Created
May 29, 2022 20:02
-
-
Save bocklund/cce8662c715ba00b67b895713068b238 to your computer and use it in GitHub Desktop.
MQMQA multi-component demo
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "# Al2O3 - CaO - CaS system\n", | |
| "\n", | |
| "DAT file from Piao et al. _Acta Materialia_ 61(2) (2013) 683-696 [doi:10.1016/j.actamat.2012.10.018](https://doi.org/10.1016/j.actamat.2012.10.018)\n", | |
| "\n", | |
| "Code in this Jupyter notebook is intended to be easy to copy and paste.\n", | |
| "Each cell stands alone. Necessarily, there is some code duplication (e.g. imports and loading the database only needs to be done once in practice).\n", | |
| "\n", | |
| "Beware that working in Al-Si-O seems to break things.\n", | |
| "These systemes are not used in the original publication (which uses Al-Ca-O-S and Ca-Si-O-S) and the values in the database do not seem to be assessed (considering that mullite is not included).\n", | |
| "In particular, this parameter is almost certainly incorrect:\n", | |
| "\n", | |
| "```\n", | |
| " 3\n", | |
| " Q 1 2 4 4 0 3 0 0\n", | |
| " 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00\n", | |
| " 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00\n", | |
| " 0 2 100783.93 0.00000000 0.00000000 0.00000000\n", | |
| " 0.00000000 0.00000000\n", | |
| "```\n", | |
| "\n", | |
| "This seems to say that there's a parameter for the interaction AlSi/OO(Si), i.e. putting (Si) as an additional constituent on the second sublattice, which is clearly non-sensical.\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Point calculation in Al2O3-CaO-CaS system\n", | |
| "\n", | |
| "Figure 2b of Piao et al.: 60 wt% Al2O3, 3 wt% CaS at 1550C (1823 K)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Expecting phases: Liquid (SLAG) + CaS + CaAl2O4 \n", | |
| "Got: ['SLAG', 'CAAL2O4_SOLID(S)', 'CAS_SOLID(S)', '', '']\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "from pycalphad import Database, equilibrium, variables as v\n", | |
| "\n", | |
| "dbf = Database(\"Piao_Al_Ca_Si_O_S.dat\")\n", | |
| "\n", | |
| "# only pure element component allowed, vacancies not included implictly\n", | |
| "components = [\"AL\", \"CA\", \"O\", \"S\"]\n", | |
| "\n", | |
| "phases = list(dbf.phases.keys())\n", | |
| "# print(\"\\n\".join(sorted(phases)))\n", | |
| "\n", | |
| "# Compare to Figure 2b: 60 wt% Al2O3, 3 wt% CaS at 1550C (1823 K)\n", | |
| "# PyCalphad currently allow for conditions for mole fractions of pure elements\n", | |
| "# so we need to compute them here\n", | |
| "# Molar mass\n", | |
| "MM_Al = 26.9815 # (g/mol)\n", | |
| "MM_Ca = 40.078\n", | |
| "MM_O = 15.9994\n", | |
| "MM_S = 32.065\n", | |
| "MM_Al2O3 = 2*MM_Al + 3*MM_O\n", | |
| "MM_CaO = MM_Ca + MM_O\n", | |
| "MM_CaS = MM_Ca + MM_S\n", | |
| "\n", | |
| "# Compute moles of atoms from mass of compounds\n", | |
| "mass_Al2O3 = 60.0\n", | |
| "mass_CaS = 3.0\n", | |
| "mass_CaO = 100 - mass_Al2O3 - mass_CaS\n", | |
| "\n", | |
| "mol_Al2O3 = mass_Al2O3 / MM_Al2O3\n", | |
| "mol_CaO = mass_CaO / MM_CaO\n", | |
| "mol_CaS = mass_CaS / MM_CaS\n", | |
| "\n", | |
| "mol_Al = 2*mol_Al2O3\n", | |
| "mol_Ca = mol_CaO + mol_CaS\n", | |
| "mol_O = mol_CaO + 3*mol_Al2O3\n", | |
| "mol_S = mol_CaS\n", | |
| "total_moles = mol_Al + mol_Ca + mol_O + mol_S # of atoms\n", | |
| "\n", | |
| "X_Al = mol_Al / total_moles\n", | |
| "X_Ca = mol_Ca / total_moles\n", | |
| "X_O = mol_O / total_moles\n", | |
| "X_S = mol_S / total_moles\n", | |
| "\n", | |
| "# Set up conditions with calculated mass\n", | |
| "# X_S is dependent, due to N=1 condition\n", | |
| "conditions = {v.N: 1, v.P: 101325, v.T: 1823, v.X(\"AL\"): X_Al, v.X(\"CA\"): X_Ca, v.X(\"O\"): X_O}\n", | |
| "\n", | |
| "# Compute equilibrium\n", | |
| "print(\"Expecting phases: Liquid (SLAG) + CaS + CaAl2O4 \")\n", | |
| "eq_result = equilibrium(dbf, components, phases, conditions)\n", | |
| "print(\"Got: \", eq_result.Phase.squeeze().values.tolist())" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Pseudo-binary diagrams\n", | |
| "### SiO2 - CaO" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(0.0, 0.5)" | |
| ] | |
| }, | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAucAAAGtCAYAAAC1LNpfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xTVxsH8N8hIUDYEGTJUpaIC9C2Dpy0jqpY66jYuqqlrXVV2+KorbvWUbW2uHDVUa3WARRX3VoHVquiiBNcyN6BhJz3jxDesMMS0OebTz5A7rn3ntwEeO7Jc5/DOOcghBBCCCGE1D2tuu4AIYQQQgghRImCc0IIIYQQQuoJCs4JIYQQQgipJyg4J4QQQgghpJ6g4JwQQgghhJB6goJzQgghhBBC6gkKzgkhhBBCCKknKDgnhBBCCCGknqDgnBBCCCGEkHqCgnNCCKkCxpgjY4wX3EfWdX8IIYS8GoR13QFCSM1gjIkADATQC0A7ABYAjACkAXgE4CKAPQD+5pwr6qqfxTHGdAF8AOBdAK0BWBYsigdwDUAogB2c85xa2LcrgLEAOgNwBmAIIA9AAoB7ACIBnARwnHOeXdP7J4QQQopjnPO67gMhpJoYY+8BWArAUYPmdwBM4ZyH1WqnNMAY6w9gJQD7CprGAZjAOd9Xg/ueDWAmNBuk+IFz/k2x9R0BPCj4cRTnfFNN9Y0QQsjri4JzQho4xtgsAHPUHjoC4ACAKACpAMwAuAHoC8APynS2a5zz1i+1o8UwxiYA+AkAK3joAIDdUI5YcwBNAbwPwL9gOQcwiXO+sgb2/Q2AhQU/pgFYA+UI+TMAIgCNAbwB5TFzRynBOSGEEFIbKDgnpAFjjI0CEFLw4wsAgznnJ8tp7wlgOQCLugzOGWN9oExXAZTB8UDO+bEy2nYDsBeAMZQB+ruc8/Bq7FsC5Ui8LoDHANpzzuPKad8OgDnn/K+q7pMQQgjRFAXnhDRQjDFbKFNUxACyAPhwzm9rsJ4WgGGc899quYtl7d8AwH0oc+IVALpwzk9XsI4vgONQjvq/ANCEc55Vxf0PA7Ct4MfxnPPVVdkOIYQQUhuoWgshDddkKANzAPhWk8AcADjniuKBOWPMlDE2ijH2G2MsijGWyRjLY4w9Z4wdYoyNK7jgtCaMgTIwB4A1FQXmBX0+BWBtwY+NAIyuxv7V89vvVnUjVK2FEEJIbaDgnJAGiDHGAIwo+DELwLpqbvJfKNNjAgA0A6APQBvKyilvQ5mT/Q9jzKqa+wH+328AWFGJ9dTbjqrG/vPUvm9Wje0QQgghNY6Cc0IapuYAJAXfn+acZ1RzewIAFwDMgrKkYVsAHQAMBxBR0KYNgJ3V2QljzBhAq4If73DOozVdt+CTgTsFP7ZkjBlWsRtX1L6fzhhrVWZLQggh5CWjOueENEzqAWVkDWyvG+c8ppTHzwHYpnbhaWfGWPeyLt7UgCf+PyhwpbyGZbgCwBXKk4kWBf2rrFMA/gPQEsr0mn8ZYyehrHLzD4BIznlaFbZLCCGEVBuNnBPSMJmrff+iuhsrIzBXX74RwNWCH/2rsSuJ2vfPq7B+vNr35mW2KkfBBEwD8f98cwagC4D5AI4BSGGM/ccY+6FgkiJCCCHkpaHgnJCGST2lo0pVS8rClKwYY66MMU/VHcCTgibVSQNR73dmFdZXX8eoqp3gnN+F8nl8hf+nyqgwKEflvwIQxRhbyhijTxkJIYS8FPQPh5CGST3HXL8mNlhQe/xTAL4oGkQXpz76DcaYPgCnshpzzm+o/ajeb4MqdFN9nfRi/fAsZ70HxUsvcs6zAfwI4EfGWFMA7QF4A3gLgA+UgxcCAFOgfM4jQAghhNQyCs4JaZiS1L63rM6GCiq/rIOyxKEm9Ir93BbKGuRl7kLt+0S176tS+UX9uSYVW3a9nPW6AjhR1kLO+T0oZybdChTWkP8OwMcFTT5ijK3jnJ+pZH8JIYSQSqG0FkIapmtq33tVc1uj8f/A/CqAkVCWGDQCIOScM845Q0HgiqLBdmXdgHLiIUBZ/aWyVM81v2BbtYJz/oRzPhZFq9MMqq39EUIIISo0ck5Iw3QTylFoCYBOjDEjznl6BeuUZWzB17tQTmWfU0Y7s9Ie5JyfgIYBO+c8jTH2H4DWANwYY66c8+I536VijLlBWakFAK4Vf74FJxA1bR2AoQXfO9fC9gkhhJAiaOSckAaIc84BbC74UR//T7+oiuYFXw+UFZgXpL5Ud4ReZZPa9xMqsZ56201lNaphT9W+5y9pn4QQQl5jFJwT0nAtB5Bd8P0cxpi7JisxxrQYYwFqD6k+QSvvwtL+AKwr38VSheD/ueeBjLEOFa1Q0OaTgh9fFGyjSgpONDTlo/b9/arukxBCCNEUBeeENFCc8ycAxhf8qA/gJGOsc3nrMMY8oJzxc5raw6oa530ZYyVSVwoqmayufo+VCmYzVeW4CwCEMsa6ltWeMdYFQGhBWwAYVbzySiWNZYytZYyVm6bCGHOAsva5yv5q7JMQQgjRCOWcE9KAcc43MsYaA5gDoBGAE4yxw1AGkrcApEKZK+4KoA+AnlAGueoXlG6BsqSgDYDzjLEfoLzYUhdANwCTAOhAOTtnjaS2cM4PMMa+BLAEgAmAvxlj+wD8AWXVFA6gKZSTBQ2AMqedA5jMOQ+v5u5FUObZj2WMnQVwGMpZVuOhvFjVFsrqLh/j/yUl91djVlRCCCFEY0yZukoIacgYY+8BWArAUYPmNwFM4ZwfLlhXG8qR6bfLaJ8DZY3vPgVfH3HONdlPhQr6vQJA4wqaxgGYyDn/swb2ORjKyjMiDVfZDuDj4vn4jDFHAA8KfhzFOd9U3b4RQgghFJwT8opgjIkAvA+gF5S1xxtBOfKbDuAhgH+gHJk+wYv94hfMgPkpgI8AeEA5Uv0EwFEAKzjntxljm1DDwXnBvvUAfACgL5RVXBoVLHoBZWnHUADby6kiU5V9GkN5MtIZyk8DmgAwLVicDmXlmvMAtnHOI8vYhiMoOCeEEFLDKDgnhBBCCCGknqALQgkhhBBCCKknKDgnhBBCCCGknqDgnBBCCCGEkHqCgnNCCCGEEELqCQrOCSGEEEIIqSdoEqJ6qmCKcRsAGXXdF0IIIdVmCOBp8TKmhBBSHAXn9ZcNgMd13QlCCCE1pjGU8wcQQkiZKDivvzIA4MGDBzAzM6vrvtRbMpkMhw8fxttvvw1tbe267k69RcdJc3SsNEPHSXPJyclwcnIC6JNQQogGKDiv5wwNDWFkZFTX3ai3ZDIZxGIxjIyMKEAoBx0nzdGx0gwdJ83JZLK67gIhpAGhC0IJIYQQQgipJyg4J4QQQgghpJ6g4JwQQgghhJB6goJzQgghhBBC6gkKzgkhhBBCCKknKDgnhBBCCCGknqDgnBBCCCGEkHqCgnNCCCGEEELqCQrOCSGEEEIIqScoOCeEEEIIIaSeoOCcEEIIIYSQeoKCc0IIIYQQQuoJCs4JIYQQQgipJyg4J4QQQgghpJ6g4JwQQgghhJB6goJzQgghhBBC6gkKzgkhhBBCCKknKDgnhBBCCCGknqDgnBBCCCGEkHpCWNcdIIQQQl53kZGRIgAOAAR13RdCSI1SAHjm7e2doekKFJwTQgghdSgyMrKxlpbWXi0tLQsArK77QwipUZxzLouMjNwCYIG3t7eiohUoOCeEEELqSGRkpBZj7Hs9PT37xo0bJ2lpafG67hMhpOZwzllWVpb4+fPnn8pkMgCYV9E6FJwTQgghdUeipaXV2dLSMt3AwCCnrjtDCKl5+vr6OQDMnz59+lFkZOSKilJc6IJQQgghpO6YMMaEIpEor647QgipPfr6+tmMMW0A1hW1peCcEEIIqTtaAMAYpZoT8ipjjHEorympMPam4JwQQsir7/k+4FQbID70pe723u0n+H58yEvdJyGkYaOcc0IIIa++J9uB9Ks48SQQyyy9XtpuBacbQRFjUun1Yp6liOJTs17a/2hLE325i7UppdYQUg9QcE4IIeTV574AEDdFF4dx6AKnl7bbjMHZ2Jn+Fw5Ear5OzLMUkefkjZ558vyXlusiEgr4jeWjblCA/nq5du2aTvfu3d1jYmKum5qaVljiT1OtWrVynzx58vORI0em1tQ2XyeU1kIIIaThudgH+OdtQKFhPKHvDDRbCIhfXmAOAInxqbhy/m6l1olPzRK+zMAcAPLk+awqI/WxsbHCESNG2DVu3LiFSCTysrKyatmtWzfn/fv3G6q3CwoKshIIBN6zZs2yLL6NzZs3m7Rv397F1NS0lYGBQZvWrVu779mzx0i9zdOnT4UBAQH21tbWLUQikZdEImnVsWNHl8OHD+ur2tja2raYM2dOI/X1jhw5ot+5c2dnIyOj1jo6Ol6urq4e3333naVcLi/1+eTk5DB3d3cPxpj3uXPn9Cp7PJycnJqLRCKv2NjYEseyXbt2bqNHj7Yra13GmLfqbmho2NrLy8v9wIEDhcdx4MCBjj169GhafL3Q0FBDxph3YmJiiQmsyusPAEybNq3xmDFj4tUD86VLl0rc3Nw8xGJxG0NDw9bNmjXzCAoKslIt37x5s4mnp2czQ0PD1np6em3c3d09Vq9ebaa+3W+++ebZ7NmzG+fn55f1dEk5KDgnhBDSsLw4ArwIBxKPAM/31nVvyrVhaSiePkyo627UiujoaJGPj4/H2bNnjebNmxd3+fLlm6GhoXd8fX0zJk2aZK/edvv27ZLAwMDn27ZtkxTfzsmTJw27deuWvm/fvpjz589HdezYMWPo0KHOZ8+eLQyO+/Xr1/TGjRvitWvXPrxx48aN3bt3x3Tq1CkjISGhzBOKLVu2mPTq1cvNxsZGFhEREf3ff//dCAwMfLF8+XLrvn37NlGUcmL32WefNba0tKzSpweHDh0yyM3N1erZs2fKmjVrSjxPTaxYseLho0ePrv3999+3TU1NZUOGDHGOiooS1UZ/YmJiRMePHzcODAxMUj32008/mc+cOdMuMDDwxcWLF6OOHz9+e9KkSc8zMzMLA39zc/P8r7766tnJkydvX758OSogICBx4sSJTuonVIMGDUrLysoS7N6927gqfX/dUVoLIYSQhkXSGdB3xwv+DO0afQYpxtd1j8pkOtwOTjFv1nU3asW4cePsGWO4cuXKLSMjo8JI18fHRzp+/PhE1c9hYWEGUqlUa9myZU93795tfuTIEX0/P78s1fKQkJA49e3+/PPPTyIiIkz+/PNPkw4dOuQkJiYKIiMjDUJDQ6P79OmTCQCurq55Xbt2zS6rb+np6VoTJ0506N69e9qOHTseqR53c3NLtLKykgUEBDhv2LDBdOzYsSmqZbt27TI6efKk0e7du+/5+PhUOqhct26dZMCAAcldu3bNmDp1qv38+fOfV3Ybpqam+fb29nJ7e3v5hg0bYp2cnFqGhYUZeXh4JFa8duX6s3XrVlM3N7ccJycnmeqx0NBQkz59+qRMnjy5cH8+Pj5S9fXefffdIjW6mzdv/mLHjh3mp06dMhg4cGA6AAiFQnTt2jVt586dZkOHDk2rbN9fdzRyTgghpO7Js4H/PlWOildESwR0vYVG3VLxUPgCz+vxLbLNaXRr3672j99LFh8fLzh9+rTx6NGjX6gH5ioSiaQwn2H9+vUSf3//ZB0dHe7v75+8bt26ckeV8/PzkZWVpWVmZiYHAGNj43yxWKzYu3evaU5OjkbpPvv27TNKTU0VTps2rUSAPGzYsDQHB4fc33//vTAVIy4uTvjFF184btq06YGBgUGlc69TUlK0wsPDTUeNGpXk7++fnpmZKYiIiDCo7HbU6evrKwAgLy+v0rGaJv05e/asQatWrbLUH2vUqJHsypUr+nfu3NFotF6hUGD//v2GDx480O3SpUum+rK2bdtmXbp0qVrH4HVFwTkhhJC6d3UEEBsMXO5b1z2pUUtn7MDpiGt13Y0aFxUVpcM5R7NmzaTltUtOTtaKiIgwHTlyZBIAjBw5MiksLMwsLS2tzPhj9uzZltnZ2YIRI0akAIC2tjZWr1794I8//jA3NTVt4+Xl5T5+/HjbCxculJkTHh0drQsArVu3LrV/TZs2zXnw4IEuoAwwAwICnEaMGJHg6+tb5mh8eUJCQswcHBxyfXx8pEKhEP369avwJKQ8GRkZWlOmTLEVCATo0aNH4Uj1iRMnTMRicRv1+/vvv+9Slf48efJEx8bGRqb+2MKFC58ZGRnlu7m5tXB0dPQcOHCg4/r1602L544nJSUJxGJxG5FI5DV48GCXhQsXxg4YMCBdvY2trW3e8+fPRZR3XnmU1kIIIaTuSboCz/fgmVgfbWBVcfsGorFXS9icbVHX3ahxnHONRrA3bNhgZmdnl/vWW2/lAED79u1zbGxs8kJCQszUUydUgoODzZYuXWqzY8eOu7a2toVXbY4cOTJ18ODB1w4dOmR47tw5/aNHjxoHBwdbLVu27OGECROSim9HrZ8V9nHBggWNsrKytBYsWPBMk+dUmq1bt0oGDx5c2I+RI0cmvfPOO24pKSmxlamCMnbs2CaffPIJz83N1TI1NZUvX7784RtvvJGjWt6uXbv0tWvXxqqvc/r0af3PPvusyJXOmvRHKpVq6erqFumbg4OD7OrVq7cvXbqke+zYMcPz588bjB8/3mnjxo2SU6dOxQgEytRzExOT/IsXL0alp6drHTp0yGjWrFl2zs7OeeopL2KxmCsUCuTk5DADA4OKXwhSiIJzQgghtevBz4DtMEBkVnYbx88Ax89gDaDSibr12QhgDzuCgyOW1XVPalTz5s2ljDHcunVLt7x2W7Zssbh7966eUCj0Vj2mUCiwdetWSfHgfO3ataaTJ0922Lhx431/f/+M4tsSi8V8wIAB6QUjtM+GDBnisGjRIpvSgnM3NzcpAFy9elVXPb9d5d69e3rOzs45AHDixAnDq1evGujq6nqrt/H19fXo169f0t69ex+W9xwjIyN1r127pn/9+nX9+fPnN1Y9np+fj5CQELMvv/xS43zxOXPmxPXu3TvdzMws38bGpkRJGbFYrPD09MxVf+zhw4dFUlA07Y+ZmZk8JSWl1Diwbdu20rZt20oBJBw6dCihZ8+ebuHh4YZ9+/bNAACBQABVP9q3b59z+/Zt3UWLFlmpB+eJiYkCPT09BQXmlUfBOSGEkNpzshWQ8R9w6yugd5UyBhq06R8H4+bVypVSbAgsLS3zO3bsmB4SEtIoKCioRN55YmKi4P79+6KbN2+Kw8LCoiUSiVxtmbBPnz5u//77r26bNm2kALBmzRqziRMnOq5fv/6+phcQNmvWTHr48GGT0pb5+/unGxsb5y9ZssTKz8/vnvqybdu2GT969EhnxowZTwDg119/jUtNTX2iWh4XFycaOHCgy/r16+916tSpRGBfXHBwsMTHxyfzl19+eaT++Nq1ayVbtmyRVCY4t7a2lhUPvitL0/54enpm3759u9yTKwBo3bp1DgBkZmaWmYqkUChY8dz4Gzdu6DVr1uz1+6WvARScE0IIqUXK7Acpy4UxdOq4Ly9fezYURrCo1DqWJvpykVDAX/YkRJYm+qUX/y5DcHDwo86dO7t7eXk1mzlz5hNvb+8cmUzGwsPDjUJCQiy6dOmS3qJFi6xevXplFl/X09MzKzg4WLJmzZrHwcHBZuPHj3ecN29enK+vb6aqJre+vj43NzfPf/78ucDf37/pRx99lOjt7Z1jbGycf+7cOf2ff/7Zys/PL7W0vhkZGSmWL1/+aOzYsU0++OADh0mTJr0wMTHJDw8PN/ruu+8a9+zZM2XMmDEpAODi4pJXfF0AcHV1zW3atKmstO2r5Obmsj179ph/8803TwtGmgsJBILE9evXW16+fFlXVfEkMTFRWLx+up2dnczOzq5Sx74m+tOzZ8+0L774wlEul0MoVIaDAQEB9jY2NjI/P790R0dHWVxcnPa8efOsTU1N5V27ds0ElDXr27Vrl+3m5iaVSqVa+/fvN/7zzz/NFi9eXCTd5vz584bdunUrkodONEPBOSGEkNrT+SrwcA10bQYhF+Wktbyq1gF7th7DgY+WaryKi7Vp3o3lo25UZVKgqrI00ZdXdnZQDw+PvMuXL9+aNWuW9YwZM+wSEhK0TU1N5Z6enllLliyJGzNmjNP48eNLzVLq169fyq+//mq1cuXKJyEhIRb5+fksKCjIPigoqLA++nvvvZe0Z8+eh8bGxgpvb++s1atXW8bGxurI5XJmZWWVFxAQkDB//vwy88RHjRqVYm1tHT1//nzrHj16uOXm5mo5ODjkTpo06dmsWbPitbSqXxNjx44dxmlpacIPPvggpfgyLy8vaZMmTaTBwcGS9evXPwaAgwcPmh08eLDIL8K0adOeLl68uMr57lXtz6BBg9ImTZrE9+/fb6Qqgejn55e+adMmyebNmy1SU1OFJiYmci8vr8yIiIg7VlZW+QCQlZWlNWnSJPv4+HiRjo6OokmTJtJff/31gXpZygcPHmj/+++/+jt27LhfE8/rdcM0uViCvHyMMSMAaYmJiTA3N6/r7tRbMpkM4eHh6N27N7S1teu6O/UWHSfN0bHSjEwmw+PwvnAUHALTlgDvvJoT7VTXz3P+wJED/+BA5FIAMOacFxlJjIyMdBcKhREuLi6ZYrG43MonhNS0hQsXWoSFhZmcOXMmpia3++mnn9qmpqYK1WvMv+6ys7N1Y2JiDORyeU9vb+/b5bWlkXNCCCFVYs5uggFQyBKh9xqmrGii63+joQP9ihsSUgemTp2akJqaKkhJSdGqTFWZijRq1Eg+ffr0+Jra3uuGgnNCCCFVcoovQG/TEGg5BiIXQ+q6O/VS2tpMzJ+6AYis656QqvL19XW5fPlyqZPpTJgw4dmiRYsabIEhbW1t/PDDDzXe/++//54C82qoVnDOGBMB6ASgMwBvAE0AWAHQByADkAogFsBNABcAHOac00cchBDSEMRuAP4bC4gaAW+X/P+dDyPktzsMLUr/KVPozrOI/i+u4oak3tq8efPDrKysUhPULSwsauRCTkLUVSk4Z4z5AhgDwB+A+tmk+pXlQgB6AKwBtAMwqmDdawC2AtjEOS9xwQIhhJB64s73ADh4XjwExSaU1oMetmM7TGCCHOSUvj5B3z8mo+i/RtLQODk5lVuxhZCaVqlLlRlj7zPGrgI4DmA4AEMo/+owAA+hHB3/C8B2AH8COAngPwBZau1aA1gC4DFjbDVjrDEIIYTUP16/A1p6YCZvQlHslopUAEAqUksso9v/b9OCPoK2tqBuX0dCSIOi0ch5wUj5TwBa4f9DANcB7AHwD4CLnPPUctZnADygHEHvDqA/lKkvgQBGM8Z+AjCfc16iFiohhJBalHoFON8VMO8GtPuz6DKzt17LiYNqkqGxGALt6pfsI4S8PjRNazlR8DUZwFoA2znnNzTdCVfWa7xZcN/IGNODMkD/GEA3AF8ByAYwV9NtEkIIqQEX+wD56cCLfXXdk1fSkqAdkGZTVgQhRHOans4nAvgGgCPnfHplAvPScM5zOOc7Oec9ALQHcKg62yOEEFJF9mMBACnaAmhV4mYCEwCACUwqtd7rdrvx9jlw0HwihBDNaTpy7sA5r5Urfjjn/wDoXTCaTgghpDa8OALc+Azw/hMw9vz/4+5zAPc5MAVQmSLHMsgQjnCkIhXaoGotZckKzMaUf1ZUupSiQhoj4rL4l1bumGlbyrV0XSo1QyghpHZo9ItfG4E5Y0yLc174v6C2gn9CCCEALr4DgAOnWwPvUvW3l2Wc/4/IzMio1DoKaYwo5z9PT/C8l1fmhYm4XssbNyhAJw2Jj4+P28cff5wQGBiYXFPbXLx4sUVERITx33//fbemtllZGl+lwhizramdMsa0Aeyuqe0RQgipgJYOOIAE7XywGrgZwxgAYAzjGtneq3p70ehJpdNauCxe+FIDcwDgeawqI/WxsbHCESNG2DVu3LiFSCTysrKyatmtWzfn/fv3G6q3CwoKshIIBN6zZs2yLL6NzZs3m7Rv397F1NS0lYGBQZvWrVu779mzx0i9zdOnT4UBAQH21tbWLUQikZdEImnVsWNHl8OHDxdOv2pra9tizpw5jdTXO3LkiH7nzp2djYyMWuvo6Hi5urp6fPfdd5ZyeeknqDk5Oczd3d2DMeZ97ty5Sn+i7+Tk1FwkEnnFxsaWOJbt2rVzGz16tF1Z6zLGvFV3Q0PD1l5eXu4HDhwoPI4DBw507NGjR9Pi64WGhhoyxrwTExNLlAUqrz/FRUdHi9T7YGJi0rpDhw4uZ8+eLTwO7dq1c1Mt19HR8XJ0dPQMCgqyUigUJbajOn6qnwUCgfeDBw+KfMz26NEjbaFQ6M0Y846OjhaV1g/1+7Fjxwpf723bthknJiZqjx07tjAwP3/+vF63bt2czczMWuno6HjZ2tq26NOnT5MnT54IVcv79u3rZGVl1VJXV9erSZMmzefOnVvkPTNhwoTEGzduiCMiIkqdeOplqMwl5H8zxkr8UlUWY0wHwAEoa6QTQgipac/2AWnFLg3qnQPW7Sks3uGoiVsa0gAAaUirke29qrcjv6/F4HFdXvpb4GWIjo4W+fj4eJw9e9Zo3rx5cZcvX74ZGhp6x9fXN2PSpEn26m23b98uCQwMfL5t2zZJ8e2cPHnSsFu3bun79u2LOX/+fFTHjh0zhg4d6qweFPbr16/pjRs3xGvXrn1448aNG7t3747p1KlTRkJCQplB55YtW0x69erlZmNjI4uIiIj+77//bgQGBr5Yvny5dd++fZuoB5Qqn332WWNLS8sqfXpw6NAhg9zcXK2ePXumrFmzpsTz1MSKFSsePnr06Nrff/9929TUVDZkyBDnqKgo0cvsz759++48evTo2oEDB+5kZ2cL+vfv76oe+A8dOjTx0aNH165fv35j8uTJz3788UebH3/80aKi7TZq1Chv7dq15uqPrVmzxrxRo0alHm9VP9TvHTt2LCwftXr1asthw4YlCgTKrj19+lTYu3dvV1NTU/nBgwfvXLt27UZwcPBDKysrWUZGhhYAXLhwQSyRSOQbNmy4f+XKlRtTp059tmDBAtsFCxYU9l9XV5cPGDAgecWKFY1KdOolqcxZsguAY4yxrpzzhKrsjDEmBhAKoAsAukKGEEJq2tWRwOPNyu/fSQW0jf+/TGxdFz16rY3ruwjxzxLruhu1Yty4cfaMMVy5cuWWkZFRYaTr4+MjHT9+fOGTDgsLM5BKpVrLli17unv3bvMjR47o+/n5ZamWh4SEFJlC9eeff34SERFh8ueff5p06NAhJzExURAZGWkQGhoa3adPn0wAcHV1zevatWuZdT7T09O1Jk6c6NC9e/e0HTt2FM5M7ubmlmhlZSULCAhw3rBhg+nYsWMLJ0PctWuX0cmTJ4127959z8fHx7j0LZdt3bp1kgEDBiR37do1Y+rUqfbz588vOa1uBUxNTfPt7e3l9vb28g0bNsQ6OTm1DAsLM/Lw8Kj0m6iq/bGwsJCr+rB48eK4t99+2/3kyZP6AwcOTAcAPT09hb29vRwAXF1dk9auXdvo2LFjRl9//XW5seHgwYOTduzYIVm4cGFhP7Zv3y4ZPHhw0ooVK0r8cVL1o7RtPX36VPjPP/8Yrly5Mlb12LFjxwwyMjIEO3fufKhdMGuxu7t7Xt++fQvzyiZNmpQEIEn1s4eHR/L58+cNDhw4YDp9+vTC/vv7+6f279/fNTMzkxkYGLz0eLWyxVebATjKGDOr7I4YY4YAjgDoXPDQf5XdBiGEkArkKv+/cAAWMpNaS9egtBbNbs9zXtThm6H2xMfHC06fPm08evToF+qBuYpEIslXfb9+/XqJv79/so6ODvf3909et25duaO4+fn5yMrK0jIzM5MDgLGxcb5YLFbs3bvXNCcnR6N0n3379hmlpqYKp02bViIgHTZsWJqDg0Pu77//XhjLxMXFCb/44gvHTZs2PTAwMKjMtdEAgJSUFK3w8HDTUaNGJfn7+6dnZmYKqpsWoa+vrwCAvLy8ShfKr6n+iMViBQDk5uaWOO4KhQIREREG9+/f1xWJRBUGsO+9915qWlqa4NChQwaAcmQ/PT1dMGDAgNTK9uvo0aMGurq6ijZt2khVj9nY2Mjy8/PZ1q1bTUv7VKQs6enpAhMTkyInAR07dszOz89nJ06cqJPUlsq84D9BOQGRJ4AjjDGNzyoZY6YA/gbwZsE2LkFZ35wQQkhNeiMMsPsYzPMXJIhrL12D0lo0ux04ugwt2jap4zdFzYuKitLhnKNZs2bS8tolJydrRUREmI4cOTIJAEaOHJkUFhZmlpaWVmb8MXv2bMvs7GzBiBEjUgBAW1sbq1evfvDHH3+Ym5qatvHy8nIfP3687YULF8rMCY+OjtYFgNatW5fav6ZNm+Y8ePBAF1AGmQEBAU4jRoxI8PX1rdKsWyEhIWYODg65Pj4+UqFQiH79+lV4ElKejIwMrSlTptgKBAL06NGjcOT3xIkTJmKxuI36/f3333epjf4kJiYKvv/+exuxWKzo1KlT4ScdW7dutRCLxW10dHS8evXq5cY5ZxMnToyvaHva2tr8vffeS16/fr0EUJ60vffee0na2tqlBvbdu3d3L/5cVcsePnwoMjc3l6lSWgraZ40fP/75uHHjnMzMzFr7+vq6zJo1yzIuLq7MLJEjR47oh4WFmY4bN67IJxOGhoYKAwOD/AcPHlQppai6NA7OOedTAKyGMrhuDeBwwWh4uRhjjQCcBOBVsO4ZAD045ynlrkgIIaR8934CQpnyrq7VOsDx0zrpEinq20/X4vql+3XdjRrHOddoBHvDhg1mdnZ2uW+99VYOALRv3z7HxsYmLyQkpNRP4IODg82WLl1qs3nz5nu2traFo5kjR45Mffbs2bUdO3bc7d69e9rZs2cNO3To4LFy5Urz0raj1s8K+7hgwYJGWVlZWgsWLHimyXMqzdatWyWDBw8uTJcYOXJkUnh4uGlKSkqlRr3Hjh3bRCwWtzExMWnz119/mS5fvvzhG2+8UVjNrl27dukXL16MUr8vX778YWX74+vr66IKeJ2dnZurr6sKii0sLFrfunVLLyQk5L6dnV3ha9G/f//kixcvRh09evS2r69v2oQJE56ppymV55NPPkkMDw83jY2NFYaHh5t+8sknZabrbNiw4X7x56palpOTo6Wjo1PixV21atWTx48fX1u2bNkjd3f3nE2bNlk0b97c8+LFiyVO5C5duqQ7ePBg5ylTpjx777330osv19HRUWRnZ9fJ9L6VujKbc/4FY0wEYCwAHwB/Mcbe4ZyX+qIUVHg5BmW+Oiv4vj/nnOaDJoSQ6irILecAbLMZnolf3q71oIcd2AFjGCMHVAm3LP1vTqvrLtSK5s2bSxljuHXrlm557bZs2WJx9+5dPaFQ6K16TKFQYOvWrZLJkycXCczWrl1rOnnyZIeNGzfe9/f3L1F/UiwW8wEDBqQPGDAgHcCzIUOGOCxatMhmwoQJScXburm5SQHg6tWruqUFjvfu3dNzdnbOAYATJ04YXr161UBXV9dbvY2vr69Hv379kvbu3fuwvOcYGRmpe+3aNf3r16/rz58/v7Hq8fz8fISEhJh9+eWXGueLz5kzJ653797pZmZm+TY2NiXyrcViscLT0zNX/bGHDx8WGd3VpD+bN29+mJWVpQUAxVNSNmzYcL9Vq1ZSS0tLuXp6koqRkVG+qg8HDhy437Rp0xbt27fPLO01K65du3Y5Tk5O0kGDBjVp0qSJtG3bttKyquI4OjrmFX+uKhKJRJ6enl6iOg0AWFlZ5Y8ePTpl9OjRKVKp9Imnp6fHokWLLNVfx8jISN2ePXu6DR8+PHHx4sWlnpSlp6cLGzVqVCd1ZytdNolz/klBKcSRAN4CEMYY61W8TjljzBHKYNyp4KFwAAM556UeaEIIIZXU/iJw3A5M7Iyn4jMvddeqSYjSkEaTEJUjJvgxZgaurutu1DhLS8v8jh07poeEhDQKCgoqkXeemJgouH//vujmzZvisLCwaIlEIldbJuzTp4/bv//+q6vKGV6zZo3ZxIkTHdevX39/6NChaZr0oVmzZtLDhw+blLbM398/3djYOH/JkiVWfn5+99SXbdu2zfjRo0c6M2bMeAIAv/76a1xqauoT1fK4uDjRwIEDXdavX39PPZ2jLMHBwRIfH5/MX3755ZH642vXrpVs2bJFUpng3NraWlZWQKopTfrj5OQkK2t9R0fHvObNm2vUB2NjY8XYsWPjv/nmG7t+/fpFaWlVPND84YcfJn7zzTf2P/zwQ2yFjcvQtm3b7MTERO2EhASBhYVFiRMIFV1dXW5vb5+rPgJ++fJl3Xfeecdt0KBBSatWrXpS2no3b97Uyc3NZe3atauTweSqzj42BoA2gAAAnQAcYIy9qwq8GWOuAI4CUJ2x7QEwjHNe5puBEEJIBY43A7JuA46TAM/lgLY28HalC0KQl+jiiZuQZr+a//qCg4Mfde7c2d3Ly6vZzJkzn3h7e+fIZDIWHh5uFBISYtGlS5f0Fi1aZPXq1Suz+Lqenp5ZwcHBkjVr1jwODg42Gz9+vOO8efPifH19M1U1ufX19bm5uXn+8+fPBf7+/k0/+uijRG9v7xxjY+P8c+fO6f/8889Wfn5+qaX1zcjISLF8+fJHY8eObfLBBx84TJo06YWJiUl+eHi40Xfffde4Z8+eKWPGjEkBABeXohMvqU40XF1dc5s2bVrui5ebm8v27Nlj/s033zxt27Ztkfx2gUCQuH79esvLly/r+vj4SAHliUnxkWI7OzuZetpIdVS2PzVh0qRJCT/99JP15s2bTUeNGlVhyvKUKVMSPvrooxT1E7bSJCQkCIvXZ5dIJPlisZi3b98+28TERH706FGDDz74IA0AduzYYbxz506zoUOHJjdv3lzKOceePXtMTp06ZbxixYoHgDKV5Z133nHz9fVNnz59+nPV9oVCIdQ/qTh27JhB48aNczU9SalpVcql4cokrhEAdkGZrtINwD7GmIgx1gLKHHNVYL4NwFAKzAkhpJqybgMA8h7+VOdVSKhai2a3P7b/XemXmWlbysEqrn5Ro5iIM23LSgWIHh4eeZcvX77Vvn37jBkzZth5e3s379Wrl+vx48cNlyxZEvfnn3+a9evXr9RgrV+/fil//PGHeW5uLgsJCbHIz89nQUFB9g4ODq1U93HjxtkBytFZb2/vrNWrV1v26NHDrU2bNs3nzp1rExAQkBASElLm6OuoUaNSQkNDox8/fizq0aOHW4sWLTx/+eUXy0mTJj07ePDgfU1GeSuyY8cO47S0NOEHH3xQ4nl6eXlJmzRpIg0ODi68EPPgwYNmHTp08FC/r1q1qsIa4bXVn5pgaWmZP2DAgKQFCxbY5OeXOYhdSFtbG9bW1nJVucOy+Pv7u6q/HxwcHFr99ttvJoAymB4yZEji9u3bC69daNWqVY5YLFYEBQXZvfHGGx6dOnVq9ueff5otW7bs4eeff54MADt27DBLSUkR7t+/30x9u23btm2mvu9du3aZffjhh3VWA5VpcrFEmSszJoAyQB8AZdrjSQAtAKgu0NgAYByvzk5eU4wxIwBpiYmJMDcv93qX15pMJkN4eDh69+6Nin7RX2d0nDRXr4/VyVZAxnWg6XSg2bw67Uq9Pk71yK71x7At+C8ciFwKAMac8yIXnkVGRroLhcIIFxeXTLFYXDiaqZDGiKoyY2dVMW1LuZauS5Um3yGkLsTGxgpbtmzpefHixShXV9cae++q0l7u3Llzw9zcvOKzDQ1lZ2frxsTEGMjl8p7e3t63y2tbrV98znk+Y2wIlGkrfaGsYa66gvtnzvmE6myfEEJeaxf6AomHgbZ/AY26AZ2v1XWPSCW5NG8MgbDyI7Raui55oGCZkDLZ29vLV61a9fD+/fuimgzOHz9+rL127doHNRmYV1a1z8o553LG2PsA/gTQG8oR9B85599Ud9uEEPJaSwhVfr30DtCHMgMbooVTf0O+vNJz2pB6xNfX1+Xy5culTkYzYcKEZ4sWLaILP+rIhx9+mFrT29Sk6kxt0zg4Z4xVVKhV9bkmBzCYMTa4gvacc95U0/0TQshrhwnBuRxnjeXoBI3KSr80VEpRM12cR8DwJqUmNmTqZQeLs7CwqJNSe+TVVpmRc0coA++y/kNwteUO5bRTb08IIUTdKS/AaTJg9yHQRwYGoCPq3x9MKqWombx1eZg8fDkQWdc9IVVVXtlBQmpDZYLzWNS//w+EEPLq+MsQyM8Ern2kDM5JgzeixzxkZ9O8e4QQzWkcnHPOHWuxH4QQQoQmQH4mOACtepbGUhyltWimj95EaGWXOpEhIYSUqvpFPgkhhFRP4inlV784oNUWsLeTwOv5LQ3KSRzTkFbnfanPt9BDP6HvB+3r8M1FCGloXloNVUIIIaUI1QLAAYER0CuN0lleMWN6L0Tii6S67gYhpAGh4JwQQuqU8lIeeX46tOt5Kos6SmvRjH/6tCqtp4i7L1KkvHhp/6O1TBvJteyaUF11QuoBjX7xGWO6nHNpxS2rrjL7YIzZAhgEZV11dwBWAJIBnAWwmHN+oVj77wDMLmeTTpzzh6Xs5x0A0wF4QfkfNBLAPM75sTL65QpgHoBuAPQB3AEQDCCYZkklhJSqzS7g9lcQvnEeHFZ13RuNUbUWzWRG5GDi0CWVWkcRd1+U+WFHT8jyXt7ZmraIG2w9c4MCdKJOKpUyV1fX5hs2bHjg5+eXVdf9eRmuXbum0717d/eYmJjrpqamGk1S8Nlnn9lmZWVpbd68Oa4m+qBpzvkDxtgUxpheTexUHWOsHWMsFEBlhhe+ALAcQBMAhwEsBXAGQH8A5wpmLS3NZgDfl3JPLaVfwwFEAGgGYFPBus0BHCmYdKl4ew8AFwv68BeAlQAEAH4p+J4QQpT+MgRCGXDcA7AdBHR/ABg0nMCcaG7RlM1IfJ5WqXUUKS+ELzUwBwBZHqvKSH1sbKxwxIgRdo0bN24hEom8rKysWnbr1s15//79hurtgoKCrAQCgfesWbMsi29j8+bNJu3bt3cxNTVtZWBg0KZ169bue/bsMVJv8/TpU2FAQIC9tbV1C5FI5CWRSFp17NjR5fDhw/qqNra2ti3mzJnTSH29I0eO6Hfu3NnZyMiotY6Ojperq6vHd999ZymXl16ePCcnh7m7u3swxrzPnTunccyjUCiwdOlSSevWrd0NDAzaiMXiNs7Ozs1HjRpld+PGDZ3i7e/du6etra3t5eLi0ry07THGvBlj3seOHdNXfzwnJ4eZmJi0Zox5h4aGGla1vcqwYcMcBAKBd0hIiGlp/ViyZIlF48aNc4sH5jt27DBu27atm76+fhs9Pb02np6ezVauXFmkoH90dLSovOO4cuVKc0NDw9YAMHv2bEsjI6PW2dnZJd73GRkZWgYGBm3mzZvXCCj5Otva2rYo7bmPHj3arl27dm6qn6dMmWKjOk7qdycnpyKvwbRp0xqPGTMmXj0wX7p0qcTNzc1DLBa3MTQ0bN2sWTOPoKCgwj/as2bNit+zZ48kKipKVNpzrSxNg3NLAD8CeMgY+75ghLjKGGO6jLHBjLFDAM4D6FXJTVwE0IVz7sw5/5hzHsQ5fx9AVwD5AH5ljJX4ZQCwiXP+XSn31GL9MwWwCkAiAC/O+Rec8y+gHEFPKth+8Tf5rwCMAfhzzj/knH9d0P40gPGMsbcq+RwJIa+q/Ezll6xbYA30ZgxjAIAxjOu8L/X5FnXjUV2+02pVdHS0yMfHx+Ps2bNG8+bNi7t8+fLN0NDQO76+vhmTJk2yV2+7fft2SWBg4PNt27ZJim/n5MmTht26dUvft29fzPnz56M6duyYMXToUOezZ88WBnX9+vVreuPGDfHatWsf3rhx48bu3btjOnXqlJGQkFDmCcWWLVtMevXq5WZjYyOLiIiI/u+//24EBga+WL58uXXfvn2bKBQlB0U/++yzxpaWlpX69EChUKB///5OM2bMsPfz80vbv3//nWvXrt1cs2bNQ11dXcXs2bOti6+zZs0aSe/evVMyMzO1/v77b/3StmtlZZW3YcOGIsdr69atJmKxuNRp5SvbPiMjQ+vgwYOmgYGBzzdt2lTidVEoFFi/fn2jkSNHJqo/Pn/+/EbDhw93fuONNzJPnTp169KlS1EDBw5MnjZtmsO4ceMal7aviowbNy4pJydHa8uWLSVOEjZv3mwqk8nY2LFjy7x4Q0dHh3/zzTcV7tvZ2Vn66NGja+r3c+fORauWx8TEiI4fP24cGBhYuK+ffvrJfObMmXaBgYEvLl68GHX8+PHbkyZNep6ZmVlYhsna2lreqVOntBUrVjQqvs+q0PQsuQeAnwB4ApgJYCZj7AqAPQD+ARDJOS93ulPGWDMA7QB0h3J02QDKiYqyoBwFX65ppznne8t4/DRj7DiAtwG0AHBZ020WMwiACYDZnPPHatt/zBj7GcB3AAYA2AIUprP4AjjOOf9LrX0eY2wWgBMAxkJ5IkIIed1ZvQ88/xMC9x/BMbmue1MllNaimXPzruPHoK113Y1aMW7cOHvGGK5cuXLLyMioMNL18fGRjh8/vjCgCwsLM5BKpVrLli17unv3bvMjR47oq4/EhoSEFEkF+Pnnn59ERESY/PnnnyYdOnTISUxMFERGRhqEhoZG9+nTJxMAXF1d87p27VpmAfn09HStiRMnOnTv3j1tx44dhWdIbm5uiVZWVrKAgADnDRs2mI4dOzZFtWzXrl1GJ0+eNNq9e/c9Hx8fY02Pw/r1601DQ0PNfvvtt7sBAQGFH5O4uLjkde/ePav4SYBCocCOHTvMf/rpp1hbW9u8devWSbp161YiZWTw4MFJISEhjTIzM2MNDAw4AGzevFkyePDgpBUrVpQI+CvbftOmTaZNmzaVzpkz53njxo1b3r17V9vZ2blwwqUzZ86I4+LidAYNGlT4nO7evav93XffNR49enT8zz///ET1uKenZ7xIJOIzZ860Gzp0aEppz6c8tra28m7duqVt2bJFEhgYmKy+bMuWLRI/P79US0vLUk8yAOCDDz5I2LZtm8Xvv/9uPGTIkDI/qhIIBNze3r7MWV23bt1q6ubmlqM+8VRoaKhJnz59UiZPnlz4nvbx8SmRht2nT5+0efPm2a5Zs+Zx8WWVpdHIOef8bwCtAAwHcBvKoNobwHwAxwCkMMbuMMbOMMYOMsa2MMZ2M8aOMcauMMbSANwAEAIgAIAhACmUo83OnPNvOeeZ1X0yBVQHtLSD78sY+5oxNo0x5s8YMyhjG10Kvh4uZdmhgq+dNWx/BsoTkM6lLCOEvC7ur1KmshxpDPjsBt6VA84NMzAnmouNeQ5FvkZpqw1KfHy84PTp08ajR49+oR6Yq0gkksJAav369RJ/f/9kHR0d7u/vn7xu3boSo7Tq8vPzkZWVpWVmZiYHAGNj43yxWKzYu3evaU5OjkbpPvv27TNKTU0VTps27XnxZcOGDUtzcHDI/f33381Uj8XFxQm/+OILx02bNj0wMDCo1Av2+++/mzk6OkrVA3N1WlpFQ63Q0FBDqVSq1b9///RRo0YlHTx40Cw9Pb1EPObj45NtY2OTpxpNjomJEV2+fNlwzJgxpY4gV7b95s2bJUOGDEkyNzfP79y5c9qaNWuKvC7Hjx83cHBwkKqnd2zbts1ULpezmTNnxhff3pdffpkgFosVv/32m1nxZZoYPXp04j///GN4586dwtSQqKgo0eXLlw3GjBmTWN66Tk5OuQEBAQnffvutbX5+mTF8hc6ePWvQqlWrIicWjRo1kl25ckVfvV+l6dChQ1Z8fLx2dHR0tVNbKjMJEQewHcB2xlgPAB8D6AtAD8pg3RlA01JWLf6L9B+AdQB+45xXLhGvAowxeyhH+Z8BuF5Kk++L/ZzKGJvIOd9S7HGXgq8xpWwjplibcttzzvMZYw8AeDDGhJzzUs/YCtJw1FNxDAFAJpNBJqOZg8uiOjZ0jMpHx0lztXWsBLe+hBYAnvsE8lfgdaD3lGb2bDpR112oFVFRUTqcczRr1qzcQg7JyclaERERpn///fdtABg5cmSSn5+fe1paWpyxsXGpQfDs2bMts7OzBSNGjEgBAG1tbaxevfrBxIkTHbdt22bh4eGR3b59+4wPP/ww+Y033ii1VFB0dLQuALRu3brU/jVt2jTnwYMHuoByJDsgIMBpxIgRCb6+vtmVDa4ePHig26RJkyL7GT16tN3OnTslAGBoaJgfHx//n2rZ+vXrJf369UsRCoVo27attHHjxrmbNm0ynTBhQokgevjw4YlbtmyRfPbZZ8lr1qwx79y5c5q1tXWZI7+atr9+/brOtWvX9A8ePHgPAAICApKDgoLsfvjhh2eqk4lHjx7pWFpaFvkFv3Pnjq6BgUG+g4NDiV98XV1d3rhx49x79+6VllZcoYEDB6ZZWFjIgoODJcuWLXsKAGvXrpVYWVnl9evXL72i9efPn//M1dVVEhwcbPb5558nl9YmJiZGTywWt1F/zN/fP2n79u2xAPDkyRMdLy+vIp/ILFy48Fn//v3Fbm5uLRwcHHK9vb0ze/XqlTZq1KgUgeD/E4w5ODjkAcDdu3dFbm5u1bqwukplmjjnRwEcLQgo3wDQCUB7AI0BWAAwg3JkPKHgfh3K3OvTnPNaScBjjGkD2AplgPs151z91OkagNFQppc8g7K6y7sA5gDYxBhL5ZwfUGuv+jirtJOH9GJtKmqvWkcLyoA7pYw2QSiloszx48chFovLWIWoHDlypK670CDQcdJcTR8rD7wNZ60wyLkuwsPDa3TbdYneU+Wzb2aKu/+VGLxt8DjnGo1gb9iwwczOzi73rbfeygGA9u3b59jY2OSFhISYqacJqAQHB5stXbrUZseOHXdtbW0Lg8qRI0emDh48+NqhQ4cMz507p3/06FHj4OBgq2XLlj0sLahV62eFfVywYEGjrKwsrQULFjzT5DlpYt68ec+mTJnyYufOnSbqKSWJiYmCw4cPmx45cuS26rHBgwcnbd68WVLa8xg7dmzS/PnzG0dFRYl27twp+fHHH2PL26+m7YODgyWdOnVKVwXugwYNSvviiy8cDx48aNi/f/8MAJBKpVo6Ojov7WMfoVCIwYMHJ/3+++/mS5Yseco5x65du8yHDh2apB4El8XGxkYeGBj4fMGCBbZjxowpNdZydHSU7t+//676Y6ampoXxolQq1dLV1S3ynB0cHGRXr169fenSJd1jx44Znj9/3mD8+PFOGzdulJw6dSpG1Td9fX0OAFlZWdWe4LNaNVQ557kAThXc6wxjTAvKiiq+ANZxzosk+HHO/yy2ykMAPzPGbgE4AmX5wwOoWwsBLFP72RDA465du8Lc3LyMVYhMJsORI0fg5+cHbW3Key0LHSfN1fixutwXgtR/kO/7AHKRMpOud/W3WufoPaUZD5dnmDHu17ruRo1r3ry5lDGGW7du6ZbXbsuWLRZ3797VEwqF3qrHFAoFtm7dKikenK9du9Z08uTJDhs3brzv7+9f4jo2sVjMBwwYkD5gwIB0AM+GDBnisGjRIpvSglo3NzcpAFy9elW3tBKA9+7d03N2ds4BgBMnThhevXrVQFdX11u9ja+vr0e/fv2S9u7d+7C85+jo6Jh7//79IsfBxsZGbmNjI2/UqFGRUev169eb5ebmsq5duzZTPcY5h0KhwH///afTsmXLXPX2VlZW+V27dk0dNWqUY15eHhs0aFBaampqmZGqJu3lcjl2795tnpiYqK3+uuTn52PDhg0SVXBubm4uv3XrVpFKK66urtLMzEzBw4cPtR0dHYuMnkulUhYXF6fToUOHcq9BLE9gYGDi6tWrrQ4ePGioUCjY8+fPRYGBgeWmtKibNWtW/KZNmxotXrzYorTl2tra3NPTM7e0ZQBgZmYmT0lJKTU2btu2rbRt27ZSAAmHDh1K6Nmzp1t4eLhh3759MwDgxYsXAgCwsrIq85MNTTX4SYgKAvMQAMMA/AYgUNN1OefHGGP3ALRgjBlxzlWj4qoRcGMoq7OoMyrWpnj70hhBWSe9zDdswYlO4RuGMeWghLa2Nv3j0wAdJ83QcdJcjR2rJOVlKlqnnYGer95MkfSeKt+MseuQm/vqpf5YWlrmd+zYMT0kJKRRUFBQibzzxMREwf3790U3b94Uh4WFRUskErnaMmGfPn3c/v33X902bdpIAWDNmjVmEydOdFy/fv39oUOHapTy2qxZM+nhw4dNSlvm7++fbmxsnL9kyRIrPz+/e+rLtm3bZvzo0SOdGTNmPAGAX3/9NS41NbXw4sa4uDjRwIEDXdavX3+vU6dOFV7YOGTIkOTAwECn3377zWT48OGp5bXdunWrZOzYsfFjx44tEnB++umnDsHBwZJffvnlSfF1Ro0alThkyBCXTz/99LlQWHHYVlH7Xbt2GWdlZQnOnj0bJRQKCz9a+Pfff/UmTJjglJiYGCuRSPK9vLyyt2zZYqFQKArz5ocNG5Y6b968xvPnz7dct25dkQsflyxZYpGTk6M1fPjwUlNKNNG8efPctm3bZmzYsEHCOcdbb72V7urqqnGKiLGxseLLL798unjxYhs/P7/Uyu7f09Mz+/bt2+WecAJA69atcwAgMzOzcJT8ypUrekKhkHt5eVV7VrYGHZwXBOYbAXwEYAeAkZzzyn4EkwhlvrwY/09ZiQHgA2UuefH/pqXll5eWh67qowCAE4AHZeWbE0JebRzAHvNkDCpxCU7DRTOEaqaH7Vjo3S9RXvqVEBwc/Khz587uXl5ezWbOnPnE29s7RyaTsfDwcKOQkBCLLl26pLdo0SKrV69eJQo+eHp6ZgUHB0vWrFnzODg42Gz8+PGO8+bNi/P19c2MjY0VAso0AXNz8/znz58L/P39m3700UeJ3t7eOcbGxvnnzp3T//nnn63KCsCMjIwUy5cvfzR27NgmH3zwgcOkSZNemJiY5IeHhxt99913jXv27JmiSn1wcXHJK74uALi6uuY2bdq0wjOrsWPHJu/bt8/k448/bnL16tVnvXv3Tre1tZXdvXtX9Mcff5ip0h7OnTunFxUVJf7tt98eqE5KVAYNGpS8ZMkS6xUrVjwpfrL7/vvvpz99+vSaevpFeSpqHxISIunatWuaKtVIxcvLSzpjxgy7devWmQUFBSX06tUrfdy4cVqRkZG6BSPGcHFxyZs1a9bj77//3k5XV5ePHj06SSQS8d27d5ssXLjQduzYsfHFK7XcvHmzRLDr7e1d5rUKI0aMSJwyZYojAKxateqBJs9Z3ZQpUxJ//fVXywMHDpi3bNmySF/y8/OZ6v2lwhiDnZ2dHAB69uyZ9sUXXzjK5XKoTmwCAgLsbWxsZH5+fumOjo6yuLg47Xnz5lmbmprKu3btWvjePnnypKGPj0+mqlJOdVQ7L6auFAvMfwfwYbE8c022oQ/lxEJZUAbpKicLvr5dymrvFGtTUfuOUM4WerKUZYSQV9V/nwG3pgPvcrB3Od5vy/Eq3dIKPjBMQ1qd96U+347sWgtXz8qVftYybSSHtujlziqtLeJapo0qNYDk4eGRd/ny5Vvt27fPmDFjhp23t3fzXr16uR4/ftxwyZIlcX/++adZv379Ss397devX8off/xhnpuby0JCQizy8/NZUFCQvYODQyvVfdy4cXaAcjTU29s7a/Xq1ZY9evRwa9OmTfO5c+faBAQEJISEhJSZgz1q1KiU0NDQ6MePH4t69Ojh1qJFC89ffvnFctKkSc8OHjx4v3gVlarS0tJCaGjo/blz58YeOXLE+N1333Vt0aKFZ2BgoKOtrW2e6mLYNWvWSJo2bSotHpgDwAcffJCSnJysvWvXrhKfwGtpacHa2lquq6ur0XuivPZxcXHCEydOGL/33nslXheBQIB33nkndevWrRJAmSLz9ttvp27atKlIbu233377YsuWLXfPnz9v0KFDh2be3t7N//jjD7PFixc/Wrt2bYkyguPGjWvSoUMHD/X748ePyxwc/uijj1K0tbUVurq6ioo+iSiNjo4OnzFjxtPc3NwSoyF3797VVX+POTg4tHJ2dm6pWj5o0KA0gUDA9+/fXzgJlp+fX/qlS5f0hw8f3tTT09Pzgw8+aKqjo6OIiIi4Y2VlVRh3/vnnn6ajRo1KqGx/S8Ma4qzyaqksIwDsBjCsnCoohgCsOed3ij2uB2ADgA8AbOScj1ZbZgrgAZRlGduoap0zxhoD+LegWRP12u6MsZNQ5rz3VtU6Z4yJAByF8oLZDpzzc5V4jkYA0hITEynnvBwymQzh4eHo3bs3fbReDjpOmquRY/XvaODJRuX3zX8BnD6tuQ7WE/Se0syQjrMglebgQORSADBWS58EAERGRroLhcIIFxeXTLFYXBi0KeLui6oyY2dVaZk2kmvZNalWhQny6rlw4YJe7969Xe/fv3+9rOo6r5qFCxdahIWFmZw5c6a0in2l2rVrl1FQUJDd7du3b5b19zA7O1s3JibGQC6X9/T29r5daqMCDTWt5VsoA/NMAHegnBSpeJt9nPOrAMwB3GaMXQJwC8BzKGc87QFldZnrAKapr8g5T2GMjYey+ssVxtjvBYuGFGxvSCmTLn0G4CyAfQXtnwHoA+XI/M+VCcwJIQ2cUDnhHwcwXOszbMdnddufWkBpLZrprzW1Sutp2TXJo2CZ1LU33ngjZ/bs2Y+jo6N12rVr91r8ok+dOjUhNTVVkJKSoqVe4708WVlZgnXr1j2sqYGKhhqcOxZ8NQAwo4w2DwFcBZAM4BcoZyftDcAUQA6UgfpKKAPnEm84zvlvjLFEANMBjILy/2wkgHkFpSSLt7/JGHsDysovfaBMZbkD4HMoJ1sihLwuWqwCdKzBtE2xzeFTbKvr/tQCmiFUQ6eABV+H4EBkXXeEVJWvr6/L5cuXS520cMKECc8WLVr06tXKVFNeqcpXkba2Nn744YdKvaajRo0qq0x2lTTI4JxzPhLASA3bpgMYX8X9RACIqET7aACDqrIvQsgr4Oo44PE65fd+LwCdUqt5kdfImF4LkJhQ5eIVpB7YvHnzw7JqV1tYWFChB1LjGmRwTggh9VLS3wCUH7N1TG+Ec69wbE5pLZoZkPp1XXeBVJOTk9OrVwuT1GsNtloLIYTUO93vAiIrMJM3cdairuuE1O6NqrVodvt595fQ0aO0H0KI5mjknBBCqiv1KnCmjfJ73zjAqHKl88ir65d5fyI3hwZeCSGao5FzQgiprhufF3678a4d2GtwMy6YENkYxnXel/p8u3X1YR29KQkhDVWNB+eMscaMMR/GmG9BLXFCCHm1dTwL5Z9TAUZ51XUixcu5UVqLZrchH3ev07cmIaThqZG0loKJfr6CsoKKjdqiFgCi1NoNBfAegDTO+dia2DchhNSpCAkgTwLeOA1YdKzr3pB6RqRTtX+zOTEPRXnxCS8t9VRkaSHXc3GkuuqE1APV/sVnjLkACAfQBID6TEClTT36D4DflKuxzZzzM9XdPyGE1Cl5QQngi35AH6paQor6bfXhSq+TE/NQdNnzbU+eJysxu15tYSJt7nPj8A0K0Eld279/v+HkyZPt79y5c1Mo1CxMfffdd5t4e3tnff/99/G13L2XolppLYwxXQBhAJoCyAawGMC7ZbXnnD8EcLzgx37V2TchhNQXHMASe2md5ze/zBvlnGt2e9HiEXipY1Vly4tPEL7MwBwAeJ6MVWWkPjY2VjhixAi7xo0btxCJRF5WVlYtu3Xr5rx//35D9XZBQUFWAoHAe9asWZbFt3Ho0CEDLy8vdxMTk9a6urpeTk5Ozb///vtG6m2ePn0qDAgIsLe2tm4hEom8JBJJq44dO7ocPnxYX9XG1ta2xZw5cxoBQHx8vGDEiBF2jo6Onrq6ul7W1tYtRo4caZeUlCQovv9Vq1aZe3p6NtPT02ujr6/fpm3btm47duwwVm8zZcoUG8aYd/G7np5eG02Ok/r6AoHA28rKquUHH3zgEB8fX6I/mZmZzNjYuLWpqWmrnJycEu8DW1vbFowx72PHjumrPz569Gi7du3auanv093d3UO9TUREhIGhoWHr0aNH2ykUihJtVP0cNmyYvfp6586d02OMeUdHR4sAIDo6WsQY8z537pxeWcdG/Q4AAwcOdCxtWadOnVzU9zV9+vTG06ZNe6YKzOVyOaZPn27l5OTUXFdX18vY2Lh1y5Yt3ZctWyZRrTN79uynP/30k3Vpr29DVN2c808BOAPIAtCJc/4N5zy8gnX+gnKE/a1q7psQQupO0iXgLyPA7Qewdzmmtqjr7OaXe6Occ81uO2cvh55YVMdv1toRHR0t8vHx8Th79qzRvHnz4i5fvnwzNDT0jq+vb8akSZOKBHfbt2+XBAYGPt+2bZuk+HYMDAzyP/nkkxdHjx69fe3atRvTpk17tmjRItslS5YUtu3Xr1/TGzduiNeuXfvwxo0bN3bv3h3TqVOnjISE0k8oYmNjtZ8/fy5asGBBXGRk5M01a9Y8PHHihHFAQICDertx48Y1njp1qsN7772XfOnSpajTp0/fevPNNzOHDx/uvGDBgsKZCmbPnv380aNH19TvTZs2lfbu3VvjmSGdnZ2ljx49unb37t3/goODH5w4ccJo9OjRDsXbbdmyxdTZ2TmnSZMm0t9++82ktG3p6Ojwb775plJloXbu3Gk8YMAAl08++SQ+JCQkTkur9BBQR0eH79q1S3L9+nUdTbZb/NhYWlrKpk6d+lT9MVXbTp06pRc/jnv37r2vWn7o0CGD2NhYnREjRhQe16lTp9qsWbPGctasWU+vXr16IyIiInrUqFGJqamphYF427ZtpXZ2drlr1641q8wxqa+qm9byHpSDRis451c1XEf1IrmU24oQQuqz8+2UX6O/Bly+qtu+kHpr4uAVyMt7NUspjhs3zp4xhitXrtwyMjJSqB738fGRjh8/PlH1c1hYmIFUKtVatmzZ0927d5sfOXJE38/PL0u1vEOHDjkdOnQozAlzc3NL3rdvn+mZM2cMp06dmpiYmCiIjIw0CA0Nje7Tp08mALi6uuZ17do1u6y+tW3bVnro0KF7qp+bN2+em5iY+CQwMNBJJpNBW1sbx44d01+3bp3lvHnz4mbMmPFC1dbLy+uJVCpls2fPths8eHCqs7OzzNjYWGFsbFz4HM+fP69379493Z9//vmRpsdLIBBwe3t7OaCc2CgsLCxl165dJU5WNm/eLBk6dGgS55xt2rRJMnbs2BInAB988EHCtm3bLH7//XfjIUOGpFW07+DgYLMJEyY4fvfdd3HTp09PKK+to6Oj1NzcXPb111/bhoeH3y+vLQAUPzYCgYAbGhrmq56rOpFIpCjtcZVt27aZdezYMV0sFhd+3BQREWEycuTIF6NHjy48Dm+99VaJHMKePXum/vHHH2ZBQUHlPr+GoLoj580KvlYmqa4gQRMm1dw3IYTUHYEBAEAB1HnqRF3cKK1Fs1u2UQY4KpfW0hDEx8cLTp8+bTx69OgX6oG5ikQiyVd9v379eom/v3+yjo4O9/f3T163bl2JgFTd2bNn9a5cuWLg6+ubAQDGxsb5YrFYsXfvXtPS0jw0lZqaKtDX18/X1lZOCvXbb7+ZicVixZdfflkimJsxY0a8XC5n27dvNy1tW8HBwRIHB4fcnj17ZlalL9HR0aITJ04Ya2trF3lz3Lx5U+fq1asGI0eOTBkxYkRyZGSk4Z07d0p89OLk5JQbEBCQ8O2339rm5+cXX1zEwoULLSZMmOC4YsWKhxUF5io//PDDk0OHDpmeOnVKXKknVk0XLlww8PLyKnLSZWFhITt16pTR06dPyx1QfvPNN7OuX7+uX533SH1R3eDcoOBrZd6cqo9JXs2hBELIyyVLA/KSym0izZPjWUqV/oeW7umfgPMswE8KrXfrOnGibm6U1qLZLSxiBTq+7Vlz7716IioqSodzjmbNmknLa5ecnKwVERFhOnLkyCQAGDlyZFJYWJhZWlpaifjD0tKypUgk8vL19fUYNWrUiylTpiQCgLa2NlavXv3gjz/+MDc1NW3j5eXlPn78eNsLFy5oXK752bNnwiVLllgPHz68cET/3r17unZ2drm6urolzp4cHR1lBgYG+Xfu3NEtviw7O5vt27fPfPjw4ZUaoY2JidETi8VtdHV1vdzd3VvcvXtX94svvnim3iY4OFji6+ubZmFhkW9paZnfsWPHtODg4FJPZubPn//syZMnOsHBwWWmcty/f193+vTp9osXL3706aefJmva144dO2b37t07+euvv67RGdVOnDhhIhaL26jfv/nmGyvV8qdPn4psbGyKXJT8008/xSUnJwvt7Oxaubq6egwbNsx+165dRsW3bWdnJ5PJZCwuLq7BT8lb3eBc9R/RsRLrNC/4+rya+yaEvO5k6cBxV+CYI5ATV2azTrN2wO6TYJy4EVv9fSZdAq68p0xnuTa0+tsjr7RhvrNx9vDNuu5GjeOcazQ6uWHDBjM7O7tcVRpC+/btc2xsbPJCQkJKBJQnT568febMmVuLFy9+tG7dOss1a9YUthk5cmTqs2fPru3YseNu9+7d086ePWvYoUMHj5UrV5pX1Ifk5GStd955x9nZ2Vm6ZMmSp8WehyZPo4itW7eaZmVlaX3yySfljwoU4+joKL148WLU6dOnoz799NPnHTt2TJ8+fXphOo1cLseuXbvMAwICCrcbEBCQ/Pvvv5uXNjpuY2MjDwwMfL5gwQJbqVRa6uthaWmZ5+Hhkb1y5UqrR48eVSpoXbRo0dPLly8b7N27t0QgXFXt2rVLv3jxYpT6ffLkyYUnObm5uVp6enpFXhRvb2/pnTt3bv7999+3hg8fnpiYmKg9bNgwlyFDhhTJ1xeLxQoAyMzMbPATbFb3CVwp+OpbiXU+gjJP/Xw1900Ied3xfECRg3wuxVjFSPQr43Y79z7yFRw5eWWmOmpOoRyB5wAO5++r87SJurpRWotmtxxFuQPLDVbz5s2ljDHcunWrxMiyui1btljcvXtXTygUeqvu9+7d0926dWuJ0WB3d/e8du3a5Xz55ZeJ48aNi1+4cKH6vCkQi8V8wIAB6T/++OOzf//99/bAgQMTFy1aZFN8O+pSUlK0unfv7mpgYKCIiIi4q6OjUxj4NW3aVPr48WOd0gLbhw8famdmZgpcXV1LvICbNm2SdO3aNc3Ozq5Sf1C0tbW5p6dnbtu2baW//PLLE4FAwKdOnVrY/z179hi/ePFC++OPP26qOlZjx45t8vTpU9GBAwdKDZBnzZoVn5ubq7V48WKL0pbr6+srTpw4cUcsFiu6dOniWpkAvXnz5rlDhw5NnDlzpm1VTmJKIxaLFZ6enrnqd0tLy8IzDxMTE3lycnKJiisCgQCdO3fO/vbbb18cPnz43sqVKx/s2rVLcvv27cKUH9XFwdbW1jXwh75uVTc4/wPKyivjGGP2FTVmjE3C/wP5HdXcNyHkdScyBTpHQdDlDtbpH8OBMm6x877GjeWj0MurSfX3adEVaBoEZjUYb79V10kTdXejtBbNbn+e+QFObiWqBzZ4BSkX6SEhIY3S09NLxBKJiYmCixcv6t28eVMcFhYWff78+Zuqe1hYWPTVq1f1//333zIDe4VCAZms/HKSzZo1k+bk5JQZxyQnJ2t17drVVVtbmx86dOiu+kWGgHJUOjs7W2vp0qUlAtt58+ZZCoVCPmzYsCIXY96+fVt04cIFw9GjRycWX6eyZs6c+WzNmjVWDx8+1AaAkJAQybvvvpusfqzOnz9/8913303esGFDqaktxsbGii+//PLp8uXLrcsaMbawsMg/ceLEHQMDA0Xnzp3dVPvTxIIFC54+fPhQ97fffnspVVCaN2+eHRUVVWG6UsuWLaUAkJGRUficr127pmdpaSl7FYLz6lZr2QpgMoCWAE4wxj4HEKG2nDPGGAAfAJMADIVywOk05/yvau6bEPI6e7ITuDkBcP0ecPy03KZtv96Khwlp2DvNH/3aOpfblqWcwztao6AVPQrwXFp04YmWQOZ15ffvvnoX+ZGaF+i/GM8ev6i4YQMUHBz8qHPnzu5eXl7NZs6c+cTb2ztHJpOx8PBwo5CQEIsuXbqkt2jRIqtXr14lLvjw9PTMCg4OlqxZs+bxwoULLRwcHPJatGghBYCjR48aBgcHW40ePToeAJ4/fy7w9/dv+tFHHyV6e3vnGBsb5587d07/559/tvLz80strW+qwDwnJ0dr27Zt91JSUrRSUlK0AGU6iFAoRI8ePbJGjRr1Ys6cOY3z8vLY4MGDU/Py8tjGjRvNNm7caDlnzpw4Z2fnItfH/frrrxKJRCIbNGhQhRVSKtKjR48sV1fX7G+//dZ60aJFT//++2/jHTt23G3btm2R0foPP/ww6cMPP3SOj48XqI8yq0yZMiXx119/tTxw4IB5y5Yts4ovB5QX6J44ceJOt27dXLp06eJ24sSJaEdHxwqv/bOzs5OPGzcuPjg42KqitprIy8vTio2NLRJ7amtrF4529+jRI33Hjh1FUpV69uzZ5K233srs1KlTVuPGjWV37tzRmTlzpq2Dg0Nu69atC4/VmTNnDHx9fav9utQH1QrOOecKxlg/AGegzDsPhXIyItV/rRMADPH/i0AZgHsABldnv4QQgqTjQF4C4hI34nPH8s/1773oCHCGCf+uxvq298ptOzD1AUawFKQk/gFTFAvOM6MAKP/AaaHBFwSoFj3oYQd2wBjGyAHNjFqWAfHfVHodkaWFnIm0+cueIVRkaVGpEUcPD4+8y5cv35o1a5b1jBkz7BISErRNTU3lnp6eWUuWLIkbM2aM0/jx40u9vqxfv34pv/76q9XKlSufKBQKNnv27MaPHz8WCYVCbmdnlztr1qzHU6dOTQCUo8Pe3t5Zq1evtoyNjdWRy+XMysoqLyAgIGH+/PnPStv+uXPn9P/77z99APD09CxyRe7t27evu7m55QFASEhIXMuWLbPXr1/f6IcffrDV0tLiHh4e2Vu3br07bNiwIoFefn4+fv/9d8mQIUOSNJ25siLjx4+P/+KLL5wsLCxkenp6ir59+2aUcqwydHR0FOvWrTOfOXNmiTM9HR0dPmPGjKeBgYFO5e3L3Nw8//jx43e6d+/u2rlzZ7cTJ05Ea9LHb7/99vnmzZstcnNzq/2kT58+beTg4NBK/TFHR0fpgwcPbgLAxx9/nDR37tzG165d02nVqlUuAPj5+aXv3r3bbMWKFdaZmZkCiUQia9++fcaCBQueqirvZGdns8OHD5vs27cvprp9rA9YTeQRMcbMAKyCMugua3YmDmA3gE855xoX7X9dMcaMAKQlJibC3LzC611eWzKZDOHh4ejduzdUv6SkpFfyOOUlA093AFYDAN1y006x7VQUjl1/hOBxfhBpl///RSbNwM3DX6N5p0+hbdqi6ML0KOB0G8C8C/DmoWo+gYbtlXxP1YLrl+9h9vg1+PPCjwBgzDlPV18eGRnpLhQKI1xcXDLFYnHhKGBOzENRVWbsrCqRpYVcz8Uxr+KWhNSuTz75pHFGRoZg+/btGteQ/+GHHywOHDhgcvbs2XobnGdnZ+vGxMQYyOXynt7e3rfLa1sjv/ic82QAAYyx6QD6QJnG0gjKQD0JwL8ADnLO79TE/gghr7k7c4GsO0CLXwChYYXN/7wYgwsxzxDzPAXN7Uq9bur/BLp4xN+BZ/oV4O63gMdSQL8JcKgRIEsATDu89oE50Vz4rnPIl5coA14hPRfHPAqWyeto/vz5z5YsWWKRn58PgaCs8d6itLW1+S+//FID5bjqh2oF54wx1cWdzzjnMZzzRwB+qX63CCGkDPlS4M63AIC5NtG4ZFlxKuTBfzoCYHhn3yJ4fVH+wIo2tPERPkL8/fGwzcoEjNsArt8qA3MAPOXsa5/SAlBai6beOxVU110gL4FYLG5T1rK9e/fGVHWyoteRRCLJX7RoUaXKbatq4r8qqjtyfgLKdJUxAOrtRwmEkFeIQBdovgrIisEsyQ8Ayq3kBgAI9DuMU1GP8deQcXAoKAFYFhlkCEc4LF23AIkHAfuPlQv0nICcB2CWA8HxRw08kYZNdZzSkAZtUFpLWda9vx+hO0/XdTdILbt48WJUWcscHekTEFI51Q3OMwHoA7heA30hhJDyKWTAw58BwxaA03iNV2vW2BxPkjNhbqjxhILgjd4FbAcAj9YAt2cBsmTA9yZg5FGVnpPXlJunPcIYfdLyqvP09Myt6z6QV0d165yr8nvE1e0IIYRU6NkeIGoKcLl/pVabvPFvhEbew+RNf1duf0mngeuBBSkt+cBpn8qtT157K7/7o0qzUBJCXl/VHTkPA9AMQA8A9LkdIaR2mb4FGHsjxsQUX6KfxqsZOrVB9hMxbnTYhn4VXBajyjkfiqEQGWZhppkZPJKTAQC/WeXgI8o3B0A555rq7jQG4pjyU6kIIURddYPz5QBGA5jEGNvNOb9RA30ihJCSFHlA5m3grZNwEerjQCVWDbA5iEMJD3G+5dYK26pyqXdiJ7RF2kD7/y/7sOBOKOdcU6m/ZuGzgQvruhuEkAakWmktnPPnAN4FkAHgLGNsOmPMsSY6RgghRdyeDlzsqUwzqaTtZ28jKVMKnaFLK25MSA0a22sBstKkFTckhJAC1S2leL/gWxGUM4HOBTCXMZYJIBVAiWlm1XDOedPq7J8Q8hrRswcA3NTLQFAlUlqUOgIA8vSTwSpIS6F0Dc3QcdJMP+0vwWWVzznPVcSI5Dz+pU1CJGSWch0tF6oqQkg9UN1ffMdiP6v+6xkW3MtDV8gQQjTDOdB4JNB4JJprG1UqpQUALi68jzWHorBh/LsA5pfbltI1NEPHSUOngCUzt+BgpOar5CpiRDHZnp4ceS/tAgcGEXcR37hBATp52Xx8fNw+/vjjhMDAwGRN2kdGRur27t3bNSYm5oaRkVHlZ/hqAKpbrWVzNe5bqrlvQsjr4uqHwCFTIPFolVZ/I2gPQk7cgtWY1TXcMULKN8x3Nk5H/FepdeQ8XvgyA3MA4MhjVRmpj42NFY4YMcKucePGLUQikZeVlVXLbt26Oe/fv7/IAF1QUJCVQCDwnjVrlmXxbRw6dMjAy8vL3cTEpLWurq6Xk5NT8++//76RepunT58KAwIC7K2trVuIRCIviUTSqmPHji6HDx/WV7WxtbVtMWfOnCLrHTlyRL9z587ORkZGrXV0dLxcXV09vvvuO0u5XF6kD7a2ti0YY97q9+nTp1c8wxmA0NBQQ8aYd2JiYonpLEvrU1nHo7Q+qN8HDhzoCADqjxkYGLTx9PRs9ttvv5mob3/KlCk27u7uJeq+RkdHixhj3ufOndNT77vqbmpq2qpz587OFy9eLFJ3duDAgY49evRoWnz/pd2nTJlio9pPafdjx44Vvmbbtm0zTkxM1B47dmxhYH7+/Hm9bt26OZuZmbXS0dHxsrW1bdGnT58mT548EQKAt7e3tE2bNplz584t8V56VVRr5JxzPqqmOkIIIWXKiQOgwBrpbIRhUxU2oJwhND4rldJaaggdJ80MkH1T112oNdHR0aJOnTq5GxkZ5c+bNy/Oy8srJy8vj4WGhhpPmjTJvn///jdVbbdv3y4JDAx8vm3bNsncuXPj1bdjYGCQ/8knn7zw9vbONjQ0VBw7dszgyy+/dNDX11dMnTo1EQD69evXVCaTsbVr1z50c3PLffLkifDw4cNGCQkJZcYxW7ZsMRk9enSTQYMGJS1cuDDa3Nw8PywszOj7779vfOHCBf2wsLD7Wlr/H6OcOnXq0y+++CJB9bOJiUmtjcqWdjwuXbp0S3XScPz4cYORI0c2vXbt2g0TE5N8ANDX1y/MOFixYsVDf3//tNTUVMFPP/3UaOTIkU1cXV1vtWvXrkq/jKr9xMbGiqZNm9a4f//+zg8ePLihq6tbIsvh0aNH11Tfb9682Wzx4sU2N2/eLCwIYmxsrHj+/LkQAPbt23enTZs2RfpkaWlZmPK8evVqy2HDhiUKBMrzmqdPnwp79+7t2q1bt7SDBw/eMTc3z4+JidHZt2+fSUZGRuGLNXLkyKQJEyY4LFiw4Jm29qv3yd1Ly2cjhJAq8/kTSL+GT8y74JMqlDIc4RuGiKsPEB8yDcCMcttSuoZm6DhpRnpcio/fLT+VqqEaN26cPWMMV65cuaWeXuDj4yMdP3584XTqYWFhBlKpVGvZsmVPd+/ebX7kyBF9Pz+/LNXyDh065HTo0KEwgHNzc0vet2+f6ZkzZwynTp2amJiYKIiMjDQIDQ2N7tOnTyYAuLq65nXt2jW7rL6lp6drTZw40aF79+5pO3bseKS27UQrKytZQECA84YNG0zHjh2bolpmaGiYb29vLy99izWnrONhY2NTuG9zc/N8ALCxsZFLJJIS1++Zmprm29vby+3t7eVLly59snHjxkaHDx82rGpwrtqPvb29/IsvvogPCAhwvnbtmu4bb7xRYnvqx8jY2Di/+GMA8Pz5cwCAhYWFvKxj+vTpU+E///xjuHLlStWcOTh27JhBRkaGYOfOnQ9VQbe7u3te3759M9TX9ff3Tx8xYoQwPDzcsH///hl4xVQ3rYUQQmrXtTHAhbcBfWegijMtbjkVhRfpOeg8a3sNd46Q8k0auhIZqa/eJwvx8fGC06dPG48ePfpFaXm/6gHl+vXrJf7+/sk6Ojrc398/ed26dZLytn327Fm9K1euGPj6+mYAygBQLBYr9u7da5qTk6PRH4F9+/YZpaamCqdNm/a8+LJhw4alOTg45P7+++9m6o+vXLnS2sTEpHWzZs08Zs2aZSmTyTTZVaVV9niURyaTYdWqVRIAEIlE1b6WLykpSbBz506zmtpeeY4ePWqgq6uraNOmTWE5IxsbG1l+fj7bunWrqUJR9gcXurq63N3dPfvkyZMVXd/YINHIOSGk/uIceLINUORiYep7OK9nXcUNKdNaTt2OpbSWGkLHSTMDnr+aaS1RUVE6nHM0a9as3DqRycnJWhEREaZ///33bUCZjuDn5+eelpYWZ2xsXCT6srS0bJmSkiLMz89nU6ZMeTplypREANDW1sbq1asfTJw40XHbtm0WHh4e2e3bt8/48MMPk0sb2QWA6OhoXQBo3bp1qf1r2rRpzoMHD3RVP48dO/aFj49PtoWFhfzkyZMG8+bNs3327Jn2+vXrH2t6TOzt7VsWf0wqlRYZBK3M8SjP2LFjm3zyySc8NzdXS6FQwMbGJm/EiBEaXVBZXt9zcnK0AKBbt26p6kFzVXXv3t2dFRtUyc7O/hcAHj58KDI3N5epUloK2meNHz/++bhx45ymTJni0LJly6zOnTunjxs3LsnOzq7ICLylpaUsNjZWVN0+1kfVLaX4UXXW55zTRaGEkLIxBrQ9CGTeQpDV5wBKXG+lEXODVUjOlOLigg/RFuUHS5SuoRk6Tpo58s1F/DxvV113o8ZxzjUawd6wYYOZnZ1d7ltvvZUDAO3bt8+xsbHJCwkJMZs8eXKietuTJ0/eTk9PF5w+fVp/7ty5jZ2dnXM/+eSTZAAYOXJk6uDBg68dOnTI8Ny5c/pHjx41Dg4Otlq2bNnDCRMmJJXTT42ez3fffVeYB//GG2/kiEQixdSpUx1WrVr1RE9PT6ONHDly5HbxALt79+5u6j9X5niUZ86cOXG9e/dOv3Pnjs5XX31lt3Tp0lj1XO7KOnLkyG0DAwPFqVOnDJYuXWodEhISW/FaFduwYcP9li1blhrk5+TkaOno6JQ4tqtWrXoyY8aM5+Hh4Ub//POP/qZNmyxWrFhhffTo0Wj1tB1dXV2F6mTiVVPdkfNNqHpJRA6q2EIIKU/MfECeDrgvAFjVAnMASMtS/m84efMx2rrY1lTvCKnQzX/vV9yoAWrevLmUMYZbt27pltduy5YtFnfv3tUTCoXeqscUCgW2bt0qKR6Muru75wFAu3btcuLj47UXLlxoowrOAUAsFvMBAwakDxgwIB3AsyFDhjgsWrTIprTg3M3NTQoAV69e1VXPb1e5d++enrOzc5kf+XTs2DErPz+f3blzR9SqVavc8p6j2j7ziueHC4XCIjFSZY5HeaytrWWenp65np6euaampg/ee+89lxs3bty0tbWVA4CRkVF+RkZGiT+aSUlJAgAwMzMr0k9V31u1apX74sUL4cCBA5tcvnw5WtP+lMXR0THP09Oz1OMnkUjk6enppf5ht7Kyyh89enTK6NGjU6RS6RNPT0+PRYsWWe7du/ehqk1qaqrQ0dFRo9emoamJMw5WjTshhJQuJxaIngncWwykXqrWpvIL/j1+ve1UDXSMEM2dOXS9rrtQKywtLfM7duyYHhIS0ig9Pb1ELJGYmCi4ePGi3s2bN8VhYWHR58+fv6m6h4WFRV+9elX/33//LTOwVygUkMlk5cYJzZo1k5Y1curv759ubGycv2TJkhLlELdt22b86NEjnSFDhpSZBnLp0iWxlpYW1C/SrK7qHI/ydO3aNbt58+bZM2fOLMz7c3d3l8bHx2vHxcUVGYS9ePGiWEdHhzs7O5dZz/6rr75KiImJ0duyZYtJVfqjqbZt22YnJiZqJyQklDvyoqury+3t7XOzs7OLvNZ37tzRa9OmTZkXBTdk1R05d9KgjT4AVwDDALwP4CyAcQBeyQNKCKkhunZAk2mIkV/B18bzIK/WWEIHAAyKd/8Gw1fltqRcas3QcdLMW+0GQ3KucV13o1YEBwc/6ty5s7uXl1ezmTNnPvH29s6RyWQsPDzcKCQkxKJLly7pLVq0yOrVq1dm8XU9PT2zgoODJWvWrHm8cOFCCwcHh7wWLVpIAeDo0aOGwcHBVqNHj44HgOfPnwv8/f2bfvTRR4ne3t45xsbG+efOndP/+eefrfz8/FJL65uRkZFi+fLlj8aOHdvkgw8+cJg0adILExOT/PDwcKPvvvuucc+ePVPGjBmTUrA//XPnzun7+fllGBsb5588edJgxowZdv3790+ysLCocqpIKcdLosnxqMq2J0yYEP/hhx86f/vtt8+dnJxkAwcOTJs1a1buoEGDmsydO/eJra2t7MKFC/oLFiywHT16dLxQWHb4Z2hoqBg2bFjCvHnzbIYPH56qXm6yshISEoSxsbFFdiaRSPLFYjFv3759tomJifzo0aMGH3zwQRoA7Nixw3jnzp1mQ4cOTW7evLmUc449e/aYnDp1ynjFihUPVNuIjo4WvXjxQrtPnz7pVe5cPVbdOuePKm4FAIgCsI8xNhjAdgCrAPhVZ9+EkFfc832AeRe4WC7G3mpuylESjLikDMS+ux22MCu3LeVSa4aOk2auDI3GnH/WV2odIbOUM4j4y54hVMgsKzVK7OHhkXf58uVbs2bNsp4xY4ZdQkKCtqmpqdzT0zNryZIlcWPGjHEaP358iWopANCvX7+UX3/91WrlypVPFAoFmz17duPHjx+LhEIht7Ozy501a9bjqVOnJgDKutne3t5Zq1evtoyNjdWRy+XMysoqLyAgIGH+/PnPyurfqFGjUqytraPnz59v3aNHD7fc3FwtBweH3EmTJj2bNWtWvCro1NXV5Xv27DH78ccfbWQymZatrW3uJ598Ev/tt9/Gl7XtypJKpezPP/800+R4lJaHXZH3338//ZtvvsmdNWuW9W+//Rarra2NI0eO3Pnyyy9tR4wY0SQlJUVoa2ubN3bs2BeaPK8vv/zyxbp16yxDQkJMP/7445SK2pfF39/ftfhja9asuT9u3LgUoVCIIUOGJG7fvt1MFZy3atUq58CBA4qgoCC7+Ph4bW1tbe7g4JC7bNmyh59//nnhJx2bNm0y69ChQ7qrq+srOaMt0/RiiRrbIWMbAIwE8DnnPPil7rwBYYwZAUhLTEyEubl5XXen3pLJZAgPD0fv3r3xKk5EUFMa3HFKvwGcagGAAd0fAXp21doce/9HAICAMch3Ty23bYM7VnWEjpNm3n9zBmTyXByIXAoAxpzzIiN9kZGR7kKhMMLFxSVTLBYXXjiXq4gRVWXGzqoSMku5jpbLKxnokPorNjZW2LJlS8+LFy9GaRpoS6VS1qRJE89Nmzbdf/vtt0tcT1BfZWdn68bExBjI5fKe3t7et8trWxelFHcBGAVlgE7BOSGkJD07wNgLCVqZCBQFQlbFKi3/1xEAkG9PpRRrCh0nzfQ2Gw/Bi8pXe9PRcsnTAQXL5NVmb28vX7Vq1cP79++LNA3O7969K5o8efKzhhSYV1ZdBOeqj1Pcym1FCHl95SUAPgdgoWeLPTWwuTmDzmD3+Tu4vvQrKLPqykbpGpqh46ShcCBw4EIgsq47QqrK19fX5fLlywalLZswYcKzRYsWlZqqQjTz4YcfplamvapKTS11p16oi+DcvuAr/TUnhJSUeRs42QIQGgDdYwFh9SeAm737PABAf9hyZG2fXO3tEaKpQe1nIi+v2nO5kDq0efPmh1lZWaVeFWlhYVFj1VwIUXmpwTljTBsoLJVw92XumxDSQDARoCVCthbwERuCvBr5M6VMa8nWTqW0lhpCx0kz/lrlVwci9Z+Tk5OsrvtAXi/VnSHUvuJW0AJgCsAHwHgAnlBOQLSzOvsmhLyixE5A91iItUT4Q1D9UXMAODbzAbacuInNk94F8H25bSldQzN0nDR0Bpg3bT0OUFoLIURD1R2SelBxkxIYgPMAlldz34SQV430KXDaCxBZAJ1qLprpMe8PAMCpO0/w4JdPamy7hFTkw+7fIz0to667QQhpQKobnFe2BmsygDUA5nHOX+lkfkJIFeQ+B3LjkS9LxvD8/sjSqqkR2Y4AGB4mJVNaSw2h46SZAdnf1HUXCCENTHWD81EatFEAyIBylP0G57zGZtsihLxijL2AN49DoG2MHdptamyznZttx6V78cjePg1AULltKV1DM3ScNPP8j2R8MXhxXXeDENKAVHeG0M011RFSA/ISgZMtAS09oOstQKvytXUrLesecOYNQNcG6Pxf7e+PvLrys4ErAYC2EdAqpEY3ferWEwDAe4v2YO83A2t024SUZ/HXvyEvt/IFPZ7FJYlSkzNeWtEGEzNDubWdOdVVJ6QeqItSiqS2xIcDucqZjPukWSHStPaD8ymPM/GVLAtclgSWlwyIyp8anZAypd8A4vcBAEa6PUWynl4NblyZ1vJnZAyltdQQOk6aee9u+Z/UlOZZXJJo8rAVnnJZfmVTR6tMqC3gy7dPvEEBevX5+/s7ubu752ha//zZs2fC5s2bN7906VJU06ZNqTIMqXa1lhAoK6/M5Jw/03AdCwA/AOCc8zHV2T8pxu4j4PleQGiEMNMtL2efTaVASj8wfTcKzEn1mLQFPJYCQiNs0vu4RjctFi1HTp4ce6cOwACUnwNM6RqaoeOkmV0fH8O24L8qtU5qcobwZQbmACCX5bPU5AxhZYPz2NhY4axZs6yPHTtm8uLFC20zMzO5h4dH9sSJE+P79+9feCVsUFCQ1eLFi22nT5/+eO7cufHFt3P37l3toKAg25MnTxqlpKQILSwsZO+8807qwoULn1pZWWmUDtuuXTs3T0/P7JCQkLjSljPGvLds2XJPNekNY8wbAI4ePXq7e/fuhbNN5uTkMGtr61ZpaWmCgwcP3nn33Xcz1NsXt2bNmvvjxo1LAYDz58/rnThxwnjz5s2PVMtv374tmjZtmu2FCxcM09LShCYmJnJPT8+sJUuWPGnTpo3U2tpa/v777ycFBQXZ7Nq161Fp+yCvl1KL6lfCyIK7aSXWMVJbj9SEywOBC70AhQJouw9o85ICcwAQ6gJvHgZaFJt1Me0qcKoN8PDXl9cX0rA9+AngCsC+ZgNzAMhXKAAAeXl0yQt5uaTZr+5AdHR0tMjHx8fj7NmzRvPmzYu7fPnyzdDQ0Du+vr4ZkyZNKlJqefv27ZLAwMDn27ZtkxTfTlRUlOiNN97wuH//vs7GjRvvR0VF3fjpp58enTlzxujNN99sFh8fL6it52BlZZW3YcOGIn3aunWriVgsLvWPxYoVKx4+evTomvp9+PDhqarlP/30U6PevXsnGxsbKwAgNzeXvf32264ZGRmCHTt23Lt+/fqNrVu33mvevHlOcnJy4fMaN25c4v79+81r87mShoPSWhq6pFPK0XIAeLYDsA2o2/6oXA8E0q8Ct6YBjp/WdW9IfZcZDURNUX5v0RMw8qzRzefJlcH5sJVhGNLJo0a3TUh5Dmw/U9ddqDXjxo2zZ4zhypUrt4yMjBSqx318fKTjx49PVP0cFhZmIJVKtZYtW/Z09+7d5keOHNH38/MrHKkODAx00NbW5idPnrxjYGDAAcDFxSXvzTffjHZzc2sxZcoU223btsXWxnMYPHhwUkhISKPMzMxY1b43b94sGTx4cNKKFSusi7c3NTXNt7e3L/UiArlcjvDwcNN169YVlpmOjIzUjYuL0zl69OgdV1fXPABwdXXNe/vtt7PU1/Xx8ZFaWFjItm/fbjp58uTE4tsmr5e6CM51C75SKcWaYPomoO+CZMUzvGkxGen4sq57BADo55SDH68z3LB2QIe67gyp/8RNgMYf4SG/hykG30Be7Q/1iusAgEHR/hLlnNcQOk6a6ez+EYxulBgsbvDi4+MFp0+fNv7666+fqAfmKhKJpHDkef369RJ/f/9kHR0d7u/vn7xu3TqJKjiPj48XnDlzxujrr79+ogqOVezt7eX+/v7JoaGhZgqFIlZLq6b/LgA+Pj7ZEREReVu2bDH97LPPkmNiYkSXL182DA4Oji0tOC/PhQsX9DIzMwUdOnQoDLytra3lWlpa2LZtm+msWbPihcKyw67WrVtnnTlzxoCCc1IXwbkqViuRc0Yq6f4KgAmArndgBuBOXfdHna3yXiQwz7gFPFgJuH4P6Daqo46Rein9P8BmKBwb9cLeWth8u6abce1RIlIDt0APu8ttS7nUmqHjpJkH059i6ogVdd2NGhcVFaXDOUezZs2k5bVLTk7WioiIMP37779vA8DIkSOT/Pz83NPS0uKMjY0VN2/e1OWcw8PDo9TtuLu75+zcuVPy7Nkzoa2tbeXL3mhg+PDhiVu2bJF89tlnyWvWrDHv3LlzmrW1dan7Gjt2bJNPPvmkyEnEtWvXbrq4uOTdv39fRyAQQL2fTk5Osnnz5sXOmTOn8dKlS208PT2zOnXqlDFq1KgkDw+PIjlPVlZWedevXxfXxnMkDUulgnPG2LdlLPqMMfaigtV1ADQF0A/Ki0jPVmbfpJiEY0DUJOX3Jt6A6Vt12h2N/NNdWU0m9QLge6Wue0PqC3kWcK4joJAC7c8CZu1rfBeX7in/PBmNWA3Zrqk1vn1CyjLto9WQy1+9ax045xpdsLphwwYzOzu73LfeeisHANq3b59jY2OTFxISYqY+Qsw5L3sjtWzs2LFJ8+fPbxwVFSXauXOn5McffywzhWbOnDlxvXv3Tld/zNHRMQ8AsrOztbS1tRXFR/iDgoISAgMDk/766y/D8+fPG+zfv9901apV1jt27Lg7YMCAwm3p6enxnJycmv94gDQ4lR05/w7KwFodA1CZpGIGQArgx0rum6jTdwaYNmTIRxu9fkhE/b+GZKdhCjrnAszkjbruCqlPBLqAUWtk50Tjc73ZSEJNllBU6QgAkDeKp7SWGkLHSTN9DCZBK/XVi7eaN28uZYzh1q1buuW127Jli8Xdu3f1hEJhYaUThUKBrVu3SiZPnpzo4eEhZYwhKiqq1O3cvn1bz8jIKL+skeyaYGVlld+1a9fUUaNGOebl5bFBgwalpaamlvpP1draWubp6VlqWm6jRo3kUqlUSyqVMl1d3SKxkqmpqWLYsGFpw4YNS1MoFE86derksmDBAmv14Dw5OVlgbm5ea8+TNBxVSWtR/8/GS3msLFIAzwCcA7CEc36tCvsmAJCfAyQeB/rkQRvAjbruj6beLOWxx9sBiR+ga/HSu0PqCUUu4LUTYrEDNtbSLn6fGIXfz97C3m++ArCk3LaUrqEZOk4aOgrM+uxXHIys647ULEtLy/yOHTumh4SENAoKCnpRPO88MTFRcP/+fdHNmzfFYWFh0RKJRK62TNinTx+3f//9V7dNmzbS9u3bp2/cuLHRzJkz49XzzmNjY4X79u0ze++995JqI99c3ahRoxKHDBni8umnnz4vLy+8PG+88UY2AFy5ckW3ffv2ZZ6xamlpwcXFRXr58mUD9cdv376t17Fjx4yy1iOvj0q9AznnRX47GGMKKAN0T855VE12jJTjiA0gTwXuLQK63q7r3lTd+e5A0t8AEwF96Prg19a5LkDaZeCNCMDi7VrZxdAVYQAA449+QtqWSbWyD0JKM7jDTOTmlpuW3WAFBwc/6ty5s7uXl1ezmTNnPvH29s6RyWQsPDzcKCQkxKJLly7pLVq0yOrVq1dm8XU9PT2zgoODJWvWrHn866+/xvr6+rp36dLFde7cuU9cXFxyr169qjd9+vTGlpaWsmXLlj3RtE+JiYnCc+fOFfn4zc7OTmZnZ1fuiPT777+f/vTp02umpqbl5iClpKQIYmNji8ROJiYmCiMjI4WNjY3cw8Mj+8SJEwaq4PzcuXN6s2bNshk+fHhyy5Ytc3R0dPiRI0cMd+3aJfn8888LJynKyMjQioqKEs+fP1/j50peXdW9IDQWyuD81S3kWi8pByju8mg0h04d96Xqjiry0AnKETgad3uN8TwAHHMUs3AZP9fSTpQzhKbnp1NaSw2h46QZf3xV6XVMzAzlQm0Bf9kzhJqYGVYqpcLDwyPv8uXLt2bNmmU9Y8YMu4SEBG1TU1PVBDtxY8aMcRo/fnyps2T269cv5ddff7VauXLlkxYtWuReuHDhVlBQkM2HH37YNC0tTSCRSGTvvPNO6qJFi55aWlpqnLR/8OBBs4MHDxaZEW/atGlPFy9eXO5EiVpaWtAkdWbixImOEydOLPJYUFDQkwULFjwHgI8++ihxx44d5tOnT08AlBeE2tvb5y1cuND6yZMnOowx2NjY5E6bNu3pt99+W1gYY/v27SZWVlZ5PXv2LHEiQ14/rC4vwiBlY4wZAUhLTEyEubl50YV5aUDsGsDpS0BQ/3PNy3X/J8D6PUDPvsKmpZHJZAgPD0fv3r2hrU0hflnq9XGSpSsvFDZwq7VdrAi9hB1nbuGfRR9V3J36fKzqETpOmpvwwWKs2vk1ABhzzotcTBgZGekuFAojXFxcMsViceEQ+7O4JFFqcsZLq6hmYmYor+zsoKSkzMxM5uLi4rl169b7PXr0yKp4DaVWrVq5f/rppy8CAwOTa7N/pO5kZ2frxsTEGMjl8p7e3t7lpj3QJEQNTbgYUOQAzX9p+IE5ADSZ9P/vz3YEUs4CJu2AjhfqrEvkJYpZANxfArTaWKvB+YwdZ5GVK8Oyg5cxpa9Pre1HEzczJVAgCQDQwoAGR151Xwxehtj7FRUzK8nazjyPguWGx8DAgK9bt+7hixcvNI6vnj17Juzbt2/KuHHjKDAnACg4b3gUyo+PwxI+x3tOk+q2LzUsIT0PRgCyMyJBhV5fE0knAFkK9qR8ic1WG2ptN1m5yrSWb65sxOK+75bbVhe6WIEVcIELpKj5XOFDSIIWlPmAFaXY1GeU1qIZ/yeVT2shJUVERBi89957LmUtz87O/vdl9qc87777bqUu6rS2tpbPmzeP5n4hhWosOGeMdQXgD6AVAAkAPZRfxYVzzpvW1P5fG24LgKS/0cc7ArkNoHxipbx5Ebj5BcQer96EHaQMrTYACYcw0GYoBsKg4vZVtPjDCzj070P8FTQFIqwut62qCkkMYmqlCkma8Axi5V1hyHqDY3+Nb/9loWotmnmw8Sm+HrOqrrvR4HXs2DHr4sWLVHiCvBaqHZwzxhoB2Amgs+qhMppylF6GkWjquDuQ8xB44/CrkdJSnKlaOkt+HnDUBuAyoNsDQGRW/rqk4Xm6C7j+OWA3ChDWXmAOAMsOXEZCejYOXI7B++3da3VfFUnInwlAjkweUaf9IC/H/q2nkZsjq+tuNHgGBga8rPrihLxqqhWcM8a0AfwFoDWUgfdVAE8A9IEy+P4NgBkALwDWBY9dQQMqzV2vZEUDAE5Ed8Y77UV13Jna1T8+H7tkBRfoP1gFuM2u2w6Rmnd3ESBLhPTRT3D02FKru4pPmwKAYci2LbBoH1Ju29pOaznM48EAcORRWstrYMDRb+q6C4SQBqa6I+cjAbSBMugexTnfzBhrDmVwDs75CFVDxpg/gJ8BeABYxDnfU9WdMsZsAQwC0BuAOwArAMkAzgJYzDkvcTVhQfWT7wAMLGj/DMBuAN9zzkuULmKMaQH4HMA4AM4AMgEcBTCDc36/jH69A2A6lCcjHEAkgHmc82NVfa5FmHcD0v9Dl5b/IBeveEaQDYBod+WES85Bdd0bUhua/wT8Nw66jp/jOb6o1V21st+IO89ScGryeLTFgnLb1nZaS5zWOKQq1kEAM/CCC0MbIkpr0czvY45he/Bfdd0NQkgDUt0ptwYWfI3gnG8uryHnfB+UqS95ADYxxsq8sEMDXwBYDqAJgMMAlgI4A6A/gHOMsSHqjRlj+gBOApgM4HbButEApgL4mzFW2rTBawCshPITgZUAIgC8B+BSaX1njA0vaNMMwCYAmwE0B3CEMfZ+NZ6r0t3FQNY9oF0YYPCKB+YqXW8DPR4BAhEQPRs45gSk04curwS5FLi3GLAZCjjVbmAOAI3NDaGvqw1rk9pNn9GErpYnAAYhLOu6K+QlsLU3h5agdme3JIS8Wqr7F6MV/p++UgJjrMhntpzzewBWANAHMLG0dTR0EUAXzrkz5/xjznkQ5/x9AF0B5AP4lTGmPjvPV1Cm3vzAOX+Hc/4N5/wdAD8AaAtl0K7e764APgZwCoAX5/xrzvmHUF7wagYUnSmFMWYKYBWAxIL2X3DOv4ByBD2poD+G1Xi+wO0gQPoIuDygWptpsGLmKvPtL/ev656QmnBnNvAiDIj5HlBUat6TKgn/9wGSMqTo/v2uWt9XRZ7LJ0KZ1HKrrrtCXoIV3/0BRb6i4oaEEFKgumktqqv0Hqg9pl6XVQygeBH+YwC+BeBX1Z1yzveW8fhpxthxAG8DaAHgcsEJwsdQpqXMLbbKXChTVz4GsFDt8bEFX2dxzgufD+f8L8bYCQBvM8bsOeexBYsGATABMJtz/lit/WPG2M9QptMMAFD1xFqj1lCkX8Ey2+eY0YBnBa2qfw043DMBLbtRdd0VUhNsPwAe/Ypnetpoo9W49ven8wWQq42nPXfDCjPLbVrbOefroQV7KKAAlVJ8HXRqOQwml60qvV5Sbr4oU654aeWODYRacnMdAdVVJ6QeqO4vfl7BNtR/odVnP7MFcKfYOlK1ZbVBdVm8ajjOBcoM5kOc8yInCpzzLMbYWQDvMMbsOOdxBYu6QHlScbaU7R8qWN4ZwFa19oAyxaa09t8VtK9acJ6fDxi2gJbHUkyVdMHUKm2kgeui9n36DeDuAsDzZ6CaH0iQOpL7DPBYAmuHcSh1bu8atnbkVRy8fA8H+1Rcc7q2c86lwue4K3eHhXACOObU+PZfFso510zGgkxM/HBZpdZJys0XrbyT6pnPX97Zm4CBT3A1uUEBOnmVLV++XPLHH3+Ynj17Nqamtvns2TNh8+bNm1+6dCmqadOmNVKaqbppLaqR48LkSc55PABVAf43SlnHU9W0mvsugTFmD6AHlBd7Xi94WJUfXtYLEaPeriA/3RrAA855fkXtNdhHae1L67sOY8xIdQdgCCinyFacaQs82Qz+T3fIZLLX/s7PtAWe7gA/2QIymfL3oK771BDu9eY4ZT4Bv9gbuP4J5A83vpR9frLmCEIj76PtV1vq/FjFyG3AkYZE+dy6fy2qea8376l6fP+43w9Iik8v5a9+2TLlCuHLDMwBIJ+DVWWkPjY2VjhixAi7xo0btxCJRF5WVlYtu3Xr5rx///4iIydBQUFWAoHAe9asWSUutpDL5Zg+fbqVk5NTc11dXS9jY+PWLVu2dF+2bJlE1WbgwIGOPXr0KHLB1d27d7UHDRrk2KhRo5ba2tpeNjY2LUaNGmX3/PnzIrWGp0yZYuPk5NRcT0+vjZGRUev27du7/v333/qaPkfGmLfqbmho2NrLy8v9wIEDhc/v6dOnwoCAAHtra+sWIpHISyKRtOrYsaPL4cOHS93HH3/8YcQY846NjS1yvC0sLFra2tq2UH8sOjpaxBjzVj+ely9f1u3du3cTU1PTViKRyMvR0dFz0qRJNhkZGUViOltb2xZz5sxpVFofVNs9d+6cXkXPf9iwYQ4CgcA7JCTEtPiyjIwMrc8//9zWzs7OU0dHx8vU1LRV27Zt3X777TcT1T7Ku69cudIcUL4Hvv/++0aurq4eOjo6XkZGRq19fX1LHMOVK1eaM8a8O3XqVCSmSkxMFDDGvENDQwuPE2PMe+vWrSaqn7Ozs9nChQttZs+e/VST/gNAbm4u+/TTT21dXV099PT02jRq1KjlgAEDHB8+fFg4ImFtbS1///33k4KCgmwqOpaaqu7I+RUoq6W0gbKkosopKCu2TGSM7eKc5wIAY8wEwNdQBuY1OplAQVnHrQB0AHytFlgbF3xNK2PV9GLtKtu+onVKa1+aIAAl6gUeP34cHcSGsNMC8qGN8PDwCjbz6ntbSw96TIqkHCOcPXIEAHCk4CspX304TlqQoreWEFqQ49y1Z0i59vLe04Y8W+Pfodo6Vg6+ImgJleWaX4Xf5/rwnqrPtHW0IK357Kh6ITo6WtSpUyd3IyOj/Hnz5sV5eXnl5OXlsdDQUONJkybZ9+/f/6aq7fbt2yWBgYHPt23bJpk7d26R2TCnTp1qs3XrVosff/wxtn379lkpKSmCf/75Rz8lJaXMCT2ioqJEnTp1aubo6CjduHHjfVdX17x///1Xd8aMGXZvvvmm8YULF25ZWlrmA4Crq6t0+fLlsa6urrnZ2dlaP/74o2X//v1doqOjb9jY2Gh00cuKFSse+vv7p8XHxwu/+eYb2yFDhjhHRkbe9PDwyOvXr19TmUzG1q5d+9DNzS33yZMnwsOHDxslJCSUGmP5+fllCgQCHhERYThu3LgUALhy5YquVCrVkkqliI6OFrm5ueUBQEREhKFIJOJ+fn6ZAHDs2DH9vn37urZv3z597969Mba2tvIzZ87oz5gxo/GpU6eMzp07F62rq1tjg58ZGRlaBw8eNA0MDHy+adMmyejRo1PUl3/00Uf2//77r8GSJUviWrdunfPixQvhqVOnDBITEwVNmzbNe/To0TVV23nz5lkdP37c+NixY9Gqx8zMzPIVCgX69u3b5OzZs0bffffd4969e6enpKQIVq5c2ah3795uGzduvP/hhx+mqtYRCAT8/PnzRgcPHjTs27evxrOxbtq0yVRfXz//7bffLsyiKK//AJCZmal17do18VdfffWsbdu22YmJicLJkyfbvfvuu843btwovHBo3LhxiR06dPCIj49/rHrfVUd1g/NjAAKgDMTV65MFFzzWBsB/jLEDUF4E2hfKdBaO6uRfF1NQ9nATAF8A6zjnW8tfo15aCED9s09DAI+7+r4Fc30fyLNuAY16oXcdda5+iYcs5wmM9Wzhl5OBf4+vQBu/r6GtTR+tl0Umk+HIkSPw8/Or++OkUECR+Q8U4iZ4q5YnH1KJfaMDTt1+hsEdKp6AqPaPVQYe5Y6GJZahWW+TWtj+y1Gv3lP1WO/evbF++R4ciKzrntS8cePG2TPGcOXKlVtGRkaFV736+PhIx48fn6j6OSwszEAqlWotW7bs6e7du82PHDmi7+fnVxggRUREmIwcOfKFeuD31ltvlXshQ2BgoIO2tjY/efLkHQMDAw4ALi4ueW+++Wa0m5tbiylTpthu27YttqBtsvq6v/76a5y5ubnk0qVLev3799couDM1Nc23t7eX29vbyzds2BDr5OTUMiwszKhRo0YpkZGRBqGhodF9+vTJBABXV9e8rl27Zpe1LWNjY0WLFi2yT5w4URicHzlyxNDHxydToVDg0KFDhm5ubkkAcPLkScNWrVplicVirlAo8Mknnzg2adJEeujQoXuCgskIXV1d85o1aybt0KGDx9y5cy3nz59fY9mCmzZtMm3atKl0zpw5zxs3btzy7t272s7OzoWpG0ePHjVZsGBB3JAhQ9IAwM3NLa9Tp06Fz93e3r7w5MfAwEAhEAi4+mMAsG7dOtOIiAjTbdu23R02bFjhIOdbb731KDk5WThhwgSH/v37p6veY3p6eop33303ZcaMGbZ9+/a9relz2b17t9nbb79dZBC1ov6bm5vnnzt3Tj0rInfVqlWxXbp0aRYTEyNycXHJA5TveQsLC9n27dtNJ0+enIhqqm5wvg/KfOrGjLGmBdVYwDkP+x979x3X5PHHAfxzSSCA7D1UQGWI4MJqxS1OXFA3Vqu2tmqtq/qzzmrramvdE7fWra277roVFUddICJDWbJ3Aknu90cSGhBCkIQEvbevvGKSe567HAl8n3u+zx0hZBuA0ZCmc0yVlZefpjsHYEMV65buUBqYbwMQDOmsMWNLFZH/IMobuTYtVa6y5UtvU3ri4rLKv0N2dqF49TP5RDeGoe2gpy+7xtTzV6DBdGW7+XjouQAAeGdt4ccRg945Ck7HR8q3YaCnp6f9QOpyIyD3GeA0HGim2cWH5OpO2A4AOH4/Ggem9lVpG0311eNcAwBCxOAP+OjV/IWSdeIzpcNGdl+IjLRMbTdD7ZKTk7nXrl0zmzFjRrxiYC5nbW1dPHq4ZcsW68DAwHQ+n08DAwPTN2/ebK0YnNvY2BRdvXrVNCEhIUWVkezk5GTu9evXTWfMmBEvD8zl6tatKwoMDEw/efKkpUQiieNwSmbvCgQCsnLlShtjY2Nxy5Yt3+tK5lq1akkAoLCwkGNmZiY2MjKS/PnnnxadO3fOMzQ0VOlL3bZt25wTJ04Up4lcuXLFpF27djlisZhcvnzZZOLEiWkAcPv2bZOhQ4emAsCtW7cMo6KiDDZu3BjNLbVKeOvWrQtat26dfeTIEUt1Buc7d+60Hjx4cJqVlZW4Q4cOWZs2bbL+7bffEuWvW1tbF505c8bs888/z7CwsHivaYn2799v6ezsLFQMzOWmTZuW1K1bN89jx46ZKo6eL1myJKFhw4be27dvtxg1alRG6e3Kcu/ePePg4OASMdr7tD8jI4NLCIGVlVWJz2rTpk3zrl+/bqyO4LxKOeeU0kxKqQul1FkemCu89hWks56EQnpxpRDSPPDpAPpQSqs8t5QsMN8O4AsA+wCMLGO/FeV8l8gXl100mgjAlRBS1im1svLLldVRUc67UkUi6dk/CmB1wf/AYf9K/KMQgxAAhVX+LjDVpUj6e/SKcD/sq+mf/BKXP1MvVljWTfaVdYObRtoilh2DU0hna6mp/8xk4xdmMNN6W3T5X2ZB5fLNa4pnz57xKaVo2LCh0qSd9PR0zpkzZyxGjhyZBgAjR45MO3XqlGVWVlZx/LFy5crX6enpvDp16jRxd3f3Cg4Ornvw4EHT8vb59OlTA0opvLy8yqzb09OzIDs7m5uYmFg8ALlv3z4zIyOjZkZGRs03btxod/LkyRcODg6Vnsc1JyeHM3XqVCcul4suXbrk6OnpYd26ddGHDx+2srCwaNa8eXPPCRMmOIWGhirN5fb398+OjY3lx8bG6gFAaGioib+/f06nTp1yQkNDTQBp6k5iYqJ+ly5dcmSPDQDAx8enzIMKd3d3QWxsrNqmc3v8+DH/0aNHtUaOHJkBAMOGDUvft2+ftUTyX5i1fv362LCwMGNbW9um3t7eDb/88ss65eXalyc6OtqgQYMGZb6npk2bCgAgIiKixPtycXEpGj169NsFCxY4ya9/USY1NZWbm5vLrVOnTonClW1/fn4+mT17du3evXunW1palog37e3tC9+8eaOW5ds1ujICpXQrpbQ1pdSUUmpEKW1CKf2dUlrliY0VAvMRAA4AGK7kAs4EAG1kF3sq7qMWgDaQXvz5WuGlK5Cm4bQpY3/dZfdXS5UHpFM4llf+ShmvVYj4hQKNNoC4TMVEHwoJ+1fin7jlNbwRt4a43cv36V5GG9rdBxqtRoeW+Uiqpn9HpgViVCdvFC1eVWHZSNlxdCQiNdIWT14BuHCEIy8EtAb/y5KdDMxCltbbosv/Dl5YiDr1y7wmr0ajlKp0werWrVst69SpI5Snqfj5+RU4OjoWbtu2TT4VM3x9fQUvXrx4eunSpeeff/55ampqql5wcLDb4MGDnStog8rt7dWrV86dO3eenT9/Prxjx45ZwcHB9ePj41XOHhgzZkw9IyOjZubm5s3+/vtvixUrVsS0atWqAABGjhyZmZiY+Gjfvn0v/f39s27cuGHSpk0bL/nFjsHBwXVlBwbNjIyMmgGAv79/np6eHj1z5oxJWFiYgVAo5LRp0ya/Xbt2+enp6bzw8HD9c+fOmRgYGEg6depUeqY5ld93VWzcuNG6Xbt22fKDmIEDB2bl5uZyT5w4UXzRZc+ePXNjY2Mfnzhx4kW/fv0ywsPDDXr06OE5ffp0h8rU9T7vacGCBUkZGRm8VatWWVdUNi8vjwNIU2IUn69M+4VCIendu3d9Sil27NgRW/p1Q0NDWlBQoJa4uko7IYS0l92qstrn+9QrT2UZAeAQgM/LCcxBpT/xLQCMAcwt9fJc2fObSz0fIrv/mRBSfBRECOkJoCOAc5RSxR/MQUjTVr4jhNRWKF8bwARIFyf6qxJv8T+GdQHXsYD37++1+QfPohXCMAPg8YCTPOAkAf4dp+1WMeVJOAxcdAbe7AI41TaFM4JXncT2f55g0ZFb1VZneV6J3CFGAhJF32i7KUw1mDNmM15HvdV2M9SuUaNGAkIInj9/XtYK28V27dpl8/LlS0Mej+crv0VFRRns3r27REDF5XLRoUOH/Hnz5r09d+5c1OrVq6MPHjxoHR4e/s5IpJeXl4AQUjySXFp4eLihqampWHFk3NTUVOLt7S309/fPO3jwYCyPx6Nr166tMKiT++mnn17fuXPn2evXrx+lpqY++u6770qkRxgZGdGgoKDs3377LfHBgwfh/fv3T126dKkjAPz2228Jd+7ceSa/AYCJiYnEx8cn7/Llyybnzp0z8fX1zeHxeODz+bRZs2a5Z86cMbl8+bJps2bNcuUXeMrPFDx+/LjMUfkXL14YODs7C8t6rbJEIhEOHTpkdfnyZTP5z83Y2Lh5VlYWd+vWrSX6jc/n0x49euQuWrQo6caNG5HTpk1LWLlypYNAIFDpAM7V1VUQFRVV5nt6+PChAQB4eHi8876sra3FEydOTPz1118dc3NzlcazdnZ2IkII0tLS3vnDo0r7ZYF5vfj4eP1Lly69KD1qDgDp6enc0qku76uqfx0vQ3p29ku8Z9rGe5oHaSpLLqTzqM8ptRgpAByllD6U/f9XAP0AzCCENIN0lpnmkI503wWwUnFDSuk/hJAtkC5OdJ8QcgrS6RUHA0gH8F2p8hmEkAmQzhZznxByQPbSYABWAAZTSlW+olhRbdTWyEIoHwrFhVDyIAYBgKQjQGO1XNLAqFviQYAWQpwdBidUfmGW9yUsmgqA4Mcrx7Cmv/JVdjW9CNFZJIMDgIKCgC1C9KELfDlD203QCDs7O3Hbtm2zt23bZjtz5sy3pfPOU1NTua9evdJ/+vSp0alTpyKsra1FCq/xevXq5fHgwQODZs2alfkla9y4sQCQppGUfs3e3l7s5+eXvX37dts5c+YkK+adx8XF8Y4ePWr52WefpZXON1ckkUggFApVHqB0cHAo8vb2VjnwbdiwoeDcuXPmAODk5CRycnJ6J2hr165dztGjRy0zMzO57dq1K44R2rRpk3vlyhWT0NBQ4y+++CJF/nzr1q0LXF1dBWvXrrUbM2ZMumLe+a1btwxv3bplOnPmzHhV26jMwYMHzfLy8rg3btx4xuPxivv3wYMHhhMnTnRNTU2NU7yuQFGjRo0KxGIxyc/PJ6rMHDNo0KCMsWPHmu/du9esdN75smXL7M3NzUX9+vUrMz9s5syZbzdv3mz3yy+/KD09ZWBgQOvXry948uSJwWeffaY016x0++WBeUxMjMGVK1ci7O3ty3zf4eHhhm3btn2vWK+0qgbnuZCmfzyuqKCaucjujQHMLqdMDICHQPFiQx0AzAfQH0AnSPPKfwewgFJa1l+WbyB9X18DmATpe/0LwOzS+fWyOv4ghKQCmAVgFKQHLWEAFlJKL1T2Dcq9wRtYwep9N//gFSkshEJs+gLpN4G297TdLKY8PiGARASufSCSMKLaqh3W9gSuPHuDhz+NgzWWKi1bpOFFiNJ5exEv+hwG+AQUoWrff3UpYosQqeTBsgj8PGWrtpuhERs3bozt0KGDZ/PmzRvOmTMn3tfXt6CoqIicPn3adNu2bTYdO3bM9vHxyevZs2du6W29vb3zNm7caL1p06Y3PXr0qNe6devcdu3a5dWuXbvoxYsX/Dlz5jg5OzsL5TnHpW3YsCGuffv2nh07dnT/+eef493c3IQPHz40nDVrVm07O7ui5cuXxwNAdnY2Z9asWQ5BQUGZderUKUpOTuatXr3a9u3bt/rBwcHpZe27MpKSkriBgYH1R4wYkerr61tgZmYmvnnzZq21a9fad+3aNVPZtv7+/jmrVq1ySE1N1Zs+fXrx9JKdO3fO2bBhg31eXh5Hnm8OABwOB5s2bYrp27eve48ePerPmjUrsXbt2qJr167Vmj17du2mTZvmzZkzp8Q0lfHx8fql5zKXzzACSPP3S7fL19dXsG3bNutOnTpllZ41p3nz5oLZs2fX2bx5s+XMmTNTWrZs6TFw4MC0Tz/9NN/W1lb08OFDw/nz5zu1atUqp6zR5bKMGTMm/ciRIxbjxo1zTU5OfhMQEJCdmZnJXbVqle3FixfNtm/f/qqsi44B6RmLH374If6HH35QmgIFAB07dsy6efOmMYDiU1kVtV8oFJKAgIB6T58+rfXXX39FikQiyOent7W1FcsPPnJycjjPnj0zWrRokVoOjqoanMcBaAjASA1tURmldCSAkZXcJgvAFNlNlfISAKtlN1XrOAPgTGXaxahRK4Wp9rMigGteAMcACMgrfxumeoX1l1686/BZtVZ7OzIRyVn5+DcuFZ3Nq2f6xvJkiY8AoCjE0wrLMjXf/VsvIBZVbv4DYx5HxCWg1b1CqDGPU6lT8l5eXoX37t17PnfuXIfZs2fXSUlJ0bOwsBB5e3vnLVu27PWXX37pOmHChDJnDunbt2/Ghg0b7FevXh3ftWvX7EOHDlmuWrXKITc3l2ttbV3k5+eXs3jx4oTyZgLy8fERhoaGPp85c6bj8OHD62dlZXGtra2Lunfvnrl06dIE+VzTPB6PvnjxwmDo0KH1MzMzeebm5iIfH5+8c+fOhbdo0aLKp8bMzMwkvr6+eevWrbOLi4vji0QiYm9vXzhs2LCURYsWJSrb1t/fP1dfX59SStGuXbviP1QdO3bME4lExMjISNKhQ4cSf8C6du2ad+XKlfB58+Y5BAUFuefl5XEcHBwKBw0alLZw4cKk0rPFhISE2IWEhJRY+GndunXR/v7+uQDw9ddf1yvdroiIiMeXL182CwkJiS79GpfLRffu3TN3795tPXPmzBR/f/+svXv3Wi9atMhAIBBwbGxsCrt06ZK1ZMmShNLblofD4eDUqVNRP//8s9369evtZsyYUZfP50uaNm2ad/r06QjFecnLMmHChLS1a9faR0VFKU2xGjt2bGrbtm0bpqWlca2srMQAUFH7Y2Ji9C5dumQOAH5+fl6K+ztx4sSL3r175wDA3r17ze3t7Qt79OjxzoHo+yBVubCAEPILgGmQjg6/s4AO8/5kq4RmpaamwsqKjZyXp6ioCKdPn0ZAQEDJ6dyuNAdyHkj/3+oSYNNJOw3UEeX2U3XKfgJclS1+57USqDep2qomA34DANSzM0PUuq+VltV0Xz3O/S/e8jGungu7NEEnPlM1wMDWs1FYJMTxsN8BwIxSWuKUelhYmCePxzvj5uaWa2RkVBwspgnF+u+zYuf7MuZxRFZ8bmHFJRmm5urZs2e9pk2b5i9ZskRt000CQJMmTTzHjRv3tvSc+ory8/MNIiMjjUUiUQ9fX1+l87NX9Yu/AtK5zCcTQg5RSp9UcX9MKSznXLny8l49mgJPrwFCDmD0kQfmOsPUG7Bsj4TCJ2hbdxHysaTaquZYfwlJuinSvg6BPeYpLavpnPM5RA/taRHyAZZz/hFo/FlXOB/wqbhgKVZ8biELlhlGvVauXPnm8OHD5urcZ2JiIq9Pnz4ZX3/9dZXTpOSqFJxTSpMIIb0BHAFwQzaSvpdSGqOOxjEs57wi5ea9mgHorZBvFdoTyLgDtI8AjFS+QJ9Rp4xQQM8cjj7X8YrXsFqrHul9Gv88icOj+tdhDqVnPjWec57BPYw3okGwJm1BS8zIWrOwnHPV/NvxJX76s/SEYIyu+OGHH+xXr15d5rR/LVq0yL169Wp1TnbBaJiHh0fh7Nmz1Tp9koODg2jhwoXJFZdUXZWCc0LIK9l/9SFdbv5nSKcfzAWQCaDMK1plKKW0flXqZxiVpcguBbjRFOj6RqtN+WjdCwKEiUDeC6Dj82qteudlaX633+w9eLbqy2qtu7Q3okEAKAroNa22g6keCyfvRFGRsj+FjDZNmTIl5fPPPy9zhUn5SqAMU92qmtbiUuqx/BytieymTM1NtqxGLK1FOVVPrYsgndSfOAystrYxpVh3gST+D2y0jcNP1TiNIgCANwkQcRHb5jjsy53gSUrTaS1/ALDFfyuE1lQsrUU1neqPgvEzi4oLMlphZ2cnll88yjC6oqrB+U61tIIpF0trUU7lU+u9Ff6fdAqI2wi0PKHx9jEK7PuBU28yxps1x/hqrvrk9Jc4HRaN9YP+V2FZTae1wBh4nusCW9580MpNOqVTWFqLinYBk4Ytk06syzAMo4Kq5pyPUldDGKba3JNF6ufsgW5qvWCbKU/cFuDfMQAI0CMX4FXr7Kvos0S6QO+TuFRcXTi0Wusu7XEuF4AECaJRsKrBwTmjmqHtf0R+PpvOlWEY1VXf+tnMe2FpLcq9z6l1eRIh0WOnmquNnvTsj4gQuHBcIILKC/OpyVQAQKj5RdhXsNSBptNaTkICPlhay8eit8FkcPK5FRdkGIaRYcG5jmNpLcq916n1zqlA2imgzhfSx/mpbAYXTXMIAtr9C56hE95wLKu9+qTNubj8NA5D2npVWLY60lpic7+CHW8haHXn3qsRS2tR0Tlg8/IjOM7SWhiGUZFag3NCiCEAXwD2kM5id7T0ggsMo3VG1oCRLDA/KRu5rP0F0HSH1pr0wbvoAhTEAp6/AA0qzvtWN8cxG0ABXPg3DlvG96j2+hU9yTUGRR6yRVvhw66L/+CN6b0Ub5NSK71dTOwr/dS0lGobQLO2shG5ONdj86ozjA5QyxefEFIHwGIAA4ESQyj3ADxTKPclgG8AZAHoRquyPOlHgqW1KFelU+tF0hQXAgBZDzTQOqaYUDqt7JHsefgWy6u9eoqpAAh2xpzDyQryvDWd1nIGeeCCpbV8LAIzK38wGhP7Sr9nUAfvoqLCavuA6Onp07//uvKEBejMhyQwMNDV09OzYOnSpSpdYJaYmMhr1KhRo7t37z6rX79+kabbV54qJ34SQloBeAAgGNL5zglQ7l+cEwAaA+gMoFtV6/4YvMEbUPav3H9ZyAIAZCGr8lvrUZB6/wPMWwIdHmn5J/2Ba3MdcJuP/k3zkaSFf2u/7IJujZ1R9OvyCstGQrrmSCQiNdIWT14iCExgzZ2p9e+P1r57H9G/XcfnwsLauFJfl9S0FF51BuYAUFRUSN5npD4uLo73xRdf1Kldu7aPvr5+c3t7+8adO3ducOzYsRLTKc+cOdOey+X6zp071670PkQiEWbNmmXv6urayMDAoLmZmVnTxo0bey5fvrw437B///4uXbp0KbE2ysuXL/UGDhzoYmtr21hPT6+5o6Ojz6hRo+okJSWVSPKfOnWqo6urayNDQ8NmpqamTf38/NwvXbpUS5X316RJE8/g4OC6is/9+uuvNoQQ39WrV5fIOe3fv7+Lr6+vh+L7WrBgga27u7sXn89vbmpq2rR9+/Zu586dK1H36tWrrUxMTJqW14ay3ntZoqKi9PT09Jq7ubk1Kuv1U6dOGX/66afuZmZmTQ0NDZs5Ozt7f/bZZy4CgYD079/fhRDiW97NycmpeJnbe/fuGQQEBNSzsLBooq+v39zFxcV78uTJjjk5OSViSicnJx9CiO/FixdLvN/Ro0fXadmyZXE/TZ061dHT09NLcZvybv3793cBgPJeDwkJKb6Y7NatW4aXL182mzlzZvGiQ+Hh4fp9+vRxtbW1bczn85vb2dk19vf3r//gwQMDQLqg0IABA9JmzpzpWFF/a1KVgnNCiDmAYwAsASQBGA+g3HWKKaVvAfwte9irKnUzjFp4/QK0DQXiD0lTXE4SoJANHKlV6iXgZgcg7QLAqe4LQaV+2HMV5/6Nxbq/72ulfkWxos6gyEGa+BdtN4WpBr/P3Y+M1FxtN0MjIiIi9Fu0aOF148YN04ULF76+d+/e05MnT75o3759zuTJk0sEtHv37rUeO3Zs0p49e965wGfatGmOmzZtsps7d27Cw4cPn5w5cyZi1KhRqZmZmeVeSfvs2TP9Vq1aeb169Yq/ffv2V8+ePXuycuXK2OvXr5t++umnDZOTk4u3dXd3F6xYsSIuLCzs6aVLl8Lr1Kkj7Nevn1tCQkKFByNt27bNuXXrVokDjStXrpjY29sXXrlypcTzt2/fNmnfvn0OAEgkEvTp06fe77//7jh27Ni3jx49enL27NkIJyenwoCAAI/du3ebV1R3ZW3atMk6ICAgIzc3l1P64CMsLMygf//+7k2bNs2/cOFC+L179579/vvvcfr6+lQkEiEkJOR1bGzsI/kNAFatWhUjf3z37t3nAHDx4sVa7du3b1hYWEj+/PPPyCdPnjyZN29e/IEDB6w6dOjgLhAIShxU8vl8+sMPP9RW9T3cvXv3ubzOHTt2RAHAo0ePnsifCwkJeS0vq9g++e3zzz/PlL++cuVK24CAgHQzMzMJAAiFQtKtWzf3nJwc7r59+6IeP378ZPfu3VGNGjUqSE9PL/68fP3116nHjh2zUvwMVbeqprVMhHQ9jVQArSmlcQBAiNID/gsA+gFoWcW6PwosrUU5dZ1a//eF9KiSAiCppwHHQHU1kXm9DRDnQpJ+HY5augAyVyBNa5l46hB+7hmgtKym01rOIRkEAIWEpbV8BIIe/KDtJmjM119/XZcQgvv37z83NTUtXk2zRYsWggkTJhQn2p86dcpYIBBwli9fnnDo0CGr8+fP1+ratWvx/JJnzpwxHzly5NvRo0cXr9TZunVrpR+qsWPHOuvp6dErV668MDY2pgDg5uZW+Omnn0Z4eHj4TJ061WnPnj1xsrLpittu2LDhtZWVlfXdu3cN+/Xrl6OsHn9//5z169fbx8XF8erWrSsCgNDQUJNp06YlrFmzpvgXWnh4uH5CQoK+v79/DgBs3brV4syZMxZ79ux5GRwcnKXwvmLT09N5EydOdO7Xr1+2Yr9VhUQiwb59+6xWrlwZ5+TkVLh582brzp07F/fxqVOnTK2srIo2btxYvER2o0aNhAMGDMgGAGNjY7GVVcnJJywsLMTy9yyv45tvvnGpV6+e4OzZs1FcrjR2dXd3L2zYsKGgTZs2Xj///LPdokWLilNIhg4dmrJnzx6bAwcOmA0ePDgLFXB0dCyuz8rKSix/ztra+p2Fokq3T5FIJMLp06ctNm/eHC1/LiwszOD169f8CxcuvHB3dy+Ut71bt24l5jpt0aKFwMbGpmjv3r0WU6ZMqfwFI2pQ1WGsPpDGM8vlgbkKnsruKzxFw7C0lor+qevUuk+bHIDog+hZscBc3RqtBKw6geO5RCspLUlIQpfGLjCvxUfU3BlaT2ux4/0GANBHfa1/f3Thu/eh/5s4eyCUj1fVTMnJydxr166ZjR49+m1ZAaZiMLVlyxbrwMDAdD6fTwMDA9M3b95cYvTcxsam6OrVq6aqjGTL675+/brpqFGj3soDc7m6deuKAgMD00+ePGkpkbwb9woEArJy5UobY2NjccuWLSs8quzSpUsuj8ejf//9tykgDfCEQiGZNGlSamZmJi88PFwfAM6cOWPC5/Opv79/LgDs37/f0tnZWagYmMtNmzYtKTMzk3fs2DFTVd6vKk6ePGkiEAg4/fr1yx41alTaiRMnLLOzs4tjPHt7+6LU1FS9v//+u3I5Vgpu3bplGBUVZfDdd98lywNzudatWxe0bt06+8iRIyWm43J1dRUOGzYsZd68eU5icfUtxBoaGmqYm5vLbdOmTXHg7eDgIOJwONizZ4+FSFRmTF+sadOmedevX3/vvqqqqgbnDWT3VyuxjfzIWG0fSoapMn1joJcQ6J4KhAZI01vChmi7VR+Gl78CRRmAY7DWmpCeUwBhkQjpedo/C1UkG8cQQ+mAHfOByEjLxoc49cGzZ8/4lFI0bNhQ6ZcqPT2dc+bMGYuRI0emAcDIkSPTTp06ZZmVlVUcf6xcufJ1eno6r06dOk3c3d29goOD6x48eLDcGOHp06cGlFJ4eXmVWbenp2dBdnY2NzExsTjY37dvn5mRkVEzIyOj5hs3brQ7efLkCwcHB+URGgBTU1NJ48aN8+QpLOfPnzfx9fXNNTQ0pM2aNcs9e/asCSBNdWnatGmuoaEhBYDo6GiDBg0alBn8N23aVAAAERER/IrqV9WWLVus+/btm8Hj8fDJJ58IateuLdyxY0dx/vXo0aMz+vTpkx4QEOBhY2PTuGvXrvUXL15sk56ernIc+OzZMwMA8PHxKfN9ubu7C2JjY995T4sWLUqMj4/nb9y4Ua3z6I4ZM6ae7GdafIuMjNQHgFevXvG5XC6cnJyKf8aurq5FCxcujPv1118dzc3Nm3366afu06dPd3j27Jl+6X3b29sXvnnz5p3nq0tVg3MD2X1lrmiV50Gx86CMbkqRXRaReEC77fhQvFoGZD8Ens/QWhPuR79FQaEYg34/rrU2yGWI1wAAJHhbQUnmQ7B3wwVtN0EjKKUqnQ/YunWrZZ06dYTyNBU/P78CR0fHwm3bthUHar6+voIXL148vXTp0vPPP/88NTU1VS84ONht8ODBzhW0QeX29urVK+fOnTvPzp8/H96xY8es4ODg+vHx8SqN1Ldp0ybn5s2bJgBw9epVk3bt2uUA0nx0edB++/bt4uffp31VkZqayj137lzxARAADBo0KG3nzp3FZyh4PB4OHz4c8+rVq3/nz5//xsHBoWjlypUOXl5e3rGxsZVaqKCy78vR0VE0duzYpMWLFzuVzkmvip9++un1nTt3nineXFxcCgEgPz+fo6enJ+GUus5p5syZKQkJCY9CQkJeffLJJ3nHjh2zaN68ufdff/1V4mDQ0NCQFhQUaOciKVQ95/wtgNoAXAHcVXGbprL7hCrW/VFgOefKaSLvNdwIcM8HiHG51zYzlWHXB9kZ5zGw3lk80lLOOTEdC5pjhJShf8Ae85SW1XTO+TLCQ2MqQhHYVIofgxad+sHh3IeXxdmoUSMBIQTPnz83UFZu165dNi9fvjTk8Xi+8uckEgl2795trZjPy+Vy0aFDh/wOHTrkA3i7fv16y2+//dZ1wYIFiZ6eniWu0vfy8hIQQopHcksLDw83NDU1FSuOjJuamkq8vb2F3t7eQn9//zxnZ2fvtWvXWi9ZsqTCKfb8/f1z1qxZ4xAdHa13+/Ztk+nTpycBQOfOnXN27dpl8/TpU35SUpJ+165di9d1cXV1FURFRRmWtb+HDx8aAICHh4eworpVsWXLFkuhUEg6derUUP4cpRQSiQT//vsvv3HjxsX1uLq6Fn377bfp3377bXpKSkq8u7u798qVK21WrFhRYUwmP1Px+PFjwzZt2rzzpX/x4oWBs7Nzme9p7ty5yTt27LD99ddfbd7vXb7LwcGhyNvbu8z6bG1tRQKBgCMQCIiBgUGJowkLCwtJcHBwVnBwcJZEIolv166d2+LFix2CgoKKf37p6elcKyurCs+saEpVg/NQSIPzngAOVlSYSK8UHQNpnvq1Ktb9UWArhCqnkVUKOyv8/4ILoGcOdHionn1/bCQiwKAuTBvvw1mLflprxoxOl3HmQTRCW1yCQQW/9jS9QmgO9w5iRG1hRfqB4pDa919d2Aqhqokbk4TpN1ZpuxlqZ2dnJ27btm32tm3bbGfOnPlO3nlqair31atX+k+fPjU6depUhLW1tUjhNV6vXr08Hjx4YNCsWbMyj4AbN24sAIDS0/MBgL29vdjPzy97+/bttnPmzElWzDuPi4vjHT161PKzzz5LKz1qqkgikUAoFKo0Murv75+rp6dHly9fbltYWMhp165dPgC0b98+PyMjg7dx40ZrQ0NDiezAAgAwaNCgjLFjx5rv3bvXrHTe+bJly+zNzc1F/fr1U8sijbt377YeM2ZM8pgxY0pcvDhu3DjnjRs3Wq9fvz6+rO1sbGzENjY2RXl5eSr1Q+vWrQtcXV0Fa9eutRszZky6Yt75rVu3DG/dumU6c+bMMusyMzOTfP/99wm//vqrY9euXTNVf3fvp1WrVvkAcP/+fQM/P79yRw84HA7c3NwE9+7dK5FfHh4ebti2bVut5R5WNTjfA2AAgGGEkFWU0ocVlP8dQBNIg/OdVaybYTTrdk9AECu9RW8AXMdpu0U1z5MJQNwmIHYD0FtrgxD49Zj0xF7Lmbvx74pRWmsHAMSIPgVAkUMPa7UdTPWY/vk6CIRaW8tEozZu3BjboUMHz+bNmzecM2dOvK+vb0FRURE5ffq06bZt22w6duyY7ePjk9ezZ8935pL09vbO27hxo/WmTZve9OjRo17r1q1z27Vrl1e7du2iFy9e8OfMmePk7OwslOdnl7Zhw4a49u3be3bs2NH9559/jndzcxM+fPjQcNasWbXt7OyKli9fHg8A2dnZnFmzZjkEBQVl1qlTpyg5OZm3evVq27dv3+oHBwenl7Xv0oyNjWmTJk3ytm/fbtu8efNcHk8aOhkYGJR4ns/nFx8kjBkzJv3IkSMW48aNc01OTn4TEBCQnZmZyV21apXtxYsXzbZv3/5K8YBGIpGQmzdvlhhpNzAwoM2bN5cfpHBLv25rayt6+/Yt79mzZ0Z//PFHdOkDnYEDB6YvW7bMYdWqVfErV660fvjwoVH//v0zPTw8hAUFBWTr1q1WUVFRhitWrFBpQg8Oh4NNmzbF9O3b171Hjx71Z82alVi7dm3RtWvXas2ePbt206ZN8+bMmZNc3vZTp05N3bBhg93x48etGjdunFdeOVVlZGRw4+LiSsSx5ubmElNTU4mjo6PIy8sr//Lly8by4PzmzZuGc+fOdfz888/TGzduXMDn8+n58+dNDh48aP3tt98Wn0HJycnhPHv2zGjRokVlHmhUhyoF55TSY4SQfwB0AnCREDIHwBHF/RNCHAG0gXTaRT9IA/M/KaU3q1L3x4KltSinyVPrX9kBIbJxCGLVQa37/mhYdQDiQpBmaIhGWkppAQBwpgASgpdN/oY9Ziotqum0lkOgMJP9n6W1fPi6OnwDgxiV1rspZm1lI9LT06fVvUKotZVNpY6gvby8Cu/du/d87ty5DrNnz66TkpKiZ2FhIfL29s5btmzZ6y+//NJ1woQJZaaN9O3bN2PDhg32q1evju/atWv2oUOHLFetWuWQm5vLtba2LvLz88tZvHhxgp5e2WdlfHx8hKGhoc9nzpzpOHz48PpZWVlca2vrou7du2cuXbo0wc7OTgwAPB6PvnjxwmDo0KH1MzMzeebm5iIfH5+8c+fOhbdo0ULlL3i7du1y7t27Z1w6r7xNmzY5oaGhxfOby3E4HJw6dSrq559/tlu/fr3djBkz6vL5fEnTpk3zTp8+HVF6+r78/HxOmzZtvBSfq1OnjjAuLu4JANy5c8ek9OuDBg1KNTAwkNSvX19Q1hmIoUOHZsyaNavuwYMHzfz8/PJu3LhhMnHiROeUlBQ9IyMjcYMGDQS7d+9+2atXL5Un4u/atWvelStXwufNm+cQFBTknpeXx3FwcCgcNGhQ2sKFC5PkF8SWhc/n09mzZyeMHTvWVdX6lJk0aZLLpEmTSjw3c+bM+MWLFycBwIgRI1L37dtnNWvWrBRAmtJTt27dwiVLljjEx8fzCSFwdHQUTp8+PWHevHnFBxV79+41t7e3L+zRo4fWFiggVb1gQbYQ0UUAzSANvJUWB3AbQFdKaZWPmj5khBBTAFmpqakoPfco85+ioiKcPn0aAQEBKO+XuFqk3wJiNwHNdmiuDg0SFhbirwtX8FmXDtDXV/EC9LxXgL41oFeFiZUK04HMu4Bt9/ffhxrcf5WEf57E4fu+FS+vUB2fqZd5HWHDXQgzg7Ya2X91qLbv3gdg8fStmL3sKwAwo5SWSGUICwvz5PF4Z9zc3HKNjIyKA6yY2Ff677Ni5/uytrIRuTjXYyuwMR+M3Nxc4ubm5r179+5XXbp0UTnmbNKkiee4cePelp4fv6ry8/MNIiMjjUUiUQ9fX99wZWWr/MWnlGYSQloD+BHSFULNyimaD2AtgHmUUvYLgKlZbvpJ71P+BrqVe9ZOZ51OEuBJ7eawSi1EV0cVgvPUf4Db/oCxJ9Dx2ftX/E8D6TSKzhMAnzXvv58q8v3fbgDA+X9jcWbOQK21AwAe5+oBECFO1A4+FY5nMDXdsE4LkJtT+dRVF+d6hSxYZpj3Z2xsTDdv3hzz9u1blWPdxMREXp8+fTK+/vprtQbmlaWWo3JZsD2bELIYQAcALSBdOZQLIA3AAwAXKKUVrg7FlMTSWpSrrlPrEqAGJyD81/bDOIg1OFpheR+k4mdQ5CC73KPtytS8mWzFXK1e/DgVAHCJXIQ9vlNaUtNpLachgh5kq9HW4E8VS2tRTV9IV6dldNMPP/xgv3r1aoeyXmvRokXu1atXI6u7TYz69O7du1JHxg4ODqKFCxdqfQROrafMZKkqp2U3Rg3YbC3KVduMEX73gNchQJMQzdWhQT3tDSB4chufeX4OfYyueANrAJ2jYaZvXWFRpTpFAplhGGPbFWOqtqcq+XfZW1x5Gofvev0PwEalZTU9WwuMgag8f9hyl4Ci4jQbXcVma1HRP8DSGdtxPEzbDWHKMmXKlJTPP/88o6zXatWq9e4SowxTDaotn41hajTLFtLbGQtAlAkQfemKopqQcAB49CXgNgdo8INadrnhVS5SnZojJy4fYxqomHNuVM41OxHzgcgFgEVroI2S67ozbgE32gG8WkC3NICjvV83zf+3C2IJRdTbLKwc5a+1dgDA01wrSJCOGFErltbyEfi2/+94E5uo7WYw5bCzsxPLLx5lGF2h9r+WhBBbAD4A5Kt/pQN4QinV+mmCmoiltShX3afWxSLpsrqUFmruRHVGKCDOw5uMQxgP9Uxq5F20CRyijwhBGuzhWaV9HUlPRxsA+TlhMFJWMOMOADGoKBueIkdk6WttsTWIJdLUgrX/nsV+DFNaVtNpLWeRLv0MgaW1fAwCk/6n7SYwDFPDqCU4ly0u9A2kF4Q2KqfMMwDrAWyilLJTRSpiaS3KVfup9U/OAvcHgXgs1FwdHj8Bpo1R26YHjqtp+sHIOvk4EpGE8V5OWIYKF8RTzjcTCP8fjOp8qbxcvUmAMBmklhsi9LU7t/isoCs4fT8atxdNgQF+VVpW44sQ8aSLEJly+oNin9r3X11YWotq4v5IwvSRq7XdDIZhapAqD2XJRspvA1gHaWBOyrl5QTpbSyghRIsTHjNMFdh1B3pmAXkvgZMEOF3m6syqyXkK3O4KvC61HhfPGKgzEjBQ39fkXkYRcg1McD9TDZM/6JsDjUMAi1b/Pff4O+CsJZCgsFDwi0XSxYdEalkEr0o2X3iMf+NS8OedF9puChJFkwEUIUfCFiH6GBzYdBGCPDbpCsMwqqvSyDkhhA/gEoCGkAbgKQAOArgDQJ7GYgfgEwCDIJ3BxRfABUKIL6VUQ0m7Hw6W1qKctk6t58cBhgCoRPD+iQkJ+4HUC8gojMQXdY5UXL4KvHM2g0N4uJqZga/quKt9/y/fvIWxmAJRvwGOg6RPxq4DRJmIjZ6KVvWWqL3OykjNkaa1DD/wB6a236a0rKbTWs4hGQQAhYiltXwEgq6o57oRhmE+HlVNa5kC6Yg4BbAVwORyFhfaTQj5AcAKAGMgDeanAFhaxfo/eCytRTmtnVpvvBt49AUIv/b778N5PFCYAQuH/jiOTuprWxkuWufganIeBjhZ4deqprWUpeF6IGYD4L3+v+carQZe/Ajnhr8hCQHqr7MSfOvtxPM36bg9fTIaY7HSsppOa3nDnYgM8RpwYQuKmnspDktrUc1f4y5jx+qTld6OxifrIz27+q6itjQVESc7NsTPMDqgql/8IZAG5ucppUpnSqOU5gP4hhDiDKCbbFsWnDM1U53h0lvuS+CUHqBvD3R9XX75gjdAzDqg9ueAieyyDAMHwGdttTTXgEvAoRIYcDU0UusyXnqTez4LiP8DMPECbLppps5KsKhlAL4eF0Z87QeRPOIEAODCRMstYaqDmaUxSCW/djQ+WR+j53lDJKq+Uys8HqXbfnrCAnRGE5KSkrheXl7et27deu7h4VGpz1iTJk08p0yZkjRy5MjM0q+1aNHC46uvvkpR52qehw8fNp0zZ07tp0+fPuNyuerabaVUNee8gex+vdJSJcnL1q9i3QyjfTf8ACoChG+Ul4tcCEQtBZ59Xz3tKuVsshBFPD6OJVRDipREAkQtAQSvgZSzwKvlmq+zAhcfxyEzT4iARdrP804RSdMcihCl5ZYw1WHD4qOglZ0xMz2bV62BOQCIRKSyI/UJCQm8YcOG1XVwcPDR19dvbm1t3aRt27Zu586dqwUATk5OPj/99JOt4jbnz5+v1aFDhwampqZN+Xx+c3d3d6/58+fbiUSi4jIRERH6gwYNcnZycvIxMDBoXqdOHe8pU6Y4CgQClftEIpFg2bJl1o0bN/Y0MjJqZmJi0tTb27vhTz/9ZJuTk8MBgKlTpzoSQnwJIb5cLtfX3t6+8dChQ52Tk5NLRGSl38etW7cMO3fu3MDS0rIJn89v7uTk5NOrV6968fHxPMV9lneT7+fly5d6AwcOdLG1tW2sp6fX3NHR0WfUqFF1kpKSStTfsmVLD8XtraysmvTs2bPeixcvypwXt23btm5cLtf3ypUr70yo1b9/f5cuXbqUG3/J3+vJkydNKnofJ0+eNFm9erVVWa/x+fzmivudM2eOQ7du3TLlgXlERIQ+IcT35s2b71y41bJlS4/Ro0fXkT/+4YcfEn/88cfaYnHJGS/37NljlpqaqjdmzJjiwFzZz0Zx29WrV1u5u7t78fn85paWlk2GDx9eV/7agAEDsnk8Ht24caMltKSqI+dCSFNvlQwZvkNelh2dq4DlnCun7bzXGa7AkhfSFUSVHl87Dgay7uJm7QZYir7V1Lr/uNaaCpNcbzwxOwp7zNFsZRzgvDEHjXIlEPL00d7hV7yGlgN0gwmAQB+JvQ7BHnOVF9VwznkIOHCBBGKwqRQ/Bm2aDYFlqKO2m6ERffv2rV9UVERCQkJiPDw8hPHx8bxz586ZpqSklBlb7Nq1y3z06NH1Bg4cmLZkyZIIKysr8alTp0wXLFhQOzQ0tNapU6decTgcPH782EAikZA1a9bEenp6Ch48eGA4ceJEl7y8PE5ISEgFIyFSQUFBrufOnTOfNGlSYs+ePePs7e1Fd+/eNVqzZo2tq6tr4fDhwzMBoEGDBoKLFy9GiMVi8ujRI4Nx48a5jB492vnUqVOvytpvQkICLyAgwL1z585ZJ06ceGFlZSWOjIzkHz161DwnJ4fz448/Jk2ePPmtvHzLli29hg8fnvLdd9+lKO7n2bNn+u3atWvo4uIi2L59+yt3d/fCBw8eGMyePbvOp59+ahYaGvpccf71IUOGpP7yyy/xlFLy8uVL/alTp9YZOnSoa1hYWITifiMjI/UfPHhgPGLEiLchISHWHTp0iFOlv0rr0qVLbmxs7CP543HjxtXNycnh/vHHH9Hy52xtbcUhISGWxsbG4qdPnz5R3J4onC7KycnhHDhwwPro0aPvtdrqwIEDs7777juXQ4cOmQ0ZMqR4pfl169bZBQcHp8pHtyv62ci3mz9/vt369evtfvrppzft2rXLy83N5bx8+bLEgc6wYcNSN2zYYPftt9+qbUS+MqoanIcD+BRAHQAPVNxGfjQUXsW6Pwos51w5ree9uktvXAD4xwswbwE02wWk3wB4JoBpY2k5605AuzD4AThe/a1EvI0A+97GYl2Dz2GNrzRfYUfpnSGAu+UUEeXm4nH3L+D0/RjYftZDo81ZM/Qejoe9wvme5yosq+mccwEvCS9FbrDijgOtYFpHXab1714NkfNzLiYMXabtZqhdamoqNywszPjkyZMRvXr1ygUAd3f3wk6dOuWXVT47O5szadIkZ39//6x9+/bFyp/38PBItbe3Lxo2bFiDrVu3WowZMyZjwIAB2QMGDCie5snLy6swPDw8afv27bYAKgzOt2zZYnH8+HHL3bt3R33++eeZCnUVBgcHZ2ZkZBSPpXC5XFq3bl0RALi6uhadOnUq4+DBg+UujXzx4kXjnJwc7v79+2P09KSfe09Pz8I+ffoULxNvZmZWPF00l8ulJiYmYnkdcmPHjnXW09OjV65ceWFsbEwBwM3NrfDTTz+N8PDw8Jk6darTnj17igNrQ0NDiXwfzs7ORd98883b77//3rl0+zZu3GjVuXPnzIkTJ6a0b9/eMzc397V8/5VhYGBAFdtsYGAgEQqFpPT7kCvveQA4fPiwmZ6eHvX39y/rmsQK8Xg8dOrUKWv//v2W8uA8ISGBd/v2bZPVq1cX95EqP5uUlBTuL7/84rh///6X/fr1K36+VatWJUYYBgwYkDVr1qy6T58+5Tdq1KjaJy+palrLDkhnaRlbiW3GQpqnvquKdTOM7vjHG8h7DsTvBpIuAjfbAtdbAYVlrgpd7bbE5iGzljVCYt7rd6NG3KnXETk37yO8/ziN1zVx+z+48G8sfP+3s+LCGhYpcgRFLtLFv2m7KUw1+Krvr8hMy9V2M9TOzMxMbGRkJPnzzz8tCgoKKjwFdPToUdPMzEze9OnT37kiPTg4OMvZ2Vl44MCBctMIsrKyuObm5uUGgIr27dtn6eLiIlAMzOU4HA6srKzKXBE0IiJC//Lly2Z6enrlBrOOjo5FYrGY7N6920Iieb8lW5KTk7nXr183HTVq1NvSgXPdunVFgYGB6SdPnrQsb//Jycncw4cPWzZp0qTEL3SJRIL9+/dbDxs2LL1Zs2YCZ2dn4c6dOy3eq5FqdPXqVWNvb+8yD9pU9cknn+TdvXvXWP74woULxgYGBpJmzZoVn95U5Wdz7NgxU4lEQl6/fq1fr169RnZ2do0DAgLqvXz5ssQIg5ubW6GVlZXo4sWLxmXuSMOqOnK+BcBnALoTQtYDmEopLfM8sGzaxd8B9ABwFkBIFev+KLC0FuV05dT6dnPgC9mvSWJUD9C3QZa+HkZxP4dIecJLtfDk/Qr9QmvE6j2GPYZquzkAgAVu+vBM4UCkT2CvpsWWyjcVAPDM5QLsMUNpSU2ntfwFilqy/7O0lg9fD4tvoZfI13Yz1E5PTw/r1q2LnjRpksuePXtsvLy88v38/HKGDx+eXnoUEgAiIiIMAKBp06Zlfqnq169fEB0dbVDWa0+ePOFv377ddv78+SqltMTExBjUq1dPpS9vZGSkoZGRUTOJREKEQiEBgPnz55ebquvv7583YcKEpK+//tp16tSpzo0bN87r0KFD9tdff51Wp04dlQ4enj59akAphZeXV5lt9PT0LNi/f791YmIiz8nJSQQAu3fvttm/f781pRQCgYDj7OwsPHv2bImFG44dO2ZaUFDA6d+/fxYADBo0KG3nzp02mk7NyM3N5RoZGTVTfK5Fixa5V69ejQSA169f69vb25eZyuzv7+9JSl0xLRQKOaWDeScnp8KkpCR9sVgMLpeLmJgYfSsrqyLFCzZV+dm8evWKL5FI8Pvvv9svW7bstbm5uXju3LlOXbt2dX/+/PkzAwOD4oMlW1vbwtjY2DLz+jWtqsF5OwDLAVhCukJoICHkIKRnst9COkIun+d8IAB72Wu/A2hX+gciRym9WsV2fTBYWotyOnNqvRmARumAvmzgp2sizMDBn5WdpkFDshyzsOFxPH70aotNmphK8X3cABK2H4LtwJ5IgmYHJ0R/vEFWyl1Y1al4KXVNp7XAGHiVOxqOvMWgGj8o0Ryd+e7puhPApmVHcCJM+xdGq9vIkSMzBw0a9Ojs2bMmN2/erHXhwgWzjRs32i9fvjxm4sSJaWVtQyt5dWx0dLReQECAW0BAQMb333+fqso2lanDxcVFcOzYsZcFBQVk+/btVo8fPzaaNWvWW2XbrFmzJn727NlJp0+fNr19+3atHTt22KxatcrhwoULES1btlT5SLUy7ezXr1/6/PnzEwFpSsfixYsdunfv7v7gwYNnFhYWEgDYtm2bVZ8+fdLlKR2jRo1K/+mnn2prOjWjVq1aktu3bz8r/Zz8/wKBgMPn88t8s1u3bn3VuHHjEgcpwcHBrqXLGRkZUYlEgoKCAmJsbEwLCgrK3GdFPxuJRAKRSER+//3315999lk2ADRs2PBVnTp1mpw6dcqkf//+xelUBgYGND8/v8qLdb6PqgbnlyENwOXsAHxXwTYtIB05Lw9F1dvFMNVPX+GMLNH+aLmi32JFgKkdFjzPxsLGunGwd8+7G/KfRuLlmB/QXqTZmUuEj+rAAICgoD8M3LU7Y8vjXD6AQkSKtsMHlU4FZWqYL7r+jMyMrIoL1lBGRkY0KCgoOygoKBtA4uDBg52XLl3qWDo49/DwEADAw4cPDbp27fpOfl1UVJRhgwYNSgS2MTExep06dfLw9fXN3bt3b2zpbcrj6uoqiIqKUmn5Zj09Pert7S0EgE8++SS+Y8eODaZNm+a4atWqBGXb2dvbi0ePHp0xevToDIFAEO/t7e21dOlSuz///DOmojq9vLwEhBA8e/aszDMF4eHhhqampmIHB4fikXhTU1OxvJ3e3t5CT0/PGGdn5ybbt2+3nDp1ampycjL33LlzFiKRiOzZs6d4ZhmxWIyNGzdar1mzJl6V/ngfhJDiPiyLpaWlKDMzs8w/ii4uLoWlt1UcvZZLTU3lGhoaSuRpQNbW1qLs7Owy96nsZ+Pg4FAEAE2aNCn+rDk6OorMzc1FMTExJUbJMzMzuTY2NiqdDVE3dQTBujE0+IFiaS3KsVPrqpmFFBAQUNBqSCFRzfosPqzBgUQi0XibXkL6i+pG0TEMq6AuTae1/I1C8CAdhWBpLR++fsJp2m5CtWrYsKHg3Llz5qWfDwwMzDYzMxMvW7bMvmvXriWOxvfs2WMWGxvLnz17dnEAGR0drdepUycPHx+fvEOHDsVUZr7pIUOGpH/99df1/vjjD/PSeecSiQQZGRnc8vLO58yZk9i7d2+PKVOmpLi4uBSpUp/s4kmhqqOs9vb2Yj8/v+zt27fbzpkzJ1kx7zwuLo539OhRy88++yyNwyl/dzyeNHwrKCjgAMCWLVus7OzsCo8cOfJSsdypU6fM1q9fb7dixYp4+TbVrWnTpvkHDx6s0qjQkydPDBs2bFic6vLJJ5/kp6am6qWkpHBtbGzK/FkC7/5sOnXqlCvbn0H9+vWLAGkOf2ZmJs/V1bU49SY/P5+8fv2a7+vrW6Vc+fdV1Z+UZpc1ZFhaSwXYqXXVhNfOwt6YfIyrb4RFupLW8hoIHzkNThNHIgneGq1K5H4Gosy/4e+6qsJ3Xx1pLeG5DWDL+wkUwerffzVh3z0VXQWmDl8OhGm7IeqVlJTEDQwMrD9ixIhUX1/fAjMzM/HNmzdrrV271r5r166ZpcubmppKVqxYETtmzJh6Q4cOdZ48efJbc3Nz8enTp03nz59fu0ePHhlffvllBiANzDt27Ojh5ORUuHr16jcJCQnFsYqyWUHkvvzyy4xjx45ljBkzxvXJkyeJAQEB2fb29qKwsDDD1atX240fP/6tfCrF0rp06ZLn7u6eP2/ePIddu3a9Mw3hvn37zGSzhqQ3atRIQCnFkSNHzK9evWq2atWq6LL2WZYNGzbEtW/f3rNjx47uP//8c7ybm5vw4cOHhrNmzaptZ2dXtHz58hIj3QUFBZy4uDgeAMTHx+stWLDAgc/n0969e2cBwO7du6179+6d8cknn5QYUahXr17R4sWLnQ4fPlw8DWFOTg639Pzitra2ogYNGqh0MFIWedsUOTk5ibhcLnr37p29ePFip4oCaWVu3bpl0rlz5+KUEz8/v3xzc3PRhQsXjIcOHZoFqPazady4sdDf3z9z2rRpdY2MjGLMzc3FM2bMqO3q6iro1atX8ewtly5dMtbX16edO3fWyiwKVQrOKaVX1NUQhmE05483IoCrh/WxIvzcWNutkXoyYBzSj5xB2rHzaJPxqOINqkAY2RegRRDyLMGv86NG66rIs1xHiJGIeNHnsKzBwTmjmu+Hr0bUc6UZEu+yNBWBx6PVvUIoLE1VPoVvZmYm8fX1zVu3bp1dXFwcXyQSEXt7+8Jhw4alLFq0KLGsbUaNGpXh4OAQsWjRIocuXbp4CIVCjrOzs3Dy5MmJc+fOTZaPFJ84ccI0Li6OHxcXx69Xr16J31iU0goPczgcDo4dO/bq999/t9m9e7f1qlWrHHg8HnV2dhYOGTIkLSgoSGme0YQJE5K/++4713nz5iWWDlibNGlScPz4ccnMmTPrJCcn6+np6VFnZ2fh8uXLYypz4aWPj48wNDT0+cyZMx2HDx9ePysri2ttbV3UvXv3zKVLlyYoznEOAPv377fev3+/NSBNcfHw8Cg4dOhQZJMmTYTXrl0zioiIMNy0aVNM6XqsrKzErVu3zt62bZu1PDi/c+eOSZs2bbwUyw0aNCj1wIEDKqcOKcrNzeU6Ozs3Kf18bGzso7p164patmxZ4OXllb9jxw6L6dOnq3TdgKLo6Gi9Bw8e1Nq3b1/x3PM8Hg+DBw9O3bt3r6U8OFf1Z3Pw4MHosWPH1unfv78bh8NBy5Ytc86cOfNCMYd97969lv369UszMTF5vyl5qohU9uIMpnoQQkwBZBmkGkBgxdJaymNYZIh9p/dhaMBQFOixU+vlmfXvf2ktWxtrdpRaVdss+DDO5IACGEw1+7N7GZoMAiDSgIseTcqdwhgAYFBkgFWnV2FSwCQI9NT/3TubmwwOpGktTbQySZd6sO+eagLbzIBEKMLxsN8BwIxSmq34elhYmCePxzvj5uaWa2RkVPyBo/HJ+pVdsbNKLE1FxMmOLQ7IaMT+/fvNZs+eXfvFixdPK5OiBADjxo1zyszM5CnOjw9IR+sbN27sfefOnWfu7u5q++wmJibyGjZs6H379u1nnp6eattvfn6+QWRkpLFIJOrh6+urdK0fduGljmNpLcqxU+uq2W6Yjqg8MVpa6OlMWkvu9Rd43G04HL4cjCTZVIeaIrAeDXH2JXg3eogkmCstq+m0lkzeMbwWBcGItAVFzZ2Yin33VPN0bTR+HL+x0tsRJ7tCsGCZ+UAMGTIk68WLF/zo6Gi9yqbP2NraimbNmpVc+vm6deuK1qxZE/Pq1St9dQbnkZGR+r/99lusOgPzymLBOcN8BOIKKEAInueK0U/bjZFJP3MFRUmpSP/7Mlx+0mxwLs66CBTFAzm3AQvNrkZakXTxZgAUgorPzjMfgOvnHqGo6L3SbJlytG/f3u3evXtlnneaOHFi4tKlS3VjBIIpYd68eUqnqCzPggUL3gnM5cq7dqAq2rdvn9++fXutXAgqp5bgnBBiDWAYpPOe1wNgAlS48gqllNZXR/0fMjZbi3JsxgjVzEIKCCHIEevObC07FhjASEKQc++x5mdrKZKmtUTE9oK/hY3SspqereUclbZFgnw2W8tHIOjoD9puwgdn586dMXl5eWVOZaKtqe8YRp2qHJwTQoYC2ABpQA6oPrUiS3ZXAUtrUY6dWlfNTyQNhRIKMz2CJB1Ja4lfsgtRk36CaetmSMIhjdaVx3cDCmPh4XoBSWivtKym01piyEDk0MPgwAQU2RVvoKPYd0812wedxNE9l7XdjA+Kq6vre88qwjA1QZWCc0JIZwB/4L+APBbAvwAyAWjlCleGYd5lpw+8LqBwMdSdxZFMWzcHz9IMZp82q7hwFXFrtYBYkg8YelVcWMNMuUHIER2BPjy03RSmGjT91A0nDtTcawsYhql+VR05/wHSwDwTwDBK6d9VbhHDMGr3WgiAw8G/ORIM0nZjZP71HwZxZjbeLNuMer/N0mhd4vT9AADh87bgNVF6kbzGxYs+B0AhxD2ttoOpHkum/QGxiI1VMQyjuqoG559Amp7yIwvMNYPlnCvH8l5VMxPJ4FAORKRQZ3LOJ/bQQ5v9XORaEo236SkB+BT4zfoNNml5hdDdAOzAVgj9WHRs8AVMnrLURIZhVFfV4Fx+QcaNqjaEKRvLOVeO5b2q5qF9Fo7EF2BSvVpYqiM556LdIoQXfYcmk0cjCZ9otK6ieochzjyJBU47sKCishrOORfwBHglqgcb3hxQjFf7/qsL++6ppnBzIaZ8vuKDWyGUYRjNKfNq50qIkt3XqmpDGIbRnMNJIlCuHtbF6s5EBned2yD9yBn8217ziTaFUQMhTtuJ/KdtNF5XRSJFRhAjEUmib7XdFKYafNFlId68StF2MxiGqUGqOnK+H0BTAN0BXKtya5h3sLQW5dipddXMgnSFUAkkOpPW8osNHy4JBBKO5tNaXsruj+vfwxQtp7WcAAVf9n+W1vLh62U4CZz8yl+IXVAUqV8oTq62tUj0uXYiQz03tuhRDTNp0iTHt2/f6pVePbMihw8fNp0zZ07tp0+fPiu9YuexY8dMpkyZUvfFixdPeTz1fAQFAgGpX7++9759+6K0PYd4TVDVXl8PYASAyYSQo5RSdoWTmrG0FuXYqXXVFDUswm+3X2L6pw2wWEfSWvAQSNxxGDZDeiMJBhqtStAkCci5jKE2QzC0grKaTmuBMRCT+yXseb+DVrBaqS5j3z0VnQU2/34EJ8KWq7xJQVGk/t033t4UhdV29EagTz+p/eRJZQL0hIQE3vTp0x0vXbpklpaWpmdqair29PTMnzdvXkK3bt3ynJycfL755ptkxcVnzp8/X2vhwoUODx48MBYKhRxnZ2dBcHBw2pw5c5LlgWBERIT+3LlzHW7cuGGalpamZ2NjUzhgwID0JUuWJBoYGKg0DbNIJMKiRYts9+zZYx0bG2vA5/MlTZs2zZszZ05Ct27d8uTlpk6d6nj69Gnz8PDwZ4rbR0RE6Ht6evrcuHHjmZ+fX4mjT1dX10bx8fH8ly9f/lu3bt0SpyNbtmzpcffuXWMA0NfXpw4ODoVDhw5NXbRoUdK0adMcV6xY4aCs3SdOnHjRp08f9/Jeb9myZU5oaOgLQLp8/datW+3u37//VP56//79XbKysrgXLlyIUtzu5MmTJn369HFPSUl5aG1tLR4wYED2/Pnz6caNGy2//fbbdMWys2bNqj19+vRE+c9DJBJh3rx59vv27bNKTEzk8/l8ibOzs2DkyJGpU6dOTQWAmTNn2p84ccIiOjragM/nS5o3b577+++/v2nSpIkQAAwMDOi3336bNGPGjNq3bt16oawPmCqmtVBKcwEEAAgHcJUQsogQ0pgQotm/tAzDVMqC59nIN7PFgue6M6/2/Zb9EDlqOm6Z+mi8LvEjR4hfDYUgcoTG66rIk9xayME2RIostN0Uphp8GbAEJ/fdqtQ2heJkXnUG5gBAUUgqO1Lft2/f+k+ePDEKCQmJefLkyZNDhw5FtmvXLiclJaXM/ezatcu8Z8+eHo6OjkVnzpyJ+Pfff5+MHTv27YoVKxz69OlTTyKRzmrz+PFjA4lEQtasWRN7//79J0uXLn29a9cum4kTJzqp0i6JRII+ffrU+/333x3Hjh379tGjR0/Onj0b4eTkVBgQEOCxe/du88q8T0Vnz541FgqFnB49emRs2rTJuqwyQ4YMSY2NjX30+PHjJ1OmTEn87bffHH/77TebH3/8MSk2NvaR/GZnZ1c0bdq0BMXnunTpkqv4WH777bffYgkh+Oabb4pzpNauXWvTrFmz3Pddun7YsGGpGzZssCv9/uLi4vhffPFFhvy5adOmOW7atMlu7ty5CQ8fPnxy5syZiFGjRqVmZmYWD7lfv37d5Ouvv3575cqV56dOnXohEolIz5493bOzs4vjzDFjxqSHhYUZ37t3j8WIFajy+QpKaRwh5AsAlyCdWvEHACCkwt8rlFJabafsaiqW1qIcO7WuGnlaC4XurBC6KY4PC3AgKRJVQ1oLBQEQJtiH/jintKym01rOIB9csNlaPhaB2dO13QSNSE1N5YaFhRmfPHkyolevXrkA4O7uXtipU6cyUxays7M5kyZNcvb3989STMHw8PBItbe3Lxo2bFiDrVu3WowZMyZjwIAB2QMGDCgeSfDy8ioMDw9P2r59uy2ANxW1bevWrRZnzpyx2LNnz8vg4OAs+fOtW7eOTU9P502cONG5X79+2aamppWe43Lz5s3WQUFB6Z06dcqZNm1a3UWLFr1zKtLQ0FAiH1F3d3dPCwkJsb148aLpjBkzUszMzIrr5HK51MTERFx69L304/v37xvMnz+/zoQJExJHjx5dHDT/9ddflqNHj36L9zRgwICsWbNm1X369Cm/UaNGQgDYs2ePZdu2bbONjIyKz1CcOXPGfOTIkW8V627dunWJL/21a9ciFR/v3bs3xsnJqcmNGzeMevbsmQsANjY24ubNm+fu3r3bskWLFgnv2+6PgTpWCJ0EYBmko/A19y+NjmJpLcqxU+uquWadhbPJAgx3NsAiHUlrEcUI8LT3l6g9bQyS0FGjdRW6bIU44zjaeB6r8N1rfraWTESJ6sGKNxkU89S+/+rCvnuqyT1TgElDlmm7GWpnZmYmNjIykvz5558WnTt3zjM0NFSabnL06FHTzMxM3vTp09/5CgYHB2fNmjVLeODAAcsxY8ZklLV9VlYW19zcXKUr2vfv32/p7OwsVAzM5aZNm5bUrVs3z2PHjpkOHz48U5X9yWVkZHBOnz5tcfXq1edNmzYVjB07lnvmzBnjHj165JZVXiKR4Ny5c8avXr0ycHV1FVamLrnU1FTuZ5991qBly5Y5K1euLA5ok5OTuVFRUQatWrV67/xtNze3QisrK9HFixeN5cF5aGio8YABA0qkudjY2BRdvXrVNCEhIcXR0VGln0F6ejoXAKytrUuUb968ed6tW7dMyt6KkavqCqEBAFbIHkogvSj0EdgKoQyjU86migAOF3vfiPCTpbZbI/Vy/DxkXbyJ/KeRaJ14R6N1FcVNBCT5KExYCX3HyRqtqyIxok8gQQZSRPNhX4ODc0Y1S6fuRGrSOzFijaenp4d169ZFT5o0yWXPnj02Xl5e+X5+fjnDhw9Pb9Wq1TunUiIiIgwAoGnTpmWejqpfv35BdHR0mekOT5484W/fvt12/vz5FY6aA0B0dLRBgwYNyjydI68/IiKCX9brymzbts3S2dlZ2KJFCwEA9O3bN33z5s3WpYPz3bt32+zfv9+6qKiIiEQiwufz6aRJk5IrW59YLEb//v1duVwuPXLkyCsO579M5KioKH1KKerWrftOSsvly5fNjYyMSiy9LJFIyhw8tbW1LYyNjdWXP05ISNB3dHQssc+VK1e+HjRoUP06deo0qV+/fkGLFi1yAwMDMwcNGlRmnqRYLMZ3331Xp3nz5rmffPJJiZ+3o6NjUXx8vH5Z2zH/qerIufx8XTyAAErp4yrujymFpbUox06tq2YWUkAIgViH0lq2/2mAWiAoTErRfFqLJB8EQHjK9+jmuFRpWU2ntZxDMggACsrSWj4CQU9+0HYTNGbkyJGZgwYNenT27FmTmzdv1rpw4YLZxo0b7ZcvXx4zceLEtLK2oVSl6zmLRUdH6wUEBLgFBARkfP/996mqbldRPfr6+pVrCIDdu3dbDxo0qPh9jRw5Mq179+4eGRkZcRYWFsUDkv369UufP39+YlpaGnfevHmOrVq1yuvatWte2Xst33fffef04MED4xs3bjxX3D8A5OfncwBAMf1ErmXLltkhISFxis9du3at1vjx411LlzUwMKDyfQGAUCjklD4L4uvrK3jx4sXT69evG125csX4+vXrJsHBwW5HjhxJPXDgwDuzxIwYMaLuixcvDK9evfrOcsyGhoYSgUBQ1Wm8P3hVDc4bQ5o6OY8F5prB0lqUY6fWVbNGLw3JhRQNjTlI0pG0lsyTd/G0z1ey2VoWabSuArM+kOTdhpfHAyShttKymk5rSeGtR5JoAvjwBMWzijfQUey7p5qbCx/jt5m7td0MjTEyMqJBQUHZQUFB2QASBw8e7Lx06VLH0sG5h4eHAAAePnxoUFagGhUVZVh6tDsmJkavU6dOHr6+vrl79+5VeapAFxcXYVRUlGFZrz18+NBA1h4hAJiamopzcnLemesyLS2NCwCWlpZiAAgLCzN49OhRrcePH9datGhR8S8RsViMbdu2WSoeOJiamoq9vb2FAHD8+PFX9evX9/Hz88sNDAzMUfU9hISEWISEhNgfOHAg0sfH552UGDs7OxEgTXspnWpiZGQkkdcvFxMTU+ZodWZmJtfGxqZ4e3Nzc5E8JUURl8tFhw4d8jt06JAP4O369estv/32W9cFCxYkenp6Fo+0jxgxou7FixfNL1++HF6/fv2i0vtJT0/nWVpa6s6CGzqqqkcv8h/gwyruh2EYDcqW/SpMLaz0YJHGFLyMgSSvAAUvKzU973uRZJ0GRKkoTDuo8boqYmMwHj7GEngY19zAnFHdg5sRkIg/nizPhg0bCgoKCt6JLQIDA7PNzMzEy5Yte+c02Z49e8xiY2P5gwcPLs51jo6O1uvYsaOHj49P3qFDh2JKz8WtzODBg9NjY2P5e/fuNSv92rJly+xtbGyKAgMDswHA09NTkJycrPf69esSg5V37twx4vP5tEGDBoUAsHHjRusWLVrk3r59++mtW7eKb1999VXyrl27ypy1BQDMzMwkY8aMSf7hhx/qyGejqcjNmzcNJ02a5DJr1qw3/fv3LzN1xMvLS2hsbCx+9OhRmQchqsjPzyevX7/m+/r6FuetN2rUKP/Zs2cV7rNx48YCAMjJyeEA0vz6ESNG1D1z5oz5+fPnIxQDdkVPnz41bNSoEZvnvAJVDc7lV+eyOcEYRocVUACEIPWdcQztiZq4ALSoCFkXblRDbdI/ivTNtGqoi2H+88/JB9pugkYkJSVxP/30U/f169dbhoaGGoaHh+tv27bNYu3atfZdu3bNLF3e1NRUsmLFitiLFy+aDx061Dk0NNQwIiJCf8WKFdbjx4937dGjR8aXX36ZAfwXmDs6OhauXr36TUJCAi8uLo4XFxen0tn+MWPGpHfp0iVz3LhxritWrLCOiIjQDw0NNQwODnb+559/zLZu3RrN5/MpAPTv3z/L1dVVOHDgwHrnz5+v9ezZM/3t27dbLF682Gn06NHJPB4PQqGQHDlyxGrgwIHpn3zyiUDxNm7cuNR///23lrLpASdPnpwSGxvL37lzZ4WxUmJiIm/gwIENWrVqlfPVV1+lyd+3/JaQkMADpCPZfn5+OdeuXTNWpU/KcunSJWN9fX3auXPn4jMZXbp0yb5z506Jffbo0aPeggULbC9dulTrxYsX+idPnjSZMGFCXWdnZ6E8h3/EiBF1//rrL8vt27e/MjMzE8vbm5ubWyJ37+7du8Zdu3b98C7CULOqprXsA+ALIBDSqRQZNWM558qxvFfVTEcc9Kkh8jnpsEcjbTcHAND/ey4GLtBDkhdH4znnkZBOJbXdkmJiBXne7DOlGtZPqmnTdCgs7yldd+Yd+lw7EYE+re5FiPS5diqnG5iZmUl8fX3z1q1bZxcXF8cXiUTE3t6+cNiwYSmLFi1KLGubUaNGZTg4OEQsWrTIoUuXLh6yRYiEkydPTpw7d26y/ILHEydOmMbFxfHj4uL49erVa6y4D0ppWEVt43A4OH36dNTPP/9st379ersZM2bULSoqImZmZuJbt2498/X1Lf6jqqenh/Pnz7/4/vvvnb744ot6GRkZPCcnp8IxY8a8nTdvXjIA7Nu3zywrK4s3dOjQd2aSad68uaBevXqCjRs3Wm/ZsqXMC1bt7OzEQUFBaYsXL3YcMWJEhrKzAIcPHzZLSEjQT0hI0Hd2dm5S+nVHR8fC+Pj4xwDw5Zdfpnz33XcuGzZseFOZMwtye/futezXr1+aiYlJ8ZD+V199lfbzzz/XfvToEV++gFDXrl2zDx06ZLlq1SqH3NxcrrW1dZGfn1/O4sWLE/T0pClte/bssQGA3r17eyjWsWrVquLrDy5cuFArJyeHqziHOlM2UtmLM0psTIgepDO0NAMwgFJ6Ql0N+9gRQkwBZKWmpsLKiuWcl6eoqAinT59GQEAA5L8kmHcdeJWBx9kidLDSR9c675zp1QpBzBs88g+Gw/jhqPv9GI3WlRfmAojiQHzewsio3DPQANhnSlWsn1Tz9MErzBm7AUfvLAMAM0ppiTSFsLAwTx6Pd8bNzS3XyMioOGgsKIrUr+yiQFWhz7UTVWZ10Jrm+vXrRr169XIfMmRI6qZNm1Sa9UXXSSQSNGnSpOGECROSv/nmm/SKt/hPYmIir2HDht63b99+VjoF5Ztvvqmdk5PDrUyevyp69epVz8fHJ3/p0qW6ceFTNcvPzzeIjIw0FolEPXx9fd+5WFZRVb/4DgDGAAgB8Bch5ACAAwBeAKgwp4hSGldRGYZhqu5xrgTgcHAlQ4SudbTdGqn7vr0hSs9CzLTFGg/OIZL+jaGP7YBWYs3WxTAKfhy3FRJx5QfBDPXcCj/kYLm6tW3bNv/06dMRR44csVBcdKcm43A42LRpU8yDBw8qnXceGRmp/9tvv8WWlRu+aNGixGXLltmIxWK8z4h8WQQCAWnUqFHBnDlzKj2l5MeoqsF5DKSztQDSs8ZDZDdVUDXU/8FjaS3KsVPrqpmJt+BQAgkR68xUijM+1UPz01wIjEk1rBAq9UJPAl+W1qIWrJ9UE2A+EdxU9qdOndq3b+927969MnOtJ06cmFjeyGybNm0K2rRp80F9WP38/Ar8/Pwq/Z7at2+f3759+zIHUa2trcXqHt02MDCgv/76a5npTsy71PEbg5Tzf40ihHwOoB2kOe8+APQBjKKU7iij7HwAPyrZnSulNKaM7boDmAWgOaQHE2EAFlJKL5bTJncACwF0BlAL0jMIGwFspO+ZP8SmUlSOTeemmlfOWdgVmYMpbiZYrCNTKeIU8PL7RbD/egiSUF+jVeU7/AyafhDNmz5GRV9E9plSDesnFZ0BJgz+VfrXg1GLnTt3xuTl5ZU5oYXitIAMU1NVNTgfpZZWvJ+FAJwBpAJIlP2/IjshHe0vLbP0E7LgfzeAFAA7ZE8PBnCeEDKIUnq4VHkvADcBGAI4CCABQC8A6wF4AfhOhfYxjEZsixUB+ob4LVaEhY0rLl8dQl3aQRj7BgkrtqK95JVG66KJ0pU48+4YolbLD2rgjNFxA/3moLCQnf1UJ1dXVx2ad4ph1K9KwTmldKe6GvIevgIQSSmNJYT8AGCJCtvsoJRerqgQIcQCwBpIA//mlNI3sud/AfAAwAZCyFlKqeKCAhsAmEG6UurfsvJzAVwAMIEQspdSekv1tyfF0lqUY6fWVTMLKSAgkECiM2ktK/h8OIEDCdH8qqXytJYcCGDM0lrUgvWTagLJ/7TdBIZhapgamwhHKb2gwd0PBGAO4Ed5YC6r8w0hZC2A+QCCAOwCitNZ2gP4Rx6Yy8oXygL0y5BeOFvp4JyltSjHTq2rJss5C2ufp+J/vnV1J60lAni9citshvRBEmw1WlW+637Q1N1w8DrF0lrUhPWTim4A877bhOMsrYVhGBXV2OD8PbUnhLSCdEWSSAAXKKW5ZZTrKLs/V8ZrZyENzjtAFpxXUP46gDxZ+XIRQvgA+ApPmQDS6cqKitgZvPLI+4b1kXK/xYoAQzMseJ6NHxuaars5AIAn3YYj53IoYmb+hk+zH2u0Lho9FACQF1Yb+o2jlZZlnynVsH5SzeieS5CdWeYijwzDMGVSW3BOCOEA6ASgNQB7AEYAZlNKExXK6MvqFFNKtTGN0YJSjzMJIZMopbtKPe8mu4/EuyJLlVFanlIqJoREA/AihPAopeVdrDITZVy0+s8//8DIyKicTRi58+fPa7sJus2lDUAIQClOnz6t7dYAAEzDnoALQCIQarxN/nbSty8pTFC5LvaZUg3rJ+UKcmv8jH0Mw1QztQTnhJDeAFbj3Ysyl0F6sabcV5DmcucSQhwppXmoHo8AjIY0vSQR0oOH3gB+ArCDEJJJKT2uUF6+SktZS8xmlypTUXn5NhxIR8PLWxlrCYDlCo9NALzp1KkTW4RIiaKiIpw/fx5du3ZlC6EoQV9n4162BD2sOWjlFaDt5gAAhBGt8Lz7SDhMHAW7AM22qfCpDyB8Do5XKgJaKD/YZZ8p1bB+Uk1jr+aYNmKttpvBMEwNUuXgnBAyBtLpAuVXWaUCsAbKTO3cAuksK2aQ5mz/UdX6VUEp/avUUzEA1hJCngM4L2vT8dLbVSfZmYTiIRZCpN2pp6fH/vCpgPWTcvdzARCCSxlA29q60U+xy7ai4HEE4pesQ+2vBmu0rkKhLG0mYTj0Gqr2VWefKdWwflJu3cJjEBVVfuGrlIQc/ZyMgmpLPTWxMBTZOJqwRY8+MgKBgLi7uzfaunVrdNeuXSs1YNq7d+96vr6+eQsWLHhnYaHAwEBXT0/PAnXOl3748GHTOXPm1H769OkzdS2OpKuq9MUnhLgBWCd7eAnABEppOCFEUlZ52QWSRwB8CaAbqik4Lw+l9CIhJAqADyHEVGFZZfkIuBmAtFKbmZYqU7p8WUwhPVjJKef1crHZWpRjM0aoZhZSQAiBkGp+ZhRV7dhiACMQCF69rpbZWggAUfYJEDZbi1qwflLNZxEzK71NSkKO/i/jTnqLRZJqWzuEy+PQGRt6P6lMgJ6QkMCbPn2646VLl8zS0tL0TE1NxZ6envnz5s1L6NatW56Tk5PPN998kzxv3ry38m3Onz9fa+HChQ4PHjwwFgqFHGdnZ0FwcHDanDlzknk8aUgSERGhP3fuXIcbN26YpqWl6dnY2BQOGDAgfcmSJYkGBgZKr+nu37+/y59//lnu6WZHR8fC+Pj4xy1btvS4e/euMQDo6+tTBweHwqFDh6YuWrQoicPhFLfD09PT58aNG8/8/PwK5I/l+zIyMpI4ODgUtm7dOud///tfso+Pj/DUqVPG/fr1cz916tSL7t27F1/Tlp2dzfHy8moUEBCQERIS8kZe/8yZM+MXL15cIoDt2LFjgytXrphNmTIlcfny5QkA0LJlSw9vb+/8GTNmJCu2oSyrVq2KqVevXmGfPn3cy3o9Njb2Ud26dUUAsGzZMpvatWsLFQNzQojvrl27ooYPH55Zum+zsrK4Fy5ciAKAH3/8MaFLly6eEydOTLWysio+Ar1165bh5cuXzXbu3Bkrfy48PFx/+vTpTqGhoSZZWVk8c3Nzkbe3d96yZcvimzVrViLIKSgoIM2aNWsYERFhKO97ABgwYED2/Pnz6caNGy2//fbbdGV9UNNV9ah8imwfTyCdQlCVL/U1SIPzZlWsW11SATSANEdeHpxHAmgBaS556eC8rPzysvLQAQCEEC4AVwDRSvLNy8Vma1GOzRihml+4acgRUTjxCZJ0ZLaWt9vPIOLzybAM6IQkbNBoXXnQAyCCnssOUHyhtCz7TKmG9ZNqdgX/jSO7yly3rlw5GQW86gzMAUAskpCcjAJeZYLzvn371i8qKiIhISExHh4ewvj4eN65c+dMU1JSyowtdu3aZT569Oh6AwcOTFuyZEmElZWV+NSpU6YLFiyoHRoaWuvUqVOvOBwOHj9+bCCRSMiaNWtiPT09BQ8ePDCcOHGiS15eHickJORNWfuWCwkJeb1ixYriMs7Ozk1WrVoVExgYmAUA8gMAABgyZEjqL7/8Ei8QCDh///23yffff+9sbm4unjFjRoqyOo4ePfqiWbNmBbm5uZz79+8brV271rZly5Ze+/fvf9mvX7+ckSNHvh0zZozLkydPnpmamkoA4Ntvv61tYGAgWblyZbx8P/b29oX79u2zUgzOo6Oj9W7dumVqY2NT5pXW9evXL4yNjX0kf7xw4UL7f/75x+zixYsR8ucsLS3Fly9fNgaAR48ePTE3Ny9x6sbJyUkEABKJBFu2bLGdNWtWPN7DJ598IqhTp44wJCTEcubMmcV9tnLlStuAgIB0MzMzCQAIhULSrVs393r16gn27dsXVadOnaKYmBi9kydPmqWnp78zBD5+/PjadnZ2hREREYalXxs2bFjqhg0b7FhwrlxnSEeEV6oYmAP/TTlcp4p1VxkhpBaARpDOppKq8NIVAEMhHd2/XWqz7gplUOr/3QAsLVW+LaSrhV4Bw2gJV/Znnletf+6V4+jrgXA44OhVx5l72WKChK+8GMOomb7BhzkpWmpqKjcsLMz45MmTEb169coFAHd398JOnTqVuSR8dnY2Z9KkSc7+/v5Z+/btKx5R9fDwSLW3ty8aNmxYg61bt1qMGTMmY8CAAdkDBgwonuLGy8urMDw8PGn79u22AJQG51ZWVuLS12lZWFiI5SPFigwNDSXy593d3dNCQkJsL168aFpRcG5jYyOSb+fl5VU4dOjQTD8/P/fx48e79OrV6/Hq1avjfXx8zCZMmFB7165dcSdOnDA5cOCA9cWLF8ONjIyKR/79/f2zTp06ZXHu3Lla3bp1ywOATZs2WbVp0yY7ISFBv6y6eTweFN+LsbGxhMvl0rLeHwA4OjqKrK2ty8yrun79utHr16/5AwcOLO96uQr16NEj8/Dhw8XBuUgkwunTpy02b95cPC1WWFiYwevXr/kXLlx44e7uXghIPyvy96zo4MGDpleuXDE9dOhQVIsWLd7JRhgwYEDWrFmz6j59+pTfqFGjD/Zq6zKXv62E2rL7R0pLlST/YVTLFCSEEBPZPOSlnzcEsBnSCy8PlhrVPghpqsp3hJDaCtvUBjAB0kC+OI+dUhoB4CqAToSQngrl9QH8LHu4RW1vimEqKVMEgBDE6dCvsvBhkyHJK0Dq/pPVUJt07IBGB1dDXQzzn8PbLmu7CRphZmYmNjIykvz5558WBQUFFR72Hz161DQzM5M3ffr0d07dBQcHZzk7OwsPHDhgWd72WVlZXHNz80qffVaFRCLBmTNnjF+9emWgr69f0VII7+ByuZgwYcLbhIQE/WvXrhkZGRnR7du3R+/bt8/6jz/+MB87dqzLd999l9iuXbsSBy76+vo0MDAwfevWrdby5/bv3289atSo1HdrUb9//vnH2NnZWWBhYVFmKrIqPv3007zHjx/Xkn8GQkNDDXNzc7lt2rQpDrwdHBxEHA4He/bssRCJyv8Rvn79mvfdd9+57NixI9rY2LjMNrm5uRVaWVmJLl68aPy+ba4JqnpIL/8QVybQlh/SvveRGgAQQr6CdFQaAOT5V18RQjrK/n+dUrpFVl84IeQugOcAkgDYAegC6cHFYwDTFfdNKc0ghEwAsBvAfULIAdlLg2X7G1xqdVAAGA/gBoCjsvKJAHpBOjK/llJ6833eJ8s5V47lvapmBhLAo3oQkjzYo5G2mwMA+GIkDwGreUhz5lTbCqEnTSiGspxztWD9pJpODUbCOLzcmLPG0tPTw7p166InTZrksmfPHhsvL698Pz+/nOHDh6e3atXqnQ9ERESEAQA0bdq0zD9o9evXL4iOjjYo67UnT57wt2/fbjt//nylo+aVtXv3bpv9+/dbFxUVEZFIRPh8Pp00adI7FzeqwtvbWwAAUVFR/E6dOuW3b98+f8KECUlffPFF/YYNG+YvXbo0saztvv7669SuXbt6Zmdnv75x44ZRTk4Od8iQIZmLFi1yrMp7k6tbt25jxceOjo6FL1++fAoAsbGxfDs7uzLTZ8aMGVPvm2++KXGgUlhYSDp27FgidqtTp05RUVERef36tZ67u3vhq1ev+Fwutzh1BgBcXV2LFi5cGPfTTz/V/v333x29vb3z2rVrlzNq1Kg0Ly+vQkB6gDRs2DDXL774IqV9+/b5ERERZZ45AABbW9vC2NjYcl//EFQ1OI+HNM+6HqS55KqQB9Svqlh3W+Cd5NE2spvcFgDpANYDaAkgAIAFgAJIA/XVkAbO7/wioZT+QQhJBTALwChID0TCACwsa3VSSulT2QJHCyENymsBeAHgW+D9E2pZzrlyLO9VNWcssnA9rRAD7czxm47knAvmpuLZ9VHw/P5LJCFQo3XlGfoCBU/Q1yUDtIKxBPaZUg3rJ9W8XpiEqcErtd0MjRg5cmTmoEGDHp09e9bk5s2btS5cuGC2ceNG++XLl8dMnDix9PVaAABKKzcwHR0drRcQEOAWEBCQ8f3336t1RLlfv37p8+fPT0xLS+POmzfPsVWrVnmVnbFETv6+5BeTAsCvv/6asHLlSofvv/8+qbwZjVq3bl3g7Ows2Llzp8Xly5dN+vfvn6bO2Y/Onz8fLs/9BqSj9fL/CwQCDp/PL3OE+qeffnodEBBQYvWs77//vrZYXDJDxsjISAIAubm5HADIz8/n6OnpSRT7AQBmzpyZMnbs2LS///7b5NatW8bHjh2zWLNmjcO+ffteBgUFZS9evNg2Ly+Ps3jx4jIPYhQZGBjQ/Pz8qmZ+6LSqBueXAbhDGiTvrKgwIcQMwFhIA91LVamYUjoSwEgVymVDmoryPnWcAXCmEuUjAAx8n7oYRpOuZ4gADgfH34rQUjcma8H9ht0hSk1HxLApsAsO1GxlBfcBAPSxKdBKI2fGGaZMU4auQVHRh/uZMzIyokFBQdlBQUHZABIHDx7svHTpUsfSwbmHh4cAAB4+fGhQVgAcFRVl2KBBgxIDZTExMXqdOnXy8PX1zd27d29s6W2qytTUVOzt7S0EgOPHj7+qX7++j5+fX25gYGClZ1Z7/PixAQA0aNCgOHlQHmTzeDylRySff/55akhIiG1UVJTBtWvXnle2bmU8PDwKy8s5t7KyEj1//vydiy4BwMHBoUjeN3LGxsbirKysEhdwyi/+dXBwEAGAra2tSCAQcAQCASk9s46FhYUkODg4Kzg4OEsikcS3a9fObfHixQ5BQUHZly9fNnn48KGxgYGBr+I27du39+rbt2/an3/+GSN/LjMzk2tjY/PhfqlQieBcNj2iBEBjSukz2dObAIwB0IEQMpJSukPJ9lYADkO6AFARpHOjMxVgaS3KsVPrqpmJt+BQAgmR6MxUij821IfXNQ6K+KTa0lre8MRoyNJa1IL1k2p6G00BydKhK7E1rGHDhoJz586Zl34+MDAw28zMTLxs2TL7rl27Rim+tmfPHrPY2Fj+7Nmzi2cNiY6O1uvUqZOHj49P3qFDh2I0Pa+1mZmZZMyYMck//PBDnb59+z4rPfKrjFgsxrp16+ycnJwK/fz8yrwgVpmvvvoqfcGCBXU8PDzyfX19q+0PfvPmzfN37dplI5FIUJn3q+jRo0eGdnZ2RfLgvFWrVvkAcP/+fQP5FIhl4XA4cHNzE9y7d88YADZs2PA6MzOz+Of/+vVr/f79+7tt2bIlql27dsUHc/n5+eT169d8X1/fSvdzTVLZkfMSv2EopQ8IIasATAawVXYx5BGFIn6EkKaQppoE47/5vn+mlKr9KPhDxNJalGOn1lWT5ZyF5U+T8eMnrlisI2ktuArEheyB7WfdkQTristXQX79v0HjN8KzybEyV0dTxD5TqmH9pKKLwE+TN+JEmLYbol5JSUncwMDA+iNGjEj19fUtMDMzE9+8ebPW2rVr7bt27ZpZurypqalkxYoVsWPGjKk3dOhQ58mTJ781NzcXnz592nT+/Pm1e/TokfHll19mANLAvGPHjh5OTk6Fq1evfpOQkFAcq5Q3K4k6TJ48OWXlypUOO3futBg1alR5q3kjJSWFFxcXx8vNzeU8ePDAcM2aNXaPHz82Onjw4EvFqRpVZWNjI37z5s2j97kYtSIJCQm8/Pz8ErGbnZ2dmM/n0549e2Z//fXXnLCwMINPPvnkvQ4Krl+/bty+ffviPHRHR0eRl5dX/uXLl43lwfnNmzcN586d6/j555+nN27cuIDP59Pz58+bHDx40Prbb79NAqQXeiruVz4Fpbu7u7B+/frFefGXLl0y1tfXp507d66uFea1Qh1zPH0PgA9gHIABspv8A7ZJoZz8w7GSUrpQDfUyDKOi32JFgLEVFjzPxsLGunGwd9fTHwURrxAzbh7ai6Mq3qAKaFQAACDvjglqtaz0GWuGeW+D28yFQFi5MwsmFoYiLo9Dq3sRIhMLQ5UDXzMzM4mvr2/eunXr7OLi4vgikYjY29sXDhs2LGXRokVl5g2PGjUqw8HBIWLRokUOXbp08ZAtQiScPHly4ty5c5Plo7cnTpwwjYuL48fFxfHr1atX4oJGSqnGDnPs7OzEQUFBaYsXL3YcMWJEucF5YGCgOwAYGBhIHB0dC/38/HK2bNkSWzoNpDLKSz2pqiZNmniXfu7ChQvh/v7+efb29uJu3bpl7tixw+qTTz6p9Fzn+fn55Ny5c+ZHjx5VXPcFI0aMSN23b5/VrFmzUgDpBaF169YtXLJkiUN8fDyfEAJHR0fh9OnTE+bNm1epC3D37t1r2a9fvzQTE5P3nmGmJiCqXpwhS2uhAHwU0loUX+8K4AcAHfDuFI0U0vnCF1JK/65Siz8ShBBTAFkGqQYQWLG0lvIYFhli3+l9GBowFAV67NR6eWb9mwICAgqKrY3f+V2tFWud+bCN40BCgCESzf7sXoYmgwDIB2DbSnlZ9plSDesn1QT5zYC4UITjYb8DgJnCStQAgLCwME8ej3fGzc0t18jIqPiXfUpCjn5ORkG1TZJuYmEoqswCRMyHITQ01DAgIMD91atXjxUvHFXFL7/8YnP8+HHzGzdulAjOc3NziZubm/fu3btfdenSRW0j3ImJibyGDRt63759+5mnp2eN+6zm5+cbREZGGotEoh6+vr7hysqq7YtPKT0P4DwhxATS1T9tAXAhXWHzIaW0Wubt/NCwtBbl2Kl11UQ5Z2HXy1xMbWCMRbqS1hILvBg/B47fjkASylxlWm3y7X8ETTsAm+bhLK1FTVg/qegmMK7/EulcX5Vg42hSyIJlRtNatWpV8OOPP76JiIjgt2zZslJH2Xp6enT9+vVxpZ83Njammzdvjnn79q1aDy4jIyP1f/vtt9iaGJhXltqPymXzf19V934Zhnl/22NFAI+P32JFWNi44vLV4Um/r5B+/CLe7jmGtlmPNVoXTfoJ8R/+OwAAIs1JREFUAJD3oCFqNVPrZAgMo9TonouRlvJBrzRe7dq3b+8mv5CwtIkTJyYuXbpUR0Ygaobypr2syNSpU8sddO3du7fa8wfbt2+f3759+w/6QlC5D3Nd4Q8Im61FOTZjhGpmIQWESNNadGW2lq3X+DABB+Ls3GqZrYUAEBWGg7DZWtSC9ZNqgjJ+0HYTPjg7d+6MycvLK3N6kQ99ij3m4/A+wfl2Qog6cogopdRfDfv5oLG0FuXYqXXV/FErHeE5YrSz0teZtJbcW1F42u0LOIwLRhLGa7SuPJ4TIEqEnk8MKOoqLcs+U6ph/aSa+8sj8NPkLdpuxgfF1dW1zFUtGeZD8T7BeQs11EuAClM/GYZRk6WDm0EgFOC8pTV6XHmq7eYAANIO/w3hmwSk7D+Juj9oNjiHKEF6n/Az0GCzZutiGAUn9l4HlbA/dwzDqO59gvOPZzUFHcDSWpRjp9ZVU09oAwKC1PRUnUlr2fGLAYwkBLmPnldfWkvaFpAGykcx2WdKNayfVPPZvZnabgLDMDXM+wTn3mVNpchoBktrUY6dWleNr6kHsrIz4Vq3Hi7glrabAwBIWHEAUWPnwKzdJ0jCXo3WlQcOAAqew0+gmKu0LPtMqYb1k2pWBxzExeN3tN0MhmFqkPdbr5VhmBrFpW49AEBDz0Zabsl/anm5gWtqDCMfzU6jCADgyCZ2MGGXuTDVq2FjF203gWGYGoYF5wzzEXj05D4A4O9zJ7Tckv887jkSovRMJK7eqfnKJNJZveiLtpqvi2EUbFp6TNtNYBimhmFTKeo4lnOuHMt7VY0rsQaHciDmQWdyzsf15aHjbh5ybEi15JwDwB0jCn82laJasH5STTeHseC/Nqr8hnmR+hAmV9/faL6dCLXcPvjFXRimJmDBuY5jOefKsbxX1Rz8cS/m/vw/7Ak5iFbw03ZzAACiEAGep46Fz7SvkaThNuWZBgG5l9DZJ4utEKomrJ9Uk7k9D+P7L6ncRnmR+rjs7Q1aWH0TMBB9io5PnlQmQE9ISOBNnz7d8dKlS2ZpaWl6pqamYk9Pz/x58+YldOvWLc/Jycnnm2++SZ43b95bZfvZtGmT5fjx412Dg4NTdu/e/c6Kk+np6ZwFCxbYnzp1yuLNmzd8AwMDSe3atYWBgYHpkyZNSrWxsRG/z1tmGF3FgnOG+QjMmj8FADBsdBBePk7Wcmuk7rq2R1FSCjLOXEF7SbRmK8s+CgDIC9VDrVZsimSm+ozpuRiFRcLKbSRM5lVrYA4AtJBAmMyrTHDet2/f+kVFRSQkJCTGw8NDGB8fzzt37pxpSkpKpWKLnTt3Wo8dOzbpjz/+sMnPz39tZGRUfAydnJzM9fPz88zNzeXOmjUr/tNPP823sLAQP3nyxGD79u1WW7ZssZw5c2ZKZepjGF3HgnMdx9JalGOn1lVTD9KpFCXQnbSWJY76qJfEgYRbfWktqRwRjFlai1qwflJNX73vQYs+vHnOU1NTuWFhYcYnT56M6NWrVy4AuLu7F3bq1KlSy6uHh4frP3jwoNaJEyeirl+/brJr1y6LsWPHpstfnzJlilNiYqL+s2fPnri4uBQfWbu7uxd+9tln2RKJRH1vimF0RGWCc1fZfbwmGsKUjaW1KMdOraum6H4Reg/wx8nDF3Wnn8KAxB2HYTGkN5JgoNGq8upfB1LXwsVzP0trURPWTyq6CiybswsnwrTdEPUyMzMTGxkZSf7880+Lzp075xkaGr7XEcjGjRutO3bsmGVlZSUePHhwmmwUPR0AxGIxTp48aRkYGJimGJgr4nDYvBbMh0flTzWlNFZ2E2myQQzDqF/D5rUR9SoCDZvX1nZTit337Y3IUdNxx8RH85VFtQOyDiDvrqXm62IYBcHtf8S1M/9quxlqp6enh3Xr1kUfPnzYysLColnz5s09J0yY4BQaGmqo6j7EYjEOHDhgNWzYsHQAGDVqVEZYWJhxeHi4PiDNac/JyeF6eHiUOH3cqFGjhkZGRs2MjIya9enTx7WsfTNMTcbSWnQcS2tRjp1aV408rYVCd9JaNibwYQkOqFhUbSuECiUZLK1FTVg/qSao6AdtN0FjRo4cmTlo0KBHZ8+eNbl582atCxcumG3cuNF++fLlMRMnTkyraPujR4+aFhQUcAcOHJgFAA4ODqI2bdpkb9iwwXrVqlUJSraLEgqF5Pvvv69dUFDAhs6ZDw4LznUcS2tRjp1aV83B+Xsxb+H/sH/ncTRFc203BwAgei3C86BvUHv610hCK43WlWc+EMi+AMtPMlhai5qwflKN4B8Bvuq9SNvN0BgjIyMaFBSUHRQUlA0gcfDgwc5Lly51VCU437p1q3VWVha3Vq1axb+UJBIJwsPDDZcvX57g6OgoMjExEUdERJTIe3Nzk160amxsLM7KyuKq/U0xjJaxI06G+QjMmj8VIlERhnzRR9tNKRY5cjoyTl7C8/7jNV9Z5mFAkom8xy01XxfDKJg8ZDVyMj+eMwsNGzYUqDKanZSUxL1w4YJ5SEjIq1u3bj2V327cuPEsOzub99dff5lyuVz07t074+jRo1YxMTHsCJD5aLCRcx3H0lqUY6fWVSNPaykSaT6FRFXbTvFhDA6KUtOrLa1FlH8XhKW1qAXrJ9UEJX2YaS1JSUncwMDA+iNGjEj19fUtMDMzE9+8ebPW2rVr7bt27ZopLxcfH69/8+bNEnnobm5uhSEhIVbm5uaiL7/8MqP0RZ0dO3bM2rp1q/WAAQOyly9f/ubmzZsmrVq1ajhz5sz41q1b5xsbG0vCwsIMw8LCjD08PNiHj/ngsOBcx7G0FuXYqXXV9PfuiUdP7qNvwGdYgQ3abg4AIOv0fTzt/SVshwchCfM0WlcexxSQ5EDP/QZoBQsesc+Ualg/qeb8D3ewduHBym3EtxOB6NNqX4SIb6fyhA9mZmYSX1/fvHXr1tnFxcXxRSIRsbe3Lxw2bFjKokWLEuXlQkJC7EJCQuwUt123bl30H3/8Yd29e/fMsmZbCQoKyhg/frxrYmIiz8HBQRQWFvb8xx9/tF+9erX9jBkz+BwOh9atW1cYGBiYPnPmTN1YuIFh1IgF5wzzEYiJjQIAPPpXd+Zzy3scDlF2LvIePtd8ZZJc6X3ORcBCN1ZIZT4OTx+8qvxGtdwK0fHJEwiTq+9vNN9OVJkFiAwNDem6devioWR65fj4+MflvTZ+/Pj08l776quvMr766qsM+WMrKyvx2rVrldbFMB8SFpwzzEcgKycLABD3JlbLLfnPq2mLAZEIWVduV0Nt0stAaeKPQN251VAfw0hdP1tufKpcLbfCygTLDMN8OFhwruNYzrlyLO9VNS4GVuAKuBBZ6c5Uin1ncRE8Ww9vmnA03qZISHPON1hT/I/lnKsF6yfVtG45CNY3dWd9AYZhdB8LznUcyzlXjuW9quab1iNw8Z+z+KbPeMzEj9puDgAgNygKT9cPR7v+wUjCBI3Wlcd1AMTJ+NYhBtNRV2lZ9plSDesn1dwfEoGfbm/RdjMYhqlB2FSKDPMRuPjPWQDA1h3rtdyS/zxq/RmErxMRO+d3zVcmTgJAQR+7aL4uhlGweOouUMl7rWzPMMxHio2c6ziW1qIcO7WuGldYgwMOxBzdSWuZ1kEPnxzlQmBKqmUqRQB4pk/RiqW1qAXrJ9UEWE4A962+siISAKCUBfAM8yGjlBJIL4CSVFSWBec6jqW1KMdOrasmdNtNfD1hOM4cvQ4HOGi7OVJ/AS/GzYbjhC+QBHeNVpVv9wNo+hG0bBbJVghVE9ZPKjoNjO2/BCh/oqRMSqmosLBQv1atWmwkhmE+UHl5eUaU0iIAiRWVZcE5w3wEho0OAgC069YULx/rxrTAoc5tIIxLQNKmfWgveY/p5iqBJv8CAMgLNUCtViz+YarPQL85KCxU+plLlUgkV5KTk3vp6ekVcTgcNoTOMB8QSinJy8szSkpK0heLxVt9fX1zKtqGBec6jqW1KMdOratGvkKoBLqT1vJ7LT7qgAMJodWW1pJNhDBmaS1qwfpJNYGc/yl93dfXVxIWFjavoKDAJyoqygao4APKMExNQymlRWKxeCuAxapswIJzHcfSWpRjp9ZVk3U9C/2De+Lvo1d0p5+eAfEhe2A3qBeSYK7RqvLr/w36discvQ6ztBY1Yf2kouvAwulbcFzJ+l++vr7xYWFhbSUSSV2wv8sM86GRAEhUZcRcjv0SYJiPgG9baU53w+a1dSat5WH7Qci+dhevJv6EdoIIjdZFowIAAHlhjqjlm6DRuhhG0XD/BcjOqvhvsq+vbyH+O8nDMMxHjAXnOo6ltSjHTq2rRp7WQqE7aS2bn/NhBg4kwsJqSWshAIpEiSAsrUUtWD+pJij/B203gWGYGoYF5zqOpbUox06tq2bZV4sQsnUtfl20BoEYoO3mAABEkZn4t+sIOE0ZjSQEarSuPKOWQP4jmLcSsrQWNWH9pJqkw+n4btCv2m4GwzA1CFuEiGE+Apu3rYOESjD3p+nabkqx6B9XIvfeY8TMXKb5yvLvAihE3rMemq+LYRT8OuMPFApF2m4GwzA1CBs513EsrUU5dmpdNfUk0rSWfEG+zqS1bN9hgFogEMTFV1taiyjnLEtrURPWT6r57OVMbTeBYZgahgXnOo6ltSjHTq2rpnPtloh7E4tWvq2xF0e13RwAQNqBy3g+YDws+3VFElZptK488AEUQs91HyiGKC3LPlOqYf2kmoNfXcSejX9ruxkMw9QgLK2FYT4ChaIiAIBQKNRyS/4jzheAiiWQFFTHmSHZaslUd94/83EQ5BdquwkMw9QwLDhnmI9AUpJ0+sBHT+5ruSX/eTFqOqhAiPS/zlVDbdKcXxozqhrqYpj/HN97XdtNYBimhmFpLTqO5Zwrx/JeVePCswJXxIWolu5MpRj8NQ/9lvGQUp+j8TZFQppz/qcpxRcs51wtWD+ppoPnCJg+sdZ2MxiGqUFYcK7jWM65cizvVTU/DpiJPfu3YeHkX/A5Rmq7OQAAwfdv8eTsCLhNGoUkDNZoXXl8H0AYjgHOWRgBI6Vl2WdKNayfVBM9KwHTvtDsNRUMw3xYWFoLw3wE9uzfBgCYv2iGllvyn/ve3ZH/OAIvv6qGRVqETwCIQB+baL4uhlEwfcQ6iIrE2m4GwzA1CBs513EsrUU5dmpdNa6wBgccSKA7aS1zG+vD+x8OCg1JtUylCACxPAm8WVqLWrB+Uk0v48ngZLJxMIZhVMeCcx3H0lqUY6fWVRN1NAqjvhmEi3/f1p1+ugTE/b4ZtsP6IQm2Gq0q32UnaNo+NPI6w1YIVRPWTyq6AMwdvwEnwrTdEIZhagoWnDPMR6B7oB8AoGHz2nj5OFnLrZG6494JgsgYxPxvCdqLX2m0LhozEgCQd6cWarXM02hdDKNoUJs5EArZ2U+GYVTHgnMdx9JalGOn1lVTD9IVQil0J61lTREfduBAQmm1rRCah3wYs7QWtWD9pJpA/E/bTWAYpoZhwbmOY2ktyrFT66p5uOc+vhofjIunQmEGM203RyoaeDV9Mey/CUYSXDRaVb7TUtC0fbBt8oiltagJ6ycV3QAmDv0VYGktDMOoiF2lwjAfgQHDeiIzKwMt2nlouynFHgeMxJtlm3G/WS+N10XjZwKCf5F3v77G62IYRaN6LERs5FttN4NhmBqEjZzrOJbWohw7ta4aeVpLdaSQqGprKB8m4ECcm19taS2iolcgLK1FLVg/qSYosxqmCmUY5oPCgnMdx9JalGOn1lUzJWAcTpz+ExPHTsMkTNd2cwAAgrA3eNRlGBwnjEASvtRoXXk8F0AUBz2ft6BQvloj+0yphvWTap5ueIU5YzdouxkMw9QgLDjXcTk5OdDTY3/4ylNUVIT8/HxkZ2ezflLi77MnIBFLsGN3CEYN/0bbzQEAxG7ag/SoWORv/ANmowdqtK7s8dkAzMHpPAOimSuUlmWfKdWwflLNrjUnISxkZz8ZhlEdobSiy6MYbSCEuACI1nY7GIZhGLVxpZTGaLsRDMPoNjZyrrvSZfe1AeRosyE6zgTAG7B+qgjrJ9WxvlIN6yfVyfsqvaKCDMMwLDjXfTmU0mxtN0JXEVJ8cR/rJyVYP6mO9ZVqWD+pTqGvGIZhKsSmUmQYhmEYhmEYHcGCc4ZhGIZhGIbRESw4111CAAtk90z5WD+phvWT6lhfqYb1k+pYXzEMozI2WwvDMAzDMAzD6Ag2cs4wDMMwDMMwOoIF5wzDMAzDMAyjI1hwzjAMwzAMwzA6ggXnDMMwDMMwDKMjWHDOMAzDMAzDMDqCBefViBDyCSHkNCEkkxCSRwi5TQgZVMl98Akh8wghkYQQASEkgRASQgix1VS7q1tV+4kQUp8QMp8QcpwQEk8IoYSQGA02WSuq0k9EqichZAMh5F9CSBYhJJ8Q8ogQMosQYqDp9lcnNXymehJC9hNCwmX7yJf9fyshxF2Tba9O6vgdVWp/FgrfwTPqbKs2qeHzNFLWJ+XdOmqu9QzD6DqethvwsSCEdAJwFoAAwH4AOQD6AzhACKlDKf1dhX1wABwD0B3AbQBHALgB+AqAPyHkU0ppiobeQrVQRz8BaAfgRwBiAM8B2GuouVqjhn7iAzgN6bzLl2X7MoD0s7UIQCAhpCOlNF8z76D6qOkzFQDgUwChAP4GUASgIYAvAAwjhARQSi9pov3VRU39VNpaAGbqa6X2qbmfjgF4WMbzMVVsJsMwNRmllN00fIP0IOglpL/Mmyo8bwYgAtIAyVmF/YwCQAHshWyOetnzY2XPb9L2e9WRfqoHaSBlKHssABCj7fenS/0EQA/AbAAWZTx/XPZ5mq7t96oLfSUrb1DO8/6yvrqr7feqC/1Uap/9ZX3zrez+jLbfp670E4CRsj4Zqe33xG7sxm66d2NpLdWjM4D6APZSSh/Kn6SUZgFYDEAf0hG4ioyR3c+klCquHrUJwCtIR/AM1dJi7VBLP1FKX1FKb1NKCzTVUC2rcj9RSosopYsopRmlnwewRPawgzobrSXq+kwJynn+IoAMAA3U0VgtUtfvKAAAIcQGwAYAuwGcUmtLtUut/cQwDFMWltZSPTrK7s+V8dpZ2b3SQEiWA9wKQASlNFbxNUopJYScB/ANgBYArlWptdrTUXb/3v30kegou9dUPxXJ7kVV2Ieu6Ci710hfEUJaA7AAcP1996EjOsru1dVPGyFNK5uEDyutpaPsXl391IwQYgXp3+IYABcopWnv3TqGYT4ILDivHm6y+8jSL1BKkwghuQplylMf0gt439lHqX27oeYG5+rop4+BpvtptOy+rACkplFrXxFCugHwgzRn3w1AbwCpAKZUvalapbZ+IoR8DuAzAIGU0gxCyIcUnKv7uzex1OMCQsgCSukv79tAhmFqPhacVw/5H6escl7PRsWjS6rsQ7FcTaSOfvoYaKyfCCE9IT0D8xzA1vfZh45Rd191A/C9wuOXAIZQSsPeo226RC39RAhxBLAawD5K6TE1tU2XqOvzFA3gO0hH298AsIQ0ZWYJgKWEkHxK6ZoqtpVhmBqK5ZwzDANAOj0cgAOQBh4DKaVCLTdJ51BKp1FKCQATyNLMANwghARrt2U6YwukaVGlR4QZBZTSK5TStZTSSEppAaU0nlK6G9LZkgQA5hNC2OAZw3ykWHBePeSjLOWNqJii/JGYyuxDsVxNpI5++hiovZ8IIS0gTWORAOhOKX36/s3TKRr5TFFKcymldwAEAggHECK7CLKmqnI/EUK+ANATwLeU0lQ1tk2XaPR3lOx7dx3SkfSG77sfhmFqNhacVw/FfPASCCH2AIxRfi653CtIA6fy8hnLzYWsQdTRTx8DtfaTLDA/D+nvg+6U0rvqaKSO0OhnilIqAvAPgFqQXoxdU6mjn5rJ7g8pLqgDaQoHAHSXPfdQHQ3Wkur4HSU/sKlVxf0wDFNDseC8elyR3Xcr47XupcqUSTYt4B0AHoQQZ8XXCCEEQFcAeQDuVa2pWlXlfvpIqK2fFAJzLoAelNLQqjdPp1THZ8pRdl+ktJRuU0c/3YL0OoXStwOy19/IHv9ZpZZql0Y/T4QQLv47yItVVpZhmA+Ytida/xhukF54GwXlC1e4KDzvAMATgFmp/XwMixBVuZ/K2O+HuAiROj5PvpDO0Z0DoI2235eO91WLcvbfHUChrB9rafv9arufytm3Cz6sRYjU8t0rY99cAL/J+uqStt8ru7Ebu2nvRihVXMuG0RQlSz47A5hGFZZ8JoTsgHQhi1GU0h0Kz3MgXXK9O4DbkI7QNIB02rIYAK0opSmafzeao6Z+sgawTGG3wwEUADis8Nw0WoPzYqvaT4QQS0hnGrEAcAbSZelLy6SUrtTYm6gmavpMUQBPAPwL6QhwLQCNAbSDdMR8MKX0r2p4Oxqjjn4qZ78ukKa2nKWU9tBE26uTGj9P/8pu8ZDmmHcA4A7p56sDpfRVNbwdhmF0ELsavJpQSv8hhLQFsADAYEiXSX8MYAal9IDSjf/bh4QQ0g/AD5AGnFMApEN6qnhOTQ/MAfX0E6R5n6VX6atV6rn5+C+3s8ZRQz+ZQhqYA0AP2a20WAArq95a7VLTZ2oWgE6QBlA2kF7/EQcgBMBKSulztTe8mqmpnz54auqn3wF8Cmk6oiWkZ19eAlgIYDkttXIvwzAfFzZyzjAMwzAMwzA6gl0QyjAMwzAMwzA6ggXnDMMwDMMwDKMjWHDOMAzDMAzDMDqCBecMwzAMwzAMoyNYcM4wDMMwDMMwOoIF5wzDMAzDMAyjI1hwzjAMwzAMwzA6ggXnDMMwDMMwDKMjWHDOMAzDMAzDMDqCBecMwzAMwzAMoyNYcM4wDMMwDMMwOoIF5wzDMAzDMAyjI1hwzjAMwzAMwzA6ggXnDMMwDMMwDKMjWHDOMAzDMAzDMDqCBecMwzAMwzAMoyNYcM4wDMMwDMMwOoIF5wzDMAzDMAyjI1hwzjAMwzAMwzA6ggXnDMMwDMMwDKMjWHDOMAzDMAzDMDqCBecMwzAMwzAMoyNYcM4wDMMwDMMwOoIF5wzDMAzDMAyjI1hwzjBMlRBC9AkhkYQQSggZoO32qIoQMl3W5svabgvDMAzDyLHgnGE+EoQQY0JIrCwgTSWE2KiwzQpZeUoIGVVOsUkAGgB4AuCICvu0JoR8Rwg5QQh5RQjJJoQICSFJhJDLhJBFhBDvSrwvF0KIRKGdwSpuugFAGoAOhJDPVK2PYRiGYTSJUEq13QaGYaoJISQAwCnZw32U0nIDWUJIKwA3IT2IP08p7VZGGRMA0QCsAAyhlB5Qsj8OgFkA/gfARIXmngcwmVL6TFkhQsg8AAsUnjpLKe2hwv5BCJkFYBGApwAaU0olqmzHMAzDMJrCgnOG+cgQQvYAkAflvSmlp8ooow8gDIA3gHwA3pTS6DLK/Q/ALwDiALiWF9wSQgwBHADQR/ZUoezxeQAxsjrsALQAEASgqazcKkrp5AreTySkI/e5AIwBiAHUoZQmKttOtq0ZgCQABgD6U0r/rGgbhmEYhtEkltbCMB+fSQBSZf/fIBv9Lm0mpIE5AMwpJzDnApgge7ivglHnDfgvMA8F4EEpHUEp3U0pvUYpDaOUnqaU/kQpbSYrG1XRGyGE+EEamAPAFEgDcy6AYRVtCwCU0iwAp2UPJ6qyDcMwDMNoEgvOGeYjQylNhTSQBYA6AJYqvk4I8YI0/QQA7gBYVc6uusq2B4A95dVHCAkC8IXs4b8A/CmlMRW08SSko+iXlJUDMEJ2nwpgJ4CLssfDK9hOkbztHQgh9SuxHcMwDMOoHQvOGeYjRCn9A8AZ2cNxhJC2QHFe+FYA+gCKAHylZER8kOw+klL6WEl1sxT+P4pSmqdiGzMppcfLe50Qwldow0FKaRGA3bLHjQkhTVWpB9IcfIHs/0NV3IZhGIZhNIIF5wzz8RoLaZ42AbBZFux+B+BT2etLKwi6O8nub5dXgBDiA+kIOABco5Ter1qTS+gDwEL2/z9k938BkAf/I97ZogyUUiGAh7KHPdXVOIZhGIZ5Hyw4Z5iPFKU0FsBs2UNPSPPCF8keP1f4/zsIIbUBuMge3lVSTQeF/79z4WkVyYPvKPr/9u4sZMoqDOD4/0lbxIpSyPYiy6igyECjEgKhhRaIFmmBlguhoojIIkTa6CaEIlppuZAuCmxfQCIhoqxooe2iuqlsj1aDUsuni/dM837TfDPzzafOxPx/IHPOvOec93kvlGeO5z0ncw1AmZV/qnx/XlkX34s3y+e8iNhh84UoSdLEmJxLo+0umjPfFwPTgU1Uy1nWd+h3TK38bod2R9TKb/cVYRtlj/bGdomt690bs+izgBN7HLIR21TGxixJ0lZlci6NsLKefHHL1/dk5mtduu5dK3/fod3MHttN1LnAtqX8SMu1F6m2R4Qel7YwNrYDJhGXJEmTYnIu6diW+tc99KmfLvpzh3b1bRp7ehG0R42k+83M/LR+ITP/Bh4t1dMjYucexvupVt59M8QnSVJfTM6lERYRe1EdIlS3rIctBWfUyp2S83W18vSJxDaeiDgMOKpUW2fNafl+GnB2D8PWn2GzxClJUj9MzqXRdi+wM5DAEqr15tOA+7v0+7NWntah3Y+18qx+AmyjMWv+F80Z8jEy822ql1rr7TupP8PG/kOTJGlyTM6lERURi2ie2nl/Zi4H7i71hRFxUYfuP9TKM8ZtBe/VynMnHGSLsg974/TPqcD3EZHt/gCHlHYLImL/LkPXn+GXycYpSVK/TM6lERQRM4A7S/Ur4LpSXgqsLeXlZVeUdurJ+a7jtAF4uVY+ZaJxtrEQ2GuCfYLuJ4bWn+GLCY4vSdJmM3XQAUgaiNuB3Ur58sz8DSAz10XEZcCzVDut3EFzprqufjjRHJqH+IyRmR9ExFtUBxEtiIi5kzyIqLFEZT1wCdUynE6uBY6kSs5v6dBuTq38Ud/RSZI0SZGZg45B0lYUEScAq0p1ZWb+54XJiHgMOKdUT8rMVS3XtwN+BXYAlmfmkg73OwN4olTfB44phwV1i3MXYEFmPlvqO1JtkTgdeC4zT+vQvTHGVVQ/RCj3XTNOu5XAmcA3mblnt3ElSdpSXNYijZCImE7zZc+fgSvGaXolzR1M7iv9/pWZG4A3SnVep3tm5pPAilI9HHgpIvbrEufJVCePLqx9fSbNnVRWdupf8zjVy67Q+cXQxjO82OO4kiRtESbn0mi5Fdi/lK/JzG/bNcrM76h2b6G0v7lNs6fL57yI2KnN9bpLqZbKAMwHPo6IFRFxfkQcGxFzI+LkiFhalsG8ABzYMkYjud4IPNPlfo3nWEuV5AMsKjP+Y0TEQcA+pfpkL+NKkrSluKxFGhERcTTwKtWP8tWZubBL+wBWA8cDfwPz6uvFI2Im1cuk2wMXZuaKduPU2m9D9cLpEsYeTjSe54GrM/OTiNgH+KzEviozT+qhf+O+S4DbSvWszHy85foNwI1UBxHtUf5XQJKkgXDmXBoBEbEt8ADV3/k/gMXd+mT1y30x1Z7mU4AHI2JK7fqPNNeSn9fDeJsy8xbgAKplM89RJdy/AxuA76h2d7kVODQzT83MT0r3C2j+ezUmue5BvX27pS2N2B8yMZckDZoz55L6FhHzgdepZtZnZ+bnAw5pQiLiOOAVqh8HB2Wm2yhKkgbKmXNJfcvMN6hmz6cA1w84nH4sK58Pm5hLkoaBM+eSJiUiDgY+pNpzfHZmfjngkHpSm/VfB8wZ7+VYSZK2Jg8hkjQpmflxRFwCzAb2Bf4XyTnVIUs3Ae+YmEuShoUz55IkSdKQcM25JEmSNCRMziVJkqQhYXIuSZIkDQmTc0mSJGlImJxLkiRJQ8LkXJIkSRoSJueSJEnSkDA5lyRJkoaEybkkSZI0JEzOJUmSpCHxD2MiAng7eRRSAAAAAElFTkSuQmCC", | |
| "text/plain": [ | |
| "<Figure size 600x400 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "from pycalphad import Database, equilibrium, variables as v\n", | |
| "from pycalphad.plot.eqplot import eqplot\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "\n", | |
| "dbf = Database(\"Piao_Al_Ca_Si_O_S.dat\")\n", | |
| "\n", | |
| "# only pure element component allowed, vacancies not included implictly\n", | |
| "components = [\"CA\", \"SI\", \"O\"]\n", | |
| "\n", | |
| "phases = list(dbf.phases.keys())\n", | |
| "# print(\"\\n\".join(sorted(phases)))\n", | |
| "\n", | |
| "# Components can only be pure elements, so we need to set oxygen chemical potential condition to plot a pseudo-binary\n", | |
| "conditions = {v.N: 1, v.P: 101325, v.T: (1100, 3000, 20), v.MU(\"O\"): -100000, v.X(\"CA\"): (1e-6, 0.5, 0.025)}\n", | |
| "\n", | |
| "# Compute equilibrium\n", | |
| "eq_result = equilibrium(dbf, components, phases, conditions)\n", | |
| "eq_result = eq_result.squeeze(dim=\"MU_O\") # Remove extra condition dimension so eqplot works\n", | |
| "\n", | |
| "# Plot pseudo-binary diagram\n", | |
| "fig, ax = plt.subplots(dpi=100)\n", | |
| "eqplot(eq_result, ax=ax)\n", | |
| "ax.set_xlim(0, 0.5)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "### Al2O3 - CaO" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(0.0, 0.5)" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvUAAAGtCAYAAACWd4uKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADXxElEQVR4nOzdd3xT1fsH8M/JaNO99wTaUkrZiFBkgyyRKgpYUIaKqChDUMtS2SogCEqZZQgofFEU2h8KCMiSUTZltEAptNBSukeadX5/JKmhM23SpoXnnVdebZJz7z25hPS55z73OYxzDkIIIYQQQkjDJTB1BwghhBBCCCGGoaCeEEIIIYSQBo6CekIIIYQQQho4CuoJIYQQQghp4CioJ4QQQgghpIGjoJ4QQgghhJAGjoJ6QgghhBBCGjgK6gkhhBBCCGngKKgnhBBCCCGkgaOgnpBnGGNsNGOMa+7+pu4PIYQQQmqGgnpCnhKMsW46ATpnjIWZsC/OjLGPGGN7GGO3GWO5jLFixthDxthhxth8xlioqfpXGcaYB2NsKmPsb8bYPcaYlDGWyRi7xhhbxxgbYOo+EkIIIaWJTN0BQojRjCr1+C0AJ+qyA4wxAYDpAD4FYFNOEzfNvRuA6Yyx/QAmcc7j666X5WOMMQCRUPffqtTL5gAcAAQDeJsx9i+AdzjnV+u2l4QQQkj5GOfc1H0ghBiIMWYBIA3qQDofgDWALAAenPPiSpYbDSBa87AR5zzJwD78AmCQ5imZ5vF+AEkACqEO6NsDeAVAa0275ZzzSTXdrjEwxsQANgMYrnmqCMAmAPsApEAd5LeA+sCpvaZNNoCXOedH67SzhBBCSDlopJ6Qp8Mr+G9k/GMAG6AeWR4E4H911IdV+C+gPwVgeAUHCbEA5jDGXgKwrG66VqX5+C+gvwwgnHN+u1SbI4yxHwBMAfAtAHsAuxljrTjn9+usp4QQQkg5KKeekKfDW5qflzjn0QBulHq+VjHGXsF/6T+XAPSqatSfc74X6lHvv2u3d5VjjHUEMFXzMBVA73ICegAAV1sCYJbmKUcAq2u/l4QQQkjlKKgnpIFjjHkA6K15+FOpn/0YYy510I3pOr+P4ZwX6LMQ5zybc/5H6ecZY40ZY59oLrRNYowVae53GWO/MMb6Ga3nwGcAmOb3yZzzdD2W+RrAFc3vAxhjLY3YH0IIIaTaKKgnpOEbAUAIQAVgm+a5rQA4ADGAN2pz44yxFvgvz/wo5/ycgetrBOAWgMUAXgLgB0CiufsCGArg/xhjWxhjBqUQMsYcALyseXgfeqYqcc4VAFbqPDXakH4QQgghhqKgnpCG703Nz8Oc8xQA4JzfwX+Vb2o7Baebzu8xRlifEOqLbPdAfX1AbwBtNT8/AKCtODMS/6XB1FRn/Pc9GMs5V1VjWd0zDF0M7AchhBBiEArqCWnAGGOtAWhTP34q9bL2cTvGWEgtdqOVzu9xRljfAwD+nPOXOecrOOcHOefnNT9XQV2FZqOm7SeMMTsDtqXb92qdYeCcPwDwUPOQ0m8IIYSYFAX1hDRs2lH4IgC7Sr22A+oRb912tcFJ53d98tErxTkv0ATMFb3OAXwCQAl1qcneFbXVg7PO7w8rbFWxNM1PM8ZYeXX5CSGEkDpBQT0hDZQmnzxC83AP5zxX93XOeSbU5SMBYIRmYqjaoBvM6nWBbHUwxsSMMW/GWDPGWKhmJlpPAI81TVpVsnhVdPueX4PldZexNaAfhBBCiEGoTj0hDVdfqCdzAsqm3kDn+XAA3gB6ADio78oZY0EAzCp4+T7nPFvze57O86VnYq0RzWRQ46C+XqBNJf0AnhxtB2PMFYBrBW0LNNcbaOn23boGXdVdJrfCVoQQQkgto6CekIZLm1LzGOqZT8uzF+qZT+017fUO6gH8BXXlmfKMwX957Y91nncr27R6GGOOmm2303MRi1KPPwDwRQVtjwDorvM4Q+d3dz23p0v7fmWc87xKWxJCCCG1iNJvCGmANBeHaksxOgGQMcZ46TsAKdQBPQC8yhgzykh6KRd1fm9rhPUtx38B/W6o36c/AEsAAs4545wzAPc0bVjpFVTDJZ3f21RnQc38ANoDgUuVtSWEEEJqGwX1hDRMQ6Gu214d1gBe1bcx59xfG0CXc9+o0/SIzu8Dq9mnJzDGbAEM0zzcyjl/hXO+h3N+l3NepLlIVsuhgn5/WUm/u5dqfgzq+v4AMLCa1x28rPP7P9VYjhBCCDE6Sr8hpGHSpt48ADBFj/bfQp1X/xaALcbsCOf8MmPsLNQTUHVhjLU1YAKqQKgnzAKAXypqxBgLRs1y4J/AOc9ijP2B/647eBV6TEDFGBNCneajtdHQvhBCCCGGoKCekAZGM+NqZ83DXZzzn/VYpiOAiQB6Msa8tJNUGdECAL9qfo9mjIVxzqushMMYswfQhXO+R/OU7ndSZalC42vUy/J9C2Aw1Gk83zHGDnPOM6pYZhr+q00fyzm/bMT+EEIIIdVG6TeENDxv4b888ipHlUu1E0A9E6tRcc5/A7BZ87AlgIOMsYousgUAMMb6AzgDoJfO04kAtCk2oxhjZfLlGWODAEwwuNManPMTAL7TPPQGcIAx5l9BnxljbBLUBzEAkAngPWP1hRBCCKkpGqknpOF5U/MzHcBRPZc5AXWqjodm+a9roV/vQ53nPgjA8wBuMMZ2APgTQBLUE2S5QX0x7Ssop7oN5/wxYywW6tz8fgD+YoytAnAX6jKVQwCMBnAb6guAXYzU90gAPgBeh7ru/VXG2CaoqwqlQH2RbksAowA8p1kmB0A45/y+kfpACCGE1Bh78rozQkh9xhjrDPXFnQCwmnOudxoKY+wH/JcH3p5zHscYGw0gWvNcI855koH9EwCYAXV6ij4zrMYAmMI5v6mzDh+o36NvBcskA+gP9cRafgA2cc5HG9Bt7XYFAGYC+AzqIL4y/wJ4l3N+xdDtEkIIIcZA6TeENCxv6fy+q5rL6rZ/q8JWBuCcqzjncwE0BvAx1HXyk6CeeVUGIA3qajnzAYRwzl/SDeg167gH9Wj+twBuAiiGelT8IoCvALTmnMfXUt/nQH2x7mcADkM9Si/TbP8GgA0AXuKcd6KAnhBCSH1CI/WEEEIIIYQ0cDRSTwghhBBCSANHQT0hhBBCCCENHAX1hBBCCCGENHAU1BNCCCGEENLAUVBPCCGEEEJIA0eTT9VTmpk0PQHkmbovhBBCDGYDIJVTyTlCSC2hoL7+8gRAM1USQsjTwxvquQ8IIcToKKivv/IA4M6dO3B0dDR1X+otuVyOv/76Cy+++CLEYrGpu1Nv0X7SH+0r/dB+0l9mZiYaNWoE0JlXQkgtoqC+nrOxsYGtra2pu1FvyeVyWFpawtbWlgKLStB+0h/tK/3QftKfXC43dRcIIc8AulCWEEIIIYSQBo6CekIIIYQQQho4CuoJIYQQQghp4CioJ4QQQgghpIGjoJ4QQgghhJAGjoJ6QgghhBBCGjgK6gkhhBBCCGngKKgnhBBCCCGkgaOgnhBCCCGEkAaOgnpCCCGEEEIaOArqCSGEEEIIaeAoqCeEEEIIIaSBo6CeEEIIIYSQBo6CekIIIYQQQho4CuoJIYQQQghp4CioJ4QQQgghpIGjoJ4QQgghhJAGjoJ6QgghhBBCGjgK6gkhhBBCCGngKKgnhBBCCCGkgaOgnhBCCCGEkAaOgnpCCCGEEEIaOArqCSGEEEIIaeAoqCeEEEIIIaSBo6CeEEIIIYSQBk5k6g4QQgghplSs5PglOQ/mAobXfa0hYMxo6751PQXLv9pmtPURQkhFKKgnhBDyTHtUrMDNPDkA4BfFKCjE2UZbt/CoK1QJ9kZbHyGEVISCekIIIc80b0sxBnpawlzAME+82ajrzhtaiJ9z/w9/xBl1tYQQUgYF9YQQQp5qxx8VQabi6O5qAVZBak0nZ4ta2bZCrkBBfnGtrJsQQnRRUE8IIeSplSVT4v8eFAIAAm3M4G1Zt3/29u06hUN7ztXpNgkhzyYK6gkhhDy17MQCdHAyxw3lHXwoeRccirrtwIvmwDlngNJvCCG1jIJ6QgghDZZMpcK+1EIE25ohyNaszOsCxvCylzWAFpiGX+u8f4UuUvzoshN7EFXn2yaEPFuoTj0hhJAG6/f7BTidWYyfkvJM3ZVyLZmxHUf3XTR1NwghzwAaqSeEENJgNbIS4WK2DHKzDLijuam7U4Z325bwPN7C1N0ghDwDKKgnhBBSr90vkMNcyOAiKfsnq72TBdo7WQBwwkI8rPvOVWUU8LfrKewZsNTUPSGEPOUoqCeEEFJv3cyVYbMmtebzEAdYixpW1uiKr3biwJ5Tpu4GIeQZQEE9IYSQektbVp6DIxTNIUWWaTtUTYGsCxzhZ+puEEKeARTUE0IIqbcCbczwfoAtzAUM80XXTN2d6psNHOpwGn/0X2LqnhBCnnIU1BNCCDGpP+7n43RmMYJsxHirkW2Z170sxSbolXHsij6MzT/sNXU3CCHPAArqCSGEmFRyoXpCqOtFj+GOIBP3xriaX+gLa7iYuhuEkGcABfWEEEJM6i1/WxxMK0CYiw8W1McKNgYonC/Fqq934g+aUZYQUssMCuoZY2YAugDoBqAdgMYA3AFYAZADyAaQDOAqgFMA/uKc3zVkm4QQQhqe/Q8LcDRdiiBbMUb6P5liY2smwCs+NibqWe06HHsOx/66bOpuEEKeATUK6hljXQG8DSAcgLXuS6XWbQHAA0AHAGM0y14EsAXARs55wypjQAghpEZOZ0ihAhCfK4X5M5SO0uuncRArzU3dDULIM6BaQT1j7DUAMwFop8fTDeLvAEgHkAkgC+qA3hGAA9Qj+NrgvzWAVgDmMcY2AljIOb9fs+4TQghpCAZ5WWFPSgGec7LEAhSbujt15uLMBHz9+SZTd4MQ8gzQK6jXjMwvgzoY1wbylwHsAvAvgNOc8+xKlmcAQqAese8FYDDUKTrjAYxljC0DMJ9znl+TN0EIIaR+WHEjCxIhw7sB9k8839JBgpYOEtN0yoSsrCUwM6PL1wghtU/fb5rDmp+ZANYA2MY5v6LvRjjnHOq8+qsAohljFlAH9u8A6AngUwCFAObqu05CCCH1y98PC5BWrAIAXM8pRrAdpZ0snr4dWRk0XkUIqX36BvUZABYD+NEYo+mc8yIAPwP4mTHWEcBsQ9dJCCHEtFo7SnAkXQoZk6KtdRMoUWTqLplcwMvPo8mq9qbuBiHkGaBvUO+nCcSNjnP+L4ABmtF7Qggh9VyRUolf7xeCm1k/8byjmRBftXQCACxEtgl6Vv8UvyHD15c3Yc9ZU/eEEPK00yuor42AnjEm4JyranMbhBBCjG/VzVxkylWAZ0tTd6Xe+3TMj0hKpFoQhJDap/fVO4wxL855ijE2yhgTQ51+M8QY6yOEEFJ3nCVCZMpVECoVcIELiijNpkJtG70El0R/U3eDEPIMqM4l+X8zxrpyztMM2SBjzBzAbgAvGrIeQgghte9CphShtiKIRP/9uXirkS0KpFIc+PMYHrV4BDHEJuxhPbcQ+KP139gzfKmpe0IIecpVJ6gPBHCQMdaDc/6oJhtjjFkC2AugOwBek3UQQgipG4uuZiJfybGbAV+2cHriNTOh0ES9algmvbEMdxIo/YYQUvsE1WzfDMABxphjdTfEGLMBsB9AN81Tl6q7DkIIIXVHrlKPvci4AoJSN3vYAwDsYV/mNbr9d7tZkGjCf0FCyLOkOkH9MqgnngoFsJ8xZqfvgowxBwB/A+ioWccZqOvTE0IIqac+bWaHlnZiTAtygqrULVtT3SYb2WVeo9t/t9g/VqJzn1DT/kMSQp4JeqffcM6naC5w/RBAawB/McZ6c87zKluOMeYK4ACA5lAH9McADKxqOUIIIXUjJiUfJx8XQ1QqzcZcJMJQP1sT9qzhWxy5Fcf36z1XIyGE1Fi10m845x8BWAt1cN4ewP8xxqwqas8Y8wLwD/4L6A8C6EcBPSGE1B/XcmUAADnneqeVUPqNfrcjZ+NM+C9LCHmWVDenHpzz9wBshDpI7wQgpryJoxhj/lAH9EGatrEAXuKcFxrQX0IIIUY2rokt7EQMzztI9E4rofQb/W4/rP4M9o4Vjn0RQojRVKf6ja63AYgBjADQBcAfjLGXOOfFAMAYC4I65cZb034XgAjOudzA/hJCCDHA/KuZKFZyfBRkBxeJ+k+ArZkI00KqXf+A6OHCyZvIyaKxLEJI7av2SD0AcM45gFEAdkA9Ct8TwG7GmBljrAWAI/gvoN8KYDgF9IQQYlppUgWKlBwqAJPv7zUorYTSb/S7rV+/G+o/mYQQUrtqFNQDAOdcBfVI/W9QB/YvAtgHdZUbN02z9QDe4pwrDewnIYQQA7lJRLASMggBrPB+yaC0Ekq/0e82/v3XIBAwk/67E0KeDTVNvwEAcM6VjLFhUKfXDIK6Br3222sl5/xjA/tHCCGkBlIL5Vh3KxcB1mJENPqvgk1kc0qzqUt+Ae4Qmxn0p5YQQvRS45F6Lc65AsBrUF8Iy6CeKfYbCugJIcR01t3KhYwD8XmU+WhKcyduRLGU/g0IIbVP7+EDxtjtKpqINT85gKGMsaFVtOec8yb6bp8QQoj+Aq3FuJonhxIyMBg//cMCFtiO7bCDHYpQZPT1Py06txwOx389Td0NQsgzoDrnBP2hDtgr+uvAdV73q6SdbntCCCEGelgox+8pBRjubwU7sXp85Q2dlJuFtfB1K4ccsYhFDnIgLhnTIaXJv5Nj+rgfsIfK1RNCall1gvpkUCBOCCH1zsrEXADAkmu5mNPSqYrWpC6N7bcQuTm5pu4GIeQZoHdQzzn3r8V+EEIIqSEBABWAQpYHBuc62Sal3+inr/UHMMuRmLobhJBngMEXyhJCCKlb9wufvPByTksnDPWxxOIW/uB1dMtBDgAgBzl1ts2GeNv3+w8Y/m4PU3xMCCHPGKqzRQghDcisS4/BAdiKGD7VmQW2pYOF6TpFKvThkCW4f/eBqbtBCHkG0Eg9IYQ0INoLmzKUBWAmvNnBDgBgBzuT9qO+3+5nppruw0IIeaboFdQzxmo9IbA622CMeTHGJjHG/mKMJTPGZIyxh4yxXYyx58tp/yVjjFdy969gO30ZY0cYY3mMsVzG2CHGWK9K+hXEGNvBGMtgjBUxxi4yxt5njNF0goQQo4jwtYKbuQBfBrubNK2E0m/0u22PmQ/vxq4m/tQQQp4F+qbf3GGMfQtgFefcqFdEMcY6AJgN4BSAuXou9hGAzwDcAvAXgEcAAgGEAwhnjEVwzn8pZ7lNAJLKeT67nH6NBLBFs+6NmqeHAdjPGBvKOf9fqfYhAE4AsACwA0AqgIEAfgQQoukzIYTobd6Vx5CqAHsRw1RNqk2IvQQh9nThZUOxYNJG3L+dbupuEEKeAfoG9W4AvgXwGWMsCsBWzvnNmm5UMyr/MoC3AfTWPH2qGqs4DaA75/xIqfV2AXAQwCrG2G7OeXGp5TZyzg/r0T8HACsAZABoyzm/r3n+awDnNev/k3Oep7PYKgB2AAZwzv9P034WgAMAJjDGtnHOT1bjPRJCnnFSlfpnlkIJhvp1wo+q3+jnlSufm7oLhJBnhL5BfW8AywCEApgJYCZj7ByAXQD+BRBXKsAtgzHWDEAHAL0ADAZgDfUEVQUAvtPc9cI5/7WC548yxg4BeBFACwBn9V1nKa8DsAfwhTag16z/PmNsJYAvAbwCYDOgTrsB0BXAIW1Ar2kv0wT2hwG8C4CCekKI3trYi3EhW46erhaYj/o1TQhNPqWfE/Mu49vILVW2i4uLswbgCbrWjRCipoI6kySjXbt2Kn0W0Cuo55z/zRhrBeANADMANAPQDkBbbRPG2G0A6QCyNHcLAI4AHAA0gTqI12IAiqBOa5nDOU/Tpx960tZ6U5TzWldNzr0KQAKAA5zz/HLaddf8/Kuc1/6EOqjvBk1QX0X7Y1AfuHSrot+EkGfYkbQC7E+TPlHVZoivLYb4mrhjxCDJCQ+hUlb+9zguLq6jQCCIEggEdqh6NnZCyDOCc65QqVRH4uLiZrdr1y6lqvbVmXyKA9gGYBtjrDeAdwAMgjp4ZwACoA7eSyv9BXUJwFoAP3HOc/Tdvj4YY75Qn1V4AOByOU2+KvU4mzE2kXO+udTzgZqfCeWsI6FUm0rbc86VjLE7AEIYYyLOeXkHG2CMmQMw13nKBgDkcjnkcnl5ixCgZN/QPqoc7Sf9mWpfHUyTAgByFbxB/DvRZ0o/uzYervT1uLg4a4FAEGVvb+/m6uqayRirX6dkCCEmwTmHTCYzS0tLG1hUVNQiLi7uhXbt2skqW6ZGdeo55wcAHNAEos8D6AIgDIA3ABeoR+ilUF9k+gjqAPsogKOc87s12WZVGGNiqC9sNQfwGedcqfPyRQBjoU6DeQDAHcBLAOYA2MgYy+ac/6HT3k7zs7yDjtxSbapqr11GAHWgnlVBm0gAX5R+8tChQ7C0tKxgEaK1f/9+U3ehQaD9pL+63lcODo3x2M4DApUCsbGxdbptQ9BnqnK+zRyQeOlhZU08BQKBnaura6aVlRVdnEAIKWFlZSUVi8XyW7duuahUKl8AiZW1N2jyKc2FqP9o7ibDGBNAncrTFcBazvkTCYyc899KLZIEYCVj7BqA/QDmAfgDprUQwFKdxzYA7vfo0QNOTk4m6lL9J5fLsX//fvTp0wdiMeX1VoT2k/7qal/9mJgHqYpjSpBt2RdDB9Tado2FPlP6CQl8gBnjVlXWRACA0Qg9IaQ8AoGAQ531UmXM3uBnlNUE9BsARAD4CcB4fZflnB9kjN0C0IIxZss5147Ca0fc7QA8LrWYbak2pduXxxbqOWMqvJhYc4BUUq1HW9peLBbTH0w90H7SD+0n/dXmvjqTUYhHcnUMt/luId4OqOiro/6jz1TlZry7FsXFlKJECKl9DTqo1wT00QDeArAdwGjOuV5XCOvIgPp6AEv8l1qTAKA91LnypYP68vLny8uz1/ZRCKARgDsV5dMTQp4tjazVX70cHMvt38c72G7iHlUflbTUT2+vd2Fx26bayyU8yDJLyy6os7/RbvZWikAPh0rzdQkh9VuDDepLBfS/AHizVB69PuuwAtAc6uo0GTovHYG60s+LUJfs1NVXpw1K/f4igEWl2r8AwKpUe0LIM2bj7Rz0c7OAu5UZnCVmmNdSnVY3X11/wLSdqwEqaamnHcDMD37Enjj9F0l4kGUWOjk6VKZQ1lklHDORkF/5bswVCuyJsbRv377pO++882j8+PGZpu6LoWrjvXzzzTcu+/bts/v7778rzZOvjgZZD1cn5eYtADsBjKwooGeM2WjqyJd+3gLqKjw2AHaUGkXfAXVKzUeMMW+dZbwBTID6AKAkT59zfgPq6wp6MMb667Q3w3+z5K6rwVslhDwFvrj0GIn5Cqy8Vel0HuQpFNH9S1w+fbtay6RlF4jqMqAHAJlCyWpyZuDAgQNWQqGwXffu3QN0n79x44YZY6zdiRMnLMpbbtOmTfZhYWGBDg4Oraytrdu0bt06eNeuXWUuMElMTBS//vrr/q6uri3FYnFbT0/PFmPGjPF5+PChULfdlClTPBs1atTcwsKija2tbeuwsLCgv//+26o672XPnj023bp1C7C3t29tYWHRpkmTJs3fffdd7zt37pQctSoUCnz11VeuQUFBIebm5m1tbW1bd+3aNfCvv/56Ylvff/+9E2OsHWOsnUAgaOfi4tJy4MCBjRMSEsx023l5ebWYM2eOa+m+TJkyxTM4ODhE+3jIkCH+jLF206dPd9dtt2XLFnvGWDvt471799robtfGxqZ1s2bNQsaPH+999+7dJ46+hwwZ4t+7d+8yVQu168jIyBDqvpfGjRs3L912w4YNDoyxdl5eXi10n9+6datdRkaG+N133y0TBEdGRroLhcJ2s2bNciv92vfff+9kY2PTuvTzpfcDY6ydWCxu6+vrGzp16lQPbRWu0n3XVdG+rqw/Fb2XkydPWvTs2TPA0dGxlbm5eVsvL68WAwcObJySklLm/9DDhw+Fbm5uLUv36+OPP864cuWK5b59+6xLL1NTDTKoBzAbwCgA+QBuQj0Z1pel7q01bZ0AXGeMnWKMbWSMLWKMRWuWewPqyjzTdFfOOc+COnh3BnCOMbaCMbYCwDnN+j4oZ7KtD6A+ENjNGNusmX32HNSVgVZyzk8YfS8QQhoEzSUy4OBgT8nNTnMJkR3sTN6X+nzLF+ZW8slo+NauXes8atSo9DNnztgkJSXpfcrmyJEjNj179szdvXt3wsmTJ+NfeOGFvOHDhwccP3685CAgPj7e7Pnnnw+5ffu2eXR09O34+Pgry5Ytu3vs2DHbjh07NktLSysJkIKCgqTfffddclxc3NW///77uo+PT/HgwYMDU1NT9TpQ+fbbb53Dw8ODXF1dFT/99NOtCxcuXF25cuXd3Nxc4fz5890AQKVSYdCgQY2XLFniOX78+PSLFy9e+fPPP294eXnJBgwY0HTLli32uuu0trZW3r179+KdO3cubdu27datW7ckQ4YMaazvPirN3Nycr1y50v3Ro0dlAtbSLl68eCUpKeni8ePHr02ePPnBP//8Y9OqVavmp0+fLvcgqyoWFhaqzMxM8YEDB544eImOjnb28PAoc3bnhx9+cIuIiMgQCst2ddu2bc7jx49/uHXrVuea9KVLly65d+/evXj16tUrH374YdrSpUs9Z8+e7V71kuWrqj+l30tqaqpowIABQQ4ODoo9e/bcvHjx4pWoqKgkd3d3eV5eXpm4euTIkf7BwcGFpZ+XSCT8lVdeyVy+fHmZA42aaqjpN/6an9ZQT4ZVniQAFwBkAvgR6tlsB0A9GVYRgGsAvoc64C6TEMo5/4kxlgFgOoAxUF/oGgdgnqakZ+n2VzUTW80DMBDqlJubAD4EUGnpA0LI0+3LFk7YfS8PPd3M693MsDVF6Td6Ogh899VW/FGN9JuGIicnR7B3717HEydOxKenp4ujoqKcFi1aVGn9Tq0NGzbc0328cuXKlH379tn/9ttv9p07dy4CgPHjx/uJxWJ+5MiRm9bW1hwAAgMDZR07drzRtGnTFlOmTPHaunVrsqbtEyPCq1atuufk5OR85swZi8GDB1d6iuzWrVviGTNm+I4ePTp9/fr1Jf1q2rSprH///vna0dX169c77Nu3z2Hr1q2JERERJcUyOnXqdDczM1P08ccf+w0ePDjX1ta25No+X19fBQD4+fnJ33zzzYyZM2f6ZGZmChwdHat7/R/CwsJyk5KSzGfNmuURFRV1v7K2np6eCmdnZ6Wvr6+iZcuWxREREdktWrQIef/9933j4uJuVHfbQqGQDx48+PG6deuce/fuXQCo99vp06dt3nnnnbTdu3c7atumpqaK/v33X5vvv/8+ufR6YmJirKVSqWDp0qWpO3fudNq/f79Vnz59CqrTFzMzM5V2v3722WeP/vjjD/v/+7//s1+4cKFen73q9Ke893Lw4EHrvLw84c8//5ykLRIQHBwsGzRoUJnP2ddff+2Sm5srmjlzZuo///xTpiJCeHh49uDBg4Py8/OZ9jNuiAY5Us85H805Z1XcN2ra5nLOJ3DOO3DOXTnnYs65Lef8ec75t+UF9Drb2cc578o5t+ac23DOu5cX0Ou0v8E5f51z7sQ5l3DOW3LOf9RM3EUIeUbMvPQYMy89xpL4/+KMcB8b2JqZVbIUeRq93X8BDu85b+pu1Iro6GiHRo0aSVu1alU8YsSIx9u2bXNWqaodqwIAlEolCgoKBI6OjgoASEtLEx47dsx2zJgx6aWDHV9fX0V4eHjm3r17HcvbnlQqZcuWLXOxtrZWdujQocqruH/66ScHuVzOZs+eXW5Q6OzsrASAn3/+2dHPz69YN6DXmjp16sPs7GzR77//Xk6NWiAlJUW0Z88ee6FQCJGoZuOpAoGAf/nllykbN250vXXrVrWOpK2trfmYMWMenTt3zrq8FBF9jBs3LiMmJsZBOxq9evVq5y5duuS4ubk9Ud7pwIED1hKJRNWmTRtp6XWsW7fOOTw8PNPc3JyHh4dnrl27tkaj9bokEolKLpfXKF2tqv6U9148PT3lSqWSbdmyxaGyz3tcXJxk8eLFHlu3br0jEJQfbr/wwguFSqWSHT582CgpOA0yqCeEkIbgkaLY5OkftXWj9Bv9blnZT2/6zebNm12GDRv2GABee+21nLy8PGFsbGz1S/0A+OKLL9wKCwuFo0aNygKAq1evSjjnCAkJKRMYAkBwcHBRbm6u8MGDByUB6vbt2+0sLS3bWFpato2KinLbu3fvTQ8PjyqrziUkJEisra2Vfn5+ldYevXPnjiQgIKDcg4TWrVtLAeDGjRslM8Pn5+cLLS0t21hYWLTx9vZuderUKZs333wzXXckv7reeuut7ODg4MLIyEjP6i6r3Zc3b96s0ehC586di7y9vWWbNm1yUKlU+Pnnn53GjBmTUbpdUlKSmZOTk7x06k1mZqZg3759DqNHj34MAKNHj34cExPjmJOTU6NYVKVSYffu3TbHjh2ze+GFF54YJff19W2p+SyU3B88ePDE+9anP+W9l169ehVMmDDh4bhx4xo5Ojq27tq1a+CsWbPc7t27V/JZLCoqYhEREY2/+uqr+4GBgRVefG5jY6OytrZW3rlzxygjPhTUE0KIkbWyE8NMAExv6gj+lN5yNNNz5CDH5H2pz7eVOz+BucXTl5508eJF80uXLlmOHTs2E1DPVzBo0KCsdevWVXvkNSoqynHJkiWemzZtuuXl5fVEEF6dE90DBw7MO336dPz+/fuvd+/ePSciIqKJPqPS1dlGddpaWVmpTp8+HX/8+PFrX3zxxf2QkJDCZcuWpei9ggosXLjw/q+//up87tw5SXWW044qVzRqrI+RI0dmbNmyxSk2NtamqKhIMHTo0DJnLYqKigTm5uZldtT69esdfXx8ijt16lQEAGFhYUWenp6yDRs2OJZuW5nDhw/bW1patpFIJG1fe+21wIEDB2Z+++23qbpt9u/ff/306dPxuncXF5cnDtr06U9F72XFihUp9+/fv7h06dK7wcHBRRs3bnRp3rx5qPaahY8++sgrMDBQ+sEHH1RZLcfc3FxVWFholHi8oebUE0JIvTHzkno6i35uErzgZoXX/co9A0+eQT/O+w3FRU/f5FOrVq1yUSqVzM/Pr5X2Oc45zMzMVI8fP67yQk6tNWvWOEyePNkvOjr6dnh4eMloa0hIiJQxhvj4+HID1+vXr1vY2toqdUfibW1tVaGhocWhoaHFvXr1KvDz8wtduXKlc1W51kFBQdL8/Hzh3bt3xZWN1jdq1Eh669atci80vXDhggQAmjZtqjuJJA8NDS0GgLZt20pv3bplPmrUKL/du3ff0baxsrJS5uTklNlf2dnZQhsbm3Kr+vXv3z//hRdeyPn000+9Ro0aVXounQrFx8dbAOrrEgDAxsZGef/+/TIjxFlZWUKhUAgbG5syZxTeeeedx3PnzvWeM2eO55AhQzLLm3jO2dlZkZubW+Y9bd682SUxMdFCJBKVVOtRqVTYsmWL8+TJk8uM+FekQ4cOuWvWrEk2Nzfn/v7+svL60LRpU5k2bUpLJBI9EZzr05+K3gsAuLu7K8eOHZs1duzYLKlUmhIaGhqyaNEit19//TXp2LFjtgkJCSXr1h4Muru7t/7oo48efPfddyUHIbm5uSJXV1ejzGNEI/WEEGKA7OKSv+H49VGqydM96upG6Tf63a5dSDLRJ7P2yOVy/O9//3P64osv7p88efKq9v7vv/9edXFxka9fv16vkdfVq1c7fvzxx43Wrl17Z/jw4U+M+Lq7uyvDwsJyo6OjXfPz85/Il05OThbt3r3b8aWXXsqsbNRZpVKhuLi4yjhnxIgRWWKxmM+ZM6fcCiraC2WHDh2adffuXfNt27aVueBx8eLF7vb29orBgwdXmG/1xRdfPIiJiXE4duyYpfa5Jk2aSM+fP1+m9OalS5csmzRpUm7qEQB88803KYcOHbI/ceKEXmU78/Pz2aZNm5zbt2+f7+npqQCApk2bShMSEiyKioqe2L9xcXGWXl5exeWNULu5uSl79eqVfebMGev33nuv3ED8ueeeK8zIyBDrVuk5ffq0xdWrVy1jYmJu6H5mYmJibly4cMHq/Pnzep91sLS0VIWGhhYHBgaWG9DrQ9/+lPdeyiORSLivr2+xdsR9165dt/7999+S9S5dujQJAPbt23d96tSp6drlrl69al5cXMw6dOhQpjpOTRh9pF5Ty90d6hlaz1R2ISohhDR09ubmELN8yDnwWRNfLMWzcV08Vb/Rz453DmJr1P+ZuhtG9fPPP9vn5uYKP/roowwnJ6cnRkMHDhyYtXnzZufBgwfnAOrc+NLLt2vXThodHe0wYcIE/3nz5t3r2rVrfnJysggArKysuHadq1atSu7atWtw9+7dg+bOnZsSGBhYfOHCBYvp06d7u7m5yZcuXZoCALm5uYLp06d7vPLKK9k+Pj7ytLQ00ffff++anp5uFhERUWX6Q0BAgHzOnDn3pk+f7puXlycYNWrU48DAQFlSUpJ448aNzlZWVsq1a9fef/fddzN37drl8P777zdKS0u7P2DAgNzs7Gzh8uXLXQ8ePGgXHR19u7J8+YCAAPmLL76YPWvWLM9Dhw4lAsCUKVPS+vXrF/zZZ5+5Dxs2LFupVGLz5s1OFy5csFq1atXditbVoUOHopdffvlxdHR0ubXVU1NTRYWFhSwnJ0d48uRJy2XLlrlnZ2eL/ve//93Stnn33XczFy9e7Pnaa681+vzzzx86ODgoDxw4YL1u3Tq32bNnV1hd55dffrmTn59/193dvdwzCWFhYYX29vaKAwcOWL/xxhs5ABAVFeXcokWLgv79++eXbh8aGloQFRXlvHr16vsAoFKpWOn5DSQSCW/btm2FBznVpW9/ynsv27dvt/v5558dhw8fntm8eXMp5xy7du2y/+eff+yWL19+BwCaN29erLvOtLQ0MaC+9kL3DMLBgwetvb29i0u3rymjBPWMMRsAnwIYDUD34o0WAOJ12g0H8CqAHM75u8bYNiGE1LV5Vx5DqgLe87eGj605vmjhZOoukXrKzLz6f2bd7K0UZiIhr+sZZd3srfRKAYiOjnYOCwvLLR3QA+rR7KioKPfs7GwhAIwbN65MXfbExMRLGzZscFEqlSwyMtI3MjLSV/vaq6+++njXrl1JANCiRYviU6dOXYuMjPR88803m+Tk5AidnZ3lffv2zV60aFGqm5ubElCnVdy8eVPyxhtvNMnOzhbZ29srWrRoUfDXX39db9++vV6B4Oeff/4oODhYumTJEveIiIiA4uJigaenZ3GfPn1ypk+fngaoc9FjYmJuzZ071+3HH390++yzz3zNzc1VrVu3LoiNjb3x4osvVlmaccqUKWm9e/cOPnTokGWPHj0K+/TpU7Bz586E+fPne0RFRbkLBAIeFBRUtGfPnpvPPfdcpX1ftGhRakxMTLlnRVq1ahXKGIOlpaXK29u7uHv37rnTp09/qC0FCair+hw6dOj61KlTvYcMGRKQn58v9PX1LZ4zZ869SZMmVZgOY21tza2trcsN6AFAJBJh2LBhGdu2bXN84403cqRSKfvtt98cJ0yYUG4a1Msvv5y1atUq9++//z4FAAoLCwWdO3cO0W3j4+NTnJycfKWy/aGv6vTH3Nyc674XAGjVqlXRH3/8oYqMjPRJS0sTi8Vi7ufnV7x06dKkDz/8sFozzu7YscPxzTff1Dv1qCrM0GqLjLFAALEAGgPQ/QLiAFpwznWDen8AiZp23Tjnxwza+FOMMWYLICcjIwNOThQwVEQulyM2NhYDBgxATU/DPQtoP+lPn32lzaEXMzyzAT19pvTzWscZkCuK8UfcEgCw45w/kZ4RFxcXLBKJ9gUGBuZbWlqWBHEJD7LMajLDa0252VspAj0cKqzSQUh1JCcni1q2bBl6+vTp+KCgoAb9uaqt93L27FlJ3759m968efNKeQfIWoWFhZKEhARrhULRr127dtcrW6dBXxiMMQmAGABNABQA+AHAPwD2lteec57EGDsEoCeAlwFQUE8IaZA4OA45focvscDUXTEJC1hgO7bDDnYoAmVZVqRLixGwP19uhkSlAj0cZBRkk4bK19dXsWLFiqTbt2+bNfSgvrbey/3798Vr1qy5U1lAX12GjgK8DyAA6oC+C+f8AgAwVukZw/8D0AtAJwO3TQghdeJYWgEOpksx1k+dbjOvpXZ0fr7m/uyhnHr9pH7xCJMjlpq6G8+0zz//3P3777/3KO+19u3b5//zzz8Jdd2nZ8Gbb76Zbeo+GEttvBfdak/GYmhQ/yrUaTbLtQG9Hi5qfgYauG1CCKkT+9LUWRGrk/Ixr6V5Fa0J+c/Eocshkz19JS0bksmTJz8aOXJkVnmvWVlZ1XgiKELqG0OD+maan39VYxltTVV7A7dNCCF1hoNDxvLBYPCs5k8FSr/RzwDbjyHMoClhTMnNzU2pvaiWkKeZod801pqfZUoCVUI7zEVDF4SQeutwehEa26jQRJNuU1xcDHNzZ3z7jJSsrAql3+hpH/DN9GjsiTN1RwghTztDJ5/Sjrr7V2OZ5pqflc7wRgghpnLZoyWOPJYjOum/8Qpzc0q7IdUX0fULHP/rqqm7QQh5Bhga1J/T/OxajWXegjoP/6SB2yaEkFqhYurJAzk4WLGp5yStnzeaUVa/W5HKaPPlEEJIpQwN6v8Hdc35cYwx36oaM8Ym4b8DgO0GbpsQQmpFq9TzCLQUoL+bBbg5B93K3nKQAwDIQY7J+1Kfb78d+xqNmla/pCUhhFSXoTn1WwBMBtASwGHG2IcA9um8zpm6vmV7AJMADId6lP4o5/zpmjebENKgzbr0GByAiAFtAET4WdOkSsRgY/svwONH1ZpkkhBCasSgoJ5zrmKMaSeR8od60qlCqAN3ADgMwAb/XRzLANwCMNSQ7RJCiLFpv7Tkmlm2qapL5aj6jX5eyfq8RsuppAlmXJ5WZ2VzmNhNIZAENuhJgkjtuXjxonmvXr2CExISLjs4OOhVBvSDDz7wKigoEGzatOlebfePqBmafgPOeTKA1lCn06gAWEEdvDMALgAkmt8BYAeADpzzdEO3SwghxtTeXgwGoK+LegyC0koqv1H6jX63mUtHgwkqnZCxDJU0wazoUmioNL5Ls7q6F10KDVVJE8yq+/8mOTlZNGrUKB9vb+8WZmZmbd3d3Vv27Nkz4Pfff7fRbRcZGekuFArbzZo1q0wu0p9//mndtm3bYHt7+9YSiaRto0aNmn/11Veu5W3vwIEDVkKhsF337t0DSr9248YNM8ZYuxMnTliUt+ymTZvsw8LCAh0cHFpZW1u3ad26dfCuXbtsS7dLTEwUv/766/6urq4txWJxW09PzxZjxozxefjwobB023Pnzkl69uwZYGNj09rCwqJNaGhos4QE/fbjyZMnLXr27Bng6OjYytzcvK2Xl1eLgQMHNk5JSXniYG7FihVOoaGhzSwsLNpYWVm1ee6555pu377dTrfN3r17bRhj7TIyMsr0EQCmTJniGRwcHKL7mDHWjjHWTiQStXNwcGjVvn37pnPmzHEtKioq84GdNm2a99tvv52mG9AvWbLEuWnTpiGWlpZtbGxsWjdr1iwkMjLSXfv6rFmz0nbt2uUcHx9f7c8VqRmDg3oA4Jxncs5HQD277AQAGwHEAvgTwDYA0wA045wP55yXOwEEKd+ZrGL8fDcPBQqaH4MQY5t16TFmXnqMXcm5CPe1xdyWTujkLDF1t8hTZM+2Y+Cq6pVB5fI0EbisekcChuIyVt0zAzdu3DBr3759yPHjx23nzZt37+zZs1f37t17s2vXrnmTJk164jq7bdu2OY8fP/7h1q1by0z0YG1trXzvvffSDxw4cP3ixYtXpk2b9mDRokVeixcvLtN27dq1zqNGjUo/c+aMTVJSUrXy444cOWLTs2fP3N27dyecPHky/oUXXsgbPnx4wPHjx0sOAuLj482ef/75kNu3b5tHR0ffjo+Pv7Js2bK7x44ds+3YsWOztLS0kqD56tWr5j179gwOCgqS7tu378bZs2fjIyMjUy0tLav8g52amioaMGBAkIODg2LPnj03L168eCUqKirJ3d1dnpeXVxKbjRs3znvq1Kl+r776auaZM2fijx49eq1jx475I0eODFiwYIFLdd5/aQEBAdK7d+9eTExMvPTnn3/efOWVV7KWL1/u0b59++CsrKySPiQkJJgdOnTIbvz48dqKh1i2bJnTzJkzfcaPH59++vTp+EOHDl2fNGnSw/z8/JL94+HhoejSpUvO8uXLyz1AI8Zn0Kk9xpj2otcHnPMEzvldAD8a3i2itf9RHiyszBFkI0ZbRwo2CDEmbagVl12E13zVA1+UVqIf2k/6efVspKm7UGvGjRvnyxjDuXPnrtna2pYEsu3bt5dOmDAhQ/s4JibGWiqVCpYuXZq6c+dOp/3791v16dOnQPt6586dizp37lzyIWratGnm7t27HY4dO2YzderUkvXk5OQI9u7d63jixIn49PR0cVRUlNOiRYv0Lo+9YcOGJ9JAVq5cmbJv3z773377zV67/fHjx/uJxWJ+5MiRm9bW1hwAAgMDZR07drzRtGnTFlOmTPHaunVrMgB89tlnXt27d8+Jioq6r11n8+bNi/Xpy8GDB63z8vKEP//8c5L22p3g4GDZoEGD8nTaWK1du9Zt3rx592bMmFGS4dC2bdsUqVTKvvjiC5+hQ4dmBwQE1GjeH6FQyH19fRUA4O/vL+/QoUPRgAEDcp9//vmQL774wv37779PBYAtW7Y4NG3atKhRo0Yl29m7d6/9wIEDsyZPnlzy79O+ffsypZ4GDhyYM2/ePK/Vq1ffL/0aMT5DR+oPAzgEoLPhXSHlecnNFh0czRFiR2evCDE27ZBSbxerknQJSivR70b7Sb9btwGtTfPhrmVpaWnCo0eP2o0dOzZdN6DXcnZ2LpnBdd26dc7h4eGZ5ubmPDw8PHPt2rWVTst8/Phxi3Pnzll37do1T/f56Ohoh0aNGklbtWpVPGLEiMfbtm1zVqlqfhZbqVSioKBA4OjoqNC+p2PHjtmOGTMmXRvQa/n6+irCw8Mz9+7d66hSqaBUKnHo0CG7wMBA6QsvvBDo6OjYqmXLlsFbtmyx12fbnp6ecqVSybZs2eJQ0Xv46aefHC0tLVWffPLJo9KvzZgxI02hULBt27Y5VP+dV6xNmzbSrl275sTExJSs9/jx49atWrUq0G3n6uoqP3funNXNmzcrDU46d+5ckJaWJr5x4wYFMXXA0KBeOzPLZUM7QsrX0s4ML3tbQyJ88p8qIU+GExlFUHGa3ZKQ6lhyTZ1yczVbiq9aOmFeSyf09LCuekFCaqBZS39Td6FWxMfHm3PO0axZs0oL8WdmZgr27dvnMHr06McAMHr06McxMTGOOTk5ZeIPNze3lmZmZm27du0aMmbMmPQpU6Zk6L6+efNml2HDhj0GgNdeey0nLy9PGBsba1N6Pfr64osv3AoLC4WjRo3KAoCrV69KOOcICQkp9z0FBwcX5ebmCh88eCBKSUkRFRYWClauXOnep0+fnL1799586aWXskeNGtUkJiamyi+UXr16FUyYMOHhuHHjGjk6Orbu2rVr4KxZs9zu3btXkkFx69YtiY+PT7FEIinzh97f319ubW2tvHnzptFP4QcFBUlTU1NLgvCUlBRzT0/PJ84GLFy48IGtra2yadOmLfz9/UOHDBniv27dOgelUvnEuvz8/GQAkJiYSEF9HTA0qE/W/LQ0tCNEfyrO8VNSHmJTC3E9l4oVEFIdWZo/TduTCypvSIgRrF70u6m7UCs453rl/K9fv97Rx8enuFOnTkUAEBYWVuTp6SnbsGGDY+m2R44cuX7s2LFr33zzzd21a9e6rV69uqTNxYsXzS9dumQ5duzYTAAQi8UYNGhQ1rp16yod9a9IVFSU45IlSzw3bdp0y8vLS1HqvVW5vEqlYgDQu3fv7C+++CI9LCysaMGCBQ816Th65bqvWLEi5f79+xeXLl16Nzg4uGjjxo0uzZs3Dz19+nRJjr8+fTG20tuUSqUCiUTyxOkEPz8/+YULF66fPn366vjx49MUCgWbMGFCo65duwbqBvZWVlYcAAoKCoxyDSepnKHlsmIANAPQG8BRw7tDShuDMWWfZICXw2h4F7WGl4V9nfeJkIaOgyPV/CIYepd5jXLF9UP7ST8veoyH+b2nb9yrefPmUsYYrl27VulI8ebNm10SExMtRCJRO+1zKpUKW7ZscdbNxwbUOeUA0KFDh6K0tDTxwoULPd97771MAFi1apWLUqlkfn5+rbTtOecwMzNTPX78WOjk5PTkEHEl1qxZ4zB58mS/6Ojo2+Hh4SUpPiEhIVLGGOLj48t9T9evX7ewtbVVenh4KGQyGRMKhbz0mYqmTZsWnTp1Su+zB+7u7sqxY8dmjR07NksqlaaEhoaGLFq0yO3XX39NatKkiTQuLs5aKpWy0qP1SUlJ4vz8fGFQUJDRpyy+ceOGhbe3d8mIoaOjoyIrK6vcePG5556TPvfcc1IAj/78889H/fr1axobG2ujvTYgPT1dqHmfivKWJ8ZlaFD/HYCxACYxxnZyzq8YoU9ERzSi4QSnsi94l30qXaqAigPuFnVW2piQBiE5T4rNdwsw3NsK81pq/z/1QjTKjoLJIUcsYpGDHIhBk09VhPaTfrKjC/DBkIWm7obRubm5KV944YXcDRs2uEZGRpbJq8/IyBDevn3b7OrVq5YxMTE3nJ2dFTqviQYOHNj0/PnzkjZt2pQblKpUKsjlcgYAcrkc//vf/5y++OKL+wMHDszRbTdkyJCA9evXO3766adl8s7Ls3r1aseJEyf6r1u37vbw4cOfWJe7u7syLCwsNzo62nXmzJlpunn1ycnJot27dzu++uqrjwUCASQSCW/RokVh6fSXxMREiZeXl14Xy5YmkUi4r69vcWFhoQAARowYkblx40bXJUuWuOheKAsA8+bNcxOJRDwiIsKoFQXPnz8vOXr0qO2ECRNKLkAODQ0tvH79epVpPq1bty4CgPz8/JJR+XPnzlmIRCLetm1bOvKvA4ZOPvWQMfYSgF0AjjPGvgawjXOeZIzOEf3lyVX4ISEHnAOTmtrD0bzcUrWEPJPW3FGn2mxMLsA8e6oiRerOu/0XQCavUYxX70VFRd3t1q1bcNu2bZvNnDkzpV27dkVyuZzFxsbabtiwwaV79+65LVq0KOjfv39+6WVDQ0MLoqKinFevXn1/4cKFLn5+frIWLVpIAeDAgQM2UVFR7mPHjk0DgJ9//tk+NzdX+NFHH2WUHpEfOHBg1ubNm511g/qrV6+W+U/erl07aXR0tMOECRP8582bd69r1675ycnJIkCdIqJd76pVq5K7du0a3L1796C5c+emBAYGFl+4cMFi+vTp3m5ubvKlS5emaNc5efLkh2+//XbjJUuW5PXt2zfvjz/+sD106JB9TEzMjar23fbt2+1+/vlnx+HDh2c2b95cyjnHrl277P/55x+75cuX3wGA3r17F4wZMyZ9zpw53jKZjA0dOjRbJpOx6Ohox+joaLc5c+bcK1355uzZsxa2trYl+4gxBm3qU2lKpZIlJyeLVCoVS09PF+3fv99m6dKlHsHBwUVffvllSVDfr1+/nI8++shfoVBAJFKHjSNGjPD19PSU9+nTJ9ff319+79498bx58zwcHBwUPXr0KPn3PnLkiE379u3zS194TGqHoSUtb2t+NYN65ti5AOYyxvIBZAOo7HQY55w3MWT7z4Jy02/KIRBYIEg0DxbcCubCui1vTEhDoYIKDJX//6C0Ev3QftLPy+JPwOXVi2eY2E0BZsbrtFY9M+NM7FatFImQkBDZ2bNnr82aNctjxowZPo8ePRI7ODgoQkNDCxYvXnzv7bffbqQ74qvr5Zdfzlq1apX7999/n6JSqdgXX3zhff/+fTORSMR9fHyKZ82adX/q1KmPACA6Oto5LCwst7wUm6FDh2ZFRUW5nzp1ysLe3l4JAOPGjWtcul1iYuKlDRs2uCiVShYZGekbGRlZUkf/1Vdffbxr164kAGjRokXxqVOnrkVGRnq++eabTXJycoTOzs7yvn37Zi9atCjVzc2tpA9vvfVWdmZm5t3vvvvOY8aMGb7+/v7SjRs33urbt2+Zg5jSWrVqVfTHH3+oIiMjfdLS0sRisZj7+fkVL126NOnDDz/M1LbbsGHDvZYtWxauW7fO9euvv/YSCAQ8JCSkcMuWLYkRERE5pdfbv3//prqPhUIhFApFXHl9SExMlPj5+bUSCoWwtrZWNmnSpGjixIkPpk2b9sjCwqLkQ/v666/nTJo0if/++++2Q4YMyQWAPn365G7cuNF506ZNLtnZ2SJ7e3tF27Zt8/ft23fT3d29ZB/99ttvDpGRkalV7Q9iHMyQizAYY4bMiMQ55zScXAHGmC2AnIyMDDg5lZN+Uw6FioMDEGtmL1RxDrkKT3WQL5fLERsbiwEDBkBb65eU9azup8RsKcyEgK+NBGcyivCcc7kTTT7hWd1X1UX7SX+LZ27GtPmjAMCOc56r+1pcXFywSCTaFxgYmG9paVmSiqKSJphVdzIoQzCxm0IgCaTKC6RcCxcudImJibE/duxYgr7L7NixwzYyMtLn+vXrV+k7ouYKCwslCQkJ1gqFol+7du2uV9bW0C+MTQYuT4xIVGoq8g23c3GvUIG3G9vC14r+Q5Fny+7kXJzNVp+ZftMXegX0hBhbRNcvUFBY/UpLAkmgDBRkk3pi6tSpj7Kzs4VZWVkCBwcHvQZ0CwoKhGvXrk2igL7uGJpTr19uCKkxfdNvytNUvgjm3A35CkNOqBDSMKUXqz/3HBwjiz/GWazVazlKK9EP7Sf9vCL/3NRdICawatUqx08++cSvvNc8PT1liYmJV+u6T4YQi8X4+uuv9Z69FwDGjBlj1It4SdWoTEo9V2H1Gz3kNlEhS6aEH43Sk2fQuEB7rLyRBUsRwxm3NQDW6LUcVXXRD+0n/UgPSfHOS/NN3Q1Sx4YPH57dpUuXck/RmJmZ0UWjpFZQUP8UsxULYCtWV5YqUKiw7EY2GIDJTe1hIaJ5IMjTac7lx5BxgAGY27JmB8SEGMuk4d8jL5vOZDxrHBwcVA4ODk9n2SNSb1FQX8+1QRvIYHhapU9BN/RV/ggAeFCkQGMbmrGZPJ1kmjEwFXiVlW7KQ2kl+qH9pJ9XHlL6DSGkbhha0vItQ5bnnG82ZPlnwXmcr3H6zRPsgN2O+RACFNCTp1pHRzP8mylDkLUYvJzJpapCaSX6of2kn/2fn8bKeTtM3Q1CyDPA0JH6jUAN/mqqcQAU1NehcG/rkt+PPyrCvxlSvOxthUAK8slTQJt208pOrDNrLCGmdfX87aobEUKIERgjsZoZcCcm8ndaIbLkKuxLrX6pNULqI23azcUceeUNCalDx/68bOouEEKeEYaO1DfSo40VgCAAEQBeA3AcwDgAhQZu+5lgrJz6Mut1fh9tMkehh5uH0ddNiCkIASjAcdN6HxjerPF6KFdcP7Sf9NOpw1A4n/A2dTcIIc8AQ+vU39WzaTyA3YyxoQC2AVgBoI8h235WGC2nvjR3zR1AlkyBfQ8K0dnZgiapIg3OiuuZSJNxvO1viUa2FgBGau41Q7ni+qH9pJ9Tr17FgpPR1V5Ode+2mSorvc6KWQgcXBUCn8Y02RUxSPv27Zu+8847j8aPH5+pT/u4uDjJgAEDghISEq7Y2trSpDoGqtO6hpzzHVDPQtsDwHt1uW1Ssa1J+biaI8dPSXmm7goh1ZamybtZn0Qn/0j98+3n26p95Znq3m2z/DdfCC18/6VmdXXPf/OFUNW929W+wCo5OVk0atQoH29v7xZmZmZt3d3dW/bs2TPg999/t9FtFxkZ6S4UCtvNmjXLrbL1RURE+AmFwnYbNmxwKP3alClTPIODg0MqWnbTpk32nTt3DrS3t2/NGGt34sSJJ6aRTktLE44aNcrH398/VCKRtPXw8GgxevRon8ePHwtLr2vFihVOoaGhzSwsLNpYWVm1ee6555pu377dTrdNYWEhGzJkiH9QUFCISCRq17t37ybl9WvhwoUujRs3bi6RSNr6+/uHrly5Uu+Rury8PMGHH37o5ePjE2pubt7WwcGh1XPPPdf0p59+stdtd/bsWcmAAQMaOzg4tDIzM2vr7+8fOmnSJM+8vLwn4jwvL68Wc+bMcS1vWzdu3DDT3W/ax9q7lZVVm4CAgOZvvvmm7+XLl81LL79161a7jIwM8bvvvlsS0J88edKiZ8+eAY6Ojq3Mzc3benl5tRg4cGDjlJQUEQC0a9dO2qZNm/y5c+dW+rkg+jFFsfIdUOfTjzbBthucNmgD91q+/Z/Nj+BQIdsq3tRvl5Aa4eDIEaaAGeFmB/XfbTvYGWV9T+uN9pN+t2KbgmpXYVJlpYsgl9XtdWdyGavumYEbN26YtW/fPuT48eO28+bNu3f27Nmre/fuvdm1a9e8SZMm+eq23bZtm/P48eMfbt261bmi9eXl5Qn27NnjMH78+IcbN26ssF1F8vPzBZ06dcqfPXv2/fJeT05OFj98+NBswYIF9+Li4q6uXr066fDhw3YjRox4YubXcePGeU+dOtXv1VdfzTxz5kz80aNHr3Xs2DF/5MiRAQsWLHDRtlMoFEwikajee++99E6dOuWWt82vv/7aZf78+d6RkZGp586duzJ9+vSUzz77zHfbtm125bUv7a233vKNiYlxWLx48b1Lly5d+eOPPxLCw8OzMjIySg5EDh48aNW1a9dmMpmM/frrrwlXrly5Mnv27JRffvnFqVu3bkFSqdSgz9Lu3btv3r179+KZM2eufvnllykJCQmSDh06hJQ+cPvhhx/cIiIiMoRCdddSU1NFAwYMCHJwcFDs2bPn5sWLF69ERUUlubu7y3UPNkaPHv1406ZNLnI5XQ9lKFPUqU/T/Gxqgm03OLWWfqPLQ3OHCxQqFS5my9DC3gxmApqgitRfCVlF+C21EDMCLWFhYQHAGStqXIzrP5RWoh/aT3raD4x9aa6pe1Erxo0b58sYw7lz567ppk60b99eOmHChAzt45iYGGupVCpYunRp6s6dO532799v1adPnzJVGjZu3OjQpEkT6Zw5cx56e3u3TExMFAcEBOgd6X344YeZgPpg45NPPinz+nPPPSf9888/b2kfN2/evDgjIyNl/PjxjeRyOcRiMQ4ePGi1du1at3nz5t2bMWNGurZt27ZtU6RSKfviiy98hg4dmh0QECC3tbVVbd26NRkATpw4YZ2Tk1NmxP/nn392GjFixKN33303CwBCQkJkZ86csVqyZIl7RERETlXv6cCBA/YLFiy4N2zYsBwAaNq0qaxLly4lpyVVKhXee+89/8aNG0v//PPPW9qAOigoSNasWTNp586dQ+bOnes2f/78h/rux9JcXFwUvr6+Cm3/33jjjeywsLCgDz74wH/gwIGXRSIRUlNTRf/++6/N999/n6xd7uDBg9Z5eXnCn3/+OUksVn9HBAcHywYNGvREWkB4eHjuqFGjRLGxsTaDBw+mlAEDmCJq0x6901+BemjdrVz8dr8AUQlVftcQYlKb7hUiVwnMT6C0G1J/vdZpBh4/fPq+T9PS0oRHjx61Gzt2bHp5udDOzs5K7e/r1q1zDg8PzzQ3N+fh4eGZa9euLXcUftOmTc7Dhg177OTkpOzWrVvO6tWrqz1aX13Z2dlCKysrpTbo/OmnnxwtLS1Vn3zyyaPSbWfMmJGmUCjYtm3byqQGVUQmkzGJRPLE/rGwsFBdunTJqri4uMoRdGdnZ/m+ffvssrKyyo3XTp48aXHr1i3JRx99lKYN6LU6depU1KlTp9xdu3Y56ttffQiFQkyYMCE9NTXV7OjRo5YAcODAAWuJRKJq06aNVNvO09NTrlQq2ZYtWxxUqorT5SUSCQ8ODi48cuSITYWNiF7qNKhnjIkBfKp5mFiX226o6iL9Rvd2SnAcAJAqSK6iZ4TUDyoojZouQWkl+t1oP+l3UzFlZR/fBis+Pt6cc45mzZpJK2uXmZkp2Ldvn8Po0aMfA+pUi5iYGMecnJwn4o/Lly+bX7x40Wr06NFZADBixIjM7du3O1cWDBrqwYMHosWLF3uMHDmy5KzCrVu3JD4+PsUSiaTMaT9/f3+5tbW18ubNmxJ9t9GjR4/cbdu2OR89etRSpVLhn3/+sdy2bZuLQqFgDx8+rDJb4scff7wbFxdn7erq2jo0NLTZ22+/7fPXX39ZaV+Pj4+XAECLFi3KLUEVFBQkvXv3bpn8d0OFhoZKAeDWrVvmAJCUlGTm5OQk1z2w6NWrV8GECRMejhs3rpGjo2Prrl27Bs6aNcvt3r17Zd63m5ubPDk5mSbNMZChM8r6Vt0KAgAOANoDmAAgFOrLhn42ZNvPijpJv9HVBLhbIIePRQsAgEKlgojScEg9k19UhM8DLfHbAxnebOyEBUZIu9GitBL90H7S0wlg1oQo/BFn6o4YF+dcrzzt9evXO/r4+BR36tSpCADCwsKKPD09ZRs2bHCcPHlySTAdFRXl3KVLl1wPDw8FALz++us5H330kf+ePXtqJSUjMzNT0Ldv34CAgADp4sWLU3Vf49x43yeLFi1KTUtLE/fo0SMYAHN0dJS//vrrGVFRUe4CgaDKDfXv3z//7t27lw8dOmR19OhR68OHD9v069cv+JNPPkn99ttvH9RGn/Wh3Z5AEx8UFRUJzM3Ny3RixYoVKTNmzHgYGxtr+++//1pt3LjRZfny5R4HDhy40aFDh5IDEYlEoioqKqJgw0CG5tTfqcEyDMBJAN8ZuG1SS/w0ZS2XXMtCllyFvh6W6OJiUcVShNQN7cyxAGjmWFLvRXT7AgUFT98kf82bN5cyxnDt2rVKR603b97skpiYaCESidppn1OpVNiyZYuzNqhXKBTYuXOnU0ZGhli3nVKpxPr1652NHdRnZWUJevXqFWRtba3at29fom4w2qRJE2lcXJy1VCplpUfrk5KSxPn5+cKgoKBKz07osra25jt37kwqLi6+e//+fZGfn598yZIlLlZWVipPT0+FPuswNzfn/fr1y+/Xr18+gIeffvqpx3fffecxd+7chyEhIVIAuHz5skXnzp3LjNbfvHlT4ufnV6xvf/V1+fJlCQAEBAQUA4Czs7MiNze3zDUFAODu7q4cO3Zs1tixY7OkUmlKaGhoyKJFi9x+/fXXJG2b7Oxskb+/v9H7+awxNKiv7hXVmQBWA5jHOad/PD3U1uRT+hitiIMIEqQW6vW9Q0id0Ab0HBys2l9BVaNJlfRD+0k/rxR/buou1Ao3NzflCy+8kLthwwbXyMjIMnn1GRkZwtu3b5tdvXrVMiYm5oazs7NC5zXRwIEDm54/f17Spk0b6Y4dO+wKCgqEx48fjxeJRCWB9Pnz5y0+/vjjRhkZGcm6OfqGyMzMFPTs2TPIzMyM//nnn4mWlpZPBO4jRozI3Lhxo+uSJUtcdC+UBYB58+a5iUQiHhERkVXd7Zqbm/MmTZrIAeB///ufY48ePbJL58Drq3nz5kVKpZIVFhayTp06FTVq1Ei6cuVKt3fffTdTd50nT560OHnypG1kZGRKjTZUAaVSiR9++MHNy8tLFhYWVggAzz33XGFGRob40aNHQhcXlwr/rSQSCff19S0uLCx8YlT+5s2bFq+88kq19yt5kqFB/Rg92qgA5EE9qn+Fc/50JhjWkjpPv9GR3FiOa7ky9HKjUXpSf0wJtMTyhEIE24qrXSpQH5RWoh/aT/pJ2ZGBj4d+Y+pu1IqoqKi73bp1C27btm2zmTNnprRr165ILpez2NhY2w0bNrh07949t0WLFgX9+/fPL71saGhoQVRUlPPq1avvb9iwwblHjx452hQdrbZt20pnzJjhs3btWsfIyMhHACCVSgWl68/b2dmpmjdvXpyWlia8deuW2b1798wA4OrVqxIA8Pb2lvv6+ioyMzMFPXr0CCoqKhJs3br1VlZWlkB7Aaqnp6dCJBKhd+/eBWPGjEmfM2eOt0wmY0OHDs2WyWQsOjraMTo62m3OnDn3dCvyxMXFSYqLi1lWVpaooKCgpG9hYWFFAHDp0iXzY8eOWXXp0qUgIyNDuGTJEveEhASLn376Sa9Mhw4dOjR9/fXXH3fs2LHQ1dVVceHCBYsvv/zS6/nnn89zdHRUAcDq1auTXn755aB+/fo1mT59+gNvb2/F0aNHrWbMmOHdunXrgpkzZ6bprjMlJcWs9D4MDAyscPTw0aNHouTkZFF+fr7g/PnzFitWrHC7fPmy5Y4dOxJFInUYGRYWVmhvb684cOCA9RtvvJEDANu3b7f7+eefHYcPH57ZvHlzKeccu3btsv/nn3/sli9fXvL+b9y4YZaeni4eOHBguWVBif4MnVF2k7E6QuofXysxfK3EyJWp8ENCJiRCholBdiU5dITUpfyiIizSVLp52cMSHSgljDQACz/ZBIWiehd7ChxcFRCb8TqtVS824wIH12qdlg0JCZGdPXv22qxZszxmzJjh8+jRI7GDg4MiNDS0YPHixffefvvtRhMmTCi3lOLLL7+ctWrVKveZM2c+PHz4sN2aNWvKBLlCoRB9+/bN3rJli7M2qL979655586dn5iAqlOnTnknTpy4+csvv9hPnDjRX/v8uHHjGgPA5MmTHyxdujT1xIkTVpcuXbICgNDQ0FDddVy/fv1y06ZNZQCwYcOGey1btixct26d69dff+0lEAh4SEhI4ZYtWxJLl6F8+eWXA1NTU0su8NT2jXMeB6hr2a9YscL9k08+MReJRPz555/PO3LkyDXttqrSq1evnG3btjnPnz9fIpVKBS4uLrLevXvnLFy4sOQ6gD59+hQcOXLk+uzZsz1eeeWVoIKCAoGHh4ds6NChj+fNm/fQwsLiidGPNWvWuK1Zs+aJyZ5++OGHO7169Spz8AUA4eHhQYA6793T01MWFhaWt27duruhoaElGRcikQjDhg3L2LZtm6M2qG/VqlXRH3/8oYqMjPRJS0sTi8Vi7ufnV7x06dIkbflRANi4caNj586dc4OCgmhGYwOxur64guiHMWYLIMcnwwcyJ9N+zkMeRSDswQwAwKQgOzhLTDG9QfnkcjliY2MxYMAAaEuSkbKehv0Uez8PJzLV/xfyBOn4PrTCiSUNYiG3wPbY7XhjwBsoElNaSUVoP+nn1Y6RUChk+CNuCQDYcc6fGI2Mi4sLFolE+wIDA/MtLS1LcrVV926bVXcyKEMIHFwVAp/GFFSRGktOTha1bNky9PTp0/H6BuhSqZQ1btw4dOPGjbdffPHFp+/iEyMoLCyUJCQkWCsUin7t2rW7XllbQ6vfbIC6ks1MzvmDqtprlnEB8DUAzjl/25DtPwtMmX6jpXBSYVtePmzErF4F9OTZMsDbBicyHwMAFjXxx/JaSL0BKK1EX7Sf9LNl5P/hfxsPVns5gU9jGQXZpCHx9fVVrFixIun27dtm+gb1iYmJZpMnT35AAb1xGBqhjYY6qF8CQK+gHoCtznIU1DcAIoEAbzW2BQD89SAfZzNlCPe2Qoid0UvfElKurXdycC1PARsh8FlzqnhDGo6iAorLScUsLS3bVPTar7/+mqCpeNNgvPnmm9nVaR8aGlqsm8ZDDEPDrqRajj4qBgew+34BBfWkzlzLU6f65tFl9qSB+eu306buAqnHTp8+HV/Ra/7+/nRESKrFFEG9tqYtHZnpoTEaQwq9S+LWuiFW29CooAs6OFlV3ZgQI7ERqgN6BWS1UsZSF5Vq1A/tJ/309B8Lq0R7U3eD1FM0Sk2MyRRBfWfNz7RKWxEAwG3cNnpOfdHcD8A8/SB5+7PqL9zkv19z5SrcyZejuZ0ZRIK6K9JAni0/3shCgRKYEWgJCwsnLKqlXHotyhXXD+0n/STMvodPx3xv6m4QQp4B1QrqGWOzK3jpA8ZYegWvaZlDHRK+DHU+/fHqbJsYR9GquZDv2wEAEPcZAqFvQI3XtTM5D3cKFHgss0BPN0tjdZGQJ6QWq8sBLkgoxNyWVMaSNCyRY6OgUlKVOUJI7avuSP2XQJlhMgbg/WqsgwGQAvi2mtt+Jhl7RtkurZVY9xPAGTDMaSJkqNmMdgDgbvka3Ar7wYMq4pBaxsHxSJQIBuda3xalleiH9pN+BkmmAA3qUkdCSENVk2hMN8+Cl/NcRaRQV8g5AWAx5/xiDbb9zDF6SctOgPy7wxA4uuJ/VgbW+fbQ3DVkKo4ChQoOZjU/UCBE1577eejqbI4XPa0BOGN1LafeAJRWoi/aT3o6DHz29nLsiTN1RwghT7tqBfWc8yemEmWMqaAO7EM55xVewU3qj+LdG1H87VQAgNUfVyF0cqtiCf2tv5WD1CIl3mpkg0Abs6oXIKQS2jKWACARMnR1o4uzScPzeqcZkMnpWkhCSO0zNG8iGeqgnsou1RJjp9+MkCuhvTBitOot5MB4ZSkD+VewgC9UlD5KjECh+RxxcHyumo6TqJuLDSmtRD+0n/TzCmpQkABAUUKSmSztUZ3lNpq5uSgsAqmE4rMqPDy8UXBwcNGiRYse6tP+wYMHoubNmzc/c+ZMfJMmTeS13T+iH4O+MDjn/kbqB6mA0dNvXgdkTr9D4OyOLS7PG2+9AKRNVMiTc7hIKP2GGG5UYztsvZMDiYBhvsdyAMvrZLuUVqIf2k96OgmMH7IAqEb6TVFCktnZ0BdDuUxeZ2XFmJmYt7/y15XqBvbJycmiWbNmeRw8eNA+PT1d7OjoqAgJCSmcOHFi2uDBg/O07SIjI92/+eYbr+nTp9+fO3duhdXvIiIi/H755RfntWvX3h47dmyW7mtTpkzxjI2Ntb9+/XqZzIDi4mI2adIkz4MHD9rdu3fP3MbGRtm5c+fc7777LsXf3/+JoHP79u12S5cudY+Pj7dUqVRo0qSJdNy4cekff/zx4/L69PDhQ2GrVq2ap6enix89enTB2dm5yhkzFAoFZs+e7b59+3anBw8emJubm6v8/Pyko0ePzpgyZUqGtl1iYqI4MjLS68iRI7ZZWVkiFxcXed++fbMXLlyY6u7uXrKdDh06NA0NDS3csGHDvfK2xxhrt3nz5lvayZ8YY+20r0kkEpWrq6u8ffv2+ZMmTUrv0qVLoe6yJ0+etDh8+LDdpk2b7mqfu379utm0adO8Tp06ZZOTkyOyt7dXhIaGFixevDilTZs2Ug8PD8Vrr732ODIy0nPHjh13QeoFQdVNyNNEfvowpLPeRuGHL0NZZNzRNYlQUBLQX8+VYf7VTBxKK6xiKULKWnE9EzMvPca1PAWG+NmaujuE1Nibvb7Cg7uZ1VpGlvZIVJcBPQBwmZxV98zAjRs3zNq3bx9y/Phx23nz5t07e/bs1b17997s2rVr3qRJk3x1227bts15/PjxD7du3Vrh1e55eXmCPXv2OIwfP/7hxo0bq3VVfH5+vuDixYuWn3766YN///03fvv27bdu3boleemll54o8TZ//nzXkSNHBjz//PP5//zzz7UzZ87EDxkyJHPatGl+48aN8y5v3SNHjvQPDg6u1h+zqVOneq5evdpt1qxZqRcuXLiyb9++G2PGjMnIzs4uGfWKj483e/7550Nu375tHh0dfTs+Pv7KsmXL7h47dsy2Y8eOzdLS0gwaIVu+fHnS3bt3L164cOHqd999l1xQUCDo0aNHs5UrVz4xUrhs2TLXAQMGZNrZ2akA9QHSiy++GJSXlyfcvn37rcuXL1/ZsmXLrebNmxdlZmaW9GncuHEZv//+u5Oh/STGQ2VL6jljp998elqJdwBwlRIfpA3CA//aKUXpXvAaXJUD8W/BffRAUK1sgzy90mXq3BsOXuuTTZVGaSX6of2kn1cKPjd1F2rNuHHjfBljOHfu3DVbW1uV9vn27dtLJ0yYUDIaHRMTYy2VSgVLly5N3blzp9P+/fut+vTpU1B6fRs3bnRo0qSJdM6cOQ+9vb1bJiYmigMCAvRK7XByclKeOHEiQeep4hUrViR37969WUJCgllgYKAsMTFR/OWXX3qPHTs2beXKlSnahqGhoWlmZmZ85syZPsOHD8/q2bNnSd++/vprl9zcXNHMmTNT//nnHzt9982+ffvsR48ena57tqFTp05P/EcZP368n1gs5keOHLlpbW3NASAwMFDWsWPHG02bNm0xZcoUr61btybru83SHBwclL6+vgoAaNq0qezVV1/NffXVV/0///xz32HDhmW7uLgoFQoFYmNjHdauXXtHu1xcXJzk3r175gcOHLgZFBQkA4CgoCDZiy+++MS/Wfv27aUuLi7ybdu2OUyePDkDxOSMFtQzxnoACAfQCoAzAAtUXhWHc86bVPI6QS2k30wAClPeAvPwxWr/ecZbbykyN45LZsUIsLGvtW2Qp9dngZb4OqEQjmIBeB1UvNFFaSX6of2knwvf38SXH64xdTeMLi0tTXj06FG7zz77LEU3oNfSTVFZt26dc3h4eKa5uTkPDw/PXLt2rXN5Qf2mTZuchw0b9tjJyUnZrVu3nNWrVzt/++23D2rax6ysLCFjDE5OTgoA2Lp1q4NCoWAzZ84sk/7zySefPFqwYIHXTz/95KgN6uPi4iSLFy/2OHHixPUbN25U6wI0FxcX+T///GObmpr6yNPTU1H69bS0NOGxY8dsP/vssxRtQK/l6+urCA8Pz9y7d6+jSqVKFgiMl1QxderUtN9++83p999/t33nnXeyTp06ZZGfny/s3Llzyb+Hh4eHQiAQYOvWrQ6zZs1KE4kqDhVbt25dcOzYMWsK6usHgz8pjDFXxtjfAA4AmACgK4AQAI0A+Ovc/Uo99jd026T6lKl3oTh9GPL9v9bqdswEDO2dJLA3EyJNqsDmO7m4lE0VIEjV1idmY1FCITiAKc0cTd0dQgyy/cf94E9h8YD4+HhzzjmaNWsmraxdZmamYN++fQ6jR49+DACjR49+HBMT45iTk/NE/HH58mXzixcvWo0ePToLAEaMGJG5fft2Z5WqzPGCXgoLC9mMGTO8X3rppUxHR0cVANy8eVNibW2t9PPzKzP6L5FIuLe3d/GtW7fMAaCoqIhFREQ0/uqrr+4HBgZW+3T5smXL7mVmZop8fHxaBQUFhURERPju2LGjJJfw6tWrEs45QkJCyt1/wcHBRbm5ucIHDx4YNaOidevWUgBISkoyA4Dbt2+bC4VCeHl5lRx4NGrUSD5v3rzkb775xtPe3r5Nx44dg6ZNm+YRHx9fpqydu7u77P79+1Turp4w6MPCGBMD+D8AraEelb8AIAXAQKir4vwEwBFAW6grmnMA5wBcMWS7zxJjp9/M2aLAcCkAaSE+vNET95paG23dFXHPeg2ueQORrMhAS/vGtb490rDdKVQP8Jki9QagtBJ90X7Sz6vXI03dhVrBOdfrP+f69esdfXx8irWpJ2FhYUWenp6yDRs2OOqO7kZFRTl36dIl18PDQwEAr7/+es5HH33kv2fPHhvdC271UVxczF566aUmnHNs3LixRhdxfvTRR16BgYHSDz74oHoXRGi0a9dOevPmzavHjh2zPHLkiPWxY8dsIiIiAnft2pXxyy+/lPSJ1/ERn/YgiTH1P19hYaFALBarSp8NiIyMfDR+/PjH//d//2dz8uRJ699//91hxYoVHtu3b0985ZVXcrXtLCwseFFREV2fWU8YegQ4GkAbqIP1MZzzTYyx5lAH9eCcj9I2ZIyFA1gJ9Sj+Is75rppulDHmBeB1AAMABANwB5AJ4DiAbzjnp8pZxhbqGXGHaNo/ALATwFec8zLz/THGBAA+BDAOQADUcwIeADCDc367gn71BTAd6oMYDnW9g3mc84M1fa/GTr9RfpiDghNhENi74IemfxttvZXJdlLisLIILex96mR7pGF73tEMpzJlEIPVeeoNQGkl+qL9pJ/vXvwFh2PPmLobRte8eXMpYwzXrl2TVNZu8+bNLomJiRYikaikGotKpcKWLVuctUG9QqHAzp07nTIyMsS67ZRKJdavX+9cnaBeE9A3TklJMTty5MgN7Sg9AAQFBUnz8/OFSUlJ4tIVcaRSKbt37555586d8wDg2LFjtgkJCSX91gbf7u7urT/66KMH3333XWpVfREKhejWrVtht27dCgGk//jjj44ffvhho6+++upBSEiIlDGG+Pj4cvff9evXLWxtbZXagxxjuXDhggUANG7cWAYArq6uCqlUKpBKpUwikTzxhevg4KCKiIjIiYiIyFGpVCldunQJXLBggYduUJ+ZmSnUpjcR0zP06GqI5uc+zvmmyhpyzncD6AZ1TfuNjLFAA7b7EYDvADQG8BeAJQCOARgM4ARjbJhuY8aYFYAjACYDuK5Z9gaAqQD+ZoyV959qNYDvoT4D8T2AfQBeBXCmvL4zxkZq2jQDsBHAJgDNAexnjL1mwHs1Ki6xAjgDhHV3sbq9mRDh3tZoYl35H36Z6g5uF/VAlvynOuoZqW/+TS/EqUwZbITAly2NeC0JISbi19jV1F2oFW5ubsoXXnghd8OGDa65ubllYomMjAzh6dOnLa5evWoZExNz4+TJk1e195iYmBsXLlywOn/+vAQAduzYYVdQUCA8fvx4vG671atX3/7rr78cMjIy9PqDpQ3ok5KSJIcOHbqpWxISACIiIrJFIhGfP39+mVkXFy9e7FJUVCQYOXJkJgDs2rXr1r///lvSl6VLlyYBwL59+65PnTo1vQa7DC1btpQC6io/7u7uyrCwsNzo6GjX/Pz8J856JCcni3bv3u340ksvZRoznx4AlixZ4mptba0cNGhQLgA8//zzhQBw7ty5Sg/OBAIBAgMDpaVH5a9fv27RsmVLKnNXTxg6Ut8K/6XZlMEYY1zn3BLn/BZjbDmA2QAmQp2DXxOnAXTnnB8ptb0uAA4CWMUY28051yZxfwp1itDXnPPPddovAvAZ1MH+Qp3newB4B8A/APpwzmWa57cBiIX6jENfnfYOAFYAyADQlnN+X/P81wDOa/rzJ+e8WqcQa0Px9FHA44dQPX4IxcVTELUybq16Q9yTjkah6h8UKk/BQTzS1N0hJrD3oTqNI6/KKtCENAzbog6Yugu1Jioq6m63bt2C27Zt22zmzJkp7dq1K5LL5Sw2NtZ2w4YNLt27d89t0aJFQf/+/cucDQ8NDS2IiopyXr169f0NGzY49+jRI6d0dZi2bdtKZ8yY4bN27VrHyMjIRwAglUoFJ06csNBtZ2dnpwoICJANGDCg8dWrV61+++23BIVCgeTkZBEAuLq6KiUSCQ8MDJTNmjXr/ldffeUjkUj42LFjH5uZmfGdO3faL1y40Ovdd99N014k27x58ycuAktLSxMD6px0ferU9+vXr3GnTp3yu3TpUuDt7S2/efOm+cyZM738/PyKtXntq1atSu7atWtw9+7dg+bOnZsSGBhYfOHCBYvp06d7u7m5yZcuXZqiu86MjAxR6ffu4+Mj9/HxKXekPCsrS5icnCySSqWCq1evSlavXu184MABh5UrV97RvgdPT09FSEhI4eHDh63DwsKKAODEiRMWs2bN8hw5cmRmy5Yti8zNzfn+/fttduzY4fzhhx+WTE6Vl5cniI+Pt5w/f35Kedsndc/QoF57Fdsdned0E8AtAZS+wv0g1EF9n5pulHNe7lWenPOjjLFDAF4E0ALAWaZOHHsH6vSZuaUWmQt1is070AnqAbyr+TlLG9Br1v9/jLHDAF5kjPlyzrWlpl4HYA/gC21Ar2l/nzG2Euq0n1cAbK7uezV2Tn3b4QpsOw6ohIB384GoT1VNe4uLMKkYSBW6I9TUnSEm4ShmyJRzqKAyST49QLni+qL9pJ++bu/DLMWi6oY6zNxcFMxMzOt68ikzN5dqpVGEhITIzp49e23WrFkeM2bM8Hn06JHYwcFBO0nRvbfffrvRhAkTyp2h9OWXX85atWqV+8yZMx8ePnzYbs2aNXdKtxEKhejbt2/2li1bnLVB/d27d807d+4cotuuU6dOedHR0Ul///23PQCEhYU98fqePXtuvvTSS3kAMHv27PQmTZoUf/fdd+7r1693ValULCAgoOibb765O3HixHInn6qJPn365O7cudNx+fLlHvn5+UJnZ2d5WFhY3oIFC1LFYvVZ6xYtWhSfOnXqWmRkpOebb77ZJCcnR+js7Czv27dv9qJFi1Ld3NyeOHjYs2eP4549e56oHjBt2rTUb775ptwKQRMnTvSfOHEizM3Nuaurq+y5557LP3z48LUXXnjhiZH1t956K2P79u1O06dPfwSoL5T19fWVLVy40CMlJcWcMQZPT8/iadOmpc6ePbukctC2bdvs3d3dZf369Stz0EZMgxlykQZjLA/qwP05zvk5zXNuUOercwDNOOc3Sy3zHIBTAAo550a/SpMxthfqnP42nPMLjLEgqFNt/uSc9yun/T6oR919Oef3NM+lArAFYMc5V5Zq/znUBwBvcc63aJ7bBuANAJ045/+Wat8RwEkAGzjnb1fjfdgCyMnIyICTk3HTEArmfACBlz8s3v7UqOs1lFJZhBTZODiajYe1sLNey8jlcsTGxmLAgAEQi8WQqThu58vR2FoMM4FpgsL6qPR+qq/mXH6MYBsRhvrrXQ7a6BrKvjI12k/6eZySifHDvsH/jn8NqP+m5Oq+HhcXFywSifYFBgbmW1pallRCKUpIMqvuZFCGMHNzUVR3NlnydMjPz2eBgYGhW7Zsud27d+8ypUYr0qpVq+D3338/ffz48TW6mJjop7CwUJKQkGCtUCj6tWvX7nplbQ39wkiG+kLVkvw0znmaJti3BvA8gJulltEOwhr9CjjGmC+A3lAfVFzWPK3Nf08odyH183017e5p8u89AFwpHdCXWo9uXn1l2yivfXl9NwegWwfXBlD/4ZTL9Zp7Qy+yJZ9C+ecOKAEgrC9EASFVLVJnbhe3gwzXkFO0HcHm+o38afeN9ufeB0U4ly1HW3sxBnlUb3TsaVZ6P9VHc67lggO4lKvAKybsZ0PYV/UB7Sf9vDdkCeSK6l9HaBHoL6Mgm9QFa2trvnbt2qT09HS9Y8IHDx6IBg0alDVu3DgK6OsRQ4P6c1AH9W2gLm2p9Q/Uo+UTGWM7tLntjDF7qHPYOYB4A7f9BE15zS1QB8af6QTk2iG/nAoWzS3Vrrrtq1qmvPbliQTwReknDx06BEtL48366lmkLJnf9e9zl6G4mWS0dRvKtYUtrFwAlcIcsQdjq7Xs/v37AQDpdl6AYyOk376J2POU5leadj/VRwLv56AUqcsdx8ZW79+/NtTnfVWf0H6qnJGvcyT1REBAQPPU1NRy67MvWbLk7vvvv9+ggl1tepK+PDw8FPPmzSsziRcxLUOD+oMARkAdwC/QeT5K81wbAJcYY38AsAIwCIAX1EF9tfPLK6IpP7kR6omv1mrTYhqYhQCW6jy2AXC/R48exk2/GTAA0t4DARcPvNikmfHWaxQDkCvbAyuLvmg+QL+5LORyOfbv348+ffqUpADIVRxiQSuor+MGChUqSIQMAvbspuOUt5/qG4dHRVBBjrbWYliEDDBZPxrCvqoPaD/pZ8CAAZg7ZT3+iDN1T4gxxcbGJshksnL/qHh5edHpK2IShgb1u6G+CNSbMdaEc34LADjnMYyxDQDGQp12MkXTXvsf4C8AqwzctnqF6oB+A4AIqKvwjC/VRDt6XtFIuW2pdtVtX3qZ0hfalNe+DM3ZjJKr7bUTQ4jFYqP+wZRuXQH+41fqbfx6ESI3L6Ot21B3Cvshn/8JprBEqETvtD4AT+4n3b11JbsYvyTno7mdGYb72Rixtw2TsT9PxrL8WiYeydUZec871I8+1td9Vd/Qfqrc0M4zUVxc6aSrpAEKCgqi1ChS7xgU1HPOswH4V/DaO4yxk1BXlmmu2VYC1CP0yznnNZv7WYcmoI8G8BaA7QBGl7PeqnLan8iH55wXMMYeAGjEGBOWk1dfXv58AoD2mtdKB/VV5fRXytjVb2akK/CW5veuBa1wux5Vv4niGWgCQIEivIyX9VpGDDHewlsYjuGQo+zgiKOyB7zxFm4rHkJzmQKphwqU6oCeg8MJ3iiC6c5cU1UX/dB+0s8rys+rbkQIIUZQqxEd53w9gPW1se5SAf0vAN6s5MLWVACdGWNWnPMCnXVYAegM4I628o3GEQDDNa/9U2p92vr0/5Rq/wbUpTT/raD9EdSAsWeUxWSgSDgLAu/GONF4jPHWawRKiRJp8k/gIH4Hf+hZ1FI7q+XP+Ln8WS2dgCSJHG4SByP3lhjT9FAnLI7PhJelCIUWRqsqVyM0U6p+aD/pp+hQEd5+ab6pu0EIeQYYdAkPY6yr5m7I7LA12a425eYtADsBjKwgoIdm8qt1UFfjmVXq5Vma59eWen6N5udcxlhJcjdjrD+A7gD+4pzf1Wm/A+r0mo8YY9467b2hnmArA8Bv1XiLtUZ+8gDkv6xC8dJPoZDWr1PCafLP8FixHMnSV4y6Xn8rMSyE6o/67/fz8f2NbDwuptmN6ouErCLMvPQY2QqOIGv9rqUgpKH48JWlKMipX9+1hJCnk6Ej9Yehvuj1bdQwvaSGZgMYBfWEUjcBzGRlL4LczTm/oPn9GwCDAXzGGGsDddWetlCPrJ8BsEx3Qc75IcbYOqhTh84xxmKgLnM5DEAmgI9Ktc9ijE2AuvrOOcbYL5qXhgFwAjCsprPJGjv9ZvkeBfoD4Jyjf6I3LofWn/SbzcpH8AAg5YlGS78pLSRnBURKa9wrVMDJXK+Zx0ktO57538SNP2b8iw3OPU3YG0or0RftJ/28kk3pN4SQumFoRJcPdVWby1U1NDJ/zU9rADMqaJME4AJQkiffDeqLeocA6AF1LfslAL7inJf3F+k9qN/XOAAToX6vvwGYob0gWBfn/CfGWAaA6QDGQH2wEwdgHue8xvOEGz39ZgGQN/Q5CFw8sD/0D+Ot1wikkptIlobDQTQOf2CSXstUmX5Tyl1/OR4UKdHCnkaE64vRTewx+9JjcADrg3tgvfGnsKgWSivRD+0n/RyIPI0Vc3eYuhuEkGeAMSafagb1rLJ1hnM+GsDoai6TA2Cy5q5PexWA7zV3fbexD8C+6vSrrinSUsDTU8Dzsk3dlTKKlOch43dRqDoG6BnUV5eflRh+VuoA5FqODJdzitHb3RKOZjRqbyozL6lz6F9wogMt8vQ5+feVGi1XrEowU/C0OjuVKmJuCnNBIFV0IaQBM/QLIwbqoL43gKOGd4fUtuJvpgByGSCXQRH3D0Ttupq6SyUeyqaCoxC5yl/rZHsH0wrxUKqEvViIFz3q9LiUlOPYYxn61Z8Kq4QYxcVTZU7sVqlYlWCWUBgaylF+HfTawGDGAy2vXKHA/tkUHh7eKDg4uGjRokUP9Wn/4MEDUfPmzZufOXMmvkmTJlSXv54wNKj/Dupa9JMYYzs55zUbkiAVMnZOvftUBfYPB4otGILaDTXaeo2hm1khpsqABKEzZtRSTr0uW7e2aJn9Oto5Bteku8SIODiOOy4Dg+mrhFCuuH5oP+mnU/thcP63ekerCp4mqsuAHgA4ZEzB00TmqF5Qn5ycLJo1a5bHwYMH7dPT08WOjo6KkJCQwokTJ6YNHjy45FqyyMhI92+++cZr+vTp9+fOnVvhTKQRERF+v/zyi/PatWtvjx07Nkv3tSlTpnjGxsbaX79+vcoZ6SMiIny3b9/u8tVXX92bPXt2uu5r27dvt1u6dKl7fHy8pUqlQpMmTaTjxo1L//jjj0tKb33//fdOEydO9C9v3ffv37/o5eWlqGz7CoUCs2fPdt++fbvTgwcPzM3NzVV+fn7S0aNHZ0yZMiVD2y4xMVEcGRnpdeTIEdusrCyRi4uLvG/fvtkLFy5MdXd3L6no0KFDh6ahoaGFGzZsuFfe9hhj7TZv3nzrzTffzNY+1r4mkUhUrq6u8vbt2+dPmjQpvUuXLoW6y548edLi8OHDdps2bSopAHL9+nWzadOmeZ06dcomJydHZG9vrwgNDS1YvHhxSps2baQeHh6K11577XFkZKTnjh07dAuHEBMytE79Q8bYSwB2ATjOGPsawDbOeZIxOkdqIafeA8jz7ARLNy88xP+Mt14jKBbewl32CvoK30cE3tdrmerm1D/BDiVTjN0rkOOBVIl2juYQPsMzz9a1X5NzAQBt7cww33segHmm7RAoV1xftJ/0c3hAHL77d7upu1Erbty4YdalS5dgW1tb5bx58+61bdu2SCaTsb1799pNmjTJd/DgwVe1bbdt2+Y8fvz4h1u3bnWuKKjPy8sT7Nmzx2H8+PEPN27c6Fw6qNfX5s2b7c+dO2ft4uJSZqRn/vz5rrNnz/Z5//33H0ZFRd01NzfnO3futJ82bZrflStXLNasWXMfAMaOHZsZHh7+xKSRI0aMaFRcXCyoKqAHgKlTp3pu2bLF5dtvv00OCwsryMrKEv77779WWVlZJbme8fHxZl26dGnm7+8vjY6Ovh0UFCQ7f/68ZMaMGT4dO3a0O3Xq1DU3N7cal2pbvnx5Unh4eE5RUZHg6tWrkjVr1jj36NGj2bJly5ImTJhQcgCzbNky1wEDBmTa2dmpAKC4uJi9+OKLQY0bN5Zu3779lo+PjzwpKUm8d+9eu8zMzJL+jxs3LqNz584haWlp9w3pJzEeg4J6xthtza9mUM/sMxfqMpD5ALIBVPaPzDnnTQzZPqm+ghljwZMToExOgOLKGYhCnzN1l0rckfaBnN9BqmwCnMz0C+qNZXNSHoqUHGYChtYO5nW67WfZuWz139zzOXIMMXFfCKkNK+fUTTqhKYwbN86XMYZz585ds7W1LZn4sX379tIJEyaUjEbHxMRYS6VSwdKlS1N37tzptH//fqs+ffqUmTZ848aNDk2aNJHOmTPnobe3d8vExERxQEBAtU7B3rlzRzxt2jTfmJiYm4MHD36i3HZiYqL4yy+/9B47dmzaypUrU7TPh4aGppmZmfGZM2f6DB8+PKtnz54F1tbW3NrauiR4T01NFf377782y5YtS9KnH/v27bMfPXp0uu6BSadOnZ44pTV+/Hg/sVjMjxw5ctPa2poDQGBgoKxjx443mjZt2mLKlCleW7duTa7O+9fl4OCg9PX1VQBA06ZNZa+++mruq6++6v/555/7Dhs2LNvFxUWpUCgQGxvrsHbt2jva5eLi4iT37t0zP3DgwE3tzLlBQUGyF1988Yl/s/bt20tdXFzk27Ztc5g8eXIGiMkZmn7jX+qxdojTBlVP32naEhcNhLHTb7oMUGDdYYAzwD+gPxT1aEbZ8cJcvKoAMplZrZW0rIi37Ri4F7SDt6V9jddBqo9B/UWghAwM9eMMCaWV6If2k34G2H0E4eOn70xGWlqa8OjRo3afffZZim5Ar+Xs7FwyqLdu3Trn8PDwTHNzcx4eHp65du1a5/KC+k2bNjkPGzbssZOTk7Jbt245q1evdv72228f6NsnpVKJN954o9GECRMetm/fvszkAFu3bnVQKBRs5syZZc4UfPLJJ48WLFjg9dNPPzn27NmzTN9Wr17tJJFIVKNGjdLr7IGLi4v8n3/+sU1NTX3k6elZZmQ/LS1NeOzYMdvPPvssRRvQa/n6+irCw8Mz9+7d66hSqZIFAoOmFHrC1KlT03777Ten33//3fadd97JOnXqlEV+fr6wc+fOJe/Zw8NDIRAIsHXrVodZs2aliUQVxwmtW7cuOHbsmDUF9fWDoRHdJqP0glTI6Ok3nYGiUQsg8PDFfclI463XGCRActFINBFPxB/Q7wyCQek3unz++/VKdjEczITwsqw/BzxPKwcxQ4C1GC/7OGFhPTnOp7QS/dB+0tOfwJt9Zpu6F0YXHx9vzjlHs2bNKp1ZKzMzU7Bv3z6Hv//++zoAjB49+nGfPn2Cc3Jy7mnTPQDg8uXL5hcvXrTas2fPLQAYMWJEZmRkpM/XX3/9QN+gdubMme5CoZDPmDEjvbzXb968KbG2tlb6+fmVGQGSSCTc29u7+NatW+Weqv3pp5+cBw8enFk6AK/IsmXL7g0dOrSJj49PqyZNmhS1b98+Pzw8PHvo0KG5AHD16lUJ5xwhISHl7r/g4OCin3/+2fnBgwcifdJ99NW6dWspACQlJZkBwO3bt82FQiF0t9GoUSP5vHnzkufMmeO9ZMkSz9DQ0IIuXbrkjRkz5nFISMgTo4zu7u6yy5cvU6WJesKgwz/O+RhD7sZ6E0R/hctnQL5pKYoXTYLibl3OF1a1a/neyFFuxW3p8ybrw9nHRfg5OR+rEnMgU5UZfCJGNOfyY2TKOU5nUbEN8vR6reMM5GYVVt2wgeGc63Vqbf369Y4+Pj7F2tSTsLCwIk9PT9mGDRscddtFRUU5d+nSJdfDw0MBAK+//npOfn6+cM+ePVWd9QcAHD161HLt2rVuW7duTTLmyDYAHDhwwOr27duS9957T+/R6Hbt2klv3rx59e+//742cuTIjIyMDHFERETgsGHD/HTbqSe9rzsqzd817YSdhYWFArFYrCq9zyIjIx+lpqZeXLNmze3nnnuu4Pfff3do27Zt6G+//War287CwoIXFRUZd4eTGqOhyHrO2Ok37zgqME3ze2tJJ2TUo4/AapaBxhxQgsMd7notI4EEy7EcgQiEFIZPxe4n7I3eWAZAadgRL6mSmQCQKdWVb+pL6g1AaSX6ov2kn3Dhp4DRxlnrj+bNm0sZY7h27ZqksnabN292SUxMtBCJRCXVWFQqFbZs2eKsTdlQKBTYuXOnU0ZGhli3nVKpxPr16511q+hU5NChQ9aZmZmigICAlrrLf/XVVz6rV692S0lJuRwUFCTNz88XJiUlif39/Z8YrZdKpezevXvmnTt3LrOtNWvWOAcHBxeVrhpTFaFQiG7duhV269atEED6jz/+6Pjhhx82+uqrrx6EhIRIGWOIj48vd/9dv37dwtbWVqk9yDGWCxcuWABA48aNZQDg6uqqkEqlAqlUyiQSyRNHGA4ODqqIiIiciIiIHJVKldKlS5fABQsWeLzyyiu52jaZmZlCJyenp/AT3jDVn4iOlMvo6TdvAtIm+wF3H1xxq2elHK2ATOlG2Ipew0NY67WINgUgAQnGSQGwBx5bKGApFEAkEECmUsHMyKM+RO3jRhb4K70IrRytML+epN4AlFaiL9pPejoOzJm0Bn/EmbojxuXm5qZ84YUXcjds2OAaGRmZXjqvPiMjQ3j79m2zq1evWsbExNxwdnZW6LwmGjhwYNPz589L2rRpI92xY4ddQUGB8Pjx4/Eikajky+D8+fMWH3/8caOMjIxk3Rz98owbN+5x//79c3WfGzhwYNBrr732WDvCHhERkT1v3jzv+fPnu61du/a+btvFixe7FBUVCUaOHJmp+3xOTo4gJibGccaMGU+0r4mWLVtKAXWVn+DgYFlYWFhudHS068yZM9N003qSk5NFu3fvdnz11VcfG/usw5IlS1ytra2VgwYNygWA559/vhAAzp07JwkLC6vw6FwgECAwMFB69uzZJ/44X79+3eKFF16o8qCL1A2jBvWMMQsA7QC4Qz3L7G7OeW7lS5G6VPxrNGRL1GP1opjrENk7m7hH/0ksDEOR6iRSFO+hhXWxyfrhZK7+b/Hd9Sw8lqnQw9UCvdwpZdCYCgsLsSBR/ffjfnERJthamLhHhNSOoZ1nobj46TyTERUVdbdbt27Bbdu2bTZz5syUdu3aFcnlchYbG2u7YcMGl+7du+e2aNGioH///vmllw0NDS2IiopyXr169f0NGzY49+jRI6d0dZi2bdtKZ8yY4bN27VrHyMjIRwAglUoFJ06ceOILw87OTtW8efNi3bruACAWi7m7u7u8VatWxYC6ssysWbPuf/XVVz4SiYSPHTv2sZmZGd+5c6f9woULvd5999200hfJbtiwwVGpVLJx48Y9EexXpV+/fo07deqU36VLlwJvb2/5zZs3zWfOnOnl5+dXrM1rX7VqVXLXrl2Du3fvHjR37tyUwMDA4gsXLlhMnz7d283NTb506dIU3XVmZGSISr93Hx8fuY+PT7kj5VlZWcLk5GSRVCoVXL16VbJ69WrnAwcOOKxcufKO9iDJ09NTERISUnj48GFrbVB/4sQJi1mzZnmOHDkys2XLlkXm5uZ8//79Njt27HD+8MMPSyanysvLE8THx1vOnz8/pbztk7pnlKCeMeYDYAGA14EnhmzOAojXafc2gPcA5AB4kdd1MlkDZOz0m68SFHgD6ooj3TOCkWhff07W/KJKhyMADpnJ0m90vaU4BTNY46GUziwam25i6m1ZFpgxz0YZiNJK9EP7ST+vKD+v9jIi5qZgMON1PaOsiLlV68suJCREdvbs2WuzZs3ymDFjhs+jR4/EDg4O2kmK7r399tuNJkyYUO4MpS+//HLWqlWr3GfOnPnw8OHDdmvWrLlTuo1QKETfvn2zt2zZ4qwN6u/evWveuXPnEN12nTp1yjtx4sRNffo8e/bs9CZNmhR/99137uvXr3dVqVQsICCg6Jtvvrk7ceLEx6Xbb9682fnFF1/MqupMQWl9+vTJ3blzp+Py5cs98vPzhc7OzvKwsLC8BQsWpIrF6jCpRYsWxadOnboWGRnp+eabbzbJyckROjs7y/v27Zu9aNGi1NK13/fs2eO4Z8+eJ65FmDZtWuo333xTboWgiRMn+k+cOBHm5ubc1dVV9txzz+UfPnz42gsvvPBEGtFbb72VsX37dqfp06c/AtQXyvr6+soWLlzokZKSYs4Yg6enZ/G0adNSZ8+eXVI5aNu2bfbu7u6yfv36lTloI6bBDI2rGWPPA4gB4AA8kRjLAbTgnOsG9a4AkqEO/Adwzv80aONPMcaYLYCcjIwMODkZN+ApmPU2BF7+sBg/y6jrNZRCkY8kWX+4iKfCTjxYr2XkcjliY2MxYMAAaL8ojeVBkQJXc2To7iqBqIGn4NTmfqqp769nIlvOMbtF/Qnogfq5r+oj2k/6eZScgfeGfoPfTn0LAHalz17HxcUFi0SifYGBgfmWlpYlIxPFqgQzBU+rs1EXEXNTmAuqN5sseTrk5+ezwMDA0C1bttzu3bt3mXKeFWnVqlXw+++/nz5+/PhqncUg1VNYWChJSEiwVigU/dq1a3e9sraGTj5lD+B3AI4AHkA9+dRRAJfLa885T2eM/R+AlwEMBEBBfR1TXDwF5d9/QCkUQvxOJCqrP1vXHiqmoUh1DKnFt/UO6muTh4UIHhYV75+iW3dxNqQPmEiEThlxEFpUnULyf6kFuF+owFBfa9iZCats/7SafekxVDCw/BYhDcD0D9ZCqah+JS1zQaDMHBRkk9pnbW3N165dm5Senq53QPDgwQPRoEGDsqqblkRql6ER3ccAXKE+m96Jc54M/FcqqQIHAAwG0MHAbT8TjJ1+8+NWBXoD4EoFXrrqjgut6k9Q/5siDdYA5EitF+k3VRm+TohXZWbgMjk+OjkA93tWXXkt9HEUBNwcSQUKtHqGg3ptiKOsZ5VvAEor0RftJ/28mhFp6i6QWhAQENA8NTXVrLzXlixZcvf9999vUMHuSy+9VK2LXT08PBTz5s0rM4kXMS1DI7pBUKfZLNUG9Hq4qvnZxMBtPxOMXf1GMUeKwtfbQODgjH2tjhptvcaQJ/kbd6XhsBe+iofYqNcyRq9+Ux0LgbOx/SF2ssePPbfrtcgNPxkeFCnQ3K7cvwXPDG+JAPelKnhJhOD1qPINQFVd9EX7ST9bRv4f/rfxoKm7QYwsNjY2QSYr/5oHLy+vmk9vTogBDA3qAzQ//6nGMtoplm0rbUVqh0wKSIuA/PpXlEjB08Ehg4KXuVapXlLKZFDmVu/6oKa2ZmhqWzagv5Mvx+WcYnRzsXjq03LSCwtxX6oeq/8gyMHEvSGkdj16mG3qLpBaEBQURKlRpN4xNKVVO2lCdY5KrTQ/6XytCRTPeR8ozAdPS4Hi3AlTd+cJKcXvAShGvmqvqbuil6SZS1CcdB+Fl64j888jBq3rzweFOP24GCcf120KkSn8mPjff/0jD/W+JouQBunEgSum7gIh5Blh6Eh9OgBvAI0AnNFzmdaan6kGbvuZYOyc+oDxCvxxCpCLgaC2rxptvcbwlliBEXLgATNDnwaQU283BVjxowQqiRCje38DYEmN12Xv/DyaZb2O1vaNjdfBeqq/uwX2PCwCB0d3d/0mGatLlCuuH9pP+unl+w4sb9OJaUJI7TM0qD8FdVDfH8COqhoz9RW070Kdh1+/ErrrKaPPKBsA5IcOhLm7Lx5ilfHWawRS4X3cVfRCe9HHeIgP9VrGpDn17sD1wZMgcnHEH8LZhq3LQXPXcb9Qjlw5R8hTln9/Nls9sdh7AZb1aiZZLcoV1w/tJ/1cmpaIWe9HmbobhJBngKHpN1uhrk0/gjHWWo/2SwC00vy+ycBtkxoo+Op9qC6dgvKvnVDEnzd1d55wW9oKMn4TD+QTTN0VvSR/vQrp235H6vJoZB8/a9R1y1Uc627lYtvdPNzOf7quuXqgyadfk0iju+TpN+ejaFN3gRDyjDBopJ5z/jtj7BCAHgAOMsZmAtilu37GmCeAzlCXvwyDepT+V855/UrorqeMnX4zsKMCS/9S/x7s3Qf5xplU2CgWCPLQXgUUgzWIkpYBLwDzIQEXMLwXNBNFMOKIOgMaW34KB5k/HM3sjbfeeoKDo4hlg8HZ1F0pg9JK9EP7ST8vm08FV1T/jNSDe4/NsjPz6uwL2t7RRuHh40QXfxLSgBnjC2MIgIMA2gBYqblrv8FKDwUzAP8CGG2E7T4TjJ5+0xcolv0EgZs3Em27G2+9xmAJPCz+CvbCUXgIf70WMWn6TWfg4aZfIXK0wy8uvYy7boYyRV+zZUpky5Twt26Y6TiPpErYmwkwr6X28+yMpUZIvyk4FwwWvBuWlsEGrwugtBJ90X7S0xHg44jFQJz+izy499hscsTyUIVcWWeTOIjEQv7dtolXKLA3XHh4eKPg4OCiRYsWPdSn/YMHD0TNmzdvfubMmfgmTZo8XadmSZ0yeEJHznk2gE4AFgLIhTocKe9eBOAbAN0551TywkSK1ixA8aJJKJr8GhT3b5u6O0+4XtAEj+RfIkHaMC4WvbdsPW6O+gTxg95B7pmLtb69pdezse52Hs48bnijoucypVh+Mxvb71ZrfpMqFZxigPwG+OVmRl0vIcbyeqcZuHtTr9iuRHZmnqguA3oAUMiVrCZnBpKTk0WjRo3y8fb2bmFmZtbW3d29Zc+ePQN+//33J2bji4yMdBcKhe1mzZrlVt56EhMTxa+//rq/q6trS7FY3NbT07PFmDFjfB4+fKh3jd8OHTo0HTt2rE9FrzPG2m3ZssVe9zFjrN3BgwetdNsVFRUxe3v71oyxdnv37rUp3b70fc2aNSVXRJ08edLi8OHDdpGRkena565fv242aNCgRq6uri3Nzc3burm5tezVq1eT8+fPSwD1RE6vvfba48jISE993ysh5THKqT3OuQzADMbYAgDdALSHeqZZIYDHUI/YH+Cc5xhje88SY6ffTGAKfKT5vb2wAx7Wo/SbjXgELwAq8AaRftMPAoyBGQCG3sK+0Hf2tZoaiwtgENWz+VerJxWpeBkjjba+rVCPTHDAaDPTUlqJfmg/6ecVfGbqLtSaGzdumHXp0iXY1tZWOW/evHtt27YtkslkbO/evXaTJk3yHTx4sHaySWzbts15/PjxD7du3eo8d+7cJ2YijY+PN+vSpUszf39/aXR09O2goCDZ+fPnJTNmzPDp2LGj3alTp665ubkpa+M9uLu7y9avX+/cq1evksHGLVu22FtaWipzcnLKHFAsX748KTw8/IlYxtnZuaRvy5Ytcx0wYECmnZ2dCgCKi4vZiy++GNS4cWPp9u3bb/n4+MiTkpLEe/futcvMzCxZ/7hx4zI6d+4ckpaWdr+23it5+hk1otOMwMdq7sQIjJ5+8y5Q7LENQg9vXPDoarz1GoMVkFY8F3bCMXgIb70WMWn6zSQgzXU3RI72ON22e61vLjtYiRy5Cn5WDS/Voa2jBL5WYtiJHfE5/jDeip8HCi40hyBoFzgo/aYu0X7S00lg0ogl1Uq/aSjGjRvnyxjDuXPnrtna2qq0z7dv3146YcKEDO3jmJgYa6lUKli6dGnqzp07nfbv32/Vp0+fkiB6/PjxfmKxmB85cuSmtbU1B4DAwEBZx44dbzRt2rTFlClTvLZu3Vor4yZDh/5/e/cdHkW1PnD8e5JNIQk9QEJHpQWwgIoiKoigAiIgNrAhFqzoVa5iwQbqvfaKoICC/aeCDQu2awFBQFCq9B4gBBJSNtlyfn/MBpaYMstOdra8n+fZZ9vMmXcPS/bds++cc/HeadOmNS4oKNhSduw333wz/eKLL977/PPPZ5bfvn79+p6WLVu6K2rL7XYzZ86c+q+99trGsscWL16cvHXr1qRvv/3277IFq9q1a1far1+/wyoWTjzxRGejRo1c77zzTv077rgjp3zbQpgRdPmNiCwlX/8fJY/fRtFtQ3Hn77c7nMNsKOrLbtd41jnb2x2KKTmff8eaEXew4ryROLftrPHj1UuMP5jQ/7m/hPv/3Mt/V+2rZi/7fL69kAnLcw/O3pOeFE9CnLW/MxQuiIeSlVJ+I8LWiN4PsXFNzf99CLVdu3bF//zzz3Wvueaa3f4JfRn/0evXX389ffDgwblJSUl68ODBua+99lq6fzu//PJLnZEjR+4uS6rLtGzZ0j148ODczz//vIHX+49DWOLEE08satq0aemMGTPqA6xduzZx0aJFtUeNGhXw0uYLFiyoVVBQEH/aaacdTNgzMzPdcXFxvP322/Xd7gq/Cxx0/PHHF/7yyy/ht3iHiBiW114opRoDXYAGvodygeVa612V7yUqY3X5zX9+czMEo1yh37ZjWJkVPuU3H3p3UxfwUhQR5TdXzXUwgAQ0cMHSE1hm7scFS/QouJ8sLiPPVfWHhJ02F7pwejUTiieTk/ZNjRzjHbwopPzGDtJP5gwpvsfuEGrEypUrk7TWdOzYsco/vLm5uXFfffVV/e+//341wNVXX723b9++HfLy8rbWrVvXu2LFimStNVlZWRW206FDh+L33nsvfefOnY5mzZrVyB+8yy+/PGfGjBnpN910U+7kyZMbnnnmmXmZmZkVHuu666476oYbbjjsy8eyZctWtG3btnTDhg1J8fHx+MfZpk0b14QJE7Y88sgjzZ9++ummnTt3Ljz99NMPjBw5cm9WVtZhH+4ZGRmlf/31V0pNvEYRGyzJ6HyLSt0A3AR0qmSblcArwGStdc185Y5ClpffPAgFuwaiMlryfdYr1rVrAWfyNjaXnE3DhNvJZrSpfWwtv3kelv01HEejBnw98KWQHtrd1MvXqog2aeFb9nBZq9psKXLTpd7NxFMzaw8UtXgZvfVW4hpchcaa+cClrMQc6SdzVr66kXuvC6+/tVbQWpv6Fj116tQGLVq0KDn11FOLAXr06FHctGnT0mnTpjXwLzPR2r6F6K677rq9EydObL5y5crE9957L/3JJ5+stNTnkUce2dq/f/98/8dat25dClBUVBSXkJDgjYs7vAhi3Lhxe0aPHr33yy+/rD1//vy0Tz75pP6LL76Y+e67764bMmTIwbZq1aqli4uLpYJCHLGg3zy+kfnfgJcxEvrKZr/JwpjucoFSytwwrLCce91yvH8txPOjhXXNFsl1v0Kp/pu9rmftDsWUonWbyPtpIbmfzMXtDO2vBI64OAY0SyOrbhJur5cX1uzjqVX7KHbb+335652FvLPpAE6PlwZJ8RxfP4l4VXOn9urt4wGNzn2rxo4hRDBef+ozWxPWmtKpUyenUopVq1YlV7XdjBkzGq1bt66Ww+HoVnZZv3598syZM9MBsrKynEopVq5cWWE7q1evrlWnTh1PZSPnVsjIyPD07t17/8iRI1uXlpaqiy66qNJJPTIzM12dO3cu8b8kJBhfahs3bux2Op1xTqfzH3/06tev7x0+fHjeiy++uH316tUru3XrduCxxx47rGY/Nzc3vmHDhuH786sIe0GN1CulkoDvgY4Yifse4ANgIVBWbtMEOAm4GGNGnG7At0qpblrrkmCOHwusLr+Z/Kqb3l6gxEn/Jeks6Ro+5Tez3btIBUr03xFRfnPzQwmc6XGgPR4u/rg184aH9PAHNSzuxJCSDwBYkVfCiQ1r2RJHqVfz8x7j3+CLwv9woM6fNX7Md7y5vvIbt5TfhJj0kzlD142zO4Qa0aRJE0/Pnj3zp02b1njcuHH/qKvPycmJ37BhQ+KKFStSvvjiizXp6eluv+ccAwYMaP/HH38kn3DCCc4ePXrkT58+vfH999+/y7+ufsuWLY7Zs2c3GDp06N7yo99WGzlyZM4ll1zS9sYbb8x2OI7sc7F79+5FAEuWLEnu0aNHpf8p4uLiaNu2rXPRokWH1c+vXr26Vs+ePa2d91fElGAzujswRuA1MBW4vZI56Gcqpe4BngWuw/gScAfwRJDHj3pWl9+4x++naNgJqLS6zOm61LJ2rbAv6T22lVxN7bi+ZPOZqX3sLL9xv+5kwRfdiU+pxcfDfwvpsQ+TCu/UyafYozm+fpJtYSTGKQY3T2VfqZeHaz9KfAgm3yxMOQWKFqDiM9BYczKilJWYI/1kzssDP+Sb2Tb+fahBr7766uYzzzyzQ9euXTvef//927t161bscrnUnDlz6kybNq1Rr1698rt06VJ43nnnFZTft3PnzoWvvvpq+uTJk7dNmjRpyxlnnNGhV69e7R599NHtbdu2LVm6dGmte++9t3mTJk1czzzzzHazMeXk5DjmzZt32MhGixYtXC1atKhyBHzYsGH5O3bsWFa/fv0qp5Pct29f/JYtWw7LnerVq+etU6eOt2nTpu6srKyiH3/8Ma0sqZ83b16tBx54oOnll1+ee+yxxxYnJSXpuXPn1v7ggw/Sb7755oMLGBw4cCBu5cqVKRMnTjT9WoUoL9ivvpdiJPRztdbXVbWolNa6SGt9A/ANxqj+pUEeWxyJxGRITILU8DvBPl41RJGAQ1l4DkENciQnE1crmbg0+89rGt66DqOOrosjLo7PthUwc2M+7hqaLaK8JblO5uUYg1InNkimb0ZKjZbcHMbR2LiOqxua4wkRoAaNale/UTn1GtR2OxLiQ1qz40iI1/Ua1A6o9CMrK6t00aJFq3r06HHgvvvua9GtW7dO5513Xrsffvih9lNPPbV11qxZDQYNGlThFF2DBg3a9+GHHzYsKSlRXbp0KVmwYMGqVq1alVxxxRVHd+zYscutt97aqkePHgd+++23gOao/+yzzxqcdtppWf6XF198sVF1+8XFxZGZmelOTk6ust/HjBnTulWrVsf5X5544onGZc9feeWVOR988MHBD7E2bdq4WrZsWfr4449nnnHGGR1POeWUrEmTJjUeO3bsjieeeOLgSMQ777xTLyMjo/Tcc8/9xxcgIcwKdqT+GN91IGcBvQL0A44O8tjiCJSMHwX7ctD7cnAvW4DjuO52h3TQFucwNAXs97xJC96wO5xqrbryX7h27sa1E3Z/+AWNhw2wOyT2lbpZkGtUtc3fW8LpjWq2FOeAy8vH24zv8i1SHLRICfGIbb7vFx3XmtAeVwiTPpr+U8D7ZLZoWPrsO2OWH8kKr0eqXoPa7swWDQOu9WzVqpVrxowZFZ5YOnTo0EqX2p4wYcKuCRMmHJwVr127dqUfffTRpkCP72/hwoVV/iHQWi+u6r6/9PR0TyDbl7n55ptznnvuuYxvv/029eyzzy7MzMx0T58+fWt1+73yyiuN77777uib+1SEVLB/MEqAWkC1b1g/ZdtaVygexayuqT9+hJv3fgVPPDTvNIAamNX0iN3qKOV8N+zFERE19c3vgqfeSkbHKbqeO4qwOLvJAcMSP6eOpwmd69b86HWqQ3FcvUTWe7Zza9JovIT2NJmpKo5a2osHmdIy1KSfzOmbeQPJW1MD3i+zRcPSI0myhb3S0tL0a6+9tmn37t2mP1x37tzpOP/88/ddf/31uTUZm4h+wWZ0q4FTgBbAHyb3aeG3r6iG5VNaHgeFva4hqVlrsh3jrWvXAm5HAZu859Ay4U6yGWpqH1untDwWVl42hsRGDdmWFiZ9GQf+C6su2ltMQlwcWWnWnmSWXezG6dW0Tk3gopa1fQf9P0uPYUbRUV+i1w8iIXM8mgcsaVNqxc2RfjJn70u5XH/Rf+0OI+J99dVXaUOHDm1b2fNFRUVmc5AaN3DgwIBOds3MzHT7/2ohxJEKNql/AzgVGA2m134fjVGHPyPIY4sjUPT4GDw/fooHSOg3FMcxne0O6aC/nUfhYQ9bS+ZRLyH8p4DbcPcT5LxjvO0bDOhFg75n2BzR4dbklzJ7exEAN7axru7f6fEyeV0eLg03HlOXZin2/dqj1/c3rneOh5bWJPVCWOmGC5+mupVERfV69uxZuHDhwpV2xyFEOAv20/h1YChwjlLqFeBfWusKayB8018+DZwLfA1MCfLYMcHq8pthWW4mfm7c7pzei/1hVH7zTNw+OnvBDRFRfnPySXAnyYDijDYXk1PtHqFVN/EoLmQ2CkhxWDdS71CK+onx7HUXc5vjWlzY94vxWxw621/Kb0JL+smcQYl3od3hP0gR7tLS0nTnzp1lGmwhqhBsRnc68AzQAGNF2cFKqQ+A34HdGCPyZfPUXwRk+J57GjhdVTJDhtY68DOLopTl5TcXgLPRXGjSnNX1OlrXrhVSIKd4OvUSLiIbc7Pz2Fp+Mwx2ffQljsbpLD/mpNAe24xkcHf2Egd4PB7ykupQ6vFQtlBKoJxuLwfcXholO7i1XV00dYlTb1gacsC6Q+EfPaHd12gCr1uuiJSVmCP9ZNJP8Ohtr/FZtadYCiFEcIJN6n/ESNzLNAFurWafEzFG6iujCaezN6NM8czncL06AQDHx8twNGlmc0SH/F3YmRK9gp2e6+iSFv4/V29+4hU2j3sSgOMWfkLdk461OaJ/cvgWbHljQz4bmh7Lk2sLeahLlQtAVuo/q/bh0nB+0xS6p9cKwSz01Stc4ItieRp0l9FQEX4uPu1+SkpC+yuiECI2WZE8h8Nne9Syuvzm3/vcjPLd7uE8ji1h9P3pLb2HJoAXT0SU31y+K57zfSOU5+b0YAmukB4/EFd6vqIJx1Kqj/zLkseXMz/oeYKlTLYosuCsA9+KslJ+E2rST+YM8dxjdwhCiBgRbEbX25IoRKUsL7+5DYprPUFcZksWthpuXbtWSIOtxVfTMOE2sulqahdby2+ehXU8QkKTdOafd1Nojx0g11EupsxbztBuR15ydWu7uux0ephQ72HgYeuCC0Jh592w4hhU65loLrCkTSkrMUf6yaTf4Kp+D9odhRAiBgSV1Gut/2dVICI0Sn/+EtcbT4FSxPcahCMtfFaW3VQ8jAOej8j3fEKntAoXIQwrOV98x47npgPQ6KqhpGSa+3XBLs33byE9qTOPLt9LiRcGNU3h5PSqF6d6Z1M+q/JdnNm4FmdnpNAoOXx+2QFgeSbghY2DobGU34jwc/U5E9ifW+li65XaW+JJLHB7Q/YfLs0R526YFC/z4gsRwcLsE1qUZ3X5zXNfuekPaK05b1Nr/uocPm+Bjzy7qQN42B8R5Tf/ej2BU3Cg0Vz4TTu+vyp8J2aoRS3e5E0a0YibvetQKP7KK602qd9U6EYDH+Yv5vKMi0ITbADW4ZXyG5tIP5kzJC/w8pu9JZ7EF/7e39mjQ1feGq/Qt7Wrt1wSeyEiV/hkdKJClpffTIQDI3oQ37g5czt/YF27FnAmr2CDsx8NEkaRzSOm9rG1/GYWLGh1GvH16vDlVV+G9tgBKuunPezhh0YlbChwM6J19b/SXNYqjXk5Ts7LPJVXyQ5BpIEpbDQG9ryASumB5ldL2pSyEnOkn8z5+dFlPDVuZkD7FLi9jlAm9AAejSpwex2BJPU7duxwjB07tun3339fd+/evQl16tTxdOjQoWj8+PE7+vXrV9isWbMuN9xww67x48fvrqqdyZMnN7jpppvaDB8+fM/MmTO3lH8+Nzc37uGHH8744osv6m/bti0pOTnZ27x585LBgwfnjhkzJqdRo0aeI3nNQkQbSepjjHvnFvS2jXhywm/xunzPV3jI5oDnSzJMJvV2KtqZTcm2bMjeY3coAemXaSTzf+5z8vG2/RyVlsCVbeocfH57kZt3Nh+gbe0EBjdPo01aol2hVi/X98W0SOYLFOHp21kL7Q6hxgwaNOhol8ulpkyZsql9+/Yl27dvd3zzzTd19uzZE1Bu8eabb6aPHj06+6233mpUVFS0NSUl5WAt3a5du+J79OjRoaCgIP7ee+/dfsoppxTVr1/fs3z58uTp06c3fP311xuMGzcusv4IC1FDLEnqlVLpwAiMeeuPAmoD8dXsprXWR1tx/GhmdfnNlKfc9HIDBXkMWpzOwm7h871utmsXqUCxd1FElN/ce1UCx3sdUOpl2HP1+Oz28C1B8C+/KSuVuH7nAurqFqw5cPj764ddReS5vPyeW8zo5sfYEa5p6zy7fOU3JVJ+E2LST+YMXTLO7hBqRE5OTvzixYvTPv/88zUDBgwoAGjXrl1p7969iwJpZ/Xq1Yl//PFH6meffbb+l19+qT1jxoz6o0ePPrii3R133NFs586diStXrlzeunXrg1OMtWvXrnTo0KH5Xq/XuhclRIQLOqNTSl0GTMJI5MH8FJdyVpsJVpffuP+9naJLToaUVD7t9rdl7VohJ+FldrrGkBJ3Ktn8bGofO8tvXO/kMD/jFFSCgw9v3x/SYwfKv/ymrJ9WNi3hw60FHFP78JH4vhkp7Co5QPvaSUwMw5Ibf4WOluDeilK10ASUS1RKykrMkX4yZ8Kp0/n95xV2h2G5unXrelJSUrwff/xx/bPOOquwVq1aR/SZ/uqrr6b36tUrr2HDhp5LLrlkr2/UPheMRfM+//zzBoMHD97rn9D7i4uzbrVsISJdUEm9UuosjJXayxL5zcCfwH5Avj6HIUeTZqhGGajGTe0O5R9S4k8l3tWAlLhT7A7FlIT0dBLS6xNft3b1G4ehrHpJjK+XBMCbG/LYW+KhRWoCFzZP5c4O9W2OzqQ6Z0Hum5DUzu5IhKjQKb06RWVSn5CQwMsvv7xxzJgxrd9+++1GWVlZRT169DhwxRVX5Hbv3t3UTzcej4f333+/4ZNPPrkVYOTIkfseeuihFqtXr07s0KFD6Y4dOxwHDhyIb9++/WE/w3bq1Knjxo0bkwH69Omz/7PPPtto/SsUIvIE+xX3HoyEfj8wQGvdRmt9gdb6Kq31yOouQUcvAlY47ir0js14l87Hvfx3u8M5zEZnHzzsYa/7KbtDMWX5Bdfh2pWD8++N7JgWXicdB+KPXCdrC9zkujTL9pfy697wncXnH3LfNK6dy+yNQ4hKvPr4J3aHUGOuvvrq/Tt37lz27rvvruvTp0/er7/+Wvu0007LeuGFF0z9vDx79uw6xcXF8RdddFEeQGZmpvu0007LnzRpUno1+61fuHDhytNPPz2/uLhYhuqF8Am2/OYkjDKaB7XW4T39R4Syuqb+tEFupv0EXgWtjzkPdxidK31PfBFneeAA8RFRU9/xFnjo02QAOg26giKuCOnxA1FRTX2ZlLTGjOZ34nAALq6tfT55bLAn0ACtAhKQKS3tIP1kznn1bsGRE8YnmwcpJSVFDxkyJH/IkCH5wM5LLrmk1RNPPNH0tttu21vdvlOnTk3Py8uLT01NPbjaoNfrZfXq1bWeeeaZHU2bNnXXrl3bs2bNmmT//dq2bVsKkJaW5snLy6vu/D0hYkawGV3ZN2Rr5pIT/2D5lJanQvElD6CatWZb8ijr2rWAO8HNNi7lqITbyaanqX1sndKyLyw7aziOxunsS38htMcOUEU19QclAsceujuReSGNLRiFHX+DVaehMp9E8y9L2pRacXOkn8wpnlXMqAET7Q4jZDp27Oj85ptv6lW3XXZ2dvy3335bb8qUKRuOP/74g98K3W63OvvsszvMmjWrzrBhw/IHDhy4b/bs2Q03bdq0s7K6eiGEIdikfj1wHJBqQSwiBIqeHYf7w9cAcJxwGo6jOtgc0SF/O1vhYQcHPB/TJS38T8n4a+Ao8r6fD8COs3vQdNSlNkcUg1adalzvvBNaWpPUC2GlK3pPwOWOoJI2k7Kzs+MHDx589JVXXpnTrVu34rp163rmzZuX+tJLL2X07dt3f9l227dvT5w3b95hq9y1bdu2dMqUKQ3r1avnHjVq1L7yJ7v26tUrb+rUqenDhg3Lf+aZZ7bNmzevdvfu3TuOGzdu+6mnnlqUlpbmXbx4ca3FixentW/fXn4mEsIn2KT+PeB44BwwOV2JCIjV5TdXNXFzr+/28ak9yQmj8ptXVA7HaPCiI6L8ZsQxMAjjV+EBza9mKZeF9PiBiNZSiXyMnwul/Cb0pJ/MGRz/b7Q7sIlh0hxx7niFDvWKsmmOOLfZ7evWrevt1q1b4csvv9xky5YtSW63W2VkZJSOGDFiz8SJE3eWbTdlypQmU6ZMaeK/78svv7zxrbfeSj/nnHP2VzR7zZAhQ/bddNNNbXbu3OnIzMx0L168eNWDDz6Y8cILL2TcfffdSXFxcbply5YlgwcPzh03blz4LboihE2U1kc+s6RSKg34DWgN9NJaL7IorpinlKoD5OXk5NCwoYXlN4Bz/lxo0orko8JvxpC9zjeo67gUhyO5+o0Bl8vFnDlz6N+/PwkJoS8B2PLKTGq1yKDR+X1DfuxA2N1PNalwUTtST7RuetZo7isrST+Z9+i/pjD+2RsA6mqt8/2fW7x4cQeHw/FV27ZtC1JSUg6OTOwt8SQWuL0hG3VJc8S5A1lNVggRGkVFRclr165Nc7vd53br1m11VdsG9QdDa12glOoPfAz8pJR6Fngf+FtrHdphU2GK86OplD5zNwCOT5bjSDc3Ih4Ka4tOxun9nR3u6+mSFv6fLevvfpzt/50CQMLPH1Cv50k2RxR7Cheog9ep3WXpCxF+Lj19PMXFga+h0DApvlSSbCFEIIIeBdBab1FKXQV8jzHF5T0ASlX7q6HWWodP7UeYsrr85sENbkZglCv02t+Zdenh80/wnnc3DQGNKyLKb+5eGk9X3wmCI/46kzk9w7cEIVpLJQ6Ab0VZKb8JNeknc4a47rE7BCFEjLBiRdkxwFMYpa0hq/+LFZbPfjMWCktuIa5pa3455i7r2rWAO9nJ5tKBNEq8i2zONbWPrbPffA2Luw0kIb0BX9w4I7THDlC0zlRSeNSnsOECVPoYNM9Z0ma09pXVpJ/MyZ1TwOhBsTP7jRDCPsGuKNsfeNZ314txsuwyZEXZsOVeMg/Pl+/hiYsnYfgtOJLN1a6Hwk7XTRR5v2ObcwVZaTur38Fmu2d9ReESY6XIkj17SGrUyOaIYtCGwcZ1zvNw9HN2RiJEhe65+iVKnFXOxOgFCOb8NiFE9NJal/0gXW1eHexI/Vjf9Xagv9b6ryDbE+VYXX7z0gdu+gHa62HgmuYsPS58ym9meXaRBrjJjojym/88mEAb33+h6188mhmPHAjp8QMRraUSUn5jH+knc4buHlfdJvu11u7S0tLE1NRUORdNCHGYwsLCFK21C6h2tDPYjO5YjM/T8ZLQ1wyry2/cE9wUDzuBuIZN+Oq4by1r1woFyb+w2Xk+dR2Xks0kU/vYWn7zJ/yc2A6VlMibj2zkzdAePSDRWipRWKsHFM9HxTdGY83MdtHaV1aTfjJn9q0/Mf3ZT6vaJMfr9f5v165dAxISElxxcXEyZC+EQGutCgsLU7KzsxM9Hs/Ubt26VTtyGGxSX7Y889Ig2xGhUrAffSAP7Q2/z41S7zq8FFLqXWd3KKaU7NmDdrnQXo/docSu0vXGtWefvXEIUYn1K7dV+Xy3bt28ixcvHl9cXNxl/fr1jZBz04QQBq21dnk8nqnAY2Z2CDapXwt0BeoH2Y4IkZJHbwZnETiLcC+Zh6NrD7tDOmhH6W2Ai0JveP2CUJllZ/gWm/J4WX/34xz9n2p/ZhdW8+z23ZDV40V4mv/dimq36dat2/bFixf39Hq9LbFgAgshRFTwAjvNjNCXCfaPx7tAN2AwxpSWwmJW19S3vM3NV79DaSK06zrUsnatMCLBw5Uu2K6S6BsBNfXN34WnTzBOND7mkXvh4Fq94Sda65+zgVTAg9TUh5r0kzlndLiSusvTq92uW7dupUBk/EwphAhLwSb1LwIXAzcopeZqrT+zICbhx/IpLVtBQduzScpoSTbTrGvXAs74TWxy9+FEx01kc6epfWytqT8e5jU4nrg6qeikTaE9doCitf65sOFNsHcSjuST0Cy0pM1o7SurST+Zs/Smv3no5il2hyGEiAFxQe6fCVwHLAFmKaXeVkoNUkp1UEq1rO4SfPgiUIUPXod39VI8P36Ke+UfdodzmPXObrj0Bna5wmv+/MosOXUI7tw8SjftYPN/J9sdTmza6zuh2vm7vXEIUYkJt72JzFYphAiFYEfqN2HMfgPGyT2X+i5maAuOH/WsLr/pe6abl741Ov+Yln1xhtE/wSNxBzjFC8WoiJjS8uwRcN1vRvnNaQNHs53RIT1+IKK1VCIPY2RCprQMPekncwam3oHKk3NfhRA1z4qMTlVyu0YppS4HTseo6e8CJAIjtdZvVLDtQ8CDVTTXRmu9qYL9zsEolO6KkTcsBiZorb+rJKZ2wATgLIxS37+BV4FX9RGuLGJ5+c1Z4MyZQlxmCzalnWddu1ZIge3OO2nouJ5s2pvaxdbym1tgzZ/jSMhoxLasf4X22AGK1lKJwo75sKoZ6qi30QyypM1o7SurST+Z9B3cMGSi8ekhhBA1KNikfqQlURyZCUArIAdjQv5WJvZ5E+PXhfL2l3/A96VhJrAHeMP38CXAXKXUxVrrD8ttnwXMA2oBHwA7gAHAK0AWcKuJ+Gpc8auP4pr5PABx7y/E0fwomyM6ZFVha9x6M7nuZ+mSFv4LEq+45Bb2fvAFACntjyJjxGB7A4pFq+oa1xsugEZS4yDCz7BT78PlKrE7DCFEDAgqqdda27nezrXAWq31ZqXUPcDjJvZ5Q2v9Y3UbKaXqY5wEnAN01Vpv8z3+H+APYJJS6muttf80Q5OAuhgr637p2/4B4FvgFqXUO1rr+eZfnsHq8pubEtyM8d0+Mf5kssOo/GYqe2gJeNERUX5zfa04+pAIwJCUS/mN8P3gjtZSiXyk/MYu0k/mDOFuu0MQQsSI8MnoAqS1rsnJzC8C6gEPliX0vmNuU0q9BDwEDAFmwMGymzOAH8oSet/2pb7E/keME4oDTuotL78ZBaVtZhPXuBlLM0+yrl0rpMKekueoG38p2SaTelvLb96AjUc9T1KzJswfYvZUEntEbalEdyhc3BzV9hs0WZY0GbV9ZTHpJ5Pmwz3Xv8inUn4jhKhhEZvUH6EzlFLdMSb0Xwt8q7UuqGC7Xr7rbyp47muMpP5MfEl9Ndv/AhT6tq+UUioJSPJ7qDaAy+XC5bJuYR33l+/j+s/tACR8tgpH7XqWtR2szSX9KOZHdrnG0T4p39Q+ZX1jZR+ZtfU/r7LtwecASDouizrHdQx5DGbZ2U81qXSJ8UsJqzrh6mrNL1rR2ldWk34y56q+EygsKLQ7DCFEDLAsqVdKxQG9gVOBDCAFuE9rvdNvm0TfMT1aaztqFR4ud3+/UmqM1npGucfb+q7XVtDG2nLbVLm91tqjlNoIZCmlHFprdyWxjaOCk3l/+OEHUlJSKtklcB0+f59MjHKFXz94h8LM1pa1HayWpy/GkQhe7WTOnDkB7Tt37twaiqpyqe/MIhGjLxe8Mg3XBb1DHkOg7OinmtSnCSgFWhPwe6Y60dZXNUX6qWqlzsr+5AshhLUsSeqVUgOBF/jnyapPYZzEWuZajFr1AqVUU611qIYvlgHXYJTB7MT40jEQeAR4Qym1X2v9qd/2vrPvyKugrfxy21S3fdk+cRij7/sq2eZx4Bm/+7WBbb1796ZhQwvLb/r3x3nnxcQ3bc2Zo26yrl0LuN1r2Oo5h/qO2+jYv7+pfVwuF3PnzqVv374kJIS4BKB/fxYddSbx9erQY/KToT12gGztpxpUuvUR2DMelTaA/t3MvWeqE619ZTXpJ3M6tTuOsVe/bHcYQogYEHRSr5S6DmPaxrKz1HKAdA7NX+/vdYxZa+pi1KS/FezxzdBazyr30CbgJaXUKmCuL6ZPy+8XSr5fLg7+eqGU0Z0JCQmWfmC61yxDL/kVz58LUHc9icMRPhVYuz1PUcJf7PU+TqOEawPa1+p+MiP3h3m4tu3EtW0n3uJikurUCenxj4Qd/VSTSvc8Ytwo/MLy1xVtfVVTpJ+q9sJDs/B6ZGYmIUTNCyqjU0q1BcqGIL4HbtFar1ZKVTgfoe/E0Y+AUUA/QpTUV0Zr/Z1Saj3QRSlVR2tdNgpfNuJeF9hbbrc65bYpv31F6mB8yTlQyfOVsnr2m8mvuemtAVcpg/7MYEnX8EnqZ7t3kQqU6g0RMfvNkzcn0Mr3X+jGJ1ow/TFz5wHYIVpnKjmAMZogs9+EnvSTOUM3j7M7BCFEjAg2o7vD18ZyjKkczWSfP2Mk9ScEeWyr5ADHYJwDUJaVrQVOxKiVL5/UV1Q/X1GdPQBKqXigDbCxinr6Slk9+437oQKKhh2Hql2fOV0XWdauFfYnfcy2ksupHd+fbD6sfgfsnf2m5I8SFqRkoeLjmfZYHtNCevTAROtMJYUJR4NrA4pUNBWd8x64aO0rq0k/mTNlyCd88X8/2x2GECIGxAW5/1kYg2TPmUzoAdb5rlsEeeygKaVSgU4Ys9Pk+D31P991vwp2O6fcNtVt3xNjddn/VfBc6DkcoOLAEX4fwsZ51HGoSEsQ4mQJeNso34RRKtg/ZULUjKTk8Pk1VAgR3YL9JGzuu14WwD5lJ8daN6VLFZRStX3zyJd/vBbwGsYJqR+UG0X/AKOk5lalVHO/fZoDt2B8AThYp6+1XgP8BPRWSp3nt30i8Kjv7uuWvagglIy/BvL3obesxb1sgd3hHGarcwSaQvI979kdiil/nnA+eL3oklLW3/uU3eHEptJVxrUOuLJNiJD47N15docghIgRwQ4hlJ39E0iCXlZLUtlMMaYopa7FGAUH6OK7vlYp1ct3+xet9eu+461WSv0OrAKygSbA2RhfSv4Cxvq3rbXep5S6BZgJLFFKve976hJfe5eUW00W4CbgV2C2b/udwACMXwJe0lof0V92q2vqs6528/E8cMdDu04DCKelCkY7Shnqhj3KERE19VnPwoPnJgPQ6Z6xlBz+Ngor0Vr/vBcOTisqNfWhJf1kztktrqXWxvA/iV4IEfmCzei2Y9SRH4VRK29GWSK+Ichj9wSuKvfYab5LmdeBXOAV4GSgP1AfKMZI8F/ASLj/8YmktX5LKZUD3AuMxMgbFgMTKlrNVmu9wrew1QSMZD4V+Bu4GZh0pC/S8hVls6DwlMtIbNaabMfj1rVrAbcjh43eczjBcSfZDDe1j60ryp4Dv7U5g4T6dXDW2RTaYwcoWuufCzOfgZ13oupciDZ5HkZ1orWvrCb9ZM6mx7dz5+XP2x2GECIGBJvU/wi0w0iu36xuY6VUXWA0RoL8fTAH1lpfDVxtYrt8jJKZIznGV8BXAWy/BrjoSI4VKoUTbsEz31gsxt3/Uhztj7M5okP+dnbEQw7bS0fQINFcUm+nP868hNKNWyndCNtemk7zW0baHVLs2XmncZ3/kb1xCFGJuy5/Bbe7wgnhhBDCUqaTet80lV7gWK31St/Dk4HrgDOVUldrrd+oYv+GwIcYCz+5MOa2F9Wwuvxm6HFuHv/SuN25SR/2h1H5zVNx+znWa7w5IqH85oI+MPwno/ymd/dRrOOakB4/ENFaKpGPTGlpF+kncwYl3Yl2yzz1QoiaF2hGd9inptb6D6XU88DtwFTfSaL+Q2Y9lFLHY5TEDOfQfO2Paq03H2nQscTy8pvzobjOHBIymrG6XviM0gOQAruKptAwcSjZpJvaxdbym/GwLullardpxdqTBob22AGK2lKJ7lC4oCmq40L0wfP2gxO1fWUx6SeT/gfjbniezxbbHYgQItpZMUx7J5AE3AgM813KhiUm+21X9oXgOa31BAuOK45A8bSncE19AheQ8uESHJkt7Q7poDWFHSjVa9jtvJEuaR67w6nW6mvGsnu6Uccdl1qLRgP62BxR7Clc4PuzsqoFdJfRUBF+Ljr1fkpdof0VUQgRm4JO6rXWGrhZKTUbuAc4k39OlamB+RgnmX4Z7DFjidXlN3cVubnOd7tHaVe2hFH5zVvsoQngxRsR5Tdj8uPp4RuhvHj/AH6kJKTHD0S0lkrIirL2kX4yZwj32B2CECJGWJbRaa3nAnOVUrUxVottDMRjzDq3VGudU9X+omKWl9/cAs76LxKX2YKFrQZb164VUmGb8ybSHTeTTSdTu9hafvMhrLz8dpKaNeGHEeG9FHy0lkoUdtwGq9qiWk1Hc6klbUZrX1lN+smk+XDtwEer304IIYJk+TCtb/72n6xuV1ij9MfPKX3lYUARd/LZONLS7A7poI1FF1Dg/ZT97rfpnBbUMgYhsW3SW+S8/QkAja4aRp2stjZHFINW+Ram3nwZZFiT1AthpSvPfpS8/eH/90wIEfnCp/ZCVMjq8ptnv3MzANBo+m1pzcqs8HkLfOTdTR3AS35ElN88Ot1BexLQaK6f3ZX3swpCevxARGuphJTf2Ef6yZwhBVJ+I4QIjSPJ6KYrpQotOLbWWsuZhdWwvPzmUTiwpRfxmS34Pmumde1awJm8ho0l/WjouJFsk3WotpbfLIRf6x1LXFoq7927ifdCe/SARGupRGH9UbBvGirpODRLLWkzWvvKatJP5ix4YgWPjZ1udxhCiBhwJEn9iRYct2xwTYSYe/Na9MbVeHZssjuUf8jzfIhbb2O/+z0aJ4X/6Fb+0hV48g7gyTtASUkJSUlJdocUe/a9a1yX/GlvHEJU4pO3fpJPOyFESBxJUm/Nb9zCFKvLb6a84KaXBygqYNDidBZ2C5/ym9muXaQCTr0sIspvnrosgZa+/0K3jWvClGfCt242WkslDpXfaCm/CTHpJ3OGLg/vk+iFENHjSDK6zn4ryooaZnX5jXtcNkUXnwSpaXzabZVl7Vphb+JUdpSOJjXudLL53tQ+dpbflPy0hwWNT4a4OCY/s/+wRRnCTbSWShTGNQJvDgoHGpclbUZrX1lN+smc//Z+i1/nLrU7DCFEDCg/n7yIdvXSUfUaEJfZyu5I/iEpLot46pAc18XuUExJatQIlZRIfFqK3aHEruTOxnW8uRWIhQi1rOPa2B2CECJGSFIfY0ruH4netR3vikW4ly2wO5zDbHKeh4dcct0v2B2KKYuOOw9dUoonv4AN45+xO5zYVPSjce3JtjUMISrzxnNz7A5BCBEjwqegWlTI6pr6U4a6efNn8MZB6/YDcIfRW2BsvJO+HsgnPiJq6k+8D8ZekgxA1+vvJI87Q3r8QERr/fN+jBXuZErL0JN+MufchjeTsEtOohdC1LzwyehEhSyf0vJkKBp0B3HNj2Jb8q3WtWsBd4KTrXoobRLvIpuzTO1j65SWF8OSZ4eQ2Lgh+5u/HtpjByha658L238Ha/qiGt+P5hFL2ozWvrKa9JM5uTMLuHHIRLvDEELEACm/iTFFT4/F/elMSl95GPe65XaHc5i/nW0o8H7JJufZdodiyp/nXEnBb0vJ/fQ7tk16y+5wYtOaswENux+1OxIhKnR9/8dxFlpzErcQQlRFRurDnNXlNyNauBnvu31svV7khtFb4KW4vbTzggcdEeU3wzvBBd8Y5Tf9O1zLX1wR0uMHIlpLJfIxRiak/Cb0pJ/MucAxFu2WieqFEDUvkIyu7BT+7TURiKiY5eU3F4Oz5Q+QnsHK9I7WtWuFFNjrfINULiWbZFO72Fp+8wxsOWYmic0z+LN339AeO0BRWyrRHQoXdSTtxFWWre8TtX1lMeknk36BiWNf47PFdgcihIh2ppN6rfXmmgxEhIbz/UmUvvAAAI5PluNINzciHgpri7rh9C4BrqOLRXOO16S1/5rIzmeNWvrE79+mQe8eNkcUewoXqIPXqd1lNFSEn0t7PkCxU37JEELUvPCpvRAVsrr85r7tbq703T4jvzMb0sPnLfCudzfpgBd3RJTfjF0dz4m+EcrhG/rwde/QHj8Q0VoqcWhFWSm/CTXpJ3OGuO+xOwQhRIwIn4xOVMjy8pt/QZEeS1xma+YddbN17VrAnexma+kQGiWOJZszTO1ja/nNHPij50UkNKrPV6OmhPbYAYrWUgmZ/cY+0k/mFP9QzMhz5URuIUTNk9lvYoxr4Y+4P55uzH7jDK+R5R2uqynwfs4W54V2h2JK9tuzOfDrInJnz6Vk2za7w4lNMvuNCHO3XPgsxYXW/doqhBCVkZH6MGd1+c0Ls9ycC2jtZeCa5iw9LnzeAh97dlMbcJMTEeU3T/w3gaNwoNFcO60jb40vCOnxAxGtpRJSfmMf6SdzhuRK+Y0QIjTCJ6MTFbK6/Mb9qJviS04iLr0JXx33lWXtWqEgeT5bnAOp67iCbJ4ztY+t5TfL4Ofk9sQnJzFz/CZmhvboAYnWUonClN5Q9CMqPgPNTkvajNa+spr0kzmf3/4rrz01y+4whBAxQJL6WLM/B71vD7ok/EbWSrx/4SEfp3ep3aGYUrJtG7qkFI/LbXcoscv5p3HtybE3DiEqsXzJertDEELECKmpjzElj4+BEifsy8G9+Ce7wznMztK7ADdF3v/ZHYopy/pebdzweln7L1kG3hbeXN8N+WIlwtOin9bYHYIQIkbISH2Ys7qmvtkdbr4eAaVJ0K7bxZa1a4WLE7yMcsFmlUTfCKipb/QRvNQpGQ20e/x+4P6QHj8Q0Vr/vAN852FITX2oST+Z0/PYEdRf0sTuMIQQMUCS+jBn+ZSWzeFAq9OpldGCbN6xrl0LOOPXsNHdl+6OG8jmPlP72FpTnwW/1ulCXFoKOmlTaI8doGitfy6sdxXsn0FCYmc0f1nSZrT2ldWkn8xZMHwFj/0x3e4whBAxQMpvYkzhA6PQ61fh+fUb3Mt/tzucw6x3nopbb2W3K3xHvP0tOWkQnvwCXDt2s/mxl+0OJzbtn2Fcly63Nw4hKvHkPe8Y0zMJIUQNk5H6MGd1+c1ZfdxM+t74jDmm9Xk4w+gt8GBcAad5oQgVEVNa9r4GRi9KBuC0wbewnVtCevxARGupRB7GyIRMaRl60k/mDKw9BrUv3u4whBAxIHwyOlEhy8tvekHx6OeIz2jFprQh1rVrhRTY5ryRdo5byKaTqV1sLb+5EVb8dBuJmU3YlmWuXMgu0VoqUdhxG6xqi2o1Hc2llrQZrX1lNeknk+bCNQNlcTQhRM2TpD7GFL/0IK53X8YFxLXrjKNVW7tDOmhVYSvcegv73JPpkua1O5xqrRh2I3s/Mub6r92tExkjBtsbUCxa1cK43nwZZFiT1AthpWGn3ofLVWJ3GEKIGCBJfZizuvzm+tpu7vTdPj75VHLC6C3wGjm0BjzoiCi/GdVA0Y8kAM6vdymLCN8P7mgtlchHym/sIv1kzhB1t90hCCFiRPhkdKJClpffXAXOo7/GkdGM5U06W9euFVJhT/EU6idcTDb1TO1ia/nNFNjYYSqpbZrx+4BzQ3vsAEVtqUR3KPz9GFT7H9E0t6TJqO0ri0k/mTQPHrjlVT5dbHcgQohoJ0l9jCn57C1Kn7idUiDli9U46qXbHdJB64rOoNj7M9me2+iSFtpR9yOx8ZHn2frgcwAkL5xNnZOOszegGFS4wDc6v6oFdJcpRkT4GX7mgxQWFtodhhAiBkhSH+asLr+Z8JebizHKFc7e1YHV9cLnLfCBdzf1AU1JRJTf3P+Dg2NJQKO5YkEPPj2pKKTHD0S0lkocABRSfmMH6SdzhpTcY3cIQogYET4ZnaiQ5eU390Lh/uGoZm34sf1E69q1gDt5PxtL+9LQcQfZDDe1j63lNz/Ab0efSWKDunxyy6ehPXaAorVUorDZK7D9ZlTdS9C8Z0mb0dpXVpN+Mmf7BzncdvF/7Q5DCBEDZPGpGONe/jueeXNxfzwNt9ttdziH2eV+EKd3Ebtc4+wOxZScr3+idMMWChb9RUl+vt3hxKbttxnXee/bG4cQlXj8zjdxu8N/Ni8hROSTkfowZ3X5zaQZbvpowO1i0J8ZLOkaPm+BWe5dpAEuvSUiym/+e2cCrX3/hW58ogXTHwvfxD5aSyWk/MY+0k/mDN0aGYMUQojIFz4ZnaiQ1eU37kecFA09FlUvnTld51nWrhXyk79ii3MYdeMvIJu3Te1jZ/lNyeISFqRmoRIcTHssj2khPXpgorVUojAxC0pXoVRtNNZ8qYrWvrKa9JM5My//kg/f+M7uMIQQMUDKb2KN2w0eN4ThYiheXQR48EbKqF9JiTFE7JGf1m2jfe9jHV6lZEKUKS607pdWIYSoiiT1MabkoeugIB+9YzPuJeE1Ur+tZCQaJwc8s+wOxZQ/TxkGXi/a5Wb93Y/bHU5scm3w3YiQL4Ii5nwza6HdIQghYoSU34Q5q2vqO1znZtZv4HZAu2MHEU5vgVEOF5e4YZdKoG8E1NS3exkePSsZgE733UsJ94b0+IGI1vrnHCAJ8CI19aEm/WTOWa2vIXVdPbvDEELEgPDJ6ESFLJ/Ssj0Udh1CUrPWZDueta5dC5Q6stnk6UfXhDFkM8rUPrZOadkb5jc7FUe9OjjrbArtsQMUrfXPhRmPQfZ9xKedi+ZLS9qM1r6ymvSTOWvHb+XfI1+wOwwhRAyQ8psYU/jITXgW/4z705m41yyzO5zDrHN2pkT/xY7Sa+0OxZQ/el6Ea3s2xSv+Zsszr9sdTmzKvs+4LvjK3jiEqMS4a17F65HVjoUQNU9G6sOc1eU355/s5qmvjdsdMvtQEEZvgf/E5XGCF0pRETGl5fn94fJfjfKbM866js1cF9LjByJaSyXykSkt7SL9ZM75yf+CArujEELEgvDJ6ESFLC+/ORdK42cR17gp6+p0t65dK6TA7pKnqRc/gmyTSb2t5Tf3wkb38yQ0asim4y8P7bEDFLWlEt2hcFEmqt13aLIsaTJq+8pi0k8m/Qh3j3qezxbbHYgQItpJUh9jiqf+F9c0Y8nylA+X4MhsaXNEh6wubIdLr2WX6990SfPYHU61Vl19J3ve/BiAxIx0Gg851+aIYk/hAt/o/KpO0F1KHET4uejU+ygNwymEhRDRR5L6MGd1+c3tLjc3+m5393Rlexi9BWawh0zAizciym9uLY6jJ4kADHMN5mfC94M7Wksl8jFODJLym9CTfjJnCHfbHYIQIkaET0YnKmR5+c1ocDaaSnxGCxY372ddu1ZIhR3OsTRw3EA2x5jaxdbym/dhTcP7SMxozE8XjwntsQMUraUShR3zYVVzVPtZaPpY0ma09pXVpJ9Mmg+jL3wMpPxGCFHDJKmPMaVzZ1H6jDFypL7ehCMtzeaIDtlY1J8C75fkul+lc9oBu8Op1pZnXmfXpHcAaDisP3Wy2tocUQxaVde4XnO2lN+IsHRFn4fJzwv/v2dCiMgnSX2Ys7r85ulf3JyPUa7Qb0trVmaFz1vgQ+9u6gJeCiKi/OaR/3PQgQQ0mlGfn8CHWYUhPX4gorVU4gAy+41dpJ/MGVJ4j90hCCFiRPhkdKJClpffPAwFO/qhMlrwfdZU69q1gDN5E5tKzqah4xayud3UPraW38yHeeldiaudyv/9e1Nojx2gaC2VKEy/HXKeR9U6Fc08S9qM1r6ymvSTOUtf+JuHbp5idxhCiBggSX2YO3DgAAkJ1n1gujf+TdHyP+DvlXjy8y1r1wq7Siazz7WeQvUqSanXmNrH5XJRVFREfn6+pf1kRv7iv8jbuxf27mXPnj0kJSWF9PiBsLOfalLh5km+G/Mtez9Ha19ZTfrJnDee+5RSd/ieRC+EiB5Ka6lDDUdKqdbARrvjEEIIYZk2WutNdgchhIhOMlIfvnJ9180xSodFxWoD25B+qo70k3nSV+ZIP5lX1le51W0ohBBHSpL68HdAax1edTJhRKmDJ0dKP1VB+sk86StzpJ/M8+srIYSoMXF2ByCEEEIIIYQIjiT1QgghhBBCRDhJ6sNXCfCw71pUTvrJHOkn86SvzJF+Mk/6SghR42T2GyGEEEIIISKcjNQLIYQQQggR4SSpF0IIIYQQIsJJUi+EEEIIIUSEk6ReCCGEEEKICCdJvRBCCCGEEBFOkvoQUkqdpJSao5Tar5QqVEr9ppS6OMA2kpRS45VSa5VSTqXUDqXUFKVU45qKO9SC7Sel1NFKqYeUUp8qpbYrpbRSalMNhmyLYPpJGc5TSk1SSv2plMpTShUppZYppe5VSiXXdPyhZMF76jyl1HtKqdW+Nop8t6cqpdrVZOyhZMXfqHLt1ff7P/iVlbHayYL309W+Pqns0qvmohdCRCuH3QHECqVUb+BrwAm8BxwALgTeV0q10Fo/baKNOOAT4BzgN+AjoC1wLdBHKXWK1npPDb2EkLCin4DTgQcBD7AKyKihcG1jQT8lAXMw5s3+0ddWMsZ7ayIwWCnVS2tdVDOvIHQsek/1B04BFgBfAi6gI3AVMEIp1V9r/X1NxB8qFvVTeS8Bda2L0n4W99MnwNIKHt8UZJhCiFiktZZLDV8wvjytw/gQON7v8brAGozEqpWJdkYCGngH3xoDvsdH+x6fbPdrDZN+OgojAavlu+8ENtn9+sKpn4AE4D6gfgWPf+p7P421+7WGQ1/5tk+u5PE+vr763e7XGg79VK7NC319c7Pv+iu7X2e49BNwta9Prrb7NclFLnKJnouU34TGWcDRwDta66VlD2qt84DHgESMEb/qXOe7Hqe19l81bDKwAWPEsJYlEdvDkn7SWm/QWv+mtS6uqUBtFnQ/aa1dWuuJWut95R8HHvfdPdPKoG1i1XvKWcnj3wH7gGOsCNZGVv2NAkAp1QiYBMwEvrA0UntZ2k9CCGElKb8JjV6+628qeO5r33WVCZSvxrk7sEZrvdn/Oa21VkrNBW4ATgR+Dipa+/TyXR9xP8WIXr7rmuonl+/aHUQb4aKX77pG+kopdSpQH/jlSNsIE71811b106sY5W9jiK7ym16+a6v66QSlVEOMz+JNwLda671HHJ0QIqZJUh8abX3Xa8s/obXOVkoV+G1TmaMxTmz+Rxvl2m5L5Cb1VvRTLKjpfrrGd11R4hJpLO0rpVQ/oAfGOQltgYFADnBH8KHayrJ+UkpdDgwFBmut9ymloimpt/r/3m3l7hcrpR7WWv/nSAMUQsQuSepDo+xDLa+S5/OpfjTLTBv+20UiK/opFtRYPymlzsP4xWcVMPVI2ggzVvdVP+BOv/vrgEu11ouPILZwYkk/KaWaAi8A72qtP7EotnBi1ftpI3Arxuj+NqABRmnP48ATSqkirfWLQcYqhIgxUlMvhACMafqA9zESlou01iU2hxR2tNZ3aa0VUBtfORzwq1JquL2RhY3XMcq3yo9ACz9a6/9prV/SWq/VWhdrrbdrrWdizD7lBB5SSsmgmxAiIJLUh0bZqE5lIzh1qHzkJ5A2/LeLRFb0UyywvJ+UUidilNt4gXO01iuOPLywUiPvKa11gdZ6ITAYWA1M8Z0cGqmC7iel1FXAecDNWuscC2MLJzX6N8r3/+4XjJH7jkfajhAiNklSHxr+9e6HUUplAGlUXitfZgNGwlVZvWaltZ4RxIp+igWW9pMvoZ+L8ffgHK3171YEGSZq9D2ltXYDPwCpGCepRyor+ukE3/X/+S+khFFqAnCO77GlVgRsk1D8jSr7QpQaZDtCiBgjSX1o/M933a+C584pt02FfNMzLgTaK6Va+T+nlFJAX6AQWBRcqLYKup9ihGX95JfQxwPnaq0XBB9eWAnFe6qp79pV5VbhzYp+mo9xHkb5y/u+57f57n8cVKT2qtH3k1IqnkNfDjdXta0QQvyD3RPlx8IF44Tk9VS9YElrv8czgQ5A3XLtxMLiU0H3UwXtRuPiU1a8n7phzLF+ADjN7tcV5n11YiXtnwOU+vox1e7Xa3c/VdJ2a6Jr8SlL/u9V0HY88KSvr763+7XKRS5yibyL0tp/DSNRU6pYWrwVcJf2W1pcKfUGxgImI7XWb/g9HgfMwUgkfsMYEToGY/q4TUB3rfWemn81NceifkoHnvJr9gqgGPjQ77G7dATX/QbbT0qpBhgzt9QHvgIqGqHfr7V+rsZeRIhY9J7SwHLgT4wR51TgWOB0jBH6S7TWs0LwcmqMFf1USbutMUpwvtZan1sTsYeShe+nP32X7Rg19GcC7TDeX2dqrTeE4OUIIaKInF0fIlrrH5RSPYGHgUuABOAv4G6t9ftV7nyoDa9S6gLgHoxE9Q4gF+Mn7fsjPaEHa/oJo661/KqOqeUee4hDtasRx4J+qoOR0AOc67uUtxl4Lvho7WXRe+peoDdG4tUI4/yWLcAU4Dmt9SrLAw8xi/op6lnUT08Dp2CUTTbA+LVnHTABeEaXW+lZCCHMkJF6IYQQQgghIpycKCuEEEIIIUSEk6ReCCGEEEKICCdJvRBCCCGEEBFOknohhBBCCCEinCT1QgghhBBCRDhJ6oUQQgghhIhwktQLIYQQQggR4SSpF0IIIYQQIsJJUi+EEEIIIUSEk6ReCCGEEEKICCdJvRBCCCGEEBFOknohhBBCCCEinCT1QgghhBBCRDhJ6oUQQgghhIhwktQLIYQQQggR4SSpF0IIIYQQIsJJUi+EEEIIIUSEk6ReCCGEEEKICCdJvRBCCCGEEBFOknohhBBCCCEinCT1QgghhBBCRDhJ6oUQQgghhIhwktQLIYQQQggR4SSpF0IIIYQQIsJJUi+ECIpSKlEptVYppZVSw+yOxyyl1FhfzD/aHYsQQggRLEnqhYgRSqk0pdRmXyKbo5RqZGKfZ33ba6XUyEo2GwMcAywHPjLRZrpS6lal1GdKqQ1KqXylVIlSKlsp9aNSaqJSqnMAr6u1UsrrF+dwk7tOAvYCZyqlhpo9nhBCCBGOlNba7hiEECGilOoPfOG7+67WutIEWCnVHZiH8eV/rta6XwXb1AY2Ag2BS7XW71fRXhxwL/BvoLaJcOcCt2utV1a1kVJqPPCw30Nfa63PNdE+Sql7gYnACuBYrbXXzH5CCCFEuJGkXogYo5R6GyhL5gdqrb+oYJtEYDHQGSgCOmutN1aw3b+B/wBbgDaVJcVKqVrA+8D5vodKfffnApt8x2gCnAgMAY73bfe81vr2al7PWoxfCgqANMADtNBa76xqP9++dYFsIBm4UGv9cXX7CCGEEOFIym+EiD1jgBzf7Um+0fbyxmEk9AD3V5LQxwO3+O6+W80o9yQOJfQLgPZa6yu11jO11j9rrRdrredorR/RWp/g23Z9dS9EKdUDI6EHuAMjoY8HRlS3L4DWOg+Y47t7m5l9hBBCiHAkSb0QMUZrnYORAAO0AJ7wf14plYVRJgOwEHi+kqb6+vYHeLuy4ymlhgBX+e7+CfTRWm+qJsbPMUbtv69qO+BK33UO8Cbwne/+FdXs568s9jOVUkcHsJ8QQggRNiSpFyIGaa3fAr7y3b1RKdUTDta9TwUSARdwbRUj8Bf7rtdqrf+q4nD3+t0eqbUuNBnjfq31p5U9r5RK8ovhA621C5jpu3+sUup4M8fBOMfA6bt9mcl9hBBCiLAiSb0QsWs0Rh26Al7zJcm3Aqf4nn+immS9t+/6t8o2UEp1wRhxB/hZa70kuJAPcz5Q33f7Ld/1LKDsS8OV/9ijAlrrEmCp7+55VgUnhBBChJIk9ULEKK31ZuA+390OGHXvE333V/nd/gelVHOgte/u71Uc5ky/2/84ITdIZUn7eq31fADfrwCzfY8P99X9m7HQd32yUirZuhCFEEKI0JCkXojY9hKHRtpHAqmAF6PspqSK/Xr43f6jiu2O87u9+IgirIBvjv2yaSvL1/OXjdo3Ac4x2WRZbA4Oj1kIIYSICJLUCxHDfPXy15d7+BWt9bxqdm3ud3t3Fds1NLldoC4DEny33yr33FyMaSrBZAkOh8d2VBBxCSGEELaQpF4IcVq5+ztM7OO/Gu2+Krbzny7T1AmyJpUl6wu11mv9n9Bae4D3fHcHKaXqmGgv1+92hgXxCSGEECElSb0QMUwp1Qxj8Sh/D5iY2rGB3+2qkvoDfrdTA4mtMkqpTkA3393yo/SUe7wWcJGJZv1fgyVxCiGEEKEkSb0QsW0SUAfQwFiMevpawORq9nP63a5VxXZ7/W43OZIAK1A2Su/m0Ij8YbTWizFO9vXfvir+r8F15KEJIYQQ9pCkXogYpZS6hEOrvE7WWj8FvOy730cpdXUVu+/xu92g0q1gmd/trgEHWY5vHv2y1WIdwG6llK7oAnT0bXe6Uqp1NU37v4b9wcYphBBChJok9ULEIKVUA+AF393twN2+2/cBW323n/LNMlMR/6S+fiXbAPzP7/aAQOOsQB+gWYD7KKpfYdb/NWwJsH0hhBDCdg67AxBC2OJZoLHv9s1a63wArfUBpdRNwGcYM9c8x6GRcX/+i1K149DiTYfRWv+llFqEsQDV6UqprkEuQFVWSlMCXINRLlSVfwMnYCT1j1axXTu/2yuOODohhBDCJkprbXcMQogQUkr1A7723f1Qa/2PE0mVUu8DF/vunqu1/rrc84lAHpAMPKW1HlvF8YYAH/vu/gn08C0SVV2c9YDTtdaf+e6nYUxVmQp8rrU+v4rdy9q4HeMLDL7jzq9kuw+BC4GdWuum1bUrhBBChBspvxEihiilUjl0Euw+4NZKNr2NQzPCvOrb7yCtdSmwwHf35KqOqbWeBczw3T0W+E4p1aqaOM/DWKm2j9/DF3JoZpoPq9rfz0cYJwFD1SfMlr2GuSbbFUIIIcKKJPVCxJaJQGvf7bu01tkVbaS13oUxGw6+7R+pYLNPfNcnK6VqV/C8vxsxSnoAugNrlFIzlFIjlFKnKaW6KqXOU0rd5yvXmQMcU66NsqTcBXxazfHKXsdWjC8HAJf4fmE4jFKqLdDCd3eWmXaFEEKIcCPlN0LECKXUKcCvGF/mv9da96lmewV8D/QCPMDJ/vXwSqmGGCfZJgFXaa1nVNSO3/ZxGCfijuXwRakq8wXwL63130qpFsAmX+xfa63PNbF/2XHHAv/13R2mtf6o3PMPAg9hLECV6fsVQgghhIgoMlIvRAxQSiUAr2H8ny8Grq9uH218478eY076eOB1pVS83/N7OVQrP9xEe16t9aPAURjlPZ9jJOoFQCmwC2O2nIlAltZ6oNb6b9/ul3Po79VhSbkJ/ttXVIJTFvtUSeiFEEJEKhmpF0IcMaVUd+A3jJH8o7XWm20OKSBKqZ7AzxhfKtpqrWU6SyGEEBFJRuqFEEdMa70AY7Q+HhhnczhH4gHf9TRJ6IUQQkQyGakXQgRFKdUeWI4xZ/zRWuttNodkit+vDAeAdpWdNCyEEEJEAll8SggRFK31GqXUNcDRQEsgIpJ6jMW1HgaWSEIvhBAi0slIvRBCCCGEEBFOauqFEEIIIYSIcJLUCyGEEEIIEeEkqRdCCCGEECLCSVIvhBBCCCFEhJOkXgghhBBCiAgnSb0QQgghhBARTpJ6IYQQQgghIpwk9UIIIYQQQkQ4SeqFEEIIIYSIcJLUCyGEEEIIEeH+H6/7SavhfhWcAAAAAElFTkSuQmCC", | |
| "text/plain": [ | |
| "<Figure size 600x400 with 1 Axes>" | |
| ] | |
| }, | |
| "metadata": { | |
| "needs_background": "light" | |
| }, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "from pycalphad import Database, equilibrium, variables as v\n", | |
| "from pycalphad.plot.eqplot import eqplot\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "\n", | |
| "dbf = Database(\"Piao_Al_Ca_Si_O_S.dat\")\n", | |
| "\n", | |
| "# only pure element component allowed, vacancies not included implictly\n", | |
| "components = [\"AL\", \"CA\", \"O\"]\n", | |
| "\n", | |
| "phases = list(dbf.phases.keys())\n", | |
| "# print(\"\\n\".join(sorted(phases)))\n", | |
| "\n", | |
| "# Components can only be pure elements, so we need to set oxygen chemical potential condition to plot a pseudo-binary\n", | |
| "conditions = {v.N: 1, v.P: 101325, v.T: (1100, 3000, 20), v.MU(\"O\"): -100000, v.X(\"CA\"): (1e-6, 0.5, 0.025)}\n", | |
| "\n", | |
| "# Compute equilibrium\n", | |
| "eq_result = equilibrium(dbf, components, phases, conditions)\n", | |
| "eq_result = eq_result.squeeze(dim=\"MU_O\") # Remove extra condition dimension so eqplot works\n", | |
| "\n", | |
| "# Plot pseudo-binary diagram\n", | |
| "fig, ax = plt.subplots(dpi=100)\n", | |
| "eqplot(eq_result, ax=ax)\n", | |
| "ax.set_xlim(0, 0.5)" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "interpreter": { | |
| "hash": "849d287c58a26d5dacfef8fb5802798f6a4d41c39b79486bd99e31209c923c50" | |
| }, | |
| "kernelspec": { | |
| "display_name": "Python 3.9.4 ('calphad-dev')", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.9.4" | |
| }, | |
| "orig_nbformat": 4 | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| System Ca-S-Si-Al-O | |
| 5 3 0 18 18 19 | |
| Ca S Si | |
| Al O | |
| 40.07800000 32.06500000 28.08550000 | |
| 26.98153860 15.99940000 | |
| 6 1 2 3 4 5 6 | |
| 6 1 2 3 4 5 6 | |
| Slag | |
| SUBG | |
| 1.00000 | |
| 6 6 | |
| Al2O3 | |
| 4 2 0.0 0.0 0.0 2.0 3.0 | |
| 2327.0100 -1615242.7 1240.3273 -179.36551 0.45961230E-02 | |
| 0.00000000 -487670.41 | |
| 2 -68180612. -2.00 -3313.5479 0.50 | |
| 9999.0000 -1750989.1 1342.1160 -192.46400 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 2.00000 3.00000 0.000000 0.000000 0.000000 | |
| SiO2 | |
| 4 2 0.0 0.0 1.0 0.0 2.0 | |
| 1995.9900 -915415.79 562.19939 -83.513598 0.00000000 | |
| 0.00000000 1227680.0 | |
| 2 -1498.7720 0.50 -46678699. -2.00 | |
| 9999.0000 -952208.49 564.54913 -85.772000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 1.00000 2.00000 0.000000 0.000000 0.000000 | |
| CaO | |
| 4 2 1.0 0.0 0.0 0.0 1.0 | |
| 2845.1599 -571766.65 348.73580 -58.791171 0.00000000 | |
| 0.00000000 573573.05 | |
| 2 -535.61610 0.50 -17163136. -2.00 | |
| 9999.0000 -596946.66 379.18009 -62.760000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 1.00000 1.00000 0.000000 0.000000 0.000000 | |
| Al2S3 | |
| 4 2 0.0 3.0 0.0 2.0 0.0 | |
| 1369.0000 -468294.46 974.38602 -158.26561 0.00000000 | |
| 0.00000000 -4492584.0 | |
| 2 -32000.066 99.00 0.20752693E+09 -2.00 | |
| 3000.0000 -671755.20 942.01875 -156.90000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 2.00000 3.00000 0.000000 0.000000 0.000000 | |
| SiS2 | |
| 4 1 0.0 2.0 1.0 0.0 0.0 | |
| 2700.0000 -283896.90 621.87186 -100.00000 0.12450265E-15 | |
| -.62626800E-20 0.16078525E-06 | |
| 1 0.00000000 0.00 | |
| 1.00000 2.00000 0.000000 0.000000 0.000000 | |
| CaS | |
| 4 1 1.0 1.0 0.0 0.0 0.0 | |
| 6000.0000 -483802.23 407.54692 -66.944000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 1.00000 1.00000 0.000000 0.000000 0.000000 | |
| 3 2 | |
| Al Si Ca | |
| O S | |
| 3.00000 4.00000 2.00000 | |
| 1 2 1 | |
| 2.00000 2.00000 | |
| 2 2 | |
| 1 2 3 1 2 3 | |
| 1 1 1 2 2 2 | |
| 1 1 4 4 2.0661656 2.0661656 1.3774438 1.3774438 | |
| 2 2 4 4 2.7548875 2.7548875 1.3774438 1.3774438 | |
| 3 3 4 4 1.3774438 1.3774438 1.3774438 1.3774438 | |
| 1 1 5 5 2.0661656 2.0661656 1.3774438 1.3774438 | |
| 2 2 5 5 2.7548875 2.7548875 1.3774438 1.3774438 | |
| 3 3 5 5 1.3774438 1.3774438 1.3774438 1.3774438 | |
| 4 | |
| R 2 3 4 5 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -7112.8000 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 4 | |
| R 1 3 4 5 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 0.00000000 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 4799.8664 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 3 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 2 100783.93 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 5 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -142067.43 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 7 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 78571.060 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 3 4 4 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -121163.87 27.195860 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 3 4 4 4 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -353674.30 115.05943 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -158217.42 19.455475 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 1 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -37931.997 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 5 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -90147.924 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 7 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 439890.86 -133.88800 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 0 1 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 3 0 -48668.204 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 0 0 2 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 1 0 -88144.052 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 0 | |
| Slag | |
| SUBG | |
| 1.00000 | |
| 6 6 | |
| Al2O3 | |
| 4 2 0.0 0.0 0.0 2.0 3.0 | |
| 2327.0100 -1615242.7 1240.3273 -179.36551 0.45961230E-02 | |
| 0.00000000 -487670.41 | |
| 2 -68180612. -2.00 -3313.5479 0.50 | |
| 9999.0000 -1750989.1 1342.1160 -192.46400 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 2.00000 3.00000 0.000000 0.000000 0.000000 | |
| SiO2 | |
| 4 2 0.0 0.0 1.0 0.0 2.0 | |
| 1995.9900 -915415.79 562.19939 -83.513598 0.00000000 | |
| 0.00000000 1227680.0 | |
| 2 -1498.7720 0.50 -46678699. -2.00 | |
| 9999.0000 -952208.49 564.54913 -85.772000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 1.00000 2.00000 0.000000 0.000000 0.000000 | |
| CaO | |
| 4 2 1.0 0.0 0.0 0.0 1.0 | |
| 2845.1599 -571766.65 348.73580 -58.791171 0.00000000 | |
| 0.00000000 573573.05 | |
| 2 -535.61610 0.50 -17163136. -2.00 | |
| 9999.0000 -596946.66 379.18009 -62.760000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 1.00000 1.00000 0.000000 0.000000 0.000000 | |
| Al2S3 | |
| 4 2 0.0 3.0 0.0 2.0 0.0 | |
| 1369.0000 -468294.46 974.38602 -158.26561 0.00000000 | |
| 0.00000000 -4492584.0 | |
| 2 -32000.066 99.00 0.20752693E+09 -2.00 | |
| 3000.0000 -671755.20 942.01875 -156.90000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 2.00000 3.00000 0.000000 0.000000 0.000000 | |
| SiS2 | |
| 4 1 0.0 2.0 1.0 0.0 0.0 | |
| 2700.0000 -283896.90 621.87186 -100.00000 0.12450265E-15 | |
| -.62626800E-20 0.16078525E-06 | |
| 1 0.00000000 0.00 | |
| 1.00000 2.00000 0.000000 0.000000 0.000000 | |
| CaS | |
| 4 1 1.0 1.0 0.0 0.0 0.0 | |
| 6000.0000 -483802.23 407.54692 -66.944000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| 1.00000 1.00000 0.000000 0.000000 0.000000 | |
| 3 2 | |
| Al Si Ca | |
| O S | |
| 3.00000 4.00000 2.00000 | |
| 1 2 1 | |
| 2.00000 2.00000 | |
| 2 2 | |
| 1 2 3 1 2 3 | |
| 1 1 1 2 2 2 | |
| 1 1 4 4 2.0661656 2.0661656 1.3774438 1.3774438 | |
| 2 2 4 4 2.7548875 2.7548875 1.3774438 1.3774438 | |
| 3 3 4 4 1.3774438 1.3774438 1.3774438 1.3774438 | |
| 1 1 5 5 2.0661656 2.0661656 1.3774438 1.3774438 | |
| 2 2 5 5 2.7548875 2.7548875 1.3774438 1.3774438 | |
| 3 3 5 5 1.3774438 1.3774438 1.3774438 1.3774438 | |
| 4 | |
| R 2 3 4 5 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -7112.8000 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 4 | |
| R 1 3 4 5 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 0.00000000 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 4799.8664 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 3 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 2 100783.93 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 5 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -142067.43 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 7 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 78571.060 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 3 4 4 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -121163.87 27.195860 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 3 4 4 4 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -353674.30 115.05943 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 0 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -158217.42 19.455475 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 1 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -37931.997 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 5 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 -90147.924 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 7 0 0 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0 0 439890.86 -133.88800 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 1 2 4 4 0 0 1 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 3 0 -48668.204 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 3 | |
| Q 2 3 4 4 0 0 2 0 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 0.00000000 0.00 0.00000000 0.00 0.00000000 0.00 | |
| 1 0 -88144.052 0.00000000 0.00000000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 0 | |
| Al2O3_corundum(alpha(s4) | |
| 4 2 0.0 0.0 0.0 2.0 3.0 | |
| 2327.0100 -1703961.4 1099.9582 -155.01888 0.00000000 | |
| 0.00000000 1930681.5 | |
| 2 -3313.5479 0.50 -68180608. -2.00 | |
| 3000.0000 -1869396.3 1392.9998 -192.46400 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| SiO2_quartz(h)(s2) | |
| 4 2 0.0 0.0 1.0 0.0 2.0 | |
| 1995.9900 -933315.35 533.27854 -80.011992 0.00000000 | |
| 0.00000000 1773342.0 | |
| 2 -961.10400 0.50 -81928062. -2.00 | |
| 3000.0000 -964566.44 571.62748 -85.772000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| SiO2_tridymite(h)(s4) | |
| 4 2 0.0 0.0 1.0 0.0 2.0 | |
| 1991.2800 -944111.18 480.75283 -75.372668 0.00000000 | |
| 0.00000000 2979047.5 | |
| 1 -.15970769E+09 -2.00 | |
| 3000.0000 -961947.91 569.44018 -85.772000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| SiO2_cristobalite(h)(s6) | |
| 4 2 0.0 0.0 1.0 0.0 2.0 | |
| 1995.9900 -924997.14 566.99970 -83.513598 0.00000000 | |
| 0.00000000 1227680.0 | |
| 2 -1498.7720 0.50 -46678699. -2.00 | |
| 3000.0000 -961789.83 569.34944 -85.772000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| CaO_lime(s) | |
| 4 2 1.0 0.0 0.0 0.0 1.0 | |
| 2845.1600 -651262.66 376.67656 -58.791171 0.00000000 | |
| 0.00000000 573572.99 | |
| 2 -535.61600 0.50 -17163131. -2.00 | |
| 3500.0000 -676442.67 407.12085 -62.760000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| CaAl2O4_solid(s) | |
| 4 2 1.0 0.0 0.0 2.0 4.0 | |
| 1877.0000 -2336571.1 1603.1206 -227.04000 0.00000000 | |
| 0.00000000 280400.01 | |
| 2 -6676.3999 0.50 14256667. -2.00 | |
| 1878.0000 -2408249.8 1195.6057 -188.34222 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| CaAl4O7_solid(s) | |
| 4 2 1.0 0.0 0.0 4.0 7.0 | |
| 2038.0000 -4097286.1 2253.3641 -337.98000 0.00000000 | |
| 0.00000000 6056300.0 | |
| 2 -4088.7999 0.50 -.25176667E+09 -2.00 | |
| 2039.0000 -4132091.3 1987.9038 -312.59919 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| CaAl12O19_solid(s) | |
| 4 2 1.0 0.0 0.0 12.0 19.0 | |
| 2106.0000 -10888744. 6990.9079 -992.73500 0.00000000 | |
| 0.00000000 14073900. | |
| 2 -21400.121 0.50 -.62450183E+09 -2.00 | |
| 2107.0000 -11108799. 5694.5445 -870.20895 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| Ca3Al2O6_solid(s) | |
| 4 2 3.0 0.0 0.0 2.0 6.0 | |
| 1814.0000 -3655463.3 2119.2462 -321.58000 0.00000000 | |
| 0.00000000 2890650.1 | |
| 2 -5021.6000 0.50 -.11020333E+09 -2.00 | |
| 1815.0000 -3702859.5 1794.8156 -290.45820 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| CaSiO3_wollastonite(s) | |
| 4 2 1.0 0.0 1.0 0.0 3.0 | |
| 2000.0000 -1664832.9 1013.0608 -149.07266 0.00000000 | |
| 0.00000000 1829674.0 | |
| 2 -2761.1799 0.50 -80724904. -2.00 | |
| 2002.0000 -1719540.3 959.10934 -146.44000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| CaSiO3_ps-wollastoni(s2) | |
| 4 2 1.0 0.0 1.0 0.0 3.0 | |
| 1813.0000 -1667538.6 927.91302 -141.15611 0.00000000 | |
| 0.00000000 2928797.5 | |
| 2 -1668.9280 0.50 -.15678916E+09 -2.00 | |
| 1815.0000 -1709561.5 952.40428 -146.44000 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| Ca2SiO4_gamma(olivine(s) | |
| 4 2 2.0 0.0 1.0 0.0 4.0 | |
| 2500.0000 -2309731.1 1747.5334 -243.66021 0.00000000 | |
| 0.00000000 0.00000000 | |
| 2 -5126356.0 -2.00 -8137.6857 0.50 | |
| 2501.0000 -2411459.6 1307.1380 -202.97375 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| Ca2SiO4_alpha-prime(s2) | |
| 4 3 2.0 0.0 1.0 0.0 4.0 | |
| 1710.0000 -2331645.9 1371.8996 -210.48876 0.00000000 | |
| 0.00000000 3994699.9 | |
| 2 -.21624666E+09 -2.00 -2807.6001 0.50 | |
| 5000.0000 -2246145.9 949.68716 -160.48877 0.00000000 | |
| 0.00000000 3994699.9 | |
| 2 -.21624666E+09 -2.00 -2807.6001 0.50 | |
| 5001.0000 -2292659.8 832.26429 -150.25321 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| Ca2SiO4_alpha(s3) | |
| 4 2 2.0 0.0 1.0 0.0 4.0 | |
| 5000.0000 -2241869.1 947.18611 -160.48877 0.00000000 | |
| 0.00000000 3994699.9 | |
| 2 -.21624666E+09 -2.00 -2807.6001 0.50 | |
| 5001.0000 -2288383.0 829.76323 -150.25321 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| Ca3SiO5_hatrurite(s) | |
| 4 2 3.0 0.0 1.0 0.0 5.0 | |
| 2500.0000 -2902196.9 1229.2180 -209.98832 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 -2018.4116 0.50 | |
| 2501.0000 -2927427.1 1119.9811 -199.89626 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| Ca3Si2O7_rankinite(s) | |
| 4 2 3.0 0.0 2.0 0.0 7.0 | |
| 5000.0000 -4019610.6 2723.0996 -392.84876 0.00000000 | |
| 0.00000000 5329997.8 | |
| 2 -8800.2633 0.50 -.22893152E+09 -2.00 | |
| 5001.0000 -4170997.2 2360.5948 -361.31972 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| Al2O3_gamma(s) # | |
| 4 3 0.0 0.0 0.0 2.0 3.0 | |
| 1200.0000 -1354204.2 -619.53744 15.733273 -.14974255E-01 | |
| 0.00000000 -2497634.5 | |
| 2 28273.406 0.50 -112109.37 99.00 | |
| 2327.0000 4225305.0 -9185.7772 787.51538 -.32938713E-01 | |
| 0.00000000 -.13190819E+09 | |
| 2 267542.91 0.50 -1525527.4 99.00 | |
| 3000.0000 -1837990.9 1379.9155 -192.46400 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| CaS_solid(s) # | |
| 4 3 1.0 1.0 0.0 0.0 0.0 | |
| 1600.0000 -480855.73 310.84590 -53.598408 -.18538933E-02 | |
| 0.10228598E-06 -88809.180 | |
| 1 -2750.1453 99.00 | |
| 3000.0000 -480758.78 302.12416 -52.537556 -.16827508E-02 | |
| 0.00000000 0.00000000 | |
| 1 -2579.3021 99.00 | |
| 3001.0000 -511395.78 374.35734 -61.774294 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 | |
| SiO2_quartz(l)(s) # | |
| 4 3 0.0 0.0 1.0 0.0 2.0 | |
| 373.00000 -935388.52 536.02534 -80.011992 0.00000000 | |
| 0.00000000 1773342.0 | |
| 2 -961.10400 0.50 -81928062. -2.00 | |
| 848.02000 -935486.56 537.07570 -80.011992 -.42200109E-02 | |
| 0.75354502E-05 1773342.0 | |
| 3 -.50458705E-08 4.00 -961.10400 0.50 -81928062. -2.00 | |
| 850.00000 -876151.35 -104.03379 -.41840000E-01 0.00000000 | |
| 0.00000000 0.00000000 | |
| 1 0.00000000 0.00 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment