Skip to content

Instantly share code, notes, and snippets.

@TAdeJong
Created November 2, 2020 13:19
Show Gist options
  • Select an option

  • Save TAdeJong/8cb84dc74bc6d2c2a1744ef465bf85d8 to your computer and use it in GitHub Desktop.

Select an option

Save TAdeJong/8cb84dc74bc6d2c2a1744ef465bf85d8 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.2.2 module://ipykernel.pylab.backend_inline\n"
]
}
],
"source": [
"print(matplotlib.__version__, matplotlib.get_backend())"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAABeCAYAAAA+LrUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAQ90lEQVR4nO3de6xlVX3A8e9v5s6bmQ7DPECwIDqoFSt1JtaWGjUWRdsEWq2lmjhNVJJamia1TUntg6CJtbYan6nE1xS1lpoiaEElKk210YIPFOWNPAeYDh1gGJwXrP6x96TXywzctc46e+9z7/eTnNx7D/uutc+Xfe+cdc4+50ZKCUmSJEnS6Bb0vQOSJEmSNFe4wJIkSZKkSlxgSZIkSVIlLrAkSZIkqRIXWJIkSZJUiQssSZIkSarEBZYkSZIkVTInF1gRsSYiLo6I3RFxe0S8rub2c1VBt3Mi4uqI2BsRn+xoNwdntt0iYklEfKzdZldEfC8iXtn1/g5BwbH2qYi4JyIeiogbI+JNXe3rUJT+noqIjRGxJyI+Ne59HKKCY+3KttfD7eWGrvZ1KEqOtYg4KyKua7/nloh4URf7OiQ53aYdXwcvj0bEB7rc36HI7HZCRFwWETsj4t6I+GBETHW5v0NQ8Hvt2RHxtYh4MCJujojf6mpfhyT3fuso64O5elB+CNgHbABOAf49Iq5JKf2o0vZzVW6HbcA7gFcAy7rZxUGabbcp4E7gxcAdwKuAiyLiuSml2zrc3yHIPdbeCbwxpbQ3Ip4FXBkR30spfaej/R2C0t9THwKuGvfODVhJt3NSSh/tZO+GKatZRJwGvAv4XeC/gWO62tGBmXW3lNIRBz+PiBXAfcC/drWjA5NzvH0Y2E5zjK0GrgDeAry/o30dilk3axeglwD/CJxGcx/kCxHxSymlGzvc5yHIvd9avj5IKfV2AZ5P88v4IZr/+ccCtwMxwpgr2hgnTbvuQuBva2w/hMsQus343ncAn+y7y6R1a7f9AfDqvttMWLNnAvcAr+27z9CbAWcBFwHnAZ/qu80kdAOuBN7Ud48Ja/ZfNA+A9N5kkrpN224LcOso88+XbsB1wKumff1u4CN9txl4s5OBh6fPCXwFeHvffbrsNmP8J73fOsrPdEqpv1MEI2IZ8AXgAmAtzaP7/wZcntpbMW3bL0bEA4e5fHHG0CcBj6afXZVfAzznMLuSu32vBtRtogyxW0RsaL9/kM+UDq1ZRHw4Ih4BrqdZYF020g0cgyE1i4hVwPnAW0e/ZeM1pG6td0bEjoj4ZkS8ZJTbNi5DaRYRC4HNwLr21KO72tO2BnlWw1C6zbAF+KeZ8w/JgLq9DzgrIpZHxLHAK4EvjX4L6xtQszjMdScX3KyxG2O3XCPdL+7zFMEXtvN/PKX0WER8gubp8b+ZuWFK6Tczxj0CeHDGdQ8CKytt37ehdJs0g+oWEYuATwNbU0rXZ8zXpUE1Sym9JSL+CPgV4CXA3ow5uzKkZm8HPpZSujPiUP++DsqQuv058GOaRy7PojmV5pSU0i0Z83ZhKM02AIuA1wAvAvbTPOL8l8DbMubtylC6ARARP09zytYbM+bqw1C6/QfwZppnNhYCW4HPZ8zXpaE0u57mtMo/i4j3Ai+lOea+njFnl8bVLddI94v7fJOLDcDtKaXH2q+voXkK82sjjvswsGrGdauAXZW279tQuk2awXSLiAU0TzPvA84Zcf5xGkyzg1JKj6aUvgEcB/zBiPsxDoNoFhGnAL8OvHfEebsyiG4AKaVvp5R2pZT2ppS2At+keb3k0Ayl2U/bjx9IKd2TUtoBvIdhNoPhdDvoDcA3Uko/GXH+ceu9W/tv55dpns1YQfPsxpE0r/8bot6bAaSU9gNnAr8B3EtzVsNFwF0j7se4jKtbrpHuF/e5wLqP5gfjoGfRPGW5f+aGEXF5PP4ddw5eLp+x+Y3AVERsnHbd8zj8aVi52/dtKN0mzSC6RfNUwsdofoG8uv3FN1SDaHYYU8DTM7bvylCavQQ4AbgjIu4F/hR4dUR8t+hWjd9Quh1K4tCn2PRtEM1SSjtp7qgN9vS2GQbRbZo30DwLM3RD6LYGeCrwwfYBkPuBTzDcxfwQmgGQUvpBSunFKaWjUkqvAE6keY3TEI2rW67R/v2o8WKxkgvNu3dsB05tv74M2A1sqjD2Z4F/pnmE41Sap/SeU2v7Pi8D6zYFLKV5h7cL28+n+m405G407+LzLeCIvptMULP1NKdqHUFzSsgr2v04o+9GA262HDh62uXvgc8B6/puNPBuq9vja2n7++317X48s+9GQ23Wbn8+zTtVrqe5Y/SfDPQF9APr9qvt3Cv77jIp3WjeDOTc9udzNXAx8Om++wy5Wbv9L7a/15bTPOD2E2BJ34166JZ1vzW38898b88RXwxcDVzb3ojfplkxnjriuGtozsndTfN22K+b8d8vB/5ittsP7TKgbufRPGo5/XJe332G2g04vm20h+ap54OX1/fdZqjN2s/X0Zx3/wDNefc/BN7cd5shNzvE957H8N9FsPdu7bF2Fc0pIA/QPBhyWt9thtys/XoRzdtnP0BzCtL7gaV995mAbh8BLuy7xyR1o3mr7CuBncAOmtfmrO+7zZCbtV+/u232cPvfntF3m566nccT3G89RLfi9UG0A0iSJEmSRtTna7AkSZIkaU4ZaYEVEadHxA3R/O2Lc2vt1Fxnt3w2K2O3fDYrY7cydstnszJ2y2ezMnaj/BTBaP644I3AaTTvIHQV8HsppR/X2725x275bFbGbvlsVsZuZeyWz2Zl7JbPZmXs1hjlGawXADenlG5NKe2jeRHaGXV2a06zWz6blbFbPpuVsVsZu+WzWRm75bNZGbsx2gLrWODOaV/f1V6nJ2a3fDYrY7d8NitjtzJ2y2ezMnbLZ7MydqN5P/hSh/rDi4873zAizgbObj/fNDU1ypT9OXDgAI899liNPzZZ1G3pksnstm//oxw48Oio3bKbLVwQm5YvXzTitP3Ys+cA+/aP3AwKuk0tjE2rVi6uMHX3dj+ynz17uz/WFk3FpiNXLxlx2n48tGs/P91zoJdjbfGi2LTuqKUVpu7ezgf3sfuRbrpNb7Zk8YJNR6+bzGb379zLrt39HGtLlyzYdNzRyypM3b377t/LQ7v2d36sLVu6YNPxxy6vMG337tm+hwce6qYZ/Gy35UsXbDrx+Mnsdve9e/jfB/rptmL5wk0nPW0yu91x9x527Nz3uNs8yr32u2j+ovZBxwHbZm6UUroAuABg8eLFae3atSNM2Z8dO3bUGiq72/Jli9PGpx9da/5O3XTLvTWGyW62auWS9MvPn8wHTL793btrDZXd7agjl6bTX3p8rfk79aWv315jmOxmG9YtS68788Qac3fuM5+/tdZQ2d2OO2Z5+sMtG2vN36kPbb2p1lBP2m16sxOOW5H+6o+fXWvuTr39fdfVGir7WNt4whHpPX99cq35O/Un519ba6isY+3Zz1iZPvkPp9Sau1O//9bv1xoq+1h77rNWpks+urnW/J06401X1xoqu9vzT16VvvG5F9aav1O/9ppvHfL6UU4RvArYGBFPi4jFwFnApSOMN1/YLZ/Nytgtn83K2K2M3fLZrIzd8tmsjN0Y4RmslNKBiDgH+DKwEPh4SulH1fZsjrJbPpuVsVs+m5WxWxm75bNZGbvls1kZuzVGemFPSuky4LJK+zJv2C2fzcrYLZ/NytitjN3y2ayM3fLZrIzdRvxDw5IkSZKk/+cCS5IkSZIqcYElSZIkSZW4wJIkSZKkSlxgSZIkSVIlLrAkSZIkqRIXWJIkSZJUiQssSZIkSarEBZYkSZIkVeICS5IkSZIqcYElSZIkSZW4wJIkSZKkSlxgSZIkSVIlLrAkSZIkqRIXWJIkSZJUydRsNoqI24BdwKPAgZTS5ohYA/wLcAJwG/DalNLO8ezmZLJbPpuVsVs+m5WxWz6blbFbGbvls1kZux1ezjNYL00pnZJS2tx+fS7w1ZTSRuCr7dd6PLvls1kZu+WzWRm75bNZGbuVsVs+m5Wx2yGMcorgGcDW9vOtwJmj7868YLd8Nitjt3w2K2O3fDYrY7cydstnszJ2Y/YLrAR8JSK+ExFnt9dtSCndA9B+XD+OHZxwdstnszJ2y2ezMnbLZ7Myditjt3w2K2O3w5jVa7CAU1NK2yJiPXBFRFw/2wna4GcDLFy4sGAXJ1qVbosWzatuVZotXTKvmkGlbsuXzfZXwpxQpdnKIxaNa/+Gqkq31avmVbcqzdasXjyu/RuqKt3WHWW32XzT9GZHr1syzv0boirH2lM22G223zi921OfsnRc+9ebWT2DlVLa1n7cDlwMvAC4LyKOAWg/bj/M916QUtqcUtq8YMH8etPCWt2mFs6fbrWazbNFabVu82lhWqvZsqXzpxnU67Zi+fxZzNdqtnLF/GkG9br93Dx7EKS02/Rm8+wBkGrH2prVdqOg29oj5163J73nHhErImLlwc+BlwPXApcCW9rNtgCXjGsnJ5Hd8tmsjN3y2ayM3fLZrIzdytgtn83K2O2JzebhsA3AxRFxcPvPpJS+FBFXARdFxBuBO4DfGd9uTiS75bNZGbvls1kZu+WzWRm7lbFbPpuVsdsTeNIFVkrpVuB5h7j+fuBl49ipucBu+WxWxm75bFbGbvlsVsZuZeyWz2Zl7PbE5s+LeyRJkiRpzFxgSZIkSVIlLrAkSZIkqRIXWJIkSZJUiQssSZIkSarEBZYkSZIkVeICS5IkSZIqcYElSZIkSZW4wJIkSZKkSlxgSZIkSVIlLrAkSZIkqRIXWJIkSZJUiQssSZIkSarEBZYkSZIkVeICS5IkSZIqcYElSZIkSZW4wJIkSZKkSlxgSZIkSVIlkVLqbrKIXcANY5xiLbBjTGMfn1JaN6axn9CYu42zGfTUzWOtjMdaPo+1MnbLFxH/A+xmfLdrzjUDj7USHmtlPNbKzMX7HlNjnPBQbkgpbR7X4BFx9TjH79HYutmsjN3y2ayM3crMxW4ppXXjvF1zsVnLYy2Tx1oxj7Uyc+6+h6cISpIkSVIlLrAkSZIkqZKuF1gXTPj4fRnn7bLZMMfvi8daPo+1MnYr489oPo+1Mh5r+TzWysy5Y63TN7mQJEmSpLnMUwQlSZIkqZLOFlgRcXpE3BARN0fEuRXGuy0ifhgR34+Iq9vr1kTEFRFxU/vxyNH3vD+1m7Vj2i1/PJuVjWm3/PFsVjam3crGtFv+eDYrG9Nu+ePZrGzMYXRLKY39AiwEbgFOBBYD1wC/MOKYtwFrZ1z3d8C57efnAu/q4vZNSjO72ayrZnazWVfN7Ga3LrvZzG5ddbPZZHfr6hmsFwA3p5RuTSntAz4LnDGGec4AtrafbwXOHMMcXemqGdithM3K2C2fzcrYrYzd8tmsjN3y2axM5926WmAdC9w57eu72utGkYCvRMR3IuLs9roNKaV7ANqP60eco0/jaAZ2K2GzMnbLZ7Myditjt3w2K2O3fDYrM4huU+OeoBWHuG7Uty88NaW0LSLWA1dExPUjjjc042gGdithszJ2y2ezMnYrY7d8Nitjt3w2KzOIbl09g3UX8NRpXx8HbBtlwJTStvbjduBimqca74uIYwDaj9tHmaNn1ZuB3UrYrIzd8tmsjN3K2C2fzcrYLZ/NygylW1cLrKuAjRHxtIhYDJwFXFo6WESsiIiVBz8HXg5c2465pd1sC3DJSHvdr6rNwG4lbFbGbvlsVsZuZeyWz2Zl7JbPZmUG1W3c76Ix7R08XgXcSPOOIW8bcawTad5t5BrgRwfHA44Cvgrc1H5c09XtG3ozu9nMY23Y3WxmN7sNu5vN7OaxNtxmQ+sW7cSSJEmSpBF19oeGJUmSJGmuc4ElSZIkSZW4wJIkSZKkSlxgSZIkSVIlLrAkSZIkqRIXWJIkSZJUiQssSZIkSarEBZYkSZIkVfJ/bWWmXnzuymgAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 864x216 with 11 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig,ax = plt.subplots(ncols=11, figsize=[12,3])\n",
"for i in range(11):\n",
" ax[i].imshow(np.full((100,100), 0.1), cmap='gray', vmin=0, vmax=1)\n",
" ax[i].imshow(np.full((100,100), 0.9), cmap='inferno', vmin=0, vmax=1, alpha=0.1*i)\n",
" ax[i].set_title(f\"$\\\\alpha=${0.1*i:.1f}\")\n",
"plt.tight_layout()\n",
"plt.savefig('test.png')\n",
"plt.savefig('test.pdf')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
numpy
matplotlib
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment