Skip to content

Instantly share code, notes, and snippets.

@ThomasA
Created November 21, 2014 13:54
Show Gist options
  • Select an option

  • Save ThomasA/6536eef66e072572a4d3 to your computer and use it in GitHub Desktop.

Select an option

Save ThomasA/6536eef66e072572a4d3 to your computer and use it in GitHub Desktop.
An example IPython notebook where the output of matplotlib.pyplot.plot is hidden in the last output cell
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:5735dfce6db6490521fe10ff7bf96185ada1675012106233d2e307b49d25fc8e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This a notebook for testing whether I can disable output of figure \"handles\" when plotting with Matplotlib."
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"x = y = range(10)\n",
"plt.plot(x,y)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 5,
"text": [
"[<matplotlib.lines.Line2D at 0x7f1320c8a110>]"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAEACAYAAACeQuziAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAErNJREFUeJzt3X+MpHV9wPH3h0OEE70Dqb/KjyOk/mjVAlGDIjq0Z4OK\nGv1HiVY5w56pv842NUoTdU24I3J1pUljqp4QbYE20tKKrXIiDCGxood3cLeArVbjiaCkFPBHaW7h\n0z9m9nzubnfmmdt55nlm5v1KNju7+8zcJ7d7333fd348kZlIkprniLoHkCQtzQVakhrKBVqSGsoF\nWpIaygVakhrKBVqSGqrvAh0RmyJid0TsiYhNoxhKktRngY6I5wMXAS8Gfh84PyJOG8VgkjTt+hX0\nc4HbMvPRzHwMuAV4U/VjSZL6LdB7gHMi4viIWA28Fjix+rEkSUf2+mJm3hMRnwC2A78CdgKPj2Iw\nSZp2MchrcUTEFuDHmfk3hc/5Yh6SdBgyM3p9vcyjOJ7WfX8y8Ebg6iX+kMa9fexjH6t9Bmdypmmc\ny5kOfdu3L9myJTnhhOQzn0kef7xc1/bc4ui6NiKeCuwD3p2Zj5S6ZUkS8/OwYQOsWQM7dsApp5S/\nbt8FOjNfsZLhJGkaLSzA1q0wNwebN8PMDETPDY1DlSnosdRqteoe4RDOVI4zldfEuZxpZdVcNNCd\nhEveQESu9DYkaRIMUs0RQfa5k3BiC1qSRmlY1VzkiyVJ0gosLMCll0KrBRddBNu3D2dxBgtakg5b\nFdVcZEFL0oCqrOYiC1qSBlB1NRdZ0JJUwqiquciClqQ+RlnNRRa0JC2jjmousqAlaQl1VXORBS1J\nBXVXc5EFLUldTajmIgta0tRrUjUXWdCSplrTqrnIgpY0lZpazUV9CzoiLgbeRudksbuBDZn5f1UP\nJklVaXI1F/Us6IhYB8wAZ2bmC4BVwFuqH0uShm8cqrmoX0E/QudchKsj4jFgNXBv5VNJ0pCNSzUX\n9SzozHwQ+CTwY+CnwEOZeeMoBpOkYRi3ai7qWdARcRrwAWAd8DDwpYh4a2ZeVTxudnZ2/+VWq9XI\nc5JJmj5NquZ2u0273R7oOj3PSRgRbwZelZkXdT/+Y+CszHxP4RjPSSipUYZxRu2qDeOchPcAH4mI\nY4BHgfXAt4c0nyQNXZOqeaX67UHfAXwR2AHc2f30Z6seSpIGNc57zcvpucVR6gbc4pBUs2I1b9s2\nHgtzmS0On0koaWxNYjUX+VocksbSJO01L8eCljRWJr2aiyxoSWNjGqq5yIKW1HjTVM1FFrSkRpu2\nai6yoCU10rRWc5EFLalxprmaiyxoSY1hNR/IgpbUCFbzoSxoSbWympdnQUuqjdXcmwUtaeSs5nIs\naEkjZTWXZ0FLGgmreXAWtKTKWc2Hp29BR8RzImJn4e3hiHj/KIaTNN6s5pXpW9CZ+T3gDICIOAK4\nF7iu4rkkjTmreeUG3YNeD/wgM/dWMYyk8Wc1D8+ge9BvAa6uYhBJ489qHq7SC3REHAW8DvjQwV+b\nnZ3df7nVatFqtYYwmqRxsbAAW7fC3Bxccgls3AjR83So06fdbtNutwe6TumzekfEG4A/yczzDvq8\nZ/WWptg4nlG7CYZ9Vu8LgGtWNpKkSeFec/VKbXFExJPo3EE4U+04ksaBe82jUaqgM/NXmXlCZv6i\n6oEkNZfVPFo+k1BSKfPzcOGFsHat1TwqvhaHpJ6K1TwzYzWPkgUtaVlWc70saEmHsJqbwYKWdACr\nuTksaEmA1dxEFrQkq7mhLGhpilnNzWZBS1PKam4+C1qaMlbz+LCgpSliNY8XC1qaAlbzeLKgpQln\nNY8vC1qaUAsLsGWL1TzOLGhpAu3Z06nm446zmseZBS1NkGI1b9xoNY+7vgUdEWuBbcDvAQm8MzO/\nVfVgkgZTrObbb3dhngRlCvqvgH/LzOcBLwTurnYkSYOwmidXz4KOiDXAOZn5DoDMXAAeHsVgkvqz\nmidbv4I+FXggIq6MiO9GxOciYvUoBpO0PKt5OvTbgz4SOBN4b2Z+JyIuBz4MfLR40Ozs7P7LrVaL\nVqs13Ckl7Wc1j6d2u0273R7oOpGZy38x4hnAv2fmqd2PXw58ODPPLxyTvW5D0nAsLMBll8HcXKee\nZ2Ygou6pdLgigszs+R3sWdCZeX9E7I2IZ2fmfwDrgflhDimpP6t5OpV5FMf7gKsi4g46j+LYUu1I\nkha51zzd+j4OOjPvAF48glkkFVjN8pmEUsNYzVrka3FIDWI1q8iClhrAatZSLGipZlazlmNBSzWx\nmtWPBS3VwGpWGRa0NEJWswZhQUsjsljNxx9vNascC1qq2GI1n3suvOtdcMMNLs4qx4KWKnRwNZ98\nct0TaZxY0FIFlqpmF2cNyoKWhsxq1rBY0NKQWM0aNgtaGgKrWVWwoKUVsJpVpVIFHRE/Ah4BHgP2\nZeZLqhxKGgdWs6pWtqATaGXmGS7OmnZWs0ZlkD1oT0+pqWc1a5QGKegbI2JHRMxUOZDURFaz6lC2\noM/OzPsi4reAr0fEPZl5a5WDSU0xP3/gK8+5MGtUSi3QmXlf9/0DEXEd8BJg/wI9Ozu7/9hWq0Wr\n1RrqkFIdFhZg61aYm4PNm2FmBsKNPh2mdrtNu90e6DqRmb0PiFgNrMrMX0TEk4DtwMczc3v369nv\nNqRxU6zmbdusZg1fRJCZPX/ll9mDfjpwa0TsAm4DvrK4OEuTZmEBLr30N6/X7F6z6tR3iyMzfwic\nPoJZpFq516ym8ZmEmnpWs5rK1+LQVLOa1WQWtKaS1axxYEFr6ljNGhcWtKaG1axxY0FrKljNGkcW\ntCaa1axxZkFrYlnNGncWtCaO1axJYUFroljNmiQWtCaC1axJZEFr7FnNmlQWtMaW1axJZ0FrLFnN\nmgYWtMaK1axpYkFrbFjNmjalCjoiVkXEzoi4vuqBpINZzZpWZQt6E3AX8OQKZ5EOYTVrmvUt6Ig4\nEXgNsA3wnMYaCatZKlfQnwI+CDyl4lkkwGqWFvUs6Ig4H/h5Zu7EelbFrGbpQP0K+mXA6yPiNcDR\nwFMi4ouZ+fbiQbOzs/svt1otWq3WkMfUpFus5rVrYccOOOWUuieShqvdbtNutwe6TmRmuQMjXgn8\neWa+7qDPZ9nbkA62sABbt8LcHGzeDDMzEP5fTVMgIsjMnj/tgz4O2pVYQ2M1S72VfiZhZt6Sma+v\nchhNh+Je88wMbN/u4iwtxWcSaqSsZqk8X4tDI2E1S4OzoFU5q1k6PBa0KmM1SytjQasSVrO0cha0\nhspqlobHgtbQWM3ScFnQWjGrWaqGBa0VsZql6ljQOixWs1Q9C1oDs5ql0bCgVZrVLI2WBa1SrGZp\n9Cxo9WQ1S/WxoLUsq1mqlwWtQ1jNUjP0LeiIOBq4BXgicBTwL5l5cdWDqR5Ws9QcfQs6Mx8Fzs3M\n04EXAudGxMsrn0wjZTVLzVNqDzozf929eBSwCniwsok0claz1Eyl9qAj4oiI2AX8DLg5M++qdiyN\ngtUsNVvZgn4cOD0i1gA3REQrM9uLX5+dnd1/bKvVotVqDXdKDd38PGzYAGvWWM3SKLTbbdrt9kDX\nicwc7AoRHwH+NzP/svtxDnobqs/CAmzdCnNzsHlzp5wj6p5Kmj4RQWb2/NdX5lEcJwALmflQRBwD\nvAr4+JBm1AhZzdJ4KbMH/Uzgpu4e9G3A9Zn5jWrH0jAV95ovusi9Zmlc9C3ozNwNnDmCWVQBq1ka\nXz6TcEJZzdL487U4JpDVLE0GC3qCWM3SZLGgJ4TVLE0eC3rMWc3S5LKgx5jVLE02C3oMWc3SdLCg\nx4zVLE0PC3pMWM3S9LGgx4DVLE0nC7rBrGZpulnQDWU1S7KgG8ZqlrTIgm4Qq1lSkQXdAFazpKVY\n0DWzmiUtp29BR8RJEXFzRMxHxJ6IeP8oBpt0VrOkfsoU9D7gTzNzV0QcC9weEV/PzLsrnm1iWc2S\nyuhb0Jl5f2bu6l7+JXA38KyqB5tEVrOkQQy0Bx0R64Az6Jw8VgOwmiUNqvQC3d3euBbY1C3p/WZn\nZ/dfbrVatFqtIY03/hYWYOtWmJuDSy6BjRshou6pJI1au92m3W4PdJ3IzP4HRTwB+Arw1cy8/KCv\nZZnbmEbFat62zWqW9BsRQWb2zLUyj+II4PPAXQcvzlqae82ShqHMFsfZwNuAOyNiZ/dzF2fm16ob\na3y51yxpWEptcfS8Abc4gAP3mjdvhpkZ95olLa/MFofPJByC+Xm48EJYu9ZqljQ8vhbHChT3mmdm\n3GuWNFwW9GGymiVVzYIekNUsaVQs6AFYzZJGyYIuwWqWVAcLug+rWVJdLOhlWM2S6mZBL8FqltQE\nFnSB1SypSSzoLqtZUtNMfUFbzZKaaqoL2mqW1GRTWdALC7Bli9UsqdmmrqD37OlU83HHWc2Smm1q\nCrpYzRs3Ws2Smq9vQUfEFcBrgZ9n5guqH2n4itV8++0uzJLGQ5mCvhI4r+pBqmA1SxpnfQs6M2+N\niHXVjzJcVrOkcTdxe9BWs6RJMZRHcczOzu6/3Gq1aLVaw7jZgVnNkpqq3W7TbrcHuk6ps3p3tziu\nX+pOwiac1XthAS67rHNG7S1bPKO2pOabirN6W82SJlXfPeiIuAb4JvDsiNgbERuqH6s/95olTboy\nj+K4YBSDDMJqljQNxupRHFazpGkyNnvQVrOkadP4graaJU2rRhd08fWarWZJ06aRBe1ZTiSpgQXt\nWU4kqaMxBW01S9KBGlHQVrMkHarWgraaJWl5tRW01SxJvY28oK1mSSpnpAVtNUtSeSMpaKtZkgZX\neUFbzZJ0eCoraKtZklamb0FHxHnA5cAqYFtmfqLfdaxmSVq5ngUdEauAvwbOA34XuCAinrfc8U2q\n5kFPzjgKzlSOM5XXxLmcaXj6bXG8BPh+Zv4oM/cBfw+8YakD5+fhpS+Fm27qVPPGjfWeuLWJ3xBn\nKseZymviXM40PP0W6N8G9hY+/kn3cwdoSjVL0iTptwedZW5ksZpdmCVpeCJz+TU4Is4CZjPzvO7H\nFwOPF+8ojIhSi7gk6UCZ2XMjuN8CfSTwPeAPgZ8C3wYuyMy7hzmkJOlQPbc4MnMhIt4L3EDnYXaf\nd3GWpNHoWdCSpPqs6JmEEXFeRNwTEf8ZER8a1lArERFXRMTPImJ33bMsioiTIuLmiJiPiD0R8f4G\nzHR0RNwWEbsi4q6IuLTumRZFxKqI2BkR19c9C0BE/Cgi7uzO9O265wGIiLURcW1E3N39/p3VgJme\n0/07Wnx7uCE/6xd3/+3tjoirI+KJDZhpU3eePRGxadkDM/Ow3uhseXwfWAc8AdgFPO9wb29Yb8A5\nwBnA7rpnKcz0DOD07uVj6ezrN+HvanX3/ZHAt4CX1z1Td54/A64Cvlz3LN15fggcX/ccB830BeCd\nhe/fmrpnOmi+I4D7gJNqnmMd8F/AE7sf/wPwjppnej6wGzi6u45+HThtqWNXUtCln8QySpl5K/A/\ndc9RlJn3Z+au7uVfAncDz6p3KsjMX3cvHkXnB+XBGscBICJOBF4DbANqfKrTIRozS0SsAc7JzCug\nc19RZj5c81gHWw/8IDP39j2yWo8A+4DV3Qc9rAburXckngvclpmPZuZjwC3Am5Y6cCULdKknsehA\nEbGOTuHfVu8kEBFHRMQu4GfAzZl5V90zAZ8CPgg8XvcgBQncGBE7ImKm7mGAU4EHIuLKiPhuRHwu\nIlbXPdRB3gJcXfcQmfkg8Engx3QeifZQZt5Y71TsAc6JiOO737fXAicudeBKFmjvXRxQRBwLXAts\n6pZ0rTLz8cw8nc4PxysiolXnPBFxPvDzzNxJg4oVODszzwBeDbwnIs6peZ4jgTOBT2fmmcCvgA/X\nO9JvRMRRwOuALzVgltOAD9DZ6ngWcGxEvLXOmTLzHuATwHbgq8BOlgmSlSzQ9wInFT4+iU5FawkR\n8QTgH4G/y8x/rnueou5/j/8VeFHNo7wMeH1E/BC4BviDiPhizTORmfd13z8AXEdne69OPwF+kpnf\n6X58LZ0FuyleDdze/fuq24uAb2bmf2fmAvBPdH7OapWZV2TmizLzlcBDdO6XOsRKFugdwO9ExLru\nb8w3A19ewe1NrIgI4PPAXZl5ed3zAETECRGxtnv5GOBVdH6T1yYz/yIzT8rMU+n8F/mmzHx7nTNF\nxOqIeHL38pOAP6JzB09tMvN+YG9EPLv7qfXAfI0jHewCOr9gm+Ae4KyIOKb773A9UPtWXkQ8rfv+\nZOCNLLMddNhnVMmGPoklIq4BXgk8NSL2Ah/NzCtrHuts4G3AnRGxuAhenJlfq3GmZwJfiIgj6Pyi\n/tvM/EaN8yylCdtoTweu6/zb5kjgqszcXu9IALwPuKobRz8ANtQ8D7D/l9h6oAl79WTmHd3/he2g\ns43wXeCz9U4FwLUR8VQ6d2C+OzMfWeogn6giSQ01kpPGSpIG5wItSQ3lAi1JDeUCLUkN5QItSQ3l\nAi1JDeUCLUkN5QItSQ31/1hG4J4tZvXzAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1320d032d0>"
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.plot(x,y);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAAEACAYAAACeQuziAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAErNJREFUeJzt3X+MpHV9wPH3h0OEE70Dqb/KjyOk/mjVAlGDIjq0Z4OK\nGv1HiVY5w56pv842NUoTdU24I3J1pUljqp4QbYE20tKKrXIiDCGxood3cLeArVbjiaCkFPBHaW7h\n0z9m9nzubnfmmdt55nlm5v1KNju7+8zcJ7d7333fd348kZlIkprniLoHkCQtzQVakhrKBVqSGsoF\nWpIaygVakhrKBVqSGqrvAh0RmyJid0TsiYhNoxhKktRngY6I5wMXAS8Gfh84PyJOG8VgkjTt+hX0\nc4HbMvPRzHwMuAV4U/VjSZL6LdB7gHMi4viIWA28Fjix+rEkSUf2+mJm3hMRnwC2A78CdgKPj2Iw\nSZp2MchrcUTEFuDHmfk3hc/5Yh6SdBgyM3p9vcyjOJ7WfX8y8Ebg6iX+kMa9fexjH6t9Bmdypmmc\ny5kOfdu3L9myJTnhhOQzn0kef7xc1/bc4ui6NiKeCuwD3p2Zj5S6ZUkS8/OwYQOsWQM7dsApp5S/\nbt8FOjNfsZLhJGkaLSzA1q0wNwebN8PMDETPDY1DlSnosdRqteoe4RDOVI4zldfEuZxpZdVcNNCd\nhEveQESu9DYkaRIMUs0RQfa5k3BiC1qSRmlY1VzkiyVJ0gosLMCll0KrBRddBNu3D2dxBgtakg5b\nFdVcZEFL0oCqrOYiC1qSBlB1NRdZ0JJUwqiquciClqQ+RlnNRRa0JC2jjmousqAlaQl1VXORBS1J\nBXVXc5EFLUldTajmIgta0tRrUjUXWdCSplrTqrnIgpY0lZpazUV9CzoiLgbeRudksbuBDZn5f1UP\nJklVaXI1F/Us6IhYB8wAZ2bmC4BVwFuqH0uShm8cqrmoX0E/QudchKsj4jFgNXBv5VNJ0pCNSzUX\n9SzozHwQ+CTwY+CnwEOZeeMoBpOkYRi3ai7qWdARcRrwAWAd8DDwpYh4a2ZeVTxudnZ2/+VWq9XI\nc5JJmj5NquZ2u0273R7oOj3PSRgRbwZelZkXdT/+Y+CszHxP4RjPSSipUYZxRu2qDeOchPcAH4mI\nY4BHgfXAt4c0nyQNXZOqeaX67UHfAXwR2AHc2f30Z6seSpIGNc57zcvpucVR6gbc4pBUs2I1b9s2\nHgtzmS0On0koaWxNYjUX+VocksbSJO01L8eCljRWJr2aiyxoSWNjGqq5yIKW1HjTVM1FFrSkRpu2\nai6yoCU10rRWc5EFLalxprmaiyxoSY1hNR/IgpbUCFbzoSxoSbWympdnQUuqjdXcmwUtaeSs5nIs\naEkjZTWXZ0FLGgmreXAWtKTKWc2Hp29BR8RzImJn4e3hiHj/KIaTNN6s5pXpW9CZ+T3gDICIOAK4\nF7iu4rkkjTmreeUG3YNeD/wgM/dWMYyk8Wc1D8+ge9BvAa6uYhBJ489qHq7SC3REHAW8DvjQwV+b\nnZ3df7nVatFqtYYwmqRxsbAAW7fC3Bxccgls3AjR83So06fdbtNutwe6TumzekfEG4A/yczzDvq8\nZ/WWptg4nlG7CYZ9Vu8LgGtWNpKkSeFec/VKbXFExJPo3EE4U+04ksaBe82jUaqgM/NXmXlCZv6i\n6oEkNZfVPFo+k1BSKfPzcOGFsHat1TwqvhaHpJ6K1TwzYzWPkgUtaVlWc70saEmHsJqbwYKWdACr\nuTksaEmA1dxEFrQkq7mhLGhpilnNzWZBS1PKam4+C1qaMlbz+LCgpSliNY8XC1qaAlbzeLKgpQln\nNY8vC1qaUAsLsGWL1TzOLGhpAu3Z06nm446zmseZBS1NkGI1b9xoNY+7vgUdEWuBbcDvAQm8MzO/\nVfVgkgZTrObbb3dhngRlCvqvgH/LzOcBLwTurnYkSYOwmidXz4KOiDXAOZn5DoDMXAAeHsVgkvqz\nmidbv4I+FXggIq6MiO9GxOciYvUoBpO0PKt5OvTbgz4SOBN4b2Z+JyIuBz4MfLR40Ozs7P7LrVaL\nVqs13Ckl7Wc1j6d2u0273R7oOpGZy38x4hnAv2fmqd2PXw58ODPPLxyTvW5D0nAsLMBll8HcXKee\nZ2Ygou6pdLgigszs+R3sWdCZeX9E7I2IZ2fmfwDrgflhDimpP6t5OpV5FMf7gKsi4g46j+LYUu1I\nkha51zzd+j4OOjPvAF48glkkFVjN8pmEUsNYzVrka3FIDWI1q8iClhrAatZSLGipZlazlmNBSzWx\nmtWPBS3VwGpWGRa0NEJWswZhQUsjsljNxx9vNascC1qq2GI1n3suvOtdcMMNLs4qx4KWKnRwNZ98\nct0TaZxY0FIFlqpmF2cNyoKWhsxq1rBY0NKQWM0aNgtaGgKrWVWwoKUVsJpVpVIFHRE/Ah4BHgP2\nZeZLqhxKGgdWs6pWtqATaGXmGS7OmnZWs0ZlkD1oT0+pqWc1a5QGKegbI2JHRMxUOZDURFaz6lC2\noM/OzPsi4reAr0fEPZl5a5WDSU0xP3/gK8+5MGtUSi3QmXlf9/0DEXEd8BJg/wI9Ozu7/9hWq0Wr\n1RrqkFIdFhZg61aYm4PNm2FmBsKNPh2mdrtNu90e6DqRmb0PiFgNrMrMX0TEk4DtwMczc3v369nv\nNqRxU6zmbdusZg1fRJCZPX/ll9mDfjpwa0TsAm4DvrK4OEuTZmEBLr30N6/X7F6z6tR3iyMzfwic\nPoJZpFq516ym8ZmEmnpWs5rK1+LQVLOa1WQWtKaS1axxYEFr6ljNGhcWtKaG1axxY0FrKljNGkcW\ntCaa1axxZkFrYlnNGncWtCaO1axJYUFroljNmiQWtCaC1axJZEFr7FnNmlQWtMaW1axJZ0FrLFnN\nmgYWtMaK1axpYkFrbFjNmjalCjoiVkXEzoi4vuqBpINZzZpWZQt6E3AX8OQKZ5EOYTVrmvUt6Ig4\nEXgNsA3wnMYaCatZKlfQnwI+CDyl4lkkwGqWFvUs6Ig4H/h5Zu7EelbFrGbpQP0K+mXA6yPiNcDR\nwFMi4ouZ+fbiQbOzs/svt1otWq3WkMfUpFus5rVrYccOOOWUuieShqvdbtNutwe6TmRmuQMjXgn8\neWa+7qDPZ9nbkA62sABbt8LcHGzeDDMzEP5fTVMgIsjMnj/tgz4O2pVYQ2M1S72VfiZhZt6Sma+v\nchhNh+Je88wMbN/u4iwtxWcSaqSsZqk8X4tDI2E1S4OzoFU5q1k6PBa0KmM1SytjQasSVrO0cha0\nhspqlobHgtbQWM3ScFnQWjGrWaqGBa0VsZql6ljQOixWs1Q9C1oDs5ql0bCgVZrVLI2WBa1SrGZp\n9Cxo9WQ1S/WxoLUsq1mqlwWtQ1jNUjP0LeiIOBq4BXgicBTwL5l5cdWDqR5Ws9QcfQs6Mx8Fzs3M\n04EXAudGxMsrn0wjZTVLzVNqDzozf929eBSwCniwsok0claz1Eyl9qAj4oiI2AX8DLg5M++qdiyN\ngtUsNVvZgn4cOD0i1gA3REQrM9uLX5+dnd1/bKvVotVqDXdKDd38PGzYAGvWWM3SKLTbbdrt9kDX\nicwc7AoRHwH+NzP/svtxDnobqs/CAmzdCnNzsHlzp5wj6p5Kmj4RQWb2/NdX5lEcJwALmflQRBwD\nvAr4+JBm1AhZzdJ4KbMH/Uzgpu4e9G3A9Zn5jWrH0jAV95ovusi9Zmlc9C3ozNwNnDmCWVQBq1ka\nXz6TcEJZzdL487U4JpDVLE0GC3qCWM3SZLGgJ4TVLE0eC3rMWc3S5LKgx5jVLE02C3oMWc3SdLCg\nx4zVLE0PC3pMWM3S9LGgx4DVLE0nC7rBrGZpulnQDWU1S7KgG8ZqlrTIgm4Qq1lSkQXdAFazpKVY\n0DWzmiUtp29BR8RJEXFzRMxHxJ6IeP8oBpt0VrOkfsoU9D7gTzNzV0QcC9weEV/PzLsrnm1iWc2S\nyuhb0Jl5f2bu6l7+JXA38KyqB5tEVrOkQQy0Bx0R64Az6Jw8VgOwmiUNqvQC3d3euBbY1C3p/WZn\nZ/dfbrVatFqtIY03/hYWYOtWmJuDSy6BjRshou6pJI1au92m3W4PdJ3IzP4HRTwB+Arw1cy8/KCv\nZZnbmEbFat62zWqW9BsRQWb2zLUyj+II4PPAXQcvzlqae82ShqHMFsfZwNuAOyNiZ/dzF2fm16ob\na3y51yxpWEptcfS8Abc4gAP3mjdvhpkZ95olLa/MFofPJByC+Xm48EJYu9ZqljQ8vhbHChT3mmdm\n3GuWNFwW9GGymiVVzYIekNUsaVQs6AFYzZJGyYIuwWqWVAcLug+rWVJdLOhlWM2S6mZBL8FqltQE\nFnSB1SypSSzoLqtZUtNMfUFbzZKaaqoL2mqW1GRTWdALC7Bli9UsqdmmrqD37OlU83HHWc2Smm1q\nCrpYzRs3Ws2Smq9vQUfEFcBrgZ9n5guqH2n4itV8++0uzJLGQ5mCvhI4r+pBqmA1SxpnfQs6M2+N\niHXVjzJcVrOkcTdxe9BWs6RJMZRHcczOzu6/3Gq1aLVaw7jZgVnNkpqq3W7TbrcHuk6ps3p3tziu\nX+pOwiac1XthAS67rHNG7S1bPKO2pOabirN6W82SJlXfPeiIuAb4JvDsiNgbERuqH6s/95olTboy\nj+K4YBSDDMJqljQNxupRHFazpGkyNnvQVrOkadP4graaJU2rRhd08fWarWZJ06aRBe1ZTiSpgQXt\nWU4kqaMxBW01S9KBGlHQVrMkHarWgraaJWl5tRW01SxJvY28oK1mSSpnpAVtNUtSeSMpaKtZkgZX\neUFbzZJ0eCoraKtZklamb0FHxHnA5cAqYFtmfqLfdaxmSVq5ngUdEauAvwbOA34XuCAinrfc8U2q\n5kFPzjgKzlSOM5XXxLmcaXj6bXG8BPh+Zv4oM/cBfw+8YakD5+fhpS+Fm27qVPPGjfWeuLWJ3xBn\nKseZymviXM40PP0W6N8G9hY+/kn3cwdoSjVL0iTptwedZW5ksZpdmCVpeCJz+TU4Is4CZjPzvO7H\nFwOPF+8ojIhSi7gk6UCZ2XMjuN8CfSTwPeAPgZ8C3wYuyMy7hzmkJOlQPbc4MnMhIt4L3EDnYXaf\nd3GWpNHoWdCSpPqs6JmEEXFeRNwTEf8ZER8a1lArERFXRMTPImJ33bMsioiTIuLmiJiPiD0R8f4G\nzHR0RNwWEbsi4q6IuLTumRZFxKqI2BkR19c9C0BE/Cgi7uzO9O265wGIiLURcW1E3N39/p3VgJme\n0/07Wnx7uCE/6xd3/+3tjoirI+KJDZhpU3eePRGxadkDM/Ow3uhseXwfWAc8AdgFPO9wb29Yb8A5\nwBnA7rpnKcz0DOD07uVj6ezrN+HvanX3/ZHAt4CX1z1Td54/A64Cvlz3LN15fggcX/ccB830BeCd\nhe/fmrpnOmi+I4D7gJNqnmMd8F/AE7sf/wPwjppnej6wGzi6u45+HThtqWNXUtCln8QySpl5K/A/\ndc9RlJn3Z+au7uVfAncDz6p3KsjMX3cvHkXnB+XBGscBICJOBF4DbANqfKrTIRozS0SsAc7JzCug\nc19RZj5c81gHWw/8IDP39j2yWo8A+4DV3Qc9rAburXckngvclpmPZuZjwC3Am5Y6cCULdKknsehA\nEbGOTuHfVu8kEBFHRMQu4GfAzZl5V90zAZ8CPgg8XvcgBQncGBE7ImKm7mGAU4EHIuLKiPhuRHwu\nIlbXPdRB3gJcXfcQmfkg8Engx3QeifZQZt5Y71TsAc6JiOO737fXAicudeBKFmjvXRxQRBwLXAts\n6pZ0rTLz8cw8nc4PxysiolXnPBFxPvDzzNxJg4oVODszzwBeDbwnIs6peZ4jgTOBT2fmmcCvgA/X\nO9JvRMRRwOuALzVgltOAD9DZ6ngWcGxEvLXOmTLzHuATwHbgq8BOlgmSlSzQ9wInFT4+iU5FawkR\n8QTgH4G/y8x/rnueou5/j/8VeFHNo7wMeH1E/BC4BviDiPhizTORmfd13z8AXEdne69OPwF+kpnf\n6X58LZ0FuyleDdze/fuq24uAb2bmf2fmAvBPdH7OapWZV2TmizLzlcBDdO6XOsRKFugdwO9ExLru\nb8w3A19ewe1NrIgI4PPAXZl5ed3zAETECRGxtnv5GOBVdH6T1yYz/yIzT8rMU+n8F/mmzHx7nTNF\nxOqIeHL38pOAP6JzB09tMvN+YG9EPLv7qfXAfI0jHewCOr9gm+Ae4KyIOKb773A9UPtWXkQ8rfv+\nZOCNLLMddNhnVMmGPoklIq4BXgk8NSL2Ah/NzCtrHuts4G3AnRGxuAhenJlfq3GmZwJfiIgj6Pyi\n/tvM/EaN8yylCdtoTweu6/zb5kjgqszcXu9IALwPuKobRz8ANtQ8D7D/l9h6oAl79WTmHd3/he2g\ns43wXeCz9U4FwLUR8VQ6d2C+OzMfWeogn6giSQ01kpPGSpIG5wItSQ3lAi1JDeUCLUkN5QItSQ3l\nAi1JDeUCLUkN5QItSQ31/1hG4J4tZvXzAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x7f1320bda750>"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment