Skip to content

Instantly share code, notes, and snippets.

@astrofrog
Last active May 23, 2018 13:26
Show Gist options
  • Select an option

  • Save astrofrog/de71b0f807ab56cffe064eb7a3c435c6 to your computer and use it in GitHub Desktop.

Select an option

Save astrofrog/de71b0f807ab56cffe064eb7a3c435c6 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Mentions of Python in Astronomy papers\n",
"======================================\n",
"\n",
"This is a simple analysis of the raw mentions of progrogramming languages in refereed Astronomy papers as provided by [The SAO/NASA Astrophysics Data System](http://adsabs.harvard.edu). It is **not** a direct measure of users.\n",
"\n",
"The main intent here is simply to show the rapid rise in mentions of Python in the literature.\n",
"\n",
"Not all languages can be shown here: results for Julia and C would not be meaningful because the full text search does not distinguish between programming languages and first names, and C can also be used for other purposes (e.g. 'Case C').\n",
"\n",
"The numbers shown here are **not** normalized to the total number of papers. Papers from 2016 are not shown since these numbers are incomplete.\n",
"\n",
"This notebook is released under the public domain.\n",
"\n",
"Requirements: [ads](https://github.com/andycasey/ads), [numpy](http://www.numpy.org), [matplotlib](http://matplotlib.org)\n",
"\n",
"**UPDATE:** the plot has been updated since the version originally [shared on Twitter](https://twitter.com/astrofrog/status/787007261877166080). The main changes are that the search is now restricted to specifically refereed Astronomy papers (the original version just searched the full ADS database), and MATLAB has now been added."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import ads\n",
"import numpy as np\n",
"from collections import Counter"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def get_numbers(language):\n",
" \n",
" # Query ADS\n",
" query = ads.SearchQuery(full=language, database='astronomy', property='refereed',\n",
" fl=['year'], rows=100, max_pages=1000)\n",
"\n",
" # Count how many papers were published each year\n",
" papers = Counter(paper.year for paper in query if paper.year is not None)\n",
" \n",
" # Turn this into sorted data\n",
" years = sorted(papers)\n",
" values = [papers[year] for year in years]\n",
" \n",
" years = np.array(years, float)\n",
" values = np.array(values, float)\n",
" \n",
" return years, values"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"years = {}\n",
"values = {}"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"years['Python'], values['Python'] = get_numbers('Python')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"years['IDL'], values['IDL'] = get_numbers('IDL')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"years['Fortran'], values['Fortran'] = get_numbers('Fortran')"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"years['Matlab'], values['Matlab'] = get_numbers('Matlab')"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFvCAYAAACfGhUuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8VFX+xvHPyaSTAAm9VwVUEKSIAoodKTbsomDBthZs\ni2Vd2Z99LdgbKKKIujZUrCCCoEIIJoBKEekJNYUE0mfO7487gQBJSJnJTMLz3ldeM3PLud+ZjJuH\nc+89x1hrERERERH/CQl0ASIiIiJ1nQKXiIiIiJ8pcImIiIj4mQKXiIiIiJ8pcImIiIj4mQKXiIiI\niJ8pcElQM8a0N8akG2Pmen/+U862c40xzb37fFtKOwOrcOxK7VNZxpgrSjyfaIyp7+fjdTTG/G6M\necOfx/E3Y8yNxpi+Vdx3jDHmXl/X5G+V+X4YY540xnx+iG1G+aYyEakIBS6pDRKstYO9Pw9VsY1j\ngMqGp6rsU2HGmBjgyuLX1to7rLVZ/jqe1wDgY2vt9X4+jl9Za1+z1i4OdB01qZLfj+6A2xjToJxt\nbvRBWSJSQQpcUuuU7KEwxlxqjJlwiO3jgaeB640xr3iXjTPGLDDGzDbGdDDGjDDGPOddN9sY0+rA\nfUq0l2CMmWKMWWGMGW2M+cAYs9IYc7J3/SnGmPnen7NLtHm/MeZXY8yH3qbeAvp5e+bCS/TQhRlj\nphpj5hljvjXGtCmrDe+xfjXG/GiMOf2AOu8wxvxijPnZGDPYGBMG/BO4yhgzpsR2E4wxk40x33jf\n2xHe5T8YY542xrxojGlojPnUW9OnxX/IjTGvGWMSjTG7vI9tvXWON8b8zxjT2BjzoTFmjjHme2NM\neAU/w9nGmIeMMb8ZYx711rHUGHNPiZovLdHWJGPMMmPMbd5lQ737/mWM2WyMKTVgGmOu9n7GycaY\nC0q0/ZQxZpYxJskYE+f9/XxsjFlsjMnxfnfCjTErS7S10vvY2Rgzw/tZTfcui/O+pyXGmFxjzKdl\nfA9beL8HPxhjxh9Qa/H3Y7AxZpox5jNjzCpjzAkHbHc0sBb4ERhW2vfEGHMncJy3zX7e9/ywd33L\nA787ZX0upX3PSmz7rLe9740xY73v8zPv+gUlvkP/Lf69e1+/bYx5wXucecaYJt7lE71tJZp939E5\n3v1/NMbMNMZEepc/5d13pjEm3ji91R8ZYz4xxlznre0nY8yXxpjo0r4bIj5nrdWPfoL2B2gPpANz\nvT9HAWOAe73rLwUmeJ/PBZp79/n2gHZK7tMV+Mz7/AjgVe/zj4D7gTsP3OeAtrYB8Ti9CCuBaOBs\nYLJ3fQIQC4QW1+GtbaD3+RKg8YF1lqj/RuAh77JTgPfLaeNp4HzvsvASbXUDZuH8oyoe+KOs9wRM\nAO7wPh8OvOF9vhbo6X3+BDDa+/xq4HEgAljmPcYVwG0l6jzX+9wADb3P3wTOrOBnOBenNy4E2AF0\nAmKAVSVqvrREW42A+sBy77Kp3v0jgbnlfBfivY9tgV9KtP0v7/NngAuBDsD33mUPAOd4n68s0e5K\n72OE9/0YYDZwpPf3OMm7fhLQg1K+h97P//kDf58HfD8GA995P5sRwEsHbPcv72fZEfjIu+yg78kB\ntU8AJh7iu1Pa51Letg94n38CXOt9vghojfMdH1vifYWUqOXtErXeAtx/wO/qKuCxEvv2KvEeLwfO\nLPEZngGMx/lvbSMQ413+h/f3tN9nrB/9+PMnFJHgl2CtHVL8whjTr5rtdQd6GGPmel9v8j6+A3wI\nNDnE/hnW2nTj9NZstdbmGGN2ADHef413Ar70btuoxH5rvI87cMJDefV95H3+E/B8OW38B7jLGHMm\n8Czwl3f9McDP1loPkG6MSTPGNC7nmFu8j78DN3ufF1hrk0vU9Jr3+TxgpLU23xizCPgGKABuKtHe\nIu9jDPAvY0wh0AqI8y4v8zMs0cbf1lqPMSbNWvs3gDHGVUrtGdbaNO/6MO+yqcBEIBd4qZz3PcAY\nc4b3/ceVWL7f52ytXeft2ZoNpAEvltNmPHAfkOV9P3E4v8f/M8bM8ba9AjiPA76H1tqZxphWxphJ\nwMc4wao067yfTWnfpWFAL6AQONHb61PW96Sk4t9Zed+dA79/5W37d4lt/z5gv/eA/xljFgJJ3v1L\nKvl9vNj7/Frvf1/1AVvGtq1xvmenez/XUGC+d/2f1trd3udX4oTGHcaYR6y17lI+DxGfUuCS2mg3\n+/44HlliuT3gsaRCnF4ncP7YJQMXWmutcbhwAsM44B6cf6GX3KeidgLrgOHW2t3GGFPOtmW1vxw4\nCedf74Nw/jVelkbW2gnGmKOAJ4ELvMt/B8YaY0KAhji9AzvLKaee9/EUnF6rsmpa731c7l3exlp7\nVjn1XQ1stNa+YIx5FafXpyYMBa621pb22ZX8fkzE6V1qCowuqzFjTCxOAD39gFVh3vUd2ff/p/fg\n9Gx9iRN8DE5P0EJr7T0l2izte9gCp4dnMs7v4egKvdt9bbYFtllrR3pfP4HTy7O8tO+JMSbKWpt7\nQDOV+e5U9nsGgLU22xizGbgVp+fzQPt9H40xPYATrLUXGOdU8uAytn0fcOH0Rt7hfY8GaFfiMzJA\nmrX2FmPMf3EC6hflFiziAwpcUhvNAe41znUwa4Ac7/IknH+5Pg90NMZ0Ku4ZwelhuN8Y08Zae5Ux\nZgHwszEmA+df/EcDn1tr3zDOtUzdDtynIoV5/3COB741xuzB6f15rozNU4Hd3lrOK7H8LWCKMeYn\nnJ6ja8o55AhjzEicU2dPlqhjhTFmFvCLd9Hthyj9Iu8fMg/OaZkDPQlMNcZcB2TinNYBKDLGzPfW\n+TvONWIl/QK8671GZ88havClROBjY8xWnFPSj1hrk7zr/sAJ1k/g9H4s8Na5vazGvAGhszFmHs57\n/dVa+29ghrcn5Vec3yfADzinty7zbgvO6dnzvb2zecCX1tqXSvkeFuL0RoUBM6rwvs8Hvirx+luc\nINm+lO/Jh8BCY8wdB7zXCn93qvA9K2kyMN2WfgPHzcaYf+H0Jj4GhAOtjHP38fIDtp1gjOmAEyq/\nBTDOdW7zgV04vY3ZJbaPAZ40xjTFCd//rUTNIlVmrC2tM0BEDhfGuelgpbX2g0ru1xm4x1p7g/dU\n3uc410aV1kNWo4wxM4GLrLW5xhl6o7e19s5qtHcKMMBa+4gxJgpYCJxkrd1Vwf2vBgqttdOMc7H5\nQmttl6rWUxcYY4YCx9sD7jw2xrwNvGatXViBNubiXMu31S9FiviQerhEpKq2Aq29PXFFwE/BELa8\nfgTmGmOycXo3/lHN9lYDDxnnTlAPzo0WFQpbXonAG8aYa3B6Ve6rZj21mjHm30AfQGOByWFDPVwi\nIiIifqZxuERERET8LCCnFBs3bmzbt28fiEOLiIiIVMqSJUt2WmsPNWRQuQISuNq3b09iYmIgDi0i\nIiJSKcaYDdVtQ6cURURERPxMgUtERETEz4JiWIjMzEx27txJYWFhoEvxqfj4eJo1axboMkRERCTA\ngiJwbdmyhfbt2xMZGcmhpoSoLdxuN6tXr1bgEhERkeAIXABRUVGBLsGnXK7S5tgVERGRw5Gu4SrD\n3Llzee65sqbAExEREam4Whe4lmzI4OUf17BkQ0aV9p87dy6nn3469957L6NGjSI9PX2/9ddcU948\nwSIiIiKVFzSnFIv958s/+DM1q9R12XmFrNyajcdCiIGuzWOJjQw7aLujWtbnoRFHl3mM4cOHM27c\nOB599FFOO+00kpKSeOCBBxg6dCg///wzEydOpFevXvzwww+sXbuW0NBQnn32WSZOnMi6devIzs7m\nxRdf5Omnn6aoqIj09HQGDx7MxRdf7LPPQUREROqOWtXDlZVXhMc79aPHOq+rYubMmYwfP56ioiKO\nOeYYPB4PO3fuZMCAAXTr1o077rgDgJNPPpkXXniBDRs2sGfPHhYvXswLL7zAxRdfzPTp0wEYOXIk\njz/+ON9//71P3qOIiIjUPUHXw1Vez9SSDRlcMXkhhUUewkJDeP7SXvRuF1fpYxT3cAFMmzaNDz/8\nkCOOOAKAkpN5h4Y6H48xBmvt3jsoQ0JC9m5njMHlclFUVLXwJyIiInVf0AWu8vRuF8d71/Vn4do0\n+ndsVKWwdaALLriA3r1789VXXwHQokULHnroIU455ZT9touJiaFXr17ceuut7Nq1i1deeYWnn366\n2scXERGRus+U7NGpKX369LEl51JcsWIF3bp1q/E6il155ZW8++67Pm830O9LREREqs8Ys8Ra26c6\nbdSqa7h8raCggBtuuIFLL7000KWIiIhIHVarTin6Wnh4OK+//nqgyxAREZE67rDu4RIRERGpCQpc\nIiIiIn6mwCUiIiLiZwpcIiIiIn5W+wLXpgSY/4zzWAXFk1L37t2bu+66i7Fjx5KVlcX69ev3DoYq\nIiIi4kuHvEvROMOrTwY6AtnAxcB/gAHAX8B11lq3MeY24FJgGzDKWrunShV9cy9sXV76uvws2PY7\nWA+YEGh2DETUP3i75t3h7CfKPcygQYN45plnWLBgARMnTmT06NFVKldERETkUCrSw9UTyLfWngIk\nAP8EulhrBwJZwDBjTGPgcmAg8BNwrV+qzdvlhC1wHvN2VbvJ3r17s3r16mq3IyIiIlKWiozDtRk4\n0huqmgGrgdnedbNwQlYhsMBa6zHGzAL+BbxQpYrK65nalABTzwF3AbjCYeRkaNOvSocptnjxYo4+\nuuz5G0VERESqqyKBKwNIBT4B8oGtwAbvul1AnPcn84Bl+zHGXA9cD9C2bduqVdumH4z+AtbPh/aD\nqhW25s+fz5133klOTg5PP/00O3fuZN68eYwbN45mzZpx3333VbltERERkZIqErhuB6Zba781xjwB\npAPFF0419L5Oxzn1WHLZfqy1bwBvgDOXYpUrbtOvWkFr8ODBDB48+KAL5GNiYkhKSqpyuyIiIiJl\nqcg1XM0B432+AjgNOMP7+gxgAc61XQONMSEllomIiIgIFevhehaYYoz5J1AAXAncYYxZAKwCvvXe\npTgdJ2htBUb5q2ARERGR2uaQgctauwUYcsDigy5wsta+BLzko7pEREREAm7JhgxcMY2aV7ed2jfw\nqYiIiEgNWLIhg8snLcRVL65VddtS4BIREREpxcK1aRQUefZdyV4NClwiIiIipejfsRGuEAPWVn10\nBa9aF7iStyczeflkkrcnV2n/uXPncvLJJzNu3DieffbZMrfLysrS3IoiIiKHsd7t4jjpyMa492Sm\nVretitylWKOeTHiSlekrS123u2A3qzJWYbEYDF3iuhATHnPQdl3juzK+3/gyj3H++eczbtw4Nm/e\nzJgxY4iMjOTkk0/msssuY+DAgZx++unExcXx66+/MmPGDJKTkykqKqJv374UFBSQmJjI33//zQcf\nfMBNN93EEUccwfLly7nxxhsZMGCAzz4LERERCaz8Ig/u3Wlbq9tO0AWu8mQXZmNxevUsluzC7FID\n16F89tlnrF+/nqVLl/LKK6/QrVs3zj//fC677DKio6OZMGEC69evZ926dZx33nkkJyczdOhQTjzx\nRAoLC4mNjSUpKYm//vqLwsJCxo4dy8aNG/nyyy8VuEREROqQ1Mw8n7QTdIGrvJ6p5O3JjP1+LIWe\nQsJCwnhi0BP0bNqzzO3LUtzDNX78eIxxroQrfoyOjgYgJCQEj8ezd5/i5TfffDM33HAD/fv3Jz8/\nf+++LpeLoqKiStciIiIiwcnjsaRk5vqkraALXOXp2bQnk86cROK2RPo061OlsFXSLbfcwv333090\ndDQXXHDBfuuaN2/OqlWrmD59+n7Lo6Ki+Omnn1i6dOlB+4iIiEjdkbanwLlL0QeMDy68r7Q+ffrY\nxMTEva9XrFhBt27darwOf6ur70tERORwsHRTJue+/DMbnhy+xFrbpzpt1bq7FEVERERqgq9OJ4IC\nl4iIiEipUhW4RERERPxrc0Yu9cJdPmlLgUtERESkFKmZubSKi/JJWwpcIiIiIqVI3ZVLq4YKXDVi\nzJgxZGZmHrR8woQJJCdXbXohERERCX4pGbm0PFwDV05SEjtff4OcpKQq7T937lxOOumkva+POuqo\ng4LTsmXLeO6556pVp4iIiNReOQVFZOQU+ixwBd3Ap1sfe4z8FaXPpejevZv8lSvBWjCGiK5dccUc\nPLVPRLeuNL///jKPERoaypo1a9ixYwdNmjQBYPz48axcuZJnnnmGd955h2XLltGrV6+9+/zwww/M\nmjWLP//8k6lTpwLwyiuv4Ha7GTRoEGPGjKnGuxYREZFgUnyHYuvD8RouT1aWE7YArHVeV8EZZ5zB\njBkzmDdvHieffDIAI0eOpF27dsyaNYvhw4czdOjQvesATjnlFIYMGUJMTAwLFy4EnGl+3nzzTb74\n4ovqvTEREREJKineORTrbA9XeT1TOUlJbLz6GmxhISYsjJZPP0V0iV6oioqKiiI7O5v69euTl5fH\n7Nmzadu2LcOGDWPFihUHzaMITg/Y2Wefzamnnrp3DkUAj8ezdx5GERERqRuKe7h8ddF80AWu8kT3\n6kXbKW+Rk7CY6H59qxS2io0cOZLY2FjefPNNrLUsW7aMvLw8WrduTZcuXXjkkUc46qij6NKlC4sX\nLyYmJobFixezcuVKzj33XACmTJlCRkYGY8eO9dVbFBERkSCQkpGLK8TQNDbCJ+1pLkU/qqvvS0RE\npK6788NkFq1L5+d7T8UYo7kURURERHxtc6bvxuACBS4RERGRg6Rm5tKyYaTP2guawBWIU5v+VNfe\nj4iIyOHC7bFs3ZXns2l9IEgCV2RkJGlpaXUqpOTl5REWFhboMkRERKSStmfnUeSxPhsSAoLkLsXW\nrVuzefNmduzYEehSfKpFixaBLkFERKT22JQA6+dD+0HQpl/AyigeEqLOBa6wsDA6dOgQ6DJEREQk\nUFZ9Ax9cDtYDoREwembAQtfmDO8o87poXkREROoEjwcSp8D/RjthC6AoH37/JGAlpfp4lHlQ4BIR\nEZFA2fkXTB0OM8dBk65Oz5ZxOeuS3oOtywNSVmpmLg2jw6gX4bsTgUFxSlFEREQOI0UF8PNz8NNT\nEBYF57wIva6EzYuda7jiOsD3/4KpI+DKGdCyZ42Wl5KZS8sGvuvdAgUuERERqUmbEuCL22DHCjj6\nfBjyJMQ2c9a16bfvuq2WvZzA9c45TuhqdVyNlZiamUvruGiftqlTiiIiIuJ/+dnw9T3w5pmQnwWX\nfQgXvb0vbB0ovgOM+QoiG8A758HmxNK384OUjFxa+3AMLlDgEhEREX9b9Q28fDwkTIJ+18M/FkGX\nIYfeL64djPkaouOc0LVxkd9LzcorJDu/yKejzIMCl4iIiPjLqm/hlRPg/Ushoj5cOwuG/hciYive\nRsM2TuiKaQLTLoANv/qvXvwzBhcocImIiIg//DXbCVrb/4SQUBj2DLTpW7W2GrRyQldsc5g2EtYv\n8G2tJaR4x+Dy5cTVoMAlIiIivmYtfP8AYPe93rSwem3Wb+Fc09WgNUy7ENbOq3aZpSnu4VLgEhER\nkeCW/B7sWOn0bBkXuMKd6XqqK7Y5jJnpXFA//WL4e0712zxASmYe4a4QGsdE+LRdDQshIiIivpO+\nFr4Z7wSsUx6Ajb/4dm7EmKYw+kt451yYfimc9hC483x2jJTMXFo0jCQkxPig2H0UuERERMQ33EXw\n6Q1Or9Z5rzoXvLc7wffHqdfYCV2TT4Pv7wdCvPMvflHt0JXqh0FPQacURURExFfmPwObE2D4s07Y\n8qfoeDhmpPeFB9wFzij11ZSSkUsrH4/BBQpcIiIi4gubFsO8J6H7xdD9wpo55hFnOj1bAFhoe2K1\nmit0e9iWnefzISFAgUtERESqK383fDoW6reEoU/V3HHb9IPRM6HbOWA9sHZutZrbuisPa6G1ApeI\niIgEnW/vhYz1cP7rENWwZo/dph9c8i4ce7nTw1aN0JXip0FPQYFLREREqmPFl5D0LgwcB+0HBK6O\nYU9D4yPhk+sge2uVmtg3yrxvp/UBBS4RERGpqqwt8MVt0OJYGHx/YGsJrwcXT3VOb35yHXjclW6i\neJT5/Xq4NiXQKtY0r255ClwiIiJSeR4PfH4zFObCBZMhNDzQFUHTbs4UQuvnO6cXKyl1Vy6NY8KJ\nDHM5CzYlwNRzaB5jWlW3NAUuERERqbyEN5yR3s96BJocGehq9ul1BfS8Aub9F/7+sVK7pmTm7T+l\nz6qvoSjXJ2UpcImIiEjlbF8Bs/4NR5wFfa4NdDUHG/oUNOni3DlZieu5UjJy9p1OXPkVJEwGwO6d\nFLLqFLhERESk4orynWukImLh3JfA+HYKHJ8IrwcXTYWCPU6t7qJD7mKtJTUzj7b1DXx1F3xwOTTq\nCCOnsG23Ta1uSQpcIiIiUnFzHoZtv8O5LzvzGgarpl0rdT1XRk4hrYs2cMOqsbB4MpxwC1w7C7pf\nQEq2rdptjyVoLkURERE5tE0J8Ns7zhAQfa6BLkMCXdGh9bwc1v8MPz3lzOnY6dTSt7OWvF/e4Mvw\nCZii+jDqE+h8uk9LUQ+XiIiIlG9TAkwd4YQtDBx1XqArqrihT0GTrvDJWGcYiwPlpMOHo2j58wMs\n9BzF2gu/93nYAgUuEREROZT1851rt8C5ZislMbD1VEZ4NFz0NhTmHHw917r58OoAWP0di464i6sL\n76FZy7Z+KUOnFEVERKR8bfqz90Y9VwS0HxTQciqtaVcY9izMuBG+vBXiOkL6Wlj6PjTqBJfNZtZv\n4USEbSAuOswvJShwiYiISPmyvafijr0c+lztzF9Y2/S8DP78DJKn71t25Fkw8i2IiCFlzhJaNYzC\n+OmuS51SFBERkfItfBXiOzl3JtbGsFWs5XElXoRAm+MhIgZw5lH0x6TVJY4mIiIiUobNic41W8ff\nACG1PDZ0OhVCI8G4IHT/U6MpmXm0jvNf4NIpRRERESnbotcgPNYZYqG2a9MPRn/p3ATQftDe3rq8\nQjc7d+fTsoECl4iIiNS0rC3wx2fQd6wzsnxd0KbfQadFt+zKA9ApRREREQmAxLfA44Z+YwNdiV+l\nZDgTVLfy4ylFBS4RERE5WFG+E7iOPMsZOqEOS830Bi71cImIiEiN+v0TyNkJx98Y6Er8LiUzF2Og\neYNIvx1DgUtERET2Z60zFESTrtBxcKCr8buUzFyaxUYS5vJfLFLgEhERkf1tXAhblzlDQfhpINBg\n4ozB5b/eLahg4DLGXG2MWWyM+dEY09sY86QxZoExZooxxuXd5jZjzC/GmM+MMfX8WrWIiIj4z6JX\nIbIh9Lgk0JXUiJTMXFrFRfv1GIcMXMaYNsAdwCnA2UAR0MVaOxDIAoYZYxoDlwMDgZ+Aa/1WsYiI\niPhP5iZYMROOuwrC637/icdj2ZKZFxQ9XGcCn1hrd1tr84ATgdnedbO8r/sCC6y1nhLLREREpLZZ\nPBmwdX4oiGI79+RT4Pb49Q5FqFjgag7UN8Z8Z4yZCcQBmd51u7yvS1u2H2PM9caYRGNM4o4dO6pf\nuYiIiPhWQQ78NhW6DoOGbQNdTY3YOwZXEASudKAeMAT4BLgdqO9d19C7Pr2UZfux1r5hre1jre3T\npEmT6tYtIiIivrb8f5CbAcffFOhKakxqpv9HmYeKBa75QJS11gK5wM/AGd51ZwALgARgoDEmpMQy\nERERqS2shYWvQbPu0O7wuTIoJTMH8O8o81CBuRSttb8bY1YbY34E3MAo4HZjzAJgFfCttdZtjJmO\nE7S2ercRERGR2mLdT7BjBZz78mExFESx1Mw8YiNCqR8Z5tfjVGjyamvto8CjJRbdV8o2LwEv+agu\nERERqUmLXoPoRnDMhYGupEalZOb6/XQiaOBTERERSV8Hq76B3ldDmH+HRwg2KRm5fj+dCApcIiIi\nkjAJQlzQ9/AbRjN1l/9HmQcFLhERkcNb/m5IeheOOhfqtwx0NTVqT34RmTmFtGro31HmQYFLRETk\n8Lb0fcjPOqyGgiiWmumMwaUeLhEREfEfj8e5WL7lcdC6T6CrqXEpmTUz6CkocImIiBy+/p4DaWug\n/02H1VAQxfYGLl00LyIiIn6z6FWIaQZHnRfoSgIiNTOX0BBD01idUhQRERF/WP4JrJkNR5wFoeGB\nriYgUjJyad4gEleI/3v3FLhEREQON5sS4NOxzvPl/3NeH4ZSM/NqZNBTUOASERE5/KyZBdbtPHcX\nwvr5ga0nQFIyc2vkgnlQ4BIRETn85GU5jyYEXOHQflBg6wmAIreHrVl5NRa4KjSXooiIiNQRHjes\n/haaHg3dRzphq02/QFdV47Zn5+P22Bo7pajAJSIicjhZ/R1krIeL3oajzw90NQFTk0NCgE4pioiI\nHF4WvQb1W0HX4YGuJKBS9w56WjOTdStwiYiIHC62/Qnr5kHf68AVFuhqAipl77Q+6uESERERX0p4\nHUIjofeYQFcScCkZucRFhxEdXjNXVylwiYiIHA5y0mHph9DjYoiOD3Q1AZeamVtjvVugwCUiInJ4\n+G0qFOXC8TcGupKgUJNjcIECl4iISN3nLoKEyc4QEM2ODnQ1AWetJSVDPVwiIiLiSytnQtZm9W55\nZeUVsafArR4uERER8aFFr0PDttDl7EBXEhRSMmp2DC5Q4BIREanbtiyFjb9Av+shxBXoaoJCag0P\nCQEKXCIiInXbotchLBp6XRnoSoLG3lHmFbhERESk2nbvgOUfwbGXQVTDQFcTNFIzcwkPDaFRvfAa\nO6YCl4iISF215G1wF+hi+QOkZObSskEkISGmxo6pwCUiIlIXFRXA4snQ6TRocmSgqwkqKZm5NXrB\nPChwiYiI1E0rvoDdW9W7VYrUzFxaNlDgEhERkepa+CrEd4LOpwe6kqBSUORhe3Z+jd6hCApcIiIi\ndc/mREhJhONvgBD9qS9p6648rK3ZMbhAgUtERKTuWfQahMdCz8sDXUnQCcSQEKDAJSIiUrdkbYE/\nPoNeoyAiNtDVBB0FLhEREam+xLfA44Z+YwNdSVBKXJ8OwJZduTV6XAUuERGRuqIwzwlcR54FjToF\nupqgs2RXXFLjAAAgAElEQVRDBh8lbgbg6rcXs2RDRo0dW4FLRESkrvjjU8jZqaEgyrBwbRpuawEo\nLPKwcG1ajR1bgUtERKQusNYZCqJJV+g4ONDVBKXj2jrTGxkgLDSE/h0b1dixQ2vsSCIiIuI/GxfC\n1mUwfCKYmpuypjYJ8X4u5/dqxRX929G7XVyNHVuBS0REpC748VEIjXAGO5VSJaxzLpj/94ijaBhd\ncxNXg04pioiI1H5J02H9fGf+xOmXwKaEQFcUlBLWp9O1eWyNhy1Q4BIREandCnJg1oPeFxbcBU74\nkv0UuT0s2ZBBvw7xATm+ApeIiEht9t39zp2JrnAwLuex/aBAVxV0/kjNIqfAHbDApWu4REREaqsV\nX8KSKTDgdug63OnZaj8I2vQLdGVBp/j6rX7tFbhERESkonalwBe3QstecMq/IDRcQasci9al06Fx\nPZrWjwzI8XVKUUREpLbxuOGzG5yL5Ee+6YQtKZPHY1m8Pp2+7WtuGIgDqYdLRESktvn5Oef04bmv\naAqfCli9PZtduYX061BzA50eSD1cIiIitcnmRJjzKBx9AfS8PNDV1AqLvddvHR+gC+ZBgUtERKT2\nyM+GT66F+q00onwlLFqXTosGkbSOiwpYDTqlKCIiUlt8dTdkboSrv4GohoGuplaw1pKwLp0TOjXC\nBDCgqodLRESkNlj2P1j2AZw8Htr2D3Q1tcaGtBy2Z+cHbPytYgpcIiIiwS59Hcy8E9r0h0F3B7qa\nWiXQ428VU+ASEREJZu4i+HQsmBAYOQlcuhqoMhatSye+Xjidm8YEtA791kRERILZvCdh82K4cAo0\nbBvoamqd4vG3Ann9FqiHS0REJHit/xnmPw09R8ExFwS6mlpny65cNqbnBHT8rWIKXCIiIsEoNwM+\nvR7iOsDZTwa6mlopIQjG3yqmwCUiIhJsNi6CKWdD9hYYORkiAnv9UW2VsC6dmIhQurWoH+hSdA2X\niIhIUNmUAG8PA08hhISCpyjQFdVaCevS6d0uDldI4AeIVQ+XiIhIMJn7uBO2AKx15kyUSkvfU8Bf\n23cHfPytYurhEhERCQbWwpxH4O85YFzOMlc4tB8U2LpqqcXrg+f6LVDgEhERCTxr4bv7YeErcNxV\ncOzlsPEXJ2y16Rfo6mqlhHXpRISG0L11g0CXAihwiYiIBJbHDTPvgN+mwvE3wZDHnUmp250Q6Mpq\ntYR16fRq25CIUFegSwF0DZeIiEjguIvgsxudsDXorn1hS6olO6+QP1J3BcX4W8XUwyUiIhIIRfnw\n8TWwciac+iCcpDkSfWXJhgw8NvDzJ5akwCUiIlLTCnPhw1GwZjYMeQL63xToiuqUxevTCQ0xHNeu\nYaBL2UuBS0REpCblZ8P7l8H6BTDiBeg9OtAV1TkJ69I5plUDosODJ+boGi4REZGakpsB754PG36B\nCyYpbPlBXqGbpZt2Bc1wEMUqFLiMMfcZY340xriMMVOMMfONMU+WWP+kMWaBd11w3A4gIiISTPbs\nhKkjIDUZLp4KPS4KdEV1UvKmTArcnqAZ8LTYIQOXMaYT0APwAMOAXdbaQUBXY0wPY0wPoIu1diCQ\n5d1GREREiq38Gl4+Hnasgss+gG4jAl1RnZWwLh1joE+7Wha4gGeA+wAXMACY7V0+CzixjGUiIiIC\nsOFX+OByyNnpvI4M/ETKdVnCunS6NIulQXRYoEvZT7mByxgzGphjrV3vXRQHZHqf7/K+Lm1ZaW1d\nb4xJNMYk7tixo7p1i4iI1A4JbwDWee5xa25EPyp0e/htY0bQXb8Fh+7hGgkMNMZ8ABwFnAsUR/OG\nQLr358BlB7HWvmGt7WOt7dOkSZNqFy4iIhL0PB5I/Q0wzvyImhvRr/5IzSKnwB1UA54WK/d+SWvt\nOcXPjTFzgaeBM4CvvY/3AQZ4GHjFu+w7P9UqIiJSu6z+BjLWw0n/hLBIzY3oZwnr0gDo26HUk20B\nVdkBKr4BLjDGLADmW2v/ADDGrPQuWwV86+MaRUREah9r4aenoWE7OHk8uIJnTKi6KmFdOh0b16Np\nbGSgSzlIhX/71trB3qfXlLLuPl8VJCIiUies/dE5nTh8osJWDfB4LAnr0hnavUWgSymVBj4VERHx\nh/nPQmwL6HlFoCs5LKzalk1WXhF9g2j+xJIUuERERHxt4yLnbsQTb4XQiEBXc1hYvN65Zy/YBjwt\npsAlIiLia/Ofhqh46D0m0JUcNhatS6dlg0hax0UFupRSKXCJiIj40pal8Nf30P9mCK8X6GoOC9Y6\n12/16xCPMSbQ5ZRKgUtERMSX5j8DEfWh39hAV3LYWJ+Ww47s/KAcf6uYApeIiIiv7FgNf34Bfa+D\nqIaBruawUTz+VrBevwUKXCIiIr6zYCKERsIJ/wh0JYeVRevSaVQvnE5NDn0KNycpiZ2vv0FOUlIN\nVLaPBgYRERHxhYwNsOxD6Hc91Gsc6GoOK4vXp9O3/aGv38pJSmLDVaOhsBBcLuqPGE7U0ccQ2ige\nV3wj57FxY1wNGmBCQvbu0yw0tHl1a1TgEhER8YWfnwcT4gwFITUmNTOXTem5XH1ih0Nuu2fBAids\nAbjdZH3+BVkzPj94w5AQXPHxhERFUZiSQiNXaKvq1qnAJSIiUl3ZWyFpGvS8HBpU+2+zVEJlxt9y\n78pynoSEYMLDafvWm4R36IA7LY2inWm409MoSkunKD0Nd1o6OUuWgMeDL+57VOASERGprl9eBE8h\nDBwX6EoOO4vWpRMbEUq3FvXL3c4WFpL9ww9EdOtG/SFDiO7Xl+hevQAIjYsjonPng/bJSUpi49XX\nYLG2unXqonkREZHqyEmHxClwzEiI7xjoamq15O3JTFo2ieTtyRXeZ97qHTSJjSB5U2a522V9+y1F\nW7bQ5PbbaHzD9XvDVnmie/Wi7ZS3SHO7UytcUBnUwyUiIlIdi16Dwj0w8M5AV1KrfbPuG+796V48\neIhwRTD5zMn0bNqz3H1mr9hGSkYuBrhi8kLeu64/vdvFHbSdtZa0t6YQ3qkTMSedVKm6onv1YltR\n0dZK7VQK9XCJiIhUVV6WE7i6DodmRwW6mloptyiXF357gXvnO2ELoMBdQOK2xEPu+0HCRgAsUFjk\nYeHatFK3y1m4kPwVK2h0zdV77z6saQpcIiIiVZX4JuTtgkF3BbqSWmnuprmc//n5TFo+iRNanECE\ny5no22Lp2ODQp2eLe7dcBsJCQ+jfsfSR5tPefAtX48bUHzHCl+VXik4pioiIVEVhLvz6MnQ6FVod\nF+hqapWU3Sk8kfAEczfNpVODTrx11lv0bd6X5O3JzNk4h3f+fIcfN/3IqW1PLbONrbvyWLktm0v6\ntqFNfDT9OzYq9XRi3qpV7FmwgCbjxhESHu7Pt1UuBS4REZGq+O1d2LMDBt0d6EpqjQJ3AVP/mMob\ny97AGMMdve/gym5XEuYKA6Bn0570bNoTt3UzbcU0rjrqKo6IO6LUtr5evgVrYexJHenUJKbMY6ZP\neRsTHU3cpZf45T1VlE4pioiIVFZRgTPQadsToP2AQFdTK/ya+isjvxjJC0kvMLDVQD4/93OuOeaa\nvWGrpLHdxxIdGs0Lv71QZnszl6XSrUX9csNW4bZt7PrqKxqOHImrYWDntlQPl4iISGUt+xCyNsOI\n5wJdSVBL3p7M3E1z+WPnHyzcupDWMa155bRXGNR6ULn7NYxsyLXdr+X5355nybYl9G7We7/1KZm5\n/LYxk3vO6lJuOxnvvgtuN/Gjr6r2e6kuBS4REZHK2PArzPo3NOoMnU8PdDVBK3l7Mld/dzVFniIA\nzu98Pvcffz+RoZEV2v+Kblfw/or3mbhkIu+e/e5+8yR+vWwLAMN7tChzf/fu3WR88CH1h5xFeOvW\n1XgnvqFTiiIiIhW1KQGmDofcdMjcCJsXB7qioPXGsjf2hq0QQmhbv22FwxZAVGgUN/e8maU7ljJn\n05z91s1clkr3Vg1o16hemftnfvQxnt27ib/6mqq9AR9T4BIREamouU+AN0TgccP6+YGtJ0h9sPID\n5qfMJ8SE4DIuwl3h9GnWp9LtnNv5XDo06MDzvz2/N7xtTMth6eZd5fZu2cJC0t95h+i+fYnqfkyV\n34cvKXCJiIhUxKLX4e8fwLicH1c4tC//WqTD0Yw1M3h00aMMbj2YN898k1t63cKkMycdctT40oSG\nhHL7cbezbtc6ZqyZAcBXy53TiUO7lx24iqfxib82OHq3QNdwiYiIHNqSqfDNP50R5U/4B2z81Qlb\nbfoFurKg8u26b3nol4c4ocUJPD34aSJcEfRpXvmerZJObXMqxzY5lleSX2FYx2HMXJZKzzYNaRMf\nXer21ZnGx5/UwyUiIlKeZf+DL293LpC/8C1od6IzsrzC1n7mbJzDffPvo2eTnjx/6vN7R42vruLx\nunbk7uDFxCn8kZpV7unEYJjGpzTBU4mIiEiw+fML+OxGaD8QLpkGob4JEXXNzyk/c/e8u+nWqBsv\nn/YyUaFRPm2/d7PeDG49mA9XTwXXHoaVE7iCYRqf0ihwiYiIlGb19/DxNdCqN1z2AYT5NkTUFYu3\nLmbcj+Po1LATr57+KjHhZQ9EWh23H3c7BZ5c2nb4lRYNSv9dFE/jEz9qVECn8SmNApeIiMiB1s6D\nD0dBs6Ng1McQ4Z8QUdst3bGUW364hZYxLXn9jNdpENHAfwcrbEbBrt5khc0lZXdKqZsEyzQ+pVHg\nEhERKWnjQnj/MmjUCa6cAZF+DBG12Iq0Fdw06yYaRTVi0pmTiI+M9+vxZi7bQuHO03GFuHg56eWD\n1gfTND6lUeASEREplvIbvHcR1G/hhK1o/4aI2mpNxhpumHUDMeExTD5zMk2jm/r1eNZaZi7bQt/W\nHbniqMuZuXYmq9JX7bdNME3jUxoFLhEREYBtf8C0CyCqIVz1BcQ2C3RFQWlD1gbGzhpLaEgok8+c\nTMuYln4/5qpt2azZvpvhx7bk2mOuJSY8hud+2zePZbBN41MaBS4REZGdf8E750JolBO2GrQKdEVB\nJ3l7Ms8mPstV31yF2+Nm0pmTaFu/bY0c+6tlWwgxcPYxzWkQ0YCx3ceyIGUBCVsSgOCbxqc0Clwi\nInJ4+/NzeOMUcBfC6C8gvkOgKwo6yduTue7765jyxxTS89K5q89ddGrYqUaOXXw68YROjWgc4wzL\ncXm3y2lerzkTl0zEU1AQdNP4lEaBS0REDl8bfoH/jYaCbCjKhdyMQFcUlBK3JVLgLgCciah35O6o\nsWP/kZrFup17GN5j36nLCFcE/+j5D35P+52EJ8dTtGUL9U4ZXKH2krcnM3n5ZJK3J/up4tJpah8R\nETl8/fQUYJ3n7iJnMmqNIH+QHo17YL2fU1Unoq6InKQkds+bR+RRRxPRuTO2sIAFc1fTI30Dp+yO\nJXvuWmx+AbaggJPyCrnl51jq//QtFtj23HOsbxtJ1pHN2V24m+yCbHYX7GZP4R6yC53nKbtT+H3n\n71gsEa4IJp85uUpzPFaFApeIiByedq6BdfPBhABGk1GXo3jcqws6X8D5R5zvl5CSk5jIhqtGg8ez\n3/KTvT8ZP8GB/Y8lZ0r0FBby+UePMuPE/U/eRbgiiAmLISY8htyi3L3BMd+dz9Q/pnJsk2Mxxvj8\n/RxIgUtERA4/Ho8zP2J4NJz/Bmz/Q5NRl8Fay3sr3qNzw85MOHGCX8KJLSpi6/89vC9sGUPskCGk\n9x3EI9+vYfTgIznlmFaYiAhMeDgmPJyQ8HA+//5FOj/zOaFuKHJBkxMH88Hwm4kNiyUmPIbYsFjC\nXGF7j5O8PZmx34+lwF2AxTJ742yu+/46/n3Cv2lXv53P31dJClwiInL4SXoHNiyAc16ELkOcHylV\n4rZEVmWsYsIJfgpbhYWk3H0P+atXQ2goWIsJCyP+qiuZmhpBUqsIJl18BtHRYQft23nYpTy57XuO\nXF/A6vbhjD97LEc3OrrMY/Vs2pNJZ04icVsivZv15q+Mv5i4ZCIjvxjJjcfeyOijRxMWcvBxfMFY\na/3ScHn69OljExMTa/y4IiIiZG+Fl/pBix4w+kuogdNJtdkdP97B4m2LmXXhLJ9PSm0LCki56y6y\nZ82m6fjxRPU8lpyExUT360tUz54MeGIO3VrU580xfctsI3l7MonbEunTrE+VTnVuz9nO44seZ/bG\n2RwZdyQTTphA9ybd99vGGLPEWlutC9fUwyUiIoeXr++BojwY8bzC1iGk7E5hzqY5XH301T4PW56C\nAlJuH8fuH3+k2f33E3/VlQBE9+oFwJINGaTuyuPus7qU207Ppj2rdU1Z0+imTDxlIj9s/IHHFj7G\nqG9GcXnXy7m1161Eh0VXud0DaVgIERE5fKz4ElZ8AYPvdeZKDFKBGrrgQB+u/BCD4dKul/q0XU9+\nPptvvdUJW/9+cG/YKmnmslTCQ0M446iaGfH/tLanMeO8GVx05EVMWzGN8z4/j/mb5/usffVwiYjI\n4SE3E766G5p1hxNvDXQ1ZUrensy1311LoaeQcFd4jQ5dUFJOYQ4f//Uxp7U9jeb1mvusXU9eHptv\nuZU9CxbQ/D//Ie6Siw/exmP5evkWBh/ZhNhI/1xTVZrY8Fj+1f9fDOs4jAm/TODmH26mf4v+hMaF\nVvsDUA+XiIgcHmZPgD3b4ZwXwFVzf8Qrw1rL5OWTKfA4d9Hlu/N5f+X7BOJ665lrZ5JdkM2oo0b5\nrE1Pbi6bb76ZPT//TItHHyk1bAEkbshgW1Y+w3q08NmxK6NX0158NOIjLuh8AQu3LCS0QWi153pS\n4BIRkbpvwy+wZAr0vxlaHRfoakpV4C5gwq8TmLd5HiEmhBBCMBi+Xvc1t/14G1v3bK2xWqy1TF8x\nnW7x3ejZxDe9a56cHDbdeBN7fl1Ii8ceo+HIkWVuO3NZKpFhIZzeLXATiIe7wmlTvw0hPopKOqUo\nIiJ1W2EefHEbNGwLp9wf6GpKtSNnB3fMvYOlO5ZyQ48bGNBqAEu2LaFX014s37Gcl5Nf5rzPz+P2\n427nki6XEGL821/y65Zf+XvX3zw68FGfDAXh2bOHTTfcSM5vv9HyySdocM45ZW7r9li+Xr6VU7s2\npV5EYGNKn2Z9CHeFs3e01GpQ4BIRkbpt/tOQ9heM+hTC6wW6moMs37GccT+OI7swm2cHP8sZ7c4A\nnNNaAL2b9ea0dqfx8K8P89iix/hq7VdMOGECneM6+62m6SumEx8Zz5D21R+fzL17D5uuv57cpUtp\n+dR/aTBsWLnbL1qXxs7d+Qzr3rLc7WpC8bhdfW/rm1rdtnRKUURE6q5tf8CCidDjUuh8WqCrOcjn\naz5nzLdjCHOF8e7Z7+4NWwdqE9uG1894nccGPsaGrA1cNPMiXkp6iXx3vs9r2pi1kZ82/8TFXS52\neneqYffPP7N2xAhyly6l1TNPHzJsAcxctoXocBendm1arWP7Ss+mPSnKKKr2+Vz1cImISN3kcTun\nEiMbwFmPBbqa/RR5ingm8RmmrZjG8c2P56mTnyIuMq7cfYwxjOg0ggGtBvDfxf/l9WWv893675hw\n4gR6N+vts9reX/k+rhAXFx+5/wXtOUlJ+w1K6tm1i6L0dNxpaRR5f9xp6RSlp+FOSyN/w0YKVq92\nag8LI7TZoa/HSliXxme/pXBcuziiwl0+e0/BQIFLRETqpoRJkJIIF0yGeo0CXc1emXmZ3P3T3Sza\nsohR3UZxV5+7CA2p+J/j+Mh4nhj0BCM6juDhhQ8z5tsxXHjkhZzR7gz+TPuzyiOuA+wu2M1naz7j\nrPZn0SS6yd7lOUlJbBw9BltQ4CxwucDtPrgBY3DFxRHaKB6bm7d3sfV4nLDmHdS0NEs2ZDBqcgIF\nbg8J69JYsiGD3u3KD6G1iQKXiIjUPZkb4Yf/g86nQ/cLA13NXqszVnPbnNvYnrOdhwc8zHmdz6ty\nWwNaDeDTcz7l5eSXeffPd/l49ccYDBGuCCadOalKoevzvz9nT+Eeruh6xX7LcxYt2he2gOjjjiP2\n9NNwNWpMaKN4XPGNnMeGDTGhTrTISUpi49XXYAsLMWFhRPcre3oegIVr0yhwO5NXezyWhWvTFLhE\nRESClrUw807n+fCJQTF9T/L2ZD5Y+QGzNs6iQXgD3h7yNj2a9Kh2u9Fh0dzT9x4K3AV8sOoDLJYC\ndwGJ2xIrHbg81sP7K9+nR5MeB80lWJSe7jwxBhMRQZM77yi3twqcKXraTnlr72nIQ23fv0P83udh\noSH07xg8vZK+oMAlIiJ1y9wnYc0sOP4mZyiIAPsl9Rdunn0zbuvGYHjwhAd9ErZKGtZxGJ+t+Yx8\ndz4ePBgqHzIXpCxgQ9YGnhz05H7LCzankPnxJ0T27EnsKYOJ7tfvkOGpWHSvXhXeNtJ7zdaQY5oz\ndlDHOtW7BQpcIiJSl6z8CuY97jxf8jYccwG06ReQUnbl7+K9Fe/x5vI3cVvneqcQE8LfmX9zSptT\nfHqsnk17MvnMySxIWcCsDbN4MelFWtRrwdCOQyvcxnsr3qNpVFPOaL/vTklrLVsnTACg9bPPENbS\nf0M1zFmxHWPg4XOPoUlshN+OEygaFkJERGpM0vYk/03KXLAHvrpz32t3Aaz33eTDFZWZl8kLv73A\nWZ+cxatLX6VHkx6Eh4TjMi7CQsLo06yPX47bs2lPbul1C+8NfY+eTXty7/x7+eyvzyq079rMtfyS\n+guXdL2EsJB90x5lzZzJngULaDpunF/DFsAPK7dzbOuGdTJsgXq4RESkhiRuTeSa767BYol0RVb5\nwu5SeTzw6fWQvQ1c4c6QEK5waD/IN+1XQFpuGu/8+Q7vr3yfvKI8zmh3Btf3uJ4u8V1I3p5M4rbE\nat1BWFEx4TG8evqrjPtxHP/+5d/kFOVwRbcryt1n+srphIeEc+GR+24wKMrIYNtjjxN5bA/irrjc\nrzXvyM5n6eZM7jz9SL8eJ5AUuEREpEa8/cfbe2dIyXfnV+nC7jLN+T9YORPOehxa93F6ttoPqpHT\niTtzdzLl9yl8tPoj8oryGNJhCNd3v36/keB7Nu3p96BVUlRoFC+e+iJ3z7ubJxKeILcol+u6X1fq\ntrvyd/HF318wtONQ4iP3Xbi+/YkncGdn0/bhhzEu/46J9eOq7VgLp3YLjsFO/UGBS0RE/C6nMIek\n7UkYDNb7v5iwGN80njzdGU2+99XQ/ybnrkQ/Bq3i3qpODTqxaOsiPl79MYWeQoZ1GMZ1Pa6jY4OO\nfjt2ZYS7wnlm8DM8sOABnv/teXIKc7i1160HzY04Y80Mcoty9+sF2z1/Abs+/4LGN99E5JH+73Wa\ns2I7zetHclSL+n4/VqAocImIiN9NXzmdrIIsHuz/IDtydjBjzQxeW/oap7Y9labR1ejV2PCLM5p8\nh5Nh6FNVGgLiUKf7cgpzSM9LJz0vncStibyY/CJFniIAQgjhnM7nMLb7WNrWD/wdkQcKCwnj8YGP\nExUaxaTlk8gtyuWfff+5N3S5PW7eX/k+vZv1pmt8VwA8OTlsnTCB8A4daHTDDX6vMb/Izfy/dnBu\nr1Y+mSg7WClwiYiIX2UVZPHW729xUuuTuLiLM13MWe3P4vKvL+fOuXcy5awphLnCDtFKKdLXwgdX\nQFw7uHgqVKGNRamLuOmHmyjyFBFiQhjYaiAGQ3peOml5aaTnpZNblFvm/lcdfRV39bmr8rXXIFeI\ni4dOeIio0CimrZhGblEuD/Z/EFeIi7mb55KyO2W/97DjhRcpTEmh3bR3CYnw/wXsi9ams6fAzel1\n+HQiKHCJiIifvf3722QXZHNrr1v3Lusc15n/G/B/3DPvHv67+L880P+ByjWamwnTLwUsXP4/iKrY\nmE2F7kKW71zOoi2LWLhlIck7kvFYZ3Rzt3WTuDWR1rGtiY+Mp239tsRHxu/9aRTViLTcNB5d9ChF\nniLCQsI4rW3wTYhdmhATwvi+44kKjWLy8snkufN4ZMAjvLfiPVrUa7F3mIrc5ctJf+cdGl56CdF9\n/HM35YHmrNxOZFgIJ3ZqXCPHCxQFLhER8ZuduTuZtmIaQ9oP2XvKqtiQ9kNYvmM57/z5Dj2a9GBE\npxEVa9RdBB+NcXq4rpoBjTqVuanHeliVvsoJWFsX8tu238gtysVg6NaoG2e3P5vvN3yP27oJCwnj\ntTNeO+TF7R0adKixOw59yRjD7cfdTnRoNC8kvcDfGX+zMmMll3S5hNCQUGxhIVv+9SChjRvT9K6a\n6bWz1vLDym0M6NSYyLC6NVn1gRS4RETEb95c/iYF7gL+0fMfpa6/o/cd/Jn2J//59T8cEXfEQaGs\nVN+Oh7U/wjkvQfuBB63+fv33zPx7JruLdrM6YzW78ncBTlA6t9O5HN/iePo270uDiAYAXLr90koF\nqJq+49DXxvYYS3peOtNWTAOci+aHdxxO688SyF+1itYvvYgrNrZGalmzfTeb0nO58eSyQ3NdocAl\nIiJ+sWX3Fj5c9SHndj6X9g3al7pNaEgoT538FJfMvIRxP47jw+Ef7g1CpVr0BiyeDCfeBsddud+q\nPYV7ePDnB5m1YdbeZYNaDeLsDmfTr3k/mtVrVmqTtT1AVUWjqEZ77xgt8hTxe/IsIl+eRuyZZxJ7\n+uk1VsfsFdsBOK1r6b+bukQjzYuIiF+8tuw1AG7scWO52zWOasyzg59lW8427p1/795rqg7y12yn\nd6vLMDh9wn6r5m2ax3mfn7df2HIZF8c1O44RnUaUGbYOV32a9SHCFYHLuAg3ofR661dMRATN/lXJ\na+mqac7KbRzdsj7NG0TW6HED4ZCByxjT1Rgz2xizyBjzhHfZk8aYBcaYKcYYl3fZbcaYX4wxnxlj\n6vm7cBERCV7rdq3j8zWfc0mXS2gR0+KQ2x/b5Fju7fv/7Z13eFTV1offPS09pJEGIfTeu4WqIih6\n71WxoIgFO5YrXkWxXq/1s4FdUFTsvQIC0pUWklBCAqEF0nsvU87+/jjDECBACEkmZb885zln9pyy\n1h+eYwgAACAASURBVJwJ5zdrr732bNanrefdbe+euEN2op63FdYHrvgADHq+T25FLg+teYiZK2fi\na/blqXOewtPo2eDT6DR3BoYOZP6E+cwcNJMFtqkY4hMJffg/mEMbb6RgQZmVrSkFXNCzZY9OPEJt\nuhTDgOuklDlOkdUf6CGlPF8IMRe4VAjxNzAVOBe4H7gVmNdgVisUCoWiSfNO/DtYjBZu7XdrrY+5\nusfVbM/dznvb3qNvcF/GRI3R3yjLhS+uBos3XPc1ePgipeTHvT/ySswrVNormTlwJrf0vQWz0UzX\ngK7NMqm9sRkYOpA+RLL/3cl4DhtGwFVXnf6gemTNnhw0CeN7tY7o42kFl5RyTbWXZcC/gBXO18uB\n8wEbsF5KqQkhlgOPowSXQqFQtEp25+9m6cGl3NbvNkK8aj/UXwjBEyOfILkgmUfXPcpXk7+iQ/4h\n+PFOKM2CW5ZCm3akFKfwzIZn2JK5hSFhQ3jqnKfo1KaT6zytMSerLpTHxZHx5FNoFRWE//eZRi86\nuiIxixBfD/q3O0XOXgui1knzQojegBFdXBU6m4uAQOdyfNvxx98O3A7QoUPTq8arUCgUivrhzbg3\n8bP4cVPfm874WE+TJ6+NfU1Pol92B5/t2oy3ZgejBZu9ik92LODd+HfxMHrw1DlPcUW3KzAIlY58\nppTHxXHoxulImw1MJhyFhac/qB6xOTTW7MlhUt9wDIaWW12+OrX6ljpzsj4AZgL5wJHJjgKcr2tq\nOwYp5QdSyqFSyqFt27Y9W7sVCoVC0QSJz45nTeoabul7C/6Wus2L196vPS+Pfpm9Zak80DaQ+W38\n+d7LwrV/z2Zu7FzGRI3h53/+zFXdr1Jiq46Urlmriy0AKSnfvKVRrx9zsICSSjvjW8HoxCOcNsIl\nhDABnwMvSymTnK+fBd4BLgL+ADYDTwohDM629Q1nskKhUCiaIlJK5sbOJdgzmKk9p57Vuc6ztOWK\nknK+9/Nmg5c+gi1Q2pk3bh7jOoyrD3NbLVJKKmJj9RcGA8Jsxnv4sEa1YWVSFhajgfO7tezq8tWp\nTZfi0+jJ8L5CiAeBr4EkIcR6YDewVErpEEJ8gS60MoEbGshehUKhaBGsPbyWxPxERkSMaDH5Rhsy\nNhCTFcOjwx/F2+xd9xNZy+Hb6bQ78ogSAgFc0+t6JbbqgeJffqF882YCrrsWc3gE3sOH4T1oUKPa\n8GdSNiM6B+Hr0XrKgdYmaf5x9CT40+33FvBWfRilUCgULQ2bZiM+O551qetYlrKMtNI0AObvmM+C\nCQuaveiSUjIvdh6RPpFc1f0sR7stfQSyExl2+St47HoPm8OGxWjhvHbn1Y+xrRhbRgaZz/4Pr8GD\nCX/8cYSx8afTOZBbxv6cMqaf07HRr+1OWo+0VCgUikYmpzyH9WnrWZe2jg3pGyi1lWIymAj3CXdV\n+a5yVLHkwJJmL7hWHlpJQl4Cz573LBajpe4n2vY1xH4Kox5i4OAZLGg/VJV4qCekppH+6GNITSPy\nxRfcIrYA/kzMAmB8K6m/dQQluBQKheIsic+OJyYrhsGhgzEIA+vS1rEudR2J+YkAhHqHcnHHixnV\nfhQjI0aSXJDMbctuw+qwoqHxQ/IPjG4/2u0RnCN+nKm4cWgO3ox7k05tOjG58+S6G5CzG357AKLP\ng7GPAqrEQ31S8NlnlG/cSPh/n8HixmoBK5Oy6R7mS1TQWXQ7N0OU4FIoFIqzID47nhnLZlDlqHK1\nGYWRAW0HcP/g+xnVbhTdA7sfU+PoSJXvmKwYurTpwtvxb3PPn/fwxMgnuLL7le5wg/jseKYvnY4m\nNYzCyKwhs7i659V4GD1Oe+ziA4vZV7SPV8e8islQx8eKtVyvJG/2his/BKN6PNUnVfv2kf3qa/iO\nHUvAlClus6O40sbmA/nMGNXZbTa4C/WNVigUirPg9wO/HyO2JnWcxJyRc049ATPHRm6GRwxn1ppZ\nPL3hadJK05g5aGajlzt4J/4d1xyGDung5ZiXmRc3jxERIxjVbhSj2o8i0jfyhONsDhtvx79Nr6Be\nXBh9FpMeL3lYn77nhu/B//RTASlqj7TZSH/4EQxeXkQ8+99GL3BanbV7crBrkgt6ta7uRFCCS6FQ\nKOrMmsNr+CH5BwAMGLAYLUztNfW0Yut4fMw+vDX+LZ7b9Bzzd8wntTSV/533v7PLhToD1hxew4aM\nDRiEAYHAZDBx76B7SStNY23qWtakroFN0DWgq0t8DQwdSEJuAh/t+Ii00jQev/DxuovEbV9B3CIY\n/R/oekH9Oqcg9913qUxIoN28uZjcXAdzZWI2Ad5mBnc4oT56i0cJLoVC0eKpa27Sqfgq6Ste2PwC\nPYN6cveAu0kuTD6r85sMJp4c+STtfdvzRuwbZJVlMXfcXAI8A+rF3pNxoOgAs9fNpldQL2YNncWO\n3B3H+PHo8Ec5WHyQdanrWJu2lkWJi1iYsBAvoxdVWhWa1BAIfM2+dTMgZzf89m+IPh/GzK5HzxQA\nFdu2kfv+B7T5xz/wnzDBrbY4NMmq3dmM6xGKsZVUl6+OkFI2+kWHDh0qY2JiGv26CoWi9RGfHc+t\nf9yKXbNjMVqYP2H+WYkuTWq8vvV1Pk74mLHtx/LS6JfOruZUDSw9sJTH1j9GO992vHPhO0T5RdXr\n+Y9Qai1l6uKpFFYW8tXkr2rsMjyeMlsZGzM2Mn/7fBLyEgA9unfv4HuZ0W/GmRlgLYf546EsB+5c\nr7oS6xmtooID/7oCzVpF559/xujn51Z7tqbkc+W7G3jzukFcNuD037WmhBBiq5Ry6NmcQ82JoFAo\nWjSLdi3CqumjAascVWzM2Fjnc1XaK3lozUN8nPAx1/a4ljfGvVHvYgtgYqeJLJiwgIKqAm5YfAPb\ncrbV+zU0qfHo+kc5VHyIV8e+WiuxBXr35wUdLmD28Nl4Gj0xCL0rdWhYHZ5Fi/8DOUlwxQdKbDUA\n2f/3CtaDB4l8/gW3iy2AFYnZmAyC0d1b5/R+qktRoVC0WLbnbGfloZWumlcSyVdJXxHmHcZlXS47\noxF1+ZX53LfyPrbnbOc/Q//DtN7TGjT5eHDYYBZNWsTdK+7m1j9u5c7+d4Kg3rpF39v2HqsPr2b2\n8NkMCz/zaV2qj7Ssk03xX0D8Zypvq4EoXf8XBV98QdD0G/EZOcLd5gB6/tawjkG08TK72xS3oLoU\nFQpFiySrLIvrfr8Oi9HCnBFzSMpPwtPoye8HfichL4GO/h25Z9A9TIiecNpk75TiFO5acRfZ5dm8\nOOrFsxuNd4bkV+Zzyx+3sK9wHwKBxWg568r0Kw+t5P5V93N5l8v533n/a/xRa9lJMH8ctBsCN/4M\nBvcU4GzKlMfGUb5pE94jR5zxtDuOwkL2X/4PDH5+dPr+Owyeng1kZe05nF/OqJdX8filvZplSQjV\npahQKBQ1UGmv5P5V91NmK2Pe+HmMaj+K2/rfxrQ+0/jy0i95Y+wbmAwm/rPmP1z969WsTV3LyX58\nxmXHccPiGyi1lvLhxR82qtgCCPIM4uLoiwFclemXpSyr8/n2Fe7j0XWP0je4L0+e82Tji639a+CT\nyWC0wJULlNiqgfK4OFKmTSNn7lxSrr+BzOeep+rAgZN+R48n87/PYs/PJ/Lll5qE2AJYtTsbaH3V\n5aujBJdCoWhRSCl56u+n2JW3ixdGvUD3wO7HvC+E4ILoC/jusu94/vznKbOVcc+f9zBtyTQ2Z2w+\nZt+lB5Yy448ZBHgE8PklnzOg7YDGdMXFOZHn4Gn0RJ/CGb5I/IL3tulzDJ4JxdZi7l91P54mT14f\n93qtiprWK4c2waJ/6UnytnIoPNS4128m5M2fDw6H/kLTKFi0iP2TLmHfxRPJ/N9zlK5bh1ZVVeOx\nRb//TvHixbS95268+vRpRKtPzYrEbDqF+NC5bR1Hs7YAVA6XQqFoUXy480MWH1jMfYPuY3yH8Sfd\nz2gwclmXy5jYaSI/7f2J97a9x63LbmVkxEgmdpzIspRl/J3+N4NDBzdKeYZTUT1fqltAN37d/ytv\nx7/NHwf/4KlznqpV96JDczB77WzSStJYcPECwn3CG8HyakgJK54EeURIOODgOoga3rh2NHFK1/9F\n6eo1YDCAEAizmciXX8Kem0vZmrUUfvcdBZ99hvD0xGfkSHzHjMZ39GjM7dpR/OdKMh6bg6VrV4Jv\nu83drrgoq7KzcV8e086JdrcpbkUJLoVC0WJYfXg182LnManjpFqXKDAbzEzpPoXLOl/GN7u/4b1t\n77lGMhqEgZmDZrpVbB2hemX6MVFjuKzzZTy78VluXHIj1/a8lvsH34+P2eekx78d/zbr0tYxZ8Qc\nhoQNaSyzj7LqeTi0Ue9ClOhdih1HNb4dTZiqvXtJe+ABPLp1I/SRR6jcsQPv4cNcOVxBU6eiVVZS\nvnkzpWvWUrpmDaWrVwNgatcOe3o6SInt8GEqduw449yvhmL93lysDq1VVpevjhJcCoWiRbC3YC+P\nrH2EXsG9eOa8Z844N8nT5MmNfW6k1FbKe9veQyIRCLblbKvTKL6GZkzUGIaGD2Ve7Dy+TPqSlYdW\n8vjIxxkbNfaEfZenLGf+jvlc0e0KrulxTeMbu+5VWPsyDJoGA2+AQ3/pYktFt1zYCwo4fNfdCE9P\not59B3NkJL7nnnPCfgZPT3xH61Et+fgcrAcOUrp2DQVffKlHEQFpt1O+eUuTEVwrE7Px8zAxrGOQ\nu01xKyqHS6FQNHsKKwu5d+W9eJu9mTtuLl4mrzqf69zIc/EwemAURswGc93qSzUSPmYfHh3xKIsu\nWYSfxY97V97LrNWzyK3Ide2TXJDMnPVz6N+2P3NGzGn8JPmN78Kf/4V+U+CyuRA9EkbNUmKrGprV\nSuq992LPyiLq7bcwR9auJpoQAo/OnQi+6SYiX3oR4ekJRiPCbMZ7eNP4kaBpkj+Tshndoy1mY+uW\nHCrCpVAomjU2zcasNbPILs/mo4kfnXVu0lnXl3IDA9oO4JvJ37AwYSHvb3ufDRkbmDVkFuE+4Tyy\n9hEsBguvj3290eZmdLH1Y1g6G3pOhn++p0Yk1oCUkswnn6IiZivtXnsVrwF1G5jhPWgQHRZ+pEe2\nqnVDupsdaUXkllZxQSsenXgEJbgUilZEQ8wp6G5e2vwSmzM389z5z9XbKMLq+VLNBbPRzO39b2dC\n9ASe2fAMT2942vWexWAhvTSdUO9GfOht+xp+fQC6XgRXfQRG9bipibz5Cyj66SdC7p2J/yWXnNW5\nvAcNajJC6wifbUpBAIE+jSz2myCtO76nULQi4rPjueWPW5gXO49b/riFTxM+JT47nr0Fe8ksy6TM\nVnZCnZ/47HgW7FhAfHa8m6w+Nd/s/oavd3/NTX1u4vIul7vbnCZBxzYd+fDiD7mgw9Hq7Q7pICar\nEYtN7/oZfroLOp4P1ywCUyOXn2gmFC9bRs5rr+F/6aWE3H23u82pdzbuz+W7mFQkcNdnW9maUuBu\nk9yK+smhULQSPk74GJum122yaTb+L+b/TtjHIAz4mH3wM/thMBhIK0lDIvEwepx1dfP6ZkvmFl7Y\n9ALntzufBwY/4G5zmhQGYeCmPjfxV9pf2DRb4+ai7VkG390K7YfCdV+Bue75dC2Zip0JpD/8CF4D\nBhDx/HONn1vXwDg0yVO/7OLITzibXWPj/jyGRAe61S53ogSXQtEKSCtNY33aegzOoLbJYGL28NlE\n+EZQai2lxFZCqbWUUlupa70zdyfS+d9llaOKFze/yP+N+T+i/KLc6QoAqSWpPLj6QaL8o3h59MsY\nVW7QCbglF23/avj6BgjrA9d/Cx6tt8jlqbBlZZF6990YgwJp//ZbGDxaVgRQSskzvyawO7MEk0Eg\npcRsMjCyc7C7TXMrSnApFC0cTWo8+deTGIWRF8a+QEpxSq0ewPHZ8dy27DasDitCCHbn7+ayHy9j\ncufJ3Nb/NqL93VPEcH3qeub8NQerw8qb49/Ez+LnFjuaA42ai3ZoI3x5HQR3gWk/gmebxrluM0Mr\nLyf1rrvRSkuJ/vJLTCEh7jap3nlz5V4+3ZDC7aM7c3GfcDbuz2Nk5+BWHd0CJbgUihbPV0lfsTlz\nM0+d8xQXRV9U6+OOj5BE+kaycOdCvt3zLb/u/5VLOl3Cbf1vo3Obhp2IttJeSXxOPJsyNrHy0Er2\nF+0H9IKlBZUFbhN+imqkxcJnV4F/pD4ZtXfrrrd0MqSmkf7IbCqTkmj/ztt49uh++oOaGV9sOsRr\ny/dwxaB2zJ7YE4NBtHqhdQRR28kw65OhQ4fKmJhGTOBUKFopKcUpXPXLVQwJH8K7F7xbL3kiuRW5\nfJLwCV/v/ppKeyUTO07k9v630zWwaz1YDHbNTkJeApsyNrEpYxPx2fFYNStGYSTUO5TMskwkEqMw\nMnPQzFpXlFc0AIc3w47vIP5z8A6Gm5dAm3butqpJUh4XR85rr1O+ZQthj84maPp0d5tU7yzdmcHd\nn8cypntbPrhxaIuquyWE2CqlPKtESBXhUihaKA7NwePrH8dsNPPMOWdeef1khHiFMGvoLG7uezOf\nJnzKl0lfsuTgEi6Kvoix7ceSXZF9RjlDcdlx/HHwD0DPzYrJiqHMVgZAj8AeXNvzWkZEjGBI2BCS\nC5K5bdltjZ8IrjiRw5vh48ngcE6i/M93lNg6CeVxcaTcOB1sNjAa8ezX390m1Tsb9+dx31fxDIgK\n4O3rB7cosVVfKMGlULRQFu1aRHxOPM+f/zxhPmH1fv4gzyAeGPIAN/W5iUWJi1iUsIjlKcsBfZTc\noLaD8DJ7YXVY9UWzurarHFXYNBvltnIqHZWuc4Z5h3FJp0sYETGC4eHDCfQ8tiuiORYlbbFsWXBU\nbAkj5O11rz1NmPxPF+liy0n5li14D25a9bLOhl3pxdz2SQwdgrz5aPowvC1KWtSE+lQUihbIvsJ9\nvBn3JuOjxjO58+QGvVaAZwD3DroXgeCD7R8gkWhS42DxQSJ8IrAYLXiaPPE3+mMxWLAY9cXD6MHu\n/N1sy9mGRGLAwLU9rz1tF2FzLEraopAS/p4H278GBAiDmoj6FBR8+y0lS5aAwQBCNKlpd+qDQ3nl\nTF+4GV9PE5/eMlwVOD0FSnApFC0Mu2Znzvo5eJu9eeKcJxqtvs/57c7nk4RPXN19b4x7o9YjIVUX\nYTPBboXf/g3xn0Gff8GQWyBti5qI+iTkf/opWc+/gM/oUQTfeisV8dua1LQ7Z0tuaRU3frQJm0Pj\nixnnEBmgaq6dCiW4FIoWxoc7PiQhL4FXx7xKiFfjDTmvS3ef6iJsRpTlwTfTIOUvGPMIjJmtR206\nj3a3ZU2S3PfeJ+eNN/C76CIiX30Fg8WCz4gR7jar3iitsnPTws1kFlfy+YyRdAtT5VlOhxJcCkUD\n4K45C5Pyk3hv23tM6jiJCR0nNNp1j1CX7j7VRdgMyNkNX1wNxRlw5YfQ7yp3W9RkkVKS8/ob5H3w\nAf6XX0bk888jTC3rUVtld3DHohgSM0pYcONQVfahlrSsb4FC4WY0qbF4/2Ke+PsJHJoDi9HSaFPi\n2Bw25qyfQ4BnAI+NeKzBr6doJez9E769WZ8P8abfIarl5B/VN1JKsp5/gYJFiwi4+mrCn34KYWhZ\no/UcmuTBb7bx1948Xp0ygHE9G3FC9GaOElwKxVlQaa9kZ+5O4nPiic2KZVvONoqtxa73qxxV/Jj8\nY6MIrne3vcuegj28Nf4tAjwDGvx6ilbApg9g6WwI7aXPixjg/mmdmirS4SDz6acp/PY7gqbfSOjs\n2S1ufsStB/P53+JE4g4V8tglPblySHt3m9SsUIJLoagFR7oIuwd0x6bZiMuOIy4njl15u7BrdgA6\ntenEhdEXEuwZzCe7PsHusCOR/Lj3R8J9w7m93+0NNuffjpwdfLjzQ/7R5R+MiRrTINdQtCIcdlj6\niF76ofskuHI+eKgcnZMhbTbSH32M4t9+I/jOO2h7//0tTmxt3J/L9fM345ASo0EwJFrNJnCmKMGl\nUJyG+Ox4bv7jZpewAn1amb4hfZnWexqDQwczoO2AY2pGjW4/mpisGPoF9+PHfT/yTvw7xGbF8uKo\nFwn2qt8JXCvtlcz5aw6h3qE8MvyRej23opVxeDMkL4e9KyA9Fs69Dy58GtTk4CdFs1pJnzWLkuUr\naPvvfxNyx+3uNqneyS6u5MGvt+E4MjONlGzcn6dyt84QJbgUitOwaNcil9gSCK7qfhWPDH8ED6PH\nSY+pngg+PGI4w8KG8cLmF5jy6xReGv0Sw8LrLw/mzbg3OVB0gPcvel9N5Kw4czQNKgth35/w093g\nsOrt5z8IFz7lXtuaOFpFBan33U/ZunWEPfYYQTdOc7dJ9U784ULuWBRDQZkNs1GgaRKzycDIzvX7\nw7E1oASXQnEKtmRu4c9DfyIQGIQBs8HM5V0uP6XYOh4hBFd2v5K+IX15aM1DzFg2g3sG3sOMfjMw\niLNLqN2atZVFuxZxTY9rODfy3LM6l6KFISVs/wb2r9YnlfbwhbJcKMvRl1LnujwXqkVvAb2YqYev\nW8xuDpTHxVG2/i9KVq6kKimJiP89S8BVLW/k5vdbU3n0xx2E+nnw88zzKLc62Lg/j5Gdg1V0qw6o\nyasVipNwoOgANyy+gWCvYB4Z9giJ+YlnXeahzFbGM38/w5KDSzgv8jyeH/U8QZ51y4XYlL6JWWtm\nYTFa+O1fv+Ft9q6zXQo3cHgzHFxX/0VDs5Ng53cQ9zmUpB/7ntkbfNpWW0KOblcVw7pXQXPoleOn\n/6KKmdZAeWwsh266GWnVI4EhM2fSduY9braqfrE7NJ5fnMRHfx3gnM7BvH39YIJaeQV5NXm1QtFA\n5Ffmc/eKuzEZTLx9wdtE+UVxXrvzzvq8PmYfvUsxYhgvbnqRKb9M4eUxLzMkbMhpjy22FhOfHU98\ndjzrUteRVJAEgMVgYU/BHlXLyp0c3qyXT4gcBGG99Yrs9kp9rkHXthXsVfqSkwh/zdPFjckC0389\nO3FTkAI7v9eXrJ16hCogGhCA1Oc6HPMwjJ196vN0Gd8wIrCZI61WyjZtpmTFCop+/dUltjAYEGaz\ne42rZwrKrMz8Mpa/9uZx07kdmXNpLzURdT2hBJdCcRyV9kruXXkvORU5fHTxR0T51e9QeCEEU7pP\noV9IP2atnsWtf9zKzEEzGRI2hK1ZWxkaNpQBbQeQVpqmj4Z0LvsK9yGRGIXxmAryDukgJitGCS53\nYLfC33Nh1fMgtTqeoxIW/UsXOZGDnMtA8D1NfaOSLNj1E+z4DlI3623th8Okl6H3P6EwBT65XBd6\nRosupk5H1HAltJxo5eWUrl9PyYoVlK5ajVZSgvD2xqtfP8pjY0HTWty8iEmZxdz2aQxZRVW8fFV/\nrh6qyoDUJ0pwKRTV0KTGY+sfY0fODl4d+yr92/ZvsGv1DOrJ15O/5ukNTzM3di4GYUBKiRACf7M/\nhdZCAHzNvgxoO4CJHScyKHQQfUP6sqdgj5qD0J0UpEDsJxC7CMqyq70hoNdk6PUPPXJl9NALhh5Z\njrzOToQfbtPFkDBC1EjI3w97lgLONA//9rrwihyoizBNQuomPSqWtlWPREkNwvrCBU9B3yshMPqo\nKX5heregilidlvK4OMo3b8GzT28ceXkUL19O2fq/kJWVGNu0we/CC/G76CJ8zj0Hg6ena/+WNC/i\n0p0ZPPjNNnw9THx1x0gGd1A5WvWNyuFSNHvqcxqd17a+xsKdC3lo6ENM7zO9niw8NVJK7l95P6tS\nV7naugd25+ruVzMwdCBdA7rWWL/LXdMHtVocdkheBjEf6WUThIBuF0P0ebDquaORpNrmPtWUw1VV\nAhnbIT3u6JK/78Rj/SJg0A3Q9yoI7Vm/frYyymNjSZl+E9hsrjZTWJhTZF2I99ChLW5qnupomuSN\nP5OZ92cyA6MCeH/aEML8Pd1tVpOjPnK4lOBqJNTDsWGIzYplxrIZ2DX7WU+j8+2eb/nvhv9yTY9r\nmDNiTqMWLozPjmfGshnYHDYsRgvzJ8xX35OmQnG6HsmK/QSK08A3HIZMh8E3Qhtnpe2GSoAHqCiE\nZY9D3Gfo+VgGGPc4jJ5Vv9dphZRt3ET6ww9jz3ZGKYUg4NprCH/iiRY3JU9NrN+by9O/JLA3u5Sr\nhrTnf//si6dZ1VyrCZU030w48jC1OqyNOrdeS0VKyc7cnSw+sJgfk3/Epum/TKscVXyw/QNeGfPK\nGY/YW5+2nuc2PseodqOYPbzxp+QYGDqQBRMWKFHeVEjZCHGfQsFBOLQRpEPPgZr0EnSfCMbjEqUb\nMvfJK0AXdzu+OxpF6zSqYa7VSqhKTib7lVcpXbMGY3AwmM2unKw2l1/eosWW3aGxYX8eC9cfYOXu\nHABMBsF1w6KU2GpgVISrgbE5bPx79b9Zk7rG1dYrqBePj3ycfiH9Wtz0Dw1JckEySw4sYcmBJaSW\npmI2mOkf0p/tudtxaA4ANDQCPQKZ3mc61/a8Fh+zz2nPuzt/N9OXTifKL4qPJ35cq2MULZTKYlj1\nAmx6F1cuVb+rYdyjENTZraY1aBStlWDLzib3zTcp/P4HDD4+hNxxO4E33EBlYmKLy8mqjqZJYg8V\n8Mu2dBbvyCC31IrFaMDq0Ad6GAU8OKEH94zr6mZLmy6qS7EJI6Vkecpy5sbO5VDJIQzov5iEEJgM\nJqocVfQM6smU7lO4tPOlbnvIN/WuzsMlh1l6YCmLDyxmb+FeDMLAiPARTOo0iQuiL8Df4n+MDxLJ\n+9ve56/0v2jj0YYbe9/IdT2vO2kF9uzybKb+PhWJ5ItLviDMJ6yRPVQ0CfL36xM1x30G1pKj7cII\n4+fAKNV915zRysrI+/Aj8hYuRNrtBF53LSF33YUpsOUmhksp2ZVRzC/b0vltWwZphRV4mAxc0CuU\nywdE0sbLzM0fb8Fm1zCbDHw+Y6QqZnoKlOBqosRnx/NKzCtsy9lG14CuPDjkQfwsfi5R0C2wJ5uP\nJgAAH/1JREFUG7/v/51vdn/D7oLdeJu8ubTzpUzpPoVewb3qfN2/0/9mbepaOvl3IsI3ghJrCaXW\nUkps+rrU5lyspZRYS8ipyCG1JBWJxCAMXNntSkZEjCDaP5oOfh3cVkhz1aFVfLfnO9JK09hXpCcM\nD2w7kEmdJjGh44RjSiKcjO0523l/+/usTV2Ln8WPab2mcX3v6/G3+Lv2KbeVc9PSm0gpTuHTSZ/S\nI6hHg/mkaIJICQfWwsZ39dGBBiP0uULvrlv88JknwSuaHNJup/C778l56y0cubn4TZxI6IP/xtKh\ng7tNaxC2phSwZGcGJRV2YlLy2ZdThtEgGNUthMsHRHJR7zD8PM3H7K8qx9cOJbiaGAeLDjI3di4r\nDq2grVdbZg6ayT+6/KPGEWag/wLZkbuDb3Z/w9KDS6lyVNEvpB9Tuk9hYqeJ7M7ffUL0qcxWRkpx\nCoeKD+nrEn29v3A/JbaSGq8DYBImfC2++Jp98bP44WvxJa8ij/1F+096TFuvtnTw7+ASYNH+0VTY\nK0grTWNkxMh6i4gVVRURkxnDxoyNrE1dS3qZXh1bILi6x9Xc0vcWIn0j63TuhLwE3t/2PqsOr8LX\n7Mv1va5nWu9p7C3cy9N/P82h4kO8dcFbjGqvcmJaDbYKfcqbTe9B9i7wDoaht8DQW8E/Qt9Hdd81\na8pj4yj46ivKt27FnpaG1+DBhD38H7wGNr0ofn1QVmXnzT+TeX/dfo480ntF+HH9iGgu6RfR6qvE\n1wdKcDUR8ivzeTf+Xb7b8x0Wo4Vb+t7CtN7TzihCVFRVxG/7f+Ob3d+wv2g/3kZvqrQqNKkhhKBr\nQFfyKvLIq8w75rhQ71Ci/aMpt5WzK2+XHq3CwJTuU7i+9/W6uDL74mH0OCFfLD47/phaTm+Nf4s2\nnm1qFHT5lfnHHCsQDA0fyrCwYXQN7Eq3gG5E+UWdVFxWp8JeQVxWHBszN7I5YzOJ+YloUsPL5EWo\ndyiHig+5CnzOHDSTGf1m1PpzPBm783fz/vb3WZ6yHA+jB1aHFYnEZDCx8OKFTbI7VVGPHN4MSb9D\nSaZe2qEiH8L6wcg79dIKZjUMvrljy8qmMmGnXg3+x5/0CKYQtP33vwm+bUaLzJfdlV7MF5tT+Cku\nndKqo/NhGgTMUjlZ9YoapehG4rPj2ZC+gZyKHBYfWEylvZKrul/FnQPurFWX1/G08WjD9b2uZ2rP\nqWzN2soLm19gT8EeQI+ElVpLGd1+9DERpyi/KJeoO148Te4ymU5tOp3ymgNDBzJ/wvwTomg9g06s\n61NiLWFe3Dy+Tvoa6fyXXJBMTGYM0plc7GH0oHObznQL7Ea3gG50DeyK1WEluSCZQM9A8irz2JSx\niW0527BrdkwGE/1D+nNn/zsZHjGc/iH9SchLaJCCnj2CevDa2NdILkhm9trZ7Ck8+tmqKu0tnB3f\nwg936CMNQa+bNe4xfd0CH8KtAXtuLhU7d1K5M4HKnTupSNiJIydXf1MIXGEegwGcxYRbCpU2B79t\nz+DzTSnEHSrEYjIwuX8EQ6OD+O9vCa6crJGdg91tquI4mnSEy6bZKKwsZEP6BpILkxkXNY7BYYMb\nxKbqidd9gvscm/d0XB5UckEyP+39CYfzP/DBoYN56tyn6Nym/kYxueoyaTYshtrVZWroBPjjRd38\nCfPpEdSD/UX72Vuwl+SCZPYW6uvsiuwaz9ErqBcjI0YyPGI4g0MH1xgFbAw/jtTuOuKHElwtkIKD\nsPol2PYlrhGHKgm+2VG2cSNFP/+CMJux5+dRuTMBe2am/qYQWDp3xqtvHzz79MWzb1+ktYrDd96F\ntNkQZjMdFn7UIkYe7s0u5YtNh/g+NpWiChud2/pw/YhorhzcjgBvvctQ5WQ1HM22SzGqd5R89cdX\nCfYMJq9S7ybLr8gnv1Jf8irzyK/Mp6iq6IRjI3wi6BHYwxXpObKEeodiEPpIwJM9sCvtlWSWZZJR\nlkFmWaZrO7kgmYS8BFek5kwwYODewffWS7fX8TTFEYS1tamoqojXt77OD8k/IJEIBLf1u417B9/b\niNaenKb42SrqieIMWPcKbP1ET4TveaneneiwqST4ZkTVvn3kvPUWJUuWutpM4eF4Dx2KZ98+ePXt\ni0fPXhh9Txzh3RKm3tmaUsBfe3OQCP7em8umA/mYjYKJfSOYOrwDIzsHtajIXVOn2Qour05esuvT\nx/Ytt/FoQ5Bn0DFLsFcwiXmJrD682vXQ7tymM0IIDpccpspR5Trew+hBlF8UAR4BxGXHoUkNgzAw\nsO1Ayu3lZJZlUlBVcIItbb3aYhAGssqzAD03aUTECMZGjXXlP/maffG1+OJn1pPN9xXu464Vdx0T\n6VEP7ROpKSKmPidFg1GeD+tfh80fgGbXi4WO/g/4R6ok+GaCZrVSsmw5hV99RXlMjN4lqDknBTca\naXvffYTccbt7jWxg7A6Nzzam8OzviTg0/fkc5ufBTed1YsrQ9oT4erjZwtZJsxZc3Z/uzrU9r+XW\nfrcS6BGI+fjKzU5O9tDWpEZ2eTYpxSlHk7xLUtiWve0YYRXkGUTv4N5E+EQQ7hPuWof7hBPmHYbF\naKmTMFARktqhPidFg1NZDBvfgb/fAmsp9L8Gxs6GoFPnMCqaDtaUFAq++YaiH37EUVCAOSqKwGuu\nxtKtG2n3P9DiugePp9LmYH1yLksTMlmRmEVh+dF5HQ0CHryoOzPHd3OjhYpmK7i8O3nLPs/2qXXE\n40we2nXNz1HCQKFoZljLYct8WP+GPuqw1+Uwbo6azLmZIG02SlatovCrryn7+28wGvEbP56Aa67B\n59xzXNPrtITuwZooqbSxMimbZQlZrNqdTbnVgb+niQt7hdE11Jd5fyZjc6iipE2FZiu4OvbpKH9a\n9VODCRslnhSKFsyBdbDhbTi8SRdaXS+E8Y9DZMt5GLdUpM1G8R9/UPjtt1Tu3o1WWIQpIoKAKVcR\ncOVVmMNC3W1ig7E1pYCVSVlomiQxs4S/9+ZhdWi09fNgQu8wJvYNZ2TnYMxGg2t/lQDfdGi2gqul\n1eFSKBQNTGURJC+HrR/ruVgAwgCXvALDbnWraa2ZmqJP0uHAlp6O9WAK1pQjy0GsKSnYDqcezcky\nGGg760GCb7oJYWxZkyYXVdg4mFvGwbwyDuSWEZtSwLq9ua5qFWF+Hlw+MJKJfcMZFBWIwaCS35s6\nqg6XQqFouZTmwO7fIfE32L8aNBtYfAGBXuZBQGWhe21sYdQ2qiI1jZIVf5I+axbSbgeDAa/+/XEU\nFmJNTQXb0Rwk4e2NJToaz169MYeFU75li6soKXZHsxRbW1MKWLsnh/aBXniajRzMLeNAXplTZJWT\nX2Z17SsE+HmYjpYGE3DjudHcM07lZLU2lOBSKBRNh8JDusBK/BUObwSpQWBHvSJ8r8v16Miifx6d\n57CjmpKpvvgjIZN5836gT85eFrftyqSrL2R8iCC8JAeRlnpMtMp26DDSelRU4HBgPXwY70GD8Lvw\nAizR0ViiozFHR2Nq29ZVvqA8Lo5DN9/iSoL3Hj7MTd7Wna+3HOLRH3agHdc5FO7vSacQHy7uE06n\nEG86BvvQKcSHqCBvEtKLuX7BxmpFSc+8OLai+aO6FBUKhXuwlkNZDuxbBbt+gqLDkLdXfy+sL/S6\nDHpOhrA+x1aEb4IlHlYmZbEqKYcLe4UypkfTyUNydfkNG4Znj+44SkvRSkpwlJSglZZiLy4hcW8G\n8UmpWPfuZXxqLEapIQGbwYiH5nCdy240URocjj2iPeboaNr4WJDffYW0OxAWMx0/XlirpPbmmAQv\npWTNnhzeW7OPjfuPTnNmEHDjOR15ZGJPvCynjtSpnKzmjcrhUigUTYuUjZD4MwR2Au8gKMvVRdUJ\nS65ewqE6wqBPIH3O3RBUf7M21CelVXb2ZJWwJ7OEpMwS9mSVsDOtiOLKo/PYBXqb6duuDT3D/ege\n5kfPcH+6hfniaT67rrOTCRVHSQm2jAzsGRnYMjKwZWRiy0inak8yVbt3H53m5jQc2etIh215t95U\njL6Iwz7B7DYGkGD34kB+BXnVust65h+kf+4+doZ0YeRlY7licHt6hvthciZ+u4MKq4NVSdnszSnl\nvK4hZyVubA6N37dn8N6afSRllhDu78nEvmF8tfmwGkHYylCCS6FQuB+HDVL+gi0fQuIvJ74vjOAT\nAj5tnevQo9vpsZD4O6A1qWl3Nh/IY/GOTAK8zVjtGnuydIGVWlDh2sfbYqRbmB+aJtmZVnQkq4ze\nkf4AJGeXYrXrCeJCQMdgH7qH+dIj3J8eYX44NI2DeeW1EgWl69eTetfdrnwpz359kWVl2DIy0UqP\nE65GI+awMCRgT0/niAHe551Hdv8RrEuvZGN2FSVGT3p2jWDS8C6MGdwJx769HKzW3XeyiFVxpZ4Q\n/sHa/fy+PeOE+Tl8LEYGdghgaHQQQzsGMqhDIL4edc9eqR4ZGhgVQHZJJemFFaQXHllXkF50dLvg\nuBpW/xzYjskDIhjSIYg23jXXezyecqudr7ccZsG6A6QVVtAt1Jc7xnTh8gGRWEwGFa1qhSjBpVA0\nVZpgtxdQf3bZKvSuwMRfYc8SqCgAg0mv8A56tGrEnXqld88AvWL4yez55PKjOVlunHan0uZg7Z4c\nPt+Uwpo9ua52o4Auob7OaNXRqFX7QC8MBsHWlIJj8nOORDwcmuRgXtkx0bDdmSUczCs7If+nW6gv\n3cJ8iWzjRUQbT6KtBYSl7MY3eRfajm1Y9+517SsBc2gonv37YQ6PwBwRgTkiHFNEBObISEwhIQij\nkfK4OA7edDPSZkMzmnj14vtYbQonyMfClCHtuW54BzqGHDstzpl09x3v99xrB1Fpc7A1pYCYgwUk\nZRajSV309IrwZ2h0IEM6BuFhMrArvZi+kW3oGOJNcaWdkkobJZV2SirtlFYd3T6QW8q65Fw0qYtZ\nITjhs/PzMBEZ4EVEgCeRAV4czi9nfXKuSwgaqh3TPcyXIdFBDI0OZFjHIKKCvBBCuARU7wg/4g4X\n8emGgxSW2xjWMZA7x3RhXI9QNZKwlaMEl0LRFDm4Hj67Auw2MJrhqo/0WlFmT/fYY7dCea4ukH57\nQBdFRjNc9w10GVv781QWwZ5lkPQrJK8AWxl4toHuk/R8Kw9/+OLqMxdPbhSnRRU2ViVl80dCJqt3\n51Bhc+BhMlDljEwZBDxwYXfuu+DUI8rilqwlbfVftBt7HoMmjT7lvpU2B88vTmTL72vol7uPhKBO\nhAT50jV7P5GH99Az9wBBVSUAlJo8SQrpSIlfMOft24hB07AbTXx1zSNUdOt9yuvkl1nJ3xxD39x9\nbA/pgujTjzvHdGFi33A8TPUzMvBUkZ6SShtxhwqJSSkg5mA+8YcLKbc6TnKmYxECfD1MCDimu3Zk\n5yAuGxBJZBsvl8jy9zw2anW8EPxo+jAQsPVgATEpBcSmFFBSpZ+zrZ8HXdr6EHOwAHs1JXdR7zDu\nHNOZIdFBdfxkFC2NJie4hBAvAecBycAMKWWNf11NUnA1xYhEU7SpIZHS+VBfCpk7oPtE6NRERqEd\nfy8cNihIgfx9kLdPT/bO3wd5+6HoUM3n8PCv1rV23OLbVs9ryk6CiAF6ovjpyEqAtBgI6ABeAXoZ\nheo5UmXZ+nbliZPAuzB7H2fTkW1nt195ri4gSzIhY5temsE3TE9m7zVZ/zyqT8vVCN/Zs026zimp\nYvmuLJYmZLJhXy42hyTUz4MJfcKY2CcCi0lw40eb9Qe2UfD5NX3o6+PAkZeH3bk48vKx5+vrqpQU\nrMnJrlwpY0gIRj8/hMWiLx4WDBYLwuLhasvPKUBs3oBBOrscnbaZ27XD2H8A5T36kt2hB4f8w0kv\nrmLNnhzYtYP+TvGU1b4bAd6WU/pZWG51da8ZBMya0IN7xnU95TENid2h8d9fd7FoY4qr+3Vy/wiu\nHNIeP08Tfp5m19rHYnRFnmqKHp6OUwlBhybZk1VCTEoBWw/mszIp2yXqBHDz+Z14cvKpxayi9dGk\nBJcQoj/wXynlP4UQc4E/pZQ1JHRAp2495K/ff0nfCF992Ld06GvNuT6yuF5Xf1+e5BjnezUeU9M5\nq+1TcAjiP9PfM5hgxB3QtieYPPRf6iZPMDnXRo9q2xZ9H5OHs90DDDX/ckzasoKCXSsJ7D2ensMu\n1Bsddqgq1pfK6usSyNwOm95z2mTUk4mDu+j2Gc1gMDvXpqPrk75nBqOpWrtZP6fRTGxqKRsOFjOy\nS+2SS2v0o7b7DxoFxWlQlOpc0qDoMLIoDVl0GFGUirCVHXO8ZvFHC+yE5t8e/NshAtpDm/YYAqIw\nBLRH+IbrouN0D3mHHeyVevTFXsm+uFWU7FlPm06D6NRjkPO9Kj0aVG0/7FbI3YMWsxAh7SAMCN8w\nKM3Wvz9OpGcbZFAXHAGdcRgsWHZ9C5oDaTBSOugOpNkXQ0UuxvJcjBW5zu0cDBX5iBOyYOqO9ApC\n+LQF39ATxV1FIdqq5/UIl8GIYfB0PepWXZwdSXJ3dg2WpHlQnmPBM9iG18gLof+1EN7f1UUopcTu\nkNg0DatNY0daETvSiugd4U/3ML9a2Xxww1ZKYrbSpkc32vfoCKWlyLIyZFmpc7sUWVoKZaVoWVlo\n+5JddZyMg4di6NgZERiICArW14FBziUQvH0QQrBrxV8c/HMt8UGdWakF4l9ZRi9PG+NCTQxuA+2o\nRMvPx56XiyMvn5LMbGy5eVhKixCOGn43CoExMBBTcBBaRSW21FRXu0fPnnh06ohWZUVarciqKqTV\nimbV19Jqw5Gfj6O01JWg3ubSSwh9+GHMYWE1fkZ1ER51FSsNSV39aMh8qa0pBUydvxG7SoJXnIKm\nJrjuAoxSyreEEJOB86WUs2vad2ikUcbc7lsv121q2DFiE2ZsWJxrM1JqhGk5CCQSKBF+eGDFkyp3\nm+vCLg04hAmHMOLAhF2YcGDEzpE2IwbNRqSW6fRDkGKMwmrwPuk5LVo50Y7DLkEhakiByJX+pMtg\n0mUI6TKYjiKDMYbtGIXEIWGH1plC/IgQebQTufiKymOOt0kDRjTng0uQKYIBgQUbFuxYsGLGjhGt\nXj4nKWGfoQPrDcM5IMPZp4Wx1x5GlsMHKY86OFjsYaQhkY1aL2Jl95Oez4BGICXcY/qZ6cY/nH4L\nfnCcz+/ayJMed6lhI1cY12MUErsUvG+/jNccU3BgxGgQWIwGLCYDHiZ9bTEZcGiS4IJ4RopENspe\nlLYdjE9NycxS4iNLmbrvfTotSeRo/KXxsQsDZWZPyk2elJs98bZVEF5e4BIqRRYfjFLDz1ZR4/FV\nBhNlJk8CrGVHv4cnuZbw9MQUHIwxONi5DsIUFIwpOAhjcIi+PvI6MNBVsPP42lK1mWC5LsfURXg0\nxeRuZZOiOdLUKs0HAkf6Uoqcr10IIW4HbgcIDQ/jfuvNBPt5EujrhUSgYUAKg77GuRZ6u4YBTVRr\nR1TbV7jedx0rjrYf+9qIJo62SwSaMNC5ajcP5z6GSdpwCBPzgp8g1dwJs7RikjbM0ooZ29Ft59ok\nbVjQ1yZpw3KS/SMq9gISIfQHdoYhlP3eA6kw+FBu8NHXwpsK17YP4fZU7s17FpO0YxcmXg9+hhRL\nV10CSV0KGaUdo3RgxKFvO9cmjrRX38eOybmPQTowYaekrIKS8krMwo4JB8FegkAPceL5pB0DDkIr\nD1bzQ2KSNkpMxybdVse7qgjh3F+TEGscwO7QSZR5hlPmGU6VdxgGizcWoxEPswGL0cCmXWs5J+0h\nzNKODRNLox4gst8Y9jskmqZhsJbgVZGBT2Um3hUZdM9dTlRxrPMhKjF4tiHdqxs2zNiEBRtmrJiw\nCgtWacKKmfZFMZxr3+wSN8tMY4kLmoRdmHWR7DzOJizYhRmPvESer3wOM7pNb/vci6HDCDzMBroa\nDfQ5TthsOpDPykSIdXRHAJf0DeeCXjVHLo6wP9aONXWly++D0Vdz2eDxp9i/A9bUTa79C6Mu5D+9\n+mC1a1jtGlV2h77t0KiyaVQ5NHZnlhCrdScWXQB2tGuE+Z/sv4BAMrIC6eR6LdnXqTuHB12E2Sgw\nGZyL0eBcC/bllLErvdh1xID2begd2eaUfpevWU2XxM0YAAeChCHj8b52KpqXDw5vH6TF4xilHrt8\nPZd9+jwmzY7dYGL51Ifoc9H5YLdhKi7CVFyIsbgAU1Ghvl1UiLZ1MyJTjyZpQH6vgfSZegWm4GBM\nQUEugWXwPvmPh1PhPWgQHRZ+dEbdnHU5Zkh04BmLgboc09AomxStlfoUXPmAv3M7wPnahZTyA+AD\nAI+IbvIP42g+n9pUQrej4HB/OLgOY8dRPFTPuSdJW1ZQ9dt1rocjk17mklp0x3F4pMum2Q2QD3NC\neP+GU9+P4/0ou+Qt+p/Cj6QtK6istr/PxCeZehq/t0YFcPOCQobIBLaKPvzn4strsKnahOSHL3SN\nchNGC+HXv0f4aT6rpC0rsFazq9PEmUw6hV1bU4Zz8wJx1KYpU075OQ2JDuKvvbmuz/XWUZ1P320S\nchk3Lyg4eo0Jl53ymBP2n1TT53S8H8fe71evHnjKY+Iiq7Bt24zR4cBhNNHuvoeYfIqE8K0pBcyv\ndv67a9E1E9ejC7aH4jA67DiMJrrfcDWDJp170v07hlzM04cK6JWZTGJ4N5687uLTX2PJWqwPzXRd\nw+f2uwg8TWL7meI9aNAZ55PV5RiFQtF8qc8uxb7As1LKfwkh5gF/SCl/r2nfDj36yR+XrW0iYqtx\nONPcp8biTEPpZ5XDVUu/zzi8X4dE7TO160xtaozun8a4xpmMvqurTU3xGgqFQlGdJpXDBSCEeAEY\nBewGbm9WoxQVCoVCoVAoaqCp5XAhpXy0Ps+nUCgUCoVC0RJw34RXCoVCoVAoFK0EJbgUCoVCoVAo\nGhgluBQKhUKhUCgaGCW4FAqFQqFQKBoYJbgUCoVCoVAoGhgluBQKhUKhUCgaGCW4FAqFQqFQKBoY\nJbgUCoVCoVAoGhgluBQKhUKhUCgaGCW4FAqFQqFQKBqYep1LsdYXFaIEfb7F1kYIkOtuI9yA8rt1\nofxuXSi/Wxet1e8eUkq/szlBvc6leAbsPttJIJsjQogY5XfrQfndulB+ty6U360LIUTM2Z5DdSkq\nFAqFQqFQNDBKcCkUCoVCoVA0MO4SXB+46bruRvndulB+ty6U360L5Xfr4qz9dkvSvEKhUCgUCkVr\nQnUpKhQKhUKhUDQwDSK4hBD/J4QoFkKECyF8hRDfCyE2CCGecL7/oBBitXM54HxtFEIsFEKsE0K8\n1BB2NTR19PufQoiUau1Gd/txptTCbyGE+FAIsUoI8YsQwtPZ/pIQYr3zvrcKv4UQA4UQWdXudzt3\n+3Gm1MLvE9qc7S39ftfU1qzvtxCipxBihRBikxDiRWfbCfdRCHGfEOJvIcSPQggfZ9tVzs9iuRAi\nzJ1+nCln6Xf1+32pO/04U87A74ecfo6sduwJn0Vzoa5+CyEChBBF1e73kFNeSEpZ7wsQBWwEwoEH\ngWvRxd1aoF+1/UzAYsAbuBx4w9n+M9C/IWxryKWOfv8TmONu2xvSb2AQ8I5z38edPvcHfnK2zQUu\nd7cfjeT3QGC+u21vYL9ramsN97umtmZ9v4ExQFvn9vqa7iN6XaaNTr//Ddzn/D9uG+AF/At4zd2+\nNIbfzve3uNv+hvTbuR0BfAeMdL6u8bNoLstZ+B0ALK/tdRokwiWlPAxUOl92B2KllBrwE3BetV2v\nBX6WUpY721c425cD5zaEbQ1JHf0GKGw8K+ufWvidCnQXQoQAYcBeWsf9rslvaPn3u6a21nC/T/Y3\n32zvt5RyjZQyx/myDF08HX8fhwHrnX4faesGJEspK2iG9/ss/IaWf7+RUmYApdUOPdln0Sw4C7/h\nDO53Y+RwHQBGCiHMwAggqNp71wNfOrcDOWp4kfN1c6a2fkvgRmfo8sVGtrEhqMnvAiAd+B7oASTQ\nOu53TX5LYKIQYq0QYr4QwuIug+uJmvyuqa013O+a2lrE/RZC9AaMgI0T72NN99bVJqUsBfwb0976\nog5+A7R3dqP+LoSIbkx764vT+F0TLeLvuw5+S2CQM23kGyHEKf1uDMH1AfAP4HcgG8gEEEKYAH8p\nZbFzv3yO/lEGOF83Z2rr9xLgQvSQZm8hxGg32Fqf1OT3/cAXUsoxQCxwJ63jftfk93ZgtJRyNGBF\nj3Y2Z2ryu6a21nC/a2pr9vfbmY/zATCTmu/jKduEEH7oD61mRR39BjhfSnkR8AnwVKMZXE/Uwu+a\naPZ/33XxW0pZBIyQUo4DYoB7T3WNxhBcVmAqcAnQE1jmbO+E/uv/COuBi5zbFzlfN2dq6/dAKWWJ\nlNKB3l1ha1Qr65+a/A4HhPP9RKAdreN+1+T3IOCI2C6jZd7vmtpaw/2uqa1Z32/nD8TPgZellEnU\nfB83A+cLIQzV2pKBrkIIL5rh/a6r30KILtVOU0rLvN81UdN3oNlQV7+FEH2BCufL097vep9L0fmF\nexXoCyxET6Qb77zWAillqnPXIKCk2qFLgCuEEOuBdVLKhPq2rSE5C7/PFULMRQ9NrpFSbmg8q8+e\n2vgthHgNWCiEeBj9oTRNSpkthEhy3u/dwFL3eFA36uo3cAHwlhDCgf5Q+tYd9teVWvo9AniZY7/7\nqa3gfp/gtxBiFM34fgNPo+ev+AohHgS+Bo65j1JKhxDiC/SHUiZwg7Ptf8Aq9P/vrneL9XXnaerg\nN3oe3wfObuUK4BZ3GH8WPM1p/HZGLBcBg4FOQoiFUsqPa/gsmhNPUwe/gcPAu0IICeQBN57qIqrw\nqUKhUCgUCkUDowqfKhQKhUKhUDQwSnApFAqFQqFQNDBKcCkUCoVCoVA0MEpwKRQKhUKhUDQwSnAp\nFAqFQqFQNDBKcCkUCoVCoVA0MEpwKRQKhUKhUDQwSnApFAqFQqFQNDD/D5sviLNlLdnQAAAAAElF\nTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x10cd720b8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"from matplotlib import pyplot as plt\n",
"\n",
"plt.rc('font', family='Source Sans Pro')\n",
"\n",
"fig = plt.figure(figsize=(10,6))\n",
"ax = fig.add_subplot(1,1,1)\n",
"\n",
"ax.set_title(\"Full text mentions of programming languages in Astronomy papers\", size=10)\n",
"ax.plot(years['Python'], values['Python'], '.-', label='Python')\n",
"ax.plot(years['IDL'], values['IDL'], '.-', label='IDL')\n",
"ax.plot(years['Fortran'], values['Fortran'], '.-', label='Fortran')\n",
"ax.plot(years['Matlab'], values['Matlab'], '.-', label='Matlab')\n",
"\n",
"ax.legend(fontsize=8, loc=2)\n",
"ax.set_xlim(1970, 2015)\n",
"ax.xaxis.get_major_formatter().set_useOffset(False)\n",
"plt.savefig('hockey_stick_graph.png', dpi=150)"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
}
},
"nbformat": 4,
"nbformat_minor": 1
}
@selik
Copy link

selik commented Feb 11, 2017

The ratio of mentions to total papers might be a more interesting measure than the count of mentions. That'd allow us to see the relationship in early years. It won't provide quite the same hockey stick, but it still might be dramatic.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment