Skip to content

Instantly share code, notes, and snippets.

@SSARCandy
Last active April 12, 2017 14:26
Show Gist options
  • Select an option

  • Save SSARCandy/8f79625cc86e8246af8ba6ba3f888704 to your computer and use it in GitHub Desktop.

Select an option

Save SSARCandy/8f79625cc86e8246af8ba6ba3f888704 to your computer and use it in GitHub Desktop.
python opencv shrink interpolation comparsion
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import cv2"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"a = np.zeros((100,100))"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"for i in range(50):\n",
" a[:][i] = 1\n"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAC0pJREFUeJzt3UGMnPV5x/Hvr944FKIGO1iWY0PtCJQIRUqIVimIHiJI\nVEqjwAGlRGllVVS+pApJI6XQnnIrUhTCoYpkQSNURYHUQbWFokTUMYdeXJaCErAhuEDAlsGLCkmV\nQxUrTw/zutogww67M7uzfb4fabX7vvPOvo/+8nfnnfF4napCUi+/s94DSFp7hi81ZPhSQ4YvNWT4\nUkOGLzVk+FJDqwo/yQ1Jnk1yIskdkxpK0nRlpW/gSbIJ+BnwKeAk8Bjwuao6NrnxJE3D3Cru+3Hg\nRFU9D5DkAeAm4C3Dv+SSS2r37t2rOKWkt/Piiy/y2muvZbnjVhP+TuDlJdsngT9480FJ9gH7AC67\n7DIWFhZWcUpJb2d+fn6s46b+4l5V7a+q+aqa37Zt27RPJ2kMqwn/FHDpku1dwz5JM2414T8GXJFk\nT5LNwK3AocmMJWmaVvwcv6rOJvkr4EfAJuAfq+rpiU0maWpW8+IeVfUD4AcTmkXSGvGde1JDhi81\nZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhSQ4YvNWT4UkOGLzVk\n+FJDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhSQ4YvNbRs\n+EkuTXIkybEkTye5fdi/NckjSZ4bPm+Z/riSJmGcR/yzwFeq6krgauALSa4E7gAOV9UVwOFhW9IG\nsGz4VXW6qv5j+Pq/gePATuAm4P7hsPuBm6c1pKTJekfP8ZPsBq4CjgLbq+r0cNMrwPaJTiZpasYO\nP8l7gO8DX6qqXy69raoKqLe4374kC0kWFhcXVzWspMkYK/wk72IU/Xeq6qFh96tJdgy37wDOnO++\nVbW/quaran7btm2TmFnSKo3zqn6A+4DjVfWNJTcdAvYOX+8FDk5+PEnTMDfGMdcCfw78NMmTw76/\nBf4e+F6S24CfA5+dzoiSJm3Z8Kvq34C8xc3XT3YcSWvBd+5JDRm+1JDhSw0ZvtSQ4UsNGb7UkOFL\nDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsN\nGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNjR1+kk1Jnkjy8LC9J8nR\nJCeSPJhk8/TGlDRJ7+QR/3bg+JLtu4C7q+py4HXgtkkOJml6xgo/yS7gT4B7h+0A1wEHhkPuB26e\nxoCSJm/cR/xvAl8FfjNsvw94o6rODtsngZ3nu2OSfUkWkiwsLi6ualhJk7Fs+Ek+DZypqsdXcoKq\n2l9V81U1v23btpV8C0kTNjfGMdcCn0lyI3AB8HvAPcDFSeaGR/1dwKnpjSlpkpZ9xK+qO6tqV1Xt\nBm4FflxVnweOALcMh+0FDk5tSkkTtZq/x/8b4K+TnGD0nP++yYwkadrGudT/P1X1KPDo8PXzwMcn\nP5KkafOde1JDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhS\nQ6mqtTtZsnYnk5qqqix3jI/4UkOGLzVk+FJDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhSQ4Yv\nNWT4UkOGLzVk+FJDhi81ZPhSQ4YvNTRW+EkuTnIgyTNJjie5JsnWJI8keW74vGXaw0qajHEf8e8B\nflhVHwI+AhwH7gAOV9UVwOFhW9IGsOwv20zyXuBJ4AO15OAkzwKfqKrTSXYAj1bVB5f5Xv6yTWnK\nJvXLNvcAi8C3kzyR5N4kFwHbq+r0cMwrwPaVjyppLY0T/hzwMeBbVXUV8CvedFk/XAmc99E8yb4k\nC0kWVjuspMkYJ/yTwMmqOjpsH2D0g+DV4RKf4fOZ8925qvZX1XxVzU9iYEmrt2z4VfUK8HKSc8/f\nrweOAYeAvcO+vcDBqUwoaeLG+p90knwUuBfYDDwP/AWjHxrfAy4Dfg58tqr+a5nv44t70pSN8+Ke\n/4WW9P+M/4WWpPMyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkh\nw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHD\nlxoyfKkhw5caMnypIcOXGhor/CRfTvJ0kqeSfDfJBUn2JDma5ESSB5NsnvawkiZj2fCT7AS+CMxX\n1YeBTcCtwF3A3VV1OfA6cNs0B5U0OeNe6s8Bv5tkDrgQOA1cBxwYbr8fuHny40mahmXDr6pTwNeB\nlxgF/wvgceCNqjo7HHYS2Hm++yfZl2QhycJkRpa0WuNc6m8BbgL2AO8HLgJuGPcEVbW/quaran7F\nU0qaqHEu9T8JvFBVi1X1a+Ah4Frg4uHSH2AXcGpKM0qasHHCfwm4OsmFSQJcDxwDjgC3DMfsBQ5O\nZ0RJk5aqWv6g5GvAnwJngSeAv2T0nP4BYOuw78+q6n+W+T7Ln0zSqlRVljtmrPAnxfCl6RsnfN+5\nJzVk+FJDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhSQ4Yv\nNWT4UkOGLzVk+FJDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81ZPhSQ4YvNWT4UkOGLzVk+FJDhi81\nZPhSQ4YvNWT4UkOGLzU0t8bnew341fB5I7iEjTMrbKx5N9KssHHm/f1xDkpVTXuQ3z5hslBV82t6\n0hXaSLPCxpp3I80KG2/e5XipLzVk+FJD6xH+/nU450ptpFlhY827kWaFjTfv21rz5/iS1p+X+lJD\naxZ+khuSPJvkRJI71uq840pyaZIjSY4leTrJ7cP+rUkeSfLc8HnLes96TpJNSZ5I8vCwvSfJ0WGN\nH0yyeb1nPCfJxUkOJHkmyfEk18zq2ib58vBn4Kkk301ywSyv7UqsSfhJNgH/APwxcCXwuSRXrsW5\n34GzwFeq6krgauALw4x3AIer6grg8LA9K24Hji/Zvgu4u6ouB14HbluXqc7vHuCHVfUh4COM5p65\ntU2yE/giMF9VHwY2Abcy22v7zlXV1D+Aa4AfLdm+E7hzLc69ipkPAp8CngV2DPt2AM+u92zDLLsY\nxXId8DAQRm8wmTvfmq/zrO8FXmB4TWnJ/plbW2An8DKwldEb3B4G/mhW13alH2t1qX9uMc85Oeyb\nSUl2A1cBR4HtVXV6uOkVYPs6jfVm3wS+Cvxm2H4f8EZVnR22Z2mN9wCLwLeHpyb3JrmIGVzbqjoF\nfB14CTgN/AJ4nNld2xXxxb03SfIe4PvAl6rql0tvq9GP+3X/a5AknwbOVNXj6z3LmOaAjwHfqqqr\nGL1t+7cu62dobbcANzH6YfV+4CLghnUdagrWKvxTwKVLtncN+2ZKkncxiv47VfXQsPvVJDuG23cA\nZ9ZrviWuBT6T5EXgAUaX+/cAFyc59+8vZmmNTwInq+rosH2A0Q+CWVzbTwIvVNViVf0aeIjRes/q\n2q7IWoX/GHDF8MroZkYvlhxao3OPJUmA+4DjVfWNJTcdAvYOX+9l9Nx/XVXVnVW1q6p2M1rLH1fV\n54EjwC3DYTMxK0BVvQK8nOSDw67rgWPM4NoyusS/OsmFw5+Jc7PO5Nqu2Bq+aHIj8DPgP4G/W+8X\nN84z3x8yutT8CfDk8HEjo+fOh4HngH8Ftq73rG+a+xPAw8PXHwD+HTgB/DPw7vWeb8mcHwUWhvX9\nF2DLrK4t8DXgGeAp4J+Ad8/y2q7kw3fuSQ354p7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDf0v\nGqTADHpl13cAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x24ed7699c88>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(a, cmap='gray')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACrNJREFUeJzt3UGIXfd5hvHnrWTVgRBkxYMQGlM5WDRokTgwGAd3UZQa\nVCdEWphikxYtBNqk4NBAqrRQSFfxJk4W3YjYRIsQO3UCEiZQVEUQCkX2JHZa2yKREhwiI1sysUiy\ncavk62KOw1TVZK5m7r1zp9/zg2HOOfeM/x9iHp17z1xrUlVI6uUPNnoASdNn+FJDhi81ZPhSQ4Yv\nNWT4UkOGLzVk+FJD6wo/yYEkP0pyMcmxcQ0labKy1nfuJdkC/Bh4ELgEvAA8WlWvrvQ1d955Z+3Z\ns2dN60la3WuvvcZbb72V1c7buo417gMuVtVPAZI8DRwEVgx/z549LC4urmNJSb/PwsLCSOet56n+\nbuDny/YvDcckzbiJ39xLcjTJYpLFq1evTno5SSNYT/ivA3ct258fjv0vVXW8qhaqamFubm4dy0ka\nl/WE/wKwN8ndSbYBjwCnxjOWpEla8829qrqe5K+BfwG2AE9V1Stjm0zSxKznrj5V9R3gO2OaRdKU\n+M49qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5ca\nMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoy\nfKkhw5caWjX8JE8luZLk5WXHdiQ5neTC8PmOyY4paZxGueJ/DThww7FjwJmq2gucGfYlbRKrhl9V\n3wN+ccPhg8CJYfsEcGjMc0maoLW+xt9ZVZeH7TeAnWOaR9IUrPvmXlUVUCs9nuRoksUki1evXl3v\ncpLGYK3hv5lkF8Dw+cpKJ1bV8apaqKqFubm5NS4naZzWGv4p4PCwfRg4OZ5xJE3DKD/O+wbw78Af\nJ7mU5AjwReDBJBeAPxv2JW0SW1c7oaoeXeGhj415FklT4jv3pIYMX2rI8KWGDF9qyPClhgxfasjw\npYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPCl\nhgxfasjwpYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPClhlYNP8ldSc4meTXJK0ke\nG47vSHI6yYXh8x2TH1fSOIxyxb8OfLaq9gH3A59Osg84Bpypqr3AmWFf0iawavhVdbmqfjBs/wo4\nD+wGDgInhtNOAIcmNaSk8bql1/hJ9gAfAc4BO6vq8vDQG8DOsU4maWJGDj/Je4FvAZ+pql8uf6yq\nCqgVvu5oksUki1evXl3XsJLGY6Twk9zGUvRfr6pvD4ffTLJreHwXcOVmX1tVx6tqoaoW5ubmxjGz\npHUa5a5+gCeB81X1pWUPnQIOD9uHgZPjH0/SJGwd4ZwHgL8C/jPJS8OxvwO+CHwzyRHgZ8BfTGZE\nSeO2avhV9W9AVnj4Y+MdR9I0+M49qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnyp\nIcOXGjJ8qSHDlxrK0r+aNaXFkuktJjVVVSv9b/S/4xVfasjwpYYMX2rI8KWGDF9qyPClhgxfasjw\npYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPClhgxfamjV8JPcnuT5JD9M8kqSLwzH\n705yLsnFJM8k2Tb5cSWNwyhX/HeA/VX1YeBe4ECS+4HHgSeq6h7gbeDI5MaUNE6rhl9Lfj3s3jZ8\nFLAfeHY4fgI4NJEJJY3dSK/xk2xJ8hJwBTgN/AS4VlXXh1MuAbsnM6KkcRsp/Kr6TVXdC8wD9wEf\nHHWBJEeTLCZZXOOMksbslu7qV9U14CzwUWB7kq3DQ/PA6yt8zfGqWqiqhXVNKmlsRrmrP5dk+7D9\nHuBB4DxLfwE8PJx2GDg5qSEljdeqv0IryYdYunm3haW/KL5ZVf+Y5APA08AO4EXgL6vqnVX+W/4K\nLWnCRvkVWv7uPOn/GX93nqSbMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkh\nw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHD\nlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoaOfwkW5K8mOS5Yf/uJOeSXEzyTJJtkxtT0jjdyhX/MeD8\nsv3HgSeq6h7gbeDIOAeTNDkjhZ9kHvg48NVhP8B+4NnhlBPAoUkMKGn8Rr3ifxn4HPDbYf/9wLWq\nuj7sXwJ23+wLkxxNsphkcV2TShqbVcNP8gngSlV9fy0LVNXxqlqoqoW1fL2k8ds6wjkPAJ9M8hBw\nO/A+4CvA9iRbh6v+PPD65MaUNE6rXvGr6vNVNV9Ve4BHgO9W1aeAs8DDw2mHgZMTm1LSWK3n5/h/\nC/xNkossveZ/cjwjSZq0VNX0Fkumt5jUVFVltXN8557UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFL\nDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsN\nGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNbZ3yem8BPwPuHLY3g800\nK2yueTfTrLA55v2jUU5KVU16kP+7aLJYVQtTX3gNNtOssLnm3Uyzwuab9/fxqb7UkOFLDW1U+Mc3\naN212EyzwuaadzPNCptv3hVtyGt8SRvLp/pSQ1MNP8mBJD9KcjHJsWmuPYokTyW5kuTlZcd2JDmd\n5MLw+Y6NnPFdSe5KcjbJq0leSfLYcHxW5709yfNJfjjM+4Xh+N1Jzg3fE88k2bbRs74ryZYkLyZ5\nbtif2Vlv1dTCT7IF+Cfgz4F9wKNJ9k1r/RF9DThww7FjwJmq2gucGfZnwXXgs1W1D7gf+PTw5zmr\n874D7K+qDwP3AgeS3A88DjxRVfcAbwNHNnDGGz0GnF+2P8uz3pJpXvHvAy5W1U+r6r+Ap4GDU1x/\nVVX1PeAXNxw+CJwYtk8Ah6Y61Aqq6nJV/WDY/hVL36C7md15q6p+PezeNnwUsB94djg+M/MmmQc+\nDnx12A8zOutaTDP83cDPl+1fGo7Nup1VdXnYfgPYuZHD3EySPcBHgHPM8LzDU+eXgCvAaeAnwLWq\nuj6cMkvfE18GPgf8dth/P7M76y3z5t4tqKUfgczUj0GSvBf4FvCZqvrl8sdmbd6q+k1V3QvMs/QM\n8IMbPNJNJfkEcKWqvr/Rs0zKNN+r/zpw17L9+eHYrHszya6qupxkF0tXq5mQ5DaWov96VX17ODyz\n876rqq4lOQt8FNieZOtwJZ2V74kHgE8meQi4HXgf8BVmc9Y1meYV/wVg73BndBvwCHBqiuuv1Sng\n8LB9GDi5gbP8zvCa80ngfFV9adlDszrvXJLtw/Z7gAdZui9xFnh4OG0m5q2qz1fVfFXtYen79LtV\n9SlmcNY1q6qpfQAPAT9m6bXd309z7RHn+wZwGfhvll7DHWHptd0Z4ALwr8COjZ5zmPVPWHoa/x/A\nS8PHQzM874eAF4d5Xwb+YTj+AeB54CLwz8AfbvSsN8z9p8Bzm2HWW/nwnXtSQ97ckxoyfKkhw5ca\nMnypIcOXGjJ8qSHDlxoyfKmh/wE6lRkU78/0SQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x24ed773bbe0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"b = cv2.resize(a, (50, 50), interpolation=cv2.INTER_AREA)\n",
"plt.imshow(b, cmap='gray')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACw5JREFUeJzt3U+InPd9x/H3x1q5DoRgayWEkETtYtOgQ+PAYhzcQ3Fq\nrDoh9sEUm1B0EPiSgkMDqdJCIdBDfImTQy8iNtEhxE6dgIUJGFURhEKxvYmd1rZIpASCZGSr+keS\nSypF3x72cdiqVna0OzM7y/f9gmXneeYZfl/MvvXMPDPeTVUhqZeb1nsASdNn+FJDhi81ZPhSQ4Yv\nNWT4UkOGLzVk+FJDawo/yd4kP01yMsmBcQ0labKy2k/uJdkE/Ax4ADgNvAY8XlVvX+8xW7Zsqd27\nd69qPUkrO3XqFBcuXMhKx82tYY17gJNV9QuAJM8BDwPXDX/37t28/PLLa1hS0h/y4IMPjnTcWp7q\n7wROLds+PeyTNOMmfnEvyRNJFpMsnj9/ftLLSRrBWsJ/B1j+gn3XsO//qKqDVbVQVQvz8/NrWE7S\nuKwl/NeAu5LckeRm4DHg8HjGkjRJq764V1VXkvwt8DKwCXi2qt4a22SSJmYtV/Wpqu8D3x/TLJKm\nxE/uSQ0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7U\nkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ\n4UsNGb7U0IrhJ3k2ydkkby7btyXJkSQnhu+3TXZMSeM0yhn/m8Dea/YdAI5W1V3A0WFb0gaxYvhV\n9UPgwjW7HwYODbcPAY+MeS5JE7Ta1/jbq+rMcPtdYPuY5pE0BWu+uFdVBdT17k/yRJLFJIvnz59f\n63KSxmC14b+XZAfA8P3s9Q6sqoNVtVBVC/Pz86tcTtI4rTb8w8C+4fY+4MXxjCNpGkZ5O+/bwH8A\nf5rkdJL9wFeAB5KcAP5y2Ja0QcytdEBVPX6duz455lkkTYmf3JMaMnypIcOXGjJ8qSHDlxoyfKkh\nw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHD\nlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxpaMfwku5McS/J2kreS\nPDns35LkSJITw/fbJj+upHEY5Yx/BfhCVe0B7gU+l2QPcAA4WlV3AUeHbUkbwIrhV9WZqvrxcPvX\nwHFgJ/AwcGg47BDwyKSGlDReN/QaP8ntwMeBV4DtVXVmuOtdYPtYJ5M0MSOHn+TDwHeBz1fVr5bf\nV1UF1HUe90SSxSSL58+fX9OwksZjpPCTbGYp+m9V1feG3e8l2THcvwM4+0GPraqDVbVQVQvz8/Pj\nmFnSGo1yVT/AM8DxqvrqsrsOA/uG2/uAF8c/nqRJmBvhmPuAvwH+K8kbw75/AL4CfCfJfuCXwF9P\nZkRJ47Zi+FX170Cuc/cnxzuOpGnwk3tSQ4YvNWT4UkOGLzVk+FJDo7ydNzZJ2LRp0zSXlFpZ+tjN\nyjzjSw0ZvtSQ4UsNGb7U0FQv7s3NzbFt27ZpLim1Mjc3WtKe8aWGDF9qyPClhrL0W7OmtFgyvcWk\npqpqxU/xeMaXGjJ8qSHDlxqa+vv4t93mX9qSJuXixYsjHecZX2rI8KWGDF9qyPClhqZ6cQ/wN/BI\nM8AzvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDa0YfpJbkrya5CdJ3kry5WH/HUle\nSXIyyfNJbp78uJLGYZQz/m+B+6vqY8DdwN4k9wJPAU9X1Z3ARWD/5MaUNE4rhl9LfjNsbh6+Crgf\neGHYfwh4ZCITShq7kV7jJ9mU5A3gLHAE+DlwqaquDIecBnZOZkRJ4zZS+FX1u6q6G9gF3AN8dNQF\nkjyRZDHJ4tWrV1c5pqRxuqGr+lV1CTgGfAK4Ncn7/z//LuCd6zzmYFUtVNXCTTf5JoI0C0a5qr8t\nya3D7Q8BDwDHWfoH4NHhsH3Ai5MaUtJ4jfIbeHYAh5JsYukfiu9U1UtJ3gaeS/LPwOvAMxOcU9IY\nTfVv523evLm2bt06tfWkbs6dO8fly5f923mS/j/DlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkh\nw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHD\nlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypoZHDT7IpyetJXhq270jySpKTSZ5PcvPk\nxpQ0Tjdyxn8SOL5s+yng6aq6E7gI7B/nYJImZ6Twk+wCPgV8Y9gOcD/wwnDIIeCRSQwoafxGPeN/\nDfgicHXYngcuVdWVYfs0sPODHpjkiSSLSRavXr36QYdImrIVw0/yaeBsVf1oNQtU1cGqWqiqhZtu\n8lqiNAvmRjjmPuAzSR4CbgE+AnwduDXJ3HDW3wW8M7kxJY3TiqfgqvpSVe2qqtuBx4AfVNVngWPA\no8Nh+4AXJzalpLFay3Pvvwf+LslJll7zPzOekSRNWqpqaott3ry5tm7dOrX1pG7OnTvH5cuXs9Jx\nXm2TGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkh\nw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHD\nlxoyfKkhw5caMnypoVTV9BZL/hv4JbAVODe1hddmI80KG2vejTQrbIx5/7iqtq100FTD//2iyWJV\nLUx94VXYSLPCxpp3I80KG2/eP8Sn+lJDhi81tF7hH1yndVdjI80KG2vejTQrbLx5r2tdXuNLWl8+\n1Zcammr4SfYm+WmSk0kOTHPtUSR5NsnZJG8u27clyZEkJ4bvt63njO9LsjvJsSRvJ3kryZPD/lmd\n95Ykryb5yTDvl4f9dyR5ZfiZeD7Jzes96/uSbEryepKXhu2ZnfVGTS38JJuAfwH+CtgDPJ5kz7TW\nH9E3gb3X7DsAHK2qu4Cjw/YsuAJ8oar2APcCnxv+e87qvL8F7q+qjwF3A3uT3As8BTxdVXcCF4H9\n6zjjtZ4Eji/bnuVZb8g0z/j3ACer6hdV9T/Ac8DDU1x/RVX1Q+DCNbsfBg4Ntw8Bj0x1qOuoqjNV\n9ePh9q9Z+gHdyezOW1X1m2Fz8/BVwP3AC8P+mZk3yS7gU8A3hu0wo7OuxjTD3wmcWrZ9etg367ZX\n1Znh9rvA9vUc5oMkuR34OPAKMzzv8NT5DeAscAT4OXCpqq4Mh8zSz8TXgC8CV4fteWZ31hvmxb0b\nUEtvgczU2yBJPgx8F/h8Vf1q+X2zNm9V/a6q7gZ2sfQM8KPrPNIHSvJp4GxV/Wi9Z5mUuSmu9Q6w\ne9n2rmHfrHsvyY6qOpNkB0tnq5mQZDNL0X+rqr437J7Zed9XVZeSHAM+AdyaZG44k87Kz8R9wGeS\nPATcAnwE+DqzOeuqTPOM/xpw13Bl9GbgMeDwFNdfrcPAvuH2PuDFdZzl94bXnM8Ax6vqq8vumtV5\ntyW5dbj9IeABlq5LHAMeHQ6biXmr6ktVtauqbmfp5/QHVfVZZnDWVauqqX0BDwE/Y+m13T9Oc+0R\n5/s2cAa4zNJruP0svbY7CpwA/g3Yst5zDrP+OUtP4/8TeGP4emiG5/0z4PVh3jeBfxr2/wnwKnAS\n+Ffgj9Z71mvm/gvgpY0w6418+ck9qSEv7kkNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7U0P8CZs0l\nMyrwVMoAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x24ed781a3c8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"b = cv2.resize(a, (50, 50), interpolation=cv2.INTER_LANCZOS4)\n",
"plt.imshow(b, cmap='gray')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACrNJREFUeJzt3UGIXfd5hvHnrWTVgRBkxYMQGlM5WDRokTgwGAd3UZQa\nVCdEWphikxYtBNqk4NBAqrRQSFfxJk4W3YjYRIsQO3UCEiZQVEUQCkX2JHZa2yKREhwiI1sysUiy\ncavk62KOw1TVZK5m7r1zp9/zg2HOOfeM/x9iHp17z1xrUlVI6uUPNnoASdNn+FJDhi81ZPhSQ4Yv\nNWT4UkOGLzVk+FJD6wo/yYEkP0pyMcmxcQ0labKy1nfuJdkC/Bh4ELgEvAA8WlWvrvQ1d955Z+3Z\ns2dN60la3WuvvcZbb72V1c7buo417gMuVtVPAZI8DRwEVgx/z549LC4urmNJSb/PwsLCSOet56n+\nbuDny/YvDcckzbiJ39xLcjTJYpLFq1evTno5SSNYT/ivA3ct258fjv0vVXW8qhaqamFubm4dy0ka\nl/WE/wKwN8ndSbYBjwCnxjOWpEla8829qrqe5K+BfwG2AE9V1Stjm0zSxKznrj5V9R3gO2OaRdKU\n+M49qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5ca\nMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoy\nfKkhw5caWjX8JE8luZLk5WXHdiQ5neTC8PmOyY4paZxGueJ/DThww7FjwJmq2gucGfYlbRKrhl9V\n3wN+ccPhg8CJYfsEcGjMc0maoLW+xt9ZVZeH7TeAnWOaR9IUrPvmXlUVUCs9nuRoksUki1evXl3v\ncpLGYK3hv5lkF8Dw+cpKJ1bV8apaqKqFubm5NS4naZzWGv4p4PCwfRg4OZ5xJE3DKD/O+wbw78Af\nJ7mU5AjwReDBJBeAPxv2JW0SW1c7oaoeXeGhj415FklT4jv3pIYMX2rI8KWGDF9qyPClhgxfasjw\npYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPCl\nhgxfasjwpYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPClhlYNP8ldSc4meTXJK0ke\nG47vSHI6yYXh8x2TH1fSOIxyxb8OfLaq9gH3A59Osg84Bpypqr3AmWFf0iawavhVdbmqfjBs/wo4\nD+wGDgInhtNOAIcmNaSk8bql1/hJ9gAfAc4BO6vq8vDQG8DOsU4maWJGDj/Je4FvAZ+pql8uf6yq\nCqgVvu5oksUki1evXl3XsJLGY6Twk9zGUvRfr6pvD4ffTLJreHwXcOVmX1tVx6tqoaoW5ubmxjGz\npHUa5a5+gCeB81X1pWUPnQIOD9uHgZPjH0/SJGwd4ZwHgL8C/jPJS8OxvwO+CHwzyRHgZ8BfTGZE\nSeO2avhV9W9AVnj4Y+MdR9I0+M49qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnyp\nIcOXGjJ8qSHDlxrK0r+aNaXFkuktJjVVVSv9b/S/4xVfasjwpYYMX2rI8KWGDF9qyPClhgxfasjw\npYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPClhgxfamjV8JPcnuT5JD9M8kqSLwzH\n705yLsnFJM8k2Tb5cSWNwyhX/HeA/VX1YeBe4ECS+4HHgSeq6h7gbeDI5MaUNE6rhl9Lfj3s3jZ8\nFLAfeHY4fgI4NJEJJY3dSK/xk2xJ8hJwBTgN/AS4VlXXh1MuAbsnM6KkcRsp/Kr6TVXdC8wD9wEf\nHHWBJEeTLCZZXOOMksbslu7qV9U14CzwUWB7kq3DQ/PA6yt8zfGqWqiqhXVNKmlsRrmrP5dk+7D9\nHuBB4DxLfwE8PJx2GDg5qSEljdeqv0IryYdYunm3haW/KL5ZVf+Y5APA08AO4EXgL6vqnVX+W/4K\nLWnCRvkVWv7uPOn/GX93nqSbMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkh\nw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHD\nlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoaOfwkW5K8mOS5Yf/uJOeSXEzyTJJtkxtT0jjdyhX/MeD8\nsv3HgSeq6h7gbeDIOAeTNDkjhZ9kHvg48NVhP8B+4NnhlBPAoUkMKGn8Rr3ifxn4HPDbYf/9wLWq\nuj7sXwJ23+wLkxxNsphkcV2TShqbVcNP8gngSlV9fy0LVNXxqlqoqoW1fL2k8ds6wjkPAJ9M8hBw\nO/A+4CvA9iRbh6v+PPD65MaUNE6rXvGr6vNVNV9Ve4BHgO9W1aeAs8DDw2mHgZMTm1LSWK3n5/h/\nC/xNkossveZ/cjwjSZq0VNX0Fkumt5jUVFVltXN8557UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFL\nDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsN\nGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNbZ3yem8BPwPuHLY3g800\nK2yueTfTrLA55v2jUU5KVU16kP+7aLJYVQtTX3gNNtOssLnm3Uyzwuab9/fxqb7UkOFLDW1U+Mc3\naN212EyzwuaadzPNCptv3hVtyGt8SRvLp/pSQ1MNP8mBJD9KcjHJsWmuPYokTyW5kuTlZcd2JDmd\n5MLw+Y6NnPFdSe5KcjbJq0leSfLYcHxW5709yfNJfjjM+4Xh+N1Jzg3fE88k2bbRs74ryZYkLyZ5\nbtif2Vlv1dTCT7IF+Cfgz4F9wKNJ9k1r/RF9DThww7FjwJmq2gucGfZnwXXgs1W1D7gf+PTw5zmr\n874D7K+qDwP3AgeS3A88DjxRVfcAbwNHNnDGGz0GnF+2P8uz3pJpXvHvAy5W1U+r6r+Ap4GDU1x/\nVVX1PeAXNxw+CJwYtk8Ah6Y61Aqq6nJV/WDY/hVL36C7md15q6p+PezeNnwUsB94djg+M/MmmQc+\nDnx12A8zOutaTDP83cDPl+1fGo7Nup1VdXnYfgPYuZHD3EySPcBHgHPM8LzDU+eXgCvAaeAnwLWq\nuj6cMkvfE18GPgf8dth/P7M76y3z5t4tqKUfgczUj0GSvBf4FvCZqvrl8sdmbd6q+k1V3QvMs/QM\n8IMbPNJNJfkEcKWqvr/Rs0zKNN+r/zpw17L9+eHYrHszya6qupxkF0tXq5mQ5DaWov96VX17ODyz\n876rqq4lOQt8FNieZOtwJZ2V74kHgE8meQi4HXgf8BVmc9Y1meYV/wVg73BndBvwCHBqiuuv1Sng\n8LB9GDi5gbP8zvCa80ngfFV9adlDszrvXJLtw/Z7gAdZui9xFnh4OG0m5q2qz1fVfFXtYen79LtV\n9SlmcNY1q6qpfQAPAT9m6bXd309z7RHn+wZwGfhvll7DHWHptd0Z4ALwr8COjZ5zmPVPWHoa/x/A\nS8PHQzM874eAF4d5Xwb+YTj+AeB54CLwz8AfbvSsN8z9p8Bzm2HWW/nwnXtSQ97ckxoyfKkhw5ca\nMnypIcOXGjJ8qSHDlxoyfKmh/wE6lRkU78/0SQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x24ed76b06d8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"b = cv2.resize(a, (50, 50), interpolation=cv2.INTER_LINEAR)\n",
"plt.imshow(b, cmap='gray')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": false,
"deletable": true,
"editable": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAP4AAAD8CAYAAABXXhlaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACrNJREFUeJzt3UGIXfd5hvHnrWTVgRBkxYMQGlM5WDRokTgwGAd3UZQa\nVCdEWphikxYtBNqk4NBAqrRQSFfxJk4W3YjYRIsQO3UCEiZQVEUQCkX2JHZa2yKREhwiI1sysUiy\ncavk62KOw1TVZK5m7r1zp9/zg2HOOfeM/x9iHp17z1xrUlVI6uUPNnoASdNn+FJDhi81ZPhSQ4Yv\nNWT4UkOGLzVk+FJD6wo/yYEkP0pyMcmxcQ0labKy1nfuJdkC/Bh4ELgEvAA8WlWvrvQ1d955Z+3Z\ns2dN60la3WuvvcZbb72V1c7buo417gMuVtVPAZI8DRwEVgx/z549LC4urmNJSb/PwsLCSOet56n+\nbuDny/YvDcckzbiJ39xLcjTJYpLFq1evTno5SSNYT/ivA3ct258fjv0vVXW8qhaqamFubm4dy0ka\nl/WE/wKwN8ndSbYBjwCnxjOWpEla8829qrqe5K+BfwG2AE9V1Stjm0zSxKznrj5V9R3gO2OaRdKU\n+M49qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5ca\nMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoy\nfKkhw5caWjX8JE8luZLk5WXHdiQ5neTC8PmOyY4paZxGueJ/DThww7FjwJmq2gucGfYlbRKrhl9V\n3wN+ccPhg8CJYfsEcGjMc0maoLW+xt9ZVZeH7TeAnWOaR9IUrPvmXlUVUCs9nuRoksUki1evXl3v\ncpLGYK3hv5lkF8Dw+cpKJ1bV8apaqKqFubm5NS4naZzWGv4p4PCwfRg4OZ5xJE3DKD/O+wbw78Af\nJ7mU5AjwReDBJBeAPxv2JW0SW1c7oaoeXeGhj415FklT4jv3pIYMX2rI8KWGDF9qyPClhgxfasjw\npYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPCl\nhgxfasjwpYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPClhlYNP8ldSc4meTXJK0ke\nG47vSHI6yYXh8x2TH1fSOIxyxb8OfLaq9gH3A59Osg84Bpypqr3AmWFf0iawavhVdbmqfjBs/wo4\nD+wGDgInhtNOAIcmNaSk8bql1/hJ9gAfAc4BO6vq8vDQG8DOsU4maWJGDj/Je4FvAZ+pql8uf6yq\nCqgVvu5oksUki1evXl3XsJLGY6Twk9zGUvRfr6pvD4ffTLJreHwXcOVmX1tVx6tqoaoW5ubmxjGz\npHUa5a5+gCeB81X1pWUPnQIOD9uHgZPjH0/SJGwd4ZwHgL8C/jPJS8OxvwO+CHwzyRHgZ8BfTGZE\nSeO2avhV9W9AVnj4Y+MdR9I0+M49qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnyp\nIcOXGjJ8qSHDlxrK0r+aNaXFkuktJjVVVSv9b/S/4xVfasjwpYYMX2rI8KWGDF9qyPClhgxfasjw\npYYMX2rI8KWGDF9qyPClhgxfasjwpYYMX2rI8KWGDF9qyPClhgxfamjV8JPcnuT5JD9M8kqSLwzH\n705yLsnFJM8k2Tb5cSWNwyhX/HeA/VX1YeBe4ECS+4HHgSeq6h7gbeDI5MaUNE6rhl9Lfj3s3jZ8\nFLAfeHY4fgI4NJEJJY3dSK/xk2xJ8hJwBTgN/AS4VlXXh1MuAbsnM6KkcRsp/Kr6TVXdC8wD9wEf\nHHWBJEeTLCZZXOOMksbslu7qV9U14CzwUWB7kq3DQ/PA6yt8zfGqWqiqhXVNKmlsRrmrP5dk+7D9\nHuBB4DxLfwE8PJx2GDg5qSEljdeqv0IryYdYunm3haW/KL5ZVf+Y5APA08AO4EXgL6vqnVX+W/4K\nLWnCRvkVWv7uPOn/GX93nqSbMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkh\nw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoyfKkhw5caMnypIcOXGjJ8qSHD\nlxoyfKkhw5caMnypIcOXGjJ8qSHDlxoaOfwkW5K8mOS5Yf/uJOeSXEzyTJJtkxtT0jjdyhX/MeD8\nsv3HgSeq6h7gbeDIOAeTNDkjhZ9kHvg48NVhP8B+4NnhlBPAoUkMKGn8Rr3ifxn4HPDbYf/9wLWq\nuj7sXwJ23+wLkxxNsphkcV2TShqbVcNP8gngSlV9fy0LVNXxqlqoqoW1fL2k8ds6wjkPAJ9M8hBw\nO/A+4CvA9iRbh6v+PPD65MaUNE6rXvGr6vNVNV9Ve4BHgO9W1aeAs8DDw2mHgZMTm1LSWK3n5/h/\nC/xNkossveZ/cjwjSZq0VNX0Fkumt5jUVFVltXN8557UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFL\nDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsN\nGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNGb7UkOFLDRm+1JDhSw0ZvtSQ4UsNbZ3yem8BPwPuHLY3g800\nK2yueTfTrLA55v2jUU5KVU16kP+7aLJYVQtTX3gNNtOssLnm3Uyzwuab9/fxqb7UkOFLDW1U+Mc3\naN212EyzwuaadzPNCptv3hVtyGt8SRvLp/pSQ1MNP8mBJD9KcjHJsWmuPYokTyW5kuTlZcd2JDmd\n5MLw+Y6NnPFdSe5KcjbJq0leSfLYcHxW5709yfNJfjjM+4Xh+N1Jzg3fE88k2bbRs74ryZYkLyZ5\nbtif2Vlv1dTCT7IF+Cfgz4F9wKNJ9k1r/RF9DThww7FjwJmq2gucGfZnwXXgs1W1D7gf+PTw5zmr\n874D7K+qDwP3AgeS3A88DjxRVfcAbwNHNnDGGz0GnF+2P8uz3pJpXvHvAy5W1U+r6r+Ap4GDU1x/\nVVX1PeAXNxw+CJwYtk8Ah6Y61Aqq6nJV/WDY/hVL36C7md15q6p+PezeNnwUsB94djg+M/MmmQc+\nDnx12A8zOutaTDP83cDPl+1fGo7Nup1VdXnYfgPYuZHD3EySPcBHgHPM8LzDU+eXgCvAaeAnwLWq\nuj6cMkvfE18GPgf8dth/P7M76y3z5t4tqKUfgczUj0GSvBf4FvCZqvrl8sdmbd6q+k1V3QvMs/QM\n8IMbPNJNJfkEcKWqvr/Rs0zKNN+r/zpw17L9+eHYrHszya6qupxkF0tXq5mQ5DaWov96VX17ODyz\n876rqq4lOQt8FNieZOtwJZ2V74kHgE8meQi4HXgf8BVmc9Y1meYV/wVg73BndBvwCHBqiuuv1Sng\n8LB9GDi5gbP8zvCa80ngfFV9adlDszrvXJLtw/Z7gAdZui9xFnh4OG0m5q2qz1fVfFXtYen79LtV\n9SlmcNY1q6qpfQAPAT9m6bXd309z7RHn+wZwGfhvll7DHWHptd0Z4ALwr8COjZ5zmPVPWHoa/x/A\nS8PHQzM874eAF4d5Xwb+YTj+AeB54CLwz8AfbvSsN8z9p8Bzm2HWW/nwnXtSQ97ckxoyfKkhw5ca\nMnypIcOXGjJ8qSHDlxoyfKmh/wE6lRkU78/0SQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x24ed779ecc0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"b = cv2.resize(a, (50, 50), interpolation=cv2.INTER_NEAREST)\n",
"plt.imshow(b, cmap='gray')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment