Created
March 24, 2022 07:00
-
-
Save PandoraRiot/7a08cf826add00ae4cf12979dcfa12fe to your computer and use it in GitHub Desktop.
Introduction to python.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "name": "Introduction to python.ipynb", | |
| "provenance": [], | |
| "collapsed_sections": [], | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/PandoraRiot/7a08cf826add00ae4cf12979dcfa12fe/introduction-to-python.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "CfgAbyDmml_P" | |
| }, | |
| "source": [ | |
| "# The Python Programming Language" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "E517_6fzmeHv", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "91f0fa94-55a1-4e16-d20c-0e41814a9a64" | |
| }, | |
| "source": [ | |
| "# Define varibles\n", | |
| "x = 1\n", | |
| "y = 2\n", | |
| "x + y\n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "3" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 1 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "Ln3PDKF0tdcW", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "55997601-ea28-4028-bc7a-8123885ddce0" | |
| }, | |
| "source": [ | |
| "string_example = 'This is a string'\n", | |
| "type(string_example)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "str" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 2 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "hk4970Gwt825", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "df25ba1b-36e6-4df5-a1b1-ee9bf35da850" | |
| }, | |
| "source": [ | |
| "type(x)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "int" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 3 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "gfAB51J4uIXx", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "640ea0e6-218b-4527-ae30-f091d406072f" | |
| }, | |
| "source": [ | |
| "type(1.0)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "float" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 4 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "-rhDf50Uuk7A", | |
| "outputId": "2a5b80ef-90fe-42d7-c6f4-7a0fcdc48e1d", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "# Tuples are an immutable data structure (cannot be altered)\n", | |
| "x = (1, 'a', 2.5, 'b')\n", | |
| "x" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(1, 'a', 2.5, 'b')" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 8 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "TTR9VcrDHwE0", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 165 | |
| }, | |
| "outputId": "f43bd1a5-4c44-47b7-958b-0e109646c6ea" | |
| }, | |
| "source": [ | |
| "x[0]=44" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "error", | |
| "ename": "TypeError", | |
| "evalue": "ignored", | |
| "traceback": [ | |
| "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m<ipython-input-11-6762c2c05a1c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mx\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m44\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
| "\u001b[0;31mTypeError\u001b[0m: 'tuple' object does not support item assignment" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "aohOXtedu6ao", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "3e9bb7a7-7a68-4023-a9d3-bc6b46126171" | |
| }, | |
| "source": [ | |
| "# Lists are a mutable data structure.\n", | |
| "\n", | |
| "x = [1,2,'b',4.0,99,'a', [1,2,3]]\n", | |
| "x" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "[1, 2, 'b', 4.0, 99, 'a', [1, 2, 3]]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 13 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "u8mrOpk5HF5U", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "8a1bde45-978e-4bf6-99d4-11a08e073e5b" | |
| }, | |
| "source": [ | |
| "x[1]=33\n", | |
| "x" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "[1, 33, 'b', 4.0, 99, 'a', [1, 2, 3]]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 14 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "8rg5VOPxvUUC", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "339d566e-0a92-432d-c22f-c6f2ed630a6a" | |
| }, | |
| "source": [ | |
| "# Use \"append\" to append an object to a list.\n", | |
| "x.append(3.3)\n", | |
| "print(x)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "[1, 33, 'b', 4.0, 99, 'a', [1, 2, 3], 3.3, 3.3, 3.3, 3.3]\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "AS5ruYBBwmxZ", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "c4b3b820-f915-4a58-b636-f2e21e598a33" | |
| }, | |
| "source": [ | |
| "# Concatenate lists\n", | |
| "[1,2] + [3,4]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "[1, 2, 3, 4]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 19 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "JOPuHHV2w1Di", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "914eb0f8-f964-4308-aeee-e35bf00bb147" | |
| }, | |
| "source": [ | |
| "# repeat lists\n", | |
| "[1]*3" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "[1, 1, 1]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 20 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "9jT9tkFrxDHY", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "59f9e774-5219-4821-e242-dbbad8f6c24c" | |
| }, | |
| "source": [ | |
| "# Use the \"in\" operator to check if something is inside a list.\n", | |
| "1 in [1, 2, 3]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 21 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "fvwwQlx4JpbC", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "19e49cca-0fc7-4a76-f84a-2623222a22d8" | |
| }, | |
| "source": [ | |
| "# bracket notation to slice a string.\n", | |
| "x = 'This is a string'\n", | |
| "print(x[0]) #first character\n", | |
| "print(x[0:4]) #first four characters" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "T\n", | |
| "This\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "nmst1qVDJErj", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 35 | |
| }, | |
| "outputId": "9eea8900-ab6d-4f03-f3b0-a3c74257fa88" | |
| }, | |
| "source": [ | |
| "x[3:]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "string" | |
| }, | |
| "text/plain": [ | |
| "'s is a string'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 25 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "f23P1MHELCts", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "4a2f6e27-9ec9-4ca9-f372-175b333d01de" | |
| }, | |
| "source": [ | |
| "print(x[-3])# Last element from a string\n", | |
| "print(x[0:2]) # slice starting from the 4th element from the end and stopping before the 2nd element from the end" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "i\n", | |
| "Th\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "ybg6mOMNMUHN", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "34725eba-ccf4-4ab0-8369-0e5dcc2f3379" | |
| }, | |
| "source": [ | |
| "firstname = 'Sebastián'\n", | |
| "lastname = 'Restrepo'\n", | |
| "\n", | |
| "print(firstname + ' ' + lastname) # concatenate strings\n", | |
| "print(firstname*3)\n", | |
| "print('Sebastián' in firstname)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "Sebastián Restrepo\n", | |
| "SebastiánSebastiánSebastián\n", | |
| "True\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "tQvSs0aIMgXZ" | |
| }, | |
| "source": [ | |
| "firstname = 'Sebastian Diego Joaquin Andres'.split(' ') # [0] selects the first element of the list\n", | |
| "lastname = 'Restrepo Cruz Guajo Duarte'.split(' ') # [-1] selects the last element of the list\n", | |
| "print(type(firstname))\n", | |
| "print(lastname)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "firstname = 'Sebastian,Diego,Joaquin,Andres'.split(',') \n", | |
| "firstname" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "PBjTPzLO9JuT", | |
| "outputId": "552c986c-e5e4-4cdc-ae2d-23821bb2a7aa" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "['Sebastian', 'Diego', 'Joaquin', 'Andres']" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 36 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "hoyr9hALM29y", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 35 | |
| }, | |
| "outputId": "3044af5a-99cf-4cb1-be56-1d32ebf8f03c" | |
| }, | |
| "source": [ | |
| "'Sebastian' + str(2)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "string" | |
| }, | |
| "text/plain": [ | |
| "'Sebastian2'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 38 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "xiwZAMT1X1PJ" | |
| }, | |
| "source": [ | |
| "# How to loop through each item in the list.\n", | |
| "x = [1,2,3,5,11,23]\n", | |
| "for item in x:\n", | |
| " print(item)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "NcXdXS5UX5pN", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "4640e3db-b461-4604-aa79-0afebf16ec34" | |
| }, | |
| "source": [ | |
| "# Indexing operator\n", | |
| "i=0\n", | |
| "while( i != len(x)/2 ):\n", | |
| " print(x[i])\n", | |
| " i = i + 1" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "1\n", | |
| "2\n", | |
| "3\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "FJhzLMSCX92f", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "233425dc-35b1-4947-da3f-b036dfa5a05e" | |
| }, | |
| "source": [ | |
| "def add_numbers(x,y,z=None):\n", | |
| " if (z==None):\n", | |
| " return x+y\n", | |
| " else:\n", | |
| " return x+y+z\n", | |
| "\n", | |
| "add_numbers(1, 2)\n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "3" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 41 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "add_numbers(1, 2, 3)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "PRlu1G99--kd", | |
| "outputId": "948c42b9-62b2-4abf-c9f9-10c63ab33794" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "6" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 42 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "sbhjOucyYK6_" | |
| }, | |
| "source": [ | |
| "def add_numbers(x, y, z=None, flag=False):\n", | |
| " if (flag):\n", | |
| " print('Flag is true!')\n", | |
| " if (z==None):\n", | |
| " return x + y\n", | |
| " else:\n", | |
| " return x + y + z\n", | |
| "\n", | |
| "add_numbers(1, 2, flag=True)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "NZp4dseWYN0e", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "c7853f50-9f49-4522-b9bd-2bdabcbac67f" | |
| }, | |
| "source": [ | |
| "# Assign function \"add_numbers\" to variable \"a\".\n", | |
| "def add_numbers(x,y):\n", | |
| " return x+y\n", | |
| "\n", | |
| "a = add_numbers\n", | |
| "a(1,2)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "3" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 43 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "tTipjjRGM8F7", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 35 | |
| }, | |
| "outputId": "55c7c31f-eae7-4586-9365-c155e4fc6873" | |
| }, | |
| "source": [ | |
| "# Dictionaries associate keys with values.\n", | |
| "x = {'sebastian restrepo': '[email protected]', 'Diego cruz': '[email protected]', 'joaquin guajo': '[email protected]'}\n", | |
| "x['Diego cruz'] # Retrieve a value by using the indexing operator" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "string" | |
| }, | |
| "text/plain": [ | |
| "'[email protected]'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 45 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "c = {}\n" | |
| ], | |
| "metadata": { | |
| "id": "F3kM5opo_d8B" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "c['sebastian']='@pascual'\n", | |
| "c" | |
| ], | |
| "metadata": { | |
| "id": "hnqXYMp8AaPW" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "" | |
| ], | |
| "metadata": { | |
| "id": "UZpbM-6R_jIy" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "1KhXMFEiNrp1", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "77165723-c483-464b-81cc-3e89d05e043a" | |
| }, | |
| "source": [ | |
| "# add a new key-value pair to a dictionary\n", | |
| "x['carlos duarte'] = '[email protected]'\n", | |
| "x" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "{'Diego cruz': '[email protected]',\n", | |
| " 'carlos duarte': '[email protected]',\n", | |
| " 'joaquin guajo': '[email protected]',\n", | |
| " 'sebastian restrepo': '[email protected]'}" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 50 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "i59lsFHKOo50", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "74d78461-b38b-4b28-f13e-c0e4344bb113" | |
| }, | |
| "source": [ | |
| "# Iterate over all of the keys:\n", | |
| "for name in x:\n", | |
| " #print(name)\n", | |
| " print(x[name])" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "[email protected]\n", | |
| "[email protected]\n", | |
| "[email protected]\n", | |
| "[email protected]\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "oFHGVKe6Mktq", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "8994ab6b-5bac-4385-ec38-0c787fc60fe2" | |
| }, | |
| "source": [ | |
| "x.values()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "dict_values(['[email protected]', '[email protected]', '[email protected]', '[email protected]'])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 52 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "aR8V5HX_O1Kb", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "f490a6f5-3a40-442c-cd00-d16dfd79039e" | |
| }, | |
| "source": [ | |
| "# Iterate over all of the values:\n", | |
| "for email in x.values():\n", | |
| " print(email)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "[email protected]\n", | |
| "[email protected]\n", | |
| "[email protected]\n", | |
| "[email protected]\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "XYT3LC1wPuV-" | |
| }, | |
| "source": [ | |
| "for name, email in x.items():\n", | |
| " print(name)\n", | |
| " print(email)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "RSqwEtnEP5B1", | |
| "outputId": "e9c7d5ca-b3a8-4a56-ecf7-78318ffa4b51", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 34 | |
| } | |
| }, | |
| "source": [ | |
| "sales_record = {\n", | |
| "'price': 3.24,\n", | |
| "'num_items': 4,\n", | |
| "'person': 'Sebastián'}\n", | |
| "\n", | |
| "sales_statement = '{} bought {} item(s) at a price of {} each for a total of {}'\n", | |
| "\n", | |
| "print(sales_statement.format(sales_record['person'],\n", | |
| " sales_record['num_items'],\n", | |
| " sales_record['price'],\n", | |
| " sales_record['num_items']*sales_record['price']))" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Sebastián bought 4 item(s) at a price of 3.24 each for a total of 12.96\n" | |
| ], | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# The Python Programming Language: Dates and Times" | |
| ], | |
| "metadata": { | |
| "id": "j8EM5hs8lJMv" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "import datetime as dt\n", | |
| "import time as tm" | |
| ], | |
| "metadata": { | |
| "id": "4lrka5U9lIWe" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# `time` returns the current time in seconds since the Epoch. (January 1st, 1970)\n", | |
| "tm.time()" | |
| ], | |
| "metadata": { | |
| "id": "3vf52ibwlRZD", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "479617f6-f3c5-465b-aff9-612df4347fe2" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "1645057191.4590802" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 56 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "dtnow = dt.datetime.fromtimestamp(tm.time())\n", | |
| "dtnow" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "o7zPK8Hvlbug", | |
| "outputId": "5550ec1b-f371-4266-8286-19516333ece2" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "datetime.datetime(2022, 2, 17, 0, 22, 24, 779835)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 58 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# get year, month, day, etc.from a datetime\n", | |
| "dtnow.year, dtnow.month, dtnow.day, dtnow.hour, dtnow.minute, dtnow.second " | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "T3Eoi4kLlbnf", | |
| "outputId": "921268c6-fce8-4c7b-902b-c7d3fe461425" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "2022" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 34 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "dtnow.month" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "aiVFyVivEJlN", | |
| "outputId": "5ae954a2-59bc-4e72-d733-03ef4047e24f" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "2" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 59 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "" | |
| ], | |
| "metadata": { | |
| "id": "hbVDYeGuDtaT" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# It's the difference between two dates\n", | |
| "delta = dt.timedelta(days = 30) # create a timedelta of 30 days or 1 month\n", | |
| "delta" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "3nzPRCkdlbdq", | |
| "outputId": "5386a35a-d086-4827-f3e1-bc8f08ad1dac" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "datetime.timedelta(days=30)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 63 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# Current date\n", | |
| "today = dt.date.today()\n", | |
| "today" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "qECGmQKDl3Jw", | |
| "outputId": "e9b18500-f0cb-41e0-b49b-b69623e00f9a" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "datetime.date(2022, 2, 17)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 64 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "today - delta" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "I_o4XOLJlbcC", | |
| "outputId": "6569787a-6d38-4837-ff71-2822f1da53a0" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "datetime.date(2022, 1, 18)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 65 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "today > today-delta # compare dates" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "PF5mgXDdmnwL", | |
| "outputId": "45d7b319-e288-4768-8da0-c2657c563f31" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "True" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 44 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# Functional programming" | |
| ], | |
| "metadata": { | |
| "id": "uhrlOf5zm7v3" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# Dataset\n", | |
| "store1 = [10.00, 11.00, 12.34, 2.34]\n", | |
| "store2 = [9.00, 10.10, 11.34, 2.01]" | |
| ], | |
| "metadata": { | |
| "id": "cW_dPN2fnIsf" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "min(store1)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "Q0r1nxMyFq9m", | |
| "outputId": "44e2735f-73f9-410c-e9b4-adfd85d916c7" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "2.34" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 67 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# Mapping the `min` function between two lists.\n", | |
| "cheapest = map(min, store1, store2)\n", | |
| "cheapest" | |
| ], | |
| "metadata": { | |
| "id": "jZTPL2Evnaaz" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "for item in cheapest:\n", | |
| " print(item)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "3zyi5cF2qV2F", | |
| "outputId": "8c2c419e-9e98-417f-939a-c21d4eb388f6" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "9.0\n", | |
| "10.1\n", | |
| "11.34\n", | |
| "2.01\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# Lambda\n", | |
| "my_function = lambda a, b, c : a + b" | |
| ], | |
| "metadata": { | |
| "id": "tRajWj1sqkyV" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "my_function(1, 2, 3)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "JP-8_v4-q2VN", | |
| "outputId": "104abf93-e301-49cc-bf03-e055e902dc54" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "3" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 72 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# Let's iterate from 0 to 20 and return the even numbers.\n", | |
| "my_list = []\n", | |
| "for number in range(0, 20):\n", | |
| " if number % 2 == 0:\n", | |
| " my_list.append(number)\n", | |
| "my_list" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "7ewaF2OLrAE-", | |
| "outputId": "9ccc98c8-92fb-42cf-97b3-6fedbe4be6a4" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 73 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# List comprehension\n", | |
| "my_list = [number for number in range(0,20) if number % 2 == 0]\n", | |
| "my_list" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "SXnUHS4jrLmg", | |
| "outputId": "d50e9796-7f7d-455b-c6a2-301063c7f83b" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 58 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "reduce, filter" | |
| ], | |
| "metadata": { | |
| "id": "cx0kX2KnHgVE" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "mr7NqtJ2mBGy" | |
| }, | |
| "source": [ | |
| "# Numerical Python (NumPy) Library\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "bVTkZUMnQR1U", | |
| "outputId": "a97c59d3-9bc1-45ca-af71-63d38d7953e6", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "import numpy as np\n", | |
| "# Create a list and convert it to a numpy array\n", | |
| "mylist = [1, 2, 3]\n", | |
| "x = np.array(mylist)\n", | |
| "x" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([1, 2, 3])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 74 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "JHe-moOrRDNC", | |
| "outputId": "34e83cc2-d388-4a7c-efa1-9abaf15619ad", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "# Create a multidimensional array.\n", | |
| "m = np.array([[7, 8, 9], [10, 11, 12]])\n", | |
| "m" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 7, 8, 9],\n", | |
| " [10, 11, 12]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 75 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "kxsFf8qcvgno", | |
| "outputId": "fe42a5de-9a26-4ce7-b828-1548480b7609", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "# To find the dimensions of the array. (rows, columns)\n", | |
| "m.shape" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(2, 3)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 76 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "AD_8P1wmYxP5", | |
| "outputId": "1e52bdc6-2b67-4c74-8692-4f7153590ef9", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "# \"arange\" method returns evenly spaced values within a given interval.\n", | |
| "n = np.arange(0, 30, 2) # start at 0 count up by 2, stop before 30\n", | |
| "n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 78 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "BmqP-XtoY-6G", | |
| "outputId": "767ed31a-e0d4-447f-f999-c7cc33e47023", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "# \"reshape\" method returns an array with the same data with a new shape.\n", | |
| "n = n.reshape(3, 5) # reshape array to be 3x5\n", | |
| "n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0, 2, 4, 6, 8],\n", | |
| " [10, 12, 14, 16, 18],\n", | |
| " [20, 22, 24, 26, 28]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 79 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "ydeJQCXVwFC4", | |
| "outputId": "132f6ecd-b8c9-4d42-e1d2-399c6484051f", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "np.ones((3, 2))" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[1., 1.],\n", | |
| " [1., 1.],\n", | |
| " [1., 1.]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 81 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "jTYFhFzGjYqb", | |
| "outputId": "431151ee-8be1-4dcc-d72b-bd55edfc33fb", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "np.zeros((5, 5))" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[0., 0., 0., 0., 0.],\n", | |
| " [0., 0., 0., 0., 0.],\n", | |
| " [0., 0., 0., 0., 0.],\n", | |
| " [0., 0., 0., 0., 0.],\n", | |
| " [0., 0., 0., 0., 0.]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 83 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "HUylD7Eqjfn8", | |
| "outputId": "f43d6a5b-bc5e-4708-9e4e-7ca2c7eecb70", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "np.repeat([1, 2, 3], 3)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([1, 1, 1, 2, 2, 2, 3, 3, 3])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 84 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "TxU2RIMzsz0h", | |
| "outputId": "fae2edcf-ce6c-4a9b-c340-b0c01035b735", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "# Use \"vstack\" to stack arrays in sequence vertically (row wise).\n", | |
| "p = np.ones([2, 3])\n", | |
| "#2*p\n", | |
| "np.vstack([p, 2*p])" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[1., 1., 1.],\n", | |
| " [1., 1., 1.],\n", | |
| " [2., 2., 2.],\n", | |
| " [2., 2., 2.]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 9 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "oxsDcvpItHEe", | |
| "outputId": "c0a48b9b-d128-48ce-a34d-b8c0ab33aefe", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| } | |
| }, | |
| "source": [ | |
| "# Use \"hstack\" to stack arrays in sequence horizontally (column wise).\n", | |
| "np.hstack([p, 2*p])" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[1., 1., 1., 2., 2., 2.],\n", | |
| " [1., 1., 1., 2., 2., 2.]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 10 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "G9l3ZxW1a78J", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "a0aa0c46-ebc8-49e7-805d-dc1f8572cb91" | |
| }, | |
| "source": [ | |
| "import numpy as np\n", | |
| "a = np.array([[-4, -2, 2, 3, 5], [-4, -2, 1, 3, 5]])\n", | |
| "a" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[-4, -2, 2, 3, 5],\n", | |
| " [-4, -2, 1, 3, 5]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 4 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "Am85_R7wbk6u", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "bc43b5d8-1d40-4e50-f784-348ca09565ed" | |
| }, | |
| "source": [ | |
| "# Numpy has many built in math functions that can be performed on arrays.\n", | |
| "a.sum()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "7" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 9 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "Gsz6t3jTcbbD", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "d11ff355-759d-4403-ae6d-855e6264b45b" | |
| }, | |
| "source": [ | |
| "a.max(axis=0)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([-4, -2, 2, 3, 5])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 6 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "PWjvlkufccn5", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "3c8d395b-7d71-41af-f2ab-be5e8f1a6a02" | |
| }, | |
| "source": [ | |
| "a.min(axis=1)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([-4, -4])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 7 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "2PpY_Q7uci9R", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "59e3ae64-8e30-47bd-d198-5cca84aafc9d" | |
| }, | |
| "source": [ | |
| "a.mean()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "0.7" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 8 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "d2r5aM3hclth", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "a2ba402a-298d-4677-eccb-f0007c5339c6" | |
| }, | |
| "source": [ | |
| "a.std()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "3.287856444554719" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 10 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "_HGuTi95dBwc", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "febae42c-926e-4892-d4f1-6d70d9a2823c" | |
| }, | |
| "source": [ | |
| "s = np.arange(13)**2\n", | |
| "s" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 11 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "iBVVZYQSdLmB", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "701a585a-9338-47d5-f079-9f6dd3447d1d" | |
| }, | |
| "source": [ | |
| "s[0], s[4], s[-1]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(0, 16, 144)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 13 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "QwHF0zp6gYeO", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "3a97bdfd-d087-4148-b955-e3f1198668d6" | |
| }, | |
| "source": [ | |
| "# A second \":\" can be used to indicate step-size. \"array[start:stop:stepsize]\"\n", | |
| "s[0:4:2]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([0, 4])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 15 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "JFBhUiuvg7to", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "8a5800c3-75e0-4fe8-8b63-62c469680b4a" | |
| }, | |
| "source": [ | |
| "# Multidimensional array\n", | |
| "r = np.arange(36)\n", | |
| "r.resize((6, 8))\n", | |
| "r" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0, 1, 2, 3, 4, 5, 6, 7],\n", | |
| " [ 8, 9, 10, 11, 12, 13, 14, 15],\n", | |
| " [16, 17, 18, 19, 20, 21, 22, 23],\n", | |
| " [24, 25, 26, 27, 28, 29, 30, 31],\n", | |
| " [32, 33, 34, 35, 0, 0, 0, 0],\n", | |
| " [ 0, 0, 0, 0, 0, 0, 0, 0]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 17 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "r.shape[1]" | |
| ], | |
| "metadata": { | |
| "id": "xT39b5Yx_3K9", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "c6affe31-ed21-4901-f9a8-48f984647b8f" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "8" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 21 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "xbPbvfnnhHGj", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "279225a2-3fd6-4484-da4b-708357a0caea" | |
| }, | |
| "source": [ | |
| "r[2:4, 1:3]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[17, 18],\n", | |
| " [25, 26]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 26 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "JBQVY-H4hUIc", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "128ba39c-55e6-48a0-c406-ad1686bc5974" | |
| }, | |
| "source": [ | |
| "r[2:4, 3:6]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[19, 20, 21],\n", | |
| " [27, 28, 29]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 27 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "4ypydm3KhhxT", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "f55728d4-2de4-493a-a13f-568a2ecf5154" | |
| }, | |
| "source": [ | |
| "test = r > 15\n", | |
| "test" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[False, False, False, False, False, False, False, False],\n", | |
| " [False, False, False, False, False, False, False, False],\n", | |
| " [ True, True, True, True, True, True, True, True],\n", | |
| " [ True, True, True, True, True, True, True, True],\n", | |
| " [ True, True, True, True, False, False, False, False],\n", | |
| " [False, False, False, False, False, False, False, False]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 31 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "test2 = test == False\n", | |
| "test2" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "K-0Zx4ynuAbI", | |
| "outputId": "4c586ff0-42d3-4aac-9379-6964ca4851f1" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ True, True, True, True, True, True, True, True],\n", | |
| " [ True, True, True, True, True, True, True, True],\n", | |
| " [False, False, False, False, False, False, False, False],\n", | |
| " [False, False, False, False, False, False, False, False],\n", | |
| " [False, False, False, False, True, True, True, True],\n", | |
| " [ True, True, True, True, True, True, True, True]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 39 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "np.count_nonzero(test2)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "fZqzMYEes5U-", | |
| "outputId": "d3de2e2f-e545-4aa6-f2ae-29247a63e216" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "28" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 40 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "eRO_gmIDiOKG", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "21a77b10-cb0d-466b-c70f-dac6b2293f74" | |
| }, | |
| "source": [ | |
| "# Create a 5 by 6 array of random numbers 0-9\n", | |
| "matrix = np.random.randint(0, 10, (5,6))\n", | |
| "matrix" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[1, 3, 5, 1, 9, 3],\n", | |
| " [1, 3, 6, 9, 0, 3],\n", | |
| " [4, 0, 2, 4, 4, 5],\n", | |
| " [2, 1, 1, 7, 8, 5],\n", | |
| " [9, 0, 2, 2, 8, 5]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 44 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "vRBKT7ffii0M", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "44f2e05b-b562-4152-ebfe-37159e7df613" | |
| }, | |
| "source": [ | |
| "# Iterate by row:\n", | |
| "data = []\n", | |
| "for row in matrix:\n", | |
| " data.append(row.max())\n", | |
| " print(row.max())\n", | |
| "type(data)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "9\n", | |
| "9\n", | |
| "5\n", | |
| "8\n", | |
| "9\n" | |
| ] | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "list" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 45 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "range(5)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "5n2jZrVDvJUF", | |
| "outputId": "91fe4c51-009b-4f45-fd68-415561ce4089" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "range(0, 5)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 46 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "tgWXleQxjQua", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "0ef604de-0edd-4795-a87e-81ca39a322cb" | |
| }, | |
| "source": [ | |
| "# Iterate by index\n", | |
| "for i in range(len(matrix)):\n", | |
| " \n", | |
| " print('index: ' + str(i))\n", | |
| " print(matrix[i])\n", | |
| " print('-------------')" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "index: 0\n", | |
| "[1 3 5 1 9 3]\n", | |
| "-------------\n", | |
| "index: 1\n", | |
| "[1 3 6 9 0 3]\n", | |
| "-------------\n", | |
| "index: 2\n", | |
| "[4 0 2 4 4 5]\n", | |
| "-------------\n", | |
| "index: 3\n", | |
| "[2 1 1 7 8 5]\n", | |
| "-------------\n", | |
| "index: 4\n", | |
| "[9 0 2 2 8 5]\n", | |
| "-------------\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "Ndf73YvljtO0", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "10b9cf1d-a267-49be-bb0e-b0ac418455a3" | |
| }, | |
| "source": [ | |
| "for i, row in enumerate(matrix):\n", | |
| " print('row', i, 'is', row)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "row 0 is [1 3 5 1 9 3]\n", | |
| "row 1 is [1 3 6 9 0 3]\n", | |
| "row 2 is [4 0 2 4 4 5]\n", | |
| "row 3 is [2 1 1 7 8 5]\n", | |
| "row 4 is [9 0 2 2 8 5]\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "gsjaSjzij5RB", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "871e6a92-b46c-4b86-9d9a-60827432a6b9" | |
| }, | |
| "source": [ | |
| "matrix_two = matrix**2\n", | |
| "matrix_two" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 1, 9, 25, 1, 81, 9],\n", | |
| " [ 1, 9, 36, 81, 0, 9],\n", | |
| " [16, 0, 4, 16, 16, 25],\n", | |
| " [ 4, 1, 1, 49, 64, 25],\n", | |
| " [81, 0, 4, 4, 64, 25]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 50 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "np.concatenate((matrix, matrix_two), axis=1)" | |
| ], | |
| "metadata": { | |
| "id": "V48vlr6TAtPm", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "9653dbd5-267f-452b-9e1d-6aa9148d97e8" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 1, 3, 5, 1, 9, 3, 1, 9, 25, 1, 81, 9],\n", | |
| " [ 1, 3, 6, 9, 0, 3, 1, 9, 36, 81, 0, 9],\n", | |
| " [ 4, 0, 2, 4, 4, 5, 16, 0, 4, 16, 16, 25],\n", | |
| " [ 2, 1, 1, 7, 8, 5, 4, 1, 1, 49, 64, 25],\n", | |
| " [ 9, 0, 2, 2, 8, 5, 81, 0, 4, 4, 64, 25]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 52 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "np.concatenate((matrix, matrix_two), axis=1)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "JSF2vqYrBS-L", | |
| "outputId": "d222e3fd-bd41-48eb-ae96-65cd3491f570" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 9, 5, 1, 5, 0, 4, 81, 25, 1, 25, 0, 16],\n", | |
| " [ 3, 4, 3, 5, 7, 7, 9, 16, 9, 25, 49, 49],\n", | |
| " [ 6, 9, 2, 4, 8, 5, 36, 81, 4, 16, 64, 25],\n", | |
| " [ 2, 7, 4, 7, 5, 3, 4, 49, 16, 49, 25, 9],\n", | |
| " [ 7, 0, 1, 5, 3, 1, 49, 0, 1, 25, 9, 1]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 27 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "Bxt9wFv4kBbb", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "99191c41-8896-4a1c-8dc2-1a368bcf0203" | |
| }, | |
| "source": [ | |
| "# Use \"zip\" to iterate over multiple iterables.\n", | |
| "for i, j in zip(matrix, matrix_two):\n", | |
| " print(i,'*',j,'=',i*j)\n", | |
| " print('--------------------------------------------------------------')" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "[1 3 5 1 9 3] * [ 1 9 25 1 81 9] = [ 1 27 125 1 729 27]\n", | |
| "--------------------------------------------------------------\n", | |
| "[1 3 6 9 0 3] * [ 1 9 36 81 0 9] = [ 1 27 216 729 0 27]\n", | |
| "--------------------------------------------------------------\n", | |
| "[4 0 2 4 4 5] * [16 0 4 16 16 25] = [ 64 0 8 64 64 125]\n", | |
| "--------------------------------------------------------------\n", | |
| "[2 1 1 7 8 5] * [ 4 1 1 49 64 25] = [ 8 1 1 343 512 125]\n", | |
| "--------------------------------------------------------------\n", | |
| "[9 0 2 2 8 5] * [81 0 4 4 64 25] = [729 0 8 8 512 125]\n", | |
| "--------------------------------------------------------------\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "matrix_three = matrix * matrix_two\n", | |
| "matrix_three" | |
| ], | |
| "metadata": { | |
| "id": "vwmRkg8TBeEz", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "0a9b7560-de01-40b6-f412-0d819f89feb2" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 1, 27, 125, 1, 729, 27],\n", | |
| " [ 1, 27, 216, 729, 0, 27],\n", | |
| " [ 64, 0, 8, 64, 64, 125],\n", | |
| " [ 8, 1, 1, 343, 512, 125],\n", | |
| " [729, 0, 8, 8, 512, 125]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 54 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "matrix_three.transpose()" | |
| ], | |
| "metadata": { | |
| "id": "iNOb57w8B0IU", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "db69ba0d-4be0-4c44-b302-cce610f9bbce" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 1, 1, 64, 8, 729],\n", | |
| " [ 27, 27, 0, 1, 0],\n", | |
| " [125, 216, 8, 1, 8],\n", | |
| " [ 1, 729, 64, 343, 8],\n", | |
| " [729, 0, 64, 512, 512],\n", | |
| " [ 27, 27, 125, 125, 125]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 55 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "matrix_three.T" | |
| ], | |
| "metadata": { | |
| "id": "k2n-lbc2CbOV", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "f2b825bf-0b7e-4f4f-de4d-616a59f1a51e" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 1, 1, 64, 8, 729],\n", | |
| " [ 27, 27, 0, 1, 0],\n", | |
| " [125, 216, 8, 1, 8],\n", | |
| " [ 1, 729, 64, 343, 8],\n", | |
| " [729, 0, 64, 512, 512],\n", | |
| " [ 27, 27, 125, 125, 125]])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 56 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# Mean Squared Error formula\n", | |
| "\n", | |
| "" | |
| ], | |
| "metadata": { | |
| "id": "9iUOCjQqDJTj" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "real_data = np.array([5, 4, 3, 4, 5, 6, 8, 5])\n", | |
| "real_data " | |
| ], | |
| "metadata": { | |
| "id": "RY75q0E1C-bD", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "2630c2f8-1f40-4880-ffcd-5d40c5974e4b" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([5, 4, 3, 4, 5, 6, 8, 5])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 58 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "prediction_data = np.array([3, 3.5, 3, 4.5, 3, 5, 8.8, 4.4])\n", | |
| "prediction_data " | |
| ], | |
| "metadata": { | |
| "id": "xBlVIojHD6mU", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "04585414-7c93-47e1-cab6-c2f23983e976" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([3. , 3.5, 3. , 4.5, 3. , 5. , 8.8, 4.4])" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 59 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "n = len(real_data)\n", | |
| "n" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "bFz6jsQX1FvA", | |
| "outputId": "6d84657f-7fc1-482a-8d39-963ca436551e" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "8" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 64 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "np.mean(np.square(real_data-prediction_data))" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "47F_rsrv0fs0", | |
| "outputId": "858ca337-88b7-46ad-9991-79f78cf0fd9c" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "1.3125" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 66 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "HjpZPv2LquON" | |
| }, | |
| "source": [ | |
| "# Pandas Library\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "s_RPpCfQq0m0" | |
| }, | |
| "source": [ | |
| "# Series Data structure\n", | |
| "import pandas as pd\n", | |
| "pd.Series?" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "FdYRkJ0arAUM", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "aa44b162-7a7c-4811-fb50-dc23c9423894" | |
| }, | |
| "source": [ | |
| "subjects = ['Circuits', 'Programming', 'Physics']\n", | |
| "pd.Series(subjects)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "0 Circuits\n", | |
| "1 Programming\n", | |
| "2 Physics\n", | |
| "dtype: object" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 68 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "UyMOCrTxsjew", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "25d3a126-9969-4b29-c192-acfd67f22f72" | |
| }, | |
| "source": [ | |
| "numbers = [1, 2, 3]\n", | |
| "pd.Series(numbers)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "0 1\n", | |
| "1 2\n", | |
| "2 3\n", | |
| "dtype: int64" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 69 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "VqRzLr6tsoKF", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "47e73ef0-6262-4cdd-e8c0-45da7a3b7317" | |
| }, | |
| "source": [ | |
| "capitals = {'Colombia': 'Bogota',\n", | |
| " 'USA': 'Washington D. C',\n", | |
| " 'Japan': 'Tokio',\n", | |
| " 'Argentina': 'Buenos Aires'}\n", | |
| "c = pd.Series(capitals)\n", | |
| "c" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Colombia Bogota\n", | |
| "USA Washington D. C\n", | |
| "Japan Tokio\n", | |
| "Argentina Buenos Aires\n", | |
| "dtype: object" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 70 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "eQluwY2qtUe5", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "7f7df46e-d93b-4c66-b942-1be2c75e13ec" | |
| }, | |
| "source": [ | |
| "c.index" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Index(['Colombia', 'USA', 'Japan', 'Argentina'], dtype='object')" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 71 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "WJIW56Kltn1q", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 35 | |
| }, | |
| "outputId": "b5fa2e8c-a830-401a-8399-ca17d466d38f" | |
| }, | |
| "source": [ | |
| "# Querying a Series option 1\n", | |
| "c.loc['Colombia']" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "string" | |
| }, | |
| "text/plain": [ | |
| "'Bogota'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 72 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "WZgDHqvhtzhy", | |
| "outputId": "8f076e54-65b7-4af6-ee0f-8658d0d59ff8", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 35 | |
| } | |
| }, | |
| "source": [ | |
| "# Querying a Series option 2\n", | |
| "c.iloc[0]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "string" | |
| }, | |
| "text/plain": [ | |
| "'Bogota'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 73 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "-fcC_6YAuvbk", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "8659afeb-d9b2-460a-9a1f-7875c929d377" | |
| }, | |
| "source": [ | |
| "#this creates a big series of random numbers\n", | |
| "s = pd.Series(np.random.randint(0,1000,10000))\n", | |
| "s.head(20)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "0 558\n", | |
| "1 494\n", | |
| "2 823\n", | |
| "3 92\n", | |
| "4 954\n", | |
| " ... \n", | |
| "9995 655\n", | |
| "9996 341\n", | |
| "9997 717\n", | |
| "9998 28\n", | |
| "9999 458\n", | |
| "Length: 10000, dtype: int64\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "wQ0yg-NxuyCs", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "57619bbe-b532-455b-df64-ee648c404716" | |
| }, | |
| "source": [ | |
| "s.shape" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(10000,)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 77 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "URc0pPmKvAyL", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "4c880397-6fab-4b14-dd81-615e1ef7287f" | |
| }, | |
| "source": [ | |
| "s = pd.Series([1, 2, 3])\n", | |
| "s.loc['other_index'] = 'This is a string'\n", | |
| "s" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "0 1\n", | |
| "1 2\n", | |
| "2 3\n", | |
| "other_index This is a string\n", | |
| "dtype: object" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 79 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "VeZy8ZVEvyfx", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "outputId": "575eaf35-e06b-4c8a-8ab0-d88d2a43f7e5" | |
| }, | |
| "source": [ | |
| "# The DataFrame Data Structure\n", | |
| "\n", | |
| "import pandas as pd\n", | |
| "\n", | |
| "purchase_1 = pd.Series({'Name': 'Sebastián',\n", | |
| " 'Item Purchased': 'Tennis',\n", | |
| " 'Cost': 42.50})\n", | |
| "purchase_2 = pd.Series({'Name': 'Diego',\n", | |
| " 'Item Purchased': 'Jeans',\n", | |
| " 'Cost': 32.50})\n", | |
| "purchase_3 = pd.Series({'Name': 'Joaquin',\n", | |
| " 'Item Purchased': 'Cap',\n", | |
| " 'Cost': 5.00}) \n", | |
| "\n", | |
| "purchase_4 = pd.Series({'Name': 'Santiago',\n", | |
| " 'Item Purchased': 'Tennis',\n", | |
| " 'Cost': 55.00})\n", | |
| "\n", | |
| "purchase_5 = pd.Series({'Name': 'Eliana',\n", | |
| " 'Item Purchased': 'Jogger',\n", | |
| " 'Cost': 35.00}) \n", | |
| "\n", | |
| "df = pd.DataFrame([purchase_1, purchase_2, purchase_3,purchase_4, purchase_5],index=['Store 1', 'Store 1', 'Store 2', 'Store 1', 'Store 2'])\n", | |
| "df.head()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-65ba4fc7-845c-4328-a353-2380f471bad8\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-65ba4fc7-845c-4328-a353-2380f471bad8')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-65ba4fc7-845c-4328-a353-2380f471bad8 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-65ba4fc7-845c-4328-a353-2380f471bad8');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost\n", | |
| "Store 1 Sebastián Tennis 42.5\n", | |
| "Store 1 Diego Jeans 32.5\n", | |
| "Store 2 Joaquin Cap 5.0\n", | |
| "Store 1 Santiago Tennis 55.0\n", | |
| "Store 2 Eliana Jogger 35.0" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 40 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "otjyHJ3AwrJO", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 143 | |
| }, | |
| "outputId": "79ea2030-9d87-466d-d5dc-52bff977def4" | |
| }, | |
| "source": [ | |
| "df.loc['Store 1']" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-9f34c555-7966-4cb6-947b-e606113cf389\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-9f34c555-7966-4cb6-947b-e606113cf389')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-9f34c555-7966-4cb6-947b-e606113cf389 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-9f34c555-7966-4cb6-947b-e606113cf389');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost\n", | |
| "Store 1 Sebastián Tennis 42.5\n", | |
| "Store 1 Diego Jeans 32.5\n", | |
| "Store 1 Santiago Tennis 55.0" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 81 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "mTayaAC7wzXN", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "dfb28d4c-4499-44fa-b6d3-00f94bc18960" | |
| }, | |
| "source": [ | |
| "type(df.loc['Store 2'])" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "pandas.core.frame.DataFrame" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 82 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "K2MnpTHPw3bF", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "e66a4bbe-d3bc-47da-fccd-ef97a3e80549" | |
| }, | |
| "source": [ | |
| "df.loc['Store 1', 'Cost']" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Store 1 42.5\n", | |
| "Store 1 32.5\n", | |
| "Store 1 55.0\n", | |
| "Name: Cost, dtype: float64" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 83 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "LSroJTVSw8iO", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "39533c08-075e-4aee-b082-85ae5168e269" | |
| }, | |
| "source": [ | |
| "df.loc['Store 1']['Cost']" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Store 1 42.5\n", | |
| "Store 1 32.5\n", | |
| "Store 1 55.0\n", | |
| "Name: Cost, dtype: float64" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 84 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "jPECRicexBDE", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "outputId": "e5ed7f46-6d38-48b6-a4c7-e9df9c248c1b" | |
| }, | |
| "source": [ | |
| "df.loc[:,['Name', 'Cost']]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-6ffbdb4b-7ba0-4d2c-92eb-aaf066d39970\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Cost</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>42.5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>32.5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>35.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6ffbdb4b-7ba0-4d2c-92eb-aaf066d39970')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-6ffbdb4b-7ba0-4d2c-92eb-aaf066d39970 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-6ffbdb4b-7ba0-4d2c-92eb-aaf066d39970');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Cost\n", | |
| "Store 1 Sebastián 42.5\n", | |
| "Store 1 Diego 32.5\n", | |
| "Store 2 Joaquin 5.0\n", | |
| "Store 1 Santiago 55.0\n", | |
| "Store 2 Eliana 35.0" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 86 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "NLTjLo3ixHRV" | |
| }, | |
| "source": [ | |
| "f = df.drop('Store 1')" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "f" | |
| ], | |
| "metadata": { | |
| "id": "QUe6hZc5H4Hs", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 112 | |
| }, | |
| "outputId": "30e92544-565b-43a0-c0bc-320e757ed4fc" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-1a8280ee-b5a1-4006-ad59-96d958b2a6e4\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-1a8280ee-b5a1-4006-ad59-96d958b2a6e4')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-1a8280ee-b5a1-4006-ad59-96d958b2a6e4 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-1a8280ee-b5a1-4006-ad59-96d958b2a6e4');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost\n", | |
| "Store 2 Joaquin Cap 5.0\n", | |
| "Store 2 Eliana Jogger 35.0" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 90 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "zgwLk5mZyDzw", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "outputId": "7d64049d-dc4f-48c1-ddae-7d25f841bd28" | |
| }, | |
| "source": [ | |
| "df['Location'] = None\n", | |
| "df" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-97a474e8-2d87-48dd-8112-8b0ae90a0850\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Location</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-97a474e8-2d87-48dd-8112-8b0ae90a0850')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-97a474e8-2d87-48dd-8112-8b0ae90a0850 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-97a474e8-2d87-48dd-8112-8b0ae90a0850');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost Location\n", | |
| "Store 1 Sebastián Tennis 42.5 None\n", | |
| "Store 1 Diego Jeans 32.5 None\n", | |
| "Store 2 Joaquin Cap 5.0 None\n", | |
| "Store 1 Santiago Tennis 55.0 None\n", | |
| "Store 2 Eliana Jogger 35.0 None" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 91 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "tosLbRu4yIOG", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 313 | |
| }, | |
| "outputId": "582d5e8d-2b9c-4236-c3cd-74cbaa009441" | |
| }, | |
| "source": [ | |
| "df['Location']['Store 1'] = 'San diego'\n", | |
| "df" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stderr", | |
| "text": [ | |
| "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: SettingWithCopyWarning: \n", | |
| "A value is trying to be set on a copy of a slice from a DataFrame\n", | |
| "\n", | |
| "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", | |
| " \"\"\"Entry point for launching an IPython kernel.\n" | |
| ] | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-33a01479-54c5-4959-8719-8e0c469943b1\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Location</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>San diego</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>San diego</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>San diego</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-33a01479-54c5-4959-8719-8e0c469943b1')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-33a01479-54c5-4959-8719-8e0c469943b1 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-33a01479-54c5-4959-8719-8e0c469943b1');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost Location\n", | |
| "Store 1 Sebastián Tennis 42.5 San diego\n", | |
| "Store 1 Diego Jeans 32.5 San diego\n", | |
| "Store 2 Joaquin Cap 5.0 None\n", | |
| "Store 1 Santiago Tennis 55.0 San diego\n", | |
| "Store 2 Eliana Jogger 35.0 None" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 92 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df['Location'].unique()" | |
| ], | |
| "metadata": { | |
| "id": "qHTDLHoMMOBi", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "600d7bea-1cca-4b1b-f46d-4b00362762f4" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array(['San diego', None], dtype=object)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 94 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# Importing CSV Files" | |
| ], | |
| "metadata": { | |
| "id": "qZKJlDvTMt3N" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "EGoKN5Ggy6fG", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 531 | |
| }, | |
| "outputId": "89414eb8-a630-44dd-f6dd-3d32c2fcacbf" | |
| }, | |
| "source": [ | |
| "import pandas as pd\n", | |
| "df = pd.read_csv('grades.csv')\n", | |
| "df.head()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-b9b60e7f-1f1f-41ea-8b28-8c05408838b8\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>student_id</th>\n", | |
| " <th>assignment1_grade</th>\n", | |
| " <th>assignment1_submission</th>\n", | |
| " <th>assignment2_grade</th>\n", | |
| " <th>assignment2_submission</th>\n", | |
| " <th>assignment3_grade</th>\n", | |
| " <th>assignment3_submission</th>\n", | |
| " <th>assignment4_grade</th>\n", | |
| " <th>assignment4_submission</th>\n", | |
| " <th>assignment5_grade</th>\n", | |
| " <th>assignment5_submission</th>\n", | |
| " <th>assignment6_grade</th>\n", | |
| " <th>assignment6_submission</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n", | |
| " <td>92.733946</td>\n", | |
| " <td>2015-11-02 06:55:34.282000000</td>\n", | |
| " <td>83.030552</td>\n", | |
| " <td>2015-11-09 02:22:58.938000000</td>\n", | |
| " <td>67.164441</td>\n", | |
| " <td>2015-11-12 08:58:33.998000000</td>\n", | |
| " <td>53.011553</td>\n", | |
| " <td>2015-11-16 01:21:24.663000000</td>\n", | |
| " <td>47.710398</td>\n", | |
| " <td>2015-11-20 13:24:59.692000000</td>\n", | |
| " <td>38.168318</td>\n", | |
| " <td>2015-11-22 18:31:15.934000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n", | |
| " <td>86.790821</td>\n", | |
| " <td>2015-11-29 14:57:44.429000000</td>\n", | |
| " <td>86.290821</td>\n", | |
| " <td>2015-12-06 17:41:18.449000000</td>\n", | |
| " <td>69.772657</td>\n", | |
| " <td>2015-12-10 08:54:55.904000000</td>\n", | |
| " <td>55.098125</td>\n", | |
| " <td>2015-12-13 17:32:30.941000000</td>\n", | |
| " <td>49.588313</td>\n", | |
| " <td>2015-12-19 23:26:39.285000000</td>\n", | |
| " <td>44.629482</td>\n", | |
| " <td>2015-12-21 17:07:24.275000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>D0F62040-CEB0-904C-F563-2F8620916C4E</td>\n", | |
| " <td>85.512541</td>\n", | |
| " <td>2016-01-09 05:36:02.389000000</td>\n", | |
| " <td>85.512541</td>\n", | |
| " <td>2016-01-09 06:39:44.416000000</td>\n", | |
| " <td>68.410033</td>\n", | |
| " <td>2016-01-15 20:22:45.882000000</td>\n", | |
| " <td>54.728026</td>\n", | |
| " <td>2016-01-11 12:41:50.749000000</td>\n", | |
| " <td>49.255224</td>\n", | |
| " <td>2016-01-11 17:31:12.489000000</td>\n", | |
| " <td>44.329701</td>\n", | |
| " <td>2016-01-17 16:24:42.765000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</td>\n", | |
| " <td>86.030665</td>\n", | |
| " <td>2016-04-30 06:50:39.801000000</td>\n", | |
| " <td>68.824532</td>\n", | |
| " <td>2016-04-30 17:20:38.727000000</td>\n", | |
| " <td>61.942079</td>\n", | |
| " <td>2016-05-12 07:47:16.326000000</td>\n", | |
| " <td>49.553663</td>\n", | |
| " <td>2016-05-07 16:09:20.485000000</td>\n", | |
| " <td>49.553663</td>\n", | |
| " <td>2016-05-24 12:51:18.016000000</td>\n", | |
| " <td>44.598297</td>\n", | |
| " <td>2016-05-26 08:09:12.058000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n", | |
| " <td>64.813800</td>\n", | |
| " <td>2015-12-13 17:06:10.750000000</td>\n", | |
| " <td>51.491040</td>\n", | |
| " <td>2015-12-14 12:25:12.056000000</td>\n", | |
| " <td>41.932832</td>\n", | |
| " <td>2015-12-29 14:25:22.594000000</td>\n", | |
| " <td>36.929549</td>\n", | |
| " <td>2015-12-28 01:29:55.901000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2015-12-29 14:46:06.628000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2016-01-05 01:06:59.546000000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-b9b60e7f-1f1f-41ea-8b28-8c05408838b8')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-b9b60e7f-1f1f-41ea-8b28-8c05408838b8 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-b9b60e7f-1f1f-41ea-8b28-8c05408838b8');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " student_id ... assignment6_submission\n", | |
| "0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 ... 2015-11-22 18:31:15.934000000\n", | |
| "1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 ... 2015-12-21 17:07:24.275000000\n", | |
| "2 D0F62040-CEB0-904C-F563-2F8620916C4E ... 2016-01-17 16:24:42.765000000\n", | |
| "3 FFDF2B2C-F514-EF7F-6538-A6A53518E9DC ... 2016-05-26 08:09:12.058000000\n", | |
| "4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 ... 2016-01-05 01:06:59.546000000\n", | |
| "\n", | |
| "[5 rows x 13 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 2 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "VwHgKQTYQ4t_", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "83cb4981-48c6-4ef0-ad28-a69c5ef1e17b" | |
| }, | |
| "source": [ | |
| "len(df)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "2315" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 3 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "4raqbp3NZ0tS", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "72866bb7-1b50-4030-95d4-fc84c497ab07" | |
| }, | |
| "source": [ | |
| "df.columns" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "Index(['student_id', 'assignment1_grade', 'assignment1_submission',\n", | |
| " 'assignment2_grade', 'assignment2_submission', 'assignment3_grade',\n", | |
| " 'assignment3_submission', 'assignment4_grade', 'assignment4_submission',\n", | |
| " 'assignment5_grade', 'assignment5_submission', 'assignment6_grade',\n", | |
| " 'assignment6_submission'],\n", | |
| " dtype='object')" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 4 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df.shape" | |
| ], | |
| "metadata": { | |
| "id": "mTVVxHJFJ0Or", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "2cafb264-487c-4b8e-d150-72ac91e989b5" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(2315, 13)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 5 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df['assignment1_submission'].count()" | |
| ], | |
| "metadata": { | |
| "id": "cE7sBIM3L-RC", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "9ec4d231-a9ea-447f-c0b7-c244b9ebe2fb" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "2315" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 6 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "ibxkwOH3Z_pB", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "3b8a455f-4164-4922-f688-bd79717453de" | |
| }, | |
| "source": [ | |
| "df.iloc[0]" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "student_id B73F2C11-70F0-E37D-8B10-1D20AFED50B1\n", | |
| "assignment1_grade 92.733946\n", | |
| "assignment1_submission 2015-11-02 06:55:34.282000000\n", | |
| "assignment2_grade 83.030552\n", | |
| "assignment2_submission 2015-11-09 02:22:58.938000000\n", | |
| "assignment3_grade 67.164441\n", | |
| "assignment3_submission 2015-11-12 08:58:33.998000000\n", | |
| "assignment4_grade 53.011553\n", | |
| "assignment4_submission 2015-11-16 01:21:24.663000000\n", | |
| "assignment5_grade 47.710398\n", | |
| "assignment5_submission 2015-11-20 13:24:59.692000000\n", | |
| "assignment6_grade 38.168318\n", | |
| "assignment6_submission 2015-11-22 18:31:15.934000000\n", | |
| "Name: 0, dtype: object" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 7 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "m_H8bCDubtV_", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 562 | |
| }, | |
| "outputId": "56e4b0b0-192c-42e6-a610-d99ae4f19d0c" | |
| }, | |
| "source": [ | |
| "df2 = df.set_index('student_id')\n", | |
| "df2.head()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-f6ccf05a-5e7c-4a73-a818-74cc155c30ed\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>assignment1_grade</th>\n", | |
| " <th>assignment1_submission</th>\n", | |
| " <th>assignment2_grade</th>\n", | |
| " <th>assignment2_submission</th>\n", | |
| " <th>assignment3_grade</th>\n", | |
| " <th>assignment3_submission</th>\n", | |
| " <th>assignment4_grade</th>\n", | |
| " <th>assignment4_submission</th>\n", | |
| " <th>assignment5_grade</th>\n", | |
| " <th>assignment5_submission</th>\n", | |
| " <th>assignment6_grade</th>\n", | |
| " <th>assignment6_submission</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>student_id</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</th>\n", | |
| " <td>92.733946</td>\n", | |
| " <td>2015-11-02 06:55:34.282000000</td>\n", | |
| " <td>83.030552</td>\n", | |
| " <td>2015-11-09 02:22:58.938000000</td>\n", | |
| " <td>67.164441</td>\n", | |
| " <td>2015-11-12 08:58:33.998000000</td>\n", | |
| " <td>53.011553</td>\n", | |
| " <td>2015-11-16 01:21:24.663000000</td>\n", | |
| " <td>47.710398</td>\n", | |
| " <td>2015-11-20 13:24:59.692000000</td>\n", | |
| " <td>38.168318</td>\n", | |
| " <td>2015-11-22 18:31:15.934000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</th>\n", | |
| " <td>86.790821</td>\n", | |
| " <td>2015-11-29 14:57:44.429000000</td>\n", | |
| " <td>86.290821</td>\n", | |
| " <td>2015-12-06 17:41:18.449000000</td>\n", | |
| " <td>69.772657</td>\n", | |
| " <td>2015-12-10 08:54:55.904000000</td>\n", | |
| " <td>55.098125</td>\n", | |
| " <td>2015-12-13 17:32:30.941000000</td>\n", | |
| " <td>49.588313</td>\n", | |
| " <td>2015-12-19 23:26:39.285000000</td>\n", | |
| " <td>44.629482</td>\n", | |
| " <td>2015-12-21 17:07:24.275000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>D0F62040-CEB0-904C-F563-2F8620916C4E</th>\n", | |
| " <td>85.512541</td>\n", | |
| " <td>2016-01-09 05:36:02.389000000</td>\n", | |
| " <td>85.512541</td>\n", | |
| " <td>2016-01-09 06:39:44.416000000</td>\n", | |
| " <td>68.410033</td>\n", | |
| " <td>2016-01-15 20:22:45.882000000</td>\n", | |
| " <td>54.728026</td>\n", | |
| " <td>2016-01-11 12:41:50.749000000</td>\n", | |
| " <td>49.255224</td>\n", | |
| " <td>2016-01-11 17:31:12.489000000</td>\n", | |
| " <td>44.329701</td>\n", | |
| " <td>2016-01-17 16:24:42.765000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</th>\n", | |
| " <td>86.030665</td>\n", | |
| " <td>2016-04-30 06:50:39.801000000</td>\n", | |
| " <td>68.824532</td>\n", | |
| " <td>2016-04-30 17:20:38.727000000</td>\n", | |
| " <td>61.942079</td>\n", | |
| " <td>2016-05-12 07:47:16.326000000</td>\n", | |
| " <td>49.553663</td>\n", | |
| " <td>2016-05-07 16:09:20.485000000</td>\n", | |
| " <td>49.553663</td>\n", | |
| " <td>2016-05-24 12:51:18.016000000</td>\n", | |
| " <td>44.598297</td>\n", | |
| " <td>2016-05-26 08:09:12.058000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</th>\n", | |
| " <td>64.813800</td>\n", | |
| " <td>2015-12-13 17:06:10.750000000</td>\n", | |
| " <td>51.491040</td>\n", | |
| " <td>2015-12-14 12:25:12.056000000</td>\n", | |
| " <td>41.932832</td>\n", | |
| " <td>2015-12-29 14:25:22.594000000</td>\n", | |
| " <td>36.929549</td>\n", | |
| " <td>2015-12-28 01:29:55.901000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2015-12-29 14:46:06.628000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2016-01-05 01:06:59.546000000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f6ccf05a-5e7c-4a73-a818-74cc155c30ed')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-f6ccf05a-5e7c-4a73-a818-74cc155c30ed button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-f6ccf05a-5e7c-4a73-a818-74cc155c30ed');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " assignment1_grade ... assignment6_submission\n", | |
| "student_id ... \n", | |
| "B73F2C11-70F0-E37D-8B10-1D20AFED50B1 92.733946 ... 2015-11-22 18:31:15.934000000\n", | |
| "98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 86.790821 ... 2015-12-21 17:07:24.275000000\n", | |
| "D0F62040-CEB0-904C-F563-2F8620916C4E 85.512541 ... 2016-01-17 16:24:42.765000000\n", | |
| "FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 86.030665 ... 2016-05-26 08:09:12.058000000\n", | |
| "5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 64.813800 ... 2016-01-05 01:06:59.546000000\n", | |
| "\n", | |
| "[5 rows x 12 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 8 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "Oaem1SGKb7j2", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "6d7aa5d6-8c2d-4005-93ef-a04c326017b2" | |
| }, | |
| "source": [ | |
| "df2.loc['B73F2C11-70F0-E37D-8B10-1D20AFED50B1']" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "assignment1_grade 92.733946\n", | |
| "assignment1_submission 2015-11-02 06:55:34.282000000\n", | |
| "assignment2_grade 83.030552\n", | |
| "assignment2_submission 2015-11-09 02:22:58.938000000\n", | |
| "assignment3_grade 67.164441\n", | |
| "assignment3_submission 2015-11-12 08:58:33.998000000\n", | |
| "assignment4_grade 53.011553\n", | |
| "assignment4_submission 2015-11-16 01:21:24.663000000\n", | |
| "assignment5_grade 47.710398\n", | |
| "assignment5_submission 2015-11-20 13:24:59.692000000\n", | |
| "assignment6_grade 38.168318\n", | |
| "assignment6_submission 2015-11-22 18:31:15.934000000\n", | |
| "Name: B73F2C11-70F0-E37D-8B10-1D20AFED50B1, dtype: object" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 9 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df['assignment1_submission'] <= '2015-12-31'" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "ScXBglWF9gKN", | |
| "outputId": "0f07e5a6-d754-4ec7-879b-90fa8f70f167" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "0 True\n", | |
| "1 True\n", | |
| "2 False\n", | |
| "3 False\n", | |
| "4 True\n", | |
| " ... \n", | |
| "2310 False\n", | |
| "2311 True\n", | |
| "2312 True\n", | |
| "2313 False\n", | |
| "2314 True\n", | |
| "Name: assignment1_submission, Length: 2315, dtype: bool" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 10 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "VsqJZ4BbRN-j", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 531 | |
| }, | |
| "outputId": "50ed74d2-482d-40fd-ec13-fa8f2bd5937b" | |
| }, | |
| "source": [ | |
| "early = df[df['assignment1_submission'] <= '2015-12-31']\n", | |
| "early.head()\n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-f2e54659-a4ef-41ea-a0eb-b1a628543b85\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>student_id</th>\n", | |
| " <th>assignment1_grade</th>\n", | |
| " <th>assignment1_submission</th>\n", | |
| " <th>assignment2_grade</th>\n", | |
| " <th>assignment2_submission</th>\n", | |
| " <th>assignment3_grade</th>\n", | |
| " <th>assignment3_submission</th>\n", | |
| " <th>assignment4_grade</th>\n", | |
| " <th>assignment4_submission</th>\n", | |
| " <th>assignment5_grade</th>\n", | |
| " <th>assignment5_submission</th>\n", | |
| " <th>assignment6_grade</th>\n", | |
| " <th>assignment6_submission</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n", | |
| " <td>92.733946</td>\n", | |
| " <td>2015-11-02 06:55:34.282000000</td>\n", | |
| " <td>83.030552</td>\n", | |
| " <td>2015-11-09 02:22:58.938000000</td>\n", | |
| " <td>67.164441</td>\n", | |
| " <td>2015-11-12 08:58:33.998000000</td>\n", | |
| " <td>53.011553</td>\n", | |
| " <td>2015-11-16 01:21:24.663000000</td>\n", | |
| " <td>47.710398</td>\n", | |
| " <td>2015-11-20 13:24:59.692000000</td>\n", | |
| " <td>38.168318</td>\n", | |
| " <td>2015-11-22 18:31:15.934000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n", | |
| " <td>86.790821</td>\n", | |
| " <td>2015-11-29 14:57:44.429000000</td>\n", | |
| " <td>86.290821</td>\n", | |
| " <td>2015-12-06 17:41:18.449000000</td>\n", | |
| " <td>69.772657</td>\n", | |
| " <td>2015-12-10 08:54:55.904000000</td>\n", | |
| " <td>55.098125</td>\n", | |
| " <td>2015-12-13 17:32:30.941000000</td>\n", | |
| " <td>49.588313</td>\n", | |
| " <td>2015-12-19 23:26:39.285000000</td>\n", | |
| " <td>44.629482</td>\n", | |
| " <td>2015-12-21 17:07:24.275000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n", | |
| " <td>64.813800</td>\n", | |
| " <td>2015-12-13 17:06:10.750000000</td>\n", | |
| " <td>51.491040</td>\n", | |
| " <td>2015-12-14 12:25:12.056000000</td>\n", | |
| " <td>41.932832</td>\n", | |
| " <td>2015-12-29 14:25:22.594000000</td>\n", | |
| " <td>36.929549</td>\n", | |
| " <td>2015-12-28 01:29:55.901000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2015-12-29 14:46:06.628000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2016-01-05 01:06:59.546000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>D09000A0-827B-C0FF-3433-BF8FF286E15B</td>\n", | |
| " <td>71.647278</td>\n", | |
| " <td>2015-12-28 04:35:32.836000000</td>\n", | |
| " <td>64.052550</td>\n", | |
| " <td>2016-01-03 21:05:38.392000000</td>\n", | |
| " <td>64.752550</td>\n", | |
| " <td>2016-01-07 08:55:43.692000000</td>\n", | |
| " <td>57.467295</td>\n", | |
| " <td>2016-01-11 00:45:28.706000000</td>\n", | |
| " <td>57.467295</td>\n", | |
| " <td>2016-01-11 00:54:13.579000000</td>\n", | |
| " <td>57.467295</td>\n", | |
| " <td>2016-01-20 19:54:46.166000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>C9D51293-BD58-F113-4167-A7C0BAFCB6E5</td>\n", | |
| " <td>66.595568</td>\n", | |
| " <td>2015-12-25 02:29:28.415000000</td>\n", | |
| " <td>52.916454</td>\n", | |
| " <td>2015-12-31 01:42:30.046000000</td>\n", | |
| " <td>48.344809</td>\n", | |
| " <td>2016-01-05 23:34:02.180000000</td>\n", | |
| " <td>47.444809</td>\n", | |
| " <td>2016-01-02 07:48:42.517000000</td>\n", | |
| " <td>37.955847</td>\n", | |
| " <td>2016-01-03 21:27:04.266000000</td>\n", | |
| " <td>37.955847</td>\n", | |
| " <td>2016-01-19 15:24:31.060000000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f2e54659-a4ef-41ea-a0eb-b1a628543b85')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-f2e54659-a4ef-41ea-a0eb-b1a628543b85 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-f2e54659-a4ef-41ea-a0eb-b1a628543b85');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " student_id ... assignment6_submission\n", | |
| "0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 ... 2015-11-22 18:31:15.934000000\n", | |
| "1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 ... 2015-12-21 17:07:24.275000000\n", | |
| "4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 ... 2016-01-05 01:06:59.546000000\n", | |
| "5 D09000A0-827B-C0FF-3433-BF8FF286E15B ... 2016-01-20 19:54:46.166000000\n", | |
| "8 C9D51293-BD58-F113-4167-A7C0BAFCB6E5 ... 2016-01-19 15:24:31.060000000\n", | |
| "\n", | |
| "[5 rows x 13 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 11 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "etQAAtl-RqdF", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "d81190c3-f121-4d4b-d92d-984f3d078c10" | |
| }, | |
| "source": [ | |
| "len(early)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "1256" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 12 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "len(early)/len(df)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "c7ec6MPT9yR6", | |
| "outputId": "f6f3fd10-5b6d-4376-eb31-bb7fdcfc78ed" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "0.542548596112311" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 13 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "" | |
| ], | |
| "metadata": { | |
| "id": "ITWajh0_LpZW" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "Dy5irgYXgEL_", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 1000 | |
| }, | |
| "outputId": "f0ea2b7c-8f9c-40fb-8a3e-e059b96d6dce" | |
| }, | |
| "source": [ | |
| "early.rename(columns={'assignment1_submission': 'new_assignment1_submission'})" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-e4b6b4bb-e700-45b5-8d26-dc414bbd3346\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>student_id</th>\n", | |
| " <th>assignment1_grade</th>\n", | |
| " <th>new_assignment1_submission</th>\n", | |
| " <th>assignment2_grade</th>\n", | |
| " <th>assignment2_submission</th>\n", | |
| " <th>assignment3_grade</th>\n", | |
| " <th>assignment3_submission</th>\n", | |
| " <th>assignment4_grade</th>\n", | |
| " <th>assignment4_submission</th>\n", | |
| " <th>assignment5_grade</th>\n", | |
| " <th>assignment5_submission</th>\n", | |
| " <th>assignment6_grade</th>\n", | |
| " <th>assignment6_submission</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n", | |
| " <td>92.733946</td>\n", | |
| " <td>2015-11-02 06:55:34.282000000</td>\n", | |
| " <td>83.030552</td>\n", | |
| " <td>2015-11-09 02:22:58.938000000</td>\n", | |
| " <td>67.164441</td>\n", | |
| " <td>2015-11-12 08:58:33.998000000</td>\n", | |
| " <td>53.011553</td>\n", | |
| " <td>2015-11-16 01:21:24.663000000</td>\n", | |
| " <td>47.710398</td>\n", | |
| " <td>2015-11-20 13:24:59.692000000</td>\n", | |
| " <td>38.168318</td>\n", | |
| " <td>2015-11-22 18:31:15.934000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n", | |
| " <td>86.790821</td>\n", | |
| " <td>2015-11-29 14:57:44.429000000</td>\n", | |
| " <td>86.290821</td>\n", | |
| " <td>2015-12-06 17:41:18.449000000</td>\n", | |
| " <td>69.772657</td>\n", | |
| " <td>2015-12-10 08:54:55.904000000</td>\n", | |
| " <td>55.098125</td>\n", | |
| " <td>2015-12-13 17:32:30.941000000</td>\n", | |
| " <td>49.588313</td>\n", | |
| " <td>2015-12-19 23:26:39.285000000</td>\n", | |
| " <td>44.629482</td>\n", | |
| " <td>2015-12-21 17:07:24.275000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n", | |
| " <td>64.813800</td>\n", | |
| " <td>2015-12-13 17:06:10.750000000</td>\n", | |
| " <td>51.491040</td>\n", | |
| " <td>2015-12-14 12:25:12.056000000</td>\n", | |
| " <td>41.932832</td>\n", | |
| " <td>2015-12-29 14:25:22.594000000</td>\n", | |
| " <td>36.929549</td>\n", | |
| " <td>2015-12-28 01:29:55.901000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2015-12-29 14:46:06.628000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2016-01-05 01:06:59.546000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>5</th>\n", | |
| " <td>D09000A0-827B-C0FF-3433-BF8FF286E15B</td>\n", | |
| " <td>71.647278</td>\n", | |
| " <td>2015-12-28 04:35:32.836000000</td>\n", | |
| " <td>64.052550</td>\n", | |
| " <td>2016-01-03 21:05:38.392000000</td>\n", | |
| " <td>64.752550</td>\n", | |
| " <td>2016-01-07 08:55:43.692000000</td>\n", | |
| " <td>57.467295</td>\n", | |
| " <td>2016-01-11 00:45:28.706000000</td>\n", | |
| " <td>57.467295</td>\n", | |
| " <td>2016-01-11 00:54:13.579000000</td>\n", | |
| " <td>57.467295</td>\n", | |
| " <td>2016-01-20 19:54:46.166000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>8</th>\n", | |
| " <td>C9D51293-BD58-F113-4167-A7C0BAFCB6E5</td>\n", | |
| " <td>66.595568</td>\n", | |
| " <td>2015-12-25 02:29:28.415000000</td>\n", | |
| " <td>52.916454</td>\n", | |
| " <td>2015-12-31 01:42:30.046000000</td>\n", | |
| " <td>48.344809</td>\n", | |
| " <td>2016-01-05 23:34:02.180000000</td>\n", | |
| " <td>47.444809</td>\n", | |
| " <td>2016-01-02 07:48:42.517000000</td>\n", | |
| " <td>37.955847</td>\n", | |
| " <td>2016-01-03 21:27:04.266000000</td>\n", | |
| " <td>37.955847</td>\n", | |
| " <td>2016-01-19 15:24:31.060000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>...</th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2308</th>\n", | |
| " <td>EFDA9F93-D0C3-864F-B0F6-2E9AA3E05E31</td>\n", | |
| " <td>71.481182</td>\n", | |
| " <td>2015-10-03 09:04:46.358000000</td>\n", | |
| " <td>70.981182</td>\n", | |
| " <td>2015-10-06 03:57:28.420000000</td>\n", | |
| " <td>64.603064</td>\n", | |
| " <td>2015-10-12 07:58:25.081000000</td>\n", | |
| " <td>63.703064</td>\n", | |
| " <td>2015-10-17 07:59:49.005000000</td>\n", | |
| " <td>50.962451</td>\n", | |
| " <td>2015-10-18 02:29:34.374000000</td>\n", | |
| " <td>45.866206</td>\n", | |
| " <td>2015-10-27 00:21:47.208000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2309</th>\n", | |
| " <td>6D2AB78F-44F4-2E8B-5C5E-B79119BC7EAC</td>\n", | |
| " <td>82.640274</td>\n", | |
| " <td>2015-10-01 23:25:20.529000000</td>\n", | |
| " <td>65.752219</td>\n", | |
| " <td>2015-10-05 02:06:11.522000000</td>\n", | |
| " <td>53.341775</td>\n", | |
| " <td>2015-10-22 23:58:36.426000000</td>\n", | |
| " <td>47.197598</td>\n", | |
| " <td>2015-10-16 12:32:56.809000000</td>\n", | |
| " <td>47.197598</td>\n", | |
| " <td>2015-10-24 12:16:54.993000000</td>\n", | |
| " <td>37.758078</td>\n", | |
| " <td>2015-10-26 10:34:41.293000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2311</th>\n", | |
| " <td>DE88902E-C7A7-E37A-CFA7-F2C8F2D219F2</td>\n", | |
| " <td>75.367870</td>\n", | |
| " <td>2015-11-29 02:43:27.932000000</td>\n", | |
| " <td>59.934296</td>\n", | |
| " <td>2015-12-03 05:30:39.218000000</td>\n", | |
| " <td>48.687437</td>\n", | |
| " <td>2015-12-09 15:56:44.895000000</td>\n", | |
| " <td>43.008693</td>\n", | |
| " <td>2015-12-13 06:18:01.342000000</td>\n", | |
| " <td>38.707824</td>\n", | |
| " <td>2015-12-20 02:39:39.248000000</td>\n", | |
| " <td>38.707824</td>\n", | |
| " <td>2015-12-22 13:34:42.931000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2312</th>\n", | |
| " <td>EFDA9F93-D0C3-864F-B0F6-2E9AA3E05E31</td>\n", | |
| " <td>73.269463</td>\n", | |
| " <td>2015-10-20 08:09:27.418000000</td>\n", | |
| " <td>58.255570</td>\n", | |
| " <td>2015-11-18 19:07:06.930000000</td>\n", | |
| " <td>58.955570</td>\n", | |
| " <td>2015-12-10 08:54:54.871000000</td>\n", | |
| " <td>52.250013</td>\n", | |
| " <td>2015-11-23 19:40:00.434000000</td>\n", | |
| " <td>41.800010</td>\n", | |
| " <td>2015-11-29 14:23:43.659000000</td>\n", | |
| " <td>41.800010</td>\n", | |
| " <td>2015-12-04 09:56:07.156000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2314</th>\n", | |
| " <td>DDE0526B-7DA4-80E8-C2A6-D097F3826029</td>\n", | |
| " <td>80.318105</td>\n", | |
| " <td>2015-10-04 09:46:03.403000000</td>\n", | |
| " <td>79.818105</td>\n", | |
| " <td>2015-10-06 10:28:30.820000000</td>\n", | |
| " <td>64.594484</td>\n", | |
| " <td>2015-10-13 17:06:29.179000000</td>\n", | |
| " <td>50.955587</td>\n", | |
| " <td>2015-10-06 16:18:35.513000000</td>\n", | |
| " <td>40.764470</td>\n", | |
| " <td>2015-10-23 17:03:26.939000000</td>\n", | |
| " <td>40.764470</td>\n", | |
| " <td>2015-10-26 15:56:55.460000000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>1256 rows × 13 columns</p>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e4b6b4bb-e700-45b5-8d26-dc414bbd3346')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-e4b6b4bb-e700-45b5-8d26-dc414bbd3346 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-e4b6b4bb-e700-45b5-8d26-dc414bbd3346');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " student_id ... assignment6_submission\n", | |
| "0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 ... 2015-11-22 18:31:15.934000000\n", | |
| "1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 ... 2015-12-21 17:07:24.275000000\n", | |
| "4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 ... 2016-01-05 01:06:59.546000000\n", | |
| "5 D09000A0-827B-C0FF-3433-BF8FF286E15B ... 2016-01-20 19:54:46.166000000\n", | |
| "8 C9D51293-BD58-F113-4167-A7C0BAFCB6E5 ... 2016-01-19 15:24:31.060000000\n", | |
| "... ... ... ...\n", | |
| "2308 EFDA9F93-D0C3-864F-B0F6-2E9AA3E05E31 ... 2015-10-27 00:21:47.208000000\n", | |
| "2309 6D2AB78F-44F4-2E8B-5C5E-B79119BC7EAC ... 2015-10-26 10:34:41.293000000\n", | |
| "2311 DE88902E-C7A7-E37A-CFA7-F2C8F2D219F2 ... 2015-12-22 13:34:42.931000000\n", | |
| "2312 EFDA9F93-D0C3-864F-B0F6-2E9AA3E05E31 ... 2015-12-04 09:56:07.156000000\n", | |
| "2314 DDE0526B-7DA4-80E8-C2A6-D097F3826029 ... 2015-10-26 15:56:55.460000000\n", | |
| "\n", | |
| "[1256 rows x 13 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 14 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "c8pO5nr8R0aW", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 1000 | |
| }, | |
| "outputId": "7d533f72-97ef-4482-dd39-7c1d89b1086e" | |
| }, | |
| "source": [ | |
| "late = df[df['assignment1_submission'] > '2015-12-31']\n", | |
| "late" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-5756dcc2-65c1-48ba-b1bf-baf1f69faeb4\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>student_id</th>\n", | |
| " <th>assignment1_grade</th>\n", | |
| " <th>assignment1_submission</th>\n", | |
| " <th>assignment2_grade</th>\n", | |
| " <th>assignment2_submission</th>\n", | |
| " <th>assignment3_grade</th>\n", | |
| " <th>assignment3_submission</th>\n", | |
| " <th>assignment4_grade</th>\n", | |
| " <th>assignment4_submission</th>\n", | |
| " <th>assignment5_grade</th>\n", | |
| " <th>assignment5_submission</th>\n", | |
| " <th>assignment6_grade</th>\n", | |
| " <th>assignment6_submission</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>D0F62040-CEB0-904C-F563-2F8620916C4E</td>\n", | |
| " <td>85.512541</td>\n", | |
| " <td>2016-01-09 05:36:02.389000000</td>\n", | |
| " <td>85.512541</td>\n", | |
| " <td>2016-01-09 06:39:44.416000000</td>\n", | |
| " <td>68.410033</td>\n", | |
| " <td>2016-01-15 20:22:45.882000000</td>\n", | |
| " <td>54.728026</td>\n", | |
| " <td>2016-01-11 12:41:50.749000000</td>\n", | |
| " <td>49.255224</td>\n", | |
| " <td>2016-01-11 17:31:12.489000000</td>\n", | |
| " <td>44.329701</td>\n", | |
| " <td>2016-01-17 16:24:42.765000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</td>\n", | |
| " <td>86.030665</td>\n", | |
| " <td>2016-04-30 06:50:39.801000000</td>\n", | |
| " <td>68.824532</td>\n", | |
| " <td>2016-04-30 17:20:38.727000000</td>\n", | |
| " <td>61.942079</td>\n", | |
| " <td>2016-05-12 07:47:16.326000000</td>\n", | |
| " <td>49.553663</td>\n", | |
| " <td>2016-05-07 16:09:20.485000000</td>\n", | |
| " <td>49.553663</td>\n", | |
| " <td>2016-05-24 12:51:18.016000000</td>\n", | |
| " <td>44.598297</td>\n", | |
| " <td>2016-05-26 08:09:12.058000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>6</th>\n", | |
| " <td>3217BE3F-E4B0-C3B6-9F64-462456819CE4</td>\n", | |
| " <td>87.498744</td>\n", | |
| " <td>2016-03-05 11:05:25.408000000</td>\n", | |
| " <td>69.998995</td>\n", | |
| " <td>2016-03-09 07:29:52.405000000</td>\n", | |
| " <td>55.999196</td>\n", | |
| " <td>2016-03-16 22:31:24.316000000</td>\n", | |
| " <td>50.399276</td>\n", | |
| " <td>2016-03-18 07:19:26.032000000</td>\n", | |
| " <td>45.359349</td>\n", | |
| " <td>2016-03-19 10:35:41.869000000</td>\n", | |
| " <td>45.359349</td>\n", | |
| " <td>2016-03-23 14:02:00.987000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>7</th>\n", | |
| " <td>F1CB5AA1-B3DE-5460-FAFF-BE951FD38B5F</td>\n", | |
| " <td>80.576090</td>\n", | |
| " <td>2016-01-24 18:24:25.619000000</td>\n", | |
| " <td>72.518481</td>\n", | |
| " <td>2016-01-27 13:37:12.943000000</td>\n", | |
| " <td>65.266633</td>\n", | |
| " <td>2016-01-30 14:34:36.581000000</td>\n", | |
| " <td>65.266633</td>\n", | |
| " <td>2016-02-03 22:08:49.002000000</td>\n", | |
| " <td>65.266633</td>\n", | |
| " <td>2016-02-16 14:22:23.664000000</td>\n", | |
| " <td>65.266633</td>\n", | |
| " <td>2016-02-18 08:35:04.796000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>9</th>\n", | |
| " <td>E2C617C2-4654-622C-AB50-1550C4BE42A0</td>\n", | |
| " <td>59.270882</td>\n", | |
| " <td>2016-03-06 12:06:26.185000000</td>\n", | |
| " <td>59.270882</td>\n", | |
| " <td>2016-03-13 02:07:25.289000000</td>\n", | |
| " <td>53.343794</td>\n", | |
| " <td>2016-03-17 07:30:09.241000000</td>\n", | |
| " <td>53.343794</td>\n", | |
| " <td>2016-03-20 21:45:56.229000000</td>\n", | |
| " <td>42.675035</td>\n", | |
| " <td>2016-03-27 15:55:04.414000000</td>\n", | |
| " <td>38.407532</td>\n", | |
| " <td>2016-03-30 20:33:13.554000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>...</th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2303</th>\n", | |
| " <td>DDE0526B-7DA4-80E8-C2A6-D097F3826029</td>\n", | |
| " <td>97.215052</td>\n", | |
| " <td>2016-01-23 09:19:40.494000000</td>\n", | |
| " <td>77.772041</td>\n", | |
| " <td>2016-01-26 08:38:13.085000000</td>\n", | |
| " <td>69.994837</td>\n", | |
| " <td>2016-01-29 15:04:34.705000000</td>\n", | |
| " <td>62.995353</td>\n", | |
| " <td>2016-02-06 12:51:00.647000000</td>\n", | |
| " <td>50.396283</td>\n", | |
| " <td>2016-02-11 15:44:08.113000000</td>\n", | |
| " <td>50.396283</td>\n", | |
| " <td>2016-02-14 09:03:33.466000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2306</th>\n", | |
| " <td>DDE0526B-7DA4-80E8-C2A6-D097F3826029</td>\n", | |
| " <td>47.696703</td>\n", | |
| " <td>2016-06-22 20:21:58.182000000</td>\n", | |
| " <td>38.157363</td>\n", | |
| " <td>2016-06-23 18:22:45.622000000</td>\n", | |
| " <td>38.157363</td>\n", | |
| " <td>2016-07-02 22:18:59.529000000</td>\n", | |
| " <td>30.525890</td>\n", | |
| " <td>2016-06-28 22:05:38.100000000</td>\n", | |
| " <td>30.525890</td>\n", | |
| " <td>2016-07-09 20:08:14.734000000</td>\n", | |
| " <td>30.525890</td>\n", | |
| " <td>2016-07-17 15:17:58.502000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2307</th>\n", | |
| " <td>1F51E050-78F7-F270-1B90-ED1BC0376763</td>\n", | |
| " <td>94.595758</td>\n", | |
| " <td>2016-01-20 23:22:16.592000000</td>\n", | |
| " <td>85.136182</td>\n", | |
| " <td>2016-01-27 22:30:29.914000000</td>\n", | |
| " <td>76.622564</td>\n", | |
| " <td>2016-01-31 15:39:45.088000000</td>\n", | |
| " <td>68.960307</td>\n", | |
| " <td>2016-02-06 21:43:05.836000000</td>\n", | |
| " <td>62.064277</td>\n", | |
| " <td>2016-02-14 18:52:48.594000000</td>\n", | |
| " <td>49.651421</td>\n", | |
| " <td>2016-02-19 20:36:16.121000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2310</th>\n", | |
| " <td>DE88902E-C7A7-E37A-CFA7-F2C8F2D219F2</td>\n", | |
| " <td>77.684611</td>\n", | |
| " <td>2016-03-07 02:52:24.378000000</td>\n", | |
| " <td>69.916150</td>\n", | |
| " <td>2016-03-11 22:02:39.161000000</td>\n", | |
| " <td>69.916150</td>\n", | |
| " <td>2016-03-17 07:30:09.261000000</td>\n", | |
| " <td>69.916150</td>\n", | |
| " <td>2016-03-18 18:01:24.525000000</td>\n", | |
| " <td>55.932920</td>\n", | |
| " <td>2016-03-20 06:38:12.120000000</td>\n", | |
| " <td>50.339628</td>\n", | |
| " <td>2016-03-25 11:00:06.923000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2313</th>\n", | |
| " <td>1F51E050-78F7-F270-1B90-ED1BC0376763</td>\n", | |
| " <td>87.268366</td>\n", | |
| " <td>2016-04-03 09:04:51.646000000</td>\n", | |
| " <td>87.268366</td>\n", | |
| " <td>2016-04-08 19:24:29.095000000</td>\n", | |
| " <td>87.268366</td>\n", | |
| " <td>2016-04-12 05:43:33.853000000</td>\n", | |
| " <td>69.814693</td>\n", | |
| " <td>2016-04-14 10:43:58.104000000</td>\n", | |
| " <td>55.851754</td>\n", | |
| " <td>2016-04-19 05:37:19.322000000</td>\n", | |
| " <td>55.851754</td>\n", | |
| " <td>2016-04-23 03:44:06.813000000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>1059 rows × 13 columns</p>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5756dcc2-65c1-48ba-b1bf-baf1f69faeb4')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-5756dcc2-65c1-48ba-b1bf-baf1f69faeb4 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-5756dcc2-65c1-48ba-b1bf-baf1f69faeb4');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " student_id ... assignment6_submission\n", | |
| "2 D0F62040-CEB0-904C-F563-2F8620916C4E ... 2016-01-17 16:24:42.765000000\n", | |
| "3 FFDF2B2C-F514-EF7F-6538-A6A53518E9DC ... 2016-05-26 08:09:12.058000000\n", | |
| "6 3217BE3F-E4B0-C3B6-9F64-462456819CE4 ... 2016-03-23 14:02:00.987000000\n", | |
| "7 F1CB5AA1-B3DE-5460-FAFF-BE951FD38B5F ... 2016-02-18 08:35:04.796000000\n", | |
| "9 E2C617C2-4654-622C-AB50-1550C4BE42A0 ... 2016-03-30 20:33:13.554000000\n", | |
| "... ... ... ...\n", | |
| "2303 DDE0526B-7DA4-80E8-C2A6-D097F3826029 ... 2016-02-14 09:03:33.466000000\n", | |
| "2306 DDE0526B-7DA4-80E8-C2A6-D097F3826029 ... 2016-07-17 15:17:58.502000000\n", | |
| "2307 1F51E050-78F7-F270-1B90-ED1BC0376763 ... 2016-02-19 20:36:16.121000000\n", | |
| "2310 DE88902E-C7A7-E37A-CFA7-F2C8F2D219F2 ... 2016-03-25 11:00:06.923000000\n", | |
| "2313 1F51E050-78F7-F270-1B90-ED1BC0376763 ... 2016-04-23 03:44:06.813000000\n", | |
| "\n", | |
| "[1059 rows x 13 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 15 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "QisV4szPSTGV", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "a70722a7-2f3a-4a62-bcaf-cd211a1055d8" | |
| }, | |
| "source": [ | |
| "early.mean()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stderr", | |
| "text": [ | |
| "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", | |
| " \"\"\"Entry point for launching an IPython kernel.\n" | |
| ] | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "assignment1_grade 74.972741\n", | |
| "assignment2_grade 67.252190\n", | |
| "assignment3_grade 61.129050\n", | |
| "assignment4_grade 54.157620\n", | |
| "assignment5_grade 48.634643\n", | |
| "assignment6_grade 43.838980\n", | |
| "dtype: float64" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 16 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "pofudLPxS4GQ", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "024e74bd-a300-446c-cb93-e712a365f24a" | |
| }, | |
| "source": [ | |
| "late.mean()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stderr", | |
| "text": [ | |
| "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", | |
| " \"\"\"Entry point for launching an IPython kernel.\n" | |
| ] | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "assignment1_grade 74.017429\n", | |
| "assignment2_grade 66.370822\n", | |
| "assignment3_grade 60.023244\n", | |
| "assignment4_grade 54.058138\n", | |
| "assignment5_grade 48.599402\n", | |
| "assignment6_grade 43.844384\n", | |
| "dtype: float64" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 17 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "8fC6kM88UBhv" | |
| }, | |
| "source": [ | |
| "early.reset_index(drop=True)\n" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "_u6z92L6WpGQ", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 565 | |
| }, | |
| "outputId": "ffa4254e-d6d2-4292-de3f-7d13a0388519" | |
| }, | |
| "source": [ | |
| "# ¿Cuanto fue la nota promedio por estudiante?\n", | |
| "df['assignment_mean'] = df.mean(axis=1)\n", | |
| "df.head()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stderr", | |
| "text": [ | |
| "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", | |
| " \n" | |
| ] | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-7177ad01-7871-4488-99e5-111f1580670b\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>student_id</th>\n", | |
| " <th>assignment1_grade</th>\n", | |
| " <th>assignment1_submission</th>\n", | |
| " <th>assignment2_grade</th>\n", | |
| " <th>assignment2_submission</th>\n", | |
| " <th>assignment3_grade</th>\n", | |
| " <th>assignment3_submission</th>\n", | |
| " <th>assignment4_grade</th>\n", | |
| " <th>assignment4_submission</th>\n", | |
| " <th>assignment5_grade</th>\n", | |
| " <th>assignment5_submission</th>\n", | |
| " <th>assignment6_grade</th>\n", | |
| " <th>assignment6_submission</th>\n", | |
| " <th>assignment_mean</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n", | |
| " <td>92.733946</td>\n", | |
| " <td>2015-11-02 06:55:34.282000000</td>\n", | |
| " <td>83.030552</td>\n", | |
| " <td>2015-11-09 02:22:58.938000000</td>\n", | |
| " <td>67.164441</td>\n", | |
| " <td>2015-11-12 08:58:33.998000000</td>\n", | |
| " <td>53.011553</td>\n", | |
| " <td>2015-11-16 01:21:24.663000000</td>\n", | |
| " <td>47.710398</td>\n", | |
| " <td>2015-11-20 13:24:59.692000000</td>\n", | |
| " <td>38.168318</td>\n", | |
| " <td>2015-11-22 18:31:15.934000000</td>\n", | |
| " <td>63.636535</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n", | |
| " <td>86.790821</td>\n", | |
| " <td>2015-11-29 14:57:44.429000000</td>\n", | |
| " <td>86.290821</td>\n", | |
| " <td>2015-12-06 17:41:18.449000000</td>\n", | |
| " <td>69.772657</td>\n", | |
| " <td>2015-12-10 08:54:55.904000000</td>\n", | |
| " <td>55.098125</td>\n", | |
| " <td>2015-12-13 17:32:30.941000000</td>\n", | |
| " <td>49.588313</td>\n", | |
| " <td>2015-12-19 23:26:39.285000000</td>\n", | |
| " <td>44.629482</td>\n", | |
| " <td>2015-12-21 17:07:24.275000000</td>\n", | |
| " <td>65.361703</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>D0F62040-CEB0-904C-F563-2F8620916C4E</td>\n", | |
| " <td>85.512541</td>\n", | |
| " <td>2016-01-09 05:36:02.389000000</td>\n", | |
| " <td>85.512541</td>\n", | |
| " <td>2016-01-09 06:39:44.416000000</td>\n", | |
| " <td>68.410033</td>\n", | |
| " <td>2016-01-15 20:22:45.882000000</td>\n", | |
| " <td>54.728026</td>\n", | |
| " <td>2016-01-11 12:41:50.749000000</td>\n", | |
| " <td>49.255224</td>\n", | |
| " <td>2016-01-11 17:31:12.489000000</td>\n", | |
| " <td>44.329701</td>\n", | |
| " <td>2016-01-17 16:24:42.765000000</td>\n", | |
| " <td>64.624678</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</td>\n", | |
| " <td>86.030665</td>\n", | |
| " <td>2016-04-30 06:50:39.801000000</td>\n", | |
| " <td>68.824532</td>\n", | |
| " <td>2016-04-30 17:20:38.727000000</td>\n", | |
| " <td>61.942079</td>\n", | |
| " <td>2016-05-12 07:47:16.326000000</td>\n", | |
| " <td>49.553663</td>\n", | |
| " <td>2016-05-07 16:09:20.485000000</td>\n", | |
| " <td>49.553663</td>\n", | |
| " <td>2016-05-24 12:51:18.016000000</td>\n", | |
| " <td>44.598297</td>\n", | |
| " <td>2016-05-26 08:09:12.058000000</td>\n", | |
| " <td>60.083816</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n", | |
| " <td>64.813800</td>\n", | |
| " <td>2015-12-13 17:06:10.750000000</td>\n", | |
| " <td>51.491040</td>\n", | |
| " <td>2015-12-14 12:25:12.056000000</td>\n", | |
| " <td>41.932832</td>\n", | |
| " <td>2015-12-29 14:25:22.594000000</td>\n", | |
| " <td>36.929549</td>\n", | |
| " <td>2015-12-28 01:29:55.901000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2015-12-29 14:46:06.628000000</td>\n", | |
| " <td>33.236594</td>\n", | |
| " <td>2016-01-05 01:06:59.546000000</td>\n", | |
| " <td>43.606735</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-7177ad01-7871-4488-99e5-111f1580670b')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-7177ad01-7871-4488-99e5-111f1580670b button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-7177ad01-7871-4488-99e5-111f1580670b');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " student_id ... assignment_mean\n", | |
| "0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 ... 63.636535\n", | |
| "1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 ... 65.361703\n", | |
| "2 D0F62040-CEB0-904C-F563-2F8620916C4E ... 64.624678\n", | |
| "3 FFDF2B2C-F514-EF7F-6538-A6A53518E9DC ... 60.083816\n", | |
| "4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 ... 43.606735\n", | |
| "\n", | |
| "[5 rows x 14 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 20 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df['assignment_mean'].mean()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "esxMIL6aBl3P", | |
| "outputId": "b3e16c65-06ba-4189-f4cf-885ab64e1e5d" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "58.09667041068115" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 21 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df.mean()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "id": "RL9jW110D_Wk", | |
| "outputId": "3116b5b3-f72e-4bbb-b6c0-73b68d19f2e5" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stderr", | |
| "text": [ | |
| "/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n", | |
| " \"\"\"Entry point for launching an IPython kernel.\n" | |
| ] | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "assignment1_grade 74.535732\n", | |
| "assignment2_grade 66.849007\n", | |
| "assignment3_grade 60.623197\n", | |
| "assignment4_grade 54.112112\n", | |
| "assignment5_grade 48.618522\n", | |
| "assignment6_grade 43.841452\n", | |
| "assignment_mean 58.096670\n", | |
| "dtype: float64" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 22 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df.describe()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 300 | |
| }, | |
| "id": "kw0-TTX2E4aL", | |
| "outputId": "918240a2-f754-45ea-c2cc-7a5943a2900b" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-8b59847a-5504-4b1c-8590-e18b5467099a\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>assignment1_grade</th>\n", | |
| " <th>assignment2_grade</th>\n", | |
| " <th>assignment3_grade</th>\n", | |
| " <th>assignment4_grade</th>\n", | |
| " <th>assignment5_grade</th>\n", | |
| " <th>assignment6_grade</th>\n", | |
| " <th>assignment_mean</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>count</th>\n", | |
| " <td>2315.000000</td>\n", | |
| " <td>2315.000000</td>\n", | |
| " <td>2315.000000</td>\n", | |
| " <td>2315.000000</td>\n", | |
| " <td>2315.000000</td>\n", | |
| " <td>2315.000000</td>\n", | |
| " <td>2315.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>mean</th>\n", | |
| " <td>74.535732</td>\n", | |
| " <td>66.849007</td>\n", | |
| " <td>60.623197</td>\n", | |
| " <td>54.112112</td>\n", | |
| " <td>48.618522</td>\n", | |
| " <td>43.841452</td>\n", | |
| " <td>58.096670</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>std</th>\n", | |
| " <td>16.353252</td>\n", | |
| " <td>15.959210</td>\n", | |
| " <td>15.492469</td>\n", | |
| " <td>14.687431</td>\n", | |
| " <td>13.927054</td>\n", | |
| " <td>13.259413</td>\n", | |
| " <td>14.058527</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>min</th>\n", | |
| " <td>14.423297</td>\n", | |
| " <td>12.980967</td>\n", | |
| " <td>12.307682</td>\n", | |
| " <td>9.126146</td>\n", | |
| " <td>8.213531</td>\n", | |
| " <td>7.392178</td>\n", | |
| " <td>11.076457</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>25%</th>\n", | |
| " <td>63.670100</td>\n", | |
| " <td>56.127794</td>\n", | |
| " <td>49.866390</td>\n", | |
| " <td>43.852636</td>\n", | |
| " <td>38.859619</td>\n", | |
| " <td>34.828619</td>\n", | |
| " <td>48.530166</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>50%</th>\n", | |
| " <td>77.208365</td>\n", | |
| " <td>68.142124</td>\n", | |
| " <td>61.307206</td>\n", | |
| " <td>54.442888</td>\n", | |
| " <td>48.681165</td>\n", | |
| " <td>43.172442</td>\n", | |
| " <td>59.435131</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>75%</th>\n", | |
| " <td>87.502146</td>\n", | |
| " <td>78.310880</td>\n", | |
| " <td>71.292632</td>\n", | |
| " <td>63.789234</td>\n", | |
| " <td>57.662236</td>\n", | |
| " <td>52.086086</td>\n", | |
| " <td>68.150145</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>max</th>\n", | |
| " <td>100.695583</td>\n", | |
| " <td>99.936206</td>\n", | |
| " <td>99.655813</td>\n", | |
| " <td>98.755813</td>\n", | |
| " <td>97.571739</td>\n", | |
| " <td>97.571739</td>\n", | |
| " <td>97.571739</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-8b59847a-5504-4b1c-8590-e18b5467099a')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-8b59847a-5504-4b1c-8590-e18b5467099a button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-8b59847a-5504-4b1c-8590-e18b5467099a');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " assignment1_grade assignment2_grade ... assignment6_grade assignment_mean\n", | |
| "count 2315.000000 2315.000000 ... 2315.000000 2315.000000\n", | |
| "mean 74.535732 66.849007 ... 43.841452 58.096670\n", | |
| "std 16.353252 15.959210 ... 13.259413 14.058527\n", | |
| "min 14.423297 12.980967 ... 7.392178 11.076457\n", | |
| "25% 63.670100 56.127794 ... 34.828619 48.530166\n", | |
| "50% 77.208365 68.142124 ... 43.172442 59.435131\n", | |
| "75% 87.502146 78.310880 ... 52.086086 68.150145\n", | |
| "max 100.695583 99.936206 ... 97.571739 97.571739\n", | |
| "\n", | |
| "[8 rows x 7 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 23 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "idMIVniHjnKt" | |
| }, | |
| "source": [ | |
| "# ¿Cual fue el top 10 de estudiantes con mejor promedio?\n", | |
| "df.sort_values(by=['assignment_mean'], ascending=False).head(10)" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "" | |
| ], | |
| "metadata": { | |
| "id": "xH96NzXmEjdT" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# ¿Como calcular si el estudiante tiene un desempeño bajo, aceptable?" | |
| ], | |
| "metadata": { | |
| "id": "W2n4kjp0JXmg" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "def student_performance(value):\n", | |
| "\n", | |
| " if value <= 65:\n", | |
| " performance = 'bad performance'\n", | |
| "\n", | |
| " elif value >= 65 and value <= 85:\n", | |
| "\n", | |
| " performance = 'acceptable performance'\n", | |
| "\n", | |
| " elif value > 85:\n", | |
| "\n", | |
| " performance = 'good performance'\n", | |
| " \n", | |
| " return performance\n", | |
| "\n", | |
| "student_performance(88)\n" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 35 | |
| }, | |
| "id": "7VVP-on8HHFh", | |
| "outputId": "fccd281d-7d44-4f89-bede-1cfd72778609" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "application/vnd.google.colaboratory.intrinsic+json": { | |
| "type": "string" | |
| }, | |
| "text/plain": [ | |
| "'good performance'" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 27 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df['performance']=df['assignment_mean'].apply(student_performance)" | |
| ], | |
| "metadata": { | |
| "id": "b82IMcYoHv5y" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df" | |
| ], | |
| "metadata": { | |
| "id": "Dd1U5PQHIS-I" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "tArB1aULCQdP" | |
| }, | |
| "source": [ | |
| "df.head()" | |
| ], | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df4 = pd.read_excel('census.xlsx')\n" | |
| ], | |
| "metadata": { | |
| "id": "4T5ZZSDzNWpJ" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df4[df4['SUMLEV']==50]\n", | |
| "df4" | |
| ], | |
| "metadata": { | |
| "id": "AQfiimb0SnKa", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 644 | |
| }, | |
| "outputId": "da03cff9-6e13-4bed-c250-d318bdf00e5f" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-212cfecc-a27f-415e-958a-3fe13755921b\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>SUMLEV</th>\n", | |
| " <th>REGION</th>\n", | |
| " <th>DIVISION</th>\n", | |
| " <th>STATE</th>\n", | |
| " <th>COUNTY</th>\n", | |
| " <th>STNAME</th>\n", | |
| " <th>CTYNAME</th>\n", | |
| " <th>CENSUS2010POP</th>\n", | |
| " <th>ESTIMATESBASE2010</th>\n", | |
| " <th>POPESTIMATE2010</th>\n", | |
| " <th>POPESTIMATE2011</th>\n", | |
| " <th>POPESTIMATE2012</th>\n", | |
| " <th>POPESTIMATE2013</th>\n", | |
| " <th>POPESTIMATE2014</th>\n", | |
| " <th>POPESTIMATE2015</th>\n", | |
| " <th>NPOPCHG_2010</th>\n", | |
| " <th>NPOPCHG_2011</th>\n", | |
| " <th>NPOPCHG_2012</th>\n", | |
| " <th>NPOPCHG_2013</th>\n", | |
| " <th>NPOPCHG_2014</th>\n", | |
| " <th>NPOPCHG_2015</th>\n", | |
| " <th>BIRTHS2010</th>\n", | |
| " <th>BIRTHS2011</th>\n", | |
| " <th>BIRTHS2012</th>\n", | |
| " <th>BIRTHS2013</th>\n", | |
| " <th>BIRTHS2014</th>\n", | |
| " <th>BIRTHS2015</th>\n", | |
| " <th>DEATHS2010</th>\n", | |
| " <th>DEATHS2011</th>\n", | |
| " <th>DEATHS2012</th>\n", | |
| " <th>DEATHS2013</th>\n", | |
| " <th>DEATHS2014</th>\n", | |
| " <th>DEATHS2015</th>\n", | |
| " <th>NATURALINC2010</th>\n", | |
| " <th>NATURALINC2011</th>\n", | |
| " <th>NATURALINC2012</th>\n", | |
| " <th>NATURALINC2013</th>\n", | |
| " <th>NATURALINC2014</th>\n", | |
| " <th>NATURALINC2015</th>\n", | |
| " <th>INTERNATIONALMIG2010</th>\n", | |
| " <th>...</th>\n", | |
| " <th>RESIDUAL2013</th>\n", | |
| " <th>RESIDUAL2014</th>\n", | |
| " <th>RESIDUAL2015</th>\n", | |
| " <th>GQESTIMATESBASE2010</th>\n", | |
| " <th>GQESTIMATES2010</th>\n", | |
| " <th>GQESTIMATES2011</th>\n", | |
| " <th>GQESTIMATES2012</th>\n", | |
| " <th>GQESTIMATES2013</th>\n", | |
| " <th>GQESTIMATES2014</th>\n", | |
| " <th>GQESTIMATES2015</th>\n", | |
| " <th>RBIRTH2011</th>\n", | |
| " <th>RBIRTH2012</th>\n", | |
| " <th>RBIRTH2013</th>\n", | |
| " <th>RBIRTH2014</th>\n", | |
| " <th>RBIRTH2015</th>\n", | |
| " <th>RDEATH2011</th>\n", | |
| " <th>RDEATH2012</th>\n", | |
| " <th>RDEATH2013</th>\n", | |
| " <th>RDEATH2014</th>\n", | |
| " <th>RDEATH2015</th>\n", | |
| " <th>RNATURALINC2011</th>\n", | |
| " <th>RNATURALINC2012</th>\n", | |
| " <th>RNATURALINC2013</th>\n", | |
| " <th>RNATURALINC2014</th>\n", | |
| " <th>RNATURALINC2015</th>\n", | |
| " <th>RINTERNATIONALMIG2011</th>\n", | |
| " <th>RINTERNATIONALMIG2012</th>\n", | |
| " <th>RINTERNATIONALMIG2013</th>\n", | |
| " <th>RINTERNATIONALMIG2014</th>\n", | |
| " <th>RINTERNATIONALMIG2015</th>\n", | |
| " <th>RDOMESTICMIG2011</th>\n", | |
| " <th>RDOMESTICMIG2012</th>\n", | |
| " <th>RDOMESTICMIG2013</th>\n", | |
| " <th>RDOMESTICMIG2014</th>\n", | |
| " <th>RDOMESTICMIG2015</th>\n", | |
| " <th>RNETMIG2011</th>\n", | |
| " <th>RNETMIG2012</th>\n", | |
| " <th>RNETMIG2013</th>\n", | |
| " <th>RNETMIG2014</th>\n", | |
| " <th>RNETMIG2015</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>40</td>\n", | |
| " <td>3</td>\n", | |
| " <td>6</td>\n", | |
| " <td>1</td>\n", | |
| " <td>0</td>\n", | |
| " <td>Alabama</td>\n", | |
| " <td>Alabama</td>\n", | |
| " <td>4779736</td>\n", | |
| " <td>4780127</td>\n", | |
| " <td>4785161</td>\n", | |
| " <td>4801108</td>\n", | |
| " <td>4816089</td>\n", | |
| " <td>4830533</td>\n", | |
| " <td>4846411</td>\n", | |
| " <td>4858979</td>\n", | |
| " <td>5034</td>\n", | |
| " <td>15947</td>\n", | |
| " <td>14981</td>\n", | |
| " <td>14444</td>\n", | |
| " <td>15878</td>\n", | |
| " <td>12568</td>\n", | |
| " <td>14226</td>\n", | |
| " <td>59689</td>\n", | |
| " <td>59062</td>\n", | |
| " <td>57938</td>\n", | |
| " <td>58334</td>\n", | |
| " <td>58305</td>\n", | |
| " <td>11089</td>\n", | |
| " <td>48811</td>\n", | |
| " <td>48357</td>\n", | |
| " <td>50843</td>\n", | |
| " <td>50228</td>\n", | |
| " <td>50330</td>\n", | |
| " <td>3137</td>\n", | |
| " <td>10878</td>\n", | |
| " <td>10705</td>\n", | |
| " <td>7095</td>\n", | |
| " <td>8106</td>\n", | |
| " <td>7975</td>\n", | |
| " <td>1357</td>\n", | |
| " <td>...</td>\n", | |
| " <td>677</td>\n", | |
| " <td>-573</td>\n", | |
| " <td>1135</td>\n", | |
| " <td>116185</td>\n", | |
| " <td>116212</td>\n", | |
| " <td>115560</td>\n", | |
| " <td>115666</td>\n", | |
| " <td>116963</td>\n", | |
| " <td>119088</td>\n", | |
| " <td>119599</td>\n", | |
| " <td>1.245302e+10</td>\n", | |
| " <td>12282580881</td>\n", | |
| " <td>1.201208e+10</td>\n", | |
| " <td>12056285538</td>\n", | |
| " <td>12014973123</td>\n", | |
| " <td>1.018352e+10</td>\n", | |
| " <td>1.005636e+10</td>\n", | |
| " <td>1.054110e+10</td>\n", | |
| " <td>1.038096e+10</td>\n", | |
| " <td>1.037156e+10</td>\n", | |
| " <td>2.269496e+10</td>\n", | |
| " <td>2.226220e+10</td>\n", | |
| " <td>1.470981e+10</td>\n", | |
| " <td>1.675322e+10</td>\n", | |
| " <td>1.643417e+10</td>\n", | |
| " <td>1.027720e+10</td>\n", | |
| " <td>1.019840e+10</td>\n", | |
| " <td>1.002216e+10</td>\n", | |
| " <td>1.142716e+10</td>\n", | |
| " <td>1.179963e+10</td>\n", | |
| " <td>2.294949e-03</td>\n", | |
| " <td>-1.931956e-01</td>\n", | |
| " <td>3.810660e-01</td>\n", | |
| " <td>5.820019e-01</td>\n", | |
| " <td>-4.673692e-01</td>\n", | |
| " <td>1.030015e+10</td>\n", | |
| " <td>8.266442e-01</td>\n", | |
| " <td>1.383282e+10</td>\n", | |
| " <td>1.724718e+10</td>\n", | |
| " <td>7.125937e-01</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>50</td>\n", | |
| " <td>3</td>\n", | |
| " <td>6</td>\n", | |
| " <td>1</td>\n", | |
| " <td>1</td>\n", | |
| " <td>Alabama</td>\n", | |
| " <td>Autauga County</td>\n", | |
| " <td>54571</td>\n", | |
| " <td>54571</td>\n", | |
| " <td>54660</td>\n", | |
| " <td>55253</td>\n", | |
| " <td>55175</td>\n", | |
| " <td>55038</td>\n", | |
| " <td>55290</td>\n", | |
| " <td>55347</td>\n", | |
| " <td>89</td>\n", | |
| " <td>593</td>\n", | |
| " <td>-78</td>\n", | |
| " <td>-137</td>\n", | |
| " <td>252</td>\n", | |
| " <td>57</td>\n", | |
| " <td>151</td>\n", | |
| " <td>636</td>\n", | |
| " <td>615</td>\n", | |
| " <td>574</td>\n", | |
| " <td>623</td>\n", | |
| " <td>600</td>\n", | |
| " <td>152</td>\n", | |
| " <td>507</td>\n", | |
| " <td>558</td>\n", | |
| " <td>583</td>\n", | |
| " <td>504</td>\n", | |
| " <td>467</td>\n", | |
| " <td>-1</td>\n", | |
| " <td>129</td>\n", | |
| " <td>57</td>\n", | |
| " <td>-9</td>\n", | |
| " <td>119</td>\n", | |
| " <td>133</td>\n", | |
| " <td>33</td>\n", | |
| " <td>...</td>\n", | |
| " <td>22</td>\n", | |
| " <td>-10</td>\n", | |
| " <td>45</td>\n", | |
| " <td>455</td>\n", | |
| " <td>455</td>\n", | |
| " <td>455</td>\n", | |
| " <td>455</td>\n", | |
| " <td>455</td>\n", | |
| " <td>455</td>\n", | |
| " <td>455</td>\n", | |
| " <td>1.157279e+10</td>\n", | |
| " <td>11138479371</td>\n", | |
| " <td>1.041619e+10</td>\n", | |
| " <td>11293597274</td>\n", | |
| " <td>10846281081</td>\n", | |
| " <td>9.225478e+10</td>\n", | |
| " <td>1.010613e+10</td>\n", | |
| " <td>1.057951e+10</td>\n", | |
| " <td>9.136393e+07</td>\n", | |
| " <td>8.442022e+10</td>\n", | |
| " <td>2.347311e+10</td>\n", | |
| " <td>1.032347e+10</td>\n", | |
| " <td>-1.633201e-01</td>\n", | |
| " <td>2.157204e+10</td>\n", | |
| " <td>2.404259e+09</td>\n", | |
| " <td>3.639242e-01</td>\n", | |
| " <td>2.897816e-01</td>\n", | |
| " <td>2.903469e-01</td>\n", | |
| " <td>3.262998e-01</td>\n", | |
| " <td>3.434656e-01</td>\n", | |
| " <td>7.242091e+10</td>\n", | |
| " <td>-2.915927e+08</td>\n", | |
| " <td>-3.012349e+09</td>\n", | |
| " <td>2.265971e+10</td>\n", | |
| " <td>-2.530799e+09</td>\n", | |
| " <td>7.606016e+10</td>\n", | |
| " <td>-2.626146e+09</td>\n", | |
| " <td>-2.722002e+09</td>\n", | |
| " <td>2.592270e+10</td>\n", | |
| " <td>-2.187333e+09</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>50</td>\n", | |
| " <td>3</td>\n", | |
| " <td>6</td>\n", | |
| " <td>1</td>\n", | |
| " <td>3</td>\n", | |
| " <td>Alabama</td>\n", | |
| " <td>Baldwin County</td>\n", | |
| " <td>182265</td>\n", | |
| " <td>182265</td>\n", | |
| " <td>183193</td>\n", | |
| " <td>186659</td>\n", | |
| " <td>190396</td>\n", | |
| " <td>195126</td>\n", | |
| " <td>199713</td>\n", | |
| " <td>203709</td>\n", | |
| " <td>928</td>\n", | |
| " <td>3466</td>\n", | |
| " <td>3737</td>\n", | |
| " <td>4730</td>\n", | |
| " <td>4587</td>\n", | |
| " <td>3996</td>\n", | |
| " <td>517</td>\n", | |
| " <td>2187</td>\n", | |
| " <td>2092</td>\n", | |
| " <td>2160</td>\n", | |
| " <td>2186</td>\n", | |
| " <td>2240</td>\n", | |
| " <td>532</td>\n", | |
| " <td>1825</td>\n", | |
| " <td>1879</td>\n", | |
| " <td>1902</td>\n", | |
| " <td>2044</td>\n", | |
| " <td>1992</td>\n", | |
| " <td>-15</td>\n", | |
| " <td>362</td>\n", | |
| " <td>213</td>\n", | |
| " <td>258</td>\n", | |
| " <td>142</td>\n", | |
| " <td>248</td>\n", | |
| " <td>69</td>\n", | |
| " <td>...</td>\n", | |
| " <td>91</td>\n", | |
| " <td>434</td>\n", | |
| " <td>58</td>\n", | |
| " <td>2307</td>\n", | |
| " <td>2307</td>\n", | |
| " <td>2307</td>\n", | |
| " <td>2249</td>\n", | |
| " <td>2304</td>\n", | |
| " <td>2308</td>\n", | |
| " <td>2309</td>\n", | |
| " <td>1.182635e+10</td>\n", | |
| " <td>1109652438</td>\n", | |
| " <td>1.120559e+10</td>\n", | |
| " <td>11072867675</td>\n", | |
| " <td>11104996753</td>\n", | |
| " <td>9.868812e+10</td>\n", | |
| " <td>9.966716e+10</td>\n", | |
| " <td>9.867141e+10</td>\n", | |
| " <td>1.035359e+10</td>\n", | |
| " <td>9.875515e+10</td>\n", | |
| " <td>1.957540e+10</td>\n", | |
| " <td>1.129809e+10</td>\n", | |
| " <td>1.338445e+10</td>\n", | |
| " <td>7.192805e-01</td>\n", | |
| " <td>1.229482e+10</td>\n", | |
| " <td>1.011215e+10</td>\n", | |
| " <td>9.123337e-01</td>\n", | |
| " <td>8.819211e-01</td>\n", | |
| " <td>1.073855e+10</td>\n", | |
| " <td>1.095627e+10</td>\n", | |
| " <td>1.483296e+10</td>\n", | |
| " <td>1.764729e+10</td>\n", | |
| " <td>2.184571e+10</td>\n", | |
| " <td>1.924329e+10</td>\n", | |
| " <td>1.719787e+10</td>\n", | |
| " <td>1.584418e+10</td>\n", | |
| " <td>1.855963e+09</td>\n", | |
| " <td>2.272763e+10</td>\n", | |
| " <td>2.031714e+10</td>\n", | |
| " <td>1.829350e+10</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>50</td>\n", | |
| " <td>3</td>\n", | |
| " <td>6</td>\n", | |
| " <td>1</td>\n", | |
| " <td>5</td>\n", | |
| " <td>Alabama</td>\n", | |
| " <td>Barbour County</td>\n", | |
| " <td>27457</td>\n", | |
| " <td>27457</td>\n", | |
| " <td>27341</td>\n", | |
| " <td>27226</td>\n", | |
| " <td>27159</td>\n", | |
| " <td>26973</td>\n", | |
| " <td>26815</td>\n", | |
| " <td>26489</td>\n", | |
| " <td>-116</td>\n", | |
| " <td>-115</td>\n", | |
| " <td>-67</td>\n", | |
| " <td>-186</td>\n", | |
| " <td>-158</td>\n", | |
| " <td>-326</td>\n", | |
| " <td>70</td>\n", | |
| " <td>335</td>\n", | |
| " <td>300</td>\n", | |
| " <td>283</td>\n", | |
| " <td>260</td>\n", | |
| " <td>269</td>\n", | |
| " <td>128</td>\n", | |
| " <td>319</td>\n", | |
| " <td>291</td>\n", | |
| " <td>294</td>\n", | |
| " <td>310</td>\n", | |
| " <td>309</td>\n", | |
| " <td>-58</td>\n", | |
| " <td>16</td>\n", | |
| " <td>9</td>\n", | |
| " <td>-11</td>\n", | |
| " <td>-50</td>\n", | |
| " <td>-40</td>\n", | |
| " <td>2</td>\n", | |
| " <td>...</td>\n", | |
| " <td>19</td>\n", | |
| " <td>-1</td>\n", | |
| " <td>-5</td>\n", | |
| " <td>3193</td>\n", | |
| " <td>3193</td>\n", | |
| " <td>3382</td>\n", | |
| " <td>3388</td>\n", | |
| " <td>3389</td>\n", | |
| " <td>3353</td>\n", | |
| " <td>3352</td>\n", | |
| " <td>1.227848e+10</td>\n", | |
| " <td>11032453802</td>\n", | |
| " <td>1.045592e+09</td>\n", | |
| " <td>96675838477</td>\n", | |
| " <td>10093051178</td>\n", | |
| " <td>1.169205e+10</td>\n", | |
| " <td>1.070148e+10</td>\n", | |
| " <td>1.086234e+10</td>\n", | |
| " <td>1.152673e+10</td>\n", | |
| " <td>1.159388e+10</td>\n", | |
| " <td>5.864350e-01</td>\n", | |
| " <td>3.309736e-01</td>\n", | |
| " <td>-4.064140e-01</td>\n", | |
| " <td>-1.859151e+08</td>\n", | |
| " <td>-1.500825e+09</td>\n", | |
| " <td>-1.466088e-01</td>\n", | |
| " <td>-2.574239e-01</td>\n", | |
| " <td>-1.108402e-01</td>\n", | |
| " <td>-7.436603e-02</td>\n", | |
| " <td>0.000000e+00</td>\n", | |
| " <td>-4.728132e+09</td>\n", | |
| " <td>-2.500690e+09</td>\n", | |
| " <td>-7.056824e+08</td>\n", | |
| " <td>-3.904217e+09</td>\n", | |
| " <td>-1.054330e+09</td>\n", | |
| " <td>-4.874741e+09</td>\n", | |
| " <td>-2.758113e+08</td>\n", | |
| " <td>-7.167664e+09</td>\n", | |
| " <td>-3.978583e+09</td>\n", | |
| " <td>-1.054330e+09</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>50</td>\n", | |
| " <td>3</td>\n", | |
| " <td>6</td>\n", | |
| " <td>1</td>\n", | |
| " <td>7</td>\n", | |
| " <td>Alabama</td>\n", | |
| " <td>Bibb County</td>\n", | |
| " <td>22915</td>\n", | |
| " <td>22919</td>\n", | |
| " <td>22861</td>\n", | |
| " <td>22733</td>\n", | |
| " <td>22642</td>\n", | |
| " <td>22512</td>\n", | |
| " <td>22549</td>\n", | |
| " <td>22583</td>\n", | |
| " <td>-58</td>\n", | |
| " <td>-128</td>\n", | |
| " <td>-91</td>\n", | |
| " <td>-130</td>\n", | |
| " <td>37</td>\n", | |
| " <td>34</td>\n", | |
| " <td>44</td>\n", | |
| " <td>266</td>\n", | |
| " <td>245</td>\n", | |
| " <td>259</td>\n", | |
| " <td>247</td>\n", | |
| " <td>253</td>\n", | |
| " <td>34</td>\n", | |
| " <td>278</td>\n", | |
| " <td>237</td>\n", | |
| " <td>281</td>\n", | |
| " <td>211</td>\n", | |
| " <td>223</td>\n", | |
| " <td>10</td>\n", | |
| " <td>-12</td>\n", | |
| " <td>8</td>\n", | |
| " <td>-22</td>\n", | |
| " <td>36</td>\n", | |
| " <td>30</td>\n", | |
| " <td>2</td>\n", | |
| " <td>...</td>\n", | |
| " <td>14</td>\n", | |
| " <td>-16</td>\n", | |
| " <td>-21</td>\n", | |
| " <td>2224</td>\n", | |
| " <td>2224</td>\n", | |
| " <td>2224</td>\n", | |
| " <td>2224</td>\n", | |
| " <td>2224</td>\n", | |
| " <td>2233</td>\n", | |
| " <td>2236</td>\n", | |
| " <td>1.166820e+10</td>\n", | |
| " <td>10798898072</td>\n", | |
| " <td>1.147185e+10</td>\n", | |
| " <td>10962916935</td>\n", | |
| " <td>1121155721</td>\n", | |
| " <td>1.219459e+10</td>\n", | |
| " <td>1.044628e+10</td>\n", | |
| " <td>1.244629e+10</td>\n", | |
| " <td>9.365083e+10</td>\n", | |
| " <td>9.882124e+10</td>\n", | |
| " <td>-5.263851e-01</td>\n", | |
| " <td>3.526171e-01</td>\n", | |
| " <td>-9.744430e-01</td>\n", | |
| " <td>1.597834e+10</td>\n", | |
| " <td>1.329434e+10</td>\n", | |
| " <td>4.386542e-01</td>\n", | |
| " <td>7.052342e-01</td>\n", | |
| " <td>7.972716e-01</td>\n", | |
| " <td>9.320699e-01</td>\n", | |
| " <td>9.306036e-01</td>\n", | |
| " <td>-5.527043e+09</td>\n", | |
| " <td>-5.068871e+09</td>\n", | |
| " <td>-6.201001e+09</td>\n", | |
| " <td>-1.775371e-01</td>\n", | |
| " <td>1.772578e-01</td>\n", | |
| " <td>-5.088389e+09</td>\n", | |
| " <td>-4.363636e+09</td>\n", | |
| " <td>-5.403729e+09</td>\n", | |
| " <td>7.545327e-01</td>\n", | |
| " <td>1.107861e+10</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>...</th>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " <td>...</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3188</th>\n", | |
| " <td>50</td>\n", | |
| " <td>4</td>\n", | |
| " <td>8</td>\n", | |
| " <td>56</td>\n", | |
| " <td>37</td>\n", | |
| " <td>Wyoming</td>\n", | |
| " <td>Sweetwater County</td>\n", | |
| " <td>43806</td>\n", | |
| " <td>43806</td>\n", | |
| " <td>43593</td>\n", | |
| " <td>44041</td>\n", | |
| " <td>45104</td>\n", | |
| " <td>45162</td>\n", | |
| " <td>44925</td>\n", | |
| " <td>44626</td>\n", | |
| " <td>-213</td>\n", | |
| " <td>448</td>\n", | |
| " <td>1063</td>\n", | |
| " <td>58</td>\n", | |
| " <td>-237</td>\n", | |
| " <td>-299</td>\n", | |
| " <td>167</td>\n", | |
| " <td>640</td>\n", | |
| " <td>595</td>\n", | |
| " <td>657</td>\n", | |
| " <td>629</td>\n", | |
| " <td>620</td>\n", | |
| " <td>76</td>\n", | |
| " <td>251</td>\n", | |
| " <td>273</td>\n", | |
| " <td>296</td>\n", | |
| " <td>246</td>\n", | |
| " <td>262</td>\n", | |
| " <td>91</td>\n", | |
| " <td>389</td>\n", | |
| " <td>322</td>\n", | |
| " <td>361</td>\n", | |
| " <td>383</td>\n", | |
| " <td>358</td>\n", | |
| " <td>5</td>\n", | |
| " <td>...</td>\n", | |
| " <td>-64</td>\n", | |
| " <td>14</td>\n", | |
| " <td>-27</td>\n", | |
| " <td>679</td>\n", | |
| " <td>679</td>\n", | |
| " <td>694</td>\n", | |
| " <td>697</td>\n", | |
| " <td>731</td>\n", | |
| " <td>671</td>\n", | |
| " <td>672</td>\n", | |
| " <td>1.460620e+10</td>\n", | |
| " <td>13349038084</td>\n", | |
| " <td>1.455698e+10</td>\n", | |
| " <td>13964278975</td>\n", | |
| " <td>13846858215</td>\n", | |
| " <td>5.728370e+10</td>\n", | |
| " <td>6.124853e+09</td>\n", | |
| " <td>6.558394e+10</td>\n", | |
| " <td>5.461387e+10</td>\n", | |
| " <td>5.851414e+10</td>\n", | |
| " <td>8.877833e+10</td>\n", | |
| " <td>7.224185e+10</td>\n", | |
| " <td>7.998582e+10</td>\n", | |
| " <td>8.502892e+10</td>\n", | |
| " <td>7.995444e+09</td>\n", | |
| " <td>1.825775e-01</td>\n", | |
| " <td>0.000000e+00</td>\n", | |
| " <td>4.431347e-02</td>\n", | |
| " <td>1.776061e-01</td>\n", | |
| " <td>1.786691e-01</td>\n", | |
| " <td>1.072643e+10</td>\n", | |
| " <td>1.624320e+10</td>\n", | |
| " <td>-5.339774e+09</td>\n", | |
| " <td>-1.425289e+09</td>\n", | |
| " <td>-1.424886e+09</td>\n", | |
| " <td>1.255221e+10</td>\n", | |
| " <td>1.624320e+10</td>\n", | |
| " <td>-5.295460e+09</td>\n", | |
| " <td>-1.407528e+09</td>\n", | |
| " <td>-1.407019e+09</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3189</th>\n", | |
| " <td>50</td>\n", | |
| " <td>4</td>\n", | |
| " <td>8</td>\n", | |
| " <td>56</td>\n", | |
| " <td>39</td>\n", | |
| " <td>Wyoming</td>\n", | |
| " <td>Teton County</td>\n", | |
| " <td>21294</td>\n", | |
| " <td>21294</td>\n", | |
| " <td>21297</td>\n", | |
| " <td>21482</td>\n", | |
| " <td>21697</td>\n", | |
| " <td>22347</td>\n", | |
| " <td>22905</td>\n", | |
| " <td>23125</td>\n", | |
| " <td>3</td>\n", | |
| " <td>185</td>\n", | |
| " <td>215</td>\n", | |
| " <td>650</td>\n", | |
| " <td>558</td>\n", | |
| " <td>220</td>\n", | |
| " <td>76</td>\n", | |
| " <td>259</td>\n", | |
| " <td>230</td>\n", | |
| " <td>261</td>\n", | |
| " <td>249</td>\n", | |
| " <td>269</td>\n", | |
| " <td>10</td>\n", | |
| " <td>87</td>\n", | |
| " <td>61</td>\n", | |
| " <td>97</td>\n", | |
| " <td>68</td>\n", | |
| " <td>76</td>\n", | |
| " <td>66</td>\n", | |
| " <td>172</td>\n", | |
| " <td>169</td>\n", | |
| " <td>164</td>\n", | |
| " <td>181</td>\n", | |
| " <td>193</td>\n", | |
| " <td>5</td>\n", | |
| " <td>...</td>\n", | |
| " <td>20</td>\n", | |
| " <td>8</td>\n", | |
| " <td>-8</td>\n", | |
| " <td>271</td>\n", | |
| " <td>271</td>\n", | |
| " <td>271</td>\n", | |
| " <td>270</td>\n", | |
| " <td>268</td>\n", | |
| " <td>268</td>\n", | |
| " <td>267</td>\n", | |
| " <td>1.210874e+10</td>\n", | |
| " <td>10653326849</td>\n", | |
| " <td>1.185178e+10</td>\n", | |
| " <td>11005038451</td>\n", | |
| " <td>11688029546</td>\n", | |
| " <td>4.067416e+10</td>\n", | |
| " <td>2.825448e+10</td>\n", | |
| " <td>4.404686e+10</td>\n", | |
| " <td>3.005392e+10</td>\n", | |
| " <td>3.302194e+10</td>\n", | |
| " <td>8.041329e+10</td>\n", | |
| " <td>7.827879e+10</td>\n", | |
| " <td>7.447098e+10</td>\n", | |
| " <td>7.999646e+10</td>\n", | |
| " <td>8.385835e+10</td>\n", | |
| " <td>2.244092e+10</td>\n", | |
| " <td>1.435883e+09</td>\n", | |
| " <td>1.634729e+10</td>\n", | |
| " <td>2.165650e+09</td>\n", | |
| " <td>2.085596e+10</td>\n", | |
| " <td>-1.589565e+09</td>\n", | |
| " <td>9.726951e-01</td>\n", | |
| " <td>1.952593e+10</td>\n", | |
| " <td>1.414302e+10</td>\n", | |
| " <td>-5.648490e-01</td>\n", | |
| " <td>6.545268e-01</td>\n", | |
| " <td>2.408578e+10</td>\n", | |
| " <td>2.116066e+10</td>\n", | |
| " <td>1.630867e+09</td>\n", | |
| " <td>1.520747e+10</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3190</th>\n", | |
| " <td>50</td>\n", | |
| " <td>4</td>\n", | |
| " <td>8</td>\n", | |
| " <td>56</td>\n", | |
| " <td>41</td>\n", | |
| " <td>Wyoming</td>\n", | |
| " <td>Uinta County</td>\n", | |
| " <td>21118</td>\n", | |
| " <td>21118</td>\n", | |
| " <td>21102</td>\n", | |
| " <td>20912</td>\n", | |
| " <td>20989</td>\n", | |
| " <td>21022</td>\n", | |
| " <td>20903</td>\n", | |
| " <td>20822</td>\n", | |
| " <td>-16</td>\n", | |
| " <td>-190</td>\n", | |
| " <td>77</td>\n", | |
| " <td>33</td>\n", | |
| " <td>-119</td>\n", | |
| " <td>-81</td>\n", | |
| " <td>73</td>\n", | |
| " <td>324</td>\n", | |
| " <td>311</td>\n", | |
| " <td>316</td>\n", | |
| " <td>316</td>\n", | |
| " <td>316</td>\n", | |
| " <td>49</td>\n", | |
| " <td>139</td>\n", | |
| " <td>115</td>\n", | |
| " <td>136</td>\n", | |
| " <td>130</td>\n", | |
| " <td>137</td>\n", | |
| " <td>24</td>\n", | |
| " <td>185</td>\n", | |
| " <td>196</td>\n", | |
| " <td>180</td>\n", | |
| " <td>186</td>\n", | |
| " <td>179</td>\n", | |
| " <td>2</td>\n", | |
| " <td>...</td>\n", | |
| " <td>11</td>\n", | |
| " <td>4</td>\n", | |
| " <td>3</td>\n", | |
| " <td>270</td>\n", | |
| " <td>270</td>\n", | |
| " <td>245</td>\n", | |
| " <td>236</td>\n", | |
| " <td>254</td>\n", | |
| " <td>254</td>\n", | |
| " <td>254</td>\n", | |
| " <td>1.542343e+10</td>\n", | |
| " <td>14844514451</td>\n", | |
| " <td>1.504368e+10</td>\n", | |
| " <td>15074537865</td>\n", | |
| " <td>15146794488</td>\n", | |
| " <td>6.616842e+09</td>\n", | |
| " <td>5.489129e+10</td>\n", | |
| " <td>6.474495e+10</td>\n", | |
| " <td>6.201550e+10</td>\n", | |
| " <td>6.566806e+10</td>\n", | |
| " <td>8.806588e+10</td>\n", | |
| " <td>9.355385e+09</td>\n", | |
| " <td>8.569184e+10</td>\n", | |
| " <td>8.872987e+10</td>\n", | |
| " <td>8.579988e+10</td>\n", | |
| " <td>-3.808254e-01</td>\n", | |
| " <td>-6.205103e-01</td>\n", | |
| " <td>-6.188855e-01</td>\n", | |
| " <td>-5.247466e-01</td>\n", | |
| " <td>-4.793289e-01</td>\n", | |
| " <td>-1.775599e+08</td>\n", | |
| " <td>-4.916350e+09</td>\n", | |
| " <td>-6.902954e+09</td>\n", | |
| " <td>-1.421586e+09</td>\n", | |
| " <td>-1.212702e+09</td>\n", | |
| " <td>-1.813681e+09</td>\n", | |
| " <td>-5.536861e+09</td>\n", | |
| " <td>-7.521840e+09</td>\n", | |
| " <td>-1.474061e+09</td>\n", | |
| " <td>-1.260635e+09</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3191</th>\n", | |
| " <td>50</td>\n", | |
| " <td>4</td>\n", | |
| " <td>8</td>\n", | |
| " <td>56</td>\n", | |
| " <td>43</td>\n", | |
| " <td>Wyoming</td>\n", | |
| " <td>Washakie County</td>\n", | |
| " <td>8533</td>\n", | |
| " <td>8533</td>\n", | |
| " <td>8545</td>\n", | |
| " <td>8469</td>\n", | |
| " <td>8443</td>\n", | |
| " <td>8443</td>\n", | |
| " <td>8316</td>\n", | |
| " <td>8328</td>\n", | |
| " <td>12</td>\n", | |
| " <td>-76</td>\n", | |
| " <td>-26</td>\n", | |
| " <td>0</td>\n", | |
| " <td>-127</td>\n", | |
| " <td>12</td>\n", | |
| " <td>26</td>\n", | |
| " <td>108</td>\n", | |
| " <td>90</td>\n", | |
| " <td>95</td>\n", | |
| " <td>96</td>\n", | |
| " <td>90</td>\n", | |
| " <td>34</td>\n", | |
| " <td>79</td>\n", | |
| " <td>105</td>\n", | |
| " <td>77</td>\n", | |
| " <td>70</td>\n", | |
| " <td>79</td>\n", | |
| " <td>-8</td>\n", | |
| " <td>29</td>\n", | |
| " <td>-15</td>\n", | |
| " <td>18</td>\n", | |
| " <td>26</td>\n", | |
| " <td>11</td>\n", | |
| " <td>1</td>\n", | |
| " <td>...</td>\n", | |
| " <td>1</td>\n", | |
| " <td>-2</td>\n", | |
| " <td>-11</td>\n", | |
| " <td>140</td>\n", | |
| " <td>140</td>\n", | |
| " <td>140</td>\n", | |
| " <td>140</td>\n", | |
| " <td>140</td>\n", | |
| " <td>140</td>\n", | |
| " <td>140</td>\n", | |
| " <td>1.269543e+10</td>\n", | |
| " <td>1064333018</td>\n", | |
| " <td>1.125192e+10</td>\n", | |
| " <td>11456530819</td>\n", | |
| " <td>10814708003</td>\n", | |
| " <td>9.286470e+10</td>\n", | |
| " <td>1.241722e+10</td>\n", | |
| " <td>9.119981e+10</td>\n", | |
| " <td>8.353720e+09</td>\n", | |
| " <td>9.492910e+10</td>\n", | |
| " <td>3.408957e+10</td>\n", | |
| " <td>-1.773888e+09</td>\n", | |
| " <td>2.131944e+10</td>\n", | |
| " <td>3.102810e+10</td>\n", | |
| " <td>1.321798e+10</td>\n", | |
| " <td>-3.526508e-01</td>\n", | |
| " <td>-3.547777e-01</td>\n", | |
| " <td>-2.368826e-01</td>\n", | |
| " <td>-2.386777e-01</td>\n", | |
| " <td>-2.403268e-01</td>\n", | |
| " <td>-1.163748e+09</td>\n", | |
| " <td>-8.278146e-01</td>\n", | |
| " <td>-2.013502e+08</td>\n", | |
| " <td>-1.778149e+09</td>\n", | |
| " <td>1.682288e+10</td>\n", | |
| " <td>-1.199013e+09</td>\n", | |
| " <td>-1.182592e+09</td>\n", | |
| " <td>-2.250385e+09</td>\n", | |
| " <td>-1.802017e+09</td>\n", | |
| " <td>1.441961e+10</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3192</th>\n", | |
| " <td>50</td>\n", | |
| " <td>4</td>\n", | |
| " <td>8</td>\n", | |
| " <td>56</td>\n", | |
| " <td>45</td>\n", | |
| " <td>Wyoming</td>\n", | |
| " <td>Weston County</td>\n", | |
| " <td>7208</td>\n", | |
| " <td>7208</td>\n", | |
| " <td>7181</td>\n", | |
| " <td>7114</td>\n", | |
| " <td>7065</td>\n", | |
| " <td>7160</td>\n", | |
| " <td>7185</td>\n", | |
| " <td>7234</td>\n", | |
| " <td>-27</td>\n", | |
| " <td>-67</td>\n", | |
| " <td>-49</td>\n", | |
| " <td>95</td>\n", | |
| " <td>25</td>\n", | |
| " <td>49</td>\n", | |
| " <td>26</td>\n", | |
| " <td>81</td>\n", | |
| " <td>74</td>\n", | |
| " <td>93</td>\n", | |
| " <td>77</td>\n", | |
| " <td>79</td>\n", | |
| " <td>9</td>\n", | |
| " <td>71</td>\n", | |
| " <td>67</td>\n", | |
| " <td>77</td>\n", | |
| " <td>70</td>\n", | |
| " <td>77</td>\n", | |
| " <td>17</td>\n", | |
| " <td>10</td>\n", | |
| " <td>7</td>\n", | |
| " <td>16</td>\n", | |
| " <td>7</td>\n", | |
| " <td>2</td>\n", | |
| " <td>1</td>\n", | |
| " <td>...</td>\n", | |
| " <td>-9</td>\n", | |
| " <td>7</td>\n", | |
| " <td>-3</td>\n", | |
| " <td>313</td>\n", | |
| " <td>313</td>\n", | |
| " <td>313</td>\n", | |
| " <td>313</td>\n", | |
| " <td>323</td>\n", | |
| " <td>318</td>\n", | |
| " <td>317</td>\n", | |
| " <td>1.133263e+10</td>\n", | |
| " <td>10437971648</td>\n", | |
| " <td>1.307557e+10</td>\n", | |
| " <td>10735447891</td>\n", | |
| " <td>10957764061</td>\n", | |
| " <td>9.933543e+10</td>\n", | |
| " <td>9.450596e+10</td>\n", | |
| " <td>1.082601e+10</td>\n", | |
| " <td>9.759498e+09</td>\n", | |
| " <td>1.068035e+10</td>\n", | |
| " <td>1.399091e+10</td>\n", | |
| " <td>9.873757e-01</td>\n", | |
| " <td>2.249561e+10</td>\n", | |
| " <td>9.759498e-01</td>\n", | |
| " <td>2.774117e-01</td>\n", | |
| " <td>-2.798181e-01</td>\n", | |
| " <td>0.000000e+00</td>\n", | |
| " <td>0.000000e+00</td>\n", | |
| " <td>0.000000e+00</td>\n", | |
| " <td>0.000000e+00</td>\n", | |
| " <td>-1.175236e+09</td>\n", | |
| " <td>-8.040059e+09</td>\n", | |
| " <td>1.237258e+09</td>\n", | |
| " <td>1.533635e+09</td>\n", | |
| " <td>6.935294e+10</td>\n", | |
| " <td>-1.203218e+09</td>\n", | |
| " <td>-8.040059e+09</td>\n", | |
| " <td>1.237258e+09</td>\n", | |
| " <td>1.533635e+09</td>\n", | |
| " <td>6.935294e+10</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "<p>3193 rows × 100 columns</p>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-212cfecc-a27f-415e-958a-3fe13755921b')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-212cfecc-a27f-415e-958a-3fe13755921b button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-212cfecc-a27f-415e-958a-3fe13755921b');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " SUMLEV REGION DIVISION ... RNETMIG2013 RNETMIG2014 RNETMIG2015\n", | |
| "0 40 3 6 ... 1.383282e+10 1.724718e+10 7.125937e-01\n", | |
| "1 50 3 6 ... -2.722002e+09 2.592270e+10 -2.187333e+09\n", | |
| "2 50 3 6 ... 2.272763e+10 2.031714e+10 1.829350e+10\n", | |
| "3 50 3 6 ... -7.167664e+09 -3.978583e+09 -1.054330e+09\n", | |
| "4 50 3 6 ... -5.403729e+09 7.545327e-01 1.107861e+10\n", | |
| "... ... ... ... ... ... ... ...\n", | |
| "3188 50 4 8 ... -5.295460e+09 -1.407528e+09 -1.407019e+09\n", | |
| "3189 50 4 8 ... 2.116066e+10 1.630867e+09 1.520747e+10\n", | |
| "3190 50 4 8 ... -7.521840e+09 -1.474061e+09 -1.260635e+09\n", | |
| "3191 50 4 8 ... -2.250385e+09 -1.802017e+09 1.441961e+10\n", | |
| "3192 50 4 8 ... 1.237258e+09 1.533635e+09 6.935294e+10\n", | |
| "\n", | |
| "[3193 rows x 100 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 33 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# ¿Cuales son los estados en analisis?\n", | |
| "df4['STNAME'].unique()" | |
| ], | |
| "metadata": { | |
| "id": "dTGHNcSdS_RR", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "c278c3f6-bf4f-4895-b67c-609c1c4facf4" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array(['Alabama', 'Alaska', 'Arizona', 'Arkansas', 'California',\n", | |
| " 'Colorado', 'Connecticut', 'Delaware', 'District of Columbia',\n", | |
| " 'Florida', 'Georgia', 'Hawaii', 'Idaho', 'Illinois', 'Indiana',\n", | |
| " 'Iowa', 'Kansas', 'Kentucky', 'Louisiana', 'Maine', 'Maryland',\n", | |
| " 'Massachusetts', 'Michigan', 'Minnesota', 'Mississippi',\n", | |
| " 'Missouri', 'Montana', 'Nebraska', 'Nevada', 'New Hampshire',\n", | |
| " 'New Jersey', 'New Mexico', 'New York', 'North Carolina',\n", | |
| " 'North Dakota', 'Ohio', 'Oklahoma', 'Oregon', 'Pennsylvania',\n", | |
| " 'Rhode Island', 'South Carolina', 'South Dakota', 'Tennessee',\n", | |
| " 'Texas', 'Utah', 'Vermont', 'Virginia', 'Washington',\n", | |
| " 'West Virginia', 'Wisconsin', 'Wyoming'], dtype=object)" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 32 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "import numpy as np\n", | |
| "%time\n", | |
| "# ¿Cuanto es la poblacion promedio por cada estado?\n", | |
| "for state in df4['STNAME'].unique():\n", | |
| " avg = np.average(df4.where(df4['STNAME']==state).dropna()['CENSUS2010POP'])\n", | |
| " print('Counties in state ' + state + ' have an average population of ' + str(avg))" | |
| ], | |
| "metadata": { | |
| "id": "3V-xVnEdTFyB", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "eb366ab4-a35a-4d58-eb6b-62b165a770b2" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "CPU times: user 2 µs, sys: 0 ns, total: 2 µs\n", | |
| "Wall time: 7.63 µs\n", | |
| "Counties in state Alabama have an average population of 140580.4705882353\n", | |
| "Counties in state Alaska have an average population of 47348.73333333333\n", | |
| "Counties in state Arizona have an average population of 799002.125\n", | |
| "Counties in state Arkansas have an average population of 76734.68421052632\n", | |
| "Counties in state California have an average population of 1262845.9661016949\n", | |
| "Counties in state Colorado have an average population of 154744.4923076923\n", | |
| "Counties in state Connecticut have an average population of 794243.7777777778\n", | |
| "Counties in state Delaware have an average population of 448967.0\n", | |
| "Counties in state District of Columbia have an average population of 601723.0\n", | |
| "Counties in state Florida have an average population of 552979.7058823529\n", | |
| "Counties in state Georgia have an average population of 121095.6625\n", | |
| "Counties in state Hawaii have an average population of 453433.6666666667\n", | |
| "Counties in state Idaho have an average population of 69670.3111111111\n", | |
| "Counties in state Illinois have an average population of 249138.4854368932\n", | |
| "Counties in state Indiana have an average population of 139436.60215053763\n", | |
| "Counties in state Iowa have an average population of 60927.1\n", | |
| "Counties in state Kansas have an average population of 53832.41509433962\n", | |
| "Counties in state Kentucky have an average population of 71725.07438016529\n", | |
| "Counties in state Louisiana have an average population of 139488.36923076923\n", | |
| "Counties in state Maine have an average population of 156277.76470588235\n", | |
| "Counties in state Maryland have an average population of 461884.16\n", | |
| "Counties in state Massachusetts have an average population of 873017.2\n", | |
| "Counties in state Michigan have an average population of 235324.7619047619\n", | |
| "Counties in state Minnesota have an average population of 120543.75\n", | |
| "Counties in state Mississippi have an average population of 71501.13253012048\n", | |
| "Counties in state Missouri have an average population of 103257.36206896552\n", | |
| "Counties in state Montana have an average population of 34716.31578947369\n", | |
| "Counties in state Nebraska have an average population of 38858.31914893617\n", | |
| "Counties in state Nevada have an average population of 300061.22222222225\n", | |
| "Counties in state New Hampshire have an average population of 239358.18181818182\n", | |
| "Counties in state New Jersey have an average population of 799263.0909090909\n", | |
| "Counties in state New Mexico have an average population of 121128.17647058824\n", | |
| "Counties in state New York have an average population of 615177.8412698413\n", | |
| "Counties in state North Carolina have an average population of 188821.44554455444\n", | |
| "Counties in state North Dakota have an average population of 24910.777777777777\n", | |
| "Counties in state Ohio have an average population of 259247.2808988764\n", | |
| "Counties in state Oklahoma have an average population of 96188.48717948717\n", | |
| "Counties in state Oregon have an average population of 207085.0810810811\n", | |
| "Counties in state Pennsylvania have an average population of 373599.3823529412\n", | |
| "Counties in state Rhode Island have an average population of 350855.6666666667\n", | |
| "Counties in state South Carolina have an average population of 196824.0\n", | |
| "Counties in state South Dakota have an average population of 24303.880597014926\n", | |
| "Counties in state Tennessee have an average population of 132210.52083333334\n", | |
| "Counties in state Texas have an average population of 197220.0862745098\n", | |
| "Counties in state Utah have an average population of 184259.0\n", | |
| "Counties in state Vermont have an average population of 83432.13333333333\n", | |
| "Counties in state Virginia have an average population of 119371.83582089552\n", | |
| "Counties in state Washington have an average population of 336227.0\n", | |
| "Counties in state West Virginia have an average population of 66178.35714285714\n", | |
| "Counties in state Wisconsin have an average population of 155807.83561643836\n", | |
| "Counties in state Wyoming have an average population of 46968.833333333336\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "%time\n", | |
| "for group, frame in df4.groupby('STNAME'):\n", | |
| " avg = np.average(frame['CENSUS2010POP'])\n", | |
| " print('Counties in state ' + group + ' have an average population of ' + str(avg))" | |
| ], | |
| "metadata": { | |
| "id": "d6rlGhWGTUVL", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/" | |
| }, | |
| "outputId": "423c82e8-5471-46b5-caeb-3029460e3800" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "CPU times: user 4 µs, sys: 0 ns, total: 4 µs\n", | |
| "Wall time: 9.3 µs\n", | |
| "Counties in state Alabama have an average population of 140580.4705882353\n", | |
| "Counties in state Alaska have an average population of 47348.73333333333\n", | |
| "Counties in state Arizona have an average population of 799002.125\n", | |
| "Counties in state Arkansas have an average population of 76734.68421052632\n", | |
| "Counties in state California have an average population of 1262845.9661016949\n", | |
| "Counties in state Colorado have an average population of 154744.4923076923\n", | |
| "Counties in state Connecticut have an average population of 794243.7777777778\n", | |
| "Counties in state Delaware have an average population of 448967.0\n", | |
| "Counties in state District of Columbia have an average population of 601723.0\n", | |
| "Counties in state Florida have an average population of 552979.7058823529\n", | |
| "Counties in state Georgia have an average population of 121095.6625\n", | |
| "Counties in state Hawaii have an average population of 453433.6666666667\n", | |
| "Counties in state Idaho have an average population of 69670.3111111111\n", | |
| "Counties in state Illinois have an average population of 249138.4854368932\n", | |
| "Counties in state Indiana have an average population of 139436.60215053763\n", | |
| "Counties in state Iowa have an average population of 60927.1\n", | |
| "Counties in state Kansas have an average population of 53832.41509433962\n", | |
| "Counties in state Kentucky have an average population of 71725.07438016529\n", | |
| "Counties in state Louisiana have an average population of 139488.36923076923\n", | |
| "Counties in state Maine have an average population of 156277.76470588235\n", | |
| "Counties in state Maryland have an average population of 461884.16\n", | |
| "Counties in state Massachusetts have an average population of 873017.2\n", | |
| "Counties in state Michigan have an average population of 235324.7619047619\n", | |
| "Counties in state Minnesota have an average population of 120543.75\n", | |
| "Counties in state Mississippi have an average population of 71501.13253012048\n", | |
| "Counties in state Missouri have an average population of 103257.36206896552\n", | |
| "Counties in state Montana have an average population of 34716.31578947369\n", | |
| "Counties in state Nebraska have an average population of 38858.31914893617\n", | |
| "Counties in state Nevada have an average population of 300061.22222222225\n", | |
| "Counties in state New Hampshire have an average population of 239358.18181818182\n", | |
| "Counties in state New Jersey have an average population of 799263.0909090909\n", | |
| "Counties in state New Mexico have an average population of 121128.17647058824\n", | |
| "Counties in state New York have an average population of 615177.8412698413\n", | |
| "Counties in state North Carolina have an average population of 188821.44554455444\n", | |
| "Counties in state North Dakota have an average population of 24910.777777777777\n", | |
| "Counties in state Ohio have an average population of 259247.2808988764\n", | |
| "Counties in state Oklahoma have an average population of 96188.48717948717\n", | |
| "Counties in state Oregon have an average population of 207085.0810810811\n", | |
| "Counties in state Pennsylvania have an average population of 373599.3823529412\n", | |
| "Counties in state Rhode Island have an average population of 350855.6666666667\n", | |
| "Counties in state South Carolina have an average population of 196824.0\n", | |
| "Counties in state South Dakota have an average population of 24303.880597014926\n", | |
| "Counties in state Tennessee have an average population of 132210.52083333334\n", | |
| "Counties in state Texas have an average population of 197220.0862745098\n", | |
| "Counties in state Utah have an average population of 184259.0\n", | |
| "Counties in state Vermont have an average population of 83432.13333333333\n", | |
| "Counties in state Virginia have an average population of 119371.83582089552\n", | |
| "Counties in state Washington have an average population of 336227.0\n", | |
| "Counties in state West Virginia have an average population of 66178.35714285714\n", | |
| "Counties in state Wisconsin have an average population of 155807.83561643836\n", | |
| "Counties in state Wyoming have an average population of 46968.833333333336\n" | |
| ] | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df4.groupby('STNAME').agg({'CENSUS2010POP': np.average})" | |
| ], | |
| "metadata": { | |
| "id": "sPV8oYftQ3h_", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 1000 | |
| }, | |
| "outputId": "d5b5803b-a28a-4e0b-cb4c-16b4d43eec0b" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-e57a87b3-31f5-48d1-8c51-313ffb54fff4\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>CENSUS2010POP</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>STNAME</th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Alabama</th>\n", | |
| " <td>1.405805e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Alaska</th>\n", | |
| " <td>4.734873e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Arizona</th>\n", | |
| " <td>7.990021e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Arkansas</th>\n", | |
| " <td>7.673468e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>California</th>\n", | |
| " <td>1.262846e+06</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Colorado</th>\n", | |
| " <td>1.547445e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Connecticut</th>\n", | |
| " <td>7.942438e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Delaware</th>\n", | |
| " <td>4.489670e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>District of Columbia</th>\n", | |
| " <td>6.017230e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Florida</th>\n", | |
| " <td>5.529797e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Georgia</th>\n", | |
| " <td>1.210957e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Hawaii</th>\n", | |
| " <td>4.534337e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Idaho</th>\n", | |
| " <td>6.967031e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Illinois</th>\n", | |
| " <td>2.491385e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Indiana</th>\n", | |
| " <td>1.394366e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Iowa</th>\n", | |
| " <td>6.092710e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Kansas</th>\n", | |
| " <td>5.383242e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Kentucky</th>\n", | |
| " <td>7.172507e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Louisiana</th>\n", | |
| " <td>1.394884e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Maine</th>\n", | |
| " <td>1.562778e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Maryland</th>\n", | |
| " <td>4.618842e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Massachusetts</th>\n", | |
| " <td>8.730172e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Michigan</th>\n", | |
| " <td>2.353248e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Minnesota</th>\n", | |
| " <td>1.205438e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Mississippi</th>\n", | |
| " <td>7.150113e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Missouri</th>\n", | |
| " <td>1.032574e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Montana</th>\n", | |
| " <td>3.471632e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Nebraska</th>\n", | |
| " <td>3.885832e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Nevada</th>\n", | |
| " <td>3.000612e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>New Hampshire</th>\n", | |
| " <td>2.393582e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>New Jersey</th>\n", | |
| " <td>7.992631e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>New Mexico</th>\n", | |
| " <td>1.211282e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>New York</th>\n", | |
| " <td>6.151778e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>North Carolina</th>\n", | |
| " <td>1.888214e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>North Dakota</th>\n", | |
| " <td>2.491078e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Ohio</th>\n", | |
| " <td>2.592473e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Oklahoma</th>\n", | |
| " <td>9.618849e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Oregon</th>\n", | |
| " <td>2.070851e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Pennsylvania</th>\n", | |
| " <td>3.735994e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Rhode Island</th>\n", | |
| " <td>3.508557e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>South Carolina</th>\n", | |
| " <td>1.968240e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>South Dakota</th>\n", | |
| " <td>2.430388e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Tennessee</th>\n", | |
| " <td>1.322105e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Texas</th>\n", | |
| " <td>1.972201e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Utah</th>\n", | |
| " <td>1.842590e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Vermont</th>\n", | |
| " <td>8.343213e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Virginia</th>\n", | |
| " <td>1.193718e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Washington</th>\n", | |
| " <td>3.362270e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>West Virginia</th>\n", | |
| " <td>6.617836e+04</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Wisconsin</th>\n", | |
| " <td>1.558078e+05</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Wyoming</th>\n", | |
| " <td>4.696883e+04</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e57a87b3-31f5-48d1-8c51-313ffb54fff4')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-e57a87b3-31f5-48d1-8c51-313ffb54fff4 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-e57a87b3-31f5-48d1-8c51-313ffb54fff4');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " CENSUS2010POP\n", | |
| "STNAME \n", | |
| "Alabama 1.405805e+05\n", | |
| "Alaska 4.734873e+04\n", | |
| "Arizona 7.990021e+05\n", | |
| "Arkansas 7.673468e+04\n", | |
| "California 1.262846e+06\n", | |
| "Colorado 1.547445e+05\n", | |
| "Connecticut 7.942438e+05\n", | |
| "Delaware 4.489670e+05\n", | |
| "District of Columbia 6.017230e+05\n", | |
| "Florida 5.529797e+05\n", | |
| "Georgia 1.210957e+05\n", | |
| "Hawaii 4.534337e+05\n", | |
| "Idaho 6.967031e+04\n", | |
| "Illinois 2.491385e+05\n", | |
| "Indiana 1.394366e+05\n", | |
| "Iowa 6.092710e+04\n", | |
| "Kansas 5.383242e+04\n", | |
| "Kentucky 7.172507e+04\n", | |
| "Louisiana 1.394884e+05\n", | |
| "Maine 1.562778e+05\n", | |
| "Maryland 4.618842e+05\n", | |
| "Massachusetts 8.730172e+05\n", | |
| "Michigan 2.353248e+05\n", | |
| "Minnesota 1.205438e+05\n", | |
| "Mississippi 7.150113e+04\n", | |
| "Missouri 1.032574e+05\n", | |
| "Montana 3.471632e+04\n", | |
| "Nebraska 3.885832e+04\n", | |
| "Nevada 3.000612e+05\n", | |
| "New Hampshire 2.393582e+05\n", | |
| "New Jersey 7.992631e+05\n", | |
| "New Mexico 1.211282e+05\n", | |
| "New York 6.151778e+05\n", | |
| "North Carolina 1.888214e+05\n", | |
| "North Dakota 2.491078e+04\n", | |
| "Ohio 2.592473e+05\n", | |
| "Oklahoma 9.618849e+04\n", | |
| "Oregon 2.070851e+05\n", | |
| "Pennsylvania 3.735994e+05\n", | |
| "Rhode Island 3.508557e+05\n", | |
| "South Carolina 1.968240e+05\n", | |
| "South Dakota 2.430388e+04\n", | |
| "Tennessee 1.322105e+05\n", | |
| "Texas 1.972201e+05\n", | |
| "Utah 1.842590e+05\n", | |
| "Vermont 8.343213e+04\n", | |
| "Virginia 1.193718e+05\n", | |
| "Washington 3.362270e+05\n", | |
| "West Virginia 6.617836e+04\n", | |
| "Wisconsin 1.558078e+05\n", | |
| "Wyoming 4.696883e+04" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 38 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "" | |
| ], | |
| "metadata": { | |
| "id": "96yvBwNeRsNd" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# Merge Dataframes" | |
| ], | |
| "metadata": { | |
| "id": "txiGksISRtPf" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df.head()" | |
| ], | |
| "metadata": { | |
| "id": "yanDdW5dRLZZ", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "outputId": "d649c902-eefa-4329-a260-eb29655f0bc7" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-4651343b-3105-4823-ab23-349da4a9ef58\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-4651343b-3105-4823-ab23-349da4a9ef58')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-4651343b-3105-4823-ab23-349da4a9ef58 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-4651343b-3105-4823-ab23-349da4a9ef58');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost\n", | |
| "Store 1 Sebastián Tennis 42.5\n", | |
| "Store 1 Diego Jeans 32.5\n", | |
| "Store 2 Joaquin Cap 5.0\n", | |
| "Store 1 Santiago Tennis 55.0\n", | |
| "Store 2 Eliana Jogger 35.0" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 41 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df['Date'] = ['December 1', 'January 1', 'May 10', 'January 30', 'November 1']\n", | |
| "df" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "id": "FHHrO6CPSFeP", | |
| "outputId": "cb503b85-c14f-4f6b-a9da-333d1dbdbcb5" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-6d7ecb41-c074-4ef5-9c98-6aad02e48ac6\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>May 10</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6d7ecb41-c074-4ef5-9c98-6aad02e48ac6')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-6d7ecb41-c074-4ef5-9c98-6aad02e48ac6 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-6d7ecb41-c074-4ef5-9c98-6aad02e48ac6');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost Date\n", | |
| "Store 1 Sebastián Tennis 42.5 December 1\n", | |
| "Store 1 Diego Jeans 32.5 January 1\n", | |
| "Store 2 Joaquin Cap 5.0 May 10\n", | |
| "Store 1 Santiago Tennis 55.0 January 30\n", | |
| "Store 2 Eliana Jogger 35.0 November 1" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 42 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df['Id'] = ['23151', '43151', '35151', '67121', '46928']\n", | |
| "df" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "id": "rtZB0FRGSmMe", | |
| "outputId": "196d6509-a165-42b8-8631-eb66e18cd403" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-49d413ce-7f8e-46e4-99e2-9aaf2a931389\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Id</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>23151</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>43151</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>May 10</td>\n", | |
| " <td>35151</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>67121</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>46928</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-49d413ce-7f8e-46e4-99e2-9aaf2a931389')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-49d413ce-7f8e-46e4-99e2-9aaf2a931389 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-49d413ce-7f8e-46e4-99e2-9aaf2a931389');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost Date Id\n", | |
| "Store 1 Sebastián Tennis 42.5 December 1 23151\n", | |
| "Store 1 Diego Jeans 32.5 January 1 43151\n", | |
| "Store 2 Joaquin Cap 5.0 May 10 35151\n", | |
| "Store 1 Santiago Tennis 55.0 January 30 67121\n", | |
| "Store 2 Eliana Jogger 35.0 November 1 46928" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 43 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df['Delivered'] = True\n", | |
| "df" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "id": "BJjl5wnlSTjq", | |
| "outputId": "6e89ab02-668d-41d6-9978-14a2f98206e8" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-bb54edf5-07d8-477f-96d7-0039ee229262\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Id</th>\n", | |
| " <th>Delivered</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>23151</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>43151</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>May 10</td>\n", | |
| " <td>35151</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>67121</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>46928</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-bb54edf5-07d8-477f-96d7-0039ee229262')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-bb54edf5-07d8-477f-96d7-0039ee229262 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-bb54edf5-07d8-477f-96d7-0039ee229262');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost Date Id Delivered\n", | |
| "Store 1 Sebastián Tennis 42.5 December 1 23151 True\n", | |
| "Store 1 Diego Jeans 32.5 January 1 43151 True\n", | |
| "Store 2 Joaquin Cap 5.0 May 10 35151 True\n", | |
| "Store 1 Santiago Tennis 55.0 January 30 67121 True\n", | |
| "Store 2 Eliana Jogger 35.0 November 1 46928 True" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 44 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df['Feedback'] = ['Positive', None, 'Negative', 'Negative', None]\n", | |
| "df" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "id": "m3SFKeCmSWIc", | |
| "outputId": "31b39558-3748-4982-956e-d72afbc92539" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-b52f0827-7d81-4549-8341-8394f21b5fde\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Id</th>\n", | |
| " <th>Delivered</th>\n", | |
| " <th>Feedback</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>23151</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Positive</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>43151</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>May 10</td>\n", | |
| " <td>35151</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 1</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>67121</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Store 2</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>46928</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-b52f0827-7d81-4549-8341-8394f21b5fde')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-b52f0827-7d81-4549-8341-8394f21b5fde button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-b52f0827-7d81-4549-8341-8394f21b5fde');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost Date Id Delivered Feedback\n", | |
| "Store 1 Sebastián Tennis 42.5 December 1 23151 True Positive\n", | |
| "Store 1 Diego Jeans 32.5 January 1 43151 True None\n", | |
| "Store 2 Joaquin Cap 5.0 May 10 35151 True Negative\n", | |
| "Store 1 Santiago Tennis 55.0 January 30 67121 True Negative\n", | |
| "Store 2 Eliana Jogger 35.0 November 1 46928 True None" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 45 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "" | |
| ], | |
| "metadata": { | |
| "id": "ZHk3L6ysTRIa" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "person_1 = pd.Series({'Id': '67121',\n", | |
| " 'Edad': 40,\n", | |
| " 'Domicilio': 'Medellin',\n", | |
| " 'Tiene Hijos': True})\n", | |
| "person_2 = pd.Series({'Id': '23151',\n", | |
| " 'Edad': 28,\n", | |
| " 'Domicilio': 'Bogota',\n", | |
| " 'Tiene Hijos': None})\n", | |
| "\n", | |
| "person_3 = pd.Series({'Id': '46928',\n", | |
| " 'Edad': 33,\n", | |
| " 'Domicilio': 'Medellin',\n", | |
| " 'Tiene Hijos': True}) \n", | |
| "\n", | |
| "person_4 = pd.Series({'Id': '35951',\n", | |
| " 'Edad': 31,\n", | |
| " 'Domicilio': 'Bogota',\n", | |
| " 'Tiene Hijos': True})\n", | |
| "\n", | |
| "person_5 = pd.Series({'Id': '43151',\n", | |
| " 'Edad': 19,\n", | |
| " 'Domicilio': 'Medellin', \n", | |
| " 'Tiene Hijos': False}) \n", | |
| "\n", | |
| "person_6 = pd.Series({'Id': '90151',\n", | |
| " 'Edad': 22,\n", | |
| " 'Domicilio': 'Cali',\n", | |
| " 'Tiene Hijos': False})\n", | |
| "person_7 = pd.Series({'Id': '909081',\n", | |
| " 'Edad': 51,\n", | |
| " 'Domicilio': 'Cali',\n", | |
| " 'Tiene Hijos': True}) \n", | |
| "person_8 = pd.Series({'Id': '109082',\n", | |
| " 'Edad': 44,\n", | |
| " 'Domicilio': 'Medellin',\n", | |
| " 'Tiene Hijos': None}) \n", | |
| "\n", | |
| "df_demographic = pd.DataFrame([person_1, person_2, person_3,person_4, person_5, person_6, person_7, person_8])\n", | |
| "df_demographic.head()" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "id": "7Ji8vV0uTbbd", | |
| "outputId": "60a3c60d-e194-45f7-f247-352b07e52b1f" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-fc23711d-dada-4d67-b79d-2c8452215b3d\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Id</th>\n", | |
| " <th>Edad</th>\n", | |
| " <th>Domicilio</th>\n", | |
| " <th>Tiene Hijos</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>0</th>\n", | |
| " <td>67121</td>\n", | |
| " <td>40</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>1</th>\n", | |
| " <td>23151</td>\n", | |
| " <td>28</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>2</th>\n", | |
| " <td>46928</td>\n", | |
| " <td>33</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>3</th>\n", | |
| " <td>35951</td>\n", | |
| " <td>31</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>4</th>\n", | |
| " <td>43151</td>\n", | |
| " <td>19</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-fc23711d-dada-4d67-b79d-2c8452215b3d')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-fc23711d-dada-4d67-b79d-2c8452215b3d button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-fc23711d-dada-4d67-b79d-2c8452215b3d');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Id Edad Domicilio Tiene Hijos\n", | |
| "0 67121 40 Medellin True\n", | |
| "1 23151 28 Bogota None\n", | |
| "2 46928 33 Medellin True\n", | |
| "3 35951 31 Bogota True\n", | |
| "4 43151 19 Medellin False" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 46 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df = df.set_index('Id')\n", | |
| "df" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 238 | |
| }, | |
| "id": "Oo1ZOW9LWZL_", | |
| "outputId": "57c822c0-8728-4c22-f80b-7931fbc73158" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-a2fa546c-6c24-4702-a717-6323886a44bd\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Delivered</th>\n", | |
| " <th>Feedback</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Id</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>23151</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Positive</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>43151</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>35151</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>May 10</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>67121</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>46928</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a2fa546c-6c24-4702-a717-6323886a44bd')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-a2fa546c-6c24-4702-a717-6323886a44bd button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-a2fa546c-6c24-4702-a717-6323886a44bd');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost Date Delivered Feedback\n", | |
| "Id \n", | |
| "23151 Sebastián Tennis 42.5 December 1 True Positive\n", | |
| "43151 Diego Jeans 32.5 January 1 True None\n", | |
| "35151 Joaquin Cap 5.0 May 10 True Negative\n", | |
| "67121 Santiago Tennis 55.0 January 30 True Negative\n", | |
| "46928 Eliana Jogger 35.0 November 1 True None" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 47 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df_demographic = df_demographic.set_index('Id')\n", | |
| "df_demographic" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 332 | |
| }, | |
| "id": "NBsCm2kwWuVg", | |
| "outputId": "e310584d-ea35-419f-c354-db1e9cffed84" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-bb1a476a-b4d1-40d4-b11d-d667b0d58aea\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Edad</th>\n", | |
| " <th>Domicilio</th>\n", | |
| " <th>Tiene Hijos</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Id</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>67121</th>\n", | |
| " <td>40</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>23151</th>\n", | |
| " <td>28</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>46928</th>\n", | |
| " <td>33</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>35951</th>\n", | |
| " <td>31</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>43151</th>\n", | |
| " <td>19</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>90151</th>\n", | |
| " <td>22</td>\n", | |
| " <td>Cali</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>909081</th>\n", | |
| " <td>51</td>\n", | |
| " <td>Cali</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>109082</th>\n", | |
| " <td>44</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-bb1a476a-b4d1-40d4-b11d-d667b0d58aea')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-bb1a476a-b4d1-40d4-b11d-d667b0d58aea button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-bb1a476a-b4d1-40d4-b11d-d667b0d58aea');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Edad Domicilio Tiene Hijos\n", | |
| "Id \n", | |
| "67121 40 Medellin True\n", | |
| "23151 28 Bogota None\n", | |
| "46928 33 Medellin True\n", | |
| "35951 31 Bogota True\n", | |
| "43151 19 Medellin False\n", | |
| "90151 22 Cali False\n", | |
| "909081 51 Cali True\n", | |
| "109082 44 Medellin None" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 48 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "source": [ | |
| "# MERGING ... " | |
| ], | |
| "metadata": { | |
| "id": "7I4M4RVlXixi" | |
| } | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df_inner = pd.merge(df, df_demographic, on=\"Id\", how=\"inner\")\n", | |
| "df_inner" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "id": "vJwGf993X_5b", | |
| "outputId": "e6e8dcd0-c307-4057-8072-3bacdd57680c" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-517b2e36-c773-47fa-9a78-d81d478d58a1\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Delivered</th>\n", | |
| " <th>Feedback</th>\n", | |
| " <th>Edad</th>\n", | |
| " <th>Domicilio</th>\n", | |
| " <th>Tiene Hijos</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Id</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>23151</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Positive</td>\n", | |
| " <td>28</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>43151</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>19</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>67121</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " <td>40</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>46928</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>33</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-517b2e36-c773-47fa-9a78-d81d478d58a1')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-517b2e36-c773-47fa-9a78-d81d478d58a1 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-517b2e36-c773-47fa-9a78-d81d478d58a1');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n", | |
| "Id ... \n", | |
| "23151 Sebastián Tennis 42.5 ... 28 Bogota None\n", | |
| "43151 Diego Jeans 32.5 ... 19 Medellin False\n", | |
| "67121 Santiago Tennis 55.0 ... 40 Medellin True\n", | |
| "46928 Eliana Jogger 35.0 ... 33 Medellin True\n", | |
| "\n", | |
| "[4 rows x 9 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 49 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df_left = pd.merge(df, df_demographic, on=\"Id\", how=\"left\")\n", | |
| "df_left" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 238 | |
| }, | |
| "id": "b_C3ACnIY9Mx", | |
| "outputId": "7220e4d6-e400-4ec6-a5fb-ccb9400a9e71" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-eb192bd9-ff92-435c-86f6-06b9b730678d\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Delivered</th>\n", | |
| " <th>Feedback</th>\n", | |
| " <th>Edad</th>\n", | |
| " <th>Domicilio</th>\n", | |
| " <th>Tiene Hijos</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Id</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>23151</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Positive</td>\n", | |
| " <td>28.0</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>43151</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>19.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>35151</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>May 10</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>67121</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " <td>40.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>46928</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>33.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-eb192bd9-ff92-435c-86f6-06b9b730678d')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-eb192bd9-ff92-435c-86f6-06b9b730678d button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-eb192bd9-ff92-435c-86f6-06b9b730678d');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n", | |
| "Id ... \n", | |
| "23151 Sebastián Tennis 42.5 ... 28.0 Bogota None\n", | |
| "43151 Diego Jeans 32.5 ... 19.0 Medellin False\n", | |
| "35151 Joaquin Cap 5.0 ... NaN NaN NaN\n", | |
| "67121 Santiago Tennis 55.0 ... 40.0 Medellin True\n", | |
| "46928 Eliana Jogger 35.0 ... 33.0 Medellin True\n", | |
| "\n", | |
| "[5 rows x 9 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 73 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df_right = pd.merge(df, df_demographic, on=\"Id\", how=\"right\")\n", | |
| "df_right" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 332 | |
| }, | |
| "id": "_iLD3za7ZS5t", | |
| "outputId": "d9bed9c3-6499-4e11-8432-60d7fd4c02b3" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-5e443394-fc6b-4706-8cb1-115be922762a\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Delivered</th>\n", | |
| " <th>Feedback</th>\n", | |
| " <th>Edad</th>\n", | |
| " <th>Domicilio</th>\n", | |
| " <th>Tiene Hijos</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Id</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>67121</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " <td>40</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>23151</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Positive</td>\n", | |
| " <td>28</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>46928</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>33</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>35951</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>31</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>43151</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>19</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>90151</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>22</td>\n", | |
| " <td>Cali</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>909081</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>51</td>\n", | |
| " <td>Cali</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>109082</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>44</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-5e443394-fc6b-4706-8cb1-115be922762a')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-5e443394-fc6b-4706-8cb1-115be922762a button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-5e443394-fc6b-4706-8cb1-115be922762a');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n", | |
| "Id ... \n", | |
| "67121 Santiago Tennis 55.0 ... 40 Medellin True\n", | |
| "23151 Sebastián Tennis 42.5 ... 28 Bogota None\n", | |
| "46928 Eliana Jogger 35.0 ... 33 Medellin True\n", | |
| "35951 NaN NaN NaN ... 31 Bogota True\n", | |
| "43151 Diego Jeans 32.5 ... 19 Medellin False\n", | |
| "90151 NaN NaN NaN ... 22 Cali False\n", | |
| "909081 NaN NaN NaN ... 51 Cali True\n", | |
| "109082 NaN NaN NaN ... 44 Medellin None\n", | |
| "\n", | |
| "[8 rows x 9 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 50 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "df_outer = pd.merge(df, df_demographic, on=\"Id\", how=\"outer\")\n", | |
| "df_outer" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 363 | |
| }, | |
| "id": "FmJr1A53Z2OZ", | |
| "outputId": "07457418-3cf2-40a5-b29a-397552df42e9" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-e30e34c6-8a9a-4035-aa68-c1da730de08b\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Delivered</th>\n", | |
| " <th>Feedback</th>\n", | |
| " <th>Edad</th>\n", | |
| " <th>Domicilio</th>\n", | |
| " <th>Tiene Hijos</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Id</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>23151</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Positive</td>\n", | |
| " <td>28.0</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>43151</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>19.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>35151</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>May 10</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>67121</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " <td>40.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>46928</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>33.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>35951</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>31.0</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>90151</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>22.0</td>\n", | |
| " <td>Cali</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>909081</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>51.0</td>\n", | |
| " <td>Cali</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>109082</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>44.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-e30e34c6-8a9a-4035-aa68-c1da730de08b')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-e30e34c6-8a9a-4035-aa68-c1da730de08b button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-e30e34c6-8a9a-4035-aa68-c1da730de08b');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n", | |
| "Id ... \n", | |
| "23151 Sebastián Tennis 42.5 ... 28.0 Bogota None\n", | |
| "43151 Diego Jeans 32.5 ... 19.0 Medellin False\n", | |
| "35151 Joaquin Cap 5.0 ... NaN NaN NaN\n", | |
| "67121 Santiago Tennis 55.0 ... 40.0 Medellin True\n", | |
| "46928 Eliana Jogger 35.0 ... 33.0 Medellin True\n", | |
| "35951 NaN NaN NaN ... 31.0 Bogota True\n", | |
| "90151 NaN NaN NaN ... 22.0 Cali False\n", | |
| "909081 NaN NaN NaN ... 51.0 Cali True\n", | |
| "109082 NaN NaN NaN ... 44.0 Medellin None\n", | |
| "\n", | |
| "[9 rows x 9 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 51 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "pd.concat([df, df_demographic], axis=0)" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 488 | |
| }, | |
| "id": "sa8GXlQBaX90", | |
| "outputId": "9b6aad26-1f5d-44a4-dd1e-4195529bee61" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-2165cd59-6fe6-4a8f-a915-aff8791226b0\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Delivered</th>\n", | |
| " <th>Feedback</th>\n", | |
| " <th>Edad</th>\n", | |
| " <th>Domicilio</th>\n", | |
| " <th>Tiene Hijos</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Id</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>23151</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Positive</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>43151</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>35151</th>\n", | |
| " <td>Joaquin</td>\n", | |
| " <td>Cap</td>\n", | |
| " <td>5.0</td>\n", | |
| " <td>May 10</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>67121</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>46928</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>67121</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>40.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>23151</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>28.0</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>46928</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>33.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>35951</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>31.0</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>43151</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>19.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>90151</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>22.0</td>\n", | |
| " <td>Cali</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>909081</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>51.0</td>\n", | |
| " <td>Cali</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>109082</th>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>NaN</td>\n", | |
| " <td>44.0</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-2165cd59-6fe6-4a8f-a915-aff8791226b0')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-2165cd59-6fe6-4a8f-a915-aff8791226b0 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-2165cd59-6fe6-4a8f-a915-aff8791226b0');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n", | |
| "Id ... \n", | |
| "23151 Sebastián Tennis 42.5 ... NaN NaN NaN\n", | |
| "43151 Diego Jeans 32.5 ... NaN NaN NaN\n", | |
| "35151 Joaquin Cap 5.0 ... NaN NaN NaN\n", | |
| "67121 Santiago Tennis 55.0 ... NaN NaN NaN\n", | |
| "46928 Eliana Jogger 35.0 ... NaN NaN NaN\n", | |
| "67121 NaN NaN NaN ... 40.0 Medellin True\n", | |
| "23151 NaN NaN NaN ... 28.0 Bogota None\n", | |
| "46928 NaN NaN NaN ... 33.0 Medellin True\n", | |
| "35951 NaN NaN NaN ... 31.0 Bogota True\n", | |
| "43151 NaN NaN NaN ... 19.0 Medellin False\n", | |
| "90151 NaN NaN NaN ... 22.0 Cali False\n", | |
| "909081 NaN NaN NaN ... 51.0 Cali True\n", | |
| "109082 NaN NaN NaN ... 44.0 Medellin None\n", | |
| "\n", | |
| "[13 rows x 9 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 53 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "pd.concat([df, df_demographic], axis=1, join=\"inner\")" | |
| ], | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 206 | |
| }, | |
| "id": "MXfWkCXaapvU", | |
| "outputId": "95557894-4a61-4d25-f319-facb9df14f3d" | |
| }, | |
| "execution_count": null, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/html": [ | |
| "\n", | |
| " <div id=\"df-9564f3fb-fb72-4f11-b1b2-444b4b3ea686\">\n", | |
| " <div class=\"colab-df-container\">\n", | |
| " <div>\n", | |
| "<style scoped>\n", | |
| " .dataframe tbody tr th:only-of-type {\n", | |
| " vertical-align: middle;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>Name</th>\n", | |
| " <th>Item Purchased</th>\n", | |
| " <th>Cost</th>\n", | |
| " <th>Date</th>\n", | |
| " <th>Delivered</th>\n", | |
| " <th>Feedback</th>\n", | |
| " <th>Edad</th>\n", | |
| " <th>Domicilio</th>\n", | |
| " <th>Tiene Hijos</th>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>Id</th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " <th></th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>23151</th>\n", | |
| " <td>Sebastián</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>42.5</td>\n", | |
| " <td>December 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Positive</td>\n", | |
| " <td>28</td>\n", | |
| " <td>Bogota</td>\n", | |
| " <td>None</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>43151</th>\n", | |
| " <td>Diego</td>\n", | |
| " <td>Jeans</td>\n", | |
| " <td>32.5</td>\n", | |
| " <td>January 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>19</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>False</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>67121</th>\n", | |
| " <td>Santiago</td>\n", | |
| " <td>Tennis</td>\n", | |
| " <td>55.0</td>\n", | |
| " <td>January 30</td>\n", | |
| " <td>True</td>\n", | |
| " <td>Negative</td>\n", | |
| " <td>40</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>46928</th>\n", | |
| " <td>Eliana</td>\n", | |
| " <td>Jogger</td>\n", | |
| " <td>35.0</td>\n", | |
| " <td>November 1</td>\n", | |
| " <td>True</td>\n", | |
| " <td>None</td>\n", | |
| " <td>33</td>\n", | |
| " <td>Medellin</td>\n", | |
| " <td>True</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>\n", | |
| " <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-9564f3fb-fb72-4f11-b1b2-444b4b3ea686')\"\n", | |
| " title=\"Convert this dataframe to an interactive table.\"\n", | |
| " style=\"display:none;\">\n", | |
| " \n", | |
| " <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n", | |
| " width=\"24px\">\n", | |
| " <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n", | |
| " <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n", | |
| " </svg>\n", | |
| " </button>\n", | |
| " \n", | |
| " <style>\n", | |
| " .colab-df-container {\n", | |
| " display:flex;\n", | |
| " flex-wrap:wrap;\n", | |
| " gap: 12px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert {\n", | |
| " background-color: #E8F0FE;\n", | |
| " border: none;\n", | |
| " border-radius: 50%;\n", | |
| " cursor: pointer;\n", | |
| " display: none;\n", | |
| " fill: #1967D2;\n", | |
| " height: 32px;\n", | |
| " padding: 0 0 0 0;\n", | |
| " width: 32px;\n", | |
| " }\n", | |
| "\n", | |
| " .colab-df-convert:hover {\n", | |
| " background-color: #E2EBFA;\n", | |
| " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n", | |
| " fill: #174EA6;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert {\n", | |
| " background-color: #3B4455;\n", | |
| " fill: #D2E3FC;\n", | |
| " }\n", | |
| "\n", | |
| " [theme=dark] .colab-df-convert:hover {\n", | |
| " background-color: #434B5C;\n", | |
| " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n", | |
| " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n", | |
| " fill: #FFFFFF;\n", | |
| " }\n", | |
| " </style>\n", | |
| "\n", | |
| " <script>\n", | |
| " const buttonEl =\n", | |
| " document.querySelector('#df-9564f3fb-fb72-4f11-b1b2-444b4b3ea686 button.colab-df-convert');\n", | |
| " buttonEl.style.display =\n", | |
| " google.colab.kernel.accessAllowed ? 'block' : 'none';\n", | |
| "\n", | |
| " async function convertToInteractive(key) {\n", | |
| " const element = document.querySelector('#df-9564f3fb-fb72-4f11-b1b2-444b4b3ea686');\n", | |
| " const dataTable =\n", | |
| " await google.colab.kernel.invokeFunction('convertToInteractive',\n", | |
| " [key], {});\n", | |
| " if (!dataTable) return;\n", | |
| "\n", | |
| " const docLinkHtml = 'Like what you see? Visit the ' +\n", | |
| " '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n", | |
| " + ' to learn more about interactive tables.';\n", | |
| " element.innerHTML = '';\n", | |
| " dataTable['output_type'] = 'display_data';\n", | |
| " await google.colab.output.renderOutput(dataTable, element);\n", | |
| " const docLink = document.createElement('div');\n", | |
| " docLink.innerHTML = docLinkHtml;\n", | |
| " element.appendChild(docLink);\n", | |
| " }\n", | |
| " </script>\n", | |
| " </div>\n", | |
| " </div>\n", | |
| " " | |
| ], | |
| "text/plain": [ | |
| " Name Item Purchased Cost ... Edad Domicilio Tiene Hijos\n", | |
| "Id ... \n", | |
| "23151 Sebastián Tennis 42.5 ... 28 Bogota None\n", | |
| "43151 Diego Jeans 32.5 ... 19 Medellin False\n", | |
| "67121 Santiago Tennis 55.0 ... 40 Medellin True\n", | |
| "46928 Eliana Jogger 35.0 ... 33 Medellin True\n", | |
| "\n", | |
| "[4 rows x 9 columns]" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "execution_count": 54 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "source": [ | |
| "# ¿Cual es la edad promedio de los clientes que compraron tenis?\n", | |
| "# ¿Cual es el nombre del cliente que no se tiene información demografica?\n", | |
| "# ¿De la base de clientes que compraron un articulo, cuantos viven en medellin no tienen hijos?" | |
| ], | |
| "metadata": { | |
| "id": "WQb_slG8biGl" | |
| }, | |
| "execution_count": null, | |
| "outputs": [] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment