Last active
July 31, 2020 08:51
-
-
Save L-Ramos/0b1552ba1a54e03244a10985dd0b06d9 to your computer and use it in GitHub Desktop.
breast_cancer.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "name": "breast_cancer.ipynb", | |
| "provenance": [], | |
| "collapsed_sections": [], | |
| "toc_visible": true, | |
| "authorship_tag": "ABX9TyPA+JGOtsBvGdEApUHa68UN", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| }, | |
| "accelerator": "GPU" | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/L-Ramos/0b1552ba1a54e03244a10985dd0b06d9/breast_cancer.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "XEmRBmAnlF2g", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "import pandas as pd\n", | |
| "from sklearn.linear_model import LogisticRegression\n", | |
| "from sklearn.model_selection import KFold\n", | |
| "import numpy as np\n", | |
| "from sklearn import svm\n", | |
| "from sklearn.model_selection import RandomizedSearchCV,GridSearchCV\n", | |
| "from sklearn.preprocessing import StandardScaler\n", | |
| "from sklearn.metrics import roc_auc_score\n", | |
| "from sklearn.pipeline import Pipeline\n", | |
| "\n", | |
| "\n", | |
| "def get_params_SVC(): \n", | |
| " tuned_parameters = {\n", | |
| " 'C': ([0.1, 0.01, 0.001, 1, 10, 100]),\n", | |
| " #'kernel': ['linear', 'rbf'], \n", | |
| " 'kernel': ['linear', 'rbf','poly'], \n", | |
| " 'degree': ([1,2,3]),\n", | |
| " 'gamma': [1, 0.1, 0.01, 0.001, 0.0001],\n", | |
| " #'tol': [1, 0.1, 0.01, 0.001, 0.0001],\n", | |
| " }\n", | |
| " return(tuned_parameters)\n", | |
| "\n", | |
| "#__scv necessary for pipeline function\n", | |
| "def get_params_SVC_pipeline(): \n", | |
| " tuned_parameters = {\n", | |
| " 'svc__C': ([0.1, 0.01, 0.001, 1, 10, 100]),\n", | |
| " #'svc__kernel': ['linear', 'rbf'], \n", | |
| " 'svc__kernel': ['linear', 'rbf','poly'], \n", | |
| " 'svc__degree': ([1,2,3]),\n", | |
| " 'svc__gamma': [1, 0.1, 0.01, 0.001, 0.0001],\n", | |
| " #'svc__tol': [1, 0.1, 0.01, 0.001, 0.0001],\n", | |
| " }\n", | |
| " return(tuned_parameters) \n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "9_zggNxtyvJy", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "r_state = 1\n", | |
| "\n", | |
| "df = pd.read_csv('data.csv')\n", | |
| "df['diagnosis'] = pd.Categorical(df['diagnosis'])\n", | |
| "y = np.array(df['diagnosis'].cat.codes)\n", | |
| "X = df.drop(['diagnosis','id','Unnamed: 32'],axis=1)\n", | |
| "X = np.array(X)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "0JYbpOTmyv0D", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "r_state = 1\n", | |
| "df = pd.read_csv('diabetes.csv')\n", | |
| "y = np.array(df['Outcome'])\n", | |
| "X = df.drop(['Outcome'],axis=1)\n", | |
| "X = np.array(X)\n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "qz_CdA07lWOb", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "cv = 5\n", | |
| "kf = KFold(n_splits=5)\n", | |
| "\n", | |
| "list_params_split = [] \n", | |
| "list_scores_split = [] \n", | |
| "test_scores_split = []\n", | |
| "\n", | |
| "list_params_pipe = [] \n", | |
| "list_scores_pipe = [] \n", | |
| "test_scores_pipe = []\n", | |
| "\n", | |
| "for i, (train_index, test_index) in enumerate(kf.split(X)):\n", | |
| " print(\"Iteration: \",i)\n", | |
| " X_train, X_test = X[train_index,:], X[test_index,:]\n", | |
| " y_train, y_test = y[train_index], y[test_index]\n", | |
| "\n", | |
| " scaler = StandardScaler()\n", | |
| " scaler = scaler.fit(X_train)\n", | |
| " X_train = scaler.transform(X_train)\n", | |
| " X_test = scaler.transform(X_test)\n", | |
| "\n", | |
| " parameters = get_params_SVC()\n", | |
| " svc = svm.SVC(class_weight ='balanced',probability = True)\n", | |
| " clf = GridSearchCV(svc, parameters,scoring = 'roc_auc', n_jobs = -1,\n", | |
| " verbose = 1,cv = cv)\n", | |
| " clf.fit(X_train, y_train) \n", | |
| "\n", | |
| " list_params_split.append(clf.best_params_)\n", | |
| " list_scores_split.append(clf.best_score_)\n", | |
| "\n", | |
| " preds = clf.predict_proba(X_test)\n", | |
| " test_scores_split.append(roc_auc_score(y_test,preds[:,1]))\n", | |
| "\n", | |
| " pipe = Pipeline([('scaler', StandardScaler()), ('svc', svm.SVC(\n", | |
| " class_weight ='balanced',probability = True))])\n", | |
| " \n", | |
| " parameters = get_params_SVC_pipeline()\n", | |
| "\n", | |
| " clf = GridSearchCV(pipe, param_grid = parameters,scoring = 'roc_auc',\n", | |
| " n_jobs = -1,verbose = 1,cv = cv)\n", | |
| " clf.fit(X_train, y_train)\n", | |
| "\n", | |
| " list_params_pipe.append(clf.best_params_)\n", | |
| " list_scores_pipe.append(clf.best_score_)\n", | |
| "\n", | |
| " preds = clf.predict_proba(X_test)\n", | |
| " test_scores_pipe.append(roc_auc_score(y_test,preds[:,1]))\n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "7ieKSY-7qQiK", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "\n", | |
| "print(\"Average test AUC (split) : %.2f std: (%.2f)\"%(np.mean(test_scores_split),np.std(test_scores_split)))\n", | |
| "print(\"Average test AUC (Pipeline) : %.2f std: (%.2f)\"%(np.mean(test_scores_pipe),np.std(test_scores_split)))" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "LmrsMHIJmZb4", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "\n", | |
| "list_params_split" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "yZjPc_o7maqk", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "list_params_pipe" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "hmx12bypmtGR", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "list_scores_split" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "M8N5qgPZ03Mn", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "list_scores_pipe" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment