Skip to content

Instantly share code, notes, and snippets.

@PandoraRiot
Created March 24, 2022 07:00
Show Gist options
  • Select an option

  • Save PandoraRiot/7a08cf826add00ae4cf12979dcfa12fe to your computer and use it in GitHub Desktop.

Select an option

Save PandoraRiot/7a08cf826add00ae4cf12979dcfa12fe to your computer and use it in GitHub Desktop.
Introduction to python.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Introduction to python.ipynb",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/PandoraRiot/7a08cf826add00ae4cf12979dcfa12fe/introduction-to-python.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CfgAbyDmml_P"
},
"source": [
"# The Python Programming Language"
]
},
{
"cell_type": "code",
"metadata": {
"id": "E517_6fzmeHv",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "91f0fa94-55a1-4e16-d20c-0e41814a9a64"
},
"source": [
"# Define varibles\n",
"x = 1\n",
"y = 2\n",
"x + y\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"3"
]
},
"metadata": {},
"execution_count": 1
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Ln3PDKF0tdcW",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "55997601-ea28-4028-bc7a-8123885ddce0"
},
"source": [
"string_example = 'This is a string'\n",
"type(string_example)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"str"
]
},
"metadata": {},
"execution_count": 2
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "hk4970Gwt825",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "df25ba1b-36e6-4df5-a1b1-ee9bf35da850"
},
"source": [
"type(x)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"int"
]
},
"metadata": {},
"execution_count": 3
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "gfAB51J4uIXx",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "640ea0e6-218b-4527-ae30-f091d406072f"
},
"source": [
"type(1.0)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"float"
]
},
"metadata": {},
"execution_count": 4
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "-rhDf50Uuk7A",
"outputId": "2a5b80ef-90fe-42d7-c6f4-7a0fcdc48e1d",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# Tuples are an immutable data structure (cannot be altered)\n",
"x = (1, 'a', 2.5, 'b')\n",
"x"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(1, 'a', 2.5, 'b')"
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "TTR9VcrDHwE0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 165
},
"outputId": "f43bd1a5-4c44-47b7-958b-0e109646c6ea"
},
"source": [
"x[0]=44"
],
"execution_count": null,
"outputs": [
{
"output_type": "error",
"ename": "TypeError",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-11-6762c2c05a1c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m44\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "aohOXtedu6ao",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "3e9bb7a7-7a68-4023-a9d3-bc6b46126171"
},
"source": [
"# Lists are a mutable data structure.\n",
"\n",
"x = [1,2,'b',4.0,99,'a', [1,2,3]]\n",
"x"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[1, 2, 'b', 4.0, 99, 'a', [1, 2, 3]]"
]
},
"metadata": {},
"execution_count": 13
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "u8mrOpk5HF5U",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "8a1bde45-978e-4bf6-99d4-11a08e073e5b"
},
"source": [
"x[1]=33\n",
"x"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[1, 33, 'b', 4.0, 99, 'a', [1, 2, 3]]"
]
},
"metadata": {},
"execution_count": 14
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "8rg5VOPxvUUC",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "339d566e-0a92-432d-c22f-c6f2ed630a6a"
},
"source": [
"# Use \"append\" to append an object to a list.\n",
"x.append(3.3)\n",
"print(x)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[1, 33, 'b', 4.0, 99, 'a', [1, 2, 3], 3.3, 3.3, 3.3, 3.3]\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "AS5ruYBBwmxZ",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c4b3b820-f915-4a58-b636-f2e21e598a33"
},
"source": [
"# Concatenate lists\n",
"[1,2] + [3,4]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[1, 2, 3, 4]"
]
},
"metadata": {},
"execution_count": 19
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "JOPuHHV2w1Di",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "914eb0f8-f964-4308-aeee-e35bf00bb147"
},
"source": [
"# repeat lists\n",
"[1]*3"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[1, 1, 1]"
]
},
"metadata": {},
"execution_count": 20
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "9jT9tkFrxDHY",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "59f9e774-5219-4821-e242-dbbad8f6c24c"
},
"source": [
"# Use the \"in\" operator to check if something is inside a list.\n",
"1 in [1, 2, 3]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {},
"execution_count": 21
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "fvwwQlx4JpbC",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "19e49cca-0fc7-4a76-f84a-2623222a22d8"
},
"source": [
"# bracket notation to slice a string.\n",
"x = 'This is a string'\n",
"print(x[0]) #first character\n",
"print(x[0:4]) #first four characters"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"T\n",
"This\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "nmst1qVDJErj",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"outputId": "9eea8900-ab6d-4f03-f3b0-a3c74257fa88"
},
"source": [
"x[3:]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
},
"text/plain": [
"'s is a string'"
]
},
"metadata": {},
"execution_count": 25
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "f23P1MHELCts",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "4a2f6e27-9ec9-4ca9-f372-175b333d01de"
},
"source": [
"print(x[-3])# Last element from a string\n",
"print(x[0:2]) # slice starting from the 4th element from the end and stopping before the 2nd element from the end"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"i\n",
"Th\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "ybg6mOMNMUHN",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "34725eba-ccf4-4ab0-8369-0e5dcc2f3379"
},
"source": [
"firstname = 'Sebastián'\n",
"lastname = 'Restrepo'\n",
"\n",
"print(firstname + ' ' + lastname) # concatenate strings\n",
"print(firstname*3)\n",
"print('Sebastián' in firstname)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Sebastián Restrepo\n",
"SebastiánSebastiánSebastián\n",
"True\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "tQvSs0aIMgXZ"
},
"source": [
"firstname = 'Sebastian Diego Joaquin Andres'.split(' ') # [0] selects the first element of the list\n",
"lastname = 'Restrepo Cruz Guajo Duarte'.split(' ') # [-1] selects the last element of the list\n",
"print(type(firstname))\n",
"print(lastname)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"firstname = 'Sebastian,Diego,Joaquin,Andres'.split(',') \n",
"firstname"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "PBjTPzLO9JuT",
"outputId": "552c986c-e5e4-4cdc-ae2d-23821bb2a7aa"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"['Sebastian', 'Diego', 'Joaquin', 'Andres']"
]
},
"metadata": {},
"execution_count": 36
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "hoyr9hALM29y",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"outputId": "3044af5a-99cf-4cb1-be56-1d32ebf8f03c"
},
"source": [
"'Sebastian' + str(2)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
},
"text/plain": [
"'Sebastian2'"
]
},
"metadata": {},
"execution_count": 38
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "xiwZAMT1X1PJ"
},
"source": [
"# How to loop through each item in the list.\n",
"x = [1,2,3,5,11,23]\n",
"for item in x:\n",
" print(item)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "NcXdXS5UX5pN",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "4640e3db-b461-4604-aa79-0afebf16ec34"
},
"source": [
"# Indexing operator\n",
"i=0\n",
"while( i != len(x)/2 ):\n",
" print(x[i])\n",
" i = i + 1"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"1\n",
"2\n",
"3\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "FJhzLMSCX92f",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "233425dc-35b1-4947-da3f-b036dfa5a05e"
},
"source": [
"def add_numbers(x,y,z=None):\n",
" if (z==None):\n",
" return x+y\n",
" else:\n",
" return x+y+z\n",
"\n",
"add_numbers(1, 2)\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"3"
]
},
"metadata": {},
"execution_count": 41
}
]
},
{
"cell_type": "code",
"source": [
"add_numbers(1, 2, 3)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "PRlu1G99--kd",
"outputId": "948c42b9-62b2-4abf-c9f9-10c63ab33794"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"6"
]
},
"metadata": {},
"execution_count": 42
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "sbhjOucyYK6_"
},
"source": [
"def add_numbers(x, y, z=None, flag=False):\n",
" if (flag):\n",
" print('Flag is true!')\n",
" if (z==None):\n",
" return x + y\n",
" else:\n",
" return x + y + z\n",
"\n",
"add_numbers(1, 2, flag=True)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "NZp4dseWYN0e",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c7853f50-9f49-4522-b9bd-2bdabcbac67f"
},
"source": [
"# Assign function \"add_numbers\" to variable \"a\".\n",
"def add_numbers(x,y):\n",
" return x+y\n",
"\n",
"a = add_numbers\n",
"a(1,2)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"3"
]
},
"metadata": {},
"execution_count": 43
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "tTipjjRGM8F7",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"outputId": "55c7c31f-eae7-4586-9365-c155e4fc6873"
},
"source": [
"# Dictionaries associate keys with values.\n",
"x = {'sebastian restrepo': '[email protected]', 'Diego cruz': '[email protected]', 'joaquin guajo': '[email protected]'}\n",
"x['Diego cruz'] # Retrieve a value by using the indexing operator"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
},
"text/plain": [
"'[email protected]'"
]
},
"metadata": {},
"execution_count": 45
}
]
},
{
"cell_type": "code",
"source": [
"c = {}\n"
],
"metadata": {
"id": "F3kM5opo_d8B"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"c['sebastian']='@pascual'\n",
"c"
],
"metadata": {
"id": "hnqXYMp8AaPW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "UZpbM-6R_jIy"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "1KhXMFEiNrp1",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "77165723-c483-464b-81cc-3e89d05e043a"
},
"source": [
"# add a new key-value pair to a dictionary\n",
"x['carlos duarte'] = '[email protected]'\n",
"x"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"{'Diego cruz': '[email protected]',\n",
" 'carlos duarte': '[email protected]',\n",
" 'joaquin guajo': '[email protected]',\n",
" 'sebastian restrepo': '[email protected]'}"
]
},
"metadata": {},
"execution_count": 50
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "i59lsFHKOo50",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "74d78461-b38b-4b28-f13e-c0e4344bb113"
},
"source": [
"# Iterate over all of the keys:\n",
"for name in x:\n",
" #print(name)\n",
" print(x[name])"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[email protected]\n",
"[email protected]\n",
"[email protected]\n",
"[email protected]\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "oFHGVKe6Mktq",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "8994ab6b-5bac-4385-ec38-0c787fc60fe2"
},
"source": [
"x.values()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"dict_values(['[email protected]', '[email protected]', '[email protected]', '[email protected]'])"
]
},
"metadata": {},
"execution_count": 52
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "aR8V5HX_O1Kb",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "f490a6f5-3a40-442c-cd00-d16dfd79039e"
},
"source": [
"# Iterate over all of the values:\n",
"for email in x.values():\n",
" print(email)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[email protected]\n",
"[email protected]\n",
"[email protected]\n",
"[email protected]\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "XYT3LC1wPuV-"
},
"source": [
"for name, email in x.items():\n",
" print(name)\n",
" print(email)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "RSqwEtnEP5B1",
"outputId": "e9c7d5ca-b3a8-4a56-ecf7-78318ffa4b51",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
}
},
"source": [
"sales_record = {\n",
"'price': 3.24,\n",
"'num_items': 4,\n",
"'person': 'Sebastián'}\n",
"\n",
"sales_statement = '{} bought {} item(s) at a price of {} each for a total of {}'\n",
"\n",
"print(sales_statement.format(sales_record['person'],\n",
" sales_record['num_items'],\n",
" sales_record['price'],\n",
" sales_record['num_items']*sales_record['price']))"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"text": [
"Sebastián bought 4 item(s) at a price of 3.24 each for a total of 12.96\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"source": [
"# The Python Programming Language: Dates and Times"
],
"metadata": {
"id": "j8EM5hs8lJMv"
}
},
{
"cell_type": "code",
"source": [
"import datetime as dt\n",
"import time as tm"
],
"metadata": {
"id": "4lrka5U9lIWe"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# `time` returns the current time in seconds since the Epoch. (January 1st, 1970)\n",
"tm.time()"
],
"metadata": {
"id": "3vf52ibwlRZD",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "479617f6-f3c5-465b-aff9-612df4347fe2"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"1645057191.4590802"
]
},
"metadata": {},
"execution_count": 56
}
]
},
{
"cell_type": "code",
"source": [
"dtnow = dt.datetime.fromtimestamp(tm.time())\n",
"dtnow"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "o7zPK8Hvlbug",
"outputId": "5550ec1b-f371-4266-8286-19516333ece2"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"datetime.datetime(2022, 2, 17, 0, 22, 24, 779835)"
]
},
"metadata": {},
"execution_count": 58
}
]
},
{
"cell_type": "code",
"source": [
"# get year, month, day, etc.from a datetime\n",
"dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second "
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "T3Eoi4kLlbnf",
"outputId": "921268c6-fce8-4c7b-902b-c7d3fe461425"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"2022"
]
},
"metadata": {},
"execution_count": 34
}
]
},
{
"cell_type": "code",
"source": [
"dtnow.month"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "aiVFyVivEJlN",
"outputId": "5ae954a2-59bc-4e72-d733-03ef4047e24f"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"2"
]
},
"metadata": {},
"execution_count": 59
}
]
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "hbVDYeGuDtaT"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# It's the difference between two dates\n",
"delta = dt.timedelta(days = 30) # create a timedelta of 30 days or 1 month\n",
"delta"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3nzPRCkdlbdq",
"outputId": "5386a35a-d086-4827-f3e1-bc8f08ad1dac"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"datetime.timedelta(days=30)"
]
},
"metadata": {},
"execution_count": 63
}
]
},
{
"cell_type": "code",
"source": [
"# Current date\n",
"today = dt.date.today()\n",
"today"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "qECGmQKDl3Jw",
"outputId": "e9b18500-f0cb-41e0-b49b-b69623e00f9a"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"datetime.date(2022, 2, 17)"
]
},
"metadata": {},
"execution_count": 64
}
]
},
{
"cell_type": "code",
"source": [
"today - delta"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "I_o4XOLJlbcC",
"outputId": "6569787a-6d38-4837-ff71-2822f1da53a0"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"datetime.date(2022, 1, 18)"
]
},
"metadata": {},
"execution_count": 65
}
]
},
{
"cell_type": "code",
"source": [
"today > today-delta # compare dates"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "PF5mgXDdmnwL",
"outputId": "45d7b319-e288-4768-8da0-c2657c563f31"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"True"
]
},
"metadata": {},
"execution_count": 44
}
]
},
{
"cell_type": "markdown",
"source": [
"# Functional programming"
],
"metadata": {
"id": "uhrlOf5zm7v3"
}
},
{
"cell_type": "code",
"source": [
"# Dataset\n",
"store1 = [10.00, 11.00, 12.34, 2.34]\n",
"store2 = [9.00, 10.10, 11.34, 2.01]"
],
"metadata": {
"id": "cW_dPN2fnIsf"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"min(store1)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Q0r1nxMyFq9m",
"outputId": "44e2735f-73f9-410c-e9b4-adfd85d916c7"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"2.34"
]
},
"metadata": {},
"execution_count": 67
}
]
},
{
"cell_type": "code",
"source": [
"# Mapping the `min` function between two lists.\n",
"cheapest = map(min, store1, store2)\n",
"cheapest"
],
"metadata": {
"id": "jZTPL2Evnaaz"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"for item in cheapest:\n",
" print(item)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3zyi5cF2qV2F",
"outputId": "8c2c419e-9e98-417f-939a-c21d4eb388f6"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"9.0\n",
"10.1\n",
"11.34\n",
"2.01\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Lambda\n",
"my_function = lambda a, b, c : a + b"
],
"metadata": {
"id": "tRajWj1sqkyV"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"my_function(1, 2, 3)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JP-8_v4-q2VN",
"outputId": "104abf93-e301-49cc-bf03-e055e902dc54"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"3"
]
},
"metadata": {},
"execution_count": 72
}
]
},
{
"cell_type": "code",
"source": [
"# Let's iterate from 0 to 20 and return the even numbers.\n",
"my_list = []\n",
"for number in range(0, 20):\n",
" if number % 2 == 0:\n",
" my_list.append(number)\n",
"my_list"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "7ewaF2OLrAE-",
"outputId": "9ccc98c8-92fb-42cf-97b3-6fedbe4be6a4"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]"
]
},
"metadata": {},
"execution_count": 73
}
]
},
{
"cell_type": "code",
"source": [
"# List comprehension\n",
"my_list = [number for number in range(0,20) if number % 2 == 0]\n",
"my_list"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SXnUHS4jrLmg",
"outputId": "d50e9796-7f7d-455b-c6a2-301063c7f83b"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]"
]
},
"metadata": {},
"execution_count": 58
}
]
},
{
"cell_type": "code",
"source": [
"reduce, filter"
],
"metadata": {
"id": "cx0kX2KnHgVE"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "mr7NqtJ2mBGy"
},
"source": [
"# Numerical Python (NumPy) Library\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "bVTkZUMnQR1U",
"outputId": "a97c59d3-9bc1-45ca-af71-63d38d7953e6",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"import numpy as np\n",
"# Create a list and convert it to a numpy array\n",
"mylist = [1, 2, 3]\n",
"x = np.array(mylist)\n",
"x"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([1, 2, 3])"
]
},
"metadata": {},
"execution_count": 74
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "JHe-moOrRDNC",
"outputId": "34e83cc2-d388-4a7c-efa1-9abaf15619ad",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# Create a multidimensional array.\n",
"m = np.array([[7, 8, 9], [10, 11, 12]])\n",
"m"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 7, 8, 9],\n",
" [10, 11, 12]])"
]
},
"metadata": {},
"execution_count": 75
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "kxsFf8qcvgno",
"outputId": "fe42a5de-9a26-4ce7-b828-1548480b7609",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# To find the dimensions of the array. (rows, columns)\n",
"m.shape"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(2, 3)"
]
},
"metadata": {},
"execution_count": 76
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "AD_8P1wmYxP5",
"outputId": "1e52bdc6-2b67-4c74-8692-4f7153590ef9",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# \"arange\" method returns evenly spaced values within a given interval.\n",
"n = np.arange(0, 30, 2) # start at 0 count up by 2, stop before 30\n",
"n"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])"
]
},
"metadata": {},
"execution_count": 78
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "BmqP-XtoY-6G",
"outputId": "767ed31a-e0d4-447f-f999-c7cc33e47023",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# \"reshape\" method returns an array with the same data with a new shape.\n",
"n = n.reshape(3, 5) # reshape array to be 3x5\n",
"n"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 0, 2, 4, 6, 8],\n",
" [10, 12, 14, 16, 18],\n",
" [20, 22, 24, 26, 28]])"
]
},
"metadata": {},
"execution_count": 79
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "ydeJQCXVwFC4",
"outputId": "132f6ecd-b8c9-4d42-e1d2-399c6484051f",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"np.ones((3, 2))"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[1., 1.],\n",
" [1., 1.],\n",
" [1., 1.]])"
]
},
"metadata": {},
"execution_count": 81
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "jTYFhFzGjYqb",
"outputId": "431151ee-8be1-4dcc-d72b-bd55edfc33fb",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"np.zeros((5, 5))"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[0., 0., 0., 0., 0.],\n",
" [0., 0., 0., 0., 0.],\n",
" [0., 0., 0., 0., 0.],\n",
" [0., 0., 0., 0., 0.],\n",
" [0., 0., 0., 0., 0.]])"
]
},
"metadata": {},
"execution_count": 83
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "HUylD7Eqjfn8",
"outputId": "f43d6a5b-bc5e-4708-9e4e-7ca2c7eecb70",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"np.repeat([1, 2, 3], 3)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([1, 1, 1, 2, 2, 2, 3, 3, 3])"
]
},
"metadata": {},
"execution_count": 84
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "TxU2RIMzsz0h",
"outputId": "fae2edcf-ce6c-4a9b-c340-b0c01035b735",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# Use \"vstack\" to stack arrays in sequence vertically (row wise).\n",
"p = np.ones([2, 3])\n",
"#2*p\n",
"np.vstack([p, 2*p])"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[1., 1., 1.],\n",
" [1., 1., 1.],\n",
" [2., 2., 2.],\n",
" [2., 2., 2.]])"
]
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "oxsDcvpItHEe",
"outputId": "c0a48b9b-d128-48ce-a34d-b8c0ab33aefe",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"# Use \"hstack\" to stack arrays in sequence horizontally (column wise).\n",
"np.hstack([p, 2*p])"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[1., 1., 1., 2., 2., 2.],\n",
" [1., 1., 1., 2., 2., 2.]])"
]
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "G9l3ZxW1a78J",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "a0aa0c46-ebc8-49e7-805d-dc1f8572cb91"
},
"source": [
"import numpy as np\n",
"a = np.array([[-4, -2, 2, 3, 5], [-4, -2, 1, 3, 5]])\n",
"a"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[-4, -2, 2, 3, 5],\n",
" [-4, -2, 1, 3, 5]])"
]
},
"metadata": {},
"execution_count": 4
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Am85_R7wbk6u",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "bc43b5d8-1d40-4e50-f784-348ca09565ed"
},
"source": [
"# Numpy has many built in math functions that can be performed on arrays.\n",
"a.sum()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"7"
]
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Gsz6t3jTcbbD",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "d11ff355-759d-4403-ae6d-855e6264b45b"
},
"source": [
"a.max(axis=0)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([-4, -2, 2, 3, 5])"
]
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "PWjvlkufccn5",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "3c8d395b-7d71-41af-f2ab-be5e8f1a6a02"
},
"source": [
"a.min(axis=1)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([-4, -4])"
]
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "2PpY_Q7uci9R",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "59e3ae64-8e30-47bd-d198-5cca84aafc9d"
},
"source": [
"a.mean()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.7"
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "d2r5aM3hclth",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "a2ba402a-298d-4677-eccb-f0007c5339c6"
},
"source": [
"a.std()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"3.287856444554719"
]
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "_HGuTi95dBwc",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "febae42c-926e-4892-d4f1-6d70d9a2823c"
},
"source": [
"s = np.arange(13)**2\n",
"s"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144])"
]
},
"metadata": {},
"execution_count": 11
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "iBVVZYQSdLmB",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "701a585a-9338-47d5-f079-9f6dd3447d1d"
},
"source": [
"s[0], s[4], s[-1]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(0, 16, 144)"
]
},
"metadata": {},
"execution_count": 13
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "QwHF0zp6gYeO",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "3a97bdfd-d087-4148-b955-e3f1198668d6"
},
"source": [
"# A second \":\" can be used to indicate step-size. \"array[start:stop:stepsize]\"\n",
"s[0:4:2]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([0, 4])"
]
},
"metadata": {},
"execution_count": 15
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "JFBhUiuvg7to",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "8a5800c3-75e0-4fe8-8b63-62c469680b4a"
},
"source": [
"# Multidimensional array\n",
"r = np.arange(36)\n",
"r.resize((6, 8))\n",
"r"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 0, 1, 2, 3, 4, 5, 6, 7],\n",
" [ 8, 9, 10, 11, 12, 13, 14, 15],\n",
" [16, 17, 18, 19, 20, 21, 22, 23],\n",
" [24, 25, 26, 27, 28, 29, 30, 31],\n",
" [32, 33, 34, 35, 0, 0, 0, 0],\n",
" [ 0, 0, 0, 0, 0, 0, 0, 0]])"
]
},
"metadata": {},
"execution_count": 17
}
]
},
{
"cell_type": "code",
"source": [
"r.shape[1]"
],
"metadata": {
"id": "xT39b5Yx_3K9",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c6affe31-ed21-4901-f9a8-48f984647b8f"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"8"
]
},
"metadata": {},
"execution_count": 21
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "xbPbvfnnhHGj",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "279225a2-3fd6-4484-da4b-708357a0caea"
},
"source": [
"r[2:4, 1:3]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[17, 18],\n",
" [25, 26]])"
]
},
"metadata": {},
"execution_count": 26
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "JBQVY-H4hUIc",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "128ba39c-55e6-48a0-c406-ad1686bc5974"
},
"source": [
"r[2:4, 3:6]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[19, 20, 21],\n",
" [27, 28, 29]])"
]
},
"metadata": {},
"execution_count": 27
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "4ypydm3KhhxT",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "f55728d4-2de4-493a-a13f-568a2ecf5154"
},
"source": [
"test = r > 15\n",
"test"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[False, False, False, False, False, False, False, False],\n",
" [False, False, False, False, False, False, False, False],\n",
" [ True, True, True, True, True, True, True, True],\n",
" [ True, True, True, True, True, True, True, True],\n",
" [ True, True, True, True, False, False, False, False],\n",
" [False, False, False, False, False, False, False, False]])"
]
},
"metadata": {},
"execution_count": 31
}
]
},
{
"cell_type": "code",
"source": [
"test2 = test == False\n",
"test2"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "K-0Zx4ynuAbI",
"outputId": "4c586ff0-42d3-4aac-9379-6964ca4851f1"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ True, True, True, True, True, True, True, True],\n",
" [ True, True, True, True, True, True, True, True],\n",
" [False, False, False, False, False, False, False, False],\n",
" [False, False, False, False, False, False, False, False],\n",
" [False, False, False, False, True, True, True, True],\n",
" [ True, True, True, True, True, True, True, True]])"
]
},
"metadata": {},
"execution_count": 39
}
]
},
{
"cell_type": "code",
"source": [
"np.count_nonzero(test2)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "fZqzMYEes5U-",
"outputId": "d3de2e2f-e545-4aa6-f2ae-29247a63e216"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"28"
]
},
"metadata": {},
"execution_count": 40
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "eRO_gmIDiOKG",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "21a77b10-cb0d-466b-c70f-dac6b2293f74"
},
"source": [
"# Create a 5 by 6 array of random numbers 0-9\n",
"matrix = np.random.randint(0, 10, (5,6))\n",
"matrix"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[1, 3, 5, 1, 9, 3],\n",
" [1, 3, 6, 9, 0, 3],\n",
" [4, 0, 2, 4, 4, 5],\n",
" [2, 1, 1, 7, 8, 5],\n",
" [9, 0, 2, 2, 8, 5]])"
]
},
"metadata": {},
"execution_count": 44
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "vRBKT7ffii0M",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "44f2e05b-b562-4152-ebfe-37159e7df613"
},
"source": [
"# Iterate by row:\n",
"data = []\n",
"for row in matrix:\n",
" data.append(row.max())\n",
" print(row.max())\n",
"type(data)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"9\n",
"9\n",
"5\n",
"8\n",
"9\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"list"
]
},
"metadata": {},
"execution_count": 45
}
]
},
{
"cell_type": "code",
"source": [
"range(5)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5n2jZrVDvJUF",
"outputId": "91fe4c51-009b-4f45-fd68-415561ce4089"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"range(0, 5)"
]
},
"metadata": {},
"execution_count": 46
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "tgWXleQxjQua",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "0ef604de-0edd-4795-a87e-81ca39a322cb"
},
"source": [
"# Iterate by index\n",
"for i in range(len(matrix)):\n",
" \n",
" print('index: ' + str(i))\n",
" print(matrix[i])\n",
" print('-------------')"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"index: 0\n",
"[1 3 5 1 9 3]\n",
"-------------\n",
"index: 1\n",
"[1 3 6 9 0 3]\n",
"-------------\n",
"index: 2\n",
"[4 0 2 4 4 5]\n",
"-------------\n",
"index: 3\n",
"[2 1 1 7 8 5]\n",
"-------------\n",
"index: 4\n",
"[9 0 2 2 8 5]\n",
"-------------\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Ndf73YvljtO0",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "10b9cf1d-a267-49be-bb0e-b0ac418455a3"
},
"source": [
"for i, row in enumerate(matrix):\n",
" print('row', i, 'is', row)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"row 0 is [1 3 5 1 9 3]\n",
"row 1 is [1 3 6 9 0 3]\n",
"row 2 is [4 0 2 4 4 5]\n",
"row 3 is [2 1 1 7 8 5]\n",
"row 4 is [9 0 2 2 8 5]\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "gsjaSjzij5RB",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "871e6a92-b46c-4b86-9d9a-60827432a6b9"
},
"source": [
"matrix_two = matrix**2\n",
"matrix_two"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 1, 9, 25, 1, 81, 9],\n",
" [ 1, 9, 36, 81, 0, 9],\n",
" [16, 0, 4, 16, 16, 25],\n",
" [ 4, 1, 1, 49, 64, 25],\n",
" [81, 0, 4, 4, 64, 25]])"
]
},
"metadata": {},
"execution_count": 50
}
]
},
{
"cell_type": "code",
"source": [
"np.concatenate((matrix, matrix_two), axis=1)"
],
"metadata": {
"id": "V48vlr6TAtPm",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "9653dbd5-267f-452b-9e1d-6aa9148d97e8"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 1, 3, 5, 1, 9, 3, 1, 9, 25, 1, 81, 9],\n",
" [ 1, 3, 6, 9, 0, 3, 1, 9, 36, 81, 0, 9],\n",
" [ 4, 0, 2, 4, 4, 5, 16, 0, 4, 16, 16, 25],\n",
" [ 2, 1, 1, 7, 8, 5, 4, 1, 1, 49, 64, 25],\n",
" [ 9, 0, 2, 2, 8, 5, 81, 0, 4, 4, 64, 25]])"
]
},
"metadata": {},
"execution_count": 52
}
]
},
{
"cell_type": "code",
"source": [
"np.concatenate((matrix, matrix_two), axis=1)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JSF2vqYrBS-L",
"outputId": "d222e3fd-bd41-48eb-ae96-65cd3491f570"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 9, 5, 1, 5, 0, 4, 81, 25, 1, 25, 0, 16],\n",
" [ 3, 4, 3, 5, 7, 7, 9, 16, 9, 25, 49, 49],\n",
" [ 6, 9, 2, 4, 8, 5, 36, 81, 4, 16, 64, 25],\n",
" [ 2, 7, 4, 7, 5, 3, 4, 49, 16, 49, 25, 9],\n",
" [ 7, 0, 1, 5, 3, 1, 49, 0, 1, 25, 9, 1]])"
]
},
"metadata": {},
"execution_count": 27
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Bxt9wFv4kBbb",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "99191c41-8896-4a1c-8dc2-1a368bcf0203"
},
"source": [
"# Use \"zip\" to iterate over multiple iterables.\n",
"for i, j in zip(matrix, matrix_two):\n",
" print(i,'*',j,'=',i*j)\n",
" print('--------------------------------------------------------------')"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[1 3 5 1 9 3] * [ 1 9 25 1 81 9] = [ 1 27 125 1 729 27]\n",
"--------------------------------------------------------------\n",
"[1 3 6 9 0 3] * [ 1 9 36 81 0 9] = [ 1 27 216 729 0 27]\n",
"--------------------------------------------------------------\n",
"[4 0 2 4 4 5] * [16 0 4 16 16 25] = [ 64 0 8 64 64 125]\n",
"--------------------------------------------------------------\n",
"[2 1 1 7 8 5] * [ 4 1 1 49 64 25] = [ 8 1 1 343 512 125]\n",
"--------------------------------------------------------------\n",
"[9 0 2 2 8 5] * [81 0 4 4 64 25] = [729 0 8 8 512 125]\n",
"--------------------------------------------------------------\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"matrix_three = matrix * matrix_two\n",
"matrix_three"
],
"metadata": {
"id": "vwmRkg8TBeEz",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "0a9b7560-de01-40b6-f412-0d819f89feb2"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 1, 27, 125, 1, 729, 27],\n",
" [ 1, 27, 216, 729, 0, 27],\n",
" [ 64, 0, 8, 64, 64, 125],\n",
" [ 8, 1, 1, 343, 512, 125],\n",
" [729, 0, 8, 8, 512, 125]])"
]
},
"metadata": {},
"execution_count": 54
}
]
},
{
"cell_type": "code",
"source": [
"matrix_three.transpose()"
],
"metadata": {
"id": "iNOb57w8B0IU",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "db69ba0d-4be0-4c44-b302-cce610f9bbce"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 1, 1, 64, 8, 729],\n",
" [ 27, 27, 0, 1, 0],\n",
" [125, 216, 8, 1, 8],\n",
" [ 1, 729, 64, 343, 8],\n",
" [729, 0, 64, 512, 512],\n",
" [ 27, 27, 125, 125, 125]])"
]
},
"metadata": {},
"execution_count": 55
}
]
},
{
"cell_type": "code",
"source": [
"matrix_three.T"
],
"metadata": {
"id": "k2n-lbc2CbOV",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "f2b825bf-0b7e-4f4f-de4d-616a59f1a51e"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([[ 1, 1, 64, 8, 729],\n",
" [ 27, 27, 0, 1, 0],\n",
" [125, 216, 8, 1, 8],\n",
" [ 1, 729, 64, 343, 8],\n",
" [729, 0, 64, 512, 512],\n",
" [ 27, 27, 125, 125, 125]])"
]
},
"metadata": {},
"execution_count": 56
}
]
},
{
"cell_type": "markdown",
"source": [
"# Mean Squared Error formula\n",
"\n",
"![MSE.PNG]()"
],
"metadata": {
"id": "9iUOCjQqDJTj"
}
},
{
"cell_type": "code",
"source": [
"real_data = np.array([5, 4, 3, 4, 5, 6, 8, 5])\n",
"real_data "
],
"metadata": {
"id": "RY75q0E1C-bD",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "2630c2f8-1f40-4880-ffcd-5d40c5974e4b"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([5, 4, 3, 4, 5, 6, 8, 5])"
]
},
"metadata": {},
"execution_count": 58
}
]
},
{
"cell_type": "code",
"source": [
"prediction_data = np.array([3, 3.5, 3, 4.5, 3, 5, 8.8, 4.4])\n",
"prediction_data "
],
"metadata": {
"id": "xBlVIojHD6mU",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "04585414-7c93-47e1-cab6-c2f23983e976"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([3. , 3.5, 3. , 4.5, 3. , 5. , 8.8, 4.4])"
]
},
"metadata": {},
"execution_count": 59
}
]
},
{
"cell_type": "code",
"source": [
"n = len(real_data)\n",
"n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "bFz6jsQX1FvA",
"outputId": "6d84657f-7fc1-482a-8d39-963ca436551e"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"8"
]
},
"metadata": {},
"execution_count": 64
}
]
},
{
"cell_type": "code",
"source": [
"np.mean(np.square(real_data-prediction_data))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "47F_rsrv0fs0",
"outputId": "858ca337-88b7-46ad-9991-79f78cf0fd9c"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"1.3125"
]
},
"metadata": {},
"execution_count": 66
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "HjpZPv2LquON"
},
"source": [
"# Pandas Library\n"
]
},
{
"cell_type": "code",
"metadata": {
"id": "s_RPpCfQq0m0"
},
"source": [
"# Series Data structure\n",
"import pandas as pd\n",
"pd.Series?"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "FdYRkJ0arAUM",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "aa44b162-7a7c-4811-fb50-dc23c9423894"
},
"source": [
"subjects = ['Circuits', 'Programming', 'Physics']\n",
"pd.Series(subjects)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 Circuits\n",
"1 Programming\n",
"2 Physics\n",
"dtype: object"
]
},
"metadata": {},
"execution_count": 68
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "UyMOCrTxsjew",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "25d3a126-9969-4b29-c192-acfd67f22f72"
},
"source": [
"numbers = [1, 2, 3]\n",
"pd.Series(numbers)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 1\n",
"1 2\n",
"2 3\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 69
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "VqRzLr6tsoKF",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "47e73ef0-6262-4cdd-e8c0-45da7a3b7317"
},
"source": [
"capitals = {'Colombia': 'Bogota',\n",
" 'USA': 'Washington D. C',\n",
" 'Japan': 'Tokio',\n",
" 'Argentina': 'Buenos Aires'}\n",
"c = pd.Series(capitals)\n",
"c"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Colombia Bogota\n",
"USA Washington D. C\n",
"Japan Tokio\n",
"Argentina Buenos Aires\n",
"dtype: object"
]
},
"metadata": {},
"execution_count": 70
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "eQluwY2qtUe5",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "7f7df46e-d93b-4c66-b942-1be2c75e13ec"
},
"source": [
"c.index"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Index(['Colombia', 'USA', 'Japan', 'Argentina'], dtype='object')"
]
},
"metadata": {},
"execution_count": 71
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "WJIW56Kltn1q",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"outputId": "b5fa2e8c-a830-401a-8399-ca17d466d38f"
},
"source": [
"# Querying a Series option 1\n",
"c.loc['Colombia']"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
},
"text/plain": [
"'Bogota'"
]
},
"metadata": {},
"execution_count": 72
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "WZgDHqvhtzhy",
"outputId": "8f076e54-65b7-4af6-ee0f-8658d0d59ff8",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
}
},
"source": [
"# Querying a Series option 2\n",
"c.iloc[0]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
},
"text/plain": [
"'Bogota'"
]
},
"metadata": {},
"execution_count": 73
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "-fcC_6YAuvbk",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "8659afeb-d9b2-460a-9a1f-7875c929d377"
},
"source": [
"#this creates a big series of random numbers\n",
"s = pd.Series(np.random.randint(0,1000,10000))\n",
"s.head(20)"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"0 558\n",
"1 494\n",
"2 823\n",
"3 92\n",
"4 954\n",
" ... \n",
"9995 655\n",
"9996 341\n",
"9997 717\n",
"9998 28\n",
"9999 458\n",
"Length: 10000, dtype: int64\n"
]
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "wQ0yg-NxuyCs",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "57619bbe-b532-455b-df64-ee648c404716"
},
"source": [
"s.shape"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(10000,)"
]
},
"metadata": {},
"execution_count": 77
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "URc0pPmKvAyL",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "4c880397-6fab-4b14-dd81-615e1ef7287f"
},
"source": [
"s = pd.Series([1, 2, 3])\n",
"s.loc['other_index'] = 'This is a string'\n",
"s"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 1\n",
"1 2\n",
"2 3\n",
"other_index This is a string\n",
"dtype: object"
]
},
"metadata": {},
"execution_count": 79
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "VeZy8ZVEvyfx",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"outputId": "575eaf35-e06b-4c8a-8ab0-d88d2a43f7e5"
},
"source": [
"# The DataFrame Data Structure\n",
"\n",
"import pandas as pd\n",
"\n",
"purchase_1 = pd.Series({'Name': 'Sebastián',\n",
" 'Item Purchased': 'Tennis',\n",
" 'Cost': 42.50})\n",
"purchase_2 = pd.Series({'Name': 'Diego',\n",
" 'Item Purchased': 'Jeans',\n",
" 'Cost': 32.50})\n",
"purchase_3 = pd.Series({'Name': 'Joaquin',\n",
" 'Item Purchased': 'Cap',\n",
" 'Cost': 5.00}) \n",
"\n",
"purchase_4 = pd.Series({'Name': 'Santiago',\n",
" 'Item Purchased': 'Tennis',\n",
" 'Cost': 55.00})\n",
"\n",
"purchase_5 = pd.Series({'Name': 'Eliana',\n",
" 'Item Purchased': 'Jogger',\n",
" 'Cost': 35.00}) \n",
"\n",
"df = pd.DataFrame([purchase_1, purchase_2, purchase_3,purchase_4, purchase_5],index=['Store 1', 'Store 1', 'Store 2', 'Store 1', 'Store 2'])\n",
"df.head()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-65ba4fc7-845c-4328-a353-2380f471bad8\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-65ba4fc7-845c-4328-a353-2380f471bad8')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-65ba4fc7-845c-4328-a353-2380f471bad8 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-65ba4fc7-845c-4328-a353-2380f471bad8');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost\n",
"Store 1 Sebastián Tennis 42.5\n",
"Store 1 Diego Jeans 32.5\n",
"Store 2 Joaquin Cap 5.0\n",
"Store 1 Santiago Tennis 55.0\n",
"Store 2 Eliana Jogger 35.0"
]
},
"metadata": {},
"execution_count": 40
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "otjyHJ3AwrJO",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 143
},
"outputId": "79ea2030-9d87-466d-d5dc-52bff977def4"
},
"source": [
"df.loc['Store 1']"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-9f34c555-7966-4cb6-947b-e606113cf389\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-9f34c555-7966-4cb6-947b-e606113cf389')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-9f34c555-7966-4cb6-947b-e606113cf389 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-9f34c555-7966-4cb6-947b-e606113cf389');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost\n",
"Store 1 Sebastián Tennis 42.5\n",
"Store 1 Diego Jeans 32.5\n",
"Store 1 Santiago Tennis 55.0"
]
},
"metadata": {},
"execution_count": 81
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "mTayaAC7wzXN",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "dfb28d4c-4499-44fa-b6d3-00f94bc18960"
},
"source": [
"type(df.loc['Store 2'])"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"pandas.core.frame.DataFrame"
]
},
"metadata": {},
"execution_count": 82
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "K2MnpTHPw3bF",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "e66a4bbe-d3bc-47da-fccd-ef97a3e80549"
},
"source": [
"df.loc['Store 1', 'Cost']"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Store 1 42.5\n",
"Store 1 32.5\n",
"Store 1 55.0\n",
"Name: Cost, dtype: float64"
]
},
"metadata": {},
"execution_count": 83
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "LSroJTVSw8iO",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "39533c08-075e-4aee-b082-85ae5168e269"
},
"source": [
"df.loc['Store 1']['Cost']"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Store 1 42.5\n",
"Store 1 32.5\n",
"Store 1 55.0\n",
"Name: Cost, dtype: float64"
]
},
"metadata": {},
"execution_count": 84
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "jPECRicexBDE",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"outputId": "e5ed7f46-6d38-48b6-a4c7-e9df9c248c1b"
},
"source": [
"df.loc[:,['Name', 'Cost']]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-6ffbdb4b-7ba0-4d2c-92eb-aaf066d39970\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Cost</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>42.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>32.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>55.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6ffbdb4b-7ba0-4d2c-92eb-aaf066d39970')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-6ffbdb4b-7ba0-4d2c-92eb-aaf066d39970 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-6ffbdb4b-7ba0-4d2c-92eb-aaf066d39970');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Cost\n",
"Store 1 Sebastián 42.5\n",
"Store 1 Diego 32.5\n",
"Store 2 Joaquin 5.0\n",
"Store 1 Santiago 55.0\n",
"Store 2 Eliana 35.0"
]
},
"metadata": {},
"execution_count": 86
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "NLTjLo3ixHRV"
},
"source": [
"f = df.drop('Store 1')"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"f"
],
"metadata": {
"id": "QUe6hZc5H4Hs",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 112
},
"outputId": "30e92544-565b-43a0-c0bc-320e757ed4fc"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-1a8280ee-b5a1-4006-ad59-96d958b2a6e4\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-1a8280ee-b5a1-4006-ad59-96d958b2a6e4')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-1a8280ee-b5a1-4006-ad59-96d958b2a6e4 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-1a8280ee-b5a1-4006-ad59-96d958b2a6e4');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost\n",
"Store 2 Joaquin Cap 5.0\n",
"Store 2 Eliana Jogger 35.0"
]
},
"metadata": {},
"execution_count": 90
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "zgwLk5mZyDzw",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"outputId": "7d64049d-dc4f-48c1-ddae-7d25f841bd28"
},
"source": [
"df['Location'] = None\n",
"df"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-97a474e8-2d87-48dd-8112-8b0ae90a0850\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Location</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-97a474e8-2d87-48dd-8112-8b0ae90a0850')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-97a474e8-2d87-48dd-8112-8b0ae90a0850 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-97a474e8-2d87-48dd-8112-8b0ae90a0850');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost Location\n",
"Store 1 Sebastián Tennis 42.5 None\n",
"Store 1 Diego Jeans 32.5 None\n",
"Store 2 Joaquin Cap 5.0 None\n",
"Store 1 Santiago Tennis 55.0 None\n",
"Store 2 Eliana Jogger 35.0 None"
]
},
"metadata": {},
"execution_count": 91
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "tosLbRu4yIOG",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 313
},
"outputId": "582d5e8d-2b9c-4236-c3cd-74cbaa009441"
},
"source": [
"df['Location']['Store 1'] = 'San diego'\n",
"df"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-33a01479-54c5-4959-8719-8e0c469943b1\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Location</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>San diego</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>San diego</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>San diego</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-33a01479-54c5-4959-8719-8e0c469943b1')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-33a01479-54c5-4959-8719-8e0c469943b1 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-33a01479-54c5-4959-8719-8e0c469943b1');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost Location\n",
"Store 1 Sebastián Tennis 42.5 San diego\n",
"Store 1 Diego Jeans 32.5 San diego\n",
"Store 2 Joaquin Cap 5.0 None\n",
"Store 1 Santiago Tennis 55.0 San diego\n",
"Store 2 Eliana Jogger 35.0 None"
]
},
"metadata": {},
"execution_count": 92
}
]
},
{
"cell_type": "code",
"source": [
"df['Location'].unique()"
],
"metadata": {
"id": "qHTDLHoMMOBi",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "600d7bea-1cca-4b1b-f46d-4b00362762f4"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array(['San diego', None], dtype=object)"
]
},
"metadata": {},
"execution_count": 94
}
]
},
{
"cell_type": "markdown",
"source": [
"# Importing CSV Files"
],
"metadata": {
"id": "qZKJlDvTMt3N"
}
},
{
"cell_type": "code",
"metadata": {
"id": "EGoKN5Ggy6fG",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 531
},
"outputId": "89414eb8-a630-44dd-f6dd-3d32c2fcacbf"
},
"source": [
"import pandas as pd\n",
"df = pd.read_csv('grades.csv')\n",
"df.head()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-b9b60e7f-1f1f-41ea-8b28-8c05408838b8\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n",
" <td>92.733946</td>\n",
" <td>2015-11-02 06:55:34.282000000</td>\n",
" <td>83.030552</td>\n",
" <td>2015-11-09 02:22:58.938000000</td>\n",
" <td>67.164441</td>\n",
" <td>2015-11-12 08:58:33.998000000</td>\n",
" <td>53.011553</td>\n",
" <td>2015-11-16 01:21:24.663000000</td>\n",
" <td>47.710398</td>\n",
" <td>2015-11-20 13:24:59.692000000</td>\n",
" <td>38.168318</td>\n",
" <td>2015-11-22 18:31:15.934000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n",
" <td>86.790821</td>\n",
" <td>2015-11-29 14:57:44.429000000</td>\n",
" <td>86.290821</td>\n",
" <td>2015-12-06 17:41:18.449000000</td>\n",
" <td>69.772657</td>\n",
" <td>2015-12-10 08:54:55.904000000</td>\n",
" <td>55.098125</td>\n",
" <td>2015-12-13 17:32:30.941000000</td>\n",
" <td>49.588313</td>\n",
" <td>2015-12-19 23:26:39.285000000</td>\n",
" <td>44.629482</td>\n",
" <td>2015-12-21 17:07:24.275000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>D0F62040-CEB0-904C-F563-2F8620916C4E</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 05:36:02.389000000</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 06:39:44.416000000</td>\n",
" <td>68.410033</td>\n",
" <td>2016-01-15 20:22:45.882000000</td>\n",
" <td>54.728026</td>\n",
" <td>2016-01-11 12:41:50.749000000</td>\n",
" <td>49.255224</td>\n",
" <td>2016-01-11 17:31:12.489000000</td>\n",
" <td>44.329701</td>\n",
" <td>2016-01-17 16:24:42.765000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</td>\n",
" <td>86.030665</td>\n",
" <td>2016-04-30 06:50:39.801000000</td>\n",
" <td>68.824532</td>\n",
" <td>2016-04-30 17:20:38.727000000</td>\n",
" <td>61.942079</td>\n",
" <td>2016-05-12 07:47:16.326000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-07 16:09:20.485000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-24 12:51:18.016000000</td>\n",
" <td>44.598297</td>\n",
" <td>2016-05-26 08:09:12.058000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n",
" <td>64.813800</td>\n",
" <td>2015-12-13 17:06:10.750000000</td>\n",
" <td>51.491040</td>\n",
" <td>2015-12-14 12:25:12.056000000</td>\n",
" <td>41.932832</td>\n",
" <td>2015-12-29 14:25:22.594000000</td>\n",
" <td>36.929549</td>\n",
" <td>2015-12-28 01:29:55.901000000</td>\n",
" <td>33.236594</td>\n",
" <td>2015-12-29 14:46:06.628000000</td>\n",
" <td>33.236594</td>\n",
" <td>2016-01-05 01:06:59.546000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-b9b60e7f-1f1f-41ea-8b28-8c05408838b8')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-b9b60e7f-1f1f-41ea-8b28-8c05408838b8 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-b9b60e7f-1f1f-41ea-8b28-8c05408838b8');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" student_id ... assignment6_submission\n",
"0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 ... 2015-11-22 18:31:15.934000000\n",
"1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 ... 2015-12-21 17:07:24.275000000\n",
"2 D0F62040-CEB0-904C-F563-2F8620916C4E ... 2016-01-17 16:24:42.765000000\n",
"3 FFDF2B2C-F514-EF7F-6538-A6A53518E9DC ... 2016-05-26 08:09:12.058000000\n",
"4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 ... 2016-01-05 01:06:59.546000000\n",
"\n",
"[5 rows x 13 columns]"
]
},
"metadata": {},
"execution_count": 2
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "VwHgKQTYQ4t_",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "83cb4981-48c6-4ef0-ad28-a69c5ef1e17b"
},
"source": [
"len(df)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"2315"
]
},
"metadata": {},
"execution_count": 3
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "4raqbp3NZ0tS",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "72866bb7-1b50-4030-95d4-fc84c497ab07"
},
"source": [
"df.columns"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Index(['student_id', 'assignment1_grade', 'assignment1_submission',\n",
" 'assignment2_grade', 'assignment2_submission', 'assignment3_grade',\n",
" 'assignment3_submission', 'assignment4_grade', 'assignment4_submission',\n",
" 'assignment5_grade', 'assignment5_submission', 'assignment6_grade',\n",
" 'assignment6_submission'],\n",
" dtype='object')"
]
},
"metadata": {},
"execution_count": 4
}
]
},
{
"cell_type": "code",
"source": [
"df.shape"
],
"metadata": {
"id": "mTVVxHJFJ0Or",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "2cafb264-487c-4b8e-d150-72ac91e989b5"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(2315, 13)"
]
},
"metadata": {},
"execution_count": 5
}
]
},
{
"cell_type": "code",
"source": [
"df['assignment1_submission'].count()"
],
"metadata": {
"id": "cE7sBIM3L-RC",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "9ec4d231-a9ea-447f-c0b7-c244b9ebe2fb"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"2315"
]
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "ibxkwOH3Z_pB",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "3b8a455f-4164-4922-f688-bd79717453de"
},
"source": [
"df.iloc[0]"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"student_id B73F2C11-70F0-E37D-8B10-1D20AFED50B1\n",
"assignment1_grade 92.733946\n",
"assignment1_submission 2015-11-02 06:55:34.282000000\n",
"assignment2_grade 83.030552\n",
"assignment2_submission 2015-11-09 02:22:58.938000000\n",
"assignment3_grade 67.164441\n",
"assignment3_submission 2015-11-12 08:58:33.998000000\n",
"assignment4_grade 53.011553\n",
"assignment4_submission 2015-11-16 01:21:24.663000000\n",
"assignment5_grade 47.710398\n",
"assignment5_submission 2015-11-20 13:24:59.692000000\n",
"assignment6_grade 38.168318\n",
"assignment6_submission 2015-11-22 18:31:15.934000000\n",
"Name: 0, dtype: object"
]
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "m_H8bCDubtV_",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 562
},
"outputId": "56e4b0b0-192c-42e6-a610-d99ae4f19d0c"
},
"source": [
"df2 = df.set_index('student_id')\n",
"df2.head()"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-f6ccf05a-5e7c-4a73-a818-74cc155c30ed\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" <tr>\n",
" <th>student_id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</th>\n",
" <td>92.733946</td>\n",
" <td>2015-11-02 06:55:34.282000000</td>\n",
" <td>83.030552</td>\n",
" <td>2015-11-09 02:22:58.938000000</td>\n",
" <td>67.164441</td>\n",
" <td>2015-11-12 08:58:33.998000000</td>\n",
" <td>53.011553</td>\n",
" <td>2015-11-16 01:21:24.663000000</td>\n",
" <td>47.710398</td>\n",
" <td>2015-11-20 13:24:59.692000000</td>\n",
" <td>38.168318</td>\n",
" <td>2015-11-22 18:31:15.934000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</th>\n",
" <td>86.790821</td>\n",
" <td>2015-11-29 14:57:44.429000000</td>\n",
" <td>86.290821</td>\n",
" <td>2015-12-06 17:41:18.449000000</td>\n",
" <td>69.772657</td>\n",
" <td>2015-12-10 08:54:55.904000000</td>\n",
" <td>55.098125</td>\n",
" <td>2015-12-13 17:32:30.941000000</td>\n",
" <td>49.588313</td>\n",
" <td>2015-12-19 23:26:39.285000000</td>\n",
" <td>44.629482</td>\n",
" <td>2015-12-21 17:07:24.275000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>D0F62040-CEB0-904C-F563-2F8620916C4E</th>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 05:36:02.389000000</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 06:39:44.416000000</td>\n",
" <td>68.410033</td>\n",
" <td>2016-01-15 20:22:45.882000000</td>\n",
" <td>54.728026</td>\n",
" <td>2016-01-11 12:41:50.749000000</td>\n",
" <td>49.255224</td>\n",
" <td>2016-01-11 17:31:12.489000000</td>\n",
" <td>44.329701</td>\n",
" <td>2016-01-17 16:24:42.765000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</th>\n",
" <td>86.030665</td>\n",
" <td>2016-04-30 06:50:39.801000000</td>\n",
" <td>68.824532</td>\n",
" <td>2016-04-30 17:20:38.727000000</td>\n",
" <td>61.942079</td>\n",
" <td>2016-05-12 07:47:16.326000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-07 16:09:20.485000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-24 12:51:18.016000000</td>\n",
" <td>44.598297</td>\n",
" <td>2016-05-26 08:09:12.058000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</th>\n",
" <td>64.813800</td>\n",
" <td>2015-12-13 17:06:10.750000000</td>\n",
" <td>51.491040</td>\n",
" <td>2015-12-14 12:25:12.056000000</td>\n",
" <td>41.932832</td>\n",
" <td>2015-12-29 14:25:22.594000000</td>\n",
" <td>36.929549</td>\n",
" <td>2015-12-28 01:29:55.901000000</td>\n",
" <td>33.236594</td>\n",
" <td>2015-12-29 14:46:06.628000000</td>\n",
" <td>33.236594</td>\n",
" <td>2016-01-05 01:06:59.546000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f6ccf05a-5e7c-4a73-a818-74cc155c30ed')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-f6ccf05a-5e7c-4a73-a818-74cc155c30ed button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-f6ccf05a-5e7c-4a73-a818-74cc155c30ed');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" assignment1_grade ... assignment6_submission\n",
"student_id ... \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 92.733946 ... 2015-11-22 18:31:15.934000000\n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 86.790821 ... 2015-12-21 17:07:24.275000000\n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 85.512541 ... 2016-01-17 16:24:42.765000000\n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 86.030665 ... 2016-05-26 08:09:12.058000000\n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 64.813800 ... 2016-01-05 01:06:59.546000000\n",
"\n",
"[5 rows x 12 columns]"
]
},
"metadata": {},
"execution_count": 8
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "Oaem1SGKb7j2",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "6d7aa5d6-8c2d-4005-93ef-a04c326017b2"
},
"source": [
"df2.loc['B73F2C11-70F0-E37D-8B10-1D20AFED50B1']"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"assignment1_grade 92.733946\n",
"assignment1_submission 2015-11-02 06:55:34.282000000\n",
"assignment2_grade 83.030552\n",
"assignment2_submission 2015-11-09 02:22:58.938000000\n",
"assignment3_grade 67.164441\n",
"assignment3_submission 2015-11-12 08:58:33.998000000\n",
"assignment4_grade 53.011553\n",
"assignment4_submission 2015-11-16 01:21:24.663000000\n",
"assignment5_grade 47.710398\n",
"assignment5_submission 2015-11-20 13:24:59.692000000\n",
"assignment6_grade 38.168318\n",
"assignment6_submission 2015-11-22 18:31:15.934000000\n",
"Name: B73F2C11-70F0-E37D-8B10-1D20AFED50B1, dtype: object"
]
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "code",
"source": [
"df['assignment1_submission'] <= '2015-12-31'"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ScXBglWF9gKN",
"outputId": "0f07e5a6-d754-4ec7-879b-90fa8f70f167"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 True\n",
"1 True\n",
"2 False\n",
"3 False\n",
"4 True\n",
" ... \n",
"2310 False\n",
"2311 True\n",
"2312 True\n",
"2313 False\n",
"2314 True\n",
"Name: assignment1_submission, Length: 2315, dtype: bool"
]
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "VsqJZ4BbRN-j",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 531
},
"outputId": "50ed74d2-482d-40fd-ec13-fa8f2bd5937b"
},
"source": [
"early = df[df['assignment1_submission'] <= '2015-12-31']\n",
"early.head()\n"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-f2e54659-a4ef-41ea-a0eb-b1a628543b85\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n",
" <td>92.733946</td>\n",
" <td>2015-11-02 06:55:34.282000000</td>\n",
" <td>83.030552</td>\n",
" <td>2015-11-09 02:22:58.938000000</td>\n",
" <td>67.164441</td>\n",
" <td>2015-11-12 08:58:33.998000000</td>\n",
" <td>53.011553</td>\n",
" <td>2015-11-16 01:21:24.663000000</td>\n",
" <td>47.710398</td>\n",
" <td>2015-11-20 13:24:59.692000000</td>\n",
" <td>38.168318</td>\n",
" <td>2015-11-22 18:31:15.934000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n",
" <td>86.790821</td>\n",
" <td>2015-11-29 14:57:44.429000000</td>\n",
" <td>86.290821</td>\n",
" <td>2015-12-06 17:41:18.449000000</td>\n",
" <td>69.772657</td>\n",
" <td>2015-12-10 08:54:55.904000000</td>\n",
" <td>55.098125</td>\n",
" <td>2015-12-13 17:32:30.941000000</td>\n",
" <td>49.588313</td>\n",
" <td>2015-12-19 23:26:39.285000000</td>\n",
" <td>44.629482</td>\n",
" <td>2015-12-21 17:07:24.275000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n",
" <td>64.813800</td>\n",
" <td>2015-12-13 17:06:10.750000000</td>\n",
" <td>51.491040</td>\n",
" <td>2015-12-14 12:25:12.056000000</td>\n",
" <td>41.932832</td>\n",
" <td>2015-12-29 14:25:22.594000000</td>\n",
" <td>36.929549</td>\n",
" <td>2015-12-28 01:29:55.901000000</td>\n",
" <td>33.236594</td>\n",
" <td>2015-12-29 14:46:06.628000000</td>\n",
" <td>33.236594</td>\n",
" <td>2016-01-05 01:06:59.546000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>D09000A0-827B-C0FF-3433-BF8FF286E15B</td>\n",
" <td>71.647278</td>\n",
" <td>2015-12-28 04:35:32.836000000</td>\n",
" <td>64.052550</td>\n",
" <td>2016-01-03 21:05:38.392000000</td>\n",
" <td>64.752550</td>\n",
" <td>2016-01-07 08:55:43.692000000</td>\n",
" <td>57.467295</td>\n",
" <td>2016-01-11 00:45:28.706000000</td>\n",
" <td>57.467295</td>\n",
" <td>2016-01-11 00:54:13.579000000</td>\n",
" <td>57.467295</td>\n",
" <td>2016-01-20 19:54:46.166000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>C9D51293-BD58-F113-4167-A7C0BAFCB6E5</td>\n",
" <td>66.595568</td>\n",
" <td>2015-12-25 02:29:28.415000000</td>\n",
" <td>52.916454</td>\n",
" <td>2015-12-31 01:42:30.046000000</td>\n",
" <td>48.344809</td>\n",
" <td>2016-01-05 23:34:02.180000000</td>\n",
" <td>47.444809</td>\n",
" <td>2016-01-02 07:48:42.517000000</td>\n",
" <td>37.955847</td>\n",
" <td>2016-01-03 21:27:04.266000000</td>\n",
" <td>37.955847</td>\n",
" <td>2016-01-19 15:24:31.060000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f2e54659-a4ef-41ea-a0eb-b1a628543b85')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-f2e54659-a4ef-41ea-a0eb-b1a628543b85 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-f2e54659-a4ef-41ea-a0eb-b1a628543b85');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" student_id ... assignment6_submission\n",
"0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 ... 2015-11-22 18:31:15.934000000\n",
"1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 ... 2015-12-21 17:07:24.275000000\n",
"4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 ... 2016-01-05 01:06:59.546000000\n",
"5 D09000A0-827B-C0FF-3433-BF8FF286E15B ... 2016-01-20 19:54:46.166000000\n",
"8 C9D51293-BD58-F113-4167-A7C0BAFCB6E5 ... 2016-01-19 15:24:31.060000000\n",
"\n",
"[5 rows x 13 columns]"
]
},
"metadata": {},
"execution_count": 11
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "etQAAtl-RqdF",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "d81190c3-f121-4d4b-d92d-984f3d078c10"
},
"source": [
"len(early)"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"1256"
]
},
"metadata": {},
"execution_count": 12
}
]
},
{
"cell_type": "code",
"source": [
"len(early)/len(df)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "c7ec6MPT9yR6",
"outputId": "f6f3fd10-5b6d-4376-eb31-bb7fdcfc78ed"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.542548596112311"
]
},
"metadata": {},
"execution_count": 13
}
]
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "ITWajh0_LpZW"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "Dy5irgYXgEL_",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "f0ea2b7c-8f9c-40fb-8a3e-e059b96d6dce"
},
"source": [
"early.rename(columns={'assignment1_submission': 'new_assignment1_submission'})"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-e4b6b4bb-e700-45b5-8d26-dc414bbd3346\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>new_assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n",
" <td>92.733946</td>\n",
" <td>2015-11-02 06:55:34.282000000</td>\n",
" <td>83.030552</td>\n",
" <td>2015-11-09 02:22:58.938000000</td>\n",
" <td>67.164441</td>\n",
" <td>2015-11-12 08:58:33.998000000</td>\n",
" <td>53.011553</td>\n",
" <td>2015-11-16 01:21:24.663000000</td>\n",
" <td>47.710398</td>\n",
" <td>2015-11-20 13:24:59.692000000</td>\n",
" <td>38.168318</td>\n",
" <td>2015-11-22 18:31:15.934000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n",
" <td>86.790821</td>\n",
" <td>2015-11-29 14:57:44.429000000</td>\n",
" <td>86.290821</td>\n",
" <td>2015-12-06 17:41:18.449000000</td>\n",
" <td>69.772657</td>\n",
" <td>2015-12-10 08:54:55.904000000</td>\n",
" <td>55.098125</td>\n",
" <td>2015-12-13 17:32:30.941000000</td>\n",
" <td>49.588313</td>\n",
" <td>2015-12-19 23:26:39.285000000</td>\n",
" <td>44.629482</td>\n",
" <td>2015-12-21 17:07:24.275000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n",
" <td>64.813800</td>\n",
" <td>2015-12-13 17:06:10.750000000</td>\n",
" <td>51.491040</td>\n",
" <td>2015-12-14 12:25:12.056000000</td>\n",
" <td>41.932832</td>\n",
" <td>2015-12-29 14:25:22.594000000</td>\n",
" <td>36.929549</td>\n",
" <td>2015-12-28 01:29:55.901000000</td>\n",
" <td>33.236594</td>\n",
" <td>2015-12-29 14:46:06.628000000</td>\n",
" <td>33.236594</td>\n",
" <td>2016-01-05 01:06:59.546000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>D09000A0-827B-C0FF-3433-BF8FF286E15B</td>\n",
" <td>71.647278</td>\n",
" <td>2015-12-28 04:35:32.836000000</td>\n",
" <td>64.052550</td>\n",
" <td>2016-01-03 21:05:38.392000000</td>\n",
" <td>64.752550</td>\n",
" <td>2016-01-07 08:55:43.692000000</td>\n",
" <td>57.467295</td>\n",
" <td>2016-01-11 00:45:28.706000000</td>\n",
" <td>57.467295</td>\n",
" <td>2016-01-11 00:54:13.579000000</td>\n",
" <td>57.467295</td>\n",
" <td>2016-01-20 19:54:46.166000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>C9D51293-BD58-F113-4167-A7C0BAFCB6E5</td>\n",
" <td>66.595568</td>\n",
" <td>2015-12-25 02:29:28.415000000</td>\n",
" <td>52.916454</td>\n",
" <td>2015-12-31 01:42:30.046000000</td>\n",
" <td>48.344809</td>\n",
" <td>2016-01-05 23:34:02.180000000</td>\n",
" <td>47.444809</td>\n",
" <td>2016-01-02 07:48:42.517000000</td>\n",
" <td>37.955847</td>\n",
" <td>2016-01-03 21:27:04.266000000</td>\n",
" <td>37.955847</td>\n",
" <td>2016-01-19 15:24:31.060000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2308</th>\n",
" <td>EFDA9F93-D0C3-864F-B0F6-2E9AA3E05E31</td>\n",
" <td>71.481182</td>\n",
" <td>2015-10-03 09:04:46.358000000</td>\n",
" <td>70.981182</td>\n",
" <td>2015-10-06 03:57:28.420000000</td>\n",
" <td>64.603064</td>\n",
" <td>2015-10-12 07:58:25.081000000</td>\n",
" <td>63.703064</td>\n",
" <td>2015-10-17 07:59:49.005000000</td>\n",
" <td>50.962451</td>\n",
" <td>2015-10-18 02:29:34.374000000</td>\n",
" <td>45.866206</td>\n",
" <td>2015-10-27 00:21:47.208000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2309</th>\n",
" <td>6D2AB78F-44F4-2E8B-5C5E-B79119BC7EAC</td>\n",
" <td>82.640274</td>\n",
" <td>2015-10-01 23:25:20.529000000</td>\n",
" <td>65.752219</td>\n",
" <td>2015-10-05 02:06:11.522000000</td>\n",
" <td>53.341775</td>\n",
" <td>2015-10-22 23:58:36.426000000</td>\n",
" <td>47.197598</td>\n",
" <td>2015-10-16 12:32:56.809000000</td>\n",
" <td>47.197598</td>\n",
" <td>2015-10-24 12:16:54.993000000</td>\n",
" <td>37.758078</td>\n",
" <td>2015-10-26 10:34:41.293000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2311</th>\n",
" <td>DE88902E-C7A7-E37A-CFA7-F2C8F2D219F2</td>\n",
" <td>75.367870</td>\n",
" <td>2015-11-29 02:43:27.932000000</td>\n",
" <td>59.934296</td>\n",
" <td>2015-12-03 05:30:39.218000000</td>\n",
" <td>48.687437</td>\n",
" <td>2015-12-09 15:56:44.895000000</td>\n",
" <td>43.008693</td>\n",
" <td>2015-12-13 06:18:01.342000000</td>\n",
" <td>38.707824</td>\n",
" <td>2015-12-20 02:39:39.248000000</td>\n",
" <td>38.707824</td>\n",
" <td>2015-12-22 13:34:42.931000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2312</th>\n",
" <td>EFDA9F93-D0C3-864F-B0F6-2E9AA3E05E31</td>\n",
" <td>73.269463</td>\n",
" <td>2015-10-20 08:09:27.418000000</td>\n",
" <td>58.255570</td>\n",
" <td>2015-11-18 19:07:06.930000000</td>\n",
" <td>58.955570</td>\n",
" <td>2015-12-10 08:54:54.871000000</td>\n",
" <td>52.250013</td>\n",
" <td>2015-11-23 19:40:00.434000000</td>\n",
" <td>41.800010</td>\n",
" <td>2015-11-29 14:23:43.659000000</td>\n",
" <td>41.800010</td>\n",
" <td>2015-12-04 09:56:07.156000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2314</th>\n",
" <td>DDE0526B-7DA4-80E8-C2A6-D097F3826029</td>\n",
" <td>80.318105</td>\n",
" <td>2015-10-04 09:46:03.403000000</td>\n",
" <td>79.818105</td>\n",
" <td>2015-10-06 10:28:30.820000000</td>\n",
" <td>64.594484</td>\n",
" <td>2015-10-13 17:06:29.179000000</td>\n",
" <td>50.955587</td>\n",
" <td>2015-10-06 16:18:35.513000000</td>\n",
" <td>40.764470</td>\n",
" <td>2015-10-23 17:03:26.939000000</td>\n",
" <td>40.764470</td>\n",
" <td>2015-10-26 15:56:55.460000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1256 rows × 13 columns</p>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e4b6b4bb-e700-45b5-8d26-dc414bbd3346')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-e4b6b4bb-e700-45b5-8d26-dc414bbd3346 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-e4b6b4bb-e700-45b5-8d26-dc414bbd3346');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" student_id ... assignment6_submission\n",
"0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 ... 2015-11-22 18:31:15.934000000\n",
"1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 ... 2015-12-21 17:07:24.275000000\n",
"4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 ... 2016-01-05 01:06:59.546000000\n",
"5 D09000A0-827B-C0FF-3433-BF8FF286E15B ... 2016-01-20 19:54:46.166000000\n",
"8 C9D51293-BD58-F113-4167-A7C0BAFCB6E5 ... 2016-01-19 15:24:31.060000000\n",
"... ... ... ...\n",
"2308 EFDA9F93-D0C3-864F-B0F6-2E9AA3E05E31 ... 2015-10-27 00:21:47.208000000\n",
"2309 6D2AB78F-44F4-2E8B-5C5E-B79119BC7EAC ... 2015-10-26 10:34:41.293000000\n",
"2311 DE88902E-C7A7-E37A-CFA7-F2C8F2D219F2 ... 2015-12-22 13:34:42.931000000\n",
"2312 EFDA9F93-D0C3-864F-B0F6-2E9AA3E05E31 ... 2015-12-04 09:56:07.156000000\n",
"2314 DDE0526B-7DA4-80E8-C2A6-D097F3826029 ... 2015-10-26 15:56:55.460000000\n",
"\n",
"[1256 rows x 13 columns]"
]
},
"metadata": {},
"execution_count": 14
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "c8pO5nr8R0aW",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "7d533f72-97ef-4482-dd39-7c1d89b1086e"
},
"source": [
"late = df[df['assignment1_submission'] > '2015-12-31']\n",
"late"
],
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-5756dcc2-65c1-48ba-b1bf-baf1f69faeb4\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>D0F62040-CEB0-904C-F563-2F8620916C4E</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 05:36:02.389000000</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 06:39:44.416000000</td>\n",
" <td>68.410033</td>\n",
" <td>2016-01-15 20:22:45.882000000</td>\n",
" <td>54.728026</td>\n",
" <td>2016-01-11 12:41:50.749000000</td>\n",
" <td>49.255224</td>\n",
" <td>2016-01-11 17:31:12.489000000</td>\n",
" <td>44.329701</td>\n",
" <td>2016-01-17 16:24:42.765000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</td>\n",
" <td>86.030665</td>\n",
" <td>2016-04-30 06:50:39.801000000</td>\n",
" <td>68.824532</td>\n",
" <td>2016-04-30 17:20:38.727000000</td>\n",
" <td>61.942079</td>\n",
" <td>2016-05-12 07:47:16.326000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-07 16:09:20.485000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-24 12:51:18.016000000</td>\n",
" <td>44.598297</td>\n",
" <td>2016-05-26 08:09:12.058000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>3217BE3F-E4B0-C3B6-9F64-462456819CE4</td>\n",
" <td>87.498744</td>\n",
" <td>2016-03-05 11:05:25.408000000</td>\n",
" <td>69.998995</td>\n",
" <td>2016-03-09 07:29:52.405000000</td>\n",
" <td>55.999196</td>\n",
" <td>2016-03-16 22:31:24.316000000</td>\n",
" <td>50.399276</td>\n",
" <td>2016-03-18 07:19:26.032000000</td>\n",
" <td>45.359349</td>\n",
" <td>2016-03-19 10:35:41.869000000</td>\n",
" <td>45.359349</td>\n",
" <td>2016-03-23 14:02:00.987000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>F1CB5AA1-B3DE-5460-FAFF-BE951FD38B5F</td>\n",
" <td>80.576090</td>\n",
" <td>2016-01-24 18:24:25.619000000</td>\n",
" <td>72.518481</td>\n",
" <td>2016-01-27 13:37:12.943000000</td>\n",
" <td>65.266633</td>\n",
" <td>2016-01-30 14:34:36.581000000</td>\n",
" <td>65.266633</td>\n",
" <td>2016-02-03 22:08:49.002000000</td>\n",
" <td>65.266633</td>\n",
" <td>2016-02-16 14:22:23.664000000</td>\n",
" <td>65.266633</td>\n",
" <td>2016-02-18 08:35:04.796000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>E2C617C2-4654-622C-AB50-1550C4BE42A0</td>\n",
" <td>59.270882</td>\n",
" <td>2016-03-06 12:06:26.185000000</td>\n",
" <td>59.270882</td>\n",
" <td>2016-03-13 02:07:25.289000000</td>\n",
" <td>53.343794</td>\n",
" <td>2016-03-17 07:30:09.241000000</td>\n",
" <td>53.343794</td>\n",
" <td>2016-03-20 21:45:56.229000000</td>\n",
" <td>42.675035</td>\n",
" <td>2016-03-27 15:55:04.414000000</td>\n",
" <td>38.407532</td>\n",
" <td>2016-03-30 20:33:13.554000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2303</th>\n",
" <td>DDE0526B-7DA4-80E8-C2A6-D097F3826029</td>\n",
" <td>97.215052</td>\n",
" <td>2016-01-23 09:19:40.494000000</td>\n",
" <td>77.772041</td>\n",
" <td>2016-01-26 08:38:13.085000000</td>\n",
" <td>69.994837</td>\n",
" <td>2016-01-29 15:04:34.705000000</td>\n",
" <td>62.995353</td>\n",
" <td>2016-02-06 12:51:00.647000000</td>\n",
" <td>50.396283</td>\n",
" <td>2016-02-11 15:44:08.113000000</td>\n",
" <td>50.396283</td>\n",
" <td>2016-02-14 09:03:33.466000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2306</th>\n",
" <td>DDE0526B-7DA4-80E8-C2A6-D097F3826029</td>\n",
" <td>47.696703</td>\n",
" <td>2016-06-22 20:21:58.182000000</td>\n",
" <td>38.157363</td>\n",
" <td>2016-06-23 18:22:45.622000000</td>\n",
" <td>38.157363</td>\n",
" <td>2016-07-02 22:18:59.529000000</td>\n",
" <td>30.525890</td>\n",
" <td>2016-06-28 22:05:38.100000000</td>\n",
" <td>30.525890</td>\n",
" <td>2016-07-09 20:08:14.734000000</td>\n",
" <td>30.525890</td>\n",
" <td>2016-07-17 15:17:58.502000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2307</th>\n",
" <td>1F51E050-78F7-F270-1B90-ED1BC0376763</td>\n",
" <td>94.595758</td>\n",
" <td>2016-01-20 23:22:16.592000000</td>\n",
" <td>85.136182</td>\n",
" <td>2016-01-27 22:30:29.914000000</td>\n",
" <td>76.622564</td>\n",
" <td>2016-01-31 15:39:45.088000000</td>\n",
" <td>68.960307</td>\n",
" <td>2016-02-06 21:43:05.836000000</td>\n",
" <td>62.064277</td>\n",
" <td>2016-02-14 18:52:48.594000000</td>\n",
" <td>49.651421</td>\n",
" <td>2016-02-19 20:36:16.121000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2310</th>\n",
" <td>DE88902E-C7A7-E37A-CFA7-F2C8F2D219F2</td>\n",
" <td>77.684611</td>\n",
" <td>2016-03-07 02:52:24.378000000</td>\n",
" <td>69.916150</td>\n",
" <td>2016-03-11 22:02:39.161000000</td>\n",
" <td>69.916150</td>\n",
" <td>2016-03-17 07:30:09.261000000</td>\n",
" <td>69.916150</td>\n",
" <td>2016-03-18 18:01:24.525000000</td>\n",
" <td>55.932920</td>\n",
" <td>2016-03-20 06:38:12.120000000</td>\n",
" <td>50.339628</td>\n",
" <td>2016-03-25 11:00:06.923000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2313</th>\n",
" <td>1F51E050-78F7-F270-1B90-ED1BC0376763</td>\n",
" <td>87.268366</td>\n",
" <td>2016-04-03 09:04:51.646000000</td>\n",
" <td>87.268366</td>\n",
" <td>2016-04-08 19:24:29.095000000</td>\n",
" <td>87.268366</td>\n",
" <td>2016-04-12 05:43:33.853000000</td>\n",
" <td>69.814693</td>\n",
" <td>2016-04-14 10:43:58.104000000</td>\n",
" <td>55.851754</td>\n",
" <td>2016-04-19 05:37:19.322000000</td>\n",
" <td>55.851754</td>\n",
" <td>2016-04-23 03:44:06.813000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1059 rows × 13 columns</p>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5756dcc2-65c1-48ba-b1bf-baf1f69faeb4')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-5756dcc2-65c1-48ba-b1bf-baf1f69faeb4 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-5756dcc2-65c1-48ba-b1bf-baf1f69faeb4');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" student_id ... assignment6_submission\n",
"2 D0F62040-CEB0-904C-F563-2F8620916C4E ... 2016-01-17 16:24:42.765000000\n",
"3 FFDF2B2C-F514-EF7F-6538-A6A53518E9DC ... 2016-05-26 08:09:12.058000000\n",
"6 3217BE3F-E4B0-C3B6-9F64-462456819CE4 ... 2016-03-23 14:02:00.987000000\n",
"7 F1CB5AA1-B3DE-5460-FAFF-BE951FD38B5F ... 2016-02-18 08:35:04.796000000\n",
"9 E2C617C2-4654-622C-AB50-1550C4BE42A0 ... 2016-03-30 20:33:13.554000000\n",
"... ... ... ...\n",
"2303 DDE0526B-7DA4-80E8-C2A6-D097F3826029 ... 2016-02-14 09:03:33.466000000\n",
"2306 DDE0526B-7DA4-80E8-C2A6-D097F3826029 ... 2016-07-17 15:17:58.502000000\n",
"2307 1F51E050-78F7-F270-1B90-ED1BC0376763 ... 2016-02-19 20:36:16.121000000\n",
"2310 DE88902E-C7A7-E37A-CFA7-F2C8F2D219F2 ... 2016-03-25 11:00:06.923000000\n",
"2313 1F51E050-78F7-F270-1B90-ED1BC0376763 ... 2016-04-23 03:44:06.813000000\n",
"\n",
"[1059 rows x 13 columns]"
]
},
"metadata": {},
"execution_count": 15
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "QisV4szPSTGV",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "a70722a7-2f3a-4a62-bcaf-cd211a1055d8"
},
"source": [
"early.mean()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"assignment1_grade 74.972741\n",
"assignment2_grade 67.252190\n",
"assignment3_grade 61.129050\n",
"assignment4_grade 54.157620\n",
"assignment5_grade 48.634643\n",
"assignment6_grade 43.838980\n",
"dtype: float64"
]
},
"metadata": {},
"execution_count": 16
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "pofudLPxS4GQ",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "024e74bd-a300-446c-cb93-e712a365f24a"
},
"source": [
"late.mean()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"assignment1_grade 74.017429\n",
"assignment2_grade 66.370822\n",
"assignment3_grade 60.023244\n",
"assignment4_grade 54.058138\n",
"assignment5_grade 48.599402\n",
"assignment6_grade 43.844384\n",
"dtype: float64"
]
},
"metadata": {},
"execution_count": 17
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "8fC6kM88UBhv"
},
"source": [
"early.reset_index(drop=True)\n"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "_u6z92L6WpGQ",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 565
},
"outputId": "ffa4254e-d6d2-4292-de3f-7d13a0388519"
},
"source": [
"# ¿Cuanto fue la nota promedio por estudiante?\n",
"df['assignment_mean'] = df.mean(axis=1)\n",
"df.head()"
],
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
" \n"
]
},
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-7177ad01-7871-4488-99e5-111f1580670b\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" <th>assignment_mean</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n",
" <td>92.733946</td>\n",
" <td>2015-11-02 06:55:34.282000000</td>\n",
" <td>83.030552</td>\n",
" <td>2015-11-09 02:22:58.938000000</td>\n",
" <td>67.164441</td>\n",
" <td>2015-11-12 08:58:33.998000000</td>\n",
" <td>53.011553</td>\n",
" <td>2015-11-16 01:21:24.663000000</td>\n",
" <td>47.710398</td>\n",
" <td>2015-11-20 13:24:59.692000000</td>\n",
" <td>38.168318</td>\n",
" <td>2015-11-22 18:31:15.934000000</td>\n",
" <td>63.636535</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n",
" <td>86.790821</td>\n",
" <td>2015-11-29 14:57:44.429000000</td>\n",
" <td>86.290821</td>\n",
" <td>2015-12-06 17:41:18.449000000</td>\n",
" <td>69.772657</td>\n",
" <td>2015-12-10 08:54:55.904000000</td>\n",
" <td>55.098125</td>\n",
" <td>2015-12-13 17:32:30.941000000</td>\n",
" <td>49.588313</td>\n",
" <td>2015-12-19 23:26:39.285000000</td>\n",
" <td>44.629482</td>\n",
" <td>2015-12-21 17:07:24.275000000</td>\n",
" <td>65.361703</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>D0F62040-CEB0-904C-F563-2F8620916C4E</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 05:36:02.389000000</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 06:39:44.416000000</td>\n",
" <td>68.410033</td>\n",
" <td>2016-01-15 20:22:45.882000000</td>\n",
" <td>54.728026</td>\n",
" <td>2016-01-11 12:41:50.749000000</td>\n",
" <td>49.255224</td>\n",
" <td>2016-01-11 17:31:12.489000000</td>\n",
" <td>44.329701</td>\n",
" <td>2016-01-17 16:24:42.765000000</td>\n",
" <td>64.624678</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</td>\n",
" <td>86.030665</td>\n",
" <td>2016-04-30 06:50:39.801000000</td>\n",
" <td>68.824532</td>\n",
" <td>2016-04-30 17:20:38.727000000</td>\n",
" <td>61.942079</td>\n",
" <td>2016-05-12 07:47:16.326000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-07 16:09:20.485000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-24 12:51:18.016000000</td>\n",
" <td>44.598297</td>\n",
" <td>2016-05-26 08:09:12.058000000</td>\n",
" <td>60.083816</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n",
" <td>64.813800</td>\n",
" <td>2015-12-13 17:06:10.750000000</td>\n",
" <td>51.491040</td>\n",
" <td>2015-12-14 12:25:12.056000000</td>\n",
" <td>41.932832</td>\n",
" <td>2015-12-29 14:25:22.594000000</td>\n",
" <td>36.929549</td>\n",
" <td>2015-12-28 01:29:55.901000000</td>\n",
" <td>33.236594</td>\n",
" <td>2015-12-29 14:46:06.628000000</td>\n",
" <td>33.236594</td>\n",
" <td>2016-01-05 01:06:59.546000000</td>\n",
" <td>43.606735</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-7177ad01-7871-4488-99e5-111f1580670b')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-7177ad01-7871-4488-99e5-111f1580670b button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-7177ad01-7871-4488-99e5-111f1580670b');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" student_id ... assignment_mean\n",
"0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 ... 63.636535\n",
"1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 ... 65.361703\n",
"2 D0F62040-CEB0-904C-F563-2F8620916C4E ... 64.624678\n",
"3 FFDF2B2C-F514-EF7F-6538-A6A53518E9DC ... 60.083816\n",
"4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 ... 43.606735\n",
"\n",
"[5 rows x 14 columns]"
]
},
"metadata": {},
"execution_count": 20
}
]
},
{
"cell_type": "code",
"source": [
"df['assignment_mean'].mean()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "esxMIL6aBl3P",
"outputId": "b3e16c65-06ba-4189-f4cf-885ab64e1e5d"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"58.09667041068115"
]
},
"metadata": {},
"execution_count": 21
}
]
},
{
"cell_type": "code",
"source": [
"df.mean()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "RL9jW110D_Wk",
"outputId": "3116b5b3-f72e-4bbb-b6c0-73b68d19f2e5"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"assignment1_grade 74.535732\n",
"assignment2_grade 66.849007\n",
"assignment3_grade 60.623197\n",
"assignment4_grade 54.112112\n",
"assignment5_grade 48.618522\n",
"assignment6_grade 43.841452\n",
"assignment_mean 58.096670\n",
"dtype: float64"
]
},
"metadata": {},
"execution_count": 22
}
]
},
{
"cell_type": "code",
"source": [
"df.describe()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 300
},
"id": "kw0-TTX2E4aL",
"outputId": "918240a2-f754-45ea-c2cc-7a5943a2900b"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-8b59847a-5504-4b1c-8590-e18b5467099a\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment_mean</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>74.535732</td>\n",
" <td>66.849007</td>\n",
" <td>60.623197</td>\n",
" <td>54.112112</td>\n",
" <td>48.618522</td>\n",
" <td>43.841452</td>\n",
" <td>58.096670</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>16.353252</td>\n",
" <td>15.959210</td>\n",
" <td>15.492469</td>\n",
" <td>14.687431</td>\n",
" <td>13.927054</td>\n",
" <td>13.259413</td>\n",
" <td>14.058527</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>14.423297</td>\n",
" <td>12.980967</td>\n",
" <td>12.307682</td>\n",
" <td>9.126146</td>\n",
" <td>8.213531</td>\n",
" <td>7.392178</td>\n",
" <td>11.076457</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>63.670100</td>\n",
" <td>56.127794</td>\n",
" <td>49.866390</td>\n",
" <td>43.852636</td>\n",
" <td>38.859619</td>\n",
" <td>34.828619</td>\n",
" <td>48.530166</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>77.208365</td>\n",
" <td>68.142124</td>\n",
" <td>61.307206</td>\n",
" <td>54.442888</td>\n",
" <td>48.681165</td>\n",
" <td>43.172442</td>\n",
" <td>59.435131</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>87.502146</td>\n",
" <td>78.310880</td>\n",
" <td>71.292632</td>\n",
" <td>63.789234</td>\n",
" <td>57.662236</td>\n",
" <td>52.086086</td>\n",
" <td>68.150145</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>100.695583</td>\n",
" <td>99.936206</td>\n",
" <td>99.655813</td>\n",
" <td>98.755813</td>\n",
" <td>97.571739</td>\n",
" <td>97.571739</td>\n",
" <td>97.571739</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-8b59847a-5504-4b1c-8590-e18b5467099a')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-8b59847a-5504-4b1c-8590-e18b5467099a button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-8b59847a-5504-4b1c-8590-e18b5467099a');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" assignment1_grade assignment2_grade ... assignment6_grade assignment_mean\n",
"count 2315.000000 2315.000000 ... 2315.000000 2315.000000\n",
"mean 74.535732 66.849007 ... 43.841452 58.096670\n",
"std 16.353252 15.959210 ... 13.259413 14.058527\n",
"min 14.423297 12.980967 ... 7.392178 11.076457\n",
"25% 63.670100 56.127794 ... 34.828619 48.530166\n",
"50% 77.208365 68.142124 ... 43.172442 59.435131\n",
"75% 87.502146 78.310880 ... 52.086086 68.150145\n",
"max 100.695583 99.936206 ... 97.571739 97.571739\n",
"\n",
"[8 rows x 7 columns]"
]
},
"metadata": {},
"execution_count": 23
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "idMIVniHjnKt"
},
"source": [
"# ¿Cual fue el top 10 de estudiantes con mejor promedio?\n",
"df.sort_values(by=['assignment_mean'], ascending=False).head(10)"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "xH96NzXmEjdT"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# ¿Como calcular si el estudiante tiene un desempeño bajo, aceptable?"
],
"metadata": {
"id": "W2n4kjp0JXmg"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"def student_performance(value):\n",
"\n",
" if value <= 65:\n",
" performance = 'bad performance'\n",
"\n",
" elif value >= 65 and value <= 85:\n",
"\n",
" performance = 'acceptable performance'\n",
"\n",
" elif value > 85:\n",
"\n",
" performance = 'good performance'\n",
" \n",
" return performance\n",
"\n",
"student_performance(88)\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"id": "7VVP-on8HHFh",
"outputId": "fccd281d-7d44-4f89-bede-1cfd72778609"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
},
"text/plain": [
"'good performance'"
]
},
"metadata": {},
"execution_count": 27
}
]
},
{
"cell_type": "code",
"source": [
"df['performance']=df['assignment_mean'].apply(student_performance)"
],
"metadata": {
"id": "b82IMcYoHv5y"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df"
],
"metadata": {
"id": "Dd1U5PQHIS-I"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "tArB1aULCQdP"
},
"source": [
"df.head()"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df4 = pd.read_excel('census.xlsx')\n"
],
"metadata": {
"id": "4T5ZZSDzNWpJ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df4[df4['SUMLEV']==50]\n",
"df4"
],
"metadata": {
"id": "AQfiimb0SnKa",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 644
},
"outputId": "da03cff9-6e13-4bed-c250-d318bdf00e5f"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-212cfecc-a27f-415e-958a-3fe13755921b\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SUMLEV</th>\n",
" <th>REGION</th>\n",
" <th>DIVISION</th>\n",
" <th>STATE</th>\n",
" <th>COUNTY</th>\n",
" <th>STNAME</th>\n",
" <th>CTYNAME</th>\n",
" <th>CENSUS2010POP</th>\n",
" <th>ESTIMATESBASE2010</th>\n",
" <th>POPESTIMATE2010</th>\n",
" <th>POPESTIMATE2011</th>\n",
" <th>POPESTIMATE2012</th>\n",
" <th>POPESTIMATE2013</th>\n",
" <th>POPESTIMATE2014</th>\n",
" <th>POPESTIMATE2015</th>\n",
" <th>NPOPCHG_2010</th>\n",
" <th>NPOPCHG_2011</th>\n",
" <th>NPOPCHG_2012</th>\n",
" <th>NPOPCHG_2013</th>\n",
" <th>NPOPCHG_2014</th>\n",
" <th>NPOPCHG_2015</th>\n",
" <th>BIRTHS2010</th>\n",
" <th>BIRTHS2011</th>\n",
" <th>BIRTHS2012</th>\n",
" <th>BIRTHS2013</th>\n",
" <th>BIRTHS2014</th>\n",
" <th>BIRTHS2015</th>\n",
" <th>DEATHS2010</th>\n",
" <th>DEATHS2011</th>\n",
" <th>DEATHS2012</th>\n",
" <th>DEATHS2013</th>\n",
" <th>DEATHS2014</th>\n",
" <th>DEATHS2015</th>\n",
" <th>NATURALINC2010</th>\n",
" <th>NATURALINC2011</th>\n",
" <th>NATURALINC2012</th>\n",
" <th>NATURALINC2013</th>\n",
" <th>NATURALINC2014</th>\n",
" <th>NATURALINC2015</th>\n",
" <th>INTERNATIONALMIG2010</th>\n",
" <th>...</th>\n",
" <th>RESIDUAL2013</th>\n",
" <th>RESIDUAL2014</th>\n",
" <th>RESIDUAL2015</th>\n",
" <th>GQESTIMATESBASE2010</th>\n",
" <th>GQESTIMATES2010</th>\n",
" <th>GQESTIMATES2011</th>\n",
" <th>GQESTIMATES2012</th>\n",
" <th>GQESTIMATES2013</th>\n",
" <th>GQESTIMATES2014</th>\n",
" <th>GQESTIMATES2015</th>\n",
" <th>RBIRTH2011</th>\n",
" <th>RBIRTH2012</th>\n",
" <th>RBIRTH2013</th>\n",
" <th>RBIRTH2014</th>\n",
" <th>RBIRTH2015</th>\n",
" <th>RDEATH2011</th>\n",
" <th>RDEATH2012</th>\n",
" <th>RDEATH2013</th>\n",
" <th>RDEATH2014</th>\n",
" <th>RDEATH2015</th>\n",
" <th>RNATURALINC2011</th>\n",
" <th>RNATURALINC2012</th>\n",
" <th>RNATURALINC2013</th>\n",
" <th>RNATURALINC2014</th>\n",
" <th>RNATURALINC2015</th>\n",
" <th>RINTERNATIONALMIG2011</th>\n",
" <th>RINTERNATIONALMIG2012</th>\n",
" <th>RINTERNATIONALMIG2013</th>\n",
" <th>RINTERNATIONALMIG2014</th>\n",
" <th>RINTERNATIONALMIG2015</th>\n",
" <th>RDOMESTICMIG2011</th>\n",
" <th>RDOMESTICMIG2012</th>\n",
" <th>RDOMESTICMIG2013</th>\n",
" <th>RDOMESTICMIG2014</th>\n",
" <th>RDOMESTICMIG2015</th>\n",
" <th>RNETMIG2011</th>\n",
" <th>RNETMIG2012</th>\n",
" <th>RNETMIG2013</th>\n",
" <th>RNETMIG2014</th>\n",
" <th>RNETMIG2015</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>40</td>\n",
" <td>3</td>\n",
" <td>6</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>Alabama</td>\n",
" <td>Alabama</td>\n",
" <td>4779736</td>\n",
" <td>4780127</td>\n",
" <td>4785161</td>\n",
" <td>4801108</td>\n",
" <td>4816089</td>\n",
" <td>4830533</td>\n",
" <td>4846411</td>\n",
" <td>4858979</td>\n",
" <td>5034</td>\n",
" <td>15947</td>\n",
" <td>14981</td>\n",
" <td>14444</td>\n",
" <td>15878</td>\n",
" <td>12568</td>\n",
" <td>14226</td>\n",
" <td>59689</td>\n",
" <td>59062</td>\n",
" <td>57938</td>\n",
" <td>58334</td>\n",
" <td>58305</td>\n",
" <td>11089</td>\n",
" <td>48811</td>\n",
" <td>48357</td>\n",
" <td>50843</td>\n",
" <td>50228</td>\n",
" <td>50330</td>\n",
" <td>3137</td>\n",
" <td>10878</td>\n",
" <td>10705</td>\n",
" <td>7095</td>\n",
" <td>8106</td>\n",
" <td>7975</td>\n",
" <td>1357</td>\n",
" <td>...</td>\n",
" <td>677</td>\n",
" <td>-573</td>\n",
" <td>1135</td>\n",
" <td>116185</td>\n",
" <td>116212</td>\n",
" <td>115560</td>\n",
" <td>115666</td>\n",
" <td>116963</td>\n",
" <td>119088</td>\n",
" <td>119599</td>\n",
" <td>1.245302e+10</td>\n",
" <td>12282580881</td>\n",
" <td>1.201208e+10</td>\n",
" <td>12056285538</td>\n",
" <td>12014973123</td>\n",
" <td>1.018352e+10</td>\n",
" <td>1.005636e+10</td>\n",
" <td>1.054110e+10</td>\n",
" <td>1.038096e+10</td>\n",
" <td>1.037156e+10</td>\n",
" <td>2.269496e+10</td>\n",
" <td>2.226220e+10</td>\n",
" <td>1.470981e+10</td>\n",
" <td>1.675322e+10</td>\n",
" <td>1.643417e+10</td>\n",
" <td>1.027720e+10</td>\n",
" <td>1.019840e+10</td>\n",
" <td>1.002216e+10</td>\n",
" <td>1.142716e+10</td>\n",
" <td>1.179963e+10</td>\n",
" <td>2.294949e-03</td>\n",
" <td>-1.931956e-01</td>\n",
" <td>3.810660e-01</td>\n",
" <td>5.820019e-01</td>\n",
" <td>-4.673692e-01</td>\n",
" <td>1.030015e+10</td>\n",
" <td>8.266442e-01</td>\n",
" <td>1.383282e+10</td>\n",
" <td>1.724718e+10</td>\n",
" <td>7.125937e-01</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>50</td>\n",
" <td>3</td>\n",
" <td>6</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Alabama</td>\n",
" <td>Autauga County</td>\n",
" <td>54571</td>\n",
" <td>54571</td>\n",
" <td>54660</td>\n",
" <td>55253</td>\n",
" <td>55175</td>\n",
" <td>55038</td>\n",
" <td>55290</td>\n",
" <td>55347</td>\n",
" <td>89</td>\n",
" <td>593</td>\n",
" <td>-78</td>\n",
" <td>-137</td>\n",
" <td>252</td>\n",
" <td>57</td>\n",
" <td>151</td>\n",
" <td>636</td>\n",
" <td>615</td>\n",
" <td>574</td>\n",
" <td>623</td>\n",
" <td>600</td>\n",
" <td>152</td>\n",
" <td>507</td>\n",
" <td>558</td>\n",
" <td>583</td>\n",
" <td>504</td>\n",
" <td>467</td>\n",
" <td>-1</td>\n",
" <td>129</td>\n",
" <td>57</td>\n",
" <td>-9</td>\n",
" <td>119</td>\n",
" <td>133</td>\n",
" <td>33</td>\n",
" <td>...</td>\n",
" <td>22</td>\n",
" <td>-10</td>\n",
" <td>45</td>\n",
" <td>455</td>\n",
" <td>455</td>\n",
" <td>455</td>\n",
" <td>455</td>\n",
" <td>455</td>\n",
" <td>455</td>\n",
" <td>455</td>\n",
" <td>1.157279e+10</td>\n",
" <td>11138479371</td>\n",
" <td>1.041619e+10</td>\n",
" <td>11293597274</td>\n",
" <td>10846281081</td>\n",
" <td>9.225478e+10</td>\n",
" <td>1.010613e+10</td>\n",
" <td>1.057951e+10</td>\n",
" <td>9.136393e+07</td>\n",
" <td>8.442022e+10</td>\n",
" <td>2.347311e+10</td>\n",
" <td>1.032347e+10</td>\n",
" <td>-1.633201e-01</td>\n",
" <td>2.157204e+10</td>\n",
" <td>2.404259e+09</td>\n",
" <td>3.639242e-01</td>\n",
" <td>2.897816e-01</td>\n",
" <td>2.903469e-01</td>\n",
" <td>3.262998e-01</td>\n",
" <td>3.434656e-01</td>\n",
" <td>7.242091e+10</td>\n",
" <td>-2.915927e+08</td>\n",
" <td>-3.012349e+09</td>\n",
" <td>2.265971e+10</td>\n",
" <td>-2.530799e+09</td>\n",
" <td>7.606016e+10</td>\n",
" <td>-2.626146e+09</td>\n",
" <td>-2.722002e+09</td>\n",
" <td>2.592270e+10</td>\n",
" <td>-2.187333e+09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>50</td>\n",
" <td>3</td>\n",
" <td>6</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>Alabama</td>\n",
" <td>Baldwin County</td>\n",
" <td>182265</td>\n",
" <td>182265</td>\n",
" <td>183193</td>\n",
" <td>186659</td>\n",
" <td>190396</td>\n",
" <td>195126</td>\n",
" <td>199713</td>\n",
" <td>203709</td>\n",
" <td>928</td>\n",
" <td>3466</td>\n",
" <td>3737</td>\n",
" <td>4730</td>\n",
" <td>4587</td>\n",
" <td>3996</td>\n",
" <td>517</td>\n",
" <td>2187</td>\n",
" <td>2092</td>\n",
" <td>2160</td>\n",
" <td>2186</td>\n",
" <td>2240</td>\n",
" <td>532</td>\n",
" <td>1825</td>\n",
" <td>1879</td>\n",
" <td>1902</td>\n",
" <td>2044</td>\n",
" <td>1992</td>\n",
" <td>-15</td>\n",
" <td>362</td>\n",
" <td>213</td>\n",
" <td>258</td>\n",
" <td>142</td>\n",
" <td>248</td>\n",
" <td>69</td>\n",
" <td>...</td>\n",
" <td>91</td>\n",
" <td>434</td>\n",
" <td>58</td>\n",
" <td>2307</td>\n",
" <td>2307</td>\n",
" <td>2307</td>\n",
" <td>2249</td>\n",
" <td>2304</td>\n",
" <td>2308</td>\n",
" <td>2309</td>\n",
" <td>1.182635e+10</td>\n",
" <td>1109652438</td>\n",
" <td>1.120559e+10</td>\n",
" <td>11072867675</td>\n",
" <td>11104996753</td>\n",
" <td>9.868812e+10</td>\n",
" <td>9.966716e+10</td>\n",
" <td>9.867141e+10</td>\n",
" <td>1.035359e+10</td>\n",
" <td>9.875515e+10</td>\n",
" <td>1.957540e+10</td>\n",
" <td>1.129809e+10</td>\n",
" <td>1.338445e+10</td>\n",
" <td>7.192805e-01</td>\n",
" <td>1.229482e+10</td>\n",
" <td>1.011215e+10</td>\n",
" <td>9.123337e-01</td>\n",
" <td>8.819211e-01</td>\n",
" <td>1.073855e+10</td>\n",
" <td>1.095627e+10</td>\n",
" <td>1.483296e+10</td>\n",
" <td>1.764729e+10</td>\n",
" <td>2.184571e+10</td>\n",
" <td>1.924329e+10</td>\n",
" <td>1.719787e+10</td>\n",
" <td>1.584418e+10</td>\n",
" <td>1.855963e+09</td>\n",
" <td>2.272763e+10</td>\n",
" <td>2.031714e+10</td>\n",
" <td>1.829350e+10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>50</td>\n",
" <td>3</td>\n",
" <td>6</td>\n",
" <td>1</td>\n",
" <td>5</td>\n",
" <td>Alabama</td>\n",
" <td>Barbour County</td>\n",
" <td>27457</td>\n",
" <td>27457</td>\n",
" <td>27341</td>\n",
" <td>27226</td>\n",
" <td>27159</td>\n",
" <td>26973</td>\n",
" <td>26815</td>\n",
" <td>26489</td>\n",
" <td>-116</td>\n",
" <td>-115</td>\n",
" <td>-67</td>\n",
" <td>-186</td>\n",
" <td>-158</td>\n",
" <td>-326</td>\n",
" <td>70</td>\n",
" <td>335</td>\n",
" <td>300</td>\n",
" <td>283</td>\n",
" <td>260</td>\n",
" <td>269</td>\n",
" <td>128</td>\n",
" <td>319</td>\n",
" <td>291</td>\n",
" <td>294</td>\n",
" <td>310</td>\n",
" <td>309</td>\n",
" <td>-58</td>\n",
" <td>16</td>\n",
" <td>9</td>\n",
" <td>-11</td>\n",
" <td>-50</td>\n",
" <td>-40</td>\n",
" <td>2</td>\n",
" <td>...</td>\n",
" <td>19</td>\n",
" <td>-1</td>\n",
" <td>-5</td>\n",
" <td>3193</td>\n",
" <td>3193</td>\n",
" <td>3382</td>\n",
" <td>3388</td>\n",
" <td>3389</td>\n",
" <td>3353</td>\n",
" <td>3352</td>\n",
" <td>1.227848e+10</td>\n",
" <td>11032453802</td>\n",
" <td>1.045592e+09</td>\n",
" <td>96675838477</td>\n",
" <td>10093051178</td>\n",
" <td>1.169205e+10</td>\n",
" <td>1.070148e+10</td>\n",
" <td>1.086234e+10</td>\n",
" <td>1.152673e+10</td>\n",
" <td>1.159388e+10</td>\n",
" <td>5.864350e-01</td>\n",
" <td>3.309736e-01</td>\n",
" <td>-4.064140e-01</td>\n",
" <td>-1.859151e+08</td>\n",
" <td>-1.500825e+09</td>\n",
" <td>-1.466088e-01</td>\n",
" <td>-2.574239e-01</td>\n",
" <td>-1.108402e-01</td>\n",
" <td>-7.436603e-02</td>\n",
" <td>0.000000e+00</td>\n",
" <td>-4.728132e+09</td>\n",
" <td>-2.500690e+09</td>\n",
" <td>-7.056824e+08</td>\n",
" <td>-3.904217e+09</td>\n",
" <td>-1.054330e+09</td>\n",
" <td>-4.874741e+09</td>\n",
" <td>-2.758113e+08</td>\n",
" <td>-7.167664e+09</td>\n",
" <td>-3.978583e+09</td>\n",
" <td>-1.054330e+09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>50</td>\n",
" <td>3</td>\n",
" <td>6</td>\n",
" <td>1</td>\n",
" <td>7</td>\n",
" <td>Alabama</td>\n",
" <td>Bibb County</td>\n",
" <td>22915</td>\n",
" <td>22919</td>\n",
" <td>22861</td>\n",
" <td>22733</td>\n",
" <td>22642</td>\n",
" <td>22512</td>\n",
" <td>22549</td>\n",
" <td>22583</td>\n",
" <td>-58</td>\n",
" <td>-128</td>\n",
" <td>-91</td>\n",
" <td>-130</td>\n",
" <td>37</td>\n",
" <td>34</td>\n",
" <td>44</td>\n",
" <td>266</td>\n",
" <td>245</td>\n",
" <td>259</td>\n",
" <td>247</td>\n",
" <td>253</td>\n",
" <td>34</td>\n",
" <td>278</td>\n",
" <td>237</td>\n",
" <td>281</td>\n",
" <td>211</td>\n",
" <td>223</td>\n",
" <td>10</td>\n",
" <td>-12</td>\n",
" <td>8</td>\n",
" <td>-22</td>\n",
" <td>36</td>\n",
" <td>30</td>\n",
" <td>2</td>\n",
" <td>...</td>\n",
" <td>14</td>\n",
" <td>-16</td>\n",
" <td>-21</td>\n",
" <td>2224</td>\n",
" <td>2224</td>\n",
" <td>2224</td>\n",
" <td>2224</td>\n",
" <td>2224</td>\n",
" <td>2233</td>\n",
" <td>2236</td>\n",
" <td>1.166820e+10</td>\n",
" <td>10798898072</td>\n",
" <td>1.147185e+10</td>\n",
" <td>10962916935</td>\n",
" <td>1121155721</td>\n",
" <td>1.219459e+10</td>\n",
" <td>1.044628e+10</td>\n",
" <td>1.244629e+10</td>\n",
" <td>9.365083e+10</td>\n",
" <td>9.882124e+10</td>\n",
" <td>-5.263851e-01</td>\n",
" <td>3.526171e-01</td>\n",
" <td>-9.744430e-01</td>\n",
" <td>1.597834e+10</td>\n",
" <td>1.329434e+10</td>\n",
" <td>4.386542e-01</td>\n",
" <td>7.052342e-01</td>\n",
" <td>7.972716e-01</td>\n",
" <td>9.320699e-01</td>\n",
" <td>9.306036e-01</td>\n",
" <td>-5.527043e+09</td>\n",
" <td>-5.068871e+09</td>\n",
" <td>-6.201001e+09</td>\n",
" <td>-1.775371e-01</td>\n",
" <td>1.772578e-01</td>\n",
" <td>-5.088389e+09</td>\n",
" <td>-4.363636e+09</td>\n",
" <td>-5.403729e+09</td>\n",
" <td>7.545327e-01</td>\n",
" <td>1.107861e+10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3188</th>\n",
" <td>50</td>\n",
" <td>4</td>\n",
" <td>8</td>\n",
" <td>56</td>\n",
" <td>37</td>\n",
" <td>Wyoming</td>\n",
" <td>Sweetwater County</td>\n",
" <td>43806</td>\n",
" <td>43806</td>\n",
" <td>43593</td>\n",
" <td>44041</td>\n",
" <td>45104</td>\n",
" <td>45162</td>\n",
" <td>44925</td>\n",
" <td>44626</td>\n",
" <td>-213</td>\n",
" <td>448</td>\n",
" <td>1063</td>\n",
" <td>58</td>\n",
" <td>-237</td>\n",
" <td>-299</td>\n",
" <td>167</td>\n",
" <td>640</td>\n",
" <td>595</td>\n",
" <td>657</td>\n",
" <td>629</td>\n",
" <td>620</td>\n",
" <td>76</td>\n",
" <td>251</td>\n",
" <td>273</td>\n",
" <td>296</td>\n",
" <td>246</td>\n",
" <td>262</td>\n",
" <td>91</td>\n",
" <td>389</td>\n",
" <td>322</td>\n",
" <td>361</td>\n",
" <td>383</td>\n",
" <td>358</td>\n",
" <td>5</td>\n",
" <td>...</td>\n",
" <td>-64</td>\n",
" <td>14</td>\n",
" <td>-27</td>\n",
" <td>679</td>\n",
" <td>679</td>\n",
" <td>694</td>\n",
" <td>697</td>\n",
" <td>731</td>\n",
" <td>671</td>\n",
" <td>672</td>\n",
" <td>1.460620e+10</td>\n",
" <td>13349038084</td>\n",
" <td>1.455698e+10</td>\n",
" <td>13964278975</td>\n",
" <td>13846858215</td>\n",
" <td>5.728370e+10</td>\n",
" <td>6.124853e+09</td>\n",
" <td>6.558394e+10</td>\n",
" <td>5.461387e+10</td>\n",
" <td>5.851414e+10</td>\n",
" <td>8.877833e+10</td>\n",
" <td>7.224185e+10</td>\n",
" <td>7.998582e+10</td>\n",
" <td>8.502892e+10</td>\n",
" <td>7.995444e+09</td>\n",
" <td>1.825775e-01</td>\n",
" <td>0.000000e+00</td>\n",
" <td>4.431347e-02</td>\n",
" <td>1.776061e-01</td>\n",
" <td>1.786691e-01</td>\n",
" <td>1.072643e+10</td>\n",
" <td>1.624320e+10</td>\n",
" <td>-5.339774e+09</td>\n",
" <td>-1.425289e+09</td>\n",
" <td>-1.424886e+09</td>\n",
" <td>1.255221e+10</td>\n",
" <td>1.624320e+10</td>\n",
" <td>-5.295460e+09</td>\n",
" <td>-1.407528e+09</td>\n",
" <td>-1.407019e+09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3189</th>\n",
" <td>50</td>\n",
" <td>4</td>\n",
" <td>8</td>\n",
" <td>56</td>\n",
" <td>39</td>\n",
" <td>Wyoming</td>\n",
" <td>Teton County</td>\n",
" <td>21294</td>\n",
" <td>21294</td>\n",
" <td>21297</td>\n",
" <td>21482</td>\n",
" <td>21697</td>\n",
" <td>22347</td>\n",
" <td>22905</td>\n",
" <td>23125</td>\n",
" <td>3</td>\n",
" <td>185</td>\n",
" <td>215</td>\n",
" <td>650</td>\n",
" <td>558</td>\n",
" <td>220</td>\n",
" <td>76</td>\n",
" <td>259</td>\n",
" <td>230</td>\n",
" <td>261</td>\n",
" <td>249</td>\n",
" <td>269</td>\n",
" <td>10</td>\n",
" <td>87</td>\n",
" <td>61</td>\n",
" <td>97</td>\n",
" <td>68</td>\n",
" <td>76</td>\n",
" <td>66</td>\n",
" <td>172</td>\n",
" <td>169</td>\n",
" <td>164</td>\n",
" <td>181</td>\n",
" <td>193</td>\n",
" <td>5</td>\n",
" <td>...</td>\n",
" <td>20</td>\n",
" <td>8</td>\n",
" <td>-8</td>\n",
" <td>271</td>\n",
" <td>271</td>\n",
" <td>271</td>\n",
" <td>270</td>\n",
" <td>268</td>\n",
" <td>268</td>\n",
" <td>267</td>\n",
" <td>1.210874e+10</td>\n",
" <td>10653326849</td>\n",
" <td>1.185178e+10</td>\n",
" <td>11005038451</td>\n",
" <td>11688029546</td>\n",
" <td>4.067416e+10</td>\n",
" <td>2.825448e+10</td>\n",
" <td>4.404686e+10</td>\n",
" <td>3.005392e+10</td>\n",
" <td>3.302194e+10</td>\n",
" <td>8.041329e+10</td>\n",
" <td>7.827879e+10</td>\n",
" <td>7.447098e+10</td>\n",
" <td>7.999646e+10</td>\n",
" <td>8.385835e+10</td>\n",
" <td>2.244092e+10</td>\n",
" <td>1.435883e+09</td>\n",
" <td>1.634729e+10</td>\n",
" <td>2.165650e+09</td>\n",
" <td>2.085596e+10</td>\n",
" <td>-1.589565e+09</td>\n",
" <td>9.726951e-01</td>\n",
" <td>1.952593e+10</td>\n",
" <td>1.414302e+10</td>\n",
" <td>-5.648490e-01</td>\n",
" <td>6.545268e-01</td>\n",
" <td>2.408578e+10</td>\n",
" <td>2.116066e+10</td>\n",
" <td>1.630867e+09</td>\n",
" <td>1.520747e+10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3190</th>\n",
" <td>50</td>\n",
" <td>4</td>\n",
" <td>8</td>\n",
" <td>56</td>\n",
" <td>41</td>\n",
" <td>Wyoming</td>\n",
" <td>Uinta County</td>\n",
" <td>21118</td>\n",
" <td>21118</td>\n",
" <td>21102</td>\n",
" <td>20912</td>\n",
" <td>20989</td>\n",
" <td>21022</td>\n",
" <td>20903</td>\n",
" <td>20822</td>\n",
" <td>-16</td>\n",
" <td>-190</td>\n",
" <td>77</td>\n",
" <td>33</td>\n",
" <td>-119</td>\n",
" <td>-81</td>\n",
" <td>73</td>\n",
" <td>324</td>\n",
" <td>311</td>\n",
" <td>316</td>\n",
" <td>316</td>\n",
" <td>316</td>\n",
" <td>49</td>\n",
" <td>139</td>\n",
" <td>115</td>\n",
" <td>136</td>\n",
" <td>130</td>\n",
" <td>137</td>\n",
" <td>24</td>\n",
" <td>185</td>\n",
" <td>196</td>\n",
" <td>180</td>\n",
" <td>186</td>\n",
" <td>179</td>\n",
" <td>2</td>\n",
" <td>...</td>\n",
" <td>11</td>\n",
" <td>4</td>\n",
" <td>3</td>\n",
" <td>270</td>\n",
" <td>270</td>\n",
" <td>245</td>\n",
" <td>236</td>\n",
" <td>254</td>\n",
" <td>254</td>\n",
" <td>254</td>\n",
" <td>1.542343e+10</td>\n",
" <td>14844514451</td>\n",
" <td>1.504368e+10</td>\n",
" <td>15074537865</td>\n",
" <td>15146794488</td>\n",
" <td>6.616842e+09</td>\n",
" <td>5.489129e+10</td>\n",
" <td>6.474495e+10</td>\n",
" <td>6.201550e+10</td>\n",
" <td>6.566806e+10</td>\n",
" <td>8.806588e+10</td>\n",
" <td>9.355385e+09</td>\n",
" <td>8.569184e+10</td>\n",
" <td>8.872987e+10</td>\n",
" <td>8.579988e+10</td>\n",
" <td>-3.808254e-01</td>\n",
" <td>-6.205103e-01</td>\n",
" <td>-6.188855e-01</td>\n",
" <td>-5.247466e-01</td>\n",
" <td>-4.793289e-01</td>\n",
" <td>-1.775599e+08</td>\n",
" <td>-4.916350e+09</td>\n",
" <td>-6.902954e+09</td>\n",
" <td>-1.421586e+09</td>\n",
" <td>-1.212702e+09</td>\n",
" <td>-1.813681e+09</td>\n",
" <td>-5.536861e+09</td>\n",
" <td>-7.521840e+09</td>\n",
" <td>-1.474061e+09</td>\n",
" <td>-1.260635e+09</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3191</th>\n",
" <td>50</td>\n",
" <td>4</td>\n",
" <td>8</td>\n",
" <td>56</td>\n",
" <td>43</td>\n",
" <td>Wyoming</td>\n",
" <td>Washakie County</td>\n",
" <td>8533</td>\n",
" <td>8533</td>\n",
" <td>8545</td>\n",
" <td>8469</td>\n",
" <td>8443</td>\n",
" <td>8443</td>\n",
" <td>8316</td>\n",
" <td>8328</td>\n",
" <td>12</td>\n",
" <td>-76</td>\n",
" <td>-26</td>\n",
" <td>0</td>\n",
" <td>-127</td>\n",
" <td>12</td>\n",
" <td>26</td>\n",
" <td>108</td>\n",
" <td>90</td>\n",
" <td>95</td>\n",
" <td>96</td>\n",
" <td>90</td>\n",
" <td>34</td>\n",
" <td>79</td>\n",
" <td>105</td>\n",
" <td>77</td>\n",
" <td>70</td>\n",
" <td>79</td>\n",
" <td>-8</td>\n",
" <td>29</td>\n",
" <td>-15</td>\n",
" <td>18</td>\n",
" <td>26</td>\n",
" <td>11</td>\n",
" <td>1</td>\n",
" <td>...</td>\n",
" <td>1</td>\n",
" <td>-2</td>\n",
" <td>-11</td>\n",
" <td>140</td>\n",
" <td>140</td>\n",
" <td>140</td>\n",
" <td>140</td>\n",
" <td>140</td>\n",
" <td>140</td>\n",
" <td>140</td>\n",
" <td>1.269543e+10</td>\n",
" <td>1064333018</td>\n",
" <td>1.125192e+10</td>\n",
" <td>11456530819</td>\n",
" <td>10814708003</td>\n",
" <td>9.286470e+10</td>\n",
" <td>1.241722e+10</td>\n",
" <td>9.119981e+10</td>\n",
" <td>8.353720e+09</td>\n",
" <td>9.492910e+10</td>\n",
" <td>3.408957e+10</td>\n",
" <td>-1.773888e+09</td>\n",
" <td>2.131944e+10</td>\n",
" <td>3.102810e+10</td>\n",
" <td>1.321798e+10</td>\n",
" <td>-3.526508e-01</td>\n",
" <td>-3.547777e-01</td>\n",
" <td>-2.368826e-01</td>\n",
" <td>-2.386777e-01</td>\n",
" <td>-2.403268e-01</td>\n",
" <td>-1.163748e+09</td>\n",
" <td>-8.278146e-01</td>\n",
" <td>-2.013502e+08</td>\n",
" <td>-1.778149e+09</td>\n",
" <td>1.682288e+10</td>\n",
" <td>-1.199013e+09</td>\n",
" <td>-1.182592e+09</td>\n",
" <td>-2.250385e+09</td>\n",
" <td>-1.802017e+09</td>\n",
" <td>1.441961e+10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3192</th>\n",
" <td>50</td>\n",
" <td>4</td>\n",
" <td>8</td>\n",
" <td>56</td>\n",
" <td>45</td>\n",
" <td>Wyoming</td>\n",
" <td>Weston County</td>\n",
" <td>7208</td>\n",
" <td>7208</td>\n",
" <td>7181</td>\n",
" <td>7114</td>\n",
" <td>7065</td>\n",
" <td>7160</td>\n",
" <td>7185</td>\n",
" <td>7234</td>\n",
" <td>-27</td>\n",
" <td>-67</td>\n",
" <td>-49</td>\n",
" <td>95</td>\n",
" <td>25</td>\n",
" <td>49</td>\n",
" <td>26</td>\n",
" <td>81</td>\n",
" <td>74</td>\n",
" <td>93</td>\n",
" <td>77</td>\n",
" <td>79</td>\n",
" <td>9</td>\n",
" <td>71</td>\n",
" <td>67</td>\n",
" <td>77</td>\n",
" <td>70</td>\n",
" <td>77</td>\n",
" <td>17</td>\n",
" <td>10</td>\n",
" <td>7</td>\n",
" <td>16</td>\n",
" <td>7</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" <td>...</td>\n",
" <td>-9</td>\n",
" <td>7</td>\n",
" <td>-3</td>\n",
" <td>313</td>\n",
" <td>313</td>\n",
" <td>313</td>\n",
" <td>313</td>\n",
" <td>323</td>\n",
" <td>318</td>\n",
" <td>317</td>\n",
" <td>1.133263e+10</td>\n",
" <td>10437971648</td>\n",
" <td>1.307557e+10</td>\n",
" <td>10735447891</td>\n",
" <td>10957764061</td>\n",
" <td>9.933543e+10</td>\n",
" <td>9.450596e+10</td>\n",
" <td>1.082601e+10</td>\n",
" <td>9.759498e+09</td>\n",
" <td>1.068035e+10</td>\n",
" <td>1.399091e+10</td>\n",
" <td>9.873757e-01</td>\n",
" <td>2.249561e+10</td>\n",
" <td>9.759498e-01</td>\n",
" <td>2.774117e-01</td>\n",
" <td>-2.798181e-01</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" <td>0.000000e+00</td>\n",
" <td>-1.175236e+09</td>\n",
" <td>-8.040059e+09</td>\n",
" <td>1.237258e+09</td>\n",
" <td>1.533635e+09</td>\n",
" <td>6.935294e+10</td>\n",
" <td>-1.203218e+09</td>\n",
" <td>-8.040059e+09</td>\n",
" <td>1.237258e+09</td>\n",
" <td>1.533635e+09</td>\n",
" <td>6.935294e+10</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>3193 rows × 100 columns</p>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-212cfecc-a27f-415e-958a-3fe13755921b')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-212cfecc-a27f-415e-958a-3fe13755921b button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-212cfecc-a27f-415e-958a-3fe13755921b');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" SUMLEV REGION DIVISION ... RNETMIG2013 RNETMIG2014 RNETMIG2015\n",
"0 40 3 6 ... 1.383282e+10 1.724718e+10 7.125937e-01\n",
"1 50 3 6 ... -2.722002e+09 2.592270e+10 -2.187333e+09\n",
"2 50 3 6 ... 2.272763e+10 2.031714e+10 1.829350e+10\n",
"3 50 3 6 ... -7.167664e+09 -3.978583e+09 -1.054330e+09\n",
"4 50 3 6 ... -5.403729e+09 7.545327e-01 1.107861e+10\n",
"... ... ... ... ... ... ... ...\n",
"3188 50 4 8 ... -5.295460e+09 -1.407528e+09 -1.407019e+09\n",
"3189 50 4 8 ... 2.116066e+10 1.630867e+09 1.520747e+10\n",
"3190 50 4 8 ... -7.521840e+09 -1.474061e+09 -1.260635e+09\n",
"3191 50 4 8 ... -2.250385e+09 -1.802017e+09 1.441961e+10\n",
"3192 50 4 8 ... 1.237258e+09 1.533635e+09 6.935294e+10\n",
"\n",
"[3193 rows x 100 columns]"
]
},
"metadata": {},
"execution_count": 33
}
]
},
{
"cell_type": "code",
"source": [
"# ¿Cuales son los estados en analisis?\n",
"df4['STNAME'].unique()"
],
"metadata": {
"id": "dTGHNcSdS_RR",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "c278c3f6-bf4f-4895-b67c-609c1c4facf4"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array(['Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California',\n",
" 'Colorado', 'Connecticut', 'Delaware', 'District of Columbia',\n",
" 'Florida', 'Georgia', 'Hawaii', 'Idaho', 'Illinois', 'Indiana',\n",
" 'Iowa', 'Kansas', 'Kentucky', 'Louisiana', 'Maine', 'Maryland',\n",
" 'Massachusetts', 'Michigan', 'Minnesota', 'Mississippi',\n",
" 'Missouri', 'Montana', 'Nebraska', 'Nevada', 'New Hampshire',\n",
" 'New Jersey', 'New Mexico', 'New York', 'North Carolina',\n",
" 'North Dakota', 'Ohio', 'Oklahoma', 'Oregon', 'Pennsylvania',\n",
" 'Rhode Island', 'South Carolina', 'South Dakota', 'Tennessee',\n",
" 'Texas', 'Utah', 'Vermont', 'Virginia', 'Washington',\n",
" 'West Virginia', 'Wisconsin', 'Wyoming'], dtype=object)"
]
},
"metadata": {},
"execution_count": 32
}
]
},
{
"cell_type": "code",
"source": [
"import numpy as np\n",
"%time\n",
"# ¿Cuanto es la poblacion promedio por cada estado?\n",
"for state in df4['STNAME'].unique():\n",
" avg = np.average(df4.where(df4['STNAME']==state).dropna()['CENSUS2010POP'])\n",
" print('Counties in state ' + state + ' have an average population of ' + str(avg))"
],
"metadata": {
"id": "3V-xVnEdTFyB",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "eb366ab4-a35a-4d58-eb6b-62b165a770b2"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"CPU times: user 2 µs, sys: 0 ns, total: 2 µs\n",
"Wall time: 7.63 µs\n",
"Counties in state Alabama have an average population of 140580.4705882353\n",
"Counties in state Alaska have an average population of 47348.73333333333\n",
"Counties in state Arizona have an average population of 799002.125\n",
"Counties in state Arkansas have an average population of 76734.68421052632\n",
"Counties in state California have an average population of 1262845.9661016949\n",
"Counties in state Colorado have an average population of 154744.4923076923\n",
"Counties in state Connecticut have an average population of 794243.7777777778\n",
"Counties in state Delaware have an average population of 448967.0\n",
"Counties in state District of Columbia have an average population of 601723.0\n",
"Counties in state Florida have an average population of 552979.7058823529\n",
"Counties in state Georgia have an average population of 121095.6625\n",
"Counties in state Hawaii have an average population of 453433.6666666667\n",
"Counties in state Idaho have an average population of 69670.3111111111\n",
"Counties in state Illinois have an average population of 249138.4854368932\n",
"Counties in state Indiana have an average population of 139436.60215053763\n",
"Counties in state Iowa have an average population of 60927.1\n",
"Counties in state Kansas have an average population of 53832.41509433962\n",
"Counties in state Kentucky have an average population of 71725.07438016529\n",
"Counties in state Louisiana have an average population of 139488.36923076923\n",
"Counties in state Maine have an average population of 156277.76470588235\n",
"Counties in state Maryland have an average population of 461884.16\n",
"Counties in state Massachusetts have an average population of 873017.2\n",
"Counties in state Michigan have an average population of 235324.7619047619\n",
"Counties in state Minnesota have an average population of 120543.75\n",
"Counties in state Mississippi have an average population of 71501.13253012048\n",
"Counties in state Missouri have an average population of 103257.36206896552\n",
"Counties in state Montana have an average population of 34716.31578947369\n",
"Counties in state Nebraska have an average population of 38858.31914893617\n",
"Counties in state Nevada have an average population of 300061.22222222225\n",
"Counties in state New Hampshire have an average population of 239358.18181818182\n",
"Counties in state New Jersey have an average population of 799263.0909090909\n",
"Counties in state New Mexico have an average population of 121128.17647058824\n",
"Counties in state New York have an average population of 615177.8412698413\n",
"Counties in state North Carolina have an average population of 188821.44554455444\n",
"Counties in state North Dakota have an average population of 24910.777777777777\n",
"Counties in state Ohio have an average population of 259247.2808988764\n",
"Counties in state Oklahoma have an average population of 96188.48717948717\n",
"Counties in state Oregon have an average population of 207085.0810810811\n",
"Counties in state Pennsylvania have an average population of 373599.3823529412\n",
"Counties in state Rhode Island have an average population of 350855.6666666667\n",
"Counties in state South Carolina have an average population of 196824.0\n",
"Counties in state South Dakota have an average population of 24303.880597014926\n",
"Counties in state Tennessee have an average population of 132210.52083333334\n",
"Counties in state Texas have an average population of 197220.0862745098\n",
"Counties in state Utah have an average population of 184259.0\n",
"Counties in state Vermont have an average population of 83432.13333333333\n",
"Counties in state Virginia have an average population of 119371.83582089552\n",
"Counties in state Washington have an average population of 336227.0\n",
"Counties in state West Virginia have an average population of 66178.35714285714\n",
"Counties in state Wisconsin have an average population of 155807.83561643836\n",
"Counties in state Wyoming have an average population of 46968.833333333336\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"%time\n",
"for group, frame in df4.groupby('STNAME'):\n",
" avg = np.average(frame['CENSUS2010POP'])\n",
" print('Counties in state ' + group + ' have an average population of ' + str(avg))"
],
"metadata": {
"id": "d6rlGhWGTUVL",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "423c82e8-5471-46b5-caeb-3029460e3800"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"CPU times: user 4 µs, sys: 0 ns, total: 4 µs\n",
"Wall time: 9.3 µs\n",
"Counties in state Alabama have an average population of 140580.4705882353\n",
"Counties in state Alaska have an average population of 47348.73333333333\n",
"Counties in state Arizona have an average population of 799002.125\n",
"Counties in state Arkansas have an average population of 76734.68421052632\n",
"Counties in state California have an average population of 1262845.9661016949\n",
"Counties in state Colorado have an average population of 154744.4923076923\n",
"Counties in state Connecticut have an average population of 794243.7777777778\n",
"Counties in state Delaware have an average population of 448967.0\n",
"Counties in state District of Columbia have an average population of 601723.0\n",
"Counties in state Florida have an average population of 552979.7058823529\n",
"Counties in state Georgia have an average population of 121095.6625\n",
"Counties in state Hawaii have an average population of 453433.6666666667\n",
"Counties in state Idaho have an average population of 69670.3111111111\n",
"Counties in state Illinois have an average population of 249138.4854368932\n",
"Counties in state Indiana have an average population of 139436.60215053763\n",
"Counties in state Iowa have an average population of 60927.1\n",
"Counties in state Kansas have an average population of 53832.41509433962\n",
"Counties in state Kentucky have an average population of 71725.07438016529\n",
"Counties in state Louisiana have an average population of 139488.36923076923\n",
"Counties in state Maine have an average population of 156277.76470588235\n",
"Counties in state Maryland have an average population of 461884.16\n",
"Counties in state Massachusetts have an average population of 873017.2\n",
"Counties in state Michigan have an average population of 235324.7619047619\n",
"Counties in state Minnesota have an average population of 120543.75\n",
"Counties in state Mississippi have an average population of 71501.13253012048\n",
"Counties in state Missouri have an average population of 103257.36206896552\n",
"Counties in state Montana have an average population of 34716.31578947369\n",
"Counties in state Nebraska have an average population of 38858.31914893617\n",
"Counties in state Nevada have an average population of 300061.22222222225\n",
"Counties in state New Hampshire have an average population of 239358.18181818182\n",
"Counties in state New Jersey have an average population of 799263.0909090909\n",
"Counties in state New Mexico have an average population of 121128.17647058824\n",
"Counties in state New York have an average population of 615177.8412698413\n",
"Counties in state North Carolina have an average population of 188821.44554455444\n",
"Counties in state North Dakota have an average population of 24910.777777777777\n",
"Counties in state Ohio have an average population of 259247.2808988764\n",
"Counties in state Oklahoma have an average population of 96188.48717948717\n",
"Counties in state Oregon have an average population of 207085.0810810811\n",
"Counties in state Pennsylvania have an average population of 373599.3823529412\n",
"Counties in state Rhode Island have an average population of 350855.6666666667\n",
"Counties in state South Carolina have an average population of 196824.0\n",
"Counties in state South Dakota have an average population of 24303.880597014926\n",
"Counties in state Tennessee have an average population of 132210.52083333334\n",
"Counties in state Texas have an average population of 197220.0862745098\n",
"Counties in state Utah have an average population of 184259.0\n",
"Counties in state Vermont have an average population of 83432.13333333333\n",
"Counties in state Virginia have an average population of 119371.83582089552\n",
"Counties in state Washington have an average population of 336227.0\n",
"Counties in state West Virginia have an average population of 66178.35714285714\n",
"Counties in state Wisconsin have an average population of 155807.83561643836\n",
"Counties in state Wyoming have an average population of 46968.833333333336\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"df4.groupby('STNAME').agg({'CENSUS2010POP': np.average})"
],
"metadata": {
"id": "sPV8oYftQ3h_",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"outputId": "d5b5803b-a28a-4e0b-cb4c-16b4d43eec0b"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-e57a87b3-31f5-48d1-8c51-313ffb54fff4\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CENSUS2010POP</th>\n",
" </tr>\n",
" <tr>\n",
" <th>STNAME</th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Alabama</th>\n",
" <td>1.405805e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Alaska</th>\n",
" <td>4.734873e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Arizona</th>\n",
" <td>7.990021e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Arkansas</th>\n",
" <td>7.673468e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>California</th>\n",
" <td>1.262846e+06</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Colorado</th>\n",
" <td>1.547445e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Connecticut</th>\n",
" <td>7.942438e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Delaware</th>\n",
" <td>4.489670e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>District of Columbia</th>\n",
" <td>6.017230e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Florida</th>\n",
" <td>5.529797e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Georgia</th>\n",
" <td>1.210957e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Hawaii</th>\n",
" <td>4.534337e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Idaho</th>\n",
" <td>6.967031e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Illinois</th>\n",
" <td>2.491385e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Indiana</th>\n",
" <td>1.394366e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Iowa</th>\n",
" <td>6.092710e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Kansas</th>\n",
" <td>5.383242e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Kentucky</th>\n",
" <td>7.172507e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Louisiana</th>\n",
" <td>1.394884e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Maine</th>\n",
" <td>1.562778e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Maryland</th>\n",
" <td>4.618842e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Massachusetts</th>\n",
" <td>8.730172e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Michigan</th>\n",
" <td>2.353248e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Minnesota</th>\n",
" <td>1.205438e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Mississippi</th>\n",
" <td>7.150113e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Missouri</th>\n",
" <td>1.032574e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Montana</th>\n",
" <td>3.471632e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Nebraska</th>\n",
" <td>3.885832e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Nevada</th>\n",
" <td>3.000612e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>New Hampshire</th>\n",
" <td>2.393582e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>New Jersey</th>\n",
" <td>7.992631e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>New Mexico</th>\n",
" <td>1.211282e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>New York</th>\n",
" <td>6.151778e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>North Carolina</th>\n",
" <td>1.888214e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>North Dakota</th>\n",
" <td>2.491078e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Ohio</th>\n",
" <td>2.592473e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Oklahoma</th>\n",
" <td>9.618849e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Oregon</th>\n",
" <td>2.070851e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Pennsylvania</th>\n",
" <td>3.735994e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Rhode Island</th>\n",
" <td>3.508557e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>South Carolina</th>\n",
" <td>1.968240e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>South Dakota</th>\n",
" <td>2.430388e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Tennessee</th>\n",
" <td>1.322105e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Texas</th>\n",
" <td>1.972201e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Utah</th>\n",
" <td>1.842590e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Vermont</th>\n",
" <td>8.343213e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Virginia</th>\n",
" <td>1.193718e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Washington</th>\n",
" <td>3.362270e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>West Virginia</th>\n",
" <td>6.617836e+04</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Wisconsin</th>\n",
" <td>1.558078e+05</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Wyoming</th>\n",
" <td>4.696883e+04</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e57a87b3-31f5-48d1-8c51-313ffb54fff4')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-e57a87b3-31f5-48d1-8c51-313ffb54fff4 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-e57a87b3-31f5-48d1-8c51-313ffb54fff4');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" CENSUS2010POP\n",
"STNAME \n",
"Alabama 1.405805e+05\n",
"Alaska 4.734873e+04\n",
"Arizona 7.990021e+05\n",
"Arkansas 7.673468e+04\n",
"California 1.262846e+06\n",
"Colorado 1.547445e+05\n",
"Connecticut 7.942438e+05\n",
"Delaware 4.489670e+05\n",
"District of Columbia 6.017230e+05\n",
"Florida 5.529797e+05\n",
"Georgia 1.210957e+05\n",
"Hawaii 4.534337e+05\n",
"Idaho 6.967031e+04\n",
"Illinois 2.491385e+05\n",
"Indiana 1.394366e+05\n",
"Iowa 6.092710e+04\n",
"Kansas 5.383242e+04\n",
"Kentucky 7.172507e+04\n",
"Louisiana 1.394884e+05\n",
"Maine 1.562778e+05\n",
"Maryland 4.618842e+05\n",
"Massachusetts 8.730172e+05\n",
"Michigan 2.353248e+05\n",
"Minnesota 1.205438e+05\n",
"Mississippi 7.150113e+04\n",
"Missouri 1.032574e+05\n",
"Montana 3.471632e+04\n",
"Nebraska 3.885832e+04\n",
"Nevada 3.000612e+05\n",
"New Hampshire 2.393582e+05\n",
"New Jersey 7.992631e+05\n",
"New Mexico 1.211282e+05\n",
"New York 6.151778e+05\n",
"North Carolina 1.888214e+05\n",
"North Dakota 2.491078e+04\n",
"Ohio 2.592473e+05\n",
"Oklahoma 9.618849e+04\n",
"Oregon 2.070851e+05\n",
"Pennsylvania 3.735994e+05\n",
"Rhode Island 3.508557e+05\n",
"South Carolina 1.968240e+05\n",
"South Dakota 2.430388e+04\n",
"Tennessee 1.322105e+05\n",
"Texas 1.972201e+05\n",
"Utah 1.842590e+05\n",
"Vermont 8.343213e+04\n",
"Virginia 1.193718e+05\n",
"Washington 3.362270e+05\n",
"West Virginia 6.617836e+04\n",
"Wisconsin 1.558078e+05\n",
"Wyoming 4.696883e+04"
]
},
"metadata": {},
"execution_count": 38
}
]
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "96yvBwNeRsNd"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Merge Dataframes"
],
"metadata": {
"id": "txiGksISRtPf"
}
},
{
"cell_type": "code",
"source": [
"df.head()"
],
"metadata": {
"id": "yanDdW5dRLZZ",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"outputId": "d649c902-eefa-4329-a260-eb29655f0bc7"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-4651343b-3105-4823-ab23-349da4a9ef58\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-4651343b-3105-4823-ab23-349da4a9ef58')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-4651343b-3105-4823-ab23-349da4a9ef58 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-4651343b-3105-4823-ab23-349da4a9ef58');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost\n",
"Store 1 Sebastián Tennis 42.5\n",
"Store 1 Diego Jeans 32.5\n",
"Store 2 Joaquin Cap 5.0\n",
"Store 1 Santiago Tennis 55.0\n",
"Store 2 Eliana Jogger 35.0"
]
},
"metadata": {},
"execution_count": 41
}
]
},
{
"cell_type": "code",
"source": [
"df['Date'] = ['December 1', 'January 1', 'May 10', 'January 30', 'November 1']\n",
"df"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "FHHrO6CPSFeP",
"outputId": "cb503b85-c14f-4f6b-a9da-333d1dbdbcb5"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-6d7ecb41-c074-4ef5-9c98-6aad02e48ac6\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>May 10</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6d7ecb41-c074-4ef5-9c98-6aad02e48ac6')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-6d7ecb41-c074-4ef5-9c98-6aad02e48ac6 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-6d7ecb41-c074-4ef5-9c98-6aad02e48ac6');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost Date\n",
"Store 1 Sebastián Tennis 42.5 December 1\n",
"Store 1 Diego Jeans 32.5 January 1\n",
"Store 2 Joaquin Cap 5.0 May 10\n",
"Store 1 Santiago Tennis 55.0 January 30\n",
"Store 2 Eliana Jogger 35.0 November 1"
]
},
"metadata": {},
"execution_count": 42
}
]
},
{
"cell_type": "code",
"source": [
"df['Id'] = ['23151', '43151', '35151', '67121', '46928']\n",
"df"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "rtZB0FRGSmMe",
"outputId": "196d6509-a165-42b8-8631-eb66e18cd403"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-49d413ce-7f8e-46e4-99e2-9aaf2a931389\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Id</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>23151</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>43151</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>May 10</td>\n",
" <td>35151</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>67121</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>46928</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-49d413ce-7f8e-46e4-99e2-9aaf2a931389')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-49d413ce-7f8e-46e4-99e2-9aaf2a931389 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-49d413ce-7f8e-46e4-99e2-9aaf2a931389');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost Date Id\n",
"Store 1 Sebastián Tennis 42.5 December 1 23151\n",
"Store 1 Diego Jeans 32.5 January 1 43151\n",
"Store 2 Joaquin Cap 5.0 May 10 35151\n",
"Store 1 Santiago Tennis 55.0 January 30 67121\n",
"Store 2 Eliana Jogger 35.0 November 1 46928"
]
},
"metadata": {},
"execution_count": 43
}
]
},
{
"cell_type": "code",
"source": [
"df['Delivered'] = True\n",
"df"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "BJjl5wnlSTjq",
"outputId": "6e89ab02-668d-41d6-9978-14a2f98206e8"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-bb54edf5-07d8-477f-96d7-0039ee229262\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Id</th>\n",
" <th>Delivered</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>23151</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>43151</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>May 10</td>\n",
" <td>35151</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>67121</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>46928</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-bb54edf5-07d8-477f-96d7-0039ee229262')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-bb54edf5-07d8-477f-96d7-0039ee229262 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-bb54edf5-07d8-477f-96d7-0039ee229262');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost Date Id Delivered\n",
"Store 1 Sebastián Tennis 42.5 December 1 23151 True\n",
"Store 1 Diego Jeans 32.5 January 1 43151 True\n",
"Store 2 Joaquin Cap 5.0 May 10 35151 True\n",
"Store 1 Santiago Tennis 55.0 January 30 67121 True\n",
"Store 2 Eliana Jogger 35.0 November 1 46928 True"
]
},
"metadata": {},
"execution_count": 44
}
]
},
{
"cell_type": "code",
"source": [
"df['Feedback'] = ['Positive', None, 'Negative', 'Negative', None]\n",
"df"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "m3SFKeCmSWIc",
"outputId": "31b39558-3748-4982-956e-d72afbc92539"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-b52f0827-7d81-4549-8341-8394f21b5fde\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Id</th>\n",
" <th>Delivered</th>\n",
" <th>Feedback</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>23151</td>\n",
" <td>True</td>\n",
" <td>Positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>43151</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>May 10</td>\n",
" <td>35151</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 1</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>67121</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>Store 2</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>46928</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-b52f0827-7d81-4549-8341-8394f21b5fde')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-b52f0827-7d81-4549-8341-8394f21b5fde button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-b52f0827-7d81-4549-8341-8394f21b5fde');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost Date Id Delivered Feedback\n",
"Store 1 Sebastián Tennis 42.5 December 1 23151 True Positive\n",
"Store 1 Diego Jeans 32.5 January 1 43151 True None\n",
"Store 2 Joaquin Cap 5.0 May 10 35151 True Negative\n",
"Store 1 Santiago Tennis 55.0 January 30 67121 True Negative\n",
"Store 2 Eliana Jogger 35.0 November 1 46928 True None"
]
},
"metadata": {},
"execution_count": 45
}
]
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "ZHk3L6ysTRIa"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"person_1 = pd.Series({'Id': '67121',\n",
" 'Edad': 40,\n",
" 'Domicilio': 'Medellin',\n",
" 'Tiene Hijos': True})\n",
"person_2 = pd.Series({'Id': '23151',\n",
" 'Edad': 28,\n",
" 'Domicilio': 'Bogota',\n",
" 'Tiene Hijos': None})\n",
"\n",
"person_3 = pd.Series({'Id': '46928',\n",
" 'Edad': 33,\n",
" 'Domicilio': 'Medellin',\n",
" 'Tiene Hijos': True}) \n",
"\n",
"person_4 = pd.Series({'Id': '35951',\n",
" 'Edad': 31,\n",
" 'Domicilio': 'Bogota',\n",
" 'Tiene Hijos': True})\n",
"\n",
"person_5 = pd.Series({'Id': '43151',\n",
" 'Edad': 19,\n",
" 'Domicilio': 'Medellin', \n",
" 'Tiene Hijos': False}) \n",
"\n",
"person_6 = pd.Series({'Id': '90151',\n",
" 'Edad': 22,\n",
" 'Domicilio': 'Cali',\n",
" 'Tiene Hijos': False})\n",
"person_7 = pd.Series({'Id': '909081',\n",
" 'Edad': 51,\n",
" 'Domicilio': 'Cali',\n",
" 'Tiene Hijos': True}) \n",
"person_8 = pd.Series({'Id': '109082',\n",
" 'Edad': 44,\n",
" 'Domicilio': 'Medellin',\n",
" 'Tiene Hijos': None}) \n",
"\n",
"df_demographic = pd.DataFrame([person_1, person_2, person_3,person_4, person_5, person_6, person_7, person_8])\n",
"df_demographic.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "7Ji8vV0uTbbd",
"outputId": "60a3c60d-e194-45f7-f247-352b07e52b1f"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-fc23711d-dada-4d67-b79d-2c8452215b3d\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Id</th>\n",
" <th>Edad</th>\n",
" <th>Domicilio</th>\n",
" <th>Tiene Hijos</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>67121</td>\n",
" <td>40</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>23151</td>\n",
" <td>28</td>\n",
" <td>Bogota</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>46928</td>\n",
" <td>33</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>35951</td>\n",
" <td>31</td>\n",
" <td>Bogota</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>43151</td>\n",
" <td>19</td>\n",
" <td>Medellin</td>\n",
" <td>False</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-fc23711d-dada-4d67-b79d-2c8452215b3d')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-fc23711d-dada-4d67-b79d-2c8452215b3d button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-fc23711d-dada-4d67-b79d-2c8452215b3d');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Id Edad Domicilio Tiene Hijos\n",
"0 67121 40 Medellin True\n",
"1 23151 28 Bogota None\n",
"2 46928 33 Medellin True\n",
"3 35951 31 Bogota True\n",
"4 43151 19 Medellin False"
]
},
"metadata": {},
"execution_count": 46
}
]
},
{
"cell_type": "code",
"source": [
"df = df.set_index('Id')\n",
"df"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 238
},
"id": "Oo1ZOW9LWZL_",
"outputId": "57c822c0-8728-4c22-f80b-7931fbc73158"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-a2fa546c-6c24-4702-a717-6323886a44bd\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Delivered</th>\n",
" <th>Feedback</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>23151</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>True</td>\n",
" <td>Positive</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43151</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35151</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>May 10</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67121</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46928</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a2fa546c-6c24-4702-a717-6323886a44bd')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-a2fa546c-6c24-4702-a717-6323886a44bd button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-a2fa546c-6c24-4702-a717-6323886a44bd');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost Date Delivered Feedback\n",
"Id \n",
"23151 Sebastián Tennis 42.5 December 1 True Positive\n",
"43151 Diego Jeans 32.5 January 1 True None\n",
"35151 Joaquin Cap 5.0 May 10 True Negative\n",
"67121 Santiago Tennis 55.0 January 30 True Negative\n",
"46928 Eliana Jogger 35.0 November 1 True None"
]
},
"metadata": {},
"execution_count": 47
}
]
},
{
"cell_type": "code",
"source": [
"df_demographic = df_demographic.set_index('Id')\n",
"df_demographic"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 332
},
"id": "NBsCm2kwWuVg",
"outputId": "e310584d-ea35-419f-c354-db1e9cffed84"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-bb1a476a-b4d1-40d4-b11d-d667b0d58aea\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Edad</th>\n",
" <th>Domicilio</th>\n",
" <th>Tiene Hijos</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>67121</th>\n",
" <td>40</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23151</th>\n",
" <td>28</td>\n",
" <td>Bogota</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46928</th>\n",
" <td>33</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35951</th>\n",
" <td>31</td>\n",
" <td>Bogota</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43151</th>\n",
" <td>19</td>\n",
" <td>Medellin</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>90151</th>\n",
" <td>22</td>\n",
" <td>Cali</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>909081</th>\n",
" <td>51</td>\n",
" <td>Cali</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>109082</th>\n",
" <td>44</td>\n",
" <td>Medellin</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-bb1a476a-b4d1-40d4-b11d-d667b0d58aea')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-bb1a476a-b4d1-40d4-b11d-d667b0d58aea button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-bb1a476a-b4d1-40d4-b11d-d667b0d58aea');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Edad Domicilio Tiene Hijos\n",
"Id \n",
"67121 40 Medellin True\n",
"23151 28 Bogota None\n",
"46928 33 Medellin True\n",
"35951 31 Bogota True\n",
"43151 19 Medellin False\n",
"90151 22 Cali False\n",
"909081 51 Cali True\n",
"109082 44 Medellin None"
]
},
"metadata": {},
"execution_count": 48
}
]
},
{
"cell_type": "markdown",
"source": [
"# MERGING ... ![merge.png]()"
],
"metadata": {
"id": "7I4M4RVlXixi"
}
},
{
"cell_type": "code",
"source": [
"df_inner = pd.merge(df, df_demographic, on=\"Id\", how=\"inner\")\n",
"df_inner"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "vJwGf993X_5b",
"outputId": "e6e8dcd0-c307-4057-8072-3bacdd57680c"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-517b2e36-c773-47fa-9a78-d81d478d58a1\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Delivered</th>\n",
" <th>Feedback</th>\n",
" <th>Edad</th>\n",
" <th>Domicilio</th>\n",
" <th>Tiene Hijos</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>23151</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>True</td>\n",
" <td>Positive</td>\n",
" <td>28</td>\n",
" <td>Bogota</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43151</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>19</td>\n",
" <td>Medellin</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67121</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" <td>40</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46928</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>33</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-517b2e36-c773-47fa-9a78-d81d478d58a1')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-517b2e36-c773-47fa-9a78-d81d478d58a1 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-517b2e36-c773-47fa-9a78-d81d478d58a1');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n",
"Id ... \n",
"23151 Sebastián Tennis 42.5 ... 28 Bogota None\n",
"43151 Diego Jeans 32.5 ... 19 Medellin False\n",
"67121 Santiago Tennis 55.0 ... 40 Medellin True\n",
"46928 Eliana Jogger 35.0 ... 33 Medellin True\n",
"\n",
"[4 rows x 9 columns]"
]
},
"metadata": {},
"execution_count": 49
}
]
},
{
"cell_type": "code",
"source": [
"df_left = pd.merge(df, df_demographic, on=\"Id\", how=\"left\")\n",
"df_left"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 238
},
"id": "b_C3ACnIY9Mx",
"outputId": "7220e4d6-e400-4ec6-a5fb-ccb9400a9e71"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-eb192bd9-ff92-435c-86f6-06b9b730678d\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Delivered</th>\n",
" <th>Feedback</th>\n",
" <th>Edad</th>\n",
" <th>Domicilio</th>\n",
" <th>Tiene Hijos</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>23151</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>True</td>\n",
" <td>Positive</td>\n",
" <td>28.0</td>\n",
" <td>Bogota</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43151</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>19.0</td>\n",
" <td>Medellin</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35151</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>May 10</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67121</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" <td>40.0</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46928</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>33.0</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-eb192bd9-ff92-435c-86f6-06b9b730678d')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-eb192bd9-ff92-435c-86f6-06b9b730678d button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-eb192bd9-ff92-435c-86f6-06b9b730678d');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n",
"Id ... \n",
"23151 Sebastián Tennis 42.5 ... 28.0 Bogota None\n",
"43151 Diego Jeans 32.5 ... 19.0 Medellin False\n",
"35151 Joaquin Cap 5.0 ... NaN NaN NaN\n",
"67121 Santiago Tennis 55.0 ... 40.0 Medellin True\n",
"46928 Eliana Jogger 35.0 ... 33.0 Medellin True\n",
"\n",
"[5 rows x 9 columns]"
]
},
"metadata": {},
"execution_count": 73
}
]
},
{
"cell_type": "code",
"source": [
"df_right = pd.merge(df, df_demographic, on=\"Id\", how=\"right\")\n",
"df_right"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 332
},
"id": "_iLD3za7ZS5t",
"outputId": "d9bed9c3-6499-4e11-8432-60d7fd4c02b3"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-5e443394-fc6b-4706-8cb1-115be922762a\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Delivered</th>\n",
" <th>Feedback</th>\n",
" <th>Edad</th>\n",
" <th>Domicilio</th>\n",
" <th>Tiene Hijos</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>67121</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" <td>40</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23151</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>True</td>\n",
" <td>Positive</td>\n",
" <td>28</td>\n",
" <td>Bogota</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46928</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>33</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35951</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>31</td>\n",
" <td>Bogota</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43151</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>19</td>\n",
" <td>Medellin</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>90151</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>22</td>\n",
" <td>Cali</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>909081</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>51</td>\n",
" <td>Cali</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>109082</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>44</td>\n",
" <td>Medellin</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5e443394-fc6b-4706-8cb1-115be922762a')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-5e443394-fc6b-4706-8cb1-115be922762a button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-5e443394-fc6b-4706-8cb1-115be922762a');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n",
"Id ... \n",
"67121 Santiago Tennis 55.0 ... 40 Medellin True\n",
"23151 Sebastián Tennis 42.5 ... 28 Bogota None\n",
"46928 Eliana Jogger 35.0 ... 33 Medellin True\n",
"35951 NaN NaN NaN ... 31 Bogota True\n",
"43151 Diego Jeans 32.5 ... 19 Medellin False\n",
"90151 NaN NaN NaN ... 22 Cali False\n",
"909081 NaN NaN NaN ... 51 Cali True\n",
"109082 NaN NaN NaN ... 44 Medellin None\n",
"\n",
"[8 rows x 9 columns]"
]
},
"metadata": {},
"execution_count": 50
}
]
},
{
"cell_type": "code",
"source": [
"df_outer = pd.merge(df, df_demographic, on=\"Id\", how=\"outer\")\n",
"df_outer"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "FmJr1A53Z2OZ",
"outputId": "07457418-3cf2-40a5-b29a-397552df42e9"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-e30e34c6-8a9a-4035-aa68-c1da730de08b\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Delivered</th>\n",
" <th>Feedback</th>\n",
" <th>Edad</th>\n",
" <th>Domicilio</th>\n",
" <th>Tiene Hijos</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>23151</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>True</td>\n",
" <td>Positive</td>\n",
" <td>28.0</td>\n",
" <td>Bogota</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43151</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>19.0</td>\n",
" <td>Medellin</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35151</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>May 10</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67121</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" <td>40.0</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46928</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>33.0</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35951</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>31.0</td>\n",
" <td>Bogota</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>90151</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>22.0</td>\n",
" <td>Cali</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>909081</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>51.0</td>\n",
" <td>Cali</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>109082</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>44.0</td>\n",
" <td>Medellin</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e30e34c6-8a9a-4035-aa68-c1da730de08b')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-e30e34c6-8a9a-4035-aa68-c1da730de08b button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-e30e34c6-8a9a-4035-aa68-c1da730de08b');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n",
"Id ... \n",
"23151 Sebastián Tennis 42.5 ... 28.0 Bogota None\n",
"43151 Diego Jeans 32.5 ... 19.0 Medellin False\n",
"35151 Joaquin Cap 5.0 ... NaN NaN NaN\n",
"67121 Santiago Tennis 55.0 ... 40.0 Medellin True\n",
"46928 Eliana Jogger 35.0 ... 33.0 Medellin True\n",
"35951 NaN NaN NaN ... 31.0 Bogota True\n",
"90151 NaN NaN NaN ... 22.0 Cali False\n",
"909081 NaN NaN NaN ... 51.0 Cali True\n",
"109082 NaN NaN NaN ... 44.0 Medellin None\n",
"\n",
"[9 rows x 9 columns]"
]
},
"metadata": {},
"execution_count": 51
}
]
},
{
"cell_type": "code",
"source": [
"pd.concat([df, df_demographic], axis=0)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 488
},
"id": "sa8GXlQBaX90",
"outputId": "9b6aad26-1f5d-44a4-dd1e-4195529bee61"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-2165cd59-6fe6-4a8f-a915-aff8791226b0\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Delivered</th>\n",
" <th>Feedback</th>\n",
" <th>Edad</th>\n",
" <th>Domicilio</th>\n",
" <th>Tiene Hijos</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>23151</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>True</td>\n",
" <td>Positive</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43151</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35151</th>\n",
" <td>Joaquin</td>\n",
" <td>Cap</td>\n",
" <td>5.0</td>\n",
" <td>May 10</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67121</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46928</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67121</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>40.0</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>23151</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>28.0</td>\n",
" <td>Bogota</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46928</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>33.0</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>35951</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>31.0</td>\n",
" <td>Bogota</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43151</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>19.0</td>\n",
" <td>Medellin</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>90151</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>22.0</td>\n",
" <td>Cali</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>909081</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>51.0</td>\n",
" <td>Cali</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>109082</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>44.0</td>\n",
" <td>Medellin</td>\n",
" <td>None</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-2165cd59-6fe6-4a8f-a915-aff8791226b0')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-2165cd59-6fe6-4a8f-a915-aff8791226b0 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-2165cd59-6fe6-4a8f-a915-aff8791226b0');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n",
"Id ... \n",
"23151 Sebastián Tennis 42.5 ... NaN NaN NaN\n",
"43151 Diego Jeans 32.5 ... NaN NaN NaN\n",
"35151 Joaquin Cap 5.0 ... NaN NaN NaN\n",
"67121 Santiago Tennis 55.0 ... NaN NaN NaN\n",
"46928 Eliana Jogger 35.0 ... NaN NaN NaN\n",
"67121 NaN NaN NaN ... 40.0 Medellin True\n",
"23151 NaN NaN NaN ... 28.0 Bogota None\n",
"46928 NaN NaN NaN ... 33.0 Medellin True\n",
"35951 NaN NaN NaN ... 31.0 Bogota True\n",
"43151 NaN NaN NaN ... 19.0 Medellin False\n",
"90151 NaN NaN NaN ... 22.0 Cali False\n",
"909081 NaN NaN NaN ... 51.0 Cali True\n",
"109082 NaN NaN NaN ... 44.0 Medellin None\n",
"\n",
"[13 rows x 9 columns]"
]
},
"metadata": {},
"execution_count": 53
}
]
},
{
"cell_type": "code",
"source": [
"pd.concat([df, df_demographic], axis=1, join=\"inner\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "MXfWkCXaapvU",
"outputId": "95557894-4a61-4d25-f319-facb9df14f3d"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/html": [
"\n",
" <div id=\"df-9564f3fb-fb72-4f11-b1b2-444b4b3ea686\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Item Purchased</th>\n",
" <th>Cost</th>\n",
" <th>Date</th>\n",
" <th>Delivered</th>\n",
" <th>Feedback</th>\n",
" <th>Edad</th>\n",
" <th>Domicilio</th>\n",
" <th>Tiene Hijos</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>23151</th>\n",
" <td>Sebastián</td>\n",
" <td>Tennis</td>\n",
" <td>42.5</td>\n",
" <td>December 1</td>\n",
" <td>True</td>\n",
" <td>Positive</td>\n",
" <td>28</td>\n",
" <td>Bogota</td>\n",
" <td>None</td>\n",
" </tr>\n",
" <tr>\n",
" <th>43151</th>\n",
" <td>Diego</td>\n",
" <td>Jeans</td>\n",
" <td>32.5</td>\n",
" <td>January 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>19</td>\n",
" <td>Medellin</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>67121</th>\n",
" <td>Santiago</td>\n",
" <td>Tennis</td>\n",
" <td>55.0</td>\n",
" <td>January 30</td>\n",
" <td>True</td>\n",
" <td>Negative</td>\n",
" <td>40</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>46928</th>\n",
" <td>Eliana</td>\n",
" <td>Jogger</td>\n",
" <td>35.0</td>\n",
" <td>November 1</td>\n",
" <td>True</td>\n",
" <td>None</td>\n",
" <td>33</td>\n",
" <td>Medellin</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-9564f3fb-fb72-4f11-b1b2-444b4b3ea686')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-9564f3fb-fb72-4f11-b1b2-444b4b3ea686 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-9564f3fb-fb72-4f11-b1b2-444b4b3ea686');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
],
"text/plain": [
" Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n",
"Id ... \n",
"23151 Sebastián Tennis 42.5 ... 28 Bogota None\n",
"43151 Diego Jeans 32.5 ... 19 Medellin False\n",
"67121 Santiago Tennis 55.0 ... 40 Medellin True\n",
"46928 Eliana Jogger 35.0 ... 33 Medellin True\n",
"\n",
"[4 rows x 9 columns]"
]
},
"metadata": {},
"execution_count": 54
}
]
},
{
"cell_type": "code",
"source": [
"# ¿Cual es la edad promedio de los clientes que compraron tenis?\n",
"# ¿Cual es el nombre del cliente que no se tiene información demografica?\n",
"# ¿De la base de clientes que compraron un articulo, cuantos viven en medellin no tienen hijos?"
],
"metadata": {
"id": "WQb_slG8biGl"
},
"execution_count": null,
"outputs": []
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment