Created
October 4, 2016 09:50
-
-
Save bgrenet/c93eebe1209a8487aaf3e5a3a6657abf to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Populating the interactive namespace from numpy and matplotlib\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%pylab inline" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "from random import randint\n", | |
| "from IPython.display import clear_output\n", | |
| "from ipywidgets import interact, interactive, fixed\n", | |
| "import ipywidgets as widgets" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "def my_plot(t, fig, axe):\n", | |
| " clear_output(wait = True)\n", | |
| " axe.clear()\n", | |
| " axe.plot(range(len(t)), t, \"k.\");\n", | |
| " display(fig)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "def partition(t, i, j):\n", | |
| " pivot = t[i]\n", | |
| " l = []\n", | |
| " u = []\n", | |
| " for k in range(i+1, j+1):\n", | |
| " if t[k] <= pivot:\n", | |
| " l.append(t[k])\n", | |
| " else:\n", | |
| " u.append(t[k])\n", | |
| " return t[:i]+l+[pivot]+u+t[j+1:], i+len(l)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "def quicksort(t, trace=False):\n", | |
| " def quicksort_rec(t, i, k):\n", | |
| " \n", | |
| " if i < k:\n", | |
| " j = randint(i, k)\n", | |
| " t[i], t[j] = t[j], t[i]\n", | |
| " t, j = partition(t, i, k)\n", | |
| "\n", | |
| " if trace and (len(T) == 0 or t != T[-1]): T.append(t)\n", | |
| "\n", | |
| " t = quicksort_rec(t, i, j)\n", | |
| " t = quicksort_rec(t, j+1, k)\n", | |
| " return t\n", | |
| " \n", | |
| " #x = list(range(len(t)))\n", | |
| " #fig = plt.figure()\n", | |
| " #axe = fig.add_subplot(111);\n", | |
| " if trace: T = [t]\n", | |
| " t = quicksort_rec(t, 0, len(t)-1)\n", | |
| " if trace:\n", | |
| " return t,T\n", | |
| " return t\n", | |
| " \n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "162" | |
| ] | |
| }, | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "t = list(range(200))\n", | |
| "shuffle(t)\n", | |
| "u, T = quicksort(t, trace=True)\n", | |
| "len(T)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": { | |
| "collapsed": false, | |
| "scrolled": true | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADcRJREFUeJzt3X+M5HV9x/HnC65oqqKpRJscP2ILiuEfxAT5o9FpIb3D\noNc/rOUaKzWE2CbYxIYE+xd78S/sH7QGG7Qhppaaa20TpRYipnSMREEiXrSXO+5o9bwDQiLVkJho\nKLz7xw53y3Zu57t7s7N3b56PZJP5znz2O598Mvu873xnv3upKiRJPZ211ROQJG0eIy9JjRl5SWrM\nyEtSY0Zekhoz8pLU2MzIJ7k7yTNJvr/GmE8nOZxkX5LL5ztFSdJGDTmS/zyw42QPJrkW+M2qugT4\nKHDXnOYmSTpFMyNfVQ8BP11jyC7gC5OxjwCvT/Lm+UxPknQq5nFOfjtwdMX2k5P7JElbbB6Rz5T7\n/FsJknQa2DaHfRwDLlixfT7w1LSBSYy/JG1AVU07oJ5p6JF8mH7EDnAv8GGAJFcBP6uqZ062o6ry\nq4rbbrtty+dwuny5Fq6Fa7H216mYeSSf5IvACHhjkh8DtwHnLPe6PldV9yV5b5IngJ8DHzmlGUmS\n5mZm5KvqDweMuXk+05EkzZNXvG6R0Wi01VM4bbgWJ7gWJ7gW85FTPd+zridLapHPJ0kdJKE2+YNX\nSdIZyMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaM\nvCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNG\nXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY4Min2RnkoNJDiW5dcrjFyR5MMljSfYl\nuXb+U5UkrVeqau0ByVnAIeBq4CngUeD6qjq4Ysxngceq6rNJ3g7cV1VvmbKvmvV8kqSXS0JVZSPf\nO+RI/krgcFUdqarngb3ArlVjXgTOndx+A/DkRiYjSZqvbQPGbAeOrtg+xnL4V9oDPJDkz4BfBa6Z\nz/QkSadiSOSnvUVYfc5lN/D5qrojyVXAPcBl03a2tLR0/PZoNGI0Gg2aqCS9UozHY8bj8Vz2NeSc\n/FXAUlXtnGx/Aqiqun3FmP8EdlTVk5Pt/wLeVVU/WbUvz8lL0jpt9jn5R4GLk1yU5BzgeuDeVWOO\nMDlFM/ng9VWrAy9JWryZka+qF4CbgQeA/cDeqjqQZE+S6ybDbgFuSrIP+Afghs2asCRpuJmna+b6\nZJ6ukaR12+zTNZKkM5SRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1\nZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNGXpIa\nM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1NijySXYmOZjk\nUJJbTzLmg0n2J/lBknvmO01J0kakqtYekJwFHAKuBp4CHgWur6qDK8ZcDPwj8NtV9VyS86rqJ1P2\nVbOeT5L0ckmoqmzke4ccyV8JHK6qI1X1PLAX2LVqzE3AZ6rqOYBpgZckLd6QyG8Hjq7YPja5b6W3\nAm9L8lCSbyXZMa8JSpI2btuAMdPeIqw+57INuBh4N3Ah8M0kl710ZC9J2hpDIn+M5XC/5HyWz82v\nHvPtqnoR+FGSx4FLgO+u3tnS0tLx26PRiNFotL4ZS1Jz4/GY8Xg8l30N+eD1bOBxlj94fRr4DrC7\nqg6sGLNjct8fJzmP5bhfXlU/XbUvP3iVpHXa1A9eq+oF4GbgAWA/sLeqDiTZk+S6yZivAc8m2Q/8\nO3DL6sBLkhZv5pH8XJ/MI3lJWrfN/hVKSdIZyshLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9J\njRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZek\nxoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtS\nY0Zekhoz8pLU2KDIJ9mZ5GCSQ0luXWPcB5K8mOSK+U1RkrRRMyOf5CzgTmAHcBmwO8mlU8a9FvgY\n8PC8JylJ2pghR/JXAoer6khVPQ/sBXZNGfdJ4Hbgl3OcnyTpFAyJ/Hbg6IrtY5P7jktyOXB+Vd03\nx7lJkk7RtgFjMuW+Ov5gEuAO4IYZ3yNJWrAhkT8GXLhi+3zgqRXbr2P5XP14EvxfB76S5P1V9djq\nnS0tLR2/PRqNGI1G65+1JDU2Ho8Zj8dz2Veqau0BydnA48DVwNPAd4DdVXXgJOP/A/jzqvrelMdq\n1vNJkl4uCVW1oTMkM8/JV9ULwM3AA8B+YG9VHUiyJ8l1074FT9dI0mlh5pH8XJ/MI3lJWrdNPZKX\nJJ25jLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNGXlJaszI\nS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhLUmNGXpIaM/KS1JiRl6TGjLwkNWbk\nJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQlqTEjL0mNDYp8kp1JDiY5lOTWKY9/\nPMn+JPuSfD3JBfOfqiRpvWZGPslZwJ3ADuAyYHeSS1cNewx4Z1VdDvwL8Jfznqgkaf2GHMlfCRyu\nqiNV9TywF9i1ckBVfaOqfjHZfBjYPt9pSpI2YkjktwNHV2wfY+2I3wjcfyqTkiTNx7YBYzLlvpo6\nMPkQ8E7gPSfb2dLS0vHbo9GI0Wg0YAqS9MoxHo8Zj8dz2Veqpvb6xIDkKmCpqnZOtj8BVFXdvmrc\nNcBfA++uqmdPsq+a9XySpJdLQlVNO+CeacjpmkeBi5NclOQc4Hrg3lUTeAdwF/D+kwVekrR4MyNf\nVS8ANwMPAPuBvVV1IMmeJNdNhn0KeA3wpSTfS/LlTZuxJGmwmadr5vpknq6RpHXb7NM1kqQzlJGX\npMaMvCQ1ZuQlqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWpMSMvSY0ZeUlqzMhL\nUmNGXpIaM/KS1JiRl6TGjLwkNWbkJakxIy9JjRl5SWrMyEtSY0Zekhoz8pLUmJGXpMaMvCQ1ZuQl\nqTEjL0mNGXlJaszIS1JjRl6SGjPyktSYkZekxoy8JDU2KPJJdiY5mORQklunPH5Okr1JDif5dpIL\n5z9VSdJ6zYx8krOAO4EdwGXA7iSXrhp2I/A/VXUJ8FfAp+Y90W7G4/FWT+G04Vqc4Fqc4FrMx5Aj\n+SuBw1V1pKqeB/YCu1aN2QX83eT2PwNXz2+KPfkCPsG1OMG1OMG1mI8hkd8OHF2xfWxy39QxVfUC\n8LMkvzaXGUqSNmxI5DPlvpoxJlPGSJIWLFVrtzjJVcBSVe2cbH8CqKq6fcWY+ydjHklyNvB0Vb1p\nyr4MvyRtQFVNO+CeaduAMY8CFye5CHgauB7YvWrMvwI3AI8Avw88OM9JSpI2Zmbkq+qFJDcDD7B8\neufuqjqQZA/waFV9Fbgb+Pskh4FnWf6HQJK0xWaerpEknbk25YpXL546YcBafDzJ/iT7knw9yQVb\nMc9FmLUWK8Z9IMmLSa5Y5PwWachaJPng5LXxgyT3LHqOizLgZ+SCJA8meWzyc3LtVsxzsyW5O8kz\nSb6/xphPT7q5L8nlg3ZcVXP9YvkfjieAi4BfAfYBl64a86fA30xu/wGwd97zOB2+Bq7Fe4BXT27/\nySt5LSbjXgt8A/gWcMVWz3sLXxcXA98Fzp1sn7fV897Ctfgs8NHJ7bcDP9zqeW/SWvwWcDnw/ZM8\nfi3wb5Pb7wIeHrLfzTiS9+KpE2auRVV9o6p+Mdl8mP9/DUIXQ14XAJ8Ebgd+ucjJLdiQtbgJ+ExV\nPQdQVT9Z8BwXZchavAicO7n9BuDJBc5vYarqIeCnawzZBXxhMvYR4PVJ3jxrv5sReS+eOmHIWqx0\nI3D/ps5o68xci8nbz/Or6r5FTmwLDHldvBV4W5KHknwryY6FzW6xhqzFHuCPkhwFvgp8bEFzO92s\nXqsnGXBQOORXKNfLi6dOGLIWywOTDwHvZPn0TUdrrkWSAHew/Ku4a31PB0NeF9tYPmXzbuBC4JtJ\nLnvpyL6RIWuxG/h8Vd0xuW7nHpb/jtYrzeCerLQZR/LHWH5RvuR84KlVY44CFwBMLp46t6rWepty\nphqyFiS5BvgL4H2Tt6wdzVqL17H8gztO8kPgKuArTT98HfK6OAZ8paperKofAY8Dlyxmegs1ZC1u\nBP4JoKoeBl6d5LzFTO+0coxJNyem9mS1zYj88YunkpzD8u/M37tqzEsXT8EaF081MHMtkrwDuAt4\nf1U9uwVzXJQ116KqnquqN1XVb1TVW1j+fOJ9VfXYFs13Mw35Gfky8DsAk6BdAvz3Qme5GEPW4ghw\nDUCStwOvavwZRTj5O9h7gQ/D8b9E8LOqembWDud+uqa8eOq4gWvxKeA1wJcmpyyOVNXvbd2sN8fA\ntXjZt9D0dM2QtaiqryX53ST7gf8Fbun4bnfg6+IW4G+TfJzlD2FvOPkez1xJvgiMgDcm+TFwG3AO\ny39G5nNVdV+S9yZ5Avg58JFB+538Oo4kqSH/+z9JaszIS1JjRl6SGjPyktSYkZekxoy8JDVm5CWp\nMSMvSY39H2x3icMl2bwzAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f6bd4a79e10>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "fig = plt.figure()\n", | |
| "axe = fig.add_subplot(111)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHpdJREFUeJzt3V1sXVeVB/D/osc8NJiqVLQV/bARZZLW1rhUyKRh0nom\nM6X2S0dITINGgqBBqkQRKPAw7bwkGs1DGYmqIBQVlYJaBFQUCdqR8lFZHadhbFyktE2c1JlGg92P\nTANiqHybB4TNmod7bnp8e+6953uvfc7/J1njXtvXZy7Of++99trniqqCiIia4T2uL4CIiKrD0Cci\nahCGPhFRgzD0iYgahKFPRNQgDH0iogYZGPoicq2IPCsip0XkpIh8JXz8chF5RkTOiMgREbks8jPf\nFpFXRORFEbm5zP8HiIgouSQz/XUAX1PVmwDcCuBeEdkG4D4As6q6FcCzAO4HABGZBvARVf0ogHsA\nPFzKlRMRUWoDQ19V31TVF8PP3wbwMoBrAdwF4LHw2x4L/xvh/308/P5FAJeJyFUFXzcREWWQqqYv\nIqMAbgbwKwBXqep5oD0wALgy/LZrALwW+bE3wseIiMixxKEvIu8D8DMAXw1n/L3u3yAxj/FeD0RE\nBgRJvklEArQD/4eq+lT48HkRuUpVz4vI1QB+Gz7+OoDrIj9+LYBzMc/JgYCIKANVjZtcJ5J0pv99\nAKdV9VuRx54GsCf8fA+ApyKPfw4ARGQ7gLc6ZaBuqsqPgj727dvn/Brq9OHj67m2tob5+Xmsra05\n+d0TExMIggATExObrsHH19LFx/z8PIKgPQ8fGhrCwsJC7PfllaRl85MA/hHA34jICyJyXETuBPAN\nAH8nImcA7ALwQBjkBwH8RkTOAvgugC/lvkoi6qvVamHnzp247bbbsHPnTrRarUp//9LSEk6dOoX1\n9XWcPn0ap06dqvT3W9BqtbCwsJD5tR8fH8fY2BiGhoZw0003YWxsrOArbBtY3lHV/wJwSY8v/22P\nn/lynosionTiQnf79u2V/f5OYJ0+ffpiYLVaLSwtLeGPf/xjZdfhSmfQPXXqFMbGxnDs2DEMDw+n\neo7h4WEcO3bs4nOk/fmkeCK3JqamplxfQq349npWNUvspRNYzz33HI4dOwYAF1ceTz75ZOUrj6r1\nWumknf0PDw9j+/btpQU+AEgRNaJMv1hEXf1uojpqtVqlzxKTWlhYwG233Yb19XUMDQ3hueeeq3Tl\nkVVndTI+Pp7qNezM9DsrnejAl2f2H0dEoDk2chn6RFS4uBB0PRANkrdE0z3oljXwMfSJqBBZZ7n9\nns/KyiOJokO6rIGPoU9EuRWxEem7IkO6M4COjIzg1VdfLXTgY+gT1UTRM+00fK3BF62I1UnZA2je\n0Gf3DpEBrvvsXXf/lMVF94z1MwsMfSIDXAdFd8tlHUo7RQ2kaQcO6wMoQ5/IAAtBUUWPeJWiA+mp\nU6fwxBNPpA7+LAOH9QGUNX0iI3zrdilKWXsZ0dp6EARYX19PXWO3uNfBmj5RTViYaee9f0yW31fW\nXkZnxn3gwAGsr69nKp1ZWIEVjaFP1HCdoD937lzlm8ll72UMDw9j9+7dmYPbeqkmC5Z3iBosWgIZ\nHR3FyspKpaWMqk7u1ql0xj59IsosWrMOggCjo6NYXV2t9NYJrVYLzz//PFQVn/jEJ7wP5bIx9Iko\ns+6Z9sGDBws/QZr0GupyGrjsQ3YMfaIGKyJgXJc+LHbIZFXFAMbuHaIGarVamJ2dxY4dO3JvvLru\nGqpTh4zrQ3ZJcKZP5JnObHJpaQkbGxsAUIsZsrWN1iyrqCo2plneIWqYaDkEAIIgqEUt3IpWq4XF\nxUXs3bsXy8vLqV/bsgcwhj5Rw0Rnk1u3bsVDDz2EyclJk4Hv8s6hWfiwisob+gPfGJ2IbEn6Btqu\nA9fHrpxOTb4T+EEQeL/P0I0buUQeGrT56vpWzYAfm5rdopvK4+PjOHz4sBeDVRos7xDVkIU2yLyb\nmq5WKhY3laNY0yeid7HyxuRZA9Sn0lDVgxNDn4hilTVjrSLkLKxUknAxOPFwFhHFKuPQVSfkdu7c\niVtuuQXnzp0r7LmjfDmw5eO+BUOfiBJbWlq62M549uxZ3H777aVsEvtyS+OiBqcq38eA5R0iSqzV\nauGWW27B2bNnAdjrYe+nzHfoylNGS1siYnmHiDYpc9Y4PDyMo0eP4oYbbjBfeokq+x268pTRqi4R\nMfSJaqSK/vwPfehDOH78eKbSS9Vvx9hhufZe9f4FQ5+oRqoKtyyzW5cHxgYFq6vBCKh+/4I1faIa\nsdKfH8d1G2av2rtPZwIA9ukTNc6gDUmrJ0qtDkiuB6O0GPpEnspzv3ZfZqXdLA5IVgejXhj6RB7K\nGt6+zUrT4v12BmPLJpGHsm64+nJSNYssG71FbcC6fsvIKjH0iRzIGt6+nFTNIu1AmLUbyGWnjgUM\nfSIH8oR3XWelaQfCLKslC+8zEL0WF4MPa/pEZEantn799ddjdXW1b20/ywaslT2RPBvyrOkTUW0M\nDw9jbGwMMzMzA2fjWVZLVvZEkqxSyloJMPSJjGtaDTpN2SZtqcvKnkiSE8JllaFY3iEyzPe+/Cx8\n65vPql+baL8yFPv0iWqsrBq0q374pHzqmy9Dv4GPoU9UY2XMetOuHqwPEHXVa+Bj6BPVXNGz3jSr\nhyaWl1wbNMiye4eo5oruy0/TwWL5PvQWFL3JXsU5AoY+UcOk6WCx0uKYRlXdTmUEdBWD7MDQF5FH\nReS8iJyIPLZPRF4XkePhx52Rr90vIq+IyMsickfhV0xEuSVdPVhpcQSShXmVJ27LCOhKBllV7fsB\n4K8A3AzgROSxfQC+FvO9NwJ4AUAAYBTAWYT7BjHfq0Rk09rams7Pz+va2prrS1HV9vVMTExoEAQ6\nMTHR87rm5+c1CAIFoENDQ7qwsFD6NQ0NDfW9pizPu7Cw0PP5wuwcmN29PgbO9FX1lwD+EPOluI2E\nuwA8oarrqroC4BUAk8mHICJyzdL9aTqSzqqrLEeVtQqKW4UVWbLKU9O/V0ReFJHvichl4WPXAHgt\n8j1vhI8RkScsbt4mDfOqy1FV3PyuexDOK8j4cwcA/Kuqqoj8G4BvAvgi4mf/Pfsy9+/ff/Hzqakp\nTE1NZbwcIkqrV2tgJ2A7ZwMsbN52wjxJ62oniOvi8ccfx4kTJ6CqOHnyZO7nS9SnLyIjAP5DVf+y\n39dE5D60603fCL92GMA+VV2M+TlN8ruJqHiD+u99PBFb10Nk3Qf0XnrppUr69AWRWbyIXB352qcB\nLIWfPw1gt4i8V0Q+DOAGAM9nvTgiKkZ3TXhQCce3e/Zb3IcoSnfJKq8kLZs/BjAP4C9E5FUR+QKA\nfxeREyLyIoDbAewFAFU9DeCnAE4DOAjgS5zOE7kVF4g+9t/3k/UNVXy5e2mRgzBvw0BUc71uu+Bj\nCaeXtPcoqvr2EkWWnngbBqKGyDoz7TWr962E00/arp0qO5SslZ4Y+kQeyBMclk7VlinNIJalvJV1\n0LXWAsvQJ/JA3uCoy6y+qDp82oEwz6Brbf+EoU/kAWvB4ULRZZI0A2GeQTfvSqvoDWdu5BJ5ok4b\nr1mU9S5iSbh6C8e4Def3v//9fBMVIrKtiO4V1++d62LQjRvobr31VoY+EdlVZHtk0uCty+ncuIGO\nM30i6slC+FVdlqnbWzx2D3Ts0yeiWFX2h/fbbKx6E9pai2ReRXdeMfSJaqqK8Gu1WpidncWOHTt6\nDi5VnxNgp1N/LO8Q1VTZG5+d519aWsLGxgYAVN5V0+/ayth0tVAuy1veYegTGVRUuJTZcRKt1QNA\nEAS1qKH3YmWvgDV9opopshZf5kncaBllfHwchw8frm3gA8WVy1zf3ZOhT2SM1Y3I7rCK1urn5+ex\na9eu2gY+UMxegYWbr7G8Q2SM60NI/a7JdWnDtbzlsiLaV1neIaoZi3fFtLr6qFqeclmr1cKFCxew\nbds2p51FDH0ig6zdFTNNacN1zdqizkppenoaAHDo0CFnAzpDn8gQq4GZdPVhoWZtUXSldObMGWzZ\nssXZgM7QJzLCemAmWX1UVQayOjj2YunAGEOfyIg61M2rCLfuwfHcuXPmBwBL+zTs3iEyooqunSpO\nlJZ9C+JoB0wQBBgdHcXKykpjuop4IpeoRrIGZpIwr0vbZXRwHBkZwcrKipM3VnGFLZtENZKlayfp\nXoC18lHWuny0VHL06FEztXJfcKZP5LmkB34sHfpy8cYqdcHyDlGNpSnbJAlzKwHp8v1ufcfQJ/Jc\nr2BPMxu2EuZJWVp1+IahT+SxfsFe99mwhYHKwv3x0+JGLpHH+m2uWjjQU+YhKNe3mrB+GK4sDH0i\nh/oFu+sDPWWFopXTtNa6marC0CdyaFCwu5wNlxGKWQaSsgYJCyspFxj6RI65LnP0UkYoph1IyizB\nuF5JAW5WPQx9IopVRiimHUjKLsFkHXCLCGtXewoMfaIKWalnJ1X0KiTtQGKxBFNUWLvaU2DLJlFF\n6nLvm6pZaO2MKqqVNutZBfbpE3mi++6QBw4cwO7du00EGSVX5MGyLAMaQ5/IA61WC4uLi9i7dy+W\nl5cRBAHW19c54/eUy9UHD2fBvzopNUv3+6M++OCDWF9fb1x/eJ1Y7bhKwvvQb+qpOrKvMxlZXFzc\n9P6onQ1JS5uT1Bzel3fiNlXGxsa8u58G1Ut003bbtm0AcDHwjx07BgCmNifJH42v6Xdvqhw8eBAz\nMzPskKBCpb0xV/dk5NChQ9iyZQtDnnJrfE2/u+93dXW1kffTsKKO+ytZSojd/eWTk5Pe1oCpXrwP\nfWDzpkpZhznqGGZFq+v+SpZDNBaO+BPF8b68E6fodioeqkmmrvd/5xt+kCWNq+m7eNODuoZZ0eoc\njtZOhVJzNSr0Xc246xxmRfMxHH189yRqrkaF/uzsLKanp53MuH0MMxqMpTvyTWO6d1qtFvbu3Yv1\n9XUAwNatW0s/1BLdvPX5BB711tR3T6LmGhj6IvKoiJwXkRORxy4XkWdE5IyIHBGRyyJf+7aIvCIi\nL4rIzUVd6NLSEpaXlwEAl1xyCR566KFSA7iOnSjsQHo3i7fuJSpTkpn+DwB8quux+wDMqupWAM8C\nuB8ARGQawEdU9aMA7gHwcFEXGv3HOT4+jsnJyaKeOlZZbxXnKnTrOIgVga2V1DiqOvADwAiAE5H/\nXgZwVfj51QBeDj9/GMDdke97ufN9Mc+paa2trenCwoKura31/Pr8/HzPr6f9XRMTEzo0NKQTExO5\nn7PzfEEQFPJ8ac3Pz2sQBApAh4aGdGFhodLfT0TFCLMzUXbHfWSt6V+pqufD5H4TwJXh49cAeC3y\nfW+EjxWiX1296JlskTPAVquFn/zkJ05rxyxjEBEABAU/X9yOcs8Wnf3791/8fGpqClNTU5u+nqaV\nLq4ck7ezpzPI5NEZjJaWljA0NAQRcRK6nUGMHUhEfpmbm8Pc3FxxT5hkOYB3l3culm3Qv7xzsQwU\n85x9lzBpyyFFl2OKEi2rBEGgjzzyiJlrIyL/oKLyjmDzLP5pAHvCz/cAeCry+OcAQES2A3hLwzJQ\nWmk3Uq1uyEXLKmNjY7j77rvNXJtv2H1ElN/Aw1ki8mMAUwCuAHAewD4AvwDwJIDrALwK4DOq+lb4\n/d8BcCeACwC+oKrHezyv9vvddToF24SDXWWfauUhKqK2Wp/IbUJYVqEOgcz7HxG11fpELk/B5ldF\nf34Vp1rzdB+xLET0DtOhT/lZDeS0QZx1z4aH0og2Mxf6nJUVq4r+/LSBnDWIs6z8eG8dos1MhT5n\nZcWrqqspaSBXfVCNh9KINjO1kcvNunys3xe++6DaxsZGJZ1ZbAigOqnVRi5nZdn5sErqlFo2Njaw\nvr6OAwcOVNJ6mbYsxBIj1ZmpmT7AWVlWPqySfDh7wfMAZF2t+/QpubICteiSkfVB3YfBk5qNoU8X\nxQVqntBu4qzXh9UINRtDn3rqF9pJBoOmznqtr0ao2Wq1kWtBnTbxevWoJ930berGOk+CU50x9COy\ndsBYHSh6hXbSA0tW71xKRNmxvBORppzRKY+MjIxgZmbGbN27V52fdWsiPzWipl/VoaOkYRitlY+O\njmJlZcW7ujfr1kR+qn3oV91BkiQMoyuCIAgwOjqK1dXVSmfN1k/fElE5ar+RW/UNs5Js4nW/G9bR\no0crrXv7cPqWiGzyZqZvrf7ssjzS1FbKInCFRL6rfXkH8Kv+XEWoWB0IrWviYTOqn0aEvi+qDBWf\nBsKypB1guUKiOqh9Td8nVe4/NP0AUXRfY8eOHZidnR24t9HUw2ZEUZzpF4hll+pEZ+0AEARBoltN\ncIVEvmN5xxiGSjWib8iysbEBAJtKNoNKbdzQJV+xvGNM08suZem+1UXnFhFHjhzB+Ph4qltNsOWV\nmoyh74DVe/VY1Sukh4eHsWvXLszPz7/rnES/+j3fLJ2arPGhX3UAc5aZ3qCQjltd9btZHDd0qcka\nXdN30bfNtsH0ytgg594L+aoWG7muNtVcBDA7fLJhSBO1eR/6Lk9JprmrZpPeJ5aI7PI+9F3Ntjsh\nDqBvAPPoPhFZ4n3LZtWbat0nORcXF/vOuNnpQUR14nymD1Rb7khykjOqqho8DwsRURLel3eqNugk\nZ6+fKXNQ4ulRIkrK+/JO1Qad5Oz1M2WesuXp0eLxABxRvMaFPtD/JGfRkoQPT48WiwMlUW+NK+9U\nKU3nT6eEdP3112N1dfViKYd9/enxABzVGcs7hqWZpQ8PD2NsbAwzMzObZqj9bidA8XibBaLeONMv\nUZJZenSTdmlpiTPUgvAAHNUVu3eM6xc+3eWfgwcPYmZmJnaQYAcPEQEMfa/F1Z7HxsbeNUhYOhXM\nwYfILdb0PRZXe45rD7XSwdP0rhi2gVIdMPRjVPWPO+kmrZWNSSuDjwtNH/CoPhj6Xar+x53k4JeV\nDh4rg48LSQc8rgbIOoZ+F6uzWQvvvZt18KlDECYZ8LgaIB8w9LsUNZutQ9DFSTv41CUIkwx4VicM\nRFHs3omRt8fbUreNa006HcvT01QFdu+UIG8phTO+d0RXTlu3bsXbb7/t7Wx/ECt7L0T9eB/6Fsso\nTd7w7NYJwkOHDgEApqenvS7zDGJh74Won1yhLyIrIvKSiLwgIs+Hj10uIs+IyBkROSIilxVzqe9m\ntV7MGd9mw8PDuPTSS7G8vGx69WNxAkFUtLwz/T8DmFLVj6nqZPjYfQBmVXUrgGcB3J/zd/RkuYzC\nGd9m1lc/3ROIc+fOcQCgWsq1kSsivwHwcVX9feSxZQC3q+p5EbkawJyqbov52dwbuU3fOPPtlgiW\nb4IW3XAOggCjo6NYWVlp/EY82eP03jsi8j8A/g+AAviuqn5PRP6gqpdHvuf3qnpFzM8W0r1jOUjK\nxA6hzfIOgNEJxMjICFZWVhrRcUT+yRv6Qc7fv0NV3xSRDwJ4RkTOoD0AJLJ///6Ln09NTWFqair1\nBXTKKE0TV9oq6nXwcQWRdwDs7MN03sgmerdTa6Uoapa5uTnMzc0V9nyF9emLyD4AbwP4Itp1/k55\n5z9V9caY7zfbp++DXqWtoma8Pq0gyjgL0NQVJNnnrE9fRC4VkfeFn28BcAeAkwCeBrAn/LbPA3gq\n6++g3uI6hIroZrK8Od5LGZvE/Tbi2eVDPss80xeRDwP4OdrlnADAj1T1ARH5AICfArgOwKsAPqOq\nb8X8PGf6BStixuvr5nhVM3MfV0JUL3wTFbqoqMC2XtpwuefQpNtKkE0MfdokT2D7sIHreqbt60qI\n6oOh34MPAWaJ6zBNysJM2/pKiOqtsTdc67eZZvX2DJb5soFr4WQvT1uTz7wM/UGh7kuAWWIhTON0\nD+68rxFRPl6G/qBQLzPA6tquZzFMew3unGkTZedl6A8K9bICrO5lI2th6tOKra6TAaofL0M/SaiX\nEWA+hVAdWC05dRs0GeCAQJbUtnunDGzXq54PnTL9Oop86Yoif7Blc4CiWzd9CCGqVr/JgIUWU6oX\nhn4fnGXRIEVNCnpNBrg6pKIx9PuwPMvi4TH3qpoUcHVIRWrs4awkrG4E+tgFVMfNyKo25q11RVGz\n1Tr0LfaeA/51AZU5SLkcTKxOCojKVOvQBzbPsqzMVn0Lm7IGKdcrHquTAqIyOa3pr62tVfYPzdqm\nrk913rI2Iy3vuRBZ5XVNv8rZnbWSik913rJmxL6teJKysqIkiuN0pl/l7M6n1rkmdfb4tOJJwtqK\nkurH65bNiYmJSv9R+BAwDA2/sWRFZfO6vFN1oPlQUrFWhvKN69JKXUtWVB9OQ99y+LpSRWi4Dsay\nuO4GAtgRRPbV+kSur/qVofLW++tcPmJphZrA6/IOxetVhipiJlvn8pGL0kpdV01UXwx9jxQR2EUG\no7XAq7q0YqGcRJSWmdC3FiAWFRHYRQWj1cCrcrO+zqsmqi8ToW81QKwpKrCLCMYyAs+3gZ+dOuQj\nE6HPGVNyFtpOW60WLly4gG3bthUWeD4O/OzUIR+ZCH3OmPzRCefp6WkAwKFDhwoJPKsD/6DVh4VB\nmCgNE6HPGZM/ouF85swZbNmypZD/vSwO/D6uPogGYZ9+Dk26R05HmfcwsnabDPb9k0Ve33tnbW3N\n29Cs8yGnQayFc1l8ukkfNYfXoT8xMeFtaFqaBTZxxVGVpgxw5A+vT+Ra3LhLykoNuq5vZWgFN2qp\nbpyGvoXQzMrK5rOFtzLk4EDkD+e3VnYdmnlYmAUWteLoDu6kgwk7XIj8wu6dGshbd47blAaQaBOz\n194G9xmIyuH1Rm6Vv5sh1Fu/4B40mMR1uABobGcTUdkY+gk0ub0yibytid2Dg6XOJqK6YegnwBAa\nrMjWxLSDCFdhRMkx9BNo4iEb10GadBDhKowoHYZ+Qk06ZONTkHIjmCgdrw9nVamK9kor/epW71gZ\nJ67llG2gROVpTOiXzVJQWTotPGgQjDvk5tOgReQbhn5BLAWVhdPCaQbB7lWYlUFrECsrO6I0GlPT\nL1sTN4v7ydMx1Wq1sLi4CBHB5OSkydfRp30TqhfW9I2wMLvOoqzZatbZevSdub7+9a8Xek1FsrSy\nI0rDbOj7uHS2cC+eNMrch8g6CPoSpr6UoIi6lRb6InKniCyLyH+LyD+n+VlLm6J1VnbAZhkEfQlT\nX1d2RKWEvoi8B8B3AHwKwBiAz4rItqQ/72K25+PKImpubi71z1gMWCthmuT19G1l50qWv00qT1kz\n/UkAr6jqqqr+CcATAO5K+sNVh5HVlUWagSjLPywrAdvNQpgyqIrD19KWskL/GgCvRf779fCxRKoO\nI4t15KoGIgsBWxXfV3NERSgr9OPaiVL1Z1YZRhbLHBYHIp9ZXc0RVa2UPn0R2Q5gv6reGf73fQBU\nVb8R+Z76NOkTEVXI3A3XROQSAGcA7ALwvwCeB/BZVX258F9GRESJBWU8qapuiMiXATyDdgnpUQY+\nEZF7zm7DQERE1XNyIjfPwS0CRGRFRF4SkRdE5PnwsctF5BkROSMiR0TkMtfXaZWIPCoi50XkROSx\nnq+fiHxbRF4RkRdF5GY3V21Xj9dzn4i8LiLHw487I1+7P3w9XxaRO9xctU0icq2IPCsip0XkpIh8\nJXy8sL/PykM/78EtAgD8GcCUqn5MVSfDx+4DMKuqWwE8C+B+Z1dn3w/Q/vuLin39RGQawEdU9aMA\n7gHwcJUX6om41xMAHlTVW8KPwwAgIjcC+AcANwKYBnBARDJvStbQOoCvqepNAG4FcG+Yj4X9fbqY\n6ec6uEUA2i2x3f/b3QXgsfDzxwD8faVX5BFV/SWAP3Q93P363RV5/PHw5xYBXCYiV1Vxnb7o8XoC\n8a3bdwF4QlXXVXUFwCtoZwIBUNU3VfXF8PO3AbwM4FoU+PfpIvRzHdwiAO0zD0dE5Nci8sXwsatU\n9TzQ/sMB8EFnV+enK7tevyvDx7v/Xt8A/16TujcsOXwvUo7g65mQiIwCuBnAr/Duf9+Z/z5dhH7u\ng1uEHar6cQAzaP/D2gm+hmXh32s2B9AuO9wM4E0A3wwf5+uZgIi8D8DPAHw1nPH3eo1Sv54uQv91\nANdH/vtaAOccXIe3wpEeqvo7AL9Ae3l8vrOsE5GrAfzW3RV6qdfr9zqA6yLfx7/XBFT1d5F3SXoE\n75Rw+HoOICIB2oH/Q1V9Kny4sL9PF6H/awA3iMiIiLwXwG4ATzu4Di+JyKXhLAAisgXAHQBOov0a\n7gm/7fMAnop9AuoQbJ4lRV+/PXjn9XsawOeAiyfN3+oss2mTTa9nGEwdnwawFH7+NIDdIvJeEfkw\ngBvQPrxJ7/g+gNOq+q3IY4X9fTrp0w/bt76Fdw5uPVD5RXgq/Ifyc7SXcAGAH6nqAyLyAQA/RXvU\nfxXAZ1T1LXdXapeI/BjAFIArAJwHsA/tFdOTiHn9ROQ7AO4EcAHAF1T1uIPLNqvH6/nXaNej/wxg\nBcA9nTASkfsB/BOAP6Fdvnim+qu2SUQ+CeA5tCdyGn78C9oDY+y/77R/nzycRUTUIGbfLpGIiIrH\n0CciahCGPhFRgzD0iYgahKFPRNQgDH0iogZh6BMRNQhDn4ioQf4f1y/985xmIKcAAAAASUVORK5C\nYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f6bd4a79e10>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "def _plot(i=0):\n", | |
| " my_plot(T[i], fig, axe)\n", | |
| "slider = interactive(_plot, i=(0,len(T)-1))\n", | |
| "bouton = widgets.Button(description=\"Next step\")\n", | |
| "def click(b):\n", | |
| " slider.children[0].value += 1\n", | |
| "bouton.on_click(click)\n", | |
| "display(slider, bouton)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 2", | |
| "language": "python", | |
| "name": "python2" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 2 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython2", | |
| "version": "2.7.10" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 0 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment