9vXAETE3IlojorWjo6Ovu5MkSaq7Xj0VmJn/BiwDzgDeGhFDqkXNQHs13Q6MAaiW/z6wuZt9LczMlsxsaWpq2sPyJUmSGkctTwU2RcRbq+m3AH8MrKUzYL2/Wm0WcG81vaSap1r+UGZmyaIlSZIa0ZCeV+EIYFFE/E/27j3arqrOE/33JwEjjxaFSFsJRcJDjCjyCBZclcGjSxHr8uj2gbaCiDelotbDMbq0Rt+iqKs1ULxKUXLpS4sNlgp6tQTKV6GIUnS3YNDIK0KigCSlEim1oCGlUPP+cVbiMSaek2SenNfnM8Yee645597rt4+zqG/WWnvtHTISxD7ZWvtsVd2Z5MqqeleSbyW5dJh/aZK/qapVSf4pyWkTUDcAwJQzZrBqrd2a5NBN9H8vI9dbbdy/LsnLu1QHADCNuPM6AEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAncya7AABg69W5NdklbLV2TpvsErpzxAoAoBPBCgCgE8EKAKATwQoAoBPBCgCgkzGDVVXtXVXXV9WdVXVHVf3B0P/UqvpSVa0cnp8y9FdVXVhVq6rq1qo6bKI/BADAVDCeI1aPJXl7a+1ZSY5McnZVPSvJO5Jc11o7IMl1w3aSvCTJAcNjaZKLu1cNADAFjRmsWms/aK19c2g/lGRFkvlJTk5y+TDt8iSnDO2Tk3ykjfh6kt2r6undKwcAmGK26BqrqlqY5NAkNyXZq7X2g2Hoh0n2Gtrzk9w/6mWrh76N32tpVS2rqmVr167dwrIBAKaecQerqto1yaeT/GFr7Z9Hj7XWWpItun1qa+2S1tqS1tqSefPmbclLAQCmpHEFq6raMSOh6mOttb8dun+0/hTf8PzA0L8myd6jXr5g6AMAmNHG863ASnJpkhWttfePGromyRlD+4wkV4/qP334duCRSX426pQhAMCMNZ4fYX5+ktcmua2qlg99f5rkvCSfrKqzktyX5BXD2OeTnJhkVZJHkpzZtWIAgClqzGDVWrsxyeZ+Ovv4TcxvSc7exroAAKYdd14HAOhEsAIA6ESwAgDoRLACAOhEsAIA6ESwAgDoRLACAOhEsAIA6ESwAgDoRLACAOhEsAIA6ESwAgDoRLACAOhEsAIA6ESwAgDoRLACAOhEsAIA6ESwAgDoRLACAOhEsAIA6ESwAgDoRLACAOhEsAIA6ESwAgDoRLACAOhEsAIA6ESwAgDoRLACAOhEsAIA6ESwAgDoZMxgVVUfrqoHqur2UX1PraovVdXK4fkpQ39V1YVVtaqqbq2qwyayeACAqWQ8R6wuS3LCRn3vSHJda+2AJNcN20nykiQHDI+lSS7uUyYAwNQ3ZrBqrd2Q5J826j45yeVD+/Ikp4zq/0gb8fUku1fV03sVCwAwlW3tNVZ7tdZ+MLR/mGSvoT0/yf2j5q0e+n5NVS2tqmVVtWzt2rVbWQYAwNSxzRevt9ZakrYVr7uktbaktbZk3rx521oGAMCk29pg9aP1p/iG5weG/jVJ9h41b8HQBwAw421tsLomyRlD+4wkV4/qP334duCRSX426pQhAMCMNmesCVV1RZJjkuxZVauTnJPkvCSfrKqzktyX5BXD9M8nOTHJqiSPJDlzAmoGAJiSxgxWrbVXbWbo+E3MbUnO3taiAACmI3deBwDoZMwjVoyharIr2Dpti7/ICQCMwRErAIBOBCsAgE4EKwCATgQrAIBOBCsAgE4EKwCATgQrAIBOBCsAgE4EKwCATtx5fZaqc6fpHeOTtHPcNR6AqckRKwCATgQrAIBOBCsAgE4EKwCATgQrAIBOBCsAgE4EKwCATgQrAIBOBCsAgE4EKwCATvykDTC2mqY/gdT8/BGwfTliBQDQiWAFANCJYAUA0IlrrIAZq86dpteGJWnnuD4MpiNHrAAAOhGsAAA6EawAADqZsGBVVSdU1V1Vtaqq3jFR+wEAmComJFhV1Q5JLkrykiTPSvKqqnrWROwLAGCqmKgjVs9Lsqq19r3W2s+TXJnk5AnaFwDAlFBtAn7yoapeluSE1tobhu3XJvmd1tpbRs1ZmmTpsHlgkru6F8JvsmeSH092ETDBrHNmA+t8+9untTZvUwOTdh+r1tolSS6ZrP3PdlW1rLW2ZLLrgIlknTMbWOdTy0SdClyTZO9R2wuGPgCAGWuigtU3khxQVYuqaqckpyW5ZoL2BQAwJUzIqcDW2mNV9ZYkf59khyQfbq3dMRH7Yqs5DctsYJ0zG1jnU8iEXLwOADAbufM6AEAnghUAQCeCFQBAJ4IVAEAnghUAQCeC1SxWVbdNdg3QQ1XtXVVXVtU/VNWfVtWOo8aumszaoJeqemZVfaGqPldV+1XVZVX106q6uaoWT3Z9jJi0n7Rh+6iqf7+5oST/dnvWAhPow0k+neTrSc5K8rWq+t9baw8m2WdSK4N+LklyfpJdk3wlyZ8kOTPJ7yX5YJLjJ6801nMfqxmuqn6R5GNJNvU/9Mtaa7tt55Kgu6pa3lo7ZNT2a5K8M8lJSf6/1tphk1YcdFJV32qtHTq0V7XW9h819k3rfGpwxGrmuzXJ+1prt288UFX/bhLqgYmwY1XNba2tS5LW2ker6ocZ+fWHXSa3NOhmh1Ht9280ttP2LITNc43VzPeHSf55M2Onbs9CYAJ9KMnvjO5orX05ycuT/No/KmCauqiqdk2S1tr/s76zqvZP8uVJq4pf4VQgAEAnjljNQlV192TXABPNOmc2sM6nHkesZriqeii/vHC9huedkzySpLXW/s2kFAYdWefMBtb59OCI1cz335JcleSA1tpuw7cAvz+0/R8hM4V1zmxgnU8DgtUM11p7W5K/SnJFVb2tqp6QTd96AaYt65zZwDqfHgSrWaC1dkuS9bdW+FqSuZNYDkwI65zZwDqf+lxjNctU1dOTHNpa+/xk1wITxTpnNrDOpybBaharqt9trX1psuuAiWSdMxtY51OHYDWLVdX3W2u/Pdl1wESyzpkNrPOpw0/azHBVdc3mhpLssT1rgYlinTMbWOfTg2A1870wyWuSPLxRfyV53vYvByaEdc5sYJ1PA4LVzPf1JI+01r628UBV3TUJ9cBEsM6ZDazzaUCwmuFaay/ZVH9VvSDJbdu5HJgQ1jmzgXU+PQhWs0hVHZrk1UlenuSeJJ+e3IqgP+uc2cA6n7oEqxmuqp6R5FXD48dJPpGRb4MeO6mFQUfWObOBdT49uN3CDFdV/5rkH5Kc1VpbNfR9r7W27+RWBv1Y58wG1vn04CdtZr5/n+QHSa6vqv9aVcfnl7+KDjOFdc5sYJ1PA45YzRJVtUuSkzNyCPm4JB9J8pnW2rWTWhh0ZJ0zG1jnU5tgNQtV1VMycsHjK1trx092PTARrHNmA+t86hGsAAA6cY0VAEAnghUAQCeCFTAlVNXuVfXmUdvHVNVnJ2hfE/bewOwmWAFTxe5J3jzmrHGqKjdABrY7wQqYFFX1x1V1+/D4wyTnJdmvqpZX1fnDtF2r6lNV9Z2q+lhV1fDaw6vqa1V1S1X9fVU9fej/alVdUFXLkvxBVV1WVf+lqpZV1d1V9XubqON5VfU/q+pbVfU/qurAof91VfW3VfXFqlpZVe8d+ncY3vf2qrqtqv5oe/y9gOnBv+iA7a6qDk9yZpLfycgNDm9K8pokz26tHTLMOSbJoUkOSvKPSf57kudX1U1J/jrJya21tVX1yiTvTvL64e13aq0tGd7jsiQLkzwvyX4ZubHi/huV850kL2ytPVZV/y7JXyb5D8PYIUMN/5Lkrqr66yRPSzK/tfbsYR+7d/qzADOAYAVMhhdk5IaG/ytJqupvk7xwE/Nubq2tHuYsz0hI+mmSZyf50nAAa4eM3I16vU9s9B6fbK39a5KVVfW9JM/caPzJSS6vqgOStCQ7jhq7rrX2s2H/dybZJ8kdSfYdQtbnkrgpI7CBYAVMZf8yqv14Rv6bVUnuaK0dtZnX/K+Ntje+Wd/G2/9Xkutba6dW1cIkX/1N+2+t/aSqnpvkxUnemOQV+eXRMmCWc40VMBn+IckpVbXz8PMcp2bkVN9u43jtXUnmVdVRSVJVO1bVQb9h/sur6glVtV+SfYfXj/bkJGuG9uvG2nlV7ZnkCa21Tyf5z0kOG0fNwCzhiBWw3bXWvjlc/3Tz0PWh1totVfXfq+r2JF/IyGm2Tb3251X1siQXVtWTM/LfsQsycopuU74/7OffJHlja23dcApxvfdm5FTgf97cPjcyP8l/q6r1/zB95zheA8wSftIGmLGG8PbZ1tqnJrsWYHZwKhAAoBNHrAAAOpkS11jtueeebeHChZNdBgDAmG655ZYft9bmbWpsSgSrhQsXZtmyZZNdBgDAmKrqvs2NucYKAKATwQoAoBPBCgCgkylxjRUAMDX94he/yOrVq7Nu3brJLmW7mzt3bhYsWJAdd9xx7MkDwQoA2KzVq1dnt912y8KFC7PRrxbMaK21PPjgg1m9enUWLVo07tc5FQgAbNa6deuyxx57zKpQlSRVlT322GOLj9QJVgDAbzTbQtV6W/O5BSsAYIv96Ec/yqtf/ersu+++Ofzww3PUUUflM5/5zDa/7zHHHLPh3pYPP/xwfv/3fz/77bdfDj/88BxzzDG56aabtvq9//zP/zzve9/7kiR/9md/li9/+ctJkgsuuCCPPPLINteeuMYKANhCrbWccsopOeOMM/Lxj388SXLfffflmmuu6bqfN7zhDVm0aFFWrlyZJzzhCbnnnnty5513/lotrbU84QlbdqzoL/7iLza0L7jggrzmNa/JzjvvvM01O2IFjK1qej6ACfGVr3wlO+20U974xjdu6Ntnn33y1re+NevWrcuZZ56Z5zznOTn00ENz/fXXJ8lm+x999NGcdtppWbx4cU499dQ8+uijSZLvfve7uemmm/Kud71rQ2hatGhRXvrSl+bee+/NgQcemNNPPz3Pfvazc//99+f888/PEUcckYMPPjjnnHPOhrre/e535xnPeEZe8IIX5K677trQ/7rXvS6f+tSncuGFF+Yf//Efc+yxx+bYY4/d5r+NI1YAwBa54447cthhh21y7KKLLkpV5bbbbst3vvOdvOhFL8rdd9+92f6LL744O++8c1asWJFbb711w/vecccdOeSQQ7LDDjtscj8rV67M5ZdfniOPPDLXXnttVq5cmZtvvjmttZx00km54YYbsssuu+TKK6/M8uXL89hjj+Wwww7L4Ycf/ivv87a3vS3vf//7c/3112fPPffc5r+NYAUAbJOzzz47N954Y3baaacsWLAgb33rW5Mkz3zmM7PPPvvk7rvvzo033rjJ/htuuCFve9vbkiQHH3xwDj744HHtc5999smRRx6ZJLn22mtz7bXX5tBDD00ycm3WypUr89BDD+XUU0/dcIrvpJNO6vq5N8WpQABgixx00EH55je/uWH7oosuynXXXZe1a9d23ce3v/3tPP7445sc32WXXTa0W2t55zvfmeXLl2f58uVZtWpVzjrrrG61bAnBCgDYIscdd1zWrVuXiy++eEPf+m/VvfCFL8zHPvaxJMndd9+d73//+znwwAM323/00UdvuAD+9ttvz6233pok2W+//bJkyZKcc845aa0lSe6999587nOf+7V6XvziF+fDH/5wHn744STJmjVr8sADD+Too4/OVVddlUcffTQPPfRQ/u7v/m6Tn2e33XbLQw891ONP41QgALBlqipXXXVV/uiP/ijvfe97M2/evOyyyy55z3vek5NPPjlvetOb8pznPCdz5szJZZddlic+8Yl585vfvMn+N73pTTnzzDOzePHiLF68+FeugfrQhz6Ut7/97dl///3zpCc9KXvuuWfOP//8X6vnRS96UVasWJGjjjoqSbLrrrvmox/9aA477LC88pWvzHOf+9w87WlPyxFHHLHJz7N06dKccMIJ+a3f+q0NF9Vv9d9mfQqcTEuWLGnr71kBTEHT9Rt2U+C/bzDdrVixIosXL57sMibNpj5/Vd3SWluyqflOBQIAdCJYAQB0Mq5gVVX3VtVtVbW8qpYNfU+tqi9V1crh+SlDf1XVhVW1qqpurapN3+gCAGCG2ZIjVse21g4ZdU7xHUmua60dkOS6YTtJXpLkgOGxNMnFv/ZOAAAz0LacCjw5yeVD+/Ikp4zq/0gb8fUku1fV07dhPwAA08J4g1VLcm1V3VJVS4e+vVprPxjaP0yy19Cen+T+Ua9dPfT9iqpaWlXLqmpZzxuKAQBMlvEGqxe01g7LyGm+s6vq6NGDbeSeDVv0vebW2iWttSWttSXz5s3bkpcCAGzWF7/4xRx44IHZf//9c955523XfY8rWLXW1gzPDyT5TJLnJfnR+lN8w/MDw/Q1SfYe9fIFQx8AMJtU9X2Mw+OPP56zzz47X/jCF3LnnXfmiiuuyJ133jnBH/SXxgxWVbVLVe22vp3kRUluT3JNkjOGaWckuXpoX5Pk9OHbgUcm+dmoU4YAABPm5ptvzv7775999903O+20U0477bRcffXVY7+wk/H8pM1eST5TI0lxTpKPt9a+WFXfSPLJqjoryX1JXjHM/3ySGJ0lAAAgAElEQVSSE5OsSvJIkjO7Vw0AsAlr1qzJ3nv/8sTZggULctNNN223/Y8ZrFpr30vy3E30P5jk+E30tyRnd6kOAGAaced1AGDGmD9/fu6//5c3J1i9enXmz/+1mxNMGMEKAJgxjjjiiKxcuTL33HNPfv7zn+fKK6/MSSedtN32P55rrAAApoU5c+bkgx/8YF784hfn8ccfz+tf//ocdNBB22//221PAMDs0rboFpfdnHjiiTnxxBMnZd9OBQIAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAM8brX//6PO1pT8uzn/3sSdm/+1gBABOizq2u79fOGfu+WK973evylre8JaeffnrXfY+XI1YAwIxx9NFH56lPfeqk7V+wAgDoRLACAOhEsAIA6ESwAgDoRLACAGaMV73qVTnqqKNy1113ZcGCBbn00ku36/7dbgEAmBDjuT1Cb1dcccV23+dojlgBAHQiWAEAdCJYAQB0IlgBAL9Ra9v/WqmpYGs+t2AFAGzW3Llz8+CDD866cNVay4MPPpi5c+du0et8KxAA2KwFCxZk9erVWbt27WSXst3NnTs3CxYs2KLXCFYAwGbtuOOOWbRo0WSXMW04FQgA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQybiDVVXtUFXfqqrPDtuLquqmqlpVVZ+oqp2G/icO26uG8YUTUzoAwNSyJUes/iDJilHb70nygdba/kl+kuSsof+sJD8Z+j8wzAMAmPHGFayqakGSlyb50LBdSY5L8qlhyuVJThnaJw/bGcaPH+YDAMxo4z1idUGS/5TkX4ftPZL8tLX22LC9Osn8oT0/yf1JMoz/bJgPADCjjRmsqur3kjzQWrul546ramlVLauqZbPxF7MBgJlnPEesnp/kpKq6N8mVGTkF+FdJdq+qOcOcBUnWDO01SfZOkmH8yUke3PhNW2uXtNaWtNaWzJs3b5s+BADAVDBmsGqtvbO1tqC1tjDJaUm+0lr7j0muT/KyYdoZSa4e2tcM2xnGv9Jaa12rBgCYgrblPlZ/kuSPq2pVRq6hunTovzTJHkP/Hyd5x7aVCAAwPcwZe8ovtda+muSrQ/t7SZ63iTnrkry8Q20AANOKO68DAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdDJmsKqquVV1c1V9u6ruqKpzh/5FVXVTVa2qqk9U1U5D/xOH7VXD+MKJ/QgAAFPDeI5Y/UuS41prz01ySJITqurIJO9J8oHW2v5JfpLkrGH+WUl+MvR/YJgHADDjjRms2oiHh80dh0dLclySTw39lyc5ZWifPGxnGD++qqpbxQAAU9S4rrGqqh2qanmSB5J8Kcl3k/y0tfbYMGV1kvlDe36S+5NkGP9Zkj028Z5Lq2pZVS1bu3bttn0KAIApYFzBqrX2eGvtkCQLkjwvyTO3dcettUtaa0taa0vmzZu3rW8HADDptuhbga21nya5PslRSXavqjnD0IIka4b2miR7J8kw/uQkD3apFgBgChvPtwLnVdXuQ/tJSX43yYqMBKyXDdPOSHL10L5m2M4w/pXWWutZNADAVDRn7Cl5epLLq2qHjASxT7bWPltVdya5sqreleRbSS4d5l+a5G+qalWSf0py2gTUDQAw5YwZrFprtyY5dBP938vI9VYb969L8vIu1QEATCPuvA4A0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQyZjBqqr2rqrrq+rOqrqjqv5g6H9qVX2pqlYOz08Z+quqLqyqVVV1a1UdNtEfAgBgKhjPEavHkry9tfasJEcmObuqnpXkHUmua60dkOS6YTtJXpLkgOGxNMnF3asGAJiCxgxWrbUftNa+ObQfSrIiyfwkJye5fJh2eZJThvbJST7SRnw9ye5V9fTulQMATDFbdI1VVS1McmiSm5Ls1Vr7wTD0wyR7De35Se4f9bLVQ9/G77W0qpZV1bK1a9duYdkAAFPPuINVVe2a5NNJ/rC19s+jx1prLUnbkh231i5prS1prS2ZN2/elrwUAGBKGlewqqodMxKqPtZa+9uh+0frT/ENzw8M/WuS7D3q5QuGPgCAGW083wqsJJcmWdFae/+ooWuSnDG0z0hy9aj+04dvBx6Z5GejThkCAMxYc8Yx5/lJXpvktqpaPvT9aZLzknyyqs5Kcl+SVwxjn09yYpJVSR5JcmbXigEApqgxg1Vr7cYktZnh4zcxvyU5exvrAgCYdsZzxApgWqpzN/dvwqmvnbNF3wcCpgg/aQMA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiWAFANDJnMkuYNqrmuwKtk5rk10BAMw4Yx6xqqoPV9UDVXX7qL6nVtWXqmrl8PyUob+q6sKqWlVVt1bVYRNZPADAVDKeU4GXJTlho753JLmutXZAkuuG7SR5SZIDhsfSJBf3KRMAYOobM1i11m5I8k8bdZ+c5PKhfXmSU0b1f6SN+HqS3avq6b2KBQCYyrb24vW9Wms/GNo/TLLX0J6f5P5R81YPfb+mqpZW1bKqWrZ27dqtLAMAYOrY5m8FttZaki2+Erq1dklrbUlrbcm8efO2tQwAgEm3tcHqR+tP8Q3PDwz9a5LsPWregqEPAGDG29pgdU2SM4b2GUmuHtV/+vDtwCOT/GzUKUMAgBltzPtYVdUVSY5JsmdVrU5yTpLzknyyqs5Kcl+SVwzTP5/kxCSrkjyS5MwJqBkAYEoaM1i11l61maHjNzG3JTl7W4sCAJiO/KQNAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnY97Hipmpzq3JLmGrtXO2+KcpAWC7cMQKAKATwQoAoBOnAgEgSWqaXiLRXB4xlThiBQDQiWAFANCJYAUA0IlgBQDQiWAFANCJYAUA0IlgBQDQiftYAcA05ifKphZHrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADqZsGBVVSdU1V1Vtaqq3jFR+wEAmComJFhV1Q5JLkrykiTPSvKqqnrWROwLAGCqmKgjVs9Lsqq19r3W2s+TXJnk5AnaFwDAlDBRwWp+kvtHba8e+gAAZqxqrfV/06qXJTmhtfaGYfu1SX6ntfaWUXOWJlk6bB6Y5K7uhfCb7Jnkx5NdBEww65zZwDrf/vZprc3b1MCcCdrhmiR7j9peMPRt0Fq7JMklE7R/xlBVy1prSya7DphI1jmzgXU+tUzUqcBvJDmgqhZV1U5JTktyzQTtCwBgSpiQI1attceq6i1J/j7JDkk+3Fq7YyL2BQAwVUzUqcC01j6f5PMT9f5sM6dhmQ2sc2YD63wKmZCL1wEAZiM/aQMA0IlgBQDQiWAFANCJYDWLVdWuk10DAFuvqp462TXwqwSr2e3OyS4Aeqiq51TV16vq/qq6pKqeMmrs5smsDXqpqudX1YqquqOqfqeqvpTkG8O6P2qy62PEhN1ugamhqv54c0NJHLFiprg4yZ8n+XqSNyS5sapOaq19N8mOk1kYdPSBJK/IyH+7P5fklNbajVV1WJK/TvL8ySyOEYLVzPeXSc5P8tgmxhyxZKbYrbX2xaH9vqq6JckXh98pdU8ZZoodW2u3JUlVrW2t3ZgkrbVvVtWTJrc01hOsZr5vJrmqtXbLxgNV9YZJqAcmRFU9ubX2syRprV1fVf8hyaeTuAaFmWL0P4bfudHYTtuzEDbPEYuZ78wk921mzI92MlO8J8ni0R2ttVuTHJ/kbyelIujv/6yqnZOktXbV+s6q2i/JRyatKn6FO68DAHTiiNUMV1UHj2rvWFX/uaquqaq/XP8vH5jurHNmA+t8ehCsZr7LRrXPS7J/kv87yZOS/JfJKAgmwGWj2tY5M9Vlo9rW+RTl4vWZr0a1j09yRGvtF1V1Q5JvT1JN0Jt1zmxgnU8DgtXM9+SqOjUjRyef2Fr7RZK01lpVucCOmcI6ZzawzqcBwWrm+1qSk4b216tqr9baj6rq3yb58STWBT1Z58wG1vk04FuBAACduHh9Fquq353sGmCiWefMBtb51OGI1SxWVd9vrf32ZNcBE8k6ZzawzqcO11jNcFV1zeaGkuyxPWuBiWKdMxtY59ODYDXzvTDJa5I8vFF/JXne9i8HJoR1zmxgnU8DgtXM9/Ukj7TWvrbxQFXdNQn1wESwzpkNrPNpQLCa4VprL9lUf1W9IMlt27kcmBDWObOBdT49CFazSFUdmuTVSV6e5J4kn57ciqA/65zZwDqfugSrGa6qnpHkVcPjx0k+kZFvgx47qYVBR9Y5s4F1Pj243cIMV1X/muQfkpzVWls19H2vtbbv5FYG/VjnzAbW+fTgBqEz379P8oMk11fVf62q4/OrP+QJM4F1zmxgnU8DjljNElW1S5KTM3II+bgkH0nymdbatZNaGHRknTMbWOdTm2A1C1XVUzJyweMrW2vHT3Y9MBGsc2YD63zqEawAADpxjRUAQCeCFQBAJ4IVMKVU1cKqun0C3/9/TNR7AwhWwKzSWvvfJrsGYOYSrICpaIfhPj13VNW1VfWkqjqkqr5eVbdW1WeGb0Olqr5aVUuG9p5Vde/QPqiqbq6q5cNrDhj6Hx6ejxle+6mq+k5Vfayqahg7cei7paourKrPTspfAZh2BCtgKjogyUWttYOS/DTJf8jIvXr+pLV2cEZ+cPacMd7jjUn+qrV2SJIlSVZvYs6hSf4wybOS7Jvk+VU1N8n/m+QlrbXDk8zr8HmAWUKwAqaie1pry4f2LUn2S7J7a+1rQ9/lSY4e4z3+Z5I/rao/SbJPa+3RTcy5ubW2urX2r0mWJ1mY5JlJvtdau2eYc8U2fA5glhGsgKnoX0a1H0+y+2+Y+1h++d+yues7W2sfT3JSkkeTfL6qjhvHfvwwPbBNBCtgOvhZkp9U1QuH7dcmWX/06t4khw/tl61/QVXtm5EjTxcmuTrJwePc111J9q2qhcP2K7e6amDW8a8zYLo4I8l/qaqdk3wvyZlD//uSfLKqlib53Kj5r0jy2qr6RZIfJvnL8eyktfZoVb05yRer6n8l+UavDwDMfH7SBmAjVbVra+3h4VuCFyVZ2Vr7wGTXBUx9TgUC/Lr/o6qWJ7kjyZMz8i1BgDE5YgUA0MmUuMZqzz33bAsXLpzsMgAAxnTLLbf8uLW2yXvcTYlgtXDhwixbtmyyywAAGFNV3be5MddYAQB0IlgBAHQiWAEAdDIlrrECAKamX/ziF1m9enXWrVs32aVsd3Pnzs2CBQuy4447jvs1ghUAsFmrV6/ObrvtloULF2bknrmzQ2stDz74YFavXp1FixaN+3VOBQIAm7Vu3brssccesypUJUlVZY899tjiI3WCFQDwG822ULXe1nxuwQoAoBPBCgDYYj/60Y/y6le/Ovvuu28OP/zwHHXUUfnMZz6zze97zDHHbLhp+MMPP5zf//3fz3777ZfDDz88xxxzTG666aatfu8///M/z/ve974kyZ/92Z/ly1/+cpLkggsuyCOPPLLNtScuXgcAtlBrLaecckrOOOOMfPzjH0+S3Hfffbnmmmu67ucNb3hDFi1alJUrV+YJT3hC7rnnntx5552/VktrLU94wpYdK/qLv/iLDe0LLrggr3nNa7Lzzjtvc82OWG2sauo8AGAK+spXvpKddtopb3zjGzf07bPPPnnrW9+adevW5cwzz8xznvOcHHroobn++uuTZLP9jz76aE477bQsXrw4p556ah599NEkyXe/+93cdNNNede73rUhNC1atCgvfelLc++99+bAAw/M6aefnmc/+9m5//77c/755+eII47IwQcfnHPOOWdDXe9+97vzjGc8Iy94wQty1113beh/3etel0996lO58MIL84//+I859thjc+yxx27z38YRKwBgi9xxxx057LDDNjl20UUXpapy22235Tvf+U5e9KIX5e67795s/8UXX5ydd945K1asyK233rrhfe+4444ccsgh2WGHHTa5n5UrV+byyy/PkUcemWuvvTYrV67MzTffnNZaTjrppNxwww3ZZZddcuWVV2b58uV57LHHcthhh+Xwww//lfd529velve///25/vrrs+eee27z30awAgC2ydlnn50bb7wxO+20UxYsWJC3vvWtSZJnPvOZ2WeffXL33Xfnxhtv3GT/DTfckLe97W1JkoMPPjgHH3zwuPa5zz775Mgjj0ySXHvttbn22mtz6KGHJhm5NmvlypV56KGHcuqpp244xXfSSSd1/dyb4lQgALBFDjrooHzzm9/csH3RRRfluuuuy9q1a7vu49vf/nYef/zxTY7vsssuG9qttbzzne/M8uXLs3z58qxatSpnnXVWt1q2hGAFAGyR4447LuvWrcvFF1+8oW/9t+pe+MIX5mMf+1iS5O677873v//9HHjggZvtP/roozdcAH/77bfn1ltvTZLst99+WbJkSc4555y01pIk9957bz73uc/9Wj0vfvGL8+EPfzgPP/xwkmTNmjV54IEHcvTRR+eqq67Ko48+moceeih/93d/t8nPs9tuu+Whhx7q8adxKhAA2DJVlauuuip/9Ed/lPe+972ZN29edtlll7znPe/JySefnDe96U15znOekzlz5uSyyy7LE5/4xLz5zW/eZP+b3vSmnHnmmVm8eHEWL178K9dAfehDH8rb3/727L///nnSk56UPffcM+eff/6v1fOiF70oK1asyFFHHZUk2XXXXfPRj340hx12WF75ylfmuc99bp72tKfliCOO2OTnWbp0aU444YT81m/91oaL6rf6b7M+BU6mJUuWtPX3rJh0U+nbeFPgfxsAZrcVK1Zk8eLFk13GpNnU56+qW1prSzY136lAAIBOBCsAgE4EKwCATgQrAIBOBCsAgE4EKwCATgQrAGBiVPV9jNMXv/jFHHjggdl///1z3nnnTeAH/HXjDlZVtUNVfauqPjtsL6qqm6pqVVV9oqp2GvqfOGyvGsYXTkzpAAC/6vHHH8/ZZ5+dL3zhC7nzzjtzxRVX5M4779xu+9+SI1Z/kGTFqO33JPlAa23/JD9Jsv5Hec5K8pOh/wPDPACACXfzzTdn//33z7777puddtopp512Wq6++urttv9xBauqWpDkpUk+NGxXkuOSfGqYcnmSU4b2ycN2hvHjh/kAABNqzZo12XvvvTdsL1iwIGvWrNlu+x/vEasLkvynJP86bO+R5KettceG7dVJ5g/t+UnuT5Jh/GfD/F9RVUurallVLev5a9gAAJNlzGBVVb+X5IHW2i09d9xau6S1tqS1tmTevHk93xoAmKXmz5+f+++/f8P26tWrM3/+/N/wir7Gc8Tq+UlOqqp7k1yZkVOAf5Vk96qaM8xZkGT9cbY1SfZOkmH8yUke7FgzAMAmHXHEEVm5cmXuueee/PznP8+VV16Zk046abvtf8xg1Vp7Z2ttQWttYZLTknyltfYfk1yf5GXDtDOSrL8y7JphO8P4V1prrWvVAMDU11rfxzjMmTMnH/zgB/PiF784ixcvzite8YocdNBBE/xBR+1/G177J0murKp3JflWkkuH/kuT/E1VrUryTxkJYwAA28WJJ56YE088cVL2vUXBqrX21SRfHdrfS/K8TcxZl+TlHWoDAJhW3HkdAKATwQoAoBPBCgCgE8EKAKATwQoAoJNtud0CAMBm1bl9fyq4nTP2vaxe//rX57Of/Wye9rSn5fbbb++6//FwxAoAmDFe97rX5Ytf/OKk7V+wAgBmjKOPPjpPfepTJ23/ghUAQCeCFQBAJ4IVAEAnghUAQCdutwAATIjx3B6ht1e96lX56le/mh//+MdZsGBBzj333Jx11lnbbf+CFQAwY1xxxRWTun+nAgEAOhGsAAA6EawAgN+ote1/rdRUsDWfW7ACADZr7ty5efDBB2dduGqt5cEHH8zcuXO36HUuXgcANmvBggVZvXp11q5dO9mlbHdz587NggULtug1ghUAsFk77rhjFi1aNNllTBtOBQIAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQiWAEAdCJYAQB0IlgBAHQyZrCqqrlVdXNVfbuq7qiqc4f+RVV1U1WtqqpPVNVOQ/8Th+1Vw/jCif0IAABTw3iOWP1LkuNaa89NckiSE6rqyCTvSfKB1tr+SX6S5Kxh/llJfjL0f2CYBwAw440ZrNqIh4fNHYdHS3Jckk8N/ZcnOWVonzxsZxg/vqqqW8UAAFPUuK6xqqodqmp5kgeSfCnJd5P8tLX22DBldZL5Q3t+kvuTZBj/WZI9ehYNADAVjStYtdYeb60dkmRBkucleea27riqllbVsqpatnbt2m19OwCASbdF3wpsrf00yfVJjkqye1XNGYYWJFkztNck2TtJhvEnJ3lwE+91SWttSWttybx587ayfACAqWM83wqcV1W7D+0nJfndJCsyErBeNkw7I8nVQ/uaYTvD+Fdaa61n0QAAU9Gcsafk6Ukur6odMhLEPtla+2xV3Znkyqp6V5JvJbl0mH9pkr+pqlVJ/inJaRNQNwDAlDNmsGqt3Zrk0E30fy8j11tt3L8uycu7VAcAMI248zoAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ3MmuwCY1qomu4IRrU12BQDEESsAgG4EKwCATgQrAIBOBCsAgE4EKwCATgQrAIBOBCsAgE4EKwCATgQrAIBOBCsAgE4EKwCATgQrAIBOBCsAgE4EKwCATgQrAIBOBCsAgE4EKwCATgQrAIBOxgxWVbV3VV1fVXdW1R1V9QdD/1Or6ktVtXJ4fsrQX1V1YVWtqqpbq+qwif4QAABTwXiOWD2W5O2ttWclOTLJ2VX1rCTvSHJda+2AJNcN20nykiQHDI+lSS7uXjUAwBQ0ZrBqrf2gtfbNof1QkhVJ5ic5Ocnlw7TLk5wytE9O8pE24utJdq+qp3evHABgipmzJZOramGSQ5PclGSv1toPhqEfJtlraM9Pcv+ol60e+n4wqi9VtTQjR7Ty27/921tY9uxQ59Zkl7BBO6dNdgkAMOWN++L1qto1yaeT/GFr7Z9Hj7XWWpIt+v+8rbVLWmtLWmtL5s2btyUvBQCYksYVrKpqx4yEqo+11v526P7R+lN8w/MDQ/+aJHuPevmCoQ8AYEYbz7cCK8mlSVa01t4/auiaJGcM7TOSXD2q//Th24FHJvnZqFOGAAAz1niusXp+ktcmua2qlg99f5rkvCSfrKqzktyX5BXD2OeTnJhkVZJHkpzZtWIAgClqzGDVWrsxyeauoj5+E/NbkrO3sS4AgGnHndcBADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhkzWFXVh6vqgaq6fVTfU6vqS1W1cnh+ytBfVXVhVa2qqlur6rCJLB4AYCoZzxGry5KcsFHfO5Jc11o7IMl1w3aSvCTJAcNjaZKL+5QJADD1jRmsWms3JPmnjbpPTnL50L48ySmj+j/SRnw9ye5V9fRexQIATGVbe43VXq21HwztHybZa2jPT3L/qHmrh75fU1VLq2pZVS1bu3btVpYBADB1bPPF6621lqRtxesuaa0taa0tmTdv3raWAQAw6bY2WP1o/Sm+4fmBoX9Nkr1HzVsw9AEAzHhbG6yuSXLG0D4jydWj+k8fvh14ZJKfjTplCAAwo80Za0JVXZHkmCR7VtXqJOckOS/JJ6vqrCT3JXnFMP3zSU5MsirJI0nOnICagY3UuTXZJWzQztniKwMAZowxg1Vr7VWbGTp+E3NbkrO3tSgAgOnIndcBADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrODNBgIAACAASURBVAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6EawAADoRrAAAOhGsAAA6mTPZBQDMClWTXcEvtTbZFcCM5YgVAEAnghUAQCeCFQBAJ4IVAEAnghUAQCeCFQBAJ4IVAEAnE3Yfq6o6IclfJdkhyYdaa+dN1L4AGL86d+rcU6ud455azCwTEqyqaockFyX53SSrk3yjqq5prd05EfsDgBllqtxQ1s1kt9hEHbF6XpJVrbXvJUlVXZnk5CSCFQBME45ubrlqE5BGq+plSU5orb1h2H5tkt9prb1l1JylSZYOmwcmuat7IdPfnkl+PNlFMC1YK2wJ64XxslY2bZ/W2rxNDUzabwW21i5Jcslk7X86qKplrbUlk10HU5+1wpawXhgva2XLTdS3Atck2XvU9oKhDwBgxpqoYPWNJAdU1aKq2inJaUmumaB9AQBMCRNyKrC19lhVvSXJ32fkdgsfbq3dMRH7muGcKmW8rBW2hPXCeFkrW2hCLl4HAJiN3HkdAKATwQoAoBPBCgCgE8EKpqGqemZVHV9Vu27Uf8L/z979h2tV1/m/f77lhyQ6mYBexTZAMUSF5JcDk3GhzqhpB3ROJVkDEh7KSPtW3zOTc75HtGNzaXbK/OZhxlGLJpMaZ/yRlkMpxXDNhIEhCiQbFWWTATLmwAjfAt/nj71gdriZvTd89r7vvXk+ruu+9lqfz2fd633v63NtXqy17rVqVZPqV0ScFRETquXTIuKzEXFRretS/YuIb9W6hu7Gi9e7gYiYlZnfqHUdqg8RcQ0wF1gLnAl8OjMfrPqezMyxtaxP9SUi5gHvo/lb4D8C/hBYTPOzXP8pM79Yw/JURyJi/9siBXAO8DhAZk7t8qK6IYNVNxARL2XmO2tdh+pDRDwNTMrMHRExFLgP+LvM/FpE/CIzx9S0QNWVar6cCRwJ/BpoyMx/j4i3AMsyc3RNC1TdiIgnaX6m751A0hys7qX5XpRk5k9rV133UbNH2uj3RcSqA3UBJ3RlLap7R2TmDoDM3BARU4D7ImIIzfNFaml3Zu4BXo+I5zLz3wEyc2dEvFHj2lRfxgOfBv4v4P/MzJURsdNA1TEGq/pxAnAB8Op+7QH8S9eXozq2OSLOzMyVANWRq/cDdwOjalua6tBvI+KozHwdGLe3MSLeChistE9mvgF8NSL+vvq5GXNCh/kLqx8PA0fv/ceypYj4SdeXozo2A9jdsiEzdwMzIuJvalOS6tjkzPxfsO8fzr36ADNrU5LqWWY2AR+MiIuBf691Pd2N11hJkiQV4u0WJEmSCjFYSZIkFWKwknTYiYgNETGw1nVI6nkMVpJ6tIjwSzqSuox/cCR1GxExA/jvNN+8cBXwPeB/AH2BbcBHMnNzRFwPnAycBLwUEZ+i+UaHg4F/pbrfV0T0r96jAegF/D+Z+d2u/EySehaDlaRuISJOpzlE/VFmvhIRx9EcsCZmZkbElcCfA5+rNjkNOLu6EeZtwNLM/EL1FfLZ1ZgLgV9l5sXVPt7alZ9JUs9jsJLUXZwL/H1mvgKQmf8WEaOA70bE22k+avVCi/EPZebOanky8KfVdo9ExN4b8T4N/L8RcTPwcGb+c1d8EEk9l9dYSerO/ifw9cwcBXwc6Nei7z/a2jgz1wFjaQ5YN0bEdZ1SpaTDhsFKUnfxOM13gx4AUJ0KfCuwqer/r+4ivgS4vNrufcDbquV3AK9n5reBW2gOWZJ00DwVKKlbyMzVEfFF4KcRsQf4BXA98PfVqb3HgWEH2PwG4N6IWE3zszdfqtpHAbdUDyP+HXBVJ34ESYcBH2kjSZJUiKcCJUmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIb1rXQDAwIEDc+jQobUuQ5IkqU0rVqx4JTMHtdZXF8Fq6NChLF++vNZlSJIktSkiXjxQn6cCJUmSCjFYSZIkFWKwkiRJKqQurrGSJEn16Xe/+x1NTU3s2rWr1qV0uX79+tHQ0ECfPn3avY3BSpIkHVBTUxPHHHMMQ4cOJSJqXU6XyUy2bdtGU1MTw4YNa/d2ngqUJEkHtGvXLgYMGHBYhSqAiGDAgAEdPlJnsJIkSf+lwy1U7XUwn9tgJUmSOmzz5s1cfvnlnHTSSYwbN45JkyZx//33H/L7TpkyZd+9LXfs2MHHP/5xTj75ZMaNG8eUKVNYtmzZQb/39ddfz5e//GUArrvuOn784x8DcOutt/L6668fcu3gNVaSJKmDMpNLLrmEmTNn8p3vfAeAF198kYceeqjofq688kqGDRtGY2MjRxxxBC+88AJr1qx5Uy2ZyRFHdOxY0Re+8IV9y7feeisf/ehHOeqoow65Zo9YSVJXiKifl3SIHn/8cfr27csnPvGJfW1Dhgzh6quvZteuXcyaNYtRo0YxZswYFi9eDHDA9p07dzJ9+nRGjhzJpZdeys6dOwF47rnnWLZsGTfeeOO+0DRs2DAuvvhiNmzYwIgRI5gxYwZnnHEGGzdu5JZbbmHChAmMHj2aefPm7avri1/8Iu9617s4++yzefbZZ/e1X3HFFdx3333cdttt/OpXv+Kcc87hnHPOOeTfjUesJElSh6xevZqxY8e22nf77bcTETz99NP88pe/5Pzzz2fdunUHbJ8/fz5HHXUUa9euZdWqVfved/Xq1Zx55pn06tWr1f00NjayYMECJk6cyKJFi2hsbOSJJ54gM5k6dSpLliyhf//+LFy4kJUrV7J7927Gjh3LuHHjfu99rrnmGr7yla+wePFiBg4ceMi/G4OVJEk6JHPnzmXp0qX07duXhoYGrr76agBOPfVUhgwZwrp161i6dGmr7UuWLOGaa64BYPTo0YwePbpd+xwyZAgTJ04EYNGiRSxatIgxY8YAzddmNTY2sn37di699NJ9p/imTp1a9HO3xlOBkiSpQ04//XSefPLJfeu33347jz32GFu3bi26j6eeeoo9e/a02t+/f/99y5nJtddey8qVK1m5ciXr169n9uzZxWrpCIOVJEnqkHPPPZddu3Yxf/78fW17v1X33ve+l3vuuQeAdevW8dJLLzFixIgDtk+ePHnfBfDPPPMMq1atAuDkk09m/PjxzJs3j8wEYMOGDTzyyCNvqueCCy7g7rvvZseOHQBs2rSJLVu2MHnyZB544AF27tzJ9u3b+f73v9/q5znmmGPYvn17iV+NpwIlSVLHRAQPPPAAn/nMZ/jSl77EoEGD6N+/PzfffDPTpk3jqquuYtSoUfTu3ZtvfvObHHnkkXzyk59stf2qq65i1qxZjBw5kpEjR/7eNVB33nknn/vc5xg+fDhvectbGDhwILfccsub6jn//PNZu3YtkyZNAuDoo4/m29/+NmPHjuWyyy7j3e9+N8cffzwTJkxo9fPMmTOHCy+8kHe84x37Lqo/6N/N3hRYS+PHj8+996yQpB6pnr6NVwd/99V9rF27lpEjR9a6jJpp7fNHxIrMHN/aeE8FSpIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkqUd59NFHGTFiBMOHD+emm27q0n0brCRJUueIKPtqhz179jB37lx++MMfsmbNGu69917WrFnTyR/0PxmsJElSj/HEE08wfPhwTjrpJPr27cv06dN58MEHu2z/BitJktRjbNq0iRNPPHHfekNDA5s2beqy/RusJEmSCjFYSZKkHmPw4MFs3Lhx33pTUxODBw/usv0brCRJUo8xYcIEGhsbeeGFF/jtb3/LwoULmTp1apftv93BKiJ6RcQvIuLhan1YRCyLiPUR8d2I6Fu1H1mtr6/6h3ZO6ZIkSb+vd+/efP3rX+eCCy5g5MiRfOhDH+L000/vuv13YOyngbXAH1TrNwNfzcyFEfHXwGxgfvXz1cwcHhHTq3GXFaxZkiR1B5k12e1FF13ERRddVJN9t+uIVUQ0ABcDd1brAZwL3FcNWQBcUi1Pq9ap+s+rxkuSJPVo7T0VeCvw58Ab1foA4DeZubtabwL2Xhk2GNgIUPW/Vo3/PRExJyKWR8TyrVu3HmT5kiRJ9aPNYBUR7we2ZOaKkjvOzDsyc3xmjh80aFDJt5YkSaqJ9lxj9R5gakRcBPSj+RqrrwHHRkTv6qhUA7D37lubgBOBpojoDbwV2Fa8ckmSpDrT5hGrzLw2MxsycygwHXg8Mz8CLAY+UA2bCey9X/xD1TpV/+OZNbp6TZIkqQsdyn2s/gL4bESsp/kaqruq9ruAAVX7Z4HPH1qJkiRJ3UNHbrdAZv4E+Em1/DxwVitjdgEfLFCbJElSh3zsYx/j4Ycf5vjjj+eZZ57p8v13KFhJkiS1V9xQ9m5LOa/tK4uuuOIKPvWpTzFjxoyi+24vH2kjSZJ6jMmTJ3PcccfVbP8GK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkST3Ghz/8YSZNmsSzzz5LQ0MDd911V9sbFeTtFiRJUqdoz+0RSrv33nu7fJ8tecRKkiSpEIOVJElSIQYrSZKkQgxWkiTpv5TZ9ddK1YOD+dwGK0mSdED9+vVj27Zth124yky2bdtGv379OrSd3wqUJEkH1NDQQFNTE1u3bq11KV2uX79+NDQ0dGgbg5UkSTqgPn36MGzYsFqX0W14KlCSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFtBmsIqJfRDwREU9FxOqIuKFqHxYRyyJifUR8NyL6Vu1HVuvrq/6hnfsRJEmS6kN7jlj9L+DczHw3cCZwYURMBG4GvpqZw4FXgdnV+NnAq1X7V6txkiRJPV6bwSqb7ahW+1SvBM4F7qvaFwCXVMvTqnWq/vMiIopVLEmSVKfadY1VRPSKiJXAFuBHwHPAbzJzdzWkCRhcLQ8GNgJU/a8BA1p5zzkRsTwilm/duvXQPoUkSVIdaFewysw9mXkm0ACcBZx6qDvOzDsyc3xmjh80aNChvp0kSVLNdehbgZn5G2AxMAk4NiJ6V10NwKZqeRNwIkDV/1ZgW5FqJUmS6lh7vhU4KCKOrZbfAvwJsJbmgPWBathM4MFq+aFqnar/8czMkkVLkiTVo95tD+HtwIKI6EVzEPteZj4cEWuAhRFxI/AL4K5q/F3A30XEeuDfgOmdULckSVLdaTNYZeYqYEwr7c/TfL3V/u27gA8WqU6SJKkb8c7rkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQV0mawiogTI2JxRKyJiNUR8emq/biI+FFENFY/31a1R0TcFhHrI2JVRIzt7A8hSZJUD9pzxGo38LnMPA2YCMyNiNOAzwOPZeYpwGPVOsD7gFOq1xxgfvGqJUmS6lCbwSozX87MJ6vl7cBaYDAwDVhQDVsAXFItTwO+lc1+BhwbEW8vXrkkSVKd6dA1VhExFBgDLANOyMyXq65fAydUy4OBjS02a6ra9n+vORGxPCKWb926tYNlS5Ik1Z92B6uIOBr4B+C/Zea/t+zLzASyIzvOzDsyc3xmjh80aFBHNpUkSapL7QpWEdGH5lB1T2b+Y9W8ee8pvurnlqp9E3Bii80bqjZJkqQerT3fCgzgLmBtZn6lRddDwMxqeSbwYIv2GdW3AycCr7U4ZShJktRj9W7HmPcAfwY8HRErq7a/BG4CvhcRs4EXgQ9VfT8ALgLWA68Ds4pWLEmSVKfaDFaZuRSIA3Sf18r4BOYeYl2SJEndjndelyRJKqQ9pwIlST1I3HCgkxBdL+d16AvlUt3ziJUkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBXSu9YFSN1aRK0raJZZ6wokSXjESpIkqRiDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQtoMVhFxd0RsiYhnWrQdFxE/iojG6ufbqvaIiNsiYn1ErIqIsZ1ZvCRJUj1pzxGrbwIX7tf2eeCxzDwFeKxaB3gfcEr1mgPML1OmJElS/WszWGXmEuDf9mueBiyolhcAl7Ro/1Y2+xlwbES8vVSxkiRJ9exgr7E6ITNfrpZ/DZxQLQ8GNrYY11S1vUlEzImI5RGxfOvWrQdZhiRJUv045IvXMzOBPIjt7sjM8Zk5ftCgQYdahiRJUs31PsjtNkfE2zPz5epU35aqfRNwYotxDVWbJElqr4haV9AsO3zc5LB3sEesHgJmVsszgQdbtM+ovh04EXitxSlDSZKkHq3NI1YRcS8wBRgYEU3APOAm4HsRMRt4EfhQNfwHwEXAeuB1YFYn1CxJklSX2gxWmfnhA3Sd18rYBOYealGSJEndkXdelyRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqpHetC5B06OKGqHUJ++S8rHUJklQzHrGSJEkqxGAlSZJUiKcCJUlSq7zMoOM8YiVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVEjvWhdQdyJqXcF/yqx1BZIkqQM8YiVJklSIwUqSJKkQg5UkSVIhXmNVx+KG+rneK+d5vZckSW3ptCNWEXFhRDwbEesj4vOdtR9JkqR60SnBKiJ6AbcD7wNOAz4cEad1xr4kSZLqRWcdsToLWJ+Zz2fmb4GFwLRO2pckSVJdiOyEeyVFxAeACzPzymr9z4A/zMxPtRgzB5hTrY4Ani1eSPc3EHil1kWoW3CuqCOcL2ov50rrhmTmoNY6anbxembeAdxRq/13BxGxPDPH17oO1T/nijrC+aL2cq50XGedCtwEnNhivaFqkyRJ6rE6K1j9HDglIoZFRF9gOvBQJ+1LkiSpLnTKqcDM3B0RnwL+CegF3J2ZqztjXz2cp0rVXs4VdYTzRe3lXOmgTrl4XZIk6XDkI20kSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMGqzkXE0bWuQVLPERHH1boGdR8RMbXWNXQ3NbvzutptDfDOWheh+hERo4C/BQYDPwT+IjNfrfqeyMyzalmf6kdEvAe4E3gD+BhwI3BSdX/BD2Xmv9ayPtWXiPjT/ZuA2yOiN0Bm/mPXV9X9GKzqQER89kBdgEestL/5wPXAz4ArgaURMTUznwP61LIw1Z2vAh+i+e/II8Almbk0IsYC/xN4Ty2LU935Ls33n9xC878/AP2B/w1IwGDVDgar+vBXwC3A7lb6PF2r/R2TmY9Wy1+OiBXAo9XDzr0xnVrqk5lPA0TE1sxcCpCZT0bEW2pbmurQHwE3AT/PzPkAETElM2fVtqzuxWBVH54EHsjMFft3RMSVNahHdS4i3pqZrwFk5uKI+N+BfwC8fkYttfyP2bX79fXtykJU/zLz5xHxJ8DVEbEY+Av8z1qHeTSkPswCXjpAn08V1/5uBka2bMjMVcB5eKhev+//joijADLzgb2NEXEy8K2aVaW6lZlvZObXgI8A/73W9XRHPtJGkiSpEI9Y1YGI+MeI+Ki3VlB7VPPlI84XtcW/LeoI50sZBqv68IfAJcBLEfG9iLi0+jq01Jo/BC7F+aK2+bdFHeF8KcBgVR+2ZOYHgKHA94H/A9gUEd+IiPNrWpnqkfNF7eVcUUc4XwrwGqs6EBFPZubY/doGAB+k+SZ+59amMtUj54vay7mijnC+lGGwqgMRsSQzJ9e6DnUPzhe1l3NFHeF8KcNgJUmSVIjXWNW56mZtUrs4X9RezhV1hPOl/TxiVeci4qXM9CHMahfni9rLuaKOcL60n4+0qQMR8dCBuoABXVmL6p/zRe3lXFFHOF/KMFjVh/cCHwV27NcewFldX47qnPNF7eVcUUc4XwowWNWHnwGvZ+ZP9++IiGdrUI/qm/NF7eVcUUc4XwowWNWBzHxfa+0RcTbwdBeXozrnfFF7OVfUEc6XMgxWdSYixgCX03xDtheAf6htRapnzhe1l3NFHeF8OXgGqzoQEe8CPly9XgG+S/M3Ns+paWGqS84XtZdzRR3hfCnD2y3UgYh4A/hnYHZmrq/ans/Mk2pbmeqR80Xt5VxRRzhfyvAGofXhT4GXgcUR8bcRcR7N38KQWuN8UXs5V9QRzpcCPGJVRyKiPzCN5sOw5wLfAu7PzEU1LUx1yfmi9nKuqCOcL4fGYFWnIuJtNF80eFlmnlfrelTfnC9qL+eKOsL50nEGK0mSpEK8xkqSJKkQg5UkSVIhBitJPUJE/Mt/0TclIh7uynokHZ4MVpJ6hMz8o1rXIEkGK0k9QkTsiGa3RMQzEfF0RFzWYsgfRMQjEfFsRPx1RPj3T1JxPtJGUk/yp8CZwLuBgcDPI2JJ1XcWcBrwIvBoNfa+WhQpqefyf2ySepKzgXszc09mbgZ+Ckyo+p7IzOczcw9wbzVWkooyWEk6XOx/0z5v4iepOIOVpJ7kn4HLIqJXRAwCJgNPVH1nRcSw6tqqy4CltSpSUs9lsJLUUyRwP7AKeAp4HPjzzPx11f9z4OvAWuCFaqwkFeUjbSR1exExAHgyM4fUuhZJhzePWEnq1iLiHcC/Al+udS2SVBdHrAYOHJhDhw6tdRmSJEltWrFixSuZOai1vrq4j9XQoUNZvnx5rcuQJElqU0S8eKA+TwVKkiQVYrCSJEkqxGAlSZJUSLuusYqIY4E7gTNovlfMx4Bnge8CQ4ENwIcy89WICOBrwEXA68AVmflk8colSVKn+93vfkdTUxO7du2qdSldrl+/fjQ0NNCnT592b9Pei9e/BjyamR+IiL7AUcBfAo9l5k0R8Xng88BfAO8DTqlefwjMr35KkqRupqmpiWOOOYahQ4fSfOzk8JCZbNu2jaamJoYNG9bu7do8FRgRb6X5sRB3VTv6bWb+BpgGLKiGLQAuqZanAd/KZj8Djo2It7f/o0iSpHqxa9cuBgwYcFiFKoCIYMCAAR0+Uteea6yGAVuBb0TELyLizojoD5yQmS9XY34NnFAtDwY2tti+qWrbv+A5EbE8IpZv3bq1Q0VLkqSuc7iFqr0O5nO3J1j1BsYC8zNzDPAfNJ/22yeb7zLaoTuNZuYdmTk+M8cPGtTqPbYkSZK6lfYEqyagKTOXVev30Ry0Nu89xVf93FL1bwJObLF9Q9UmSZJ6iM2bN3P55Zdz0kknMW7cOCZNmsT99x/6s82nTJmy76bhO3bs4OMf/zgnn3wy48aNY8qUKSxbtqyNdziw66+/ni9/ufnpV9dddx0//vGPAbj11lt5/fXXD7l2aEewqp4MvzEiRlRN5wFrgIeAmVXbTODBavkhYEY0mwi81uKUoSRJ6uYyk0suuYTJkyfz/PPPs2LFChYuXEhTU1PR/Vx55ZUcd9xxNDY2smLFCr7xjW/wyiuvvKmWN954o8Pv/YUvfIE//uM/Bro4WFWuBu6JiFXAmcBfATcBfxIRjcAfV+sAPwCeB9YDfwt8skilh6MIX629JEk19fjjj9O3b18+8YlP7GsbMmQIV199Nbt27WLWrFmMGjWKMWPGsHjxYoADtu/cuZPp06czcuRILr30Unbu3AnAc889x7Jly7jxxhs54ojmuDJs2DAuvvhiNmzYwIgRI5gxYwZnnHEGGzdu5JZbbmHChAmMHj2aefPm7avri1/8Iu9617s4++yzefbZZ/e1X3HFFdx3333cdttt/OpXv+Kcc87hnHPOOeTfTbtut5CZK4HxrXSd18rYBOYeYl2SJKlOrV69mrFjx7bad/vttxMRPP300/zyl7/k/PPPZ926dQdsnz9/PkcddRRr165l1apV+9539erVnHnmmfTq1avV/TQ2NrJgwQImTpzIokWLaGxs5IknniAzmTp1KkuWLKF///4sXLiQlStXsnv3bsaOHcu4ceN+732udYNtrAAAIABJREFUueYavvKVr7B48WIGDhx4yL+bungIsyRJ6r7mzp3L0qVL6du3Lw0NDVx99dUAnHrqqQwZMoR169axdOnSVtuXLFnCNddcA8Do0aMZPXp0u/Y5ZMgQJk6cCMCiRYtYtGgRY8aMAZqvzWpsbGT79u1ceumlHHXUUQBMnTq16OdujY+0kSRJHXL66afz5JP/+VCV22+/nccee4ySt086/fTTeeqpp9izZ0+r/f3799+3nJlce+21rFy5kpUrV7J+/Xpmz55drJaOMFhJkqQOOffcc9m1axfz58/f17b34u/3vve93HPPPQCsW7eOl156iREjRhywffLkyXznO98B4JlnnmHVqlUAnHzyyYwfP5558+bRfJURbNiwgUceeeRN9VxwwQXcfffd7NixA4BNmzaxZcsWJk+ezAMPPMDOnTvZvn073//+91v9PMcccwzbt28v8avxVKAkSeqYiOCBBx7gM5/5DF/60pcYNGgQ/fv35+abb2batGlcddVVjBo1it69e/PNb36TI488kk9+8pOttl911VXMmjWLkSNHMnLkyN+7BurOO+/kc5/7HMOHD+ctb3kLAwcO5JZbbnlTPeeffz5r165l0qRJABx99NF8+9vfZuzYsVx22WW8+93v5vjjj2fChAmtfp45c+Zw4YUX8o53vGPfRfUH/bvZmwJrafz48bn3nhVqwW/Ata4O5qwkHS7Wrl3LyJEja11GzbT2+SNiRWa29qU+TwVKkiSVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiSpc0SUfbXTo48+yogRIxg+fDg33XRTJ37ANzNYSZKkHmPPnj3MnTuXH/7wh6xZs4Z7772XNWvWdNn+DVaSJKnHeOKJJxg+fDgnnXQSffv2Zfr06Tz44INdtn+DlSRJ6jE2bdrEiSeeuG+9oaGBTZs2ddn+DVaSJEmFGKwkSVKPMXjwYDZu3LhvvampicGDB3fZ/g1WkiSpx5gwYQKNjY288MIL/Pa3v2XhwoVMnTq1y/bfu8v2JEmSDi+ZXb7L3r178/Wvf50LLriAPXv28LGPfYzTTz+96/bfZXuSJEnqAhdddBEXXXRRTfbtqUBJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiLdbkCRJnSJuiKLvl/Pavi/Wxz72MR5++GGOP/54nnnmmaL7bw+PWEmSpB7jiiuu4NFHH63Z/g1WkiSpx5g8eTLHHXdczfZvsJIkSSqkXcEqIjZExNMRsTIilldtx0XEjyKisfr5tqo9IuK2iFgfEasiYmxnfgBJkqR60ZEjVudk5pmZOb5a/zzwWGaeAjxWrQO8Dziles0B5pcqVpIkqZ4dyqnAacCCankBcEmL9m9ls58Bx0bE2w9hP5IkSd1Ce2+3kMCiiEjgbzLzDuCEzHy56v81cEK1PBjY2GLbpqrtZSRJ0mGjPbdHKO3DH/4wP/nJT3jllVdoaGjghhtuYPbs2V22//YGq7Mzc1NEHA/8KCJ+2bIzM7MKXe0WEXNoPlXIO9/5zo5sKkmS1Kp77723pvtv16nAzNxU/dwC3A+cBWzee4qv+rmlGr4JOLHF5g1V2/7veUdmjs/M8YMGDTr4TyBJklQn2gxWEdE/Io7ZuwycDzwDPATMrIbNBB6slh8CZlTfDpwIvNbilKEkSVKP1Z5TgScA90fE3vHfycxHI+LnwPciYjbwIvChavwPgIuA9cDrwKziVUuSpC6TmVQ54LCS2fFrxNoMVpn5PPDuVtq3Aee10p7A3A5XIkmS6k6/fv3Ytm0bAwYMOKzCVWaybds2+vXr16HtfAizJEk6oIaGBpqamti6dWutS+ly/fr1o6GhoUPbGKwkSdIB9enTh2HDhtW6jG7DZwVKkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpkHYHq4joFRG/iIiHq/VhEbEsItZHxHcjom/VfmS1vr7qH9o5pUuSJNWXjhyx+jSwtsX6zcBXM3M48Cowu2qfDbxatX+1GidJktTjtStYRUQDcDFwZ7UewLnAfdWQBcAl1fK0ap2q/7xqvCRJUo/W3iNWtwJ/DrxRrQ8AfpOZu6v1JmBwtTwY2AhQ9b9WjZckSerR2gxWEfF+YEtmrii544iYExHLI2L51q1bS761JElSTbTniNV7gKkRsQFYSPMpwK8Bx0ZE72pMA7CpWt4EnAhQ9b8V2Lb/m2bmHZk5PjPHDxo06JA+hCRJUj1oM1hl5rWZ2ZCZQ4HpwOOZ+RFgMfCBathM4MFq+aFqnar/8czMolVLkiTVoUO5j9VfAJ+NiPU0X0N1V9V+FzCgav8s8PlDK1GSJKl76N32kP+UmT8BflItPw+c1cqYXcAHC9QmSZLUrXjndUmSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklRIm8EqIvpFxBMR8VRErI6IG6r2YRGxLCLWR8R3I6Jv1X5ktb6+6h/auR9BkiSpPrTniNX/As7NzHcDZwIXRsRE4Gbgq5k5HHgVmF2Nnw28WrV/tRonSZLU47UZrLLZjmq1T/VK4Fzgvqp9AXBJtTytWqfqPy8ioljFkiRJdapd11hFRK+IWAlsAX4EPAf8JjN3V0OagMHV8mBgI0DV/xowoGTRkiRJ9ahdwSoz92TmmUADcBZw6qHuOCLmRMTyiFi+devWQ307SZKkmuvQtwIz8zfAYmAScGxE9K66GoBN1fIm4ESAqv+twLZW3uuOzByfmeMHDRp0kOVLkiTVj/Z8K3BQRBxbLb8F+BNgLc0B6wPVsJnAg9XyQ9U6Vf/jmZkli5YkSapHvdsewtuBBRHRi+Yg9r3MfDgi1gALI+JG4BfAXdX4u4C/i4j1wL8B0zuhbkmSpLrTZrDKzFXAmFban6f5eqv923cBHyxSnSRJUjfindclSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqZDetS5A6qi4IWpdQt3JeVnrEiRJeMRKkiSpGIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklRIm8EqIk6MiMURsSYiVkfEp6v24yLiRxHRWP18W9UeEXFbRKyPiFURMbazP4QkSVI9aM8Rq93A5zLzNGAiMDciTgM+DzyWmacAj1XrAO8DTqlec4D5xauWJEmqQ20Gq8x8OTOfrJa3A2uBwcA0YEE1bAFwSbU8DfhWNvsZcGxEvL145ZIkSXWmQ9dYRcRQYAywDDghM1+uun4NnFAtDwY2ttisqWqTJEnq0dodrCLiaOAfgP+Wmf/esi8zE8iO7Dgi5kTE8ohYvnXr1o5sKkmSVJfaFawiog/NoeqezPzHqnnz3lN81c8tVfsm4MQWmzdUbb8nM+/IzPGZOX7QoEEHW78kSVLdaM+3AgO4C1ibmV9p0fUQMLNangk82KJ9RvXtwInAay1OGUqSJPVYvdsx5j3AnwFPR8TKqu0vgZuA70XEbOBF4ENV3w+Ai4D1wOvArKIVS5Ik1ak2g1VmLgXiAN3ntTI+gbmHWJckSVK3453XJUmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiFtBquIuDsitkTEMy3ajouIH0VEY/XzbVV7RMRtEbE+IlZFxNjOLF6SdBAifLX2kgpozxGrbwIX7tf2eeCxzDwFeKxaB3gfcEr1mgPML1OmJElS/WszWGXmEuDf9mueBiyolhcAl7Ro/1Y2+xlwbES8vVSxkiRJ9exgr7E6ITNfrpZ/DZxQLQ8GNrYY11S1SZIk9XiHfPF6ZiaQHd0uIuZExPKIWL5169ZDLUOSJKnmDjZYbd57iq/6uaVq3wSc2GJcQ9X2Jpl5R2aOz8zxgwYNOsgyJEmS6sfBBquHgJnV8kzgwRbtM6pvB04EXmtxylCSJKlH693WgIi4F5gCDIyIJmAecBPwvYiYDbwIfKga/gPgImA98DowqxNqliRJqkttBqvM/PABus5rZWwCcw+1KEmSpO7IO69LkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhRisJEmSCjFYSZIkFWKwkiRJKsRgJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgrpXesCJEmqB3FD1LqEupPzstYldDsesZIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQjotWEXEhRHxbESsj4jPd9Z+JEmS6kWnBKuI6AXcDrwPOA34cESc1hn7kiRJqheddcTqLGB9Zj6fmb8FFgLTOmlfkiRJdaGzgtVgYGOL9aaqTZIkqcfqXasdR8QcYE61uiMinq1VLepmrmcg8Eqty6gncX3UugSp+/Nvy5v4t+WAhhyoo7OC1SbgxBbrDVXbPpl5B3BHJ+1fPVhELM/M8bWuQ1LP4t8WldBZpwJ/DpwSEcMioi8wHXiok/YlSZJUFzrliFVm7o6ITwH/BPQC7s7M1Z2xL0mSpHrRaddYZeYPgB901vvrsOYpZEmdwb8tOmSRmbWuQZIkqUfwkTaSJEmFGKwkSZIKMVhJkiQVYrCSJB12IuLUiDgvIo7er/3CWtWknsFgpW4rImbVugZJ3U9EXAM8CFwNPBMRLZ9l+1e1qUo9hd8KVLcVES9l5jtrXYek7iUingYmZeaOiBgK3Af8XWZ+LSJ+kZljalqgurWaPStQao+IWHWgLuCErqxFUo9xRGbuAMjMDRExBbgvIobQ/LdFOmgGK9W7E4ALgFf3aw/gX7q+HEk9wOaIODMzVwJUR67eD9wNjKptaeruDFaqdw8DR+/9A9hSRPyk68uR1APMAHa3bMjM3cCMiPib2pSknsJrrCRJkgrxW4GSJEmFGKwkSZIKMVhJ6jYiYkf18x0RcV8bY6dExMMH6NsQEQM7o0ZJhzcvXpfU7WTmr4AP1LoOSdqfR6wkdTsRMTQinmmx/M8R8WT1+qMWQ/8gIh6JiGcj4q8j4k1/8yLioxHxRESsjIi/iYheXfZBJPU4BitJ3d0W4E8ycyxwGXBbi76zaH5syWnAycCfttwwIkZW27wnM88E9gAf6YqiJfVMngqU1N31Ab4eEXuD0bta9D2Rmc8DRMS9wNk0P75kr/OAccDPIwLgLTQHNUk6KAYrSd3dZ4DNwLtpPgq/q0Xf/jfq2389gAWZeW3nlSfpcOKpQEnd3VuBlzPzDeDPgJbXSJ0VEcOqa6suA5but+1jwAci4niAiDiuel6cJB0Ug5Wk7u7/A2ZGxFPAqcB/tOj7OfB1YC3wAnB/yw0zcw3wP4BF1QO/fwS8vSuKltQz+UgbSZKkQjxiJUmSVIjBSpIkqRCDlSRJUiEGK0mSpEIMVpIkSYUYrCRJkgoxWEmSJBVisJIkSSrEYCVJklSIwUqSJKkQg5UkSVIhBitJkqRCDFaSJEmFGKwkSZIKMVhJkiQVYrCSJEkqxGAlSZJUiMFKkiSpEIOVJElSIQYrSZKkQgxWkiRJhfSudQEAAwcOzKFDh9a6DEmSpDatWLHilcwc1FpfXQSroUOHsnz58lqXIUmS1KaIePFAfZ4KlCRJKsRgJUmSVIjBSpIkqZC6uMZKkiTVp9/97nc0NTWxa9euWpfS5fr160dDQwN9+vRp9zYGK0mSdEBNTU0cc8wxDB06lIiodTldJjPZtm0bTU1NDBs2rN3beSpQkiQd0K5duxgwYMBhFaoAIoIBAwZ0+EidwUqSJP2XDrdQtdfBfG6DlSRJUiEGK0mS1GGbN2/m8ssv56STTmLcuHFMmjSJ+++//5Dfd8qUKftuGr5jxw4+/vGPc/LJJzNu3DimTJnCsmXLDvq9r7/+er785S8DcN111/HjH/8YgFtvvZXXX3/9kGsHL16XJEkdlJlccsklzJw5k+985zsAvPjiizz00ENF93PllVcybNgwGhsbOeKII3jhhRdYs2bNm2rJTI44omPHir7whS/sW7711lv56Ec/ylFHHXXINXvEqp5F+GrtJUmqqccff5y+ffvyiU98Yl/bkCFDuPrqq9m1axezZs1i1KhRjBkzhsWLFwMcsH3nzp1Mnz6dkSNHcumll7Jz504AnnvuOZYtW8aNN964LzQNGzaMiy++mA0bNjBixAhmzJjBGWecwcaNG7nllluYMGECo0ePZt68efvq+uIXv8i73vUuzj77bJ599tl97VdccQX33Xcft912G7/61a8455xzOOeccw75d9PuI1YR0QtYDmzKzPdHxDBgITAAWAH8WWb+NiKOBL4FjAO2AZdl5oZDrlSSJNWF1atXM3bs2Fb7br/9diKCp59+ml/+8pecf/75rFu37oDt8+fP56ijjmLt2rWsWrVq3/uuXr2aM888k169erW6n8bGRhYsWMDEiRNZtGgRjY2NPPHEE2QmU6dOZcmSJfTv35+FCxeycuVKdu/ezdixYxk3btzvvc8111zDV77yFRYvXszAgQMP+XfTkVOBnwbWAn9Qrd8MfDUzF0bEXwOzgfnVz1czc3hETK/GXXbIlUqSpLo0d+5cli5dSt++fWloaODqq68G4NRTT2XIkCGsW7eOpUuXttq+ZMkSrrnmGgBGjx7N6NGj27XPIUOGMHHiRAAWLVrEokWLGDNmDNB8bVZjYyPbt2/n0ksv3XeKb+rUqUU/d2vadSowIhqAi4E7q/UAzgXuq4YsAC6plqdV61T958Xh+j1NSZJ6oNNPP50nn3xy3/rtt9/OY489xtatW4vu46mnnmLPnj2t9vfv33/fcmZy7bXXsnLlSlauXMn69euZPXt2sVo6or3XWN0K/DnwRrU+APhNZu6u1puAwdXyYGAjQNX/WjVekiT1AOeeey67du1i/vz5+9r2fqvuve99L/fccw8A69at46WXXmLEiBEHbJ88efK+C+CfeeYZVq1aBcDJJ5/M+PHjmTdvHpkJwIYNG3jkkUfeVM8FF1zA3XffzY4dOwDYtGkTW7ZsYfLkyTzwwAPs3LmT7du38/3vf7/Vz3PMMcewffv2Er+atoNVRLwf2JKZK4rs8T/fd05ELI+I5SUTriRJ6lwRwQMPPMBPf/pThg0bxllnncXMmTO5+eab+eQnP8kbb7zBqFGjuOyyy/jmN7/JkUceecD2q666ih07djBy5Eiuu+6637sG6s4772Tz5s0MHz6cM844gyuuuILjjz/+TfWcf/75XH755UyaNIlR/3979x6lZ13f/f79kQBRoOU08NBMNoSDCFTkMFBYWhaHVg59HoItYmiVAHFFLWit7u6ifxTp0v1g9RF166abijW2CrK0SEqVgoAP5VkP0KgxQiIkcmiSchijIhRQod/9x1yh0zhhZjK/ydwzeb/Wutf9u36/33Vf3ztr1rU+uU73q1/N2WefzVNPPcVRRx3Fm970Jl7zmtdw+umnc8wxx4z4fRYvXsxpp53W5OL1bEyBm52Q/HfgLcDzwGyGrrG6HjgV+C9V9XyS44EPVNWpSf6xa//vJLOAx4C+eokNDQwM1MZnVmgYz6CObJS/WUlSO6tWreKQQw6Z6jKmzEjfP8m3qmpgpPmjHrGqqvdVVX9V7QcsAG6rqj8AbgfO7qYtBG7o2ku7Zbrx214qVEmSJM0UE3mO1Z8C70myhqFrqK7u+q8G9uj63wNcMrESJUmSpodxPXm9qr4JfLNrPwgcO8Kc54A3NqhNkiRpWvHJ65IkSY0YrCRJkhoxWEmSJDVisJIkSZMjafsao5tuuomDDz6YAw88kMsvv3wSv+AvM1hJkqQZ44UXXuCiiy7i61//OitXruSaa65h5cqVW237BitJkjRj3HPPPRx44IHsv//+7LDDDixYsIAbbrhh9BUbMVhJkqQZY/369cydO/fF5f7+ftavX7/Vtm+wkiRJasRgJUmSZow5c+awdu3aF5fXrVvHnDlzttr2DVaSJGnGOOaYY1i9ejUPPfQQP//5z7n22ms588wzt9r2x/WTNpIkSWNWtdU3OWvWLD71qU9x6qmn8sILL3DhhRdy2GGHbb3tb7UtSZIkbQVnnHEGZ5xxxpRs21OBkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqREftyBJkiZFLkvTz6tLR38u1oUXXsiNN97IXnvtxb333tt0+2PhEStJkjRjnH/++dx0001Ttv1Rg1WS2UnuSfLdJPcluazr/1ySh5Is715HdP1J8skka5KsSHLUZH8JSZIkgBNOOIHdd999yrY/llOBPwNOrqqnk2wP3Jnk693Yn1TVlzeZfzpwUPf6DeDK7l2SJGlGG/WIVQ15ulvcvnu91EnO+cDnu/XuAnZNss/ES5UkSeptY7rGKsl2SZYDTwC3VNXd3dCHutN9VyTZseubA6wdtvq6rm/Tz1ycZFmSZYODgxP4CpIkSb1hTMGqql6oqiOAfuDYJL8OvA94FXAMsDvwp+PZcFVdVVUDVTXQ19c3zrIlSZJ6z7get1BVP0lyO3BaVX206/5Zkr8G/s9ueT0wd9hq/V2fJEnahozl8QitnXvuuXzzm9/khz/8If39/Vx22WUsWrRoq21/1GCVpA/4RReqXg78NvDhJPtU1aNJApwFbHxYxFLg4iTXMnTR+pNV9egk1S9JkvSia665Zkq3P5YjVvsAS5Jsx9Cpw+uq6sYkt3WhK8By4O3d/K8BZwBrgGeAC9qXLUmS1HtGDVZVtQI4coT+kzczv4CLJl6aJEnS9OKT1yVJ0ksaOmay7dmS722wkiRJmzV79mw2bNiwzYWrqmLDhg3Mnj17XOv5I8ySJGmz+vv7WbduHdviMydnz55Nf3//uNYxWEmSpM3afvvtmTdv3lSXMW14KlCSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJamTUYJVkdpJ7knw3yX1JLuv65yW5O8maJF9KskPXv2O3vKYb329yv4IkSVJvGMsRq58BJ1fVa4AjgNOSHAd8GLiiqg4Efgws6uYvAn7c9V/RzZMkSZrxRg1WNeTpbnH77lXAycCXu/4lwFlde363TDd+SpI0q1iSJKlHjekaqyTbJVkOPAHcAvwA+ElVPd9NWQfM6dpzgLUA3fiTwB4jfObiJMuSLBscHJzYt5AkSeoBYwpWVfVCVR0B9APHAq+a6Iar6qqqGqiqgb6+vol+nCRJ0pQb112BVfUT4HbgeGDXJLO6oX5gfddeD8wF6MZ/FdjQpFpJkqQeNpa7AvuS7Nq1Xw78NrCKoYB1djdtIXBD117aLdON31ZV1bJoSZKkXjRr9CnsAyxJsh1DQey6qroxyUrg2iQfBL4DXN3Nvxr4myRrgB8BCyahbkmSpJ4zarCqqhXAkSP0P8jQ9Vab9j8HvLFJdZKk9rxRe2SeXFEDPnldkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGRg1WSeYmuT3JyiT3Jfmjrv8DSdYnWd69zhi2zvuSrElyf5JTJ/MLSJIk9YpZY5jzPPDeqvp2kl2AbyW5pRu7oqo+OnxykkOBBcBhwK8B30jyyqp6oWXhkiRJvWbUI1ZV9WhVfbtrPwWsAua8xCrzgWur6mdV9RCwBji2RbGSJEm9bFzXWCXZDzgSuLvrujjJiiSfTbJb1zcHWDtstXWMEMSSLE6yLMmywcHBcRcuSZLUa8YcrJLsDHwFeHdV/RS4EjgAOAJ4FPgf49lwVV1VVQNVNdDX1zeeVSVJknrSmIJVku0ZClVfqKq/A6iqx6vqhar6d+Cv+I/TfeuBucNW7+/6JEmSZrSx3BUY4GpgVVV9bFj/PsOmvQG4t2svBRYk2THJPOAg4J52JUuSJPWmsdwV+FrgLcD3kizv+t4PnJvkCKCAh4G3AVTVfUmuA1YydEfhRd4RKEmStgWjBququhPICENfe4l1PgR8aAJ1SZIkTTs+eV2SJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiSKgyNpAAAgAElEQVQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEZGDVZJ5ia5PcnKJPcl+aOuf/cktyRZ3b3v1vUnySeTrEmyIslRk/0lJEmSesFYjlg9D7y3qg4FjgMuSnIocAlwa1UdBNzaLQOcDhzUvRYDVzavWpIkqQeNGqyq6tGq+nbXfgpYBcwB5gNLumlLgLO69nzg8zXkLmDXJPs0r1ySJKnHjOsaqyT7AUcCdwN7V9Wj3dBjwN5dew6wdthq67q+TT9rcZJlSZYNDg6Os2xJkqTeM+ZglWRn4CvAu6vqp8PHqqqAGs+Gq+qqqhqoqoG+vr7xrCpJktSTxhSskmzPUKj6QlX9Xdf9+MZTfN37E13/emDusNX7uz5JkqQZbSx3BQa4GlhVVR8bNrQUWNi1FwI3DOs/r7s78DjgyWGnDCVJkmasWWOY81rgLcD3kizv+t4PXA5cl2QR8AhwTjf2NeAMYA3wDHBB04olSZJ61KjBqqruBLKZ4VNGmF/ARROsS5IkadrxyeuSJEmNGKwkSZIaGcs1VlJPyWWbOzO97apLx/W0E0nSJPGIlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkVGDVZLPJnkiyb3D+j6QZH2S5d3rjGFj70uyJsn9SU6drMIlSZJ6zViOWH0OOG2E/iuq6oju9TWAJIcCC4DDunX+3yTbtSpWkiSpl40arKrqDuBHY/y8+cC1VfWzqnoIWAMcO4H6JEmSpo2JXGN1cZIV3anC3bq+OcDaYXPWdX2SJEkz3pYGqyuBA4AjgEeB/zHeD0iyOMmyJMsGBwe3sAxJkqTesUXBqqoer6oXqurfgb/iP073rQfmDpva3/WN9BlXVdVAVQ309fVtSRmSJEk9ZYuCVZJ9hi2+Adh4x+BSYEGSHZPMAw4C7plYiZIkSdPDrNEmJLkGOBHYM8k64FLgxCRHAAU8DLwNoKruS3IdsBJ4Hrioql6YnNIlSZJ6y6jBqqrOHaH76peY/yHgQxMpSpIkaTryyeuSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEZmTXUBkiT1glyWqS6h59SlNdUlTDsesZIkSWrEYCVJktSIwUqSJKmRUYNVks8meSLJvcP6dk9yS5LV3ftuXX+SfDLJmiQrkhw1mcVLkiT1krEcsfoccNomfZcAt1bVQcCt3TLA6cBB3WsxcGWbMiVJknrfqMGqqu4AfrRJ93xgSddeApw1rP/zNeQuYNck+7QqVpIkqZdt6TVWe1fVo137MWDvrj0HWDts3rqu75ckWZxkWZJlg4ODW1iGJElS75jwxetVVcC4H3RRVVdV1UBVDfT19U20DEmSpCm3pcHq8Y2n+Lr3J7r+9cDcYfP6uz5JkqQZb0uD1VJgYddeCNwwrP+87u7A44Anh50ylCRJmtFG/UmbJNcAJwJ7JlkHXApcDlyXZBHwCHBON/1rwBnAGuAZ4IJJqFmSJKknjRqsqurczQydMsLcAi6aaFGSJEnTkU9elyRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkVkTWTnJw8BTwAvA81U1kGR34EvAfsDDwDlV9eOJlSlJktT7WhyxOqmqjqiqgW75EuDWqjoIuLVbliRJmvEm41TgfGBJ114CnDUJ25AkSeo5Ew1WBdyc5FtJFnd9e1fVo137MWDvkVZMsjjJsiTLBgcHJ1iGJEnS1JvQNVbA66pqfZK9gFuSfH/4YFVVkhppxaq6CrgKYGBgYMQ5kiRJ08mEjlhV1fru/QngeuBY4PEk+wB0709MtEhJkqTpYIuDVZKdkuyysQ28HrgXWAos7KYtBG6YaJGSJEnTwUROBe4NXJ9k4+d8sapuSvLPwHVJFgGPAOdMvExJkqTet8XBqqoeBF4zQv8G4JSJFCVJkjQd+eR1SZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIambRgleS0JPcnWZPkksnajiRJUq+YlGCVZDvg08DpwKHAuUkOnYxtSZIk9YrJOmJ1LLCmqh6sqp8D1wLzJ2lbkiRJPSFV1f5Dk7OB06rqrd3yW4DfqKqLh81ZDCzuFg8G7m9eiGaqPYEfTnURkmYc9y0aq32rqm+kgVlbu5KNquoq4Kqp2r6mryTLqmpgquuQNLO4b1ELk3UqcD0wd9hyf9cnSZI0Y01WsPpn4KAk85LsACwAlk7StiRJknrCpJwKrKrnk1wM/COwHfDZqrpvMralbZKnkCVNBvctmrBJuXhdkiRpW+ST1yVJkhoxWEmSJDVisJIkSWrEYCVJktSIwUrTUpKdp7oGSZI2ZbDSdLVyqguQND0leXWSu5KsTXJVkt2Gjd0zlbVp+puyn7SRRpPkPZsbAjxiJWlLXQl8ALgLeCtwZ5Izq+oHwPZTWZimP49YqZf938BuwC6bvHbGv11JW26Xqrqpqn5SVR8FLgZuSnIc4MMdNSEesVIv+zbw1ar61qYDSd46BfVImiGS/GpVPQlQVbcn+T3gK8DuU1uZpjv/169edgHwL5sZ8xfoJW2pDwOHDO+oqhXAKcDfTUlFmjH8SRtJkqRGPBWonpXkZcD5wO8B/cALwAPAX1bVN6euMknTWbdvWQicjfsWNeYRK/WsJH8NPAJ8g6Ed4E+BfwL+FLihqv6fKSxP0jTlvkWTyWClnpVkRVUdPmz5rqo6LsmOwPKqOuQlVpekEblv0WTy4nX1sl8kOQAgyVHAzwGq6md4S7SkLee+RZPGa6zUy/4EuD3Jzxj6W10AkKQPuHEqC5M0rblv0aTxVKB6WpIAe1TVD6e6Fkkzh/sWTRZPBaqn1ZBf2vEl+e2pqEfSzOC+RZPFI1aalpL8S1X9H1Ndh6SZxX2LJsprrNSzkizd3BCwx9asRdLM4b5Fk8lgpV72m8Cbgac36Q9w7NYvR9IM4b5Fk8ZgpV52F/BMVf3PTQeS3D8F9UiaGdy3aNIYrNSzqur0kfqTvA743lYuR9IM4b5Fk8lgpWkhyZHA7wNvBB4CvjK1FUmaCdy3qDWDlXpWklcC53avHwJfYuhO1pOmtDBJ05r7Fk0mH7egnpXk3xn6YdRFVbWm63uwqvaf2sokTWfuWzSZfECoetnvAo8y9NMTf5XkFIbu2pGkiXDfoknjESv1vCQ7AfMZOmx/MvB54PqqunlKC5M0rblv0WQwWGlaSbIbQxeZvqmqTpnqeiTNDO5b1IrBSpIkqRGvsZIkSWrEYCVJktSIwUrStJRk1yR/OIZ5m/4enCRNGoOVpOlqV2DUYCVJW5NPXpc0XV0OHJBkOXAL8ARwDrAjQ7fMX7rpCkn+ZLQ5kjQRHrGSNF1dAvygqo5gKFgdBBwLHAEcneSE4ZOTvH60OZI0UR6xkjQTvL57fadb3pmhEHXHOOdI0oQYrCTNBAH+e1X9fxOcI0kT4qlASdPVU8AuXfsfgQuT7AyQZE6SvTaZP5Y5kjQhHrGSNC1V1YYk/yvJvcDXgS8C/zsJwNPAmxm6oH3j/JuTHPJScyRpokb9SZskBwNfGta1P/BnDP1Y5ZeA/YCHgXOq6scZ2mN9AjgDeAY4v6q+3bxySZKkHjPqqcCqur+qjujuvDmaobB0PUN35NxaVQcBt3bLAKczdEHoQcBi4MrJKFySJKnXjPcaq1MYur35EWA+sKTrXwKc1bXnA5+vIXcBuybZp0m1kiRJPWy811gtAK7p2ntX1aNd+zFg7649B1g7bJ11Xd+jw/pIspihI1rstNNOR7/qVa8aZymSJElb37e+9a0fVlXfSGNjDlZJdgDOBN636VhVVZKXvljrl9e5CrgKYGBgoJYtWzae1SVJkqZEkkc2NzaeU4GnA9+uqse75cc3nuLr3jfeWbMemDtsvf6uT5IkaUYbT7A6l/84DQiwFFjYtRcCNwzrPy9DjgOeHHbKUJIkacYa06nAJDsBvw28bVj35cB1SRYBjzD0w6YAX2PoUQtrGLqD8IJm1UqSJPWwMQWrqvo3YI9N+jYwdJfgpnMLuKhJdZIkaUr94he/YN26dTz33HNTXcpWN3v2bPr7+9l+++3HvI5PXpckSZu1bt06dtllF/bbbz+6Xy3YJlQVGzZsYN26dcybN2/M6/lbgZIkabOee+459thjj20qVAEkYY899hj3kTqDlSRJeknbWqjaaEu+t8FKkiSN2+OPP87v//7vs//++3P00Udz/PHHc/3110/4c0888UQ2Ptvy6aef5m1vexsHHHAARx99NCeeeCJ33333Fn/2Bz7wAT760Y8C8Gd/9md84xvfAODjH/84zzzzzIRrB6+xkiRJ41RVnHXWWSxcuJAvfvGLADzyyCMsXbq06Xbe+ta3Mm/ePFavXs3LXvYyHnroIVauXPlLtVQVL3vZ+I4V/fmf//mL7Y9//OO8+c1v5hWveMWEa/aIVS9LfI30kiRNqdtuu40ddtiBt7/97S/27bvvvrzzne/kueee44ILLuDVr341Rx55JLfffjvAZvufffZZFixYwCGHHMIb3vAGnn32WQB+8IMfcPfdd/PBD37wxdA0b948fud3foeHH36Ygw8+mPPOO49f//VfZ+3atXzkIx/hmGOO4fDDD+fSSy99sa4PfehDvPKVr+R1r3sd999//4v9559/Pl/+8pf55Cc/yb/+679y0kkncdJJJ03438YjVpIkaVzuu+8+jjrqqBHHPv3pT5OE733ve3z/+9/n9a9/PQ888MBm+6+88kpe8YpXsGrVKlasWPHi5953330cccQRbLfddiNuZ/Xq1SxZsoTjjjuOm2++mdWrV3PPPfdQVZx55pnccccd7LTTTlx77bUsX76c559/nqOOOoqjjz76P33Ou971Lj72sY9x++23s+eee07438ZgJUmSJuSiiy7izjvvZIcddqC/v593vvOdALzqVa9i33335YEHHuDOO+8csf+OO+7gXe96FwCHH344hx9++Ji2ue+++3LccccBcPPNN3PzzTdz5JFHAkPXZq1evZqnnnqKN7zhDS+e4jvzzDObfu+ReCpQkiSNy2GHHca3v/3tF5c//elPc+uttzI4ONh0G9/97nd54YUXRhzfaaedXmxXFe973/tYvnw5y5cvZ82aNSxatKhZLeNhsJIkSeNy8skn89xzz3HllVe+2Lfxrrrf/M3f5Atf+AIADzzwAP/yL//CwQcfvNn+E0444cUL4O+9915WrFgBwAEHHMDAwACXXnopQz/qAg8//DD/8A//8Ev1nHrqqXz2s5/l6aefBmD9+vU88cQTnHDCCXz1q1/l2Wef5amnnuLv//7vR/w+u+yyC0899VSLfxpPBUqSpPFJwle/+lX++I//mL/4i7+gr6+PnXbaiQ9/+MPMnz+fd7zjHbz61a9m1qxZfO5zn2PHHXfkD//wD0fsf8c73sEFF1zAIYccwiGHHPKfroH6zGc+w3vf+14OPPBAXv7yl7PnnnvykY985Jfqef3rX8+qVas4/vjjAdh5553527/9W4466ije9KY38ZrXvIa99tqLY445ZsTvs3jxYk477TR+7dd+7cWL6rf432ZjCpxKAwMDtfGZFRrGO+BG1gN/s5K0rVi1ahWHHHLIVJcxZUb6/km+VVUDI833VKAkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZJmlJtuuomDDz6YAw88kMsvv3yrbttgJUmSJkfS9jUGL7zwAhdddBFf//rXWblyJddccw0rV66c5C/6HwxWkiRpxrjnnns48MAD2X///dlhhx1YsGABN9xww1bbvsFKkiTNGOvXr2fu3LkvLvf397N+/fqttn2DlSRJUiMGK0mSNGPMmTOHtWvXvri8bt065syZs9W2b7CSJEkzxjHHHMPq1at56KGH+PnPf861117LmWeeudW2P6ZglWTXJF9O8v0kq5Icn2T3JLckWd2979bNTZJPJlmTZEWSoyb3K0iSJA2ZNWsWn/rUpzj11FM55JBDOOecczjssMO23vbHOO8TwE1VdXaSHYBXAO8Hbq2qy5NcAlwC/ClwOnBQ9/oN4MruXZIkbUuqpmSzZ5xxBmecccaUbHvUI1ZJfhU4AbgaoKp+XlU/AeYDS7ppS4CzuvZ84PM15C5g1yT7NK9ckiSpx4zlVOA8YBD46yTfSfKZJDsBe1fVo92cx4C9u/YcYO2w9dd1ff9JksVJliVZNjg4uOXfQJIkqUeMJVjNAo4CrqyqI4F/Y+i034uqqoBxHe+rqquqaqCqBvr6+sazqiRJUk8aS7BaB6yrqru75S8zFLQe33iKr3t/ohtfD8wdtn5/1ydJkjSjjRqsquoxYG2Sg7uuU4CVwFJgYde3ENj4vPilwHnd3YHHAU8OO2UoSZI0Y431rsB3Al/o7gh8ELiAoVB2XZJFwCPAOd3crwFnAGuAZ7q5kiRJM96YglVVLQcGRhg6ZYS5BVw0wbokSZLG7cILL+TGG29kr7324t57793q2x/rEStJkqRxyWVp+nl16ej3yZ1//vlcfPHFnHfeeU23PVb+pI0kSZoxTjjhBHbfffcp277BSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJ0oxx7rnncvzxx3P//ffT39/P1VdfvVW37+MWJEnSpBjL4xFau+aaa7b6NofziJUkSVIjBitJkqRGDFaSJEmNGKwkSdJLGvoZ4G3Plnxvg5UkSdqs2bNns2HDhm0uXFUVGzZsYPbs2eNaz7sCJUnSZvX397Nu3ToGBwenupStbvbs2fT3949rHYOVJEnarO2335558+ZNdRnThqcCJUmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWpkTMEqycNJvpdkeZJlXd/uSW5Jsrp7363rT5JPJlmTZEWSoybzC0iSJPWK8RyxOqmqjqiqgW75EuDWqjoIuLVbBjgdOKh7LQaubFWsJElSL5vIqcD5wJKuvQQ4a1j/52vIXcCuSfaZwHYkSZKmhbEGqwJuTvKtJIu7vr2r6tGu/Riwd9eeA6wdtu66ru8/SbI4ybIkywYHB7egdEmSpN4ya4zzXldV65PsBdyS5PvDB6uqktR4NlxVVwFXAQwMDIxrXUmSpF40piNWVbW+e38CuB44Fnh84ym+7v2Jbvp6YO6w1fu7PkmSpBlt1GCVZKcku2xsA68H7gWWAgu7aQuBG7r2UuC87u7A44Anh50ylCRJmrHGcipwb+D6JBvnf7Gqbkryz8B1SRYBjwDndPO/BpwBrAGeAS5oXrUkSVIPGjVYVdWDwGtG6N8AnDJCfwEXNalOkiRpGvHJ65IkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY2MOVgl2S7Jd5Lc2C3PS3J3kjVJvpRkh65/x255TTe+3+SULkmS1FvGc8Tqj4BVw5Y/DFxRVQcCPwYWdf2LgB93/Vd08yRJkma8MQWrJP3A7wCf6ZYDnAx8uZuyBDira8/vlunGT+nmS5IkzWhjPWL1ceD/Av69W94D+ElVPd8trwPmdO05wFqAbvzJbr4kSdKMNmqwSvJfgSeq6lstN5xkcZJlSZYNDg62/GhJkqQpMZYjVq8FzkzyMHAtQ6cAPwHsmmRWN6cfWN+11wNzAbrxXwU2bPqhVXVVVQ1U1UBfX9+EvoQkSVIvGDVYVdX7qqq/qvYDFgC3VdUfALcDZ3fTFgI3dO2l3TLd+G1VVU2rliRJ6kETeY7VnwLvSbKGoWuoru76rwb26PrfA1wysRIlSZKmh1mjT/kPVfVN4Jtd+0Hg2BHmPAe8sUFtkiRJ04pPXpckSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktTIqMEqyewk9yT5bpL7klzW9c9LcneSNUm+lGSHrn/HbnlNN77f5H4FSZKk3jCWI1Y/A06uqtcARwCnJTkO+DBwRVUdCPwYWNTNXwT8uOu/opsnSZI0440arGrI093i9t2rgJOBL3f9S4Czuvb8bplu/JQkaVaxJElSjxrTNVZJtkuyHHgCuAX4AfCTqnq+m7IOmNO15wBrAbrxJ4E9RvjMxUmWJVk2ODg4sW8hSZLUA8YUrKrqhao6AugHjgVeNdENV9VVVTVQVQN9fX0T/ThJkqQpN2s8k6vqJ0luB44Hdk0yqzsq1Q+s76atB+YC65LMAn4V2NCwZm3jcplnljdVl9ZUlyBJYmx3BfYl2bVrvxz4bWAVcDtwdjdtIXBD117aLdON31ZV7vUlSdKMN5YjVvsAS5Jsx1AQu66qbkyyErg2yQeB7wBXd/OvBv4myRrgR8CCSahbkiSp54warKpqBXDkCP0PMnS91ab9zwFvbFKdJEnSNOKT1yVJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoZNVglmZvk9iQrk9yX5I+6/t2T3JJkdfe+W9efJJ9MsibJiiRHTfaXkCRJ6gVjOWL1PPDeqjoUOA64KMmhwCXArVV1EHBrtwxwOnBQ91oMXNm8akmSpB40arCqqker6ttd+ylgFTAHmA8s6aYtAc7q2vOBz9eQu4Bdk+zTvHJJkqQeM65rrJLsBxwJ3A3sXVWPdkOPAXt37TnA2mGrrev6JEmSZrQxB6skOwNfAd5dVT8dPlZVBdR4NpxkcZJlSZYNDg6OZ1VJkqSeNKZglWR7hkLVF6rq77ruxzee4uven+j61wNzh63e3/X9J1V1VVUNVNVAX1/fltYvSZLUM8ZyV2CAq4FVVfWxYUNLgYVdeyFww7D+87q7A48Dnhx2ylCSJGnGmjWGOa8F3gJ8L8nyru/9wOXAdUkWAY8A53RjXwPOANYAzwAXNK1YkiSpR40arKrqTiCbGT5lhPkFXDTBuiRJkqYdn7wuSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKkRg5UkSVIjBitJkqRGDFaSJEmNGKwkSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpkVGDVZLPJnkiyb3D+nZPckuS1d37bl1/knwyyZokK5IcNZnFS5Ik9ZKxHLH6HHDaJn2XALdW1UHArd0ywOnAQd1rMXBlmzIlSZJ636jBqqruAH60Sfd8YEnXXgKcNaz/8zXkLmDXJPu0KlaSJKmXbek1VntX1aNd+zFg7649B1g7bN66ru+XJFmcZFmSZYODg1tYhiRJUu+Y8MXrVVVAbcF6V1XVQFUN9PX1TbQMSZKkKbelwerxjaf4uvcnuv71wNxh8/q7PkmSpBlvS4PVUmBh114I3DCs/7zu7sDjgCeHnTKUJEma0WaNNiHJNcCJwJ5J1gGXApcD1yVZBDwCnNNN/xpwBrAGeAa4YBJqliRJ6kmjBquqOnczQ6eMMLeAiyZalCRJ0nTkk9clSZIaMVhJkiQ1YrCSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGjFYSZIkNWKwkiRJasRgJUmS1IjBSpIkqRGDlSRJUiMGK0mSpEYMVpIkSY0YrCRJkhoxWEmSJDUya6oLkCRtZclUV9Cbqqa6As0AHrGSJElqxGAlSZLUiMFKkiSpEYOVJElSIwYrSZKkRgxWkiRJjRisJEmSGpm0YJXktCT3J1mT5JLJ2o4kSVKvmJRglWQ74NPA6cChwLlJDp2MbUmSJPWKyXry+rHAmqp6ECDJtcB8YOUkbU+SpAnJZT6RflN1qU+jH6/UJDzCP8nZwGlV9dZu+S3Ab1TVxcPmLAYWd4sHA/c3L0Qz1Z7AD6e6CEkzjvsWjdW+VdU30sCU/VZgVV0FXDVV29f0lWRZVQ1MdR2SZhb3LWphsi5eXw/MHbbc3/VJkroNrKAAAAT6SURBVCTNWJMVrP4ZOCjJvCQ7AAuApZO0LUmSpJ4wKacCq+r5JBcD/whsB3y2qu6bjG1pm+QpZEmTwX2LJmxSLl6XJEnaFvnkdUmSpEYMVpIkSY0YrCRJkhoxWEmSJDVisNK0lOR7U12DpOkpydwk1yb5pyTvT7L9sLGvTmVtmv6m7Mnr0miS/O7mhoD/sjVrkTSjfBb4CnAXsAj4n0n+W1VtAPad0so07Rms1Mu+BHwBGOmZILO3ci2SZo6+qvrLrv3OJG8G7khyJiPvb6QxM1ipl60APlpV9246kOS3pqAeSTPD9klmV9VzAFX1t0keY+ih1jtNbWma7rzGSr3s3cBPNzP2hq1ZiKQZ5TPAbwzvqKpvAG8Efuk/ctJ4+OR1SZKkRjwVqJ6VZBZDF5a+Afi1rns9cANwdVX9YqpqkzR9uW/RZPKIlXpWkmuAnwBLgHVddz+wENi9qt40VbVJmr7ct2gyGazUs5I8UFWvHO+YJL0U9y2aTF68rl72oyRvTPLi32mSlyV5E/DjKaxL0vTmvkWTxmClXrYAOBt4PMkDSR4AHgN+txuTpC3hvkWTxlOBmhaS7AHQPRlZkppw36LWPGKlnpbkV5IcUFUbhu/4khw+lXVJmt7ct2iyGKzUs5KcA3wf+EqS+5IcM2z4c1NTlaTpzn2LJpPBSr3s/cDRVXUEcAHwN0k2PnE9U1eWpGnOfYsmjQ8IVS/brqoeBaiqe5KcBNyYZC7+UKqkLee+RZPGI1bqZU8lOWDjQrcjPAk4EzhsyqqSNN25b9GkMVipl72DTf5Gq+qnwGUM/fyEJG0J9y2aNJ4KVM+qqu9ubCc5Evh9hn59/iHgiqmqS9L05r5Fk8lgpZ6V5JXAud3rh8CXGHr22klTWpikac19iyaTDwhVz0ry78A/AYuqak3X92BV7T+1lUmazty3aDJ5jZV62e8CjwK3J/mrJKfgrdCSJs59iyaNR6zU85LsBMxn6LD9ycDngeur6uYpLUzStOa+RZPBYKVpJcluDF1k+qaqOmWq65E0M7hvUSsGK0mSpEa8xkqSJKkRg5UkSVIjBitJPSvJu5KsSvKFCX7OmUkuaVWXJG2O11hJ6llJvg/8VlWtG8PcWVX1/FYoS5I2yyNWknpSkr8E9ge+nuS9Sb6aZEWSu5Ic3s35QJK/SfK/gL9J0pfkK0n+uXu9tpt3fpJPde0Dus/4XpIPJnm66z8xyTeTfDnJ95N8IYnPNpI0LgYrST2pqt4O/CtwErAf8J2qOhx4P0PPG9roUIaOap0LfAK4oqqOAX4P+MwIH/0J4BNV9Wpg0yNhRwLv7j5zf+C1zb6QpG2CvxUoaTp4HUNBiaq6LckeSX6lG1taVc927d8CDh12oOlXkuy8yWcdD5zVtb8IfHTY2D0bTzsmWc5QoLuz5ReRNLMZrCRNd/82rP0y4Liqem74hHGc0fvZsPYLuI+UNE6eCpQ0HfwT8AcwdC0U8MOq+ukI824G3rlxIckRI8y5i+7oF7CgbZmStnUGK0nTwQeAo5OsAC4HFm5m3ruAge4i95XA20eY827gPd1nHQg8OQn1StpG+bgFSduUJK8Anq2qSrIAOLeq5k91XZJmBq8fkLStORr4VPcohZ8AF05xPZJmEI9YSZIkNeI1VpIkSY0YrCRJkhoxWEmSJDVisJIkSWrEYCVJktSIwUqSJKmR/x9U9yo/JtdRPAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 720x6480 with 17 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eiof8zCmKope"
},
"source": [
"# Grouped Bar charts Interpretation: \n",
"These grouped bar charts show the frequency in the Y-Axis and the category in the X-Axis.\n",
"\n",
"If the ratio of bars is similar across all categories, then the two columns are not correlated."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "odUFbXSFKopf"
},
"source": [
"# Statistical Feature Selection using Chi-Square Test\n",
"\n",
"Chi-Square test is conducted to check the correlation between two categorical variables"
]
},
{
"cell_type": "code",
"metadata": {
"id": "9VyiY9_CKopf"
},
"source": [
"# Writing a function to find the correlation of all categorical variables with the Target variable\n",
"\n",
"def FunctionChisq(inpData, TargetVariable, CategoricalVariablesList):\n",
" from scipy.stats import chi2_contingency\n",
" \n",
" # Creating an empty list of final selected predictors\n",
" SelectedPredictors=[]\n",
" print('Chi Square Test Results \\n')\n",
"\n",
" for predictor in CategoricalVariablesList:\n",
" CrossTabResult=pd.crosstab(index=inpData[TargetVariable], columns=inpData[predictor])\n",
" ChiSqResult = chi2_contingency(CrossTabResult)\n",
" \n",
" \n",
" if (ChiSqResult[1] < 0.05):\n",
" print(predictor, 'is correlated with', TargetVariable, '| P-Value:', ChiSqResult[1])\n",
" SelectedPredictors.append(predictor)\n",
" else:\n",
" print(predictor, 'is NOT correlated with', TargetVariable, '| P-Value:', ChiSqResult[1]) \n",
" \n",
" return(SelectedPredictors) "
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "QdL0n-aQKopf",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "cde6e9fb-fe3b-4df9-a6e5-c47d6ea5e5b2"
},
"source": [
"FunctionChisq(inpData=df, \n",
" TargetVariable='GoodCredit',\n",
" CategoricalVariablesList= CategoricalColsList)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Chi Square Test Results \n",
"\n",
"checkingstatus is correlated with GoodCredit | P-Value: 1.2189020722893755e-26\n",
"history is correlated with GoodCredit | P-Value: 1.2791872956751013e-12\n",
"purpose is correlated with GoodCredit | P-Value: 0.00011574910079691586\n",
"savings is correlated with GoodCredit | P-Value: 2.7612142385682596e-07\n",
"employ is correlated with GoodCredit | P-Value: 0.0010454523491402541\n",
"installment is NOT correlated with GoodCredit | P-Value: 0.1400333122128481\n",
"status is correlated with GoodCredit | P-Value: 0.02223800546926877\n",
"others is correlated with GoodCredit | P-Value: 0.036055954027247226\n",
"residence is NOT correlated with GoodCredit | P-Value: 0.8615521320413175\n",
"property is correlated with GoodCredit | P-Value: 2.8584415733250017e-05\n",
"otherplans is correlated with GoodCredit | P-Value: 0.0016293178186473534\n",
"housing is correlated with GoodCredit | P-Value: 0.00011167465374597684\n",
"cards is NOT correlated with GoodCredit | P-Value: 0.4451440800083001\n",
"job is NOT correlated with GoodCredit | P-Value: 0.5965815918843431\n",
"liable is NOT correlated with GoodCredit | P-Value: 1.0\n",
"tele is NOT correlated with GoodCredit | P-Value: 0.27887615430357426\n",
"foreign is correlated with GoodCredit | P-Value: 0.015830754902852885\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['checkingstatus',\n",
" 'history',\n",
" 'purpose',\n",
" 'savings',\n",
" 'employ',\n",
" 'status',\n",
" 'others',\n",
" 'property',\n",
" 'otherplans',\n",
" 'housing',\n",
" 'foreign']"
]
},
"metadata": {},
"execution_count": 452
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WzFm1D73Kopf"
},
"source": [
"Based on the results of Chi-Square test, below categorical columns are selected as predictors for Machine Learning\n",
"\n",
"'checkingstatus', 'history', 'purpose', 'savings', 'employ', 'status', 'others', 'property', 'otherplans', 'housing', 'foreign'"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7VFUpupCKopf"
},
"source": [
"# Selecting final predictors for Machine Learning"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Iqy0ghOGKopg",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 201
},
"outputId": "bcfb1b01-2d17-4889-8dc3-cc8d8a30aac8"
},
"source": [
"#Based on all the above tests, selecting the final columns for machine learning\n",
"\n",
"SelectedColumns=['checkingstatus','history','purpose','savings','employ',\n",
" 'status','others','property','otherplans','housing','foreign',\n",
" 'age', 'amount', 'duration']\n",
"\n",
"# Selecting final columns\n",
"DataForML=df[SelectedColumns]\n",
"DataForML.head()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>checkingstatus</th>\n",
" <th>history</th>\n",
" <th>purpose</th>\n",
" <th>savings</th>\n",
" <th>employ</th>\n",
" <th>status</th>\n",
" <th>others</th>\n",
" <th>property</th>\n",
" <th>otherplans</th>\n",
" <th>housing</th>\n",
" <th>foreign</th>\n",
" <th>age</th>\n",
" <th>amount</th>\n",
" <th>duration</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>A11</td>\n",
" <td>A34</td>\n",
" <td>A43</td>\n",
" <td>A65</td>\n",
" <td>A75</td>\n",
" <td>A93</td>\n",
" <td>A101</td>\n",
" <td>A121</td>\n",
" <td>A143</td>\n",
" <td>A152</td>\n",
" <td>A201</td>\n",
" <td>67</td>\n",
" <td>1169</td>\n",
" <td>6</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>A12</td>\n",
" <td>A32</td>\n",
" <td>A43</td>\n",
" <td>A61</td>\n",
" <td>A73</td>\n",
" <td>A92</td>\n",
" <td>A101</td>\n",
" <td>A121</td>\n",
" <td>A143</td>\n",
" <td>A152</td>\n",
" <td>A201</td>\n",
" <td>22</td>\n",
" <td>5951</td>\n",
" <td>48</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>A14</td>\n",
" <td>A34</td>\n",
" <td>A46</td>\n",
" <td>A61</td>\n",
" <td>A74</td>\n",
" <td>A93</td>\n",
" <td>A101</td>\n",
" <td>A121</td>\n",
" <td>A143</td>\n",
" <td>A152</td>\n",
" <td>A201</td>\n",
" <td>49</td>\n",
" <td>2096</td>\n",
" <td>12</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>A11</td>\n",
" <td>A32</td>\n",
" <td>A42</td>\n",
" <td>A61</td>\n",
" <td>A74</td>\n",
" <td>A93</td>\n",
" <td>A103</td>\n",
" <td>A122</td>\n",
" <td>A143</td>\n",
" <td>A153</td>\n",
" <td>A201</td>\n",
" <td>45</td>\n",
" <td>7882</td>\n",
" <td>42</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>A11</td>\n",
" <td>A33</td>\n",
" <td>A40</td>\n",
" <td>A61</td>\n",
" <td>A73</td>\n",
" <td>A93</td>\n",
" <td>A101</td>\n",
" <td>A124</td>\n",
" <td>A143</td>\n",
" <td>A153</td>\n",
" <td>A201</td>\n",
" <td>53</td>\n",
" <td>4870</td>\n",
" <td>24</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" checkingstatus history purpose savings ... foreign age amount duration\n",
"0 A11 A34 A43 A65 ... A201 67 1169 6\n",
"1 A12 A32 A43 A61 ... A201 22 5951 48\n",
"2 A14 A34 A46 A61 ... A201 49 2096 12\n",
"3 A11 A32 A42 A61 ... A201 45 7882 42\n",
"4 A11 A33 A40 A61 ... A201 53 4870 24\n",
"\n",
"[5 rows x 14 columns]"
]
},
"metadata": {},
"execution_count": 453
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "2nuBQZ7iKopg"
},
"source": [
"# Saving this final data for reference during deployment\n",
"DataForML.to_pickle('DataForML.pkl')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ZJsYVbq_Kopg"
},
"source": [
"# Supressing the warning messages\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "FCImNyecKopg"
},
"source": [
"# Data Pre-processing for Machine Learning"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ARPzTVLoKopg"
},
"source": [
"##### 1. Converting Ordinal variables to numeric using business mapping"
]
},
{
"cell_type": "code",
"metadata": {
"id": "BDkAjJ19Kopg"
},
"source": [
"# Treating the Ordinal variable first\n",
"DataForML['employ'].replace({'A71':1, 'A72':2,'A73':3, 'A74':4,'A75':5 }, inplace=True)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "JDs7IYqSKopg"
},
"source": [
"##Converting the binary nominal variable to numeric using 1/0 mapping\n",
"# Treating the binary nominal variable\n",
"\n",
"DataForML['foreign'].replace({'A201':1, 'A202':0}, inplace=True)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "p6ULwAT4Koph"
},
"source": [
"##### 2. Converting nominal variables to numeric using get_dummies()"
]
},
{
"cell_type": "code",
"metadata": {
"id": "DfEIHDK8Koph"
},
"source": [
"# Treating all the nominal variables at once using dummy variables\n",
"DataForML_Numeric=pd.get_dummies(DataForML)\n",
"\n",
"# Adding Target Variable to the data\n",
"DataForML_Numeric['GoodCredit']=df['GoodCredit']"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "ohGRg61aKoph",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 221
},
"outputId": "85f08533-fcd1-4744-a795-e513c32f5129"
},
"source": [
"## Looking at data after all the treatments\n",
"DataForML_Numeric.head()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>employ</th>\n",
" <th>foreign</th>\n",
" <th>age</th>\n",
" <th>amount</th>\n",
" <th>duration</th>\n",
" <th>checkingstatus_A11</th>\n",
" <th>checkingstatus_A12</th>\n",
" <th>checkingstatus_A13</th>\n",
" <th>checkingstatus_A14</th>\n",
" <th>history_A30</th>\n",
" <th>history_A31</th>\n",
" <th>history_A32</th>\n",
" <th>history_A33</th>\n",
" <th>history_A34</th>\n",
" <th>purpose_A40</th>\n",
" <th>purpose_A41</th>\n",
" <th>purpose_A410</th>\n",
" <th>purpose_A42</th>\n",
" <th>purpose_A43</th>\n",
" <th>purpose_A44</th>\n",
" <th>purpose_A45</th>\n",
" <th>purpose_A46</th>\n",
" <th>purpose_A48</th>\n",
" <th>purpose_A49</th>\n",
" <th>savings_A61</th>\n",
" <th>savings_A62</th>\n",
" <th>savings_A63</th>\n",
" <th>savings_A64</th>\n",
" <th>savings_A65</th>\n",
" <th>status_A91</th>\n",
" <th>status_A92</th>\n",
" <th>status_A93</th>\n",
" <th>status_A94</th>\n",
" <th>others_A101</th>\n",
" <th>others_A102</th>\n",
" <th>others_A103</th>\n",
" <th>property_A121</th>\n",
" <th>property_A122</th>\n",
" <th>property_A123</th>\n",
" <th>property_A124</th>\n",
" <th>otherplans_A141</th>\n",
" <th>otherplans_A142</th>\n",
" <th>otherplans_A143</th>\n",
" <th>housing_A151</th>\n",
" <th>housing_A152</th>\n",
" <th>housing_A153</th>\n",
" <th>GoodCredit</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>5</td>\n",
" <td>1</td>\n",
" <td>67</td>\n",
" <td>1169</td>\n",
" <td>6</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>22</td>\n",
" <td>5951</td>\n",
" <td>48</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>49</td>\n",
" <td>2096</td>\n",
" <td>12</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>45</td>\n",
" <td>7882</td>\n",
" <td>42</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>53</td>\n",
" <td>4870</td>\n",
" <td>24</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" employ foreign age ... housing_A152 housing_A153 GoodCredit\n",
"0 5 1 67 ... 1 0 0\n",
"1 3 1 22 ... 1 0 1\n",
"2 4 1 49 ... 1 0 0\n",
"3 4 1 45 ... 0 1 0\n",
"4 3 1 53 ... 0 1 1\n",
"\n",
"[5 rows x 47 columns]"
]
},
"metadata": {},
"execution_count": 459
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "2Qf3_0REKoph",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "707e352f-b24e-4138-d0ee-de9a619da646"
},
"source": [
"# Printing all the column names for our reference\n",
"DataForML_Numeric.columns"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Index(['employ', 'foreign', 'age', 'amount', 'duration', 'checkingstatus_A11',\n",
" 'checkingstatus_A12', 'checkingstatus_A13', 'checkingstatus_A14',\n",
" 'history_A30', 'history_A31', 'history_A32', 'history_A33',\n",
" 'history_A34', 'purpose_A40', 'purpose_A41', 'purpose_A410',\n",
" 'purpose_A42', 'purpose_A43', 'purpose_A44', 'purpose_A45',\n",
" 'purpose_A46', 'purpose_A48', 'purpose_A49', 'savings_A61',\n",
" 'savings_A62', 'savings_A63', 'savings_A64', 'savings_A65',\n",
" 'status_A91', 'status_A92', 'status_A93', 'status_A94', 'others_A101',\n",
" 'others_A102', 'others_A103', 'property_A121', 'property_A122',\n",
" 'property_A123', 'property_A124', 'otherplans_A141', 'otherplans_A142',\n",
" 'otherplans_A143', 'housing_A151', 'housing_A152', 'housing_A153',\n",
" 'GoodCredit'],\n",
" dtype='object')"
]
},
"metadata": {},
"execution_count": 460
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "XltmQ7g1Koph"
},
"source": [
"# Separate Target Variable and Predictor Variables\n",
"TargetVariable='GoodCredit'\n",
"Predictors=['employ', 'foreign', 'age', 'amount', 'duration', 'checkingstatus_A11','checkingstatus_A12', 'checkingstatus_A13', 'checkingstatus_A14','history_A30', 'history_A31', 'history_A32', 'history_A33',\n",
" 'history_A34', 'purpose_A40', 'purpose_A41', 'purpose_A410','purpose_A42', 'purpose_A43', 'purpose_A44', 'purpose_A45', 'purpose_A46', 'purpose_A48', 'purpose_A49', 'savings_A61',\n",
" 'savings_A62', 'savings_A63', 'savings_A64', 'savings_A65','status_A91', 'status_A92', 'status_A93', 'status_A94', 'others_A101','others_A102', 'others_A103', 'property_A121', 'property_A122',\n",
" 'property_A123', 'property_A124', 'otherplans_A141', 'otherplans_A142','otherplans_A143', 'housing_A151', 'housing_A152', 'housing_A153']"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "I8HiWQe2Koph"
},
"source": [
"X=DataForML_Numeric[Predictors].values\n",
"y=DataForML_Numeric[TargetVariable].values"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "R1Vi7loWKopi"
},
"source": [
"# Splitting the data into training and testing set\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=428)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "_x_KRoSQKopi"
},
"source": [
"# Normalization of data\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "TiDkOU_dKopi"
},
"source": [
"from sklearn.preprocessing import StandardScaler, MinMaxScaler\n",
"\n",
"PredictorScaler=MinMaxScaler()\n",
"\n",
"# Storing the fit object for later reference\n",
"PredictorScalerFit=PredictorScaler.fit(X)\n",
"\n",
"# Generating the standardized values of X\n",
"X=PredictorScalerFit.transform(X)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "yq02uV96Kopi"
},
"source": [
"# Split the data into training and testing set\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "bDofmcthKopi",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "5023329c-29da-4e4b-cbec-590ba120e69d"
},
"source": [
"# Sanity check for the sampled data\n",
"print(X_train.shape)\n",
"print(y_train.shape)\n",
"print(X_test.shape)\n",
"print(y_test.shape)\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"(700, 46)\n",
"(700,)\n",
"(300, 46)\n",
"(300,)\n"
]
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_h1RKlbLKopi"
},
"source": [
"# **After all the treatments and splitting the final data into test and train we will now starting modelling diffrent classification models.**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "p3RZE7tEKopi"
},
"source": [
"# Classifier 1- Logistic Regression"
]
},
{
"cell_type": "code",
"metadata": {
"id": "Yrzqb4shKopi",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "d4621dc2-2c4e-443c-d375-faf72397ed48"
},
"source": [
"from sklearn.linear_model import LogisticRegression\n",
"\n",
"clf = LogisticRegression(C=1,penalty='l2', solver='newton-cg')\n",
"clf"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"LogisticRegression(C=1, solver='newton-cg')"
]
},
"metadata": {},
"execution_count": 467
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "36nQzIcmKopj"
},
"source": [
"# Creating the model on Training Data\n",
"LOG=clf.fit(X_train,y_train)\n",
"prediction=LOG.predict(X_test)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "8rWoOTW4Kopj",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "07e2e6f7-f528-4869-c2a0-c7ee68dd5630"
},
"source": [
"# Measuring accuracy on Testing Data\n",
"from sklearn import metrics\n",
"print(metrics.classification_report(y_test, prediction))\n",
"print(metrics.confusion_matrix(y_test, prediction))\n",
"\n",
"# the Overall Accuracy of the model\n",
"F1_Score=metrics.f1_score(y_test, prediction, average='weighted')\n",
"print('Accuracy of the model on Testing Sample Data:', round(F1_Score,2))"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" precision recall f1-score support\n",
"\n",
" 0 0.80 0.90 0.85 209\n",
" 1 0.68 0.47 0.56 91\n",
"\n",
" accuracy 0.77 300\n",
" macro avg 0.74 0.69 0.70 300\n",
"weighted avg 0.76 0.77 0.76 300\n",
"\n",
"[[189 20]\n",
" [ 48 43]]\n",
"Accuracy of the model on Testing Sample Data: 0.76\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "iCFX_kqiKopj",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "62b6b4bb-ff5f-4be6-ab94-25e07995d0ca"
},
"source": [
"# Importing cross validation function from sklearn\n",
"from sklearn.model_selection import cross_val_score\n",
"\n",
"# Running Cross validation\n",
"\n",
"Accuracy_Values=cross_val_score(LOG, X , y, cv=10, scoring='f1_weighted')\n",
"print('\\nAccuracy values for 10-fold Cross Validation:\\n',Accuracy_Values)\n",
"print('\\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"Accuracy values for 10-fold Cross Validation:\n",
" [0.78666667 0.66403326 0.75159817 0.71776316 0.76028751 0.80460526\n",
" 0.63733333 0.77519841 0.77229833 0.7343254 ]\n",
"\n",
"Final Average Accuracy of the model: 0.74\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "j9AlGM9xKopj",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "9a1edd58-3d08-4056-b8de-462c65428471"
},
"source": [
"#Calculating roc_auc_score\n",
"from sklearn.metrics import roc_auc_score\n",
"roc_auc_score(y_test ,prediction) "
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.6884168463115832"
]
},
"metadata": {},
"execution_count": 471
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "eqEYa6LvKopj"
},
"source": [
"pred_proba = clf.predict_proba(X_test)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "OYGXLghhKopj",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 265
},
"outputId": "0b6a9dc3-4ca2-4baf-afea-f6f679646923"
},
"source": [
"from sklearn.metrics import roc_curve\n",
"\n",
"pred_proba = clf.predict_proba(X_test)[::,1]\n",
"\n",
"fpr, tpr, _ = roc_curve(y_test, prediction)\n",
"\n",
"auc = roc_auc_score(y_test, prediction)\n",
"plt.plot(fpr,tpr,label=\"data 1, auc=\"+str(auc))\n",
"plt.legend(loc=4)\n",
"plt.show()"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3xU9Z3/8dc3V0gI4ZIEQiYhQALkyiWj3CoiykWooEi20trVfbj6sN5+a6urLV11rf3V1VZ/bddupdZt1aprwCIKShClXirChHsChruZ3EhICLlfZj6/PybMBgwkQJLJzHyej0cej5xzvjnnc2Yy70y+c77fY0QEpZRS3i/A0wUopZTqGRroSinlIzTQlVLKR2igK6WUj9BAV0opHxHkqQNHRUVJYmKipw6vlFJeKS8vr1JEojvb5rFAT0xMxGazeerwSinllYwxx8+3TbtclFLKR2igK6WUj9BAV0opH6GBrpRSPkIDXSmlfESXgW6MedkYc8IYs+88240x5jfGmEPGmD3GmKk9X6ZSSqmudOcd+p+AhRfYfj2Q3P51F/Bfl1+WUkqpi9VloIvIJ0DVBZosBV4Rl63AEGNMbE8VqJRSvqKoqoHnNxVSWF7bK/vviYFFcUBRh2V7+7rScxsaY+7C9S6ehISEHji0Ukr1bw0tbby/t4ycvCK2HqnCGIgaFML4ERE9fqw+HSkqIquAVQBWq1XvrKGU8kkiQt7xanJsdtbvLaWuuY3Rw8P40bzxLMuyEDdkYK8ctycCvRiI77BsaV+nlFJ+paymiTU77KzJs3Oksp6wkEAWZcSSnWXhyjHDMMb06vF7ItDXAfcZY94EpgE1IvKN7hallPJFzW0ONhWUk2Oz8+nBCpwCVyYO4+4541icEUt4aN91hHR5JGPMG8AcIMoYYwceB4IBROT3wAZgEXAIaAD+qbeKVUqp/kBE2Fd8mpy8It7ZVUJNYyuxkQO4Z04Sy7MsJEaFe6SuLgNdRFZ0sV2Ae3usIqWU6qdO1jXz153FrM6zc6CslpCgABakjSQ7y8KspCgCA3q3S6UrHps+VymlvEGrw8mWryrIsRXx0YETtDmFSfFDeOrGdG7IHEVkWLCnS3TTQFdKqU4UlteSYyvirztLqKxrJmpQCP80K5Fsa3yvXHLYEzTQlVKqXU1DK+v2lLDaVsRuew1BAYa5E2PItsYzZ0I0wYH9e/orDXSllF9zOIXPD1WSk2dnY34ZLW1OJo6M4N++ncrSyaOIGhTq6RK7TQNdKeWXjlXWszrPzpoddkprmogcGMyKK+LJtsaTNmpwr18z3hs00JVSfqO+uY31e0tZbbOz7VgVAQZmj4/mp4tTuS41htCgQE+XeFk00JVSPk1E2Ha0ipw8Oxv2ltLQ4mBsVDj/unACy6ZYGBk5wNMl9hgNdKWUTyo+1cjbeXZW77Bz/GQDg0KDWDJpFNlWC1MThnpll0pXNNCVUj6jqdXBxvwycmx2Pj9ciQjMGDuc/3NtMgvTRxIW4tuR59tnp5TyeSLCbnsNb9mKeHd3CbVNbcQNGcgDc5NZnmUhfliYp0vsMxroSimvdKK2ibU7i8mx2Tl4oo4BwQFcn+6a2XD62OEEeHgYvidooCulvEZLm5OPDrhmNtxSWIHDKUxNGMIvlmWwODOWwQP6zzB8T9BAV0r1ewUl/zuzYVV9CzERodx51ViWZ1lIihnk6fL6DQ10pVS/VF3fwju7isnJs5NfcpqQwACuS40hOyueq5KjCOrnw/A9QQNdKdVvtDmcfHqwkpy8Ij4sOEGLw0naqME8cUMqSyfHMTQ8xNMl9msa6EopjztcUUeOzc5fd9opP93MsPAQvjc9geyseFJHDfZ0eV5DA10p5RG1Ta28t6eUHFsRO74+RWCAYc74aP59iYW5E0cQEqRdKhdLA10p1WecTmHrkZPk5Nl5f18pTa1OkmIG8ePrJ3LT1DhiInxnGL4naKArpXpdUVWDe2ZDe3UjEQOCuHmqheVZFibHD/HJYfieoIGulOoVjS0O3t9XSo7NzhdHTmIMzBoXxcMLJrAgbSQDgr17ZsP+SANdKdVjRIQdX1eTY7Pz3p5S6prbSBgWxg/njefmLAtxQwZ6ukSfpoGulLps5aebWLPDzuo8O0cq6gkLCWRRhmsY/hWJw/xyGL4naKArpS5Jc5uDDwtOkJNXxCeFFTgFrkwcxt1Xj2NRRiyDQjVe+po+4kqpbhMR9hX/7zD8msZWYiMHcM+cJJZnWUiMCvd0iX5NA10p1aWTdc2s3VVCjq2IA2W1hAQFsCBtJNlZFmYlRRGoXSr9gga6UqpTrQ4nf/uqgpy8IjbvP0GbU5hkieRnN6azJHMUkWH+PbNhf6SBrpQ6S2F5LTm2Iv66s4TKumaiBoXwT7MSWZ4Vz4SREZ4uT12ABrpSiprGVtbtLmG1rYjd9hqCAgxzJ8aQbY1nzoRognVmQ6+gga6Un3I4hc8PVZKTZ2djfhktbU4mjozgp4tTuHFKHFGDQj1dorpIGuhK+ZljlfWszrPz9g47JTVNRA4M5pYr4snOiic9brAOw/diGuhK+YH65jbW7y1ltc3OtmNVBBi4KjmanyxO4bqUEToM30d0K9CNMQuBXwOBwEsi8vQ52xOAPwND2ts8KiIberhWpdRFEBG2Ha0iJ8/Ohr2lNLQ4GBMVzsMLJnDzVAsjI3VmQ1/TZaAbYwKBF4B5gB3YboxZJyIFHZr9FHhLRP7LGJMKbAASe6FepVQXSk41sibPzuoddo6fbCA8JJAbMkeRbbWQNXqodqn4sO68Q78SOCQiRwCMMW8CS4GOgS7AmduKRAIlPVmkUurCmlodbMwvY3Wenc8OVSIC08cO44G5yVyfMZKwEO1d9QfdeZbjgKIOy3Zg2jltngByjTH3A+HAdZ3tyBhzF3AXQEJCwsXWqpTqQETYba8hx1bEut0l1Da1ETdkIPfPTWb5VAsJw8M8XaLqYz31Z3sF8CcR+ZUxZgbwqjEmXUScHRuJyCpgFYDVapUeOrZSfuVEbRNrdxaTY7Nz8EQdoUEBXJ8+kmxrPDPGDteZDf1YdwK9GIjvsGxpX9fRHcBCABH5whgzAIgCTvREkUr5u5Y2Jx8dOMHqvCI+/qoCh1OYmjCEXyzLYHFmLIMH6DB81b1A3w4kG2PG4AryW4DvntPma+Ba4E/GmBRgAFDRk4Uq5Y/2l54mx2Zn7a5iqupbiI4I5c6rxrI8y0JSzCBPl6f6mS4DXUTajDH3ARtxXZL4sojkG2OeBGwisg74EfAHY8yDuD4gvV1EtEtFqUtwqqGFd3aVkJNXxL7i0wQHGq5LGUG21cLs5GiCdBi+Og/jqdy1Wq1is9k8cmyl+huHU/jkYAWrbXY2FZTT4nCSNmow2VkWlk6OY2h4iKdLVP2EMSZPRKydbdNrmZTyoMMVde5h+OWnmxkaFsz3pieQnRVP6qjBXe9AqQ400JXqY7VNrby3p5QcWxE7vj5FYIBhzvho/n2JhbkTRxASpF0q6tJooCvVB5xOYevRk+TY7Ly/r5SmVidJMYP48fUTuWlKHDGDdRi+unwa6Er1oqKqBtbssLM6z469upGI0CCWTbWQnWVhcvwQHYavepQGulI9rLHFwfv7Ssmx2fniyEmMgVnjonh4wQQWpI3UmQ1Vr9FAV6oHiAg7vq4mx2bnvT2l1DW3kTAsjB/OG8/NWRbihgz0dInKD2igK3UZyk83ubtUjlTUMzA4kEUZsWRbLVyZOEyH4as+pYGu1EVqbnPwYcEJcvKK+KSwAqfAFYlDuXv2OBZlxjIoVF9WyjP0N0+pbhAR8ktOk2Mr4p3dJZxqaGXk4AH8YM44lmfFMyYq3NMlKqWBrtSFnKxrZu2uEnJsRRwoqyUkKID5qSPItsbzraQoArVLRfUjGuhKnaPN4WTLVxXk5BXx0YETtDqETEskP1uaxpJJcUSG6cyGqn/SQFeq3cHyWnLy7Ly9o5jKumaiBoVw24xEsq3xTBgZ4enylOqSBrryazWNrby7u4ScPDu7i04RFGC4ZmIM2VkWrpkYQ7DObKi8iAa68jsOp/D3w5Xk2OxszC+juc3JhBER/HRxCjdOiSNqUKinS1TqkmigK79x/GQ9q/PsrMmzU1LTROTAYL5zRTzZWfGkxw3WYfjK62mgK59W39zGhr2l5OTZ2Xa0igADVyVH85PFKVyXMkKH4SufooGufI6IsO1oFTl5djbsLaWhxcGYqHAeXjCBm6daGBmpMxsq36SBrnxGyalG3t5hJyfPzvGTDYSHBHJD5iiyrRayRg/VLhXl8zTQlVdranWQW1BOjq2Izw5VIgLTxw7jgbnJXJ8xkrAQ/RVX/kN/25XXERF222vIsRXx7u4STje1ETdkIPfPTWb5VAsJw8M8XaJSHqGBrrxGRW0zf93pmtmwsLyO0KAArk8fSbY1nhljh+vMhsrvaaCrfq2lzclHB06wOq+Ij7+qwOEUpiQM4f/elMG3J8UyeIAOw1fqDA101S/tLz1Njs3OO7uKOVnfQnREKP981RiysywkxegwfKU6o4Gu+o1TDS28s6uEnLwi9hWfJjjQcF3KCLKtFmYnRxOkw/CVuiANdOVRDqfwycEKVtvsbCoop8XhJDV2MI/fkMrSyXEMCw/xdIlKeQ0NdOURRyrq2mc2tFN+upmhYcF8d1oC2VYLaaMiPV2eUl5JA131mdqmVtbvcQ3DzzteTYCBORNieOIGC3NTYggN0mH4Sl0ODXTVq5xOYevRk6y22Xl/XxmNrQ7GRYfz6PUTWTYljpjBOgxfqZ6iga56RVFVA2t22Fmzw05RVSMRoUHcOCWObKuFKfFDdBi+Ur1AA131mMYWBx/kl5Jjs/P3wycxBmaOG86P5k1gQdpIBoZol4pSvalbgW6MWQj8GggEXhKRpztp8w/AE4AAu0Xkuz1Yp+qnRIQdX59idV4R7+0upba5jfhhA3nwuvHcnBWHZagOw1eqr3QZ6MaYQOAFYB5gB7YbY9aJSEGHNsnAj4FZIlJtjInprYJV/1B+uom3dxSTk1fEkYp6BgYHcn3GSLKz4pk2ZpgOw1fKA7rzDv1K4JCIHAEwxrwJLAUKOrS5E3hBRKoBRORETxeqPK+5zcHm/SfIsRXxt8IKnAJXJA7l7tnjWJQZy6BQ7cFTypO68wqMA4o6LNuBaee0GQ9gjPkcV7fMEyLywbk7MsbcBdwFkJCQcCn1Kg/YV1zD6jw7a3cVc6qhlZGDB/CDOeNYnhXPmKhwT5enlGrXU2+pgoBkYA5gAT4xxmSIyKmOjURkFbAKwGq1Sg8dW/WCk3XNrN1Vwuo8O/tLTxMSFMD81BFkW+P5VlIUgdqlolS/051ALwbiOyxb2td1ZAe+FJFW4KgxphBXwG/vkSpVn2hzONnyVQU5eUV8dOAErQ4h0xLJz5amccOkUQwJ02H4SvVn3Qn07UCyMWYMriC/BTj3Cpa1wArgv40xUbi6YI70ZKGq9xwsr20fhl9MZV0zw8NDuG1GIsutFiaOHOzp8pRS3dRloItImzHmPmAjrv7xl0Uk3xjzJGATkXXt2+YbYwoAB/CwiJzszcLV5alpbOXd3SXk5NnZXXSKoADDNRNjyM6ycM3EGIJ1ZkOlvI4R8UxXttVqFZvN5pFj+yunU/j8cCU5Njsb88tobnMyYUQE2VYLN06JI2pQqKdLVEp1wRiTJyLWzrbpdWZ+4PjJelbn2VmTZ6ekponBA4L4B2s82VYLGXGROgxfKR+hge6j6pvb2LDXNbPhtqNVGANXJUfz40UpzEsdwYBgHYavlK/RQPchIsL2Y9Xk2IrYsLeU+hYHicPDeHjBBJZNjSM2cqCnS1RK9SINdB9QcqqRt3fYWZ1n59jJBsJDAlmcGUu2NR7r6KHapaKUn9BA91JNrQ5yC8rJsRXx2aFKRGDamGHcNzeZRRkjCQvRp1Ypf6Ovei8iIuyx15CTV8S6XSWcbmojbshA7r8miZuzLIwersPwlfJnGuheoKK2mbU7XTMbFpbXERoUwMJ018yGM8cN15kNlVKABnq/1epw8tGBE+TY7Gz56gRtTmFy/BB+flM6384cReTAYE+XqJTqZzTQ+5kDZafJsdlZu7OYk/UtREeEcse3xpBttZAUE+Hp8pRS/ZgGej9wqqGFdbtLyLHZ2VtcQ3Cg4dqJI8i2Wrh6fDRBOgxfKdUNGuge4nAKnxysYHWenU355bQ4nKTEDuaxb6dy45Q4hoXrzIZKqYujgd7HjlTUuYbh77BTfrqZoWHBfHdaAtlWC2mjIj1dnlLKi2mg94G65jbW73F1qdiOVxNgYM6EGJ64wcLclBhCg3QYvlLq8mmg9xKnU9h69CSrbXbe31dGY6uDcdHhPHr9RJZNiSNm8ABPl6iU8jEa6D2sqKqBNTtcXSpFVY1EhAZx45Q4sq0WpsQP0WH4Sqleo4HeAxpbHHyQX0qOzc7fD7vu6zEraTg/mjeBBWkjGRiiXSpKqd6ngX6JRIQdX59idV4R7+0upba5jfhhA3nwuvHcnBWHZWiYp0tUSvkZDfSLVH66ibd3FLM6r4jDFfUMDA7k+gzXMPxpY4bpMHyllMdooHeDiLAxv4z/2V7E3worcApYRw/lP24ey+LMUQwK1YdRKeV5mkTd8N6eUu5/YycjBw/g7qvHsTzLwtjoQZ4uSymlzqKB3g3r95QyYnAonz1yjQ7DV0r1W5pOXWhqdfC3wgrmp47UMFdK9WuaUF347GAlja0O5qWO8HQpSil1QRroXcgtKCMiNIjpY4d7uhSllLogDfQLcDiFzftPcM3EGEKC9KFSSvVvmlIXsOPrak7WtzA/TbtblFL9nwb6BeTmlxESGMDV46M9XYpSSnVJA/08RITcgnJmJg0nYoDev1Mp1f9poJ9HYXkdx0826NUtSimvoYF+Hrn5ZQDMS9FAV0p5Bw3089i0v5wpCUP0RhRKKa/RrUA3xiw0xnxljDlkjHn0Au1uNsaIMcbacyX2vZJTjeyx1zA/daSnS1FKqW7rMtCNMYHAC8D1QCqwwhiT2km7COD/AF/2dJF97cP95QB6uaJSyqt05x36lcAhETkiIi3Am8DSTtr9DPgPoKkH6/OI3PxyxkWHM05nVFRKeZHuBHocUNRh2d6+zs0YMxWIF5H1F9qRMeYuY4zNGGOrqKi46GL7Qk1DK1uPnGSedrcopbzMZX8oaowJAJ4DftRVWxFZJSJWEbFGR/fPwToff3WCNqdod4tSyut0J9CLgfgOy5b2dWdEAOnAFmPMMWA6sM5bPxjdVFBOdEQoky1DPF2KUkpdlO4E+nYg2RgzxhgTAtwCrDuzUURqRCRKRBJFJBHYCiwREVuvVNyLmlodbPnqBPNSR+i9QZVSXqfLQBeRNuA+YCOwH3hLRPKNMU8aY5b0doF96YvDJ6lvcTBfR4cqpbxQt25BJyIbgA3nrHvsPG3nXH5ZnpFbUMag0CBmjNO5z5VS3kdHirZzOIVNBeVcPSGa0KBAT5ejlFIXTQO93a6iairrWrS7RSnltTTQ2+UWlBMcaLhmYoynS1FKqUuigU773Of55UwfO5zBOve5UspLaaADhyvqOFpZz/w0HR2qlPJeGujAxnzXZFw697lSyptpoOPqP59kiWRkpM59rpTyXn4f6OWnm9hddEq7W5RSXs/vA31TQfvc53q5olLKy/l9oOcWlDMmKpykGJ37XCnl3fw60E83tfLF4Urmp47AGJ2MSynl3fw60Ld8VUGrQ+c+V0r5Br8O9Nz8MqIGhTA5fqinS1FKqcvmt4He3OZgy1cVXJcygkCd+1wp5QP8NtC3HqmirrlNu1uUUj7DbwM9N7+MsJBAZo6L8nQpSinVI/wy0J3tc5/PmRDNgGCd+1wp5Rv8MtB3209xoraZ+ak6OlQp5Tv8MtBzC8oJDDBcM0HnPldK+Q6/DPRNBeVMHzuMyDCd+1wp5Tv8LtAPV9Rx6ESddrcopXyO3wX6mcm45ulkXEopH+N3gZ6bX0ZGXCSjhgz0dClKKdWj/CrQT9Q2sbPolE6Vq5TySX4V6Jv3n0AE5unoUKWUD/KrQM/NLyNhWBgTRkR4uhSllOpxfhPodc1tfH7opM59rpTyWX4T6H/7qoIWh1PvHaqU8ll+E+i5BWUMCw8ha7TOfa6U8k1+EeitDicfHTjBtRNjdO5zpZTP6lagG2MWGmO+MsYcMsY82sn2HxpjCowxe4wxm40xo3u+1Ev35ZEqapvatLtFKeXTugx0Y0wg8AJwPZAKrDDGpJ7TbCdgFZFMYDXwTE8XejlyC8oYGBzIVck697lSynd15x36lcAhETkiIi3Am8DSjg1E5GMRaWhf3ApYerbMSyci5OaXM3t8lM59rpTyad0J9DigqMOyvX3d+dwBvN/ZBmPMXcYYmzHGVlFR0f0qL8Pe4hrKTjfpZFxKKZ/Xox+KGmNuBazAs51tF5FVImIVEWt0dHRPHvq8cvNdc5/PnahznyulfFtQN9oUA/Edli3t685ijLkOWAlcLSLNPVPe5dtUUM4ViUMZGh7i6VKUUqpXdecd+nYg2RgzxhgTAtwCrOvYwBgzBXgRWCIiJ3q+zEtzrLKer8prtbtFKeUXugx0EWkD7gM2AvuBt0Qk3xjzpDFmSXuzZ4FBQI4xZpcxZt15dtendO5zpZQ/6U6XCyKyAdhwzrrHOnx/XQ/X1SNyC8pIjR1M/LAwT5eilFK9zmdHilbWNWM7Xs18nSpXKeUnfDbQN+8vRwTtP1dK+Q2fDfRNBeXEDRlISqzOfa6U8g8+Gej1zW18crCS+Wk697lSyn/4ZKB/erCCljandrcopfyKTwZ6bn45Q8KCuSJR5z5XSvkPnwv0VoeTzQdOcO3EEQQF+tzpKaXUeflc4m0/WkVNY6terqiU8js+F+i5BeWEBgXo3OdKKb/jU4EuImwqKOeq5GjCQro1CFYppXyGTwV6fslpik81aneLUsov+VSg5xaUE2DgWp37XCnlh3wr0PPLsCYOY/igUE+XopRSfc5nAr2oqoEDZbXM16lylVJ+ymcCPbd97nMdHaqU8le+E+j5ZUwcGUHCcJ37XCnln3wi0KvqW9h+rEq7W5RSfs0nAn3z/nKcAvPTtLtFKeW/fCLQcwvKGRU5gLRRgz1dilJKeYzXB3pji4NPD1YwP22kzn2ulPJrXh/onx6soKnVyTztP1dK+Tmvn/Akt6CcwQOCuHLMME+Xotq1trZit9tpamrydClKea0BAwZgsVgIDg7u9s94daC3OZxs3l/OtSkjCNa5z/sNu91OREQEiYmJ2g2m1CUQEU6ePIndbmfMmDHd/jmvTkHb8WqqG1r1csV+pqmpieHDh2uYK3WJjDEMHz78ov/L9epAz80vJyQogNnjoz1dijqHhrlSl+dSXkNeG+giwqb9ZVyVFEV4qFf3HCmlVI/w2kA/UFZLUVWjXt2iuvTEE0/wy1/+8oJt1q5dS0FBwUXt98CBA8yYMYPQ0NAu99/XRIQHHniApKQkMjMz2bFjR6ftWlpauOuuuxg/fjwTJ05kzZo1AHz99ddcc801TJkyhczMTDZs2AC4PvC+7bbbyMjIICUlhV/84hdn7c/hcDBlyhS+/e1vu9f953/+J0lJSRhjqKysPKv9li1bmDx5MmlpaVx99dXu9c8//zxpaWmkp6ezYsWKb3Q9PPDAAwwaNOisdW+99RapqamkpaXx3e9+F4Djx48zdepU9zF+//vfu9uvXLmS+Pj4b+znk08+YerUqQQFBbF69eqztgUGBjJ58mQmT57MkiVL3Os3b97sPs63vvUtDh06BMDvf/97MjIy3OvP/I5t2rSJrKwsMjIyyMrK4qOPPur0+bloIuKRr6ysLLkc/29ToSQ++p6cON10WftRPa+goMDTJZzl8ccfl2efffaCbW677TbJycm5qP2Wl5fLtm3b5Cc/+UmX++9r69evl4ULF4rT6ZQvvvhCrrzyyk7bPfbYY7Jy5UoREXE4HFJRUSEiInfeeaf87ne/ExGR/Px8GT16tIiI/OUvf5HvfOc7IiJSX18vo0ePlqNHj7r396tf/UpWrFghixcvdq/bsWOHHD16VEaPHu3ev4hIdXW1pKSkyPHjx0XE9XiKiNjtdklMTJSGhgYREcnOzpb//u//dv/c9u3b5dZbb5Xw8HD3usLCQpk8ebJUVVWdta/m5mZpanJlRG1trYwePVqKi4tFROSLL76QkpKSs/YjInL06FHZvXu3fP/73//G78S5bc9ITk52/96/8MILctttt4mISE1NjbvNO++8IwsWLHA/Jmfq2Lt3r4waNarT/Xb2WgJscp5c9dq+ityCMrIShhIdoXOf92f//m4+BSWne3SfqaMG8/gNaRds8/Of/5w///nPxMTEEB8fT1ZWFgB/+MMfWLVqFS0tLSQlJfHqq6+ya9cu1q1bx9/+9jeeeuop1qxZw0cfffSNdmFhZ0/8FhMTQ0xMDOvXr+927U8++STvvvsujY2NzJw5kxdffBFjDHPmzOGXv/wlVquVyspKrFYrx44dw+Fw8Mgjj/DBBx8QEBDAnXfeyf3339/lcd555x3+8R//EWMM06dP59SpU5SWlhIbG3tWu5dffpkDBw4AEBAQQFSU6168xhhOn3Y9bzU1NYwaNcq9vr6+nra2NhobGwkJCWHwYNcIbbvdzvr161m5ciXPPfec+xhTpkzptMbXX3+dZcuWkZCQ4H48zziz/+DgYBoaGtzHdzgcPPzww7z++uv89a9/dbf/wx/+wL333svQoUPP2ldISIi7TXNzM06n0708ffr0TutKTEx0Px7ddb7H68xjA1BfX+/uF+/4mKSlpdHY2EhzczOhoZeXZ17Z5WKvbiC/5LTeak51Ki8vjzfffJNdu3axYcMGtm/f7t62bNkytm/fzu7du0lJSeGPf/wjM2fOZMmSJTz77LPs2rWLcePGddquJ9x3331s376dffv20djYyHvvvXfB9qtWreLYsWPs2rWLPXv28L3vfQ+ABx980P2vf8evp59+GoDi4mLi4+Pd+7FYLBQXF5+171OnTgHwb//2b0ydOpXs7GzKy13TUD/xxBO89tprWCwWFi1axG9/+1sAlo6PDIsAAAxCSURBVC9fTnh4OLGxsSQkJPDQQw8xbJhrDMi//Mu/8Mwzz3Q7CAsLC6murmbOnDlkZWXxyiuvABAXF8dDDz1EQkICsbGxREZGMn/+fMDVfbNkyZJv/GEqLCyksLCQWbNmMX36dD744AP3tqKiIjIzM4mPj+eRRx5xh+2laGpqwmq1Mn36dNauXete/9JLL7Fo0SIsFguvvvoqjz76qHvbCy+8wLhx4/jXf/1XfvOb33xjn2vWrGHq1KmXHebgpdehf9g+9/k8nfu83+vqnXRv+PTTT7npppvc76g79nXu27ePn/70p5w6dYq6ujoWLFjQ6T662+5iffzxxzzzzDM0NDRQVVVFWloaN9xww3nbf/jhh9x9990EBbleqmfC8/nnn7/sWtra2rDb7cycOZPnnnuO5557joceeohXX32VN954g9tvv50f/ehHfPHFF3z/+99n3759bNu2jcDAQEpKSqiuruaqq67iuuuuo6CggJiYGLKystiyZUu3j5+Xl8fmzZtpbGxkxowZTJ8+nejoaN555x2OHj3KkCFDyM7O5rXXXmPu3Lnk5OR0uv+2tjYOHjzIli1bsNvtzJ49m7179zJkyBDi4+PZs2cPJSUl3HjjjSxfvpwRIy7tzeDx48eJi4vjyJEjzJ07l4yMDMaNG8fzzz/Phg0bmDZtGs8++yw//OEPeemllwC49957uffee3n99dd56qmn+POf/+zeX35+Po888gi5ubmXVM+5uhXoxpiFwK+BQOAlEXn6nO2hwCtAFnAS+I6IHOuRCjuRW1DO+BGDGBMV3luHUD7q9ttvZ+3atUyaNIk//elP5w2f7ra7GE1NTdxzzz3YbDbi4+N54okn3B/2BQUFubsDunPt8YMPPsjHH3/8jfW33HILjz76KHFxcRQVFbnX2+124uLizmo7fPhwwsLCWLZsGQDZ2dnu/0T++Mc/ut/lzpgxg6amJiorK3n99ddZuHAhwcHBxMTEMGvWLGw2Gzt37mTdunVs2LCBpqYmTp8+za233sprr7123nOwWCwMHz6c8PBwwsPDmT17Nrt37wZgzJgxREe7LkdetmwZf//73xk6dCiHDh0iKSkJgIaGBpKSkjh06BAWi4Vp06YRHBzMmDFjGD9+PAcPHuSKK65wH2/UqFGkp6fz6aefsnz58i4f486ceQzHjh3LnDlz2LlzJ4MHD2b37t1MmzYNgO985zssXLjwGz97yy238IMf/MC9bLfbuemmm3jllVcYN27cJdVzri7/NzLGBAIvANcDqcAKY0zqOc3uAKpFJAl4HviPHqmuE6caWvjyaJVe3aLOa/bs2axdu5bGxkZqa2t599133dtqa2uJjY2ltbWVv/zlL+71ERER1NbWdtmuu6699tpvdHGcCeqoqCjq6urOuoIiMTGRvLw8gLPWz5s3jxdffJG2tjYAqqqqANc79F27dn3j68y/+kuWLOGVV15BRNi6dSuRkZHf6KYwxnDDDTe4/1ht3ryZ1FTXSzshIYHNmzcDsH//fpqamoiOjiYhIcF9RUZ9fT1bt25l4sSJ/OIXv8But3Ps2DHefPNN5s6de8EwB1i6dCmfffYZbW1tNDQ08OWXX5KSkkJCQgJbt26loaEBEWHz5s2kpKSwePFiysrKOHbsGMeOHSMsLMx9NcmNN97oPo/KykoKCwsZO3YsdrudxsZGAKqrq/nss8+YMGHCBes6n+rqapqbm93H+Pzzz0lNTWXo0KHU1NRQWFgIuK5gSUlJAeDgwYPun1+/fj3JycmAq7tr8eLFPP3008yaNeuS6unU+T4tPfMFzAA2dlj+MfDjc9psBGa0fx8EVALmQvu91Ktc1uQVyehH3pNdX1df0s+r3tcfrnJ56qmnJDk5WWbNmiUrVqxwX4Xyu9/9ThITE+WKK66Q++67z301wmeffSYpKSkyefJkOXTo0HnbdVRaWipxcXESEREhkZGREhcXJzU1NeJwOCQhIcF9lUZHK1eulLFjx8rMmTPl9ttvl8cff1xERPbv3y8ZGRkyefJkWblypfuqktbWVnnwwQclJSVFMjMz5be//W23zt/pdMo999wjY8eOlfT0dNm+fbt726RJk9zfHzt2TK666irJyMiQuXPnuq84yc/Pl5kzZ0pmZqZMmjRJNm7cKCKuK0WWL18uqampkpKSIs8888w3jv3xxx+fdZXLr3/9a4mLi5PAwECJjY2VO+64w73tmWeekZSUFElLS5Pnn3/evf6xxx6TCRMmSFpamtx6663uK1U66njFidPpdD9O6enp8sYbb4iISG5urmRkZEhmZqZkZGTIiy++6P6Zhx9+WOLi4sQYI3Fxce7nYtu2bRIXFydhYWEybNgwSU1NFRGRzz//XNLT0yUzM1PS09PlpZdecu/r7bffdm+7+uqr5fDhwyIi8sADD0hqaqpMmjRJ5syZI/v27RMRkZ/97GcSFhYmkyZNcn+duTKno4u9ysW4tp+fMWY5sFBE/rl9+fvANBG5r0Obfe1t7O3Lh9vbVJ6zr7uAuwASEhKyjh8/ftF/gDYVlPOWrYgXb80iIEBHI/ZH+/fvd79D8Uf79u3j5ZdfPutKD6UuRWevJWNMnohYO2vfpx+KisgqYBWA1Wq98F+S85iXOkK7W1S/lp6ermGuPKI71xcVA/Edli3t6zptY4wJAiJxfTiqlFKqj3Qn0LcDycaYMcaYEOAWYN05bdYBt7V/vxz4SLrqy1E+TZ9+pS7PpbyGugx0EWkD7sP1wed+4C0RyTfGPGmMOXOB7x+B4caYQ8APgUc735vyBwMGDODkyZMa6kpdImmfD33AgAEX9XNdfijaW6xWq9hsNo8cW/UuvWORUpfvfHcs6jcfiir/cGZwh1Kqb3nlXC5KKaW+SQNdKaV8hAa6Ukr5CI99KGqMqQAufqioSxSu6QX8iZ6zf9Bz9g+Xc86jRaTTGyl7LNAvhzHGdr5PeX2VnrN/0HP2D711ztrlopRSPkIDXSmlfIS3BvoqTxfgAXrO/kHP2T/0yjl7ZR+6Ukqpb/LWd+hKKaXOoYGulFI+ol8HujFmoTHmK2PMIWPMN2ZwNMaEGmP+p337l8aYxL6vsmd145x/aIwpMMbsMcZsNsaM9kSdPamrc+7Q7mZjjBhjvP4St+6cszHmH9qf63xjzOt9XWNP68bvdoIx5mNjzM723+9FnqizpxhjXjbGnGi/o1tn240x5jftj8ceY8zUyz7o+e5N5+kvIBA4DIwFQoDdQOo5be4Bft/+/S3A/3i67j4452uAsPbvf+AP59zeLgL4BNgKWD1ddx88z8nATmBo+3KMp+vug3NeBfyg/ftU4Jin677Mc54NTAX2nWf7IuB9wADTgS8v95j9+R36lcAhETkiIi3Am8DSc9osBf7c/v1q4FpjjDffaLTLcxaRj0WkoX1xK647SHmz7jzPAD8D/gPwhTl5u3POdwIviEg1gIic6OMae1p3zlmAwe3fRwIlfVhfjxORT4CqCzRZCrwiLluBIcaY2Ms5Zn8O9DigqMOyvX1dp23EdSOOGmB4n1TXO7pzzh3dgesvvDfr8pzb/xWNF5H1fVlYL+rO8zweGG+M+dwYs9UYs7DPqusd3TnnJ4BbjTF2YANwf9+U5jEX+3rvks6H7qWMMbcCVuBqT9fSm4wxAcBzwO0eLqWvBeHqdpmD67+wT4wxGSJyyqNV9a4VwJ9E5FfGmBnAq8aYdBFxerowb9Gf36H7482pu3POGGOuA1YCS0SkuY9q6y1dnXMEkA5sMcYcw9XXuM7LPxjtzvNsB9aJSKuIHAUKcQW8t+rOOd8BvAUgIl8AA3BNYuWruvV6vxj9OdD98ebUXZ6zMWYK8CKuMPf2flXo4pxFpEZEokQkUUQScX1usEREvPn+hd353V6L6905xpgoXF0wR/qyyB7WnXP+GrgWwBiTgivQK/q0yr61DvjH9qtdpgM1IlJ6WXv09CfBXXxKvAjXO5PDwMr2dU/iekGD6wnPAQ4B24Cxnq65D875Q6Ac2NX+tc7TNff2OZ/TdgtefpVLN59ng6urqQDYC9zi6Zr74JxTgc9xXQGzC5jv6Zov83zfAEqBVlz/cd0B3A3c3eE5fqH98djbE7/XOvRfKaV8RH/uclFKKXURNNCVUspHaKArpZSP0EBXSikfoYGulFI+QgNdKaV8hAa6Ukr5iP8PR76PCpQJzfkAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ezxgXMf1Kopk"
},
"source": [
"For more exploration - we can use oversampling, undersampling, smote and adasym"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oDIBbVZKKopk"
},
"source": [
"# Classifier 2 - Decision Tree Classifier"
]
},
{
"cell_type": "code",
"metadata": {
"id": "vAL5cnN6Kopk"
},
"source": [
"from sklearn import tree\n",
"from sklearn.tree import DecisionTreeClassifier"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "V-_2UZh9Kopk"
},
"source": [
"clf = tree.DecisionTreeClassifier(max_depth=4,criterion='gini')\n",
"\n",
"\n",
"# Creating the model on Training Data\n",
"DTree=clf.fit(X_train,y_train)\n",
"prediction=DTree.predict(X_test)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "V1SyEst-Kopk",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "fec1c765-1f4f-42c5-c9f9-adb9f29cd214"
},
"source": [
"# Measuring accuracy on Testing Data\n",
"from sklearn import metrics\n",
"print(metrics.classification_report(y_test, prediction))\n",
"print(metrics.confusion_matrix(y_test, prediction))\n",
"\n",
"# Printing the Overall Accuracy of the model\n",
"F1_Score=metrics.f1_score(y_test, prediction, average='weighted')\n",
"print('Accuracy of the model on Testing Sample Data:', round(F1_Score,2))"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" precision recall f1-score support\n",
"\n",
" 0 0.74 0.85 0.79 209\n",
" 1 0.48 0.33 0.39 91\n",
"\n",
" accuracy 0.69 300\n",
" macro avg 0.61 0.59 0.59 300\n",
"weighted avg 0.66 0.69 0.67 300\n",
"\n",
"[[177 32]\n",
" [ 61 30]]\n",
"Accuracy of the model on Testing Sample Data: 0.67\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "F0f6yVImKopk",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "ee56c6a3-de72-454b-de24-423aa936803a"
},
"source": [
"from sklearn import tree\n",
"from sklearn.model_selection import cross_val_score\n",
"\n",
"# Running Cross validation\n",
"Accuracy_Values=cross_val_score(DTree, X , y, cv=10, scoring='f1_weighted')\n",
"print('\\nAccuracy values for 10-fold Cross Validation:\\n',Accuracy_Values)\n",
"print('\\nFinal Average Accuracy of the model:', round(Accuracy_Values.mean(),2))"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\n",
"Accuracy values for 10-fold Cross Validation:\n",
" [0.73734823 0.68 0.7343254 0.65257937 0.66798419 0.64715447\n",
" 0.70133333 0.72 0.71433083 0.70133333]\n",
"\n",
"Final Average Accuracy of the model: 0.7\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "F3eW9tRtKopk",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 282
},
"outputId": "8d72d844-af3a-4daf-afa8-923947e8a0bb"
},
"source": [
"# Plotting the feature importance for Top 10 most important columns\n",
"%matplotlib inline\n",
"feature_importances = pd.Series(DTree.feature_importances_, index=Predictors)\n",
"feature_importances.nlargest(10).plot(kind='barh')"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7f6681af2610>"
]
},
"metadata": {},
"execution_count": 478
},
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAD4CAYAAABorHbzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de7hdVX3u8e9LkIQECAjoQQQ2IopAJJItGgWKCpV6I0gQ4jVgpShKrUfa9OCFKrbR2KMRvJwABSkoURCkpEXxEkBsgB0I7HC/RSUq9UYkBEMI7/ljjm1WFnPfkr332it5P8+znsw55hhj/sZakF/GnGOtKdtERETE+rZodQARERGjURJkREREjSTIiIiIGkmQERERNZIgIyIiamzZ6gBiaOy0007u6OhodRgREW1l8eLFv7W9c92xJMhNREdHB11dXa0OIyKirUj6WW/Hcok1IiKiRhJkREREjSTIiIiIGkmQERERNbJIZxPRvXwFHbMWtDqM9Syb/cZWhxARscEyg4yIiKiRBBkREVEjCTIiIqJGEuQIkXSFpMWS7pB0Uil7r6R7Jd0k6RxJZ5fynSVdJunm8np1a6OPiNj8ZJHOyDnR9u8lbQ3cLGkB8HHgQOAx4EfAbaXuXOALtn8iaXfge8BLmjssifYkgDHb1f5SUkREbKAkyJFzqqSjy/ZuwLuAa23/HkDSt4EXleOHA/tK6mm7naRtbK9s7ND2PGAewNhd9vYwxx8RsVlJghwBkg6jSnpTba+StBC4m5pZYbEF8ErbfxqZCCMiolnuQY6MicAfSnLcB3glMAH4C0k7SNoSOKah/veBD/XsSJo8otFGREQS5Ai5GthS0l3AbGARsBz4Z+Am4AZgGbCi1D8V6JR0u6Q7gZNHPOKIiM1cLrGOANurgb9qLpfUZXtemUFeDlxR6v8WOG5ko4yIiEZJkK11hqTDgXFUl1Wv2NCOJu06ka78tFtExJBJgmwh2x9tdQwREVEv9yAjIiJqJEFGRETUSIKMiIiokQQZERFRIwkyIiKiRhJkREREjSTIiIiIGkmQERERNZIgIyIiauSXdDYR3ctX0DFrQavDqLUsP4EXEW0oM8iIiIgaSZARERE1NtsEKelcSfuO0LkmS7KkI5vKt5d0qaS7Jd0laWopP1bSHZKeltQ5EjFGRMT6NtsEafuvbd85QqebAfyk/NloLnC17X2AA4C7SvlS4K3AdSMUX0RENGnLBClpgqQFkm6TtFTScZI+Ienmsj9PlX0k3dTQrkNSd9le2DM7k7RS0mdKf4skPbeU71X2uyWdKWllKd9F0nWSlpTzHdJHrAKOBWYCR0gaV8onAocC5wHYftL2o2X7Ltv3DOB9OElSl6SutatWbMhbGRERvWjLBAkcCfzS9gG29weuBs62/fKyvzXwJtt3A1tJ2rO0Ow6YX9PfBGCR7QOoZm3vK+Vzgbm2JwEPN9R/O/A925OpZn5L+oj1VcBDth8AFgI9Szr3BH4DnC/p1nLJd8Ig3gNsz7PdabtzzPiJg2kaERH9aNcE2U01G/uspENsrwBeI+nGMkN8LbBfqfstqsQIvSfIJ4GryvZioKNsTwW+Xba/0VD/ZuAESWcAk2w/1kesM4BLyvYlrLvMuiVwIPBV2y8DHgdm9dFPRESMoLZMkLbvpUou3cCZkj4BfAWYXmZ75wDjSvX5wNskvahq6vtqulxj22V7Lf18P9T2dVSXR5cDF0h6d109SWOAY4BPSFoGnAUcKWlbqhnpw7ZvLNUvLWOKiIhRoC0TpKTnAatsXwTMYV1i+a2kbYDpPXXLpc21wMepnz32ZRFVggM4vuH8ewCP2D4HOJfeE9vrgNtt72a7w/YewGXA0bZ/DfxC0osb6o7UoqGIiOhHu/6SziRgjqSngTXA+4FpVKs/f011CbTRfKpEuieD82HgIkmnU93n7FkJcxhwmqQ1wEqgdgZJdTn18qayy0q8FwIfAi6WtBXwIHACgKSjqWabOwMLJC2x/fq+Ap2060S68os1ERFDRuuuLEYzSeOBJ2xb0vHADNtHtTquOp2dne7q6mp1GBERbUXSYtu13zdv1xnkSJkCnF2+qvEocGKL44mIiBGSBNkH29dTfY2jX5JuBMY2Fb/LdveQBxYREcMuCXKI2H5Fq2OIiIih05arWCMiIoZbEmRERESNJMiIiIgaSZARERE1kiAjIiJqJEFGRETUyNc8NhHdy1fQMWtBq8Po1bL8DF5EtJnMICMiImokQUZERNTYbBOkpHMl7TtC55osyZKObCrfXtKlku6WdJekqaX8DEnLJS0przeMRJwREbHOZnsP0vZfj+DpZgA/KX9e3VA+F7ja9vTyyKvxDce+YPvzIxhjREQ0aMsZpKQJkhZIuk3SUknHSfqEpJvL/jxV9pF0U0O7DkndZXuhpM6yvVLSZ0p/iyQ9t5TvVfa7JZ0paWUp30XSdWV2t1TSIX3EKuBYYCZwhKRxpXwicChwHoDtJ20/OhzvV0REDF5bJkjgSOCXtg+wvT/VrOxs2y8v+1sDb7J9N7CVpJ4HJR9H9fDkZhOARbYPAK4D3lfK5wJzbU8CHm6o/3bge7YnUz3tY0kfsb4KeMj2A8BCoGc5557Ab4DzJd1aLvlOaGj3QUm3S/o3STvUdSzpJEldkrrWrlpRVyUiIjZQuybIbqrZ2GclHWJ7BfAaSTeWGeJrgf1K3W9RJUboPUE+CVxVthcDHWV7KvDtsv2Nhvo3AydIOgOYZPuxPmKdAVxSti8p+1Bd3j4Q+KrtlwGPA7PKsa8CewGTgV8B/1rXse15tjttd44ZP7GPECIiYrDaMkHavpcquXQDZ0r6BPAVYHqZ7Z0DjCvV5wNvk/Siqqnvq+lyjW2X7bX0c2/W9nVUl0eXAxdIenddPUljgGOAT0haBpwFHClpW6oZ6cO2byzVLy1jwvYjttfafrqM5aA+35CIiBhybZkgJT0PWGX7ImAOJbEAv5W0DTC9p265tLkW+Dj1s8e+LKJKcADHN5x/D+AR2+cA5zacv9nrgNtt72a7w/YewGXA0bZ/DfxC0osb6t5Z+t+loY+jgaWDjDsiIjZSu65inQTMkfQ0sAZ4PzCNKpH8muoSaKP5VIl0Twbnw8BFkk6nus/Zc6PvMOA0SWuAlUDtDJLqcurlTWWXlXgvBD4EXFxWsD4InFDqfE7SZMDAMuBvBhl3RERsJK27shjNJI0HnrBtSccDM2wf1eq46nR2drqrq6vVYUREtBVJi2131h1r1xnkSJkCnF2+qvEocGKL44mIiBGSBNkH29dTfY2jX5JuBMY2Fb/LdveQBxYREcMuCXKI2H5Fq2OIiIih05arWCMiIoZbEmRERESNJMiIiIgaSZARERE1kiAjIiJqJEFGRETUSIKMiIioke9BbiK6l6+gY9aCVofRr2Wz39h/pYiIUSAzyIiIiBpJkBERETVakiAlbS/pAw37h0m6apjONWx915xrS0m/kTS7qfyDku6XZEk71bR7uaSnJE0v+3tIukXSEkl3SDp5JOKPiIh1WjWD3B74QL+1BkjSaLmXegRwL3BseQJIjxuAw4GfNTeQNAb4LPD9huJfAVNtTwZeAcwqD4mOiIgRMiIJUtJHJC0trw8Ds4G9ygxpTqm2jaRLJd0t6eKeBCNpiqRrJS2W9D1Ju5TyhZK+KKkL+FtJF0j6mqQuSfdKelNNHAdJ+m9Jt0r6qaQXl/KZkr4j6WpJ90n6XCkfU/pdKqlb0t/1M9QZwFzg58DUnkLbt9pe1kubD1E9RPl/Guo/aXt12R1LL5+TpJPKeLvWrlpRVyUiIjbQsM+8JE0BTqCaCQm4EXgnsH+ZISHpMOBlwH7AL6lmXK8uj5A6CzjK9m8kHQd8hnXPZdyq50GXki4AOoCDgL2AH0t6YVM4dwOH2H5K0uHAPwPHlGOTSwyrgXsknQU8B9jV9v7lHNv3Mc5xVLPEv6GaIc8AftrPe7MrcDTwGuDlTcd2AxYALwROs/3L5va25wHzAMbusneefB0RMYRG4tLkwcDlth8HkPQd4JCaejfZfrjUWUKV7B4F9geuKRPKMVSXH3vMb+rjW7afBu6T9CCwT9PxicDXJe0NGHhWw7Ef2l5Rzn8nsAdwB/CCkiwXsP5l0GZvAn5s+wlJlwEfl/Rh22v7aPNF4B9sP73+FVmw/QvgpeXS6hWSLrX9SB99RUTEEBot9+6gmrn1WEsVm4A7bE+tb8LjTfvNs6jm/U9TJbGjJXUAC/s6v+0/SDoAeD1wMvA21s1em80ADpa0rOzvCLwWuKaX+gCdwCUlOe4EvEHSU7av+PMA7F9KWkr1j4pL++grIiKG0Ejcg7wemCZpvKQJVJcUbwC2HUDbe4CdJU0FkPQsSfv1Uf9YSVtI2gt4QWnfaCKwvGzP7O/kZcXpFrYvAz4GHNhLve2oEtjutjtsdwCnUCXNXtnes6H+pcAHbF8h6fmSti5970A1C28eS0REDKNhT5C2bwEuAG6iuv94ru3FwA1l8cucPto+CUwHPivpNmAJ8Ko+Tvfzcp7/Ak62/aem458D/kXSrQxs9rwrsLBc8r0I+Mde6h0N/KhhYQ3Ad4E3Sxor6VRJDwPPB26XdG4/530JcGMZ87XA5213DyDeiIgYIrI3jbUdZZHOVbY3y8uQnZ2d7urqanUYERFtRdLinsWezfJLOhERETVG0yKdjWJ75kicR9KXgVc3Fc+1ff5InD8iIkbGJpMgR4rtU1odQ0REDL9cYo2IiKiRBBkREVEjCTIiIqJGEmRERESNJMiIiIgaSZARERE1kiAjIiJq5HuQm4ju5SvomLWg1WGMestmv7HVIUREm8gMMiIiokYSZAtIWtnqGCIiom9JkBERETWSIPsh6Z2SbpK0RNL/kzRG0kpJcyTdIekHkg6StFDSg5LeUtrNlPTdUn6fpE/W9K3Sz1JJ3ZKOK+UXSprWUO9iSUeN3KgjIiIJsg+SXgIcB7za9mRgLfAOYALVA5L3Ax4DzgSOoHpw8qcaujgIOAZ4KXCspOZnjr0VmAwcABwOzJG0C3AeMLPEMJHqIdHPWIEj6SRJXZK61q5aMSRjjoiISlax9u11wBTgZkkAWwP/AzwJXF3qdAOrba+R1A10NLS/xvbvACR9BzgYaHyq8cHAN22vBR6RdC3wcttXSvqKpJ2pEuxltp9qDs72PGAewNhd9t40nnwdETFKJEH2TcDXbf/jeoXSR233JKSngdUAtp+W1PieNietwSSxC4F3AscDJwwq6oiI2Gi5xNq3HwLTJT0HQNKzJe0xiPZHlDZbA9OAG5qOXw8cV+5r7gwcCtxUjl0AfBjA9p0bMYaIiNgAmUH2wfadkj4GfF/SFsAaYDAPTL4JuAx4PnCR7a6m45cDU4HbqGaXf2/71+Xcj0i6C7hiI4cREREbIAmyH7bnA/ObirdpOH5GU/1tGnYftj2NJj11ymXa08prPZLGA3sD39zQ2CMiYsMlQY5Ckg6nWsn6BdsDWp46adeJdOVn1CIihkwS5DCxfQHVfcQNafsDYDD3OiMiYohlkU5ERESNJMiIiIgaSZARERE1kiAjIiJqJEFGRETUSIKMiIiokQQZERFRIwkyIiKiRhJkREREjfySziaie/kKOmY945nKMQDL8hN9EVEjM8iIiIgaSZARERE1kiBHgKQtJf1G0uxejn9J0sqG/bGS5ku6X9KNkjpGKtaIiKhsNglSUivvtx4B3AscK0mNByR1Ajs01X8v8AfbLwS+AHx2RKKMiIg/a6sEKalD0t2SLpZ0l6RLJY2XtEzSTqVOp6SFZfsMSf8u6Qbg3yXNlPRdSQsl3Sfpkw19f0TS0vL6cCmbIGmBpNtK+XGlfIqkayUtlvQ9Sbv0E/oMYC7wc2BqwznHAHOAv2+qfxTw9bJ9KfC65sRa2p8kqUtS19pVA3psZEREDFA7rmJ9MfBe2zdI+jfgA/3U3xc42PYTkmYCBwH7A6uAmyUtAAycALwCEHCjpGuBFwC/tP1GAEkTJT0LOAs4yvZvStL8DHBi3ckljQMOB/4G2J4qWf60HP4gcKXtXzXlv12BXwDYfkrSCmBH4LeNlWzPA+YBjN1lb/fzPkRExCC01Qyy+IXtG8r2RcDB/dS/0vYTDfvX2P5dKftOaX8wcLntx22vLOWHAN3AEZI+K+kQ2yuoEvT+wDWSlgAfA57fx/nfBPy4nO8yYJqkMZKeBxxLlWwjImKUaccZZPNMycBTrEv245qOPz6A9vUnsu+VdCDwBuBMST8ELgfusD21t3ZNZgAHS1pW9ncEXgtsBbwQuL/MHsdLur/cd1wO7AY8XO6dTgR+N8DzRUTEEGjHGeTuknqS09uBnwDLgCml7Jh+2h8h6dmStgamATcA11PN7MZLmgAcDVxfZnmrbF9Eda/wQOAeYOeeGCQ9S9J+dSeStB3VTHR32x22O4BTgBm2F9j+Xw3lq0pyBLgSeE/Zng78yHYuoUZEjKB2nEHeA5xS7j/eCXwVuAk4T9KngYX9tL+J6lLn84GLbHcBSLqgHAM41/atkl4PzJH0NLAGeL/tJyVNB74kaSLVe/hF4I6acx1NldxWN5R9F/icpLFN5Y3Oo1pUdD/we+D4fsbEpF0n0pVfhImIGDJqp4lJ+T7gVbb338D2M4FO2x8cwrBGhc7OTnd1dbU6jIiItiJpse3OumPteIk1IiJi2LXVJVbby6hWkG5o+wuAC4YonPVI+jLw6qbiubbPH47zRUTE8GqrBDma2T6l1TFERMTQySXWiIiIGkmQERERNZIgIyIiaiRBRkRE1EiCjIiIqJEEGRERUSNf89hEdC9fQcesBa0OY5O2LD/lF7FZyQwyIiKiRhJkREREjSTIUU7SNEn7tjqOiIjNTRLk6DcNSIKMiBhhSZB9kHSFpMWS7pB0UilbKWlOKfuBpIMkLZT0oKS3lDrjJJ0vqVvSrZJeU8pnSjq7of+rJB3W0O9nJN0maZGk50p6FfAWqmdSLpG014i/CRERm6kkyL6daHsK0AmcKmlHYALVQ5D3Ax4DzgSOoHo48qdKu1MA254EzAC+LmlcP+eaACyyfQBwHfA+2z8FrgROsz3Z9gONDSSdJKlLUtfaVSuGZMAREVFJguzbqZJuAxYBuwF7A08CV5fj3cC1tteU7Y5SfjBwEYDtu4GfAS/q51xPAleV7cUNffXK9jzbnbY7x4yfOMAhRUTEQOR7kL0olz4PB6baXiVpITAOWGPbpdrTwGoA209L6u/9fIr1/1HSOKts7Hct+WwiIloqM8jeTQT+UJLjPsArB9H2euAdAJJeBOwO3AMsAyZL2kLSbsBBA+jrMWDbwQQeEREbLwmyd1cDW0q6C5hNdZl1oL4CbCGpG5gPzLS9GrgBeAi4E/gScMsA+roEOK0s9skinYiIEaJ1V/WinXV2drqrq6vVYUREtBVJi2131h3LDDIiIqJGEmRERESNJMiIiIgaSZARERE1kiAjIiJqJEFGRETUSIKMiIiokQQZERFRIwkyIiKiRhJkREREjTwxYhPRvXwFHbMWtDqMzdKy2W9sdQgRMQwyg4yIiKiRBBkREVFjk0iQkjokLa0p/5Skw/toN03SvsMbHUjaUtJvJM1uKj9P0m2Sbpd0qaRtmo4fI8mSan9pPiIihs8mkSB7Y/sTtn/QR5VpwKASpKQNuW97BHAvcKwkNZT/ne0DbL8U+DnwwYbzbAv8LXDjBpwvIiI20qaUIMdIOkfSHZK+L2lrSRdImg4gabakO8ts7fOSXgW8BZgjaYmkvSRNlrSo1Llc0g6l7UJJX5TUBZwu6SFJzyrHtmvc78UMYC5VEpzaU2j7j6UPAVsDjQ/n/DTwWeBPvXUq6SRJXZK61q5aMfh3LCIierUpJci9gS/b3g94FDim54CkHYGjgf3KbO1M2z8FrgROsz3Z9gPAhcA/lDrdwCcb+t/KdqftfwIWAj1LF48HvmN7TV1QksYBhwP/AXyTKlk2Hj8f+DWwD3BWKTsQ2M12n8tSbc8rMXWOGT+x73cnIiIGZVNKkA/ZXlK2FwMdDcdWUM3EzpP0VmBVc2NJE4HtbV9bir4OHNpQZX7D9rnACWX7BOD8PuJ6E/Bj208AlwHTJI3pOWj7BOB5wF3AcZK2AP4v8L/76DMiIobZppQgVzdsr6XhO562nwIOAi6lSlhXb0D/jzf0dwPQIekwYIztZywQajADOFzSMqrEvSPw2sYKttcCl1DNercF9gcWljavBK7MQp2IiJG1KSXIXpXVoRNt/yfwd8AB5dBjVAkJ2yuAP0g6pBx7F3Btc18NLgS+QR+zR0nbAYcAu9vusN0BnALMUOWFpZ6o7ofebXuF7Z0a6i8C3mK7awOGHhERG2hz+SWdbYHvlvuBAj5Syi8BzpF0KjAdeA/wNUnjgQdZdxm1zsXAmVT3FXtzNPAj242z2+8CnwO2Ar5ekqiA24D3D3ZgERExPGS7/1rxDGV17FG239XqWAA6Ozvd1ZVJZkTEYEhabLv2FtbmMoMcUpLOAv4KeEOrY4mIiOGRBLkBbH+ouUzSl4FXNxXPtd3XCteIiBilkiCHiO1TWh1DREQMnc1iFWtERMRgJUFGRETUSIKMiIiokQQZERFRIwkyIiKiRhJkREREjSTIiIiIGvke5Caie/kKOmb1+fjI2EQsm/3G/itFxEbLDDIiIqJGEmQvJJ0h6aND0M/2kj7QsP88SZdubL8RETG8kiCHgKS+LlVvD/w5Qdr+pe3pwx9VRERsjCTIBpJOl3SvpJ8ALy5lCyV1lu2dJC0r2zMlXSnpR8APJW0j6YeSbpHULemo0u1sYC9JSyTNkdQhaWnpY5yk80v9WyW9pqHv70i6WtJ9kj43wm9FRMRmL4t0CklTgOOByVTvyy3A4n6aHQi81PbvyyzyaNt/lLQTsEjSlcAsYH/bk8t5OhranwLY9iRJ+wDfl/Sicmwy8DJgNXCPpLNs/6Ip5pOAkwDGbLfzBo48IiLqZAa5ziHA5bZX2f4jcOUA2lxj+/dlW8A/S7od+AGwK/DcftofDFwEYPtu4GdAT4L8oe0Vtv8E3Ans0dzY9jzbnbY7x4yfOIBwIyJioDKD7N9TrPuHxLimY483bL8D2BmYYntNuRTbXH8wVjdsryWfVUTEiMoMcp3rgGmStpa0LfDmUr4MmFK2+1pcMxH4n5IcX8O6Gd9jwLa9tLmeKrFSLq3uDtyzwSOIiIghkwRZ2L4FmA/cBvwXcHM59Hng/ZJuBXbqo4uLgU5J3cC7gbtLv78DbpC0VNKcpjZfAbYobeYDM22vJiIiWk62Wx1DDIGxu+ztXd7zxVaHESMgv6QTMXQkLbbdWXcs97U2EZN2nUhX/uKMiBgyucQaERFRIwkyIiKiRhJkREREjSTIiIiIGkmQERERNZIgIyIiaiRBRkRE1EiCjIiIqJEEGRERUSO/pLOJ6F6+go5ZC1odRkTEiBrOn17MDDIiIqJGEmRERESNJMiIiIgaG5QgJV0gqa+HB29UP5LOlbTvxvbf1Of/Gcp6G3D+KyQtaio7VNItkp7q5X3YTtLDks4ejpgiIqJ3o3IGafuvbd85xN0ONPENeYKUtD0wBZgo6QUNh34OzAS+0UvTTwPXDXU8ERHRvwElSEnvlnS7pNsk/XspPlTSTyU92Dj7kXSapJtL/X/qp4/Gc3y6zCjHSFooqbOUr5T0mdJukaTnlvK9yn63pDMlrSzlu0i6TtISSUslHSJpNrB1Kbu41LtC0mJJd0g6qZStV09Sh6SlDTF+VNIZZftUSXeWMV3Sz1v4VuA/gEuA43sKbS+zfTvwdM37MQV4LvD93jqVdJKkLklda1et6CeEiIgYjH4TpKT9gI8Br7V9APC35dAuwMHAm4DZpe5fAnsDBwGTgSnlMmJvffScYw6wM3CC7bVNIUwAFpV21wHvK+Vzgbm2JwEPN9R/O/A925OBA4AltmcBT9iebPsdpd6JtqcAncCpknbspV5vZgEvs/1S4OR+6s4AvlleM/qpi6QtgH8FPtpXPdvzbHfa7hwzfmJ/3UZExCAMZAb5WuDbtn8LYPv3pfwK20+XS6HPLWV/WV63ArcA+1AlzN76APg4MNH2ybZdc/4ngavK9mKgo2xPBb5dthsvUd4MnFBmepNsP9bLuE6VdBuwCNitxDkYtwMXS3on8FRvlcqMd2/gJ7bvBdZI2r+fvj8A/Kfth/upFxERw2Rj7kGubthWw5//UmZgk22/0PZ5/fRzM9VM89m9HF/TkDjX0s+PG9i+DjgUWA5cIOndzXUkHQYcDkwtM9NbgXE13T3F+u9RY503Al8GDgRultRbXG8DdgAekrSMKsH3N4ucCnyw1P888O5y+TciIkbIQBLkj4BjJe0I0EciA/gecKKkbUrdXSU9p58+rqa6RLtA0raDiH0RcEzZ/vN9PUl7AI/YPgc4lyqBQTVze1bZngj8wfYqSfsAr2zot7HeI8BzJO0oaSzV5eSeS6C72f4x8A+lv216iXMGcKTtDtsdVIt1ju+lLgC232F791L/o8CF5fJvRESMkH5/as72HZI+A1wraS3VbKu3ut+X9BLgvyUBrATe2UsfMxvafbskxyslvWGAsX8YuEjS6VRJtmeVymHAaZLWlPP3zCDnAbdLugU4EThZ0l3APVTJluZ6tt8h6VPATVQz0rtLnTHl3BOpZs1fsv1oc4CSOoA9Gvu3/ZCkFZJeQbU453KqGeabJf2T7f0GOP71TNp1Il3D+JNLERGbG9Xf9hv9JI2nWlBjSccDM2wf1eq4WqWzs9NdXV2tDiMioq1IWmy7s+5YO/9Y+RTgbFVT1UepZoURERFDom0TpO3rqb7GMSpIOoGmr68AN9g+pRXxRETExmnbBDna2D4fOL/VcURExNAYlT81FxER0Wptu0gn1ifpMaoVue1sJ+C3rQ5iI2UMrdfu8UPGMJL2sL1z3YFcYt103NPbSqx2IakrY2i9dh9Du8cPGcNokUusERERNZIgIyIiaiRBbjrmtTqAIZAxjA7tPoZ2jx8yhlEhi3QiIiJqZAYZERFRIwkyIiKiRhJkG5B0pKR7JN0v6RmPvZI0VtL8cvzG8hSRnmP/WMrvkfT6kUNUL/UAAAONSURBVIy7KcYNGoOkDklPSFpSXl8b6dhLHP3Ff6ikWyQ9JWl607H3SLqvvN4zclE/I8aNGcPahs/gypGL+hkx9jeGj0i6U9Ltkn5YHn/Xc6xdPoe+xtDyz2EA8Z8sqbvE+BNJ+zYcGxV/Hw2Y7bxG8Yvq0VoPAC8AtgJuA/ZtqvMB4Gtl+3hgftnet9QfC+xZ+hnTZmPoAJa2wWfQAbwUuBCY3lD+bODB8ucOZXuHdhpDObaylZ/BIMbwGmB82X5/w39H7fQ51I5hNHwOA4x/u4bttwBXl+1R8ffRYF6ZQY5+BwH3237Q9pPAJUDzY72OAr5eti8FXleecnIUcInt1bYfAu4v/Y20jRnDaNBv/LaX2b6d6hmfjV4PXGP797b/AFwDHDkSQTfZmDGMFgMZw49tryq7i4Dnl+12+hx6G8NoMJD4/9iwOwHoWQk6Wv4+GrAkyNFvV+AXDfsPl7LaOrafonp49I4DbDsSNmYMAHtKulXStZIOGe5ga2zM+9hOn0FfxknqkrRI0rShDW3ABjuG9wL/tYFth8vGjAFa/zkMKH5Jp0h6APgccOpg2o4m+am5GO1+Bexu+3eSpgBXSNqv6V+pMfz2sL1c0guAH0nqtv1Aq4PqjaR3Ap3AX7Q6lg3Vyxja4nOw/WXgy5LeDnwMaNk9342RGeTotxzYrWH/+aWsto6kLYGJwO8G2HYkbPAYyuWY3wHYXkx13+JFwx5xL7EVg3kf2+kz6JXt5eXPB4GFwMuGMrgBGtAYJB0OnA68xfbqwbQdARszhtHwOQz2fbwE6JnpjpbPYOBafRM0r75fVLP8B6luavfcFN+vqc4prL/A5Vtlez/Wvyn+IK1ZpLMxY9i5J2aqhQHLgWePtvgb6l7AMxfpPES1MGSHsj2i8Q/BGHYAxpbtnYD7aFqYMVrGQJUwHgD2bipvm8+hjzG0/HMYYPx7N2y/Gegq26Pi76NBjbfVAeQ1gA8J3gDcW/6nOb2UfYrqX5cA44BvU930vgl4QUPb00u7e4C/arcxAMcAdwBLgFuAN4/S+F9OdU/lcarZ+x0NbU8s47ofOGEUfwa1YwBeBXSXv9y6gfeO4jH8AHik/PeyBLiyDT+H2jGMls9hAPHPbfh/9sc0JNDR8vfRQF/5qbmIiIgauQcZERFRIwkyIiKiRhJkREREjSTIiIiIGkmQERERNZIgIyIiaiRBRkRE1Pj/5B4bhUV081UAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "abB9WCz3Kopl",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "86a3f34e-ee46-479e-c6ad-46f969eaaa7a"
},
"source": [
"#Calculating roc_auc_score\n",
"from sklearn.metrics import roc_auc_score\n",
"\n",
"roc_auc_score(y_test ,prediction) "
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.5882801409117199"
]
},
"metadata": {},
"execution_count": 479
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "QoUh7bhxKopl",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 265
},
"outputId": "07e7e8a8-362f-44c7-fb7e-e056244954cc"
},
"source": [
"from sklearn.metrics import roc_curve\n",
"\n",
"pred_proba = clf.predict_proba(X_test)[::,1]\n",
"\n",
"fpr, tpr, _ = roc_curve(y_test, prediction)\n",
"\n",
"auc = roc_auc_score(y_test, prediction)\n",
"plt.plot(fpr,tpr,label=\"data 1, auc=\"+str(auc))\n",
"plt.legend(loc=4)\n",
"plt.show()\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deVyVdfr/8ddHUHFBXBAXVhVQUBaV1DR3Kdss01JbLcdqGqfGyqn5Nr/JbzVTU7mVVtpqTWnlNGXplPtSaYqJGyqLoIArKMgq2/X74yBfNJWjHjgL1/Px4PHgnPtz7vu6OZw3N/f9OecyIoJSSinn18DeBSillLINDXSllHIRGuhKKeUiNNCVUspFaKArpZSLcLfXhr29vSUoKMhem1dKKae0bdu2LBFpe6Fldgv0oKAg4uLi7LV5pZRySsaYgxdbpqdclFLKRWigK6WUi9BAV0opF6GBrpRSLkIDXSmlXESNgW6M+cAYc9wYs/siy40x5g1jTLIxZqcxppfty1RKKVUTa47QPwJGXmL5jUBI5dfDwNtXX5ZSSqnLVWOgi8gG4OQlhtwGfCwWm4GWxpgOtipQKaVcRU5hCa9+v4+0rIJaWb8t3ljkC6RXu51Red+R8wcaYx7GchRPQECADTatlFKOL6+4lPd/TOX9jankl5TRoWUTgryb2Xw7dfpOURFZACwAiImJ0c4aSimXVlhSxsKfDzJ/Qwo5haXc0L0dU2ND6da+Ra1szxaBngn4V7vtV3mfUkrVS8Wl5Xz6yyHeXpdMVn4JQ7u25cnYrkT4edXqdm0R6EuBKcaYxUBfIFdEfnO6RSmlXF1JWQWfx6Uzd00Sx06fYUBwG+bHdqV3YKs62X6NgW6MWQQMAbyNMRnA80BDABF5B1gO3AQkA4XAg7VVrFJKOaKy8gq++jWTOauTyMwpIiawFbPGRdO/i3ed1lFjoIvIhBqWC/AHm1WklFJOorxC+HbHYeasTiI1q4BIPy/+cUcEg0K8McbUeT12+/hcpZRyVhUVwg97jjJzZSJJx/Pp1t6Td++PYUSYj12C/CwNdKWUspKIsGbfcWasSCThyGm6tG3G3Lt7clOPDjRoYL8gP0sDXSmlaiAi/JicxYwVicSn5xDYpikz74ritmhf3BwgyM/SQFdKqUv45UA2M1YmsiX1JB29PHjljgjG9PajoZvjfbahBrpSSl3A9kOnmLkykY1JWfh4NuaF27oz7hp/Gru72bu0i9JAV0qpanZn5jJrZSKr9x2ndbNG/PXmMO7tF4hHQ8cN8rM00JVSCkg8lseslYn8d/dRWni4M+2GrkzsH0Szxs4Tk85TqVJK1YLUrAJmr0pk6Y7DNGvkzuPDQ5h0XSe8mjS0d2mXTQNdKVUvpZ8s5M01Sfz710wauTXgkUFdeGRQZ1o1a2Tv0q6YBrpSql45mlvM3LVJfL41HWMMD1wbxO+HdKGtZ2N7l3bVNNCVUvXCibwzvL0uhX/9chARYdw1/vxhaDAdvJrYuzSb0UBXSrm0UwUlzN9wgIU/p1FSXsEdPX15fHgI/q2b2rs0m9NAV0q5pNPFpby3MZUPfkyloKSMUVEdeWJ4CJ3bNrd3abVGA10p5VIKzpTx0c9pLNhwgNyiUm7s0Z6psaGEtvO0d2m1TgNdKeUSikvL+dfmg7y9LoXsghKGd/NhamwoPXxrt0uQI9FAV0o5tTNl5Xy+NZ25a5I5nneGgSHeTI0NpVdA3XQJciQa6Eopp1RaXsG/t2Xw5ppkMnOK6BPUmjcm9KRf5zb2Ls1uNNCVUk6lvEL4Jt7S7u1gdiFR/i15ZUwE1wXbp0uQI9FAV0o5hYoKYfnuI8xelUTy8XzCO7Tg/QdiGNbNvl2CHIkGulLKoYkIq/YeZ8aK/ew7mkeIT3PevqcXN3Rv7xBdghyJBrpSyiGJCBuSspi5Yj87MnIJatOU2eOiuTWqo0N1CXIkGuhKKYezKSWbGSv2E3fwFL4tm/DqmEju6OWLuwN2CXIkGuhKKYex7eApZq7cz0/J2bRr0ZgXb+/BuBh/GrlrkFtDA10pZXe7MnKZuXI/a/efwLt5I/7fLeHc0zfAKboEORINdKWU3ew7eppZKxP5Yc8xvJo05JmR3XigfyBNG2k0XQn9qSml6lzKiXxmr0riu52Had7InT+NCOGh6zrRwsP5ugQ5Eg10pVSdOZRdyJzVSfxnewYeDd34/eAuPDyoMy2bOm+XIEeiga6UqnWHc4qYuzaZL7am49bA8NCATjw6pAvezZ2/S5Aj0UBXStWa43nFvLU2hc9+OYQg3N03gD8MDaZdCw97l+aSNNCVUjZ3sqCE+etTWLgpjdJy4c7efkwZFoxfK9frEuRINNCVUjaTW1TKexsP8MGPqRSWlnN7tC9PDA8hyLuZvUurF6wKdGPMSGAO4Aa8JyKvnLc8AFgItKwc86yILLdxrUopB5V/powPf0zl3Y0HOF1cxs0RHfjTiBBC6kGXIEdSY6AbY9yAeUAskAFsNcYsFZGEasP+CnwhIm8bY8KB5UBQLdSrlHIgRSXlfLI5jbfXpXCqsJQRYe2YGhtC9471p0uQI7HmCL0PkCwiBwCMMYuB24DqgS5Ai8rvvYDDtixSKeVYzpSVs+iXQ8xbl8KJvDMMCm3Lk7GhRPu3tHdp9Zo1ge4LpFe7nQH0PW/MdGCFMeaPQDNgxIVWZIx5GHgYICAg4HJrVUrZWWl5BV/GZfDmmiSO5BbTt1Nr3rqnF9cEtbZ3aQrbXRSdAHwkIjOMMdcCnxhjeohIRfVBIrIAWAAQExMjNtq2UqqWlZVX8HX8Yd5YncShk4X0DGjJ63dG0b9LG20u4UCsCfRMwL/abb/K+6qbBIwEEJFNxhgPwBs4bosilVL2UVEhfLfrCLNXJXLgRAHdO7bgw4nXMKRrWw1yB2RNoG8FQowxnbAE+Xjg7vPGHAKGAx8ZY8IAD+CELQtVStUdEWFFwjFmrUxk39E8Qts15517e3ND93Ya5A6sxkAXkTJjzBTgByxTEj8QkT3GmBeAOBFZCjwFvGuMmYrlAulEEdFTKko5GRFhXeIJZq5IZFdmLp29mzFnfDS3RGqXIGdg1Tn0yjnly8+772/Vvk8ABti2NKVUXfo5OYvXV+zn10M5+LVqwmtjIxndU7sEORN9p6hS9Vxc2klmrEhk04Fs2rfw4O+je3Bnb+0S5Iw00JWqp3Zm5DBjRSLrE0/g3bwxz98azoQ+2iXImWmgK1XP7D1ympkrE1mZcIxWTRvylxu7cd+12iXIFegzqFQ9kXw8j1mrkli28wieHu48GRvKgwOC8NQuQS5DA10pF3cwu4A5q5L4Oj6TJg3dmDI0mMkDO+PVVIPc1WigK+WiMnOKmLsmiS/iMnBvYPjdwM48MqgzbbRLkMvSQFfKxRw/Xcy8tcks2mL5CKb7+gXy2JAu+GiXIJenga6Ui8jOP8M761P4eNNByiuEO2P8mTIsGN+WTexdmqojGuhKObncwlIWbEzhw5/SKC4t5/aeli5BgW20S1B9o4GulJPKKy7lgx/TeO/HA+QVl3FLZAf+NCKUYJ/m9i5N2YkGulJOprCkjI83HeSd9SnkFJZyfXg7psaGEtahRc0PVi5NA10pJ1FcWs5nvxzirXXJZOWXMKSrpUtQpJ92CVIWGuhKObiSsgq+iEtn7ppkjp4upn+XNsy/L5TegdolSJ1LA10pB1VWXsFX2zN5Y3USGaeK6B3Yipl3RdE/2NvepSkHpYGulIMprxC+23mY2auSSM0qIMLXi5du78HgUO0SpC5NA10pByEi/LDnKDNXJpJ4LJ9u7T1ZcF9vYsO1S5Cyjga6UnYmIqzdf5wZKxLZc/g0nds2480JPbk5ogMNtEuQugwa6ErZiYjwU3I2r6/YT3x6DgGtmzLjzihui+6oXYLUFdFAV8oOtqSeZMaK/fySepKOXh68fEcEY3v70VCDXF0FDXSl6lB8eg4zVuxnY1IWbT0b87+jujO+jz+N3bVLkLp6GuhK1YE9h3OZtTKRVXuP07pZI567KYx7+wXSpJEGubIdDXSlalHSsTxmrUpk+a6jtPBw5+nrQ5k4oBPNG+tLT9me/lYpVQtSswqYsyqRb3YcpmlDNx4fFsykgZ3xaqJdglTt0UBXyoYyThXy5upklvyaQUM3w8ODOvPIoC60btbI3qWpekADXSkbOJpr6RK0eOshDIb7rw3k90O64OOpXYJU3dFAV+oqZOWf4e11KXyy+SAVFcK4ayxdgjp4aZcgVfc00JW6AjmFJczfcICPfkrjTFk5d/Ty44nhIfi3bmrv0lQ9poGu1GU4XVzK+xtT+eDHVPJLyrg1siNPjAihS1vtEqTsTwNdKSsUnClj4aY05q8/QG5RKSO7t2dqbChd23vauzSlqmigK3UJxaXl/GvzQd5el0J2QQnDuvnwZGwoPXy97F2aUr9hVaAbY0YCcwA34D0ReeUCY+4CpgMC7BCRu21Yp1J16kxZOV9sTWfu2mSOnT7DdcHeTI0NpXdgK3uXptRF1Rjoxhg3YB4QC2QAW40xS0UkodqYEOAvwAAROWWM8amtgpWqTaXlFXz1awZvrE4mM6eIa4JaMXtcT67t0sbepSlVI2uO0PsAySJyAMAYsxi4DUioNmYyME9ETgGIyHFbF6pUbSqvEJbuyGTOqiTSsguJ8vPi5TsiGBjirc0llNOwJtB9gfRqtzOAvueNCQUwxvyE5bTMdBH5/vwVGWMeBh4GCAgIuJJ6lbKpigrh+8ouQcnH8wnr0IL37o9heJiPBrlyOra6KOoOhABDAD9ggzEmQkRyqg8SkQXAAoCYmBix0baVumwiwuq9x5mxMpG9R04T7NOceXf34sYe7bVLkHJa1gR6JuBf7bZf5X3VZQC/iEgpkGqMScQS8FttUqVSNiIibEzKYsbKRHak5xDYpimzxkUxKsoXNw1y5eSsCfStQIgxphOWIB8PnD+D5WtgAvChMcYbyymYA7YsVKmrtflANjNXJLIl7SS+LZvwzzER3NFLuwQp11FjoItImTFmCvADlvPjH4jIHmPMC0CciCytXHa9MSYBKAemiUh2bRaulLV+PXSKmSsS+TE5Cx/Pxrx4W3fuuka7BCnXY0Tscyo7JiZG4uLi7LJtVT/szsxl5spE1uw7Tptmjfj9kC7c2y8Qj4Ya5Mp5GWO2iUjMhZbpO0WVy9l/NI9ZKxP5fs9RvJo0ZNoNXZnYP4hm2iVIuTj9DVcu48CJfGavSuLbnYdp1sidJ4aHMGlgJ1p4aJcgVT9ooCunl36ykDmrk/jq1wwau7vx6OAuPDywM620S5CqZzTQldM6klvE3DXJfL41nQYNDA8O6MSjg7vQ1rOxvUtTyi400JXTOZ5XzNvrUvj0l0OICBP6BPCHocG099J2b6p+00BXTuNUQQnvbEhh4c9plJYLY3v5MWVYsHYJUqqSBrpyeLlFpby/8QAf/JRGQUkZt0V15IkRoXTybmbv0pRyKBroymHlnynjo59SWbDhAKeLy7gpoj1/GhFKaDvtEqTUhWigK4dTVFLZJWh9CicLShgR5sPU2FC6d9QuQUpdiga6chhnyspZvMXSJehE3hkGhnjzZGwoPQO0S5BS1tBAV3ZXWl7Bkm0ZvLk6icO5xfTp1Jp5d/eiT6fW9i5NKaeiga7sprxC+Hp7JnNWJ3HoZCHR/i15dWwUA4LbaHMJpa6ABrqqcxUVwrJdR5i9KpGUEwV079iCDybGMLSrdglS6mpooKs6IyKsTDjGzJWJ7DuaR2i75rxzby+uD9cuQUrZgga6qnUiwvrEE8xcmcjOjFw6eTdjzvhobonsqF2ClLIhDXRVq35OyWLGikS2HTyFX6smvDo2kjt6+uKuXYKUsjkNdFUrth08yYwVifyckk37Fh68dHsP7orxp5G7BrlStUUDXdnUroxcZqzcz7r9J/Bu3oi/3RLO3X0DtEuQUnVAA13ZxL6jp5m5IpEVCcdo2bQhz97YjfuvDaRpI/0VU6qu6KtNXZXk4/nMXpXIsl1HaN7InakjQnnouiA8tUuQUnVOA11dkUPZhcxencjX2zPxaOjGY0O6MHlgZ1o21S5BStmLBrq6LIdzinhzTTJfxqXj1sAw6TpLl6A2zbVLkFL2poGurHL8dDFvrUvhs18OIQj39A3gsaHBtGuhXYKUchQa6OqSsvPPMH/DAT7eZOkSdFeMH1OGheDbsom9S1NKnUcDXV1QbmEp7248wIc/pVJUWs7t0b48PjyEIO0SpJTD0kBX58grLuXDn9J4d+MB8orLuDmyA1NHhBDso12ClHJ0GugKsHQJ+nhTGu+sT+FUYSmx4e2YOiKU8I4t7F2aUspKGuj1XHFpOYu2HGLe2hSy8s8wOLQtT8aGEuXf0t6lKaUukwZ6PVVSVsGX29KZuyaZI7nF9Ovcmnfu7UVMkHYJUspZaaDXM2XlFfxneyZvrEki/WQRvQJaMuPOKPoHe9u7NKXUVdJArycqKoRvdx5mzqokDmQV0MO3BS882IMhoW21S5BSLsKqQDfGjATmAG7AeyLyykXGjQGWANeISJzNqlRXTET4Yc8xZq1MZP+xPLq282T+fb25PrydBrlSLqbGQDfGuAHzgFggA9hqjFkqIgnnjfMEngB+qY1C1eUREdbtP8GMlfvZnXmazm2b8caEntwS0UHbvSnloqw5Qu8DJIvIAQBjzGLgNiDhvHEvAv8Eptm0QnVZRISfU7J5fcV+th/Kwb91E16/M4rboztqlyClXJw1ge4LpFe7nQH0rT7AGNML8BeRZcaYiwa6MeZh4GGAgICAy69WXdLWtJPMWLGfzQdO0sHLg3+MjuDOGD8aapArVS9c9UVRY0wDYCYwsaaxIrIAWAAQExMjV7ttZbEjPYcZKxPZkHgC7+aNmX5rOOP7aJcgpeobawI9E/Cvdtuv8r6zPIEewLrKi2ztgaXGmFF6YbR2JRw+zcyViazae4xWTRvyPzd1475+QTRppEGuVH1kTaBvBUKMMZ2wBPl44O6zC0UkF6iaxGyMWQc8rWFee5KP5zFrZRLLdh3B08Odp2JDefC6TjRvrLNQlarPakwAESkzxkwBfsAybfEDEdljjHkBiBORpbVdpLJIyypgzuokvonPpElDN/44LJjfXdcZr6ba7k0pZeU5dBFZDiw/776/XWTskKsvS1WXcaqQuWuS+XJbBg3dDJMHduaRwV1o3UzbvSml/o/+j+7Ajp0uZt7aZBZtOYTBcF+/QB4b2gUfT+0SpJT6LQ10B5SVf4Z31qXwyeaDlFcId13jz5ShwXTULkFKqUvQQHcgOYUlLNhwgI9+TqO4tJzRPf14YngIAW2a2rs0pZQT0EB3AHnFpbz/Yyrvb0wlv6SMWyI78qcRIXRp29zepSmlnIgGuh0VlpSx8OeDzN+QQk5hKTd0b8fU2FC6tdcuQUqpy6eBbgfFpeV8+ssh3l6XTFZ+CUO7tuXJ2K5E+HnZuzSllBPTQK9DJWUVfB6Xztw1SRw7fYYBwW2YH9uV3oGt7F2aUsoFaKDXkeLScu58ZxO7MnOJCWzFrHHR9O+iXYKUUrajgV5HXvnvPnZl5jJnfDSjojpqcwmllM1poNeBtfuO89HPaTw4IIjbon3tXY5SykXpB2XXshN5Z5i2ZAfd2nvyzMhu9i5HKeXC9Ai9FokI05bsIK+4jM8m99PPJ1dK1So9Qq9FH/2cxrr9J3ju5jBC23nauxyllIvTQK8l+46e5uX/7mN4Nx/u6xdo73KUUvWABnotKC4t5/FF22nh0ZB/jo3UGS1KqTqh59BrwcvL95J4LJ+FD/XBu3lje5ejlKon9AjdxtbsO8bCTQd5aEAnBoe2tXc5Sql6RAPdho7nFTPty510a+/Jn0d2tXc5Sql6Rk+52EhFhTDty53knylj8cM6RVEpVff0CN1GPvo5jfWJJ/jrzWGE6BRFpZQdaKDbwN4jp3nlv/sYEebDvTpFUSllJxroV+nsFEWvpg355xidoqiUsh89h36V/rF8L0nH8/lkUh/a6BRFpZQd6RH6VVi99xgfbzrI767rxMAQnaKolLIvDfQrdPx0MdOW7CS8Qwum6RRFpZQD0EC/AhUVwlNf7qCwpIw3JkTT2F2nKCql7E8D/Qp88FMqG5Oy+OvN4QT76BRFpZRj0EC/THsO5/Lq9/uJDW/HPX0D7F2OUkpV0UC/DEUl5TyxOJ6WOkVRKeWAdNriZfj78gSSK6cotm7WyN7lKKXUOaw6QjfGjDTG7DfGJBtjnr3A8ieNMQnGmJ3GmNXGGJd7u+TKhGP8a/MhJg/UKYpKKcdUY6AbY9yAecCNQDgwwRgTft6w7UCMiEQCS4BXbV2oPR0/Xcwz/7ZMUXz6Bp2iqJRyTNYcofcBkkXkgIiUAIuB26oPEJG1IlJYeXMz4GfbMu3n3CmKPXWKolLKYVkT6L5AerXbGZX3Xcwk4L8XWmCMedgYE2eMiTtx4oT1VdrR2SmK/++WcIJ9mtu7HKWUuiibznIxxtwLxACvXWi5iCwQkRgRiWnb1vHPQ1efonh3H52iqJRybNbMcskE/Kvd9qu87xzGmBHAc8BgETljm/Lsp6jE8imKOkVRKeUsrDlC3wqEGGM6GWMaAeOBpdUHGGN6AvOBUSJy3PZl1r2XliWQcqKAmXdF6xRFpZRTqDHQRaQMmAL8AOwFvhCRPcaYF4wxoyqHvQY0B740xsQbY5ZeZHVOYcWeo3z6yyEeGdSZ60K87V2OUkpZxao3FonIcmD5eff9rdr3I2xcl90cq5yi2MO3BU9dr1MUlVLOQ9/6X01FhfDkF/EUl1YwZ3xPGrnrj0cp5Tw0sap578cD/JSczd9uDadLW52iqJRyLhrolXZn5vLaD/u5oXs7xl/jX/MDlFLKwWigA4UlZTy+eDttmjXmlTt0iqJSyjnppy0CL363l9SsAj6d1JdWOkVRKeWk6v0R+ve7j7JoyyEeHtSZ/sE6RVEp5bzqdaAfzS3m2a92EuHrxVOxOkVRKeXc6m2gWz5FMZ4zpRXMHh+tUxSVUk6v3qbYuxstUxSf1ymKSikXUS8DfXdmLq+v2M/I7u0Zp1MUlVIuot4FemFJGY8vqpyiOCZCpygqpVxGvZu2+OJ3CaRmF/Dp7/rSsqlOUVRKuY56dYT+/e4jLNqSziODutC/i05RVEq5lnoT6Edyi3jm37uI8PXiydhQe5ejlFI2Vy8CvbxCePLzHZSUVTBHpygqpVxUvTiHvmDDATYdyObVMZF01imKSikX5fKHqjszcpixYj83RbTnzhg/e5ejlFK1xqUDveBMGU8sjqetZ2NeHq2foqiUcm0ufcrlhW8TSMsuYNHkfng1bWjvcpRSqla57BH6f3cd4fO4dH4/uAv9OrexdzlKKVXrXDLQD+cU8exXu4jy82KqTlFUStUTLnfKpbyy0XNpuaXRc0M3l/yb5dBKS0vJyMiguLjY3qUo5bQ8PDzw8/OjYUPrTxe7XKDP35DC5gMneXVsJEHezexdTr2UkZGBp6cnQUFBeiFaqSsgImRnZ5ORkUGnTp2sfpxLHb7uSM9h5opEbo7owJ29dYqivRQXF9OmTRsNc6WukDGGNm3aXPZ/uS4T6AVnyvjT5/H4eDbmH6P1UxTtTX/+Sl2dK3kNucwpl//9do9OUVRK1WsucYS+bOcRvojL4LEhOkVRnWv69Om8/vrrlxzz9ddfk5CQcFnr3bdvH9deey2NGzeucf11TUR4/PHHCQ4OJjIykl9//fWC44YMGULXrl2Jjo4mOjqa48ePA3Do0CGGDh1Kz549iYyMZPny5YDlYvcDDzxAREQEYWFhvPzyywCkp6czdOhQwsPD6d69O3PmzKnaRnx8PP369SM6OpqYmBi2bNlSY40jR46kZcuW3HLLLRes+/HHH6d58//7CI8zZ84wbtw4goOD6du3L2lpaQCUlJTw4IMPEhERQVRUFOvWrat6zHPPPYe/v/856wHYsGEDvXr1wt3dnSVLllTdv3bt2qqfU3R0NB4eHnz99dcAzJ07l+DgYIwxZGVlVT3m1KlTjB49msjISPr06cPu3burls2ZM4cePXrQvXt3Zs+efcH9vCIiYpev3r17iy1knCqUiOe/l1Fzf5SSsnKbrFNdnYSEBHuXUOX555+X11577ZJjHnjgAfnyyy8va73Hjh2TLVu2yP/8z//UuP66tmzZMhk5cqRUVFTIpk2bpE+fPhccN3jwYNm6detv7p88ebK89dZbIiKyZ88eCQwMFBGRTz/9VMaNGyciIgUFBRIYGCipqaly+PBh2bZtm4iInD59WkJCQmTPnj0iIhIbGyvLly+vqmvw4ME11rhq1SpZunSp3Hzzzb+pbevWrXLvvfdKs2bNqu6bN2+ePPLIIyIismjRIrnrrrtERGTu3LkyceJEEbE8X7169ZLycktGbNq0SQ4fPnzOekREUlNTZceOHXLfffdd9HciOztbWrVqJQUFBSIi8uuvv0pqaqoEBgbKiRMnqsY9/fTTMn36dBER2bt3rwwbNkxERHbt2iXdu3eXgoICKS0tleHDh0tSUtIFt3Wh1xIQJxfJVac+5VJeIUz9PJ7yCmHOuGidouiA/vfbPSQcPm3TdYZ3bMHzt3a/6PK///3vLFy4EB8fH/z9/enduzcA7777LgsWLKCkpITg4GA++eQT4uPjWbp0KevXr+ell17i3//+N2vWrPnNuKZNm56zDR8fH3x8fFi2bJnVdb/wwgt8++23FBUV0b9/f+bPn48xhiFDhvD6668TExNDVlYWMTExpKWlUV5ezjPPPMP3339PgwYNmDx5Mn/84x9r3M4333zD/fffjzGGfv36kZOTw5EjR+jQoYNVdRpjOH3a8pzl5ubSsWPHqvsLCgooKyujqKiIRo0a0aJFC1q3bl21bk9PT8LCwsjMzCQ8PPyi67pUjcOHDz/naPqs8vJypk2bxmeffcZ//vOfc/Z3+vTpAIwdO5YpU6YgIiQkJDBs2DDA8ny1bNmSuLg4+vTpQ79+/S6470FBQQA0aHDxLFmyZAk33nhj1e9Ez549LzguISGBZ599FoBu3bqRlpbGsWPH2Lt3L3379q16/ODBg/nqq7J2NeQAAAwFSURBVK/485//fNFtWsupE/Cd9SlsST3J9FHddYqiAmDbtm0sXryY+Ph4li9fztatW6uW3XHHHWzdupUdO3YQFhbG+++/T//+/Rk1ahSvvfYa8fHxdOnS5YLjbGHKlCls3bqV3bt3U1RUxHfffXfJ8QsWLCAtLY34+Hh27tzJPffcA8DUqVPP+ff/7Ncrr7wCQGZmJv7+/9cr18/Pj8zMzAtu48EHHyQ6OpoXX3wRy8Gf5TTVv/71L/z8/Ljpppt48803AUtYNmvWjA4dOhAQEMDTTz9N69atz1lfWloa27dvp2/fvgDMnj2badOm4e/vz9NPP111muZyajxr7ty5jBo16jd/mKqvy93dHS8vL7Kzs4mKimLp0qWUlZWRmprKtm3bSE9Pv+Q2rLF48WImTJhQ47ioqCi++uorALZs2cLBgwfJyMigR48ebNy4kezsbAoLC1m+fLlN6gInvigan57DrJWJ3BzZgbE6RdFhXepIujZs3LiR0aNHVx39jBo1qmrZ7t27+etf/0pOTg75+fnccMMNF1yHteMu19q1a3n11VcpLCzk5MmTdO/enVtvvfWi41etWsWjjz6Ku7vlZXo2PGfNmmWTej799FN8fX3Jy8tjzJgxfPLJJ9x///0sWrSIiRMn8tRTT7Fp0ybuu+8+du/ezZYtW3Bzc+Pw4cOcOnWKgQMHMmLECDp37gxAfn4+Y8aMYfbs2bRo0QKAt99+m1mzZjFmzBi++OILJk2axKpVqy671sOHD/Pll19e8Mj9Yh566CH27t1LTEwMgYGB9O/fHzc3t8vednVHjhxh165dVv1OPPvsszzxxBNER0cTERFBz549cXNzIywsjGeeeYbrr7+eZs2aER0dfdV1nWXVEboxZqQxZr8xJtkY8+wFljc2xnxeufwXY0yQTaq7iPwzZTyxeLtliuLtOkVRWWfixInMnTuXXbt28fzzz190jq+14y5HcXExjz32GEuWLGHXrl1Mnjy5ar3u7u5UVFRUjatJTUfovr6+5xzxZWRk4Ovr+5v1nL3P09OTu+++u+qC5fvvv89dd90FwLXXXktxcTFZWVl89tlnjBw5koYNG+Lj48OAAQOIi4sDLBdMx4wZwz333MMdd9xRtY2FCxdW3b7zzjurtmFtjWdt376d5ORkgoODCQoKorCwkODg4N+sq6ysjNzcXNq0aYO7uzuzZs0iPj6eb775hpycHEJDr+6jQL744gtGjx5t1bs3W7RowYcffkh8fDwff/wxJ06cqPrjN2nSJLZt28aGDRto1arVVdd1Vo2BboxxA+YBNwLhwARjTPh5wyYBp0QkGJgF/NMm1V3E9KV7SD9ZyOzxPXWKojrHoEGD+PrrrykqKiIvL49vv/22alleXh4dOnSgtLSUTz/9tOp+T09P8vLyahxnreHDh//m9MHZoPb29iY/P/+cGRRBQUFs27YN4Jz7Y2NjmT9/PmVlZQCcPHkSoCqkzv86e7521KhRfPzxx4gImzdvxsvL6zenKcrKyqpmZJSWlvLdd9/Ro0cPAAICAli9ejUAe/fupbi4mLZt2xIQEMCaNWsAKCgoYPPmzXTr1g0RYdKkSYSFhfHkk0+es52OHTuyfv16ANasWUNISIjVNVZ38803c/ToUdLS0khLS6Np06YkJydXrWvhwoVVP79hw4ZhjKGwsJCCggIAVq5cibu7O+Hh50fX5Vm0aJFVp1sAcnJyKCkpAeC9995j0KBBVf+5VJ9R9NVXX3H33XdfVV1VLna19OwXcC3wQ7XbfwH+ct6YH4BrK793B7IAc6n1Xuksl293ZErgM9/J6z/su6LHq9pn71kuL730koSEhMiAAQNkwoQJVbNQ3nrrLQkKCpJrrrlGpkyZIg888ICIiPz4448SFhYm0dHRkpycfNFx1R05ckR8fX3F09NTvLy8xNfXV3Jzc6W8vFwCAgKksLDwN4957rnnpHPnztK/f3+ZOHGiPP/88yJimQEREREh0dHR8txzz1XNKiktLZWpU6dKWFiYREZGyptvvmnV/ldUVMhjjz0mnTt3lh49epwzkyUqKkpERPLz86VXr14SEREh4eHh8vjjj0tZWZmIWGa29O/fXyIjIyUqKkp++OEHERHJy8uTsWPHSnh4uISFhcmrr74qIiIbN24UQCIiIiQqKkqioqJk2bJlVct69eolkZGR0qdPH4mLi6uxxuuuu068vb3Fw8NDfH195fvvv//NPlafnVJUVCRjx46VLl26yDXXXCMpKSkiYpmxEhoaKt26dZPhw4dLWlpa1WOmTZsmvr6+YowRX1/fqudiy5Yt4uvrK02bNpXWrVtLeHh41WNSU1OlY8eOVTNlzpozZ474+vqKm5ubdOjQQSZNmiQiIj///LOEhIRIaGiojB49Wk6ePHnOPp59XletWnXR5/JyZ7kYqbwQcjHGmLHASBH5XeXt+4C+IjKl2pjdlWMyKm+nVI7JOm9dDwMPAwQEBPQ+ePDgZf8B2ph0gk82HWTePb10VouD2rt3L2FhYfYuwy52797NBx98wMyZM+1dinIBF3otGWO2iUjMhcbX6UVREVkALACIiYm59F+SixgY0paBIW1tWpdSttKjRw8Nc2U31hziZgL+1W77Vd53wTHGGHfAC8i2RYFKKaWsY02gbwVCjDGdjDGNgPHA0vPGLAUeqPx+LLBGajqXo1yaPv1KXZ0reQ3VGOgiUgZMwXLhcy/whYjsMca8YIw5O8n3faCNMSYZeBL4zdRGVX94eHiQnZ2toa7UFZLKz0P38PC4rMfVeFG0tsTExMjZOazKtWjHIqWu3sU6FjnMRVFVPzRs2PCyuqwopWxD5/0ppZSL0EBXSikXoYGulFIuwm4XRY0xJ4DLf6uohTeWjxeoT3Sf6wfd5/rhavY5UEQu+O5KuwX61TDGxF3sKq+r0n2uH3Sf64fa2mc95aKUUi5CA10ppVyEswb6AnsXYAe6z/WD7nP9UCv77JTn0JVSSv2Wsx6hK6WUOo8GulJKuQiHDnRHa05dF6zY5yeNMQnGmJ3GmNXGmEB71GlLNe1ztXFjjDFijHH6KW7W7LMx5q7K53qPMeazuq7R1qz43Q4wxqw1xmyv/P2+yR512oox5gNjzPHKjm4XWm6MMW9U/jx2GmN6XfVGL9abzt5fgBuQAnQGGgE7gPDzxjwGvFP5/Xjgc3vXXQf7PBRoWvn97+vDPleO8wQ2AJuBGHvXXQfPcwiwHWhVedvH3nXXwT4vAH5f+X04kGbvuq9ynwcBvYDdF1l+E/BfwAD9gF+udpuOfITeB0gWkQMiUgIsBm47b8xtwMLK75cAw40xpg5rtLUa91lE1opIYeXNzVg6SDkza55ngBeBfwKu8Jm81uzzZGCeiJwCEJHjdVyjrVmzzwK0qPzeCzhch/XZnIhsAE5eYshtwMdisRloaYzpcDXbdORA9wXSq93OqLzvgmPE0ogjF2hTJ9XVDmv2ubpJWP7CO7Ma97nyX1F/EVlWl4XVImue51Ag1BjzkzFmszFmZJ1VVzus2efpwL3GmAxgOfDHuinNbi739V4j/Tx0J2WMuReIAQbbu5baZIxpAMwEJtq5lLrmjuW0yxAs/4VtMMZEiEiOXauqXROAj0RkhjHmWuATY0wPEamwd2HOwpGP0Otjc2pr9hljzAjgOWCUiJypo9pqS0377An0ANYZY9KwnGtc6uQXRq15njOApSJSKiKpQCKWgHdW1uzzJOALABHZBHhg+RArV2XV6/1yOHKg18fm1DXuszGmJzAfS5g7+3lVqGGfRSRXRLxFJEhEgrBcNxglIs7cv9Ca3+2vsRydY4zxxnIK5kBdFmlj1uzzIWA4gDEmDEugn6jTKuvWUuD+ytku/YBcETlyVWu095XgGq4S34TlyCQFeK7yvhewvKDB8oR/CSQDW4DO9q65DvZ5FXAMiK/8Wmrvmmt7n88buw4nn+Vi5fNssJxqSgB2AePtXXMd7HM48BOWGTDxwPX2rvkq93cRcAQoxfIf1yTgUeDRas/xvMqfxy5b/F7rW/+VUspFOPIpF6WUUpdBA10ppVyEBrpSSrkIDXSllHIRGuhKKeUiNNCVUspFaKArpZSL+P+YcYfvn/HXQAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "dB9b1fz9Kopl",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 669
},
"outputId": "94a4a167-e59d-4422-9312-aa6e178e52b9"
},
"source": [
"from dtreeplt import dtreeplt\n",
"dtree = dtreeplt(model=clf, feature_names=Predictors, target_names=TargetVariable)\n",
"fig = dtree.view()\n",
"currentFigure=plt.gcf()\n",
"currentFigure.set_size_inches(80,40)"
],
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAEX4AAAiMCAYAAADm7kj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzceXyW5Z3o/+vJvhMgbGFfAkEwgGxuWLcq4FKxtVpr1bbTVafLaafTV+fMmdKeM+10znQ5U3W0dsG21mUsaqkKVhClyCIIYSdAQjYSICQQsj0heX5/aPoLiApCH7S83/+E3Pd1X9f3fhL4i9cnEovFAgAAAAAAAAAAAAAAAAAAAAAA8ZNwpgcAAAAAAAAAAAAAAAAAAAAAADjbCL8AAAAAAAAAAAAAAAAAAAAAAMSZ8AsAAAAAAAAAAAAAAAAAAAAAQJwJvwAAAAAAAAAAAAAAAAAAAAAAxJnwCwAAAAAAAAAAAAAAAAAAAABAnCWd6QEAAAAAAAAAAACA94fcAbk/Tc1MHXqm5wDeH9qa2nY37Gm4+0zPAQAAAAAA8F4l/AIAAAAAAAAAAACckNTM1KFfePgLu8/0HMD7w3233icUBQAAAAAA8DYSzvQAAAAAAAAAAAAAAAAAAAAAAABnG+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAAAAAAAAAACAOBN+AQAAAAAAAAAAAAAAAAAAAACIM+EXAAAAAAAAAAAAAAAAAAAAAIA4E34BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAAAAAAAAAAAAgDgTfgEAAAAAAAAAAAAAAAAAAAAAiDPhFwAAAAAAAAAAAOCEHIkeSZ87fe5d874474ozPUuXudPn3nXPzffMOZG1S+5fUjh3+ty7lty/pPCvPRcAAAAAAADAO0k60wMAAAAAAAAAAAAA8P+bO33uXXnD8qrvevSu+adjv3tuvmfO/rL9+f+y8l/uOR37/bW1HGpJ+uG1P/zkkbYjKUMmDCn55AOfXPRWa9c+tXZwyfKSIXXldXkN1Q157a3tab2H9N5z9+N3//5Ez3vqu09NWbdg3fQQQrj+n65/atL1kypPx3u8V2z606b+y+Ytm1JXXte/40hHUlavrIbCDxRuuerLVxUnJifGTnSfudPn3vVW93oO6ln7pSe+9N/HuxeJRK4NIXw9hDAphJAYQtgUQrg3FovNO8lXAQAAAAAA+Jsj/AIAAAAAAAAAAACcFaZ8eMquEdNG1PQa3Kv5TM/CW3vl4VdGHWk7khJCCJUbK0c07GlIyx2Q23q8tWvmrzm3ekv18ISkhI7MXpkH21vb007mrO3LtvdZ/8z6qYkpie0d0Y7k0zH/e8mKR1YMX/TjRbMSkhKODJk4ZEdaVlprRXHF8FWPr7q4ekv1gE///NPPncx+6T3SGwsuLNh67PWcvjmHj7f+8IHDw0IIfwgh1IUQfhNCiIYQPhJC+FUkEjk3Fot9/aRfCgAAAAAA4G+I8AsAAAAAAAAAAABwVsjOy45m52VHz/QcvL1Nz28aFyIhds7l57y2+YXN5y3/zfLC2f8we93x1l74iQvXZuRkrBgycUh97c7arJ/d8bPbT/Sctqa2xAXfX3Blz4E992b3yT64e+3uMafvLd7sYM3B1IY9DelDJw1t+Gue0+Vw3eHkJfcvuSySEInd9K83zR9zyZh9IYTQ1tS28oE7HrihcmPlyJd/9XLBjDtnlJzonpk9MxvnfHvOqhNZW721Oru5vvmcEMKBEMKUWCxWFkIIkUjkOyGE1SGEr0UikSdisdgrJ/1yAAAAAAAAfyOEXwAAAAAAAAAAAIAQiUSmhRC+FkK4OISQF16PNWwIITwYi8UeO3Z99dbq7Of+47kLakpqBndEO5Jz+uYcuODjF6yadtO0suPt//IvXy4oXlg8rqG6oU/nkc7EjNyMQ6MuGLV91tdmrU3JSOk8dv3u13bnLv350vNqttcMajvclpmUmtSWnZfdMHrG6O1Xfemqje/0Pgu+v2DSmvlrLuw1uFfN7T+9fUGP/j3alty/pPClX7x0xSWfuuSFyz532dautT+46ge3hxDC3Y/f/fCC7y2YVramrKCtqS0jLSetsfADhZuv/cdr10YSIkftH+uMhed+9FzR5sWbxzfXN+ekpKe0Dp4weNd137puxX233ndLCCF8Y9E3HupaH22JJiy+b/H4rUu3FjbXN+d0dHQkpmamtvTM77l/yo1TiiddP6mya74QQthftj9/7vS5d3U9XzSraHVXcGPJ/UsKd67cOay+qr5P6+HWzISEhM6cfjl1RbOKNnzg0x/Y3v1n1D2E0n2/vGF51Xc9etf8ruvdv+9u3hfnXVG2pqzwM/M+81B+YX5j1/WVj64ctubJNRMO1R7q1d7anpacntya3Tu7oeCigpKrvvzOP5+3smvVrl4HKg/07zuyb8VVX7pq7dYXt07c8uKWc94q/DLuinE17/as+XPnX9BU35Rz5313PrL4vxZPebf7vJ22prbE1U+sHr5l8ZbRe7btGXru1eeuGTpp6AmFU07VqsdWjYo2R9OHTR62tSv6EkIIqZmpHTPunLHiqe8+dUPxM8XjTyb8cjJW/G7F2BBCQgjhp13RlxBCiMVi9ZFI5F9DCD8PIXw+hCD8AgAAAAAAnLWEXwAAAAAAAAAAAOAsF4lEPhNCuC+E0BFCeDqEUBJC6BtCmBJC+GII4ajwy+EDh7PnfWHeTZm9Mg+NmDZiW9vhttTydeUFz/7Hs7NTMlKemnjNxKru6x+6+6HLS1eXjk3LTjs8uGjwztTM1La9O/f2X7dg3fTKTZWDPvfQ555KSkmKda1f9d+rhi780cKZnR2dif0L+pf3ntp7e1tTW+qBygN56xesP+/twi+dHZ3h0W88OmP7su1FA8cN3PmJ//zE86mZqR3v9BnEOmIJv/i7X1zfcqglM/+c/N0JCQmdFcUVI9Y+ufaCI9EjiXP+Zc7q7usf/trDH9ixfMf4tKy0plEXjNqUmJzYWb6+fNgvP/PLfrGOWEIkMXJUzOa3X/7tleXrywuy+2YfGD5t+LaklKQjTfVNmft27RtQsrxk6KTrJ1UOOnfQ/qJZRauLny2emt4jvbHgwoK/xGlGTBvxl8902UPLLs3pk3Og78i+1Zk9M5taG1vTqjZXDXvxgRc/WLe7rueN37lxZQghZPXOaiuaVbS6ZHlJYcvBluyiWUV/eYfcAbmH3ukzeSt/+umfxv3513++NDUztXnQ+EGlaTlprS0HW9LrK+vztry4ZeyphF9WPrpyXAghjLty3JYe/Xu0DRg7oLRqY9XIDQs3DDj36nP3vNt9j7VuwbqB25ZumzDto9NeHlw0+ODp2jeE138H1/9x/aANCzeMqSiuGHEkeiQlITGhI39sftnYy8aWnc6z3k75+vJBIYQwYuqI8mPvjb9qfPWC7y84UldR1z/aHE04XnzpeKIt0ZTF9y0ee/jA4YzUzNTo4KLBe8+5/Jza462t3lw96I0/Pnec28++8fXyEzkXAAAAAADgb5XwCwAAAAAAAAAAAJzFIpHIOSGEe0MIh0IIM2Kx2KZj7g869pn9pfsHFs0uWtU9hrJm/prtC76/4PqVj6yc1D38suT+JYWlq0vHDhw3cNdt/++2RWlZaX+JsMz/9vxpxc8WT33+P58/d9bXZhWHEEJ9dX3a8z95/qpYZyxhzr/MebJoVlF197Nrd9RmvtW7tDW1Jf7673/9wapNVSNHXzx6w80/uPmlhMSEE/ocWg+3Zubm5+7/u1/+3VNdMx6oOLD6vo/fd9vmFzZPvPab165JTk3uDCGEDQs3DNixfMf4zF6ZDZ996LOP5/TJiYYQQrQl+soDdzzwodbDrZnpPdIbu/Zu3N+YUr6+vCB3QO6+ux+/+/HE5MRY97Mb9jSkhRBCwYUF+wsuLNhf/Gzx1MyemY1zvj1n1fFm/eT9n3x40PhBR4Vboi3RhAc/9eB1G5/feN7Fd1y8se/Ivk05fXKic749Z9U9N98zsOVgS/Zb7XeyNv5p47iExITOz8777CO9Bvdq6X6vvro+7d3u29bUllj6aumYpNSk6LSPTtsVQghFM4u2Vm2sGrlm/ppxpyv80ri/MWXRTxZdmTc0r3rmV2cWn449Qwhh+7LtfV57+rXRpWtKR7cdbsuIRCKxvOF5VYWXFG6fetPUndl52dFjn6neWp298pGVY0/mnOm3TN+SX5jf+E7rDtYezA0hhL6j+jYcey8pJSmWkZtxqHFfY6/qrdU9hp03rP5Ezj5Ueyjv5V+9/JdYy4rfrQg5/XL2X/9P1z8/cvrIA93XNu5r7PnGH7cfu08sFtsTiUSaQgiDIpFIRiwWaz6R8wEAAAAAAP7WCL8AAAAAAAAAAADA2e0L4fX/T/jdY6MvIYQQi8Uqj72W3iO98fpvXf9q92uT50yueOHeFxrrKur6db++/pn1EyIJkc6P/ttHX+gefQkhhOv/6frVW17ccm7JspIxXeGX5b9ZXngkeiRl9IzRxcdGX0IIod+ofk3He4mDNQdTf/33v76mrrxuwOQ5k5df+81rXzuRl+9u9jdmv9x9xl6De7UMGj9oV9massKK9RW5I6aNOBBCCOsWrCsMIYQpN055tSv6EkIIKekpnZd+5tJXnvifT3y4+76RSCQWQggJSQkdCYkJR0VfQgghd0Bu68nMeWz0pevsiddO3PD8/3t+0ObFmwf1Hdl328nsebIiCZHOpJSkzmOv98zveVLv0t0rv3tlVHtre+rI80du6vo5nPeh83Yvvm9xc8WGilGHag+9nNMvp+1U5g4hhCf++YlLoi3R1I//+OMvRBIip7RX1aaqnFd//+roHa/sGH247nDPEELoObBn7YTZE9ZM/cjUHXlD8942aLJv176c4meLp57MmSOmjag6kfBLe2t7SgghZORmvCk4E0IIyWnJ0RBCaKpvSj2RcwsvLVw3/oPjd+afk9+QmpHaUVFckbts3rLJlRsrRz72j4/N+fTPP/1I35F9//L3s73t9fNDCAffYsuDIYTMEEKPEILwCwAAAAAAcFYSfgEAAAAAAAAAAICz2/lvfH32RB/omd9zf2Jy4psCJhm5GYfrKur6d33fcqgl6WDNwbyUjJSWF+55YeLx9kpMTOw4tP9Qz67va7bV9A8hhIILC3af6Dytja3pD37qwQ83NzT3uOxzly265FOXlJzos12SUpOig88d/KZARVbvrMMhHB3HqKuo6/PGjHuOXT/20rG1kYTIUUGUrN5Z7QMKB5Tt2bpn2I9v+PEtw6cM3zls8rDqMTPG1KbnpB852VlrttdkLb5v8Xl7tu0Z3HywOavzSOdR/x/00N5DWSe758kYfdHo7av/e/VF937s3luHTRlWMmzSsKrRl4ze02tgr3cdfQkhhI0LN44LIYTzPnTelq5rSSlJsRHTRmzfsmTLxOW/XT5m5v+YWXwqZyz/zfKRu9fuHnPBrRcsHThu4JsCOifrwU89+IkQQkjLTmuacM2ElVNunLL9eGGetzJh9oSqCbMn3HOqc8TDzf9285+7fz/mkjH7xlwy5rkHP/3gzKqNVSMX37940i0/uGXZmZoPAAAAAADg/Uj4BQAAAAAAAAAAAM5uuW98rTrRB1IyUtqOdz2SEImFWIh0fd+4rzE1hBCizdH04meLp57I3tGWaEoIIfQc2PPwic7Tdrgtoz3anpKenX549MWj3xRjORHJacnHfaeExIRYCCF0dnQmdF1rb21/fcZBPZuPXZ+YnBhLSU95UwDl9ntuf+7Z//vs5J0rdxas/+P6aev/uD4kJCV0DD538I7rvnXdn3sP6d1yInNWbarKmXfXvJvaW9tT84bm7ckfm1+empkajSREYof2HsouW1NW2NHekXii7/1uzP6H2esycjNaip8rPnfbS9uKti3dNmHhjxeGvOF5VVd+8co/j7lkzL6T3bNsbVnPuvK6AVm9s+rPufyc2u73ptw4ZcuWJVsmbl6yedyphF8O1hxMXfrg0kv7jOhT+cG//+DGd7tPdzl9c+oO7T3Uu7WxNbNyQ+WQ9Jz0toweGTt6De51Qj/Pv6bktORoCCE0NzSnHO9+1+9xZs/M4/7un6jJH5q8sWpj1cia7TX5R52fmhyNtkTTQgg9Qgh1x3m0xxtf3xRcAgAAAAAAOFsIvwAAAAAAAAAAAMDZreGNrwNDCFtP58ZZvbOiIYTQo3+PfV956iuPncgzKekp0RBCqK+qzwohHDiRZ3oM6FE3/qrxm5b+bOmVD9390I0f/9HHnxw4buChdz34O0hOfT2oUV9Zn5HRI+OoczraOyLRlmhaWnZaU/fraVlpHXO+PWdVCGFVbUlt1taXtuZvfmFz4e7Xdo/53dd+l3P343f//kTOXvrzpRPbW9rTLvnUJS9c9rnLjvp5vfzLlwvK1pQVvpt3inXGIse7Hm2Oph7v+qWfuXTbpZ+5dNuhfYdStr20bcDWpVtH7Fq1a+wT//zE9Z9/+PO/7TWw15viN29nxSMrxoUQwuG6wz3nTp971/HWNO5t7LXpT5v6j7tyXM3J7N1l76692dGWaNq+XfsGfeeC7xz3jKf/z9Mfevr/PB2m3TRt2ayvz1r/Tnt+9Q9ffWTnyp291j61dkzp6tKCFb9bccnKR1bO6Duyb+WYS8Zsn/LhKbuy87Kjb/V89dbq7JWPrBx7Mu8x/ZbpW/IL8xvfaV2Pfj0aGqob+u7dsTd3zIyjYzxHokcizQ3NOZGESGd+Yf4phVey+2S3hBBCR7Qj+Zjr9XXldQNCCKNDCK90vxeJRAaEEDJDCJWxWOxNASUAAAAAAICzhfALAAAAAAAAAAAAnN1WhBCmhBBmhdMcfsnIzWjP7pN9oHFfY++DNQdTe/Tv0fZOz/Qf07+mcmPlyJLlJUOn3Dil/ETP+sCnP7A9KSWp44V7X7jqN1/+zY0f+4+PPTlkwpCGd37y5PUa3Gv/wZqDfUqWlww4NjCz5cUt/WKdsYS3e75fQb/D/Qr6bZ9x54ztP7zmh7fVldcNaNjTkJY7IPf1WEokxN4qxHJo76EeIYQw7aZpO4+9t3vd7oHHeyaSEOkM4fUoTWJyYuzY+8lpya3NDc1Zx17vaO+I1FfX573du+T0yYlO/fDU3VM/PHX3Q3c/FCldXTp265KtAy+87cI3zfdWos3RhF2rdo0JkRAbPmX41kgk8qYZm+qbsmpLaoesmb9m3LsNv+T0yWkdMW3E5uPdq91Rm990oCm3/+j+uzNyM5r6j+5fd6L7jpw+8sDI6SNfiXXGXtmwcEN+8bPFo8vXl4966RcvDV42b9mlAwoH7B572djtk+dMLkvLSuvo/uy+Xftyip8tnnoy7zFi2oiqEwm/DJkwpHL3a7tH71q9a8iMT84o6X5v46KN+R3tHUl5Q/OqUzJSOk/m/GOVvlraP4QQsnpnHRWQyT8nv/KN8MvMcEz4Jbz+700IISw+lbMBAAAAAADe74RfAAAAAAAAAAAA4Ox2Xwjh8yGEf45EIgtjsdhRYYxIJDIoFotVvtvNJ14zcd3Lv3r58se++dgVN//7zX/K6ZMT7X7/UO2h1JqSmpzRF4/eF0IIF9524dZ1f1g3teTPJeOLnyveWTSzqLr7+todtZn9RvVrOt5ZF33iop1JKUnPLvrJopkPf/XhOTf/281PDZ86/MC7nf1t3mlr6erSsa/+/tUpk+dMLs3Oy46GEEK0JZqw9GdLLzh2/YGqA2n1lfUZI6ePPGqWloMtyUeiR5IjCZHO5NTkvwRBUtJTWpsPvjnEEkIIWb2zGmtLasPGP20cOP2j08u6rq+Zv2bwrpW7zjneM6mZqa0hhFC7ozYrf+ybgyG9BvfaW1tSO2TNk2sGT75hckXX9af/9ekpLQdbso9dv+6P6wZOmDWhKpJwdJumtbE1/Y352483x1tZ8ciKke0t7Wn9R/fffftPbz9uCORw3eHkH3/ox58sX18+qnF/48tdn/nJ6FfQ7/An/vMTS453b94X513RdKApd9pN09ZNun7Su/p9jyREQtGsouqiWUXV0ZboS2ufXDt00582janeWj2salPViCUPLGm/+I6Ll176d5du63pmwuwJVRNmT7jn3Zz3TqZ9dNqOlY+uvLB8XfnobS9tKx5zyZh9IYTQ1tSW+PKvXj4/hBCKZhdt7P5My6GWpL0792alZqYe6T+6/+Gu6ztX7Ow9ZNKQ+uTU5KMiMTtX7Oy9+onV54cQwtjLxm7rfu/8W87fsuG5DZNDCHdHIpFfxmKxshBCiEQiPUMI33pj2X+d3rcGAAAAAAB4fxF+AQAAAAAAAAAAgLNYLBbbHIlEvhheDzC8FolEngohlIQQeocQpoYQDoUQLnu3+1/+hcu31Gyv6WeU24wAACAASURBVFOyvOTcn37kp58YMGZARVZeVmPb4bbUxv2NOfvL9g8cPnX4ltEXj34xhBB65vds/eCXP7ho4Y8Wzpr/7fk3vPLwK7t7D+ldF22OphyoPNC7paEl+x8W/cNDb3Xe9JunlyWlJP3xmf/7zOxH/uGROTd976YnR10wqu7dzn88RbOKqoufK960c8XOcffecu+tQyYO2ZmYlNhZvr58WEpaSjQtK60pEonEutbX7a7LevirD9+c0zenrufAnnVZvbMao83RlMqNlcPamtoyRs8YXZzZK/MvsZR+Bf0qK9ZXFDxwxwPX9BnWZ19CUkLn8KnDq4tmFlVf8LELNpSuLh276MeLZm5ZvGVnZs/MpgOVB3rVbK8ZOrhocElFcUXBsfMOmTCksnJD5ajHvvnY7MFFg3cnpSQd6TGgR2NXgGT6zdNfe/p/Pz3kmX9/5pqNizaWpGWltdburB3QdKApJ294XtX+0v0Du+/3x3/74+yFP1rY3nto75qcPjmNsVgs1G6vza+vru+bOyB334RrJ5xUOGXDwg3jQwjh3Jnnbn6rNVm9s9qHTBiys/TV0sLlv1k+5uqvXL0hhBA2Lto4YM2Ta84JIYT2tvbkEEJo3N+YO++L867oevaOe+944WTmOR1S0lM6z//Y+aXnf+z80sb9jSmrH189cutLW0c3VDe8KaTz15LVO6v9ss9dtnjRTxbNevxbj88ZOmloSVpWWlv5+vLhh+sO5w4aP2jnxbdfXNL9me3Ltvd7cu6TN+QNy6u+69G75nddX/bQsolV/1g1rM/wPnuyemcdTkxO7Kivrs+t3V47NBaLRUZOH7lpxp0zjtorf2x+Y0ZuxubmhubxIYRXI5HIoyGEaAjhIyGEQSGE/4jFYq/E4aMAAAAAAAB4zxJ+AQAAAAAAAAAAgLNcLBb7WSQS2RhC+HoI4dIQwg0hhP0hhOIQwoOnuv+tP7r1pVWPryp/7Q+vjaspqRnUvqE9NSU9pTWjR8bhc644Z+2UG6ds675+2kem7e4ztM9jS3+x9Lza7bWDaktqhySnJbfl9Mmpn3T9pDXvdN7kOZMrklKTFvzhe3+45rFvPjbnxu/c+HThBwr3nup7HPVOP7z1xed++Fz9liVbxu9YvmN8cnpy65CiITuv+6frVvxkzk/uzMzMPNi1tl9Bv0MTrpmwqnpz9cDaktqBFcUV6clpya3ZfbIbLrj1glcuvuPo+MYN/3zDy09996lQU1IzaM+2PUNDLEQ6OzpXF80sqh55/si6G79z4/ylDy49v3pz9dDOWGdCbv/c/Vd/5epn0nukR48Xfrn885dvPlh7MLt0dWnBpj9tmhTrjCXkDcur7gq/TLpuUmW0OfrHFb9bMa18XXlBYnJie//R/Stu+tebFi76yaJp+0v3H7XftJumLS9bWzakvrK+z56te4YmJiV2ZORmNE6eM3n5ZZ+9bGNyanLniX6O5evLc/eX7c9PzUxtnvqRqWVvt3bynMmbSl8tLdy8ePM5XeGXfaX7epStKSvsvi7aHE0/5lrcwy/dZedlRy//wuVbLv/C5Vs62jsi8Tz7/I+dX5qVl/X7Pz/05ykV6ytGdnR0JGX2yjw49SNTl139lauLIwknNs6YGWN2tbe2p9RX1/feu3PvoI4jHYkp6Smt/cf03z1h9oRN02+eXna857J6Z5U1NzR/K7z+b8vtIYSEEMLmEML/jMVi807TawIAAAAAALxvRWKx2DuvAgAAAAAAAAAAAM56/Ub1+8MXHv7C7jM9x3tZRXFFj1985he3DZ4wuORTD3xq0ZmeB86k+269b2jtjtrrzvQcAAAAAAAA71UJZ3oAAAAAAAAAAAAAgPeb/bv3Z3R2dB51reVQS9Iz//7MjBBCGH3x6F1nZDAAAAAAAADgfSPpTA8AAAAAAAAAAAAA8H6z5P4lE0pXlxb0K+hXlZGb0dzc0JxRs71mUGtja1b/0f13X3TbRTvO9IwAAAAAAADAe5vwCwAAAAAAAAAAAMBJGnXBqIq68rq8PVv3DGlvbU+LJEQ6s3pnNYy7clzx1V+9en0kIXKmRzyjlty/pLBhT0POO60bMGbAvvM/dn5pPGYCAAAAAACA9xrhFwAAAAAAAAAAAICTNOm6SZWTrptUeabneK/avHjz2P1l+/Pfad2hvYe2Cr8AAAAAAABwthJ+AQAAAAAAAAAAAOC0uuvRu+af6RkAAAAAAADgvS7hTA8AAAAAAAAAAAAAAAAAAAAAAHC2EX4BAAAAAAAAAAAAAAAAAAAAAIgz4RcAAAAAAAAAAACA96gl9y8pnDt97l1L7l9SeCr7VG+tzp47fe5d874474rTNRsAAAAAAABwapLO9AAAAAAAAAAAAAAAnH1qd9RmLvzxwunVW6qHtre0p6VmpTYNmTBk1+yvz16d0y+n7d3uW/xccf78b8+/IcRCZPxV41/98Hc/vLL7/Yriih7r/rhuZMX6iiGN+xt7tDW1ZSSnJbflDc2rmXrT1PUTr5lYdepvBwAAAAAAAO9M+AUAAAAAAAAAAADgPWrKh6fsGjFtRE2vwb2aT2WfPsP7NN35X3f+NqNnRvR0zXYqKjdW5vz673/9kWhzND1/bH5pbn5u/b5d+/pte2nbhKpNVUM//fNPP5E7ILf1ZPdtOtCUvPCHC69MTE480hHtSD7emuf/8/npFcUVBdl9sg8MHDdwd1pWWmvDnoae1Zurhz/1naeG12yreXnm/5hZfOpvCQAAAAAAAG9P+AUAAAAAAAAAAADgPSo7LzuanZd9yrGW5NTkzqGThjacjplOhwXfW3BptDmaPv2W6S/N/OrMDV3XH/3GoxdtXbp14oLvLzj/tp/c9uLJ7vvE/3piRntbe0rRzKI1rz392vnHWzN8yvDyGXfOWFtwUcH+7teLny3Of/I7T35o9X+vvmjyjZN39BnW55RiOwAAAAAAAPBOhF8AAAAAAAAAAAAA4iTWGQvP/ei5os2LN49vrm/OSUlPaR08YfCu67513Yr7br3vlhBC+MaibzzUtX7J/UsKX/rFS1dc8qlLXrjsc5dt7br+g6t+cHsIIdz9+N0PL/jegmlla8oK2praMtJy0hoLP1C4+dp/vHZtJCHyl3Ort1Zn/+yOn90+bPKwrXfce8cLcXzlN6ncWJlTu6N2cEaPjMarvnTVhu73rv3mtatKlpeMK1tTNqb5YPOyjB4ZR0503xWPrBheurp07KWfvfT5ziOdCf8fe3ceH3V57v//mjWTSTLZt8m+kYRsQBYQBFkVEFoQxbVurVprT5fT1ra/s6CnPd9jW3taa9GirYpbUYtgRUBkDWvYSQjZyEaSyTbZJttkJjPz++P7TTuEAAEhQX09/5G5r+u+7+v+6H/l8e7F+ty/o7vMRZmm/W/tb2ipbImq2FcRHhwbXDn6VwEAAAAAAAAAAABX7qL/oxYAAAAAAAAAAAAAAAAAAACurXd/9O4th98/PHPQOqhNvCmxOC43rsJUYop6/bHXv+5yuK7o73W6HC7la9967Wu1J2oTjBONtQlTE4qddqf6+MbjN238xcbc6/WGz6ssvyxSRCQ8NfycUnX+k70CvOxBMUFNDrtDXZZfFjbaM9vr2j13rdk1xzjRWHXLN28pv9rZlCqlU0REqf6//wQAAAAAAAAAAACuJ/V4DwAAAAAAAAAAAAAAAAAAAPBVUPRpUfjZA2fTvQK8Oh9/8/EPDMEGm4iIrd928JWHXvm6tcfq5enr2T3a86w9Vi8/o5/5W69/6yOdt84hItJe137k5ftffuDMjjOTlvxsyTGNh+aqA0w2PLMh70r64/PiG7IWZzVcrq/tXJufiIh/hH/nSHVDqKGz+WxzVGt1q5+I1I/m7vX/sX6Oy+VS3PHsHbuvZGZ3jWWNPi2VLZEqjWpw4pyJpqs9BwAAAAAAAAAAABgtgl8AAAAAAAAAAAAAAAAAAADGwMlNJ1NERHLuyDk6FPoiIqL11DpnPzb74Pp/X7/iSs9c/PTivUOhLyIiAVEB/ZHpkVU1x2pS6k7V+cXnxbdf7byFWwpzr3TPaIJfbH02rYiIzltnG6nu4eVhExGxdls9RnPnzpd3pppKTHHznpr3aWB0YP+VzOs2k3L9v69f4HQ4Vdlfyz5gCDUMXM05AAAAAAAAAAAAwJUg+AUAAAAAAAAAAAAAAAAAAGAMtNW1BYuIJE1PahxeS52d2qxQKpxXcp7aQ22LyojqGr7uHejdIyLS29E7quCUi1lVsGr159k/FkylJp+D7x6cGZkRefbmB28+ezVnOOwOxVvfe2tB27m28KjMqIrbn779xLWeEwAAAAAAAAAAABiJcrwHAAAAAAAAAAAAAAAAAAAA+CqwW+1aERH/SP++4TWVRuXSemqtV3KeRqcZGGldqVK6REScDucN+fdEtXqtTUTE2mPVjlQf6B3QiojofHQjvs/dxmc2zlOqlYN3/Ncde65mFofdoVj71NoF9UX1iVGZUWcfXP3gZwql4mqOAgAAAAAAAAAAAK6YerwHAAAAAAAAAAAAAAAAAAAA+CrQeGhsIiId9R16va/e4l5z2B0KW79Np/PR9Y7PdBfa8MyGvCvpj8+Lb8hanNVwub7A6MBOEZGOhg6/keqWZoufiEhwXHDn5c7qMHUEDw4Mav+w/A/fHKl+etvpnNPbTucYU43Vj73x2Gb3mn3ArnzzqTcX1BfVJ0ZPii5/8I8PbldpVK7L3QkAAAAAAAAAAABcKwS/AAAAAAAAAAAAAAAAAAAAjIGAqABzV1NXcMWBivCItIjzgl9KdpeEupwu5XjNNpLCLYW5V7pnNMEvybOS6/et3SeNJY3RTodTlKp/Pru3vVdjrjWHqTSqweRZyU2XOys+N7500DZ4wd+HtTRb/My1ZqNvmK85MDqwJSQhxOxet/XblGufXLvQVGKKi82OLf3Gi9/Y4T4HAAAAAAAAAAAAMBYIfgEAAAAAAAAAAAAAAAAAABgDk26fVFp9pDr16IdHc7KXZ1f7BPnYRP5vCMmeV/fcNN7zDbeqYNXq63FuZHqkJTQxtK75bHPUtj9sy1j4w4VFQ7VNz23Kc9gdmoRpCcV6X/2g+77aE7V+IiIxk2M6h9bu/e29e0e6Y9eaXSn5r+UbozKjalb8YkWBe83WZ1O+/sTri5vKm2Li8+LP3P/7+3cR+gIAAAAAAAAAAIDxQPALAAAAAAAAAAAAAAAAAADAGMhclGkq3FpYXHmoMu2le166L3pSdKVKrXKeO3UuVqvT2nTeul6FQuEa7znHwpKfL9n91r+8dWfBuoJZdafqovwj/NtbKlvCWqtbI7wCvDqX/GzJoeF73vj2G/eLfP5AmnU/WTenqbwpRuuptXoHePd+9IuP8ob3xOfFN2Qtzmr4PPcAAAAAAAAAAAAAl0PwCwAAAAAAAAAAAAAAAAAAwBi573/v2731f7d2lOwqST974Gy6xlNjjc6Mrlz6b0sPvbD8hYe9vLy6xnvGsRCZHml59JVH3//0959ONZWYohvLGmN03rre5FnJpxb/ePERQ6hh4Hrd3W3uNoiI2PptusKthbkX6yP4BQAAAAAAAAAAANebwuX6SvwfQwAAAAAAAAAAAAAAAAAAgM8pNDH04yfffbJ2vOf4MqorrPN97bHXHojKiqp49JVHt433PMC18PJ9L8c0n21eOt5zAAAAAAAAAAAA3KiU4z0AAAAAAAAAAAAAAAAAAADAV4W51qx3OpznrfVb+tWbf7N5pojIhJsnVI3LYAAAAAAAAAAAAADGnHq8BwAAAAAAAAAAAAAAAAAAAPiq2LVmV1b1keqk0KTQBr2fvq+vs0/fVN4Uae22eodNCKud8cCMs+M9IwAAAAAAAAAAAICxQfALAAAAAAAAAAAAAAAAAADAGEm8KbGu7VxbUGNpY7TdatcplAqnd6B3Z9r8tMLbfnjbKYVSMd4jAgAAAAAAAAAAABgjBL8AAAAAAAAAAAAAAAAAAACMkclLJ9dPXjq5frznAAAAAAAAAAAAADD+lOM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB81RD8AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjjOAXAAAAAAAAAAAAAAAAAACAr6Bnpz771Oq7Vy8f7zkAAAAAAAAAAACAryr1eA8AAAAAAAAAAAAAAAAAAAAAXA8bntmQV7ilMPdSPXo/veUnn/7kreHrhz84HHvkb0cmd5o6g1wul8IQYmjPWJhxes7jc0ovdtauV3alFG0pyrC0WvwVCoXLz+hnzr0z90TeXXk11+A5AAAAAAAAAAAA+JIh+AUAAAAAAAAAAAAAAAAAAABfSvF58Q0Xq9WerI3tauwKjkiLqB1e+/R3n2YcWndolsZTY43LiStTapTO2uO1Cfl/yZ/XWtUauPK5lfuH73n/Z+/PKNlVMknno+tJnJ54xml3KmuO1yRteX7L7R31Hfm3/fC2omv9PgAAAAAAAAAAAHyxEfwCAAAAAAAAAAAAAAAAAACAL6WsxVkNWYuzLgh/cdgdiucXPZ8qIjJ15dRi95qp1ORz+IPDMzQ6jfXhPz38vjHF2C0iYmm2HFnz0Jq7SnaVTCreUVyZNi+taWhP8fbisJJdJZP0/vquJ9Y+8YEh1DDw/8468cYTb6w8/MHhGRmLMmqGzgIAAAAAAAAAAABECH4BAAAAAAAAAAAAAAAAAAC4qIL3CmKPbTyWZWm2BNitdp3GU2P1CfTpTJqRVHHr9289PdRXtrcs+PhHx1Oaypsi+rv6vR12h9rT4NkTlRVVvehfFx0dCgIZsmvNrpT81/LnzXp01g7fMN/eA28fyO1s7AxSqVWOiLSImmXPLNtrCDbYKvZXBO1cs3NqW01buNPpVIYkhDQs+fmS/OEBIqvvXr3cXGM2/nzXz1/++H8+zq0qqEq29li9dD66nsTpiaW3P337Ma2n1jmaNw/aBhU7X96ZVppfmtLd0h3gdDoVPkE+namzU88s+N6CIqVKeVXf6EZydMPRGGu31TsgMqApYVpCm3vt0F8PpTodTlX6gvTj7t/ZEGoYyP569rG9b+yde3T90TT34Jcj64+ki4hkL8s+79+1McXYnTI7pahoa1FuwV8LUpc/u/zwWLwPAAAAAAAAAAAAXwzKy7cAAAAAAAAAAAAAAAAAAAB89Wz/4/a0rf+79XZLsyUgMj2yOnVu6omIiRE1DrtDXbK7JNW998jfjqTVHKtJMoQYOhKmJZQk3Zx0WmfQ9ZbuLp306qOvruht79WMdEdlQWXcpuc2LdH56Pon3Dyh2DvIu7P6aHXKW//y1uIzO8+EvvfT91a4nC5l4vTEkqCYoKbG0sbYdT9et8TpGDnDZe131i6sOFAxMTIjsnrCzAmFohBX4ebCvDe+/cYil9N12TfbB+zKPz/65yUH3z14i73f7hEzJaY8aXpSscvlUhxad2jWm0+9Of9qv9GN5NQnp9JERNIWpBUPr5nOmCJFRCbMmnBueC1jUUatiEhTeVOk+3pzRXOkiEjGwowL9iTPSj4nItJwpiFyeA0AAAAAAAAAAABfberxHgAAAAAAAAAAAAAAAAAAAOBGdHr76TSlSul8fO3j6wKiAvrdax2mDp3773nfmXcsJD5kj0qjOi9dZcfLO1L3vbFv7s41OzOW/nzp8eF3mM6Y4patWrYxc1GmSUTE6XDKmm+s+VpLZUvUxmc3Lp35yMxdt3zzlvKh/je/++bc6iPVqYc/OBw37Z5p1cPP62ru8v/Ou9951xBqGBARGegdOPTKg68sayxtjN3z2p7k2d+aXXapN2/6n005zRXN0RNunlC08rmVe4fe47A7FO/88J051UeqUw+tO1Q5dPeVfKOLsbRatDtW75g0mt4h6bemVyVNTzJfyZ4hzWebvZrKmmLUHmrbTffddHZ4vbu1219EJGJiROfwWnBscJ9Ko7Jbu63e/ZZ+tafBc7Cvq09t7bZ6qbQqe3BscN/wPcZUY6eISLe52+9q5gUAAAAAAAAAAMCXF8EvAAAAAAAAAAAAAAAAAAAAF6FQKpxqrdo5fN3f6G91/x2eHN490v65T8wtOfTuoZvrTtVFi8gFwS/Rk6LLh0JfRESUKqWkzkkta6lsiTKEGtrcQ19ERCbdPqm0+kh1amNZY5CIXBD8krMi5+hQ6IuIiIeXh2PWN2cd2vjsxmXF24tTLxX84nQ4pWRXSYaHl0ffXf9z1173EBuVRuVatmrZvt8t+V1q8fbiCe6hM6P9RhfT09bjUbilMHc0vUP8wv0sVxv8cuCdAxNdLpciLieuzNPgOTi8bh+wa0VEvAO9By7cLaLx0Ngcdoemp71H62nwHOxt79UOrY/U7x3obRMRGRwY9LiaeQEAAAAAAAAAAPDlRfALAAAAAAAAAAAAAAAAAADACCbMmFB+5G9HZrx070v3xebEVsROjm2YMGtCY0BEwAWBJvYBu3LnSzvTKg5UJFlaLAH2AbtWXKIYqvd19XmNdEdoUmjL8DXfUN9eEZGg2KDW4TX/SP9eEZGeth7vkc5LmZXSMHwtbX6a6aP/+sjVaeoMvtR76wrr/OxWu84rwKvz4//z8YhBLCqNarCruStg6PeVfKOLMaYYu1cVrFo92v7Pw+lwSsW+iokiIlPvnnp6LO4EAAAAAAAAAAAALobgFwAAAAAAAAAAAAAAAAAAgBEs/snik3o/fX/h1sKMsvyyzLI9ZVmf/v5TCYoLapj/nfn7k2cl/yOYZe2Ta29rKG6I1/vpLZHpkdV6P32vSqNyioic2Xkmy+lwqka6Q+etsw1fU6qVLhERD73HBbWhM52DTuVI5wVEBvQNX1Nr1S6tXts/0Dugv9R7u83dOhGR3vZev8IthSMGv4iIOAYcmqE/X8k3uhEc3XA0pt/S7x0QGdCUMDWhfaQejYfGZuu36Xraejz8wv1GCvnRioh4B3jbRES8Arxs7uvD9bT1aEVE1B7qgWv1DgAAAAAAAAAAAHw5EPwCAAAAAAAAAAAAAAAAAABwEbMfm102+7HZZZZWi7Ysvyy8dE9pfNXhqtT1/7H+a99+99vvBEQEWMvyy4IbihviQxJC6h5747GP1Vq1a2i/0+GU05+dnjxW87bXt+vDJoT1uK8N2gYVtj6bp9pDfUGQjDu9r94mIhKRFlH1rde+tWW0d47mG11qv6XVot2xesek0d4nIpJ+a3pV0vQk85XsERE5telU2v/bX3yxHp9gn462c23hDWca/PzC/Zrca601rXqH3aHR+eh6PA2egyIiel/9oM5H12vttnq11rTqg2ODzwvfMZWY/EREfIJ8Oq90XgAAAAAAAAAAAHy5EfwCAAAAAAAAAAAAAAAAAABwGYZggy13RW5t7orc2je/+6ai+kh1aumu0ojpD0yvbKlq8RMRicuNq3YPfRERKd1TGuocdI7Z39cszS+NCJsQVua+Vry92OhyuRR+Rr/WS+2NnhTdofHQDJhrzWH2AbtS46FxXsndl/pGl9rX09bjUbilMPdK7vIL97NcafBLa3WrvrG0MVbtobbddP9NFRfrM0401redawsvzy+PTpuXdl7wS9GWohgRkbAJYfXu66FJofW1x2uTi7YWRc/99txS91pZflm0iEjExIjz9gAAAAAAAAAAAAAEvwAAAAAAAAAAAAAAAAAAAIzg5CcnI7IWZTUolIrz1q3dVk8REa2n1i4iEhgdaBERqS+qjxCRoqG+9rp2z21/2HbL2E0scnT90ZwpS6fUGEINAyIiA70Dqvy/5E8TEUmbl1Zyqb1qrdqVMielsGhrUe77P31/5opfrtin89Y53Htaa1r1PW09HnHZcR0io/9Gl2JMMXavKli1+ooeehX2v7V/osvlUsTnxpcNf5e7afdMKyn+rHhKye6SjKmlU0uMKcZuERFLs8Xj2EfHskVEclbkFLvvyV2Re7r2eG3ysY3HcnKW51QPfX9TqcmndHdphlKldEy9d+olvz8AAAAAAAAAAAC+egh+AQAAAAAAAAAAAAAAAAAAGMEnv/pk8ae/+9QeGBPYZAg2dLtcLmkubzZ2mDpC/ML9WrOWZNWLiCTPTG4JjA5sbChuSHjxzhdXhCWFNfZ19XmaSkwxPkE+nTpvXe9Yzewb6tvx0n0v3RczKeasUq10njt1Lq6vo883LDms5pZv3lJ2uf1L/7+lR9tq24LOHjyb/sKyF+JCk0LrvQO8e/q6+vSWFotv27m28Clfm3JoKPhltN9ovDkdTinfVz5RRCRvZd7pS/UaU43duXfl7i9YVzDrjW+/sTJ2cmyFUqN01h6vTbB2W71T56SeTJuX1uS+J21+WtPpz06fLN1dOunl+1++J2ZKTKXT7lTWnKhJslvtumn3TMsfCpABAAAAAAAAAAAAhhD8AgAAAAAAAAAAAAAAAAAAMIK8u/IO1Byvie6o7whuLG2MUalVDr2fvjt7efaBOY/POa3x0DhFRFQalesbL37jk02/2jStobghpnRPaabOR9ebNCPpzO1P3370xTtfvG+sZn7opYe2fvw/H+dWFVQlW3usXjofXU/m4szDt//k9mMKpeKy+zUeGue3XvvW5j2v7Uk+s+NMiumMKXbQNqjx0Hv0ewV4WSYvnVyQd1de+VD/aL/ReDu+8Xh0f1e/T0BkQFPC1IT2y/Uv/OHCIv8I/+6jfzs6uepoVYq4ROET7NOetzKvYM7jc0pH2nP3r+7ev2vNrrbCrYUZZw+cTROFuPzD/Vtz78o9kXdXXs01fxQAAAAAAAAAAAC+8BQul2u8ZwAAAAAAAAAAAAAAAAAAAF8AoYmhHz/57pO14z0HLrT67tXLzTVm46qCVavHexZgyMv3vRzTfLZ56XjPAQAAAAAAAAAAcKNSjvcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPBVQ/ALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIwx1PGCNwAAIABJREFUgl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYIypx3sAAAAAAAAAAAAAAAAAAAAAfD5PvffUhvGeAQAAAAAAAAAAAMCVUY73AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwVUPwCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMMYJfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCMqcd7AAAAAAAAAAAAAAAAAAAAgLH061t//aCIyNPbnn5zvGe5kWx4ZkNe4ZbC3KHfCdMSih944YHdQ79X3716ubnGbBz6PffJudtmPjyzYozHxAjWPLjm9qayptih37MenbVjzhNzSod+//LmXz7usDs0Q78fW/vYm8YUY/cYjwkAAAAAAAAAAIBhCH4BAAAAAAAAAAAAAAAAAADAP8Rmx5YaQgzdEWkRLSPVMxdlHhERiZgY0Xapc86dOuf35lNv3u2wO9Qxk2PKH/7Tw58N77H125TbXtiWVXGgIrmnrcdXqVS6fMN8zZOWTiq8+cGbzw7vbz7b7HVo3aEUc7U5uL2hPaivo89XROTRPz/6dlRGVNfVvfh8LZUtXsf/fjy+5lhNrKXF4j/QM+Cl0qhs/hH+rVm3Z52efv/0qovtPfzB4dgjfzsyudPUGeRyuRSGEEN7xsKM03Me/2cIi7u6ojrfXX/aldNY1hg10DvgqfXUWsMmhNXN/+78w5HpkZbRzpw6O7U8JD6k1VxjDjKVmOKG1zMXZR5z2B2qmuM1cZZmS9BozwUAAAAAAAAAAMD1RfALAAAAAAAAAAAAAAAAAAAA/mHSkkmlWYuzGi5WX/7M8sOXO2PQNqjY+OzG+aIQ18V6bP025auPvPo1c7U5Qu+r707ISyhxuVyKhuKGmB2rd9zWUtkScMezd5x3V/WR6pCTH5+cJiKi99NbNB6aAfuA3eNK3nc5e/6yJ/PMjjNT9H56S1hSWIPeT9/b3dptqD9dH//ZHz6LqjtVd/LuX9+9f/i+T3/3acahdYdmaTw11ricuDKlRumsPV6bkP+X/HmtVa2BK59bed6esvyy4L/929+WD9oGNcHxwfVxOXHl3eZun3OnziWtfXJt3MrnVm5ImpFkHs3Msx6dVSEismvNrpSRgl++9m9fOyYisvY7a30IfgEAAAAAAAAAALhxEPwCAAAAAAAAAAAAAAAAAACAa2rTc5tyupq6gnPvzN1f8F7BzJF6tv9xe4a52hwREBXQ9M2/fPMjva9+UESkr7NP8+rDry4v2lqUmzYvrTp5VnLr0J643LiWO/7rjg/jcuLM3oHe9tV3r15urjEbr+XsEWkRzckzkzdkLso0ua/XHK/xf+f779xZuqd0UtnesvLkmf+cy1Rq8jn8weEZGp3G+vCfHn7fmGLsFhGxNFuOrHlozV0lu0omFe8orkybl9Y0tGfz85vnDdoGNbl35u5b/JPFp4bWT287Hf7hf364fNOvNs37wcYfvKdQKq7l8wAAAAAAAAAAAHADIfgFAAAAAAAAAAAAAAAAAADcEM7sPBP6wc8/uNM40Vj12OuPbRmp57eLf3tfX2ef7/c+/N5rvmG+A7Z+m3LXn3al1Ryvielq6goY6B3wUmlUdj+jX2venXknclbknBvN3Rue2ZBXuKUwd9mqZRuzFmc1uNdMpSafVx969cHY7NjSh156aId7rd/Sr/7sxc+yKgsqE3vbe/1ExOUb6ts2acmkwpmPzKxw73U5XbL7z7tTTm87ndZj7vEbtA1qtHptv2+ob0f6relnbn7o5rNX+MluSGX5ZcGFWwpzshZnHQlPCW+7WF/Vkap4EZGp90w9OhT6IiKi99Pbp9499cinv/90ccH7BRnJs5J3DtVCE0N7QxNDe6/n/NPvn1410nrslNiOmMkxFZUFlWlnD56NcA9+OfTXQ6lOh1OVviD9+FDoi4iIIdQwkP317GN739g79+j6o2lDwS8NxQ0GS7MlUKvX9i/814Wn3O9JvzW98eC7B2tMJaa4om1FxsyF5wfQAAAAAAAAAAAA4MtDOd4DAAAAAAAAAAAAAAAAAAAAiIhMnDux2TvQu7OprCm2s7FTN7xesrskpKetxz88NbzaN8x3QETE0mLRHXrv0Ey71a4NTwmvS52TeiIiLaK609QZ9MmvP1m646UdE6/XvJZWi3bNN9bcceLvJ6YplApXwtSEkvjc+FJrr9Vz55923rr+P9ZPde9f/5/rp+X/JX+etduqj5kcU5E6N/VkeHJ4fV9Xn1dpfmni9ZpzLFl7rKpNz21a4Bvma779p7cfu2Rvt1UvIhISH2IZXguOC7aIiDSVNUVen0mvjlKldLr/c4jpjClSRGTCrAkXBA1lLMqoFRFpKv/nWzobO/UiIl7+Xhal6sK/zmsIMXSJiFQerLyh3g8AAAAAAAAAAIBrSz3eAwAAAAAAAAAAAAAAAAAAAAxJmpFUeuLvJ6YVrCtIuu2HtxW51058dCJFRCTjtozSoTVDsMH67be/vTY0MbTXvbfb3K199eFXVxS8VzB9xoMzynTeOse1nnXDqg0zu5q6grOXZx9Y8rMlJ4bWB3oHVK8/8fri09tO52QuyqxMmp5kFhEp31uepvPR9X73g+/+1dPgOeh+Voep44Kgm5GYSk0+BesKUq9kzqn3TC0xphi7r2TP1drwzIbpfZ19hgdefOA9tVbtulSvh5eHtbe9V1qrWw2xU2I73Gut1a0GEZF+S7+Ptcequh7//q5UT1uP5typcwkiIqlzUuvca92t3f4iIhETIzqH7wuODe5TaVR2a7fVu9/Sr/Y0eA76BPtYRUT6Ovt8XE6XKJSK8/ZYWiy+IiIdpg6/6/QcAAAAAAAAAAAA3AAIfgEAAAAAAAAAAAAAAAAAADeMqXdPLT3x8YmppfmlKe7BL7Z+m7LmeE2SVq/tz16WXTu0rtVrncNDX0REfIJ8bCm3pJQc+duRGeX7ykMzF2aaruWcnY2dutrjtcl+Rr8W99AXEREPLw/H/KfmH3jnB+9En/z45ISh4BcREaVS6VSpVc7h5/kb/a2jube1qtVQuKUw90pmjc+LbxiL4JcTH5+ILN9bnpm9PPtAXHZcx+X6oydF17TXtYcd+uuhnIzbMuqHwl36uvrUh98/nDPU123u9tB56/qu5+yX43K65L2fvjd3oHdAnzQ9qWh4UI19wK4VEfEO9B4Yab/GQ2Nz2B2anvYerafBczA6K7rTK8Crs7e912/r77ZmLvrRosKh3uLtxWGNpY2xIiK2PtuoAoEAAAAAAAAAAADwxUTwCwAAAAAAAAAAAAAAAAAAuGGEJob2hsSH1LdUtkRVH6v2HwoQObr+aJzdatel3JJyUq1Vu9z3VB+pDsh/PX9yS2WL0dpj9XIOOlXu9a7GLq9rPefZg2dDXC6XQiEK2fDMhrzhdafDqRQR6TB1+A+txeXElZfvK898YfkL98flxFXEZseakmclN/kE+dhGe2/W4qyGrMVZq6/NK64dS6tFu+2FbfMCIgOaFv1o0cnR7Fnw3QWFVYerEtvr2sNeXPHifRFpEbXiEqkvro9ViELUHmrb4MCgVqlUui5/2vX1/s/en1FfVJ8YGBNouvO/79x3Lc6c/9T83R//n4+/dvj9wzNrjtXEBkYHmnvaerzrT9cnGEINbV1NXUGikHF/OwAAAAAAAAAAAK4fgl8AAAAAAAAAAAAAAAAAAMANJW1+WklLZUvU0fVHU+Ky4w6KiJz+7HSKiEj28uxS994zO8+Erv+P9ctcTpcyJCGkPiozqlqr19oUCoWYa8xBphJT3KBtUDXSPZ9Hb0evTkSkw9QR0mHqCLlYn33Arhn688rnVu7b9sI2S2l+aWrx9uLs4u3F2Zt/s9kZnhxeu/BHC/dHZUR1Xes5x8rGZzfebOu36e55/p6PVBrVqMJK9H56+xNvPvHh5uc3Z9ccq0moPFSZptKqbMZUY+3iHy8++MrDr9yvUCqchlDDwPWe/1I++PkH00v3lE4KigkyPfLKI5u0eq1zeI/GQ2Oz9dt0PW09Hn7hftbhdfuAXSsi4h3g/Y+Qn0lLJjV4+Xt9sOcve3Jaq1ojWqtbI7z8vSw5d+QcMIQaenes3nGbp8Gz7/q+DgAAAAAAAAAAAOOJ4BcAAAAAAAAAAAAAAAAAAHBDyVuZV7X39b22qoKqZIfdcairqUvXVN4UbQg1mBNvSmxz7937xt4c56BTvWzVso1Zi7Ma3Gt//++/Z5tKTHGjuVOhVLhERJyDTsXwWm97r8fwNU+Dp01EJOWWlJN3//ru/aO5Q6VRuRb9eNGpRT9edKq9rt2zNL80vGRXSVJ9UX3iup+sC/j+h99/d6RQEXemUpNPwbqC1NHcN2TqPVNLjCnG7ivZc6XazrUFOwed6jeeeOP+keq1J2onPDv12QmGUIP5h3//4XtD63o/vf3OX955SEQOufc3FDcYHDaHxi/cr1XjobnkN7me1j297uayPWVZwXHBDY+88sgmT4Pn4Eh9PsE+HW3n2sIbzjT4+YX7NbnXWmta9Q67Q6Pz0fUM3580I8mcNCNp6/DzPlz1YZ6ISFhSWMu1fA8AAAAAAAAAAABuLAS/AAAAAAAAAAAAAAAAAACAG4rOW+eInhx9tqqgauLJTScjWypbAlxOlzJ5ZnLp8N4ec4+fRqexDg99ERExlZiMo77TR2cVEekwdXgPr507eS5k+FritMRmUYirqaJp1He4C4gK6J9+//Sq6fdPr3rp3pd0rVWtkdXHqgOTZya3Xmpfa1WroXBLYe6V3BWfF99wvYNf4nLiqrpbuy8IKenr7PNqKm+K0fvru8KSwhp8gn16RnPe4Q8Op4iIJM1IKr/Ws46Gy+mSv/7or7MqDlRkhCSE1D3yyiOf6Lx1jov1Gyca69vOtYWX55dHp81LOy/4pWhLUYyISNiEsPrR3G0fsCurCqomKJQKZ/Yd2ZWf7yUAAAAAAAAAAAC4kRH8AgAAAAAAAAAAAAAAAAAAbjiTl04uqSqomli4tTClq6nLX6FUOKfdM+2CEBCvAC9LT1uPX+WhysCEaQltQ+s7Xt6R2lzRHD3a+2ImxbQUrCuQMzvPpM56dFaZWqt2iYg0VzR7H9tw7IKglYCogP6YyTHltcdrkzf+18acpT9fekylUbnce+pP1xuUKqXLmGrstvXZlOX7y0PSF6SfFwpiH7ArbX02nYiIh5fH4OXmzFqc1ZC1OGv1aN81Vpb957IjI62f2nwqYuOzG2OCY4Obv/HiN3YNr/e09Wi8A73t7mvHPzoedfqz01P0/vqu2Y/PPv15Z2utadX3dfRpA6IC+nyCfGyX63c5XfL2D96eU1VQNTFsQljtw396eIuHl8dFQ19ERKbdM62k+LPiKSW7SzKmlk4tGQrasTRbPI59dCxbRCRnRU6x+56+rj61h97D4f7fzaBtUPH+T9+f2dvR6ztx3sTjQTFBfe57msqbvAd6B9QhCSE9ngbPy/73AgAAAAAAAAAAgBsbwS8AAAAAAAAAAAAAAAAAAOCGk74gvWnrb7d21RXWJbqcLmV4SnhNQFRA//C+nDtyTn3yq0+i1/1k3YroSdEVWr3WZq42h5jPmcMj0yMr60/XJ4zmvtQ5qc1BMUEmc63Z+Me7/niXMdXY0NfZ59lwpiEuPDn8XF1hXeLwPXf+8s49rz/+uu+pT05NPXvwbHJIQkij3lff19vR69XV2BXQYeoImfvk3G3GVGO3tdeqXv/v61ds/e3WroCogBafYJ/uQdug2lRiiuox9/gbU43VsVNiO67Ft/si+ePKPz7gF+5n9gv361BpVA5zjTm4pbIlysPbo+/OX9y5We+rvyDcZO131s4b+nN3a7efiMinv/v0Jo1OYxcRyV6WfSb91vTGoZ7Nv958U82xmpRZj87aMeeJOaWXm2njLzbmVhVUTVSqlYOBMYHmzb/ZnD28Jzw5vHXavdOqh34bU43duXfl7i9YVzDrjW+/sTJ2cmyFUqN01h6vTbB2W71T56SeTJuXdl7oz+ltpyN3vrxzTtiEsHqvAK8eu9WuaTjTEN3X0ecbmR5ZuWzVsoLh967/j/ULzDVm47JVyzZmLc5quNxbAAAAAAAAAAAAcGMj+AUAAAAAAAAAAAAAAAAAANyQkmYklZ7cdHKqiEj6gvQRAzty7sg553Q4Pzm07lBO7cnaJIVC4QqIDGhe/szyjW21bYbRBr+IiHxj9Tc++egXH82oL6qPK8svy/QK8OqcunLqgYnzJ5579aFXLwh+8Q70tj/x9hMbdv1pV1r5/vIJdafqEpwOp9rDy6PPO8i7M++uvH0Zt2XUiYh4GjwHs5dnH6g/XR9prjGHNxQ3xKu1artXoFfX9Aem777lW7eUXO13+iKLz40vqy+uj2mrbQt3Op1Kva++e+K8icdv/d6tx33DfAdG2lNzrCZl+FpDccM//j1HZ0U3iEjj8J7RsjRbDCIizkGnuviz4gtCX0RELC2WUvfgFxGRhT9cWOQf4d999G9HJ1cdrUoRlyh8gn3a81bmFcx5/MLAmbAJYZ1BsUGNzWebjbY+m16lVtl9jb7mvLvyDs96ZFa5Qqm42icAAAAAAAAAAADgC0LhcrnGewYAAAAAAAAAAAAAAAAAAPAFEJoY+vGT7z5ZO95z4PrY8MyGvMIthbnLVi3bmLU4q2F4ffXdq5eba8zGVQWrVo/HfLi8XWt2peS/lj9v1qOzdsx54sKwmbXfWTuv5lhNymNrH3vTmGLsvt7zvHzfyzHNZ5uXXu97AAAAAAAAAAAAvqjU4z0AAAAAAAAAAAAAAAAAAAAAbhwbn924bOOzGyVhWkLxAy88sHt4/dmpzz4lIjL3ybnbZj48s2LMB8QF1jy45vamsqbYi9V/efMvH3fYHZoxHAkAAAAAAAAAAACjQPALAAAAAAAAAAAAAAAAAAAAJD4vvsH9d0RaRIv774lzJ5Z0Nnb+oydiYkTbWM2GS0udnVoeEh/SOvQ7MiPS7F7PXJR5zGF3qIZ+ewd6D4zlfAAAAAAAAAAAABiZwuVyjfcMAAAAAAAAAAAAAAAAAADgCyA0MfTjJ999sna85wDwxfDyfS/HNJ9tXjrecwAAAAAAAAAAANyolOM9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB81RD8AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjjOAXAAAAAAAAAAAAAAAAAACALxhTqcnn2anPPrX2O2vnjfcsAAAAAAAAAAAAAK6OerwHAAAAAAAAAAAAAAAAAAAAAK6VlsoWr31r96U3FDdEdrd1+w0ODGpVatWgV4CXJTg+uCl9QfrZrMVZDeM9JwAAAAAAAAAAAEDwCwAAAAAAAAAAAAAAAAAAAL4Utv9xe9rBvx6c6Rx0qrwDvTuiMqOq9L76frvVru5s7PSvPlKdfPbA2fSy/LITK59beWC85wUAAAAAAAAAAMBXG8EvAAAAAAAAAAAAAAAAAAAA+MLb/eru5P1v7Z+t0WkGFvzLgk+n3TOtenhPT1uPZveru9O7W7t9xmNGAAAAAAAAAAAAwB3BLwAAAAAAAAAAAAAAAAAAADeQkt0lIQffOTi5tao13NZv89ToNFbfMN+2jIUZZ25+8Oazl9p77tQ5v4L3ClJNZ0xRfZ19PoO2Qa2Hl0evMdV4bsH3FhwJTQztde93OV2y+8+7U05vO53WY+7xG7QNarR6bb9vqG9H+q3pZ25+6J/3VR6qDNzz2p5sc405bKBnwEutVds8fT27wyaEmVb8csUBjYfGeb2+yeV0m7u1B94+MFNEZOG/Lvx0yten1I3U5x3obV/ysyUnBm2DirGdEAAAAAAAAAAAALgQwS8AAAAAAAAAAAAAAAAAAAA3iO2rt0888NaB2QqlwmVMNVb7hvt29nf1e5przSGnPjmVcbngl1OfnIov31eeHpIQUh+SENKo0qic7fXtAZUFlWn1j9fHPfrqo++HJIT8I/xl/X+un1b8WXG23k9viZkcU6H10tr6Ovq8zLXmkNL80sSh4JfKQ5WB7/7o3btExBUxMaLaEGKw2PpsWkuLxa98X3mGvd9eMJ7BL4c/OJxgt9o9AqICmi4W+uJOrVW7xmIuAAAAAAAAAAAA4FIIfgEAAAAAAAAAAAAAAAAAALgBVB+r9j/w9oFb1B5q273P3/thXG5cu3u9+Wyz1+XOmHr31LLbfnDbSa1ee14Iy7GNx6I2Pbdp6WcvfpZz/+/v3zO0Xr63PE3no+v97gff/aunwXPQfU+HqUM39OejG46mOAedqtt+eNvmafdMq3bvszRbPHQ+Ovto3rjl+S1Z1h6rx2h6RUTCk8Nbp917/n0jaShuCBcRiZgYUT/aswEAAAAAAAAAAIDxRvALAAAAAAAAAAAAAAAAAADADeDQu4cyXE6XctKSSUeGh76IiIQmhvZe7oyQhJARe7KXZdfl/yW/3VRiih5eUyqVTpVa5Ry+7m/0tw5f0+g0g8PXDKGGgcvNNaRoW1FWf1e/z2j7LS2W0tEEv/R39etFRHyCfXouOKPVot2xesek4evLn1l+eLRzAAAAAAAAAAAAANcDwS8AAAAAAAAAAAAAAAAAAAA3gJaqllARkbT5abVXe4bL6ZL81/MnFG8vTu1q7AqyW+0eLpdLMVRXqpTnBbzE5cSVl+8rz3xh+Qv3x+XEVcRmx5qSZyU3+QT52Nz7MhdlVpTtKcva/JvNi4s+LaqMnRJbl3hTYmNkeqTlSuZ7etvTb17t265WT1uPR+GWwtzh6wS/AAAAAAAAAAAAYLwR/AIAAAAAAAAAAAAAAAAAAHADsPfbPUREgmKCeq/2jPd+9t7NZXvKsjy8PfrCU8LPeQV49ai1aoeISMWBipT+rn4f9/6Vz63ct+2FbZbS/NLU4u3F2cXbi7M3/2azMzw5vHbhjxbuj8qI6hIRSZ2d2rLiv1d8uG/tvuy6wrqE2uO1yXv+vEe8A7078+7KOzzzkZkVn+ftn5enr2efiEi3udtreM2YYuxeVbBq9dDvX83/1cPWbusFfQAAAAAAAAAAAMBYI/gFAAAAAAAAAAAAAAAAAADgBqDx1AxIh4i51uzlFeDVeaX72+vaPcvyyzJ9Qnzan1j7xN+8Arzs7vXnFz2fNHyPSqNyLfrxolOLfrzoVHtdu2dpfml4ya6SpPqi+sR1P1kX8P0Pv/+uVq91ioikzUtrSpuX9omtz6asOFARUra3LLp0V2nmzj/tvNU70Lt/8tcm119uxi3Pb8my9lg9Rvum8OTw1mn3Tqu+XF9EWkRj9ZHq1IbihigROTza8wEAAAAAAAAAAIDxRPALAAAAAAAAAAAAAAAAAADADSAkPqS509QZUry9OCZmcswVB780VTQZxCWKiIkR54aHvjSfbfbq6+wzXGp/QFRA//T7p1dNv3961Uv3vqRrrWqNrD5WHZg8M7nVvU+r1zrT5qc1pc1Pa9odtbtrz6t75pfuKY0fTfBL0bairP6ufp/RvsnSYikdTfBL3l15lQV/LZjRXtceduLjE5GTl15+FgAAAAAAAAAAAGC8EfwCAAAAAAAAAAAAAAAAAABwA5h237SiigMVaSc3ncxNnZt6Li47rsO93ny22Ss0MbT3YvtDEkK6RUSaK5rDHXaHQqVRuURE+jr7NBue2TDX5XQp3fttfTZl+f7ykPQF6U3u6/YBu9LWZ9OJiHh4eQyKiBRvLw5LmJbQqvPWOdx7e9t6PUVE1B7q84JmLubpbU+/OZq+K+UT5GO76YGb9uX/JX/elue33Ga32nfk3ZVXM7yv39KvdjqcyhGOAAAAAAAAAAAAAMYcwS8AAAAAAAAAAAAAAAAAAAA3gLjsuI7pD0zfs/+t/bPf/pe37zFONFb5hft19Vv6deZac4hGp7E9te6pjRfbHxQT1BeVFVVRd6ou6YU7XrgnYmLEOVufTdtY2hilVCsdvmG+5q6mrqChfmuvVb3+39ev2PrbrV0BUQEtPsE+3YO2QbWpxBTVY+7xN6Yaq2OnxHaIiBx4+8CUjc9ujAyKDTL5BPtYNDqNvaOhI6CprClGo9MM3HTfTcVj8Y0uZc7jc0odNofq4LsHZ255fsvte9/Y2xGSENKo99X32/ptmt72Xq+miqZoh82hCYoJMo33vAAAAAAAAAAAAADBLwAAAAAAAAAAAAAAAAAAADeI+U/NPxOeEt5+8J2Dk1oqWyIaihvitXqt1S/cz5xxW8aZy+2/9/l7d27+zWZL1ZGqxPK95RlavbY/KiOqevHTiw+/84N3Frn3eho8B7OXZx+oP10faa4xhzcUN8SrtWq7V6BX1/QHpu++5Vu3lAz1Tlk2paj4s+KB1prWUHONOdzlcil1PrqepBlJRbMfn30yPDm8+3p8jys1/7vzizMWZtTsW7svo6G4IbLuVF3CoG1Qo1KrBvX++u7YKbHlmQszyzMXZRL8AgAAAAAAAAAAgHGncLlc4z0DAAAAAAAAAAAAAAAAAAD4AghNDP34yXefrB3vOQB8Mbx838sxzWebl473HAAAAAAAAAAAADcq5XgPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfNQS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAYI/gFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMYYwS8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMMYIfgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAMUbwCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMMYJfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCMEfwCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGOM4BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGMEvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAGCP4BQD8jLgAAAAgAElEQVQAAAAAAAAAAAAAAAAAAAAAAAAAAPj/2bv3Z+3uurzj17V5QKmiAREUsdRTq20Ze5YgjYAgICKnhBDOBARBNFNaqmCtlNHSSlsqSgOGM8j5DBo5Q0jyZCytZYbpTA/YoR1RUUEggYQAn/7wYDuAkRz2s7773vv1mrl/uWet9X3/AWuuBQAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALAxwy8AAAAAAAAAAAAAAAAAAAAAABsz/AIAAAAAAAAAAAAAAAAAAAAAsDHDLwAAAAAAAAAAAAAAAAAAAAAAGzP8AgAAAAAAAAAAAAAAAAAAAACwMcMvAAAAAAAAAAAAAAAAAAAAAAAbM/wCAAAAAAAAAAAAAAAAAAAAALCxY6sDAAAAAAAAAAAAgN1wxWVXfOjcB5x7q9UdwG644rIrPrS6AQAAAAAA4CDrzKxuAAAAAAAAAAAAAGCHtP2OJC9Ncu+Z+XDbpyX5WJKnjpdTAQAAAAAA4GrZWx0AAAAAAAAAAAAAwO5oe9skFyZ5wcx8+At/Pz3J6Ume2/YGy+IAAAAAAABghxh+AQAAAAAAAAAAAOBqaXtmktcnOXtmzv2z/78wAHNakpsmOb/tKYsSAQAAAAAAYGcYfgEAAAAAAAAAAADgL9QTnpjkaUnuPDPnf+k1M3Npknsn+UCSi9t+28aZAAAAAAAAsFMMvwAAAAAAAAAAAABwldpeP8l5Sc5IcurMvP+qrp2Zz83MOUmeleSitt+3USYAAAAAAADsHMMvAAAAAAAAAAAAAPy52p6S5PwkN09y2sz83tW5b2aekeTRSd7c9r4nMREAAAAAAAB2luEXAAAAAAAAAAAAAL5M27+S5KIk/zXJvWbm0mty/8y8Kcldkvxy2ye07b5HAgAAAAAAwA4z/AIAAAAAAAAAAADAF2n7D5JcnOTZM/NTM/O5a/OcmfnPSU5N8qAk57Y9to+ZAAAAAAAAsNM6M6sbAAAAAAAAAAAAADgg2t4nybOTnD0zb9qnZ94oySuTNMn9ZuYT+/FcAAAAAAAA2GV7qwMAAAAAAAAAAAAAWK8n/OMkz0hy1/0afUmSmflkknsk+V9JLmz7rfv1bAAAAAAAANhVhl8AAAAAAAAAAAAAjri2x5L8hyQPTXLqzPyn/T5jZj6b5LFJXpDkeNu/u99nAAAAAAAAwC7pzKxuAAAAAAAAAAAAAGCRtl+X5BVJmuR+M/OJDc68d5JfS/KImXnjyT4PAAAAAAAADqK91QEAAAAAAAAAAAAArNH2W5NcmORDSX5ki9GXJJmZ1yX54STntj1nizMBAAAAAADgoDH8AgAAAAAAAAAAAHAEtf07SY4neWGSx8zMZ7c8f2b+Y5LvT/Kotr/S9tiW5wMAAAAAAMBqnZnVDQAAAAAAAAAAAABsqO09kjwvyaNn5rWLW05J8qokVyS5/8xcurIHAAAAAAAAtrK3OgAAAAAAAAAAAACA7bT9qSTPTnL31aMvSTIzf5rkh5P8QZIL2n7L4iQAAAAAAADYhOEXAAAAAAAAAAAAgCOg7fXaPiPJo5PcdmZ+e3XTn5mZK5P8WJJXJjne9nsXJwEAAAAAAMBJ15lZ3QAAAAAAAAAAAADASdT2a5O8LMkNk5w+M3+6OOkqtb1fkmcmeejM/ObqHgAAAAAAADhZ9lYHAAAAAAAAAAAAAHDytL1FkguSfCTJ3Q7y6EuSzMwrk/xokue2fczqHgAAAAAAADhZDL8AAAAAAAAAAAAAHFJtvzfJJUleleSRM3Pl4qSrZWaOJ7ldknPa/tu211vdBAAAAAAAAPutM7O6AQAAAAAAAAAAAIB91vauSV6U5Cdn5hWre66NtjdJ8tokH0vyoJm5bHESAAAAAAAA7Ju91QEAAAAAAAAAAAAA7K+2j0ny/CT32tXRlySZmY8m+aEkn0jy7rbftDgJAAAAAAAA9o3hFwAAAAAAAAAAAIBDou1e23+T5Jwkt5uZi1c3XVcz85kkD0vyxiSXtP2ba4sAAAAAAABgf3RmVjcAAAAAAAAAAAAAcB21/UtJXpLkJknuMzMfXZy079o+MMnTkzxwZt62ugcAAAAAAACui73VAQAAAAAAAAAAAABcN22/Kcm7k1ya5C6HcfQlSWbm15OcnuTFbR+5ugcAAAAAAACuC8MvAAAAAAAAAAAAADus7d9IcjzJbyR56MxcsTjppJqZC5KcluSn2z61rfdhAQAAAAAA2EmdmdUNAAAAAAAAAAAAAFwLbe+U5KVJHj8zL1nds6W2N03y+iQfzonBm08vTgIAAAAAAIBrxBcOAAAAAAAAAAAAAHZQ20ckeUmS04/a6EuSzMwfJ7lTks8meWfbmy1OAgAAAAAAgGvE8AsAAAAAAAAAAADADmm71/apSZ6Y5LSZuWB10yozc3mSByZ5e5Ljbb9ncRIAAAAAAABcbcdWBwAAAAAAAAAAAABw9bS9YZIXJPmWJLeZmT9eW7TezEySn2v7wSTvbnv/mXnX6i4AAAAAAAD4SvZWBwAAAAAAAAAAAADwlbX9xiTvSPL5JHcy+vLFZuYFSc5K8vK2D12cAwAAAAAAAF+R4RcAAAAAAAAAAACAA67tdye5JMk7kzxwZi5fnHQgzcw7k9w+yc+3fUrbLk4CAAAAAACAq9SZWd0AAAAAAAAAAAAAwFVoe/skr0jyMzPz/MU5O6HtzZK8IcnvJjl7Zq5YnAQAAAAAAABfZm91AAAAAAAAAAAAAAB/vrYPyYnRl7OMvlx9M/ORJHdMcoMkb29708VJAAAAAAAA8GUMvwAAAAAAAAAAAAAcMD3hXyR5cpI7zMw7FyftnJn5dJIzk1yU5OK237U4CQAAAAAAAL7IsdUBAAAAAAAAAAAAAPx/bb8qyXOTfFeSU2fmDxcn7ayZ+XySn2n7wSTvbXvGzLx3dRcAAAAAAAAkyd7qAAAAAAAAAAAAAABOaPsNSd6W5KuT3MHoy/6YmfOSPCTJa9o+YHUPAAAAAAAAJIZfAAAAAAAAAAAAAA6Ett+Z5PgXfvebmU8tTjpUZuatSe6Y5F+2/bm2Xd0EAAAAAADA0daZWd0AAAAAAAAAAAAAcKS1vV2SVyf55zPza6t7DrO235zkTUk+kORRM/OZxUkAAAAAAAAcUXurAwAAAAAAAAAAAACOsrZnJXltkocafTn5Zub3k/xAklOSvKXtjRcnAQAAAAAAcEQZfgEAAAAAAAAAAABYoCf8bJJ/leQHZ+Ytq5uOipm5LMl9k/xOkovbfvviJAAAAAAAAI6gY6sDAAAAAAAAAAAAAI6atjdI8uwkt05ym5n5/cVJR87MfC7J49t+MMlFbe8zM8dXdwEAAAAAAHB07K0OAAAAAAAAAAAAADhK2t44yW8luXGSHzD6stbMPDPJI5K8se0Zq3sAAAAAAAA4Ogy/AAAAAAAAAAAAAGyk7bcnuTjJ+5Pcd2YuW5xEkpn5zSR3TvLv2v50265uAgAAAAAA4PDrzKxuAAAAAAAAAAAAADj02t4myeuS/OLM/OrqHr5c21smeVOS9yV57MxcuTgJAAAAAACAQ8zwCwAAAAAAAAAAAMBJ1vb0JOcmedjM/MbqHq5a2xsleXmS6yc5Y2Y+vjgJAAAAAACAQ2pvdQAAAAAAAAAAAADAYdUT/mmSpyf5IaMvB9/MfDLJPZP89yQXtb3V4iQAAAAAAAAOKcMvAAAAAAAAAAAAACdB2+sneXaSByQ5dWZ+Z3ESV9PMfDbJTyY5L8nFbf/+4iQAAAAAAAAOoc7M6gYAAAAAAAAAAACAQ6Xt1yd5VZIrk9x/Zj65OIlrqe09kzwnyaNm5nWrewAAAAAAADg89lYHAAAAAAAAAAAAABwmbf9ykguT/I8k9zT6sttm5g1J7pbkV9s+vm1XNwEAAAAAAHA4GH4BAAAAAAAAAAAA2Cdt/16S40mel+RxM/PZxUnsg5l5X5JTkzw8JwZgji1OAgAAAAAA4BDozKxuAAAAAAAAAAAAANh5be+V5LwkPzYzr1/dw/5r+/VJXpnkc0nOnJlPLk4CAAAAAABgh+2tDgAAAAAAAAAAAADYZT3hHyV5ZpK7GX05vGbm40l+JMn/SXJh21suTgIAAAAAAGCHGX4BAAAAAAAAAAAAuJbaHkvyK0kekeS2M/O+xUmcZDNzZZIfT/KSJMfb/u3FSQAAAAAAAOyozszqBgAAAAAAAAAAAICd0/ZGSV6e5PpJzpiZjy9OYmNtT09ybpKHz8ybV/cAAAAAAACwW/ZWBwAAAAAAAAAAAADsmra3TPLeJL+X5O5GX46mmXl1knskOa/t41b3AAAAAAAAsFsMvwAAAAAAAAAAAABcA23/VpLjSV6a5NEzc+XiJBaamUuS3DbJT7T9922vt7oJAAAAAACA3dCZWd0AAAAAAAAAAAAAsBPa3j3J85M8dmZevbqHg6PtjZO8OsmlSR4wM5ctTgIAAAAAAOCA21sdAAAAAAAAAAAAALAL2v5Ekuck+VGjL3ypmflYkrsl+WiSC9reYnESAAAAAAAAB5zhFwAAAAAAAAAAAIC/QNvrtX16kscl+f6ZuWR1EwfTzHwmydlJXpPkeNtbL04CAAAAAADgAOvMrG4AAAAAAAAAAAAAOJDafk2SX0/ydUnuOzMfW5zEjmh7VpJfTvLgmXnL6h4AAAAAAAAOnr3VAQAAAAAAAAAAAAAHUdtvTvKeJB9LclejL1wTM/OyJPdJ8sK2j17dAwAAAAAAwMFj+AUAAAAAAAAAAADgS7S9dZJLkrwuydkz85nFSeygmbkwye2SPL7tL7X17i4AAAAAAAD/T2dmdQMAAAAAAAAAAADAgdH2LklenOScmXnZ6h52X9tvyIkRoY8kecjMfGpxEgAAAAAAAAeArwYAAAAAAAAAAAAAfEHbRyV5YZL7GH1hv8zMnyS5c5LLk7yr7c0XJwEAAAAAAHAAGH4BAAAAAAAAAAAAjry2e23/dZJ/kuQfzsyFq5s4XGbmiiQPTnJ+kuNt//riJAAAAAAAABY7tjoAAAAAAAAAAAAAYKW2N0zy4iQ3T3LqzPzJ4iQOqZmZJE9u+7tJ3t32rJl5x+ouAAAAAAAA1thbHQAAAAAAAAAAAACwStubJXlXksuT3MnoC1uYmRclOSPJS9uevboHAAAAAACANQy/AAAAAAAAAAAAAEdS2+9JckmStyZ58MxcsTiJI2Rm3pPktCRPavuLbb3XCwAAAAAAcMR0ZlY3AAAAAAAAAAAAAGyq7R2TvCzJE2bmRat7OLrafmOSNyT530keNjOXL04CAAAAAABgI74MAAAAAAAAAAAAABwpbR+eE6MvZxp9YbWZ+aMkd0zSJO/4whAMAAAAAAAAR4DhFwAAAAAAAAAAAOBIaLvX9heS/LMkPzAz716cBEmSmbk8yVlJ3pPkeNu/tjgJAAAAAACADRxbHQAAAAAAAAAAAABwsrX96iTPT3KrJLeZmT9anARfZGY+n+RJbf9nkgva3m9m3rO6CwAAAAAAgJNnb3UAAAAAAAAAAAAAwMnU9qZJ3p7kekl+0OgLB9nMPC/JA5O8qu2DV/cAAAAAAABw8hh+AQAAAAAAAAAAAA6ttn81yfEkFyS5/8x8enESfEUz8/Ykd0jylLZPbtvVTQAAAAAAAOy/zszqBgAAAAAAAAAAAIB91/a0JK9K8rMz85zVPXBNtb15kjcl+W9JHjkzVyxOAgAAAAAAYB/trQ4AAAAAAAAAAAAA2G9tH5Tk1UkeZPSFXTUzf5jk9km+Jslb295kbREAAAAAAAD7yfALAAAAAAAAAAAAcGj0hJ9P8gtJ7jAzb1vdBNfFzHwqyelJfjvJ8bbfuTgJAAAAAACAfXJsdQAAAAAAAAAAAADAfmj7VUnOS/LdSW4zM3+wOAn2xcx8PskT2n4wyXvbnj4zF63uAgAAAAAA4LrZWx0AAAAAAAAAAAAAcF21vUmStyT52iS3N/rCYTQzz0ry8CSva3vm6h4AAAAAAACuG8MvAAAAAAAAAAAAwE5r+x1JLk7yviRnzMynFifBSTMzv5XkTkl+qe2T2nZ1EwAAAAAAANdOZ2Z1AwAAAAAAAAAAAMC10va2SV6T5Ckzc+7qHthK21skeXOS/5Lkx2fmM4uTAAAAAAAAuIb2VgcAAAAAAAAAAAAAXBttz0zy+iRnG33hqJmZDyc5LclNk5zf9pTFSQAAAAAAAFxDhl8AAAAAAAAAAACAndITnpjkaUnuPDPnr26CFWbm0iT3TvKBJBe3/bbFSQAAAAAAAFwDhl8AAAAAAAAAAACAndH2+kmek+SMJKfOzPsXJ8FSM/O5mTknybOSXNT2+1Y3AQAAAAAAcPUYfgEAAAAAAAAAAAB2QttTkpyf5GZJTpv/y96dR9tZFvYe/z0nJxMJmUMGkhCQMEgwV5BRRUAQRBFnoI4gw9KqrcO9umprF6u3vdUrWrVeiyhaUSuIqAgIiEJBAoGEYCCaACEQkkAIZCLTyXCe+wfSRSHIkPC+GT6ff3LO3u9+9m/vdc7+66xval3Q8iTYatRav5bkrCSXl1Le0fYeAAAAAAAAnpvwCwAAAAAAAAAAALDVK6WMT3JTkj8keWutdWWrg2ArVGu9PMlxSb5aSvmfpZTS9iYAAAAAAACenfALAAAAAAAAAAAAsFUrpRycZHKS82qtH6+1bmx7E2ytaq23JzksyXuTfLOU0tnyJAAAAAAAAJ5FqbW2vQEAAAAAAAAAAABgk0opb09yXpLTa62/bHsPbCtKKTsnuThJSfLuWuuKlicBAAAAAADwNB1tDwAAAAAAAAAAAAB4uvKETyf5WpLjRV/gham1Pp7kxCRzk/yulDKu5UkAAAAAAAA8jfALAAAAAAAAAAAAsFUppXQm+WaS9yc5rNY6reVJsE2qtW5I8pEk30tycynlwHYXAQAAAAAA8FSl1tr2BgAAAAAAAAAAAIAkSSllQJKL/vTtybXWFW3uge1FKeVtSb6V5EO11sva3gMAAAAAAEDS0fYAAAAAAAAAAAAAgCQppYxN8rskDyQ5UfQFtpxa68+SnJDkm6WUv2p7DwAAAAAAAMIvAAAAAAAAAAAAwFaglHJAkpuT/HuSD9daN7Q8CbY7tdbbkhye5MxSytdLKZ1tbwIAAAAAANiRlVpr2xsAAAAAAAAAAACAHVgp5cQkFyQ5u9Z6adt7YHtXShmY5JIkXUlOqbWubHkSAAAAAADADqmj7QEAAAAAAAAAAADAjquU8vEk5yV5k+gLNKPWujzJCUkeTnJjKWXXlicBAAAAAADskIRfAAAAAAAAAAAAgMaVUnqUUr6W5Owkh9dab217E+xIaq3rk5yZ5KIkN5dSJrU8CQAAAAAAYIdTaq1tbwAAAAAAAAAAAAB2IKWU/kn+I0nfJO+stS5reRLs0Eop707yjSQfqLVe2fYeAAAAAACAHUVH2wMAAAAAAAAAAACAHUcpZXSSG5IsSvJG0RdoX6314iRvSfKdUspH2t4DAAAAAACwoxB+AQAAAAAAAAAAABpRSpmU5JYkP0lyZq11fcuTgD+ptd6c5NVJPl5KObeU0qPtTQAAAAAAANu7UmttewMAAAAAAAAAAACwnSulvDHJ95N8tNZ6Udt7gE0rpQxOcmmSZUneW2td1fIkAAAAAACA7VZH2wMAAAAAAAAAAACA7Vsp5cNJLkhykugLbN1qrUuTHJdkRZLrSykjW54EAAAAAACw3RJ+AQAAAAAAAAAAAF4SpZQepZRzk/xVktfUWie3vQl4brXWdUk+mOSyJLeUUia2uwgAAAAAAGD7VGqtbW8AAAAAAAAAAAAAtjOllJ2S/CDJkCRvr7UuaXkS8CKUUt6T5CtJ3ltrvabtPQAAAAAAANuTjrYHAAAAAAAAAAAAANuXUsrIJNcnWZnkDaIvsO2qtf4wyTuSfL+UcmbbewAAAAAAALYnwi8AAAAAAAAAAADAFlNK2S/JLUkuT/KBWuu6licBm6nWemOSI5L8r1LKP5dS/A0yAAAAAADAFlBqrW1vAAAAAAAAAAAAALYDpZRjkvwoySdrrT9oew+wZZVShiX5WZKH8kTYaU3LkwAAAAAAALZpavsAAAAAAAAAAADAZiulnJHkB0neKfoC26da66NJjk2yIclvSym7tDwJAAAAAABgmyb8AgAAAAAAAAAAALxopZSOUsr/SfKZJEfUWm9oexPw0qm1rk3yniS/TnJLKWXflicBAAAAAABsszrbHgAAAAAAAAAAAABsm0opfZP8e5LRSQ6rtT7a8iSgAbXWmuTzpZT7klxfSjml1npd27sAAAAAAAC2NR1tDwAAAAAAAAAAAAC2PaWUXZL8NsnGJMeIvsCOp9b6vSSnJvlxKeWD7a4BAAAAAADY9gi/AAAAAAAAAAAAAC9IKWWfJDcnuTbJe2qta1ueBLSk1vrbJEcm+Xwp5R9KKaXlSQAAAAAAAJDoCdQAACAASURBVNuMUmttewMAAAAAAAAAAACwjSilHJnkoiSfrbV+t+U5wFailLJLkl8kuS/JhwShAAAAAAAAnltH2wMAAAAAAAAAAACAbUMp5QNJLk5yqugL8FS11keSHJ2kZ5Jfl1KGtTwJAAAAAABgqyf8AgAAAAAAAAAAAPxZ5QnnJPn7JK+rtf627U3A1qfWuibJKUluSnJzKWVCy5MAAAAAAAC2ap1tDwAAAAAAAAAAAAC2XqWU3kkuSPKyJIfVWhe1PAnYitVau5N8tpQyJ8mNpZR31VpvbHsXAAAAAADA1qij7QEAAAAAAAAAAADA1qmUMjTJtUl6JTlK9AV4vmqt5yd5X5KfllLe0/YeAAAAAACArZHwCwAAAAAAAAAAAPAMpZQJSW5OMjnJybXWNS1PArYxtdZfJzk6yT+WUv6ulFLa3gQAAAAAALA1KbXWtjcAAAAAAAAAAAAAW5FSymuSXJLk87XWb7W9B9i2lVJGJbksycwkZ9Va17U8CQAAAAAAYKvQ0fYAAAAAAAAAAAAAYOtRSjk1yaVJ3i/6AmwJtdaHkhyZZGCSq0spg9tdBAAAAAAAsHUQfgEAAAAAAAAAAABSnvC3Sf45ydG11mva3gRsP2qtq5K8M8ntSW4upezR8iQAAAAAAIDWdbY9AAAAAAAAAAAAAGhXKaVXkm8lmZjk0FrrQy1PArZDtdaNST5VSpmT5KZSyttrrTe3vQsAAAAAAKAtHW0PAAAAAAAAAAAAANpTShmc5Kokg5K8TvQFeKnVWv9fkg8luayU8u629wAAAAAAALRF+AUAAAAAAAAAAAB2UKWUPZJMTnJHknfUWle1PAnYQdRar0xybJIvlVI+W0opbW8CAAAAAABoWqm1tr0BAAAAAAAAAAAAaFgp5dAkP0vyv2ut32h7D7BjKqXsmuTyJNOSfLjWur7lSQAAAAAAAI3paHsAAAAAAAAAAAAA0KxSyruS/DLJGaIvQJtqrQuSvDbJyCRXllIGtjwJAAAAAACgMcIvAAAAAAAAAAAAsIMoT/hMki8nObbWekXbmwBqrSuTvDXJrCSTSym7tTwJAAAAAACgEcIvAAAAAAAAAAAAsAMopfRMcl6SU5McVmu9o+VJAP+l1rqh1vqxJN/KE/GXg9reBAAAAAAA8FIrtda2NwAAAAAAAAAAAAAvoVLKwCQ/SbI+ySm11sdbngTwrEopJyX5dpKzaq0/a3sPAAAAAADAS6Wj7QEAAAAAAAAAAADAS6eUsluSm5LcneQk0Rdga1dr/UWS45N8vZTyqVJKaXsTAAAAAADAS0H4BQAAAAAAAAAAALZTpZSDkkxO8u0kH6u1bmh5EsDzUmudluTwJB9I8o1SSmfLkwAAAAAAALY44RcAAAAAAAAAAADYTpRSjvxT7CWllLcmuTLJR2qt/1Jrre2uA3hhaq3zkrwmycuSXFZK2TlJSimfLKX0aHUcAAAAAADAFiD8AgAAAAAAAAAAANuBUkpJ8tUkg0opn0jyjSRvrLX+ot1lAC9erXVFkjcnmZfkd6WUMUne9afbAAAAAAAAtmnCLwAAAAAAAAAAALB9eHWSPknemuT0JIfVWqe2Owlg89Va1yf5cJILk9yc5Iokf9nqKAAAAAAAgC1A+AUAAAAAAAAAAAC2D3+VZGOSfZP83ySnl1J6tDsJYIs56k//fi1PfN4dVErZq8U9AAAAAAAAm62z7QEAAAAAAAAAAADA5iml7JHkHUlWJhmdZHWSq5PUNncBbEGLk+ye5MgkvZP0zxMRmONb3AQAAAAAALBZhF8AAAAAAAAAAABg27c2yfeS/FuS22utG9qdA7Bl1VrvTPKXSVJKGZHknXki/gIAAAAAALDNKrX6zzwAAAAAAAAAAAAAAAAAAAAAAJrU2fYAAAAAAAAAAAAAntuQMUP+qXf/3mPb3gFsG7pWdj24ZP6Sv2l7x5bWb3C/33Z0doxrewewbeje0D1v1dJVR7e9AwAAAAAAno3wCwAAAAAAAAAAwDagd//eY8/+/tkPtL0D2Dac9/7zdmt7w0uho7Nj3Keu+NQjbe8Atg3nvulcoSgAAAAAALZqHW0PAAAAAAAAAAAAAAAAAAAAAADY0Qi/AAAAAAAAAAAAAAAAAAAAAAA0TPgFAAAAAAAAAAAAAAAAAAAAAKBhwi8AAAAAAAAAAAAAAAAAAAAAAA0TfgEAAAAAAAAAAAAAAAAAAAAAaJjwCwAAAAAAAAAAAAAAAAAAAABAw4RfAAAAAAAAAAAAAAAAAAAAAAAaJvwCAAAAAAAAAAAAAAAAAAAAANAw4RcAAAAAAAAAAAAAAAAAAAAAgIYJvwAAAAAAAAAAAAAAAAAAAAAANEz4BQAAAAAAAAAAAAAAAAAAAACgYcIvAAAAAAAAAAAAAAAAAAAAAAANE34BAAAAAAAAAAAAAAAAAAAAAGiY8AsAAAAAAAAAAAAAAAAAAAAAQMOEXwAAAAAAAAAAAAAAAAAAAAAAGib8AgAAAAAAAAAAAAAAAAAAAADQMOEXAAAAAAAAAAAAAAAAAAAAAICGCb8AAAAAAAAAAAAAAAAAAAAAADRM+AUAAAAAAAAAAAAAAAAAAAAAoGHCLwAAAAAAAAAAAAAAAAAAAAAADRN+AQAAAAAAAAAAAAAAAAAAAABomPALAAAAAAAAAAAAAAAAAAAAAEDDhF8AAAAAAAAAAAAAAAAAAAAAABom/AIAAAAAAAAAAAAAAAAAAAAA0DDhFwAAAAAAAAAAAAAAAAAAAACAhgm/AAAAAAAAAAAAAAAAAAAAAAA0TPgFAAAAAAAAAAAAAAAAAAAAAKBhwi8AAAAAAAAAAAAAAAAAAAAAAA0TfgEAAAAAAAAAAAAAAAAAAAAAaJjwCwAAAAAAAAAAAAAAAAAAAABAw4RfAAAAAAAAAAAAAAAAAAAAAAAaJvwCAAAAAAAAAAAAAAAAAAAAANAw4RcAAAAAAAAAAAAAAAAAAAAAgIYJvwAAAAAAAAAAAAAAAAAAAAAANEz4BQAAAAAAAAAAAAAAAAAAAACgYcIvAAAAAAAAAAAAAAAAAAAAAAANE34BAAAAAAAAAAAAAAAAAAAAAGiY8AsAAAAAAAAAAAAAAAAAAAAAQMOEXwAAAAAAAAAAAAAAAAAAAAAAGib8AgAAAAAAAAAAAAAAAAAAAADQMOEXAAAAAAAAAAAAAAAAAAAAAICGCb8AAAAAAAAAAAAAAAAAAAAAADRM+AUAAAAAAAAAAAAAAAAAAAAAoGHCLwAAAAAAAAAAAAAAAAAAAAAADRN+AQAAAAAAAAAAAAAAAAAAAABomPALAAAAAAAAAAAAAAAAAAAAAEDDhF8AAAAAAAAAAAAAAAAAAAAAABom/AIAAAAAAAAAAAAAAAAAAAAA0DDhFwAAAAAAAAAAAAAAAAAAAACAhgm/AAAAAAAAAAAAAAAAAAAAAAA0TPgFAAAAAAAAAAAAAAAAAAAAAKBhwi8AAAAAAAAAAAAAAAAAAAAAAA0TfgEAAAAAAAAAAAAAAAAAAAAAaJjwCwAAAAAAAAAAAAAAAAAAAABAw4RfAAAAAAAAAAAAAAAAAAAAAAAaJvwCAAAAAAAAAAAAAAAAAAAAANAw4RcAAAAAAAAAAAAAAAAAAAAAgIYJvwAAAAAAAAAAAAAAAAAAAAAANEz4BQAAAAAAAAAAAAAAAAAAAACgYcIvAAAAAAAAAAAAAAAAAAAAAAANE34BAAAAAAAAAAAAAAAAAAAAAGiY8AsAAAAAAAAAAAAAAAAAAAAAQMOEXwAAAAAAAAAAAAAAAAAAAAAAGib8AgAAAAAAAAAAAAAAAAAAAADQMOEXAAAAAAAAAAAAAAAAAAAAAICGCb8AAAAAAAAAAAAAAAAAAAAAADRM+AUAAAAAAAAAAAAAAAAAAAAAoGHCLwAAAAAAAAAAAAAAAAAAAAAADRN+AQAAAAAAAAAAAAAAAAAAAABomPALAAAAAAAAAAAAAAAAAAAAAEDDhF8AAAAAAAAAAAAAAAAAAAAAABom/AIAAAAAAAAAAAAAAAAAAAAA0DDhFwAAAAAAAAAAAAAAAAAAAACAhgm/AAAAAAAAAAAAAAAAAAAAAAA0TPgFAAAAAAAAAAAAAAAAAAAAAKBhwi8AAAAAAAAAAAAAAAAAAAAAAA0TfgEAAAAAAAAAAAAAAAAAAAAAaJjwCwAAAAAAAAAAAAAAAAAAAABAw4RfAAAAAAAAAAAAAAAAAAAAAAAaJvwCAAAAAAAAAAAAAAAAAAAAANAw4RcAAAAAAAAAAAAAAAAAAAAAgIYJvwAAAAAAAAAAAAAAAAAAAAAANEz4BQAAAAAAAAAAAAAAAAAAAACgYcIvAAAAAAAAAAAAAAAAAAAAAAANE34BAAAAAAAAAAAAAAAAAAAAAGiY8AsAAAAAAAAAAAAAAAAAAAAAQMOEXwAAAAAAAAAAAAAAAAAAAAAAGib8AgAAAAAAAAAAAAAAAAAAAADQMOEXAAAAAAAAAAAAAAAAAAAAAICGCb8AAAAAAAAAAAAAAAAAAAAAADRM+AUAAAAAAAAAAAAAAAAAAAAAoGHCLwAAAAAAAAAAAAAAAAAAAAAADRN+AQAAAAAAAAAAAAAAAAAAAABomPALAAAAAAAAAAAAAAAAAAAAAEDDhF8AAAAAAAAAAAAAAAAAAAAAABom/AIAAAAAAAAAAAAAAAAAAAAA0DDhFwAAAAAAAAAAAAAAAAAAAACAhgm/AAAAAAAAAAAAAAAAAAAAAAA0TPgFAAAAAAAAAAAAAAAAAAAAAKBhwi8AAAAAAAAAAAAAAAAAAAAAAA0TfgEAAAAAAAAAAAAAAAAAAAAAaJjwCwAAAAAAAAAAAAAAAAAAAABAw4RfAAAAAAAAAAAAAAAAAAAAAAAaJvwCAAAAAAAAAAAAAAAAAAAAANAw4RcAAAAAAAAAAAAAAAAAAAAAgIYJvwAAAAAAAAAAAAAAAAAAAAAANEz4BQAAAAAAAAAAAAAAAAAAAACgYcIvAAAAAAAAAAAAtO4Lx3zho1845gsfbXvHi3HOIed87uvv/Pr72t4BbDnnHHLOYed/8Pz92t7xQp3/wfP3O+eQcw5rewcAAAAAAADPT2fbAwAAAAAAAAAAAGBr9mSQ5jPXfuZf296yPbn3lnuHXfdv1x2x+P7Fu21ct7F3nwF9lo8/YPzMN3/2zZP7Dui74cWe+5tv/mbi7773u5OS5NBTD73iuL8+7o6n3n/3TXcPn3zh5IOXzF8yau3ja3fesG5D71479VrVf2j/JZNOmDT1Ne9/zezSUTb35bGVO/eEcw9Ikk9d+anb297Cc+ta1dXx5Td9+VXr1qzrMeHVEx79iy//xT3Pdu0frvvDwHtvunfQI/c90u/R+x/t17Wqq3PkXiMfP/vCs+96vs93zVevGXPzj24emyTv/ud3/2Hfo/Zd/tT7777p7gHTfjZtl8X3Le6/etnqnhu6NvTYadBO64aOG7r6kJMPeWifI/dZvumTt11TLpoyfNrPp41cumDpTqWj1OHjh6869NRDF+5/3P5Ln+8Zs2+cPeDHn/7xswaVDnzbgQve/Nk3z3v67d0buvOfF/znqLuuuWuX5Q8v79PZq7N7xIQRK4847Yj5Lzv0ZY+/2NcEAAAAAABbA+EXAAAAAAAAAAAA2Azv+/r7/q13/97r296xLbnzmjtH//ycn7+3dtceo/cd/cf+Q/uveHj2w+P/8Js/vPahWQ+NP/vCs3/Yu1/vjS/03IWzFg645Ue3HN+jZ491G9dv7LWpax64/YFRC/+4cO/Buw5eMHz34fN77dRr7eplq/s/NOuhCb/95m/fec9N99x5+vmnX7b5rxLYUm6/7Pah69as65GS3DflvqErH1s5t//Q/psMRE29ZOrIuVPnDunRs0f3gBED1nat6npBfy/9wPQH+k25aMqYnr17dq/vWt+xqWvum3LfwPl3zh84YsKIlWMnjV3es0/PjSseWdH7/tvuH3LRZy4afNC7Dpp/wqdPePDFvNat0WX/eNlu0y+bPrrfkH7rJh47cdHG9RvL3b+7e9iln790n6ULls494vQjHn4h543ed/SKsa8Yu+Lpt+/2yt2ecVvtrvnRJ3+015wpc4YOHDVwzaQTJj28ZsWaznsm3zPsh5/44cST/u6kWZNOmPS84zMAAAAAALC1EX4BAAAAAAAAAACAzbDHwXs81vaGzbFyycqeC+5aMHjvI/Z+pInn27h+Y7n6K1ef2L2hu+cxHz3m4le/79X3JEn3hu58+0PffsdDsx7a58ovXXnI2/7+bZNfyLm1u+bSz196Ys++PdeM3X/srLt/d/ehm7ruiNOPmHnsx46d8fTbH1/8eK/z3n/eaQ/OeHD/u35919SJx05c+OJeIbCl/f7y348speSAkw5YOO3n00bfdsltw486+6iHNnXtq9//6gWv/8vXzxu116g1S+Yv6f2Nk79xwPN9nnVr1pVf/MMvJgzfY/jKQaMGrZ19w+zhm7ru6A8fPf/4Tx7/jLDL0gVLe53/wfNfMfWSqWMOf8/hDw8aNWiLR8EW3buoT5+d+2wcOGJgI8GxObfM2Xn6ZdNHD9hlwNqzvn/WjH6D+21Mkkfvf3Tht0//9itu+M4N419+9MuXDhs/rOv5njn2FWNXbOr925RpP582bM6UOUNHTBjx+Onnnz6zV99eNUnmTpu76Acf/8HEq7581Z57vWavaX0H9O1+ca8QAAAAAADaJfwCAAAAAAAAAABAI2p3zZVfuvJVf7zujweuWb5mcM8+PVfvut+us0/6u5Ou39T1l3zukiNmXjvztSf+zYk/OOCkAx546n3z75o/8Dsf+s5Hx00aN+O0b532yydv/+5Z3z1x3u/nveK0b532jTuvunPPWTfMeuXqpauHDBo9aOHHLvnYhevWrOv49dd/fcC86fP2XLF4xbCuVV39e/TssX7gyIEPv+rtr7rl0FMOnfPkWbf/4vbdfvlPv3zvk9+fc8g5n3vy66c+7zmHnPO5IWOHzPvYJR+78KkbVzyyovevvvSrw+fNmLfP2hVrB3Z0dqwfNHrQwoPfdfDNB73joPufeu2Tz7XfMfvdOPENE2dfd951Ry55cMnY7u7uHoNGDlp4xBlHXDfpjZPmv7h3/pk2dG0oUy+dusfMa2dOXDhr4d5j9hvzx72P2PuXz/3IzTf98unjVi1ZNWzImCHznoy+JElHZ0eO/+Txv/nuWd/d5+4b7z6gdtfJpaM873Ov+MIVBz32wGPj3/K3b7lwzi1zxj/bdb379d64qdt3Hr7zulH7jLrv3sn3DntkziNDcmyEX7Yx034+bei0S6eNfHTeo/26N3SXASMGrN33qH0fPfKMIxf27NOzJsnsG2cP+PGnf7zfk48555BzDnvy631et8/ik7948r1PPfPxRx/vvPorV4+777b7hnSt6uocOGLg2oPeddCCw049bPGmNsz8zcxBt15866hF9y7qv37t+h79BvdbN+HwCY8d/ZGj5/cb1O+//eyde8K5ByTJR378kd9f89Vrxt57871DVi1b1evgdx684PhPHv/gVV++auyUi6aMOeVLp8xctnBZ79t+etuoZQuX9e3Zp2f37q/afclxf33cvIEjnzv+saFrQ5n8w8kj5kyZM3jJg0v6rl6+ulfP3j03Dhs/bNWhpx66cOKxE5c9/TFPbvvoxR+945qvXTN29o2zh61ZsaZn/yH9u/Y/fv9Fr//w6xc+/fdzxq9mDL71J7eOWjJ/yU5dq7o6+/Tvs2HgyIFr9j1q38de+8HXPvxcO5/NgpkL+i66d1H/MfuPWX7k2UcumH759FEzrpox4tnCLy875GUrX+xz/epLv9ptxeIVvc+84MxZ159//Zhnu+7J+MjTDd518LqRe418fO7UuUMevf/RPlsq/LLikRWdd1x+x7CZ184c/sicR/qf8qVTZjYVfrntp7eNSJJD/+LQ+U9GX5Jk2PhhXZPeNOnhWy++dcxtP71tlzd+6o3PK+TyQt3+89tHJMlRZx0176nv++4H7r5ywuETHp19w+zhd1xxx9Bn+50EAAAAAICtnfALAAAAAAAAAAAAjfjhJ374hjm3zDmoV79eK3c/aPfbO3p0dM+/a/5eF5xxwa7d3d09Ojo6NhnkeDGu/OKVb3hs3mPjRu418p5dX77rvR0dHTVJlj20rO/US6e+YfDowfNH7Dlibt8BfVevXra6/0OzHppw9VeuPmX5w8uvOO6vj7sjSXZ52S7L9jtmvxtn3zD74CTZ+4i9b33y/JF7jfyzEYPlDy/vff5p539w1ZJVwwaOHLhw7KvHzlr7+Nqd5t81/+VXfvHK9zz2wGNXHv/J46c//XGL5y4e9ZO/+clhg3cdPH+Pg/eYvvKxlQMXzlq4z2X/cNl7BgwfcP7ur9p9yea8LzOumrHr76/4/cQHZzz48vVr1+9USqlDxw+du9+x+921Oee+EPdNuW98kozZf8ycp983btK4ZTsN3mnJ6qWrhzw448FB4/7HuGcEKTZlzpQ5Q6f/cvrRex6+562vPPGV8/5c+OXZrF6+unPR3Yue2DZxzCMv9PG064ovXjFu6k+n7tqnf58Ne79270d79e21ce7UuYMnXzh53P1T7x902nmn/aGzd2cdOnZo1yEnHzJ/+mXTRyXJK9/yyv+Kh4zce+Sqp57Ztaqr8zsf+s7+HZ0d3RMOn/DYxvUbyz2T7xl2zb9cs2dHR0cOOfmQ/xaauOorV42Z8uMpY3v3671h/IHjl/Yb3G/94rmLd7r9F7ePnjt17uAzv3fmnX0H9P1vn3PdG7s7Ljjrgv26VnZ17vbK3Zb12qnXxsG7Dl771Gtu+Y9bRj8448GBEw6f8Nj4A8cvWzBzwYA/XvfHXebfNX/gGd89Y8aA4QM2/Ln3ZtXSVZ3Xf+v63UfsNeLxcZPGLe87qO/6VY+t6jV36tzBP/3bn+67YtGKOYe/9/Bn/Mx3b+wu3/vw916+aumqXuMPGL+0o0dHnTNlzpCbvn/TbhvWbeg4/hPH/1eM6qYLbxpx7b9eu0ffgX3X73HQHkv6Duy7YfXS1T0X3794pzuvunP45oRfbr3k1pFJ8oo3vuKR/kP6bxh/4Pgl9025b+g9k+/ZecLhEx5/sec+3az/nDXgjivuGPW6M153/4gJI9Y+9yOeacUjKzoX3bto5x6dPeqICSPWbM6erpVdHTOumjHkrl/fNfzBOx8cWDfW0rt/7w37HbvfopF7jdyss1+I+XfOH5gk+x657zM+j/d6zV5Lb7341jHzfj9vYJLnHX5ZumBpnxsuuGFk16quHv2H9l+/x0F7rNjUe75uzbry8D0PD+js1dm952F7rnj6/Xsetuey2TfMHn7/tPsHCr8AAAAAALCt+v/s3Gd81GW6//Fr+kwmmUnPpEMSkgBphI50KZHquhyx4lqw7OqeXT171rPluO6uZ8s56q5lraso6opdQKUJSA9E0gghIb33MimTSTIz/wf+44YQIKEFl8/7kXOX677uXzKT10uSL8EvAAAAAAAAAAAAAAAAAIBLLvOLzJDCQ4WTDWZD89p1a1/zCvom2KCrvWvXS7e9dHt3R7e73kPferHOa6lusaz525pXQuNDT6lpDjB33fvGvc8GxgSeEhZgrbPqXvnBK3ekfZR27ey7Zh8zmAy9IXEhraueWLXnTwv+lCAisuqJVXuGev4nv/3k2o6mDt9RE0elr3luzecKpUJEREqOlhx469/fuvvw+4cXxy2KKwqJCzmlv7rCuqgZt83YtPChhVl9Y1ue2jIhdUPqkr3r9k4ZPWn0luE+i+K0Yu+0D9Piir8ujre12jxFRDwDPSujpkftnXrT1OO+4b6dA/e01rTqtj+7fepwzolbFJcXOye29lzrWmpafEREfMJ9Bg2xcfd2b+ps7vSuOlHlM5Tgl157r2LjExtX6k166w2P37BrqP2Wppd6HfngSLzT6VTYWm3G6hPVUfYOu0fs3Nj90TOjCX75DilMLXRP+zAt2Oht7F77+toss8XcIyLi6HGUrv/x+tjSo6Veu17eFbTwoYWVvqN87SkPp5Tn7MjxExFJeTjljGEVjWWNbuPmj6v7/u++X6hUK0VEpCq3qvrVu15NOvTuoeD+wS95e/JMqe+mhgaMCWi7/bnbc42exm8DXg69e8hv69Nbo7b9dVvoyl+vLOl/RmdLp8Yr2KvznlfvOaZz1zkH66Mso8zzjr/dkR2WFPZtMM2nv/t0VMbmjMAtT24Jv/GPN54WotSfm6db74MfPPi1d4h39ylnt3aqXr3z1fg9r+0Jn3TDpAatm/aU8ztbOrW+o3w773zpzoy+OWudtfz5G59PTv80PWjBjxZUqrVql4hIxuaMAKVa6br/rfszTP6nBtG0NbSd9+8rd9u6FXlf5flqDVpH4nWJTSIiSUuT6otSi3zSPkoLuFjBL52tnarNf9w8JjAm0DrnrjnV597xjZKjJcYTu094Ox1Oaatv0xWnFXt127rV8+6bV+Th63HWQJ7BOHockrs71zNrS5Zf8ZFi7157r1KtUzujpkc1xi+Krx83f1yLSqM6bV/e3jxT8ZFi83DOOtv3fh97u13Z0dyh1eg0Ts9Az56B8/6R/l0iIq3VrfrhnJ2/L983f1++b/+xiKkRjTc8fkOh0euf75364nq9y+kSD3+PrsHu7TvK1yYi0lLVYhjO+QAAAAAAAAAAXEkIfgEAAAAAAAAAAAAAAAAAXHLpG9MTRUQmLJ+wry/0RURE7653zLpz1q5N/7Pptot5XtzCuIMDQ19ERHRGnWNg6IuIiMnfZB9zzZjM9I3pC058dSJowvIJZed7dretW1mWWRan0qi6V/xqxc6+0BcRkVHJo5qjZ0Yfyd2ZOzP13dSEkN+H7O2/1yvYq7x/6IuIyLU/vDbz8PuHUxrLGoOG2kNtYa374Q2HxxUcKoiz1loDRUTclGzVVgAAIABJREFUfdzr41Pid09eNfnYYM+mv7aGNn3OjpxZQz1PRMRsMbcMJfilx9ajFxExmAxdg81rDdouERFbq21IQQIf/+bjWdY6q+V7v/neGwaTYchBCzX5NV7976hQKhxJy5O+XPGLFYeGWgNXhqOfHg0QEZl+y/SKvtAXERGVRiUpD6eUvHz7y17ZW7MDFj60sHI4ddVatXPZfy0r6Qt9EREJGhtks0RbrNUnqk1dbV1KvYfeKSKSuiE1UERk+S+WF/YPfRERmXbTtPq0j9ICT3x1wm9g8IuIyOKfLC45U+iLiEjM7Jj6/qEvIiILf7yw/PiXx/3z9+X79nT1FGn0GteZ9mv0GtfA0BcRETezmyN+cXztntf2jCpJL3GPvibaOnDNkp8tKe4fCGPyN/WOnjy6KW9Pnl/tyVp98PhgW9+cUql0qTSq0/o4nwCUPhmbMnztHXb1+AXja/v6GDd/XPMXT37RU3io0KejuaO4f1DI+dr4+42j7R129fce+15B/8/sc6nIrnBP3ZAa0vdao9c4Un6aUjDlxin1Z9s3UNHhIvfMzzP98vfl+3a1damVKqUrNDG0JW5hXEP84vgmnfHM3x8iIsVHis39+xiKoQS/dFo7VSIiWjftoF9Dg8ngEBGxd9qH9Dvp7j7uPdesuaZ07NyxzT5hPvYee4+yLKPMfffLu8OKUot83vrxW9q169YeU6q+ec91WbvUIiI6N92gX2ODx/8/v2No5wMAAAAAAAAAcCXif3IDAAAAAAAAAAAAAAAAAC655opmi4hIzOyY0wJVElISyjb/YfMZQwvOR9iEsKozzRUcLPDd+/re6fXF9WH2Dru70+E85XfpWqpaPC7k7JKjJT7OXqfGK9irvH/ITZ/IqZEluTtzZzaUNgQMnPMJ86keOKbRa5xag7ajp6vHMNQe3rj/jR/YrDazWqfuipkdcyB5ZXJO9MzouqHuD4kLaX0s9bEnhrp+pGRvyw7K3ZU7M3pm9KGElIRhhXpMXT21aOrqqU/0dPUoq09Um458cCQ+87PMedW51WF3vXrXB1qD9qxBC7hy1BXWGUVEoqZHnRZoZBlj6TJ6G+1t9W26ztZOlZvZbcghIWaLuasv2KI/D1+P7mqplo6WDrXeQ98tIlKTX+OhVCld2VuyfbO3ZJ9Wy9nrVHa1danbG9vV7j7u34ZoqDQqZ0hcSOfZ+gifEH5aIIub2c3hO8q3oyq3ylSdV20ISww7a43K45WGfev2BVcerzR1tnRqHD0OZf95a61VO3CP1qB1BEQFnPYZZvI32UVEOls7v/3sHDd/XP2e1/aMen718xNiZsU0hCeHWyOmRFhNfqbzDn0REUnfnB4gIpK8Mvnbzy+VRiWxc2Lr0zemB6V9mOY35545NRd0xqZ077w9eX7zH5hf7BfhZx/O3pl3zKydecfM2m5bt6KhtEF/eMPhgC+e/CKqLKvMY9XvVxUNpUb+vnzTPx75x3gREd/Rvh0z75hZlrg0sdHd233Izy7l4ZTyoQS5jLTgccG24HH/DAvSe+id4xeMb4mYEtH2wi0vJNbk13hkb832SlyS2DySfQIAAAAAAAAAcDkR/AIAAAAAAAAAAAAAAAAAuOR67D06ERGfMJ+OgXNqndqlMWjOGlowXF7BXu2DjWdvzQ7+5Lef3OZyupS+o3yLg8cH52sNWrtCqZDGssaAmvya6N7uXtWFnN3Z0qkXEdGb9IP24BX0TW/dXd36gXM6o27Q0AGFUuF0OV2KofZgCjDV2aw2c6+9V1+VWxWp99B3Gb2M9uDxwacFY1xuGoOmS0TEZrWddn8RkW7bN8/FYDacFjjRX6+9V7HlqS0r3bzcGm94/IavzrsfvcYZlhTWEpYUtlepUTqyPs+a98WTX0xZ+auVh863Ji6v7s5ulYiIp8Wze7B5N0+3nvbGdl1nS6d6OMEvOqNu0OANpUrpEhFxOf75nuzq6FK7HC5F6obUkLPV7GrvUvUPfjGYDD0K5dnf2u6+7j2Djbt5uvWIiHS1dZ3194GLDhe5v/PIO+NdDpciOC64NWJKRJPOqHMoFAqpK6xzK04r9u7t7j2tCa2b9kz3FxERp8P57Z55982rdvN06z366VFL5meZgRmbMwJFIRIUG2Rd+OOFJaOSR5322X8uVSeqDDV5NR6egZ62iCkRp3yeTrx+Yl36xvSgzC8yAy4k+KW9qV297S/bIoPHB7fOXDPzvOtoDVpXUGyQ7frHri/p7elV5mzPCYiYEtGavCK58Vx7jd7GHjdPt+7Olk5tc3mzW2FqoafBZOiNWxjXrHUb2QAqN9M375fuzu5Bv8dsVptKRETnNvh7ZagMJoMjdk5s/ZEPjoSUHi019QW/6E36XhERe6d90J/Ltrb/f/4Z3qsAAAAAAAAAAHwXEPwCAAAAAAAAAAAAAAAAALjkNDqN3SY2aSxrNBq9jC3953rtvYoeW4+bzl1n7T+uUChcIiKOXsdpgQTtje2Dhob02zvo+L439s109jrVy3+x/K3klcml/ec+/s3HM2rya6KHeKUzcvN06xIR6bJ2uQ8231zV7C4iotVrBw15uRjuf+v+98oyyzyPfHAkrvhIcVzmZ5nzMz/LnO8V7FUeNT0qZ8qNU3J9w33PGLbTWtOq2/7s9qnDOTNuUVxe7JzY2nOt87R4NlbnVktjaaP3YPPtTe3eIiJBsUFnDUzoaO7QdjZ3eouI/HH+Hx8dbM2hfxxaeugfh5ZGTY86fOtfbt1+rt7GzRtXkPV51ryq41XhIkLwy3eE1k3rEBFprW3V+Lv7n/a+6mzp1IiIGMyGSxYOoTVoHeISeXTno0cudu32hnbNYON999J76M96rz2v7QlxdDuUN/3fTTkxs2JO+Zzd/tz24OK04kHfi8M1dfXU+qmrp9Z3tHSoig8Xe+TuzvXJ3Znr/+5/vDvuhxt+mG7yMw3r+R95/0iAiEhLdYvh8amPTx9sTXNFs1vhoUKPyGmRbefTc1N5k7arvUtdmVNp/u303w56xnuPvjdORGTOPXNK5q6dW32ummNmjGnO2Z4TUPJ1iWkowS/B44Jtj3z+yNd5e/LMWVuy/ApTC72LjxR7b3lyi3P0lNGN8YviG2LnxraqtWrXmWrk7c0zFR8pNp/rrP5SHk4pP9canbvOafQydnc0d2hbqls0noGep4QQ1RXW6UVEzIHmswZ1DYWbl1uviEh3V/e3IS9+o/26FEqFtNW16R09DlFpTs1/aShpMIiIeAZ52i70fAAAAAAAAAAARgrBLwAAAAAAAAAAAAAAAACAS84rxKvGWme15O3JCwtLDDsl+CVrS1aYy+U6LalF76G3iYi0VLWYBs6VppcGnk8fHU0dXhqdxjYw9EVEpPpEdfhgexRKhcvpcCqHesao5FGNSrWyx1pnDWitadWZLeZTgiiKUovCRUR8w31rhtv/cIQlhrWEJYbtE5F9x3cet2RsyogrzSwdf+SDIylpH6Yt9hnlUxx9TXTO1NVT80z+plN6bGto0+fsyJk1nPPMFnPLUIJfIqZGlOTuyp1ZkV0RKSIH+s+VZZZ5djZ3eus99K2hCaEtZyghIt+EfYRPCM8YbK65stlirbNavIK9yk3+psbg8cGVQ7lDc2Wzh4iIUqV0DmU9rgz+Ef4dDSUNxoJDBWb/SP+6/nO1BbX6jqYOnYefh93oaXT0jSuUCnE6nIMnRJ0HyxhLW2l6qVfl8UpD8LjgixpCUZpeapq6emp9/7HO1k5VQ0mDUaVROQNjAs96XktNi15n1PUODH0RESnPLD/t8/VCGT2NjrhFcS1xi+Ja3nv0PcndletfeKjQNGH5hKah1ujp6lHk7s71UygUEjs3tm6wMK+2hjZteVa5Z9rHaQHnG/xi9Db2jps/rm6wucqcSlNrbas+LCmsxd3bvTsgKuCMYVn9WeusOhERpUp5xqCWgZQqpYydN7Z17Lyxrd22bkX21mzvY9uO+RUcLPDN35vvp3PX9UZNj2pMSEloiJoeZVWqTv2RVHyk2Jy6ITVkqOeJDC34RUQkJD6kNW9Pnl/u7lzP6TdPP+X7MH9fvpeISFhiWOtwzh5MVU6Vu4iIV5DXtyEyWoPWZRljsVbnVZsKDhaYYmaf+j1ccLDAU0Rk1MRRF3w+AAAAAAAAAAAjheAXAAAAAAAAAAAAAAAAAMAlN2H5hMzSo6VJ6ZvSZ076/qT8vj/s7mrvUu19fe+8wfaETQirSvsoTXJ35ybOu3detlqndomIVJ2oMmVsyhhWKEkfN0+31o7mDp/8ffn+0TOjv/1j/21/3ZZYX1wfMdgerUHb2VbfFmCz2tQGk6H3XGdoDVpnWGLYsZKvSyZs+p9Nc2975ratfXNlGWWe+fvypyiUCueU1VOyzucO52Pc/HE14+aPq3H0OL48+unRUce2HYurPF4Ze+CtAxGH/nFoSfzi+K+uf+z6g33rQ+JCWh9LfeyJS9HLhGUTyna/vLuhqaIpbP/6/WOuuf2akyIizl6nbHl6y3wRkehZ0UcVyn8GPfR09SjLs8q91Fq1Iyzpm+Agg8nQ+4MXf/DZYGd88MsPZufsyLHEzI7JWvyTxaeEw+R8mRM4/trx1QP3NJY1uu1/a/98EZFRyaNOXrQL45JLXplcd3zncf9D7xwKiVsU12TyM/WKfPM9tfXpreEul0viFsWdEkqk99D3NJU1Gbs7u5VaN+0FB/1Mu2ladWl6qdem/9kUufrPq/O8grx6+s/b2+3KyuOVbhFTItqHWztvT55fWUZZTVhSWEff2PZntod227pVY+eNrdPoNWcNGDH5meyt1a2G8uxyt9D40G/DSw68fcC/PKvcc7j9nKFHU/TMaGv/962ISGdrp0ZERKPXDOsZZ3yW4WNvt6vDksJabvzjjYWDrbFZbaqnlj01qeBAgU9na2exm9nNMdi6s/EJ9en+tz/826D1N/znhqjW2lb9tJumVY2dN/aUYJHitGL30ZNGn/a1rCus06W+mxosIhI9K7p5uP2IfBN2MvH6iY0Tr5/Y2N7Urs7YnOFzfMdx35wdOQE523MCjF7G7pufuvl4/4ChlIdTyoca5DJck78/uTZvT57foXcOhSSkJDQZvb4JUGooadBlfpZpUalVrsnfn3xKeE5bQ5u6vbFd4+7j3uPh6/Htz82SoyXGUcmjOgaecfj9w74nD570VaqVrsQliY3955KvT6797E+fmXa9vCts9OTROVqD1iUiUvx1sfvJAyd99R763qSlSUMOFQIAAAAAAAAA4EpD8AsAAAAAAAAAAAAAAAAA4JJLXJJYkb01+0jhocLJL9724n2h8aG5SpXSWXGsIlqr13ZpjdrT/oA+flF81e6Xdpc1VTSFPbvq2bss0ZaSztZOY01eTbR/lH9h1fGqccPtY+L3JqZueWpLxHuPvndHSFzIca2b1t5Y2hjYVNkUGjg2MLc6t3rswD2BMYElrTWtQa/e+erNAdEBZWqN2mGJttTOuG3GGcNBVvxqxc6/3/X3sMLUwkl/vf6vgZZoS6mtzeZWcaxirKPboZu8avKW0PjQ1jPtv1RUGpVr8qrJxZNXTS62WW1fHH7v8Jjc3bnxrbWtXpezh8U/Xbzpk8c/ue3Lv325KndXbq67j3trTV7N6Nba1kCvYK/yJf+xJLX/ntqCWo/1D62/X++hb/35jp8/dyHnb31669JN/7PJ4B3sXWX0MVqVSqWzraHNs7agNsrZ61Rboi15Cx5ckHlht8TlFDktsm3i9ROrvv7k66AXb3kxKWp6VKPGoHEWpxV7Nlc0u1liLG3z75tf1X9PWFJYa31Rvfu6B9aNDYkPsao1apclxtKRkJJwXmEdsXNjW69Zc03p/vX7w/+2+m/J4RPCm82BZnu3rVtprbXqq3KrTIExgdaIKRG5w60dlhTW8uZDb8aNmT6m0ehj7K7MqTTV5NV4ePh62FMeTik91/6pq6dWl2eVe65/cH3cmBljGnVGXW/NyRr3mrwaU+TUyMbC1EKf87lzfx/990exGr3GERAd0GYOMNvFJVKRU2GqL6p39x3t2xE7J3ZYn3cZmzICRESSliXVnmmNwWRwRE2Pajyx+4Rf2kdpfrPvnF0jInLy4EmPox8fDRAR6e7qVoqItNa06jf854aovr2r/7y64Hzu2efd/3h3nMFk6PGL8Ovw8POwOx1ORUt1i74ss8zT5XApEpYk1IybN+6CP+Pdvd17Z66ZWTtzzczaxrJG7dGNR/1yd+b6tTe2a0TEds4CF0HktMi2CcsnVKVvSg964ZYXksbMGNPo6HEo8vfn+9o77Op5980r9h3la++/Z/+b+wNTN6SGTF09taJ/IM2Hv/owRqlSuvwj/Ts8/Dzsvd29ytqTte51hXXuCpXCtfChhYUDa028fmLDid0nvAtTC31euPmFxIipEc22Vpv65IGTvi6nS5HycEqBwWQYdugPAAAAAAAAAABXCoJfAAAAAAAAAAAAAAAAAACXxa1P37rt8//7vCl3Z+6kosNFyRqDxhYyPiRv5a9X7nrhlhfWDrZnzfNr3vv48Y8XVOVWRZ88cHKy0cvYNPF7E7+MWxRX9Pe7/z7s4Jepq6cWOXodG468f2RmxbGKcQqFwuUZ5Fm14pcr3mooafAcLPhl2X8t22fvtOurjleNObHrRKjL5VK01rRmnS34xSvIq2vturWvf/HkF9eUZ5XH5u3Nm6pSq3q9gryqJq+afHDKv00pHm7vF5vBZOidc8+c3Dn3zMl19DgUl/Ps+EXxVQaT4bWdL+6cXVdYF1GVW6U1mAyt464dt3fZo8sO6Iy6S/ZH/IlLEw8VHiqMaalqsdQV1kU6nU6VxqDp9A33LRk7b2z2nLvnHFcoL+vjwEWw7L+WlVpiLO1ff/x14IndJ/ydDqfCFGDqmn7r9LK5a+dWqXVqV//1C3+0sMLeblcXHyn2SstPM7mcLomdE1t/vsEvIiILfrSgKjw5vC313dTA6hPVpuK0YrXWoHUYvY3dcQvjahOXJtafT91pN0+ripkd05j2YVrQyQMnfTQ6jTN2bmz94p8sLjX5m3rPtX/8gvEtTofzxL439oWc3H/SV6FUuPyj/NtvevKmnKbyJt3FCH6Zdees0qLDRZ71RfXupemlXmqN2unu626fecfM0hm3zahRa099/mdTc7JGX5VbZTKYDD3xi+PP+vWY9L1JtSd2n/DL+jwroC/4pbG0UX/iqxN+/dfZrDbNgLELCn6ZcduMsuK0Ys+a/Br34q+LvVxOl8JgMvRETIpomrByQt34a8e3XEj9wfiE+XQvfHBh5cIHF1Y6e50Xu/xZrfjVilL/KP/Oo58ctRzbdixAoVCI72jf9um3TK8619eov8SliTWlR0s9q/OqPYrTir3EJQo3L7fu2Lmx9TNunVEVmhDaOXCPQqmQm5+8OX/P63sCs7dm+2d+lmlRaVSuoLFB1tl3zq6InBbZdnFvCwAAAAAAAADA5aVwuYb87ygAAAAAAAAAAAAAAAAAgBESGBu4/r437ysd6T4AfDe8tOal8OoT1bePdB8Xm4efR8Ejnz1SN9J9XA5bntoSmrohNeSm/7spJ2ZWjHWk+wG+i55c+qR/W31b1Ej3AQAAAAAAAADAmShHugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuNoQ/AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAl5l6pBsAAAAAAAAAAAAAAAAAAAAA8K/t0LuH/FqqWvTnWmeJsXQkLU1quhw9AQAAAAAAAAAAjDSCXwAAAAAAAAAAAAAAAAAAAIArTMrDKeUpD6eUj3QfF0v2lmz/qtwq07nWxc6JrSf4BQAAAAAAAAAAXC0IfgEAAAAAAAAAAAAAAAAAAABwSa1dtzZnpHsAAAAAAAAAAAC40ihHugEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuNoQ/AIAAAAAAAAAAAAAAAAAwBlsf3Z7wuNTH//l9me3J1xInYpjFebHpz7+y9fvfX35xeoNAAAAAAAAAAAAAPDdph7pBgAAAAAAAAAAAAAAAAAAwOVXnVftseWpLXNqTtZE9th6DDqjrj0kLiRv6c+X7vUM9Ow637rpm9LDNj6x8TZxiWLsvLH7bvzjjV8NXGPvsKu+/NuXSfn78hM6Wzq9nL1Otd5Db7XEWIrm3TsvNXh8cOuF3Q7AxXLo3UN+W5/eGrX4p4sLpt00rf586zSUNOieX/18cuyc2PrVf15dcDF7BAAAAAAAAAAA+K4i+AUAAAAAAAAAAAAAAAAAgDOYunpqXuTUyErfUb7tF1InICqg7fZnb3/R6GO0X6zeLkRZRpnn2z95+wfdtm6jJdqSb7aYGxpKGoILDhZMefXOVyPvevWuN7xDvG3Drdve2K7d/sz2FSq1qsfR49AOtqbX3qt46faXbm2ubA41ehkbwxLDclQaVW9DSUNQ4aHCyaVHSxNW/+/qdVHTohou/KYAcGZNFU3aHc/tCC1NL/Xqau9Su5nduiOnRTYtfGhhudHL6BhKDXu7XZm1Jcv75IGTXnVFdcaOxg6dQqEQc5DZNnbu2IbZd86uVuvUrv57miubtVlbsrwLUwu9miuaDZ2tnVqNTuPwG+3XkXx9cs2E5ROaLs2NAQAAAAAAAADAlYbgFwAAAAAAAAAAAAAAAAAAzsDkb7Kb/E0XHNai0WucEVMiGi9GTxfDpj9uuq7b1m2cdMOkrUt/vjStb/ydn76z4OSBk1M3/2Hz3DXPr/liuHXf/8X7i3rsPbpx1447kL0le+5ga/a/tT+2ubI51Cfcp+SH7/zwbaVa2X//7ONfHp+19/W906KmRW0+n7sBuLgSrktoCp8QnmG2mLsvpI5nkGf3vW/em2EwGXovVm8Xoq6wTrfu/nXxNqtNM3rS6CbvUG9bdV61R+ZnmYElR0s87/n7PcfcfdzP2WvBoQLT5//7+RidUdcbHBfcGjUtqqmrrUtddKTIe+/re8Pz9+V73/XKXTlag/bb8Jf96/dbvv7462APPw97SHyI1eht7LbWWnVFqUU+G3+/0VyWUVa98tcrSy7pAwAAAAAAAAAAAFcEgl8AAAAAAAAAAAAAAAAAAFcNl9Mln/3ps8kn9pxItrXavDR6TWfw+OC8lb9eufuFW15YKyLy8x0/f65v/fZntycceOvA8hm3zdi08KGFWX3jf1rwpwdFRB58/8GXNv5+4+yyjLJx9k67Ue+ht0ZfE52+8tcrDyqUim/PrThWYf773X9/MCwxLOvOl+/cdBmvfJqyjDLPhuKGCIPJ0HrdI9el9Z9b8asVe/6y4i/JpRml8R3NHTuMXsaeodbd/+b+6LKMssSZP5j5qbPXqTzTuuaKZk8RkfCk8JP9Q19EROIWxuUf//L4LHu73W2Y1wJwibiZ3RxuZjfbhdZRa9WuwJjAC65zsWz+4+YIm9WmmXvv3OI5d8+p6Rv/9HefjsrYnBG45ektYat+v6roXHU8/Dy6l/xsyckJyyc0qnXqb8NdbFZbyWtrX4urPVnrse+NfYHz759f1TcXPD64PXpmdE70zGhr/1pVJ6oq1t2/Lj5jc0Zg0rKk+vAJ4R0X674AAAAAAAAAAODKRPALAAAAAAAAAAAAAAAAAOCqsf7H61OKjxRP1Bl1baMnjz6qUqscFccqol9b+1qQy+lSKpQK51BruZwu5d/v/vvNXW1dHpYYS6FSpXRW5lRGZ36eOb+3p1e96ver9l7Ku5yv3N25o0REAsYEFA0MXnH3ce/2CvUqbyhuiMjdlRs86YZJJUOp2VDa4PbVa18ttURb8q594Npj25/dnnCmtf5R/vUiImWZZVHOXufh/j0c//L4GBGRkLiQ4uHeC8DQuJwu+eq1rwIzP8sMaKtr0+vcdT2R0yKbUh5OKXvh5hcSRUQe+fyRo33rD717yG/r01ujFv90ccG0m6bV940/ueTJZBGRB997MGPbM9tC8/bm+dqsNo27t7s9PiW+9toHrq3qH4DVUNKge37188mxc2LrV/95dcFlvPJp6grrdOVZ5Z4evh72WT+YVdN/btG/Lyo7tv1YQN5XeX72dnuJzl131p8LYYlhnWGJYZ0Dxw0mg3PKjVOqPv/z52PKMstMIvJt8MuE5ROaBqsVFBtki74muiFnR05AYWqhmeAXAAAAAAAAAAD+9RH8AgAAAAAAAAAAAAAAAAC4KmRszggtPlI80c3Lrenedfe+ZraY7SIi3bbuXS/e9uKt9g67h95D3zrUevYOu4c5wFy3dt3alwwmQ6+ISENpw56Xbnvph3lf5U3t6erZr9FrhhwkM9AHv/xg9nDWR0yJKE1emVx6rnVN5U0+IiJeQV6Ng82b/ExNDcUNEfVF9d4iUjLEXpeKSxQ3/PaGL861dvrN0wuObT12ojqvOvap5U/dZ4m2FKvUKkdjWWNgU0VTaOS0yCMpD6ekDeVcAMP30W8+Gn1s6zGLm6db9/hF42tVapWzKLXIe93969ydDqdCqVK6hlrL6XAq1j2wblxHc4d2VPKoZqVK6SpMLfTe/+b+8N7uXmXKT1MqLuVdzlfBwQKziEhYUliLUnVqAJbBZHAGxgRay7PKPYvTij1i58YO+efCQCq1yiUiolQO/Zn2PX+leuh7AAAAAAAAAADAdxfBLwAAAAAAAAAAAAAAAACAq0LG5owEEZEJyyfs6wt9ERHRGrTOOXfP2fXJ45/cMdyaS/5zyda+0BcREd9w387A2MC88qzyhJKjJT5jZoypP99+c3bkzBrunqEEv3TbunUiIjp3nX2weZ3bN+Nd7V36oZy57ZltibUna6Pnrp37kd9ov45zrVcoFbJ23doPP/z1h7OPf3l8ZuGhQt++OZ9wn5LEJYk5ap2awAPgEjh54KTHsa3HLGaLuWvtG2uzjJ5Gh4hIr7237LW1r43rbOnUuvu4D/rZMJjOlk6t7yjfzjtfujM6R8aAAAAgAElEQVRD66Z1iohY66zlz9/4fHL6p+lBC360oFKtPf/385antoQOZ/3oyaNbY2bFWM+1rrGs0SAi4h3q3TXYvGeQZ1d5VrnUl9TrY+X8g18yPsvwFxGJmBrRMpT1NqtNVXCwwEcUItEzo4e0BwAAAAAAAAAAfLcR/AIAAAAAAAAAAAAAAAAAuCo0VzZbRESiZ0aXD5yLWxhX+envPnUOp55aq7aHTwhvHjju7uNuFRHpaOoYUnDKmTyW+tgTF7L/cqg4VmE+/N7hRUFjg3Ln3DMndyh7utq7VOsfXL+ytqA2csqNU75Ivj453+Bh6Mn5Mid07+t7F3/8m4/XWGutH16z5pr8S90/cLXJ2PRNEMn0W6ZX9IW+iIiodWrX/Afml739k7fjhltzyc+WFPeFvoiImPxNvaMnj27K25PnV3uyVh88Pth2vv2mbkgNGe6eoQS/2DvsKhERvbu+d7B5nVHnEBHpau8679+13vPaHkt5ZrmnT7hPx7SbptWda73L6ZIPf/1hpM1q08Qvjq8Jig067+cGAAAAAAAAAAC+Owh+AQAAAAAAAAAAAAAAAABcFXrsPToREZ8wn46BcyqNyqXRa4b1R/ZqnbprsHGlSukSEXE6nMrz6fNS0xq0dhERe7tdN9i8vfObcb27ftD79ffJ458sV6lVPd//3fe/GOr5m/+w+Zqq3KqxE783cVvKwynpfePTbppW6BXk9cG7P3t37b439y0i+AW4+OqK6owiIhGTI04LR4mYHNGmUClcw6mnNWgdAVEBp31WmPxNdhGRztbOC/pd5cdSHzt4IftHSvqmdO/dr+webTAbelb/cXWeWqs+53Pd+MTGUYWHCn0CYwKty3+xvOQytAkAAAAAAAAAAK4ABL8AAAAAAAAAAAAAAAAAAK4KGp3GbhObNJY1Go1expb+c44eh6Knq8egM+raRqq/gT745Qezh7M+YkpEafLK5NJzrfMO9W4UEWmuavYZbN5ab/UWEfGL8Gs6V63WmlZLb3ev7tlVzz482HzurtyZj099fKYl2pJ/3/r73hcRKc8ujxIRiZ4VXTJwfczsmDq1Tt3V1dZlbqpoMniHeA8rjAfA2XV3dqtEREz+pp6Bc0q1UvRGfe9w6mndtIOuV6q+yb1yOpyK82jzktMZdQ4Rka72rkF/l9reYVeJiOjdh/c8REQyPsvw3vyHzdEGk6Hn9mdvP+YX4Wc/155Nf9gUnrE5IzAwNtC65rk1uRq9ZlgBPAAAAAAAAAAA4LuL4BcAAAAAAAAAAAAAAAAAwFXBK9ir1lpnteTvyw8NSww7Jfjl2PZjwS6nSzlSvQ0mZ0fOrOHuGUrwy9i5Y0sO/eOQ1J6sjXD2OkWp/ue12xvbtc3lzaFKtbJn7LyxleeqFZ4cntVr79UMHG+rb/NuqmgK8/DzqPUO8a72j/Sv6Ztz9jrVIiLWOqvbwH32DrvK0ePQiohoDVrHuc4HMDx97ytrnVXj535qIImz1yldHV1qo6exe2S6O92Wp7aEDmf96MmjW2NmxVjPtc4nzMcmItJU3qQfbL6lqkUvIuI3yq9rOOcf/fSoz+Y/bR7jZnbruf2Z23MCxgScc/+nv/t0VMbmjMCgcUHWNc+tydUZdc7hnAkAAAAAAAAAAL7bCH4BAAAAAAAAAAAAAAAAAFwVEpYkZJWmlyamb0qfOeXfpuSb/E12EZFuW7dyz9/3zBvp/gZ6LPWxJy5F3bCksBbf0b5FDcUNEV88+cWkpT9fmtY3t/H3G2c7eh2a0ZNGHzV6GXv67ys6XOQjIhIxJaKxb+y2v962bbAztj+7PeHAWwfCQuJCTt74xxu/6j/nF+FX1t7Y7nfoH4dmxi+Kr9AZdd8GvHzy+CezXU6X0mwxV7n7uF8x4RPAvwq/CL+OhtIGY9GRIpNfhF99/7miI0UeLodLMVK9DSZ1Q2rIcPcMJfglanpU6/Znt0tZRpmn0+EUpeqfAVg2q01ZnVdtUmvVztGTRrcN9dwjHxzx/eLJL8YYvYz2Nc+tyfGLODVYZyCX0yUf/+bj0dlbsy0h8SGttz9z+wmtm5bQFwAAAAAAAAAArjIEvwAAAAAAAAAAAAAAAAAArgrJK5LLsrdkp5d8XTLhbzf97b6Q+JATKrXKUZFTEa3Rabp0Rl2bQqFwjXSfl8PyR5d/8fZP3v5B2kdpiyuOVYz2DPRsqC+uD24sawx383JrWvZfy3YP3LP+ofX3i1x4IM2iHy/av+6BdWMaSxtH/fX6vz5gibEUqjXqnrqiutDWmtYgpVrZO/+B+YMGygC4MEnLkupzd+X6H3znYEh8SnyTm9nNISLSa+9V7HxxZ9hI9zfQY6mPHbwUdf0j/e2hCaEt5VnlnnvX7bXMuXtOTd/ctr9uC+u19yrHLxxfq3PXnRLEUp1XbRARCYwJtPUfT92Q6rf16a1R7r7u9jXPr8nxDfc9Z+jLB7/6IPL4l8f9w5LCWm79y60ntAbtVfHzBwAAAAAAAAAAnIrgFwAAAAAAAAAAAAAAAADAVeP2Z27//LM/f9aQtycvuehwUbLGoLGFjA/JW/nrlbueueGZH7t5ujWPdI+XQ1hSWMsdL97x2tant86pya+JqC2ojdIZdW1R06MOL/350r2egZ5dl+psS7Slbe3ra/++7a/bplfmVI4pPVqa6HK5FDqjri0sKSxrzt1zDkRMiWi8VOcDV7PomdHW8QvG1+bsyAn42+q/JUVNj2pUqpWuosNF3lo3ba+bp1u3QqkY6TYvi2WPLitad/+6+N0v7x5derTU7B3mbas+Ue1RdbzKZLaYu1J+mlI2cM/La15OEjk1kCZvT55p69Nbo1wul4TEhbSmfZjmP3Cf3kPfO3ft3Oq+11v/ujXk+JfH/VValdM/0r9j5ws7QwbuscRYOpKWJjVdvBsDAAAAAAAAAIArEcEvAAAAAAAAAAAAAAAAAICrhlKtlOW/WH54+S+WH+4/XnK0xMvR49Ca/E0N/ccXPrQwa+FDC7MG1vn5jp8/d6YzVj2xas+qJ1bt6T8WEhfS+ljqY09caP8XU1BskPXOl+7cNNT1w+n/TM+tj0+YT+fNT978pYh8OdSaAC6OG357Q5FPuI8t8/PMgOxt2Ra9u743cmpkY8ojKWV/Wf6XSQaT4ZIFP11J/CP97Xe/dnfWjud2hJWml3qWppd6uXm6dScuTaxe+NDCcqOX0TGUOs1VzTqXyyUiIrm7ck8LfRERcfdxt/cPfmmtbtWLiDi6Hcq0D9OCB9sTOye2nuAXAAAAAAAAAAD+9Sn6/qEBAAAAAAAAAAAAAAAAAHDlCowNXH/fm/eVjnQf33V1RXVG3zDfDqVa+e1YZ2un+o0H3vh+XWFd1Ny1cz+ac8+c3BFsEbgoXlrzUnj1ierbR7qPi83Dz6Pgkc8eqRvpPv4V1Z6s1b9424sTxswY03DL07ecHOl+gIvhyaVP+rfVt0WNdB8AAAAAAAAAAJyJeqQbAAAAAAAAAAAAAAAAAADgctn5ws4ppeml4/1G+5W6ebq121pt7rWFtaPs7XaTf4R/4ey7ZhP6AuBfWmtNq8bDz6NHqfpnAJa9w678/P8+Hy0iEjMnpmnEmgMAAAAAAAAAALjKEPwCAAAAAAAAAAAAAAAAALhqRE2PKm6qaAqoLaiN6OnqMSiUCqfRy9g0du7YI0t+tuSwQqkY6RYB4JLau25vYN6ePN/g8cFWdx/37o6mDm15drm5o6lDG5YU1pK8IrlxpHsEAAAAAAAAAAC4WhD8AgAAAAAAAAAAAAAAAAC4aky6YVLJpBsmlYx0HwAwUqKmRbXWFdUZyzLLPO0ddrVSqXSZA822CSsmVM+5e041AVgAAAAAAAAAAACXD8EvAAAAAAAAAAAAAAAAAAAAwFUidm5sa+zc2NaR7gMAAAAAAAAAAAAiypFuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACuNgS/AAAAAAAAAAAAAAAAAABwmT0+9fFfPrvq2dtHug8AAAAAAAAAAAAAwMhRj3QDAAAAAAAAAAAAAAAAAADg6vDRf380M3tr9hwRkSX/ueTtyd+fXNJ/PvPzzJDjO49H1+bXjups7TT3dvfq9O76dv9I/+J59807ED4hvHlgzdfvfX15WWZZwpnOvP3Z21+MmBLReNEvA+CCPT718elBY4Osa9etzRnpXgAAAAAAAAAAAEYCwS8AAAAAAAAAAAAAAAAAAOCSy92Vazm2/dgslUbV7ehxaAdb8/n/fr6q29bt5hXkVRE+IfyYUqV01hXVhZSmlyatf3D9+BW/XvF2QkpC5WB7o6ZHHdYZdfaB456Bnp0X+y4AMFTNlc3arC1Z3oWphV7NFc2GztZOrUancfiN9utIvj65ZsLyCU0D97zyg1fGV+VWmc5Wd+y8sXU3/vHGwr7XW57aEpq6ITXkTOtXPbEqd/yC8S0XdhsAAAAAAAAAAHCxEfwCAAAAAAAAAAAAAAAAAAAuqa72LtVnf/5spdlirvLw9WguzyqPH2zd2LljU6ffMj07YExAe//xjx776JrsLdlztz+zfWlCSsLLg+2dc8+cwyFxIa2Xon8AOF/71++3fP3x18Eefh72kPgQq9Hb2G2tteqKUot8Nv5+o7kso6x65a9XlvTfE58SXxeaEGodrF7G5gyLvcOujpoRNWiIS+yc2HqzxXxaCJbvKN+ui3IhAAAAAAAAAABwURH8AgAAAAAAAAAAAAAAAAC4Iu1fv39M+qb0KW31bb49XT0GjUFjc/dyb4qcFnl8yc+WfN237vjO45ajnx5NqCuoC7e12UzOXqdG76G3Bo8Pzl/ysyX7PAM9T/lj9+3Pbk848NaB5TNum7HJM9Cz7eA7B2dZa60WpVrZExgbWHDD4zdsM1vM9hO7TwTsennX3KaKphCXw6XyHe1bsuzRZVsHhos8u+rZ25vKm8Ie3fnoHz/93aczS74uie9q73LXe+jbIqZEZK345Yr9WoPWOZQ799p7Fdue2ZZ8cv/J+LaGNj+Xy6U0ehkbY2bHZFz38HVpSrXyvJ7RSPvw1x/Ot1ltnqueWPXyrhd3zTzTuusfu/7gYOMrf7XyQM6OnJntje1+TRVNBu8Qb9ul6xYALp7g8cHt0TOjc6JnRp8S5FJ1oqpi3f3r4jM2ZwQmLUuqD58Q3tE3N+2mafWD1arJr9GnbkgNMZgMPQkpCU2DrUlanlQXMytm0NAYAAAAAAAAAABw5SH4BQAAAAAAAAAAAAAAAABwxdny1JYJqRtSl2jdtO1BY4NO6j30nbZWm7GlusU/f29+Yv9Qk7QP0yZU5lTG+I7yLbPEWIpdLpeisazRcnL/yamv5r4aef9b97/u7uPePfCMoiNF0bUna8cEjAk4GTk68uu6orqQsoyyhDcfetM89565uz757Se3+oT6lEdMjshoqmzyrz1ZO2bDf27w/OnGn748MIBFROT1+16/obmqOSg0PjRXqVI6K45VROdsz5ndUNwQeN/6+95TKBVnvXNPV4/ylR+8srq+uD7C6GVsDEsMO6bSqHprT9aOSvswbXFNfk3Q3a/evfF8ntFISvs4LbzgQMGUiddP3DYqeVTz+dRQKBQuhULhFBFRqVWDhuhkb8mOTPswTadQKVw+oT5NiUsSSzz8PE77ugPfNVlfZHkdfv9wYFNFk5u9w67Wu+t7zRazbey8sY2zfjCrpm9daXqpMX1jul95drm5o6lD22vvVRl9jPbIKZFN1/7o2gqjl9HRv+6hdw/5bX16a9Tiny4uMAWYuve+vje0oaTBqNaonaMmjWpe9l/Lio2eRkdZRplx54s7Q6vzqk1Oh1MRMj6kdenPlxb7jvK196/3yg9eGV+VW2X6xVe/OLT92e0hJ3af8Oto6dAavYzd464dV7fghwsq1Tq1ayh3dvQ45MDbByzHth3za65sNjidToVnoKctISWhbuYdM2uUqlM/g4f6jEbChOUTBg1oCYoNskVfE92QsyMnoDC10Nw/+OVMDr93OEBEZNyCcXVq7dCeJQAAAAAAAAAAuLIR/AIAAAAAAAAAAAAAAAAAuOLk7spNVigVjrXr1r7iG+7b2X+uqbzJ0P/1tT+89oAl2rJFpVGd8kfw2/66LfHgOweX7Xhux8TrH7v+4MAzavNro5f9YtlbySuSy0REnL1OeeHWF25pKGkYvfGJjTddc/s1n8+/f/6xvvXr7l+3rDS9NPHgOwejr1lzTf7Aem31bb4PvP3AS56Bnl0iIl3tXbteuu2l22sLasfsfHFn/LU/vDb7bHf+9Hefzqwvro+InBqZdvOTN2/ru4+jx6FY/9D6paXppYn739x/ou/s4TyjM2mtadVtf3b71KGs7RO3KC4vdk5s7VDWWuusui+f+3KFd4h32dKfLz0ynHP62/P6nnGOHofWM9Cz0mwx2wdbc/j9w9f1f737ld3dySuTd14pATjA+di/fn/Ajud2RBjMhp6IyRFNBrOht7O5U1NfUu+WvSXbr3+oyZEPjwQUpRZ5B40LsoYnhbe4XC5F7claY/qm9KDir4u97n3j3iyDyXBacFL+vnzv0qOlXuHJ4c3xi+NrqnKrPE7sPuFnrbXqrv3htaX/eOQf4wNjA63jF4yvbShpcCs5WuL1zsPv6B98/8GMgQEsIiLvPPxOTF1hnXvUjKhGlUrlLEwt9E59NzW0Jr/G/Y7n7zhxrhCs3u5exZs/ejO2PKvc0xxotkXPim5Qa9XO8qxy866Xdo2uPF7pfvP/3VxwPs/oSqNUKV0iIkq18pwhLj1dPYrcXbn+ohCZ+m9Tz/gZXHq01FSZU+nudDjFK8jLHj0rutXD16P3YvYNAAAAAAAAAAAuHoJfAAAAAAAAAAAAAAAAAABXJIVS4VRr1aeFFHiHetv6vw4eH9w62P6FDy3MPPzB4YUVxyoiReS04JfguOBjfaEvIiJKtVJiZsdkN5Q0jPbw86jrH/oiIpKwJCGrNL00sTq/OkBETgt+SV6ZvK8v9EVERO+ud8y6c9auTf+z6bbju44nni34xdnrlPy9+ZO0btr2m/73pm39Q2xUGpXre7/53va/rPxL4vGdx+P6h84M9RmdSVtDmz5nR86soaztY7aYW4Ya/PLBLz9Y3NPVY1j53yvXnyvs4UzKs8vNB94+sFihVDjn3T9v+8D54LjgsogpEQVRM6IqfcJ8OuoK6zwyNmXEZG3Jmn3kgyMpSpXSmfJwSvp5HQ6MsIzNGQFKtdJ1/1v3Z5j8TaeEd7Q1tJ3ye8Bz186tvOE3NxQp1aeGsRx4+4D/9me2R+5fv9+y4EcLqgaeUfJ1ifdN/3tTTvTMaKuIiNPhlNfvfX1cxbEK83uPvjd20b8vKpy8anJD3/r3Hn0vMndXrn/21myvxCWJzQPrNVc0G3747g/TjV5Gh4hIt6277LV7XosrPVrqdeSDI35TbpxSf7Y773huR0h5VrlnwnUJNSt/tbK47z7OXqd88KsPInN35fpnfp7Z2Hf2cJ7RmXS0dKj2vrY3aChr+4y7dlxjWGJY57lXDs5mtakKDhb4iEIkemZ0y7nWZ36e6dPV3qUOiQ9p9YvwGzQAS0Tk4DsHQ/u/Vv2fypX8veTK6x6+rvx8P4cBAAAAAAAAAMClQ/ALAAAAAAAAAAAAAAAAAOCKEzkt8lj6xvQFL9zywn1hSWHHw5PCS8fOG1vhE+Zz2h/Z93T1KLc9sy258FDhuLaGNr/e7l6duOTbv263tdk8BjsjIDKgeuCY2WJuExHxCfOpGTjnE+rTJiLS3thuGqxe7NzY0oFjCSkJZZv/sNllrbFaznbfkqMlPj32HoObp1vTJ7/9ZNAgFqVa2WOts/r2vR7OMzqTkLiQ1sdSH3tiqOuHY8/re2LLs8rjJ6+avCUsMeycoQaDaShtcNvwsw0399h63CavmrwlISWhcuCaRT9elNn/dVhiWEtYYliq72jfxu3PbF999NOjcxc+tDCjf5gO8F2iVCpdg33/evh6nBJy4hvuO2gYyPSbp9ftfmX3qOK0Yi8ROS34Zcw1Y+r7Ql9ERJQqpcQtiquvOFZh9g7x7uwf+iIikrQsqT53V65/dV61cbDglxm3zajoC30REdEatK55988rffc/3h2f+Xmm/9mCX5wOp2RszrAYzIaeFb9cUdw/xEapVsrSR5eW5O7O9c/emu3X/+yhPqMzsbXY1KkbUkOGsraPZ5Bn1/kGv7icLvnw1x9G2qw2Tfzi+Jqg2KBzhnWlb0wPEBGZsGLCoMFblmhLx6KfLCqImhZlNVvM3W31bZq8PXme+97YF3bk/SMhLqdLsfQ/l5YNthcAAAAAAAAAAIwcgl8AAAAAAAAAAAAAAAAAAFecFb9ckerm6daZsz1nYsHBgskFBwqmfPm3L8U7zLt0/v3zvxx/7fhvQ1teu/e1G2ryamIMZkNL0NigfDezW7tKo3KIiOTtyZvi7HWqBjtD5647LSRBpf4mOEDnNsicRuUUEXE5XMqBcyIivuG+HQPH1Dq1S2PQdHZ3dhvPdt+2hjaDiEhnS6d3zo6cQYNfREQcPQ5t338P5xldbs1Vzfp96/Zd5xPuU3LdI9d9fT41Gkob3N544I3bOpo7fCZ+b+K2JT9bMqw6M26dUbDn73va7B12j8LDhb7R10SfMWwCuFKNmz+ufs9re0Y9v/r5CTGzYhrCk8OtEVMirCY/02mBJr3dvYoDbx0IyN2V69tc2Wzo7uxWu1z/zELpaOrQDtwjIhIYG3jaZ5fJ39QtIhIwJuC0ObPF3C0i0lbfphusXuS0yNaBY1HToqwKpUIaShrO+llYW1BrsHfY1eYAc9f2Z7eHDrZGrVE7myqaDH2vh/OMzsR3lK/9sdTHDg51/YXa+MTGUYWHCn0CYwKty3+xvORc62tP1uqrcqtMBpOhJyEloWmwNUnLkk4Z9wnz6Z5x24y64PHBHW/+6M34o58cDZp91+yqoYbhAAAAAAAAAACAy4PgFwAAAAAAAAAAAAAAAADAFWnBjxZkL/jRguzWmlZd7q7ckBN7TsSWppcmfvr4pzdbxlhe9Anz+X/s3Glg1NW9//EzeyYzmezLZN8TkpCNJYiERUARiqCiaFXUWrWLdrO33tZ7S5drbxe1WrFXa11aVxRBRdl3EAgEAtkTsm+TPTOTTDL7/B/0H28IAYIsgev79YjfOd9zzvf8BocHJp/Bsp1l+vaq9pSg2KD6R//56HtylfzLlAO30y2envP0dVeq3+7Gbk1EWoR55JjT5pQ4hhzecqX8jCCZkbz9vG1CCBGWElb16D8fXTfeM8fzjs613tRuUm1/cXveeM8TQoiMGzOqUuekdpyrpuNUh6/D6vDuaeyJ/c11v3lqrJpNf9x0z6Y/bhK5y3O3L/350iOnra/t0L712Fv3WHotQdNWTNtyoaEvw5TeykGbxeZjG7CNGXgBXO3mPTrP4O3n7Tz+yfGwk5+f1J/47IReSIQITw03L/zBwobY3Ngvg1ne/cm7yfVH6wN8gn1scdPi+jQBGrtc8a/vxKJPi/Quh0sy1hleWq8zgkCkcum/QrA0KtfoueGALLfTPeZ+uhCd44w1Cpnw0no5hvqHFOe6r6XXIhdCCFOHyatgbUHk2eqcVueXgV4X8o6uBhv/e2PMic9O6PWpevOqNasqFF4Kz/nWHPnwSKgQQqQtSOuUK+XnrR8pJifGEpIQMtBe3e5TX1jvk7kos++r9g4AAAAAAAAAAC49gl8AAAAAAAAAAAAAAAAAAFc13zBf24y7Z9TOuHtG7ZvfeVPSWNSYVbazLHr2g7Mru2q7/IUQIjY3tnpk6IsQQpTtLItwO91X7OfkKvdUxkSkRZSMHCveUhzt8XgkujBd+7nWxk2J65ar5Nbelt4Ih9UhVXgp3Bdy9rne0bnW9Xf3e5XtKMu/wLOM5wt+0YXqhmJyYk6MNddV3xU9aBwMCIkPqVX7qvvDksM6R84bqgw+b//g7XsHjYMBeSvzNi36yaKiC+lvmLnTrLL0WgKFECIsOcz4VfYArgZ5K/O68lbmdVmMFln9kXqfij0VgRW7KkLe/+n7ad9b+70iXbDO2XC8QVN/tD4gMiPS9MDLD5TLFF/mogi3yy0KNxSGX6l+zZ1mRWB0oH3kmMvhEtYBq0LppTwjSGYktU7tFEKIuGlxvavWrKoa75njeUfnWm8xWmT7X99/Qe8obX5aT3RW9DnDtUb75LefxJ747IQ+PC3cvGrNqgqVRnXe73qnzSkp31UeIiRC5N2Rd87v3rNR69QOIYSwD9qlX2U9AAAAAAAAAAC4fAh+AQAAAAAAAAAAAAAAAABcdY59fCwm95bcRolUctq4td/qLYQQSrXSIYQQgTGBJiGEaC1rjRFCFA7XdTd2e+9Ys2PRletYiOOfHJ815dYpp/z0flYhhLAOWGX739g/TwghJs2ddPJca+UquSf5+uSj5bvK89/76Xs33fG7O7YPByAM66jt0PZ39XslzkjsFmL87+hcIjMiTasLVj99QRcdh/DUcPMDLz/w+VhzbzzyxtImY1PA1BVTD0+7fVrDyLnWslbfd370zr1D/UO+M++duXHh4wuLz3VOZ12nxuVwSfUp+v6R4wO9A4r3nnhvqdvllgfFBtUHxwVbLvpSwATT+GlcGTdmGDNuzDB+8O8fiIrdFSG1h2t1OUtzersbur2EECJxZmLvyNAXIYRoONagddldVyzwo/ZwrW9gdGDXyLGawzU6j9sjgmKDzvnfYlhy2JDSW+nqONXh47Q7JXLl6YFe53Oud3SudUPGIXnB2oLICznLL9zPOt7gF4/bIzb8akNcydaSsMjJkab7/nJfpdJbOa6Ar5ObTgZY+63yyMmRpuD4YNuF9CiEEE67U9JV36URQojA6MALXg8AAAAAAAAAAC4vgl8AAAAAAAAAAAAAAAAAAFedLc9uuWP7X7bbA6ICWn2CfIwej0fSWdsZZVPwLSUAACAASURBVGo3hetCdYYpy6fUCyFE2g1pbbtf2d1sqDKkvnDrC/eHJIQ0D5mGNO2n2hO1AdoelUbVf76zLhWfYJ/u/7nnfx6NmhxVIZVJ3S2lLclDpiH/kISQmvnfnV9yvvXLVy8/0NPcE1p/tD73heUvJIUkhDRo/DX9Q+YhjbnL7N/X2heVeXPmnuHgl/G+o2vJOz96574h85CvLlRnMLWb/NY9tW726JoZd884GZkRaRJCiJaSlqDP/vuze/zC/Vp0IbpetU5tsfRZfDpqOuLsg3at2ldtXL56+WdX/ibApVG1r0qXPCvZPDrgadA0qBBCCIWXwi2EEAGRATYhhGg60eQrhGgfrjN3muWbn90cf+U6FuLg2wcj0xem92r8NS4hhLAP2SW7X94dI4QQmTdndp5rrUwhE9nfyDYc+eBI5Ce//SRu6c+XNowOSDEajIpB46A8fFL4kBDjf0fnEhQbZFtdsPrQBV10nDxuj1j3H+sSyneWh0RnRxvvef6eSqVaOe5Am6KNRaFCCJG7LLf9bDVD5iGpqd2kDEsOs44cd9qckk+f/jR2oGdA5af3G4rJiRn46jcBAAAAAAAAAACXA8EvAAAAAAAAAAAAAAAAAICrTu7y3F1NJ5rijW3GsI6ajkSpTOpU69SmrCVZuxZ8f8Gx4V/klylknvvW3PfBxt9tnGuoNCTWHKyZrtKq+hPyEoqW/mLpgRdvf/E7V6rnB195cP0nv/1kVsOxhsnWAavWS+vVn74wfd/Sny89ODqQYCwKL4X70X8++uGul3dNrthTkWmoMiS5HC6lUq20ePt5GyffNHlv3sq80uH68b6ja8mQechXCCHMHWZ9WUeZfqya+OnxjcPBL2EpYX0xuTEnept79W0VbUlOu9NLKpc6tAHanpT8lMIbf3jjUW2g1n4l7wBcSut/uT5V4aVwhSaH9vuG+tqER4iWshZdV12XNiguyJI6J9UkhBCxubEDYclh/XVH6gJevvfljIj0iH5Lr0XRWNTo7xfuN+Tt533F/jvwj/Qf+utdf81JnJnYI5PJ3LUFtQHmTrNXTE5M3/Q7pnedb/3Cxxe2dNZ2akq3lYbWH633j5wcadIGae2DfYMKY5vRq726XTfz3plN4ZPCW4UY/zuaKFtf2BpZvrM8RKaUuUMSQiy7/mdX5OiasJQwS/aS7N7R4x01HV6t5a2+ap3aMfmmyX1nO8PSa1G8suqVnOC44IGAyIAhbaDWPmgcVLSUtvj2d/WrvLRezlt/fWu1VCa91NcDAAAAAAAAAAAXieAXAAAAAAAAAAAAAAAAAMBV5+Ynbj4uhDg+nlr/cH/rqjWrtow19+SOJ9eMHlv4+MLihY8vLB6rPndZbmPustynx5qLzIg0rS5YPeacEEKoNCrXnb+/c68QYu/5ej7bPhKpRMz/3vyS+d+bX3K+PS7kHV1NHvzbgxuFEBvHmjvX+x1LeGq4+f6/3r/pkjQGXIXyH8xvrDtS59dV16VtLGr0lyvkbm2Q1jbr/lmNM++d2S5Xyj1CCCGVS8U9L9xTufX5rVENhQ3+Jz87qff297Zn3JjRseD7C1rW3LEm+0r1/M3nvlm1/cXtkZV7KoMtRotS46+x592V1zz/u/NbxxOCJVfKPavWrKo8uu5ocPGW4uCGYw3+DqtD5uXj5dCF6GzX3XNdU86ynC8DZMb7jiaKyWDyEkIIl90lLfyoMGKsmtQ5qV1jBb8c/fBoqPAIkbYgrfNc99AEaJyZN2e2t1e1a5tONPnZLDa5VC716EJ01im3Tmmd/a3ZbboQnfPS3QoAAAAAAAAAAFwqEo9nQv9fBgAAAAAAAAAAAAAAAABgHPSp+rce/eejjRPdB8704ooX7+tt7o2+0NAS4HJ6ZdUrMYZKw30T3cel5hPsU/PE5090TnQfONOrD7ya3lbRpltdsPrQRPcCDHt2ybMh/V39iRPdBwAAAAAAAAAAZyOd6AYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4OuG4BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuMLkE90AAAAAAAAAAAAAAAAAAADXssfXPf7WRPcAAAAAAAAAAAAAALj2EPwCAAAAAAAAAAAAAAAAAAAA4KI8/ObDZRPdAwAAAAAAAAAAwLVGOtENAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDXDcEvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCFySe6AQAAAAAAAAAAAAAAAADA18cfFvzhMSGEeHLHk2smuperybqn1s0u21GWP/wcNzXu+KqXVm0efn5xxYv39Tb3Rg8/z3lozoa5j8wtv9J94kxvPf7WTXVH6qYOP6cvSN+/4ukV+4afn1387CMDPQPBw89Lf7H07dxluY1Xuk9cvZ5d/GyuEEI8semJ4xPdy9Vky3NbogrWFkQOP6cvTO9Y8V8r6oafX33g1fS2ijbd8POSJ5dUT71tas+V7vPr7C+3/SW7r7VPPfx81zN3laXkp5iFEKK/u1/+3JLnpo2sX12w+tCV7hEAAAAAAAAAgKsdwS8AAAAAAAAAAAAAAAAAAFwlorOii32CfUzhaeFtY82nL0jfL4QQERkRXcNjDqtDevj9w0m1h2uTepp6wofMQ74ej0fq7evdF50VXXnzT28+rA3U2kfv9YcFf3jM2m/1HescpbfS8vPdP39+5JjD6pBu/fPWKV0NXWF9rX2hAz0DwR63Rzrj7hmf3/Sjm05c3M3/19F1R+NOHTyV0NvSG2puN4c6bA61f4R/8w/W/+CfY9WPDs0Zi9pXbfzZtp+9dLZ5j9sj/nr3X7/Z3dAdJ4QQT+176ndyldwznn6TZibVqHXqof6uft+mk02Zo+cnzZt0bNA4qDFUGWJGhvcAGJ/UOaldvmG+toj0iIGx5vNW5rUIIYQ+RT84POa0OyWl20r9qw9U+7dXt/sM9Awo3W63RBeisybNTOqd+/DcVrVO7T7f2Uc+PBK0+ZnNSUIIsfDxhbUz753ZOVZdydYS/8PvHQ7vaujSeNweSUBkwGDustz2vJV5XWPVXyrVX1Trjm04FtJV16UdNA4qnDanzNvP2x4YHTiYtzLPkDo31TR6zdqfrU2s3FsZPNZ+QgjxyD8fOaFP0Q+N5/ycW3LaLb0WRXNxs25kCI8QQijVSvfwZ1O2oyx4oGdAdaH3AwAAAAAAAADg64DgFwAAAAAAAAAAAAAAAAAArhJZS7KKc5flNp5tfsXTK/aNHmsubvbf9T+7VsjkMkdQbFBDRHpEjcPqUBqqDPHlu8rzG4oa0h969aE3A6ICzvhFfrlSbkuZnXJk9LhCrTgjKGbQOKg49vGxG4X4VzCMyls1YB2w6kbXXazjnxyf2l7dniyVSZ3eft59DptDfa76+OnxZ31fzcXNSeZOc5g+RV9zrj02/WnT1J7GnlipTOp0u9wX9LOVM+6eUSuEqD3+yfGYsYJfFv/b4mNC/CughuAX4MJlL83uTMlPMZ9tftFPFjWPHuuq7/L65LefpMhVcndEeoQpflp8n33ILm0savQ78sGRyKp9VUEPvfZQiU+Qj/Ns+/Y09yh3vrQzXqFSuB02h/Rsdfte3xe2+5XdcSqtypk6O7VLppB5Th08FbjluS2JHTUd3rc8dctZv6MuVl1BnW9LSYtvaFLoQFRWlEnhpXCZO82qhqMNAWufXOs/7Y5pLYt/uviM9yOEEFlLsgxeWi/X6HFtoNYx3vPzH8hvF0KILc9tiRod/KLSqNzDn01zcbOO4BcAAAAAAAAAAMZG8AsAAAAAAAAAAAAAAAAAANcwbz9v+7QV07bM+facYo2/5stf2LcP2aWvPfTaHZ21nYmb/rRp9r1/uXfr6LVyldw6VpjMWNS+asdNP77p/bhpcR2hCaED655aN7tsR1n+pbyLEEJcd891B719vXfHTY3rMVQZdK899Npj56rPXZbbOFZYjsvhkvxp0Z+yhBAib2Ve0dnW1xfWBxz/9Pj85PzkQ41FjenWfqvvxd8CwETy0nq5bvjuDfXTV0zvVGlV7uFxp80pefuHb6c0FjX671izI+rWX91aP9Z6j9sjNqzekKjSqpxJM5N6jn9yPHysuu6GbtW+1/bFqjQq57df+3ZxUGyQTQghLH2W5r+t+ltm0adF4ekL0nsS8hIGLsc9b/juDS1jBd/0tfYpX33g1czCdYWRM++Z2e6n9zsjzGXWqlmG4X4BAAAAAAAAAMDEIfgFAAAAAAAAAAAAAAAAACBKtpZErP/l+gfCksOqHn3r0XVj1Tyz6JnvDJoG/R7/6PHn/cP9rfYhu3T7i9tzm4qaEs1d5iCbxaaVKWQO3zDf9qm3TT08464ZteM5ezhAZOkvlr49OsCjpbTF97WHXnssOiu6+MG/Pbhx5NygaVC+9c9bp9cX1qdZ+iwBEiERPsE+nZk3Zx6d9+i8spG1HrdH7PzrzsyynWU5ll5LgMvhUinUCotPsE93+vz0k3Mfnlt+oe/sahGWHNa/+N8WHxs9rlQr3TPvm/nFx7/6OLGjpiPmYs9RqpXu8X6mFyNzUWbrpdinYG1Bom3ApvPT+7Umz0ruHKvGaXNKPvntJ8u8fb37bv3VrfueX/Z8+qU4G/831B2p0771+FuT46bG9a56aVXVWDUvLH8h29xl9vrxxh8XagO0TqfNKTn4zsHQ2oJa/97mXvWgaVCpUClcQbFBlhl3z2jLWJhhHM/ZW57bElWwtiDyrmfuKkvJTzGPnOtu6Fa9tPKl3NQ5qV0r/7iyZuSczWKT7ntjn75qb1WQqd3kJSRCBEYFDk69faph6m1Tu0fWetweceTDI8FFG4tCTQaT2mF1yLx0Xo6AyIDBrMVZnVNundJzoe/sauEf4W/PfyC/ffS4XCX35D+Q39pY1OjfXNKsO9v6va/v1beWt/re/ezdZXUFdWcNgzr60dEQl9MlmXLblPaRISoaf41rxt0zWre9sC3h6LqjYQl5CTVn2+NiKNVKz1jj/hH+9rDksP76wvqA7oZur7GCXwAAAAAAAAAAwNWB4BcAAAAAAAAAAAAAAAAAgJh80+TWrX/e2tNR05HY29KrDogMGBo5X7q9NNzSZwnUp+or/cP9rUIIYTQY1YXrC2/0D/dvCU0MrVfr1IODxkGtodKQtPXPW+8ytZs+v+lHN524HP2a2k2q1x9+/V5zpzlMF6Jrj5sSd9Lj8UgMVYb4fa/vW95V3xV05+/v3Dtc/8HPP5hbuafyerVObYzKjKpQeiutg8ZBn97mXn31gepJ13Lwy7nIFXKXEEJIpBL3WPNul1u28392ZpjaTb5KL6VdP0nfmb0ku0mmkI0ZJnAtKd5cnCOEEGnz046frebj33ycb+40h93+X7e/qdKoXFeuO1wL4qfHD/jqfYcaTzT6D/QMyLWBWufI+frCeq3RYFTH58X3aAP+NWfps8j3/G1PXGhyaH90VrRJ7ad2WHosyvrCev+P/uOjSeYOc+3Me2eOGUR0sSxGi+zNR95M727s1gTFBlnS5qd1etwe0VjU6Pf5Hz5P6qztVC/+t8XNw/WbntkUXfhRYYRPsI8t6fqkbpVW5RroGVB2nOrQlu8uD7yWg1/ORaqQeoQQQiqTjvk911bZpj7w5oHo7CXZhuTrk83nCn5pOtHkK4QQybOS+0bPTZo3qW/bC9tES2nLWddfLuZOs7yjpsNHJpd5QpNCh8aqqdhT4Wez2GRSmVQERAVYU/JTTGqdmu9BAAAAAAAAAACuMIJfAAAAAAAAAAAAAAAAAABCCCESZiQUF28unnfo3UPpS362pHDkXNGnRZlCCJGxMKN4eMw31Nf6yD8eeVGfou8fWWvuNKtefeDV+wvXF86f/a3ZpWqd+rSwhEth/S/X32juNIdlLcnatfyXyw8Nj1sHrLLXv/36nRW7K2ZV7q2sTJ2T2iGEELWHanNVGlX/Y+see8Xb1/u0fnqbe9XjObOltMX38HuHsy6kzxl3zzgZmRFpupA1l9Kxj49lCyFERFpE7Vjz9kG79sCbB5Z9OfCxEDtf2mlc8PiCjbm35DZdoTYvOUOVwaeztjNRrpTbrl91/ZihPmU7yvTlu8qvT52bejB9frrhSveIa0P6gvSug28djD7+yfGg2d+a3T5yrujTomAhhMhanNU1PObt5+18bN1jxwIiA+wjawdNg7K/P/j3yfte3xcz9bap3Upv5ZhhTBfjs999Ftfd2K2Zdf+sxvnfm982PG4fskve/sHbqUc/OhqZcWNGT3RW9KAQQpRsKQnV+Gvs31/7/RMqjeq0fvq7+8f1M8bdDd2qwvWFIRfS59TbpnYGxQbZLmTNpXT84+MhQggROyXWOHrO5XCJDb/akKQN1NpvfuLm834HGtuMaiGECE0MtY6e89P7OeQqudvSa1HaLDbp6Hd8KTUcb9BU7qkMcLvcor+rX1VfWO9vH7LL5z06r84nyGfMf4N3/c+u+JHPCi+Fa9YDs5pmP3j633MAAAAAAAAAAHB5EfwCAAAAAAAAAAAAAAAAABBCCDHj7hklxVuK5546cCpT/Ex8GfxiH7JLm082pynVSsv0O6bXDI+rNCrX6NAXIYTQhehsSdcnnSz6tGhB5d7K8JylOZc0QKS3pVfdXNw82TfU1zAy9EUIIby0Xq7535u/8/1/ez++aGNR+nDwixBCSGVSt0wu84zeLyAqYGg853bWdvqV7SjLv5Be46fHN05U8MsXb32RVH+0PlelVZlv+vFNh0bPJ8xIOBk7JbYpJjumWxOgsbWWtfofeufQ1PrC+tzP//D53Ro/zRsps1M6J6L3i/XFW19kezweSXR2dMnooB8hhBgyD8k3P7N5mTZQ23Xr6lv3T0SPuDZMWT6l69Dbh6JLt5UGjwx+cdqckuoD1UFqndqRPj+9b3hc4aXwjA59EUIIb19v1+SbJnfse31fbENRgzb5+mTzpexzoGdAXrW/Kjg4LnhgZOiLEEIo1UrPwscXNr7+8Ot+JzedDI7Oim4cnpPKpB6pTHrG9+LZwkJG62nuURWsLYi8kF7jpsWZJir4pXhzsX/p9tJQTYDGPu+Rea2j57f9ZVtUT0OP5p4X7ikZTziPfcguE0KIswWcKdVKp9PmVA6Zh2SXM/ilpaRFO/JzUHgpXIt+vKhm+p3Tu0bXRmdHmxNnJvbF5sb2+wT7OEwGk7JkW0ng4fcOR+5+eXecTC7zXH/f9R2j1wEAAAAAAAAAgMuD4BcAAAAAAAAAAAAAAAAAgBBCCH2Kvj8oJqihu6E7ruZwTVDijMRuIYQ4/P7hZIfNoU6amVQgV8lPCwioOVQTtP+N/dd11XdF2yw2rdvlPu3n0oxtRp9L3eepL07pPR6PREiEZ91T62aPnnc73VIhhDAZTEHDY9E50aW1h2unvXDrC9+JyY4pj50S2zhp3qRWXYhu3OEDuctyG3OX5T59aW5xeZ3cfDJy98u7b5UpZPZv/Ps3PvLT+1lH16z4rxWnBZ4kzUzqSpqZtPm9J96zVx+onrHn1T2zU2anrLtyXV8abqdb1B6qzRZCiLy78o6PVfPRf3w0f9A06L/yDytfU3gpLlsYA659AZEB9oiMCFNLSYtvW0WbOnxS+JAQQpRsK/G3WWzy7G9kG2QK2WlrWstb1QfePBDRWt6qGzQOKlwOl3TkvLnDrLzUfTYWNWo9bo8QEiG2PLclavS8y+mSCCFET1OPengsZU5Kd/Gm4rAXV7yYk5yf3B03Jc4cNy2u39vX2zXec1PyU8yrC1afESx1Nao9XOuz8b83JiuUCvftv729SuOvOe2edUfrtEfXHY3MWZbTlpCXMDBRfX4Vs+6f1THr/lkd9iG7pLux2+vI2iOhm5/dnNhU3OSz4r9W1I2sve6b150W6BUcH2y74Ts3tAXHBQ+t/+X61ANvHoi+7u7rOqRyqQAAAAAAAAAAAJcfwS8AAAAAAAAAAAAAAAAAgC9Nmjfp5P439scVflSYmTgjcZcQQpTvLM8UQogpt04pHllbsrUk4uPffHyvx+2RBsUG1UekR1Qr1UqbRCoRPU09oe3V7clOu1M21jkXw9Jn8RZCCFO7KdzUbgo/W53D7vgyXOHuZ+7evumZTcZTB05lVe6tnFm5t3Lm1ue3ukMSQmpufuLmHTE5MX2Xus+JUrylOGLj7zbeJSTCs/QXS9/LWJjRdiHrZ94783j1geoZPY090Zerx8up4IOCROuAVeen92tNvj65a/T88U+PR9cW1E7NWJixL2V2SudYewAjZd6c2dlS0uJ7/OPjIeGTwhuFEKJ4U3GIEELkLss97e9Q3ZE67btPvJvucXkkERkRpvjp8b0qjcolkUhEZ22nd31hfYDT7pRc6h4HjYNyIYToquvSdtV1ac9W5xhyfPmdvOypZfX+4f7Wkq0lIcfWH4s4tv5YhEQm8cRkxxgX/WRRQ2hi6BmBUdeq2oJa7dp/XztJIpF47vz9nRVxU+NOC3ZxOVzi0//6NMk3zHdo0Y8XNY13X6Va6bIOWOVD5iG5NlDrHD1vH7LLhRBCrVOPO0znYijVSk94avjQ8tXLG5wOp7Rse1lo/PR4U+4tuT3nWzv5psl9W/+81W7psyjbKtu8IzMiB69EzwAAAAAAAAAAfN0R/AIAAAAAAAAAAAAAAAAA+NJ137yu6uA7B20NxxoyXA7X7r62PnVnbWeCT7BPx+iQjAP/ODDL7XTLl/5i6du5y3IbR85t+NWGme3V7cnjOVMikXiEEMLldJ0RhjDQM+A1eszLx8sqhBBJM5MKvvnnb+4Yzxkyhcyz9OdLjwghjnQ3dntX7K6IqtxTmd5W0TZp7ZNrg3+44YevqDSqc/5ifktpi+/h9w5njee8YTPunnEyMiPSdCFrLsaJz05Effb7z+6SSCSeW/7zlncn3zS59UL38I/wHxRCCJfTpTxf7dXo5KaTOUIIkTY/7fhY861lrWFCCFG6vXR26fbS2WPVPD376V8IIcTKP678e+qc1I7L1SuuDVk3Z/Vuf3G7q2JPRdDif1vcONA7IG882egXGB04GJUZdVo4xr7X90W67C7pXc/cVZaSn2IeObd9zfaI+sL6gPGcKZH+63vR7XSf8b04aBo8I1DLy8fLJYQQ2d/INiz7z2UN4zlDKpeKuQ/PNcx9eK7B3GmW1xbU6sp2lAXVHq4NfPfH76of+/CxEwovhedce3Q3dKsK1xeGjOe8YVNvm9oZFBtku5A1F+PUwVM+H/78w0kSiUSs/NPK8vjp8QOja6wWq8zUbvISQojfzfndjLH22f7i9oTtL25PyFqSZVj+y+UNQgjhF+431F7d7tNR0+GlDdSetq/RYFQ4bU6pJkBjV2lU7stwtXNKmpnUV7a9LLThWINuPMEvQgjhpfNyWPosSvugXXq5+wMAAAAAAAAAAP9C8AsAAAAAAAAAAAAAAAAA4EtqndoZmRFZ0Xi8MbtwQ2FcZ21nkMftkSbNTCoeXWvptfgrVIqh0aEvQghhqDTEjPdMLx+vISGEMLYZdaPnGosa9aPHkmclt21/cbuns7YzerxnjBQUEzSY/0B+Vf4D+VVr7lxzT09jT2xtQW1w2g1p7eda11nb6Ve2oyz/Qs6Knx7feKWCXwo3FMZsfmbzSqlM6lr+y+Xvpi9IN3yVfSr2VEQIIYTaV913aTu8/DpOdWg7azqT5Eq5bdb9s8rHqglLDuuMyYk5MdZcS2lLmsvhUsbkxJwUQnh0obqhy9owrglKb6U7aWZST/nO8pCKvRV+XXVdao/LI0lfmN45utbYbvRSaVTO0aEvQgjRfLL5jO+4s/Hy8XL+//3OCGBqKWnRjh6LyYnpl0gkorWs1We8Z4ykC9E5c5bm9OYszen9+7f+ntZa1urbVtHmHZMTYznXup7mHlXB2oLICzkrblqc6UoFv1TurdR99B8fTZIpZO6Vf1pZETcl7ozQFyGEUCgVnrQb0s74PIUQorO2U9Pd2K0JSwnrD4gIGIqaHNU/PBedHW1qr273qT5Q7Z+Ql3Da3hW7K/yFEOJKhn+NZO40q4QQQiqTnjO8Z9igaVBmbDOqhUSIwJjAKxbMAwAAAAAAAADA1x3BLwAAAAAAAAAAAAAAAACA0+QszTnZeLwxu3Rr6WRzpzlIIpW4r7vnutLRdd5+3iZLnyWw+kB1SPKs5C9/YX7bC9uyuuq74sd7XnROdFvh+kJRsacia94j80rkKrlHCCHaKtt0JzaeOCNoJSgmaDBqclRpc3Hz5I/+86NZy3+5/AuZQnbaL7Y3nWjyk8gknqjJUSabxSar3Fupz1qc1TKyxmF1SO2DdrUQQqg0Ksf5+sxdltuYuyz36fHe60o68uGRuK3Pb71TJpc5bvv1be+kzk3tOFd9bUFtYFhymFnjrznt3i2lLb77Xtu3SAgh4qfHn/GZXyhzp1nV3dCt1QRqbKEJoWMGLlxKB/55INvj8UhicmJK1Dq1c6yaabdPa5h2+7SGseb+sOAPcS6HS3nvC/d+Pvz3cFhHbYfW0mNRBcUGDehCdIQifM3kLM3pLN9ZHnJy08ngvuY+tUQm8UxZPqVrdJ0uWGczGUzq5pJm76jJUYPD4wffORjSXNzsN97zojKjBoQQomRzScj0FdO7ZAqZEEKInuYe5cF3DkadcW6Izpmcn9xVta8qeOvzWyMXPrawRSqXnlbTWdupkkglIjgu2OawOiSNRY3axOsS+0fWOO1OiXXAKhdCCIVa4T5fnyn5KebVBasPjfdeV1L5rnLf9avXp8qVcvc3n/1meXR29FlDbJTeSvcd/31H7VhzW57bEtXd2K2ZfOPkzpn3zjwtHGbqbVM7j60/FnHy85Nh026f1jkcaGPps8gOv3c4Qgghpq2Ydlqo2KBpUGZqNynVOrXTT+933n97zqW+sF4bN/XMMJvO2k5VwfsFEUIIkZyf/GWIl6ndpHA5XZKAyAD7QjkKRgAAIABJREFUyHprv1W67hfrEl0OlzRycqTJN9TXMXo/l9MlDY4LtsqV8nEFyQAAAAAAAAAAgPEh+AUAAAAAAAAAAAAAAAAAcJqsxVkt217Y1tda3prmcXukoUmhp4JiggZH1025dUrBlue2xH/w7x/cH5kRWa70Vtp6Gnv0va29UfpJ+gpDhWHSeM6bfOPktj2v7GnqbemNfnHFi98KSw5rGDQNatqr2pNDEkNq28rb0kavueN3d2x5/eHXA0q3lc6pO1I3OSg2qNnb19ti6bNozZ3mIFO7KXzOQ3M2RE2OMln7rfKPf/3x/dte2NbnH+5v0AZpTU67U95e3R5n6bUEhSaFVifkJfRcinc3EeoL6wO2/nnrnW6XWx6aGFpTur00pXR7acrouhVPr9g3/OeiT4vSK/dW5gVGBzZpAjQmpVppN3ea/TtOdSS6XW55SEJIzTf+/RtnhDls+PWGmcZWY6AQQvS19YUKIUTl3sqstvK2KCGECE8Lb77pRzedGK4vWFuQcvDtg0ujs6KLH/zbgxvHc58Tn5+IKvqkKFsIIRw2h1IIISy9loA3Hnlj6XDNWHu5nW5Rc6gmWwghpq+cfnw8Z12ITX/YNK/pZFPmzHtnblz4+MLiS70/rm6J1yX260J11tpDtYFul1sSmxvbpwvRnREulLcyz9Bc3Oz31mNvZSTNTOpRaVTO9lPt2vaqdl1CXkJPbUFt4HjOi58WP6BP1ZsNlQbdy/e8nBmVFWWy9FkUDYUNAdHZ0caaQzVn7LPsP5fV/+O7/1Affu9wVMWuiuDwtHCzt7+3Y6B7QNnb0qvuquvSLnlySXVwXLDNbrVL3/nROxm6UJ01JD7E4hvqa3PanZLGE41+xjajOnZKbF94avjQpXh3E6G9ut1r/S/Xp7ocLmlMTkxf+a7ygPJd5QGj6xb9ZFHzxZwTHBdsy/9WfsOev+2J+/tDf89Mvj65W6aQeU4dPBVo6bUoc27JaUvISzgtmKV4c3HA1j9vTUydk9q18o8ray7m/Pd/+n6aWqd2BMcHW3yCfWxul1tiNBi9mk42+XlcHknm4sz2tHlppuH69lPt6rU/W5semhTa7x/uPzT896PpZJPfkGlI4RPsY1v+y+Vn9PTW42+lD/QMqL6/9vvHh8NtAAAAAAAAAADApUHwCwAAAAAAAAAAAAAAAADgDAl5CcUlW0vmCCFE2vy0MUMu8lbm1bmcrrVHPzw6q6W0JU0ikXj8wv3abnnqlre7G7r9xhv8IoQQq15a9cGGX29Y0FbRlnzq4KlpGn9N75Rbp+zMuDGj7rWHXjsj+MUn2Mf+3fe++8/tL27PrTlUk95a3prqdrrlKm+VRROo6c1dnrs9c3FmvRBCePt5O7KWZO1qq2iL6WnqiTRUGVJkCplN46/pm37n9M3zvzf/xJkdXTv6Wvt83C63XAghDJWGVEOlIXWsupHBL/F58Q1GgzHA2GYM623ujXI5XQq5Um4NiApoTpmdUjL/u/NLJFLJGXu0lLQk9Db3Ro8cM7YZI41txsgRQxf1PrvquvybTjZljhyzD9k1o8bOCH45su5IgrXf6uun92tNvj6562J6AMaSPj+969C7h6KEECJzcWbnmDUL0o1ul7vywD8ORJ764lSQRCrxhCSGDNz17F1lvc29qvEGvwghxD0v3FO56Y+bYuuO1AWc3HRS7xvqa5390OzGlPyUMYNf1Dq169uvf7v04DsHQ8t3lQfVHK4JdDlcUrVO7fDT+w3N+fachtQ5qSYhhFB5q9yz7p/V2Hii0ddQZfCpP1ofoPBSuHShOuv8782vm3HXjDHvd60wdZiULodLKoQQdQV1gXUFdWPWXWzwixBCzHloTrt/hL/t8HuHwyv3VIZ4PB7hH+E/mP9AflPeyrzL+l00896ZTfWF9X7t1e3a+mP1/h63R6LWqR3xU+N7c5bldKbPTzeOrA+KDbKm3ZDW0XGqQ1t/tD7ANmSTyZVyt5/ebyj7G9mG/AfyDWqd2n05ewYAAAAAAAAAAKeTeDyeie4BAAAAAAAAAAAAAAAAAHAe+lT9W4/+89HGie4Dl8e6p9bNLttRlr/0F0vfzl2We8bn/OKKF+/rbe6NXl2w+umJ6A/nd/yT4zEbf7fx3vQF6ftHhuwMO99nfKm9suqVGEOl4b7Lfc6V5hPsU/PE509c06EkGJ8tz22JKlhbEHnXM3eVpeSnmEfPv/rAq+ltFW261QWrD01Ef/hfV/Nn9eySZ0P6u/oTr/S5AAAAAAAAAACMl3yiGwAAAAAAAAAAAAAAAAAAAP+y8Xcb7934u40ibmrc8VUvrdo8ev7Xeb9+Sggh5jw0Z8PcR+aWX/kOMdpbj791U92Ruqlnm3928bOPDPQMBF/JnoD/S97/6fvpQgiRvjC9Y8V/ragbPf/rvF9fJ4QQS55cUj31tqk9V7q/r7O/3PaX7L7WPvVYc/3d/fLnljw37Ur3BAAAAAAAAADAtYbgFwAAAAAAAAAAAAAAAAAAJlj89PjGkc/haeFtI59T56SeNLWbvqyJyIjoulK94dySZibVqHXqoeHn0Z/lpHmTjg0aBzXDzyEJIcYr2R9wrYqbFmca+RyRHjEw8nnyosmdUZlR5uFnfYp+8Er1hn/JuSWn3dJrUQw/B0YF2ob/rFQr3Xkr81ompjMAAAAAAAAAAK4dEo/HM9E9AAAAAAAAAAAAAAAAAADOQ5+qf+vRfz7aeP5KABDilVWvxBgqDfdNdB+Xmk+wT80Tnz/ROdF9ALg2PLvk2ZD+rv7Eie4DAAAAAAAAAICzkU50AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwdUPwCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcYQS/AAAAAAAAAAAAAAAAAABwgVpKW3x/nffrp9545I2lE90LAAAAAAAAAAAAAODaJJ/oBgAAAAAAAAAAAAAAAAAAwP8d7dXtPvve2JdrqDDEWfosAU67UyWVSx3evt7GoNigloyFGRW5y3IbJ7pPABenu6Fb9dLKl3JT56R2rfzjypqJ7gcAAAAAAAAAAOBaRPALAAAAAAAAAAAAAAAAAAC4JLY8tyXn6LqjN7pdbrnGX9MTnhZe5a3ztjhsDoWpwxTYVNSUWX+0fkrVvqrDdz97986J7hcALoe+1j7lofcOhTYVNfkZ241e9iG7TK6Uu3UhOqs+Vd+fsTCjJyU/xTzRfQIAAAAAAAAAgIlH8AsAAAAAAAAAAAAAAAAAALhoO17aMblgbcFiuUpuveE7N2y4ftX11aNr+rv6lbte3pXb39XvOxE9AsDl9sVbX4TufmV3rMvhkvrp/YYS8hJ6vf28HQ6rQ9rb0quu3FMZUrq1NCx3WW7b0l8sbZzofgEAAAAAAAAAwMQi+AUAAAAAAAAAAAAAAAAAgBFKt5eGH3r3UF5PY0+UfcjurfBSDOlCdF0ZCzOK5nx7TsW51tYfqw8oeL8gy1BliBsyDfk67U6VSqMaCEsOq7vxhzfu16fo+0fWe9wesfOvOzPLdpblWHotAS6HS6VQKyw+wT7d6fPTT859eG75cG31geqQfa/vm9nT1BNps9i0cqXcptapzSEJIU13/v7OnQovhftyvZPzMXeaVQVrC24UQogbf3Dj+mkrptWPVecT7GNf9p/LDjttTsmV7RAALr+CtQXBO9bsiFdpVM6lv1hanbU4q290zZB5SHbwnYOh5g6zaiJ6BAAAAAAAAAAAVxeCXwAAAAAAAAAAAAAAAAAA+P+2/nlrdsHagsVCItxhKWHVvqG+vUOmIU1vS6++eEvx1PMFv5z47ERq7eHaKUGxQQ3BccEtMrnM1dfWF9xwrCHnze+8mfTgKw++HpYc9mX4ywc//2Bu5Z7K69U6tTEqM6pC6a20DhoHfXqbe/XVB6onDQe/VB+oDln7s7UPCokQ+mR9tU+wj9E+ZFeZu8z+tQW1U22Dtj0TGfxy+L3DqU6b08sv3K/lbKEvI8lVcs+V6AvAV1NfWK89+PbB8LaKNh/rgFWh0qicgdGBg9nfyO6YsnxKz7nWtp9q9yr8qDCk8USj30DXgMputcu8fb3tMTkxxhu+e0NLQGSAfWS9x+0RRz48Ely0sSjUZDCpHVaHzEvn5QiIDBjMWpzVOeXW/z2vuaTZe//r+yMMVQafQdOgUumldGkDtbaIjAjzN/79G41y5cR9twyaBmW7X9kdK4QQt/znLdVp89JMY9WpdWrX/O/Ob3M5XFe0PwAAAAAAAAAAcHUi+AUAAAAAAAAAAAAAAAAAACFEzeGaoIIPCm6WKWW2lX9Y+Y/E6xK7R84bqgw+59vjuruvK1n808UFKo3qtN/oP/LhkbjNz26+e9tfts1atWbV5uHx2kO1uSqNqv+xdY+94u3r7Ry5pre5Vz3858L1hZlul1u+4PsLPrx+1fXVI+uMBqOXt87bMZ47bvzvjdNtAzav8dQKIURYclj7rPtnVZ+vrrW8NUoIIfSp+obx7g3g6vTF21+E7HxpZ4JEKvHETYnr9Y/0tw72DSo6ajq0xz8+Hna+4JfSraWBJVtKwiLSI0zhk8L7ZXKZu7ux27tsZ1lo3dG6gIffeLjYP8L/y/CXTc9sii78qDDCJ9jHlnR9UrdKq3IN9AwoO051aMt3lwcOB780lzR7/+O7/5gsJELETYnr89X7Wu0Wu8xoMHqVbCkJW/TjRU0TGfxy4rMTgTaLTR6aFNp/ttCXkWQK2ZVoCwAAAAAAAAAAXOUIfgEAAAAAAAAAAAAAAAAAQAhx+N3DUzxujzRzUeb+0aEvQgihT9H3n2+PsOSwMWum3zG9fv+b+7vaq9rjR89JZVK3TC47I6wgICpgaPSYQq04I+DFT+9nPV9fw8p3lk+39lt9x1vf39VfPJ7gF6vZqhVCCJ8gnzPub2o3qba/uD1v9PiKp1fsG28fAK6Mtoo29c6/7oxXqpXO+9bcVxqRFnHa91BvS6/yfHtMuXVK15xvz2lTeClO+14r31Xuu+4X69J2vbwr8vbf3l43PF6ypSRU46+xf3/t90+oNCr3yDX93f1f/qxz0SdFwS6HS7p89fLKrMVZfSPrLH0WmdJbedras9nz6h69td867p+hDksJs2Qvye49X11LSYuPEEJEZ0efN/QFAAAAAAAAAABgGMEvAAAAAAAAAAAAAAAAAAAIIbobuiOEECJ9QXrtV93D4/aIXa/syqjYXZFl7jCHOG1OtcfjkQzPS6QS18j66Jzo0trDtdNeuPWF78Rkx5THToltnDRvUqsuRGcbWZd5c2Z5zcGa6Vuf33pn6bbSiujs6Prk65Obo7OjjRfS35M7nlzzVe/2VfV393uV7SjLHz1O8Atw9SlYWxDmcXkkeXfltYwOfRFCiIDIAPv59vCP8B+zJu2GNJN/pP9gY1Gj3+g5qUzqkcqkZwRg+QT5OEePKbwUZwS8aPw1rtFjZ3NswzH9QM+Aarz1qXNSu8YT/GLpsyiFEEIXrDvj/hajRbb/9f3ho8cX/WRR83j7AAAAAAAAAAAA/zcR/AIAAAAAAAAAAAAAAAAAgBDCYXN4CSFESEJI/1fd490n3l1Yc7BmulKjHAhNCq3T+Gv65Uq5UwghagtqM639Vt+R9Xc/c/f2Tc9sMp46cCqrcm/lzMq9lTO3Pr/VHZIQUnPzEzfviMmJ6RNCiIyFGW1ul/sfX/zzi1mt5a2TmoubJ3/xzy+Exl/TM+XWKfvnPTqv7GLufrG8dF4DQggx0D2gHT0XmRFpWl2w+unh59/f8Psf2Cw2nyvZH4DxMVQatEIIkTon9YJCpUbyuD3i6EdHg4o3F4f0NPZobIM2ucf9v5kuUvnpAS8pc1K6izcVh7244sWc5Pzk7rgpcea4aXH93r7ep4W5TF40uefE5yfC169en1q8ubgnbmqcKW5qnDkkIeS0oKzzeWLTE8e/6t2+qiHjkLxgbUHk6HGCXwAAAAAAAAAAAMEvAAAAAAAAAAAAAAAAAAAIIRQqhVUIITprO320gdqeC13f3djtXXOoZpo2UNv16FuPvqkN1NpHzv9p0Z/SR6+RKWSepT9fekQIcaS7sdu7YndFVOWeyvS2irZJa59cG/zDDT98RaVRuYQQInNRZmvmosy1NotNVrmvUl+9rzq++ovqafte37dcG6S1TLt9WsP5etz43xun2wZsXuO9U1hyWPus+2dVn68uIi2iuelEU1ZbZVucEGLfePcHcHWxDdrkQgjhp/e7oDCVkT59+tPYE5+d0Hv7eTuis6ONPkE+drlK7hZCiLIdZcEDPQOqkfXLnlpW7x/uby3ZWhJybP2xiGPrj0VIZBJPTHaMcdFPFjWEJoZahRAibmrcwD3P31Oy/439kTWHawKr9lUFCyGEr953aNaqWS1Tb5va/dVvfvE0/hq7EEL0d/crR88FxQbZVhesPjT8/MyiZ6ZY+ixn1AEAAAAAAAAAgK8fgl8AAAAAAAAAAAAAAAAAABBCBMUGtZo6TPqyHWUJ8dPjLzj4xVBp8BceIdGn6utGh74Yqgw+Q6Yhv3OeHxM0mP9AflX+A/lVa+5cc09PY09sbUFtcNoNae0j61QalSvr5qyWrJuzWnb+dWffgX8cuKVqb1XKeIJfyneWT7f2W33He6f+rv7i8QS/zLh7RuXRj44uMLYZIwvXF8ZOvW3qeXsBcPVReaucQghhNBhVap166ELXmzvN8pOfn9T7R/oPPvzGwyVqndo9cr5yb2XQ6DVSuVTMfXiuYe7Dcw3mTrO8tqBWV7ajLKj2cG3guz9+V/3Yh4+dUHgpPEIIkZCXMJCQl1DpsDokTSeatNVfVPud+OyE/vM/fJ6k8dc4Js2bZDpfj3te3aO39lvH/TPUYSlhluwl2b3nq4ucHNlfsbsipLGo0VcI0Tze/QEAAAAAAAAAwNcbwS8AAAAAAAAAAAAAAAAAAAghZnxzxrG6o3W5xVuK8yfdMKkucUZi98h5Q5XBR5+i7z/b+tCkUKMQQnTWdka5HC6JTCHzCCHEQO+AYsOvNizxuD3SkfU2i01WubdSn7U4q2XkuMPqkNoH7WohhFBpVA4hhDi5+WRk8vXJ7Wqd2jmydqB3QCOEEHKV3DGeOz6548k146m7ULoQnS3vzrztX7z1xdJtz2+7zT5k/3TmPTNrRtcNmgblo98DgKuHPlU/0FXfpa3cW+mnT9FfcPBLd0O3l8fjEbE5scbRoS+9Lb1Kc5dZda71uhCdM2dpTm/O0pzev3/r72mtZa2+bRVt3jE5MZaRdQovhSdhRkJ/woyE/sCoQOvmZzcnVu6tDBhP8MuxDcf0Az0D5+xjpNQ5qV3jCX7J/kZ2z96/743tONXhU7mn0jd1bup5ewEAAAAAAAAAACD4BQAAAAAAAAAAAAAAAAAAIUTijMTuvDvzNh9ee3jxuz9+99v6FH21b6hvr3XAqu5p6gmXe8ltj3/4+NtnWx8SH2KJSI8oay1rTX9+2fMP61P1dfZBu6qjpiNOKpe6fIJ9Ovq7+kOH6639VvnHv/74/m0vbOvzD/c3aIO0JqfdKW+vbo+z9FqCQpNCqxPyEnqEEOLwu4ev2/j0xtjA6MAmbaDWqPBS2I1txuDO2s5EuUpunXnPzONX4h2dy4LHFhQ77U7Z0XVHb9r+l+0rD759sDsoNqjFW+dtsVvtysG+QZ/Ous54l8OlDIgMaJrofgGcKW9lXnvJtpLQgvcLIlPyU4zhk8JPC3/pbelVBkQG2M+2PjA60CaEEK3lrTq30y2k8n/lPFn7rdKPf/NxgsflkYysd1gdksaiRm3idYmnhWo57U6JdcAqF0IIhVrhFkKI2sO1PlGZURalt/K0QJmB3gGFEEIoVIrTxs/miU1PXJbvS29fb9cN37mhfstzWxI//s3HyUtsS2om3zS5b3SdzWKTul1uyVh7AAAAAAAAAACArx+CXwAAAAAAAAAAAAAAAAAA+P9u+vFNJ/ST9F2H3z08o6uhK8ZQZUhRqBWDviG+nRk3ZhSdb/03//zNzz773WfGhqKGtNrDtVMVaoUlIi3i1JInl+x950fvrBhZ6+3n7chakrWrraItpqepJ9JQZUiRKWQ2jb+mb/qd0zfP/978E8O1ObfkFJbtKLP2NPWE9zT3RHncHqmXj1d/fF584bxH5hVEpEeYLsf7uFCLfrKoKGtJVs3+1/dPaatsi2sta011OVxKqVzq8NZ5m6Kzokszbsooy70ll+AX4CoUPil8aP735tftXLMz4bVvv5YVNzWu1z/C3zpkHpJ3nOrQKtVK18NvPlx2tvW+Yb6OpJlJ3acOngpas3JNVmxOrNFmscmbTjb5yhQyT2BMoKWnsUczXG+32qXv/OidDF2ozhoSH2LxDfW1Oe1OSeOJRj9jm1EdOyW2Lzz1X+EzX7z1RXhLaYuvPlXf7xvma1Wqla7uxm7vphNN/iqNyjn9zuntV+IdnUveyrwup90p3f3y7rj1v1yfuuvlXUPhk8L7vf28HY4hh7S/u1/VfLLZz2FzSPWpevNE9wsAAAAAAAAAwP9j506jhqvrco9fF4OQCB5Rj5HDA6iIKA54NDxOqSWpOaQWWk6ZZWVmyjFTMzXLnOchh0yTMiszNedZUyJzNiRE4XEODXJ4EhD4nRf36pzKHFDY+76f5/N5v9e61n6z19rr//+yvs7M2hsAAAAAAAAAAAD4Dg449ICX3OeP77N97R3A1vDcuz932+dP/Pzd1t5xQdv30vuefMxrjjlt7R07u08c/4mLvefY91z2cx/73H5n/9vZu++9797nXPIKl9xxrdtc67QjbnvEvyTJl0790l7POvpZRxx6k0O/ePTjjz753589a8dZu735WW++3EnvOumSO07fsdfe++39jYOve/Dpt7j/LT790mNeepXPfexz+z3i+EcclyTnnH1O3/GCdxyw/YPbL376p0+/6JlfOXPPPffe89z9LrPfmYcfdfhpR975yNP22GuPSZIT3nrCxT/yho9c+gsnfeFiO87YcZE5d7rP/vucve2Ibf96o3ve6HOX2naps9Z5W9/s9M+cfpHj/vS4H/zUBz918S9/4ct7n33m2bvvcZE9ztv3UvuedcChB3z1Gj9+jS8dcsNDhF8W8KRbP+l/fvWLX73S2jsAAAAAAOBbEX4BAAAAAAAAAADYAoRfgPND+AVA+AUAAAAAgM1vt7UHAAAAAAAAAAAAAAAAAAAAAADsaoRfAAAAAAAAAAAAAAAAAAAAAAAWJvwCAAAAAAAAAAAAAAAAAAAAALAw4RcAAAAAAAAAAAAAAAAAAAAAgIUJvwAAAAAAAAAAAAAAAAAAAAAALEz4BQAAAAAAAAAAAAAAAAAAAABgYcIvAAAAAAAAAAAAAAAAAAAAAAALE34BAAAAAAAAAAAAAAAAAAAAAFiY8AsAAAAAAAAAAAAAAAAAAAAAwMKEXwAAAAAAAAAAAAAAAAAAAAAAFib8AgAAAAAAAAAAAAAAAAAAAACwMOEXAAAAAAAAAAAAAAAAAAAAAICFCb8AAAAAAAAAAAAAAAAAAAAAACxM+AUAAAAAAAAAAAAAAAAAAAAAYGHCLwAAAAAAAAAAAAAAAAAAAAAACxN+AQAAAAAAAAAAAAAAAAAAAABYmPALAAAAAAAAAAAAAAAAAAAAAMDChF8AAAAAAAAAAAAAAAAAAAAAABYm/AIAAAAAAAAAAAAAAAAAAAAAsDDhFwAAAAAAAAAAAAAAAAAAAACAhQm/AAAAAAAAAAAAAAAAAAAAAAAsTPgFAAAAAAAAAAAAAAAAAAAAAGBhwi8AAAAAAAAAAAAAAAAAAAAAAAsTfgEAAAAAAAAAAAAAAAAAAAAAWJjwCwAAAAAAAAAAAAAAAAAAAADAwoRfAAAAAAAAAAAAAAAAAAAAAAAWJvwCAAAAAAAAAAAAAAAAAAAAALAw4RcAAAAAAAAAAAAAAAAAAAAAgIUJvwAAAAAAAAAAAAAAAAAAAAAALEz4BQAAAAAAAAAAAAAAAAAAAABgYcIvAAAAAAAAAAAAAAAAAAAAAAALE34BAAAAAAAAAAAAAAAAAAAAAFiY8AsAAAAAAAAAAAAAAAAAAAAAwMKEXwAAAAAAAAAAAAAAAAAAAAAAFib8AgAAAAAAAAAAAAAAAAAAAACwMOEXAAAAAAAAAAAAAAAAAAAAAICFCb8AAAAAAAAAAAAAAAAAAAAAACxM+AUAAAAAAAAAAAAAAAAAAAAAYGHCLwAAAAAAAAAAAAAAAAAAAAAACxN+AQAAAAAAAAAAAAAAAAAAAABYmPALAAAAAAAAAAAAAAAAAAAAAMDChF8AAAAAAAAAAAAAAAAAAAAAABYm/AIAAAAAAAAAAAAAAAAAAAAAsDDhFwAAAAAAAAAAAAAAAAAAAACAhQm/AAAAAAAAAAAAAAAAAAAAAAAsTPgFAAAAAAAAAAAAAAAAAAAAAGBhwi8AAAAAAAAAAAAAAAAAAAAAAAsTfgEAAAAAAAAAAAAAAAAAAAAAWJjwCwAAAAAAAAAAAAAAAAAAAADAwoRfAAAAAAAAAAAAAAAAAAAAAAAWJvwCAAAAAAAAAAAAAAAAAAAAALAw4RcAAAAAAAAAAAAAAAAAAAAAgIUJvwAAAAAAAAAAAAAAAAAAAAAALEz4BQAAAAAAAAAAAAAAAAAAAABgYcIvAAAAAAAAAAAAAAAAAAAAAAALE34BAAAAAAAAAAAAAAAAAAAAAFiY8AsAAAAAAAAAAAAAAAAAAAAAwMKEXwAAAAAAAAAAAAAAAAAAAAAAFib8AgAAAAAAAAAAAAAAAAAAAACwMOEXAAAAAAAAAAAAAAAAAAAAAICFCb8AAAAAAAAAAAAAAAAAAAAAACxM+AUAAAAAAAAAAAAAAAAAAAAAYGHCLwAAAAAAAAAAAAAAAAAAAAAACxN+AQAAAAAAAAAAAAAAAAAAAABYmPALAAAAAAAAAAAAAAAAAAAAAMBKrncrAAAgAElEQVTChF8AAAAAAAAAAAAAAAAAAAAAABYm/AIAAAAAAAAAAAAAAAAAAAAAsDDhFwAAAAAAAAAAAAAAAAAAAACAhQm/AAAAAAAAAAAAAAAAAAAAAAAsTPgFAAAAAAAAAAAAAAAAAAAAAGBhwi8AAAAAAAAAAAAAAAAAAAAAAAsTfgEAAAAAAAAAAAAAAAAAAAAAWJjwCwAAAAAAAAAAAAAAAAAAAADAwoRfAAAAAAAAAAAAAAAAAAAAAAAWJvwCAAAAAAAAAAAAAAAAAAAAALAw4RcAAAAAAAAAAAAAAAAAAAAAgIUJvwAAAAAAAAAAAAAAAAAAAAAALEz4BQAAAAAAAAAAAAAAAAAAAABgYcIvAAAAAAAAAAAAAAAAAAAAAAALE34BAAAAAAAAAAAAAAAAAAAAAFiY8AsAAAAAAAAAAAAAAAAAAAAAwMKEXwAAAAAAAAAAAAAAAAAAAAAAFib8AgAAAAAAAAAAAAAAAAAAAACwMOEXAAAAAAAAAAAAAAAAAAAAAICFCb8AAAAAAAAAAAAAAAAAAAAAACxM+AUAAAAAAAAAAAAAAAAAAAAAYGHCLwAAAAAAAAAAAAAAAAAAAAAACxN+AQAAAAAAAAAAAAAAAAAAAABYmPALAAAAAAAAAAAAAAAAAAAAAMDChF8AAAAAAAAAAAAAAAAAAAAAABYm/AIAAAAAAAAAAAAAAAAAAAAAsDDhFwAAAAAAAAAAAAAAAAAAAACAhQm/AAAAAAAAAAAAAAAAAAAAAAAsTPgFAAAAAAAAAAAAAAAAAAAAAGBhwi8AAAAAAAAAAAAAAAAAAAAAAAsTfgEAAAAAAAAAAAAAAAAAAAAAWJjwCwAAAAAAAAAAAAAAAAAAAADAwoRfAAAAAAAAAAAAAAAAAAAAAAAWJvwCAAAAAAAAAAAAAAAAAAAAALAw4RcAAAAAAAAAAAAAAAAAAAAAgIUJvwAAAAAAAAAAAAAAAAAAAAAALEz4BQAAAAAAAAAAAAAAAAAAAABgYcIvAAAAAAAAAAAAAAAAAAAAAAALE34BAAAAAAAAAAAAAAAAAAAAAFiY8AsAAAAAAAAAAAAAAAAAAAAAwMKEXwAAAAAAAAAAAAAAAAAAAAAAFib8AgAAAAAAAAAAAAAAAAAAAACwMOEXAAAAAAAAAAAAAAAAAAAAAICFCb8AAAAAAAAAAAAAAAAAAAAAACxM+AUAAAAAAAAAAAAAAAAAAAAAYGGdmbU3AAAAAAAAAAAA8B3sf7n9H7PXxfa6/No7WN9ZXztr/x1n7Dh0r332+uw++++zfe09bE5nfe2sT5/+mdMfuvaOC9o+l9jnrbvtsdsV1t7B5jMzOfMrZx6w+56779hz7z2/2t3qkDQ575zzPrXjjB03W3sHAAAAAAB8K8IvAAAAAAAAAAAAsMm13TPJHZLcP8llkzwryXOT/HCSz8zMCSvOA1hV2/smeV6SI5M8IMlNkrw4yTNn5pNrbgMAAAAAAPh2dlt7AAAAAAAAAAAAAPDfa3vptg9LckqSX07yxCRXnJnHz8yXk9wpyQ3X3AiwCfxWkkvNzLtm5g5JrpPknCR/3/aVbW/etutOBAAAAAAA+GbCLwAAAAAAAAAAALDJtL122z9KclKSg5LcemZ+ZGb+ambOWXkewKY2M6fOzG8k2ZbkNUmeluSjbe/Tdp911wEAAAAAAPx/wi8AAAAAAAAAAACwCbTdo+1PtX1Xklcl+ackV56Ze8/Mh1aeB7DlzMyOmXleksOT3C/JLZNsb/uEtgeuuQ0AAAAAACARfgEAAAAAAAAAAIBVtb1U24ckOSXJryV5epKDZ+axM/OlddcBbH2z4a0zc/sk18vGGer3tX1F25u27coTAQAAAACAXZTwCwAAAAAAAAAAAKyg7TXbviDJx5MckuR2M3OjmfmLmfnGyvMAdkoz88mZOSbJtiRvTPLsJB9qe++2F113HQAAAAAAsKsRfgEAAAAAAAAAAICFtN2j7R3avj3Ja5OckuQqM/NzM/P+ddcB7Dpm5msz85wkhyU5Jsntkmxv+9i2V1h3HQAAAAAAsKsQfgEAAAAAAAAAAIALWdv92/5Gkk9kIzDwnCQHzszvzcxp664D2HXNhjfNzG2SXD/JXkk+2PYv2964bVeeCAAAAAAA7MSEXwAAAAAAAAAAAOBC0vbqbZ+bjeDL1ZPcaWZuMDMvm5lvrDwPgP9gZk6emQck2Zbk7Umen+QDbe/V9gdWHQcAAAAAAOyUhF8AAAAAAAAAAADgAtR297a3a/uWJG9K8tkkV52Zu8/Me1eeB8B3MDNfnZlnJrlqkt9Mcqck29s+pu3l1l0HAAAAAADsTIRfAAAAAAAAAAAA4ALQ9hJtj0lycpKHJPnDJNtm5ndm5gvrrgPg/JqZ82bm9TNzqyQ3THKxJB9u+7K2N2jblScCAAAAAABbnPALAAAAAAAAAAAAfB/aHtb2OUk+meTaSe48M0fOzJ/OzNkrzwPgAjAzJ83MryU5MMm7k7woyT+0vUfbvdfcBgAAAAAAbF3CLwAAAAAAAAAAAHA+td2t7U+0fWOStyY5LclhM3PXmTl+5XkAXEhm5isz8/QkV0ny8CQ/k2R720e3/aF11wEAAAAAAFuN8AsAAAAAAAAAAAB8l9pevO2vJzkpySOTvCTJtpl5xMx8ftVxACxmZs6bmdfOzFFJfiTJ/kn+se2ftj2ybdddCAAAAAAAbAXCLwAAAAAAAAAAAPAdtD207TOTnJLkh5PcLcl1Z+YlM3PWuusAWNPMfGxm7pvkoCTvTfInSY5ve9e2e627DgAAAAAA2MyEXwAAAAAAAAAAAOC/0Xa3trdq+/ok70hyRpLDZ+YuM3PczMzKEwHYRGbmX2fmKUkOSfLoJPdIcmrbR7b9wXXXAQAAAAAAm5HwCwAAAAAAAAAAAPwHbfdre78kJyb53SR/lmTbzDx8Zj677joANruZOXdmXj0zP5bkR5NcJsnH2h7b9rorzwMAAAAAADYR4RcAAAAAAAAAAABI0vbKbZ+W5NQkN0pyryTXmZkXzcyZq44DYEuamX+cmV9OcnCSDyb5i7bHtb1L24usPA8AAAAAAFiZ8AsAAAAAAAAAAAC7rLa7tT2q7WuSvDvJjiTXnJmfnpm/nZlZeSIAO4GZOWNmnpjkikkel+QXkpza9uFtL7PuOgAAAAAAYC3CLwAAAAAAAAAAAOxy2u7b9r5JTkjy+CQvT7JtZh46M59edx0AO6uZOXdm/npmbpbkqCSXT3Ji2xe3vc7K8wAAAAAAgIUJvwAAAAAAAAAAALDLaHvFtk9JcmqSmyX5xSTXmpkXzszXVx0HwC5lZj4yM7+Y5EpJ/jHJX7V9d9uj2+658jwAAAAAAGABwi8AAAAAAAAAAADs1LrhR9u+KsnxSc5OcsTM3HFm3jkzs/JEAHZhM/MvM/P4JFdM8uQkv5LklLYPbXvpddcBAAAAAAAXJuEXAAAAAAAAAAAAdkpt92n7S0k+muQpSV6d5Aoz8+CZ2b7uOgD4z2bmnJl5+czcJMlPZCMEc1LbF7a91srzAAAAAACAC4HwCwAAAAAAAAAAADuVtge1fWKS7UmOSvKrSa4xM8+fmX9bdx0AfGcz88GZ+fkkV07y8SSvbvvOtndqu8fK8wAAAAAAgAuI8AsAAAAAAAAAAABbXjfcrO1fJ3lvkkly3Zn5yZl528zMyhMB4HybmS/NzO8nOTjJM5LcP8kn2/5m20uuuw4AAAAAAPh+Cb8AAAAAAAAAAACwZbW9aNtfSPLhJM9M8vok22bmQTNzyrrrAOCCMTPfmJm/mJkbJbl9kkOTnNz2+W2vsfI8AAAAAADgeyT8AgAAAAAAAAAAwJbTdlvbxyXZnuQ2SR6Q5Goz8wczs2PddQBw4ZmZ98/MPZNcJRvfwde1fVvbn2y7+7rrAAAAAACA80P4BQAAAAAAAAAAgC2hG27S9uVJ3p9kzyRHzsxtZ+bNMzMrTwSAxczMaTPzu0kOSvLcJA9K8om2D2q7/7rrAAAAAACA74bwCwAAAAAAAAAAAJta2x9oe68kH8jGxfa3JNk2Mw+cmU+suw4A1jUzZ8/Mn83M/07yU0kOz0YA5rltr77yPAAAAAAA4NsQfgEAAAAAAAAAAGBTanv5to9Jsj3JHZM8OMlhM/PsmfnauusAYPOZmffOzN2TXDXJZ5O8qe1b2t627e4rzwMAAAAAAP4L4RcAAAAAAAAAAAA2jW64Yds/T/KhJPskucHM3Hpm3jAz5608EQA2vZn5wsz8TpJtSV6Y5LeSfLztA9v+j3XXAQAAAAAA/074BQAAAAAAAAAAgNW13bvtPZO8LxsX1N+V5MCZuf/MfHzVcQCwRc3M2TPzJzNzvSR3SXKdJKe0fXbbq648DwAAAAAAdnnCLwAAAAAAAAAAAKym7WXbPjrJ9iRHJ3lYkkNn5hkz85V11wHAzmNmjp+Zn01ytSRfTPK2tm9se+u2zpUDAAAAAMAK/KAHAAAAAAAAAABgUd1w/bYvTfKRJJdIcuOZueXMvG5mzlt5IgDstGbmczPziCTbkrwkyaOSnNT2/m0vvu46AAAAAADYtQi/AAAAAAAAAAAAsIi2e7W9W5K/T3JskuOTHDQzvzoz/7TuOgDYtczMWTPzkiTXTXL3JNdPckrbZ7S9yrrrAAAAAABg1yD8AgAAAAAAAAAAwIWq7QFtH5Vke5K7JXlUkkNm5qkz8+V11wHArm02vGdm7pzkGkm+nOSdbV/X9pZtnTkHAAAAAIALiZ/wAAAAAAAAAAAAXCjaXq/tsUlOSHLpJDebmVvMzN/MzLkrzwMA/ouZ+czM/FaSbUleluQxSU5se7+2+667DgAAAAAAdj7CLwAAAAAAAAAAAFxg2l6k7c+0/btsXBh/f5KDZ+ZXZuaElecBAN+FmTlzZl6U5Igk90pyoySntn1q2yutOg4AAAAAAHYiwi8AAAAAAAAAAAB839pepu1vJzk1yc8n+f0kV5qZJ8/MGauOAwC+J7Phb2fmp5NcO8nXkxzX9m/a3qJtV54IAAAAAABbmvALAAAAAAAAAAAA37O2/6vtHyc5Mcllk9xiZm4+M6+cmXNXngcAXEBm5lMz85AkV0jyiiRPSHJC219pe7F11wEAAAAAwNYk/AIAAAAAAAAAAMD50nbPtke3fU+Slyf5SJIrzsx9ZuajK88DAC5EM/P1mfnDJNdK8ktJbp5ke9sntz143XUAAAAAALC1CL8AAAAAAAAAAADwXWl76bYPS3JKNi56PyEbwZcnzMzp664DAJY0G94xM3dMckSSbyQ5vu0r2968bVeeCAAAAAAAm57wCwAAAAAAAAAAAN9W22u3/aMkJyU5KMmtZ+amM/OKmTln5XkAwMpmZvvMPDjJtiSvSfK0JB9te5+2+6y7DgAAAAAANi/hFwAAAAAAAAAAAL5J2z3a/lTbdyV5VZJ/SnLlmbn3zHxo5XkAwCY0M/82M89LcniS+yW5ZZLtbZ/Q9sA1twEAAAAAwGYk/AIAAAAAAAAAAMD/0/ZSbR+S5JRsXNh+WpKDZuaxM/OlddcBAFvBbHjrzNw+yfWSNMn72r6i7U3bduWJAAAAAACwKQi/AAAAAAAAAAAAkLbXbPuCJB9PcuUkt52ZG8/MX87MOSvPAwC2qJn55Mz8nyTbkrwhybOSfKjtvdtedN11AAAAAACwLuEXAAAAAAAAAACAXVTbPdreoe3bk7w2ySlJDpmZe83MB9ZdBwDsTGbmazPzB0muluSBSW6XZHvbx7a9wrrrAAAAAABgHcIvAAAAAAAAAAAAu5i2+7f9jSSfSHJMkuckOXBmfm9mvrjuOgBgZzYb3jwzt0ly/SR7JflA279se+O2XXkiAAAAAAAsRvgFAAAAAAAAAABgF9H28LbPy0bw5WpJ7jgzN5iZl83MN1aeBwDsYmbm5Jl5QJIDk7wtyfOyEYG5V9sfWHUcAAAAAAAsQPgFAAAAAAAAAABgJ9Z297a3a/uWJG9I8ukkh87MPWbmH1aeBwCQmfnqzDwryWFJHpzkjkm2t31M28utuw4AAAAAAC48wi8AAAAAAAAAAAA7obaXaHtMkpOTPCTJC5IcODOPnpl/XncdAMA3m5nzZuYNM3PrJDdMsk+SD7d9WdsbtO3KEwEAAAAA4AIl/AIAAAAAAAAAALATaXtY2+ck+WSSaye588wcOTMvnZmzV54HAPBdmZmTZub+SQ5M8u4kL0ryD23v0XbvNbcBAAAAAMAFRfgFAAAAAAAAAABgi2u7e9vbtH1Tkrck+eckh83MXWfm+JXnAQB8z2bmKzPz9CRXSfLwJHdJsr3to9v+0LrrAAAAAADg+yP8AgAAAAAAAAAAsEW1vXjbX09yUpLfTvLiJAfOzCNn5vPrrgMAuODMzHkz89qZ+fEkN0lyiSQfbfvSttdv25UnAgAAAADA+Sb8AgAAAAAAAAAAsMW0PbTtM5OckuSHk/xskuvNzLEzc9a66wAALlwzc+LM/GqSg5Icn+TYJMe3vWvbvdZdBwAAAAAA3z3hFwAAAAAAAAAAgC2g7W5tb9X29UnekeSMJIfPzF1m5u9mZlaeCACwqJn58sw8NckhSR6d5B5JTm37yLY/uO46AAAAAAD4zoRfAAAAAAAAAAAANrG2+7W9X5ITk/xukpcm2TYzD5+Zz667DgBgfTNz7sy8emZ+LMnNk1wmycfaHtv2uivPAwAAAACAb0n4BQAAAAAAAAAAYBNqe+W2T0tyapIbJvm5JNeZmRfPzJmrjgMA2KRm5oSZ+eUkByf5QJI/b3tc27u0vcjK8wAAAAAA4D8RfgEAAAAAAAAAANgk2u7W9qi2r0ny7iRfS3KNmTl6Zt49M7PyRACALWFmzpiZJyW5UpLHJrl3klPbPrztZdZdBwAAAAAAG4RfAAAAAAAAAAAAVtZ237b3TXJCkscleXmSbTPzsJn5zLrrAAC2rpk5d2ZeOTM3T3JUkssnObHti9teZ+V5AAAAAADs4oRfAAAAAID/y96dhl1b1+UeP0+BEDBRt8NhZs+DilM4YBoapqFu2M5DlDmVaSqZKGkYaallWqhpDimoaallzkO6UXZqYiSUOCAaggKPZpnmlILhwK8XNy9sH5YQz7Oue/h8Xt3XOu4X31frWNd1rP+5AAAAAFhI2+u2fU6S85IckuThSQ6cmZfNzDcWjQMA2GRm5qMz8/Ak10vysSRvbHty2/u23WPhPAAAAAAAtiDDLwAAAAAAAAAAACvUNXdq+9YkpyS5MGtjL4fPzEkzMwsnAgBsajPzxZl5RpLrJvmDJL+c5Ny2T2h7tWXrAAAAAADYSgy/AAAAAAAAAAAArEDbfdoekeSMJM9J8tYk22bmmJn59LJ1AABbz8x8e2beODM/leSuSa6T5Ky2L2t74LJ1AAAAAABsBYZfAAAAAAAAAAAAdqG2+7V9VpIdSQ5L8qgkN52Zl87MBcvWAQCQJDPzkZn5pST7JzkryVvbntT28La7L5wHAAAAAMAmZfgFAAAAAAAAAABgJ+uaO7R9c5K/TzJJbjUz956Z98zMLJwIAMD3MDP/OjO/n+Q6SZ6f5DFJzml7TNv/tWwdAAAAAACbjeEXAAAAAAAAAACAnaTt3m0fluT0rB0UPiHJtpk5embOXbYOAIBLama+NTOvm5mfTHKvJDdI8sm2L2l704XzAAAAAADYJAy/AAAAAAAAAAAAXEZtt7U9NsmOJHdLclSSA2bm+Jk5f9k6AAAui5n54Mz8YtbGX85LckLb97S9d9vdlq0DAAAAAGAjM/wCAAAAAAAAAADwP9A1t2/7hiQfTLJHkoNm5p4z866ZmYUTAQDYiWbm8zPztCTbkxyX5NeSfKrt0W2vsmgcAAAAAAAbkuEXAAAAAAAAAACAS6HtXm0fmuTDSY5P8u4k22bmsTNzzrJ1AADsajPzrZl5zcwcnOTwJDfJ2gDM8W0PWDgPAAAAAIANxPALAAAAAAAAAADAJdD22m2fnmRHknsnOTrJjWfmj2bm68vWAQCwhJn5wMz8fJIbJflskhPbvqvtPdrutnAeAAAAAADrnOEXAAAAAAAAAACA/0LX3Lbta5N8OMneSQ6embvNzIkzc9HCiQAArAMz87mZ+Z0k25P8cZInJDm77WPbXmnROAAAAAAA1i3DLwAAAAAAAAAAAP+ftpdv++AkpyV5WZKTkmyfmaNm5uxF4wAAWLdm5psz8+czc+sk90tyiyTntH1h2xstnAcAAAAAwDpj+AUAAAAAAAAAAOBiba/V9neT7Ehy3yRPTHLDmXnBzHxt2ToAADaSmTl1Zh6Y5EeTfCHJe9qe2PZubX2XHwAAAAAAwy8AAAAAAAAAAMDW1jW3afsXST6aZN8kt5uZO8/MCTNz0cKJAABsYDPzzzPz5CTbkrwyyVOSnNX2qLb7LhoHAAAAAMCiDL8AAAAAAAAAAABbUts92z4oyd9l7QDu+5PsNzNHzswnlq0DAGCzmZkLZ+aVSW6V5EFJDkpybtvnt73BsnUAAAAAACzB8AsAAAAAAAAAALCltL1m299OsiPJA5M8Jcn1Z+a5M/PVReMAANj0Zs37Z+Z+SW6S5CtJTmp7Qts7t/U9fwAAAACALcIDYQAAAAAAAAAAYEtoe1DbP0vy8SRXS3KHmTlsZt4+MxctnAcAwBY0M5+dmd9Ksi3Ja5I8LcmZbY9se8Vl6wAAAAAA2NUMvwAAAAAAAAAAAJtW2x9oe/+2pyZ5dZLTkuw3M4+cmY8vnAcAAEmSmfn3mfmTJD+W5CFJfjLJeW2f23b/ReMAAAAAANhlDL8AAAAAAAAAAACbTttrtH1SkvOydnD2aUn2n5lnz8xXFo0DAID/wqz5m5n52SQ3S3J+kpPbvq3toW27cCIAAAAAADuR4RcAAAAAAAAAAGDTaHvLtq9IcmaSH0py6MzcaWbeOjPfWTgPAAAusZn5zMw8Icm2JG9M8swkH2/7yLZXWLYOAAAAAICdwfALAAAAAAAAAACwobXdo+192/5tktcn+WiS687METNzxsJ5AABwmczMN2bmZUlunuQRSe6YZEfbZ7e9zrJ1AAAAAABcFoZfAAAAAAAAAACADant1do+Mcm5SY5I8swk15uZZ87Ml5atAwCAnWvWnDQzP53kFkm+leTUtm9pe6e2XTgRAAAAAIBLyfALAAAAAAAAAACwobQ9sO3Lk5yVZHuSu8zMITPzppn59rJ1AACw683Mjpn59STbkrwtyXOSnNH2EW33WbYOAAAAAIBLyvALAAAAAAAAAACw7rXdve3PtH1fkrckOTPJ9WbmYTNz+sJ5AACwiJm5YGZekuSmSR6V5P8k2dH2mW23L9kGAAAAAMD3Z/gFAAAAAAAAAABYt9pete1vJDk3yZFJ/jDJdWbm2Jn54rJ1AACwPsya98zMvZPc6uKXP9D2TW0Padsl+wAAAAAA+N4MvwAAAAAAAAAAAOtO25u1fWmSs5Psn+QeM3O7mXnDzHx74TwAAFi3ZubcmTk6ybYk70zyR0lOb/uwtnsvWwcAAAAAwHcz/AIAAAAAAAAAAKwLbXdve5+2f53k7UnOSXL9mXnIzHxo2ToAANhYZub8mTkuyY8m+dUkd0+yo+2xbX9k2ToAAAAAABLDLwAAAAAAAAAAwMLaXqXt45N8Ksljk7wwyX4z8/SZ+cKydQAAsLHNmr+amXskuXWSPZJ8qO3r296ubRdOBAAAAADYsgy/AAAAAAAAAAAAi2h7k7Yvztrgy42T3Gdmbjszr52Zby2cBwAAm87MfGpmHptkW5J3J3lx1kZgHtJ2r2XrAAAAAAC2HsMvAAAAAAAAAADAyrTdre09274ryTuTfCbJDWfmwTNz2sJ5AACwJczM12fmhVkbYPz1JD+dZEfbp7f94WXrAAAAAAC2DsMvAAAAAAAAAADALtf2ym0fl+STSY5J8tIk22fmqTPzL8vWAQDA1jQzF83MO2fmrkkOTrJPktPbvqbtwW27cCIAAAAAwKZm+AUAAAAAAAAAANhl2t647YuSnJPk5knuOzO3mZlXz8w3F84DAAAuNjNnz8xjkmxP8jdJXp7kA21/oe3lF40DAAAAANikDL8AAAAAAAAAAAA7Vdvd2t697f9L8q4kn0tyo5l50Mz83cJ5AADAf2Nm/m1mnp/khkl+M8nPJdnR9qltf2jZOgAAAACAzcXwCwAAAAAAAAAAsFO03bftUUnOSvKkJH+aZPvM/PbMfG7ZOgAA4NKYmYtm5oSZuXOS2yW5cpIz2r667W3aduFEAAAAAIANz/ALAAAAAAAAAABwmbS9YdsXJDk3yY8neUCSH5+ZV83MhcvWAQAAl9XMfGJmHpVkvySnJnlVklPbPrDtnsvWAQAAAABsXIZfAAAAAAAAAACAS63t5drepe07krw3yZeSHDAz95+ZU2ZmFk4EAAB2spn56sz8YZLrJ/mdJD+f5Ly2T2l7zWXrAAAAAAA2HsMvAAAAAAAAAADAJdb2im0fneQTSZ6a5M+TbJuZJ83MPy1bBwAArMLMfGdm3jYzhya5Y5KrJ/l421e1/fGF8wAAAAAANgzDLwAAAAAAAAAAwPfVdv+2z0tyXpKDkzw4yS1n5hUz8+9LtgEAAMuZmY/PzCOTXCfJB5O8pu0pbe/f9gcWzgMAAAAAWNcMvwAAAAAAAAAAAN9T28u1Pazt25OcnORrSW46M/edmZNnZhZOBAAA1omZ+fLMPDvJ9ZL8XpKHJjmv7ZPaXmPZOgAAAACA9cnwCwAAAAAAAAAA8J+0/cG2v5Lk40mOTfL6JNtm5okz84/L1gEAAOvZzHxnZt4yM3dMcmiSayU5s+2ftv2xhfMAAAAAANYVwy8AAAAAAAAAAECSpO112z4nyXlJfirJw5IcODMvn5lvLNkGAABsPDNzxsw8Isl1k5yR5I1tT25737Z7LJwHAAAAALA4wy8AAAAAAAAAALCFdUbSi4QAACAASURBVM3/bvuXSU5JcmHWxl5+ZmbeNzOzcCIAALDBzcyXZuaZWRuAeVaSI5Kc2/aJba+2bB0AAAAAwHIMvwAAAAAAAAAAwBbUdp+2RyT5WJI/SPKWJNtm5piZ+fSydQAAwGY0M9+emTfNzCFJ7ppkvyRntX1Z2wMXzgMAAAAAWDnDLwAAAAAAAAAAsIW03a/ts5LsSHJokkcmudnMvHRmLli2DgAA2Cpm5iMz80tJ9k9yVpK3tj2p7eFtd184DwAAAABgJQy/AAAAAAAAAADAJtc1d2j75iR/n2SS3HJm7jMzfz0zs3AiAACwRc3Mv87M7yfZL8nzkjw6yTltj2l71WXrAAAAAAB2LcMvAAAAAAAAAACwSbXdu+3Dk3w0yfOTnJBk28wcPTPnLRoHAADwXWbm2zPz+pm5XZJ7Jrl+krPbvrTtTRfOAwAAAADYJQy/AAAAAAAAAADAJtN2W9tjk+xIctckj0lywMwcPzPnL1sHAADw35uZD83MQ7I2/nJukhPa/nXbe7fdfeE8AAAAAICdxvALAAAAAAAAAABsAl1z+7ZvSPLBJLsnOWhm7jkz75qZWTgRAADgUpmZL8zM05JsT/KiJL+W5JNtj257lUXjAAAAAAB2AsMvAAAAAAAAAACwgbXdq+1Dk3w4yXFJ/irJtpl53Mycs2wdAADAZTcz35qZ18zMwUkOT3JAkk+1Pb7tAQvnAQAAAAD8jxl+AQAAAAAAAACADajttdv+XpIdSe6V5OgkPzozL5qZry9bBwAAsGvMzAdm5heS3DDJPyY5se272t6z7W4L5wEAAAAAXCqGXwAAAAAAAAAAYIPomtu2fV2SjyTZK8lPzMzdZ+bEmblo4UQAAICVmJl/mZmnJtme5KVJfiPJJ9s+ru2VFo0DAAAAALiEDL8AAAAAAAAAAMA61/bybR+c5LQkf5zkvUm2zcxRM/PJReMAAAAWNDPfnJlXz8ytk/xckgOTnNv2hW1vtHAeAAAAAMB/y/ALAAAAAAAAAACsU22v1fZ3k+xI8rNJnpDkRjPzgpn52rJ1AAAA68vMnDozD0xy4ySfT/Lutie2vVtb5ycAAAAAgHXHg0sAAAAAAAAAAFhHuuYn2v5Fko8m2TfJ7WbmLjPzjpm5aOFEAACAdW1m/nlmnpJke5JXJnlKkrPaHtV23wXTAAAAAAD+E8MvAAAAAAAAAACwDrTds+3PJ/n7JK9I8v4k+83MkTPziWXrAAAANp6ZuXBmXpnkVkkelOSgJOe2fUHbGyxbBwAAAABg+AUAAAAAAAAAABbV9pptfzvJjiQPSPLkJNefmefOzFeXrQMAANj4Zs37Z+Z+SW6S5MtJTmp7Qts7t3W2AgAAAABYhIeTAAAAAAAAAACwgLYHtf2zJB9LctUkh8zMYTPz9pm5aOE8AACATWlmPjszv5VkW5K/SPK0JGe2PbLtFZetAwAAAAC2GsMvAAAAAAAAAACwIm1/oO0D2p6a5NVJTktynZn5lZn5h4XzAAAAtoyZ+feZ+dMkP5bkF5P8ZJLz2j637f7L1gEAAAAAW4XhFwAAAAAAAAAA2MXaXqPtk5PsyNqBwqcl2X9mnj0zX1m2DgAAYOuaNSfPzM8muVmS85Oc3PbtbQ9r69wFAAAAALDLeAAJAAAAAAAAAAC7SNtbtn1FkjOTXDPJnWbmTjPz1pn5zsJ5AAAAfJeZ+czMPCHJtiRvSHJsko+1fWTbKyxbBwAAAABsRoZfAAAAAAAAAABgJ2q7R9ufa/u3SV6f5PQk152ZI2bmYwvnAQAA8H3MzDdm5mVJDkzyiCR3SLKj7bPbXnfZOgAAAABgMzH8AgAAAAAAAAAAO0Hbq7f9zSTnZe1g4DOyNvjyrJn50qJxAAAAXGqz5qSZOTzJLZJ8M8kpbd/a9k5tu3AiAAAAALDBGX4BAAAAAAAAAIDLoO0t2v5Jkk8k2ZbkzjNzyMy8eWa+s2wdAAAAO8PM7JiZY7J23/eXSZ6T5Iy2R7TdZ9k6AAAAAGCjMvwCAAAAAAAAAACXUts92v5M2/cleXOSf0hyvZl52MycvnAeAAAAu8jMXDAzL0ly0ySPSnJYkh1tn9V2+5JtAAAAAMDGY/gFAAAAAAAAAAAuobZXbfsbSc7J2gG/P0xynZk5dma+uGwdAAAAqzJr3jMz905yqyST5ANt39T2kLZdOBEAAAAA2AAMvwAAAAAAAAAAwPfR9uZt/zjJ2Umul+TuM3P7mXnDzHx74TwAAAAWNDPnzszRSbYleUeSFyQ5ve3D2u69bB0AAAAAsJ4ZfgEAAAAAAAAAgO+h7e5tf7rte5O8Lcmnklx/Zh46Mx9eOA8AAIB1ZmbOn5njkxyQ5FeT3D3JjrbHtt22bB0AAAAAsB4ZfgEAAAAAAAAAgO/S9iptH5+1oZdfTfJHSfabmafPzBeWrQMAAGC9mzV/NTP3SHLrJHsk+WDbN7S9fdsunAgAAAAArBOGXwAAAAAAAAAAIEnbm7R9cdYGX26c5D4zc9uZee3MfGvhPAAAADagmfnUzDw2ybYk70pyfJIPtX1I272WrQMAAAAAlmb4BQAAAAAAAACALavtbm3v1fbdSd6R5NNJbjAzD56Z0xbOAwAAYJOYma/PzAuzNjT6+CT3SbKj7dPbXnvZOgAAAABgKYZfAAAAAAAAAADYctpeue2vJflkkl9P8pIk+83M787M55etA/j+2h7V9iHfdf3ctndYsglg1dq+se31Lr68fNuT2+6xaBTA9zEzF83MiTNztyQHJ9knyUfavrbtbdt24UQAAAAAYIUMvwAAAAAAAAAAsGW0vXHb45Kck+RmSe47M7eZmVfPzDcXzgO4NN6b5KlJdkty9ST3T3LaokUAq/fhJL958d8PTPL5mfnWgj0Al8rMnD0zj0myPcn7krwsyWltH9z28ovGAQAAAAAr0ZlZugEAAAAAAAAAAHaatrdM8qWZOefi692S3CXJo5MckOS4JMfPzOeWqwS47Nq+OcnVsvYjcP93Zp66cBLASrW9UpKzL778TpI7z8yHFkwCuEzaXi7JYVm7f71FkhcnOW5mPvtd/3OvJG83dAUAAAAAm4PhFwAAAAAAAAAANo22ByR5d9YOyp2b5BeTPCrJF5M8N8nrZuabyxUC7DxtD0zyt0m+neSHZ+arCycBrFzbJyV5cpJ3zsxdlu4B2Fna3iBr97MPSPLOJM9LckqS1yX5cpKHjwMhAAAAALDhGX4BAAAAAAAAAGBTaHv1JKcmeVGSbUnul+QdSZ43M6cs2Qawq7Q9M8lpM/OApVsAltD2Skk+n+SOM/O+pXsAdra2+yZ5cJIjszb48uIkj07y8pl59oJpAAAAAMBOYPgFAAAAAAAAAIANr+1eSU5LsmeSKyQ5PslxM/NPi4YB7GJtLzczFy3dAbAk74XAVtB2tyR3ztroy82T7JXkV2bmFYuGAQAAAACXieEXAAAAAAAAAAA2vLbHJHl6kouy9gvoX01yzswcumgYAAAA7ARt75PkqUn2TXLlrA2/fGlmrrpoGAAAAABwmRh+AQAAAAAAAABg02i7Z5IrZu0g3EUzc87CSQAAAHCZtd0nyfYk/5a1sdOvz8xFi0YBAAAAAJeZ4RcAAAAAAAAAYEO48rWu/Mw999nzR5buADaGC8+/8NNf/uyXj166Y2e65jV++BlX2OcHty3dAWwMXz//azv++V/+8fFLd+xsV/qhKz1/z7339F4IXCIXXnDhjq/801eOXLpjZ9t7371PTXPtpTuADWLymQu+esFBS2cAAAAA8L3tvnQAAAAAAAAAAMAlsec+e/7IEa86YsfSHcDGcNwDj9t0owBX2OcHt734D15/3tIdwMbw8Mcdvn3phl1hz7333PbLf/7LPhMCl8iL7v+iTfeZMEnSXPvxJz7+y0tnABvDMw59hqEoAAAAgHXscksHAAAAAAAAAAAAAAAAAAAAAABsNYZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAAAArJjhFwAAAAAAAAAAAAAAAAAAAACAFTP8AgAAAAAAAAAAAAAAAAAAAACwYoZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAAAArJjhFwAAAAAAAAAAAAAAAAAAAACAFTP8AgAAAAAAAAAAAAAAAAAAAACwYoZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAAAArJjhFwAAAAAAAAAAAAAAAAAAAACAFTP8AgAAAAAAAAAAAAAAAAAAAACwYoZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAAAArJjhFwAAAAAAAAAAAAAAAAAAAACAFTP8AgAAAAAAAAAAAAAAAAAAAACwYoZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAAAArJjhFwAAAAAAAAAAAAAAAAAAAACAFTP8AgAAAAAAAAAAAAAAAAAAAACwYoZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAAAArJjhFwAAAAAAAAAAAAAAAAAAAACAFTP8AgAAAAAAAAAAAAAAAAAAAACwYoZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAAAArJjhFwAAAAAAAAAAAAAAAAAAAACAFTP8AgAAAAAAAAAAAAAAAAAAAACwYoZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAAAArJjhFwAAAAAAAAAAAAAAAAAAAACAFTP8AgAAAAAAAAAAAAAAAAAAAACwYoZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAAAArJjhFwAAAAAAAAAAAAAAAAAAAACAFTP8AgAAAAAAAAAAAAAAAAAAAACwYoZfAAAAAAAAAAAAAAAAAAAAAABWzPALAAAAAAAAAAAAAAAAAAAAAMCKGX4BAAAAAAAAAAAAAAAAAAAAAFgxwy8AAAAAAAAAAAAAAAAAAAAAACtm+AUAAAAAAAAAAAAAAAAAAAAAYMUMvwAAAAAAAAAAAAAAAAAAAMB/sHff8U3X+R/A30napGl2uvfeCzoolCUbCshGBFTEeZ6e5+l5euc8vTtv6bnOAeICZIjsVZCW0Za2dO/dNE06kiZdSbOa/v7gV64jQKuId/p6/iWf/fm2/eYDDz+vAgAA3GYIfgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4zRD8AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCbIfgFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DZD8AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAbYbgFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDbDMEvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALcZgl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbjMEvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcZgh+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALjNEPwCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcJsh+AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgNkPwCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMBthuAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgNsMwS8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtxmCXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABuMwS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANxmCH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAuM0Q/AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwmyH4BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOA2Q/ALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwG2G4BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA2wzBLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC3GYJfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG4zBL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3GYIfgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC4zRD8AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHCbIfgFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4DZD8AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAbWb3Yy8AAAAAAAAAAAAAAAAAAAAAAODfG/69XtWo8nPgO/Q+c+qZj1j2rMHx9NO0aLgf3/vx/UadkSfxlih+deBXu221a6tp459669SMtuq2QJPB5ODAc9B5x3jXLn12aabIXWS8tbv5cXW1djmc+PuJlJbSlhCDzsBjO7AN7mHuDYufWnzJPdS9b7zjfPboZ0tkhbLo69Xf+/69nwQkBmhGl/+cnjX8PG3b+Vb0V998knr36gdOPLT5qbIfez0AAD81H2z8YEVHfYePg8Ch75mTz3w+3nOhVql1+GjzRxuNOqOj1Ffa+sT+Jw6MbrP/+f0pqkaVa6+6V2zqN3FZdiyLo9ix1y/er2HOw3NKxB5iw63f0Y+nva6dd/qt01OVVUpfc7+Zy+FzdL5xvg2pz6TmCt2E4z6XvX/X+6vUTWqv69U/d+65Dzg8zsDo8sYrjZJzH55L7qjv8LIYLWyuiNsbOCWwJvW3qfkOfIcx7QEAAAAAAAAAAAAAfo4Q/AIAAAAAAAAAAAAAAAAAAAAAPyp5qVykalT5EREZ+gyCvK/zAqfePbV+PH0PvHBgocVkYd9w/BK5eOeTOzeZ9CZH9zD3OrGHuFPdqPaozaxN2Hb/toAHtj+wS+Il+Ulc8tUqtA6fPPDJZp1WJ3H2d272i/er7GrtcpIVyGI+feTToM3vbN7pE+PTPZExQ6aH5HN4nDEXg0Xuov7RZT+nZw0AE/P10S+CjpzeN6VDpXSzDg4ynKWu6rkzlhQ+uPnX4w7PMRoNzA8++/vkJnm9q7Jd7qbRqpytVitz/Yotpx6975kSW33OnD/qdSH7TEhdY6Vvd0+XyGQ2sXmO/L4g/zDZ/Xc/fjkmIr7r1u0SAL4vRblC2FHf4UNEZOg18PMP5vtNWT+laTx9D7xwYI7FZLG/UZvKjMpJYg+xyiPMQ84VcfVmo9le1aByLzlRMqXmQk3UfR/et989ZPxBef/NWspahF8+8eU6k97E9YzwbBB7irWqBpVb9YXqOEW5wveBTx44MNGgm9glsbm2yln2LOvossr0SrcDLx5YZR2wMn1ifOr4Tvw+ZZXSu/RU6RRFhcLnkc8fOch2ZI/pBwD/nRryGrgXd1x0aa1u5VpMFqbYQ2yKXRKrnXHfDA2TxZzQWK3VrZz0j9JdWkpbeKZ+E1PgIjBH3BHRfcfDd6jZXPaYsC+z0czI3ZsrLj1dKu5u72ZbTBaGwFlg8Yv365tx34xOJx8n8y3bKAAAAAAAAAAAwI8AwS8AAAAAAAAAAAAAAAAAAAAA8KPK3pUdR0QUMScipzK9Mrn4RHHceIJfzn1wLkpZqQxNviv5TM7enAXXa3f0L0cXmPQmx6S1Sd+m/ja1YKj8q6e/mlNzqSbx2BvHZt3z7j1pt2Y3/zFgHmBUZlS6Ry+Ibr3VY1/P0b8cnaXT6iShM0Pz7v7H3RlD5cf/djz+yoEr84795diCX+z+xdcTGXP2A7OveEV59Yxz/h/lWQPAf7d3tv0p/tDJr+Y7cLj9sVGJ5XYs+4GyqoKw3d9sT22S17u8/vy76eMZp7u3y/7I6b3ziIi4XJ7OkcvX9el6BDfq86+PX19pMOgdPd18FHHRSeUsJmuwSV7nWVSWG/v0yw9E/O6JP+2dNzNVeSv2CQDfX/bu7Cgioqj5UfnlZ8sTio4XRY0n+CXj44xwRbkiaNrGaRnZu7PvuF6735393UccHmdgdPmBFw5MLTtTlvjtv79N2PTWpvPfZw+2mPpNzIa8BufwWeEdt3rs6zn6l6N3mPQmbvJdyRcW/2bxtXCsvc/unVF1vmrSsTeOTd389uaMiYy56pVVNoNfRhswDzBO/OPE/AHzgN3i3yw+nnxXciMRkXXASjse3rFEUaYIOv2v05OX/355/oQ2BQA/itLTpYKDrxz0YdmzrGGzwnq4Au5A3eU6QfpH6e4tpS2OG9/a2DLesZoKmri7fr3L32qxUsj0kB6hq9AiK5TxsndnuzQVNPHu//h+mT3H/lr4y4BlgD59+FO/1qpWR4mXxBQ+O7ybxWYNtlW1cYuOFkkrvq0Qb/lwS6NHmMeYsFIAAAAAAAAAAID/FQh+AQAAAAAAAAAAAAAAAAAAACAiRblCuH3r9kf8JvuVzX5wdk7aO2mz1U1q78GBQZbQXdgxbeO0rKQ1SU3D+xx48cD0srSylDtfuHPP5OWT5dcbb8uHW04OlX/26GdLZIWy6K3bt35ceqo0qOp8VaxOo5NIvCStj+9/fE/h0UKfI68f2RC9MDordGZo44VPLszoUnZ5DA4OMqQ+UsWch+dciJgT0T56/T2qHvapf56a2lzUHNrf0y9k2jEtEi9Ja/L65NyEVQmy4W0HrYN07sNzUeVnyyf1afokA6YBNpvL1gtcBZ1R86NKZz8wu2p4+7aaNv7Z989OVVYqAw19Br6dvZ3ZyddJMfP+mVmRcyPbvs9zt5gsjIbchmg7tp1p+R+WZykrlf7tte2B7bXtfLcQt77r9VNWKQXZu7Pn+Sf4l8QsimnI2Ztjs528RC5WNaj8uUJu9+LfLC4YXrf898sv/WvFv+JkBbJIfZc+3VHseEt+S3hlRqVb4dHCyObC5ggmizkQvSD6o1sx7s3otDp7WaEsimXPMi9/fnnm8LolTy8pKD9TntRR3xEgL5WLfGJ8um/1/D/GswaAiWuQ1fKNJgMzIiRmXIFO31dlbanw6Ol9czgcB8M//7jj86F521WtmY/+dv19WXnpSd9ePFE9nvAVAV9ofvyB5/fHxyR3+PsG615/87fTz106Of1GfWZPW3Bl7fL7ygP9QkZ8przxzu+npmUcmfXhZ39fPG9m6o7vt0v4qVFWKgXbtmy7zz/Bv+qOB+/IT3snbZqqUeVlHbCyRB4iVcqmlNyElQkjzn4HXzk4peRkyZSVL688GJcap7jeePf9+76zQ+WfP/b5/Kb8pvAHdzz4RenpUv/K9MqoPk2fWOotbfvl3l8eLD5R7HXo1UOrYpfE5obODG0+v/38VG2L1nVwcJDh5OfUOueROZdtBYn0qnvZp986ndBU0BTU390vYNoxLVIfaXvyXckF8XfGj7icP2gdpIztGeFlp8ui+zr7xBaTxZ7tyO4Xugk10QuiK2dumVk7vH17XTvv239/m6goV/gZeg18lj3L5Ozv3Dpr66y88NnfL9TEYrIw6rLrIuzYdqZlzy/LVZQrfNqq2/w76jt4rkGuuuv1a6tp42fuzJwVOCWwInphtCx7d/Z157AV+kJEFLc0rq7sTFliT3uP+PvsYbhB6yCVFLnC8gAAIABJREFUnC7xLDlZEiYvlgeL3EXq8FnhB2/V+DfSUtYi7Kjr8OWKuD0Ln1xYMrxu2XPLcmqzaqOa8pvC9d36S44iR8utnr/0dKlXn7pP4uznrBwKfSEiYrKYtOQ3SzK3b90eVJlRGb3suWX5DCbjVk8P8JOm0+pYvepelnuIu+l2zNff0888+Y+TngwmY/Ced+5p8p3kayAiMhvMHTse3uFfm1UrLDhSIIy/M/6mZ0vrgJWO/OmIp8VoYax5bY08emF0LxGR1Wqlr57+yrsuq0548dOLTnMfnase6lN6qlTYWtXq6BPro9vy0RYZk8m8Nl7a22ku2buzXTK/yHRa+6e1CPIDAAAAAAAAAID/WQh+AQAAAAAAAAAAAAAAAAAAABimr7NPtPs3uzcLXYWqkJSQYn2XnicvkYef+PuJtfou/bHRoSjf1fG/Hp/XKev09gj3aPCK8mpgMpmDw+s76js8yr8tT3YNcJWFzAgp6GnvkSgrlKFf/+HrjXe+cOf+uNS4a5d2e9p7ONvu37apr7PPSeQhaguNC71i6DVw5aXy8GNvHFuvlqnTFv16UfFQ+/1/2D+z8lzlVK6I2+0b51vFdmQb9Vo9v1Pe6V5zsSZs+B6rzle5ffPSN+vMBjPXNci10TfOt8bQa+AqyhUhX7/w9cZFTy46lHxXcsN3fQ6X91wONuqMvIDEgGKugGsJnRlamrc/b37mzsyY1a+utnlrd9A6SAdfOphqx7Ezrv7j6vSe9h6H641flVHlS0TkHubexGQxR9TxnfhmqY9UoWpQ+VdmVHokrExo/q77kJfIxXkH8iIachsidRqdlIhI6CrsCJsdVnKzvrdKVUaVp9VitXMJdGniO/FHBKswWUxyD3NvbMxrjKvKqPL1ifEpHe+4padLA698c4XNZDEHpb5Sbezi2GaBs2DMJcPb9azhpyk985THvsOfTmlWNHkbjf1cRy5PFxoU1fDY/b/LHB3Yce/jy+5uUTb5nPzqyj/+8e+Xp+YVZUbrdL0CgUDUvWD28txfbPltCRHR+zv+Oikj81R8V49W7MDh9k+Jn1Hy+yf/ksli/ed/m6usLRX+8nd3PxobmVB2312PXf7w83/Mbm5p9BmwWliuzh4d6+68L3PF4g1N493Hxctn3XYd2DZNrmj0NpqMHB6XpwsLjq5/7P5ns/x9g6+FFjz+3KblFTXFEc8+/tpXi+euko8eZ/eBbaHbd729MmnS9IK/vvTR2dH1E9WpVbEPHNsZlpWXHilXNPpuWLX1ZERITNn3HXc89h/5PHbAOsCalbTw8vCwGTcXD+OSuauy9xzaseTIqT2TxhP8wnVwtK5euqnxZu2Ge/bx120mgz392Ks55y6eSOnUqpxb21scPNy8DRMZF34e+tR9wp2/3rlW5C7qDJ0RWqbT6njNxc0hx944dqe+S582OhTluzr+1+OzVE0qT88IzybvGO+m0efC9rp2t7K0skTXIFd52Oyw0u62bpGiTBG0//n9XitfWnkoZlFM61DbHlUPe/uW7Wt71b1Ssae4w2+yX5Gh18BtLmoOOfqnoys7ZZ3pC55YUD7U/sBLB6aVnylPcBQ79vhN9qtl89gmnVbn2CnrdKu+WB08fI81l2pcvn7h6xXmfrODW4ibzHeSb72h18BtKWsJ3P/8fr/Fv1l8PGlt0ojAwYnI3Z8bYNQZHQOTA8sd+A4DYbPDKnP25Lhm7cqKXPnSyjxbfQatg/TNS9/Mt+fYG1e9supiT8f1z4U3Un623J+ISOoj7fyu6x9Sn1PvVHCoIKzhSkOoocfAJyKS+kpbY5fE3pb3LhFR9flqbyIizwhP+ehzGU/KMzv5ObV21HX4Vl+odp+8fHKLzUFsuPjZxZAuZZeQaccccA1y1cYtiZOzHdnW0e3qc+q9iYh84nzGfD94RXn18KS8Lp1GJ1ZUKITe0d63JYgMfl5y9+eKazNrBR31HQ46rc6OacccdPZzNsavjNckrkq0GYIpK5Q5nPvgnFtrdSuXGETuIe79cx6Z01GbVcvP3pXtsvGtjU0hKSH64X3aatvYF3dcdG4ububru/QsDp9j9Y3z7ZvzyByVW7DbLQtmMRvMjLIzZYKytDJRU34TP3lDsto9xF11q8a/kZJTJcL+nn5WxNyI7qHQFyIiewf7wTkPz+n46umv/AoOFkjHE/xSl13H07ZoOV6RXvqh0BciIiaTSYueXNRel1UnLDpWJJnzyBw1g3E1FEqr0NoTEQVPC+4dHvpCRBQxJ6I3e3e2i75Lj3sxAAAAAAAAAADwPw3/wAUAAAAAAAAAAAAAAAAAAAAwTGdzp0/YrLC8DX/fkDFUVpleWbD/9/s3X/r80sL4FfENtkIvJqqrtcvtvg/u+9w72tvmpbOO+o6ApHVJZ1OfSS0cKsvamRV85t0zq9LeTlscsyhm+9AlzkOvHZrd19nnFJAUUHzPO/ekMZhXL0jJimS5O5/YeW/Ovpx50QuiG72ivHqIiOqy6iZx+Jy+J/Y/sYMr4lqGz6tp0XCH/ttisjCO/vnonQPmAfaKF1fsmbRs0rVwgvb69gufPvzpvekfpS+etHzSRxxHzsB3eQ6lp0rjiIgmr5hcRkSUsiml8so3V+bUZdXFWges2aMvqhIRHf/b8US1TO277Lll+wTOAtONgl865Z1SIiKJp0Rrq17oKtSqGlT+qgaVlIgmFEbSKe/k5uzNCa/NrI3sUnZ5EhE5ih27ouZHZcevjK8ITArU2Op37K/HEox9xnFfSnYPc2+fvnl63c3adTR0SImIRG4im/NKPCXaRmokTYtGOt65iYhy9uYsGP7n9I/STQkrEy4seXpJ4fDyH/JZw0/bx1+8GbP38KeLWSyWJTQwqk4idurtULdJCktzYn/1+3uC3vzjJ1+GBkX1ju735Av33alobfYIDYpsYLFY1vKqorD9Rz5fbGdnZ21qrnMtKM2JDg2MrAsOjGiqrCkJSb90cjqHzbHYCgLRaNWi5//02D0uTm6qKfEzirp7tPzy6uLwd7b9aV13T9fRe9c/etPQr6+PfhH04ef/XEk0yAgPial2krh0Nysa3a8UZ01+4vebQ/760se7IkNju4mIli1cV1hRUxxx/MyBOFvBL2cuHJtERLRm+T1F3+2pEvUb9MzDp/YEnc9Ki6xrrAoaGLDY2duzTVFhkyqS42cpvuu4E1VTX+5HRJSSNGdMYMvCO+5s2HNoBzU21/rdrvUMYTIYgwwm00oDRCyW3eDNe8DPkVqm9oyYE1G4/o31mUNlVReqSvb9bt/aCzsu3DF5+eQxYWvfhVahddny4ZY9XpFeNi/Nt9e2+yVvSD6/+KnF14LbLu+5HHD6rdNLT791en7U/Kgvh85MR14/Mr1X3SsNmhpUvumtTelD50J5iTz/i19+cdflry7Pjpof1ewZ4dlLRFRzsSbKQeCge3z/47u5wpHnQq1Se+28YjFZGIdfP7x4wDRgv/KVld/ELYm7FtakalDxdjy0Y/23//52Xlxq3Ge2gkDGo+RESTQRUfyK+Eoioml3T6vJ2583s+ZSTaR1wJpn61x48p8nJ6kaVd7L/7D8EN+Jbx5v8Muxvx6bbO432xt1Rra6Se3W2dzpIXQVqhc8seDKd1l7W00bP+/rvNC67Lqwno4eJyIioauwM3JOZGnimsQajzCPMZ9jREQHXzk4ZSLzBE4JVMSlxt30Hd4p75QQEUm8bJ/LRG6i7o66DlI1qMRENO7gl3MfnFs0/M9n3zvbP2vrrIzp90yvH17epewSExE5+zl32RpH4CLo0ml04tbqVgmCX+CHkPZ2moeTr5PRO9pbx3fiW/p7+lkNeQ2C428c9+ps6uQsempRx/D2dZfrHPc8s8dv0DrICJ4W3CP2FJtUDSqHXb/e5e8T46OzNUdleiX/m5e+8bEOWBkBSQG9Ei+JqVfVa1eXXSdszGsUbH5nc5NPrM93DpazWq1Um1nLKzlZIqrLqhOa+k1Mlj1rMCApoC9sZpjNd8oPoelKE4+IKHhq8Jg5g6YG6ew4doOt1a2OZqOZYc+xv+GZqiGvgUdEFDglsG90nbO/s1nsKTZ1KbvY6ia1vUuAi5mIyDXI1UhEVH+5XjBjywzN8PCXqvNVAiKigMSAMeMBAAAAAAAAAAD8L0HwCwAAAAAAAAAAAAAAAAAAAMAwdmw747LnlmUOL4uYE9HuG+dbISuURefuyw2Z99i88u87T8yimNzrhb4QETmKHbWLn1o8IlgjZXNKXcHhAnlnc6dPyckSn0nLJslN/SZmc2FzJMueZb7zD3deGLrcS0TkN8lPGzYrLL/8bPm0nL050av/uDprqI7JZA4w7ZljLmVJvaX9Q/+duy83SN+lF4fNCssbHvpCROQW5KaLWRSTe+XAlblFR4v8ku9KbpjoM1BWKoUdDR3+PClPE7MwRklEJPYQGzxCPeqVlcrQvAN5Acnrk0cEBTTkNjgVHimcGZQcVJSwKkF2szlMehObiMiB72C0Vc9x5BiJiAx9Bs541qzv0tvn7s8Nrsqoiuxo6PAftA4yOTyOLiQlJD9uaVxl1Pyo1puNUXG2IrG/p184nvmIiHpVvWXjCX4x9hk5RERsR7btvfKv7tWoM45rr97R3i2BUwIbglOClVJvqV7VqOIXHS0KLT5ZnJK7L3c+045pXfTkouKh9rf6WcPPQ3F5nmTfkc8WCQXi7n+8sn13kH/YtUubx9L2+7310R/X//ODV+d/9I99B0f37e7RCD/518Edrs7uRiKi8uqi3Cf/cO9DB47tnMdhOxje+8uuHUPjdajbMrc8sfzhjMzTU3798Iu5bDZnxPuvpVXmM33KnNzXnns3Y6jsQvaZgj/+4+nNu7/ZtmjpgjUNThKX64Z+dXVr7D/Z/c7SwUEr89nHX/9q0ZwV1y7R/+29F5JPnTs0++/vv7jo07cP7yMiWjx3Zcv2XW+rq2pLw1rbW856uHlfuxRcXl0kksnr/T3dfRRTJs9QT+R5Wq1WSss44n32wrGo8qqiMKPJ4MBksgaC/EMbZiTPq1i5ZGO9gC+0jO6XlZfheu7i8ZCJzPXwvU9fGXr2N6LRqqVERJGhsWNCqfx9g3V2dvbmPl2voKe3204oEI1Z2w9l14Ht4Wazie3h5q0czz7g58mOY2da+uzS3OFl4bPCO/wm+9U05TeF5x3IC5rz8JybBkPdTGxqbMH1Ql+IiHgSXvfCXy0sHV42dcPUxvyD+Qp1k9qrNK3UM25JnNLUb2I25TeFsexZ5uXPL88afi70ifXpDp8TXlx2uiwpd19u+MqXV+YN1TGYjAGWHWtMWIvEU3Lt3XTlmyv+eq1eFDEnonB46AsRkUugiy42NbYgd1/uzOITxT5Ja5NuekYbrbW6VdBe3+7Dd+Jro+ZFtRERidxFRo8Ij0ZFmSIo/1C+X9KakeM2XmmU5B/KnxacElwaf2f8uMNLiIjKTpdNNuqMjkN/dgtxk63787qzUm/puEMaetp7OLlf5wZXX6gOVTepvYiIHMWOPVELovLjV8RXXy8EcLiSkyUTCn4hotzxBL8Y9car5zKeg83PromeywISAxqT1iQV+if4q0TuIkNbbZsg7+u8iMpzlZPPvn92MYfHOZq4OvFasJ+p38QhInIQ2j4XsrlsExFRf08/ezzzA0zUI18+UjcUHDLEYrK0ff7Y5765+3Odkzcka8QeYgvR1fPTsb8c8xwwDzDW/WVdc+TcyGvn0axdWZIz75zxGD2+rkvHPPzaYW87jp313vfvbfII87j2va6sVKo/feTTgKN/Pur52J7HJvz3ZHmJ3KHoeJGo6nyVSK/V2zGYDPKO9tZFLYjqjl0c28MVcse8rzubO+3zD+WLJzJPwsqELidfp5uGl2laNBwiImd/5zHvE5Ydi4SuQpNGruF0yjrt3UPdbxiSq2nWsImInPycbL4bJJ4SU5eyi61qVHGGvn6R8yL7go8F99Zl1wneX/d+kF+8n45lxxpsq21zUFYoHSctn6RJuSflpu9bAAAAAAAAAACA/2YIfgEAAAAAAAAAAAAAAAAAAAAYRuwhbuc78cdcfvKJ9ZHLCmXR7XXtbkT0vYNffCf53jAgxCXQpYXJYo4p9wj3kHc2d/q0lLe4Tlo2SS4rkkkHLAP2Em+JQuwhHnNRNTA5UFZ+tnyaWqZ2HSrzi/erqMuqi3975dtb/eP9q/0T/OXhd4QrhC7CEZe05KVyTyKivs4+4YEXD0wfPXZ3W7eEiKijvsOJiCZ8oS1rZ1YsDRIjJCWkbHh5zKKYMmWlMrT4eHHc8OAXs8HMPPL6kaUcPke36tVVGROd71bY99y++bJCWTSDwRj0ifOpiFkUUz55+eRmlj3rhr/ZfLhnzzz70Q+5xltl/uPzR1ww94nx6faJ8clzCXDRnP7X6dX5B/Nnzn9sfslE9g4w2t5Dn022Wq3MzWsfPjs89IWIaNnCdbKjafvr6horgzVdarZUPPKy6aY1D58fHtgRFTap28vDr0WuaPRdnbrp3PDxXJ3djaFBUXUlFVdiGptrBWHB0SMCFtj2HONTj76cNbxs1rQFbdERkytKKvKjDx7fFfrg5l+PeFcNd/DE7hCj0eAQGRZXOTz0hYjo1w+/mJuZmz5JJq/3r6kvF4QGRfUSEc2etqDw4IndC3Yf2Bbz9GOvXgtg2Hf4szgiojnTFxeN5xkSEeUWXnI+fubryKLS3MheXY+QwWAMenv6y6clzq5YvXRz9c2CTcqrC13PXTo55j1/I2uW31s6nsAUk/lq2JSTxMV2KBSbY7RYzPYarYpzu4JfKmpKRHsP7ZjPZDCtWzf+6tztmBP+N0k8JR08KW/MudA3zrelKb8pvL223YWIvnfwi+8k3/Yb1bsGuSptnQs9IzwV6ia1l6Jc4RK3JE4pL5FLBswDdlJfaavIXTTmZy4oOail7HRZkqpJ5TJUFpAYUFNzqSb27VVvbw5IDKj1T/BXhM0KaxM4C0aeC0vk7kREvepewcFXDo4JK+lq7RITEXU0dEiIaMLBL1m7siJpkBihM0JHPM/YRbGVijJFUPGx4qjhwS9mo5l5+PXDCx34DrqVL6/MGjvijT137rkdRESdzZ3cmks1HplfZqZsu3/bhtWvrj4WOiNUNZ4xvvzVl6nqJrUX0445EDIjpCQuNa5mKLRmvF7Oefm9ia79x5D629QRn0l+k/y6/Cb5ZZ9661Rfzp6c2Zc+v5QyPPgF4Mc2OvSFiMiObTeYtCZJc7D0IK82q5aXtCapm4ioMa/Rsbutm+0d460bHvpCRDT17qnavK/znLqUXSNCigoOFoiNOiNz/i/ntw4PfSEi8ozwNMYuju0qOFwgba1u5Yyut0XdpLYvOl4kqvi2QqxVaNlERG4hbv1T75qqjk2N7RG53fiMpGnR2Gfvyna5UZvRAhIDdOMJfjHpTUwiIq5gbOAMERGHx7ESEfX39LNuNpZRZ2QRETkIHGyOxeaxB4iIDL2Gax96DAaDNr61UX7m3TMul7+67DIURENE5BPro4tbEtfNsrvp1AAAAAAAAAAAAP/VEPwCAAAAAAAAAAAAAAAAAAAAMIyDwEFnq1zgItAREZn0Jo6t+omSeEpszjPEUeSot1XOk/L6iIiMuqsX6fu7+jlERFwht89W+6F5TP0mh6GyDX/bcO7kmye7ai7WxFSmVyZXplcmn3rzlNUt2K1hyTNL0n3jfLuIiIx9Ri4RkaJcEaYoV1x3rSaDyf5Ge7FlwDzAqLtcF0MMGpy6YeqIIJ3ENYkNGdsydG01bUGqRhXPJcBFR0R09M9Hp3a3d7uteHHFHp5k7CVsW9iObBMRkaHPYPPrZtRffY4OfIebXsYjIpJ4STTNJc0DgwODrPa6dj8HgYOeJ+EZIuZE3PDC9u3A4XOMRNf/HjX2Xd0rh8cZ116vZ+rdU+sztmf0GfuM/IYrDU4h00LURLf+WcPPQ5O8zpOIqKgsz7eypsRjdL1O3+s4ODjIKK8qksycOn/Ez9nUhFljArSEAlEfEVFMZMKYi/cSsbSPiKhZ0Tgm+MXN1bN9dLAMEVFU+KTmkor86HpZjevouuHqGqvciIiiwyePCTtgszmD/j5B8tLKAlFhaa7bUPDLprUPlx9L2z87My897mm6GvxiNBqY+cXZMRy2g2HDqq3jCpOorisTPvfao1uJiMQiqWbpgrXnVqVuqgr0C7H5uWDLQ5ufKnto81PXDbb5KZErmhxf/MsT6/oNesdVqZvOzJuZqvyx1wT/vRyEDv22ygUuAj0RkVFvZNuqnyixh9jmuW+Io/i658Kr6/j/c6G+W88mInIUOto8Z0o8JHqikWeF9W+sv3j67dPd1eerI8rPlieUny1POPH3E1b3MHfZkqeXXPKJ8ekmIjL0GhyIiFpKW4JbSltsDU9ERKZ+04SfyYB5gFGXWRdJDBpMvit5xLsvfmW87NyH5/TKKqW/WqZ2dPZz1hMRHX/jeEJ3a7fLyldWfsMTj+9caIuTr1P/tI3TGvwT/FXb799+z7E3ji34zbHf7B5PX4mXRKOWqT2tFitLWaH0deA7GHhintE/wV/7Xddzq3AcOVfPZTqDza/HrTqXzXl4TkXuvtyZ3W3dzjqNzn4oKInNZRuJiAw9ts+FQ98nXCF3zGcvwK2gadHYX9hxwVlWKOP1qfvsLSYLY3h9b0fvtb/Dtla1OhAReUd7j3nXMplM8ozw1I8Ofmkpb3EkImqva3dIeydtTOCKpkXDJiLqqO9gjyf45f273g8hIuJJeZbp90zviFsa120rvOZ6QlJC9C/nvFwx3vb/S8wGM2P/7/d7NeU38Rc8saA1cl5kL5vLtjZeaXRMezvN/csnvvRf+fLKlphFMb0/9loBAAAAAAAAAAC+KwS/AAAAAAAAAAAAAAAAAAAAAAxj6DXwbJX3qnp5RERsR/a1S1sMBmOQiMhqsTJHt+/T9DmMLhtuqO/16Lv1jrbKdRodn+g/4R1cMdd4o3VrlVoeEZG9g/21dbPsWYPLfrcsn35H+Z3NnY6VGZVeVRlVEYpyRdjeZ/c6/+rgr3ZwHDkDQ3td+KuF30zbNK3+RuudqJy9OUHGPiOfiOjDzR/+4nrtMr/IjFn58srLRESqJpUbEdHh1w5vOPza4bF7bdF6vZr86m/t2HbGP1z8wztERE4+ThoiIq1SK7E1fk9Hj4SIyCXQRTOeda94cUXOHQ/dUXR57+Xw2ku1ETUXa5JqLtYkOUoctYGJgZWTV0yuDEwKvOFYx/56LMHYZ7zh98dw7mHu7dM3T6+7WTvXQFcNEVF3e7fUVv3QM5B6S8e11xvhOHL0xj4j39hnvHZh8lY/a/h56DfouUREmbnnptyonU7fO+biurOT25jL4iwmy0pEJBZJx1ywHaqzWMxj3tkCntBmSIKz1E1HRNTfr79h6Fe/4Wq9i5ObzbAVkfBqCFdvX/e1n32p2NkUG5VYkV+cPenE2QO+qfPXNB849mWwvl/Hm5ow+wrPUTBwozmH8HgCs0go6eru0Yq7e7SS8qqiAKFAZBDyN9bYeka3G9ueYzQY+7mdWhXHw83bMLreaLoaPiCVuPzgoVByRZPjUy/dv0Hb3Sm9c/GGb5948PnCH3pO+N9m6DFwbZX3qnodif4TrkH0n7PdgGWAMbq9Tqu74TvkpufCruueC6+u4//PhY4iRxMRUX9Pv+1zYavWkeg/oRxEV8+Fqc+kFqc+k1qskWu4VReqPCrTK0NbSluC9/x2j/TJb57cxXZkW4cC3hb/ZvHx5LuSG2+03onKO5Dnb+i7epb9YOMH91+vXdaXWRF3vnBnPhGRqlHlQkR06JVDqw+9cmhMW02zxuPV5Fcft+PYmf5w4Q8f32wNHmEevQIXgaa7rdtZq9Q6SDwlY95Xo218c+N5VZMqL3dfbmhtVm1Y6anSKaWnSqeI3EXq4KnBNQmrE2o9wjxuGERw8JWDN/z8Gy1wSqAiLjXu+omM/8/Jx0lLRKRV2D6Xdbd3i4iIXAJduiYy/2gcHmfAjm1nNhvMnP7e/mvBL2JPcVdLWQupZWqxrX69ql4xEZFHmMePHpIDPz3qJrX9Jw9+EmjsM7I8Iz31/gn+fQ48ByuDxRjsbu22rzhXIbaY/xMEY+gzMImI+FK+xdZ4PClvTHl/Tz+LiKj0dKnNn7EhJr1pzLnTFidfJ2NncydHp9XZNeQ18LlC7oAD36FH4DK+8+APie3IthIR9ff229yLUWdkEhFxhdybrpXD4wwQERl6DTbHMulMLCIiB4GDdags/eN059rMWuHcX8xtm7Zx2rV3RuTcyD6hm1D+ydZPgs68e8YdwS8AAAAAAAAAAPC/DMEvAAAAAAAAAAAAAAAAAAAAAMN0tXa59XX22fOd+CN+u7a8RO5DROQW7NY+VOYgcDAQEWmVWsHocZoLm92/zzpUjSpv64CVmKyR96Faq1p9iIi8o7w7iIj8JvlpWHYsc3d7t2tPew9H6CYccXG+IafBl4jIxd+lnWxw8nXSz7h3Ru2Me2fUvn/X+3epm9S+DbkNzhF3RLR7RXkpqy9Uk6xI5nOrg19KTpXEEhG5hbjVc4XcMYELg9ZBpqxQFl2TWRMzaB28zGAyyDfOt8mB7zDmt7CbjWa2okwRznZk6zwjPOvtOHbXLuaF3xHenLUri9qq2/xHP8++zj57jVzjxbJjmSPuiGgd79pF7iLjoicXFS96clGxskopyNufF1l/uT6y7ExZStmZshShq7AjKDmoMnFNYpVnhGfP6P4VZysS+3v6heOdr1fVWzae4JfwO8KVJ/5xwqKRa7xGfw9bB6zUVt3m///tmsc7ty09qh52X2eflIjIPcS9e9j8t/xZw08fh+1gJCLa/0n6v5wkLj9aSEmvrsdmSIJa084jIuJyHW8YSsJ1uFqv7uzg26rv7rkawsXnj3xHr1l2T2F+cfak42cPTEqdv6YbvQfSAAAgAElEQVT5zIVjk4iI1i6/p3i8a/f28Os/+NnFj89dOul5+tyhyLKqwvCvvvkkYN+hzxYFBYTVz0ieV7li8d31Ar7Q5mVmIqKsvAzXcxePh4x3TiKih+99+oqrs/tNw1qkEmeNsk3uVVFTIvVw81YOr2tqruNZLGZ7Pk/QKxSIrru+W6GpuY73zCsPbtB0qZ1WpW46g9AXGA+tUuuq0+iuhVkMaS5u9iYicgtxUw2VOQiuvs+6lF22zoWu32cdHQ0dHrbOhcpKpRcRkVeUl4qIyCfWR8uyZ1m627qde1Q9bKGLcMR7tSGnwZuIyCXARUU2SH2k/SmbUhpSNqU0/HvDv1eqGlXejfmNTmEzw1Te0d5tVRlVJCuUed7q4JfiE8VRREQeYR5NXBF3zFnParUymq40RVRfrI4atA7mM5gM8p3kKx86iw9nNpjt5SXyEA6Po/eK8mqyY9uN+90yFJjDYrFuGMQznIu/i37ps0uLiKhIViCTXDl0JbQhpyEs/1B+Sv6h/BSpr7Q1dHpoTdKapDqpj7R/dP+SkyUTCn4hotzxBL+EzQ5rufTFJVJWKn1Gf+/oNDr7TlmnB8ueZQmbFdY2wflHkBXJxGaDmWPHtjOLPcTX9heUHNRSllaWKC+W+xFR/vA+inKFUKfRibkibq9XpNeYszLA93Xpi0tOhl4Da8kzS5RT1k0ZEW5UcLhAWHGuYkQgEYfHsRIR9Wn6bN6t0Gl0Y8qHAkwe/PTBeq9Ir+8dXvf4/sfrlRVKTtGJIlFVepXo7PtnPb794FsPn1gfXdT8qO6YRTE9XCHXer3+nc2d9vmH8m0GLV1PwsqELidfJ/PN2km9pcaO+g4HdZOa7RvnO+K9O2AZoJ6OHjaTxSQnv3GM5Ss1URZRp6yTQ0Rjglq0Si2biMgl4D+BgPWX6wVEREFTgsb8u4F3lLeRw+MM9Kp67fs0fSy+lP+jB+UAAAAAAAAAAAB8Fwh+AQAAAAAAAAAAAAAAAAAAABjGYrJwjr1xbPqGv2/IGCqrTK90ay5ujrRj2xmnrJ9SO1TuN9mvNe/rPKpMr4y546E7yu3YdoNERK3VrYKCIwUp32cdeq1ecuqtU5NTn0m9djE9a2dWcGdzp4+j2FEbuyRWTkTE5rKtvpN8KxqvNMYd/cvRGZv+tenbofbyErm4+kJ1AoPJsE5ZP6WciMioN7KqL1S7xy6OHXFh1GwwM016kwMREYfHMRMRTd0wte7yV5e7arNqJ+fszWlOviu5YfQ6S9NKPYOTgzu4Iu64L9W2VrcKOuo6Au04doYtH2457MB3sHk5692174o1co13/qF8v8TVibIlTy+xeUlfUa4Qbt+6PZwn5XXd9+/7Tg+v84n16XIJdGlSNaj8T715Kj71t6kFQ3VH/3x0xoB5wD5wSmCxo9jxppfUbPEM9+xd8eKKHCLKqc2sdSk4UhDZlN8UUXi0cHbh0cLZ7qHudY98+cjB4X2ePfPsR99lrpvhSXhmv8l+5Y15jXFH/3J0+t3/uDtjqO7kP0/G9/f0i1yDXBt9Yny6h/eTl8jFFpOF6R3t3WXvYG8lIlI1qngD5gGGe6h73/C2Oq3Ofs8ze1KtA1Y7lwCXJmd/52uXs3/oZw0/TX7egcoOdat7RuYp7zXL7hnzjrld2juUbpouNVsqdh4RklBeVeRLRBTkF9pxo/5B/mHt2VcyqLy6yIeISobXmUxGhqylwYeIKD4mecQF+6kJs1Se7j6K6rrykPTMUx4yeb2/t4efPD52audE9zB3xhLl3BlLlCaT8dujafsDMjJPRVbXl4fU1FeEfrnvQ1NYcHTt7JRFlcsWrG3icBxGXBwury50PXfp5PSJzLdm+b2l4wl+CQ2Kkinb5F5ZeekB82amjgh+Scs4EkhEFOAbIpvI3BNV11glePbVhzd09Wgka5ffe/qx+58dd7AO/LxZjBb28b8dn7L+jfWZQ2VVF6pcZYWyUDuOnSlpTdK1YDy/yX7tOXtzqOJcRcSsrbOqhs6FbbVt/CuHrkw03GMEnUYnTnsnLWbxU4tLh8ou77kcoG5Se/EkvO6YhTFKoqvnQr94v+qGnIaoY28cm7rxnxsvDLVvKWsRVmZUxjGYDGvSuqRqIiKT3sSsyaxxi14QPSKUzWw0M039/38udORYiIimrJ/SmLUrq7v6YnVM3td5LUlrk8b83JZ/W+4emBSo5grHfy5sq23jt9e0+9k72Bvv++C+k0NhCqO9t+49cWdzp0fh0UKf+BXx8kW/XlRqq52yUinYtmVbCM+J133Pu/ecG17XXNwslnhJ9AJnwYh3vXXASgdfPjjVpDdxpT7S1tFBiuPlF++n9Yv3yyGinPJvy92LjxWHyQplIZe/ujw7Z0/OrODpwaXDvyZERC/nvPzed5nrZryjvXtcg12bO+o6fNPeTotd/JvF1z6bjr1xLHnAPGAfNDWozFHkOOJrJSuQSYb2MlSmqFAI+VK+UeQuGvFcNC0ahyOvHZlPROQ72bdm6HueiChmUYzi2w++1aplas+cvTkBQ2FB1gErnXrzVAoRUcQdEWUMJuOH2D78zHUpu9hERLGLY8cEC8kKZGPC/jwjPA1ERC1lLY6j66xWKykrlWPKvSK9+uuy6oRNV5ocb0XwCxGRZ6Sn0TPSs2PJ00s66i/XO5acLBHVXKoRNhc189LeTvPwT/Dvi14Q3R05L7KXzWWPCKjStGjss3dlu0xkvoDEAN14gl/8E/11VeerRHWX6wTxK+JHPNP6y/U8i9HC8Ir00ttz7G8amhWYFKjL2ZPj3JDbwJ/7i7nq4XXqJrV9l7KLLXARmJ39na+ta8A8wCC6Fswz4lmbjWaG2WBmERHZ2duNO7QLAAAAAAAAAADgvw2CXwAAAAAAAAAAAAAAAAAAAACGcfJ1ktfn1Me+u/ZdD7dgN4W+S8+Tl8jDBwcHGTO2zEgbflE0an5Ua/pH6fLO5k6fd9e+e49HmEezvlvPa61sDXILcWtUlCvCv+s6XINcG698c2VOc2FzoNRX2tHT3iNRVihDmSymZeGTC08xWcxrbe984c4L27du96nLrot/e9XbHh5hHs2GXgNXXiIPt5gs7Cnrp5zxjvbuJiIy9hrtDr58cOPpt05rJd6SdoGzoGfANMBqrW717+vsc3IPda8LTArUEBHZO9hbV7608tCBFw+sO/XmqTU5e3MUUh9phx3bztKn6RNo5Br3/u5+8WN7Hvv3RIJfsnZmxQ4ODjL8E/wrrhf6QkQUOTey5NLnl7wLjxbGJa5O/M6hAMufX35m55M7N+V9nTdPXir3k3hKOlUNKg+1TO3Lk/C0y55bduHmo9xcyPQQVcj0kPOD1sHzRceLfEpPlUZ2Nne634qxx2v588svfPLAJ741F2uS3r/rfTeXAJdWrVLr1FbdFsx2ZOuXPbfs7Og+Xz391V39Pf3CB3c8+JFXlFcPEVFLWYv06J+O3iXxliiELkItV8TV6zQ6fntdu79RZ+RxRdyula+sPGVj/tvyrOGnY8OqrQX5JdmTdn29bV5wQLg2LipJO7y+36BnXsg+47lozoqWH3IdJrOR89aHr6a89ty7GUNlF7LPuJdVFkay7TnGVUs31dyo/+qlm2r3H/3cUF5dFHnu0snCuTOWXAs4eWf7nxN7ertEft6BTaFBUb2j+86bubTwy/0fLnvzg1dXEhHNm7W06Pvshc3mDK5ZtrlhzbLNDd09WvsDx3aGZOaei6qoLo4oqyqM+mTX2/2P3f/skWUL1117rz60+amyhzY/VfZ95r2etcvvLb2YfSY5Ky89obK2tDQiJKaHiKhd1co5ee7gNCKiOxdvGLFndWc7W65s4ktETkZ/32Dd95m/uq5M+LvXHr27t69bePfqB078UPuEnyZnP2dlbVZt5Hvr33NzD3Fv1Wl1vObi5pDBwUHGrK2z0vlO/GsX0yPmRLQ7+zkr1TK153vr3lvvEe7R0t/d76ioUAS4h7rLWkpbQr7rOtxC3GR5+/Nmygpk/k5+Turutm6RokwRxLRjDix6atHZEefC39+ZtX3rds/aS7Wx76x+x80zwrOlv6ffobmoOcRisrCnbpx63ivy6ue9QWewO/DCgTWn/nmqW+oj7RA4C3otZgtLWan07VP3STwiPBr9E/y1RET2HHvrqldWnfj691+vOPH3E8sv77nc6uTjpLbj2Fn6Ovv4nc2dbvouvfCX+365YyLBL9m7siMHBwcZAYkB1dcLfSEiiloQVX7hkwsehUcKo+JXxMu/y3MsO1Pml38wP8XZz1nJd+b3cAVcg75L79he1+6l79ILOTyOftlzy87dfKSbi5oX1RY1L6rNYrJcKDhc4Ft+pjyst6NXdCvGHq/lzy/P+PKJL9fl7M2ZJS+Re0u8JNqO+g43VaPKmyfldS17btnl0X0++8Vnm4hGBtLUXKzxvPT5pTlOfk6tAhdBtwPfwdCn7hMoq5T+FqOFLfYUd6x4cUXm8HFY9qzB1GdSzx548cCq0/86vaTi24o6vjO/V1mp9OlSdrlKfaWti369yGaoI8D3JXITmYmI6i7XOUYviL4WZFmZUckrTSuVjG4fkBSgF7mLTC2lLbyKcxX8yLmR1/pc/uqyZChIZrjENYldl7+67JL5Zaard4y3wW+yX//weqvVSvWX6x1DUkL0o/veDIPBoOBpwfrgacF6i8nSVnmukl96ulTUkNcgqL9cLzjx9xPWhU8ubE1cnXgt0DMkJUT/cs7LFROdazxiF8f2ZHyc4VZ9oVrYXNTc6TvJ10BEZDaYGekfp7sSEcWvitcM72PSmxgahcaezWUPSr2l1z4rg6cF6yTeEqOiQuFYllYmiF4Y3Ut09XmlvZ3mRkQ0adkkLYPxn1Ao72hvfWdzJ+fS55ecA5ICRgTMnH33rIt1wEpuwW79DoKRwYYAAAAAAAAAAAD/SxD8AgAAAAAAAAAAAAAAAAAAADAM34nfnfpsatqZd87Mrs2qnWQdsLJE7qL2aRunZSWtTWoa3f7e9+49eOiPh+5QlCuCazJr4nkSnjZxbeL56PnRjdu3bv8+wS+tM7bMyLrwyYUZNZdq4mmQGM7+zrI7Hr7jYuTcyLbhbcUeYsPDnz288+SbJ6c2FzWHVF2oSmSxWBaJl6Q1aV1SbtKa/6ybK+KaJy+ffF5RofDtlHV6tVa2hrDYLBNPwutK3pCcNvfRuaXDxw6ZHqJ66LOHPjv7/tnElrKWoMYrjTEMBmOQw+P0STwlHUlrkjIlXpJxX2azDlipLrsuhohoytopJTdqm7IppfryV5fntVa1hnQ2dzo6+TpN+NIcEZFPrE/Xlg+3fHH6rdMz2mraAtpr2wM5PE5fyPSQ/KXPLs0UuYtuyW9oH8JgMmjy8snyycsny4d+O/ntIvGSGB789MGdJ/52IkVeKg/pbO70ZnPZ/X7xfqWLn1p8yT3Uve/moxC5h7p3+Sf6l3Q2d7orKhXBFqOFw7JjWXhOPE3Y7LCCBY8vyB9+2X3I7X7W8L9vckyyZuPqh07s/mZb6tMvPfBAgF9Io6uzh2ZgwMLUdncKmxWNPo4OPP2iOSu2/5Dr8Pbwk+cVZcXd88tUz0C/0JbuHi2/vLo4fJAGGRvXPHTaSeJiulF/sUhq3nLXL09s2/nWyj//67m7D57YVe0kcelpbml0a5LXBThyebpnfvnH07b6bli1terro1/M1el7BQ4cbv+6O++7YcjMRIiEEvPWjU9UbN34RIVc0eT4zfGd4TkFF6PaOhSCWzXHzUSGxnYvW7gu/fCpPfOffmnrfdERk6vsWPYDZVUFYX26XkFK0py8eTNTlcP7HDy5O/Srbz5JjY1MKPvX65+fGF7313dfSG5tlzsRESnbW1yJiC7lfBtTVVvqTUQUHhLT8uh9z1z7fHn2j4/c3dvXLXJ19mhr71CKXn/zt9NHr3HN8nuvBdIADMd35vcs/d3S9LR301KqL1ZHWwesLLGHuCNlU0pewqqE5tHt73n/nmOH/3h4ektZS2DNxZo4npTXNWX9lMyoeVHN27Zs++7BL8Fu7TPvn5l3fvv5qdXnq2MHBwfJJdClZc4jc7LDZ4d3DG8rchcZH/r8of2n3zydKCuUBVWmV05m2v0fe/cdF+WVvg38nsb0YYbeOygIAoIoiA07lliTGI0mMWpM3GxMMU1/xiS7yaYXjZrYNRqjxrp2IDYQBBSkdxh6bwPT5/0jL1lAFLCAidf3vzznPOfcz7hze9YPzwVTa2JvUhH0ZFBiwMyAP0NT+BK+NmBmQHRxarFtVUGVdUlqiQvbiK0RmggbghcE/z5m6ZgOIQJuw91qlu1atj9iU4SfPFnunBuX68lgMAw8Ea9FZierCpoXFCu1lnYIP7gbvU5PWVezvIiIhs4bmnq3ucOfHp4TvTd6VElaiUutvJZvYm/S433aDBw1UF5fWp9WkVNhXVdaZ65VarksDksjMhPVuwW7ZYS9FJb0oM8qbCO2IWheUGHQvKDCvj4X2nnbNT7/4/MHzn5zdlhZepljWWaZE0/EUwwYNSAp/M3wOImlpEfP6uDnUOWQ5JBdU1RjXl9ab6ZVa43YRmyNsaVxjVuwW3bYirAUI77RbYELnmM9KxZ8s+BA5KbIYWVZZQ66FJ0R35jf6DPZJy78rfAEI8Ht9wA8CEFPBdWmXEiRHl1/1D71fGqjyEykrc6v5hbcKBB5hHo0Zl3OkrSfz2QyaerbU0sPrD7geHjNYYekkKRGmY1MXZlbyStKKhI6DXFqLkgsEDGY//sKi0xEutnrZ8sPrT1kv3PFTmf7wfYKM0czFYPBoMaqRnZZeplA2axkrbmyJv1+noVtxDb4TPZp8pns09Ta2MpMPpMsSTmXYlxfWs+5n3V7gy/h68PfDC89sv6I/Z5X9zgNHDWwkSfh6XJicsT1pfVG7iHujf7T/TucowpvFvL3rdrnZDvItuXF7S8WtF1nspg04/0ZpT+/9rPTkQ+O2KWcT2mUWEo0hYmFosrcSp71QOuWkc+PrGm/1phlY6pyY3PF8mS58Pu537s5Bzg3s7lsfUlqiaAiu4LPNmIbJq2a1OHfSAAAAAAAAAAAAP5qGAaDoftZAAAAAAAAAAAAAAAAAAAAAP3MysPqwEt7Xyp8WOuXpJZItr6wdbmjv2PKc5ufO/2w9unOjRM37I9/fPxp74ne0XM+mnO1v+oA+KvbvHCzY3lW+VP9XceD5O7ieeDHLw8V9HcdD0Ns4mWz/b9tDcovzHZQtCqEHDZHIxSKm53sXUvGjpicPnXC3D8DFhatnDa/uLTAPvK3lM86r/PamsXhyWkJ3hv/s39z5yCPj796a0TkldMj3nrlw/1Txs2WExGlZ9+SvPL2/JcGewWkLHpyRezmXV+MLirJt9frdCwLc+uKudMXRc+cMj+//To/7f3ae/9v28Lnz15yaunCVSntxy5Gn7Pa99vWYHlJvp1ao+IK+CLFALdBuSueWx3t4uh+x+Cl9/71Sti1hIuBI4LGxn30zve/3+PH2GMarYbBYXP69IcHDx7f5Xri7K9BFVWllgYyMExl5jXjRk5NfHHhaymd57Z9xl0Fv7T9+d9pn873hM32Xt1dbe3/N/F3suyNuU7Zeel/qz5IRGTpZnl8xb4VD+1MSERUml4q/um5nxY7BThlLP5h8YWHudfdJJ1Ksj26/uiswVMGx836YFZcf9UB8Fe26ZlNjhU5FTP6u44HTSAVlK4+t7quv+t4VOVdz+NHbYmyqMqr4ut1ejJzMlMGzw+u4Ul4un2r9jkFLwiumvjqxKr29xQkFvAjN0dalGeW84mIrDysWscuH1uZdCrJOOm/SSZLti3Js/O2U7a/p6aohnN552XTgoQCUXNNM4fJZhqEMqHWysOq1WusV6PPZJ+mh/F8ep2emCzmw1j6jvLi8viXd1w2L8ssE2jVWobUWqoePGVwXeji0NrOtWRHZwu6Cn5pU5ZZxo3aHGUuvyUXqlvVTIm5ROM51rNhzLIx1UZ8o9vOqE3VTayL2y6a5cXmiRsrGzkGvYGEMqHW3tdeMfL5kdVW7lZ3DWkEos8mfiZrqW+x6e86AAAAAAAAAACga+z+LgAAAAAAAAAAAAAAAAAAAAAAAAAeb8OGjKweNmTkqe5nEu3ecHL/ncb+f+BHl+usef3zq2te//yOgVpDBg+v+fHLQ791t//ShatSOge+tBkdMrF8dMjEI92t0VlxWaElEdG8Gc8l9fbee9HXoS9ERPNmLM6dN2Nxbk/m3u0zvtuff1e6CggCAACAvzeXoS6tLkNdugwJWxe7Lq2r605DnFpf+PGF2+45//15KwaTQebO5qrOY6YOppqZ/zez/P4r7p2+Dn0hInIJcml1CXIp6n4mkXuIe8udPmciIusB1qpnvn6muKd7i83EumlvT6sgooqe3gMAAAAAAAAAAPBX0vf/4gcAAAAAAAAAAAAAAAAAAAAAAAAARET0e/RZ6+LSAntnB/f8wV4Bdf1dDwAAAMDjRt2iZrQ0tNz2bkXcwThpWUYZ39HPsZkr5PZ5cB4AAAAAAAAAAAA8Htj9XQAAAAAAAAAAAAAAAAAAAAAA/PXdOHHDPi8uz6G7eVwRVznt7WkJfVETAMCjbMO2T/1q6irF8TejfRgMhuHZJ1+60t81AQA8CEmnkmzz4vJsu5vHFXFV4W+GJ/VFTQAAd1NbUsvZ+vxWVwc/h2aZrUyt1+kZlTmVvNL0UgFXyNVPWjWpvL9rBAAAAAAAAAAAgL8vBL8AAAAAAAAAAAAAAAAAAAAAEJHtINvGdbHrPu/vOvyn+8v9p/v3ex29lReX55ByLiWku3l8Cb8RwS8AAETnL54Y3qxoFBuLZfXPznv25JiQSWX9XRMA/MHG06ZpXey6Df1dh2+4b4lvuG+/19FbeXF5tsmnk4O6m8c35jch+AUAHgVic7HWc4xng/yWXFB8q1io0+gYAqlAO2j8oPrRL46uMnc21/R3jQAAAAAAAAAAAPD3heAXAAAAAAAAAAAAAAAAAAAAALhvcz6ac3XOR3Ou9ncdAAC94enu0xj5W8pn/bH3sd1XN/fHvgAAD9usD2bFzfpgVlx/1wEA0FNCqVA/5+M5pf1dBwAAAAAAAAAAADyemP1dAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDjBsEvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0MwS8AAAAAAAAAAAAAAAAAAAAA0KWIHyK81w9b/1bEDxHe97NOSWqJZP2w9W/tfGnnlAdVGwBAX/lp79feYbO9V/+09+v76oXp2bckYbO9V7+2ZnH4g6oNAKAvRG2JGrh+2PqVUVuiBt7POqXppeL1w9av3PXyrvEPqjYAgL4SdzBOun7Yeq+4g3HS+1mnpqiGs37Yeq+D7x60eVC1AQAAAAAAAAAAwF8bu78LAAAAAAAAAAAAAAAAAAAAAADoa+VZ5aIzX58JLc8sd1Er1TyekKew87HLnrp66lVjK2PVva5787837Y59dOxpMhDDa5xXzLx/z7vS1TydRseI3BTpk3EpY1BjZaO5XqtncUVchYmdSdn4leOvOA1xqrv3pwMA6Jmc/Azxxu2fhmbnZTgrVa18oUCk8Brgm/XasrVXLc2t77kXnok8avf5xrXzDQYDY3TIxJh1b351uat5Gq2Gse3nb32uxkV6V9VUmOt0OpZQIFLYWtmXLVv0+mXfQUPRCwHgoarIqRCe/frs8NKMUgdNq4bPFXEVDr4OeeFvhsdJLCX33AeTzyTbHPngyCwyEMN7onf8nI/mXGs/Lk+WG988edNVnix3aKpukqoUKgGHx1GZOpqWB80Luuk31a/k/p8OAKBn6krr2BEbIyzyE/JFyiYlSygTat2C3ZrGvTKuUigV6nu6TsalDGFOdI6oIqeCV5VfxVM1q1jWA61blu1aVtDV/HPfnTOP+TnG/G5rSiwlmlXHV2X38pEAAAAAAAAAAAD+UhD8AgAAAAAAAAAAAAAAAAAAAABdGjpvaJZLkEupqaNp8/2sY+Fq0bxo46JtQhPhPb88+yDJk+XSvf/cu0DdohZYDbDKkVpLa6rzq62zr2YH/PT8T85Lti75WWYrU/Z23eaaZs65b86Fs9gsrU6j49xpnqJOwdn50s7Z1QXVDhILSaVzoHMKi8PSKuoU4ur8arvyzHITBL8APDpmTXkmK9A3pNTexum+eqGLg3vzl+u3bZUZmz4SvTAl44b07Q+XL2xVtgjcXTyzLc1taguL86xjEy4Fvrz6aZcNn/6819rSrte9sLa+2mjTzs+nsllsjUarMbrTvPqGWs5raxbPLirJdzQ3taz09xl2i8Pm6OobakWFxXn22XnpJgh+AXg0BM4JzHMZ6vKziYOJ4n7WMXcxVzy36bmfBSaCR6IPFqcUS/b8Y888dYuab+Npkye1kdZV5VVZZl7K9C1JLXFYsm3JYam1tNd9UFGr4Jz56sz4u50Jz39/frg8We4uNhPX2g6yLeSJeMr60npZaXqp87EPjzmXZZRdmvLGlOT7f0oAeFB8Jvk0Ovg5tBhbGmvvZx2ptVSzfO/yHL6Y3+NAlYepKr+Ks2P5DpfWhlaWyzCXJlMHU1VZRhn/xvEbJvnx+aIl25bki0xEup6sdf3QdZO82Dwxi8MySK2lalWzinW3+c6Bznf8eyUnJkdclVfFcw50burtMwEAAAAAAAAAAPzVIPgFAAAAAAAAAAAAAAAAAAAAALokMZeoJeaS2vtdh8Pj6J0Dne97nQflxCcnJqhb1IKhc4dGhL8Vnth2ff8b+8dmXckKPPnpyVHPfv/sud6ue2jNoXEalYbrPcH7WtKppJF3mndg9YFJ1QXVDsPnDz836bVJSZ3HNUoNs7d7A8DDY2ZqqTYztbzvHsbl8vT+PsMemV741ab1E1qVLYInJj994Z/L1nZrLt8AACAASURBVPzZC9//9ythMfEXA7/c9MGoLz7Y2ute+NGXb45Tq1XcsaFTrp37/fioO81b++mrk4pK8h3nTn/27MvPv31bL1SplOiFAI8IsZlYLTYTq+93HQ6Xo3cc4vjIBDqd+OTEGHWLmj/sqWGXJr8++c+QlQOrD4RmXMzwO/npyeELv134e2/XPbz28CitSssdPHlw/I0TN4K7muMc6FwY+lxogscIj+r215NOJ9kc+/DYzPjD8aGBcwJzzJ3MW3r9YADwUPAlfD1fwr/vXsjisMjK3eq+13lQTn560qa1oZU17uVx5aGLQ/88q5745IRl4tFE0/PfnreYtX5WWU/WCl0UWj3+5fGVlu6WqrqSOs6GeRvc7zbfPcS9xT3E/bY+p9fp6daZWzIioqFzEQQIAAAAAAAAAAB/fwh+AQAAAAAAAAAAAAAAAAAAAHhMGPQGOvXFqYCM3zN8W+pbpBw+p9XO2y57xpoZlzY/s/l5IqLV51dvaZsf8UOE95VdV6aELg49Pe7lcSlt1z+b8NlyIqKVB1duP/6v4yMKbxQOVLWoBHwxv8kj1CNpxvsz4hhMxp/7lqSWSLa+sHW5o79jynObnzvdh498G3myXFqVV+XEl/AbJr8+ObH92PT3pl/55olvfAsTC71a6luiBFKBpqfrRu+NditMLPQZ9cKo/+p1+juGFWRczLCUJ8s9bb1tM7oKfSH6Iyin508EAL2l1+vpu5/+FXAlNsKvobFOyuPxW708fLPeeuXDS0tWzX6BiOjY7qub2+b/tPdr7/2/bQufP3vJqaULV/3ZC59YNOIlIqLdG05u++KH/xuRlJrg2dKqEIhFkqbgwNFJb778YSyT+b92kJ59S/LK2/NfGuwVkPLNx7tO9eEj3yYl44a0QJ7jLBYZN6xc8k6HXvjGy+uvPL1sgm9yWvyghsa6KGOJrMe98MDRHW5JqfE+C+cuP6nTa+/YC6/ERlimZt708vQYnNFV6AvRH0E5PX8iAOgNg95AZ74+45sWmebdUtciMeIbKe197fOmvzc9ZtMzm+YTEa0+t3pX2/yoLVEDL22/NH7UC6MujF0+NqPt+mcTP1tMRLTy4MqfT35yclh+Qr67WqEW8CS8poGjBqZOe2daYvszYWl6qfin535a7BTglLH4h8UX+vCRb1OcUiypzKl04BvzGyf+c2Jy+7Fp70yLzY7OHlSQUDCwpaHlisBYoO3putd+ueacH5/vOWbpmPN6nZ5xp3ntP8f2fKf4lkbviS6pzK20z76SbW3uZJ7b86cCgN4wGAx0ZecVkxsnb8gaKxqNeCKezi3ErXHSa5MqNz2zyZWI6PWTr2e3zY87GCc9/cVpmylvTikNmhdU33b9q2lfuRMRvXLglZwLGy5YZFzMkLQ0tLDFZmKNb7hv3ZhlY2oYjP+1g5qiGs6GeRvcvcK86ud9Mq+0Dx/5NlX5VZyim0VCsYVYE/JsSIeAwgkrJ1Qln06WpUWlScNXh5dzhVxDd+s5Bzq3Poi60iLTRM01zWwrD6tWWy9b1YNYEwAAAAAAAAAA4FGG4BcAAAAAAAAAAAAAAAAAAACAx8TPr/08ITc2148r4ja7DHNJYrFZOvktudv2pdut9Xo9k8lk9vgle71ez9y6ZOs8ZZNSZD3QOo/JYuqLU4rdb568OVqr0bLnfDgn+mE+y73K+D3DgYjIaoBVAZPVMZNAZCrSmNiblFTlVTml/55uHTAzoKgna9YU1Qgubr04yXqgdfbY5WPTIn6I8L7T3Jsnb3oSEXmN9UpvrGo0Svgtwa2hokHMN+YrPcd4Fjr4OtTf6V4AeDDe+eilCfFJ0f5Cgag5wDf4JpvN0adlJrn9471nrfV6HZPJZPWiF+qYr7zzzJPNiiaRh6tXHpPJ1KdnJbufiTw6Wq1Rs9es+uzqw3yWe3UlNsKBiMjdxbOAxer4Y4QmUjO1nbVjcYE8x/nytQs20ybOK+zJmvKSAsHuXzdNdnfxyn7hmX+k/bT36zv2wjORR72IiEYNn5BWXVNhdPzsr25VNeUSsci4deTw8YU+nkPQCwEeon1v7BudE53jwxPxFG7BbqlMNlMnT5Y7b1+63dKgMzAZLEaP+6BBZ2Bue3HbE8pGpdDWy7aQyWTq5clyl8RjiSFajZY9a92suIf5LPcq82KmHRGRjaeNvPOZUGgi1Jg6mpZV5lQ6ZF7KtPKf7l/ckzVr5bX8qC1RYTZeNnmjXxydGbUlauC91MZk/XEmZ7J7fjYHgN479uEx66RTSTKhTKj1mexTx+KwDLkxueJdK3bx9Vo9g8lmdht00kav1TN2vbzLUVGr4DgPdW5mspiUE50jvrT9kqVWrWVO+MeEqof5LPcqNzZXSETkNMSpuX1gIRERT8zT23jatBbdLBIWJhYKPEZ6KPqqrsSjiSZERP7T/ev6ak8AAAAAAAAAAID+hOAXAAAAAAAAAAAAAAAAAAAAgMdA0qkku9zYXD+hTFi3bNeyPRJLiYqISN2qvrTl2S1PqZpVIr6E39jT9VTNKpGxlXHl0p1Lf+WL+VoiopqimujNCza/mBGVEahRaq5xeJx7fln18NrDI3oz3yXIpch/ur+8u3k18hoTIiKZjazLF8gkFpK6qrwqp6q8KhMi6lHwy6H3D00yGAyM2etnn+tubnVBtRURUV1pnWTD3A3LNEoNv23s2r5r5Drc9cb8L+ZHsDisHr9kCAA9dzbqmF18UrS/1NikdvPnv+6xMLNSERG1KlsuLntj7tOKlmaRWGTc416oaGkWWZhbV2767MABsUiiJSKSlxRcXfr6nKVXrkUEqlTKGC6Xd8+98OOv3upVLwzwDS6aMm52t72wpKzQhIjI2sK2tqtxc1PLugJ5jnOBPFdGRD0KfvnoqzcnGwwGxvuvfXq2u7lFxXlWRERllSXGi1ZOW65Utf7ZCw+d2E2BfiE3/vXexgscNge9EOABu3X2lnVOdI6P0ERYv2z3sl8l5hI1EZG6VR3z4+IfZyqblUK+Mb+pp+spm5VCqY20eumOpUd5Ip6OiKhWXhu3acGmZ9Mi0vymvTMtnsO99zPhkQ+OBPVmvkuQS4lvuG9Jd/Nq5DUyIiKZbddnQmNL44bKnEqqyquSElGPgl8OrT0U9v/PhFG9qbm9sswycWVupR2Lw9J6jfUqvdd1AODucmNzBUmnkmRSG6l66c6leQJjgZ6ISKvWVu5YvsNRUadgi83Fmp6up6hTsM2dzZXPbX4ux4hvZCAiaqpqqtzw5Ab3+N/iTcNeCqticVj3XO+5786Z92a+c6Czwj3EvaW7eTWFNVwiIlN7U3VX4zJbmaroZpGwurDaqK+CX+pK69gFiQUiI4GR3m+aX0Nf7AkAAAAAAAAAANDfEPwCAAAAAAAAAAAAAAAAAAAA8Bi4efLmICKiIU8MiWkLfSEiMuIb6Ue/OPrSkXVHnuntmlNXT41oC30hIjJ1MG2x8bLJKbpZNKjwZqGJ23C36nutN+VcSkhv7+lJ8Iu6RW1ERMQT8VRdjXMFXBURkbJZye3Jnhc2XPApzyp3G7t87HEzJ7NuX6xTNiuFREQJvyWEWQ+0zh6/cvxlC1eLpoyLGdaRmyIn5l7L9T/64dHWOR/NudqT/QGgd85GHfMmIpo6fk5MW+gLERGfJ9AvenLFxU++fXdBb9d8bdnaC22hL0RE9rZOLQPcBmXfSk/0TkqLNwnyD73nXhh55XSvgl+IiHoS/NLS2sIlIhIKxV32Qj5fqCIiUrQ08Xqy54+7v/LJyc9we37+ymMOdi7d9kJFa7OAiOjE2QNhHq5eWcueff2ys4N705XYCJtt+76bGH8z2v8/373Xsub1z9ELAR6wmydvehIRBc4KjG8LfSH640w4ZumYmMNrDs/p7Zrhq8MvtYW+EBGZ2Ju02g2yyytILBgoT5JLXYJcugyZ6onk08m9Cn4horieBL+oWlR/nAmFvC7DDnp7JozcFOlZll7mPO7lcWdMHUxbe1NwG3WLmnlozaGJep2eFTAj4Gr7MzsAPFg3T9yUEhGFLAypagt9ISJiG7EN41aMq9jzjz3OvV0z/K3w8rbQFyIisblY5zrctSk9Mt24IqeCa+Npc8/f6ZifY3oV/EJE1JPgF5VCxSQi4oq4uq7GeaI/AgyVTcp7T63ppfjD8TKD3kCeYz3rjQRGCAEEAAAAAAAAAIDHAoJfAAAAAAAAAAAAAAAAAAAAAB4DdcV1lkRE7qHuxZ3HBo0bVHp0/VH97XfdGduIrXLwdajvfF1kKmokIlLUKnoUFnAn62LXfX4/9/eFktQSybUD18JsB9lmjnphVGaPbjIQg4hIaCqseeGnF46zOCwDEVHAzIAisZn42P439y9O/z09UN2qjjHiG/XqzwQAuldaXmRJRDQ8cPRtvXDMiMml//nu/V5974w4XJWP55DbeqGJzKyJiKiuvua+emHkbymf3c/9fSE9+5bk8H/3jhvo7pP57LyXetQLDQYDg4hIJjWr+e7fe49z2BwDEdG0ifMKTU0sjq75ZOVzl2MjhrYqW2L4PAF6IcADVCOvMScich/hXtp5zHOMZzmDyejdmZDLVtv72Dd0vi4yEzUTESnqFD0KTrmTdbHrNtzP/X2hNL1UHLMvZpSdj11O6OLQnHtZQ6fRMfa8umdibVGttf1g++ypq6feeNB1AsD/VORW8IiInAOcbwtHcQpwamWymL1az0hgpDd3Mb8tSEpiIdEQEbU2tt5XcMq62HVp93P/X4Ver6fk08lSIqKguUF1/V0PAAAAAAAAAABAX+ndv0gCAAAAAAAAAAAAAAAAAAAAwF+SRqXhEhGZ2pve9mIbi8MycHic1t6sx+Fxuvxt5UwW00BEpNfpGfdS58NmJDBSExEpm5VdvoSsalFxiYh4Il63v4396PqjU1hslnb2h7PP93R/Do+jJCKy97HPbQt9aeMR6lElMBY06NQ6o4KEAtOergkAPadS//Edt7N2vK0XctgcA5fH71Uv5HK77hUsJktPRKTX6x7JXijgC1RERApFU5e9sLX1j6AGoUCs7G6tT797L5zNYmvXrPrsXE/353H5KiKiQQN8c9pCX9oEB46ukoilDRqN2uhmynX0QoAHTKPUGBERyexkXZ4JjfhG3X7v27vLmfCPPqjTP5I/q8wVcP84EyqURl2N9/JMOI7JZmpnfzj793upRafRMXa9smti8a1iNzsfu+xFGxedYzAfyb8+AP421C1qJhGR2Fys7TzGZDGJJ+Lddv1uuEKurqvr7f7/8b2U+dBxhVw9EZGqWdVlMI2yWckkIuKJeV0+34OWHpUuaq5p5lh5WLXaeNl0238BAAAAAAAAAAD+Ltj9XQAAAAAAAAAAAAAAAAAAAAAAPHxsLltFRFQjrxEIpIKG9mM6jY6hUWr4LBGruX+qu93htYdH9Ga+S5BLkf90f3l380ztTWuJiOpK62RdjTdWNsqIiMxdzGu7W6u+rN5Sq9Zyv5/z/cquxtMi0oLXD1sfbDXAKmf57uVHiIgkFpLa+rJ6a66Q2+VL1W3BMOpWNX6uB+AhMDLiqoiIissKBcYSWYdeqNFqGCplK58tFD8yvfDjr97qVS8M8A0umjJudre90NbasZaIqKyyxKSr8aqaChkRkZO9a113a1VUllqqNSruwpen/KOr8YvR54LDZnsHu7t4Zm/54uARIiJzU8va8soSa6FA1OULvTwuT9lARK3KFk53+wNA73C4HDURUV1xnUBgLGhsP6bT6BjqVjWPJ+Yp+qe62x354EhQb+a7BLmU+Ib7lnQ3z9TetI6IqK6k6zNhQ0WDMRGRuYt5fXdr1ZXWWWhVWqPvZn33YlfjKedSAlPOpQTaeNrkLd259FT7MY1Kw9z9yu6JxbeK3Rz8HLIWbVh0vnM4IAA8eEZ8Iz0RUVNVE5sr5Graj+l1elI2K9lCE6Gm67v73rnvzpn3Zr5zoLPCPcT9toCvzkwdTdv+naDLEKy6kjouEZGZo5m6N/vfq8SjiTIiIv8Z/t2eQQEAAAAAAAAAAP5O8AMiAAAAAAAAAAAAAAAAAAAAAI8BE1uTysaKRsvsK9l29j72HcIOUiNSbQx6A7O/autKyrmUkN7e05Pgl4FjBhZF/xxN5ZnlTnqdnpis/z12c00zp1Zea8tiszSeYzzLulvLKdApVavS3vbzN01VTbKaohp7iYWk0sTepNzC1aKybczR37GwKKloUI285rYX91QtKpaiViEjIrJ0s2zsPA4A98/G0r6iqrrc8lr8RbtBA/w69MLfr56x0Rv0j1QvjLxyulfBL0REPQl+CR02rujXYzspOy/dSafTEov1v1ZWW19tVFxWaMdmszUjh48v7W4tP++hKWqN+raAluqaCllxWaG9uallpa21Y7mzg1tF29hgr4CCW+mJg4pLC80639fSqmDV1dfKiIhcHT0aOo8DwP0xsTepaihvMM++mm1jO8i2w3kj/fd0q0ftTJh8OrlXwS9EFNeT4JcBowcUX9l9hUrTS+07nwkVtQpOTWGNNYvD0g4YNaC8u7VchrpkaNW3nwkbKxql1YXVNsZWxtWmDqaVFq4WVe3H1a1q5q4VuyaXppe6OA1xynh2w7MX2tcBAA+PhZuFsiq/ipefkC8wczLrcN4oSCjg63X6/iqtSzE/x/Qq+IWIqCfBL67DXBVERAWJBSK9Xk9M5v96kLJJySxNL+WzuWyD4xDHbte6X/Vl9ez8+HyxkcBI7zfND2dAAAAAAAAAAAB4rCD4BQAAAAAAAAAAAAAAAAAAAOAx4DvVN7UgscAn8VhicODcwGyJuURN9McLp5e2XRrZ3/V1ti523ecPY137wfb15i7mBVV5VU5nvjozJPyt8MS2sRP/PhGq0+g4LkEuSQKpoMNvd8+PzzchInIOdK5tu7bg6wURXe0R8UOE95VdV+ztfOxy5/173pX2Y8PnD8+KOxQ3qvhW8cDUiNSEQeMG/fky8fGPjwdr1VqumaNZkbmzueJBPTMA/M+ksTNSk1KvD/7vhcPBT0x+OtvM1FJNRNSqbGHu+XXzqP6ur7PI31I+exjreg/0r3eyd8svkOc4b9j26ZB/LlvzZy/88od1oVqthjNk8PCbxhJZh15441asCRGRv8+wP3vhp2s3d9kLf9r7tff+37bZew3wzV335leX24/Nnb4o6+jp/aPTspI8f48+mzgmZNKfYVufb1wbotaouPa2zkWO9q7ohQAPmO9U34z86/le8UfiAwNmB+SJzcR/ngkv/nQxuL/r62xd7LoND2NdO2+7Rgs3i6LKnEqHc9+eGzz59cnJbWMnPz05TKfRcVyHu6YIjAXa9vcVJhbKiIgchzjWtV2b/+X8S13tEbUlauCl7Zds7AfbF8z5aM619mPqFjVzx/IdU8uzyh1dglzSFnyzIBKhLwB9x2+qX33q+VRp9N5oc+8J3k18CV9PRKRVaxmRmyIt+7u+ztbFrkt7GOuaO5trHPwcFEU3i4TRe6JNQheH/nnGO7/hvLlWpWUOnjy4jivkGtrfV55dbkREZOVupX5QtcQfjpca9AbyCvOqN+IbGbq/AwAAAAAAAAAA4O8DwS8AAAAAAAAAAAAAAAAAAAAAjwG/aX7y5DPJSfnX831/ePqHJQ6DHTKZbKa++FaxG5vHVnFF3GZi0GPxctX0d6ef3/vPvQuuH7o+Tn5L7iizkdVU5VVZVxdWOwhlwrpp70y77eXd3a/sXkJ0/4E0AqlAM/6V8adOfXFqzuG1h5+5tu9altBE2FyVX2VdK6+1MxIYtUx7b9q5+9kDAO5sctgs+YVL/01KTL7m+/w/Zy7xHuiXxWKx9WlZSa5cI55KKBA1MxiMx6IXvr5i3fm3P1y+8NiZX8anZSU5WlnY1hTIc23kJfkOUmOT2jdWfHBbL3xj3ZIXie4/kMZYItMsXbjq1Hdb/z3n469WP3Po+O4sqbFJc6E817qkvMiOzxO0vLHig7P3swcAdM13im/prTO3UnOv5Q764ekfFjj4OeQwWUy9PFnuzOFx1DwRT/G49MHp707/fc8/9syLPRA7Sp4st5PZyuoqcystq/Kr7IQmwvpp70y71vmenSt2LiC6/0Ca/W/tH1ueVe5oxDdSCk2Ezcc+OhbUeY5LkEuJb7hvyf3sAwBdcwt2a/GZ7FN368wt2canNrp5hHo0MtlMQ+61XDFXwNUJZUItg8Ho7zL7xLR3ppXuWL7DJeKHCKv8hHyhmYOZqjSjlF98q1gotZGqJ/xzQmXne7Ys3OJGdHsgTW5sriDxaKKUiEitVDOJiOrL6rkH3z1o0zZn3ifzSjuvp9frKflMsoyIaOicoXWdxwEAAAAAAAAAAP7uEPwCAAAAAAAAAAAAAAAAAAAA8JhY+O3Cc6c+P1WbcTHDNyc2x8+IZ6S087HLmrFmxqXvZn33slAmfCxesLIfbF//3Obndp/9+mxoeVa5c0V2hQtXyG12H+GeMHX11KvGVsaqh7l/4OzAQomFZM/FrRdDKnIrnLRpWi5XyFW4BLncnPjaxGhLV0vFw9wf4HH3n7Wbz377079qrsZG+l2/Ge3H4/JbvQYMzl79ykcXF6yY/LKxsbC+v2vsC94D/eu/+XjXro3b/xOak5/ukluQ6Srki5qHBYyKf23Z2quW5tYPtRfOmPxUgbmZ1e7dv/4QkleY5aTWqLgCvkgR4Bt8c8Vzq6NdHN2bH+b+AI+zZ756JurMV2fq0qPSB+VE5/hw+JxWh8EOedPfnx7z7cxvnxcKhQ39XWNfsPO2a3z+x+cPnP3m7LCy9DLHsswyJ56IpxgwakBS+JvhcRJLyUPrg83VzRIiInWrmnfrzK3bQl/+vzgEvwA8PDPXzSwzczRT3ThxwyTpVJKMJ+bp3EPcmya9Nqni6+lfexgbG6v7u8a+YO5srlm6Y2nuhY0XLAoSCkQF8QUioUyo9Z/hXzvulXGVQqlQ39O1aopqjNIi06Ttr7U2tLI6Xbst+CXj9wxRU1UTx8rDqtXGy+ahnkEBAAAAAAAAAAAeRQyD4bEI5QcAAAAAAAAAAAAAAAAAAIC/OCsPqwMv7X2psL/r+DsqvFko27l854t23nbpS7YtOdnf9QA8CJsXbnYszyp/qr/reJDcXTwP/PjloYL+ruPvKjktQfbamsVLvTx80zd8+vOJ/q4H4H4te2OuU3Ze+t+qDxIRWbpZHl+xbwXOhA+BPFluvH3p9mftfe2zX/jxhbP9XQ/Ag7DpmU2OFTkVM/q7jgdNIBWUrj63+rEI7uxrlXmVRpvmb3IbMHJA49NfPF3c3/UAPAifTfxM1lLfYtPfdQAAAAAAAAAAQNeY/V0AAAAAAAAAAAAAAAAAAAAAAPSNqvwqoV7X8Zd1tza0sk9/fjqMiMh9hHt2vxQGANCHCuW5Qp1O2+FaY1MD+7uf/jWOiGhYwMisfikMAKCPVBdWC247Eza2sk99fmoUEZHHCI/cfikMAKAPNVQ0sPX6jr1Q3aJmnP7itBUR0YDRAxr7pTAAAAAAAAAAAAB47LD7uwAAAAAAAAAAAAAAAAAAAAAA6BuRmyMDChIKPC1cLeQCqaC5taFVWJFd4ahsVoot3CzyRj43MrO/awQAeNi27fsuMCnluqeTg1uRsUSmaGyqF+YVZjk2K5rEzo7ueQvmLEMvBIC/tagtUb751/M9LN0sSwQygaKlvkVYnlVup2xSiqw8rApHPDsip79rBAB42K7uuWqSEZVhbDfYrkVkKtIoahTsoqQiUXNNM9tpiFOz3zQ/BL8AAAAAAAAAAABAn0DwCwAAAAAAAAAAAAAAAAAAAMBjwi3YraBWXmtRkV3hpFaqeUwGUy80EdZ5hnkmTHljSgKDyejvEgEAHrog/9CCkrIii9yCTGelSsljMhl6mbFp3cjhExJeffG9eCaT2d8lAgA8VG7BbvKaohqzsswyB41Sw2MwGXqRqah+0PhBSZNWTUrCmRAAHgduw9wUlbmVvMLEQqGyWclispgktZGqAmYG1Ix8fmQNg4FeCAAAAAAAAAAAAH0DwS8AAAAAAAAAAAAAAAAAAAAAj4mAmQFFATMDivq7DgCA/jRt4rzCaRPnFfZ3HQAA/cV/un+x/3T/4v6uAwCgP3mM9FB4jPRQ9HcdAAAAAAAAAAAAAPjVJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB9DMEvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH0MwS8AAAAAAAAAAAAAAAAAAAAA0OfWD1v/1oZ5G57u7zoAAB5FYbO9Vy9aOW1+f9cBANBf1g9bv3LjUxtn9XcdAAB9Yf2w9V5bX9jq1N91AAAAAAAAAAAAQP9g93cBAAAAAAAAAAAAAAAAAAAAAAB/R03VTUYn/n0itKaoxlJRq5BplBoe24it4kv5jW7Bbmlhy8OSBVKB5m5rGPQG2vTMpier8qsciYjev/z+F2wjtqH9nAsbLvjkxuW6NVY0mqlaVALSE4Mn4TVZuFgUj3phVJxTgFPdw3xOAIB7pdFqGHsPbvGMvHzKr7ahRqZRq7gioaTJwc6leMHcpXFD/UbUtJ8fff13i8jL/3XPyElxqm+olSpVrXw+T9DiaOcqf3rWC3Ghw8ZV9NezAAA8CMc+OhZ48+TN4URE09+ffnTIjCHFXc1rqm4yOv/def/CG4UuijqFhMFgEN+Y32ThalH21GdPXeRwOfq+rRwA4O7qy+rZKedSJDnXckS18lquok7B5vA4egtXC2XgrMDawVMGN3W+pzilmJcWmSYuSCgQNZQ3cJRNShZfwtfZedu1jFg0otp+sL2yq73kyXLe5R2XzYpTi4WqZhVTIBVoXYe5NoetCKuUWEh0D/9pAQAAAAAAAAAAegfBLwAAAAAAAAAAAAAAAAAAAAAAD0FjRSMvNzbXV2YjK7PxtMnlSXgt6hY1McZu5gAAIABJREFUtzyr3DHht4SwzIuZvst2L9srNhOr77TG6S9PD6kuqHZgsphavU7f5c/6ZF7K9GptahWZOpiW8Y35zQwGg+pK60wLEgp8Cm4UDJr02qQjw54clv/wnhQA4N689v6i6enZtwaKhOKmQR6+WTweX11SXmSenBbvk/LxDa9Vy9cenDphblHb/A3bPplYXlliY2FmXe41wDeLx+Wri0sLLdKykjw/+GzVgCULXj0+f/aLWf35TAAA9yrrSpZ50qmkIBaHpdFpdJw7zStMLJT98vYvTyiblEILVwu5nbddoV6nZzZVNUkKbxS6qVvVVxD8AgCPmuifo02uH7xuJrGQaOwH2ytEJiJtQ0UDJycmR3Ik6Yiw8GZhzfR3p3cI8Tv56UnriuwKvoWrhdJ9hHuTEd9IX5FTwcu8nCnJjs6WPLH2CXnnwJjUC6mi3/7vN3u9Xs9wGerSZGJnoq4pquEmnU6S5cbmip//8fl8EzuTuwawAgAAAAAAAAAA9DUEvwAAAAAAAAAAAAAAAAAAAAAAPARWHlZN70S88y2Hd/uLt9uXbp8qT5Z7RW2O8puxZkZcV/cXJBTIEo4mjB4wekBcYWKhZ2tjq6SreUu2LznEE/Fu+63l8b/FO/73P/998srOK2MR/AIAj5qL0ees0rNvDTSRmVdv/+bobonYWNs29uOer31+ObJtyq/Hd4W0D34ZNmRkWtjI8JM+nkPq26+1Y/8Grz0HN0/bc3DLpJnhz+TweQIEHgDAX4pKoWKd/OTkBJmtrEJsLm4oTCwc2NW81sZW9sH3D07VqrScef+ed8grzKtDSIJWrWWw2CxD31QNANBzdoPsWj1GeBS4Bbu1tL9enlVetWPZDpfEo4mmvuG+DQ6+Dsq2Me8J3g1zPpxTYu5i3iEsNeFIgvHJT0/anv7ytI3XOK8sthHbQESkUWoYpz47ZaPX6RmzPpjVIRQm8Vii5MS/T9id/PSk1aINi+QP+3kBAAAAAAAAAAB6A8EvAAAAAAAAAAAAAAAAAAAAAI+omJ9jXBOPJwY2VTWZqpVqnhHPSCkyFdW6DnfNmPLGlJtt89J/T7e8cezGoPLscofWxlaxXqvn8MS8Rjsfu5zwN8NjjK2MVe3XjfghwvvKritTQheHnja2Mm6K2RcT0lDeYMlkM7U2A21yZ6+fHSmxlKgyL2VaRP0YFVpTVGNn0BuY5s7mRdPemXbBdpBtY/v1Nszb8HRNUY39O1HvfHX84+PB+dfzvZQKpYgn4jW5DndNnf7u9GtGfKMevYSvVWsZ578/75t1Jcu7qbrJ1KA3MEUmotoBowckT141+QaTxbynz6g/sDgsA4vT9Yu3A0cPzJQny73qy+plXY1r1VrG0Y+OThNIBfUz1828+u0T33reaZ+uQl+IiAJnBxae/easSlGn6HIPgL+6X4/tdDt14XBAdW2lmVKl5PG4/FYTqWndUP/QjH+8+O6NtnmXr12wPHXhsHduQaZDU3OjWKvVcEQiSaOXh2/Oq0vfj7Y0t+7QI3/a+7X3/t+2hc+fveSUpZlN88Hju0Iqqsss2Sy21sN1UM57r30aaWFmpboaF2mx85eNI+WlBXZ6vZ7pZO9auOqldRc83X069MhFK6fNLy4tsD/5c+yXn29cG5KYHOulaGkWiYTipkC/kNQ3VnwQ09OgErVaxdiy+yu/mPjfB9XUVZkZ9HqmTGpaOyIoLPmVF95OZLE6/khgTz+j/lBYnCclInJ3HljYPvSFiGjGpCezfzmybUpLS7Og/fV/LluT2NVaz89fmXbi7K8j6htrZfE3o81HDh9f0dU8gL+b2AOxzglHEnwbKxtNNEoNj8PntIpNxQ1uI9yyJ/1z0q22eZmXM80TjyUOLM8st21tbBXrNDo2X8Jvtve1z5/y+pTrEktJhz4YtSVq4KXtl8aPemHUBWMrY0X03uig+rJ6MxabpbMZZJM/64NZlyXmEnXW1SyzqC1Rw6sLqq0NegPTwtWieNo70y7ZeNo0tV9v41MbZ1UXVNu+G/XuDyc+ORGUG5vroWpWiXhiXrNbiFvG1NVT43tzVozYFOGdeTFzYFNVk4ler2eIzcT1A8cMTJ346sRbnc+KPf2M+tuRD44EK+oVkuc+eW5/5ObIoXeaF7k50ltRq5AGLwj+vXPoCxFRW/gBwN9RyrkUceyvsSa18lquslnJ4ol5Opm1TO0Z5tkw4tkRdW3zipKKeDdP3pTKk+TCpuomtlatZYpMRRq3YLemsS+NrRJKhR36TdzBOOnpL07bTHlzSqnEUqK5vP2yeWVeJY9txDa4BLk0TX17arnAWKCX35LzojZHWZSmlwp0Wh3ZD7ZXTF09tdzUwVTTfr2tL2x1KkktEbx36b30iB8izNMi04wVtQq2yFSk9Z7gXT92+djqnn5XdVodXdt/TXbr7C1pbXEt16AzMKS2UpVvuG99yMKQWiazY8/r6WfUH9qHsLRn5WGlHjBqQMOts7dk+dfzhe2DX0IXh9Z2dU/ArICGK7uumNeX1RuVppdy2+7Jj88XtDS0sC1cLZSd9xvyxJDGmH0xyvz4fHGNvIZjat/xzw0AAAAAAAAAAKA/MbufAgAAAAAAAAAAAAAAAAAAAAB97ey3Z33PfXdudlNVk6mNp03OwNEDr1sPtM7VarSczEuZPu3nxh+O9y28WegpsZDUugS53HINdr3BE/MUWZezhm59YeuC5ppmTld75Mbmup36/NRcrpDb6hbsdlNkIqorvFHovfsfu2elnE+xPvjuwWcMegPTdZhrsom9SUl5VrnrL6t/maPXdf1e7s7lO2fkXssdbOttm+se4p7IYDAo5WzKiO1Lt8806Lt/r02j1DB/eu6nOXG/xk3QKDVcRz/HdNdhrkkGg4Fx/eD18TtX7Jx6r5/RoyY7OtuViMjMyayqq/FjHx0LaaxotAh/M/wUV8DtMtilO8mnk221Ki1XYi7pcg+Av7Ifdnzmu3nXF7OrayvNBrh554QOC7vu4eqVp9Fq2NHXIzt8/4+d+cU3OS3B08zUsnbI4OG3hvqH3hAJxYqY+N+HvvL2/IW19dVGXe2RkBTj9t3Wf80VCkUtQf6hN2VS07rktHiftz54cVbkldM26794fYFOr2MG+oYk21k7FufkZ7it/fTVuTqdtqvl6LU1i5+4fiPax9PdJ2fYkJGJDAaDIi+fGvHqe8/O0uu7zztQqZTMl1Y/NffIqZ8nqFRKno/nkLQAv5CbBoOBcfT0/vGr1j7foUf25jPqDwPdvauJiHLyMxybmhs7JNb89/whVyIidxevgp6ux2Qy9UREbDanR+ERAH915zecH3TmqzNTGysbTWy9bfM9wzxv2HrZFmo1WnbG7xkdAuOuH7o+qCChwENiKal3He6a7j7C/RZPwlNk/J7h99MLP81V1Cq6Pitey3U5+enJ6TwRr9V9hHuKyFRUXxBf4Lln5Z6paZFplr++/etcg87AdAt2SzN1NC0ryyhz/uWtX6bf8az48s4p2dHZnvY+9gUeIz2SiUGG5FPJQTuX7wzv0VlRpWFufX7r9Gv7ro3WKDVGjkMcM91D3FMNegPF/hI7evcruyfc62fUn26evGmXeSnTL3B2YIz9YPuGu83Nic7xICIaPn94Vml6qfjct+e8j//reMDFbRc96svqeX1TMUDfi9kXIzu89rB9rbyW6zrMtSlwdmCNS6BLs1atZSSfTu4QdJnwW4Is42KGscxOpvKe6F3vG+5bJzQRahOOJJhuW7LNWdmk7PIdiqwrWeKD7xx04Bvzdb5TfeukNlJ1WkSadP/r+x0KEgr4u1/Z7azX6cl7knedjadNa/71fPG+1/c53Okc98ubv9jdOntL6jrMtcl/un8tg8EwRO+NNt+3ap+9wdB9z9NpdLRn5R6HCxsuWKsUKpbnaM8Gn8k+daQnRsTGCKuD7x60vdfP6FHDZP/xR8JkMXscXtU2l8n+3z1N1U1sIiKptVTd1T3GVsYaMhDlxuQK76tgAAAAAAAAAACAB4zd/RQAAAAAAAAAAAAAAAAAAAAA6GvpEem+DBZDt3Tn0p2mDqYt7cdqi2v57f973Mvjrlm6WZ5ncVgdXpI6//15n+i90ZMjfojwf2LtE3Gd9yjPLHebsWbGAb9pfnIiIr1OT5sXbH6yKr/K8dhHx+aOWDzi7NhlY9Pb5u9asWtyQWKBz7X919xCFobkdF6vsarRdMW+FduMrYxVRETKZuXlLc9ueboiu8I16scor7CXwtLu9szH/3U8uDK30tkt2C3x6c+fjmx7Hp1Gx9j76t5JBYkFPtF7ozPb9u7NZ3QnjRWN3PMbzgf2ZG4b74ne2QNGDqjs6XytWss49tGxECIiZbOSV5lTaddY2Whh5mhWFLYiLKnz/LTINKvUC6nDvcK8Yj3Helb0dJ/LOy97VOZWmmvVWnZDeYOsPLvchcPjKMetHHehp2sA/FVcijnnx2SydJs+O7DD3tapw/e/tFze4fu/dOFr11ycBpznsDkdeuSWXV8OPnBsx+Ste7/xX73y49jOe2Tnpbu/9cqHv0wOmyUnItLptPTiqtlPFhbnOX2+Ye3c+bNePPv8/JV/9rVVa5+fnJR6ffChE3vcnpr5/G09srqm0nTbN0e2WZpbq4iIFC1Nl5a9MW9+bkGm645fNgxa8syrqXd75s83rg0uKMpxHuofmvjxu99HtD2PRqthrF6/bFJS6vXBB47uyGzbuzef0Z1UVpdzf9z9Za96ZNjIqdkhQ8d02yOD/EOrgwNHx8fEXwxcuGLyiwPcvXN5XL66rKLYLL8w29nLwzf97X98fLkne0ZeOW1TW19tKhSImwL9Qqp7Uy/AX1XqhVRvJoupX7Zr2X4Te5PW9mN1pXUdAkDGvTwuwcLF4mLns2LEDxFeV3ZdCYvcHOkz/b3piZ33KE0vdX5i3RNHfKf4lhL9cVbc8uyWJypzK+2Prj86Y+TzIyNHLxmd1TZ/98rdYfnX873iDsY5D396eH7n9RorGmUv73t5n8RSoiIiUilUMVsWbZlVllnmdHHbxQFjlo7JvNszn/zkZGBFToWDe6h78lOfPnW5/Vnx51U/j82/nu917ZdrOW179+YzupPGqkajiI0Rfj2Z28Z7oneee4h7j3pRU3WT0dlvz443czQrnbxq8m3nwvY0Kg2zoaLBzEhg1Hpp26VBiccSgw16w58BFpd3XNaELAi5FLYiLP1u6wD8Fd04cUPGZDMNL+19KVdsLu4QjNlc08xq/9+jXhxV/cT/PVHGZHXMd4k9ECs989UZm5h9MbKxy8fWdN4jLy5P/MxXzxS4Bbu1EBHp9Xra+dJOR3mSXPjLW784TF41uTRgVsCf4UyH1hyyST2fKk09nyr2meTT1Hm9Wnkt9+VfXs4RSoV6IiKNUlO5fel2p/z4fFHCkQTjwNmBdw16itgUYV54o1DkN82vdvp708vbnkev09Nv636zST2fKr119lZj2969+YzupKWhhXll1xXTnsxt4xXm1WTnbafszT3ttTa2MrOvZIuJQeQ+wr25J/cUJBTwa4truUITodZmoI2q7bpQJtQSETWUN3QZaNZ2vbqo6+BHAAAAAAAAAACA/oLgFwAAAAAAAAAAAAAAAAAAAIBHFJPB1LON2LrO103sOr64auNp09jV/eNfGX8r7te4sOJbxc5EdFvwi91gu/S20BciIiaLSQNHD0ytyq9ylFhIqtuHvhAR+U71TS1ILPApyyqzIKLbQg0CZgZEt4W+EBHxRDzdqBdGXTr+8fGn0yLTBt8t+EWv01PmpcwhXCFX8dRnT0W2fzGZxWEZZn0wK+rrGV/7pEWmebUPnenpZ3QnTdVN3JRzKSE9mdtGai1t6GXwC7PzHg6+DqlP/ufJ8zwRr0PtrU2t7FOfn5oqNhNXP7H2ieje1JV5OXNASUrJwLb/FsgEddPennaiN+ExAH8lTCZDb2TEve37b2Nl3+H7P8DNu8seufTZVclHTv0clpqZ5ExEtwW/DBrgl9YW+kJExGKxKXTYuNTC4jwnM1OL6vahL0REk8bOSE1KvT44Oz/dkrrokVMnzo1uC30hIhIKxLqFc5dd/Hzj/82/FH3O527BLzqdlq5ejwoQ8IWKj97+NqJ9iA2HzTG8+89Pop5eNn7wxZhzg9qHzvT0M7qTmroqbuSV0yN6MreNpYVNQ0+CX4iI/vXexsgfdvyn5uip/ePib0b7t123MLMuHzdqaoqxRKbpbo3yyhLehq2fTCUiemrmc5GdA34A/s4YTIaebcTWd74us5F1eAHfeoD1bYEERERhL4WlXdt/LVSeLHcgotuCXxz8HLLaQl+I/jgreo7xzKzMrbSXWEpq2oe+EBH5TvXNyL+e71WWWWZORLcFvwTODrzeFvpCRMQVcnWjl4yOObr+6KzUC6ledwt+0ev0lB6VPpgr5LY8+cmTlzufFWeum3nl62lfe6VeSB3QPnSmp5/RnTRXN3OTTycH9WRuG6m1tLGnwS+H1x4epWnVcGd+M/MCg8m469zGikauQW9galo1vMSjiSGDpwyOC14QnMYVcnUJRxJcYvbFjLy88/I4E3uTJr9pfsW9qRngr4DJYhKTw7zt73mRqajDWcfU3rTL80PQk0H1kZsirfKu54m6Cn4ZMGpAQ1voCxERk8kkn0k+9fIkudDU0VTVPvSFiMhvql996vlUaXlWOa+r4JcRi0ZUtYW+EBFxeBxD2Iqwin2r9jkl/TdJdrfgF71eT4nHEk0EUoF22rvTytuH2DBZTAp/K/z/sXff8VFW6dvA7+l9MqmT3nshnZbQEkC6NAWlWBAbllVXXVdd1FV3xbKrgliwgIIgAtIhQGiBkJBCSO+9t5lMZjItM+8fvuGXRggKibjX95/1OWXO/TxuDk/8cK5pyD2ZK8s+nm3Re+3hPqPr6VJ2sZK3J9sOZ2wPmYPM8FuDX8xmM+17Y5+jRqlhh84Nbbf3tdffaI66Xc3a/8/9TkRE09dN7/NsPKI8NDwRz9RY0ijIPp7dJ5An82CmtKWihU9EpFVphxWEAwAAAAAAAAAAMFIQ/AIAAAAAAAAAAAAAAAAAAADwB+Q9wTsv/Zf0aZvv37zGNdw13y3crdp/in+ttYv1gMP6Bq2BeWLjidCS5JIAVbPK2qg38shM106OdnV0SQZbQ+4tb+jfZmFv0UlEZO1mPaDPysVKRUSkblUP+nn+U/2r+7eF3BVSc/Cdg2ZlvdJuqPutzKy0MmgNfKGlsH3/P/cPGsTCYrMMHY0d1759/Gae0fU4BTl1rE9Z//5wx/8WfDG/e33K+vfNJjM1lTaJc07kuF3++fKUzfdvXn3fB/ftdgpyuhZKsff1vVM0Co1s+fvLt3H4nAGHlIfyyNePHCSig6oWFbcivcLm/HfnY3a/untFzMqYhPgn43Nu+Y0BjKLo8Njcwyd+jlvzl4WPjAmMyh8TFFkdOy6+xtnBbcDPv06nZX6x7cOw1MykgNa2Zmu9Qcczm83X9khVp1I82Bqebr4D9kE7G4dOIiIXR48BfU4Obioiovb2lkH3yEnj4qv6t8VPmlvzwWfrzY3N9fKh7vdqXrqVTqfly6RW7Rs2vjboHslmsw3NLQ3X9sibeUbXE+AT0pG4N2fDcMffDJPJRH9/58n4y1cuRMyceve5JfNW5tlY2WlTM5Psvv3x0/hPt7x7T01dxYmnH/l75vU+Q9nRznnxjbWLFR1tlrHj4lNWLn3suqERAH82PhN9CtP2pMV+dt9nK9wj3YvcItzq/Cb51Vk5Ww04fG/QGZinPjsVVHyx2FfVpLIy6Azc3u+KGqVm0H1Q7iMfEOIktZd2EhHZuNkM6LNytlITEXW2dIoG+zz/Kf61/duCpgfV7X9rv1lRrxgyaKA6q9rSoDXwRVYixcF3D0YPNobFYRmVDUrLnuubeUbX4xjgqFqfsn7jcMffjIs/XPSqzKj0H3//+LO93wevx2QyMYiIzGYzw2u8V87C9Qsv9/TFPxmfZ9Aa2Cm7UiYn/5gcgeAX+LMJmh6kPPPlGflnyz7z9p/i3+Ee4a52j3LXSGwkAwJNug3dlPxjslXeqTxpW3UbT6/Rs8zm/8tC6Wzt5Ay2hqO/44B3JKmd1EhEZO9jP2DfsJBbGImIOpo6Bv08z7GemsHaGEwGNZU18Ye4XWoqbeLqOnUsmYNMf+qzU4Puj2wu29xW3cbrub6ZZ3Q91q7WhvUp668b2HqrHfr3IXnxhWKpY6CjZu7Lcwe8X/enU+sYO57b4aKoV3Cjl0a3hs0L67N38kQ8c/y6+Poj7x9x2rd+n0vW4SyVpbOlvrWqlVueVi6x8bDRtpS38BmMoYO2AAAAAAAAAAAARhqCXwAAAAAAAAAAAAAAAAAAAAD+gOa9Mi9NKBN2ZSdkhxdfKI4sTiqOOvnpSbJ2s66OfyL+dMC0gMaesd8+9u2C+oJ6H4GFQOEU6FQilAnVLA6rm4io4ExBpKnbNOi3WfPFfF3/NiabaSIi4gl5A75pm8VmmYiITN0mZv8+IiJrV+sBB9vYXLaZI+Bo9Br9oAeAe6haVAIiIk27xjInIWfQUAMiIqPeeO1Q3c08oz8CBpNBch95p9xHniv3kbfteW3PyoP/Ojj98R8e30tEdOXQFZeS5JKIkLtCLvjG+jb/1nUkNhJ9yF0hdX6T/fZsvGfj6os/XJwRND2owt7XvvPW3Q3A6HrhiTfSZFLLrlPnj4SnZJyLvJR+NurLbR+Ri6N71ZoVz56ZPGHGtYOjz762ekFRaZ6vVCJT+HkHF1tIZWoOm9NNRJSUkhjV3d096N+jE4nEA/ZINpttIiISCoSD9P0a1tRt6h50j3R2dB+wR3K5PDOfL9R0damH3CNb2poERESKjjbLxKSjMdcbpzfor+2RN/OMRsPXOz4OTs1MipwQNSXt5affTulpnzl1Qa2fV9Cetc8veexQwu4pq+55PEdmYWXoP1/Z0c55+u+rltY2VDlPiJp6+a2XPz47sncAMLrmvjT3ikgm0l49djWk8HxhaOG5wrCE/yaQjbtNbfy6+Av+k/2vBbNsfXzrrNq8Wk+hTNjhFOxUJpKJND3vinmJeWE3867IYrPMREQ80ZDvioN+npWz1aDvilwht0un1gmHul9Vq4pPRKRuU8uuHr069nrjer8r3swzGmnKBiXv7Jaz02w9bWtmPj0zezhzxFbia888YGpAWf/+8AXhpSm7Uia3VbcNGSYGcCeasmZKq1AmNKbvS7fKPJBplbE/w4oYRM5BzpoZT89ocA1zvRbM8uNff3QpvVQqkcqlBq/xXiqxldjI4v66d6XvS7fuNnQPmvrBE/MGBG8yWUzz/+8bEJ7CZP/aZzIOntcpsZUY+7ex2CwSSARGTYdmyHMcmnYNi4hIUa/gJm9Pvm4wll6rv/beeTPP6I/g8IbD8oxfMqydAp00Kz9dWcXhccxDjdepdYzvn/7erS6/Thi5KLJ1zotzBv19P3pJtFJmLzNc+P6CTU1Ojag8vVxs5Wylm/PinFp1m5p9dstZvshSNODfDQAAAAAAAAAAwGhC8AsAAAAAAAAAAAAAAAAAAADAH1TcE3G5cU/E5XY0dvDyz+Q7FZ4r9ClPLw/Z98a+e+287bZYu1h35Z/Ol9cX1PvYethWPrrt0d1sLvvaYSlTt4nemfzOdQ/G3mqtVa1CR39HVe82o97IMHQZhGwue8DB4d6Esl9DFBz8HYof3froL8NdczjPaKj5HY0dvBMbT0QNdz0iouCZwcV+k/x+10Hh4BnB9fv/uV/XUtHi2tNWk1tjR0SUfTw7Jvt49qDBDu9MeuevRETLP1i+9UY1cAVck72ffWVxUrFt8cViR3tf+6LfUzPAH82aFc/mrlnxbG5TSwPv/KWTThdTE32v5F4O+dcnr9zr6e77lbODW9e55BP2RaV5vm7OnhVffLB7N5fLu7ZHdncbafbyqHEjVW9NXYXQ1yuozx6p1+sYWq1GyOXwhtwjLaSWOiIiX6/Aos/f/2nYe+RwntFQ85taGnhfbvvwpvbIuElziydGT73hHplx9ZIXEVFY8NjK/n1uLl5qS0ub1uaWBnl2fobVpPHT+xzsbVO0cJ99dfXS2voq59hx8SkIfYH/VVMfnVow9dGpBR3NHdzCs4UOBWcLPMsulwXufX3vgse3P/6DlbOVtuBcgV1tXq2nnZdd9drv1h7o/66YcyInYqTqbatpE/YPojPqjQy9Ri9g89gDgmR6E1r8+q7oFOhU9si3jxwZ7prDeUZDze9o7uCe2nQqbLjrEREFzwwu85no0zLUmKayJom+S89vLmt2fmvCW08NNubgOwcXHnznIEXfE31+zl/nZAmkAiNfyu/UdmjFPe/OvUlsJToiIpPRhL8fDn9K0UuildFLopUapYZZkV4hzD+dL809kSvb8cIOt3W71pVIbCTdVVeq+KWXSiUuoS7qBz57oJLF/r8cKpPJRJd3X7YZqXpVzSq2lXPf8LpuYzd1qbrYXAF38LSY/48v4ZuIiLzGe6lWfryyerhrDucZDTVfo9Qwk7YmWQ93PSKiwLhAlXOw802Fyhx896B9xv4MK+cQZ/WqT1ZVcYXcIUNftCot8/tnvnety6sTRi+Nvm7oSw+fGB+NT4xPVf/2n/72kxMRkVOQ05DvwAAAAAAAAAAAACMN/2EfAAAAAAAAAAAAAAAAAAAA4A9OKpfqxi0bVzZu2biyrU9sZVRkVITkJ+a7xD4QW9RU2mRJROQe6V7S+yAvEVFeYp7DSB78LDhT4OLo75jXuy37eLaz2WxmWDhYDBkC4B7h3srmsXVt1W2OBq2ByeFzhjwI199Qz2ioeaoWFS8nIWfizawlc5Apf2/wS2drJ8eoN3LZnP875Ozg69DiHul+dbDx1VerA7oN3Rz3CPdsYpBZaicd1kE1TbtGQkTEZDNv6nkC3EnsbOx1S+atLFvA90P3AAAgAElEQVQyb2XZc68/RFm5l8ecu5jgcv+StUUVVSUyIqKw4LElvUNfiIjOJp9wNHYbR2yPPJ9yytXXKyi3d9up84edzWYzQ27rMOTh1bCg6FYul6erqaty1Om0TB6Pf1M/00M9o6HmtbY38xKTjg4aRHU9cjtH5XCCX4zGX599u6JVOFh/V5daSETE5fL6HFBuaW3kPvvaA/fWN9Y4Tpk4M3n9Xz86fzP1AfwZSW2l+uil0ZXRS6Mrtz21jVF+uTyw4EyB08SVE0uby5otiIg8ojzK+78rFpwtkI/ou+LZAid7X/vC3m25J3MdzWYzQ+Ygax5qrmuYazubx9a1VLXIDToDk8O7yXfFIZ7RUPM6Wzp5V49evakgRZmDrONGwS8SW4nWc6xn3mB9jSWNjuo2tcze175SKBOq7X3tW3v6HHwdqsvTygPq8uusA6YF9PmzozKj0pqISCgTdtxMvQB3GqGF0BQYF9gZGBfYaTabKfdErqwstUwYOidU1VLVwiUi8o3xVfUOfSEiqsqsEhj1RsZI1VmWWia0crZS9m8zm8xk52k3ZFCK3Eeu44l4pvrCekG3oZtYHNZQwwcY6hkNNa9L2cVK3p5sezNryRxkhuEGv5jNZtr/z/0OWYezLF1DXdUrPl5RxRUMHfrS1dHF3LZum1tDUYNg3PJxLbOem/WbfhfXKDXMstQyiUAq6Pad5Kv+LZ8BAAAAAAAAAABwuyD4BQAAAAAAAAAAAAAAAAAAAOAPKONAhkv4vPBqBrPvubQuVZeQiIgj4BiIiKzdrJVERLW5tS5ElNEzrrWqVXjy05MzRq5iovRf0idGLowstbC30BERaTu1rHPfnJtMRBQ4LTB7qLlsLtvsN8kvPfdk7sSdL+6MX/ru0tMCicDYe0xTWZOos6WT7znWs5Vo+M9oKE5BTh3rU9a/f1M3OkzFycU2LiEu7Xwxv09ogb5Lz9z9990zyEwMB3+Hsp72yEWRlZGLIisH+6wNMza4dxm6OCs+XnG896Ht9tp2fmdbJ88lxEXZf86lHy951eXX+bA4LEPw9OBhf0s8wJ3gyMk9rrPiFlUxmcw+7Z3qDhEREZ8vNBAROTu5dxAR5Rdnu1KvPbK6tkL45bYPR3SPPJzw88R5M+4pkds66IiI1BoV64efv5xCRDR5wowh90gul2eeGD0t/cyFYxNf+/fT0//xwoeJErG0zx5ZUVUiam1v5keGTmglGv4zGkqAT0hH4t6cDTd1o8Pk6xlYXVpR6JVw9mD04rkrCm2s5deCsDZ9815Yp1olEQpE6ogx468FHjQ21/P+8trqZY3N9fbxk+YmvfrcexdvR20Ad4Irh684hc4Ore3/HqTt0Pa8BxmJiKxdrTuIiGpyapyI6FrAXFt1myDhk4SpI1YwEaXtTYuOWBBRIZVLdUREOrWOdfbrsxOIiILig/KHmsvmss0BUwOuZh/Pjv7p5Z8mL3l7yfn+71jNFc3CzpZOnkeURzvR8J/RUBwDHFXrU9ZvvKkbHQZ7H/vOVZ+uShysb+uTW6er29Sy6HuiMyMWRNT07hu3fNzV8vRy/8wDmZHhC8LLrJyttES/PsvTX56eQETkNc5ryFAvgDtR8YViofdEbw2D0ffnWdOuYRMRcfgcMxGRlZOVgYioMrNSFPtAbFvPOFWzinXkgyMOI1gyXdh2wTYgLkAlkolMREQGrYGRuDlRTkQ0Zs6Y9qHmstgsCl8Q3nrpx0u2B9454DD35bkN/QNSlA1KtkapYTn4/fpuOdxnNBRrV2vD+pT1g4ZS/V5ms5n2/mOvY05Cjsw9wr3z/v/cX32jmtQKNXPbk9vcm0qb+BNXTmye8fSMIUPCiIi0Ki2TL+kbkqjX6Bl7XtvjpFPrmDOemVHP4d34WQAAAAAAAAAAAIwkBL8AAAAAAAAAAAAAAAAAAAAA/AEdff/oooSPEwzWLtZ1EluJ0mw2U2NJo4uyXmlvYW/RGLEgopKIKGBqQIOls2VtXX6d7yeLP1kh95bXaJQaUUNhg4fYRtzGE/M6R6pmqa20dfP9m9e4hLoUMlnM7prsGh+NQiOT+8hLpz02LfdG8+9+/e7k1qpWu7LUsrCPF37sLfeSV4qsRJ1dyi5hR3OHZVtNm1PY3LDzPcEvw31Go+Xy7stjfnrppxArV6sasZW4gyfi6dTtanFjcaO7Tq0TiaxEbfNemXf696zRVNYk3fniztUye1mD1E7aJrISderUOl5bTZudok7hyGAyTJMemnSsJ4wH4M/ik6/eXbT5uw/0zo6uddaWdh1ms5nKKoucG5vrHOxsHBrmTl9SSUQ0afz0ekd7l9qi0lzfFU/MWunp5lvToVIIS8oLPK1kNm0ioXjE9kgba7vWNX9ZtCbYP6yQxWKb8oqyfJQd7TIvd7/Sh+57+oZ75MtPvX2xpq7CLj0rOez+x+/y8nTzqZJZWKk6VEphS1ujVV1DtdPMqXef6wl+Ge4zGi1rVz2XefnKhaCWtibbB56e/6i/d3CJUCjSVtdWyKtqy90YDIZ5xZK1Jzjs/zuY+9Kbaxc1NtfbW0gtFWazifH2Ry/G9P/cuElziydGT20a2bsBGHmH3zs89/h/jhus3awbJDaSDiJiNBQ1OCrqFHYyB1lT2LywaiIiv0l+TVauVvW1ubVeny75dKncV17XpegS1hXUuUlsJAq+mK8eqZqlcmn7Z/d/dr9bmFspk800VWVVeWjaNRb2fvYVUx6ZUnCj+fNfnX+5parFpiS5JPjjhR97yH3k1WIrsVqj1Ag6mjpkrVWtDhELIi55RHmkEw3/Gd1J/Cb5NYfODk3NOpI17otVX6xwDnYuY3FZ3XV5da7qNrXMysWqfvZfZ2fc+JMA7iw/v/azK4fPMTn4O2gs7C0MZCaqya4RNpY0Cuy87LR+k/w6iYhcw1y7HPwdNCXJJZIvVn/h4RzsrFG3q9kVaRViSydLnchSdMPAp1vFysVK99nyz7x9Y307WGyWuSS5RKJsUHI9ojw6oxZHDQju7G/6uunNTaVN/KtHr1qWppRKXENd1RIbiUGtULPba9u59fn1wtgHY5t6gl+G+4xGy8mNJ21zEnJkbC7bbOdtpz395Wmb/mMcfB20IbNCVD3XO1/Y6dpU2sS3sLfQm81mSvgkwbb/nMC4QJVzsLO25zptX5osdXeqtUuIi1psLTZ2dXSxSlNKJZp2DTt8QXjbxBUThwzdAQAAAAAAAAAAGA0IfgEAAAAAAAAAAAAAAAAAAAD4A4pcHHm26kqVR3tdu7yhuMGTyWIahRbCjvD54WfjnojL5PA5JiIiFodlXr1x9d5D/zo0qS6/zrMoqSiSJ+apvCZ4XZ3/t/nJny79dM1I1fzgFw8eOPD2gQnll8sDtWqtmC/mdwbfFXxh3t/mpTCYjBvO5/A5pke3Prrv9JenA/NP54fUFdR5dRu6uVwhVyOUCZWhs0OTxt479tq3jw/3GY2W4JnBhQatgdNS0eLUVt3m1K3v5rK4LJ3EVtIaND3o8vR10zMFFoLfdfDQ3sdeGRgXeKmhqMGlsaTRXd+lFzCZzG6+lK/yHOuZFbM6Js0z2rPtxp8EcGeZf9e9Z6/mpXvUN9bal5YXerFYbKNUYtExO27RmTUrn73C4/FNREQcNsf8wRtb9ny0+c1JhaW5XpfSzkaKRBJVdHjM1ecff+PiqnVzHhmpmv/79tb97296fWLG1ZRAtaZTLBZJOuMmzbnw/OPrLzGZzBvO5/H4ps/f/2nvtzs3Bp1PPhFcVJrnZTDquQK+UGMhtVTOmDL//OK5K67tkcN9RqNFZmFl+PLDn3/Y9M170Vl5ab7ZBRkBpm4Ti88Xavx9QgrvvfvB1KkT76rvPUfR0S4jIlJ2tMsSk44OCH0hIpLbOSoR/AL/C6KXRl+szKx0ba9pt60vqHdjsVndQplQFbkw8uK0x6Zlc3i93hU/XX3o0HuHxtfm1roXni0M5Uv4ap8Yn7y5L829/OnST1eMVM0Pfvbg0YP/Oji2NKXUV9epE/Ml/M4xc8akzn1xbtqw3hV5HNPab9YePvv1Wb+8U3kBdXl1Hka9kcMT8rqEVsKO8Hnhl6LviS7sGT/cZ3SnWbh+4WU7b7vWjP0ZYVVXqnxN3SamyFKkDJsXdmn2C7MzuELuHXlfAEOZ8siUxrKUMnFTSZOgIq1CwuKwTBI7iWHymsmNE+6b0M7isIiIiMli0or/rqg+8ckJu7LLZeLMA5lWIiuRMWRWSHv8E/HNG+/d6D1SNS//YHnNqc9O2eYl5lmo29RssZXYOHHlxOapj05tYTBuvOexOCxa+cnK6vR96RZZR7JkZallYoPWwBRIBd1SuVQfszqmKXx+uKJn/HCf0WhR1Ck4RERGvZGR+lPqgNAXIqLAuEBF7+AXZaOSQ0SkbFByk7cnDwh9ISKSOcgMvYNfnIOcu0qTS3UV6RVirUrL4gq5Jnsf+67ol6LbAuMCRzX8BgAAAAAAAAAA4HoYZrP5xqMAAAAAAAAAAAAAAAAAAAAARpm9r/2ux394vHK064CBNt6zcXlrVavL+pT17492LQA9Pl/5uVtDUcOy0a7jVvLxDNj15Yc/V4x2HXBzVj81776augqXxL05G0a7Fvjf8ugLS92Ly/L/VPsgEZHcW37giR1P4J3wDrJp2aZFLRUtTutT1m8c7Vrgf8/m+ze7NZY0LhjtOm41oUxY91LCS+2jXQcMtOXhLe61ubXC9Snr8248GmBkbJi5wVKj0DiOdh0AAAAAAAAAADC4G39NCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADcUgh+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhCH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGHs0S4AAAAAAAAAAAAAAAAAAAAAAO5sT+1+audo1wAA8Ee1beOhH0e7BgCA0bRu17p9o10DAMBIeeSbRypGuwYAAAAAAAAAAAC4szBHuwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA/zUIfgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYezRLgAAAAAAAAAAAAAAAAAAAADgf8mGGRseIyJ66cRLX4x2LX8ke17fE5OTkDOx59pzrGfWqk9XJfRcb7xn4/LWqlaXnuupa6cenPLIlIKRrhMGOvjuweiM/RlTe67dwt1yHvz8waM915+v/HxxY3GjV8917AOxR+OfjM8Z4TLhDnf36pjHiYj2b7vw+WjX8kfy9kcvxiQmHY3puY4YM/7KB29subZ3rn5q3n01dRXX9s4Hl607sHrZE9g7b2DpmmkPt7U32/Rcv7jurR9nxy+uJiKqa6gWrHxy9tO9xyfuzdkw0jXC/6YNMzc8QET0UsJLW0e7lj+SfW/sG3v16NWxPdde471yVn688kzP9aZlmxa1VLQ49VzHPRF3fNKDk4pHuMw7SntdO/+TRZ880rttfcr6jT3/fOH7C14nN56c3XNt425Tu27Xun0jWSP8+Xw07yMfIqLnDz2Pn89eEj5JsE3enmzbcz1m1pj2RW8uqu+53vLwFvfa3Fphz/X8V+fXRCyI6BjpOv+XbVu3zbU8rVzccz37r7Prxt4zVtFz/c7kd/yNOuO1L21+avdTxdau1oaRrhMAAAAAAAAAAP64EPwCAAAAAAAAAAAAAAAAAAAAAH8YbuFuORJbSYdToFPDYP3BM4MvEhE5BTu19LQZtAZm6u5Ur5KLJV4tVS0OXR1dUrPJzBTJRArXMNeiWc/PShVbi/scqmqvbeen7UnzLU8v91Q2KG21Kq2YyWKaJHaS5oCpAdnxT8ZnM1nMPmsbtAZmwicJ4c1lzXbtte12qhaVjdlkZk5cMfH4jGdmXL1VzyBtb5pb8cVij7bqNrmyQWln0Br4ls6Wtc/seWbHYOMbixvF6b+k+1ZmVnqqmlXWWrVWxOawDTIHWeOYOWMyY1fHDjg4WXi+0C4nIcenNrfWTaPQyPRdegFXyNXYuttWx6yOuew/xb9xuPW6R7rX6rv0F3VqHa/4QnFk/37/Kf75th62jS2VLXYNhQ3eN/c0AGA4xgRG5thY2Sn9fUIG3TvjYmdfICLy9w1p6d3+5baPQtKvJns3tTTYarrUQrPZxJCILTrcnb1qV937eGpY8Ni2wT6vpLxAsumbf8cWlxV4aHVdApFQrA70Cy36y6OvX5DbOuh+7/189cN/gn/c+/Wc6/UvmbcqYd3DL1/pudbptMy9R7Z7pWYkeVXXVTiqOpVSs8nEtJBaKkICI4ueWvO3VCuZjX6460+ZMDNT2dEmLCrLd+0dnENEJBZJDT3P8/KViyGqTqX0t9wjANx67pHuBVI7aYdToFPTYP1jZo9JJSJyCnRq7d2euDkxoDSl1EPRoLDWq/VCs9nMEEgFKjsvu7rJayZnuoW5KXqPV9Qr+Ol70z3L0srcFfUKa61KK2Yymd1Se2lr4LTA/GmPTcvr/x75W1SkV1hmHMjwaalssW2vbbfVdmjFRESvnn91E5vLNg/nM64eu+q47419i8hMjOCZwWlL/rnk0nDm8cV8Y8/zKr5YHNCl7JL07ncMcGzr6e8dugMAt09gXKDCwsHC4BTo1DVY/4QVE5qJiOx97K+9i3Ubuin3VK6kKKlIUl9QL1C1qDjmbjPDwt5C7xPj0zFlzZRWvoRvGuzz2uva2ac2nbIrTy8Xa1ValshSZPSe4K2KXxffJJKJBswxdZso80CmRcb+DEtFnYKr79KzxNZig2OgoyZ2dWyrg//vf0e8npqcGn5eYp6kIr1CrGxQcrQqLUsgFXQ7BztrYlbHtLiMcdH2n9NQ1MC9evSqRWNJI7+ptInf2drJISJ67cJreSw266bWD5oRpLT3s+9qLGnkl6WUSfr3j18+vqXb2M0ovlAsaalo4f/mGwUAAAAAAAAAgD8tBL8AAAAAAAAAAAAAAAAAAAAAwB9G6NzQnPD54dXX61/yzyUX+rfV5NTITm48uZDFYRls3G2qnIOdywxaA6e+oN4j92TuxIr0ioCHtzy83crZ6toBuZSfUvxSdqbM5Il4ajsvuyqxtbhDo9QIa3NqfS/+cHFWRXqF5yPfPLKfwWRcW6dL2cVJ25MWR0TEFXLVPBFPrVVpBxzq+r3Sf0mPaChs8GaymEaRpUhh0BqGPBh2ZsuZiIIzBeMEFgKlnZddlVAmVKtaVNK6vDrfU5tOuVVnVafd9+F9p3vPOfbRsZmKOoWDhb1Fo3OIcxGHzzG0VrXa1eTUBPz0t5/84p6IOzBYYMxgQu4KqQu5K6SuNrdWOljwy9S1U/OJiE59dioYwS8At8dd0+7Onh2/+Lp752vPvz9g7yQiunD5dFCnukPk7OBWJ5XI1Ewmw1zXWGNzJfdySNYb6UFPPvTS3sVzV5T3npNTkCl7+a3HVnZpNUIfz4Biua1jW2VNmUNK+rmoJ19a7rnx39t/cJA7Dzhc+1v4eAYUuzi6DwhwCAmI6BNwk1eUJfvq+/8sYrM5Bjdnz6pA3zGlWl0Xt7gs3+PMhWMTr+Sk+m/81/btjvYugx6U7u/pR17JJCJ6+6MXqX/wi1RiYex5nqufmueK4BeAP46weWH5oXNCa6/Xv+iNRamDtRecLfDr6ugS2bjZNAplQg2DwTC317ZblV8uD6xIrwiY9cKsw9FLoit7xqfuTvVO3p48lSfmqeXe8lqJjaREo9AIq7OrvZK2JsWVp5e7rflqzdHe75G/Rd7pPNfsY9ljGQyGWWQlUjDZzG6T0TTsNAJ1m5pz7KNj01lslrHb0M25mbUFUoGx53ltWrbJqX/wi0eUR7tHlAeCXwBGUNj8MIXPRB/N9fpnPjOzuX9bc0Uzd9/6fS5sHtvkEuKi8Rrn1anv0jMr0itEl368ZFtwtsBizZY15WJrcXefeeXNnG8f+9azS9nF8hznqbJ2tdbVF9QLMg9kWpWnlYvXfL2mXGzVd86ul3Y5FyUVScXWYqNPjI+KK+SamsuaeXmJebKCswUWy95bVuUb66u+dU/k/xz69yGHxuJGgZ2XndYnxkfFFXBNjSWN/MLzhdLii8XSu1+/u3rM7DGq3nOKkorEyTuSbRlMBskcZHoWh2XuNnT/po07cmGkkogodXeqbLDgl/gn41uIiJT1Sg6CXwAAAAAAAAAAYDAIfgEAAAAAAAAAAAAAAAAAAACAO5rQQqgfe+/YE1PWTMkVyoSGnnZ9l575zdpvFjYWN3od/eDoxBX/XXGqp8/O06595rMz945bNq6UyWJe+6zm8ubz36z9ZlVdfp3vhe8v+MY+EFvU08eX8g2zXpj1s0eUR5Odp516z+t7YnIScibe6vuZuHJiitBCeM49wr2toahBsuXhLY8NNd4pyKneb5LfzrB5YX1CH8oul1n9+PyPq4qSiqLyz+TnBUwNaOzp85nokxc8M/iQa6irovec01+eDjj39bl5574+d9fYe8aWcgXcQb/9HQD+HD57b8dukVDS3b/9wLFd7v/98p/37tjzVdziuSu+7t330eY3Z3RpNcK7Zy0/+eyjr2X0tL/67rq45LSzUR9ufmPyB29sSbgV9UWFTSxeu/K5nBuNk0pk+kVzVpxYfe/jORZSy2t/DnRpNcxn/r5qUWlFodfHX70T897rn5+8FXUBwJ/Lmq/XHOSJeAP2woz9GS4H3z1497lvzsX2Dn6x87RTzHp+1qHopdEVvd8jWypbkr9+5Ot7a3NqvZJ3JHtNXDmx9PfUFTQ9qNIj0qPBI9qjhS/md2+YueGB/gEsQ9nz+p7JRp2RN2bWmLTMg5kTfk8tAHBn4ov5pulPTa+PWhyl4Il45p52o97I2PHcDpfytHLxqc9O2d79+t19QvUO/fuQY5eyixX/ZHxD7AOxbT3tB/91UJ7xS4b1iY9P2C16c1F9T3tlZiW/KKlIauVipXts22NlXCH32lqpP6XKjn541PH8d+dtblfwS/CMYOWSt5bU2nra6nu3p+9Ltzj070NORz886hgYH1jE5rKv1eU32a/TNcy13DHAUcsVcM0fzfvIR9WsuqmQLAAAAAAAAAAAgFsFwS8AAAAAAAAAAAAAAAAAAAAARJRzIsdhz2t7Vjr4OxQ/uvXRXwYb88HsD9ZolBqLZ/Y885nMQabVd+mZJzedDK3MrPTsaOyw0Wl0IhabZZA5yBqjlkRdHnfvuPLhrN0TILLgtQU7w+eH9wnvqM2tlW55eMtjbuFuOQ9+/uDR3n1dyi728Y+PR5ZfLvdXt6ktiUEksZU0h84NzZj6yNT83mPNJjMlfp4YlHsyN6yzrdOyW9/N5Qq4GomdpDVoelD2lDVTCm72mf1RyH3knbNfmH2lfztXwDXFrIq5tPcfe70aixtde/dF3B1RNdhn2XrYqv0m+V3JOpI1qTKz0qV38AtXwDUN99/p7xEyM6TuZsbHro4tHqzdM9qzzWWMS355WnloycUS197BL3NenJMx2Jxpj07LT9ubFqNp11iWppTa9p4DMJjEpKOOb3/04kofz8DiLz74ad9gY5Y8PGWNskMh++GzI5vs7Zy0XVoN86vv/xOWlZfm2dLSaKPuUos4bI5BbufYuOCuZamL564Y1s/Z2x+9GJOYdDTmxXVv/Tg7fnGfvTO/OFu67uX7Hh8TGJnz37e3Hund16FSsjd/tyEq/eolf4Wy1ZKIQbbW8uaZUxekP7DsyT57p8lkom92fBJ8+sKxsHZFq6XBoOcKBEKNjZW8ZWrMrOzV9z5+x+6dRESDhb4QES2Ytazis+826BQdbZa923MKMmUV1SUeErGF8qk1f+uzj7zw5JtJyx+dEXo1Ly1I2dF+uncAy+3m5e7X+fQjr2T2bxfwhaZlCx9Ofve/L3uVVRS6DjYX4FbIS8yT735l9z2OgY5la79de2SwMR/O+XCFRqGxeGbvM19b2Fvo9F16ZuLniUGVGZXuygallU6tE7E4LIPMUdYcvTQ6s3fQyFD2vbFv7NWjV8cuXL9wX+ic0NrefXX5dZKvHvzqAfdI94IHPnugT/BRV0cX+8SnJ0JLU0p91G1qGRGZpXJpa9i8sKzJD03u825hNpnpzJYz/jnHc4I7WztlRr2RwxVyu6RyaVvwjOD8SQ9OGvRd5E4xWOgLEVHE3RHVRz88qlO3qS16t4fNC6sZbLyNm40mYEpAdubBzAkVmRVOvzf4xS3MTXHjUYO7tPOSR3laecDUtVNPmLpNjN9TB0BFeoVg65NbPbzGealWfrKyerAxnyz+xFvZqOQ8f+j5IpGlqNuoNzIu7bxkWZpcKm6tauWpFWo2h8cx2XnZacffN741MC6wczhrJ3ySYJu8Pdn2/v/cX+Ez0UfTu6+1qpWz8Z6NPoFxgYp7/nVPn9+h9Bo9I2lrknX+mXypol7BIyKzjZuNLnppdGvE3REdvceazWZK25NmkXEgw0pRp+AatAamQCrotnKx0oXNC2sPnx/eZ/ydROYgM8asimnv387mss2xD8Y2l6eVi6uvVot69zWXN3OqrlSJJHYSw8RVE9t69814akbz1aNXLfNO58nmvDSnoSdMpq2mjUtE5Bbupu4d+kJEFDQjSHX0w6PUpey6bWdXeofT9Ba5KFKZtDXJVlGv4Nbl1/FcQ121PX1yb7l+sDkAAAAAAAAAAACjgXnjIQAAAAAAAAAAAAAAAAAAAAB/fsEzgutFVqK2huIGz/badn7//txTufbqNrWVg69DqcxBpiUiUjYoBZd/vhxv1Bm59r72Ff6T/dOcAp1KlA1K+bEPjy098cmJMber3o7GDt7nqz6/P+tw1mQGg2H2iPbIdo90z9Fr9MKzX52dt/vvu2N7j9/96u5JSVuT5mg7tSLXUNcCvyl+l+U+8squji5x0fkiv9tV52hjcVgmIiIGk6fqURsAACAASURBVGEa7hwmm9lNRMRgDX/OHxWTzTT1/t9hzWH+OpbFZt3x9w+3X1zs7DpLC+u20opCz/rGmgF755mLxx3aFa3WPp7+JfZ2TloioqbmesH+Yzvj9Tod18vDvyJm7LTLft5BJY3NdfKNX//rns+3fnDb9s6mlgbe2heWrDh+ev9kJoNhDg8Znx0WHJ2j6VILt+76bP6bHzw/qff4tz58YfKOvVvmqDWdouCA8IKYcXGXPd38Kjo6lZLktNN/2r0z4cwBJ71ex7Oxsmvu3Z6UcsqViMjHM6CCxep7dtdKZqN3dnCrMRqNnPOXTjreijrKKovt/vP5W1HvffrauK93fBJUUl4gudnP4LA5v+6DzOHvgwA3KzAusFFsLW5vKGxwV9QrBuyF+Wfy7TpbOy0dAhzKLewtdEREHU0d/JRdKZMNWgPXwd+hOmBaQKZTkFO5ok5hc2TDkfmnNp0KvF31djR3cL9Y9cWSzAOZExhMhtlznGeeZ7RngU6tE5z+/PRde17fM773+D3/2DPh3Nfnpms7tUK3cLfigLiAK/Z+9tVdyi5x4flC79tV52jLTsh2MOqMPKlc2jrcOdfevUZxz2mrbhOc/uJ0nGOgY9mUR6YUjlYd8OfhHuneJXOU6cvTy8WdbZ2s/v2VmZWC9tp2rudYT5XIUtRNRKRuV7MSP0u013fpmW7hbuqoRVGtXuO8VE1lTfzdr+x2vbTzkux21atRaphbHt7icf6783YMJoOCZwS3B00PUnZ1dLEOvnvQ+dh/jtn1Hn/so2N2R94/4qRp17D9Jvt1RC6KbHUNc+3sbO1k5yXmSW9XnaONxWaZiYgYLEafoJbSlFIREZF7hHsnk9n3uAlfwjc5Bjh2GXVGRmVGpbCnXe4t1xERVV2pEum79H3CpvIS88REv4bC3JYbuQEmi2kmImKymeYbjQUAAAAAAAAAABgtty01GQAAAAAAAAAAAAAAAAAAAOBO4z3BOyfrcNbk5B+TA+b8dU5m777MA5nBRETBM4Nzetqkcqn2sW2PfW7va9/n28o7mju4Xz341YrUn1OnxD4UmyeQCIy3uta96/fGdTR2yMPnh59d8NqC1J52baeW9e2j3y7KO5U3ofB8YZHfJL8mIqKSiyVhPDGv8+ndT38jsOhbT1tNm2A4a9bm1kov7bwUcjN1jl8+PtspyGnUviE9fV96CBGRU5BT+XDGG/VGRsnFkmAiIp8JPsOa80elalFxq69W+xIRBUwLGNa95JzIcehs7bTmiXmdXuO8Wm5vhfBnMTYiNuf46f2Tdx/YGvjM2lczevcdObknmIgoLnbOtb3T1sZe+8UHuz/39vBX9R7b0trIffyl5Sv3H905dcWSR/MkYukt3zvf/e/L8c0tDfLZcYvOvPjUP6/tnWqNivX031ctPnsxYcLFy2cKJ0ZPbSIiSsk4HyYSSlTbNh7+Wiqx6FNPXUP1sPbO/OJs6Z6D225q71wyf3V2gE/IiO2d23/+0q+8qthGb9CzG5vrrUorCj15PL527arnT/QeV1tfaUVE5GDn1DbY59hay9srqks8KqpLLYmo8vfWlZJ+Lqr39Y49X5nDQ8ZlvfnSf06JhJLu4XzGoRO7xxAR+fuElP3eegCG4hPjU5B5IHPCpZ2XfGY9Nyu7d1/m/swAIqKQmSH5PW1SW6n28R8e/07uLe9zEF7VouJ+9eBXS1N+SomJeSCmkC/mD+v/6zdj3/p9k5UNStvIhZEX570y79q+rVPrWN8++u3cnIScqDGzx5T4TPRpISIqOl8UxJfw1U/tfmqHQNr3PbK9bmBg4mDq8uskKbtSAm6mznHLxuU7Bjiqbjzy1rjw/QWvptIma6POyFY0KGQNhQ3uHD5HO+PpGWeHM9+oNzKKkor8iYh8JvpU3d5qr+/n13+OM5vNjMVvLj49WjXAn0/IzBDF+e/O2105dMUidnVsn/eAzIOZMiKi0Dmhip42oUzY/fTep4ssHS377BldHV3MLQ9v8Tjz5Rl5xN0RSq6Ae8vDOA7/+7B9c3kzf/KayY3THp12LbjJoDUwtv9lu0vKrhSb4BnBHc7BzloioqwjWZYiK5Fx3a51JVxh33o6WwcG3QymtaqVk/5L+k2F2UQujFRYu1obbmbOrZSxP8OSiMgzyrPPf89orWzlERFZu1jrB5tn6WSpq7pSJWqpbOH6TvJVExE5BjjqIhZGtGb8kmG9celGb89xnp1cIbe7pbyFX5lZKfab5Ncx89mZjbf7nvqrSK8QtNW08URWIqOjv6NupNcHAAAAAAAAAAAYLgS/AAAAAAAAAAAAAAAAAAAAAPx/45ePz806kjWp6HxRcO/gF32Xnll1pSqAK+RqopdGXzs4zhPyuvuHvhARSW2ler9Yv+z0X9KnFZ4rtA+bG1ZzK+tsr23nV12pCrKwt2joHfpCRMQX87vjn4w/++MLP3pcOXgloCf4hYiIyWR2MzkDv+XaytmqazjrNpU1WeQk5Ey8mVo9x3pWjVbwS/L2ZK+y1LIwvpivuusvd6UMZ87Pr/48RdWispF7y8uil0ZX3OYSbxuzyUy7Xto1S6/Ri7zGe2V6RnsOGtLQm6JewT/64dG5REQxK2MSWRwWvhEdhmXJvFW5CWcOTEpOOxPcO/ilS6thZudnBAj4Qs3ds5Zf2zuFAlF3/9AXIiIba7l+QtSUq4dP/Bx3ITXRflbcwlu6d9Y31vCz8zOC5LYODb1DX4iIREJJ99qVz5159d11HkdP7Q3sCX4hImIymSY2mz3g58HR3mVYe2dFVbFFYtLRmJupNTJ0QtVIBr9cTDvjl1901b/nWia1av/LY68fnDxhRkPvcZouDY+ISCSSDHpwViAQ6YiI1BrVsIIgrsfF0V25cPZ9J6dMnFnu4eqramtv5iWlnnLec+iHKRlXL4W9/M/HeRv/tf3gjT7np/3feadnJYeJRRLVkw+9PKw/BwB+q3HLxhVkHswcX3iuMKB38Iu+S8+syKjw4Qq5XZGLIq8FInGFXFP/0BciIomNRO832S8vbU9abFFSkXzMrDF1t7JORb2CX5lR6SdzlDX1Dn0hIuKJeN3Tn5p+cftftrtmHsz07Ql+ISJiMBndLDbL1P/zLB0ttcNZt7m8WXr16NWxN1Or51jP2pEMfik8V+hdfbXap+daZCVSzHtlXoL/ZP+moeb12PP6nomqZpW1va99ZeSiyFEJfkncnBhQn1/vEf9k/DFrV+th/TkFMBzhd4crkrYm2WUfy5b1Dn4x6o2MgrMFUoGFoDtgWsC13405PI65f+gLEZFAKjCNmT1GcebLM/KqrCqB93hvza2ss7Otk5V/Jl9m52Wn7R36QkTE4XPM05+e3vj1w1+Ls45kWfQEvxARMdlMM4PFGPB5YmvxsMK32mraOMnbk21vplaPKA/1aAW/5CTkSK4eu2opthYbJz8yuU/gp06tYxIR8cS8Qe+dL+abiIi0Km2fUJz5r8xvtHGz0SduTrTPOpxl2dNu52WnDZ0bquCJeCP6+6W6Xc3a/8/9TkRE09dNb2CymCO5PAAAAAAAAAAAwE1B8AsAAAAAAAAAAAAAAAAAAADA/2fva99p625b2Vze7F6WWmbtOdazlYgo9adUb4PWwPeN9U1jc/se/i9NKbU+/+35sU1lTS66Tp3I1G3q8/cxFPUKya2us/hisYPZbGYQg2jP63sGhAmYjCYmEVF7Xbt1T5tbhFteycWSiI8Xfvywe4R7oXuke7X/VP9aqa100G/xHkz4/PDq8Pnh79+au7i9so9nO57afGo+i8MyzPv7vF8s7C1u+O3ehzccjig8VxgtshK1Lf9g+eGRqPN22fnizmm1ubV+Vi5WNff8657TNxqvUWg43z/9/SJNu8bSf6p/6qSHJhWORJ3w5+Dt4a9ydfasrKwudU/PSraODJ3QSkS07/B2b51Oy58QNSWNy+170PPylQvW23/+clxFdamLWtMp6u429tk7G5vrbvneeSn93K97JzHMb3/04oC909jdzSQiamiqvbZ3hgZG5aZmJkXe//hda0KDogrCgsdWTxoXX2tjLR/23jk7fnH17PjFG27NXdwem/694wARHWhtb+ZmZqfa7NjzVcxbH/51xbKFDx5fu/K5nJGuZ1bcoupZcYuqe66lEguju6t34biIyXXP/H3VQ3mFWQHJaWcvTYia0ny9zzh57rDjlu0fz+ewOfrnn3jjF7mtww3/HAD4PeTecrWdp11NU2mTS3lauaVHlEc7EVHanjQPg9bA95/if6X/e2TZ5TKr89+ej2gqbXLUdmpFJqOpzyF6Rb1CdKvrLEkusft1LyTa98a+AUEsPe+RilqFVU+bR5RHUVFS0ZiPF3280iPKo9g90r3Wb7Jfg8RGMuy9MHROaG3onNCNt+IebpeHv3r4OBEd72zt5FRmVlqf+/bc2N1/27009oHYxGmPTSsYau7RD4+OKThTEC62Frcvf395wgiV3Eddfp0keUfyZOcQ55LYB2JLRqMG+POydLQ0uoxxUVdlVYnqC+t5Dn6//rmaezJXrOvUsSIWRrSy2H22MKovqOclbU2yrsmpEanb1exuQ3efZJWOxo5bfpahOqtaYDaZicFgmBM+SRgQxGIymhhERK2VrbyetoBpAcorB69Ybbxno7f/ZH+le6S7xj3SXSOQCgaEXV2Pz0QfzfqU9Xm35i5ur7LLZYL9b+934vA4pqXvLK0WyUTDvs/rMZvNdOCdA/ZZh7OsYh+IbQpfEK4QSAWm2txafsLHCfY//e0n1+nrptfHrI5pvxX3cCM6tY6x47kdLop6BTd6aXRr2LywUQmjBQAAAAAAAAAAGC4EvwAAAAAAAAAAAAAAAAAAAAD0EhgfmHN2y1n3y3suB3uO9TxLRJR7MjeYiChyUWSfw+85J3Ic9r2xb7nZZGbaethWOgc7l3AFXB2DyaCWyha7hsIG7259N2uwdX4PdbuaT0SkrFfaK+uV9tcbZ9QbuT3/vHzD8sSjHx1VFJ0vCsk/nT8u/3T+uGMfHTPJveVls/86+7RrqKviVtc5WrITsh0PvH3gHmKQecGrC34Oig9quNGcIx8cCU/bkxYvtha3rt60epfMQaa90Zw/ql0v7ZpSlFQUZe1qXf3Qlw/t4QkH/6b2HhqFhvPN2m+WtFW3OftO8r287L1lZ0eqVvjzmDJhZva26s3u+4/tDI4MnXCWiOjMxePBRETzZt6b3XtsYtJRx39//Mpyk9nEdHP2qgzwHVMs4Av1TAbDXF1XYVdclu+jN+hu+d6pULYJiIgam+scGpvrHK43Tq/XcXr++Z+vfJq4ccu/lMlpZ0LOXzo5/vylk+M3ff1vk6e7b9nTj/w9MSQg4k+zdxIRWVva6qdPnlsXM3bantVPzXvgp/1bZ06LmV3p7eGvIiISCoQ6IiK1WsUbbH5Xl5pHRCQSSm7LHurjGaDy9vQvyy24Epiacd7lesEvp84fcfxg0+v3MhgM81+ffHP31Il31d+OegD6C5oelN9U2uSStictwCPK4yIRUc6JHH8ioshFkX2CQ/IS8+R7Xt+zyGwyM+287KpdxriUcwVcPYPJMLdUtNjU5dd53s73SEWdwk5Rp7C73jiDznBtL7z33/eeP/7xcWXh2cKA3JO5kbkncyOPvH/EZO9nXzn7hdlJLiEuyltd52gSW4sNQdODGnxifA5tunfTsqRtSdMC4wOr5d5y9WDjj/3nWEjqT6mTJTaSttWfrR5W4ODt8Mubv8Qz2Uzj4rcWnxmN9eHPb8ycMYqqrCpR5oFMmcOLDo1ERFlHsmREROELwvu8E1WkVwi2/2W7u6nbRC6hLmqv8V4qnojXzWAyqLGkkV+WUiYx6o3MW12jRqFhERE1ljQKGksaBdcbZ9Aarq09/5X5DZaOlvrsY9mWqbtTbVJ3pxKTxST3SHfVrOdmNdp62g475OqPrjytXLDrxV1uDCaDlm9YXukW7tbVfwxPxDMREek6B38f13ZqmUREfAn/2u+Zl3++LLty8IpVxMKI1rjH41p62r3GeWnu/8/9VRuXbvQ5+/VZeeTiSCVfzP/dQTND0al1jO+f/t6tLr9OGLkosnXOi3Mab+d6AAAAAAAAAAAAtwKCXwAAAAAAAAAAAAAAAAAAAAB6Gbd8XPGFbRf05Wnlgd2G7nOKeoWgsaTRQ2onbfKN9e1zwDxpa9IEk9HEXvDagp3h88Ore/f98tYv4xoKG7yHsyaDwTATEZmMpgEH3zrbOvn92wQSgZ6IyDfWN+2+D+87PZw1WByWed7L89LpZUpvrWoV5p/Jdyo4UxBQm1vrt+ulXTbP7HvmmxsFhNTm1kov7bwUMpz1eoxfPj7bKchpxL5dO+tIlvPBfx1cwiCGeeE/Fu4OnhF8w8P+h947FJm+Nz1OYiNpeWDzA7usXa01I1Hr7bDjhR3TipOKo2zcbKoe/urhPQILgXGo8Z2tnZxvH/t2aVt1m7P/VP9UhL7Ab7Vk3qrinfu+1mdmpwQZjIZzDY21grKKIk8ba3lT/3COH/dumWDsNrJfXPfWj7PjF/fZO9/79NXxxWX5PsNZk8FgmomIjMaBh4bbFa0D9k6JWKojIpoQNSXtnb9vShzOGhw2x/zc4/9Ie47+kVZdWyFMSjnpfD7lVEBBcbbfP9571mb75mNfCwWiIffO/OJs6Z6D225q71wyf3V2gE/IiO2d/Qn4QpOPR0DlpfSztinp5xy9PfwLiYicHNzaiIjqm2qtBpvX3NpoSUTk7uLVfrtqk4gsNEREWp2WM1j/8dP7nT/6/M2lDGKYX3767d1xsbPrblctAP2NvXds6flvz+vLUsv8ug3dycoGJb+hqMFNKpe2eE/wbuk99vx356NNRhN74fqF+0LnhNb27jvwzoHIuvw6z+Gs2fMe2W3sZvTvU7erB4Q09bxH+k/xv7Jsw7Kk4azB4rDMc/46J2vOX+dktVW3CQrOFTjkn873rcmu8d754k6rZ/c+u50r5A55kL8uv06SsislYDjr9Ri3bFy+Y4Cj6mbm3EpcAdfk4O9QXXiu0LokucRe7i0v7T/myAdHQi/vvjxJYitpfXDzg79YuVgNCFEYKe117XZGnZH7yaJPHhmsPychJyonISfKMcCxbO13a4+MdH1w5wu5K6Qj4b8JDnmn8ixmPT+rUd2mZlVmVEps3G20zkHOfQKPzn1zztaoNzLu/8/9FT4Tffr8fpW4OdGmLKVMMpw1GYxftzZTt2nAHtfV0TUgmKQnjCRiYUTr/FfmDyvwg8li0uSHJ7dNfnhym6pZxSpPKxfmnMixKL5QLN3+3Hbeup/WlXJ4HPNQn9Fa1cpJ/yVdNpz1ekQujFRYu1obbmbO71GaUirc9fIuVwaDQfd/cH+le6T7oPuVtZu1joiotbqVO1h/e207j4jIxs3mWiBO8cViMRGRR5THgIAsC7mF0dLJUtdc3sxvKm3iuoa63raQVa1Ky/z+me9d6/LqhNFLoxH6AgAAAAAAAAAAdwwEvwAAAAAAAAAAAAAAAAAAAAD0IpAIjC5jXArK08rHZOzPcGssbbQ2m8xMnxif3P5jO1s7LTl8jrZ/6AsRUX1Bvctw1+RL+Foiova69gGH36oyq+z7t/nE+NQf//i4ubGk0Xm4a/Rm7WqtiV0dWxy7OrZ407JNy1oqWlzLUstsAqYGDHkoqqmsySInIWfizazlOdazaqSCXzL2Z7ge2XBkMYPF6F70xqLdgXGBDTeas/+f+8deOXRlitRO2vTA5gd+snIevcO6v4fZZKbtz22fXnqpNNzWw7bioa8e2ieQDB360tHcwf320W/vUdQpHAPjA5PvefeeYR3+BhiMRCw1BvmFFWTmpI45fOJn9/LKYmuT2cQcHzk5p//YtvYWSx6Pr+0f+kJEVFiaO+y9UyySaImI6ptqpf37rualDdg7x0VMrt/83fvm/8fefcZHVab/H78zNZPJZNIz6b2RAiH0Jr2oqIAFsbHKWtayxdX97a67iG6x7q6rIq4VFQQVEEV6D4QOBtJ7m/RkMikzyUxm5v9g/7ApQCIrCa6f96PMua8z5zon5JoDL843xWX5VzQ7gwPDTHcuXJZ/58Jl+Usfn39Hub4k9FTGEe/J42ZednaWlhdo9x7aNvG7HCt1+PjyoQx+EUKI5pYmjRBCSGWyC2EOk8bOKP9s84eioDgnzGbrElLpf/4LYlNzg6KyuixIJpNZJ4+bedXCVsoqiwKEECJAF9Tce+2bXV+EvPbOnxZJJTLb/z3xl8+umzC7388B4Pvk7OpsCxkRUlB8vDjh2y3fBtcW1Xo47A5J7OTY3N61bQ1tWrmzvKN36IsQQlRlVwUO+Jga504hhGiuar7YfaRv721R46NqhZNw1BTUBAz0GN15BnuaJ9w1oXjCXROKVy5eeUt9SX1QyakSr9jJsfWX26++pN7t7LazY77LsSLGROiHMvhFCCHaDe2uQgghkUn6hD58/ZevR57efHqCVqdtuO+t+770CPC4amEGAxExOiK3y9LV5/+Gt9S2uDeUNQRoddoGrxCvOt9I38t+r4BLUagUjpjJMS2ZOzPd89Ly1PXF9Uq7zS6S5iT1+Uw2VBkUSlelrXfoixBClGeUuwz0mCo3lU0IIYzVxj6Bb5WZlX2C/kKGh5idnJxE5blK9UCP0Z3GR2NLnpfcmjwvufW9Ze+FVp6rVFfnViv7CytpqmySH1lzxOe7HCt8VHj7YAW/5B/KV3/+u89DpDKp/c5X7ywLTQm95PlEjo1sF0KI0tOlrna7XUgk/8lY7GjtkFTlVKlkSpkjdGTohe+tzWKTCCFEu6H9os+nmFvMMiGEkMlllw3Q+W+YW8ySjx79KLQmv0Y1dvHYhrm/nFt3tY4FAAAAAAAAfN8IfgEAAAAAAAAAAAAAAOhlxPwRmSUnS5LP7TiXaKw1ejpJnOzjl4zP7l2n9lAb25vaPQsOF/hET4y+8ADlrtd3JdUV1YUP9HihKaHVJ744IXL25SRN/enULJni3w9DVedVa05/dbpP0IpXiJcpJDkkuzyjPGHj8o3jb37m5qNSubTHA1QVZyvcnSROjqDEIGOnqVOadzBPlzw3uceDxdYOq8RisjgLIYRSrez3gbOU+SkVKfNTXh7oeQ2mExtOhG3/2/YFUpnUuuj5RZ/FTont9yGvjcs3jj+3/dwkrU5bu3TV0s/c/d2/94d1W+pbFI1lja5qT3Wnb4Rvn99+/n1w2B3i48c/nlNysiTZN8q3+Cdv/+RLZ9d//6b7SzHWGJUfPPTB7cYaoy5pTtLhhc8tTO/vOE2VTSpjjVGl1WnNP9SAHFxdc2csOHcm83jynoPfJNQ11nhJnCT22+bf12d2arUeRoOx0fPoqYM+41KnXJidb69+Nbm0vHDAszM5YVT15u3rRNrRXUlL7/hZpkKhdAghREFxjmbr7o19glaCA8NMiXEp2edyTif85R//N+Gpx54/IpfJe8zOzNwz7hKJ1DEsJtloMrdLDx/fq5t13fwes7Ozs0Ni7jCphBBC7eJ62YAlIYSYN2NhxbwZC18a6HkNluraSuem5gZlQuwIY++1L77+KDK/MCtaLpNbpk2cV35+e2JcSnNYcFRJaUVh+BvvvTDy5w8+c/r82qsrl0/q6rLKRyaP+1br5tHjM+XMuWOeQgiRkjS2aSC9HTyySzdl/KweoS02W5d4ZeXycdW1lQHOSpX5+pmLSrqvb96+LuzN915YKJPJrb//5YvrJ46Z3u/nQGbuGXer1SIZFjO8Wal0tvdXDwxEyk0pucXHixPObj8bZ6wxejhJnOzjFo/L612n9lC3tjW2eRQeLfSKGhfVeH77npV7htUW1oYM9HihKaG1x9YfE9l7s+On3D8l9/x9ZE1BjevJL0/2CVrxDPY0h6aE5pWdLov78rkvR8//7fyTve8jKzMr3ZwkTiJwWGCLxWSR5B/O90uclVjdvcbaaZVYzP//PtJF2e8sHH79cP3w64e/MdDzGizN1c3O7U3tiosFFR7/7HiYPksfIZVLrQnTE3p8Fnz53JejM77JGOvu7163dNXSzVqdtvNyx7F2WiVVWVVaqUJqC0oMuirBXne+eufBi23f9/a+uIPvHwwITg4uXfT8oqOD3Rf+t6TMTzFk7sx0z9ia4d5U3qSUSCUiZX5Kn3sJrZ/W0lzV7KrP1isDhwVe+Pk4tv6Ye9mZMteBHi8oKcgshBAZ2zLcUxemNktlUiGEEAa9QXb4o8N9glY0Phpb3NQ4Y86+HO3uN3Z7T39keoNEKulRU19SL3eSOAnvUG+rtdPqVJFR4RwxJqLH329sVpvoaOuQCiGEQqXo9x4hekK0afmx5X3ue68FuQdy1Rue2RAiU8rsS/6+pCw4Kfiyf+/1CfexhowIaS//tlyd/nG656T7Jl24f9v1xi6frs4uSfLcZINSrbzw2RE8PLi95GSJ6/HPjnslz01uUbmpLlyz9DXpHm2NbTIXd5cuXazuwp8Fi8ni1KRvkitUCodnkOd/FYDT3twu+ehnH4XVFdU5T7h7Qv2sx2ddlYCrpsomucVscfIM9LQqXBRXLcQGAAAAAAAAPz4EvwAAAAAAAAAAAAAAAPSSPDdZv+PvOwyVmZWxDrtDoovRFXmFePX5TeWpC1JPbXtlW/j6/1u/JDgpOFfhouhsLGvUNVY0BgUMC8iryq6KHcjxEmYmVO97e19FY3lj8Ou3vn6Pf6x/ucloUlfnVEf6RfuV6LP0cb33ufUvt+5+/6fve5zbfm5S0bGiBJ9wn0oXrYup3dDuaqw1ehmrjbqpP536dVBikLGztVO2afmmJTv+vsPgEeRRq/HWtNgsNml1XnVYW2Obly5GVxgxOmJAD+Nfi0pPlXpsf3X7ArvNLtNF64ozd2VGZ+7KjO5dt+j5RYfPf71n5Z6Ec9vPTXJycnL4RvlW7Fm5J7V3vbu/u3HGLPor/gAAIABJREFUz2Zkdt+2+fnNYw16g6cQQhj0Bl8hhMjZn5Ooz9YHCiFE4LBA/awnZp09X3/i8xMxh1YfmheaEpq5dNXSbQM5n7Pbzgae3nw6WQghrB1WhRBCtDe1e3z48Ifzztd0f6+Nz26cUHKyJFkik3R5hXjVffPiN+N6v6cuVlc78e6Jhedff/zExwuMNUadi7tLs8PhcNrwhw19QjISZycWxE7+T4DOvrf3jczcmTkhcXZievdrCZw367r5+pUfvGTIKTgbZ7fbJVHhcYXBgWF9Zuf82beffP3dv4Qvf+kXdyXEjshVObt0VuhLdPqa8qDYqMS8vMLMAc3OaRPnVn+w9vWKyuqy4Hseu+He6PD48pbWZpf8ouyoyLCYkpyCc31m5x9//equJ353j8fug1smnfw2PSE0OKLSTePe3mxscq1rqPGqra/yX3rHo18Ni0k2trW3yv762m/vWvnBS4YAXXCtl4eP0Wq1yAqKc8Kamhu8osLjCkcmj2u8WG8/BCXlhW5/eOHx+/x8Amp8vPya3LWerSZzu3NVTYVvdW1lgEQisd9160Pb/Xz8e4QZ/OqR5bt+89xDd2/evm5mdn5GqM43sLG0oiigQl8S4q71bHrykWf7BA88ufyBZUIIsXdj5oACcJ59+Zf3enn4NOj8Aus8tF6tJnO7sqyiKKjRUO8tk8msD9335NdeHj6W8/XfZh73fOO9FxbabF2yyPDYon2HtkXvO7Stz+fAM796ucfs+v1fHlvc2mZ0e/PFT1fFRycReIDvReKsxOrtr243VpytiHLYHRL/OP8Sz+C+gWmjFo369psXvwlZ/9T6W0NGhBQoXBSWhpIG34byBv+gxKDCyszKqIEcL35afK13qHdVQ1lDwBu3vXG7f5x/pdlodtFn68N1MbqyynOVfX4Wbv3TrQfef/B994xvMsYWHimM9Y3wrXZxdzG1N7Wrm2uaPZurmn2nPzJ9R+CwwJaO9g7Zhmc2LNr+6najZ7BnncZb09pl7ZJW5VSFtDW0efjH+5eEpYYZvo9rNxTqS+pd1/5q7R0eAR51bn5uBldP1/bO9k5lY0Wjt6HSoHOSONmvW3bdXjc/twuzcN+/9sVlfJMx1snJyeEX7Ve1d9Xe4b3f193fvWXaQ9NyLxynuF794SMf3qXSqlqf3vn06oH0ZqgyOH/1p68mnX99PrBxzc/XzBBO/942ddnUU6EjQ6/4+l9JX/hxixgTYdbqtJaCQwVudpvdKXx0eKvGR9MndHLsHWObys6Uua7+2erw2EmxLUpXpa0mr0ZVlVPlEj0huqUgvcBtIMcLGxlmDhwWaNJn613evvvtiJCUkPb2pnZZ8fFiTdjIsLb8Q/ny3vvM/938aoPeoDj88WHfrN1Z7oEJgSa1h7qrtbFV3lTepKgtrFXN//38Su9Qb6u1w+r08eMfh2t1WotftF+H1k9r7bJ0OZWeLlUbKg3KiDERrboYneVivf0Q1BbWKr74/RchNqvNKWxUWHvOvhxNzr4cTe+62U/M7hGUcuP/3Vj1wUMfROxZuUdXcqpE7R3i3VmVW6WqPFepdg9wt8z6+aweAXvjl4w3ZO/Odm8oa1C+fuvr0ZFjI1udXZ1tNQU1zpXnKtVOEicx5xdzqruH8JR9W6Za+8u1YYEJgaZl7y8r/W/Oc92T60LqiuqctTqtxeFwiJ3/3NknFGjY9GGtQYlBF0Jv2hrbpNte2eZ3/rW5xSwVQogNf9gQ6CScHEIIMfn+yQ266P98/zf+cWOgPkvvsuTvS0qjJ0T3+XsOAAAAAAAAcKUIfgEAAAAAAAAAAAAAALiIqPFRWWe3nZ0khBAJMxMyL1Yz5rYxJfYu+8Zjnx0bX3G2It7JycnuEehRffMfbl7XWNboPtDgFyGEuPeNezd9+dyXU/VZ+qj8w/kj1R5qw6hbRx1InJlY8u797/YJL9B4ayyPrH3k091v7h5emF44TJ+pj7XZbFKli9Lk6uVqSF2Yujd5XnKpEEKotCpryvyUA/psfUhjWWNgdU51tFQhtag91M1jF4/dOf3h6eeu8DJdEwxVBle7zS4TQoiqnKqYqpyqmIvVdQ8raa5udhdCCIfD4VRwqGDUxeq9Qrwqege/VJytCG8sbwzucXy9IdCgNwR223RW/BfqS+o9ys6UJXbfZjFZXHptuxD80lrXqhVCCHuXXZazN6dP6IsQQrTWt2Z2D34xGUxaIYQwNZvcM3dmTrjYPu7+7sbuwS/AQIxOmZi5+8CWyUIIMXXCnIvOzgXXLymx2bo2bPxmzfis3DNxTk4Sh78uqPqpR5//tKKqxH2gwS9CCPHKivc2vvjP303LLcyMOnrq4Eh3rafhprl37J82aV7Jo7+5s8/s9PLwsbz7941r3/n47yOOnU4blpN/NrbLZpO6qNQmT3evpvmzb987a+r8UiGE0GrcrfOmL9ifW5gZWqEvDcwvzIqWyxUWd62nYdGN9+y8f8nj/9XP+lCLDIs1Thk/62hhcW5wUWleWEenWSWRSGwaV23LyORx3y5ZuOzUxYJtEuNSmv/xp9Wr33z/xUmFJTkRRaV5kWqVa9vY1Cknf/HgHw73Doq5EhPHTDteVlHsX1JWGJLbeU7l5OTk0LhqW0aPmHj63jseOZEQO8LYvb66tlJts3XJhBAirzArNq8w66J/hnoHvwBXS/TE6Jxvt3w7TgghEmcl5l6sZtTCUeX2LvuWo+uOji47UxbtJHFyeAZ51i54dsGmxrJGt4EGvwghxD1v3rNl83ObJ1ZmVkbkp+UPV3uqm8fcPuZwwoyE8neWvtMn+MXVy9X68CcPb9y7am9CwaGC2IqzFZF2m12mUCtMGi9N8+jbRqclzUmqEEIIlZuqK/WW1PTKrMrA+tJ6f32WPkKmkFnVnmrj+LvG75/606nZV3qdrgV+kX6tibMST1XnVgfW5NWEWMwWZ4lUYle5qVojx0VmTrp3UkbvYJvmqmY3If59H5l3MG/Exd7XO8xb3z345UqYjWZ56anSPp9lpaf/s635xuacUHHlwS/AlUicndh8+KPDvkIIMfz64c0Xq4mfFt92659vLU/7MM0nLy3PzUniJHTROvOSfywpbapoUgw0+EUIIZb8Y0n5tle26YqOFmnOfHXG093f3TL1p1NrYybFtOUfyu/zPio3lf2B9x4oPbruqEfW7ixtweECty5rl5OL1qXLPcDdMu2haTUxk2LahRBC6aK0T3lgSm3ZmTJ1VXaVquhokUbuLLdrdVrLrCdmVY+5bcxFz++HoqWuRWaz2pyEEKIwvdCtML3wonW9g198wn2sP/3gp0W739ztW3qq1LX0ZKmr2kPdlXJTStOMR2fUqd3V9u71zq7O9gfef6Ak7YM0r/xD+ZrcA7lae5fdydnNuSt6YnTLxHsmNoamhPYJQfu+GGuNciGEMNYYFUfWHOkT+iKEEO7+7tbuwS+d7Z2S7L3Z7r3rcvbmaM9/PWL+iObuwS8AAAAAAADA1eLkcDiGugcAAAAAAAAAAAAAAIB+6WJ06x/+5OGyoe4DV8eGP2yYmLkzc8JNz9y0LmV+SkXv9Tdue2NxY3lj8PJjy18eiv7QP32W3u3d+999KDQlNHPpqqXbeq/vWbkn8dDqQ/Mm3TdpW+9Anath1d2rQmvya+642scZTNER8ev/9eoXpUPdB64df/rbUxP3Hto28alHn/t03oyFfWbnvY/deGdlVWnw3o2ZLw1Ffz90P/Tr++CTt4YVFOf8T81BIYTwi/L76pG1j3BPiAs2PbtpzNltZ8fcsvyWTcOvH67vvf7mHW8uaChtCFx+bPkbQ9HfD11/12/F2BWPeYd56x9d/+imwe5tIN5a8lZobWHtTUPdx/fNxd2l6umdTxP68yOw8587fY6sOeKz5O9LSqMnRJt6r797/7th+iy9y/Jjy3/QQVz/C45/ftx92yvbAub9el7VxUKDPv/t5wHZe7PdH/v8sQKvEC/rYPb20uyXPEzNpoDBPCYAAAAAAAAGTjbUDQAAAAAAAAAAAAAAAADnffWnrxZ/9aevRMSYiIx7Xr9nZ+/1FWNXPCWEEFN/OvXr65Zdlzv4HaK3r//y9ejTm09PvdT6qrtXLawtqI0cxJaAH52X3/zjnS+/+UcxMnnct688+26f2Tl9YeLTQgix9I5Hv7r3jkeYnf249YFp9zcZ6r0vtlZVU6G6+2fzHh/sngD078sVXy74csWXInJcZObdr929v/f6irErHhNCiOmPTN8xeenkgkFv8AfEUGVw/ueCfy671Prhjw9H7n5j97zB7An4sVv7y7VhQgiRPDfZsGDFgure6yvGrhgmhBDzfz+/cuRNI1sGub0ftY8e/Sik5GSJ66XW/zzlz3FdnV2SwewJAAAAAAAAPywEvwAAAAAAAAAAAAAAAGDIRYyJKO/+OnBYYE331/HT4jObq5srLqwnBjYMVm+4vLDUML3FbEk//1oXq6vtvh53XVyOT7jPhW1BSUF1g9kf8L8sdfj4HrMzLjqpx+ycPG7Gudq6qgs1cTFJzM4BuG787DPGliaX86/DQqKN5792VbtZp0+ad3hoOgNwMRFjIvRCiOPnXwcOC+xxrzFs+rCc5upmfbf1xkFs7wfJ2dW5K3le8vFLrQfEBzR1X3f3dydkArhKwkeFt3d/HTgs0Nz9dfK85OaQESEXanTRus7B6g3/ljArwaiL1V34vgTEB3R0Xx+3eFyDrcvmdP61SquyDWZ/AAAAAAAAuPY5ORyOoe4BAAAAAAAAAAAAAACgX7oY3fqHP3m4bKj7APDDsOruVaE1+TV3DHUf36foiPj1/3r1i9Kh7gPAD8ODT94aVlCc8z81B4UQwi/K76tH1j7CPSGAAXlryVuhtYW1Nw11H983F3eXqqd3Pm0Y6j4A/DC8NPslD1OzKWCo+wAAAAAAAMDFSYa6AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD4sSH4BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGcEvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDICH4BAAAAAAAAAAAAAADAd6LP0rutGLviqQ8f/nDeUPcCAEMpp+Cc2/SFiU//4pn7rh/qXgBgsFXlVGlWjF3x2OqfrZ451L0AwFBpLG+Urxi7Ytjnv/08YKh7AQAAAAAAAPDDJBvqBgAAAAAAAAAAAAAAAID/FbUFta5pH6aN0GfrQ9ub2j26LF1KqUza5eLu0uwT7lOVMCshN2V+SsVQ9wkAAICrp66oTp22Oi1Rn6UPbmtsc+/q7FJIZdIutae6xSfCpzpxVmLh8OuH64e6TwC4mpqrm2XH1h3zLD1dqm6ublZYTBapTCGzu+ncLIHxgeaEWQnG6AnRpqHuEwAAAAAAABhqBL8AAAAAAAAAAAAAAAAA34Mdr+0Yfnz98el2m12m9lQ3BSUGFajcVCZrp1VurDF6lp4uTSg6VjQi72DeicUvL94/1P0CAADg+7frjV0JRz89OsXeZZe6erkagpOCi1y0LmZrp1XeXN3sXnKiJK4wvTAp72DemdtfuP3wUPcLAFfDkbVHPPas3KOzWW1OHoEelqjxUa1qD3WXxWyRNFU2KbL2ZGkztmZ4jFo4qvGG39xQO9T9AgAAAAAAAEOJ4BcAAAAAAAAAAAAAAADgv7T3rb0JR9cenS1Tyjpm/GzG1xPunlDYu6a1oVWx7+19w1vrW92GokcAAABcXfv/tT8u/eP0aXJneeesx2dtH7d4XEnvmrbGNvn+d/YnttS3aIaiRwC42k5sOKHd+dpOf6Vaabv5DzdXJc1Jau1dY24xS46tO+ZhrDXKh6JHAAAAAAAA4FpC8AsAAAAAAAAAAAAAAAAuyNqTpTuy5sjohrKGIIvZolI4KzrcfN3qE2cnnp1y/5S8y+1berrU49j6Y0nVudVhJqPJrcvSpVC6KNv9Y/1LZv98drouRtfWvd5hd4i9q/YmZO3OGtHW1OZhs9gUCpXCpPHVNCbMTDh33QPX5Z6vLThc4HPw/YNjG8sbAzvaO9QyhcyiclO1+EX5Vd72l9v2y53l9qt1TfrTUt+iOPLpkelCCDHnF3O+GrVwVNnF6jTeGstNv7/pRJely2lwOwRwJfan7/D/fPOHo8v1JUHmDrPKWenc4eOtq58+aV7GPbc9fNl5mJF1wmPDlk+S84uyQ1tam7UWq0WhVqnboyLiSx5Z+lR6VHhcj4df7Xa7eH/tPxP3Hd4+wtDc6GG1WhQqlYvJ29OvYerEuefuvf3hC/Pw6KmDPp98/va4iqrSwHZTm1ohV1g0Gm1LRGhMxbO//tt+pdJ5yObheVt2fh66ceuaMdU1lf7WLqvczVXbkhifkv/Est8d8fbyswx1fwD6l7M/xzf9k/SUhpKGAIvZopI7yzu0Om1j0pykrEn3TeoTcNddeUa5+7H1x+KrsquCTc3//55QrWz3j/cvn/3E7ON+UX7t3esddofY/+7+uMwdmYltjW3uXZYuucJFYXbzc2tKnJWYM3np5ILztYVHC70Ovn9wVENpg66zrfPf94RaVasuRle16E+LDsuVQ3dP2NrQqkhfkz5ZCCHm/mru9pE3j6y4WJ2rl6v1xv+78Qz3hMC1r+xMmSr9k3QvfZbexdxqljq7Otu8Q707R8wfYUiZn9JyuX3riuoUJzeddC87XebaUtcit5gtErW7uissNaxt2sPT6j0CPLq61zscDnFyw0nt6a9OezZXNSusHVaJyk1l8wz27BxxY8/j6bP1yrT303yqcqtU7YZ2mUKlsGu8NdagpCDTDU/fUCOVS6/WJemXucUs2fPmHp0QQtzy7C2VcVPi2i9Wp3JT2ac+OLXR1mUb3AYBAAAAAACAaxDBLwAAAAAAAAAAAAAAABBCCLHznzuTj649OltIhN0/1r9Qq9MazEazS1NFk+7strMp/QW/ZHyTEVOYXjjCJ8Kn3CfCRy+VSW0GvcG75GTJ8A8f/jDqJ2//5CO/aL8L4S+f//7zyTl7c8aptCpjyPCQXIWLotNkMLk2VjTq8tPyY88HvxQcLvBZ99S6u4WTEP5x/oVuPm5Gi9miaKlr8Sg8UphiMVvShjL45di6Y7FdnV3OHoEe+kuFvnQnU8gcg9EXgCv31ocvJ3/x9UdznJwk9uiI+EI/H39DS6vRpbK6TLfrwJaR/QW/bN+7Oeb46UMjQoMjy8OCI/UymdxeXVvpfebcseG/eOa+qNf+/NHqyLDYC/PwuVefnHLwyK5xbhp3Y2J8Sq6LSt3ZbDSoK6vL/I+c3Bd7Pvjl6KmDPn944Yl7nIQQ0ZHDCr09fZvNHSZlQ2Od+4kzh0aaO0xpQx38svKDF4d/8fXHc+QyuWVY7PA8javWVFiSG3zo2J6x2XkZUStfWveJr7eucyh7BHB5u9/cnZD+cfpUJ4mTIyA+oFjrrzWajWZVQ1mDb8bWjKT+gl8yvsmIzD+Un+Qb6VvpG+lbI5FJbAa9wbP4WHHCBw9+EH7/O/ev9430vRAEsOGPG8Zn7cpKdXF3aQlNCS1QqBWWdkO7S2NZo19eWl7U+eCXwqOFXp8++entQghH4LDAEjdftxaLyaIw1hm1+Yfykyxmy9GhDH45/tnxKGuHVekZ7Fl9qdCX7rgnBK5tRz896r7znzsDnCROjsgxka0eQR4Wk8EkqymocT616ZRnf8Evmbsy3TK+yfAMTgpuDxgWYJLKpY6G0gbluZ3nPIqOFWl++uFPi9393S+Ev2z/23bf458d93bzdbPGToltUaqVtrbGNllNfo0qe2+22/nj6bP1yg8e/CDCyclJRIyNaHXXuVs6TZ1Sg96gyPgmw2P2z2fXSeXSIZuFZ7eddets75T6x/mbLxX60p1UNnQhNQAAAAAAAMC1guAXAAAAAAAAAAAAAAAAiOLjxV5HPz06S6qQdi5+efHayLGRjd3Xa/JrXPt7j3GLx2XNfXLuSaWLssev7D6x4UTY1pe33rrznzvH3/P6PbvOby9MLxyhdFW2Pf754++rtKoev+28qbJJdf7rk5tOJthtdtmsx2dtmnD3hB4PGhtrjEqVm8o6kHPc8uKW1M62TueB1AohhC5WVzvx7omXfbBZCCH02fpAIYQIiA8oH+h7A7h2nco44rXh649nK+TKzuf+77U1o0dM7DEPC0tyNf29x63z78l6fNlvT7qo1D3m4ebt68L++c6fb1u1+pUJLy9/Z+f57cdOp41Qu2haP3rjm/fcNNoe87CqpuLCPPx6x2eJNluX7KF7n9x4xy0/6TGfauurlRpXtwHNw7+vem5Uu6lVOZBaIYSIioivW3zL/QX91eUVZrpt/GbtTLlcYXnhmbc+Skka23R+7ekVD846mZGe8uLrv5/66or3dgz02AAGV8nJEo/0T9KvkylllsWvLN4QMTqiqft6bWGtur/3GHvH2Nw5v5hzRuGi6BE8cOrLU8FbXthy067Xd42+6x937T+/PT8tP8FZ49z+2OePrVW59bwnNFQZLty7ndp0Kt7eZZfO+eWcb8YtHlfSva6ltkWp0gzsnnDrK1uHd7Z1DngG6mJ1DePvHF/cX50+S+8vhBABwwIqB/reAK5N1XnVyl2v7wpQqBS2+1beV+of598jtM5QZej3OYyRN49snvyTyY1ypbxHyFPugVz1Z7/5LHTf2/t8Fjy7oPr89oytGR5qT3XXo+sfLVS4KHrs09bYdiEd5cxXZ9xtVpvTwucWViTNSWrtXtfe3C7pPXsv5eD7Bz072joGnLriH+PfkTS35/EupuJshYsQQoSOCO039AUAAAAAAADAvxH8AgAAAAAAAAAAAAAAAHFk7ZERDrtDMvz64Ud6h74IIYQuRtfW33v4RftdtGb0otGlaR+kNVTnVYf3XpNIJDaJXOLovd0zyNPce5tcJe/qvU2r03b23nYp2buzR5lbzG4DrW+tb80cSPCLucWsFkIIV2/XPg/BtdS2KHe9sWtU7+2Lnl90eKB9ABhcn321OsXusEtmTZ2f3jv0RQghosLj+n3gNTIs9qLz8Oa5i0s/+eJfDQXFORebh3aZTNZnHgbogvvMQ2dnVZ956OfjP+B5uD99x6jWNuOA52FDU13mQIJfNn6zJsFut0knjZ1+onvoixBCPPmzFQfvfeyGhLPZpxJM5vbdvUNxAFwbjnx6JMlhd0hG3DjiRO/QFyGE8Ivy6/dBft9I34vWpN6SWnHwvYNNVTlVIb3XnCRONqlM2ieswCPAo6P3Nrlz33tCNz+3Ac/AzJ2ZI8xGc78hXue11LXkDiT4xdxidhFCCI23ps/5t9S3KPa8uWdE7+0Lnl1wfKB9ABg8xz877mG32cWEuyfU9w59EUIIjwCPPnOoN3d/94vWxF0X1+4Z7NlZeqq0T7iqRCZxOEmd+uzj6uXa575J7izvMzPV7uoBhb4IIcTJjSe9Wutb5QOtHzZ9WPNAgl/am9plQgih8dX0CeMyGU2SQ6sPefXePvuJ2fUD7QMAAAAAAAD4X0TwCwAAAAAAAAAAAAAAAER9SX2AEEIkzEzo96HWS3HYHWL/O/uHZe/NTjTWGn27OrqcHQ7HhafWnKROPR5WCx0Zml2YXjjytVteuz9sZFheWGpYRdzUOL2bj5ule13yvOTcgkMFo7b/bfuCzB2ZeaEpoWXRE6P1wcnBzd+lv6d3Pf32lZ7blWptaFVm7syc0Hs7wS/Atau8sihACCGmTZx7xfPQbreLD9e9Oezg0V1JdfXVvp2Wjh7zUCKR9piHw4eNyjp+5lDqkofnPDA8YVTuiMQxFZPHztB7e/n1mIezps7PPXrqwKg333th4d60rXnJw1JLx6ZO0SfGpXynebj5o8OrrvTcLqessthPCCFSk8eX9V7z8/Hv9PP2r62sLgvOyDrpOX7UdTzgC1yD6ovrdUIIkTAjoc/P8UA57A5x8P2DsVl7suKN1UZva4dV2WMGSiU9ggnCR4Xn5x/KT35twWt3h48KLwhLDdPHTomt0Xhret8T5ucdyBu+9eWtN5zbca4wLCWsMmpCVFVQYlDLd+nv6Z1Pr77Sc7tSbQ1tyrPbzo7pvZ3gF+DaVJVT5SKEEDGTY/oNQL0Uh8MhTn15Snt261n3+pJ65872TqnD/p+MP4msZwBq/LR447dff+v5xm1vRMVNiTOGpYaZwlLDTCo3VY+ZmTQnqeX05tNeG57ZEBI9MbolfHR4W9jIMJNPuE+foJXL+dWWX/Ub6vd9MxvN0iNrjvj03k7wCwAAAAAAAH7sCH4BAAAAAAAAAAAAAACAsHZYlUII4RPu0+9v8L6UT5/6dFrBoYJRSrWyXRetK1F7qttkClmXEEIUHS1KNLeY3brXL35p8d5tf9vWnJ+Wn5SzL2dszr6csdv/tt3uF+VXPO/X8/aFDA9pFkKIhBkJNXabfe3hjw6Pq8yqjC3PKE9I+zBNqD3VTaMWjUqfumxqzn9z7v8tlZuqXQgh2hra+vzG9sCEwJblx5a/fP71CzNeeKSzrbNPHYBrR0dnh1IIIUKDI6/4Qd9n/vr49KOnDoxyUbm2RYbHlnhovVoVckWXEEKc+DY9qbXN2GMePv/b1/e+8e5fjUdO7k9KO7p7XNrR3ePefO8Fe0RYTPHjy363Nyl+ZLMQQkydMKfaZrOtWbfpvfE5+Wdjz+WcTliz4R3hofVqumnuHYfvu+NnQzoPOzrNSiGE0PkFXvTaaTTadlEthLGlyXlwOwMwUFbzv+8JvcO8r3gGrv/N+kl5B/NGKF2V7bpYXZmrp2u7TPnve8KC9IJ4s9Gs6V5/+wu3p+14bYcx70BefNburNSs3VmpW1/eatfF6srmPTnvUHBSsFEIIeKnxtct+vOiDYdWHxpVcbYiqux0WdyB9w4IVy9Xw+jbRh+f8pMpgx5i0J3KTWUSQoi2hjZ177WA+IDW5ceWv3H+9YszX/xJR2tHnzoA14bV2JTKAAAgAElEQVTO9k6JEEK469y7rvQ9tvx1i+705tOeLh4uXWEjw9o0PpoumVJmF0KIzJ2Z7q31rfLu9fN/O7/GI8DDcm77OY/jnx/3Pv75cSGRSkRYaljr3F/OrfWJ8LEIIURoSqj5ntfvKUn7IM2n4HCBW86+HK0QQrgHuFsmL51cN/Lmkd8pDOv7pvZUdwkhRGt9a59nVbxCvKzLjy3PPv/6lXmvxLQ3tfNMCwAAAAAAAH70+EcyAAAAAAAAAAAAAAAACLmzvFMIIepL6jWuXq5N33X/xvJGl4LDBakab03Dgx89+Imrl2uP3zb+ytxX4nvvI5VLHTf+5sZT4jfiVGN5o0vO/pzA3P258fosfez6p9d7P7HpifeVLkqbEEIkzU6qSpqdtLHT1CnNT8v3yzuYF56Xlpd64J0DN2q8NKbUBall/fW45cUtqZ1tnQMOG9DF6mon3j2xsL+6wGGB+rLTZUlVOVWhQojDA31/ANcmZ6Vzp1EIUVZR5Orp7v2d52GFvtTl2OmDqV4ePg1vv/r5J57u3pbu6wt/MqXPPJTL5I5fPvzHk78UfzxZoS91OXRsd1DasT3xuQXnYv/44s+917y1/T0XldomhBAzJl9fNWPy9RtM5nZp+on9fukn9kWkn9iXunr9yvme7t6m+XNu73ce/n3Vc6PaTa3KgZ5TVER83eJb7u83UMFZqeoUQojauipXIURj7/XWVqNaCCHcNB6dAz02gMElV8k7hUGIhtIGV7Wn2vBd92+qaFLlpeUN1/hoGh/66KEv1J7qnveE816J6b2PVC51XP/r6zOu//X1GU0VTarcg7n+OftyYirPVUate2qd5883/nyNwkVhF+LfgYAJMxK2WEwWSUF6gW/ewbzQnP05yftW7Zvj6uVqHnnTyMr+etz6ytbhnW2dA56Bulhdw/g7xxf3VxeYEFhdcrIkXp+tDxJCHBvo+wO49ijVSrsQQjTXNMt0Gp2lv/reWutbpWe+OuPpFeLVuez9ZSXOGmd79/XzYS3dSaQSMeX+KU1T7p/S1FrfKi05WeKSuStTW3C4wG3NL9coH/3s0SK5Uu4QQojwUeHm8FHh5dZOq1PF2QrngsMFrme+OuP19V++DlJ7qstiJ8e299fjwfcPena0dUgHek7+Mf4dSXOT+g2KDU4ONmXtznIvO1PmKoSoH+j7AwAAAAAAAD9mBL8AAAAAAAAAAAAAAABA+IT7VBlrjLqs3VkR4aPCv3PQQXVetVY4hJN/vH9J79CXmvwaV5PR1OfBtu68QrxMk+6dVDDp3kkFb97x5h0NpQ0hxceLveOnxtd2r1O6KG1Jc5KqkuYkVe1dtdeQ9kHaDbkHcqMGEvySvTt7lLnF7DbQc2qtb80cSPDL2MVj845/fnyaQW8IPPXlqZDUW1LLB3oMANeekKDIqtr6at2+w9sjUpLGfud5WFCS4+5wOJxiIhNKeoe+FJbkalpamt0vt39wYJjpzoXL8u9cuCx/6ePz7yjXl4SeyjjiPXnczB7z0EWlts2cckPVzCk3VL239p+GNV/864ZDx/dGDyT4ZX/6jlGtbcYBz8OGprrMgQS/hASF1+YXZcWcPns0+MbZt/Xoo66hRlnXUO0nlcq6RiSO7hMKA+Da4BPhU9Nc1eybtScrNHRk6HcOfqkpqHETDuEUmBBY0Tv0pbawVm1qNl129ngGe5on3DWheMJdE4pXLl55S31JfVDJqRKv2MmxPcIDFC4Ke8LMhJqEmQk1+9/Z33zg3QOzcg/kRgwk+CVzZ+YIs9GsGeg5tdS15A4k+GXM7WMKj647OrGposn/zNdnglLmp/TbC4BrU0B8gKmuqM45Py3fVRetu5JgVIXD4RBhqWFtvUNfDFUGWUtti+Jy+2t8NLbkecmtyfOSW99b9l5o5blKdXVutTJkeEhH9zq5Uu6IGB1hjhgdYfYK8bJ88+I3gbn7czUDCX45ufGkV2t9q3yg5zRs+rDmgQS/JM9Lbtn39j5ddW61Kj8tXx0zOabfXgAAAAAAAIAfO4JfAAAAAAAAAAAAAAAAIMYvGf9t0bGiERlbM8YPmz6sJGJMRI+H8mvya1x1Mbq2S+3vF+XXIoQQdYV1QTarzUkqlzqEEKLd0C7f9OymuQ67Q9K9vtPUKc07mKdLnpus777d2mGVWEwWZyGEUKqVViGEOLfjXEDUhKg6lUbV1b22valdLYQQMqWsx/ZLeXrX028PpO67cvNxs4xbPG7PodWHrt/x9x03W83WrePuHFfUu85sNMt6XwcA157bb7rvzKlv00fs2v/1hOvGzy5JHT6+xzwsLMnVRIXHXfKh18jQGKMQQpSUFwRZu6xOcpncIYQQzcYm+V9f++1cu8PeYw6YzO3Sw8f36mZdN7/HPOzs7JCYO0wqIYRQu7h2CSHE7oPfBIwdOblO4+rWY+4ZmhtdhBBCqVD2CFm4lM0fHV41kLrvasH1d2XtTds6Mf3E/tRzOaczk+JHNp9fe/WtZydbrBZFSuKYsy4qte1qHB/Af2/8nePPFaYXJn675dvR8dPiy8JHhfcIf6ktrFX7Rfld8iF+30jfViGEqC2o9e9xT9jcLt/07Kbpve+FLCaLJP9wvl/irMTq7tutnVaJxfz/7wldlF1CCJG1O0sXOS6y3tnVuccMaWtqcxFCCLlCPrB7wp1Prx5I3Xel8dZYJtw9Ie3gewdnbntl21yr2bp7zO1jSnvXmVvMMrvNzj0hcA0bc/sYw9ltZz3TP0n3iZ4Y3e4f69/Zfd1QZZB5BHhccuZ4BHlYhRCiMrPSxW6zC4n03z/yHW0dks3Pbw6w23pkwQhrp9WpIqPCOWJMhLn7dpvVJjraOqRCCKFQKexCCFF8olgVlBjUoVApHN1r2xrbZEIIIXeW99h+Kb/a8qt+Q/2uhMpNZZ/xsxnVW1/eGrjx2Y1B8387X58wM6HPvyVYTBYnu83udDV6AAAAAAAAAH5oCH4BAAAAAAAAAAAAAACAiBgT0TjuznG7jqw9MvuTX3xyX0BcQKHWT2voaOtQNZY16mTOMstjnz227lL7+4T7tAclBuVUZlbGv3bLa0v94/1LLCaLsia/Jkwqk9rcfN3qWupafM/Xd7Z2yjYt37Rkx993GDyCPGo13poWm8Umrc6rDmtrbPPSxegKI0ZHNAkhRPqa9LGb/7Q5xDvEu9LV29Uod5ZbDHqDd11hXYRMKeuYcNeEjMG4Rpcz42czsrqsXbLj64/P2PGPHQsPf3y40SfcR69yU5msHVZ5u6FdU1tYG26z2uReIV4VQ90vgEtLHT6+cdH8e3Z+8fVHc37z/MNLYyKHFfp6+ze1tbeoKqtK/ZUK587Vb2y55DwMDY5sHxYzPCc7PyN+yUOzfxITmVBi7jApi0pyw6QyWZePl19dfWPthXnY1t4q++trv71r5QcvGQJ0wbVeHj5Gq9UiKyjOCWtqbvCKCo8rHJk8rlEIIT7/6sOxL7/5h9DggLBKLw+fZqXS2VpdW+ldXJYfoVQ4d9x+89IhnYfx0UktN8+9c8+mrWtm/frZZUsTYkfkalzdTIUluSHVtZUBHu5ejU899vz+oewRwOWFjwo3TLh7woHDHx+e+skTn9wZMCyg2F3n3mxuNTs3lDX4yZVyy6PrH910qf29Q71NwcODCyoyKqJfW/Da4sCEwAqLyaKozq0OlsgkNq1O22CsMXqfr+9o75BteGbDou2vbjd6BnvWabw1rV3WLmlVTlVIW0Obh3+8f0lYaphBCCHSP0kf+eWKL4O9w7yrND6aFrmz3GKoNHjV5NeEyp3lnePvGp85GNfocqY9OC23y9IlPbr26JRtr267MW11msE3wrfKRetitnRY5O1N7a41+TUhNqtN7h3qXTXU/QK4OP9Y/85Zj8+q2vnazoB37383InJsZKtnkKfFbDRLq/OrVUoXpf2B9x4ovdT+Wj9tV+zk2Ja8tDy3lYtXRoalhrV1tnVKy86UqaUKqcM73LujoaTB+Xy9tcPq9PHjH4drdVqLX7Rfh9ZPa+2ydDmVni5VGyoNyogxEa26GJ1FCCEOf3zYu+JshTpwWKBJq9NaFC4Ke0NJg3Pp6VJXpVppG33r6KZBuESXNfrW0cYuS5dkz8o9ui9+/0XInrf2dAYOCzSrPdRdFrNF0lrfKi87U6a2dlglgcMCTUPdLwAAAAAAADDUCH4BAAAAAAAAAAAAAACAEEKI2U/MPusf599wdO3R0fXF9cFVOVXRCpXCrNVp6xJnJ57tb/8lf1uyfcsLW4ylp0vjCtMLRypUClNgYmDhDU/fcGjNL9bc0r1WpVVZU+anHNBn60MayxoDq3Oqo6UKqUXtoW4eu3jszukPTz93vnbkzSPPZO3K6mgsb/RvLG8MctgdTs4a57bI8ZFnpj047URAfEDL1bge39Wcn8/JGD5veFHaB2kpVTlVoRXnKmJsVptCKpN2qbQqY2hKaHbSnKScETeOIPgFuMY9svSpszGRCQ2ff7V6TFlFUXB+UVa0s9LF5Oujq58x6fp+5+Fffr9y299WrWjOyDoRf/x02kiVysUUF51U+MuH/pj2m+cfXtC9Vqtxt86bvmB/bmFmaIW+NDC/MCtaLldY3LWehkU33rPz/iWPXzje9TMXndl3aHtHZVVpQGVVaZDdYXdyVbu1jh4x8fRP7nzsRGxU4pDPw8eX/fZMSFC44cttn47Jzs+I7erqkmlc3Vonjpl+/PFlvzvi663rHOoeAVzezEdnZvnH+TceWXMkpa6oLlCfpY9QuCjM7jr3xqS5SVn97X/nK3fu2frSVmPxyeLo/LT8JIWLwhycFFxy/dPXH1vzizXzuteq3FRdqbekpldmVQbWl9b767P0ETKFzKr2VBvH3zV+/9SfTs0+XzvylpHnMndldjaUNugaShv8HQ6HxFnj3BY9Mfrc1AennvGP9W+9Gtfju5r12Kys5LnJpYc+PJSkz9YHV5ytiOqydMmlMmmXi7tLS1hqWF7S3KT84fOGE/wCXMPG3Tmu2S/arzP9k3TvynOV6qKjRRpnN2ebT5hPR8r8lOb+9l/43EL93lV7LbkHct2+3fKtp8pNZYscF9k687GZdet+vS64e63SRWmf8sCU2rIzZeqq7CpV0dEijdxZbtfqtJZZT8yqHnPbmAvHG71odJOzq7OtOq9aVZVd5WK3251cvVytw28Y3jTpvkmNXsFe1qtxPb6r8UvGG+KmxrUeW3fMs/R0qbrgcIHG2mGVyhQyu5uvmzV+arwxaW6SMWp8FMEvAAAAAAAA+NFzcjgcQ90DAAAAAAAAAAAAAABAv3QxuvUPf/Jw2VD3AeCHYdXdq0Jr8mvuGOo+vk/REfHr//XqF6VD3QeAH4YHn7w1rKA4539qDgohhF+U31ePrH2Ee0IAA/LWkrdCawtrbxrqPr5vLu4uVU/vfNow1H0A+GF4afZLHqZmU8BQ9wEAAAAAAICLkwx1AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwY0PwCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMMoJfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCQEfwCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOM4BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGQEvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAICP4BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGcEvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDICH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEFG8AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDKCXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgkBH8AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACDjOAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkBL8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCAj+AUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhnBLwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwyAh+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBBRvALAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwygl8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYJAR/AIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg4zgFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYZAS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMAgI/gFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYZwS8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMMgIfgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQUbwCwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMMoJfAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGCQEfwCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOM4BcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGQEvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAICP4BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGcEvAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDICH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEFG8AsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDKCXwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgkBH8AgD4f+zdebSldXkn+u9TzIOAAyCIGBARpHBoNYpKnMJQgLPYttqaNtqJt/Xadjq6Mpi7XJrchO7cpO1ulkuvab2JaVvbKQJVDKKCaIxDVEYBRUBRFARExgKe+8e7K5viSBCo876nzvl81tqr/uDU3t/NWeu3399b+/n+AAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkSl+AQAAAAAAAAAAAAAAAAAAAAAYmeIXAAAAAAAAAAAAAAAAAAAAAICRKX4BAAAAAAAAAAAAAAAAAAAAABiZ4hcAAAAAAAAAAAAAAAAAAAAAgJEpfgEAAAAAAAAAAAAAAAAAAAAAGJniFwAAAAAAAAAAAAAAAAAAAACAkW05dQAAAAAAAAAAALgnt95066pLv3Hpgy4/+/JdL/3qpb+y40N2/Nmxf3LsWVPnApjCT6+9auvTPn/C3o9f/eQr93/kQddPnQcAgKXh5utvXnXB5y/Ycd9f3feGnXbb6fap8wAAAAAA96y6e+oMAAAAAAAAAAD36IEPe+B/2maHbfaeOgeLq7vrtltu22H9zet3vu3W2zY8dunbe4dUbk9ni1pVt26z4zYX77z7zudNnZel65Ybbrnsmh9c87tT59iU9th9r+N23OEBj5g6B+Pr7tx8y007/fyG6/e46eYb91i//tYHbbnlltduvdW21+yx+8P+cep8LE0/v+H6S3945fffOnWOTW2XPXf5r9tsv421kCTJTdfd9NBU7thup+1+fOtNtz7g1htv3XWHB+3w3aqaOhpLxC033nLptVdc+6apc2xq2++8/ZdTefjUOVh61t+yfvvb19++Xd/eW9Wqum2LLbe4ZdVWq25etcWq9dbGFaxz+Y3X3fiUqWMAAAAA8IspfgEAAAAAAAAAYHQ1TJztlWT1XR4HJLkyyQ9mP7pnkl2TfCbJiUnWdff3Rw8MMLKq2jHJc5IclWRNkk6yNslJSdYn+WCSt3b3BycLCTCR2bXk7yX57SRHdvd5VfXgDGvkRUl+s7tvmTIjwBSq6mlJPpHkD5NcmPm15J5JTslwPbmuu38yWUgAAAAAYCOKXwAAAAAAAAAAWFRVtWsWFrysTnJjknNmj+8l2SXJQRmKDn6YYXB3bZIvdvetowcHGNGsxOCADIO5RyV5SpIvZ1gH1yY5v7u7qv51kj9P8oruPm2qvABTqaqtk7wnyeOTHNPdV9zpv22f5P9LsluSF3X31dOkBJhOVT06Q3HqR5L8YXffUVUPT3JkhmvN5yb5duZ77q929+1T5QUAAACAlU7xCwAAAAAAAAAAm0RV7ZTkMVlY8LJN5gUvGx7nJdkn89PHD0hyeobBs3XdffnY+QHGVlU7ZCi7WjN7bJFh+PakJKd39/V3+tlK8n8leU2GooNzx08MMK2q2iXJx5LckKEA6+e/4GdWJfnTJC9IcnR3XzxuSoDpzQpYP5nk8iS/0d033+m/bZ3k6Znvx3dPcnKG69CTu/uq8RMDAAAAwMql+AUAAAAAAAAAgHulqrbNUNRy14KXXTMUuty15OWK7u6qekiSwzMMlx2R5MeZnzD+he6+deS3AjCqWXnL/hkGbI9KckiSr2RYB9cmObd/wZf6qmqbJP9vkkcneV53XzlaaIAloqr2SXJiklOT/Ifuvv0efv63krwjyUu6+6wRIgIsKbO9+weSPDzJC7v7J3fzc3tnXkT47CTnZ75X/1p33zFKYAAAAABYoRS/AAAAAAAAAADwC1XVlkn2y8KCl0ckuTgLC16+d+cB3KpaleSJmQ+QPSbJ5zIMkK3r7kvHei8AU6mq7TMM0G4oe9k6wxDtSUk+090/u4e//6Akn0hydZJXdfeNi5sYYOmpqqdkWAv/tLvffS/+3hFJ/jrJm7v7fy5WPoClarYvf2eSf5nk6O7+9j38/DZJnpHhunVNkockWZfh+vWU7r56cRMDAAAAwMqj+AUAAAAAAAAAYIWbDYLtnYUFL/snuSILC14u7O5b7+a5Hpzk8AwDYkdkKCrYUHDwhe6+ZVHfDMASUFWPynxY9ulJvpb5WnhO/5Jf3Kuq/ZKcmOTvkrytu+9YnMQAS1dVvSTJe5L8m+4+4T78/YOTnJDkvUn+5JddgwGWk6p6bZL/O8nLuvvz9+Lv/UrmZa7PynBPYMN17T+6PgUAAACA+0/xCwAAAAAAAADAClFVlWS3zItdDp79eVCS67Kw4OX87r7hHp5zVZInZBgCO2r2fJ/LMAi2tru/twhvBWBJqartMgzCbk1rLgcAACAASURBVFgLt88wDLs2yWndfd19eM6nJ/nfSd7R3e/ZdGkBNg+za9f/mOTNSZ7f3V+/H8+1Z5JPJ/lWkt+6uxJDgOWsqp6b5H8m+Z3u/uv78Pe3TXJo5te8uyRZl+Ga95TuvmYTxgUAAACAFUPxCwAAAAAAAADAMlRVu2QodFl9l8eqJGdn44KXc+/NgFZVPTDJ4RmGvY5Mcm3mJ36f2d03b7p3ArA0VdUjMwy8rskwAPuPma+F3+r78eW8qvqXSf5rkld397pNEBdgs1JVWyb5b0kOSXJMd1++CZ5zhyR/m2THJC/p7mvv73MCbG6q6jFJTkzywQwFg/fnmnXfDNfCa5L8WoZyrQ3Xw9+4P88NAAAAACuJ4hcAAAAAAAAAgM1YVW2f5MAsLHjZJcm52bjg5ZwkV97b4auqqiSPz/xU78cmOSPDQNfa7v7uJnkzAEtYVW2b5JmZr4UPyGwdTHLqpigQmK23v5fktzMUHXzr/j4nwOamqnZK8pEkneRl3X39JnzuLZL8eYYSw6O7+5JN9dwAm4uq2j3J3yW5MMnruvuWTfCci36tDAAAAADLleIXAAAAAAAAAIDNQFVtlWT/LCx42SvDsNZdC14u7e477sfr7ZLksMxP774+85O7z+jum+7zmwHYTFTVvpmvg7+W5FuZr4XfvD/r7C94ra2TvCdD0dYx3X3FpnpugM1FVe2d5IQkZyV5U3fftkiv86YMRVsv7u6/X4zXAFjKZiWyf51k1yQv6u6rN/HzPzLzEphnJPlG5kUw37y3hbQAAAAAsJwpfgEAAAAAAAAAWEKqalWSX8m82OXg2Z/7JbksCwteLu7u9ZvgdSvJYzMMZa1J8oQkZ2Y2mNXdF9/f1wBY6qpqmwwFLxvWwl2SrMuwFp7a3T9dpNfdJcnHktyQ5BXd/fPFeB2Apayqnpjk75L8eZK/WOxSgKo6Jsn/SPKG7v7fi/laAEvR7P7DnyZ5QZKjF2vfX1XbJXlW5kUw22W4xj4pyWndfd1ivC4AAAAAbC4UvwAAAAAAAAAATGBWtLJH5gUvGx6PSXJ1Fha8XNDdN23iDDsn+fUMw1drktyUYfBqbZLPberXA1iKqupXMh9CfWaGNXfDWviP3X3HIr/+PklOTHJqkv/Q3bcv5usBLEVV9fwk70/yb7v7EyO+7hMylM28O8l/XuyyGYClqKp+K8k7kryku88a4fUelfn199OTfD3z6++zrcUAAAAArDSKXwAAAAAAAAAAFllVPSgLC15WJ7ktydnZuODlvMU67XpWNrM6w3DVmiRPTHJWhuGqk7r7osV4XYClpKq2SfKMzNfChyRZl2HY9NTuvnrELE9J8okkf9rd7x7rdQGWkqp6c5K3Jnlhd39lgtffK8kJSb6c5I3dvX7sDABTq6ojkvx1kv+zuz884utun+RZGa7Nj0qydWb3KJJ8prt/NlYWAAAAAJiK4hcAAAAAAAAAgE2kqnZM8pgsLHjZMRuXu5yT5Jzu/vEImXZK8twM5QZrkqzP/CTtz3b3jYudAWBqVbV3hjXwqAyDpednvhZ+rbvvmCDTS5K8J8lru/vTY78+wNSqasskf5HkOUmO7u7vTZjlAUn+V5ItkrxssYoYAZayqnpskk8neW+SP+mRh01mZbX7Z37dfkiSr2Z+3X7u2JkAAAAAYAyKXwAAAAAAAAAA7qWq2jrJozOUuhycecHLQ5NckIUlL5ePNZw0G5Q6KPOilycn+VLmg1IXGpQClrvZOv2MzNfC3ZOcnGEtPKW7r5owWyX5j0nenOT53f31qbIATGVWmPjhJNskOba7r5040oYimncnOTRDEc1lE0cCGF1V7Zmh/OVbSX6ru2+dMMsOSZ6doQRmTYZyrrWzx2e6+/qpsgEAAADApqT4BQAAAAAAAADgblTVFkn2zbzYZcNj3ySXZGHBy3e6+/YJcu6Y5LmZD0PdkXnRy+ndfcPYmQDGVlV7ZVgDj8owIPrtzAdDvzrF+nxXs1KB/5bkkCTHdPflE0cCGF1VPSzJCUm+luQN3b1+4kj/ZFbO9e8zFHQ9v7u/NnEkgNHNClf+NsmOSV6yRMq5KskBmRc7PjXJP2R+7+N8JbcAAAAAbK4UvwAAAAAAAAAAK95sgGivLCx4OSDJlVlY8PLt7r5lmrT/lPfAzAeenpLky5kPPF1g4AlY7qpqqyRPz7zsZY8kp2RYC0/u7p9MGG+BqtopyUeSdJKXdff1E0cCGF1VPS7Jp5Mcn+TPluo1a1W9MMn7kryuuz81dR6Asc2KcP88yeFJju7uSyaOtJFZAe5zMt8LJBsX4P58qmwAAAAAcG8pfgEAAAAAAAAAVpSq2jULC15WJ7kxQ6nL2ZkXvJy3VIaFZiduPyfDQNOaJJVhoOmkGGoCVoiqeliSIzOshc9NclHma+FXuvv2CePdrap6eJITk5yV5E3dfdvEkQBGV1VHJflgkn/X3R+ZOs89qaonJ/lkkv+U5L8s1ZIagMVUVW9K8ntJXtTdX546zy9yp3LcDfdLfjXJ32deBPNtazgAAAAAS5niFwAAAAAAAABgWaqqnZI8JkOpy8GZF7xsnXmxy4bHud191URRf6HZ4NKjMz+9+qlJvpL54NJ5BpeA5a6qtkpySOZr4V5JTs2wFp7c3VdOGO+XUlVPTPKpJP9Pkr+wdgMrUVW9IckfJXlxd39p6jy/rKp6RIbirs8meYviLmAlqqpjkvyPJL/d3R+bOs89qaoHZCiJ3LCHuC3zeymf7e4bJowHAAAAAAsofgEAAAAAAAAANmtVtW2SAzIvdtnw2DXJeVlY8nLFUh26r6odkjw7w3DSmiRbZRhMOinJZ7r7+gnjAYyiqvZMcmSGdfDXk3w387XwHzanofuqen6S9yf5t939ianzAIytqrZIclySo5Mc3d3fmTjSvVZVOyf5aJL1SV7umhxYiarqCUn+Lsm7k/znpXpf5a5mpboHZSiAWZPkSUm+mPn+4qLN5b0AAAAAsHwpfgEAAAAAAAAANgtVtWWS/bKw4OURSS7OwoKX73X37dOk/eXMBpAelfkp1E9L8tUMA0hrk5xjAAlY7mbr+1MzH8Z8RJJTM6yD67r7RxPGu8+q6s1J3prkhd39lanzAIxtVmr4N0l2SfLi7r5m4kj3WVVtleT4DIUBx3T3DyaOBDC6qtoryQlJvpzkjd29fuJI91pV7ZShXHLDfZibMy+B+Vx33zhhPAAAAABWKMUvAAAAAAAAAMCSUlWrkuydhQUv+ye5IkOpy9mZF7xc1N23TpP23quq7ZM8K/Mho20zDBitTXJad/9sunQA46iqhyY5MsNaeFiSSzNfC/++u2+bMN79Miuy+Yskz0lydHd/b9pEAOObrfOfTnJektdvTtfrd2dW2vjWJG9M8rzu/sbEkQBGV1UPSPK/kmyR5GXdfd3Eke6z2bp+cOb3Z/5Fki9kVgTT3RdPGA8AAACAFUTxCwAAAAAAAAAwidmAze5ZWPByUJLrMi922fA4v7tvmCbt/VNV+2U+SPSMJF/P/ETps9sXOIBlrqq2SPKUDOvgmiT7Jjktw1q4rruvmDDeJlNVOyb5cJJtkhzb3ddOHAlgdFW1OskJSd6f5F3L7Vq3qo5NcnyS13T3SVPnARjbrOjw3UkOzVB0eNnEkTaJqtolya9n2K+sSXJD5vduPt/dN00YDwAAAIBlTPELAAAAAAAAALDoZsMzB2XjgpeDk1SSs7Nxwcu53X3NRFE3iaraLskzMy972SHDsNDaJKcpAgBWgqraLcmRGdbCw5N8P8PQ5NokX+ru9RPG2+Sq6mFJPp2h3OsNy+39AfwyquqwJB9K8pbu/tDUeRZLVR2S5ONJ3tndx0+dB2BsszLftyT5nSTP7+6vTRxpk5q9v8dlfl/ncUnOzOzeTnd/Z8J4AAAAACwzil8AAAAAAAAAgE2mqrZPcmA2LnhZnWSXJOdm44KXc5Jc2cvkywtVtW+GYaA1GU69/mbmJ0N/c7m8T4C7U1VbJHly5mvho5J8JsNauK67vz9hvEVVVY/LUPpyfJI/s+YDK1FVvS7Ju5K8rLvPmDrPYptd/5+Y4XPud7v79okjAYyuql6U5L1JXtfdn5o6z2KpqgcmOSzDPufIJD/L/J7PGd1984TxAAAAANjMKX4BAAAAAAAAAO61qtoqyf5ZWPCyV5ILM5S6nJ15wctl3X3HNGkXR1Vtm+TXMi842Dmzk5+TnNrd10wYD2AUVbVrkiMyrIWHJ/lhhuHHtUm+2N23ThhvFFW1JskHk7yxuz8ydR6AsVXVqiR/nOSlSY7u7gsnjjSaWRHAxzIUALyyu2+YOBLA6KrqyUk+meS4JO9e7iWIs8+9x2e4F7QmyWOTnJHZPqi7L5kwHgAAAACbIcUvAAAAAAAAAMDdmg2z7JOFBS/7Jbks82KXDY+Lu3v9NGkXX1Xtk/lgzzMzlNtsKDj4xnIrtwG4q9nnwpMyL706IMnpGdbCdd19+YTxRldVb0jyR0le3N1fmjoPwNiqarsM5Vd7Jnlhd181caTRVdXWSd6bYZ/0vO7+4cSRAEZXVY9IcmKSzyZ5S3ffNnGk0VTVg5IclmGPdGSSn2a4T3RSkjO7+5YJ4wEAAACwGVD8AgAAAAAAAACkqirJHllY8PKYJFdnYcHLBd190zRpx1NV2yQ5NPOCgwclWZdhgOeU7v7phPEARlFVD0lyeIa18IgkV2Y+yHhWd986YbxJVNUWSY5LcnSSo7v7OxNHAhhdVe2W5FNJLkny2u6+eeJIk5ntp/4gyeuSHNPd50wcCWB0VbVzko8muTXJy7v75xNHGt2sKPMJmd9HOijJ5zMrDe7uSyeMBwAAAMASpfgFAAAAAAAAAFaY2UnEdy14WZ1kfRYWvJzX3ddNFHUSs1Oq18wez0pyXmYDOkm+3t13TJcOYPHNhhWfmPla+Jgkn8uwFq5b6cOKVbVDkr9J8sAkL1YCBqxEVXVgkhOS/G2SP2pfSE6SVNUrkvxlkld19ylT5wEYW1VtleT4JE/KUIT1g4kjTaqqHpyNSzSvyvwe05krsUQTAAAAgIUUvwAAAAAAAADAMlVVO2YY1r9rwcsOWVjwcm53/3iiqJOqqq2TPCPz05h3TXJyhiGcU7r7qgnjAYziTgOJazIMJF6dYR08KckXuvuWCeMtGVX10CSfzlAK9nqDmsBKVFXPTvLhJG/r7g9MHGfJqapDk3w0ydu7+31T5wEYW1VVkrcm+XdJntfd35w40pJwp4LNDfefDkzy2Qz7rrXdfdmE8QAAAACYkOIXAAAAAAAAANjMVdU2SR6dhQUvD01yQTYueDk7yfd7hX9hoKoenmHI5qgkz05yfmaDNkm+2t13TBgPYNHNhg6fkPlauDrJ5zIfOvzeZOGWqKpaneSEJO9P8q6V/lkKrExV9ZokxyX5V919+tR5lqqqelSSE5N8PMnv218AK1FVHZvkvyf5je4+aeo8S01V7Zp5+eaRSX6UoXhzbZKzlEwCAAAArByKXwAAAAAAAABgM1FVWyTZNxuXuxycZJ8kl2Tjgpdzknynu2+fJu3SUlVbJXl65qcq75Hk5AwDNad0908mjAcwiqp6YDYeLLw2w1DhSUnO7O6bJ4y3pFXVYUk+lOQt3f2hqfMAjK2qKsk7krwqydHdff7EkZa8qnpwkk9mGOR/dXffNHEkgNFV1SEZSrDe2d3HT51nqZrd83tS5vet9k9yeubFnN+fMB4AAAAAi0zxCwAAAAAAAAAsMbOhyr2yccHL6iQHJLkyCwtevt3dt0yTdumqqodlGJY5KslzklyY2cBMkq8oxQGWu9nnyeMzXwsfm+SMzIcHvzthvM1GVb0uybuSvKy7z5g6D8DYqmqbJH+VoYTyBd3944kjbTbu9P/ukUme7/8dsBJV1b5JTsywD/ld92PuWVXtluSIDHu5I5L8IENh59okX+zu9RPGAwAAAGATU/wCAAAAAAAAABOqql2zsOBldZIbsrDg5bzu/vlEUZe8qtoqydMyLzh4WJJTMgzGnGzIElgJqmqXJIdlWAvXJLk+w3DgSUnO6O6bJoy3WamqVUn+OMlLkxzd3RdOHAlgdFX1kCSfSPKjJK/2OXLvzYrY3pHkVRk+T86fOBLA6KrqgUk+nuS6JK/s7hsmjrTZqKotkvxqhntda5Lsl+S0zAs9r5gwHgAAAACbgOIXAAAAAAAAABhBVe2U5KAsLHjZOhuXu5yd5NzuvnqiqJuVqtoz83KD5yb5TuYFB//gFGlguZsNkz828yHAJyQ5M/MhwIsnjLfZqqrtknwwyZ5JXtjdV00cCWB0VfWoJCdmGNT//e6+Y+JIm7Wqek2S45K8vLs/O3UegLFV1dZJ3pvh/tjzuvtHE0faLFXV7kmOzLD/OyzJ5ZnfC/tSd982YTwAAAAA7gPFLwAAAAAAAACwCVXVtkkOyMblLgcneUiS87Jxycs5Sa5o/3j/S6uqLZMckmG45agkeyc5JcOAy8mGhoCVoKp2TvLrmRdf3ZRhyG9tks91900TxtvsVdVuST6V5JIkr+3umyeOBDC6qjo0yUeTvL273zd1nuWiqp6d5MNJ3tbdH5g4DsDoZsWVf5DkdUmO6e5zJo60WZvdJ3tK5vfJ9klyWob94bru/uGE8QAAAAD4JSl+AQAAAAAAAID7YDZYsV82LnhZneQRSS7OwoKXS7r7jmnSbt6qao9sfJLxJZmfZPxlJxkDy91sOHJ1hkG+NUmemOSszNbC7r5ownjLSlUdmOSEJH+b5I+UswErUVW9IslfJnlld586dZ7lpqoOSHJifNYAK9idPmte1d2nTJ1nuZjdQzsiw97RPTQAAACAzYTiFwAAAAAAAAD4Z1TVqiR7Z2HBy/5JfpCFBS8Xdfet06RdHu7mtOJTMwyqOK0YWBGqaqckz82wFq5Jsj7DsN7aJJ/t7hsnjLcsVdWzk3w4ydu6+wMTxwEY3axo7A+T/GaSY7r7nIkjLVtVtVuST2UYyH9td988cSSA0VXVoUk+muTt3f2+qfMsN7P7a4dkfn9t7wz3107KcH/tygnjAQAAAHAnil8AAAAAAAAAIP805Lh7Fha8HJTkumxc7nJ2kvMN3W86VbV7kiMzDKMcnuSyzE8k/vvuXj9hPIBFN/scOijzopcnJ/lS5mUvF7Yvey2aqnpNkuOS/KvuPn3qPABjq6qtk7w3wx7oecoWF19VbZfkg0n2SPKi7r5q4kgAo6uqR2XY83wsye939x0TR1q2qmrPDPfejspQMvqdDHvNtUm+3N23TxgPAAAAYEVT/AIAAAAAAADAilNVu2QYrr9zwcvBSSpDqcudS17O7e5rJoq6bFXVFkl+NcOwyZokj0zymQzDJuu6+wcTxgMYRVXtmGHgbsNaeEfmRS+nd/cNE8ZbEWaFO+9I8qokR3f3+RNHAhhdVT0wycczFF6+0ufPeKpqVZI/TvLSJEd190UTRwIYXVU9JMknkvwoyau7+6aJIy17VbVVkqdlXjy6V5JTMuxHT+7uH08YDwAAAGDFUfwCAAAAAAAAwLJVVdsnOTAbF7ysTrJLknOzccHLOUmubP+QvmiqarckR2QoODgsyRWZFxx8sbvXTxgPYNHNSkYOzDBYd1SGAqwvZ74WXuBzaDxVtU2Sv0qyb5IXGG4EVqKq2jfJiRk+i97a3bdPHGlFqqrXJXlXkmO7+8yp8wCMzbX5tKpqryRHZtinPifJRZnvU7/i+gAAAABgcSl+AQAAAAAAAGCzNzuldv8sLHh5WJILs7Dg5bLuvmOatCtHVW2R5EkZhkbWZPgdnZ5haGRtd39/wngAo6iqHTIMzm1YCyvDOnhSktO7++cTxluxquohST6R5EdJXt3dN00cCWB0VXVIko8neWd3Hz91npWuqg5L8qEkb+nuD02dB2Bss6LMdyR5VZKju/v8iSOtSFW1dZKnZb6HfWiSUzLsYU/u7qsmjAcAAACwLCl+AQAAAAAAAGCzUVWrkuyThQUv+yW5LBuXu5yd5OLuvm2atCvTbJD+iAyDIUckuTLzE4LP6u5bJ4wHsOhmw4qPzrAOHpXkqUm+kvlaeF770takqupRSU7MUHbw+8rggJWoqo5NcnyS13T3SVPnYVBVq5OckOSvMhTyuGYAVpyqek2S45K8vLs/O3Wela6q9k5yZIb97bOTXJD5/var9lMAAAAA95/iFwAAAAAAAACWnNnQ/B6ZF7scPPvzwCRXZ+OCl3OSXNDdN02TdmWblfE8KUPBwZoMv6PPZhgAWdfdl00YD2AUVbVDhgG4DWvhVhmG4E5K8pnuvn7CeNxJVR2a5KNJ3t7d75s6D8DYZnuttyZ5Y5Lndfc3Jo7EXVTVQ5N8Osl5SV6vPBNYiarq2Uk+nORt3f2BieMwU1VbJ3lGhhKYNUl2TXJyhv3vyd199YTxAAAAADZbil8AAAAAAAAAmFRVPTjJQZmXvGx4rM/Cgpfzuvu6iaIyM/udHZ5hyOOIJD/JMOCxNskXuvuWCeMBLLrZ0PyjMgy6HZXkaUm+mvlaeE77YtaSU1WvSPKXSV7V3adMnQdgbFW1VZLjMxQ3Pq+7vz9xJO7GrFTub5LskuTF3X3NxJEARldVByY5McmHkvyRPdbSU1WPyLwA9VkZSss2lKB+vbvvmC4dAAAAwOZD8QsAAAAAAAAAo6iqHZM8JgsLXnbIwoKXc7v7xxNF5S6qalWSf5F5wcFBST6XYYhjbXdfOl06gHFU1fYZBtk2rIXbZrYOJjmtu382XTr+ObOinj9I8vokR3f3ORNHAhhdVe2c5KMZCjZf3t3XTxyJe1BVWyQ5LsnRSY7q7u9OHAlgdFW1W5JPJflukt/s7psnjsTdqKptkhya+Z75QUnWZdgzn9LdP50wHgAAAMCSpvgFAAAAAAAAgE1q9iX/R2dhwctDk5yfhSUv33di79JTVQ9McniGQY0jk/w08xN7z+zuWyaMBzCKqtov86G1ZyT5euZr4dk+v5a+qto6yXszXIs8r7t/OHEkgNFV1SOSnJihvPHfd/dt0ybi3qiq/yPJ25O8pLu/OHUegLFV1XZJPphkjyQv6u6rJo7EL6Gq9smwn16T5JlJzs58P/2N7r5jwngAAAAAS4riFwAAAAAAAADuk9np44/MwoKXfZJckoUFL9/p7tunScs9qapVSR6fecHBwUnOyDCMsba7L5kwHsAoZgOFz8x8Ldwhw2Da2iSndfe1E8bjXpqVmH08yXVJXtndN0wcCWB0VfXkJJ9MclySdyst2zxV1VFJPpDkjd39kYnjAIxudt/qj5O8NMlR3X3RxJG4F6pq2yS/lvlee+fM99qndvc1E8YDAAAAmJziFwAAAAAAAAD+WVVVSfbKwoKXA5JcmYUFL9/u7lumScu9MRuIPyzD0MWRSX6W+cm7Z3T3zRPGAxhFVe2bYfBsTZJDk3wz87XwmwbkN0+z3+uJGX6Xv6t8DliJqupFSd6b5HXd/amp83D/VNXjknw6yfFJ/sw1CrASVdXrk7wzybHdfebUebhvquqRGfbg9uEAAAAAUfwCAAAAAAAAwJ1U1a5ZWPCyOskNWVjwcl53/3yiqNwHsxKfx2V+uu7jkpyZ2Qm73f2dCeMBjOJOJ41vKHtx0vgyU1VPTfKJJO/q7v8+dR6Asc2u+9+S5HeSvKC7vzpxJDaRqnpYkhOSfC3JG7p7/cSRAEZXVYcl+VCSt3T3h6bOw/1TVdsleWbm9yt3SLIuQwnMqd193YTxAAAAAEah+AUAAAAAAABgBaqqnZIclIUFL1snOTsbF7yc291XTxSV+6mqdk5yWOan6N6QYXBibZLPd/dNE8YDGEVV7ZP5OvjMDJ91G9bCb3T3HRPGYxOqqmOTHJ/kN7r7xKnzAIytqrZM8l8ylJwd3d2XTRyJTayqdkzy4STbJHmpgXhgJaqq1RmKsN6fofDRYMwyUVX7ZV4C84wkX8+wdz8pydl+1wAAAMBypPgFgP+fvTuP1qyqzzz+fZhnVBQUEESZoeKEIoIKIhS3GByISmscolHbxGgSE9O22tGYjppo25rENjHGiCaaiEGRGihGBQURjVoUc0AQQSZFkBnq13+cUzkUVw1D1dn33vf7Wetd8uezlnX3e959fvvZkiRJkiRJkiRpDkuyAbAb0wteHgmcx6oFL+cCVzk8P7slCTCP4YDEU4Az6A5ILK6qixvGk6RRJFkfeBbdOjgFPILuxvDFwNKq+knDeFoD+u+/twFvAg6vqu82jiRJo0uyKfAvwNrASywEmbv6gp8PA8+lK/j5QdtEkjS+JI8BjqPb43xdVd3ZOJJWsyQbAfsz7HOuT/fbfhFwUlXd1C6dJEmSJEnS6mPxiyRJkiRJkiRJkiTNAf2hrx2ZXvCyPXAJ0wteLquqFW3SanVLshnwPLpDEFPAHXQHIBYDp1XVrQ3jSdIokmzPsA7uT3f4b+Va+B2/9+auJOsCHwP2oit9ubJxJEkaXZJtgYXAWcCbququxpE0giRvBv4YeEFVfat1HkkaW5KNgc8CDwNeVFU/bRxJa0hf9rkTQwnMM4Fz6MuugXMtNJckSZIkSbOVxS+SJEmSJEmSJEmSNIskWQvYjukFLzsDP2J6wcvF3nY79/QHHfagO+QwRXfQ/Rt0hxwW0f3/7kCApDktyXrAfgxr4aOAE+jWwqVVdX3DeBpJks2BLwB3AUdV1c2NI0nS6JI8GTgO+CjwQX8LTJYkRwCfBF5fVce2ziNJY0uyNvAXwKHAgqq6tHEkjaAv/dmfbk9gAbAOQwnMSf42lCRJkiRJs4nFL5IkSZIkSZIkSZI0A/XFHlsxveBlD+BGphe8nF9Vt7ZJqzEk2RQ4kKHg4G66kpfFwKlVdUvDeJI0iiSPZbjd+wDgfIaDXedU1YqG8TSyJNsDC4HTgN+rqrvbJpKk8SU5DPgU8MaqOqZ1HrWR5KnAl4EPA//H8h9JSzpk5gAAIABJREFUkyjJbwPvAl5UVWe2zqPx9Hvpu9DtF0wB+wDfYtg7Pc/vRkmSJEmSNJNZ/CJJkiRJkiRJkiRJjSV5GNMLXvYEAixj1YKX5VX100ZRNaL+wMJuDEUvTwfOYjiwcKEHFiTNdUnWBfZlWAsfA5xAtxYurarrGsZTQ0meBnwJ+EvgI34nSppESd4EvAN4YVWd1TqP2kqyHXA8cAbwZgvRJE2iJAuATwO/U1X/2jqP2kiyCV1Z7Mq9hDCUxp5cVT9vGE+SJEmSJGkai18kSZIkSZIkSZIkaSRJNqIr8rhvwcvDgOWsWvByLnCNh5gnS38o4bkMhxJgKHo5xUMJkiZBkm3o1sAFdGviRXTr4CLgnKq6p2E8zQBJXgj8HfBbVfXl1nkkaWxJ1gY+BMwHFlTVZY0jaYZIshnwBWAF8NKquqlxJEkaXZInAccBHwM+4P7qZOvLtXdl2G/dG/gmw57rBf4bkSRJkiRJrVn8IkmSJEmSJEmSJEmrWZJ1gZ2ZXvCyDd3h9fsWvFxRVSvapFVL9zp4MNV/ngGczXDw4HwPHkia6/rvzWcylL1sAyylWwtPqKprG8bTDNJ/b/4+8Fbg+VV1TuNIkjS6JBsD/wxsAvx6Vf20cSTNMP2z1V8B+wCHVdUPG0eSpNH1haLHA98G3lhVdzWOpBkiyaasWry9glWLt29pGE+SJEmSJE0oi18kSZIkSZIkSZIk6UFKshawA9MLXnYELmd6wcslVXV3m7SaKfqDmgcwHC5Ym+5gwWLg5Kq6uWE8SRpFkq0ZSq8OBP6Dbh1cBJxdVfc0jKcZKMk6wEeAZwOHVtUVjSNJ0uj678+vAN8H3lBVdzaOpBmqL0t7K/AWurK07zSOJEmjS7IJ8HlgfbqytJ81jqQZpv++3J1hn/ZpwJkM+xMXWcotSZIkSZLGYPGLJEmSJEmSJEmSJP0X+gHwxwDzWLXgZTfgBqYXvFxQVbe1SauZpv/3szPd4YEFdLeuf4uh7GW5BwgkzXV9acc+DGvhdsBSunXwhKr6ccN4muH6G9n/ha4s7SUe2JQ0iZLMA44H/hZ4n78hdH8kORL4OPCbVXV86zySNLb+t+iHgecCC6rq8saRNIMl2YyunHbl3sWddAUwi4FTq+rWhvEkSZIkSdIcZvGLJEmSJEmSJEmSJN1Lki2APVi14GVP4C6mF7yc58Fj/SJJNgIOoDskMEV3s/DKm2JPrqqbGsaTpFEkeQxwCN06eBBwGcNa+M2qurthPM0SSbalKzo4G/idqrqrcSRJGl2S+cBngLdU1eda59HskmRv4Fi6wqC/ap1HklpI8hbgbcALqupbrfNo5uvLvPekK4CZAp4KfJ1+X6OqLm4YT5IkSZIkzTEWv0iSJEmSJEmSJEmaSEk2AXZnesHLxkwveFleVdc2iqpZIslODLfB7gt8m+4gwGJgWfmCXtIc19+kvjfDWrgDcCLdOrikqq5uGE+zUJInA8cBHwU+6HeppEmU5A3Ae4Bfr6ozWufR7JRkB2Ah3bPZH1TVPY0jSdLokjwf+Hvg9VV1bOs8ml2SbA48j2HP41a6YtvFwGlVdVvDeJIkSZIkaZaz+EWSJEmSJEmSJEnSnJZkfWAXphe8bAVcwPSSlys9VKz7I8mGwP4Mw/4b0d/4CpxUVT9rl06SxpFkK+AQurXwYOAKhrXwrKq6q2E8zWJJDgM+Bbyxqo5pnUeSxpZkLeADwBHAoVV1SeNImuWSPAz4InAL8LKq+nnjSJI0uiRPBb4MfBj4P+4D68FIEuDXGPaFnwScQV8C7nObJEmSJEl6oCx+kSRJkiRJkiRJkjQnJFkbeALTC152AC6jK3VZxlDwcqk3XOuBSvIEumH+KWA/4LsMBQff97CIpLmu/759OsNa+ATgZLq1cElV/ahhPM0RSd4EvAN4YVWd1TqPJI0tyUbA0cCWdGvhDY0jaY5Ish7wceCJwOFVdVXjSJI0uiTbAcfTFXW8uarubhxJs1xfrnYQ3T7JFHAzw57xV6vq9obxJEmSJEnSLGDxiyRJkiRJkiRJkqRZpb9Nc1u6Upd5DAUvuwI/Zih2Wfm5sKruaJNWs12SDYDnMNzeuin9za3AiVV1Y8N4kjSKJFsC8+nWwYOAq+gOLy0GvlFVdzWMpzmkLxb6EP2/t6q6rHEkSRpdkq2A44CLgdf6e1arW7+v8nbgvwOHVdX3G0eSpNEl2Qz4AnAP8NKqurlxJM0RSdaiK1hbuZ/8a8Dp9PsoVXVpw3iSJEmSJGmGsvhFkiRJkiRJkiRJ0oyV5FEMxS73/tzC9IKX86rq542iag5JsgPdUP4U8Gzg+ww3tH6vqlY0jCdJa1xfvrEXw1q4M3AKffFVVV3ZMJ7mqCQbA/9MV7J2ZFX9tHEkSRpdkt2B44GjgfeUQ75ag5IcBXwUeGVVLWmdR5LGlmRd4K+BZwCH+ltXa0KSh9OV6C4ADgFuZNhr/polf5IkSZIkCSx+kSRJkiRJkiRJkjQD9Des7sH0gpf1gGWsWvCyvKpuaBRVc1CS9ekKXlbewvpw+nID4MSq+knDeJI0iiSPBObTrYXzgWvob6MGvl5VdzaMpzkuydbAV+jK1t7gvzdJkyjJgcDngD+sqqNb59FkSLIv8EXg3VX18dZ5JGlsSQK8FXgL8Pyq+k7jSJrDkqwFPJlhH3pP4Kv0+y9V9YN26SRJkiRJUksWv0iSJEmSJEmSJEkaTZINgV2ZXvDySOA8ppe8XO0N51oTkjyObsB+Ctif7t/byptW/72qVrTKJklj6A8b7cWwFu4GnEq3Di6pqisaxtMESTIPOB74W+B9PvtJmkRJfhN4P/CSqvpq6zyaLEl2BBbSlbC9zd/DkiZRkiOBjwO/WVXHt86jyZBkC+AguhKYQ4AbGEp4T6+qOxrGkyRJkiRJI7L4RZIkSZIkSZIkSdJql2QdYEe6Upd5DAUv2wGXMBS7LKcre7nMg0Vak5KsD+xHN0Q/RVc2tIRuiH5pVd3QMJ4kjaI/UHQw3Vo4H7iObh1cDJzhgSKNLcl84DPAW6rqc63zSNLY+iK29wJHAYdW1QWNI2lCJXkEcCxwPfCKqrq1cSRJGl2SvenWwvdV1V+1zqPJ0j8XPpWhoHd34DT6IhgLeiVJkiRJmtssfpEkSZIkSZIkSZL0oPXDyNsxFLus/OwM/Iih4GXl5+KqurNNWk2aJNvRDckvAPYHzme4MfXblg1Jmuv67+mnMKyFe7DqoaHL26XTpEvyBuA9wK9X1Rmt80jS2JJsAPwj3W/q51fVdW0TadL1hal/T7enc0RVXdM4kiSNLskOwELgROAPquqexpE0oZI8kq68dwo4BLiWYW/7DN+zSJIkSZI0t1j8IkmSJEmSJEmSJOm/lCTAVkwveNkDuJHpBS/nezu0xpZkPWA/hltRtwJOoBuIX1pV1zeMJ0mjSPIIVj0Y9BO6Q0GLgNOr6o6G8aSVhUTvB14ALKiqSxpHkqTRJXkU8CXgSuBVVXV740gS8J/7P/8LeDVwaFWd1zaRJI0vycOALwK3AC+rqp83jqQJl2Rt4Kl0pb5TwK7AKXT7PYur6ocN40mSJEmSpNXA4hdJkiRJkiRJkiRJq0jycLpCl/uWvEBX6rKMoeBleVXd2CKnBJBkW7ph9wXAAcBFDDefnuOtvJLmur5E40kMa+E84Gv0a2FVXdYwnrSKJBsBRwNbAi+sqhsaR5Kk0SXZBVgI/Cvwzqpa0TiSNE2SVwAfois8OKl1HkkaW18w/XHgicDhVXVV40jSf+pLBOfT7QMdDFzNsCf+9aq6q2E8SZIkSZL0IFj8IkmSJEmSJEmSJE2o/uDtbnSlLvMYCl42B5YzlLus/FxTvmBUY0nWBfalKziYArYGltINtp9QVdc1jCdJo+hL2g6iWwcPAW6iO9yzCPhaVd3eMJ70CyXZCjgOuBh4bVXd0TiSJI0uyXPoCl/eXlX/0DqP9Kv471XSpEsS4O3AfwcOq6rvN44kTZNkbeBpdCUwU8BOwMl0+0SLq+pHDeNJkiRJkqT7yeIXSZIkSZIkSZIkaY7rizJ2Zih2WfnZBriI6QUvV3jjuGaSJNvQFRssAA6kOzC+uP+cXVX3NIwnSWtcf9jsiXQHeBb0/306wyGe/2gYT/ovJdkdOB44GniPZYKSJlGSVwAfAl5WVSe1ziPdH0l2ARbSFcC80/0iSZMoyVHAR4FXVtWS1nmkX6UvXZ1Pt4d0MHAlQ1nwmVV1V8N4kiRJkiTpl7D4RZIkSZIkSZIkSZojkqwF7MD0gpcdgcuZXvBySVXd3Sat9Mv1ZUX7MBQcbAucSDecfkJVXdMwniSNIsnmwEF0a+EUcAvdOrgY+GpV3dYwnnS/JTkQ+Bzwh1V1dOs8kjS2vsDtT4BXAYdV1fLGkaQHJMmjgC8BPwReXVW3N44kSaNLsi9wDPDuqvrb1nmk+yPJOsDTGfbZHw+cRLe3tKSqrmoYT5IkSZIk3YvFL5IkSZIkSZIkSdIs0x8a25rpBS+7ATfQlbosYyh4ucBDOZrpkmwNHEI3hP484FKGm0jPtqRI0lzXf7/PozuIMwU8BTiDbi1cXFUXN4wnPShJXgO8D3hJVX21dR5JGluS9YG/B3YGjrDEUrNVkg2AfwQeC7ygqq5rm0iSxpdkR2AhcBzwx1W1onEk6QFJ8miGPfiD6C4MWLkHf5Z78JIkSZIktWPxiyRJkiRJkiRJkjSDJdkC2IOu2GUeQ8nLnQzFLis/y6vqpkZRpQekv230GQwFB9sDJzLcNvrjhvEkaRRJNqMru1pAd/DmDrrDNouB06rq1obxpActyVrAe4GjgAVVdWHjSJI0uiSPAI4Frgde4fe6Zrt7fb+/FDjU73dJk8jvd80V99qfn6Lbl9oeOIluX8r9eUmSJEmSRmbxiyRJkiRJkiRJkjQDJNkE2J2h2GXlZ2N+ccHLtY2iSg+aN4pKmnRJQvf9PtV/9gK+wbAWXlwO82iWS7IB8I/AdsDzq+q6tokkaXxJdgQWAscBf1xVKxpHklabJK8B3ge8pKq+2jqPJI0tyfrA3wM7A0dU1TWNI0kPWZKtGfbunwdcSrdftRj4pnv3kiRJkiStWRa/SJIkSZIkSZIkSSPqh8J3YXrBy6OB85le8nKlB8A1WyVZG9ib7sbQKeDxdLeGLqa7NfSqhvEkaRRJNqU7MLOy7OVuupKXxcCpVXVLw3jSapXkUcCXgCuBV1XV7Y0jSdLokuwLHAO8p6o+3jqPtCYkORD4HPDWqvpM6zySNLa+2PV/Aa8GDq2q89omklafJOsC+9DtYy0AtgVOZNjXt+xIkiRJkqTVzOIXSZIkSZIkSZIkaQ3oCy+ewPSClx2Ay+hKXZYxFLxcWlX3tEkrrT5JtqS7GXQBcBDdwe+VBQdnVtVdDeNJ0hrXH/7aneFwzNOAsxjWwgstddNclGQXYCHwr8A7q2pF40iSNLokRwEfBV5ZVUta55HWpCS70333Hw2822dcSZMoySuADwEvq6qTWueR1oQk2zDs+R8IXMKwz3W277YkSZIkSXroLH6RJEmSJEmSJEmSHoL+cPe2dKUu8xgKXnYFfsxQ7LLyc2FV3dEmrbT69SVHT6Mb+p4CdgJOZrj988qG8SRpFEk2AZ7LsBYW3Tq4CDi1qn7eMJ60xiV5Dl3hy9ur6h9a55GksfV7A28H3gAcXlXfbxxJGkWSrYDjgIuB17rnJWkS+XtIkyTJusAzGfbAtgaWMrwPuK5hPEmSJEmSZi2LXyRJkiRJkiRJkqT7KcmjGIpd7v25hekFL+d5yFtzVf+3MJ9uuPtg4GqGGz6/UVV3NownSWtcf7h7V7oDLguAvYGzGdbC88uhHE0Ib7iXNOmSrAd8HHgScFhVXdU4kjSqJBsBRwNbAi+sqhsaR5Kk0SXZBVhIVwDzzqpa0TiSNIokjwUOodsfey5wIcP+2DlVdU/DeJIkSZIkzRoWv0iSJEmSJEmSJEn3kWQzYA+mF7ysByxj1YKX5R5o0VyXZG1gL7qCgym6soNT6Ia3F1fVDxvGk6RRJNmY7gDLyrKXtejXQeDkqrq5YTxpdH0B0p8Ar6IrOljeOJIkjS7Jw4Av0hXCvswCWE2qJGsB7weeDxxaVZc0jiRJo+vLsr8E/BB4dVXd3jiSNKq+EHFfun2zKWAr4AS6vbMTqur6hvEkSZIkSZrRLH6RJEmSJEmSJEnSxEqyIV2BxX0LXrYAzmPVgpdzgavLF2yaEEkeCcynG9CeD1zLcFPnGVV1Z8N4krTG9aUWOzMcVtkH+BZD2ctynws0qZKsD/w93d/IEVV1TeNIkjS6JDsAC4GlwFur6p7GkaTmkrwBeA9wZFV9vXUeSRpbkg2AfwQeC7ygqq5rm0hqJ8l2DGXyBwDn0+2pLQK+XVUrGsaTJEmSJGlGsfhFkiRJkiRJkiRJc16SdYAd6Upd5jEUvGwHXMJQ7LKs/98fOHCqSdPfzv1UuiHsBcBuwGl0Q9hLqurydukkaRxJNqI7iLJyLVyP4UDKyVV1U8N40oyQ5BHAscD1wCuq6tbGkSRpdEn2plsL31dVf9U6jzSTJJkPfAZ4S1V9rnUeSRpbv8/6XuClwKFVdWHjSFJzfYHsfgwFy48EltDtuy2tqhsaxpMkSZIkqTmLXyRJkiRJkiRJkjRn9APV2zEUu6z87Az8iKHgZeXn4qq6s01aqb0kWwAH0w1aH0J3gHtlwcEZVXVHw3iSNIokOzEcOtkX+DbDWnhuOVwj/ackOwILgeOAP7YsUdIkSnIk8HHgN6vq+NZ5pJkoyTzgeODvgD/3mVrSJEryGuB9wEuq6qut80gzSZLH0e3FTQH7072zW9x/vuN+gyRJkiRp0lj8IkmSJEmSJEmSpFknSYCtmF7wsgdwI9MLXs6vqlvbpJVmjr4c6cl0w9QL6P5uTqMfqK6qHzQLJ0kjSbIh3YGSlWUvG9GVvCwGTqqqn7VLJ81cSfYFjgHeU1Ufb51HksbW70X8IfAW4Iiq+k7jSNKMlmRr4CvA94E3WL4saRIlORD4HPDWqvpM6zzSTJRkA+BZDO8tHg4soduvW1pVP20YT5IkSZKkUVj8IkmSJEmSJEmSpBktycPpCl3uW/ICsIxVC16WV9WNLXJKM1X/N3Qw3dD0IXTlSIvphqZPr6rbG8aTpFEk2ZHhFuFnAf/OsBZ+vxygkX6lJEcBHwVeWVVLWueRpLElWRf4a+AZwGFV9cPGkaRZIcnGwD8DmwJHenBb0iRKsjuwEDgaeLd7ENKvluTxDPt4z6YrkVvcf75bVSsaxpMkSZIkaY2w+EWSJEmSJEmSJEkzQpKNgN2ZXvCyObCcodxlZdnLtQ5IS9P1t9A/ie5mzCng14Cv0Q9GV9WlDeNJ0ij6m4Kfw7AWbspwQOREi+Kk+6d/rng78Abg8Kr6fuNIkjS6JJsBXwDuAV5aVTc3jiTNKknWBj5IV0a7oKouaxxJkkaXZCvgOOBi4LVVdUfjSNKscK89vim6fb5NgSV0Zc7u8UmSJEmS5gyLXyRJkiRJkiRJkjSq/pbsnVm13GUesA1wIUPBy8rPFd7eJ/1qSR4GHMRwC+bNdOUGi4CvVdVtDeNJ0ijudRvwAuBZDLcBLwK+5/OE9MAkWQ/4OF2h3GFVdVXjSJI0uiTbAccDZwBvrqq7G0eSZq0kbwL+J/CiqjqrdR5JGltffn80sCXwwqq6oXEkadZJ8gRW3f/7Lt3e32K6/T8PyUmSJEmSZiWLXyRJkiRJkiRJkrRGJFkL2IFVC172BHYELmd6wcslHqCS7p8kAZ7IUPTyZOB0uuHmxVV1ScN4kjSK/sbfZzOshQ+ju/F3Md2Nvz9pGE+a1fpSuS8CtwAvq6qfN44kSaNL8lTgOOBDwIc9RCo9dEkOAz4FvLGqjmmdR5LG1r83eT/wfOBQ93GlBy/JhsD+DEUwG7Lq3uDP2qWTJEmSJOmBsfhFkiRJkiRJkiRJD0lfQLE10wtedgOuZ3rBywVVdXubtNLslWRz4Hl0A8yHALcx3GR5WlXd1jCeJI0iyeMYDnM8h+7ZYuVa+O9VtaJZOGmOSLIDsBA4EfiDqrqncSRJGl2SI4BPAq+vqmNb55HmkiRPpitV+ijwQUuVJE2iJG8A3gMcWVVfb51HmguS7MSwb7gv8B2GfcNlPnNIkiRJkmYyi18kSZIkSZIkSZJ0vyXZgukFL3sCd7Jqucsy4LyquqlRVGnW60uV5jEMKj8F+DrdkPKiqrq4YTxJGkWS9YFnMayFW9Dd3LuI7ubeGxrGk+acJHsDxwLvr6qPts4jSWPrf4e9GXgb8IKq+lbjSNKclGRb4Hjgm8CbququxpEkaXRJ5gOfAd5SVZ9rnUeaS5JsBOxPt5+4AFiP7t3KYuAk319KkiRJkmYai18kSZIkSZIkSZI0TZJNgN1ZtdxlHrARqxa8nAssr6prG0WV5pQkmwHPoys4mKIrVVp5I+WpVXVrw3iSNIok2zOsg/sD5zOshd+uqhXt0klzV5IjgY8Dv1lVx7fOI0ljS7IO8GHgAODQqrq8cSRpTkuyKfB5YB3gJVX1s8aRJGl0SebRFWH9HfDn5QEfabXryx13ZiiW3gc4h75kn+49p397kiRJkqSmLH6RJEmSJEmSJEmaYEnWB3Zh1YKXPYGtgAuYXvJypcOP0urTDxzvwTBwvBdwJkPBwUX+zUma65KsB+zHsBZuCZxAtxYurarrG8aT5rz+eeQPgbcAR1TVdxpHkqTR9QW4nwfWB37dAgppHH3h0keAZ9MVLl3ROJIkjS7J1sBXgO8Db6iqOxtHkua0JBvTlT0uoNuPXIfhnczJVXVzw3iSJEmSpAll8YskSZIkSZIkSdIESLI28ASmF7zsAFzK9IKXS6vqnjZppbmtv9H6QLqB4ilgBcNQ8SlVdUvDeJI0iiSPZVgHn0tXOLe4/5zjc4g0jv6w9V/T3XZ9WFX9sHEkSRpdkm2A44FvA2+sqrsaR5ImSl9C93t0RXRHVNW3G0eSpNH1RRT/DGwCHFlVNzaOJE2E/jlkV4Z9ymcAZ9PtUS4CzrecX5IkSZI0BotfJEmSJEmSJEmS5pB+QPGxTC942RX4MauWuywDLqqqO9qklSZD/3e5G93Q8ALg6cA3GcpeLnBwWNJcl2RdYF+Gm3QfAyylWwtPqKrrGsaTJlKSzYB/pSuhe6k3WkuaREmeCHwF+BvgL/xtJrWT5AXAJ4Dfqqovt84jSWPrC/w/CMwHDq2qyxpHkiZOkk3oSqpXvs+BoQTmlKr6eatskiRJkqS5zeIXSZIkSZIkSZKkWSrJo1i13GUesAdwC6sWvJwLnOcwojQeh4MlCZJsw3Bb7oHAxQxr4beq6p6G8aSJlmQ74HjgDODNVXV340iSNLokC4B/BH6nqr7QOI4kIMlewJeBvwQ+YhmTpEmU5E3A/wReVFVntc4jTap7lfqvLLJ+OnAW3f6mpf6SJEmSpNXK4hdJkiRJkiRJkqQZLslmdIUue97nsx6wjFULXpZX1Q2NokoTqx8A3oVhAPgZwLfoyg0W05Uv+XJW0pyWZF1gH4a1cFvgRLq18ISquqZhPEm9JE8FjgM+BHzYZxRJkyjJbwPvojtQfWbrPJIGSbYHFgKnAb9nQZ2kSZTkMOBTwBur6pjWeSRBkk3pyq1XFv7fzVByfWpV3dIwniRJkiRplrP4RZIkSZIkSZIkaYZIsiGwK9MLXrYAzmPVgpdzgas9pCm1k2Rj4ACGgoN1GIZ8T66qmxvGk6RRJNkaOIRuLTwQuJRhLTzbQ5rSzJLkCOCTwOur6tjWeSRpbEnWBv4COBRYUFWXNo4k6RdIsjnwBeAu4Cj3WCRNoiRPpivt/CjwQd8HSTNHfxnAHgzvh/YCzmS4DOAi/2YlSZIkSQ+ExS+SJEmSJEmSJEkjS7IOsBPTC162Ay5hKHZZ1v/vD6pqRZu0klbqB3l3phvinQKeCZxDN8S7GDjXQV5Jc13/HLMPw1q4PXAi3Tq4pKp+3DCepF+if455M/A24AVV9a3GkSRpdH155z8BmwMvqqqfNo4k6VdIsi7wMeBpwGFVdWXjSJI0uiTbAscD3wTeVFV3NY4k6RdIshnwPLr90gXAHQwlMKdW1a0N40mSJEmSZgGLXyRJkiRJkiRJktaQJGvRlbncu9xlHl1xxJUMBS8rPxdX1Z1t0kr6RZJsBOzPcGvjBgzDuidV1U3t0knSOJI8GjiEbi18HnA5w1p4VlXd3TCepP9CX9j0YeAA4NCqurxxJEkaXf888xVgOfB691+k2aEvr/sj4HeBw6vqu40jSdLokmwKfB5YB3hJVf2scSRJv0L//DKPoQTmKcDX6fdTq+rihvEkSZIkSTOUxS+SJEmSJEmSJEkPUT/AtxWrFrzsCewB3Mj0gpfzvdlNmrmS7EQ3kDsF7Ad8h67cYBGwrHzJKmmO60si9mZYCx8PnES3Fi6pqqsaxpP0ACTZhO6A4PrAr3tAUNIkSrIncDzwSeDP/E0nzT5JXgx8DHh1VS1snUeSxtbv1XwEeDZdoecVjSNJup+SPIyuTHvlXuutDKXap1XVbQ3jSZIkSZJmCItfJEmSJEmSJEmSHoAkD6crdLlvyQvAMlYteFleVTe2yCnp/kuyIfAcupsXp4CN6QZuFwMn+XcsaRIk2Qo4hG4dPAi4kuEAwplVdVfDeJIehCTb0BUdfBt4o3/HkiZRkoOBzwK/X1X/1DqPpAcvyT7Av9EVOP1N6zySNLb+EoLfA/4QOKKqvt04kqQHqP87fiLdHuyC/r/PoL98oKr+o2E8SZIkSVJDFr9IkiRJkiRJkiT9Akk2AnZnesHL5sByhnKXlWUv13pjtDR7JHkCw2DtfsD36Adrge/59yxprkuyNvB0hrVwR+BkurVwSVVd2TCepIcoyROBrwAfAz7gs42kSZTkdcB7gRdX1emt80h66JI8HljrKGO+AAAgAElEQVRI97vlj6rqnsaRJGl0SV4AfAL4rar6cus8kh68/sKRg+j2aA8BbmYo4/5qVd3eMJ4kSZIkaUQWv0iSJEmSJEmSpImWZF1gZ1Ytd5kHbANcyFDwsvJzRVWtaJNW0oOVZAPgOQwFB5vRDc4uBk6sqp82jCdJo0iyJTCfbi2cD1zFcJDgG1V1Z8N4klaTJAuATwO/U1X/2jqPJI0tyVrAnwNHAodW1UWNI0lajfoD0l8EbgJeXlW3NI4kSaNL8jTgS8BfAh+x7FOa/frfMU+i27udAn4N+Br9u6yqurRhPEmSJEnSGmbxiyRJkiRJkiRJmgj9sNwOrFrwsiewI3A50wteLqmqu9uklbQ6JNmBruRlCng2sIyh4OC7ljhJmuuSrA3sxbAW7gKcQrcWLqmqHzaMJ2kNSPLbwLuAF1XVma3zSNLYkmwIHA08GnhhVV3fOJKkNSDJesDf0hV4H15VVzeOJEmjS7I9sBA4Dfg932lJc0uSRwAH0e3tHgL8lO791iLga1V1R8N4kiRJkqTVzOIXSZIkSZIkSZI0pyQJsDXTC152A65nesHLBVV1e5u0klanJOvTFbxM0Q3CPhxYQjcIu7SqftIwniSNIskjgfl0a+F84BqGAwFfr6o7G8aTtIb0RU9/ARwKLPAWaEmTKMmWwJeBy4DXuN8jzW39PvA7gNcBh1XVssaRJGl0STYHvgDcBRxVVTc3jiRpDegvOHkyQ8H3nsBX6S87qKoftEsnSZIkSVodLH6RJEmSJEmSJEmzVpItmF7wsidwB9MLXs6rqpsaRZW0hiR5HN2Q6xSwP7CcftAV+E5VrWiVTZLG0A/978WwFu4OnMow9H9Fw3iSRpBkY+CzwMOAF1XVTxtHkqTRJdkNWEi3Hv5JORwrTYwkLwP+L/AbVbW0dR5JGluSdYGP0e0PHVZVP2ocSdIa1r8jP5huP/gQustPFvef06vqjobxJEmSJEkPgsUvkiRJkiRJkiRpxkuyCd0h5nuXu8wDNmJ6wcu5VXVdo6iS1rAk6wP7Mdxq+EjgBLph1qVVdX3DeJI0insN9i8A5jMM9i8CznCwX5ocSR4NfIWu/O71VXVn40iSNLokBwCfB95WVZ9unUfS+JLsBxwDvKuqPtE6jySNLUmAPwJ+Fzi8qr7bOJKkkfTF4E9leG+2G3AaFoNLkiRJ0qxi8YskSZIkSZIkSZox+kKHXVi14GVPYCvgAqaXvFzpDc7S3JdkO7ph1SngAOB8hpsLz6mqFQ3jSdIa1w/vP4VhLdyTbnh/Md3w/g+ahZPUTJI9geOBTwJ/5m8jSZMoyauBDwBHVdWpjeNIaijJTsBC4Fjg7e4XSZpESV4MfAx4dVUtbJ1H0viSPIquNHwKOAT4McM7tTMsDZYkSZKkmcniF0mSJEmSJEmSNLokawNPYHrByw7ApUwveLm0qu5pk1bS2JKsB+zLcDvho4ET6G4nXFpV1zWMJ0mjSPJwugH9BXQD+j+lG85fBJxeVbc3jCepsSQHA58Ffr+q/ql1HkkaW5IAfwq8HDi0qs5vHEnSDJBkC+BLwDXAK6rqtsaRJGl0SfYB/o2uIPRvWueR1E7/Tn4vhvdtuwCn0O0xL66qKxvGkyRJkiTdi8UvkiRJkiRJkiRpjekP4TyW6QUvuwJXM73g5aKquqNNWkktJdmWbuh0AfBc4EKGgoNzLH+SNNclWQt4EsNaOA/4Gv1trFV1acN4kmaQJK8D3gu8uKpOb51HksaWZAPgk8DjgedX1bWNI0maQZKsD/wDXfH4Ea4RkiZRkscDC+n2lf7I/XVJAEm2BObT7UEfTPe+fhHdWvH1qrqrYTxJkiRJmmgWv0iSJEmSJEmSpNWiHxS7b8HLHsAtTC94Oa+qft4oqqQZIMm6wL50w6VTwDbACXTDpSd4KEfSJEjycOAgunXwEOBmhkH7r1bV7Q3jSZph+oKoPweOBA6tqosaR5Kk0SV5JHAs3QHFV1XVbY0jSZqB+kLydwOvAA6rqvPaJpKk8fX7Tl8EbgJeXlW3NI4kaQZJsjbwdIYi8h2BkxmKyH/UMJ4kSZIkTRyLXyRJkiRJkiRJ0gOSZDO6Qpf7lrysByxj1YKX5VV1Q6OokmaYJNvQFRssAA4ELqEbIF0EnO2to5Lmuv7w4RMZhumfBJzOMEx/ScN4kmawJBsCRwOPBl5YVdc3jiRJo0uyE93vx2OAd1TVisaRJM1wSV4J/CXw36rqlNZ5JGlsSdYD/haYBxxeVVc3jiRphkqyFTCfbt/6YOCHDO/wzqyquxrGkyRJkqQ5z+IXSZIkSZIkSZL0C/UHC3dlesHLFsB5rFrwci5wdfniQdK9JFkX2Ieh4OCxwFK6QdETqurHDeNJ0iiSbA4cRLcWTgG30g3LLwZOq6rbGsaTNAsk2RL4MnAZ8Jqqur1xJEkaXZJnAV8A3lVVn2idR9LskWR/4F+A/1FVn2ocR5JG1xcRvwN4HXBYVS1rHEnSDJdkHWBvhvd7OwAn0e1pL6mqqxrGkyRJkqQ5yeIXSZIkSZIkSZImXD+4tRPTC162Ay5mesHLD7xRWdIvk+QxwCF0g6DPozugvPJGwG9W1d0N40nSGtcfpplHtw5OAU8Bvk5f9lJVFzeMJ2mWSbIbsBD4LPAnlm1KmkRJXg58GHh5VZ3YOo+k2SfJrnTPVJ+jK5DymUrSxEnyMuD/Ar9RVUtb55E0e/Tv/ubT7XkfBPyA4d3fWb77kyRJkqSHzuIXSZIkSZIkSZImRJK1gO2ZXvCyM3Al0wteLqqqu9qklTRb9OVRz2C49e9xwIkMt/5d3S6dJI0jyWZ0ZVdT/edO+qIX4NSqurVhPEmzVJIDgM8Db6uqT7fOI0lj6wv13gm8Fjisqs5tHEnSLJbkUcCX6Q4qv6aqbm+bSJLGl2Q/4Bi6EqxPtM4jafbp3wvuw7AXvj2rvhf8ccN4kiRJkjRrWfwiSZIkSZIkSdIc0x+K2YrpBS97ADcyveDlfA8jS3ogkjwaOIRuoPMg4AqGgoMzvdlP0lzXP2/tQVd4NQXsBZzJsBZe5A3ykh6KJK8GPgAcVVWnNo4jSaNLsh7wCWB34HAPD0paHZJsCHwa2Bp4QVVd3ziSJI0uyU7AQuBY4O1VtaJxJEmzWJKt6d4ZLqArR/8Puj3yRcA3q+qehvEkSZIkadaw+EWSJEmSJEmSpFksycPpDh3ft+QFYBmrFrwsr6obW+SUNLslWRvYm6Hg4AnASXRDm0uq6qqG8SRpFEk2BQ5kWAvvoVsHFwGnVtUtDeNJmiP6Yqk/BV4OHFpV5zeOJEmj6/e7/o2uwPg3fM6StDolWQv4M+DFdM9bFzWOJEmjS7IF8CXgGuAVVXVb40iS5oAk6wL7MOyhbwucSLeHfkJVXdMwniRJkiTNaBa/SJIkSZIkSZI0CyTZiO6G4/sWvGzOquUuKz/Xli8BJD0ESbaku6FvCjgY+BHdYOZi4BtVdVfDeJK0xvXlC7vTrYNTwNOBbzKshRf4vCVpdUqyAfBJ4PHA86vq2saRJGl0SR5P97y1EHibt8NLWlOS/Bbwv4EXV9XXWueRpLElWR/4B7qi9yP8DSppdUuyLd27xgXAc4GL6fbWFwNn+3tPkiRJkgYWv0iSJEmSJEmSNIMkWQ/YmekFL9sAFzK94OWKqlrRJq2kuSTJ2sDTGG7h2wk4he7A3ZKqurJhPEkaRZJN6AbQV66F0A2hLwJOqaqft8omaW5L8kjgWOBq4FXeti5pEiV5JvBF4L1V9bHWeSTNfUkOAv4J+IOq+mzrPJI0tr74+N3AK4DDquq8tokkzVX9HMQzGfbeHwMspdt/X1JV1zWMJ0mSJEnNWfwiSZIkSZIkSVIDSdYCdmB6wcuOwOVML3i5pKrubpNW0lyV5FHAfLohy4PpDhqvvGnv61V1Z8N4krTG9YdbdqUbNF8A7A2czbAWnlcOVkhaw5LsRFcwdQzwDss9JU2iJC8B/hp4dVUtap1H0uRIsgewEPgU8Kf+BpQ0iZK8EvhL4L9V1Smt80ia+5I8lm5ffoqujP1Cuv2xxcA5VXVPw3iSJEmSNDqLXyRJkiRJkiRJWoP6w8RbM73gZTfgeqYXvFxQVbe3SStprkuyNrAXwyDlrsCpdIOUS6rqiobxJGkUSTamGyRfWfayNsNA+clVdXPDeJImTJJnAV8A3lVVn2idR5LG1u+d/THw28DhVfW9xpEkTaAkjwaOAy4AXldVdzSOJEmjS7I/8C/A/6iqTzWOI2mCJFkP2I9hz35L4AS6PfsTqur6hvEkSZIkaRQWv0iSJEmSJEmStJok2YLpBS97AncwveDlvKq6qVFUSRMkySOBg+kGJecD19INSi4CzqiqOxvGk6Q1rj9MvDPD0Pg+wDkMa+Fyb3SX1EKSlwMfBl5eVSe2ziNJY0uyLvD/gKcCh1XVjxpHkjTBkmwEfBZ4BPCiqvpJ40iSNLokuwILgc/RFZS6ZyZpdEm2Z7jEYn/gfIby9m9X1Yp26SRJkiRpzbD4RZIkSZIkSZKkByjJJsAeTC942YjpBS/nVtV1jaJKmkBJ1qI7NLdyIHIP4FS6YcjFVXV5w3iSNIr+wN4BDGUv6zMMhp9kAZ+klvpCqncCr6UrOji3cSRJGl2SzYFj6AqTj6qqnzeOJEkkWRv4AHAYcGhV/UfjSJI0uiSPAo4DLgNeU1W3N44kaYIlWR94FsNe/xbAErq9/qVVdUPDeJIkSZK02lj8IkmSJEmSJEnSL9EPEe3C9IKXrYALmF7ycqU330lqIckWwMF0Q4/zgZ/QDTwuAk6vqjsaxpOkUSTZiW7wewrYF/gOw1q4zOc0STNBkvWATwC7A0dU1dWNI0nS6JI8DlgInAL8flXd3TSQJN1HkjcC/ws4sqq+0TqPJI0tyYbAp4GtgRdU1fWNI0kSAEl2YLj84jl0cxor3wP8e1WtaBhPkiRJkh40i18kSZIkSZIkSROvv8XzCUwveNkBuJTpBS+XVtU9bdJKEiRZC3gyw+12ewJfpRtsXFxVlzWMJ0mj6A+g7M+wFm5Evw4CJ1XVje3SSdJ0SR4O/BtwI/AbVXVL40iSNLokTwO+BHygqj7aOo8k/TJJpuhKD363qv6ldR5JGlv/HuLPgBcDh1bVRY0jSdIqkmwAPJvhHcHmwBK6dwRLq+qnDeNJkiRJ0gNi8YskSZIkSZIkaWIkCfBYphe87ApczfSCl4uq6o42aSVpVf1B4YPphhcPAX5Gd3vdYuBrVXV7w3iSNIokOzLc5vks4LsMa+H3yiEISTNUksfTrVcLgbdZJippEiV5IfB3wGur6rjWeSTpv5LkicBXgP8HvN/fnJImUZLfAv438OKq+lrrPJL0y/T7b/+fvfsOr6qwHz/+uUlICEkYYe8heykOEHECVhG3tq5qHVXbqq3d1rZf6/f7q22tbW3VVq2tdVuL1gkOFBUFUWRvUNlhr4QMMs7vD6Aqw6LijeP1eh4f4d6Tk8+BcJ9z7znnfbZHYA6PiKnxbix+SpIkNbU4HgAAwAcSfgEAAAAA4HMplUo1i50DL70iYnO8P+4yPSJmJ0lSUkujAuzStljVfrH15MRhEdE3IsbGthMUkyR5qxbHA0iLbXfsPCLefS0siHfv2PmcO3YCnwWpVGpgRDwSEf+XJMmfa3segHTb9v72exHx3Yg4KUmSN2t5JIA9lkqlWsfW+MukiPhmkiSVtTwSQNqlUqmjI+K+iPhukiT31fY8AP9NKpXKja3xlx2PLYyMrccWNtTieAAAADsRfgEAAAAA4DMtlUrVj61Blx0jL3Xi/YGXGRExM0mStbU0KsB/lUqlGkbE0bH1BMRhEVESW09AHBURLyVJUlaL4wGkxQ535Twstob6tr8Wuisn8KmXSqX6RsSMJElqUqnUVyLi5og4P0mSkbU8GkBapFKpzIjolSTJtFQqlRURf4qIQyPi+CRJFtfudAAfXiqVyo+IByIiNyJOT5JkQyqV6hwRK5MkKa7d6QDSI5VK9YqIJyPiztgaNk1SqdR+ETE1cWES8Cm3bd9t+3GHQyNiSrx73MHrGAAAUOuEXwAAAAAA+EzYdkem7rFz4KVxRMyKnSMvRU7OAT7ttt31vG+8e7e5fhHxSmw9yXBUkiTza3E8gLRIpVI58f47bzaKrXfeHBURzyZJsq4WxwP4UFKpVNOImBcRbSLiioj4VkSckCTJ1FodDCCNUqnUWRHx1Yg4KyL+GRGpiPhKkiSbanUwgI9hW9TqDxExJCKGR8RFEZGTJMmPanUwgDRKpVItIuLxiJgTERdHxISIuCJJkrG1OhjAh5BKpepFxBGx9ZjEcRFRN7YekxgZEaOTJNlYi+MBAABfUMIvAAAAAAB8qmy7C3CX2Dnw0i4i5sfOgZeFSZLU1M60ALuWSqUydvfalEqlGkTE0NgaNxgWEeXx7h3lXkySpDRtgwJ8gv7La2GHePfumkfE1v26Udv+m2T/DvisSqVSV0VEt4iojogDIuL4JEmW1e5UAOmVSqVejYg7Y2sAa3xsvRi4snanAtg7UqnUtyPiqoi4LCJuj4h2SZKU1e5UAOmzLZhwb0QUxtbP8vZPkuSM2p0K4KPZdpOOLvHucdtBETEp3j12O31XNxxKpVIZEZG4GREAALC3CL8AAAAAALBXbbvTW36SJAv+y3IZEdE+dg68dI2IpRExPd4feJnvAhHgsyCVSn09Ii5KkmTgtt+nIqJPvHvC4AERMS7ePWFwvpMCgc+TVCqVHRH/iIi5SZJcu+2xnIg4LN59LWwSEc/E1tfCZ5MkWVs70wLsPalUKjMi3o6IoohYExE/iYiKJEnm1epgAGmUSqX2i63vdasi4qaIGBMRC5IkWV+rgwHsBdve7x4YES0j4taIWBwRNydJcmetDgaQRtuOBbeMiHMi4sSIaBYRPZIkKarVwQD2glQqlRcRR8bWaP2wiMiOd6P1o5Mk2bRtuRMj4qcRMTxJkjW1My0AAPB5IvwCAAAAAMBek0qlhkfE3yLiB0mS3LvtsVRENI+dAy+9ImJDvD/uMiMiZidJUpr+6QE+nm2vdz+OiEsj4pSI6BjvnhRYGVvjBiMj4sUkSTbX1pwAn6RUKpUfEQ9HRGlE/CgiBsfW18IjI2J2bD05emREvJkkSU0tjQnwiUilUhdGxF8jYn5E5EVERkT8NkmSG2t1MIA0SqVST0fEkIiYFhGdI2JhRFySJMmE2pwLYG/YFjsYERH7RcS8iOgZEasjop2wM/BFse148O8iomlELImtx33vTJLk4lodDGAv23bst2u8e7x3YERMjHdv7nFWRJwWEV9KkmRxbc0JAAB8Pgi/AAAAAADwsW27y+WvIuIr2/5fE++PvERETI/3B15mJkmyIf3TAux9qVQqIyL+HhHHRsRbEdE3Il6Ld0/8m+viD+DzbtsFcC9ERFVEZMbW+N8zsfW18NkkSVbX4ngAn7hUKnVTRBwcW+MvYyJigX1A4IsmlUpNiogFEfHPiHjJnc+Bz6Nt0dNDIuLEiDgpIjolSVJZu1MBpFcqlWoVW2PP50ZEnSRJhtbuRACfrG37gEfF1gjMcbE1+rw0IrpExLFJkrxZi+MBAACfccIvAAAAAAB8bKlUanlEtIiIsth6N98ZO/y3ysVuwOdZKpU6KyLuj4gNsfVOb89ExItJkkys1cEA0iiVSj0TEV+KiEURMT4ino2I0UmSLKnVwQAAAAAAAPaCVCrVMLYeCxkSEYdHRNeIWJYkSbtaHQwAAPhME34BAAAAAP6rhi0b3pJTL6d9bc/Bp9fm9Zvbbinf0qSqoqpxKiNVmV03e2V+4/wFGZkZVbU9G+lXUVqxaEPRhstqe469rXXLdv+bX6/AyVrsVnV1dWZZeWmj8oqywoot5YXV1dV127bq8GIqlart0agFJaXFi5cVLf6f2p5jb6qTU2dF1Zaq5rU9B/DZkJWdtbKyorJFbc+xt7Vo1vqmerl53h8De6S0bPOiFauWXVHbc+xthW0Kr8vJz2lb23MAnw0VJRVL1i1dd3Vtz7E35RbkTo4Ir4PAnlpSVlzWr7aH2NsatW50Xd2Cut4fA3ukvLh80fpl6z9X+4QREbkFuVOSSNrU9hykV3VldXZNVU1OKiNVlcpMVWdkZFRFKmocE+a/SUVqaVlx2X61PQcAAJ9OWbU9AAAAAADw6ZdTL6f9Nx/45qLanoNPtUURETXVNTHvlXnN5o2d13bgOQOLmnZsWlrbg5F+fznrL5/LE33z6xW0u/WGhxbW9hzAZ8M3fvCVDrU9w95WtaWq+TUTrqntMYDPiGsHXPu5DEXVy81r/7cb/+39MbBHLrrylM/l++Oc/Jy2l959qddCYI/cdt5tn8fXwrY/fv7HG2t7COCz4TdDfvO5DEXVLajb/tK7L11Y23MAnw23nXdbh9qe4ZOQRNLmquev2lTbcwCfDb8e8muhKAAAdkv4BQAAAACAvSYjMyO6H9F9Vfcjuq+q7VkAAAAAAAAAAAAAAODTLKO2BwAAAAAAAAAAAAAAAAAAAAAA+KIRfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0EwcTv3MAACAASURBVH4BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAAAAAAAAAAAAAAAAAIA0E34BAAAAAAAAAAAAAAAAAAAAAEgz4RcAAAAAAAAAAAAAAAAAAAAAgDQTfgEAAAAAAAAAAAAAAAAAAAAASDPhFwAAAAAAAAAAAAAAAAAAAACANBN+AQAAAAAAAAAAAAAAAAAAAABIM+EXAAAAAACAT7mZc6c0HHxq72uuuPqrJ+/p19x61w37DT619zW33nXDfp/kbAAAfP796o8/6T/41N6XP/vi461rexYAAGrPczc/1+jaAdd2WvDagrq1PQtAbRnx0xGHXTvg2qsnPTapXW3PAgAAAMDnQ1ZtDwAAAAAAAMCnz7U3fO/Il8Y9e8T3vnHNXcd/6csLa3ueveWOe2/sc/8jd5waEXH5RVfde+rwr761q+XmLphR//Z7/nDYsqLFLYtLNjas2FJet25OblmD+o3WHTpgyOQLzrp8Wt2c3JoP+l6bS0syz7t8+KXrN6xtWq9efvGT9772+09im2pLZWVl6sbb/2/AhEkv99u4aX1hZmZWVavmbZaecfKFLx9z1ElL9nQ9t951w34PPfaPk3b3/MnDznrq2xf/dOKOjxeXbMz63V9+cejUmRN7l5RsalinTnZFuzYdF1509nfGHNRv0JqPul0AwBfL3Q/d2vUfD978pYiI733zF48df/TpH7gfU1VVmbrzwVt6vPLa6O6r1qxoXFVdlZWfV7C5Tcv2Ky8573sT+vTYf8P2Zf/+wE3d7/3XbUN3t66vnHT+i9/42g9m7L2tqX13PnBz99EvP9l3zdqVjVIZGUmLpq1XnzTszMmnHHf2wj1dx7MvPt7613+6+pTdPX/EIce8ec0Pfjd+x8erqipTt9x5/b7jXn+hx7oNaxtmZWVVtWnZYcXZp339jaMGHbviI24SfOHccsYtZ69ZuKZjTn7Oph8+/cObM+tkJnvydeuWrMu97bzbLtlSuiW/UetGS779yLfvft/zS9flvjHijW4L31zYeePKjc0qSioKUpmp6vpN66/qfkT3qUMvGzo1I+vzdS/DorlFBU///ukjVsxfsU9lWWVuTl5OSZvebeYO//HwsQ1bNizf0/XcdPpN565bsm63F5b/+Pkf/7puft3qHR9f8NqCJmNuHXP46oWr21dvqc6pW7/uxg77d5h5/FXHj8utn1v1UbcLPq8mPTYp/4nrnmgWEXHmb88s6nZ4t7IPWr6muibeePiNgulPTy9Ys3BNdlVlVSqvUV51y64tKwZ/a/C6Zp2aVW5f9o2H3ygYef3Iprtb15eu/NKagWcN3LT3tqb2TXxkYv7ERyY2WLdkXXYqI5U069Rsy8CzB27oOaRn6Z6uY8FrC+re9537Wu3u+f5f6b9h2PeHrdvx8Zrqmnj17lcbTBs1rWB90fo6WdlZScvuLcsPv/Dw9R0P6FjxUbcJvgheuPWFXmPvHHtSRMSwHwx7oP+X+7/zQctXV1anRt8yet95Y+f12bR6U9OaqpqsnLyckkZtGhUdffnRL3U4oMN//o0WzS0qGH//+L5rF61tvn75+uZlG8saRUScf+v5f2nfr/36T3bLasfoW0b3mfHsjANL1pY0iVTUNGjeYOWBpxz42sBzBi7Y03VMemxSuyeue+Kru3u+2xHdxp95/Zljdny8urI6NfK3Iw+a9+q8vqXrSwszsjKqCtsULht07qBX+g7ru+yjbhMAAADwyRB+AQAAAAAgxtw2pvvLf3958OEXHv7CUZceNae259nb3nnznUYv/OWF/qveWtWqqqIqu17DesWd+neaP+wHwybt6qKI3bn+S9efW7axrGBXz+Xk5ZRe9cJV/9jx8c3rN9d5+vdP77/wzYX7lG4oLcjMyqwqbFu4asCZAyb3O6Hf0o+xWfCBTh3+1dkH7nvI0nZtOhXX9iyfJi+Oe+aA7b9+ZsxjB+wu/DL/7dmFM+ZM7tOyWetlrVq0nZNXL7+sZHNx7oJ35nT51+N3nTT+jRf3veMPj9yTnZ2z2/jL//v9D4cUl2xq8ElsR22rqamJy39yzunz357Vs2H9RmsP2m/Q65tLS3Jnz5/e+/qbf3bB2nWr/3n2aV+f+2HWuU+HbnPbtGq/0wW5fXoesHzHxzaXlmR+44dnnFe0cmnbpk1aLO+//2Gvrd+4tsHcBTN7/vS6y7r86Ipf3jX08OFOXAaAveT8My+bdtzQ0+Z3at/lc7dv+fzYp3pv//Wo5x/p/UHhl42b1tf57s/PH75wyVttmjVpueaAfQfOqVMnu2r9hrX5C5csaLXgnTkN3xt+2a5b515vt2vdaacwXZ8e+6/ae1tS+665/spBY18b3S8/r35J//0Pm1lVVZk5debELjfdcd3xy1cseemyC388/cOsr13rTsu6de610z7dvr0O2mn/sKamJq782fnHzJo3tXNhwybrDznoqGmbS4tzps96s8v/+/0PT1u7bvXI00849wMvWAQiFk9d3HDNwjUdIyIqSirqT3howj6HnHPIHl2UOuKnI46rrqzO3t3zE/45ocfrD70+LDsvu6RZx2YL8xvnbyrdWJq3fNby7uPvH3/8wkkLO19858UPpzJSe2tzatXiKYsb3nflfedvKduS16Jri3kNWjRYs2bhmtYLxi/of8cFd+xz4R0X3lXYpvADoxI76jW019hdPZ5VJ2unzyamPzu91aPXPvrVpCbJbNWj1ez8xvmbVsxd0WHW87MOK5pT1OHSey69LycvZ48/F4XtBp49cGPfY/uWNGrV6HMXD5r0+KT6kYqIJOLNR9+s/0Hhl4rNFan7vntfiyVTl+Q27dR0S++jexdnZmcmxWuKs5bOWFp3zTtr6rw3/LLdPgfvU9q8S/OdwiNterX5XMVInrr+qcYTH57YIL9xfnXfYX03VVdWp+a8NCf/X1f/q8XQy4euGXTuoA8VuWnTu015u37tdvr7aL9f+50iWkmSxD9/9M/m816Zl9eodaPK/U/cf1PZprKMuS/Pzb/n8nvqnfq/p67ofXTvPY7PwK4M/sbgifufvP+sFl1bbKztWfa2maNn9tv+6ylPTun3QeGXzes217nzG3d+ee2itR0KmhWs7LB/h+mZ2ZlVpetKC1YvXN22aE5R4XvDL29NeKvl9KenHxERkdsgd0NWTlZ5VUVV3U92i2rPA99/YMi8V+YNyMnPKe54UMfJNVU1mUumLen57J+e/cq6ZeueGf6j4W9+mPUVti1c3LJby0U7Pt5+//Y7fY6R1CTx94v/fsry2cu75zXKW9v5kM4TK0oqcpfOWNrz0WsfPa94TfGIQecOmv9xtg++KCY+PDH/qeufajr8R8NXH3jagSW1Pc/etmLeijpjbh/TaMm0JblbSrek6jerX9XjqB6bj/j6ERuyc7P3KAS7K9uiik0jIoZ9f9ia/l/p/77PlZfNXJY9a8ysvIUTF+ZuWLEhq7y4PDO3fm512z5tywedN2hDm95ttnzcbQMAgM8a4RcAAAAAAD7XZo+Z3ezhnz98ck11TUbbvm3fym+cX7J89vLW00ZNO2jZzGVtLrnrksey62XvNtywo6ycrC09B/ecuuPj2bnZO53EvWnVppw7Lrzj1OLVxY0Kmhas6zKoy8zK8so6S6cv7fj4/3v8xHVL140Z8s0hsz/uNsKuNGvSoqJZkxafqwsGPq43p45vvHzFkvZtW3d8u7y8NPethXO7LVzyVl6Htvts3nHZIYcPXzJsyCm/yczMet8JbeUVZRkXf++0c5cWLepw/yN39Dj/zMtm7up7PfnsvzpMmDR24MnDznrq0VEPDP+ENuk/xr0+pnn3rn3XFzZsnJaT4O588Obe89+e1bNFs9ZLbv/diLvz8wqqIiJeeGXUxOtu/PGF94647cRjBp/0x8aNmu7xPAfsO3DON772gyl7suwfb/+/gUUrl7bt0qnnrD//5v4R2/+e7n/4jhl33HfjmX+58/qTjhp0zF92/PsDAD6als3blLds3maniyo/66bNerPhkmXvtOrYrsuSsvLSnLkLZnRcunxhbptWHXZ5ke///OY7Ry1c8labM06+YMyl531/p/3Aii3lGbv6uoP6Hfr2hWddkdbI6sy5Uxo0KGi4ZXfbsreNefXpFmNfG92vYf3Cjbfd8NBDTbe9F5n31sxJV/7s/DMeHXX/oUcfcfzCrvv02uN4ULfOvZb95Du/en1Plr3/kb92mTVvaufWLdsX3frbfz6aVy+/OiLilQnPz7j2t987/c4Hbho85PDj7m7UoPFO792Bd42/b3y/iIjuR3QfN+elOYdMGzVt/z0Jv4y+ZXSforlF3ft/uf+o1//1+rBdLdO0U9O1R19x9EMHn3nw/Iysd18uV729asydF995YdGcou5j7xrb/fALDt/rr5dbyrZkzB83v3mvIb2K9va6d+eJXz8xbEvZlrwDTz3wmeE/Hj5x++P3f/f+ofPHzR/w5K+ePPK8W84b9WHWefovT395T5arrqxOPfOHZ06oqaqpM/TyoQ9tv6i3pqom7rjojtOK5hR1H3nDyAGnXHPKuA+3VRCRX5hfk1+Yv8efp39WrHprVZ1lM5bVbbdfu7LykvKMtya8lbdp9abM+k3r7zKQ9Oj/Ptp0ydQlucdcecyag886eKeISXXlrrtK3Q7vtvmg0w5Ka0xx9Turs3Lyc5Ldbcve9s6b7+RMfHhigwYtGlRdctclS+s1rFcTEXHo+YduuOOCO9qMuW1M4+5Hdi9t3LbxHseD2vVrV3b05Uev35Nlpzw5JX/eK/PyWvVoVX7+recX1albJ4mIWDx18aa7v3V365G/Hdm088DOi+vm1/W5IR9ZYdvCssK2Hy7g9lnwzsR3CtctWdeuSYcm72wp25K7Yt6KrqvfWZ3XtGPTnY6hREQ8+MMHj1u7aG2HAWcMGHXs946dvOPzleWV73uPvM+AfYryC/Pv2WfAPisLmhZsuen0m766bsm6dp/U9rzXosmLGtVrWG/L7rZlb5s2alrrea/MG5DbIHf9JXddcmfDlg3LIyKWzlj62t2X3X3hpEcnDd33uH0XtOndZo/jQS27tVx0+i9P32UIcEcv3vFiz+Wzl3dv1LrR0kvuvuS+7TdCmTl65qSHf/7weS/97aXh+x6375/zG+cLK8AX2KLJi3Lu/c69LWuqa1JdD+26uX6z+lWLJi+qO+7ecQ0XTlqYe8GtFyzPyvnwl56uX74+85kbn2lcp26dpLK8cpd11yd/82STFXNX5DTr3GxL10O7bs7OzU5WLliZPeelOXnzXpmXd/I1J6/sc0wfsT4AAL5QhF8AAAAAAEib0g2ldZbPXl6/88DOa9Px/aorq1Ojbhg1pLqyOuvY7x07csAZAxZGRNRU18Sdl9x5zNIZS/d55sZn9jvh6hMm7ek669StU3HKL055Y0+WHXn9yIOKVxc3at2r9dvn33r+M1nZWwME65aue+2OC+748rh7xx3W++jei5t3bp6Wkwz5fJg5d0rDm//266ELlyzoVFVZmV3YqMmqU4ef8+IZJ184773L3XrXDfs99Ng/TvrKSec/9t6YxrjXxzS/Z8Rthy4rWty2tKwkP7tOTkV+XsGmju26LLr2xzc+Wzcnt+bEcw+5smTzpgYREb+/9dqv/f7Wa/+z3hcemfGf37y9aF7+n/9+/eHz3p7VtbSspCC7Tk55m1btF5992sUvH3nIMUW7m6dJYbOSx0Y9eOiqtStaVFZuybn/1md+c+5lw79fLzev+N//GPunjIydr5e96MpTznpn8fyuP//+DX89atCxyz/Kn92IJ+45ICLi8IOHTtlUvDH3iWcfGvbAI3fs95Pv/OrVHZfNrVtvlxdC1M3Jrdmv10FzlhUt7rC0aFHhrpZZs3ZVzu33/OHktq07vv3ti3868ZMKv8yZP73BI0/d12fStNf6rNuwptlNv7r3j+kKv4wZO+qgiIizTrnohe3Rl4iIwYcOW/7IU/fOnDV3at+HHvtHz2+e/8M9Crl8GDU1NfHamy8fGBFxxdd/8tx74y5nn/b1uSNHP7x4+col7UaOfqT9Ccd8ZeHe/v4AkE4PP3lvx6ee+9e+q9euLCwvL6tbt25uWWGjphsPPuDw+d88/4fTty837o0xTUeOfrj7/LfntN5UsqGgqqoyqyC/QUnv7v3eueKin7zR9D1BwBv+fM0BI0c/PPCU484ee8XXr94parlwyVt5F1158vnNm7Zaff+tzzwUEfGrP/6k/3MvPdH/qm9f9+8vHXnisu3LDj619+XtWnda9quf/XnUH27934Gz50/rWF5eVrdhw8Ybhg0+efKFZ397p9BlWVlpxo23/9+Br09+pXtJyab8vLyCkgP3PWTe97/5i9eHn9P/W+1ad1r2j5se//f25ddvXFvn9rt/v9+bU8d32VS8oSCJiHq5eWVtWrZfedapF0065KCjVn/0P997ekVEHDno2NmbijfkPPzkPUf887F/9Pj+N3+x03vE8RNfajp99qSuvbr3m7+r6EtERE523Vq9CHpZ0eLcR0c90Hn8xBe7L1+xpPlV377u321adVj237/y43v86Qd7R0Qc/6XTJ773563rPr2KBw0YPP35l586aMQT9/S4+spf71HI5cN67sUn+kREfPX0S17bHn2JiDh0wJBVvXv0mzd15sTu/37qvs67+pnk02fpjKUN/nbR3y5vt2+7aUd8/Yhxz9303OA1i9a0q6muyWzQvMGKg886eGz/L/d/571fM+KnIw6fOXrmYSdcfcK9+5+0/6Ldre+C2y94Yvvjd15y5wmLpy7ue8HtF9wy/enpnee8PKdf6frSwoatGi6/YsQV90x6bFL7J6574qu9hvYa2/Wwrm+9/PeXj9xQtKFlJJFq1KbR0iMvPvLFXYVENq3alDPqhlGHLJ62uHv5pvIGGVkZlQ1bNVze/8v9xx902kEL37tsUpPE839+vu/M52f227xuc2F1ZXVOndw6mwuaFqzpNaTX1CMvPnLWe5cvmltUMPrm0YcUzSnqXF5SXpBVJ2tLYbvCpYedf9jYXkM/XtSkqqIq9fYbb/fNzM6sOPFnJ45dPmd5x1ULVnVeMW9FQYuuLXYbKVg2a1n9CQ9OOKZ9v/ZT+hzb563X/7Xrf+YHnnLgol093qxTs81dDu0yafrT049cPHlx+7gg9kr4JalJYvKTk9tNf3p676Uzlvao36z+ql5Det2zN9b93yyesrjhmnfWdMqtn7tx2PeHTXzvcyf+7MSXbzzxxv0XTVnUZ/P6zaPzGuXt9SDV5Ccnt9u8bnOTwjaFi7dHXyIiMrIy4tjvHfv8nZfc2X3e2Hn7JzXJuFTGLq/B41No5uiZ9SY8NKHB2sVrsyuKKzLrFtStbti6YWXPwT1LDjnnkP+ER5ZMX5I95YkpBYunLs4tXlOcVVVRlSpoUlDV+ZDOpUddctT67RGOiIgxt49p+PLfXi4c8q0haw/92qE7XXi+ccXGzD+e8sf2TTs1rfjmfd9cFhHx3M3PNRp3z7hG5/zxnOWdD+78nzDgtQOu7dSmd5vyM357xorn/vRc4wWvLahXUVyR2aBlg8qDzzx4w0Gn7xw7qayojBf/+mKjGc/OKNi8dnNWXmFeVc+hPUsGf2PwuusOv65Tm95tyi/620X/+RywvKQ89erdrzacPWZ2XvHq4jpJkkS9hvWqW3RpUTHoa4PWt+3T9iN/LvbGw2/Uj4jYb/h+xaUbSzNG3zw6Z9KjkwqOvPjIDTsuu3T60uw5L87J73Z4t5JdRV8iIjLrZH7UUfaK4jXFmdNGTcub8dyMghVzV+Sc88dzlqcr/DLx4YkNIiIGnTvofT9vjds2rup3Yr+N4+8b32jSo5MKjr5iz0IuH9ab/36zfkTEUZcetW579CUiot2+7Sq6HdGtZNbzs/KnPz09f1c/k3z6vXrvq10mPz75oOLVxU0qyytzs3Ozy/IK89btc/A+s477wXH/eR8364VZLSY/PrnPygUr25dtKqtfU1VTp25B3U2te7Wed9wPj3t1e4QjIuLRax8dOHXk1KMOOOWA546/6vidjv+tXLAy/7av3nZFQbOCld99/Lt/j4gY8dMRh71n33Px9mWvHXDt1YVtCxef84dzHn7iV08cuXz28i6V5ZW5eY3y1vcd1ve1o684etqO66/YXJH5xHVPHPL262/3KS8pL6ibX7ekwwEdZpz085Ne+fXgX/+4sG3h4itGXHHv9uVL1pZkP3PjM/0XvrmwR9mmsgYREdn1sksbtW5UNOjcQeN7Du654qP++b72wGv9IiJ6Du45rXRjad2JD0885tV7Xu178v+cPH7HZWePmd1i6YylvVr3bD1rV9GXiIg6deu87z1yy24ti1t2a5m2f3trFq2pN+GfE3osGLegz4aiDa1OuPqEe9MVfpn4yMT9IyL6ndDvfT9vbXq32dhlUJc3Zz0/69DxD4zv++VffnmPQi4f1oxnZhwQETHovEEvbY++RET0GtqraMI/J8xaMm1Jn/H3j+++q59JoHZUbK5IrVm0pk7rnq3Tcqy3promHv/l402rKqpSp//y9JW9hvYqjdh6HPbBHzzYbP6r8/PG3jW2wVGXHLXHgaqIiCRJ4tFfPNo0t35uTddDu25+Y8QbDXa1XO+je5ec+r+nrmraoen7YoCTHpuU/8R1TzQd+duRTXsc1WNRVrZLXwEA+OKw9wsAAAAAfOGMuW1M97cmvNVh/bL1TcpLyvMyMjJq6jevv7bvsL4zjrjoiHk7Ln/LGbecvGbhmlZXv3z1rU/95qn95786v3t5cXlevYb1ivcdvu+UoZcNnRUR8dxNz/Wa8eyMPiXrShpk52aXdz2066yTfn7SGxmZOwcMXrn7lX2mPDml78YVGxvXVNdk5hfmb+w8sPO8Y648Zkp2vez3nQR37YBrv9WkQ5Pll/3zskd3XM9dl901eOHEhd0vvuvie1p1b1UcEbF8zvKCv37tr+d2OLDDnKOvOPqNp3/39MAV81e0qd5SXad+s/rrBp4z8PX+X+7/nwsttm9fRMTLf3958Mt/f3nw9ufeu96PqmpLVWryE5Pbznh2RtdlM5d1artv2wWdB3Z+4eOsc09Nf2Z6q+I1xY2adGiyfHv0JSIiIzMjjv3+sePvuOCOfWa/OLvX8VcdP+mTuMhh8dTFnSIihnxryITt0ZeIiMI2hWV9ju0z5fWHXj90/P3je5z8PydP3P1a4F0bNq5r8MNfXHxxg/qN1vfteeDU0tKS3Dnzp/e+/Z4/nFkvN//u/xa5GPf6mObX/PbKr0ekonPH7nMbN2q6vry8LGfN+lWFb04bf1BpWekLdXNytxw+cOhrU2dM7L5sxeL2vbrvN7VJYbOdLnCYMWdyw6v+7xsXlpZtLmjTqv07fXseMH39xrUN5i6Y0fP//f6HXVauWvbQjjGaiIg3Jr/Sc+GStzp3aNt5/oH7HjJx3YY1DVs0a13eo2vfGTNmT9rvsacf6HTKcee8/d6vmbtgRv2FSxZ0adq4edFHjb6UlZdmTp35xr7ZdbIrvnLS+bNLNhfXeWr0iC9NmDR2/5qamld3FZvZlcrKytT0OZO7RER07tBt5a6WufZ33xtWsaW87k++fd3jH2XWD1K0cmnuiCfu6Tlh0st9lq9Y0j4iIq9e/qYB+x8+vnWLdmk5Yblkc3FW0aqlbbMysyqPOeqkxTs+36/PgPmz5k7tO3POlI4Rscfhl3cWzW9xw5//5+AtW7ZkNWncfNORhxyzsOs+PXe6eGb67DcLSzYXN2hQv9Ha3t377fSz2bNb3/nLVy5pN3HquI7CLwB8lt1+9+97Pfjo34/Kq5df2qNL33cK8uuXbyremLt85ZImY18b3eO94ZfHnn6w18w5U/bp0K7zsm6dey1NkiQWL3272SsTnt9v9rxp7W///YiHGjVoXBkRcdrxX50z6vlHDh73xovddxV+eeTJe7slSZIa1H/wHgUyyitKcy7/yTmnZ2ZkVffpccCCqqrKzOmzJ3W+d8TtQ1KpjOSCsy7/zwX8NTU1ceXPvnbc/Hdmd2jUoPGGgQcdOa26ujrj9clje3zvmgt3iurV1NTEt68+78RlRYtatm7ZbsVBnQ+dmZmZWbN+w9r8txfNazN5+uvLP2r4pbyiLGPilHE9crJztpxy3NlvbS4tyXp05P2Hvfr6C72+e+n/TNpx//DpF/7dNSLiiIFfmrd23ersp0aP6LhqdVF+/YKG5YMGDF7aq9t+u70I4u2F85r+6a/X5WyprMhq2rh5yWEHD13aqX3XvbLvtql4Q9ajox7sNPa10d3eWTSvbU3y/9k7z8C2qrMBv9p7Wp6yZXnvPWIncaaz9wCSQCCQsGnp7kfhK5RC+aBQyg6QQUhIAiRkO9N2HO9teQ9ZsiTL8pJkydrz++HK2JaSyEloC9znl33vuec9V+PqnHvP+xwHmkgkmbLS5rXGRyer7kUMb+jt6woBAFi6YK2b2GFe9hJJ4Y0LWZ3C1hAA8Fr8MjQywPjowJtJBqMOz2ZyDHMyFgwkxqa5vc56gw7Tr5AEYrE42+L5q9zGCxkpuRJBW11sc3tDMAAg4pcfETqljnnsd8d20Xxpw5E5kQ2GMQO1v7U//uI7F7cbxgynZ0pR7pSCtwqWK6VKXkB0QA83nitEo9HOqfuHRcNB7UXtVLWKMwAAIABJREFUc33DfMVRc6PqtENatqJTEfvd/37HsxqtR1PXpspcZTWDGsLnj36+S6/ScxgBjIGQeSGdpnETub+1P77grYIHlRJlwdTE2G9e+GZR5/XOeSQ6aSwkOaQDT8abDGMGmkqmCuwu646beo4dxR0Bp145tcNqspJ8w317Q5In6h7oGIg5+b8nHxkfGf82Z3tO752+DpXHKqMtBguVn8FvJNFJtuj50c11J+sCyw+Xp2z565YyT8c4HU449fKp9VgC1rTlr1uuaoY0pDuJjcFi7AAAKAzqrgVa3eXdvg2nG5IkDZIEk85EBwBgcVmypOVJ9Xdbt7d0XO/gAwD4R/mL0NjpvydUH6qFFcKSjYpHwzuKO7iZmzP7vK33+ufX49UDaiYGi7H7RfiNpq1L6yNQCG4iB1G1iA8AEJwU7PZ54KXwxsgsssqgNrBlzTImL5XnNq5G+O+j6ngV7fK7l33JLLI9MifSQGKQ7Aa1ATMsGsY3FzTTpopf6r+rp3eXd1NCkkNM/Ay+0elwwmD3IKHuZB1DVCMiP/7F4/1EKtEJAJC2Lm289GApu+VyC82T+KXxXCPN6XBC8spkr54RmPVm9IHdB7hoHNoZkxejt1vtqK4bXZSCvxf4otAoZ+bmTJ2rrNPphGO/PRYgrhWTmUFMa9qGNI3D5oDWy620UfEobmbdTqcTDj93OHCgY4AYGBtoTlqVpEVj0M7xkXGsVCAlSZukxDsVv9gsNmi72kbDk/GOhGUJeqvJiireW8wRXBDQFu5ZOIZCTX92ILgooAEAJC5P1Bm1RnR7UTtZO6TFkhgke8ScCKNv2PTk1akMdQ/hS78oZdgsNhTdj26LyI4wMoOY90TIYjaYUW1X2ygtV1qo0kYp2WF3AJFGdKSsTtH6Rfjdc8nUzZA2SUkAANF50YaZ+6LnRRsqv6pkSRokJADwWvyi7lfjyg+X0816M5rqQ7WHZYaZfMN83c7JarKiBjoGiFgC1hmWFWaauT8yN9LQXthOFdeLSYj45cfHpXcvpVUfr16FJ+N1QXFBPUQa0WjUGsljA2P+3aXdKVPFL3Un69LkbfJoDp8jDYgOEDudTpRKqgrsKe+Zs69jX8RTR576gupDtQAA5GzPaRFcFCzqqehJAgA38Uvl0cpEp9OJip4f7TZ+9oTVZCXsf3z/I2gM2h6SFNJpt9kx/a39cRVHKtai0Chn/rP5k2N5p8MJB544sGVYOBxJZpJVkbmRdQ67AyOqFSV/8dQXvjPrdjqccODxA9vUcnUwM4gpD88Ob0Kj0Q6dWkcbEY2EiuvE0jsVv1iMFrS4TpyExWPNOdtzukw6E7b+VH1+T3lPqtPhrJz5HLXpfFMCAEDckrg27bCWUHeyLkozpKGTGCRj3KK4vtC00B9E7nQ79GN6XPXx6uiuG12JI+KRMKfDicYRccawzLDGkOSQf8vCJAAAw6JhPgBAyuoU0cx9MQtietsL2+crOhV8APBa/KIZ0rAuvHUhw2KwEChsij56frSUn853e51NOhNGLVcHo7Foa8rqFLdnOGFZYb2yZlmSTCDjAwAifkGYRt3JOmp3eTd5SDhE0Kv1GAwGAxw+x5KxKUObviFdN7P8/j37A/tb+okvlb0kLv6smNl6pZWmU+owdD+6bc4DczRzHpgzDgBQeaySVn+qnjGmGMOSaCRH8qrk8aXPLlV7ej4ruCCg1J6spY+IRwh2mx2YgUxbwtIEXd6uvDEsYXoa5F/m/CUsOCnYtHvfbjcR6okXT/i2XWuj/uLEL2TsELYNAEAlU2E/2PpBSEJ+gm7JU0vUV96/wpY0SkhWkxXlE+pjXbh7oTp+SfxkH8Z1fgAAF9664HvhrQuT1+ap9d4pdpsduku7SS2XW6g9FT2UmLwY/dbXt96x5Ho29Fb3ElUyFS44Mdjkkr4AAKDRaFj+/HJVT3kPpfFcI33R44s0M/vDt6L8y3K6tFlKeui9hxSiWtFN7xHM2znPo0AxfUO6rvSLUubYwBhO0aXA343cEQEBAQEBAQEBAeHHBiJ+QUBAQEBAQEBAQEBAQEBAQEBAQPjZUfZl2UK6L13lF+k3QGFSDKZxE1HeLg+9/tn1fKVEydz86maPSUiHnj60XClV+nPjuRI0Fu2QNEoiyr8sX4TBYhzDomGf3qreWG4Cty8wNrBf1izjN19szsISsLZ1L6ybtsrZiZdO5LRdbUvHk/Amfjq/B0fCWftb+nkNZxpypAIp7/FDj5/FE/F3neSgU+poh54+tJXCpmgjsiO6TDoTUdokjbz4zsXVBDLhbMqaFDkAQPyS+E5hldA80D4QFhQfJOaEckZddVB9qOabR7g17YXt/k0XmqIlDZIoi9FCRKFQTr8Iv/6k5Uk9tz/63tBb0xsMAMBL4blNauPGc7VUH+qYTqljyjvk9OCEYI8TS2bisDkwJftLojWDGiqOiLMFxQYpE5cnDmBwGOfMsiadiQwAEBgb6FY3O5itBQCQt8mDAQARvyB4hVwh5S+cu+L6y797p8S17eT5wy0fHXjzoVMFX827neTi3JVvUux2O3bPg786vmPLnq6p+waH5UQGjWEFAPjdM69W/eXt3xDlg9LQFYs2NK1dfp9bvW9//PJag1FPW5K3uuilX781OTH1cvGZ2rc+fOnRL45/vHHZog3/ZDN9pk3GEkuFUc88+oevtq57WDh1+6bVO2pbOxpSLxWdzpwpfjl++kC60+lE5eUsu+PvyrHv9seZzEZySkJWPY3KsNGoDFsEP6a7R9QRd+7yN2EbVm0Tezquf0BC3n/0vWyn0wnjOi2lt68rXDs+xo6LSmrZtmm3m9jmyInPYts6m1K2rt15NjYqaVYroN0MnX4ce/L84eiy6sJksbQn0uFwYAh4ojElIbNhad6altX5W/o8TYz86uTnsUJxR4C3cShkqul3z7xadbtybZ1NLKfTiaLTmGo8nuD2exUeGq0CABhVDft4GxsAoLapfM7U/78+fcCZkpDV8Oof37tEpdAmJ052Clt9AADYTI7HSdrBQXwVAMDQiGJW8REQEBAQEP7bKC6/lIhBYxx7//7NMW4gzzh1n2JoIuHAxZ4Hn68P40WVYLG4aeOSfUfeiz/63edLDhz9IOm3T7/SAAAQxovSh/GiZCJJN69eUMnOSMmdJgeprC+JxaAxji1rd3o1dhseHeRkJOe2v/HSx8Wu+I0t1U2/e2XPjoJrJzOmil8Of7s3pkfcwQ8J4g98+s63p4kEkgMAYFQ5VPXU7x+4b2bdDc1VPnKFJDAmMlH0yVvHC6bus9vtoFKPELxpoydOnjscYTQZiJmp89qoFJqdSqHZoyMTxB3dzRGXi88Er1q6qX9q+T5Zrz8AwOBwP23nc6sfNpmMk+/B8dMHYE56Xstf/+f9GzPfAwCAitrilKn/f/nNJ87M1Lltf/7tO6UUMnXWib4WqwV1qfAUr7D0QkxnT0uY1WbF4bA4a0JsqnDx/FVdq/O3SPE4vFs7rlw/y60XVHJnE+uF59+4rahFOz6G1enHKTgc3hoaHO6W4BsTkTAGAKBSjzBnE7u5vT6mub0+xvX/Vyc/h7jo5N5XfvePIl9OwOT9ii5hK8PpdKKYdLbG03mH8aI0AAAjysFZxUf4z6PqV/Gi50dXbX9ne6FrW1thW93Jl07uKj9cvipjY4aQ5ku76wSgMcVYwMMfP/x5SFKIxzHciGgkInNL5uU1f1gzOSYt/7I8+tpH1+67+sHVdckrkz92yT1Ov3p6qV6l5/Az+I0Pf/hwgStBtq+hr+LI80d213xbsyJxeaIoODFYAwDQW9mbTqAQxp878dynZAZ5WsKYSqaaTJCymW2oc2+c22y32vHrXlx3OH19+uS9rqGeoeKDTx58rPiz4rVp69M+9CQC8YaWSy3pAABp69MEAABzH5rbWn+qPl9YKUx12BxlMwUmAADn/+98tlKqDF39h9Vf0XxpljsRv9jMNpSwUpgMABCZG3lH4hp5u5xe+21tQm9Nb6JuVOcHAEDlUIeTFyTXZ2/NbuMmcD2+tydePLFgNnHCs8Ml6RvS3QRXM1HJVD4AAKwglsdxK92XrhoVj4aPiEbYANDnbfySfSWbpv5fvLdYP+/heZcWPLagc+r2scExHwAAn1AfjwIwKpuqMqgN7IHOAR9E/PLjoPFsIwODxcBTR57qp3Fo077jOpVu2pdzwe4FY+tfWj86U0hf820N7eLbF32rjlUxFj2+aAwAgBnItPNSeUZJg4Sk6FLgA2MCp11TWy630DBYDKSuSXVL8vXEiHgEn7QiaXzjyxtHXPEHuwfHPnvks5DKo5WsqeKXhjMNVHGtmMxN4Jp27d01gMVPTGk3aAzqfY/uc+uvKLoU+IGOAWJkbqT+wX8+OE3G7HA4wKQ1eWd19kDrlVaqUWtEJ69K1uJJeCeehHeGzwnX95T3UIQVQlLUvKjpffEuBQEAYEwxhnt/8/t+pvEpsVEAqWtStev+tM7tPQAAqD9dz5j6PwqNguSVydo1f1yjxBHd+5G3w26zQ3dZN6n5YjOtt6qXYjVZUTgizhmdF61LWpGki1kQY8BgMW7HCauERHGdeFbX7GXPLbutxMFsMKN0Sh0GR8Q5Gf4Mt98jThjHCgCgkqvc5D63oqO4g9pR3EGdui1qXpR+4583jpCZ5Mn7k6OSUazT4QRGAMPq6bw5oRPx1f3qWcVH+O+go7gjDYVG2R//4vF9nFDOtHHH1H4TAMDSZ5aWB0QHXJr57O7Ke1dSKo9Wrrn20bWMjX/eWAkAEBAdoPPl+4pHxCPhPRU9vlFzo6Yl3PdW9Saj0Cj73AfneiUdHB8Z9w9ND23a+f7Oi674vVW9tV/96qvHm8435U4VvxTtLUocFg5HsoPZsiePPPkVnjTxfFgzpCn5/JHPd82sW1gp9FXL1cEB0QHdTx5+8sTUfQ6bA7QjWuLMY7yl4khFrNVkJfMzJySAJDrJFhAd0KPoVMTWn67nz5TVjUpGAwEA1ANqxof3ffiM1WSdfA+qj1dDeHZ4/Y5/7Lji6fnpvcZmsaHqvqsLb7valqjoUkTbrXYcBoexcuO5HfFL49uytmb1Tl2gw0XDmQaeqEYUOptYW1/feltRi35MjzPrzDQMDmPxi/Bz+w0NTghWAQDolXo3Ae6t6G/pT+xv6U90/V/5VSUExgZ23v9/9xcwA5mmKeVYTqcTRWFSxjydt3+EvwoAQDuqnVV8hJ8Hl/55iePD87GGJIWYqD5Um1FrxIhqRORzfzvnOyoZxS3/5XKP/YGv//i1n6JTQQzPDjegsWhn941uyqV/XOJgsBjnkHAI33q1lRY+J9zAT+Mbeyp7yBVHKpg4Is6x6PFF08Zql9+9zKo6XsUk0UmOuMVxOjwJ7xDViMg3DtxgiWpFpEc+fkTh6jfeDZohDXbf7n1cRgDDmpCfMG4cN2K6SrooJ1484b/jHzsUkbmRJgCAlFUp4wQKwdFb1UuOyIkw+Ef5T/aXiXTiHc/p6WvoIzQXNFM7SzqpRq0RjUKjgJfKMyatTPKq330vENdO9AXDs8ONM/dxQjk2FpdlVcvVOKVEieXwOV4JboZ6hnDX911nZ2zM0ETMiTDdSvxyK1z9aE/9aQQEBAQEBAQEBISfMoj4BQEBAQEBAQEBAQEBAQEBAQEBAeFnx6OfPXpspuTDYrKg9z26b23r1db0+bvmt/mF+7mtvK1X66lPH3v6GN2XbgEAkLfLm/bv3r+j8qvKeTgizrLn4J7jruO0I9qaD+/78KHWy61pq367qsk1qaq9sN2/7WpbOolO0j2277ETromJNout8sDjB1YpOhX8S+9cSl3/4vqGmfFny6h4lJuyOqV248sbJ1enqz9d333+jfPrqo5XpbnEL4ufXNwJADDQPhAWmRMpdv1/J0ibpMy6U3XRvVW90YYxAx0AgB3MHoqaH1WbfV+2kB3Mdps0oh3R4gs/Kkxxr+3mJC5PFEfNjRq9XbmxgTEmAIBPqI/HBAYah6bRKXXMwa5BprfiF7PeTL7+2fX8qduuvH9Fu+JXK4qSVyVPW1kcT8abzDozWdGloIdlhE2bBKXqV9EBAMZHxpHEMwSvoVLomj89/383pm7bsnZn76GvP9YohuVeJ3ASiUS3yVkBfly3FVBvRndvO13aL4qgUmia3z3zl/Kp+1Ys3iA7d/mblvZuQfK3Zw/FPfnwb6atghnBj+mcKX0BAFg8b+XA3kNvDwjFXTFiaQ81jBelAwCwWq2ouqaKNBwWZ9mx5fFWb9s4k+sVl9IBAFYt3dTk2rZk/qqmHlFH3MWiUxk3E78MDsvJJRVXFk7dlpOxoOLPv3uncGbZPlkv5ejJz9fxQyKEzzz2x8aZ+2eD3W5Dnb9ygl9YVpDcJWyNs1otBCwGa40Kj+9YkJPfumnNgz2uROmbUVVfEtvW2eT19ZVKoWu8Eb+MaVVEAAACgehRDsZisE0AAGaLyatJ5sFBfPW65fdfXDhvRW9EaIxWqR4mlFZd450qOJrf1FqT8YdXnyB8/Oaxk67yOt3E5HUikeQxPo1KNwEAmMzGO57kjoCAgICA8N8CCo124HHuYtBA/+Bpfbeo8HiPq9U/tuMX7SfOfzm/taORBwCT48yFc1d0iiTdvLOXv4nLSMmd7M+V1xT5KVXD7NioJFGAX5BX/UMsFmd74VdvlE4VnqQlzVEHB/EVMrk4SKNV4xh0lhUAoKTiShwAwM77nqqa2pfh+Phb1q/cVvvF8Q+Xe4qBx+Hd+q8YDAamyj9mS2HphQQAgNX5mztc2/IXrO3o6G6OKLh2MmGm+EVvGCcBAJwqOJoXG5UkemLnb6r4IRG6itrr/p8feXdxdUNp0t8/+rNxqiglJJCv3bJ2Z8mC3GUyfkiETjWmxFfUFgd9e+ZQbm1jeeKfXn8G/97rX17xts0lFVf8LxefiRG01UYZTQYSGo12RPBjpHk5+V0bVm4T06iMWyZh1AsquVdLzmV7Gw/AO/GLakxJAAAg4AkeBRxsFscCAGA2m7wS9XDYfsY1y7ZWLJq7oi8yLHbcYNRjapsq/I5993luR3dzxG9f2U0++N7ZkxjMRDKvZnwMDwBAJBI9xmfQWWYAAJPZeMeiIIT/DFg81rzuT+umJVYmLE1Q1Hxd0yoVSJOrv66OzX8u/65XqE9cllh5M+kLAACZSVav+s2qaSLSeQ/P62442yBVyVS8poImXvr6dKnFaEFLBdJEDA5jWf/S+iKX9AUAgJ/OV0fPj67tKOqYX328Ojn4teDJ80Jj0A4M1j0hlh3y/X206q+ro4waIyt6fnTVVOkLAIB/lL8ucVliZf3p+uWNZxv5OdtzZi1PkbfJGSN9I2EUFkWZvDJZDgDACmKZXMm+NSdqInK2Ta9XWCXkNJ1vWhyWFVaftSWrb7YxXXz7p2+X6JQ6X78IP+Gc++eIbn/EBGOKMWL18erY7vLuJJVMxQMAINFJY7GLYsszNma0RuZG3vbeYdu1trzZttcb8YvFaJm4LlIJHn+nCOSJ7Sadd+Nmfjq/K2NTRmV4VvgQM4hpUHQqGDXf1iR33ejKKf6seDOBQjg+54HvXzur0UoEACDRSR5/y/EkvAkAwKhBxs0/JlAYlNPTtYLKpk7rK7KD2R77A1lbs8YLPy70EdWISC7xC8BEMqukQUJqPNtIC/x94KSsSNYsI6hkKlzk3Eg9hU3xKqkVS8A6V/9+9TThSUB0gDUoPsgkb5UTzXozikAhOAEAmguaaQAAi59crJqavEtmkB3zH5mvPve3c343izFzGxqNhqnyj9nScLaBBgCQti5tsk+duiZ1vKe8h1J/qp4+U/xiGDNgAACKPinyicyN1C99ZqmKGci0SZukxIK/F3CazjfRySyyfaoohc1lW/Ofyx+NmhdlZAYwbcZxI7qvvo9Y/Gmxj6BAQDcbzOgH3nxg2Ns29zX0EZovNtM6SzopRo0Rg8aigZ/ONyQuT9QlLE3Q48nuMrypiOvEpIrDFSxv4wF4J35xCXgIFHdZNAAAiTYxBrDoLe5WFg9QWBT7wj0LVTELYgzsYLbVarai+lv6CcV7i316ynsoX/36K8zu/bsHXFJsk+7W8Ym0iQRts86MZBH/SEGhUQ4sHuv2/k7tNwEAcBO4Hp/5LfvFMkHNiZr8/pb+cACodG2PWxzXMiIeCa/7ri4pam5UkWt7e2F7gE6p4wTEBHSxuCy3Z5yeQGPR1i2vbrk2VXgSkRMxygpmyVQyFU+v0uMobIoVAKDzemcyAMD8XfOvu6QvAAAMf4Y5fWN6WenB0g2eYmDwGKuHuDBV/jFbWq+2pgIApK1Lm+xfJy1PalZ0KmIbzzWmzRS/mPVmCgBAw6mGZQExAV35z+WX+Ef4azuud3CLPy1eJaoRZZx65ZTBG1HKndJyuSVIcEGQKG2WxluNVjIKjXL4hfuJYhbGtM55YE73TLHiTEQ1otDZ9ge9OR/dqI4AAIAlYD0/w/ClmQEArGarV30xuh/dkLImpTghP0EYFBs0ZtabsT0VPYEVRyoWKToVsV8++yX1uW+e+9IlajSMGQgAADgCzmN8Mos8Ed/kXXyEnxdPHX6qf6bkw2axwZfPfRlYfbyamX1ftpYZyHSTu2mHtdinjz3dT2ZM9MlGJaOaT3Z8EnLto2s+BArB8eThJ/tdxxk0BvUHWz4Iqfmmhpn3aJ7GJWvra+gjVB2vYtI4NPueg3vkdD+6HQDAbrOrjv76qL+oRkS+cfAGc8mTS+5aXtnf0k+c9/A8df6z+ZN1dd3o0h3//fGAiiMVzMjcyEEAgMwtE+LC3qpecuyCWL3r/zthuHcY13Shidpe2E7VDGqwAACBMYHmeQ/P0yWvStbRODS33zeDxoAuP1zOcK/t5sQvjtdzE7i3leQqpUocAIBPqI/bbwoAACtoQvwy0jeC80b8YrfZ4btXvvOj+9Jty5/3LAjyBkmDhKCSqXBUH6p9ppgSAQEBAQEBAQEB4acOIn5BQEBAQEBAQEBAQEBAQEBAQEBA+NnhSfCBJ+IdaevSWq+8dyW4vbA92C/cr2tmmQWPLahySV8AALjxXC0nlKMYEY9wc3bklE+VxdB96ZbghOA+cZ04dkQ8QgmMCdQBANSfqY8DAEjfmF43dTU6LB7rXPmbleUHnzwY2nWjKx5ehLsWv5AYpPF1f1o3LSklY2OGrPCjQp1SpvQ4afpOGO0bJdecqInqKeuJHlOM+QIA0P3oqrT1aVWZmzN7guKCPCYgutApdYTmi81Zs4nJDGSOeyN+sRgteAAAEo3kcUIIjjQx4c2o8S75K3pedCc/gz8QkhyiIjPJVkWXgl75VWWSsFKYcOa1M2vJTPLJyNzIycnx3ARun6haFF/0SVH2rk92Ta5qp5ariS2XWlIBkEl1CLPD3zdwEIdzX/mVRmVoB4flwbc7Pn/huraaxrKcT754e1tR2cX2pLgMUW7mQmlyfMasJl81NFcGAACEcMOknuQjCbGp4vZuQbJI0h0AANPEL2G8SPnN6l00d0Xtt2cPbTh6cl/ai79+sxQA4OT5L6P0Bh09LWlOHZvpc0eTuwRttez+AUkYk85SLl+0fjKBd9PqB4VffrNXJxR3xPYPSMjBQaGGmcdmps4dLfqu9S9WqxXV29dJv3D1ROyVknOLH/3lBt4/Xj1wNNA/eHKy92v/+P16h8OB/tOv3jx7J+2cyr4j7yV/febgRgCA4MDQvgW5yxq2rnu4k8lge5x854kP/nbkNACcvtu2/NCsXbZVAstgMnGOQWdaw0Oj23MyFvQ//9IjT3f2tCSW1xSVzcteMnSrehAQEBAQEH5q5GQs6Dpz6fj8x3618cHUxOzulITMgblZiweCAkLcErnMFhN635H3EqobbkSPKIfYFosZ73Q6J40DWt0YdWr5Tat39B49+Zmlobky2mazVrikLReunowFAFiat6YDvITN9BljMzlufRQWgz0uk4thVDVMcIlfBoflHBQK5Vwwd7liZvnczAWKL45/OG1bamKWyo8TONrS0RC989k1tLTEbHFa8pyB3MyFw7eT4N2Ktq4mRp+sN5jN5KgXzV0x6Nq+ZtlWyYGj7xs6e1oiFEP9xKmCHdfr6cPyVb/32qFLrtds1dJN/T5s34svvPb0AyUVl9N+/dSf61xtW7Zo3cCyResmBaE0KsMWGhwuzE6bP/jcCw9ub+loiK5pLGvITpt/2/Ht1evngt54/4XNAAABftzhDSu3VW1YtV3o7xvotfzmheffqPFG5PKfJj05R5WenKNy/c+gs6zrV9wvnT9niWL3rzZt7x+QBJ4qOBq2dd1Oj/JGhJ8OjADGINWH6jYODE4KlkgF0uQh4ZD/vYjDS+MN3Go/h8+RupIopxIYEyhRyVQ8eZs8IH19urSvoc/HYXPgWFyWjBXEcrtWR8yJ6Oso6pg/KhmdbDcvjdfaW9Wb9d6m954KTQ1t52fwJXGL4+R0P/q077asRcYFANApdYwTL55YMLNuzaCGBQAw3DvMAYBZi1/Kj5SnghNQEbkR00Q6icsTBYpORaygQJA2VfxiNVnR514/t4FAIeg2v7rZTYzqLef/73xWd1l3DoVFUW57e9uZ2Rx7+JeHt6qkqlA0Bm2LmBNRl7w6udUlrfGWl6tffn12Lf7PsO5P66Zdu8Myw1RhmWHXL7x1QVd3sm5F+eHyJVPFLwg/PRKWJYwX7y32+WjbRyFxi+J0/HS+kZ/BN1F9qG79IbvVDlXHq+jtRe1UpVSJtxgsaKfj+9uJulEddkbd+kvvXnK0F7ZTV/5mpdIlbWk810gDmBCgeNtOVhDLSqQR3e5d0n3pNjnIwaAxoAkUgh0AYFg0TEChUcDP4LtdLz1tC4gKsPiG+1o6r3dSP9/1OTZqXpQhND3UGJIUYp4qjpktI+IRrKxZRmJxWVZ+Bn/y2huzMMZAZpHtwkohRafSoacJdv71Fzsn7eBkAAAgAElEQVSYbdn2921Drtcsal6UcStr69D+3fuD607UMRc/sVjtaltEToQpIidi8rzwZLw9ZXWKnpfKM32689OQzuudVHm7fIwbf/sk3d6qXuKR548EAQD4RfqZFzy2QJW0IklPYXkn6AGYkLh4I3L5TxMYE2gNjAmcTMgmUAjO2IWxRn46X/7Jg5+EDLQPENsL28mJyxLd7usi/PSImBPR2ni2Mf+THZ88wUvltYemhUrjFsX1+/B83N5/q8mKvvL+lbTeqt6E8dFxjs1iI4ATJsfIxnEjbWr5nO05XRVHKsySBkmi3Wovdj3PazjTkAwAkLg80WvZIIVFUdF8aW7fZTKTrFXJVKAZ1hBd4hfNkMYfUOBMWpHUP7N8TF6MrPTgdMdIeHb4KM2PNiRvlSe8v/l9Bi+V1x2eFS6LXRSrmCqOmS2SRglLKVHyp0oAAQCy7svqvb7vuk7RqYhWyVSkqYId1xiZwqaM7t63+5TrNcvcnNlH86WdPP7747s7SzrnWIyW8rtp281oONvAO/f6uYcAAOj+9MH0Deklcx6Y0+GpH34ztr6+tfSHFNPcKyJzI0enSg0pbIp1zgNzRPFL4vs/2fHJHrVcHVx5rDJq3s55Pf/JdiL8NPAk+MDisZC1JUsjE8iIvVW9pIxNGW7yk6VPL1W5pC8AAJxQjo0bzzXJmmXEf0nyJmUxZAbZEZETYWi72kbVDGqwLnFhw5kJGd+8nfPULukLAAAGi4EVv16h2vvgXrLggoB2L8QvND+abclT0+uJWRBjpPnSbIouxT0TB2uGNJjmi83U1qut1GHhMB5gQrSS91ieOmVVis6H53NLoYpJa0JXHK6Y1UJCrECW1Rvxi1k/IcIjUoker9EE6oRIzzRu8kqYV/hxIWtENIJ/+KOHB/CkW0sIb4ZerUef/utpXwCA/OfylVOFkggICAgICAgICAg/BxDxCwICAgICAgICAgICAgICAgICAsLPjsHuQWrR3qJ0Raci2KAxUB02x7R7peMj4xRPx0XmRrqttkhmkvUAALwU3sjMfRQfih4AQClVUl3iF5VU5QsAELsg1i0JgZfC05BoJL1hzEAfHx3H0zjukwJnA4vLGp26mtyUNo8rZcqAu6l7KgefOLjFoDHQcEScOSE/oSFtfVpPxJwI5e2PnCAoNmj85eqXP75X7fkh2fjyxtqp/4dnhavCs8JLvvmfb6wdxR2pxZ8VZ0fmRl507V/1m1U1Bx4/wOtv6Y94f/P7DwTGBvZbzVZsf0t/GIlO0hu1Riqg4I4mvSD8PCESPa/UjEahHVMTe2/G0rzVcrvdduDr0wcWdAnb4tu7BMlfnz4ATDpLuWb5fdd37/hlqzftGNdriQAADBrTY+KHr4+/DgDAaNS7iY1YTM5NV0J7aOsTrWcuHV9R01CabrfbyjAYrPNqyfkMAIDNax6su9lxt+ObM4fSAQAyU+c1Td2OxxMcyfGZLdUNN3K/OvlZ6h9/8XrFzerA4XDO2KgkTWxUUjWLydEfOfHplnc+eWXx26/sKwAA+PTLf6SIJN3RD2x87HRkWKzXCTE3w983aJyAJxrNFhNpcGQgqKm1VkunMU3rVz7QezdJzvcCJp1tAgAwm00eJz6qNSoiAAABT7zj1UUBAGIiE7UR/Jieju7mpOqG0lCX+IVKpZsAAEwmz9Kucd3E55NI8Px9QUBAQEBA+LHw/BMvNTHoLNO1G+eTKmqLU8prilI/PvgWhAaHy/c89KvyedlLJseov/7fR1d29rSEM+gsbXx0sohBZxtwWJwdAOBG5ZVUu92OmVo3lUKzJ8Vl9NQJKhIKrn3HW7/yAYnJbEQ3tdVEk4hk49rlWyUz23MziASyR/EIGj0xHrXbbZP9VLPFRCASSGY8zn3yf1AAzy1ZD4vFOT/42+FT7+/7W5agrS7y/NVv556/+i3gcXhrenJuxx9/8VqlSyozG06c/TIBACAnc2Hn1O14HN6ZnpzTVVp1Le346QNxv37yz43fnyfJDACQGJcudklfXGSnzR9l0FjaMa2K0dxez76dyCWCH6OLiUjoa26vj6lpKAvyRvziw/Y1USk0vU4/ThlRDvo0tdWG0mgM87rl94upFJrbSsv/TthMHzMAgNlixnvar1KP4gEACASi15Iaz3E41ozk3O6isoLM5vY6rkv8wqAxLQAAJpPJY3yNVk0A+P49RPjxQKQRPY4f6X50HQCAxWi5JzJdFpd1yxW7yQyy3tN2CpuiAwAw680EAADDmGFiLEL33G5W0EQci+n7dm9/e/vVgrcLxnrKelI6SzrndpZ0zr38z8sOvwg/4arfrroWmhaqBgAw6UxkAICBjoG4gY6be2osJovH78GtsFvtKFG1KAVQ4MzdntsydV/21uzekn0luqGeoahh0TDFJb4++9rZedphbcC6F9cdprKps74OAwBceOtCZv2p+uUUNmX04Y8ePjKbJF0AAGYAc0QlU/EcdgdW0aUIJ1AJRgqLYprNfckfCjwJP3Fd1Jk9jlvNhontROrdjZuXPrO0sf5U/bLxkXF/nVKHd4mScCScCQDAqDV6/I64vjskBjJu/rGw4NEFGjKTbK8/Vc9oONPAqD9VzwAUQHBisGn5L5crQ5JDJn/jjv/huL+wQkhhBDBskbmReiqbasfgJ/pldSfrGDabbdo9RDwJ74xdGKtvvthM6yrtIsUtijPaLDboKO6gkhgke+zCWK+FGgQKweM9KzQG7QQAcNgd3/cL9WY0kUp0YLAYt/I0jnvfBo1Bw65Pdg0U7S1idd3oopbsK2G72p+wLGF8xa9WKAkUwqzvtdd9V0cHJ0DSyqRp9/MwWAzEL4nX1Z2sY9Sfqqct3L1QM3me/0qCjcyNNMxMRuXGcy10P7pNM6jBDgmH8LcTubCCWPbwrHBDR3EHta++j+iN+IXMItspbIpdr9JjlBIlvre6l0yikxxxi+MMd5pke68g0icSh12JxDMxjhvRAAB4Cv6u+q9EGtEZvzReV3W0iilplJBc4hdX4vLN4rsSl13vIcKPi/Uvrq8hM8nGtqttGcJKYZawQphd+FEh+PB8JEueWlIYvzR+Uup54IkDmwa7BmNIDNJYUFxQN5lB1mFwGDsAQNeNrmyHzTHt4kOik2zBScHtffV9abUna8NztuX0WowWtFQgTcCRcIbsrdlei/VwRNxNxshoBwCAw+aY/HzazDYijoAzYvFYt++uT6iPWx8Ug8M4H/vssa8uvHVhvqxZFie4IFgiuCAADA5j4afzmze9sqnYJZWZDZVHK1MBACJzI6cJbrB4rJOfzm/rLuueU3qoNHnDSxuqp5ynCQAgODG4Z+bz6Ji8mGESnTRm1BhZ4joxJyYvxu0Z+91C96UbCBSCzqw3U3WjOl9JoyScRCcZs+/LFpLopFuKFH5oqByqGQDAZrZ5foYxMk4AAMARcHfVF6P50iz8DH5bR3HHPEmjhOcSv5CZE/dprGarx/gGtWEiPvHu4iP8NFHL1ZgbB28wJQ0S0vjIONZmmd531A5rPeYhBicFu137qD5UGwBAUHyQ2z66L90GAKAZ1GBc4pehniECAEB4TrhxZnm/cD8r1Ydq0w5psUatEUWik+6qz+MX7mfxJBWh+dLsik7FPcu1PLDnQJB2WIslUAmOOQ/M0SSvStYFxQV5PQ+IHcK2vVz98n+9+FjSKCFUHatiZm3J0vDT+Xd0/81sMKOO/eaY/9jAGC77/mxNyuoUj/diEBAQEBAQEBAQEH7KIOIXBAQEBAQEBAQEBAQEBAQEBAQEhJ8V8nY5/dAzh7ZaTVYCJ5SjCIoPkhHIBDMKjXJqR7S0vrq+WJvF5j7TGAA8iVhQGJQDAIDMIrvtc03gs1vtkzNGrCYrHgCAzWN7nKRApBP1Rq2RqlPq7lr8gifjPU6oQKFRzqmr2t0tjECG0qAx0KwmK6G/tZ9HpBHNZCbZ7JLd/CfBk/AWAADjuNFj0ovVODHhjcS4u+SvuQ/Obeso7kgdEY0ETd3O4XMMu/fv/vbyPy9n9rf287vLuhPxZLyJn84X5u3Ka96/Z/+DBDLBbeISAsIPyfJF6/uXL1p/VG/QYcqqC4Mqa69HVtXfyP7qxGdbfJi+ho2rt992hWgaZUK8oR3XUD3tH1EOUQEASET3JGAU6uaXHxqVYUtNyGqqaSzLOVVwNCIpLn24TyaM8vcNkrukH7PFZDaiG1urUwEArt04v/TajfNLPZWrqr+RDgA3Fb9MZe3y+3qOnPgUxNIevmubqK8rEADg69MHNn59+sDGmccYDDraks2JLwMAHPv06pv+voG3nFC7cfV20YolG945deFoZEnlleSu3tb49m5B8sHjHxrjopLbl+Stblm1ZKMUg3GfEO7iq5OfxwrFHV6Lvihkqul3z7xadbtyCbGpahQK5dSOj7EsFjMaj5+eKCGSdLMBADhsv7tOtqNS6HoAAJPp++t4bGSiEgBANTbq4+mY/oE+NgCAv2/gfzzZDwEBAQEB4W7Zte3Zzl3bnu0cVQ7hy2uKA8tqCsMbmqviX3/3j+v3vfvdkaCAEFN5TZFfZ09LeBgvSvbJ378+O1WqYrfbobjsYrqnulcu3dRZJ6hIuHrjfOz6lQ9Izl3+hm8yGYlzsxYLCHjPK73eLXg8wWIyGwkWqwU1U/4yMCglezrGlxNg/uv/vF8GAGVtXU2MytoSbnH5xcSq+pLkl9/6NeGfr31xdTZtMFtM6Nqm8jgAgIJrJ3MLrp3M9VSurLowYar4xY8ToFYM9ftTyFSP40cikWQGLYDRaPB4T2EmNCrDCABgMhtx3pRPT85Rnfqi7ODl4jPBhaXnY9q6BBGdPS3hXxz/yBoXlSxaPG9l98qlG2W3eu+uXD/LrRdUcr2J5+KF59+ouV0ZOo1pc0lpJP0icmhw+LQE8a7eNiYAAJvle9crMjPoTCMAgNlimpz3FhOZqEGhUM4xrYrh6bMllvYwAAB8fQLuOj7CvxfTuMnjmFM7rKUCAOBJ+MlxFQqFmpBN2exug06dUndLQcytxqkAAAaNwaMkWq/SUwEACBSCGQCAzCRPSCq1ntutHlBPtJv4/T07DA7jXPfCuhoAqBmVjJI7ijtCOq93Jgx0DMR9/cevfZ8/9fynBArBTiATTAAA+c/lf+NK6LxXVB2rijLrzTQAgE93fvrLm5UrO1SWuvkvm8sBAEYlowEAAOdeP7fz3Ovn3M9Vrg75y5y/vIjFY80vlr749sz95944l91wumEZ1Yc68sgnjxzhhHK8Fku42PnBzstDvUPl1cerE3qrehPbC9vz2gvb82i+tKHw7PC2rC1Z7dwEruZWdZx48cSC2cQMzw6XpG9Iv60cjR3CVgIAqAfUHset2hEtGwDAN9xXNZv4MyFSiXYMDmOxmW1Eg8aAc4lfmAFMpaJDAUqJku3pOJ1KxwYACIoNQsbNPyIyN2XqMjdl6gwaA1rSICF2XO+gtF5ppR39zdHAZ79+Vkr1oTpkzTKCsEJI4aXyjA9/9LBiqlTF4XBAzdc1TE91p65NHW++2EwTXBDQ4hbFGTuKOyimcRM6Y2OGBoPzqmsza/BkvMOkM6HtNjvMlL+Mj457DEpmkh1r/2etcu3/rFWOiEew4joxqeFMA73xbCPdpDOh73/j/lmJBexWO7RcbqEBANzYf4N9Y/8Nj98ZwXkBfar4hR3Ctg52DxKINM/9LiKVaNeABms1Wb16DkNmku0AABajxaOsZCaBMYHW31z4jURYISQ1X2qm9pT3UIQVQsqFNy84I+dG6pOWJ+mi50cbbvXeCauERHGdmORNPBfLnlumvl0ZApngpPpQ7TqlDqMZ0mAY/oxpgpdR8SgOAIDNZd+RNGwqFCbFDgBgNX7/OnNCOTYUGgWaQQ3O02drVDIRnxU8e3kkwn8H+c/mt+Q/m9+iGdIQOoo6grtudMX0NfalnH719Hb/KP9PfXg+hvbC9oDBrsEYDp8jfvLwk8enSlUcNge8vvB1j2PA1LWpLX31fWmtl1uTcrbl9NZ8UxNpNVlJkbmRtTgi7gcZI2PwGLPVbCXZLDbUTPmLUqL02AdlBjJND7774DUAuCZplLC6bnTx2ova03urezO//sPXxMf2PXZ2Nm2wmqxoca04GQBAUCBYLCgQLPZUrrusOw0AJsUvdF+6UqPQBBGoBI9jZDwJbzJqjGAxWH6QnKXI3MjRP1z5w/v1Z+r5rVdaE+Xt8pjBrsGY0oOllqDYoO74pfFtGZsyxLd67xrONPBENaLQ2cTd+vrW0tuVoTApVgKVMG7WmWnDvcNUvwi/ac/M+9v62QAAFB/KXfUFAQDITLIBAMBmtk0+QwlOClajUCinYczA9PTZGuodYgMA0Dn0u46P8NNiVDKK3b97P9esN6O5CVxTWGaYkUAlOFBoFGgUGmzbtTaqzWrz2L/xJGJxiVVINPcFLVCYiWqmjuFd4ja6H92jII7CptjHR8axRq0Rc7eCJ5cszkObnU7HvfPoccI4Fu2wFmvWmdGiWhGJSCfaiTSiwyW7+U/ikjaadCaPfVCzbuL9uFmf14XdZoczfz3jy+KyrMt+seyOritmgxl15JdHAuTtcmLmlkzNqt+uQq5PCAgICAgICAgIP0sQ8QsCAgICAgICAgICAgICAgICAgLCz4qSfSUpVqOVuOCxBUWLn1w8bWXv0oOlUX11fbE/ZHwcEWcBAFD1q8hkBlk7c79Ja6IAAFDYlGnSF6fD6XECjcVg8bhS17+TJw49USBvl9PrTtZFCyuF0fWn6nPrT9Xn+vB8FFHzonqytmb1soPZN5WbaEe0+MKPClNmEzNxeaI4am7UbVdEZwYxx/pb+kEpUXqc0D4+Os4AAAiIubvkL0bgRMKe3Wp3u+/uw/Mx7vjHjlIAmDYRsOl8E/df++9IZoGAcLdQyFT7isUbZCsWb5B9dvhd5fFT+zeV1xbFuMQvaNS/5FV296S59OTcQYB3QSYX8zyJP9q6msIAAML5MYrZtmvbpsdqaxrLci4Xn8lo62oacjqdqAW5y+ru7CwBvjnzRazJZKQw6SwlLzhc6qmMWCrka7Rqn/NXT4SuXbb1tglcfVIhHeB7wRcAQGxUksxsMXmUTDW316dhMVhrfExKKwAAmUT2ajIfiUi279iyp2vHlj1do8phwrfnDsVV1ZUkC9pq05taazL2Hnp7PCk2rXX54g2ti+etdFvyvaq+JLats8nr6yuVQtd4I36hUmi2QL9g2cCQjHe5+Axv3Yr7+6bub2ypjgIASIhNvesV6GRycTAAQFBAyGRiSVJchopKoWk0WrVPa2cjMzE2bdo1vL2rOQoAIDNl7n/9CngICAgICAjewvHxt2xYtU2yYdU2ye9e2YNqaK6KL626xn1g46O9fVIhAwAgLWmOeKbwoqy60N9mt3mcH7Rk/irFR/v/b6yzpyVcqRrBF5UVxAIArF1+X8cPdR6BftyRPllv8I2KK4H5C9dO679U1t0IvN3xCTGpmoSYVM22TY91bXls4Z7Onubw2bbhVMHRMINRT2IzOeowXpTH/qqwrzNYPaZkXr1+LmjZonUDAAApCVn9gra6WJm8zy2J32g0oNVjo0wAgLDQqHFv2tEnEwYAAHADQm4pJZgKBoOB1fmb+1fnb+7XG3TXz146HlZSeTWmrbMxqrm9LubTw++YkuLShfl5a7uX5K0ewGCmJ7rWCyq5V0vOZXsbD8A78QsAQAQ/RiZoq4stvHE+9LEdv5z2GSqvKQoFAIiNTJTNJrYnekQTYkN/TtDkPRUKmWoPDgxVyAb6gorLLgatWLxBPvWYekFlKABAcnx6/93GR/j3ohnUBOiUOrxLZuGiv6U/FADAP9J/8p4KkUY0AgCMDYzRZ9YjaZTc9vpyK0b7RkMcNgegsdNzoRRdilAAAG4CdxAAgJ/OV6KxaKt2WOuvGdQQGAGMaUmwouqJpFJOKGfQUxxOKMeQtyuvK29XXteH93/4oFKi5PdW9/rGL4kf5CZw5d1l3SBtkvLutfil+VJzGgCAf6R/D5FGdJNVO51OtLRJmiysFKY6Hc5yFBoFIckhIgKF4CZrsZlteHm7PB5PxusDYwJ7sASsW2L96b+czhUUCJbQfGlDuz7Z9RU75Ob3DW+Hf4S/bv2L66sBoFpUI/KpO1WX2Ffflyi4IFgiuCBYwuKyZJG5kW3Z92d3eJLLtF1ry5ttTG/EL3GL4vqqjlXBUM9Q+MzPjk6pw6tl6hA0Fm2NWxwnv0U1t0VcJ2bbzDYiBoexsLnsyfMLnxPe11HcMb+/pT8CZkhupQIp06A2sIk0oiYkOQQRYv0IITPIjrjFcYa4xXEGp8MJrVdaaaJaESl5ZbJeKVXiAACi50frZwovpE1Sgs3iOVE3LDPMxAxiWoVVQopRa0QLCgQ0AIDUdale9WvuBL8IP7NMICP11fcRI+ZETBMk99X33VLYBQDgG+Zr8w3zHU9dm6p7e+Xb/N7KXo+ChFvRdq2NYtQYMSwuyxqcGOxR0iwVSEnqATWut6qXGJEz0c6wrDBDe2E7dVg07HYv0Gq2gnpAPSE38TKhd6BjgAgwOxkKGo2G6PnRxuj50UaryTraXthObrncQuu+0U3tKOqgEmlER0xejC5pRZIuLDvMhEZP/w0T14lJFYcrWN7GA/BO/AIAwEvlGdsL26ndpd3krK1Z0z5D3eXdZACA0PTQuxbiy9vkBAAAZhBz8nXGEXHOoLggk7xNThTXiomRuZHT3ldhpZAMABCWEYYI+X/kMPwZ5pztOb0523N6v3jqC5SkUZLSXtgekvdoXtewaJgNAMBP5/fMFF60FbYFOWwOj2PklNUp/Vfeu6JSdCmitcNaQtu1tmQAgIxNGc0/2HkEMAaVEiW/5XJLcNq6tGnjpa7SrpDbHR+aFqoOTQtV5z2a1/bO6nd+NdA5ED3bNlQerYy2GC0UCoui5IRxPI7ZhnuH+Qa1gd1wtoGXvj5dCgDAS+X1yZplSSqpyndmebPejNGr9BOC9ih/r8e8swWNRUPWlqy+rC1ZfSad6WL18erojusdif1t/XGyFlli0d4iY3BicGfiisS21NWp0pn9eVGNKHS2/UFvxC8AAH7hfn2yZlmSoEAQvuwXy6Z9hrpudEUAAATGBvbNJrYnBrsHuQAAdH/65DWaSCXaWVxWv6pfFSIoEPAyNmZM67+Ka8URAAAhKSF3HR/hp0XF4QqGadyEXvOHNSOZWzKnCYsazzVS2q61eZSc3itcIpLx4XEMgU9w60fpVXoMwAwRCQrAYXd47OPeTGjy72Tn+zuHRiWjWMEFAbXtWhu15PMSdsm+EnZQXJA5YWmCLmllko7God1UrGLQGNDlh8sZs4kZvzhez03g3naRKR+ejxUAQClRepRSu/q0vnzfW/ZRzXozWi2fKPv6gtfDPJW5+M5FzsV3LnIyNmZo176wdpqA1KQzTUhf2uTE7PuzEekLAgICAgICAgLCzxpE/IKAgICAgICAgICAgICAgICAgIDws0I7rGUAAGTfn907c59UIA36oeOzQ9ijY4ox364bXdzghOBp4pf+ln6GcdxIITPJWrovfXIiBo6IMxvGDLSZddmtdpRarubci3ahMRPyAofD86SY28GN52q58dw6AKjrKu3ybTrfFC2uE0dVHataUH28Os8vwq8/ZkFMT+aWTBGNQ5s2yUSn1BGaLzZnzSYeM5A57o34JSI7or/1cmuGVCDlAUDD1H3ydjldp9QxSQzSODeO6ybhmQ3dZd3+AAAUFsXregQXBTEAAPFL4+9psg4Cwq24XHwmZG7WIgWNypg2WU49Njqx6jiOMDlxi0abEBoNDMncJpNFR8RredwwkVQuDn/301dz/viL1yeTiK7duMDt6G5OwuMJpq3rds46aTg1MVsVwg0TiSQ90QODshA8jmB6aOsTrbOtx0VRaUEGAMD6lduKd217ts1TmY8PvJl24vzh9RevncxwiV9KKq8Ezs1cPIjD4aZNDFeNKfEfHXxzJQBAXFRyt2v7o9ufawMAj/Uv2ZyYhicQTf987dCsVtqcCsfHz/z0rt83Pb3r901CcSftuwtfJdY1lSdXN5TmVjeU5r732WuqD/52eH8IN2wy0euDvx05DQCn7zTmrVict6r2qxOf8Y6d2r9k8fxVX1IpNBsAQFHZxaDOnpYEIoFkuG/dI9Pef5Gkm6pSjxJ5weHjfpyAyQTI4vJLQTPFNXa7DfXmBy/OGxyWBxMJJMPaZfcJXfvQaDTkZCyou3bjwtIP9r2x7OM3j57AYCYm8B89uS9mYEjGYzF8Rlbnb75tMh4Cwn87Teeb4Mxfz8CG/90AqWtT77iesYExeG/Te5CyJgU2/nnjPWwhAgLCD8nl4jPcZQvXyWcmaY7rNGQAABJxQiYXHMTXAgB0dAu4ADCZTCRXSEl7D7296FYx5mQs6LxUdCrn4LEPknpEHXxfn4DRnIwFtx1r3Sl5Ocs6+2S9wYe/3ZszP2fpaSJhYsVfpWoEf/bScbdxYZewle5wOiEuKmnaWGtUNUy0220YIoHkcWXxW3H1+rlEAIAtax+q3r55j9BTmX1H3os/+t3nS85f/TbRJX7ZvOZB4XcXjuS2djZElVZdE+Tl5A+7yr/zySvZZosZHxoc0c+b0h8rrynym5e9ZHhq3Xa7Hd7d+5cMuUIaQCKSTSuWbLyjPguFTLVv37xHuH3zHuHQiIJw+uLRyIqa4pjaxvLE2sbyxA/2/03/yu/fPZOenDOZLPHC82/UeCtymS3rV25rFbTVxZ6/ciJz3fL7Rb7/6u9197bRyquLkjAYjH3m+EAx1E8cHh0k+XECjIH+3ydbe3rdAAC+/OaTmNbOxigMGuNYu3zrtLH0skXrWg4c/SDoyInPcubPWXqaQqbaAQDKqgv9Wjsao0lEsnHj6h0e32+E/15sFhvh3N/O5W1/Z3uha1tbYVugrFYAaGoAACAASURBVEWWiMVjzXMemDMpdeal8QbqvquDjusdKYufWNyCJUyMEQY6B+hN55pmLfeYimHMwL74j4uZa/6wZlJKWv5lebRKpuKRmWR16upUKQAAnoR38FJ4rX31fWnn/nZu0UPvP3TZVV7aJGV2l3Vno9AoR/YD2c0AEwmxnSWdgSmrU6ZJiawmK9pisJAAAAiUiXF67o7c7qrjVWphlTCz6lhVX872HLd7m82XmrmRuZFDZIZ3slGAiddnRDQSgSVgTbs+3XWSSCV6XFn9/c3vs9RydUjdd3VhWVuzxKt/v7reU7n+1n7G/t374yksimrX3l0XZu4/+b8n57deaV1I96crdu3ddZQVxPIoWrgTwrPDleHZ4SUAUNJ8qZkruCBIkjXL4mpP1K6sO1m3Ijw7vH7qewIA8HL1y6/fq/hT4aXyxjhhHNGoeDT84jsXM9f88fvPztnXzi6w2+y4sMywBgqLMi2BTlQj8nGdi2ubrEXGoPpQzTNfK6VUST77+tl1AAAhySFtrs88AEDa2jTp9c+uj6r6Vbzyw+VRLlmQw+aAS+9eWgIAEJ0X3YBC39GtYIT/AMJKITEiJ8KEQk1/zwxjBgwAAI6IcwAAMIOYVgAASYOENG/nvMn+0/joOObi2xfdEvOnkrQiabz0YCm76lgVXVwnJnP4HEtwYvBtE0bvlOSVyeMygYxU/GkxOzQtdACLn5jSbtQa0WWHytyEJEqpEut0OoETypl2jTNqjGi7zY4iUAger1+3ouFMAx0AYOHuhaqUNSlu4isAgJpva2gX377oW3eqju4SvyStSNJf/+y6vetGF1XSJNGEpoZO9kmL9haxLQYLOiQ5xEj3o0+2SdYsI4Qkh0zruzocDij5vISp6FQQSHSSI2ZBjJugyhtwRJwzZU2KPmVNil6v1qNbLrVQW6+2UgUXBXRBgYBO9aHad7y7YyAwJnDymrPsuWVqb0UusyVzS6amvbCdWn64nJWQn6AnM8kTfX6ZEtt4tpGBwWGc6RvTpwlhdCodWq/SYyhsip3Kpk4mP3t63QAA6k/XUztvdFIxWAwkrUyalpiesSlDK2+TE//12VLgiBP3d6UCKaGrpItKYpDsSSumH4Pw46D+dH1o+vp0yczfL9P4xKIaOBLOBgDgw/MZAwCQt8tDAWDyN3hUMkq+9tG1lbeKEZET0dJyqWVh4ceFGUPCoUiaL204dmHsD7aAQ+zC2JbyL8v5ZV+ULUrIT/gKT8I7AAC0w1pCw+mG+TPLy1pkDHACaqa8TTusJTrsDiyOgJu11KjlcksaAEDW1qwbC/cs9PhM58p7V1Iqj1auaTzTmOYSv+Q+mNtZd7JucX9bf3zr1dbaxGWJk2LVM389M99msRF8eD4Sv3A/j9fXew2RSrQv3LOwY+GehR3qATWx+nh1XE95T6K4TpwmrhOnXXnvyvjW17Yei8yNnLznsfX1raXeilxmS+bmzAZZsyyp8VzjvKytWd3MQKYJYKK/3FP+/+zdd1gU59YA8LO977KF3ouAgIB0bKBg7yUae4y9pNebZky7KV+MXjVqEnu6NXZFQFFRqrSld5ay9LbsLtu+PxQvTd2l6U3O73nuc5OZd857Zo3DmWXeM3m+RBJRE7w4uEtDmPqyekZjVSPTyMyorXNzxMzITDO3MLcezSOj9kZ5lIvL3QhEgsZvnl+XPzuPyR5JMQdirG8fvR3iHu7+S0edL74mNpdkSNwoDEpb0PNB2d1jon+2juYdHpM9evy9LUkuYQz2/KZOpsrqgmpqYUIhQ2Qn6lIr1BTXkFvrWslcU66ayWM+rBXobLq2paaF1D2WVqOF3pr09QWBdP/nTl+fpRHZitRhm8IawzaFNZall1HTLqaxs6Kz2BG7IoTX9lwT2njbyD3CPVrdJ7rLGFxGl99LK5oVxNhjsb2+5OhR+OZ8lT6NX+z97eV3fr1jVBhfyBi/fnyXnyu1JbXkhvIGCseEoxbaCh/7HQOZStaNmDyi14aR0jwprbqwmmrpZqkQWAtUVp5dmy3Km+WEY1uOmVfmVNKClwQ3Tnpl0qDUpwghhBBCCP2vwMYvCCGEEEIIIYQQQgihfxSOiNMizZOCOEJsGbAwoLhje9KZJOuCuwVugz2/z2yfrML4wuHJp5P9fGb5FPEt7z+wr1FpCJe2XxoFOiC4jHXp8mCWwFogleZJbZL/Srb2me3z8E1r57445ydvkvdoCNMXTD5TAQDQLG3u91uaXMa61LiMdanRqDSxqZdSLdOvpDtL0iSOMQdjrG8duRXiPdM7fua/Zt7rGG/hatGyNW7r9/2dtzcjJo+oiNob1VBbXGsR90ecXeCiwGKA+w/6XN5+ORgAYHjocHHnh0RVShWxIrOCS6KStJ2b8xQnF/NNHE1aui+eqciu4ETvix4HAOA0yimn8z6tRguKFgWFacTssojjxk83nIsTi10F1oKqwEWBhQN93gg9yolzR0dv3/uxvaW5bYmAL2qk0+jtldJy4+Ky/GFUKk2xaM6qhwu3RvtPKDp35U/d+avHw0slhSYsJlsBAPDB69/EAAC8sWnb+Xc/3fDilei/JmblpjlaW9pXNDTWcXPyM9wJBIJuxXMbzwj5xn1aHDIxZGbCwV//4yBXtLF8vUbFd29Uo6+M7HtGpeVFDnQao23RnFWPfID1+XlrxGcu/z4ltyDTrVIquWRuaiX/+fj+kK/+8761hZl1Gd9I2ESl0FQNTXW8wuJcp3aVkm5mYln26vqPbvUlr/5ysndteXvLp3cA4E7Cvduic1f/9EwVJ45obm2iAkCfFogYatXzWzLik28NzyvMdFuxZfp612EjcmWyFkZWXrqHTqcjLluw/qxIaNJlUcZ3+z8JF2eneC2c/cJfG1a+mdKx/dNv31y758CX1aYmFlIjrqBZrmijl0oKresba03IJLJqzbJXTnWP9cq6D+9kZKc45xVmui3ZOGXNMHvXovrGOl5OvtiNTCKrNq56+6+OZjAIoWdTs7QZon+Ihvy7+SBvkgNbxAbXca4QsiYEGFzDniGXN8nhxoEbkB2TDa21rcDgMcApyAnGrxsPXFPuoM+P0GDZsf+T6XsOfqmytrSvEglMmnU6HaGgOMeiUioxMTOxrJ48YXYZAMDogPHVVha2lVl56Y7LN09b4GjnUtHc0sjMyRfbCgUmjWwW55GLrOZNX5p9JfpM4OXoM4FarZY4yj90UBf9rFy0KTs2IXpYQXGO7dINU5Z4DB9ZpNGoiWmZSU6W5rbS+sZaPoFAePgzPD0rWfT9oa+nmZtaSU2NLRr4PIGsubWJnpmT6qDVaokTQ2b22njgUXLyM7hFpXnWDDpTMXf60kfeiz03a0Xe8XNHxmbmpjpKaypppsbmSi7HSL1+xZvXduz/ZOYn//fGguHOngV8I2FrUWm+maSi2JzJYMnf2PRxdOc4H3758kKRwLTOwsyqls8TytoUMmpRSb55bb1USCZT1BtXvX1FYCR67Ftz9WFqbK5cv+IN8foVb4jzi7LZZy7+6hJ/75ZLbX31kF3Qxo+eUhV961LKrbhI79WvzVvs5e6Xr1arSKmZicMUSjl9/ozlN5wd3bssAjn8+x7PiBvnAiaGzOzSkOabPR9N/fb7j7WWFrbVAiNhq0rVTi6RFJpUSiWmRAJRu3j+mqjusZbMW5t3NzHGMTM31WnlSzOe93AdWdQqa6GnZyYN0+q0hFWLX4oaiM8aDS2BlaC0MKHQ+z/z/2Nh6mgqaWtsY0syJG46nY4wesXoixzj/zYXHjFpRMX1/ddL6yX1NrsW7HrRzNmsuK2pjVWVU+Vs4mRSUJFZ0efv/YwdjAuSTieFl6aUOgqsBdJmabOgMrvSlUgiqie+NPEckfzfBl2zPpgVdeDFAzYFcQV+O+fsNDdzNiuRt8iZkgzJcE27hua/wP+y9QjrJgAARYuCfGbbmZVXd15t4FvwK9kidpO6XU2uyq2yl9XLRKbDTHMdAx3rAO43dZjz0ZwTJz88ufjKjivPx/0ZJxFYCaRkKlklq5dx68vrLeRNcqONv23cYUjjl9hjsd46nY5gO9I2/VFNXwAA3Ca4pdw+dtv63vl7I/0X+Bf15XO8tvuaZ8bVjBACgaAzcTQpi9wTGdB9DM+M1zjxpYlpvR1vCM8pnuWeUzzL1Ur1lYSTCY7ia2KPltoWgxbL9dfMd2de+uXVX15IPJU4WZIhsTcyN6qtKaqxrCuts2XymfUz/jXjevdjjr10bANA14Y02dezbe/+dnca34pfxhFxGmgsmry1rpUnzZM6qdvVNJ4pr3LOR3MiO8chUUi6ya9NPndm25llkd9HLsiKzspiC9lNVTlV9k3SJnO+Jb9s2pvT4gb9Q0AD5vh7x82oDKrO3NVcwTO7/z1ZWVoZXZonpZk4mSidRzvLAQBsvGyUFm4WirzYPNYPK3+wtBphJZfVy8hFiUUMgaVAxRKwHvn3fOTMka23jtwS3Dp6S6BVa2HElN4Xbw4U37m+reJrYk5xUjFjz6I91k7BTm1atRZyb+WyzZzNFA3lDRQC8b91YWV2JfXkRyfNzIaZKYU2wna2iK1pa2wj5d/JZ2rVWghaHNT4uPm6qyutI5eklDAYXIbWfaL7I+tlr2lerdd2XxPl3c5jyRpkRBafpaUxabqZ782sPv7ucfNjm49ZDhs9rJUtYmsqsypp5ZnldAaPoZn53swuzRQPrj1oKbQVtps4mLRzjDlqZauSKBFL6HUldVQyjayb/eFsKZ1D7/d3WSw+Sxu0OKg5aHFQc0N5AznlfApbfE3MljXISAAwJLWQva+90m++X1PiyUTe3iV7rV3GubRqVBpC9o1stqJFQQzfEl4rtO66gPjOr3d4scdi+aOWj+rSkOb4+8dNiUQimDmbKTjGHI2mXUOozKmkVeVW0YgkIkx+fXJN91jeM7xbs69ns3Jv5bL2Lt1r5RTsJJM3yUk5MTlsrVYL096aVjMQnzUaepe/vbwgYldEu8BKUM4RcZp0Oh1UF1TbNFU1mXNNuVW+c3yLAADcJrhVRu+PllRmV7rsnLtzpamjaVlbcxurKrfKkS1k19FYtEc2/gl6Pig9/Ur6uPQr6eN0Wh3RKdip33XJ44RtDEvPvZXrVlNY47hzzs51Vh5WeVqNlliWXubKt+BXyhpkws73yCX3Skwj90Qu4JnzKngmvFomn9mqaFYwy7PKnXVaHdF9ovsdQ+YvSy/j1RbX2lPolLbgpcE5jxo3evnozPjj8RMrsipcGyoarvAt+AqWEUsVtins3KVvLy089dGpFXd/u5vD4rNaaoprLBokDdZUBlU2418zLnaPdWjdoRkd/9xa1yoEALiy48oECo2iBAAYOXtkivd0b0n34wzBt+Arprw+5d6U16fcq8iq4Mb9EedRGF/o3lzdzOxPXEN4TvUsz4jIiMu7nRe4b9m+tdae1llatZZUllbmplKoGH7z/a5YeVg1dT4mal+Un/iaeKx7uHuXhjTn/n1u/vmvzmsFloJKloDVolapyXWldeZNlU0WBCJBG7w0+FL3WKFrQjPzY/NdK7IqXHc/t3uNlbtVnqJVwZBkSNxAB8SQ1SEXOt9PIQQA0FFnFsQVMNzD3B/+vjEnJoeRdjltQJ5LeZyRs0e2pF9J59w+etvIbYKbjC283wxOq9HCle+uCHVaHXhN8+pSo5o5mymLk4oZOTdzGC5jXR42TIraF2XUUt0yIGsmmTymBgCgqaqp3/GsR1i3W4+wrp/65tT6/Dv5jLRLaey823mskuQSxuXvLovGrBzTELo29OHfZ4G1QL01bmuf7sGfxDHQUSGwFqgkGRK6+JqY6R5+/89cq9VCxH8iBAAAI2eObO7cfFKj0kBtSS2FRCbpRHb3GzJSGVTdvE/m9dpIPGJ3BL+6sJrqOdWzNWBhQJc/u7bGNuLRLUfNpHlS2ugVoxvCN4cbVM8jhBBCCCH0d4SNXxBCCCGEEEIIIYQQQv8oQYuDMgrjC4df2XFlcmZUZgGLz5LVS+qFVblVNtae1vllaWVOgzm/e7h7VWZU5r3MyMyR+5btW2w70raAQqOoJBkS2+bqZoHQRlg55c0p9zofE7goMOXsZ2dtLnx9YVr61fQ8OpuulOZLzWT1Mq7IXlReW1Rr2d+8XMa6SK98d0WdGZXpJW+W01l8VhsAwISNE9I5or499EWikHQ+s3wkPrN8JIpWxY3EU4l2mZGZLk2VTbz+5mtIDlPfnBp58sOTc67suDIlMyqzgCPitJRnlls1VjSaCG2ElZNfnZzS+ZiaohrW4Q2HlzB4jJa3r759rGP7vbP3nMSRYm9je+MKjpDTQmFQVM3SZm5FdoWdVq0lmbmYlUx5Y0qXWIoWBWX7jO2rTIeZlnFNuE0EIgGkeVKz+rJ6M46I0/D8N89fJpKIgNBQmRo2N+H67StySWWJVXlVqY1OqyWyWJxmH8/ghFWLt8S6OXs+fJDMf+To2ufnvnjm6vWzoxJTY/01Gg0Z4L+NX0YM92nY8dmRH/Yd/mZcXlHWMElliR2FQlXa2TjlL563JmbCmKkVfc1z0exVOb+e/LFNoZQzF8xYnvjkI3r351+HfQAAPN180xh05iMXtgiMhO3uLl4ZqeJEn59P/OD11uZP7oaHzEiKuRPRXlFZallWUWynVqspNCpNYWpsXunnPVq8fsXr96hUmvZRMYeK/8jRtf4jR0cBQJRGox6yV3UTiUTY9cWxkzt//LwsLilmZMK9WwEkIlltZW5TsmjOizGTx88ue3KU+4J8x8WWlhdZlpQV2OcqxQwgEHQcFqfJxzMoYeWiTXdGDPfp8XY3FpOt2fv1H8e+27dtTIo4weNuUkwQlUJTOtm7Zq9e8vL1AJ8xNQN7xgg9Ha6hrmDlYQVsUf9683FMOLD5j81AY9MGKLP+qZfUw8E1B0HWIAOXcS4gshNBubgc4v6Ig/y7+fDijy8Ck6ffOoy2pjY4uOYg1JXWgb2fPXhM9IDa4lpIOZ8CebfzYPWB1cC37Pqy+IGcH6HBNHvq4thUcaJNRVWZcV5Bpi2JTNbwOPyWGROfi121ZEs6jUrXAgCQyRTdN1t/Ov/d/k+CsvPS7W7HR3mxWVxZkO+4zFfXf5iwfPP0pY+aw8netdXWyrG8uCzfikggaufPWPbIhV4DgUgkwo7Pjlzc8cOnfgn3brvExkd7sVgcmf/IMVnLFqxLX/3qXAc6nf7wHtTHM0g6fvSUpNzCLIvcArGNUqmgMxhMuYWZdfXMSQvTZk1ZVGLI/H+ePeL2IG42ncZ4ZC3H4/JVXm5+uYmpse6/nzk4/JW176cAAEyfOL/MWGT655E/vvcvKM6xVrYrqCwmpy1g5JiMDS+8lWBn7dhl0fDYoIn3isvyTQuKc6wUSjmdAAQdl2PUEuQ7Ln35wo33hg8b0dx7Bn3nZO/a+ubmT5IAIEmtVg1ZfQgA8Mk7O28d/G1X7bUb5z3jkm96EAgEnZmJZc2cqYuT505bUqxvnLFB4emZOanWJWUF5tl56QwAHbBZXNnIEQFZi+a8mBowckyPxSREIhG2f3royt7D31Tdjosafjs+2otMIqttrBwrlsxfkzB+9JQeb0dHzz62kN047e1pFyN2RUzIv5vvo9VoyVxTblXQ4qCbgQt7NtJdsWfFn6e3nQ6vyKpwzovN82fxWfW+c30jPSZ5FB5YfaDPjV9MHEwqxqwcczPmYExo3u08fwAAoa2wOHRtaLR7uHtl57F8C75i7eG1hy59e2l0WVqZa87NnEASmaTmW/Ar/Bf43wl4LuDhgi2mEVPlNd0rqiKrwrautM6qMqfShUQhKVl8VkPAwoBLYZvCunzP5DzGuXrt4bU/Xtt9LbBcXD6sOLnYiwAEHY1NazUyN6rynet7Q2Ap0LsZqFathYK7BV4AAAHPBaQ8buyo5aMy4/6Im1SVU+VSW1LLFNmKDG462ljZaAQAoNPpCPmx+T2avgAACKwFpQPR+KUDmUbWBS8Jzg9eEpyvUWmG9Jpo423TuHLfyoNXvrsSUpVb5SDNlzrRWLQWp2Cn+OnvTL9pZG6keHIUAFsf20pJukRcL6k3b65qNlWr1DQShdTOMeZUOwY6Zk58eWIylUHt8TNtxKQRFQwu42DUvqhx1QXVDhVZFVQGl9HkFuZ2c8a7M2JpLNojvydBz57QdaH1hXGFDGm+lFaUUMQkUUk6rglXHbImpD5ocVATiUICAAAiiQhLti+purb7mqAgvoCZfCaZxxayNZ5TPVsmrJ/QsHvRbutHzcG35KutR1jLS1NLGUQSEbxneD+yMcJAIBAIsGT7kqroH6KNxBFizr2/7vGYAqbaY5JHS+CiwKadc3ayqEzqw2YHVh5WysBFgY1lqWX0osQiprJVSWLwGBpTJ9P2gIUBjcNDh8sfN193iacSuaADcAt3ayFTH/04PY1F0w0fP7w17VIaJ/lMMmfsqrFNAAAuY13kq35cJbnx0w1+yb0SprJNSWQZsdRe072ax68b38Az43X5O+a/wL+pIruCVppSylC0KogEAgE4xhz1yJkjm0ctH9UoshX1qfH14/At+erx68c3jl8/vlGrGdqvMae/Pb3OxNGkPelUEjf1YiqXQCCAiZOJctSSUY1uYW56/wzxmeXTXJRYxCgXlzPkLXIi6ADYQrbGfaJ7S/CS4CZLN8sev78iEAiw8KuF0thjsbzUS6mc5L+SeWQKWWfpYSkf9+K4Bntfe2Vvc6Fnn88cn6jSlFLHxopGM2m+1IlIIqoZPEaT13SvqPDN4ckUOkULcP93g8t3L//z/BfnQyuyKxzzYvP8aWxai2OgY8rM92be2jV/1/pHzWEx3KJZZCMqqS2ptSMQCdrgJcHiwTwnApEAL/744olzX5wbXZRQNCIvNs+PxqK1Ovg7pI17cVzS/uX7nSl0ysP/Zh0DHSvLxeWx0jypTVVelaNKoaJTmdQ2I3OjSp/ZPolBzwcVGDL/nV/ueAMA2PnaZfRWT3RgCVgqa09rcXFS8chbh295znxvZjwAgP8C/yKuKffQjZ9ujKkuqLZTt6vpNCat1d7fPnnyq5NvmTqZ9vhZUppa6tl9W2V2pUvHP1t5WpUCQL8av3RmMdyiee7Hc2MBIHao68El25dERuyOqBFHiH0L4wtHEggEHc+MV+U31+9u8NLgfH3juIxzSS4Xl9vVltZaV+ZUMgCAQGPTWmy8bdJGLRsV7zLWpbr7MQQiAVb9sOr0pf+75J97O9crLzbPj0gmqoU2wtLRy0ff8pzqWT6gJ4v+FgIWBjRnXM3gnN562kQcIZZxRBxNTVENtSipiOEy1kWWE5PDGsz57X3tlQELA5ri/4zn7V2818p5nLOMSqfqCuILmHUldRRLN0vFuBfHdWkOMmrpqMbi5GLG8feOm7qOc5UxuAyNRCyhN1c1k61GWCkk6RJ6f/OyHWmrJNPIusRTiTx5k5zIEt5vpjhq6agmBpfRp2ZyRBIRnMc4y53HOMvb5e21WVFZzLQraeyG8gZKf/M1JIdZ78+q+fmVn81PbT1lmhGRIeOZ8tTFycV0aZ6UZuFmoRy7cmyXplJNVU3kfUv3WXFMOOrXz72u9++Ce/Pbm7+ZSvOkNJ4ZT63T6QgRuyP43ce4jXeTWbr3rPcQQgghhBD6uyLodNiwGiGEEEIIIYQQQggh9HimjqbnN/620aDFVM8y8TWx2Y2fbgQ2VjSKtDot0cjMqNZvnl8Kg8dQntl2Zo7nVM+EuR/PTegYv2fRnjm1xbUWW+O2ft891pHNRyYUJxa7rj2y9piFq0WXN9Sc/vi0f9qlNP85W+ec8Zrm1aUBws3DN51SL6SOaKxqFOk0OiJLwGp2CnLKnfza5JTeHrqP+yPO7u5vd/2bq5sFJApJbeZsVjb1zamxV/9zNaD7/BXZFZwfV/643M7PLnvlnpVR3WM96nwSTyfa3Pn5jn+TtEmgUWkoAAC9nVd/aVQaAolCGtIvp4uSivhRe6MCpPlSS027hsrgMVocAx1zp745Nbn724w7Pr/ujV/SLqVZJJ1Ocq+X1BsrWhVMjUpDptAo7UYWRrXDxw/PCVkdkkMgdn1eUKVUEX9/4/eQ6sJqc3mznA0AwBawGx0CHfInvjQxjcFlDPjD3M+CvYv32koLpDOePPJ/i4uj++F9//dn8dPO458gPSuZ/8r7K142N7Uq/WXv5UNPOx+E+mLDmwvtcgrELzztPAYSgUDQbY3b+rTTQH8DP7/8MxTEFcCUN6ZA4MLAh9uv7LgCd3+7C75zfWHGu/qVEuf+fQ6SzyRD0JIgmPzK5Ifb4/6Ig8vbL4NjkCMs27ls0OZHj7YtcBvodLohXVAzFBxsnc8e2HH6b3N//Cy5EHHS+tu9W2eHjp6S9NEb/2fQW8oRelatfnWubWFJ7qynncdAM3c1P7b+6PpBuxZKMiS8A6sPbLHxsklb9cOqc4M1z5Mk/5Vse+6Lc8vcw91vLvh8QczTygOh/3X7V+y3rcyuXP608xhIDA6j9p3Id5qePBL1Rc7NHMbvb/5uHrgosHHK61Pqn3Y+CPXXV2Ff8eQtctHTzmOgmbua/7L+6Prip53H31XCiQT7i99cXOwa4hq76OtF1592Pgj11/4V++0qsysf2Zz4fxWdQ699N/LdAW/s+7QUJRXRovdFC6oLqqlajZZg7GDcHrw4uJHOpWt/eeUX81HLRzVO3DLx4QsbDqw5YC5Jl9C3xm0t6h7rxPsnjMXXxOyXTrxUJrAWdHkuImJ3BD/2WKzR0p1LK52CnLo0xUw5n8JKOJnAqymsoWo1WuCZ8dTu4e6tY18Y20ShU3o8ZyK+JmbGHIrh15XUUSh0is52pK180iuT6qP2RvG7z19fVk/etWCXtXu4e+uCzxf0eInEo84n+0Y2I+ZADL+2pJaqUtxvtNzbefWXVqOFoX5xUFVuFSV6fzS/NLWUoZKriBwTv+PFegAAIABJREFUjsptgpssZE1II5VB7fJ5d3x++jZ+6fhznvrG1NqAhQFdnjvaPnO7dUt1y6M7MALA9Len1/jN9xvUhpRD7cuwL7mKFsXfri5ECCGEEEIDAxu/IIQQQgghhBBCCCGEnujv1vgFITS4sPEL6q83tq6efi89zm/5cxtOrFq8ZVDfqInQYMHGL6g3Op0O4v6Ig6TTSdBQ0QBMHhNcQ1xhwsYJsG/ZPgAAePXMqw/Hp5xPgb8+/QtmfzgbvGd4P9y+Y84OAADY9NsmuP7jdRBfE4OsXgZcUy74zPaB0ctHA4Hw334bjRWNsHPuTvCa7gVzPpozRGfbu3pJPeyavwuMzI3g5VMvQ+fGeUqZEr6d/i2ADuDNy28ClUF9bKz2tnb4Zso3QCAS4I0LbwCNRXu4T6fVwc55O6GpsglePvUy8C35Az4/ejxs/IIepbisgGVn7SjrvK2quoL+2ocvzJbWVBhve3vHn2ODwnu8rRqh/0XY+KVvsPELQn8v2PgFPUpTVROJZ8br0phdVi8jHt1y1KK6oJr6wv4Xym29bZVPKz+EBgo2fkGPI82Xsk2dTLssam8ob2Ac3nh4cbO02Wz+Z/MPeUz0qHxa+SE0ULDxC0IIYeMXhBBCCCH0eI/tjIgQQgghhBBCCCGEEEIIIYTQUMjOS+eduvDLCGlNhSA9K3mkUGAsXbFwQ+bTzgshhAbSxW8uQuLJROAYc8B3ji+QyCTIuZkD5ZnloFVrgUjW/02OWrUWfn75Z2ipbQGnYCcgkoiQE5MDkXsiQd2uhtA1oYN3Iv1QnFQMAAAOgQ5dmq4AANBYNLDxtIGCuAKQZEjAwd/hsbEkGRJQK9XgGOjYpekLAACBSADHQEdIPpMMRUlFDxu/DOT8CKG++Xbvx2MqpWUiO2unSg6bJ29orGXnFmTaKpRyuv/I0RnY9AUhhBBC6J/h0reXhNWF1TRLN0sF04ipaalpIRclFjEVLQqi1zSvZmz6ghD6Jzj3+bnwxqpGU5GtSELn0ttk9TKONE/qqFKoGPZ+9vew6QtCCCGEEEIIIYTQPwM2fkEIIYQQQgghhBBCCCGEEEJPXX5RNv9azPkwMomssrFyKHhj48cXSCSyrvs4aU0lfd+Rb4L0iblg5ooUdxfvxoHPFiGEDFdyrwQSTyaC0EYIaw6uATqHDgAAYZvC4OiWo9BS0wI8c57e8VpqWsDUyRSW71oOFDoFAABC14TCrud2wd3f7sLYF8YCiUzqc77Xf7xu0Hg7Hzuw87V74rjakloAABDaCHvdL7AWQEFcAdSV1j2x8UpHLIGNoNf9Quv7c9SV1g3K/AihvhnlF1Jw9fpZZlZumr2yXUEjk8gakdC0LmTU5MzVS142uPFfbZ2U+uPPO7z1GTt/xrIsZ0f3FsOzRgih/x3JfyXbFsYX2j5pHI1NU8z818z4ocgJIYR6Mzx0uEzWICMXxBUwlTIliUwh64Q2wnavGV7NAc8FGFyztTW1EW8fu63XjbXPbJ8WobVQbXjWCCE0sIaNHpaTfiWdVZFdMUytVNOJJKKaY8ypcQ1xTZ308qQUQ+M1SZtoEf+JCNBnbNDioDQrD6smw7NGCCGEEEIIIYQQQgMNG78ghBBCCCGEEEIIIYQQQgihp27GpOeKZ0x6btuTxtXWS+k3Yq+G6BPT1zO4GBu/IISeFakXUwEAYOyqsQ+bvgAAkCgkCNsUBofWHTI45tQ3pj5s+gIAwBKwwHWcK6ReTIW6kjowcTTpc743frph2AFrQK/GL8rW+y9sp7Ppve6nsWkAAKBoUTw5lszwWAM5P0KobxbPW5O/eN6a/IGKV99YS4u4cU6vRW2+XsHl2PgFoWeflYdV09a4rZ8/7Tx8ZvuU+Mz2eep5GKowvtBWfE089knj6Bx6EzZ+QQg9TV7TvWRe071kAxVP3iwnxh6L5esz1t7PXo6NXxBCz4KQNSFZIWtCsgYqXktNC12fWhAAwCHAoQQbvyCEEEIIIYQQQgg9G7DxC0IIIYQQQgghhBBCCCGEEPqf4e7i3Rh1KuOJDWIQQuhZU5VTBQAANl42PfZZeVgBkUQ0KB6NTQOBtaDHdq4pFwAA5M3yPmT5X1vjtvbreIQQGirOju4tUacydj/tPBBC6Fmx4PMFMQs+XxDztPNACKGhJrQWqrfGbS182nkghNDT9KCJ4hdPOw+EEEIIIYQQQgghZBjDnhxDCCGEEEIIIYQQQgghhBBCCCGEkMEUMgUAALAErB77iCQiMHgMg+LROfRet3c0kNFpdQZmODRobBoAAChaFb3uV7YqAeDR59clFsvwWAM5P0IIIYQQQgghhBBCCCGEEEIIIYQQQgj1F/lpJ4AQQgghhBBCCCGEEEIIIYQQQgj93XU0KZHVy4BqSe2yT6vRgrxJDhwTztNIrVfXf7xu0Hg7Hzuw87V74jiRrQgAAOpK63rdX19WDwAAQhuh3rHqS+t73V9XVtcj1kDOjxBCCCGEEEIIIYQQQgghhBBCCCGEEEL9RXzaCSCEEEIIIYQQQgghhBDqKXp/tOu2wG2bovdHu/YnTkV2BWdb4LZNRzYfmTBQuSGE0FDZd+T/vCfM89i678j/efcnjjgnxWjCPI+tL723bM5A5YYQQoYyczYDAIDS1NIe+yQZEtBqtEOd0mPd+OmGQf8rTi7WK25Hc5jCuELQaXVd9illSihNKwUKnQJWHlZPjGXlYQVkGhlK00pBKVN22afT6qAwrhAAAOx97QdlfoTQ0Dj42y7XCfM8thz8bVe/7o9zC8ScCfM8trz+0YvhA5UbQggNlYhdEZ7bAre9H7ErwrM/cSQZEt62wG3vH1p3aOZA5YYQQkMl4WQCZ1vgNoeEkwn96ppaV1ZH3ha4zeHE+yeMByo3hBAaChG7Izy3BW57L2L3gNSE7x1ad2jGQOWGEEJDJfFkIntb4Db7xJOJ7P7EqS+rJ28L3GaPNSFCCCGEEELoWUF+2gkghBBCCCGEEEIIIYQQ+meR5ktZV3ZcCazIqrBRyVV0Gpsms/GyKZr21rQErglX+eQIvUu7nGZ++uPTc0AHBI/JHknzP5kf13l/WVoZL+VCikNZaplNS20LTylTMil0ilJkK6oKeC4gzWu6V3n/zw4hhPSTW5DJ3X3wy/GFxTlOCqWcwWSwW4cPG5H92oaPrpuZWCr0jbN807QXyqtKbR+1/+yxO5+zWRx19+3xybeMD/72n9BSSZGdStVOY7O5jV7ufhlvbPz4FofN6zEeIdR/XtO8IOVcCtw8dBNcxrkAnU0HAACNSgNRe6OecnY9bY3bOihxBVYCcAx0hIK4Aog/EQ+BCwMf7rv+43VQyVXgO9cXqAxql+Nqi2sBAEBkJ3q4jcqkgudUT0g+kwzXf7oOk1+Z/HBf/PF4aKxsBMcgR+Bb8vs9P0IIDYbCklzWnoNfBeUWiG0UCjmDxeLIPFxHFr6y9v14Y5FZn++Pr904b/Hv//xrrk6nI0wYMy3xg9e/vtt5f0FxDvvHn3f4lpUXmTQ1N3CUSgWdTmfI+Uai5tBRkzKXLliXQ6PSn62OZAihv63KnErO5e2XQ6ryqhxVchWDxqK1WnlY5Ux/Z/pNI3Mjve+Pu7t37p7N2c/PLgMdEIaPH35r4ZcLb3Qfo5QpSZHfR3rn3sr1bGts42vVWjKdQ282czErHL9ufJylu2VT/84OIYT001jRSIrcGykoSihiKloUJKaAqXYe5SybsHFCA9OIqXddlnMzh5F/J58pzZdSawpraIoWBdHCzUKx9tDait7GK1oUhGu7rwmqcqtojZWNFEWrgkhlUrVcE67aPdy9NWBhQDONSdP1dixCCA2kBzXhOGme1LFd3t5RE+YOQE1o3akmvK1HTWik1TyoCZ3NisavG3/X0t2yuX9nhxBC+mmsbCRFfh/J71YTthlaE+beymXkxeYxpPlSWk1hDfVBTajUoyakdqoJdVwTrupBTdiCNSFCCCGEEEKDDxu/IIQQQgghhBBCCCGE0DPIb75foUOAQ5XAWtDWnzjG9sayF/a98CuLz2ofqNz6QyKWcI9tOTa/va2dYeFmUcS34DdUF1Sb5sTkeJaLy21WH1h90sjcyODFbbIGGeXK9ivhJApJrWnXUHobE7ErIrAsrcyJY8xpsHS3LKGz6crGykajiswK+zOfnLGvzKm8OeX1Ken9P0uE0ECZN31Zlp/XKImNlUNLf+I42rk0f/3RD3sEfFGfHw4eSGmZSfx3P9uwWqGQsxztXHJMjc1rSyVFlgkptwM3vf28065//3LA0txGbkjMkFGTejysDABApVB7PAR4LeaC5de73l+p1WlJzo7umXyesCm/ONs+5k5ESF5hlsMP3544wmKyNX09P4RQ7+x87MBnjg8kn0mG75//HoaPHw4kMglyb+UCjU0DjjEHCATC005zSEx7exocXHMQLn97GYoSikBkJ4JycTkUJxWD0EYIEzZO6HHMnkV7AKBnQ5qwTWFQklwCd3+9C9JcKVi4WUBtcS3kxOQAi8+CaW9NG5D5EUJPz+zJzxf6egb/YmVuK+tPHFtrR9l3nx7+xYgn6HNDlYGUmZvGfXvb2ufa5DKGi5N7oZmJVUNxab5pbEK0V3Zeus3uL389aWZiYXD92tBUR9l98MtwMpmiVqnae70/LijO4aVkxLtYmtlIrVxtC9lMjrJF1kLPyc+w/fnED2E370a67P/2+F9UChUXdCD0jAhcFJjjGOhYLrITtfYnjqmTacvyXcv3sYSsZ+JaWJpSavTLq7+80C5vZ5k5m+XyzHi1tcW1lvl38gN+WvWT44s/vXhEYCUw6P4YAKC1rpUa8Z+IWSQySaVRaXrt6KdWqgn7l+9f2lDeYM3is+psvGzEJApJXVtca1Fwt8C/JLnEc9E3iw47BTnV9v9MEUIDwWOih8zGy0bBNeH263srIzMj9YZfNpTROc9Go7va4lrywXUHLeVNcpJjkGOb0EbYXpldSUs6k8QrTChkrv5pdTlLwNIr14QTCbyCuwVMEpWkMzI3UilaFI/taiprlJFSL6ZyzZzNlA6BDm1MI6ZG2aoklqSUMKL2RglTzqdw1x5aK6Fz6FgXIvQMCFz4oCa0HYCacPfy/WwB+9moCVNLjX555ZeVD2tCc15dbVGtRf6dfP+fVv3ksPrA6qN8S/7g1ITtD2tCK5bgYU2oqS2pNS+4W+BXklwy4vlvnj/iGOSINSFCzwj3ie4yay9rJdeE268XWfDMeOoNv2yQPEs14aF1hyzamtpIjkGObSJbkaoiq4KWdCaJW5hQyFj90+oKfWvC+OPx3E41oVrRoiA+bnxbYxsp9WIqx8zlfk3IMmJpFDIFsfReaeeasBxrQoQQQgghhAYXNn5BCCGEEEIIIYQQQgihZxBHxGnniDj9btZCoVG0tiNtGwcip4Fw/ovzIe1t7YzA5wNvTnntv01W/njnj9HZ17O9Lnx1IWjpjqW9Ni94nJMfnhyrUqqonlM8k+6dvRfU2xh7P/vSsS+MTR42eliXB/PSLqVZnPnkzKyEEwmj/eb5FYjsRP1qtoMQGjgmIjOlicis3w8e02kMrZ/3qGfmodzt+7ZNVyjkrBmTnrv0+oat8R3b3/10w+T4e7eCvt37cdj2Tw6eNyTm1je3X9dnnEqlInx/6Ks5ao2asnbZq78vnrcmBwBAo1ETNr2z+Lm8wqzhO3/4LPi9V7+8ZdBJIYT0MuOdGSCyE0HS6SRIOp0EDB4DXENcIWxTGHw38zvgW/KfdopDQmAlgLVH1sL1/dch/24+5MXmAUfEgcBFgRCyJgQYXIbesZg8Jqz+aTVc/+k65MTkQElKCTB5TPCe4Q3j140Hril3UOdHCA0+ocC4XSgw7vf9MY1K13q5+zUMRE4DYfvej0Pb5DLGvOnLYrasfjetY/uHX7485nZ8lPd3+7cFffXh/uuGxv1s+9vjlO0KWvi46YmXIk8H9zZmXPDEyrCx038gkUhdtivbFcQNby6cXSIpsDp57qjj4nlr8g2dHyE0OLgmXCXXhNvv+2MKnaJ1CHCoG4icBsK5L89NbZe3s/zm+V2Z/s70xI7tv772a3hebF7g+X+fD12xZ8UlQ+Mef+/4JJVSRXMLc4tNv5we2tuY2z/fdm0ob7AW2gqLN/266Rcimdj5+HGZkZljbx66GeQU5GTQ/TlCaPAwuAwtg8vo98JcEoUEpk6mqoHIaSCc/+q8sbxJTgrfEl47evno5k7bhUmnkngRuyIEc7bO0eu7zTErxjSEbQqrM3UyVTVUNJB3L9ht87jxfAu++t2od4tIFFKPfX+++6dJVnQW++7vd3mha0Ofmd8zIfRPNqA1of+zUxOe//f5KQ9qwqtdasLXfw3Pu50XcO6Lc32tCSeqlCqae7h7bNqltNDextw+dtulobzBSmQrKt7468Zfu9SE7x8fm3ktc2zMoZhAxyDHC305N4TQwGNwGToGl9HvWu4ZrAlFbU1tpPAt4XWda8ILX10QJJ5KNKwmXDmmMXxzeL2Jo4mqsaKRvGvBLuvHjTeyMFK/G/Vu8SNqQuOs6Cz23T/uckPXhDYZfGIIIYQQQgghvWHjF4QQQgghhBBCCCGEEBoCOq0OLn932TMrKstd1iDjUhlUhbWXdeHM92bG7V2ydxEAwNtX3z7WMT56f7RrzMGYCeNeHBc1fv347I7tX0/6ejkAwJbjW347/+X5gOLEYielTMlkcBktLiEumTPemXGPQCQ8nLciu4Lz48ofl9v52WWv3LMyaghPuQeJWMKV5kutmTxmy6SXJ6V33jfj3Rnxebfz3IoSi1zamtpuM3lMvd/OdPf3u/ZFCUWuoetCr2nV2ke+qajz59iZ51TPits/3y6vzq+2zr2dayayExXqf1YIIUNotVr4bt+2wNsJ0X4tLU18Go3e5jpsRPbbWz6LXPPavI0AAGePxe7oGL/vyP95//nX4dkLZ7/w14aVb6Z0bJ+1fNSrAABHd5/f8/XuD0LTs+55yBUyFpvFbQ70GZv0zkuf3yYS/3s5EOekGL30r2WvuLt6p+764uczQ3jKPaRlJvFLJYWOHBa38ZW17yd03vfWlk+jF6+f5JuRlezZ2FR/xYgnGPCHDS9FnrJrbKoXWZhZl3Q0fQEAIJHIui2r/xXxyvsrht9NivHTarW3On+GCKGBQSASIHhxMAQv7roOv660Dtrb2sHYzrjLdu8Z3uA9w7tHnFfPvPrIOULXhkLo2tAu24wsjGBr3Na+Jz4IeKY8mP3RbL3HPy5/Bo8BU9+YClPfmDpo8yOEBo5Wq4U9B7/0irkT4dHYXM9l0JkKD9eRhW9s3HZn9WtzFwMAnDly60jH+IO/7XL9+fj+8GXPrb/24uKXHt7XzVk5ZiUAwNHd53/5du+2wJSM+GFtba1MDpvXMjpwgvi19R8ld65ncgvEnA1vLVrp7RGQvf2Tg9eG8JR7yMxN4xaW5NpwOUbNG194K63zvtc3bo2LT77pfi893rW5pfEWl2Ok9/3xiXPH7O+lxw1/4fnNEWqNmvCocXRa7wumaVS61sczqLBEUmhZVlFipP8ZIYQMpdPq4MJXF/yzY7J95E1yPoVOabN0t8yZ/eHs63uX7F0LAPDOtXd2d4yP2BXhGftz7MxRy0adm/jSxIfXja/Cv9oCALDl+Jb9Zz87O640pdRN2aZk0Tn0ZufRzvdmfzj7TufvCiUZEt6B1Qe22HjZpK36YdW5ITzlHkpTSo1qi2odGFxG09Q3piZ23jfrg1kxO2bt8ClJKRkha5BdY/FZet8f3z5627k0pdRrzAtj/nrcd4UNkgYjAABbb9u8zgt8AQA8JnrkZkZmjlW2KpkGnhZCyAA6nQ5uH73Nu3fuHrepqolM59C1zqOdZRNfnli/d+leKwCA18+9XtoxPuFkAufi1xeNp709rcZ/vn9Lx/btM7fbAABs/mNzWeSeSEH29WxWW2MbmS1iq71neDeHrAlpJBD+ey2sK6sj716w28Y93L1lwecLaobwlHuoLa4llySXMLgmXHXw0uDmzvvCN4fXp11M44ojxZypb02tozFpuifFs/O1M6ghBJFEBOi5vhcAANzC3FqzorPY9ZJ6iiExEUL602l1cOHrC/7ZN7JHPqgJ5ZYeljmzP5h9fe+SvWsAAN659s6ejvERuyM8Y4/Fzhi1fNT5iVu61ISbAQC2nNjyw9nPzo4tvdepJhzjnDL7g15rws0PasKn2uSuNLXUqKaopvea8P1ZMTtm7xhZklLiIWuUXWMZGVATHrs9rDSl1GvsC2PPajSaR9eE5Q18AAAbb5v8HjVhuEde5rXMscpWJcvA00IIGeBBTch9Qk1Y1jE+8WQi+8LXF4ynvz29xm++X2vH9u0zt1sDAGz+Y7Mkck8kP/t6NrutsY3UqSZs6lwT1pfVk3ct2GXtHu7e+izXhGGbwxpSL6ZyxZFitt41oc+A1oSyrOgsdn0Z1oQIIYQQQggNNnxaEyGEEEIIIYQQQgghhIbAb2/8Ni7+z/gxKoWK6jTKKdPe3z6vIqvC5tC6Q7N0Gp1B39XqNDriwTUHZ5YklzhYuFmUOAY5ZmpUGnLymeTgvz79y3+wzqG/cm7kWAIAmA83LyWSup4yi89SiWxFVRqVhpwTk2Omb8x6ST0jen90qIWbRVHI6pDcvuZGJBG1D/7/iQ/JIIT67q1ta6dfuHZySnu7kuY9IjBpxHDfjIKibMeX31u2Qqt99IO3vdFqNcTN7y5ZLs5JdXOyd83zdg9IVqtV5Igb58I/3f5WyGCdQ3/dvBthDwDgYOdSQCKRu1xzhHzjdgsz61K1Rk25EXvVypC4h37b7f7FjnfHfL37w+DjZ484ydpae308LzE11h4AwM3ZM7/7vhHDfRp4XH5dq6yZl5F9j2/I/Agh/bTWtYJO27XcUClUcOW7KwAA4Brq+jTSQgihIfXeF5tDTl/8dayyXUENGDlWPHJEYG5Ovtj65feXz+lLTbjlX0tnp2UmOro4eZT4eY8SqzUq8oWIE6O+2v1BwGCdQ3/djo+yAgBwdnQvI5G6lm18nlBlbWlfqVaryLfjo/W+Py6vLGUc+m3XBBcnj8IVCzfmPPmIntRqFSFVnGgLAOBk76rXG4QRQn1z7OVjU5LOJE1SK9U0e3/7ZNuRtuKq3CqHg2sPLtFpDfyuUKsjHlh9YHFZWpmrmYtZgb2ffYpWrSWnXkydcPKjk2MH6xz6K+t6lh0AgOkw08Lui2zZQnY735pfplVrKVnRWZb6xqwtqWXeOHhjupmzWU7YxrCMx401cTKpAQAoTS110qq79sPKjMwcBgBg5WFVpO/cCCHDnf3srCjy+0ihUqYkek3zah4+fnhrUVIR48imI+ZatfaRTex6o1VrCUc3HzXPuZnDsve3bxsxZUSzul1NuPHTDUHknshn9nuugvgCBgCAna9dW/cmzHQ2XWfhZqFQK9WE0nul9KHOLfdmLgsAwNTJ1KCFwwgh/f388s9Tkk4nTVQr1XR7f/t7tiNtxVU5VfYPasJHLMHvnU6rIx148cDistQyVzPXhzUhJfVC6vhnuiaMflATOvdeEwqsBPdrwigDa8IDN6abOZvlTtg44bE1oamjaUdN6NijJozKdAIAsBqBNSFCg+nsZ2eFnWrCFrcJbgNTEwbYt42Y2qkm/D7ymW1yXBhfeL8m9LOTP6EmpA11brk3c5kAAKZOpu1DPTdCCCGEEEL/NOSnnQBCCCGEEEIIIYQQQgj93aVfSTfPi83zYAvZjWuPrD3BNea2AwC0K9rv/rDih9mKVgWLwWO0PClOB0WrgmVkYVS35tCa3+hsugYAoF5Sn7B3yd6l4kix1/R3pydRaJRe396tj9MfnzaoeYxDgEO51zSviieNqyur4wMA8C35Tb3t55pyG6X5UuuaohoeAEj0mfvkBydDdTodYd62edcNybmzypxKdnV+tRWJQlK7TXB74nkghPrmYuQpm3vpcX48Lr9u3zd//mRqbK4AAJAr2iLXvjZ/RZtcxmGzuL1eH3rTJpdxTERm0n3f/HGUw+apAQBKJIU31r+x4KU7CdHBCqX8Jp3G6PO1cNv/vR5qyHhfz+DiGZOeK37SuPLKUiEAgLmpZV1v+0UCk/pSSaFjcVm+EAD0fpj42PF9Czr/+6Hfd8uen/PixRULN2Z23i6tqRQCAFhZ2Pc6v8BIWN/U3CDMyc8Qerr5Nug7P0JIP3d/vwsZVzPAzscO2CI2tNa1QlFCETRXN4NTsBO4hbk97RQRQmhQXYu5YB6ffHME30jYuP+bP/8UCe8vGFAo5XfWv/HcnFZZC4vLMdL7/rhV1sIyNbas/X7P72fYLI4GAKC8sjR+zWtzl8fEXvF+fcNHiTQqvc814b93/sug5jG+XsHlk0JnlT9pnKSihA8AYGFq1Wu9ZSIyayosyYXisnwj0PP++NPtb03QgY7w/qtfRuubb6VUQj/8+x5PnU4Hza1NjNwCsU1jUz1vxHCf3HnTlxbrGwchZJiU8ynWRQlFvkw+s37d4XUHeWY8JQBAu7w9et+yfUuVMiWHzqHrfX+slCk5PFNe9drDa/czuAw1AEBtSW3M/mX7N+XcyAlUKVS3KfS+f1d44v0T4wwZ7xDgUOIz26fkSePqy+qFAAB8C36v96dcY259bVGtQ01hjQAAivXMdTrogDDvk3mXnjQ2eHFwfsaVjOzKnErX7TO3rzdzNisikUmautI683pJvbVjkGPClNenJOozL0LIcIXxhfSU8ylcvgVftebwmnImj6kFAFC3q+sObzhsIauXkTgmHLW+8WT1MpKxg7Fy8/eby6gMqg4AoKW2pWH3c7utE04m8MavH99AohjUQ6GLiN0RBjWPsfezlzsFOSmeNK6upI4KACC0Eap62y+wFKhKkksYtSW1lGGjh8kNycEQGrUGovZF8QEAFM0KYll6GaOmsIZq7WktD3jxQ8xBAAAgAElEQVQuQO/6HCGkv5TzKdaFCYU+TD6zft2RdYd4pv+tCfcv279UKVOyDawJ2TwznnTt4bW/dqoJb+5ftn9jzo2cgAGoCQ1qHvOgJix90rh6Sb0AAIBvwa/vbT/HhNNQU1QDg1UTBi0Oyk+/mp5TmV3p8t2s79aZOZsVEclETV3Jw5owEWtChAbPw5rQkq9ac2hNRaeasP7whsPmfakJTRxM2ld+v7KyR014IoE3ft34xmexJqwtqaUAAAit9aoJnxivr3qpCekPakIF1oQIIYQQQggNPmz8ghBCCCGEEEIIIYQQQoMs5XyKKwCA71zfpI6mLwAAVDpVG7o29M7JD07OMzTm9Len3+xo+gIAILASyK08rIqKk4pdytLKjBz8HXp9OE4faZfSDGr8AgCgT+OXdlk7FQCAzqb3+nZIGovWDgCgbFXq9ZaiqH1RrhVZFfZhm8OuCG2EfXrgub2tnXjyg5MTtRotyXe2byzXhItvrkRokFyN/ssbAGDKhLk3O5q+AAAw6EzNsufWX/t69wcvGhrzlXUfXOpo+gIAYGvlIBvm4JYtzknxSkmPFwX5hVT3Nd8bsVdDDD1Gn8YvckUbHQCAxWT3er1hMlgKAABZW4teb/H1dPfLnjFpQayPZ3CluamVPCc/g3fm0m/edxKvBx/54/sFTAbr1wUzV+R3jFcq5XQAAC6b1+v8dBpDAQDQ3No05G8RRuifwCHAAaR5UiiIKwB5sxyIJCIIbYQQsDAAghYHAYFg0MsrEULof86VqDPDAQBmTlqY2NH0BQCATmNoVz6/+c5n29+ab2jMV9d/ENPR9AUAwNLcRj7c2bMwJSPBNSPrnpGvV3Cf748jbpwzqPELAMTr0/hFLpdRAQBYLE6vb8plMFhKAACZrEWv++MDv+wcnlsgtl+77NXLVhZ2et8fV9dWMbqf49igiffee/Xfd/SNgRAyXMr5FE8AgJEzR97qaPoCAEBlULUhq0Oiz2w7s9LQmNPennalY4EvAIDIVtRm7mqeU5ZW5lmcXCwcNmpYTV/zFV8TG7TIFwBAn8Yv7fJ2GgAAjU3r/btC5v3tilaFXvenV/9z1UuaJ3UOXRt6ytjeWPak8QQiAdYeXnvy5Icnx2VGZo4puFsg6tgntBUWe03zEpNpZJ0+cyOEDJdyPoUDADBqxaiGjgW+AABkKhnCNoXVH9181MLQmNPenFbbscAXAIAj4micgp3aMiMz2dWF1VRzF/Neay99xB6LNWiRLwCAPot8lTIlEQCAxqb12oyhY7uiRUE0dH5DaNVaQvdzdAtza531/qwaCp2C10KEBkHKhZQRAAAjZ4683dH0BeB+TThu9bjoM9vOrDA05rS3pl3tURMON88tSy0b8ZRqwic2fmlve1ATsh5ZEyoADK4Jh4WuDT2td014aO3Jkx+eHJsZmTkm/07+w5pQZCsq9prmlUGmYk2I0GBJOZ/CBgAYvXx040DVhFPfmtq9JtQ6jXJqy7yWya4urKaYu5j32lxFH7HHYo0MPcaQmpDO7r2BdaeasO9da/TwoCbsco4PasJarAkRQgghhBAafNj4BSGEEEIIIYQQQgghhAZZfVm9CABg2Ohhld33DQ8dLiUQCQa9XY1MI7dbjbDq8YY3tojdCgAgq5fptTDsUbbGbf2+P8cPhYrsCs6dX+6MtRphVTBmxZiCvsTQqDSEYy8fm1hXWmdu7WmdP/2t6SkDnSdC6L8qpRIzAIBR/qE9HvQNGztd8s2ejwy6FlIpVKWXu3+PRbx8I2EzAEB9U12/GpdEncrY1p/jh8pbmz+52/nffb2C63y9giO/2/dJy7mrf07986/DYZ0bvyCEni4Hfwdw8Hd42mkghNBTI6ksMQYACPQd16N56Lig8CoigWhQTUij0trdXbx73B8LjIxbAQAamur7dX8cdSpjd3+OHwq5BWLO8bNHxrm5eOUvnrfGoLrPy92vIepUxm61WkUoLitgXYo85Xjh2snA1a/ONf9228Fzpsbm2BwVoUHQUN5gBgDgPMa5rPs+j4ke5X99+pdh3xVSyUrbkbYN3bezhexmAABZvaxf98db47Z+3p/jh4IkQ8KL/zN+ksVwi6yQNSFZ+hyjaFWQjm05NluaL3UMWBhwyWeOTy6Dw1CJI8XWNw/dnHz649MrmqXNJ0evGJ072Pkj9E8kzZfSAADsfOx6LIS1HWmrIJIM63NCZVK1xvbG6u7buaZcNQCAvEner8YpW+O2Fvbn+GcdhU7RbY3bWqjT6aCpqomUfyefcf2H68L9y/dbLd25tFJoLezx2SKE+qejJnQZ6zK4NaFgwGrCL/pz/FB4UBNO7ENNOOtBTXi5W0046fTHp1c0VzefHL18dN5g54/QP1FHTWjrY9tbTajsU01o17Mm5JnwOmpCEgD0ufHL1ritRX099n/Bg5qwqFtNKNi/fL/lsp3LqgTWAqwJEUIIIYQQGkSD2v0bIYQQQgghhBBCCCGEEIBKoaICAPAt+W3d95EoJB2VQX3iG346o9ApvS68IhLvL5DTarSEvuQ52KgsajsAgKJV0evCO6VMSQV49Ft+Ozvz8ZkJRDJRPe+TeTf6kotGpSEc3Xw0XJIucbT2tM5fsWdFBIH4TH5sCP1tKNuVdAAAawu71u77KBSKjk6jyw2JR6XSe712kkikB9dCzTP5ezAGnakAAJC1tfZ6LWyT33/4msXkGPSzobu1y19LJhCI2tr6arO6hhpqx3YajaEAAGhubep1foVSTgcA4LJ5/ZofIYQQQqg3SqWCCgBgaWbd4/6YTKbo6HSGQTUIjcbo9f7xYU2ofUZrQgarHQBAJmuh9rZfLr/f0JXF4jzx/vjfO98LI5Mp6vdf/ep6X/Mhkyk6J3vX1pfWvJe6fMH66IqqMrOdP3wa1Nd4CKHHUylVNAAAoY1Q1n0fiULSUegUg+6PyTRyr9dOIomoAwDQarTP5LWQyqAqAQCUrcrevytsu7+dzu79/r+zM9vOzCSRSar5n86/pO/85/99fnRFVsVw7xne16e8PuWeiYOJjGPMaQ96Pqhg1vuzTui0OuKto7cm6RsPIWQYpUxJBADgGHM03fcRSUSgc+g9tj8OjU3rtUHCw2uh1qD+CUOGxrqft7JV2eu1umM7nUMfkhMgEAhgZG6k8Zvn17rgiwVVDeUNlAtfXRANxdwI/dOoFPdrQoGNYLBrwmf798fM/2fvvuOaut4/gD9ZJGRAEsLeexP2EEXFDe5a66it1VpHh112+W3V/rq3tnW07m3d4gRFRVkyZe+9IYwkQMj8/aFQRhBQEavP+6/m3nPPOfdY8/rceO9z72fC1n4zIQ1g0Jlw+v1MeHmw45//9vyoquwqR/cZajLh/2aeVClVxNv7MBMiNFyeVCYkkO59BT7tmVAilgyUCYe0Hg+reyZ88ZsXa+9nQp0nMTZCCCGEEELPM/JITwAhhBBCCCGEEEIIIYSedWQqWQYA0FTZRKdr04Xd9ylkCoK0XUqjsWh9buobKac3nvYZSnsrX6tKfgi/z9vae9Mx1WkCAGiqbNJWt19YK2QDAOha6vZ5W3tvTVVNuvIOucaWOVuWqdufcSXDK+NKhpeRk1Hxij0rejzwIeuQEfe/uX9SRXqFtZm7Wd4rf7xyjUQhqQYaEyH0aDQo927eLa8qYbK1uT3eOimTyQiSDokmg84Ujczs+tr00/vjhtLeyy2gZPrkF0sGamdsaCYAAKiurVR7c1xDYx0XAMDC1EYwlPF7YzJYcgqFIpVKO2hCUbOGDkdXCgCgr2soyC/KgoqqYrXjNzYLuAAA9jYujzQ+QgghhJA6VCpVCgBQWVNO12Kxe1wfy+UygkTSTmMyKU/N9fG3mz/1HUp7L35A5eRxMysHamdidO8t7FW1FRx1++saarQBACxMbZoH6qumrkKvQ9qhsXj11NfV7Y+8fdE78vZFb3sb56JtPxy7OFB/U4PnlO46vAUKinOMB2qLEHo4FCqlox3aQVAmYDA4jB5/zxUyBUEmkWlSGdSn5vr4xPoTQUNpb+VrVeo5y7N0oHZcU64AAKCpqknt9amwXsgFANC10m0cqK+WmhYDuVRO/X3e7++r2599PXv0Jr9Now3sDPJWHlh5HACgPL3cBgDAboxdSe/29kH2dWQqWSIRSbQbKxo1uSbcIT14jRAaGJV+7+FWUb2IRDWnyrvvUyqUIBFJSAwdhlz90U9exB8RanNbfyy9Ldtt/G0GLFKgY64jBQAQlAko6vY3VjZSAAB45jzZUMZ/HCw8LTqoDKqyIr1C80mPjdDzoDMTNpY1Mhjs/0QmHDOU9vczYdlA7bgm3EYAgKaqJq66/aI6EQdgyJnwPXX7s69nB27y2xR4PxOeAAAoTy+3BQCwH23fJ7/aj/k3EzZVNmlyjDmYCRF6zDAT3tOZ9QTlT18mNPc076AyqMry9HLMhAghhBBCCA0zLPyCEEIIIYQQQgghhBBCw0zHVKe+paaFlx+db2jsZNzjwbbsG9n6KqXqqXrrbtqltCEVfgEAGEzhF/ux9pW3992G6uxqM6VCCUTSv6fd2tRKaShtMCBRSHL7IPuagfqy8rXKlXfI+/zGLawTajeUNBhpG2g36Jjp1OtZ69V33y+VSIn7Vu+bUpVVZWnhZZG75Pcl17rPAyE0fAz1TaobGusMYhJumLk6evYo/HLt1gUTlerpegP5zZjwsUM9ZjCFX8b4Tyo+ef4gFJXkWisUcgKJRO4qPCVoqteoqik3I5PIsrGjJlcMdfzuku7G6kilHTQKmSI1NjBr69zuzR9VfDv+2pisvDQbALjd/Zj07GROi7BJh8nQanFx8Gjq0ylC6Lm3yW8TmHuaw9JtS0d6Kgih/yhjQ/P62vpq3fikKCNHW9ce18dRcVcNlE9ZJoy4GTakwi8AcGcwhV8CfYMrjpzaCXmFmaYKhQJIJFLXvqYWAaW8stiQTKbIA33HD3h97OkWkCOVdvS5Pq4T1LDLK4uN9HiGDaZGFnWW5rb16o7vrayyiAEAQCQSn85XICP0DOAYc2qFdUKDvNt5pmZ8sx4P+WZEZBg/bb8VZl7NHNJDvgAAgyn84jjOsSTuSBzU5tdaKeVKIJL/PW2xQKzRVN5kSiQTZY7jHQf8XjX3NE+Td8j7PCAnqhdxGysazVi6rFquCbdaz1qv63tVKVeSAQCEdUJ67+M6WjtICplCAwBAQ1PjibxRHaHnjZ6NXkddUZ1GSXIJjWfOE3ffV5pSSlMqnq4oEnMgZkgP+QIADOYhX2tf63YAgJKkErpSqQQi8d/vQolYQqjKqqKRqWSVmYfZgH09bhKxhCBtlxIpNMrT9YeB0DOiMxPm3so1NXUzfVYz4YCFXxzH38+EeeozYWNF471MGDyoTJgul/b992NRvYjbWN5oxtK7nwmt9Go79ykVShLAwJmQQqNgJkRoGOjZ3suEpcml6jIh9SnMhOyhHjOYTGjla3UvEyaWaA6QCTuGOv6jwkyIEEIIIYTQk4OFXxBCCCGEEEIIIYQQQmiY8UP5uUUJRY5Jp5O8vOZ4FbN4LCnAvSIkN3fe9B/p+fW2IX7D1uHo18TZRKhvo19eW1BrGr4l3HXqe1PTO/ed/+68r0KmoNgE2GTStek93thUmlLKBgAw9zDvuulx4U8Lb6kb4/qO6w5Ru6OMTPmmpS98+UJ8933SNilxz6o902pya8ytfK2yF/+2+DoWfUHoyZk0bubd9Oxkj8uRp8fMCVmUo8cz6AAAaJe0kQ6e2DFhpOfXW+SpjE3D0a+bk1eTmYlVYVlFkfXmv7/2eX/Vhjud+3784/PxcrmM4u7im8TW5vZ4Y1tiagwPAMDbfVRD57aMnBS2Dke3w1DfpMdbJssri+k/b9s4GwDAyZ6foaFB7boRb9qEuSV7j/3ZUFVTbn7k1E77hXNfzwUAUCjkhD92fTcRAMDfKyix+w2FCCH0PLnx9w24ufPmA9twjDnwzql3ntCMEHq2TBk3Kyc5Lc4pLPwf7xmT5xfpcHWlAACSjnbivmNbA0Z6fr1Fnsr4Yzj6dbJzE1qZ25UVleaZbdv7o9tbyz9J69z3y7ZNfjK5jOLjEZihxWL3uD6+m5nIAQDgO3t3Fen7+rM/otSNsfvI7w4Hj+8wcnHwKPnf+z/Edd8Xm3hT18d9VAOZTFF1394ibKL8seu7IAAAZwePkkc+UYSQWm4hbmmlKaX8lLCU0b4v+uZp6Wl1AABI26XEqF1R40d6fr1tiN/w9XD0a+Zu1syz5BU1FDdYXfr5knfox6GJnfvOfXUuSCFXUCy9LZMZHEaP6+OiO0U6AABWvlaCzm0vb345XN0YEb9HuMUcjDEzcTHJn//d/B4hT9dKt0wsEOvGHYkb7TrZtYLKoHY9zHtm05kglVJF1DbQrmLqMKWP65wRQv9yD3UXZYRnsGL2x3CcJzi3aWppKgEA5FI5XNt2jTvS8+ttQ/yGouHol2fBk5t7mreXJpdqxh6K1QpcEthVHPHqn1e5MomMwA/hC6l0ao/cVltQSwEA0LfRl/Xucyiqcqo0dC10ZRRaz1wol8oh7JswXZVSBVa+Vm39HY8QenhuIW7p9zNhYJ9MuDtq3MjOrq8N8Ru+GY5+zfhmzbqWukX1xfV9M+HX54IUMgXF0tsyhcHulQkT7mdCn0Fkwj8i3GIOxJiZOJsU9M6EepZ65eIGsW7ckbhAl8kuvTPhmPuZsBozIULDwz3UXZxxJYMVfSCa7TTBqVVTS1MFcC+LRG6LfBozYfFw9PugTHjtz2uc+5lQNIyZkKJroStXmwm/DeOplCqw9rPGTIgQQgghhNAww8IvCCGEEEIIIYQQQgghNMzcprlVpV1OyyyMK3TeumDrQnN380IimagsTyu3oNAoUhqT1kogEFQD9/TfN/2z6TcPvHXghfij8WPK08pNOEacprrCOv364npjpg6zOfTj0Ljex+xdtXcRwKMXpDm67ui4mtwacw1NDQlThyk++39nfXq3sfK1quSH8KseZRyEkHrTJ80rvRZ1IeluZoLXsndnv+lk55ZFIpKVOQXpdlQNagddkyF6Xr4L31+14cInX61afj78+LTsvDQrfV2j+rKKIpOK6lILbS2O4IPVG6/1PuajL994E6BnQZrb8dcsToYdmG5kYFrG5fCaGHRme2OzQLuoJNdWKpNSdXkGVZ+8821E934oFIpqzWsfn/nh9/Wv7jq8Zf6t+GtZXLZOS35xjmV9Q42Rob5J+do3/hc77IuAEEJPKQtPC4DX1e/Lu5UH1bnVYBNg80TnhNCzZNK4GVURUeczE1OjnV9bO3Oxm5NXAYlEVmbkpFjSqJpSJoP13Fwfv796442PNq148dSFg0GZuSkmhvqmTcWl+fqlFYUmHLZO83srN/S5Pn7v86WLAR69IM3+f7b6fPXLOiNTY8tqLpsnompQ5Y3NDcy8wizzDqmEamxoXv3O658lPcoYCKH+ec70LEu/nJ5SklTisXXB1pUmriY5JDJJUZFZYUehUiRUBvW5uT6e8cmMS4fePbQ08VTilIqMCku2IbuhvrjeWFAmMKdz6I3TP51+o/cxB94+sArg0QvSTH5ncvTe1XttBaUCi82zN682sDcoJFPIsrqiOtOWmhYjIpkoD14drPbhYYTQo7P2t5a4TXMTpl1K09q6YKup3Wg7MZFMhMLYQroGQ0PJ4DIUBAJhpKf5REz/eHr97jd2G1/94yqvOLGYzjPnSauyq6jlaeWaHCOObNLbkxp7H7N98XZTgL4FaYoSimjJZ5JZAPeKRwAANFU2UU6sP6Hb2Wbe1/PqO/87+XQyKz08nWXkZCTR1teW05g0pahBRC5JLtFsa2ojcYw5sqnvTxUAQuix85zpWZZ+JT2lJLHEY+vCrW+YuprmEElEZUVmhS2FSumgMqji5yUTTv90+uVDaw+9mngqcXJFRoVF70w447MZN3ofc+CtAysBHr0gzaR3Jt3eu3qvbUNpg8Xm2ZtXGdgbFJI1yPK6ojqTlmrMhAgNN2s/a4lbiJso7WIaa+uCraZ2Y+xaSWSSqiC2gK5Bf+4yYcOeN/YYXf3jqk5xYrHm/UxIK08rp3GM+82EJgB9C9IUJRRRk88kawEASNulBACA5spm8gMyoVZ6eDrL2MlYoqWvJacxaQqRQEQuSfo3E055b0qf8RFCCCGEEEKPFxZ+QQghhBBCCCGEEEIIoSdg0S+Lbl7+9XJzdmS2c35MvgtFkyIx45sVzfhsRtzmOZtfZTKYLSM9xyfBxNlEuOyvZcev/HbFtyq7yqw6p9qcxqS12QfZp4WsC0nofJvdcBA1iDpvbKGlXUrrU/SlExZ+QWj4/LTx7wu/bP+yITbhundyWpw3jarZ7mDjmv3R219de3nNtPe1NelNIz3HJ8HNyavp1y/3/PXn7u/HF5bk2hSX5dvSNRkiH/fA+PdWfXHDQM9YMph++E7eVZm5qRnVNRWGdQ01BlKZlEqhUKQ6XL1aL35A5uql65I0aXRF7+MmBoVWajG1/951eMu44rJ867zCTA0WQ6slKGDSzQ9Wb7zNoDP7HIMQQs8LCy8LsPCy6LNdqVBCyrkUAADwmu31hGeF0LPl2/Vbr/+x+7umW7ERzvFJt1xpNM12FwePog/XfBm7aPWU1zjajOfi+tjJzk24+ev9x7bu+d4vrzDLPL8o24JBZ7WO8hl/d+2K9Xd0eQbDdn08ZfzszBvRl2XllSX6JeUFxnKZjEyl0joM9U3q/b2C8pcufCtLg6LxXDxgiNBIWbJlycULP1xoyI3K9Sy6U+RJ0aS0mzib5M76fNb1LXO3vENnPx/Xx2buZs2vbn9195Vfr4ytyauxqi2otaEyqCKbAJs7oR+H3mIbsgd1ffwwDOwMRCv2rNgVvjk8oDKz0rY0uZSvUqkIVAZVZOZuljZ2+dgYK18rLHaA0DCa9cWsBp45T5YSlqJ198JdbRqLprANtG2dvHZy468zfjVnG7JlIz3HJ4FnwZOv2Lui4trWa9zixGJ6cWIxncFhyL1me7UErw5uorPpysH2JSgTUDKvZrK6b2tvaSd139b9IV/nSc6t0nYpsTKrkladXU2TtkuJGnQNpY6ZjtT3Rd/mgIUBQg065kKEhsuSzUsuXfjhgiA3KtejML7QU0NTo93Y2Th31uezbmyZu+VtOpveOtJzfBLM+GozodgmwCbhCWRCcVcmzKq06ZYJxWbuZmljXx8ba+WDmRCh4TTr8/uZ8FwK6+75u1o0Fk1hO9q2dfI7z18mfH3v65X3M6Fmt0woHGombCxrpGRezWR239bW0kbqvq1XJhRL26WEyqxKWlV2FbVbJpT5vujbgpkQIYQQQgihJ4OgUmHuRgghhBBCCCGEEEIIPZi+tf751UdWl470PJ5F5Wnl2rtX7F5sxjfLf+2v1yJGej4IPQ7bFm4zry2snT7S83jc7K2d927/6Z+SkZ7Hsyg14w73/S+WvW1v45Kx7YejJ0d6Pgg9Dqs+nG+RW5i5dKTn8TgRCATVhvgNIz2Np15uVC7EH4uH+uJ6aBe2g6a2JuiY6oDzRGfwmfdv7bmq7Cq4e/EulCaXQktdC8gkMtDW0wa7IDsIei0INLU0e/Sbej4Vzv7fWZj1+Sxg6bIgalcUVOdVA4VKAbtAO5jy3hSgsWhQnVsN13dch/K0clDIFWDpbQnT3p8GbCN2j/72rt4LpcmlsP7WeojaHQXpl9NB1CACLT0tcAtxgzGvjgEShdTjmE1+m8Dc0xyWblvaY7tSroSkM0lw9+JdqC+uB6VCCTxzHnjM9ACfF3yAQOz5Rs7BrtHTJPdWLhz98CiYuJjA8l3LR3o6/wmb/DaBSqV65l7HamVud27Xb6fx+ngYZOSkaL/z2ZIlLg4e+Vu+OXBlpOeD0OOw/N055kWleTNHeh6Pm6GD4YGV+1fid+EwKEku4exbvW+NsbNx5uu7Xz8z0vNB6HHY8coO8+qc6iUjPY/HSZOl2fDxtY+fi2J1I6G+uJ6ydcFWU4exDuKXfnipbqTng9Cj+n7C99rtonbeSM/jcTN0MDy0cv/KkpGex7PofiZcbexsnIWZED0rdryyw6I6p3rxSM/jcaOxaA2fXPtEONLzeBbVF9eT72fCVsyE6Fnx3YTvtCQiyTOXCxFCCCGE0ONBHOkJIIQQQgghhBBCCCGE0POgobSBrlT0fAFPu7CdfPGni6MBAGxH2xaNyMQQQugJKi7LZyoU8h4PgLcImylb/v5mKgCAn+eYnJGZGUIIPR5Jp5Pg6LqjUF9cD3aj7SBgUQDYjrIFWYcMUs+n9mibfDYZMiMyQcdcB9ynu4P3XG9g8pgQdzgOdq/YDR2tHWrHyL2VC4ffPwx0Dh2853gD15QLqRdS4dhHx6AivQL2vLEHlAoleMzwADM3M8i7lQeHPzgMKqX6l8Kc+OwEpISlgN0YO/B50QeAAHDz75vwzyf/wGBeJKOQK+DwB4fh4o8XQSKWgOsUV/Ca7QUqpQou/XQJzmzq+WzKUNboaZJ8JhkAADxne47wTBD67yurLKYrFIoe20TiFvKWv78OAgAI8B5bOCITQwihJ6iuqI6hlPf8rbCtpY186adLkwEAbEfZ5o7IxBBC6AkS1glJSmXP70Jpm5Rw6adLOgAADmMdWkdkYggh9IQ8IBNOAsBMiBB6PvSbCX++xAPATIgQQgghhBB6fpBHegIIIYQQQgghhBBCCCH0PLjx1w23ojtFdvq2+pUMDqO1tbmVXpNbYyIRSZgGdgZlgS8H4oNtCKFn3q5Dm/3TspJczE2sS7S12OIWUTOzpKzAsrVNrGVhal3wyvzVmSM9R4QQehRJp5OARCHBqoOrgMFl9NjX1tzW4/PoV0dDyLoQIJJ6vq8l+VwyhH0dBgknE2D0K6P7jJF7Kxde+eMVsPC0AAAAlVIFB9cehKI7RXDo/UMw/dPp4DbVrav92aWtfjMAACAASURBVK/OQmpYKuTeygWHsQ59+qsvqYc1R9aAppYmAABMWDUB9q3ZB3m38yDtUhrwQ/gPPOdbe25BYVwh+LzoA1Pfm9p1PkqFEsK+DYPUsFRwDHbsGnsoa9QfiUgCcUfjBtW2k8NYBzCwMxjSMZ2EtULIj80HKpMKLpNcHqoPhNC/9hz5g5+cFmdnbWFXqa3FbW0RNjEKinNMxK1CprWFQ+lLs5cVjPQcEUJouEVui/QtTSl11rXULaWz6eL2lnZmbWGtRYe4Q0vPSq8waFlQ9kjPESGEhlv0gWjt7OvZTFM3UwlThylvbWwllaaU0sUCMcnC26LNLcQNH/JFCD3TIrdH+pYmlzrrWt3PhM3tjNrCWssOcQdLzxozIULo+RBzMEY7KzKLYco3lbB0WAqxQEwqTS3VFDeISZbelu2YCRFCCCGEEELPCyz8ghBCCCGEEEIIIYQQQk+Atb91RUNpA686p9pUJpHRCESCkqnDbHae5Jw25d0paQQiYaSniBBCw87HfXRhZXW5flFpnnWHVKJJJBCVbG2uINB3Qvy7K/8XRyQSB+4EIYSeckQSEYjkvt9ndDa9x2e2IVvt8R4zPCD8t3AojCtUW/jFdZJrV9EXAAACkQBu09yg6E4R6Fnp9Sj6AgDAD+FDalgq1OTXqC38ErQsqKvoCwAAmUqGCWvuFX9JDUt9YOEXlVIFd/65A0wdJkx9d2qPIjZEEhGmrJ0CqedTIf1Keo+xB7tG/ZGIJHBz581Bte3ENmQ/dOGX5LBkUClU4DbVDSg0ykP1gRD6l6/H6PKKqhJeflG2mUTSTiMQiUoum9c8PnDK3TXLPr6LmRAh9DywCbApbqxo1K8tqLWSSWSaBCJByeAwGh3HOSaErAu5g78VIoSeBzb+Nu11hXXUkuQSzQ5RB4lAIqg4xhyZ91zv5tGvjm4hEPC7ECH0bLPxtyluLG/Uq82vtezKhFzMhAih54u1n3VbbUGtRklSr0w4x7sFMyFCCCGEEELoeYKFXxBCCCGEEEIIIYQQQugJ8JjhUeExw6NipOeBEEIjada0BcWzpi0oHul5IITQcHGd6grhm8Nh64Kt4DzJGSw8LcDUzRQYHEaftgq5ApJOJ0FGeAbUl9RDh7gDVEpV135RvUjtGIaOhn22sXise/sc+u7T0tUCAABhnVBtf92LyHQy45sBgUSA6rxqtcd0EpQJoF3YDlxTLkTtiVLbhkKlQENJQ9fnoaxRf9hGbNgQv2HQ7R+FSqmClHMpAADgNcfriYyJ0LNu2oQ5FdMmzMHrY4TQc817rneJ91zvkpGeB0IIjSTbQNt220Db9pGeB0IIjRTMhAghBGAbaCuxDbStGel5IIQQQgghhNBIw8IvCCGEEEIIIYQQQgghhBBCCCGE0GMQsCgA6Gw6JJxIgDv/3IH4o/EABAALDwuY9M4kMHI06mp7Yv0JyLmRAxxjDjiMcQCGDgPIGvf+CT/uaBzIZXK1Y9CYtD7biCTigPuUcqXa/hjcvgVXiGQi0LXp0NrU+sDzbWtpAwCAxvJGuLnzZr/tpG3Srv8eyho9DfJj8kFYKwQTFxPQt9Ef6ekghBBCCCGEEEIIIYQQQgghhBBCCCGEnjFY+AUhhBBCCCGEEEIIIYQQQgghhBB6TPghfOCH8EEikkB5Wjlk38yG1LBUOPjOQXjznzeBwWFAVXYV5NzIAStfK1j862Igkoldx6uUKog+EP3E5tva2AraBto9tinlSmhraQMqg/rAYzsLzTiMc4CXvn9p0GMOZo0eRCKSQNzRuEGPBwDgMNYBDOwMhnQMAEDymWQAAPCa4zXkYxFCCCGEEEIIIYQQQgghhBBCCCGEEEJoIFj4BSGEEEIIIYQQQgghhJ4zm/w2reFZ8KrePPbmmZGeC0IIPW2C57psMDYwKz2w9eLekZ4LQui/jcaigW2gLdgG2oJKqYLUsFQoTSkFp2AnaCxvBAAAuzF2PYq+AABUZlaCvEP+xOZZklwC/BB+j21ld8tApVCBoZ3hA4/lmfOAxqJBRUYFKOQKIJFJQxr7QWv0IBKRBG7uvDmksdiG7CEXfhHViyAvJg+oTCo4T3Qe0rEIof+24Lkub5kZW1Xu/f3c6ZGeC0IIjZRNfpvWc025ZW+fePvASM8FIYRGyia/TVYmLiaS5buWV430XBBCaCRs8tv02f1MeHCk54IQQsNtk98mSxNXE8nyncurR3ouCCGEEEIIoecPFn5BCCGEEEIIIYQQQggh9MypK6pjJJ9NtipJKjEX1gk5HeIOBolCknGMOfXu090zAhYFFA3Uh0qpgu0vb59ZV1hnAgCw/tb6bWQNsqp7m31v7gsuSSxx6K+PpduXHjb3MG9+9DNCCKHHq13SRtr811f+SXdjXZuFTTpEAkHJ09GvnTR2RvzSBW9mqjumtKKIsWP/z6NyCzJsRWKhNolIUmixtJs9XP0zVix5N1GHoyt90ueB0NOmOLEYLLwsgEAg9Nje1tQGAAAUGgUA7hUhAQAoTSoFv/l+Xe1aG1vh4o8Xn9Bs74naHQV2o+1AU0sTAADkHXK4tvUaAAC4z3B/4LFEMhF8X/SFqN1RcOnnSzBl7ZSuc+wkahCBRCgBXStdABj8Gj0I24gNG+I3DO4EH0HyuWRQKVTgNs1tUPNCCKH/km83f+obcTPM90FttLU4wtN7b+3v/Bx+45zxd1s+m9Nf+7GjpiRt+PDn2Mc5T4QQGk6iepHGua/PjRWUCQxbm1s5colck6RB6qBr05ut/a0zg1cFpzA4DFn3Y3Ju5uhnhGfYV2ZVWrY1t7FlEhldQ1OjlWfBKwtcEhjnON6xZqTOByGEHtad43dYlZmV1LrCOmpDSYOGXCon+C/yb56ydkrjYI5XqVSwd9Vew7LUMk0AgP9F/69oqMVhEUJoJIVvDudX51UbNVU26YvqRXpKuZLsON4xev5389VWn04+m2wW9k3Yy/31Zz/WPnbBDwuuD9+MEULo4TRXN5Myr2YyCmIL6IJyAaWtsY1M0aQo9az1Orznegtdp7i29T6mraWNmHA8gVVbUKtRW1BLbapsoqiUKlj488Iau9F27YMZV9woJm5btM2kramNZORk1LFizwosrIgQQgghhFAvWPgFIYQQQgghhBBCCCGE0DMnaleUa+bVTE86my40sDWopLPpbaIGEasivcIqfHO4Sdndsrsvff9S9IP6uLL5imt9Ub0xkUxUKOXKB96hbB9kn0ZlUDt6b9fS15I86rkghNDj1i5pI73xwbyXK6vLLFgMrWa+k3eKSqUk5Bdn2+7/Z9u8krICvY0f/drjhuTM3FT2uk0rXpdI2hnGhmYl9tbO+TK5jFxQnGMdfuPspKS7MW67N5/ZyWJqy0fqvBB6Ghz7+BhoaGqAiYsJsA3ZoAIVlKWWQVVWFRg6GIKVrxUAABg5GYGpmylk38iGXa/vAjO+GbQ2tkJ+bD7wzHjA0mU9sTnrWujC1oVbwSnYCYhkIuRG5UJTRRPYBtqC2zS3AY8PWh4Etfm1kHQqCfJu5YGltyWwdFnQ2tQKjeWNUJ5WDsGrgrsKvwx2jUaaSqmClLAUAADwmu01wrNBCKHHz4sfUAkAd9TtS8tKsqytr9J1tHUtVbffzNiq0t7GubL3dr6zDz6wgRD6T2mpbdEsSijyZBuyqwztDQs0tTRbpW1SWm1+rUXymeRJuVG5Hiv3r9zD0mV1FTq98uuVac3VzcZa+lrVJi4muRQaRSooF+hXZlY6H//suOP4leNPjVk6JnckzwshhIbq2tZrOtI2KZHKpCoZXIaipaZlSM8YxByM0SpPK9ckaZBUCqmCMPARCCH0dEk4kTBRLpVTyVSyhMqgitpb2jmDOY5ryi0ztDfsc+1s7mle/vhniRBCjy7uSJx2/LF4bS19LbkZ30zC5DLlLbUtlPzofHpZaplmWWpZS+jHoT2K/zVVNJFv/H2DCwDA5DEVmlqairbmtiFV+Tv31TmerF1GfJznghBCCCGE0LMGC78ghBBCCCGEEEIIIYQQeuYYOxvX2Y22O+M2za3HQ2clySWcQ+8eeiHnRg4/91Zunv0Y+3p1x5ellrETTiQEOE1wSilKKLJtb2l/4NPXQcuD7ho5GIke5zkghNBw+WPXdz6V1WUWBnrGFVu/P7Kfrc2VAQA0Ngs0Vq+bvzQqLiLoevTl3PGBU7u+Q/cc/mOURNLOGDtqyo0NH/7c9YZLmUxGWP7e7CUVVaWWh0/tcl75yvt3R+KcEHpaTHxzIhTGFUJ1bjXkx+QDmUoGtgEbJr41EbznekPn266JJCIs/GkhRO6IhPyYfIj/Jx60dLXAc6YnBC0Lgj8X/PnE5jzvm3kQtTsK0i+ng6hBBCxdFoxdMRZGvzIaCISBn9UikUnw0o8vQdqlNLh74S7kReeBtE0KDA4D2IZsGL9yPLhOde1qP9g1GmkFcQXQUt0CJi4moG+jP9LTQQihx27yuJmVk8fN7FO8RS6XEea+NtYJAGBOyOIMdcfa2zhXfrr2W7VFYxBC6L/E0N5Q+Mm1T36k0CjK3vt2vb5rVkV6hcu1bde8Zn8xO7Zzu02ATYbLZJez5h7mTd3bR26PdLm159asW3tuhfq95JevoanRp0+EEHpazdk4p1bPWk/GNeHKE04msC7+cFF3sMfWFdZRbvx1Q8dnnk9z9o1spqhOhM8nIIT+cya+NfG0iYtJg7GzsTDijwi3mAMx0wdznKG9Yem8r+fdGu75IYTQ42LsbCx5ecvLbdZ+1j1eYlSbX0vZ/cZu48RTidpuIW5iU1fTrgKoHGOOfNEvi6qNnIykDA5DeWL9Cd3Mq5nMwY6ZdDqJmR+dz5i8dnJD+OZw3uM8H4QQQgghhJ4l+MMqQgghhBBCCCGEEEIIqRF/LN4i6UySm7BWyJVJZDSKJkXC4rGabUfZFkxeO7nrwafcW7m6KWdT7Kvzqo3bW9qZCpmCrKmlKTblmxZP+2BakpaeVkf3fq/vuO4QtTsqOGhZUKS2obY45kCMT3N1M49EJimMnY1LZm+cfVtLV0uaH53Pu77jul9DSYOBUqkk6lnrVU7/dPqt3sVF/nzpz9kNJQ1Gn17/dHvYd2E+RXFFdhKxhEFj0cS2o2xzQz4OSdKgDe4hA7lUTojcFumcE5VjL6oTcZVKJYHFYzU7jnfMnvT2pHQiqefLdwa7RiMhYFFAkbrtFp4WTebu5gWF8YVOBbEFxuoKv8ilcsKZL89MZHAYwpnrZ975bfZvtsM/Y4T+W46c2ml/KfK0n6CxXrdDKtGkUTXb2dpcgbf7qMx33/g8obPdjZgrhhevnuQXl+ZbiFqF2gq5nMJgsFocbV1z177xvygDPeMeN5Rt3/eT+z9n986aP2vpWX1dQ+GJsANj6wW1hmQSWWZj6ZC3/r0frujrGkqi4iIM9h39M7iyutxUqVKSzIwti99b9cUlZ3v35u79LVkTsrSypsw87GDcV9//vn7s3YwE19Z2MYtBZwk93fzvfvTW/93WpNEVgzlnqbSDuHXvD17xSbf4jU31ukqVisjR5jYEeI9LeWfFZwkkEln1MGs0Eu5mJDgCAMyatiCqs+gLAACXrSOdOXVB1K5Dm186ffGwz/jAqWc79wma6jkAAONHT+3x1nIKhaJycfDMr6gqtWwRNtKf1Dkg9LTynusN3nO9B9VWU1sTQj8KVbvv3TPv9tnmPt0d3Ke7q21v4WUBG+I3qN3HNmL3uw8AgKxBhuBVwRC8KnjAOffXD4FAAH4IH/gh/AH7GMoajSTbUbYPXDeEEMDJ8wctL0Qc59cLarkSSTuNRtNs53J0W/y9gvJXL12X3tkuJuG67sWrJx3yi3KMheJmllwuI7OY2mIXB4/it5d/mqDLM+hx3bz7yO8OB4/vmPjyiyuv6vOMWo+d3eNbW1fJI5MpCgdbl+JP3/n2Fk9HXxqXFMXbc/h3/7LKYkOlUkG0NLOteH/1hig7a+ce181L3545p6yyyPjCoTtbf9620Tfxboxda6uIyWRqiX09x+S8t/LzRBpVc1DXzVKZlLDr0GaX6DuRDg2CWq5SqSRwObrNY/wnZq569cN0Eqln8arBrtHT5NyVf8zFrUKmkYFpjY9HoGCk54PQ0y76QLRtSliKr6hexJNJZJoUTUo7k8NstPa3zgpZF5LU2S4rMssg+WyyW11BnXm7qF1LKVdSaCya0NjZOC9kXchttiG7x/VxxO8RbjEHY2aMenlUGNuQLYo9HDtGWCs0IJKJMkMHw4K5m+aGaxtod+TcyNG//tf1cY0VjSYqhYrEs+SVTP9k+hUTF5OW7v39Pu/3JY3ljWafRH7y3dn/Ozu6JKnEVSKWMGksmsjK1ypt5vqZ0YMtVCLvkBPCt4R75kfnu4oaRLoqlYrI4DAE9kH2qdPen5ZIJPf8DXGwazQSSBSSikQhqdTtcwhyyK5Ir3Bprm7mdt8e+nFoorr2wauCM5JOJ41pa27jFsQW6DkFO9UMx5wRehplXs2kx/8Try0oE2h0iDpINBZNwTZmy5yCncSjFo8SdrYrTy/XSA1LZZXdLdMUNYjI8g45gcVjyW1G2bSNf2N8E51N7/E91FmAJOSjkHotPS35rd23OHVFdVSyBlll5WfVGrIuREDXpisrMio0IrdHcquyqmhKhZJgyjdtD1kX0qBjqiPv3t+u5buMKjIqaJ9FfVYUuT2Sm3U1i9na2Epm8phyl0kuonFvjGsiawzu1nqFXAHxx+K10q+ksxrLGjWUCiVwTDgyfghfGLA4QEgk9vwuHOwajRSHsQ7tD3OcQq6AUxtO6WkbaMsmvjWxMftG9qAfAEboWRJ9MNo25VyKT2fe0dDUaGdwGffyzochyZ3tsiKzDFLOpbjWFtSatwv7ZMLoPpnwfgGSUUtGnWcbsEWxR2JHC2uFBkTS/Uz45dwIbX3tjpybOfrX/7o+trG80USlVJF4FryS6Z9MD1eTCV++nwm/v58JXbplwvQhZUKpnBC+Jdwj/3a+m6hBxFOpVEQGlyGwH2OfOu39aUl9MuEg12ik+L3kp/bflhFCfXXLNZTOXMMx5sgcgx1b+2S/86msstQyWrfsp7AZZdM6/o3xzb2zX+LJROaFHy7ohn4UWq+lr6WI2hXF7pb92rpnv+vbr3Mqsyq7sl/oulAB15TbM/u9vsuwIr2Ctj5qfXHk9khO5tXMf7PfZBfRuBXjmh8i+zF7ZL9Qvihg0QOz3wPXaCS4TnFtU7dd31Zf5jDWQZx2KY1VnFCs2b3wC51NV9oG2krUHTeQpsomUviWcB3XKa4i+zH27eGbwx926gghhBBCCD3ziAM3QQghhBBCCCGEEEIIoefL1T+vOl3+5XKIsFbINXExKXEMdkw1djIuVcgU5Owb2Q7d2yaeTHQqTiq21dLTarb2t862G22XQdOiteXcyHHf+drOua1NrRR1YxTGF1qc//b8dBqL1m432i6TyWM2FycWOxx4+8C0rMgs/WMfH5urVCoJNqNssnnmvJrqnGqLox8eDVUq1N9rt2/Nvin50fmOJm4mJXZj7NIIBILq7sW7PntX7p2qUqp9dqEHWYeMuHPZztDYw7FBsnYZ1cLLIs92lG2WSqUixB2JG7P/rf0TH3aNnjZEMlEJAEAkEdUuZtg3Yd7N1c280I9Cr2nQB3dzY0Z4hlnYt2EeF76/4B53JM5SLBCr/XNH6Fnw+85vvf4++NsCQWO9rp21U16A97hYG0uHfLlcRolNvNmjIsG5y8e8MnJSXHS4ugIPF98UT35AApPOEscn3wpY8/HC5YKmeg11YySnxdn/ufv7xQw6s83LLSCRrc1tzMhJcf9w4/KXIm6GmXz187plSqWS6OHql2JkYFpWVJpn98X3axcpFHKCuv7Wrn/lxeS0OA87G5c8H/fAOwQCAW7GXBn31ieL5yuVA/81l3S0E1d++OKic5ePhXR0tNOcHTzSPV39klQqFSEs/J9pa9e/Ovth12gktLaJmAAAVmZ2Tb33WZraNAEAlJTlW3bfbqBnXA8AEBUTbtd9u0IhJ2TmptoQCASVv/fY4uGbNUIIIYSeJn/t/8X5z93fhdYLarmOtm7FQQGTUhxsXEvlchn5VtxVx+5tz14+6pyakWCny9Nv9nEPzPb3GpvOYmi13o6/5r7m44XzmloEaq+fElNjrH7dsWkGk8Fq9/cem8Hl8JpT0u84rtu0IvRmTLj+F9+vnadQKoi+nqOzTI0tq/OKsiz/9+3bMxQK9XX93vvitWnxyVGOzvbuJQE+49IIQFBF3Djnu3b9KyGDyYQdUglxzUcLZhw/t2+sRNKuwXfxyfX1HJOpUqng5PkDYz/YsHzSw67R0+TK9TMuAADBo6dl9temtr5K+8/d37v++OfnXrsObXbMyEnRfnIzROjpcfmXyx5X/7g6X1Qv4hk5GuXbB9nHGdoZFijkCnLerbweFfESTyZ6lN8td2LpsgSW3pZ3rfyskqhMqig/Ot9v57Kdr4oFYrXXx0UJRXaXfr60gMqktln7WycxuIzGstQyt/1v738x/Uq68fH1x19VKVVEKx+rVI4pp7w2v9b22EfHXlLK1X+v7Vm5Z27hnUJ3IyejPJsAm0QAUGVGZAbtfn33vEH9hiiREf969a8FCScSpsokMpoZ3yzDyscqGVRASDyZOGXPqj0zH3aNnjb5Mfm2AAC6Frq1gz2GQCQoAQBIZNKgflNE6FkQdzSOdWL9CQNBmUDDxt+mzXued7OVr1WbvENOSLuYxureNulUklb2jWwm15Qrc53iKnKf7i5kcBmKxJOJ2rte32UsEUvU/raXdzuP/s8n/xhqsjUV/FC+kG3ElmVGZLKOfHDEoCS5hLpvzT5jlUJFcJ3qKjJyMpIUxRfRj7x/xKC/jHds3TGD9EvpLJsAm1aPWR4tAADRB6I5Rz44YqBSDfxdqJAp4ODbBw0jtkTwOsQdRMfxjiJ+CF+oUqrg6h9XeSfWn9B72DX6r4ncHsmpL6qnzvp8Vj2Fiv8sgp5Pl3+97HH196svdss78Qb2BgUKmYKiLhOWpZY5sXj/ZkIakya+nwlf6TcT3imyvfTzpZeoDGqbtZ91MoPLaCpLLXM78NaBeelX0o2Of3b8FZVCRbTysbrLNeF2ZsL5D8qERXeK+EZORvndMuGYIWXCV/56KeF4wlSZREY145tlWvlYpXRmwr2r9vbMhENYo/+altoWzoUfLnid3nh6VPiWcH5JcglnpOeE0HCKPxrPOrH+hL6gTECx8bdp85nn02zla9Um65AR0i6l9SgAl3QqSSvneg6jV/aT389+Rv1lv9zbuYxjHx8z0GRrKt2nu3dmP+aRD47olyaXUvet2WekVCgJbtPcurLf4fcP95v9jn50VD/tUhrLJsCmrSv77Y/mHPngiP4Qsp9BxJYInfvZT8wP4YtUShVc/f2qzsn1J3Ufdo2eNkQyUQUAQCQRB16YQVCpVHB642k9KoOqDFkXggWmEUIIIYQQGsDgSlMihBBCCCGEEEIIIYTQcyQzItOZSCIq39j/xjGuCbfHWw6bqppo3T8Hrw5O0rPSi+r9Zthr26453t57e3zk9kiXGZ/OSOk9RlVWleXsDbPPuk1zqwIAUCqUsGPJjpl1hXUmZzadmR60LOhG0LKgvM72B946ML4oocjxzvE7lv4L/Ps8WN9S28Jdc2TNES09rQ4AgI7Wjvi/XvlrdnVOtUXU7ii7sa+Pzet9THfnvz3vVZtfa2Y32i59/nfzb3eej0KmIBx+7/C4ooQix7ijcYWdYw9ljfojrBdqXPvz2pBu5nOZ7FJsO8q2YSjHdCcWiCllqWVWAACO4x3Le+/PuZmjl34l3ctlkkuyfZB9/WD7jT0UO7b752tbr8m8X/COnfLulIyHnStCT6vb8Ve9iESiYusPR7ebm1i1dt9XUVVK7/759ZffvWVr6XiBQqH0+I7cuvt7jxPnD8z8a/8vPp+u/Ta69xiFJbn2763asG/6pHmlAPeKiyx7d87L5ZXFVj9v27h4/qylYa+//G56Z/u161+ZmZ6d7HHszF67RS+8ntu7P0Fjne7OX0/9aaBnLAEAELeKIle8/8KrxWX5djsPbXZ7Y8l7aQ865+9/Xx9UWlFk7cUPuPPNZ1svd56PTCYjfLhx+Yz07GSPwyd3ZnWOPZQ16k9tfTVt+74f/QfTttOEMaE5o/0mDPhGcU1NRluLqJlbXJbP8fEI7PGdWlxewAEAELeKtEXiFjKLqS0HAFi19MPo3IJ0u8jbl8bnFWVZmBiaV8sVclJBcY51W1src96MV84F+U/Ct5kjhBBCz4nr0ZddSESScvuP/xwxNjTrcU1YXVvR45rw9cVrkyzNbG+SyT0z4c6Dm50On/o7ePfh310/WL2xz9u9cwsyLD95+5vTk8bNqAIAUCgU8MYH82YVl+Wbfvf7ZzNfnrcy8pX5q7qudT/c+Hpwclqc0+mLhy3nzVjS57q5vqGGs/u3M4d1eQYdAACtbeLYlR++OCe/KNviwPHt9q++tKZPjuzul22bvItK88z8vcamffnxb7c6z0culxE++Wr1+OS0OKcTYQcKOsceyhr1p0FQq/H3wd+GVDgweExIkZ/nmIe6bi4qzWMUFOeYUzWo0hdnvprfX7u0rCT7tKwk+87Ph07+DY52boUbP/wlsnN9EXoeZF/P9iQQCYoVe1f8zTPn9XhjdmN5o2b3zxPWTIgxsDO43Ps3xPDN4fzYw7HTr/5x1Wv2htmxvceozau1m/7Z9IOeMz3LAACUciVsW7xtUUNJg+W5r88tCFwSeDF4VXDX7097V+2dXppSyo89HGsX+Epgn98DRfUi3upDq3ewDdkSAACJWHJ9x8s7ltQW1NpGbo90nbBmQnrvY7o7+39nR9cX11tZ+1knLvx5YXj33xAPvH0gtDSllB+9Pzqnc+yhrFF/WmpaqBG/R/gNpm0ntuJXOgAAIABJREFUl8kuuQ5jHQZdsEXeISec+fLMGAAAiVhCqyusMxPVi/R1zHRKJ7w5oc9vu+qkX0k3bm1s5VEZVJFNgM2gf1dE6L8u5VyKNolMglUHV1WweKweFfjEjeIeLygNWh7UPPN/MxuIpJ7vLb1z/A7r0k+XdOOOxGmPWzGuufcYhXGFjMW/Lq6y9reWAAAolUrYt3qfYVlqmebRdUcNp30wrd5zlqe4s/3Jz0/qZoRnsLKuZdFdJrm09e5PUC6grDm6ppzOpisBAGQSWeOeN/YYFd0poiefTWZ6zfYS9z6mu8gdkZyS5BJNj5kewumfTO86H6VCCac3ntbNCM9gZURkiDvHHsoa9aetpY0YfSB6SMX2nMY7tRo7G0uHcsxQlN0to8YdjuP4veTXZOpmihkQPbeyr2d73M87OweRCaMfkAlDr/551Wv2F/1mwkO9MuHCXpmwq3jn3lV7Q0tTSvmxR2JtA5cE9rm2E9WLdFYdWvVXt0x4Y8eSHS/XFtTaRG6PdJmwZsID/33z7P+dDeyWCSN6ZcKQ0pRSfvSB6OzOsYeyRv1pqW2hRmyJ8B1M204uU1zyHIIGnwkfRkV6hUtFeoVL5+fYQ7Fg6GCYM/+7+Rc71xehZ0nyuWStbrmmR6WVIWY/XtyROK1xK8a19B6jMK6Qvvi3xdXWfj2yn0FZapnmkXVHDKZ9MK2hR/b74iQv48oDsl+ZgLLm6JqKbtmvac8bewwfMvsJemS/Tad5GVcyWBkRGa2dYw9ljfozEtlPIpIQ8m7lMYAAYDvKtn3gIwZ2e99t7fL0ctrCnxbW0Fg0VVtznz8ehBBCCCGEUDdY+AUhhBBCCCGEEEIIIYTUIBAJSrIGuc8rgThGnB43aBnaG6q9CSR4ZXB23JG4wPK75WYA0OfhADMPs/zOoi8AAEQSERzHO+bWFdaZaOlrNXYv+gIAwA/l5xYlFDnW5NbwAKDPA2w+L/gkdBZ9AQCgMqiKoOVBsWc2nZmdcTXD8UGFX5QKJWRfz3ajMqhtL3774u3uNxuSKCTVrA2zon+d/qtj5tVMu+5FZwa7Rv0RC8TUtEtpPoNp24ltyBY9bOEXlVIFxz4+FtzR2kG3DbTNsPC0aOq+XyKWkC58f2Gilq5W44z1MxIH06epq2mVtZ91qY2/TS3HmNPeUNrASD2fapUaluoTdyQuiEQhKSe+OTHrYeaL0NOMSCAqqRpURe/tJkbmPe7WcrJz63OzHgDAqqXrUs5eOTYlOy/NBgD6FH5xtHVL7yz6AgBAIpFVo3zGpx2rLLbicfTquhd9AQCYNG7m3fTsZI/84mwDAOjzwO60iS/c7Cz6AgDAZLDki19Yce2X7ZtevRUX4fGgwi8KhZwQlxjlq0mji7/+9I8r3YvYUCgU1Wfvfh++cOUkj6i4cLfuRWcGu0b9aWispd2MCR87cMt/6esaNQ+m8IuTPT+vpq7S5MylI2OmTZhT3FncpbmlkRJ25diYznb1gloai6ktBgAwN7Fq3fbjPzs//+7tWQXFOQ4VVaWWne34zj5JwaOnFQ1lrgghhBD67yMQiUoNikafa0JDfZMe14S2Vk4idccvW/R21onz+0dnZKeYAUCfwi+ujl55nUVfAABIJBKM8Z+YW1yWb6qnYyDoXvQFAGDKuFk5yWlxTvnF2bqg5rp55tSXEroXJWHQmYpX5q+O/W7LZ3NuRF92elDhF4VCAbfirrox6My2jR/9eqt7ERsymaL65O2vb89fMcHpRsxl++5FZwa7Rv1pbG6gRtwMG9KDbfp6RsKHLfxy7OxeZ5VKRfBw9cvtzIjd8bh67aGT5sWMGzWlxMbSQdTW3kpKSI3RO3Lq74DsvDTrDzYup+/ZfO4kiUR6mOER+k/q7/cxrmnPQsnGzsZqr48nvT3p7p0TdyZVZFRYA0Cfh3yNXYwzOh/wBQAgkolgH2Sf3lDSYMnSZdV1L/oCAOAW4pZWmlLKr86r1geAPr8Hes7yvN39AVQak6YY89qY62HfhL2cdT2L/6DCL0q5EvJu5Xlr0DXEC35cEN77N8Q5G+dE/DbrN35WZJZL96Izg12j/ogaRLTMq5ljBm75L20D7eYhFX6RyYm9xzB1M02f//38SzQmrc+1fW9NVU20y79cngkAELA4IKL3w9wIPesIJIKKRO77/z2Ty+zxd59rwu2TLwAAfOb5iK5tvaZTdKdIU13hF4dxDuLOoi8AAEQiEVynuorKUss0eeY8afcHfwEA3EPdRRnhGaya3Bqquod/R786uqnzwV8AAAqNogpeEyw4tPaQUer5VK0HPfyrVCoh+UyyNp1DV4R+HNrjQWYiiQjTPpwmyIjIYKVfSWd1H3uwa9SfdmE7MeZADGcwbTuxDdny4Sr8Im2XEs5sOqOnY6YjnbBmQtPARyD0bBtCJhSqO/5+JpxYkV5hBWoyoYmLSaaaTJjRUNJgqaWrVd+96AsAgFuIW3ppSim/OrfaAAD6FH5RmwmX3suE2dez+Q8q/KKUKyHv9v1M+NOCiD6ZcNOcq7/N/I2fdS3LpXvRmUfOhPUPkQkNtVuGq/CLlp5WGz+Uf915onOBkYNRc0drBzk/Jt8w5mDMuOqcaof9b+5nvvXPW/uJ5EHVeEDoP+V+rumz/SGyH11d4RfHcY7izqIvAPeyn9tUN/EDsp8440oGqyavRqOf7NesJvs1Hlp7yDD1fCprENlP6372E/TJfh9Ma8wIz2ClX0lnqsl+A65RfyRCCTHmQAx7MG07cQw5sofNfiqVCk5vOq3b1txGcp/hLtS31Zc9TD/d1eTVUG7uuslxD3UX2o22eyyFZBBCCCGEEHrWYeEXhBBCCCGEEEIIIYQQ6sU20DYv4URC4NYFWxdaelvmm3uYV9kH2VdzjPsWNJF1yIiR2yKd86PzbYR1Qq6sQ6YBKiB07m8XtjPUjaFvo1/Xe5u2vnYrAICuhW6ffVwTbisAgEggUtuffZB9Ve9tzhOdq89+eVbVXNWs+6DzLU8rZ8skMiqDy2gJ+ybMW10bEoUkF9YKu24qHsoa9cfIwUi0IX7D1sG2f1T/fPpPYEV6hbWOuU71vK/m3e69//SG06Nam1q1Fv2y6DiFShnUDTfBq4Jzun82djIWGjsZp+pa6jZd+ulSaMLxBP/xb4zPxoc90LPEiz8q/XLk6cnL353zpoujZ4abk1dpkP/EMlNjyz430kk62onb9vzonXg3xkXQVK8rk0mpKpWq6ztS1CpkqRvD0symz3eaPs9QBABgbGTeZ5+pkbkIAKCpWaClrr8g/4mlvbdNHjez7NcdX6rqG2oMH3S+Kel3dDqkEk1tFrvx2y2fBqlrQyaRZQ2COl7n56GsUX+c7d2bI09lbBps+6FY89rH8XczE5xr6ipNX14T8qatlWM+qADyirLsCAAqDYpGh1QmpRKJ/353Zeamsjf88O5CuVxOXr103aHxgdPKRa0tlLDw4/bnw49Pef+LZQ7ff7Fjp4uDR5+HcxBCT6el25aO9BQQQv9h/l5BuWcvHx297N3Zi91dfPP4zt5Vo3zGVxkZmPa5JuyQSog7D252jk+OsqsX1HKl0g6N7plQKG5mqhvD2sKuz7WxHu9e8VUzE6s++4wMTVsBABqb6tVeNwf6Blf23jYucGrV97+vV9XUVT7wujkjJ4Uj6WincbR1mn/eukFtAVMymSKvq6/pum4eyhr1x87aWRR5KuOPwbZ/FAqFAuISbzoBAMwNfVntQ36ebv6Nnm7+jZ2ftbU4splT5peN9guuXv7unIUVVaWGpy8etuxe/AahZ5m1v3VGyrmUidsWbVtp5m6WZe5uXuo43rFCx0ynz7WfTCIjhm8J9yyMK3QSNYh05VI5tcdviKJ2tdfH+tb61b23aRtoiwAAdMx0+hT+1DHVEQEAiAVitdfHDuMc+lwfu011Kzv/7XmVsEZo8KDzLUku0ZF1yDTpbHrjmS/PqH3olkgmyoR1wq7r46GsUX9MXExaNsRv+Hqw7R8GjUlTbIjf8LVKqYLaglpWRniGZcKphPHbF21fvuCnBUdMXEzUFu4BAGhtaqUceOvA/LbmNq59kH3s2OVjs4dzrgg9bZwnOYuub7+u8+eCP00dxzmKLTwt2i28LCRMnb4PtSpkCog7GqeVFZnFFJQJNKRtUqJK+e9P5+IGsdr72o0cjDp6b9PS1VIAABjYGfTdp68lBwAQ1gvV9mflY9Unj1l6W0oIRALUFdZpPOB0ob6oniIRSYhsI7Yscnuk2kIsZA2ySlAmoHR+Hsoa9UfHVEe+IX7DU1N4+fIvl3Vaalsoy/5eVkGiYNE/9Hyz9uvKO2+YuZtlmXuYlzmOe2Am9CiMK3QWNYh4g82EejZ6/WZCrhm3z77OTNgqaFXbn+N4x7Le29ymuZWf//a8qqWm5cGZMKVERya5nwk3nRmtrg2RTJQJ67tlwiGsUX/uZ8JvBtt+uNkE2DTYBNh0FV1lcBkyv5f8ipyCnSq2Ldr2elNlk0nskVjb7sVvEHoWOE9yFl/ffp3754I/Te7nGskDs9+xOK2sa1lMQZmA0if7CcRqQ4Shg2GffMfSZQ2c/er6zX59io4MQ/br6mcoa9QfrilXviF+wxP7fe3iDxe5ebfyGMbOxpLQdaGCR+1PIVPA6Y2n9RgchmLq+1MbBz4CIYQQQgghBICFXxBCCCGEEEIIIYQQQqiPkHUhd+lsuiTtcppLTlSOW87NHP6V364Az5JXOXHNxBj7IPv6zrb7Vu+bXJlZaUVn04UmLibFdDa9jUQhKQAAsiKz+Aq5Qu3NKjQmrc+bdohkohIAQIOu0Xcf5d4+pUKp9rVgXBNunxvjyBpklQZdo72jtYP+oPMVNYhoAACtja3aaZfS1D7ABgAg75B33ag8lDV6Ghz/9HhAzo0cPs+CV/XajtcuaNB7vnE97VKaUd7tPFd+KP+OTYDNI9/I4vuib+n1HddbJSIJoySlhGPta403s6Bnxkdv/V+sthan7Ub0ZZ/E1Gi/hJTb/rsObQZjQ7OSZYveiRgfOLWrMMs7ny15saA4x4HF1G6ys3LK0WKxxRQKRQEAEJtww1+hUKj9tyoGg9Xnpj0y+d6bIOmadDX77hVrUij/n737DmjqXBsA/mRPkhBWSNh7CooiTnBSN846q9bZ2uHt7W1t+91S29tdW62rS6q1va2jdW+GoKKgIHvI3iuEhJBBEpLvD4XLiBgUQevz+4tz3vec85wXPD4nOe9zdEavufYi5x5vaqNSaXo6jaFUqZVGJwa3E0vqGQAAMrmUH594MfR+/bRaTccDfX0Zo8HA51lovv/qaNQ3320dl5Wb6pOWlTyMQqFqXJ08C15f93/Rm7YsfYVAIOoF1sKOByE/2/FuhKRJbP2fLTu/Gx08oQ4AwNLCuvW1te+maDWt5DPRfz73/S/bwnZ+8uvxwTszhBBCCA2U19f/XxqXY66OTjjtn3gzLuBacmzgnp+/AEc7l6q1yzdfGxM8saMwyz/+vfq5vIJMFy7HvNnHY0gxl8NXUsh3c8KE6xcD29qM3zffJyc0AAAwGawe982U9pzwPvsTCRx63DdTKVQDg85UKVWKXu+bG5sa6AAATbJG3qX4U8H366fRtnbcN/dljJ4Epy4edpS3yNhCgX3t8MDRfbov5vMstUFDRt2JvXp2eEbOLREWfkHPitnvzU5i8pjK7EvZQYXXC0cUJhYGx+yJAb4Dv2zixokxvpN8OybhRq2PmlebX+vJ4DKkQm/hHSaX2dL+GWJ+Qn6wXqc3eu2isWk9roUk8t0inTSmkTYKSQ8AYGgzGP0M0dLRUtF9HZlGNlAYFKVGqen1/lguljMAAJRSJT87Otto4RcAgDZtW8f9cV/G6ElAIBJA4CGQCzwEGTbuNo1/vf/XqlOfnHrupf++dMhYf0WTghK1LmpxU1WTvfsY96TFXy6OHeiYERps41ePlzF5zLaUYync1BOp3JRjKVwgANj52amnvja10X6Ifce16o+3/rApTCxkcQVcndsoNwWbz24jUe9e0279eYur0+kIxo5BY9N6TJIlkomGXtoAAECvMz63lm3J1nVfRyKTgMFhtCllyl6rmCild9ul1VJK4sFEo5N/AQC0Km3HdbgvY/Q0KLpRRL996jZnzIoxTSIfUY+8HKFnzez3ZiczeUxVl3xndwxYOFiUTdw4McZnkk9Hsb6o9VFz+zEn1AP0nhPe73tlCweLnjkh1cScsMHEnFDTJSc0eYyedmZWZhqnIKfs3LjcMWW3yxyw8Av6uxm/eryMxWO13Tp2i3OfvKYjN7iX+zHv5X5KNp+tI1HvXuZu/XmLo9Maz/3obHpvuV+PF+6QSHf3qdfpje7PzPJu0Zgu25ie+xEBOnI/3v36aVXajmP3ZYyeBOe+Ose/9dctrp2fnXr5t8trybRHn2oa90Mcr764nrp8x/IaGqvn7wwhhBBCCCFkHBZ+QQghhBBCCCGEEEIIISPC1oXlh60Ly29uaKbmJ+QL8uLzXIqTi73//Pefs1/670u/mYvM1fkJ+VZV2VUu1q7Wlev2rztFppI7HljQt+kh61LW0IGKV1IpYQo8BF0KG+g0OoJGqWGQaeReHxxh8pgaAACRr6h4bdTa86Ye05Qx6m375oZmaszumABTjwcA4DfVr8R9tLv4wT3/59Bbh8bkxecFWDlbVa3+YfUZBofR46HuqpwqSwCA9DPpweln0o1O4vt43McvAQAs/WbpYVNioLFoKrVczWpt+d/EP4T+Lja88Eb6hhfeSK9rqKHHJ16wT7x52SszN2XoFzv/b7mbk+cue5GzMu7aeWFhSZ6Xvci5+MdtR3+jUv83CaOtTUd4bvHwMQMVb0VVCdvL3b/L27k1mlaiulXFpFKovU6s4HHMWwEA3Jy98n7YdtToRC9jTBmj3rava6ihf3fgyxBTjwcAMGncjLyxIyeZ9IA0n2eh+WjLtzEAENN5fWZuqrlOp6VaWdjU0GkMPQBAY1MDtaq23JFGpavai750Nmp4WOmZ6D+hprbSti/xIoQQQujptmrxprxVizfliRvrqNeS42yvJse4pGbc8Pn4m7dn//TNX78KBfbqa8mx1nkFmS7ODu4Ve788dJJKoXbcN7e1tUHc1XPDBireqtpyppuzV5f7Zo1WQ1CplQwaldbrfTPXjNcKAODl7l+85/Pfz5p6TFPGqLftxY111B9/3R5o6vEAACaOm148cti4Pt03AwCcjz3ud2/7rL5uCwDA5fBUAACtGjU+j4aeKZM3Tc6cvGlypqxWRsuNy7XLS8jzKrtdFnBi64klAnfBdxYOFsrsmGzb2vxaT0sny5INv2z4nUzr9BmiTg8fh348aqDiFZeJWSIfUXPndbpWHUGr0jLJVHKv98dM3t1CrAJPQf6GXzYcNfWYpoxRb9vLamW0SzsvjTT1eAAAflP98r1CvXrcv/aFf7h/1cmPT6obyxodjbW3NLZQo9ZHPd9U2eTgOd7zOhZ9Qc+y4XOHtwyfO7xFKVMSy1LL6LmXc1lZF7PM/vvGf203HdpUzrZg6ysyKmiFiYUsh0AH1Qu7X6ghkf83x1av10PyoeT7TqTtby3iFrK5yLzL9wRtujZQNatIVAbVeLWYe+hmdyciu412Uyz7ZpnJ1xlTxqi37ZUyJfHawWtcU48HAOAzwUch8u3/wizVedU0MABc++Wa+bVfrhktfvOfMf9xAQBYG7W28nHEgNCTpiPfqZPRcmNz7fIT8j1Lb5cGHP/w+BIbd5vvLRwslDkxOYKOnPDghj+6fK88wDlhY3kjS+gt7JoTah4qJ/zT1GOaMka9bS+rk9EufXvpvoVYjfEL97vjNf7RcsKHweQxlQAAulYd9UF9EXoaBc0NagmaG9Se19C65TUV93I/amFiIfNe7ldrJPfrU17zKORiOclcZN6l+MtD5H7KvuR+poxRb9sPVO53+rPT/JRjKVz7Ifbq5TuW11KZ1H4p0lJ7p5YGBoBfX/vV6HfH1TnVtK0jtzpTmVT9O3HvlPXHMRFCCCGEEPo7wC/aEUIIIYQQQgghhBBCqBccK45mxPwR5SPmjyg/+MpBQvHNYu/cy7nC0ctGF9cX13MBAJxHOJd0fjgPACAvPs9Gr9MP2Gew+Qn5QoGH4E7nddnR2bYGg4HAE/IaetvWIcChiUKjtIrLxAJtq5ZIoVF6fciku97GqLftWhpbaBnnMkb05Vg8W57c1MIvBr0Bfn/z9/EF1wr8rN2sK1Z/v/osnU3v8TYnAACBu0DiEuySa6ytLK3MrU3TRnEZ4ZILBACOFafXiXkAAHKxnCoXy80BAGzcbJof1B+hp5WNla160ZxVBYvmrCp4/b0XCJm5qUPjrl1wfGHRxtySsgI+AECA7/D8zkVfAABir54TtbXpBuwamXAj2tHL3T+j87qLl086GAwGgpWloNe3iw8bEiKmUmjq6toKO3WritheDMVUvY1Rb9uJJXX0+MSLoX07llBqauGX+/nrzK8BAABBAaMz29ep1SoSAIBGq6Gp1EoSg87sci1taKxjAgCQSCSj11iEnlXbI7YDAMDm45sHOZIny+UfL0P8T/Edy0Fzg2Dmlpkdy/tf2g9lqf97znf+R/PBb6rfgMbYn3JicuDIu0c6lh2HOcKqvas6ls9+eRZuHr3ZsRy6NhTC1oUNYIQIPTpLCxvNnGmLy+ZMW1z25gdrCakZN3yu3IgWPR+xuqi0vJALADDUf2RJ56IvAABXk2JsdAOYE15LjhW5OXvld153+dp5ocFgIAisRb3eN/v7BDXRqPTWiqoSm1aNmkij9nzzcG96G6PetpNIxbRL8af6NLHNxlrY3NfCL6UVRayC4hwnGpWmWTR71UO9jbygOFcAAGBjKcR7YPRM4gq4rSFLQopCloQU7d+4n1B2uywgOybbYfzq8XkNRQ3mAABOw5zudC76AgCQHZMtGsjPEPMu5zmKfESZnddlnM9wMBgMBI6A0+v9pHOQs5hMI6sllRKRVq0lUuh9+wyxtzHqbTu5WE7Pjs4e18djSR+18EtLYwtVp9HRyJSeRbWb65tpP6//eYm0RirynuB9ddFni+KN7QOhZw2Ty9R7T/BWek/wVhr0Bsi6mGVWfLOYMeS5IYrG8kYKAIDHWA9F54m/AADlaeU0nUZHGKg4i28W04NEQV0KApbcKqEb9AawdrXudbKstau1hsai6Wtya+ht2jYgUUi9de+htzHqbTtVs4qYeDDRaJGV++HZ8nSPo+iKjZuNxj/cX26sLS8+j61Vawl+U/3kBAIBmOZM/LwQPVO4Nj3znZyYHPtxq8fl1xfX8wEAnIY5FXT/Xjk7Jls4kDlhblyug9Bb2KXoZ8a5DHuDwUDgCri954TD7+aETZVND5cT9jJGvW0nb3iInNCWKxuMwi+1d2pFAAAcG07TQB8boYF0L69ReU/wVhkMBsi6YDT3U3bP/SrSKgY692M8Qu6nvZf70R4h9zM6Rr1tp25WExMPJvapMKK5rbnW1NzPYDDAyY9PWqSdSuM4DnVULf1maR2V0T9FXwAAXEa4qJjcnnmgRqUh5ifks5g8ZpvrSFclhU7pt2MihBBCCCH0d4CFXxBCCCGEEEIIIYQQQqib9DPpoiHThlQRiF2fNVHJVQwAACqDqgMAsHCwkAMAVGZWigCgY8KEpFLCuPTtpfEDFzHAzT9vjhg6e2gZx5rTCgDQqmglJexLGAUA4DvJt9fJE2Qq2eA1wSsz83zm8MNvHx43/z/zr3YvkCIuFTPljXKac5BzE4DpY9QboZdQHpkUuadPJ2oig94Av27+Naw4qdhH4CEoX/XdqnM0Fu2+DxgPnT20cujsoZXG2r6Y+oWdSqOiLPl6yeXOD2KKy8TMNm0bwcbNpstDOUqpkvLHv/6YpNfpSdZu1hUWDhaq/jszhAbfqQuHnWZMWVBKJBK7rG9RyFkAAAw6QwsAYC9ykgIA5BVkOQFAcnu/sspi1k+/bp8+YAEDwLnoP0Nnhy+6I7AWqe/FSv7tzx8nAQCMHTk5rbdtqVSaPiRofHLCjUvj3/t407QP3vrmghmb2+UaV1x2hy1urGcEDxvbAGD6GPXG1zNQGvtX1tY+nWgfiBvraZYW1l3e3Hns7G8uV5NixnDMeE3rV/zjVvt6ka2Disfli6UyieVn3747futb2+Pa21oUcvLR07+MBwBwdfYqeVzxIoT+fgJmBADPlgdCb6HR9tC1d2tfWbtad6yTVkthx9wdD9z3qu9WgeNQx0eO8c7VO5D4WyLU5teCXq8HaxdrGD5/OATOCDR5H1bOVh3n0rngTTv30e7A5DFBWiOF9DPpjxwzQgPlQtwJ0ZTQWVXd8x15i4wJAMCgM3UAAHZCp2YAgNw76SIA6CjEV1VTzvjuwFdhAxYwAJw8f2jE9EnzSq0sBa0AAAplC+mXw3tHAQCEjg7vtSgflUI1jA2ZlBGTcGZE5Oebx//fG19eYbPMutxjllUWMyVNDbSh/iObAEwfo954uPrKY//K2tWnE30Ih45H+RgMBsJQ/5C87ufV2bXkWOsxwRPru6//5fBez6y82+4kIkk/c+qChyocg9DTKOV4iuOw2cPKun8+pparmQAAVAZVCwBg4WghAwCoyq5yBICOey1xmZgZvSv6uYGLGCD1ROrYoLlBBTxbnhoAQN2iJl35+coEAADvMO9ekxEyjWzwGONxMyc2Z9zvb/4evvCThZcYHEaXa1ldUR1b3iCnu4W4iQFMH6Pe2PnZySKTIj/u04ma6M61O1YOAQ6S7p+FalQa4uEth8PBAASBh6DLdU1aI6Xv37B/qaxOZus3xS9h/n/mX3kcsSH0tCi8Xkh3DXFVEwhd/50rpUoSAEB7QQCekKcFAChLLWOMWTGmo1CcXCwnnfvqnNUAhgxXD1w19w7zVjJ5TD0AgFatJcTuibUAAAiYEdBrETsSmQTDIobJrv8A6eP6AAAgAElEQVR23fzUp6csp/9remP3SbKyOhlJJVMRBR4CLYDpY9QbC3sLXWRSZK/F9geKx1gPlcdYD6Pfe3w962uGVq0lR0RGNHSf5I3Q31Uv+Q4LAIDCoLR/rywFAKjKMZIT7h6UnLCwS064/25O6BXmldHbtmQq2eAx1uNWTkzO2N/f/H3qwk8WRnfPCeuL6tnyBjndNcT1QTlhlzHqzb2c8JM+nehjlBOTI/CZ5NOjSE7s3li/quwqHwKR0DZ83vBeP2tA6Gl037ymqWteYy401wEAlN0uo3fL/YhnvzprOYAhw9UDV3lGcj8+AEDgjECjxeza3cv9mq//dp33yLlfk+m5H9+er4tMinws37saDAY49sExy8zzmWbOw51VS7YtqevvAiyjl482mlNLKiTk/IR8Fk/I0837cF6fClcjhBBCCCH0LMDCLwghhBBCCCGEEEIIIdTN6c9PTzv/zXmtpaNlrZmVmdxgMEBdQZ2wqarJmmfLawiYEVAJAOA5zrPewsGipiq7ymXngp3zBO6CGqVMyazOrXYwszST0tn0Xt/S05+4NlzJniV7ljgOdSwikohtFekVzoomBdfW07YsdE1or29IAwCY9e6sW41ljRaF1wt9d0TscBK4CypZfJZCJVMxZPUyXmN5o2DY7GFJ7YVfTB2jwXLioxMjipOKfYhkos7C0UJ89suzw7r3sfW0FYcsCXnoh2Wqsqt4Jz48MYdvz6/l2nClDC5DpZAoWDX5NfatilYmk8dsnhs5N+7Be0Lo6bI76rPF3x/8WiMS2FfyeVZSAAOUlBc41otrhVYWNjWzwhcVAwCEjX6uav8fuysKS3K9l24MX+Pk4FYul8tYRaX57uY8CzGTwer1Qbr+ZMG3blj7j3mbvD0CcsgkUltuQaZXs1xq7uzgVrBu+eYHzrLf8von8ZU1ZTa3s5KHL9kY7ulk71rC4/Cb5S0yVqOkwaKmvtJ+0rgZse2FX0wdo8G06rVZr1hZ2NRZW9qKKRSKrrK6zLa8qsSFyWC1vPPap7/zuPwuk+9eWPjSuV1Rny69ciN6/JINU10d7VwqtFoNuaAkz71F0czlmPEkm1a/fXWwzgch9PQJnBEITkFO920PWxfWYx3djN5RRKU7WZ0M0k6lAYPLAJGv6JHjSz6SDOe+OgcMLgP8n/MHEoUEubG5cOLDE1BfWA9TX59q0n6sXKwgzCUMAO5T+GWMO7iPcYfSlFIs/IKeKtu//3DG7qjPtPYi51pLvnWzwWAgFJXmC2vqKq0F1qL68IlzKgAAxgRPqLcTOtbkFmS6rtg0fYGrk2d1s1zKzC/MdrTgW0vZLLMBu2+2shQ0vbg5YukQn+FFJBJJn5V721naLOG6O3uXvrDopV4LpgIAvPny1psVVaWWybev+i3dONXZ1cmzwpxnqWiWSxkN4lpeZU2Z7bRJ824M9R+ZAmD6GA22trY2uH4r3gcAYN6MZdm99f1y9/vTtu35QC8SOtbzeRYtWq2GXFZZbF1TV2lDJBD1S+avjfVw9R2wPB+hwXZ+2/mFl769pOHb86vMLM2kBoOBUF9Uby+rlQk5NpyaoIigEgAAn4k+1XHfx1XU5Nd47Zi7Y6W1q3WFSqZi1RbUurH57EYaizZg/27MrMzEe5ft3WDvb59LJBH1lVmVHiqZytza1bpw0kuTMh+0fURkxNXGikabkpslw3ZE7HC3drUuZZmz5KpmFau5odm8qarJfsi0IZfbC7+YOkaD5eaRm4GHtxwOsLCzqGRZsGQ0Jk2taFKw6wrrXDRKDZtlzmqc+e7MmM7bHHzt4AJZncyWwWU0GQwGwtH3jvYoAO431S/fK9SrbuDOBKHBc+TdIwIqg2qw9bJVcwV3iyVXZFTQ6wrqaNZu1q0eY+4WCHEIcGgV+gjVBYkFrB9W/iCy87dTKSQKcsmtEgZfxNey+Kz7Fp/rbxb2Fto9i/fYe473bCGSiVBwrYAlq5WRnUc4K4MigloetP2klyY11RfW09LPpHOKbhSxHAIdVGaWZjpFk4LUVNVEqc6tpo9bPU4i8BBIAUwfo8GUdDjJrCK9gg4A0FTdRAEAKEwsZMrr5SQAAAtHC+2E9ROkgxkjQk+q89vOL7i085KGb8evMrM0kxkMBqgvqneQ1cpsOTac2k45YU3c93GVNXk1njvm7lhp42pToWxWsmrv1LqyLdiNNBbtgdef/mJmZdb43bLv1tv52+URScS2jpzQzcSc8P2Iq43l93LCuTvcrV3+lxPKG+R8SZXELmBawOX2wi+mjtFgurD9QmB1TrUdAIBcLOcDAFRmVbr/vP5nMwAAc5F5Y0RkxPX2/qc+PTX/9Oen9XwRv4bFZ8l1Wh25sbzRVlYjExKIBP2oZaPO2fnZyQbnbBB6fI68e8SmPa/h2fJ0BoOhc16jac9r7APsW4U+wtaCawWsH1b+ILT3t1e3NLWQSm6WMPkivmZAcz8HC+2exXvsPMd7KohkoqE993MZ4aIcFjHMtNyvqJ6afibdrOhGEbMj95MqSE2VXXI/GYDpYzRYYvbE8DLPZ5qRqWSDjZtN6+WfLvO697H1sG31m+qn7Lzu7Jdn+e2FCyuzKukAAIm/JXIzzmWwAQC8Qr0U3bdBCCGEEEII9Q0WfkEIIYQQQgghhBBCCKFughcGXy9NLXWQVEqsqvOqHUlkUhuTx5QHzQ26PmHDhCwK7e4beEgUkmHFzhVnz3x+ZmRldqVjXnzeELoZXeE+xj13xlszbu1csHPJQMW8cs/KC6c+OzWi+Eaxh7pFzaKb0VsCpgfcnP6v6Snd355mDIVG0a+NWnsuISrBIzsm26sqp8pJp9FRaEyaisVnNQ+dNTQpeGHwnfb+po7RYJHVy8wAAPQ6PTn7UnaPoi8AAM0NzXmPUvhF4C5odhnpkiMuFdtUZlU6a1u1VBKFpDOzNJP6TPTJnLRpUgbLnPXAtxYj9LSZPnl+dGZuqmttfbVtcVmBO4lE0nHYXOnUsNnR61b84yadxtADAFAoFMNXH/z0+1d7IicWFOe630y9OpLJZDcHBYxKffPlDxNWbJq+aaBi3vHxL0c+3/leaHrWTX+FqsWMxTSTh44Ov/zmy1uvEonEB25PpzH0P2w7+sdPv+0YcjUpOrCwJM9Dp9NS6TSGgssxl04cOz1u/szlHW/BNHWMBtMQn6CMO0U5btW1FfZ6g55oxuLIRo8Iu7bpxS3XbG3sejxwGDF9SbG1peDH//710+iyymKnW+mJwQQCQc9h85rGBE+8+sqad67ZWNmqB+NcEELPDroZ3WhBGACA6N3RAAAQMD0AyNRHexRCWi2Fi99eBAaHAev3rwee8O5zz6FrQuHH1T/C9f9eB++J3mDvb/9Ix0HoaTZn2pLE9OxbDtW1FVYFRTmOJDK5jWtmLp85ZWHi6qWvZNKodD0AAJlMMXwZ+dPpb77/MCSvINPpWnJsAJvFUYQEjc/ZvOHfN1dsmrFsoGL+5sOfz23b+0HwrfRED4VCzmazOS1TwmYnb173f7dMyQlpVLp+z+e/nzl45DvP+MQL3nmFWc5arYbCZLBUPC6/+bmJETfmTl/aUXjV1DEabGcuHXVslkvNhAL72uGBoxt76zsuZHJmTn66fVlFkW1eQSYDwABsFkcx1D849/mIF9ODh47FN/WiZ8qwiGGx5WnlLtJqqaCusM6NSCLqGByGLGBGQOzkTZNT2t/iTaKQDCt2rTh86pNTYTV5NW6FiYXBNDZN7jrS9fasd2dd3Tl/58aBinn196v/OvHRibGlKaX+6hY1m86my32n+CbMemdWokmfIdIp+g2/bDgS+12sf+7l3CE1+TXubdo2KpVBVTB5TKl/uH/8yOdHZrX3N3WMBovfVL9crVpLFZeJ7SRVElGbpo1GopJazSzNGnwm+SRNeXXKLSaXqeu8jbJJyQMAUMlU5tnR2eOM7Zcr4Eqx8At6VoStD5MUJxUz6grraCU3S5gkKsnAseboQteGSkKWhMhIFBIAABBJRFj69dLa6F3R/KLkImbq8VQu24LdNmTaEPnEDRObdj2/a8BusJ7/8vna2O9i+TnROWyFREFmWbB0Y1aMaQpdF9pEIDz4WkiikGDZjmW1qSdS2eln082KkoqYWrWWyOAw2rgCrnbsyrGSwJmBHUW9TB2jwVSRXkHPjs4267xOXCqmikvFVAAAOz87NRZ+Qci4e/mOa5d8h9uR76R2zwlPf3I6rDqv2rUgsWDEvZww7V5OuGGgYu6UE/p1ygmvPERO6NctJ1QyeUzpkOeGxAc/H9w9J3zgGA2m6pxqu/L08iGd18kb5NbyBrk1AECLpKUcADoKv3iO90ytyq5yEpeL7WvyaxgAQKCxaXKHQIeM0ctHJ3uO86wf2DNAaGDcy2uYPfKadaGSkMUhzUZyP/Oi5CJmyvEUDtuC3RYwLaB5woYJ0l3P77IbqJgXf7G4Lva7WPPs6Oz/5X4vjGkKWxsmNTn3276s7j65n27sqrFNgTMDOwrImDpGg0VaLaUAAOg0OsKNP270KPoCAOA72belexGXvIQ8lrxe3uXLl7LUMkb7z1xbrg4LvyCEEEIIIfRoCAaDYbBjQAghhBBCCCGEEEIIPeFsXG1Ov/T7S2WDHQfqaffzuyPEpWJhZFLknsGOBaF2e5fsdawrqps52HH0N09X3/3ffXW4dLDjQKZb8fL0VVW15Y6xf2VtHexY0LNn45uLnPKLslcNdhz9iUAgGCKTIgc7jEdWmVkJ+9buA69QL3j+i+eN9tn9/G5oqmqCf575JzC4DGjTtkHK8RQouFYADSUN0NLYAhQGBWw9bWHU0lHgPtq9xz62R2wHAIDNxzd3rLv842WI/ykeVu5ZCU5BTl36S6ulsGPuDgiYEQAR70d0adOqtXDjjxuQHZ0NkgoJAAHAxtUGghcFg3+4f5e+BoMB0s+mQ8qxFJBUSKBV2QosHgusnK0gcFYg+E3xe5hh6ze9jQEAwP6X9kNZahn05W+tTdcG22dvh5bGFth0aBNYOlk+Uoxx38dBQlQCjF8zHiasn9Cl7fbJ23Dy45MQMD0AIiIj7rMH47aO3AqOwxxh1d5VPdpKU0rhwMsHIHRt6H2L2zxtto7cCgaD4cFPzj9lXBw9Tu7bfgzvj58iq16dPbe8qlgU+1fWrsGOBT171mye61hcdmf2YMfR32y9bA9u+GUDXgufIjsX7FwhqZA4RCZFfjzYsaBnz/cvfO9Yk1ezYrDj6E8MM4b47Zi3ZYMdB+qbfWv2CSuzKumRSZHFgx0LerZ8PulzrkquerQPK55Atl62v234ZUPpYMeBTLdzwc7l93LCTwY7FvTs+f6F751q8moGrADwQKGb0cVbYrY0D3YcqKd9a/fZVmZW0iOTIh/6ZUAI9bfPJn3GUcvVf7u8ECGEEEII9Y8Hv64GIYQQQgghhBBCCCGEEEIIIYQQ+puw87cDC0cLKEgsAKWs58sHq7KrQFwqBo+xHsDg3n1ZoapZBee/Pg8apQZcgl0gZEkIeI7zhNr8WvjvP/4LqSdSH1u8arkaotZHQezeWCASiRA4KxACpgeAQqqAv97/C2K/i+3SP3ZvLJz48AS0NLaAzyQfGLVkFLiMcIHmhmbIicl5bHEOpvyEfGhpbAHHoY6PXPQFAKDk1t3nwN1GufVocxvt1qUPQgghhBBCCCGEEEIIIYQQQgghhBBCCD0K8mAHgBBCCCGEEEIIIYQQQgghhBBCCA2kgOkBELs3FrIuZkHwwuAubWln0u72mRHQsY5uRofNxzcDx4bTpa+6RQ1R66Lg0q5L4B/uDxQ6pd9jPf/NeajNr4XJr0yGMSvGdKzXtergj7f+gCv7r4DPRB8QeAgAACDlWAqYWZnBy7+/3CMepbRnoRtjpNXSjnEwVeCMQOAJeX3apr+kHr9beCdoblC/7K+xvBEAACwcLHq0mVmaAYVBgeb6ZtCqtY/ld44QQgghhBBCCCGEEEIIIYQQQgghhBB6dmDhF4QQQgghhBBCCCGEEEIIIYQQQs+UgGkBEPd9HKSfSe9S+KVN2wbZl7KBZc4C91HuHevJVHKPoi8AAHQ2HYbOGgoXd1yE6txqcBzq2K9xKmVKyDifAUJvYZeiLwAAZBoZJm+aDEU3iiDzQmZH4RcAABKZBAQiocf+mDymSceV1kgh/qf4PsXqNMxpUAq/SKulUJRcBAwuA7wnePfLPtUtagAAoLPoRtvpbDpoVVpQt6ix8AtCCCGEEEIIIYQQQgghhBBCCCGEEELokWDhF4QQQgghhBBCCCGEEHqKbTq06fhgx4AQQk+qg3vO7h/sGBBCTyaODQechztDcXIxNBQ3gJWLFQAA5F/JB1WzCkKWhACRTOyyTX1xPST+mghlt8ugpbEFdK26Lu3N9c39Hmd1TjUY2gwABIDLP17u0d6mawMAAHGpuGOd/3P+kHw4GfYs3gM+k3zAaZgT2PnbAZ1tvIiJMU5BThCZFPnI8Q+ElBMpAAaAgBkBQKbiIxAIoZ727zx5bLBjQAihwfbq0VcPDnYMCCE02NbsW1M92DEghNBgevXoq78OdgwIITRQ1vy0pmawY0AIIYQQQgihvsCnnhBCCCGEEEIIIYQQQgghhBBCCD1zAmcGQnFyMaSdTYMpr0wBAID0s+kAABAwPaBL38rMSjiw6QDo2/TgMsIFPMd5Ao1FAwKRALV3aiE/IR/atG39HqNSpgSAuwVgqnPuPz9No9R0/By+ORzMheaQdjoNrv1yDa79cg2IJCK4j3aHqa9PBb49v9/jHCx6nR7STqcBAEBQRFC/7ZfOpoNSqgS1Qg1MLrNHu7pF3dEPIYQQQgghhBBCCCGEEEIIIYQQQgghhB4FFn5BCCGEEEIIIYQQQgghhBBCCCH0zPEK9QIaiwaZ5zNh0kuTQCVTQWFiIdi424DAQ9Clb8LPCaBr1cHKPSvBKcipS9uV/VcgPyHfpGMSCAQAANC36Xu0tRcT6ay9sEjIkhAI3xxu0jGIJCKELAmBkCUhoJAooDy9HLIuZUFOTA7Ul9TDy7+/DGRq748KSKulkHYmzaTjtQucEQg8Ia9P2zyq/Kv50CJuAcdhjmDpaNlv+7VwsAClVAmN5Y3A9O9a+EUuloNWpQWONQcodEq/HRMhhBBCCCGEEEIIIYQQQgghhBBCCCH0bMLCLwghhBBCCCGEEEIIoWfSF1O/WAEA8NbFtw4OdixPkmMfHBuRcS5jRPuy2yi37GXbl8W3L+9+fneEuFQsbF+e+NLEi+NWjSsc6DifZV/P/HqxvEHOb1+OiIw4HjA9oBoAoKm6if7t3G9f7Nw/Milyz0DHiBBCCD0NKHQK+Ez2gdsnbkPxzWIQl4hB36aHgBkBPfpKKiXA4DB6FH0BACi7XWbyMemcu4VcZHWyHm3VudU91ol8REAgEqA8rdzkY3TG4rPAe4I3eE/whl82/QIlt0qgvqgehN7CXreT1kgh/qf4Xvt05zTMacALv6QeTwUAgKCIoH7dr/NwZ6jIqIDC64Vg72/fpa0wsbCjD0IIIYSeLZ9P/vwVAIC3o9/eNdixPEmOvnd0fHZ09rj2Zefhzqkv7H7hXPvyzgU7V0gqJA7ty6FrQo+FrQ/LGeg4nyaSCglj54Kdb3ReF5kU+XH7zwlRCV5x38fNb1/m2/PLXz36Kn7OjRBCCCGEEHpkX8/62h4A4I1Tb1QMdixPkku7LpknHkzs+BIkYHqAPCIyQty+vG/tPtvKzEp6+/Kcf8+pD5wZqBjoOJ9VLZIW4rZp2xw7r4tMiixp/znjXAbr2AfHrNuX7fzt1Gt+WlMzkDEihBBCCCH0IFj4BSGEEEIIIYQQQgghhFAPTsOd8jhWHLnIV1RvrH3ItCE3AQBEviJJ5/V5l/Ossy5luYjLxJbSaqllq6KVSTejK96OfvuAsf3EfR/nlRCVMLHXYAhgiLwRubd9sa6gjh2zJ2aYuExsrZQq2Vq1lk5hUNRsPlvmO9k3d+yqsXcoNIq+zydtoi+mfrFCJVOZ9dYncGZg8px/z7kFAKBt1RJv/XnLsTCx0KmhtMFGJVOZ6fV6ApvPbnYc5lgcvjn8NsucpTX1+H5T/LIUTQpGdW61qHMRHgAAOpuua//dFCQWeD0oToRMMXvF6M0AACcPJm4f7FieJFu/eiMsPvFiaPtyoF9wytcfRp1uX17x8vRVVbXlHQ+XLV+w4c8Xl76aNdBxPm2mLhr6rk6npbQv7/z01x2+noFSAIC4a+eFH217c117G5vFkeHfJXpUgTMC4faJ25BxNgMaShuASCLCkPAhPfrxbHnQWNYIdQV1YONu07E+9WQqFN0oMvl4Ih8RAACknU6DgGkBQCQTAeBuIZj4fT0LrbD4LPAP94eMcxkQvy8exq0aB0QSsUsfSaUECEQCmAvNQafRQXVuNTgEOHTp06ZrA1WzCgDuFrx5EKcgJ4hMijT5vAaDtEYKRUlFwOAywHuCd699JZUS0Ov0YG5nDiQy6YH7DpwVCNd+vQY3j9yEoTOHdhS0UTWr4MqBKwAAEDSva7EZdYsaWsQtQGPTwMwSUzD09xSxcuxKAIDjB64avb97Vn26453gS/GngtuXRwwdk/X5v7+/3L686tXZc8urikXty2uWvnZh2YL1BQMc5lMnfNHQDdpOeeF3Xx464OHqKwcAuJYca/3vz15b1N7GMePJ8e8SocHnEOCQYWZlJhP6CHtWNAQA38m+VwAARH6ihs7rsy5lCbMvZXs2VjTayGplAo1Sw6KxaPItsVu+vd+xDHoDXNxxMTD3cu7QFnGLlQEMwLZgi71CvdLCXw9Pbc+zH8XDxPXHv/6YKC4T27Y0tvC1Ki2TSCbqGByGzCHQIX/ixom3+HZ8lSnHpnPo2vbxKkoqGqKWq7md24U+QnF7e+eiOwgNtK9nfe0AAPDGqTcerlrp39S9ScHm7csB0wOau0wKXrNPWJnVY1Jwy0DH+SS6NyG344MXOz879Zp9azr+Xzn5n5OWt0/d5rQvj14xumnKK1OaBjpOhB7G55M/3wQA8Hb027sHO5YnydH3jo7rVkTwdrcigsu7FBFcG3o8bN3TW0Tw4GsHw4uTijs+WPSd7HtlwccLrrQvb5u+bV1LY4tV+/Ksd2f9OmzOMPx/FqEniO9k3xauLVcn8hG1GmsfvWK0FADAxt1G03l9eVo5LSc2h1lXWEerL6qnKqVKEtuC3fbPs/+8779xg8EAyYeTzdJOp5k1ljdSDQYD8O352sCZgc0jnx8pJxJ73vvKG+SkuB/ieEU3ipgKiYJMZVL1Il+ROnRtaJOdn53GyGH6zcOc49ezvraX18uNzm9l8pht/7rwL5OugVQ61dA+9pkXMtnd92ntaq1pb+9cwAchhBBCCKEnCRZ+QQghhBBCCCGEEEIIIdRD4IzAvIDpAUYnaQAAzP1g7k1j69POpHnkJ+QPIRAJeo4VR9KqaGX2dhw7fztxe6GS7mrya2wbihvsbD1suzzIUVtQyylJKfHg2/Pr7B3sG2hsWqtarqZV51Q7JkQlTMyNy/Vc/8v6k2Qq2WDKufaVf7h/ulquphlry7yQGWTQG4heoV5l7euqc6o5F3dcnEaikLTWrtZV9kPsy7RqLaU6p9o+83zm8JKbJW4v/vTiX+ZCc7Upx5/6+tQsAIBjHxyD7oVfGByGrv13s/v53SIs/ILQ4+frFZhuybeWern5Gb1mho6eGg8A4OMxxGghrXapmUkWWz7csEHXpqN4ewzJ3P3Zf//q3ker1RIOHNrtF3ft/HCpTGKh0WpobCa72V7kXL5s/vrEkUHjGoztuy9efXd5RHZeWsD92r94/4fdwwNHi7uvv1OUw9kV9dmE4tJ8N3WrisFksFu83f3z/rHx/csCa5FJ1zcAgNBRU6/o2rSkrLzbXo2SBpvObfZCJ3n7eF6/eTmkL+eF0P04BDgA344P2THZoNfpwWOcB7D4rB79QhaHQNGNIohaHwW+k32BxqZBTW4NlKeXg89EH8iJNW2ugZ2fHTgOdYSy22Xw44s/gnOQMygkCsi/mg9uIW6QXZfdY5vpb04HSYUELv9wGTLOZYBDgAOw+CxoEbdAQ2kDVOdUw/yP5t8t/NKqg5/X/wx8Oz7YetkC15YLulYdFCcXg7hUDJ7jPMHK2cpIZE+f1BOpYNAbIGBGAJCpvT/68Msrv4CsRgavH3u9o4hLb8yF5jDl1Slwftt5+GHVD+A72RdIFBLkxuZCc30zjFo6Cuz97btsk3c5D058dAICZgRAxPsRj3RuCKGnU6BfcJ6VhU2zl7u/0bxvSuisZAAAL3f/xvZ1rRo18eT5Q05JqVecyiuLBc1yqZleryfwuBayAL/hxS+vfivVnGvRo1Do1i/fGF1WWWQtljTwVGolg0wm67hm5vIAvxHFqxe/kiGwFpqcf91P94I23W3e8P7J2eGLOu7Xm+VS8vFzf7ikpCc6VdWUWzW3yMwIBILBwtyqKXjo2DsbV72ZQacxTC7SOjl05i2dTkdKz77pUi+utezcJrJ1VLSPZ8L1i4EPc34Iof4XMCMgY9icYWX3a1/w8YIEY+vTz6T7Fl4vDCYQCXq2BbtBo9T0TMi7iVoXNacyq9KPyqAq7IbYZZOpZG3tnVrn5MPJ02ryauxe/PHFk49yLg8b152rd0Zybbg1Nm42JQwOQ6Fr1VHFpWJR9qXs8YWJhUNf2PPCfqGXsPlB+2Fymbr28dq5YKdj98IvbiFuYrcQtwQALPyC0JPMd7KvnGvL1Ym87zspuAmg56TgsrQyWm5sLsvIhNn7XmPPbTvHr8mvoTVVNlFVchWRTCUbONYcnccYD8WopaNkLD7rsRXLb9O2wfX/XufWFtRS6wvraY0VjVS9Tg/P/fO5hpGLRsr7sq97E3KbAAA6F89p5z7GXcngMdpkNTJydnQ2fv+B0N9IexFBkY+oxlh7RxFBX1GP70FSjgPSm/EAACAASURBVKc4Jh9ODmmqahLqNDoq3Yze7BDokDfz7ZnX2Bbsfity0FzfTLuw/cLI8vRyD5VMZQ4ABgaHIbN0tqxcum3pBQr9wS8mcR/lXsgwYyjlDXJueXp5jwrk3hO9U5RNSlZNfo1j54I3CKEnR+CsQLlbiNt9P3u7X1G6jHMZ7JTjKRwimQgW9hYapVT5wCr1R945YpUbl8tmcpltXmFeLRQ6xVCaUsq4uP2iZWVmJX3hJwu7XBMlFRJy1LoooaJJQRJ4CFo9xnkolFIlqeBaAevnDT8zF326qNZzvKdJBUkfxsOcIwAAlUnVD58/vMe9MpVBNTmHpTKphvaxL08rp3cv/CLwEGgFHoL2PBMLvyCEEEIIoScSFn5BCCGEEEIIIYQQQggh1G+C5gblBUUE5TkGOUqodKp+68itL/fW3320u9h9tHuPAgIAADvn75wPABAwI6DLDGjvid61/uH+PxFJXd9epG3VEn9Y+cOshpIG0Y0/briMfWFs0SOejlHT/jktw9j6lOMp9hnnMohcAVfsOd6z4wEbBpehHbV0VMLYVWPzmFymrn29Rq0h7l+/f1pNfo3j+W3nRyzZtuSKsf0ihJ5s4WFz0mZOXVh6v/bIN7++/KB9aDStxC92/t9cIBB6LVj16rvL598pyvZlMdnNXu7+uXQao7WmrsImK+924HufbvJ/be17v81+7vmSvp9FTyMCxyQxmaweDy0KrEXK7usyclLMt/xn4xq1WsVydfLMt7GyFZdXlohupl0b+fJbi912fvrbPpGtg0kPEb73j8+vAAC8+u5yXvfCL27OXvL28Zy9YjRO8EX9JmBGAMR9H3f35+nG6x65jXKDJduWQEJUAmRHZwOBSACRjwhW7lkJTVVNJhd+AQBY/OViuLjzIuQn5EPykWTg2/NhyitTwHWkK2RH9yz8QmPTYNV3qyDleApkXsiE3Lhc0Gl0wOKzwMLeAsI3h4PLSBcAAKAwKDD5lclQmlIKFZkVkJeQBzQmDcxF5jDj7RkwdNbQhxihJ4++TQ9pp9MAACAoIugBvR/OyEUjgWfLg+u/XYeMcxlg0BvAytkKJmycAIEz8BKEEOrpuYkRuVPDZlfdr/2d1z9N7r4uryCLu3f/l9MpZIrWycGtytczsFTdqqLkF2Y7xCScGZGaccN916e/HbW1seuSl11Jig4UWIsa3F28KzhmPGVrq5pSWlEouHT5ZPD1m3G+33y0/4irk2dLf5xXe0Gb7utdnTxknZcvJ14U7v9j11Q6jaF2dnSv8vcJKlYoW+i5d9KdT144NDYl44brd18eOs5isttMOe6/Nn2UAgDwxvsvcroXfnGyd1W0j2dS6hXvhz87hNCTIGhuUEZQRFCGy0iXBiqDqt86cut7vfW/sv+KZ2VWpR+Dw5CujVobxbfnqwAANCoNMWpt1IKKjAr/K/uv5I9bNS5/IOMCAHjr0ltf0Nn0Hte5w28fDsu9nDsmelf06Bd2vXD+UeJCCD09HnZScOa5THbK8RRuXybM3vrrFs/a1brVKchJyeQx27RqLbE6p5p27eA187QzaZw1+9ZUmgvNTcrD+qpV2UqM2RNjAQDA5DHbWDyWTi6WP9QchW4TcnsUfvGe4K30nuCtLLxRSMfCLwj9vdwrIlh+v/YFHy8w+j3quW3nhiYfTp5GIBL0Qi9hHovPkjeWNwry4/NHVWVXua77ed1BjjXHaAGuvii+WWxxZMuRJWqF2szKyapE5CMq0rfpSXKxnFuZWemtUWqiTSn8ErIkpAgAilJPpDoYK/wy/c3pqQAAR987Clj4BaG/l6Gzh8oDZwXKBR4CDZlKhq0jtzr31j/zYiYzNy6XzbHh6NbtX1fF5rP1AAA6jQ5+/+fvNjkxOezMC5kK/3D/ju9uz3511kLRpCANixjWPHPLzEYCgQAAAPXF9dJ9L+4TnfrklJXTcKcKGpP2WF6i1NdzbEdj0/T3y40RQgghhBB6lmDhF4QQQgghhBBCCCGE0BMlJzbH5sg7R+YLfYQl635ed85Yn20zti1RNim5r/312s9cAbdVo9YQ476L8y1NKXWU1cr4rYpWJolC0poLzRtGLByRNnze8Ps+JNbZsQ+Ojcg4lzEiIjLieMD0gOrObdV51WY/rvxxhdNwp7yVu1fGdm5TNavI0buihxTdKHJrkbTwAMDAteFKAmcGZoxbPa6gc1+D3gDxP8V7Zl7M9G0Rt/B0Gh2FyqSquDbcJr+pfrljV44t7OOQPVHuV8Slr4qSi/iSSokN3YyuGD5veJe3WFLpxt/qQ6FR9C4jXErEJWKRpFwy4G/ouX3yti8AgO8U3y4ztq1drBVTX5+a1b0/lU7Vj3lhTMrR94461t6pFQ1UnAihJ89nO98bJ5bUCaZNmnfpzKWjzxnrE3v1nPBOUbavOc+iIWr7iR+5HJ62vW3v/i8Dj5w8MOfoqV/G91fhlxeef+mGr2eg1JS+X3+3dYZarWLNnLrw3BsbIzsmNG/5aGN48u2rIdv2fjDp6w+jTvdHXAg9DuNfHA/jXxz/wH4eYz3AY6xHj/WOQx0hcGbPQiCbj282uh+6GR1mvzsb4N2ebZFJkUa3IVFIELwwGIIXBvcaI4lMgjErxsCYFWN67fe0I5KI8MbpN0zuf7/fxYN4jvMEz3GeJvUNnBlo9O8AIYR6wzHjahbOXhm/bP66XI4Zr6NQqLpVRXz93RemF5TkOu386dPgT97bndB5uxO/JH5vrIDKR1//KyTu6rnhP/66Peiz/9sb3x8xPqigTTsbK1vlqsWvXFw0Z2UhncbouG9vkjVeffmtJfOqaspsfzz4jf/mDf9O64+4EOos80Km6K/3/1ol8BDkbzi44aixPl8999VGpUzJe/XPV7ebC83VGpWGeGnnpWHlt8vdmhuaLVsVrWwShaTlCri1w+cNvxGyOMSkgsJH3zs6Pjs6e9ysd2f9OmzOsC6fYVVmVXL3rdn3ikOAQ8bqH1af6tymlCnJF765EFxyq8RH0aTgE4AAZlZm9UOmDbk5YcOELp8tGfQGiNkTMyQ7JnuoQqLgt2nbaBQGRWFmZSb2neSbHrYuzPQqhE8gr1Cvur70L7hW4AkA4DfV70Z70ReAu28CD1sfFn/orUPu6WfSRzxq4Ze+xgUAYKzoCwBAwIyAnNzLuWPkDXL+o8SEEHo2GJkw6/KgbbbEbCmh0Ck9JvBe2H6Bf+P3G7yEfQnmc/49p1++v+mOyqDqF32+qEboLdRwbbhtl3ZdMjdWtAUhhPpbfVE9+9aft6YQiAT9vA/nHfCb4lfT3nbsg2OjM85lhJ38+GTo8h3LLz7KcZQyJfnP//tzoU6ro87bOu+Af7h/l+cIdBodgUQmPZYiCgh1VpZaRtv/0n6h2yg35bLty4zer+ycv9NOViuj/OP0P8pY5iy9TqODpMNJnKLrRUxxmZiibFKSyXSy3sbVpjVkaYjMO8zbpBc33Pv/nbdsx7Ka7oXtJBUS8s4FO+19J/u2LPh4QUPnNo1SQ7h28Bo3Ny6X1VTdRCEQCGDpaKkZsXCEbOisoYrOfQ0GA6QcS2GnnkjlSKulFI1KQ2BwGXoLBwtN4MxAeeCMwC79nzYiX5GmL/3zLuexAABGLhopay/6AgBAppJh4saJTcXJxcybR29y2wu/aNVaQsmtEiaBSIApr06RtBd9AQCwdrHW+of7y1OOp3CyLmSxguYG9UvB6O76eo4IIYQQQgihrrDwC0IIIYQQQgghhBBC6IniM9Gnjm3Bltbm1zpKa6Q0ni2vyxu48i7nWbeIW8zt/OyKuAJuKwBAc10z/cYfN8Za2FvU2nrZVjA4DJVCqmBWZVU5n/n8zExZrSxu0suTch9HvM0NzdSotVERslqZJc+W1+A60jXXYDAQqnOq7WO/i51SX1LPn//h/KT2/n++/2dI9qXsYUwes9lxmGMhlUnVKJuUTHGZ2Do/Id/1aS/80l+SDyX7AgB4jPXIIVFMe1CuTdtGKEstcwQAEHgIGh9nfN01ljcyqnOrnUhUknb0stF3TN2ORCHpAQAIRMID3wCHUHeX4k/ZfbrjnTWuTp55P3795yFjfeatHr+pWS41P7j77DZbGzuVSq0kfbf/q6DM3BR3saTeSqlSsMlkitbG0rZm5tSFiQtnrzTpGrT1qzfC4hMvhr6xMfLAzKkLSzu3Zeen8V59Z/nrvl6B6Ts/+fV45zZZs5SyO+rTkbezkv1ksiY+EAhgYW5VNzl0ZtKapa91KZCk1+vhx4PfBMRfvzhcKpPwtVoNjU5nKCz41g2ho6beXr3klS4T4Z5WcdfOC+MTL46fMCY83tPVt+7MJaNzFKGsosgcAMDVybO4c9EXAICIaUvyj5w8AEqVgjkAIXeRkZNiXl5Z7GrG4khfX/fezc5t/3rlo7glG6YGZeWmDpHKJBd4XL72fvtBCD17Drx8AAAAguYGwcwtM3u0bx25FQAA5n80H/ym+g1obP0pJyYHjrx75L7tZ788CzeP3rxvO0KmiE+8aLP1qzcWerr5Fe/94o+zxvosWBO2TCZr4v669/w+GyvbVnWrirjvt29907JuOtWLa/hKZQuLTKFoba3tGiKmLbk9+7nny4ztp7tPd7wTfCn+VPCW1z451r04yJ2ibLON/3p+ZaBfcN7XH0ZFd26Tt8jI3x/YFnArPdFdIm3kEQAMVpaCxucmRqQvX7ChSwFVvV4PBw7t8Yq9etZP0iTmabStFAadpbK2FEgmjp2Wu3T+ui79nybODu6Kl1b9K7P7ejqNoV88b82tj7a96VRYktejUKixoi8AAOET5hTGXT03vEFcO+DFUEcOGyceOWxcj8nE5lwL7fTJ82///PvOqbkFGXYAgIVfUL/zD/evuvDNhca6wjo3SaWEwbfjd5m4lnUpS6hoUljYetnmmQvN1QAA0hop49Zft6aaC80rbdxsShgchlIpVbJr8mrcL3xzYbGsVnYmfHP4Y/l7ldXKaFHropY31zcLONacWucg53SDwUCoya9xSYhKiGgoabBc9NmijuJNh985HJZ3OW8Mg8OQ2g+xz6UyqWqlVGkmqZDY3rl6x/tpL/zSV6pmFRsAgG/P71GsVOQjagIAkFRK7DUqDZHKMF5AeqBlR2d7AACYi8zrBzsW9GwoTS2lHXjpgMhtlJvifpOCv53/rX1zbTPlH6f/UdoxKfhQEqfwRiGzsayR2m1SsLSPk4LNl+1YVt19UnBjRSN514JdDr6TfeW9TApmG5kU3GViaqdJwdyOScEcht7C0UITOCOwOXDmszUpGADAWNEXAAC/qX4tN36/wZNUSiiPHplxZCoZTP37QOhJlHkhU3iviOCd+xYRnPbVBqVUyXv1z1d3dCoiOLQ8rdytub7ZqlXRyiJRSFqegFcbNC8oqQ9FBMd1KiLY5UUm94oIbrpXRLBLYfVORQS9FU0KPoHQqYjg+gldckOD3gAxe2P8s6OzhykkCvN7RQSVHCtOg88kn/SwdWGP5Tv0gZB2Js1V36YnC72FeZ2LvgAAzH5v9vXcuNyRpSmlAUqZMpbJZerut58Hid4VPUwpVfKDFwWf6170BQCATCVj0Rc0IByHObaai8y1JTdLmAqJgsjis7rc75SnldMklRKK+xh3Bcv8bptSqiTF7I6xEHoJ1U7DnFRMHrOtpbGFXJRUxDz89mHBtH9OEwcvCpY/jniVMiXxwMYDtvXF9VRrV2uNf7i/3GAwQMnNEubJ/5y0bihukE59fWpTe/+L2y+a3/jjBo9jw9F5hnq20Fl0vbxRTq7Nr6XlxOSwnvbCL32lkChIAADmduY9vl+1cLDQAgBUZVfRdRodkKlkUEqVRL1OD0wus43Opve4LvFEd79fLr5VzHhchV8eVpu2jZB6IpUtrZWSqXSqXuAh0LgEu6iJJOJgh4YQQgghhNCAwsIvCCGEEEIIIYQQQgihJ47HWI+81BOpIUmHkjzCN4d3mQCVejLVCwDAP9y/442tHCuOeuOvG3+xcbPp8qCHXCyn/rjqx3lJh5JGj3lhzJ37vXH1URz74NhYWa3MMmhu0PWZW2bebl/fqmgl/bzh52lZF7KChjw3pMh9tLsYAODOlTu+dDO64pUjr/zB4DC6PGDWVN1EN+WY1XnVZkl/JHn1Jc6Ri0fmCb2Ej+WBnf6mblGTSm6WeBAIBMPoZaPv+7BhU3UT/fIPl/0BAFQyFaM6t9pe0aTgOgQ63AleFFw6YAEDQOKvid4GvYHoNNQpj2XOMrmwQcqxFG8AADs/u/IH9UWouymhsyr3/vxFY0l5gXtVTTlDZOvQ5eH6mCtnRVKZxNLdxTvX1sZOBQBQW1/FOH3pyHMCa1GFi6NHMZvFUcjkTWaFxXkee/d/uaxeXHNq04tbUh9HvHUNNfRX31m2UiypF1hZ2NQE+I24bdAbCIWleW6/Hf1hfllFkfWHb++Ibe8f+cXmSdeSY8easblSH4+AbAaD2SprbmJX1ZaLbqTE+/4dCr/IW2TknT99MtfSwrr2rVf+c/Xi5ZMO9+vr7e7fAABQXHrHWd4iI5uxuR3/h5y8cNgDAMDV2au4v2KLjj/tdvL8IRqRSDTYCZ0k4WFzSiwtrFu797ty45IzAICLk2cRidT14WYLcyuNUGBfXl5Z7BqfeNFuzrTFJf0VH0Lo6eU0zAlg7f+Whd7CLu2BMwLv9rnH2tV6YAJ7TKycrSB0bWjHMs+2ay0G99HuwOT9r25X53NHyFSho6fW8XmWTYXFuU619dV0gbWwywTbKzeirSVNYnNvjyFFNla2rQAA9eJa+l9nfh0vsnWs9XDxqTAz46qkMgkrryDTafsPH82qE9fErlu++bEUEhA31lFffXf53LqGGisbK2HD8IDROQaD/v/Zu+/Apqq+D+C/7N2k6Uz33nsPoKVAkb1RhogoCoq494OIA8eruNAHUVBEFJU9y2opbaF7751mdCdN06xmvX9A+6RNW1IsUPR8/uLec27uSVrSe5Pz+x5MTX2F0/7fvpnd3NJg8Z+XPs0e6P/hF6/FpmWlhDPNzHuD/MLrqBRaf0+viMoTNNtk5aV5PMjBL2Mh4Ak6AAAsFmtyAdnVrBQXAAB7jtOEhaEWl+dyKmqKrXU6HYZjbS+dPmUOj2PjoLz9kf+Dx+NvPRfcpAhgQP6Z3GPcS0vPl06/8dsN/3mvzcs3bCs6VRQEABAwK6B0YB/Thql86sBT33C8OUM+L+vt6CX9sP6Hx/KP5c+YtmFa+fDP7ybCsXeOJfd29NoGzwtOXfzO4hsD+5V9Stz+J/evrEqrmlKdXl3tk+DTDgDQcKMhjEQjSbcc2fL98IJVEU9EMeWc/HI+M/v37ODxjDNmVUyJQ4CDZDzH3AskGkkOACDiiYxCrgSVAnMAAL1Oj+WX8c3dotzuaTj0gJMfnIxRK9RElVxF6uZ2c8QCsSPDktEx+4XZ1+/HeJB/H5cwl4GiYNpIRcHcYi5JzBcbFwV/d8VyWFEwriGngfbn639yHnr5oc7oldF3syjYbkhRsE4PTfk3i4I7GjuIs5+fLRrof+HLC+ycwzk3i4KnefeR6CRdX3cfrq2mjVSZWkl/0INfJlJ1ejUVAMDa3XrcYTII8m8RODtQeCtE0F0sEFPM7c2HhwhyZKJRQgTtzfk2njaNFMatEMGaVs8LX1x4WNImOXfXQgTbJaT9T+5f09vRa2tmMyxEcN+1xZ2NnVYjhAjGGYQIquQ9crpBiOADG/wiE8loAAAMK4Z4eBuOgNNTzCiS3o5e26q0KvvwxeEmBdyOpCGnIQAAIG5tXCW/nM8sSylzV/YpyUxbpiR0QWjj8N8ZBLmbAmcH9l3bf828+FwxPX5tfK9hW9GZIjoAQPC84MFQDyqTqt16bGsLi8MaMldG0avA7Htin33q96nskAUhfUQKccIDjM59es6io7GDmLAxQZT4ZOLgvaVaqRb99uJvNjd+v8Hyn+kvGwi9Kz5bbEa3oGufPfwsn0gdOp4+UZ9JCSAinghfcLKAMZ5xhi8Kl7Id2RN+7/93UZgUHQCAWCAmAMCQ95nulm4CAIBOq4Pulm6CjYeNmsKk6DBYDCikCpxKpsKQaKQhr2GPoIcAACDi3b1AwDslF8txp3eetjLcZ2Zjpln49sJO92j3cX0OiSAIgiAIgiAPMhT8giAIgiAIgiAIgiAIgiDIpBO1Mqqm8FRhdHV6tbdh8Eu/sh/bXNDsSaQSFWGLwwYnZxGpRN3w0BcAAIYlo98nwacq70hefG1mrXXQQ0Gtw/v8HT2tPSRuAdebZcfqMAx9AQAg0Ujamc/OvHHohUNOxaeLPQeCXwAAsFisDoc3LnYamCx4O52NnYzS86WR4xmrW5Sb4EEJfsn+LdtDrVKTON4cro2nzagrDfW295KHvw6+Sb7FS95dkj3aMXeDXqeH6vRqPwCAyOWRJgdR5PyR41J/o96fzCD3JT+fXHT7IxDEWERIXPHla2dn/Hny58AXN72Ta9h2/vKxYACA6fEPDU4utrbkKP776R9fern7DZkI2NHVRtr82sNPnL7416x1KzeXGoaKTJQPvnj1oS5Rh21y4sLLb2zdmTWwv08mxT/35ppHMnOuTM3MuVI5JXpGGwBAfvH1cCqVLv1l99nvmGasIYFKfCGXOvzxR1JRU8w6cvqXkPGMc/mCdcX+3iFGq4bfDe/venWmVCox//Ctb78nEkljFsHGRCR0RIVOyc4tyoxZs/mhLV5u/rVkMrm/tV1g1cxr8PD2CCh/c+vO1LEeYzxOphyeZ7j9yx/f9T80Y+nlF5/elme4X9DaYgEAwLGxH7GYzpJtLWrhN7o38+otAAAFvyAIAi7hLuAS7jJqe8j8cb1tT3pWblaQ6JY4artnvCd4xnves/Eg/1wx4dOqz105Fnv0zEHPZze8PiRA9dzlo74AADOmzhss5rJi2yh/2HX0ZzdnryH30t2iTuLm1x5efuzsr/GrljxRQ6cxJjxAdedXb05r72y1mj9rxfWXNm8fDB2Uyftwz7+9bl5q5rmIWYkL6qPDpnYBANzIT/en0xiyX3af+W34dWprO9+kANXahgrG0TO/+o5nnMvmr63ycve/b/fRZy7+5QcA4OcdPGpx2hffvxeqVCoIcoWMyOU32vCFzRwrC9uuTY+9kj/aMeOVknoixnD7p8O7tYlxDxW++fxHOVisaavupmac8wUACAmIvONCOwS5nZhVMWWlKaWJdZl1QfAaDP4f6Ff0Y3klPD8ihSiLWhFVP7CfRCNph4e+AACYWZupPOM9S4pOFc2sTq+2C10QOqFhvSK+iMIr5QUybZithqEvAABkOlk745kZVw6/etit6HSR/0DwCwAAFofV4fA4o0I8tiPbpCLTjoYOVsXliqnjGatblBt3Mga/uEW51QsqBP7ll8qjY9fEVgx8pqpWqrFXf7g6baBfn6jPpL8Rd0PllcqYfnk/bWDbys2qYcXOFactnCzk92tMyL9P4OxA6bX919jFZ4vp8Y8OLQouPl3MAAAInhc8+D5IYVK0W49u5bLsjIqCu/c9sc8u7fs0i9AFoXe3KPjJBFHixsTBz+XUSjXmtxd/s83+PZsVMDOgb6AouORsyUBRMO9Oi4K7ed34wpOF4yoKDlsUJrVwtJh0RcGG0velM/sV/VhVnwrbVtNGElQKyJYulv0JTyQYhSIgCPI/7jHuZaXnSxOvH7ruN++1eQWGbWOECO4eJURwXf6x/KS7FiK47dgsgxDBwe9Eb4UIrqhKq4qvvlZd7TPtVohgdkMoiU6SbjmyZe/fDBEMGs84Y1bFlN7ta0kKk6IAAJB2So0CAXUaHSh6FUwAgI6GDjYA3NH9qFqpxko7pdZEClF2de/V0JJzJYl6nX7wb831X6+ro1ZGXUzemlxyh08DQcYldGGoNOPnDPOylLIhwS+afg1UX62mU5lUrU+Cz+B9B56Eh+GhLwAAFDOKPmhukDRtTxqbV8ojTXS4hkwkw1amVtJtPG1UhqEvAAAEMkE/87mZoh8f/9G+9Hwp3d7ffjDgD4vD6rE44xBkOptuUpiwSCDCXz943eg9YSyuEa6KyRj84hnnKa++Wk3L/TOXGTw3uG8gsFGr1kLa3jTzgX6KXgUWAIBIIeodgxwVLcUtlMu7L5vPe33e4Ova2dyJL7tQxgAAUPWpTPtA7x4JeihI6hzqrLT1tFWTaCRdN68bn3M4h1lyvoRx+JXDtuu/Xy+097NHIYYIgiAIgiDIvwIKfkEQBEEQBEEQBEEQBEEQZNKx8bCRWbtb8zvqOxybCprMXcNdxQAA+UfzXdRKNckn0acET8QPmezRlN9kfu2na6Ed9R12yj4lTafR4QzbJa0S+kSPsz673kav12MwGAwcf/e4URCLTqvDAgCIheLBSReuka61tRm1gV8t+Wq1a4RrvUuEi9B7qncbw5Jh8kSF4LnBwuC5wd9NzLOYfMoulvkDAITMDxkzRMU51Llne87277RqLaazqZNWdLrIrfBkYdSe1Xs4675dd4Zpy1Tdi/EWnSlykPfIzVgcVqf3NO9OU46puFxhe+mbS7NwRJx60X8WpZhZm92TsSL/PMsXPFZ6JeNcUnbhtWAAGAx+USjluIqa4gAymSJbOm/tYGEbjUrXDg99AQCwtrRVRYdNK0pJPZ58Lfuy/byZyya0IFPQ2kKprCkJsrK0FRqGvgAA0GkMzZNrX7i07eOt7ueuHAscCH4BAMBhsFo8Hm80kc/BztmkQqkmbh0r/frFhPGMNTwotvleBL+cPH/YNb/4enRy4sLLUWFTTHrv+Hjbngtf/7iz6/SFPx8qLMse/LtjZWHTOmPq3BIWk60e63hT+HoGccODYutiwqfxHexcZE0tdYzzV475XLl2NvH0hT/m4nF43XNPvjk48V2hlJMBAGhU+ojvY1QKTQkAIJNL71vBHYIgCIL8Gyydv7b6fOrxmKzcY+a0JAAAIABJREFUVF/D4BelSoEtqcj3pFJoivnJKwav8SgUqm546AsAgAXbqj8+KqnyZMrhKdn56TYzE+YLJ3KcbR1CcklFnrettX2HYegLwM1r1afWvXT9jfc3OZ2/csxrIPgFAACLxWnxOILRdSHHxsGkopRmXoPZpfTTUeMZa3hwrOB+Bb8cPfOra25RZgCdZta3+bFXCkfrd+Xa2VC5QjYYiuju4s3d/srnl+1sHf92sY6Hq0+XjRXnSnxUksDBzkXW2s6npGWlOJ08/3vMlYyzkTqdFrvt5c9u3O5xvt3/SWBDc42ztSWna/0jzz6wK8kjkx/HmyO1dLZs7mrucq3Prrf0iPHoAgDIPpztpVapKZ5xnjl40tDPE+tv1Ftm/JQR29nU6aSSqeg6rW7IfMoeYc+4AgFMUZdVx9Hr9RjAgP7I20emDW/XaW5+nihplVgO7HMKdSpvyG6I/GrJV5ucQ5wrXcJduL7TfQXj+TwpbFEYN2xR2IcT8yzur4QnEiqqr1YHdjZ1uu1Zs2eTna9dLY6A07TVtrmqZCo6mUGWKKVKJgaLmfBwClO9mfbmlwAAnU2dtOr0aofsw9lJPz7x45OLty3+w3e6b9vtjkeQiRC6IFSa8XMGuyyljGEY/KLp10B1ejWdwqQMKQomkAgwPPQFAIBiRtHdKgq2uItFwQwbDxuVYegLwGBRcPePj//oUHK+xKgoGIMz/n9ualGwWCDGXz943fz2Pf/HNcJVMdmDX3L/zGXJe+SD34+5hLsoluxY0kG3MO11QZB/q1shggl1WXVBADD4+Xe/oh/LK70VIrgyqmFgv4khgpzQBaG8iRynWCC+GSJoy2w1DH0BuBUi+OyM1MOvHHYrPlXsPxD8AjC4KMnfCRFkTsYQwcDkwIbcP3N1rTWt3pVXKm39ZvgNXmed2nkqRq1UUwAAlFKlSQE3I+lp7aHodXqsWqmmlpwtme4/yz8jbm1cCZlO1uQdyfPK/St31o1DN+ZZOFr0hC8JR2GnyF3H4rC0TsFOCm4Rl9JW20aw9bJVAwBUplbSlFIlNmJphASHHzJVBtpq2wiZBzJZvDIeWSaW4bT9Woxhe29H79ADJgCvjEfS626+7VzafcnomkunuXlp0sXtIgzs80vy6ys8WWi2e+VuR58Enz6XcBelc6izkmJGMfneziPGQ7k9Z/s/YiGKkPkhfWUpZfTmwmbKd4985+AR5yHHE/H65oJmikwswzGsGBpppxSPwfzvxznn5TndPz39k13+sXymoEJAdgh0UMp6ZLi6zDoay46l7mzsJBr2nwxmPjtzyD0Ax5ujXrx9cReRStTlHcljXt171XzNl2vaRzseQRAEQRAEQf5JUPALgiAIgiAIgiAIgiAIgiCTkv9M/+qO+g7H/KP5Pq7hrjcAAMovlvsAAIQvDq827FuZWmlzdNvRRXqdHmvtbs13DHJsJlKJ/RgMRt/F7bIUVgpdNf2aCZ+sIhffLHYXC8TWYoHYerR+apV6cLLKyo9WZl78+qKkOr3at+JyRVjF5Yqwc5+e03G8Odw5L8+57hA4+VbRvZea8pvMRTyRLZlB7jN1chyOgNPbetn2zXl5Tindgi5P/W9q8tlPz0at3rU6426PFwCg6FSRPwCA30y/SlP6V16ptDnx3on5GAwGFr2z6LRPok/H3R0h8k/m5e7X62jn0tQiaHLLLcy0GggQ+evUL16qfiUlKnRKNpFIGjKpP6cgw+rXo9/Ht/CbnOWKPrpWqx3yfVFbh2DCC9tu5F+11+v1GAwA7PjspcTh7VqtFgsA0N4hHCxsC/ANKysouR61etPsZwN9wypCAiK502KTedaWtiYXts1PXtE8P3nFjol4DhOpvbOV/OOhLxfbWNnxX96847opx+h0Onj9/U1zCktvRM6YOi91+YJ1pZYWNsqcgmu2P//x7ezvfvp0DU/IPffi09vy/s7Ynnn8tSLD7UDfMHGgb9gNZwe37u9/2bXq/JVjSZsee6WQQCDctwI6BEEQBEGMuTl7yVwcPfhNLXWORWU55qGB0WKAm2FzSpWCHB+VVEwkEIf8/S4szWb/emRvWFNLnV2fTErTaofeN7d1CmgTPc7cokzrgQDVj7560yiIRaPVYAEAWtv57IF9oYHRtTfyrwat3jx7bWhgdF1IQJQgPnJ6mwXbyuQA1eTEhYLkxIW7J+ZZ3F1pWSm2e3/5PJlAIKpfffa9c1ZjXP+eOZSzHwCAL2ym3MhP5xw+sT9u82uPPPLWC5+ciY1IMClccDQrFj7WaLjt4erT5+HqUxngE9q57ePnVqTfuBj6ZDu/aKzwnT9P/ux27Oyv02hUunz7q7vOkYhkVHCM3FW+031LMn7KcM0/mh/kEeORCgBQeaUyCAAgfEl4qWHfsgtl9ifeO7FWr9NjLV0sm+z97WuJFKIKg8VAd0u3TVttm9fd+DxRJr4Z1iRpk9hJ2iR2o/VT96uJA/9e9dmqS+c+O9dTl1kXXJ1eHVedXh134csLOmt36/o5L8+57BzqLJ7ocU5mOAJOv/HnjX+c/eRsdENOQ2BLcUsQFofVWLpYcpfuWHrk+LvHlwEAsDgso4Cze83K1Upm5WpV4xbp1rbvyX2bz/3fuYW+03333u9xIf8OLLuxi4LDl4YbFQW31rQSsn7JYvHKeJRRioInfN75YFEwZtSiYAwAQDe3e/B90S/JT1p4spD57cpvnW4VBSucQ51VFDOKydcat4qCG2/f88Hy6oVXuQAAvZ29OG4hl5y2J42999G9Do/83yOtDoEOJl8/I8i/jWGIYEN2g6V7jHsXAEDO4RxPtVJN8Yz3zB2+KMmtEMGYUUMEWyc+RLA2s/ZmiCAAHHn7iFEQy8CiJD2tPf8LEQxxqmjIboj4aslXT98KEWy5gxDBlrBFYTsn4jlMJHt/+96AWQEZZRfKEo7858hjdr/ZVdPMadLulm7bbm63C8OK0SHtlFr/nUBAve7m663X6zGuEa5Fy95fljnQlvx8colaqSbkH8tPzvkjJxYFvyD3SvDcYCm3iEspOl3EmPPyHBEAQMm5EjoAQMiCkD7DvtxCLunX53/l6HQ6jFOwk8Iz1lNOpBF1GCwG2uvaiQ3ZDdTh13wTYSCIrr2undRe104arV+/oh878O95r8/rZtmx1KXnSxk5f+Swcv7IASwOC66RrvLZL87utnKxmtQBfBMNi8PC2q/XtmX8nMEsv1TOqLhUQccRcHrHIEflyo9Xtv/15l82AAB0C/pgeKOtl616408bBWk/pJlzC7iUghMFTBqbpolYFiHxiPWQH9xy0I7KohqFPU5GkSsie/OO5DH55Xy0uAiCIAiCIAjyr4GCXxAEQRAEQRAEQRAEQRAEmZSiVkQ1ZvyU0d+Y0+ilVWuzJe0SclttmxPThtnlEevRbdg38+fMCJ1Gh1+8ffGJ4LnBQ1YjP73zdJiwUuhqyjkHJn0NrKxrSCaSGU1GITPIKgAAn0Sfkoc/eTjLlHPgCDj9nJfnlM55eU6piC+i1Fyr4VSmVnryy/juh189zN56bOvvRCpxzMnJwmohI+dwjo8p5xsQ/Uh0tZ2P3X1ZqXw8cg7n+AMAeE3xqsIRjFeeu52Q+SEtqf9NhbbaNvuJH50xEV9EEVQIXHFEnDpuTVzt7fqXXSjjnPrg1HzAgH7JjiWn/JL80MpEyN82NWZm8aGjP7idTDkcHBU25TIAwLUbF0MAABbMXlls2PdS+mmHT3dve0yv12Ed7VwbfTwCaihkqgqDxej5Qq5tQ3ONt1rdP+HfH/VIRBQAgI6uNruOrrZRC9v61arBAo6db32b8tUP74tzCjJCruelTbmelzblvz9/pnN18qh77sk3Lwb7R4pGe5zJ7sMvX5+tVCmp7776xS+mBqjsPbgrpKDkelRU6JTst174eHBi8ZwZS1p8PAN+f+rlFc+fv3Js5mMPP1PCZllMeBHHw4s31B48slcql/cx8ouzrGIjEzsAAChkqhIAQCbvG3HSplwhIwMA0KiMCV0NGkEQBEEQY4nxD1U1tdQ5nkr5wzc0MPo6AEBa5nkfAIAFs1cOCVBNv37R5sMvXlui0+uwrk6ePH/vkCYKhdqPxWD1LYJGy5r6Crd+df+EBx70SERkAIDWdr51azt/1ADV/n7VYIDqjte+yPjup/+TZOWm+l7NSgm/mpUS/vXeD3Qebr7c5558M9PfO+QfE6B69foF20++eXshBoOB15778NTUmJkmBYU62LkoVix0aQwJiOx85rVVj36xZ8es2B9Tf7sbY4yNSOi0s3Vs5wu5nBv56bZL561pHqnfkdO/uO09uOshKoUm//Ctb4/7egb23o3xIIih2NWxNdcPXVc1FzQHaNXaNLFQTOlo6HBnWDHavad5D/n/lHkgc4pOo8MveGvBr2GLwoYUaB5/93hcW22blynnxGBufp6o1RgXyvV19xkVJ5EZZCUAgGecZ87qL1ZfNuUcOAJOv+DNBbkAkNvF7aJWpVU5Vl+t9hdWCX3/eP0Pq+ePP/89iUYas3CLX85nZv+eHWzK+QbErIopcQiYnCHVBDJBt3j74hsAcMNwv7JPiZOJZWwCmSB3DHScNGO397eX0C3oXdJOqY2IJ6KwHdmK+z0m5N9hlKJgBgBA6ILQId8XNBc2kw49f8jOoChYZlAUTGrIbqBq+jWTqShYY1AUzMLisOAa4Sqf/eLsLivXf1dR8EjMrMy0gbMDZfb+9qrvHv7O6cR7J6y3/LWFf7/HhSCTmV+SX+m1/ddc847mBbrHuKcBAFRcqRgtRNBuWIhgHZFKVGEwGL1BiOCEf9ciE8soAACSNglH0ibhjNZP068ZvKe+FSIorssyChFs+CeECC59b2mWlatVV/GZ4qi2mjZPvV6PNbM2a5/9wuw/6m7UeUg7pdY0c9odBwLSLemD3234JPjUDG8PWxxWk38sP1ksFI/63ReCTDT/Wf7ylC9S9BWXK+izX5gtkoll2Ob8ZqqVq1W/vZ/9kO8Ir+2/xtL0azBrvlrT6hHjMeS7urTv01gN2Q1UU845cO87EMpnSNGrMJpfQ2bcDP+NWBohmff6PJO+08XisDB1/dTeqeun9kq7pNjmgmZy+aVyem1GLe3Q84eIW/7cwsOTxn5rFfFE+IKTBeMK3gpfFC5lO7In5fUjjoCDxI2JksSNiUPub9VKNaZH2EOgmFF0Fk4WQ8Zu6WKpWfHhCqNA6LwjeQwAAI4Px+Tgr/uJzr4ZaKNWqif8HgRBEARBEARBJisU/IIgCIIgCIIgCIIgCIIgyKREppO1TiFO9Y05jX7FZ4sdOho6zPU6PdZrmpfRhCppl5RJIBNUw0NfAAAElQKTJ1kNBLn0tPbQh7e1FLdYDd/nEevRARjQt9W2jTqxbixsB7YidnVsY+zq2MbvVn23sLOx06GpoMnCe6r3mKtydzZ2MkrPl0aO51xuUW6CyR78opKpcI15jd4YDEYftyau6k4eo4vbRQMAwGKx92QV8ayDWT56nR7rEupSTTOnqcfqW3ym2P7Mx2fmYXFY7dL3lp72SfAxqYAPQW5n5aL1VX+eOqAqqcgLUqvVV4TtPGpTS72HBduqPT4qaUi40OHj+6ZptRr8S5u2H5ifvKLZsG3nl69PaWiu8TblnBgMVg8AoNFojCbyiXu6jQrbGPSbK0dGhU7J/njbngumnINAIOhfeea9bADI5vIbadduXHLKyr0SUNtQ6bf90xetD/035VsalT5mYVtFTTHryOlfQkw534DlC9YV+3uH9IznmPFqbedxtFoN/tUdG7eM1F5VWxqYtDQg0IJt1f7Xj2l7AACKynK8AABCAiKbhvd3dfLsM2eyu7pEHballfkWiXGzW+/GuKlkqkwu72P0yaWDAT32HKfum89JYDHSMV2iDjYAgIvj0NA2BEH+vh5hD3y15CsInhcMi99ZfL+HgyDIJLBk7uqGQ0f39heU3vDWaNQ32jtbyfVN1c7WlrZdUaFTugz7/nb0h0iNVoN/Y+vO48mJCwWGbZ99+054TX2FmynnHCj60GiMi4DFEpFR4S6DbtYPABAflVT8/htfZw5vHwkeT9Bv3fhWydaNb5UIWlsoWbmpnGvZl7wqa0o8tn20lX3ovymHKBTqmPeAtQ0VjKNnfvU15XwDls1fW+Xl7n/P7qMvXzvL+ezbbQsxGIz+jec/PpEQlzzuoFBPNz+pBdta1NHVatnazidzbBzuSvgejcpQAAAoFDLCSO2/H9/nse/Xr5KpVLp859vfHg/wCZ004QvIPxvFjKJxCHCo4hZyQ/KP57t2NHRY6nV6rGecZ+nwvjKRzJxAIiiGh74AALRWtzqbek4yg6wAAOgR9pgNb+MWcY0+M/Sa4iW89M0lfUdDh5Op5zBk6Wwpn7p+as3U9VNrdq/cvaab2+3SkNNg5Zfk1zbWcR0NHayKyxVTx3Mutyg37mQNfhlNxk8Z/nqdHucU4lRxv8cynKpPRQcAwOKx4w67RpA75T/LX5byRYqu4nIF41ZRMG6MomDzW0XBwr9ZFAwAIxcFK3uVxkXB9JtFweFLwyXzX59v0udHt4qCJVPXT5VIu6S4IUXBLxyye/bPZ1sIpBEvUwZ187rxhScLx1UUHLYoTGrhaDEpi4JHw3Zga9hO7P7Oxk5in6gPS2fT78l3JwjyIIpZFVOT9WuWqrmgOVCr1l4dEiI4dViI4C9DQgRbDNvGFSKIHQwRNHp/7BMZhwhSGBQVAIBnvGfu6l3jChHMA4A8gxBBv1shgpbPH39+r4khgkGmnG9AzKqY0nt1LTn18ak1Ux+fajSHIO9IXhwAgEu4yx1/Z0JlUjVkOrlX2ac0o7KoRvfYZjZmSgAAnUY39h8eBJlARApR7z3Nu68spYxRl1VH6WjsIOi0Ogh8KLBveF+xUEwgM8i64dd3AAAtxS1G7zOjoZhRdAAAkjaJUVC0oEJg9BmgY5CjEoPFAK+MZ/I5DDEsGbrA2YHywNmB8v1P7efwSnjk1tpWomOg45iLX4gEIvz1g9dZ4zmXa4SrYrIGv4ym5GwJTavRgu90X6Of+WhKU0rpAABBc4JMPuZ+Gvj9ZNoyH6ifDYIgCIIgCIL8HSj4BUEQBEEQBEEQBEEQBEGQSSt0QWh1Y06jX+n5Um9Jm4SNwWJ0MY/E1A7vR2PTevu6+1gNOQ0W7tHugxODr/z3im97XbvJRRTOIc7tOYdzoOJKhe/Ux6fW4Il4PQBAe107veB4gVHQCtuBrXAJdaltLmz2Pvn+yYj5b8wvwBFwQybu8yv4ZlgsVm/nayftl/dja7NqrQNmBQwpxFCr1Nh+eT8ZAIBEI9120kLw3GBh8Nzg70x9Xg+K7N+z3dVKNYnjw2m28bQZdbJJbWatpXu0e/fw11reIyekfJ4yFQDAMdhxSNGOtEtKFPFEVJo5rd/SxVI+EePV6/RQk17jBwAQuSJyzGKSwpOFjmc/PTsHR8BpVny44pRnvGfXWP0Bbv7uaPu1WDs/u14CiYAmYyOjYtCZGl/PoIrSyvywUxcOuzW11Fnp9TpsVOjU4uF9xT3dbBKRrBge+gIAUNdY5WLqOem0m4WerR18o8K2koo8o8CtmIhEwd6DX+ibePV3VNjm7OAme3TF01WPrni6at2Weev4Qq5rXnGW9e0CTpq4daz06xcTxnOu8KDY5rsd/BLoG14lEncahZX1SiX0Zl69pxmDJXZxdG9mm1sNTorWaDQ4AABRTzdtpMdUKOVUAAASYewJ2neqo6uNJJZ0WwIAeLr5Da4AOjVmVtPRM79CY3ONu1arweBw+MH35m5xJ1HYxnPC4/DqhLhktKIwgiD3TG9HL+Qfy4emvCbo5nWDqk8FBDIBzO3NwSHQAfxn+INLuMv9HiaCTDg6jaEN9A2rKyi54X8+9YRjE7fOXKfXYWMjp1cP79st7mSSSRTl8NAXAIDq+nJ70895M+CvrYNvVDRbWllgPXxfVOiUdgwGo29orrmjlbDtOU6KlYvWN65ctL5xw/OLFjfzGhyKynMs4iKnjxmg2sxrMLuUfjpqPOcKD44V3Kvgl5TUEw679uyYj8PhtG+/8MnJKdEz7jgotE/WSwMAwBtcl00kVb8SK2zjWQEAODm4GRXx/fLnHq8Df3w7i04z6/t4257jvp6BvXdjHAgymtAFoSXcQm5I+YXywN6OXksMFqOLXRNbPrwflUWVyMQyi9rMWmuvKV6D/+cufnUxuLOp06TwKwAAp1AnYf6xfKi6WhU8/anpZXjSzf97wmqhWfHpYqOgFUtnS7ljoGM5r5QXeHTb0SmL31mcNfwzrpbiFhYGh9E7BjpKVDIVrjq9mhM8N3jIPZVaqcb2y/spAAAkGmnMMGIAgLBFYdywRWEfmvq8Jjtpp5TIsGIMKfirTq+2yTuSNwNPwitnbZl13bBNLpHj22ramCQ6SW3vZ39X3peaCprYFo4WMjNrsyGrp+s0Ojjy9pHEfkU/jWXH4rM4rMGCS7VSjeWV8szxRLzWKcTprn4Wgfw73SoKlpWllDFqs2opnY2dRJ1WB4GzA42ucXqEPWMVBVNMPSfFjKIFAJC0SYzmqPMr+MZFwcGOKgwWA/xS/p0WBWsDZwfKAmcHym4VBVPaattuWxQsFojx1w9eNx/PuVwjXBUPWvALAEBfdx8OAACLNcqVQBDEAMWMonEMcKxqLmwOKThe4Nre0G5xK0SwbHhfWbfMnEAmKIaHvgAAtFa3mvw9CJlOVgKMEiJYaBwi6DnFU3jxm4v6joYOR1PPYWhYiCBlHCGCzActRLClpIUlEogc6Jb0Ds84zzE/M7gdaw/rppbilmBhldAqIDlgyHc7TblNVgAAFCYFXcsh91ToglBpWUoZo+RcCb2b203E4rAQMj/E6BqPacPUiAVigrBKSLTztRu8Psr9K5fRXNhs8jWeQ4CDCgCg5FwJI2xxWB8OfzP/RSwU4zIPZBpdUzEsGTrf6b59lVcq6Ve+u8Ka/vT0Hixu6LVIV3MXHoPFgIWThUaj0gCvjEdyjXAdcj+lVWtBKb0ZHkgkE2/7WZdHjIdye852o0U0HlRKqRJDZpCHPG9BhYCYuifVgkQn6aZtmDbkvUejunmpiif971Jcr9dD2vdpLH4Zn+w9zVvmEOAw5DpZ0i7BKaVKrJm1mYZiRrmnQaXtde0Elj1LQ6KShpxXxBPhU3alWAIA+M/yHzJ3SKvWQhe3i4DD4/SWLpYP3LU5giAIgiAIgowFBb8gCIIgCIIgCIIgCIIgCDJpBcwKaEv5PEXCK+V56HV6LMeH08x2YCuG94tYFlF69uOzTodfObzUKcSpnkglqrqau6y7uF0ch0CHBn4Z392U8/lO9+2wdLEUdjV32e1esXuFna8dXy6RUwUVAheON6eFV8rzGH7Msg+WXfvpqZ9YxWeKo+qu13lbu1u3UplUuUwso0naJOZigdg6aXPSRTtfO6lSpsQf/c/RpSmfp0jYjuxOhhVDqu3X4oRVQkdpl9TczteuySXMRTzS2B4U3CIu6+qPV8MM96mVatKBZw8kDWwvfHvhdXM7c6PJ42UXyvwBAELmhVSOdY70femRR/9zlGPpYtlKt6D34Ul4TV93H721qtVJrVKT2I7stjkvzyk0PCb/aL7btf3XklwiXKof+/ax1L/3LG8qPlvsIBPLmCwOq9N7qveoEwZbiltYZz89O1en0eHsfOy45ZfKXcsvlbsO77fk3SV5htu/vfjbIoVEwdh4YONBOx+7e7bKPPJgeihpcXFpZX5Yasa54M7udisMBqtbuWi90WRkppl5T0+v2OJ6bppNXNT09oH93+3/JJTLbzTpvRIAIMgvQnDm4l+QlZMa+sTqraVEIkkHAFBTX26WknrSKGjF2cFN5usVVFZZUxL0/uevTHtj60cZBAJhyASu0soCcywWqw/wCe2RyftwGdmX7R5KWswz7KNUKbBKpYICAECj0G9b2DY/eUXz/OQVO0x9XvfKOy9/lj7S/jMX/3LZtWeHpz3Hif/lBwdOGbZ5uvm2NLXUeV3JOBu7fMG6SmtL28GJj1//8GGETN5nRiFT+yJC4gffjyS9PYS6xkomncZQ+3gG3naCdVNLHV2tVmO93P2GFMGJerqJb+98drFWq8U72bs2uji6ywbagvzCxU4Obg0t/Eb3r374MPKlTdtzB9r+b/e26RqNmhASEFXAYrKH/Lzyi69bAgBEhMTdNggLQRBkPAqOF0DKFymgUWnA0sUSfBJ9gGZOA7VCDd0t3VByrgTyj+ZD7JpYSN6afL+HiyATbs6MpdUFJTf8L6ef9unoajXHYrC65fMfNVr1msVkS0U9XeZ5RVkWkaHxgwGqP/76lV8jt9bkIrUgv/D2Y2d/hfTrF33XrthUTSTcLMBoaK6hn7n4l1HQij3HSRHkF15TUpHv88k3b0e+vPndfDx+6HVhZW2pGQ6LBW+PgF6FQo69UZBukzRlzpDAP1W/EitXyMkAAFQK/bYT/JMTFwqSExfuNvV53UtnLh1x/HrvB/PwBILmnZc/PxETPm3M66OyqkKWnY2j3IJtNaRIQ6vVws6v3oiRK2QUe45zq5XB9aKqX4mtritnEghErZ9X0G0DD8SSbgJP0EwL8gsfUjyiVCmwO/7vpanSPgmDbW4pjoucPiSg5qffd/v8euT7GWYMlvTTd74/7unmd9t72ZKKfHMAgGD/iAf68xBk8gieG8y/+NVFsaBS4KfX6bE2njZ1ls7GIcDhS8JzUnaluP35xp+POQQ4VBKpRFU3t5sjEogcOb6cqtaqVl9TzheYHCi8+v3VFhFf5PTN8m822HrZNsslclpbTZuXtYd1g7BS6Df8mBU7V6Ts37ifXX6xPKExtzHQ0sWSR2VSZTKxjN7b0WspaZPYJTyRcNwx0FGilCrxJ3aceOziVxfF5nbmrXRLukTTr8G31ba5ykQySxtPm1rDIOwL6uj8AAAgAElEQVQHUWNuo0X6j+lxhvvUKjX5p6d+WjCwvWjbostsx/99LrzvyX1rcASchsVhdRApxP6e1h7L9vp2DywOq5n72tw/hodKV1+ttj+98/RatiO75bkjzx28G+Mqv1juUXy6eDrbkc2jW9B7yHSyQi6R0zqbOp0VEgWLSCX2zXt93lnDx2uvb2ccfO7gJjKDLHn98uuT8u8U8uAbLAo+W8IQtYhuFgUvCDEKXr9LRcFSw6LgrANZIxUFaw2Kgs2nPz1dPFZRsFqlBn4Zn+wa4TrkO4ZbRcE4gHEVBTea+rwms47GDgLDkqGlmFGGBMjrdDq49PUltkKiwNn52impLOpg+/0umFX0KrC9Hb04MoOsY9ow70qQNYLciZAFIaXNhc0hZRfKAns7ei3udoigc6izMP9YPlRfrQ6e/vT0soFFSYTVQkbx6eIpw/ubFCJY0sLCYE0IEVTcChGkmxQi2BK2KGynqc/rXhopEFAsEFOObz++GPSAiX80Pm34MY15jRYAAG6RbiZdR0c/HF3QUtISVHKuJC58SXidhZOFHABA2afEpf+YnggA4BrhOmSRkI6GDnqfqI9k6WzZNzwYEEEmgmuEq4rFYWlqMmroOo0O3KLd5AxLhtFiMtGPREuaC5spBzYfsPOe5t1HopN0bTVtJEGlgOw1xUtWm1k74oITwzmHOqscAhyU/HI+ee+je+2dw5wVMpEMV59dT3WNcFXUXKsxepwFby7oEvPFhMwDmebll8rpDgEOSpo5TSvtluK7ud2E9rp20qJtizosnCw0/cp+7C/P/mLH4rA0Np42KqYtU6Pp12CaC5opIp6I4B7jLrfxtLnt+9Vk1l7fTsj4KYNluE/Zp8QeefuI1cD2Qy8/1E1n0wd/jgeeOcDBk/B6KxerfiKVqOvidhGb8pqoeCJev/KTlW1M26HXUZ3NnYQDmw/YOYc5K1i2LI1WowVuEZfS1dxFtPezVy5+Z7HRvJZLX19iV1yuoM97bV5nxLKIURdouhvPsfRCKT3vrzymQ6CDkmnDVBOpRL1YIMY35jVStf1ajGukq2La40PDbSRtEvyeNXscGNYMzUunXxoylwBBEARBEARBHnQo+AVBEARBEARBEARBEARBkEnNM96zuvhMcTQAQEBygNEq5QAAEUsiWnQa3dnsw9kR3GKuBwaD0bMd2e1L3l1yopvbzTQ1+AUA4NHdj547+f7JOH4Z37XmWk0QjU3riX44+rrfDD/eD4/9YBT8Qregq58+9PTxtD1p/rWZtZ68Up6bTqPDk2gkOd2S3hO1MiozcHYgD+DmSnHhS8Jv8Mv59l3NXbaCCoErnohX0yxokri1cekJGxOq7vR1mix6WnuozfnNPob7tGot3nCfoleRNzz4pbmw2by7pZtDZpD7wpeEc8c6R8i8kMqKyxXqLm6XTUdjh71WrcUTyASVub15p+cUz/rEjYlVAxMj76aiU0V+AAB+M/3GDKoRC8VUnUaHAwDgl/Pd+eUj/z4OD35BkPF4KGkxb8+Bz0Q1DRX+Op0O6+bsVevs4CYb3m/erOXZ3/30qfuOz17a4OsVVEEhU5U8YbNdazvfydPNr7KusdKoIG0kM6fNE/x8eDdX2MZzXvvMnI3uLj5N0j4Jrb6pytvFybO+tqHCf/gx777yxbnn3lrLTstKmV5Ymh3s6ODWYkZn9kl6xYzO7jarjq42u7XLnz4a4BPa0yeTEj7d/Z8New58JuLYOLSyWZY9ak0/vr6p2r1HIrJ0c/aqiQyN/1cFhjy17uW8gpIbgd3iTpv1Wxc85+XmX0OlUJX8Vi6HL+S6YjAY/SNLnjhnGKiTkX3JfteeHY/Z2zpxD3537ufbnaOiutjyi+/fW2drbc+zZFt3M+hMWU+vyKyJW+emUMrpDDpT/MbWnaeGH/fSpu1n3/hg0xNnLv41p6q21M3Gyq6zhd/owG/lujDNzLtf3vzuleHHvPbeU88CAKQeK590wTwIgjy4Ss6VwJmPzwDZjAzL3l8GPgk+Rn1UfSrIP54Pkvb7tuAwgtxVSVPmtO7e95GkoqbYQ6fTYb3c/JrsOU5GAaoLH3qk+Mvv33Pa9vFzywN9w+soFGo/l99ozRc2c/y8gusra0uM7n9HMi12VrujvauQJ2iye2zLvJVe7v58SW8Ptaa+zNXD1ZdbUVPsOfyYbS9/lr71rUdZF9JORucWZnq7OHm0Ms3M5T2Sblp7Zyu7tZ1v/cTqrRe8PQJ6ZXIp/oNdry7bve8jiT3HucPS3Eqq1vTjauornLrFneZe7v5NIQGRD2xgSGllAeurvR/M12o1OE93P25a5nm3tMzzRkWCbz7/0WC4XlpmivPpi3/GOdm7Ci3MrXrpdDOlpFdMbeTW2kt6xWY0Kl3+0qZ3hgSecnkNtBe3rV9jxmBJTxzIPHC7cXV2tZFf+M9jazk2Dh02VhwR04wtk/ZJKA3NNQ6SXrEZhUxVvvrs+xdwONzgMRfSTtr/euT7GXq9HuPu4s0/cvqgUWgGjcpQbd34Vonhvhe3rV8DAJB6rBwFHiATxj3avbTsQlkCAIDfDL/SkfpEPxzdqNVo/8j7K28Kv5zvh8Fg9Cw7lnDh2wt/7WruYpka/AIAsO7bdX8e33F8prBK6FV3vS6SZk4ThS8JvxKQHNC474l9RvfZDCtG/+bfN/9y6ZtLYfU36v0FlQIfnUaHJ1FJMpoFTRS2OOxS0NygJgAAKouqDp4XnCqsEjp3t3Q7tNa0euMIOBXNnCaOWhl1fsYzM4rv9HWaLHpae+gtJS1Bhvt0Gh3BcJ9cIr9mGPziGuFa1Zjb6N9S3BKo1WjxZDpZ6hrhWjRzy8wsjjdnQgKUxzsunwSfph5hj3lnU6ejpE1iq1FpyFgCtp9uThe5RbqVzXh2Ru5IYdgIcre5RrgqWRyWujaz1rAo2ChoI/qR6J5bRcH2A0XBrTWtJGGlcNxFwfYB9kpBuYC899G9Dk6hTgqZWIZryG6guoa7Kmoyaozmri94c0HniEXBXVJ8d8uQouA+tVI9UBSsHiwKVmkwzYXNVBFPRHCP/vcVBddcq6Gm70tn2/vZK1kcloZiRtHKxDIcr5RHkbRJ8FRzqnbBWwuGFPn2tPXg96zZ43irYLbl7445bW8aq5vbTQAA6GjoIAEAlJ4rZfBKeGQAAMdgR2X0yujB9+fyS+W0c5+es/Kf6S9d/uHyUYP1EeReMwgR9L1NiGDurRDBdQ6BDpVEClHV3dLNEfFFjna+dtXCKqHxh1IjCEgOEKbtTWsR8URO3yz75nFbL1uuQqKgtda0elp7WDcKK4Vmw49ZsXPFhf1P7WeXXyyf1pjbGDAYItgjY/S291pK2iSchCcTTjgGOkqUfUr8iR0n1hmGCGrVWnxrTetAiGCde9SDHSJ45uMzU4VVQjdLZ0sBhUmRyUQyhrBa6KVRacihC0MvxzwS0zD8mINbDj4NALA9Z7tJYTZ+SX5tAbMCMsovlk/bu27vRjtfuzocAadprWl1k/fI2eb25vx5r8+7YXjM2U/OJraUtATFPRp3ZtaWWSPekyDI3xUwO0Ca+XPmzUDducEjBnb4JPgoVny0oj3j5wxWdXo1HYPF6DneHNWaL9e0ivlivKnXeAAAq3atak/ZlcKuv1FPKzxRyGTZsdRJTyeJPOM9Rwx+ITPI+g0/bhDm/JljVnGpgl6bWUvX9msxVBZVy7JnqZM2J3V7xnkqAABIVJIuYWOCiFvIpQgrheT6G/VYIoWoZ3KY6uQXkrsil0U+8AvlSLukuIrLFXTDfRqVBmO4L2lTkhjYMBj84pPgI6tMraRXXKmga/u1WJoFTRM0N6g34YmEHhaHZXRNz7BkaN2i3OSCSgG5IaeBisPhgO3E7p/13Kzu6EeiewdCGSfLc3SLdFOIWkSE9vp2oqBCQNKoNFgSjaSz97NXBj0U1Be2OKwPg8Hc1TEjCIIgCIIgyGSCgl8QBEEQBEEQBEEQBEEQBJnUFm1bVLBo26KC2/WLWhHFjVoRNVJgSOv0p6cbBca8dvG1EVd2NbMy63/060evAsDV4W3bc7Z/N9IxRDJRN/uF2WWzX5hdNtYYCSSCbv4b84sAoGisfg+y4LnBwuC5wSO+TmNxCXMRj/b6Dhe5PJIbuTxyzHCY4aY/Pb16pN+Dv2PDDxsuAsDF2/W709dktN9RBBlNRHBsSWrm+ekAANNik0cs/Fq+YF29Vqv5/cT5w9Mqa0v9sRiM3tbaXvDS5ncP8ARN5qYGvwAAfL5j/+GPvnpzVm1DhU9ecWYU08xcNG/WiktJU+c0PPfmWqPgF0sLa9X+r078vOfnz8LzirMCa+rLfbVaDZ5CpsnMWezuuTOXXpg9fVEDAADTjNWfnLjwck19hQtfyHWsb6zyIRCIKqaZuXjxnFVnNz764j/2fXQ0bJZF//efH9m/e99HsWVVBb6VNcWBWp0ORyFT5F7ufpUrFq6/PmPqXMHfOYenm68oyC+iUNDKta9rrPJW9avIeDxebc5kd8dGJuZuXv9qjoW5Vf/w44L8wsVfvPfT3m/3fzK9obnGo6mlzpNKoUkjQ+JzXtz0zlVba3tU2IYg4ySoEMCN325AS0kLyHvkQDGjgLW7NYQtCgP/mUZvsUN0t3RD0ekiaMxtBEmbBFQyFdAt6OAe7Q4JTySAmc3QehG9Xg8l50qg4HgBiHgiUMlVQGPRwMrVCkIWhEDArIDBvu117ZB5IBN45Tzo6+oDEo0EZjZm4BziDLO2zoK7PWl4LMo+JaR8kQIAAMs/WA7u0SNnP5LoJIh/NB50GqPFTxHkHyMmfFpVSuqJGACA6VPmjHgftHD2yhatVnPm6JmDkaVVBZ5YDEZvZ+vU/ubWj463CJvMTA1+AQD4/N0fz3yy+z/xlTUlbtdz04LNWRY9S+auyUqMn92y6dWHjYJf2CxL9Y9fHDu279DX/tkF6d4VNcXuWo0GT6XS5Rbmlj2L56zOmDFtPg8AgMFgaubPWnG9qq7UvoXfyKmuK3UjEkhqc5aFZOWi9VfXP/LsmEGck11bh4Cm1WpwAABVtaXuVbWlI755GQa/xEdN57V18CsbubWc1g6+lUqlJBEIRDWbZdkTFTqlesPqrSU2Vpy/tZq4pYWNMjYisZTLb7Cpbah0UqoUZBwWp2UxLSQJcbMLnlzzfPHwQCFBWwtDr9djAAAKS7NHvK8wY7Ckw4NfEORuWPre0syl7y3NvF2/uDVx9XFr4upHaGqZ9Zxxcebrl18fMaCIactUrf/v+rMAcHZ42/ac7R+OdAyRQtTNe21ePgDkjzVGApmgW/zO4hsAcGOsfg+ysEVh3LBFYSO+TqNZtG1RNgBk381zjPcYzzjPTs84zwvjOYdDgINktN8RBJlIt4qC2QAAwXODRyya9UnwUazYuaIt40CG+bCiYKGILyKMpyh49a7VbSm7Uizqb9RTi04WMVl2rP7pT0/v9oz3VNRkjFoULMj5I8es4nIFozazlqbt12KpLKrGoChYDnCrKPjJBBG3aLAoGDesKLj3Tl+nyeJWwSzDcN+tgtnBfdM3TRcPBL94xHooxHyxlF/OJ3c0dJBUMhWWQCbozO3M1f6P+kvj1sRJaOa0u3oT3JjTSOWX88mG+4RVQrKwSji4zzD4BUEmM8MQQf8Z/qOGCOo0uj9z/8qdwi8bFiLI7TI3NfgFAGDdt+v+OvHuiRmCKoFX3fW6CJo5TRS+NDw1YFZA474n9hmFETKsGP2bf9t88NI3l0Lrb9QHjBQiGDw3+GaIIHPUEMGeWyGCD/z9mUu4C7e7pdtWUCXw0qg0ZAKZoLB2s26OWRWTHTg7UDhR51n2/rJMa3frzuLTxVG8Mp6fXqfHUVlUceBDgenzXpuXTaKRjAIYEORum7F5Rs+MzTN6btfPL8lP7pfkZxRiBdEAEcsijAJjXjr9Em+kx6EyqbqlO5Z2AYDR4hzbc7Y3jXQMnoiH+LXxvfFr48e8RsMRcJD4ZKIEAP6xie0eMR7K0V6n0SQ8mSBJeDLB5NeEbkHXrfx45bhC9ZZ/uLxzooL4xvsc3aPdle7R7uP6HpntyNaM93VEEARBEARBkAcFCn5BEARBEARBEARBEARBEARBjJzYcWLxiR0nwCPWo2LNl2vSh7fviN7xDABA0uaki1PXTx2pQAa5S3bN3/WItFPKHqlNLBSTv17y9YZ7PSZkcvjPS/937T8v/d+12/V7ePGG2ocXb6gdoYm76bFXjAJjTh28/uVIj2NjxVF++cHPpwHg9PC21GPlO0Y6hkKmal/c9E4uAOSO1D6ATKLo3ti6MwsAssbq908zP3lF8/zkFSO+dgA3w1/eefmzdAAwel++k8cbztsjoPeL9386Y2r/4cd+vfPgSVP7j/Y7giAIQMGJAjj76VnAYrHgPdUb2I5skIllIKwSQt7RvNsGv1SlVUH+sXxwDXcFxyBHwOFx0NnUCYWnCqE2sxY2/rwRzKz/F/6S+t9UyDyQCSw7FvjN8AMynQx9XX0gqBJA5ZXKweCX9rp2+PGJHwEAwHuqN7DsWKCSqUDMF0Pe0TxI2pR0X4NfKlMrQdmrBMcgx1FDXwxh8dh7MCoEuT9e2/JB/mtbPhgzSAAAYMnc1c1L5q5uHqFJuGHVc0aBMScOZB4Y6XEsLWz6/2/7D2kAkDa8LfVY+YghCWQSRffshtfLnt3w+pgBqiQiWffS5u2FAFA4Vr8HVXLiQkFy4sIRX6PRhAfHisKDY026Hhzg5e4vHe1nMRI2y1L94Vu7b3tvYWjDqueqR/q9uZ3xjAtBkMnt9M7Ta0/vPA2uEa6F675dd354+47oHW8DACQ8kXA88anEBzq4624T8USUb5Z/89Jo7df2X/NJ+z5t2b0cE/JgM7koeIaf3G+GcVGwe7S7MnJZpFFox0unX2oZ6XFuFQWPWDy6PWd740j78UQ8xD8a3xv/qAlFwRsTewDgts/nQXWrYHbE12kkHG9O/8L/LDQqwB6LhaOFZjznuJ0n9j0xrnCFyGWR0pF+pxBkMlj63tKspe8tve13E7FrYutj18SO9B0pb9aWEUMEvx3pcZg2TNVj/33sHACcG962PWf7zpGOuRUiWAAAYy6ecitEcFyBeQ+a2NWx9bGrR/w5jGq01/V2pq6fWjN1/dQaU/o+vvfxMwBwR9+3IAgyuR16/hAH4Gag4uLti42uwXZE73AFAFi0bVFHyPwQ2b0e379Vn6gP+/mcz51Hay89X0o7/u5x63s5JgRBEARBEAQZLxT8giAIgiAIgiAIgiAIgiAIggxyi3ITGG7b+9t3GG77JflV97T2CAzaRfdqbMhNAbMCymViGWVg28rNanByNJlO1gTNCcq7PyNDkH+nXXt2PLZrzw4ICYgq2PXefqNJvElLA7YDAKxd/vTRDaufK7/3I3ywJK8MfUujURNGakvLSrF7//NXNg5s02lm/9hV/5B/r87GTjj36Tkg0Ujw+PePg7Xb0Dmove23X7g8aE4QxKyKATxx6HSAhuwGOPTiIbj20zWY//r8wf0FxwuAYcWAZ35/Bgjkof/95D3/q/crPlcMGpUGHv70YfBJGLposaJXYXTsaLJ/zwZln+kLONp62RqdbyS8kpuLkLqEu5j82AiCIBPp46/fWvLx129BZGh8+Sfbvr86vD1pacAWAIAnVm+9sGb5U3X3fIAPmNkrQ59Wj3JdmJWbar3t460rB7bNGCxUNIwg95FblBvXcNvOz25I8b9Pgk+JpE0y2Mc+wH5CVhL/JyObkdX+M/0zRmu387PrMmxn2jL/sQEYCPIgO/T8ITsAgOC5wb2jFAW7AQwWBffd6/FNRrcKcm1Gaz/1wSnLotNFZqO1Iwjy4DIIESwaJUTwLQCAhCcTTiRufHBDBA9uPTi7MacxfLT2z+d+vrGvu8/qXo4JQRDTuEa4Kgy37f3sVYbbwXOCpU4hToNffth42vTfq7EhAEQyUR/3aNyo98bW7tb9hu3mHHP1vRkZgiAIgiAIgpgOBb8gCIIgCIIgCIIgCIIgCIIgg4LnBguD5waPujLj9Kenj3v1bmRiJT+fPGpwBMWMolny7hIU/IIg90B4UGyz4baPR8CQ98746KTi9k7hYB8/r6AhQVrIyBJikzM0WjVuYNuSbTM4QdLRzkWaEJecPrBNo9JNT45AkAdE3rE80Gl1MG3DNKPQFwAAM5vb1zaZWY/cxz3GHazcrKAhu8GoDYfHAQaLMdpPZVGN9hFIxjX4FDOK0b7RZP+RDZJW03ObgucFmxT80td9s0ZupOevlCoh+7DxwsaJGxNNHgeCIMhowoNjBQCQO7Dt4xk45LpvWtysqvYOocCgvfseDu+BNTNhfr5Goxm8LmSzLAeLaew5zrJZCQsGX3MalaEafjyCIPdO2KIwbtiiMO5o7bOem1V6L8fzT0BlUjXLP1x+bbR2jxiPLo8Yj1HbEQS5v4yKgn2HFgUHzQ2SOoU6DfZBRcH/c6sgVzywzeKwNIbtnvGecgqLoh3YHv5aIwjy4BkeImjvZ99quO2T6FMqaTUIEfR/sEMEPWM96ykMymDa9vDn75vkWyAXy2kD29bu1igAH0EmCY8YD6VHjMeo301GLItAQX73EZFK1M/aMks8Wrutl63a1st21HYEQRAEQRAEmQxQ8AuCIAiCIAiCIAiCIAiCIAiCIAiCjNP85BXN85NXNI/WvumxV4rv4XD+Md5+8ZNRVzT3cPWRbn9l19V7OBwEuecE5TdzATxjPe/4MfR6PZSllEHx2WJor2sHhVQBeq1+sB1HwA3pH/hQIOT+mQvfPfId+M3wA5cwF3AIdAAynTykX8DMAMj5IwcOv3YY/JL8wC3KDRyDHIHtwB7X+F448cIdP7c7pZQqIf3HdKP9KPgFQZCJkJy4UJCcuFAwWvuGVc+hANU78Oqz7xeM1ubi6C578/mPckdrRxAEQRAEuZ9uVxQcuSxSei/H8yC5XUGu73Rfue90X/lo7QiCPHjCFoW1hC0KaxmtfdaWf1aIYMyqmAYAME7mvmXuK3ML7+FwEARBEARBEARBEASZRFDwC4IgCIIgCIIgCIIgCIIgCIIgCIIgCIJMAkrpzbowhhXjjh/jwpcXIOdwDtAt6eAe4w4MKwYQSAQAACg+WwyS1qGLxM5+YTaY25lD8ZliyPolC7J+yQIsDguecZ6Q/HwysB1vBrvY+9vD498/Dhk/ZUBlaiWUnr9Zc2HhbAEJTyRA4OzAOx7zRKBb0AEAQNppXD/HsmPB9pztg9u75u8asR+CIAiCIAiCIAiCIAiCIAiCIAiCIAiCIAiCIMi9hoJfEARBEARBEARBEARBEARBEARBEARBEGQSIDPIAHAzvIREI437eJlIBrl/5oK1uzVs+GGD0WOUXyw3OgaLw0LMqhiIWRUDMpEM/p+9+46vsr77P/5NcvbKHid7kIRsElZYAsoQEPdCq2LraqWO2mr115baW2tttY7bUa11IQiioiKyZ0hICBsSsvfeyUlyZk5+fxi4M4AcUJJ436/nX+S6Ptd1vtd5PLwe7+/x+n6uiuMV4tT2UyJ3Z65oKG0Qv/r0V0Ii+/7RgqCEIHHHP+8QNotN1ObViqIDReLg+oPiyz99KdTuahE+JXzYMWZ+milMned98fkQflF+Yvzs8cPWBSUFiWPfHhOlh0rF3AfnOnx+AAAAAAAAAAAAAAAAABhNNH4BAAAAAAAAgJ+Qmrwa7b/v+fddoZNC8+55855doz0eABgtOfnH3H799M8ejRs/4fh///WTr0Z7PADwYwiIDxA1p2tE4YFC4RXqddHHt1a3il57rwifGj6k6UtHfYdorW694PFqD7WImRsjYubGiI8f/liUHioVDcUNwj/Gf0CdRCYRQYlBIigxSHgEeYivnv1K5O3Lc6zxy7pM0V7b7vA1JS1JcqjxS+yVsWL769tF5YlKUZJdIsInDz8WAP87FBTnaB/63W33TIifkvfPv7y/Y7THAwAjqepUlet/fvGfFcFJwSfufffejaM9HgAYDc2VzZI3bn4jOG5enOHm529uHO3xAMBI68uED/dlwm9HezwAMBpaKlsk/33zfwfFzYvrJBMCAAAA+Cmi8QsAAAAAAAAA4H+FhpIG9f4P98dV51QHGZoNrjazTeYidbGp3dUdPuE+dXHz44qSFifVjPY4AQAAzmfyjZPF4S8Pi33v7xPjpo4T3uHeA/Z31HcIna/uvMe7+bsJIYSoPF4p7D124eziLIQQwtJtERtf2CjsPfYB9TaLTdScrhHBScEDtvfYeoSxwyiEEEKqkH5/zhOVwi/K7+zfZ3S1dA2oG85jXz3mUN3FUmgUYuHjC8XXf/lafP7M5+L6ldeLqJlRQ+qsJquw2+znOAMAAAD+N6krqNPu+2BfSu3p2rCu1i4Pm8Umd5Y4W1WuqjavUK+q+Pnxp1OuSykf7XECwOXUVtvmcvCzg7qyw2Wq1ppWqaXb4iyRS+yufq62gNgAU9z8uM5xqeNMoz1OALhc6grqNGkfpKXU5NWEdbX0y4RuqjbvEO/quPlxuSnXpVSM9jgB4HJqq21zObj+oK7sUJmyXybsdfVztfZlwi4yIQAAADD6aPwCAAAAAAAAAPjJ2/HmjtgDaw7MstvsLhovTWtQYlCJylVltJqs0rbaNreS7JLowozC+Py0/GO3vnBrxmiPFwAA4Fy8w73F4icXi00vbhLv3P2OiL4iWngEeQhju1HU5NYIuVou7nn7nvMer/HUiPj58eLU9lPinbveEeFTw4W50yxKDpYIiUwi/KL8RF1B3dl6m9kmPnjgA+ER6CH04/XCVe8qbGabKDlYIprKmkT0rGjhHfZ985n0Vemi9FCpCJkQItz83YRMJRONJY2i8EChUOgUYuL1Ey/79zOcCUsmiB5Lj9j8z83i0yc+FV6hXiIoKUio3dXC0m0RhgaDKD5YLCzdFhGSHDLawz94pUoAACAASURBVAUAAMBlsuWfW5KzP89eYO+xS9Tu6mb/WP98lU7VZTVbpe317Z4VRysSS7NLJ+bvy89c9vKynaM9XgC4HDLXZmp3vLnDq8fS4+Qe6G6NnBHZpXZX91iNVqfmymZZzo4c7bFvj+km3zy5ffHvFjeP9ngB4Me25ZUtydnrs+fbe+wStYe6OSA2IF/pquyymqyy9vp2j/Jj5Qkl2SUp+Wn5mcteWrZrtMcLAJdD1tos7fY3t3v2WHqcPAI9+mdC5+bKZumgTNgy2uMFAAAA/i+j8QsAAAAAAAAA4Cdtz7/3RKd/nD5HqpCa5/96/rbU21NLB9d0NndK97y3J87QYNCOxhgBAAAcNfH6icInwkcc+OSAKDtSJvL25gmVm0r4jvMVKdemDHv8tX+4VrgFuImcHTki+/NsoXZTi6hZUWLug3PFZ7//bECtVCkV81bME2WHy0TlyUqRty9PyFVy4R7gLpY8tUQkL00+Wzv5pslCqVWKqpwqUXG8Qth77ELnoxOTb5ospt0xTbjp3X707+JSTLxhooicHimyv8wWpdml4vTu08LSZRFShVS46d1EwsIEEb8gXoSmhI72UAEAAHAZ7HhzR0LWuqzFErnEdOVDV26YcfeMgsE1hkaDbNe/dqUYGg2uozFGALjcDm04pNn6ylZvuUZuv/5P19fHz4/vHlxjMpicstZl6drr26WjMUYAuJx2vLkjIWtt1iKJXGK68pdXbphx14zCwTX9MqFuNMYIAJfb4Q2HNVte2eLVlwkbhsmErDEFAAAARhmhHAAAAAAAAADGiLw9eT4ZqzMmNJY06i1Gi1KqkJpc9a7NCQsTcmfePbP4QsdWHK9wPfjZwZjqnOqg7rZurc1ik8nV8m7/GP+K+Y/Mz/Yd59vVv77X3iv2vrc3+uS2k3GdTZ1uNotNKlPJjK6+rq3xC+JPz7xnZtGZ2uKsYs99/9mX0ljW6GfuNKslMolF6ars9Ivyq7npuZsypHKp/XJ9J8MxNBlkGZ9kzBRCiKufuHpryrUpVeeq03hqrNc8dc0xm8XmNLIjBHApdqZ9F7D+m4+mVdWUBZvMRpVcpjB6e/o2zJlx9ZHltz+cc6Fjj5zM8vzy21XJhSWnww2dHa4Wq1muUqo7I0Kji3+5/Mm9URGxHf3r7Xa7+PeqV5L2Htg2qa29xcNqtcgVCmWXp4dP4+xpC47eu2zF2c/LOLjbd9Xn78ysrq0I6jZ2amRSuVmj1naEBUeWP/vUq9sUcuWo3Q/P+Hrz2rCvNq+ZUdtQHWCzWaVata49bvyE04/c/4c0Hy8/82iPD4BjghKCRNCLQRescfN3EyuzVg7ZLlVIxVW/vEpc9curhuxb/vbyAX+7SFzEjLtmiBl3zRh2TBGpESIiNWLYurFA56v7/vp/OdojAfBDpWXu8Pns6w+Ty6uK/Y3GbqVCoTT5eOmb512xJGfZjfcVXejYk6ePuH25aXVMftGpoPaOVp3FYpapVJqu6Ii4ioeW//ZgeEjUgHmy3W4XH617a/yu/d/Ft7Q2uVmsZqlSoTb6ePm1XDlz0ek7brr/7CKx7KPpnqvW/2tSRXWpX1eXQS2TyS06rashInR8zR+f+Ee6XKYY9Vy4eeeGwC++XZVSXVfha7NapTqtW0di3KTiFT///WFPD2/LaI8PwPBObT/lf2DNganN5c1BFqNFJVVIjTofXWP8/Pijs++bffpCx5YeLvXIWpuVVJtfG2ZsN7raLDa5XC3v9IvyK1nw6II0fbTe0L++194rdr61MzFnZ05yV0uXR4+1Ry5VSru03tqmuKvijs+5f07umdqC/QU++97fN725ojnQ3GXWSGQSs1Kn7PCJ8Km49W+37pQqRu+3wo6GDnnWuqwFQgix4JEFX06+efKQBtFCCKH11lqu++N1mTYzvxUCY135sXL5gU8OuFXlVClMHSYXuVbe4x3qbUlemtyRtCSp60LHNpQ0SA9vOKwtO1KmNDQYpJZui7PKXWULmxRmnPvA3BY3f7ee/vW9vb3i8IbDmiNfH3Ftq2mTWowWJ6VOafcM8bRMWDKhY8I1E85+Xs3pGlnaB2lu1aerFd0t3RKZSmbXemltQYlBxkW/XdTsInW5XF/JsIwdRucdb+zwEkKIG/58Q330rGjjueoUWkXv7Ptmt/fYes61G8AYcWr7Kf2BNQdS+zKhsl8mPDZcJiw7XOaRuS4zqTavNszYbtT1ZcIuvyi/4gWPLth/zkz49s6EnB05KV0tXe59mbBb561rjL0q9vic++ec/bx+mTBgUCasHCOZcL4QQix4ZMGGYTMh//8YGPMqjlXIM1ZnuFadGpIJDY5kwiNfHdGWHi5VGhoMkgGZ8MG5rW7682ZC3dlM6Kq0ewZ7WiZcM8EwYck5M6F8UCY0jYFM6LT9je2eQghx47M3NkTNjCITAgAAAGMcjV8AAAAAAAAAYAzY8eaO2IxVGbOdnJ16/WP9S139XNuN7UZlc3mz9/FNxxOGa/xyfNPxiPy0/HifCJ9qn3E+dS4Sl56WqhaP4qzi2KoHqkJ//t7P1/uE+5x9AOWLP32RmrM9J0XlpuoISQkpkqlklu7WblVTeZNP/r78iDONX4qzij3X/GbNzUKI3oDYgDKdj67DYrTIOuo7XAv2F8Rbjdas0Wz8cnD9wQirySr3CPKoO1/Tl/4kMknvSIwLwKV74z9/S9nw3eprnJyc7BGh4/N9vPxaDJ3t6uq6Cv+d+zZNHq7xy5adG2IOHcuYFBQQVhocGFEpcZH01DVUex/POZTy+B+XR7363EfvRobHnH2YeeXfH7sq/eCumVqNa1tsVFKOUqkyt3e0aqrrKgIyD++NO9P4JePgbt+V/3jsPiGcxLiw8fme7t6tJpNR3tTa4HH4xIHJ3cbuXQq5clQX0L7+3l8nfvXdmmskEqllfGRCrk6j6youKwjNyN4z43TByai3/r72fV9vvWk0xwgAAOCof696JW7tV+/PcXZy7o0eF1/i661v7zC0KytrSn227v4mYbjGL1t3fx2ReWhPQmhwZFVYcGSdRCLpqamr9Dh0PCPu0f93d9jrf121Liw48uw8+flXnpy2O33LRFede0di7MRClVJtaetoUVVWl/mmZ+8ed6bxS/bRdM9n/vrwrU5C9EZHJpR6e/p2GI1dssbmetfMw3sTTCZj5mg3fnnn45fj1n31wVypVGaNH59cpNO6dReW5Abuzdg68VTe0bC3X/z0cy9PX5q/AGPY1le2Tshal7VYOAm7X7Rfgauva4ux3ahuqWrRn9hyYtJwi3yPfXtsfHFm8USvUK8y7zDvKheJS09rTat32eGy5A8f+jDy3nfufd8vyu/s3Pizpz+bk7cnb4ZSp2wLSgw6LVPJTN1t3dqWyhZ9wf6CmDONXwr2F/ise3LdvcJJCH2UvkDrrW2zGC3yjsYO9+Ks4knmbvOe0Vzkm/lp5nib2aZw83erOt8C3/4kcn4rBMayrHVZ2q2vbvV2dnYWEakRXe6B7tbu1m6XuoI6+aEvD7kOt8g3Z0eO+ti3x3TBScHGwLhAk7PEWTSVNclObDmhLcosUt3/wf1V/Rf6bn11q0fW2iw3na/OFn1FdKdcI7d3Nne61OXXyXN35WrONH6pOV0je/+B9wOchJOISI3octO72cxdZufWmlbp0W+Pus5/ZH6Li9Rl1O4vJ7eeVJs7zc7+Mf6m8zV96c9FMnoLkgFc2NZXt07IWpu1SDgJuz5aX6jz1bUYO4yqlsoW/YktJyY6kAmjiw8Up3iFepX3y4RegzJh55n6vkw4vV8mNHe3dWv6ZcLTQpzNhMsHZ0JDo8G9OKt4oqXbMiYyoXuAu2OZkP9/DIxpfZnQ60wm9Aj0sHa1dn2fCTcc0jmQCVVHNx7VBicFmwLjAk0uUpfextLG/pmwun8m3PbqNvfMtZnfZ8LZ0Z0KtcJuaDZI6vLr5Lk7c9VnGr/0ZUL/vkzY7aZ36zR3m51bq1ulR789qhsDmVDTlwnN52v60h+ZEAAAABh9NH4BAAAAAAAAgFFWerjUPeOTjCskcoll2cvLvgybFNbaf399Ub16uHNMvX1q/sLHFh6TqWQDHqI78vWRoI0vbLxm++vbJ9356p17z2wvSCuIU2gVXSvWr1ir1Clt/Y9prWlVnPn3oS8PRdttdpeFjy/cnHp76oAH4zoaOuQKrcLqyDVufnlzoslgkjtSK4QQ+mh9U+qy1GEfxKvOqdYLIURAbMCwTV8AjH0Hj+z33vDdmiVSqcz87O9efX/qxFmN/fcXFOfqhjvHLdfec/zRB/5wQK3SDHgt2ZebPol48/0X7/zXh/+44uW/vL/pzPZDxzImqlQaw8dvbHrLVec24J5WVVOuOvPvjds+S+rp6ZHcd+dja++46b78/nV1DdUKV62rQ/fDl976U2pXd6di+MrvjQuLqbvzpvvzhqvLLTjh+s2WtYukEqnl+Wfe/PekCdObzux7YuUvlhw9mTXpb68/Pf+V//pwo6OfDQAAMFqOnsxyX/fVB7NlMrnl+aff+CIlMbWl//6S8oJh58k3XfOzvIfvfeqoUqkaME/+dvvnQa/869lr3/no5cl/++O/9pzZfuDQ3jiNWtv18RvfrtFqXAfMk2vrq87mt43bPovp6bG5/OrepzbdvPSuAfPWxqY6uUatcygXvv7vvyZ1dRscnidHhsc03bz07pLh6gpLcrWff/PxbJlUZn3xT+9+lhQ36exvDL9/7pezDx5JS/j7G3+c8feV7+529LMBjKyizCKvrM+yFrnIXMy3vXjbR+OmjWvqv782v1Y73DmmLZt2cvFvF2fJ1fIBc+OD6w+GbX5587Jtr2+befcbd28+s734QHGKXC03rPh8xTsqV9WAe2BLZYvyzL8PfXko0d5jl8x7eN76GXfPKOhf11bbplDpVA7dAze+sHGKudPs8NzYL8qvbuY9MwuGq6vOrQ4SQgj9eH2Zo+cGMDbVFdRJt722zVumktnveeuean20fsD9pa2mbdiVqclLkw0z75nZJpVLB2zP35evXPfUOv2ef+9xv/5P15+9xx7fdFyn8dT0PLz24UqZSjZgkW5nS6fzmX8f3XhU22PpcbrpuZvq4ufHd/ev627rdpYqpQ4t8E37MM3V1GlyHr7ye/oovTl+wcDPO5fKE5UKIYQISQ4ZdoEvgLGrOLPYK2td1tV9mfDjS8mEqctSTy767aKD58mEt/dlwi39PjNZrpEbVny+4t1hMmGCvccumbdi3voZd80o7F/XVtumUOqUjmbCyReVCaP96mfe7VAmDBRCCH00mRD4qevLhF4ylcy+/O3lNX5RfgMzYa1DmbBz1j2z2iXygUso89PyleueXOc3OBMe23TsTCasGiYTavoyYf0PzIQ6U6fJ4a4rF5EJ5UIIEZJCJgQAAAB+Kmj8AgAAAAAAAACjLHNNZnyvvdd5wtIJhwY3fRFCCN9xvhd8Q5EQQviE+5yzJuW6lMq97+1tqTldEzR4n7Ozs91F4jLkbWvu/u6mwdtkSplt8Dadj8483LjOOLn1ZJKx3TjsA4hndDR25DnS+MXYblQJIYTWWzvk+jsaO2Q739yZNHj7DX++IdvRcQAYWes3fjSpt9fufNWsJXsHN30RQoioiNiO4c4RGR5jONf2G5f8rHjNl+81FpXljxu8z8XJuUcikQy5Hwb6hwx5aE6hUAy5H/r5BAy5b57PvgM7Uju7OlwdrW9qaTjuSOOXLzd9kmi3212mTZpzoH/TFyGE+N3Df9l5z4prEk/lHU3s6u78bnBTHAAAgLFm/TcfJ9h77c5XX3lD9uCmL0IIER4SNew8OSw48pw118y/uXLVZ2+35BfnBA/e5+zs0iNxGfpWcr1v4JC8p1Aoh+RCby8/h+fJu/Z/N6HD0ObwPLmxuT7PkcYvG777NLrH3uN8xbT5R/s3fRFCiCceWpl518OLxx89dXC80di9d3BTHABjQ+aazIm99l7nxKsT0wYv8BVCCH20/pzz3v78ovzOWTPllimlaR+mNdbl14UP3ufs4mx3kQx9G7lHkMeQRWJSpXTIYl43vZvDc+PcnblTTAaTw3NjQ6PhhCONX0wdJo0QQmi9tEOuv72uXb79v7dPHbz95udv3ufoOACMnIPrD7rae+xixs9mtA5u+iKEEG7+bsP+vuWmP3dN9BXRRs8gT0vpoVLV4H3OLs69Ti5OQ+6FGg/NkNwklQ9dzKtyczxfZX+R7WpoMDj8LH/cvDiDI4t8O1s6XYQQQuujHXL93e3dzumr0ofcf+evmD/k/00BGF0H1hxI6cuE+39AJuw81/YLZkLni8iECumQefFlz4QONH4xGb7PhBovzdBMWN8u3/769imDt9/8/M1pjo4DwMg5uP6gzt5jFzPumtE2uOmLEOfPe47URM+KNnoGe1pKD5UqB+9zdnHudXZxdiwTKkY8E3Y6kgm7WrokQgih9dYOuVeTCQEAAICxicYvAAAAAAAAADDKGkoafIUQIu6quPJLPUevvVfs+2BfVO6O3PFttW1eVpNV3tvb63Rmv7OL84AHS8ImhxUUpBUkvHbDa3eETQorCp0UWhM9K7pO66W19K9LWpRUlL83P2nT3zctOrnlZHFISkjVuOnjagPjAodtvtDfk9ueXHWp13apOps75Sc2n5g8eDuNX4Cxq6K6NFAIIebOuLroUs9ht9vFf9a8lrg/c+eExuZ6X7PFpBxwP3R2HvBwX3xMysnDxzOm3PHQwocTYlJyJsRPLr9i2oJKn0GLdufNXppz8Oj+1Lc/fOn2Xfs35ybETCyZNml2RWLsxIt6AO6bVRmvXuq1XUhFValeCCEmJk4b0jTLzyfA5O3lV1tTVxly7NRBrxlTrqy/HGMAAAD4sZRVFvkJIcSc6QsveZ5st9vFJ5+/E70nfWtMfWONl8lsHDBPdnEe2Ag1OWFqwYFDexLv+OXCnyUnTC2cED+lesbkuXWeHt4D5snzZy8tSD+4K+n1d59bsnPft0VJcZOrpqTMqomNSryoefJXH+3/6FKv7ULKK4u8hRBiYtL0ysH7vL38zL4+AY2V1aX+J/OOeExJnjlk8SCA0ddU1hQghBBx8+KKL/UcvfZeseudXfGnd59O6qjv8LGZbQPmxk7OTgPmxsHJwaeKM4snv3bDaw+FTAjJDZ0YWh4zN6Z6cOPnxEWJuUUZRVO2vrr11lPbTp0OnhBcGjUjqjJ4QnDbxYzvqR1PvXGp13apDE0GRc6OnFmDt9P4BRibanJr5EIIETUrathFrefT29srjnx9RHPiuxPaxtJGuanT5Nxr/591uS4SlwH1sVfGGo58fcT1zVvfDB4/e3xn6MRQY0hyiFmpUw7IjfEL4jsPbzjs+vn/+9wvalZUV9jksO7Q5FCTV6jXkEW1F/Kbjb+puNRru1TGDqNzxqoM98HbWeQLjD1N5X2ZcP4Py4S739kdf3r36cT2+vbhM+GE4JzizOJJr93w2oN9mbBimEx4S18mLIuaGVUZnHTRmfDNS722S2VoPG8mpPELMAbVnO7LhDN/WCY8+s1RzfFNxzUOZsLOI18f0b1x6xtBfZnQFJIcYlLqlAMavCQsSOg6vOGw6+fPfO4bNSuqK3xyuDEkOeRSMuGQ3/AuN1OHyTljVYbb4O1kQgAAAGB00fgFAAAAAAAAAEaZ1WiVCyGEV6jXsG8sP5/Pfv/ZjLy9eUlyjbxbP15fofZQd0lkEpsQQhRmFI43thsHvEX81hdu3b/t9W3teXvzYnJ25KTk7MhJ+e7v39n10fryRU8syghMCGwXQojxc8Y33Pz8zV/u/2j/pIoTFRFlR8qi9763V2g8NW1TbpmSPeveWYU/5Np/KKWrslsIIQxNBvXgff7j/Q0rs1a+debvF+e9eI/JYBpSB2DsMJtNCiGECAuJvKhFs/09/fyvFmYf3Z+qUqo7w0Iii910Hh0ymcwmhBCHj2dO6OzqGPD2sr8+8+aW1/79X61Zh9MmZGTvnpmRvXvm2x++ZA8LHlf46/ue3pYUN7lFCCGumrW4uqfH9v66r96/Ir8oJzY3/3jiuq/eF2469+YlC27Z84s7Hjn1Q679hzKbjQohhND7Bp7zLZ9ajWunEJWitb1FMbIjAwAAuHgms1EuhBDBgWHnfDu5I1b+/bGZ6Qd3TVCrNF2R4THl7q6eXTKZ3CaEEFlH0mI6DG0D5snPPvlK2lsf/KM9/eCumD3pWybuSd8y8fV3n7OPC48p//V9T++Pi57QLoQQs1LnNfzxiZe++PSL9ybl5B0bdzzn0PiPP3tbeLh5tV6/eNnBn9384KjOk42m7787Px//cy6I0WnduoQQor29VTaS4wLgOKvZqhBCCJ8In3PO7xyx5ok184syiqbI1LJO30jfErW72nDmt8LirOJEk8E0YG687KVl27976bu2wv2FSXl786bn7c2bvvXVrXafCJ+iRU8s2hGSHNIqhBDx8+Nr7D32j9I/Tp9ZnVsdU3miMiH943Shdlc3T7xhYtrcB+fm/JBr/6EUOkWnEEJ0NnVqBu8LjA9sX5m18vkzf//tyr89Yu4yawfXARgbzF1mZyGEcPVzvaiFs/1tenGT5+ENh13V7uqe0Imh3VpvrU0il/QKIcTJrSe1hgbDgOfolzy1pNnN3812YvMJbda6LLesdVluzi7OImxSWPfCxxc2eYd524QQImRCiPnuN+6u3vfBPveCtAJ17s5cjRBCuAe4W2fdO6s1eWnyJWfYH4PGQ9MjhBCGRoPL4H2eQZ62lVkrS878/fLil0M6mzuH1AEYfVZTXyYM/0GZcF5RRtEUuVp+MZmwtTB9SCYsHpQJa+099o/TV6XPGJIJb5yYNveBubk/5Np/KIW2LxM2dw7Jen2Z8K9n/v7bVX/7tbmTTAiMVeZOs4sQPzgTegzKhD39MqHmPJnQ2i8TCmcXZxE2Oax74eMLm71Dv8+EwROCzXe/eXdN2vtpbufJhJf8/M+PQe2htgkhhKHRMGTtqEeQh21l1sqzLxN5efHLwWRCAAAAYPTR+AUAAAAAAAAARplUKTWLViGayprUanf1Rb0JTQghWqpalHn78hJ1PrqWBz5+4Au1u9raf//Li1+OHHyMi9Sld9ETi04semLRiZaqFmX+vnx97q7cyKqTVRFrf7fW45EvH/lUppLZhRAi9qrY+tirYjdZui3OhRmFPvlp+cF5u/MSdv1r13yNp8aYfG1y1XBj3Pzy5kSTwSR39Jr00fqm1GWppcPVBcQF1JZml46vzqkOFEIcdPT8AMYmuVxhEgYhSssLdZ7u3k0Xe3x5VYn60LH0qR5uXg3vvLz+P57u3pb++29YPit+8DFSqbT3t7/6S6YQIrO8qkS978D24PSDO+MLinNjV/79cZ/Vb295U636frHEgjnXVi2Yc+2aru5Ol/1ZO/0PZO8Zl3l435TVn797k6ebd/f1i5eVDD7/YC+99afUru5Oh5uvjAuLqbvzpvvzhquTy5UmIYSoa6jWCCEaB+83dLZrhBDCTeduHrwPAABgrFHIlWYhhKioKtW4u3pe9Jtmq2srlBnZu5O8PHyb33n5s8/dXT0HzJNv+vnsqMHHSCTS3kfuf+b4I/c/c7y6tkKZfnCXfl/m9qjc/OPj/vjCIx6r396yWqlU2YUQYs70hXVzpi/81mjsds48ss8nI3t3yP7MnYnvr/nvhR5u3sbF824cdp78+r//mtTVbXB4nhwZHtN089K7h82bSsX33119Y61KCNEyeH+HoU0thBA6nZtl8D4AY4NULjUJIURDcYNW46lpvtjjm8qbVEUHiiZrPDWND6568EONp2bAf+//uPofcYOPcZG69C59eulBIcTBpvIm1endp4Py9uTF1ZyuiVn31DrvRzc8+o5cLe8RQojEqxOrE69OXGfuMrvk7cvTF+wrCC9IL5i87/1912u8NF2Tb5pcNtwYN76wcYq50+zw3Ngvyq9u5j0zC4arC4gNqKw4VpFUk1cTJoTY5+j5AYw9crXcLoQQ7XXtEsU4hXW4+sEMTQaXI18fcfUM8bTc9/591QqNorf//tM7Tw9pEOXs4ixmLZ/VPmv5rHZDk8Gl7HCZ4tT2U5qCtAL16sdW+z/82cMVUrlUCCFE6MRQc+jE0Dqr2SqqTlXJC9MLVUe+OuL6zXPf+Kjd1T1RM6OMw40x7cM0V1OnydnRa9JH6c3xC+LP2dyvv6DEINOpbae05UfKlUKIi87SAMYGqaIvE5b8wEzopWl88OMHP7qITJgthMjulwlj+zKh16MbHn13UCb8zNxldsnfl++Xn5YfUbC/YNK+/+y7XuOp6XYwE06+qEwY7Vc/826HMmFVxbGKpNq82lBBJgR+0uQaeY8QQvIDMqFzXya0njMT7jo95MVBfZmwY9byWR2GJoPzgEz46GrZis9WVErk3y/HDE0JNYemhNbbzDZRearyTCbU9WXCOgczoc7UaXK46cpFZEIzmRAAAAD4aaHxCwAAAAAAAACMMp9wn/q2mjafnJ05ISHJIRfd+KWuoE4neoWTf6x/xeCmL/VF9equ1i7dhY73CPQwTrtjWsm0O6aVvLXsrWsbSxoDSw+XekbPih7QOECmktnj5sXVxc2Lq9sbtLdtz7/3zMvbmxfmSOOXk1tPJhnbjQ6/La2jsSPPkcYvU26ZUpz1adb0lsoWv6MbjwYmLx1+LADGruCAsKrGpjr/3elbxk2aMP2iG78UFOe49/b2OkWGxxQPbvpSUJyr6zC0u1/o+JDA8K67bnnw9F23PHj67hVL7q6qKQ/LPpbuM2f6wtr+dWqVpmfh3OsqF869rvLdVa80r93wnxvSs3dFO9L4Zd+BHamdXR2uw9Wd0dTScNyRxi/BAaF1RaWnY46czAy9btHtA+6f9Y21isbmej8XFxdbcsLUIU1hAAAAxprQoHF1dQ3VPnsytoYkxU266IUJcnaY1QAAIABJREFURaV5ut7eXqfxkfGVg5u+lJQXqNvbWy84Tw7QBxtvvW55ya3XLS/5+aPXXV9WWRx49FSW5/TJcwdkKaVSZZ874+q6uTOurvto3VttH617a/7+rJ3hjjR+2bX/uwkdhjaH58mNzfV5jjR+CQmKaDxdeDLiyInMgEVX3TBgHE3N9bL6xhovFxdJT2LMxCFNYQCMDV6hXtXt9e36nB05EeFTwi96kW9tXq276BVO+vH6ksELfGvza7XGdqPbBT8/xKt71vJZ+bOWz8p/49Y37mwubw4tzir2jr0ytq5/nVwt70lalFSVtCipaudbO1v3f7T/2vy9+dGOLPLN3Zk7xWQwOTw3NjQaTjjS+CV1WWpe9hfZ89pq2gIPfXkodNKNk4YdC4CxyT/W31xfVC8vSCtQ+Y7zbb/Y45srmiW99l4RNinMOHiBb1tNm0t7fbv0QsdrvbQ9CQsTuhIWJnS9/8D7+srjlcq6gjpZUELQgPuqVC4VYRPDzGETw8yewZ7Wb1/41idvb57akUW+2V9kuxoaDA4/yx83L87gyCLfhIUJXbve3uVZc7pGUZheqIycETnsWACMPV4hXtXtde36nO05EeGTLykTuole4aSP/lEyofJCmTBxUWJ14qLE6p1v7Wzpy4RRly0TOtD4pS8TXtVa3UomBH7i/GP8zfWF9fKC/ZeWCVsqWqR9mbB7SCasbXNprxs2E9oTFiZ0JyxM6O7LhIragtohmVAilwzOhN55e/NUlykTdjqYCTt3vb3Lo+Z0jbwwvVAROSPS5OhnAAAAABgdNH4BAAAAAAAAgFGWekfqqcKMwrhjG49NipkbUxE2MWzAorb6onq17zjfrvMd7xPhYxBCiPrCev8ea4+Ti9SlVwghutu6pRv+vGFur713wBsjLd0W54L0Ap/4+fEDHsyzmq3Olm6LQggh5Gq5TQghcnbk+EWkRjQqNIqe/rWdzZ0qIYSQyCU2R67xyW1PrnKk7mJpvbSW6T+bvn/vf/ZetfmlzQutJuuOKbdMKR9cZ+wwSuw9doffnAlgdNyy9J5DR05kTdqZtmn27GkLiqekzBywsLagOFcXFRHbcb7jx4WNbxNCiNKKomCr1eoklUp7hRCipa1Z9sJrTy/t7R14H+jq7nRJy9zhf/WV11f2324yG51NJqNSCCHUSo1VCCG27v46aPrkObVajeuA+15rW5NGCCFkUrlDb5n7ZlXGq47UXawbltx5Yk/G1tlZh/dNPZ6TfTwpbvLZhbwvvfWnuVarRZ4YO+mIWqXpudB5AAAAxoJbrr375MEjafFbdm2YfEXqvPLkhKkD5skl5QXq8JCo886Tw0IiDUIIUVyWr7fZrE4Syfe5sL2jVfrCa09faR+UC43GbucDh/f6Xjlz0YCGf2aLybnb2K0QQgiVUmMTQojd6Vv8Jk+Y0ahRawfkqpa2JpUQQshlcofmyV99tP8jR+ou1vWLluVv2/PNlP1ZO5Jy8o/lxUVPOLso5p//+kuqxWKWTUyalqNUquyX4/MB/HCpd6QeLskuSTmx5cSsmCtjSsaljhvQGLU2v1arj9Ybzne8b6RvmxBCNBQ3BPX/rbCzpVO64c8blgz+rdDcZXbJ25unT1qcNKBZlNVkdbZ0W5RCCCFXfz/nPb75eGDUjKg6pU454F7X2dKpFkIIiVzi0Nz4qR1PveFI3cXS+ejMU2+duj19VfrSba9uu9FitHwz/c7pRYPrutu7JYO/BwBjy5RbprQf33Rcl/5JunvkjMhuvyi/AfeXtpo2Fzd/t/P+zuUR6GETQoiqk1UKe49dOLt8/5+8ucvs9PVzX/vYewZGIavZKqpOVinCJoUNWBDbY+0RJoPJRQghZApZrxBClB4ulQfEBlhkStmAxcOdzZ0uQgghVUgdylm/2fibCkfqLpZSp7TPWzGvadOLm3y+XPml79KnlzbEXhU7ZHGwpdvi1GPjp0JgrJp2x7QjfZlwZuyVsSURqREXmwnbhRCioWRgJuxq6ZJu+POGxReVCY19mVDzfSY8sflEQOSMyPofIRO+6UjdxdL56MxTb5u6Pf3j9KXbXtt2g9Vo3TjtzmnnzoQ9ZEJgLJtyy5SO45uO69JXpbtFTj9HJqxtc3HTnz8Tuge6nz8T/tfX3oMzoc1sE5UnK+Vhk8LM/bf3ZUJnIS4qEw7Yfj6/2fibyuGrLp5Sp+ydt2Je86YXN3l/ufJL36XPLG2MvfLcmdBu42dCAAAAYCyg8QsAAAAAAAAAjLKwiWGt0382fV/6qvTZn/z6k9v8Y/1L3fRubSaDSdFU1uQjUUgsD699+OvzHe8V4tUdnBRcWHG8IvL1G1+/zT/Wv8LSbZHX5tUGuUhdbK5+rk3tde1eZ+pNXSbJF3/44sYtL29p9wjyaNR6aw09lh6XmtM1QYYmg7t/jH9paEpoqxBCZKzOSP7q2a8CvcK8arRe2g6ZUmZtqWrxqMuvC5EqpOZpd07LGYnv6ELmPDAn32a1uRxYfWDW5pc2L9n/4f5W7wjvWpWrymg1WqWdLZ2ausK6oB5Lj9Qr1KtmtMcL4PympMxsvGHxHZs2fLf6mmf++qsHx4WNz/fx0jd3dhlU1bXl/jKZ3Lzqze/Ou0A2LDiyM3pc/Kn8olPxyx6c/1BkeEyx0dStKCkvCHdxkdi8PHzqmloa/M7Ud3YZpH9/4w8//9dHL7XofQNrPdy82qw2i6SoNC+irb3FKzwkKn9y8owmIYT4fOPHM/759p/DAvQh5R7uXm0KucJSW1/tXVZZFCmTyU23XX/v4ZH4js4nLnpC2zULbtnyzZZ1i5989oEHY6ISczRqXVdJeUFoXUN1oJurR9NTv35ux2iOEQAAwFHJCVNbb7v+3r1rv3p/zpPPPrAsOjK+xNfbv62zq0NRUVXqq5ArLB+8/s2G8x0fHBDWHT8+ufBU3tHIOx66+vbxkfGVRmO3rKAkN0gikfT4eOmbGppqz86Tu7oNkuf++bub3vjPC+0B+pAGL3dvg9Vmcckvyglubm10j4qIK50QP7lVCCE++/qDlBdffyYoODC8xsvDp0MuV1pq6io8i0rzQuRyhfmW65afGonv6HyiIuIMN11zV9r6bz6a/cSffn57QszEQq3W1VhYkhtQXVvh5+Hu1frbX/0lYzTHCODCxqWOa5p669TNmesyF695fM19+mh9gauva4up06Rsrmj2lygk5l+v//Un5zveJ9ynKyAuIKc6pzru1etevV8/Xl9i6bbI64vqw5wlzj1ab229odHge6beZDBJvnr2q3u2vbat1d3fvVbjpWm3WWySuoK6sK6WLi/fSN+CiKkRzUIIkbkmc9rG5zeGegZ7Vmg8NW1ShdTSVtPm3VDcME4il5im3zn9yEh8Rxcyb8W8EzaLzSX78+yF21/fflvGJxlNXqFeVSqdqstissi6W7u1DSUN4T3WHplHoMdlaboA4Ifzi/KzLnh0QePWV7d6v3fve0ER0yK6PAI9rMZ2o3Ntfq1CppLZf/HeL877e7/OR9czfvb4zry9eZq3lr0VGDYpzGjuNDuXHSlTSqSSXu9wb0tjSaPsTL3VZHX++OGP/d30blbfSF+zq5+rzWa2OZUdKVO1VLZII6ZGdPtG+lqFECL943T3yuOVyoC4AKOb3s0mVUrtTWVNstJDpSq5Rm6ffNPk8zauHimTbpzUabPYnHa8scNr/TPr/TyCPKwBcQEmtbu6x9JtcTI0GiRlR8pUVpPVKSA+wDT8GQGMtIjUiKapt03dkrk2c9Hqx1f/Qh+tL3D1c20xGUyq5spmvVQuNa9Yv2L1+Y7vy4S51TnVsa9e/+p9+mh9icVokdcX1oc7S5xtWh9tvaGhXybsNEm+evaru/tnwh5rj6Q2v/ZMJiyMmPJ9Jjyw5sC0b57/5vtM6KVplyqklrbqNu+G4oYIiVximv6z6UdH4ju6kHkPzztps9gk2euzF2x7fdut6Z+kN3mHelcpXZVdVpNV1tXapWsobgjrsfbIPILIhMBY1ZcJm7a+utXrvXvfC+yXCV1q82vlfZmw9nzH92XCrry9eeq+TNh9NhPKhmZCi8lyJhPazmZCi82p7HCZsqWyRRqROiATulUer1QGxAeY3PzcrDKVrLextFE61jJhj6XHafsb2z3XP73ed0AmNFqcDY0Gl7LD32fCwPhAMiEAAAAwymj8AgAAAAAAAABjwLyH5+X6j/dvzlidkdxQ3OBfnVMdJlPJTG56t6bEqxNPD3f87S/dvvu7f3zXUZpdOq4grSBBppIZgxKDyhb/bnHW6sdWL+pfq9QpbRNvmHig6lRVQFNZk191TnWYRCaxqj3V7dN/Nn3v7Ptnn/28iddPPHVq2ylzU1mTb1NZk77X3uus1Ck7I2dGnppz/5yj+mh95+X4Pi7WvIfn5SYsTCjf/9H++Oqc6qDK45URNotN6iJ1sancVIawiWEFCQsTChMXJdL4BRjjVvzi90eiImIbPt+4anpFVWloUWneeIVc2e3t6Vs/d+aiYReQ/e0P//rm5bdXtp7IPRx/6FjGFIVC2RUdEZ//+EN/2v37/3rotv61rjo3y4I51+7IL8oJraopDyoqOT1eKpWZXXXurdcvWrbp/rseP/tw8qKrbsjek77VWFVbHlhdVxHca7c7q9XajpTEadn3LluRERuV2H45vo+L8dgDf8wODghr+WbLuul5hadibD1WqUat60idNDvj0fv/kObrreeBPQAA8JNx/12P50RGxDav//rD5NLywoC8wpPhSoXK6Ovt3zxv9jXDNiF9/pk3dr767nPtR09kRR44tCdBqVAb46KTSh994I9Zv/+vhwbMk7VaV9s182/JOF14IqCiqkSfV3giXCaVW93dPNtvvW75nuW3P5x7pnbJ/FtO7t7/nbmiqtSvorpUb7fbnbUaXWfqxNknl9/+q6OR4bHnfeP6SPnl8t+dDAoIa9uwaXXKqbyjETabVarVuBqumDb/yIqf//6Ql6evZbTHCODCFj6+8Jg+Rt+YuSYztbGsMaQ2vzZaqpR2u/q4NsQviB92Ie0dr9zx7bd//bat7GhZbHFm8SSpUtoVEBtQuOSpJXtXP7b65v61KjeVNWlJ0q6a0zUhzRXNgbX5tdEuUhez2l3dOuXWKZuv+tVVx87UJl+bfChnR46puaLZv7myOajX3uus0CoM4VPDD819YG5WQFzAqM+NhRDi6t9cfTRpSVJR2vtpE2vyasKqc6rH91h7ZM4SZ6tKp2oPTgo+Fb8wPifl2hQW+QJj2NTbphp8x/laMj7JcKs8UakoOlCkVmqVPd5h3pbka5OHXUh7w59vaNz97m7b6d2nNUe/OapT6pT2cdPGdc17eF7L2t+t9etfK1fJ7bPvm91SfrRcWZNboyg6UOQiU8p6XfWu1gWPLWjqv3B38k2T2xVaRU9tXq2iOrdaYe+xO2k9tbbkpcntM+6e0e4R6GG7HN/HxUq9PdUw/orx3VmfZbmWHS5TFuwvUFuNVmeJXGLX+ehssVfGGhIWJnRGpEbwmyEwRi18bOEx/Xh9Y+an/5MJZUpZt85H1xC/IP7YcMff8cod3377wretZUfOZsLugNiAgmt+f82+Tx795Kb+tSrX82bCtr5MePxMbfK1yYfPkwkPz31gbmZAXMCoNzsQQoirH7/6aNLipKK0D9JSavJqwqpyqv4nE7qq2oOTgnPIhMDYN/W2qQbfSF9LxicZrpUnKpWDMuGwv8P1ZULr2Uzo2pcJfzWvde2Ta33718pVcvvs+2e3lB85mwmdB2XCs583+ebJHQqtwl6bVyuvzqlW2HvsQuultSUvTe4YS5lw6u1TDdGzo7uz1mXpBmXCXp2Pzhp7ZWxnwtUJnRFTyYQAAADAaHPq7e0d7TEAAAAAAAAAGON8I3y//eWnvywf7XEA+Gl4e9nbIfXF9deM9jh+bNERcR/+66XPykZ7HAB+Gh767a2h+cU5y0d7HD8mJyen3pVZK0d7GAB+Ip6d+qzo7e11Gu1x/NjCQ6K++c+rG5gfA3DILx67IaSkvODa0R7Hj00/Xr/qwY8f5F4IwCHv3P1OSG1e7V2jPY4fk1KrbHpq51NjotERgLHvxatedDUajF6jPY4fm368fvWDHz9YNtrjAPDT8M7d74TW5tXeOdrj+LEptIqm3+/8/ZhodgRg7PvbVX/TmQym/3W5EAAAAD8O59EeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD8X0PjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYTR+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIARRuMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhNH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBFG4xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGE0fgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEUbjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYTR+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIARRuMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhNH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBFG4xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGE0fgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEUbjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYTR+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIARRuMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhNH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBFG4xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGE0fgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEUbjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYTR+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIARRuMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhNH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBFG4xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGE0fgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEUbjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYTR+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIARRuMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhNH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBFG4xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGE0fgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEUbjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYTR+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIARRuMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhNH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBFG4xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGE0fgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEUbjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYTR+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIARRuMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhNH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBFG4xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGE0fgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEUbjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYTR+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIARRuMXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhhNH4BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBFG4xcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGE0fgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEUbjFwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYYTR+AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIARRuMXAAAAAAAAAAAAAAAAAAAAAAAAAAAA/H/27jTKzuq8E/1/S4BAIEAgBEISoxRsA7aZBOl0bifdGa4zOXEGt5O4M3gesO+Xez/cD/2h71r97fa6FniI7cRx3IkzdDtxBmfodGfopIOZjQ3GlpglIQYxD0LTvh/et1LnrTqnLFDVeatO/X5r1TqFLeo8Ktba79777Oe/AQCAMRP8AgAAAAAAAAAAAAAAAAAAAAAwZoJfAAAAAAAAAAAAAAAAAAAAAADGTPALAAAAAAAAAAAAAAAAAAAAAMCYCX4BAAAAAAAAAAAAAAAAAAAAABgzwS8AAAAAAAAAAAAAAAAAAAAAAGMm+AUAAAAAAAAAAAAAAAAAAAAAYMwEvwAAAAAAAAAAAAAAAAAAAAAAjJngFwAAAAAAAAAAAAAAAAAAAACAMRP8AgAAAAAAAAAAAAAAAAAAAAAwZoJfAAAAAAAAAAAAAAAAAAAAAADGTPALAAAAAAAAAAAAAAAAAAAAAMCYCX4BAAAAAAAAAAAAAAAAAAAAABgzwS8AAAAAAAAAAAAAAAAAAAAAAGMm+AUAAAAAAAAAAAAAAAAAAAAAYMwEvwAAAAAAAAAAAAAAAAAAAAAAjJngFwAAAAAAAAAAAAAAAAAAAACAMRP8AgAAAAAAAAAAAAAAAAAAAAAwZoJfAAAAAAAAAAAAAAAAAAAAAADGTPALAAAAAAAAAAAAAAAAAAAAAMCYCX4BAAAAAAAAAAAAAAAAAAAAABgzwS8AAAAAAAAAAAAAAAAAAAAAAGMm+AUAAAAAAAAAAAAAAAAAAAAAYMwEvwAAAAAAAAAAAAAAAAAAAAAAjJngFwAAAAAAAAAAAAAAAAAAAACAMRP8AgAAAAAAAAAAAAAAAAAAAAAwZoJfAAAAAAAAAAAAAAAAAAAAAADGTPALAAAAAAAAAAAAAAAAAAAAAMCYCX4BAAAAAAAAAAAAAAAAAAAAABgzwS8AAAAAAAAAAAAAAAAAAAAAAGMm+AUAAAAAAAAAAAAAAAAAAAAAYMwEvwAAAAAAAAAAAAAAAAAAAAAAjJngFwAAAAAAAAAAAAAAAAAAAACAMRP8AgAAAAAAAAAAAAAAAAAAAAAwZoJfAAAAAAAAAAAAAAAAAAAAAADGTPALAAAAAAAAAAAAAAAAAAAAAMCYCX4BAAAAAAAAAAAAAAAAAAAAABgzwS8AAAAAAAAAAAAAAAAAAAAAAGMm+AUAAAAAAAAAAAAAAAAAAAAAYMwEvwAAAAAAAAAAAAAAAAAAAAAAjJngFwAAAAAAAAAAAAAAAAAAAACAMRP8AgAAAAAAAAAAAAAAAAAAAAAwZoJfAAAAAAAAAAAAAAAAAAAAAADGTPALAAAAAAAAAAAAAAAAAAAAAMCYCX4BAAAAAAAAAAAAAAAAAAAAABgzwS8AAAAAAAAAAAAAAAAAAAAAAGMm+AUAAAAAAAAAAAAAAAAAAAAAYMwEvwAAAAAAAAAAAAAAAAAAAAAAjJngFwAAAAAAAAAAAAAAAAAAAACAMRP8AgAAAAAAAAAAAAAAAAAAAAAwZoJfAAAAAAAAAAAAAAAAAAAAAADGTPALAAAAAAAAAAAAAAAAAAAAAMCYCX4BAAAAAAAAAAAAAAAAAAAAABgzwS8AAAAAAAAAAAAAAAAAAAAAAGMm+AUAAAAAAAAAAAAAAAAAAAAAYMwEvwAAAAAAAAAAAAAAAAAAAAAAjJngFwAAAAAAAAAAAAAAAAAAAACAMRP8AgAAAAAAAAAAAAAAAAAAAAAwZoJfAAAAAAA4aq+8+MrKZx59ZlXfdQD06fDhQ+Xw4UOl7zoAAOjXgYMHzAkBAAAAAAAAgGNSaq191wAAAAAALHKnbzj946tWrzq/7zpYOLXW1CP1uMMHD594+NDhEw8dOHTKoQOH1hw5dGT1kcNHTqpH6gm11uOSlJQcWn/h+r/su2YWr1deeuWhZx595kN91zHfNm447z+csnrNeX3XwXjUWnPg4IHVrxzYf+orr+xf88qB/esOHDxwxuHDh9bUWledcPyqvRdsvthYyEgvvPT8w7sfffjf913HfDp+1fF7Dx04dHbfdQBLw3EnHPfYwVcOntN3HfPtnPUbb1h90snWx8vI4cOHVx44+MopBw4eOPnggf1rXjlw4PRDhw+uOXLkyKok5fxNF//ZihUrHMBiqJdefvGhvY/vvr7vOubbGZvO+I+rTlm1ue86GL9aaw4dOLT6wIsH1h3cf3DdgZcPnLNixYoD6y5c99d918bi9coLrzzy1K6n/u++65hPJ6056Y4kxkFSa82RQ0dOSMmRlcetPNR3PSxaj7z8/MtX9F3EfFu7ce1/PHHNidbHzFJrzQtPvvBdq05etfeE1Sc813c9LA77n9//0NO7n56oOWGSnLTmpDtr6qa+62DxOXL4yIqDLx88vawsB1esXHFoxYoVB8vKcqgUOdLLWUnZ9fLzL7+57zoAAFicBL8AAAAAAEy4UsqKJGcl2ZRk48DrhUkubv95XZIVSQ4maQJekieT7EmyM8k9SW5LcmuSx6rNZWAClOZk3blJtibZ0r5uTXJJmvHxYPu1Osn+JN9MclOSv0jy97XWl3soGwCAeVZKWZPp+eDgvPB1SU5N8kKatfKqJA+lWR//TZI/q7Xu7qNmgHFox8drklw78FWS7Eqz37gqyf9Ta/14b0UC9KCUsi7Je5J8MMn9Sf7PJLuT7K+17uuzNoA+lVIuT/KNJP9QyTzpAAAgAElEQVRXkv8jydeTbE/ylVrrkT5rAxinUsoZST6T5IeTPJDkSJp9xx1JvjrwdW+t9XBfdQIAAIuH4BcAAAAAgCWslHJCkg2ZHeqyaeBrQ5KXk7yY5HCS45OsSbIyTZPGzjQH8O5Oc8hkZ4S7ABOiDXfZkNlNvFvarxeSPJom2GVVkrPTNPfenuR/pT10V2vdM/biAQCYN6WUUzI83GVLktOSPJzk2TSBBmvTrKcfTvKPmW7E+Eat9dDYiwcYg1LKcUkuTTfk5YIkd6YZA7+ZJij155N8K00D759oUAOWk1LKm5Ncn+RtSb6U5IZa653t//f/Jnmk1vr/9VgiQK9KKd9O8pZa632llFVJfjbJR9Oss29M8rla67N91ggwTqWUs5O8L8n7k9yb5CtJDiTZlmbdvT7NBUz/HAZTa93bT7UAAECfBL8AAAAAACxSbVPasECXwdczkjyW5Ok0wS5H0gQXrElzQOSENEEuO2Z87UyyV7gLMAnacJdzMruJd2uSi5O8lOnxb1+S45Ksa//sZWlu5f1qkpva13s0rgEALD2llJMzO9Rl6vvTk9yXZk74YJr186lJNid5U5rAl8Hbdm/VjAZMslLKxkwHvFyX5Moku9MdC+9KcnmSjyR5a5I/SBNy8PU+agboQxuM9dY0Y+FFST6R5DO11idn/Ln/lGRXrfU/jb9KgMWhlLIjyY/UWncM/G8lzZzzo0l+OMnvpJlTfqufKgHGr73U6WfSzCnPThOG9etpLmyaCoGZ+no+3bX57bXWl3ooGwAAGCPBLwAAAAAAY9Yebjsz3RCXYcEux6VpttiVJtzl5SQ1TbDLaWkOg5yf5JRMh7sMhrzsTPKocBdgErRj59kZ3sS7Jc0YOTj+7UjyaJoG38vTHJLbluRwZjf0Pj/OvwsAAK9dKWV1Roe7rE0T6jc4L7wvyYokF2a6ieLCJHemG/73sPUzMKnagOmr0m0kW5Xu+viWWuvT7Z8/PslPpWlIOy/Jx5N8tta6b/zVA/SjlHJmkncn+WCSR5JsT/KHtdaDI/684Bdg2RsW/DLj/9+Y5P1J3pvk9iQ3JPmLWuuR8VUJ0K9SyrVJrk/yo0m+mOTGWus97f9X0uxzDq7fL01yb7pr+G8ZOwEAYLIIfgEAAAAAmEftzY8bMjvEZfB1Y5IXMx3qsqv9/ok0N4yfmCbYZXOmm9jWZPpm8pnhLns0pwGToD3Itj6jw11eyexwl6nvX8h0wMvU13lpDg4PHoLbZcwEAFjc2nCXizN8XnhGkgcyPRccnBvuSrMmH5wTXpVmzT04J7xrVMMuwFJXSlmZ5PXpjoVbktyV7lj4wMz1cSllXZL3pAk5uD9NyMGXa62HxvYXAOhZKeXyNMFXP5Pky0luqLXedhT/nuAXYNn7TsEvA3/uxCRvT/LRNJec3JDk87XW5xa+SoDFoZSyIU0Y1vvSrNm3J/nKzECXdsy8It11/tokt2RgnV9rfWJ81QMAAPNN8AsAAAAAwFFqG8+mgls2ZXiwy7o0AS5TYS4zX59KsjpNqMvMQIPTMjzcZUeSR93WA0yCNtzlrIwOdzmY4U28OwduHi9pxtHBw21XJHko3Sa2b2hOAwBYnEopJ2V0uMu6zBHuUms93P6MU9IEuwzOC1elOye8ZWoeCTCJ2kaxwXHw6iSPJbkp02Ph12qtB+b4GW9Oc9v425J8KU3IwZ0LXDrAotGGZv14msCXS5J8Msmna62Pv4qfIfgFWPaONvhl4M+XJP8izfj7g0m+kOTGo/33ASZBKWVVkp9LE4Z1epIbk3yu1vrsHP/O+iTbMr0XsC3NeaTBfdE7aq37F7Z6AABgvgh+AQAAAACWvfZA2drMDnGZ+XpSkj1pQlxGBbvsTdNkNtWwNjPQYG2mw11mBrzsEe4CTIJ2XF2X0eEuhzM63OWpIT9vTZJr0m1kW5HpQ2s3Jbl1rsNvAACMXxvuclGm54KDc8Oz0oS7DK6Lp75/ZCrcZeBnrUzy+nTnhFvS3IY72NDwQHUgCphQbTD1lZkeB69LcnKSmzM9Dt5ca913FD/ruCRvTdNke1GSTyT5TK31yYWpHmDxKaWsTfKuJB9K8miS7Um+NFdY1hw/S/ALsOy92uCXGf/upiQfSPKeJLekGZP/m8/PgeWi/Yz9ujTr9B9O8jtpglm/dRT/7ook35Xu3unrktyT7t7pDnunAACwOAl+AQAAAAAmWtsYdnamw1tGBbscyOgwl6nXfVMHINomi2HhLlvThLvcn+HhLrsdTgMmQXvw7MwMb+LdkqRmeLjLjmHhLgM/97gkl6Z7KO3CJHemeyjtIYfSAAD6V0o5McnFmR32tzXJ+iQPZni4y8Mzw11m/NwN6c4Jr07yWJrQv6k54ddeS1MuwFLQNm1dku5YeEmSu9NdH+98NevjUsoZSd6dJuTgkTQNtX9Yaz04r38BgEWslPKGNA21b0/yp0m211pvOcafKfgFWPaOJfhl4GeclOQdacbpVUluSPJbtdYX5qdKgMWvlLIxyfuTvDfJ7WnW7n/5as4bDQmPvTbJmnTDY796NOGxAADAwhP8AgAAAAAsWW1z2bkZHeayKU3oy1NpwltGBbrsHnZQrD0EcXFmN65tTRN2MCrcZZdwF2AStOEuZ2R4uMvW9o+NCnc5qgNi7aG1wcNmV6UZmweb2O7SgAYA0J92/X1Rhoe7nJ3koXTXxVNzw4drrYeO4ufPbEK4LsnJ6TYh3KwJAZhkpZT16a6Pr0myL9318Z211v2v8edfnuT6JD+b5Mtpbg2/bR5KB1gS2osCfiRNkMBlST6V5NdqrXvn6ecLfgGWvfkIfhn4WSXJ96YZt78/yeeTfLzWet+x/myApaLdl/23acbCU9KEYX2+1vrca/x552R22PYTmR22/cqxVw8AALwagl8AAAAAgEWnPcR1aqbDW0YFu5yaZE+Gh7lMvT461+3f7Y1ho8Jd1iV5IMNDDXbNdTM5wFJSSjkzw5t4tyZZke44ODgW7nuVt4qfnObw2OBhslXpNrHdUmt9el7+YgAAHLVSyqqMDnc5J8nDmR18ujPJQ0cT7jLwPiuSXJLunPCSJHenOy/c+WrmmgBLSdu4NfPW7dMzO/DqiWN8n5VJfjxNg9glST6Z5NO11seP5ecCLCWllNOT/EqSD6cJ1PpYkj+Y67Oj1/g+gl+AZW8+g19m/Nzzk3wgybuS/FOS7Un+u30DYLloz1F9T5r1/Q8k+UKSG491vG33DV6X7v7E1iRfT3ev9n5jLgAALCzBLwAAAADAWLUNXmdldJjL1GvShLeMCnTZleTJWuuRo3jPk9I0rw0LNDgrTbjLzMa1HUkeEe4CTIpSyhkZHe6yMsObeHekGWtf9QdK7SGx16d7SGxLpg+JTd0a9oBDYgAA41FKOSGzw12m5obnZu5wl4Ov8T3XpzsnvCZNw+1g48Cdtdb9r/kvBrCItc1ZW9MdC9+Q5N50x8JvH81e51G+59o0TbEfSvJomsbYL813yAHAYlZKeV2S65O8I8mfJ9lea/3qAr6f4Bdg2Vuo4JeBn786yc8n+WiaiwtuSPKFWuuLC/F+AItRKWVzmjCsdye5Jc2a/7/N457CyUmuyvQexnVpLnOZGVbrMhcAAJhHgl8AAAAAgHnTNpBtSBPeMirQZUOSZzM6zGV3moOxz73K9z4xo8Nd1id5MMMDDR4W7gJMiraxa1gT79Ykx2d0uMsTxxq+Uko5J9MHv65NcnWSx9JtYvtarfWVY3kfAADm1q7NL8zstfGWNOvyRzJ7XrgjxxDuMvDeJya5Mt1wg9MzuyngiWN5H4DFrJSyLsm2TI+D25I8l+76+PZa68sL8N5vSHP799uT/GmakINb5vt9ABar9vKBt6QZC9+U5NNJPlVr3TOG9xb8Aix7Cx38MvA+Jcn3pRnvvzfJbya5sdb64EK+L8Bi0l6C9Y40YVgnpAnD+q1a6wsL8F4b093zvSrJnnT3Ou4SOAsAAK+d4BcAAAAA4KiUUk7J6DCXqdczkuzNHIEuSfa81qb/UsqqdMNdBpvYzk7yUEaHuxx6Le8JsNiUUk7P6HCXVRnexLszyePHGu4yUMPqzG7oPSWzG3r3zcf7AQDQVUo5PqPDXTalWX/PXBvvSPLgsYa7DNRQ2vccnBO+Icm96R74//Z83TYLsNi0+5VvTncsPCvNjdv/PBbWWh9bwBpWJvmRNE2vlyX5VJJfq7XuXaj3BFhsSimnJvnlJNenCdv6WJLfG2cIteAXgPEFv8x4zwuTfDDJryT5n0m2J/nb+fpMDGCxa/dpvzdNAMz3Jfl8ko/XWu9bwPdcmeTSdPdDLkzytXT3hh8yHgMAwNER/AIAAAAAy1x7AODMdENchgW7HJfRYS5Tr4/XWg8fYz1T4S4zG9e2JjknycOZ3bi2M81hAeEuwEQopZyW4U28W5OclOFNvDuTPDbfB6faW3IvSffQ1iVJ7k730NZOh7YAAOZPG+5yQWbPC7emWafvzuhwl3m/WbWUsi7JtkzPCbelaaodnBPeXmt9eb7fG2AxaPdRL053fXxZmrH3pkyPhfeOI/CqDYb9lSQfTrIvTcjBH7hdG1hOSinflWYc/MUkf5Wm2f+f+tinFPwC0E/wy8B7n5zmefCRJEfSPBN+u9b60rhrAehLKeX8NGFY70ryv9KMhf99HPPjUsqaJFenu2+yMt3941tqrc8udC0AALAUCX4BAAAAgAlWSjkuyYbMDnEZfN2Y5MVMh7eMCnZ5Zr4OApRSTsjocJdzM3e4y7zcTA7Qt/YW2mFNvFuSrM70GDhzLNy7kAezSinr0z2MdU2Sp9I9kHVHrXX/QtUAALBctOv2CzJ8Xrg5yZ4MD3d5YCEb+9tQ1jenOy88K8ktmZ4T3lxr3btQNQD0rZSyNt3Aq2uTvJzu+vi2WuuLY67rdUmuT/LzSf48yfZa603jrAGgT21Q9Q+laey/Oslnknyy1rqr57oEvwDLXp/BLwM1lCT/Js1z4ruT/EaST9RaH+qrJoBxK6WsTvILacbCFUluSPKFce5htOPxpkzvqVyX5Io0Z8IG91a+7qIvAAAQ/AIAAAAAS1b7If1UcMumDA92WZfkiYwOc9mVZM9C3HLVhrtcmOGBBhuTPJLhgQYPCncBJkV7q9WocJdTMjrc5dEx3bp1YpIr021iOz3dht6v1lqfWOhaAAAmVRvucn5mB59uTXJekkczOtzllTHUV5JcnO6c8LK2hpsyPS+8t9Z6ZKHrAehDu5f5xnTHwg1Jbkt3fbynp/pWJHlLmoatNyX5dJJP9VUPQB/avdZfShN+9VKS7Ul+t9b6cq+FtQS/ACyO4JdBpZSLk3wozfPjb9M8O/5+HJ/BASwG7d7v96XZT/jeJL+Z5MZa64M91XN8mr3nwf2X85LckW4YzCPGagAAlhvBLwAAAACwyLQfuq/N7BCXma8npQlvGRXosjvJ3oW8FaX9QP7CzG5c29LWuCvDm9eEuwATo204mBoDZ46Fa5Lcl+Fj4VjCXQbqLG1dg4eo3pDk3nQPUX1bQy8AwKvThrucl9HhLnszO+xvR5L7xxHuMqPWtUm2pTsvfDndOeFt47z9FWCc2vXxBemOg29Ks34fHAvvqbUe7qnMJEkp5dQkv5wm5OC5JB9L8nvjfnYA9KmUsiVN0/6/S/I/0jTt/8NiawQV/AKw+IJfppRSTknzHPlIkv1pniVfXCzhYQDjUEq5MMkHk/xKkv+ZZiz8277n1aWU05Jck+4+zZF0Q8lvrbU+31uRAAAwBoJfAAAAAGCMSikrk5yduQNdNiY5kNFhLlOv+8bx4Xsb7nJBhgcabG5rGRXucmCh6wMYh/ZA6Khwl9Myd7hLLyEqpZR16Tb0bkvTJDbYxHa7Q60AAEenXdOPCnc5P8ljGR3usr+nmk9I8sZ0D81vSHJbBuaFtdY9fdQHMA5tA9HM9fHhdBuIbltMDUSllO9K8uEkv5jkr9I0Y/1T381YAOPShnT9QJoG/euSfDbJJ2utD/da2BwEvwAs3uCXKaWUFZl+vmzL9PPlkV4LAxijUsrJSd6ZZiw8nGbP4bdrrS/1WlirXQucn9mBvQ+ke9bh7r4DewEAYD4JfgEAAACAeVJKOTHJuZk71OXsJPsyd6DL7lrrC2Ou/biMDnc5L8meDA80eEC4CzAp2gNOo8JdTk9yf4aPhXv6CneZUkpZleTN6R5+OivJrWkOPd2U5OZa697eigQAWALacJfNmZ4LDs4NL0jyeLpzwam54f19B+q1B+IvyOwD8feleyD+HgfigUnV7nNenmYMvK593Zzk9nTHwl2LLUSlbUL9oTSNV1cn+UyaJtRdvRYGMEZtAPc7k1yf5FCSjyX5nb7n2kdD8AvA4g9+GVRK2ZombPGdSf46TfDBPy62dQLAQmn3k/9Nmn2I707yG0k+UWt9qNfChmgvLZsKOJ/a7zk3swPOd/dWJAAAHCPBLwAAAADwHbQfdJ+auQNdNrZ/Zk9Gh7rsSvJorfXgmP8KSf656eH8zA402Jom3OXRjA53eaWPmgHmWylldYaHu2xNsjbdcJfB8XB33+EuU9rn0kXpHmq6LE2dg01s92roBQCYbSDcZWbY39YkFyZ5IrPXxjuT3LeYGk5LKaeluZ16KuRlW5obWqeC/76a5LZa6/O9FQmwgNr18eZ0A6+uSPJQuuvjb9RaD/VV53dSSlmT5JfShBy8nCbk4HcX0zMHYKGVUi5K8qEkv5zk79I03//dUmq+F/wCsLSCX6aUUk7N9Hz8hTTPoN+tte7vtTCAMSqlXJxmPv5LSf42zVj494t5Pl5KWZvu/vi1SfZnej/opjT74y/2ViQAALwKgl8AAAAAWNbaW1TPytyhLpuS1EyHt4wKdnmy71CANtzlvIwOd9mb2Y1rO9LcTC7cBZgIbbjLxZndxLs1yRlpwl2GjYW7+h7HhxlyYGlbugeWphp6HVgCAGi16/25wl32ZXS4y0t91DyXdr1/ebqH2DcnuSPdeeGuxXwYH+BYtAEp16Q7FpZ0x8Fba63P9lbkq1BK2ZKmqerfJfkfaZqq/sE4DiwXbYDX9yf5aJLvSfIbST5Ra32wz7peK8EvAEsz+GVKu5f0w0k+kuTKJJ9O8qla6+5eCwMYo3bv5Z1pxsL9afYqvrgUwmlnXKAz9XV5XKADAMASIfgFAAAAgIlVSjkhyYZMh7cMC3bZkOTZjA5z2Z3mkOZz465/lPZm8qlwl5mBBucneSyjw13cSgVMhFLKSRkd7nJmkgcyOtxl0R7iaZ9db0z3MNKGJLdl4DBSrXVPb0UCACwSbUPOpgwPd7koyVOZHe4ytT5etKF57QH1zenOCa9I8lC6B9S/UWs91FedAAupDby6NN2x8IIkd6Y7Fj68lIJS2jH+B9I0UF2X5LNJPllrfbjXwgDGqA3u/sU0Y2HSNJP+9mKeox8NwS8ASzv4ZVAp5ZIkH07yC0n+Ms2z6qaltPYAOBbt3vsPppmzX5Pp/YtHei3sVSqlrErypnT3l9YnuTXd8xd7eysSAABagl8AAAAAWJJKKadkdJjL1OsZSfZmjkCXJHtqra+Mu/7vpA132ZzhgQYXJHk8o8NdFv0tKwBHow13uSjDx8KzMjrc5ZHFHO4ypW32uiDdQ0ZvSnJ/mgNGN7Wv9yyFvw8AwEJoD5hvTHcuODU3vCjJMxke7nLfUmkcbW9RvSbdeWFJN9jg1lrrs70VCbDASikbMz0GXpfkyjR7uINj4V211oO9FXkM2v3sdya5PsmhJB9L8jv2coHlpJRyfpIPJfnVJP+Qpon+byaliV7wC8DkBL9MKaWcluSX08zjn07z7Pr9xXjGBGChlFK2pgnDemeSv04zFv7jUp3Hl1LOTLIt3f3459Pdg7q91vpSb0UCALAsCX4BAAAAYFFpm+DXZe5Al01JjsvoMJep18cXc6N8G+6yKcMDDS5M8kRmN6/tTNO8piEAmAillBMzOtxlfZIHM3wsfHgxj/HDtIdDBw8QbUtyOLMbep/vrUgAgB604S7nZvZ8cEuSi5M8m9lhf1PhLi/0UfNrVUo5Lsml6R4qvzDJnemG/z28VA/OA3wnbQjKVemOhavSXR/fUmt9urci50kp5aI0IQe/nOTv0jRH/Z0xHlgu2s/9/lWSj7Svv5nk47XW+/usayEIfgGYvOCXKe3ZjrekeZ5dnuTTST5Va32018IAxqiUcmqSX0oThvV8mj2O36u17u+1sGPUrlm2prtPdWmSe9Pdq/pWrfVIX3UCADD5BL8AAAAAMDZtc9OGzB3qsjHJi5k70GV3kmeWwuH4tnltMNxlsIntwiT7Mjrcxc0hwEQopaxKN9xlcCw8O8lDGR3ucqiPmo9V+8y7PN3DQecluT3dw0G7lsLzDADgWLWHp+cKd3k+w8Nddi61cJdBpZSN6c4Jr0qzrzE4J7yr1nqwtyIBFlDbIPn6dMfCLUnuSncsfGBS1sftM+/7k3w0yfck+Y0kn6i1PthnXQDjVEo5KckvpGmQPz5NU+gXlvLc/jsR/AIwucEvg0opb0jy4STvSPJnSbbXWm/utyqA8WnPwv3vaeb6V2Q6DGt3r4XNo/YCoyvS3c9am+SWDOxn1Vqf6K1IAAAmjuAXAAAAAOZFKWV15g502ZRkXZInMjzMZer73bXWl8dd/7EYCHeZ2bi2NU3QwVMZHe7yYh81A8y3gXCXYWPhOUkezvCx8KGlGu4ypW3o2pzuoZ8r0gTaDDaxfWOp/10BAObSzos2ZHa4y9Y04S4vZHS4y/N91DyfSimnpAl2GZwXrkp3TnhLrfXp3ooEWGCllA3pjoNXJ3ksyU2ZHgu/Vms90FuRC6TdI//FNI1PSRNy8Nv2gIHlpJSyOckHk7wrzZi/PclfT0q411wEvwAsj+CXKaWUtUl+JU0IzONpnnn/ZRLXOgCjlFJel2Yc/Pkkf5lmLLxpEuf/pZT1SbZles9rW5ozgYP7/3fUWvf3ViQAAEua4BcAAAAA5tQ2ba3Ndw51WZ3hgS6Dr3uXasN7G+6yMaPDXZ7J7Ma1HRHuAkyQUsoJGR3ucm6mw11mjodLPtxlUCllTZJr0m1kW5Hpwzw3Jbm11vpsb0UCACyQdp/gnIwOd3kxs8P+psJdnuuj5oVQSlmZ5PXpzgm3JLkr3YPeD0ziIXeA5J+DTq7M9Dh4XZKTk9yc6XHw5lrrvt6KHINSyvlJPpTkV5P8Q5omp78x/gPLRbtG+Jdpgq/+dZLfSvLxWuvOXgsbM8EvAMsr+GVKu0f0o2meg29I8qkkv1ZrfazXwgDGqJRyWpowrOvThKFsT/L7tdZXei1sAbVnCb8r3c8IXpfknnQ/I9hhjwgAgKMh+AUAAABgGWsPoJyduQNdNiY5kOFhLoPfP7XUP6RsP5A9N7Mb17akaV57NsMDDe6rtb7QR80A860Nd7kww8fCjUkeyehwl4N91LyQSinHJbk03cM6Fya5M93DOg8t9ecgAMCUtnHz7MwO+5v6/qWMDneZyPC7UsqGdOeEVyd5LE3o39Sc8GtudQYmVbt3ekm6Y+ElSe5Od328czmsj9tn5f+W5KNJ/lWS30wTcnB/n3UBjFMp5cQk70jT6L46yQ1JPl9rfb7Xwnoi+AVgeQa/DCqlXJYm9ODnkvxxku211tv6rQpgfNqziG9Js0a4PMmvpQnDerTXwsZkSEjytUnWpBuS/NVJD0kGAOC1EfwCAAAAMKHaw5bnZu5Ql7OT7MvsQJfB192TFGrSHsifK9zl+YwOd1mWB1WByVNKOT5NeMmwJt5NaZ4Bw8bCBycx3GVQKWVjuodwrkrzPBxsYrtr0n8PAMDka9fH6zM63GV/Roe7PNNHzeMy5HD2dUlOTvdw9s0OZwOTrJSyPt318TVp9pIH18d31lr391ZkD0opJyX5+TQNTCekucH6C5O0hw7wnbR7qB9I8p4kt6UZC/+q1nqk18J6JvgFQPDLlFLKGUneleTDaT533Z7kSz5fBJaTUsob0oRh/dskf5YmDOvmfqsav1LKOZkdKv9EZofKv9JbkQAALAqCXwAAAACWmLYx69TMHeiysf0zezI61GVXkkcn8WBJ+zvakOGNa1uSvJDhgQY7hbsAk6INd7kgw8fCzWmeB6PCXQ70UPLYlVJOTnOoZvCQzap0m9huqbU+3VuRAADHoF0fn5XR4S4H0p0LTs0Ndy6XOVApZUWSS9KdE16S5O5054U7q0M2wIRqQ8Rn3kZ8emYHXj3RW5E9K6VsTvLBJO9O05izPclfezYAy0W7tvjuNMFXP5TkPye5sdb67V4LW0QEvwAIfpmplHJckh9P8/zcmuSTST69nNdWwPJTSlmb5FfThGE9lmZP5b8sl3MpM5VSViZ5Xbr7cFuTfD3dzyTut+8EALC8CH4BAAAAWETaZqOzMneoy6YkNdPhLaOCXZ6c5Jv12gOm52R0uMtLmd24NhXu8lwfNQPMt/aw4AUZPhaelyYAbNhY+MByO0TTHp55fbqHZ7Zk+vDM1G1KDzg8AwAsJe36eF2m54KDc8MtSQ5lSPBpkh3LJdxlUCllfbpzwmuS7Ev3QPWdtdb9vRUJsIDa58bWdMfCNyS5N92x8NuTvL98NNrf1b9M06T5r5P8VpKP11p39loYwBiVUlYleXuasfC0JDck+U2ftc0m+AVA8MtcSilvTHJ9kp9J8kdJttda7+i3KoDxac9s/FiatcXrk3wqya/VWh/rtbBFoL206KpM79Vdl+bSopmhzMvuMx0AgOVE8AsAAADAmJRSTkhybkYHumxMsiHJsxkd5rIrye7lcpiyPVh/dmYHGkz980sZ0riWJtzl2T5qBphvbbjL+Rk+Fm5O8miGj4UP1Fpf6aPmxaCUck6mD8Rcm+TqNLdHDTaxfW05/44AgKWjXR+fmdHhLkcyOtzlqT5qXgxKKScmuTLdcIPTM/uwtDsUxXYAACAASURBVFuWgYlVSlmXZFumx8FtSZ5Ld318e6315d6KXGTa58c70jQirU4TcvD5WuvzvRYGMEallHOTvD/Je5N8LcnHkvzFcg8Fm4vgFwDBL0ejlHJmkvck+VCSB9M8Y/+o1nqoz7oAxqmUclmaMKyfS/LHacKwbuu3qsWllLIx3c82rkpz+dPgnt5dy+3SJwCASSb4BQAAAGAelFJOyegwl03t19okezM80GXqdc9ya0Bvm9fWZ3bj2tT3+zM63OWZPmoGmG9tuMt5GT4Wnpfm+TFsLLx/uT03himlrM7sht5TMruhd19vRQIAfAcD4S4z18VT39fMDneZWh8v+3lO+/vbmu6c8A1J7k33IPS3NasCk6qUsirJm9MdC89KcksGxkI3KQ/XNtR8IE0T5m1Jtif5K88NYDkppVybJvjqLUm+mOTGWus3+61qaRD8AiD45dVoPx/+yTTP3QuSfCLJZ2utT/ZZF8A4lVLOSPKuJB9Oc3Zye5Iv1VoP9lrYIlRKWZnk0nT3/S5ME9Q5+BnIQ1XDMADAkiT4BQAAAGAObdPQuowOdJl6PS6zQ1xmBrs8Xms9POa/wqLQ/h7PyuhwlwMZ0riWpnnt6T5qBphv7SGMUeEu5yd5LLMbeXemCXfZ30fNi1EpZUWSS9I9zHJJkrvTPcyy02EWAGAxam/1HZwLDs4NS2aH/U19v8/8ZlopZV2SbZmeE25L8ly6c8Lba60v91YkwAJq91wvTnd9fFma58ZNmR4L7xVcMlr7e/zuNM2WP5TkP6cJOfh2r4UBjFEp5YQkP5tmLDwryQ1JPucChldH8AuA4JfXqpRyRZLrk/xUkv+a5IZa69f6rQpgfNowrJ9IsybZkuSTST5da32i18IWuVLKmiRXp7s/uDLdz0luqbU+21uRAAAcNcEvAAAAwLLVfmC4IXOHumxM8mJmh7jMfH1muTdfDYTkjAp3OZThjWs7hLsAk6INd9mc4WPhBUkez/Cx8D7hLsOVUtane0jlmiRPpXtQ5Q6/PwBgMWlvqRwV7rIyo8Ndnlzu+wvDlFJWJXlzuvPCs5Lckuk54c211r29FQmwwEopa9MNvLo2ycvpro9vq7W+2FuRS0j7bHl7moai0zMdcvBcr4UBjFEp5Zwk70vy/jTB2h9L8pXlepHFsRL8AiD45ViVUs5K8t4kH0yzX7g9yR/XWg/1WhjAGJVS3pQmDOunk/xRku211jv6rWppaM9vbsr03uF1Sa5I8nC6e4hf92wBAFh8BL8AAAAAE6mUsjpzB7psShNS8kSGh7lMfb/bzdDT2g8Hz8zocJcjGR3u8lQfNQPMtzbcZVOGj4UXpnm2jAp38UyZQynlxCRXptvEdnq6Db1fdasTALAYtA34o8Jdjs/wcJcdEe4yp3bv4eJ054SXpfnd3ZTpeeG9tdYjfdUJsJBKKSckeWO6Y+GGJLeluz7e01uRS1Qp5dw0AQfvTfK1NI2Uf+6ZAiwnpZRr0gRf/ViS30tyQ6317n6rWvoEvwAIfpkvpZTjk7wtzfN6U5KPJ/msczfAclJKWZfk3Uk+lOTBNEGVfySw5NVpnymXpbvPeF6SO9INg3nEZ1cAAP0S/AIAAAAsKW3zz9qMDnOZ+n51hge6DL7u9UHgbO3v+IwMb1zbmqRmeOPazlrrvj5qBphvpZQV6Ya7DI6FFybZl+Fj4f211pf6qHmpaZ83W9M9XPKGJPeme7jk25qvAIC+lFJOz/Dg061JVmXGunjg+ycckD06bYDOtnTnhS+nOye8rdb6Ym9FAiygdn18Qbrj4JuS3JfuWHhPrfVwT2UueaWUa9M0Tb4lyReT3Fhr/Wa/VQGMT9vs99NpxsJzk9yY5NdrrU/3WtgEEfwCIPhlIZRSrk5yfZKfSPL7aQLbvtFvVQDjU0o5LslPplnLXJDkE2nCsJ7ss66lrJRyWpJr0t2PPJJu+P6ttdbneysSAGAZEvwCAAAALBqllJVJzs7wQJfB1wMZHuYy+P1TGqzmVkqZK9ylZES4S5J9frfAJBgIdxnWxHtRkqcyvIn3PuEur157G9NgQ++2JM+l28R2e6315d6KBACWpfaA68x18dQ/n5juXHDw+8etj1+dUsoJSd6Y7mHiDUluy8C8sNa6p7ciARZY+9yZuT4+nG5jxW0aK45d+9z52TSNQWcluSHJ52qtz/RaGMAYlVLWJ3lvkg8k+VaS7Un+RJjY/BP8AiD4ZSGVUs7O9DP9m2me6X/qmQ4sJ6WUK9OEYf1kkv+aZHut9a5+q1r62mDq8zM7mPqBdM/03O25AwCwcAS/AAAAAGNRSjkxze1xw8Jcpr4/O8m+zA50GXzdXWt9Ydz1L1VtuMuwQIOtSVZmeOPaziRPal4DJkEb7rIxo8NdnsnocJcX+6h5EpRSViV5c7qHQs5KcmuawyA3Jbm51rq3tyIBgGWllHJqRoe7rM7ocJfHrI9fm/ag8AWZfVD4vnQPCt/joDAwqdobiS9PMwZe175uTnJ7umPhLs+b+VNKOSfJ+5K8P8ndST6W5CueN8By0jZEfiTJW5P8QZIbaq1f77eqySb4BUDwyzi0AZc/neSjac5Z3ZjkN2qtT/daGMAYtQGX70nywTSf5WxP8se11kO9FjZBSinHZzrIf2pf89zMDvLf3VuRAAATRvALAAAAcEzaJp5TMzzQZfD11CR7Mh3iMizY5dFa68Ex/xWWvFLK2owOdzk+wxvXdkS4CzAh2nCXczO8iffiJM9mdLiLMLFj1M4FLkr3sMdlaX7Hg01s92qwAgAWUillTYavjbckOSWz18VT/7zX+vjYlVJOS7It0yEv25IcznTw31eT3FZrfb63IgEWULs+3pxu4NUVSR5Kd338DU0oC6OUck2akIMfS/J7aUIO7u63KoDxaRvzfirNWHheko8n+WytdV+vhS0Tgl8ABL+MWynl2iTXJ/nRJL+bZg10T79VAYxPuwZ6W5o10KZMr4Ge6rWwCdWeUx38HOjaJPszve95U5rPgVy0BQDwGgh+AQAAAEZqG+nPytyhLpuS1IwOc5l6fbLWemTMf4WJUUo5PcMDDbYmWZXR4S5PaF4DJkHbPDVXuMvzGd7Eu1O4y/wacpBjW7oHOaYaeh3kAADmXRvuMjUnnBnusibJfRk+L3zU+nj+lFKOS3J5uod7Nye5I9154S6/d2BStc+ka9IdC0u64+CttdZneytyGWgbfH46TYPPuZm+7V6DD7BslFLWZfq2+/vT3Hb/ZUFj4yX4BUDwS19KKRuSvK/9+nqaucBXnNMClpNSytVpwrB+IsnvpwnD+ka/VU22GRdFTX1dHhdFAQC8JoJfAAAAYJkqpZyQ5hD0qECXjUk2JHk2s0NcOsEutdbnxl3/JGpvxh4V7nJiuqEug98/rokKmATtgYANGd7EuyVNuMuwsXBnrfX5PmqedO184Y3pHtLYkOS2DBzSqLXu6a1IAGDilFJOyehwl1PThLsMmxfusT6ef+08fXO6c8IrkjyU7sHdb2gsBSZVG3h1abpj4QVJ7kx3LHzYs2g8Sinrk7w3yQeSfCtNY+OfaCIBlpNSypvTNDa+LcmX0jQ23tlvVcuX4BcAwS99K6WsSvKzST6aZG2aYMzPCSQFlpNSytlpgrDen+SbafaM/tSe0Xi0z6I3pbuPuj7JremeM9rbW5EAAIuU4BcAAACYQG2D1Kgwl03t19okezMjxGXG655a6yvjrn+SlVJOzfDGta1JVmd0uMtjGgaASdA2jZ6T0eEuL2Z0uIugsQXU/re5IN3DF29Kc0PsV5Pc1L7e40AMAHCsSiknZ/jaeGuS0zI73GVqbrjHTbULq5SyJsk16c4LS7rBBrdqGAEmWSllY6bHwOuSXJlm33xwLLyr1nqwtyKXqVLKlUk+kuStSf4gTcjB1/utCmB82jCyt6YZCy9K8okkn6m1PtlrYQh+AYjgl8Wi/dz32jQBMD+c5HfSrJ2+1WthAGPUXnT0M2nWTmenCcP69VrrM70WtgyVUs5Msi3dz52eT3ev9fZa60u9FQkAsAgIfgEAAIAlpP1gfl1GB7pMvR6X2SEuM4NdHte0vTDaBqmZTWtT/3xKRoe77BXuAkyC9nl1dkaPhS9leBPvTs2j41NKOS3dgxXbkhzO7Ibe53srEgBY0kopqzM63GVtRoe77BbuMh5t0+il6R62vTDJnemG/z1szwKYVG2Q+lXpjoWr0l0f31Jrfbq3Ipe5UsrxSX4qTaPOeUk+nuSztdZ9vRYGMEZto9y7k3wwySNpbq3/QyFki4fgFwDBL4tRG2z6/iTvTXJ7khuS/IX9V2A5KaVcm+T6JD+a5ItJbqy13tNvVctXe65sa7r7sZcmuTfdPdlveV4BAMuJ4BcAAABYJNpGmw2ZHeIy+P25SV7M7BCXma/PaMZZWG24y5YMDzRYk6Z5bWbj2o4kj/pvA0yC9kP49RnexLslyf6MDndxe86YtfOMy9M9NHFemsN9g4cmdnlOAQCvRhvucnGGzwvPSHJ/Zgef7kwz73BYc8zaRo/BOeFVafaSBueEd2keBSZVKWVlktenOxZuSXJXumPhA9bH/SulrEvynjQhB/enCTn4cq31UK+FAYxRKeXyNMFXP5Pky0luqLXe1m9VDCP4BUDwy2JWSjkxyduTfDTNpVU3JPl8rfW5XgsDGKNSyoY0YVjvS7MfuD3JV3xe1b/2OXVFuvu2a5PckoF921rrE70VCQCwwAS/AAAAwBi0TVAzA11mvq5L8kSa8JZRgS67a60vj7v+5aq96XWqYW1moMGpmX0z+dT3ezQFAJOgDXc5K6PDXQ5keBPvDuEu/Wn/u21O9zDEFUkeSreJ7RsapQCAo1FKOSmjw13OTPJARoe7HO6jZv55X+OqdOeFq9KdE95Sa326tyIBFljbzDE4Dl6d5LEkN2V6LPxarfVAb0UySynlzWluYX5bki+lCTm4s9+qAManDSr78TSBL5ck+WSST9daH++1MOYk+AVA8MtS0H6W/C/SzDN+MMkXktzovxmwnJRSViX5uTRhWKcnuTHJ52qtz/ZaGB2llPVJtmV6b3dbkqfS/Zzrjlrr/t6KBACYR4JfAAAA4Bi0H4avzewQl5nBLielDW7J6FCXvZqvx6+UcnJGh7ucnrnDXdz0ACx57bNsXUaHuxzK7CbeHUl2ahBdHEopa5Jck24j24pMH3K4KcmtDqgAAHNpw10uyvRccHBueFaGh7vsiHCXRaFtDH19unPCLf8/e3f+bndV3/3/+WZKIAwJhMyBkOTIPJMQ79bb2nrr19vOk1+q1tkqg/wtBEREb4ta5952spO1rW3t10AgTIJIEjKQEQjzEMb1/WGt7dnr7M8OBM7Zn3P2fj6uy2sf/OnNxTlrr+n9WuQXK7svwG4zrFbSsCoB7JcwPg6uA+YAtzE+Dt6WUjrQWpHqKyKOAn6H3Hy4ErgR+FJK6bFWC5OkAYqIecAngKuAveTX579vQNnMYPCLJBn8MtNExDLgs8CngI3kuce/eB9K0qgod6bWkfej3gt8kxxA/ItWC1OjiDgCeBv1WdhZwP3UZ2GbPQuTJEkzkcEvkiRJkiT1URpmFtIb4jLx8yVyeEu/QJddwOMeJLSnXPjvF+4yD3iIhkADYLeXGSQNg3JR4RT6h7u8Rv9wl8fbqFnNShPUudSXGM4A7qK+xLDDuYckSZooImYDq+idD44BC4Dt9AafbgYeNtxleomIxdRzwsuA/eTQv86c8G4bRCUNq3LJ/0zqsfBM4D7q9fEW18fTW0ScDHySHHLwMLnR8K9SSi+3WpgkDVBEnENuNPwA8ANgfUppY7tV6XAZ/CJJBr/MVCUU/AryfGQWcD3wtZTSs60WJkkDFBFLgc8AnwY2kfeo/tn7o9NbQxj45cAJ1GHgtxoGLkmSZgKDXyRJkiRJI6k0Oi2hOcyl8/NC4AD9w1x2k4NBPOSeBsoBziqaQw1OJoe7TGxc20K+fOfhnKQZr4S7nMz42DdxLEw0N/Fu8XB7+ioXS7ovJ1xKnoN0N7HdYzOUJEnqKHseK2kOd1kI7KB/uMsrbdSsQ2u4tLoOmEN9afU25/WShllELKBeH68h7993r4/vSikdbK1IHZaIOB+4Bvgj4G/Irynf0W5VkjQ45RGS/01usD4PuAn4YkppX6uF6U0z+EWSDH6Z6cqdg3eQ5yfvAr4KfD6ltLXVwiRpgMo52/9LHguPJ4dhfTWl9HSrhekNi4hF9D6e8Ci9jye82FqRkiRJDQx+kSRJkiQNlXIAfSLNgS7dnycCe+gf6LIL2GsT9fRSXpjpF+5yCrCN/uEuvkwuaSiUV5D7hbsEzU28m4HHfeF6eouIOeTLBt2XD2ZRN7FtTCk90VqRkiRpWoiIWfQPd1kE7KSeC3bmhjsNd5neIuII4EzqOeGZwH3U88Itzu8lDavSXDHxlda59AZePdpakXpTSsjBb5EbZ84EvgDcnFJ6pNXCJGmAImIu8DHganKI2XXA91JKL7VamN4yg18kyeCXYRIRpwOfBT4B/BRYD/yre5KSRkW5i/wr5H2sdwNfB27wO27mKXuSZ1HvN48B91KfvT3k95wkSWqTwS+SJEmSpBmjNL6cSh3i0hTsksjBLYcKdXkspfTagP8V9AaUcJeVNAcanEpzuMtmDHeRNERKuEtTE+8YcCT9w10OeAA9M5RLBWdTXypYzfilgs4rM9v8bypJ0miKiGPoDXfpzA0XAw/THO6yw3CXmSMiFlDPCdeQmz+7L5relVI62FqRkjSFSgPFGPVYeA7wAPVY+KB7+jNXRMwjNwteBewlNwx+35ADSaMkIs4CrgGuAP4RWJ9SurXdqjSZDH6RJINfhlFEHAf8CXAtcARwPfD1lNJzrRYmSQMUEcvJYVifBDaS97b+xf3Kmas8znUp43vS68iPc00MH/dxLkmSNDAGv0iSJEmSpoXSzLSE3hCX7s/FwFMcOtBld0rp6UHXr8NTXmztF+6yANhOc6jBw4a7SBoWpeGlX7jL0TQ38W4mh5e5sTvDRMQixi8KXA5cBuynbmK7O6X0YmtFSpKkgSv7IWfQOx9cTd4neZh6Ltgd7vJyGzXrzSv7IZdQhxvMpfcS6aOtFSlJUywi5gNrGR8H1wJPU6+PN6WUXmitSE2aiDiH/CryB4AfkEMONrZblSQNTnnY5H3ksfBC4GbgppTSnlYL05Qw+EWSDH4ZZiW49dfI85p3ALcAN6SUtrdXlSQNVnnU8ApyGNYx5DCsr6WUnm21ME2KiFhKfYZ3KbCHeu/6HsOsJUnSVDH4RZIkSZI05SLieJrDXLp/ngfs49ChLntshp45ImIW/cNdFgI76B/u4svkkoZCRMylHv+6x8NZ9A93edRwl5mrvHo2saH3eHobeg+0VqQkSRqYiDia/uEuS8l7Hk3hLtsNd5m5SiPEGPWc8BzgAeoLog/6IqSkYVX2iC+iHgtPJb+K+8uxMKW0v7UiNeki4kjgf5ObAc8DbgK+mFLa12phkjRAEXEi8FHgGnLA2XXAdzzrHm4Gv0iSwS+jIiLOAK4EPgb8F7Ae+LF3HCSNinIG9A5yAMyvAV8FPp9S2tpmXZpcZZ/zXOr97TOAu6nP+nb4HShJkiaDwS+SJEmSpDetHF7MpzfQZeLnURw60GU38EhK6dUB/yvoLSoX9zvNaxMDDRYBO2kONNhpuIukYRERJ9E/3GU2zU28m8nffW7QznDlxdYzqQ/5zwTuoz7k3+J/b0mShlcJd1lBb7jLGHlvZGK4S2duuN1X4YZDRMwH1jI+J1xLbvDsnhNuSim90FqRkjSFynnBKur18Xnk77wNjI+FDxh4NZxKAPLHgKuBA+SQg+8515E0SiLibeRx8EPAD8lN0D91b3g0GPwiSQa/jJqImEOe93wOeI089/lGSun5VguTpAGKiNPJYVifAP4/8lj4r64Dh1NEnABcRr0PfiT1eeDGlNJTrRUpSZJmLINfJEmSJEmNIuIoYDG9IS7dPy8BnuP1Q12e9BBj5oqIY4CV9L5KPkb+HXmY3sa1zeQUe8NdJA2F8jrnxCbezs/H0dzEuxnY73fgcImIBdSH92uAx6kP8O9MKR1srUhJkjQlyl7JCprDXZaT90Amhv1tAbbZ8DxcShDuRdTzwlOBjYzPCW9LKe1rrUhJmmIRMY868Opy4AXq9fEdKaXnWitSAxERZwHXAH8C/COwPqW0od2qJGlwSjj4e8gNz5cBXwK+kFLa1WphGjiDXyTJ4JdRVcJgf4M8H3o78BXgxpTSjlYLk6QBiojjgA+Sx8IjgOuBr7s/OtzKd+AyxvfI1wEXkx/N7N4rv9f71JIk6fUY/CJJkiRJI6gcMEwMdJn4OR94hEMHuuz2leLhUMJdzqA50GAJOdxlYuNaJ9zl5TZqlqTJVl7kaGriXQ3MIY99TWPhPsNdhlNEzAYuoW5im0vd0HtrSunR1oqUJEmTqoS7nE7v2rgT7rKX/uEuL7ZRs6ZWubC5inpOeB75v/0GxueFD6SUXmurTkmaSmX/+ALqsXAxcAf1+nhPa0VqoErIwfvIjSwXAjcDN/k7IGmUlDOFj5DDr54nv+r+bc/PR5fBL5Jk8IsgIlYBV5HnST8mz5H+0zsVkkZFOVf6NfK+2TuAW4AbUkrb26tKgxQRR5PPErv3008D7qQOg3nY70dJktTN4BdJkiRJGiLlwGAe4+Et/YJdjqUEt9Ac6rIL2G+6+HAphwkTw106TWxLyf/dmwINthvuImlYlIvYq2keC0+gf7jLXg9ah1uZR41RH7qfAzxAfej+oA29kiTNbCXc5TSaw11OA/bRG+6yGcNdRkJEzAPWUs8LX6CeE97hC42ShlVZH6+gHgcvBLZSj4X3p5RebalMtSQiTgQ+Sg45eBq4DviOcyRJoyQiVpObmf8U+DdyM/NPPEOQwS+SZPCLxkXE8eT50ueAg+Q507cMyZM0SiLiDOBK4GPAf5HHwh+7fhw9EXESsIZ63/016kcmbk8pPdNakZIkqXUGv0iSJEnSDBERRwIL6R/m0vl8ifHwln7BLo97cDCcSrjLCnob11aTf0d20z/c5aUWSpakSVcuEHXGwIlj4YnkRqWJTbxbgD1+P46OiJhP3dC7ltyw1N3EtsmLZ5IkzUxlH6VfuMvpwH5618adcJeDbdSswYuIY4ALqC9ZLgbuoGtemFLa01qRkjTFyoXzievjV6kvnN/hhfPRFhFvA64GPgT8kNyk8lP30iSNihKM9m5y4/I64MvAF1JKO1stTNOKwS+SZPCLekXEEYzPo9YyPo96uNXCJGmAImIO8GHyWPgqeW/tGyml51stTK0p+wyn0xvAvo367tp9BrBLkjQ6DH6RJEmSpGkgImYDS6hDXCYGuiwEDtA/zGU3sDul9Oyg69dglZfJV9AcaLAc2ENv49oWcvOa4S6ShkI5EO8X7jKXHO7SNBbuSSm91kbNak9EzAIuoj4sPxW4nXxIvgG4LaW0r7UiJUnSYSvhLssZnwt2zw1XAI/QHO7ykOEuo6dcoFxB7wXKrdQXKO/3AqWkYVX2ls8nj4HryudyYBP1WLjLQA+V5rz3kBtSLgO+RG7O29VqYZI0QCVo/sPANcArwHXANw0MVxODXyTJ4BcdWkSMkUNFPwz8iBx88N/uQUgaFeWs6jfI+21vB74C3JhS2tFqYZoWysOfnQcrOvv3S+h9sGJ3a0VKkqQpZfCLJEmSJE2hskl/Ir0hLhM/TySHdfQLdNkF7E0pvTzgfwW1pFzAP53mQIPTgL30D3d5sY2aJWmyRcRx9A93mQc8RPNYuNtwl9FV5l8rqQ/BzyP/fnQ3sT1gQ68kSdNfV7jLxPngGHAG8Cj9w11sxBthEXES+QXZTsjLWvIrip3gv1uBO1JKz7RWpCRNobI+Xk4deHUxsIN6ffyzlNIrbdWp6SciTgA+Qg45eIEccvBt51aSRklErASuAj4K/Ae5Kfk/bErWoRj8IkkGv+iNiYgTGV93Pkuea33bwHZJoyQiVpHXnR8BfkweC//Tdae6RcQ86vPOy4GDjO/vbyCfdz7XWpGSJGnSGPwiSZIkSW9SeenwVOoQl6Zgl0QObjlUqMtjNqiPnhLuchq9gQZj5f/fR3OgwUOGu0gaFiXcZRW9TbxjwMn0D3fZ5XenoPGAey31AXenodcDbkmSpqmyx3KocJcDNIe7bLUBWfDLPZbzqS89LgfupJ4X7vLCrKRhVcI61lCPhUE9Dt6eUnqqtSI1rUXEanKzyZ8C/0ZuNvmJ352SRkUJTXsXcC3wK4y/vL69zbo0cxj8IkkGv+jwlLOB9wKfAy4BbgZuSintbrUwSRqgsq/7YfJYeJC8J/ctz0DVZMKDaJ3/nY8PokmSNBQMfpEkSZKkBhFxDLCE3hCX7s/FwFMcOtBld0rp6UHXr+mjvEzeCXeZGGhwOrCf5ua1bb5iImlYRMSx9A93OQXYRvNYaLiLKmWOdgH14fVi4A66Dq9TSntaK1KSJDUqF7iX0RzuspIc7jIx7K8T7vJ8GzVreioXGpdTzwkvBnZQX2j8WUrplbbqlKSpVAKvzqUeC1cAd1GPhTsN7dChlO/Vd5MbS9YBXwa+kFLa2WphkjRAJaD+Q+SxEHKT3TcME9fhMvhFkgx+0ZsXEWcCVwMfBP6ZPCfb4L6GpFFRzlL/F3ltuobxfbqHWy1M015EzAIupD4vWADcTn2fbl9rRUqSpDfE4BdJkiRJI6ekox8q0GUZMA/YR3OYS+fnPSmlFwddv6afEu6ynOZAgxXAIzQHGjxkuIukYVHCXVbSPBaeyqHDXXxdQj1K49EK6kPpC4GHyAfSG8rn/f4OSZI0PZQLiUup54KdueFK4An6h7vYUKdGZS9vDfW8MKiDDW5PKT3VWpGSNMUiYinjY+A68ivYu6nHwntSSi+3VqRmlIg4nvyS8DXAK8B1QmRogQAAIABJREFUwDd9SVjSKImI04GrgI8DPyE3F/+7zcV6swx+kSSDX/TWRcRJwEfJ69UnyHO073pPU9IoiYgxchjWh4EfkcfC/3a9qjcqIk4B1lKfrz5DfaawyQdYJEmaXgx+kSRJkjQ0SnPwfF4/1OUomgNduj8fsYFY3Uq4yzL6h7s8Rv9wFy9KSxoKETGb/uEuC4DtNI+FD/u9qtdTLnB1HzivBV6lt6H3mdaKlCRJnXCXJfTOB1cDq4AnaQ532WK4i15PRBwFnEt9CfEM4C7q8L+dXm6VNKxKIMel1GPhLOr18caU0hOtFakZKyJWkkMOPgr8B7lp5D/8XpU0KsqdgneSX1B/J3AL8PmU0kNt1qXhYPCLJBn8oslT7uq9jzxvOx+4GbgppbS31cIkaYAi4kTgI+QwrGfIe3nf8cFJHa6yHzJGfe5wLvAA9dnDL1JKr7VVpyRJo87gF0mSJEkzQmn6WMyhA12WAM/x+qEuT3qBVU1K81q/cJczgAM0BxpsNdxF0rCIiFn0D3dZCOxgfPzrHg93Gu6iN6rM7c6nPkw+DdhEfZi8y3mbJEmDVy5+HSrc5Wl618ZbyOEuz7ZRs2amiFhKPSe8lLx/1z0nvCel9HJrRUrSFCpNTGdTj4WrgXuox8Jtro/1ZpW53buAa4FfAb4C3JhS2t5mXZI0SBFxLPBBcuPw0eRmua+7htVkMvhFkgx+0dSIiHOAq4ErgL8H1qeUbmu3KkkanHK3+f8hr2kvZjwMa3erhWlGK48AXkx9PjEP2EjX+URK6dHWipQkacQY/CJJkiSpdRFxHP3DXDqf84FHOHSgy27DN/R6ygHIUsab1rqb2FaSw12aXibfmlJ6vo2aJWmylXCXM2geCxeRw12axsKdKaVX2qhZM1dpLlpOfUh8Mfn3rLuJ7Wf+fkmSNDjlO3oxveEuY+Rwl2foH+7yTBs1a2aLiOPJwS7d88JZ1HPCjSmlJ1orUpKmWEQsph4HLwP2AxsYHwvvTim91FqRGhrl/O1D5IYQyCEH30gpPddeVZI0WBGxHLgS+AT5e3Y98CMD1TQVDH6RJINfNLUiYh7wMXIIzCPkud1fuo8iaZRExFnkcfBPgH8mj4UbXOdqMkTEAmAt42cYa4HHqc9z70wpHWytSEmShpjBL5IkSZKmTGkgmsd4eEu/YJdjKcEtNIe67AL22wisN6or3GXiq+SdcJcn6B/u4oVnSUMhIo4hj3lNY+FiYCfNY+EOv3P1VkTECcAa6ka2Ixg//N0A3J5Seqq1IiVJGhFlb2YR/cNdnqM33KWzPn66jZo1HCLiSOBs6jnhauAe6ouB27yIKmlYldCNSxgfB9cBc4DbGB8Hb0spHWitSA2liDgduAr4OPATcvPHv/udK2lUlLXwr5KDr34d+Brw+ZTSllYL09Az+EWSDH7RYJT95/eT53vnADcBX0wp7W+1MEkaoIg4iRyGdQ05mGM98N2U0outFqahUu7jv436zPcs4H7qM9/N7j9LkvTWGfwiSZIk6U0ph2cL6R/m0vl8kf6BLp3Px93s0+Eqm8lLaA40WAU8SXOgwRbDXSQNixLucgbNY+ES4GH6h7u83EbNGi4RcRRwLvXh7hnAXdSHuzuc70mSNDVKQ9tCeueDnZ+fp3+4i0FsmhQRsZh6TngZsJ8c+teZE97ty6uShlXZrz6Teiw8E7iPen28xfWxpkKZE/5P4FrgncAt5JCDh9qsS5IGKSJmA1eQG4CPA64HvppSeqbVwjQyDH6RJINfNHgRcR459OCPgb8D1qeUbm+3KkkanHKf/33ktfD5wM3ATSmlva0WpqHVEHp/OXACdej9rYbeS5J0+Ax+kSRJktSjXIhaQg5v6RfoshA4QG+ISxXsYsCG3opyUflQ4S5P09u8toV8ef7ZNmqWpMkWEUfTP9xlKfk7t2ks3G64iyZbRCylPrS9lDz3625iu8ffPUmSJldZHy+gf7jLQXrD/jrhp4a7aFL1ucx3PPVlvtu8zCdpmEXEAupxcA35zKR7fXxXSulga0VqJETEscCfkBs7jiG/7Pt1z0gkjZKyb/1Z4FPAJuA64IcppddaLUwjx+AXSTL4Re2JiJOBTwBXk+/RrAe+790FSaMkIs4hj4NXAH9PDsO6rd2qNAoiYhG9j4Q8Su8jIS+2VqQkSTOAwS+SJEnSCClNQifSP8yl83kisIcJIS4TPvd6KKbJUH4vF1M3rXUa11YDz9D7Knkn3MXX2SQNhRLusoLmJt5l5O/ffuEuL7VQskZARMwhH8J2H8rOom5i25hSeqK1IiVJGiJlfXwq/cNdXqJ/uMuTbdSs4RcRRwBnUs8JzwTuo54XbklePpA0pEpY/sTAq7n0Bl492lqRGjkRsRy4ktzUdiu5oe1Hfh9LGhVlDf12cvDVe4C/AG5IKT3YamEaaQa/SJLBL2pfRBwF/BZ5njgGfAG42X0bSaMkIuYBHyeHwOwn7x3+pfcMNSgRcSRwFvW5yhhwL/UZ80PuaUuSNM7gF0mSJGlIlCaMBRw60GUZkMjBLd0hLhODXR7z9StNpnLxbhHNjWurgedoDjTYklJ6uo2aJWmylcslK2geC5eTQ9eaxsJtHrpqqpXD1rOpD1tXM37Y2nl9Y5uHrZIkvXllfTyf3uDTzucr9A93MWxNUy4iFlDPCdcAB6gv4N2VUjrYWpGSNIXKd/UYeQxcVz7PBh6gHgsf9BxFg1Z+P3+V3Lz268DXgM+nlLa0WpgkDVBEzAI+QB4LTwKuB27xTFnTgcEvkmTwi6aXiLgAuAb4Q+CvgfUppTvbrUqSBqfcB/tN8hr6bOAm4Isppf2tFqaRVB6hu5Txc+h15EfoJobsey9CkjSyDH6RJEmSZoCIOAZYwqFDXRYDT9Eb4lJ9euFJU6VcOF5Ib6BB55+fp7dxbTOwNaX0VBs1S9JkK+Eup9M8Fi4H9tLcyLs9pfRiGzVrNEXEIuomtsvIL7x0N7Hd7e+lJEmHryvcZWLYX+fnV6nXxZ154ZaU0uNt1KzRFBGzgUuog17m0nu5zpdQJQ2tiJgPrGV8HFwLPE29Pt6UUnqhtSI18sp39hXkBo3jyCEHX00pPdNqYZI0QBGxBPgM8GngbuA64J8MYtN0YvCLJBn8oukpIk4BPgVcBWwnzyX/OqX0Spt1SdIgRcR55DCsPwb+lhyGdUe7VWnURcRS6rPqS8kPKHaf0dzjw4mSpFFh8IskSZLUsog4gUMHuiwD5gH7aA5z6fy8x8ZcTbXSvLaA/uEuB+n/MrnhLpKGQgl3OY3msfA08nd201i4ze9qtSEijqO3ofd4eht6D7RWpCRJM0xZH59C/3CXRHO4y2bDXdSG8js7Rj0nPAd4gPri3IM2TkoaVhExC7iIeiw8FdhI11joa6eaLsql98+Sm9PuANYDP/S7WtIoiYjLycFX7wO+BdyQUvp5u1VJzQx+kSSDXzS9lfs+v0ueX64AbgS+nFJ6rM26JGmQIuJk4BPA1eQehPXA91NKL7damARExJHAudTnOGeQQ4C7z7R3JBvjJUlDyOAXSZIkaYp0ve7cL8yl8/NRNAe6dH8+klJ6dcD/ChpR5Xf3VJob11YDL9E/3OXJNmqWpMlWDpA64S4Tx8LTgf30D3c52EbNEkBEHAGcSX34eSZwH/Xh5xYPPyVJen3lFcim4NMxIOgT7gI87net2hQR84G1jM8J1wJPU88JN6WUXmitSEmaQmWfexX1+vg84EHqsfABQzQ0nZTf3beTm9DeA/wFOeTgwVYLk6QBiohjgD8ij4WnAtcDf+5ZtKY7g18kyeAXzRwRcTFwDfB7wP8Frk8p3d1uVZI0OCUM67fJa+/VwBeAm1NKj7ZamDRBeWT5MurzniOpz3o2+kCtJGkYGPwiSZIkvQlls3MxzYEunc8lwHM0h7l0//yUjUAatK5gon7hLq/QP9zliTZqlqTJVsJdltM8Fq4AHqF5LHzIcBdNFxGxgPpQcw3wOLCB8YPNu/ydlSSpv/KqWb9wlyOpw12654YH3NPRdBARs4CLqOeFpwIb6brwllLa31qRkjTFImIeOeRqHeOBVy8wPg5uIAdePddakdIhlO/zD5AbLU4ihxzcklJ6utXCJGmAImIR8GfAZ4CfkV8d/wcfydFMYfCLJBn8opknIk4FPgVcST7/WQ/8bUrplVYLk6QBiogLyWFYfwD8NbA+pXRnu1VJzUoPxDLqs/FLgJ3UYTD3+n0uSZppDH6RJEmSJoiI4+gf5tL5eT65GXxioEv3525fzFWbysbmKfQPd3mN5sa1LSmlx9uoWZImWwl3WUb/cJfHaB4LH/J7XNNNRMwmH1J2H1rOpbeh15dXJEmaoDSDN62Nx4Cj6R/u8pjhLppOyn7PKuo54XnAg9QX2R5IKb3WVp2SNJUi4hjgAuqxcDFwB/X6eE9rRUpvUEQsIQccfBq4G7gO+Ce/xyWNkohYQw6++k3g28ANKaX72q1KOnwGv0iSwS+auSLiaOD3gGvJ94w+D3zZe5SSRklEzAc+CVwFbCfvVf614Rma7sr3+HnU50anAXdSn6E/7P0PSdJ0ZvCLJEmSRkZpiphHc6BL9+exlOAWmkNddgH73cTUdFB+r0+m+VXyMSDR3Li22UNJScMiIo4AltPcxHsGOdzll+Nf189bDXfRdFW+48eoDyPPAR6gPox80EYgSZKyiJhL77q488/HMGFd3PXzo17u0XRVQovWAuvIc8K1wAuMzwc3AJtSSs+1VqQkTaGyPl5BvT6+ENhKvT6+P6X0aktlSoctIi4nhxy8D/gWOeTg5+1WJUmDUxpy/oA8Fi4BbgD+T0rpiVYLk94Cg18kyeAXDYeIuAy4Bvht4LvA9Smln7VblSQNTkQcBfwuec2+AriRHIb1WJt1SYcjIk4C1lCfL73G+Bn7rcDtKaVnWitSkqQJDH6RJEnSUIiII4GF1CEuEwNdlgIv0j/QpfP5uM0+mm4i4lDhLkGfcBf8fZY0JEq4yzKaw11WAgfoH+7yfBs1S4ejvJiylvFDxrXA09RNbJsMK5IkjbpyOadfuMtsetfFnX9+xPWxpruIOAa4gPry2WLgDrrmhSmlPa0VKUlTrHzXd6+PLwdepl4f3+FFXM1E5bv+j8gNE6cC1wN/nlJ6stXCJGmAImIB8Gngs8AvgPXA3xngpmFg8IskGfyi4RIRCxmfu/6cPHf9gXNXSaMkIi4hh2H9LvB/yWFYd7dblXT4ykMDp9P70MA26jOo+/yulyS1xeAXSZIkTXsRMZvx4JaJYS6dz4Xkhu+JIS5VsIsv32o6K+EuTYEGY8CR9A93OWDzmqRhUMJdltI/3OUJmpt4t/odr5kkImYBF1EfIp4KbGT8APG2lNK+1oqUJKlFEXEizWvj1cCx5Dlg07xwv+tjzRTlYtkKei+WbaW+WHa/F8skDauIOBo4n3osXA5souvFxZTSrtaKlCZBRCwC/gz4DHAfcB3wD37HSxolpVHsc8DvAN8jN4rd225V0uQy+EWSDH7RcCpBrn8AXEu+q3wD8JWU0hOtFiZJA1SCXD8FXEk+n18P/G1K6ZVWC5PegnJONfFhlqX0Psyyu7UiJUkjxeAXSZIktaY0N5xIDm/pF+iyDDgB2MOEEJcJn3tTSi8P+F9BOmwRMY/mV8nHgKOpm9a6A14es3lN0jAo4S5LaB4LVwFP0htwtQXYYriLZqIy511FfTh4Hvl3u7uh9wGbfSRJoyQiTqB/uMscxueDE+eF+1wfayaKiJOAtdTzwpep54R3pJSeaa1ISZpCZX28nHocvBjYQT0W/syL4hoWEbGGHHLwm8B3yCEH97VblSQNTmme+T3yWLgcuBH4ckrpQKuFSVPE4BdJMvhFwy8iLgeuAd4PfJu81r+/3aokaXDKWv/3yWv9ZcDnyWv9x1stTJokpddjDbCO8fOsg9RnWbd7n1mSNBUMfpEkSdKUKE3dC+gf5tL5TOTglu4Ql4nBLo+llF4b8L+C9KZFxFz6h7scQ3Pj2mbgUZvXJA2D0sizhOYm3lXA0/QPd3m2jZqlyVIO/tYyfvC3FniB3oZeD/4kSUOvhLt05oMT54Un0D/cZa/rY81k5cLj+dThBsuBTeT54Abyy2C7WitSkqZYmQesoR4Lg3p9vDGl9HRrRUpToMwD/oDc+LCE/Ar4//EVcEmjJCLmM/4K+EPkV8D/xnA3DTuDXyTJ4BeNjohYDPxZ+d+95DnvP3jXWdIoiYjLyGFYvw18lxyG9bN2q5ImV7kPvZL6vOt88t2W7jOvn/vwnyTprTL4RZIkSYctIo4hX1Q8VKDLIuApekNcqk8v9GqmKq80NzWujQGz6R/u8ojNa5KGQTnMWEzzWLgaeIbesXAzsNUX7DUsyrz4AupDvcXAHXQd6qWU9rRWpCRJUywijqd5bTxGDnfZSvO80HAXDYWyNlpOPSe8GNhBfdHrZzY5ShpWEXEUcC71WLgCuIt6LNzp97+GVUQsAD4NfBb4Bbnh6++86C1plETEReSGr98Hvk9u+Lqr3aqkwTH4RZIMftHoiYhZwB8B1wLzyAGwf55SeqrVwiRpgCJiITkI6zPAz8l7oz9wb1TDqnz/X0h9LrYAuJ363ui+1oqUJM1IBr9IkiSpUl5g7Bfm0vmcB+yjOcyl8/OelNKLg65fmkwRcSK9TWudfz6W3LQ2sXFtC7Dfy+uShkFpYFxE81i4CniO/uEuhrtpqJS/hxXUh3UXkpvZu5vY7vfQWpI0bCJiDv3DXU5iPNxl4txwry8batiU/dM11PPCoJ4T3u6lbknDLCKWUY+Dl5DPhjrj4Abg3pTSy60VKQ1IRFwCfA74HeB75JCDe9utSpIGpwTA/Q55LFwJ3Ah8KaX0WKuFSS0w+EWSDH7R6Cp3Si4nB8C8F/gmcENK6YFWC5OkASqPqP0heY9gITkM6ysppSdaLUwagIg4BVjL+NnZWuBZ6nsEm1JKz7dWpCRp2jP4RZIkaUSUQ4X5jIe39At2OYrmQJfuz0dsZtWwKM06/cJd5jDesNbduLYF2Ge4i6RhUOYIC2lu4l0NPE9zE+8Ww100zCLiJHoP4l6lt6H3mdaKlCRpEpVwl1U0zwvnAg/RPC/cY7iLhlVpYDyXOtxgBXAX9bxwp/tEkoZVRBwPXMr4OLgOOIZ6HNzoxW2Nkog4Gvg9cgPDacDngS+nlA60WpgkDVBpZvkkcBWwk/ya918Z/KZRZvCLJBn8IgFExFLgM8CngTvJc+V/8jxN0iiJiMuBa4D3A98mB2bf325V0uCUu9mrGT9buxw4B/gF9RnbL5wjSJI6DH6RJEkaAuVy4SL6h7ksA5YAz9Ec5tL981M2KWjYlHCXTsPaxECDE+gf7rLXvwdJw6AcICygf7jLQfqHu/hKvYZeaeg9n/qQbTmwifqQbZdzA0nSTBYRx1GHu3TPDU+mf7jLbi+aaBSUy9jdc8JLyPumnfngBuBeGxklDauIOBI4mzrwajVwD/X6eJvrY42iiJgPfAq4kjx3Xg/8TUrplVYLk6QBiojzycFXfwj8Dblx6452q5KmB4NfJMngF6lbRMwGPgBcCxwPXA981Ye2JI2SiFgM/Bk5EOse8p7qP3j/QKOozA0upj6HOxnYyPh9hFtTSo+2VqQkqVUGv0iSJE1z5bXlpfQPdFkKzAceoTfQpftzd0rphUHXLw1KeXW0X7jLicBWmsNd9nhBXdIwKOEup9I/3OUl+oe7PNlGzVIbyt/KcurDs4uBHdRNbD+zaUeSNBNFxLH0D3c5BdjG+Fywe264y8tVGiVlL+lS6nnhLOo54caU0hOtFSlJU6xcuO4eBy8D9lGPhXenlF5qrUhpGoiIi8iv0/4+8H1yyMFd7VYlSYNTwuF+ixz4cibwBeDmlNIjrRYmTTMGv0iSwS9Sk3JP5X+Q59P/C/g6cIN/J5JGSUTMAv6YHIY1F7gB+HMfJtSoi4gFwFrGz+rWAo9Tn9XdmVI62FqRkqSBMfhFkiSpJWUjfx79w1w6n8dSglvIIS5NwS77bUrVKChBSE3hLmPASYyHu0wMNdhr85qkYVDmD/NpbuJdDbxMb8BVJ9zFZkWNpIg4AVhD3cgW1Adjt3uILEmaSbrCXSaG/Y2R54vbaJ4X7kopvdpGzVKbSpPi2dRzwtXkV+W654XbDAiWNKwi4jh6A6/mUI+Dt6WUHm+tSGkaiYijgN8hN2WtBG4EvpRSeqzVwiRpgCJiHvAJ4CpgL/lV7u8bCic1M/hFkgx+kV5PRCwDPgt8CthInmP/i/dbJY2Kcgd2HXnf9b3AN8lB279otTBpmoiII4C3UZ/nnQXcT32mt9m7DZI0fAx+kSRJmgKlkWARhw50WQq8SG+Iy8TPx12Qa5SUy+dNjWtj5ITvh2gOd9nj4ZekYVAOtk6hf7jLa4yPfRPDXWzM0UgrDTnnUh96nQHcRT7s2lA+dzrHliRNdxExm/7hLgvoH+7ysOEuGnURsZh6TngpsJ/6ItTdNitKGlblUuiZ5DFwXfl8G3Af9Vi4xfWxVIuIU4BPAlcCD5MbsP4qpfRyq4VJ0gBFxLnANcAHgB8A61NKG9utSpr+DH6RJINfpDeqPPJwBTn4YDZwPfC1lNIzrRYmSQMUEUuBzwCfBjaRx8J/sh9AqpV5wyWM339YB5wA3EbXuV9K6UBrRUqSJoXBL5IkSYepNN10glv6hbosBA7QG+JSBbuklJ4bdP3SdFDCXVbRHO5yMv3DXXa7mStpGHSFu/QLuko0h7tsNtxFGlcOf7ub2C4hz7e7m9jusTFHkjRdlX2mldRzwc7ccCGwneZwl52Gu0hZ2We6lDroZQ71nPA211KShllELKAeB9eQz6m6x8K7UkoHWytSmuYi4nxys9UfAn9DfmX2jnarkqTBKQ8cvZ88Fp4L3AR8MaW0r9XCpBnE4BdJMvhFOlzlDtk7yPPwdwFfA25IKW1ttTBJGqByb+IDwLXA8eQAmK+mlJ5utTBpGouIRdRng5cBj9J7Nvhia0VKkg6bwS+SJElF2Tw/iUMHuiwjJ6PuYUKIy4TPvTaXatSVZOF+4S6nkF8mbwo12GW4i6RhUV6HbWriHQOCehz85Vho6rrUKyKOp7ehdxb1QdXGlNITrRUpSVKDiJhFDneZuDZeDSwCdtAbfLqFHO7yShs1S9NVRBwBnEk9JzwTuI96XrgleRAuaUiVvfeLqcfCudSv+t2WUnq0tSKlGaKEHPwWubnqTOALwM0ppUdaLUySBigi5gIfA64mB8ddB3wvpfRSq4VJM5DBL5Jk8Iv0VkTE6cBngU8APwXWA//qeYekUVH6ef4HOQDm3cDXyWFYziuk11HOO86iPj8cA+6lvkvxkHMLSZq+DH6RJEkjoTQELKB/mEvn50QObukOcZkY7PKYoRRSVi6Yd5rXJgYanMqhw118mVzSUIiIk+kf7nIkfcJdgANunkvNyiHU2dSHUKuBe6gPobb5dyRJmg4i4hj6h7ssBnbSHO6yw3AXqb+IWEA9J1xDbkSc+ErVwdaKlKQpVM63xqjHwrOBn1OPhZs9u5LeuIiYR26iugrYS26k+r4hB5JGSUScBVwDXAH8I7A+pXRru1VJM5vBL5Jk8Is0GSLiOOBPyMEHRwDXA19PKT3XamGSNEARsZwchvVJYCN5D/dfPAuR3riImEPvY4uz6X1MwscWJWmaMPhFkiTNeKWxZgnNgS6dz0XAU/SGuFSfKaWnB12/NN1FxGxgFb2Na2PkQKVt9DaubQYeNtxF0rAojQBNTbxjwFE0N/FuJgfGufkivY6IWEx9uHQZsB/YwPgB090230iS2lT2oM6gd144Rg53eZj+4S4vt1GzNJOUgOGLqeeFc+m9dPRoa0VK0hSLiPnAWmAd44FXTzM+Dm4A7kwpvdBakdIMFhHnkkMOPgD8gBxysLHdqiRpcEqo3PuAzwEXAjcDN6WU9rRamDQkDH6RJINfpMkUEQH8Gnn+/g7gFuDzKaVtLZYlSQNVzpCvIIdhzSKHYX0tpfRMq4VJM1RELKG+k3EpOSC/+8GJe7yrK0ntMPhFkiRNaxFxAr0hLhODXeYB+6hDXCYGu+xJKb046PqlmaKEu6ykOdBgIbCd5kCDnYa7SBoWETGX/uEux9DbxNv550cNd5HeuPIy0cRXBObQ29B7oLUiJUkjKyKOZjzcZeLccAl5r2ni2ngzhrtIh6U0G45RzwnPBn5OfaFos6+2SRpWETELuIh6LDyV/HLlL8fClNL+1oqUhkBEHAm8n9wkdS5wE/DFlNK+VguTpAGKiBOBjwFXk0PlrgO+4z0aaXIZ/CJJBr9IUyUizgCuJM/rfwKsB/7dO2uSRkUJw3oHeZ/3XcDXgBtSSltbLUya4coZyrnU55Urgbup725sd94hSVPP4BdJktSKsvEyn94Ql4mfR9Eb4jLx8xGDJ6TXVy6R9wt3WQTsoDnQYGdK6ZU2apakyRYRJ9HbwNv559n0D3d5xA1r6fCVht4zqQ+FzgTuoz4U2uLfmCRpUEq4ywqaw12W0T/cZbvhLtKbExHzgbXAOvKccA252bAzH9wA3JlSeqG1IiVpCpVzsVXU6+PzgAep18cPGHglTY4S9N0JOThADjn4nq9USholEfE28jj4IeCH5ObQn7ofL00Ng18kyeAXaapFxBzy/P5zwGvkOf43UkrPt1qYJA1QRJwOfBb4BPBT8lj4r+53SJOjPOB+GfW55pGMP+64AdiYUnqqtSIlaUgZ/CJJkiZdaZ5ZRB3iMjHQZQnwHM1hLt0/P+UGjPTGRcQx5HCXiY1rq4HFwE56G9e2kF8mN9xF0lAorxY2NfGuBo5lfAycOBbud94hvTURsYD6sGcNubGmu4ntrpTSwdaKlCSNhLI/dTr9w1320D/cxUZQ6S0o4cMXUc8LTwU20jUvTCntb61ISZpiEXEyOfCqMw6uBZ6nXh/IVkMvAAAgAElEQVRvSik911qR0pCKiLOAa4ArgH8E1qeUbm23KkkanBLI/h5yI+ilwJeAm1JKu1otTBoBBr9IksEv0qCUoOlfJ8/7/wfwFeDGlNKOVguTpAGKiOOAD5LHwiOA64Gve/YiTa4y71hGfQfkEnJvUvfZ5732JEnSW2PwiyRJOiwlKXwpdYjLxM/5wCP0Brp0f+729VbpzSnhLmfQHGiwBHiY/uEuvkwuaSiUNPF+4S5z6B/uss9wF2lyRMRs8uFN92HOXMZT/W8FbkspPdpakZKkoRYRR9E/3GU5sJfmcJdthrtIk6Nc8FlFPSc8D3iQ+oLPAyml19qqU5KmUtmzv5B6LFwE3EEdeLWntSKlIVdCDt5HvuB/IXAzOeTAvztJI6OcnX2EHH71PHAd8G2D2KXBMfhFkgx+kdoQESuBq8nrgR8D64H/9I6cpFFRzqx/jbw//A7gFuCGlNL29qqShlu5s3Ue9fno6cCd1HdFHnZOIklvnMEvkiQJ+OVmxzxyeEu/QJdlwGxKcAs5xKUp2GW/KZ3SW1NeJu8X7rKU/Lc2sXFtM4a7SBoi5YJqZwycOBaeQHO4y2YMd5EmXWmeGaM+pDkbeID6kOZBG3olSZOpK9xl4nxwDDgN2Ec9F+zMDbellF5so2ZpmEXEycBaxueEa8kNhd1zwk2+oiZpWJXztBXU6+MLga3UY+H9KaVXWypTGhkRcSLwUXLIwdPkkIPvuBaQNEoiYjW5yfPDwL+Rmzx/4lmZNHgGv0iSwS9SmyLieOBPycEHB8lrg2/5UKukURIRZwBXAh8D/os8Fv7YfRJp6kXEScAa6nPU16jPUDemlJ5prUhJmuYMfpEkaQRExJHklwX7hbl0Pg/SG+Iy8fNxNz2kyVHCXVbQG2gwRv673E3zy+TbDXeRNCzKgXNTE+8YOdxlK81j4V7nJNLUiYj59Db0Pk1vQ6+XQyRJb1nZu+oX7nI6Odyley7Y+fkhGzqlqRMRxwAXkOeD68rnIuAOuuaFKaU9rRUpSVMsIubSe0HxZer18e0ppWdbK1IaQRHxNnLIwYeAH5Iv7//UPWNJo6KE0b0buJY8P/ky8IWU0s5WC5NGnMEvkmTwizQdlMed3k0OgFnL+Hrh4VYLk6QBiog55P3jz5GDJ9YD30gpPd9qYdIIKXuYp1Ofs14EbAM2MH7Wep8PakhSZvCLJEkzXETM5vUDXRYABxgPb2kMdvEVVmnylZfJV9AcaLAM2EP/cJeXWihZkiZdOUDpF+5yEocOd3mtjZqlURIRs8iHKd2HK6cCG6kbeve3VqQkacYr4S6n0TwvXAHsp3+4y8EWSpZGSrlws4J6Tngheb3WHW5wvxduJA2rEtZ+PvVYuAzYRL0+3tVakdIIK01L7yFf1L8U+BJwk3+TkkZJeVDhw8A15DC69cA3DWmXpgeDXyTJ4BdpuomIMeAq8jriX8lriP82PFfSqCjn4L9B3ld+O/AV4MaU0o5WC5NGVDmP7TxA1PnfUnofINrdWpGS1CKDXyRJmqbKBsNJvH6oywnk4IjGMJfyuTel9PKA/xWkkVHCXU6nOdBgObCX5kCDbYa7SBoWJdxlFc1j4VzgIZrHwj2Gu0iDU9YZq6gPTc4DHqRu6H3Av01J0uEq4S7LqeeCnbnhCuBR6rlgZ274kA1K0mBFxFxgDfW88GXqOeHtKaVnWytSkqZQWR+fRu8LczsYHwc3kF+Ye6WtOiVBRJwAfIQccvA8cB3wbQMiJY2SiFhJbtb8KPBjcrPmf9qsKU0vBr9IksEv0nTVtb/yOeBZ8prC/RVJIyUiVpH3Vz6C+yvStBER8+i9v/IivfdXfOxe0tAz+EWSpBaU18gWcOhAl6VAIge3dIe4TAx2ecyGTGnqlXCX02gONDgN2Ef/cJcX26hZkiZbRBxHHe7SPR6eTB3u0j0e7na+IrUjIk4G1jJ+GLIWeIG6iW2TByKSpDeq7Gv1C3c5A3iM3rXxFmCr4S5SO8qLSedTX5JZBmyifjFpV2tFStIUi4gTgcvIY+C68gn1hcGNKaWn26lQ0kQRsZp8Cf9PgX8jX8L/iZfwJY2KElT3LuBa4FcYf5F6e5t1SerP4BdJMvhFmu7KWe97yQEwlwA3AzellHa3WpgkDVBEHE/ed/4ccJC89/wt77RI00PZFz2D+lz3fPL9s+6z3Z+nlF5tq05JmgoGv0iSNMki4hhgCYcOdVkMPElviEv16eVSabDKy+Td4S7dgQank8NdJjaubSa/TG64i6ShEBHH0j/c5RRyuEvTWLjLcBepXWUtcgH1Ycci4A7qht49rRUpSZoRyoW/ZfQGn64GVgIH6B/u8nwbNUvKygWY5YzPBy8HLgJ2UIf/3ZdSeqWtOiVpKpUg93OpA69WAHdRXwbcaYCENL2Uucy7yRfu1wFfBr6QUtrZamGSNEARMQf4IHkshNx89A0D3KXpz+AXSTL4RZpJIuJM4Gry+uOfyWuPDe6ZShoV5W5MZz96LeP70Q+3WpikHhExC7iQ+vx3IXA74/dgbk0p7WutSEmaBAa/SJJ0GCLiBA4d6LIUmEcOh9hF/2CXPYZESO3oCneZ2Lg2Rr7
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment