Skip to content

Instantly share code, notes, and snippets.

@SqrtMinusOne
Created May 24, 2019 11:11
Show Gist options
  • Select an option

  • Save SqrtMinusOne/7f94b9a21d35b88cd6a46ff458d84eab to your computer and use it in GitHub Desktop.

Select an option

Save SqrtMinusOne/7f94b9a21d35b88cd6a46ff458d84eab to your computer and use it in GitHub Desktop.
Visualization of my programming activities during university education
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Visualization of my programming activities during university education\n",
"**data.csv schema**: \n",
"Semester, Type, Subject, Task name, IDE or software, ...Programming languages \n",
"\n",
"I count only a sum of actual numbers of LoCs (Lines of code) after a task was completed. "
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Today: 2019-05-24\n"
]
}
],
"source": [
"# Imports & Settings\n",
"import pandas as pd\n",
"from matplotlib import pyplot as plt\n",
"from IPython.display import display\n",
"from IPython.core.debugger import set_trace\n",
"import numpy as np\n",
"import re\n",
"from datetime import date\n",
"\n",
"%matplotlib inline\n",
"\n",
"plt.style.use('dark_background')\n",
"pd.options.display.max_columns = 10\n",
"pd.options.display.max_rows = 20\n",
"print(f'Today: {str(date.today())}')"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Constants\n",
"LANG_COL_START = 5\n",
"OTHER_THRESHOLD = 0.025\n",
"PROG_COLORS = {\n",
" 'C': '#178600',\n",
" 'C++': '#f34b7d',\n",
" 'Java': '#b07219',\n",
" 'Cmake': '#ffffff',\n",
" 'Makefile': '#172a09',\n",
" 'Bash': '#89e051',\n",
" 'Python': '#2b2b88',\n",
" 'GLSL': '#cccccc',\n",
" 'JavaScript': '#f1e05a',\n",
" 'HTML': '#e34c26',\n",
" 'CSS': '#563d7c',\n",
" 'Pug': '#a86454',\n",
" 'LESS': '#1d365d',\n",
" 'TypeScript': '#2b7489',\n",
" 'Jinja2': '#3f3f3f',\n",
" 'SASS': '#cf649a',\n",
" 'JCL': '#eaecf0',\n",
" 'HLASM': '#6e4c13',\n",
" 'MASM': '#6e7e13',\n",
" 'SQL(Access)': '#a33639',\n",
" 'SQL(MySQL)': '#f29221',\n",
" 'XML': '#ff6600',\n",
" 'VimScript': '#199f4b'\n",
"}\n",
"IDE_COLORS = {\n",
" 'Code::Blocks': '#fe8f83',\n",
" 'vim': '#019833',\n",
" 'Qt Creator': '#7cc349',\n",
" 'Visual Studio': '#662e93',\n",
" 'Notepad++': '#f7da76',\n",
" 'CS50': '#343a40',\n",
" 'IntelliJ IDEA': '#fe315d',\n",
" 'CLion': '#05a4d6',\n",
" 'VS Code': '#0077c6',\n",
" 'Jupyter Notebook / lab': '#f37726',\n",
" 'PyCharm': '#fcf84a',\n",
" 'WebStorm': '#1b90d7',\n",
" 'Hercules + x3270': '#00b40f',\n",
" 'MS Access': '#a33639',\n",
" 'DataGrip': '#ff59e6'\n",
"}\n",
"PREDEFINED_ABBRS = {\n",
" 'NoSQL': 'NSQL',\n",
" 'Code::Blocks': 'C::B',\n",
" 'Visual Studio': 'VS',\n",
" 'Notepad++': 'N++',\n",
" 'IntelliJ IDEA': 'IDEA',\n",
" 'CLion': 'CL',\n",
" 'VS Code': 'VScd',\n",
" 'Jupyter Notebook / lab': 'JupN',\n",
" 'DataGrip': 'DG',\n",
" 'Hercules + x3270': 'Herc',\n",
" 'MS Access': 'Acc'\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def get_text_color(hex_col):\n",
" r, g, b = [int(hex_col[i:i+2], 16) for i in range(1, 6, 2)]\n",
" if np.mean([r, g, b]) > 255 / 3:\n",
" return '#000000'\n",
" else:\n",
" return '#ffffff'\n",
"\n",
"def make_abbr(string):\n",
" if len(string) < 4:\n",
" return string\n",
" string = re.sub('and', '&', string)\n",
" try:\n",
" return PREDEFINED_ABBRS[string]\n",
" except KeyError:\n",
" pass\n",
" if string.find(' ') == -1:\n",
" return string[:4]\n",
" if len(re.findall('[ -]', string)) < 2:\n",
" return ''.join([string[s.start():s.start()+2]\n",
" for s in re.finditer(r'[A-ZС]', string)])\n",
" return re.sub(r'[^A-ZС&]', '', string)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['Semester', 'Type', 'Subject', 'Task name', 'IDE or software', 'Bash',\n",
" 'C', 'C++', 'CSS', 'Cmake', 'GLSL', 'HLASM', 'HTML', 'Java',\n",
" 'JavaScript', 'JCL', 'Jinja2', 'LESS', 'Makefile', 'MASM', 'Pug',\n",
" 'Python', 'SASS', 'SQL(Access)', 'SQL(MySQL)', 'TypeScript', 'XML',\n",
" 'VimScript'],\n",
" dtype='object')"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"{'Pers': 'Personal',\n",
" 'Prog': 'Programming',\n",
" 'A&DS': 'Algorithms & Data Structures',\n",
" 'СoMa': 'Сomputational Mathematics',\n",
" 'FEC': 'Foundations of Electronic Computers',\n",
" 'P&AA': 'Projecting & Analysis of Algorithms',\n",
" 'OOP': 'Object-Oriented Programming',\n",
" 'OpSy': 'Operation Systems',\n",
" 'SuPr': 'Summer Practice',\n",
" 'PaAl': 'Parallel Algorithms',\n",
" 'Econ': 'Economics',\n",
" 'PFIT': 'Physical Foundations of IT',\n",
" 'WEB': 'WEB',\n",
" 'SoEn': 'Software Engineering',\n",
" 'AsPr': 'Assembly Programming',\n",
" 'Data': 'Databases',\n",
" 'CoGr': 'Computer Graphics',\n",
" 'OpMe': 'Optimization Methods',\n",
" 'NSQL': 'NoSQL',\n",
" 'FDT': 'Foundations of Data Technologies'}"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"{'C::B': 'Code::Blocks',\n",
" 'vim': 'vim',\n",
" 'QtCr': 'Qt Creator',\n",
" 'VS': 'Visual Studio',\n",
" 'N++': 'Notepad++',\n",
" 'CS50': 'CS50',\n",
" 'IDEA': 'IntelliJ IDEA',\n",
" 'CL': 'CLion',\n",
" 'VScd': 'VS Code',\n",
" 'JupN': 'Jupyter Notebook / lab',\n",
" 'PyCh': 'PyCharm',\n",
" 'WebS': 'WebStorm',\n",
" 'Herc': 'Hercules + x3270',\n",
" 'Acc': 'MS Access',\n",
" 'DG': 'DataGrip'}"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Read the data\n",
"df = pd.read_csv('data.csv')\n",
"df = df.fillna(0)\n",
"df['Subject'] = [subject if subject != 0 else subject_type\n",
" for subject, subject_type in zip(df['Subject'], df['Type'])]\n",
"\n",
"display(df.columns)\n",
"abbrs = {}\n",
"for abbr, subject in zip([make_abbr(s) for s in df['Subject'].unique()], df['Subject'].unique()):\n",
" abbrs[abbr] = subject\n",
"\n",
"ide_abbrs = {}\n",
"for abbr, ide in zip([make_abbr(ide) for ide in df['IDE or software'].unique()], df['IDE or software'].unique()):\n",
" ide_abbrs[abbr] = ide\n",
" \n",
"display(abbrs)\n",
"display(ide_abbrs)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>OpMe</th>\n",
" <th>Econ</th>\n",
" <th>FDT</th>\n",
" <th>FEC</th>\n",
" <th>PaAl</th>\n",
" <th>...</th>\n",
" <th>NSQL</th>\n",
" <th>Pers</th>\n",
" <th>CoGr</th>\n",
" <th>P&amp;AA</th>\n",
" <th>WEB</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Semester</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>677</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>587</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>6701</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>0</td>\n",
" <td>199</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>711</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>221</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>9367</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>133</td>\n",
" <td>0</td>\n",
" <td>359</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>4090</td>\n",
" <td>3220</td>\n",
" <td>4533</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>6 rows × 20 columns</p>\n",
"</div>"
],
"text/plain": [
" OpMe Econ FDT FEC PaAl ... NSQL Pers CoGr P&AA WEB\n",
"Semester ... \n",
"1 0 0 0 0 0 ... 0 677 0 0 0\n",
"2 0 0 0 0 0 ... 0 0 0 0 0\n",
"3 0 0 0 587 0 ... 0 0 0 0 0\n",
"4 0 0 0 0 0 ... 0 0 0 6701 0\n",
"5 0 199 0 0 711 ... 0 221 0 0 9367\n",
"6 133 0 359 0 0 ... 4090 3220 4533 0 0\n",
"\n",
"[6 rows x 20 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Acc</th>\n",
" <th>CL</th>\n",
" <th>DG</th>\n",
" <th>VScd</th>\n",
" <th>Herc</th>\n",
" <th>...</th>\n",
" <th>JupN</th>\n",
" <th>PyCh</th>\n",
" <th>QtCr</th>\n",
" <th>vim</th>\n",
" <th>WebS</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Semester</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>511</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1309</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>2578</td>\n",
" <td>22</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>6747</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>62</td>\n",
" <td>217</td>\n",
" <td>0</td>\n",
" <td>394</td>\n",
" <td>963</td>\n",
" <td>...</td>\n",
" <td>1220</td>\n",
" <td>5642</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>9367</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>359</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>...</td>\n",
" <td>1924</td>\n",
" <td>677</td>\n",
" <td>0</td>\n",
" <td>8202</td>\n",
" <td>1173</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>6 rows × 15 columns</p>\n",
"</div>"
],
"text/plain": [
" Acc CL DG VScd Herc ... JupN PyCh QtCr vim WebS\n",
"Semester ... \n",
"1 0 0 0 0 0 ... 0 0 0 511 0\n",
"2 0 0 0 0 0 ... 0 0 0 1309 0\n",
"3 0 0 0 0 0 ... 0 0 2578 22 0\n",
"4 0 0 0 0 0 ... 0 0 6747 0 0\n",
"5 62 217 0 394 963 ... 1220 5642 0 0 9367\n",
"6 0 0 359 0 0 ... 1924 677 0 8202 1173\n",
"\n",
"[6 rows x 15 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def make_grouped_df(df, col):\n",
" df = df.copy(deep=True)\n",
" max_semester = max(df['Semester'])\n",
" df['Total'] = df[df.columns[LANG_COL_START:]].sum(axis=1)\n",
" res_dict = {}\n",
" for semester, grouped_df in df.groupby('Semester'):\n",
" sem_df = grouped_df.groupby(col).sum()\n",
" for subject, lines in sem_df['Total'].iteritems():\n",
" try: \n",
" res_dict[subject][semester - 1] += int(lines)\n",
" except KeyError:\n",
" res_dict[subject] = [0] * max_semester\n",
" res_dict[subject][semester - 1] += int(lines)\n",
" res_df = pd.DataFrame(res_dict)\n",
" res_df.index = pd.Index(range(1, max_semester + 1), name='Semester')\n",
" res_df = res_df[res_df.sum().sort_values().index]\n",
" res_df.columns = [make_abbr(name) for name in res_df.columns]\n",
" return res_df\n",
"\n",
"def make_subj_df(df):\n",
" return make_grouped_df(df, 'Subject')\n",
"\n",
"def make_ide_df(df):\n",
" return make_grouped_df(df, 'IDE or software')\n",
"\n",
"display(make_subj_df(df))\n",
"display(make_ide_df(df))"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABUQAAAJcCAYAAAAxXq4vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XdcVuX7wPEPGwRFFENQxImKI0VwoGbDkbm3lavSrMxRlqZfR85cZWpoGqGpJam4MFNQDFFk7yE4EFRAZcgQfOABfn/w8xQBTpTU6/168ep57nOf+1znPDdIF/fQsLCwKEYIIYQQQgghhBBCCCFeAJpVHYAQQgghhBBCCCGEEEI8LZIQFUIIIYQQQgghhBBCvDAkISqEEEIIIYQQQgghhHhhSEJUCCGEEEIIIYQQQgjxwpCEqBBCCCGEEEIIIYQQ4oUhCVEhhBBCCCGEEEIIIcQLQxKiQgjxH6Onp8e1a9cwNzcv97ibmxtDhw4FYPTo0Wzbtu0pRndvGhoabNiwgejoaFxdXZ/YdcaOHYuLi8sTa1+8uHr27ImXl1dVhyGEEEIIIYR4giQhKoQQDyAuLk75unLlChcuXFDeDxky5J7nvvrqq5w+ffqJxOXi4sKECROeSNuPolu3bnTo0AFbW1uGDRtW1eGIf9m4cSPTp09/oteIiIjA1ta20tqbMGECO3furLT2KlNlx/bWW29x6NAhoqOjCQoKYtmyZejr6yvHDQwM2LBhA7GxsQQGBjJu3DjlmKGhIT/99BP+/v5cu3aNtm3blmrbxMQER0dHIiIiCAkJ4ZNPPrlnLJqamixatIioqCgiIiKYOXOmcqxatWpcu3aN8+fPKz8HFy1aVGFbnTt3Zs+ePURFRREWFsaGDRswMTEpU09fX5+zZ89KQloIIYQQQjxx2lUdgBBCPAusra2V176+vnz55Zd4e3tXYUT/TfXr1ycxMZE7d+5UdShPnIaGBgDFxcVVHMnTo6WlRWFhYVWH8dwyNDRk9erV+Pv7U61aNbZs2cKXX37JkiVLAJg7dy61a9fGzs6OBg0a4OLiwrlz5/D396e4uJizZ8+yefNmduzYUabtFStWkJeXh52dHRYWFuzZs4fExEQOHz5cbiyTJk3CwcGBHj16oK+vz+7du4mPj2ffvn1KHQcHB27evHnf+6pRowZOTk7Kz8w1a9awcuVKPvzww1L1ZsyYQVJSEqampg/8zIQQQgghhHgUMkJUCCEqgb6+PsuWLSM4OJjAwEDmzZuHtrY2JiYmODk5YWVlpYykMjExwc7ODjc3N2Uk2Ndff42WltZDX/efU8fvTrV/9913OXPmDFFRUXz99del6o8ZM4ZTp04RGRnJ9u3bqVu3LlAyGmzZsmWEh4cTExODh4cHTZo0KfeaFhYWbN++ncjISLy9vRkxYgQA48ePZ+nSpXTp0oW4uDimTp1a7vnjx4/Hy8uL2NhYjh8/TosWLQBo0aIF+/btIzo6Gg8PD1577TXlnNq1a7N9+3bOnTvHoUOHqFevXqk2mzdvzu7du4mKiuKvv/6iT58+FT4zNzc3vvzyS/78809iYmLYsmUL1atXV4537NhR+WyOHj2KnZ1dqXO/+OIL3NzcuHDhgvL8/mnGjBkEBwdz7tw5/vrrLzp27Kg84xkzZuDj40NERAQbNmygRo0aADRp0oSEhARGjx5NYGAgkZGRjBo1Cjs7O06cOEF0dDQLFy4sdZ2H/Szff/993nrrLaZPn05cXBybN29WPk9nZ2ciIiLw8fFh7NixyjXmzJnDDz/8wKZNm4iNjWXQoEEVPtf7MTU1ZefOnURERBAZGYmTk1OpxNfYsWPx8/MjNjaWM2fO0LdvX15++WUWLFhA9+7diYuLIzAwsNy2/z0qdf78+axYsQIo6RsXL15k/PjxhISEEBgYyPjx45W6hoaGODo6Kv2uZcuWpdqeOXMmvr6+Sn+92y8rik1fX58lS5YQGBhIcHAwixYtQkdH54Ge0Z49e/D29kalUpGRkcHvv/+Ovb09UJKAHzZsGN999x3Z2dlERUXh6uqqfP/l5ubi7OxMYGBguUn6N954gx9++AGVSkV8fDx79+5l1KhRFcYyfPhwHB0dSU1N5erVq/z888+MHDnyge7j39zd3Tl27Bi5ubnk5ubyyy+/lPq+AmjWrBlvvPEGTk5Oj3QNIYQQQgghHoYkRIUQohLMnDmTli1b8sYbb/Dmm2/SpUsXPvnkEzIyMpg4cSIJCQlYW1tjbW1NRkYGarWaefPm0bp1a4YOHUrPnj155513KiWWV199lT59+vDmm28ycuRIunTpAsDAgQOZOHEiEyZMoF27dkRGRrJhwwagZN3ENm3a4ODggI2NDVOmTOHWrVvltr9582YuXbqEra0tU6ZMYeHChdjZ2fHLL7/w9ddfc/bsWaytrZW2/2nYsGF88sknfPLJJzRv3pzJkyeTmZmJnp4e27dv59ixY7Rt25alS5eyefNmLC0tAVi1ahW3bt2iXbt2zJkzh9GjRyttGhkZsWvXLnbt2kWbNm2YPn063377LQ0bNqzwGQ0fPpxPP/2UDh06oKury4IFC4CSEa7Ozs6sWrWKVq1asWrVKpydnTE2NlbOHTp0KDNmzKB58+bcuHGjVLs2NjaMHDmS3r1706JFC8aNG0dycjIAH330Ea+88gpDhgzBzs4OtVpdKmGtra1Ny5YtcXBw4LPPPmPp0qV8+OGHDB8+nJ49ezJy5Ejat2//yJ+ls7MzR44cYd26dVhbWzN58mQ0NTXZvn07gYGB2NraMmbMGKZOnUrnzp2VuN566y327NlDixYtOHLkSIXP9H40NTWVRJiDgwM6OjrKc69VqxazZ89mxIgRNG/enGHDhhEXF0dYWBiLFy/G29sba2vrMkm0B6Wrq0vbtm3p0qUL7733HrNnz1YSqHPmzMHExIROnTrxwQcflEkSnj9/ngEDBtCyZUu2bNnCxo0bqVmzZoWxLV68GFNTU1577TVeffVVmjdvzscffwyUTHmPjo6mVatWDxR3p06diI2NBcDc3BxjY2OioqKU49HR0TRv3vyBn8PdUc133f1jRHmaNWtGdHR0qWv9c6Q8wJ9//klwcDCbNm2qcM3j8nTu3Jm4uLhSZcuXL2fx4sUUFBQ8cDtCCCGEEEI8KkmICiFEJRgyZAjffvstGRkZpKamsm7dunuuoRkaGkpYWBhFRUUkJCSwa9euUkmox7FhwwZycnK4cuUKfn5+SvJl7NixrFu3jkuXLqFWq/nuu++wt7fH1NQUtVqNkZERTZs2BUrWTE1LSyvTdqNGjbCxsWHFihXk5+cTHh7O3r17GT58+APF9vbbb7NhwwYlqXPx4kWSk5Pp2LEjxcXFbN68GbVajZeXF6dOnWLgwIHo6enRu3dvVq1axZ07d4iKimL//v1Km3379iU2Npb9+/dTVFREWFgYx48f56233qowjt9//52LFy+Sm5vLmjVrGDx4MAAjRozgyJEjeHt7U1xcjKenJ3FxcfTo0UM5d9euXVy8eBG1Wl1m+rharUZfXx9ra2u0tLRITEzkypUryvNfvnw5169fR6VS8d133zFw4MBS53///ffk5+fj4eEBwN69e8nIyCApKYmgoCBat25daZ8llIyG1dfXZ+PGjRQUFHDp0iV+//33UiNBfX198fT0pLi4+LGWQrhx4wYeHh6oVCqysrL44YcflGR9cXExGhoaNG/eHF1dXVJSUrh48eIjX+vfNDU1WbNmDXfu3CEiIoIDBw4o9zhgwADWrl1LdnY2iYmJbN++vdS5hw4d4ubNmxQVFbF7927S0tKUz+HfdHR0GDlyJPPnzyc7O5usrCwcHR2VzzkvLw8bG5tSSc2K9O7dmzfffJPvv/8eKFm3U61Wk5eXp9TJysrC0NDwgZ6Bl5cXU6dORV9fn6ZNmzJ8+HAMDAzKrauvr4+Ojg7Z2dmlrmVkZASASqVi0KBBdO7cmddff53bt28/8MjOdu3aMXnyZJYvX66UDRs2jPT0dFmGRAghhBBCPDWyhqgQQlSCl156iatXryrvr127Vu506ruaNWvGggULaNOmDfr6+mhraxMQEFApsfxzTb+8vDwlYVKvXj1WrFjBsmXLlONqtRpzc3M8PT1p2rQpK1eupG7duvzxxx8sXbqU3NzcUm2bmZmRnp5eKjF29epVunXr9kCxWVhYkJCQUKa8bt26XLt2rVTZ3WdYp04dNDU1SUpKKnXNu1Ob69WrR6dOnUqNZtPW1iYzM7PCOP7Z1rVr16hWrRrVq1enfv36DBo0iP79+yvHdXR0MDMzK/fcf4uLi+Obb75h9uzZNGnShJMnT7Jo0SJSU1OxsLBgx44dpaYza2hoKJvLqNVqMjIylGN37twhNTW11Ptq1aop9/y4nyWUjIitX79+qWenpaVVKjF1r/t9GEZGRixevJju3bsrSxRoa5f8GpKRkcGMGTOYNGkS69atw9fXl0WLFpXbVx5FYWGhMlIXSvrPyy+/jJaWFqampmX61j+9++67vPfee1hYWAAlU+xr1apV7nXMzc3R0dHh1KlTSpmGhgYqleqh4u3SpQvffvst7733nvJ9kZubi7a2Nvr6+sr3X/Xq1bl9+/YDtTl79myWLVuGn58fN27cYN++fcr0/9mzZ/PBBx8AsHPnTmWk5t0E6N1r5eTkACXP8+4SAbdu3WLevHmcO3cOS0tL9PT0lJHEt2/fVkY1Q8lazFu3buWLL74gPDwcKFlfdObMmQ/8RxUhhBBCCCEqgyREhRCiEty4cYP69esrCRwLCwtSUlKA8jfdWb16NWfPnmXy5Mnk5uYyZcoUunfv/kRjTEpKYunSpRVOe96yZQtbtmyhTp06/PTTT0ycOJH169eXqnP9+nVq1apVKilTr1495V4fJAYrK6syI8FSUlLKrAtqYWFBaGioMjrPwsJCSVb9s25SUhKnTp1iwoQJDxTD3bb/+To3N5fs7GySkpLYtWsX8+fPr/Dc+22itGfPHvbs2UONGjVYs2YNs2bNYtasWaSkpDBx4kQiIiLKnFNRgq0ij/pZ/jv2pKQkLly4QM+ePSu8VmVtGjVt2jTq1KnDm2++SVpaGvb29sr6twAeHh54eHhgYGDAggULWLp0KWPHjn2g6+fm5pYa7VinTp1SCWAtLS3Mzc2VpOjdPltYWEhaWhoWFhZK4vGffatZs2YsXLiQkSNHEhYWRnFxMadPn1aO/zu269evo1ar6dy5M1lZWQ/5hEp06NCBzZs388knn5RaMzU5OZnMzExatWpFUFAQULJEw90p9feTmprK5MmTlfeLFy8mJCQEgJUrV7Jy5cpS9c+fP4+NjQ3nz59XrvXvae533X0OGhoaXLhwoczUeoDGjRvz22+/sWzZslL9tnnz5kriHkqWNzAyMiIkJIQ33niD9PT0B7o/IYQQQgghHoZMmRdCiEpw8OBBPvvsM0xMTKhduzbTpk1TdmNOTU3F1NRUGd0HJaPMsrKyyM3NxdrautLWD72XHTt2MH36dGWzJGNjY2Vaua2tLW3btkVLS4vc3FwKCgooKioq00Z8fDznzp1j1qxZ6Orq0rp1a0aMGIGrq+sDxbBr1y6mTJmCjY0NUJIkMTc3x9/fH01NTSZOnIiWlhbdu3enR48euLm5oVKp8PDw4IsvvkBfX5+WLVsyZMgQpc1jx47RunVrBg4ciLa2Njo6Otja2tK4ceMK4xg5ciSNGzemWrVqzJw5k0OHDgElycz+/fvTrVs3NDU10dfXp1u3btSpU+eB7q9Zs2Z07twZXV1d7ty5w507d5Rk0Y4dO5g7d66SjK1duza9evV6oHb/7VE/y9TUVBo0aKC04+/vD8DEiRPR09NDS0uLli1bVjgl/EHp6Oigp6enfGlqamJkZEReXh5ZWVnUqlWLadOmKfUtLCx4/fXX0dfXR6VSkZubqzy31NRU6tWrd89Nx6Kiohg0aBBaWlrY2dmVea5FRUV8/vnn6Onp0bp1awYPHoybmxtQslHW9OnTMTIywtLSstSmUoaGhhQVFZGWloampiYTJkxQ1rUtLzaVSsWePXtYvHixMvLXwsLigf/Y0bZtW7Zt28bMmTPL/NGguLiYffv28dlnn2FkZISNjQ3Dhg1jz549Sh1dXV309PTKvIaS5S6MjY3R1tamT58+DB06lB9++KHCWPbu3csnn3yCqakp9erV4/3332f37t0AtGrVihYtWqCpqUn16tVZvHgx58+fJzExsdy2LC0t+f3331m/fj179+4tdSwkJIROnTrRu3dvevfuzfz587ly5Qq9e/cuNWJaCCGEEEKIyiQJUSGEqASrV6/m/PnzeHp64u7uTmBgIBs3bgRKkjXu7u74+/sTHR1NzZo1WbRoEe+88w5xcXEsW7ZMSc48SQcPHmTr1q389NNPnDt3Dnd3d1555RWgZNrq2rVriYmJ4ezZs1y9erXCNQEnT55Ms2bNCAkJ4ccff2TJkiUPPN3f1dVVGb14d6fzGjVqoFKpGD9+PP369SMyMpKFCxfy8ccfKwmW2bNnY2pqSmhoKCtXruT3339X2szMzOSdd95h5MiRhISEEBwczKxZs5Tp2BXF4ejoSFBQEEVFRSxevBiAxMREJk2axMyZM4mIiMDPz48PPvgATc0H++dSX1+fBQsWEBERQXBwMIaGhqxatQqAjRs34u3tze7du4mNjeXgwYOPnHh81M9y586dvPzyy0RHR7Nx40bUajXjxo3Dzs4OPz8/wsPD+eabb+65LuW7777L4cOH7xnfvn37uHTpkvL18ccfs3HjRl566SWioqLYt28fx48fV+praWkxdepUQkNDiYiIoFWrVsoo3RMnTpCSkkJ4eDh+fn7lXm/58uW0bduWmJgYPvroIyXBfVd+fj6RkZH4+vryyy+/sGbNGmX05TfffEN2djYBAQE4OzuXSjCGhobi4uLCsWPHCA4Opm7duqXW/ywvtnnz5pGWlsaff/7JuXPn2LFjh5KENjAwIC4ursJNlaZMmYKxsTGOjo7ExcURFxdX6lkvW7aMjIwMgoKC2LFjB2vWrFGS2gBBQUFcunQJY2NjDh48yKVLl5TErL29PX/99Rfnzp1j+vTpTJw4scIEJsBPP/2En58fp06d4ujRoxw4cED5I4+ZmRlOTk7Exsbi7e1NzZo17zlCe/z48dStW5d58+Yp93V3dKparebmzZvKV1ZWFoWFhdy8ebPSRicLIYQQQgjxbxoWFhby26YQQogXhpubG1u3blWSO+L51rx5c44cOaKMphVCCCGEEEIIGSEqhBBCCCGEEEIIIYR4YUhCVAghhBBCCCGEEEII8cKQKfNCCCGEEEIIIYQQQogXhowQFUIIIYQQQgghhBBCvDAq3oL3OXX16lWKioqqOgzxHNHQ0JCdcEWlkf4kKpv0KVHZpE+JyiZ9SlQ2TU1N6tevX9VhCCGE+A974RKiRUVFaGu/cLctnqAhQ4awf//+qg5DPCekP4nKJn1KVDbpU6KySZ8SlU2tVld1CEIIIf7jZMq8EEIIIYQQQgghhBDihSEJUSGEEEIIIYQQQgghxAtDEqJCCCGEEEIIIYQQQogXhiymKYQQQgghhBBCPGOMjY0ZP3489evXR0NDo6rDEUKIMoqLi7l69Sq//PILmZmZVR1OKZIQFUIIIYQQQgghnjHjx4/H19eXo0ePUlhYWNXhCCFEGVpaWvTt25fx48ezfv36qg6nFJkyL4QQQgghhBBCPGPq168vyVAhxH9aYWEhf/75J/Xr16/qUMqQhKgQQgghhBBCCPGM0dDQkGSoEOI/r7Cw8D+5rIckRIUQQgghhBBCCCGEEC8MSYgKIYQQQgghhBBClCMvL4+AgABCQkLYtWsXBgYGVR3SY/Hy8qqUdl555RX2799fKW0JURUkISqEEEIIIYQQQghRjry8POzt7Wnfvj35+fl8+OGHZeo87nRgLS2txzr/YfTo0eOpXUuI/zJJiAohhBBCCCGEEELcx+nTp2nSpAlWVlZERkbi7OxMaGgolpaWjBo1iuDgYEJCQli+fLlyzoQJE4iKiuLMmTNs2rSJ77//HgAnJyd++OEHTp8+zTfffIOdnR2nTp3C398fLy8vrK2tARg7dix79+7lyJEjxMXF8fHHHzN9+nT8/f3x9vbGxMQEAA8PD1avXs3Zs2cJDw+nQ4cO7N69m6ioKBYtWqTEk56eDpSM8PTw8MDFxYWIiAh++eUXpc6bb75JREQEvr6+fPfdd/cdCXqv2Hfv3o2bmxtRUVF88803D/Rchg4dWiZeQ0NDjh49ip+fH8HBwQwYMECpM3fuXCIjIzl58iQ7duzgs88+A6Bx48a4ubnh6+uLp6cnzZs3B2DYsGGEhIQQGBjIiRMn7v/Bi+eSdlUHIIQQQgghhBBCCPFfpqWlxZtvvsmxY8cAaNq0Ke+//z7+/v6Ym5uzbNkyOnfuTEZGBkeOHGHgwIEEBAQwd+5cOnXqRHZ2Nu7u7oSHhytt1qtXj1deeYWioiKqV6/Oa6+9RmFhIa+//jpLlixh1KhRANjY2NCxY0f09fWJiYlh7ty5dOzYkdWrVzNmzBg2bNgAQEFBAV26dOHTTz/F1dWVzp07k56ezrlz51i3bp2SXLyrXbt2tGvXjqSkJLy8vHBwcCAoKAhHR0feeOMNLl++zI4dO+77bGJjYyuMvW3btnTs2BGVSkVkZCSOjo4UFhbe87mU586dO4wYMYLs7Gxq166Nt7c3bm5udOjQgSFDhtChQwd0dHSUhCnAxo0b+fTTT7lw4QL29vasX7+ePn368L///Y9+/fqRlJSEsbHxA/YA8byRhKgQQgghhBBCCCFEOQwMDAgICABKRohu3boVCwsLEhIS8Pf3B/4eIZmamgrArl276NatGwDe3t5kZGQA4OrqSrNmzZS29+3bR1FREQDGxsY4OzvTtGlTiouL0dHRUep5eXmRk5NDTk4OmZmZ/PHHHwBERkbSpk0bpZ6bm5tSHh0dTUpKCgDx8fFYWlqWSYgGBARw7do1AMLCwmjYsCG3b98mPj6ey5cvA/D777/zwQcf3PMZ3Sv2kydPkpWVBUBMTAwNGjTA1NT0ns+lPBoaGixZsoTu3btTVFREvXr1MDMzw8HBATc3N1QqFSqVSnk2hoaGdOnShV27dilt6OnpAeDj44OTkxN79+7lwIED97yueH5JQlQIIYQQQgghhBCiHHfXEP233Nzcx2779u3byuuvv/6av/76ixEjRmBlZYWHh4dyTKVSKa+LioqU90VFRWhra5ep9886d9+Xt07pP+sUFhY+8lqmDxp7YWFhqXjLo1ar0dQsWd1RQ0MDXV1dAN5++23q1KlDp06dUKvVxMXFoa+vX2E7mpqa3Lp1q9zP7tNPP8Xe3p633noLX19fZSSteLHIGqJCCCGEEEIIIYQQjyggIIDu3btTu3ZtNDU1GTVqFN7e3gQGBtK9e3dq1qyJlpYWQ4YMqbANY2NjkpKSABg3btzTCr2M2NhYGjVqhJWVFQAjRoy47zkPG/u9nktCQgK2trYADBgwQEmIGhsbc+PGDdRqNT169KBhw4ZAyWjPfv36oaenh6GhIf369QMgOzuby5cvM2zYMKXttm3bAiVriwYEBLBo0SJSU1OxtLS8b8zi+SMJUSGEEEIIIYQQQohHlJKSwrx58/Dw8CAoKIiQkBDc3NxISkpi5cqVnDlzBi8vLxISEpTp4/+2Zs0ali5dir+//31HUT5Jd+7cYdq0aRw+fBhfX1+ys7MrjPmuh439Xs/l559/pnv37gQGBtK5c2dycnKAkmUIOnToQHBwMGPGjOHcuXMABAUFcfjwYYKDg3FzcyMyMpLMzEwAxo8fz4QJEwgMDCQsLEzZiGnFihXKBlhnz54lLCzskZ+XeHZpWFhYFFd1EE9TYmJilf5wEc+fIUOG3HfXPSEelPQnUdmkT4nKJn1KVDbpU6KyqdVqGjRoUNVhPHGrV69mwoQJVR2GuA9DQ0Nu376NlpYWe/fuZdu2bRw8eLCqw7qnuzEDrF+/ngsXLrB+/fonco3KeC532zIwMMDT05OPP/6Y0NDQSo1XPJ5t27bx5ZdfVnUYpcgIUSGEEEIIIYQQQognYP78+QQEBBAaGkp8fPx/PhkK8MEHHxAQEEBYWBjGxsb89NNPlX6NynwumzZtIiAgAH9/f/bv3y/JUPFAZKikEEIIIYQQQgghxBPw1VdfVXUID239+vWVPiL03yrzuVTlmqvi2SUjRIUQQgghhBBCCCGEEC8MSYgKIYQQQgghhBBCCCFeGJIQFUIIIYQQQgghhBBCvDAkISqEEEIIIYQQQgghhHhhyKZKQgghhBBCCCHEM87aekmlthcXN/++dfLy8oiMjERHR4fIyEgmTpzInTt37nnO1KlTcXJyIi8vTylLT0+nVq1ajx3zf5GHhwfm5uZ89dVXHD58GIAVK1bw7rvvkpqaSvv27QGoVasWf/zxBzo6OhQXF7NkyRIOHToE/P2cAby9vfn888/p1asXy5cvV67TsmVLunbtyksvvVRueVhYGF27dmXjxo0UFRUp161sl/o0qtT2Gh+Lr9T2hLhLEqJCCCGEEOKpq/d9zFO71rUZLZXXrVqteGrXrWpRUX/v4FucNv2pXVej9rqndi0hRNXKy8vD3t4egJ07d/Lhhx/ed3fyqVOn8ttvv5VKiD7vxo0bR3BwsPL+wIED7N69m59//lkpy8rKomfPnty+fZvatWsTHByMm5sbxcXFpZ7zXR4eHnh4eABQt25dTpw4QVhYmHKsvPIzZ84wcOBADhw48ETv92kaO3YsHTp0YMaMGQDs37+ftWvXMmHCBNq0aYOZmRmFhYWkpqbi5+eHvr4+PXr0oFmzZmhqanLlyhX27NnDjBkzXqjEvIWFBb/++ismJiaoVCrmzp3LiRMnAPj8888ZO3Ysmpqa7Nmzh6VLlwJgb2/Pjz/+qPwB5J133gF4Kon2J0GmzAshhBBCCCGEEOKxnDp1iiZNmtCvXz9++eUXpXzBggVMmzaN119/nYCAACwsLPDw8CAgIABzc3Ol3tq1a4mKimLTpk1K2ZQpUwgJCSEkJIRx48Yp5enp6eXOuZrzAAAgAElEQVTWf1b4+vqSlpZWqkytVnP79m0AjI2N0dPTQ1v7wcawjRw5kv379z9w+Yvg/fffx97enp9++on169djb2/Pp59+CsDt27dp27YtDg4O3Lhxo4ojfXrGjRunjFJWq9VMnz6ddu3aMWLECJycnACoV68eEydOxN7eHjs7O8aMGUPDhg3R0NBg27ZtTJ06lbZt2zJt2jSl3buJ9meNJESFEEIIIYQQQgjxyLS1tenbty+RkZEcPXqUTp06Ua1aNQCGDx+Oi4sLnp6e2Nvbk5SURK9evbC3tyc5ORkAIyMjfv/9d15++WV69eqFubk5VlZWTJkyhW7duvHaa6+xYMEC6tSpU2H954GRkRHBwcEEBQUxbdo0CgoKANDX18fPz4+//vqLbt26lTnv7bffZvfu3Q9c/qI7fPgw/fv3p3///kqC8EVz48YNwsPDAUhMTERXVxddXV2g5PtZT08PPT09CgoKyMzMxNbWlps3b+Lj4wNAampqlcVeWSQhKoQQQgghhBBCiIdmYGBAQEAAZ8+e5eLFi2zdupXCwkLc3NwYNGgQdnZ2XLp06b6j8FQqFb6+vqjVai5fvoyZmRnt2rXjzJkz3L59m1u3bhEYGEibNm0qrP88yMnJwdbWli5duvDRRx8pI0QbNWpEp06dmDlzJtu3b0dfX185x9rammrVqinJrfuVP49GjBhBQEAAAQEB5SaM/y04OJh27dphbW1NXFzcU4jwv61Xr16EhISQn5/PtWvX+OGHH7h48SLx8fGsXbuWjIwMGjRoQGZmJm5ubvj7+zN58uSqDvuxyRqiQgghhBDiqbu1/xu0TSwwenU8AKmbJqJlUheT0SXrVGUeWImmsRnVX5tQ5lx12jXSfvoIs6/cyhzLizpJ9pENFBcXQaEao1fGPlacYWFfcv78TbS0NLl0KY3//e8P7txRl1vXwqIG7drV48iRkvVRBw1qTatWdVm+/PhjxVCZPvufF1aWNZjxUckaX32G78eyXnWc1vUEYOb8U9QzN+J/y3xo3tREOe/zj20ZN7olDds5U91IFy0tDQoLi1k6twuD3mpSJfcihKh65a1tCSXriS5evJgLFy7w66+/3reduyMhAYqLi9HUvPfYrYet/6w5d+4cBQUFtG3bluDgYK5fvw5AUFAQycnJNGzYkHPnzgEwevRo9uzZU6aNisqfR3fXAAUeeImAlJQUZYmCF5mZmRmrVq1i2LBhANSsWZM+ffpgbW2Njo4OXl5eHDlyBH19fRwcHLC1teXWrVv4+vri7u5OfPyzu+nV8/VTQwghhBBCPBP0GtmSfzkUgOKiIopuZ1CQfEE5rooPQa9Ru4dqs7iwgFu/L6T2pI2YzTrAS1/uQ7dpx8eKU6VSM3z4NoYMcaagoJCRIyveLKBePWP69bN5rOs9aV07WeDjXzJFtaiomNT0O0Sd+3sdOx//ZBzszWnSsCahXu8qX+NG/70x1cmDwwj1epe9W/sxbY7XU78HIcR/X1hYGGZmZvTr1w83t9J/vMrOzn6gjWtCQ0NxcHCgWrVqGBsb06FDByIiIp5UyFXOwsJCeS5mZma0bNmSpKQkTExMlBGhVlZWWFhYkJiYqJw3atSocqfFV1QuSsyfP5/ly5dXdRhVSk9PDxcXF2bPns2lS5cAeP3117ly5QpZWVmkpaURGhpKu3btuH79OjExMVy5coXs7GyCg4Np3rx5Fd/B45ERokIIIYQQ4qnTbdSezAMlO76rUy6gbd6MoqybFOVmoqFrgPr6JXTq25Dt+TN5IUcpVudj0LYnNfpOLWmgqJD0HV9ScCUabfOmmLy7AgpUUFSIZrWaAGho66Jj1qjSYg4Ovoq1dR2mTOlGZuYddu4MBGDatO6kp+fSt68NjRvXZu/eCRw8GElW1h1eesmIH38cgaVlTU6cOM933/0FQN++LZk0qQsaGnDq1EXWri1JLPr7f8bOnYH06NGUO3fUTJvmSlpabqXdg4O9OZ/97xQAUefSaN2iNsnXb5Nx6w7VDLSJiUunlon+fVopkZWtwqSmXqXFJoR4PHFx86s6hFIOHDiAtbU1d+7cKVXu6OjI3r17SU9PZ/To0crox39LSEhg48aNnDlzBoClS5dy8+bNJx7307Bu3ToGDx6Mqakply5dYtq0ady8eVPZIEpLS4v//e9/pKSk0LlzZ5ycnFCpVBQWFvLRRx+Rm1vy74K9vT23b98uM+27ovKnofGxZ2PEYGZmZlWHUOWcnJxwcXHB3d1dKUtJScHOzg5dXV00NTVp3749S5cuJSkpCUtLS0xMTMjJyaF169bP9OhQkISoEEIIIYSoAlrGL4GmFuqMJPLjQ9Br2I7CzOvkXw5FQ786OhbWqC4EoL6ZQJ3Pd0NxMWlOn6C6GIBWTQvUN+KpOXopeo1tyfjtf9w+vYvqr7+PfuvXSFn8BnrNOqPf6lUMbPtVTrxaGnTr1pgzZy7h7X2J778fws6dgWholCQ3R4/eTmzsDSZM6MiUKa5AyZT55s3NGDFiK/n5hRw+PInffguisLCYzz9/lZEjt5GVdYctW0bx+uvN8PQ8T7VquoSFJbF+vTeff/4qw4a9zJYtZyvlHgAszI3Q1tYk8WoWPv7JdLGvy7Xk25wNSMa4hh5tbEzR1dXi4uVbtOvx9zTXDStepXuXegC8NsiV4mK4lJDJ7p/7VlpsQohnz71Genbp0oV169aVKXd2dsbZ2bnCdnr16qW8dnR0xNHR8Z7X/Wf9Z8X06dOZPn16mXJbW9syZb6+vrRu3brcdgICAujYsexMiIrKxb1Vq1ZNGSkJsHLlSjZv3lyFET05Dg4ODB06lBYtWjBx4kQABg4ciI+PDx4eHgQFBVFUVISzs7OyPMMXX3yBu7s7Ojo6uLi4EBsbW5W38NieWEL022+/pWfPnqSmpvLGG28AsGnTJpo0KVljqEaNGmRlZdG7d2/q16/PX3/9pXS84OBgvvrqKwDatGnD2rVr0dfXx9PTkwULFgAl6xps2rQJS0tLrly5wkcffSQZfiGEEEKIZ4huo/bkx4eguhxC9VcnlCRE40PQMKiObqP2qGLPoDp3hpurhwJQlJ+L+mYCWjUt0Kppjl7jkv9xrGY3gJxTO+H19zEZvZSCpDhUcT7knNyKKtbnsWLU09Nm794JAAQFXcXVNRy1uojMzDu0aPEStWsbEhNzg8zMO+We7+eXQE5OPgAXL6Zhbl6DmjUNCAhIJCMjD4A//oimQwdLPD3Pk5+vxsvrIgDR0Sl06dLwseIvj0NHc3z8k/HxT+bzT9pzLTkHH/+ShGjXjiU7Nd+dMl+ekweHYVrbgIvxt3hjyD5e7VofIyPdSo9TiCfF29ubhg0bUlBQQOPGjQHw9/dXkmw6OjoUFBTQtGlT7O3t2b9/vzLK8cqVK7z22msADBkyhDVr1qClpUVcXBy9e/cGSqY1//HHHxgZGZGTk0Pfvn25cuVKFdxp1ahVqxbe3t74+vri6elZ1eFUuYyMDH7++Wfmz59f5Tuad+3alQ0bNjwXO4TftWPHDnbs2KG8HzJkSKnjS5YsKfX+bvKvvPP/uVnV887HxwdDQ8Nyj82ZM4c5c+aUKXd1dcXV1fVJh/bUPLGE6O7du9m6dWupvwh9/PHHyusFCxaQlZWlvE9ISFD+Afmnb775hlmzZhEcHMyOHTt47bXXOHnyJFOmTOH06dM4OjoyZcoUpkyZ8sKv/yCEEEII8SwpSYiGok6OQ9u8GVo165Jzchsa+oZU6zSU/AsBVO/5IYZdR5U6T512DTT+1dg/3utYWKNjYY2B3SCuL+n5WDHeXUP031xdwxg8uA2mpobs31/xDr75+X9vwFRUVIS29r2X8Feri5TXhYXFaGlV/pL/Xf8/IRoRk0rrlrWxrFedbx2DqVFdj/feefA1UJs0qolZnWpEx6bTsUPdSo9TiCfF2dmZjIwMvvvuO6Xsn6Ppjhw5QnZ2tvI+Pz+fpk2blmln5cqVzJs3j127dhEeHs706dNZt24djo6OhIaGMmbMGHbu3MnGjRsZMGDAk72p/5D09HRatWpV1WH8Z4wcObKqQ1CcOXOm3FGo4vn3JBPzz2qi/YltquTn58etW7cqPD5gwAAOHjx4zzZeeuklqlevTnBwMAB79+7lzTffBKBPnz7Kjml79uxRyoUQQgghxLNBt2F77kT/hWY1YzQ0tdA0rElRXhb5l8PQbdgevRbduO23jyJVyS6whbeuU5hdsgFQYUYyqvgQAHKDD6PbuANFqtuozvsr7Rdci0HLxOKJxH78eBxduzaiVStzzpwpWUPr9u18qlW7/0jJiIhk7OwsqVnTAE1NDfr2bUlgYOJ9z6ssDh0tOOweT62a+mhpaVLLRJ9bWfmcDUzG4f9HiD6IGzdziU/Mwsqy+hOMVojKt3XrVq5du1bh8datW/PDDz/csw0bGxt0dHTYtWsXAAcPHlRGprVq1UoZrLN8+fIKpzsLIcTTMnLkSNq3b/9ERinfTbQ/a8tXVMkaop06deLmzZulFmBt0KABx44dIzs7m1WrVuHv70/dunVJTk5W6iQnJ1O3bslfn01NTblx4wYAN27cwNTUtMLrvfvuu7z7bsmUHw0NjTJDqIV4HJ06darqEMRzRPqTqGzSp0Rlq6w+5U/JSM6inAx0/7HOp465NcWqXLSMTNBq0RX19Yvc/P5tADR0q1Fr7CrQ0EL7pUbcPr2LW7vmoV23CYZdR0NREdmeTtzavRANHX009AwweecbusX/prRfWftLqNVFBAQkkpWloqio+P/bvklRUTGuru9x4EAEWVnlT6NPTb3N2rVeODu/rWyqdPLkhcoJ7B8q+p23jU1tUtPu8M6wv3eHbdOyNjk5+ZjWNiDndkGZNUTff6cV0ya3A0rWENXS0qCgoIgVC7pi9lLpKXcP+7u2/JwSlU1TU5Pz588r7//880+mTZv2QOe+9957qFQqvL29lTJdXV0uXLhAQUEBK1as4JdffqFly5bcvn1bqXPhwgVlFKiOjg7R0dEAREdHo6OjUxm3JYQQohJVSUJ08ODBpUaH3rhxg44dO5KRkUGbNm1wdnZW1mV5UMXFxRUe+/XXX/n115Jf6BITE9m/f/+jBS5EBaRPicok/UlUNulTorJVRp+q12M5GppaWKwMLFVu8u43pd4b9RiHUY9xZc43m3uk3HZNJ28pU7b/u7/jbdXq4ZJvHTuuLbdcQwPatrXg88///p1WrS7igw9cStU7eDBSeX13syWAP/+M4c8/Y+55PQ+PWDw8Hn3DglKfk9Pfm3doaWmSlfBxqbrbHP9euqphgxrkXfu03DYvh77/cNd9QPJzSlSmoqIimjVr9kjnjh07ltOnTyvvY2Ji6NatG5cvX2bIkCGsW7eOo0ePPlSb9/p/VSGEEFXjiU2Zr4iWlhZ9+/bl0KFDSll+fj4ZGRkAREREcPnyZRo3bkxKSgrm5n9P2zE3NyclJQWA1NRUXnrpJaBkan1aWtpTvAshhBBCCPGiaty4NkeOTMbXN4HExIyqDkcIUUl0dXVp1qwZ33//vVKWk5PD5cuXgZLEfU5ODt26dSMmJqbUhiRNmzZVlowrKCjAxqZkPV4bGxvU6r/XEhZCCPHf8NRHiHbv3p0LFy6Umgpfq1Ytbt26RVFREQ0aNKBRo0YkJiZy69YtsrOzsbW1JTg4mOHDh7N161YA3N3dGTFiBI6OjowYMYJjx4497VsRQgghhBAvoEuX0ujbd3NVhyGEqGQfffQROTk5hIWFKWVNmjQhISEBtVpN586dMTIyIjAwkISEBAoKCnj77bfZtWsXgwYNUv5fNTo6mrlz5zJmzBjmzp1LVFTUU4k/vfdXldpeLfcVldqeeDHUbT+6UttLCXG5fyUhHsETGyHq6OjIoUOHaNKkCYGBgYweXfJNMWjQoDKbKXXu3Jnjx4/j7u7Oli1bmDNnjvLXtblz57J69WrOnDlDQkICnp6eSvuvvPIKp0+fpnv37jg6Oj6pWxFCCCGEEEII8Zzw8/PD1dUVXV1dEhMTld3mR44cyYkTJ0rVffvtt4mLi+PChQvs3LmTDRs2kJCQAMCcOXNYtmwZly9f5saNG6xdW7LkxZQpU2jfvj2XL1+mXbt2TJky5ene4FPUrFkzPD09CQsLw9/fH0tLy6oO6T/Hw8ODyMhI+vfvr5StWLGCK1euEBISopRZWFhw8uRJQkND8fPz44033rhnfQB7e3uCgoIIDw/nt99+K3XMyMiIy5cv89lnnyllXbt2JSwsrEw7z7r09PRyy/Py8ggICFC+unbtCsCsWbMIDQ0lNDRU2RjtXuXPg3/3w3v1t4r61eLFiwkJCcHPz4+BAwcq5c9qv3piI0Qr+qH/z2/Gu44cOcKRI+WvAxUeHl7qg7krIyODUaNGPV6QQgghhBBCCCFeKBVt5NWtW7cyZUuXLmXp0qXl1nd1dcXV1bVM+eXLl2nVqtXjBfmM2Lp1K7NmzcLHxwdzc3NUKlVVh/SfNG7cOIKDg5X3Bw4cYPfu3fz8889KmVqtZvr06YSHh9OgQQO8vLxo1KhRhfU1NDTYtm0bkyZNwsfHp8xG03PmzCmToDpz5gwDBw7kwIEDT+I2/3Py8vKwt7cvVdahQwf69euHvb09BQUFtGvX7p7lz5N/9sOK+ltF/crW1paePXtiZ2dHzZo18ff3x9PTk5ycnGe2Xz31NUSFEEIIIYQQQgjxbGvbti0qlQofHx8AkpOTS43UGzt2LPPnzy9zXkXlLxJfX98y+6DcuHGD8PBwoGQzaF1dXXR1dSusb2try82bN5Xnn5qaqhyztramTp06pZKwooSVlRWpqakUFBQAEBoaes/y51VF/a2iftWkSRPCwsIoLCwkLS2NpKQk7Ozsqiz+yiAJUSGEEEIIIYQQQjyURo0acenSpaoO47nUq1cvQkJCyM/Pr7BOgwYNyMzMxM3NDX9/fyZPnqwcW7ZsWYUjm18kBgYGpabM169fnxMnTtCiRQt8fHyYM2cOdevWBaiw/EXwz/5WUb+KiYmhY8eOGBgYYGlpSYsWLZ75Z/TUN1USQgghhBBCCCHEs01DQ6OqQ3gumZmZsWrVKoYNG3bPevr6+jg4OGBra8utW7fw9fXF3d0dGxsbzp8/T2Ji4lOK+L+rvCnzUDK6tk+fPgwePBhfX19efvllMjMzKyx/nv27v1XUryIjI9m+fTunTp3i2rVreHl5cefOnSqO/vFIQlQIIYQQQgghhBAPJT4+nsaNG5cpnzZtGmPHjsXExARdXV0GDhzI8ePHSU5OLrd8zpw5VRD9f5Oenh4uLi7Mnj37vqNvr1+/TkxMDFeuXAEgODiY5s2b07FjRwYPHsyAAQOoXbs2RUVFpKSkPHebBD0OlUrFoUOHOHToEPv376dTp064u7tXWP68Kq+/VdSv4uPjWbduHevWrQPA29v7mU+6S0JUCCGEEEIIIYR4xtVyX/FUrxcWFoaRkREODg74+PhQt25d8vPzWb9+PevXr2fs2LE0bNiQJUuWKOdUVC5KODk54eLi8kBJuMDAQCwtLTExMSEnJ4fWrVsTHx/P0aNHWbhwIQDz588nJyfnqSZDU0Jcntq1HkXDhg3R1tbmwoUL6OvrY2VlRVJSUoXlz7Py+ltF/QqgVq1apKen0717d0xMTJ75NWolISqEEEIIIYQQQoiHNmHCBDZt2kStWrUoKChg8ODBpTZWEuVbt24dgwcPxtTUlEuXLjFt2jTS09MZOnQoLVq0YOLEiQAMHDiQ5OTkcusfPnyYL774And3d3R0dHBxcSE2NraK76xqVKtWrdSI2pUrV7J582ZlDdG7li5dSlxcHE5OThgaGqKhocHOnTuJjIykZcuW5ZY/rxwcHCrsbxX1KycnJ5o0aUJBQQETJkyowugrhyREhRBCCCGEEEII8dBiYmJ49dVXyz22Y8eOhyp/kUyfPp3p06eXKTc0NHyo+q6urri6ulZ4nRdlFK6+vn655QYGBuWWd+3atUxZTExMueXPKx8fnwr7W0X9aujQoU86rKdKdpkXQgghhBBCCCGEeAIyMjL4+eef6d+/f1WHQteuXdm/fz+pqalVHYp4yp5kP3xW+5WMEBVCCCGEEEIIIYR4AkaOHFnVISjOnDmDra1tVYchqsCT7IfPar+SEaJCCCGEEEIIIYQQQogXhiREhRBCCCGEEEIIIYQQLwxJiAohhBBCCCGEEEIIIV4YsoaoEEIIIYQQQgjxjEs9P6JS2zNttue+dV5++WWcnJwwMTHh8OHDzJgxo1JjmDVrFu+88w5Qsgv422+//cht9e/fn5YtW7J69eoHqj916lScnJzIy8t75GsCeHh4YG5uzldffcXhw4cBsLe358cff0RHR4fIyEjlHocPH86iRYuAknv/448/lHaMjIyIjIxk3bp1rF279p71u3btysaNGykqKqJ9+/aPFf/DMt3Su1LbS/3Q/Z7H169fT3R0ND/++CMAEydOxN7ensmTJwMP97k/D/2tIv/uhxYWFvz666+YmJigUqmYO3cuJ06cACAvL4/IyEgAvL29+fzzz4GK+21V9rfHIQlRIYQQQgghhBBCPLSwsDDs7e0ZO3YsHTp0qNS2O3ToQL9+/bC3t6egoIB27do9VnuHDx9WEpIPYurUqfz222+VkqAaN24cwcHBAGhoaLBt2zYmTZqEj48PpqamAOjo6LBs2TK6d++Onp4e7u7uHDlyhOLiYgDmzJlDSEiI0ua96p85c4aBAwdy4MCBx479v87T05NRo0YpCdFXXnmlVCL5QT/356m/VeSf/VCtVjN9+nTCw8Np0KABXl5eNGrUCChJiNrb25c6t6J+Czyz/U2mzAshhBBCCCGEEKLS7N+/n8DAQM6ePcvHH38MwOjRo/n++++VOmvWrGHMmDEV1reysiI1NZWCggIAQkNDlXPNzMzYt28fgYGB+Pr60qxZM6AkGXbkyBFcXFwICQlhzZo1ADg7O3PhwoVS17eysiI6OprffvuNsLAwvvjiCwBef/11AgICsLCwwMPDg4CAAMzNzSvt2dja2nLz5k18fHwASE1NBaBjx45ER0dz48YNrly5wtWrV2nbti0A1tbW1KlTR0lm3a/+i+TkyZN06dJFed+1a1c8PT2B8j/3+fPnc/z4caKjo1m3bh1RUVGYmpo+t/2tIjdu3CA8PByAxMREdHV10dXVrbB+Rf32WSYjRIUQQgghhBBCCFFpPv30U65du4a2tjZhYWHs27ePP/74g4ULFyp1+vbty5IlSyqsf+LECZYsWYKPjw9ubm5s3bqVlJQUAL7//nuOHj3Kli1bqF69Ovr6+kq7Dg4OdO3alaioKIyNjQF4//33yx3F2rhxY4YOHcrly5cJCgpi9+7deHp6Ym9vT1xcHL169SItLa1Sn02DBg3IzMzEzc0NMzMzfv75ZzZv3kzdunVJSUlh0qRJZGRkcP36derWrUtYWBjLli1j5syZjB8/XmnnXvVfJJmZmVy7do2WLVuSn59Peno6N2/eBCr+3A8fPoylpSVXrlzh2LFjdO7c+bntbw+iV69ehISEkJ+fD4C+vj5+fn7k5eUxb948Tp8+XWG/fZZJQlQIIYQQQgghhBCV5v3332fAgAFoaGhgbm6Oubk5oaGhnDt3Djs7O9RqNfHx8WRmZt6zvq2tLX369GHw4MH4+vry8ssvk5mZySuvvMK4ceMAyM7OJjs7W7l2cHAwUVFRAEr7FUlISODcuXMA+Pj40L59exITE5/EI1Ho6+vj4OCAra0tt27dwtfXF3f3v9fJ/OmnnwAYPHgwAP369eP8+fMVxvXv+i8iT09PunfvTn5+PsePH79v/fT0dGrUqKH819jYmMzMzOeyv92PmZkZq1atYtiwYUpZo0aNuH79Oh06dGDPnj3Y2NhU2G/j4+OrMPrHIwlRIYQQQgghhBBCPDJtbW1UKhVQMo24Z8+e9OjRg7y8PM6ePYumZslqffv27WPw4MHk5+ezf//++9ZXqVQcOnSIQ4cOsX//fjp16lQqeVie+yWlqtr169eJiYnhypUrQElCrXnz5iQnJ1O3bl2lnpmZGSkpKQwdOpTBgwczYMAAateuTVFRESkpKSQkJJRb/0V04sQJJk2ahEqlYteuXfetX1xcXOrree5v96Knp4eLiwuzZ8/m0qVLSvn169cBCAoKIjk5mYYNG1bYb5/lhKisISqEEEIIIYQQQoiH0qNHD2WKcJs2bZSESo0aNUhLSyMvLw8bG5tS61oePnyYt956i/79+3Po0KF71m/YsCFNmzYFSkZVWllZkZSUBICXl5cyfbxatWqlNnh5GFZWVlhbW6Onp4eDg0OpdSOzs7OpVavWI7V7L4GBgVhaWmJiYoKOjg6tW7cmPj6egIAAbGxsqFOnDvXr16devXqEh4ezcOFCbGxsaNOmDZs2beLbb79l165dFdZ/Efn4+NChQwc6deqEt7f3I7XxvPa3e3FycsLFxaVU0tfExERZEsDKygoLCwsSExMr7LfPMhkhKoQQQgghhBBCPONMm+15qterXbs2Z86cQaVSkZKSwtdffw3AsWPH+OCDDwgLCyM2NrbUzugZGRkkJyejq6urrPNYUX0DAwOcnJwwNDREQ0ODnTt3EhkZCcBnn33Gpk2b+OijjygoKGDcuHEVbvJiZWXF3r17MTExwcDAgK5duzJ//nxiYmKIj49n2bJlWFtb4+zsTEJCgnKeo6Mje/fuJT09ndGjRyuj5h5XVlYWX3zxBe7u7ujo6ODi4kJsbCwA8+bN46+//gL4P/buPK7KOv3/+AtkVVJBDdAQkTS0QkVwgVwq1CaXyMypmclMbb5OX5dvTmmWNo1l0zpKNTolLplbbpiQJuSGgaBsxzA0FxRSQAFDRZYD8vuDn2diAJcCjsD7+Xj4CK77Op/7uo8fDa/zue8PL7/8smmH+f/gq1QAACAASURBVOoYjcZbyq8vOX++/orKulBSUsKJEyewsrKiqKgIqPn3vSaNdb7VxN/fn9GjR+Pl5cWkSZMAGDVqFO7u7oSEhFBcXExZWRmTJ0/mypUrADXO24bKon379ub/E1OP0tPTsbJSH1hqz+OPP2663UPkt9J8ktqmOSW1rbbmVIeFqbVQzc0583/dTF/fe+879XZeczt8+BXT1+W50+vtvBZtgm8pX39PSW0rLS2lY8eO5i6jzr3//vuMHz/e3GU0WO7u7mzZsoVevXrV6XkiIyOZNWtWpR3i60N9XZ/cHHP/ftT1PLzR9a1YsYKXX365Ts79a+mWeRERERERERGROnDhwgWWLl3KiBEj6u2cAQEBhIaG1riKUZqeupyHDXW+aamkiIiIiIiIiDQpp0+frpfVemPHjq3zc/y36OhofHx86v28UrP6mm81qct52FDnm1aIioiIiIiIiIiISJOhhqiIiIiIiIiIiIg0GWqIioiIiIiIiIiISJOhhqiIiIiIiIiIiIg0GdpUSURERERERKSB6zr9rVod78fgOdc9vmzZMu6//36cnZ0pKysjJyeHuLg4pkyZUms1zJw5kz/84Q8ApKam8vTTT//qsUaMGEG3bt14//33byp/6tSphISEUFhY+KvPCRAZGYmrqyuvvPIK4eHhpriDgwMpKSkEBwezYMGC68bnzZvHyJEjKSkpYf78+WzduhUAPz8//v3vf2NtbU1KSorpvQoICGDRokVcvXq13jfyKXnOWKvj2Sy3rtXxRK7RClERERERERERuSUTJkzAz8+PJUuW8NFHH+Hn51erzdDevXszfPhw/Pz86NmzJ+++++5vGi88PPymm6FQ0RBt3rz5bzrnNePGjavUDAWYPXs2SUlJVXL/O+7j40NgYCC+vr48+uijLFiwAAcHBywsLFixYgVTp07F29ubadOmmV4THR3NqFGjaqX2292jjz5KRESE6fv33nuPWbNmERISwrFjxwCwtLTkzJkzLFy4EIC8vDyz1GpOkZGRpKSkMGLECADat2/P7t27SU5OJi4ujocffhgAJycn9u/fT3x8PAcPHqw0j/z8/EhISODQoUOsWbPGFA8ICMBgMFQ7n29naoiKiIiIiIiISK0YPnw4n3/+uen7119/nWnTpuHu7s4PP/zAmjVrMBgMvPTSS5VeEx0dTXx8PO+99x4A7u7u5OTkYDRWrDhMTk425Ts7O7N582bi4+OJjY2lS5cuAAwcOJBt27axbt06kpKS+OCDD4CK1azHjx83NcSujV9dPQ899BAHDx6kffv2REZGcvDgQVxdXWv1PeratSvt2rUjMTHxhnFPT08MBgNlZWXk5uZy9uxZfH198fHx4fz588TExACQk5NTqzU2FNu2bePq1asEBgbi7u7OI488YlpZW1BQgLe3N/7+/pw7d87MlZrfLxvzpaWlTJ8+nZ49e/Lkk08SEhICwMWLF00N+EceeYSPP/4YCwuLRtmA1y3zIiIiIiIiIlIrvvnmGz788EOaN2/OlStXGDNmDIGBgdjb29O5c2dGjx7NqVOnSEhIYP369RQWFvLqq68SGBhIYWEha9euZfDgwezcuZM333yTmJgYwsLCWL58OVlZWQAsXLiQb775hs8++4w77rgDOzs70/n9/f0JCAjg8OHDtGrVCqhYzfrMM8/Qu3fvSrVWV8+uXbvw8/Pjxx9/ZMiQIeTm5tb6ezR//nz++te/8uyzz94wnpqayiuvvIK9vT1t27bFy8sLFxcXHB0dyc/PJywsDGdnZ5YuXcqnn35a67U2BLNmzWLRokUcP36c119/nZKSEqBiVfCIESNo2bIl4eHh3HHHHWau9PZx7tw5U5M4PT0dGxsbbGxsKCkpobS0FIBWrVpha2uLlZUV3t7eja4Br4aoiIiIiIiIiNSKsrIywsLCeOyxxzh27BgnT57k3LlzuLu7c/r0aY4cOQJATEwMvXr1oqysDA8PD6KiogBo0aIFHh4e7NmzBx8fH4YNG0ZQUBCxsbH06NGD/Px8Bg4cyLhx4wC4dOkSly5dMp0/MTGRw4cPA5Cfn3/dWqurJz09vdbfk18aPnw4x44dq3KemuIpKSmsXLmSqKgozpw5w969eykqKsLe3h5/f398fHz4+eefiY2NJSIigrS0tDqt/3ZkMBg4ceIEnTp1YsuWLaZ4YmIiTz31FFZWVoSGhlZpiEuFIUOGkJSUZGokOzg4EBUVhYeHB//zP/+D0WikY8eOja4Br4aoiIiIiIiIiNSaVatWMW/ePI4fP87q1atvmB8ZGVlltSRAcXExW7duZevWrYSGhtK3b99Kz4uszo2aoObWp08fgoKCGDlyJG3atOHq1atkZWXh5eVVbXzt2rUEBwcTHBwMwL59+0hPT6d169akpqaSkZEBVDT/7rnnnibZELWxsaFHjx5YWlrSqlWrSnMgKyuLgoICM1Z3e3N2dua9997jiSeeMMUuX76Mj48PXl5eLFq0iM2bN2NnZ9foGvB6hqiIiIiIiIiI1BqDwYCzszPDhw8nLCzMFHd3d6dr167Y2tri7+9v2tAlICCADh06ANCxY0ecnZ3p1KkTd999NwB2dna4u7tz9uxZAPbu3WtqoDZv3py2bdv+qjqrq+eaS5cu4eTk9KvGvZ6//e1vdO/enfvvv5/Fixfz4Ycfsnbt2hrjgKmOAQMG4OjoSGJiIvHx8bi5ueHo6Ii1tTX33Xdfg25O/RbTp09n27ZtLF68mFdeeaXSsblz5/L222+bqbLbm62tLevWrWPWrFmcPHmyyvEjR45gNBrx9vYmOzvb1IC/dOmSqQHfkGmFqIiIiIiIiEgD92PwHHOXUMmWLVvo2rUrRUVFplhaWhrz58+na9euLFu2jNOnTwMVO7qHhoZiZWVFQUEBzz77LLa2toSEhNCiRQssLCxYtWoVKSkpALz44ossXryYyZMnYzQaGTduXI3PNHR3d2fjxo04Ojpib29PQEAAc+fOJTU1tcZ6AP71r3+xceNG8vLyeOqpp8jOzq7Dd+v6QkJC8PT0xGg0Mn78eKBi85uXXnqJiIgIrK2tWbduHUePHjVbjdfYLLeu1/M5OzszadIk+vTpw5UrV0hOTmbx4sWm47f7imFzCgkJYd26dZVWXbdv356ioiLy8vJwdnamW7dunD17luPHj5sa8JcvX24UDXg1REVERERERETkV3nzzTerjffv3990m/c1RUVFPPnkk1Vyt2/fzvbt26vEAwICqh07Ozub0aNHV4lHRUWZnkV6zenTp/Hz86uS6+7uXmM9ULEz/bJly6o9Vltqeu/+O17dtQJs2rSJTZs21XpdDcmbb77Jxx9/bGp8vv/++7z55psYjcYaX9O8efNKKyLffffdBv88zFvl7+/P6NGj8fLyYtKkSQCMGjUKNzc3U0O5WbNmvPbaa6bNzG7HBvxvoYaoiIiIiIiIiNQKJycn9u3bR2xsLLt27TJ3OWZ34cIFli5dyty5cwkPD6+XcwYEBPDxxx83ip3Ab+TPf/5zpe9XrFjBihUrquR98cUXfPHFF0DFIxiaupiYGFq0aFElnpmZiY+PT7WvaWwNeDVERURERERERKRW5OXlce+991aJnz59ml69epmhourVVz1jx46t83P8t+jo6BqbWtI01WVjvqE24NUQFRERERERERERaaTqsjHfUBvw2mVeREREREREREREmgw1REVERERERERERKTJUENUREREREREREREmgw9Q1RERERERESkgXP6u7FWx8v7m3WtjidNw/79+2t1vP79+9fqeCLXaIWoiIiIiIiIiNyyLl26sGvXLgwGAwcOHMDNzc3cJd12IiMjSUlJYcSIEQA4OTmxf/9+4uPjOXjwIKNGjTLljhkzhsOHD3P48GGGDx9uihcWFnLw4EEOHjzIP//5zxvmBwQEYDAYSEpKqocrNL8+ffoQFxeHwWAgIiKCli1bApCXl1dt/syZM0lOTiY5OZm1a9ea4jXlNwb/PQ8B3nnnHTIyMqrMk3nz5pGUlERcXFyl+TljxgySkpIwGAzMmTPHFG+o800rREVERERERETkli1fvpyZM2cSExODq6srxcXF5i7ptjRu3DgSExMBuHjxIoGBgRQUFNCmTRsSExMJCwvDysqK+fPnM2DAAGxtbYmIiGDbtm2Ul5dTWFiIn59fpTGtra1rzI+OjmbUqFFs2bLFHJdbr6ytrVmxYgW///3v+f777+nZsydWVjW3unr37s3w4cPx8/PDaDTSs2fPeqzWvH45DwG2bNnC+vXrWbp0qSnm4+NDYGAgvr6+tG7dmgMHDrBr1y5atWrFpEmT8Pb2xsLCgu+//55Vq1Zx6tSpBjvftEJURERERERERG6Jt7c3xcXFxMTEAJCZmdmoV9jVltLSUgoKCgBo1aoVtra2WFlZ0adPH3744QfOnTtHRkYGP/30E97e3jWOc6v5jdUjjzxCSkoK33//PQDJycnXnYfu7u7k5ORgNBpN+U1VbGwsubm5lWKenp4YDAbKysrIzc3l7Nmz+Pr6AmBlZYWtrS22trYYjUby8/PNUXatUUNURERERERERG6Jh4cHJ0+eNHcZDZKDgwOJiYkkJCQwbdo0jEYjLi4uZGVl8fzzzzNmzBiys7NxcXEBwM7Ojri4OPbs2cMDDzwAcN38psTDw4MTJ07cdP7OnTvx8vIiJiaG2bNnN8n37HpSU1Pp06cP9vb2uLm54eXlhYuLC2fOnOGTTz7hxIkTpKWlsWDBAi5cuGDucn8TNURFRERERERE5JZYWFiYu4QG6/Lly/j4+NC/f38mT55c6RbvJUuWsHHjxkr5Hh4e9O3bl7/+9a+sXLkSOzu76+Y3VfPmzSM1NZUnn3yyxpz8/Hx8fHx455136NKlC7GxsbRq1aoeq7y9paSksHLlSqKiovj444/Zu3cvRUVFtG7dmmHDhtG1a1e8vLyYMWNGg28mqyEqIiIiIiIiIrckLS2Nzp07m7uMBu3IkSMYjUa8vb3JzMys1GBydnYmKysLgOzsbAASEhLIzMykU6dO181vSk6dOkWnTp0AeP3119mxY0elhnF1iouL2bp1KxMmTCApKYm+ffvWQ6UNR3BwMH5+fgQFBeHs7Ex6ejoPPfQQGRkZXLx4kdzcXJKTkxv881e1qZKIiIiIiIhIA5f3N+t6PZ/BYMDBwQF/f39iYmJwcXGhpKREzxG9gfbt21NUVEReXh7Ozs5069aNs2fPkpubS/fu3WnXrh22trZ06NCBQ4cO4ejoSGFhIUVFRbi7u9O+fXvS09M5ceJEtfnm1r9//3o93zfffMO7776Ll5cXR44coVmzZtfN79SpE1ZWVhw/fhw7Ozvc3d05e/ZsPVXbMDg5OZGXl8eAAQNwdHQkMTEROzs7fH19sbGxwdLSkl69evHWW2+Zu9TfRA1REREREREREbll48ePZ/HixTg5OWE0GgkKClJD9Abc3NxYvHgxAM2aNeO1114zreycM2cOe/bsAeDll1+mvLyce+65h5CQEIqLiykrK2Py5MlcuXKlxvympqSkhEmTJvHFF19gYWFBTk4OCxYsAKB58+aVnnP77rvvEhUVRUhICC1atMDCwoJVq1aRkpJSY/6nn35avxdUj4KDgwkKCqJt27acPHmSadOmER4eTkhICJ6enhiNRsaPHw9ATEwMkZGRJCQkcPXqVZYtW8aRI0fMewG/kRqiIiIiIiIiInLLUlNTGTx4sLnLaFDi4uLw8fGp9tiGDRvYsGFDpVhsbCz33XffTec3RdHR0fj5+VWJ13TrfEBAQLXxG91q39hMnz6d6dOnV4mPHj262vzZs2cze/bsui6r3ugZoiIiIiIiIiIideDChQssXbqUESNG1Ns5AwICCA0NJScnp97OKbe3upyHDXW+aYWoiIiIiIiIiEgdGDt2bL2fMzo6usZVqNI01eU8bKjzTStERUREREREREREpMlQQ1RERERERERERESaDDVERUREREREREREpMnQM0RFREREREREGrgNU9vW6nhPftywNkiR28OZzPO1Ol4H13a1Op7INVohKiIiIiIiIiK3rEePHhw8eJDjx4+zcOFCc5dzW4qMjCQlJcW0u3f79u3ZvXs3ycnJxMXF8fDDD5ty582bR1JSEnFxcYwaNcoU9/PzIyEhgUOHDrFmzZob5gcEBGAwGEhKSqqHKzS/muZhly5d2LVrFwaDgQMHDuDm5gZAXl6euUo1m/+ehwDvvPMOGRkZVeZJdfNtyJAhHDx40PTr8uXL9OjRA2i4800rREVERERERETklhkMBvz8/HjmmWfo3bu3ucu5bY0bN47ExEQASktLmT59OocOHaJjx47s3bsXDw8PfHx8CAwMxNfXl9atW3PgwAF27dpFQUEBK1as4PnnnycmJoa2bStWAteUf/nyZaKjoxk1ahRbtmwx52XXm5rm4fLly5k5cyYxMTG4urpSXFxsxirN75fzEGDLli2sX7+epUuXmmIWFhbVzrfIyEgiIyMBcHFxYefOnRgMBoAGO9+0QlREREREREREak1oaCjx8fHs37+fv/zlLwA89dRTlVbvffDBB/zpT3+qMb+xOnfuHIcOHQIgPT0dGxsbbGxs8PT0xGAwUFZWRm5uLmfPnsXX1xcfHx/Onz9PTEwMADk5FY8yqClfKnh7e1NcXGx63zIzM5vkytDriY2NJTc3t1Kspvn2S2PHjiU0NLReaqxLaoiKiIiIiIiISK2ZMmUKvr6+DBgwgClTpuDs7MzXX3/NsGHDTDm/+93vCAsLqzG/KRgyZAhJSUmUlJSQmppKnz59sLe3x83NDS8vL1xcXOjYsSP5+fmEhYVx4MAB/ud//gegxnyp4OHhwcmTJ81dRoNT03z7paeffpr169ebobrapVvmRURERERERKTWTJgwgZEjR2JhYYGrqyuurq4kJydz5MgRfH19KS0tJS0tjfz8/Brzs7OzzXwVdcvZ2Zn33nuPJ554AoCUlBRWrlxJVFQUZ86cYe/evRQVFWFvb4+/vz8+Pj78/PPPxMbGEhERUWO+VLCwsDB3CQ2SnZ1dtfMtLS0NgK5du9K8eXPTKueGrM5WiH744YcYDAZ27txpis2YMYP4+HgiIiKIiIjgoYceMh2bMmUK3333HVFRUQwaNMgUHzx4MFFRUXz33Xf87//+rynu5uZGWFgY3333HYsXL8ba2rquLkVEREREREQaiX379pGRkVFp9diGDRtIT0/n+PHjHD9+nBdffNF0bPXq1Zw6dYq0tDSmTp1qik+bNo20tDROnTrFqlWrTPE+ffrw448/curUKQ4cOEDz5s3r58LMyMrKyvR8xoEDBxIYGMigQYPw8/Pj6NGjWFpWtB42b95MUFAQo0aNMt1ye738xsrW1pZ169Yxa9asSvMwODgYPz8/goKCcHZ2Jj09nezsbFJTU8nIyODSpUskJiZyzz331JjflP1yHqalpdG5c2czV9TwXG++QcWjLzZs2GDGCmtPna0QXb9+PcuXLyc4OLhSfMmSJXz66aeVYl26dOGxxx7joYcewtnZmXXr1jFgwAAA5s+fz9NPP01mZibbtm0jIiKCY8eO8dprr7FkyRK2bt3KO++8w9NPP83KlSvr6nJERERERESkEVi2bBkXLlzgn//8Z6X4rl27GD9+fKVYYGAg/fr147777qN79+6sX7+exYsXAxULfp566ikOHTrE999/T2BgIN9++y3/+te/WLduHa+//jq7d+/m/fffr7S4p648+XHVZ/3VpUGDBpGcnEx+fj73338/R48eBaBly5bk5uZSWFhI9+7d8fb2Nr0mPDycF198kdLSUoYPH37D/MYqJCSEdevWERERUSnu5OREXl4eAwYMwNHRkcTERFq2bImbmxuOjo5cvnyZ++67z7Rar7p8c+vg2q5ez1fTPDQYDDg4OODv709MTAwuLi6UlJToOaI3EB8fX+N8A/j973/P448/bsYKa0+dNUTj4uK46667bip32LBhfPXVV5SUlJCRkcGpU6fo1asXAKdOnTJ9yvHVV18xbNgwjh07RkBAgOl/Khs2bGDGjBlqiIqIiIiIiMh1LV++HD8/v5vKfe6554iNjeXy5cscOHCAS5cuMXbsWAAuXbpEbGwsULE5yXPPPce3336Li4sLb731FlCxIGj27Nl1cyFm1qZNG6KjoykuLiYrK4s33ngDgB07djBx4kQMBgNHjx4lKSnJ9JoLFy6QmZmJjY0N58+fv2F+Y+Tv78/o0aPx8vJi0qRJAIwaNYrMzExCQkLw9PTEaDSamvMXL17kpZdeIiIiAmtra9atW2dq+lWX39TUNA8Bxo8fz+LFi3FycsJoNBIUFEReXh7NmzevtDL33XffrbJwrykIDg4mKCiItm3bcvLkSaZNm0Z4eHiN883Pz4+CggJ+/PFHM1deO+r9GaLPPfccY8aM4dChQ8ybN4/8/HxcXFwqfZKRmZlpehjw2bNnK8V79eqFo6Mj+fn5lJWVVcmvzh//+Ef++Mc/AhXPkWgs3Wy5PfTt29fcJUgjovkktU1zSmpbbc2pA7Uyys355c9+jeRn+Jtirp95b/W8+ntKapulpSXHjh0zfb99+3amTZt2w9c9+OCDnDhxgrNnz/KHP/yBjIwMnJ2dOXDgP39jXbhwAU9PT4BKK80yMjLw9fXFw8ODsrIySkpKgIqNb1q0aFFbl3Zb2bx5M5s3b64SNxqN1/174NrK0JvNb2xiYmJqnBOjR4+uNr5p0yY2bdp00/lNSU3zECr+/A0ePLhK3M7Oro6rahimT5/O9OnTq8Rrmm8HDx6kT58+9VFavajXhujKlStZuHAh5eXlzJw5k9dff52//vWvdX7e1atXs3r1agDS09NNzyoRqS2aU1KbNJ+ktmlOSW2rjTnVYdDbtVDJzfllvffe23Sab5V+n0Kq/oOnXs5bh68RqcnVq1fp0qXLLb3mtdde4+TJk1y9epXNmzezZs0a02PcRH6LCxcusHTpUubOnUt4eHi9nDMgIICPP/6YnJz6fYyC3L7qch421PlWrw3RX745q1ev5vPPPwcgKyuL9u3bm465urqSlZUFUG38woULtGrVimbNmlFWVlYpX0RERERERORW/PIW0Pnz5/Pll18CFRuMuLu7m445Ojpy4sQJANOt81Cx6W92djZpaWk0a9YMGxsbSkpK6NatGwUFBfV0FXI7+uU8qS/R0dH4+PjU+3nl9lWX87Chzrd63brtzjvvNH39u9/9zvQcgoiICB577DFsbGxwc3PDw8ODpKQkkpOT8fDwwM3NDWtrax577DHTQ4djYmJMS+2ffPLJKg8jFhEREREREbkZ3bt3N309efJk0/MtP//8c/r164eDgwN9+vThjjvuYP369WzcuJE77riDPn360Lx5c/r161dpwc+cOXMAeP7559m3b1/9X5CIiFxXna0Q/de//kX//v1xcnIiPj6eDz74AH9/f7p37055eTk//fQTs2bNAio+jQsLC2P37t2UlZXx2muvcfXqVQDmzJnDmjVrsLS05MsvvzR9cjd//nwWLVrEzJkzOXz4MGvXrq2rSxEREREREZFGIi4uDldXVywtLUlPT2fjxo3069cPZ2dnoGITm2t7UERERHDgwAFSUlIoLy9nwYIFlJaWAhUbknz55ZdYWFiwf/9+0yKdqVOnsnLlSsaNG8f58+eZOXOmeS5URERqVGcN0Ws7wP/SunXrasz/6KOP+Oijj6rEd+3axa5du6rE09PTGTFixG8rUkRERERERJqUW93I6+mnn642vmDBAhYsWFAlHhsbS9euXX9VbSIiUj/qfZd5EREREREREaldf5ndslbHW/yPi7U6njQNj/ebVavjhca+W6vjiVxTr88QFREREREREZGGLyQkhGPHjgFgaWnJmTNnWLhwoen4tm3bquz1MXPmTJKTk0lOTjY99u5G4zR0kZGRpKSkmO5wbd++Pbt37yY5OZm4uDgefvhhU+6MGTNISkrCYDCYnkMLMGbMGA4fPszhw4dNe6lcLz8gIACDwUBSUlI9XKH5denShV27dmEwGDhw4ABubm5A9fPtevHG7L/nIcA777xDRkZGpXni5OTE/v37iY+P5+DBg4waNcp0bN68eSQlJREXF1cp3lDnm1aIioiIiIiIiMgtKygowNvbm5YtW3Lu3DlT3N7eHk9PT0pLS2nRogUFBQX07t2b4cOH4+fnh9FopGfPnjccp7EYN24ciYmJAJSWljJ9+nQOHTpEx44d2bt3Lx4eHnTo0IFJkybh7e2NhYUF33//PatWreLMmTPMnz+fAQMGYGtrS0REBNu2baN9+/bV5p86dYro6GhGjRrFli1bzHzl9WP58uXMnDmTmJgYXF1dKS4urnG+XW8eNna/nIcAW7ZsYf369SxdutQUu3jxIoGBgRQUFNCmTRsSExMJCwujV69eBAYG4uvrS+vWrTlw4AC7du3i8uXLDXa+qSEqIiIiIiIiIrcsPDycESNG0LJlS8LDw7njjjsAGDhwIPv378doNPLggw8SHh6Ou7s7OTk5GI1GAJKTk284TmN07tw5U9M3PT0dGxsbbGxsALCyssLW1hYLCwuMRiP5+fn06dOHH374wfSan376CW9vb3JycqrNb2q8vb0pLi4mJiYGgMzMTAAGDx5c7Xy73jxsamJjY3F3d68UKy0tNW0c16pVK2xtbbGyssLT0xODwUBZWRm5ubmcPXsWX19f9uzZY4bKa4dumRcRERERERGRW5aYmEjPnj3p2rUrP/74oyk+ZMgQdu3axZ49exg6dCgAO3fuxMvLi5iYGGbPno2Li8sNx2nshgwZQlJSEiUlJZw5c4ZPPvmEEydOkJaWxoIFC7hw4QIuLi5kZWXx/PPPM2bMGLKzs3Fxcakxv6nx8PDg5MmTVeI1zbfrzUOp4ODgop4LpQAAIABJREFUQGJiIgkJCUybNg2j0Uhqaip9+vTB3t4eNzc3vLy8Gvx7pxWiIiIiIiIiIvKrZGVlUVBQUCk2dOhQgoODKSsrMz3bMj8/Hx8fH4YNG0ZQUBCxsbH06NHjuuM0Zs7Ozrz33ns88cQTALRu3Zphw4bRtWtXrK2t2bt3L9u2bTPlL1myBICgoKDr5mdlZdX/xZiRhYVFtfGa5tv14lLh8uXL+Pj44OXlxaJFi9i8eTMpKSmsXLmSqKgozpw5w969eykqKjJ3qb+JVoiKiIiIiIiIyK8yd+5c3n77bdP3bm5ueHh4sG3bNnbs2MFdd93F3XffDUBxcTFbt25lwoQJJCUl0bdv3xrHacxsbW1Zt24ds2bNMq1ufOihh8jIyODixYvk5uaSnJxMz549yczMrLQSz9nZmaysrBrzm5q0tDQ6d+5c7bGa5tv15qH8x5EjRzAajXh7ewMQHByMn58fQUFBODs7k56ebuYKfxutEBURERERERFp4Bb/46JZzvvfK+uGDBnCsmXLmD59OgAffvghQ4YMobS0FCsrK44fP46dnR3u7u6cPXu2xnEas5CQENatW0dERIQplpWVha+vLzY2NlhaWtKrVy/eeustTpw4Qffu3WnXrh22trZ06NCBQ4cO0aJFi2rzzS009t16PZ/BYMDBwQF/f39iYmJwcXGhpKSEli1bVjvfOnXqdN152NS1b9+eoqIi8vLycHZ2plu3bqb3x8nJiby8PAYMGICjo2OlDZoaIjVERURERERERKRWDB06lPXr15u+3717NxMnTmTPnj2EhITQokULLCwsWLVqFSkpKWas1Dz8/f0ZPXo0Xl5eTJo0CYBRo0YRExNDZGQkCQkJXL16lWXLlnHkyBEA5syZY9q85uWXX6a8vPy6+U3N+PHjWbx4MU5OThiNRoKCgrC3t692vnXr1k3z8P8LDg4mKCiItm3bcvLkSaZNm8b58+dZvHgxAM2aNeO1114zPYYhJCQET09PjEYj48ePN2PltUMNURERERERERG5Jdeaedd88cUXfPHFF1XywsPDCQ8PByAgIOBXj9NYxMTE0KJFi2qPzZ49m9mzZ1eJb9iwgQ0bNtx0flOTmprK4MGDq8Srm2+pqanVxpui6dOnm1Zy/5KPj0+1+aNHj67rkuqVniEqIiIiIiIiIlIHLly4wNKlSxkxYkS9nTMgIIDQ0FBycnLq7Zxye6vLedhQ55tWiIqIiMgNzdn3u3o711sDtpu+vjR8br2d19zu+PpN09fx57+rt/P6tnug3s4lIiLS1IwdO7bezxkdHV3jKj9pmupyHjbU+aYVoiIiIiIiIiIiItJkqCEqIiIiIiIiIiIiTYYaoiIiIiIiIiIiItJk6BmiIiIicssunivkmwU/cP7UZcrLyrm7fzsC/9eLnNMFXM4p4u7+d5pyj8eeZ2/IjxiLymhmY0knnzYMmdKtXuvNLrrMrB92kJifSSsrW+60deCd7kPp4tCmXuu4FX2cB3J3t86UlpXh0cWdv38yB7vmdvyc+zOzJs4l/8JFbGxt+PfmYJo7NK/02jX/Xs8nb/2biB+24tDSodKxD18L5tutu/nasBlLS302LiLSWHzx7GO1Ot4zn391w5zCwkJSUlKwtrYmJSWFSZMmUVRUVKt1NHSRkZG4urryyiuvEB4eDsA777zDH//4R3JycujVq5cp91bjM2bM4JlnnsHS0pINGzbw1ltvARWb3CxatIirV69Wyq8PJSUltTqejY1NrY4nco1+ChYREZFbUl5ezsY5SXR9wJn/XTuIF9YOwlh8lZ2Lj5J97CLHY8+bcs+dvMQ3Cw7z2NweTF41kIlLAnDq0LzKmFdLr9ZpvU8nrGdAm04cenAK+wY8zxteD3KupMCUsyrDwNs/7r3uOPfu+qjOaqyOrZ0ta/asYP2+L7C2sWbj51sA2LhiCz79e7Ju7+d8uPIfWNtYV3ntjtBIuvf0Yld45Wu6evUqu7dF4dzhThJjkuvlOkREpPEqLCzEz8+Pnj17AvDnP//ZzBXdnsaNG2dqhgJs2bKFxx6r2sC+lXiHDh2YNGkSfn5++Pr68qc//YlOnToBFZvcjBo1qnYv4jbWpUsXdu3ahcFg4MCBA7i5uf2qcX788UfatLl9Pyz/LSIjI0lJSam0y7yfnx8JCQkcOnSINWvWmOLz5s0jKSmJuLi4SvMoICAAg8FAUlJSvdZeV9QQFRERkVtyKiGXZjaW9Bx+FwCWzSwYOtWL7785Q+QnR/hhZyZLnvuOwzsz2b/mJA+M86Stu4Mpt/fj7gBsnX+IbR+ksOzPMexcfLTO6o3KPYW1ZTMmuvc2xe5v6UKAU8c6O2dt69mvBz+l/QSAlbUV2WfPAdDOpW2VhuhPaWcoLCjkL7OfZ0fot5WOJUQn0fkeD8aMf5wdmyPrp3gREWkSoqKi8PT0BCAvL88Uj4yMNO1APWPGDL7//ns2b95Mamoq7u7uZqnV3GJjY8nNzf3NcSsrK2xtbbG1tcVoNJKfn18n9d7uli9fzpw5c+jRowePPfYYBQUFN35RE/TLxryFhQUrVqxg6tSpeHt7M23aNAB8fHwIDAzE19eXRx99lAULFuDgUPFzfGNrtKshKiIiIrfk/KnLuHZtVSlm28KaVq72DBjvSfeHXXl++QPc+7Ar509exvWeVjWMBBfPFTF+cX+GTK27W+h/uHSeXq1c62z8ulZaWkrMzlju7lbxj8y7OnVg99d72bhiS7X5O0K/ZejjgfTq34PTx9PJPfeff5Tu2Pwtw0YHMnj4QL6L3E+psbRerkFERBo3Kysrfve735GSklJjjpubG5MmTaJv377Mnj0bDw+Peqyw8Tlz5gyffPIJJ06cIC0tjQULFnDhwgVzl1XvvL29KS4uJiYmBoDMzEzy8vKYO3cu3377LT/88APBwcEcPnyYtm3bAhAaGkp8fDz79+/nL3/5S5UxO3fuTFxcHHfffTcAw4cPJzo6mvj4eN577736u7g65OPjw/nz503vW05ODgCenp4YDAbKysrIzc3l7Nmz+Pr6mrPUOqNniIqIiIjZdHvQBctmFmY5d27JFUbGrQLgQkkhJeVlhGdXrFRd0uMx7m3pzIyU7cReyAAgs+gS/vs+A+Bxl2683GVAndZXXFTMHwaPBypWiD72xxGcyzzPiuAvCD3wJVPHzsCxTWseHjmYpwY9S0jYv3Bo6cCO0G/5YMXbWFpa8tCIwXy7dTe/n/QExhIj0d/u58U3p9LCoTn39e7O/t1xdXoNt6OYrw+Zu4R606qTuSsQkcbO3t6egwcPArB3716WL19eY66Pjw/R0dFcuXKFo0ePcvr06foqs1Fq3bo1w4YNo2vXrlhbW7N37162bdtGVlaWuUurVx4eHpw8ebLaY+Hh4bi5uZGRkcGOHTvo168f4eHhTJkyhTNnzmBlZYXBYGDz5s1kZ2cDFY37f//730ycOJHjx4/Trl07Xn31VQIDAyksLGTt2rUMHjyYPXv21ONV1r6OHTuSn59PWFgYzs7OLF26lE8//ZTU1FReeeUV7O3tadu2LV5eXri4uJi73DqhhqiIiIjckradHEjdU/mH7eICIwW5JVhZV775pK2HA5lH83G+u2W1Y9nYNauzOq/pdkc7tmSlVom3sWlOzICKZ52tyjCQXvgzr3YdVCnnn/f9zvT1vbs+MuXXh2vPEP0lQ9wh7u7mSWunVixc8z5/eWI6eefzcHVzwaGlA8d/OEHGyZ/43ydfBMBYYqR9x/b8ftIT7N8dx6WLl3lq4DgAigqLsLWzrbfrERGRxufaM0T/W3l5uelrKyu1HerCQw89REZGBhcvXgQgOTmZnj178s0335i5svplYVHzB+t5eXm0bNnS9N9WrSruWpowYQIjR47EwsICV1dXXF1dTQ3RDRs2sH37dtNq5759++Lh4UFUVBQALVq0wMPDo8E3RO3s7PD398fHx4eff/6Z2NhYIiIiSElJYeXKlURFRXHmzBn27t3baDdK0y3zIiIicks8erehtKiMQ9+cAeBqWTmRnxzB94mONHe0pfhKmSm3/9MeRH9xktz0imc5lV8tJ2FLer3WO6hNJ0qulrIsPdEUS7mYTXRe/dZRG7rcezfx0Ymcz8qhzZ1OzHhzGu/O+iePPDEEqLgl/s8vTyAscSNhiRv5JuUrcrJzyMzIYsfmb5mzYJbp2Nb4DcTtPWjmKxIRkcYoPz8fR0dH7OzsuOeeewBITEzE398fe3t77rnnnib7/NDakpWVha+vLzY2NtjZ2dGrVy9OnTpl7rLqXVpaGp07d672WHl5eaVflpaWDBw4kMDAQAYNGoSfnx9Hjx7F0vI/rbEXXniBgICASreJR0ZG4ufnh5+fH927d7/uSuiGIjs7m9TUVDIyMrh06RKJiYmmP6vBwcH4+fkRFBSEs7Mz6ekN72fmm6GPakREROSWWFhYMGa+D98s+IF9nx/nys8ldH/IlQfG3U3hxRJiVp9kyXPf4f8nT+592JWhU7sR+vdkjMVlWABd/O+s93rX9B7LrB92sPBEDLaWzeho35p37x1ar3XUhk5d3Hnh1T8zZewMrKysaNPOkbc/+zufvPVvvLy7ErHlW4LXflDpNYMfHUjYum3s3xXH7A9eNsXtW9jTs683u7+Oqu/LuO20776esz+MrbXx3v8khY1fnaZZMwssLWDh233w7dX2pl6bmX2FmW8k8MXimh/J8HN+CRu2nuL5Z7rWVski0gg88/lX5i7B5IMPPiA8PJyEhAR++qliU8CMjAyWLl3KgQMHSE1NJS0tjeLiYjNXah7BwcEEBQXRtm1bTp48ybRp0wgPD7/leGRkJAkJCVy9epVly5Zx5MgRc18aNjY29Xo+g8GAg4MD/v7+xMTE4OLiQklJSY35LVu2JDc3l8LCQrp37463t3el44mJibzwwgt89tln9OvXj7i4OBYuXEiHDh04c+YMHTt2pLi42LSitKGKj4/Hzc0NR0dHLl++zH333UdaWhoATk5O5OXlMWDAABwdHUlMTLzBaA2TGqIiIiJyy1o52/P7dyp2bc/4/gKhf08m82g+rve0YuIS/0q5XQLupEtA1SboqNe8q8TqiqvdHaz0GVPj8T+59bjhGIcfmlabJd3QvtPV7wL/6JPDePTJYZViQx9/GICv4jdUyZ/x5lQA/vzyhCrH3l/xNr7tHvitpcovHEg4z46dZ4gKfwRb22bk5hVRYrx6U68tLb2Kq3Pz6zZDAfIvlrD0i2NqiIqI2Tk5OVUbX7RoEYsWLaoS/+yzz/jnP/9JmzZtiI2NbXLPu7xm+vTpTJ8+/TfHZ8+ezezZs+ukxoZk/PjxLF68GCcnJ4xGI0FBQTXm7tixg4kTJ2IwGDh69ChJSUlVcuLi4ti5cyd///vfmT17NlOnTiU0NBQrKysKCgp49tln6/Jy6sXFixd56aWXiIiIwNramnXr1nH0aMWz9ENCQvD09MRoNDJ+/HjzFlqH1BAVERGR38TtfkembXzQ3GWI/CaXC4w8/XwUP+eXUFp6lTl/7cHwoXfxt3eSuat9c54fV9F8/MeCQ7RoYc2EP95dbX7W+SLaONlia1vxfNw2TnamcyQYcnnl7wlcuVKKja0lW1c/zNbtGYTtyOByQSlXy8pZ/GE/fj9xL7ERw1m94SThOzK4eMnI2ewr/D7Ig1f+737eeDeZtNOXeeB32xg8wJW3Xu1llvdMRORWffDBB6Znjs6YMcPM1dSPCxcusHTpUubOnUt4eHi9nDMgIICPP/7YtHN4Y5eamsrgwYMrxd58880a8x9//PFq4127/ueDxpdf/s9dNdu3b2f79u2/rcjb0KZNm9i0aVOV+OjRo81QTf1TQ1REREREmjw722as/nQgLe+wJjeviIcfj+DRIR0YPaIjs+clmhqioV+ns3nlgzXmPzTAhfeCv8fnwTAGB7gwekRHHujnTElJGc9N+Y7lnzxA7x5tuHjJiP3/31TMkJJH9DeP4tTaltMZlyvVlWDIJTZiOPb2zXhw1A6GPtSeN2b1JPXHfL7b/mi9v08iIr/F5MmTzV1CvRs7tvYeyXKzoqOj8fHxqffzyu2rNhrzja3RroaoiIiIiDR55eUw7/1kYg6cx9ICMrMKOXe+iB73OXE+t4jM7Cvk5BbTupUNd7VvgdF4tdp85zvt2Rv+CDEHzrNvfzbPTYnmjVk96Xm/Ey532tO7RxsAWt5hbTr3gw+44tTattq6HhzggpNjxbGRj7gRe/A8w4feVfdviIiIiDQatdGYb2yNdjVERURERKTJW7/lFDm5xewNewRra0vuD/iKouIyAIKGd+SrbRlkny9k9Aj3G+Y3a2bJgP7ODOjvTHev1qzddJKe91f/nD2A5s2b1XjMAovK31vUkCgiIiIiN83S3AWIiIiIiJjbxUsltGtrh7W1JVEx2aSfKTAdGz2iI5vCTvPV9gyChne8bv6xExc5kXbR9Nrvf7iAW4cWdOl8B1nnCkkw5AJw6bKR0tIbb7a0+7ss8n4uprColK8jfqKvbzvucLDmcoGxNi9fREREpEnRClERERERabJKS69iY2PJ2KBO/H7iXvoP+5pe97ehq2dLU063rq25XGCkvbM9LnfaA9SYf/lKKTP/Fk/+xRKsrCzxcHfgo3/0wcamGcs/eYCZf4unqKgMO7tmfLX6oRvW17tHG8ZN3seZrIpNlXy8K26579u7Hf2Gfk3g4PbaVElERETkFqkhKiIiIiJNVuqP+Xi4O9DGyY5vQ4fVmLd/x/BK39eU7+4GkZuHVjtG7x5t2Lml8mv++GRn/vhk51+83oHYiP+cq72rPWuWDKwy1tKPAmqsVUSaJn9//1odLyYm5oY5PXr0ICQkBEdHR8LDw/m///s/07ERI0bQrVs33n///Zs6n6urKwsWLOCpp566bl779u1ZvXo1jo6OFBcX8+qrr7Jz586bOoc5REZG4urqyiuvvGLazGbevHmMHDmSkpIS5s+fz9atWwEYM2YMf//73wGYOXMmX3/9NQCFhYWkpKQAsG/fPmbMmAFUbHKzaNEirl69Sq9et8eHY8t6+dbqeBOS4mt1PJFrdMu8iIiIiDRJS1cdY+K0aOb8tYe5SxERaZAMBgN+fn6mJt4vhYeH33QzFCAzM/OGzVCA0tJSpk+fTs+ePXnyyScJCQm5pZrNYdy4caZmqI+PD4GBgfj6+vLoo4+yYMECHBwcsLa2Zv78+Tz44IM88sgjfPDBB1j8/wdHFxYW4ufnh5+fn6kZChWb3IwaNcos13Q7mTlzJsnJySQnJ7N27VpTfOTIkcTHx5OQkMAf/vAHUzwvL++6461evZq77767Umzbtm1ERETUbuG/Utu2bW95p/jIyEhSUlIYMWKEKebn50dCQgKHDh1izZo1QMUHDrt37yY5OZm4uDgefvhhU35AQAAGg4GkpKTauRAz0wpREREREWmSJv6pCxP/1MXcZdTov1ePiog0FMuWLWPgwIFVVo3m5eXx+eefM3ToUKKiovjLX/4CwD/+8Q8effTRKisdQ0NDcXNzw2g0snLlShYvXsy5c+c4d+4cAOnp6djY2GBjY0NJSUn9XuSv5OnpicFgoKysjNzcXM6ePYuvry9Go5EffvjBdG0//fQT3t7eGAwGM1d8e+vduzfDhw/Hz88Po9FIz549AWjRogULFy6kX79+FBUVcfDgQb799lvT+1uT7t27Y2dnx/Hjx00xe3t7PD09KS0tpUWLFhQUFFxnhLqXk5NDZmYmDzzwAN99991Nv27cuHEkJiYCYGFhwYoVK3j++eeJiYmhbdu2wH8+cDh06BAdO3Zk7969eHh4AP9pwG/ZsqX2L8oMtEJURERERERERGrNhAkTql016uDgwJdffkmPHj0YMmQIrq6uAMyePbvalY5TpkzB19eXAQMGMGXKFJydnSsdHzJkCElJSQ2mGQqQmppKnz59sLe3x83NDS8vL1xcXHBxcSErK4vnn3+eMWPGkJ2djYuLCwB2dnbExcWxZ88eHnjgATNfwe3F3d2dnJwcjMaKzQaTk5MB6NOnDwaDgfPnz3Pp0iWioqIYMGDADcd7+umnqzT8Bg4cyP79+4mJieHBBx80xZ2dndm8eTPx8fHExsbSpUuX68aHDx9OdHQ08fHxvPfee6ZxpkyZwqFDh0hISODtt9++YRxg69atlVa93iofHx/Onz9vejRGTk4OAOfOnePQoUNA5Q8cGiOtEBURERERERGROldcXExsbCwAp06dwtnZmczMzBrzJ0yYwMiRI7GwsMDV1RVXV1eys7OBiqbTe++9xxNPPFEvtdeWlJQUVq5cSVRUFGfOnGHv3r0UFRXRrFkzAJYsWQJAUFCQ6TUeHh5kZ2fTu3dvNmzYQPfu3SkqKjJL/bebnTt38uabbxITE0NYWBjLly8nKysLFxcX01wBOH/+vKnBfD39+/fnyy+/rBQbMmQIu3btoqysjKFDh5puV1+4cCHffPMNn332GXfccQd2dnY1xtu1a8err75KYGAghYWFrF27lsGDB7Nnzx5ef/11OnfuzOXLl2nXrp3pvDXFARISEpg3b96vft86duxIfn4+YWFhODs7s3TpUj799NMq193QPnC4FVohKiIiIiIiIiK/mpWVFcXFxTfMu7aKD6C8vBxLy5pbEgMHDiQwMJBBgwbh5+fH0aNHTfm2trasW7eOWbNmcfLkyd9+AfUsODgYPz8/goKCcHZ2Jj09nczMzEoNO2dnZ7KysgBMjb2EhAQyMzPp1KmTOcq+LeXn5+Pj48M777xDly5diI2NpVWrVlXyysvLuXr16g3Hc3V15fz585ViQ4cOZffu3ezevZshQ4aY4gMHDmT58uUAXLp0yfS66uJ9+/bFw8ODqKgoDh48SI8ePUy3osfHx7NkyRKeeeaZSn+OaopDxUrOm2nw1sTOzg5/f39eeOEFHn74YaZNm2aqB/7zgcO0adN+9Tlud2qIioiIiIiIiMgtGTRokKnxdP/999d6Y7Jly5bk5uZSWFhI9+7d8fb2Nh0LCQlh3bp1t80mN7fKyckJgAEDBuDo6EhiYiIHDx6ke/futGvXjrvuuosOHTpw6NAhHB0dTSsP3d3dad++Penp6eYs/7ZTXFzM1q1bmTBhAklJSfTt25fMzEzuvPNOU067du0qrRitSWFhoen9BnBzc8PDw4Nt27axY8cO7rrrriobLt2syMhI0+ZY3bt3NzVNR4wYwaJFi+jTp0+lOV1THCoamoWFhb+qDqhosqemppKRkcGlS5dITEzknnvuARr+Bw43S7fMi4iIiIiIiDRw154FWF/atGlDdHQ0xcXFZGVl8cYbbwAVTbuNGzfi6OiIvb09AQEBzJ07l2+++eaGY5aXl5u+3rFjBxMnTsRgMHD06FHTztb+/v6MHj0aLy8vJk2aBMCoUaOue+v97SYkJARPT0+MRiPjx48HKlbPzpkzhz179gDw8ssvU15ezj333ENISAjFxcWUlZUxefJkrly5Yr7ib2BCUny9nq9Tp05YWVlx/Phx7OzscHd35+zZs6SlpdGjRw/atm1LUVERgwYN4m9/+9sNx0tNTcXT05PTp08DFbeNL1u2jOnTpwPw4YcfMmTIEI4fP87evXt59tlnCQkJoXnz5jRv3pycnJxq43FxcSxcuJAOHTpw5swZOnbsSHFxMdnZ2XTs2JF9+/aRkpLC4cOHTbXUFAfo0qULqampv/p9i4+Px83NDUdHRy5fvsx9991HWloa0PA/cLhZaoiKiIiIiIiIyC3ZvHkzmzdvrhI/ffo0fn5+1b7m2spIoNKtxwDt27evdKuy0Wjk8ccfr3acFi1a/JqSbxujR4+uNr5hwwY2bNhQKRYbG8t9991XH2U1SPb29oSEhNCiRQssLCxYtWoVKSkpALz44ovs2LGDDh068Mknn5geQdC8efNKKx/fffdd0/Mzt23bxuDBg9m1axdQcbv8+vXrTbm7d+9m4sSJLF68mBdffJHFixczefJkjEYj48aNIycnp9r4sWPHmDp1KqGhoVhZWVFQUMCzzz6LhYUFy5cvp2XLljRr1oxZs2YB1Bi/ZvDgwWzfvv1Xv28XL17kpZdeIiIiAmtra9atW8fRo0cbxQcON0sNURERERERERExi7vuuovQ0FCaN29uWoXXmFy4cIGlS5cyd+5c02Y8tSUgIICPP/7YtEN4U5SamkpAQEC1x8LCwggLC+Oxxx5jxowZzJ8/n/Ly8kq3xP+30NBQXnjhBZo1a0ZZWRlPPfVUpePh4eGm38fs7Oxqm9s1xbdv315tE/OXO9dfU15eXm38mpEjR/7mDcU2bdrEpk2bKsViYmIa/AcON0sNURERERERERExi59++qnGFaWNwdixY+ts7OjoaHx8fOps/Mbiq6++IiYmptIjGWpSVFTEG2+8wV133WW6bf5207ZtWxYuXMiFCxdu+jW10ZhvbA14NURFRERERERERKTR+u+d469n586ddVjJb5eTk8PWrVtv6TW10ZhvbA147TIvIiIiIiIiIiIiTYYaoiIiIiIiIiIiItJkqCEqIiIiIiIiIiL/j707D+uyyv8//mRTFlPBBVBRETX3DEVTXEssxyW3TGrSJptpzKysrDTNGdMsq0mnr7aRlWWaG6aGCrkLLiAIooyKirigyCIKIvvvD37eiWyKH0Th9bgur+tzn8+5z3nf9+cg8Obc54hUGVpDVEREREREROQ+N/7xmiZt78tNl03anlQNDi1Mm2ZKOpZt0vZErtMMURERERERERG5Lc899xzz5s0zjn19fenVqxcASUlJxZ7n5+eHv79/gbK3336bAwcOcODAAZYuXQqAj48Px44dA8Dc3JyzZ88W6O9+ERAQQGRkJIMGDQLAy8uL4OBg419qaioPPfQQADNnziQsLIy9e/cyZMgQow0PDw/2799PRERm1oFsAAAgAElEQVQEv/zyi1Hu6elJeHg4YWFhd/ei7iFlGSdHjx6lTp06t9XP9XsdHBxM69atjfJBgwYxefJk47hly5YEBweTlJR0T21AdPM4bNCgAVu3buXAgQPs3buXxx57zKhb3DisbONNM0RFREREREREpNzZ2Njg5uZGdnY2dnZ2pKWl0alTJwYOHIiHhwdZWVl07NjRqJ+WlkaHDh2oWbMm8fHxFRj5nRkzZgyhoaFAfmIqICAAACcnJzZv3kx4eDju7u7069ePzp07U7t2bfbt28eWLVtIS0vjhx9+4O9//ztBQUHUrVvXaDcwMJAhQ4awZs2aCrmue8XdGCfe3t58/PHHBRLSAOvXr2f9+vXG8dGjR/Hw8DA+43vJjeMwOzub1157jYiICBo3bsz27dtxdXUtdhympqZWuvGmGaIiIiIiIiIiUu569erF7t27CQoKom/fvgA0adKEhIQEsrKyADhw4IBRf/369QwaNIhBgwYVSDpVFqNGjcLX1xcANzc3wsPDycnJITExkXPnztG5c2fc3d25ePEiQUFBACQkJFRkyPek4saJr68vISEh7N69m/Hjxxc6r1mzZuzdu5fmzZsDMHDgQAIDAwkJCWHu3LkA1KpVi+DgYEaOHMmMGTMKzBBdtGgR0dHRtzxzuaj2K0p8fDwREREAxMbGUq1aNapVq1bsOKyMlBAVERERERERkdv21FNPGY9+9+jRo9T6Xl5ebNmyhW3bttG/f38ANm/eTKtWrQgKCmLKlCk4OTkZ9UNDQ+nYsSMtW7bk6NGj5XYdFcXb25vly5cDEBUVRZcuXbCxscHFxYVWrVrh5ORE48aNSUlJYd26dezbt4+XXnqpgqO+9xQ3Tl555RU6d+5Mz549eeWVV3B0dDTec3Fx4ZdffmHcuHFER0dTr149pk6dasyOdHFxoU+fPqSkpODh4cH69euZMmUKHh4eREVFAfDCCy/w73//+5ZiLK79e4GXlxdhYWFkZmYWOw4rIz0yLyIiIiIiIiK3bcWKFbz++usAxkzHkvTv35/58+eTk5PDtGnTAEhJScHd3Z3HH3+coUOHsmfPHmNNTYDz58+TlpZWPhdQgVq2bImtra0xSy8yMpLFixezY8cOzp49y/bt27l27Ro2NjZ0794dd3d3Ll26xJ49e/D39+fkyZMVfAX3lqLGyQsvvMDgwYMxMzPD2dkZZ2dnLly4AOSP3Q0bNhAZGQlA165dcXV1ZceOHQDY2dnh6urKtm3bTBJfebdfVo6OjsydO5cRI0YAxY/DykgJUREREREREREpVy4uLri6uuLn5wdAo0aNaN68OdHR0WRkZLB27VrWrl2Lr68vXbt2Nc6bPn06ubm5DB06tKJCLxejR49mxYoVBcrmz5/P/PnzAdi5cyexsbHUrl2bqKgoTp8+DeTPhnzwwQeVEL3JzeOkV69e9OvXj969e5Oens7u3bsxN//zIemXX36Zjz76iM6dOxMSEgLkr+86duxYk8STl5dXqMyU7ZtC9erVWbZsGe+88w4nTpwwyosah5WREqIiIiIiIiIi97kvN12u6BBK5OXlxaJFi3jttdcA+Oyzz/Dy8iI7OxtLS0uio6OxtramSZMmnDt3zjgvJSWlokIuV08//TTDhg0rUObg4EBSUhI9e/bE3t6e0NBQatasiYuLC/b29qSmptKuXbt7OhmadCy7Qvq9eZzUrFmTxMRE0tPTadOmDR06dCjwfmhoKC+//DLffPMNjzzyCHv37mXevHk0bNiQs2fP0rhxYzIyMowZpbcrKSmJRo0aGZsYmbp9U/Dx8WHZsmX4+/sXKC9qHFZGSoiKiIiIiIiIiMnY2toWmHH28ccf07dvX2O9TICtW7cybtw4tm3bho+PD3Z2dpiZmfHzzz8bjzFXVh4eHqSlpRVaF9XHxwc3NzeysrJ4/vnnAbh8+TJvvfUW/v7+WFlZsWzZMo4cOVIBUd9fNm3axLhx4wgPD+fIkSOEhYUVqrN37142b97Mv//9b6ZMmcLEiRPx9fXF0tKStLS0EmdzNmnShJUrV2Jvb4+NjQ2enp5Mnz6djRs3AjBv3jx8fHyYPn06Q4YMIS4u7rbaL2/du3dn+PDhtGrVihdffBHAiLOocVgZKSEqIiIiIiIiIrflp59+4qeffjKOb5ztaG1tXaj+119/XeB4/fr1xo7gnp6ehepfT9IU19/9LDg4mC5duhQqHz58eJH1V61axapVq8o7rPtSSePk5hm417Vs2dJ4PXnyZOP1hg0b2LBhwy31c+rUKTw8PIqNa8+ePbRr165AWUnt321BQUHY2dkV+V5x47Cy0S7zIiIiIiIiIiLlIDk5me+++45BgwaZvG1PT098fX1JSEgwedtSuZhiHFa28aYZoiIiIiIiIiIi5WDUqFHl1nZgYCDu7u7l1r5UHqYYh5VtvGmGqIiIiIiIiIiIiFQZSoiKiIiIiIiIiIhIlaGEqIiIiIiIiIiIiFQZWkNURERERERE5D6X+Fkjk7ZX580zpdZ5++23eeaZZwCIiorC29sbgMGDBzNjxgzMzMz47LPP+OWXXwBISkrCwcGh2PaWLFnCjBkziI6OxsfHh969e9OiRQvMzc05ffo0K1as4PXXXy/3eOrWrcsPP/xgko2QAgICcHZ25t1332X9+vUApKenExkZCcDOnTt54403AJg5cyaDBw8mMzOT2bNns3btWho0aMCSJUuwt7cnIyODqVOnsnnzZiB/k5uFCxeSm5vLww8/fMexmsK+sQtM2l6XHyeYtD2R65QQFREREREREZHb0qlTJwYOHIiHhwdZWVl07NgRADs7O+bNm8cjjzzCtWvXCA4O5o8//iA+Pr7E9tq0aYO1tTXR0dFGWVpaGh06dKBmzZqlnm/KeBISEoiLi6NHjx7s2rXrVm9JscaMGUNoaKhxnJ6ejoeHR4E67u7u9OvXj86dO1O7dm327dvHli1byM7O5rXXXiMiIoLGjRuzfft2XF1dgfxNboYMGcKaNWvuOMb7WXGJcAA/Pz8sLS3p379/qfVLaud+d3NivrhEu5eXFx9++KFxXuvWrfH09CQ8PPyeTMDfCSVERUREREREROS2NGnShISEBLKysgA4cOAAAF26dCE8PJyLFy8CsGPHDnr27MmqVatKbM/b27tQYm/9+vUMGjSImjVrsn79eh544AEGDhzIqFGjGDt2LADvv/8+ly5d4syZMyaNZ+3atTzzzDMmSYjeCjc3N8LDw8nJySExMZFz587RuXNntm3bZiRvY2NjqVatGtWqVSMzM/OuxHWvKy4RDmBjY4ObmxvZ2dnY2dmRlpZWbP2S2qksbkzMF5doDwgIICAgAAAnJyc2b95MeHg4UPkS8FpDVERERERERERuy+bNm2nVqhVBQUFMmTIFJycnID+JcuHCBaPexYsXjfdK0q1bN8LCwgqUhYaG0rFjR1q2bMnRo0cB2LhxI127dsXW1haAkSNHsmzZMpPHs3//frp161ZqvbKwtrZm7969bNu2jR49egD5MxK7dOmCjY0NLi4utGrVqlCcXl5ehIWFKRl6g+IS8wC9evVi9+7dBAUF0bdv3xLrl9ROZRQfH09ERARQMNF+o1GjRuHr61sR4d0V5ZYQ/eyzzwgPDzfWtgCYNm0a27dvJyAgAB8fH2rWrAlAo0aNiI6Oxt/fH39/fz766CPjnPbt2/PHH3+wa9cuZs6caZTXrl2bpUuXsmvXLpYuXUqtWrXK61JERERERESkkti5cyenT5/mxIkTRtnvv//OyZMnOX78OPv376dhw4YAeHh4cObMGaKjo4mOjmbr1q3GOcOGDeP48ePExMTg7+9vlDdp0oTIyEhiYmKIjIzExcXl7l3cXZSSkoK7uzsfffQRLVq0YM+ePUX+Xp6Xl0dubm6p7Tk7OxuzOG90/vx5jhw5Yhzn5OSwbt06nnzySTp37syJEyeIj483eTzx8fG3lDgtC1dXV7p27cqbb77J4sWLsba2JjIyksWLF7Njxw6++OILtm/fzrVr14xzHB0dmTt3Lq+++mq5xHS/Ki4RDvkJ5C1btrBt2zbjkfni6pfUTmVXXKLd29ub5cuXV1BU5a/cEqLLly/n2WefLVC2Y8cOHn30Uby8vDhx4gSvvPKK8d6pU6fo378//fv359133zXK58yZw9tvv02PHj1wdXU1svoTJkxg165dxpoeEyZooV0REREREREp2aJFi5g4cWKBMj8/Px588EHc3Nw4d+4cX331lfFeZmYmzZs3p3nz5sbvowAff/wx06ZNo2nTpjg5OfHaa68BsGDBAg4cOEDTpk05cOAACxcuvDsXVgEyMjJYu3YtL7zwAmFhYXTt2pW4uDjq169v1KlXr16BGZrFSU9Px9raulD59OnTC6xpCPDzzz8zevRovL29WbJkSbnEY21tTXp6eqn1yuJ6//v37ycuLo6mTZsCMH/+fDw8PBg6dCiOjo7ExsYCUL16dZYtW8Y777xTIJEvJSfm+/fvz9atW9m6dSteXl4l1r/VhHplU1yivWXLltja2hqzSCujckuI7t27l0uXLhUo27FjBzk5OUD+1HdnZ+cS26hfvz4PPPCAscbBypUreeKJJwB4/PHHWbFiBQArVqwwykVERERERESK8/3333P27NkCZQsWLDBmRwUFBVG3bt0S22jTpg1WVlYsXboUgN9++41hw4YB0LZtWyOB9+GHH9KuXTtTX8I9oWnTpjRv3hzITx42adKEc+fOERwczEMPPUTdunWpUaMGvXv3JigoqNT2oqKicHNzK1SekpLClStXCpSFh4fj6OjIwIEDWbduXbnE06JFC6Kiokqtd7vs7e2NxG+TJk1o0KCBkfi8vuN9z549sbe3N3IhPj4+LFu2rMBMZPlTUYlwFxcXXF1d8fPzY9OmTTRq1MgYH0XVL6m8siop0T569Ggj51ZZVdimSqNHj2bt2rXGcePGjdm0aRNXrlxh7ty57Nu3DycnJ+Li4ow6cXFxxrTlunXrGgsLx8fHl/gN69lnnzVmq5qZmRnfqERMobL/Jyl3l8aTmJrpxtS10quYSIHv01VoiayK+vnkdvs11ZjaZ5JWbk1V/dmvqo0pkevMzc05duyYcbxhw4bbesz46aefxs/PzziuVq0a0dHRZGVl8dFHH/Hjjz/SunVr0tLSjDrR0dEMHjwYACsrKw4fPgzA4cOHsbKyutNLuiV13jxzV/q5zsbGBh8fH+zs7DAzM+Pnn38mMjISgEmTJrFp0yYaNmzI//3f/3H+/HkAbG1tCyRePv74Y77++msgf5Zunz592LJlyy31v2bNGlq2bGk8Vm7qePr06cOGDRvu5BYV6cEHH8THx4eMjAxycnL45z//ydWrV4H8xKebmxtZWVk8//zzAHTv3p3hw4fTqlUrXnzxRQCGDBlSIFdyL+ny4919erdp06ZYWloSHR1dIBHu5eXFokWLjJnbn332GV5eXmRnZxdZv7h2KrOSEu1PP/10pf/5qUISoq+++irZ2dmsXr0ayE9odunSheTkZNq3b8+iRYsKPIpwK/Ly8op9b8mSJcY0+tjY2Eq9KKxUDI0pMSWNJzE1U4yptm8MMEEkt6ZAvAMr56yaotx43e9982aF9Fue59ysYe8PS69kIjfG+8Pnz9y1fitagc/J57WK6bcczxEpTm5uLi1atCjTuUuXLiUnJ4epU6cC+bMWe/ToQUxMDMOGDWP+/Pls3Ljxttos6XfV+1lUVBSenp5Fvrdu3Tpjnc833niD2bNnk5eXV+Qj8df5+vry8ssvY2FhQU5OjpH8u+6nn37ip59+Mo67devG/Pnzyy2ewYMHM2LEiGLfL6s9e/YUO2t4+PDhhcqCgoKws7MzeRyVRXGJ8GnTphVY/3Lr1q2MGzeObdu2FVm/devWxSbUK6OSEu0eHh6kpaUZG5lVVnc9ITpq1Cj69evHqFGjjLLMzEzj8YSDBw8SExNDs2bNOH/+fIHH6p2dnY2/5CQkJFC/fn3i4+OpX78+iYmJd/dCREREREREpNL45JNPcHd3LzBrOTU1ldTUVCA/YTd79mx69OhBVFRUgSRV8+bNjSXjsrKyaNOmDYcPH6ZNmzZkZ2ff3Qu5h/z2228EBQXdUlL42rVr/Otf/6JRo0acOnWq2HoODg7s3LmTPXv23PJs0tuNp27dusybN4/k5OTbar8oycnJfPfdd0yfPp3169ffcXs38vT05IsvviAhIcGk7d5PikuEjx49usDx+vXrjftfVP2SEuqVUUmJ9uDgYLp06XKXI7r7ym0N0aL06dOH8ePH8/zzzxfYLc3BwQFz8/xQGjdujKurK7GxscTHx3PlyhXc3d0BGDlyJJs2bQLA39+fp556CoCnnnrKKBcRERERERG5Ha+++iojRozgL3/5S4G9MNzc3LC0zJ9H9Mgjj1CjRg1CQkI4fPgwWVlZeHt7A/Dkk0/y22+/AfmPyV+fYTp16lQOHTp0l6/m3lLUzvHF2bx5c4nJUICkpCTatm3LuHHjyi2ehISEAkv83YlRo0bx8MMPmzwZChAYGIi7u7uxYZBIca4n5gcNGlTmNjw9PfH19a00CfhymyG6YMECunXrhoODAyEhIXz66ae88sorxqKtkL+x0rvvvssjjzzCW2+9RXZ2Nrm5uUyZMsX4JjR16lQ+//xzrK2t2bp1q/EXoAULFvDVV1/h7e3NmTNn+Oc//1lelyIiIiIiIve4hvNMv/lJcc6+3hqAtm0/umt93gsOHXrXeP3HzM13rd9+7z9m0vb27t2Ls7Mz5ubmxMbGsnLlSoYPH465ubkx0eb06dP07dsXb29vXnjhBXJzcwH44osvjITdlClT+OSTT5gzZw7R0dF8/vnnAEyYMIHff/+dmJgYUlNTGThwoEnjFxG5XTc+pV1W1xPwlUW5JUQnTCi8kO71ROjN/Pz8CixafaOIiAgee6zwN8Dk5GSefvrpOwtSREREREREqpSiNvJ64403iqw7a9YsZs2aVeR7q1atYtWqVYXKY2JiaNu27Z0FKSIi5equPjIvIiIiIiIiIiIiUpGUEBUREREREREREZEq467vMi8iIiIiImJql3znYGnfgBp9xgKQ8OWLWNg7YT86/3HnlDUfY17LkQf6Pl/o3OzEsyR++08c311X6L30Q1u54vcFeXm5kJNNjV7P3VGc4eGTOXbsIhYW5pw4kch77/3OtWtF70LeoEFNOnZsiJ9f/vqoTz7ZjrZtnfjwwz/uKAZTSrqSxMINCzhy9gg1rGtgX8Oelwe8TKO6LkXWP5N4hi83LCT2Yiw1rGtgW92WsY8+T4emHe5y5JXPrGNl3yylKNNamH4TIBGRe4VmiIqIiIiIyH2vuqs7mTEHAMjLzSU3LZmsuGjj/YyTYVR37XhbbeblZHHp1xnU+ftCHN9eQ/3Jq6nWvMsdxZmRkc3IkT8wbNgisrJyGDXq4WLrNmxYi4ED29xRf+UpLy+PGUvf5yHXjvw06We+HP8V47xeJDk1ucj6mVmZvPfzVAZ2HmTUf2XgROKSzxWqm5OTU97hyx3q1asXFy9eJDg4mLCwMN59993STypGUlKSCSO7twQEBBAZGVlod+8aNWoQExPDpEmTjLKZM2cSFhbG3r17GTJkCAANGjRg69atHDhwgL179xbYY8XT05Pw8HDCwsLuzsWIVCKaISoiIiIiIve9aq4Pk7Imf9f37PPRWDq3IPfyRXKvpmBWzYbsCyewatSGK1u+Iz1sI3nZmdh06EfNARPzG8jNIemnyWSdPoylc3Psn/0IsjIgNwdz29oAmFlWw8rR1WQxh4aeoWXLekyY0IOUlGv8/HMIAK++2pOkpKsMGNCGZs3qsHLl8/z2WySXL1+jfv0afPXVU7i41Gbz5mP85z/bABgwoDV//3s3zMxgx47jfP75dgD27ZvEzz+H0Lt3c65dy+bVV1eRmHjVJPEfOHkASwtLBnsMNsrcnNzIy8vj601fE3xsH2DGs72fpW/7vmyO+IM2Lm3o3qq7Ud/V0RXX/39Pf9zyI3HJ54hLiqN+7fq899Q0k8Qp5WfXrl0MGzYMCwsLIiIi+OWXX4iNja3osO45Y8aMITQ0tEDZlClTCiQy3d3d6devH507d6Z27drs27ePLVu2kJ2dzWuvvUZERASNGzdm+/btuLrmf80EBgYyZMgQ1qxZc1evR6Qy0AxRERERERG571nUqg/mFmQnnyPzZBjVm3akWpMOZMYcIDM2EqsGLcmIDib74inqvbGc+pN9yTx9iIzjwQBkx5/EztMbx6m/Y169Bmm7lmJuVxvrdn05P/Mxkn58k6sh68jLzTVNvBZm9OjRjGPHLuLrG8GQIfm7kpuZ5Sc31607xLx52wgNPc3IkT/w00/5ydIHH3Tkrbd+Y9iwRTzxRCucnB6gXr0avPFGH8aNW8rIkd/Trp0zjz7aAgBb22qEh59jxIjv2b//NCNGPGSS+AFi4k/SokHLQuU7D+/keFw0X7/8DZ88P5dv/L8h8UoiMfExtHBuUWKbp+JPMff5T5QMvc/Y2tpiZWVFRkYGAL6+voSEhLB7927Gjx9v1HvllVeIiIhg//79fPjhhwXa+Pzzzzl06BBffvnlXY29IrRs2ZJ69eoVSJK6ubkRHh5OTk4OiYmJnDt3js6dOxMfH09ERAQAsbGxVKtWjWrVqlVU6CKVhmaIioiIiIhIpVDN9WEyT4aRERPGA32eJyflApknwzCzeYBqrg+TcSSQjP8FcvGT4QDkZl4l++IpLGo3wKK2M9WbuQNg23kwqTt+hkdfwH70LLLOHSXjaBCpW78n40jQHcVYvbolK1c+D8D+/WdYtSqC7OxcUlKu0apVferUsSMqKp6UlGtFnr937ylSUzMBOH48EWfnmtSubUNwcCzJyekA/P77YTp1cmHLlmNkZmazfftxAA4fPk+3bk3vKP5bERkbSd8Oj2JhboF9DQceatqBI2ePFKo3Y+n7nE08S6M6jfiX978B6NaqO9Wtqpd7jGIaPXr0IDg4GDc3N+bPn8+FCxeA/MTn2bNnsbS0JDw8nNWrV3PhwgXef/99mjVrRmpqKvXq1TPaqVGjBr/++iuTJ0/mf//7H87OzsTFxVXUZZW72bNn8+abbzJ27FijLCoqinfffRcbGxvq1q1Lq1atcHJyKnCel5cXYWFhZGZm3u2QRSodJURFRERERKRSyE+IHiA77iiWzi2wqO1E6tYfMLO2w7brcDKjg3mg3z+w83y6wHnZiWfB7KbGbji2atASqwYtsen8JBc+6HdHMV5fQ/Rmq1aFM3Roe+rWtcPXN6LY8zMz/9yAKTc3F0vLkh/6y87+c0ZrTk4eFhame0iwSb2m7Di045brN63flIhTf17bv71ncuTsEb7e9LVRZm1lbbL4pPxdf2S+Ro0abNq0idWrV3Pw4EFeeOEFBg8ejJmZGc7Ozjg7O3PhwgVCQkL49ttv8fPz47fffjPaycjIYM+ePQDExMTg6OhYaROiAwcO5NixY4WWFoiMjGTx4sXs2LGDs2fPsn37dq5d+/MPI46OjsydO5cRI0bc7ZBFKiU9Mi8iIiIiIpVCtaYPc+3wNsxta2FmboG5XW1y0y+TGRNOtaYPU71VD9L2riY3Iw2AnEsXyLmSmP86OY6Mk/nr+V0NXU+1Zp3IzUgj49g+o/2ss1FY2Dcol9j/+OMonp6utG3rTGDgSQDS0jKxtS390diDB+Po3NmF2rVtMDc3Y8CA1oSElP86jg83e5is7CzWh/y5G/mJ88epYV2DbQe3kZObw6W0S0TERNCqYSse7fAYh2IPEfS/P2fZZmRllHucUv5SU1PZtm0b3bt3p1evXvTr14/evXvj4eHBkSNHMDfPTz0MGjSIhQsX0qVLF/z9/Y3zs7KyjNd5eXlG/cqoS5cuDB06lIMHDzJ+/HjefPNNvL29AZg/fz4eHh4MHToUR0dHI2lavXp1li1bxjvvvMOJEycqMnyRSkMzREVEREREpFKwatCS3NRkqrkP/LPMuSV5GVexqGGPRStPsi8c5+K8/OSDWTVbHJ6bC2YWWNZ3JW3XUi4tnYalkxt2nqMhN5crW3y4tHwGZlbWmFW3wf6ZOVz8z1Mmjz07O5fg4FguX84gNzcPgKNHL5Kbm8eqVX9jzZqDXL5c9GP0CQlpfP75dhYt8jY2Vdq6NdrkMd7MzMyMf3n/m4UbFvLrzmVUs6yGY20nXv7Ly6RnpvPSwn8AZvy9/z9weMABgFnPzuarjV+ycMNC7O1qY1vdlmd7P1vusVYF01qsL71SOTEzM6NDhw4EBgZSs2ZNEhMTSU9Pp02bNnTo0MGo17hxY3bu3ElkZCSHDh2qsHgr0owZM5gxYwYA06dPJzU1laVLlwLg4OBAUlISPXv2xN7e3lhj1MfHh2XLlhVIIovInVFCVEREREREKgUzcwsafBxSoMz+2TkFjmv0HkON3mMKnes41a/INuu+9I3pAgS6dPm8yHIzM+jQoQFvvPHnY8TZ2bmMG7esQL3ffos0Xk+YsMp4vWFDFBs2RJXYX0DAEQICCq/leSfq1qzL+0+/X6j8pcdf4qXHXypU3rheYz58bk6hcoCxj44tslzuXdfXELW0tGTr1q34+flhZWXFuHHjCA8P58iRI8ZO6mZmZnz//ffUrFkTCwsL3nnnnQqO/t7j4+ODm5sbWVlZPP/88wB0796d4cOH06pVK1588UUAhgwZUmmXFBC5W5QQFRERERERqUDNmtVhwYKRbN58lNjY5IoOR+SW7Nixo8DGSNdlZWUxbNiwIs/p27dvkeUODg7Gay8vL9MEeB/44IMPChwPHz68UJ2goCDs7OzuVkgiVUblXZhDRERERETkPnDiRCIDBnzNp59urehQRMTEkpOT+e677xg0aJDJ2/b09MTX15eEhASTty1S2WmGqIiIiIiIiMh9JlHbqzEAACAASURBVC8vDwsLC3Jycio6FCnBqFGjyq3twMBA3N3dy619EVOwsLAgLy+vosMoRDNERURERERERO4zZ86cYcCAAVhYWFR0KCIiRbKwsGDAgAGcOXOmokMpRDNERURERERERO4zP/74I2PHjmXEiBGYmZlVdDgiIoXk5eVx5swZfvzxx4oOpRAlREVERERERETuMykpKfz3v/+t6DBERO5LemReREREREREREREqgwlREVERERERERERKTKUEJUREREREREREREqgwlREVERERERERERKTKUEJUREREREREREREqgwlREVERERERERERKTKUEJUREREREREREREqgwlREVERERERERERKTKUEJUREREREREREREqgwlREVERERERERERKTKUEJUREREREREREREqgwlREVERERERERERKTKUEJUREREREREREREqgwlREVERERERERERKTKUEJUREREREREREREqgzLig5ARERERETkTp2z/mtFhyAiIiL3CSVERURERERERO4ztWrVYuzYsTRq1AgzM7OKDkdE5J6Rl5fHmTNn+PHHH0lJSSmyjhKiIiIiIiIiIveZsWPHsmfPHjZu3EhOTk5FhyMics+wsLBgwIABjB07lv/+979F1tEaoiIiIiIiIiL3mUaNGikZKiJShJycHDZs2ECjRo2KraOEqIiIiIiIVBnOtnVZ7vVxRYchcsfMzMyUDBURKUZOTk6Jy4koISoiIiIiIlVG3NUERgW8U9FhiIiISAVSQlRERERERCqlOV1e4eW2TxnHMzr9gzc7/JWIp34FYGzLQazu/ymbBi7gxDNrmdB2FJPaP8v+EUsIGvo99tVrVlToIiJ3xbvvvsuBAwfYv38/wcHBeHh4FFt3+vTpTJo0qVC5s7Mzy5YtK1P/zz33HM7OzmU6V+ROKCEqIiIiIiKV0q/HA3iqWT/j+Cm3fuyNjyxQp52DGyP8J9Nl9RhmebzM1exrdFr1LHsuHGRMy4F3O2QRkbuma9eu/OUvf6FLly506tSJJ554gjNnztx2O3FxcYwePbpMMYwZM0YJUakQSoiKiIiIiEildCDxCPVtHHC2rUsHhxYkZ1zhdOqFAnW2nQshNesqCdcukZKZyrpTOwA4mBRN0wf0S7qIVF7Ozs4kJiaSmZkJQGJiInFxcRw9epQ6deoA4O7uTkBAgHFOhw4d2LFjB4cOHeKFF14AoEmTJoSFhQFgbm7OnDlzCAoKYv/+/bz44ovGuW+99RahoaGEhIQwe/Zshg8fTqdOnVi8eDHBwcFYW1sze/ZswsPD2b9/Px999NHduhVSBVlWdAAiIiIiIiLlZeWJPxjZ7DGcbOuw/Lh/ofczcrKM17nkkpGbnxjIzcvF0ky/LolI5RUQEMB7773HoUOH2Lx5MytWrGDnzp0lntO+fXt69OiBnZ0d+/btY8OGDQXe/9vf/sbly5fp3r071apVY/v27fzxxx88+OCDDB48GE9PT9LT07G3tyc5OZnx48fzzjvvEBoaioODA08++STt2rUDoFatWuV27SKaISoiIiIiIpXWr8cDeNqtPyNcH2PFiT8qOhwRkXtGWloaXbt2Zfz48SQkJLBkyRKee+65Es9Zt24d165dIzExke3btxdac9TLy4u//vWvBAcHExgYiIODA82bN+fRRx/lxx9/JD09HYDk5ORCbaekpHDt2jW++eYbhg4dytWrV013sSI30Z88RURERESk0jqcfIIHrOw4m3aR81cTaVJDj8GLiFyXm5vLjh072LFjB5GRkTz33HNkZ2djbp4/f87a2rpA/by8vBKPzczMeP311ws8Zg/5idLS5OTk0L17dx599FGGDx/O+PHjefzxx8tyWSKl0gxRERERERGp1B5aOZrH1v8TgFOpcXRY8TQAPx5dz8TAuUa9Zr8MIfFaSpHviYhUNi1btqR58+bG8UMPPcSpU6c4deoU7u7uAAwbNqzAOYMHD6Z69eo4ODjQq1cvQkJCCrzv7+/PSy+9hKVl/vy7Fi1aYGtry+bNmxk7diw2NjYA2NvbA5CamsoDDzwAgJ2dHbVq1WLjxo289dZbdOjQoXwuXATNEBURERERERERqXLs7OyYN28etWvXJjs7m+PHjzN+/HhatWrFN998w+XLl9m+fXuBcw4ePEhAQAB16tThww8/JC4ujiZNmhgzRRctWkTTpk3Zt28fZmZmXLx4kZEjR+Lv789DDz3Enj17yMzMZOPGjUyfPp3FixezYMEC0tPTGTx4MKtWrcLa2hozMzPefvvtirgtUkUoISoiIiIiIiIiUsWEhYXRu3fvQuWBgYG0bdu2UPkHH3xQZDsODg4kJSUB+Y/QT58+nenTpxeq98knn/DJJ58UKPP19cXX19c49vT0vK1rECkrPTIvIiIiIiIiIiK3zd3dnZ9//pn/+7//q+hQRG6LZoiKiIiIiIiIiMhtCw0NLXI2qci9TjNERUREREREREREpMpQQlRERERERERERESqDCVERUREREREREREpMpQQlRERERERERERESqjFvaVMnDwwNXV1eWL1+Og4MDdnZ2nD59urxjExEREREREZFbkHn+ZZO2V81poUnbExG5l5Q6Q3TSpElMmDCBiRMnAmBlZcUXX3xR7oGJiIiIiIiIyL0pLi4OKysr49jMzIy4uDgA0tPTCQ4ONv55enrSq1cvLl68SHBwMGFhYbz77rt3HMOSJUto3ry5yeOpW7cu69evv+P4RKqKgIAAIiMjGTRokFE2c+ZMwsLC2Lt3L0OGDAHAwcGB3bt3ExISQnBwsFEO+ZMx9+/fT0REBL/88gsAXl5eBb52U1NTeeihhwDw9PQkPDycsLCwMsVc6gzRAQMG0L9/fzZt2gTAhQsXsLOzK1NnIiIiIiIiInL/O3nyJA0aNODUqVMAODk5cebMGSA/Aenh4VGgfq9evdi1axfDhg3DwsLCSHrExsaWqf82bdpgbW1NdHS0yeNJSEggLi6OHj16sGvXrjLFJ1LVjBkzhtDQUADc3d3p168fnTt3pnbt2uzbt48tW7Zw+fJl+vXrR1paGnXq1CE0NJR169YB8MMPP/D3v/+doKAg6tatC+QnWgMCAoD8r+nNmzcTHh4OQGBgIEOGDGHNmjVlirfUGaKZmZkA5OXlAWBjY1OmjkRERERERESkcjhx4gQNGzbkq6++4quvvqJhw4acOHHils61tbXFysqKjIyMMvfv7e1dIBFi6njWrl3LM888U+b4RKoyNzc3wsPDycnJITExkXPnztG5c2eys7NJS0sDoFatWlSvXh1LS0vc3d25ePEiQUFBACQkJBRqc9SoUfj6+posxlITouvWrePjjz+mZs2aPPPMM/z666/G1FURERERERERqXquJyAbNWqEo6MjjRo1MhKQNjY2BR5zbdSoEQA9evQgODiYU6dOsWTJEi5cuFDm/rt161bgUVlTx7N//366detW5vhEqrKoqCi6dOmCjY0NLi4utGrVCicnJwBq1KhBaGgo+/fv59VXXyUrK4vGjRuTkpLCunXr2LdvHy+99FKhNr29vVm+fLnJYiz1kfmvv/6anj17cuXKFdzc3Pjkk0/YuXOnyQIQERERERERkfvL8ePHady4MRkZGWRmZtKkSRMjAVnUI+rNmjUzHlGvUaMGmzZtYvXq1Rw8eLBM/Ts7O3Px4sVyiyc+Pt5I4IjI7YmMjGTx4sXs2LGDs2fPsn37dq5duwZAamoq7u7utGrVioULF7J69Wqsra3p3r077u7uXLp0iT179uDv78/JkycBaNmyJba2tkRERJgsxlJniALs3LmTWbNm8cEHHygZKiIiIiIiIlLFnThxgkcffZTDhw9z+PBhHnvsMSN5UZrU1FS2bdtG9+7dy9x/eno61tbW5RaPtbU16enpZY5PpKqbP38+Hh4eDB06FEdHx0LrBf/vf/8jKyuLDh06cOHCBaKiojh9+jRXrlwhNDSUBx980Kg7evRoVqxYYdL4ip0heuTIEWPd0KK0atXKpIGIiIiIiIiISNlUc1p4V/s7ceIEvXr14ttvvyUrK4vJkyfz+uuv39K5ZmZmdOjQgcDAwDL3HxUVhZubm7GJkqnjadGiBVFRUWWOT6Sqc3BwICkpiZ49e2Jvb09oaCgNGjTg2rVrJCUl4ejoSOvWrTl37hzR0dG4uLhgb29Pamoq7dq1K/AHjaeffpphw4aZNL5iE6LXM7GTJ08mPj6elStXYmZmxvDhw6lfv75JgxARERERERGR+8fZs2fJzc1l//79ZGdnY2lpaSQnr6/Zed2sWbNITk421uy0tLRk69at+Pn5lbl/Pz8/+vTpw5YtW8olnj59+rBhw4YyxydS1fn4+ODm5kZWVhbPP/88AC4uLnz55ZcAWFhY8N5773H+/HkA3nrrLfz9/bGysmLZsmUcOXIEAA8PD9LS0jh69KhJ4yt1DdH+/fvj5eVlHC9evJiAgAA+/fRTkwYiIiIiIiIiIvePWrVqGa9tbW2N1zY2NkXWr1evnsn69vX15eWXX8bCwoKcnByTxzN48GBGjBhhomhFqp7hw4cXKtu7dy/u7u5F1l+1ahWrVq0qVB4cHEyXLl1MHl+pa4hevXqVYcOGYW5ujpmZGcOGDePq1au31Phnn31GeHg4mzdvNspq167N0qVL2bVrF0uXLi3wH9bMmTPZtWsXAQEBtGvXzih/6qmn2LVrF7t27eKpp54yytu3b88ff/zBrl27mDlz5i3FJCIiIiIiIlXXzp07OX36tLHhDkCTJk2IjIwkJiaGyMhIXFxcjPf8/f2JiYnh+PHjDB061CifO3cuMTExxMTEMHfuXKN82LBhHD9+nJiYGPz9/e/ORVVB165d41//+pexY7wp1a1bl3nz5pGcnGzytkUqo+TkZL777jsGDRp01/r09PTE19eXhISEMp1fakJ0woQJDB48mPDwcCIiIhg0aBATJky4pcaXL1/Os88+W6i9Xbt20aNHD3bt2mW09eijj+Lq6kqPHj145513mDNnDpCfQJ00aRKDBg1i4MCBTJo0yUiizpkzh7fffpsePXrg6upK3759b+viRUREREREpGpZtGgREydOLFC2YMECDhw4QNOmTTlw4AALF+avxzlp0iScnJxo2rQp06ZNMxKfTZo0YdSoUfTu3ZuePXsyatQoI4n68ccfM23aNJo2bYqTkxOvvfba3b3AKmTz5s3GY/GmlJCQwNq1a03erkhlNWrUKB5++GHWr19/1/oMDAzE3d29wFPtt6PUhOiZM2d44YUXaN++Pe3bt2fcuHGcOXPmlhrfu3cvly5dKlD2+OOPGztDrVixgieeeMIoX7lyJQChoaHUqlWL+vXr07t3b3bu3MmlS5dISUlh586d9OnTh/r16/PAAw8QGhoKwMqVK422RERERERERIry/fffc/bs2QJlbdu25cMPPwTgww8/NJ5YfPLJJ/ntt98AWLp0KVZWVrRp04YXX3yRmJgYTp06xenTp4mJieEf//gHbdq0wcrKiqVLlwLw22+/mXwjEBERuXOlriHq7OzMBx98gIeHB5Cf5JwxYwZxcXFl6rBu3brEx8cDEB8fT926dQFwcnLi3LlzRr24uDicnJxKLL8xhuvlRXn22WeNmarXH/sXMZWuXbtWdAhSiWg8iamZbkxdM1E7pSvwfTrzrnVb4Srq55Pb7ddUY2qfSVq5NVX1Z7+qNqbWEGuSdm7F9Ws08f4O97z7ZUyZm5tz7Ngx43jDhg28+uqrJZ5jZWXF4cOHATh8+DBWVlZA/hOLN7Z19epVWrdujYuLi7ERCMCFCxdwcXGhdevWpKWlGeXR0dEMHjz4tuIXEZHyV2pC9D//+Q++vr689NJLAIwYMYL//Oc/eHt7mySAvLw8k7RTkiVLlrBkyRIAYmNj8fX1Lfc+pWrRmBJT0ngSUzPFmGr7xgATRHJrCsQ7sF3xFSuZG6/7vW/erJB+y/OcmzXs/eEdt3Grboz3h8+fuWv9VrQCn5PP3Xtkt6LGlNnjne64jVt1Pd62bavWHzJv/JwmPPxKhfR7K3Jzc2nRosUd9Xk3fk8VEZGKU+oj83Xq1GH58uXk5OSQk5PD8uXLqVOnTpk7TEhIoH79+gDUr1+fxMREAM6fP0+DBg2Mes7Ozpw/f77Ecmdn50LlIiIiIiIiIrcjKyuLNm3aANCmTRuys7MBuHTpUoHkqq2tLVFRUZw+fbrAE4qOjo6cPn2aqKgo7OzsjPLmzZsXWkauvOw+t9Wk/25Feno6wcHBHDhwgJ9//hlra2sAnnnmGSIjIwkNDTXu63V+fn5FbjZVXHlJlixZQvPmzUuNpyycnZ1ZtmxZmc+/buLEiUXucj9o0CAmT558x+0XpaT7X5yy3P8btWzZkuDgYJKSkordRfx2lOf9gfwNecLDwwkODqZ169al1r/5/pj6eotT3H0oalwlJSWZpM+6deve9lqgAQEBREZGFthUycPDg/379xMREcEvv/wCgJeXF8HBwca/1NRUHnroIQBGjhzJoUOHOHToEAMHDjTa+eijjzh9+jRhYWEF+rz+Gd5cfqtKTYgmJyczfPhwzM3NMTc3Z/jw4Xe005q/v7+xU/xTTz3Fpk2bjPKRI0cC4O7uzuXLl4mPj2f79u306tWLWrVqUatWLXr16sX27duJj4/nypUrxsAbOXKk0ZaIiIiIiIjIrTp8+DBTp04FYOrUqRw6dAiAtWvX8uSTTwLg7e1NVlYWhw8fxsfHB1dXV1xcXHBxccHV1RUfHx8OHz5MVlaW8UTljWuQVkbp6el4eHjQsWNHAP7xj38A8NZbb9G3b186derE8ePHjfo2Nja4ubnRsGHDAonj4spL0qZNG6ytrYmOji41nrKIi4tj9OjRZT7/uokTJ2Jra1uofP369XzyySd33H5Rirv/xSnL/b/Z0aNHjQSYKZTn/YH8r+ePP/4YDw8PoqKiSqxb1P0x9fUWp7j7UNy4MoWEhATi4uLo0aPHbZ03ZswYI5FqZmbGDz/8wMSJE+nQoYOxbElAQAAeHh54eHgwePBgTp06RXh4OFZWVsyePZu+ffvyxBNP8Omnn2JmZgbAmjVrjP+HbxQYGMiQIUPKfJ2lJkTfeOMNBg8ezIEDBwgLCzN2er8VCxYsYO3atbi5uRESEsLo0aNZsGABvXr1YteuXfTs2ZMFCxYA+bvDxcbGEhgYyNy5c41vRpcuXWLevHn8/vvv/P7773z++efGX9imTp3KJ598QmBgIKdOnWLLli1lvQ8iIiIiIiJSBezdu5dVq1ZRrVo1YmNj+c9//sOECRN4+OGHiYmJoWPHjkyYMAHIX0IuPj6emJgYZs2axZQpUwA4deoUK1euZOfOnezcuZMVK1YYu51PmTKF2bNnExMTQ3x8PJ9//nmFXevdtGPHDtzc3ID8+9O+fXvy8vLIyMgw6vTq1Yvdu3cTFBRE3759Sy0vibe3N2vWrLmleHr16oWfnx/Lli0jLCyMTz/9FIAJEyYQFhZGWFgYY8aMMc6dM2dOkTPPBg4cSGBgICEhIcydO9cod3R0ZPXq1YSEhLBnzx5atGjBo48+SnBwMA0aNCAgIIDg4GDjKddFixYRHR3NvHnzCrSflJTE559/zqFDh/jyyy+N8jfeeIODBw+yevVqoqKiaNKkSYn3prj7X5zi7n9x8fj6+hISEsLu3bsZP358iW0PHDiQH3/80Th+//33jeTYK6+8QkREBPv37zc2NYPi709x9YtT1Odbq1YtgoODGTlyJDNmzLilGaK3Oz6L+7yKG2/Fjc+i7kNJ4woo9HlNnz6dP/74g8OHDzN//nwOHTpk7OVT0v1cu3YtzzxT9mWG3N3duXjxIkFBQUB+kvVmo0aNMpZE6dKlC4cPHyY+Pp7Tp09z5swZOnToAMCePXuMp8tNqdQ1RM+ePcvf/va3MjV+/ZvIzZ5++ukiy997770iy3/99Vd+/fXXQuURERE89thjZYpNREREREREqp7iNvJq27ZtkeX9+vUrsvzNN9/kzTcLr/m8atUqVq1aVfYA70OWlpYMGDAAPz8/qlWrRk5ODrNnz6ZPnz4FEnJeXl5s2bKFnJwc+vfvb8wmK668JN26dSsyT3BzPNd1794dT09PDh06RK1atWjSpAkTJkzAw8MDKysrQkJC2LBhAxcvXmTKlCl89dVXBRKu9erVY+rUqfTr14/09HSWLl1Knz592LZtG/PmzWPjxo188803PPDAA1hbW3Ps2DE8PDw4evQoXl5eBRI6L7zwAs899xydOhVc+7hGjRr8+uuvTJ48mf/97384OztjaWnJiy++SOfOnXFxcSE8PLzE+1LS/S9Ocfe/qHji4uJ45ZVXOHv2LJaWloSHh7N69WouXLhQZNsbN27ks88+w9bWlqtXrzJy5Ejja+r999+nWbNmpKamUq9evVLvT3H1i1LS5+vh4YGPjw9+fn6sXr26zPenKC4uLkV+XiXFA4XHZ3H3YcuWLcWOq6I+L8ifZeri4sLp06fZtGkTjzzyCOvXry/xfu7fv5+ZM2eWem+K07hxY1JSUli3bh2Ojo589913fP311wXqeHt7G/sVOTk5cf78ef7+97+TnJzMhQsXcHJyKnW834lSZ4jOmzePmjVrGse1atXis88+K7eAREREREREROTeZ2NjQ3BwMLt37+b48eN8//33TJ48GT8/PxYvXsysWbMwNzc3Eov9+/dn69atbN26FS8vL6Od4spL4uzsbCSTSornutDQUGMphJSUFDp27EhgYCBpaWlcunSJkJAQ2rdvX2x/Xbt2xdXVlR07dhAcHMxDDz2Eq6srkD/D73pfV65cKRTXrcrIyGDPnj1kZ2cTExODo6Mj7u7uBAYGcvXqVY4cOWLMRC5OSfe/OMXd/6LigfxE3b59+9i9ezfOzs4FZijeLCcnh3Xr1vHkk0/SuXNnTpw4QXx8PAAhISF8++23PPfcc7eUuL2d+rf7+ZbkdsZncZ9XafHcPD7LorjPKykpiZSUFJKSkrh06ZKRcC3pfsbHxxdYJ/l2WVtb0717d15++WUee+wxXn31VePrBfLXYLW1tSUiIqLAed9++y0rV64sc7+3o9QZoq1bt+by5cvGcUpKCu3aVZ0dX0VERERERESksOtrdt6oa9euTJkyhUOHDvH7778zbtw4jh07Zqy1en3WZqNGjWjevDkZGRlFlt+4Nmhxfd+8aVJR8VxX1iTTjQICAhg7duwdt1OcrKws43VeXh7m5qXOYSukuPtfnOI+l+jo6CLj6dWrF/369aN3796kp6eze/fuAnHm5eUV6uPnn39m5syZREdHs2TJEqN80KBBeHp6MmrUKCZMmMAjjzxS4rXdbn1TKOn+QNHXWxamGJ/FjZ+8vLwC/66Xl3Q/ra2tSU9PL3MsFy5cMDagg/yE74MPPsjJkycBGD16NCtWrDDqx8XFFdqorrw3Ti/1q8vc3NzIHgPUrl0bCwuLcg1KRERERERERO4/Bw8e5K9//SuQv6zAf//7X3755Re8vLxYtGgR7du3p3379nzzzTd4eXkVW16aqKgoY43Qsjhw4ADdu3fH1taWWrVq0alTJw4ePFhs/b179+Lp6UnDhg2B/EeCr8/A2759u5EotbW1NdZohPwZow4ODmWOMzQ0lO7du2NjY8ODDz5Y6vqhxd3/4tzu/a9ZsyaJiYmkp6fTpk0bY53H65KSkmjUqFGBsvDwcBwdHRk4cCDr1q0zyhs3bszOnTt5//33ady4cYnXdbv1b/fzLU5p9+fm6y3u8zJVPNfd6biCku9nixYtSt1sqiQhISG4uLhgb2+PlZUV7dq1M5KhkL+U5vLly43j4OBg2rRpQ7169WjUqBENGzYsNHvU1EqdIfr111+zdu1aY42EQYMG8d///rdcgxIRERERERGRW9etwa1tRlTe5syZwzfffEN4eDiJiYksWrSIZ599lkaNGhVIgGzdupVx48aRkZFRZPmNm/gUxc/Pjz59+pR5c+VTp06xcOFCAgMDAZg1a1ahR91vnP138eJFJk6ciK+vL5aWlqSlpRlJ0EmTJvHll1/yz3/+k6ysLMaMGWNsIrNgwQJWrlxJUlISo0ePxtrampUrV2Jvb4+NjQ2enp5Mnz6djRs3Fhnn6dOn+e6779i3bx9RUVGcPHmyxMfFi7v/N28QdV3//v1v6/5v2rSJcePGER4ezpEjRwq1O2/ePHx8fJg+fTpDhgwhLi4OyN8pvGXLlly7dg3I34X8+++/p2bNmlhYWPDOO+8A+WttFnV/Nm3aVGT94tzK53srSrs/N19vcZ/X+fPnbyue4u7D9XFy87gqbg3X4hR3/6/r06cPGzZsuK02b3T58mXeeust/P39sbKyYtmyZRw5cgQADw8P0tLSOHr0qFE/KyuLadOmsW3bNiB/6YfrX3/z589n6NCh1K1blxMnTvDqq6/e0jrDpTFr0KBBqfN7W7RogaenJ5C/rX1J063vdbGxsVhalpoHFrllw4YNM3ZGE7lTGk9iaqYaU9N2DjBBNLdmVs8/f/i6MnD6Xeu3oj3w+wfG65CLu+5av53r9bit+qYaUw3nlX3Wwe06+/qfu8emxJR9x9T7Ta2mf84Iykt87a71a1Zn/m3VN9WYMvuqU+mVTCTvn/sBaNv2o7vW573g0KH/x959x1Vd7w8cfx3mYYjKiKGAiJMciOIAJepq1g80V6be68i8pamVmpWV47padsW66q1Q05wNMSQcKCWKoGwB0TQFFyLLAR2QcX5/cDtJcFgewfF+Ph484ny+n+/n8/58OZi+z2e8o/n+wOKDjdbvwAX1O0i3tLS0TrPNHnSffPIJkyZNauowmoxSqSQsLAxfX1/Kysp03n6/fv1YtGgRgwcP1nnb9WVubk5BQQFWVlaaU+wfND/++COrVq1qcAL7QfIw/LzCw8MZz2Ii7gAAIABJREFUOXIk+fn5daofFhbG22+/TXx8/D2OrDJnZ2d27dpFjx49qr3+9ddfM3fu3Gqv1SkzeObMmQc6CSqEEEIIIYQQQoiHR1FREYsWLaJ169a1HjRUH61btyYoKAhTU1Nef73xPkyqyYoVKzR7o86ePbuJo6kfS0tLDh8+THR09CORDIUH++cFYG1tTUBAQJ2ToQD5+fmsW7eO+fPn62T2Zl14e3vz+eefa2Zj15dMlRRCCCGEEEIIIcQD5+BB3c9UvnTpktaDmZrK1KlTmzqEBsvLy+Pxxx9v6jAa1YP88wLIyckhODi4XveMHj36HkWjXWRkJB4eHg2+X+uhSkZGRg1uVAghhBBCCCGEEEIIIe5HWhOif2SD5QAlIYQQQgghhBBCCCHEw0LrknlDQ0OGDRtGz549efbZqgcp3M1pU0IIIYQQQgghhBBCCNEUtCZE33nnHUaMGEHz5s0ZNGhQpWtqtVoSokIIIYQQQgghhBBCiAeO1oRoTEwMMTExJCUlsX379saMSQghhBBCCCGEEPWwZ/5enbb37JJnaq3Tvn17vvjiC6ysrCguLmbkyJFcvHhRa/3evXvz+eefo1QqycrKYtSoUdy8ebPBMW7ZsoWFCxdy9uzZBsWjSzNnziQwMBCVSqXztnX93P4qLy8PS0vLaq/5+/vTuXNnPvnkkwa3b21tzddff42/v3+D2xD3t7CwMOzt7XnnnXcqnTJvbm5OSkoKq1atYuXKlQCoVCpSUlIAOHz4MLNnz8bS0pKffvoJQ0ND1Go1S5YsITg4WGs5VJwyv2bNGsrLy+nRo0e9Y671lPkffviByZMn07dvXwCioqL45ptvKC0trXdnQgghhBBCCCGEeDhs2LCBt956i6NHj2Jvb09xcbHWuoaGhnz99de88MILJCcn4+7ujoFBrSkJrdzc3FAqlZpkaH3j0bWZM2eydetWnSdEdf3c6iskJKRSgqshcnJyyMzMpH///hw5ckRHkYn7zYQJE4iPj69UNm/ePBISEiqVqVQqPD09K5XdvHmTgQMHUlhYiJWVFfHx8ezevVtruVqtJjIykqFDh7Jr164Gxav1UKU/LF++nG7durFx40Y2btxI165d+eCDDxrUmRBCCCGEEEIIIR583bp1o7i4mKNHjwKQmZlJXl4eANOnTychIYGEhAQmTJgAwDPPPENKSgrJyckAJCYmaur7+PgQGhrK9u3bSUhIYMWKFbX2P3bs2EqJkPrGM3/+fA4cOMDJkydZtWoVqampWFtb4+zszMmTJ9m6dStJSUm8+eabmj7+aA8qZsR5eHjw1FNPERMTg4ODA2FhYcTExGBvbw+An58fkZGRxMbG8vHHH2vurc94G/LcgoKCiI2NJSoqimnTpgHUOC6AlStXkpqaytq1azVl69ev5+zZswQEBFSqa2try86dO4mNjSU6Opr27dsDMGPGDE6cOEFcXBzLly+vdE9wcDDjxo3TOk7x8OnQoQM2NjZVkqTVKS0tpbCwEIDmzZtjbGyMgYGB1nJdqLUVd3f3SnuIRkZGEhYWppPOhRBCCCGEEEII8eBxcXHh3LlzVcqdnZ2ZPn06np6eGBoaEhsby549e3BxceG3337T2p6Xlxfe3t6kpqbSvHnzWvvv168fO3bsaHA8UDH70dHRkYsXL7Jv3z769u1LcnIybdu2ZcSIEaSnpxMXF8e3337LhQsXqo0jPDwcT09Pfv31VwYNGkRubi4ANjY2vPvuuwwcOBCVSsW2bdvw9fXll19+qdd4G/LcZsyYweXLlzEwMCApKYmdO3cCaB2Xubk5O3bsYO7cuZw6dQp7e3syMzOZPHky48ePp2fPnpX6DAgIYO/evXz55Zc0a9YMpVIJwIIFC2jbti0FBQXY2NhUuicuLo7FixdrHYd4+Cxbtow5c+YwceLESuVKpZJjx46hUql4//33NbOGzc3NiYiIwMXFhVdeeYWSkpIay+9WrTNEy8rKcHZ21rx2cnKirKxMJ50LIYQQQgghhBDiwaNQKKotd3d3JzIyksLCQq5fv05sbCxdu3atVGfx4sWkpaXx/PPPa8ri4+NJTU0F4MaNG7X2b29vT3Z29l3Fk5eXx40bN8jLy+P69euahGJGRganTp2iqKiIo0ePNmh/wj59+uDi4kJERAQxMTF0794dFxeXBo8X6v7cJk+ezPHjx4mKisLe3l4zY1XbuIqLi4mOjqa0tJT09HRsbW1rjMPHx4cNGzYAcOvWLc3PITY2lq+++orx48dX2a7g2rVr2NnZ1Wmc4sHn5+fHmTNnqv0gwcXFhT59+jBnzhw2bdqkSagXFBTg4eFBv379mDp1qmYmqLbyu1VrK0uXLuW7774jIyMDhUJB69atmT17tk46F0IIIYQQQgghxIPn/PnztG3bts7109PT6devH1Axk9DCwkKTCIG6JwX/oFKpKt1f33gA1Gp1pS89vZrnjKnVas33dUnKhIWFVZkd94e6jre+z83Hx4eBAwfyxBNPoFKpiIqKqnVcd864q8tz0Mbf3x9vb29Gjx7N9OnTNWfRQMWswHtx4JS4P/Xu3Zthw4YxZMgQrKysKC8v5+rVq2zbto2srCygYtZwZmYmbdq04dSpU5p7T506RUlJCd26dau03F5beUPV+i4/cuQI/fv3Z8GCBcyfPx8fHx/NnhxCCCGEEEIIIYR49CQlJWFubo6XlxcAdnZ2WFpakpiYiJeXF6ampjRv3pyePXuSnJzM3r17cXd3p1OnTgDo6+vfVf9paWm4uro2OJ6aODs706FDB4yNjfHy8iIxMRGoSD62bNkSpVJJx44dK91z69atSie1Hzt2DG9vb1q1agVUrLatbeZlder73CwsLMjNzUWlUuHm5ka3bt1qHVd9HTp0SJPoNTU1xdraGqgY4+HDh1mwYAFOTk6V7mnfvj1paWkN6k88eBYuXIibmxtdu3Zl7dq1fPrpp2zbtk3z+wMV70cHBwcuXLiAg4OD5vfH1taWzp07c+XKFa3lulCneaa3b9+WN64QQgghhBBCCHGfenbJM43e56RJk1i7di2WlpaUlJQwbNgwMjIyWLNmDZGRkUDFqtM/llRPmTKFb775BoVCQU5ODitXrmxw36Ghofj6+hIeHt7geLQ5f/48y5Yto0OHDqxfv56MjAwAVqxYQUhICHFxcVy6dKnSPatXr+b7778nLy+PMWPGkJWVxcyZMwkKCsLAwIDCwkKts0Vrcvv27Xo9t3379vHSSy+RlJTE6dOnK53wrW1c1XF2dub777+nZcuWmJiY4O3tzfz589m7dy+zZs1i7dq1TJ06lZKSEiZMmEBubi4bNmzAwsICfX193n777Urt+fr6avZuFY+ujh07EhgYSHFxMWVlZUydOpXff/9dkziFiqT/e++9x9WrV+nTp0+15bqgm4X3QgghhBBCCCGEeKSkpaXh6+tbpXz16tWsXr26SnlkZCSenp5VyiMiIoiIiKhX30FBQbz66qvo6+trzjmpTzxLliyptl1nZ2eKiooq7dP5hzVr1rBmzZpq71u/fj3r16+vVLZnz55qk4D1HW99nltJSQnDhw+vUremcd05s/XOQ7Wr6xMgKyuLESNGVCl/8skntY5hyJAhjBw5Uut18fC683ctOjqaLl26VKlz7NgxPDw86lyuCw3bGEIIIYQQQgghhBCiiRQVFbFo0SJat27d1KGIWlhbWxMQEEB+fn5ThyLukfz8fNatW4e/v3+j9ent7U1QUBA5OTkNur/WGaK9evUiNTUVlUrFiBEj6Nq1K4GBgVy+fLlBHQohhBBCCCGEEELcrYMHD+q8zYyMjAadKn+/a8px5eTkEBwc3CR9i8YxevToRu8zMjLyrmaP1jpD9IMPPtBsxvvKK6+Qnp7OqlWrGtyhEEIIIYQQQgghhBBCNJVaE6J/7MXx9NNPs2HDBjZu3Ii5ufk9D0wIIYQQQgghhBBCCCF0rdaEaEFBATNmzGDUqFEcPHgQhUKBgYGcxSSEEEIIIYQQQgghhHjw1JoQnTZtGrdv32b27NlkZ2djb2/Pf//738aITQghhBBCCCGEEEIIIXSq1qme2dnZ/PTTT7Rt2xaAvLw89uzZc88DE0IIIYQQQgghRN3sPD1Fp+2N6Bio0/aEEOJ+UusM0XHjxvHll1/y4YcfAmBvb8/69evveWBCCCGEEEIIIYS4f6lUKmJiYkhMTGTz5s0olcpG7X/Lli20a9fuvomnLjp06EBMTAx5eXlVTsi2trYmJCSkiSITouHCwsJISUnB39+/Urm5uTnp6enMmjVLU/bhhx9y8eJFEhISKtXVVj579mwSEhJISkri/fff15R7e3uTlJRUpX5d1TpDdNKkSfj5+Wl+Kc+fP4+VlVWDOhNCCCGEEKIpef2ne1OH0Ii2NnUAQoiHnEqlwtPTE4DNmzfz8ssv89lnnzVK325ubiiVSs6ePXtfxFNXv/76K56enoSFhVW5lpOTQ2ZmJv379+fIkSNNEJ0QDTdhwgTi4+Mrlc2bN69KwnLXrl18++23rFu3rtbyVq1aMWXKFLp164ZCoSA5OZnNmzeTnp5OZGQkQ4cOZdeuXQ2Kt9YZosXFxZSUlGhe6+vro1arG9SZEEIIIYQQQgghHj4RERG4uroC4OfnR2RkJLGxsXz88ceaOj4+PoSGhrJ9+3YSEhJYsWIFADNmzODEiRPExcWxfPnyOvU3duzYGhMh9yKe6dOnk5CQQEJCAhMmTNCU5+XlsXLlSlJTU1m7dq2mPCgoiNjYWKKiopg2bVqdxhUcHMy4cePqVFeI+1mHDh2wsbGpkiSNjo4mNze3Sn1t5QYGBhgbG2NsbExJSQk3btzQSXy1zhCNjo5m5syZKJVKBgwYwMSJEzlw4IBOOhdCCCGEEEIIIcSDzcDAgGeffZbQ0FBsbGx49913GThwICqVim3btuHr68svv/wCgJeXF97e3qSmptK8eXMAFixYQNu2bSkoKMDGxqZOffbr148dO3Y0WjzOzs5Mnz4dT09PDA0NiY2NZc+ePWRnZ2Nubs6OHTuYO3cup06dwt7enszMTGbMmMHly5cxMDAgKSmJnTt3kpWVVeO44uLiWLx4cZ2egRD3s2XLljFnzhwmTpzY4DYuX77Mf/7zH3777Tf09fV5++23yc/P10l8tc4QXb58Obm5uZw6dYrx48cTHh7ORx99pJPOhRBCCCGEEEII8WAyMTEhJiaGqKgofvvtNzZs2ECfPn1wcXEhIiKCmJgYunfvjouLi+ae+Ph4UlNTATQzvWJjY/nqq68YP348xcXFderb3t6e7OzsRovH3d2dyMhICgsLuX79OrGxsXTt2hWoWFkbHR1NaWkp6enp2NraAjB58mSOHz9OVFQU9vb22Nvb1zqua9euYWdnV6dnIMT9ys/PjzNnznDhwoW7aqdFixYMHjyYDh060KlTJ2bPnq2z349aZ4iq1Wq2bt3K1q2yB5EQQgghhHg4lKoKyfj2q4rvC2+Bnh4GJmYAuPxjBnr6tf41uVY3z6aSHRmGGqCsDKteA2jZrXed70//PhDHoePRNzLWWicnNgJL937oGRjedbxCCFFfd+7ZeaewsDCts8KqW+7q7++Pt7c3o0ePZvr06fTt27dOff/10KSmiufObQbVajV6enr4+PgwcOBAnnjiCVQqFVFRUejp6VWqVx2lUolKpaqxPyHud71792bYsGEMGTIEKysrysvLuXr1Ktu2batXO0899RQXL17k5s2bACQmJuLu7s7evXvvOsZa/6bXq1cv5syZQ+vWrdHX10ehUKBWq/Hy8rrrzoUQQgghhGgKBiZmuE58A4BrkWHoGRlh7fmEztovLy0lMyyItuNfw9DcgvLSUkpu1m2JV8U/ktW0GTWl1rq5sYdp2cUTJCEqxCNvRMfApg4BgGPHjhEQEECrVq24fPkyTk5OFBcX17hU3MnJicOHD5OSkqKZrVmbtLQ0XF1dycjIaJR4EhMTWb58OaamphgaGtKzZ0+Sk5O1tmFhYUFubi4qlQo3Nze6detW6XpeXh6tW7eusr9i+/btSUtLq234QtzXFi5cyMKFCwGYP38+BQUF9U6GAly9epVevXphZGSEnp4ePXr0YOnSpTqJsdaE6KeffsqiRYs4ceIE5eXlOulUCCGEEEKI+1HW4b0YmFlg5VHx4f/VQ6EYWrTA2NKG7Ohw9PQNuH0jDzPn9tj/7TkUCgW3zp0iO+og6rJSjFpa02rw85SX3AZAX2kCgJ6BAcaWFfvQlRTeInP/Tm7fyAOFAoenR6CvNOVi0EaUtg4UZV3B+fkpnNvyH9pNmk2pqpCLuzZibG1HUXYmSms7Wj37AnlJ0ZT9Xsj57f/FwNScNqP/2TQPTQgh7pCdnc3MmTMJCgrCwMCAwsLCGvcQVCgUbNiwAQsLC80egXURGhqKr68v4eHhjRJPRkYGa9asITIyEoClS5dWWbJ/p3379vHSSy+RlJTE6dOnq5y0HRAQQGBgIPPnz2fo0KFkZmYC4Ovry549e+r0DIR4EK1atYphw4ZhbW3NuXPneO211wgJCdFaHhYWRlxcHOXl5axfv55Tp07pJI5aE6I3b97k559/1klnQgghhBBC3M9adOnFpZBtWHl4oS4v5+avybiOn4kq6zKqzIu0e3E2hs1akPFdILfOnsTUwZmc47/QZvQ/0TM0Ijs6nNz4I9j0fQrzNh349csPMXdqRzPXzlh06oZCoUfmgV2YObfHycMLdXkZ5SUllP5eQHFeNq3+7wVM7FpXias49xoOg0dh6uDMpdAd5J+IxrrXAHJjI3AZM1WTeBVCiMZkaWlZbfmePXuqTepFREQQERFRqUytVvPkk0/Wu++goCBeffVV9PX1KSsra5R4Vq9ezerVq6uU39nvoEGDNN8PHz5ca/zR0dF06dKlSvmQIUMYOXKk1vuEeNAsWbKk0uvXX3+d119/vUo9beXz5s1j3rx5Oo+r1kOVjh49yvvvv0/Pnj3p0qWL5ksIIYQQQoiHjXFLa/SNjCnKzqTg/GlM7FqjrzQFwNTeCaPmlij09LDo1J3fL5/n9ysZFOde4/zWNfy2MYAbJxM0S+NbPTuaNs9PQWnXiuzjv3Bl/04Afr94DsvufQBQ6Omjb1yxB55RC8tqk6EAhs0tMXVwBqCFWw9+v5R+Lx+DEELc94qKili0aBGtW1f/5+aDyNramoCAAJ2doi1EY8nPz2fdunX4+/s3Wp/e3t4EBQWRk5PToPtrnSHq4eEBQPfu3TVlarWa0aNHN6hDIYQQQggh7mctunpyPSWO2zfzNYlLABR/rakA1Ji7dKD1/42pti2ljT1KG3uad+7B2fWf0mrwKC1tgZ6hUd2DVFTTgBBCPGIOHjzY1CHoVE5ODsHBwU0dhhD11hQ5wsjISE3OsiFqTYg+//zzDW5cCCGEEEKI6mRMndNofRm8Ub/6Fh26kB11AHV5OWbO7TTlv1+5wO2b+RiaN+fm6RNYenhhau/E1fBgbl/PxaiFFeW3b1NSeBMDU3OKrl3BzLEtAEXXrmBk0QIAM8e25CUe0yzL/2O/0ZqU3MhHlXkRE3tHbqQlYtqqDQB6RsaU3y6udcl8yI3a+xBCCCGEeFRoTYiOGDGCnTt38vLLL1d7/csvv7xnQQkhhBBCCNFU9AwMMW3tgoFZMxSKP3eYMrF3JDMsiNvXczFzbk8zVzcUCgUOg0dxcfdW1OUVe9jZ9h+MgakZOcd+5sr+H9AzMETPyBiHZyomGtgNHMaVfT+Qf+IYCj097AeNqDWhaWxlQ07cYYquXUFpbUfLbhUzV1t260P6d19h2KyFHKokhBBCCFFHWhOipqYVeyWZmZlVuaZWq+9dREIIIYQQQjSix7wHVXqtVpejyryI07AJlcr1jZU4Dat6MrF5mw6Yt+lQpdx51EvV9mdo1gznEZOqlLtOrDyVtePU9wAoVRWi0NPH0X9clXusew3AuteAavsRQgghhBDV05oQ3bx5MwArV66scm3KlCn3LiIhhBBCCPHIMDINpWuXZpSWqunUyZwNgd0xNdXXWv/XMwXMfjONs2cLadbMAFdXU1b9+3H27ssmLv4GnwU8flfxFGVnciFoIxYdu2HUwuqu2hJCiMZUFDRep+0ph3+j0/aEEOJ+Uusp89XRtoxeCCGEEEKI+jAx0Sfu+ACS4n0wMtTji68ytNYtKipj6LBYXnnZiVOpvsRE92fqy85k5+huf0yljT0dXn4Huyf+r1K5uXP7ameHNgbjltZVZo8KIURTGz9+PAUFBVhZVXx4FBQUhI+PDwBvvfUWiYmJJCYmsm3bNs09Q4YMITY2lri4OMaN+3PWe15eXoNi2LJlC+3atas1Hm10Fae1tTUhISENGoMQD4OwsDBSUlKqnDJvbm5Oeno6s2bN0pSNGjWK1NRUUlNT8fPz05QvXryYhIQEjh07xtChQ2ut7+3tTVJSEgkJCQ2KudZDlaqjkFMthRBCCCGEjvXv35Lk5Fss/NevWFoa8vpMFwDeX3Caxx4zopm5AX37tGSIn63mHt8nKv7hGxd3gyuZRfzfkOOcO/c7zz1nx0fLOzXJOIQQ4lHx+++/88ILL7BmzRpNWc+ePfHz88PT05OSkhLc3d2Biu34AgIC6Nu3L0VFRcTExHDgwAGuXbvWoL7d3NxQKpWcPXu2xni00WWcOTk5ZGZm0r9/f44cOdKg8QjxoJswYQLx8fGVyubNm1cpYWloaMiyZcsYMGAAxsbG7N+/n9DQUHr06MHAgQPp1asXLVq04Pjx44SHh1NcXFxtfbVaTWRkJEOHDmXXrl0NirdBCVHZQ1QIIYQQQuhSaWk5e/dlM/hpG5552obnx8Tz+kwXysvVfPtdJlFHvFj+0Vk8PCy0tpGUdJPYY/0xNtbDreshZkxzxtGx5sOKHhXxydMasbe1jdiXEKIp/fTTT4wcObJSAtLZ2ZmcnBxKSkoASExMBKB3794kJSWRnZ0NQEREBAMGDOCHH35oUN9jx46tkgipLh6A6dOna7b+W7lyJZs2bdJ5nMHBwYwbN04SokL8T4cOHbCxsamUJO3duzcnT57UfMBw6dIlunXrhqurK0lJSZSVlZGbm8uVK1fo1asXJSUl1dZPSkq66/i0Lpk/ffo0p06dqvJ1+vRpbG1ttd0mhBBCCCFEnalUZfTsfZg+XpE4OZoweZIjbdqYYmlpSELiDfYfyMHd3QIrK6Na23rqSWuaNzdEqdSnc+dmZFxQNcIIhBDi0XXjxg0yMzPp1OnPGfkHDx6kU6dOHD16lHnz5mFnZweAnZ0dWVlZmnrZ2dmaaw3Rr1+/Kktlq4vH2dmZ6dOn079/f5588kkWLFiAjY2NzuOMi4ujX79+DR6PEA+bZcuWsXTp0kpldnZ2XL16lX/+85+MGjWKrKws7OzsSEtLo3fv3piYmODo6EinTp2ws7PTWl8XtM4Q7dixo046EEIIIYQQQps/9hD9q5dedGTTN5e5mlXMpImtAXi8czMiDmvfZ87Y+M/P+vX1obRUVjUJIcS9tnnzZsaP//NApxs3buDh4cHgwYMZNmwY0dHRdO/evcp9arWa8vLyBvdrb2+vmcVZUzzu7u5ERkZSWFgIQGxsLF27diU8PFyncV67dk1niRohHnR+fn6cOXOGCxcuVHv9q6++AmDYsGEApKSksGnTJiIiIrh8+TKHDh2iqKgIfX39auvrQoMOVRJCCCGEEOJeGvacHfv2ZxMbe53Bg2wAGDvGgajofH7a8+c+bhGH80hJvdVUYQohxCNv//79PPnkk+jp/ZleKC4uJjg4mMmTJ5OQkECfPn3IzMzkscce09SxsbGpNBOzvlQqFUqlsk7xaKPLOJVKJSqVrEwQAiqWxg8bNozk5GSmTZvGnDlzGDt2LJmZmZU+OLC1teXq1asArFq1Ck9PT4YNG4atrS0XLlyosf7datAeokIIIYQQQtxLRkZ6+D5hSfMWhujrVxzoaWKiz49BvZj95knmvHkSQ0M9unZtxsoVbk0c7YPj0LdfkhyxBz09PRR6egyZNp/WHbtVW3fDe5O5lZeNoXFFwsHSzpEX3vl3Y4YrhKgH5fBvmqTf8vJyjhw5wqRJkwBo06YNBgYGnD17FqVSibOzM1euXOH8+fN0794da2trioqKeOKJJ1i4cGGD+01LS8PV1ZWMjIwa40lMTGT58uWYmppiaGhIz549SU5O1nmc7du3Jy0trcHjEeJhsnDhQs3vzfz58ykoKGDbtm0YGhri5uaGjY0NxsbGtGrVihMnTgBgaWlJXl4eAwYMoGXLlsTHx9dY/25JQlQIIYQQQjSZG7mDqy0vL1dz7Ph1tm/1qFTeqaM5obt7V6k/cUJrJk5orXkdHOSp20AfAhdPJfFrbARTV+7AwNCIwpv5lP3vMBFtRs7+kFbtH2+kCIUQD6rNmzfzxhtvAGBiYkJgYCBmZmYoFAo2b95MSkoKALNmzWLfvn20atWK//znP5qZXqamppw7d07T3kcffcQXX3xRY5+hoaH4+voSHh5eYzwZGRmsWbOGyMhIAJYuXUp2djbW1tY6jdPX15c9e/bU/+EJ8QgpKSnh/fff55dffgFg7ty5moPbAwMDcXV1paSkRPOBRk3175YkRIUQQgghxH3lZNotnhsey3PP2dG+nVlTh/PQuJWfjalFCwwMKw6oMrNoCcC5pGj2bfg35eWltGrXBf9p72vqVCdo1fsYm5hz5WwqBddzGDRxFo97P90oYxBC3D+++eYbvvmmYlbqiRMnMDL6888Nb2/vau/ZvXs3u3fv5rnnnmP27NksW7YMtVpd7dL32gQFBfHqq6+ir69PWVlZjfGsXr2a1atXV7o/LS1Np3EOGTKEkSNH1nscQjzslixZUun1d999x3fffVel3ogRI6q9X1v9uyV7iAohhBBCiPuKW+dmnDn1JCs+6tzUoTyuCr/oAAAgAElEQVRUXN29uJmTxWfThhDy36Wkp8RScruYoFXzeX7ux0z/bCflZaXE7NmhueeHf7/D2jeeZ+0bz7Nvw6ea8lv52Uz+cCPj3v8PBzataorhCCEeYD/++COjRo26q5leRUVFLFq0iNatW9deuYHqGqe1tTUBAQHk5+ffs1iEuJ/l5+ezbt06/P39G61Pb29vgoKCyMnJadD9MkNUCCGEEEKIR4CxiSmvfLqdjJPxnE8+znefzKX/qJdoadsK61ZtAHB/aijHQ3fQb2jFCc3alsx37vMUenp6PObkSsH13MYchhDiIVHdCfH1dfDgQR1EUrO6xJmTk0NwcPA9j0WI+9Xo0aMbvc/IyEg8PDxqr6iFJESFEEIIIYR4ROjp6+PS1ROXrp7YOrfneOiO2m+qhr6h4R2vdLOXlxBCCCFEY5El80IIIYQQQjwCci6dJ/fKn6cxXz1/Gku71ly/doXczAsAJP0SgnOXnk0VohBCCCFEo5AZokIIIYQQQjwCbhepCP3yA4oKb6Gnr4+lvRNDpi+gq8+zfPvRm5pDlTyf+XPZ2w//fgdD44pDREybtWDikq+aKnwhhBBCCJ2RhKgQQgghhBCPAId2bkz5+Jsq5W2792VawLdVyl9ctr7adoa/vrTS6/d2HNNNgEKIu/L+93E6bW/pqNpni7/11luMGzcOqDi1fezYsTXWV6lUpKSkaF6/8cYbREZGNjjGLVu2sHDhQs6ePdugeKDiYJY1a9Zw+/ZtJkyYQFpaGgAzZ84kMDAQlUrV4Ph0RZfPzd/fn86dO/PJJ5/oKrxG69fa2pqvv/66UQ/uEXUTFhaGvb0977zzDiEhIVhaWvLTTz9haGiIWq1myZIlBAcH4+DgwJYtW2jZsiXFxcW8++67lfYCNjc3JyUlhVWrVrFy5Uqt7cCfv7vl5eX06NGj3jFLQlQIIYQQQgghhBD10rNnT/z8/PD09KSkpAR3d/da71GpVHh6euqkfzc3N5RKpSYZ2pB4AMaOHctHH33E1q1bK5XPnDmTrVu33jcJUV09t5CQEEJCQnTSVmP3m5OTQ2ZmJv379+fIkSM6ikzoyoQJE4iPjwfg5s2bDBw4kMLCQqysrIiPj2f37t2Ulpby+uuvc+LECZycnDh06BAuLi6aNubNm0dCQoLmtbZ21Go1kZGRDB06lF27djUoXkmICiGEEEIIIYSoF9U/vm+8zhY0Xlei7pydncnJyaGkpASAxMREzbXp06czZcoUAFauXMmmTZtqbCsvL4+NGzfy9NNPExERwbRp02rtf+zYsZUSIfWNp3nz5hw4cABHR0cGDRrErFmzmDBhAvb29nz00Uc4ODgQFhZGWVkZQ4cOJTw8nC5dulBWVgaAQqEgNTUVNzc3goKCcHR0pKSkhE2bNrF27VoAfHx8eOedd7h58yYdO3bk4MGDvPnmm/j5+fHuu+9ibGxMeHg4b731Vq3jrc9zmz17Ni+++CJnzpyhc+fOPPPMM2RkZLB+/Xp8fHwICQnhjTfeqLUdbXFqK9c23vr2qy1+gODgYMaNGycJ0ftcaWkppaWlADRv3hxjY2MMDAy4du0a165dA+DChQsYGRlhZGTE7du36dChAzY2Npqkak3t/PF7fjckISqEEEIIIYQQQoh6OXjwIEuWLOHo0aPs3r2bDRs2cPXqVZydnZk+fTqenp4YGhoSGxvLnj17yM7OxsTEhJiYGE0bw4cP59KlS5ibm7Njxw7mzp3LqVOnsLe3JzMzs8b++/Xrx44dO+4qHk9PTwIDAwkNDWXnzp1AxVJ7T09Pfv31VwYNGkRubi4AycnJPP7442RnZ6NQKGjWrBmnT58GYMaMGVy+fBkDAwOSkpLYuXMnWVlZAHh5eeHt7U1qairNmzfHxsaGd999l4EDB6JSqdi2bRu+vr788ssvWsdan+dmYGDAlClT6NWrF46OjiQlJWnumzx5MuPHj6dnz8rbIVTXTmlpabVxpqam1hj/X8db335rih8gLi6OxYsX1/jeEPcHc3NzIiIicHFx4ZVXXqmSxBw0aBAJCQncvn0bgGXLljFnzhwmTpxYr3YaShKiQgghhBD3mW5rGrb0RwghhGgsN27cwMPDg8GDBzNs2DCio6Pp3r077u7uREZGUlhYCEBsbCxdu3YlPDxc69Lv4uJioqOjAUhPT8fW1rbWhKi9vT3Z2dl3FU99HD9+HHd3d7p06YKenh6xsbGaJOXkyZMZMmQICoUCe3t77O3tNQnR+Ph4UlNTNTH6+/vj4uJCREQEAGZmZri4uNSYEK3Pc3N2diYyMpLff/+d06dPa2ZW1qS6dlq3bl1tnObm5jXG/9fx1rff2uK/du0adnZ2tY5JNL2CggI8PDzo1KkTa9asYefOnZrZnra2tnz88ceMHDkSqJh1fObMGS5cuFCvdu6GJESFEEIIUavFr1k3Wl9La68ihBDiPvJcu//i3NGSsrJyHF1b8saKp1CaGDZ1WKIRFBcXExwcTHBwMEFBQfTp06dB7dw540utVqOnp1frPSqVCqVSeU/iqU5MTAzDhw/H1NQUtVpNjx49OHDgAD4+PgwcOJAnnngClUpFVFRUpfirSwqGhYVVmQXXEA15bvVpp7o4/f39a4y/tiRoXfqtiVKpvC/2dRV1d+rUKUpKSujWrRvx8fEYGxuzfft23n77bc6dOwdA7969GTZsGEOGDMHKyory8nKuXr3Ktm3btLZztxr22yKEEEIIIYQQQgBGSn0++2k0q/eOwcBQn71bTtb53rKy8nsYmbiX2rRpQ7t27YCKJJWzszNXrlwhMTERLy8vTE1Nad68OT179iQ5OVnn/aelpeHq6nrP4rl16xaWlpaa13Fxcfj6+nLt2jUuX77MM888Q0xMDBYWFuTm5qJSqXBzc6Nbt241tnvs2DG8vb1p1aoVAE5OTtja2jbkEVQrPj4eLy8vTExM6NixI87Ozg1qR1ucTR1/+/btSUtL01l/4t5wcHDQ/P7Y2trSuXNnrly5AkBgYCDbt29n//79mvoLFy7Ezc2Nrl27snbtWj799FO2bdtWYzt3q9FniLq6umo2GIaKX54VK1ZgYWHBuHHjyMvLA+DDDz/UTGGfMWMGY8aMoby8nPnz53Po0CEAfH19Wbx4MXp6emzbto3Vq1c39nCEEEIIIYQQQvzP4572nD9Vsefiz7t+ZffXyZSWlNHB3ZZpiwegr6/H812+4pmxj5MYeYmp/xpATHgGxw+mo6+vwH2AIy+963XP4vP19SUwMFDzWqlUsnfvXpo3b06fPn00e9mtXr2alStXArBlyxa8vb1Rq9X8+9//5vPPPwfgtddeY9asWSgUCo4cOcI//vGPexZ3XSwd1bP2SjpkYmJCYGAgZmZmKBQKNm/eTEpKCgBr1qwhMjKyIq6lSzVL2/+6F+bSpUv58ccfG9R/aGgovr6+mrxBQ+KpyerVq/n+++/Jy8tjzJgxZGVlUV5ezs8//0xxcTEvvPAC169fZ9++fbz00kskJSVx+vTpSidkVyc7O5uZM2cSFBSEgYEBhYWFtc4Wrc9zu3jxIuvWreP48eOkpaVx/vx5iouLcXZ25vvvv6dly5aYmJjg7e3N/Pnz2bt3b73iPHfuXL3ir2+/2uL/g6+vL3v27KnxeYmm5+joqMn96evr895773H16lW8vLwYMWIEnTp10hx0NnToUK1bZGhrRxcUDg4Oap201AB6enrExcXh7+/PCy+8QGFhIV988UWlOu3bt2fNmjX4+flha2vL9u3bGTBgAACHDx9m7NixZGZmEhoayquvvsqZM2dq7PPChQsYGMhOAUJ3hg8fTlBQUFOHIR4S8n4Suqar91R5j/E6iKZu9BK+0Xx/y29+o/Xb1Jr9tETz/e1/vVnp2geHotmenIa+ngI9hYI1Q56md2v7atvZlJDCO/sP4WBhzu2yMl7v24uXemmfrWK0cEW94tTVe6q06P/uuo26MlCGar5//M2PGq3fppa64m3N9//68USj9bvwuZpnR/2Vrt5Tiv82XjJIPTUOgMcf/7DR+rwfpKa+o/l+97k/TwF/vstXfJfyT8pKy/ng1X14+DjStW8rNnwYxbtrB2NgqM+a+RF06mHLUyM6MqTtWt76fBAD/NpxM7+It0btZO2BsSgUCgpuFmNuYVyp3yFt11IfpaWlODk51VrPwMCAc+fOMXz4cN555x0KCwuZNGlSpToDBw7kiy++oHv37ri5ufHtt99qZiGePXuWMWPGcOLECZKTk3nllVc4cOBAvWK9G5988kmVeB8lSqWSsLAwfH19NSe/iwrm5uYUFBRgZWVFdHQ07du3b+qQ6qWm+MPDwxk5ciT5+flNGKH4q7CwMN5++22dLGWvD2dnZ3bt2kWPHj2qvf71118zd+7caq81aWawf//+ZGRkcPnyZa11Bg8ezI8//sjt27e5ePEi6enpmoGmp6drNlz98ccfGTx4cK0JUSGEEELcnWZJ27jVfSzpxQW4pQXTSWlBUXkZzfQNmWbdkUlWFcvXvs79jbeuxNHK0FRz7xbn/riZtAAg4Foa867Ec7Xr8zTXN2qSsTwIoi9eIfTX3zg+dTzGBgbkFP7O7VqWmD7fpSOr/AZyraAQ99Vf49/JFVtzM8310rJyDPRl5yQhhG7cLirjNb9vgYoZooNGd2bf9pP8lpLN7GE//K9OKS2sTADQ01fg9UxbAMyaGWFobMBnb/+C51POeD7VsOW9DfHKK6/w+++/ExcXp7XOiy++SHR0NAUFBRw/fpxbt24xevRooGJJ9R8HwkRHR/Piiy82akL0UVdUVMSiRYto3bp1nQ4OepSsWLFCcwjT7Nmzmzia+tMWv7W1NQEBAZIMvQ/l5+ezbt065s+fT0hISKP06e3tzeeff05OTk6D7m/ShOhzzz3Hrl1/nqL64osvMmrUKE6cOMHixYu5ceMGdnZ2lTLMmZmZmhPF7tw3IDMzU2tG+O9//zt///vfAVAoFAwfPvxeDEc8onS5UbcQ8n4Suqaz91R69cWuxubEd/IH4FzxLUaeP4QaNS9aVcyeGd2iDf9x7F3tvdvzz+Npas3O6xc09YHK/5++rZPoHwja/n6SeasAK1MTjP+3wsXarCLB3H7ll0S9/A+szUyJu3yVt/f/woEXx1S69zFzM9patuDC9Zt8EZPIubwbnM+/jmNzCzY/719jv9ro7s+p4tqr6MidY/y10Xptek31d96mek/tourJtPfKH2P89VF6Q6H9Z/vHHqJ3UqvhqREdmfhW36r1jfXR/9+HMvoGevw7aCRJRy8RueccP32TzLItz9WpX2309PQqTZTZs2cPr732WpV6Y8aMqXSy95NPPslvv/3GlStXGDduHBcvXsTW1pbjx49r6uTn52v2rfxjuzeoWObbq1evesUp7t7BgwebOoT70tSpU5s6hLuiLf6cnByCg4MbORpRF398UNSYIiMj8fDwaPD9TZYQNTQ05Omnn+aDDz4AYNOmTQQEBKBWq3nrrbdYsGABc+bM0UlfW7ZsYcuWLUDFknlZjip0Td5TQpfk/SR0TSfvqTosmW9r3IxPW/XkzctxlRKc1fmt+BYF5aWsbt2T5VnJlepXitevS4NDftBUGrf7n0vmB7m2YdmhKNw+W8ff2jrxfJdO+LRxrFOb5/Kucz7/Oq6WFbNy07Jz+eWlMZgY/nn6c0PeH7r5c6rxlszfGe/jb1ZNzjys7hy3+6R/NUm/9/Kev1IMbrwl83/E+/jjj9YHmXf+nCZ/Oq2GmtDdqxVLX97Lc5O70cLalFvXi1AVlvBYq2aV6qkKSyhWldDrSWc697Tjn75bauy3LsrLy2tdImxqakqbNm146aWXAHjvvfc4d+4c5eXl7Ny5k61bt2q2ahNCCPHwabKE6JNPPklycrJmauudU1y3bNnCxo0bAbh69SoODg6aa/b29poNVLWVCyGEEKJpeJhYcaropub1t9fTiSy8pnl9tMMzmOgZsD0/nRdatmGA+WOczrhJVokKW0OTpgj5vmdubMSxV8ZzJOMSv5y/yN+/282ygT413vNdymkiL1zGWF+f1UOextK04tn6d3StlAwVQoh7xam9JePn9GbBxBDU5Wr0DfWY+q8B1SREb7P05b2UFJeiVsNL7927A5XuNHPmTK5fv86v/5vm++sd032XLVvGjh07AMjKyqp0ynXLli357bffgMozohwdHcnKymqM0IUQQuhAkyVEhw0bVmm5/GOPPca1axX/YHr22Wc5ffo0APv372f16tV8+eWX2Nra4uLiQkJCAgqFAhcXFxwdHbl69SrPPfcc06dPb5KxCCGEEKKCmspnNWpbMr89/zw7XXzRUygY0cKJ765nMMOmU2OF+cDR19PjCRcnnnBxooutNd8kpmKgp0e5uuJ5F5WWVqr/xx6if2VmJMlQIYTufZfyz2rLB/i3Y4B/1RUDd9a3fMyMf+8aec9i02bEiBHs27dP89rNzY2TJ08CFct1/ziFfOPGjaxduxZzc3Pc3Nxo1qwZ3377LXp6eixfvpzevXuTkpJC3759mTat5lmzQggh7h9NkhA1MTHBx8eHt9/+8+TL999/Hzc3N9RqNZcuXdJc+/XXX9m9ezc///wzZWVlvPfee5SXl2vu2bp1K3p6euzYsaPSp3pCCCGEaHwJqjw6K5vXWCdZlc+Z4ls8/VvFwRO3y8txMTaXhKgWp3Py0FMoaG/VEoCkq9k4t7CgqLSU+MwsnmnflqCTcqikEELUlaWlJQ4ODnz66aeassDAQGxtbQG4efOm5gyK/fv3c/z4cVJSUlCr1axcuZLS/30ItWrVKnbs2IFCoSAqKor9+/c3/mCEEEI0SJMkRFUqFV26VN4TrLpNrv/w2Wef8dlnn1UpDw8PJzw8XOfxCSGEEKL+0osLmHs5nhk2HWusty0/nYV23Zhn11VT1jZ1Jxm3C3A2Mr/XYT5wCm/f5o3QcK4XFWGgp4erZUvWDhnEqZw8Xv5xH4vCI3mijnuKCiGEqDgMydGx8p+bXl7al+qPHTu22vKVK1eycuVKncZ2Nwrff12n7ZktXaXT9oQQ4n6i19QBCCGEEOLB9VtxAR6nQnA7+SMvpEcw06ZTpQOSvr2eTo9TIZqvowXX2JGfzvAWTpXaGdbcie356Y0c/YPBw8GOiCnjODFjMvGvTuK7Mc9hbWZKf+fWnHztJaJfGc9Hg301J8xP6NGl2uXyC570Zra3Z2OHL4QQ4iH21ltvkZiYSGJiItu2bau1vkqlIiYmhsTERDZv3oxSqbyr/rds2UK7dn/+vaO+8TQVXT+H6sycORMTk6r7s/v7+zN37ty7atva2pqQkJC7akM8XMLCwkhJScHf3x+oOPPn559/JjExkWPHjvG3v/1NU3fx4sUkJCRw7Ngxhg4dqin39PQkLi6OEydOsHXr1lrre3t7k5SUREJCQoNibrI9RIUQQgjxYLrVvWKmTBtjc353H6e13iQrVyZZuVYp/+3x4VXK/t26l+4CFEIIIcQ917NnT/z8/PD09KSkpAR3d/da71GpVHh6Vnw4t3nzZl5++eVqV4PWhZubG0qlkrNnzzY4nqaiy+egzcyZM9m6dSsqlapSeUhIyF0nM3NycsjMzKR///4cOXLkrtoSD48JEyYQHx8PQGlpKa+//jonTpzAycmJQ4cO4eLigoeHBwMHDqRXr160aNGC48ePEx4eTmFhIV9//TX//Oc/OXr0KNbW1gBa6xcUFBAZGcnQoUMrnU9UHzJDVAghhBBCCCGEEPXi7OxMTk4OJSUlACQmJmqu5eXlab4PCwvDw8Ojyv0RERG4ulZ8cOrj40NoaCjbt28nISGBFStW1Nr/2LFjKyVC6hvP/PnzOXDgACdPnmTVqlWkpqZibW2ttRzAz8+PyMhIYmNj+fjjjzVtNiT++jyHoKAgYmNjiYqKqnR4l62tLTt37iQ2Npbo6Gjat2/PU089RUxMDA4ODoSFhRETE4O9vT0A69ev5+zZswQEBFSKobp2ahovQHBwMOPGaf9gXDzarl27xokTJwC4cOECRkZGGBkZ4erqSlJSEmVlZeTm5nLlyhV69eqFh4cH2dnZHD16FKhIugNa6+uCJESFEEIIIYQQQghRLwcPHqRTp04cPXqUefPmYWdnV+d7DQwMePbZZ0lJSdGUeXl5sWTJEnr06MGSJUtqbaNfv36Vlso2JJ6QkBD27NnD+fPn2bdvH3379tVabmNjw7vvvquZrebo6Iivr2+D46/Pc5gxYwa9evViwIABzJgxQ3MAWEBAAHv37qVXr14MGjSI69evEx4ejqenJ1euXGHQoEF4enqSmZkJwOTJk/nXv/5VJY7q2qltvHFxcfTr169O4xSPtkGDBpGQkMDt27dJS0ujd+/emJiY4OjoSKdOnbCzs8PJyYkbN26we/dujh8/ziuvvAKgtb4uyJJ5IYQQQgghhBBC1MuNGzfw8PBg8ODBDBs2jOjoaLp3786NGze03mNiYkJMTAwAhw4dYsOGDZpr8fHxpKamatqujb29PdnZ2XcVT15eHhYWFpr/Nm/eXGt5nz59cHFxISIiAgAzMzNcXFz45Zdf6h1/fZ/D5MmTGTJkCAqFAnt7e+zt7cnKysLHx4cJEyYAcOvWLW7dulXrc6tOde34+/vXON5r167pLDElHl62trZ8/PHHjBw5EoCUlBQ2bdpEREQEly9f5tChQxQVFWFiYoKXlxceHh5cv36d6Oho9u/fr7W+LkhCVAghhBBCCCGEEPVWXFxMcHAwwcHBBAUF0adPH/bv349ardbUMTD4M+1w596Zf1WXJOidVCpVlcOI6huPWq2u9KWnp1djeVhYGBMnTrzr+OvzHHx8fBg4cCBPPPEEKpWKqKgoTTz3Wk3jVSqVVfYnFeJOxsbGbN++nbfffptz585pyletWsWqVasAOHz4MBcuXKBFixakpaVx8eJFoOKDgY4dO3L+/Plq6+uCJESFEEIIIYQQQogHnNnSVY3aX5s2bTAwMODs2bMolUqcnZ25cuUKUJHUa9myJSqVio4dO96T/tPS0nB1dSUjI6NR4jl27BgBAQG0atWKy5cv4+TkRHFxMVlZWTobU3UsLCzIzc1FpVLh5uZGt27dNNcOHTrExIkTCQwMxNTUFFNTU83ei7du3cLS0pLc3Nxa+6iundrG2759e9LS0u7NoMVDITAwkO3bt7N///5K5ZaWluTl5TFgwABatmxJfHw8FhYWODo60rJlSwoKCujSpQvnz5/XWl8XJCEqhBBCCCGEEEKIejExMSEwMBAzMzMUCgWbN2/W7IW5YsUKQkJCiIuL49KlS/ek/9DQUHx9fQkPD2+UeLKzs5k5cyZBQUEYGBhQWFiodfakLu3bt4+XXnqJpKQkTp8+XWnf1FmzZrF27VqmTp1KSUkJEyZM0CREV69ezffff09eXh5jxoxBqVTy/fff07JlS0xMTPD29mb+/Pns3bu32nbOnDlT43h9fX3Zs2fPPR+/eDB5eXkxYsQIOnXqxJQpUwAYOnQomZmZBAYG4urqSklJCZMmTQLg5s2bvPnmm+zfvx9DQ0O2b9/O6dOnAaqtrwuSEBVCCCGEEEIIIUS9pKWl4e3tXe21NWvWsGbNmirllpaW1daPiIjQ7FVZV0FBQbz66qvo6+tTVlZW73gaMstsz5491SYB6xt/fZ5DSUkJw4cPr7Z+VlYWI0aMqPba+vXrWb9+faUybcv0tbWjbbwAQ4YM0ewLKcRfHT16FDMzs2qvaXvP/vDDD/zwww91rn+35JR5IYQQQgghhBBCPFCKiopYtGgRrVu3bupQHjnW1tYEBASQn5/f1KGI+0R+fj7r1q3D39+/0fr09vYmKChIMyu6vmSGqBBCCCGEEEIIIR44Bw8ebOoQHkk5OTkEBwc3dRjiPjJ69OhG7zMyMhIPD48G3y8zRIUQQgghhBBCCCGEEI8MSYgKIYQQQgghhBBCCCEeGZIQFUIIIYQQQgghhBBCPDIkISqEEEIIIYQQQjzg9oem6PSrLoYMGUJsbCxxcXH84x//qLVcpVIRExNDYmIimzdvRqlU3tWYt2zZQrt27WrtNy8vT2sb9vb2bN++/a7iAJg5cyYmJiZ1qqstzpr4+/szd+7cuwkRqF+cd0pISMDZ2bnGOrr++TYFXTxna2trQkJCdBTRgyEsLIyUlBTNoUoODg78/PPPJCYmcuzYMf72t79Vqm9ubk56ejqzZs0CYNCgQcTExGi+CgoK6N69O5aWlkRFRREbG0tMTAxDhw7VtOHt7U1SUhIJCQkNilkOVRJCCCGEEEIIIUS9mJmZERAQQN++fSkqKiI2NpawsDAKCgqqLc/KykKlUuHp6QnA5s2befnll/nss88a1L+bmxtKpZKzZ8/WGE9WVlaN7WRmZjJmzJgGxXCnmTNnsnXrVlQqVY31GhpnSEiITpJsdY2zIXT5820qunjOOTk5ZGZm0r9/f44cOaKjyO5/EyZMID4+HoDS0lJef/11Tpw4gZOTE4cOHcLFxUVTd968eZUSmWFhYYSFhQFgZ2fHwYMHSUpKwsDAgIEDB1JYWIiVlRXx8fHs3r0btVpNZGQkQ4cOZdeuXQ2KV2aICiGEEEIIIYQQol569+5NUlIS2dnZ3Lp1i0OHDjFgwACt5X8VERGBq6trg/sfO3ZspURITf0qFArWrl1LQkICn376qeaeDz74oNoZZn5+fkRGRhIbG8vHH3+sKbe1tWXnzp3ExsYSHR1N+/bteeqpp4iJicHBwYGwsDBiYmKwt7ev93MD8PHxITQ0lO3bt5OQkMCKFSsAWL9+PWfPniUgIKBOcebl5bFy5UpSU1NZu3YtQI1xamtnzpw5nDhxgm3btmFsbFyHn8qf7vz5ahvX9OnTSUhIICEhgQkTJmjunT17NsnJyezcuZO0tDTNzFRt7QQFBREbG0tUVBTTpoguvNIAACAASURBVE0DYP78+Rw4cICTJ0+yatUqUlNTsf5/9u48ruoyffz/C9kOSJIKsrggbimOG0gKGJJBVqJppqmlNmaT5fZTcywbtEwdMx0xR20MtWk0NP2AIYFKkqgIynIAQdxSlhRkjRQPyPb9g58n0XPYPILL9Xw8eHTOfe73fV/3/T6mXt7v+7aw0Fpe2zxrms/a4gQICgpi0qRJDZqzx0lOTg5JSUkAZGRkYGRkhJGREQA9evTA0tJSnTy92/jx4wkMDASqE6vFxcUAmJubY2xsjIGBbtZ2ygpRIYQQQgghhBBCNIi1tXWNVY25ublYWVlhaGiosfxOBgYGvPzyy4SEhDS6fxcXF3bv3l1nPFC9KjMgIIAPPviA8PBw3NzciIyM5OOPP+brr7+ukVi1tLRk8eLFeHp6olKp8Pf3x8PDgyNHjuDr68uBAwfYsmULTz31FAqFggsXLuDs7Mz58+fx8vIiPz+/1rhrixPA1dUVNzc3UlJSMDc3B2DatGlMnjwZJyenesVpZmbG7t27WbhwIWfPnsXGxobw8HCNcWpr5/Lly0ybNg0nJye6dOmiNXmliab7e/e47OzsmDlzJs7OzhgaGhIbG0toaCgKhYLp06czcOBAOnbsSGJiYo22Nc3PrFmzuHLlCgYGBiQmJhIQEABUr/bs2LEjmZmZHDx4kMGDB2stDw4O1jjPgMb5NDAwqDXOuLg4li1bVu85e5x5eXmhVCq5desWACtWrGDBggVMnTpVY/2JEyfy3nvvqd+bmZlx9OhR7O3tee+99ygrK9NJXJIQFUIIIYQQQgghxH2pqqqqs9zExISYmBgAIiIi2L59e6P7s7GxITc3t17xlJeX8/PPP1NVVcXhw4dxcnIiMjJS43WDBg3C3t6eo0ePAtXJVHt7e44cOYK7u7t6JeP169e5fv16o+PXFCdAfHw8KSkpABQVFWm9rrY4S0tLiY6OBiAtLQ0rKyuysrIa1M7TTz/NiRMnKCkp4cyZM6Snp9c5ltru793j8vDwIDIyUr36LzY2lj59+vDUU08RGRnJzZs3OXfu3D39apqfadOmMXLkSPT09LCxsVGvfC0oKKBVq1bq/95OoGor10bTfNrZ2dUaZ05ODtbW1nXO2ePOysqK1atXM3bsWKB6NfKFCxfIyMjQWL9Hjx6YmpqqV5cC3LhxA0dHR3r27MmmTZsICAigvLz8vmOThKgQQgghhBBCCCEaJDs7m3bt2qnfW1paolQqKSgo0FgONfeYvF8qlarGoT3a4tFEW/L2trCwMK2r1xrC2dmZTZs2AdV7d0ZHR9cZZ21J0PrGeecKuqqqKlq0qH23RE3tvPrqq/WO47ba7m9DxlWbu9txd3fH09OToUOHolKpiIqKUo+3qqqqxk9d5do0dD4BFArFA9mn9VFibGzMrl27WLRoEZcuXQKqt4wYPXo0I0eOpG3btlRWVpKdnY2/vz8AEyZMYM+ePRrbO3v2LGVlZfTt27dBK5a1kT1EhRBCCCGEEEII0SCnTp2iX79+WFhYYGZmxtChQzl+/LjWcl1LTU2tsQdpbf0aGBgwbNgw9PT0GDZsGLGxsVrbPXnyJG5ubrRv3x6ATp06qR9pj4iIUCcOTU1N1XtPQvWK0TZt2tRoKyYmBmdnZ5ydndUrDHU1P7XFWZu749TWjlKpxMXFBWNjY3r16lXnCfMNlZCQgKurK6amppibm+Pk5MTp06eJj4/H1dUVExMTnnnmmTr7bdWqFfn5+ahUKhwcHOjbt69O49Smrji7d+9Oampqk8TysPLz82PXrl0cOnRIXbZ06VIcHBzo06cPmzdvZu3atepkKMAbb7zBDz/8oH5va2ur/r5aWVnRq1cvrl69qpP4ZIWoEEIIIYQQQgjxiHvxlb80aX/FxcXMmzePgwcPArB8+XL13pjaynUpJCQEDw8PwsPD64ynuLiYN954gzVr1hAeHk5UVFSNtu5cMZqbm8vs2bMJDAzEwMCA4uJidRJ03rx5bN68mRkzZlBWVsaUKVPIy8sDYOPGjezdu5eCggImTJigdcy1xamJnZ0de/fupXXr1piYmODm5oaPjw8HDhzQGmdtNMWpqZ1Lly6xfft2YmJiSE1N5fLly3W23RDp6els2rRJvXXB8uXL1VsgbN26lVOnTqn7LS0t1drOwYMHeeedd0hMTOTcuXNaVwXXpbZ51iQzM7PWOD08PAgNDW1ULI8DV1dXXnvtNXr27Mn06dMBGDVqlNatG6B6RXVxcTHnz59Xl3Xs2FF9kJW+vj6ffPIJ2dnZOolRz9bWtva14o+ZjIwMnZ1IJQTAmDFj1CegCXG/5PskdE1X36nKAZN1EE39tFD+T/36+gifJuu3uT310+fq17c++7DJ+jVauqZB9XX1nSoveeW+26gvA8Wfhzr0/vCLJuu3uaWsWaR+/dmPSbXU1K2lrzZsdY6uvlN6XzvVXUlHqmbEAdC796om6/NhkJLykfr1/kvvN1m/I7tsrrvSHcrLy+nUqdMDiubh8eWXX/L22283dxjNRqFQEBYWhoeHBxUVFY1ux8XFhU8//ZThw4frMDpxP8zMzLhx4wZt27YlOjqa7t27N3dIGtUWZ3h4OGPHjqWwsLAZI2w6YWFhLFq0SCePsjeEnZ0d+/btY8CAARo///bbb1m4cKHGzyQzKIQQQgghhBBCiEdKSUkJn376KR06dKjXgT9369ChA4GBgZiamjJ37twHEKForDVr1qj3Ip0/f34zR6OdtjgtLCzw9fV9YpKhAIWFhWzduhUfHx+Cg4ObpE83Nzc2bNigXqXdUJIQFUIIIYQQQgghxCPn8OHDjb72t99+09kBT0K3ZsyY0dwh1Iu2OPPy8ggKCmriaJrX+PHjm7zPyMhIHB0dG329HKokhBBCCCGEEEIIIYR4YkhCVAghhBBCCCGEEEII8cSQhKgQQgghhBBCCCGEEOKJIQlRIYQQQgghhBBCCCHEE0MSokIIIYQQQgghxCOu9FaATn/qY+TIkcTGxhIXF8dbb71VZ/2///3vJCQkkJCQgL+///0OmZ07d9KtW7dGx6NLs2fPxsTE5J5yb29vFi5c+ED61OV8aotfFywsLJrs5HHRPMLCwkhOTsbb2xsAW1tbfvnlFxISEjh58iQvvPBCreVeXl7ExMSof27cuEG/fv20lkP1KfOJiYkolcpGxSynzAshhBBCCCGEEKJBWrZsia+vL4MHD6akpITY2FjCwsK4du2axvpOTk6MGDECZ2dnysrK6N+//3317+DggEKh4OLFi42KR9dmz57N999/j0qlqlEeHBz8QJKBup5PbfHrQl5eHllZWQwZMoTjx4/rvH3xcJgyZQrx8fEAlJeXM3fuXJKSkujUqRMRERHY29trLQ8LCyMsLAwAa2trDh8+TGJiIoDW8sjISEaNGsW+ffsaFa+sEBVCCCGEEEIIIUSDPPvssyQmJpKbm8v169eJiIjgueeew87OjjNnzvD999+TmJjIhx9+CICdnR15eXmUlZUBkJCQAMCIESP473//q253yZIlzJkzp87+J06cWCMR0tB4bvcdGRlJbGwsq1evVpe7u7sTEhLCrl27UCqVrFmzBoDAwEBiY2OJiori/fffB2DYsGHExMRga2tLWFgYMTEx2NjYALBt2zYuXryIr69vjdhnzpyJUqlEqVQyZcoUdXlBQQHr1q0jJSWFzZs31zr+xsznrFmzSEpKIi4ujpUrV9YZv6b58fHx4eeff+bMmTOsX7+elJQULCwstLZ/W1BQEJMmTap1TOLxkZOTQ1JSEgAZGRkYGRlhZGSktfxO48ePJzAw8J42tZU3lqwQFUIIIYQQQgghRINYW1vXWH2Zm5uLlZUVAF26dOG1114jLS2NuLg4fvjhBw4fPsznn3/OiRMn2L9/P9u3byc7O5sDBw6wdu1aTE1NuXnzJq+//jqenp519u/i4sLu3bsbHY9KpWLx4sV4enqiUqnw9/fHw8ODI0eOAODq6oqbmxspKSmYm5sD1Qm/K1euYGBgQGJiIgEBAYSHh+Ps7Mz58+fx8vIiPz9fHcO0adOYPHkyTk5O6jI7OztmzpyJs7MzhoaGxMbGEhoaSm5uLmZmZuzevZuFCxdy9uxZbGxsyMrK0jj+xsznkiVL6NKlCzdu3MDS0hJAa/yWlpYa5weqV7127NiRzMxMDh48yODBgwkODtbY/m1xcXEsW7aszvsqHj9eXl4olUpu3bpVr/KJEyfy3nvv3dOOtvLGkhWiQgghhBBCCCGEuC9VVVXq1+np6Zw9e5aSkhJOnDjBgAEDKCoqwtHRkVWrVtG9e3eio6MxNzenoqKC/fv38+qrrzJw4EAuXbpETk5Onf3Z2NiQm5vb6HgGDRqEvb09R48eJSYmhn79+mFvb6++Jj4+npSUFACKioqA6gTnqVOniIqKwsbGRr2SsiH69+9PZGQkxcXF/P7778TGxtKnTx8ASktLiY6Opry8nLS0NHVCV5PGzGdsbCzffPMNkydPprS0tNY4a5ufgoICioqKKCgo4Pfff1cnjGtrPycnB2tr6wbPl3i0WVlZsXr16ntWfWsr79GjB6ampupVpHWV3w9JiAohhBBCCCGEEKJBsrOzadeunfq9paUl2dnZtV5TWlpKUFAQ06ZNQ6lUMmjQIAB27NjBhAkTmDhxIjt37qxX/yqVCoVCcV/xhIWF4ezsjLOzMw4ODmzfvl392e0k6G3u7u54enoydOhQnJ2dOXfuHC1a6Dalcvvxd6hO6NbVfkPn09vbm02bNvHss89y6NChOuPRNj9VVVU1fm7HWVv7CoXigexPKh5exsbG7Nq1i0WLFnHp0qU6ywEmTJjAnj177mlLW/n9kISoEEIIIYQQQgghGuTUqVP069cPCwsLzMzMGDp0qPrAHDs7O3r06IGxsTGurq4kJCTQuXNn9YnwCoUCOzs7rl69CkBiYiJWVlaMGDGC/fv316v/1NRUunbt2uh4Tp48iZubG+3btwegU6dOta7IbNWqFfn5+ahUKhwcHOjbt2+Nz69fv06bNm3qjDshIQFXV1dMTU0xNzfHycmJ06dP12vMd2rMfHbq1Iljx46xZMkSOnXqVGv8DZ2futrv3r07qampDR6neHT5+fmxa9eue5Lj2soB3njjDX744Yd6l98P2UNUCCGEEEIIIYR4xBkbvdak/RUXFzNv3jwOHjwIwPLly7l27Rp2dnZcvnyZFStW0KNHD7Zt20Z6ejq9evXCz8+Pli1boqenx44dO0hOTla3t2/fPnr06EFJSUm9+g8JCcHDw4Pw8PBGxQPVJ6sHBgZiYGBAcXExU6dO1drfwYMHeeedd0hMTOTcuXMolcoan2/cuJG9e/dSUFDAhAkTUCgU7N27l9atW2NiYoKbmxs+Pj4cOHCATZs2ERkZqY6ztkf/tTExMWnQfOrp6bF9+3ZatWqFvr4+ixYtqjX+a9euNWh+6mrfw8OD0NDQBo9TPJpcXV157bXX6NmzJ9OnTwdg1KhR2NvbayzPysrC2dmZ4uJizp8/X6MtbeX3SxKiQgghhBBCCCGEaLD9+/drXNFZUlLCuHHjapSlpqbi5uamtS0XFxfWr19f774DAwP54IMP0NfXp6KiosHxAISGhmpM0h09epSjR4/WKCsrK2PMmDFa49m2bRvbtm2rUebs7Kyx7saNG9m4ceM95Xeu0PTy8tLaFzR8Pquqqnj++ee11tcUv6b5+fzzz7W2UVv7I0eOZOzYsVo/F4+XEydO0LJly3vKs7KyNJYDxMTE8Oyzz9a7/H7JI/NCCCGEEEIIIYRoFm3atCElJYW8vDz1as/6KCkp4dNPP6VDhw4PMLpHT2Pn80GysLDA19eXwsLC5g5FPCCFhYVs3boVb2/vJuvTzc2NwMBA8vLyGnW9rBAVQgghhBBCCCGETqSnpzNgwIB61y8oKKB3796N6uvw4cM6j+dRdz/z+aDk5eURFBTU3GGIB2j8+PFN3mdkZCSOjo6Nvl5WiAohhBBCCCGEEEIIIZ4YkhAVQgghhBBCCCGEEEI8MSQhKoQQQgghhBBCCCGEeGJIQlQIIYQQQgghhBBCCPHEkISoEEIIIYQQQgjxiFsVf1SnP/UVEhLCoUOHapRNmjSJ5ORk4uPjcXBwAGDy5MlcuXKFmJgYAgMD6dy5s7r+3//+dxISEkhISMDf37/efe/cuZNu3brVGk+PHj2IiYmhoKDgvg5gqYu3tzcLFy68p3z27NmYmJjUKCsoKHhgcYDm+demtvtSG03jaqja7rsu2q/Ng25fEwsLC4KDg5u0z6YSFhZGcnKy+pR5W1tbfvnlFxISEjh58iQvvPCCuu7rr79OSkoKKSkpjBgxokY7ZmZmpKWlMW/ePHXZsmXLUCqVnDx5klGjRqnL3dzcSExMRKlUNipmSYgKIYQQQgghhBCiwUxMTOjatSvt27enZcuW6vIPP/yQ559/HicnJ3799Vd1+Z49e3B2dmb9+vXs37+fFi1a4OTkxIgRI3B2dqZ///588cUX9erbwcEBhULBxYsXa43n/PnzODs7ExcXp6NRaxYcHMyXX355T/ns2bMxNTV9oH3fTdv8a6PpvtTlfsdV131/0PPWHPclLy+PrKwshgwZ0qT9NpUpU6aoE77l5eXMnTuX/v37M27cOPz8/AAwNDRkxYoVPP/887z00kusWbMGPT09dRsff/xxjQSno6Mjnp6eDBw4kFdeeYV169ZhZmYGVJ8yf2eCtKEkISqEEEIIIYQQQogGc3d3JyoqihMnTvD888+ry9PT0+nTpw9VVVWUlpbec92RI0fIy8tj4MCB2NnZkZeXR1lZGQAJCQn16nvixIns27evXvFoM3/+fE6fPk1AQACpqanY2dkBMHPmTJRKJUqlkilTptRoPyQkhF27dqFUKlmzZg0A27Zt4+LFi/j6+qrrDhs2jJiYGGxtbQkLCyMmJgYbGxv15+vWrSMlJYXNmzcD4OPjw88//8yZM2dYv349KSkpWFhYADBr1iySkpKIi4tj5cqVdY6rrvnX5s77AhAYGEhsbCxRUVG8//77dY5LU31ttN332trXNv93rrgNCwtTrwS2srIiICCA2NhYoqOj6d69e63ta2tHW78jRowgMjKS2NhYVq9erb62tvsVFBTEpEmT6ndDHmE5OTkkJSUBkJGRgZGREUZGRjz77LOcOXOGnJwcMjMz+e233+jbty9QvZrb0tKS+Ph4dTtdu3YlMTGRiooK8vPzuXr1qvr7eb8MdNKKEEIIIYQQQgghniheXl6Eh4dTUVHBiy++SHBwMEZGRlRUVLBixQo8PDy0JuQyMzOxt7fnwIEDfP7555w4cYL9+/ezfft2srOz6+zbxcWF3bt31xmPNh07dmT69OkMHDiQjh07kpiYCFQn6mbOnImzszOGhobExsYSGhpKbm4uAK6urri5uZGSkoK5uTkA06ZNY/LkyTg5OanbDw8Px9nZmfPnz+Pl5UV+fr76MzMzM3bv3s3ChQs5e/asOiEXHBxMx44dyczM5ODBgwwePJjg4GCWLFlCly5duHHjBpaWlrXOS33nX5vb9+XUqVPMmjWLK1euYGBgQGJiIgEBAbWOS1P9a9euaezn8OHDGu97be1rm39tfH19OXDgAFu2bOGpp55CoVBw4cKFWtvX5u5+LS0tWbx4MZ6enqhUKvz9/fHw8ODIkSO13q+4uDiWLVtWrz4fF15eXiiVSm7duoW1tTXZ2dm8++67FBYWcu3aNaytrUlMTGTFihUsWLCAqVOnqq9NTU3lo48+wsTEBAsLC3r27Im1tbVO4pIVokIIIYQQQgghhGiwF198kV9++YVffvkFLy8vABYuXEhISAjfffcdy5cvp0WLFves5ASoqqoCoKioCEdHR1atWkX37t2Jjo6uM9EFYGNjo05S1haPNo6OjkRGRnLz5k3OnTtHeno6AP379ycyMpLi4mJ+//13YmNj6dOnj/q6+Ph4UlJS1LE3RmlpKdHR0ZSXl5OWloaVlRVQvUKxqKiIgoICfv/9d/U8xMbG8s033zB58uQ6E5z1nX9tbt8XqE70njp1iqioKGxsbGqscNWkIfUbe98bMv/u7u5s374dgOvXr9/zfWmIu/sdNGgQ9vb2HD16lJiYGPr164e9vT1Q+/3KycnRWULvUWBlZcXq1auZM2dOjfJvvvmGvXv3qt+PGDGCCxcukJGRUaNecnIy3333HUePHmXDhg1ERERQUlKik9hkhagQQgghhBBCCCEapGPHjtjb2xMSEgJAhw4d6NatG4MGDeLjjz8mJSWFn376iXfeeYcLFy7cc32nTp24fPkyUJ0gDAoKIigoiMDAQAYNGnTPQU13U6lUKBSKOuO5vcfonYm++9HYJOidbj8mDtVx3d6zs6qqqsbP7XJvb2/c3NwYP348M2fOZPDgwVrbru/8a3P7vri7u+Pp6cnQoUNRqVRERUXVurdoQ+tD4+67pvm/894aGDQ+zVVbO5r6DQsLq7Ga8bba7pdCoUClUjU6xkeJsbExu3btYtGiRVy6dAmArKysGglhKysrsrOzee211xg9ejQjR46kbdu2VFZWkp2djb+/P+vXr2f9+vUAHDt27J6kaWPJClEhhBBCCCGEEEI0iJeXF9u2baNPnz706dOHLVu24OXlxenTp3nrrbcAWLBgAV999RXff/99jWs9PDywtLQkNjaWzp07q0+KVygU2NnZcfXq1Tr7T01NpWvXrnXGc1tBQQEdOnRQv4+Pj8fV1RUTExOeeeYZ9f6hCQkJuLq6Ympqirm5OU5OTpw+fbrR83T9+nXatGnT6OuhOkl57NgxlixZQqdOnWqtW5/51+bO+9KqVSvy8/NRqVQ4ODio93m87e5x1VX/bnXd94bMW1FREa1bt0ahUPDMM8+oyyMiItQJS1NTU/WerNra19aOJidPnsTNzY327dsD1ffo9krf2u5X9+7dSU1Nrde4HnV+fn7s2rWrRpI7JiYGBwcHLC0t6dChA+3btycpKYmlS5fi4OBAnz592Lx5M2vXrsXf3x9AfZ+ee+45WrduXWOP0fshK0SFEEIIIYQQQohH3EeO7k3a34svvsgPP/ygfv/LL7/wzjvvMHnyZLZs2UJiYiL5+fls27aNN998k8TERMaNG4ebmxtXr15l1KhRVFZWYmJigp+fHy1btkRPT48dO3aQnJxcZ/8hISF4eHgQHh5eazy3Dy3y9fXFz88PHx8fRo0aRWZmJlu3buXUqVOkpqZy+fJlSktLyc7OZtOmTURGRgKwfPnyWh+1trOzY+/evbRu3RoTExPc3Nzw8fHhwIEDAGzcuJG9e/dSUFDAhAkTtO6pqY2enh7bt2+nVatW6Ovrs2jRolrr//Of/9Q4/3ee3H03Tffl4MGDvPPOOyQmJnLu3Ll7rr97XHXVv1td970h87ZmzRqCg4OJi4vjt99+U5fPmzePzZs3M2PGDMrKypgyZQp5eXla29fWjia5ubnMnj2bwMBADAwMKC4uZurUqXXeLw8PD0JDQ2tt+3Hg6urKa6+9Rs+ePZk+fToAo0aNIisri3/84x8cOXIEqN7ioa7V235+fnTt2pWysjLefvttncWoZ2trq5t144+IjIyM+1pCLcTdxowZQ2BgYHOHIR4T8n0Suqar71TlgMk6iKZ+Wij/p359fYRPk/Xb3J766XP161uffdhk/RotXdOg+rr6TpWXvHLfbdSXgSJE/br3h180Wb/NLWXNn38J++zHpCbrd+mrta8KupuuvlN6XzvVXUlHqmbEAdC796om6/NhkJLykfr1/ku1nyCtSyO7bG5Q/fLy8jpX0T0OvvzyS50mBx41CoWCsLAwPDw8qKioaFQbZmZm3Lhxg7Zt26pPIRfiQQoPD2fs2LEUFhY2dyg6FRYWxqJFi3S2erO+7Ozs2LdvHwMGDND4+bfffsvChQs1fiaPzAshhBBCCCGEEOKRUlJSwqefflrjMfiGWrNmDXFxcRw6dIj58+frMDoh7mVhYYGvr+9jlwwFKCwsZOvWrXh7ezdZn25ubgQGBqpX/TaULJUUQgghhBBCCCHEI+fw4cP3df2MGTN0FIkQdcvLyyMoKKi5w3ggxo8f3+R9RkZG4ujo2OjrZYWoEEIIIYQQQgghhBDiiSEJUSGEEEIIIYQQQgghxBNDHpkXQgghxEPr8DN+zR1C0/mpuQMQQgghhBDiySArRIUQQgghhBBCCCGEEE8MWSEqhBBCCCGEEEI84m5lf6DT9oysN+m0PSGEeJjIClEhhBBCCCGEEEI0yOTJk7ly5QoxMTEEBgbSuXPnel03e/ZsTExMdBLDzp076datW5PFU1BQ0NhQ74uFhQXBwcHN0rcQ9REWFkZycjLe3t7qslWrVpGZmYlSqaxRd9myZSiVSk6ePMmoUaPU5a+//jopKSmkpKQwYsQIANq0aUNUVBSxsbHExMTUqO/m5kZiYuI97deXJESFEEII8USYsCG7uUMQQgghHit79uzB2dmZ9evXs3//flq0qDvFMHv2bExNTe+7bwcHBxQKBRcvXnwo4nmQ8vLyyMrKYsiQIc0dihBaTZkypUbift++fbz66qs16jg6OuLp6cnAgQN55ZVXWLduHWZmZhgaGrJixQqef/55XnrpJdasWYOenh5//PGHuv5LL73Ehg0b0NPTAyAyMrJGgrShJCEqhBBCCCGEEEKIRjty5Ah5eXkMHDgQgMDAQGJjY4mKiuL9998HYNiwYcTExGBra0tYWBgxMTHY2NhorV+XiRMnsm/fviaNR09Pj82bN6NUKlm7dq26XFv9WbNmkZSURFxcHCtXrlSXjxgxgsjISGJjY1m9enWd9QGCgoKYNGlSveZGiIdBdHQ0+fn5Ncq6du1KYmIiFRUV5Ofnc/XqVQYOHMizzz7LmTNnyMnJITMzk99++42+fftSXl5Oh3uykgAAIABJREFUcXExAObm5hgbG2NgoJvdP2UPUSGEEEI8MVS3Kln5YyHFpZWUV8Cbbk8xqJuC7479gcVT+rzSvyUA/ieuY2Kkx/C+phrrCyGEEKKmzMxM7O3tOXXqFLNmzeLKlSsYGBiQmJhIQEAA4eHhODs7c/78eby8vGokSjTVv3btWq39ubi4sHv37iaNp2XLlgQEBPDBBx8QHh6Om5sbkZGRWusvWbKELl26cOPGDSwtLQGwtLRk8eLFeHp6olKp8Pf3x8PDgyNHjmisf1tcXBzLli1rzK0R4qGRmprKRx99hImJCRYWFvTs2RNra2vKysrIzs7m3XffpbCwkGvXrmFtbU1iYiJmZmYcPXoUe3t73nvvPcrKynQSS7OtEI2Ojubnn3/m0KFDhISEAPD000/j7+/P8ePH8ff3x9zcXF1/2bJlHD9+nLCwMP7yl7+oy8eNG8fx48c5fvw448aNa/JxCCGEEOLRYWSgx8ejWvOvtyxZPr4t2yP+oKqqiiHPmBB5rkRdL/J8CW7PmGitL4QQ4tGVnp7Or7/+ysWLF7lw4QIAdnZ2JCcnk5aWRnJyMh07dlTXP3ToEGlpafz666+MHj1aXb569WrS0tJIS0urscrvSXXn74/Tpk3j1KlTREVFYWNjo155qU1D6wPY2NiQm5vbpPGUl5fz888/U1VVxeHDh3Fycqq1fmxsLN988w2TJ0+mtLQUgEGDBmFvb8/Ro0eJiYmhX79+2Nvba61/W05ODtbW1nXOixAPs+TkZL777juOHj3Khg0biIiIoKTkzz+Df/PNN+zdu7fGNTdu3MDR0REXFxdmzJjxeKwQHTduHIWFher3M2fO5Pjx42zcuJGZM2cyc+ZMVq5cybBhw7C3t2fIkCE4Ojryz3/+k5EjR/L0008zb948XnnlFaqqqggNDeXQoUMUFRU146iEEEII8bCqqoIdx6+TcuUWenpQcKOC329W0qWdIUWqCgpuVFCkqsRMoYflU/qUV1RprN+6pX5zD0UIIcR98PT05PLly+r3GzduJCEhgbfeeosdO3awadMmRo4cybx587C2tqZz585MnDiR1atXs2/fPuzs7Bg/fjxDhw6lsrKSY8eOsWHDBjIzM5txVM2rU6dOXL58GXd3dzw9PRk6dCgqlYqoqKha9/JsaP3bVCoVCoX2pzaaIp6qqqpa63t7e+Pm5sb48eOZOXMmgwcPBqoPoJk6deo97WmrD6BQKFCpVHXOixAPu/Xr17N+/XoAjh07RkZGBgqFokbC38rKiuzsmvv/nz17lrKyMvr27Ut8fPx9x/FQPTI/fPhwXn/9daB6M+S9e/eycuVKhg8frs4Qx8fHY25uTrt27XBxceHYsWP8/vvvQPVEenh48OOPPzbbGIQQQgjx8Io4q6JIVcnaNy0w0NfjXb8cbpVXryBx7W7CifMlFN6sYEgPkzrrC/EoWTJka5P1tbTJehJCd3r37q0+1XjlypX89NNPALz66qvqv1/6+/uzcuVKHBwcmDhxImlpaaSnpwOQlpbG3/72N3x8fJpnAICR9aZm69vDwwNLS0tiY2N55ZVXyM/PR6VS4eDgQN++fWvUvX79Om3atFE/ot6qVata62uTmppK165d1fegKeIxMDBg2LBhhIeHM2zYMD755BPatm2rtX6nTp04duwYycnJpKSkAHDy5El8fX1p3749V65coVOnTpSWlnLt2jWN9W/r3r07qamp9ZobIR5mbdq0oaCggOeee47WrVsTHx+PoaEhDg4OWFpaYmxsTPv27UlKSsLW1paSkhIKCgqwsrKiV69eXL16VSdxNFtCtKqqCn9/f6qqqtixYwc7d+7EwsKCnJwcoHo5uIWFBQDW1tY1BpyVlYW1tbXW8ru9+eabvPnmm0D1Jshjxox5kEMTT5hBgwY1dwjiMSLfJ6FrOvtOpemmmfqo+ft0tE7bvllahblpCwz09TidUUruHxXqz4Y8o2BjWBHXVZUsH9+2zvq61lx/Pmlov7r7/1Rp3VV05M4xnm+yXpvfk/ad2keGTtqpj9tjPP8kfaF4dL5TLVq0UD8KDxAaGsqcOXNq1AkLC1M/ZThnzhwMDQ05c+YMAGfOnMHQ0BCo3tbtzrZu3rxJr1696NixY43VS9euXavxmP2TYty4cbi5uXH16lVGjRpFZWUlBw8e5J133iExMZFz586hVCprXLNx40b27t1LQUEBEyZMqLO+NiEhIXh4eBAeHt5k8RQXF/PGG2+wZs0awsPDiYqKwtDQUGN9PT09tm/fTqtWrdDX12fRokUA5ObmMnv2bAIDAzEwMKC4uJipU6dqrX+bh4cHoaGh9b85QjSz9evXM3r0aCwsLLh06RJz5swhODgYPz8/unbtSllZGW+//TYAZWVl/OMf/+DIkSMALFy4kKqqKjp27MjmzZsB0NfX55NPPrln5WhjNVtCdMyYMWRnZ9O2bVt27drFxYsX76mjqz26du7cyc6dOwHIyMggMDBQJ+0KcZt8p4QuyfdJ6JpOvlMDJt9/G/V0Z7xT59e9h1h9VFRWYagPQ3uZsGJfAXP+m0s3a0M6tPnz0fdOFoaoblXRxkyfNmbV5bXV17Ua96n/hw+sn1r7fYDX3OsVHbRRP3fG2/vDwbXUfLzUuE9+c5un3wd4zd30hjvddxv1dTve3r2frH/IvPM+TVtbv5PAdd1vfVRWVtK9e3etn3t7e3P69Gm6d+/OgQMHNCbgZL/ouv3vf//jf//73z3lZWVltSaxt23bxrZt22qUNSbZHhgYyAcffIC+vj4VFRVNEk/r1q0b1P7zzz+vsTw0NFRjclNbfYCRI0cyduxYrZ8L8bCZO3cuc+fe++eP1157TWP9PXv2sGfPnhplJ0+exNHR8YHE12wJ0dsZ3fz8fEJDQ+nfvz95eXm0a9eOnJwc2rVrp16ynp2dja2trfpaGxsbsrOzyc7OxtXVtUb5iRMnmnYgQgghhHjoZeSXY21uQCuTFnwx0UJrva+m1jzRta76QgghHj2nT58G4MKFC8THxzN06FDKyspwcHDgzJkzODg4UF5eDsDvv/9eI7lqampKamoq/fv357nnnlOXW1lZcezYsaYdyBOupKSETz/9lA4dOmh8bP5xYmFhga+vb40zWIR4mBQWFrJ161Z8fHwIDg5ukj7d3NzYsGEDeXl5jbq+WU6ZNzExoWXLlurXQ4cO5dy5cxw6dEh9Uvy4ceM4ePAgUH2q3+29RR0dHfnjjz/IyckhIiICd3d3zM3NMTc3x93dnYiIiOYYkhBCCCEeUgcSi1n70+9McnuquUMRotnpW35F/6E76e36P/q572TtxngqK2tfCZeW8Qff7z3bRBEK8WC1adOGdu3aqV/fPpzjzJkzLF68GIDFixer928MCgri1VdfBWDixImUlZVx5swZ/Pz8sLe3p2PHjnTs2BF7e3v8/PyaZ1BPsMOHDz/2yVCAvLw8goKCmjsMIbQaP348AwYMaLJkKEBkZCSOjo54eXk16vpmWSFqaWnJ1q3VG7vr6+uzb98+jhw5QmJiIl9//TUTJ07kt99+Y8aMGUD1/+SGDRtGZGQkKpWK+fPnA9X/Wufr66ve8HrdunXqA5aEEEIIIQBe6teSl/q1bO4whHgomJgYkBBRvbd+Tu5NJv3tAH9cL+Wzj1y0XpOW8Qff/985Jr3es6nCFOKB6dGjh3o7NT09PU6ePMlXX31FUFAQP/30E2lpady4cUN9wNK//vUvXnnlFdLS0qioqODvf/87AOnp6ezdu1e9KnTPnj1PRGJOCCEeF82SEM3IyNCYwS0sLOSNN97QeM0nn3yisXz37t3s3r1bp/EJIYQQQgjxuGtnacqWdS/g7LmLTxcNJj3zOpPfP0jxzTIA/v2FB67P2vLRskhSzxfQf+hOpk7oxZgR3TTWE+JREB0dTdeuXe8pT0tLo3fv3hqv8fT01Fi+YMECFixYoNP4hBBCNI1m20NUCCGEEEII0by6dDanoqKSnNybtLMwIez/xqBQGHDh10ImvnuA2PCJrFrixpqNcQT7Vz82fPNmmcZ6QgghhBCPCkmICiGEEEI8ZCJd323C3tY0YV/iYVZWXsmsvx8hITkXfX09zv+qeSuq+tYTQjStqKu/6LQ9F1vtJ57fplKpSE5OxtDQkOTkZKZPn05JSYlO46jNzp07Wbp0KRcvXnwo4tEFb29vevXqxZdfftnoNiwsLPj222/x9vbWYWRCaBcWFoaNjQ0fffSReh/RVatW8eabb5KXl8eAAQPUdefPn8/kyZNp0aIFe/bsYfny5erPzMzMSE5OZv369axbtw5bW1t27txJ69atKS0tZfHixRw+fBioPlRp06ZNVFZW1mi/viQhKoQQQog6le62abrOejRdV0I86S6lFaGv34J2lqZ8tvokVu1MSTz6JpWVVShs/63xmnWblfWqJ4R4/KlUKpydnQHYsWMHf/vb3/jqq6+apG8HBwcUCoU6Gdrc8ehKcHDwfR9Mk5eXR1ZWFkOGDOH48eM6ikyI2k2ZMoX4+Hj1+3379vHDDz+ozxACaN++PdOnT6dv377o6elx+vRpduzYQVpaGgAff/wxSqVSXb+8vJy5c+eSlJREp06diIiIwN7eHqg+VGnUqFHs27evUfE2yynzQgghhBBCiOaVm3eTGQvCmTW9+i8lRX+UYmPVkhYt9Pjf7lQqKqpPn3/KzJDrN8rU12mrJ4R4sh09elS9P6u7uzshISHs2rULpVLJmjXVTyPMnDkTpVKJUqlkypQp6mvnz5/P6dOnCQgIIDU1FTs7uzr7mzhxYq2JkAcRj7Z2AgMDiY2NJSoqivfffx8AHx8ffv75Z86cOcP69etJSUnBwsJCaznAtm3buHjxIr6+vjXGUlBQwLp160hJSWHz5s31mregoCAmTZpU5zwK8aBER0eTn59/T7mBgQHGxsYYGxtTVlZGUVERUH3onaWlZY2kak5ODklJSUD1eURGRkYYGRnpJD5ZISqEEEIIIcQTQqUqp//QnZSVVWJg0ILJ43sy/wNHAD6Y1pexb//Ed7tTeWmYHS1bGgLQt7cF+i306Oe+k7cn9tJaTwjx5DIwMODll18mJCREXebq6oqbmxspKSmYm5tjZ2fHzJkzcXZ2xtDQkNjYWEJDQ1EoFEyfPp2BAwfSsWNHEhMT69Wni4uL1gOWH2Q8d7cDMGvWLK5cuYKBgQGJiYkEBAQA1as9O3bsSGZmJgcPHmTw4MFay4ODg5k2bRqTJ0/GycmpRp9mZmbs3r2bhQsXcvbsWWxsbDAwMKg1zri4OJYtW1avuRSiqVy5coV///vf/Prrr+jr67No0SIKCwsBWLFiBQsWLGDq1Kkar/Xy8kKpVHLr1i2dxCIJUSGEEEKIh1xubja+Gz4jPf1XqqoqGTzIgxl/+zuGhkacTo5l09erKL55A4BxY//KyBFvAPDtdxv4KeQHzM3bUFFZwfS/zsPN9YXmHIpoZhW5c7R+1r1ra5KOvaV+/8WnQwAwNNQn/MexNepqqieEePKYmJgQExMDQEREBNu3b1d/Fh8fT0pKCgBFRUV4eHgQGRlJcXExALGxsfTp04ennnqKyMhIbt68yblz50hPT69X3zY2NuTm5jZ5PHe3AzBt2jRGjhyJnp4eNjY22NhUbzVUUFBAq1at1P+9nUDVVq5NaWkp0dHRAKSlpWFlZYWdnV2tcebk5GBtbV2vuRSiqTz99NMMHz6cHj16YGhoSEREBCEhITg5OXHhwgUyMjI0XmdlZcXq1asZO3asxs8bQxKiQgghhGgQkx6rmfPXgXzx8TAA1m09RXHxLf4xR5IiD0JVVRVLPpvFKO+JrFi2mYqKCtb6+rB1+zrGvz6N5Ss/5PPPNtKje2+KigpY+PF0LCyscBnkAcDrY9/mjXHvkJ7+K3PmTyJwcBQtWsiuSUKI+/PKmdLmDkE8BO7cs/Nut5OFD7JvhULR5PHc3Y67uzuenp4MHToUlUpFVNSfv89WVVXV+KmrXJuysj+3LalPfQCFQoFKpWro8IR4oIYNG0ZmZiZ//PEHAAkJCfTv359nn32W0aNHM3LkSNq2bUtlZSXZ2dn4+/tjbGzMrl27WLRoEZcuXdJZLPKnYSGEEEI0iLGRPj+GXSCv4Gat9V58y5/037T/5eN/AadZ/pVs9F+XeGU0RkbGvPxS9b+I6+vrM3PGYkIPBPDD3m0Mf3EMPbr3BsDcvA3vTV+I/64t97RjZ9cVfX0DiooKmzR+IYQQAqoTH66urpiammJubo6TkxOnT58mPj4eV1dXTExMeOaZZ+q1fyhAamqqeo/Q5oynVatW5Ofno1KpcHBwoG/fvo2OqSHqirN79+6kpqY2SSxC1Fd2djYDBw7EyMgIhULBgAEDSEtLY+nSpTg4ONCnTx82b97M2rVr8ff3B8DPz49du3Zx6NAhncYiK0SFEEII0SAGBi14Z3w/Nnwby2fz3Zs7nMdeWvoFdcLztpYtzWjXzoarVzN58cXRNT575pm/kJZ+kbudSU2khZ4eTz/d5oHGK4QQonm42D7f3CHUKj09nU2bNhEZGQnA8uXL1Y+8b926lVOnTpGamsrly5cpLa17BXJISAgeHh6Eh4c3azwHDx7knXfeITExkXPnztU4Ibsh7Ozs2Lt3L61bt8bExAQ3Nzd8fHw4cOCAxvqZmZm1xunh4UFoaGijYhFCF9avX8/o0aOxsLDg0qVLzJkzh+DgYMLCwoiLi6OyspJt27Zx9uxZrW24urry2muv0bNnT6ZPnw7AqFGjyMrKuu/4JCEqhBBCiAZ7760BOI/czvx3BzV3KKIOe//vW8J+DsLUtCVL/uGLnp5ec4ckhBDiMdGmjeZ/ZDt69ChHjx69p3zjxo1s3LjxnvItW7bwr3/9i7Zt2xIdHU12dnadfQcGBvLBBx+gr69PRUVFk8SjqZ2ysjLGjBlzTxt3npRdX9oe979zXF5eXnXGCTBy5Eid7rcoREPNnTuXuXPn3lP+8ccf8/HHH2u97vPPP1e/PnHiBC1btnwg8UlCVAghhBAN1srMmDdH92bTd3EoFH/+ceK7/zvNxv/GAfBrRiGj392LkaE+dh3M+WHTGPILVbwytfpE2IIiFWVllez/uXo149YvR/CXZyybfjAPuc523Th67GCNsuLiG+TkZNG//yDOn09hiKun+rPz55PpbNdN/f72HqJCCKFL+t7bmDe6N2umV//D2NqA09xQlbH0TUfO/VbE+/+O5PfiW5SWVTCktxX/mV29z/TxlGw+9DvFH6oyqqqqmDOqN++P6AXAZzvjMTMxZMFrfZptXKJ5rFmzRp0MnD9/fr2uKSkp4dNPP6VDhw71PojpQcbTHLTFaWFhga+vr/r0biEetMLCQrZu3YqPjw/BwcFN0qebmxsbNmwgLy+vUddLQlQIIYQQjTJr6kBcxvyXKXf8xXXK2D5MGVv9/sW3/Plm1SvYdfjz5NS2rU04GfQ2UL2HaPpvRXIYUx0cB7iwxW8NB8P2MdxrNBUVFWz+zyqGvziGN8ZN44PZ43Ef8iLduvWi6I9CtvitYcpbM5s7bCHEY87YUJ/AqHQ+GtcPC/OaB9vM/U80c0f35tXB1Xsank4rACC78CZvrYkg4JMXcOxmQV5RCS8vOYh1axPGuHZu6iGIh8iMGTMadd3hw4d1HEm1xsbT1LTFmZeXR1BQUBNHI55k48ePb/I+IyMjcXR0bPT1cqiSEEIIIRqlzdMmjH25J9/uTWruUB5renp6fP7pRiKOHuCtqS8y5a/DMTIyZvq0+bRt247FH33JmnX/YMq0l5g9dwIvvzQWV5dhzR22EOIxZ6Cvx7vDn8H3x+R7PssuvEkHiz8fcezTufpx303BqUx9oTuO3SwAsDBXsOqvzqwNuLcNIYQQ4kGSFaJCCCGEaLS505z5ekfD98gSDdOunQ0rP/9a42f9+jrz9cb/0/jZ21NmP8iwhBBPuA+8e9F/1j4Wjq15qvbcV3vjuTgUl17teHFAe9727M7TZsakZPzOlBe61ag7sLsFZzJ/b8qwhRBCCEmICiGEEKJh8hLmqV9bWbSkIEnz3lqHdkystZ3JskecaAZ5bRY1dwhCPDZamRoxeVg3NgSdwcRYX13+V68eDHfswIG43wg6mcGWA+dQbhjdjJEKIYQQNckj80IIIYQQQgghGmXuq73ZFnae4pLyGuW2bU2Z9mIP9vl4YtBCj+T0Qhw6PU38xfwa9eIu5jGwW9umDFkIIYSQFaJCCCGEEEIIIRqnzVPGjBtiz7aw8/zVszsAB+J+44V+thgatCC78Cb510tp39aUD0b0wmXBfsa42tG/S1vy/yjB57s4Vr49sJlH8XgI9Tmg0/Ze/vylOuuoVCqSk5MxNDQkOTmZ6dOnU1JSwvnz57lx4wYVFRUAfPbZZxw8eJATJ05gZWVFRUUF2dnZuLi4sG3bNvr06aMuz8vL4+TJk8yaNavO/nfu3MnSpUu5ePFirfEUFBTQpk2b+5uQ/5+3tze9evXiyy+/bNT1PXr0YOfOnXTt2hVPT0/i4+veekjTfD6ok7yVSiWjR48mPT291nqzZ8/Gz88PlUpVo/x+50fX3Nzc2LRpE7du3WLKlCmkpqZqrGdoaNjg76eFhQXffvst3t7eTTyqh09YWBg2NjZ89NFH6u/mqlWrePPNN8nLy2PAgAEA2NrasnPnTlq3bk1paSmLFy9WH452+9cvwLFjx5g/v/optPnz5zN58mRatGjBnj17WL58OfDnva2srFS33xCSEBVCCCGEEELHLFta8bmnL/1tnCkq+Z28m9fw+fn/41LBheYOTQidmz/mL2z86Yz6fVj8FeZtiUZhWP0Y/RfTnLFubQrAdwuGMmNDJEU3b5F27Qbb5j3H0D426mtX7E5k/Y8p6vcZ/53QRKMQjaFSqXB2dgZgx44d/O1vf+Orr74CwMvLi/z8miuCnZ2d8fHx4caNG6xbtw6AadOmAdxTXhcHBwcUCoU6GVpXPLoSHBx8X8nI8+fP4+zsTFhYWIOu0zSfzWn27Nl8//339yRE73d+dG3ixIl88cUXfP/997XWKysra/D3My8vj6ysLIYMGcLx48cf3CAeEVOmTKmR4N+3bx8//PADW7duVZeVl5czd+5ckpKS6NSpExEREdjb2wM1f/3e1r59e6ZPn07fvn3R09Pj9OnT7Nixg7S0NCIjIxk1ahT79u1rVLzyyLwQQgghhBA6tn1sICcyjjD4624M/3YgK458jKWpVXOHJYTO/LF3ivq1VWsTbvzfVJa+6QjA2ncHkfqf11H+ewzKf4/href/PEjJ/S/WRK8bRep/Xudf7w5i1Q9JFN4oBWDpm44U7H6LjP9OUP+IR8fRo0fp2rVrk/U3ceLEWhMhd8ezbt06UlJS2Lx5MwAjRozgv//9r/rzJUuWMGfOHABmzZpFUlIScXFxrFy5Ul1n27ZtXLx4EV9f3xp9WVlZERAQQGxsLNHR0XTvXr1aOjAwkNjYWKKionj//ffvf9B3mTlzJkqlEqVSyZQpf/6aLCgoUL8OCwvD0dFRXX73PAAsWLCApKQk/P39MTY2Vpdrin/YsGHExMRga2tLWFgYMTEx2NhU/6OGtvmpLU5N8Wib/4bMg7m5OTExMbz++ussXbqUmJgYevXqVfekNlBQUBCTJk3SebuPg+jo6HuS+Dk5OSQlJQGQkZGBkZERRkZGtbZjYGCAsbExxsbGlJWVUVRUpJP4ZIWoEEIIIYQQOuRm9zxlFWV8p/yPuuxMTlIzRiTEw+n9Eb14f4TuExSi6RkYGPDyyy8TEhKiLgsLC1M/4u3p6amzJMZtLi4u7N69u17xmJmZsXv3bhYuXMjZs2exsbHhwIEDrF27FlNTU27evMnrr7+Op6cnUJ0c7dKlCzdu3MDS0lLd7rRp05g8eTJOTk41+vP19eXAgQNs2bKFp556CoVCAVQn9q5cuYKBgQGJiYkEBARw7dq1Ro337vl8+umnmTlzJs7OzhgaGhIbG0toaCi5ubla29A0D0ZGRkybNg0nJye6dOlSY4WfpvjDw8Nxdnbm/Pnz96xa1TQ/dnZ2WuPUFE9WVpbW+dektvadnZ3x8/MjJCSEgICARs17XeLi4li2bNkDaftx5+XlhVKp5NatWwAoFApOnjyJSqXiH//4B8ePH+fKlSv8+9//5tdff0VfX59FixZRWFiok/4lISqEEEIIIYQO9bT8C0nZcc0dhhBCPHAmJibExMQAEBERwfbt29WfPehHvG1sbO5J/mmLp7S0lOjoaADS0tKwsrIiKyuL/fv38+qrr3LhwgUuXbpETk4OALGxsXzzzTeEhITw448/1hmLu7u7emXi9evXuX79OlCdIBw5ciR6enrY2NhgY2PT6ITo3fPp4eFBZGQkxcXF6pj79OlDeHi41jY0zUPnzp05ceIEJSUlnDlzpsbeobqIv3///lrj1HZfGjL/tbXfFHJycrC2tm6Svh4nVlZWrF69mrFjx6rL7O3tuXbtGk5OTuzZs0e9Lcbw4cPp0aMHhoaGREREEBISQnZ29n3HIAlRIYQQQgghhBBCNJimPf+asu/bKzHriqesrEz9uqqqihYtqncP3LFjB8uWLePixYvs3LlTXcfb2xs3NzfGjx/PzJkzGTx4cIPjc3d3x9PTk6FDh6JSqYiKilL3ezuOB+XOtg0M/kz7aJoHbXHUFb8uaLsvupj/pqJQKO7ZR1XUztjYmF27drFo0SIuXbqkLr+dbI+LiyMrK4vOnTvj4OBAZmYmf/zxBwAJCQn079+fAwfu/xA52UNUCCGEEEIIHTqXm0Jfa6e6KwohhGi01NTU+96zNDExESsrK0aMGMH+/fvV5Z06deLYsWMsWbKETp061dlOREQEU6dOBcDU1BQLCwtatWpFfn4+KpUKBwcH+vbtW+OagoICOnTo0OjYExIScHVjFcBqAAAgAElEQVR1xdTUFHNzc5ycnDh9+jQARUVFtG7dGoVCwTPPPFNrO0qlEhcXF4yNjenVqxd2dnYAdcZ//fp12rRpc19xatOQ+W9M+7rUvXt3rSfXC838/PzYtWsXhw4dUpfd/r5C9TYItra2ZGRkkJ2dzcCBAzEyMkKhUDBgwADS0tJ0EoesEBVCCCGEEEKHjqeHs9hjJW/1f5cdCd8A0MuyD62MzTn5m5xCK4R4MF7+/KXmDqFWhoaGnDhxAisrKyoqKhg/fjwuLi6Nbi8kJAQPD4/7fjR637599OjRg5KSEgD09PTYvn07rVq1Uu9ZCNVJmr1799K6dWtMTExwc3PDx8eHAwcOMG/ePDZv3syMGTMoKytjypQpHDx4kP/H3r3H5Xz+Dxx/daJCKaWig0TIYZSccoiV2eRsxvZlTttsDvt+bcbXxBh+O9hk+2Jz3GyYwwprOUQmIjqJDg4NCaUTqVQ6/f7o4eZe3Z3clcP7+Xh4rPv6XJ/rel/XfY96d32ua8qUKURGRnLx4kUiIiKU+vXy8mLDhg14enoydOhQEhMTqxR3fHw8a9asISgoCIClS5cqthBYsWIFvr6+hIWFcePGjXLbuX79Ops3byYkJITY2FiuXr0KUGH8q1evZvfu3aSnpzN27Fh0dXVVzo+qOMuiav6rMw9VUd3Pp6urK/v3769yfy+CVatWMXz4cExMTLhy5QqzZs0iPT2dkSNH0rZtW6ZOnQrA0KFDsbGxYcOGDeTl5VFYWMi0adO4f/8+J0+exN/fn7CwMIqKiti0aRMXLlxQS3wazZo1q7l12k+h69evKy0ZF+JJjRgxAh8fn7oOQzwn5PMk1E1dn6mcS5+oIZrK0bP/SvH1ntkWtdZvXRv+7aMfhI76X6y1fvu7l79y5J/U9ZkqyH3tiduoLG3dR4d8mFV8WK1amDW04HM3LzqZO5FXkEtCxjU8D/+bq3fiaicA4Pb8R18Xp31Ya/1qNFlVpfrq+kxp/FB7q3KLp5XsEdu+/Re11ufTIDp6nuLrQt/JtdavlsemKtUvKCio1Kq+Z93XX3/NxIkT6zqMOqOrq4u/vz+urq6Kw4aqY+/evaxatarW9pwUz5eAgABGjRqltoN+nlX+/v7MnTtX6VCu2mBjY8OePXvo0qVLmdd/+ukn5syZU+Y1yQwKIYQQQgihZrezEnl3zxt1HYYQQjy3cnNz+eyzz7C0tFQ6CKiyjI2NOX78OMHBwZIMFdViYmKCl5fXC58MBbhz5w4bN27E09MTX1/fWunTxcWF77//ntTU1GrdLwlRIYQQQgghhBBCPHOOHDlS7XvT09Np3769GqMRL5rU1FT27dtX12E8FcaMGVPrfQYFBeHo6Fjt++VQJSGEEEIIIYQQQgghxAtDEqJCCCGEEEIIIYQQQogXhiREhRBCCCGEEEIIIYQQLwzZQ1QIIYQQQrwwVl0ZXdch1Jqx7K7rEIQQQgghnkqyQlQIIYQQQgghhHjGeV+cqtY/ldG6dWsCAgKIjIzkzJkzWFlZqay7YcMGLl++DICmpiY3b97Ey8vrica8detWWrVqVa141G3mzJno6ek9cX0PDw/mzJmjztAAsLe3JyQkhPT09EodRFPd96uscaWnp1cv6Cqoyfk0MTGptZPTn1X+/v5ERUXh4eGhKFuyZAkRERGcPn2aoUOHAuDu7k5ISIjiT1ZWFi+99BIAo0ePJjo6mujoaAYPHqxox8XFhcjISCIiItQasyREhRBCCCGEEEIIUWWbN29mwYIFvPTSSwwbNozs7Oxy62dnZ9OpUyd69epFcnLyE/Xt4OCArq4ucXFx1Y5HnWbOnIm+vv4T1/f19eXrr79WZ2gAXLp0CWdnZ8LCwip9T3Xer6rOg7rU5HympqaSmJhI7969n6id592ECRMUiWNHR0fc3Nzo2rUrr732GitXrqRhw4b4+/vj7OyMs7MzQ4YMIT4+nsjISHR0dFi2bBn9+/dn0KBBrFixAg0NDaDkNPmHCVV1koSoEEIIIYQQQgghqqRTp07k5eVx8uRJABITExUrAadPn05ERAQRERFMmDBBcY+vry8eHh54eHgorbjz8fEhNDSUU6dO8f7771eq/3HjxrFnz55qx+Pp6cnhw4eJiYlh1apVREdHY2Jigo2NDTExMWzbto3IyEg+/vhjRR+Pr3T09/fH0dGRAQMGEBISQrNmzfD39yckJAQLCwuV4yqv/qZNm4iLiyu1ElPVfKanp7Ny5Uqio6NZu3btE81nWaryfpU3LqDMOAcPHkxQUBChoaF89dVXgOr3RZ3zaWZmhre3N6GhoQQHB9O6dWsAZsyYwblz5wgLC2P58uVK9+zbt48333yz2nP5orGzsyMyMpLCwkLS0tK4desWXbt2VaozZswYfHx8AOjWrRsxMTEkJyeTkJDAjRs36NSpU43GKHuICiHEc2rB8VdrpZ+lffYrvs4c7FkrfT4tGv35OQDfnD9Va31+1LFnrfUlhKjYuI27sTYypLC4mOaNG/FBP2fqa8u32EKI55+trS1XrlwpVW5jY8P06dNxdnZGR0eH0NBQ9u8v+X4xPDycsWPHoq2tjY+PD05OTkBJIurmzZtoa2sTGRmJt7c3t2/fLrf/nj17smPHjieKx9fXFysrKxISEjh48CA9evTg/PnztGzZkpEjR3Lt2jXCwsLYuXMn169fLzOOgIAAnJ2duXTpEu7u7qSlpSmulTWu8upPnjyZ8ePHK+alvPhTUlJo2LAhO3bsYM6cOVy4cAELCwsSExOrNZ9lqcr7Vd64yoqzoKCA+fPn4+bmRk5ODtu3b8fV1VXl++Lr66uW+QTw8vLiwIEDrFu3jkaNGqGrqwvAwoULadmyJVlZWZiamirdExYWxpIlS6o8hy+q2NhY5s2bh56eHiYmJrRt2xZzc3OlOuPGjeO9994DwNzcnKSkJN555x3u3LnD7du3MTc3JzIyssZilO/WhBBCCCGEqKZ6Wlp8OdIdgO+PnuZw7BUGd7Sv46iEEKLmPXyc9Z86d+5MUFCQ4nH10NBQOnbsqLielJRU6lH2yZMnM2TIEDQ0NLCwsMDCwqLCBJ6FhQUpKSlPFE96ejoGBgaK/xoaGgIQHx/PhQsXADh58iRdunRRmRAtT3XGVdn4AwICyMvLIzg4GIBr165hZmZGYmKiWvp9SB3vV1lxWlpaYmtrS2BgIAANGjTA1tYWUP2+qGtcffv2Vay0zczMJDMzEyiZ2/Xr1+Pn58fevXuV7klOTi6V0BOqRUVFsWXLFgIDA7l58ybHjh0jNzdXcd3e3h59fX3OnTundN/69esBGD58eI3HKAlRIYQQQggh1KCtuQnX0zNIzszmq0NBrBg1EIA/zl0kN7+A153a83dKOj8GhqGhAR2bm3H2RpKinhBCPEuuXr1Ky5Ytq3yfp6cnRUVFioRH3759cXNzo1+/fuTk5HDq1Ck0NSve3S8nJ0exsq+68RQXFyv9qajf4uJixdfaFTwNUN1xVUV+fr5SbJqamhX2+/gYKkMd71dZcULJtgNvv/12qf7Kel9qYz49PDxwcXFhzJgxTJ8+nR49eiiu6erqkpOTo9b+nnerVq1i1apVABw/flzplwpjx45l165diteJiYlKCWczMzOSkpJqND7ZQ1QIIcRT53ZuFhPDf6fT0f/R5/h6Rp3ZzuWstIpvrEPnjxzjo449uX3lmqIsJT4Br3GTWTHyX/wwdaZS/biQcD7t6cY3r0/giyFvsPrt94k5dkJxPflqPGsmfcA3oyfw5dCx7Prsi9oaihCiGgqLijibkISVkWG59dYGhjK1tyNfjnRHU8VqJiGEeBZERkbSsGFDevXqBZQ88mpsbMzZs2fp1asX+vr6GBoa4uTkxPnz5xX3ZWRkKFbkARgYGJCWlkZOTg4ODg6V3jcwNjYWOzu7J46nLDY2Ntjb21O/fn169erF2bNnFbEbGRmhq6tLmzZtlO7JzMzE2Ni40uP6Z31Vqhp/Rf2mp6djaWlZYb8PVfX9quy4Tp8+jYuLC82bNwfA2toaMzOzao+rsv0CHDt2TJGI1dfXV+xRam1tzfHjx1m4cCHW1tZK97Ru3ZrY2NhKtS9KPHw/+vTpg5GREeHh4Yprb7zxBjt37lS8DgkJwcHBAVNTUywtLWnevHmp1aPqJitEhRDiBXAvOYcDK2NIuZZFcWExrXqa4ja9Lanx2WSl5tKqZ1NF3bjgFI5tuER+biFa9TRp4dgE9xntai3W4uJixoXt5C3Ll/jJcRQA5+8lkfwgm9Y0AeDXhEiu59xlvn0/le20D/iO6AGzaiVmgIj9/tg6vkTEfn8GTX8HgICNW+g1ZiTdRniQduNWqXtsHV9i6upvALh54RKbP5yLdv362PdwxueLlfQdP5YOA/oCkHgprtT9Qoi696CwkLne/kDJCtEBbWxJv1/2CpLsvAfk5hdgb1byd5mLnRXhCYm1FqsQ4vk2ss2GWu9z4sSJrF27FmNjY/Lz8xk+fDjx8fGsWbOGoKAgAJYuXar0aPs/HTx4kClTphAZGcnFixeJiIioVN9+fn64uroSEBCg1nigZLXpsmXLsLe3Z9OmTcTHxwOwYsUKfH19CQsL48aNG0r3rF69mt27d5Oens7YsWMrHNc/6+vq6rJ7926MjIzQ09PDxcUFT09PDhw4oNb59PLyYsOGDXh6ejJ06FASE6v271BVx6XqkfaUlBRmzpyJj48P2traZGdnl1ot+iT9ljef//nPf1i7di3Tpk0jPz+fCRMmkJaWxubNmzEwMEBLS4u5c+cqte/q6qrYe1ZUzoYNG7CzsyM/P5+JEycqyp2dncnOzubSpUuKsvz8fBYsWMBff/0FwJw5c6q8mrmqJCEqhBDPueLiYnYviMBxmDVj/s+JosJi/vw6iiNrL2Le2oDEixmKhGjylUwOrIxm7FddMbFpSFFhMRH7Su+XVFRQhKZ2zTxkEJh2DR1NLabYPNr8vKPB071fT979+1yNiOSDjavZOHOOIiGqpaNDxu1kAJpYNiu3jeZt7XGfNpmg7bux7+FMZkoqhmaPEtUW9q1qbgBCiGp7fA/Rh7Q0NZS+ic8vLKrtsIQQolbExsYqDsJ53OrVq1m9erVS2dSpU5Ve//LLL/zyyy8AjBgxosp9+/j48MEHH6ClpUVhYWGV4/n888/LbNfGxobc3Fxef/31UtfWrFnDmjVryrxv06ZNbNq0SamsvHGVVd/Z2bnMumXFDyitiHR3f/RvUXn9BgcH06FDB5XXH6ru+1XWuFTFuX///lJJRlXvS3X6VTWft2/fZuTIkaXK+/fvr7L9IUOGMGrUKJXXRWllzTGUrAbt1q1bqfJdu3YpPUZf0+SReSGEeM5dC0tDq54mnQeXPBqjqaXBwJltOX/gJv7/u0DMkUTWTzpB9JFETm27Qu8JdpjYNFTUdRphA8C+ZefwWxHFpndPcmTtxRqLNyYzhS6GFjXWfk2ICjhOW5cemLawRt/QgITokk34m1g15/i2XUqPwpfHsl0bkq+WrEDoO34sP0ydwfpp/+HYlu3k3Mus4G4hxNPCUE+Xezl5ZObmkV9YSPj1ktU3DerXQ1dHm8vJJVuAnLySUJdhCiHEMy03N5fPPvusSo9/C1EdJiYmeHl5cefOnboO5al1584dNm7ciIeHh9rbdnFxwcfHh9TUVLW2KytEhRDiOZdyLQsLe+U97eo30MHQQo9Og5pz5+Z9Bv2nPQCntl6hx1hblW3dS85l4tqeaGrV/r53aQ/uM+T0rwDceZDDg+JCfG+XJGbXvzSM9gZmzI7aT/CdkgRDYm4mvY6vA2CEeTvmtO5TY7FF7D9En7feAKDLq+5E7D+EhoYGl06eYfbOn/nx3VnoGRrQ4qWOLH91NPP37y6zncdXlHUb4UEbl+5cCAomOuA4p3bt4ePff6mxMQgh1EdbU5ORXdrx6d4AjBvo0axxI8W19/o4sf54OBoa0M7CFH0dnTqMVAghnm1HjhxRe5vx8fF06dJF7e2KZ1dqair79u2r6zCeamPGjKmxtoOCgnB0dFR7u5IQFUIIUWnt+pvXeDK0XSNT9iSV3rC8ST19TvZ5F1C9h+i3HV5VfN0+4DtF/ZoWdyaMpMtXQAOKCovQ0NCgoZERLTp3pLF5UyZ6fcGmWZ/Q6/URtOvTEw0VB6ncvHAJs5YtFK8Nm5rSfcQQuo8Ywtcj3iLx8pVaGY8QovJ+nlj243uvdmjNqx1alyq3MjLkq1EljwvujbxAS1OjGo1PCCGEEEKUJo/MCyHEc86kRUMSL2UoleVl55Od9gBtHeV/BkxsG5J4Ubnu4+rpatVIjI/r16QFD4oK2HT90SmEUfduE5Reei/Tp4WTxyAWHPJhwUEfFh7ei3FzC/IfPCDqaCA5mVmYtWxB/4lvsW/Fdzh5DCqzjVsX4zj842Z6jS3Zm+jCiVMU5hcAcC81jey7GRiamdbamIQQNSP8eiJzvf35+PdDXEhKZWTn2ju0TgghhBBClJAVokII8ZyzdWrC0R8ucu7ATToNak5RYTH+/7tA11HW6BvVJy/mUQK05zhbdi+IwKqjMU2sG1BcVEz4vgSchlvXWrwaGhpscxrD3JiDeP19kvqaWljrNebL9gNrLYaq6viy8krVTu79uX3lGk4eg/juranU09XF2LIZb3y+gO0LPmfGzz8AcDU8km9en0B+bh4NjY0YPu8/2Pco2fz94skz7PnSC+169QAYMnsGBiZNandgQgi162VnRS87q7oOQwghhBDihSYJUSGEeM5paGgwepkjB1bGcPznOO7ffYDDAAt6T2hFzr0HnNx6hfWTTtDrX3a0f9mCgTPb4bP4LPl5hWgArXs1rbAPdbPQbcQWx9Eqr//L6qUK24geMEudIZWrbe+eSq/7vPVoDx3Xt99UutZt+GAAWhkbsezUYZVtDvvkQ4Z98qEaoxRCCCGEEEIIAZIQFUKIF4KhmR5vfOEEQML5O/gsPkvixQws2hgyZX0vpbqtXZrS2qV0EnTop51qJVYhhBBCCFF1uT7j1dqe7ojKHebo5+eHtrY2AwdW/DRPTk4OUVFR6OjoEBUVxdSpU8nNza12jFu3bmXRokXExcVVKx51SU9Px9jYWKnM3t6erVu3Ymdnh5ubG+Hh4Srurpi6560ueHh40K5dO77++utqt2FiYsJPP/1UIyeZiyfj7++PhYUF8+bNw9fXF4AlS5YwZMgQHjx4wLJlyxQHUzk7O/PDDz8oPs9vvvkmxsbG/Pnnn+jo6FBcXMznn3+uqO/i4sKaNWsoKipS64FnsoeoEEK8YKw6GjFrd38s2hhWXFkIIYQQQggV9PT0sLOzo3nz5jRo0KDC+jk5OTg7O9O5c2cA3n23+gdgOjg4oKurq5QMrWo8NenSpUs4OzsTFhb2xG2pc97qiq+v7xMlQ6HktPfExER69+6tpqiEOk2YMEGRDHV0dMTNzY2uXbvy2muvsXLlSho2bIiGhgY//fQTM2fOpFOnTsyaVfJU37179xT1Bw0axPfff684iDYoKIihQ4eqPV5ZISqEEEIIIcRz7shq9f8godqqWuxLCFGX+vbty6lTp8jPz6d///6KZMiMGTN49913yc/P5+DBg8yfP7/UvYGBgbRv317Rzrx587h37x5t2rThyJEjfPzxx+X2PW7cOPbs2fNE8agqHzx4MPPnz6d+/foEBATwySef4OnpSb9+/WjWrBn+/v64ubnRr18/UlNT0dDQYO3atfTo0YOAgAA++ugjlXEPHjyYMWPG8PbbbwOwcOFC7t69y3fffVeZKa/UvE2fPp2pU6cCsHLlSrZs2QLA7NmzmTRpEpcvX6Zdu3YMGjSI+Ph4le34+PhgZWVFfn4+W7ZsYe3atSrn4f3331c5P5s2baJv3774+vry73//WzGW9PR0fv75ZwYOHEhgYCDvv/9+uXEC7Nu3jzfffJMTJ05Uar5E3bCzsyMyMpLCwkLS0tK4desWXbt2JTMzk5SUFE6ePAmUJLkBCgoKKCgoOVDW0NCQ+vXro62tTX5+fo3FKAlRIYQQQgghhBBCVJm7uzsBAQEUFhYycOBARQJy4cKFtGzZkqysLExNTUvdp62tzauvvoqfn5+irFevXri4uBAdHY2hYcVPMvXs2ZMdO3Y8UTxllZuamjJ//nzc3NzIyclh+/btuLq6AiWrHK2srEhISODgwYP06NEDX19fGjRogLe3Nx988AEBAQG4uLgQFBRUZtwHDhzgm2++QV9fn/v37zN69Gjc3NwqHG9l583Gxobp06fj7OyMjo4OoaGh7N+/H11dXaZOnUrXrl2xsrIiMjJSqe2y5n/GjBncvHkTbW1tIiMj8fb2VjkP5c3P5MmTGT9+PE5OTkp9NmzYkB07djBnzhwuXLiAhYUF2tra5cYZFhbGkiVLKjVfou7ExsYyb9489PT0MDExoW3btpibm2NkZERGRgZ//PEHZmZmbNy4kR9//BEo+TwEBgZia2vLe++9V6PJUJCEqBBCCCGEeIGsvZxS1yEIIcRzY+DAgaxatYrCwkIWLFigKA8NDWX9+vX4+fmxd+9eRbmenh4hISEAHDt2jM2bNyuuhYeHEx0dDUBGRkaFfVtYWJCSovx3elXjKau8e/fu2NraEhgYCECDBg2wtbUFSlY0GhgYKP77MHFYUFDA4cOHKS4u5siRIzg5OalMiBYWFvLHH38wbNgwLl++zJUrV0hOTi53rFWZN1dXV4KCgsjOzlaMsWPHjjRq1IigoCDu37/PxYsXFSsuVbUDMHnyZIYMGYKGhgYWFhZYWFiUOw+qylXJy8sjODgYgGvXrmFmZoaNjU25cSYnJ2Nubl5uu6LuRUVFsWXLFgIDA7l58ybHjh0jNzcXPT09evXqhaOjI3fv3iU4OJhDhw5x9epVsrKycHR0pG3btqxZswZvb2/FqtGaIAlRIYQQQgghhBBCVImVlRW2traK1YqWlpa0atWKuLg4PDw8cHFxYcyYMUyfPl2xgvDhXphlqUwS9HE5OTno6uo+UTyqyv39/RWPtD/k6elJcXGx0h9NzbKPZSkuLi7z64d+/fVXlixZQlxcHFu3bq3UWNU1b6r8s52+ffsqHnvPycnh1KlTivGqmofKzs9Dj68ArEx9AF1dXXJycqo6PFEHVq1axapVJdvoHD9+nOvXr9O4cWNiY2NJSEgAShLxbdq04erVq4r7Lly4QH5+Pp06dXqiw8gqIglRIYQQQgghXjADF7lja2ZLYVEh1qbWfDJiLrr1dBXlDy0et4Sku0nsCtpJH4e++ASXPC4ZnxKPZRMrtDQ16drKmXcGvlNXQxFC1BF3d3c2bdrEhx9+CMA333yDu7s7cXFxWFtbc/z4caKiohSrDtUtNjYWOzs7xQrC6sRTVvnp06fx8vKiefPm3Lx5E2tra/Ly8sqNRVtbmwEDBhAQEMCAAQP49NNPFdfS09OxtLRUSuxERkZiZmZGmzZtlOqqw9mzZ1m+fDn6+vro6Ojg5OTE+fPn0dXVZfny5ejp6WFtbY2NjU257RgYGJCWlkZOTg4ODg506tRJrXGqEh4eXm6crVu3JjY2tlZiEU/G2NiY9PR0+vTpg5GREeHh4RgYGGBlZYWRkRFZWVl06NCBq1ev0qxZM3Jzc0lPT8fMzIx27dpx69atGo1PEqJCCCGEEEJU0v79+/nXv/7FrFmzWLRoUbl1v/jiC5YuXUpWVlaZ1+vXr89nn31G8+bNKSws5NSpU6xbt64mwi6lnk49fvygpK/lu5fjG/IHo11eVyp/KOluEgCDHAcxyHEQAG99+ybfTPoGwwYV7/NXW/InmtVaX9rTaq0rISpNd8QvtdrfwIED2blzp+L10aNHmTJlCj/88AObN2/GwMAALS0t5s6dWyP9+/n54erqSkBAQLXi0dDQKLM8JSWFmTNn4uPjg7a2NtnZ2aVWi/5TdnY2b7zxBitWrCAgIIBTp04prnl5ebFhwwY8PT0ZOnQoiYmJAOzZswd7e3tyc3PVOi/x8fGsWbNG8cj+0qVLFVsLbNy4kTNnzhAbG8vVq1fLTfQePHiQKVOmEBkZycWLF4mIiKhWPDY2NuzevRsjIyP09PRwcXHB09OTAwcOlFk/ISGh3DhdXV3Zv39/tWIRtWvDhg3Y2dmRn5/PxIkTgZLT5D/++GMOHTqEjo4Ov/32GxcvXqR79+6sXbsWAC0tLT799FOSkpJqND5JiAohhBBCCFEFaWlpFSZDAebNm1dhnR07dnD27Fm0tbX59ttv6datG2fOnFFHmJXW0aYjV5Ku1GqfQohn39ixY5Ve+/r6Kg4x6t+/f5n3GBsbl1keGBio2LOzsnx8fPjggw/Q0tKisLCwyvEUFxerjHP//v2lkm6ff/65yliMjIxUXgsODqZDhw6lynv27Kl4nLgiVZ231atXs3r16lLl69at49tvv6VJkyYEBwcrEk5ltZOfn8+IESNKtVGdR5hVPe7/+Ljc3d0rjBNgyJAhjBo1qsoxiNo3cuTIMst///13fv/9d6Wy06dP4+joWBthKUhCVAghhBBCiCowNzfn//7v/5g0aRKDBg2iV69e6Orq0qxZM44fP644LfW3337jvffeIyMjg6VLl2Jqakq9evX4/fff8fX1JS8vj7NnzwIlB3JcunSpzNOYa1JhYSFnLp/BuVXJD6sP8h/w3pp3S8ZpZM7icXKSrxDi6ZSbm8tnn32GpaVlqYN3nmbGxsYcP36c4OBgxerW2rJixQpFcnL27Nm12ndVqIrTxMQELy8v7ty5U1ehCRXu3LnDxo0b8fT0VPwiQl1cXFz4/vvvSU1NVWu7khAVQgghhBC1LmdRXF2HoDatWrXinXfeIT8/ny1btuDt7V3q5OMvv/ySzMxM6tWrx48//khgYCD37t1TXG/YsCG9evUqtWKipjye+Oxg05FXHV8FKPOReSGEeMgRwkUAACAASURBVFodOXKkrkOosvT0dNq3b18nfU+b9mzs96EqztTUVPbt21fL0YjKGDNmTI21HRQUVCOrRyUhKoQQQgghxBMIDw8nOzsbKNm7zdzcvFRCdNSoUfTu3RsAU1NTLC0tiYmJAUr2yvL09MTb21uxt1xNe54Tn/X0/ejYoREFBcW0bduQzRteQl9fS2X9S5ezmP1xLHFx2TRqpI2dnT6rvm3PgYMphIVn8J1X3SQuhBBCCFFzNOs6ACGEEEIIIZ5l+fn5iq+LiorQ0lJOvnXu3BknJyemT5/O1KlTiYuLo169eorrH330ETdu3GD37t21FvPzTE9Pi7AzfYgM70s9HU1+XK/6Udrc3EKGDg/lvXetuRDtSkhwb6a9a0NK6oNajFgIIYQQtU1WiAohhBBCCFGDGjRoQGZmJnl5eVhbW+Pg4KC4NmXKFBo0aMDXX39dhxE+v3r3NuL8+UwWLb6EsbEOH860BWDBwos0bVqPRg216dHdiCGDH51Q79qvCQBhYRncSszltSFnuHLlPsOGmfPl8rZ1Mg4hhBBCqJesEBVCCCGEEHXO/NvL1bpv+YlUmn5zmZTsgiduqyJaWlo8eFC1lYPFxcWcOXMGLS0tfv75Z959913Fo/KmpqaMHz+eFi1asH79ejZs2MDgwYNrIvRSfBf8WenyzradWfav5UplW2dvw7CBYY3Epi4FBUUcOJhChw6NmPS2Jb9uvQlAUVExO3cl8ta45kTFZOLoaKCyjcjIe2z/tQtnw/qwa9ctEhJyait8IYQQQtQgWSEqhBBCCCGeaU30tPgu5A6fu9bsCe0tWrTg1q1bJCUlMWnSJAAOHDjAgQMHFHX++9//AqCpqYmenh7Z2dkUFhYyd+7cMtt0dXWt0ZhfRDk5hTh1Ow5AbxdjJk+0ol49TYyNdYg4m8Ht5Ad07mxAkyb1KmgJBvQ3wdBQB4B27RoRfz0HKyu9Go1fiOpasDtMre0tHe1UYZ2cnByioqLQ0dEhKiqKqVOnkpubW+49fn5+aGtrM3DgQADs7e3ZunUrdnZ2uLm5ER4eXukYt27dyqJFi4iLi6t2PJWlKs6qxl/d8apz3qrCw8ODdu3alXqSYebMmWzYsIGcnEe/KEpPT8fY2PiJ+zQxMeGnn37Cw8PjidsStcPf3x8LCwvmzZuHr68v7u7uLF/+6Jep7dq1w8XFhcjISL744gveeustUlNT6dKli6KOqnIXFxfWrFlDUVGRUvmTkhWiQgghhBDiqXD8+n1G776peP2R/21+PZ8BQPu1V1hwNIXuG6/huiWev+88Wqk5vpMB3rGZpOcU1lhsQ4cOxdPTk40bN1aq/k8//cSff/5JYWHNxSTK9nAP0bAzfVi1sj316pX8yDNlkhVbfrnJz1tuMPFtSwDat2tEePg9lW3Vr//oxyUtLSgoKK7Z4IV4xuTk5ODs7Eznzp0BePfdd8utr6enh52dHc2bN6dBgwYAXLp0CWdnZ8LCqpbQdXBwQFdXV5EMrU48VaEqzqrGX53xqnPeqsrX17fMbV1mzpyJvr5+jfSZmppKYmKi4jBC8WyYMGECvr6+QEmC1NnZGWdnZ4YMGUJ8fDyRkZEA7Nmzh2HDhpW6X1V5UFAQQ4cOVXu8tZ4QbdasGbt27eLo0aMEBAQwZcoUAGbPnk1oaCiHDh3i0KFDDBgwQHHPjBkzOHHiBIGBgfTr109R7urqSmBgICdOnGD69Om1PRQhhBBCCFGLDOtrcnpKC951NGLukUenuDfQ0WR8J0PWht6psb737dvHxIkTCQ0NrVT9CRMmsG7d83mK+7Nq+DBzDh5KITT0Lq+4l6wmHje2GaeC7/Dn/mRFvcDj6URFZ9ZVmKKGdenShZiYGK5cucKVK1dYv349ALt27eL69evExcURFxfHf/7zH8U9W7du5dq1a1y9epWZM2cqymfNmsXVq1e5du0av/76a62P5WkTGBiInZ0dAD4+PoSGhnLq1Cnef/99RZ2+ffty6tQpTp48Sf/+/Z+ov3HjxrFnz54njsfPz4/ffvuNiIgIVqxYUW79qho8eDBBQUGEhoby1VdfVbudqs7b7NmzOX/+PN7e3sTGxmJjYwPA9OnTiYiIICIiggkTJii1X9Y8bNq0ibi4OLy8vBR1BwwYQEhICM2aNcPf35+QkBAsLCwU11euXEl0dDRr164FwNPTk8OHDxMTE8OqVauIjo7GxMQEKMn1nDt3jrCwMKXVhFDy7+6bb75ZzRkTT5MxY8bg4+OjeB0cHExaWlqpeqrKa0qtPzJfUFDA4sWLiYqKokGDBhw4cIDAwEAA1q9fz48//qhUv3Xr1gwbNowBAwZgZmbGb7/9Rp8+fQBYtmwZ48aNIzExET8/Pw4dOsTlyzWzZ5QQQgghhKhbox0aAfB6u0bMO5KsdG2aU2NcNsczq9uTP6onnk/16mni2s8Yw8Y6aGlpACWrSff6dGX2xzF89HEMOjqadOzYiJUrHCpoTTyr8vLymD9/Pnv27KFp06acPn0aNzc3AAICApg4caJSfTc3N3r06EGHDh1wcHBg586dikTP7NmzGTt2LOfOneP8+fO4ublx+PDh2h7SU0FbW5tXX30VPz8/oCTRdfPmTbS1tYmMjMTb25vbt2/j7u5OQEAAhYWFDBw4ULGarDp69uzJjh07nigegF69euHi4kJ0dDSGhoYV1q8sU1NT5s+fj5ubGzk5OWzfvh1XV1f++uuvKo+1KvNmZWXF1KlT6dq1K1ZWVopVeTY2NkyfPh1nZ2d0dHQIDQ1l//79pKSkqJyHyZMnM378eJycHm2fEBAQgLOzM5cuXcLd3V0pgdWwYUN27NjBnDlzuHDhgiJR6uvri5WVFQkJCRw8eJAePXrg6+vLwoULadmyJVlZWZiaKm97ExYWxpIlS6o8V+LpM27cON577726DqOUWk+IJicnk5xc8g1sdnY2ly9fxtzcXGX9V155hb179/LgwQMSEhK4du2aYs+Aa9eucf36dQD27t3LK6+8IglRIYQQQohnlJamBsXFjx5Jzv3H48kaaDz6WkPpEo11tXjdwYB1EXdrNEbx9MtIe6XM8qKiYk6fuctv2xyVytu2aYjfH91K1X97giVvT7BUvN7n46zeQEWdiImJURxslpyczN27d7G3t1dZf9KkSQQHB5OVlcWZM2fIzMxkzJgxAGRmZhIcHAyUrGyaNGnSC5cQ1dPTIyQkBIBjx46xefNmoCSRNmTIEDQ0NLCwsMDCwoLbt28zcOBAVq1aRWFhIQsWLHiivi0sLBTJvOrGAxAeHk50dDQAGRkZFdavrO7du2Nra6tYANagQQNsbW2rlRCtyrw5OjoSFBTE/fv3uXjxIvHx8QB07tyZoKAgsrOzAQgNDaVjx44EBAQAZc9DVeXl5Sn+n7h27RpmZmZAyd6iBgYGiv8+TLiGhoayfv16/Pz82Lt3r1JbycnJ5eaKxLPB3t4efX19zp07V9ehlFKnhypZWlrSoUMHIiIicHZ2ZtKkSYwePZpz586xZMkSMjIyMDc3V9ocODExUfE/xa1bt5TKVW2u+tZbb/HWW28BoKGhwYgRI2pwVOJF071797oOQTxH1Pt5Us8G8hVR+ju1aocvP/Pq4t+Tqvb5LP4dpTzG4DqLo7bV1fcndfeZii5VYm2gzYXUB+QVFJFTUMyx+Pv0tHx0gM3vFzL5qIcxv1/IpFuz0gfbzHA2wnVLPAVFyuWPjzE9PV1N8T/9XrzPVJ7KKzGxmQwbEcqwYea0btXgiXt6OMZLl564qWfKs/KZ0tTUVFoos3//fmbNmlWqnrOzM8bGxvz+++/079+f/v378/fff3Pr1i3efPNNEhISMDMz48yZM4p77ty5o3gM+/G/TxISEujatWtVh/bMe7hn5+P69u2Lm5sb/fr1Iycnh1OnTqGpqYmVlRW2traKVZuWlpa0atVKsQfo478Qq2zfurq61Y7noX8m/yqqryrOssr9/f15++23K12/LOqeN1WqmwR9XH5+vuLr4uJixbwVFxcr/XlY7uHhgYuLC2PGjGH69On06NFDcb+urq7SgU3i2TR27Fh27dpV12GUqc4Sovr6+qxfv55FixaRlZXFli1b8PLyori4mE8++YSFCxfy0UcfqaWvrVu3snXrVgCuX7+utHeBEOognymhTur6PLWf/apa2qmIUryDO9RKn0+Lh2PvveSTWu+zpu8p5cu6GePbsy3Kqfl8eXzcsz74ok76rcl7Spn7aEVWQVEx9bQ0sDTQYUTbRnTfFI+NoQ6dzJR/0L2bW0iPTdeor6XBpqGlPxsm+lp4tG7I6lDlVaKPx/v4fvTPu8fHPb3LjDrptybvKe01lVcc2jXi8oUn26/wcQ/jzbj2Yp04b9jisfdpyuRa67eqn4+ioiJat25dbh0TExO2bdvGunXruH37Np9++ilXrlyhqKgIb29vtm3bptiqTVSNgYEBaWlp5OTk4ODgQKdOnYCSx743bdrEhx9+CMA333yDu7u7IrGXnp6OpaVlpU9Lj42Nxc7OTrECsqrxVLe+qjj/WX769Gm8vLxo3rw5N2/exNramry8PMVK08qOt6rzFh4ezvLly9HT08Pa2lqxf+jZs2dZvnw5+vr66Ojo4OTkxPnz58vtuzyZmZkYGxs/0Z6P1tbWHD9+nKioKMXq1Idat25NbGxstdsWT4c33njjqV2UWCcJUW1tbdavX4+Pjw/79+8HSk4Re2jr1q38/PPPACQlJdGsWTPFNQsLC5KSkgBUlgshhBBCvfpMPFNxJSGqKTb1AS2NdABY2t+Upf1Ny6z3YTdjPndVvja/t4nS6y9ebsoXLzetmUCFEM8FXV1djh49yvHjx1m2bBlQcmL3Q8uWLVPsTXn79m1FQgnAyMiIv//+G0Dx6DyUrOKr6iPV6rZ0tFPFlWrBwYMHmTJlCpGRkVy8eJGIiAig5LHvnTt3KuodPXqUKVOmKPZk9fLyYsOGDXh6ejJ06FASExPL7cfPzw9XV1fFI99Vjae69VXFWVb5zJkz8fHxQVtbm+zsbKXVopUdb1XnLSEhgY0bN3LmzBliY2O5evUqeXl5JCUlsWbNGoKCggBYunRpqS0HHmdjY8Pu3bsxMjJCT08PFxcXPD09OXDgAACrV69m9+7dpKenM3bs2Cp//jU0NNi8eTMGBgZoaWkxd+5cpeuurq6KfJF4Njk7O5Odna309yvAqlWrGD58OCYmJly5coVZs2bh6+ursrym1ElC9JtvviEuLk7p5M2mTZsq9hZ99dVXuXjxIgCHDh1i9erVrFu3DjMzM2xtbYmIiEBDQwNbW1usrKxISkpi2LBhctK8EEIIIcQzZmPEXdaG3eXLl8tOggohhLoFBARw69YtJk9+tMrVwcFBsbfotGnTFImin3/+mbVr19KwYUMcHBxo1KgRO3fuRFNTk+XLl9OtWzeioqLo0aPHE51G/qwyNi59kF1+fn6ZK8LGjh2r9NrX11cp2REcHEyHDpV/2sjHx4cPPvgALS0tCgsLqxwPlJxE/3CPz8rULy/Ossr379+vMqlX2fFWZ97WrVvHt99+S5MmTQgODlYsHlu9ejWrV68u1UdZ8xAfH19q+4HHbdq0iU2bNimVPT7/7u7uAOWugO3fX/XK/SFDhjBq1CiV18XTLyQkhG7dSu/R/eGHHypWPFemvKbUekLU2dmZ0aNHExMTw6FDhwD44osvGD58OA4ODhQXF3Pjxg3FbwcuXbrEH3/8wdGjRyksLOTTTz+lqKhkY6gFCxawbds2NDU12bFjR6mssxBCCCGebQENX7CNaV9AU7o0ZkqXxhXWi36/ZS1EI4R43k2YMAEbGxtyc3MVjxyvXr2a119/XXEAzL179xRnUBw6dIgzZ84QFRVFcXExK1eupKCgAChZ5bRjxw40NDQ4deqU4udbUTtyc3P57LPPsLS0rPCx+RfNihUrFMnM2bNn13E0VWdiYoKXlxd37typ61BEJd25c4eNGzfi6emp9lWdLi4ufP/990pPlqtDrSdEQ0JCaN68eany8pa5f/fdd3z33Xdl3lPR8nghhBBCCCGEqE3NHHZyK2ZMxRUr6ev/RbF7bzxaWhpoaoDX8m507WJS8Y1A4u37fPJZGL+sVb0f5t2MB+zad413xqs+bf15sWXLFrZs2VKqfOXKlSrvGTduXJnlK1euLPc+UfOOHDlS1yE8laZNm1bXITyR1NRU9u3bV9dhiCp4fAsRdQsKCsLR0VHt7dbpKfNCCCGEeLY0MTZi9oczcGjXhszMbNLvpPPtqtW8PmoEzk5dKC4u5sGDB/zXczG3EpP44fuVmJgYk5dXstJzxr/ncOfuXXR0dFjs+V/atrEnI+Me8xcuJjGpbvdeE0KIp9GZsBQOHrlJoO8g6tfXIi09lwf5RZW6t6CgCAsz/XKToQAZ9x6w8ZfLL0RCVAghhABJiAohhBCiCr76v8/5c/9BPl30OQCtW9nh/nJ/TE2aMG7CFIqLi2lqakJObq7iHs/Fy4i9oLytzTCP17iXmcnIN/6F+8v9mfnBe8xfuKRWx/I06+cm2wAJUVU5i+LqOgQlWdn5jHsnkLsZDygoKGLBRy8xeKAli744i2Uzfd6ZUJJ8/L+V52jQQIfJb7Uqs35SSi5NjOtTv74WAE2MdRV9hEWmMW9xGPfvF1Cvvib7tr7Mvv0J/HEwgazsAooKi1n7TQ/emHKM4EOD2brrCr4HE7iXmc+t2/d5Y7gt8/7dkc++PMvV+Cx6v+qHax8Lls7vUidzJoQQQtQWzboOQAghhBDPhq6OXSgoKMB7zx+Ksstxf5OTk0tqWhrFxcUAJKekkpmZVW5bffu48KffQQAC/jqGs5N6H4NZtTiV8SPXKl5ramqx7JMLvPvmNqV6U8Zu4T9TDyiVNW3SihkT9zJn2lH+O+Mkbwz5FoBWLVxYtTiVHo7/UtRtbt6BVYtT6d9LDnYUQijTra/F1h/7cvzPV/Hd/jKfLgunuLiYkR7W+PheV9Tz+fM6Iz2sVdYf0Mecm7fu49j/D2YvCOFEcMlq+gcPCpk04wRfLHIi6MBr7P31ZfR0S5KmkVHpbFnbG7+dbqXiCotM45cf+nDywGvs8btO+Lk0PpvbGVubhpzY/5okQ4UQQrwQZIWoEEIIISrFrqUtFy6WXrl4OOAo69d+T5eXOhESGo7fQX8uXX60Umvh/LkUFRUR8FcgG3/6BYCmpibcTk4GoLCwiKzsLAwNDcjIuKeWWPPysjBv2hYdbV3yC3Jp09KVu/cSlero6Rpg1ewl8h5k08TIhrQ7JQcyjHxtOX+d+oGoiyWnwlo0bae459btGLq0H0Zw+K8AOHYcyY3E82qJWQjxfCkuhiVfn+XkmRQ0NSAxKYfklFxe6mBMSlouibfvk5qWR2PDelg2a0B+flGZ9c2a6nHMdxAnz6Rw/NRtJs0I4rO5nenc0Rjzpno4vdQEAINGOoq++/e2wLhx/TLj6t/HHGOjkmtDBlkRHJLC4IGWNT8hQgghxFNEEqJCCCGEeCLJKamMHjcBZ6cudHXqwprvvuG/CxYTEhaO5+JlpKSmoq+vx5fLFvPaoIH4HaidU3hjLx/Gwd6dyJg/cOw4kvAob+yseyqud2rnQfTFg2Rmp+DYYQT+x70AMGxoxt17txT1EpNjFV/fuXuD+vUb0aiBKZnZKbRrNYCYy4drbAw3bqQyY/oPxMRcp6iomMEeznz99STq1dNRec+yZTvYvu0YWlpaaGpq8MOP0+nevU2NxfisealRVF2HUGuO1XUAdcj828skzW5d5fuWn0jF6/QdoqfZYtpA+4na2rnnGqlpeRz7YxA6Opp0dNlLbl4hAMMHW7PXL4HbKTmM9LCpsL6WliZ9eprRp6cZDm0bs/33K3TuaKyyb319LZXXNNBQfq2hoqJ45mQv+FCt7TVYuqrCOpcuXSIrK4vCwpLP6uLFi/H19SUnJ4eoqEd/3/773/8mKCiI1q1b8+OPP9KkSRPy8vIYNWoUCQkJ1Y5x69atLFq0iLi4uHLjqQkREREMHz68whPuZ86cyYYNG8jJyVEq9/DwoF27dnz99dc1El9Vubi4sGbNGh48eMCECROIjY1VWbes9zclJYWtW7diZ2eHm5sb4eHhTxSPqnlTF3XMv7o/z1VRk/NjYmLCTz/9hIeHR6Xv8ff3x8LCgnnz5in+n3v8c3L8+HFmz54NwOzZsxk/fjyamprs2rWLpUuX4u7uzvLlyxXttWvXDhcXFyIjIxWfzaKiIrp0Ud9TDJIQFUIIIUSlXLl6jQH9+5Z5LT8/n5PBZzgZfIb09Dv06+tCSFg4KampANy/n8NB/yO0d2iL34FDJKekYta0KckpqWhpadKwQUO1rQ59KDzKh1f6fUz0pUM0M3PgdMQ2pYSoU8eRHPhrBZnZKUx+Y7MiIfrXqR+YMdGHqwlnuPj3X5yO2EZO7qPYImP20bn9UG4knudG4jkKCh6oNe6HiouLGTVyOdPef409exdQWFjIu++u5tNPf+HrryeXec+pUxf40zeEsPBV1K+vQ2pqBg8eFNRIfEI8r5roafFdyB0+dzV9onbuZT7A1EQXHR1NAk/e5vrNbMW1kR7WzJp3hrQ7efjtcCu3/uW/76GpCXa2BgCcj7mDVfMGtG7ZiKTkHMIi03B6qQmZWfmKR+bLc/REEul389DT1eLPQzf431fdadRQh6zs/Ccar3hxubu7k5aWplSWk5ODs7NzqbqbN2/mk08+4eTJk1hYWJCXl1ftfh0cHNDV1VUkQ8uLpy7NnDmTbdu2lUpc+fr61liytjrGjRvHl19+ybZt2yqsq+r9dXZ2xt/fXy3xqJo3dVHH/Kvz81xVNTk/qampJCYm0rt3b06cOFHp+yZMmKCUCC/rc9K8eXOmTp1Kp06d0NDQ4Pz58/z666/4+/srPjvm5uYcOXKEyMhIoOSU+aFDh7Jnzx41jO4R2UNUCCGEEJUSEhZOPZ16jBj66LfFrexa4tj5JUxMSh7Z1NDQoJWdHUlJt9HS0sTQsOQHeC0tLXr36snfV64CcPzESQa/9goAA1z7ERIWofZ4b92OwbixNU4dRhL7j1WcjRqYYmLckivXg0lJ+5vCwgIsmrYF4PTZ7Sz/Xy/ORu+jVQsX/jP1IFpa9RT3RkTvpXP7YTh2HEnYeW+1x/1QQMA5dHXrMWlSSbJES0uLlSunsnnTYdas+ZPhw5bS3/W/2Ld+l8WLtwOQmJiOiYkB9euXrCA1MTGkWbMmBAREMmL4UkXb/v4RjByxrMZiF+JpcPz6fUbvvql4/ZH/bX49nwFA+7VXWHA0he4br+G6JZ6/7zz6xcb4TgZ4x2aSnlNYrX4LCoqoV0+TMcNbEHEujZ6v/Mlv3lextzNQ1Gln35is7Hyamelh3lQPQGX9rPsFTPsomG5uvvQa5MeFyxn8998dqVdPi83/680ni0JxGeTH8H8FKFaUlsfppSZMmHacXoP8GDrICsdOTTA2qk93J1N6DPyTBcvV//exEACdOnUiLy+PkydPApCYmEh6enq12xs3blylEyTTp08nIiKCiIgIJkyYoCh/vH9/f38cHR0V5StXriQ6Opq1ax/tSf7RRx9x7tw5tm/fTv36j7al8PHxITQ0lFOnTvH+++8DMGDAAEJCQmjWrBn+/v6EhIRgYWEBwKZNm4iLi8PLy6vScZYVz4wZMzh37hxhYWFKq+uqMg+GhoaEhIQwevRoFi1aREhICO3ataugpaoZPHgwQUFBhIaG8tVXXynKzczM8Pb2JjQ0lODgYFq3bl3uvPXt2xc/Pz9+++03IiIiWLFihcpxgep5UzX/ZcWjSnmf57Li8fT05PDhw8TExLBq1Sqio6MxMTHBxsaGmJgYtm3bRmRkJB9//LFS/A89/HyWNz+q5lnVvJX3+dm3bx9vvvmmyvE/CW1tberXr0/9+vXJz88nIyND6fqYMWPw8fGpkb6V4qjxHoQQQgjx3Jgz35PZs2Yw4V9jefAgn1uJSZw6fYZ/z/xA8Rh3dMwFdv7ug45OPb7/9mu0tbXQ0tLiTEgYe/b9CcBe3z9Z7Dkf7x2/cu/ePcWp9eoWdfEAw15ZzPebh9FA/9HjpZ07DENfrzEL/13yW2zd+o1w7DiSP4+UfDN4LzOJ0xHbOB2xjXkfHFfaRzQzK5nCwnza2LnivX8+tlbdaiT26Oh4HJ3slMoMDPSxtjaloKCQM2cucT7qf+jr16eb82wGD+7KwIFd+HzJb7Sxf4+X3V7ijTf60K9fR/r378T0D9aSkpKBqakhP20+zKTJ7jUStxDPCsP6mpye0oJtUfeYeySF3aObA9BAR5PxnQxZG3qHT/uYVLnd2EsZ2No0pImxLod9XlFZ79TBwUqvVdW3sQJ/74FltuH0UhOO7FG+563XW/LW6y0fu78hwYce9dXMQo9t60uv9t/4nYvKWIUoj7+/v+IRdTc3NzIyMtDT0yMkJERRZ8SIEdja2nLlyhW19duzZ0927NhRYTyNGzdm+vTpODs7o6OjQ2hoKPv37yclJUVl2w0bNmTHjh3MmTOHCxcuYGFhQb169Zg8eTJOTk60bNlSaSXcjBkzuHnzJtra2kRGRuLt7U1AQADOzs5cunSp1KrVyZMnM378eJycnBRlNjY2KuMsK57ExEQWLlxIy5YtycrKwtS0/FXt5bXv7OzMhg0b8PPzw9u74l/2lvX+3rhxo8y6pqamzJ8/Hzc3N3Jycti+fTuurq789ddfeHl5ceDAAdatW0ejRo3Q1dXl8uXLKucNoFevXri4uBAdHY2hoWG15q2s+QfKjEcVVZ9nVfFAyapUKysrEhISOHjwID169OD8+fO0bNmSkSNHcu3aNcLCwti5cyfXr18v1Tag8nNV3jyXNW9AuZ+fsLAwlixZonL8laGrq8vp06fJyclhwYIFnDhxgps3b/K///2Pv//+XTqUcgAAIABJREFUGy0tLebOncudO3eU7hs3bhzvvffeE/VdGZIQFUIIIUSlpaamMX/h4lLlO3eX9VvcfCZMKfubmQcP8vmvZ+l21C04Yis5uRkkJsfSqsWjH/adOozkh1/GcO1GKADGja2Z/vbv/HlkOW1bDeDSlUCKigpo1LAp+vrGZGQmolv/0SoBv6Nf0KiBCcXFRTU+BlXc3TvTpEnJCrIRI3ty4kQMXbu2JjRsJcePx3D06DnGvvEV//fF20yc6Ma/xvfn11+PMmmSG6dOXeDnLbPrLPZnyVc7r/HJmBaK191eHotVq878/uM8Bo37hLzcbI76rC51X8cerzL1019Y9n4Pkm+UPM6poaHBiHeWYd+pD8XFxRTk57H5yymk377Owg3h3E29yXfzhijamLPqKFpa2nwxo0+Nj/NFNNqhEQCvt2vEvCPJStemOTXGZXM8s7qp3qezLBt/vcyPP13k/xY6VVxZiOdEZR+Z79q1q1r7tbCwKDOp+c94XF1dCQoKIju7ZBuK0NBQOnbsSEBAgMq28/LyCA4OBuDatWuYmZnRokULTp48SW5uLjExMUp7h06ePJkhQ4agoaGBhYUFFhYW3L59u0rj6dy5s8o4y4onMTGR0NBQ1q9fj5+fH3v37q12+1Wl6pH5snTv3h1bW1sCAwMBaNCgAba2tvz111/07dtXsYIyMzOTzMzMCtsLDw8nOjoagIyMjHLfX1XzpkpV4tFQsQGzqnmGkhWfBgYGiv8+TEzGx8dz4cIFAE6ePEmXLl1UJkRVKW+eofS8PYxN1ecnOTkZc3PzKsXwT7a2tty+fRsnJyd27dql2ObilVdewd7eHh0dHY4dO4afnx9JSUkA2Nvbo6+vz7lz556o78qQhKgQQgghnlsZ9xIJPL1eqcy4sRVGja0UyVCA9LvXycnNxKa5I23t+jPy1eUUFOQCsO/QZ2RmJWNm8ighei0hhJrm4GDN77tPKpXdu3ef69dT0NbWKvWN+MPXWlpauLp2xNW1Ix07tmDLz0eYONGNSZPcGDrk/9m797ic7//x44/OV6kokUIhx5w7TOSQLWbmbIyZGD5mE8N+PvaxxZj5svHBDNucxmbmMMcomlByLMkpZyKKEjqodLh+f/Rx0Trn6roqz/vt5ua6Xtfr/Xo93+/3S+rZ6/16fYNCYch7gzqir1/0WoOi9Jw6D+T6hWM4dx6I3x/zAWjbqT9VLWsxf0JnlEolVavb8CztqeoYI2NTqlnZ8jj+HtZ1Sr6Jj8hNT1cHpVKpep+Wqcz1+cubC/3z59pqCj0GOZrzS/jjEvU5+sNGjP6w/N67f84eFUKTbt68SYMG6ht/qamphc7gK46Xv0bo679Ij2RkZOSqo6urm6vuyzp37oynpyddunQhNTWVY8eOoaur3tUJ84sHcjYGcnd3Z/DgwYwfPx43Nze19lsa+V2ngIAARowYoZb2//l4dWEKum7qUJrxrFQqc/0pKp6CxmdBCrvO+V23wsaPQqF45fVJn/9SICwsjJiYGOrVq4ejoyN37twhMTFnff4zZ87Qpk0b/P39ARgyZAhbtmx5pX6LS9YQFUIIIUSl8++59fKUXbsVwi9/fEDC4zvMXNgyz+cLfn6TqLun2bHPh7lL3fhuhQffrfAg9OyWXMf/k/+h7zh4NO8MwVf11lutefo0nfXrc2ZuZGVl8fnnqxkx8i1MTIwICDhDQkISqanp7NxxAnf3Zly+HM3Vq/dUbZw5cwM7+5oA2NpWx9bWkm/nbFKtSyrKhqGiCg0c27Hxh0m07dRfVW5uYU1iwn3VDzhPHsaQmvLiB5QzR3aq6jt1GcjpoLJbo/Z1YGeuz6X4Z6RnZvM4LYvDUU9zff7XpSTV32/YGuc53tvVgrVnHpOpvYngQlQqERERmJqa0qFDByBn4xRLy5LNwn5ZZGQkDg4ORdY7c+YMHTp0wMTEhKpVq+Ls7My5c+eAnCSRhYUFCoWCJk2aFNpOeHg47du3x8jIiGbNmmFvbw+Aubk5Dx8+JDU1FUdHR1q1apXruKSkpGKdZ2FxFsTOzo7g4GBmzJiBnZ2d2tsvjYSEBOrUqaN6f+LECdzd3aldu7YqZmtrawAOHz6sSuCZmJhgZfVimZKyvG4FKSyefypoPJcmHnt7exo3boyRkREdOnTgzJkzQOHj85/Xp7DrXJDCxk+jRo2IjIws9PjCPI/7+fnZ2tpy+/ZtYmNjcXFxwdDQEIVCQdu2bbl165bquPfff5/NmzeXut+SkBmiQgghhBDlkI6ODtu2T2f8pyuY882fZGcreaenC3PnerFx42HeeKMR7w38P6Kj4xn2YVdcXBoRFnaNiRN+5vHjFPT19WjY0IaffxmvavODYR7ExSXSrFldLZ5ZxWJgaMzUJQdV76uYWXDuhH+hx7Rs9w6Xwg4Qd+86T5MSqOPQmujrEYQf2cFn8/fQoLkbVyOCOXVoC3dvvPghKeKoLx989gMHty+jhWt31i8ch2vXwWV2bpVVZrYSQz0d6pgb0L+pGe3WRGFf1YBW1rlnkj1Oy8JtzS2M9HRY08cmTztWJnr0amTKstCSzRIVQluqzFmi7RBU/rnG5Jw5c9i5cycjR45kxYoVWFpakpGRQb9+/Uq9sdLevXvx8PAo8pHvqKgoli9fTkhIiCqW54/aL1iwAF9fX8LCwgpcA/O527dvs3btWk6dOkVkZCQ3b+ZsFLlv3z5Gjx5NREQEly9fJjw898Zky5YtY+vWrSQkJDBkyBAUCgVbt27FwsICY2Nj3N3d8fHxwd/fv8A486Ojo8PatWsxNzdXrcVY2utQUgXdX8hZh3PVqlX4+PjQp08fYmJimDBhAtu3b0dfX5+UlBRV0nHy5MmsWLGCcePGkZGRgZeXF/Hx8flet4KWICjpednb2xd4/QuLJz/5jefSXOebN2/y7bff0rhxY9asWaNajqGw8Znf9SnoOuenqPHj4eGhWvu0NJo0acKqVatIT08nKyuLcePG8fTpU44ePUpAQABhYWFkZ2ezZs0a1XIBrq6upKSkcOXKlVL3WxI6tra2+c/7rqRu375drKnGQhRX//79NbIDmng9qHM8fRX8jlraKcqcTi/+o0x610cjfZYXZntyNgJaeO6Yxvr8vGX7EtVX15hy6eDxym0UV+jRQ6rXE2dU11i/2vbD7BfrnWUrdxda99df/yY09Bo//jiuRH14e/9E27YNGD36xQYtujq9CzkiL3WNqaRpjV+5jeIym//iG+uJvUo2pkqzhujYGX9weNfPXD5zmM69/4VFjTrsXDMTAD19Qxq37kSjVp1w6zaMX+eN4srZYGasOs3CKZ4Mm7SMUwc307JdD3zXz2HsjD9KvYboD74vxtTfsw+Uqo3S8JzxVonqq3tMnXuQzgT/WA552RdYt/mKGxweYY+VSemWjng+pp7cKpsdeMurqvX+UL3O8h2lsX71eq0pUf3MzMwiZ8tVBt9//z0jR47Udhhao1AoCAgIwMPDQ7WJkhAVjb29PTt27KBt27baDiWXwMBABg4cmGfDo4IEBAQwbdq0XJuNqVNpr9Ovv/7K1KlT8/1MMoNCCCGEEK8BF+dJVKmiYOHC0doOpVIzMa1Go1YdsbFv9r/1wfQApSohmpX5jMiwA0SGHSDpcRwt3Xpy5Wyw6vjw4O0MGjefDYsnqDWurk4b1NpeebU6/DErwh4z/63Cd1sWQlR8aWlpfP3119SpUyfXBkdCiFdjZWXF4sWLi50MBXj06BGrV6/Gx8cHX19ftcbj7u7O0qVLC52tWxqSEBVCCCGEqGBGjvRk5MiSrQMaGra4jKIRL2vt3odTB7ewednnqrIJ/7cLh+btSU9LIfHRAxITYtHR0cG2niP3bl3MdfzZ43sxt7TmUnggVS1fbXfX19HottUY3bZakfUufCIbCwlRGRw4oLnZ70KUhaioqHI3OzQ+Pp5du3aV6JjBg8tuiZ+QkBCcnJzU3q4kRIUQQgghhCil7oOn4NHnY9X7uHs3+PuvH3LViTi6G6fOAzh3wo8h3ovQNzAEIOrKaYJ9V+Wqm56azIG/lpZ94EIt/OY803YIQgghhCgFSYgKIYQQQghRgJfXDwU4eeBPTh74EwD/jd/hv/G7ItsI2r1S9frS6fw3/5g9Ju/Mh4QHd0q9fmhRdhyLYuC3B7iwYgBN6xY8o7LBqM2YGRugowPWFsasm9KZWhYmZRKTEEIIIYSm6Go7ACGEEEIIIYRm/Rl0g46O1vwZdKPIugfmvsOZH/vj0tCK/9t8Ns/nWVnZZRGiEEIIIUSZkYSoEEIIIYQQr5Hk1AxCLtxn5Wcd2fS/hGhMwlM8pu3BacIOWn26jeDzsXmO69SiFtfuJQJg/t56/t+qE7T13s6xSw80Gr8QQgghxKuSR+aFEEIIIYTGmXW6r7nO5muuq4pg5/HbvO1cm8a1q1LdTEHYtXgOn42hu1Ntpr/fhqysbJ6mZ+U5bs/JO7SsZwFASlombzSpwYIx7TQdvhCiAPv3nldre917tiiyzpUrV0hOTiYrK+drxqxZs7CwsGDevHncu3eP6OhoJk+ezK1bt1izZg0tW7bE2tqarKws4uPjOXHiBN7e3qWOccOGDcycOZNr164VGI+6d7x+Ljw8nH79+hW5w/2ECRNYtWoVqampucp79epFs2bN+P7778skvpJyd3dn+fLlPHv2DC8vLyIjI/OtN3z48Hzvb1EKug7Fpc7xk5CQgKWlZanieK5x48Zs2LABBwcHPD09OX369Cu1p47xYGVlxa+//kqvXr1eKZbSCAgIwMbGhi+++AJfX18sLS3Zs2cPBgYGKJVKvvnmG9VGTampqZw/n/P1Kjg4mClTpgAwe/ZsevfuzbNnz/j2229V9Z+PzezsbLVuQCUJUSGEEEIIIV4jfwbdYGIfRwDe71yfPw/foHc7O8YsCSYjM5u+7e1p06C6qv5b0/3Q09WhZT0Lvhmes9apnq4OAzvU00b4Qohyplu3bjx8+FD1fvjw4WzZsoVJkybh4eHB7t27ad26NaNGjQLAx8eH5ORkFi1a9Er9Ojo6olAoVMnQguLRtgkTJvDHH3/kSQT6+vqWWbK2NIYOHcr8+fP5448/iqyb3/3Nzi58+ZSCrkNxqXv8vKorV67g6upKQECAWtpTx3iIj48nJiaGjh07cuTIEbXEVRJeXl6qxHBiYiKenp6kpKRQvXp1Tp8+ze7du1EqlaSmpuLq6prrWCcnJzw9PXFxcaFatWqcPHmSwMBAkpOTCQkJoU+fPuzYsUOt8coj80IIIcQr6lIrS2N/hBDiVSQkpXPw7D3G/nCEBqM2s2DbebYcuUmn5tYcmvcuttWrMGpRMOsPXFUdc2DuO5xe2o91n3ehmqkRAApDPfT05EcJIUThDh06RHx8PC4uLmpve+jQocVOkIwfP57w8HDCw8Px8vJSlSckJKheBwQE4OTkpCpftGgRFy5cYMWKFao6n3/+OWfPnmXjxo0YGRmpyrdv305oaCjHjh3jk08+AeDNN9/k1KlT2NraEhAQwKlTp7CxsQFyZjteu3aNxYsXFzvO/OLx9vbm7NmzhIWFMXfu3FJdh6pVq3Lq1Cnee+89Zs6cyalTp2jWrFnRF5W897ek1yG/+qXx7rvvEhISQmhoKN9992KzQ2tra7Zt20ZoaCjHjx+nUaNGqs/yu54FXeeC7ktBCqo/ZcoUzp07x7Zt24iMjMTe3h4oeDwUdF6F3fddu3bxwQcfFBljWcvMzCQlJQXIGWNGRkbo6xc8J9PBwYGIiAiysrJ4+PAh9+7dK5OvGy+TGaJCCCHEK4pJ2qDtEIQQoli2htzkw64N+cnbXVXW9Yu9BJ2PpaOjNf/q0YRnGVmEX3+I11uNCmlJCCFyBAQEqB5R9/T0zPP5nTt3qF+/PidPnlRrv+3bt2fTpk1FxlOtWjXGjx+Pq6srBgYGhIaG4ufnR1xcXIFtm5qasmnTJqZOncqlS5ewsbHB0NCQUaNG4ezsTIMGDXI9Iu3t7c3du3fR19cnIiKCbdu2ERgYiKurK1euXMkza3XUqFEMHz4cZ2dnVZm9vX2BceYXT0xMDDNmzKBBgwYkJydTo0aNQq9XYe27urqyatUq9u7dy7Zt24p9DyD3/S3pdciv/v37JVtSp0aNGkyfPh1PT09SU1PZuHEjHh4eHDp0iMWLF+Pv788vv/yCmZkZCoUCyP/+xsTEFHjfSzJ+CrrOCoWCMWPG4OLiQt26dYmIiFAdk994KOy8CrvvYWFhzJ49u0TXsKyYmpoSFBRE/fr1+fjjj8nIyABAoVBw4sQJUlNT+eqrrzhy5AiRkZF88cUXGBsbY2VlRdOmTalVq1aZxicJUSGEEEIIoVVJb0djtq+O6v2IOh/gUrUNEy78W4tRVU6bDt9g6nutcpUN6GDPqMXBVDHSx0BfF1OFAb9O6aylCIUQFU1Rj6grlcoy6dfGxibfpNQ/4/Hw8CAkJEQ1Wy00NJSWLVsSGBhYYNvp6ekcP34cgFu3bmFtbU29evU4evQoaWlpXLx4MdfaoaNGjaJ3797o6OhgY2ODjY1NiRN7bdq0KTDO/OKJiYkhNDSUlStXsnfvXnbu3Fnq9l/Fy/e3pNdBHdetXbt21K9fn6CgIACqVKlC/fr1OXToEJ07d1bN0ExKSiIpKQnI//7GxMTkW25vb1+i61bQdTYzMyMkJISnT59y+fLlIteeLey8CrvvDx48KPNEYnElJyfj5ORE06ZNWb58Odu2bSMzM5P69etz//59nJ2d2bJlC46Ojpw/f57169cTFBTE3bt3OXz4MGlpaWUanyREhRBCCCFEhaano0eWUpaUKI4D/9czT9mEPs2Z0Kd5vvVvrBmcb3ni1qIfGRRCCAA7Oztu3ryp9nZTU1NVM/5K6+Vk3suP8z6fyfa8jq6uboGJ3c6dO+Pp6UmXLl1ITU3l2LFj6Oqqd0mR/OKBnI143N3dGTx4MOPHj8fNzU2t/RbH8/tb0uugzusWEBDAiBEjil2/oOtZUHlhyirhDwWfV2H3XaFQlHqd1rJy6dIlMjIyaNWqFadPn1YlvcPCwoiJiaFevXpcunSJJUuWsGTJEiBns6Xbt2+XaVyy8I8QQgihBo/invLdxAD+5bGBSX228PVHe7h743G+de9HJ9K7wQp+W3hCVfYkIZV+jX/mp5nBmgpZiArByrA6W53Wc9I9kJPugXSwyNnVfGajL1jf+meOtPfnt9Y/o4su3zf7hnOdjxLRKQTvemO1HLkQQggPDw9q1KhBaGio2tuOjIzEwcGhyHpnzpyhQ4cOmJiYULVqVZydnTl37hwAT548wcLCAoVCQZMmTQptJzw8nPbt22NkZESzZs1U6z+am5vz8OFDUlNTcXR0pFWr3LPwk5KSirWjeWFxFsTOzo7g4GBmzJiBnZ2d2tsvysv3t6TXoaj6xXXixAnc3d2pXbs2kHNNrK2tATh8+LAqoWhiYoKVlVWJ2y/quiUkJFCnTp0i658+fZoOHTpgbGxMkyZNVOOnNOdV2H1v1KgRkZGRJT5PdbO1tVXdb2tra5o1a8a9e/dU/94gZ3kBW1tbVeLzef1OnTphYWGRa1mKsiAzRIUQQohXpFQq+XacP28NaMK/f+gGwM3IeB7HP6V2g2r5HmNd14zQg7cZ/nlOcidk73XsGlloLGYhyhNjPWPCO774ZYClYTV23fcDYInjPBbdXE7Io+PUVdRhX7u/cDyc8+/G0awJHY/2IC07jXF2o6hnbEeb4E5kKbOwMMj/354QQlRW3Xu20HYIKoMGDcLd3Z179+7Rp0+fIncgL429e/fi4eFR5CPfUVFRLF++nJCQEADmzJmjetR+wYIF+Pr6EhYWRnR0dKHt3L59m7Vr13Lq1CkiIyNVs1737dvH6NGjiYiI4PLly4SHh+c6btmyZWzdupWEhASGDBmCQqFg69atWFhYYGxsjLu7Oz4+Pvj7+xcYZ350dHRYu3Yt5ubm6OnpMW3atFJfh5LK7/6W9DoUVb+44uLimDBhAtu3b0dfX5+UlBRVEnTy5MmsWLGCcePGkZGRgZeXF/Hx8SVqv6jrtnjxYlatWoWPjw99+vQptP7q1as5efKkavykp6djb29f4HjI77yKuu8eHh74+fmV6lqqU926dVUbU+np6fHll18SGxuLm5sbq1atIj09naysLMaNG8fTp08BWLVqFQ4ODmRkZDBy5Mgyj1HH1ta27Ob3lkO3b98udGcrIUqqf//+bN++XdthiEpCnePpq+B31NJOUeZ0evEfbtK7Phrps7ww2/MNAHN+783GJaHM29Qv1+dKpZK1844Rdvg2OujwvrcznXo15H50IrPH7KVek+r0G92aRq1q8p+hO2nbsQ4JD54yblYnTh64xaYfw8jMyMasmhGfL/LEooYJvRusyC+UAqlrTLl08HjlNoor9Ogh1euJM6prrF9t+2H2i/XOspW7Ndavrk7vEtVX29cp36qql4WtIXrf8yr30mJVn9Uwqk6TQ678vwYTUKJk9tX5AGx1Ws9Pt9fwd/yhvH31eqJ6mfhD/VePvYIwn/jiEdUs31Ea61ev15oS1VfXmEqa1viV2ygus/lXAPhzzHsa67M8GLJqq+p1eR5TmZmZRc6Wqwy+//57jSQNyiuFQkFAQAAeHh6qTZSEKM9MTU1JTk6mevXqeXa9V5fAwEAGDhzIo0eP1N52YQICApg2bVqZzeq0t7dnx44dtG3btkTH/frrr0ydOjXfzyQzKIQQQryiqCsJOLTIu7PnUf8b3Lz4kB/2DCYxIY0p/f6i+Rs2qs87925IkO81qlmZoKurg6V1FRIe5PyG1NHFhgXbBqCjo8O+TRfZ9ssZRn/ZQWPnJER5oauji9tRT9Kz0/N8lpKVooWIhHihZ6swbYcgxGsrLS2Nr7/+mjp16hS5QY0Q5cGCBQtwdXUFYMqUKWpv38rKisWLF2s8GQrw6NEjVq9ejY+PD76+vmpt293dnaVLl5Z4dm9RJCEqRDmh85OzxvpSjsv55t16rsa6LBfuT3/xOjTuiEb6dKnRUSP9iPLpYmgsnXs3RE9PF4saJrRoZ8vVsw+o1zRn1qNTZzt+/+8pLKyM6dSrYa5j42OSmT/hKI8ePCUzIwvruubaOAUhtG5/XCAT6o1lwY2lALQ2b0lEYt41zwLiD/Kx3UccfBisemT+UUb+6/gKIYSoHA4cOKDtEIQotnHjxpVp+/Hx8ezatatM+yjI4MH5b8KoDiEhITg5Oam9XdlUSQghhHhF9o0suX6+5GswGRjq0bBFDbavisD9nQa5Pvt51hF6ebXgR//3Gf9tF56ly6Ng4vU08cI0XKq2JaJTCBc6H2ec3Uf51lt1Zz23U6M52ymEM52O8IHtIA1HKoQQQgghKgqZISqEEEK8olYdarN+wQn8N16kx1BHAG5GPsTU3JDgPdd5c2ATkh+nc+HkPUb9pz3P0jNVx/Yb05oW7Wwwq6bI1ebTpGdUtzYF4MBflzV3MkJowcvrhwKsi/6DddF/APAwI4Eh4XnXKpx1dV6u91nKLD6P/JLPI78su0CFEEIIIUSlIAnRUpLHm8vey483777xicb6LemGJZpkY2LFEvepDA4ofAfB8qhGFWu+8VxMGxtXnqQ9Jv7pfXz+nsSNhKvaDo03rDvTsFkDMrOyqN/Inlk/foXCRFH0gUL8j46ODtN/6sHKb0L46+dwDIz0sK5txr983El9msHEdzejgw4ffdEeixom3I9OVB1r39gS+8aWedoc+pkL87z3YVrViFbta3M/OkmTpySEEEIIIYQQlZYkRIWoQGKexlfIZCjA2oHb2XxuHeN2DgXAsWYraphYl4uEqJHCiD8O/QrAV+NmsXXdDj78ZIjqc6VSiVKpRFdXVhkRBatuXYUvfuyep3zUfzow6j+5N0OyrmPOMv8heep6vtcUz/eaAuDWrT5u3V6f3bCFEEIIIYQQQlMkISpEOfV/b3hzJ+U+yy9sAWCm81iSM54yoklvWm15nxGNe9G3ngdVDIxpVLUuCyN+x1DXgA8b9yQ96xnv+n3Go/TEInrRDHf7rmRkZbA+/GdV2cUHZ7UYUcHauLXm2sVr3Lsdg/fgKbRwduRSxGWWbFxAxKlzrF38G0qlko7d2jNxxqcA7Pjdl/VLf8e0qhmNmzfEwNCAafPVv2ugEEKIV7eiTxtth6A5E29qOwIhhAalP9um1vaMDAeotT0hhChPZLqTEOXUpusBDGrgqXo/yMGTEw/O56rTwtKBgfun8sY2L+a4fsrTzDSc/xrG8fvn8Gr8rqZDLlDTGi04Gxum7TCKlJmZydEDx2nYzAGAOzeiGfRRfzYf+R19A32Wzl7BT9uW8MfBtVwMv8ShvUHExcaz+r+/stb/F9bsWcGtq1FaPgshhBBCCCE0IzU1lVOnTqn+uLu7a7T/DRs20LBhw3ITT3569erF1KlTX6kNKysrfH191RSREOoXEBDA+fPn6dWrl6ps3rx53Llzh/Dw8Fx1Z8+eTXh4OCdOnKBPnz5Flru7uxMREZGnnVclM0TLWEVd87E8r/fYt+FP2DexJCsrm7oOFkxa8CYKYwNth6V2Zx5epqaxJTYmVtRQWPAoPYk7yfdz1Tl0L5TkjKckZzzlybNkdkcFAXAu4RqtqjfMr1mRj/S0dD7wGAnkzBDtO6wXcbHx2NStRUuXFgBcCI/E2b0tFlYWAPQY2J3TxyIAcGrfhqoW5gB49ulK1PU7mj8JIYQQQgghNCw1NRVXV1et9O3o6IhCoeDatWvlIp6C+Pr6vnIyMz4+npiYGDp27MiRI0fUFJkQ6uXl5cXp06dV73fs2MHmzZtZvXq1qszJyQlPT09cXFyoVq0aJ0+eJDAwkMaNG+dbnpycTEhICH369GHHjh1qjVcSomWsoq75WJ7XezRU6PHDnsEALJj0N/4bLtJvTOtiHZuVlY1e6Co+AAAgAElEQVSeXsWZGL31xt+81+AtaplUZ/P1/Xk+T8/KUL3OJpv07Gc5r5XZ6OuUn3/el+Mu0KvJe9oOo0AvryH6soq+sdKX1i010s8c/DTSjxBCCCGEqBisra1ZsWIFdnZ2ZGZmMnz4cK5evcr48eMZM2YMAIsWLWL9+vUAJCQksG7dOrp3705QUBCffFL0prpDhw4tdoJEXfHkV9/Hx4cuXbpga2tLQEAAnp6edOnShfj4eNasWUPnzp3x9fVl0qRJRcbj7e3N2LFjycjIYN++fUyf/mKn4V27dvHBBx9IQlRUGMePH8fe3j5XmYODAxEREWRlZfHw4UPu3buHi4sLNWrUyLf80KFDZRZf+cmYVAKVZc3HirTeY3NXG25eegjAwR1X2P3rOTIzsmjcxppPZndCT0+XQS1W0mNoc86ERDNuVidOBUZx8sAt9PR0aNOpLqOndyiiF+3ZdD2AXzp/iZWiGh67x2Kka6jtkErlSFQg0z3m8mGbf/H7mZUANKvREnOjqpyIrhj/obdo24wF0xfz+OFjzKqZsX97AIPHvIdjm6Ys/OoHEh8nYmJqQqDvYRyaNdB2uEIIIYTQgNdqTVqQdWlFHsbGxpw6dUr1vn///kRHR7N48WL8/f355ZdfMDMzQ6FQYG9vz/jx43F1dcXAwIDQ0FD8/PyIi4vD1NSUTZs2MXXqVC5duoSNjQ0xMTGF9t2+fXs2bdqksXgMDQ3zrQ85s0Dr1q3LnTt32LdvH25ubvj6+jJq1CiGDx+Os7NzrjjziwdgxowZNGjQgOTkZGrUqJHrmLCwMGbPnl3ymyREORIZGckXX3yBsbExVlZWNG3alFq1anH+/Pl8y8uSJETVaNP1ABZ1mKJKiA5y8GRc0FxGNOmtqtPC0gGnv4ah0DPk6pAdfHFiKc5/DeO/7afg1fhdlpzbqK3wVSrKeo9ZmdmEHb6NU+e63Ln2iGDfa3y3pR/6Bnos9wni8M6rvDmgCWlPM2ncpiajv+xA4qM0ln5xkBV/D0VHR4fkxHRtn0ahLj66gZlBFe6mxBH79CH2pjbaDqnUPvqrP994LsbbbRrpmWnceXILn78nFX1gOWFVywpvn3F83H+ialMlj3c6AfDRpOGM6D4Wcwsz6jW0x9S8ipajFUIIIYQQouwV9Ih6586d8fLyAiApKYmkpCT69u1LSEgIKSkpAISGhtKyZUsCAwNJT0/n+PHjANy6dQtra+siE6I2NjbExcVpLB57e/t860POjFJzc3PV31WrVi009vzied7mypUr2bt3Lzt37sx1zIMHD8o8QSREWTt//jzr168nKCiIu3fvcvjwYdLS0gosL0uSEFUjWfNRM56lZTHx3c1AzgzRboObse/Pi1w/H8eUfn/9r04m1aobA6Crp0OHHjkz9qqYGWJgpM8P0w7h+qY9rm/a599JOdJ66xDV66jkGFpteR+AdVd8WXflxVo0Df54sejwPz8rD+4nxzB2x/vaDiNfwVEBecps7WzYHPxbrrIeA7rRY0C3PHV7DOjGAK++ZGZmMnXEdDx6diqzWIUQQryaD7wvaDsEjXl50aY5WZr8JeQaDfYlhKgMMjJeLAWmVCrR1S16mbPU1FTVzEptx6NUKnP9KU78+enVqxfu7u4MHjyY8ePH4+bmpvpMoVCQmppaqnaFKE+WLFnCkiVLAAgODub27duFlpcVSYiqWWVY87G8r/f48hqizymV8OaAJoz4t1ve+kZ6qnVD9fR1+e/2gUQcjSbE7wZ7fjvHtxv6aiRuUXn98v0aTh4OJT39GW4eb+DRs7O2Q8rFuPF3TPzIhfn/eROARatPkpLyjK8mdtRyZEIIIYQQQl2MDAdoOwSVw4cPM2LECFatWoWJiQkmJiacOXOGuXPnYmJigoGBAc7Ozpw7d67UfURGRuLg4EBUVJRG4imofml2ss8vnvj4eOzs7AgODub8+fNcuJD7F3iNGjUiMjKyxH0JUd5YWlqSkJBAp06dsLCwUG3EVFB5WSkfGbhKpDKs+VgR13ts3aE2c8b603dUK6pZmZD0OI3UlAxq1jbLVS81JYP01AxcutrTzLkW//LYoKWIRWUyaZa3tkMolJGhHjsDrjL1YzesLE0KrNf9w42snNcT+zr5P+Lz27ZzREU/kUTqa8opeaDG+grlkMb6EkIIIUTp/XPNzjlz5rBz504mT57MihUrGDduHBkZGXh5eXH16lWWL19OSEiIqu4/H3kvib179+Lh4UFgYKBG4omKiipRfXt7e7Zu3YqFhQXGxsa4u7vj4+ODv79/vvE8fPiQtWvXYm5ujp6eHtOm5d6c2cPDQ7VmqRAVwZIlS+jXrx9WVlbcuHGDiRMn4uvry6pVq3BwcCAjI4ORI0eq6hdUXlYkIapmlWXNx4q23qNdI0uGf/4GM0b4osxWomegy7hZnfJJiD5jzlh/MtIzUSph9Jfld0MlIdRFX1+X0YNbs/TXUGZNKV+zV4UQQgghRMVlbGycb/n9+/cZMCDvjNVly5axbNmyPOWWlpaq19265V2iKj/bt2/n008/RU9Pj6ysLI3Ek1/9b775psAY81vPtLB4unbtWmBbvXv3ZuBAzf2CWohX9dlnn/HZZ5/lKc9v7BdWXlYkIVoGKsOaj+V5vcct5/+Vb3mnXg3p1CvvOqwv17esWYX/7pD/RMTr5+MP2+Laey1T/tVO26EIIYTQsq/7t8HavhHZWZlY1WlA/0lzMDTKP4nwXMyNS/w0eTAfzlxOI6cXTwp8+347vtx0oqxDFkKIPNLS0vj666+pU6dOsR6br8isrKxYvHgxjx490nYoQuTr0aNHrF69Gh8fH3x91Zvbcnd3Z+nSpcTHx6u1XUmICiHEa8Dc1Ihh/ZqzfH0YCsWLL/3r/zrHsnVhAFy//Yh+/9qKoYEe9nWqsnl5fx4+SqXniE0AJDxJJSMjm91/XwNg9ffv0qJJDc2fjBBCiFdiYGjEJ4u3ALB14ReE+m+hQ1+vQo85F+yHnWNbzgX55UqICiGENh04cEDbIWhEfHw8u3bt0nYYQhRo8ODBRVcqpZCQEJycnNTeriREhRDiNeE9woX2/dfhNaClqsxrYEu8Bua8z28N0eoWxpzYNRKQNURFwXZf/4E2NbtR16yZquxc3EEepz9AV0ePe8lXQAf0dQx4y/4jzA2ttBitEOJl9o5O3I+6AsDGuZ/xJD6WzGfPcOs9DJe3czbZVCqVXAzZj9esX1jzn5FkPEvHwNBIm2GXGz8ONtV2CEIIIYQoBUmIllJWaj+N9aVLmMb6EkJUXpbVjBn4TlN+3XqWEQNbFn2AEMXUsJoz1x+H5UqIXn9ymrpmzUhIi+G9xl+go6NL8rNHGOhKEkX8T7AmN4aQNcPzk5WVydXTR2jolLNDct8JszExq0pGehq//L+hOLb3xMS8GncunaGadW0sbepSr6ULV0ODcOxQvDX+KrvMTxK0HYJmndR2AEIIIYR6SEJUCCFeI5+NcuWn309rOwxRydSv2oZTsb5kZWeip6tP0rOHpGQ8wUDXCBN9c3R0dAEwNbTQcqRCQIcHr9NaylfyLc14ls6KSYMAsHN0wskzZxODE74biDyes1vzk/j7PIyJwsS8GueC/GjRqQcALTr2IOLgbkmICiGEEKJCk4SoEEJUcvFnJqteW1tVIeHslHzr7f99aKHtDB8gs0pF/hT6VahpYs+dpIvUq9qK64/DcKjalgZVndh1fTGxKdexNW1MIwtXrIzrajtcIV57L68h+tzNc6e4EXGCMd/9hqGRMWu/HEXms2dkZ2Vx8djfXDpxkOAtq1AqlaQmPSb9aQpGJlW0dAZCiPzMOx2k1va+cOpcZJ3evXszc+ZMdHR0WLRoEb///nuBdVetWkWXLl1o1KgRurq63Llzhy1btjBp0qRSx7hhwwZmzpzJtWvXShzPcxMmTGDVqlWkpqbmKu/VqxfNmjXj+++/L1YsJa1f1vEUV2nvS35xJiQkYGlpWao4wsPD6devX6EbZFlZWfHrr7/Sq1evUvUhyk5AQAA2NjZ88cUXqk2V5s2bx7Bhw4iPj6dt27YAWFpasmfPHgwMDFAqlXzzzTfs2rWrwHLI2VRp+fLlZGdnq9pRB0mICiGEEK/o7d8kKeDwv8fmcxKip+lc5wNMDS14v8lX3E2+wr3kq+y58SOedqOobdZE2+EKIf4h/WkyClMzDI2MiYu+SfTlswDcOHsCa/vGeM36SVV32+IviTx+gDZv9tFWuEKIcqBKlSosXrwYNzc30tLSCA0NJSAggPv37xd4TEpKCq1atcLc3JwHDx68Uv+Ojo4oFApVMrQ08UBOYu+PP/7Ik4D09fUt0W7ZJa1f1vGURGnuS0FxlqX4+HhiYmLo2LEjR44c0Vi/oni8vLw4ffrF04g7duxg8+bNrF69WlWWmJiIp6cnKSkpVK9endOnT7N79+4Cy5VKJSEhIfTp04cdO3aoNV5JiKpRbGISk3fs5dTtu1QzNsbarAqL+vWkcc38N4/46I9tHL5+k6oKBWmZmQxp25KZPd7UcNRCiMrqs/c0PxPvS+flGu9Tq/ZoO4Dyo555K47d20b80ztkZj+jhokdAHq6BtiZN8fOvDnGBmbcSjwrCVEhyqGGTu6c8t/M0vF9sapdjzpNWgFwLsiPZm65vz91bO/JKf/NkhAV4jX3xhtvEBERQVxcHACHDx+mU6dOnDp1Cj8/P86cOUPz5s357bffWLBgAZCT1OvVqxfm5ub4+vpiZmYGwLvvvsv06dMxMjIiMDCQf//730X2P3To0FwJkpLG8+abbzJ//nxsbW0JCAggKyuLPn36EBMTw5o1a+jcuTO+vr6qmZI+Pj506dJFVd/T05MuXboQHx+fb32AnTt3YmtrC0CLFi2wtrYmMTGR7du3U7duXTIyMli/fj0rVqwocTwA48ePZ8yYMQAsWrSI9evXAzkzNdetW0f37t0JCgrik08+KfRaluS+FBbn8zj+2W9BcX7++eeMGDGCCxcuYGT0Yp15b29vxo4dS0ZGBvv27WP69Omqz3bt2sUHH3wgCdEK4Pjx49jb2+cqy8zMJDMzE4CqVatiZGSEvr4+GRkZBZaXFUmIqolSqWTAmo14ubZho9f7AETcjeF+UnKBCVGA73q/zXttWpCWkUHzeUvxcm1L/eqyxto/2ZgN02BvKzTYlxBCVA4GekbYmjbicPQGHKo5AxD/9A7GBuZUMaiKUplNQupdLI1razlSIcSXm07kKdM3MGT4zLzfA9Vv6ZqnrGm7rjRt17XAtoQQr4datWrlmn0ZFxeHtbU1AA0aNGDAgAHcunWLsLAwNm/eDMDp06cZMmQI+vr6bN++HWdnZ2rUqMH06dPx9PQkNTWVjRs34uHhwaFDhwrtv3379mzatKnU8QQGBuLq6sqVK1fo1q0bDx8+VB07atQohg8fjrOzc64+fX19qVu3Lnfu3GHfvn24ubnh6+tbYP2+ffsCOTPnunbtSmJiIpCT8Lt79y76+vpERESwbdu2Esdjb2/P+PHjcXV1xcDAgNDQUPz8/IiLi8PU1JRNmzYxdepULl26hI2NjSphmZ+S3JfC4syvX0NDw3zjNDExYdSoUTg7O9OgQYNcMwtnzJhBgwYNSE5OpkaNGrliDQsLY/bs2QWeiyj/TE1NCQoKon79+nz88ceqpGdB5WVFEqJqcvDaTQz0dBnn/oaqrHVtm2Ifn/a/THgVQwO1xyaEEELzFF8vpIX1i1+IbR3Sj6jHTxi4cQf1LKqqyud39+AtB3tik1L43D+QsLuxVFUosDY1YUGPrjS2Kt06TNrQsJoz+6NW8ZbdSABSs5IIuruRrOyc/+NqmNjTvHrR65EJIYQo/4KMpmmwtzUa7EuUllKpVL2Oiori0qVLABw9ejTXun+xsbGkpKSo3rdr14769esTFJSzBmqVKlWoX79+kQlRGxsb1WzQ0sRz+/bt4p/c/yQkJGBubq76u2rVqkUe06RJE7y9venatauqbNSoUfTu3RsdHR1sbGywsbEp8tH+f2rTpg0hISGqaxkaGkrLli0JDAwkPT2d48ePA3Dr1i2sra0LTYiCeu5Lfv3a29vnG6e5uTlHjx4lLS2Nixcv5lo7NDQ0lJUrV7J371527tyZq48HDx5Qq1atYl4lUR4lJyfj5ORE06ZNWb58Odu2bSMzM7PA8rIiCVE1OR9zH6c6tvl+1vb7ZYRPHQ/AmD93MK6DKy52OTNk/r17H98GHOZafAITOrtR08xUYzELIYQoO8YG+oR+MiJXWdTjJ3S0r8OOYQNylSuVSgb9uYPhbZqzYVBvACJiH/Ag5WmFSojWq9qasa2Wqt7XNXOkrpmjFiMSQoiyde/Y67V2io62AxDlSmxsLDVr1lS9r1GjBuHh4UUe5+PjQ3Z2Nv369VOVBQQEMGLEiEKOyis1NRWFQvHK8ZSEUqnM9UdXV7fQ+oaGhqxevZqxY8eqEoKdO3dWPW6fmprKsWPHimynpF6eWVecOEE996Uk/b6csP6nXr164e7uzuDBgxk/fjxubm6qzxQKhUbXLRVl59KlS2RkZNCqVatcM4QLKlc3SYhqwPNkKMCqIf1yffb8kfnk9HQ8l//KUcfbdKhvp+kQhRBCq5bMiic0Ygu/bctZZ0hXV49v/t8FoqJP88sfH6jqjR6yHnPTmixa1UNVVrN6Qwb3Xoixwhx9fSNuRB1n0+4pNKznzoSPdrJx5ySOn87ZYbR2rRb8+5ND7Ng3k4NHl2n2JAtx6OYdDPT0GOvaRlXWulbNQo4QQpRW2N6lRVeqJGpa/abtEIQQldjJkydp3bo1VlZWpKWl0aVLF2bMmIFCocDe3p7GjRsTFRVFhw4dmDNnDr175/zS98mTJ7naOXHiBIsXL6Z27drcvXsXOzs70tPTi5wxGRkZiYODg2pmYUnjeS4pKQlLS8tcj36ry3fffcemTZs4c+aMqszc3JyHDx+SmpqKo6MjrVq1ynVMceM5c+YMc+fOxcTEBAMDA5ydnTl37lypYy3pfXnVOI2Njfn2228xMjKiQYMGudaatLOzIzg4mPPnz3PhwoVc7TVq1IjIyMhSn6fQLltbW9LS0khISMDa2ppmzZpx7969AsvLkiRE1aR5rZr8FXGh6IoFMDUyokvDehy5ESUJ0SK8Yd2Zhs0akJmVRf1G9sz68SsUJoqiDxRClFvp6cnUqtkUA30FGZlpNGngwePE3I/1GCvMqWvbmvRnKVS3sOfho5xvfgf0nMuhYz9x/rIfADY1m6mOuXf/Im2b91UlRJ1aDiA6pvTfKJZEakYmLivWAVCvWlW2Ds35hdiRqGhVOcCm9/ty4UE8TjbWGolLCCEqK9PbhzTYW/5PhgmhTV84aXZZmpSUFCZPnsy+ffsAmDNnDvfv38fe3p6bN2/y7bff0rhxY9asWZPrceh/iouLY8KECWzfvh19fX1SUlKKNStx7969qjUtXyWeZcuWsXXrVhISEhgyZAgKhYKtW7diYWGBsbEx7u7u+Pj4FBiHvb19vvX9/f0ZN24c58+fx8vLC4CuXbuyb98+Ro8eTUREBJcvX84zi7W48fj7+7N8+XJCQkJU51vYEgIlVdR9+WecBSWwo6KiCoxz7dq1nDp1isjISG7evAmAjo4Oa9euxdzcHD09PaZNy708h4eHB35+fmo7T1F2lixZQr9+/bCysuLGjRtMnDiRuLg4VqzIWbNcT0+PL7/8ktjYWNq1a5dveVmShKiavNmoAV/u+Ztfjp5ibIecxefP3ovlSWoanRzqFXl8ZlYWJ6Oi8e7kVmTd152Rwog/Dv0KwFfjZrF13Q4+/GSI6vPiPr4gRGX300ePNdLPL5PV007k1b9xbNyNiIu7cWo5gNPnt+Fg1171eatmvbhweR9JKXE4tehPQPBiAKqaWvM48cVvD2MevPiN8aPH0RgZmWFWpQZJKXE0a/gmF6/+rZ6Ai5DfI/NAvo/MCyGEEEJURLt372b37t15ytPS0hg0aFCusue7jD/322+/8dtvOTPZ/fz8Spzk2r59O59++il6enpkZWWVOJ7n1qxZw5o1udepdXXNu6Gcv79/gbHkVx/I9Uj/y/r3719gW8WNB3KSksuW5X3qydLyxZJL3bp1K7AvKP19yS/OgvotKM6FCxeycOHCPOUvr7f6T71792bgwIEFfi7Kj88++4zPPvssT7mTk1OeshMnTuRbXpYkY6QmOjo6bBs1lANXrtNwzn9pMe8HpvsGUMvcjLbfv/iHP+bPHYTevqt6/+/d+2j7/TJaf7+MFjbWDGgla62VRBu31kTfjObe7RgGuA1lxvhveL/TcO7ffYD/tgDe7+zF4E7D+WH2ctUxO373ZUC7IXh1/xdzJs9n/rT/avEMhBDPnT6/HacW/dHXN8LW2pGo6NzrxTi3HEDYuW2EnduGU8sXCcVDx37Ce+R2Pv7wTzzaj8NYYZ7ruIiLu2jTvA/1675BdMxZMjOfaeR8SsKxZnVOx5RsIX0hhBBCiNdZWloaX3/9NXXq1NF2KEJDrKysWLx4MY8ePdJ2KOIfHj16xOrVq+nVq5fa23Z3d2f79u3Ex8ertV2ZIapGtlXN2TRySJ7ygtYQXfuBzBB6FZmZmRw9cJwOb7YD4M6NaGb9+CUtXVoQFxvP0tkr+P3v1ZhVM8N70BQO7Q2iuZMjq//7K78fWEMVUxPG9Z9Io+YNtXwmQgjIebzdspodzi0GEPmPWZxmVWpgZdmAG7dzdq3MysrEpmZTYh5c4sSZjUReP0izhm/Ssuk7dHAewfwVXVTHhl/YychBq6hp1Yiwc9uoX/cNjZ5XcXStb4fP38GsCo1gjEtrAM7GxpGYnk5He/kmX1ROBi2raayvjKKrCCGEUJOoqKhcu8qXpQMHDhRZR5PxiLIVHx/Prl27tB2GyMfgwYPLrO2QkJAymT0qCVFR4aSnpfOBx0ggZ4Zo32G9iIuNx6ZuLVq6tADgQngkzu5tsbCyAKDHwO6cPhYBgFP7NlS1yJlB5tmnK1HX72j+JIQQ+Tp/2Z++b89i6dq+VDF58chNmxZ9MTGuxoxJObNGFUZmOLUcwJ4DcwFITIrlRPgfnAj/gy8+Dc61jmhS8gOysjJo4uDBNr/pWk+I/nMN0f90dmNg8yZsGdKPz/0DWXDkJEb6+tSrZs6Cd97UYqRCVE7e/RdoOwQhhFALpVKZ63FxIYQQL+jp6aFUKgv8XBKiosJ5eQ3Rl8nGSkJUfMfDN5Ca9oSYB5E0rOeuKnduMYCffhvMrehQACyr2TF+xF/sOTCXpg3f5MqNILKzMzEzrYmJiSVPkmJQGDVSHb/34DzMqlihVGZr7FwefZl3vZwu9e2Inz4x3/q25qZsHNynrMMSQrymfPoUvKGJus3UWE/aFzY2VNshaNYvLtqOQLwkOjqad955Bz8/P0mKCiHES/T09HjnnXeIjo4usI4kREWl1KJtMxZMX8zjh48xq2bG/u0BDB7zHo5tmrLwqx9IfJyIiakJgb6HcWjWQNvhCiH+50liDEEnVuYqs6xWF4tqdVXJUICEx7dJTUvCvrYTTR26MuCduWRmpgGwa//XJCU/wNrqRUL01p1TmjkBIYQQQggNWbduHSNGjGDgwIHo6OhoOxwhhCg3lEol0dHRrFu3rsA6khAVlZJVLSu8fcbxcf+JKJVKOnZrj8c7nQD4aNJwRnQfi7mFGfUa2mNqXkXL0Qoh/j23Xp6ya7dCuHYrBICZC1vm+XzBzzmPk0fdPc2OfT6FHv8y/0PfvWK0QgghhDhdK0HbIbz2njx5wg8//KDtMIQQokKq8AlRDw8PZs+eja6uLhs3bmTZsmVFHyQqtOCogDxltnY2bA7+LVdZjwHd6DGgW566PQZ0Y4BXXzIzM5k6YjoePTuVWaxCCCFeTe1RnbUdgubM3q7tCF4LvdOL3oCjstis7QCEKKcmTpzI5MmT0dHR4ciRI3z44YfaDkkIIYSGVeiEqK6uLt9++y1Dhw4lJiaGvXv3sn//fq5evart0EQ59sv3azh5OJT09Ge4ebyBR8/X6IdtIYSoYP5tv03bIWjMNF6vxx3X/DBaY30N11hPQojyTl9fnylTpjBkyBDOnj3LuXPn8PT05O+//9Z2aEIIITSoQidE27Zty61bt7h9+zYAO3fu5O233668CdHfjbUdgYallkmrk2Z5l0m7FZKMKSGEEK+ZFq0+0nYImnPymLYjEKLcGTx4MElJSRw/fhyA48eP89FHH0lCVAghXjMVOiFaq1Yt7t27p3ofExND27Zt89QbNmwYw4YNA3JmlWZmZr5y35rbpxgyJ/xHg73l0NHRQalUarzf8qCk46NCXqsxmu+yQl4nNdDmeNLU1yltfI2C8jGm/jtD831mfjmvRPXLw3UqqeV8onqtyV1ztX2tXv56ka3BzYJfh//3hmqhz/JwnTJ/GqV6/TqMKU3usZ3526v/PFFS5WJMqeHnqNL4rIT96urq5pok4+fnx8SJEwFwcHAgIeHF+qd37tzBxcVFPYEKIYSoMCp0QrS4NmzYwIYNG7QdRoWyd+9eevbsqe0wKoT58+czbdo0bYdR7smYKh4ZT8UnY6p4ZEwVn4yp4pExVTwynopPxlTxyJgqPhlTQgghiqKr7QBeRWxsLLa2tqr3NjY2xMbGajEi8TqSx2uEOsl4EuomY0qom4wpoW4ypoS6FTamrl+/jqWlpep93bp1uX//vibCEkIIUY5U6ITomTNnqF+/PnXr1sXAwIC+ffuyf/9+bYclXjMBAXl3vReitGQ8CXWTMSXUTcaUUDcZU0LdChtTW7duxczMjDfeeAMTExPc3NxYt26dBqMTQghRHuiZmZl9re0gSkupVHLz5k1+/PFHPvroI7Zt28bevXu1HValce7cOW2HICoZGVNC3WRMCXWTMSXUScaTUDcZU68uKysLHR0dFixYgLe3N7NJirkAAAgvSURBVCdOnOC7777TdlhCCCE0TMfW1rZirYovhBBCCCGEEEIIIYQQpVShH5kXQgghhBBCCCGEEEKIkpCEqBBCCCGEEEIIIYQQ4rWhr+0ARPmycOFCPD09iY+P56233tJ2OKISsLW1ZcmSJVhZWaFUKtmwYQOrV6/WdliigjIyMuKvv/7CyMgIPT099uzZw8KFC7UdlqgEdHV18fPzIzY2lhEjRmg7HFHBHT9+nOTkZLKzs8nMzKRnz57aDklUcObm5ixYsIAmTZqgVCr5/PPPCQsL03ZYQgghRIUlCVGRy+bNm1m7di1LlizRdiiiksjMzGTWrFmcP3+eKlWq4O/vT1BQEFevXtV2aKICSk9PZ/DgwTx9+hR9fX22b9/OwYMHOX36tLZDExXcmDFjuHr1KmZmZtoORVQSgwYN4tGjR9oOQ1QSs2fP5uDBg4wdOxYDAwOMjY21HZIQQghRockj8yKXEydO8PjxY22HISqRBw8ecP78eQBSUlK4evUqtWrV0nJUoiJ7+vQpAPr6+hgYGKBUyt6A4tXY2Njw1ltvsXHjRm2HIoQQeZiZmdGuXTvV16iMjAwSExO1HJUQQghRsUlCVAihMXXq1KFFixaEh4drOxRRgenq6rJ//37Onj1LUFCQjCfxymbNmsWcOXPIzs7WdiiiklAqlWzcuBE/Pz+GDRum7XBEBWdnZ8fDhw9ZtGgR+/bt4/vvv5cZokIIIcQrkoSoEEIjTExMWLlyJTNnziQ5OVnb4YgKLDs7m+7du+Pi4kLbtm1p0qSJtkMSFdjzdbPPnTun7VBEJdK/f3969OjBhx9+yMiRI2nXrp22QxIVmJ6eHi1btmT9+vW8/fbbPH36FG9vb22HJYQQQlRokhAVQpQ5fX19Vq5cyfbt2/Hz89N2OKKSSExMJCQkBA8PD22HIiowFxcXunfvzvHjx1m+fDnu7u788MMP2g5LVHCxsbEAPHz4ED8/P9q0aaPliERFFhMTQ0xMjOqJiD179tCyZUstRyWEEEJUbJIQFUKUuYULF3Lt2jV++eUXbYciKjhLS0vMzc0BUCgUdO7cmevXr2s5KlGRzZs3DxcXF9zc3Pj0008JCQlh4sSJ2g5LVGDGxsZUqVJF9bpLly5cvnxZy1GJiiwuLo579+7h4OAAQMeOHbly5YqWoxJCCCEqNtllXuSybNky2rdvj6WlJaGhoSxYsIA///xT22GJCszV1ZX33nuPixcvsn//fiAnAREYGKjlyERFZG1tzeLFi9HV1UVXV5fdu3fz999/azssIYRQqVGjBqtXrwZyHnXesWMHhw4d0m5QosLz8fFh6dKlGBgYcPv2baZMmaLtkIQQQogKTcfW1la25xVCCCGEEEIIIYQQQrwW5JF5IYQQQgghhBBCCCHEa0MSokIIIYQQQgghhBBCiNeGJESFEEIIIYQQQgghhBCvDUmICiGEEEIIIYQQQgghXhuSEBVCCCGEEEIIIYQQQrw2JCEqhBBClAMTJ04kMDCQgIAA9u/fT9u2bTXa/+DBg7G2ttZon0IIIYQQQgihDfraDkAIIYR43Tk7O+Pp6UmPHj149uwZFhYWGBoaajSGQYMGcenSJe7fv1/sY/T09MjKyirDqIQQQgghhBBC/SQhKoQQQmhZzZo1SUhI4NmzZwA8evQIgJYtWzJz5kyqVKlCQkICkydP5sGDB2zZsoULFy7wxhtvYGJiwmeffYa3tzfNmjVj165dfPfddwAMGDCAUaNGYWhoSHh4OP/5z38AWLhwIa1atUKpVLJp0ybu3btH69at+fHHH0lLS6NPnz40atSowL4vXryIq6srO3fu5Oeff9bORRNCCCGEEEKIUpKEqBBCCKFlhw8fZvLkyQQHBxMcHMyuXbsIDQ1lzpw5fPTRRyQkJNCnTx+mTZvG559/DsCzZ8/o2bMno0ePZs2aNbzzzjs8fvyYo0ePsnLlSqpXr06fPn3o168fmZmZzJ07lwEDBnD58mVq1arFW2+9BYC5uTmJiYmMHDmSb775hrNnz6Kvr19o3wYGBvTs2VNr10sIIYQQQgghXoUkRIUQQggte/r0KT169KBdu3Z06NCBFStWsGTJkv/f3v2ztLLEYQB+N7EQkeCfLoIgAS0kldjb2KnfQLDzG9jYqWBI4SewFUU7ixSKhSDkK4QEQVuxVSxC7i0upjmXw+Fc7lHI81Q77M78Zrd8d4bJ0tJSLi4ukiSlUikvLy/DPjc3N0mSTqeTbrc7vPf8/JxqtZrV1dXU6/W0Wq0kyfj4eF5fX3N7e5v5+fkcHh7m7u4u9/f3P8ynVqv9tPb19fX/8yEAAAD+AIEoAHwDg8Eg7XY77XY7nU4nOzs76Xa72dra+tfnP7fXDwaD4fVnu1wupyiKXF1dpdFo/NB3fX09a2tr2d7ezubm5nDl56eiKH5a+/39/XdfEwAA4Ms5ZR4AvlitVsvCwsKwvby8nF6vl5mZmaysrCRJxsbGsri4+MtjPjw8ZGNjI7Ozs0mSqampzM3NZXp6OqVSKa1WK81mM/V6PUny9vaWycnJJMnj4+N/qg0AAPCdWSEKAF9sYmIiR0dHqVQq6ff7eXp6yt7eXs7OznJwcJBKpZJyuZzT09N0u91fGrPX66XZbOb8/DxFUaTf72d/fz8fHx85OTlJqfTPP9Hj4+MkyeXlZRqNxvBQpd3d3d+uDQAA8J0V1Wr1r6+eBAAAAADAn2DLPAAAAAAwMgSiAAAAAMDIEIgCAAAAACNDIAoAAAAAjAyBKAAAAAAwMgSiAAAAAMDIEIgCAAAAACPjb9STrI/YsAf+AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 1152x720 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"def make_stacked_bar_labels(ax, df, color_func=None, position = 1):\n",
" if color_func is None:\n",
" color_func = lambda name: '#000000'\n",
" max_total = max(df.sum(axis=1))\n",
" offset = max_total * 0.005\n",
" position_fix = - position * 0.25\n",
" for index, row in df.iterrows():\n",
" accumulator = 0\n",
" for name, value in row.iteritems():\n",
" if value > max_total * OTHER_THRESHOLD:\n",
" ax.text(index - 1 + position_fix, accumulator + value - offset,\n",
" name, ha='center', va='top', color=color_func(name))\n",
" accumulator += value \n",
"\n",
"def total_df(df):\n",
" # Data prep\n",
" max_semester = max(df['Semester'])\n",
" sum_lang_df = df[df.columns[LANG_COL_START:]].sum()\n",
" subj_df = make_subj_df(df)\n",
" sum_subj_df = subj_df.sum()\n",
" lang_df = df.groupby('Semester').sum()\n",
" lang_df = lang_df[lang_df.sum().sort_values(ascending=True).index]\n",
" lang_df.index = [int(i) for i in lang_df.index]\n",
" ide_df = make_ide_df(df)\n",
" \n",
" # Plotting data\n",
" lang_colors = [PROG_COLORS[col_name] for col_name in lang_df.columns]\n",
" ide_colors = [IDE_COLORS[ide_abbrs[ide]] for ide in ide_df.columns]\n",
" fig, ax = plt.subplots(figsize=(16,10), facecolor='0.1')\n",
" ax2, ax3 = ax.twinx(), ax.twinx()\n",
" ax.set_xticks(np.arange(0.5, max_semester), minor=True)\n",
" \n",
" ax = lang_df.plot(ax=ax, kind='bar', stacked=True, color=lang_colors, legend=False,\n",
" width=0.4, rot=0, position=0.45)\n",
" ax2 = subj_df.plot(ax=ax2, kind='bar', stacked=True, legend=False, width=0.18,\n",
" position=-1.33)\n",
" ax3 = ide_df.plot(ax=ax3, kind='bar', stacked=True, color=ide_colors,\n",
" legend=False, width=0.18, position=2.1)\n",
" \n",
" ax.set_xlim(-0.5, max_semester-0.5)\n",
" make_stacked_bar_labels(ax, lang_df, position=-0.05,\n",
" color_func=lambda name: get_text_color(PROG_COLORS[name]))\n",
" make_stacked_bar_labels(ax2, subj_df, position=-1.31)\n",
" make_stacked_bar_labels(ax3, ide_df, position=1.15,\n",
" color_func=lambda name: get_text_color(IDE_COLORS[ide_abbrs[name]]))\n",
" \n",
" # Plot settings\n",
" ax.set_title(f'Total lines of code per semester. Last update: {date.today()}')\n",
" ax.set_ylabel('Lines of code')\n",
" ax.set_xlabel('Semester')\n",
" ax.set_axisbelow(True)\n",
" ax.grid(axis='y', alpha=0.4)\n",
" ax.grid(alpha=0.4, axis='x', which=\"minor\")\n",
" \n",
" # Legends\n",
" handles, labels = ax.get_legend_handles_labels()\n",
" ljust_value = max([len(label) for label in labels])\n",
" labels = [f\"{label.ljust(ljust_value + 1)}\" \\\n",
" + f\"[{int(sum_lang_df.loc[label])}]\" for label in labels]\n",
" ax.legend(handles[::-1], labels[::-1], title='Programming languages',\n",
" prop={'family': 'monospace'},\n",
" bbox_to_anchor=(1.06, 1), loc='upper left', ncol=2)\n",
" \n",
" handles, labels = ax2.get_legend_handles_labels()\n",
" ljust_value_label = max([len(label) for label in labels])\n",
" ljust_value_name = max(len(name) for name in abbrs.values()) + 1\n",
" labels = [f\"{label.ljust(ljust_value_label)}\" \\\n",
" + f\" ({(abbrs[label] + ')').ljust(ljust_value_name)}\" \\\n",
" + f\" [{sum_subj_df[label]}]\" for label in labels]\n",
" ax2.legend(handles[::-1], labels[::-1], title='Subjects', prop={'family': 'monospace'},\n",
" bbox_to_anchor=(1.06, 0.0), loc='lower left', ncol=1)\n",
" \n",
"total_df(df)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment