Last active
August 27, 2020 15:16
-
-
Save chychen/e7d89c5bf891be95dbceddfeeabada56 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Import Numba CUDA" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "from numba import cuda\n", | |
| "import numpy as np\n", | |
| "import math" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "data = np.load('example_data.npy')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Numba (CUDA Python)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "@cuda.jit\n", | |
| "def cuda_ridge_detection(f, count, thres):\n", | |
| " start_i, start_j = cuda.grid(2)\n", | |
| " stride_i, stride_j = cuda.gridsize(2)\n", | |
| " for i in range(start_i, f.shape[0], stride_i):\n", | |
| " for j in range(start_j, f.shape[1], stride_j):\n", | |
| " if (\n", | |
| " i > 0\n", | |
| " and j > 0\n", | |
| " and i < (f.shape[0] - 1)\n", | |
| " and j < (f.shape[1] - 1)\n", | |
| " and f[i, j] > thres\n", | |
| " and ~math.isnan(f[i, j])\n", | |
| " ):\n", | |
| " step_i = i\n", | |
| " step_j = j\n", | |
| " for k in range(1000):\n", | |
| " if (\n", | |
| " step_i == 0\n", | |
| " or step_j == 0\n", | |
| " or step_i == (f.shape[0] - 1)\n", | |
| " or step_j == (f.shape[1] - 1)\n", | |
| " ):\n", | |
| " break\n", | |
| " index = 4\n", | |
| " vmax = -np.inf\n", | |
| " for ii in range(3):\n", | |
| " for jj in range(3):\n", | |
| " if f[step_i + ii - 1, step_j + jj - 1] > vmax:\n", | |
| " vmax = f[step_i + ii - 1, step_j + jj - 1]\n", | |
| " index = jj + 3 * ii\n", | |
| " if index == 4 or vmax == f[step_i, step_j] or math.isnan(vmax):\n", | |
| " break\n", | |
| " row = int(index / 3)\n", | |
| " col = index % 3\n", | |
| " cuda.atomic.add(count, (step_i - 1 + row, step_j - 1 + col), 1)\n", | |
| " step_i = step_i - 1 + row\n", | |
| " step_j = step_j - 1 + col" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "def test_func(data):\n", | |
| " device_data = cuda.to_device(data)\n", | |
| " device_results = cuda.device_array_like(device_data)\n", | |
| " cuda_ridge_detection[(8, 8), (8, 32)](device_data, device_results, 0)\n", | |
| " cuda_results = device_results.copy_to_host()\n", | |
| " return cuda_results" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "cuda_results = test_func(data)\n", | |
| "np.testing.assert_almost_equal(results, cuda_results)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "1.67 ms ± 8.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%timeit -r 7 -n 1000 test_func(data)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "## Speedup by 200,000+ times!!!!!\n", | |
| "\n", | |
| "- CPU-based solution cost 366 seconds (366000 ms)\n", | |
| "- CUDA Python solution cost 0.00167 seconds (1.67 ms)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "219161.6766467066" | |
| ] | |
| }, | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "366000 / 1.67" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.10" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 4 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment