Created
May 19, 2020 13:58
-
-
Save Lay4U/a0a1a32320567c2aab9cd7ec78cf96a5 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 46, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "1 Physical GPUs, 1 Logical GPUs\n", | |
| "1899\n", | |
| "1589895492.178923\n", | |
| "AP시스템 \t 1 / 1899\n", | |
| "0.00056052476\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "C:\\Users\\HL\\anaconda3\\envs\\me\\lib\\site-packages\\ipykernel_launcher.py:125: DeprecationWarning: np.asscalar(a) is deprecated since NumPy v1.16, use a.item() instead\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "# 0. 사용할 패키지 불러오기\n", | |
| "import numpy as np\n", | |
| "import pandas as pd\n", | |
| "# from keras.models import Sequential\n", | |
| "# from keras.layers import Dense, LSTM, Dropout, Conv2D, Reshape, TimeDistributed, Flatten, Conv1D,ConvLSTM2D, MaxPooling1D, BatchNormalization, Bidirectional, CuDNNLSTM\n", | |
| "# from keras.layers.core import Dense, Activation, Dropout\n", | |
| "# from keras import optimizers\n", | |
| "from sklearn.preprocessing import MinMaxScaler, StandardScaler\n", | |
| "from sklearn.metrics import mean_squared_error\n", | |
| "import tensorflow as tf\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "# from keras import backend as K\n", | |
| "from keras.models import load_model\n", | |
| "import json\n", | |
| "import requests\n", | |
| "import os\n", | |
| "import pandas as pd\n", | |
| "import time\n", | |
| "# from keras.backend import tensorflow_backend as K\n", | |
| "import sys\n", | |
| "\n", | |
| "from tensorflow.keras import layers, optimizers, Sequential, metrics\n", | |
| "import datetime\n", | |
| "\n", | |
| "file_name = os.path.basename(sys.argv[0])\n", | |
| "core = 1\n", | |
| "import tensorflow as tf\n", | |
| "\n", | |
| "gpus = tf.config.experimental.list_physical_devices('GPU')\n", | |
| "if gpus:\n", | |
| " try:\n", | |
| " # Currently, memory growth needs to be the same across GPUs\n", | |
| " for gpu in gpus:\n", | |
| " tf.config.experimental.set_memory_growth(gpu, True)\n", | |
| " logical_gpus = tf.config.experimental.list_logical_devices('GPU')\n", | |
| " print(len(gpus), \"Physical GPUs,\", len(logical_gpus), \"Logical GPUs\")\n", | |
| " except RuntimeError as e:\n", | |
| " # Memory growth must be set before GPUs have been initialized\n", | |
| " print(e)\n", | |
| "\n", | |
| "\n", | |
| "\n", | |
| "\n", | |
| "def create_dataset(signal_data, look_back=1):\n", | |
| " dataX, dataY = [], []\n", | |
| " for i in range(len(signal_data) - look_back):\n", | |
| " dataX.append(signal_data[i:(i + look_back), :])\n", | |
| " dataY.append(signal_data[i + look_back, -1])\n", | |
| " return np.array(dataX), np.array(dataY)\n", | |
| "\n", | |
| "\n", | |
| "look_back = 20\n", | |
| "forecast = 20\n", | |
| "\n", | |
| "\n", | |
| "path = \"./csv/\"\n", | |
| "file_list = os.listdir(path)\n", | |
| "file_list_csv = [file for file in file_list if file.endswith(\".csv\")]\n", | |
| "\n", | |
| "\n", | |
| "alist = [file.replace(\".csv\", \"\") for file in file_list_csv ]\n", | |
| "size = len(alist)\n", | |
| "div = int(size)\n", | |
| "# alist = alist[div*(core-1):div*core]\n", | |
| "\n", | |
| "print(size)\n", | |
| "count=0\n", | |
| "\n", | |
| "print(start)\n", | |
| "\n", | |
| "\n", | |
| "stock = alist[4] \n", | |
| "\n", | |
| "\n", | |
| "\n", | |
| "print(stock,'\\t', cc, ' / ', len(alist))\n", | |
| "\n", | |
| "df = pd.read_csv('./csv/'+stock+'.csv') #this file is stock data including 'Close' value\n", | |
| "signal_data = df[[\"close\"]].values.astype('float32')\n", | |
| "total_data = df[[\"close\"]].values.astype('float32')\n", | |
| "\n", | |
| "\n", | |
| "\n", | |
| "scaler = MinMaxScaler(feature_range=(0, 1))\n", | |
| "signal_data = scaler.fit_transform(signal_data)\n", | |
| "\n", | |
| "train_size = int(len(signal_data) * 0.80)\n", | |
| "test_size = len(signal_data) - train_size\n", | |
| "\n", | |
| "train = signal_data[0:train_size]\n", | |
| "test = signal_data[train_size: len(signal_data)]\n", | |
| "\n", | |
| "x_train, y_train = create_dataset(train, look_back)\n", | |
| "x_test, y_test = create_dataset(test, look_back)\n", | |
| "\n", | |
| "\n", | |
| "# K.clear_session()\n", | |
| "\n", | |
| "model = tf.keras.Sequential([\n", | |
| " layers.LSTM(10, input_shape=(None, x_train.shape[2]), dropout=0.2),\n", | |
| " layers.Dense(1)\n", | |
| "])\n", | |
| "\n", | |
| "# callback = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5, verbose=2)\n", | |
| "# model.compile(optimizer=optimizers.adam(lr=0.01), metrics='mse')\n", | |
| "\n", | |
| "model.compile(optimizer='adam', loss='mae')\n", | |
| "\n", | |
| "history = model.fit(x_train, y_train, epochs=50, batch_size=256, verbose=0)\n", | |
| "\n", | |
| "p = model.predict(x_test)\n", | |
| "mse = mean_squared_error(y_test, p)\n", | |
| "print(mse)\n", | |
| "print()\n", | |
| "\n", | |
| "inputs = total_data[len(total_data) - forecast - look_back:]\n", | |
| "inputs = scaler.transform(inputs)\n", | |
| "X_test = []\n", | |
| "for i in range(look_back, inputs.shape[0]):\n", | |
| " X_test.append(inputs[i - look_back:i, :])\n", | |
| "X_test = np.array(X_test)\n", | |
| "predicted = model.predict(X_test)\n", | |
| "# predicted_stock_price = scaler.inverse_transform(predicted)\n", | |
| "result = max(predicted) - y_test[-1]\n", | |
| "result = np.asscalar(result)\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 47, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "20" | |
| ] | |
| }, | |
| "execution_count": 47, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "len(predicted)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 48, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[0.52040815],\n", | |
| " [0.5374149 ],\n", | |
| " [0.52721083],\n", | |
| " [0.5068027 ],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.52380955],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.47959185],\n", | |
| " [0.47278917],\n", | |
| " [0.47278917],\n", | |
| " [0.47959185],\n", | |
| " [0.47619045]], dtype=float32)" | |
| ] | |
| }, | |
| "execution_count": 48, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "inputs" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 49, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[[0.52040815],\n", | |
| " [0.5374149 ],\n", | |
| " [0.52721083],\n", | |
| " [0.5068027 ],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.52380955],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ]],\n", | |
| "\n", | |
| " [[0.5374149 ],\n", | |
| " [0.52721083],\n", | |
| " [0.5068027 ],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.52380955],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325]],\n", | |
| "\n", | |
| " [[0.52721083],\n", | |
| " [0.5068027 ],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.52380955],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452]],\n", | |
| "\n", | |
| " [[0.5068027 ],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.52380955],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045]],\n", | |
| "\n", | |
| " [[0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.52380955],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777]],\n", | |
| "\n", | |
| " [[0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.52380955],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325]],\n", | |
| "\n", | |
| " [[0.52040815],\n", | |
| " [0.52380955],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325]],\n", | |
| "\n", | |
| " [[0.52380955],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452]],\n", | |
| "\n", | |
| " [[0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592]],\n", | |
| "\n", | |
| " [[0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592]],\n", | |
| "\n", | |
| " [[0.52040815],\n", | |
| " [0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592]],\n", | |
| "\n", | |
| " [[0.51700675],\n", | |
| " [0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452]],\n", | |
| "\n", | |
| " [[0.5068027 ],\n", | |
| " [0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592]],\n", | |
| "\n", | |
| " [[0.5102041 ],\n", | |
| " [0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452]],\n", | |
| "\n", | |
| " [[0.51700675],\n", | |
| " [0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592]],\n", | |
| "\n", | |
| " [[0.51700675],\n", | |
| " [0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452]],\n", | |
| "\n", | |
| " [[0.52040815],\n", | |
| " [0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.47959185]],\n", | |
| "\n", | |
| " [[0.5136055 ],\n", | |
| " [0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.47959185],\n", | |
| " [0.47278917]],\n", | |
| "\n", | |
| " [[0.52040815],\n", | |
| " [0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.47959185],\n", | |
| " [0.47278917],\n", | |
| " [0.47278917]],\n", | |
| "\n", | |
| " [[0.5102041 ],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.47619045],\n", | |
| " [0.46938777],\n", | |
| " [0.48299325],\n", | |
| " [0.48299325],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.48979592],\n", | |
| " [0.48639452],\n", | |
| " [0.47959185],\n", | |
| " [0.47278917],\n", | |
| " [0.47278917],\n", | |
| " [0.47959185]]], dtype=float32)" | |
| ] | |
| }, | |
| "execution_count": 49, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "X_test" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 50, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "# I think this method is wrong\n", | |
| "# this method cannot predict next N-step\n", | |
| "# because this mtehod doesn't use model.predict function" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.7.7" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 4 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment