Skip to content

Instantly share code, notes, and snippets.

@danhey
Created January 18, 2023 05:12
Show Gist options
  • Select an option

  • Save danhey/2c7e996ab4650bc1b11abfe059488f30 to your computer and use it in GitHub Desktop.

Select an option

Save danhey/2c7e996ab4650bc1b11abfe059488f30 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "f5120272-5893-4bf7-8b3f-a44fda928316",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING (theano.link.c.cmodule): install mkl with `conda install mkl-service`: No module named 'mkl'\n",
"WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n",
"/Users/daniel/opt/anaconda3/envs/exoplanet/lib/python3.9/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"\n",
"\n",
"import numpy as np\n",
"import starry\n",
"\n",
"# starry.config.lazy = False\n",
"starry.config.quiet = True"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e581c9d6-9af8-49dd-b67a-c164d4b1516f",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAADtCAYAAACmli4WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUdklEQVR4nO3dT2wb6XnH8d8zM9QfW/bScpysEwNRtdmmSS+tsimKoincVAEK9KokaC8q0K11bYEAWx+Kai8xNqdetW1PQQ/uqj0XrYMaPRRF4ghJgaJINyu4QLLeZL0y15ZkSfzz9MDRhqZIiRxS4ku/38+FfDlD6uVq9NvXz7zzjrm7AADjJxl1BwAAxRDgADCmslH94FdffdWvXbs2qh8PAGPn9ddf/zt3f/WwPbIAv3btmlZXV0f14wFg7Lz++us/aW1TQgGAMUWAA8CYIsABYEwR4AAwpghwABhTBDgAjKmO0wjN7IYkufubba+XJS1KqkjakrR5XNvdN06l1wCArvPA/0HSjQ6v35S05u6bZramZlAf114Zdoe/+U//pX/+wbsdt5l1fk+31yXJ1O1Nfb0sO+aHdO1Xl08b5vc4k8/q9jmF/pv091nHf4+jPvupF/TNP1zo/qYe/MXff1//8aP3B/oMxGthflZ//ce/MZTP6vdCnrKaI21Jms0fT2p/xMyuS7ouScvLy33+6KY/+tK8fv/XPnXk9W5Lch23WFf39/T3WcctBzaszzp+zbEun9X1Z3f7lP4+Z5ifNdTfU5d3PNo+0F/e/sFAAV5vNPTtf9/U7T//HZ2bGNl1cBhjM9OloX1Wv0dgpc/2M9z9rqS7krS6uvpXff5sSdLclRnNXZkp8lZE7tHOgb7x7XsDfcbW9oGyNNFv/8onhtQroLhuAf41SV80s/m8HLLk7uuSbklaNLNK/nzzhDYQjHMTqXb36wN9xn61rqkS5/4Rho4Bnp+8fLOlvZ4/ViStt+1+UhsIwkSWqN5wVWsNlbJiIbxfa2iqlA65Z0AxDCUQDTPTuclUT6vFR+H71bomCHAEggBHVKYnMj3drxV+/361QQkFweBIRFTOTQw4Aq/VNZExAkcYCHBEZWoi1e5AI/C6JhmBIxAciYjKRJaoWmsUfn+zhMIIHGEgwBGVUpqo1jj2qqhj7VUpoSAcBDiikiamWr34CPygVtdkwSmIwLBxJCIqWZqoWi8+At+vNqiBIxgciYhKKU1UbxQfgdcarizlzwZh4EhEVLLUBjqJWa83lCbHLIEInCECHFHJBjyJWW+4soQ/G4SBIxFRyRJTdYCTmLWGMwJHMAhwRCVLE9UHOIlZb7iylABHGAhwRKWUmmqDnMSsN5QwAkcgCHBEZdBphDVq4AgIRyKikqXJQBfyNCihICAEOKLSPIk5wAicaYQICAGOqJTSRPUBRuDNaYQEOMJAgCMqWTr4NMKEGjgCwZGIqKSJDX4hDzVwBIIAR1RKWaIaNXA8JwhwRCVLBpuFQg0cISHAEZVSOth64HVWI0RAOBIRlWFcyEMJBaEgwBGV5mqEg43ACXCEggBHVAZdD5yTmAgJAY6oZImpPsA0wgY1cASEIxFRKaUDTiNsuFJjBI4wZO0vmFlZ0qKkiqQtd99o2TYvaSnfdi9/bG1vSnol3/2Z9wIhSNNkoCsxuZAHIek0Ar8pacPd70haadu2Imnd3d/M92tvz0taUDPM50+t10BBzfXAB72Qh3+4IgydjsSypK38+WzbttuSFsxsId/vmXY+4n5J0nfUHI0/w8yum9mqma3ev39/KF8A6Megy8kyjRAh6RTglW475wF9R81w3mxvm9kNd19x9y9I+nqH999191V3X52bmxtG/4G+DOdCHgIcYThSA5d0S9KimVXy5zKzJXdfz0fah6WR19rbkubNbFHNEfy/nmrPgQKyZMC70jONEAE5EuDuXpG03vbaev64Ian1xGSnNhCsdMB54HVuqYaAcCQiKqV0sBE4NXCEhABHVLJk8Bp4Sg0cgSDAERXWA8fzhABHVNJkCBfyEOAIBAGOqJQGvCcm64EjJByJiEqamBqcxMRzggBHVLI0GWg1QkooCAkBjqgMelf6Wr2hhABHIAhwRIX1wPE84UhEVJIB54FTA0dICHBEJUuTgU5iUgNHSAhwRGUYNXBKKAgFRyKiMmgNnBIKQkKAIyrpgDXwBgGOgBDgiEo66AictVAQEAIcUUmTIVzIQw0cgeBIRFQGHoE3XKkxAkcYCHBEJUsHC3DuiYmQEOCISnMaYbGTmO7evKEDNXAEggBHVLIBauD1hisxk1FCQSAIcESlOY2weIBTPkFICHBEJUlMZip0OT0X8SA0BDiiU7QOzjooCA0BjugUrYNzEQ9CQ4AjOkXr4PWGK+UiHgSEoxHRKToXnCmECA0BjugkVqwGXqs3qIEjKAQ4olP0pg6sg4LQZO0vmFlZ0qKkiqQtd99o2TYvaSnfdi9//Kjt7htmdiPfNu/u66fae6CAojVwphEiNEcCXNJNSWvuvmlma5JWWrattGx7S9Jma9vMbuevbbYGPxCSogtaUQNHaDoFeFnSVv58tm3bbUkL+Si93KH9FUnfl7RlZq+4+5utbzaz65KuS9Ly8vLAnQeKyAreVq3ONEIEplNBr9Jt53xUfUfPjrI/akt6R9Kd/PWvdHj/XXdfdffVubm5wXsPFNAcgRe8kIcaOALSaQR+S9KimVXy5zKzJXdfN7MFSfP5fq+1t/PHr5nZpqS10+s2UFyaFryQh7XAEZgjAe7uFUnrba+t548bklpr2+1tSXpTQMAGqYGzmBVCwr8HEZ2id6bnUnqEhgBHdAabRsifDMLB0YjoNC+l7/8kZoMSCgJDgCM6zUvpi5RQmAeOsBDgiE5WcBZKvcFaKAgLAY7opImpzqX0eA4Q4IhO0VkorAeO0HA0IjpFb6lGDRyhIcARneIX8lADR1gIcEQnTZPCt1RjLRSEhKMR0Sk6AuckJkJDgCM6WWJqOOuBY/wR4IhO81L6YvfEJMAREgIc0Sl6IU+DGjgCw9GI6BS+lJ71wBEYAhzRaS5mxXrgGH8EOKLTvJSeGjjGHwGO6GTJALdUYz1wBISjEdFJi96VnhIKAkOAIzqFa+CUUBAYAhzRSQrOA683nLVQEBQCHNEZrAZOgCMcBDiiU3w1QtYDR1g4GhGdwotZsR44AkOAIzpZWrQGznrgCAsBjuikialecDVC1kJBSDgaEZ206ElMSigIDAGO6DSXky0wAnemESIsBDiikyWmRqEReEMJAY6AZO0vmFlZ0qKkiqQtd99o2TYvaSnfdi9//Kh9uK+ZvSHplrtXTrHvQCFF70pPDRyhORLgkm5KWnP3TTNbk7TSsm2lZdtbkjbb2l/NQ77c6YeZ2XVJ1yVpeXl5WN8B6EvRGzpwSzWEptNwoixpK38+27bttqQFM1vI92tvH77/nU4/zN3vuvuqu6/Ozc0N0m+gsKRoDZxL6RGYTiPwSred3X3DzDbz5mZ728xuqDkqf0nNMsz6MDsLDENW+EKeBiUUBKVTgN+StGhmlfy5zGzJ3dfzkfZ8vt9r7W13r+Q19BUBgWpeiVnghg4NV8It1RCQIwGen3hcb3ttPX/ckLTRsqm9ffj+rw65n8DQcEs1PC/49yCiU3geOOuBIzAEOKKTJknxS+kJcASEAEd0io7AuScmQsPRiOgUPYlJDRyhIcARnSwteim9cyk9gkKAIzqpFbsrfY31wBEYAhzRKXopfYO1UBAYjkZEp/BJTNYDR2AIcESn8E2NWQ8cgSHAEZ2iy8nWuJAHgSHAEZ0sTQrNQqk3XCk1cASEoxHRKXwpPeuBIzAEOKKTFbwrfa3ONEKEhQBHdJoj8GJXYjICR0gIcEQnLTgPvFp3laiBIyAcjYhO0WmE3JEHoeFoRHSKBni13mAxKwSFAEd0soI18Gq9QQkFQeFoRHSKl1CogSMsHI2ITpHFrNyd9cARHAIc0Ums/xH4Yf3buCs9AkKAIzpF7krPFEKEiCMS0SlyIU+1xglMhIcjEtHJCtyVvsoccASIIxLRKbKYVa3eUIkTmAgMAY7oHE4j9D5G4dTAESKOSEQnSUxZaqr2UQev1hsqZfy5ICwckYjSVCnVXrWPAK9RA0d4svYXzKwsaVFSRdKWu2+0bJuXtJRvu5c/trY3Jc3n799w9zun2HegsKlSqr2Dmi5Ol3ranxo4QnQkwCXdlLTm7ptmtiZppWXbSsu2t9QM7Nb2bUl33P1befuZADez65KuS9Ly8vKwvwvQs+mJPkfg1MARoE5HZFnSVv58tm3bbUkLZraQ7/dM293X3b1iZkuS1to/2N3vuvuqu6/Ozc0N6SsA/ZsspXp6UOt5//1aXZOl9BR7BPSv0wi80m1nd98ws828udnelqQ8zDcP20CIpidS7R3Ue95/76CuKQIcgekU4LckLZpZJX8uM1ty9/U8nOfz/V7r0n5Dzf8JfE/St06x70Bhk6VUe9U+Arxa11SJEgrCciTA3b0iab3ttfX8cUPSRsumTu2vDL2XwJA1a+C9B/h+ta6piU7jHWB0GFIgSlN9jsCfHjACR3g4IhGl5jTCPksojMARGAIcUeq3hLLHCBwB4ohElJrTCPsbgTONEKEhwBGlfqcR7lfrmibAERgCHFHqdxrh7gE1cISHAEeUpvsM8J29ms5PMgJHWAhwRGmqz5OYO/s1nZ/qbeEr4KwQ4IhSv9MId/cZgSM8BDiiND2R9TUC396v6fwkI3CEhQBHlKYnUu3u974aYXMEzklMhIUAR5RmpjJt7/UX4OcooSAwBDiiNDNV6ivAt/dqmuEkJgJDgCNKM1OZnuxVe96/OQKnhIKwEOCIUr8j8B1KKAgQAY4ozUxl2uljBL6zX9MMs1AQGAIcUepnBF6rN1SruyZZjRCB4YhElA5r4O5+4r47+UU8ZnYGPQN6R4AjSpOlVCbTfrVx4r47e5zARJgIcERrZirT9v7JdfDHT6u6eG7iDHoE9IcAR7QuTPdWB/9w90AvTHMCE+EhwBGt85OZtp/2NgJ/4RwBjvAQ4IjWhemSHvcQ4B/uHlBCQZAIcETr0vkJVXYPTtzv8S4jcISJAEe0Zmcm9Gj75ACv7Fb1AiNwBIgAR7QunZ/Uo52TA/zD3QNG4AgSAY5oXZqZ0Nb2/on7PWYEjkAR4IjW7MxkTyWUD3cPdJFphAjQkcvLzKwsaVFSRdKWu2+0bJuXtJRvu5c/trY3u70XCM2l8xN6tHPyCPzDp1VdpISCAHW6PvimpDV33zSzNUkrLdtWWra9pWZgd2u3vxcISjPATx6Bb23va3Zm8gx6BPSnU4CXJW3lz2fbtt2WtJCP0ssd2se9V2Z2XdJ1SVpeXi7aZ2AoLvVYQtl6sq+PXSDAEZ5ONfBKt53zksgdNUfam+3t496bv/+uu6+6++rc3FzBLgPDMTsz2VMJ5eGTfV2+MHUGPQL602kEfkvSoplV8ucysyV3XzezBUnz+X6vtbfzx2feC4Tq0vkJbZ0wAj+o1bV7UFOZGjgCdCTA3b0iab3ttfX8cUNS64nJ9rba3wuE6uJ0STv7NVVrDZWyzhOytrYPNDszyVrgCBLTCBGtJDG9cO74y+kfPt7TZU5gIlAEOKJ2+cKkPnjSvQ7+wfa+PnaRAEeYCHBE7Wp5Wg8ePe26/eHjfUbgCBYBjqh98tK0HlR2u25/UHmqq5emz7BHQO8IcETtxUvTeveYEfiDR0/1YvncGfYI6B0Bjqh98tI5vXdMgL9X2WUEjmAR4Ija1fK03n10QgmlTIAjTAQ4onb10rQeVE4qoRDgCBMBjqhdvXSu6ywUd9eDR0/1yVlq4AgTAY6ovVie0s8/3FOj4Ue2PXyyr4ksYS1wBIsAR9QmslSXL0zqp1tH6+D339/W3JWZEfQK6A0Bjui9fPWC3n7v8ZHX7/98W3MfJ8ARLgIc0Xv5xYt6+0GHAH9/R5++cn4EPQJ6Q4Ajei9fvai3Hzw58vrbDx7rpU9cGEGPgN4Q4IhetxLK//y0os9fK599h4AeEeCIXqcSSr3R0I/efazPfeqFEfUKOBkBjuh9+sp5VXYOtLX9i2Vl3/nZtj5+cUoXmEKIgBHgiF6aJPr1X7qse+988NFr3/3xQ73y0uUR9go4GQEOSPriZy7ruz9++FH7P//3ff3my1dG2CPgZAQ4IOnLv3pV//LDdyU1L6H/t/9+T1/63CdG3CvgeJ3uSg9E57c+e0X/93BHmz97ovcf72mqlOrz1ziBibAR4ICkLE306pc/o9W3fqit7X39yZc/w53oETxKKEDuz/7g89rZq+ryzKT+9Pd+edTdAU7ECBzIXZgu6R+/8buj7gbQM0bgADCmCHAAGFMEOACMKQIcAMbUkZOYZlaWtCipImnL3Tdats1LWsq33ZO0KemVfPNWe7v1vQCA4eo0Ar8pacPd70haadu2Imnd3d/M95uXtKBmmM93aAMATkmnAC+rOZqWpNm2bbclLZjZgqRyPsJ+SdJ3JG22t9s/2Myum9mqma3ev39/ON8AACLVKcAr3XbOA/qOmuG8aWY33H3F3b8g6evt7Q7vv+vuq+6+Ojc3N5xvAACRMnd/9oUONXAzW3L39XzkfVgauZM/n1VzxH7kMS/DdP7BZn8r6SdD/Tanb07S/RH34azNie8cgznxncfBNXd/9bBxJMDRnZmtuvvqqPtxlvjOceA7jyemEQLAmCLA+3N31B0Ygbuj7sAI3B11B0bg7qg7MAJ3R92BQVFCAYAxxQgcAMYUAQ4AY4oAB4AxxQ0denDc+jAt+7wh6Za7V860c6fkhDVxympeA7CoXyy7MJZ6+J7H/t7HTSy/11bP898vI/DeHLc+zOEiX+Wz7tQpO+47L6q5dMK3OmwbN8d9z2N/72Mqlt9rq+f275cReG/K6r4+zOH2d86qM2ekrC7f2d3XJcnMliStnW23hq6s7r/b47aNq7Li+L22Kus5/fslwFvkB26rSv5/7cox77mh5towL6k5glk/tQ6egiLfOX/fgvI1cU6pa2elUnDbuKoct/E5+r22qnTbMPZ/v8wDP9lx68O0bP8bSbcPXxt3PayJ80a+7Xv5P7nH0gnf88i2UfVzWGL5vbZ6nv9+CXAAGFOcxASAMUWAA8CYIsABYEz9P7/v4SXPe7dIAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWcAAADtCAYAAABj5LSHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgl0lEQVR4nO3deVhU5eIH8O8ZFlkURlCRRUREQRRxwQUlRcU9rbxaZjfNMnFpsW56s+6vsEWv1U27WW6Zpq1mtlhq5oIbrribYrKIgILIjuzz/v7QumaIgDPznjPz/TyPz8Pj4Dnf4zBfj+95z3sUIQSIiEhddLIDEBHRX7GciYhUyNYUG500aZLw8fExxaaJiCzWnDlzVgghJgEmKmcfHx/ExMSYYtNERBZrzpw5ab9/zWENIiIVYjkTEakQy5mISIVYzkREKsRyJiJSIZYzEZEKsZyJiFTIJPOcyfIVl1Vi28lLiEvIwvnLhcgpKoO9rQ38mjVE11ZuGBnWAh56R9kxiTSL5Ux1kpxVhP9uPINvDlxA51Zu6NPOA/e084B7owYorzAgMbMQcQlZeG3dcQzs6IWXRoUgoLmL7NhEmsNyplopKKnA6+uO46u4FDw5oA32vTkM3m5Of/m+PsEemNgvAIUlFVjySwKiXv8FM0e0x9RBgdDpFAnJibSJ5Ux3tO3kJTz98QEMCPFE/Px70dTF4Y5/ppGjHWaO7IDRPf3wxOK9OHA+G8smh8PB3sYMiYm0jxcE6baqDAbEfH0MT604gPcf74H3H+9Rq2K+WatmDbFxdhQAYNR/duBaWaUpohJZHJYzVSuvuBxj3t2JQ+evYtdrQzAgxLPe23Kwt8Gqab3h1dgJEz7Yg4pKgxGTElkmljP9RWZeCYbO3YpWzRri+1n96ny2XB2dTsHiST1RZRB48fN4I6QksmwsZ/qTpMxCDHzjFzzQ3RfvPBoGWxvj/YjY2erw8dTe2HriEtbGpRhtu0SWiOVMf0jOKsLwedvw7LB2mHVfByiK8WdX6J3tsebpezDz03hcuFJk9O0TWQqWMwEALmYXY8S/t+GFke3xRP82Jt1Xx5aN8czQIDz98UHwAcNE1WM5Ey7nlWDE/G2YOijQ5MX8u2eHtUNecTk+2Zlolv0RaQ3L2coVllTgb+/EYlyEP6YPCTLbfm1tdPhwUg/M+fo4corKzLZfIq1gOVuxyioDJnywB11bu2PmyPZm338H38YYGdYCb31/yuz7JlI7lrOVEkLg+dWHAQDvjg8zycW/2nh5VAi+2JuC85cLpOyfSK1YzlZq4cYzOJyYjU+mRxh1ulxdNXN1xNNDg/DauhPSMhCpEcvZCv18PB2LtyRg3fORaORoJzsOpgxsiz1ns3AmLU92FCLVYDlbmcTMQkxdfgCfTI+AVzWrysnQ0MEO0wcH4u0fTsuOQqQaLGcrUlRagYcX7sJLD4QgvG1T2XH+ZHJUW2w/fRkJGfmyoxCpAsvZSgghMO2jAwhr7Y4n+gfIjvMXjRztEB3VFos2n5UdhUgVWM5WYuHGM0jNLsK747tJm5lxJ0/0D8B3B1ORXVgqOwqRdCxnKxCXkIVFm8/i06fvUfVi981cHTG8awusiuVdg0QsZwt3tbAMTyyOwwdP9ICPu7PsOHc0bVAglm89xzWfyerVupwVRdEritJFUZRZiqJEmTIUGYcQAlOW78MDPXwxpJO37Di10rFlY/h7NML3h1NlRyGSqi5nzlEAkoQQbwGINlEeMqIPfk5AdkEZYsaEyo5SJ9FRbfHxjvOyYxBJVetyFkKsE0LkKYoyGsDSW19XFCVSUZQYRVFiUlJSjJmR6iE+6Sr+s+E0Vk7vDXtb9Y4zV2dYF2+cSctHYmah7ChE0tRpzFlRlC4AkgAcvvU1IUSsECJGCBHj5+dnpHhUH/nXyjHxw71Y+Fg3+DVtKDtOndnb2uChXn5Ys4sXBsl61WXMuQuA+QBmA5hsskR012asOoSoEE/c181XdpR6m9C3NT7bnYzKKl4YJOtkW9tvFEIcATDQhFnICNbtT8GJC7nY8/oQ2VHuSjsfPVq4O2HLiQwM6+wjOw6R2XEqnQXJyLmGmWvisTw6HI72tf53V7XG922NT3clyY5BJAXL2UIIITB9xQFMjmqLLv7usuMYxf3dfLHz10zkFZfLjkJkdixnC/HxjvPIKSrDCyPM/0QTU9E726NPsAc2xF+UHYXI7FjOFuD85QK8/s0JLIsOh52tZb2lD4b74et9F2THIDI7y/okW6HKKgOil+3HP+/rgEAvV9lxjG5IJy8cSb6KzLwS2VGIzIrlrHELN56Bo70NoqPayo5iEo72thjW2RvrD/J2brIuLGcNO3EhFx9sPovFk3pCp1PnMqDGMLqnH77elyI7BpFZsZw1qrS8Ck8ujcPccV3Qoon6V5u7G/3aN0dSVhEuXCmSHYXIbFjOGvXG+hMIaO6Csb38ZEcxOTtbHYZ19saG+DTZUYjMhuWsQXsTsvBVXAoWPqbep5oY24iuLTiljqwKy1ljCksqMGXZPix8rBuaujjIjmM2/do3x+mLecjK56wNsg4sZ42Z/fkR3NPOA8O7WNd6Ew72NhjQwRM/HUmXHYXILFjOGrLpaDpiT1/Gvx/pKjuKFCPCfPAjhzbISrCcNSK7sBTPrDyIJZN7wsXRTnYcKQaFemPfuSvIv8a1NsjysZw1QAiBGasOYUx4S0QEeciOI42Lox3CA5thy/EM2VGITI7lrAFfxaXgXEYBXvmbtp4FaAojuvpwSh1ZBZazyqVdLcbsz49geXQ4HOy19SxAUxjexQfbT11CeWWV7ChEJsVyVjGDQWDq8v2YNjgQoX5usuOoQlMXB7Rp7oK4hCuyoxCZFMtZxZZvO4eisko8NzxYdhRVGdzJC5uPcUodWTaWs0qdu1SAud+ewrLJ4bC14dt0s8Gh3viZFwXJwvFTr0KVVQZMXhqHl0eFoI2ni+w4qhPasjEKSyqQmFkoOwqRybCcVeg/G07D1ckeTw5oIzuKKul0CgaFenFKHVk0lrPKHE3OwZJfzuHDST2tZlGj+hgc6o2fOe5MFozlrCIl5ZV4cmkc5j/SFd5uTrLjqFr/Ds1x8Hw2ikorZEchMgmWs4rM+fo4gn30GBPeUnYU1WvkaIeu/u6IPZ0pOwqRSbCcVWLXr5lYfzAVCyZYzxrNd2tQqBd+Ps6hDbJMLGcVKCipwNSP9uP9x7vDvVED2XE0Y3Anb2w5ngEhhOwoREbHclaBWZ/GY0CIJwaHesuOoiltmjeCnY0OZ9PzZUchMjqWs2Qb4i8iLiELcx/uLDuK5iiKggEhnth26rLsKERGx3KW6EpBKZ5bdQhLnuyJhg7WuUbz3erfwRPbTl6SHYPI6FjOkggh8NSKAxgX4Y9egc1kx9GsvsEe2P/bFZSUV/7xe5uOpuNkaq7EVER3j+UsyZpdSbh4tRgvjwqRHUXT9M72aN9Cj33n/rdK3YMLdmLk/O0SUxHdPZazBMlZRXhl7TF8NKUXGthxjea7FRXiia03hjay8kvg3MAWVQaB9JxrkpMR1R/L2cyqDAZEL9uH5+8NRrCPXnYci9C/gye237goeDI1D1393TGwoyfX3iBNYzmb2Xsbz8JGp+CpwUGyo1iMrv5uyMi5hku513AiNRchvnr0Dmz2p6EOIq1hOZvRydRc/HfTGSydHA6djncBGouNToe+wR7YfuoyjqfkoGPLxugV2Az7zmXJjkZUbyxnMyktr8KkJXF4c2xn+DZxlh3H4gwIuT6l7lhKDjr7uSHQywUFJZXI4LgzaRTL2Uxe/+YEApq7YFxEK9lRLNKADp747tBFZOSWoK2XCxRFQVhrd8QnX5UdjaheWM5msOdsJtbuS8F7E7mokam0aOKMSoMB7X30sNFd/7Hu1LIxjqdwvjNpk21dvllRlMkAIIRYZpo4lqegpALRy64vatSkkYPsOBbt+NsjYXPTWH7Hlm74dHeixERE9VfXM+e1APQmyGGxfl/UaEgnLmpkaq2aNfzTeH4nv8Y4foFnzqRNRhvWUBQlUlGUGEVRYlJSUoy1WU374fBF7OOiRtL4NnFGaXkVsvJLZEchqjOjlbMQIlYIESOEiPHz8zPWZjUrM68Ez31yCEujw7mokSSKoqBjS549kzbVtZwfBNBNURR/U4SxFAaDwJTl+zExMgA92zSVHceqhfg2xgmWM2lQncpZCLFMCDFGCJFkqkCWYPGWBORfK8eL93eQHcXqBfu4cjF+0iROpTOyk6m5eHvDaayY2hu2Nvzrla2dtyvOsJxJg9geRlRSXonHF8dh3rguaNWsoew4BCDI2xXnLhWgymCQHYWoTljORvTyF0fRoYUeY3v5yY5CNzR0sEMzFwckZxXJjkJUJyxnI9l4NA0/H8/Aggm8C1Bt2vm44tc0Dm2QtrCcjeByXgme/vgglkeHQ+9sLzsO3aKdt54XBUlzWM53yWAQmLJsHyZGBvBZgCoV7OOKX9PyZMcgqhOW8136cEsCCkoqOG1OxThjg7SI5XwXTlzIxTucNqd6bb1ckJRZhIpKztgg7WCj1NO1sko8vngvp81pgKO9LbzdnHD+coHsKES1xnKup5mfxqOTnxunzWlEOx9XnM1gOZN21Gk9Z7pubVwK9p7Nwu7XhnDanEa08+Zt3KQtPHOuo/OXCzDrs3isfioCjRy52pxWBHmxnElbWM51UFZRhcc+2IuXHghBx5aNZcehOgjydsXZDJYzaQfLuQ7+9eVRtGzaEE8OaCM7CtVRG89GSMosQmUVZ2yQNrCca2lD/EVsOpqOD57owXFmDXK0t4VXY0ckcY0N0giWcy2kZhfj2ZWH8PG03rw9W8MCeVGQNITlfAcVlQZM/HAvnhkahO4BTWTHobsQ5OWKBI47k0awnO/gjfUnoHeywzND28mOQncpyNuFZ86kGSznGmw9kYEv9yZjyeRw6HQcZ9a669PpeCMKaQPL+TbSrhZjyvL9WDG1F5q6OMiOQ0bQ1ssFv13mU1FIG1jO1SivrML4RXswbXAQIoI8ZMchI2noYIemLg64cKVYdhSiO2I5V+NfXx5FExcHzBjGcWZLE+TlwptRSBNYzrdYf+ACNh/LwFKOM1uk69PpOO5M6sdyvklCRj6eX30Yq5+KQGPOZ7ZI1y8K5smOQXRHLOcbissq8ej7e/Dq6FB08nOTHYdMJIhnzqQRLGcAQgg8u/IgOrdyw2ORrWXHIRMK9HJBQkY+DAYhOwpRjVjOAFZsP49TF/OwYEI3rpth4Vyd7KF3tsfFq5yxQepm9eUcn3QVb6w/gTVPRcCpAZ89YA24fChpgVWXc3ZhKcYv2oP3HuuGNp4usuOQmfBOQdICqy3nyioDHvtgL0b18MV93XxlxyEz4up0pAVWW86vrD0GW52CmDGhsqOQmfFGFNICqyzntXEp+DE+DR9P6w0bnVX+FVi1IG9XJKTnQwjO2CD1srpmOnEhF7M+i8fnz9wDt4YNZMchCdwaNoBTA1tk5JbIjkJ0W1ZVzlcLyzDuvV1459Gu6ODLB7RasyCOO5PKWU05X78AuAf3d/fF6J5+suOQZNdnbLCcSb2sppxfXXscOp2COQ/yAiBxrjOpn1WU87r9KfjhcCo+nsoLgHTd9UdWca4zqZfFN9WJC7l4YU08Pn+2D9wb8QIgXRd442GvnLFBamXR5ZyZV4KxC3fi3fFhCOEFQLpJUxcH6HQKsvJLZUchqpbFlnNpeRUefm8X/n6PP0b1aCk7DqlQkBfHnUm9al3OiqLoFUUZrShKlKIoXUwZ6m4JIfDMygPwcXfGi/eHyI5DKnV93JnlTOpUlzPn2QCOCCG2Aoi+9UVFUSIVRYlRFCUmJSXFWPnqZcFPZ3A2vQBLnuzJR03RbQV5ueIMy5lUqi7lrAeQc+PrvzwqRAgRK4SIEULE+Pn5GSFa/fx0JA1Lf0nAlzP6cAlQqhGfikJqVpf2yjNVCGM5lZqL6SsOYN3zfeHl5iQ7Dqkc5zqTmtWlnOcBiFIUJe/G16pypaAUYxfuwtt/74qw1k1kxyEN8HB1QFWVAVcKStHUxUF2HKI/qXU5CyHyAKwzXZT6K6uowrj3duOhXn4YE+4nOw5phKIoCPS+Pt+Z5Uxqo/mpdEIITF9xAB56B7w8qqPsOKQxfCoKqZXmy/nN9SeRmFmI5dHhnJlBdcbV6UitNF3On+5Owtp9KVj7XF842nNmBtUdn4pCaqXZco49fRmvfHUMXz/fl+OFVG9B3pzrTOqkyXI+k5aHxxfHYfVTvRHo5So7DmmYt5sTqgwCGTnXZEch+hPNlXNmXglGv7sTcx/ujIggD9lxSOMURUFXf3ccTroqOwrRn2iqnIvLKvHggp0Y38cfY3u3kh2HLESYvzviWc6kMpop5yqDAU8sjkM7Hz1m3ddBdhyyIGGt3XE4keVM6qKJchZCYOaaeBSVVuC/E7tBUThljoynW+smOJp8FcVllbKjEP1BE+X89g+nceC3bHz+bB/Y29rIjkMWRu9sj24BTfDC6sOYvHQfcorKZEciUn85r4o9j093J2H9C5FwcbSTHYcs1MyR7ZF3rRwXsouwZleS7DhE6i7nn46k4Y1vTmD9C5Hw0DvKjkMWLCLIA1882wczR7THD4cvyo5DpN5y3v/bFUxfcQBfPdcXAc1dZMchK9En2APnMvJxKZfznkkuVZbz2fR8PPLf3fgoOhxd/d1lxyErYm9rg8GdvPFjfJrsKGTlVFfO6TnXMOqdHXhzbGdEdfSSHYes0IiuLTi0QdKpqpxzi8vxwNs7ED0wkDeZkDQDO3riSHIOsgtLZUchjVkbl4KyiiqjbEtV5XyloBRjwlvi2WHtZEchK+bUwBYDQjyx4TCHNqj23v3xV7z1wykUlRpnvryqyrmtpwtmjuTdfyTfqO6++PZgquwYpBEfb/8NK3f8hh9m9Yd7owZG2aaqyplILQaFeiE+6SqHNuiOvt6Xgvnfn8L3s/ob9cHSLGeianBog2pj09F0vPj5EXw7sx/8PRoZddssZ6LbeKC7L747xKENqt7uM5mY9tF+fDWjD4J99EbfPsuZ6DYGhXrhcCKHNuiv4pOuYvyiPfhkegTCWjcxyT5YzkS34cyhDarGydRcPLhgJxY90QN9gk33wA+WM1ENOLRBN/s1LQ8PvL0D/3k0DMO7+Jh0XyxnohoMDvXCkaSryMwrkR2FJEvIyMd9b+3A3Ie74P7uvibfH8uZqAZODWwxtLMPvt5/QXYUkuj85QKMnL8dMWNC8WAvP7Psk+VMdAcP926FL/cmy45BkqRcKcLI+dsx+4EQPHKPv9n2y3ImuoM+wc1wpaAUZ9LyZEchM7uYXYx7523D8/e2x2ORAWbdN8uZ6A5sdDqMCffDl3EpsqOQGWXkXMO9/96GaYMDMWlAG7Pvn+VMVAtje/lhbVwKDAYhOwqZQXrONQybtw0T+wVg2uAgKRlYzkS10MG3MfTO9thzNkt2FDKx1OxiDJ27FY/3D8CM4cHScrCciWppbO9W+GwPH/5qyZKzijBs7lZMHRSIZ4bKXbqY5UxUS+MiWuGnI2nIv1YuOwqZwPnLBRg2dytmDA/G1EGBsuOwnIlqq6mLA/q1b461vDBocRIy8jF83ja8+ECIlIt/1WE5E9XBxH4BWBl7HkLwwqClOJOWhxHzt+PVMaGY0Le17Dh/YDkT1UFkcHMUllTgSHKO7ChkBCdTczFi/na88VBnjIsw3w0mtcFyJqoDnU7BhMgArIo9LzsK3aX9v13BfW/twDuPhpntluy6YDkT1dGj9/jju4OpKCypkB2F6mnriQyMXbgLyyb3NMsiRvXBciaqIw+9I/oEN8dXvDCoSd8dTMXkZfvxxbN9ENXRS3ac26pzOSuKMllRlMmmCEOkFVMGtsXiLQm8Y1BjPtmZiFmfxeP7Wf0Q3rap7Dg1qs+Z81oAeiPnINKUiKBmsLfVYfupS7KjUC29t/EM3vr+FDbOHoAQ38ay49yR0YY1FEWJVBQlRlGUmJSUFGNtlkiVFEXBtMGBWLwlQXYUugMhBOZ8fRyrdyZiy78GIqC5i+xItVJtOSuKMvqWX1F32pAQIlYIESOEiPHz8zN6UCK1GdPTD0dTcpGQkS87Ct1GRaUBU5bvx47Tl7D55Sh4uznJjlRrttX9phBiXQ1/5kEA3RRF8RdCcKEBsloO9jZ4vF8Almw5hwWPdZMdh25RWFKB8Yv2wEan4KfZUXBuUG3dqVadhzWEEMuEEGNYzETAkwPa4JsDF3CloFR2FLpJZl4Jhs3bCh93J3w5o4/mihngVDqiu+Khd8TferTEos1nZUehG85dKkDU61twbxcf/Hdid9jaaLPmtJmaSEVmDG+HlTvOI7eYq9XJtv+3Kxg6dytm3dcB/7w/BIqiyI5UbyxnorvUsmlDDO3sjWW/cOaGTN8dTMXDC3dhyZM98Wgf9SxgVF8sZyIjeP7eYCz55RyKSnlLt7kJIfDW96cw+/Mj+G5mPwxU8V1/dcFyJjKCQC9X9A32wJJfzsmOYlVKy6swaUkcNh5Nw46YwQj1c5MdyWhYzkRG8vKojli0+SxyispkR7EKWfnXZ2RUVglseikKzfWOsiMZFcuZyEjaeLpgZFgLLPjpV9lRLN6p1Fz0m7MFA0I8sXJabzjaa2+q3J2wnImM6MX7OuCT2ERk5FyTHcVibYi/iHvnb0fMmFC8PKojdDrtzsioCcuZyIi83JwwIbI15n57UnYUi1NlMOC1dccxa0081j3fF2PC/WRHMimWM5GR/ePe9th0LB1H+Sgro8ktLseYd3di37kr2DlnMMJaN5EdyeRYzkRGpne2x6ujQ/HCmsNc79kITqXmIvLVzWjr6YIfZvVHM1fLuvB3OyxnIhP4+z3+MBgEvtibLDuKpn29LwX3zt+Ol0d1xL8f6Qo7W+upLMu7xEmkAjqdgnfGh+GhBTsxvIsP9M72siNpSml5FWZ/fgTbTl3Chn/218Ti+MZmPf8MEZlZV393jAxrgdmfH5EdRVPOXSpA/9d+Rk5RGXa/NsQqixlgOROZ1GsPdcLuM5n4+Xi67Cia8MXeZAx64xdM6t8Gq6b3hquT9f6Pg8MaRCbU0MEOH0zqgehl+7H/zaYc3riN4rJK/GP1YRw8n40f/9kfHaz0bPlmPHMmMrG+wc0xpJMXXlhzGEJw9satDiVmI+L/NsFgENg1ZzCL+QaWM5EZzH24C05cyMXqXXyA0O8qKg14fd1xPLRgF14ZHYpl0eFo6GAnO5ZqcFiDyAycGthi9VMRGPzmVoT5u6N9C73sSFKdTc/Hk0vj0MzFAXFvDLW4RYuMgWfORGYS5O2KeeM649FFe5BnpU9NqTIY8P6mMxgydysm9muDdf+IZDHfBs+cicxoXIQ/jiTlYPyiPfjmH5FWdVPFydRcPLXiAJwdbLHtlUFo7dFIdiRVs56fDCKV+PcjXWBnq8Pzqw9ZxQXCkvJKvPLVMYycvx2P92+Dn14cwGKuBZYzkZnZ2uiwalpvxCddxVvfn5Idx6S2n7qEni9tRGp2Efa/OQwT+rbW9ENXzYnDGkQSNHK0w/oX+mHYvG2wtdHhHyPay45kVEmZhXjpi6P4NS0P8x/piqGdvWVH0hyWM5EkzfWO+OnF/hg6dxt0OgXPDQ+WHemuFZZU4J0Np7EqNhFPDw3Cqmm94WBvIzuWJrGciSTybOyEn2YPwMj525GVX4o3x3bW5JM9KioNWLM7CfO/O4m+wc2x/82h8GzsJDuWpnHMmUgybzcnbH1lEI4m52D8B3twraxSdqRaqzIY8OXeZIS9+CO+O5iKz565B8uiw1nMRsByJlKBxs72+H5WPzjZ2yAy5mecTc+XHalGlVUGrD9wAeEvb8JH23/Doid64Id/9reKJ5SYC4c1iFSigZ0Nlk4Ox+pdSRgydyteGR2Kx/q2VtUwx7WySny2Ownvbz4LD1dHvPZQJwwO9eIMDBNgOROpiKIomNC3NXoENMGU5fvwVVwyFk7ohnY+eqm5Uq4U4ZPYRHyyMxHdA5pg6eRwhLdtKjWTpWM5E6lQkLcrtr0yCCt3JGLYvG0YEdYCL4xoD98mzmbLUFpehZ+Pp2PljvM4mpKLh3v7YdNLAxDo5Wq2DNaM5UykUjY6HSYNaIMHuvti0eaziPi/TRjWxQcTI1uje0ATkwwllJZXYfvpS/j2QCo2H0tHSMvGmNC3Nb6c0ZdT4syM5Uykcu6NGuDVMaF4akgQ1uxKRPSyfbC3tcHIsBYY0skLXVq513tcurS8Cqcu5mLXmSzEnr6MQ4nZCG3phlE9fPHG2M7w4KJE0rCciTTCvVEDzBgejGeHtcO+c1ew6Vg6pizfj0u5Jejk54ZOfm7wa+oMH3dnNHVpAEd7WzSw06GySqC4rBJFpRVIz7mG1OxiJGcV4VRqHn67XAB/j0aICGyGyVFtsebpCKt+NJSasJyJNEZRFPQKbIZegc3w+kOdkV1YiqPJOTh+IRenLuZh87F0XCkoQ2lFFUorqmBro0PDBrZwdrCFt5sTfJs4I7xtU0wa0AYdWujhaM8aUCO+K0Qa16SRAwZ29MLAjl6yo5AR8SYUIiIVYjkTEakQy5mISIXqNOasKIoegD+AKABHhBBbTRGKiMja1fXMOQpAkhDiLQDRJshDRESo45mzEGIdACiKMhrA0ptfUxQlEkAkAEyYMMEo4YiIrFW15XyjfG+W9/sQhqIoXQAk3fj1ByFELIBYAIiJiXnV2EGJiKxJteX8+xnyrW4U83wAeQAOAXjLZMmIiKyYYopHsyuK8hGANKNv2PT8AKRIzmBufrCuY/aDdR0vwGPWEh8hxCTAROWsVYqixAghYmTnMCdrO2ZrO16Ax6xVnOdMRKRCLOc/i5UdQIJY2QHMLFZ2AAliZQeQIFZ2gLvFYQ0iIhXimTMRkQqxnImIVIjlTESkQlxsH38s6BSF6zfX5AghjlTzPfMBzBNC5Jk1nInUdMyWssBVLY6xxvdci6zhfb2VpX5+eeZ83Wz874f1Lws6KYriD0Bv7lAmVtMxW8oCVzUdY43vuYZZw/t6K4v8/PLM+To9gJwbX7vd5vVEc4UxEz1uc8w1LXClMXrc/n2t6TUt08Py39db6WGBn1+rKucaFnTKq+HPTMb1RZ5a4/qZR7XrjqhVfY75xp+rdoErjcmr52tallfTixbyvt4q73YvaPnzy3nOqH7MSlGU0TedaegBLAfw1e0WhdKamo751gWubvw3WHPucIx/eU1WTmOyhvf1Vpb6+WU5ExGpEC8IEhGpEMuZiEiFWM5ERCr0/3pQjTPDk1E9AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import pymc3 as pm\n",
"import pymc3_ext as pmx\n",
"import aesara_theano_fallback.tensor as tt\n",
"import astropy.units as u\n",
"\n",
"with pm.Model() as model:\n",
" \n",
" # The star\n",
" A = starry.Primary(\n",
" starry.Map(udeg=2, rv=True, amp=1, veq=5e4, alpha=0, obl=30),\n",
" r=1.0,\n",
" m=1.0,\n",
" length_unit=u.Rsun,\n",
" mass_unit=u.Msun,\n",
" )\n",
" A.map[1] = 0.5\n",
" A.map[2] = 0.25\n",
"\n",
" # The planet\n",
" b = starry.Secondary(\n",
" starry.Map(rv=True, amp=0, veq=0),\n",
" r=0.1,\n",
" porb=1.0,\n",
" m=0.01,\n",
" t0=0.0,\n",
" inc=80.0,\n",
" ecc=0.3,\n",
" w=60,\n",
" length_unit=u.Rsun,\n",
" mass_unit=u.Msun,\n",
" angle_unit=u.degree,\n",
" time_unit=u.day,\n",
" )\n",
"\n",
" # Instantiate the system\n",
" sys = starry.System(A, b)\n",
"\n",
" # Evaluate it\n",
" t = np.linspace(-0.5, 0.5, 1000)\n",
" flux = pmx.eval_in_model(sys.flux(t))\n",
" rv = pmx.eval_in_model(sys.rv(t))\n",
" \n",
" \n",
" plt.plot(t, flux)\n",
" plt.show()\n",
" plt.plot(t, rv / 1e3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "42abb773-6cf7-48c9-9b42-3102c1c30e44",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "exoplanet",
"language": "python",
"name": "exoplanet"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment