Skip to content

Instantly share code, notes, and snippets.

@acstrahl
Created July 11, 2025 17:41
Show Gist options
  • Select an option

  • Save acstrahl/34beb0c7351cff0649039f4931aacf88 to your computer and use it in GitHub Desktop.

Select an option

Save acstrahl/34beb0c7351cff0649039f4931aacf88 to your computer and use it in GitHub Desktop.
Star Wars Survey Project Lab Demo Solution
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Exploration"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RespondentID</th>\n",
" <th>Have you seen any of the 6 films in the Star Wars franchise?</th>\n",
" <th>Do you consider yourself to be a fan of the Star Wars film franchise?</th>\n",
" <th>Which of the following Star Wars films have you seen? Please select all that apply.</th>\n",
" <th>Unnamed: 4</th>\n",
" <th>Unnamed: 5</th>\n",
" <th>Unnamed: 6</th>\n",
" <th>Unnamed: 7</th>\n",
" <th>Unnamed: 8</th>\n",
" <th>Please rank the Star Wars films in order of preference with 1 being your favorite film in the franchise and 6 being your least favorite film.</th>\n",
" <th>...</th>\n",
" <th>Unnamed: 28</th>\n",
" <th>Which character shot first?</th>\n",
" <th>Are you familiar with the Expanded Universe?</th>\n",
" <th>Do you consider yourself to be a fan of the Expanded Universe?</th>\n",
" <th>Do you consider yourself to be a fan of the Star Trek franchise?</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Household Income</th>\n",
" <th>Education</th>\n",
" <th>Location (Census Region)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3292879998</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Star Wars: Episode I The Phantom Menace</td>\n",
" <td>Star Wars: Episode II Attack of the Clones</td>\n",
" <td>Star Wars: Episode III Revenge of the Sith</td>\n",
" <td>Star Wars: Episode IV A New Hope</td>\n",
" <td>Star Wars: Episode V The Empire Strikes Back</td>\n",
" <td>Star Wars: Episode VI Return of the Jedi</td>\n",
" <td>3.0</td>\n",
" <td>...</td>\n",
" <td>Very favorably</td>\n",
" <td>I don't understand this question</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Male</td>\n",
" <td>18-29</td>\n",
" <td>NaN</td>\n",
" <td>High school degree</td>\n",
" <td>South Atlantic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>3292879538</td>\n",
" <td>No</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>Yes</td>\n",
" <td>Male</td>\n",
" <td>18-29</td>\n",
" <td>$0 - $24,999</td>\n",
" <td>Bachelor degree</td>\n",
" <td>West South Central</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3292765271</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Star Wars: Episode I The Phantom Menace</td>\n",
" <td>Star Wars: Episode II Attack of the Clones</td>\n",
" <td>Star Wars: Episode III Revenge of the Sith</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>1.0</td>\n",
" <td>...</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>I don't understand this question</td>\n",
" <td>No</td>\n",
" <td>NaN</td>\n",
" <td>No</td>\n",
" <td>Male</td>\n",
" <td>18-29</td>\n",
" <td>$0 - $24,999</td>\n",
" <td>High school degree</td>\n",
" <td>West North Central</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3292763116</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Star Wars: Episode I The Phantom Menace</td>\n",
" <td>Star Wars: Episode II Attack of the Clones</td>\n",
" <td>Star Wars: Episode III Revenge of the Sith</td>\n",
" <td>Star Wars: Episode IV A New Hope</td>\n",
" <td>Star Wars: Episode V The Empire Strikes Back</td>\n",
" <td>Star Wars: Episode VI Return of the Jedi</td>\n",
" <td>5.0</td>\n",
" <td>...</td>\n",
" <td>Very favorably</td>\n",
" <td>I don't understand this question</td>\n",
" <td>No</td>\n",
" <td>NaN</td>\n",
" <td>Yes</td>\n",
" <td>Male</td>\n",
" <td>18-29</td>\n",
" <td>$100,000 - $149,999</td>\n",
" <td>Some college or Associate degree</td>\n",
" <td>West North Central</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>3292731220</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>Star Wars: Episode I The Phantom Menace</td>\n",
" <td>Star Wars: Episode II Attack of the Clones</td>\n",
" <td>Star Wars: Episode III Revenge of the Sith</td>\n",
" <td>Star Wars: Episode IV A New Hope</td>\n",
" <td>Star Wars: Episode V The Empire Strikes Back</td>\n",
" <td>Star Wars: Episode VI Return of the Jedi</td>\n",
" <td>5.0</td>\n",
" <td>...</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Greedo</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Male</td>\n",
" <td>18-29</td>\n",
" <td>$100,000 - $149,999</td>\n",
" <td>Some college or Associate degree</td>\n",
" <td>West North Central</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" RespondentID Have you seen any of the 6 films in the Star Wars franchise? \\\n",
"0 3292879998 Yes \n",
"1 3292879538 No \n",
"2 3292765271 Yes \n",
"3 3292763116 Yes \n",
"4 3292731220 Yes \n",
"\n",
" Do you consider yourself to be a fan of the Star Wars film franchise? \\\n",
"0 Yes \n",
"1 NaN \n",
"2 No \n",
"3 Yes \n",
"4 Yes \n",
"\n",
" Which of the following Star Wars films have you seen? Please select all that apply. \\\n",
"0 Star Wars: Episode I The Phantom Menace \n",
"1 NaN \n",
"2 Star Wars: Episode I The Phantom Menace \n",
"3 Star Wars: Episode I The Phantom Menace \n",
"4 Star Wars: Episode I The Phantom Menace \n",
"\n",
" Unnamed: 4 \\\n",
"0 Star Wars: Episode II Attack of the Clones \n",
"1 NaN \n",
"2 Star Wars: Episode II Attack of the Clones \n",
"3 Star Wars: Episode II Attack of the Clones \n",
"4 Star Wars: Episode II Attack of the Clones \n",
"\n",
" Unnamed: 5 \\\n",
"0 Star Wars: Episode III Revenge of the Sith \n",
"1 NaN \n",
"2 Star Wars: Episode III Revenge of the Sith \n",
"3 Star Wars: Episode III Revenge of the Sith \n",
"4 Star Wars: Episode III Revenge of the Sith \n",
"\n",
" Unnamed: 6 \\\n",
"0 Star Wars: Episode IV A New Hope \n",
"1 NaN \n",
"2 NaN \n",
"3 Star Wars: Episode IV A New Hope \n",
"4 Star Wars: Episode IV A New Hope \n",
"\n",
" Unnamed: 7 \\\n",
"0 Star Wars: Episode V The Empire Strikes Back \n",
"1 NaN \n",
"2 NaN \n",
"3 Star Wars: Episode V The Empire Strikes Back \n",
"4 Star Wars: Episode V The Empire Strikes Back \n",
"\n",
" Unnamed: 8 \\\n",
"0 Star Wars: Episode VI Return of the Jedi \n",
"1 NaN \n",
"2 NaN \n",
"3 Star Wars: Episode VI Return of the Jedi \n",
"4 Star Wars: Episode VI Return of the Jedi \n",
"\n",
" Please rank the Star Wars films in order of preference with 1 being your favorite film in the franchise and 6 being your least favorite film. \\\n",
"0 3.0 \n",
"1 NaN \n",
"2 1.0 \n",
"3 5.0 \n",
"4 5.0 \n",
"\n",
" ... Unnamed: 28 Which character shot first? \\\n",
"0 ... Very favorably I don't understand this question \n",
"1 ... NaN NaN \n",
"2 ... Unfamiliar (N/A) I don't understand this question \n",
"3 ... Very favorably I don't understand this question \n",
"4 ... Somewhat favorably Greedo \n",
"\n",
" Are you familiar with the Expanded Universe? \\\n",
"0 Yes \n",
"1 NaN \n",
"2 No \n",
"3 No \n",
"4 Yes \n",
"\n",
" Do you consider yourself to be a fan of the Expanded Universe? \\\n",
"0 No \n",
"1 NaN \n",
"2 NaN \n",
"3 NaN \n",
"4 No \n",
"\n",
" Do you consider yourself to be a fan of the Star Trek franchise? Gender \\\n",
"0 No Male \n",
"1 Yes Male \n",
"2 No Male \n",
"3 Yes Male \n",
"4 No Male \n",
"\n",
" Age Household Income Education \\\n",
"0 18-29 NaN High school degree \n",
"1 18-29 $0 - $24,999 Bachelor degree \n",
"2 18-29 $0 - $24,999 High school degree \n",
"3 18-29 $100,000 - $149,999 Some college or Associate degree \n",
"4 18-29 $100,000 - $149,999 Some college or Associate degree \n",
"\n",
" Location (Census Region) \n",
"0 South Atlantic \n",
"1 West South Central \n",
"2 West North Central \n",
"3 West North Central \n",
"4 West North Central \n",
"\n",
"[5 rows x 38 columns]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"star_wars = pd.read_csv(\"star_wars.csv\", encoding=\"ISO-8859-1\")\n",
"star_wars.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 1186 entries, 0 to 1185\n",
"Data columns (total 38 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 RespondentID 1186 non-null int64 \n",
" 1 Have you seen any of the 6 films in the Star Wars franchise? 1186 non-null object \n",
" 2 Do you consider yourself to be a fan of the Star Wars film franchise? 836 non-null object \n",
" 3 Which of the following Star Wars films have you seen? Please select all that apply. 673 non-null object \n",
" 4 Unnamed: 4 571 non-null object \n",
" 5 Unnamed: 5 550 non-null object \n",
" 6 Unnamed: 6 607 non-null object \n",
" 7 Unnamed: 7 758 non-null object \n",
" 8 Unnamed: 8 738 non-null object \n",
" 9 Please rank the Star Wars films in order of preference with 1 being your favorite film in the franchise and 6 being your least favorite film. 835 non-null float64\n",
" 10 Unnamed: 10 836 non-null float64\n",
" 11 Unnamed: 11 835 non-null float64\n",
" 12 Unnamed: 12 836 non-null float64\n",
" 13 Unnamed: 13 836 non-null float64\n",
" 14 Unnamed: 14 836 non-null float64\n",
" 15 Please state whether you view the following characters favorably, unfavorably, or are unfamiliar with him/her. 829 non-null object \n",
" 16 Unnamed: 16 831 non-null object \n",
" 17 Unnamed: 17 831 non-null object \n",
" 18 Unnamed: 18 823 non-null object \n",
" 19 Unnamed: 19 825 non-null object \n",
" 20 Unnamed: 20 814 non-null object \n",
" 21 Unnamed: 21 826 non-null object \n",
" 22 Unnamed: 22 820 non-null object \n",
" 23 Unnamed: 23 812 non-null object \n",
" 24 Unnamed: 24 827 non-null object \n",
" 25 Unnamed: 25 830 non-null object \n",
" 26 Unnamed: 26 821 non-null object \n",
" 27 Unnamed: 27 814 non-null object \n",
" 28 Unnamed: 28 826 non-null object \n",
" 29 Which character shot first? 828 non-null object \n",
" 30 Are you familiar with the Expanded Universe? 828 non-null object \n",
" 31 Do you consider yourself to be a fan of the Expanded Universe? 213 non-null object \n",
" 32 Do you consider yourself to be a fan of the Star Trek franchise? 1068 non-null object \n",
" 33 Gender 1046 non-null object \n",
" 34 Age 1046 non-null object \n",
" 35 Household Income 858 non-null object \n",
" 36 Education 1036 non-null object \n",
" 37 Location (Census Region) 1043 non-null object \n",
"dtypes: float64(6), int64(1), object(31)\n",
"memory usage: 352.2+ KB\n"
]
}
],
"source": [
"star_wars.info()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Have you seen any of the 6 films in the Star Wars franchise?\n",
"Yes 936\n",
"No 250\n",
"Name: count, dtype: int64"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"star_wars[\"Have you seen any of the 6 films in the Star Wars franchise?\"].value_counts(dropna=False)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Do you consider yourself to be a fan of the Star Wars film franchise?\n",
"Yes 552\n",
"NaN 350\n",
"No 284\n",
"Name: count, dtype: int64"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"star_wars[\"Do you consider yourself to be a fan of the Star Wars film franchise?\"].value_counts(dropna=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Cleaning"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Do you consider yourself to be a fan of the Star Wars film franchise?\n",
"True 552\n",
"NaN 350\n",
"False 284\n",
"Name: count, dtype: int64"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"yes_no = {\"Yes\": True, \"No\": False, True: True, False: False} # True and False keys ensure correct values aren't overwritten if cell is run more than once\n",
"\n",
"for col in [\n",
" \"Have you seen any of the 6 films in the Star Wars franchise?\",\n",
" \"Do you consider yourself to be a fan of the Star Wars film franchise?\",\n",
" \"Are you familiar with the Expanded Universe?\",\n",
" \"Do you consider yourself to be a fan of the Star Trek franchise?\"\n",
" \n",
" ]:\n",
" star_wars[col] = star_wars[col].map(yes_no, na_action='ignore')\n",
"\n",
"star_wars[\"Do you consider yourself to be a fan of the Star Wars film franchise?\"].value_counts(dropna=False)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Which of the following Star Wars films have you seen? Please select all that apply.</th>\n",
" <th>Unnamed: 4</th>\n",
" <th>Unnamed: 5</th>\n",
" <th>Unnamed: 6</th>\n",
" <th>Unnamed: 7</th>\n",
" <th>Unnamed: 8</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Which of the following Star Wars films have you seen? Please select all that apply. \\\n",
"0 True \n",
"1 False \n",
"2 True \n",
"3 True \n",
"4 True \n",
"\n",
" Unnamed: 4 Unnamed: 5 Unnamed: 6 Unnamed: 7 Unnamed: 8 \n",
"0 True True True True True \n",
"1 False False False False False \n",
"2 True True False False False \n",
"3 True True True True True \n",
"4 True True True True True "
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"movie_mapping = {\n",
" \"Star Wars: Episode I The Phantom Menace\": True,\n",
" np.nan: False,\n",
" \"Star Wars: Episode II Attack of the Clones\": True,\n",
" \"Star Wars: Episode III Revenge of the Sith\": True,\n",
" \"Star Wars: Episode IV A New Hope\": True,\n",
" \"Star Wars: Episode V The Empire Strikes Back\": True,\n",
" \"Star Wars: Episode VI Return of the Jedi\": True,\n",
" True: True,\n",
" False: False\n",
"}\n",
"\n",
"for col in star_wars.columns[3:9]:\n",
" star_wars[col] = star_wars[col].map(movie_mapping)\n",
" \n",
"star_wars.iloc[:,3:9].head()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>seen_1</th>\n",
" <th>seen_2</th>\n",
" <th>seen_3</th>\n",
" <th>seen_4</th>\n",
" <th>seen_5</th>\n",
" <th>seen_6</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" seen_1 seen_2 seen_3 seen_4 seen_5 seen_6\n",
"0 True True True True True True\n",
"1 False False False False False False\n",
"2 True True True False False False\n",
"3 True True True True True True\n",
"4 True True True True True True"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"star_wars = star_wars.rename(columns={\n",
" \"Which of the following Star Wars films have you seen? Please select all that apply.\": \"seen_1\",\n",
" \"Unnamed: 4\": \"seen_2\",\n",
" \"Unnamed: 5\": \"seen_3\",\n",
" \"Unnamed: 6\": \"seen_4\",\n",
" \"Unnamed: 7\": \"seen_5\",\n",
" \"Unnamed: 8\": \"seen_6\"\n",
" })\n",
"\n",
"star_wars.iloc[:,3:9].head()"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>ranking_ep1</th>\n",
" <th>ranking_ep2</th>\n",
" <th>ranking_ep3</th>\n",
" <th>ranking_ep4</th>\n",
" <th>ranking_ep5</th>\n",
" <th>ranking_ep6</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3.0</td>\n",
" <td>2.0</td>\n",
" <td>1.0</td>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>6.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>3.0</td>\n",
" <td>4.0</td>\n",
" <td>5.0</td>\n",
" <td>6.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>5.0</td>\n",
" <td>6.0</td>\n",
" <td>1.0</td>\n",
" <td>2.0</td>\n",
" <td>4.0</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>5.0</td>\n",
" <td>4.0</td>\n",
" <td>6.0</td>\n",
" <td>2.0</td>\n",
" <td>1.0</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" ranking_ep1 ranking_ep2 ranking_ep3 ranking_ep4 ranking_ep5 \\\n",
"0 3.0 2.0 1.0 4.0 5.0 \n",
"1 NaN NaN NaN NaN NaN \n",
"2 1.0 2.0 3.0 4.0 5.0 \n",
"3 5.0 6.0 1.0 2.0 4.0 \n",
"4 5.0 4.0 6.0 2.0 1.0 \n",
"\n",
" ranking_ep6 \n",
"0 6.0 \n",
"1 NaN \n",
"2 6.0 \n",
"3 3.0 \n",
"4 3.0 "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"star_wars = star_wars.rename(columns={\n",
" \"Please rank the Star Wars films in order of preference with 1 being your favorite film in the franchise and 6 being your least favorite film.\": \"ranking_ep1\",\n",
" \"Unnamed: 10\": \"ranking_ep2\",\n",
" \"Unnamed: 11\": \"ranking_ep3\",\n",
" \"Unnamed: 12\": \"ranking_ep4\",\n",
" \"Unnamed: 13\": \"ranking_ep5\",\n",
" \"Unnamed: 14\": \"ranking_ep6\"\n",
" })\n",
"\n",
"star_wars.iloc[:,9:15].head()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"RespondentID int64\n",
"Have you seen any of the 6 films in the Star Wars franchise? bool\n",
"Do you consider yourself to be a fan of the Star Wars film franchise? object\n",
"seen_1 bool\n",
"seen_2 bool\n",
"seen_3 bool\n",
"seen_4 bool\n",
"seen_5 bool\n",
"seen_6 bool\n",
"ranking_ep1 float64\n",
"ranking_ep2 float64\n",
"ranking_ep3 float64\n",
"ranking_ep4 float64\n",
"ranking_ep5 float64\n",
"ranking_ep6 float64\n",
"Please state whether you view the following characters favorably, unfavorably, or are unfamiliar with him/her. object\n",
"Unnamed: 16 object\n",
"Unnamed: 17 object\n",
"Unnamed: 18 object\n",
"Unnamed: 19 object\n",
"Unnamed: 20 object\n",
"Unnamed: 21 object\n",
"Unnamed: 22 object\n",
"Unnamed: 23 object\n",
"Unnamed: 24 object\n",
"Unnamed: 25 object\n",
"Unnamed: 26 object\n",
"Unnamed: 27 object\n",
"Unnamed: 28 object\n",
"Which character shot first? object\n",
"Are you familiar with the Expanded Universe? object\n",
"Do you consider yourself to be a fan of the Expanded Universe? object\n",
"Do you consider yourself to be a fan of the Star Trek franchise? object\n",
"Gender object\n",
"Age object\n",
"Household Income object\n",
"Education object\n",
"Location (Census Region) object\n",
"dtype: object"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"star_wars.dtypes"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Han Solo</th>\n",
" <th>Luke Skywalker</th>\n",
" <th>Princess Leia Organa</th>\n",
" <th>Anakin Skywalker</th>\n",
" <th>Obi Wan Kenobi</th>\n",
" <th>Emperor Palpatine</th>\n",
" <th>Darth Vader</th>\n",
" <th>Lando Calrissian</th>\n",
" <th>Boba Fett</th>\n",
" <th>C-3P0</th>\n",
" <th>R2 D2</th>\n",
" <th>Jar Jar Binks</th>\n",
" <th>Padme Amidala</th>\n",
" <th>Yoda</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Somewhat favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" <td>Unfamiliar (N/A)</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Somewhat unfavorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very favorably</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Very favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Somewhat unfavorably</td>\n",
" <td>Very favorably</td>\n",
" <td>Very unfavorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Neither favorably nor unfavorably (neutral)</td>\n",
" <td>Very favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Very unfavorably</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Somewhat favorably</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Han Solo Luke Skywalker Princess Leia Organa \\\n",
"0 Very favorably Very favorably Very favorably \n",
"1 NaN NaN NaN \n",
"2 Somewhat favorably Somewhat favorably Somewhat favorably \n",
"3 Very favorably Very favorably Very favorably \n",
"4 Very favorably Somewhat favorably Somewhat favorably \n",
"\n",
" Anakin Skywalker Obi Wan Kenobi Emperor Palpatine \\\n",
"0 Very favorably Very favorably Very favorably \n",
"1 NaN NaN NaN \n",
"2 Somewhat favorably Somewhat favorably Unfamiliar (N/A) \n",
"3 Very favorably Very favorably Somewhat favorably \n",
"4 Somewhat unfavorably Very favorably Very unfavorably \n",
"\n",
" Darth Vader Lando Calrissian \\\n",
"0 Very favorably Unfamiliar (N/A) \n",
"1 NaN NaN \n",
"2 Unfamiliar (N/A) Unfamiliar (N/A) \n",
"3 Very favorably Somewhat favorably \n",
"4 Somewhat favorably Neither favorably nor unfavorably (neutral) \n",
"\n",
" Boba Fett C-3P0 R2 D2 \\\n",
"0 Unfamiliar (N/A) Very favorably Very favorably \n",
"1 NaN NaN NaN \n",
"2 Unfamiliar (N/A) Unfamiliar (N/A) Unfamiliar (N/A) \n",
"3 Somewhat unfavorably Very favorably Very favorably \n",
"4 Very favorably Somewhat favorably Somewhat favorably \n",
"\n",
" Jar Jar Binks Padme Amidala Yoda \n",
"0 Very favorably Very favorably Very favorably \n",
"1 NaN NaN NaN \n",
"2 Unfamiliar (N/A) Unfamiliar (N/A) Unfamiliar (N/A) \n",
"3 Very favorably Very favorably Very favorably \n",
"4 Very unfavorably Somewhat favorably Somewhat favorably "
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Renaming the rest of the columns for completeness's sake...\n",
"star_wars = star_wars.rename(columns={\n",
" 'Please state whether you view the following characters favorably, unfavorably, or are unfamiliar with him/her.': 'Han Solo',\n",
" 'Unnamed: 16': 'Luke Skywalker',\n",
" 'Unnamed: 17': 'Princess Leia Organa',\n",
" 'Unnamed: 18': 'Anakin Skywalker',\n",
" 'Unnamed: 19': 'Obi Wan Kenobi',\n",
" 'Unnamed: 20': 'Emperor Palpatine',\n",
" 'Unnamed: 21': 'Darth Vader',\n",
" 'Unnamed: 22': 'Lando Calrissian',\n",
" 'Unnamed: 23': 'Boba Fett',\n",
" 'Unnamed: 24': 'C-3P0',\n",
" 'Unnamed: 25': 'R2 D2',\n",
" 'Unnamed: 26': 'Jar Jar Binks',\n",
" 'Unnamed: 27': 'Padme Amidala',\n",
" 'Unnamed: 28': 'Yoda'\n",
"})\n",
"\n",
"star_wars.iloc[:,15:29].head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analysis"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Average Ranking for Each Movie"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ranking_ep5 2.513158\n",
"ranking_ep6 3.047847\n",
"ranking_ep4 3.272727\n",
"ranking_ep1 3.732934\n",
"ranking_ep2 4.087321\n",
"ranking_ep3 4.341317\n",
"dtype: float64"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mean_ranking = star_wars[star_wars.columns[9:15]].mean().sort_values()\n",
"mean_ranking"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAEpCAYAAAByYj1DAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABU+klEQVR4nO3dfVxO9/8H8NfV/d2V0v0sZUUlpcVGMw1FJixMNCNGbdIw3758ze878WVh8bVlVtbXSsswNw1zW1fN3Qyp1qK2EEM0I0m6vc7vD+vMpfvCFdfr+Xhcj0fncz6fz3mfc2W99/l8zjkSQRAEEBEREakwNWUHQERERKRsTIiIiIhI5TEhIiIiIpXHhIiIiIhUHhMiIiIiUnlMiIiIiEjlMSEiIiIilceEiIiIiFQeEyIiIiJSeUyIiOiZVlBQAIlEgsjIyEbrpaWlQSKRIC0t7ckE1kq//fYbhgwZgg4dOkAikSApKUnZISmYPHkyDAwMlB1Gm8XFxUEikaCgoEDZodATwoSI6BFZu3YtJBIJ+vTpo+xQ2h1bW1tIJBLxo6+vj5dffhkbNmxQdmhPncDAQGRnZ2Pp0qVISEhA7969661Xmwg29Fm2bNkTjrx5BgwYAIlEgq5du9a7/+DBg+I5bN269QlHR88yDWUHQPSsSExMhK2tLU6cOIH8/HzY29srO6R2xc3NDf/4xz8AAIWFhYiNjUVgYCAqKioQFBSk5OgAT09P3Lt3D1paWsoOpUH37t3Djz/+iAULFiA0NLRZbQICAjBs2LA65S+++OKjDu+R0dHRQX5+Pk6cOIGXX35ZYV9iYiJ0dHRQXl7+WGOYOHEixo8fD21t7cd6HGo/mBARPQIXLlzAsWPHsH37drz77rtITEzEwoULn2gMcrkclZWV0NHReaLHba5OnTrh7bffFrcnT56MF154Af/973/bRUKkpqbWbq9drT/++AMAYGRk1Ow27u7uCtf9aWBnZ4fq6mp88803CglReXk5duzYAV9fX2zbtu2xxqCurg51dfXHegxqXzhlRvQIJCYmwtjYGL6+vnjzzTeRmJgo7quqqkLHjh0xZcqUOu1KSkqgo6ODsLAwsayiogILFy6Evb09tLW1YW1tjblz56KiokKhrUQiQWhoKBITE+Hs7AxtbW3s27cPABAZGYlXXnkFJiYm0NXVRa9eveqdXrh37x5mzpwJU1NTSKVSjBw5EleuXIFEIkF4eLhC3StXruCdd96BhYUFtLW14ezsjPXr17f6mpmZmcHR0RHnzp1TKD98+DDGjh2Lzp07i+f/wQcf4N69ewr1ateqXLlyBX5+fjAwMICZmRnCwsJQU1PT6LEFQUBwcDC0tLSwfft2APWvIRowYAB69OiBM2fOYODAgdDT00OnTp2wYsWKOn1evHgRI0eOhL6+PszNzfHBBx9g//79zV6XlJGRgddffx2GhoYwMDCAl5cXjh8/Lu4PDw+HjY0NAOCf//wnJBIJbG1tm+y3Ob777jv4+vriueeeg7a2Nuzs7PCf//yn3uv4008/YdiwYTA2Noa+vj5cXV3x6aef1qnXmu/lQQEBAdi8eTPkcrlYtmvXLpSVlcHf37/eNk1dw1OnTkEikSA+Pr5O29rvavfu3QAaXkO0d+9e9O/fH/r6+pBKpfD19UVOTk6zz4vaL44QET0CiYmJGD16NLS0tBAQEIAvvvgCJ0+exEsvvQRNTU2MGjUK27dvR0xMjMKUTFJSEioqKjB+/HgA90d5Ro4ciSNHjiA4OBhOTk7Izs7Gf//7X/z66691FtDKZDJs2bIFoaGhMDU1Ff9Afvrppxg5ciQmTJiAyspKbNq0CWPHjsXu3bvh6+srtp88eTK2bNmCiRMnom/fvvjhhx8U9te6fv06+vbtKyZhZmZm2Lt3L6ZOnYqSkhLMnj27xdesuroaly9fhrGxsUL5t99+i7KyMkyfPh0mJiY4ceIEoqKicPnyZXz77bcKdWtqauDj44M+ffogMjISycnJWLlyJezs7DB9+vR6j1tTU4N33nkHmzdvFkcbGnPr1i0MHToUo0ePhr+/P7Zu3Yp58+bBxcUFr7/+OgDg7t27GDRoEAoLCzFr1ixYWlpi48aNSE1Nbda1yMnJQf/+/WFoaIi5c+dCU1MTMTExGDBgAH744Qf06dMHo0ePhpGRET744ANxGqw5i5fLyspw48aNOuVGRkbQ0Lj/JyAuLg4GBgaYM2cODAwMIJPJ8NFHH6GkpASffPKJ2ObgwYMYPnw4rKysxPM8e/Ysdu/ejVmzZilc45Z+Lw976623EB4ejrS0NAwaNAgAsHHjRnh5ecHc3LxV17B379544YUXsGXLFgQGBiq037x5M4yNjeHj49NgTAkJCQgMDISPjw+WL1+OsrIyfPHFF3j11VeRkZHxyBJUUhKBiNrk1KlTAgDh4MGDgiAIglwuF55//nlh1qxZYp39+/cLAIRdu3YptB02bJjwwgsviNsJCQmCmpqacPjwYYV60dHRAgDh6NGjYhkAQU1NTcjJyakTU1lZmcJ2ZWWl0KNHD2HQoEFiWXp6ugBAmD17tkLdyZMnCwCEhQsXimVTp04VrKyshBs3bijUHT9+vNChQ4c6x3uYjY2NMGTIEOGPP/4Q/vjjDyE7O1uYOHGiAECYMWNGo7ELgiBEREQIEolEuHjxolgWGBgoABAWL16sUPfFF18UevXqJW5fuHBBACB88sknQlVVlTBu3DhBV1dX2L9/v0K71NRUAYCQmpoqlr322msCAGHDhg1iWUVFhWBpaSmMGTNGLFu5cqUAQEhKShLL7t27Jzg6Otbpsz5+fn6ClpaWcO7cObHs6tWrglQqFTw9Pes9l6bU1m3o8+OPP4p167vm7777rqCnpyeUl5cLgiAI1dXVQpcuXQQbGxvh1q1bCnXlcrn4c3O/l4a89tprgrOzsyAIgtC7d29h6tSpgiAIwq1btwQtLS0hPj5e/K6+/fZbsV1zr+H8+fMFTU1N4ebNm2JZRUWFYGRkJLzzzjti2VdffSUAEC5cuCAIgiDcuXNHMDIyEoKCghTivXbtmtChQ4c65fT04ZQZURslJibCwsICAwcOBHB/KmvcuHHYtGmTOEUwaNAgmJqaYvPmzWK7W7du4eDBgxg3bpxY9u2338LJyQmOjo64ceOG+Kn9P+SHRxxee+01dO/evU5Murq6Cse5ffs2+vfvj9OnT4vltdNrISEhCm3ff/99hW1BELBt2zaMGDECgiAoxOXj44Pbt28r9NuQAwcOwMzMDGZmZnBxcUFCQgKmTJmiMALxcOx3797FjRs38Morr0AQBGRkZNTp97333lPY7t+/P86fP1+nXmVlpThKtmfPHgwZMqTJmAHAwMBAYQ2OlpYWXn75ZYVj7Nu3D506dcLIkSPFMh0dnWatjaqpqcGBAwfg5+eHF154QSy3srLCW2+9hSNHjqCkpKRZsdYnODgYBw8erPN58PfmwWt+584d3LhxA/3790dZWRlyc3MB3J+OunDhAmbPnl1nDZNEIqlz3OZ+L4156623sH37dlRWVmLr1q1QV1fHqFGj6tRryTUcN24cqqqqxKlS4P7vZnFxscK/xYcdPHgQxcXFCAgIUPg3oK6ujj59+jR7NJDaL06ZEbVBTU0NNm3ahIEDB+LChQtieZ8+fbBy5UqkpKRgyJAh0NDQwJgxY7Bx40ZUVFRAW1sb27dvR1VVlcJ/hH/77TecPXsWZmZm9R6vqKhIYbtLly711tu9ezeWLFmCzMxMhbVHD/7hunjxItTU1Or08fDdcX/88QeKi4uxbt06rFu3rllx1adPnz5YsmQJampq8Msvv2DJkiW4detWnbu6Ll26hI8++gg7d+7ErVu3FPbdvn1bYVtHR6fOtTI2Nq7TDgAiIiJQWlqKvXv3YsCAAU3GW+v555+v8wff2NgYP//8s7h98eJF2NnZ1anXnDsN//jjD5SVlcHBwaHOPicnJ8jlcvz+++9wdnZudswP6tq1K7y9vRutk5OTg//7v/+DTCark3zVXvPatV49evRo8pgt+V4aM378eISFhWHv3r1ITEzE8OHDIZVK69RryTXs2bMnHB0dsXnzZkydOhXA/ekyU1NT8X886vPbb78BQIN1DA0NW3Ru1P4wISJqA5lMhsLCQmzatAmbNm2qsz8xMVEciRg/fjxiYmKwd+9e+Pn5YcuWLXB0dETPnj3F+nK5HC4uLli1alW9x7O2tlbYfvD/7GsdPnwYI0eOhKenJ9auXQsrKytoamriq6++wsaNG1t8jrWLWt9+++066y5qubq6NtmPqamp+IfZx8cHjo6OGD58OD799FPMmTMHwP0Ec/Dgwbh58ybmzZsHR0dH6Ovr48qVK5g8ebLCAlsALboLyMfHB/v27cOKFSswYMCAZt9R1tAxBEFo9rHbs+LiYrz22mswNDTE4sWLYWdnBx0dHZw+fRrz5s2rc82b41HdnWVlZYUBAwZg5cqVOHr06CO7s2zcuHFYunQpbty4AalUip07dyIgIEBcU1Wf2uuQkJAAS0vLOvsba0tPB36DRG2QmJgIc3NzfP7553X2bd++HTt27EB0dDR0dXXh6ekJKysrbN68Ga+++ipkMhkWLFig0MbOzg5ZWVnw8vKqdxqiObZt2wYdHR3s379f4RkqX331lUI9GxsbyOVyXLhwQeEhePn5+Qr1zMzMIJVKUVNT0+RIQ0v4+vritddew8cff4x3330X+vr6yM7Oxq+//or4+HhMmjRJrHvw4ME2H69v37547733MHz4cIwdOxY7dux4ZH/EbGxscObMGQiCoPC9PXwt62NmZgY9PT3k5eXV2Zebmws1NbU6ifCjlJaWhj///BPbt2+Hp6enWP7giCdw/3cTAH755ZdH+nvQlLfeegvTpk2DkZFRvc9TAlp+DceNG4dFixZh27ZtsLCwQElJiXhjQ0Nqz9/c3PyJnj89OVxDRNRK9+7dw/bt2zF8+HC8+eabdT6hoaG4c+cOdu7cCeD+c27efPNN7Nq1CwkJCaiurq6zZsHf3x9XrlzBl19+We/x7t6922Rc6urqkEgkCrc4FxQU1LlDrfZumrVr1yqUR0VF1elvzJgx2LZtG3755Zc6x6t9Nk5rzJs3D3/++ad4vrUjCw+OvgiCUO9t3a3h7e2NTZs2Yd++fZg4cWKrRj/q4+PjgytXrojfNXD/mTn1fY8PU1dXx5AhQ/Ddd98p3OJ9/fp1bNy4Ea+++upjnY6p75pXVlbW+b1wd3dHly5dsHr1ahQXFyvse5yjZW+++SYWLlyItWvXNvjQzJZeQycnJ7i4uGDz5s3YvHkzrKysFJLB+vj4+MDQ0BAff/wxqqqq6uxvy78Dah84QkTUSjt37sSdO3cUFtI+qG/fvjAzM0NiYqKY+IwbNw5RUVFYuHAhXFxc4OTkpNBm4sSJ2LJlC9577z2kpqaiX79+qKmpQW5uLrZs2YL9+/c3+KqGWr6+vli1ahWGDh2Kt956C0VFRfj8889hb2+vsO6lV69eGDNmDFavXo0///xTvO3+119/BaC43mjZsmVITU1Fnz59EBQUhO7du+PmzZs4ffo0kpOTcfPmzVZdw9dffx09evTAqlWrMGPGDDg6OsLOzg5hYWG4cuUKDA0NsW3bthavPWmMn58fvvrqK0yaNAmGhoaIiYlpc5/vvvsu1qxZg4CAAMyaNQtWVlbiE5WB+hcdP2jJkiU4ePAgXn31VYSEhEBDQwMxMTGoqKio95lHLXH69Gl8/fXXdcrt7Ozg4eGBV155BcbGxggMDMTMmTMhkUiQkJBQJ8lRU1PDF198gREjRsDNzQ1TpkyBlZUVcnNzkZOTg/3797cpzoZ06NChzjOx6tPSazhu3Dh89NFH0NHRwdSpU6Gm1vj4gKGhIb744gtMnDgR7u7uGD9+PMzMzHDp0iV8//336NevH9asWdPa06T2QFm3txE97UaMGCHo6OgId+/ebbDO5MmTBU1NTfF2dblcLlhbWwsAhCVLltTbprKyUli+fLng7OwsaGtrC8bGxkKvXr2ERYsWCbdv3xbroZ5b1mv973//E7p27Spoa2sLjo6OwldffSUsXLhQePif/N27d4UZM2YIHTt2FAwMDAQ/Pz8hLy9PACAsW7ZMoe7169eFGTNmCNbW1oKmpqZgaWkpeHl5CevWrWvyWtnY2Ai+vr717ouLixMACF999ZUgCIJw5swZwdvbWzAwMBBMTU2FoKAgISsrS6GOINy/vVtfX79Ofw+fZ0O3qq9du1YAIISFhQmC0PBt97W3gD8oMDBQsLGxUSg7f/684OvrK+jq6gpmZmbCP/7xD2Hbtm0CAOH48eONXR5BEATh9OnTgo+Pj2BgYCDo6ekJAwcOFI4dO6ZQ51Hedh8YGCjWPXr0qNC3b19BV1dXeO6554S5c+eKj4p4+JEBR44cEQYPHixIpVJBX19fcHV1FaKiohSuTXO+l4Y0dM0fVN9t94LQvGtY67fffhOvxZEjR+rsf/i2+weP7ePjI3To0EHQ0dER7OzshMmTJwunTp1q8tyofZMIwjOyMpCIHonMzEy8+OKL+PrrrzFhwgRlh/NUW716NT744ANcvnwZnTp1UnY4RNQIriEiUmEPvw4DuP9HXE1Nrck1FaTo4WtZXl6OmJgYdO3alckQ0VOAa4iIVNiKFSuQnp6OgQMHQkNDA3v37sXevXsRHBz8WO9sehaNHj0anTt3hpubG27fvo2vv/4aubm5Cu+1I6L2i1NmRCrs4MGDWLRoEc6cOYPS0lJ07twZEydOxIIFC/hclRZavXo1YmNjUVBQgJqaGnTv3h1z585t9OnHRNR+MCEiIiIilcc1RERERKTymBARERGRymNCRERERCqPqyafFnfPKjsCIiKip5O+U5NVOEJEREREKo8JEREREak8JkRERESk8pgQERERkcpjQkREREQqjwkRERERqTwmRERERKTymBARERGRymNCRERERCqPCRERERGpPL664ykhfNNd2SEQkZJIAs4oOwSVtHtvGiYG/Qu3Lh9vVv3KykqY2vTDtsRPMXjQK48sDjObfvhyzSL4jfB+ZH1SXRwhIiJ6xvQdOL7e8n7eExAcuvAJR9M6Wdm5UJM64/btO0qLIfPnXPTs4dDs+urq6vg1cw+8BvRt1fE+/TwB7v3GKJRdvnINN/68BdcWxNFeFReXQE3qjJ9/yVN2KPViQkRE9Az44fBJHDpySqFs38HD+OlkFgBALpcjKzsX7m5Nv+SyPThxKhv2dp3RoYO0Re2qqqoeWQyZP+fCzdWx2fXV1dVhaWEGNbXW/Wk9kf4zer/Yo04MUqk+utg+36o+25OTp3+Bjo42nJ3slR1KvZgQERE9A2w6P4dVa+LwwbxluHv3HoJDFyLu6yQ838kSAJD36wXcvXsP7m4NT7/v2JmMlzz9oWfmDntXH3yVsF3c96+PVmF0wExxOzp2EyQG3bHv4GEAgCAIcHzRF7FxW8U6u/akonf/sdAxccMLPYYg5n+bFY4X87/NcHn5DeiZucOksweG+gVDLpdjUtC/EPz+QvyWfxESg+6QGHRHbt75emO27e6NiMh1eGvKPyG17I1/zF8BAFi4JAouL78BffNesOjSH9NnLVJIliZOm4fJ736IRR9/DmuHQZBa9q4zepaZfVZMiORyOT76TxSsHQaJSebDwpeuwYChgeJ2VnYuho1+F6adX4G+eS+49vGrk7TW6uw4CBu3fI8v476FxKA7LF/ofz+Gn3Ph4twNMf/bjG5ur0PfvBdGjX8fFRWVYtvq6mpEfroedi4+0DV9Eb1efROHj9Z/nAev2/JVsZjwzv3rZuPkhQMpR/H75UKMDpgJqWVvOL7oi4wsxenaxn5HAGD7dwfxkqc/DCx6wahTH/Qf/DZu3LiFj/4ThSEjp+HevXJodHBR+N1pL5gQERE9A2xtOiFp0xrU1NTglzO/wdLCFJviV6LTcxYAgNNZZ6ChodHg1MuXX32LKdMXIPTdt5Bzcif+PW86ps34SPzDatRBijuldwHcT34+Xfs1LC1MUVx8f0orJe1H3PjzFiaMGw4AWPnZV3g/bCnm/yMIZ9N3IyL8A8yet0zsL3HzLixZEYNli+fgbPou7E/6Er4+nlBTU8OnK+aj78s9MT8sCIXnfkDhuR/g0K1LnZiLi0tw8dJVrInZiMGDPJD14w7M/WAqBEGAIAAxn4XjzKmdiItZim3fHURs3DaxbVZ2HnbvTYOWliZSdq/HV18sRWz8Vvxw+CQA4M6duzh/4TLcXB1x82YxfMe8h5QfjuPkoc3o81LPeq9hVnaemEAVF5fAe/hUvNLnRRxL2YjTR7bin7PfgblZx3rbHk1OhIaGBnZ9uxaF535AzsldAO4nRL+c+Q2/5l9E0jdR2P3tWhxMPYZNW/eI38WYCbPw/b5DiIteipyTO/H64P7wC3gfJSWl9R6r9rr9b8M2+A33QsbRbXBysEPoP5ZgUtB8TJs8BqcOfQtTU2OEf/x5s39HDh89hWmh/8Y/3p+MX07sxA/74uE3wgvGxoYImzUFY0f54O3xI8Tv1HugR73xKQsXVRMRPQMu/X4VH8xbDuvnLdGje1dcu34DE975JyI/ngsrSzOczjyD7o520NHRrtO2qOhPzJobgfiYjzF29FAAQBfb57Huq2+xe98P6N+vt0JCtO/gYWhpacLH+1XcKi4BAHwe8w2C3xkLXV0dFFy8goVL1yD98FYxkeli+zy+3rwLqYdOoH+/3tiffBSe/XrBd+hrAACbzp3Q2/3+dJGxcQfk/noBC/75LiwtzBo856zs+2tRPl0xH2+O8lHYt/jf74s/23TuBO+BHsj77QKA+4ufc389j7mzp2J+WDAAoFtXWxgbG+KPGzf/6jsXGhrqqKioRG9Pfwwe6IGolQugpaXVYDyZ2bkY6TsQAHA68wxK75Zh5vS3YWhoAAD1JnW1/rxZjJqaGrz26kuQSvUf6PMs3vAdhFXL5gEAujvZw6FrFzHOb779HmfzziP7p++grX0/tiULZ+HTLxKQ+XMuPF/t3eB1i/k0HANf6wMAGDvKB0GhH2HHxs/g3L0rAGDE6wOwfedBAM37HTko+xHdHe0x7s3XIZFIAAA9Xe4niIaGBvg1vwDTAt9s9DtVJo4QERE9A85fuIyZ09/G6hXzoa+vi3VrFmFiwEhc+v0qAOB05tkG1w9t33kQRh2kGOM3RKFcS1NTnJox6mCIO3fuJ0T/XbMBs0LeRgdDA9wqvo3fLxdi78HDCAkKAABs2PgdysrK0av/mzCw6CV+9h44DA0NdQDAsCGe2LJ9P/p5T8Cnnyeg8Nof4nEvFFxGcXEJero0vpA4KzsXz1mZ14n74qUrmPHBf9DjpZEwfr4vDCx6Ycv2fXi+0/3RsjO551BVVY2gKW+KbUpKSnHz5m3Y23UGcH9kRl1dHQOHTcHc2e8gJmpRo8nQ7dt3UHDxijhC1NPFEZYWpnB098Wcfy3Hjz9lNnouGVln0cX2eYVkqHaUalrgmwp1Cy5dgf0L9+OMjduGCwVXYNLZQ+Fal5aWide6vutm94K1mAwB9xPql3u7iMnQ/bJCdLG5v3apOb8j3gM9kJF1Fj37jkJE5Dqcv/C7WK+yshJncs81+Z0qE0eIiIieAQM8X65TNnRwf/HnzOxcjHljcL1tc87mo7ujncJiYLlcjtxfz+Pt8SMAAEZG90eIcs78hqzsPOz6di0uFFzBreISRMduht9wL3G9UubPuZgW+CbmfvBOnWOZm5kAAMaPHYZ+Hi8iaVcKErfsxvzw/yJl93p49HFD5s+56NixA6yft2r0nDOzc/Haqy+JoxEA8McfN/GS5zgMeq0PVi2bh05W5qiRy9G7/1hxtCIrOw9Wlmaw6dzp775+zoWmpga6O9qJfQ96rQ9yzubj4l9JZWOysvP+an9/wbCJiRHOpu/GvoOHsWNXCga8HoiQoAD8d/m/6j+Xeu5oy8rOhZqaGl7q9fdC60u/X8XNm7fh5ur0V5xnEf3pQrxWz0iQTefnGrxufXq71inr+9BUYGZ2Lob/NYLXnN8Rz1d74+KZZHz3vQybtu7BR0vWYFNcJMb4DUHO2XxUV9e067vlmBARET1jjqduUtg+d/4SiotLGlxQLZXq4155hULZN99+jzuld+E33AvAXyNEpWVYvTYBwVPGQltbCx06GODiL1exP/kokjZFiW01NTVQdu8e7O1sGo3T+nkrvD/9bYS+NwG23b1xOvMMPPq4ITvnV/Ts0fTdXVnZeRj/5usKZbv2pqJGXoNv4iLFRGlNdCKqqqrh9kBC9GJPxdGyjKyz6O5oJ44CZf6ciwnjhiNi0Qfo5z0B3R3tMTFgZCOx5MKx2wvitBUA6Ohow2+EN/xGeMPG+jnsbWQRcXbObxjQ/yWFssyfc+HQ1Ra6ujoKcRoZGcLW5n4yp6mhCUEQmrzWirHmIWDssDrHGj3y74RZEAT8/EseFvzz/pRic35HAMDU1BhTA8dgauAYeA6ZiOMnszDGbwiyc36DrU2nFt81+CS1i4Ro8uTJKC4uRlJSUr37w8PDkZSUhMzMzCcaFxHRs+B05v07hdTV1fBLzm9iuZaWJrp1tcXrg/tj+ar/IeGbnej/Si8cOnoKM//5MT775EOYmBgBuL+ouqSkFN/u2I+z6bsBAIZSA2zfeRDdHe3h0cdN7HeYjyemzfgIr3q4Y4hXP9wpvYtTp3OgoaGOwAl+iI3biqqqarzq4Q49PR1sTTqAW8Ul8PHuB+D+yMMfN27i3PlL0NfXrXfNSXV1NXLO5tdJbEw6GqGk5C52fi9Dd0c77NqbhojIL9HpOQuY/bWgOSs7Fx4vuym0u39HmZNC3z17OMC1hwMSvlyGt96ZC7su1nil74v1XuPM7FxxOuj8hd8RFZ2IMW8MhvXzlsj99QISNu3Eu+/4N/gdyeVynC+4jCtXr0NXRxsdOxohMzu3zvk9PJI0zKc/FkWshZWlGZyd7HG96AaSU3+E90CPehd/157bg48TuHXrNi79Xgj3nn8nzPnnLqK0tEy8Jk39jny3OwW/5hfAa4AHjI0MkZJ2HKezzuDj8Nni+d29ew9nzuajY8cOMDPtCHX1+qf0lKVdJERNCQsLw/vvv990xXYmLi4OU6ZMUSjT1tZGeXm5kiIiIlV0+q9bp/sODFAof9XDHYcPfo3+/Xpj7X//jfCPP8fVwiI4O9kjLnqpwpORjYykkMvlGPH6AFhZ3k9QOhhKcffuPcwKeVuh38AJfrh56zZWrYnH7HnLYNRBit7uPRD+4QwAQE1NDb6I3YSwBZ9AS0sTvdy6Y3/Sl+Iox9TAMdiXfATde4+AodQAf1w8WueccvMuoKKiEm4uignDiGEDMXXSaEwM+hd0dXTw9vjh8B89VGHaKys7D9OnKT68MiPrLCa/PUrsu7y8Qpxi8xvhjf+b+y5GBczEiR82KUy1Pdhn7ahLeXkFcs7mI+GbnSi9Wwbbzp3w/nsT8EFoYJ12tRbMfRfvzVqEzo5eGD3SG99+vRqZP+fWGQHL+PmsQjLz6YoP8a+PVuHdmeG48ectWFqY4rVXX8J7U+t/OGd91y0rOw/a2lpwcnxBoczUxBjPWZkDQJO/IzU1cny74wD+szwagiCgR/eu2LJhFV59pRcAYPTIwdi45Xv06j8WFRWVuH31hMJ6qfZAIgiC0NrGlZWVjS4ya66mRoieVnFxcZg1axby8v5+KqdEIoGFhUWL+xJiJU1XIqJnEl/dQdRG+k0/kLRFd5kNGDAAoaGhmD17NkxNTeHj44NVq1bBxcUF+vr6sLa2RkhICEpL/372QVxcHIyMjLB//344OTnBwMAAQ4cORWFhYYPHOXnyJMzMzLB8+XIA96fM3NzcxP2TJ0+Gn58fIiMjYWVlBRMTE8yYMUPhoVuFhYXw9fWFrq4uunTpgo0bN8LW1harV69u1rkWFxdj2rRpMDMzg6GhIQYNGoSsrL8fxlUbU0xMDKytraGnpwd/f3/cvn1boR+JRAJLS0vx05pkiIiIiB6vFt92Hx8fDy0tLRw9ehTR0dFQU1PDZ599hpycHMTHx0Mmk2Hu3LkKbcrKyhAZGYmEhAQcOnQIly5dQlhYWL39y2QyDB48GEuXLsW8efMajCM1NRXnzp1Damoq4uPjERcXh7i4OHH/pEmTcPXqVaSlpWHbtm1Yt24dioqKmn2eY8eORVFREfbu3Yv09HS4u7vDy8sLN2/eFOvk5+djy5Yt2LVrF/bt24eMjAyEhIQo9FNaWgobGxtYW1vjjTfeQE5OTpPHrqioQElJicKn4tE9jZ6IiIge0uKEqGvXrlixYgUcHBzg4OCA2bNnY+DAgbC1tcWgQYOwZMkSbNmyRaFNVVUVoqOj0bt3b7i7uyM0NBQpKSl1+t6xYwfeeOMNxMTEIDg4uNE4jI2NsWbNGjg6OmL48OHw9fUV+8zNzUVycjK+/PJL9OnTB+7u7oiNjcW9e/eadY5HjhzBiRMn8O2336J3797o2rUrIiMjYWRkhK1b/34sfXl5OTZs2AA3Nzd4enoiKioKmzZtwrVr1wAADg4OWL9+Pb777jt8/fXXkMvleOWVV3D58uVGjx8REYEOHToofCL2Nit0IiIiaoUWL6ru1auXwnZycjIiIiKQm5uLkpISVFdXo7y8HGVlZdDT0wMA6Onpwc7OTmxjZWVVZ7Tmp59+wu7du7F161b4+fk1GYezs7PCCnUrKytkZ2cDAPLy8qChoQF3d3dxv729PYyNjZt1jllZWSgtLYWJiYlC+b1793Du3Dlxu3PnzujU6e/FdR4eHpDL5cjLy4OlpSU8PDzg4fH3o8lfeeUVODk5ISYmBv/5z38aPP78+fMxZ84chTKtxA7Nip2IiIharsUjRPr6f68KLygowPDhw+Hq6opt27YhPT0dn39+/70nlZV/v3hOU1NToQ+JRIKH13Lb2dnB0dER69evb9bbiuvrUy6Xt/R06lVaWgorKytkZmYqfPLy8vDPf/6z1f1qamrixRdfRH5+fqP1tLW1YWhoqPDR1my0CRFRvX7J+Q0Sg+4o/usVG99s+R7Pdxso7l8TnQg3j1GP/Lj2rj6Ijt3UdEWidqJNr+5IT0+HXC7HypUr0bdvX3Tr1g1Xrzb9RM/6mJqaQiaTIT8/H/7+/s1Kihri4OCA6upqZGRkiGX5+fm4detWs9q7u7vj2rVr0NDQgL29vcLH1NRUrHfp0iWF8z1+/DjU1NTg4FD/kzhramqQnZ0NK6vGn75KRPSoZGafhU3n52BkZAgAGDFsALJ/Snpgf674rJlHpbS09sWoj7ZfosepTQmRvb09qqqqEBUVhfPnzyMhIQHR0dGt7s/c3BwymQy5ubkICAhAdXV1q/pxdHSEt7c3goODceLECWRkZCA4OBi6uroKj3hviLe3Nzw8PODn54cDBw6goKAAx44dw4IFC3Dq1Cmxno6ODgIDA5GVlYXDhw9j5syZ8Pf3h6Xl/cfXL168GAcOHMD58+dx+vRpvP3227h48SKmTZvWqvMiImqpzJ9zFZ5bY2CgD2PjDg3ufxR+/uVXSCQSuPbo9kj7JXqc2pQQ9ezZE6tWrcLy5cvRo0cPJCYmIiIiok0BWVpaQiaTITs7GxMmTEBNTU2r+tmwYQMsLCzg6emJUaNGISgoCFKpFDo6Ok22lUgk2LNnDzw9PTFlyhR069YN48ePx8WLFxVum7e3t8fo0aMxbNgwDBkyBK6urli7dq24/9atWwgKCoKTkxOGDRuGkpISHDt2DN271//4fCKiR+3hJxvbdvdG3Nc7ADzw1OK/HkBYUVGJoNCP0L3XcPz6WwEA4M8/ixEyezHMbV+F1LI3hr85Hb9fVnxsyqefJ8C2uzf0zXth2ox/49TpX9DVzgZ6erpP5iSJHoE2PZjxaXL58mVYW1sjOTkZXl5eTTdowpN+nQgfzEikutryYEYzm35YF7UIo0Z6o7i4BMbP90XGsW1wc3XCLzm/waXPG7h1+ThK7pRizITZ6PScORK+XA6pVB83btzCywPGwcerH0KCAqCmJsG8j1ahvLwCybvXAwCWrojG2i834YvVH8HZyR7LVsVi23cHMGRQP2yKX/moLgFR2zTjwYxPxas7WkMmk6G0tBQuLi4oLCzE3LlzYWtrC09PT2WHRkT0RFy+cg03/rwlTon9/Ub22je6319flJ6Rg7femYuQoPH4aH6IuLTgw/DV6P9KL3zx6UKxz0ULQuExKAA1NTW4eOkqwj9ei/1J6zBoQF8AwH+XzcP/4rc98mk4osftmU2Iqqqq8OGHH+L8+fOQSqV45ZVXkJiYCE1NTSQmJuLdd9+tt52NjU2zHp5IRNTeZf6cC0NDA/HN6FnZuXByUHyj+63iEozwn4FNcZEY6TtIbFteXoHELbtRU1ODbd8dEMvlcgESiQRqampI+GYnujvaickQAGhoaEAikTAhoqfOM5sQ+fj4wMfHp959I0eORJ8+ferd9/Dt/A0JDw9HeHh4a8MjInrsatcP1Y74PPhG9tr9vj6vYe/Bw7h2/YZC21/zC1BWdg/ZP30HHR3Fd1bWJj2ZP+fC3a3u29jlcjkTInrqPLMJUWOkUimkUqmywyAieqwevoMsKzsPE8YNV9heF7UIUyaOwkj/GehqZ4OBr93/n0VNjft/HnR0tMS30D9MTU0N9+5VKJStioqDhbkJLC3MHvXpED1WbbrLjIiI2q/M7LPo+dcdZLV3lNXecVa7vqiniwMGD3oFyxfPwZsTZyP/3EUAQFd7G9jbdca0GR/hxKmfcf7C70j94Se8/48luHevHADwSl837NyTiu92p+Dc+Uv4MPy/2L4zmc8foqcSEyIiomfQnTu1D0e8nxDl5l1ARUWlmKxk/pwLqVQfXWyfBwDMDJmIMSOHYPibISguLoGGhgZ2f/sFpFJ9vD76Xbj08cP7YUvRwVAKXd37jy8JCQrAmDcG4+1p89B3YABu3SpB/1d6cbqMnkoqc9v904633ROprrbcdk9EaNZt9xwhIiIiIpXHEaKnxd2zyo6AiIjo6cQRIiIiIqKmMSEiIiIilceEiIiIiFQeEyIiIiJSeUyIiIiISOUxISIiIiKVp5LvMnsaCd90V3YIRESPHB86Se0FR4iIiIhI5TEhIiIiIpXHhIiIiIhUHhMiIiIiUnlMiIiIiEjlMSEiIiIilceEiIiIiFQeEyIiIiJSee0iIZo8eTL8/Pwa3B8eHg43N7cnFg8RERGplnaREDUlLCwMKSkpyg6jVYqLizFjxgxYWVlBW1sb3bp1w549e5QdFhERET2gTa/uqKyshJaW1qOKpUEGBgYwMDB47Md51CorKzF48GCYm5tj69at6NSpEy5evAgjIyNlh0ZEREQPaNEI0YABAxAaGorZs2fD1NQUPj4+WLVqFVxcXKCvrw9ra2uEhISgtLRUbBMXFwcjIyPs378fTk5OMDAwwNChQ1FYWNjgcU6ePAkzMzMsX74cQN0ps9optsjISFhZWcHExAQzZsxAVVWVWKewsBC+vr7Q1dVFly5dsHHjRtja2mL16tXNOtfi4mJMmzYNZmZmMDQ0xKBBg5CVlSXur40pJiYG1tbW0NPTg7+/P27fvi3WWb9+PW7evImkpCT069cPtra2eO2119CzZ89mxUBERERPRounzOLj46GlpYWjR48iOjoaampq+Oyzz5CTk4P4+HjIZDLMnTtXoU1ZWRkiIyORkJCAQ4cO4dKlSwgLC6u3f5lMhsGDB2Pp0qWYN29eg3Gkpqbi3LlzSE1NRXx8POLi4hAXFyfunzRpEq5evYq0tDRs27YN69atQ1FRUbPPc+zYsSgqKsLevXuRnp4Od3d3eHl54ebNm2Kd/Px8bNmyBbt27cK+ffuQkZGBkJAQcf/OnTvh4eGBGTNmwMLCAj169MDHH3+MmpqaRo9dUVGBkpIShU9FVaNNiIiIqA1aPGXWtWtXrFixQtx2cHAQf7a1tcWSJUvw3nvvYe3atWJ5VVUVoqOjYWdnBwAIDQ3F4sWL6/S9Y8cOTJo0CbGxsRg3blyjcRgbG2PNmjVQV1eHo6MjfH19kZKSgqCgIOTm5iI5ORknT55E7969AQCxsbHo2rVrs87xyJEjOHHiBIqKiqCtrQ0AiIyMRFJSErZu3Yrg4GAAQHl5OTZs2IBOnToBAKKiouDr64uVK1fC0tIS58+fh0wmw4QJE7Bnzx7k5+cjJCQEVVVVWLhwYYPHj4iIwKJFixTKPhoBhI9sVvhERETUQi1OiHr16qWwnZycjIiICOTm5qKkpATV1dUoLy9HWVkZ9PT0AAB6enpiMgQAVlZWdUZrfvrpJ+zevRtbt25t9I6zWs7OzlBXV1foMzs7GwCQl5cHDQ0NuLu7i/vt7e1hbGzcrHPMyspCaWkpTExMFMrv3buHc+fOidudO3cWkyEA8PDwgFwuR15eHiwtLSGXy2Fubo5169ZBXV0dvXr1wpUrV/DJJ580mhDNnz8fc+bMUSjTSuzQrNiJiIio5VqcEOnr64s/FxQUYPjw4Zg+fTqWLl2Kjh074siRI5g6dSoqKyvFhEhTU1OhD4lEAkEQFMrs7OxgYmKC9evXw9fXt06bh9XXp1wub+np1Ku0tBRWVlZIS0urs68lC6KtrKygqampkLg5OTnh2rVrjS5I19bWFkemagmNXw4iIiJqgzbddp+eng65XI6VK1eib9++6NatG65evdqqvkxNTSGTyZCfnw9/f3+FBdIt5eDggOrqamRkZIhl+fn5uHXrVrPau7u749q1a9DQ0IC9vb3Cx9TUVKx36dIlhfM9fvw41NTUxGnEfv36IT8/XyFR+/XXX2FlZfVE7s4jIiKi5mlTQmRvb4+qqipERUXh/PnzSEhIQHR0dKv7Mzc3h0wmQ25uLgICAlBdXd2qfhwdHeHt7Y3g4GCcOHECGRkZCA4Ohq6uLiQSSZPtvb294eHhAT8/Pxw4cAAFBQU4duwYFixYgFOnTon1dHR0EBgYiKysLBw+fBgzZ86Ev78/LC0tAQDTp0/HzZs3MWvWLPz666/4/vvv8fHHH2PGjBmtOi8iIiJ6PNqUEPXs2ROrVq3C8uXL0aNHDyQmJiIiIqJNAVlaWkImkyE7OxsTJkxo8o6shmzYsAEWFhbw9PTEqFGjEBQUBKlUCh0dnSbbSiQS7NmzB56enpgyZQq6deuG8ePH4+LFi7CwsBDr2dvbY/To0Rg2bBiGDBkCV1dXhcXk1tbW2L9/P06ePAlXV1fMnDkTs2bNwr/+9a9WnRMRERE9HhLh4cU8z6jLly/D2toaycnJ8PLyanN/4eHhSEpKQmZmZtuDawYhtumRLSKip40k4IyyQyBVoO/UZJU2Pam6PZPJZCgtLYWLiwsKCwsxd+5c2NrawtPTU9mhERERUTvzVLzLrDWqqqrw4YcfwtnZGaNGjYKZmRnS0tKgqamJxMRE8XUgD3+cnZ2VHToRERE9YSozZfagO3fu4Pr16/Xu09TUhI2NzROOqGmcMiOiZxGnzOiJUOUps8ZIpVJIpVJlh0FERETtxDM7ZUZERETUXEyIiIiISOUxISIiIiKVx4SIiIiIVJ5K3mX2VLp7VtkREBERPZ2acZcZR4iIiIhI5TEhIiIiIpXHhIiIiIhUHhMiIiIiUnlMiIiIiEjlMSEiIiIilaeS7zJ7GgnfdFd2CERETxW+OJZagiNEREREpPKYEBEREZHKY0JEREREKo8JEREREak8JkRERESk8pgQERERkcpjQkREREQqjwkRERERqbx2kRBNnjwZfn5+De4PDw+Hm5vbE4uHiIiIVEu7SIiaEhYWhpSUFGWH0SabNm2CRCJpNPEjIiIi5WjTqzsqKyuhpaX1qGJpkIGBAQwMDB77cR6XgoIChIWFoX///soOhYiIiOrRohGiAQMGIDQ0FLNnz4apqSl8fHywatUquLi4QF9fH9bW1ggJCUFpaanYJi4uDkZGRti/fz+cnJxgYGCAoUOHorCwsMHjnDx5EmZmZli+fDmAulNmtVNskZGRsLKygomJCWbMmIGqqiqxTmFhIXx9faGrq4suXbpg48aNsLW1xerVq5t1rsXFxZg2bRrMzMxgaGiIQYMGISsrS9xfG1NMTAysra2hp6cHf39/3L59W6GfmpoaTJgwAYsWLcILL7zQrGMTERHRk9XiKbP4+HhoaWnh6NGjiI6OhpqaGj777DPk5OQgPj4eMpkMc+fOVWhTVlaGyMhIJCQk4NChQ7h06RLCwsLq7V8mk2Hw4MFYunQp5s2b12AcqampOHfuHFJTUxEfH4+4uDjExcWJ+ydNmoSrV68iLS0N27Ztw7p161BUVNTs8xw7diyKioqwd+9epKenw93dHV5eXrh586ZYJz8/H1u2bMGuXbuwb98+ZGRkICQkRKGfxYsXw9zcHFOnTm32sYmIiOjJavGUWdeuXbFixQpx28HBQfzZ1tYWS5YswXvvvYe1a9eK5VVVVYiOjoadnR0AIDQ0FIsXL67T944dOzBp0iTExsZi3LhxjcZhbGyMNWvWQF1dHY6OjvD19UVKSgqCgoKQm5uL5ORknDx5Er179wYAxMbGomvXrs06xyNHjuDEiRMoKiqCtrY2ACAyMhJJSUnYunUrgoODAQDl5eXYsGEDOnXqBACIioqCr68vVq5cCUtLSxw5cgT/+9//kJmZ2azj1qqoqEBFRYVCmVYVoK3Zom6IiIiomVo8QtSrVy+F7eTkZHh5eaFTp06QSqWYOHEi/vzzT5SVlYl19PT0xGQIAKysrOqM1vz0008YO3YsEhISmkyGAMDZ2Rnq6ur19pmXlwcNDQ24u7uL++3t7WFsbNysc8zKykJpaSlMTEzE9UsGBga4cOECzp07J9br3LmzmAwBgIeHB+RyOfLy8nDnzh1MnDgRX375JUxNTZt13FoRERHo0KGDwidib4u6ICIiohZo8QiRvr6++HNBQQGGDx+O6dOnY+nSpejYsSOOHDmCqVOnorKyEnp6egAATU3FoQ2JRAJBEBTK7OzsYGJigvXr18PX17dOm4fV16dcLm/p6dSrtLQUVlZWSEtLq7PPyMioWX2cO3cOBQUFGDFihFhWG5+Ghgby8vIUksQHzZ8/H3PmzFEo00rs0LzgiYiIqMXadJdZeno65HI5Vq5cCTW1+4NNW7ZsaVVfpqam2L59OwYMGAB/f39s2bKlyaSoIQ4ODqiurkZGRoY4opWfn49bt241q727uzuuXbsGDQ0N2NraNljv0qVLuHr1Kp577jkAwPHjx6GmpgYHBwcYGRkhOztbof7//d//4c6dO/j0009hbW3dYL/a2triVF0tgdNlREREj02bnkNkb2+PqqoqREVF4fz580hISEB0dHSr+zM3N4dMJkNubi4CAgJQXV3dqn4cHR3h7e2N4OBgnDhxAhkZGQgODoauri4kEkmT7b29veHh4QE/Pz8cOHAABQUFOHbsGBYsWIBTp06J9XR0dBAYGIisrCwcPnwYM2fOhL+/PywtLaGjo4MePXoofIyMjCCVStGjR48n8rgCIiIiap42JUQ9e/bEqlWrsHz5cvTo0QOJiYmIiIhoU0CWlpaQyWTIzs7GhAkTUFNT06p+NmzYAAsLC3h6emLUqFEICgqCVCqFjo5Ok20lEgn27NkDT09PTJkyBd26dcP48eNx8eJFWFhYiPXs7e0xevRoDBs2DEOGDIGrq6vCYnIiIiJ6OkiEhxfzPKMuX74Ma2trcRF4W4WHhyMpKanFd5C1lhDb9MgWERH9TRJwRtkhUHuh79RklTatIWrPZDIZSktL4eLigsLCQsydOxe2trbw9PRUdmhERETUzjwV7zJrjaqqKnz44YdwdnbGqFGjYGZmhrS0NGhqaiIxMVHhdvoHP87OzsoOnYiIiJ4wlZkye9CdO3dw/fr1evdpamrCxsbmCUfUNE6ZERG1DKfMSKTKU2aNkUqlkEqlyg6DiIiI2olndsqMiIiIqLmYEBEREZHKY0JEREREKo8JEREREak8lbzL7Kl096yyIyAiIno6NeMuM44QERERkcpjQkREREQqjwkRERERqTwmRERERKTymBARERGRymNCRERERCpPJd9l9jQSvumu7BCIiOgJ4YtpnzyOEBEREZHKY0JEREREKo8JEREREak8JkRERESk8pgQERERkcpjQkREREQqjwkRERERqTwmRERERKTymBARERGRymsXCdHkyZPh5+fX4P7w8HC4ubk9sXiIiIhItbSLhKgpYWFhSElJUXYYLZaTk4MxY8bA1tYWEokEq1evVnZIREREVI82JUSVlZWPKo5GGRgYwMTE5Ikc61EqKyvDCy+8gGXLlsHS0lLZ4RAREVEDWpQQDRgwAKGhoZg9ezZMTU3h4+ODVatWwcXFBfr6+rC2tkZISAhKS0vFNnFxcTAyMsL+/fvh5OQEAwMDDB06FIWFhQ0e5+TJkzAzM8Py5csB1J0yq51ii4yMhJWVFUxMTDBjxgxUVVWJdQoLC+Hr6wtdXV106dIFGzduhK2tbbNHaYqLizFt2jSYmZnB0NAQgwYNQlZWlri/NqaYmBhYW1tDT08P/v7+uH37tljnpZdewieffILx48dDW1u7WcclIiKiJ6/FI0Tx8fHQ0tLC0aNHER0dDTU1NXz22WfIyclBfHw8ZDIZ5s6dq9CmrKwMkZGRSEhIwKFDh3Dp0iWEhYXV279MJsPgwYOxdOlSzJs3r8E4UlNTce7cOaSmpiI+Ph5xcXGIi4sT90+aNAlXr15FWloatm3bhnXr1qGoqKjZ5zl27FgUFRVh7969SE9Ph7u7O7y8vHDz5k2xTn5+PrZs2YJdu3Zh3759yMjIQEhISLOP0ZCKigqUlJQofCqqmm5HREREraPR0gZdu3bFihUrxG0HBwfxZ1tbWyxZsgTvvfce1q5dK5ZXVVUhOjoadnZ2AIDQ0FAsXry4Tt87duzApEmTEBsbi3HjxjUah7GxMdasWQN1dXU4OjrC19cXKSkpCAoKQm5uLpKTk3Hy5En07t0bABAbG4uuXbs26xyPHDmCEydOoKioSBzZiYyMRFJSErZu3Yrg4GAAQHl5OTZs2IBOnToBAKKiouDr64uVK1e2aYosIiICixYtUij7aAQQPrLVXRIREVEjWpwQ9erVS2E7OTkZERERyM3NRUlJCaqrq1FeXo6ysjLo6ekBAPT09MRkCACsrKzqjNb89NNP2L17N7Zu3droHWe1nJ2doa6urtBndnY2ACAvLw8aGhpwd3cX99vb28PY2LhZ55iVlYXS0tI665bu3buHc+fOidudO3cWkyEA8PDwgFwuR15eXpsSovnz52POnDkKZVqJHVrdHxERETWuxQmRvr6++HNBQQGGDx+O6dOnY+nSpejYsSOOHDmCqVOnorKyUkyINDU1FfqQSCQQBEGhzM7ODiYmJli/fj18fX3rtHlYfX3K5fKWnk69SktLYWVlhbS0tDr7jIyMHskxGqOtrV1nzZHQ+OUgIiKiNmjTXWbp6emQy+VYuXIl+vbti27duuHq1aut6svU1BQymQz5+fnw9/dXWCDdUg4ODqiurkZGRoZYlp+fj1u3bjWrvbu7O65duwYNDQ3Y29srfExNTcV6ly5dUjjf48ePQ01NTWEakYiIiNq/NiVE9vb2qKqqQlRUFM6fP4+EhARER0e3uj9zc3PIZDLk5uYiICAA1dXVrerH0dER3t7eCA4OxokTJ5CRkYHg4GDo6upCIpE02d7b2xseHh7w8/PDgQMHUFBQgGPHjmHBggU4deqUWE9HRweBgYHIysrC4cOHMXPmTPj7+4vTZZWVlcjMzERmZiYqKytx5coVZGZmIj8/v1XnRURERI9HmxKinj17YtWqVVi+fDl69OiBxMREREREtCkgS0tLyGQyZGdnY8KECaipqWlVPxs2bICFhQU8PT0xatQoBAUFQSqVQkdHp8m2EokEe/bsgaenJ6ZMmYJu3bph/PjxuHjxIiwsLMR69vb2GD16NIYNG4YhQ4bA1dVVYTH51atX8eKLL+LFF19EYWEhIiMj8eKLL2LatGmtOiciIiJ6PCTCw4t5nlGXL1+GtbU1kpOT4eXl1eb+wsPDkZSUhMzMzLYH1wxCbNMjW0RE9GyQBJxRdgjPFn2nJqu0eFH100Imk6G0tBQuLi4oLCzE3LlzYWtrC09PT2WHRkRERO3MU/Eus9aoqqrChx9+CGdnZ4waNQpmZmZIS0uDpqYmEhMTYWBgUO/H2dlZ2aETERHRE6YyU2YPunPnDq5fv17vPk1NTdjY2DzhiJrGKTMiItXBKbNHTJWnzBojlUohlUqVHQYRERG1E8/slBkRERFRczEhIiIiIpXHhIiIiIhUnkouqn4q3T2r7AiIiIieTs1YVM0RIiIiIlJ5TIiIiIhI5TEhIiIiIpXHhIiIiIhUHhMiIiIiUnlMiIiIiEjlMSEiIiIilaeS7zJ7GgnfdFd2CEREpKJU4WWzHCEiIiIilceEiIiIiFQeEyIiIiJSeUyIiIiISOUxISIiIiKVx4SIiIiIVB4TIiIiIlJ5TIiIiIhI5bWLhGjy5Mnw8/NrcH94eDjc3NyeWDxERESkWtpFQtSUsLAwpKSkKDuMFvvyyy/Rv39/GBsbw9jYGN7e3jhx4oSywyIiIqKHtCkhqqysfFRxNMrAwAAmJiZP5FiPUlpaGgICApCamooff/wR1tbWGDJkCK5cuaLs0IiIiOgBLUqIBgwYgNDQUMyePRumpqbw8fHBqlWr4OLiAn19fVhbWyMkJASlpaVim7i4OBgZGWH//v1wcnKCgYEBhg4disLCwgaPc/LkSZiZmWH58uUA6k6Z1U6xRUZGwsrKCiYmJpgxYwaqqqrEOoWFhfD19YWuri66dOmCjRs3wtbWFqtXr27WuRYXF2PatGkwMzODoaEhBg0ahKysLHF/bUwxMTGwtraGnp4e/P39cfv2bbFOYmIiQkJC4ObmBkdHR8TGxkIulz+Vo11ERETPshaPEMXHx0NLSwtHjx5FdHQ01NTU8NlnnyEnJwfx8fGQyWSYO3euQpuysjJERkYiISEBhw4dwqVLlxAWFlZv/zKZDIMHD8bSpUsxb968BuNITU3FuXPnkJqaivj4eMTFxSEuLk7cP2nSJFy9ehVpaWnYtm0b1q1bh6Kiomaf59ixY1FUVIS9e/ciPT0d7u7u8PLyws2bN8U6+fn52LJlC3bt2oV9+/YhIyMDISEhDfZZVlaGqqoqdOzYsdFjV1RUoKSkROFTUdVoEyIiImqDFr/tvmvXrlixYoW47eDgIP5sa2uLJUuW4L333sPatWvF8qqqKkRHR8POzg4AEBoaisWLF9fpe8eOHZg0aRJiY2Mxbty4RuMwNjbGmjVroK6uDkdHR/j6+iIlJQVBQUHIzc1FcnIyTp48id69ewMAYmNj0bVr12ad45EjR3DixAkUFRVBW1sbABAZGYmkpCRs3boVwcHBAIDy8nJs2LABnTp1AgBERUXB19cXK1euhKWlZZ1+582bh+eeew7e3t6NHj8iIgKLFi1SKPtoBBA+slnhExERUQu1OCHq1auXwnZycjIiIiKQm5uLkpISVFdXo7y8HGVlZdDT0wMA6OnpickQAFhZWdUZrfnpp5+we/dubN26tdE7zmo5OztDXV1doc/s7GwAQF5eHjQ0NODu7i7ut7e3h7GxcbPOMSsrC6WlpXXWLd27dw/nzp0Ttzt37iwmQwDg4eEBuVyOvLy8OgnRsmXLsGnTJqSlpUFHR6fR48+fPx9z5sxRKNNK7NCs2ImIiKjlWpwQ6evriz8XFBRg+PDhmD59OpYuXYqOHTviyJEjmDp1KiorK8WESFNTU6EPiUQCQRAUyuzs7GBiYoL169fD19e3TpuH1denXC5v6enUq7S0FFZWVkhLS6uzz8jIqMX9RUZGYtmyZUhOToarq2uT9bW1tcWRqVpC45eDiIiI2qBNd5mlp6dDLpdj5cqV6Nu3L7p164arV6+2qi9TU1PIZDLk5+fD399fYYF0Szk4OKC6uhoZGRliWX5+Pm7dutWs9u7u7rh27Ro0NDRgb2+v8DE1NRXrXbp0SeF8jx8/DjU1NYVpxBUrVuA///kP9u3bJ07fERERUfvSpoTI3t4eVVVViIqKwvnz55GQkIDo6OhW92dubg6ZTIbc3FwEBASgurq6Vf04OjrC29sbwcHBOHHiBDIyMhAcHAxdXV1IJJIm23t7e8PDwwN+fn44cOAACgoKcOzYMSxYsACnTp0S6+no6CAwMBBZWVk4fPgwZs6cCX9/f3G6bPny5fj3v/+N9evXw9bWFteuXcO1a9cU7sIjIiIi5WtTQtSzZ0+sWrUKy5cvR48ePZCYmIiIiIg2BWRpaQmZTIbs7GxMmDABNTU1repnw4YNsLCwgKenJ0aNGoWgoCBIpdIm1+8A96ff9uzZA09PT0yZMgXdunXD+PHjcfHiRVhYWIj17O3tMXr0aAwbNgxDhgyBq6urwmLyL774ApWVlXjzzTdhZWUlfiIjI1t1TkRERPR4SISHF/M8oy5fvgxra2skJyfDy8urzf2Fh4cjKSkJmZmZbQ+uGYTYpke2iIiIHgdJwBllh9A2+k5NVmnxouqnhUwmQ2lpKVxcXFBYWIi5c+fC1tYWnp6eyg6NiIiI2pmn4l1mrVFVVYUPP/wQzs7OGDVqFMzMzJCWlgZNTU0kJibCwMCg3o+zs7OyQyciIqInTGWmzB50584dXL9+vd59mpqasLGxecIRNY1TZkREpCycMntGSaVSSKVSZYdBRERE7cQzO2VGRERE1FxMiIiIiEjlMSEiIiIilceEiIiIiFSeSt5l9lS6e1bZERARET2dmnGXGUeIiIiISOUxISIiIiKVx4SIiIiIVB4TIiIiIlJ5TIiIiIhI5TEhIiIiIpWnku8yexoJ33RXdghERESPlTJfIssRIiIiIlJ5TIiIiIhI5TEhIiIiIpXHhIiIiIhUHhMiIiIiUnlMiIiIiEjlMSEiIiIilceEiIiIiFReu0iIJk+eDD8/vwb3h4eHw83N7YnFQ0RERKqlXSRETQkLC0NKSoqyw2ix7du3o3fv3jAyMoK+vj7c3NyQkJCg7LCIiIjoIW16dUdlZSW0tLQeVSwNMjAwgIGBwWM/zqPWsWNHLFiwAI6OjtDS0sLu3bsxZcoUmJubw8fHR9nhERER0V9aNEI0YMAAhIaGYvbs2TA1NYWPjw9WrVoFFxcX6Ovrw9raGiEhISgtLRXbxMXFwcjICPv374eTkxMMDAwwdOhQFBYWNnickydPwszMDMuXLwdQd8qsdootMjISVlZWMDExwYwZM1BVVSXWKSwshK+vL3R1ddGlSxds3LgRtra2WL16dbPOtbi4GNOmTYOZmRkMDQ0xaNAgZGVliftrY4qJiYG1tTX09PTg7++P27dvK1yvUaNGwcnJCXZ2dpg1axZcXV1x5MiRZsVARERET0aLp8zi4+OhpaWFo0ePIjo6Gmpqavjss8+Qk5OD+Ph4yGQyzJ07V6FNWVkZIiMjkZCQgEOHDuHSpUsICwurt3+ZTIbBgwdj6dKlmDdvXoNxpKam4ty5c0hNTUV8fDzi4uIQFxcn7p80aRKuXr2KtLQ0bNu2DevWrUNRUVGzz3Ps2LEoKirC3r17kZ6eDnd3d3h5eeHmzZtinfz8fGzZsgW7du3Cvn37kJGRgZCQkHr7EwQBKSkpyMvLg6enZ6PHrqioQElJicKnoqrRJkRERNQGLZ4y69q1K1asWCFuOzg4iD/b2tpiyZIleO+997B27VqxvKqqCtHR0bCzswMAhIaGYvHixXX63rFjByZNmoTY2FiMGzeu0TiMjY2xZs0aqKurw9HREb6+vkhJSUFQUBByc3ORnJyMkydPonfv3gCA2NhYdO3atVnneOTIEZw4cQJFRUXQ1tYGAERGRiIpKQlbt25FcHAwAKC8vBwbNmxAp06dAABRUVHw9fXFypUrYWlpCQC4ffs2OnXqhIqKCqirq2Pt2rUYPHhwo8ePiIjAokWLFMo+GgGEj2xW+ERERNRCLU6IevXqpbCdnJyMiIgI5ObmoqSkBNXV1SgvL0dZWRn09PQAAHp6emIyBABWVlZ1Rmt++ukn7N69G1u3bm30jrNazs7OUFdXV+gzOzsbAJCXlwcNDQ24u7uL++3t7WFsbNysc8zKykJpaSlMTEwUyu/du4dz586J2507dxaTIQDw8PCAXC5HXl6emBBJpVJkZmaitLQUKSkpmDNnDl544QUMGDCgwePPnz8fc+bMUSjTSuzQrNiJiIio5VqcEOnr64s/FxQUYPjw4Zg+fTqWLl2Kjh074siRI5g6dSoqKyvFhEhTU1OhD4lEAkEQFMrs7OxgYmKC9evXw9fXt06bh9XXp1wub+np1Ku0tBRWVlZIS0urs8/IyKhFfampqcHe3h4A4ObmhrNnzyIiIqLRhEhbW1scmaolNH45iIiIqA3adNt9eno65HI5Vq5cib59+6Jbt264evVqq/oyNTWFTCZDfn4+/P39FRZIt5SDgwOqq6uRkZEhluXn5+PWrVvNau/u7o5r165BQ0MD9vb2Ch9TU1Ox3qVLlxTO9/jx41BTU1OYRnyYXC5HRUVFK86KiIiIHpc2JUT29vaoqqpCVFQUzp8/j4SEBERHR7e6P3Nzc8hkMuTm5iIgIADV1dWt6sfR0RHe3t4IDg7GiRMnkJGRgeDgYOjq6kIikTTZ3tvbGx4eHvDz88OBAwdQUFCAY8eOYcGCBTh16pRYT0dHB4GBgcjKysLhw4cxc+ZM+Pv7i9NlEREROHjwIM6fP4+zZ89i5cqVSEhIwNtvv92q8yIiIqLHo00JUc+ePbFq1SosX74cPXr0QGJiIiIiItoUkKWlJWQyGbKzszFhwgTU1NS0qp8NGzbAwsICnp6eGDVqFIKCgiCVSqGjo9NkW4lEgj179sDT0xNTpkxBt27dMH78eFy8eBEWFhZiPXt7e4wePRrDhg3DkCFD4OrqqrCY/O7duwgJCYGzszP69euHbdu24euvv8a0adNadU5ERET0eEiEhxfzPKMuX74Ma2trJCcnw8vLq839hYeHIykpCZmZmW0PrhmE2KZHtoiIiJ5mkoAzj6djfacmq7TpSdXtmUwmQ2lpKVxcXFBYWIi5c+fC1ta2yWcAERERkep5Kt5l1hpVVVX48MMP4ezsjFGjRsHMzAxpaWnQ1NREYmKi+DqQhz/Ozs7KDp2IiIieMJWZMnvQnTt3cP369Xr3aWpqwsbG5glH1DROmRER0bOOU2ZPmFQqhVQqVXYYRERE1E48s1NmRERERM3FhIiIiIhUHhMiIiIiUnlMiIiIiEjlqeRdZk+lu2eVHQEREdHTqRl3mXGEiIiIiFQeEyIiIiJSeUyIiIiISOUxISIiIiKVx4SIiIiIVB4TIiIiIlJ5TIiIiIhI5TEhIiIiIpXHhIiIiIhUnoayA6CmVVRUIOKTzZg/fz60tbWVHQ79paKiAhEREfxe2hl+L+0Tv5f2id/L3/jqjqdASUkJOnTogNu3b8PQ0FDZ4dBf+L20T/xe2id+L+0Tv5e/ccqMiIiIVB4TIiIiIlJ5TIiIiIhI5TEhegpoa2tj4cKFKr/grb3h99I+8Xtpn/i9tE/8Xv7GRdVERESk8jhCRERERCqPCRERERGpPCZEREREpPKYEBEREZHKY0LUzn3++eewtbWFjo4O+vTpgxMnTig7JJV36NAhjBgxAs899xwkEgmSkpKUHZLKi4iIwEsvvQSpVApzc3P4+fkhLy9P2WGpvC+++AKurq4wNDSEoaEhPDw8sHfvXmWHRQ9ZtmwZJBIJZs+erexQlIoJUTu2efNmzJkzBwsXLsTp06fRs2dP+Pj4oKioSNmhqbS7d++iZ8+e+Pzzz5UdCv3lhx9+wIwZM3D8+HEcPHgQVVVVGDJkCO7evavs0FTa888/j2XLliE9PR2nTp3CoEGD8MYbbyAnJ0fZodFfTp48iZiYGLi6uio7FKXjbfftWJ8+ffDSSy9hzZo1AAC5XA5ra2u8//77+Ne//qXk6AgAJBIJduzYAT8/P2WHQg/4448/YG5ujh9++AGenp7KDoce0LFjR3zyySeYOnWqskNReaWlpXB3d8fatWuxZMkSuLm5YfXq1coOS2k4QtROVVZWIj09Hd7e3mKZmpoavL298eOPPyoxMqL27/bt2wDu//Gl9qGmpgabNm3C3bt34eHhoexwCMCMGTPg6+ur8HdGlWkoOwCq340bN1BTUwMLCwuFcgsLC+Tm5iopKqL2Ty6XY/bs2ejXrx969Oih7HBUXnZ2Njw8PFBeXg4DAwPs2LED3bt3V3ZYKm/Tpk04ffo0Tp48qexQ2g0mRET0TJkxYwZ++eUXHDlyRNmhEAAHBwdkZmbi9u3b2Lp1KwIDA/HDDz8wKVKi33//HbNmzcLBgweho6Oj7HDaDSZE7ZSpqSnU1dVx/fp1hfLr16/D0tJSSVERtW+hoaHYvXs3Dh06hOeff17Z4RAALS0t2NvbAwB69eqFkydP4tNPP0VMTIySI1Nd6enpKCoqgru7u1hWU1ODQ4cOYc2aNaioqIC6uroSI1QOriFqp7S0tNCrVy+kpKSIZXK5HCkpKZx/J3qIIAgIDQ3Fjh07IJPJ0KVLF2WHRA2Qy+WoqKhQdhgqzcvLC9nZ2cjMzBQ/vXv3xoQJE5CZmamSyRDAEaJ2bc6cOQgMDETv3r3x8ssvY/Xq1bh79y6mTJmi7NBUWmlpKfLz88XtCxcuIDMzEx07dkTnzp2VGJnqmjFjBjZu3IjvvvsOUqkU165dAwB06NABurq6So5Odc2fPx+vv/46OnfujDt37mDjxo1IS0vD/v37lR2aSpNKpXXW1+nr68PExESl190xIWrHxo0bhz/++AMfffQRrl27Bjc3N+zbt6/OQmt6sk6dOoWBAweK23PmzAEABAYGIi4uTklRqbYvvvgCADBgwACF8q+++gqTJ09+8gERAKCoqAiTJk1CYWEhOnToAFdXV+zfvx+DBw9WdmhEdfA5RERERKTyuIaIiIiIVB4TIiIiIlJ5TIiIiIhI5TEhIiIiIpXHhIiIiIhUHhMiIiIiUnlMiIiIiEjlMSEiIiIilceEiIiIiFQeEyIiIiJSeUyIiIiISOUxISIiIiKV9/9+5Dt+OA+9lwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x300 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig,ax = plt.subplots(figsize=(6,3))\n",
"rankings = ax.barh(mean_ranking.index, mean_ranking, color='#fe9b00')\n",
"\n",
"ax.set_facecolor('#fff4d6')\n",
"ax.set_title('Average Ranking of Each Movie')\n",
"for spine in ['top', 'right', 'bottom', 'left']:\n",
" ax.spines[spine].set_visible(False)\n",
"ax.invert_yaxis()\n",
"ax.text(2.6,0.35,'*Lowest rank is the most\\n liked', fontstyle='italic')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Episode 5 (Empire Strikes Back) is the highest rated movie by far. The \"prequels\" (Episodes 1, 2, and 3) were generally less well-received than the originals, so it makes sense that their ratings were lower overall than the original trilogy."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Total Number of Survey Respondents Who Have Seen Each Movie"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"seen_1 673\n",
"seen_2 571\n",
"seen_3 550\n",
"seen_4 607\n",
"seen_5 758\n",
"seen_6 738\n",
"dtype: int64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"total_seen = star_wars[star_wars.columns[3:9]].sum()\n",
"total_seen"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjyUlEQVR4nO3dfVCVdf7/8Rc3At5wDkFyjoyAtt0opVlYeLabbxlJRE6OTJsNa2ROzToHN2WyYsbUsA3XbdIs1GpcsCnGcme1lUxFmnB2BUUcZ0hb11p3ofQc2lw4ym88IPD7Y8dr96RWB9HzAZ+PmWvGc12fc877OlP57OKcQ1hPT0+PAAAADBIe6gEAAAC+j0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJzIUA/QG93d3Tp27JhiY2MVFhYW6nEAAMBP0NPTo5MnTyopKUnh4T98jaRfBsqxY8eUnJwc6jEAAEAvNDc3a+TIkT+4pl8GSmxsrKT/nKDNZgvxNAAA4Kfw+XxKTk62/h7/If0yUM7+WMdmsxEoAAD0Mz/l7Rm8SRYAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMaJDPUAAIDLY9QLH4d6hJD4x7KcUI+AXuAKCgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAO3yQLAMAFXKnfviuF/ht4uYICAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTlCBMmrUKIWFhZ2zud1uSdLp06fldruVkJCgYcOGKTc3V16vN+AxmpqalJOToyFDhigxMVELFizQmTNn+u6MAABAvxdUoNTX1+v48ePWVlVVJUl65JFHJEnz58/Xli1btHHjRtXU1OjYsWOaPn26df+uri7l5OSoo6NDu3fv1vr161VeXq5Fixb14SkBAID+LqhAGT58uJxOp7VVVlbqZz/7mf7v//5PbW1tWrdunV577TVNnjxZ6enpKisr0+7du1VXVydJ2rFjhw4dOqT33ntPEyZMUHZ2tpYuXarS0lJ1dHRckhMEAAD9T6/fg9LR0aH33ntPTz75pMLCwtTQ0KDOzk5lZmZaa8aMGaOUlBTV1tZKkmprazVu3Dg5HA5rTVZWlnw+nw4ePHjB5/L7/fL5fAEbAAAYuHodKJs3b1Zra6ueeOIJSZLH41FUVJTi4uIC1jkcDnk8HmvN/8bJ2eNnj11ISUmJ7Ha7tSUnJ/d2bAAA0A/0OlDWrVun7OxsJSUl9eU851VUVKS2tjZra25uvuTPCQAAQieyN3f65z//qZ07d+qPf/yjtc/pdKqjo0Otra0BV1G8Xq+cTqe1Zu/evQGPdfZTPmfXnE90dLSio6N7MyoAAOiHenUFpaysTImJicrJybH2paena9CgQaqurrb2HT58WE1NTXK5XJIkl8ulxsZGtbS0WGuqqqpks9mUlpbW23MAAAADTNBXULq7u1VWVqb8/HxFRv737na7XbNnz1ZhYaHi4+Nls9k0d+5cuVwuTZo0SZI0ZcoUpaWlaebMmVq+fLk8Ho8WLlwot9vNFRIAAGAJOlB27typpqYmPfnkk+ccW7FihcLDw5Wbmyu/36+srCytXr3aOh4REaHKykrNmTNHLpdLQ4cOVX5+voqLiy/uLAAAwIASdKBMmTJFPT095z0WExOj0tJSlZaWXvD+qamp2rp1a7BPCwAAriD8Lh4AAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGKdXX3U/0I164eNQjxAS/1iW8+OLAAC4DLiCAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwTtCB8s033+iXv/ylEhISNHjwYI0bN0779u2zjvf09GjRokUaMWKEBg8erMzMTB05ciTgMU6cOKG8vDzZbDbFxcVp9uzZOnXq1MWfDQAAGBAig1n873//W3fccYfuvfdeffLJJxo+fLiOHDmiq666ylqzfPlyrVq1SuvXr9fo0aP14osvKisrS4cOHVJMTIwkKS8vT8ePH1dVVZU6Ozs1a9YsPf3006qoqOjbswMwII164eNQjxAS/1iWE+oRgMsmqED57W9/q+TkZJWVlVn7Ro8ebf25p6dHK1eu1MKFC/Xwww9Lkt599105HA5t3rxZM2bM0BdffKFt27apvr5eEydOlCS98cYbevDBB/Xqq68qKSmpL84LAAD0Y0H9iOdPf/qTJk6cqEceeUSJiYm65ZZb9M4771jHjx49Ko/Ho8zMTGuf3W5XRkaGamtrJUm1tbWKi4uz4kSSMjMzFR4erj179lzs+QAAgAEgqED5+9//rjVr1ui6667T9u3bNWfOHP3617/W+vXrJUkej0eS5HA4Au7ncDisYx6PR4mJiQHHIyMjFR8fb635Pr/fL5/PF7ABAICBK6gf8XR3d2vixIl65ZVXJEm33HKLPv/8c61du1b5+fmXZEBJKikp0UsvvXTJHh8AAJglqCsoI0aMUFpaWsC+sWPHqqmpSZLkdDolSV6vN2CN1+u1jjmdTrW0tAQcP3PmjE6cOGGt+b6ioiK1tbVZW3NzczBjAwCAfiaoQLnjjjt0+PDhgH1/+9vflJqaKuk/b5h1Op2qrq62jvt8Pu3Zs0cul0uS5HK51NraqoaGBmvNp59+qu7ubmVkZJz3eaOjo2Wz2QI2AAAwcAX1I5758+fr5z//uV555RX94he/0N69e/X222/r7bffliSFhYVp3rx5evnll3XddddZHzNOSkrStGnTJP3nissDDzygp556SmvXrlVnZ6cKCgo0Y8YMPsEDAAAkBRkot912mzZt2qSioiIVFxdr9OjRWrlypfLy8qw1zz33nNrb2/X000+rtbVVd955p7Zt22Z9B4okvf/++yooKNB9992n8PBw5ebmatWqVX13VgAAoF8LKlAk6aGHHtJDDz10weNhYWEqLi5WcXHxBdfEx8fzpWwAAOCC+F08AADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIwT9PegAOcz6oWPQz1CyPxjWU6oRwCAAYcrKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4fJMsEEJX6jfw8u27AH4MV1AAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYJygAmXJkiUKCwsL2MaMGWMdP336tNxutxISEjRs2DDl5ubK6/UGPEZTU5NycnI0ZMgQJSYmasGCBTpz5kzfnA0AABgQIoO9w4033qidO3f+9wEi//sQ8+fP18cff6yNGzfKbreroKBA06dP11/+8hdJUldXl3JycuR0OrV7924dP35cjz/+uAYNGqRXXnmlD04HAAAMBEEHSmRkpJxO5zn729ratG7dOlVUVGjy5MmSpLKyMo0dO1Z1dXWaNGmSduzYoUOHDmnnzp1yOByaMGGCli5dqueff15LlixRVFTUxZ8RAADo94J+D8qRI0eUlJSka665Rnl5eWpqapIkNTQ0qLOzU5mZmdbaMWPGKCUlRbW1tZKk2tpajRs3Tg6Hw1qTlZUln8+ngwcPXvA5/X6/fD5fwAYAAAauoAIlIyND5eXl2rZtm9asWaOjR4/qrrvu0smTJ+XxeBQVFaW4uLiA+zgcDnk8HkmSx+MJiJOzx88eu5CSkhLZ7XZrS05ODmZsAADQzwT1I57s7Gzrz+PHj1dGRoZSU1P14YcfavDgwX0+3FlFRUUqLCy0bvt8PiIFAIAB7KI+ZhwXF6frr79eX375pZxOpzo6OtTa2hqwxuv1Wu9ZcTqd53yq5+zt872v5azo6GjZbLaADQAADFwXFSinTp3SV199pREjRig9PV2DBg1SdXW1dfzw4cNqamqSy+WSJLlcLjU2NqqlpcVaU1VVJZvNprS0tIsZBQAADCBB/Yjn2Wef1dSpU5Wamqpjx45p8eLFioiI0GOPPSa73a7Zs2ersLBQ8fHxstlsmjt3rlwulyZNmiRJmjJlitLS0jRz5kwtX75cHo9HCxculNvtVnR09CU5QQAA0P8EFShff/21HnvsMX333XcaPny47rzzTtXV1Wn48OGSpBUrVig8PFy5ubny+/3KysrS6tWrrftHRESosrJSc+bMkcvl0tChQ5Wfn6/i4uK+PSsAANCvBRUoGzZs+MHjMTExKi0tVWlp6QXXpKamauvWrcE8LQAAuMLwu3gAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAY56ICZdmyZQoLC9O8efOsfadPn5bb7VZCQoKGDRum3Nxceb3egPs1NTUpJydHQ4YMUWJiohYsWKAzZ85czCgAAGAA6XWg1NfX66233tL48eMD9s+fP19btmzRxo0bVVNTo2PHjmn69OnW8a6uLuXk5Kijo0O7d+/W+vXrVV5erkWLFvX+LAAAwIDSq0A5deqU8vLy9M477+iqq66y9re1tWndunV67bXXNHnyZKWnp6usrEy7d+9WXV2dJGnHjh06dOiQ3nvvPU2YMEHZ2dlaunSpSktL1dHR0TdnBQAA+rVeBYrb7VZOTo4yMzMD9jc0NKizszNg/5gxY5SSkqLa2lpJUm1trcaNGyeHw2GtycrKks/n08GDB3szDgAAGGAig73Dhg0btH//ftXX159zzOPxKCoqSnFxcQH7HQ6HPB6PteZ/4+Ts8bPHzsfv98vv91u3fT5fsGMDAIB+JKgrKM3NzXrmmWf0/vvvKyYm5lLNdI6SkhLZ7XZrS05OvmzPDQAALr+gAqWhoUEtLS269dZbFRkZqcjISNXU1GjVqlWKjIyUw+FQR0eHWltbA+7n9XrldDolSU6n85xP9Zy9fXbN9xUVFamtrc3ampubgxkbAAD0M0EFyn333afGxkYdOHDA2iZOnKi8vDzrz4MGDVJ1dbV1n8OHD6upqUkul0uS5HK51NjYqJaWFmtNVVWVbDab0tLSzvu80dHRstlsARsAABi4gnoPSmxsrG666aaAfUOHDlVCQoK1f/bs2SosLFR8fLxsNpvmzp0rl8ulSZMmSZKmTJmitLQ0zZw5U8uXL5fH49HChQvldrsVHR3dR6cFAAD6s6DfJPtjVqxYofDwcOXm5srv9ysrK0urV6+2jkdERKiyslJz5syRy+XS0KFDlZ+fr+Li4r4eBQAA9FMXHSifffZZwO2YmBiVlpaqtLT0gvdJTU3V1q1bL/apAQDAAMXv4gEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABgnqEBZs2aNxo8fL5vNJpvNJpfLpU8++cQ6fvr0abndbiUkJGjYsGHKzc2V1+sNeIympibl5ORoyJAhSkxM1IIFC3TmzJm+ORsAADAgBBUoI0eO1LJly9TQ0KB9+/Zp8uTJevjhh3Xw4EFJ0vz587VlyxZt3LhRNTU1OnbsmKZPn27dv6urSzk5Oero6NDu3bu1fv16lZeXa9GiRX17VgAAoF+LDGbx1KlTA27/5je/0Zo1a1RXV6eRI0dq3bp1qqio0OTJkyVJZWVlGjt2rOrq6jRp0iTt2LFDhw4d0s6dO+VwODRhwgQtXbpUzz//vJYsWaKoqKi+OzMAANBv9fo9KF1dXdqwYYPa29vlcrnU0NCgzs5OZWZmWmvGjBmjlJQU1dbWSpJqa2s1btw4ORwOa01WVpZ8Pp91FeZ8/H6/fD5fwAYAAAauoAOlsbFRw4YNU3R0tH71q19p06ZNSktLk8fjUVRUlOLi4gLWOxwOeTweSZLH4wmIk7PHzx67kJKSEtntdmtLTk4OdmwAANCPBB0oN9xwgw4cOKA9e/Zozpw5ys/P16FDhy7FbJaioiK1tbVZW3Nz8yV9PgAAEFpBvQdFkqKionTttddKktLT01VfX6/XX39djz76qDo6OtTa2hpwFcXr9crpdEqSnE6n9u7dG/B4Zz/lc3bN+URHRys6OjrYUQEAQD910d+D0t3dLb/fr/T0dA0aNEjV1dXWscOHD6upqUkul0uS5HK51NjYqJaWFmtNVVWVbDab0tLSLnYUAAAwQAR1BaWoqEjZ2dlKSUnRyZMnVVFRoc8++0zbt2+X3W7X7NmzVVhYqPj4eNlsNs2dO1cul0uTJk2SJE2ZMkVpaWmaOXOmli9fLo/Ho4ULF8rtdnOFBAAAWIIKlJaWFj3++OM6fvy47Ha7xo8fr+3bt+v++++XJK1YsULh4eHKzc2V3+9XVlaWVq9ebd0/IiJClZWVmjNnjlwul4YOHar8/HwVFxf37VkBAIB+LahAWbdu3Q8ej4mJUWlpqUpLSy+4JjU1VVu3bg3maQEAwBWG38UDAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOAQKAAAwDoECAACMQ6AAAADjECgAAMA4BAoAADAOgQIAAIxDoAAAAOMQKAAAwDgECgAAMA6BAgAAjEOgAAAA4xAoAADAOEEFSklJiW677TbFxsYqMTFR06ZN0+HDhwPWnD59Wm63WwkJCRo2bJhyc3Pl9XoD1jQ1NSknJ0dDhgxRYmKiFixYoDNnzlz82QAAgAEhqECpqamR2+1WXV2dqqqq1NnZqSlTpqi9vd1aM3/+fG3ZskUbN25UTU2Njh07punTp1vHu7q6lJOTo46ODu3evVvr169XeXm5Fi1a1HdnBQAA+rXIYBZv27Yt4HZ5ebkSExPV0NCgu+++W21tbVq3bp0qKio0efJkSVJZWZnGjh2ruro6TZo0STt27NChQ4e0c+dOORwOTZgwQUuXLtXzzz+vJUuWKCoqqu/ODgAA9EsX9R6UtrY2SVJ8fLwkqaGhQZ2dncrMzLTWjBkzRikpKaqtrZUk1dbWaty4cXI4HNaarKws+Xw+HTx48LzP4/f75fP5AjYAADBw9TpQuru7NW/ePN1xxx266aabJEkej0dRUVGKi4sLWOtwOOTxeKw1/xsnZ4+fPXY+JSUlstvt1pacnNzbsQEAQD/Q60Bxu936/PPPtWHDhr6c57yKiorU1tZmbc3NzZf8OQEAQOgE9R6UswoKClRZWaldu3Zp5MiR1n6n06mOjg61trYGXEXxer1yOp3Wmr179wY83tlP+Zxd833R0dGKjo7uzagAAKAfCuoKSk9PjwoKCrRp0yZ9+umnGj16dMDx9PR0DRo0SNXV1da+w4cPq6mpSS6XS5LkcrnU2NiolpYWa01VVZVsNpvS0tIu5lwAAMAAEdQVFLfbrYqKCn300UeKjY213jNit9s1ePBg2e12zZ49W4WFhYqPj5fNZtPcuXPlcrk0adIkSdKUKVOUlpammTNnavny5fJ4PFq4cKHcbjdXSQAAgKQgA2XNmjWSpHvuuSdgf1lZmZ544glJ0ooVKxQeHq7c3Fz5/X5lZWVp9erV1tqIiAhVVlZqzpw5crlcGjp0qPLz81VcXHxxZwIAAAaMoAKlp6fnR9fExMSotLRUpaWlF1yTmpqqrVu3BvPUAADgCsLv4gEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABgn6EDZtWuXpk6dqqSkJIWFhWnz5s0Bx3t6erRo0SKNGDFCgwcPVmZmpo4cORKw5sSJE8rLy5PNZlNcXJxmz56tU6dOXdSJAACAgSPoQGlvb9fNN9+s0tLS8x5fvny5Vq1apbVr12rPnj0aOnSosrKydPr0aWtNXl6eDh48qKqqKlVWVmrXrl16+umne38WAABgQIkM9g7Z2dnKzs4+77Genh6tXLlSCxcu1MMPPyxJevfdd+VwOLR582bNmDFDX3zxhbZt26b6+npNnDhRkvTGG2/owQcf1KuvvqqkpKSLOB0AADAQ9Ol7UI4ePSqPx6PMzExrn91uV0ZGhmprayVJtbW1iouLs+JEkjIzMxUeHq49e/ac93H9fr98Pl/ABgAABq4+DRSPxyNJcjgcAfsdDod1zOPxKDExMeB4ZGSk4uPjrTXfV1JSIrvdbm3Jycl9OTYAADBMv/gUT1FRkdra2qytubk51CMBAIBLqE8Dxel0SpK8Xm/Afq/Xax1zOp1qaWkJOH7mzBmdOHHCWvN90dHRstlsARsAABi4+jRQRo8eLafTqerqamufz+fTnj175HK5JEkul0utra1qaGiw1nz66afq7u5WRkZGX44DAAD6qaA/xXPq1Cl9+eWX1u2jR4/qwIEDio+PV0pKiubNm6eXX35Z1113nUaPHq0XX3xRSUlJmjZtmiRp7NixeuCBB/TUU09p7dq16uzsVEFBgWbMmMEneAAAgKReBMq+fft07733WrcLCwslSfn5+SovL9dzzz2n9vZ2Pf3002ptbdWdd96pbdu2KSYmxrrP+++/r4KCAt13330KDw9Xbm6uVq1a1QenAwAABoKgA+Wee+5RT0/PBY+HhYWpuLhYxcXFF1wTHx+vioqKYJ8aAABcIfrFp3gAAMCVhUABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcQgUAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcUIaKKWlpRo1apRiYmKUkZGhvXv3hnIcAABgiJAFygcffKDCwkItXrxY+/fv180336ysrCy1tLSEaiQAAGCIkAXKa6+9pqeeekqzZs1SWlqa1q5dqyFDhuj3v/99qEYCAACGiAzFk3Z0dKihoUFFRUXWvvDwcGVmZqq2tvac9X6/X36/37rd1tYmSfL5fJdkvm7//7skj2u6i3k9r9TXTOJ1642L/XeX1613eN2Cd6W+ZtKl+Tv27GP29PT8+OKeEPjmm296JPXs3r07YP+CBQt6br/99nPWL168uEcSGxsbGxsb2wDYmpubf7QVQnIFJVhFRUUqLCy0bnd3d+vEiRNKSEhQWFhYCCfrWz6fT8nJyWpubpbNZgv1OP0Cr1nv8Lr1Dq9b7/C6BW+gvmY9PT06efKkkpKSfnRtSALl6quvVkREhLxeb8B+r9crp9N5zvro6GhFR0cH7IuLi7uUI4aUzWYbUP9AXg68Zr3D69Y7vG69w+sWvIH4mtnt9p+0LiRvko2KilJ6erqqq6utfd3d3aqurpbL5QrFSAAAwCAh+xFPYWGh8vPzNXHiRN1+++1auXKl2tvbNWvWrFCNBAAADBGyQHn00Uf17bffatGiRfJ4PJowYYK2bdsmh8MRqpFCLjo6WosXLz7nx1m4MF6z3uF16x1et97hdQser5kU1tPzUz7rAwAAcPnwu3gAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAxRWlqqUaNGKSYmRhkZGdq7d2+oRzLerl27NHXqVCUlJSksLEybN28O9UjGKykp0W233abY2FglJiZq2rRpOnz4cKjHMt6aNWs0fvx460uzXC6XPvnkk1CP1a8sW7ZMYWFhmjdvXqhHMdqSJUsUFhYWsI0ZMybUY4UEgWKADz74QIWFhVq8eLH279+vm2++WVlZWWppaQn1aEZrb2/XzTffrNLS0lCP0m/U1NTI7Xarrq5OVVVV6uzs1JQpU9Te3h7q0Yw2cuRILVu2TA0NDdq3b58mT56shx9+WAcPHgz1aP1CfX293nrrLY0fPz7Uo/QLN954o44fP25tf/7zn0M9UkjwMWMDZGRk6LbbbtObb74p6T/fqpucnKy5c+fqhRdeCPF0/UNYWJg2bdqkadOmhXqUfuXbb79VYmKiampqdPfdd4d6nH4lPj5ev/vd7zR79uxQj2K0U6dO6dZbb9Xq1av18ssva8KECVq5cmWoxzLWkiVLtHnzZh04cCDUo4QcV1BCrKOjQw0NDcrMzLT2hYeHKzMzU7W1tSGcDFeCtrY2Sf/5yxY/TVdXlzZs2KD29nZ+NcdP4Ha7lZOTE/DfOPywI0eOKCkpSddcc43y8vLU1NQU6pFCol/8NuOB7F//+pe6urrO+QZdh8Ohv/71ryGaCleC7u5uzZs3T3fccYduuummUI9jvMbGRrlcLp0+fVrDhg3Tpk2blJaWFuqxjLZhwwbt379f9fX1oR6l38jIyFB5ebluuOEGHT9+XC+99JLuuusuff7554qNjQ31eJcVgQJcodxutz7//PMr9ufbwbrhhht04MABtbW16Q9/+IPy8/NVU1NDpFxAc3OznnnmGVVVVSkmJibU4/Qb2dnZ1p/Hjx+vjIwMpaam6sMPP7zifpxIoITY1VdfrYiICHm93oD9Xq9XTqczRFNhoCsoKFBlZaV27dqlkSNHhnqcfiEqKkrXXnutJCk9PV319fV6/fXX9dZbb4V4MjM1NDSopaVFt956q7Wvq6tLu3bt0ptvvim/36+IiIgQTtg/xMXF6frrr9eXX34Z6lEuO96DEmJRUVFKT09XdXW1ta+7u1vV1dX8fBt9rqenRwUFBdq0aZM+/fRTjR49OtQj9Vvd3d3y+/2hHsNY9913nxobG3XgwAFrmzhxovLy8nTgwAHi5Cc6deqUvvrqK40YMSLUo1x2XEExQGFhofLz8zVx4kTdfvvtWrlypdrb2zVr1qxQj2a0U6dOBfxfxdGjR3XgwAHFx8crJSUlhJOZy+12q6KiQh999JFiY2Pl8XgkSXa7XYMHDw7xdOYqKipSdna2UlJSdPLkSVVUVOizzz7T9u3bQz2asWJjY895b9PQoUOVkJDAe55+wLPPPqupU6cqNTVVx44d0+LFixUREaHHHnss1KNddgSKAR599FF9++23WrRokTwejyZMmKBt27ad88ZZBNq3b5/uvfde63ZhYaEkKT8/X+Xl5SGaymxr1qyRJN1zzz0B+8vKyvTEE09c/oH6iZaWFj3++OM6fvy47Ha7xo8fr+3bt+v+++8P9WgYYL7++ms99thj+u677zR8+HDdeeedqqur0/Dhw0M92mXH96AAAADj8B4UAABgHAIFAAAYh0ABAADGIVAAAIBxCBQAAGAcAgUAABiHQAEAAMYhUAAAgHEIFAAAYBwCBQAAGIdAAQAAxiFQAACAcf4/pkBNLsQFRbUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAE8CAYAAABgjdPUAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABL20lEQVR4nO3de1hU1f4/8PcwwADDTRAERFFBBXFExUuE1+AAZgWZYkQeULNjYYaampogiJK3tLyWlppy0vIgankjhUAwyvslNBlFzTQtr5BcZ/3+8Mf+OoLKJM4Ivl/PM88zs9bae3/Wmj3Dh7332iMTQggQERER6YmRoQMgIiKipwuTDyIiItIrJh9ERESkV0w+iIiISK+YfBAREZFeMfkgIiIivWLyQURERHrF5IOIiIj0iskHERER6RWTD/pHMjMzIZPJkJmZaehQ6o1p06ZBJpMZOgy9q9pXNmzYYOhQqIGRyWQYNWqUocN4ZH369EGfPn0MHYZeMfmoR2QyWa0etUkIZs6cibS0tMce86pVq7RiMzY2RtOmTREdHY0LFy489u0/bX7//XdMmzYNhw4dqpP1vf322zAyMsLVq1e1yq9evQojIyMoFAqUlJRo1Z0+fRoymQyTJ0+ukxhq62FJTnR0NCwtLfUak64KCwsxdOhQuLu7w8zMDE5OTujVqxfi4+MNHdoDVSXW93tcunTJ0CFWU1hYKMWXlJRUY5vIyEjIZLInfr+pj4wNHQDV3po1a7Ref/nll0hPT69W7uXl9dB1zZw5EwMHDkRYWFhdhnhfiYmJaNmyJUpKSvDjjz9i1apV2LNnD44dOwYzMzO9xPA0+P3335GQkIAWLVqgY8eOj7y+Hj16YOnSpcjJycGLL74olefm5sLIyAjl5eXYt28fevToIdXl5ORIy1LtFRQUoGvXrjA3N8ewYcPQokULXLx4EQcOHMCsWbOQkJBg6BAfaunSpTX+oba1tdV/MLVkZmaGr776Ch988IFWeXFxMTZt2qSX76edO3c+9m08aZh81COvv/661usff/wR6enp1cqfRP369UOXLl0AAG+88QYaN26MWbNmYfPmzQgPDzdwdHQ/VQnEnj17tJKPnJwcdOjQAbdv38aePXu0Eo09e/bAyMgIzz77rN7jrc/mz5+PoqIiHDp0CG5ublp1ly9fNlBUuhk4cCAaN25s6DB08vzzzyM1NRWHDx+Gj4+PVL5p0yaUlZUhJCQEu3fvfqwxmJqaPtb1P4l42qWBKS4uxrhx49CsWTMoFAq0bdsWc+fOxd0/XiyTyVBcXIzVq1dLhx2jo6MBAGfPnsXbb7+Ntm3bwtzcHPb29hg0aBAKCwvrNM6ePXsCANRqtVb5iRMnMHDgQNjZ2cHMzAxdunTB5s2btdqUl5cjISEBrVu3hpmZGezt7dGjRw+kp6dLbaoOsZ8+fRrBwcFQKpVwcXFBYmIi7v0h59qMGfB/55fT0tLQvn17KBQKeHt7Y/v27dX6t2fPHnTt2hVmZmZwd3fHp59+et+xWLt2LXx9fWFubg47Ozu8+uqrOH/+vFabPn36oH379vjll1/Qt29fWFhYoGnTppg9e7bUJjMzE127dgUADB06VHpvV61aBQA4deoUXnnlFTg5OcHMzAyurq549dVXcePGjfvG1rx5czRr1kw6mlElJycH/v7+ePbZZ2us8/b2rvbfrkajwYwZM+Dq6gozMzMEBASgoKCg2ja/+eYbaTwaN26M119//bGdotu0aRP69+8PFxcXKBQKuLu7Y/r06aisrJTajBo1CpaWlvj777+rLR8REQEnJyet9tu2bUPPnj2hVCphZWWF/v374/jx4w+NRa1Ww9XVtVriAQCOjo7Vymq7ndp8pqpOj+bk5GDs2LFwcHCAUqnEyy+/jCtXrjw09toqKytDXFwcfH19YWNjA6VSiZ49eyIjI6NaW41Gg48//hgqlQpmZmZwcHBASEgI9u3bV61tbT6T9+Pn54eWLVviv//9r1Z5SkoKQkJCYGdnV+NyS5Ysgbe3NxQKBVxcXBATE4Pr169L9brsNzVd81FaWor4+Hh4eHhAoVCgWbNmmDBhAkpLS2vdtyeaoHorJiZG3P0WajQa8dxzzwmZTCbeeOMNsWjRIvHiiy8KACI2NlZqt2bNGqFQKETPnj3FmjVrxJo1a0Rubq4QQohvvvlG+Pj4iLi4OPHZZ5+JyZMni0aNGgk3NzdRXFwsrSMjI0MAEBkZGQ+MceXKlQKA+Pnnn7XKFy1aJACIpUuXSmXHjh0TNjY2ol27dmLWrFli0aJFolevXkImk4nU1FSp3eTJk4VMJhMjRowQy5cvF/PmzRMRERHiww8/lNpERUUJMzMz0bp1azFkyBCxaNEi8cILLwgAYurUqTqPmRBCABA+Pj7C2dlZTJ8+XSxYsEC0atVKWFhYiD///FNqd+TIEWFubi6aN28ukpOTxfTp00WTJk1Ehw4dxL0fuaSkJCGTycTgwYPFkiVLREJCgmjcuLFo0aKFuHbtmtSud+/ewsXFRTRr1ky8++67YsmSJeK5554TAMTWrVuFEEJcunRJJCYmCgDizTfflN5btVotSktLRcuWLYWLi4tISkoSK1asEAkJCaJr166isLDwge9hRESEUCgUoqSkRAghRGlpqTAzMxP//e9/xYoVK4SdnZ3QaDRCCCGuXr0qZDKZeOutt6Tlq/aVTp06CV9fXzF//nwxbdo0YWFhIbp166a1rar9pWvXrmL+/Pni/fffF+bm5tXGoyZV2/niiy/ElStXqj1effVVoVQqtZYJCwsT4eHhYs6cOWLp0qVi0KBBAoB47733pDZZWVkCgPj666+1li0uLhZKpVLExMRIZV9++aWQyWQiJCRELFy4UMyaNUu0aNFC2NraijNnzjww/jfffFPI5XKxa9euB7bTZTu1/UxVjXunTp3Ec889JxYuXCjGjRsn5HK5CA8Pf2g88fHxAoA4efJktXG/+327cuWKcHZ2FmPHjhVLly4Vs2fPFm3bthUmJibi4MGDWuuMjo4WAES/fv3EggULxNy5c0VoaKhYuHCh1Ka2n8manDlzRgAQc+bMEZMnTxbNmzeX9uMrV64IY2Nj8dVXX4moqKhq+01VfwMDA8XChQvFqFGjhFwuF127dhVlZWVCCN32m969e4vevXtLrysrK0VQUJCwsLAQsbGx4tNPPxWjRo0SxsbGIjQ09GFvR73A5KMeuzf5SEtLEwBEUlKSVruBAwcKmUwmCgoKpDKlUimioqKqrfPvv/+uVrZ3714BQHz55ZdSma7Jx/fffy+uXLkizp8/LzZs2CAcHByEQqEQ58+fl9oGBAQIlUol/ZET4k5y8Oyzz4rWrVtLZT4+PqJ///4P3G5UVJQAIN555x2tdfXv31+YmpqKK1euCCF0GzMAwtTUVKvs8OHDAoDWF2JYWJgwMzMTZ8+elcp++eUXIZfLtd6vwsJCIZfLxYwZM7S2ffToUWFsbKxV3rt372rvQWlpqXBychKvvPKKVPbzzz8LAGLlypVa6zx48KAAIL755psHjltNFi9eLACI7OxsIcT/7Q9nz54Vv/zyiwAgjh8/LoQQ4ttvvxUAREpKirR81b7i5eUlSktLpfKPP/5YABBHjx4VQghRVlYmHB0dRfv27cXt27eldlXrjIuLe2CcVdt50OPePyI17e//+c9/hIWFhbQfajQa0bRpU61xFkKIr7/+WgAQWVlZQgghbt26JWxtbcWIESO02l26dEnY2NhUK7/XsWPHhLm5uQAgOnbsKN59912RlpamlfTrup3afqaqPqeBgYHSH2AhhBgzZoyQy+Xi+vXrD4y96o9xTY+2bdtK7SoqKrT2ASGEuHbtmmjSpIkYNmyYVLZ7924BQIwePbratu6Or7afyZrcnXwcO3ZMax9fvHixsLS0FMXFxdWSj8uXLwtTU1MRFBQkKisrpfKqf6i++OILKc7a7DdCVE8+1qxZI4yMjKR4qixbtkwAEDk5OQ/sW33A0y4NyNatWyGXyzF69Git8nHjxkEIgW3btj10Hebm5tLz8vJy/PXXX/Dw8ICtrS0OHDjwj2MLDAyEg4MDmjVrhoEDB0KpVGLz5s1wdXUFcGf2xO7duxEeHo5bt27hzz//xJ9//om//voLwcHBOHXqlHTo3dbWFsePH8epU6ceut27p+FVnTYpKyvD999/D0D3MQsMDIS7u7v0ukOHDrC2tsbp06cBAJWVldixYwfCwsLQvHlzqZ2XlxeCg4O11pWamgqNRoPw8HCpv3/++SecnJzQunXraoeiLS0tta7vMTU1Rbdu3aRtP4iNjQ0AYMeOHTUeBn6Qu6/7AO6cVmnatCmaN28OT09P2NnZSadeHnSx6dChQ7XObVedequKf9++fbh8+TLefvttrYv8+vfvD09PT3z33Xe1ijcuLg7p6enVHkFBQdXa3r2/V+13PXv2xN9//40TJ04AuLPfDBo0CFu3bkVRUZHUfv369WjatKnU1/T0dFy/fh0RERFa76dcLkf37t1rPLVwN29vbxw6dAivv/46CgsL8fHHHyMsLAxNmjTB8uXLpXa13Y4un6kqb775ptZ08J49e6KyshJnz56t1dj/73//qzbuK1eulOrlcrm0D2g0Gly9ehUVFRXo0qWL1vfL//73P8hkshpn+dw7Xf1hn8na8Pb2RocOHfDVV18BAP773/8iNDQUFhYW1dp+//33KCsrQ2xsLIyM/u9P6IgRI2BtbS3tp7Xdb2ryzTffwMvLC56enlrv8XPPPQcAD92X6gNecNqAnD17Fi4uLrCystIqr5r9UpsvkNu3byM5ORkrV67EhQsXtK57eNC1AQ+zePFitGnTBjdu3MAXX3yBrKwsKBQKqb6goABCCEydOhVTp06tcR2XL19G06ZNkZiYiNDQULRp0wbt27dHSEgIhgwZgg4dOmi1NzIyQqtWrbTK2rRpAwDSNSy6jtndCUWVRo0a4dq1awCAK1eu4Pbt22jdunW1dm3btsXWrVul16dOnYIQosa2AGBiYqL12tXVtdoXb6NGjXDkyJEal79by5YtMXbsWHz00UdISUlBz5498dJLL+H111+XEpP7ad++PWxtbbUSDH9/fwB3vmD9/PyQk5ODESNGICcnB82aNatxnO4ta9SoEQBIY1c11m3btq22rKenp5T8PIxKpUJgYGC18rVr11YrO378OD744APs3r0bN2/e1Kq7e38fPHgwFixYgM2bN+O1115DUVERtm7div/85z/Se1KVDFf9gbiXtbX1Q2Nv06YN1qxZg8rKSvzyyy/49ttvMXv2bLz55pto2bIlAgMDa70dXT5TVR72Hj1Mr169HnrB6erVqzFv3jycOHEC5eXlUnnLli2l52q1Gi4uLve93uJuD/tM1tZrr72GefPmYcyYMcjNzb3vVPH77aempqZo1aqV1ndGbfabmpw6dQr5+flwcHCosb6+XID8IEw+SMs777yDlStXIjY2Fn5+frCxsYFMJsOrr74KjUbzj9fbrVs3abZLWFgYevTogddeew0nT56EpaWltO733nuv2hGCKh4eHgDufMGp1Wps2rQJO3fuxIoVKzB//nwsW7YMb7zxxj+OsTbkcnmN5eKei1NrQ6PRQCaTYdu2bTWu994pi4+67Xnz5iE6Oloat9GjRyM5ORk//vijdASqJkZGRvDz80Nubi6EEMjJydH6Yn722WfxxRdfoKysDD///PN9p2/X5djVhevXr6N3796wtrZGYmKidG+NAwcOYOLEiVr7+zPPPIMWLVrg66+/xmuvvYYtW7bg9u3bGDx4sNSmqv2aNWvg5ORUbXvGxrX/upXL5VCpVFCpVPDz80Pfvn2RkpKCwMDAWm9Hl8/U3dutSV29R2vXrkV0dDTCwsIwfvx4ODo6Qi6XIzk5udrF57VVVzFHRERg0qRJGDFiBOzt7Ws8Uqar2uw3NdFoNFCpVPjoo49qrG/WrNkjx2ZoTD4aEDc3N3z//fe4deuW1n/yVYeP776K/n5Z94YNGxAVFYV58+ZJZSUlJVpXcT+qqi+bvn37YtGiRXj//felIxQmJiY1/td6Lzs7OwwdOhRDhw5FUVERevXqhWnTpmklHxqNBqdPn5aOdgDAr7/+CgBo0aIFAN3GrDYcHBxgbm5e4ymhkydPar12d3eHEAItW7bUivFRPOwOqlV/0D744APk5ubC398fy5Ytu+9Nlqr06NED27Ztw+bNm3H58mXpyAdwJ/mYMmUKtm7ditu3b//j+3tUjfXJkyer/Vd/8uRJnd+Lh8nMzMRff/2F1NRU9OrVSyo/c+ZMje3Dw8Px8ccf4+bNm1i/fj1atGiBZ555RqqvOvTv6OhYq324tqqS9osXL+q0HV0/U/qwYcMGtGrVCqmpqVr76r2nV9zd3bFjxw5cvXq1Vkc/6kLz5s3h7++PzMxMvPXWW/dNFu/eT+8+slpWVoYzZ85UG+uH7Tc1cXd3x+HDhxEQENBg74rMaz4akOeffx6VlZVYtGiRVvn8+fMhk8nQr18/qUypVNaYUMjl8mr/MSxcuFBrKmFd6NOnD7p164YFCxagpKQEjo6O6NOnDz799FPpS/Zud0/3++uvv7TqLC0t4eHhUeMUtLvHQgiBRYsWwcTEBAEBAQB0G7PakMvlCA4ORlpaGs6dOyeV5+fnY8eOHVptBwwYALlcjoSEhGpjLoSo1s/aUCqVAFDtvb158yYqKiq0ylQqFYyMjGo1da8qoZg1axYsLCy0bmDWrVs3GBsbS9N+/2ny0aVLFzg6OmLZsmVaMW3btg35+fno37//P1rv/VT9x3z32JeVlWHJkiU1th88eDBKS0uxevVqbN++vdr9aYKDg2FtbY2ZM2dqnU6o8rApq9nZ2TUuV3Wqruowf223o8tnSl9qGvO8vDzs3btXq90rr7wCIUSNN1Z7nEfKkpKSEB8fj3feeee+bQIDA2FqaopPPvlEK5bPP/8cN27cqLafPmy/qUl4eDguXLigda1Pldu3b6O4uFiHXj2ZeOSjAXnxxRfRt29fTJkyBYWFhfDx8cHOnTuxadMmxMbGal2U5evri++//x4fffQRXFxc0LJlS3Tv3h0vvPAC1qxZAxsbG7Rr1w579+7F999/D3t7+zqPd/z48Rg0aBBWrVqFkSNHYvHixejRowdUKhVGjBiBVq1a4Y8//sDevXvx22+/4fDhwwCAdu3aoU+fPvD19YWdnR327duHDRs2VPuNBzMzM2zfvh1RUVHo3r07tm3bhu+++w6TJ0+WzqXqMma1lZCQgO3bt6Nnz554++23UVFRgYULF8Lb21vr+gx3d3ckJSVh0qRJKCwsRFhYGKysrHDmzBls3LgRb775Jt577z2dtu3u7g5bW1ssW7YMVlZWUCqV6N69Ow4fPoxRo0Zh0KBBaNOmDSoqKrBmzRrI5XK88sorD11vt27dYGpqir1796JPnz5a/xVaWFjAx8cHe/fuha2tLdq3b69TzFVMTEwwa9YsDB06FL1790ZERAT++OMPfPzxx2jRogXGjBnzj9Z7P88++ywaNWqEqKgojB49GjKZDGvWrLnvH7fOnTvDw8MDU6ZMQWlpabVD59bW1li6dCmGDBmCzp0749VXX4WDgwPOnTuH7777Dv7+/tWS3LvNmjUL+/fvx4ABA6Trlw4cOIAvv/wSdnZ2iI2N1Xk7tf1M1ZUNGzbUeIfTf/3rX2jSpAleeOEFpKam4uWXX0b//v1x5swZLFu2DO3atdO6KLNv374YMmQIPvnkE5w6dQohISHQaDTIzs5G3759H9vvufTu3Ru9e/d+YBsHBwdMmjQJCQkJCAkJwUsvvYSTJ09iyZIl6Nq1a7WbPj5sv6nJkCFD8PXXX2PkyJHIyMiAv78/KisrceLECXz99dfYsWOHdESs3tLjzBqqY/dOtRXizjS8MWPGCBcXF2FiYiJat24t5syZozU9TQghTpw4IXr16iVN7auadnvt2jUxdOhQ0bhxY2FpaSmCg4PFiRMnhJubm9bU3Ee9z4cQd+ayu7u7C3d3d1FRUSGEEEKtVot///vfwsnJSZiYmIimTZuKF154QWzYsEFaLikpSXTr1k3Y2toKc3Nz4enpKWbMmCHNrxdCSNPj1Gq1NF++SZMmIj4+Xmt6nC5jBkBrbn6Ve8dGCCF++OEH4evrK0xNTUWrVq3EsmXLpOmI9/rf//4nevToIZRKpVAqlcLT01PExMSIkydPSm169+4tvL29qy0bFRUl3NzctMo2bdok2rVrJ4yNjaVpt6dPnxbDhg0T7u7uwszMTNjZ2Ym+ffuK77//vto678fPz08AEJMnT65WN3r0aOmeDPeq2lfuneZbNdXx3mnB69evF506dRIKhULY2dmJyMhI8dtvvz00vvttp0pN92vIyckRzzzzjDA3NxcuLi5iwoQJYseOHffdt6dMmSIACA8PjwfGERwcLGxsbISZmZlwd3cX0dHRYt++fQ+MPycnR8TExIj27dsLGxsbYWJiIpo3by6io6OFWq3+x9upzWfqfp/T2n7OHzTV9u7lNRqNmDlzpnBzcxMKhUJ06tRJfPvttzXuxxUVFWLOnDnC09NTmJqaCgcHB9GvXz+xf/9+qY0un8l73T3V9kFq2m+EuDO11tPTU5iYmIgmTZqIt9566773onnYfnPvVFsh7kw9nzVrlvD29hYKhUI0atRI+Pr6ioSEBHHjxo0HxlwfyIQw0NVeRI9RdHQ0NmzYoPXfFBERPRl4zQcRERHpFZMPIiIi0ismH0RERKRXvOaDiIiI9IpHPoiIiEivmHwQERGRXjH5ICIiIr3iHU7vVZxv6AiIiIjqJ6VXrZrxyAcRERHpFZMPIiIi0ismH0RERKRXTD6IiIhIr5h8EBERkV4x+SAiIiK9YvJBREREesXkg4iIiPSKyQcRERHpFe9weq/WYwwdARERPclOzTd0BPUej3wQERGRXjH5ICIiIr1i8kFERER6xeSDiIiI9IrJBxEREekVkw8iIiLSKyYfREREpFdMPoiIiEivmHwQERGRXjH5ICIiIr1qUMlHamoqgoKCYG9vD5lMhkOHDhk6JCIiIrpHg0o+iouL0aNHD8yaNcvQoRAREdF96Jx8bNiwASqVCubm5rC3t0dgYCCKi4sBACtWrICXlxfMzMzg6emJJUuWaC17/vx5hIeHw9bWFnZ2dggNDUVhYaFUHx0djbCwMMydOxfOzs6wt7dHTEwMysvLaxXbkCFDEBcXh8DAQF27RURERHqi06/aXrx4EREREZg9ezZefvll3Lp1C9nZ2RBCICUlBXFxcVi0aBE6deqEgwcPYsSIEVAqlYiKikJ5eTmCg4Ph5+eH7OxsGBsbIykpCSEhIThy5AhMTU0BABkZGXB2dkZGRgYKCgowePBgdOzYESNGjKjzzpeWlqK0tFSrTCE0UMga1AEhIiKiJ4rOyUdFRQUGDBgANzc3AIBKpQIAxMfHY968eRgwYAAAoGXLlvjll1/w6aefIioqCuvXr4dGo8GKFSsgk8kAACtXroStrS0yMzMRFBQEAGjUqBEWLVoEuVwOT09P9O/fH7t27XosyUdycjISEhK0yuIt3THNyqPOt0VERER36JR8+Pj4ICAgACqVCsHBwQgKCsLAgQNhamoKtVqN4cOHayUJFRUVsLGxAQAcPnwYBQUFsLKy0lpnSUkJ1Gq19Nrb2xtyuVx67ezsjKNHj/6jzj3MpEmTMHbsWK0yRduBj2VbREREdIdOyYdcLkd6ejpyc3Oxc+dOLFy4EFOmTMGWLVsAAMuXL0f37t2rLQMARUVF8PX1RUpKSrX1Ojg4SM9NTEy06mQyGTQajS5h1ppCoYBCodAu5CkXIiKix0qn5AO4kwz4+/vD398fcXFxcHNzQ05ODlxcXHD69GlERkbWuFznzp2xfv16ODo6wtra+pEDJyIiovpJp+QjLy8Pu3btQlBQEBwdHZGXl4crV67Ay8sLCQkJGD16NGxsbBASEoLS0lLs27cP165dw9ixYxEZGYk5c+YgNDQUiYmJcHV1xdmzZ5GamooJEybA1dX1kTtz9epVnDt3Dr///jsA4OTJkwAAJycnODk5PfL6iYiI6NHplHxYW1sjKysLCxYswM2bN+Hm5oZ58+ahX79+AAALCwvMmTMH48ePh1KphEqlQmxsrFSXlZWFiRMnYsCAAbh16xaaNm2KgICAOjsSsnnzZgwdOlR6/eqrrwK4czHstGnT6mQbRERE9GhkQghh6CCeKC4hho6AiIieZKfmGzqCJ5fSq1bNeHUlERER6VW9ST6ys7NhaWl53wcRERHVDzrPdjGULl268IfiiIiIGoB6k3yYm5vDw4N3HiUiIqrv6s1pFyIiImoYmHwQERGRXjH5ICIiIr3ifT7uVZxv6AiIiIjqJ97ng4iIiJ5ETD6IiIhIr5h8EBERkV4x+SAiIiK9YvJBREREesXkg4iIiPSq3txeXW9ajzF0BERE9Qt/Yp50xCMfREREpFdMPoiIiEivmHwQERGRXjH5ICIiIr1i8kFERER6xeSDiIiI9IrJBxEREekVkw8iIiLSKyYfREREpFdMPoiIiEivGkzyUV5ejokTJ0KlUkGpVMLFxQX//ve/8fvvvxs6NCIiIrpLg0k+/v77bxw4cABTp07FgQMHkJqaipMnT+Kll14ydGhERER0F52Tjw0bNkClUsHc3Bz29vYIDAxEcXExAGDFihXw8vKCmZkZPD09sWTJEq1lz58/j/DwcNja2sLOzg6hoaEoLCyU6qOjoxEWFoa5c+fC2dkZ9vb2iImJQXl5+UPjsrGxQXp6OsLDw9G2bVs888wzWLRoEfbv349z587p2k0iIiJ6THT6VduLFy8iIiICs2fPxssvv4xbt24hOzsbQgikpKQgLi4OixYtQqdOnXDw4EGMGDECSqUSUVFRKC8vR3BwMPz8/JCdnQ1jY2MkJSUhJCQER44cgampKQAgIyMDzs7OyMjIQEFBAQYPHoyOHTtixIgROnfuxo0bkMlksLW1rbG+tLQUpaWlWmUKoYFC1mAOCBERET1xZEIIUdvGBw4cgK+vLwoLC+Hm5qZV5+HhgenTpyMiIkIqS0pKwtatW5Gbm4u1a9ciKSkJ+fn5kMlkAICysjLY2toiLS0NQUFBiI6ORmZmJtRqNeRyOQAgPDwcRkZGWLdunU4dKykpgb+/Pzw9PZGSklJjm2nTpiEhIUGrLN7SHdOsPHTaFhHRU+3UfENHQE8KpVetmul05MPHxwcBAQFQqVQIDg5GUFAQBg4cCFNTU6jVagwfPlzrCEVFRQVsbGwAAIcPH0ZBQQGsrKy01llSUgK1Wi299vb2lhIPAHB2dsbRo0d1CRPl5eUIDw+HEAJLly69b7tJkyZh7NixWmWKtgN12hYRERHpRqfkQy6XIz09Hbm5udi5cycWLlyIKVOmYMuWLQCA5cuXo3v37tWWAYCioiL4+vrWeBTCwcFBem5iYqJVJ5PJoNFoah1jVeJx9uxZ7N69G9bW1vdtq1AooFAotAt5yoWIiOix0in5AO4kA/7+/vD390dcXBzc3NyQk5MDFxcXnD59GpGRkTUu17lzZ6xfvx6Ojo4PTAgeRVXicerUKWRkZMDe3v6xbIeIiIj+OZ2Sj7y8POzatQtBQUFwdHREXl4erly5Ai8vLyQkJGD06NGwsbFBSEgISktLsW/fPly7dg1jx45FZGQk5syZg9DQUCQmJsLV1RVnz55FamoqJkyYAFdX10fqSHl5OQYOHIgDBw7g22+/RWVlJS5dugQAsLOzky5oJSIiIsPSKfmwtrZGVlYWFixYgJs3b8LNzQ3z5s1Dv379AAAWFhaYM2cOxo8fD6VSCZVKhdjYWKkuKysLEydOxIABA3Dr1i00bdoUAQEBdXIk5MKFC9i8eTMAoGPHjlp1GRkZ6NOnzyNvg4iIiB6dTrNdngouIYaOgIiofuFsF6pSy9kuvLqSiIiI9KreJB/Z2dmwtLS874OIiIjqB51nuxhKly5dcOjQIUOHQURERI+o3iQf5ubm8PDgnUeJiIjqu3pz2oWIiIgaBiYfREREpFdMPoiIiEiveJ+PexXnGzoCIiKi+on3+SAiIqInEZMPIiIi0ismH0RERKRXTD6IiIhIr5h8EBERkV4x+SAiIiK9YvJBREREelVvfttFb1qPMXQERESGdWq+oSOgBo5HPoiIiEivmHwQERGRXjH5ICIiIr1i8kFERER6xeSDiIiI9IrJBxEREekVkw8iIiLSKyYfREREpFdMPoiIiEivGlTyMW3aNHh6ekKpVKJRo0YIDAxEXl6eocMiIiKiuzSo5KNNmzZYtGgRjh49ij179qBFixYICgrClStXDB0aERER/X86Jx8bNmyASqWCubk57O3tERgYiOLiYgDAihUr4OXlBTMzM3h6emLJkiVay54/fx7h4eGwtbWFnZ0dQkNDUVhYKNVHR0cjLCwMc+fOhbOzM+zt7RETE4Py8vJaxfbaa68hMDAQrVq1gre3Nz766CPcvHkTR44c0bWbRERE9Jjo9MNyFy9eREREBGbPno2XX34Zt27dQnZ2NoQQSElJQVxcHBYtWoROnTrh4MGDGDFiBJRKJaKiolBeXo7g4GD4+fkhOzsbxsbGSEpKQkhICI4cOQJTU1MAQEZGBpydnZGRkYGCggIMHjwYHTt2xIgRI3TqWFlZGT777DPY2NjAx8enxjalpaUoLS3VKlMIDRSyBnVAiIiI6IkiE0KI2jY+cOAAfH19UVhYCDc3N606Dw8PTJ8+HREREVJZUlIStm7ditzcXKxduxZJSUnIz8+HTCYDcCdBsLW1RVpaGoKCghAdHY3MzEyo1WrI5XIAQHh4OIyMjLBu3bpaxfjtt9/i1Vdfxd9//w1nZ2ekpaWha9euNbadNm0aEhIStMriLd0xzcqjtkNCRNTw8Fdt6Z9SetWqmU7/4vv4+CAgIAAqlQqDBg3C8uXLce3aNRQXF0OtVmP48OGwtLSUHklJSVCr1QCAw4cPo6CgAFZWVlK9nZ0dSkpKpDYA4O3tLSUeAODs7IzLly/XOsa+ffvi0KFDyM3NRUhICMLDw++7/KRJk3Djxg2txyTLVroMCREREelIp9Mucrkc6enpyM3Nxc6dO7Fw4UJMmTIFW7ZsAQAsX74c3bt3r7YMABQVFcHX1xcpKSnV1uvg4CA9NzEx0aqTyWTQaDS1jlGpVMLDwwMeHh545pln0Lp1a3z++eeYNGlStbYKhQIKhUK7kKdciIiIHiudkg/gTjLg7+8Pf39/xMXFwc3NDTk5OXBxccHp06cRGRlZ43KdO3fG+vXr4ejoCGtr60cOvLY0Gk216zqIiIjIcHRKPvLy8rBr1y4EBQXB0dEReXl5uHLlCry8vJCQkIDRo0fDxsYGISEhKC0txb59+3Dt2jWMHTsWkZGRmDNnDkJDQ5GYmAhXV1ecPXsWqampmDBhAlxdXR+pI8XFxZgxYwZeeuklODs7488//8TixYtx4cIFDBo06JHWTURERHVHp+TD2toaWVlZWLBgAW7evAk3NzfMmzcP/fr1AwBYWFhgzpw5GD9+PJRKJVQqFWJjY6W6rKwsTJw4EQMGDMCtW7fQtGlTBAQE1MmRELlcjhMnTmD16tX4888/YW9vj65duyI7Oxve3t6PvH4iIiKqGzrNdnkquIQYOgIiIsPibBf6px7HbBciIiKiR1Vvko/s7Gytabz3PoiIiKh+0Hm2i6F06dIFhw4dMnQYRERE9IjqTfJhbm4ODw/eeZSIiKi+qzenXYiIiKhhYPJBREREesXkg4iIiPSKyQcRERHpFW8ydq/ifENHQEREVD/xJmNERET0JGLyQURERHrF5IOIiIj0iskHERER6RWTDyIiItIrJh9ERESkV/Xmt130pvUYQ0dARESn5hs6AnqMeOSDiIiI9IrJBxEREekVkw8iIiLSKyYfREREpFdMPoiIiEivmHwQERGRXjH5ICIiIr1i8kFERER6xeSDiIiI9IrJBxEREelVg00+Ro4cCZlMhgULFhg6FCIiIrpLg0w+Nm7ciB9//BEuLi6GDoWIiIjuoXPysWHDBqhUKpibm8Pe3h6BgYEoLi4GAKxYsQJeXl4wMzODp6cnlixZorXs+fPnER4eDltbW9jZ2SE0NBSFhYVSfXR0NMLCwjB37lw4OzvD3t4eMTExKC8vr3V8Fy5cwDvvvIOUlBSYmJg8sG1paSlu3ryp9SgVmtoPBhEREelMp+Tj4sWLiIiIwLBhw5Cfn4/MzEwMGDAAQgikpKQgLi4OM2bMQH5+PmbOnImpU6di9erVAIDy8nIEBwfDysoK2dnZyMnJgaWlJUJCQlBWViZtIyMjA2q1GhkZGVi9ejVWrVqFVatW1So+jUaDIUOGYPz48fD29n5o++TkZNjY2Gg9kotO6zIkREREpCOZEELUtvGBAwfg6+uLwsJCuLm5adV5eHhg+vTpiIiIkMqSkpKwdetW5ObmYu3atUhKSkJ+fj5kMhkAoKysDLa2tkhLS0NQUBCio6ORmZkJtVoNuVwOAAgPD4eRkRHWrVv30PiSk5ORkZGBHTt2QCaToUWLFoiNjUVsbGyN7UtLS1FaWqpVpmg7EApZgzwbRURUf5yab+gI6J9QetWqmbEu6/Tx8UFAQABUKhWCg4MRFBSEgQMHwtTUFGq1GsOHD8eIESOk9hUVFbCxsQEAHD58GAUFBbCystJaZ0lJCdRqtfTa29tbSjwAwNnZGUePHn1obPv378fHH3+MAwcOSMnNwygUCigUCu1CJh5ERESPlU7Jh1wuR3p6OnJzc7Fz504sXLgQU6ZMwZYtWwAAy5cvR/fu3astAwBFRUXw9fVFSkpKtfU6ODhIz++9TkMmk0Gjefh1GNnZ2bh8+TKaN28ulVVWVmLcuHFYsGCB1rUlREREZDg6JR/AnWTA398f/v7+iIuLg5ubG3JycuDi4oLTp08jMjKyxuU6d+6M9evXw9HREdbW1o8c+L2GDBmCwMBArbLg4GAMGTIEQ4cOrfPtERER0T+jU/KRl5eHXbt2ISgoCI6OjsjLy8OVK1fg5eWFhIQEjB49GjY2NggJCUFpaSn27duHa9euYezYsYiMjMScOXMQGhqKxMREuLq64uzZs0hNTcWECRPg6ur6SB2xt7eHvb29VpmJiQmcnJzQtm3bR1o3ERER1R2dkg9ra2tkZWVhwYIFuHnzJtzc3DBv3jz069cPAGBhYYE5c+Zg/PjxUCqVUKlU0sWeFhYWyMrKwsSJEzFgwADcunULTZs2RUBAwGM5EkJERERPJp1muzwVXEIMHQEREXG2S/1Uy9kunNpBREREelVvko/s7GxYWlre90FERET1g86zXQylS5cuOHTokKHDICIiokdUb5IPc3NzeHh4GDoMIiIiekT15rQLERERNQxMPoiIiEivmHwQERGRXvE+H/cqzjd0BERERPUT7/NBRERETyImH0RERKRXTD6IiIhIr5h8EBERkV4x+SAiIiK9YvJBREREelVvbq+uN63HGDoCIiKix+vUfINunkc+iIiISK+YfBAREZFeMfkgIiIivWLyQURERHrF5IOIiIj0iskHERER6RWTDyIiItIrJh9ERESkV0w+iIiISK+YfBAREZFeNajkIzo6GjKZTOsREhJi6LCIiIjoLg3ut11CQkKwcuVK6bVCoTBgNERERHQvnY98bNiwASqVCubm5rC3t0dgYCCKi4sBACtWrICXlxfMzMzg6emJJUuWaC17/vx5hIeHw9bWFnZ2dggNDUVhYaFUHx0djbCwMMydOxfOzs6wt7dHTEwMysvLax2fQqGAk5OT9GjUqJGuXSQiIqLHSKfk4+LFi4iIiMCwYcOQn5+PzMxMDBgwAEIIpKSkIC4uDjNmzEB+fj5mzpyJqVOnYvXq1QCA8vJyBAcHw8rKCtnZ2cjJyYGlpSVCQkJQVlYmbSMjIwNqtRoZGRlYvXo1Vq1ahVWrVtU6xszMTDg6OqJt27Z466238Ndff923bWlpKW7evKn1KBUaXYaEiIiIdCQTQojaNj5w4AB8fX1RWFgINzc3rToPDw9Mnz4dERERUllSUhK2bt2K3NxcrF27FklJScjPz4dMJgMAlJWVwdbWFmlpaQgKCkJ0dDQyMzOhVqshl8sBAOHh4TAyMsK6deseGt+6detgYWGBli1bQq1WY/LkybC0tMTevXul9d1t2rRpSEhI0CqLt3THNCuP2g4JERFR/XNq/uNZr9KrVs10uubDx8cHAQEBUKlUCA4ORlBQEAYOHAhTU1Oo1WoMHz4cI0aMkNpXVFTAxsYGAHD48GEUFBTAyspKa50lJSVQq9XSa29vb61EwdnZGUePHq1VfK+++qr0XKVSoUOHDnB3d0dmZiYCAgKqtZ80aRLGjh2rVaZoO7BW2yIiIqJ/RqfkQy6XIz09Hbm5udi5cycWLlyIKVOmYMuWLQCA5cuXo3v37tWWAYCioiL4+voiJSWl2nodHByk5yYmJlp1MpkMGs0/OxXSqlUrNG7cGAUFBTUmHwqFovoFqbIGNQGIiIjoiaPzbBeZTAZ/f3/4+/sjLi4Obm5uyMnJgYuLC06fPo3IyMgal+vcuTPWr18PR0dHWFtbP3LgtfHbb7/hr7/+grOzs162R0RERA+n07/5eXl5mDlzJvbt24dz584hNTUVV65cgZeXFxISEpCcnIxPPvkEv/76K44ePYqVK1fio48+AgBERkaicePGCA0NRXZ2Ns6cOYPMzEyMHj0av/322yN3pKioCOPHj8ePP/6IwsJC7Nq1C6GhofDw8EBwcPAjr5+IiIjqhk5HPqytrZGVlYUFCxbg5s2bcHNzw7x589CvXz8AgIWFBebMmYPx48dDqVRCpVIhNjZWqsvKysLEiRMxYMAA3Lp1C02bNkVAQECdHAmRy+U4cuQIVq9ejevXr8PFxQVBQUGYPn067/VBRET0BNFptstTwYV3RCUiogbOwLNdeHUlERER6VW9ST6ys7NhaWl53wcRERHVD/Xmt126dOmCQ4cOGToMIiIiekT1JvkwNzeHhwfvPEpERFTf1ZvTLkRERNQwMPkgIiIivWLyQURERHrF+3zcqzjf0BEQERHVT7zPBxERET2JmHwQERGRXjH5ICIiIr1i8kFERER6xeSDiIiI9IrJBxEREelVvbm9ut60HmPoCIiIiHR3ar6hI6g1HvkgIiIivWLyQURERHrF5IOIiIj0iskHERER6RWTDyIiItIrJh9ERESkV0w+iIiISK+YfBAREZFeMfkgIiIivWLyQURERHrV4JKP/Px8vPTSS7CxsYFSqUTXrl1x7tw5Q4dFRERE/1+DSj7UajV69OgBT09PZGZm4siRI5g6dSrMzMwMHRoRERH9fzonHxs2bIBKpYK5uTns7e0RGBiI4uJiAMCKFSvg5eUFMzMzeHp6YsmSJVrLnj9/HuHh4bC1tYWdnR1CQ0NRWFgo1UdHRyMsLAxz586Fs7Mz7O3tERMTg/Ly8lrFNmXKFDz//POYPXs2OnXqBHd3d7z00ktwdHTUtZtERET0mOiUfFy8eBEREREYNmwY8vPzkZmZiQEDBkAIgZSUFMTFxWHGjBnIz8/HzJkzMXXqVKxevRoAUF5ejuDgYFhZWSE7Oxs5OTmwtLRESEgIysrKpG1kZGRArVYjIyMDq1evxqpVq7Bq1aqHxqbRaPDdd9+hTZs2CA4OhqOjI7p37460tLT7LlNaWoqbN29qPUqFRpchISIiIh3JhBCito0PHDgAX19fFBYWws3NTavOw8MD06dPR0REhFSWlJSErVu3Ijc3F2vXrkVSUhLy8/Mhk8kAAGVlZbC1tUVaWhqCgoIQHR2NzMxMqNVqyOVyAEB4eDiMjIywbt26B8Z26dIlODs7w8LCAklJSejbty+2b9+OyZMnIyMjA7179662zLRp05CQkKBVFm/pjmlWHrUdEiIioifDqfmGjgBQetWqmbEu6/Tx8UFAQABUKhWCg4MRFBSEgQMHwtTUFGq1GsOHD8eIESOk9hUVFbCxsQEAHD58GAUFBbCystJaZ0lJCdRqtfTa29tbSjwAwNnZGUePHn1obBrNnSMWoaGhGDNmDACgY8eOyM3NxbJly2pMPiZNmoSxY8dqlSnaDnzotoiIiOif0yn5kMvlSE9PR25uLnbu3ImFCxdiypQp2LJlCwBg+fLl6N69e7VlAKCoqAi+vr5ISUmptl4HBwfpuYmJiVadTCaTEosHady4MYyNjdGuXTutci8vL+zZs6fGZRQKBRQKhXahrEFdg0tERPTE0Sn5AO4kA/7+/vD390dcXBzc3NyQk5MDFxcXnD59GpGRkTUu17lzZ6xfvx6Ojo6wtrZ+5MDvZWpqiq5du+LkyZNa5b/++mu1U0RERERkODolH3l5edi1axeCgoLg6OiIvLw8XLlyBV5eXkhISMDo0aNhY2ODkJAQlJaWYt++fbh27RrGjh2LyMhIzJkzB6GhoUhMTISrqyvOnj2L1NRUTJgwAa6uro/cmfHjx2Pw4MHo1auXdM3Hli1bkJmZ+cjrJiIiorqhU/JhbW2NrKwsLFiwADdv3oSbmxvmzZuHfv36AQAsLCwwZ84cjB8/HkqlEiqVCrGxsVJdVlYWJk6ciAEDBuDWrVto2rQpAgIC6uxIyMsvv4xly5YhOTkZo0ePRtu2bfG///0PPXr0qJP1ExER0aPTabbLU8ElxNAREBER6a4ezXbh1ZVERESkV/Um+cjOzoalpeV9H0RERFQ/6DzbxVC6dOmCQ4cOGToMIiIiekT1JvkwNzeHhwfvPEpERFTf1ZvTLkRERNQwMPkgIiIivWLyQURERHrF+3zcqzjf0BEQERHVT7zPBxERET2JmHwQERGRXjH5ICIiIr1i8kFERER6xeSDiIiI9IrJBxEREekVkw8iIiLSKyYfREREpFdMPoiIiEivmHwQERGRfgmSlJSUiPj4eFFSUmLoUB67p6WvT0s/hXh6+vq09FOIp6ev7OfTh7/tcpebN2/CxsYGN27cgLW1taHDeayelr4+Lf0Enp6+Pi39BJ6evrKfTx+ediEiIiK9YvJBREREesXkg4iIiPSKycddFAoF4uPjoVAoDB3KY/e09PVp6Sfw9PT1aekn8PT0lf18+vCCUyIiItIrHvkgIiIivWLyQURERHrF5IOIiIj0iskHERER6RWTj7ssXrwYLVq0gJmZGbp3746ffvrJ0CHpJCsrCy+++CJcXFwgk8mQlpamVS+EQFxcHJydnWFubo7AwECcOnVKq83Vq1cRGRkJa2tr2NraYvjw4SgqKtJjLx4uOTkZXbt2hZWVFRwdHREWFoaTJ09qtSkpKUFMTAzs7e1haWmJV155BX/88YdWm3PnzqF///6wsLCAo6Mjxo8fj4qKCn125aGWLl2KDh06wNraGtbW1vDz88O2bduk+obSz3t9+OGHkMlkiI2NlcoaSl+nTZsGmUym9fD09JTqG0o/AeDChQt4/fXXYW9vD3Nzc6hUKuzbt0+qbwjfSS1atKj2fspkMsTExABoWO9nnTLkvd2fJOvWrROmpqbiiy++EMePHxcjRowQtra24o8//jB0aLW2detWMWXKFJGamioAiI0bN2rVf/jhh8LGxkakpaWJw4cPi5deekm0bNlS3L59W2oTEhIifHx8xI8//iiys7OFh4eHiIiI0HNPHiw4OFisXLlSHDt2TBw6dEg8//zzonnz5qKoqEhqM3LkSNGsWTOxa9cusW/fPvHMM8+IZ599VqqvqKgQ7du3F4GBgeLgwYNi69atonHjxmLSpEmG6NJ9bd68WXz33Xfi119/FSdPnhSTJ08WJiYm4tixY0KIhtPPu/3000+iRYsWokOHDuLdd9+VyhtKX+Pj44W3t7e4ePGi9Lhy5YpU31D6efXqVeHm5iaio6NFXl6eOH36tNixY4coKCiQ2jSE76TLly9rvZfp6ekCgMjIyBBCNJz3s64x+fj/unXrJmJiYqTXlZWVwsXFRSQnJxswqn/u3uRDo9EIJycnMWfOHKns+vXrQqFQiK+++koIIcQvv/wiAIiff/5ZarNt2zYhk8nEhQsX9Ba7ri5fviwAiB9++EEIcadfJiYm4ptvvpHa5OfnCwBi7969Qog7iZqRkZG4dOmS1Gbp0qXC2tpalJaW6rcDOmrUqJFYsWJFg+znrVu3ROvWrUV6erro3bu3lHw0pL7Gx8cLHx+fGusaUj8nTpwoevTocd/6hvqd9O677wp3d3eh0Wga1PtZ13jaBUBZWRn279+PwMBAqczIyAiBgYHYu3evASOrO2fOnMGlS5e0+mhjY4Pu3btLfdy7dy9sbW3RpUsXqU1gYCCMjIyQl5en95hr68aNGwAAOzs7AMD+/ftRXl6u1VdPT080b95cq68qlQpNmjSR2gQHB+PmzZs4fvy4HqOvvcrKSqxbtw7FxcXw8/NrkP2MiYlB//79tfoENLz39NSpU3BxcUGrVq0QGRmJc+fOAWhY/dy8eTO6dOmCQYMGwdHREZ06dcLy5cul+ob4nVRWVoa1a9di2LBhkMlkDer9rGtMPgD8+eefqKys1HrzAaBJkya4dOmSgaKqW1X9eFAfL126BEdHR616Y2Nj2NnZPbHjoNFoEBsbC39/f7Rv3x7AnX6YmprC1tZWq+29fa1pLKrqniRHjx6FpaUlFAoFRo4ciY0bN6Jdu3YNrp/r1q3DgQMHkJycXK2uIfW1e/fuWLVqFbZv346lS5fizJkz6NmzJ27dutWg+nn69GksXboUrVu3xo4dO/DWW29h9OjRWL16NYCG+Z2UlpaG69evIzo6GkDD2m/rmrGhAyB6FDExMTh27Bj27Nlj6FAem7Zt2+LQoUO4ceMGNmzYgKioKPzwww+GDqtOnT9/Hu+++y7S09NhZmZm6HAeq379+knPO3TogO7du8PNzQ1ff/01zM3NDRhZ3dJoNOjSpQtmzpwJAOjUqROOHTuGZcuWISoqysDRPR6ff/45+vXrBxcXF0OH8sTjkQ8AjRs3hlwur3YF8h9//AEnJycDRVW3qvrxoD46OTnh8uXLWvUVFRW4evXqEzkOo0aNwrfffouMjAy4urpK5U5OTigrK8P169e12t/b15rGoqruSWJqagoPDw/4+voiOTkZPj4++PjjjxtUP/fv34/Lly+jc+fOMDY2hrGxMX744Qd88sknMDY2RpMmTRpMX+9la2uLNm3aoKCgoEG9p87OzmjXrp1WmZeXl3SKqaF9J509exbff/893njjDamsIb2fdY3JB+58ufv6+mLXrl1SmUajwa5du+Dn52fAyOpOy5Yt4eTkpNXHmzdvIi8vT+qjn58frl+/jv3790ttdu/eDY1Gg+7du+s95vsRQmDUqFHYuHEjdu/ejZYtW2rV+/r6wsTERKuvJ0+exLlz57T6evToUa0vtvT0dFhbW1f7wnzSaDQalJaWNqh+BgQE4OjRozh06JD06NKlCyIjI6XnDaWv9yoqKoJarYazs3ODek/9/f2rTYH/9ddf4ebmBqBhfScBwMqVK+Ho6Ij+/ftLZQ3p/axzhr7i9Umxbt06oVAoxKpVq8Qvv/wi3nzzTWFra6t1BfKT7tatW+LgwYPi4MGDAoD46KOPxMGDB8XZs2eFEHemtdna2opNmzaJI0eOiNDQ0BqntXXq1Enk5eWJPXv2iNatWz9R09qEEOKtt94SNjY2IjMzU2uK299//y21GTlypGjevLnYvXu32Ldvn/Dz8xN+fn5SfdX0tqCgIHHo0CGxfft24eDg8MRNb3v//ffFDz/8IM6cOSOOHDki3n//fSGTycTOnTuFEA2nnzW5e7aLEA2nr+PGjROZmZnizJkzIicnRwQGBorGjRuLy5cvCyEaTj9/+uknYWxsLGbMmCFOnTolUlJShIWFhVi7dq3UpqF8J1VWVormzZuLiRMnVqtrKO9nXWPycZeFCxeK5s2bC1NTU9GtWzfx448/GjoknWRkZAgA1R5RUVFCiDtT26ZOnSqaNGkiFAqFCAgIECdPntRax19//SUiIiKEpaWlsLa2FkOHDhW3bt0yQG/ur6Y+AhArV66U2ty+fVu8/fbbolGjRsLCwkK8/PLL4uLFi1rrKSwsFP369RPm5uaicePGYty4caK8vFzPvXmwYcOGCTc3N2FqaiocHBxEQECAlHgI0XD6WZN7k4+G0tfBgwcLZ2dnYWpqKpo2bSoGDx6sde+LhtJPIYTYsmWLaN++vVAoFMLT01N89tlnWvUN5Ttpx44dAkC12IVoWO9nXZIJIYRBDrkQERHRU4nXfBAREZFeMfkgIiIivWLyQURERHrF5IOIiIj0iskHERER6RWTDyIiItIrJh9ERESkV0w+iIiISK+YfBA9BQoLCyGTyXDo0CFDhyI5ceIEnnnmGZiZmaFjx46GDscgZDIZ0tLSDB0Gkd4x+SDSg+joaMhkMnz44Yda5WlpaZDJZAaKyrDi4+OhVCpx8uRJrR/eulvVuMlkMpiYmKBly5aYMGECSkpK9Bxt/dGiRQssWLDA0GEQPRCTDyI9MTMzw6xZs3Dt2jVDh1JnysrK/vGyarUaPXr0gJubG+zt7e/bLiQkBBcvXsTp06cxf/58fPrpp4iPj//H2yUiw2PyQaQngYGBcHJyQnJy8n3bTJs2rdopiAULFqBFixbS6+joaISFhWHmzJlo0qQJbG1tkZiYiIqKCowfPx52dnZwdXXFypUrq63/xIkTePbZZ2FmZob27dvjhx9+0Ko/duwY+vXrB0tLSzRp0gRDhgzBn3/+KdX36dMHo0aNQmxsLBo3bozg4OAa+6HRaJCYmAhXV1coFAp07NgR27dvl+plMhn279+PxMREyGQyTJs27b5jolAo4OTkhGbNmiEsLAyBgYFIT0/X2lZycjJatmwJc3Nz+Pj4YMOGDVL9tWvXEBkZCQcHB5ibm6N169bS2FSdjlq3bt0Dx+WHH35At27doFAo4OzsjPfffx8VFRVa4zJ69GhMmDABdnZ2cHJyqtanU6dOoVevXjAzM0O7du20+lDl/PnzCA8Ph62tLezs7BAaGorCwkKpvuq9nzt3LpydnWFvb4+YmBiUl5dLcZw9exZjxoyRjhgBwNmzZ/Hiiy+iUaNGUCqV8Pb2xtatW+875kSPG5MPIj2Ry+WYOXMmFi5ciN9+++2R1rV79278/vvvyMrKwkcffYT4+Hi88MILaNSoEfLy8jBy5Ej85z//qbad8ePHY9y4cTh48CD8/Pzw4osv4q+//gIAXL9+Hc899xw6deqEffv2Yfv27fjjjz8QHh6utY7Vq1fD1NQUOTk5WLZsWY3xffzxx5g3bx7mzp2LI0eOIDg4GC+99BJOnToFALh48SK8vb0xbtw4XLx4Ee+9916t+n3s2DHk5ubC1NRUKktOTsaXX36JZcuW4fjx4xgzZgxef/11KYGYOnUqfvnlF2zbtg35+flYunQpGjduXOtxuXDhAp5//nl07doVhw8fxtKlS/H5558jKSmp2rgolUrk5eVh9uzZSExMlBIMjUaDAQMGwNTUFHl5eVi2bBkmTpyotXx5eTmCg4NhZWWF7Oxs5OTkwNLSEiEhIVpHmDIyMqBWq5GRkYHVq1dj1apVWLVqFQAgNTUVrq6uSExMxMWLF3Hx4kUAQExMDEpLS5GVlYWjR49i1qxZsLS0rNWYEz0Whv5ZXaKnQVRUlAgNDRVCCPHMM8+IYcOGCSGE2Lhxo7j7YxgfHy98fHy0lp0/f75wc3PTWpebm5uorKyUytq2bSt69uwpva6oqBBKpVJ89dVXQgghzpw5IwCIDz/8UGpTXl4uXF1dxaxZs4QQQkyfPl0EBQVpbfv8+fNaPxXeu3dv0alTp4f218XFRcyYMUOrrGvXruLtt9+WXvv4+Ij4+PgHricqKkrI5XKhVCqFQqEQAISRkZHYsGGDEEKIkpISYWFhIXJzc7WWGz58uIiIiBBCCPHiiy+KoUOH1rj+2ozL5MmTRdu2bYVGo5HaLF68WFhaWkrvQe/evUWPHj2q9XfixIlCiDs/uW5sbCwuXLgg1W/btk0AEBs3bhRCCLFmzZpq2yktLRXm5uZix44d0ni4ubmJiooKqc2gQYPE4MGDpddubm5i/vz5WrGoVCoxbdq0GseAyBCMDZn4ED2NZs2aheeee67W/+3XxNvbG0ZG/3fgskmTJmjfvr30Wi6Xw97eHpcvX9Zazs/PT3pubGyMLl26ID8/HwBw+PBhZGRk1PgfsVqtRps2bQAAvr6+D4zt5s2b+P333+Hv769V7u/vj8OHD9eyh/+nb9++WLp0KYqLizF//nwYGxvjlVdeAQAUFBTg77//xr/+9S+tZcrKytCpUycAwFtvvYVXXnkFBw4cQFBQEMLCwvDss89qtX/QuOTn58PPz0/rwmB/f38UFRXht99+Q/PmzQEAHTp00Fqns7OzNP75+flo1qwZXFxcatwmcGf8CwoKYGVlpVVeUlICtVotvfb29oZcLtfaztGjR+87fgAwevRovPXWW9i5cycCAwPxyiuvVIuXSJ+YfBDpWa9evRAcHIxJkyYhOjpaq87IyAhCCK2yqvP5dzMxMdF6XTUb5N4yjUZT67iKiorw4osvYtasWdXqnJ2dpedKpbLW66wLSqUSHh4eAIAvvvgCPj4++PzzzzF8+HAUFRUBAL777js0bdpUazmFQgEA6NevH86ePYutW7ciPT0dAQEBiImJwdy5c+s0zroYf19fX6SkpFSrc3BweKTtvPHGGwgODsZ3332HnTt3Ijk5GfPmzcM777xT6/iI6hKv+SAygA8//BBbtmzB3r17tcodHBxw6dIlrQSkLu/N8eOPP0rPKyoqsH//fnh5eQEAOnfujOPHj6NFixbw8PDQeuiScFhbW8PFxQU5OTla5Tk5OWjXrt0jxW9kZITJkyfjgw8+wO3bt9GuXTsoFAqcO3euWszNmjWTlnNwcEBUVBTWrl2LBQsW4LPPPtNa74PGxcvLC3v37tV6T3JycmBlZQVXV9daxe3l5YXz589L12Dcu03gzvifOnUKjo6O1fpiY2NT6zEyNTVFZWVltfJmzZph5MiRSE1Nxbhx47B8+fJar5OorjH5IDIAlUqFyMhIfPLJJ1rlffr0wZUrVzB79myo1WosXrwY27Ztq7PtLl68GBs3bsSJEycQExODa9euYdiwYQDuXJR49epVRERE4Oeff4ZarcaOHTswdOjQGv+YPcj48eMxa9YsrF+/HidPnsT777+PQ4cO4d13333kPgwaNAhyuRyLFy+GlZUV3nvvPYwZMwarV6+GWq3GgQMHsHDhQqxevRoAEBcXh02bNqGgoADHjx/Ht99+KyUWtRmXt99+G+fPn8c777yDEydOYNOmTYiPj8fYsWO1Tn09SGBgINq0aYOoqCgcPnwY2dnZmDJlilabyMhING7cGKGhocjOzsaZM2eQmZmJ0aNH63SBcosWLZCVlYULFy5IM5ViY2OxY8cOnDlzBgcOHEBGRka1MSDSJyYfRAaSmJhY7XC5l5cXlixZgsWLF8PHxwc//fTTI10bcq8PP/wQH374IXx8fLBnzx5s3rxZmvlRdbSisrISQUFBUKlUiI2Nha2tba3/yFYZPXo0xo4di3HjxkGlUmH79u3YvHkzWrdu/ch9MDY2xqhRozB79mwUFxdj+vTpmDp1KpKTk+Hl5YWQkBB89913aNmyJYA7RwImTZqEDh06oFevXpDL5Vi3bl2tx6Vp06bYunUrfvrpJ/j4+GDkyJEYPnw4Pvjgg1rHbGRkhI0bN+L27dvo1q0b3njjDcyYMUOrjYWFBbKystC8eXMMGDAAXl5eGD58OEpKSmBtbV3rbSUmJqKwsBDu7u7S6ZrKykrExMRI49OmTRssWbKk1uskqmsyce8JZiKip0RhYSFatmyJgwcPPrW3eCcyBB75ICIiIr1i8kFERER6xdMuREREpFc88kFERER6xeSDiIiI9IrJBxEREekVkw8iIiLSKyYfREREpFdMPoiIiEivmHwQERGRXjH5ICIiIr36f4EpuR0cuGJZAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 600x300 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Version 1: simple and quick\n",
"plt.bar(range(6), star_wars[star_wars.columns[3:9]].sum())\n",
"\n",
"# Version 2: optimized for stakeholders\n",
"fig,ax = plt.subplots(figsize=(6,3))\n",
"rankings = ax.barh(total_seen.index, total_seen, color='#ff1947')\n",
"ax.set_facecolor('#fff4d6')\n",
"ax.set_title('Total Respondents Who Have Seen Each Movie')\n",
"ax.set_xlabel(\"Number of Respondents\")\n",
"for spine in ['top', 'right', 'bottom', 'left']:\n",
" ax.spines[spine].set_visible(False)\n",
"ax.invert_yaxis()\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exploring by Gender"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RespondentID</th>\n",
" <th>Have you seen any of the 6 films in the Star Wars franchise?</th>\n",
" <th>Do you consider yourself to be a fan of the Star Wars film franchise?</th>\n",
" <th>seen_1</th>\n",
" <th>seen_2</th>\n",
" <th>seen_3</th>\n",
" <th>seen_4</th>\n",
" <th>seen_5</th>\n",
" <th>seen_6</th>\n",
" <th>ranking_ep1</th>\n",
" <th>...</th>\n",
" <th>Yoda</th>\n",
" <th>Which character shot first?</th>\n",
" <th>Are you familiar with the Expanded Universe?</th>\n",
" <th>Do you consider yourself to be a fan of the Expanded Universe?</th>\n",
" <th>Do you consider yourself to be a fan of the Star Trek franchise?</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Household Income</th>\n",
" <th>Education</th>\n",
" <th>Location (Census Region)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>3292879998</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>3.0</td>\n",
" <td>...</td>\n",
" <td>Very favorably</td>\n",
" <td>I don't understand this question</td>\n",
" <td>True</td>\n",
" <td>No</td>\n",
" <td>False</td>\n",
" <td>Male</td>\n",
" <td>18-29</td>\n",
" <td>NaN</td>\n",
" <td>High school degree</td>\n",
" <td>South Atlantic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>3292879538</td>\n",
" <td>False</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>NaN</td>\n",
" <td>...</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>True</td>\n",
" <td>Male</td>\n",
" <td>18-29</td>\n",
" <td>$0 - $24,999</td>\n",
" <td>Bachelor degree</td>\n",
" <td>West South Central</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" RespondentID Have you seen any of the 6 films in the Star Wars franchise? \\\n",
"0 3292879998 True \n",
"1 3292879538 False \n",
"\n",
" Do you consider yourself to be a fan of the Star Wars film franchise? \\\n",
"0 True \n",
"1 NaN \n",
"\n",
" seen_1 seen_2 seen_3 seen_4 seen_5 seen_6 ranking_ep1 ... \\\n",
"0 True True True True True True 3.0 ... \n",
"1 False False False False False False NaN ... \n",
"\n",
" Yoda Which character shot first? \\\n",
"0 Very favorably I don't understand this question \n",
"1 NaN NaN \n",
"\n",
" Are you familiar with the Expanded Universe? \\\n",
"0 True \n",
"1 NaN \n",
"\n",
" Do you consider yourself to be a fan of the Expanded Universe? \\\n",
"0 No \n",
"1 NaN \n",
"\n",
" Do you consider yourself to be a fan of the Star Trek franchise? Gender \\\n",
"0 False Male \n",
"1 True Male \n",
"\n",
" Age Household Income Education Location (Census Region) \n",
"0 18-29 NaN High school degree South Atlantic \n",
"1 18-29 $0 - $24,999 Bachelor degree West South Central \n",
"\n",
"[2 rows x 38 columns]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>RespondentID</th>\n",
" <th>Have you seen any of the 6 films in the Star Wars franchise?</th>\n",
" <th>Do you consider yourself to be a fan of the Star Wars film franchise?</th>\n",
" <th>seen_1</th>\n",
" <th>seen_2</th>\n",
" <th>seen_3</th>\n",
" <th>seen_4</th>\n",
" <th>seen_5</th>\n",
" <th>seen_6</th>\n",
" <th>ranking_ep1</th>\n",
" <th>...</th>\n",
" <th>Yoda</th>\n",
" <th>Which character shot first?</th>\n",
" <th>Are you familiar with the Expanded Universe?</th>\n",
" <th>Do you consider yourself to be a fan of the Expanded Universe?</th>\n",
" <th>Do you consider yourself to be a fan of the Star Trek franchise?</th>\n",
" <th>Gender</th>\n",
" <th>Age</th>\n",
" <th>Household Income</th>\n",
" <th>Education</th>\n",
" <th>Location (Census Region)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>111</th>\n",
" <td>3291439708</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>True</td>\n",
" <td>1.0</td>\n",
" <td>...</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>Greedo</td>\n",
" <td>True</td>\n",
" <td>No</td>\n",
" <td>True</td>\n",
" <td>Female</td>\n",
" <td>&gt; 60</td>\n",
" <td>$50,000 - $99,999</td>\n",
" <td>Bachelor degree</td>\n",
" <td>South Atlantic</td>\n",
" </tr>\n",
" <tr>\n",
" <th>112</th>\n",
" <td>3291439404</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>True</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>False</td>\n",
" <td>1.0</td>\n",
" <td>...</td>\n",
" <td>Somewhat favorably</td>\n",
" <td>I don't understand this question</td>\n",
" <td>False</td>\n",
" <td>NaN</td>\n",
" <td>False</td>\n",
" <td>Female</td>\n",
" <td>&gt; 60</td>\n",
" <td>$25,000 - $49,999</td>\n",
" <td>Graduate degree</td>\n",
" <td>Pacific</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2 rows × 38 columns</p>\n",
"</div>"
],
"text/plain": [
" RespondentID \\\n",
"111 3291439708 \n",
"112 3291439404 \n",
"\n",
" Have you seen any of the 6 films in the Star Wars franchise? \\\n",
"111 True \n",
"112 True \n",
"\n",
" Do you consider yourself to be a fan of the Star Wars film franchise? \\\n",
"111 True \n",
"112 False \n",
"\n",
" seen_1 seen_2 seen_3 seen_4 seen_5 seen_6 ranking_ep1 ... \\\n",
"111 True True False False True True 1.0 ... \n",
"112 True False False False False False 1.0 ... \n",
"\n",
" Yoda Which character shot first? \\\n",
"111 Somewhat favorably Greedo \n",
"112 Somewhat favorably I don't understand this question \n",
"\n",
" Are you familiar with the Expanded Universe? \\\n",
"111 True \n",
"112 False \n",
"\n",
" Do you consider yourself to be a fan of the Expanded Universe? \\\n",
"111 No \n",
"112 NaN \n",
"\n",
" Do you consider yourself to be a fan of the Star Trek franchise? Gender \\\n",
"111 True Female \n",
"112 False Female \n",
"\n",
" Age Household Income Education Location (Census Region) \n",
"111 > 60 $50,000 - $99,999 Bachelor degree South Atlantic \n",
"112 > 60 $25,000 - $49,999 Graduate degree Pacific \n",
"\n",
"[2 rows x 38 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"males = star_wars[star_wars[\"Gender\"] == \"Male\"]\n",
"females = star_wars[star_wars[\"Gender\"] == \"Female\"]\n",
"\n",
"display(males.head(2))\n",
"display(females.head(2))"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"ranking_ep1 4.037825\n",
"ranking_ep2 4.224586\n",
"ranking_ep3 4.274882\n",
"ranking_ep4 2.997636\n",
"ranking_ep5 2.458629\n",
"ranking_ep6 3.002364\n",
"dtype: float64"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"ranking_ep1 3.429293\n",
"ranking_ep2 3.954660\n",
"ranking_ep3 4.418136\n",
"ranking_ep4 3.544081\n",
"ranking_ep5 2.569270\n",
"ranking_ep6 3.078086\n",
"dtype: float64"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"seen_1 361\n",
"seen_2 323\n",
"seen_3 317\n",
"seen_4 342\n",
"seen_5 392\n",
"seen_6 387\n",
"dtype: int64"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"seen_1 298\n",
"seen_2 237\n",
"seen_3 222\n",
"seen_4 255\n",
"seen_5 353\n",
"seen_6 338\n",
"dtype: int64"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"male_ranking_avgs=males[males.columns[9:15]].mean()\n",
"female_ranking_avgs = females[females.columns[9:15]].mean()\n",
"\n",
"male_tot_seen = males[males.columns[3:9]].sum()\n",
"female_tot_seen = females[females.columns[3:9]].sum()\n",
"\n",
"for mean_stats in [male_ranking_avgs, female_ranking_avgs, male_tot_seen, female_tot_seen]:\n",
" display(mean_stats)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA64AAAGJCAYAAACKMG7VAAAAP3RFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMS5wb3N0MSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8kixA/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxvUlEQVR4nO3dd1gU1/s28HsBgQWkI0VRUVDBggpqVOwoqFExWIMK1tgVazCxm6CJBWMBjb1iNIr52jFBjcTeo0hsWDF2DKC0Pe8fvszPkaqCu7r357r2upgzZ848c5Y98OzMnFEIIQSIiIiIiIiINJSOugMgIiIiIiIiyg8TVyIiIiIiItJoTFyJiIiIiIhIozFxJSIiIiIiIo3GxJWIiIiIiIg0GhNXIiIiIiIi0mhMXImIiIiIiEijMXElIiIiIiIijcbElYiIiIiIiDQaE1cieisKhQJTpkxRdxhFIiEhAQqFArNnz8633oEDB6BQKHDgwIEPE9hbatq0KapVq6buMNRqypQpUCgU6g6DtNC///6LTp06wcrKCgqFAmFhYeoOSeNlj72rVq1SdyhvZdWqVVAoFDh58qS6Q1Gbj/W9o08DE1eij0D2H0uFQoHDhw/nWC+EgKOjIxQKBT7//HM1RPjuypcvLx2bQqGAsbEx6tatizVr1qg7NMpFWloaFixYAC8vL1hYWEBfXx8ODg5o3749Nm7ciKysLHWHSAQAOHfuHBQKBeLj4wEA8+bNQ/ny5Yt8P8HBwdi7dy9CQkKwdu1a+Pr65ln39bFOoVDA1NQUTZo0wc6dO4s8LgIWL178USdYf/75J7p06YLSpUtDX18fZmZmqFevHqZNm4Z///1X3eERfXB66g6AiArP0NAQGzZsgJeXl6z84MGDuHPnDgwMDIo9hhcvXkBPr2iHjpo1a2L06NEAgMTERCxbtgyBgYFIS0tD//79i3Rf76Jx48Z48eIF9PX11R2KWj18+BCtW7fGqVOn4OPjg2+//RaWlpa4f/8+9u/fjy+//BJXr17FxIkT1R0qEY4dOwZLS0tUqlQJAHDkyBF89tlnRb6fP/74Ax06dMCYMWMKVb9ly5bo1asXhBC4efMmwsPD0a5dO+zevRs+Pj5FHp82W7x4MaytrREUFKTuUN7apEmTMH36dFSoUAFBQUGoUKECXr58iVOnTmHOnDlYvXo1rl27pu4wiT4oJq5EH5E2bdpg8+bN+Omnn2TJ44YNG+Dh4YFHjx4VewyGhoZF3mbp0qXRo0cPaTn7j/S8efM0InHV0dEpluP+2PTs2RNnzpzBr7/+ii+++EK2LiQkBCdPnpTObn3sUlNTYWRkpO4w6D0cP34cdevWlS4hP3LkCEaNGlXk+3nw4AHMzc0LXb9SpUqy8c7f3x9ubm6YP38+E1cCAGzatAnTp09Hly5dsHbt2hxfms6bNw/z5s1TU3RFKyUlBcbGxuoOgz4SvFSY6CPSvXt3PH78GNHR0VJZeno6tmzZgi+//DLXbVJSUjB69Gg4OjrCwMAAlStXxuzZsyGEkOpUq1YNzZo1y7GtSqVC6dKl0alTJ6kst3tc7969iz59+sDW1hYGBgaoWrUqVqxY8c7HaWNjgypVquT4NvnPP/9E586dUbZsWRgYGMDR0RHBwcF48eKFrF5QUBBMTExw9+5d+Pn5wcTEBDY2NhgzZkyBl7IKITBgwADo6+tj69atAHK/xzX7vtJLly6hWbNmMDIyQunSpfHDDz/kaPPmzZto3749jI2NUapUKenSwjfbvHLlCvz9/WFnZwdDQ0OUKVMG3bp1Q1JSUqH67dSpU2jQoAGUSiWcnJwQEREhrUtOToaxsTFGjBiRY7s7d+5AV1cXoaGhebZ95MgR7N27FwMGDMiRtGbz9PREQECArCwtLQ2TJ0+Gs7Oz9J6NGzcOaWlpsnoKhQJDhw5FVFQUqlWrJv0e7dmzJ8d+Dh8+jDp16sDQ0BAVK1bEkiVL8ox73bp18PDwgFKphKWlJbp164bbt2/L6mS/l6dOnULjxo1hZGSECRMm5Nkmaa6nT5/i0aNHePToEY4dO4Zq1arh0aNHuHjxIu7cuQMXFxc8evQIycnJBbZ1/fp1dO7cGZaWljAyMsJnn30mu6Q3+xYOIQQWLVokXf77tlxdXWFtbZ1jvCvsZyc6OhpeXl4wNzeHiYkJKleuLPv9zR6/Nm3ahAkTJsDOzg7GxsZo3759js8CAGzevFn6zFhbW6NHjx64e/eurM7bjLHPnj1DUFAQzMzMYG5ujsDAQDx79izXvrh8+TI6deoES0tLGBoawtPTE7/99pusTna/x8bGYtSoUbCxsYGxsTE6duyIhw8fSvXKly+Pixcv4uDBg9J707RpUwBARkYGpk6dChcXFxgaGsLKygpeXl6yv635SU1NxVdffQUrKyuYmpqiV69eePr0qbQ+MDAQ1tbWyMjIyLFtq1atULly5XzbnzRpEqytrbF8+fJcr/QxMzPLda6J3bt3o1GjRjA2NkbJkiXRtm1bXLx4UVZHE967gwcPYvDgwShVqhTKlCmTb18QyQgi0ngrV64UAMSJEydEgwYNRM+ePaV1UVFRQkdHR9y9e1eUK1dOtG3bVlqnUqlE8+bNhUKhEP369RMLFy4U7dq1EwDEyJEjpXrTpk0TOjo6IjExUbbfgwcPCgBi8+bNUhkAMXnyZGn5/v37okyZMsLR0VFMmzZNhIeHi/bt2wsAYt68eQUe25sxCyFERkaGsLOzE7a2trLyYcOGiTZt2ojvv/9eLFmyRPTt21fo6uqKTp06yeoFBgYKQ0NDUbVqVdGnTx8RHh4u/P39BQCxePFiqd6NGzcEAPHjjz8KIYTIzMwUvXr1EgYGBmLHjh1SvZiYGAFAxMTESGVNmjQRDg4OwtHRUYwYMUIsXrxYNG/eXAAQu3btkuolJyeLChUqCKVSKb7++msRFhYm6tatK9zd3WVtpqWlCScnJ+Hg4CBmzJghli1bJqZOnSrq1KkjEhIS8u3D7FhKlSolhg4dKn766Sfh5eUlAIjly5dL9QICAoStra3IzMyUbf/DDz8IhUIhbt68mec+QkJCBABx+PDhfGN5XVZWlmjVqpUwMjISI0eOFEuWLBFDhw4Venp6okOHDrK6AIS7u7uwt7cX06dPF2FhYaJChQrCyMhIPHr0SKp3/vx5oVQqRdmyZUVoaKiYPn26sLW1FTVq1BBv/kmbMWOGUCgUomvXrmLx4sVi6tSpwtraWpQvX148ffpU1n92dnbCxsZGDBs2TCxZskRERUUV+jhJc5QrV04AKPAVGBiYbzv3798Xtra2omTJkuKbb74Rc+fOFe7u7kJHR0ds3bpVCCHEtWvXxNq1awUA0bJlS7F27Vqxdu3afNsFIIYMGSIre/bsmdDV1RX16tWTygr72fn777+Fvr6+8PT0FPPnzxcRERFizJgxonHjxlKd7PGrevXqokaNGmLu3Lni66+/FoaGhqJSpUoiNTVVqpv9t6ZOnTpi3rx54uuvvxZKpTLHZ6awY6xKpRKNGzcWOjo6YvDgwWLBggWiefPm0ud15cqVsmMxMzMTbm5uYtasWWLhwoWicePGQqFQSH3+eoy1atUSzZs3FwsWLBCjR48Wurq6okuXLlK9bdu2iTJlyogqVapI782+ffuEEEJMmDBBKBQK0b9/f/Hzzz+LOXPmiO7du4uZM2fm+/5l77t69eqiUaNG4qeffhJDhgwROjo6onHjxkKlUgkhhIiOjhYAxP/+9z/Z9omJiUJXV1dMmzYtz33Ex8cLAKJfv375xvKmNWvWCIVCIXx9fcWCBQvErFmzRPny5YW5ubm4ceOGVE8T3js3NzfRpEkTsWDBggL7nOh1TFyJPgKvJ64LFy4UJUuWlP7Z6Ny5s2jWrJkQImcSGBUVJQCIGTNmyNrr1KmTUCgU4urVq0KI//tDuWDBAlm9wYMHCxMTE9k/Nm8mrn379hX29vay5EIIIbp16ybMzMxk2+amXLlyolWrVuLhw4fi4cOH4sKFC6Jnz565/oOXW1uhoaE5kq7AwEABIMc/B7Vq1RIeHh7S8uuJa0ZGhujatatQKpVi7969su3ySlwBiDVr1khlaWlpws7OTvj7+0tlc+bMEQBkidCLFy9ElSpVZG2eOXMmx5cEhZUdy5w5c2Sx1KxZU5QqVUqkp6cLIYTYu3evACB2794t275GjRqiSZMm+e6jY8eOAoB49uyZrPzFixfSe/fw4UPZP7dr164VOjo64s8//5RtExERIQCI2NhYqQyA0NfXl34nhRDi3LlzOX4v/fz8hKGhoez9vnTpktDV1ZUlrgkJCUJXV1d89913sn1fuHBB6Onpycqz+y8iIiLfPiDNd/jwYREdHS0mTpwo9PT0xO7du0V0dLRo3bq18PT0FNHR0SI6OlpcvHgx33ZGjhwpAMh+d//77z/h5OQkypcvL7KysqTy3MaqvAAQffv2FQ8fPhQPHjwQJ0+eFL6+vrIv0IQo/Gdn3rx5AoB4+PBhnvvMHr9Kly4tnj9/LpX/8ssvAoCYP3++EEKI9PR0UapUKVGtWjXx4sULqd6OHTsEADFp0iSprLBjbPbfoB9++EEqy8zMFI0aNcqR/LRo0UJUr15dvHz5UipTqVSiQYMGwsXFRSrL/nvo7e0tJYpCCBEcHCx0dXVlY1TVqlVzHdvc3d1zfGFaGNn79vDwkMZVIV59+QdAbN++XQjx6ouHMmXKiK5du8q2nzt3rlAoFOL69et57mP79u0CgAgLC5OVq1Qq2Vj78OFDkZGRIYR49btpbm4u+vfvL9vm/v37wszMTFauCe+dl5dXji9QiQqDlwoTfWS6dOmCFy9eYMeOHfjvv/+wY8eOPC8T3rVrF3R1dTF8+HBZ+ejRoyGEwO7duwG8uueqZs2a2LRpk1QnKysLW7ZsQbt27aBUKnNtXwiBX3/9Fe3atYMQQrpE79GjR/Dx8UFSUhJOnz5d4DHt27cPNjY2sLGxQfXq1bF27Vr07t0bP/74o6ze63GkpKTg0aNHaNCgAYQQOHPmTI52Bw4cKFtu1KgRrl+/nqNeeno6OnfujB07dmDXrl1o1apVgTEDgImJiexeNX19fdStW1e2jz179qB06dJo3769VGZoaJjj3l0zMzMAwN69e5Gamlqo/b9OT08PX331lSyWr776Cg8ePMCpU6cAAN7e3nBwcMD69eulen///TfOnz8vO47cPH/+HMCrY35dRESE9N7Z2NjIJg7bvHkzXF1dUaVKFdnvRvPmzQEAMTExsra8vb1RsWJFablGjRowNTWV+jMrKwt79+6Fn58fypYtK9VzdXXNcW/g1q1boVKp0KVLF9m+7ezs4OLikmPfBgYG6N27d759QJqvYcOG8Pb2RnJyMurUqQNfX194e3vj1q1b+Pzzz+Ht7Q1vb2+4ubnl286uXbtQt25d2e+ziYkJBgwYgISEBFy6dOmdY1y+fDlsbGxQqlQpeHp64vfff8e4ceNk998W9rOTfW/t9u3boVKp8t1vr169ULJkSWm5U6dOsLe3x65duwAAJ0+exIMHDzB48GDZPf1t27ZFlSpVcp35uKAxdteuXdDT08OgQYOkMl1dXQwbNky23ZMnT/DHH3+gS5cu+O+//6Tjffz4MXx8fHDlypUclysPGDBAdml2o0aNkJWVhZs3b+bbD8Crfrt48SKuXLlSYN3cDBgwACVKlJCWBw0aBD09PakvdXR0EBAQgN9++w3//fefVG/9+vVo0KABnJyc8mw7r7E2KSlJNtba2Njg7NmzAF5dLv7s2TN0795d9vuiq6uLevXq5RjvAPW+d/3794eurm6efUCUFyauRB8ZGxsbeHt7Y8OGDdi6dSuysrJk96C+7ubNm3BwcJD9swK8+kc/e322rl27IjY2VvoDc+DAATx48ABdu3bNM5aHDx/i2bNnWLp0aY4/qNlJwIMHDwo8pnr16iE6Ohp79uzB7NmzYW5ujqdPn+a4t+fWrVsICgqCpaWldF9OkyZNACDHfaCGhoawsbGRlVlYWMjuQ8oWGhqKqKgobNmyRboHqjDKlCmT4562N/dx8+ZNVKxYMUc9Z2dn2bKTkxNGjRqFZcuWwdraGj4+Pli0aFGh7291cHDIMcFF9myqCQkJAP7vn6moqCgpOV6/fj0MDQ3RuXPnfNvP/h16895Af39/REdHIzo6GjVq1JCtu3LlCi5evJjjdyM7rjd/N15PRrO93p8PHz7Eixcv4OLikqPem/eMXblyBUIIuLi45Nh/XFxcjn1nP26CPl5JSUnSP82///476tWrh0ePHuGff/7BxYsX4e7ujkePHhXqM3Xz5s1c70PMbex8Wx06dEB0dDR27twpPX84NTUVOjr/9y9ZYT87Xbt2RcOGDdGvXz/Y2tqiW7du+OWXX3JNYt/83CgUCjg7O0vjQ/Yx5XbcVapUyXHMhRljb968CXt7+xxJ2Jv7uHr1KoQQmDhxYo5jnjx5suyYs705XlhYWABArmP8m6ZNm4Znz56hUqVKqF69OsaOHYvz588XuF22N/vSxMQE9vb2Ul8Cr74oePHiBbZt2wYAiI+Px6lTp9CzZ898285rrDUxMZHG2rFjx8rWZSfgzZs3z9F/+/bty9F36n7v8kvcifLDWYWJPkJffvkl+vfvj/v376N169ZvNaNlXrp27YqQkBBs3rwZI0eOxC+//AIzM7N8n0mY/c9Rjx49EBgYmGudN5OZ3FhbW8Pb2xsA4OPjgypVquDzzz/H/PnzpbMQWVlZaNmyJZ48eYLx48ejSpUqMDY2xt27dxEUFJTjH7W3+TbXx8cHe/bswQ8//ICmTZsWegbhvPYhXpv46m3MmTMHQUFB2L59O/bt24fhw4cjNDQUR48eLbIJLHr16oUff/wRUVFR6N69OzZs2IDPP/9cOuOblypVqgB4dYa2YcOGUrmjoyMcHR0BvPrH5/WZrVUqFapXr465c+fm2mb2dtmKsj9VKhUUCgV2796da7tv/jOW11UF9PHo0KEDDh48KC2fP38eYWFh0nLHjh0BAE2aNJFNivahlSlTRhrv2rRpA2trawwdOhTNmjWTJj4r7GdHqVTi0KFDiImJwc6dO7Fnzx5s2rQJzZs3x759+4r1rFZRtp09fo8ZMybPmZXf/LLvfcaLxo0b49q1a9JYu2zZMsybNw8RERHo16/fW0afOzc3N3h4eGDdunXo1asX1q1bB319fXTp0iXf7V4fa1+np6cn/d7cuXNHti67/9auXQs7O7scbb75CDt1v3ccb+ldMXEl+gh17NgRX331FY4ePSq7vPdN5cqVw/79+/Hff//JzrpevnxZWp/NyckJdevWxaZNmzB06FBs3boVfn5++T4b1sbGBiVLlkRWVpb0B7UotG3bFk2aNMH333+Pr776CsbGxrhw4QL++ecfrF69Gr169ZLqFnYWyPx89tlnGDhwID7//HN07twZ27ZtK7Jn1ZYrVw6XLl2CEEJ21vXq1au51q9evTqqV6+Ob7/9Fn/99RcaNmyIiIgIzJgxI9/93Lt3L8djBf755x8Ar2bXzFatWjXUqlUL69evR5kyZXDr1i0sWLCgwOP4/PPPMXPmTKxfv16WuOanYsWKOHfuHFq0aPFOs62+ycbGBkqlMtfL+958DE/FihUhhICTk5N0loo+bXPmzMHTp09x5MgRTJ06FTt27ICenh4WLFiAu3fvYubMmQD+78xcfsqVK5fro51yGzvf11dffYV58+bh22+/RceOHaFQKN7qs6Ojo4MWLVqgRYsWmDt3Lr7//nt88803iImJkY3Lb35uhBC4evWq9OVi9jHFx8dLlyRni4+Pf6djLleuHH7//XckJyfLvix6s28rVKgAAChRokSR/i3Jr+8sLS3Ru3dv9O7dG8nJyWjcuDGmTJlSqMT1ypUrspn4k5OTkZiYiDZt2sjq9erVC6NGjUJiYiI2bNiAtm3bFvj7V7lyZbi4uCAqKgphYWGFelRM9i0WpUqVKrL+U/d7R5QbXipM9BEyMTFBeHg4pkyZgnbt2uVZr02bNsjKysLChQtl5fPmzYNCoUDr1q1l5V27dsXRo0exYsUKPHr0KN/LhIFX39r6+/vj119/zfHtMADZowne1vjx4/H48WP8/PPP0r4A+bfpQgjMnz//nffxOm9vb0RGRmLPnj3o2bNngfeLFZaPjw/u3r0reyzAy5cvpePK9vz5c2RmZsrKqlevDh0dnRyPv8hNZmam7LEw6enpWLJkCWxsbODh4SGr27NnT+zbtw9hYWGwsrLK8XuQm4YNG6Jly5ZYunQptm/fnmudN890dOnSBXfv3s1xrADw4sULpKSkFLjf1+nq6sLHxwdRUVG4deuWVB4XF4e9e/fK6n7xxRfQ1dXF1KlTc8QlhMDjx4/fat+k+Tw8PODt7Y3MzExUq1ZNur/133//le5t9fb2zvF5yE2bNm1w/PhxHDlyRCpLSUnB0qVLUb58+QLvkX0benp6GD16NOLi4qTPVmE/O0+ePMmxvmbNmgCQY9xYs2aN7H7LLVu2IDExUfr8e3p6olSpUoiIiJBtu3v3bsTFxaFt27ZvfWxt2rRBZmYmwsPDpbKsrKwcX5aVKlUKTZs2xZIlS5CYmJijnXf9W2JsbJzr41ve/PybmJjA2dm5UGMtACxdulT2qJvw8HBkZmbmGEu7d+8OhUKBESNG4Pr16wXOJZBtypQpePToEfr375/rI3XeHNN8fHxgamqK77//Ptf679J/6n7viHLDM65EH6m8Ls19Xbt27dCsWTN88803SEhIgLu7O/bt24ft27dj5MiRsolwgFf/LI0ZMwZjxoyBpaVlob49nTlzJmJiYlCvXj30798fbm5uePLkCU6fPo39+/fn+o9VYbRu3RrVqlXD3LlzMWTIEFSpUgUVK1bEmDFjcPfuXZiamuLXX38t1P1MheXn54eVK1eiV69eMDU1zff5oIX11VdfYeHChejevTtGjBgBe3t76b5S4P/OCPzxxx8YOnQoOnfujEqVKiEzMxNr166VvhwoiIODA2bNmoWEhARUqlQJmzZtwtmzZ7F06VLZJCLAq0vNx40bh23btmHQoEE51udl3bp18PX1hZ+fH1q3bg1vb29YWFjg/v372L9/Pw4dOiT7x61nz5745ZdfMHDgQMTExKBhw4bIysrC5cuX8csvv2Dv3r3w9PQsbFcCAKZOnYo9e/agUaNGGDx4MDIzM7FgwQJUrVpVdo9axYoVMWPGDISEhCAhIQF+fn4oWbIkbty4gW3btmHAgAEYM2bMW+2bPg6xsbFo0KABgFdfEp05c+atn8v79ddfY+PGjWjdujWGDx8OS0tLrF69Gjdu3MCvv/4qux+1KAQFBWHSpEmYNWsW/Pz8Cv3ZmTZtGg4dOoS2bduiXLlyePDgARYvXowyZcrIJpYCXp1h9PLyQu/evfHvv/8iLCwMzs7O0kRxJUqUwKxZs9C7d280adIE3bt3x7///ov58+ejfPnyCA4OfuvjateuHRo2bIivv/4aCQkJcHNzw9atW3O9z3jRokXw8vJC9erV0b9/f1SoUAH//vsvjhw5gjt37uDcuXNvvX8PDw+Eh4djxowZcHZ2RqlSpdC8eXO4ubmhadOm8PDwgKWlJU6ePIktW7Zg6NChhWo3PT0dLVq0QJcuXRAfH4/FixfDy8tLNgkf8OoqEV9fX2zevBnm5uaFTv6//PJL/P333wgNDcXx48fRrVs3ODk5ISUlBX///Tc2btyIkiVLSmdvTU1NER4ejp49e6J27dro1q0bbGxscOvWLezcuRMNGzbM8QV2QdT93hHl6gPPYkxE7+D1x+HkJ7dnov73338iODhYODg4iBIlSggXFxfx448/yh4j8LqGDRvm+ww5vPE4HCGE+Pfff8WQIUOEo6OjKFGihLCzsxMtWrQQS5cuLfDYcos526pVq2TT7l+6dEl4e3sLExMTYW1tLfr37y89MuX1qfkDAwOFsbFxjvYmT54se2TKm89xzbZ48WIBQIwZM0YIkffjcKpWrZpjH4GBgaJcuXKysuvXr4u2bdsKpVIpbGxsxOjRo8Wvv/4qAIijR49Kdfr06SMqVqwoDA0NhaWlpWjWrJnYv39/nn33ZiwnT54U9evXF4aGhqJcuXJi4cKFeW7Tpk0bAUD89ddfBbb/uhcvXoiwsDBRv359YWpqKvT09ISdnZ34/PPPxfr163M84iA9PV3MmjVLVK1aVRgYGAgLCwvh4eEhpk6dKpKSkqR6yOORIuXKlcvxzM2DBw8KDw8Poa+vLypUqCAiIiJyvLfZfv31V+Hl5SWMjY2FsbGxqFKlihgyZIiIj4+X6uT1XtLHJzMzU5iYmEjPUz18+LAAIB48ePDWbV27dk106tRJmJubC0NDQ1G3bl3Z852z5fW7m5v86k6ZMkU2zhTms/P777+LDh06CAcHB6Gvry8cHBxE9+7dxT///CO1mz1+bdy4UYSEhIhSpUoJpVIp2rZtm+uzmzdt2iRq1aolDAwMhKWlpQgICBB37tyR1SnsGCuEEI8fPxY9e/YUpqamwszMTPTs2VN6/Nfr47YQr/q8V69ews7OTpQoUUKULl1afP7552LLli1Snbz+HuY2Tt+/f1+0bdtWlCxZUgCQHo0zY8YMUbduXWFubi6USqWoUqWK+O6772SPuMlN9r4PHjwoBgwYICwsLISJiYkICAgQjx8/znWb7McODRgwIN+2c3PgwAHRqVMnYW9vL0qUKCFMTU2Fp6enmDx5co7nrmf3gY+PjzAzMxOGhoaiYsWKIigoSJw8eVKqo4nvHVFhKYR4x1lEiIjonYWFhSE4OBh37txB6dKlP/j+O3bsiAsXLuR5ry0RfRoOHDiAZs2aYfPmzXnOQE/FZ/v27fDz88OhQ4fQqFEjdYdD9FHjPa5ERMXsxYsXsuWXL19iyZIlcHFxUUvSmpiYiJ07dxb4WAYiIno/P//8MypUqJDj0m0ienu8x5WIqJh98cUXKFu2LGrWrImkpCSsW7cOly9fxvr16z9oHDdu3EBsbCyWLVuGEiVK4Kuvvvqg+yci0haRkZE4f/48du7cifnz5xfJzOpE2o6JKxFRMfPx8cGyZcuwfv16ZGVlwc3NDZGRkQXO2lzUDh48iN69e6Ns2bJYvXp1rs/7IyKi99e9e3eYmJigb9++GDx4sLrDIfok8B5XIiIiIiIi0mi8x5WIiIiIiIg0GhNXIiIiIiIi0mhMXImIiIiIiEijcXImoreREqfuCIjoU2fsqu4IihfHUSIqbp/6OKqleMaViIiIiIiINBoTVyIiIiIiItJoTFyJiIiIiIhIozFxJSIiIiIiIo3GxJWIiIiIiIg02lvNKiyEQGZmJrKysoorHiokXV1d6OnpQaFQqDsUIiIiIqKPRlZWFjIyMtQdBuHtcppCJ67p6elITExEamrqewVHRcfIyAj29vbQ19dXdyhERERERBovOTkZd+7cgRBC3aHQ/1fYnKZQiatKpcKNGzegq6sLBwcH6Ovr80yfGgkhkJ6ejocPH+LGjRtwcXGBjg6v+iYiIiIiyktWVhbu3LkDIyMj2NjYMJ9Rs7fNaQqVuKanp0OlUsHR0RFGRkZFFiy9O6VSiRIlSuDmzZtIT0+HoaGhukMiIiIiItJYGRkZEELAxsYGSqVS3eEQ3i6neavTdDyrp1n4fhARERERvR2eadUshc1pmPkQERERERGRRmPiSkRERERERBqNiSsRERERERFptLd6jmtuxLIPd424ot/bT1sdFBSE1atX46uvvkJERIRs3ZAhQ7B48WIEBgZi1apVRRQlfcrERjd1h0BERUjR/ZK6Q9A+LsHqjoCIisOVeeqO4N05+H7Y/d3b89abMKfRkjOujo6OiIyMxIsXL6Syly9fYsOGDShbtqwaIyMiIiIiIiqYtuc0WpG41q5dG46Ojti6datUtnXrVpQtWxa1atWSylQqFUJDQ+Hk5ASlUgl3d3ds2bJFWn/gwAEoFAr8/vvv8PT0hJGRERo0aID4+PgPejxERERERKRdtD2n0YrEFQD69OmDlStXSssrVqxA7969ZXVCQ0OxZs0aRERE4OLFiwgODkaPHj1w8OBBWb1vvvkGc+bMwcmTJ6Gnp4c+ffp8kGMgIiIiIiLtpc05zXvf4/qx6NGjB0JCQnDz5k0AQGxsLCIjI3HgwAEAQFpaGr7//nvs378f9evXBwBUqFABhw8fxpIlS9CkSROpre+++05a/vrrr9G2bVu8fPky3wfmEhERERERvQ9tzmm0JnG1sbFB27ZtsWrVKggh0LZtW1hbW0vrr169itTUVLRs2VK2XXp6uuzUOwDUqFFD+tne3h4A8ODBA624tpyIiIiIiNRDm3MarUlcgVen1ocOHQoAWLRokWxdcnIyAGDnzp0oXbq0bJ2BgYFsuUSJEtLPCsWrWZVVKlWRx0tERERERPQ6bc1ptCpx9fX1RXp6OhQKBXx8fGTr3NzcYGBggFu3bslOoRMREREREWkKbc1ptCpx1dXVRVxcnPTz60qWLIkxY8YgODgYKpUKXl5eSEpKQmxsLExNTREYGKiOkImIiIiIiCTamtO8d+Kq6CeKIo4PxtTUNM9106dPh42NDUJDQ3H9+nWYm5ujdu3amDBhwgeMkIiIiIiIPph7e9QdwVvTxpxGIYQoMPN8+fIlbty4AScnJ42dZUob8X358MQyhbpDIKIipOh+Sd0h5GTsqu4IipeDr7ojIKLicGWeuiP4P3mMo/zfWTMV9n3Rmue4EhERERER0ceJiSu9l4SEBCgUCpw9e7bY9hEUFAQ/P79ia5+IiIiIiDQbE1ctFhQUBIVCkePl61v4y7gcHR2RmJiIatWqFWOk72/r1q1o1aoVrKysij3RJiIiIiKioqVVswpTTr6+vli5cqWs7M1nPOVHV1cXdnZ2RR1WkUtJSYGXlxe6dOmC/v37qzscIiIiIiJ6CzzjquUMDAxgZ2cne1lYWEjrFQoFwsPD0bp1ayiVSlSoUAFbtmyR1r95qfDTp08REBAAGxsbKJVKuLi4yBLjCxcuoHnz5lAqlbCyssKAAQOkByUDQFZWFkaNGgVzc3NYWVlh3LhxeHP+MJVKhdDQUDg5OUGpVMLd3V0WU2569uyJSZMmwdvb+326i4iIiIiI1ICJKxVo4sSJ8Pf3x7lz5xAQEIBu3bpJz47Kre6lS5ewe/duxMXFITw8HNbW1gBenfX08fGBhYUFTpw4gc2bN2P//v0YOnSotP2cOXOwatUqrFixAocPH8aTJ0+wbds22T5CQ0OxZs0aRERE4OLFiwgODkaPHj1w8ODBIj3utLQ0PH/+XPZKyyjSXRARERERUSHwUmEtt2PHDpiYmMjKJkyYIHvOU+fOndGvXz8Ar54LFR0djQULFmDx4sU52rt16xZq1aoFT09PAED58uWldRs2bMDLly+xZs0aGBsbAwAWLlyIdu3aYdasWbC1tUVYWBhCQkLwxRdfAAAiIiKwd+9eqY20tDR8//332L9/P+rXrw8AqFChAg4fPowlS5agSZMmRdArr4SGhmLq1Kmysn5OQP+K/L6H6F3Ujfpb3SGQBlj26J66QyD6aPR7ukndIRBpDCauWq5Zs2YIDw+XlVlaWsqWsxPE15fzmtxo0KBB8Pf3x+nTp9GqVSv4+fmhQYMGAIC4uDi4u7tLSSsANGzYECqVCvHx8TA0NERiYiLq1asnrdfT04Onp6d0ufDVq1eRmpqKli1byvabnp6OWrVqvd3BFyAkJASjRo2SlZ3vaF6k+yAiIiIiooIxcdVyxsbGcHZ2LrL2WrdujZs3b2LXrl2Ijo5GixYtMGTIEMyePbtI2s++H3bnzp0oXbq0bN3bTCpVGAYGBjna1NdRFOk+iIiIiIioYO+duB5vqVsUcRRK3eisD7Yv+j9Hjx5Fr169ZMv5nd20sbFBYGAgAgMD0ahRI4wdOxazZ8+Gq6srVq1ahZSUFOmsa2xsLHR0dFC5cmWYmZnB3t4ex44dQ+PGjQEAmZmZOHXqFGrXrg0AcHNzg4GBAW7dulWklwUTERERkXZapl/jg+6vX/r5D7q/T8UnfbNeREQESpYsiczMTKksOTkZJUqUQNOmTWV1Dxw4AIVCgWvXrn3gKNUrLS0N9+/fl70ePXokq7N582asWLEC//zzDyZPnozjx4/LJlR63aRJk7B9+3ZcvXoVFy9exI4dO+Dq6goACAgIgKGhIQIDA/H3338jJiYGw4YNQ8+ePWFrawsAGDFiBGbOnImoqChcvnwZgwcPxrNnz6T2S5YsiTFjxiA4OBirV6/GtWvXcPr0aSxYsACrV6/O8zifPHmCs2fP4tKlSwCA+Ph4nD17Fvfv33+f7iMiIiIiKlbMaV75pBPXZs2aITk5GSdPnpTK/vzzT9jZ2eHYsWN4+fKlVB4TE4OyZcuiYsWK6ghVbfbs2QN7e3vZy8vLS1Zn6tSpiIyMRI0aNbBmzRps3LgRbm5uubanr6+PkJAQ1KhRA40bN4auri4iIyMBAEZGRti7dy+ePHmCOnXqoFOnTmjRogUWLlwobT969Gj07NkTgYGBqF+/PkqWLImOHTvK9jF9+nRMnDgRoaGhcHV1ha+vL3bu3AknJ6c8j/O3335DrVq10LZtWwBAt27dUKtWLURERLxTvxERERERfQjMaV75pBPXypUrw97eHgcOHJDKDhw4gA4dOsDJyQlHjx6VlTdr1gxpaWkYPnw4SpUqBUNDQ3h5eeHEiROyegqFAnv37kWtWrWgVCrRvHlzPHjwALt374arqytMTU3x5ZdfIjU1VdquoGePZrf7+++/w9PTE0ZGRmjQoAHi4+OLrX9WrVoFIUSO1+XLl2X1HBwcsG/fPrx8+RI3btxAly5dpHXly5eHEAI1a9YEAHz77be4dOkSUlNT8fjxY0RFRckSyurVq+OPP/7Aixcv8PjxYyxdulQ2q7Genh7CwsKQlJSEp0+fYs6cOVi9ejWioqKkOgqFAiNGjMDly5eRnp6OBw8eYM+ePdLlxbkJCgrK9VinTJnyfp1IRERERFSMmNO88kknrsCrbyhiYmKk5ZiYGDRt2hRNmjSRyl+8eIFjx46hWbNmGDduHH799VesXr0ap0+fhrOzM3x8fPDkyRNZu1OmTMHChQvx119/4fbt2+jSpQvCwsKwYcMG7Ny5E/v27cOCBQuk+oV99ug333yDOXPm4OTJk9DT00OfPn2KsXeIiIiIiEjTMafRglmFmzVrhpEjRyIzMxMvXrzAmTNn0KRJE2RkZEiXiR45cgRpaWlo2rQp+vfvj1WrVqF169YAgJ9//hnR0dFYvnw5xo4dK7U7Y8YMNGzYEADQt29fhISE4Nq1a6hQoQIAoFOnToiJicH48ePf6tmj3333nbT89ddfo23btnj58iUMDQ2Lv7OIiIiIiEjjMKfRgsS1adOmSElJwYkTJ/D06VNUqlQJNjY2aNKkCXr37o2XL1/iwIEDqFChApKSkpCRkSG9eQBQokQJ1K1bF3FxcbJ2a9T4v9nHbG1tYWRkJL3B2WXHjx8H8HbPHn29XXt7ewDAgwcPULZs2ffsiXeT/fxUIiIiIiJSD+Y0WpC4Ojs7o0yZMoiJicHTp0+lzN/BwQGOjo7466+/EBMTg+bNm79VuyVKlJB+VigUsuXsMpVKBeDtnj36ZrsApHaIiIiIiEj7MKfRgntcgVen1g8cOIADBw7Ipoxu3Lgxdu/ejePHj6NZs2aoWLEi9PX1ERsbK9XJyMjAiRMn8pxFtzBef/aos7Oz7OXo6Pg+h0ZERERERFpA23OaT/6MK/DqTR4yZAgyMjJk1143adIEQ4cORXp6Opo1awZjY2MMGjQIY8eOhaWlJcqWLYsffvgBqamp6Nu37zvv//Vnj6pUKnh5eSEpKQmxsbEwNTVFYGBgURwmERERERF9orQ9p3nvxLVudFZRxFGsmjVrhhcvXqBKlSqwtbWVyps0aYL//vtPmmIaAGbOnAmVSoWePXviv//+g6enJ/bu3QsLC4v3imH69OmwsbFBaGgorl+/DnNzc9SuXRsTJkx4r3aJiIiIiOjd9Us/r+4QCkXbcxqFKMTsO9nP73RycuLsthqE78uHd7ylrrpDIPpo1Y36W90hfByMXdUdQbFapl+j4EpEBADo93STukP4OOUxjvJ/Z81U2PdFK+5xJSIiIiIioo8XE1ciIiIiIiLSaFoxORNRUeGljkRE74eXPhIR0bvgGVciIiIiIiLSaG+VuBZiHif6gPh+EBERERG9Hf4PrVkK+34UKnEtUaIEACA1NfXdI6Iil/1+ZL8/RERERESUO13dV0+HSE9PV3Mk9LrC5jSFusdVV1cX5ubmePDgAQDAyMgICoXiPUOkdyWEQGpqKh48eABzc3PpQ0hERERERLnT09ODkZERHj58iBIlSkBHh3dNqtPb5jSFnpzJzs4OAKTkldTP3Nxcel+IiIiIiChvCoUC9vb2uHHjBm7evKnucOj/K2xOoxBveZF3VlYWMjIy3jkwKholSpTgmVZ1SIlTdwRE9KkzdlV3BMWL4ygRFbcCxlGVSsXLhTXE2+Q0b/04HF1dXSZMRERERET0UdLR0YGhoaG6w6C3xAu7iYiIiIiISKMxcSUiIiIiIiKNxsSViIiIiIiINBoTVyIiIiIiItJoTFyJiIiIiIhIozFxJSIiIiIiIo3GxJWIiIiIiIg02ls/x5VIm4mNbuoOgYjURNH9krpD+DS4BKs7AiLtcmWeuiMgKhI840pEREREREQajYkrERERERERaTQmrkRERERERKTRmLgSERERERGRRmPiSkRERERERBqNiSsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKREREREREGo2JKxEREREREWk0Jq5ERERERESk0Zi40ntJSEiAQqHA2bNni20fQUFB8PPzK7b2iYiIiIhIszFx1WJBQUFQKBQ5Xr6+voVuw9HREYmJiahWrVoxRvp+MjIyMH78eFSvXh3GxsZwcHBAr169cO/ePXWHRkREREREhaCn7gBIvXx9fbFy5UpZmYGBQaG319XVhZ2dXVGHVaRSU1Nx+vRpTJw4Ee7u7nj69ClGjBiB9u3b4+TJk+oOj4iIiIiICsAzrlrOwMAAdnZ2speFhYW0XqFQIDw8HK1bt4ZSqUSFChWwZcsWaf2blwo/ffoUAQEBsLGxgVKphIuLiywxvnDhApo3bw6lUgkrKysMGDAAycnJ0vqsrCyMGjUK5ubmsLKywrhx4yCEkMWsUqkQGhoKJycnKJVKuLu7y2J6k5mZGaKjo9GlSxdUrlwZn332GRYuXIhTp07h1q1b79uFRERERERUzJi4UoEmTpwIf39/nDt3DgEBAejWrRvi4uLyrHvp0iXs3r0bcXFxCA8Ph7W1NQAgJSUFPj4+sLCwwIkTJ7B582bs378fQ4cOlbafM2cOVq1ahRUrVuDw4cN48uQJtm3bJttHaGgo1qxZg4iICFy8eBHBwcHo0aMHDh48WOhjSkpKgkKhgLm5eZ510tLS8Pz5c9krLaPQuyAiIiIioiKiEG+eziKtERQUhHXr1sHQ0FBWPmHCBEyYMAHAqzOuAwcORHh4uLT+s88+Q+3atbF48WIkJCTAyckJZ86cQc2aNdG+fXtYW1tjxYoVOfb3888/Y/z48bh9+zaMjY0BALt27UK7du1w79492NrawsHBAcHBwRg7diwAIDMzE05OTvDw8EBUVBTS0tJgaWmJ/fv3o379+lLb/fr1Q2pqKjZs2FDgcb98+RINGzZElSpVsH79+jzrTZkyBVOnTpWV9XMC+lfk9z1EH6O6UX+rO4TCMXZVdwTFapl+DXWHQIR+TzepOwQqTp/4OKqteI+rlmvWrJksKQUAS0tL2fLrCWL2cl6zCA8aNAj+/v44ffo0WrVqBT8/PzRo0AAAEBcXB3d3dylpBYCGDRtCpVIhPj4ehoaGSExMRL169aT1enp68PT0lC4Xvnr1KlJTU9GyZUvZftPT01GrVq0CjzcjIwNdunSBECLHcb8pJCQEo0aNkpWd72he4D6IiIiIiKhoMXHVcsbGxnB2di6y9lq3bo2bN29i165diI6ORosWLTBkyBDMnj27SNrPvh92586dKF26tGxdQZNKZSetN2/exB9//AFTU9N86xsYGORoU19H8Q5RExERERHR++A1j1Sgo0eP5lh2dc37EgwbGxsEBgZi3bp1CAsLw9KlSwEArq6uOHfuHFJSUqS6sbGx0NHRQeXKlWFmZgZ7e3scO3ZMWp+ZmYlTp05Jy25ubjAwMMCtW7fg7Owsezk6OuYZU3bSeuXKFezfvx9WVlZv3Q9ERERERKQePOOq5dLS0nD//n1ZmZ6enjShEgBs3rwZnp6e8PLywvr163H8+HEsX7481/YmTZoEDw8PVK1aFWlpadixY4eU5AYEBGDy5MkIDAzElClT8PDhQwwbNgw9e/aEra0tAGDEiBGYOXMmXFxcUKVKFcydOxfPnj2T2i9ZsiTGjBmD4OBgqFQqeHl5ISkpCbGxsTA1NUVgYGCOmDIyMtCpUyecPn0aO3bsQFZWlnTMlpaW0NfXf68+JCIiIiKi4sXEVcvt2bMH9vb2srLKlSvj8uXL0vLUqVMRGRmJwYMHw97eHhs3boSbm1uu7enr6yMkJAQJCQlQKpVo1KgRIiMjAQBGRkbYu3cvRowYgTp16sDIyAj+/v6YO3eutP3o0aORmJiIwMBA6OjooE+fPujYsSOSkpKkOtOnT4eNjQ1CQ0Nx/fp1mJubo3bt2tKEUm+6e/cufvvtNwBAzZo1ZetiYmLQtGnTQvcXERERERF9eJxVmPKlUCiwbds2+Pn5qTsUjXC8pa66QyCid8RZhTUDZxUmTcBZhT9xn/g4qq14jysRERERERFpNCauREREREREpNF4jyvli1eSExERERGRuvGMKxEREREREWk0Jq5ERERERESk0Zi4EhERERERkUZj4kpEREREREQajYkrERERERERaTQmrkRERERERKTRmLgSERERERGRRlMIPqiTqPBS4tQdARF96oxd1R1B8eI4SkTF7VMfR7UUz7gSERERERGRRmPiSkRERERERBqNiSsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKREREREREGo2JKxEREREREWk0Jq5ERERERESk0Zi4EhERERERkUZj4kpEREREREQajYkrERERERERaTQmrkRERERERKTRmLgSERERERGRRmPiSkRERERERBpNT90BEH1MxEY3dYdARBpA0f2SukP4eLkEqzsCok/blXnqjoCoWPCMKxEREREREWk0Jq5ERERERESk0Zi4EhERERERkUZj4kpEREREREQajYkrERERERERaTQmrkRERERERKTRmLgSERERERGRRmPiSkRERERERBqNiSsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JK7yUhIQEKhQJnz54ttn0EBQXBz8+v2NonIiIiIiLNxsRViwUFBUGhUOR4+fr6FroNR0dHJCYmolq1asUY6fubMmUKqlSpAmNjY1hYWMDb2xvHjh1Td1hERERERFQIeuoOgNTL19cXK1eulJUZGBgUentdXV3Y2dkVdVhFrlKlSli4cCEqVKiAFy9eYN68eWjVqhWuXr0KGxsbdYdHRERERET54BlXLWdgYAA7OzvZy8LCQlqvUCgQHh6O1q1bQ6lUokKFCtiyZYu0/s1LhZ8+fYqAgADY2NhAqVTCxcVFlhhfuHABzZs3h1KphJWVFQYMGIDk5GRpfVZWFkaNGgVzc3NYWVlh3LhxEELIYlapVAgNDYWTkxOUSiXc3d1lMeXmyy+/hLe3NypUqICqVati7ty5eP78Oc6fP/8+3UdERERERB8AE1cq0MSJE+Hv749z584hICAA3bp1Q1xcXJ51L126hN27dyMuLg7h4eGwtrYGAKSkpMDHxwcWFhY4ceIENm/ejP3792Po0KHS9nPmzMGqVauwYsUKHD58GE+ePMG2bdtk+wgNDcWaNWsQERGBixcvIjg4GD169MDBgwcLdTzp6elYunQpzMzM4O7unme9tLQ0PH/+XPZKyyjULoiIiIiIqAgpxJuns0hrBAUFYd26dTA0NJSVT5gwARMmTADw6ozrwIEDER4eLq3/7LPPULt2bSxevBgJCQlwcnLCmTNnULNmTbRv3x7W1tZYsWJFjv39/PPPGD9+PG7fvg1jY2MAwK5du9CuXTvcu3cPtra2cHBwQHBwMMaOHQsAyMzMhJOTEzw8PBAVFYW0tDRYWlpi//79qF+/vtR2v379kJqaig0bNuR5vDt27EC3bt2QmpoKe3t7REVFoU6dOnnWnzJlCqZOnSor6+cE9K/I73uIqGB1o/5+tw2NXYs2EA2zTL+GukOgT1i/p5vUHQJpgk98HNVWvMdVyzVr1kyWlAKApaWlbPn1BDF7Oa9ZhAcNGgR/f3+cPn0arVq1gp+fHxo0aAAAiIuLg7u7u5S0AkDDhg2hUqkQHx8PQ0NDJCYmol69etJ6PT09eHp6SpcLX716FampqWjZsqVsv+np6ahVq1aBx3r27Fk8evQIP//8M7p06YJjx46hVKlSudYPCQnBqFGjZGXnO5rnuw8iIiIiIip6TFy1nLGxMZydnYusvdatW+PmzZvYtWsXoqOj0aJFCwwZMgSzZ88ukvaz74fduXMnSpcuLVtX0KRS2cfq7OyMzz77DC4uLli+fDlCQkJyrW9gYJCjTX0dxXtET0RERERE74LXPFKBjh49mmPZ1TXvSzBsbGwQGBiIdevWISwsDEuXLgUAuLq64ty5c0hJSZHqxsbGQkdHB5UrV4aZmRns7e1lj6nJzMzEqVOnpGU3NzcYGBjg1q1bUhKa/XJ0dHyr41KpVEhLS3urbYiIiIiI6MPjGVctl5aWhvv378vK9PT0pAmVAGDz5s3w9PSEl5cX1q9fj+PHj2P58uW5tjdp0iR4eHigatWqSEtLw44dO6QkNyAgAJMnT0ZgYCCmTJmChw8fYtiwYejZsydsbW0BACNGjMDMmTPh4uKCKlWqYO7cuXj27JnUfsmSJTFmzBgEBwdDpVLBy8sLSUlJiI2NhampKQIDA3PElJKSgu+++w7t27eHvb09Hj16hEWLFuHu3bvo3Lnz+3YhEREREREVMyauWm7Pnj2wt7eXlVWuXBmXL1+WlqdOnYrIyEgMHjwY9vb22LhxI9zc3HJtT19fHyEhIUhISIBSqUSjRo0QGRkJADAyMsLevXsxYsQI1KlTB0ZGRvD398fcuXOl7UePHo3ExEQEBgZCR0cHffr0QceOHZGUlCTVmT59OmxsbBAaGorr16/D3NwctWvXliaUepOuri4uX76M1atX49GjR7CyskKdOnXw559/omrVqu/cd0RERERE9GFwVmHKl0KhwLZt2+Dn56fuUDTC8Za66g6BiD4SnFU4d5xVmIoTZxUmAJ/8OKqteI8rERERERERaTQmrkRERERERKTReI8r5YtXkhMRERERkbrxjCsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKREREREREGo2JKxEREREREWk0Jq5ERERERESk0Zi4EhERERERkUZTCD6ok6jwUuLUHQERfeqMXdUdQfHiOEpExe1TH0e1FM+4EhERERERkUZj4kpEREREREQajYkrERERERERaTQmrkRERERERKTRmLgSERERERGRRmPiSkRERERERBqNiSsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKREREREREGo2JKxEREREREWk0Jq5ERERERESk0Zi4EhERERERkUZj4kpEREREREQaTU/dARB9TMRGN3WHQFTkFN0vqTsE0iYuweqOgIgKcmWeuiMgyoFnXImIiIiIiEijMXElIiIiIiIijcbElYiIiIiIiDQaE1ciIiIiIiLSaExciYiIiIiISKMxcSUiIiIiIiKNxsSViIiIiIiINBoTVyIiIiIiItJoTFyJiIiIiIhIozFxJSIiIiIiIo3GxJWIiIiIiIg0GhNXei8JCQlQKBQ4e/Zsse0jKCgIfn5+xdY+ERERERFpNiauWiwoKAgKhSLHy9fXt9BtODo6IjExEdWqVSvGSIvWwIEDoVAoEBYWpu5QiIiIiIioEPTUHQCpl6+vL1auXCkrMzAwKPT2urq6sLOzK+qwis22bdtw9OhRODg4qDsUIiIiIiIqJJ5x1XIGBgaws7OTvSwsLKT1CoUC4eHhaN26NZRKJSpUqIAtW7ZI69+8VPjp06cICAiAjY0NlEolXFxcZInxhQsX0Lx5cyiVSlhZWWHAgAFITk6W1mdlZWHUqFEwNzeHlZUVxo0bByGELGaVSoXQ0FA4OTlBqVTC3d1dFlNe7t69i2HDhmH9+vUoUaLEu3YZERERERF9YExcqUATJ06Ev78/zp07h4CAAHTr1g1xcXF51r106RJ2796NuLg4hIeHw9raGgCQkpICHx8fWFhY4MSJE9i8eTP279+PoUOHStvPmTMHq1atwooVK3D48GE8efIE27Ztk+0jNDQUa9asQUREBC5evIjg4GD06NEDBw8ezPMYVCoVevbsibFjx6Jq1aqFOu60tDQ8f/5c9krLKNSmRERERERUhHipsJbbsWMHTExMZGUTJkzAhAkTpOXOnTujX79+AIDp06cjOjoaCxYswOLFi3O0d+vWLdSqVQuenp4AgPLly0vrNmzYgJcvX2LNmjUwNjYGACxcuBDt2rXDrFmzYGtri7CwMISEhOCLL74AAERERGDv3r1SG2lpafj++++xf/9+1K9fHwBQoUIFHD58GEuWLEGTJk1yPc5Zs2ZBT08Pw4cPL3TfhIaGYurUqbKyfk5A/4r8voc+MZvUf4963ai/1R0CfSDLHt1TdwhE76Tf003qDoFIqzFx1XLNmjVDeHi4rMzS0lK2nJ0gvr6c1yzCgwYNgr+/P06fPo1WrVrBz88PDRo0AADExcXB3d1dSloBoGHDhlCpVIiPj4ehoSESExNRr149ab2enh48PT2ly4WvXr2K1NRUtGzZUrbf9PR01KpVK9eYTp06hfnz5+P06dNQKBT59IZcSEgIRo0aJSs739G80NsTEREREVHRYOKq5YyNjeHs7Fxk7bVu3Ro3b97Erl27EB0djRYtWmDIkCGYPXt2kbSffT/szp07Ubp0adm6vCaV+vPPP/HgwQOULVtWKsvKysLo0aMRFhaGhISEXLczMDDI0aa+TuETXyIiIiIiKhq85pEKdPTo0RzLrq6ueda3sbFBYGAg1q1bh7CwMCxduhQA4OrqinPnziElJUWqGxsbCx0dHVSuXBlmZmawt7fHsWPHpPWZmZk4deqUtOzm5gYDAwPcunULzs7Ospejo2Ou8fTs2RPnz5/H2bNnpZeDgwPGjh0ruwyZiIiIiIg0E8+4arm0tDTcv39fVqanpydNqAQAmzdvhqenJ7y8vLB+/XocP34cy5cvz7W9SZMmwcPDA1WrVkVaWhp27NghJbkBAQGYPHkyAgMDMWXKFDx8+BDDhg1Dz549YWtrCwAYMWIEZs6cCRcXF1SpUgVz587Fs2fPpPZLliyJMWPGIDg4GCqVCl5eXkhKSkJsbCxMTU0RGBiYIyYrKytYWVnJykqUKAE7OztUrlz5nfqNiIiIiIg+HCauWm7Pnj2wt7eXlVWuXBmXL1+WlqdOnYrIyEgMHjwY9vb22LhxI9zc3HJtT19fHyEhIUhISIBSqUSjRo0QGRkJADAyMsLevXsxYsQI1KlTB0ZGRvD398fcuXOl7UePHo3ExEQEBgZCR0cHffr0QceOHZGUlCTVmT59OmxsbBAaGorr16/D3NwctWvXlk0oRUREREREnw6FePMhmUSvUSgU2LZtG/z8/NQdikY43lJX3SEQfZI4q/BrjPO+FeNTsEy/hrpDIHonnFX4I/KJj6Paive4EhERERERkUZj4kpEREREREQajfe4Ur54JTkREREREakbz7gSERERERGRRmPiSkRERERERBqNiSsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKREREREREGo2JKxEREREREWk0heCDOokKLyVO3REQ0afO2FXdERQvjqNEVNw+9XFUS/GMKxEREREREWk0Jq5ERERERESk0Zi4EhERERERkUZj4kpEREREREQajYkrERERERERaTQmrkRERERERKTRmLgSERERERGRRmPiSkRERERERBqNiSsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKREREREREGo2JKxEREREREWk0Jq5ERERERESk0fTUHQDRx0RsdFN3CPSJUXS/pO4QiD4sl2B1R0BEH4sr89QdAWkQnnElIiIiIiIijcbElYiIiIiIiDQaE1ciIiIiIiLSaExciYiIiIiISKMxcSUiIiIiIiKNxsSViIiIiIiINBoTVyIiIiIiItJoTFyJiIiIiIhIozFxJSIiIiIiIo3GxJWIiIiIiIg0GhNXIiIiIiIi0mhMXImIiIiIiEijMXGl95KQkACFQoGzZ88W2z6CgoLg5+dXbO0TEREREZFmY+KqxYKCgqBQKHK8fH19C92Go6MjEhMTUa1atWKM9P3ldqxvc5xERERERKQ+euoOgNTL19cXK1eulJUZGBgUentdXV3Y2dkVdVjF4s1jfZvjJCIiIiIi9eEZVy1nYGAAOzs72cvCwkJar1AoEB4ejtatW0OpVKJChQrYsmWLtP7NS4WfPn2KgIAA2NjYQKlUwsXFRZYsXrhwAc2bN4dSqYSVlRUGDBiA5ORkaX1WVhZGjRoFc3NzWFlZYdy4cRBCyGJWqVQIDQ2Fk5MTlEol3N3dZTEV9lhfP87cpKWl4fnz57JXWkaBuyEiIiIioiLGM65UoIkTJ2LmzJmYP38+1q5di27duuHChQtwdXXNte6lS5ewe/duWFtb4+rVq3jx4gUAICUlBT4+Pqhfvz5OnDiBBw8eoF+/fhg6dChWrVoFAJgzZw5WrVqFFStWwNXVFXPmzMG2bdvQvHlzaR+hoaFYt24dIiIi4OLigkOHDqFHjx6wsbFBkyZN8jyOAwcOoFSpUrCwsEDz5s0xY8YMWFlZ5Vk/NDQUU6dOlZX1cwL6V+T3PVSENuV9mX3dqL8/YCBEH8ayR/fUHQIRvad+TzepOwTSQgrx5uks0hpBQUFYt24dDA0NZeUTJkzAhAkTALw64zpw4ECEh4dL6z/77DPUrl0bixcvRkJCApycnHDmzBnUrFkT7du3h7W1NVasWJFjfz///DPGjx+P27dvw9jYGACwa9cutGvXDvfu3YOtrS0cHBwQHByMsWPHAgAyMzPh5OQEDw8PREVFIS0tDZaWlti/fz/q168vtd2vXz+kpqZiw4YNuR5rZGQkjIyM4OTkhGvXrmHChAkwMTHBkSNHoKurm+s2aWlpSEtLk5Wd72gOfR1FQV1LVCSYuGop45xfCn5KlunXUHcIRPSeND5x/cTHUW3FM65arlmzZrKkFAAsLS1ly68niNnLec0iPGjQIPj7++P06dNo1aoV/Pz80KBBAwBAXFwc3N3dpaQVABo2bAiVSoX4+HgYGhoiMTER9erVk9br6enB09NTulz46tWrSE1NRcuWLWX7TU9PR61atfI8zm7dukk/V69eHTVq1EDFihVx4MABtGjRItdtDAwMctwHy6SViIiIiOjDY+Kq5YyNjeHs7Fxk7bVu3Ro3b97Erl27EB0djRYtWmDIkCGYPXt2kbSffT/szp07Ubp0adm6t5lsqUKFCtKlzHklrkREREREpBl4sx4V6OjRozmWc7u/NZuNjQ0CAwOxbt06hIWFYenSpQAAV1dXnDt3DikpKVLd2NhY6OjooHLlyjAzM4O9vT2OHTsmrc/MzMSpU6ekZTc3NxgYGODWrVtwdnaWvRwdHQt9THfu3MHjx49hb29f6G2IiIiIiEg9eMZVy6WlpeH+/fuyMj09PVhbW0vLmzdvhqenJ7y8vLB+/XocP34cy5cvz7W9SZMmwcPDA1WrVkVaWhp27NghJbkBAQGYPHkyAgMDMWXKFDx8+BDDhg1Dz549YWtrCwAYMWIEZs6cCRcXF1SpUgVz587Fs2fPpPZLliyJMWPGIDg4GCqVCl5eXkhKSkJsbCxMTU0RGBiYI6bk5GRMnToV/v7+sLOzw7Vr1zBu3Dg4OzvDx8fnfbuQiIiIiIiKGRNXLbdnz54cZx0rV66My5cvS8tTp05FZGQkBg8eDHt7e2zcuBFubm65tqevr4+QkBAkJCRAqVSiUaNGiIyMBAAYGRlh7969GDFiBOrUqQMjIyP4+/tj7ty50vajR49GYmIiAgMDoaOjgz59+qBjx45ISkqS6kyfPh02NjYIDQ3F9evXYW5ujtq1a0sTSr1JV1cX58+fx+rVq/Hs2TM4ODigVatWmD59Op/lSkRERET0EeCswpQvhUKBbdu2wc/PT92haITjLXOfgZioOHBWYS31ic+GyVmFiT5+nFWY1IH3uBIREREREZFGY+JKREREREREGo33uFK+eCU5ERERERGpG8+4EhERERERkUZj4kpEREREREQajYkrERERERERaTQmrkRERERERKTRmLgSERERERGRRmPiSkRERERERBqNiSsRERERERFpNIXggzqJCi8lTt0RENGnzthV3REUL46jRFTcPvVxVEvxjCsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKREREREREGo2JKxEREREREWk0Jq5ERERERESk0Zi4EhERERERkUZj4kpEREREREQajYkrERERERERaTQmrkRERERERKTRmLgSERERERGRRmPiSkRERERERBqNiSsRERERERFpND11B0D0MREb3dQdAlGRU3S/pO4QSJu4BKs7AiLSZFfmqTsC0lA840pEREREREQajYkrERERERERaTQmrkRERERERKTRmLgSERERERGRRmPiSkRERERERBqNiSsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKREREREREGo2JKxEREREREWk0Jq5ERERERESk0Zi4EhERERERkUZj4krvJSEhAQqFAmfPni22fQQFBcHPz6/Y2iciIiIiIs3GxFWLBQUFQaFQ5Hj5+voWug1HR0ckJiaiWrVqxRhp0YiLi0P79u1hZmYGY2Nj1KlTB7du3VJ3WEREREREVAA9dQdA6uXr64uVK1fKygwMDAq9va6uLuzs7Io6rCJ37do1eHl5oW/fvpg6dSpMTU1x8eJFGBoaqjs0IiIiIiIqAM+4ajkDAwPY2dnJXhYWFtJ6hUKB8PBwtG7dGkqlEhUqVMCWLVuk9W9eKvz06VMEBATAxsYGSqUSLi4ussT4woULaN68OZRKJaysrDBgwAAkJydL67OysjBq1CiYm5vDysoK48aNgxBCFrNKpUJoaCicnJygVCrh7u4uiyk333zzDdq0aYMffvgBtWrVQsWKFdG+fXuUKlXqfbqPiIiIiIg+ACauVKCJEyfC398f586dQ0BAALp164a4uLg86166dAm7d+9GXFwcwsPDYW1tDQBISUmBj48PLCwscOLECWzevBn79+/H0KFDpe3nzJmDVatWYcWKFTh8+DCePHmCbdu2yfYRGhqKNWvWICIiAhcvXkRwcDB69OiBgwcP5hqTSqXCzp07UalSJfj4+KBUqVKoV68eoqKi8j3utLQ0PH/+XPZKy3iLjiMiIiIioiKhEG+eziKtERQUhHXr1uW4XHbChAmYMGECgFdnXAcOHIjw8HBp/WeffYbatWtj8eLFSEhIgJOTE86cOYOaNWuiffv2sLa2xooVK3Ls7+eff8b48eNx+/ZtGBsbAwB27dqFdu3a4d69e7C1tYWDgwOCg4MxduxYAEBmZiacnJzg4eGBqKgopKWlwdLSEvv370f9+vWltvv164fU1FRs2LAhx37v378Pe3t7GBkZYcaMGWjWrBn27NmDCRMmICYmBk2aNMm1f6ZMmYKpU6fKyvo5Af0r8vse+vTVjfpb3SFoL2NXdUdQrJbp11B3CESUi35PN6k7hKLziY+j2or3uGq5Zs2ayZJSALC0tJQtv54gZi/nNYvwoEGD4O/vj9OnT6NVq1bw8/NDgwYNALyaHMnd3V1KWgGgYcOGUKlUiI+Ph6GhIRITE1GvXj1pvZ6eHjw9PaXLha9evYrU1FS0bNlStt/09HTUqlUr15hUKhUAoEOHDggODgYA1KxZE3/99RciIiLyTFxDQkIwatQoWdn5jua51iUiIiIiouLDxFXLGRsbw9nZucjaa926NW7evIldu3YhOjoaLVq0wJAhQzB79uwiaT/7ftidO3eidOnSsnV5TSplbW0NPT09uLm5ycpdXV1x+PDhPPdlYGCQo019HcW7hE1ERERERO+B1zxSgY4ePZpj2dU170swbGxsEBgYiHXr1iEsLAxLly4F8CpRPHfuHFJSUqS6sbGx0NHRQeXKlWFmZgZ7e3scO3ZMWp+ZmYlTp05Jy25ubjAwMMCtW7fg7Owsezk6OuYaj76+PurUqYP4+HhZ+T///INy5coVviOIiIiIiEgteMZVy6WlpeH+/fuyMj09PWlCJQDYvHkzPD094eXlhfXr1+P48eNYvnx5ru1NmjQJHh4eqFq1KtLS0rBjxw4pyQ0ICMDkyZMRGBiIKVOm4OHDhxg2bBh69uwJW1tbAMCIESMwc+ZMuLi4oEqVKpg7dy6ePXsmtV+yZEmMGTMGwcHBUKlU8PLyQlJSEmJjY2FqaorAwMBc4xo7diy6du2Kxo0bS/e4/u9//8OBAwfeo/eIiIiIiOhDYOKq5fbs2QN7e3tZWeXKlXH58mVpeerUqYiMjMTgwYNhb2+PjRs35rjsNpu+vj5CQkKQkJAApVKJRo0aITIyEgBgZGSEvXv3YsSIEahTpw6MjIzg7++PuXPnStuPHj0aiYmJCAwMhI6ODvr06YOOHTsiKSlJqjN9+nTY2NggNDQU169fh7m5OWrXri1NKJWbjh07IiIiAqGhoRg+fDgqV66MX3/9FV5eXu/Ub0RERERE9OFwVmHKl0KhwLZt2+Dn56fuUDTC8Za66g6B6IPgrMJq9InPhslZhYk0E2cVJk3He1yJiIiIiIhIozFxJSIiIiIiIo3Ge1wpX7ySnIiIiIiI1I1nXImIiIiIiEijMXElIiIiIiIijcbElYiIiIiIiDQaE1ciIiIiIiLSaExciYiIiIiISKMxcSUiIiIiIiKNxsSViIiIiIiINJpC8EGdRIWXEqfuCIjoU2fsqu4IihfHUSIqbp/6OKqleMaViIiIiIiINBoTVyIiIiIiItJoTFyJiIiIiIhIozFxJSIiIiIiIo3GxJWIiIiIiIg0GhNXIiIiIiIi0mhMXImIiIiIiEijMXElIiIiIiIijcbElYiIiIiIiDQaE1ciIiIiIiLSaExciYiIiIiISKMxcSUiIiIiIiKNxsSViIiIiIiINJqeugMg+likpaUh9MdNCAkJgYGBgbrDKXZpaWkIDQ3VmuMFeMw8Zipu2jaOFoS/izmxT+TYHzmxT7SXQggh1B0E0cfg+fPnMDMzQ1JSEkxNTdUdTrHTtuMFeMw8Zipu7Hs59kdO7BM59kdO7BPtxUuFiYiIiIiISKMxcSUiIiIiIiKNxsSViIiIiIiINBoTV6JCMjAwwOTJk7VmIgBtO16Ax6wttPGYNQX7Xo79kRP7RI79kRP7RHtxciYiIiIiIiLSaDzjSkRERERERBqNiSsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKVAiLFi1C+fLlYWhoiHr16uH48ePqDqlYHTp0CO3atYODgwMUCgWioqLUHVKxCg0NRZ06dVCyZEmUKlUKfn5+iI+PV3dYxSo8PBw1atSAqakpTE1NUb9+fezevVvdYX0wM2fOhEKhwMiRI9UditbQpnG0oDFUCIFJkybB3t4eSqUS3t7euHLliqzOkydPEBAQAFNTU5ibm6Nv375ITk7+gEdRdAozxr58+RJDhgyBlZUVTExM4O/vj3///VdW59atW2jbti2MjIxQqlQpjB07FpmZmR/yUIpEQeOvNvVFbnIbn7W9T+gVJq5EBdi0aRNGjRqFyZMn4/Tp03B3d4ePjw8ePHig7tCKTUpKCtzd3bFo0SJ1h/JBHDx4EEOGDMHRo0cRHR2NjIwMtGrVCikpKeoOrdiUKVMGM2fOxKlTp3Dy5Ek0b94cHTp0wMWLF9UdWrE7ceIElixZgho1aqg7FK2hbeNoQWPoDz/8gJ9++gkRERE4duwYjI2N4ePjg5cvX0p1AgICcPHiRURHR2PHjh04dOgQBgwY8KEOoUgVZowNDg7G//73P2zevBkHDx7EvXv38MUXX0jrs7Ky0LZtW6Snp+Ovv/7C6tWrsWrVKkyaNEkdh/ReChp/takv3pTX+KzNfUKvEUSUr7p164ohQ4ZIy1lZWcLBwUGEhoaqMaoPB4DYtm2busP4oB48eCAAiIMHD6o7lA/KwsJCLFu2TN1hFKv//vtPuLi4iOjoaNGkSRMxYsQIdYekFbR5HH1zDFWpVMLOzk78+OOPUtmzZ8+EgYGB2LhxoxBCiEuXLgkA4sSJE1Kd3bt3C4VCIe7evfvBYi8ub46xz549EyVKlBCbN2+W6sTFxQkA4siRI0IIIXbt2iV0dHTE/fv3pTrh4eHC1NRUpKWlfdgDKAbZ468290Ve47M29wnJ8YwrUT7S09Nx6tQpeHt7S2U6Ojrw9vbGkSNH1BgZFaekpCQAgKWlpZoj+TCysrIQGRmJlJQU1K9fX93hFKshQ4agbdu2ss80FS+Oo3I3btzA/fv3Zf1hZmaGevXqSf1x5MgRmJubw9PTU6rj7e0NHR0dHDt27IPHXNTeHGNPnTqFjIwMWZ9UqVIFZcuWlfVJ9erVYWtrK9Xx8fHB8+fPP+orRd4cf7W5L/Ian7W5T0hOT90BEGmyR48eISsrSzYQAoCtrS0uX76spqioOKlUKowcORINGzZEtWrV1B1Osbpw4QLq16+Ply9fwsTEBNu2bYObm5u6wyo2kZGROH36NE6cOKHuULQKx1G5+/fvA0Cu/ZG97v79+yhVqpRsvZ6eHiwtLaU6H6vcxtj79+9DX18f5ubmsrpv9klufZa97mOT1/h79uxZresLIP/xWRt/Pyh3TFyJiF4zZMgQ/P333zh8+LC6Qyl2lStXxtmzZ5GUlIQtW7YgMDAQBw8e/CST19u3b2PEiBGIjo6GoaGhusMh0lraNMbmJ6/xVxtxfKbC4qXCRPmwtraGrq5ujpnr/v33X9jZ2akpKiouQ4cOxY4dOxATE4MyZcqoO5xip6+vD2dnZ3h4eCA0NBTu7u6YP3++usMqFqdOncKDBw9Qu3Zt6OnpQU9PDwcPHsRPP/0EPT09ZGVlqTvETxbHUbnsY86vP+zs7HJMXJWZmYknT5581H2W1xhrZ2eH9PR0PHv2TFb/zT7Jrc+y131s8hp/tbEvChqfbW1tta5PKHdMXInyoa+vDw8PD/z+++9SmUqlwu+///7J3wuoTYQQGDp0KLZt24Y//vgDTk5O6g5JLVQqFdLS0tQdRrFo0aIFLly4gLNnz0ovT09PBAQE4OzZs9DV1VV3iJ8sjqNyTk5OsLOzk/XH8+fPcezYMak/6tevj2fPnuHUqVNSnT/++AMqlQr16tX74DG/r4LGWA8PD5QoUULWJ/Hx8bh165asTy5cuCBL6KOjo2FqavpJXCWSPf5qY18UND57enpqXZ9QHtQ9OxSRpouMjBQGBgZi1apV4tKlS2LAgAHC3NxcNnPdp+a///4TZ86cEWfOnBEAxNy5c8WZM2fEzZs31R1asRg0aJAwMzMTBw4cEImJidIrNTVV3aEVm6+//locPHhQ3LhxQ5w/f158/fXXQqFQiH379qk7tA+Gswp/ONo2jhY0hs6cOVOYm5uL7du3i/Pnz4sOHToIJycn8eLFC6kNX19fUatWLXHs2DFx+PBh4eLiIrp3766uQ3ovhRljBw4cKMqWLSv++OMPcfLkSVG/fn1Rv359aX1mZqaoVq2aaNWqlTh79qzYs2ePsLGxESEhIeo4pPdS0PirTX2RlzfHZ/YJCSEEE1eiQliwYIEoW7as0NfXF3Xr1hVHjx5Vd0jFKiYmRgDI8QoMDFR3aMUit2MFIFauXKnu0IpNnz59RLly5YS+vr6wsbERLVq00KqkVQgmrh+aNo2jBY2hKpVKTJw4Udja2goDAwPRokULER8fL2vj8ePHonv37sLExESYmpqK3r17i//++08NR/P+CjPGvnjxQgwePFhYWFgIIyMj0bFjR5GYmChrJyEhQbRu3VoolUphbW0tRo8eLTIyMj7w0by/gsZfbeqLvLw5PrNPSAghFEII8eHO7xIRERERERG9Hd7jSkRERERERBqNiSsRERERERFpNCauREREREREpNGYuBIREREREZFGY+JKREREREREGo2JKxEREREREWk0Jq5ERERERESk0Zi4EhERERERkUZj4kpE9AlatWoVzM3N81x/4MABKBQKPHv27IPFREQfTkJCAhQKBc6ePavuUCSXL1/GZ599BkNDQ9SsWVPd4aiFQqFAVFSUusMg+igxcSUitTpy5Ah0dXXRtm1bdYfyQSgUCullamqKOnXqYPv27R88jgYNGiAxMRFmZmYffN9E2iAoKAgKhQIzZ86UlUdFRUGhUKgpKvWaPHkyjI2NER8fj99//z3XOtn9plAoUKJECTg5OWHcuHF4+fLlB47241G+fHmEhYWpOwyiYsfElYjUavny5Rg2bBgOHTqEe/fuFeu+hBDIzMws1n0UxsqVK5GYmIiTJ0+iYcOG6NSpEy5cuPBBY9DX14ednZ3W/gNN9CEYGhpi1qxZePr0qbpDKTLp6envvO21a9fg5eWFcuXKwcrKKs96vr6+SExMxPXr1zFv3jwsWbIEkydPfuf9EtGngYkrEalNcnIyNm3ahEGDBqFt27ZYtWqVtO7LL79E165dZfUzMjJgbW2NNWvWAABUKhVCQ0Ph5OQEpVIJd3d3bNmyRaqffTns7t274eHhAQMDAxw+fBjXrl1Dhw4dYGtrCxMTE9SpUwf79++X7SsxMRFt27aFUqmEk5MTNmzYkONb7WfPnqFfv36wsbGBqakpmjdvjnPnzhV43Obm5rCzs0OlSpUwffp0ZGZmIiYmRlq/Z88eeHl5wdzcHFZWVvj8889x7do1aX32JYBbt25Fs2bNYGRkBHd3dxw5ciTPfT58+BCenp7o2LEj0tLSclwqnH1p8d69e+Hq6goTExPpn8dsmZmZGD58uBTX+PHjERgYCD8/vwKPmUgbeXt7w87ODqGhoXnWmTJlSo7LZsPCwlC+fHlpOSgoCH5+fvj+++9ha2sLc3NzTJs2DZmZmRg7diwsLS1RpkwZrFy5Mkf7ly9fRoMGDWBoaIhq1arh4MGDsvV///03WrduDRMTE9ja2qJnz5549OiRtL5p06YYOnQoRo4cCWtra/j4+OR6HCqVCtOmTUOZMmVgYGCAmjVrYs+ePdJ6hUKBU6dOYdq0aVAoFJgyZUqefWJgYAA7Ozs4OjrCz88P3t7eiI6Olu0rv7H/6dOnCAgIgI2NDZRKJVxcXKS+yR4/IyMj8+2XgwcPom7dujAwMIC9vT2+/vpr2RefTZs2xfDhwzFu3DhYWlrCzs4uxzFduXIFjRs3hqGhIdzc3GTHkO327dvo0qULzM3NYWlpiQ4dOiAhIUFan/3ez549G/b29rCyssKQIUOQkZEhxXHz5k0EBwdLZ6oB4ObNm2jXrh0sLCxgbGyMqlWrYteuXXn2OdHHgIkrEanNL7/8gipVqqBy5cro0aMHVqxYASEEACAgIAD/+9//kJycLNXfu3cvUlNT0bFjRwBAaGgo1qxZg4iICFy8eBHBwcHo0aNHjn9Avv76a8ycORNxcXGoUaMGkpOT0aZNG/z+++84c+YMfH190a5dO9y6dUvaplevXrh37x4OHDiAX3/9FUuXLsWDBw9k7Xbu3BkPHjzA7t27cerUKdSuXRstWrTAkydPCnX8mZmZWL58OYBXZ0CzpaSkYNSoUTh58iR+//136OjooGPHjlCpVLLtv/nmG4wZMwZnz55FpUqV0L1791zPKN++fRuNGjVCtWrVsGXLFhgYGOQaT2pqKmbPno21a9fi0KFDuHXrFsaMGSOtnzVrFtavX4+VK1ciNjYWz58/571aRPnQ1dXF999/jwULFuDOnTvv1dYff/yBe/fu4dChQ5g7dy4mT56Mzz//HBYWFjh27BgGDhyIr776Ksd+xo4di9GjR+PMmTOoX78+2rVrh8ePHwN49eVb8+bNUatWLZw8eRJ79uzBv//+iy5dusjaWL16NfT19REbG4uIiIhc45s/fz7mzJmD2bNn4/z58/Dx8UH79u1x5coVAK++DKxatSpGjx6NxMRE2diSn7///ht//fWXbIwsaOyfOHEiLl26hN27dyMuLg7h4eGwtrYudL/cvXsXbdq0QZ06dXDu3DmEh4dj+fLlmDFjRo5+MTY2xrFjx/DDDz9g2rRpUnKqUqnwxRdfQF9fH8eOHUNERATGjx8v2z4jIwM+Pj4oWbIk/vzzT8TGxkpfGr5+ZjsmJgbXrl1DTEwMVq9ejVWrVklf9G7duhVlypTBtGnTkJiYKH3ZOGTIEKSlpeHQoUO4cOECZs2aBRMTk0L1OZHGEkREatKgQQMRFhYmhBAiIyNDWFtbi5iYGNnymjVrpPrdu3cXXbt2FUII8fLlS2FkZCT++usvWZt9+/YV3bt3F0IIERMTIwCIqKioAmOpWrWqWLBggRBCiLi4OAFAnDhxQlp/5coVAUDMmzdPCCHEn3/+KUxNTcXLly9l7VSsWFEsWbIkz/0AEIaGhsLY2Fjo6OgIAKJ8+fLi8ePHeW7z8OFDAUBcuHBBCCHEjRs3BACxbNkyqc7FixcFABEXFyeEEGLlypXCzMxMXL58WTg6Oorhw4cLlUol1c/um6dPn0r1AYirV69KdRYtWiRsbW2lZVtbW/Hjjz9Ky5mZmaJs2bKiQ4cOecZOpK0CAwOlz8Znn30m+vTpI4QQYtu2beL1f78mT54s3N3dZdvOmzdPlCtXTtZWuXLlRFZWllRWuXJl0ahRI2k5MzNTGBsbi40bNwoh/m+cmDlzplQnIyNDlClTRsyaNUsIIcT06dNFq1atZPu+ffu2ACDi4+OFEEI0adJE1KpVq8DjdXBwEN99952srE6dOmLw4MHSsru7u5g8eXK+7QQGBgpdXV1hbGwsDAwMBACho6MjtmzZIoQo3Njfrl070bt371zbL0y/TJgwQVSuXFk2Zi5atEiYmJhI70GTJk2El5dXjuMdP368EEKIvXv3Cj09PXH37l1p/e7duwUAsW3bNiGEEGvXrs2xn7S0NKFUKsXevXul/ihXrpzIzMyU6nTu3Fn6WyiEEOXKlZP+NmWrXr26mDJlSq59QPSx4hlXIlKL+Ph4HD9+HN27dwcA6OnpoWvXrtIZSD09PXTp0gXr168H8Oos5Pbt2xEQEAAAuHr1KlJTU9GyZUuYmJhIrzVr1sguqwUAT09P2XJycjLGjBkDV1dXmJubw8TEBHFxcdIZ1/j4eOjp6aF27drSNs7OzrCwsJCWz507h+TkZFhZWcn2f+PGjRz7f9O8efNw9uxZ7N69G25ubli2bBksLS2l9VeuXEH37t1RoUIFmJqaSpcMvn5GGABq1Kgh/Wxvbw8AsrPCL168QKNGjfDFF19g/vz5Bd7PamRkhIoVK8razG4vKSkJ//77L+rWrSut19XVhYeHR75tEtGrqxVWr16NuLi4d26jatWq0NH5v3/bbG1tUb16dWlZV1cXVlZWOa4MqV+/vvSznp4ePD09pTjOnTuHmJgY2RhWpUoVAJCNYwV9zp8/f4579+6hYcOGsvKGDRu+0zE3a9YMZ8+exbFjxxAYGIjevXvD398fQOHG/kGDBiEyMhI1a9bEuHHj8Ndff+XYR379EhcXh/r168vGzIYNGyI5OVl2Rvv1MRiQj5lxcXFwdHSEg4NDrvsEXvX/1atXUbJkSek4LC0t8fLlS1n/V61aFbq6urnuJy/Dhw/HjBkz0LBhQ0yePBnnz5/Ptz7Rx0BP3QEQkXZavnw5MjMzZX/UhRAwMDDAwoULYWZmhoCAADRp0gQPHjxAdHQ0lEolfH19AUC6hHjnzp0oXbq0rO03L4U1NjaWLY8ZMwbR0dGYPXs2nJ2doVQq0alTp7eadCQ5ORn29vY4cOBAjnX5PYYGAOzs7ODs7AxnZ2esXLkSbdq0waVLl1CqVCkAQLt27VCuXDn8/PPPcHBwgEqlQrVq1XLEV6JECenn7H+wXr+c2MDAAN7e3tixYwfGjh2bo5/e9Hp72W2K/3/pNhG9u8aNG8PHxwchISEICgqSrdPR0cnxOcu+f/F1uX0+cyt785aC/CQnJ6Ndu3aYNWtWjnXZX4YBOcfQ4mZsbAxnZ2cAwIoVK+Du7o7ly5ejb9++hRr7W7dujZs3b2LXrl2Ijo5GixYtMGTIEMyePbtI4yyK/vfw8JC+oH2djY3Ne+2nX79+8PHxwc6dO7Fv3z6EhoZizpw5GDZsWKHjI9I0PONKRB9cZmYm1qxZgzlz5uDs2bPS69y5c3BwcMDGjRsBvHpki6OjIzZt2oT169ejc+fO0h9wNzc3GBgY4NatW1ISmP1ydHTMd/+xsbEICgpCx44dUb16ddjZ2ckmw6hcuTIyMzNx5swZqezq1auymUFr166N+/fvQ09PL8f+37yXKj9169aFh4cHvvvuOwDA48ePER8fj2+//RYtWrSAq6vrO89IqqOjg7Vr18LDwwPNmjV7r1mbzczMYGtrixMnTkhlWVlZOH369Du3SaRNZs6cif/97385JlGzsbHB/fv3ZclrUT579ejRo9LPmZmZOHXqFFxdXQG8GscuXryI8uXL5xjH3iZZNTU1hYODA2JjY2XlsbGxcHNze6/4dXR0MGHCBHz77bd48eJFocd+GxsbBAYGYt26dQgLC8PSpUtl7ebXL66urjhy5IjsPYmNjUXJkiVRpkyZQsXt6uqK27dvyya4e32fwKv+v3LlCkqVKpXjWN7mUWX6+vrIysrKUe7o6IiBAwdi69atGD16NH7++edCt0mkiZi4EtEHt2PHDjx9+hR9+/ZFtWrVZC9/f3/pcmHg1ezCERERiI6Oli4TBoCSJUtizJgxCA4OxurVq3Ht2jWcPn0aCxYswOrVq/Pdv4uLC7Zu3Soly19++aXs2+sqVarA29sbAwYMwPHjx3HmzBkMGDAASqVSOrPp7e2N+vXrw8/PD/v27UNCQgL++usvfPPNNzh58uRb9cfIkSOxZMkS3L17FxYWFrCyssLSpUtx9epV/PHHHxg1atRbtfc6XV1drF+/Hu7u7mjevDnu37//zm0NGzYMoaGh2L59O+Lj4zFixAg8ffqUj9QhKoTq1asjICAAP/30k6y8adOmePjwIX744Qdcu3YNixYtwu7du4tsv4sWLcK2bdtw+fJlDBkyBE+fPkWfPn0AvJrA58mTJ+jevTtOnDiBa9euYe/evejdu3euiVB+xo4di1mzZmHTpk2Ij4/H119/jbNnz2LEiBHvfQydO3eGrq4uFi1aVKixf9KkSdi+fTuuXr2KixcvYseOHVJSWph+GTx4MG7fvo1hw4bh8uXL2L59OyZPnoxRo0bJLtfOj7e3NypVqoTAwECcO3cOf/75J7755htZnYCAAFhbW6NDhw74888/cePGDRw4cADDhw9/q8m8ypcvj0OHDuHu3bvSjNAjR47E3r17cePGDZw+fRoxMTE5+oDoY8PElYg+uOXLl8Pb2zvXb5T9/f1x8uRJ6X6cgIAAXLp0CaVLl85x/9T06dMxceJEhIaGwtXVFb6+vti5cyecnJzy3f/cuXNhYWGBBg0aoF27dvDx8ZHdzwoAa9asga2tLRo3boyOHTuif//+KFmyJAwNDQG8ulRr165daNy4MXr37o1KlSqhW7duuHnzJmxtbd+qP3x9feHk5ITvvvsOOjo6iIyMxKlTp1CtWjUEBwfjxx9/fKv23qSnp4eNGzeiatWqaN68eYH3RuVl/Pjx6N69O3r16oX69evDxMQEPj4+Up8QUf6mTZuW4xJPV1dXLF68GIsWLYK7uzuOHz9e6Bl3C2PmzJmYOXMm3N3dcfjwYfz222/SVSHZZ0mzsrLQqlUrVK9eHSNHjoS5uXmhE7Rsw4cPx6hRozB69GhUr14de/bswW+//QYXF5f3PgY9PT0MHToUP/zwA1JSUgoc+/X19RESEoIaNWqgcePG0NXVRWRkZKH7pXTp0ti1axeOHz8Od3d3DBw4EH379sW3335b6Jh1dHSwbds2vHjxAnXr1kW/fv2kK2uyGRkZ4dChQyhbtiy++OILuLq6om/fvnj58iVMTU0Lva9p06YhISEBFStWlC4xzsrKwpAhQ6T+qVSpEhYvXlzoNok0kULwBiYiogLduXMHjo6O2L9/P1q0aKHucDSCSqWCq6srunTpgunTp6s7HCKiAiUkJMDJyQlnzpzJ8fxcItJsnJyJiCgXf/zxB5KTk1G9enUkJiZi3LhxKF++PBo3bqzu0NTm5s2b2LdvH5o0aYK0tDQsXLgQN27cwJdffqnu0IiIiOgTx8SViCgXGRkZmDBhAq5fv46SJUuiQYMGWL9+fY7ZHbWJjo4OVq1ahTFjxkAIgWrVqmH//v28b4qIiIiKHS8VJiIiIiIiIo3GyZmIiIiIiIhIozFxJSIiIiIiIo3GxJWIiIiIiIg0GhNXIiIiIiIi0mhMXImIiIiIiEijMXElIiIiIiIijcbElYiIiIiIiDQaE1ciIiIiIiLSaP8PzHxcLkXWZYIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 800x400 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ind = np.arange(6)\n",
"height = 0.35\n",
"offset = ind + height\n",
"\n",
"fig,ax = plt.subplots(1, 2, figsize=(8,4))\n",
"malebar = ax[0].barh(ind, male_ranking_avgs, color='#fe9b00', height=height)\n",
"femalebar = ax[0].barh(offset, female_ranking_avgs, color='#c94402', height=height)\n",
"ax[0].set_facecolor('#fff4d6')\n",
"ax[0].set_title('Movie Rankings by Gender')\n",
"ax[0].set_yticks(ind + height / 2)\n",
"ax[0].set_yticklabels(('Episode 1', 'Episode 2', 'Episode 3', 'Episode 4', 'Episode 5',\n",
" 'Episode 6'))\n",
"ax[0].set_xlabel('Average Ranking')\n",
"ax[0].legend((malebar[0], femalebar[0]), ('Men', 'Women'),bbox_to_anchor=[-0.3,1])\n",
"ax[0].invert_yaxis()\n",
"\n",
"male2bar = ax[1].barh(ind, male_tot_seen, color='#ff1947', height=height)\n",
"female2bar = ax[1].barh(offset, female_tot_seen, color='#9b052d', height=height)\n",
"ax[1].set_facecolor('#fff4d6')\n",
"ax[1].set_title('# of Respondents by Gender')\n",
"ax[1].set_yticks([])\n",
"ax[1].set_xlabel('Number of Respondents')\n",
"\n",
"ax[1].legend((male2bar[0], female2bar[0]), ('Men', 'Women'),bbox_to_anchor=[1,1])\n",
"ax[1].invert_yaxis()\n",
"\n",
"for a in ax:\n",
" for spine in ['top', 'right', 'bottom', 'left']:\n",
" a.spines[spine].set_visible(False)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Episode 5 was highest ranked among both men and women, but the ranking differences between the genders was negligible with a slight exception for Episode 4. Men tended to rank Episode 4 slightly higher than women. Overall more men have seen each of the 6 films than women survey respondents, with the two most popular movies among each gender being Episode 5 and 6."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.0rc1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment