Skip to content

Instantly share code, notes, and snippets.

@PandoraRiot
Last active March 5, 2025 22:20
Show Gist options
  • Select an option

  • Save PandoraRiot/7ac4ce6f456cac022522516e68780882 to your computer and use it in GitHub Desktop.

Select an option

Save PandoraRiot/7ac4ce6f456cac022522516e68780882 to your computer and use it in GitHub Desktop.
Parcial 1 Alexandra.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": " Parcial 1 Alexandra.ipynb",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/PandoraRiot/7ac4ce6f456cac022522516e68780882/-parcial-1-alexandra.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"# Parcial #1: Seminario ciencia de los Datos"
],
"metadata": {
"id": "lGysk8tJfCg9"
}
},
{
"cell_type": "markdown",
"source": [
"# (50%) Base de datos enfermedades cardiacas \n",
"\n",
"La siguiente base de datos **heart-disease-dataset.txt** contiene información clinica de 303 pacientes, cada uno de ellos descrito por 14 variables. El principal objetivo de la base de datos es que a partir de las variables dadas por cada paciente, diagnosticar la presencia de alguna enfermedad cardiaca (valores 1,2,3,4) o por el contrario si no presenta ninguna enfermedad (valor 0) (**ver columna 14**).\n",
"\n",
"\n",
"Variables:\n",
"\n",
"1.(age) \n",
"2.(sex) \n",
"3.(cp) Tipo de dolor en el pecho \n",
"4.(trestbps) Presión arterial en reposo (en mm Hg al ingreso al\n",
" hospital)\n",
"5.(chol) Colestoral sérico en mg/dl\n",
"6.(fbs) Azúcar en sangre en ayunas > 120 mg/dl) (1 = verdadero; 0 = falso)\n",
"\n",
"7.(restecg) Resultados electrocardiográficos en reposo\n",
"8.(thalach) Frecuencia cardíaca máxima alcanzada\n",
"\n",
"9.(exang) angina inducida por el ejercicio (1 = sí; 0 = no)\n",
"\n",
"10.(oldpeak) Depresión del ST inducida por el ejercicio en relación con el reposo\n",
"\n",
"\n",
"11.(slope) Depresión del ST inducida por el ejercicio en relación con el reposo pendiente: la pendiente del segmento ST del ejercicio máximo -- Valor 1: ascendente -- Valor 2: plano -- Valor 3: descendente \n",
"\n",
"12.(ca) número de vasos principales (0-3) coloreados por fluoroscopia\n",
" \n",
"13.(thal) 3 = normales; 6 = defecto fijo; 7 = defecto reversible\n",
"\n",
"14.(diagnosis) diagnóstico de enfermedades del corazón. El valor 0 no es presencia de cardiopatía y los valores 1,2,3,4 indican presencia de cardiopatía.\n",
"\n",
" \n",
"Información complementaria de las variables:\n",
"\n",
"\n",
"* age: age in years\n",
"* sex: (1 = male; 0 = female)\n",
"* cp: chest pain type\n",
" * Value 1: typical angina\n",
" * Value 2: atypical angina\n",
" * Value 3: non-anginal pain\n",
" * Value 4: asymptomatic\n",
"\n",
"* trestbps: resting blood pressure (in mm Hg on admission to the \n",
" hospital)\n",
"* chol: serum cholestoral in mg/dl\n",
"* fbs: (fasting blood sugar > 120 mg/dl) (1 = true; 0 = false)\n",
"* restecg: resting electrocardiographic results\n",
" * Value 0: normal\n",
" * Value 1: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV)\n",
" * Value 2: showing probable or definite left ventricular hypertrophy by Estes' criteria\n",
"\n",
"* thalach: maximum heart rate achieved\n",
"* exang: exercise induced angina (1 = yes; 0 = no)\n",
"* oldpeak = ST depression induced by exercise relative to rest\n",
"* slope: the slope of the peak exercise ST segment\n",
" -- Value 1: upsloping\n",
" -- Value 2: flat\n",
" -- Value 3: downsloping\n",
"* ca: number of major vessels (0-3) colored by flourosopy\n",
"* thal: 3 = normal; 6 = fixed defect; 7 = reversable defect\n",
"* diagnosis: diagnosis of heart disease. Value 0 not heart disease presence and values 1,2,3,4 indicates the presence of heart disease.\n",
"\n",
"Teniendo la información dada hacer lo siguiente.\n",
"\n",
"1. Estime cuantos pacientes pertenecen al valor 0,1,2,3,4 teniendo en cuenta la columna 14.\n",
"\n",
"2. Realizar un diagrama box plot por cada una de las primeras 7 variables. **Importante**: Cada diagrama debe de contener la caja para cada tipo de enfermedad cardiaca (valores 0,1,2,3,4). Por ejemplo: Supongamos que existe una variable llamadas presión arterial sistólica, y quiero graficar el boxplot de los grupos del 1 al 4. Entonces deberia de verse algo asi: ![image.png]() \n",
"Tenga en cuenta que se esta pidiendo es el comportamiento de los grupos 0 al 4 y que lo anterior es un ejemplo de lo que se espera ver en terminos de visualización. Ademas, es super importante que en cada grafica se especifique a que corresponde cada eje. Graficas sin etiquetas no se tendran en cuenta en la nota final.\n",
"\n",
"3. Seleccione 3 variables que usted considere revelantes bajo algun criterio y grafique un scatterplot 3D donde por cada punto en el espacio se pueda identificar con un color a que clase pertenece. En el siguiente ejemplo se grafican 3 variables y tres clases. La idea es que en total en el espacio 3D haya 5 colores dado que son 5 grupos de pacientes que estamos analizando (ver columna 14 - diagnostico). Es importante que busquen a ensayo error esas tres variables que les de un conocimeinto sobre lo que se esta analizando, que es la presencia de enfermedades cardiacas ![image.png]()\n",
"\n",
"4. ¿Que puede concluir de los analisis anteriores?\n"
],
"metadata": {
"id": "PGsoLhQ4XA8N"
}
},
{
"cell_type": "code",
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "FtaM0t4Vwmmn",
"outputId": "364e027c-87c5-44b7-da3f-37dea707357c"
},
"execution_count": null,
"outputs": [
{
"metadata": {
"tags": null
},
"name": "stdout",
"output_type": "stream",
"text": [
"Mounted at /content/drive\n"
]
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "XtlQDQFOVG23"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"import numpy as np\n",
"from mpl_toolkits.mplot3d import axes3d\n",
"import plotly.express as px\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "5dUNJB9ZbsXF"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# **Desarrollo Punto 1**"
],
"metadata": {
"id": "f0-rQu08pror"
}
},
{
"cell_type": "code",
"source": [
"df = pd.read_csv('heart-disease-dataset.txt')\n",
"df.head(10)\n",
"df\n",
"#A continuación renombraré los valores con sus respectivas variables\n",
"df.set_axis(['age', 'sex', 'cp', 'tretbps','chol','fbs','restecg','thalach','exang','oldpeak','slope','ca','thal','diagnosis'], axis=1)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 423
},
"id": "86Aqc9FcXqnm",
"outputId": "cf8a18e9-fc6b-4f37-b241-01308e532edd"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" age sex cp tretbps chol fbs restecg thalach exang oldpeak \\\n",
"0 67.0 1.0 4.0 160.0 286.0 0.0 2.0 108.0 1.0 1.5 \n",
"1 67.0 1.0 4.0 120.0 229.0 0.0 2.0 129.0 1.0 2.6 \n",
"2 37.0 1.0 3.0 130.0 250.0 0.0 0.0 187.0 0.0 3.5 \n",
"3 41.0 0.0 2.0 130.0 204.0 0.0 2.0 172.0 0.0 1.4 \n",
"4 56.0 1.0 2.0 120.0 236.0 0.0 0.0 178.0 0.0 0.8 \n",
".. ... ... ... ... ... ... ... ... ... ... \n",
"297 45.0 1.0 1.0 110.0 264.0 0.0 0.0 132.0 0.0 1.2 \n",
"298 68.0 1.0 4.0 144.0 193.0 1.0 0.0 141.0 0.0 3.4 \n",
"299 57.0 1.0 4.0 130.0 131.0 0.0 0.0 115.0 1.0 1.2 \n",
"300 57.0 0.0 2.0 130.0 236.0 0.0 2.0 174.0 0.0 0.0 \n",
"301 38.0 1.0 3.0 138.0 175.0 0.0 0.0 173.0 0.0 0.0 \n",
"\n",
" slope ca thal diagnosis \n",
"0 2.0 3.0 3.0 2 \n",
"1 2.0 2.0 7.0 1 \n",
"2 3.0 0.0 3.0 0 \n",
"3 1.0 0.0 3.0 0 \n",
"4 1.0 0.0 3.0 0 \n",
".. ... ... ... ... \n",
"297 2.0 0.0 7.0 1 \n",
"298 2.0 2.0 7.0 2 \n",
"299 2.0 1.0 7.0 3 \n",
"300 2.0 1.0 3.0 1 \n",
"301 1.0 ? 3.0 0 \n",
"\n",
"[302 rows x 14 columns]"
],
"text/html": [
"\n",
" <div id=\"df-f2a3fabb-da5f-4b03-bd5b-07638d67f45f\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>age</th>\n",
" <th>sex</th>\n",
" <th>cp</th>\n",
" <th>tretbps</th>\n",
" <th>chol</th>\n",
" <th>fbs</th>\n",
" <th>restecg</th>\n",
" <th>thalach</th>\n",
" <th>exang</th>\n",
" <th>oldpeak</th>\n",
" <th>slope</th>\n",
" <th>ca</th>\n",
" <th>thal</th>\n",
" <th>diagnosis</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>67.0</td>\n",
" <td>1.0</td>\n",
" <td>4.0</td>\n",
" <td>160.0</td>\n",
" <td>286.0</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>108.0</td>\n",
" <td>1.0</td>\n",
" <td>1.5</td>\n",
" <td>2.0</td>\n",
" <td>3.0</td>\n",
" <td>3.0</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>67.0</td>\n",
" <td>1.0</td>\n",
" <td>4.0</td>\n",
" <td>120.0</td>\n",
" <td>229.0</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>129.0</td>\n",
" <td>1.0</td>\n",
" <td>2.6</td>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" <td>7.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>37.0</td>\n",
" <td>1.0</td>\n",
" <td>3.0</td>\n",
" <td>130.0</td>\n",
" <td>250.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>187.0</td>\n",
" <td>0.0</td>\n",
" <td>3.5</td>\n",
" <td>3.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>41.0</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>130.0</td>\n",
" <td>204.0</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>172.0</td>\n",
" <td>0.0</td>\n",
" <td>1.4</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>56.0</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>120.0</td>\n",
" <td>236.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>178.0</td>\n",
" <td>0.0</td>\n",
" <td>0.8</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>297</th>\n",
" <td>45.0</td>\n",
" <td>1.0</td>\n",
" <td>1.0</td>\n",
" <td>110.0</td>\n",
" <td>264.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>132.0</td>\n",
" <td>0.0</td>\n",
" <td>1.2</td>\n",
" <td>2.0</td>\n",
" <td>0.0</td>\n",
" <td>7.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>298</th>\n",
" <td>68.0</td>\n",
" <td>1.0</td>\n",
" <td>4.0</td>\n",
" <td>144.0</td>\n",
" <td>193.0</td>\n",
" <td>1.0</td>\n",
" <td>0.0</td>\n",
" <td>141.0</td>\n",
" <td>0.0</td>\n",
" <td>3.4</td>\n",
" <td>2.0</td>\n",
" <td>2.0</td>\n",
" <td>7.0</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>299</th>\n",
" <td>57.0</td>\n",
" <td>1.0</td>\n",
" <td>4.0</td>\n",
" <td>130.0</td>\n",
" <td>131.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>115.0</td>\n",
" <td>1.0</td>\n",
" <td>1.2</td>\n",
" <td>2.0</td>\n",
" <td>1.0</td>\n",
" <td>7.0</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>300</th>\n",
" <td>57.0</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>130.0</td>\n",
" <td>236.0</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>174.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>2.0</td>\n",
" <td>1.0</td>\n",
" <td>3.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>301</th>\n",
" <td>38.0</td>\n",
" <td>1.0</td>\n",
" <td>3.0</td>\n",
" <td>138.0</td>\n",
" <td>175.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>173.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>?</td>\n",
" <td>3.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>302 rows × 14 columns</p>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-f2a3fabb-da5f-4b03-bd5b-07638d67f45f')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-f2a3fabb-da5f-4b03-bd5b-07638d67f45f button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-f2a3fabb-da5f-4b03-bd5b-07638d67f45f');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "code",
"source": [
"df.columns = ['age', 'sex', 'cp', 'tretbps','chol','fbs','restecg','thalach','exang','oldpeak','slope','ca','thal','diagnosis']\n",
"df.columns\n",
"#Aquí estoy cambiando el nombre de las columnnas "
],
"metadata": {
"id": "_9PrVIljbxnF",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "91e5a679-59f1-457f-fa80-5a9581d63755"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Index(['age', 'sex', 'cp', 'tretbps', 'chol', 'fbs', 'restecg', 'thalach',\n",
" 'exang', 'oldpeak', 'slope', 'ca', 'thal', 'diagnosis'],\n",
" dtype='object')"
]
},
"metadata": {},
"execution_count": 7
}
]
},
{
"cell_type": "code",
"source": [
"df.describe()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 364
},
"id": "IzBEiJTEz24s",
"outputId": "f1153a5c-f25c-4eaf-c748-947d5ad0fb74"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" age sex cp tretbps chol fbs \\\n",
"count 302.000000 302.000000 302.000000 302.000000 302.000000 302.000000 \n",
"mean 54.410596 0.678808 3.165563 131.645695 246.738411 0.145695 \n",
"std 9.040163 0.467709 0.953612 17.612202 51.856829 0.353386 \n",
"min 29.000000 0.000000 1.000000 94.000000 126.000000 0.000000 \n",
"25% 48.000000 0.000000 3.000000 120.000000 211.000000 0.000000 \n",
"50% 55.500000 1.000000 3.000000 130.000000 241.500000 0.000000 \n",
"75% 61.000000 1.000000 4.000000 140.000000 275.000000 0.000000 \n",
"max 77.000000 1.000000 4.000000 200.000000 564.000000 1.000000 \n",
"\n",
" restecg thalach exang oldpeak slope diagnosis \n",
"count 302.000000 302.000000 302.000000 302.000000 302.000000 302.000000 \n",
"mean 0.986755 149.605960 0.327815 1.035430 1.596026 0.940397 \n",
"std 0.994916 22.912959 0.470196 1.160723 0.611939 1.229384 \n",
"min 0.000000 71.000000 0.000000 0.000000 1.000000 0.000000 \n",
"25% 0.000000 133.250000 0.000000 0.000000 1.000000 0.000000 \n",
"50% 0.500000 153.000000 0.000000 0.800000 2.000000 0.000000 \n",
"75% 2.000000 166.000000 1.000000 1.600000 2.000000 2.000000 \n",
"max 2.000000 202.000000 1.000000 6.200000 3.000000 4.000000 "
],
"text/html": [
"\n",
" <div id=\"df-6a1aad2f-e2d8-4307-a9d3-81762785e4f9\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>age</th>\n",
" <th>sex</th>\n",
" <th>cp</th>\n",
" <th>tretbps</th>\n",
" <th>chol</th>\n",
" <th>fbs</th>\n",
" <th>restecg</th>\n",
" <th>thalach</th>\n",
" <th>exang</th>\n",
" <th>oldpeak</th>\n",
" <th>slope</th>\n",
" <th>diagnosis</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" <td>302.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>54.410596</td>\n",
" <td>0.678808</td>\n",
" <td>3.165563</td>\n",
" <td>131.645695</td>\n",
" <td>246.738411</td>\n",
" <td>0.145695</td>\n",
" <td>0.986755</td>\n",
" <td>149.605960</td>\n",
" <td>0.327815</td>\n",
" <td>1.035430</td>\n",
" <td>1.596026</td>\n",
" <td>0.940397</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>9.040163</td>\n",
" <td>0.467709</td>\n",
" <td>0.953612</td>\n",
" <td>17.612202</td>\n",
" <td>51.856829</td>\n",
" <td>0.353386</td>\n",
" <td>0.994916</td>\n",
" <td>22.912959</td>\n",
" <td>0.470196</td>\n",
" <td>1.160723</td>\n",
" <td>0.611939</td>\n",
" <td>1.229384</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>29.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>94.000000</td>\n",
" <td>126.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>71.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>48.000000</td>\n",
" <td>0.000000</td>\n",
" <td>3.000000</td>\n",
" <td>120.000000</td>\n",
" <td>211.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>133.250000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>1.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>55.500000</td>\n",
" <td>1.000000</td>\n",
" <td>3.000000</td>\n",
" <td>130.000000</td>\n",
" <td>241.500000</td>\n",
" <td>0.000000</td>\n",
" <td>0.500000</td>\n",
" <td>153.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.800000</td>\n",
" <td>2.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>61.000000</td>\n",
" <td>1.000000</td>\n",
" <td>4.000000</td>\n",
" <td>140.000000</td>\n",
" <td>275.000000</td>\n",
" <td>0.000000</td>\n",
" <td>2.000000</td>\n",
" <td>166.000000</td>\n",
" <td>1.000000</td>\n",
" <td>1.600000</td>\n",
" <td>2.000000</td>\n",
" <td>2.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>77.000000</td>\n",
" <td>1.000000</td>\n",
" <td>4.000000</td>\n",
" <td>200.000000</td>\n",
" <td>564.000000</td>\n",
" <td>1.000000</td>\n",
" <td>2.000000</td>\n",
" <td>202.000000</td>\n",
" <td>1.000000</td>\n",
" <td>6.200000</td>\n",
" <td>3.000000</td>\n",
" <td>4.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-6a1aad2f-e2d8-4307-a9d3-81762785e4f9')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-6a1aad2f-e2d8-4307-a9d3-81762785e4f9 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-6a1aad2f-e2d8-4307-a9d3-81762785e4f9');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 107
}
]
},
{
"cell_type": "code",
"source": [
"df['age'].mean"
],
"metadata": {
"id": "BV3t7JBJbx4F",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "29d4d3bf-e766-49ee-8248-f7b410552e2e"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<bound method NDFrame._add_numeric_operations.<locals>.mean of 0 67.0\n",
"1 67.0\n",
"2 37.0\n",
"3 41.0\n",
"4 56.0\n",
" ... \n",
"297 45.0\n",
"298 68.0\n",
"299 57.0\n",
"300 57.0\n",
"301 38.0\n",
"Name: age, Length: 302, dtype: float64>"
]
},
"metadata": {},
"execution_count": 105
}
]
},
{
"cell_type": "code",
"source": [
"df['sex'].count()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "FsXY9qarxfup",
"outputId": "a8eefacc-9b7f-4460-aa41-4d99d2b1b59f"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"302"
]
},
"metadata": {},
"execution_count": 96
}
]
},
{
"cell_type": "code",
"source": [
"subjects = ['healthy','typical angina', 'atypical angina', 'non-anginal pain','asymptomatic']\n",
"pd.Series(subjects)"
],
"metadata": {
"id": "JeQEZLT2Qgmn",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "20491057-6af4-494a-9c73-afb509ed4bcf"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 healthy\n",
"1 typical angina\n",
"2 atypical angina\n",
"3 non-anginal pain\n",
"4 asymptomatic\n",
"dtype: object"
]
},
"metadata": {},
"execution_count": 9
}
]
},
{
"cell_type": "code",
"source": [
"diagnosis = {'healthy':0,'typical angina':1,'atypical angina':2, 'non-anginal pain':3,' asymptomatic':4}\n",
"d = pd.Series(subjects)\n",
"d\n",
"#No sé cómo sacar el punto 1 por aquí, así que lo haré por DATAFRAME "
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SW0l69dETLAh",
"outputId": "a2e03b51-af32-4c30-992d-e0c1466d51e0"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 healthy\n",
"1 typical angina\n",
"2 atypical angina\n",
"3 non-anginal pain\n",
"4 asymptomatic\n",
"dtype: object"
]
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"source": [
"df['diagnosis'].unique()\n",
"#Aquí me permito saber los valores que hay dentro de la columna diagnosis"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "kMl9FxRmoyqs",
"outputId": "ae736f1a-8bce-451d-a273-e141ab2be9f9"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"array([2, 1, 0, 3, 4])"
]
},
"metadata": {},
"execution_count": 11
}
]
},
{
"cell_type": "code",
"source": [
"df['diagnosis'].value_counts()\n",
"#Aquí resuelvo el punto 1. Dónde me piden saber cuántos pacientes hay por cada diagnóstico\n",
"#0 = healthy, 1 = typical angina, 2 = atypical angina, 3 = non anginal pain, 4 = asymptomatic"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XuuF_EfwpKYq",
"outputId": "242ce050-eb9c-4e55-eb35-8aae6d677273"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 163\n",
"1 55\n",
"2 36\n",
"3 35\n",
"4 13\n",
"Name: diagnosis, dtype: int64"
]
},
"metadata": {},
"execution_count": 12
}
]
},
{
"cell_type": "markdown",
"source": [
"# **Desarrollo Punto 2**\n",
"BOX PLOT"
],
"metadata": {
"id": "djCmgJr4plAD"
}
},
{
"cell_type": "code",
"source": [
"!pip install pydataset"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "wLRJxcmurHFF",
"outputId": "42e1407c-450d-4cca-b98b-9469508a03b5"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Collecting pydataset\n",
" Downloading pydataset-0.2.0.tar.gz (15.9 MB)\n",
"\u001b[K |████████████████████████████████| 15.9 MB 13.1 MB/s \n",
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from pydataset) (1.3.5)\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas->pydataset) (2.8.2)\n",
"Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-packages (from pandas->pydataset) (1.21.5)\n",
"Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages (from pandas->pydataset) (2018.9)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas->pydataset) (1.15.0)\n",
"Building wheels for collected packages: pydataset\n",
" Building wheel for pydataset (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for pydataset: filename=pydataset-0.2.0-py3-none-any.whl size=15939432 sha256=2efb5804a3c04a2bfab37ccf8676086a2164740d0dbeeef42f2df3aba3bc0a32\n",
" Stored in directory: /root/.cache/pip/wheels/32/26/30/d71562a19eed948eaada9a61b4d722fa358657a3bfb5d151e2\n",
"Successfully built pydataset\n",
"Installing collected packages: pydataset\n",
"Successfully installed pydataset-0.2.0\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from pydataset import data \n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1_FEYYtkqO7D",
"outputId": "d18b3b42-29b9-4969-d49f-6e0c22638abc"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"initiated datasets repo at: /root/.pydataset/\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"import numpy as np"
],
"metadata": {
"id": "dwhxSamEqO4s"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df['age'].plot.box()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 282
},
"id": "1aMYFScOqO0T",
"outputId": "a6f575e5-096e-4e63-c879-db2d87395c5a"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x7fae7a59be50>"
]
},
"metadata": {},
"execution_count": 16
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAALDElEQVR4nO3db4xl9V3H8fenDESCCKWMG9JVh6RYMBq2dUJoavwDpWrWlG1sSI0xG91k4wNbjQ90fKRNjNk+qk2MJito5oG1UHS7pJtQyLaY2ERgVqBp2dZS3I1sgJ22C9I/aqlfH8zZdJ297NzZnXuH7877lUzuOeees+f76L0nv713J1WFJKmfN2z2AJKk82PAJakpAy5JTRlwSWrKgEtSUzPTvNm1115bc3Nz07ylJLV35MiRr1XV7OrjUw343NwcS0tL07ylJLWX5Pio4y6hSFJTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqaqpf5JGmZW7h0FTuc2zfzqncRxrFgOuitN6wzi0cMsZqxyUUSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTa0Z8CRvTfLkGT//meT3klyT5OEkXxle3ziNgSVJK9YMeFV9uap2VNUO4KeBbwMHgAXgcFXdABwe9iVJU7LeJZTbga9W1XHgTmBxOL4I7NrIwSRJ57begL8f+Pthe1tVPT9svwBsG3VBkr1JlpIsLS8vn+eYkqTVxg54ksuA9wCfWP1eVRVQo66rqv1VNV9V87Ozs+c9qCTp/1vPE/gvA/9aVS8O+y8muQ5geD250cNJkl7begL+a3x/+QTgAWD3sL0bOLhRQ0mS1jZWwJNcAdwB/OMZh/cBdyT5CvCuYV+SNCUz45xUVd8C3rTq2NdZ+VSKJGkT+E1MSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqamZzR5AWsvNH3qIl7/z3YnfZ27h0ET//Ksuv5Sn/vjdE72HtpaxAp7kauBu4CeBAn4L+DJwLzAHHAPuqqpTE5lSW9rL3/kux/bt3OwxLtik/4LQ1jPuEspHgQer6kbgZuAosAAcrqobgMPDviRpStYMeJKrgJ8F7gGoqv+pqpeAO4HF4bRFYNekhpQknW2cJ/DrgWXgb5M8keTuJFcA26rq+eGcF4Btoy5OsjfJUpKl5eXljZlakjRWwGeAtwN/VVVvA77FquWSqipW1sbPUlX7q2q+quZnZ2cvdF5J0mCcgD8HPFdVjw7797MS9BeTXAcwvJ6czIiSpFHWDHhVvQD8R5K3DoduB54GHgB2D8d2AwcnMqEkaaRxPwf+AeDvklwGPAv8Jivxvy/JHuA4cNdkRpQkjTJWwKvqSWB+xFu3b+w4kqRx+VV6SWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpsb972SlTXPlTQv81GL/35l95U0AOzd7DF1EDLhe9145uo9j+/qHb27h0GaPoIuMSyiS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktTUWL+RJ8kx4BXge8CrVTWf5BrgXmAOOAbcVVWnJjOmJGm19TyB/0JV7aiq+WF/AThcVTcAh4d9SdKUXMgSyp3A4rC9COy68HEkSeMaN+AFPJTkSJK9w7FtVfX8sP0CsG3UhUn2JllKsrS8vHyB40qSThv3t9L/TFWdSPLDwMNJvnTmm1VVSWrUhVW1H9gPMD8/P/IcSdL6jfUEXlUnhteTwAHgFuDFJNcBDK8nJzWkJOlsawY8yRVJrjy9Dbwb+ALwALB7OG03cHBSQ0qSzjbOEso24ECS0+d/rKoeTPI4cF+SPcBx4K7JjSlJWm3NgFfVs8DNI45/Hbh9EkNJktbmNzElqSkDLklNGXBJamrcz4FLm2pu4dBmj3DBrrr80s0eQRcZA67XvWP7dk78HnMLh6ZyH2kjuYQiSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlNjBzzJJUmeSPKpYf/6JI8meSbJvUkum9yYkqTV1vME/rvA0TP2Pwx8pKreApwC9mzkYJKkcxsr4Em2AzuBu4f9ALcB9w+nLAK7JjGgJGm0cZ/A/xz4A+B/h/03AS9V1avD/nPAmzd4NknSOawZ8CS/ApysqiPnc4Mke5MsJVlaXl4+nz9CkjTCOE/g7wTek+QY8HFWlk4+ClydZGY4ZztwYtTFVbW/quaran52dnYDRpYkwRgBr6o/qqrtVTUHvB/4TFX9OvBZ4H3DabuBgxObUpJ0lgv5HPgfAr+f5BlW1sTv2ZiRJEnjmFn7lO+rqkeAR4btZ4FbNn4kSdI4/CamJDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNWXAJakpAy5JTRlwSWrKgEtSUwZckpoy4JLUlAGXpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktSUAZekpgy4JDVlwCWpKQMuSU0ZcElqyoBLUlMGXJKaMuCS1JQBl6SmDLgkNbVmwJP8QJLHkjyV5ItJPjQcvz7Jo0meSXJvkssmP64k6bRxnsD/G7itqm4GdgC/lORW4MPAR6rqLcApYM/kxpQkrbZmwGvFN4fdS4efAm4D7h+OLwK7JjKhJGmksdbAk1yS5EngJPAw8FXgpap6dTjlOeDNr3Ht3iRLSZaWl5c3YmZJEmMGvKq+V1U7gO3ALcCN496gqvZX1XxVzc/Ozp7nmJKk1db1KZSqegn4LPAO4OokM8Nb24ETGzybJOkcxvkUymySq4fty4E7gKOshPx9w2m7gYOTGlKSdLaZtU/hOmAxySWsBP++qvpUkqeBjyf5U+AJ4J4Jzimty9zCoalcc2zfznVfI22UNQNeVZ8H3jbi+LOsrIdLrzuGVVuB38SUpKYMuCQ1ZcAlqSkDLklNGXBJasqAS1JTBlySmjLgktRUqmp6N0uWgeNTu6E0vmuBr232ENJr+LGqOut/A5xqwKXXqyRLVTW/2XNI6+ESiiQ1ZcAlqSkDLq3Yv9kDSOvlGrgkNeUTuCQ1ZcAlqSkDLklNGXBJasqAa8tI8skkR5J8Mcne4dieJP+W5LEkf53kL4bjs0n+Icnjw887N3d66Wx+CkVbRpJrquobSS4HHgd+Efgc8HbgFeAzwFNV9TtJPgb8ZVX9c5IfBT5dVTdt2vDSCOP8VnrpYvHBJO8dtn8E+A3gn6rqGwBJPgH8+PD+u4CfSHL62h9K8oNV9c1pDiydiwHXlpDk51mJ8juq6ttJHgG+BLzWU/UbgFur6r+mM6G0fq6Ba6u4Cjg1xPtG4FbgCuDnkrwxyQzwq2ec/xDwgdM7SXZMdVppDAZcW8WDwEySo8A+4F+AE8CfAY+xshZ+DHh5OP+DwHySzyd5GvjtqU8srcF/xNSWdnpde3gCPwD8TVUd2Oy5pHH4BK6t7k+SPAl8Afh34JObPI80Np/AJakpn8AlqSkDLklNGXBJasqAS1JTBlySmvo/ANVGwevzmTsAAAAASUVORK5CYII=\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"import seaborn as sns "
],
"metadata": {
"id": "8eTh-uLrVQBM"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['age'], \n",
" hue = df['sex']);\n",
" #Combinación Edad y sexo con diagnostico"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "OooVecZMqOr3",
"outputId": "004925f5-ec72-4f1e-ec37-cff18300aa71"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaqElEQVR4nO3df3RV5Z3v8feXJBBQBiUgiyZicGK1ai+MBK8zncGWypABhzoz3i5ZUwmF1mWXQHQcB516ndHF6tKZe3WodLpGZTR0qlCZ9lIdmilypdy7lsUSlAKil9RCTYr8CD9UfgQSvvePcyAQ8uOckL33OXk+r7VYZJ+z99nfHA6fPHn2s5/H3B0REQnHgKQLEBGReCn4RUQCo+AXEQmMgl9EJDAKfhGRwBQmXUAmRowY4eXl5UmXISKSV+rr6/e7+8iOj+dF8JeXl7Nx48akyxARyStmtquzx9XVIyISGAW/iEhgFPwiIoFR8IuIBEbBLyKSA5qbm1mwYAHNzc2Rn0vBLyKSA2pra9myZQvLli2L/FwKfhGRhDU3N1NXV4e7U1dXF3mrX8EvIpKw2tpaTp06BUBbW1vkrX4Fv4hIwl577TVaW1sBaG1tZc2aNZGeT8EvIpKwW265hcLC1EQKhYWFTJkyJdLzKfhFRBJWXV3NgAGpOC4oKGDWrFmRni8v5urJ1tNPP01DQ0OnzzU1NQFQWlp63nMVFRXMnz8/0tpERDoqKSmhqqqKV155haqqKkpKSiI9X78M/u4cO3Ys6RJERM5TXV3Nzp07I2/tA1g+LLZeWVnpfTU7Z01NDQCLFy/uk9cTEclVZlbv7pUdH1cfv4hIYBT8IiKBUfCLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEpjIgt/Mrjazt8/685GZ3Wtmw81sjZntSP99aVQ1iIjI+SILfnd/z93Hu/t4YAJwFPgR8CCw1t2vAtamt0VEJCaFMZ3ni8Cv3H2XmX0J+Hz68VpgHbAwpjr63NNPP01DQ0OnzzU1NQFQWlp63nMVFRXMnz8/0tripvdCOqPPRbtceS/iCv47gJfSX49y993prz8ERnV2gJndBdwFMGbMmMgLjMKxY8eSLiFn6L2Qzuhz0S7O98LcPdoTmA0Efgtc5+57zOyQu19y1vMH3b3bfv7KykrfuHFjn9RTU1MDwOLFi/vk9XLlXLlO74V0Rp+LdlG8F2ZW7+6VHR+PY1TPnwCb3H1PenuPmY1OFzUa2BtDDSIikhZHV89M2rt5AH4MVAOPp/9eFUMNIrHKlb5ckc5E2uI3s4uAKcAPz3r4cWCKme0AbklviwTj2LFj6tuWREXa4nf3I0BJh8eaSY3yEem3umu1q19bkqY7d0VEAqPgFxEJjIJfRCQwCn4RkcAo+EVEAqPgFxEJjIJfRCQwCn4RkcAo+EVEAqPgFxEJTFzz8YtIDtEkcmFT8IvIOTSBXP+n4BcJkCaRC5v6+EVEAqMWv4gELcTrHQp+EZEu9NfrHQp+EQlCdy373mhoaDhzPaSjXP9tQMEvIkFoaGjg7a3baRsyPONjBpxwAOrf35PxMQVHD2RdW9wU/CIShFR/vWd1zKni3+nFmfzMtYFcpVE9IiKBUfCLSBBSI3Msq2MGHP+IAcc/yvJM1ukooFyS1109vblYc3r/ri7KdCXXL9aISPcqKiqyPqah4ePUsVeOyuKoUb06V5zyOvh1saZnIY5RjktvR4mo8ZGMrt673v475vO/R14HP0DbkOEcu2ZapOcY/O7qSF8/Kf11jHJcGhoa2LHtLcZc3JbVcQNPpnpYW3ZtzPiY33xSkNU5pG8MHjw46RIikffBL93TnCzRGnNxG397Q7Z9wNn71qbejC6RTPR1qz0ffhNU8IuI9KF8+E1Qwd9P6EJ3z0K83qHPRTJy/TdBBX8/oQvdF6a/Xu/Q50I6o+DvR3Shu3uhXu/Q50I60g1cIiKBUYu/n2hqaqLg6OHIW14FR5tpamqN9BwiEi21+EVEAhNpi9/MLgGeA64nNS3eHOA9YAVQDuwEvuzuB6OsIwSlpaV82FIYS19uaWk2t6+LSK6JusW/GKhz92uAccB24EFgrbtfBaxNb4uISEwia/Gb2TBgEjAbwN1PACfM7EvA59O71QLrgIVR1SHhiWvs+rZt2yjygljuqt31cQEX9WKOd137kc5E2dUzFtgHPG9m44B6oAYY5e670/t8CHTab2BmdwF3AYwZMybCMiVbTU1NWd/cE+dNQbGNXW9tpUhT6KScauPQoUM5/bmQdlEGfyFwAzDf3TeY2WI6dOu4u5tZp0viuPszwDMAlZWV2S2bI5E6duxY1rekxz0xWRxj1y/e9D2uGHo0tjs0B/Vijve4rv1cvOl7DKQlq39f0IR1SYky+BuBRnffkN5eSSr495jZaHffbWajgb0R1iARieOWdE1Mll9yfZoCaRdZ8Lv7h2b2gZld7e7vAV8E3kn/qQYeT/+9KqoaQlNw9EBWfbmnVxbKZl3RgqMHoLgo69pEJHdEfQPXfOD7ZjYQeB/4KqmRRD8ws7nALuDLEdcQhDhXF2pqaoLWQ1mfT0RyQ6TB7+5vA5WdPPXFKM8bot5c6Ort/DQ1NTW07Nrd844ikpN0566ISGA0V4+ISB9qamriyMe5fX+HWvwiIoFRi19EpA+VlpbS0ro7p+/vUItfRCQwCn4RkcCoqydDuT4/TVe6m7Csu/q6qyGui1e9vXAl54rjxj7aNEFbPlHwZygf5qfJ1uDBg2M7lyQjrhv7UsecyPpckgwFfxbycX6aKGYwjOviVW8vXEm7uG7sS93Ul90EbZIc9fGLiARGLX7pd+JafIS2VhoOF2b9W9qeo6n21qghpzI+5jefFHBVVmeRJP3mk+yvgcX5uVDwi/SWGRQUMeiK8VkddiJ9UX3QFZn3v19F7/rrJX69/XeK83Oh4Jd+J86F58dfOapXk9xB9pPjSX7o7XW1OD8X6uMXEQmMWvwiAYri/g7JHwp+ETmH7u/o/7IKfjMb4u5HoypGROLR1632fJiKWNpl1MdvZn9gZu8A76a3x5nZP0damYiIRCLTFv9TwFTgxwDuvtnMJkVWVYbiGq9dcLSZFnPQGuMincqHqYilXcajetz9gw4PZT5pjYiI5IxMW/wfmNkfAG5mRUANsD26sjIT53jti099DByL9DwiInHItMV/N3APUAo0AePT2yIikmcyavG7+37gLyOuRaTPxDEHfcHRA0DmUxeL5IqMgt/Mvt3Jw4eBje6+qm9LErkwcc1BD6M0f47kpUz7+IuBa4CX09t/AfwaGGdmX3D3e6MoTqQ34pqDXiRfZRr8/wX4nLu3AZjZd4H/A/whsCWi2kREJAKZBv+lwMWkuncALgKGu3ubmbVEUlmOaWlpYddxrTMrIvkv0+D/B+BtM1sHGDAJ+JaZXQS8FlFtIiISgUxH9Sw1s58Ad5Iav/9ToNHdjwAPRFhfzhg0aBCXFx3TOrMikvcyHdXzNVI3bZUBbwM3AW8Ak6MrTUREopDpDVw1wERgl7t/Afg94FBkVYmISGQyDf7j7n4cwMwGufu7wNXRlSUiIlHJ9OJuo5ldAvwvYI2ZHQR29XSQme0EPiY1oVuru1ea2XBgBVAO7AS+7O4Hsy9dRER6I6MWv7v/mbsfcve/B/47sBS4LcNzfMHdx7t7ZXr7QWCtu18FrE1vi4hITLJeetHdf3aB5/wS8Pn017XAOmDhBb6miEjOy5W1jqNec9eBn5qZA//i7s8Ao9x9d/r5D+liliszuwu4C2DMmDERlykiF+o3n2R/g+Oeo6lOh1FDTmV1nquyOkt+iHOt46iD/w/dvcnMLiN1beDds590d0//UDhP+ofEMwCVlZWd7iMiuaG3k9WdSLdyB12R+fFXXcD5ktbXax33VqTB7+5N6b/3mtmPgBuBPWY22t13m9loYG+UNYhI9HobaJocLxkZL72YLTO7yMyGnv4a+GNgK6l1e6vTu1UDmtZZRCRGUbb4RwE/MrPT53nR3evM7BfAD8xsLqkhoV+OsAYREekgsuB39/eBcZ083gx8MarziohI9yLr6hERkdwU9age6aeyHbqnYXsiuUPBL1nrzVC60IbtieQyBb9kTWvaiuQ39fGLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEpi8H85ZcPQAg99dnfH+A45/BMCp4sxvPio4egCKi7KuTcKVKwtuiHQmr4O/Nzf3NDR8nDr2yk7Xf+nCKJqamqD1UNbnE+kozgU3RDqT18Ef541ENTU1tOza3fOOIuTOghsinVEfv4hIYBT8IiKBUfCLxKyhoYHp06d3efFXJGoKfpGYLVq0iCNHjrBo0aKkS5FAKfhFYtTQ0MDOnTsB2Llzp1r9koi8HtUTNy0+IheqYyt/0aJFvPDCC8kUI8FS8GdIi49IXzjd2u9qWyQOCv4MafER6Qvl5eXnhH15eXlitUi41McvEqOHH364222ROKjFL8HIhflzKioqzrT6y8vL1a0niVCLX4TU/DlxzaEzb948BgwYoGkdJDFq8UswciVo169fj7uzfv16JkyYkHQ5EiC1+EVi1NzcTF1dHe5OXV0dzc3NSZckAVLwi8SotraWU6dS93W0tbWxbNmyhCuSECn4RWL02muv0draCkBraytr1qxJuCIJkYJfJEa33HILhYWpS2uFhYVMmTIl4YokRAp+kRhVV1czYEDqv11BQQGzZs1KuCIJkYJfJEYlJSVUVVVhZlRVVVFSUpJ0SRIgDecUiVl1dTU7d+5Ua18SE3mL38wKzOwtM3s1vT3WzDaYWYOZrTCzgVHXIJJLSkpK+Pa3v63WviQmjq6eGmD7WdtPAE+5ewVwEJgbQw0iIpIWafCbWRkwHXguvW3AZGBlepda4LYoaxARkXNF3eL/J+BvgNMrkZQAh9y9Nb3dCJRGXIOIiJwlsuA3s1uBve5e38vj7zKzjWa2cd++fX1cnYhIuKJs8X8OmGFmO4HlpLp4FgOXmNnp0URlQFNnB7v7M+5e6e6VI0eOjLBMEZGwRDac090fAh4CMLPPA3/t7n9pZi8Dt5P6YVANrIqqBgnXyZMnaWxs5Pjx40mXcsGKi4spKyujqKgo6VKkn0hiHP9CYLmZLQLeApYmUIP0c42NjQwdOpTy8nJSYwryk7vT3NxMY2MjY8eOTbqcXsmFBXDkXLHcuevu69z91vTX77v7je5e4e7/zd1b4qhBwnL8+HFKSkryOvQBzIySkpJ+8ZtLZ+JcACfXNTc3s2DBglim6tadu9Jv5Xvon5bv34da7Zmpra1ly5YtLFu2jPvuuy/Sc2muHhGRhMW9QI+CX0QkYXEv0KPgFxFJWNwL9Cj4Rbpx5MgRpk+fzrhx47j++utZsWIF9fX13HzzzUyYMIGpU6eye/duDh8+zNVXX817770HwMyZM3n22WcTrl7yRdwL9Cj4RbpRV1fHpz71KTZv3szWrVupqqpi/vz5rFy5kvr6eubMmcM3v/lNhg0bxpIlS5g9ezbLly/n4MGDfP3rX0+6fMkTcS/Qo1E9It347Gc/y/3338/ChQu59dZbufTSS9m6deuZFllbWxujR48GYMqUKbz88svcc889bN68OcmyJc+cXqDnlVdeiWWBHgW/SDc+/elPs2nTJlavXs3DDz/M5MmTue6663jjjTfO2/fUqVNs376dIUOGcPDgQcrKyhKoWPJVnAv0qKtHpBu//e1vGTJkCF/5yld44IEH2LBhA/v27TsT/CdPnmTbtm0APPXUU3zmM5/hxRdf5Ktf/SonT55MsnTJM3Eu0KMWv0g3tmzZwgMPPMCAAQMoKiriu9/9LoWFhSxYsIDDhw/T2trKvffeS2FhIc899xxvvvkmQ4cOZdKkSSxatIhHH3006W9B5DwKfpFuTJ06lalTp573+Pr16897bPv29oXmnnzyyUjrErkQ6uoREQmMgl9EJDAKfhGRwKiPX/qM5l0XyQ8KfomF5lwXyR0KfukzarWL5AcFvwRh3l89wN79B/rs9S4bMZwlT/5jj/vV1dVRU1NDW1sbX/va13jwwQfPeb6lpYVZs2ZRX19PSUkJK1asoLy8vM/qFOlMvwx+9TVLR3v3H+BXo27uuxfc87Med2lra+Oee+5hzZo1lJWVMXHiRGbMmMG11157Zp+lS5dy6aWX0tDQwPLly1m4cCErVqzouzpFOhHcqB6t8SlxefPNN6moqODKK69k4MCB3HHHHaxateqcfVatWkV1dTUAt99+O2vXrsXdkyhXAtIvW/xqtUsuaGpq4vLLLz+zXVZWxoYNG7rcp7CwkGHDhtHc3MyIESNirVXCElyLX0QkdAp+kYiUlpbywQcfnNlubGyktLS0y31aW1s5fPhwLLMzStgU/CIRmThxIjt27ODXv/41J06cYPny5cyYMeOcfWbMmEFtbS0AK1euZPLkyZhZEuVKQPplH79IR5eNGJ7RSJysXq8HhYWFLFmyhKlTp9LW1sacOXO47rrreOSRR6isrGTGjBnMnTuXO++8k4qKCoYPH87y5cv7rEaRrij4JQiZjLmPwrRp05g2bdo5jz322GNnvi4uLubll1+OuywJnLp6REQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQmMhnNKEP72/nkc3r+nz15v2IhRfOt/Lul2nzlz5vDqq69y2WWXsXXr1vOed3dqampYvXo1Q4YM4YUXXuCGG27osxpFuhJZ8JtZMbAeGJQ+z0p3/zszGwssB0qAeuBOdz8RVR0iAIf372Hh777bZ6/3xK963mf27NnMmzePWbNmdfr8T37yE3bs2MGOHTvYsGED3/jGN86bxE0kClF29bQAk919HDAeqDKzm4AngKfcvQI4CMyNsAaRxEyaNInhw7u+w3fVqlXMmjULM+Omm27i0KFD7N69O8YKJVSRBb+nfJLeLEr/cWAysDL9eC1wW1Q1iOSyzqZtbmpqSrAiCUWkF3fNrMDM3gb2AmuAXwGH3L01vUsjUNrFsXeZ2UYz27hv374oyxQRCUqkwe/ube4+HigDbgSuyeLYZ9y90t0rR44cGVmNIknJZNpmkSjEMpzT3Q8BrwO/D1xiZqcvKpcB+t1WgjRjxgyWLVuGu/Pzn/+cYcOGMXr06KTLkgBEOapnJHDS3Q+Z2WBgCqkLu68Dt5Ma2VMNrOr6VXKfFnbPD8NGjMpoJE42r9eTmTNnsm7dOvbv309ZWRmPPvooJ0+eBODuu+9m2rRprF69moqKCoYMGcLzzz/fdwWKdCPKcfyjgVozKyD1m8UP3P1VM3sHWG5mi4C3gKUR1pAoLeqeO3oacx+Fl156qdvnzYzvfOc7MVUj0i6y4Hf3XwK/18nj75Pq7+8X1GoXkXyjKRtERAKj4Jd+y92TLqFP9JfvQ3KHgl/6peLiYpqbm/M+NN2d5uZmiouLky5F+hFN0ib9UllZGY2NjfSHm/+Ki4spKytLugzpRxT80i8VFRUxduzYpMsQyUnq6hERCYyCX0QkMAp+EZHAWD6MejCzfcCuhMsYAexPuIZcofeind6Ldnov2uXKe3GFu583y2VeBH8uMLON7l6ZdB25QO9FO70X7fRetMv190JdPSIigVHwi4gERsGfuWeSLiCH6L1op/eind6Ldjn9XqiPX0QkMGrxi4gERsEvIhIYBX8GzKzKzN4zswYzezDpepJiZv9qZnvNbGvStSTNzC43s9fN7B0z22Zm56+vGQgzKzazN81sc/q9eDTpmpJkZgVm9paZvZp0LV1R8PcgvXTkd4A/Aa4FZprZtclWlZgXgKqki8gRrcD97n4tcBNwT8CfixZgsruPA8YDVWZ2U8I1JakG2J50Ed1R8PfsRqDB3d939xOkFon/UsI1JcLd1wMHkq4jF7j7bnfflP76Y1L/0UuTrSoZnvJJerMo/SfIUSNmVgZMB55LupbuKPh7Vgp8cNZ2I4H+B5fOmVk5qfWlNyRbSXLS3RtvA3uBNe4e6nvxT8DfAKeSLqQ7Cn6RC2BmFwP/Dtzr7h8lXU9S3L3N3ccDZcCNZnZ90jXFzcxuBfa6e33StfREwd+zJuDys7bL0o9J4MysiFTof9/df5h0PbnA3Q8BrxPmtaDPATPMbCepLuHJZvZvyZbUOQV/z34BXGVmY81sIHAH8OOEa5KEmZkBS4Ht7v5k0vUkycxGmtkl6a8HA1OAd5OtKn7u/pC7l7l7Oamc+N/u/pWEy+qUgr8H7t4KzAP+k9QFvB+4+7Zkq0qGmb0EvAFcbWaNZjY36ZoS9DngTlKturfTf6YlXVRCRgOvm9kvSTWU1rh7zg5lFE3ZICISHLX4RUQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCU5h0ASJxM7O/Bz4BfgdY7+6vJVjLY0nXIOFR8Euw3P0R1SAhUlePBMHMvmlm/8/M/i9wdfqxF8zs9vTXj5jZL8xsq5k9k74zFzObaGa/TN+g9Y+n1yIws9lm9kMzqzOzHWb2D2eda6aZbUm/1hPpxwrS59uafu6+Tmp4PD2//y/N7H/E+gZJUNTil37PzCaQuoV+PKnP/Cag40RaS9z9sfT+3wNuBV4Bnge+7u5vmNnjHY4ZT2pWzhbgPTN7GmgDngAmAAeBn5rZbaRmeC119+vT57ikQ40lwJ8B17i7d3xepC+pxS8h+CPgR+5+ND2DZmdzLX3BzDaY2RZgMnBdOnyHuvsb6X1e7HDMWnc/7O7HgXeAK4CJwDp335ee7uP7wCTgfeBKM3vazKqAjjN5HgaOA0vN7M+Boxf8XYt0QcEvwTOzYuCfgdvd/bPAs0BxBoe2nPV1G938Bu3uB4FxwDrgbjos1JH+IXEjsJLUbxt1mX8HItlR8EsI1gO3mdlgMxsK/GmH50+H/P70/Pq3w5kphj82s/+afv6ODM71JnCzmY1IL9s5E/iZmY0ABrj7vwMPAzecfVD6vMPcfTVwH6kfEiKRUB+/9HvuvsnMVgCbSa0Q9YsOzx8ys2eBrcCHHZ6fCzxrZqeAn5HqkunuXLvN7EFSc9Ib8B/uvsrMxgHPm9npxtZDHQ4dCqxK//ZhwF/14lsVyYhm5xTphpldfHo92XSgj3b3moTLErkgavGLdG+6mT1E6v/KLmB2suWIXDi1+EVEAqOLuyIigVHwi4gERsEvIhIYBb+ISGAU/CIigfn/AvClPLPVENAAAAAASUVORK5CYII=\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['age'], \n",
" );\n",
" #Diagnostico y edad"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "llPzIoX9qOpc",
"outputId": "a2fe705c-1c23-4e9a-8d27-4e655ff783da"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAVvElEQVR4nO3df5Bd5X3f8fdXQkTihy0jYWB0Q9bNAh7iBhqvqRunro0jwsYYOx3qwZNk1i0tk5kYSNxpjFuGSRhNBqed2l7aZEY2ddatE+Nx7CLTikohgJ0ZF7NCMj8ESNfMYi8FtCsjDEgCIX37xz1C0rKS7r3ac8/ePe/XzM7ec+89er73aPezz33Ouc8TmYkkqT4WVV2AJKm3DH5JqhmDX5JqxuCXpJox+CWpZk6quoB2rFy5MgcGBqouQ5L6yqZNm6Yz88yZ9/dF8A8MDDA+Pl51GZLUVyLi6dnud6hHkmrG4JekmjH4JalmDH5JqhmDX5Lm0PT0NNdddx07d+6supSjMvglaQ6NjY3x8MMPMzY2VnUpR2XwS9IcmZ6eZv369WQm69evn7e9foNfkubI2NgYB6e6P3DgwLzt9Rv8kjRHNm7cyL59+wDYt28fGzZsqLii2Rn8kjRHVq9ezZIlSwBYsmQJl112WcUVzc7gl6Q5MjIyQkQAsGjRIkZGRiquaHZ9MVfPXBodHaXZbHa0z+TkJACNRqPj9gYHB7n++us73k9S/1m5ciXDw8OsW7eO4eFhVqxYUXVJs6pd8Hdjz549VZcgqU+MjIwwMTExb3v7ANEPi60PDQ1llbNzHuyxj46OVlaDJHUqIjZl5tDM+x3jl6SaMfglqWYMfkmqGYNfkmrG4JekmjH4JalmDH5JqhmDX5JqxuCXpJox+CWpZgx+SaoZg1+Sasbgl6SaMfglqWYMfkmqGYNfkmrG4JekmjH4JalmDH5JqhmDX5JqprTgj4gLImLLYV8/i4g/iIgzImJjRGwvvr+trBokSW9WWvBn5pOZeXFmXgy8G9gNfBu4EbgnM88D7im2JUk9clKP2vkQ8KPMfDoiPgp8oLh/DLgP+EyP6tBhRkdHaTabHe0zOTkJQKPR6Li9wcFBrr/++o73U2/5c3HIQj0WvQr+q4G/Lm6flZnPFrefA86abYeIuBa4FuDcc88tvUC1Z8+ePVWXoHnIn4tD+uFYRGaW20DEycD/A34pM5+PiF2Zufywx1/IzGOO8w8NDeX4+HipdR7Lwb/Ao6OjldUwX3gsNBt/Lg6ZT8ciIjZl5tDM+3txVc8w8FBmPl9sPx8R5xRFnQPs6EENkqRCL4Z6PsGhYR6AdcAIcGvx/c4e1CAd00Idy5VmU2qPPyJOBVYD3zrs7luB1RGxHfj1YlvqO3v27OmL8VxpplJ7/Jn5CrBixn07aV3lI80b3fS+59NYrtQJP7krSTVj8EtSzRj8klQzBr8k1YzBL0k1Y/BLUs0Y/JJUMwa/JNWMwS9JNWPwS1LNGPySVDMGvyTVjMEvSTVj8EtSzRj8klQzBr8k1YzBL0k1Y/BLUs30YrF1SarU6OgozWazJ21t374d6G45z24MDg523JbBL2nBazabPPbI4yw/5e2lt3XgtQDgmR/tLL2tXbt3dLWfwS+pFpaf8nY++M6rqy5jTt37xNe72s8xfkmqGYNfkmrG4JekmjH4JalmPLmrBcXL9qTjM/i1oDSbTTY/thmW96CxA61vm5/ZXH5buzrfxT+COhqDXwvPcjjwgQNVVzGnFt3X+ahss9nkiS1bOLuEemY6WN2uLVtKb+u50ltY+Ax+aQE7G7iGqLqMOXU7WXUJfc+Tu5JUMwa/JNWMwS9JNVPqGH9ELAe+DLwLSOBfAU8CdwADwATw8cx8ocw6Fjqv3pDUibJP7n4RuDszr4qIk4FTgH8P3JOZt0bEjcCNwGdKrmNBazabbHv0Ic49bX/pbZ28r/Umce/Eg6W39eOXF5fehlRHpQV/RLwVeD/wSYDMfA14LSI+CnygeNoYcB8G/wk797T93DT0ctVlzKk146dVXYIWiMnJSV7c/VLXs1nOV7t27yAn93S8X5lj/O8ApoCvRMTmiPhyRJwKnJWZzxbPeQ44a7adI+LaiBiPiPGpqakSy5SkeilzqOck4FeA6zLzgYj4Iq1hnTdkZkbErBflZuZaYC3A0NCQF+5K6lqj0SBe3bkg5+Nf1VjR8X5l9vgngcnMfKDY/iatPwTPR8Q5AMX37paQkSR1pbQef2Y+FxE/iYgLMvNJ4EPA1uJrBLi1+H5nt2306moWr2TpH5OTk/Bid1MczGu7YDInq65CC0TZV/VcB3ytuKLnKeBf0nqX8Y2IuAZ4Gvh4t/94s9lk8yNbOXDKGXNS7NHEa62Rpk0/Kn+WkEW7f1p6G5LqrdTgz8wtwNAsD31orto4cMoZ7L3wirn65yq3dOtdVZfQ1xqNBlMxtSAnaWusalRdhhaIBfZ+WJJ0PAa/JNWMwS9JNWPwS1LNGPySVDMGvyTVjEsvLgCTk5O88tLiBTep2dMvLebUST+0pLmxa/eOnkzS9vLe1izzpy19W+lt7dq9g1V0PmWDwS9pwRscHOxZW9u3tz6EueoXOw/kTq1iRVevzeBfABqNBntff3ZBTsu8tOGHlnTiejkFysG2RkdHe9Zmpxzjl6SasccvLVCTk5O8BNzOwprV/FngZc/9nBCDXwvPrh7NznlwZK0X59R3Aat60I5qweDXgtLbk3it6brPW3Ve+Y2t6vy1NRoNdk1Pcw1RUlHVuJ1kued+TojBrwXFk3jS8XlyV5JqxuCXpJrpKPgj4pSyCpEk9UZbwR8RvxoRW4Eniu2LIuLPS61MklSKdnv8nwd+A9gJkJk/BN5fVlGSpPK0PdSTmT+Zcdf+Oa5FktQD7V7O+ZOI+FUgI2IJcAPweHllSZLK0m6P//eA36f12cFngIuLbUlSn2mrx5+Z08Bvl1yLJKkH2gr+iJjto4kvAuOZeefcliRJKlO7Qz1LaQ3vbC++fhloANdExBdKqk2SVIJ2T+7+MvC+zNwPEBF/AXwP+DXgkZJqkySVoN3gfxutyWdfLLZPBc7IzP0R8WoplbVhcnKSRbtfZOnWu6oqYc4t2r2TycnXqy5D0gLWbvD/GbAlIu4DgtaHt/40Ik4F/rak2iRJJWj3qp7bI2I98Lu0rt/fAExm5ivAvyuxvmNqNBo8/+pJ7L3wiqpKmHNLt95Fo3F21WVogXiO3qzAtbP4Xv7y4q3XtLwH7Sxk7V7V869pfWirAWwB3gt8H7i0vNIknYheLkozVSxKs/y88helWU5vX9tC1O5Qzw3Ae4D/m5kfjIh3An9aXlmSTpSL0uho2r2cc29m7gWIiJ/LzCeAC8orS5JUlnZ7/JMRsRz4n8DGiHgBePp4O0XEBPASrQndXs/MoYg4A7gDGAAmgI9n5gudl67D/fjlxawZL3/V7+d3t/oKZ51yoPS2fvzyYs4vvRWpfto9uftbxc0/joh7gbcCd7fZxgeLKR8OuhG4JzNvjYgbi+3PtFuw3qyX452vFWO5SwfKH8s9H8dypTJ0vNh6Zt5/gm1+FPhAcXsMuA+D/4Q4liuVY3R0lGaz2dE+24vOUTe/l4ODgz35fS57zd0ENkTEpoi4trjvrMx8trj9HHDWbDtGxLURMR4R41NTUyWXKUlzY9myZSxbtqzqMo6p4x5/h34tM5+JiLfTOjfwxOEPZmZGxKwXGWfmWmAtwNDQUPkXIkvSDL18N91Lpfb4M/OZ4vsO4NvAJcDzEXEOQPF9R5k1SJKOVFrwR8SpEXH6wdvAZcCjwDpgpHjaCOC0zpLUQ2UO9ZwFfDsiDrbzV5l5d0Q8CHwjIq6hdUnox0usQZI0Q2nBn5lPARfNcv9O4ENltStJOrayr+qRJM0zBr8k1YzBL0k1Y/BLUs0Y/JJUMwa/JNWMwS9JNWPwS1LNGPySVDMGvyTVTNnTMkt9YaEuuCHNxuCXujTfF9uQjsbgl1i4C25Is3GMX5JqxuCXpJox+KUubdu2jeHh4Y5PCktV6/sx/kW7f8rSrXeV2kbs/RkAufQtpbYDrdcDZ5fejk7cmjVreOWVV7jlllv46le/WnU5Utv6OvgHBwd70s727S8BcN4v9iKQz+7Z61L3tm3bxsTEBAATExM0m03/39Q3+jr4e3UlxsF2RkdHe9Ke5r81a9YcsW2vX/3EMX6pCwd7+0fbluYzg1/qwsDAwDG3pfnM4Je68KlPfeqI7RtuuKGiSqTOGfxSF773ve8dsX3//fdXVInUOYNf6sLGjRuP2N6wYUNFlUidM/ilLqxevZqIACAiuOyyyyquSGqfwS914SMf+QiZCUBmcuWVV1ZckdQ+g1/qwne+850jevzr1q2ruCKpfQa/1IWNGzce0eN3jF/9xOCXurB69WqWLFkCwJIlSxzjV18x+KUujIyMvDHUs2jRIkZGRiquSGqfwS91YeXKlQwPDxMRDA8Ps2LFiqpLktrW15O0SVUaGRlhYmLC3r76Tuk9/ohYHBGbI+KuYvsdEfFARDQj4o6IOLnsGqQyrFy5kttuu83evvpOL4Z6bgAeP2z7c8DnM3MQeAG4pgc1SJIKpQZ/RDSADwNfLrYDuBT4ZvGUMeBjZdYgSTpS2WP8XwD+CDi92F4B7MrM14vtSWBVyTXoKEZHRzteL3b79u1Ad4vgDA4O9mzxHElHV1qPPyKuAHZk5qYu9782IsYjYnxqamqOq1O3li1bxrJly6ouQ9IJKLPH/z7gyoj4TWAp8Bbgi8DyiDip6PU3gGdm2zkz1wJrAYaGhrLEOmvL3rdUT6X1+DPzs5nZyMwB4Grg7zLzt4F7gauKp40Ad5ZVgyTpzaq4jv8zwNcjYg2wGbi9ghokHYXnfha+nnxyNzPvy8writtPZeYlmTmYmf8iM1/tRQ2SyuO5n0Omp6e57rrr2LlzZ9WlHJWf3JV0BHvfJ2ZsbIyHH36YsbExPv3pT1ddzqycq0eS5sj09DTr168nM1m/fv287fUb/JI0R8bGxt5Yp+HAgQOMjY1VXNHsDH5JmiMbN25k3759AOzbt2/eLtBj8EvSHOmXBXoMfkmaI/2yQI/BL0lzpF8W6PFyTkmaQ/2wQI/BL0lz6OACPfOZQz2SVDMGvyTVjMGvjmzbto3h4eGOJ/GSNH8Y/OrImjVreOWVV7jllluqLkVSlwx+tW3btm1MTEwAMDExYa9f6lMGv9q2Zs2aI7bt9Uv9yeBX2w729o+2Lak/GPxq28DAwDG3JfUHg19tu+mmm47YvvnmmyuqRNKJMPjVtvPPP/+NXv7AwACDg4PVFiSpKwa/OnLTTTdx6qmn2tuX+phz9agj559/PuvXr6+6DEknwB6/JNWMwS9JNWPwS1LNGPySVDMGvyTVjMEvSTVj8EtSzRj8klQzBr8k1YzBL0k1Y/BLUs0Y/JJUM6UFf0QsjYgfRMQPI+KxiPiT4v53RMQDEdGMiDsi4uSyapAkvVmZPf5XgUsz8yLgYuDyiHgv8Dng85k5CLwAXFNiDZKkGUoL/mx5udhcUnwlcCnwzeL+MeBjZdUgSXqzUsf4I2JxRGwBdgAbgR8BuzLz9eIpk8Cqo+x7bUSMR8T41NRUmWVKUq2UGvyZuT8zLwYawCXAOzvYd21mDmXm0JlnnllajZJUNz25qiczdwH3Av8EWB4RB1f+agDP9KIGSVJLaUsvRsSZwL7M3BURy4DVtE7s3gtcBXwdGAHuLKuG2YyOjtJsNjvaZ/v27QBcf/31Hbc3ODjY1X6SVJYy19w9BxiLiMW03ll8IzPvioitwNcjYg2wGbi9xBrmxLJly6ouQZLmTGRm1TUc19DQUI6Pj1ddhiT1lYjYlJlDM+/3k7uSVDMGvyTVjMEvSTVj8EtSzRj8klQzBr8k1YzBL0k1Y/BLUs30xQe4ImIKeLriMlYC0xXXMF94LA7xWBzisThkvhyLX8jMN81y2RfBPx9ExPhsn4CrI4/FIR6LQzwWh8z3Y+FQjyTVjMEvSTVj8LdvbdUFzCMei0M8Fod4LA6Z18fCMX5Jqhl7/JJUMwa/JNWMwd+GiLg8Ip6MiGZE3Fh1PVWJiP8WETsi4tGqa6laRPx8RNwbEVsj4rGIuKHqmqoSEUsj4gcR8cPiWPxJ1TVVKSIWR8TmiLir6lqOxuA/jmLpyP8KDAMXAp+IiAurraoyfwlcXnUR88TrwL/NzAuB9wK/X+Ofi1eBSzPzIuBi4PKIeG/FNVXpBuDxqos4FoP/+C4Bmpn5VGa+RmuR+I9WXFMlMvO7wE+rrmM+yMxnM/Oh4vZLtH7RV1VbVTWy5eVic0nxVcurRiKiAXwY+HLVtRyLwX98q4CfHLY9SU1/wTW7iBgA/hHwQLWVVKcY3tgC7AA2ZmZdj8UXgD8CDlRdyLEY/NIJiIjTgL8B/iAzf1Z1PVXJzP2ZeTHQAC6JiHdVXVOvRcQVwI7M3FR1Lcdj8B/fM8DPH7bdKO5TzUXEElqh/7XM/FbV9cwHmbkLuJd6ngt6H3BlREzQGhK+NCL+R7Ulzc7gP74HgfMi4h0RcTJwNbCu4ppUsYgI4Hbg8cz8z1XXU6WIODMilhe3lwGrgSeqrar3MvOzmdnIzAFaOfF3mfk7FZc1K4P/ODLzdeBTwP+hdQLvG5n5WLVVVSMi/hr4PnBBRExGxDVV11Sh9wG/S6tXt6X4+s2qi6rIOcC9EfEwrY7Sxsyct5cyyikbJKl27PFLUs0Y/JJUMwa/JNWMwS9JNWPwS1LNnFR1AVKvRcQfAy8DbwG+m5l/W2Ett1Rdg+rH4FdtZebN1qA6cqhHtRAR/yEitkXE3wMXFPf9ZURcVdy+OSIejIhHI2Jt8clcIuI9EfFw8QGt/3hwLYKI+GREfCsi7o6I7RHxZ4e19YmIeKT4tz5X3Le4aO/R4rE/nKWGW4v5/R+OiP/U0wOkWrHHrwUvIt5N6yP0F9P6mX8ImDmR1n/JzFuK5/934ArgO8BXgH+Tmd+PiFtn7HMxrVk5XwWejIjbgP3A54B3Ay8AGyLiY7RmeF2Vme8q2lg+o8YVwG8B78zMnPm4NJfs8asO/inw7czcXcygOdtcSx+MiAci4hHgUuCXivA9PTO/Xzznr2bsc09mvpiZe4GtwC8A7wHuy8ypYrqPrwHvB54C/kFE3BYRlwMzZ/J8EdgL3B4R/xzYfcKvWjoKg1+1FxFLgT8HrsrMfwh8CVjaxq6vHnZ7P8d4B52ZLwAXAfcBv8eMhTqKPxKXAN+k9W7j7vZfgdQZg1918F3gYxGxLCJOBz4y4/GDIT9dzK9/FbwxxfBLEfGPi8evbqOtHwD/LCJWFst2fgK4PyJWAosy82+Am4BfOXynot23Zub/Bv6Q1h8JqRSO8WvBy8yHIuIO4Ie0Voh6cMbjuyLiS8CjwHMzHr8G+FJEHADupzUkc6y2no2IG2nNSR/A/8rMOyPiIuArEXGws/XZGbueDtxZvPsI4NNdvFSpLc7OKR1DRJx2cD3ZItDPycwbKi5LOiH2+KVj+3BEfJbW78rTwCerLUc6cfb4JalmPLkrSTVj8EtSzRj8klQzBr8k1YzBL0k18/8BDaJJ5tmCELMAAAAASUVORK5CYII=\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['slope'], \n",
" y = df['diagnosis'], \n",
" hue = df['sex']);\n",
"#Diagnóstico por sexo y por Depresión del ST inducida por el ejercicio en relación \n",
"#con el reposo pendiente: la pendiente del segmento ST del ejercicio máximo \n",
"#-- Valor 1: ascendente -- Valor 2: plano -- Valor 3: descendente"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "K_YaVojuV-7j",
"outputId": "0394ebd1-5116-412a-a859-7e93365a6f5e"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAemklEQVR4nO3de5RV5Z3m8e9TF7mIghbEJlWQsrtMur1EY8rEJDPGxUhbQQNZ3Wa19iRg1DDJKJaXdjTGpdEhTjtZg1HIJEM0EXIRWtLdEFOhh0SNnbUiBogKiI4niZeqkIiloNxKquo3f5wNlkVdDnj2OVW1n89atdiX97znV2w4z9nXVxGBmZllV0W5CzAzs/JyEJiZZZyDwMws4xwEZmYZ5yAwM8u4qnIXcKgmTpwY9fX15S7DzGxYWb9+/SsRMamvdcMuCOrr61m3bl25yzAzG1YkvdDfOh8aMjPLOAeBmVnGOQjMzDJu2J0j6Mu+fftobW1l79695S7lHRs9ejR1dXVUV1eXuxQzy4gREQStra0cddRR1NfXI6nc5Ry2iKC9vZ3W1laOP/74ovXb3t7Orbfeyi233EJNTU3R+jWzkSH1Q0OSKiX9RtKDfawbJWm5pJyktZLqD+c99u7dS01NzbAOAQBJ1NTUFH3PZsmSJWzcuJGlS5cWtV8zGxlKcY6gGdjSz7pLgdciogG4E7jjcN9kuIfAfsX+Pdrb21m9ejURwerVq2lvby9q/2Y2/KV6aEhSHXAe8FXgmj6azAK+kkyvABZJUvjZ2EWzZMkSuru7Aejq6mLp0qVcffXVZa6quBYuXEgulyuobVtbGwC1tbUFtW9oaGDevHmHXVt/hmPN9pa0tl+5tl3aewRfB/4b0N3P+lrgJYCI6AR2AAcdxJY0V9I6Seu2bduWVq0j0s9+9jM6OzsB6OzsZM2aNWWuqLz27NnDnj17yl3GIRmONdtbhsP2S22PQNL5wMsRsV7S2e+kr4hYDCwGaGxs9N7CITjnnHNoaWmhs7OTqqoqpk+fXu6Siu5QvkE1NzcDcNddd6VVTkGGY832lpG2/dLcI/gYMFPS88AyYJqk7/dq0wZMAZBUBYwHynYQe9euXZx33nmceuqpnHzyySxfvpz169fz8Y9/nA9+8IOce+65bN26lR07dvC+972PZ599FoCLLrqIb3/72+Uqe0Bz5syhoiK/mSsrK5k9e3aZKzKzoSa1IIiIL0VEXUTUAxcCD0XEZ3o1WwXMSaYvSNqU7Rv/6tWrefe7382TTz7Jpk2baGpqYt68eaxYsYL169dzySWX8OUvf5nx48ezaNEiLr74YpYtW8Zrr73G5z//+XKVPaCamhqampqQRFNTky8fNbODlPw+Akm3AesiYhVwL/A9STngVfKBUTannHIK1157Lddffz3nn38+xxxzDJs2bTpwOKWrq4vJkycDMH36dB544AEuv/xynnzyyXKWPag5c+bw/PPPe2/AzPpUkiCIiEeAR5Lpm3ss3wt8uhQ1FOK9730vGzZsoKWlhZtuuolp06Zx0kkn8atf/eqgtt3d3WzZsoWxY8fy2muvUVdXV4aKC1NTU8Pdd99d7jLMbIjys4Z6+MMf/sDYsWP5zGc+w3XXXcfatWvZtm3bgSDYt28fmzdvBuDOO+/kr/7qr/jhD3/I5z73Ofbt21fO0s3MDtuIeMREsWzcuJHrrruOiooKqqur+eY3v0lVVRVXXnklO3bsoLOzk6uuuoqqqiruueceHn/8cY466ijOOuss5s+fz6233lruX8HM7JA5CHo499xzOffccw9a/uijjx60bMuWt26WXrBgQap1mZmlyYeGzMwyzkFgZpZxDgIzs4xzEJiZZZyDwMws4xwEZmYZNyIvH73imut4+ZVXi9bfuyYey6IFXxu03erVq2lubqarq4vLLruMG2644W3rOzo6mD17NuvXr6empobly5dTX19ftDrNzA7HiAyCl195ld8e9/HidfinXwzapKuri8svv5w1a9ZQV1fHGWecwcyZMznxxBMPtLn33ns55phjyOVyLFu2jOuvv57ly5cXr04zs8PgQ0NF8vjjj9PQ0MCf//mfc8QRR3DhhReycuXKt7VZuXIlc+bkH7Z6wQUX8POf/xwPxmZm5eYgKJK2tjamTJlyYL6uru7AEHV9tamqqmL8+PEeQ9jMys5BYGaWcQ6CIqmtreWll146MN/a2nrQYNU923R2drJjxw4PFGNmZecgKJIzzjiD5557jt///ve8+eabLFu2jJkzZ76tzcyZM1myZAkAK1asYNq0aUgqR7lmZgekOXj9aOBRYFTyPisi4pZebS4GvkZ+7GKARRFxzzt973dNPLagK30Oqb9BVFVVsWjRIs4991y6urq45JJLOOmkk7j55ptpbGxk5syZXHrppXz2s5+loaGBY489lmXLlhWtRjOzw5Xm5aMdwLSI2CmpGvilpJ9GxGO92i2PiCuK+caFXPOfhhkzZjBjxoy3LbvtttsOTI8ePZoHHnig1GWZmQ0otSBIBqHfmcxWJz++VtLMbIhJ9RyBpEpJTwAvA2siYm0fzf5W0lOSVkia0sd6JM2VtE7Sum3btqVZsplZ5qQaBBHRFRGnAXXAhySd3KvJj4H6iHg/sAZY0k8/iyOiMSIaJ02alGbJZmaZU5KrhiJiO/Aw0NRreXtEdCSz9wAfLEU9Zmb2ltSCQNIkSROS6THAdOCZXm0m95idCWzBzMxKKs2rhiYDSyRVkg+cf4qIByXdBqyLiFXAlZJmAp3Aq8DFKdZjZmZ9SPOqoaeAD/Sx/OYe018CvlTs977x2ivY8cqfitbf+InHcfv/WjRgm0suuYQHH3yQd73rXWzatOmg9RFBc3MzLS0tjB07lvvuu4/TTz+9aDWamR2uEfkY6h2v/Inr/+KZwRsW6I7fDt7m4osv5oorrmD27Nl9rv/pT3/Kc889x3PPPcfatWv54he/yNq1fV1EZWZWWn7ERJGcddZZHHts/3cgr1y5ktmzZyOJM888k+3bt7N169YSVmhm1jcHQYkU8phqM7NycBCYmWWcg6BECnlMtZlZOTgISmTmzJksXbqUiOCxxx5j/PjxTJ48efAXmpmlbEReNTR+4nEFXelzKP0N5qKLLuKRRx7hlVdeoa6ujltvvZV9+/YB8IUvfIEZM2bQ0tJCQ0MDY8eO5bvf/W7xCjQzewdGZBAMds1/Gu6///4B10viG9/4RomqMTMrnA8NmZllnIPAzCzjRkwQ5MfBGf5Gyu9hZsPHiAiC0aNH097ePuw/RCOC9vZ2Ro8eXe5SzCxDRsTJ4rq6OlpbWxkJo5eNHj2aurq6cpdhZhkyIoKgurqa448/vtxlmJkNSyPi0JCZmR0+B8FhaG9v58orr6S9vb3cpRRk5cqVnH322fz4xz8udylmNgSlOVTlaEmPS3pS0mZJt/bRZpSk5ZJyktZKqk+rnmJasmQJGzduZOnSpeUupSBf//rXAViwYEGZKzGzoSjNPYIOYFpEnAqcBjRJOrNXm0uB1yKiAbgTuCPFeoqivb2d1atXExGsXr16yO8VrFy58sDVVBHhvQIzO0iaQ1UGsDOZrU5+el/fOQv4SjK9AlgkSTGErwNdsmQJ3d3dAHR1dbF06VKuvvrqMlfVv/17A/stWLCAT37yk2WqZmRbuHAhuVyu6P3u77O5ubnofTc0NDBv3ryi93vZZZcVPPBSR0fHgf9TxVZRUcGoUaMKajt58mTuueeeVOoY6lK9aigZuH490AB8IyJ6j81YC7wEEBGdknYANcArvfqZC8wFmDp1apolD+pnP/sZnZ2dAHR2drJmzZohHQS9M3UIZ+ywl8vleG7zb5g6rquo/R6xL7/j3vHCuqL2++LOyqL219P27dvZuWs3VBbwEdPdDSn9u+yKbvbtfbOAhp1s3749lRqGg1SDICK6gNMkTQD+RdLJEXHwyO6D97MYWAzQ2NhY1k+yc845h5aWFjo7O6mqqmL69OnlLGdQkt724S+pjNWMfFPHdXHj6a+Xu4yC3L7h6NT6rq2t5Y8dVez5yxmpvUcxjXmmhdrawZ8yPFKV5KqhiNgOPAw09VrVBkwBkFQFjAeG9EH3OXPmUFGR/2urrKzsd7D6oeKqq6562/w111xTpkrMbKhK86qhScmeAJLGANOBZ3o1WwXMSaYvAB4ayucHAGpqamhqakISTU1N1NTUlLukAc2aNevAXoAknx8ws4OkuUcwGXhY0lPAr4E1EfGgpNskzUza3AvUSMoB1wA3pFhP0cyZM4dTTjllyO8N7Ld/r8B7A2bWlzSvGnoK+EAfy2/uMb0X+HRaNaSlpqaGu+++u9xlFGzWrFnMmjWr3GWY2RDlO4vNzDLOQWBmlnEOAjOzjHMQmJllnIPAzCzjHARmZhnnIDAzyzgHgZlZxjkIzMwyzkFgZpZxDgIzs4xzEJiZZZyDwMws4xwEZmYZ5yAwM8u4NEcomyLpYUlPS9osqbmPNmdL2iHpieTn5r76MjOz9KQ5eH0ncG1EbJB0FLBe0pqIeLpXu3+PiPNTrMPMzAaQ5ghlW4GtyfQbkrYAtUDvIDAzK7u2tjaamw86cPGO5XI5gKL33dDQwLx584rSV5p7BAdIqic/bOXaPlZ/RNKTwB+Af4iIzX28fi4wF2Dq1KnpFWpmmbVnzx6e2/wbpo7rKmq/R+zLH4HveGFd0fp8cWdl0fqCEgSBpHHAj4CrIuL1Xqs3AO+JiJ2SZgD/CpzQu4+IWAwsBmhsbIyUSzazjJo6rosbT+/9MTX03L7h6KL2l+pVQ5KqyYfADyLin3uvj4jXI2JnMt0CVEuamGZNZmb2dmleNSTgXmBLRCzop82fJe2Q9KGknva0ajIzs4OleWjoY8BngY2SnkiW3QhMBYiIbwEXAF+U1AnsAS6MCB/6MTMroYKCQNL/BOaT/7BeDbwfuDoivt/fayLil4AG6jciFgGLCq7WzMyKrtBDQ3+dnOg9H3geaACuS6soMzMrnUKDYP+ew3nAAxGxI6V6zMysxAo9R/CgpGfIHxr6oqRJwN70yjIzs1IpaI8gIm4APgo0RsQ+YBcwK83CzMysNAbcI5A0LSIekvQ3PZb1bHLQvQFmZja8DHZo6OPAQ8An+1gXOAjMzIa9AYMgIm5J/vxcacoxM7NSK+gcgaRmSUcr7x5JGyT9ddrFmZlZ+gq9fPSS5D6CvwZqyN8x/I+pVWVmZiVTaBDsP0M8A1iaPCp6wLuGzcxseCg0CNZL+r/kg+DfkhHHutMry8zMSqXQG8ouBU4DfhcRuyXVAD6BbGY2AhQUBBHRLakO+PvkPoJfRMSPU63MzMxKotCrhv4RaCY/3vDTwJWSbk+zMDMzK41CDw3NAE6LiG4ASUuA35AfX8DMzIaxQxmhbEKP6fHFLsTMzMqj0CD4H8BvJN2X7A2sB7460AskTZH0sKSnJW2W1NxHG0m6W1JO0lOSTj/0X8HMzN6JQk8W3y/pEeCMZNH1EfHHQV7WCVwbERuSy03XS1oTEU/3aPMJ4ITk58PAN5M/zcysRA5lzOIK4JXkNe+V9N6IeLS/xhGxFdiaTL8haQtQS/5k836zyN+gFsBjkiZImpy81gawcOFCcrlcQW3b2toAqK2tLah9Q0MD8+bNO+zaiuFQfr9Dsb/P5uaDdlDfsWeffRbtq+T2DUcXve80vPBGJUcm/zYs2wods/gO4O+Azbx1I1kA/QZBr9fXAx8A1vZaVQu81GO+NVn2tiCQNBeYCzB16tRC3tJ62LNnT7lLOGS5XI4nNm2ha+yxRe234s0AYP3v/lTUfit3v0q1uqkuaq9mpVHoHsGngPdFRMehvoGkccCPgKuS5xUdsohYDCwGaGxsjMPpY6Q5lG/s+7/93nXXXWmVk4quscey5y9nlLuMgox5poVx3W8wpXoPN55+WP/MS+72DUczqsC9RBvZCj1Z/Ds49C87kqrJh8APIqKvsQvagCk95uuSZWZmViKF7hHsBp6Q9HPgwF5BRFzZ3wuUvwX5XmBLRCzop9kq4ApJy8ifJN7h8wNmZqVVaBCsSn4OxcfIP656o6QnkmU3AlMBIuJbQAv5m9Vy5MPGzy8yMyuxQi8fXXKoHUfELxnkUdXJ1UKXH2rfZmZWPIVeNbSR/FVCPe0A1gHzI6K92IWZmVlpFHpo6KdAF/DDZP5CYCzwR+A++h7c3szMhoFCg+CciOj5+IeNkjZExOmSPpNGYWZmVhqFXj5aKelD+2cknQFUJrOdRa/KzMxKptA9gsuA7yQ3hwl4HbhM0pHkH0hnZmbDVKFXDf0aOEXS+GR+R4/V/5RGYWZmVhoFP3RO0nnAScDoZLhKIuK2lOoyM7MSKXSoym+Rf+jcPPKHhj4NvCfFuszMrEQKPVn80YiYDbwWEbcCHwHem15ZZmZWKoUGwf7nGO+W9G5gHzA5nZLMzKyUCj1H8KCkCcDXgA3k7zK+J7WqzMysZAq9aui/J5M/kvQgMLrXlUNmZjZMDRgEkqZFxEOS/qaPdfQzxoCZmQ0jg+0RnAU8RP5ZQj0fOqdk3kFgZjbMDRYEb0i6BthE/oN//2OlPVykmdkIMVgQjEv+fB9wBrCSfBh8Eng8xbrMzKxEBgyC5J4BJD0KnB4RbyTzXwF+MtBrJX0HOB94OSJO7mP92eSD5ffJon/2ncpmZqVX6OWjxwFv9ph/M1k2kPuARcDSAdr8e0ScX2ANZmaWgkKDYCnwuKR/SeY/Rf6Dvl8R8aik+sOuzMzMSqKgO4sj4qvkB5Z/Lfn5XEQU4/HTH5H0pKSfSjqpv0aS5kpaJ2ndtm3bivC2Zma2X8FPH42IDeTvKi6WDcB7ImKnpBnAvwIn9PPei4HFAI2Njb5iycysiAp91lDRRcTrEbEzmW4BqiVNLFc9ZmZZVbYgkPRnSgY2SIbBrADay1WPmVlWFXxo6FBJuh84G5goqRW4BagGiIhvARcAX5TUSf7pphdGhA/7mJmVWGpBEBEXDbJ+EfnLS83MrIzKdmjIzMyGBgeBmVnGOQjMzDLOQWBmlnEOAjOzjHMQmJllnIPAzCzjHARmZhnnIDAzyzgHgZlZxjkIzMwyzkFgZpZxDgIzs4xzEJiZZZyD4DDkcjnOO+88crlcuUsxM3vHUgsCSd+R9LKkTf2sl6S7JeUkPSXp9LRqKbb58+eza9cu5s+fX+5SzMzesTT3CO4DmgZY/wnyg9WfAMwFvpliLUWTy+V4/vnnAXj++ee9V2Bmw16aI5Q9Kql+gCazgKXJ8JSPSZogaXJEbE2rpmLovRcwf/587rvvvqL0vXDhwlSCZX+fzc3NRe+7oaGBefPmFb3f4erFnZXcvuHoovb5p93572vHje0uar8v7qzkhKL2OLx1dHTwwt7ib780vPBGJUe2tRWtv9SCoAC1wEs95luTZQcFgaS55PcamDp1akmK68/+vYH+5t+JXC7Hc5t/w9RxXUXrE+CIffkPko4X1hW13xd3Vha1v+FuzJgx1DY0FL3fN5MgH/We4vZ9AvkgNytnEBQsIhYDiwEaGxvLOsB9fX392z786+vri9r/1HFd3Hj660XtMy3D4ZtTKdXW1nLXXXcVvd/9e3Jp9G1vGTVqFFOq9wyL/3+3bziaUbW1ReuvnFcNtQFTeszXJcuGtJtuumnAeTOz4aacQbAKmJ1cPXQmsGOonx+A/K70/r2A+vp671qb2bCX5uWj9wO/At4nqVXSpZK+IOkLSZMW4HdADvg28F/TqqXYbrrpJo488kjvDZjZiJDmVUMXDbI+gMvTev80NTQ08JOf/KTcZZiZFYXvLDYzyzgHgZlZxjkIzMwyzkFgZpZxDgIzs4xzEJiZZZyDwMws4xwEZmYZ5yAwM8s4B4GZWcY5CMzMMs5BYGaWcQ4CM7OMcxCYmWWcg8DMLOMcBGZmGZdqEEhqkvSspJykG/pYf7GkbZKeSH4uS7MeMzM7WGojlEmqBL4BTAdagV9LWhURT/dqujwirkirDjMzG1iaewQfAnIR8buIeBNYBsxK8f3MzOwwpBkEtcBLPeZbk2W9/a2kpyStkDSlr44kzZW0TtK6bdu2pVGrmVlmlftk8Y+B+oh4P7AGWNJXo4hYHBGNEdE4adKkkhZoZjbSpRkEbUDPb/h1ybIDIqI9IjqS2XuAD6ZYj5mZ9SHNIPg1cIKk4yUdAVwIrOrZQNLkHrMzgS0p1mNmZn1I7aqhiOiUdAXwb0Al8J2I2CzpNmBdRKwCrpQ0E+gEXgUuTqseMzPrW2pBABARLUBLr2U395j+EvClNGswM7OBlftksZmZlZmDwMws4xwEZmYZ5yAwM8s4B4GZWcY5CMzMMs5BYGaWcQ4CM7OMcxCYmWWcg8DMLOMcBGZmGecgMDPLOAeBmVnGOQjMzDLOQWBmlnEOAjOzjEs1CCQ1SXpWUk7SDX2sHyVpebJ+raT6NOsxM7ODpRYEkiqBbwCfAE4ELpJ0Yq9mlwKvRUQDcCdwR1r1mJlZ39IcqvJDQC4ifgcgaRkwC3i6R5tZwFeS6RXAIkmKiChGAQsXLmT16tUFtd29ezdFetuDSGLs2LGDttu1axdQxX/5xTGDtt3XLbrTKZcKQXXF4J13dIljq9pSqaGtrY3KN9oZt+F7gzfu7oKUth0SVFQO3q6rk7a2zoK7XbhwIblcrqC2+9s1NzcX1L6hoYF58+YVXEtaKne/yphnWgZtV7H3ddS9L5UaoqKa7tFHD9qucverMLqaF3dWcvuGwdv/aXcFe7tUjBLfZnRlcNzY7kHbvbizkhOK+L5pBkEt8FKP+Vbgw/21SQa73wHUAK/0bCRpLjAXYOrUqWnVW3aSqKysomLUqMEbd3RA9+D/YA5LRUVBNYwBJkyYkEoJEyZMYM+ePQW17ejooDulv4uKigpGjTqigJZHpPZ3MWbMmFT6TVNDQ0PBbdvaOgve1odqzJgx1NYeV0DL49i1axdHHllY3ZVtbVSkUHPlmDGMqq0dtN0JHNrf8WCU4rfgC4CmiLgsmf8s8OGIuKJHm01Jm9Zk/rdJm1f66hOgsbEx1q1bl0rNZmYjlaT1EdHY17o0Txa3AVN6zNcly/psI6kKGA+0p1iTmZn1kmYQ/Bo4QdLxko4ALgRW9WqzCpiTTF8APFSs8wNmZlaY1M4RJMf8rwD+DagEvhMRmyXdBqyLiFXAvcD3JOWAV8mHhZmZlVCaJ4uJiBagpdeym3tM7wU+nWYNZmY2MN9ZbGaWcQ4CM7OMcxCYmWWcg8DMLONSu6EsLZK2AS+Uu44UTaTXndU2rHj7DV8jfdu9JyIm9bVi2AXBSCdpXX93/9nQ5+03fGV52/nQkJlZxjkIzMwyzkEw9CwudwH2jnj7DV+Z3XY+R2BmlnHeIzAzyzgHgZlZxjkIykDSdyS9nAzM09d6SbpbUk7SU5JOL3WN1jdJUyQ9LOlpSZslHTR+pLff0CVptKTHJT2ZbL9b+2gzStLyZPutlVRf+kpLy0FQHvcBTQOs/wT50ehOID9E5zdLUJMVphO4NiJOBM4ELpd0Yq823n5DVwcwLSJOBU4DmiSd2avNpcBrEdEA3AncUeIaS85BUAYR8Sj58Rf6MwtYGnmPARMkTS5NdTaQiNgaERuS6TeALeTH3u7J22+ISrbJzmS2OvnpfcXMLGBJMr0C+E+Sij9S/RDiIBiaaoGXesy3cvCHjZVZcsjgA8DaXqu8/YYwSZWSngBeBtZERL/bLyI6gR1ATWmrLC0HgdlhkDQO+BFwVUS8Xu56rHAR0RURp5EfR/1Dkk4ud03l5iAYmtqAKT3m65JlNgRIqiYfAj+IiH/uo4m33zAQEduBhzn4fN2B7SepChgPtJe2utJyEAxNq4DZydUnZwI7ImJruYuy/BVB5Mfa3hIRC/pp5u03REmaJGlCMj0GmA4806vZKmBOMn0B8FCM8DtvUx2z2Pom6X7gbGCipFbgFvInrYiIb5Ef53kGkAN2A58rT6XWh48BnwU2JseZAW4EpoK33zAwGVgiqZL8F+F/iogHJd0GrIuIVeSD/nuScuQv6riwfOWWhh8xYWaWcT40ZGaWcQ4CM7OMcxCYmWWcg8DMLOMcBGZmGecgMDsEkh6RlMkBzm3kchCYmWWcg8CsH5KOlPST5Nn1myT9Xa/1F0namKy7o8fynZLuTJ53/3NJk5LlfyFptaT1kv5d0l+W+ncy64uDwKx/TcAfIuLUiDgZWL1/haR3k39O/TTyz7U/Q9KnktVHkr9L9STgF+TvHIf84OjzIuKDwD8A/7s0v4bZwBwEZv3bCEyXdIek/xgRO3qsOwN4JCK2JY8q/gFwVrKuG1ieTH8f+A/J00o/CjyQPJri/5B/3IFZ2flZQ2b9iIj/lwwzOQOYL+nnh9sV+S9d25PHH5sNKd4jMOtHcvhnd0R8H/ga0HPs4ceBj0uamDzA7CLyh4Eg///qgmT674FfJmMW/F7Sp5O+JenUUvweZoNxEJj17xTg8eRQzi3A/P0rksdK30D+efZPAusjYmWyehf5AU82kT+HcFuy/D8Dl0p6EthMfkhEs7Lz00fNikzSzogYV+46zArlPQIzs4zzHoGZWcZ5j8DMLOMcBGZmGecgMDPLOAeBmVnGOQjMzDLu/wMYOFVqbEckLQAAAABJRU5ErkJggg==\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['ca'], \n",
" );\n",
" #Diagnostico y número de vasos principales (0-3) coloreados por fluoroscopia\n",
" \n",
" "
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "9o4s17RIWzrz",
"outputId": "f716dc3e-1278-4836-dea8-7889b3bc3679"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAV30lEQVR4nO3df5Bd5X3f8fd3hZDWXYJiiSmqFkdJV6nHcTAGRaHjqYvdwUW2AwnFHjyTWDZOGbfBMok7HTsNjoLdmbhNE2ahjUe2SGTHiaE2aVQqEtMC9mRigxeCQQjs3Xhis0SEFbAysn4gab/94x6R5XIl3V3t2bN3n/drZkf33vPcc7862nM/es55znMiM5Eklauv6QIkSc0yCCSpcAaBJBXOIJCkwhkEklS4M5ouYKZWrVqVa9eubboMSeopDz744N7MPKfTsp4LgrVr1zIyMtJ0GZLUUyLieyda5qEhSSqcQSBJheu5Q0OaH8PDw4yNjTVdhubA+Pg4AIODgw1XUq+hoSE2b97cdBk9ySBQR2NjY/z1o7uZetWrmy5Fp6nvwD4A/v7w4t3d+w4813QJPW3x/mbotE296tUcet07my5Dp2n57jsBFvW/5fG/o2bHcwSSVDiDQJIKZxBIUuEMAkkqnEEgSYUrJgiGh4cZHh5uugxJmpU6v8OKGT7qxVGSelmd32HF9AgkSZ0ZBJJUOINAkgpnEEhS4QwCSSpcbUEQEcsj4oGI+FZEPBYRv9WhzbKIuC0ixiLi/ohYW1c9kqTO6uwRHAbemplvAC4ALouIi9vafAB4PjOHgN8DPlVjPZKkDmq7jiAzE9hfPV1a/WRbsyuALdXjLwG3RERU751T4+PjHDx40BtXdGl0dJR4cc7/GaRaxKEfMDr6wqLev0dHR+nv769l3bWeI4iIJRHxMPAMcHdm3t/WZA3wJEBmHgX2ASs7rOfaiBiJiJGJiYk6S5ak4tR6ZXFmHgMuiIgVwJ9GxOszc9cs1rMV2Aqwfv36Wf039fht+pxmojubN2/mwb95uukypK7k8h9h3T89d1Hv33X2duZl1FBmTgL3Ape1LXoKOA8gIs4AzgaenY+aJEktdY4aOqfqCRAR/cClwBNtzXYAm6rHVwH31HF+QJJ0YnUeGloNbI+IJbQC5/bMvDMibgRGMnMHsA34fESMAc8BV9dYjySpgzpHDT0CvLHD6x+f9vgQ8K66apAknZpXFktS4QwCSSqcQSBJhSvmDmVDQ0NNlyBJs1bnd1gxQbCYLz2XtPj1/AVlkqSFyyCQpMIZBJJUOINAkgpnEEhS4YoZNaSZ6zvwHMt339l0GTpNfQdaE/ou5n/LvgPPAec2XUbPMgjUkdddLB7j40cBGBxczF+U5/o7exoMAnXkdRdSOTxHIEmFMwgkqXAGgSQVziCQpMIZBJJUOINAkgrn8FF1NDw8zNjYWNNl9Izx8XEABgcHG66ktwwNDTlUeQEwCNTR2NgY39n1EK8ZONZ0KT3hhy8sAeDQ0T0NV9I7vr9/SdMlqGIQ6IReM3CM31i/v+kyesInRwYA3F4zcHybqXmeI5CkwhkEklQ4g0CSCmcQSFLhDAJJKpxBIEmFKyYIhoeHGR4ebroMSZqVOr/DirmOwKtkJfWyOr/DiukRSJI6MwgkqXAGgSQVziCQpMLVFgQRcV5E3BsRuyPisYj4cIc2ERHDETEWEY9ExIV11SNJ6qzOUUNHgY9k5kMRcRbwYETcnZm7p7XZCKyrfn4W+P3qT0nSPKmtR5CZezLzoerxC8DjwJq2ZlcAn8uWbwArImJ1XTVJkl5pXq4jiIi1wBuB+9sWrQGenPZ8vHptzu/uMT4+zsGDB70bUpdGR0c584inkFSfvz/Qx4ujo+6TXRodHaW/v7+Wdde+p0fEAPBl4PrM/MEs13FtRIxExMjExMTcFihJhau1RxARS2mFwBcy844OTZ4Czpv2fLB67WUycyuwFWD9+vU5m1qO30vWaSa6s3nzZg797TebLkOL2D9+1RTL165zn+xSnT2nOkcNBbANeDwzf/cEzXYA761GD10M7MtMb/oqSfOozh7Bm4BfAh6NiIer134deA1AZn4a2Am8HRgDDgDvr7EeSVIHtQVBZv4lEKdok8Cv1FWDJOnUHBYiSYUzCCSpcAaBJBWumBvTDA0NNV2CJM1and9hxQSBVy9K6mU9eR2BJKk3GASSVDiDQJIKZxBIUuEMAkkqnEEgSYUrZvioZu77+5fwyZGBpsvoCd97YQmA22sGvr9/CT/ZdBECDAKdgBfgzcw/Gh8HYHl13wud2k/i79lCYRCoIy/Ak8rhOQJJKpxBIEmFMwgkqXAGgSQVziCQpMIZBJJUuGKGj15zzTVMTk4y6Djvrg0NDTmMVCpAMUGwZ88e9h/Yz0RMNF1Kb5hsugBJ86WYIADgDJi6ZKrpKnpC330eNZRK4d4uSYUzCCSpcAaBJBXOIJCkwhkEklS4YkYNHT58GBwwpJoMDw8DTt+t3lRMEExNTUE2XYUWq7GxsaZLkGbNQ0OSVDiDQJIKZxBIUuEMAkkqnEEgqRE33XQTb37zm7nllluaLqUnPPDAA1xyySU8+OCDc77uWoMgIi6LiG9HxFhEfLTD8mURcVu1/P6IWFtnPZIWjjvuuAOA22+/veFKesOWLVuYmprihhtumPN1dxUEEXFORPxOROyMiHuO/5ziPUuA/w5sBF4HvCciXtfW7APA85k5BPwe8KmZ/xUk9ZqbbrrpZc/tFZzcAw88wP79+wHYv3//nPcKur2O4AvAbcA7gA8Cm4BTTey/ARjLzO8CRMQXgSuA3dPaXAFsqR5/CbglIiIzHfHftP0wOjrqBVJdGh0dpb+/v+kyesbx3sBxt99+O9ddd11D1Sx8W7ZsednzG264gZ07d87Z+rs9NLQyM7cBRzLzq5l5DfDWU7xnDfDktOfj1Wsd22TmUWAfsLJ9RRFxbUSMRMTIxIQ3lpFUluO9gRM9P13d9giOVH/uiYh3AH8HvHpOKzmJzNwKbAVYv369vYX5MADr1qx7aeoEnZw9J9VpYGDgZV/+AwMDc7r+bnsEn4yIs4GPAP8B+Cxw/Sne8xRw3rTng9VrHdtExBnA2cCzXdYkqUddeeWVL3v+7ne/u6FKekP7oaFPfOITc7r+boPgXUBk5q7MfAtwKfALp3jPN4F1EfHjEXEmcDWwo63NDlrnGwCuAu7x/IC0+F1//cv/H+n5gZPbsGHDS72AgYEBLrroojldf7dBcH5mvnQ788x8Dnjjyd5QHfO/DvgL4HHg9sx8LCJujIjLq2bbgJURMQb8GvCKIaaSFqfjvQJ7A93ZsmULfX19c94bgO7PEfRFxI9m5vMAEfHqbt6bmTuBnW2vfXza40O0ehuSCnP99de/omegE9uwYQP33XdfLevuNgj+G/D1iPif1fN3Af+5lookSfOqqyDIzM9FxAj/MGT0yszcfbL3SJJ6Q9c3pqm++P3yl6RFppg7lPX19XFs6ljTZWiRGhoaaroEadaKCYJly5Zx5MUjp24ozYIXlKmXOQ21JBXOIJCkwhkEklQ4g0CSCmcQSFLhihk1BMBR6LvP7OvKJK+8e4SkRamYIFi9ejWTk5MMrhlsupTesMax8VIpigmCW2+9tekSJGlB8jiJJBXOIJCkwhkEklQ4g0CSCmcQSFLhDAJJKlwxw0eHh4cZGxtruoyeMT4+DsDgoNdddGtoaMjpqNWTigmCsbExnnj4Yc5tupAe8UL15+TevY3W0SuebroA6TQUEwQA5wIfIJouoydsIwG3V7eOby+pF3mOQJIKZxBIUuEMAkkqnEEgSYUzCCSpcAaBJBWumOGj4+PjHG66CEmapeHhYYBaLlosJggOHjzI0aaLkKRZqnNmBA8NSVLhDAJJKpxBIEmFMwgkqXC1BUFE3BoRz0TErhMsj4gYjoixiHgkIi6sqxZJ0onV2SP4Q+CykyzfCKyrfq4Ffr/GWiRJJ1BbEGTm14DnTtLkCuBz2fINYEVErK6rHklSZ01eR7AGeHLa8/HqtT3NlCPN3rPAxOiodyhTbUZHR+nv769l3T1xsjgiro2IkYgYmZiYaLocSVpUmuwRPAWcN+35YPXaK2TmVmArwPr1670VlBaclcCKdetemgZAmmt19jab7BHsAN5bjR66GNiXmR4WkqR5VluPICL+BLgEWBUR48BvAksBMvPTwE7g7cAYcAB4f121SJJOrLYgyMz3nGJ5Ar9S1+dLkrrTEyeLJUn1MQgkqXAGgSQVrpgb0/T393P4hz9sugxJmpWhoaHa1l1MEAwODjK5d2/TZUjSrCzW6wgkSQuAQSBJhTMIJKlwBoEkFc4gkKTCGQSSVLhiho8CPA1sw1msu3F8Gli3V3eeBlY0XYQ0S8UEQZ0XYyxG+8fHAVgxONhwJb1hBf6OqXcVEwTeQlCSOvMcgSQVziCQpMIZBJJUOINAkgpnEEhS4QwCSSpcMcNHr7nmGiYnJxmco3HxQ0NDDkmVtCgUEwR79uzhwA8PEIf7T3tdkweemYOKJGlhKCYIAM5YciZvee3Vp72ee5/44hxUI0kLg+cIJKlwBoEkFc4gkKTCGQSSVDiDQJIKV8yoocOHDzM1NTUn69p/6HnGxw/OybokqWnFBMHU1BSZc3O3raNTRzh40Dt3SVocPDQkSYUzCCSpcAaBJBXOIJCkwhkE6mjv3r186EMf4tlnn226FEk1WxBBEBGvjYi/iohHI+KrEbGq6ZpKt337dh555BG2b9/edCmSarYggqDyi5n508BfAR9supiS7d27l7vuuovM5K677rJXIC1yCyIIMvOJzPxu9XQZcKjJekq3ffv2l665mJqaslcgLXILIgiOi4h/DWwEPtv2+rURMRIRIxMTE80UV5C7776bI0eOAHDkyBG+8pWvNFyRpDotmCCIiD5gG3B5Zk5OX5aZWzNzfWauP+ecc5opsCCXXnopS5cuBWDp0qW87W1va7giSXVaMEEA/BNgX2aONl1I6TZt2kREANDX18emTZsarkhSnRZSEDwPfKTpIgSrVq1i48aNRAQbN25k5cqVTZckqUYLKQjOBn656SLUsmnTJs4//3x7A1IBFszso5n5d8BVTdehllWrVnHzzTc3XYakebCQegSSpAYYBJJUOINAkgpXTBD09fW9NCTydJ3Rt5T+/v45WZckNW3BnCyu27Jly3jx0NE5WdfA8h9lzaBDKiUtDsX0CCRJnRkEklQ4g0CSCmcQSFLhDAJJKlwxo4YAjh57kXuf+OJpr2fywDOswVFDkhaHYoJg9erVTE5OzsmwzzWsZGhoaA6qkqTmFRMEt956a9MlSNKC5DkCSSqcQSBJhTMIJKlwkZlN1zAjETEBfG+Wb18F7J3DcuaKdc2Mdc3cQq3NumbmdOr6scw8p9OCnguC0xERI5m5vuk62lnXzFjXzC3U2qxrZuqqy0NDklQ4g0CSCldaEGxtuoATsK6Zsa6ZW6i1WdfM1FJXUecIJEmvVFqPQJLUxiCQpMItyiCIiMsi4tsRMRYRH+2wfFlE3FYtvz8i1i6Qut4XERMR8XD188vzVNetEfFMROw6wfKIiOGq7kci4sIFUtclEbFv2vb6+DzUdF5E3BsRuyPisYj4cIc28769uqyrie21PCIeiIhvVXX9Voc2874/dllXI/tj9dlLIuKvI+LODsvmfntl5qL6AZYAfwP8BHAm8C3gdW1t/j3w6erx1cBtC6Su9wG3NLDN3gxcCOw6wfK3A3cBAVwM3L9A6roEuHOet9Vq4MLq8VnAdzr8O8779uqyria2VwAD1eOlwP3AxW1tmtgfu6mrkf2x+uxfA/64079XHdtrMfYINgBjmfndzHwR+CJwRVubK4Dt1eMvAf8qImIB1NWIzPwa8NxJmlwBfC5bvgGsiIjVC6CueZeZezLzoerxC8DjwJq2ZvO+vbqsa95V22B/9XRp9dM+QmXe98cu62pERAwC7wA+e4Imc769FmMQrAGenPZ8nFfuEC+1ycyjwD6o/U4z3dQF8G+qwwlfiojzaq6pW93W3oR/XnXv74qIn5rPD6665G+k9b/J6RrdXiepCxrYXtVhjoeBZ4C7M/OE22se98du6oJm9sebgP8ITJ1g+Zxvr8UYBL3sfwNrM/N84G7+IfXV2UO05k95A3Az8L/m64MjYgD4MnB9Zv5gvj73VE5RVyPbKzOPZeYFwCCwISJePx+feypd1DXv+2NEvBN4JjMfrPuzpluMQfAUMD25B6vXOraJiDOAs4Fnm64rM5/NzMPV088CF9VcU7e62abzLjN/cLx7n5k7gaURsaruz42IpbS+bL+QmXd0aNLI9jpVXU1tr2mfPwncC1zWtqiJ/fGUdTW0P74JuDwi/pbW4eO3RsQftbWZ8+21GIPgm8C6iPjxiDiT1smUHW1tdgCbqsdXAfdkdealybrajiNfTus470KwA3hvNRrmYmBfZu5puqiIOPf4sdGI2EDr97nWL5Dq87YBj2fm756g2bxvr27qamh7nRMRK6rH/cClwBNtzeZ9f+ymrib2x8z8WGYOZuZaWt8R92TmL7Y1m/PttehuVZmZRyPiOuAvaI3UuTUzH4uIG4GRzNxBa4f5fESM0ToZefUCqWtzRFwOHK3qel/ddQFExJ/QGlGyKiLGgd+kdfKMzPw0sJPWSJgx4ADw/gVS11XAv4uIo8BB4Op5CPQ3Ab8EPFodXwb4deA10+pqYnt1U1cT22s1sD0iltAKntsz886m98cu62pkf+yk7u3lFBOSVLjFeGhIkjQDBoEkFc4gkKTCGQSSVDiDQJIKt+iGj0ozERFbgP3AjwBfy8z/22AtNzZdg8pkEEhAZtY+JXMv1KAyeWhIxYmI/xQR34mIvwT+WfXaH0bEVdXjj0fENyNiV0RsnXY17s9UE5A9HBH/Nar7JERr3vo7IuLPI2I0Iv7LtM96T0Q8Wq3rU9VrS6rP21Ut+9UONfx2tO4t8EhE/M68biAVxx6BihIRF9G6EvMCWr//DwHtE3zdkpk3Vu0/D7yT1gRkfwD828z8ekT8dtt7LqA14+dh4NsRcTNwDPgUrTlqnge+EhE/T2vmyDWZ+frqM1a01bgS+AXgtZmZ7culuWaPQKX5F8CfZuaBanbO9nmoAN4SrTs/PQq8Ffip6sv4rMz8etXmj9ve8/8yc19mHgJ2Az8G/AxwX2ZOVNMFf4HWzXa+C/xERNwcEZcB7bOE7gMOAdsi4kpa01RItTEIpGkiYjnwP4CrMvOngc8Ay7t46+Fpj49xkt52Zj4PvAG4D/ggbTcgqUJjA62bjrwT+PPu/wbSzBkEKs3XgJ+PiP6IOAv4ubblx7/090Zrbv+r4KWpil+IiJ+tlncz0dcDwL+MiFXV5GbvAb5aTf3cl5lfBn6D1u04X1J97tnVVNG/Sis0pNp4jkBFycyHIuI2WveMfobW9ODTl09GxGeAXcDTbcs/AHwmIqaAr9I6hHOyz9oTER+lNdd9AP8nM/8sIt4A/EFEHP+P2Mfa3noW8GdV7yRo3b9Wqo2zj0pdioiB4zd2qb7gV2fmhxsuSzpt9gik7r0jIj5Ga7/5Hg3OTy/NJXsEklQ4TxZLUuEMAkkqnEEgSYUzCCSpcAaBJBXu/wP804EQp67DiAAAAABJRU5ErkJggg==\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['age'], \n",
" hue = df['sex']);\n",
" \n",
"#Diagnostico por edad y por sexo"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "5uNDIhNGX73l",
"outputId": "f3460722-cee3-4ae2-e57e-7451a8a4e92e"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAaqElEQVR4nO3df3RV5Z3v8feXJBBQBiUgiyZicGK1ai+MBK8zncGWypABhzoz3i5ZUwmF1mWXQHQcB516ndHF6tKZe3WodLpGZTR0qlCZ9lIdmilypdy7lsUSlAKil9RCTYr8CD9UfgQSvvePcyAQ8uOckL33OXk+r7VYZJ+z99nfHA6fPHn2s5/H3B0REQnHgKQLEBGReCn4RUQCo+AXEQmMgl9EJDAKfhGRwBQmXUAmRowY4eXl5UmXISKSV+rr6/e7+8iOj+dF8JeXl7Nx48akyxARyStmtquzx9XVIyISGAW/iEhgFPwiIoFR8IuIBEbBLyKSA5qbm1mwYAHNzc2Rn0vBLyKSA2pra9myZQvLli2L/FwKfhGRhDU3N1NXV4e7U1dXF3mrX8EvIpKw2tpaTp06BUBbW1vkrX4Fv4hIwl577TVaW1sBaG1tZc2aNZGeT8EvIpKwW265hcLC1EQKhYWFTJkyJdLzKfhFRBJWXV3NgAGpOC4oKGDWrFmRni8v5urJ1tNPP01DQ0OnzzU1NQFQWlp63nMVFRXMnz8/0tpERDoqKSmhqqqKV155haqqKkpKSiI9X78M/u4cO3Ys6RJERM5TXV3Nzp07I2/tA1g+LLZeWVnpfTU7Z01NDQCLFy/uk9cTEclVZlbv7pUdH1cfv4hIYBT8IiKBUfCLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEpjIgt/Mrjazt8/685GZ3Wtmw81sjZntSP99aVQ1iIjI+SILfnd/z93Hu/t4YAJwFPgR8CCw1t2vAtamt0VEJCaFMZ3ni8Cv3H2XmX0J+Hz68VpgHbAwpjr63NNPP01DQ0OnzzU1NQFQWlp63nMVFRXMnz8/0tripvdCOqPPRbtceS/iCv47gJfSX49y993prz8ERnV2gJndBdwFMGbMmMgLjMKxY8eSLiFn6L2Qzuhz0S7O98LcPdoTmA0Efgtc5+57zOyQu19y1vMH3b3bfv7KykrfuHFjn9RTU1MDwOLFi/vk9XLlXLlO74V0Rp+LdlG8F2ZW7+6VHR+PY1TPnwCb3H1PenuPmY1OFzUa2BtDDSIikhZHV89M2rt5AH4MVAOPp/9eFUMNIrHKlb5ckc5E2uI3s4uAKcAPz3r4cWCKme0AbklviwTj2LFj6tuWREXa4nf3I0BJh8eaSY3yEem3umu1q19bkqY7d0VEAqPgFxEJjIJfRCQwCn4RkcAo+EVEAqPgFxEJjIJfRCQwCn4RkcAo+EVEAqPgFxEJTFzz8YtIDtEkcmFT8IvIOTSBXP+n4BcJkCaRC5v6+EVEAqMWv4gELcTrHQp+EZEu9NfrHQp+EQlCdy373mhoaDhzPaSjXP9tQMEvIkFoaGjg7a3baRsyPONjBpxwAOrf35PxMQVHD2RdW9wU/CIShFR/vWd1zKni3+nFmfzMtYFcpVE9IiKBUfCLSBBSI3Msq2MGHP+IAcc/yvJM1ukooFyS1109vblYc3r/ri7KdCXXL9aISPcqKiqyPqah4ePUsVeOyuKoUb06V5zyOvh1saZnIY5RjktvR4mo8ZGMrt673v475vO/R14HP0DbkOEcu2ZapOcY/O7qSF8/Kf11jHJcGhoa2LHtLcZc3JbVcQNPpnpYW3ZtzPiY33xSkNU5pG8MHjw46RIikffBL93TnCzRGnNxG397Q7Z9wNn71qbejC6RTPR1qz0ffhNU8IuI9KF8+E1Qwd9P6EJ3z0K83qHPRTJy/TdBBX8/oQvdF6a/Xu/Q50I6o+DvR3Shu3uhXu/Q50I60g1cIiKBUYu/n2hqaqLg6OHIW14FR5tpamqN9BwiEi21+EVEAhNpi9/MLgGeA64nNS3eHOA9YAVQDuwEvuzuB6OsIwSlpaV82FIYS19uaWk2t6+LSK6JusW/GKhz92uAccB24EFgrbtfBaxNb4uISEwia/Gb2TBgEjAbwN1PACfM7EvA59O71QLrgIVR1SHhiWvs+rZt2yjygljuqt31cQEX9WKOd137kc5E2dUzFtgHPG9m44B6oAYY5e670/t8CHTab2BmdwF3AYwZMybCMiVbTU1NWd/cE+dNQbGNXW9tpUhT6KScauPQoUM5/bmQdlEGfyFwAzDf3TeY2WI6dOu4u5tZp0viuPszwDMAlZWV2S2bI5E6duxY1rekxz0xWRxj1y/e9D2uGHo0tjs0B/Vijve4rv1cvOl7DKQlq39f0IR1SYky+BuBRnffkN5eSSr495jZaHffbWajgb0R1iARieOWdE1Mll9yfZoCaRdZ8Lv7h2b2gZld7e7vAV8E3kn/qQYeT/+9KqoaQlNw9EBWfbmnVxbKZl3RgqMHoLgo69pEJHdEfQPXfOD7ZjYQeB/4KqmRRD8ws7nALuDLEdcQhDhXF2pqaoLWQ1mfT0RyQ6TB7+5vA5WdPPXFKM8bot5c6Ort/DQ1NTW07Nrd844ikpN0566ISGA0V4+ISB9qamriyMe5fX+HWvwiIoFRi19EpA+VlpbS0ro7p+/vUItfRCQwCn4RkcCoqydDuT4/TVe6m7Csu/q6qyGui1e9vXAl54rjxj7aNEFbPlHwZygf5qfJ1uDBg2M7lyQjrhv7UsecyPpckgwFfxbycX6aKGYwjOviVW8vXEm7uG7sS93Ul90EbZIc9fGLiARGLX7pd+JafIS2VhoOF2b9W9qeo6n21qghpzI+5jefFHBVVmeRJP3mk+yvgcX5uVDwi/SWGRQUMeiK8VkddiJ9UX3QFZn3v19F7/rrJX69/XeK83Oh4Jd+J86F58dfOapXk9xB9pPjSX7o7XW1OD8X6uMXEQmMWvwiAYri/g7JHwp+ETmH7u/o/7IKfjMb4u5HoypGROLR1632fJiKWNpl1MdvZn9gZu8A76a3x5nZP0damYiIRCLTFv9TwFTgxwDuvtnMJkVWVYbiGq9dcLSZFnPQGuMincqHqYilXcajetz9gw4PZT5pjYiI5IxMW/wfmNkfAG5mRUANsD26sjIT53jti099DByL9DwiInHItMV/N3APUAo0AePT2yIikmcyavG7+37gLyOuRaTPxDEHfcHRA0DmUxeL5IqMgt/Mvt3Jw4eBje6+qm9LErkwcc1BD6M0f47kpUz7+IuBa4CX09t/AfwaGGdmX3D3e6MoTqQ34pqDXiRfZRr8/wX4nLu3AZjZd4H/A/whsCWi2kREJAKZBv+lwMWkuncALgKGu3ubmbVEUlmOaWlpYddxrTMrIvkv0+D/B+BtM1sHGDAJ+JaZXQS8FlFtIiISgUxH9Sw1s58Ad5Iav/9ToNHdjwAPRFhfzhg0aBCXFx3TOrMikvcyHdXzNVI3bZUBbwM3AW8Ak6MrTUREopDpDVw1wERgl7t/Afg94FBkVYmISGQyDf7j7n4cwMwGufu7wNXRlSUiIlHJ9OJuo5ldAvwvYI2ZHQR29XSQme0EPiY1oVuru1ea2XBgBVAO7AS+7O4Hsy9dRER6I6MWv7v/mbsfcve/B/47sBS4LcNzfMHdx7t7ZXr7QWCtu18FrE1vi4hITLJeetHdf3aB5/wS8Pn017XAOmDhBb6miEjOy5W1jqNec9eBn5qZA//i7s8Ao9x9d/r5D+liliszuwu4C2DMmDERlykiF+o3n2R/g+Oeo6lOh1FDTmV1nquyOkt+iHOt46iD/w/dvcnMLiN1beDds590d0//UDhP+ofEMwCVlZWd7iMiuaG3k9WdSLdyB12R+fFXXcD5ktbXax33VqTB7+5N6b/3mtmPgBuBPWY22t13m9loYG+UNYhI9HobaJocLxkZL72YLTO7yMyGnv4a+GNgK6l1e6vTu1UDmtZZRCRGUbb4RwE/MrPT53nR3evM7BfAD8xsLqkhoV+OsAYREekgsuB39/eBcZ083gx8MarziohI9yLr6hERkdwU9age6aeyHbqnYXsiuUPBL1nrzVC60IbtieQyBb9kTWvaiuQ39fGLiARGwS8iEhgFv4hIYBT8IiKBUfCLiARGwS8iEpi8H85ZcPQAg99dnfH+A45/BMCp4sxvPio4egCKi7KuTcKVKwtuiHQmr4O/Nzf3NDR8nDr2yk7Xf+nCKJqamqD1UNbnE+kozgU3RDqT18Ef541ENTU1tOza3fOOIuTOghsinVEfv4hIYBT8IiKBUfCLxKyhoYHp06d3efFXJGoKfpGYLVq0iCNHjrBo0aKkS5FAKfhFYtTQ0MDOnTsB2Llzp1r9koi8HtUTNy0+IheqYyt/0aJFvPDCC8kUI8FS8GdIi49IXzjd2u9qWyQOCv4MafER6Qvl5eXnhH15eXlitUi41McvEqOHH364222ROKjFL8HIhflzKioqzrT6y8vL1a0niVCLX4TU/DlxzaEzb948BgwYoGkdJDFq8UswciVo169fj7uzfv16JkyYkHQ5EiC1+EVi1NzcTF1dHe5OXV0dzc3NSZckAVLwi8SotraWU6dS93W0tbWxbNmyhCuSECn4RWL02muv0draCkBraytr1qxJuCIJkYJfJEa33HILhYWpS2uFhYVMmTIl4YokRAp+kRhVV1czYEDqv11BQQGzZs1KuCIJkYJfJEYlJSVUVVVhZlRVVVFSUpJ0SRIgDecUiVl1dTU7d+5Ua18SE3mL38wKzOwtM3s1vT3WzDaYWYOZrTCzgVHXIJJLSkpK+Pa3v63WviQmjq6eGmD7WdtPAE+5ewVwEJgbQw0iIpIWafCbWRkwHXguvW3AZGBlepda4LYoaxARkXNF3eL/J+BvgNMrkZQAh9y9Nb3dCJRGXIOIiJwlsuA3s1uBve5e38vj7zKzjWa2cd++fX1cnYhIuKJs8X8OmGFmO4HlpLp4FgOXmNnp0URlQFNnB7v7M+5e6e6VI0eOjLBMEZGwRDac090fAh4CMLPPA3/t7n9pZi8Dt5P6YVANrIqqBgnXyZMnaWxs5Pjx40mXcsGKi4spKyujqKgo6VKkn0hiHP9CYLmZLQLeApYmUIP0c42NjQwdOpTy8nJSYwryk7vT3NxMY2MjY8eOTbqcXsmFBXDkXLHcuevu69z91vTX77v7je5e4e7/zd1b4qhBwnL8+HFKSkryOvQBzIySkpJ+8ZtLZ+JcACfXNTc3s2DBglim6tadu9Jv5Xvon5bv34da7Zmpra1ly5YtLFu2jPvuuy/Sc2muHhGRhMW9QI+CX0QkYXEv0KPgFxFJWNwL9Cj4Rbpx5MgRpk+fzrhx47j++utZsWIF9fX13HzzzUyYMIGpU6eye/duDh8+zNVXX817770HwMyZM3n22WcTrl7yRdwL9Cj4RbpRV1fHpz71KTZv3szWrVupqqpi/vz5rFy5kvr6eubMmcM3v/lNhg0bxpIlS5g9ezbLly/n4MGDfP3rX0+6fMkTcS/Qo1E9It347Gc/y/3338/ChQu59dZbufTSS9m6deuZFllbWxujR48GYMqUKbz88svcc889bN68OcmyJc+cXqDnlVdeiWWBHgW/SDc+/elPs2nTJlavXs3DDz/M5MmTue6663jjjTfO2/fUqVNs376dIUOGcPDgQcrKyhKoWPJVnAv0qKtHpBu//e1vGTJkCF/5yld44IEH2LBhA/v27TsT/CdPnmTbtm0APPXUU3zmM5/hxRdf5Ktf/SonT55MsnTJM3Eu0KMWv0g3tmzZwgMPPMCAAQMoKiriu9/9LoWFhSxYsIDDhw/T2trKvffeS2FhIc899xxvvvkmQ4cOZdKkSSxatIhHH3006W9B5DwKfpFuTJ06lalTp573+Pr16897bPv29oXmnnzyyUjrErkQ6uoREQmMgl9EJDAKfhGRwKiPX/qM5l0XyQ8KfomF5lwXyR0KfukzarWL5AcFvwRh3l89wN79B/rs9S4bMZwlT/5jj/vV1dVRU1NDW1sbX/va13jwwQfPeb6lpYVZs2ZRX19PSUkJK1asoLy8vM/qFOlMvwx+9TVLR3v3H+BXo27uuxfc87Med2lra+Oee+5hzZo1lJWVMXHiRGbMmMG11157Zp+lS5dy6aWX0tDQwPLly1m4cCErVqzouzpFOhHcqB6t8SlxefPNN6moqODKK69k4MCB3HHHHaxateqcfVatWkV1dTUAt99+O2vXrsXdkyhXAtIvW/xqtUsuaGpq4vLLLz+zXVZWxoYNG7rcp7CwkGHDhtHc3MyIESNirVXCElyLX0QkdAp+kYiUlpbywQcfnNlubGyktLS0y31aW1s5fPhwLLMzStgU/CIRmThxIjt27ODXv/41J06cYPny5cyYMeOcfWbMmEFtbS0AK1euZPLkyZhZEuVKQPplH79IR5eNGJ7RSJysXq8HhYWFLFmyhKlTp9LW1sacOXO47rrreOSRR6isrGTGjBnMnTuXO++8k4qKCoYPH87y5cv7rEaRrij4JQiZjLmPwrRp05g2bdo5jz322GNnvi4uLubll1+OuywJnLp6REQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQmMhnNKEP72/nkc3r+nz15v2IhRfOt/Lul2nzlz5vDqq69y2WWXsXXr1vOed3dqampYvXo1Q4YM4YUXXuCGG27osxpFuhJZ8JtZMbAeGJQ+z0p3/zszGwssB0qAeuBOdz8RVR0iAIf372Hh777bZ6/3xK963mf27NnMmzePWbNmdfr8T37yE3bs2MGOHTvYsGED3/jGN86bxE0kClF29bQAk919HDAeqDKzm4AngKfcvQI4CMyNsAaRxEyaNInhw7u+w3fVqlXMmjULM+Omm27i0KFD7N69O8YKJVSRBb+nfJLeLEr/cWAysDL9eC1wW1Q1iOSyzqZtbmpqSrAiCUWkF3fNrMDM3gb2AmuAXwGH3L01vUsjUNrFsXeZ2UYz27hv374oyxQRCUqkwe/ube4+HigDbgSuyeLYZ9y90t0rR44cGVmNIknJZNpmkSjEMpzT3Q8BrwO/D1xiZqcvKpcB+t1WgjRjxgyWLVuGu/Pzn/+cYcOGMXr06KTLkgBEOapnJHDS3Q+Z2WBgCqkLu68Dt5Ma2VMNrOr6VXKfFnbPD8NGjMpoJE42r9eTmTNnsm7dOvbv309ZWRmPPvooJ0+eBODuu+9m2rRprF69moqKCoYMGcLzzz/fdwWKdCPKcfyjgVozKyD1m8UP3P1VM3sHWG5mi4C3gKUR1pAoLeqeO3oacx+Fl156qdvnzYzvfOc7MVUj0i6y4Hf3XwK/18nj75Pq7+8X1GoXkXyjKRtERAKj4Jd+y92TLqFP9JfvQ3KHgl/6peLiYpqbm/M+NN2d5uZmiouLky5F+hFN0ib9UllZGY2NjfSHm/+Ki4spKytLugzpRxT80i8VFRUxduzYpMsQyUnq6hERCYyCX0QkMAp+EZHAWD6MejCzfcCuhMsYAexPuIZcofeind6Ldnov2uXKe3GFu583y2VeBH8uMLON7l6ZdB25QO9FO70X7fRetMv190JdPSIigVHwi4gERsGfuWeSLiCH6L1op/eind6Ldjn9XqiPX0QkMGrxi4gERsEvIhIYBX8GzKzKzN4zswYzezDpepJiZv9qZnvNbGvStSTNzC43s9fN7B0z22Zm56+vGQgzKzazN81sc/q9eDTpmpJkZgVm9paZvZp0LV1R8PcgvXTkd4A/Aa4FZprZtclWlZgXgKqki8gRrcD97n4tcBNwT8CfixZgsruPA8YDVWZ2U8I1JakG2J50Ed1R8PfsRqDB3d939xOkFon/UsI1JcLd1wMHkq4jF7j7bnfflP76Y1L/0UuTrSoZnvJJerMo/SfIUSNmVgZMB55LupbuKPh7Vgp8cNZ2I4H+B5fOmVk5qfWlNyRbSXLS3RtvA3uBNe4e6nvxT8DfAKeSLqQ7Cn6RC2BmFwP/Dtzr7h8lXU9S3L3N3ccDZcCNZnZ90jXFzcxuBfa6e33StfREwd+zJuDys7bL0o9J4MysiFTof9/df5h0PbnA3Q8BrxPmtaDPATPMbCepLuHJZvZvyZbUOQV/z34BXGVmY81sIHAH8OOEa5KEmZkBS4Ht7v5k0vUkycxGmtkl6a8HA1OAd5OtKn7u/pC7l7l7Oamc+N/u/pWEy+qUgr8H7t4KzAP+k9QFvB+4+7Zkq0qGmb0EvAFcbWaNZjY36ZoS9DngTlKturfTf6YlXVRCRgOvm9kvSTWU1rh7zg5lFE3ZICISHLX4RUQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCU5h0ASJxM7O/Bz4BfgdY7+6vJVjLY0nXIOFR8Euw3P0R1SAhUlePBMHMvmlm/8/M/i9wdfqxF8zs9vTXj5jZL8xsq5k9k74zFzObaGa/TN+g9Y+n1yIws9lm9kMzqzOzHWb2D2eda6aZbUm/1hPpxwrS59uafu6+Tmp4PD2//y/N7H/E+gZJUNTil37PzCaQuoV+PKnP/Cag40RaS9z9sfT+3wNuBV4Bnge+7u5vmNnjHY4ZT2pWzhbgPTN7GmgDngAmAAeBn5rZbaRmeC119+vT57ikQ40lwJ8B17i7d3xepC+pxS8h+CPgR+5+ND2DZmdzLX3BzDaY2RZgMnBdOnyHuvsb6X1e7HDMWnc/7O7HgXeAK4CJwDp335ee7uP7wCTgfeBKM3vazKqAjjN5HgaOA0vN7M+Boxf8XYt0QcEvwTOzYuCfgdvd/bPAs0BxBoe2nPV1G938Bu3uB4FxwDrgbjos1JH+IXEjsJLUbxt1mX8HItlR8EsI1gO3mdlgMxsK/GmH50+H/P70/Pq3w5kphj82s/+afv6ODM71JnCzmY1IL9s5E/iZmY0ABrj7vwMPAzecfVD6vMPcfTVwH6kfEiKRUB+/9HvuvsnMVgCbSa0Q9YsOzx8ys2eBrcCHHZ6fCzxrZqeAn5HqkunuXLvN7EFSc9Ib8B/uvsrMxgHPm9npxtZDHQ4dCqxK//ZhwF/14lsVyYhm5xTphpldfHo92XSgj3b3moTLErkgavGLdG+6mT1E6v/KLmB2suWIXDi1+EVEAqOLuyIigVHwi4gERsEvIhIYBb+ISGAU/CIigfn/AvClPLPVENAAAAAASUVORK5CYII=\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['thal'], \n",
" hue = df['sex']);\n",
" #Diagnóstico por Sexo y por resultado exámenes\n",
" #VALORES: #3 = normales; 6 = defecto fijo; 7 = defecto reversible\n",
" "
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "_KnqpW4wYepk",
"outputId": "e2b0ad96-39b7-41ec-9ed6-fffec21573b8"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAa+UlEQVR4nO3dfXRUdZ7n8feXBEmCCBLUwUSMTtm2T6uDsdueOWPb9PGA4sTeWeasnLYRH1dH6TjTx9VW1l1ddMbtWXvpolcP+IirwrTdvTiK2XXbp7M7CgO0D9joUN2NmjStgBCFQCDhu3/UDROKkFSSunWr8vu8zsmh7kPd+uSSW9/63Xvr9zN3R0REwjUq6QAiIpIsFQIRkcCpEIiIBE6FQEQkcCoEIiKBq0w6wGBNmjTJGxoako4hIlJW1q5du9Xdj+lrWdkVgoaGBtasWZN0DBGRsmJmHx5umU4NiYgEToVARCRwKgQiIoELphCk02nS6XTSMURESk4whaClpYWWlpakY4iIlJxgCoGIiPRNhUBEJHAqBCIigSu7L5QNVUdHR9IRRERKUjCFQAPwiIj0TaeGREQCp0IgfVqyZAkXXnghjz76aNJRykImk2HmzJlkMpmko5QN7bPSoUIgfXrqqacAWLp0acJJysOCBQvYtWsXCxYsSDpK2dA+Kx0qBHKIJUuWHDStVkH/MpkMmzZtAmDTpk36hJsH7bPSokIgh+hpDfRQq6B/uZ9o9Ql3YNpnpUWFQGSYej7ZHm5aDqV9VlpUCESGKXfEPI2gNzDts9KiQiCH+Pa3v33Q9Jw5cxJKUh7mz5/f77QcSvustKgQyCGuu+66g6avvvrqhJKUh1QqdeATbUNDA6lUKtlAZUD7rLSoEEifeloFag3kZ/78+YwdO1afbAdB+6x0WLl1vdDY2OhDGbz+G9/4BgCvvPJKoSOJiJQ8M1vr7o19LQumr6GampqkI4iIlKTYTg2ZWZWZrTazt83sPTO7u491xpjZcjPLmNkqM2uIK4+IiPQtzmsEncA0dz8bOAeYYWbn56xzDbDd3VPAD4H7Y8wjIiJ9iK0QeNbOaHJ09JN7QeIy4Ino8bPAN83M4sokIiKHivUagZlVAGuBFPBjd1+Vs0od8DGAu3eZWTtQC2wtdJbKyko6Oztpbm4u9KZHrFQqxbx585KOISIxi7UQuHs3cI6ZTQB+bmZnuvv6wW7HzK4HrgeYMmXKkLJ0dXWxd89uOj8c/B1HIfpoZ0XSEUSkSIpy15C77zCzV4AZQO9C0AacALSaWSUwHtjWx/MXA4she/voUHOMqXDumPr5UJ8elPvWHZV0BBEpkjjvGjomaglgZtXARcD7Oas9B1wZPZ4FvOzl9sUGEZEyF2eLYDLwRHSdYBTw9+7+vJndA6xx9+eAR4AnzSwDfAZcHmMeERHpQ2yFwN3fAf6oj/l39Xq8B/iLuDL01tnZCft1Q5LEI51OA+jiupSlYL5ZvH///kNvXhUpEI2wJeVMnc6JSCJefvllLrzwQvX/ladMJsPMmTNj+dChQiAiibjvvvsAuPfeexNOUh4WLFjArl27YhnWU4VARIru5ZdfpqurC8h+x0etgv5lMpkDw3lu2rSp4K2CYK4RyOB80jGKvZmMvomdp0wmQ3V1ddIxykZPa6DHvffee6CreDlUbitgwYIFPP744wXbvloEIlJ0Pa2Bw03LwXpaA4ebHi61CKRPx9XsZ8yJKRYuXJh0lLKgltPgVFZWHvTmX1mpt6L+NDQ0HPTm3zPMZ6GoRSAiRXfHHXccNH3nnXcmlKQ85A7nWejhPVUIRKTopk2bdqAVUFlZqesDA0ilUgdaAQ0NDaRSqYJuX4VARBLR0ypQayA/8+fPZ+zYsQVvDYCuEYhIQqZNm8a0adOSjlE2UqkUL7zwQizbDqYQjBo1Crw76RgyQhW6qS5STMEUgjFjxrB/z96kY8gIpc7mpJzpGoGISOBUCEREAhfMqSGAzm7TEIx5+mhnBackHUJEiiKYQjB58mR27NjBmLq6pKOUhVPQBVCRUARTCB5++OGkI4iIlCRdIxARCZwKgYhI4FQIREQCp0IgIhI4FQIRkcCpEIiIBE6FQEQkcCoEIiKBC+YLZTIypNNpMplM0jEO0dbWBkCdvrk+KKlUSj23lgAVAikrmUyGt9ZvoLtmYtJRDlLR0Q7A7zt1SOWrouOzpCNIRH+1Una6ayay+8uXJB3jINXvrwQouVylrGefSfJ0jUBEJHAqBCIigVMhEBEJXDCFIJ1Ok06nk44hIjIkcb6HBXOxuBRvORQRyVec72HBtAhERKRvKgQiIoFTIRARCVww1wja2trYvXs3zc3NSUeRYchkMoza60nHkAIYtedzMpkvdEzmKZPJUF1dHcu21SIQEQlcMC2Cns7AFi5cmHASGY7m5mbW/uaTpGNIAeyvOorUycfpmMxTnC0ntQhERAKnQiAiEjgVAhGRwAVzjSCVSiUdQURkyOJ8DwumEGgUJBEpZ3G+h+nUkIhI4GIrBGZ2qpm91evnczO7JWcdM7MfmVnGzN4xs6lx5RERkb7FdmrI3T8AzgEwswqgDfh5zmoXA6dEP18FHoz+FRGRIinWNYJvAr929w9z5l8GLHV3B940swlmNtndNxcp15Ck0+kR3611W1sb8C9fxCsVmUyGil0dHLnuyaSjHKy7C6D0cpWy7i7a2rqSTiEUrxBcDjzTx/w64ONe063RvIMKgZldD1wPMGXKlJgi5i+TybDxvV8y5cjupKPEZtcXFQB0dpVWTT5hNDABYG/CSQ72SUf2LOtxNaWVq5R9tLMi6QgSib0QmNkRQBPw/aFuw90XA4sBGhsbS6LHsSlHdnPH1M+TjhGb+9YdBTCif0dJ1n3rjmJMibU4Q1WMu4YuBta5e18dxLQBJ/Saro/miYhIkRSjEMym79NCAM8Bc6K7h84H2kv9+oCIyEgT66khMxsLXAT8u17zbgBw94eAlcAlQAboAK6KK0vPoM/6YpmIlKM438NiLQTuvguozZn3UK/HDtwUZ4YeI/0uHxEZ2TR4vYiIxEaFQEQkcCoEIiKBUyEQEQlcMN1Qt7W1sXv37oKM+5nJZDhin2qoyHB80jGKvZlMrGPxjiSZTIbq6upYtq13MxGRwAXTIujpPG3hwoXD3lZzczOdH64Z9nZEQnZczX7GnJgqyDEZgjhbTmoRiIgEToVARCRwKgQiIoEL5hpBKpVKOoKIyJDF+R4WTCFQZ3MiUs7ifA/TqSERkcCpEIiIBC6YU0OF9tHOigPDOY5EH0ZjFo/k31GS9dHOCk5JOoQA/RQCM/vz/p7o7j8rfJzyEMKF57Ft2RFDNaasxOUUwjiWykF/LYI/62eZA8EWAl14FpGR5LCFwN1jGzZSRERKR17XCMxsJnAGUNUzz93viSuUiIgUz4B3DZnZQ8C/BeYBBvwFcGLMuUREpEjyuX30j919DrDd3e8GvgZ8Kd5YIiJSLPkUgt3Rvx1mdjywD5gcXyQRESmmfK4RPG9mE4AfAOvI3jH0cKypRESkaAYsBO7+n6OHPzWz54Eqd2+PN5aIiBRLvncN/THQ0LO+meHuS2PMJSIiRTJgITCzJ4E/BN4CuqPZDqgQiIiMAPm0CBqB093d4w4jUq7S6TSgb51LecrnrqH1wB/EHUSknLW0tNDS0pJ0DJEh6a/TuX8gewpoHPArM1sNdPYsd/em+OOJiEjc+js19Hdkv0l8P/CtXvN75omIyAjQX6dzrwGY2eiexz3MrDruYCIiUhz9nRq6EfhL4GQze6fXonHA/4s7mEg56ejoSDqCyJD1d2roaeBF4G+A23vN/8LdP4s1lUiZ0U11Us76OzXUDrQDs4sXR0REik2D14uIBE6FQEQkcCoEIiKBUyEQEQmcCoGISOBUCEREAqdCICISOBUCEZHAqRCIiAQur6EqRaR/ZpZ0BJEhUyEQKYCampqkI4gMWaynhsxsgpk9a2bvm9kGM/taznIzsx+ZWcbM3jGzqXHmERGRQ8XdIlgItLj7LDM7Asj92HQxcEr081XgwehfEREpktgKgZmNBy4A5gK4+15gb85qlwFLPduH75tRC2Kyu28udJ50Ok0mkyn0ZqXI2traAKirq0s4ycF2797NqFG690LKU5wtgpOALcBjZnY2sBZodvddvdapAz7uNd0azTuoEJjZ9cD1AFOmTBlSmEwmw8b3fsmUI7uH9HwpDbu+qACgs6vgnxWGZZRXMmHCxKRjiAxJnIWgEpgKzHP3VWa2kOwAN/9hsBty98XAYoDGxsYhjwAy5chu7pj6+VCfLiXgvnVHAZTc/+N9645iTIm1UkTyFWdbthVodfdV0fSzZAtDb23ACb2m66N5IiJSJLEVAnf/PfCxmZ0azfom8Kuc1Z4D5kR3D50PtMdxfUBERA4v7ruG5gFPRXcM/Qa4ysxuAHD3h4CVwCVABugAroo5j4iI5Ii1ELj7W0BjzuyHei134KY4M/Roa2uju0N3dYhIeUqn0wDMmzev4NsO5pvFu3fvZn+3ugEQkfIU5+3v+ogsIhI4FQIRkcCpEIiIBC6YawQicfqkYxR7Mxmam5uTjiIjVCaTobq6OpZtq0UgIhI4tQhECuC4mv2MOTHFwoULk44iI1ScrU21CEREAqdCICISOBUCEZHABXONoLq6mu59pdV1sYhIvlKpVGzbDqYQ1NXVldxgJiIi+Yqjj6EeOjUkIhI4FQIRkcCpEIiIBC6YawQAH+2sODDmrZSnD6PB60vt//GjnRWcknQIkSEKphDEecVdimdsW3ZI61IbKP4U9Dcm5SuYQhDnFXcRkXKmawQiIoFTIRARCZwKgYhI4FQIREQCp0IgIhK4YO4aEhE5nH379tHa2sqePXuSjjJsVVVV1NfXM3r06Lyfo0IgIsFrbW1l3LhxNDQ0YGZJxxkyd2fbtm20trZy0kkn5f08nRoSkeDt2bOH2trasi4CAGZGbW3toFs2wRSCdDpNOp1OOoaIlKhyLwI9hvJ7BFMIWlpaaGlpSTqGiEjJCaYQiIhI31QIREQCp0IgIlIgu3btYubMmZx99tmceeaZLF++nLVr1/L1r3+dc889l+nTp7N582ba29s59dRT+eCDDwCYPXs2S5YsSSx3MLePdnR0JB1BREa4lpYWjj/+eF544QUA2tvbufjii1mxYgXHHHMMy5cv58477+TRRx9l0aJFzJ07l+bmZrZv3851112XWO5gCoG7Jx1BREa4s846i+9973vcdtttXHrppRx99NGsX7+eiy66CIDu7m4mT54MwEUXXcRPfvITbrrpJt5+++0kY4dTCERE4valL32JdevWsXLlSubPn8+0adM444wzeOONNw5Zd//+/WzYsIGamhq2b99OfX19AomzdI1ARKRAfve731FTU8MVV1zBrbfeyqpVq9iyZcuBQrBv3z7ee+89AH74wx9y2mmn8fTTT3PVVVexb9++xHKrRSAiUiDvvvsut956K6NGjWL06NE8+OCDVFZW8t3vfpf29na6urq45ZZbqKys5OGHH2b16tWMGzeOCy64gAULFnD33XcnkluFQESkQKZPn8706dMPmf/6668fMm/Dhg0HHj/wwAOx5hqITg2JiAROhUBEJHAqBCIigVMhEBEJnAqBiEjgVAhERAIXzO2jI2XQCRGJ381/fSufbv2sYNs7dtJEFj3wgwHXa2lpobm5me7ubq699lpuv/32g5Z3dnYyZ84c1q5dS21tLcuXL6ehoWHY+YIpBDU1NUlHEJEy8enWz/j1cV8v3AY/eW3AVbq7u7npppt46aWXqK+v57zzzqOpqYnTTz/9wDqPPPIIRx99NJlMhmXLlnHbbbexfPnyYccriVNDZvZlM/tHM3vXzF4zs0lJZxIRKabVq1eTSqU4+eSTOeKII7j88stZsWLFQeusWLGCK6+8EoBZs2bxi1/8oiAdapZEIYhc4e5nAf8I3JB0GBGRYmpra+OEE044MF1fX09bW9th16msrGT8+PFs27Zt2K9dEqeG3P39XpNjgOH/ZiIikpeSKAQ9zGw6cDHwtUJve8aMGYXepMgB6XQagHnz5iWcRMpVXV0dH3/88YHp1tZW6urq+lynvr6erq4u2tvbqa2tHfZrl8ypITMbBTwCNLn7jpxl15vZGjNbs2XLliFtf968eTpIJTYtLS20tLQkHUPK2HnnncfGjRv57W9/y969e1m2bBlNTU0HrdPU1MQTTzwBwLPPPsu0adMKckdkKbUIjgfa3X1j7gJ3XwwsBmhsbNRQYyISq2MnTczrTp9BbW8AlZWVLFq0iOnTp9Pd3c3VV1/NGWecwV133UVjYyNNTU1cc801fOc73yGVSjFx4kSWLVtWkHxWKkM4mtlY4E/dvd+PVY2Njb5mzZoipRLJz8yZMwEOjFUr5WXDhg2cdtppSccomL5+HzNb6+6Nfa1fMqeGgPHAtUmHEBEJTcmcGnL33wGzks4hMhQdHR1JRxAZspIpBCLlrFROsYoMRSmdGhIRkQSoEIiIBE6FQEQkcLpGICKS447v3Uz71k8Ktr3xk47jvv+6qN91rr76ap5//nmOPfZY1q9ff8hyd6e5uZmVK1dSU1PD448/ztSpUwuST4VARCRH+9ZPuO0P3x94xTzd/+uB15k7dy4333wzc+bM6XP5iy++yMaNG9m4cSOrVq3ixhtvZNWqVQXJp1NDIiIl4IILLmDixMN/A3nFihXMmTMHM+P8889nx44dbN68uSCvrUIgIlIG8ummeqhUCEREAqdCICJSBvLppnqoVAhERMpAU1MTS5cuxd158803GT9+PJMnTy7ItnXXkEgBFKJPeCkd4ycdl9edPoPZ3kBmz57Nq6++ytatW6mvr+fuu+9m3759ANxwww1ccsklrFy5klQqRU1NDY899ljB8qkQiBRATU1N0hGkgAa65z8OzzzzTL/LzYwf//jHsby2Tg2JiAROhUBEJHAqBCIijJyuxIfye+gagUgBzJgxI+kIMgxVVVVs27aN2trasr7w7+5s27aNqqqqQT1PhUCkAObNm5d0BBmG+vp6Wltb2bJlS9JRhq2qqor6+vpBPUeFQESCN3r0aE466aSkYyRG1whERAKnQiAiEjgVAhGRwFm53TJlZluAD4f49EnA1gLGKRTlGhzlGrxSzaZcgzOcXCe6+zF9LSi7QjAcZrbG3RuTzpFLuQZHuQavVLMp1+DElUunhkREAqdCICISuNAKweKkAxyGcg2Ocg1eqWZTrsGJJVdQ1whERORQobUIREQkhwqBiEjgRmQhMLMZZvaBmWXM7PY+lo8xs+XR8lVm1lAiueaa2RYzeyv6ubZIuR41s0/NbP1hlpuZ/SjK/Y6ZTS2RXBeaWXuv/XVXETKdYGavmNmvzOw9M2vuY52i7688cyWxv6rMbLWZvR3luruPdYp+POaZK5HjMXrtCjP7pZk938eywu8vdx9RP0AF8GvgZOAI4G3g9Jx1/hJ4KHp8ObC8RHLNBRYlsM8uAKYC6w+z/BLgRcCA84FVJZLrQuD5Iu+rycDU6PE44J/7+H8s+v7KM1cS+8uAI6PHo4FVwPk56yRxPOaTK5HjMXrtvwae7uv/K479NRJbBF8BMu7+G3ffCywDLstZ5zLgiejxs8A3Lf5OyPPJlQh3fx34rJ9VLgOWetabwAQzm1wCuYrO3Te7+7ro8RfABqAuZ7Wi7688cxVdtA92RpOjo5/cO1SKfjzmmSsRZlYPzAQePswqBd9fI7EQ1AEf95pu5dAD4sA67t4FtAO1JZAL4N9EpxOeNbMTYs6Ur3yzJ+FrUfP+RTM7o5gvHDXJ/4jsp8neEt1f/eSCBPZXdJrjLeBT4CV3P+z+KuLxmE8uSOZ4/G/Avwf2H2Z5wffXSCwE5ewfgAZ3/1fAS/xL1Ze+rSPbf8rZQBr4n8V6YTM7EvgpcIu7f16s1x3IALkS2V/u3u3u5wD1wFfM7MxivO5A8shV9OPRzC4FPnX3tXG/Vm8jsRC0Ab0rd300r891zKwSGA9sSzqXu29z985o8mHg3Jgz5SuffVp07v55T/Pe3VcCo81sUtyva2ajyb7ZPuXuP+tjlUT210C5ktpfvV5/B/AKkDuuZxLH44C5Ejoe/wRoMrNNZE8fTzOz/5GzTsH310gsBP8EnGJmJ5nZEWQvpjyXs85zwJXR41nAyx5deUkyV8555Cay53lLwXPAnOhumPOBdnffnHQoM/uDnnOjZvYVsn/Psb6BRK/3CLDB3R84zGpF31/55Epofx1jZhOix9XARcD7OasV/XjMJ1cSx6O7f9/d6929gex7xMvufkXOagXfXyNuqEp37zKzm4H/RfZOnUfd/T0zuwdY4+7PkT1gnjSzDNmLkZeXSK7vmlkT0BXlmht3LgAze4bsHSWTzKwV+I9kL57h7g8BK8neCZMBOoCrSiTXLOBGM+sCdgOXF6Gg/wnwHeDd6PwywB3AlF65kthf+eRKYn9NBp4wswqyhefv3f35pI/HPHMlcjz2Je79pS4mREQCNxJPDYmIyCCoEIiIBE6FQEQkcCoEIiKBUyEQEQnciLt9VGQwzOw/ATuBo4DX3f3/JJjlnqQzSJhUCEQAd4+9S+ZyyCBh0qkhCY6Z3Wlm/2xm/xc4NZr3uJnNih7fZWb/ZGbrzWxxr2/jnhd1QPaWmf3AonESLNtv/c/MrMXMNprZf+n1WrPN7N1oW/dH8yqi11sfLfurPjL8rWXHFnjHzP6uqDtIgqMWgQTFzM4l+03Mc8j+/a8Dcjv4WuTu90TrPwlcSrYDsseA69z9DTP725znnEO2x89O4AMzSwPdwP1k+6jZDvxvM/sW2Z4j69z9zOg1JuRkrAX+NfBld/fc5SKFphaBhOZPgZ+7e0fUO2duP1QA37DsyE/vAtOAM6I343Hu/ka0ztM5z/mFu7e7+x7gV8CJwHnAq+6+Jeou+Cmyg+38BjjZzNJmNgPI7SW0HdgDPGJmf062mwqR2KgQiPRiZlXAfwdmuftZwBKgKo+ndvZ63E0/rW133w6cDbwK3EDOACRR0fgK2UFHLgVa8v8NRAZPhUBC8zrwLTOrNrNxwJ/lLO95099q2b79Z8GBroq/MLOvRsvz6ehrNfB1M5sUdW42G3gt6vp5lLv/FJhPdjjOA6LXHR91Ff1XZIuGSGx0jUCC4u7rzGw52TGjPyXbPXjv5TvMbAmwHvh9zvJrgCVmth94jewpnP5ea7OZ3U62r3sDXnD3FWZ2NvCYmfV8EPt+zlPHASui1omRHb9WJDbqfVQkT2Z2ZM/ALtEb/GR3b044lsiwqUUgkr+ZZvZ9ssfNhyTYP71IIalFICISOF0sFhEJnAqBiEjgVAhERAKnQiAiEjgVAhGRwP1/4B9Ve5rRccYAAAAASUVORK5CYII=\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['thal'], \n",
" );\n",
" #Diagnóstico por valores 3,6,7"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "7C1ZGOkSZH1g",
"outputId": "a2336086-8342-4523-96cb-03bec3b41e87"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUQUlEQVR4nO3de5BkZX3G8e+PFWS4hLGAisigoxnQUlTEEVErGyNlhVVhjcGKlCJaeEPjeElVShNC4oaqaEwlsbUCLCwGN0hM4YVLXBMTL1SiogOuiIo7owUyBGRAWFl2QYFf/ugzZLaZne1Z5vTpnvf7qZqaPn3OdD+cnTMP7+k+b0dmIkkq115NB5AkNcsikKTCWQSSVDiLQJIKZxFIUuEe13SApTrkkENydHS06RiSNFCuvfbaOzPz0IXWDVwRjI6OMjk52XQMSRooEXHzrtZ5akiSCmcRSFLhLAJJKlwxRdBqtWi1Wk3HkKS+U0wRbNq0iU2bNjUdQ5L6TjFFIElamEUgSYWzCCSpcBaBJBXOIpCkwlkEklQ4i0CSCmcRSFLhLAJJKtzATUO9p7Zv3950BEnqS8UUQWY2HUGS+pKnhiSpcBaBJBXOIpCkwlkEklQ4i0CSCmcRSFLhaiuCiNg3Ir4dEd+LiB9ExIcW2ObxEfGZiJiOiGsiYrSuPFqak046idWrV7N27dqmowyE888/n9WrV7Nhw4amowyMjRs3snr1ai699NKmowyELVu2sGbNGqanp5f9sescETwAvCwznwscA5wYEcd3bHMGcHdmjgF/D3ykxjxagq1btwJw9913N5xkMFxyySUAXHzxxQ0nGRwXXHABAOeee27DSQbDOeecw3333ce6deuW/bFrK4Js21Yt7l19dV7VtRaYO3IuA06IiKgrk7pz0kkn7bTsqGBx559//k7Ljgp2b+PGjTstOypY3JYtW7jpppsAuOmmm5Z9VFDrawQRsSoiNgN3AF/OzGs6NjkcuAUgMx8EtgIH15lJuzc3GpjjqGBxc6OBOY4Kdm9uNDDHUcHizjnnnJ2Wl3tUUGsRZOZDmXkMMAIcFxFH78njRMTbImIyIiZnZ2eXN6Qk9bm50cCulh+rnrxrKDPvAb4KnNix6lbgCICIeBxwEHDXAj+/PjPHM3P80EMPrTuuJPWV0dHRRZcfqzrfNXRoRAxXt4eAlwM3dmx2BXB6dfsU4Cvp7HCNO+igg3ZafsITntBQksHw+te/fqfl008/fRdbas5b3/rWnZbPPPPMhpIMhrPOOmun5bPPPntZH7/OEcFhwFcj4nrgO7RfI7gqItZFxMnVNhuAgyNiGng/8IEa86hLV1555U7Ll19+eUNJBsPb3/72nZbPOOOMhpIMjtNOO22n5VNPPbWhJIPhqKOOemQUMDo6ytjY2LI+fp3vGro+M5+Xmc/JzKMzc111/9mZeUV1+/7MfG1mjmXmcZn507ryaGnmRgWOBrozNypwNNC9uVGBo4HunHXWWey///7LPhoAiEE7EzM+Pp6Tk5NL/rnVq1cDcPXVVy93JEnqexFxbWaOL7TOKSYkqXAWgSQVziKQpMJZBJJUuGI+vN4pjCRpYcUUwX777dd0BEnqS54akqTCWQSSVDiLQJIKZxFIUuEsAkkqnEUgSYWzCCSpcBaBJBXOIpCkwhVzZfGaNWuajiBJfamYIpiYmGg6giT1JU8NSVLhLAJJKpxFIEmFswgkqXAWgSQVziKQpMJZBJJUOItAkgpXzAVlWppWq8X09HTTMQbGzMwMACMjIw0nGSxjY2Ne7NkHLAItaHp6mi03XMeTD3io6SgD4b57VwFw/4O3NZxkcPxs26qmI6hiEWiXnnzAQ5w1vq3pGAPhnMkDANxfSzC3z9Q8XyOQpMJZBJJUOItAkgpnEUhS4SwCSSqcRSBJhbMIJKlwFoEkFa6YImi1WrRaraZjSNIeqfNvWDFXFjtvjqRBVuffsGJGBJKkhVkEklQ4i0CSCmcRSFLhLAJJKpxFIEmFswgkqXC1FUFEPD0iNs/7+mVEvLdjm4iIVkRMR8T1EXFsXXkkSQur7YKyzPwxcAxARKwCbgU+37HZGuDI6uuFwLnVd0lSj/TqyuITgJ9k5s0d968FPpWZCXwrIoYj4rDMXPZPAJ+ZmWHHjh1MTEws90OvSFNTU+zza88cqj4/374Xv5qa8pjs0tTUFENDQ7U8dq+O9NcBly5w/+HALfOWZ6r7dhIRb4uIyYiYnJ2drSmiJJWp9hFBROwDnAx8cE8fIzPXA+sBxsfHc08eY2RkBMCJ57o0MTHB/Td9p+kYWsF+c7+H2Xf0SI/JLtU5curFiGANcF1m/nyBdbcCR8xbHqnukyT1SC+K4FQWPi0EcAXwxurdQ8cDW+t4fUCStGu1nhqKiP2BlwNvn3ffOwAy8zzgi8ArgGlgO/DmOvNIkh6t1iLIzPuAgzvuO2/e7QTeVWcGSdLifH+gJBXOIpCkwlkEklQ4i0CSCmcRSFLhejXXUOPGxsaajiBJe6zOv2HFFIETW0kaZIM+xYQkqY9ZBJJUOItAkgpnEUhS4SwCSSqcRSBJhbMIJKlwFoEkFW6XF5RFxGsW+8HM/Nzyx1E/+dm2VZwzeUDTMQbCzfeuAnB/LcHPtq3iqKZDCFj8yuKTFlmXgEWwgjklx9LsPzMDwL4jIw0nGRxH4e9Zv4j2h4QNjvHx8ZycnGw6hiQNlIi4NjPHF1rX1VxDEfFK4FnAvnP3Zea65YknSWrSbl8sjojzgD8E3g0E8FrgKTXnkiT1SDfvGnpxZr4RuDszPwS8CHyNR5JWim6KYEf1fXtEPAn4NXBYfZEkSb3UzWsEV0XEMPBR4Dra7xi6sNZUkqSe2W0RZOZfVTc/GxFXAftm5tZ6Y0mSeqXbdw29GBid2z4iyMxP1ZhLktQjuy2CiNgI/BawGXioujsBi0CSVoBuRgTjwDNz0K4869BqtZienm46hlaomZkZhoeHueiii5qOIi1ZN0VwA/BE4Laas9Rqenqa7/7guzDcdBKtSHfBjh07dr+d1IcWm3TuStqngA4EfhgR3wYemFufmSfXH2+ZDcPDL3246RRagfb6ghP5anAtNiL4W9pXEn8EePW8++fukyStALssgsz8OkBE7D13e05EDNUdTJLUG4udGjoTeCfwtIi4ft6qA4H/qTuYJKk3Fjs19GlgE/DXwAfm3X9vZv6i1lSSpJ5Z7NTQVmArcGrv4kiSes23OkhS4SwCSSpcV3MNrQQzMzNwX9MpJGnPtFotACYmJpb9sYspgh07dsCDTaeQpD1T5xQ5nhqSpMJZBJJUOItAkgpnEUhS4SwCSSqcRSBJhbMIJKlwtRZBRAxHxGURcWNE/CgiXtSxPiKiFRHTEXF9RBxbZx5J0qPVfUHZx4AvZeYpEbEPsF/H+jXAkdXXC4Fzq++SpB6prQgi4iBgNfAmgMz8FfCrjs3WAp/KzAS+VY0gDsvMgf58ZBXoofbV63Vc/i8BTE1NMTRUz2eC1Xlq6KnALPDJiPhuRFwYEft3bHM4cMu85Znqvp1ExNsiYjIiJmdnZ+tLLEkFqvPU0OOAY4F3Z+Y1EfEx2h9w8+dLfaDMXA+sBxgfH89lTSkth1UwtM/QIxODScutztFmnSOCGWAmM6+pli+jXQzz3QocMW95pLpPktQjtRVBZt4O3BIRT6/uOgH4YcdmVwBvrN49dDyw1dcHJKm36n7X0LuBS6p3DP0UeHNEvAMgM88Dvgi8ApgGtgNvrjmPJKlDrUWQmZuB8Y67z5u3PoF31ZlBkrQ4ryyWpMJZBJJUOItAkgpnEUhS4SwCSSpc3W8f7RtDQ0Nse3hb0zEkaY+MjY3V9tjFFMHIyAiztzpPkaTBNKhTTEiSBoBFIEmFswgkqXAWgSQVziKQpMJZBJJUOItAkgpnEUhS4Yq5oAyAe2Cvr9l9qsGDwD5Nh5D2TDFFUOfl2dJMzjA8PNx0DGmPFFMEdV6eLUmDzPMkklQ4i0CSCmcRSFLhLAJJKpxFIEmFswgkqXAWgSQVziKQpMIVc0FZv2q1WkxPTzcd41FmZmaA9mc995uxsTEvEJSWkUXQsOnpaW7cvJknNh2kw73V93vuvLPRHJ1ubzqAtAJZBH3gicAZRNMxdrKBBPo3l6Tl42sEklQ4i0CSCmcRSFLhLAJJKpxFIEmFswgkqXAWgSQVziKQpMIVUwStVotWq9V0DK1Q/n5pkBVzZXE/zuejlcPfLw2yYkYEkqSFWQSSVDiLQJIKZxFIUuEsAkkqnEUgSYXriyKIiGdExDci4vsR8fWIOKTpTJJUir4ogsobMvPZwDeAdzQdRpJK0RcXlGXmjfMWHw/c1VQWSSpNXxTBnIj4PWAN8KLlfuyZmRl27NjBxMTEcj/0YzI1NdVXw7J+dxcwOzXVl/+OQ0NDTceQ9kjf/A2KiL2ADcDJmXlPx7q3RcRkREzOzs42E1CSVqh+GhE8CdiamVOdKzJzPbAeYHx8PPfkwUdGRgD6bmKwiYkJ7tm8uekYA+NgYPjII/vy31EaVH0zIgDuBv646RCSVJp+KoKDgLc0HUKSStM3p4Yy83+BU5rOIUml6acRgSSpARaBJBXOIpCkwlkEklQ4i0CSCtc37xqq29jYWNMRtIL5+6VBVkwReOWn6uTvlwaZp4YkqXAWgSQVziKQpMJZBJJUOItAkgpnEUhS4SwCSSqcRSBJhSvmgrJ+djuwgT36BM7a3FZ977dctwPDTYeQVhiLoGH9OjXBtpkZAIarz3ruF8P07z6TBpVF0DCnJpDUNF8jkKTCWQSSVDiLQJIKZxFIUuEis7/eHrg7ETEL3LyHP34IcOcyxlku5loacy1dv2Yz19I8llxPycxDF1oxcEXwWETEZGaON52jk7mWxlxL16/ZzLU0deXy1JAkFc4ikKTClVYE65sOsAvmWhpzLV2/ZjPX0tSSq6jXCCRJj1baiECS1MEikKTCrcgiiIgTI+LHETEdER9YYP3jI+Iz1fprImK0T3K9KSJmI2Jz9fWWHuW6KCLuiIgbdrE+IqJV5b4+Io7tk1wvjYit8/bX2T3IdEREfDUifhgRP4iI9yywTc/3V5e5mthf+0bEtyPie1WuDy2wTc+Pxy5zNXI8Vs+9KiK+GxFXLbBu+fdXZq6oL2AV8BPgacA+wPeAZ3Zs807gvOr264DP9EmuNwGfaGCfrQaOBW7YxfpXAJuAAI4HrumTXC8FrurxvjoMOLa6fSCwZYF/x57vry5zNbG/Ajigur03cA1wfMc2TRyP3eRq5Hisnvv9wKcX+veqY3+txBHBccB0Zv40M38F/AuwtmObtcDF1e3LgBMiIvogVyMy82rgF4tsshb4VLZ9CxiOiMP6IFfPZeZtmXlddfte4EfA4R2b9Xx/dZmr56p9sK1a3Lv66nyHSs+Pxy5zNSIiRoBXAhfuYpNl318rsQgOB26ZtzzDow+IR7bJzAeBrcDBfZAL4A+q0wmXRcQRNWfqVrfZm/Ciani/KSKe1csnrobkz6P9f5PzNbq/FskFDeyv6jTHZuAO4MuZucv91cPjsZtc0Mzx+A/AnwAP72L9su+vlVgEg+xKYDQznwN8mf9vfS3sOtrzpzwX+DjwhV49cUQcAHwWeG9m/rJXz7s7u8nVyP7KzIcy8xhgBDguIo7uxfPuThe5en48RsSrgDsy89q6n2u+lVgEtwLzm3ukum/BbSLiccBBwF1N58rMuzLzgWrxQuD5NWfqVjf7tOcy85dzw/vM/CKwd0QcUvfzRsTetP/YXpKZn1tgk0b21+5yNbW/5j3/PcBXgRM7VjVxPO42V0PH40uAkyPiJtqnj18WEf/csc2y76+VWATfAY6MiKdGxD60X0y5omObK4DTq9unAF/J6pWXJnN1nEc+mfZ53n5wBfDG6t0wxwNbM/O23f1Q3SLiiXPnRiPiONq/z7X+AamebwPwo8z8u11s1vP91U2uhvbXoRExXN0eAl4O3NixWc+Px25yNXE8ZuYHM3MkM0dp/434Sma+oWOzZd9fK+4zizPzwYj4I+Dfab9T56LM/EFErAMmM/MK2gfMxoiYpv1i5Ov6JNdERJwMPFjlelPduQAi4lLa7yg5JCJmgL+g/eIZmXke8EXa74SZBrYDb+6TXKcAZ0bEg8AO4HU9KPSXAKcB36/OLwP8KfDkebma2F/d5Gpifx0GXBwRq2gXz79m5lVNH49d5mrkeFxI3fvLKSYkqXAr8dSQJGkJLAJJKpxFIEmFswgkqXAWgSQVbsW9fVRaioj4S2Ab8BvA1Zn5nw1mWdd0BpXJIpCAzKx9SuZByKAyeWpIxYmIP4uILRHx38DTq/v+KSJOqW6fHRHfiYgbImL9vKtxX1BNQLY5Ij4a1eckRHve+s9FxJciYioi/mbec50aEd+vHusj1X2rque7oVr3vgUyfDjany1wfUT8bU93kIrjiEBFiYjn074S8xjav//XAZ0TfH0iM9dV228EXkV7ArJPAm/NzG9GxIc7fuYY2jN+PgD8OCI+DjwEfIT2HDV3A/8REa+mPXPk4Zl5dPUcwx0ZDwZ+H3hGZmbnemm5OSJQaX4b+Hxmbq9m5+ychwrgd6P9yU/fB14GPKv6Y3xgZn6z2ubTHT/zX5m5NTPvB34IPAV4AfC1zJytpgu+hPaH7fwUeFpEfDwiTgQ6ZwndCtwPbIiI19CepkKqjUUgzRMR+wL/CJySmc8GLgD27eJHH5h3+yEWGW1n5t3Ac4GvAe+g4wNIqtI4jvaHjrwK+FL3/wXS0lkEKs3VwKsjYigiDgRO6lg/90f/zmjP7X8KPDJV8b0R8cJqfTcTfX0b+J2IOKSa3OxU4OvV1M97ZeZngbNofxznI6rnPaiaKvp9tEtDqo2vEagomXldRHyG9mdG30F7evD56++JiAuAG4DbO9afAVwQEQ8DX6d9Cmex57otIj5Ae677AP4tMy+PiOcCn4yIuf8R+2DHjx4IXF6NToL259dKtXH2UalLEXHA3Ae7VH/gD8vM9zQcS3rMHBFI3XtlRHyQ9nFzMw3OTy8tJ0cEklQ4XyyWpMJZBJJUOItAkgpnEUhS4SwCSSrc/wE+E+m/5axPIgAAAABJRU5ErkJggg==\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['chol'], \n",
" hue = df['sex']);\n",
" #Diagnostico colesterol por sexo y niveles:\n",
" #Colestoral sérico en mg/dl 6."
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "ITDoVO5fZbTF",
"outputId": "3ea1e283-c363-4c17-8b09-69b52a0e82f2"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAahklEQVR4nO3dfXAc9Z3n8ffXGoHsxTF4bFyOZGI4EcJDFgI2yxV3cOtgUICYXI4lcBckAwmVxGDjUCwkpGC9xW6F3duwGN+xZfCClA0rJyY5A2e0yASSShXYsQggg8PZIfaiifHDYAsTP6CH7/0xrbYsS/Looad7NJ9XlUsz090zX7Xt+fTv17/+tbk7IiIiAOPiLkBERJJDoSAiIiGFgoiIhBQKIiISUiiIiEgoFXcBIzFlyhSfOXNm3GWIiBSVlpaW3e4+tb9lRR0KM2fOZMOGDXGXISJSVMxs20DL1H0kIiIhhYKIiIQUCiIiEirqcwoiIqOto6ODtrY2Dh48GHcpI1ZRUUFVVRXl5eV5b6NQCGSzWZYsWcL9999POp2OuxwRiUlbWxsTJ05k5syZmFnc5Qybu5PNZmlra+PUU0/Nezt1HwXq6+tpbW2loaEh7lJEJEYHDx4knU4XdSAAmBnpdHrILR6FArlWQlNTE+5OU1MT2Ww27pJEJEbFHgg9hvN7KBTItRK6u7sB6OrqUmtBREqWQgFYu3YtnZ2dAHR2dtLc3BxzRSIi8VAoAJdddhmpVO6ceyqVYu7cuTFXJCISD4UCUFdXx7hxuV1RVlZGbW1tzBWJSLH74x//yFVXXcW5557LOeecw8qVK2lpaeHSSy/lggsu4IorrmD79u20t7dzxhln8M477wBwww038Nhjj8VWt0IBSKfT1NTUYGbU1NRoSKqIjFhTUxOf/OQneeONN9i4cSM1NTXcfvvtrFq1ipaWFm6++WbuvfdeJk2axLJly5g/fz6NjY3s2bOHr3/967HVresUAnV1dWzdulWtBBEZFZ/97Ge58847ufvuu7n66qs56aST2LhxY9g93dXVxfTp0wGYO3cuP/nJT1iwYAFvvPFGnGUrFHqk02mWLl0adxkiMkZ8+tOf5rXXXmPNmjV873vfY86cOZx99tm88sorR63b3d3Npk2bmDBhAnv27KGqqiqGinPUfSQiEoE//OEPTJgwga9+9avcddddrFu3jl27doWh0NHRwVtvvQXAQw89xJlnnslTTz3FTTfdREdHR2x1q6UgIhKB1tZW7rrrLsaNG0d5eTmPPvooqVSKhQsX0t7eTmdnJ3fccQepVIrHH3+c9evXM3HiRC655BIeeOABlixZEkvd5u6xfPBomDVrlusmOyIymjZt2sSZZ54Zdxmjpr/fx8xa3H1Wf+ur+0hEREIKBRERCSkUREQkpFAQEZGQQkFEREIKBRERCek6BRGRQdz27bvYufuDUXu/k6dMZtkP/v6Y6zU1NbFo0SK6urr42te+xj333HPE8kOHDlFbW0tLSwvpdJqVK1cyc+bMEdenUBARGcTO3R/wu2mXjt4b7vjFMVfp6upiwYIFNDc3U1VVxezZs5k3bx5nnXVWuM6KFSs46aST2LJlC42Njdx9992sXLlyxOWp+0hEJGHWr19PdXU1p512GscddxzXX389q1evPmKd1atXU1dXB8C1117Liy++yGhcjKxQEBFJmEwmw4wZM8LnVVVVZDKZAddJpVJMmjRpVO4vr1AQEZGQQkFEJGEqKyt57733wudtbW1UVlYOuE5nZyft7e2jcoMwhYKISMLMnj2bzZs38/vf/56PP/6YxsZG5s2bd8Q68+bNo76+HoBVq1YxZ84czGzEn63RRyIigzh5yuS8RgwN6f2OIZVKsWzZMq644gq6urq4+eabOfvss7nvvvuYNWsW8+bN45ZbbuHGG2+kurqayZMn09jYOCr1aepsEZFeNHW2iIhIQKEgIiKhSEPBzLaaWauZvW5mG4LXJptZs5ltDn6eFLxuZrbUzLaY2Ztmdn6UtYmIyNEK0VL4c3c/r1f/1T3Ai+5+OvBi8BzgC8DpwZ9bgUcLUJuIiPQSR/fRNUB98Lge+FKv1xs851XgRDObHkN9IiIlK+pQcOAFM2sxs1uD16a5+/bg8fvAtOBxJfBer23bgteOYGa3mtkGM9uwa9euqOoWESlJUV+n8J/cPWNmJwPNZvbb3gvd3c1sSGNi3X05sBxyQ1JHr1QRkaN9987baN+9Y9Teb9KUafztPywbdJ2bb76Z5557jpNPPpmNGzcetdzdWbRoEWvWrGHChAk8+eSTnH/+6JyGjTQU3D0T/NxpZj8DLgR2mNl0d98edA/tDFbPADN6bV4VvCYiEpv23Tu4+z/89tgr5unB3x17nfnz53PbbbdRW1vb7/Lnn3+ezZs3s3nzZtatW8c3v/lN1q1bNyr1RdZ9ZGZ/YmYTex4DlwMbgWeAumC1OqBnPthngNpgFNJFQHuvbiYRkZJxySWXMHnywFc+r169mtraWsyMiy66iL1797J9++h8XUbZUpgG/CyYiyMFPOXuTWb2a+DHZnYLsA24Llh/DXAlsAXYD9wUYW0iIkVroKm1p08f+dicyELB3d8Fzu3n9Szw+X5ed2BBVPWIiMix6YpmEZEik8/U2sOlUBARKTLz5s2joaEBd+fVV19l0qRJo9J1BJo6W0RkUJOmTMtrxNBQ3u9YbrjhBl5++WV2795NVVUVS5YsoaOjA4BvfOMbXHnllaxZs4bq6momTJjAE088MWr1aepsEZFeNHW2iIhIQKEgIiIhhYKISB/F3K3e23B+D4WCiEgvFRUVZLPZog8GdyebzVJRUTGk7TT6SESkl6qqKtra2hgLszBXVFRQVVU1pG0UCiIivZSXl3PqqafGXUZs1H0kIiIhhYKIiIQUCiIiElIoiIhISKEgIiIhhYKIiIQUCiIiElIoiIhISKEgIiIhhYKIiIQUCiIiElIoiIhISKEgIiIhhYKIiIQUCiIiElIoiIhISKEgIiIhhYKIiIQUCoFsNsvChQvJZrNxlyIiEhuFQqC+vp7W1lYaGhriLkVEJDYKBXKthKamJtydpqYmtRZEpGQpFMi1Erq7uwHo6upSa0FESpZCAVi7di2dnZ0AdHZ20tzcHHNFIiLxUCgAl112GalUCoBUKsXcuXNjrkhEJB6puAtIgrq6OpqamgAoKyujtrY25oqk0B555BG2bNly1OuZTAaAysrKfrerrq7m9ttvj7Q2kUJSKADpdJqamhqeffZZampqSKfTcZckCXHgwIG4S5CYDHSgAGP7YCHyUDCzMmADkHH3q83sVKARSAMtwI3u/rGZHQ80ABcAWeAr7r416vp61NXVsXXrVrUSStRA/4EXLVoEwMMPP1zIciThxvLBQiFaCouATcAngucPAg+5e6OZ/RNwC/Bo8HOPu1eb2fXBel8pQH1ArrWwdOnSQn2ciCTcYEf6Y/lgIdITzWZWBVwFPB48N2AOsCpYpR74UvD4muA5wfLPB+uLiEiBRD366B+BvwS6g+dpYK+7dwbP24CeTrlK4D2AYHl7sP4RzOxWM9tgZht27doVZe0iIiUnslAws6uBne7eMprv6+7L3X2Wu8+aOnXqaL61iEjJi/KcwsXAPDO7Eqggd07hYeBEM0sFrYEqIBOsnwFmAG1mlgImkTvhPKo09FBEZGCRtRTc/TvuXuXuM4HrgZ+7+/8AXgKuDVarA1YHj58JnhMs/7m7e1T19XXgwIExPaJARCQfcVyncDfQaGYPAL8BVgSvrwB+aGZbgA/IBcmo09BDEZGBFSQU3P1l4OXg8bvAhf2scxD4i0LUIyIi/dPcRyIiElIoiIhISKEgIiIhhYKIiIQUCiIiElIoiIhISKEgIiIhhYKIiIQUCiIiElIoiIhISKEgIiKhOCbEExFJjIGm0x9Mz/o9E2nmqxim4B80FMysFehv+moD3N3/NJKqREQKZMuWLby+cRNdEybnvc24j3Nfiy3v7sh7m7L9Hwy5tjgcq6VwdUGqEBGJUdeEyRz4zJWRfsb4366J9P1Hy6Ch4O7beh6b2TRgdvB0vbvvjLIwERnbBuu2GexOiMXQBVPM8jrRbGbXAevJ3e/gOmCdmV07+FYiIsOjOyHGJ98TzfcCs3taB2Y2FVgLrIqqMBEZ2wY72tedEOOT75DUcX26i7JD2FZERIpEvi2FJjP7N+Bfg+dfAYrjrImIiOQtr1Bw97vM7L8BFwcvLXf3n0VXloiIxCHvi9fc/Wng6QhrERGRmOU7+ujLZrbZzNrN7EMz22dmH0ZdnIiIFFa+LYW/A77o7puiLEZEROKVbyjsUCDIcCXlIqUkzHGTlH0hMpBjzX305eDhBjNbCfwf4FDPcnf/aYS1jVnZbJYlS5Zw//33k06n4y4nVoW8QCnpc9zoYi1JgmO1FL4Y/HRgP3B5r2UOKBSGob6+ntbWVhoaGli8eHFsdQx01DrYESsM/ag1SRcpxT3HTZL2hUh/Bj3R7O43uftNQBmwuNfzbxekujEom83S1NSEu/P888+TzWbjLukommJApHTle07hT919b88Td99jZp+LqKYxrb6+no6ODgA6OjpibS0MdNSqI1aR0pX3NBdmdlLPEzObjG7QMyzNzc245/qp3Z0XXngh5opERA7L94v9H4BXzOwnwfO/AP4mmpLGtmnTprF169YjnouIJEW+01w0mNkGYE7w0pfd/e3oyhq7duzYMehzkTgNd8gsaNjsSCRpqPJQprl4G1AQjNDcuXN59tlncXfMjMsvv/zYG4kkwFgdfJDJZCjb3x75ndHK9mfJZDqHvF2h97vOC0RkoOTv6Og44pzC5s2bj7owSkdcEhcNmY1Hkva7QqHAysvLSaVSdHZ2kk6nKS8vj7skkZJWWVnJ+4dSBbl+pbIy+ecQFQoRGSz5v/Wtb7Ft2zaWL19e8lc0i0iy6O5pMSgvL6e6ulqBICKJE1lLwcwqgF8Cxwefs8rd7zezU4FGIA20ADe6+8dmdjzQAFxA7nafX3H3rVHVVyqSMAlcUiT9hKJIEkTZfXQImOPuH5lZOfArM3ue3BQZD7l7o5n9E3AL8Gjwc4+7V5vZ9cCD5G77KSOQ9EngRCRZIgsFzw2x+Sh4Wh78cXLXOvz34PV64K/IhcI1wWOAVcAyMzPvGaojwxb3JHBJoROKIscW6TkFMyszs9eBnUAz8Dtgr7v3tK3bgJ4rMiqB9wCC5e3kupj6vuetZrbBzDbs2rUryvJFREpOpKHg7l3ufh5QBVwIfGYU3nO5u89y91lTp04dcY0iInJYQUYfBTOsvgT8R+BEM+vptqoCMsHjDDADIFg+idwJZxERKZDIQsHMpprZicHj8cBcYBO5cLg2WK0OWB08fiZ4TrD85zqfICJSWFGOPpoO1JtZGbnw+bG7P2dmbwONZvYA8BtgRbD+CuCHZrYF+AC4frgfrGGYIpJEmUxmyN8xhf5uinL00ZvAUTficfd3yZ1f6Pv6QXJTco+YhmGKSBIdOHCAzW/9hlNO6Mp7m+M6ch06h7ZtyHubf/+obMi19Riz01xoGKaIJNEpJ3Tx3fM/jPQz/va1Twx72zEbCiJxKoZuApH+KBREIlAM3QSFonN8xUWhICWlbP8HQ+r2G3cw18zvrsi/OV62/wOoKE90N0Ehv6gzmQz79+5UQBYJhYKUjOrq6iFvs2XLvty2pw1l2oppuVsodu4d8ucVSiEHY5yQ8ICUIykUZNQkvR99ON0Kw73r1aJFizi0bfuQP6+QCjYYo3tfpJ8ho0uhIKNG/egixU+hIKNK3QRSjAp5rinpFAoiUtJ0rulICgURKWk613Qk3aNZRERCCgUREQmp+0ikBGUyGcr2t0c+f1fZ/iyHzHM345WioJaCiIiE1FIQKUGVlZW8fyhVkIvXyg/sZtu+ssiHEm/bV8afZDLHXlEGpVAYoaRfxSsiMhRjMhQK2V+694AnerIv9R1L3I4//nhmlB8oyEWNx1dWRvoZpWBMhkKh6SrenK6uLnUTiBS5MRkKhewvPaF7H3Ag0s8ZiUL3HeP5t5jGskwmwx8VkFKExmQoSDzUTSBS/BQKJUCTfRVeZWUlhzq3KyCl6CgUxjhN9iUiQ6FQGOM02ZeIDIWuaBYRkZBCQUREQuo+EhEpkGIYqqxQGKFDhw6x7WCy/5JFRPKlUBABHnnkkXBOqt6ONU+V5qMauwb6NwHD/3dRDEOVFQojpAu2xrbx48fHXYIk0Fj+d6FQEGF4Q3dlbCvVfxMKBRlV//7R0M6v7NifGwA3bUL3kD7j9CFXJiL5UCjIqBnO1dMfB32zx38q/21PH+ZnyZE0/Yn0R6Ego6aQV0/LyGj6ExmIQkEkIknuStP0JzKQMRsKahpLnNSVdqQkB2ShJX1fjMlQUNNY4qautMMUkIcVw76ILBTMbAbQAEwDHFju7g+b2WRgJTAT2Apc5+57zMyAh4Ergf3AfHd/bTifXeim8ea3diY6+UXipIA8rBj2RZQthU7gTnd/zcwmAi1m1gzMB1509++b2T3APcDdwBfIBdzpwJ8BjwY/E60Ykl9EJF+RhYK7bwe2B4/3mdkmoBK4BvgvwWr1wMvkQuEaoMHdHXjVzE40s+nB+yRWMSS/iEi+CjJ1tpnNBD4HrAOm9fqif59c9xLkAuO9Xpu1Ba+JiEiBRH6i2cxOAJ4G7nD3D3OnDnLc3c3Mh/h+twK3ApxyyimjWWrJ0SRwItJXpC0FMysnFwg/cvefBi/vMLPpwfLpwM7g9Qwwo9fmVcFrR3D35e4+y91nTZ06NbriS9j48ePH9IRfIjKwKEcfGbAC2OTuP+i16BmgDvh+8HN1r9dvM7NGcieY25N+PqHY6WhfRPqKsvvoYuBGoNXMXg9e+y65MPixmd0CbAOuC5atITccdQu5Iak3RVibiIj0I8rRR78CbIDFn+9nfQcWRFWPiIgcW0FGH4mISHFQKIiISEihICIiIYWCiIiEFAoiIhJSKIiISEihICIiIYWCiIiExuSd10SSaqBJCGHwiQg1CaEUikJBJCE0CWHpStLBgkJBpICSfrQ/3C8nUGsmKoU+WFAoiEhe1JKJTpLCVKEgIqEkfTlJPBQKEVEzXESKkUIhBmqGi0hSKRQioiN9ESlGunhNRERCailI5JI0BltEBqdQkFjp/IpIsigUJHI62hcpHiUXCgN1ZWiYqIhICYbCQNSNISJSgqGgo30RkYFpSKqIiIQUCjHIZrMsXLiQbDYbdykiIkcoue6jJKivr6e1tZWGhgYWL14cdzkisdD1K8mklkKBZbNZmpqacHeamprUWhDpx/jx4zX4IyZqKRRYfX093d3dAHR1dam1ICVLR/vJpJZCga1du5bOzk4AOjs7aW5ujrkiEZHDFAoFdtlll5FK5RpoqVSKuXPnxlyRiMhhCoUCq6urY9y43G4vKyujtrY25opERA5TKBRYOp2mpqYGM6OmpoZ0Oh13SSIiIZ1ojkFdXR1bt25VK0FEEkehEIN0Os3SpUvjLkNE5CjqPhIRkZBCQUREQgoFEREJKRRERCRk7h53DcNmZruAbXHXAUwBdsddREJoX+RoPxymfXFYUvbFp9x9an8LijoUksLMNrj7rLjrSALtixzth8O0Lw4rhn2h7iMREQkpFEREJKRQGB3L4y4gQbQvcrQfDtO+OCzx+0LnFEREJKSWgoiIhBQKIiISUiiMgJnVmNk7ZrbFzO6Ju564mNk/m9lOM9sYdy1xM7MZZvaSmb1tZm+Z2dF3ni8RZlZhZuvN7I1gXyyJu6a4mVmZmf3GzJ6Lu5aBKBSGyczKgP8FfAE4C7jBzM6Kt6rYPAnUxF1EQnQCd7r7WcBFwIIS/ndxCJjj7ucC5wE1ZnZRzDXFbRGwKe4iBqNQGL4LgS3u/q67fww0AtfEXFMs3P2XwAdx15EE7r7d3V8LHu8j9wVQGW9V8fCcj4Kn5cGfkh3ZYmZVwFXA43HXMhiFwvBVAu/1et5Gif7nl/6Z2Uzgc8C6eCuJT9Bd8jqwE2h295LdF8A/An8JdMddyGAUCiIRMLMTgKeBO9z9w7jriYu7d7n7eUAVcKGZnRN3TXEws6uBne7eEnctx6JQGL4MMKPX86rgNSlxZlZOLhB+5O4/jbueJHD3vcBLlO65p4uBeWa2lVxX8xwz+5d4S+qfQmH4fg2cbmanmtlxwPXAMzHXJDEzMwNWAJvc/Qdx1xMnM5tqZicGj8cDc4HfxltVPNz9O+5e5e4zyX1X/NzdvxpzWf1SKAyTu3cCtwH/Ru5k4o/d/a14q4qHmf0r8Apwhpm1mdktcdcUo4uBG8kdCb4e/Lky7qJiMh14yczeJHcQ1ezuiR2KKTma5kJEREJqKYiISEihICIiIYWCiIiEFAoiIhJSKIiISCgVdwEiSWFmfwV8BHwC+KW7r42xlr+OuwYpTQoFkT7c/T7VIKVK3UdS0szsXjP7f2b2K+CM4LUnzeza4PF9ZvZrM9toZsuDK5Yxs9lm9mZwcdrf99xLwszmm9lPzazJzDab2d/1+qwbzKw1eK8Hg9fKgs/bGCxb3E8N3w/uz/Cmmf3Pgu4gKTlqKUjJMrMLyE05cB65/wuvAX0nLFvm7n8drP9D4GrgWeAJ4Ovu/oqZfb/PNueRmx31EPCOmT0CdAEPAhcAe4AXzOxL5GbarXT3c4LPOLFPjWngvwKfcXfvu1xktKmlIKXsPwM/c/f9wUym/c1d9edmts7MWoE5wNnBF/NEd38lWOepPtu86O7t7n4QeBv4FDAbeNnddwVTpPwIuAR4FzjNzB4xsxqg74yq7cBBYIWZfRnYP+LfWmQQCgWRAZhZBfC/gWvd/bPAY0BFHpse6vW4i0Fa5O6+BzgXeBn4Bn1uwBIEyIXAKnKtlKb8fwORoVMoSCn7JfAlMxtvZhOBL/ZZ3hMAu4P7I1wL4TTQ+8zsz4Ll1+fxWeuBS81sSnAr1xuAX5jZFGCcuz8NfA84v/dGwedOcvc1wGJyASISGZ1TkJLl7q+Z2UrgDXJ3Bvt1n+V7zewxYCPwfp/ltwCPmVk38Aty3TyDfdZ2M7uH3D0FDPi/7r7azM4FnjCzngO07/TZdCKwOmi1GPDtYfyqInnTLKkiw2BmJ/Tcfzj4sp/u7otiLktkxNRSEBmeq8zsO+T+D20D5sdbjsjoUEtBRERCOtEsIiIhhYKIiIQUCiIiElIoiIhISKEgIiKh/w9/70ji6/cLiAAAAABJRU5ErkJggg==\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['age'], \n",
" hue = df['fbs']);\n",
" #Diagnóstico por edad y por azúcar en la sangre\n",
" #Valores: Azúcar en sangre en ayunas > 120 mg/dl) (1 = verdadero; 0 = falso)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "IyadfzNuZ4sE",
"outputId": "3544bf52-6a71-46e2-9fc9-b76c3f40ca65"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAbbElEQVR4nO3df3TU9b3n8eebBEz4IZagHEykwTscW39yNbj29i63UFgjdLF3j+vR40pcoR57FFnu3XvFLrXq4fTotfdawbo9WK+GbhVab7uplmYLVkr3HIsFRPHnktKgSVFgFKv8CCR57x8zIRgmyQyZ7/c7M9/X45yczHdmvvN5Z07yymc+38/38zV3R0RE4mNY1AWIiEi4FPwiIjGj4BcRiRkFv4hIzCj4RURipjzqArIxfvx4r62tjboMEZGisnXr1v3ufmbf+4si+Gtra9myZUvUZYiIFBUz253pfg31iIjEjIJfRCRmFPwiIjGj4BcRiRkFv4hIP5LJJHfccQfJZDLqUvJKwS8i0o/GxkZ27NjB6tWroy4lrxT8IiIZJJNJmpubcXeam5tLqtev4BcRyaCxsZHu7m4Aurq6SqrXr+AXEclgw4YNdHZ2AtDZ2cn69esjrih/FPwiIhnMmjWL8vLU4gbl5eXMnj074oryR8EvIpJBQ0MDw4alIrKsrIz58+dHXFH+FMVaPblauXIlLS0tGR9rb28HoLq6+qTHEokEixYtCrQ2ESkOVVVV1NfX8+yzz1JfX09VVVXUJeVNSQb/QA4fPhx1CSJSJBoaGmhtbS2p3j6AFcPF1uvq6jxfq3MuXrwYgIcffjgvryciUqjMbKu71/W9X2P8IiIxo+AXEYkZBb+ISMwo+EVEYkbBLyISMwp+EZGYUfCLiMSMgl9EJGYU/CIiMaPgFxGJGQW/iEjMKPhFRGJGwS8iEjMKfhGRmFHwi4jEjIJfRCRmFPwiIjGj4BcRiZnYXXM333RhdxEpNgr+AOnC7iJSiAILfjM7D1h7wl3nAncDq9P31wKtwLXu/mFQdQRtoF67LuwuIoUosDF+d3/b3ae6+1TgMuAQ8DNgKfC8u08Bnk9vi4hISMIa6vky8Ad3321mVwNfSt/fCGwE7gypjtjRMQjJRL8XveL4XoQV/NcBT6dvT3D3Penb7wETMu1gZrcAtwBMmjQp8ALjSMcgJBP9XvQq1fci8OA3sxHAPOCuvo+5u5uZZ9rP3VcBqwDq6uoyPkcGp2MQkol+L3rF8b0IYx7/VcA2d38/vf2+mU0ESH/fG0INIiKSFsZQz/X0DvMA/BxoAO5Pf28KoQaRWI7limQSaI/fzEYBs4GfnnD3/cBsM9sJzEpvi0Tq8OHDoY3nJpNJ7rjjDpLJZCjtifQVaI/f3Q8CVX3uS5Ka5SMSqkIZy21sbGTHjh2sXr2aJUuWBN6eSF9aq0ckRMlkkubmZtyd5uZm9folElqyQSREjY2NdHd3A9DV1RWLXr+OrRQe9fhFQrRhwwY6OzsB6OzsZP369RFXFK0wj61IL/X4RUI0a9Ys1q1bR2dnJ+Xl5cyePTvqkgJXKMdWpJd6/CIhamhoYNiw1J9dWVkZ8+fPj7giiSMFv0iIqqqqqK+vx8yor6+nqqpq8J1E8kxDPSIha2hooLW1Vb19iYyCXyRkVVVVrFixIuoyJMY01CMiEjPq8YvIkA00V38gPfv0zO7Jlub4D42CX0SGrKWlhZ2vv8yk0V057TfiWGrQoWP3lqz3eeeTspzakJMp+EUkLyaN7uIbl/458Ha+ve30wNsodRrjFxGJGQW/iEjMaKhH8kaLcYkUBwW/hEILcYkUDgW/5I0W4xIpDgp+EYmFUznXoFTPM1Dwi0gstLS0sP21N+kaOS7rfYYddQC27no/633KDn2Qc21hU/CLSGx0jRzH4c/NCbSNyrfWBfr6+aDpnCIiMaPgFxGJGQ31SMnRQTyRgSn4peToIJ7IwBT8UpJ0EE+kfxrjFxGJGfX4RQKgdYukkCn4RUKmdYskagp+kQBo3SIpZBrjFxGJGfX4RWTI2tvbOfhxWSiXRdz9cRmj0sdJ5NSoxy8iEjOB9vjN7AzgB8CFgAM3A28Da4FaoBW41t0/DLKOONDZqhKl6upqOjr3hHax9dMyzIgaTHt7O2WHPgr8/IuyQ0na2zsDbWOogh7qeRhodvdrzGwEMBL4BvC8u99vZkuBpcCdAddR8nS2qohkK7DgN7OxwHTgJgB3PwocNbOrgS+ln9YIbETBnxc6WzUltJ7dJ3t5/fX9OX9i0ietaFRXV/NeR3kofyPV1RMCbWOoguzxTwb2AU+Y2SXAVmAxMMHd96Sf8x6Q8R0ys1uAWwAmTZoUYJnZ0VCKnMQduo7RsXtLTruNOJY6tJbLfu98UpZTGyIDCTL4y4FLgUXuvtnMHiY1rHOcu7uZeaad3X0VsAqgrq4u43PC1NLSws7XX2bS6K6s99EfeDTC6tmN3vZDEmMOhTauLZIvQQZ/G9Dm7pvT28+QCv73zWyiu+8xs4nA3gBryKtJo7sC/yPXH7iIBC2w4Hf398zsXTM7z93fBr4MvJH+agDuT39vCqoGkbgLa4iypaWFc4bn1IxEKOhZPYuAH6Vn9OwC/iupcwd+bGYLgN3AtQHXIBJboc32OngIzsi5PIlIoMHv7tuBugwPfTnIdkWkVxizvUZv+yFwNNA2JH+0ZIPkrL29XVMYRYpYUQd/mFMs29vbGZ/THqXr8OHDmuEE0N3Fbq1PI0WoqIM/zLNVR1cMBx28Ok4znESKV1EHP4R4tmr3x4G2IUVoWBmfHdNR0OvTiGRS9MEvIoXhnU9yH/Z6/1BqCHDCyO6c2pmSUyvSl4JfRIbMhw3HRozgtM8mctrvaPqYWy77TSF10P9UlB36IKc1nIYdSX2a667I/h9aaiHD+K7VIyEKc8nZDnMd75BP6a44ncS5E3K+nGSYl6E8lX8WLS2pId7EudkHeXt7J6+//jpz58496bFDhw7hnvsKNGbGyJEjMz5WX1+f88w3Bb+IxMKpTAs+lX9MK1eupLm5Oee2wqTgLxFhLjk7uvtj4HCg7YgUq0WLFhX8uSe69KKISMyoxy8yBJrJIsVIwS9yioplJotIXwp+KUlhTNuz7k4Sic8X9EwWkUwU/FJywpq2BxPUC5eipOCXkhPWtL1iEOb5He3tnYG2IfmjWT0iIjGTU4/fzEa6+6GgipHi0NHRwe4jwS9HrKWIhy7M8zuqqwt7mQLplVWP38z+yszeAN5Kb19iZo8GWpmIiAQi2x7/Q8CVwM8B3P0VM5seWFUFSL3cXqeddhrnDD8cynr8WopYJP+yHuN393f73JX95ZdERKRgZNvjf9fM/gpwMxsOLAbeDK6swqNeroiUimx7/LcCtwHVQDswNb0tIiJFJqsev7vvB24IuBYREQlBVsFvZisy3P0RsMXdm/JbkoiIBCnboZ4KUsM7O9NfFwM1wAIz+25AtYmISACyPbh7MfBFd+8CMLP/CfwW+GtgR0C1iYhIALIN/s8Ao0kN7wCMAsa5e5eZdQRSWRbCvs7sOx25zePXuuvxtXLlSlrSyy/31XN/z/pAJ0okEgV/9SYpftkG/z8B281sI2DAdODbZjYK2BBQbQWlvLycKeddkNM+WnddMqmsrIy6BIm5bGf1PG5mvwRuJDV//1dAm7sfBP4hwPoGFOY6JOedO0HrrkvW1GuXQpbtrJ6FpE7aqgG2A1cALwIzgytNRESCkO2snsXANGC3u88A/hI4EFhVIiISmGyD/4i7HwEws9Pc/S3gvODKEhGRoGR7cLfNzM4A/jew3sw+BHYPtpOZtQIfk1rQrdPd68xsHLAWqAVagWvd/cPcS5e+wrjObNmhD6BiOO98ohlOxSK03wu0Hn+xyPbg7t+mb95jZi8AY4HmLNuYkV7yocdS4Hl3v9/Mlqa378y2YMkszOvMHjx4kFGjcmtPM5yioesPSyY5X3PX3X8zxDavBr6Uvt0IbETBP2SFfp1ZzXCKRqH/XhSCOJ5zEfQ1dx34lZltNbNb0vdNcPc96dvv0c/nQzO7xcy2mNmWffv2BVymiMjJKisrS/K8i5x7/Dn6a3dvN7OzSB0beOvEB93dzcwz7ejuq4BVAHV1dRmfIyIyVMXaax+KQHv87t6e/r4X+BlwOfC+mU0ESH/fG2QNIiLyaYEFv5mNMrMxPbeB/wC8Ruq6vQ3ppzUAWtZZRCREQQ71TAB+ZmY97Tzl7s1m9nvgx2a2gNSU0GsDrEFERPoILPjdfRdwSYb7k8CXg2pXREQGFvSsHhERKTAKfhGRmAl6OqeIxFwcT5AqdAp+EYlMKZ4cVQwU/CISKPXaC4/G+EVEYkbBLyISMwp+EZGYUfCLiMSMgl9EJGY0q0diQ/PJRVIU/CJoPrnEi4JfYkO9dpEUjfGLiMSMgl9EJGYU/CKkDu7OnTu334O/IqVEwS8CLF++nIMHD7J8+fKoSxEJnIJfYq+lpYXW1lYAWltb1euXklf0s3rKDn1A5Vvrsn7+sCN/BqC74vSc2khdQlhKUd9e/vLly3nyySejKUYkBEUd/IlEIud9Wlo+Tu17bi5BPuGU2pLi0NPb728735LJJPfeey/f+ta3qKqqCrQtkUyKOvhPZV52z5mZDz/8cL7LkSJVW1v7qbCvra0NtL3GxkZ27NjB6tWrWbJkSaBtiWSiMX6JvWXLlg24nU/JZJLm5mbcnebmZpLJZGBtifSnqHv8UliKdS2cRCJxvNdfW1sb6LBeY2Mj3d3dAHR1danXL5FQj19CUVlZWdDr4dx+++0MGzYs8H9AGzZsoLOzE4DOzk7Wr18faHsimajHL3lTzGvhbNq0CXdn06ZNXHbZZYG1M2vWLNatW0dnZyfl5eXMnj07sLZE+qMev8RemOPuDQ0NDBuW+rMrKytj/vz5gbUl0h/1+IeoWMe1pVeY4+5VVVXU19fz7LPPUl9fr+mcEgn1+ANU6OPakhL2uHtDQwMXXXSRevsSGfX4h0i99uIX9rh7VVUVK1asCLQNkYGoxy+xp3F3iRsFv8Rez7i7mWncXWJBQz0ipHr9ra2t6u1LLATe4zezMjN72cyeS29PNrPNZtZiZmvNbETQNYgMpmfcXb19iYMwhnoWA2+esP0A8JC7J4APgQUh1CAiImmBBr+Z1QBzgR+ktw2YCTyTfkoj8NUgaxARkU8Leoz/u8A/AmPS21XAAXfvTG+3AdUB1xBrOsFMRPoKrMdvZl8B9rr71lPc/xYz22JmW/bt25fn6gR0gplIXAXZ4/8iMM/M5gAVwOnAw8AZZlae7vXXAO2Zdnb3VcAqgLq6Og+wzpKmXruI9BVY8Lv7XcBdAGb2JeC/u/sNZvYT4BpgDdAANAVVg8TXsWPHaGtr48iRI1GXMmQVFRXU1NQwfPjwqEuREhHFPP47gTVmthx4GXg8ghqkxLW1tTFmzBhqa2tJzSkoTu5OMpmkra2NyZMn5+11dewn3kI5c9fdN7r7V9K3d7n75e6ecPf/7O4dYdQg8XLkyBGqqqqKOvQBzIyqqqpQP7no2E+vZDLJHXfcUXKXyNSZu1Kyij30ewTxc6jXnp3GxkZ27NhRcpfI1Fo9IiIZhHmBnrAp+EWysGLFCj7/+c9zww038J3vfCfqciQEmS7QUyoU/CJZePTRR1m/fj1TpkyJuhQJSdgX6AmTgl9kELfeeiu7du3iqquu4qGHHuKVV17hC1/4AlOmTOGxxx4DYM+ePUyfPp2pU6dy4YUX8tvf/jbiqmWoZs2aRXl56jBoGBfoCZOCX2QQ3//+9zn77LN54YUXWLJkCa+++iq//vWvefHFF7nvvvv405/+xFNPPcWVV17J9u3beeWVV5g6dWrUZcsQlfIFehT8Ijm6+uqrqaysZPz48cyYMYOXXnqJadOm8cQTT3DPPfewY8cOxowZM/gLSUEr5Qv0KPhFctR3eqWZMX36dDZt2kR1dTU33XRTSR0IjLOGhgYuuuiikurtg4JfJGdNTU0cOXKEZDLJxo0bmTZtGrt372bChAl87WtfY+HChWzbti3qMiUPSvUCPTqBSyRHF198MTNmzGD//v1885vf5Oyzz6axsZEHH3yQ4cOHM3r0aPX4paAp+EWy0NraCsA999yT8fGGhgYaGhrCK0hkCDTUE2MtLS3MnTu338W6RKQ0KfhjbPny5Rw8eJDly5dHXYqIhEjBH1MtLS3Hhy9aW1vV6xeJEQV/TPXt5avXLxIfCv6Y6unt97ctIqVLwR9TtbW1A26LSOnSdM6YWrZsGQsXLvzUdim7/e/+gb37P8jb6501fhyP/MuDgz6vubmZxYsX09XVxcKFC1m6dOmnHu/o6GD+/Pls3bqVqqoq1q5dq3/CEjgFf0wlEglqa2tpbW2ltraWRCIRdUmB2rv/A/4w4W/y94Lv/2bQp3R1dXHbbbexfv16ampqmDZtGvPmzeP8888//pzHH3+cz3zmM7S0tLBmzRruvPNO1q5dm786RTLQUE+MLVu2jFGjRpV8bz8qL730EolEgnPPPZcRI0Zw3XXX0dTU9KnnNDU1HT/x65prruH555/H3aMoV2JEwR9jiUSCX/ziFyXf249Ke3s755xzzvHtmpoa2tvb+31OeXk5Y8eOLalL/ElhUvCLiMSMgl8kINXV1bz77rvHt9va2qiuru73OZ2dnXz00UcltxKkFB4Fv0hApk2bxs6dO/njH//I0aNHWbNmDfPmzfvUc+bNm0djYyMAzzzzDDNnzjxpvX+RfNOsHomFs8aPy2omTk6vN4jy8nIeeeQRrrzySrq6urj55pu54IILuPvuu6mrq2PevHksWLCAG2+8kUQiwbhx41izZk3eahTpj4JfYiGbOfdBmDNnDnPmzPnUfffdd9/x2xUVFfzkJz8JuyyJOQ31iIjEjIJfRCRmFPwiIjGj4BcRiRkFv4hIzCj4RURiRtM5JRa+8fe389H+9/P2emPHT+Db//zIgM+5+eabee655zjrrLN47bXXTnrc3Vm8eDHr1q1j5MiRPPnkk1x66aV5q1GkP4EFv5lVAJuA09LtPOPu3zKzycAaoArYCtzo7keDqkME4KP973PnX7yVt9d74A+DP+emm27i9ttvZ/78+Rkf/+Uvf8nOnTvZuXMnmzdv5utf/zqbN2/OW40i/QlyqKcDmOnulwBTgXozuwJ4AHjI3RPAh8CCAGsQicz06dMZN67/M3ybmpqYP38+ZsYVV1zBgQMH2LNnT4gVSlwFFvye8kl6c3j6y4GZwDPp+xuBrwZVg0ghy2bZZpEgBHpw18zKzGw7sBdYD/wBOODunemntAHV/ex7i5ltMbMt+/btC7JMEZFYCTT43b3L3acCNcDlwOdy2HeVu9e5e92ZZ54ZWI0iUclm2WaRIIQyndPdDwAvAF8AzjCznoPKNYA+20oszZs3j9WrV+Pu/O53v2Ps2LFMnDgx6rIkBoKc1XMmcMzdD5hZJTCb1IHdF4BrSM3saQCa+n+VU7Ny5UpaWloyPtZz/+LFi096LJFIsGjRonyXIwVg7PgJWc3EyeX1BnP99dezceNG9u/fT01NDffeey/Hjh0D4NZbb2XOnDmsW7eORCLByJEjeeKJJ/JXoMgAgpzHPxFoNLMyUp8sfuzuz5nZG8AaM1sOvAw8HmANJ6msrAyzOSkQg825D8LTTz894ONmxve+972QqhHpFVjwu/urwF9muH8XqfH+wKjXLiLSPy3ZICISMwp+KVnuHnUJeVEqP4cUDgW/lKSKigqSyWTRh6a7k0wmqaioiLoUKSFapE1KUk1NDW1tbZTCyX8VFRXU1NREXYaUEAW/lKThw4czefLkqMsQKUga6hERiRkFv4hIzCj4RURixoph1oOZ7QN2R1zGeGB/xDUUCr0XvfRe9NJ70atQ3ovPuvtJq1wWRfAXAjPb4u51UddRCPRe9NJ70UvvRa9Cfy801CMiEjMKfhGRmFHwZ29V1AUUEL0XvfRe9NJ70aug3wuN8YuIxIx6/CIiMaPgFxGJGQV/Fsys3szeNrMWM1sadT1RMbN/NbO9ZvZa1LVEzczOMbMXzOwNM3vdzE6+lmdMmFmFmb1kZq+k34t7o64pSmZWZmYvm9lzUdfSHwX/INKXjvwecBVwPnC9mZ0fbVWReRKoj7qIAtEJ/L27nw9cAdwW49+LDmCmu18CTAXqzeyKiGuK0mLgzaiLGIiCf3CXAy3uvsvdj5K6SPzVEdcUCXffBHwQdR2FwN33uPu29O2PSf2hV0dbVTQ85ZP05vD0VyxnjZhZDTAX+EHUtQxEwT+4auDdE7bbiOkfuGRmZrWkri+9OdpKopMe3tgO7AXWu3tc34vvAv8IdEddyEAU/CJDYGajgX8D/pu7/znqeqLi7l3uPhWoAS43swujrilsZvYVYK+7b426lsEo+AfXDpxzwnZN+j6JOTMbTir0f+TuP426nkLg7geAF4jnsaAvAvPMrJXUkPBMM/tf0ZaUmYJ/cL8HppjZZDMbAVwH/DzimiRiZmbA48Cb7v4vUdcTJTM708zOSN+uBGYDb0VbVfjc/S53r3H3WlI58Wt3/y8Rl5WRgn8Q7t4J3A78H1IH8H7s7q9HW1U0zOxp4EXgPDNrM7MFUdcUoS8CN5Lq1W1Pf82JuqiITAReMLNXSXWU1rt7wU5lFC3ZICISO+rxi4jEjIJfRCRmFPwiIjGj4BcRiRkFv4hIzJRHXYBI2MzsHuAT4HRgk7tviLCW+6KuQeJHwS+x5e53qwaJIw31SCyY2f8ws/9nZv8XOC9935Nmdk369t1m9nsze83MVqXPzMXMppnZq+kTtB7suRaBmd1kZj81s2Yz22lm/3RCW9eb2Y70az2Qvq8s3d5r6ceWZKjh/vT6/q+a2XdCfYMkVtTjl5JnZpeROoV+Kqnf+W1A34W0HnH3+9LP/yHwFeBZ4Anga+7+opnd32efqaRW5ewA3jazlUAX8ABwGfAh8Csz+yqpFV6r3f3CdBtn9KmxCvhb4HPu7n0fF8kn9fglDv498DN3P5ReQTPTWkszzGyzme0AZgIXpMN3jLu/mH7OU332ed7dP3L3I8AbwGeBacBGd9+XXu7jR8B0YBdwrpmtNLN6oO9Knh8BR4DHzew/AYeG/FOL9EPBL7FnZhXAo8A17n4R8BhQkcWuHSfc7mKAT9Du/iFwCbARuJU+F+pI/5O4HHiG1KeN5ux/ApHcKPglDjYBXzWzSjMbA/zHPo/3hPz+9Pr618DxJYY/NrN/l378uizaegn4GzMbn75s5/XAb8xsPDDM3f8NWAZceuJO6XbHuvs6YAmpfxIigdAYv5Q8d99mZmuBV0hdIer3fR4/YGaPAa8B7/V5fAHwmJl1A78hNSQzUFt7zGwpqTXpDfiFuzeZ2SXAE2bW09m6q8+uY4Cm9KcPA/7uFH5UkaxodU6RAZjZ6J7ryaYDfaK7L464LJEhUY9fZGBzzewuUn8ru4Gboi1HZOjU4xcRiRkd3BURiRkFv4hIzCj4RURiRsEvIhIzCn4RkZj5/8OZ63PDYpbKAAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['thalach'], \n",
" hue = df['sex']);\n",
" #Diagnóstico frecuencia cardíaca máxima alcanzada por sexo\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "0V_cXVfEaQTU",
"outputId": "0f97a67d-7099-4d3e-a44a-ede39dff12fd"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAee0lEQVR4nO3df3TU9Z3v8eebBAkpFCUgxQQMFnRFXbsaLWvPqrV6SdGF7h63V86pCUrLqUVB6rVq21OW3rprt117rdy1B6sVelWw1l2sS9OlXitn7xEoUJUgdUm1SKYoEDDFJgQS3veP+WYYwiSZmcx3vpPM63GOh+98vt/vfN8ZIe/5/DZ3R0REBGBY1AGIiEjhUFIQEZEEJQUREUlQUhARkQQlBRERSSiNOoCBGDdunFdXV0cdhojIoLJ169YD7j4+1blBnRSqq6vZsmVL1GGIiAwqZra7t3NqPhIRkQQlBRERSVBSEBGRBCUFERFJUFIQEZEEJQUREUlQUhARkYRBPU+h0D388MM0NTWdUh6LxQCorKxMed/UqVO54447Qo1NRCSV0GoKZjbJzF4yszfMbIeZLQ7Kx5rZejPbFfx5RlBuZvZ9M2sys9fN7JKwYotae3s77e3tUYchInKKMGsKncBd7r7NzEYDW81sPTAPeNHdHzCze4F7gXuATwPTgv8+DjwS/Dlo9fZtf/HixQA89NBD+QxHRKRfodUU3H2vu28Ljg8DO4FKYA6wMrhsJfCZ4HgOsMrjNgKnm9nEsOITEZFT5aWj2cyqgb8ANgET3H1vcOpdYEJwXAnsSbqtOSjr+V4LzGyLmW3Zv39/aDGLiBSj0JOCmY0Cfgrc6e5/TD7n8Q2iM9ok2t1XuHuNu9eMH59ykT8REclSqEnBzIYTTwhPuvtzQfF73c1CwZ/7gvIYMCnp9qqgTERE8iTM0UcGPAbsdPcHk049D9QHx/XA2qTyumAU0gygNamZSURE8iDM0UefAG4GtpvZq0HZV4EHgGfMbD6wG/hscG4dMAtoAtqAW0KMTUREUggtKbj7fwLWy+lPpbjegYVhxSMiIv3TMhciIpKgZS4kdL0t9wFa8kOk0CgpSKS03IdIYVFSkND19U1fS36IFBb1KYiISELR1RS0nLWISO+KLin0Rm3bIiJFmBS0nLWISO/UpyAiIglKCiIikqCkICIiCUoKIiKSoKQgIiIJSgoiIpKgpCAiIglKCiIikqCkICIiCUoKIiKSoKQgIiIJSgoiIpJQdAviiYgUmmy3rA1jSf/Qagpm9riZ7TOzxqSyj5nZRjN71cy2mNnlQbmZ2ffNrMnMXjezS8KKS0RkMGlvb8/r0v5h1hSeAJYDq5LK/glY5u4/N7NZweurgU8D04L/Pg48EvwpIjLkFdKWtaHVFNx9A3CwZzHw4eB4DPCH4HgOsMrjNgKnm9nEsGITEZHU8t2ncCfwCzP7LvGEdEVQXgnsSbquOSjb2/MNzGwBsABg8uTJoQYrIlJs8j366DZgibtPApYAj2X6Bu6+wt1r3L1m/PjxOQ9QRKSY5Tsp1APPBcc/AS4PjmPApKTrqoIyERHJo3wnhT8AVwXH1wC7guPngbpgFNIMoNXdT2k6EhGRcIXWp2BmTxMfWTTOzJqBpcAXgIfMrBQ4QtA3AKwDZgFNQBtwS1hxiYhI70JLCu4+t5dTl6a41oGFYcUSpr4mnfSm+/ruoWbpCmOiiohIMs1oHqCmpiZ27fgNk0d1pX3PacfirXYdu7ekfc87H5RkHJuISKaUFHJg8qguvnrJH0N9xj9s+3D/F4mIDJCSQhHrremrr7VWQM1YIkOZkoKcIp/rrIhIYVFSKGK9fdvP91orUpyyXRkUVFsNk5KCiBQc1Vajo6QgIpEopJVB5QTtvCYiIglKCiIikqDmI5E8UueqFDolhSFOy3AMHupclUKgpDDENTU18WrjTrrKx6Z9z7CjDsDWt95L+56Stp6b7Ekq6lyVQqekUAS6ysfS/mezQn3GyN+uC/X9RSQ/hmRSyGeTSSwWY1xGd4iIFK4hmRTy2WQyqmw4DM84RBGRgjQkkwLkscnk+OFQnyEikk9DNimISHa0em5xU1IQkbRoyGxxUFIQkZNo9dzipqQwQB0dHew+UhL6zmi7D5fwoaD6LiISFq19JCIiCaHVFMzsceAGYJ+7X5hUfgewEOgC/t3dvxKU3wfMD8oXufsvwootl0aMGMGk4e152aN5RC8dfCIiuRJm89ETwHJgVXeBmX0SmANc7O4dZnZmUD4duAm4ADgL+KWZnevuXSHGJyIiPYTWfOTuG4CeC+LcBjzg7h3BNfuC8jnAanfvcPe3gSbg8rBiExGR1PLd0Xwu8Fdmdj9wBPgf7v5roBLYmHRdc1Amg0gsFst4mRCtyCpSWPKdFEqBscAM4DLgGTM7J5M3MLMFwAKAyZMnp7wmFotR0tYa+iJtJW0tdJhrmYtAe3s7u3b8hsmj0m/1O+1YvLLasXtL2ve880FJxrGJSHrynRSagefc3YHNZnYcGAfEgElJ11UFZadw9xXACoCamhoPN1zJ1ORRXXnpdJeB0T4b0pt8J4V/Az4JvGRm5wKnAQeA54GnzOxB4h3N04DN2T6ksrKSdztK87L20ajjhwHN9JTBRftsSG/CHJL6NHA1MM7MmoGlwOPA42bWCBwF6oNaww4zewZ4A+gEFmrkkUi4tM+GpBJaUnD3ub2c+lwv198P3B9WPCIi0j/NaBYRkQQlBRERSVBSEBGRBK2SOsRpzoZI9nK94dBgGAqspCAikqFsNxxqamoq+AmeSgpDnOZsiGQvjA2HCn2Cp5KCSBHKZ7NiLNYZ6jMkt9TRLCIiCaop5MA7H2S2Hed7bfFcPKH8eEbPmJZxZCKp5bNZsbJyQqjPkNxSUhigkSNHUjl1akb3HA1GE4w4O/37phEfTSDhyPUoE5HBSklhgCorKzPubBpIJ5XkV7ajTEQGKyUFyZmOjg52H8msKS0buw+X8KFYypXVsxbGKBORwUgdzSIikqCaguTMiBEjmDS8PS9jsEf00sZfKAbDzFWRVIZsUihpO5jRGOxhR+K/yI6Xpd/0Ed9ARCMr5FSDYeaqSCppJQUzuwKoTr7e3VeFFNOAZTNKp6npcPzeczL5JT9BI4KkV4U+c1UklX6Tgpn9GPgo8CrQ/bXHgYJNCtlUpdWhKCKSXk2hBpgebJspIiJDWDpJoRH4CLA35FhEQpXPzt9YLMa4jO6QqOjvxcl6TQpm9jPizUSjgTfMbDPQ0X3e3WeHH57kQt463csKezOFpqYmXm3cSVf52LTvGXY0XkHe+tZ7ad9T0naQUWXDtbfEIKG/Fyfrq6bw3bxFIaHJZ6d7LBaDzvczfl4+dZWPzct6Pxw/HOozJLf09+KEXpOCu78MYGZTgL3ufiR4PRKNwxw08tnpvnjxYjp2q5URBvfs7lyLxWIZN7NozkZ00ulT+AlwRdLrrqDssr5uMrPHgRuAfe5+YY9zdxGviYx39wNmZsBDwCygDZjn7tvS/ilEpGC1t7drzsYgkk5SKHX3o90v3P2omZ2Wxn1PAMvpMXTVzCYB/w14J6n408QXAp0GfBx4JPhTZFDS7O6Tac7G4JHO2kf7zSzRqWxmc4AD/d3k7huAgylOfQ/4CvFO7G5zgFUetxE43cwmphGbiIjkUDo1hS8CT5rZcsCAPUBdNg8LEkrM3V+LtxglVAbv2605KDulgdrMFgALACZPnpxNGCKCRqVJav0mBXf/HTDDzEYFrz/I5kFmVg58lXjTUdbcfQWwAqCmpkYT6kSyoFFp0pt01z66HrgAKOv+hu/u38zwWR8FpgDdtYQqYJuZXQ7EgElJ11YFZSISAo1Kk97026dgZj8A/jtwB/Hmo78Dzs70Qe6+3d3PdPdqd68m3kR0ibu/CzwP1FncDKDV3fW3SEQkz9LpaL7C3euAQ+6+DPhL4Nz+bjKzp4FXgPPMrNnM5vdx+TrgLaAJeBT4UhpxiYhIjqXTfNS9SW2bmZ0FtAD9jgxy97n9nK9OOnZgYRqxiGQtFotR0taaUedqNkraWugwL/jlDERSSScpvGBmpwPfAbYRH0r6w1CjEhGRSKQz+uh/Boc/NbMXgDJ3bw03LJHcq6ys5N2O0ryscTPq+GFOVLJFBo++Vkn92z7O4e7PhROSiEj+qFnxZH3VFP66j3MOKCmIiAwxfa2Seks+AxERiYKaFU+W8eS17rIsJq+JiBS1wbCket4mr4mISOFLp6Zwhbv/uZm97u7LzOyfgZ+HHZiIyFAzGJZUD23ymhSndz7IrGr8Xlu8sjqh/HhGz5iWcWSSrt42su9vNzTtejY0aPKa5Ew2K28eDX7RjDg7/XunZfksGZiRI0dGHYLkgSavSc7kc+VNCY++7Re3dEcfXQFUd18fTF5b1edNIiIy6PSbFMzsx8T3QngV6N552+mx97KInEz9KzIYpVNTqAGmByuZikgaRo4cSWWG/R7qXykOhf5lIZ2k0Ah8hBT7JYtIapWVlVntUAbqXxnKBsOXhb4WxPsZ8Wai0cAbZrYZ6Og+7+6zs3qiiBSVWCzGnw4X9izefBkMXxb6qil8l/gM5m8Dn0kq7y4TEZEhpq8F8V4GMLPh3cfdzEwDlkUkLZWVlXR07i3oWbwlbQczWjp72JH4z3K8LP3aT0nbQWBCynO9TRiEvicNhjFhsK/mo9uI75V8jpm9nnRqNPD/chrFEFXoM0MLPT6RfMim7b2p6XD83nNS/5JPbUJWz8r3pMG+mo+eIr7G0T8C9yaVH3b3g6FGNcQV+szQQo9PJJcKYdJlIX3J6qv5qBVoBebmL5yhpZD+R6dS6PGJSP71u3R2tszscTPbZ2aNSWXfMbPfmtnrZvavwZpK3efuM7MmM3vTzGaGFZeIiPQutKQAPAHU9ihbD1zo7n8O/BdwH4CZTQduIr6RTy3wL2ZWEmJsIiKSQmhJwd03AAd7lP2Hu3cGLzcCVcHxHGC1u3e4+9tAE3B5WLGJiEhqYdYU+nMrJzbrqQT2JJ1rDspOYWYLzGyLmW3Zv39/yCGKiBSXSJKCmX0N6ASezPRed1/h7jXuXjN+/PjcByciUsTSWjo7l8xsHnAD8KmkRfZiwKSky6qCMhERyaO81hTMrBb4CjDb3duSTj0P3GRmI8xsCvH1nDbnMzYREQl3SOrTwCvAeWbWbGbzgeXEZ0SvN7NXzewHAO6+A3gGeANoABa6e1cvbx2KtrY2tm/f3utUcxGRYhBa85G7p5r09lgf198P3B9WPN16W9ph165dAHzpS1/i/PPPP+W8lnYQkWIQ5eijgtHWdqIl6+jRo7S3t0cYjYhIdPLe0Ry1VN/2b7755pNet7e3s2LFinyFJCJSMIouKaSyZ8+ePl+LSHEqxpWElRRERDI0lFcSVlIArrrqKl5++cQ+QldffXWoz2tpaWHZsmUsXbqUioqKUJ8lItkbrN/2B0JJAVi0aNFJSSHsvwgrV65k+/btrFq1iiVLloT6LJFC8M4Hme3R/F5bfAzMhPLjGT1jWsaRSU9KCkBFRUWitnD11VeH+u29paWFhoYG3J2Ghgbq6upUW8ijqLddLEbZ7DZ2NGizH3F2+vdOy/JZcjIlhcCiRYs4dOhQXmoJx4/Hv/10dXWptpBHhb7t4lBVCDubSfqUFAIVFRV8//vfD/05v/zlL+nsjK8e3tnZyfr165UU8kS/nET6p8lreXbttddSWhrPxaWlpVx33XURRyQicoKSQp7V19czbFj8Yy8pKaGuri7iiERETlBSyLOKigpqa2sxM2pra9XJLCIFRX0KEaivr+f3v/+9agkiUnBUUxARkQQlhQgkT14TESkkSgp51nPyWktLS9QhiYgkKCnkWarJayIihUJJIc9STV4TESkUSgp5pslrIlLINCQ1z+rr62loaAA0ea0Y9bZpCwztjVtk8FBNIc80eU16M3LkyCG9eYsMDqHVFMzsceAGYJ+7XxiUjQXWANXA74HPuvshMzPgIWAW0AbMc/dtYcUWNU1eK176pi+FLsyawhNAbY+ye4EX3X0a8GLwGuDTxJdDnwYsAB4JMa7Ida/IqlqCiBSa0JKCu28ADvYongOsDI5XAp9JKl/lcRuB081sYlixiYhIavnuU5jg7nuD43c5sT1VJbAn6brmoOwUZrbAzLaY2Zb9+/eHF6mISBGKbPSRu7uZeRb3rQBWANTU1GR8v4hIX44dO0ZzczNHjhyJOpQBKysro6qqiuHDh6d9T76TwntmNtHd9wbNQ/uC8hgwKem6qqAsb1paWli2bBlLly5VW79IEWtubmb06NFUV1cTHwMzOLk7LS0tNDc3M2XKlLTvy3fz0fNAfXBcD6xNKq+zuBlAa1IzU15okToRAThy5AgVFRWDOiEAmBkVFRUZ13jCHJL6NHA1MM7MmoGlwAPAM2Y2H9gNfDa4fB3x4ahNxIek3hJWXKn0XKSurq5OtYUi09ukMk0oK06DPSF0y+bnCC0puPvcXk59KsW1DiwMK5b+pFqkbsmSJVGFIwVEk8mk2GiZC1IvUqekUFz0bV8kTstcoEXqRES6KSkQX3Zi2LD4R6FF6kQkF/70pz9x/fXXc/HFF3PhhReyZs0atm7dylVXXcWll17KzJkz2bt3L62trZx33nm8+eabAMydO5dHH300sriVFNAidSKSew0NDZx11lm89tprNDY2Ultbyx133MGzzz7L1q1bufXWW/na177GmDFjWL58OfPmzWP16tUcOnSIL3zhC5HFrT6FgBapE5Fcuuiii7jrrru45557uOGGGzjjjDNobGxMNE93dXUxcWJ8NZ/rrruOn/zkJyxcuJDXXnstyrCVFLp1L1InIpIL5557Ltu2bWPdunV8/etf55prruGCCy7glVdeOeXa48ePs3PnTsrLyzl06BBVVVURRByn5iMRkRD84Q9/oLy8nM997nPcfffdbNq0if379yeSwrFjx9ixYwcA3/ve9zj//PN56qmnuOWWWzh27FhkcaumICISgu3bt3P33XczbNgwhg8fziOPPEJpaSmLFi2itbWVzs5O7rzzTkpLS/nhD3/I5s2bGT16NFdeeSXf+ta3WLZsWSRxKymISCSG+takM2fOZObMmaeUb9iw4ZSynTt3Jo4ffPDBUOPqj5KCiBQczSSPjpKCiESi0L/pFyslBQndUG8mEBlKlBQkUmomECksSgoSOn3TFxk8NE9BREQSVFMQEenD7V++m30HDubs/c4cN5blD36n3+saGhpYvHgxXV1dfP7zn+fee+896XxHRwd1dXVs3bqViooK1qxZQ3V19YDjU1IQEenDvgMH+d2Eq3L3hu+93O8lXV1dLFy4kPXr11NVVcVll13G7NmzmT59euKaxx57jDPOOIOmpiZWr17NPffcw5o1awYcnpqPREQKzObNm5k6dSrnnHMOp512GjfddBNr16496Zq1a9dSXx/f8v7GG2/kxRdfJL6J5cAoKYiIFJhYLMakSZMSr6uqqojFYr1eU1paypgxY2hpaRnws5UUREQkQUlBRKTAVFZWsmfPnsTr5uZmKisre72ms7OT1tbWnGwQFklSMLMlZrbDzBrN7GkzKzOzKWa2ycyazGyNmZ0WRWwiIlG77LLL2LVrF2+//TZHjx5l9erVzJ49+6RrZs+ezcqVKwF49tlnueaaazCzAT8776OPzKwSWARMd/d2M3sGuAmYBXzP3Veb2Q+A+cAj+Y5PRCTZmePGpjViKKP360dpaSnLly9n5syZdHV1ceutt3LBBRfwjW98g5qaGmbPns38+fO5+eabmTp1KmPHjmX16tU5ic9y0Vud0QPjSWEjcDHwR+DfgIeBJ4GPuHunmf0l8Pfufuq6s0lqamp8y5YtYYcsIkVk586dnH/++VGHkTOpfh4z2+ruNamuz3vzkbvHgO8C7wB7gVZgK/C+u3cGlzUDlanuN7MFZrbFzLbs378/HyGLiBSNvCcFMzsDmANMAc4CPgTUpnu/u69w9xp3rxk/fnxIUYqIFKcoOpqvBd529/3ufgx4DvgEcLqZdfdxVAGx3t5ARETCEUVSeAeYYWblFu8q/xTwBvAScGNwTT2wtpf7RUQkJFH0KWwCngW2AduDGFYA9wBfNrMmoAJ4LN+xiYgUu0gWxHP3pcDSHsVvAZdHEI6IiAS0SqqISB++etfttB54L2fvN2bcBP7hn5f3ec2tt97KCy+8wJlnnkljY+Mp592dxYsXs27dOsrLy3niiSe45JJLchKfkoKISB9aD7zHPR/9bc7e79u/6/+aefPmcfvtt1NXV5fy/M9//nN27drFrl272LRpE7fddhubNm3KSXxa+0hEpMBceeWVjB3b+8zntWvXUldXh5kxY8YM3n//ffbu3ZuTZyspiIgMMuksrZ0tJQWRAtHS0sKiRYtysia+SLaUFEQKxMqVK9m+fTurVq2KOhQpcOksrZ0tJQWRAtDS0kJDQwPuTkNDg2oL0qfZs2ezatUq3J2NGzcyZswYJk6cmJP31ugjkQKwcuVKjh8/DsQ3bV+1ahVLliyJOCqB+BDSdEYMZfJ+/Zk7dy6/+tWvOHDgAFVVVSxbtoxjx44B8MUvfpFZs2axbt06pk6dSnl5OT/60Y9yFl/el87OJS2dLUPFrFmzaGtrS7wuLy9n3bp1EUZUvLR0tohE7tprr6W0NF5xLy0t5brrros4IilWSgoiBaC+vp5hw+L/HEtKSnqdtCQSNiUFkQJQUVFBbW0tZkZtbW1ONmCX7A3mZvVk2fwcSgoiBaK+vp6LLrpItYSIlZWV0dLSMugTg7vT0tJCWVlZRvepo1lEJMmxY8dobm7myJEjUYcyYGVlZVRVVTF8+PCTyvvqaNaQVBGRJMOHD2fKlClRhxEZNR+JiEiCkoKIiCQoKYiISMKg7mg2s/3A7qjjAMYBB6IOokDoszhBn8UJ+ixOKITP4mx3H5/qxKBOCoXCzLb01pNfbPRZnKDP4gR9FicU+meh5iMREUlQUhARkQQlhdxYEXUABUSfxQn6LE7QZ3FCQX8W6lMQEZEE1RRERCRBSUFERBKUFAbAzGrN7E0zazKze6OOJ0pm9riZ7TOzxqhjiZKZTTKzl8zsDTPbYWaLo44pKmZWZmabzey14LNYFnVMUTOzEjP7jZm9EHUsvVFSyJKZlQD/G/g0MB2Ya2bTo40qUk8AtVEHUQA6gbvcfTowA1hYxH8vOoBr3P1i4GNArZnNiDimqC0GdkYdRF+UFLJ3OdDk7m+5+1FgNTAn4pgi4+4bgINRxxE1d9/r7tuC48PEfwFURhtVNDzug+Dl8OC/oh3ZYmZVwPXAD6OOpS9KCtmrBPYkvW6mSP/xS2pmVg38BbAp2kiiEzSXvArsA9a7e9F+FsD/Ar4CHI86kL4oKYiEwMxGAT8F7nT3P0YdT1TcvcvdPwZUAZeb2YVRxxQFM7sB2OfuW6OOpT9KCtmLAZOSXlcFZVLkzGw48YTwpLs/F3U8hcDd3wdeonj7nT4BzDaz3xNvar7GzP5PtCGlpqSQvV8D08xsipmdBtwEPB9xTBIxMzPgMWCnuz8YdTxRMrPxZnZ6cDwSuA74bbRRRcPd73P3KnevJv674v+6++ciDislJYUsuXsncDvwC+Kdic+4+45oo4qOmT0NvAKcZ2bNZjY/6pgi8gngZuLfBF8N/psVdVARmQi8ZGavE/8Std7dC3YopsRpmQsREUlQTUFERBKUFEREJEFJQUREEpQUREQkQUlBREQSSqMOQKRQmNnfAx8AHwY2uPsvI4zlm1HHIMVJSUGkB3f/hmKQYqXmIylqZvY1M/svM/tP4Lyg7AkzuzE4/oaZ/drMGs1sRTBjGTO7zMxeDyanfad7Hwkzm2dmz5lZg5ntMrN/SnrWXDPbHrzXt4OykuB5jcG5JSlieCDYn+F1M/tuXj8gKTqqKUjRMrNLiS858DHi/xa2AT0XLFvu7t8Mrv8xcAPwM+BHwBfc/RUze6DHPR8jvjpqB/CmmT0MdAHfBi4FDgH/YWafIb7SbqW7Xxg84/QeMVYAfwP8mbt7z/MiuaaaghSzvwL+1d3bgpVMU61d9Ukz22Rm24FrgAuCX8yj3f2V4Jqnetzzoru3uvsR4A3gbOAy4Ffuvj9YIuVJ4ErgLeAcM3vYzGqBniuqtgJHgMfM7G+BtgH/1CJ9UFIQ6YWZlQH/Atzo7hcBjwJladzakXTcRR81cnc/BFwM/Ar4Ij02YAkSyOXAs8RrKQ3p/wQimVNSkGK2AfiMmY00s9HAX/c4350ADgT7I9wIiWWgD5vZx4PzN6XxrM3AVWY2LtjKdS7wspmNA4a5+0+BrwOXJN8UPHeMu68DlhBPICKhUZ+CFC1332Zma4DXiO8M9use5983s0eBRuDdHufnA4+a2XHgZeLNPH09a6+Z3Ut8TwED/t3d15rZxcCPzKz7C9p9PW4dDawNai0GfDmLH1UkbVolVSQLZjaqe//h4Jf9RHdfHHFYIgOmmoJIdq43s/uI/xvaDcyLNhyR3FBNQUREEtTRLCIiCUoKIiKSoKQgIiIJSgoiIpKgpCAiIgn/H65rVrgLCm4TAAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "code",
"source": [
"sns.boxplot(x = df['diagnosis'], \n",
" y = df['thalach'], \n",
" );"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 279
},
"id": "8cV1XK2qat-t",
"outputId": "685f912c-7203-447f-a496-2c9225c3fed9"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEGCAYAAACKB4k+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAYLUlEQVR4nO3df5Ac5X3n8fdHQlhShC2jXWO8I1nYEnZhHyZ4LSu4cgF8YC12LJLiElGVsHaoqOzjkA1OOZCkosMJddjmkruFs69ki7A4GIxjcmAHJSg+bCopfgkhC0lga2wLGEVYuxKSpVtJSOibP6a3Naz2x+zs9PTuzOdVpZqZp7unvzul3c88T3c/rYjAzMwMYFreBZiZ2eThUDAzs5RDwczMUg4FMzNLORTMzCx1St4FTERbW1ssXLgw7zLMzKaUp59+uj8i2odbNqVDYeHChWzYsCHvMszMphRJL4y0zMNHZmaWciiYmVnKoWBmZimHgpmZpRwKZmaWciiYmVnKoWBmZqkpfZ1CPfX09FAsFse9XalUAqBQKIxru0WLFrFq1apx78/MLEuZ9RQkzZf0iKRtkrZK+kzSfrqk9ZK2J49vTtolqUdSUdJmSednVVs9HTp0iEOHDuVdhplZXWTZUzgGfC4iNko6DXha0nrgE8D3I+IWSTcANwB/DHQBi5N/HwS+mjw2RK3f2ge36+npqWc5Zma5yKynEBG7ImJj8vwA8BzQASwHepPVeoHLk+fLgbui7HFgrqQzs6rPzMxO1pADzZIWAr8KPAGcERG7kkUvA2ckzzuAlyo2KyVtQ99rpaQNkjb09fVlVrOZWSvKPBQkzQG+A3w2In5ZuSzKN4ge102iI2JNRHRGRGd7+7CT/JmZWY0yDQVJMygHwt0RcX/S/IvBYaHkcXfSvhOYX7F5IWkzM7MGyfLsIwFrgeci4q8qFj0IdCfPu4EHKtqvSs5CWgrsrxhmMjOzBsjy7KMPAb8PPCtpU9L2J8AtwH2SrgZeAH4nWfYQcBlQBAaAT2ZYm5mZDSOzUIiIfwE0wuIPD7N+ANdkVY+ZmY3N01yYmVnK01zYSTzlh1nrcihY3Xi6D7Opz6FgJ/GUH2aty8cUzMws5VAwM7OUQ8HMzFIOBTMzSzkUzMws5VAwM7OUQ8HMzFIOBTMzSzkUzMws5VAwM7OUQ8HMzFIOBTMzSzkUzMws5VAwM7OUQ8HMzFIOBTMzS/kmO2Zm49TMt6zNrKcg6Q5JuyVtqWg7T9LjkjZJ2iBpSdIuST2SipI2Szo/q7rMzPJy6NChSX/b2ix7CncCtwN3VbR9CbgpItZJuix5fSHQBSxO/n0Q+GryaGY26TTzLWsz6ylExKPA3qHNwBuT528C/i15vhy4K8oeB+ZKOjOr2szMbHiNPqbwWeCfJN1KOZAuSNo7gJcq1islbbuGvoGklcBKgAULFmRarJlZq2n02UefBq6LiPnAdcDa8b5BRKyJiM6I6Gxvb697gWZmrazRodAN3J88/zawJHm+E5hfsV4haTMzswZqdCj8G/AbyfOLge3J8weBq5KzkJYC+yPipKEjMzPLVmbHFCTdQ/nMojZJJWA18IfA/5J0CnCY5NgA8BBwGVAEBoBPZlWXmZmNLLNQiIgrR1j0/mHWDeCarGoxM7PqeJoLMzNLORTMzCzlUDAzs5RDwczMUp4l1cyq0swzg9oJDgUzy9RknxXUXq8pQ6HWbzS12L69fP1dI77R+JuT5amZZwa1E5oyFIrFIs88u43js0/PfF96NQB4+qcvZ7qfaQNDJ5w1M6u/pgwFgOOzT+fwOR/Lu4y6mbnte3mXYGYtoGlDwawefHDVWo1DwSwDPrhqU5VDwWwUPrhqrcYXr5mZWcqhYGZmKYeCmZmlHApmZpZyKJiZWcqhYGZmKYeCmZmlHApmZpZyKJiZWSqzUJB0h6TdkrYMab9W0vOStkr6UkX7jZKKkn4s6SNZ1WVmZiPLcpqLO4HbgbsGGyRdBCwH3hcRRyS9JWk/B1gBvAd4G/DPks6OiNdq2XGpVGLawP6mmll02sAeSqVj497O95Yws/HILBQi4lFJC4c0fxq4JSKOJOvsTtqXA/cm7T+XVASWAI9lVV+rKBaL/GTLRhbMqSlfx+XUo+WO5+EdT2W6nxcPTs/0/c1aWaMnxDsb+HVJNwOHgT+KiKeADuDxivVKSVtNCoUCvzhyStPdT6FQeGtN2y6Y8xp/1nmwzhXl5y83zMm7BLOm1ehQOAU4HVgKfAC4T9I7xvMGklYCKwEWLFhQ9wLNzFpZo88+KgH3R9mTwHGgDdgJzK9Yr5C0nSQi1kREZ0R0tre3Z16wmVkraXQo/F/gIgBJZwOnAv3Ag8AKSW+QdBawGHiywbWZmbW8zIaPJN0DXAi0SSoBq4E7gDuS01RfBbojIoCtku4DtgHHgGtqPfPIzMxql+XZR1eOsOj3Rlj/ZuDmrOoxM7Ox+YpmMzNLORTMzCzlUDAzs1Sjr1MwM5tUPBXM6zkUzKylFYtFtj77HHNnvyXzfR1/VQDs/OmeTPezb2D32CuNwKFgZi1v7uy3cNG7V+RdRt088vy9NW/rYwpmZpZyKJiZWcqhYGZmKR9TaHKlUon/f2B6U003/cKB6fxKqZR3GVOaz7ixkTgUzFpQsVjk+U2bqO0OHeMzOByxb9OmTPfzcqbv3jqaNhSmDextyO04dfiXAMTMN2a6n2kDe6GGX+FCocDhY7ua7iY7MwuFvMuY8t4KXI3yLqNu1hJ5l9AUmjIUFi1a1LB9bd9+AIDF78z6O9dbG/pzmVlraspQaOSY4uC+enp6GrZPM7OsNGUomA3HB1fNxlZVKEi6AFhYuX5E3JVRTWaZKBaLPLP1GZjbgJ0dLz88s/OZbPezL9u3t9YzZihI+gbwTmATMHg3tAAcCjb1zIXjFx7Pu4q6mfYDX2pk9VVNT6ETOCe5baaZmTWxar5mbKGWcyHNzGzKGbGnIOm7lIeJTgO2SXoSODK4PCI+nn15ZmbWSKMNH93asCrMzGxSGDEUIuKHAJLOAnZFxOHk9SzgjMaUZ1Y/pVIJ9jfZwdl9UArPA2X1U81vx7dJT7ADymcgfXusjSTdIWm3pC3DLPucpJDUlryWpB5JRUmbJZ1f7Q9gZmb1U83ZR6dExKuDLyLiVUmnVrHdncDtDDl1VdJ84FLgxYrmLmBx8u+DwFeTR7O6KRQK9Kmv6U5JLXR4Hiirn2p6Cn2S0oPKkpYD/WNtFBGPAnuHWfTXwOfhdbNXLQfuirLHgbmSzqyiNjMzq6NqegqfAu6WdDsg4CXgqlp2lgTKzoj4kfS62Rk7kvcdVEradg3zHiuBlQALFiyopQwzMxvBmKEQET8Flkqak7yuaQ5mSbOBP6E8dFSziFgDrAHo7Oz0BXVmZnVU7dxHHwXeA8wc/IYfEV8Y577eCZwFDPYSCsBGSUuAncD8inULSZuZmTXQmMcUJP0f4HeBaykPH/1n4O3j3VFEPBsRb4mIhRGxkPIQ0fkR8TLwIHBVchbSUmB/RJw0dGRmZtmq5kDzBRFxFfBKRNwE/Bpw9lgbSboHeAx4l6SSpKtHWf0h4GdAEfga8F+qqMvMzOqsmuGjQ8njgKS3AXuAMc8Miogrx1i+sOJ5ANdUUYuZmWWomlD4nqS5wJeBjZRPJf16plWZmVkuqjn76C+Sp9+R9D1gZkTsz7YsMzPLw2izpP72KMuIiPuzKcnMzPIyWk/hN0dZFoBDwcysyYw2S+onG1mImZnlb9wXrw221XDxmpnZpFMqldg/cIBHnr8371LqZt/AbqJ0aOwVhzFmKCQXr80GLqJ81tEVwJM17c1y8eLB6fzlhjmZ7+cXA+XLXs6Yne0spC8enD72hTJmVpNqegoXRMS5kjZHxE2S/gewLuvCrD4WLVrUsH29un07ADMXLs50P2fT2J/LmluhUEBH9nDRu1fkXUrdPPL8vXQU5tW0bWYXr9nksGrVqobvq6enp2H7tNqUSiUOAGtpnjkldwEHS74L3UT54jUzM0v54jWzFlQoFNjX38/VaOyVp4i1BHMLvgvdRFV79tEFwMLB9ZOL1+4adSMzM5tyqjn76BuU74WwCXgtaQ6G3HvZzMymvmp6Cp3AOclMpmZm1sSquZ/CFuCtWRdiZmb5G21CvO9SHiY6Ddgm6UngyODyiPh49uWZmWVv38DuhlzRfPDwKwDMmfnmTPezb2A3HdT/OoVbKd9+84vA5RXtg21mZlNeIy+E3L59LwAd76ztD3a1OphX88812oR4PwSQNGPw+SBJs2ram1ne9sG0H1QzajpBB5PHrGcX2Qd0ZLyPJucLPF9vtOGjT1O+V/I7JG2uWHQa8K9ZF2ZWb439Rlie8mNxR7ZTftDhKT+svkYbPvom5TmO/jtwQ0X7gYjYm2lVZhnwN0KzsY02fLQf2A9c2bhyzMwsT5kNrkq6Q9JuSVsq2r4s6XlJmyX9fTKn0uCyGyUVJf1Y0keyqsvMzEaW5RG3O4FlQ9rWA++NiHOBnwA3Akg6B1hB+UY+y4CvSJqeYW1mZjaMzEIhIh4F9g5pezgijiUvHwcGZ69aDtwbEUci4udAEViSVW1mZja8BpybN6I/4MTNejqAlyqWlRjhRDtJKyVtkLShr68v4xLNzFpLLqEg6U+BY8Dd4902ItZERGdEdLa3t9e/ODOzFlbV1Nn1JOkTwMeAD1dMsrcTmF+xWiFpMzOzBmpoT0HSMuDzwMcjYqBi0YPACklvkHQWsBh4spG1mZlZhj0FSfcAFwJtkkrAaspnG70BWC8J4PGI+FREbJV0H7CN8rDSNRHx2vDvbGZmWcksFCJiuIve1o6y/s3AzVnVY2ZmY8vz7CMzM5tkGn6g2cwmh5cp3+w+a3uSx2wniy7/PHPHXMvG4lBI9PT0UCwWx73d4GyY451sbdGiRQ2doM2sUiNnVu1LfkfmLs52xti5NO7naua/Fw6FCZo1y7eWsKnHM8bmYyr8vXAoJGr9Jenv7+emm25i9erVzJuXdQfZzCaDZu7l+0DzBPX29rJ582Z6e3vzLsXMbMIcChPQ39/PunXriAjWrVvHnj17xt7IzGwScyhMQG9vL4MzdRw/fty9BTOb8hwKE7B+/XqOHj0KwNGjR3n44YdzrsjMbGIcChNwySWXMGPGDABmzJjBpZdemnNFZmYT41CYgO7ubpI5nJg2bRrd3d05V2RmNjEOhQloa2ujq6sLSXR1dfmUVDOb8nydwgR1d3ezY8cO9xLMrCm4p2BmZimHwgT54jUzayYOhQnwxWtm1mwcChPgi9fMrNk4FCbAF6+ZWbNxKEyAL14zs2bjUJgAX7xmZs3GoTABvnjNzJpNZqEg6Q5JuyVtqWg7XdJ6SduTxzcn7ZLUI6koabOk87Oqq966u7s599xz3Usws6aQZU/hTmDZkLYbgO9HxGLg+8lrgC5gcfJvJfDVDOuqq7a2Nm677Tb3EsysKWQWChHxKLB3SPNyYPC8zV7g8or2u6LscWCupDOzqs3MzIbX6GMKZ0TEruT5y8AZyfMO4KWK9UpJ20kkrZS0QdKGvr6+7Co1M2tBuR1ojvJVX1HDdmsiojMiOtvb2zOozMysdTU6FH4xOCyUPO5O2ncC8yvWKyRtk15/fz/XXnutp7gws6bQ6FB4EBg8TacbeKCi/arkLKSlwP6KYaZJzRPimVkzyex+CpLuAS4E2iSVgNXALcB9kq4GXgB+J1n9IeAyoAgMAJ/Mqq56GjohXnd3t89CajI9PT0Ui8Vxb7d9+3YAVq1aNa7tFi1aNO5tzOops1CIiCtHWPThYdYN4JqsasnKcBPiXX/99TlXZZPBrFmz8i7BrCa+89oEDDchnkOhufhbu7UaT3MxAZ4Qz8yajUNhAjwhnpk1G4fCBHhCPDNrNj6mMEHd3d3s2LHDvQQzawoOhQkanBDPzKwZePjIzMxSDgUzM0t5+MjMquKru1uDQ8HMMuWru6cWh4KZVcXf2luDQ8FO4mECs9blULC68TCB2dTnULCT+Fu7WevyKalmZpZyKJiZWcqhYGZmKYeCmZmlHApmZpZyKJiZWcqhYGZmqVxCQdJ1krZK2iLpHkkzJZ0l6QlJRUnfknRqHrWZmbWyhoeCpA5gFdAZEe8FpgMrgC8Cfx0Ri4BXgKsbXZuZWavLa/joFGCWpFOA2cAu4GLg75LlvcDlOdVmZtayGh4KEbETuBV4kXIY7AeeBvZFxLFktRLQMdz2klZK2iBpQ19fXyNKNjNrGXkMH70ZWA6cBbwN+BVgWbXbR8SaiOiMiM729vaMqjQza015DB/9J+DnEdEXEUeB+4EPAXOT4SSAArAzh9rMzFpaHqHwIrBU0mxJAj4MbAMeAa5I1ukGHsihNjOzlpbHMYUnKB9Q3gg8m9SwBvhj4HpJRWAesLbRtZmZtbpc7qcQEauB1UOafwYsyaEcMzNL+IpmMzNLORTMzCzlUDAzs5RDwczMUg4Fswz09/dz7bXXsmfPnrxLMRsXh4JZBnp7e9m8eTO9vb15l2I2Lg4Fszrr7+9n3bp1RATr1q1zb8GmFIeCWZ319vYSEQAcP37cvQWbUhwKZnW2fv16jh49CsDRo0d5+OGHc67IrHoOBbM6u+SSS5gxYwYAM2bM4NJLL825IrPqORTM6qy7u5vyXI8wbdo0uru7c67IrHoOBbM6a2tro6urC0l0dXUxb968vEsyq1ouE+KZNbvu7m527NjhXoJNOQ4Fswy0tbVx22235V2G2bh5+MjMzFIOBTMzSzkUzMws5VAwM7OUBi/Hn4ok9QEv5F0H0Ab0513EJOHP4gR/Fif4szhhMnwWb4+I9uEWTOlQmCwkbYiIzrzrmAz8WZzgz+IEfxYnTPbPwsNHZmaWciiYmVnKoVAfa/IuYBLxZ3GCP4sT/FmcMKk/Cx9TMDOzlHsKZmaWciiYmVnKoTABkpZJ+rGkoqQb8q4nT5LukLRb0pa8a8mTpPmSHpG0TdJWSZ/Ju6a8SJop6UlJP0o+i5vyrilvkqZLekbS9/KuZSQOhRpJmg78b6ALOAe4UtI5+VaVqzuBZXkXMQkcAz4XEecAS4FrWvj/xRHg4oh4H3AesEzS0pxryttngOfyLmI0DoXaLQGKEfGziHgVuBdYnnNNuYmIR4G9edeRt4jYFREbk+cHKP8B6Mi3qnxE2cHk5YzkX8ue2SKpAHwU+HretYzGoVC7DuClitclWvSX34YnaSHwq8AT+VaSn2S4ZBOwG1gfES37WQD/E/g8cDzvQkbjUDDLgKQ5wHeAz0bEL/OuJy8R8VpEnAcUgCWS3pt3TXmQ9DFgd0Q8nXctY3Eo1G4nML/idSFpsxYnaQblQLg7Iu7Pu57JICL2AY/QusedPgR8XNIOykPNF0v623xLGp5DoXZPAYslnSXpVGAF8GDONVnOJAlYCzwXEX+Vdz15ktQuaW7yfBZwCfB8vlXlIyJujIhCRCyk/Lfi/0XE7+Vc1rAcCjWKiGPAfwX+ifLBxPsiYmu+VeVH0j3AY8C7JJUkXZ13TTn5EPD7lL8Jbkr+XZZ3UTk5E3hE0mbKX6LWR8SkPRXTyjzNhZmZpdxTMDOzlEPBzMxSDgUzM0s5FMzMLOVQMDOz1Cl5F2A2WUj6b8BB4I3AoxHxzznW8oW8a7DW5FAwGyIi/tw1WKvy8JG1NEl/Kuknkv4FeFfSdqekK5Lnfy7pKUlbJK1JrlhG0gckbU4uTvvy4H0kJH1C0v2S/lHSdklfqtjXlZKeTd7ri0nb9GR/W5Jl1w1Twy3J/Rk2S7q1oR+QtRz3FKxlSXo/5SkHzqP8u7ARGDph2e0R8YVk/W8AHwO+C/wN8IcR8ZikW4Zscx7l2VGPAD+WdBvwGvBF4P3AK8DDki6nPNNuR0S8N9nH3CE1zgN+C3h3RMTQ5Wb15p6CtbJfB/4+IgaSmUyHm7vqIklPSHoWuBh4T/KH+bSIeCxZ55tDtvl+ROyPiMPANuDtwAeAH0REXzJFyt3AfwR+BrxD0m2SlgFDZ1TdDxwG1kr6bWBgwj+12SgcCmYjkDQT+ApwRUT8B+BrwMwqNj1S8fw1RumRR8QrwPuAHwCfYsgNWJIAWQL8HeVeyj9W/xOYjZ9DwVrZo8DlkmZJOg34zSHLBwOgP7k/whWQTgN9QNIHk+UrqtjXk8BvSGpLbuV6JfBDSW3AtIj4DvBnwPmVGyX7fVNEPARcRzlAzDLjYwrWsiJio6RvAT+ifGewp4Ys3yfpa8AW4OUhy68GvibpOPBDysM8o+1rl6QbKN9TQMA/RMQDkt4H/I2kwS9oNw7Z9DTggaTXIuD6Gn5Us6p5llSzGkiaM3j/4eSP/ZkR8ZmcyzKbMPcUzGrzUUk3Uv4degH4RL7lmNWHewpmZpbygWYzM0s5FMzMLOVQMDOzlEPBzMxSDgUzM0v9O+rvWu85URnBAAAAAElFTkSuQmCC\n"
},
"metadata": {
"needs_background": "light"
}
}
]
},
{
"cell_type": "markdown",
"source": [
"### **Desarrollo Punto 3**\n",
"**`scatterplot 3D`**"
],
"metadata": {
"id": "MDYeN9ujbDLF"
}
},
{
"cell_type": "code",
"source": [
"def randrange(n, vmin, vmax):\n",
"return (vmax - vmin)*np.random.rand(n) + vmin\n",
"fig = plt.figure()\n",
"ax = fig.add_subplot(projection='3d')\n",
"n = 100\n"
],
"metadata": {
"id": "jjvNm6thc0AM"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import pandas as pd\n",
"import plotly.express as px\n",
"import plotly.io as pio"
],
"metadata": {
"id": "OsyW7LyTnPNQ"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"fig = px.scatter_3d(\n",
" data_frame=df,\n",
" x='age',\n",
" y='diagnosis', \n",
" #Tipo de dolor en el pecho\n",
" #0 healthy \n",
" #1 typical angina, \n",
" #2 atypical angina\n",
" #3 non anginal pain\n",
" # 4 asymptomatic\n",
"\n",
" z='thalach', #Frecuencia cardíaca máxima alcanzada\n",
" color='diagnosis',\n",
" color_discrete_sequence=['sex','age'],\n",
" log_x=True,\n",
" template='ggplot2',\n",
" title='ScatterPlot enfermedades cardíacas',\n",
" labels={'Diagnostico por edad':'Diagnóstico por Frecuencia cardíaca máxima alcanzada'},\n",
" hover_name='diagnosis',\n",
" height=500,\n",
"\n",
")\n",
"pio.show(fig)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 517
},
"id": "Xs094ej0cz95",
"outputId": "c0e2e497-afd8-48f0-d3a2-a79211539175"
},
"execution_count": null,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/html": [
"<html>\n",
"<head><meta charset=\"utf-8\" /></head>\n",
"<body>\n",
" <div> <script src=\"https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG\"></script><script type=\"text/javascript\">if (window.MathJax) {MathJax.Hub.Config({SVG: {font: \"STIX-Web\"}});}</script> <script type=\"text/javascript\">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>\n",
" <script src=\"https://cdn.plot.ly/plotly-2.8.3.min.js\"></script> <div id=\"ed9a7e63-11de-4281-ace9-2b266d72734b\" class=\"plotly-graph-div\" style=\"height:500px; width:100%;\"></div> <script type=\"text/javascript\"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"ed9a7e63-11de-4281-ace9-2b266d72734b\")) { Plotly.newPlot( \"ed9a7e63-11de-4281-ace9-2b266d72734b\", [{\"hovertemplate\":\"<b>%{hovertext}</b><br><br>age=%{x}<br>diagnosis=%{marker.color}<br>thalach=%{z}<extra></extra>\",\"hovertext\":[2.0,1.0,0.0,0.0,0.0,3.0,0.0,2.0,1.0,0.0,0.0,2.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,3.0,4.0,0.0,0.0,0.0,0.0,3.0,0.0,2.0,1.0,0.0,0.0,0.0,3.0,1.0,3.0,0.0,4.0,0.0,0.0,0.0,1.0,4.0,0.0,4.0,0.0,0.0,0.0,0.0,2.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,2.0,0.0,1.0,0.0,2.0,2.0,1.0,0.0,2.0,1.0,0.0,3.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,3.0,0.0,0.0,0.0,3.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,3.0,0.0,0.0,0.0,1.0,2.0,3.0,0.0,0.0,0.0,0.0,0.0,0.0,3.0,0.0,2.0,1.0,2.0,3.0,1.0,1.0,0.0,2.0,2.0,0.0,0.0,0.0,3.0,2.0,3.0,4.0,0.0,3.0,1.0,0.0,3.0,3.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,4.0,3.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,4.0,0.0,0.0,0.0,0.0,0.0,0.0,4.0,3.0,1.0,1.0,1.0,2.0,0.0,0.0,4.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,3.0,0.0,1.0,0.0,4.0,1.0,0.0,1.0,0.0,0.0,3.0,2.0,0.0,0.0,1.0,0.0,0.0,2.0,1.0,2.0,0.0,3.0,1.0,2.0,0.0,3.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,3.0,3.0,3.0,0.0,1.0,0.0,4.0,0.0,3.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,3.0,1.0,0.0,0.0,0.0,3.0,2.0,0.0,2.0,1.0,0.0,0.0,3.0,2.0,1.0,0.0,0.0,0.0,0.0,0.0,2.0,0.0,2.0,2.0,1.0,3.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,3.0,0.0,0.0,4.0,2.0,2.0,2.0,1.0,0.0,1.0,0.0,2.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,2.0,0.0,3.0,0.0,2.0,4.0,2.0,0.0,0.0,0.0,1.0,0.0,2.0,2.0,1.0,0.0,3.0,1.0,1.0,2.0,3.0,1.0,0.0],\"legendgroup\":\"\",\"marker\":{\"color\":[2,1,0,0,0,3,0,2,1,0,0,2,0,0,0,1,0,0,0,0,0,1,3,4,0,0,0,0,3,0,2,1,0,0,0,3,1,3,0,4,0,0,0,1,4,0,4,0,0,0,0,2,0,1,1,1,1,0,0,2,0,1,0,2,2,1,0,2,1,0,3,1,1,1,0,1,0,0,3,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,1,2,3,0,0,0,0,0,0,3,0,2,1,2,3,1,1,0,2,2,0,0,0,3,2,3,4,0,3,1,0,3,3,0,0,0,0,0,0,0,0,4,3,1,0,0,1,0,1,0,1,4,0,0,0,0,0,0,4,3,1,1,1,2,0,0,4,0,0,0,0,0,0,1,0,3,0,1,0,4,1,0,1,0,0,3,2,0,0,1,0,0,2,1,2,0,3,1,2,0,3,0,0,0,1,0,0,0,0,0,3,3,3,0,1,0,4,0,3,1,0,0,0,0,0,0,0,0,3,1,0,0,0,3,2,0,2,1,0,0,3,2,1,0,0,0,0,0,2,0,2,2,1,3,0,0,1,0,0,0,0,0,0,0,1,0,3,0,0,4,2,2,2,1,0,1,0,2,0,1,0,0,0,1,0,2,0,3,0,2,4,2,0,0,0,1,0,2,2,1,0,3,1,1,2,3,1,0],\"coloraxis\":\"coloraxis\",\"symbol\":\"circle\"},\"mode\":\"markers\",\"name\":\"\",\"scene\":\"scene\",\"showlegend\":false,\"x\":[67.0,67.0,37.0,41.0,56.0,62.0,57.0,63.0,53.0,57.0,56.0,56.0,44.0,52.0,57.0,48.0,54.0,48.0,49.0,64.0,58.0,58.0,58.0,60.0,50.0,58.0,66.0,43.0,40.0,69.0,60.0,64.0,59.0,44.0,42.0,43.0,57.0,55.0,61.0,65.0,40.0,71.0,59.0,61.0,58.0,51.0,50.0,65.0,53.0,41.0,65.0,44.0,44.0,60.0,54.0,50.0,41.0,54.0,51.0,51.0,46.0,58.0,54.0,54.0,60.0,60.0,54.0,59.0,46.0,65.0,67.0,62.0,65.0,44.0,65.0,60.0,51.0,48.0,58.0,45.0,53.0,39.0,68.0,52.0,44.0,47.0,53.0,53.0,51.0,66.0,62.0,62.0,44.0,63.0,52.0,59.0,60.0,52.0,48.0,45.0,34.0,57.0,71.0,49.0,54.0,59.0,57.0,61.0,39.0,61.0,56.0,52.0,43.0,62.0,41.0,58.0,35.0,63.0,65.0,48.0,63.0,51.0,55.0,65.0,45.0,56.0,54.0,44.0,62.0,54.0,51.0,29.0,51.0,43.0,55.0,70.0,62.0,35.0,51.0,59.0,59.0,52.0,64.0,58.0,47.0,57.0,41.0,45.0,60.0,52.0,42.0,67.0,55.0,64.0,70.0,51.0,58.0,60.0,68.0,46.0,77.0,54.0,58.0,48.0,57.0,52.0,54.0,35.0,45.0,70.0,53.0,59.0,62.0,64.0,57.0,52.0,56.0,43.0,53.0,48.0,56.0,42.0,59.0,60.0,63.0,42.0,66.0,54.0,69.0,50.0,51.0,43.0,62.0,68.0,67.0,69.0,45.0,50.0,59.0,50.0,64.0,57.0,64.0,43.0,45.0,58.0,50.0,55.0,62.0,37.0,38.0,41.0,66.0,52.0,56.0,46.0,46.0,64.0,59.0,41.0,54.0,39.0,53.0,63.0,34.0,47.0,67.0,54.0,66.0,52.0,55.0,49.0,74.0,54.0,54.0,56.0,46.0,49.0,42.0,41.0,41.0,49.0,61.0,60.0,67.0,58.0,47.0,52.0,62.0,57.0,58.0,64.0,51.0,43.0,42.0,67.0,76.0,70.0,57.0,44.0,58.0,60.0,44.0,61.0,42.0,52.0,59.0,40.0,42.0,61.0,66.0,46.0,71.0,59.0,64.0,66.0,39.0,57.0,58.0,57.0,47.0,55.0,35.0,61.0,58.0,58.0,58.0,56.0,56.0,67.0,55.0,44.0,63.0,63.0,41.0,59.0,57.0,45.0,68.0,57.0,57.0,38.0],\"y\":[2,1,0,0,0,3,0,2,1,0,0,2,0,0,0,1,0,0,0,0,0,1,3,4,0,0,0,0,3,0,2,1,0,0,0,3,1,3,0,4,0,0,0,1,4,0,4,0,0,0,0,2,0,1,1,1,1,0,0,2,0,1,0,2,2,1,0,2,1,0,3,1,1,1,0,1,0,0,3,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,1,2,3,0,0,0,0,0,0,3,0,2,1,2,3,1,1,0,2,2,0,0,0,3,2,3,4,0,3,1,0,3,3,0,0,0,0,0,0,0,0,4,3,1,0,0,1,0,1,0,1,4,0,0,0,0,0,0,4,3,1,1,1,2,0,0,4,0,0,0,0,0,0,1,0,3,0,1,0,4,1,0,1,0,0,3,2,0,0,1,0,0,2,1,2,0,3,1,2,0,3,0,0,0,1,0,0,0,0,0,3,3,3,0,1,0,4,0,3,1,0,0,0,0,0,0,0,0,3,1,0,0,0,3,2,0,2,1,0,0,3,2,1,0,0,0,0,0,2,0,2,2,1,3,0,0,1,0,0,0,0,0,0,0,1,0,3,0,0,4,2,2,2,1,0,1,0,2,0,1,0,0,0,1,0,2,0,3,0,2,4,2,0,0,0,1,0,2,2,1,0,3,1,1,2,3,1,0],\"z\":[108.0,129.0,187.0,172.0,178.0,160.0,163.0,147.0,155.0,148.0,153.0,142.0,173.0,162.0,174.0,168.0,160.0,139.0,171.0,144.0,162.0,160.0,173.0,132.0,158.0,172.0,114.0,171.0,114.0,151.0,160.0,158.0,161.0,179.0,178.0,120.0,112.0,132.0,137.0,114.0,178.0,162.0,157.0,169.0,165.0,123.0,128.0,157.0,152.0,168.0,140.0,153.0,188.0,144.0,109.0,163.0,158.0,152.0,125.0,142.0,160.0,131.0,170.0,113.0,142.0,155.0,165.0,140.0,147.0,148.0,163.0,99.0,158.0,177.0,151.0,141.0,142.0,180.0,111.0,148.0,143.0,182.0,150.0,172.0,180.0,156.0,115.0,160.0,149.0,151.0,145.0,146.0,175.0,172.0,161.0,142.0,157.0,158.0,186.0,185.0,174.0,159.0,130.0,139.0,156.0,162.0,150.0,140.0,140.0,146.0,144.0,190.0,136.0,97.0,132.0,165.0,182.0,132.0,127.0,150.0,154.0,143.0,111.0,174.0,175.0,133.0,126.0,170.0,163.0,147.0,154.0,202.0,186.0,165.0,161.0,125.0,103.0,130.0,166.0,164.0,159.0,184.0,131.0,154.0,152.0,124.0,179.0,170.0,160.0,178.0,122.0,160.0,145.0,96.0,109.0,173.0,171.0,170.0,151.0,156.0,162.0,158.0,122.0,175.0,168.0,169.0,159.0,156.0,138.0,112.0,111.0,143.0,157.0,132.0,88.0,147.0,105.0,162.0,173.0,166.0,150.0,178.0,145.0,161.0,179.0,194.0,120.0,195.0,146.0,163.0,122.0,143.0,106.0,115.0,125.0,131.0,152.0,162.0,125.0,159.0,154.0,173.0,133.0,161.0,147.0,130.0,126.0,155.0,154.0,170.0,182.0,168.0,165.0,160.0,162.0,172.0,152.0,122.0,182.0,172.0,167.0,179.0,95.0,169.0,192.0,143.0,172.0,108.0,132.0,169.0,117.0,126.0,121.0,163.0,116.0,103.0,144.0,162.0,162.0,153.0,163.0,163.0,145.0,96.0,71.0,156.0,118.0,168.0,140.0,126.0,105.0,105.0,157.0,181.0,173.0,142.0,116.0,143.0,141.0,149.0,152.0,171.0,169.0,125.0,125.0,156.0,134.0,181.0,150.0,138.0,138.0,120.0,125.0,162.0,155.0,152.0,152.0,164.0,131.0,143.0,179.0,130.0,174.0,161.0,140.0,146.0,144.0,163.0,169.0,150.0,166.0,144.0,144.0,136.0,182.0,90.0,123.0,132.0,141.0,115.0,174.0,173.0],\"type\":\"scatter3d\"}], {\"template\":{\"data\":{\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"bar\":[{\"error_x\":{\"color\":\"rgb(51,51,51)\"},\"error_y\":{\"color\":\"rgb(51,51,51)\"},\"marker\":{\"line\":{\"color\":\"rgb(237,237,237)\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"baxis\":{\"endlinecolor\":\"rgb(51,51,51)\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"rgb(51,51,51)\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"choropleth\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"contourcarpet\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"contour\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmapgl\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"heatmap\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2dcontour\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"histogram2d\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scattermapbox\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolargl\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterpolar\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatter\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"},\"colorscale\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"rgb(237,237,237)\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"rgb(217,217,217)\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"tickcolor\":\"rgb(237,237,237)\",\"ticklen\":6,\"ticks\":\"inside\"}},\"colorscale\":{\"sequential\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]],\"sequentialminus\":[[0,\"rgb(20,44,66)\"],[1,\"rgb(90,179,244)\"]]},\"colorway\":[\"#F8766D\",\"#A3A500\",\"#00BF7D\",\"#00B0F6\",\"#E76BF3\"],\"font\":{\"color\":\"rgb(51,51,51)\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"rgb(237,237,237)\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"rgb(237,237,237)\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"rgb(237,237,237)\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"fillcolor\":\"black\",\"line\":{\"width\":0},\"opacity\":0.3},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"},\"bgcolor\":\"rgb(237,237,237)\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\"}},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"showgrid\":true,\"tickcolor\":\"rgb(51,51,51)\",\"ticks\":\"outside\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\"}}},\"scene\":{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"xaxis\":{\"title\":{\"text\":\"age\"},\"type\":\"log\"},\"yaxis\":{\"title\":{\"text\":\"diagnosis\"}},\"zaxis\":{\"title\":{\"text\":\"thalach\"}}},\"coloraxis\":{\"colorbar\":{\"title\":{\"text\":\"diagnosis\"}},\"colorscale\":[[0.0,\"rgb(20,44,66)\"],[1.0,\"rgb(90,179,244)\"]]},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"ScatterPlot enfermedades card\\u00edacas\"},\"height\":500}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('ed9a7e63-11de-4281-ace9-2b266d72734b');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; </script> </div>\n",
"</body>\n",
"</html>"
]
},
"metadata": {}
}
]
},
{
"cell_type": "markdown",
"source": [
"### **Desarrollo Punto 4**\n",
"\n",
"**Análisis**\n",
"El total de pacientes es de 302. \n",
"\n",
"\n",
"A continuación encontraremos el número de pacientes por caso de diagnístico. \n",
"\n",
"0 -163 pacientes (Saludable) \n",
"1 -55 pacientes(Angina Típica)\n",
"2 -36 pacientes(Angina Atípica\n",
"3 -35 pacientes(Sin dolor de Angina)\n",
"4 -13 pacientes (Asintomático) \n",
"\n",
"_______________________________________________\n",
"Además se encuentra que la población con problemas cardíacos mayormente son hombres.\n",
"______________________________________________\n",
"Se encuentra que la edad promedio en la qué se presentan estas afecciones cardíacas es a los 54 años, la edad mínima es de 29 años y la máxima es de 77 años. \n",
"_________________________________________________"
],
"metadata": {
"id": "LA8QmXMfu61i"
}
},
{
"cell_type": "markdown",
"source": [
"# Nueva sección"
],
"metadata": {
"id": "ot_hSGCGNgNg"
}
},
{
"cell_type": "markdown",
"source": [
"(30%) De acuerdo a la base de datos **grades.csv**, estimar: \n",
"\n",
"1. ¿Cual fue la hora promedio de envio de los examenes por cada estudiante?\n",
"2. ¿Cual fue el top 5 de estudiantes que enviaron en promedio el examen mas temprano.Entendiendo temprano lo mas cercano a las 12:00 am.\n",
"3. ¿Cual fue en total la hora promedio de envio de los examenes y la desviación estandar?.\n",
"\n"
],
"metadata": {
"id": "iw925grpnqEH"
}
},
{
"cell_type": "code",
"source": [
"import pandas as pd\n",
"df = pd.read_csv('grades.csv')\n",
"df.head()\n",
"\n",
"\n",
"\"\"\"\n",
"\n",
"\n",
"\n",
"DESARROLLE AQUI \n",
"\n",
"\n",
"\n",
"\"\"\""
],
"metadata": {
"id": "KEx5iPn1pVw_",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"outputId": "4c2bc04a-0255-4e50-8744-d67b562d53e6"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'\\n\\n\\n\\nDESARROLLE AQUI \\n\\n\\n\\n'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 109
}
]
},
{
"cell_type": "code",
"source": [
"df.columns"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "6MKEaz1j211l",
"outputId": "4a1c2f65-917b-4398-ff47-91cc8ce43827"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Index(['student_id', 'assignment1_grade', 'assignment1_submission',\n",
" 'assignment2_grade', 'assignment2_submission', 'assignment3_grade',\n",
" 'assignment3_submission', 'assignment4_grade', 'assignment4_submission',\n",
" 'assignment5_grade', 'assignment5_submission', 'assignment6_grade',\n",
" 'assignment6_submission'],\n",
" dtype='object')"
]
},
"metadata": {},
"execution_count": 111
}
]
},
{
"cell_type": "code",
"source": [
"df['assignment1_submission'].count() #Numero alumnos"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "E4nZEiyn9IoE",
"outputId": "d44b9b0d-a39f-451d-9c10-1abe7921bd55"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"2315"
]
},
"metadata": {},
"execution_count": 129
}
]
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "7NIIm6HV9LNe"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"df2 = df.set_index('student_id')\n",
"df2.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 562
},
"id": "FF03T2303glu",
"outputId": "c8e71378-a6e2-46b3-e686-9714e131ba79"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" assignment1_grade \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 92.733946 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 86.790821 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 85.512541 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 86.030665 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 64.813800 \n",
"\n",
" assignment1_submission \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 2015-11-02 06:55:34.282000000 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 2015-11-29 14:57:44.429000000 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 2016-01-09 05:36:02.389000000 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 2016-04-30 06:50:39.801000000 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 2015-12-13 17:06:10.750000000 \n",
"\n",
" assignment2_grade \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 83.030552 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 86.290821 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 85.512541 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 68.824532 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 51.491040 \n",
"\n",
" assignment2_submission \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 2015-11-09 02:22:58.938000000 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 2015-12-06 17:41:18.449000000 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 2016-01-09 06:39:44.416000000 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 2016-04-30 17:20:38.727000000 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 2015-12-14 12:25:12.056000000 \n",
"\n",
" assignment3_grade \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 67.164441 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 69.772657 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 68.410033 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 61.942079 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 41.932832 \n",
"\n",
" assignment3_submission \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 2015-11-12 08:58:33.998000000 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 2015-12-10 08:54:55.904000000 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 2016-01-15 20:22:45.882000000 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 2016-05-12 07:47:16.326000000 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 2015-12-29 14:25:22.594000000 \n",
"\n",
" assignment4_grade \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 53.011553 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 55.098125 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 54.728026 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 49.553663 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 36.929549 \n",
"\n",
" assignment4_submission \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 2015-11-16 01:21:24.663000000 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 2015-12-13 17:32:30.941000000 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 2016-01-11 12:41:50.749000000 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 2016-05-07 16:09:20.485000000 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 2015-12-28 01:29:55.901000000 \n",
"\n",
" assignment5_grade \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 47.710398 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 49.588313 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 49.255224 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 49.553663 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 33.236594 \n",
"\n",
" assignment5_submission \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 2015-11-20 13:24:59.692000000 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 2015-12-19 23:26:39.285000000 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 2016-01-11 17:31:12.489000000 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 2016-05-24 12:51:18.016000000 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 2015-12-29 14:46:06.628000000 \n",
"\n",
" assignment6_grade \\\n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 38.168318 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 44.629482 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 44.329701 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 44.598297 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 33.236594 \n",
"\n",
" assignment6_submission \n",
"student_id \n",
"B73F2C11-70F0-E37D-8B10-1D20AFED50B1 2015-11-22 18:31:15.934000000 \n",
"98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 2015-12-21 17:07:24.275000000 \n",
"D0F62040-CEB0-904C-F563-2F8620916C4E 2016-01-17 16:24:42.765000000 \n",
"FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 2016-05-26 08:09:12.058000000 \n",
"5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 2016-01-05 01:06:59.546000000 "
],
"text/html": [
"\n",
" <div id=\"df-a994b688-9b78-44f1-a405-8ae68ba618b1\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" <tr>\n",
" <th>student_id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</th>\n",
" <td>92.733946</td>\n",
" <td>2015-11-02 06:55:34.282000000</td>\n",
" <td>83.030552</td>\n",
" <td>2015-11-09 02:22:58.938000000</td>\n",
" <td>67.164441</td>\n",
" <td>2015-11-12 08:58:33.998000000</td>\n",
" <td>53.011553</td>\n",
" <td>2015-11-16 01:21:24.663000000</td>\n",
" <td>47.710398</td>\n",
" <td>2015-11-20 13:24:59.692000000</td>\n",
" <td>38.168318</td>\n",
" <td>2015-11-22 18:31:15.934000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</th>\n",
" <td>86.790821</td>\n",
" <td>2015-11-29 14:57:44.429000000</td>\n",
" <td>86.290821</td>\n",
" <td>2015-12-06 17:41:18.449000000</td>\n",
" <td>69.772657</td>\n",
" <td>2015-12-10 08:54:55.904000000</td>\n",
" <td>55.098125</td>\n",
" <td>2015-12-13 17:32:30.941000000</td>\n",
" <td>49.588313</td>\n",
" <td>2015-12-19 23:26:39.285000000</td>\n",
" <td>44.629482</td>\n",
" <td>2015-12-21 17:07:24.275000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>D0F62040-CEB0-904C-F563-2F8620916C4E</th>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 05:36:02.389000000</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 06:39:44.416000000</td>\n",
" <td>68.410033</td>\n",
" <td>2016-01-15 20:22:45.882000000</td>\n",
" <td>54.728026</td>\n",
" <td>2016-01-11 12:41:50.749000000</td>\n",
" <td>49.255224</td>\n",
" <td>2016-01-11 17:31:12.489000000</td>\n",
" <td>44.329701</td>\n",
" <td>2016-01-17 16:24:42.765000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</th>\n",
" <td>86.030665</td>\n",
" <td>2016-04-30 06:50:39.801000000</td>\n",
" <td>68.824532</td>\n",
" <td>2016-04-30 17:20:38.727000000</td>\n",
" <td>61.942079</td>\n",
" <td>2016-05-12 07:47:16.326000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-07 16:09:20.485000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-24 12:51:18.016000000</td>\n",
" <td>44.598297</td>\n",
" <td>2016-05-26 08:09:12.058000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</th>\n",
" <td>64.813800</td>\n",
" <td>2015-12-13 17:06:10.750000000</td>\n",
" <td>51.491040</td>\n",
" <td>2015-12-14 12:25:12.056000000</td>\n",
" <td>41.932832</td>\n",
" <td>2015-12-29 14:25:22.594000000</td>\n",
" <td>36.929549</td>\n",
" <td>2015-12-28 01:29:55.901000000</td>\n",
" <td>33.236594</td>\n",
" <td>2015-12-29 14:46:06.628000000</td>\n",
" <td>33.236594</td>\n",
" <td>2016-01-05 01:06:59.546000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a994b688-9b78-44f1-a405-8ae68ba618b1')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-a994b688-9b78-44f1-a405-8ae68ba618b1 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-a994b688-9b78-44f1-a405-8ae68ba618b1');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 112
}
]
},
{
"cell_type": "code",
"source": [
"df.shape"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "zrOKBnCjpaGC",
"outputId": "21271ede-196a-4d4a-9dca-f93ec7e94bb5"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"(2315, 13)"
]
},
"metadata": {},
"execution_count": 23
}
]
},
{
"cell_type": "code",
"source": [
"df.iloc[0]"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "lEuUOU-gpqBd",
"outputId": "c5ce5685-087d-4977-a0f8-be7483e23937"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"student_id B73F2C11-70F0-E37D-8B10-1D20AFED50B1\n",
"assignment1_grade 92.733946\n",
"assignment1_submission 2015-11-02 06:55:34.282000000\n",
"assignment2_grade 83.030552\n",
"assignment2_submission 2015-11-09 02:22:58.938000000\n",
"assignment3_grade 67.164441\n",
"assignment3_submission 2015-11-12 08:58:33.998000000\n",
"assignment4_grade 53.011553\n",
"assignment4_submission 2015-11-16 01:21:24.663000000\n",
"assignment5_grade 47.710398\n",
"assignment5_submission 2015-11-20 13:24:59.692000000\n",
"assignment6_grade 38.168318\n",
"assignment6_submission 2015-11-22 18:31:15.934000000\n",
"Name: 0, dtype: object"
]
},
"metadata": {},
"execution_count": 27
}
]
},
{
"cell_type": "code",
"source": [
"df.mean()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "o2ntU3OfqiQX",
"outputId": "f2ee6656-8ab1-4174-a544-156ce07e5913"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"assignment1_grade 74.535732\n",
"assignment2_grade 66.849007\n",
"assignment3_grade 60.623197\n",
"assignment4_grade 54.112112\n",
"assignment5_grade 48.618522\n",
"assignment6_grade 43.841452\n",
"dtype: float64"
]
},
"metadata": {},
"execution_count": 29
}
]
},
{
"cell_type": "code",
"source": [
"df['student_id'] = df.mean(axis=1)\n",
"df.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 391
},
"id": "MfYxhdfOrFyq",
"outputId": "8fd9b92a-ab40-4747-9efb-77688d02ca77"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
" \"\"\"Entry point for launching an IPython kernel.\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" student_id assignment1_grade assignment1_submission \\\n",
"0 63.636535 92.733946 2015-11-02 06:55:34.282000000 \n",
"1 65.361703 86.790821 2015-11-29 14:57:44.429000000 \n",
"2 64.624678 85.512541 2016-01-09 05:36:02.389000000 \n",
"3 60.083816 86.030665 2016-04-30 06:50:39.801000000 \n",
"4 43.606735 64.813800 2015-12-13 17:06:10.750000000 \n",
"\n",
" assignment2_grade assignment2_submission assignment3_grade \\\n",
"0 83.030552 2015-11-09 02:22:58.938000000 67.164441 \n",
"1 86.290821 2015-12-06 17:41:18.449000000 69.772657 \n",
"2 85.512541 2016-01-09 06:39:44.416000000 68.410033 \n",
"3 68.824532 2016-04-30 17:20:38.727000000 61.942079 \n",
"4 51.491040 2015-12-14 12:25:12.056000000 41.932832 \n",
"\n",
" assignment3_submission assignment4_grade \\\n",
"0 2015-11-12 08:58:33.998000000 53.011553 \n",
"1 2015-12-10 08:54:55.904000000 55.098125 \n",
"2 2016-01-15 20:22:45.882000000 54.728026 \n",
"3 2016-05-12 07:47:16.326000000 49.553663 \n",
"4 2015-12-29 14:25:22.594000000 36.929549 \n",
"\n",
" assignment4_submission assignment5_grade \\\n",
"0 2015-11-16 01:21:24.663000000 47.710398 \n",
"1 2015-12-13 17:32:30.941000000 49.588313 \n",
"2 2016-01-11 12:41:50.749000000 49.255224 \n",
"3 2016-05-07 16:09:20.485000000 49.553663 \n",
"4 2015-12-28 01:29:55.901000000 33.236594 \n",
"\n",
" assignment5_submission assignment6_grade \\\n",
"0 2015-11-20 13:24:59.692000000 38.168318 \n",
"1 2015-12-19 23:26:39.285000000 44.629482 \n",
"2 2016-01-11 17:31:12.489000000 44.329701 \n",
"3 2016-05-24 12:51:18.016000000 44.598297 \n",
"4 2015-12-29 14:46:06.628000000 33.236594 \n",
"\n",
" assignment6_submission \n",
"0 2015-11-22 18:31:15.934000000 \n",
"1 2015-12-21 17:07:24.275000000 \n",
"2 2016-01-17 16:24:42.765000000 \n",
"3 2016-05-26 08:09:12.058000000 \n",
"4 2016-01-05 01:06:59.546000000 "
],
"text/html": [
"\n",
" <div id=\"df-babfd023-35af-4e3c-938d-202ea4f53502\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>63.636535</td>\n",
" <td>92.733946</td>\n",
" <td>2015-11-02 06:55:34.282000000</td>\n",
" <td>83.030552</td>\n",
" <td>2015-11-09 02:22:58.938000000</td>\n",
" <td>67.164441</td>\n",
" <td>2015-11-12 08:58:33.998000000</td>\n",
" <td>53.011553</td>\n",
" <td>2015-11-16 01:21:24.663000000</td>\n",
" <td>47.710398</td>\n",
" <td>2015-11-20 13:24:59.692000000</td>\n",
" <td>38.168318</td>\n",
" <td>2015-11-22 18:31:15.934000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>65.361703</td>\n",
" <td>86.790821</td>\n",
" <td>2015-11-29 14:57:44.429000000</td>\n",
" <td>86.290821</td>\n",
" <td>2015-12-06 17:41:18.449000000</td>\n",
" <td>69.772657</td>\n",
" <td>2015-12-10 08:54:55.904000000</td>\n",
" <td>55.098125</td>\n",
" <td>2015-12-13 17:32:30.941000000</td>\n",
" <td>49.588313</td>\n",
" <td>2015-12-19 23:26:39.285000000</td>\n",
" <td>44.629482</td>\n",
" <td>2015-12-21 17:07:24.275000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>64.624678</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 05:36:02.389000000</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 06:39:44.416000000</td>\n",
" <td>68.410033</td>\n",
" <td>2016-01-15 20:22:45.882000000</td>\n",
" <td>54.728026</td>\n",
" <td>2016-01-11 12:41:50.749000000</td>\n",
" <td>49.255224</td>\n",
" <td>2016-01-11 17:31:12.489000000</td>\n",
" <td>44.329701</td>\n",
" <td>2016-01-17 16:24:42.765000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>60.083816</td>\n",
" <td>86.030665</td>\n",
" <td>2016-04-30 06:50:39.801000000</td>\n",
" <td>68.824532</td>\n",
" <td>2016-04-30 17:20:38.727000000</td>\n",
" <td>61.942079</td>\n",
" <td>2016-05-12 07:47:16.326000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-07 16:09:20.485000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-24 12:51:18.016000000</td>\n",
" <td>44.598297</td>\n",
" <td>2016-05-26 08:09:12.058000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>43.606735</td>\n",
" <td>64.813800</td>\n",
" <td>2015-12-13 17:06:10.750000000</td>\n",
" <td>51.491040</td>\n",
" <td>2015-12-14 12:25:12.056000000</td>\n",
" <td>41.932832</td>\n",
" <td>2015-12-29 14:25:22.594000000</td>\n",
" <td>36.929549</td>\n",
" <td>2015-12-28 01:29:55.901000000</td>\n",
" <td>33.236594</td>\n",
" <td>2015-12-29 14:46:06.628000000</td>\n",
" <td>33.236594</td>\n",
" <td>2016-01-05 01:06:59.546000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-babfd023-35af-4e3c-938d-202ea4f53502')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-babfd023-35af-4e3c-938d-202ea4f53502 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-babfd023-35af-4e3c-938d-202ea4f53502');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 33
}
]
},
{
"cell_type": "code",
"source": [
"df['student_id'].mean()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JxKuxxZXr88I",
"outputId": "59170fc6-d8cb-4777-ec7c-f5eee8b3540f"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"58.09667041068115"
]
},
"metadata": {},
"execution_count": 34
}
]
},
{
"cell_type": "code",
"source": [
"df.describe()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 364
},
"id": "si-Ixk_0scne",
"outputId": "e2f72904-7470-4212-fd8c-a648b3ab3055"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" student_id assignment1_grade assignment2_grade assignment3_grade \\\n",
"count 2315.000000 2315.000000 2315.000000 2315.000000 \n",
"mean 58.096670 74.535732 66.849007 60.623197 \n",
"std 14.058527 16.353252 15.959210 15.492469 \n",
"min 11.076457 14.423297 12.980967 12.307682 \n",
"25% 48.530166 63.670100 56.127794 49.866390 \n",
"50% 59.435131 77.208365 68.142124 61.307206 \n",
"75% 68.150145 87.502146 78.310880 71.292632 \n",
"max 97.571739 100.695583 99.936206 99.655813 \n",
"\n",
" assignment4_grade assignment5_grade assignment6_grade \n",
"count 2315.000000 2315.000000 2315.000000 \n",
"mean 54.112112 48.618522 43.841452 \n",
"std 14.687431 13.927054 13.259413 \n",
"min 9.126146 8.213531 7.392178 \n",
"25% 43.852636 38.859619 34.828619 \n",
"50% 54.442888 48.681165 43.172442 \n",
"75% 63.789234 57.662236 52.086086 \n",
"max 98.755813 97.571739 97.571739 "
],
"text/html": [
"\n",
" <div id=\"df-2f9f179a-0c75-4e28-9b82-d64bff796612\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment6_grade</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" <td>2315.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>58.096670</td>\n",
" <td>74.535732</td>\n",
" <td>66.849007</td>\n",
" <td>60.623197</td>\n",
" <td>54.112112</td>\n",
" <td>48.618522</td>\n",
" <td>43.841452</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>14.058527</td>\n",
" <td>16.353252</td>\n",
" <td>15.959210</td>\n",
" <td>15.492469</td>\n",
" <td>14.687431</td>\n",
" <td>13.927054</td>\n",
" <td>13.259413</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>11.076457</td>\n",
" <td>14.423297</td>\n",
" <td>12.980967</td>\n",
" <td>12.307682</td>\n",
" <td>9.126146</td>\n",
" <td>8.213531</td>\n",
" <td>7.392178</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>48.530166</td>\n",
" <td>63.670100</td>\n",
" <td>56.127794</td>\n",
" <td>49.866390</td>\n",
" <td>43.852636</td>\n",
" <td>38.859619</td>\n",
" <td>34.828619</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>59.435131</td>\n",
" <td>77.208365</td>\n",
" <td>68.142124</td>\n",
" <td>61.307206</td>\n",
" <td>54.442888</td>\n",
" <td>48.681165</td>\n",
" <td>43.172442</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>68.150145</td>\n",
" <td>87.502146</td>\n",
" <td>78.310880</td>\n",
" <td>71.292632</td>\n",
" <td>63.789234</td>\n",
" <td>57.662236</td>\n",
" <td>52.086086</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>97.571739</td>\n",
" <td>100.695583</td>\n",
" <td>99.936206</td>\n",
" <td>99.655813</td>\n",
" <td>98.755813</td>\n",
" <td>97.571739</td>\n",
" <td>97.571739</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-2f9f179a-0c75-4e28-9b82-d64bff796612')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-2f9f179a-0c75-4e28-9b82-d64bff796612 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-2f9f179a-0c75-4e28-9b82-d64bff796612');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 35
}
]
},
{
"cell_type": "code",
"source": [
"df.sort_values(by=['student_id'], ascending=False).head(5)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 357
},
"id": "caFPxQFwtVyt",
"outputId": "4fbc0ba9-da26-414b-b9ef-6584033b73d5"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" student_id assignment1_grade assignment1_submission \\\n",
"1099 97.571739 97.571739 2016-01-25 22:13:34.382000000 \n",
"881 93.658057 97.277300 2015-11-01 18:26:29.557000000 \n",
"1971 93.579144 93.579144 2016-02-21 21:06:47.890000000 \n",
"619 92.801278 99.455813 2015-11-28 20:42:20.349000000 \n",
"2227 92.745001 93.145001 2015-10-02 14:19:41.921000000 \n",
"\n",
" assignment2_grade assignment2_submission assignment3_grade \\\n",
"1099 97.571739 2016-01-26 17:38:35.054000000 97.571739 \n",
"881 96.777300 2015-11-06 16:26:34.749000000 97.477300 \n",
"1971 93.579144 2016-02-29 19:00:47.772000000 93.579144 \n",
"619 98.955813 2015-12-06 18:10:55.794000000 99.655813 \n",
"2227 92.645001 2015-10-02 16:26:09.357000000 93.345001 \n",
"\n",
" assignment3_submission assignment4_grade \\\n",
"1099 2016-02-02 06:33:46.367000000 97.571739 \n",
"881 2015-11-11 05:25:47.238000000 96.577300 \n",
"1971 2016-03-03 08:31:28.442000000 93.579144 \n",
"619 2015-12-10 06:26:11.953000000 98.755813 \n",
"2227 2015-10-07 00:37:38.774000000 92.445001 \n",
"\n",
" assignment4_submission assignment5_grade \\\n",
"1099 2016-02-10 15:56:13.004000000 97.571739 \n",
"881 2015-11-15 14:58:07.839000000 96.577300 \n",
"1971 2016-03-05 06:59:02.794000000 93.579144 \n",
"619 2015-12-11 15:01:26.731000000 88.880232 \n",
"2227 2015-10-04 16:23:01.877000000 92.445001 \n",
"\n",
" assignment5_submission assignment6_grade \\\n",
"1099 2016-02-13 16:52:22.221000000 97.571739 \n",
"881 2015-11-18 16:40:40.914000000 77.261840 \n",
"1971 2016-03-13 06:33:31.236000000 93.579144 \n",
"619 2015-12-18 15:15:31.395000000 71.104185 \n",
"2227 2015-10-06 01:31:29.739000000 92.445001 \n",
"\n",
" assignment6_submission \n",
"1099 2016-02-18 08:35:04.801000000 \n",
"881 2015-11-24 16:17:07.260000000 \n",
"1971 2016-03-13 22:06:01.534000000 \n",
"619 2015-12-21 15:36:42.026000000 \n",
"2227 2015-10-18 06:29:23.646000000 "
],
"text/html": [
"\n",
" <div id=\"df-a08f5acc-cd45-410b-b35c-47062b5e1dce\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1099</th>\n",
" <td>97.571739</td>\n",
" <td>97.571739</td>\n",
" <td>2016-01-25 22:13:34.382000000</td>\n",
" <td>97.571739</td>\n",
" <td>2016-01-26 17:38:35.054000000</td>\n",
" <td>97.571739</td>\n",
" <td>2016-02-02 06:33:46.367000000</td>\n",
" <td>97.571739</td>\n",
" <td>2016-02-10 15:56:13.004000000</td>\n",
" <td>97.571739</td>\n",
" <td>2016-02-13 16:52:22.221000000</td>\n",
" <td>97.571739</td>\n",
" <td>2016-02-18 08:35:04.801000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>881</th>\n",
" <td>93.658057</td>\n",
" <td>97.277300</td>\n",
" <td>2015-11-01 18:26:29.557000000</td>\n",
" <td>96.777300</td>\n",
" <td>2015-11-06 16:26:34.749000000</td>\n",
" <td>97.477300</td>\n",
" <td>2015-11-11 05:25:47.238000000</td>\n",
" <td>96.577300</td>\n",
" <td>2015-11-15 14:58:07.839000000</td>\n",
" <td>96.577300</td>\n",
" <td>2015-11-18 16:40:40.914000000</td>\n",
" <td>77.261840</td>\n",
" <td>2015-11-24 16:17:07.260000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1971</th>\n",
" <td>93.579144</td>\n",
" <td>93.579144</td>\n",
" <td>2016-02-21 21:06:47.890000000</td>\n",
" <td>93.579144</td>\n",
" <td>2016-02-29 19:00:47.772000000</td>\n",
" <td>93.579144</td>\n",
" <td>2016-03-03 08:31:28.442000000</td>\n",
" <td>93.579144</td>\n",
" <td>2016-03-05 06:59:02.794000000</td>\n",
" <td>93.579144</td>\n",
" <td>2016-03-13 06:33:31.236000000</td>\n",
" <td>93.579144</td>\n",
" <td>2016-03-13 22:06:01.534000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>619</th>\n",
" <td>92.801278</td>\n",
" <td>99.455813</td>\n",
" <td>2015-11-28 20:42:20.349000000</td>\n",
" <td>98.955813</td>\n",
" <td>2015-12-06 18:10:55.794000000</td>\n",
" <td>99.655813</td>\n",
" <td>2015-12-10 06:26:11.953000000</td>\n",
" <td>98.755813</td>\n",
" <td>2015-12-11 15:01:26.731000000</td>\n",
" <td>88.880232</td>\n",
" <td>2015-12-18 15:15:31.395000000</td>\n",
" <td>71.104185</td>\n",
" <td>2015-12-21 15:36:42.026000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2227</th>\n",
" <td>92.745001</td>\n",
" <td>93.145001</td>\n",
" <td>2015-10-02 14:19:41.921000000</td>\n",
" <td>92.645001</td>\n",
" <td>2015-10-02 16:26:09.357000000</td>\n",
" <td>93.345001</td>\n",
" <td>2015-10-07 00:37:38.774000000</td>\n",
" <td>92.445001</td>\n",
" <td>2015-10-04 16:23:01.877000000</td>\n",
" <td>92.445001</td>\n",
" <td>2015-10-06 01:31:29.739000000</td>\n",
" <td>92.445001</td>\n",
" <td>2015-10-18 06:29:23.646000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a08f5acc-cd45-410b-b35c-47062b5e1dce')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-a08f5acc-cd45-410b-b35c-47062b5e1dce button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-a08f5acc-cd45-410b-b35c-47062b5e1dce');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 37
}
]
},
{
"cell_type": "code",
"source": [
"df['assignment1_submission'] <= '2015-12-31'"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "_w7p9DaW34X0",
"outputId": "27a80071-27c6-4c40-b787-e7af9729ab4c"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 True\n",
"1 True\n",
"2 False\n",
"3 False\n",
"4 True\n",
" ... \n",
"2310 False\n",
"2311 True\n",
"2312 True\n",
"2313 False\n",
"2314 True\n",
"Name: assignment1_submission, Length: 2315, dtype: bool"
]
},
"metadata": {},
"execution_count": 113
}
]
},
{
"cell_type": "code",
"source": [
"early = df[df['assignment1_submission'] <= '2015-12-31']\n",
"early.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 530
},
"id": "9ZVFXe6D4ZXt",
"outputId": "6bb42d29-78e5-452a-bf81-e62dc9c5ae55"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" student_id assignment1_grade \\\n",
"0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 92.733946 \n",
"1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 86.790821 \n",
"4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 64.813800 \n",
"5 D09000A0-827B-C0FF-3433-BF8FF286E15B 71.647278 \n",
"8 C9D51293-BD58-F113-4167-A7C0BAFCB6E5 66.595568 \n",
"\n",
" assignment1_submission assignment2_grade \\\n",
"0 2015-11-02 06:55:34.282000000 83.030552 \n",
"1 2015-11-29 14:57:44.429000000 86.290821 \n",
"4 2015-12-13 17:06:10.750000000 51.491040 \n",
"5 2015-12-28 04:35:32.836000000 64.052550 \n",
"8 2015-12-25 02:29:28.415000000 52.916454 \n",
"\n",
" assignment2_submission assignment3_grade \\\n",
"0 2015-11-09 02:22:58.938000000 67.164441 \n",
"1 2015-12-06 17:41:18.449000000 69.772657 \n",
"4 2015-12-14 12:25:12.056000000 41.932832 \n",
"5 2016-01-03 21:05:38.392000000 64.752550 \n",
"8 2015-12-31 01:42:30.046000000 48.344809 \n",
"\n",
" assignment3_submission assignment4_grade \\\n",
"0 2015-11-12 08:58:33.998000000 53.011553 \n",
"1 2015-12-10 08:54:55.904000000 55.098125 \n",
"4 2015-12-29 14:25:22.594000000 36.929549 \n",
"5 2016-01-07 08:55:43.692000000 57.467295 \n",
"8 2016-01-05 23:34:02.180000000 47.444809 \n",
"\n",
" assignment4_submission assignment5_grade \\\n",
"0 2015-11-16 01:21:24.663000000 47.710398 \n",
"1 2015-12-13 17:32:30.941000000 49.588313 \n",
"4 2015-12-28 01:29:55.901000000 33.236594 \n",
"5 2016-01-11 00:45:28.706000000 57.467295 \n",
"8 2016-01-02 07:48:42.517000000 37.955847 \n",
"\n",
" assignment5_submission assignment6_grade \\\n",
"0 2015-11-20 13:24:59.692000000 38.168318 \n",
"1 2015-12-19 23:26:39.285000000 44.629482 \n",
"4 2015-12-29 14:46:06.628000000 33.236594 \n",
"5 2016-01-11 00:54:13.579000000 57.467295 \n",
"8 2016-01-03 21:27:04.266000000 37.955847 \n",
"\n",
" assignment6_submission \n",
"0 2015-11-22 18:31:15.934000000 \n",
"1 2015-12-21 17:07:24.275000000 \n",
"4 2016-01-05 01:06:59.546000000 \n",
"5 2016-01-20 19:54:46.166000000 \n",
"8 2016-01-19 15:24:31.060000000 "
],
"text/html": [
"\n",
" <div id=\"df-242c517a-5267-49cd-9cbd-85990b358098\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n",
" <td>92.733946</td>\n",
" <td>2015-11-02 06:55:34.282000000</td>\n",
" <td>83.030552</td>\n",
" <td>2015-11-09 02:22:58.938000000</td>\n",
" <td>67.164441</td>\n",
" <td>2015-11-12 08:58:33.998000000</td>\n",
" <td>53.011553</td>\n",
" <td>2015-11-16 01:21:24.663000000</td>\n",
" <td>47.710398</td>\n",
" <td>2015-11-20 13:24:59.692000000</td>\n",
" <td>38.168318</td>\n",
" <td>2015-11-22 18:31:15.934000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n",
" <td>86.790821</td>\n",
" <td>2015-11-29 14:57:44.429000000</td>\n",
" <td>86.290821</td>\n",
" <td>2015-12-06 17:41:18.449000000</td>\n",
" <td>69.772657</td>\n",
" <td>2015-12-10 08:54:55.904000000</td>\n",
" <td>55.098125</td>\n",
" <td>2015-12-13 17:32:30.941000000</td>\n",
" <td>49.588313</td>\n",
" <td>2015-12-19 23:26:39.285000000</td>\n",
" <td>44.629482</td>\n",
" <td>2015-12-21 17:07:24.275000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n",
" <td>64.813800</td>\n",
" <td>2015-12-13 17:06:10.750000000</td>\n",
" <td>51.491040</td>\n",
" <td>2015-12-14 12:25:12.056000000</td>\n",
" <td>41.932832</td>\n",
" <td>2015-12-29 14:25:22.594000000</td>\n",
" <td>36.929549</td>\n",
" <td>2015-12-28 01:29:55.901000000</td>\n",
" <td>33.236594</td>\n",
" <td>2015-12-29 14:46:06.628000000</td>\n",
" <td>33.236594</td>\n",
" <td>2016-01-05 01:06:59.546000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>D09000A0-827B-C0FF-3433-BF8FF286E15B</td>\n",
" <td>71.647278</td>\n",
" <td>2015-12-28 04:35:32.836000000</td>\n",
" <td>64.052550</td>\n",
" <td>2016-01-03 21:05:38.392000000</td>\n",
" <td>64.752550</td>\n",
" <td>2016-01-07 08:55:43.692000000</td>\n",
" <td>57.467295</td>\n",
" <td>2016-01-11 00:45:28.706000000</td>\n",
" <td>57.467295</td>\n",
" <td>2016-01-11 00:54:13.579000000</td>\n",
" <td>57.467295</td>\n",
" <td>2016-01-20 19:54:46.166000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>C9D51293-BD58-F113-4167-A7C0BAFCB6E5</td>\n",
" <td>66.595568</td>\n",
" <td>2015-12-25 02:29:28.415000000</td>\n",
" <td>52.916454</td>\n",
" <td>2015-12-31 01:42:30.046000000</td>\n",
" <td>48.344809</td>\n",
" <td>2016-01-05 23:34:02.180000000</td>\n",
" <td>47.444809</td>\n",
" <td>2016-01-02 07:48:42.517000000</td>\n",
" <td>37.955847</td>\n",
" <td>2016-01-03 21:27:04.266000000</td>\n",
" <td>37.955847</td>\n",
" <td>2016-01-19 15:24:31.060000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-242c517a-5267-49cd-9cbd-85990b358098')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-242c517a-5267-49cd-9cbd-85990b358098 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-242c517a-5267-49cd-9cbd-85990b358098');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 114
}
]
},
{
"cell_type": "code",
"source": [
"len(early)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "TVQV8Kdx4tR-",
"outputId": "d083ae3c-1796-4f74-d03e-071ae2e48c0e"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"1256"
]
},
"metadata": {},
"execution_count": 115
}
]
},
{
"cell_type": "code",
"source": [
"len(early)/len(df)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "MFT5U9ij4xZY",
"outputId": "4612d3e2-ac8b-47be-e138-71ee6d8870c3"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0.542548596112311"
]
},
"metadata": {},
"execution_count": 116
}
]
},
{
"cell_type": "code",
"source": [
"early.mean()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "FY561bTa48GQ",
"outputId": "bff50bb0-84b0-4d79-8e50-7628c005e6c2"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning:\n",
"\n",
"Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
"\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"assignment1_grade 74.972741\n",
"assignment2_grade 67.252190\n",
"assignment3_grade 61.129050\n",
"assignment4_grade 54.157620\n",
"assignment5_grade 48.634643\n",
"assignment6_grade 43.838980\n",
"dtype: float64"
]
},
"metadata": {},
"execution_count": 120
}
]
},
{
"cell_type": "code",
"source": [
"# ¿Cuanto fue la hora promedio de envio de los examenes por cada estudiante? \n",
"df['assignment1_submission'] = df.mean(axis=1)\n",
"df.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 600
},
"id": "kw6_LC8v5On8",
"outputId": "851e2cd8-1525-4f1e-c1d6-a7f05c805af5"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: FutureWarning:\n",
"\n",
"Dropping of nuisance columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.\n",
"\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
" student_id assignment1_grade \\\n",
"0 B73F2C11-70F0-E37D-8B10-1D20AFED50B1 92.733946 \n",
"1 98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1 86.790821 \n",
"2 D0F62040-CEB0-904C-F563-2F8620916C4E 85.512541 \n",
"3 FFDF2B2C-F514-EF7F-6538-A6A53518E9DC 86.030665 \n",
"4 5ECBEEB6-F1CE-80AE-3164-E45E99473FB4 64.813800 \n",
"\n",
" assignment1_submission assignment2_grade assignment2_submission \\\n",
"0 63.636535 83.030552 2015-11-09 02:22:58.938000000 \n",
"1 65.361703 86.290821 2015-12-06 17:41:18.449000000 \n",
"2 64.624678 85.512541 2016-01-09 06:39:44.416000000 \n",
"3 60.083816 68.824532 2016-04-30 17:20:38.727000000 \n",
"4 43.606735 51.491040 2015-12-14 12:25:12.056000000 \n",
"\n",
" assignment3_grade assignment3_submission assignment4_grade \\\n",
"0 67.164441 2015-11-12 08:58:33.998000000 53.011553 \n",
"1 69.772657 2015-12-10 08:54:55.904000000 55.098125 \n",
"2 68.410033 2016-01-15 20:22:45.882000000 54.728026 \n",
"3 61.942079 2016-05-12 07:47:16.326000000 49.553663 \n",
"4 41.932832 2015-12-29 14:25:22.594000000 36.929549 \n",
"\n",
" assignment4_submission assignment5_grade \\\n",
"0 2015-11-16 01:21:24.663000000 47.710398 \n",
"1 2015-12-13 17:32:30.941000000 49.588313 \n",
"2 2016-01-11 12:41:50.749000000 49.255224 \n",
"3 2016-05-07 16:09:20.485000000 49.553663 \n",
"4 2015-12-28 01:29:55.901000000 33.236594 \n",
"\n",
" assignment5_submission assignment6_grade \\\n",
"0 2015-11-20 13:24:59.692000000 38.168318 \n",
"1 2015-12-19 23:26:39.285000000 44.629482 \n",
"2 2016-01-11 17:31:12.489000000 44.329701 \n",
"3 2016-05-24 12:51:18.016000000 44.598297 \n",
"4 2015-12-29 14:46:06.628000000 33.236594 \n",
"\n",
" assignment6_submission \n",
"0 2015-11-22 18:31:15.934000000 \n",
"1 2015-12-21 17:07:24.275000000 \n",
"2 2016-01-17 16:24:42.765000000 \n",
"3 2016-05-26 08:09:12.058000000 \n",
"4 2016-01-05 01:06:59.546000000 "
],
"text/html": [
"\n",
" <div id=\"df-528d7824-34af-486f-8b61-a6b9af3bf486\">\n",
" <div class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>student_id</th>\n",
" <th>assignment1_grade</th>\n",
" <th>assignment1_submission</th>\n",
" <th>assignment2_grade</th>\n",
" <th>assignment2_submission</th>\n",
" <th>assignment3_grade</th>\n",
" <th>assignment3_submission</th>\n",
" <th>assignment4_grade</th>\n",
" <th>assignment4_submission</th>\n",
" <th>assignment5_grade</th>\n",
" <th>assignment5_submission</th>\n",
" <th>assignment6_grade</th>\n",
" <th>assignment6_submission</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>B73F2C11-70F0-E37D-8B10-1D20AFED50B1</td>\n",
" <td>92.733946</td>\n",
" <td>63.636535</td>\n",
" <td>83.030552</td>\n",
" <td>2015-11-09 02:22:58.938000000</td>\n",
" <td>67.164441</td>\n",
" <td>2015-11-12 08:58:33.998000000</td>\n",
" <td>53.011553</td>\n",
" <td>2015-11-16 01:21:24.663000000</td>\n",
" <td>47.710398</td>\n",
" <td>2015-11-20 13:24:59.692000000</td>\n",
" <td>38.168318</td>\n",
" <td>2015-11-22 18:31:15.934000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>98A0FAE0-A19A-13D2-4BB5-CFBFD94031D1</td>\n",
" <td>86.790821</td>\n",
" <td>65.361703</td>\n",
" <td>86.290821</td>\n",
" <td>2015-12-06 17:41:18.449000000</td>\n",
" <td>69.772657</td>\n",
" <td>2015-12-10 08:54:55.904000000</td>\n",
" <td>55.098125</td>\n",
" <td>2015-12-13 17:32:30.941000000</td>\n",
" <td>49.588313</td>\n",
" <td>2015-12-19 23:26:39.285000000</td>\n",
" <td>44.629482</td>\n",
" <td>2015-12-21 17:07:24.275000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>D0F62040-CEB0-904C-F563-2F8620916C4E</td>\n",
" <td>85.512541</td>\n",
" <td>64.624678</td>\n",
" <td>85.512541</td>\n",
" <td>2016-01-09 06:39:44.416000000</td>\n",
" <td>68.410033</td>\n",
" <td>2016-01-15 20:22:45.882000000</td>\n",
" <td>54.728026</td>\n",
" <td>2016-01-11 12:41:50.749000000</td>\n",
" <td>49.255224</td>\n",
" <td>2016-01-11 17:31:12.489000000</td>\n",
" <td>44.329701</td>\n",
" <td>2016-01-17 16:24:42.765000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>FFDF2B2C-F514-EF7F-6538-A6A53518E9DC</td>\n",
" <td>86.030665</td>\n",
" <td>60.083816</td>\n",
" <td>68.824532</td>\n",
" <td>2016-04-30 17:20:38.727000000</td>\n",
" <td>61.942079</td>\n",
" <td>2016-05-12 07:47:16.326000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-07 16:09:20.485000000</td>\n",
" <td>49.553663</td>\n",
" <td>2016-05-24 12:51:18.016000000</td>\n",
" <td>44.598297</td>\n",
" <td>2016-05-26 08:09:12.058000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5ECBEEB6-F1CE-80AE-3164-E45E99473FB4</td>\n",
" <td>64.813800</td>\n",
" <td>43.606735</td>\n",
" <td>51.491040</td>\n",
" <td>2015-12-14 12:25:12.056000000</td>\n",
" <td>41.932832</td>\n",
" <td>2015-12-29 14:25:22.594000000</td>\n",
" <td>36.929549</td>\n",
" <td>2015-12-28 01:29:55.901000000</td>\n",
" <td>33.236594</td>\n",
" <td>2015-12-29 14:46:06.628000000</td>\n",
" <td>33.236594</td>\n",
" <td>2016-01-05 01:06:59.546000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-528d7824-34af-486f-8b61-a6b9af3bf486')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
" \n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
" <path d=\"M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\"/>\n",
" </svg>\n",
" </button>\n",
" \n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" flex-wrap:wrap;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-528d7824-34af-486f-8b61-a6b9af3bf486 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-528d7824-34af-486f-8b61-a6b9af3bf486');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
]
},
"metadata": {},
"execution_count": 121
}
]
},
{
"cell_type": "code",
"source": [
"df['assignment1_submission'].mean()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "MT4P31Qo5kSg",
"outputId": "fb68980d-484a-490c-f22b-6849361b3c8b"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"58.09667041068115"
]
},
"metadata": {},
"execution_count": 122
}
]
},
{
"cell_type": "markdown",
"source": [
""
],
"metadata": {
"id": "seoecjcrrFov"
}
},
{
"cell_type": "markdown",
"source": [
"# (20%) Investigación\n",
"\n",
"1. Defina con sus palabras en que consiste el metodo **Term Frequency - \n",
"Inverse Document Frequency (TF-IDF)** para el procesamiento de texto.\n",
"\n",
"TF-IDF: Permite determinar mediante un procesamiento de texto de manera estadística, un valor númerico que deja ver la importancia de una palabra clave dentro de un sitio web, dando así importancia y relevancia, entre mayor número de veces esta se repita en el sitio web. El significado de las siglas son los siguientes: \n",
"Tf: Frecuencia de término \n",
"IDF: Frecuencia inversa del documento\n",
"\n",
"Se usa para ranking de búsqueda en las páginas web, permite realizar resúmenes de textos, agrupación y clasificación de textos, autentificación de autoría de un texto y recomendación de documentos entre otros. \n",
"\n",
"\n",
"2. Realice un ejemplo claro donde se pueda identificar la implementacion del metodo (TF-IDF) y el entendimiento del mismo.\n",
"\n",
"Lo visualizará a lo último. \n",
"\n",
"\n",
"3. En que se diferencia el metodo (TF-IDF) vs CountVectorize visto en clase.\n",
"\n",
"En CountVectorizer solo contamos el número de veces que aparece una palabra en el documento, lo que da como resultado un sesgo a favor de las palabras más frecuentes. esto termina ignorando palabras raras que podrían haber ayudado a procesar nuestros datos de manera más eficiente. Para superar esto, usamos TfidfVectorizer.\n",
"En TfidfVectorizer consideramos el peso total del documento de una palabra. Nos ayuda a lidiar con las palabras más frecuentes. Usándolo podemos penalizarlos. TfidfVectorizer pondera el número de palabras según la frecuencia con la que aparecen en los documentos."
],
"metadata": {
"id": "vNmc7EN7pw9A"
}
},
{
"cell_type": "code",
"source": [
""
],
"metadata": {
"id": "BFLAD4W5gnSj"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Ejemplo punto 2. \n",
"**Implementación del método TF-IDF**\n"
],
"metadata": {
"id": "OJvTbLHC6fcY"
}
},
{
"cell_type": "code",
"source": [
"# encoding=utf-8\n",
"import jieba\n",
"jieba.load_userdict(\"newDict.txt\") # Cargar diccionario definido por el usuario\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"# print(dir(TfidfVectorizer))\n",
"\n",
"def cut(txt_name1, txt_name2):\n",
" with open(txt_name1, 'r') as f1: # Abra el archivo como de solo lectura\n",
" txt = f1.read()\n",
" txt_encode = txt.encode('utf-8')\n",
" txt_cut = jieba.cut(txt_encode) # Cortar palabras\n",
" result = ' '.join(txt_cut)\n",
" # print(result)\n",
" with open(txt_name2, 'w') as f2: # El resultado de la segmentación de palabras se escribe en un archivo y se guarda\n",
" f2.write(result)\n",
" f1.close()\n",
" f2.close()\n",
"\n",
"cut('nlp_test0.txt', 'nlp_test0_0.txt') # Separe las palabras llamando al método de corte en el archivo\n",
"cut('nlp_test1.txt', 'nlp_test1_1.txt')\n",
"\n",
"# Lea la lista de palabras vacías del archivo y divídala en una matriz para su uso posterior\n",
"stopWords_dic = open('stop_words.txt', 'r') # Leer palabras vacías del archivo\n",
"stopWords_content = stopWords_dic.read()\n",
"stopWords_list = stopWords_content.splitlines() # Convertir a lista en espera\n",
"stopWords_dic.close()\n",
"\n",
"with open('nlp_test0_0.txt', 'r') as f3:\n",
" res3 = f3.read()\n",
"with open('nlp_test1_1.txt', 'r') as f4:\n",
" res4 = f4.read()\n",
"\n",
"corpus = [res3, res4]\n",
"# print(corpus)\n",
"vector = TfidfVectorizer(stop_words=stopWords_list)\n",
"tf_idf = vector.fit_transform(corpus)\n",
"# print(tf_idf)\n",
"\n",
"word_list = vector.get_feature_names() # Obtén todas las palabras del modelo de bolsa de palabras\n",
"weight_list = tf_idf.toarray()\n",
"# result1 = ''.join(word_list)\n",
"# result2 = ''.join(weight_list)\n",
"# print(result1, result2)\n",
"# with open('words_list.txt', 'w') as f3:\n",
"# f3.write(result)\n",
"\n",
"\n",
"# Imprime el peso de la palabra tf-idf de cada tipo de texto, el primero para atravesar todos los textos y el segundo para facilita el peso de las palabras bajo un cierto tipo de texto\n",
"for i in range(len(weight_list)):\n",
" print(\"-------No.\", i+1, \"La palabra tf-idf peso de un párrafo de texto ------\")\n",
" for j in range(len(word_list)):\n",
" print(word_list[j], weight_list[i][j])"
],
"metadata": {
"id": "WE3G5KEC6el5"
},
"execution_count": null,
"outputs": []
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment