Last active
July 28, 2019 10:38
-
-
Save docmarionum1/03fcd2d80119199c7a8ba3abc3019f14 to your computer and use it in GitHub Desktop.
Autoencode MNIST
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "name": "Autoencode MNIST", | |
| "version": "0.3.2", | |
| "provenance": [], | |
| "collapsed_sections": [], | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| }, | |
| "accelerator": "GPU" | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/docmarionum1/03fcd2d80119199c7a8ba3abc3019f14/autoencode-mnist.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "UkNLlSWcu9ET", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "// Test\n", | |
| "from keras.datasets import mnist\n", | |
| "import keras" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "Mpq7qdFou_Os", | |
| "colab_type": "code", | |
| "outputId": "72983f31-bbd5-481d-fe05-14b1b90cb555", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 51 | |
| } | |
| }, | |
| "source": [ | |
| "(x_train, y_train), (x_test, y_test) = mnist.load_data()" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Downloading data from https://s3.amazonaws.com/img-datasets/mnist.npz\n", | |
| "11493376/11490434 [==============================] - 3s 0us/step\n" | |
| ], | |
| "name": "stdout" | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "hhaiOil3vGj6", | |
| "colab_type": "code", | |
| "outputId": "61e7ac08-69f6-4b70-d36f-3638728a2734", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 34 | |
| } | |
| }, | |
| "source": [ | |
| "x_train.shape" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(60000, 28, 28)" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 5 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "YMyk9MzVPPEE", | |
| "colab_type": "code", | |
| "outputId": "7720a274-2de9-40eb-bef3-9bcc7d97db51", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 51 | |
| } | |
| }, | |
| "source": [ | |
| "y_train[:20]" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([5, 0, 4, 1, 9, 2, 1, 3, 1, 4, 3, 5, 3, 6, 1, 7, 2, 8, 6, 9],\n", | |
| " dtype=uint8)" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 165 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "qKev_WxQPVIt", | |
| "colab_type": "code", | |
| "outputId": "29fc8d16-5547-49b5-ecdb-efffec728d8b", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 34 | |
| } | |
| }, | |
| "source": [ | |
| "y_train[[0,1,2,3,4,5,7,13,15,17]]" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([5, 0, 4, 1, 9, 2, 3, 6, 7, 8], dtype=uint8)" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 169 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "PTzF3OmXzaJD", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "y_train2 = keras.utils.to_categorical(y_train)" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "G7I_wyxEvKiY", | |
| "colab_type": "code", | |
| "outputId": "3b5147a6-aab9-4ef0-e544-34785818991e", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 204 | |
| } | |
| }, | |
| "source": [ | |
| "from keras.models import Sequential\n", | |
| "from keras.layers import Dense, Flatten, Input, Reshape, Conv2D, MaxPooling2D\n", | |
| "\n", | |
| "model = Sequential()\n", | |
| "#model.add(Dense(units=64, activation='relu', input_shape=(28,28)))\n", | |
| "model.add(Dense(units=64, activation='relu', input_dim=(28*28)))\n", | |
| "model.add(Dense(units=64, activation='relu'))\n", | |
| "model.add(Dense(units=64, activation='relu'))\n", | |
| "#model.add(Input(shape=(28,28)))\n", | |
| "#model.add(Flatten())\n", | |
| "#model.add(Dense(units=10, activation='relu'))\n", | |
| "'''model.add(Dense(units=10, activation='softmax'))\n", | |
| "model.compile(loss='categorical_crossentropy',\n", | |
| " optimizer='rmsprop',\n", | |
| " metrics=['accuracy'])'''\n", | |
| "\n", | |
| "model.add(Dense(units=28*28, activation='relu'))\n", | |
| "model.add(Reshape((28,28)))\n", | |
| "model.compile(loss='mean_squared_error', optimizer='sgd', metrics=['mse'])\n", | |
| "\n", | |
| "model.fit(x_train.reshape((60000,-1)), x_train, epochs=5, batch_size=32)" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 1/5\n", | |
| "60000/60000 [==============================] - 10s 173us/step - loss: inf - mean_squared_error: inf\n", | |
| "Epoch 2/5\n", | |
| "60000/60000 [==============================] - 10s 172us/step - loss: 7204.1494 - mean_squared_error: 7204.1494\n", | |
| "Epoch 3/5\n", | |
| "31040/60000 [==============>...............] - ETA: 5s - loss: 7210.6787 - mean_squared_error: 7210.6787" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "60000/60000 [==============================] - 11s 175us/step - loss: 7204.1486 - mean_squared_error: 7204.1486\n", | |
| "Epoch 4/5\n", | |
| "60000/60000 [==============================] - 11s 176us/step - loss: 7204.1489 - mean_squared_error: 7204.1489\n", | |
| "Epoch 5/5\n", | |
| "38144/60000 [==================>...........] - ETA: 3s - loss: 7202.1539 - mean_squared_error: 7202.1539" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "60000/60000 [==============================] - 11s 175us/step - loss: 7204.1498 - mean_squared_error: 7204.1498\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "<keras.callbacks.History at 0x7f54e0d4a198>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 50 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "pS5tdOmB5cOM", | |
| "colab_type": "code", | |
| "outputId": "1f7d3d3f-8ceb-41aa-f601-2f45bd4fa16a", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 3434 | |
| } | |
| }, | |
| "source": [ | |
| "from keras.models import Sequential\n", | |
| "from keras.layers import Dense, Flatten, Input, Reshape, Conv2D, MaxPooling2D, Dropout\n", | |
| "\n", | |
| "model = Sequential()\n", | |
| "model.add(Conv2D(32, (3,3), activation='relu', input_shape=(28,28, 1)))\n", | |
| "model.add(Conv2D(32, (3, 3), activation='relu'))\n", | |
| "model.add(MaxPooling2D(pool_size=(2,2)))\n", | |
| "model.add(Dropout(0.25))\n", | |
| "\n", | |
| "model.add(Conv2D(64, (3, 3), activation='relu'))\n", | |
| "model.add(Conv2D(64, (3, 3), activation='relu'))\n", | |
| "model.add(MaxPooling2D(pool_size=(2, 2)))\n", | |
| "model.add(Dropout(0.25))\n", | |
| "model.add(Flatten())\n", | |
| "#model.add(Dense(units=64, activation='relu', input_shape=(28,28)))\n", | |
| "#model.add(Dense(units=64, activation='relu', input_dim=(28*28)))\n", | |
| "#model.add(Dense(units=64, activation='relu'))\n", | |
| "#model.add(Dense(units=64, activation='relu'))\n", | |
| "#model.add(Input(shape=(28,28)))\n", | |
| "#model.add(Flatten())\n", | |
| "#model.add(Dense(units=10, activation='relu'))\n", | |
| "'''model.add(Dense(units=10, activation='softmax'))\n", | |
| "model.compile(loss='categorical_crossentropy',\n", | |
| " optimizer='rmsprop',\n", | |
| " metrics=['accuracy'])'''\n", | |
| "model.add(Dense(units=128, activation='relu'))\n", | |
| "model.add(Dense(units=20, activation='relu'))\n", | |
| "\n", | |
| "model2 = Sequential()\n", | |
| "#model2.add(model)\n", | |
| "model2.add(Dense(units=128, activation='relu', input_dim=20))\n", | |
| "model2.add(Dense(units=128, activation='relu'))\n", | |
| "model2.add(Dense(units=28*28, activation='relu'))\n", | |
| "model2.add(Reshape((28,28)))\n", | |
| "\n", | |
| "model.add(model2)\n", | |
| "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae'])\n", | |
| "\n", | |
| "model.fit(x_train.reshape((60000, 28, 28, 1))[[0,1,2,3,4,5,7,13,15,17]], x_train[[0,1,2,3,4,5,7,13,15,17]], epochs=100, batch_size=1)" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 1/100\n", | |
| "10/10 [==============================] - 2s 244ms/step - loss: 6733.3794 - mean_absolute_error: 38.0692\n", | |
| "Epoch 2/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 5582.5420 - mean_absolute_error: 34.0681\n", | |
| "Epoch 3/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 5321.2958 - mean_absolute_error: 32.5951\n", | |
| "Epoch 4/100\n", | |
| "10/10 [==============================] - 0s 12ms/step - loss: 5205.4418 - mean_absolute_error: 31.7477\n", | |
| "Epoch 5/100\n", | |
| "10/10 [==============================] - 0s 15ms/step - loss: 5261.6271 - mean_absolute_error: 31.8921\n", | |
| "Epoch 6/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 5044.8353 - mean_absolute_error: 31.7495\n", | |
| "Epoch 7/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 5051.9802 - mean_absolute_error: 31.8463\n", | |
| "Epoch 8/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 5083.7803 - mean_absolute_error: 31.7922\n", | |
| "Epoch 9/100\n", | |
| "10/10 [==============================] - 0s 15ms/step - loss: 5083.1535 - mean_absolute_error: 31.3736\n", | |
| "Epoch 10/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 5042.0081 - mean_absolute_error: 31.9365\n", | |
| "Epoch 11/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 4949.4684 - mean_absolute_error: 31.6230\n", | |
| "Epoch 12/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 4953.1372 - mean_absolute_error: 31.5350\n", | |
| "Epoch 13/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 4859.7356 - mean_absolute_error: 31.0668\n", | |
| "Epoch 14/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 4834.6161 - mean_absolute_error: 30.9966\n", | |
| "Epoch 15/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 4785.6746 - mean_absolute_error: 30.5686\n", | |
| "Epoch 16/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 4705.1812 - mean_absolute_error: 30.0901\n", | |
| "Epoch 17/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 4568.8372 - mean_absolute_error: 29.1824\n", | |
| "Epoch 18/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 4484.7044 - mean_absolute_error: 29.3091\n", | |
| "Epoch 19/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 4281.4589 - mean_absolute_error: 27.9608\n", | |
| "Epoch 20/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 4131.3956 - mean_absolute_error: 27.2567\n", | |
| "Epoch 21/100\n", | |
| " 5/10 [==============>...............] - ETA: 0s - loss: 3581.0093 - mean_absolute_error: 24.5863" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "10/10 [==============================] - 0s 14ms/step - loss: 4013.0765 - mean_absolute_error: 26.7240\n", | |
| "Epoch 22/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 3864.0555 - mean_absolute_error: 26.1970\n", | |
| "Epoch 23/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 3932.5975 - mean_absolute_error: 26.0643\n", | |
| "Epoch 24/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 3730.7448 - mean_absolute_error: 25.1171\n", | |
| "Epoch 25/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 3617.1362 - mean_absolute_error: 24.9656\n", | |
| "Epoch 26/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 3439.1230 - mean_absolute_error: 23.9041\n", | |
| "Epoch 27/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 3402.5773 - mean_absolute_error: 23.2060\n", | |
| "Epoch 28/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 3372.6912 - mean_absolute_error: 23.1046\n", | |
| "Epoch 29/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 3152.2931 - mean_absolute_error: 22.3200\n", | |
| "Epoch 30/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 3004.5303 - mean_absolute_error: 20.9280\n", | |
| "Epoch 31/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2781.4330 - mean_absolute_error: 19.6241\n", | |
| "Epoch 32/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 2835.2786 - mean_absolute_error: 19.9831\n", | |
| "Epoch 33/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 2895.0470 - mean_absolute_error: 19.8963\n", | |
| "Epoch 34/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 3159.9293 - mean_absolute_error: 21.1947\n", | |
| "Epoch 35/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2794.2014 - mean_absolute_error: 19.7791\n", | |
| "Epoch 36/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2524.3535 - mean_absolute_error: 18.2134\n", | |
| "Epoch 37/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 2410.3101 - mean_absolute_error: 17.7082\n", | |
| "Epoch 38/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2321.6173 - mean_absolute_error: 16.7891\n", | |
| "Epoch 39/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2178.3495 - mean_absolute_error: 15.8175\n", | |
| "Epoch 40/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2061.5776 - mean_absolute_error: 15.1508\n", | |
| "Epoch 41/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1980.0811 - mean_absolute_error: 14.3280\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 42/100\n", | |
| "10/10 [==============================] - 0s 12ms/step - loss: 1903.8280 - mean_absolute_error: 13.5417\n", | |
| "Epoch 43/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1999.2143 - mean_absolute_error: 14.5282\n", | |
| "Epoch 44/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1988.3222 - mean_absolute_error: 14.2757\n", | |
| "Epoch 45/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1810.7715 - mean_absolute_error: 12.5877\n", | |
| "Epoch 46/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1849.3492 - mean_absolute_error: 13.0238\n", | |
| "Epoch 47/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1955.1485 - mean_absolute_error: 14.0695\n", | |
| "Epoch 48/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 2408.6631 - mean_absolute_error: 17.4905\n", | |
| "Epoch 49/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2330.4980 - mean_absolute_error: 16.3164\n", | |
| "Epoch 50/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2109.0325 - mean_absolute_error: 14.8885\n", | |
| "Epoch 51/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2301.9350 - mean_absolute_error: 16.5746\n", | |
| "Epoch 52/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 2096.1306 - mean_absolute_error: 15.2043\n", | |
| "Epoch 53/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1909.7947 - mean_absolute_error: 13.7071\n", | |
| "Epoch 54/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1855.6498 - mean_absolute_error: 13.2633\n", | |
| "Epoch 55/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1772.0764 - mean_absolute_error: 12.1743\n", | |
| "Epoch 56/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1728.2476 - mean_absolute_error: 11.7469\n", | |
| "Epoch 57/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1674.9726 - mean_absolute_error: 11.0802\n", | |
| "Epoch 58/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1636.8266 - mean_absolute_error: 10.5859\n", | |
| "Epoch 59/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1901.6390 - mean_absolute_error: 13.4450\n", | |
| "Epoch 60/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1768.0646 - mean_absolute_error: 11.9904\n", | |
| "Epoch 61/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1755.0993 - mean_absolute_error: 12.0260\n", | |
| "Epoch 62/100\n", | |
| " 5/10 [==============>...............] - ETA: 0s - loss: 1908.0919 - mean_absolute_error: 12.8863" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1953.4418 - mean_absolute_error: 13.8370\n", | |
| "Epoch 63/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1898.1360 - mean_absolute_error: 13.6814\n", | |
| "Epoch 64/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1809.0847 - mean_absolute_error: 12.3388\n", | |
| "Epoch 65/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2054.5833 - mean_absolute_error: 14.8655\n", | |
| "Epoch 66/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1918.4077 - mean_absolute_error: 13.6228\n", | |
| "Epoch 67/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 2191.2707 - mean_absolute_error: 15.4489\n", | |
| "Epoch 68/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2203.0540 - mean_absolute_error: 16.0174\n", | |
| "Epoch 69/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2076.3325 - mean_absolute_error: 14.9373\n", | |
| "Epoch 70/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1970.4050 - mean_absolute_error: 14.3395\n", | |
| "Epoch 71/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1903.8144 - mean_absolute_error: 13.9078\n", | |
| "Epoch 72/100\n", | |
| "10/10 [==============================] - 0s 15ms/step - loss: 1782.2523 - mean_absolute_error: 12.8461\n", | |
| "Epoch 73/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1848.3066 - mean_absolute_error: 13.4904\n", | |
| "Epoch 74/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1757.5872 - mean_absolute_error: 12.1851\n", | |
| "Epoch 75/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1701.7195 - mean_absolute_error: 11.7130\n", | |
| "Epoch 76/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1701.9168 - mean_absolute_error: 11.8657\n", | |
| "Epoch 77/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1550.0354 - mean_absolute_error: 9.3834\n", | |
| "Epoch 78/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1650.2111 - mean_absolute_error: 10.9717\n", | |
| "Epoch 79/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1672.9943 - mean_absolute_error: 11.1054\n", | |
| "Epoch 80/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1624.8385 - mean_absolute_error: 10.8155\n", | |
| "Epoch 81/100\n", | |
| "10/10 [==============================] - 0s 15ms/step - loss: 1647.8275 - mean_absolute_error: 11.1581\n", | |
| "Epoch 82/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1676.3653 - mean_absolute_error: 11.3580\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 83/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1682.2713 - mean_absolute_error: 10.9321\n", | |
| "Epoch 84/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1781.1029 - mean_absolute_error: 12.4862\n", | |
| "Epoch 85/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1623.6223 - mean_absolute_error: 10.5703\n", | |
| "Epoch 86/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1774.7470 - mean_absolute_error: 12.7204\n", | |
| "Epoch 87/100\n", | |
| "10/10 [==============================] - 0s 12ms/step - loss: 1915.6747 - mean_absolute_error: 13.5750\n", | |
| "Epoch 88/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1739.0203 - mean_absolute_error: 12.0415\n", | |
| "Epoch 89/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 2200.3268 - mean_absolute_error: 15.9535\n", | |
| "Epoch 90/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1879.0781 - mean_absolute_error: 13.8025\n", | |
| "Epoch 91/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1760.1108 - mean_absolute_error: 12.4674\n", | |
| "Epoch 92/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1706.2740 - mean_absolute_error: 11.7989\n", | |
| "Epoch 93/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1738.5837 - mean_absolute_error: 12.2190\n", | |
| "Epoch 94/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1663.4180 - mean_absolute_error: 11.4475\n", | |
| "Epoch 95/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1692.1913 - mean_absolute_error: 11.4842\n", | |
| "Epoch 96/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1783.2311 - mean_absolute_error: 12.8805\n", | |
| "Epoch 97/100\n", | |
| "10/10 [==============================] - 0s 15ms/step - loss: 1843.2709 - mean_absolute_error: 13.1248\n", | |
| "Epoch 98/100\n", | |
| "10/10 [==============================] - 0s 13ms/step - loss: 1853.9022 - mean_absolute_error: 12.9432\n", | |
| "Epoch 99/100\n", | |
| "10/10 [==============================] - 0s 15ms/step - loss: 1747.3532 - mean_absolute_error: 12.0403\n", | |
| "Epoch 100/100\n", | |
| "10/10 [==============================] - 0s 14ms/step - loss: 1614.5061 - mean_absolute_error: 10.5558\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "<keras.callbacks.History at 0x7f54a2cd41d0>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 173 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "zt9xHVrQGMRP", | |
| "colab_type": "code", | |
| "outputId": "925dc2ee-83f5-448e-b4bd-7b2d25933663", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 34034 | |
| } | |
| }, | |
| "source": [ | |
| " from keras.models import Sequential\n", | |
| "from keras.layers import Dense, Flatten, Input, Reshape, Conv2D, MaxPooling2D, Dropout\n", | |
| "\n", | |
| "model1 = Sequential()\n", | |
| "model1.add(Conv2D(32, (3,3), activation='relu', input_shape=(28,28, 1)))\n", | |
| "model1.add(Conv2D(32, (3, 3), activation='relu'))\n", | |
| "model1.add(MaxPooling2D(pool_size=(2,2)))\n", | |
| "model1.add(Dropout(0.25))\n", | |
| "\n", | |
| "model1.add(Conv2D(64, (3, 3), activation='relu'))\n", | |
| "model1.add(Conv2D(64, (3, 3), activation='relu'))\n", | |
| "model1.add(MaxPooling2D(pool_size=(2, 2)))\n", | |
| "model1.add(Dropout(0.25))\n", | |
| "model1.add(Flatten())\n", | |
| "#model.add(Dense(units=64, activation='relu', input_shape=(28,28)))\n", | |
| "#model.add(Dense(units=64, activation='relu', input_dim=(28*28)))\n", | |
| "#model.add(Dense(units=64, activation='relu'))\n", | |
| "#model.add(Dense(units=64, activation='relu'))\n", | |
| "#model.add(Input(shape=(28,28)))\n", | |
| "#model.add(Flatten())\n", | |
| "#model.add(Dense(units=10, activation='relu'))\n", | |
| "'''model.add(Dense(units=10, activation='softmax'))\n", | |
| "model.compile(loss='categorical_crossentropy',\n", | |
| " optimizer='rmsprop',\n", | |
| " metrics=['accuracy'])'''\n", | |
| "model1.add(Dense(units=128, activation='relu'))\n", | |
| "model1.add(Dense(units=128, activation='relu'))\n", | |
| "x = 50\n", | |
| "model1.add(Dense(units=x, activation='softmax'))\n", | |
| "\n", | |
| "model2 = Sequential()\n", | |
| "#model2.add(model)\n", | |
| "model2.add(Dense(units=128, activation='relu', input_dim=x))\n", | |
| "#model2.add(Dense(units=128, activation='relu'))\n", | |
| "model2.add(Dense(units=128, activation='relu'))\n", | |
| "model2.add(Dense(units=28*28, activation='relu'))\n", | |
| "model2.add(Reshape((28,28)))\n", | |
| "\n", | |
| "model = Sequential()\n", | |
| "model.add(model1)\n", | |
| "model.add(model2)\n", | |
| "model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae'])\n", | |
| "\n", | |
| "model.fit(x_train.reshape((60000, 28, 28, 1))[[0,1,2,3,4,5,7,13,15,17]], x_train[[0,1,2,3,4,5,7,13,15,17]], epochs=1000, batch_size=10)" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 1/1000\n", | |
| "10/10 [==============================] - 3s 311ms/step - loss: 7262.8882 - mean_absolute_error: 33.7721\n", | |
| "Epoch 2/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7262.6509 - mean_absolute_error: 33.7721\n", | |
| "Epoch 3/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7262.4360 - mean_absolute_error: 33.7723\n", | |
| "Epoch 4/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7262.0142 - mean_absolute_error: 33.7731\n", | |
| "Epoch 5/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7261.6299 - mean_absolute_error: 33.7732\n", | |
| "Epoch 6/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7261.2070 - mean_absolute_error: 33.7729\n", | |
| "Epoch 7/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7260.7109 - mean_absolute_error: 33.7728\n", | |
| "Epoch 8/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7260.1436 - mean_absolute_error: 33.7728\n", | |
| "Epoch 9/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 7259.4961 - mean_absolute_error: 33.7728\n", | |
| "Epoch 10/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 7258.7656 - mean_absolute_error: 33.7730\n", | |
| "Epoch 11/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7257.9478 - mean_absolute_error: 33.7734\n", | |
| "Epoch 12/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7257.0342 - mean_absolute_error: 33.7739\n", | |
| "Epoch 13/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7256.0181 - mean_absolute_error: 33.7747\n", | |
| "Epoch 14/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7254.8906 - mean_absolute_error: 33.7757\n", | |
| "Epoch 15/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 7253.6445 - mean_absolute_error: 33.7770\n", | |
| "Epoch 16/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7252.2749 - mean_absolute_error: 33.7784\n", | |
| "Epoch 17/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7250.7705 - mean_absolute_error: 33.7800\n", | |
| "Epoch 18/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7249.1235 - mean_absolute_error: 33.7819\n", | |
| "Epoch 19/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7247.3228 - mean_absolute_error: 33.7839\n", | |
| "Epoch 20/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7245.3594 - mean_absolute_error: 33.7862\n", | |
| "Epoch 21/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7243.2236 - mean_absolute_error: 33.7887\n", | |
| "Epoch 22/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7240.9038 - mean_absolute_error: 33.7913\n", | |
| "Epoch 23/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7238.3799 - mean_absolute_error: 33.7942\n", | |
| "Epoch 24/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7235.6460 - mean_absolute_error: 33.7974\n", | |
| "Epoch 25/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 7232.6929 - mean_absolute_error: 33.8007\n", | |
| "Epoch 26/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7229.5088 - mean_absolute_error: 33.8044\n", | |
| "Epoch 27/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7226.0796 - mean_absolute_error: 33.8083\n", | |
| "Epoch 28/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7222.3955 - mean_absolute_error: 33.8125\n", | |
| "Epoch 29/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7218.4404 - mean_absolute_error: 33.8170\n", | |
| "Epoch 30/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7214.2041 - mean_absolute_error: 33.8219\n", | |
| "Epoch 31/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 7209.6641 - mean_absolute_error: 33.8271\n", | |
| "Epoch 32/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7204.8062 - mean_absolute_error: 33.8327\n", | |
| "Epoch 33/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7199.6123 - mean_absolute_error: 33.8387\n", | |
| "Epoch 34/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7194.0718 - mean_absolute_error: 33.8451\n", | |
| "Epoch 35/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7188.1704 - mean_absolute_error: 33.8519\n", | |
| "Epoch 36/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7181.8936 - mean_absolute_error: 33.8591\n", | |
| "Epoch 37/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7175.2251 - mean_absolute_error: 33.8667\n", | |
| "Epoch 38/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7168.1514 - mean_absolute_error: 33.8749\n", | |
| "Epoch 39/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 7160.6562 - mean_absolute_error: 33.8836\n", | |
| "Epoch 40/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7152.7256 - mean_absolute_error: 33.8929\n", | |
| "Epoch 41/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7144.3423 - mean_absolute_error: 33.9026\n", | |
| "Epoch 42/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7135.4893 - mean_absolute_error: 33.9129\n", | |
| "Epoch 43/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7126.1533 - mean_absolute_error: 33.9237\n", | |
| "Epoch 44/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7116.3188 - mean_absolute_error: 33.9351\n", | |
| "Epoch 45/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7105.9702 - mean_absolute_error: 33.9470\n", | |
| "Epoch 46/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7095.0923 - mean_absolute_error: 33.9594\n", | |
| "Epoch 47/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7083.6665 - mean_absolute_error: 33.9724\n", | |
| "Epoch 48/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7071.6807 - mean_absolute_error: 33.9860\n", | |
| "Epoch 49/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7059.1196 - mean_absolute_error: 34.0002\n", | |
| "Epoch 50/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7045.9712 - mean_absolute_error: 34.0150\n", | |
| "Epoch 51/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7032.2188 - mean_absolute_error: 34.0305\n", | |
| "Epoch 52/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7017.8516 - mean_absolute_error: 34.0466\n", | |
| "Epoch 53/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 7002.8564 - mean_absolute_error: 34.0633\n", | |
| "Epoch 54/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6987.2212 - mean_absolute_error: 34.0806\n", | |
| "Epoch 55/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6970.9336 - mean_absolute_error: 34.0987\n", | |
| "Epoch 56/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6953.9790 - mean_absolute_error: 34.1174\n", | |
| "Epoch 57/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6936.3491 - mean_absolute_error: 34.1369\n", | |
| "Epoch 58/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6918.0352 - mean_absolute_error: 34.1573\n", | |
| "Epoch 59/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 6899.0283 - mean_absolute_error: 34.1784\n", | |
| "Epoch 60/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6879.3203 - mean_absolute_error: 34.2001\n", | |
| "Epoch 61/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6858.9023 - mean_absolute_error: 34.2224\n", | |
| "Epoch 62/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6837.7686 - mean_absolute_error: 34.2451\n", | |
| "Epoch 63/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6815.9150 - mean_absolute_error: 34.2685\n", | |
| "Epoch 64/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6793.3359 - mean_absolute_error: 34.2924\n", | |
| "Epoch 65/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6770.0288 - mean_absolute_error: 34.3170\n", | |
| "Epoch 66/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6745.9937 - mean_absolute_error: 34.3420\n", | |
| "Epoch 67/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6721.2280 - mean_absolute_error: 34.3675\n", | |
| "Epoch 68/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6695.7290 - mean_absolute_error: 34.3933\n", | |
| "Epoch 69/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6669.5015 - mean_absolute_error: 34.4194\n", | |
| "Epoch 70/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6642.5498 - mean_absolute_error: 34.4459\n", | |
| "Epoch 71/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 6614.8813 - mean_absolute_error: 34.4729\n", | |
| "Epoch 72/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6586.5010 - mean_absolute_error: 34.5003\n", | |
| "Epoch 73/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6557.4194 - mean_absolute_error: 34.5282\n", | |
| "Epoch 74/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6527.6475 - mean_absolute_error: 34.5560\n", | |
| "Epoch 75/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6497.1982 - mean_absolute_error: 34.5837\n", | |
| "Epoch 76/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6466.0854 - mean_absolute_error: 34.6111\n", | |
| "Epoch 77/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6434.3252 - mean_absolute_error: 34.6387\n", | |
| "Epoch 78/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6401.9111 - mean_absolute_error: 34.6666\n", | |
| "Epoch 79/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6368.8799 - mean_absolute_error: 34.6945\n", | |
| "Epoch 80/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6335.2529 - mean_absolute_error: 34.7217\n", | |
| "Epoch 81/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6301.0571 - mean_absolute_error: 34.7488\n", | |
| "Epoch 82/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6266.2930 - mean_absolute_error: 34.7760\n", | |
| "Epoch 83/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6231.0020 - mean_absolute_error: 34.8031\n", | |
| "Epoch 84/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6195.2144 - mean_absolute_error: 34.8300\n", | |
| "Epoch 85/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6158.9614 - mean_absolute_error: 34.8572\n", | |
| "Epoch 86/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6122.2603 - mean_absolute_error: 34.8841\n", | |
| "Epoch 87/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6085.1528 - mean_absolute_error: 34.9099\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 88/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6047.6733 - mean_absolute_error: 34.9344\n", | |
| "Epoch 89/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 6009.8584 - mean_absolute_error: 34.9574\n", | |
| "Epoch 90/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5971.7432 - mean_absolute_error: 34.9796\n", | |
| "Epoch 91/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5933.3662 - mean_absolute_error: 35.0020\n", | |
| "Epoch 92/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5894.7646 - mean_absolute_error: 35.0235\n", | |
| "Epoch 93/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5855.9795 - mean_absolute_error: 35.0431\n", | |
| "Epoch 94/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5817.0503 - mean_absolute_error: 35.0605\n", | |
| "Epoch 95/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5778.0200 - mean_absolute_error: 35.0759\n", | |
| "Epoch 96/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5738.9312 - mean_absolute_error: 35.0900\n", | |
| "Epoch 97/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5699.8271 - mean_absolute_error: 35.1029\n", | |
| "Epoch 98/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5660.7539 - mean_absolute_error: 35.1143\n", | |
| "Epoch 99/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5621.7588 - mean_absolute_error: 35.1245\n", | |
| "Epoch 100/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5582.8877 - mean_absolute_error: 35.1326\n", | |
| "Epoch 101/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5544.1899 - mean_absolute_error: 35.1388\n", | |
| "Epoch 102/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5505.7144 - mean_absolute_error: 35.1444\n", | |
| "Epoch 103/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5467.5093 - mean_absolute_error: 35.1483\n", | |
| "Epoch 104/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5429.6250 - mean_absolute_error: 35.1504\n", | |
| "Epoch 105/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5392.1123 - mean_absolute_error: 35.1519\n", | |
| "Epoch 106/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5355.0186 - mean_absolute_error: 35.1514\n", | |
| "Epoch 107/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5318.3936 - mean_absolute_error: 35.1492\n", | |
| "Epoch 108/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5282.2856 - mean_absolute_error: 35.1445\n", | |
| "Epoch 109/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 5246.7402 - mean_absolute_error: 35.1382\n", | |
| "Epoch 110/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5211.8037 - mean_absolute_error: 35.1304\n", | |
| "Epoch 111/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5177.5205 - mean_absolute_error: 35.1213\n", | |
| "Epoch 112/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5143.9302 - mean_absolute_error: 35.1110\n", | |
| "Epoch 113/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5111.0742 - mean_absolute_error: 35.1000\n", | |
| "Epoch 114/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5078.9883 - mean_absolute_error: 35.0879\n", | |
| "Epoch 115/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 5047.7061 - mean_absolute_error: 35.0747\n", | |
| "Epoch 116/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 5017.2598 - mean_absolute_error: 35.0608\n", | |
| "Epoch 117/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4987.5752 - mean_absolute_error: 35.0447\n", | |
| "Epoch 118/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4958.7417 - mean_absolute_error: 35.0262\n", | |
| "Epoch 119/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4930.7891 - mean_absolute_error: 35.0054\n", | |
| "Epoch 120/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4903.7422 - mean_absolute_error: 34.9833\n", | |
| "Epoch 121/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4877.6177 - mean_absolute_error: 34.9592\n", | |
| "Epoch 122/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4852.2334 - mean_absolute_error: 34.9332\n", | |
| "Epoch 123/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4827.7217 - mean_absolute_error: 34.9053\n", | |
| "Epoch 124/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4804.1069 - mean_absolute_error: 34.8777\n", | |
| "Epoch 125/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4781.4048 - mean_absolute_error: 34.8493\n", | |
| "Epoch 126/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4759.6182 - mean_absolute_error: 34.8199\n", | |
| "Epoch 127/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4738.7476 - mean_absolute_error: 34.7895\n", | |
| "Epoch 128/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4718.7871 - mean_absolute_error: 34.7578\n", | |
| "Epoch 129/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4699.7271 - mean_absolute_error: 34.7254\n", | |
| "Epoch 130/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4681.5537 - mean_absolute_error: 34.6921\n", | |
| "Epoch 131/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4664.2524 - mean_absolute_error: 34.6576\n", | |
| "Epoch 132/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4647.8013 - mean_absolute_error: 34.6226\n", | |
| "Epoch 133/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4632.1792 - mean_absolute_error: 34.5873\n", | |
| "Epoch 134/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4617.3623 - mean_absolute_error: 34.5519\n", | |
| "Epoch 135/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4603.3242 - mean_absolute_error: 34.5158\n", | |
| "Epoch 136/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4590.0361 - mean_absolute_error: 34.4790\n", | |
| "Epoch 137/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4577.4683 - mean_absolute_error: 34.4422\n", | |
| "Epoch 138/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4565.5913 - mean_absolute_error: 34.4048\n", | |
| "Epoch 139/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4554.3726 - mean_absolute_error: 34.3679\n", | |
| "Epoch 140/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4543.7808 - mean_absolute_error: 34.3303\n", | |
| "Epoch 141/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4533.7832 - mean_absolute_error: 34.2940\n", | |
| "Epoch 142/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4524.3486 - mean_absolute_error: 34.2581\n", | |
| "Epoch 143/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4515.4458 - mean_absolute_error: 34.2220\n", | |
| "Epoch 144/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4507.0435 - mean_absolute_error: 34.1856\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 145/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4499.1123 - mean_absolute_error: 34.1488\n", | |
| "Epoch 146/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4491.6230 - mean_absolute_error: 34.1135\n", | |
| "Epoch 147/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4484.5493 - mean_absolute_error: 34.0790\n", | |
| "Epoch 148/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4477.8633 - mean_absolute_error: 34.0448\n", | |
| "Epoch 149/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4471.5415 - mean_absolute_error: 34.0117\n", | |
| "Epoch 150/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4465.5620 - mean_absolute_error: 33.9789\n", | |
| "Epoch 151/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4459.9014 - mean_absolute_error: 33.9465\n", | |
| "Epoch 152/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4454.5400 - mean_absolute_error: 33.9145\n", | |
| "Epoch 153/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4449.4595 - mean_absolute_error: 33.8825\n", | |
| "Epoch 154/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4444.6426 - mean_absolute_error: 33.8509\n", | |
| "Epoch 155/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4440.0732 - mean_absolute_error: 33.8199\n", | |
| "Epoch 156/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4435.7373 - mean_absolute_error: 33.7892\n", | |
| "Epoch 157/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4431.6182 - mean_absolute_error: 33.7591\n", | |
| "Epoch 158/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4427.7056 - mean_absolute_error: 33.7295\n", | |
| "Epoch 159/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4423.9868 - mean_absolute_error: 33.7008\n", | |
| "Epoch 160/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4420.4507 - mean_absolute_error: 33.6729\n", | |
| "Epoch 161/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4417.0884 - mean_absolute_error: 33.6456\n", | |
| "Epoch 162/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4413.8882 - mean_absolute_error: 33.6193\n", | |
| "Epoch 163/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4410.8423 - mean_absolute_error: 33.5936\n", | |
| "Epoch 164/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4407.9424 - mean_absolute_error: 33.5685\n", | |
| "Epoch 165/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4405.1812 - mean_absolute_error: 33.5441\n", | |
| "Epoch 166/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4402.5518 - mean_absolute_error: 33.5204\n", | |
| "Epoch 167/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4400.0464 - mean_absolute_error: 33.4976\n", | |
| "Epoch 168/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4397.6602 - mean_absolute_error: 33.4754\n", | |
| "Epoch 169/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4395.3872 - mean_absolute_error: 33.4539\n", | |
| "Epoch 170/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4393.2212 - mean_absolute_error: 33.4330\n", | |
| "Epoch 171/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4391.1577 - mean_absolute_error: 33.4128\n", | |
| "Epoch 172/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4389.1904 - mean_absolute_error: 33.3934\n", | |
| "Epoch 173/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4387.3174 - mean_absolute_error: 33.3747\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 174/1000\n", | |
| "\r10/10 [==============================] - 0s 1ms/step - loss: 4385.5322 - mean_absolute_error: 33.3565\n", | |
| "Epoch 175/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4383.8311 - mean_absolute_error: 33.3390\n", | |
| "Epoch 176/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4382.2095 - mean_absolute_error: 33.3221\n", | |
| "Epoch 177/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4380.6641 - mean_absolute_error: 33.3059\n", | |
| "Epoch 178/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4379.1914 - mean_absolute_error: 33.2903\n", | |
| "Epoch 179/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4377.7886 - mean_absolute_error: 33.2754\n", | |
| "Epoch 180/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4376.4507 - mean_absolute_error: 33.2611\n", | |
| "Epoch 181/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4375.1748 - mean_absolute_error: 33.2473\n", | |
| "Epoch 182/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4373.9590 - mean_absolute_error: 33.2342\n", | |
| "Epoch 183/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4372.7998 - mean_absolute_error: 33.2216\n", | |
| "Epoch 184/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4371.6938 - mean_absolute_error: 33.2096\n", | |
| "Epoch 185/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4370.6396 - mean_absolute_error: 33.1981\n", | |
| "Epoch 186/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4369.6333 - mean_absolute_error: 33.1873\n", | |
| "Epoch 187/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4368.6733 - mean_absolute_error: 33.1770\n", | |
| "Epoch 188/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4367.7568 - mean_absolute_error: 33.1672\n", | |
| "Epoch 189/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4366.8818 - mean_absolute_error: 33.1579\n", | |
| "Epoch 190/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4366.0469 - mean_absolute_error: 33.1492\n", | |
| "Epoch 191/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4365.2500 - mean_absolute_error: 33.1410\n", | |
| "Epoch 192/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4364.4878 - mean_absolute_error: 33.1332\n", | |
| "Epoch 193/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4363.7603 - mean_absolute_error: 33.1259\n", | |
| "Epoch 194/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4363.0640 - mean_absolute_error: 33.1189\n", | |
| "Epoch 195/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4362.3994 - mean_absolute_error: 33.1125\n", | |
| "Epoch 196/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4361.7632 - mean_absolute_error: 33.1063\n", | |
| "Epoch 197/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4361.1553 - mean_absolute_error: 33.1007\n", | |
| "Epoch 198/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4360.5728 - mean_absolute_error: 33.0953\n", | |
| "Epoch 199/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4360.0161 - mean_absolute_error: 33.0904\n", | |
| "Epoch 200/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4359.4824 - mean_absolute_error: 33.0856\n", | |
| "Epoch 201/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4358.9722 - mean_absolute_error: 33.0812\n", | |
| "Epoch 202/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4358.4829 - mean_absolute_error: 33.0768\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 203/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4358.0142 - mean_absolute_error: 33.0727\n", | |
| "Epoch 204/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4357.5645 - mean_absolute_error: 33.0686\n", | |
| "Epoch 205/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4357.1338 - mean_absolute_error: 33.0646\n", | |
| "Epoch 206/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4356.7197 - mean_absolute_error: 33.0607\n", | |
| "Epoch 207/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4356.3232 - mean_absolute_error: 33.0568\n", | |
| "Epoch 208/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4355.9424 - mean_absolute_error: 33.0531\n", | |
| "Epoch 209/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4355.5767 - mean_absolute_error: 33.0493\n", | |
| "Epoch 210/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4355.2251 - mean_absolute_error: 33.0456\n", | |
| "Epoch 211/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4354.8872 - mean_absolute_error: 33.0420\n", | |
| "Epoch 212/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4354.5625 - mean_absolute_error: 33.0385\n", | |
| "Epoch 213/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4354.2510 - mean_absolute_error: 33.0351\n", | |
| "Epoch 214/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4353.9502 - mean_absolute_error: 33.0317\n", | |
| "Epoch 215/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4353.6611 - mean_absolute_error: 33.0284\n", | |
| "Epoch 216/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4353.3833 - mean_absolute_error: 33.0252\n", | |
| "Epoch 217/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4353.1157 - mean_absolute_error: 33.0219\n", | |
| "Epoch 218/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4352.8579 - mean_absolute_error: 33.0189\n", | |
| "Epoch 219/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4352.6094 - mean_absolute_error: 33.0157\n", | |
| "Epoch 220/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4352.3696 - mean_absolute_error: 33.0128\n", | |
| "Epoch 221/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4352.1396 - mean_absolute_error: 33.0098\n", | |
| "Epoch 222/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4351.9170 - mean_absolute_error: 33.0070\n", | |
| "Epoch 223/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4351.7031 - mean_absolute_error: 33.0042\n", | |
| "Epoch 224/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4351.4956 - mean_absolute_error: 33.0015\n", | |
| "Epoch 225/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4351.2964 - mean_absolute_error: 32.9990\n", | |
| "Epoch 226/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4351.1040 - mean_absolute_error: 32.9964\n", | |
| "Epoch 227/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4350.9175 - mean_absolute_error: 32.9940\n", | |
| "Epoch 228/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4350.7383 - mean_absolute_error: 32.9916\n", | |
| "Epoch 229/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4350.5645 - mean_absolute_error: 32.9893\n", | |
| "Epoch 230/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4350.3975 - mean_absolute_error: 32.9871\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 231/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4350.2358 - mean_absolute_error: 32.9849\n", | |
| "Epoch 232/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4350.0796 - mean_absolute_error: 32.9829\n", | |
| "Epoch 233/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4349.9282 - mean_absolute_error: 32.9808\n", | |
| "Epoch 234/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4349.7822 - mean_absolute_error: 32.9789\n", | |
| "Epoch 235/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4349.6406 - mean_absolute_error: 32.9771\n", | |
| "Epoch 236/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4349.5044 - mean_absolute_error: 32.9753\n", | |
| "Epoch 237/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4349.3721 - mean_absolute_error: 32.9736\n", | |
| "Epoch 238/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4349.2441 - mean_absolute_error: 32.9720\n", | |
| "Epoch 239/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4349.1201 - mean_absolute_error: 32.9704\n", | |
| "Epoch 240/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4349.0000 - mean_absolute_error: 32.9688\n", | |
| "Epoch 241/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4348.8848 - mean_absolute_error: 32.9673\n", | |
| "Epoch 242/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4348.7720 - mean_absolute_error: 32.9659\n", | |
| "Epoch 243/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4348.6631 - mean_absolute_error: 32.9645\n", | |
| "Epoch 244/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4348.5576 - mean_absolute_error: 32.9631\n", | |
| "Epoch 245/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4348.4561 - mean_absolute_error: 32.9617\n", | |
| "Epoch 246/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4348.3569 - mean_absolute_error: 32.9604\n", | |
| "Epoch 247/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4348.2612 - mean_absolute_error: 32.9592\n", | |
| "Epoch 248/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4348.1685 - mean_absolute_error: 32.9580\n", | |
| "Epoch 249/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4348.0791 - mean_absolute_error: 32.9568\n", | |
| "Epoch 250/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.9912 - mean_absolute_error: 32.9557\n", | |
| "Epoch 251/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.9067 - mean_absolute_error: 32.9547\n", | |
| "Epoch 252/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.8252 - mean_absolute_error: 32.9538\n", | |
| "Epoch 253/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.7451 - mean_absolute_error: 32.9529\n", | |
| "Epoch 254/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.6680 - mean_absolute_error: 32.9521\n", | |
| "Epoch 255/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.5928 - mean_absolute_error: 32.9513\n", | |
| "Epoch 256/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.5210 - mean_absolute_error: 32.9505\n", | |
| "Epoch 257/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.4502 - mean_absolute_error: 32.9497\n", | |
| "Epoch 258/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4347.3818 - mean_absolute_error: 32.9490\n", | |
| "Epoch 259/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.3154 - mean_absolute_error: 32.9482\n", | |
| "Epoch 260/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.2510 - mean_absolute_error: 32.9476\n", | |
| "Epoch 261/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.1890 - mean_absolute_error: 32.9468\n", | |
| "Epoch 262/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.1279 - mean_absolute_error: 32.9462\n", | |
| "Epoch 263/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.0693 - mean_absolute_error: 32.9455\n", | |
| "Epoch 264/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4347.0127 - mean_absolute_error: 32.9449\n", | |
| "Epoch 265/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.9570 - mean_absolute_error: 32.9442\n", | |
| "Epoch 266/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.9033 - mean_absolute_error: 32.9436\n", | |
| "Epoch 267/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.8511 - mean_absolute_error: 32.9430\n", | |
| "Epoch 268/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.8003 - mean_absolute_error: 32.9424\n", | |
| "Epoch 269/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.7510 - mean_absolute_error: 32.9418\n", | |
| "Epoch 270/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.7031 - mean_absolute_error: 32.9413\n", | |
| "Epoch 271/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.6567 - mean_absolute_error: 32.9408\n", | |
| "Epoch 272/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.6113 - mean_absolute_error: 32.9403\n", | |
| "Epoch 273/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.5679 - mean_absolute_error: 32.9398\n", | |
| "Epoch 274/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.5244 - mean_absolute_error: 32.9393\n", | |
| "Epoch 275/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.4834 - mean_absolute_error: 32.9389\n", | |
| "Epoch 276/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.4438 - mean_absolute_error: 32.9384\n", | |
| "Epoch 277/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.4048 - mean_absolute_error: 32.9380\n", | |
| "Epoch 278/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4346.3662 - mean_absolute_error: 32.9376\n", | |
| "Epoch 279/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.3301 - mean_absolute_error: 32.9371\n", | |
| "Epoch 280/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.2939 - mean_absolute_error: 32.9368\n", | |
| "Epoch 281/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.2593 - mean_absolute_error: 32.9363\n", | |
| "Epoch 282/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4346.2256 - mean_absolute_error: 32.9360\n", | |
| "Epoch 283/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.1929 - mean_absolute_error: 32.9356\n", | |
| "Epoch 284/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.1611 - mean_absolute_error: 32.9352\n", | |
| "Epoch 285/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.1299 - mean_absolute_error: 32.9348\n", | |
| "Epoch 286/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.1001 - mean_absolute_error: 32.9345\n", | |
| "Epoch 287/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 4346.0703 - mean_absolute_error: 32.9342\n", | |
| "Epoch 288/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.0420 - mean_absolute_error: 32.9338\n", | |
| "Epoch 289/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4346.0146 - mean_absolute_error: 32.9335\n", | |
| "Epoch 290/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.9873 - mean_absolute_error: 32.9332\n", | |
| "Epoch 291/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.9619 - mean_absolute_error: 32.9329\n", | |
| "Epoch 292/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.9365 - mean_absolute_error: 32.9326\n", | |
| "Epoch 293/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.9116 - mean_absolute_error: 32.9323\n", | |
| "Epoch 294/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.8877 - mean_absolute_error: 32.9320\n", | |
| "Epoch 295/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.8643 - mean_absolute_error: 32.9318\n", | |
| "Epoch 296/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.8413 - mean_absolute_error: 32.9315\n", | |
| "Epoch 297/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.8198 - mean_absolute_error: 32.9312\n", | |
| "Epoch 298/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.7988 - mean_absolute_error: 32.9309\n", | |
| "Epoch 299/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.7778 - mean_absolute_error: 32.9307\n", | |
| "Epoch 300/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.7573 - mean_absolute_error: 32.9304\n", | |
| "Epoch 301/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.7378 - mean_absolute_error: 32.9302\n", | |
| "Epoch 302/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.7188 - mean_absolute_error: 32.9300\n", | |
| "Epoch 303/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.7007 - mean_absolute_error: 32.9298\n", | |
| "Epoch 304/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.6826 - mean_absolute_error: 32.9295\n", | |
| "Epoch 305/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.6650 - mean_absolute_error: 32.9293\n", | |
| "Epoch 306/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.6484 - mean_absolute_error: 32.9291\n", | |
| "Epoch 307/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.6318 - mean_absolute_error: 32.9289\n", | |
| "Epoch 308/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.6157 - mean_absolute_error: 32.9287\n", | |
| "Epoch 309/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.6001 - mean_absolute_error: 32.9285\n", | |
| "Epoch 310/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.5850 - mean_absolute_error: 32.9283\n", | |
| "Epoch 311/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.5703 - mean_absolute_error: 32.9281\n", | |
| "Epoch 312/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.5557 - mean_absolute_error: 32.9280\n", | |
| "Epoch 313/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.5420 - mean_absolute_error: 32.9277\n", | |
| "Epoch 314/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.5288 - mean_absolute_error: 32.9276\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 315/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.5151 - mean_absolute_error: 32.9274\n", | |
| "Epoch 316/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.5029 - mean_absolute_error: 32.9273\n", | |
| "Epoch 317/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.4907 - mean_absolute_error: 32.9270\n", | |
| "Epoch 318/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.4780 - mean_absolute_error: 32.9270\n", | |
| "Epoch 319/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.4663 - mean_absolute_error: 32.9267\n", | |
| "Epoch 320/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.4551 - mean_absolute_error: 32.9267\n", | |
| "Epoch 321/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.4443 - mean_absolute_error: 32.9264\n", | |
| "Epoch 322/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.4341 - mean_absolute_error: 32.9264\n", | |
| "Epoch 323/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.4233 - mean_absolute_error: 32.9262\n", | |
| "Epoch 324/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.4131 - mean_absolute_error: 32.9260\n", | |
| "Epoch 325/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.4033 - mean_absolute_error: 32.9260\n", | |
| "Epoch 326/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3936 - mean_absolute_error: 32.9258\n", | |
| "Epoch 327/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.3848 - mean_absolute_error: 32.9257\n", | |
| "Epoch 328/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3760 - mean_absolute_error: 32.9255\n", | |
| "Epoch 329/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3672 - mean_absolute_error: 32.9254\n", | |
| "Epoch 330/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3584 - mean_absolute_error: 32.9253\n", | |
| "Epoch 331/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.3506 - mean_absolute_error: 32.9252\n", | |
| "Epoch 332/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3428 - mean_absolute_error: 32.9251\n", | |
| "Epoch 333/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3350 - mean_absolute_error: 32.9249\n", | |
| "Epoch 334/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3271 - mean_absolute_error: 32.9249\n", | |
| "Epoch 335/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3193 - mean_absolute_error: 32.9248\n", | |
| "Epoch 336/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3125 - mean_absolute_error: 32.9246\n", | |
| "Epoch 337/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.3057 - mean_absolute_error: 32.9246\n", | |
| "Epoch 338/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2993 - mean_absolute_error: 32.9244\n", | |
| "Epoch 339/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2920 - mean_absolute_error: 32.9244\n", | |
| "Epoch 340/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2861 - mean_absolute_error: 32.9243\n", | |
| "Epoch 341/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2798 - mean_absolute_error: 32.9242\n", | |
| "Epoch 342/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2734 - mean_absolute_error: 32.9241\n", | |
| "Epoch 343/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2686 - mean_absolute_error: 32.9240\n", | |
| "Epoch 344/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 4345.2627 - mean_absolute_error: 32.9239\n", | |
| "Epoch 345/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2568 - mean_absolute_error: 32.9238\n", | |
| "Epoch 346/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2524 - mean_absolute_error: 32.9238\n", | |
| "Epoch 347/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2471 - mean_absolute_error: 32.9237\n", | |
| "Epoch 348/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2422 - mean_absolute_error: 32.9236\n", | |
| "Epoch 349/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2368 - mean_absolute_error: 32.9235\n", | |
| "Epoch 350/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2319 - mean_absolute_error: 32.9235\n", | |
| "Epoch 351/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2275 - mean_absolute_error: 32.9234\n", | |
| "Epoch 352/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2236 - mean_absolute_error: 32.9234\n", | |
| "Epoch 353/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.2192 - mean_absolute_error: 32.9232\n", | |
| "Epoch 354/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2148 - mean_absolute_error: 32.9232\n", | |
| "Epoch 355/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2109 - mean_absolute_error: 32.9231\n", | |
| "Epoch 356/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2070 - mean_absolute_error: 32.9231\n", | |
| "Epoch 357/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.2031 - mean_absolute_error: 32.9230\n", | |
| "Epoch 358/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1992 - mean_absolute_error: 32.9230\n", | |
| "Epoch 359/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1958 - mean_absolute_error: 32.9229\n", | |
| "Epoch 360/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1924 - mean_absolute_error: 32.9228\n", | |
| "Epoch 361/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1890 - mean_absolute_error: 32.9228\n", | |
| "Epoch 362/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1855 - mean_absolute_error: 32.9227\n", | |
| "Epoch 363/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1826 - mean_absolute_error: 32.9227\n", | |
| "Epoch 364/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1792 - mean_absolute_error: 32.9226\n", | |
| "Epoch 365/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1768 - mean_absolute_error: 32.9226\n", | |
| "Epoch 366/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1733 - mean_absolute_error: 32.9225\n", | |
| "Epoch 367/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1709 - mean_absolute_error: 32.9225\n", | |
| "Epoch 368/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1685 - mean_absolute_error: 32.9224\n", | |
| "Epoch 369/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1655 - mean_absolute_error: 32.9224\n", | |
| "Epoch 370/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1631 - mean_absolute_error: 32.9223\n", | |
| "Epoch 371/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 4345.1602 - mean_absolute_error: 32.9223\n", | |
| "Epoch 372/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1582 - mean_absolute_error: 32.9222\n", | |
| "Epoch 373/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1558 - mean_absolute_error: 32.9222\n", | |
| "Epoch 374/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1533 - mean_absolute_error: 32.9222\n", | |
| "Epoch 375/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1514 - mean_absolute_error: 32.9221\n", | |
| "Epoch 376/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1489 - mean_absolute_error: 32.9221\n", | |
| "Epoch 377/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1470 - mean_absolute_error: 32.9221\n", | |
| "Epoch 378/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1450 - mean_absolute_error: 32.9220\n", | |
| "Epoch 379/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1431 - mean_absolute_error: 32.9220\n", | |
| "Epoch 380/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1416 - mean_absolute_error: 32.9219\n", | |
| "Epoch 381/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1392 - mean_absolute_error: 32.9219\n", | |
| "Epoch 382/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1377 - mean_absolute_error: 32.9219\n", | |
| "Epoch 383/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1357 - mean_absolute_error: 32.9218\n", | |
| "Epoch 384/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1343 - mean_absolute_error: 32.9218\n", | |
| "Epoch 385/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1328 - mean_absolute_error: 32.9218\n", | |
| "Epoch 386/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1313 - mean_absolute_error: 32.9218\n", | |
| "Epoch 387/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1299 - mean_absolute_error: 32.9217\n", | |
| "Epoch 388/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1284 - mean_absolute_error: 32.9217\n", | |
| "Epoch 389/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1270 - mean_absolute_error: 32.9216\n", | |
| "Epoch 390/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1260 - mean_absolute_error: 32.9216\n", | |
| "Epoch 391/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1240 - mean_absolute_error: 32.9216\n", | |
| "Epoch 392/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1230 - mean_absolute_error: 32.9216\n", | |
| "Epoch 393/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1216 - mean_absolute_error: 32.9216\n", | |
| "Epoch 394/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1201 - mean_absolute_error: 32.9215\n", | |
| "Epoch 395/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1191 - mean_absolute_error: 32.9215\n", | |
| "Epoch 396/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1182 - mean_absolute_error: 32.9215\n", | |
| "Epoch 397/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1167 - mean_absolute_error: 32.9215\n", | |
| "Epoch 398/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1162 - mean_absolute_error: 32.9214\n", | |
| "Epoch 399/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 4345.1147 - mean_absolute_error: 32.9214\n", | |
| "Epoch 400/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1138 - mean_absolute_error: 32.9214\n", | |
| "Epoch 401/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1133 - mean_absolute_error: 32.9214\n", | |
| "Epoch 402/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1118 - mean_absolute_error: 32.9213\n", | |
| "Epoch 403/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1108 - mean_absolute_error: 32.9213\n", | |
| "Epoch 404/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1104 - mean_absolute_error: 32.9213\n", | |
| "Epoch 405/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1094 - mean_absolute_error: 32.9213\n", | |
| "Epoch 406/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1084 - mean_absolute_error: 32.9213\n", | |
| "Epoch 407/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1079 - mean_absolute_error: 32.9213\n", | |
| "Epoch 408/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1074 - mean_absolute_error: 32.9212\n", | |
| "Epoch 409/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1064 - mean_absolute_error: 32.9212\n", | |
| "Epoch 410/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1055 - mean_absolute_error: 32.9212\n", | |
| "Epoch 411/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1045 - mean_absolute_error: 32.9212\n", | |
| "Epoch 412/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.1045 - mean_absolute_error: 32.9212\n", | |
| "Epoch 413/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1040 - mean_absolute_error: 32.9212\n", | |
| "Epoch 414/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1030 - mean_absolute_error: 32.9211\n", | |
| "Epoch 415/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1025 - mean_absolute_error: 32.9211\n", | |
| "Epoch 416/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1016 - mean_absolute_error: 32.9211\n", | |
| "Epoch 417/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1016 - mean_absolute_error: 32.9211\n", | |
| "Epoch 418/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1006 - mean_absolute_error: 32.9211\n", | |
| "Epoch 419/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.1001 - mean_absolute_error: 32.9211\n", | |
| "Epoch 420/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0996 - mean_absolute_error: 32.9210\n", | |
| "Epoch 421/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0991 - mean_absolute_error: 32.9211\n", | |
| "Epoch 422/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0986 - mean_absolute_error: 32.9210\n", | |
| "Epoch 423/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0986 - mean_absolute_error: 32.9210\n", | |
| "Epoch 424/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0977 - mean_absolute_error: 32.9210\n", | |
| "Epoch 425/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0977 - mean_absolute_error: 32.9210\n", | |
| "Epoch 426/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0967 - mean_absolute_error: 32.9210\n", | |
| "Epoch 427/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0962 - mean_absolute_error: 32.9209\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 428/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0962 - mean_absolute_error: 32.9210\n", | |
| "Epoch 429/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0957 - mean_absolute_error: 32.9208\n", | |
| "Epoch 430/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0952 - mean_absolute_error: 32.9210\n", | |
| "Epoch 431/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0947 - mean_absolute_error: 32.9208\n", | |
| "Epoch 432/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0947 - mean_absolute_error: 32.9210\n", | |
| "Epoch 433/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0947 - mean_absolute_error: 32.9209\n", | |
| "Epoch 434/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0942 - mean_absolute_error: 32.9209\n", | |
| "Epoch 435/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0933 - mean_absolute_error: 32.9209\n", | |
| "Epoch 436/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0933 - mean_absolute_error: 32.9208\n", | |
| "Epoch 437/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0928 - mean_absolute_error: 32.9209\n", | |
| "Epoch 438/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0928 - mean_absolute_error: 32.9209\n", | |
| "Epoch 439/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0923 - mean_absolute_error: 32.9208\n", | |
| "Epoch 440/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0923 - mean_absolute_error: 32.9209\n", | |
| "Epoch 441/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0923 - mean_absolute_error: 32.9208\n", | |
| "Epoch 442/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0918 - mean_absolute_error: 32.9208\n", | |
| "Epoch 443/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0913 - mean_absolute_error: 32.9208\n", | |
| "Epoch 444/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0913 - mean_absolute_error: 32.9208\n", | |
| "Epoch 445/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0908 - mean_absolute_error: 32.9209\n", | |
| "Epoch 446/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0908 - mean_absolute_error: 32.9208\n", | |
| "Epoch 447/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0908 - mean_absolute_error: 32.9208\n", | |
| "Epoch 448/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0908 - mean_absolute_error: 32.9208\n", | |
| "Epoch 449/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0908 - mean_absolute_error: 32.9207\n", | |
| "Epoch 450/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0903 - mean_absolute_error: 32.9208\n", | |
| "Epoch 451/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0898 - mean_absolute_error: 32.9207\n", | |
| "Epoch 452/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0898 - mean_absolute_error: 32.9208\n", | |
| "Epoch 453/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0898 - mean_absolute_error: 32.9207\n", | |
| "Epoch 454/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0889 - mean_absolute_error: 32.9207\n", | |
| "Epoch 455/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0889 - mean_absolute_error: 32.9207\n", | |
| "Epoch 456/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0894 - mean_absolute_error: 32.9207\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 457/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0889 - mean_absolute_error: 32.9207\n", | |
| "Epoch 458/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0889 - mean_absolute_error: 32.9207\n", | |
| "Epoch 459/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0884 - mean_absolute_error: 32.9207\n", | |
| "Epoch 460/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0889 - mean_absolute_error: 32.9207\n", | |
| "Epoch 461/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0879 - mean_absolute_error: 32.9207\n", | |
| "Epoch 462/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0884 - mean_absolute_error: 32.9207\n", | |
| "Epoch 463/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0884 - mean_absolute_error: 32.9207\n", | |
| "Epoch 464/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0884 - mean_absolute_error: 32.9207\n", | |
| "Epoch 465/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0879 - mean_absolute_error: 32.9207\n", | |
| "Epoch 466/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0884 - mean_absolute_error: 32.9207\n", | |
| "Epoch 467/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0874 - mean_absolute_error: 32.9207\n", | |
| "Epoch 468/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0874 - mean_absolute_error: 32.9207\n", | |
| "Epoch 469/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0874 - mean_absolute_error: 32.9207\n", | |
| "Epoch 470/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0874 - mean_absolute_error: 32.9207\n", | |
| "Epoch 471/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0874 - mean_absolute_error: 32.9207\n", | |
| "Epoch 472/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9206\n", | |
| "Epoch 473/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9207\n", | |
| "Epoch 474/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9206\n", | |
| "Epoch 475/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0874 - mean_absolute_error: 32.9207\n", | |
| "Epoch 476/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9206\n", | |
| "Epoch 477/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9207\n", | |
| "Epoch 478/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9206\n", | |
| "Epoch 479/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9207\n", | |
| "Epoch 480/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9206\n", | |
| "Epoch 481/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9207\n", | |
| "Epoch 482/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9206\n", | |
| "Epoch 483/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9207\n", | |
| "Epoch 484/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0864 - mean_absolute_error: 32.9206\n", | |
| "Epoch 485/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9206\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 486/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9206\n", | |
| "Epoch 487/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0864 - mean_absolute_error: 32.9206\n", | |
| "Epoch 488/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0864 - mean_absolute_error: 32.9206\n", | |
| "Epoch 489/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0864 - mean_absolute_error: 32.9206\n", | |
| "Epoch 490/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0869 - mean_absolute_error: 32.9206\n", | |
| "Epoch 491/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0864 - mean_absolute_error: 32.9206\n", | |
| "Epoch 492/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0864 - mean_absolute_error: 32.9206\n", | |
| "Epoch 493/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 494/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 495/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 496/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 497/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 498/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 499/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 500/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 501/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 502/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 503/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 504/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 505/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 506/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 507/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 508/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 509/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 510/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 511/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 512/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 513/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 514/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 515/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 516/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 517/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 518/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 519/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 520/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 521/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 522/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 523/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 524/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9205\n", | |
| "Epoch 525/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 526/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 527/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 528/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 529/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 530/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 531/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0859 - mean_absolute_error: 32.9206\n", | |
| "Epoch 532/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 533/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 534/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 535/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 536/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 537/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 538/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 539/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 540/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 541/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 542/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 543/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 544/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 545/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 546/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 547/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 548/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 549/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 550/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 551/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 552/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 553/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 554/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 555/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 556/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 557/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 558/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 559/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 560/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 561/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 562/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 563/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 564/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 565/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 566/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 567/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 568/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 569/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 570/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 571/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 572/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 573/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 574/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 575/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 576/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 577/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 578/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 579/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 580/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 581/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 582/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 583/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 584/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 585/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 586/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 587/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 588/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 589/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 590/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 591/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 592/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 593/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 594/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 595/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 596/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 597/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 598/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 599/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 600/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 601/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 602/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 603/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 604/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 605/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 606/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 607/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 608/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 609/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 610/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 611/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 612/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 613/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 614/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 615/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 616/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 617/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 618/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 619/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 620/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 621/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 622/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 623/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 624/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 625/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 626/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 627/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 628/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 629/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 630/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 631/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 632/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 633/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 634/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 635/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 636/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 637/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 638/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 639/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 640/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 641/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 642/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 643/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 644/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 645/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 646/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 647/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 648/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 649/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 650/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 651/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 652/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 653/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 654/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 655/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 656/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 657/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 658/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 659/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 660/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 661/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 662/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 663/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 664/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 665/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 666/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 667/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 668/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 669/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 670/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 671/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 672/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 673/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 674/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 675/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 676/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 677/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 678/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 679/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 680/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 681/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 682/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 683/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 684/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 685/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 686/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 687/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 688/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 689/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 690/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 691/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 692/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 693/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 694/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 695/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 696/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 697/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 698/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 699/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 700/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 701/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 702/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 703/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 704/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 705/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 706/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 707/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 708/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 709/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 710/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 711/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 712/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 713/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 714/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 715/1000" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\n", | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 716/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 717/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 718/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 719/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 720/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 721/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 722/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 723/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 724/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 725/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 726/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 727/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 728/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 729/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 730/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 731/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 732/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 733/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 734/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 735/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 736/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 737/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 738/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 739/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 740/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 741/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 742/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 743/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 744/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 745/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 746/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 747/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 748/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 749/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 750/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 751/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 752/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 753/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 754/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 755/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 756/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 757/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 758/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 759/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 760/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 761/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 762/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 763/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 764/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 765/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 766/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 767/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 768/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 769/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 770/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 771/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 772/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "\r10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 773/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 774/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 775/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 776/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 777/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 778/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 779/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 780/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 781/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 782/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 783/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 784/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 785/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 786/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 787/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 788/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 789/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 790/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 791/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 792/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 793/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 794/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 795/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 796/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 797/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 798/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 799/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 800/1000\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 801/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 802/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 803/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 804/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 805/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 806/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 807/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 808/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 809/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 810/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 811/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 812/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 813/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 814/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 815/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 816/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 817/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 818/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 819/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 820/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 821/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 822/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 823/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 824/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 825/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 826/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 827/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 828/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 829/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 830/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 831/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 832/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 833/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 834/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 835/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 836/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 837/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 838/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 839/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 840/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 841/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 842/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 843/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 844/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 845/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 846/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 847/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 848/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 849/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 850/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 851/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 852/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 853/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 854/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 855/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 856/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 857/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 858/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 859/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 860/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 861/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 862/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 863/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 864/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 865/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 866/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 867/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 868/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 869/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 870/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 871/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 872/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 873/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 874/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 875/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 876/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 877/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 878/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 879/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 880/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 881/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 882/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 883/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 884/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 885/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 886/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 887/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 888/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 889/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 890/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 891/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 892/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 893/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 894/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 895/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 896/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 897/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 898/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 899/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 900/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 901/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 902/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 903/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 904/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 905/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 906/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 907/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 908/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 909/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 910/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 911/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 912/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 913/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 914/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 915/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 916/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 917/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 918/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 919/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 920/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 921/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 922/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 923/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 924/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 925/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 926/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 927/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 928/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 929/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 930/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 931/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 932/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 933/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 934/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 935/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 936/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 937/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 938/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 939/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 940/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 941/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 942/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 943/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 944/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 945/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 946/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 947/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 948/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 949/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 950/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 951/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 952/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9204\n", | |
| "Epoch 953/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 954/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 955/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 956/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 957/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 958/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 959/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 960/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 961/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 962/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 963/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 964/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 965/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 966/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 967/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 968/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 969/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 970/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 971/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 972/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 973/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "stream", | |
| "text": [ | |
| "Epoch 974/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 975/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 976/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 977/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 978/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 979/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 980/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 981/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 982/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 983/1000\n", | |
| "10/10 [==============================] - 0s 3ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 984/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 985/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 986/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 987/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 988/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9204\n", | |
| "Epoch 989/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 990/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 991/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9205\n", | |
| "Epoch 992/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9206\n", | |
| "Epoch 993/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 994/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0854 - mean_absolute_error: 32.9206\n", | |
| "Epoch 995/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 996/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 997/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 998/1000\n", | |
| "10/10 [==============================] - 0s 1ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 999/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n", | |
| "Epoch 1000/1000\n", | |
| "10/10 [==============================] - 0s 2ms/step - loss: 4345.0850 - mean_absolute_error: 32.9205\n" | |
| ], | |
| "name": "stdout" | |
| }, | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "<keras.callbacks.History at 0x7f549b627da0>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 190 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "_sPp4TPA3rab", | |
| "colab_type": "code", | |
| "outputId": "4ccac2c6-b100-4919-c85d-eb57ad144498", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 34 | |
| } | |
| }, | |
| "source": [ | |
| "x_train.reshape((60000,-1)).shape" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "(60000, 784)" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 48 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "9SA-p3kW3rOC", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "qU7VZ59wyPfi", | |
| "colab_type": "code", | |
| "outputId": "8c3dbb63-44b9-4aa8-f41e-2ad5fb033b99", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 34 | |
| } | |
| }, | |
| "source": [ | |
| "model.predict(x_train.reshape((60000, 28, 28, 1))[:10]).sum()" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "48973.29" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 66 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "P0bdn3SRzLo0", | |
| "colab_type": "code", | |
| "outputId": "2e3cacc6-47bf-4297-b5fe-9f2bdec711a5", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 364 | |
| } | |
| }, | |
| "source": [ | |
| "import matplotlib.pyplot as plt\n", | |
| "plt.imshow(x_train[0])" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.image.AxesImage at 0x7f54ba041828>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 97 | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAEyJJREFUeJzt3X1MlfX/x/HXiRPCGTgEOWxu3c2p\nsdQ5GxaaJjezdGt5UxkMXcstrUneZI5R0o2bKGFLpE2htCZrnUW2anOD7GYzhzhZo0ErzC1HZohF\n5g0anPj98dv3TBTlzeEcrgM9H391PufN57yvrnrtc53rXNfl6unp6REA4KZucboBABgOCEsAMCAs\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADd7B/uGXLFjU2NsrlcqmwsFBTp04NZV8AEFGCCsujR4/q\n5MmT8vl8OnHihAoLC+Xz+ULdGwBEjKAOw+vq6pSdnS1JGj9+vM6dO6cLFy6EtDEAiCRBheXZs2c1\nZsyYwOvExES1t7eHrCkAiDQhOcHDvTgAjHRBhaXX69XZs2cDr8+cOaPk5OSQNQUAkSaosJw1a5Zq\namokSc3NzfJ6vYqLiwtpYwAQSYI6Gz59+nTdc889evLJJ+VyufTKK6+Eui8AiCgubv4LAP3jCh4A\nMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwMDtdAMY+f79919z7ZUrV8LYSW+xsbHq7OzsNfb++++b/vbixYvmz/nhhx/MtW+99Za5trCw\n8LqxnTt3Kj8/v9dYeXm5ec7Y2Fhz7fbt2011zz77rHnOSMbKEgAMglpZ1tfXa82aNZowYYIkaeLE\nidq0aVNIGwOASBL0YfiMGTNUVlYWyl4AIGJxGA4ABkGH5c8//6xVq1YpJydHhw8fDmVPABBxXD09\nPT0D/aO2tjY1NDRo/vz5am1t1fLly1VbW6vo6Ohw9AgAjgvqO8uUlBQtWLBAknT77bdr7Nixamtr\n02233RbS5jAy8NMhfjo0EgR1GP7ZZ5/p3XfflSS1t7frjz/+UEpKSkgbA4BIEtTKMjMzUxs2bNCX\nX36prq4uvfrqqxyCAxjRggrLuLg47dq1K9S9AEDECuoED5x37tw5c63f7zfXNjY29jmekZGhr7/+\nOvC6trbWPOdff/1lrq2oqDDXDpbf71dUVFTYP+fOO+8012ZlZZlr//dV2NX62qb4+HjznLNnzzbX\nlpaWmuomTZpknjOS8TtLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDL\nHSPMr7/+aqqbNm2aec6Ojo5g2wkYqksDh9JgtumWW+zrjC+++MJcO5BbpPXlvvvuU319fa8xr9dr\n/vu4uDhzbXJysrl2JGBlCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABkE93RHh\nk5SUZKobyHPaQ3EFT6SZN2+eufZm/05zcnJ6vd6/f79pzlGjRpk/f+7cuebaULjvvvuG9PP+K1hZ\nAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAZc7hhhrA+seu+998xzVldX\nm2vT09Nv+N7HH38c+OclS5aY5xyIBx54wFT36aefmueMjo6+4XtVVVW9Xv/++++mOXfs2GH+fIwM\nrCwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA1dPT0+P000gvK5cuWKu\nvdGlgS6XS1f/p1JYWGies6SkxFz79ddfm+rmzJljnhMIBdPKsqWlRdnZ2YHraE+fPq1ly5YpNzdX\na9as0T///BPWJgHAaf2G5aVLl7R58+ZeN1goKytTbm6uPvjgA91xxx0DulEDAAxH/YZldHS0Kisr\n5fV6A2P19fXKysqSJGVkZKiuri58HQJABOj3Fm1ut1tud++yzs7OwHdbSUlJam9vD093ABAhBn0/\nS84PRb5Ro0aFZB6XyxX45+LiYvPfDaQWiFRBhaXH49Hly5cVExOjtra2XofoiDycDQcGL6jfWc6c\nOVM1NTWSpNraWs2ePTukTQFApOl3ZdnU1KRt27bp1KlTcrvdqqmpUWlpqQoKCuTz+TRu3DgtXLhw\nKHoFAMf0G5aTJ0/Wvn37rhvfu3dvWBoCgEjEA8v+A8JxgmfMmDEhmfNaZWVlprqBfPVzdd9AsLg2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADDggWUIykCeu5Sbm2uu/eST\nT0x1jY2N5jknT55srgVuhJUlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYA\nYMDljgi7P//801w7fvx4U11iYqJ5zhs913779u164YUXeo3NmjXLNOeiRYvMn8/TJUcGVpYAYEBY\nAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAFTyIKEePHjXVPfzww+Y5z5071+e43+9X\nVFSUeZ6r7dmzx1y7ZMkSc21cXFww7WAIsLIEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwB\nwICwBAADwhIADNxONwBcbcaMGaa65uZm85zr1q274XuPP/54r9cfffSRac6nn37a/PknTpww1774\n4ovm2vj4eHMtBo+VJQAYmMKypaVF2dnZqqqqkiQVFBTokUce0bJly7Rs2TJ988034ewRABzX72H4\npUuXtHnzZqWnp/caX79+vTIyMsLWGABEkn5XltHR0aqsrJTX6x2KfgAgIpnvZ7lz506NGTNGeXl5\nKigoUHt7u7q6upSUlKRNmzYpMTEx3L0CgGOCOhv+6KOPKiEhQampqaqoqFB5ebmKiopC3RtwQ6dP\nnzbX3uhs+Icffqgnn3yy15j1bPhAvPTSS+ZazoZHrqDOhqenpys1NVWSlJmZqZaWlpA2BQCRJqiw\nzM/PV2trqySpvr5eEyZMCGlTABBp+j0Mb2pq0rZt23Tq1Cm53W7V1NQoLy9Pa9euVWxsrDwej4qL\ni4eiVwBwTL9hOXnyZO3bt++68YceeigsDQFAJOLpjhjxLl++3Od4TEzMde8dOXLENGd2drb58wfy\nv9hjjz1mrvX5fOZaDB6XOwKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAG\nXO4IBGHUqFHm2u7ubnOt222/xez3339/3dikSZP0008/XTeGwWNlCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABvbLBYAI8ttvv5lr9+/f3+f46tWrVV5e3musrq7ONOdArsoZiLS0\nNHPtxIkTBzSOwWFlCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABjwwDKE\nXXt7u7n27bffNtXt3bvXPOevv/7a57jf71dUVJR5nmAN5DOeeOIJc21VVVUw7SBIrCwBwICwBAAD\nwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA57uiF4uXLjQ53hcXFyv9z7//HPznK+/\n/rq5tqWlxVzrpMzMTHPt1q1bzbX33ntvMO1gCJjCsqSkRA0NDeru7tbKlSs1ZcoUbdy4UX6/X8nJ\nyXrjjTcUHR0d7l4BwDH9huWRI0d0/Phx+Xw+dXR0aNGiRUpPT1dubq7mz5+vN998U9XV1crNzR2K\nfgHAEf1+Z5mWlqYdO3ZIkkaPHq3Ozk7V19crKytLkpSRkWF+MD0ADFf9hmVUVJQ8Ho8kqbq6WnPm\nzFFnZ2fgsDspKWlAt+ACgOHIfILn4MGDqq6u1p49ezRv3rzAOLfDHFni4uJM7+Xk5JjnHEjtUPP7\n/U63gGHCFJaHDh3Srl279M477yg+Pl4ej0eXL19WTEyM2tra5PV6w90nhsh/6Wz4YG7+y9nw/55+\nD8PPnz+vkpIS7d69WwkJCZKkmTNnqqamRpJUW1ur2bNnh7dLAHBYvyvLAwcOqKOjQ2vXrg2Mbd26\nVS+//LJ8Pp/GjRunhQsXhrVJAHBav2G5dOlSLV269LrxgTwDBQCGO67gGaYuXrxorm1tbTXX5uXl\n9Tl+7NgxzZ07N/D6u+++M8/ptKtPSPb33muvvWaaMy0tzfz5LpfLXIvIxbXhAGBAWAKAAWEJAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgIGrhxtShl1nZ6e59uobltzMt99+a57zxx9/NNfe\nyGBuZzYQCxYsMNUVFRWZ55w2bVqf47feequ6urquGwP6wsoSAAwISwAwICwBwICwBAADwhIADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMODpjtf45ZdfTHVbtmzpc7yiokLPPPNMr7GDBw+aP//kyZPmWid5\nPB5z7ebNm821zz33nKkuOjraPOfNcHkjrFhZAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCW\nAGBAWAKAAQ8su8b27dtNdRs3buxzfKge7DV9+nRzbU5OjrnW7e77oq7nn39eZWVlgdfXXqV0MzEx\nMeZaIFKxsgQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMuNwRAAxMT3cs\nKSlRQ0ODuru7tXLlSn311Vdqbm5WQkKCJGnFihWaO3duOPsEAEf1G5ZHjhzR8ePH5fP51NHRoUWL\nFun+++/X+vXrlZGRMRQ9AoDj+g3LtLQ0TZ06VZI0evRodXZ2yu/3h70xAIgkA/rO0ufz6dixY4qK\nilJ7e7u6urqUlJSkTZs2KTExMZx9AoCjzGF58OBB7d69W3v27FFTU5MSEhKUmpqqiooK/f777yoq\nKgp3rwDgGNNPhw4dOqRdu3apsrJS8fHxSk9PV2pqqiQpMzNTLS0tYW0SAJzWb1ieP39eJSUl2r17\nd+Dsd35+vlpbWyVJ9fX1mjBhQni7BACH9XuC58CBA+ro6NDatWsDY4sXL9batWsVGxsrj8ej4uLi\nsDYJAE7jR+kAYMDljgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgQFgCgAFhCQAGhCUAGBCWAGDgduJDt2zZosbGRrlcLhUWFmrq1KlOtBFS9fX1WrNmjSZMmCBJ\nmjhxojZt2uRwV8FraWnRc889p6eeekp5eXk6ffq0Nm7cKL/fr+TkZL3xxhuKjo52us0BuXabCgoK\n1NzcrISEBEnSihUrNHfuXGebHKCSkhI1NDSou7tbK1eu1JQpU4b9fpKu366vvvrK8X015GF59OhR\nnTx5Uj6fTydOnFBhYaF8Pt9QtxEWM2bMUFlZmdNtDNqlS5e0efNmpaenB8bKysqUm5ur+fPn6803\n31R1dbVyc3Md7HJg+tomSVq/fr0yMjIc6mpwjhw5ouPHj8vn86mjo0OLFi1Senr6sN5PUt/bdf/9\n9zu+r4b8MLyurk7Z2dmSpPHjx+vcuXO6cOHCULeBm4iOjlZlZaW8Xm9grL6+XllZWZKkjIwM1dXV\nOdVeUPrapuEuLS1NO3bskCSNHj1anZ2dw34/SX1vl9/vd7grB8Ly7NmzGjNmTOB1YmKi2tvbh7qN\nsPj555+1atUq5eTk6PDhw063EzS3262YmJheY52dnYHDuaSkpGG3z/raJkmqqqrS8uXLtW7dOv35\n558OdBa8qKgoeTweSVJ1dbXmzJkz7PeT1Pd2RUVFOb6vHPnO8mo9PT1OtxASd955p1avXq358+er\ntbVVy5cvV21t7bD8vqg/I2WfPfroo0pISFBqaqoqKipUXl6uoqIip9sasIMHD6q6ulp79uzRvHnz\nAuPDfT9dvV1NTU2O76shX1l6vV6dPXs28PrMmTNKTk4e6jZCLiUlRQsWLJDL5dLtt9+usWPHqq2t\nzem2Qsbj8ejy5cuSpLa2thFxOJuenq7U1FRJUmZmplpaWhzuaOAOHTqkXbt2qbKyUvHx8SNmP127\nXZGwr4Y8LGfNmqWamhpJUnNzs7xer+Li4oa6jZD77LPP9O6770qS2tvb9ccffyglJcXhrkJn5syZ\ngf1WW1ur2bNnO9zR4OXn56u1tVXS/38n+79fMgwX58+fV0lJiXbv3h04SzwS9lNf2xUJ+8rV48Ba\nvbS0VMeOHZPL5dIrr7yiu+++e6hbCLkLFy5ow4YN+vvvv9XV1aXVq1frwQcfdLqtoDQ1NWnbtm06\ndeqU3G63UlJSVFpaqoKCAl25ckXjxo1TcXGxbr31VqdbNetrm/Ly8lRRUaHY2Fh5PB4VFxcrKSnJ\n6VbNfD6fdu7cqbvuuiswtnXrVr388svDdj9JfW/X4sWLVVVV5ei+ciQsAWC44QoeADAgLAHAgLAE\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAz+D4GsMlewG9H3AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54bb696940>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "9a8u78sD2jHD", | |
| "colab_type": "code", | |
| "outputId": "28fbc17e-4172-49f4-b334-f075db99d3d5", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 364 | |
| } | |
| }, | |
| "source": [ | |
| "plt.imshow(model.predict(x_train.reshape((-1, 28, 28, 1))[:10])[5])" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.image.AxesImage at 0x7f54abc0a7b8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 187 | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFhxJREFUeJzt3W1Mlff9x/HPKTfCqSB6BJxJ6xaG\nG/VmyzJtj420IOmCyVJtl7QydIvaaFaNNzMdM0W7mBRFWqO2iXhDs9V0PQkPtj5ggzi31rSIK+lM\nYN1AuzmmjoKjCOOmB/T/4J+SAgf4nsO5A9+vRz2/69vf9T256KfXOdf5XZfj7t27dwUAGNd9kW4A\nAKYCwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcAgNtB/8eWXX9bly5flcDi0d+9eLV26NJh9\nAUBUCSgsL126pGvXrsnj8ejq1avau3evPB5PsHsDgKgR0Mfw2tpa5eXlSZIyMjLU2dmp7u7uoDYG\nANEkoLBsb2/X7Nmzh17PmTNHbW1tQWsKAKJNUC7wcC8OANNdQGGZlpam9vb2odeffvqpUlNTg9YU\nAESbgMLy0UcfVXV1tSSpsbFRaWlpmjlzZlAbA4BoEtDV8O985ztatGiRnn32WTkcDu3fvz/YfQFA\nVHFw818AmBgreADAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwCCgR+EC09Xt27dNdf48FHXW\nrFmBtoMowpklABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYMByR0QV6zJC\nh8NhnvPWrVs+x10u16htPT09pjm9Xq95//4sdxwcHDTXxsTEmGsxeZxZAoABYQkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAgeOuP09eAkJsrNU2I7lcrhB3EjxvvfWWuTYtLc1c293dPWps\nzZo1+s1vfjNsLCkpyTznqlWrzLV9fX2muoSEBPOc0YwzSwAwCGhteF1dnXbs2KHMzExJ0sKFC1Vc\nXBzUxgAgmgR8I43ly5fr2LFjwewFAKIWH8MBwCDgsLxy5Yq2bt2qdevW6f333w9mTwAQdQK6Gt7a\n2qr6+nrl5+erpaVFGzZsUE1NjeLj40PRIwBEXEDfWaanp2v16tWSpAcffFBz585Va2urHnjggaA2\nh3sPPx3ip0PRKqCP4e+8847OnDkjSWpra9OtW7eUnp4e1MYAIJoEdGaZm5urPXv26A9/+IO8Xq9e\neuklPoIDmNYCCsuZM2fqxIkTwe4FAKIWyx3vAf48XKu3t9fneHJysm7fvj302tf3ZWOZP3++udbq\n4MGD5trOzk6f4yUlJfr5z38+amy6+e1vf2uufeyxx8y1KSkpgbQzZfE7SwAwICwBwICwBAADwhIA\nDAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcAg4MdKTFf9/f2mujt37vgcT0xMHLVkMDEx0bz/wcFB\nU11MTIx5zhs3bphrFyxYMOa25ORkn/88EX+WENbV1ZnqOjo6zHO+++67Y24b2Vt+fr5pTn9uHOPP\ncsNQGBgYMNfOmDEjhJ1MbZxZAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAASt4\nRvj8889NdeM9uN6fFTsj3Xef7f9fXV1d5jnHW5UTDr/61a/MtR9//LGp7gc/+EGg7YwrIyPDVPfR\nRx+FZP+RNpm/3emOM0sAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgOWO\nI4y3jPHLRj6U7AuTfWCZw+Ew1fnzwKx//OMf5tqqqiqf488//7xef/31oddnzpwxzxmKh2AVFhaa\na69du+ZzfMGCBaO2rVmzxjTnvHnzzPv3h/WBaZL0u9/9zlT39NNPB9oOvoQzSwAwICwBwICwBAAD\nwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcDAcffu3buRbgKhVVdXZ659+OGHTXXZ2dnmOb/y\nla+Yaz0ej6nO6/Wa5+zp6fE5PmvWLHV2dg4bu3HjhmnOrKws8/79sXnzZnPtAw88MGps//79+sUv\nfjFqDJNnOrNsampSXl6ezp49K0m6efOm1q9fr4KCAu3YscP8+FgAmKomDMuenh4dOHBAbrd7aOzY\nsWMqKCjQW2+9pQULFqiysjKkTQJApE0YlvHx8Tp16pTS0tKGxurq6rRq1SpJUk5Ojmpra0PXIQBE\ngQlv0RYbG6vY2OFlvb29Q7cIc7lcamtrC013ABAlJn0/S64PRT/rRRt/vPfee0Gf0x9xcXHm2lmz\nZpm3jVcbDqdPn570HFzQCY2AwtLpdKqvr08JCQlqbW0d9hEd0Yer4VwNx+QF9DvLFStWqLq6WpJU\nU1OjlStXBrUpAIg2E55ZNjQ06NChQ7p+/bpiY2NVXV2tsrIyFRUVyePxaP78+eZb8QPAVDVhWC5e\nvFhvvvnmqPE33ngjJA0BQDS6Jx5Y1t/fb64NxcO1/PG///3PVNfe3m6e058LPCO/7/rCyO/Cli9f\nbp6zrKzMXGsV6Qs8e/bsMe+/tbXVXDt37lxz7VjXCkaO+/Nrlfvvv99c63Q6zbXTAWvDAcCAsAQA\nA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAMeWDbCyFt2jSUhIcHn+IwZM0Ytr/Rn\nCeXNmzdNdf/85z/Nc37yySfm2h/+8IemusbGRvOcI28ePZ47d+6Y6kJ1i7RXXnnFVNfQ0GCe05/3\n73K5zLUHDx401fmzNHasv2tfZs6caa6dDjizBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAs\nAcCAsAQAA8ISAAxY7jiCdbmj9SmAoVJVVWWuXb16tbm2ubnZ53hmZuawbV6v1zynP8v9Fi5caKrb\ntm2bec5bt275HP/1r3+tdevWjRqz+NGPfmTe/7x588y1ixcvNtdmZGSMGluxYoU++OCDUWOYPM4s\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgBU8ARprBUtcXNyobXFxceFoaUx/\n/OMfzbVpaWk+xxctWjTsIWWtra3mOf/yl7+Ya3fv3m2utXI4HD7H7969O2qb9T+HHTt2mPd/9OhR\nc60//vrXv44ae+ihh0aNP/TQQyHZ/72GM0sAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIA\nDAhLADAgLAHAwP4kqSmsr6/PXJuQkGCqG28J42SWN7777rumuqamJvOczz33nLn2lVde8Tm+aNEi\n/f73vx963dXVZZ7zb3/7m7k2FMZbwjhy26ZNm0xzLlu2bFI9jaWurs5cO2fOHJ/jI//+/v3vf5vn\ndLlc5trExERz7XTAmSUAGJjCsqmpSXl5eTp79qwkqaioSN///ve1fv16rV+/Xn/6059C2SMARNyE\nH8N7enp04MABud3uYeO7d+9WTk5OyBoDgGgy4ZllfHy8Tp06NeatuwDgXmC+n+Xx48c1e/ZsFRYW\nqqioSG1tbfJ6vXK5XCouLh7zy2YAmA4Cuhr+5JNPKiUlRVlZWTp58qRee+017du3L9i9BU0oroaH\nSrReDf/pT386bFuoroa//fbb5tpQCMXV8K1bt5prJ3s1PDMzU83NzcPG/LlqzdXwsQV0Ndztdisr\nK0uSlJub69d/uAAwFQUUltu3b1dLS4uk//8/YWZmZlCbAoBoM+HH8IaGBh06dEjXr19XbGysqqur\nVVhYqJ07dyoxMVFOp1MlJSXh6BUAImbCsFy8eLHefPPNUePf+973QtIQAEQjnu4YoJ6eHp/jTqdz\n1Dan0xn0/f/yl7801w4ODpprN27caKo7f/68ec7c3FxzbVVVlalu9erV5jlff/11n+PPP//8qG3z\n5s0zzfn000+b94/pgeWOAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAHL\nHcPg888/N9fGx8eb6vx57pE/d7mfMWOGz/GMjAxdvXp16LXX6zXP+dlnn5lrb9y4Yar785//bJ7T\nnxu9XLp0yVS3fPly85y7du0y1x45csRca9XZ2Wmuvf/++821sbH3xMNhh3BmCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABqzgCYOuri5zbVJSkqnuvffeM8+ZnZ1trrX617/+Za7t\n7u42137wwQemus2bN5vnRGSF4u8/EjizBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAxY7hgGra2t5tpPPvnEVOd2u81z/v3vfzfXfuMb3zDVffzxx+Y5s7KyzLWhsGfPHp/j\nZWVlo7aVlZWFo6WwCsUD8/xx584dc+1990Xv+Vv0dgYAUYSwBAADwhIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAg9hIN3AvSE9PD3ptRUWFec6NGzeaa638WcLoz/4dDoepbnBw0DzneE8M\n7O/vN8/zZefOnTPX5uXlBbSPYAnFEkZ/RPMSRn+YwrK0tFT19fUaGBjQli1btGTJEr3wwgsaHBxU\namqqDh8+HPEDAgChNGFYXrx4Uc3NzfJ4POro6NDatWvldrtVUFCg/Px8vfrqq6qsrFRBQUE4+gWA\niJjw/HjZsmU6evSoJCk5OVm9vb2qq6vTqlWrJEk5OTmqra0NbZcAEGEThmVMTIycTqckqbKyUtnZ\n2ert7R362O1yudTW1hbaLgEgwsz3szx37pzKy8tVUVGhJ554Yuhs8tq1a/rZz36mt99+O6SNAkAk\nmS7wXLhwQSdOnNDp06eVlJQkp9Opvr4+JSQkqLW1VWlpaaHuEyNE+mq4P6L1avjx48e1ffv2UWMW\nU+lqOIJjwo/hXV1dKi0tVXl5uVJSUiRJK1asUHV1tSSppqZGK1euDG2XABBhE55ZVlVVqaOjQzt3\n7hwaO3jwoF588UV5PB7Nnz9fa9asCWmTABBpE4blM888o2eeeWbU+BtvvBGShgAgGrGCJwwuX75s\nrv3Wt75lquvp6Qm0nXHt2rXL5/iRI0eGbTty5Ih5Tn9+LTF37lxTXWpqqnnOw4cPj7lt5HeUV65c\nMc3J95D3numxDgkAQoywBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA/P9LDFc\nV1eXz/GkpKRR227fvm2e98KFC6a6Z5991jxnpBUXF5trH374YVNdcnKyec7s7GxzrXUZ6Rc3xLbo\n7Ow0186aNctci/DizBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw4OmO\nIwwMDJjqkpKSzNvGWhrpy9e//nVzrdXGjRvNtRUVFaa6DRs2mOd87rnnzLVLliwx1aWkpJjn9MeM\nGTOCPidLGKcHziwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAB5aN0NfXZ6pL\nSEgwz/nZZ5+Za60rU+rr681zfvTRR+basWzevFmnT58eev3d737X/O9++9vfnvT+pzIeWDY9cGYJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDccYqyLsuU/FuaOdbD1ZKS\nkoZtG++BbeHgz5+tw+EIYSe4V5ie7lhaWqr6+noNDAxoy5YtOn/+vBobG4fWMW/atEmPP/54KPsE\ngIiaMCwvXryo5uZmeTwedXR0aO3atXrkkUe0e/du5eTkhKNHAIi4CcNy2bJlWrp0qSQpOTlZvb29\nGhwcDHljABBN/PrO0uPx6MMPP1RMTIza2trk9XrlcrlUXFysOXPmhLJPjMB3lnxnifAyh+W5c+dU\nXl6uiooKNTQ0KCUlRVlZWTp58qT+85//aN++faHuFQAixnSB58KFCzpx4oROnz6tpKQkud3uoW25\nubl66aWXQtUfxsCZJWeWCK8Jf2fZ1dWl0tJSlZeXD1393r59u1paWiRJdXV1yszMDG2XABBhE55Z\nVlVVqaOjQzt37hwae+qpp7Rz504lJibK6XSqpKQkpE0CQKTxo/Qpio/hfAxHeLHcEQAMOLPEMF6v\n1+d4XFzcsG1xcXHhamnSxvoTdzgco7b19/eb5rTWSTyxcbrgzBIADAhLADAgLAHAgLAEAAPCEgAM\nCEsAMCAsAcCAsAQAA8ISAAxYwQMABpxZAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgEFsJHb68ssv6/Lly3I4HNq7d6+W\nLl0aiTaCqq6uTjt27FBmZqYkaeHChSouLo5wV4FramrST37yE/34xz9WYWGhbt68qRdeeEGDg4NK\nTU3V4cOHFR8fH+k2/TLyPRUVFamxsVEpKSmSpE2bNunxxx+PbJN+Ki0tVX19vQYGBrRlyxYtWbJk\nyh8nafT7On/+fMSPVdjD8tKlS7p27Zo8Ho+uXr2qvXv3yuPxhLuNkFi+fLmOHTsW6TYmraenRwcO\nHJDb7R4aO3bsmAoKCpSfn69XX31VlZWVKigoiGCX/vH1niRp9+7dysnJiVBXk3Px4kU1NzfL4/Go\no6NDa9euldvtntLHSfL9vh555JGIH6uwfwyvra1VXl6eJCkjI0OdnZ3q7u4OdxsYR3x8vE6dOqW0\ntLShsbq6Oq1atUqSlJOTo9ra2ki1FxBf72mqW7ZsmY4ePSpJSk5OVm9v75Q/TpLv9zU4OBjhriIQ\nlu3t7Zo9e/bQ6zlz5qitrS3cbYTElStXtHXrVq1bt07vv/9+pNsJWGxsrBISEoaN9fb2Dn2cc7lc\nU+6Y+XpPknT27Flt2LBBu3bt0n//+98IdBa4mJgYOZ1OSVJlZaWys7On/HGSfL+vmJiYiB+riHxn\n+WXT5eGSX/3qV7Vt2zbl5+erpaVFGzZsUE1NzZT8vmgi0+WYPfnkk0pJSVFWVpZOnjyp1157Tfv2\n7Yt0W347d+6cKisrVVFRoSeeeGJofKofpy+/r4aGhogfq7CfWaalpam9vX3o9aeffqrU1NRwtxF0\n6enpWr16tRwOhx588EHNnTtXra2tkW4raJxOp/r6+iRJra2t0+LjrNvtVlZWliQpNzdXTU1NEe7I\nfxcuXNCJEyd06tQpJSUlTZvjNPJ9RcOxCntYPvroo6qurpYkNTY2Ki0tTTNnzgx3G0H3zjvv6MyZ\nM5KktrY23bp1S+np6RHuKnhWrFgxdNxqamq0cuXKCHc0edu3b1dLS4uk//9O9otfMkwVXV1dKi0t\nVXl5+dBV4ulwnHy9r2g4Vo67EThXLysr04cffiiHw6H9+/frm9/8ZrhbCLru7m7t2bNHt2/fltfr\n1bZt2/TYY49Fuq2ANDQ06NChQ7p+/bpiY2OVnp6usrIyFRUVqb+/X/Pnz1dJSYni4uIi3aqZr/dU\nWFiokydPKjExUU6nUyUlJXK5XJFu1czj8ej48eP62te+NjR28OBBvfjii1P2OEm+39dTTz2ls2fP\nRvRYRSQsAWCqYQUPABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAb/B+pMZGSwx16bAAAA\nAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a3ac9828>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "nUjyWewIQovQ", | |
| "colab_type": "code", | |
| "outputId": "8fb1b1b9-c199-4cd0-b1dc-fd65fe672b97", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 2873 | |
| } | |
| }, | |
| "source": [ | |
| "model.predict(x_train.reshape((-1, 28, 28, 1))[:10])[4]" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([[ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 35.891796, 127.616104, 192.87067 ,\n", | |
| " 241.26357 , 247.67442 , 112.01455 , 91.06288 , 149.31879 ,\n", | |
| " 57.560963, 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 75.93757 , 216.20604 , 0. , 245.92625 ,\n", | |
| " 192.80112 , 221.59833 , 260.17563 , 242.35164 , 251.61551 ,\n", | |
| " 162.2753 , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 43.771755, 0. , 0. , 186.31268 , 57.74095 ,\n", | |
| " 0. , 0. , 197.28085 , 237.53607 , 238.58754 ,\n", | |
| " 113.05829 , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 93.15819 ,\n", | |
| " 0. , 230.48149 , 175.56404 , 8.952116, 0. ,\n", | |
| " 0. , 97.404785, 248.53517 , 237.0815 , 214.35175 ,\n", | |
| " 16.019184, 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 251.83995 ,\n", | |
| " 240.52278 , 134.3382 , 0. , 0. , 0. ,\n", | |
| " 0. , 210.98782 , 0. , 234.87733 , 64.46624 ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 126.99115 , 256.29678 , 242.46263 ,\n", | |
| " 176.03195 , 0. , 0. , 0. , 0. ,\n", | |
| " 65.485466, 231.30077 , 237.25473 , 108.78251 , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 229.15253 , 259.76794 , 172.12505 ,\n", | |
| " 0. , 0. , 0. , 38.858227, 190.64032 ,\n", | |
| " 242.99474 , 231.36333 , 153.25192 , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 256.4074 , 253.04585 , 0. ,\n", | |
| " 0. , 104.2273 , 191.07082 , 222.98543 , 232.7361 ,\n", | |
| " 236.17622 , 238.54422 , 67.109055, 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 244.0931 ,\n", | |
| " 237.0769 , 240.23505 , 234.62762 , 203.57916 , 204.91968 ,\n", | |
| " 239.28722 , 222.22693 , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 224.06326 , 0. ,\n", | |
| " 0. , 135.15167 , 30.33793 , 12.037292, 184.28049 ,\n", | |
| " 243.48894 , 139.89622 , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 53.00822 , 240.12247 ,\n", | |
| " 240.68613 , 97.963585, 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 228.93463 ,\n", | |
| " 236.04529 , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 239.0418 ,\n", | |
| " 250.59508 , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 61.5861 , 240.06474 ,\n", | |
| " 246.69307 , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 104.260414, 240.33215 ,\n", | |
| " 248.65007 , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 256.03726 ,\n", | |
| " 244.87807 , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 213.61137 ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 191.91718 , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 170.02843 , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 146.91635 , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ],\n", | |
| " [ 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. , 0. , 0. ,\n", | |
| " 0. , 0. , 0. ]], dtype=float32)" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 184 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "hXlrAJp4HBro", | |
| "colab_type": "code", | |
| "outputId": "3eb0fcdc-3e13-4acb-86da-900a1be0da9d", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 51 | |
| } | |
| }, | |
| "source": [ | |
| "model1.predict(x_train.reshape((-1, 28, 28, 1))[:10])[5]" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,\n", | |
| " 0., 0., 0.], dtype=float32)" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 182 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "x_3w5CsjKTEQ", | |
| "colab_type": "code", | |
| "outputId": "791eee8a-d53a-4ce2-f3ee-a4b1c03e2229", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 51 | |
| } | |
| }, | |
| "source": [ | |
| "x_train[y_train == 3].shape\n", | |
| "\n", | |
| "model1.predict(x_train[y_train == 3].reshape((-1, 28, 28, 1))).mean(axis=0)#[7]" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0.,\n", | |
| " 0., 0., 0.], dtype=float32)" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 175 | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "akDznLqrKtUs", | |
| "colab_type": "code", | |
| "outputId": "3e9f4496-6d4a-4f49-8b0a-910baf03de89", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 3317 | |
| } | |
| }, | |
| "source": [ | |
| "import numpy as np\n", | |
| "\n", | |
| "for i in range(10):\n", | |
| " plt.imshow(model2.predict(model1.predict(x_train[y_train == i].reshape((-1, 28, 28, 1))).mean(axis=0).reshape((1,x)))[0])\n", | |
| " plt.show()" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a4d5bac8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a5f4a240>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a0e875c0>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a0889ef0>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a2358fd0>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a082aa58>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a091fba8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a1332a58>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a06cbe10>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZtJREFUeJzt3X9M1Pcdx/HXCVI5kSJXwNDN2rU0\nMq3TJlrPRi1o3GjWqK2NE9Es6TLbpURquo66qsvMiqIxE7tMoNo/tO1uY8li1mZQa5Y5g3Q10QX+\nQenqCLN4Klop+AO8/bHsInIn7zvv+B76fPzF9/N987n38TUvv3ff+9zXFQgEAgIA3NYopxsAgJGA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBIjvYX33rrLZ04cUIul0vr16/XtGnTYtkXACSU\nqMLy008/1enTp+Xz+dTW1qb169fL5/PFujcASBhRvQxvbGzUwoULJUmPPPKILl26pO7u7pg2BgCJ\nJKqwPHfunMaPHx/czszMlN/vj1lTAJBoYnKBh+/iAHC3iyoss7Ozde7cueD22bNnlZWVFbOmACDR\nRBWWTz31lOrr6yVJLS0tys7OVlpaWkwbA4BEEtXV8CeeeEJTpkzRD37wA7lcLm3atCnWfQFAQnHx\n5b8AMDRW8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgkOx0A0C83bhxI+T4qFGjBu0bNcp2/tDT02N+fLfb\nba5F4uLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBgxGppqbGXBtutU1Z\nWZmqqqoGjVnc+nu3M2nSJHOty+Uy1/b19Q0aW7lypd57770BY4sXLzbPmZaWZq6913BmCQAGUZ1Z\nNjU1ae3atcrLy5MkPfbYY9qwYUNMGwOARBL1y/BZs2ZF9FIEAEYyXoYDgEHUYXnq1Cm99NJLWrFi\nhY4cORLLngAg4bgCgUAg0l/q7OzUsWPHVFRUpPb2dq1evVoNDQ1KSUmJR48A4Lio3rPMycnRM888\nI0maOHGiHnjgAXV2duqb3/xmTJsDwonVR4d+/etfDxqz2LJli/nx+ejQ3SGql+EHDhzQnj17JEl+\nv1/nz59XTk5OTBsDgEQS1ZllYWGhXnvtNX3yySe6fv26fvGLX/ASHMBdLaqwTEtL0+7du2PdCwAk\nLJY7Iipff/21ufby5cvm2gkTJpjqfvzjH5vnLC0tDbuvra3NPM/NysvLzbVr16411+7cudNcG+6E\n5da/98WLF81z8p5leHzOEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueM94Nq1a+Za6xeijB071jznpk2bzLUHDhww1Y0ZM8Y8p9frDbvv1r/NG2+8YZqzvb3d/PijR482\n1y5btsxc++ijj4Yc/+KLLwZst7a2muf8xje+Ya6913BmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzguQfE4zbFK1euNNdevXrVXGtdbfLBBx+Y57zdTbi+//3vD9jOysoyzXn8\n+HHz47e0tJhr77//fnNtXl6eaTwpKck8J8LjzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwYLnjPaC7u9tcu2/fvpDjL7/8sn77298Gt99777077iuUI0eOmOry8/PNc06f\nPj3svmeffdY8z81mz55tri0pKTHXejwec224Zay3js+fP988J8LjzBIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjPSCSuwu+/PLLpn0VFRXmORctWmSutS5jzMzMNM8Z\niUuXLpnqPv/8c/OcLpfLXJuenm6uTU1NNY1fuHDBPGe8/q53A9OZZWtrqxYuXKj9+/dLks6cOaNV\nq1apuLhYa9eu1bVr1+LaJAA4bciw7Onp0ebNm+X1eoNjVVVVKi4u1vvvv6+HHnpIdXV1cW0SAJw2\nZFimpKSotrZW2dnZwbGmpiYtWLBAklRQUKDGxsb4dQgACWDI9yyTk5OVnDywrLe3N/g1UB6PR36/\nPz7dAUCCuOMLPIFAIBZ9II6efPLJmM/5xhtvxHzORHD//feb6mbMmGGeM9x3hMbLsmXLhvXx7hVR\nhaXb7daVK1c0ZswYdXZ2DniJjsTT1NRkrrUGa7yuhj/88MOmupF0NXzHjh3m2kmTJplrv/Od7wwa\nW7Zs2aBrCIWFheY5uRoeXlSfs5wzZ47q6+slSQ0NDZo7d25MmwKARDPkmWVzc7O2bt2qjo4OJScn\nq76+Xtu3b1d5ebl8Pp9yc3O1ZMmS4egVABwzZFhOnTo15Hsu7777blwaAoBExAqee8CsWbPMtX/7\n299Cjs+bN2/AvqKiIvOc48ePN9c6/Z6ZdYFFJBd4InlP/+OPPzbXrly5MuT41KlTB2w7/Te9W7A2\nHAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM94F//+pe59nZLI2/e\n19/fb55z7Nix5tp42LVrV8jx0tLSQfuSkpJMczY3N5sf//z58+baKVOmmGtDLU2dPHnyoPHJkyeb\n50R4nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3jNKNGzdCjo8a\nNWrQvlGjYv9/Ul9fn7k2kqWJJ06cCDn+5JNPDtj34IMPmue0LiGUpP3795vqTp06ZZ7T7/eH3Xf8\n+PEB2x9++KFpznnz5pkff9y4ceba+fPnm2uff/75kOPh7vqIO8OZJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGLCCJ0q3W5UTjxU7t7p69aq5Ni8vz1z7pz/9Key+M2fOBH/+4osv\nzHM2NDSYa//yl7+Y6i5evGie83arjQ4fPjxg2+PxmOZMS0szP35ubq65dvXq1ebacJy+QdzdijNL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiNUJEvali9fbq4Nd3Ox\nJUuW6Pe//31w2+12m+dsb2831/7nP/8x1UWy3HD06NHmfYWFhaY5d+3aZX78X/3qV+baSPT09Awa\nc7vdg8YjOVYIjzNLADAwhWVra6sWLlwYvE1peXm5nn32Wa1atUqrVq3SX//613j2CACOG/JleE9P\njzZv3iyv1ztgfN26dSooKIhbYwCQSIY8s0xJSVFtba2ys7OHox8ASEiuQCAQsBTu2rVL48ePV0lJ\nicrLy+X3+3X9+nV5PB5t2LBBmZmZ8e4VABwT1dXwxYsXKyMjQ/n5+aqpqdHbb7+tjRs3xro3xEgs\nroa///77Ki4uDm5HcoX13//+t7n2448/NtVFcjV84sSJIcdbWlo0ZcqUAWNOXw3/+c9/bq7lavjw\niupquNfrVX5+vqT//eNqbW2NaVMAkGiiCsvS0tLgZ+eampoium0BAIxEQ74Mb25u1tatW9XR0aHk\n5GTV19erpKREZWVlSk1NldvtVkVFxXD0CgCOGTIsp06dqn379g0a/+53vxuXhgAgEbHccYT65S9/\naa71+Xzm2j/+8Y9h9z3//PPBnzMyMsxzRnInyD179pjqTp06ZZ6zra0t7L5XX311wPajjz5qmjOS\nCzH//Oc/zbV/+MMfzLUvvPBCyHEu6MQHyx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y73gOamprMtTNmzDDt+9a3vmWes7m5Oea1kdwx8oknngi7b/r06QO2v/zyS9Oc\nkXxH5fz588214ZYw3olIlptOmjQp5o9/t+DMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFyBQCDgdBN3u66uLnOtdQXJ8ePHzXOuWLHCXHvx4sWQ4xkZGQP2paWlmee8dOmSudbj\n8Zjq/vznP5vnTE1NDTm+YMECffLJJ4PGYu3vf/+7uXbUKPv5y+zZs0P+/o0bN6KeMx6+/vprc+3Y\nsWPj2Mmd4cwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMOCGZcPgvvvu\nM9fm5+eb6iJZQvbVV1+Za69cuWLa949//MM8ZyQ3LJs6daqpbsKECeY5Ozo6wu7r7u42z3OzvXv3\nmmsnTpxorn3ooYfMteGWMTq9vPFWibyEMRKJ9VcFgARFWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAHLHaN08uTJkON5eXmD9vX19ZnnPXTokKkuJycn5nNKksvlCjn+05/+VPv2\n7Qtut7e3m+f89re/ba693XLLm505c8Y8Z1tbm3nfO++8Y5pz0aJF5sc/ffq0uTYvL89ci+FlCsvK\nykodO3ZMfX19WrNmjR5//HG9/vrr6u/vV1ZWlrZt26aUlJR49woAjhkyLI8ePaqTJ0/K5/Opq6tL\nS5culdfrVXFxsYqKirRjxw7V1dWpuLh4OPoFAEcM+Z7lzJkztXPnTklSenq6ent71dTUFLwZfUFB\ngRobG+PbJQA4bMiwTEpKktvtliTV1dVp3rx56u3tDb7s9ng88vv98e0SABzmCgQCAUvhwYMHVV1d\nrb1792rRokXBs8nTp0/rZz/7mX73u9/FtVEAcJLpAs/hw4e1e/duvfPOOxo3bpzcbreuXLmiMWPG\nqLOzU9nZ2fHuM+GMpKvhn3/+ubn2dlfDt23bFtyO19XwBx980FxrFe5YrVu3Tjt27Bgwlp6ebpoz\nXlfD586da67F8BryZfjly5dVWVmp6upqZWRkSJLmzJmj+vp6SVJDQwMHGMBdb8gzy48++khdXV0q\nKysLjm3ZskVvvvmmfD6fcnNztWTJkrg2CQBOGzIsly9fruXLlw8af/fdd+PSEAAkIlbwROl2Ky3u\nZBXGhx9+aKr7/9sgFpHcwOp27xn29vYGf66qqjLPaV0VIyn4Vs9QLl68aJ5zxowZ5n3Tpk0zzenx\neMyPH8kNy5C4WBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMcF0\nd3eb6r73ve+Z5+zo6DDX5ubmht0XyVet3ez/36pvceHCBVPdhAkTzHPe7itbb13eGckyRtxbOLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFyB260FQ0xcu3bNXOv3+011\nfX195jl/85vfmGsrKytNdZHcsfFHP/qRudb6z7Gnp8c859ixY821QDicWQKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAE3LBsGKSkp5lrrjbjOnj1rnnP69OnmWqsXXngh5nNKksvl\nMtWxKgfDjTNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAblgGAgWlt\neGVlpY4dO6a+vj6tWbNGhw4dUktLizIyMiRJL774op5++ul49gkAjhoyLI8ePaqTJ0/K5/Opq6tL\nS5cu1ezZs7Vu3ToVFBQMR48A4Lghw3LmzJmaNm2aJCk9PV29vb3q7++Pe2MAkEgies/S5/Pps88+\nU1JSkvx+v65fvy6Px6MNGzYoMzMznn0CgKPMYXnw4EFVV1dr7969am5uVkZGhvLz81VTU6Mvv/xS\nGzdujHevAOAY00eHDh8+rN27d6u2tlbjxo2T1+tVfn6+JKmwsFCtra1xbRIAnDZkWF6+fFmVlZWq\nrq4OXv0uLS1Ve3u7JKmpqUl5eXnx7RIAHDbkBZ6PPvpIXV1dKisrC44999xzKisrU2pqqtxutyoq\nKuLaJAA4jQ+lA4AByx0BwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAINmJB33rrbd04sQJuVwurV+/XtOmTXOijZhqamrS2rVrlZeX\nJ0l67LHHtGHDBoe7il5ra6t+8pOf6Ic//KFKSkp05swZvf766+rv71dWVpa2bdumlJQUp9uMyK3P\nqby8XC0tLcrIyJAkvfjii3r66aedbTJClZWVOnbsmPr6+rRmzRo9/vjjI/44SYOf16FDhxw/VsMe\nlp9++qlOnz4tn8+ntrY2rV+/Xj6fb7jbiItZs2apqqrK6TbuWE9PjzZv3iyv1xscq6qqUnFxsYqK\nirRjxw7V1dWpuLjYwS4jE+o5SdK6detUUFDgUFd35ujRozp58qR8Pp+6urq0dOlSeb3eEX2cpNDP\na/bs2Y4fq2F/Gd7Y2KiFCxdKkh555BFdunRJ3d3dw90GbiMlJUW1tbXKzs4OjjU1NWnBggWSpIKC\nAjU2NjrVXlRCPaeRbubMmdq5c6ckKT09Xb29vSP+OEmhn1d/f7/DXTkQlufOndP48eOD25mZmfL7\n/cPdRlycOnVKL730klasWKEjR4443U7UkpOTNWbMmAFjvb29wZdzHo9nxB2zUM9Jkvbv36/Vq1fr\n1Vdf1YULFxzoLHpJSUlyu92SpLq6Os2bN2/EHycp9PNKSkpy/Fg58p7lzQKBgNMtxMSkSZP0yiuv\nqKioSO3t7Vq9erUaGhpG5PtFQ7lbjtnixYuVkZGh/Px81dTU6O2339bGjRudbitiBw8eVF1dnfbu\n3atFixYFx0f6cbr5eTU3Nzt+rIb9zDI7O1vnzp0Lbp89e1ZZWVnD3UbM5eTk6JlnnpHL5dLEiRP1\nwAMPqLOz0+m2YsbtduvKlSuSpM7Ozrvi5azX61V+fr4kqbCwUK2trQ53FLnDhw9r9+7dqq2t1bhx\n4+6a43Tr80qEYzXsYfnUU0+pvr5ektTS0qLs7GylpaUNdxsxd+DAAe3Zs0eS5Pf7df78eeXk5Djc\nVezMmTMneNwaGho0d+5chzu6c6WlpWpvb5f0v/dk//9JhpHi8uXLqqysVHV1dfAq8d1wnEI9r0Q4\nVq6AA+fq27dv12effSaXy6VNmzZp8uTJw91CzHV3d+u1117TV199pevXr+uVV17R/PnznW4rKs3N\nzdq6das6OjqUnJysnJwcbd++XeXl5bp69apyc3NVUVGh0aNHO92qWajnVFJSopqaGqWmpsrtdqui\nokIej8fpVs18Pp927dqlhx9+ODi2ZcsWvfnmmyP2OEmhn9dzzz2n/fv3O3qsHAlLABhpWMEDAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgMF/AZTEvEpAWiD6AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54a06fb588>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "DT8gTKHD2tEG", | |
| "colab_type": "code", | |
| "outputId": "b71e1664-6f88-4f72-b37b-c6f5ed29411f", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 364 | |
| } | |
| }, | |
| "source": [ | |
| "import numpy as np\n", | |
| "\n", | |
| "plt.imshow(model2.predict(np.array([[\n", | |
| " 939.00024, 596.8446 , 543.2641 , 1190.2047 , 1071.6633 ,\n", | |
| " 0. , 0. , 513.2968 , 1418.0906 , 561.9387 ,\n", | |
| " 1309.9022 , 481.01355, 1599.8602 , 0. , 1397.9596 ,\n", | |
| " 1706.3021 , 1320.8265 , 360.7352 , 592.08026, 0. \n", | |
| "]]))[0])" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "execute_result", | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.image.AxesImage at 0x7f54b3244978>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| }, | |
| "execution_count": 122 | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZ5JREFUeJzt3W1slfX9x/FPoS20clMobR1MmBjQ\niiLTcFMQpAWdkBDEPXA0pdnCA4yT0DHHCBPcQgJSiEHEjRvBOZnbSWqyucSkHTBnZ0pV3Ehat7W4\niF1lvaNCCe1sS/8P/tmJpaftp+Wcnhber0dcv+vL7/peXvrxOuc6v3NiOjo6OgQA6NGwaDcAAEMB\nYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgCG2v39xx44dOnPmjGJiYrRlyxbNnDkznH0BwKDS\nr7B8//33de7cOQUCAX3yySfasmWLAoFAuHsDgEGjXy/DS0pKtHTpUknSHXfcoYsXL+ry5cthbQwA\nBpN+hWV9fb3GjRsX3B4/frzq6urC1hQADDZhecDDd3EAuNH1KyxTU1NVX18f3K6trVVKSkrYmgKA\nwaZfYblgwQIVFhZKksrLy5WamqpRo0aFtTEAGEz69TT8/vvv14wZM/Sd73xHMTExeu6558LdFwAM\nKjF8+S8A9I4VPABgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQA\nA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwB\nwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhL\nADAQlgBgICwBwBAb7QYwuLS2toYcj4uL67QvLi7OnvPMmTN27dmzZ8M+Z2VlZcjx3/zmN1q9enWn\nsc8++8yac8SIEfbxT548adfu37/frn3wwQe7jM2aNUt/+9vfOo2lp6fbc/blvG423FkCgKFfd5al\npaXasGGDpk2bJkmaPn26tm7dGtbGAGAw6ffL8Dlz5mjfvn3h7AUABi1ehgOAod9hefbsWT355JNa\nvXq13nvvvXD2BACDTkxHR0dHX/9STU2NTp8+rWXLlqmqqkq5ubkqKipSfHx8JHoEgKjr13uWaWlp\nWr58uSRp8uTJmjBhgmpqanTbbbeFtTkMPD46xEeHEFq/Xoa/9dZbOnLkiCSprq5ODQ0NSktLC2tj\nADCY9OvOMisrS88884xOnDih1tZW/fSnP+UlOIAbWr/CctSoUTpw4EC4ewGAQYvljjeBCxcu2LWn\nTp0KOb58+XL98Y9/7LTtevnll+3aqqoqq66iosKe84svvuh2X1FRUafty5cvW3N++eWX9vHHjBlj\n19599912bU1NTZexWbNm6c033+w0lpOTY89555132rU3Gz5nCQAGwhIADIQlABgISwAwEJYAYCAs\nAcBAWAKAgbAEAANhCQAGwhIADCx3HKLa29vt2uLiYru2uy9yXr58ud55553g9muvvWbP2ZfllrGx\n3r+SDzzwgD3nsGHd3xM8/PDDnbavXr1qzdndV9mFUltba9f25Z/Vp59+ao1XV1fbc06fPt2ujYmJ\nsWtvBNxZAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBFTxDVENDg13b0w92Xaut\nrc3aN2XKFHvOuXPn2rWTJ0+26vpy/OTk5G737dixo9O2uyrl888/t4+/YMECu/bRRx+1a7tbbXTt\neFZW1nXPGQoreAAAXRCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGBgueMQ1dHR\nYdd+/etft2t7Wm64YsWK4J9TUlLsOSdNmmTXjhs3zq4Nh6lTp/br791+++127c9//nO7dsSIEXZt\nd8sNrx3/wx/+YM/Zl+WWPf0Q3I3o5jpbAOgnwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANh\nCQAGwhIADCx3HKJGjhxp1y5ZssSubW5u7nbfvHnzgn9OSEiw5xxK3GWkf/rTn+w5n3rqKbv29ddf\nt2u7W3I5YcKETtsTJ06054yLi7NrbzbWnWVFRYWWLl2qY8eOSZLOnz+vNWvWKDs7Wxs2bNCXX34Z\n0SYBINp6DcsrV65o+/btysjICI7t27dP2dnZeuONNzRlyhQVFBREtEkAiLZewzI+Pl6HDx9Wampq\ncKy0tDT40i4zM1MlJSWR6xAABoFe37OMjY1VbGznsubmZsXHx0uSkpOTVVdXF5nuAGCQuO4HPH35\nXkWEz9ixYyMyb08Pbm7Uhzpf1d13RF4rKysrIscPx6u0vXv3hqETXKtfYZmYmKiWlhaNHDlSNTU1\nnV6iY2BcvHjRru1LsHb3NDwhIaHTvhs1OCPxNLwvwfrVZwO9mTt3bpexvXv3Ki8vr9PYmjVr7Dkf\neOABu/Zm06/PWc6fP1+FhYWSpKKiIi1cuDCsTQHAYNPrnWVZWZl27dql6upqxcbGqrCwUHv27NHm\nzZsVCAQ0ceJEPfbYYwPRKwBETa9hec8994T8oOyrr74akYYAYDBiBc8QxQMeX01NTcjxtLS0Lvve\nffdda86PPvrIPv6RI0fs2p5+MO5aM2bMsMZ5HzI8WBsOAAbCEgAMhCUAGAhLADAQlgBgICwBwEBY\nAoCBsAQAA2EJAAbCEgAMLHdEJ939nlJ8fHynfS0tLfac9fX1dq37RdJVVVX2nP/85z9Djv/kJz/R\nK6+80mmsoaHBmrOtrc0+/rRp0+zaW265xa7t7ofo+vIDdfBxZwkABsISAAyEJQAYCEsAMBCWAGAg\nLAHAQFgCgIGwBAADYQkABsISAAwsd7wJVFdX27X//ve/Q47PnTtXf/3rX4PbxcXF9pyfffaZXVtb\nW2vVXb161Z6zuyWckvTBBx902k5KSrLm/OUvf2kf/7XXXrNrJ02aZNd+7Wtf69M4rg93lgBgICwB\nwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgYAXPENXU1GTXXrtKpSeFhYUhx+fOndtp1cov\nfvELe86JEyfata2trVZdXFycPeeECRO63fevf/2r0/aMGTOsOX/4wx/ax4/UD5YlJCT0aRzXhztL\nADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgYLnjEHXp0iW7trKy0q79/PPP\nrX1ZWVn2nBkZGXata8SIEXZtampqt/uuPY9hw7z7h/r6evv47e3tdu2dd95p12JgcWcJAAYrLCsq\nKrR06VIdO3ZMkrR582atWLFCa9as0Zo1a/TOO+9EskcAiLpeX4ZfuXJF27dv7/JSauPGjcrMzIxY\nYwAwmPR6ZxkfH6/Dhw/3+L4PANzoYjo6Ojqcwpdeeknjxo1TTk6ONm/erLq6OrW2tio5OVlbt27V\n+PHjI90rAERNv56Gr1y5UklJSUpPT9ehQ4e0f/9+bdu2Ldy9oQfV1dV27RtvvGHX/uUvfwk5/vvf\n/14rV64Mbvfly4fHjRtn17rC8TR87969ysvL6zTmPg1vaGiwj9+X8//qP+Pe8DbYwOrX0/CMjAyl\np6dL+v+PXlRUVIS1KQAYbPoVluvXr1dVVZUkqbS0tE9fmw8AQ1GvL8PLysq0a9cuVVdXKzY2VoWF\nhcrJyVFeXp4SEhKUmJionTt3DkSvABA1vYblPffco9dff73L+Le+9a2INAQAgxHLHQcZd2lcfHy8\nPeecOXPs2qlTp3a7Lzc3N/jnW2+91Z5z0qRJdq17Xn35xcielnt+//vf77R94sQJa86SkhL7+OfP\nn7dr//f2liPUB1liYmK6jMfExNhzonssdwQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCB\nsAQAA2EJAAaWOw6Aq1ev2rVXrlyx6lJSUuw5Z82aZdeOHTu2233f/va37XkGk56+Fevaff/4xz+s\nOVtbW+3jt7W12bWxsf5/kqF6iI+P7zLel6Wx6B53lgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUA\nGAhLADAQlgBgYAXPAGhsbLRrExISwn78nlbl3Ay6W20TFxfXZd+FCxeua85QInFNpe5X5rBiJzK4\nswQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAaWO16joaHBqisrKws5/tBD\nD+nPf/5zlzFXXV2dVZeYmGjPebP7+OOPQ47fd999XfZ99NFH1pzuvyeSdNttt9m1d911l12LgcWd\nJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMLDc8Rrl5eVWXU9LGK/dt3v3\nbvv4Dz74oFXXl+WOt9xyi10bbS0tLVbdmTNn7DnffPPNkOP33Xeffv3rX3cae/HFF605V6xYYR9/\nzpw5di3LHQcvKyzz8/N1+vRptbW1ad26dbr33nu1adMmtbe3KyUlRbt37+bnNwHc0HoNy1OnTqmy\nslKBQECNjY1atWqVMjIylJ2drWXLlumFF15QQUGBsrOzB6JfAIiKXt+znD17dvClyZgxY9Tc3KzS\n0lItWbJEkpSZmamSkpLIdgkAUdZrWA4fPjz4/lhBQYEWLVqk5ubm4Mvu5ORk+2vFAGCoiuno6Ohw\nCo8fP66DBw/q6NGjeuSRR4J3k+fOndOPf/xj/fa3v41oowAQTdYDnuLiYh04cECvvPKKRo8ercTE\nRLW0tGjkyJGqqalRampqpPscMO+++65Vt2jRInvOSDwNnzlzpj0nT8NDPw3Pz8/Xpk2buow5+vI0\n/NFHH7Vrv/e979m1fAH0wOr1ZXhTU5Py8/N18OBBJSUlSZLmz5+vwsJCSVJRUZEWLlwY2S4BIMp6\nvbN8++231djYqLy8vODY888/r2effVaBQEATJ07UY489FtEmASDaeg3LJ554Qk888USX8VdffTUi\nDQHAYGQ/4EFnP/rRj0KO7969u8u+yspKe95JkyZZdX15H2zq1Kl2bUpKSsjx1NRU1dbWBrfb29vt\nOevr6+3aDz74wKorLi625ywtLQ05/vHHH+vuu+/uNOa+D7h48WL7+OvXr7drp0yZYtdiYLE2HAAM\nhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGPjBsn763zcwOft+97vf2fMuWLDA\nqmtqarLnvPXWW+3ahISEkOM/+9nP9PLLLwe33a9Sk6QvvvjCrv373/9u1X366af2nGPHju123/Dh\nwzttZ2ZmWnOuXbvWPj5LGG8M3FkCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGw\nBAADv+54E1i1apVde+nSpZDjJ06c0JIlS4LbcXFx9px9qR0xYoRVN2rUKHvOrKyskOO5ubn61a9+\n1Wls5cqV1pw9LaHEjYk7SwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAw8INlg8zx\n48etutraWnvO+++/367tabXNww8/HPzzsGH+/2enT59u17o/7vXNb37TnrMnubm5YZkHNz7uLAHA\nQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIEfLAMAg7U2PD8/X6dPn1ZbW5vW\nrVunkydPqry8XElJSZKktWvXavHixZHsEwCiqtewPHXqlCorKxUIBNTY2KhVq1Zp3rx52rhxozIz\nMweiRwCIul7Dcvbs2Zo5c6YkacyYMWpublZ7e3vEGwOAwaRP71kGAgF9+OGHGj58uOrq6tTa2qrk\n5GRt3bpV48ePj2SfABBVdlgeP35cBw8e1NGjR1VWVqakpCSlp6fr0KFD+s9//qNt27ZFulcAiBrr\no0PFxcU6cOCADh8+rNGjRysjI0Pp6emSpKysLFVUVES0SQCItl7DsqmpSfn5+Tp48GDw6ff69etV\nVVUlSSotLdW0adMi2yUARFmvD3jefvttNTY2Ki8vLzj2+OOPKy8vTwkJCUpMTNTOnTsj2iQARBsf\nSgcAA8sdAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIA\nDIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAE\nAANhCQAGwhIADLHROOiOHTt05swZxcTEaMuWLZo5c2Y02gir0tJSbdiwQdOmTZMkTZ8+XVu3bo1y\nV/1XUVGhp556St/97neVk5Oj8+fPa9OmTWpvb1dKSop2796t+Pj4aLfZJ9ee0+bNm1VeXq6kpCRJ\n0tq1a7V48eLoNtlH+fn5On36tNra2rRu3Trde++9Q/46SV3P6+TJk1G/VgMelu+//77OnTunQCCg\nTz75RFu2bFEgEBjoNiJizpw52rdvX7TbuG5XrlzR9u3blZGRERzbt2+fsrOztWzZMr3wwgsqKChQ\ndnZ2FLvsm1DnJEkbN25UZmZmlLq6PqdOnVJlZaUCgYAaGxu1atUqZWRkDOnrJIU+r3nz5kX9Wg34\ny/CSkhItXbpUknTHHXfo4sWLunz58kC3gR7Ex8fr8OHDSk1NDY6VlpZqyZIlkqTMzEyVlJREq71+\nCXVOQ93s2bP14osvSpLGjBmj5ubmIX+dpNDn1d7eHuWuohCW9fX1GjduXHB7/PjxqqurG+g2IuLs\n2bN68skntXr1ar333nvRbqffYmNjNXLkyE5jzc3NwZdzycnJQ+6ahTonSTp27Jhyc3P1gx/8QBcu\nXIhCZ/03fPhwJSYmSpIKCgq0aNGiIX+dpNDnNXz48Khfq6i8Z/lVHR0d0W4hLL7xjW/o6aef1rJl\ny1RVVaXc3FwVFRUNyfeLenOjXLOVK1cqKSlJ6enpOnTokPbv369t27ZFu60+O378uAoKCnT06FE9\n8sgjwfGhfp2+el5lZWVRv1YDfmeZmpqq+vr64HZtba1SUlIGuo2wS0tL0/LlyxUTE6PJkydrwoQJ\nqqmpiXZbYZOYmKiWlhZJUk1NzQ3xcjYjI0Pp6emSpKysLFVUVES5o74rLi7WgQMHdPjwYY0ePfqG\nuU7XntdguFYDHpYLFixQYWGhJKm8vFypqakaNWrUQLcRdm+99ZaOHDkiSaqrq1NDQ4PS0tKi3FX4\nzJ8/P3jdioqKtHDhwih3dP3Wr1+vqqoqSf//nuz/PskwVDQ1NSk/P18HDx4MPiW+Ea5TqPMaDNcq\npiMK9+p79uzRhx9+qJiYGD333HO66667BrqFsLt8+bKeeeYZXbp0Sa2trXr66af10EMPRbutfikr\nK9OuXbtUXV2t2NhYpaWlac+ePdq8ebP++9//auLEidq5c6fi4uKi3aot1Dnl5OTo0KFDSkhIUGJi\nonbu3Knk5ORot2oLBAJ66aWXdPvttwfHnn/+eT377LND9jpJoc/r8ccf17Fjx6J6raISlgAw1LCC\nBwAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAIb/A/ALz18WOf8RAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54b328c898>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "cnD6ihgg7DO0", | |
| "colab_type": "code", | |
| "outputId": "6d7ae0f0-cd07-4577-fbb0-8dd596507c0c", | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 9917 | |
| } | |
| }, | |
| "source": [ | |
| "for i in range(0,3000,100):\n", | |
| " plt.imshow(model2.predict(np.array([[\n", | |
| " 939, 596.8446 , 543.2641 , 1190.2047 , 1071.6633 ,\n", | |
| " 0. , 0 , 513.2968 , 1418.0906 , 561.9387 ,\n", | |
| " 1309.9022 , 481.01355, 1599.8602 , 0. , 1397.9596 ,\n", | |
| " 1706.3021 , 1320.8265 , 360.7352 , 592.08026, i \n", | |
| " ]]))[0])\n", | |
| " \n", | |
| " plt.show()" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZ5JREFUeJzt3W1slfX9x/FPoS20clMobR1MmBjQ\niiLTcFMQpAWdkBDEPXA0pdnCA4yT0DHHCBPcQgJSiEHEjRvBOZnbSWqyucSkHTBnZ0pV3Ehat7W4\niF1lvaNCCe1sS/8P/tmJpaftp+Wcnhber0dcv+vL7/peXvrxOuc6v3NiOjo6OgQA6NGwaDcAAEMB\nYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgCG2v39xx44dOnPmjGJiYrRlyxbNnDkznH0BwKDS\nr7B8//33de7cOQUCAX3yySfasmWLAoFAuHsDgEGjXy/DS0pKtHTpUknSHXfcoYsXL+ry5cthbQwA\nBpN+hWV9fb3GjRsX3B4/frzq6urC1hQADDZhecDDd3EAuNH1KyxTU1NVX18f3K6trVVKSkrYmgKA\nwaZfYblgwQIVFhZKksrLy5WamqpRo0aFtTEAGEz69TT8/vvv14wZM/Sd73xHMTExeu6558LdFwAM\nKjF8+S8A9I4VPABgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQA\nA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwB\nwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhL\nADAQlgBgICwBwBAb7QYwuLS2toYcj4uL67QvLi7OnvPMmTN27dmzZ8M+Z2VlZcjx3/zmN1q9enWn\nsc8++8yac8SIEfbxT548adfu37/frn3wwQe7jM2aNUt/+9vfOo2lp6fbc/blvG423FkCgKFfd5al\npaXasGGDpk2bJkmaPn26tm7dGtbGAGAw6ffL8Dlz5mjfvn3h7AUABi1ehgOAod9hefbsWT355JNa\nvXq13nvvvXD2BACDTkxHR0dHX/9STU2NTp8+rWXLlqmqqkq5ubkqKipSfHx8JHoEgKjr13uWaWlp\nWr58uSRp8uTJmjBhgmpqanTbbbeFtTkMPD46xEeHEFq/Xoa/9dZbOnLkiCSprq5ODQ0NSktLC2tj\nADCY9OvOMisrS88884xOnDih1tZW/fSnP+UlOIAbWr/CctSoUTpw4EC4ewGAQYvljjeBCxcu2LWn\nTp0KOb58+XL98Y9/7LTtevnll+3aqqoqq66iosKe84svvuh2X1FRUafty5cvW3N++eWX9vHHjBlj\n19599912bU1NTZexWbNm6c033+w0lpOTY89555132rU3Gz5nCQAGwhIADIQlABgISwAwEJYAYCAs\nAcBAWAKAgbAEAANhCQAGwhIADCx3HKLa29vt2uLiYru2uy9yXr58ud55553g9muvvWbP2ZfllrGx\n3r+SDzzwgD3nsGHd3xM8/PDDnbavXr1qzdndV9mFUltba9f25Z/Vp59+ao1XV1fbc06fPt2ujYmJ\nsWtvBNxZAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBFTxDVENDg13b0w92Xaut\nrc3aN2XKFHvOuXPn2rWTJ0+26vpy/OTk5G737dixo9O2uyrl888/t4+/YMECu/bRRx+1a7tbbXTt\neFZW1nXPGQoreAAAXRCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGBgueMQ1dHR\nYdd+/etft2t7Wm64YsWK4J9TUlLsOSdNmmTXjhs3zq4Nh6lTp/br791+++127c9//nO7dsSIEXZt\nd8sNrx3/wx/+YM/Zl+WWPf0Q3I3o5jpbAOgnwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANh\nCQAGwhIADCx3HKJGjhxp1y5ZssSubW5u7nbfvHnzgn9OSEiw5xxK3GWkf/rTn+w5n3rqKbv29ddf\nt2u7W3I5YcKETtsTJ06054yLi7NrbzbWnWVFRYWWLl2qY8eOSZLOnz+vNWvWKDs7Wxs2bNCXX34Z\n0SYBINp6DcsrV65o+/btysjICI7t27dP2dnZeuONNzRlyhQVFBREtEkAiLZewzI+Pl6HDx9Wampq\ncKy0tDT40i4zM1MlJSWR6xAABoFe37OMjY1VbGznsubmZsXHx0uSkpOTVVdXF5nuAGCQuO4HPH35\nXkWEz9ixYyMyb08Pbm7Uhzpf1d13RF4rKysrIscPx6u0vXv3hqETXKtfYZmYmKiWlhaNHDlSNTU1\nnV6iY2BcvHjRru1LsHb3NDwhIaHTvhs1OCPxNLwvwfrVZwO9mTt3bpexvXv3Ki8vr9PYmjVr7Dkf\neOABu/Zm06/PWc6fP1+FhYWSpKKiIi1cuDCsTQHAYNPrnWVZWZl27dql6upqxcbGqrCwUHv27NHm\nzZsVCAQ0ceJEPfbYYwPRKwBETa9hec8994T8oOyrr74akYYAYDBiBc8QxQMeX01NTcjxtLS0Lvve\nffdda86PPvrIPv6RI0fs2p5+MO5aM2bMsMZ5HzI8WBsOAAbCEgAMhCUAGAhLADAQlgBgICwBwEBY\nAoCBsAQAA2EJAAbCEgAMLHdEJ939nlJ8fHynfS0tLfac9fX1dq37RdJVVVX2nP/85z9Djv/kJz/R\nK6+80mmsoaHBmrOtrc0+/rRp0+zaW265xa7t7ofo+vIDdfBxZwkABsISAAyEJQAYCEsAMBCWAGAg\nLAHAQFgCgIGwBAADYQkABsISAAwsd7wJVFdX27X//ve/Q47PnTtXf/3rX4PbxcXF9pyfffaZXVtb\nW2vVXb161Z6zuyWckvTBBx902k5KSrLm/OUvf2kf/7XXXrNrJ02aZNd+7Wtf69M4rg93lgBgICwB\nwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgYAXPENXU1GTXXrtKpSeFhYUhx+fOndtp1cov\nfvELe86JEyfata2trVZdXFycPeeECRO63fevf/2r0/aMGTOsOX/4wx/ax4/UD5YlJCT0aRzXhztL\nADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgYLnjEHXp0iW7trKy0q79/PPP\nrX1ZWVn2nBkZGXata8SIEXZtampqt/uuPY9hw7z7h/r6evv47e3tdu2dd95p12JgcWcJAAYrLCsq\nKrR06VIdO3ZMkrR582atWLFCa9as0Zo1a/TOO+9EskcAiLpeX4ZfuXJF27dv7/JSauPGjcrMzIxY\nYwAwmPR6ZxkfH6/Dhw/3+L4PANzoYjo6Ojqcwpdeeknjxo1TTk6ONm/erLq6OrW2tio5OVlbt27V\n+PHjI90rAERNv56Gr1y5UklJSUpPT9ehQ4e0f/9+bdu2Ldy9oQfV1dV27RtvvGHX/uUvfwk5/vvf\n/14rV64Mbvfly4fHjRtn17rC8TR87969ysvL6zTmPg1vaGiwj9+X8//qP+Pe8DbYwOrX0/CMjAyl\np6dL+v+PXlRUVIS1KQAYbPoVluvXr1dVVZUkqbS0tE9fmw8AQ1GvL8PLysq0a9cuVVdXKzY2VoWF\nhcrJyVFeXp4SEhKUmJionTt3DkSvABA1vYblPffco9dff73L+Le+9a2INAQAgxHLHQcZd2lcfHy8\nPeecOXPs2qlTp3a7Lzc3N/jnW2+91Z5z0qRJdq17Xn35xcielnt+//vf77R94sQJa86SkhL7+OfP\nn7dr//f2liPUB1liYmK6jMfExNhzonssdwQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCB\nsAQAA2EJAAaWOw6Aq1ev2rVXrlyx6lJSUuw5Z82aZdeOHTu2233f/va37XkGk56+Fevaff/4xz+s\nOVtbW+3jt7W12bWxsf5/kqF6iI+P7zLel6Wx6B53lgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUA\nGAhLADAQlgBgYAXPAGhsbLRrExISwn78nlbl3Ay6W20TFxfXZd+FCxeua85QInFNpe5X5rBiJzK4\nswQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAaWO16joaHBqisrKws5/tBD\nD+nPf/5zlzFXXV2dVZeYmGjPebP7+OOPQ47fd999XfZ99NFH1pzuvyeSdNttt9m1d911l12LgcWd\nJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMLDc8Rrl5eVWXU9LGK/dt3v3\nbvv4Dz74oFXXl+WOt9xyi10bbS0tLVbdmTNn7DnffPPNkOP33Xeffv3rX3cae/HFF605V6xYYR9/\nzpw5di3LHQcvKyzz8/N1+vRptbW1ad26dbr33nu1adMmtbe3KyUlRbt37+bnNwHc0HoNy1OnTqmy\nslKBQECNjY1atWqVMjIylJ2drWXLlumFF15QQUGBsrOzB6JfAIiKXt+znD17dvClyZgxY9Tc3KzS\n0lItWbJEkpSZmamSkpLIdgkAUdZrWA4fPjz4/lhBQYEWLVqk5ubm4Mvu5ORk+2vFAGCoiuno6Ohw\nCo8fP66DBw/q6NGjeuSRR4J3k+fOndOPf/xj/fa3v41oowAQTdYDnuLiYh04cECvvPKKRo8ercTE\nRLW0tGjkyJGqqalRampqpPscMO+++65Vt2jRInvOSDwNnzlzpj0nT8NDPw3Pz8/Xpk2buow5+vI0\n/NFHH7Vrv/e979m1fAH0wOr1ZXhTU5Py8/N18OBBJSUlSZLmz5+vwsJCSVJRUZEWLlwY2S4BIMp6\nvbN8++231djYqLy8vODY888/r2effVaBQEATJ07UY489FtEmASDaeg3LJ554Qk888USX8VdffTUi\nDQHAYGQ/4EFnP/rRj0KO7969u8u+yspKe95JkyZZdX15H2zq1Kl2bUpKSsjx1NRU1dbWBrfb29vt\nOevr6+3aDz74wKorLi625ywtLQ05/vHHH+vuu+/uNOa+D7h48WL7+OvXr7drp0yZYtdiYLE2HAAM\nhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGPjBsn763zcwOft+97vf2fMuWLDA\nqmtqarLnvPXWW+3ahISEkOM/+9nP9PLLLwe33a9Sk6QvvvjCrv373/9u1X366af2nGPHju123/Dh\nwzttZ2ZmWnOuXbvWPj5LGG8M3FkCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGw\nBAADv+54E1i1apVde+nSpZDjJ06c0JIlS4LbcXFx9px9qR0xYoRVN2rUKHvOrKyskOO5ubn61a9+\n1Wls5cqV1pw9LaHEjYk7SwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAw8INlg8zx\n48etutraWnvO+++/367tabXNww8/HPzzsGH+/2enT59u17o/7vXNb37TnrMnubm5YZkHNz7uLAHA\nQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIEfLAMAg7U2PD8/X6dPn1ZbW5vW\nrVunkydPqry8XElJSZKktWvXavHixZHsEwCiqtewPHXqlCorKxUIBNTY2KhVq1Zp3rx52rhxozIz\nMweiRwCIul7Dcvbs2Zo5c6YkacyYMWpublZ7e3vEGwOAwaRP71kGAgF9+OGHGj58uOrq6tTa2qrk\n5GRt3bpV48ePj2SfABBVdlgeP35cBw8e1NGjR1VWVqakpCSlp6fr0KFD+s9//qNt27ZFulcAiBrr\no0PFxcU6cOCADh8+rNGjRysjI0Pp6emSpKysLFVUVES0SQCItl7DsqmpSfn5+Tp48GDw6ff69etV\nVVUlSSotLdW0adMi2yUARFmvD3jefvttNTY2Ki8vLzj2+OOPKy8vTwkJCUpMTNTOnTsj2iQARBsf\nSgcAA8sdAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIA\nDIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAE\nAANhCQAGwhIADLHROOiOHTt05swZxcTEaMuWLZo5c2Y02gir0tJSbdiwQdOmTZMkTZ8+XVu3bo1y\nV/1XUVGhp556St/97neVk5Oj8+fPa9OmTWpvb1dKSop2796t+Pj4aLfZJ9ee0+bNm1VeXq6kpCRJ\n0tq1a7V48eLoNtlH+fn5On36tNra2rRu3Trde++9Q/46SV3P6+TJk1G/VgMelu+//77OnTunQCCg\nTz75RFu2bFEgEBjoNiJizpw52rdvX7TbuG5XrlzR9u3blZGRERzbt2+fsrOztWzZMr3wwgsqKChQ\ndnZ2FLvsm1DnJEkbN25UZmZmlLq6PqdOnVJlZaUCgYAaGxu1atUqZWRkDOnrJIU+r3nz5kX9Wg34\ny/CSkhItXbpUknTHHXfo4sWLunz58kC3gR7Ex8fr8OHDSk1NDY6VlpZqyZIlkqTMzEyVlJREq71+\nCXVOQ93s2bP14osvSpLGjBmj5ubmIX+dpNDn1d7eHuWuohCW9fX1GjduXHB7/PjxqqurG+g2IuLs\n2bN68skntXr1ar333nvRbqffYmNjNXLkyE5jzc3NwZdzycnJQ+6ahTonSTp27Jhyc3P1gx/8QBcu\nXIhCZ/03fPhwJSYmSpIKCgq0aNGiIX+dpNDnNXz48Khfq6i8Z/lVHR0d0W4hLL7xjW/o6aef1rJl\ny1RVVaXc3FwVFRUNyfeLenOjXLOVK1cqKSlJ6enpOnTokPbv369t27ZFu60+O378uAoKCnT06FE9\n8sgjwfGhfp2+el5lZWVRv1YDfmeZmpqq+vr64HZtba1SUlIGuo2wS0tL0/LlyxUTE6PJkydrwoQJ\nqqmpiXZbYZOYmKiWlhZJUk1NzQ3xcjYjI0Pp6emSpKysLFVUVES5o74rLi7WgQMHdPjwYY0ePfqG\nuU7XntdguFYDHpYLFixQYWGhJKm8vFypqakaNWrUQLcRdm+99ZaOHDkiSaqrq1NDQ4PS0tKi3FX4\nzJ8/P3jdioqKtHDhwih3dP3Wr1+vqqoqSf//nuz/PskwVDQ1NSk/P18HDx4MPiW+Ea5TqPMaDNcq\npiMK9+p79uzRhx9+qJiYGD333HO66667BrqFsLt8+bKeeeYZXbp0Sa2trXr66af10EMPRbutfikr\nK9OuXbtUXV2t2NhYpaWlac+ePdq8ebP++9//auLEidq5c6fi4uKi3aot1Dnl5OTo0KFDSkhIUGJi\nonbu3Knk5ORot2oLBAJ66aWXdPvttwfHnn/+eT377LND9jpJoc/r8ccf17Fjx6J6raISlgAw1LCC\nBwAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAIb/A/ALz18WOf8RAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54af2a4240>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFaVJREFUeJzt3X9M1Pcdx/HXlRORgfJDDstidWv8\nQWtdt0oV64+Cpg6zxWqyiMQfW/qHZpHoTFOZqXaLSUVqTCqmAZk0Xc3mZSRLOucC0W6r6xBXtrlB\nsoCmOur0PCi1OKECY38su3hwwPvOO+7Q5+Mvv5/vm8/3fb30xfe+Xz73dQwMDAwIADCiR6LdAACM\nB4QlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAgTPUH3z99dd18eJFORwO7dmzR/Pnzw9nXwAQ\nU0IKywsXLujq1atyu926fPmy9uzZI7fbHe7eACBmhPQxvL6+XitXrpQkPf7447p165Zu374d1sYA\nIJaEFJbt7e1KTU31baelpcnr9YatKQCINWG5wcN3cQB40IUUli6XS+3t7b7tmzdvKiMjI2xNAUCs\nCSksn3vuOdXW1kqSmpub5XK5lJSUFNbGACCWhHQ3/Bvf+IaefPJJFRYWyuFw6LXXXgt3XwAQUxx8\n+S8AjI4VPABgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgC\ngAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAG\nhCUAGBCWAGBAWAKAgTPaDSC2fPHFFwHHJ06c6Ldv4sSJ5jn//Oc/m2s//vhjU93f/vY385xXrlwJ\nOP7OO+9oy5YtfmP/+te/THM6nfb/dX7zm9+Ya6urq821S5YsGTI2e/ZstbS0+I3NmjXLPKfD4TDX\nPmw4swQAg5DOLBsaGrRjxw7fb6zZs2dr7969YW0MAGJJyB/Dn332WR05ciScvQBAzOJjOAAYhByW\nly5d0rZt27RhwwZ9+OGH4ewJAGKOY2BgYCDYH/J4PGpsbFRBQYHa2tq0efNm1dXVKT4+PhI9AkDU\nhXTNMjMzU6tXr5YkPfbYY5o6dao8Ho+mT58e1uYw9vjTIf50CIGF9DH8vffe0/HjxyVJXq9XHR0d\nyszMDGtjABBLQjqzzM/P18svv6yzZ8+qt7dXP/rRj/gIDuCBFlJYJiUlqaKiIty9AEDMYrnjQ+DG\njRvm2j/+8Y8Bx9etW6df//rXfttWwfxitV4zHHxdbiQdHR3D7jt16pTfdldXl2nO3t5e8/GnTp1q\nrv36179urvV6vUPGdu/erV/+8pd+Y4WFheY5Z8yYYa592PB3lgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoAByx3Hqbt375prf//735trL1y4EHB83bp1fl/y/Itf/MI8p8fj\nMddav/rta1/7mnnOvr6+YfctW7bMb9v69a7B/Pe/deuWuTaYpanDLfkcPH716lXznCx3HB5nlgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYMAKnnGqvb3dXNvd3W2uHWm1y737pk+f\nbp5zwYIF5tpHH33UVDdz5kzznOnp6cPuKy0t9du2ruAJZlXS8uXLzbWrV6821w730LTB44NXKY3k\nP//5j7n2kUcernOth+vVAkCICEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nueNDIDMz01z7zW9+07Rv2rRp5jmzsrLMtcH0Gg5z5swJ6efmzp1rri0vLzfXBrOEsL+/3zR+6tQp\n85yrVq0y17LcEQAwBGEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGLHccpxIS\nEsy1BQUF5tqurq5h9y1ZssT37+TkZPOc44n16Ya//e1vzXMWFxeba3/605+aa4d7wmVqaqrftvWJ\nmZI0YcIEc+3DxnRm2dLSopUrV+rEiROSpOvXr2vTpk0qKirSjh07dPfu3Yg2CQDRNmpY3rlzR/v3\n71dubq5v7MiRIyoqKtLPfvYzzZgxQzU1NRFtEgCibdSwjI+PV1VVlVwul2+soaFBK1askCTl5eWp\nvr4+ch0CQAwY9Zql0+mU0+lf1t3drfj4eElSenq6vF5vZLoDgBhx3zd4BgYGwtEHgpSWlhaReUe6\ncfOg3tS5l/U7Gv//ySrc/vSnP933HEePHg1DJxgspLBMTExUT0+PEhIS5PF4/D6iY2x8+umn5tpg\ngnW4u+HJycl++x7U4IzE3fBggjUnJ8dcu3DhwiFjR48e1fbt2/3Gvve975nnfOaZZ8y1D5uQ/s5y\n8eLFqq2tlSTV1dVp6dKlYW0KAGLNqGeWTU1NOnjwoK5duyan06na2lodOnRIJSUlcrvdysrK0osv\nvjgWvQJA1IwalvPmzdO77747ZPztt9+OSEMAEItYwTNOPew3ePr6+sy1w13fdblcunnzpt/YH/7w\nB9OcwdyIqaioMNcOtyonkCeffNI0znXI8GBtOAAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFh\nCQAGhCUAGBCWAGDAcseHgPVrxyQN+zylhIQE9fT0+Lbv/fdoBi8pHMmNGzdMddeuXTPPeeXKlYDj\nP/zhD3X8+HG/sY6ODtOcwTx3as6cOebapKQkc+1wD6IL5gF1sOPMEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADBgueM4NTAwYK4NZmmgx+MJOL5gwQI1NTX5ts+dO2ees7W1\n9b6PP1gwSzjj4uKG3dfY2Oi3nZqaapqzqqrKfPx33nnHXDt9+nRz7Ze//OWgxnF/OLMEAAPCEgAM\nCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADVvCMU11dXebaCxcumGvPnj0bcHzBggWqrq72\nbb/11lvmOadNm2autT4IbKRVOYONtKLl0qVLfttz5841zblr1y7z8Z944glz7ZQpU8y1EyZMCGoc\n94czSwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA5Y7j1GeffWauvXz5\nsrn2ypUrpn3Lly83z7lw4UJzrfVBZJMmTTLPmZmZOey+pUuX+m1bHwT3ySefmI/f399vrp03b565\nFmOLM0sAMDCFZUtLi1auXKkTJ05IkkpKSvTtb39bmzZt0qZNm/S73/0ukj0CQNSN+jH8zp072r9/\nv3Jzc/3Gd+3apby8vIg1BgCxZNQzy/j4eFVVVcnlco1FPwAQkxwDxiva5eXlSk1N1caNG1VSUiKv\n16ve3l6lp6dr7969SktLi3SvABA1Id0NX7NmjVJSUpSdna1jx47p6NGj2rdvX7h7wwj++c9/mmtP\nnjxprh3u+vPp06e1evVq3/a///1v85wpKSnm2rG8G15eXq7i4mK/Mevd8Js3b5qP/+ijj5prN2zY\nYK5dtGiRuRb3L6S74bm5ucrOzpYk5efnq6WlJaxNAUCsCSksi4uL1dbWJklqaGjQrFmzwtoUAMSa\nUT+GNzU16eDBg7p27ZqcTqdqa2u1ceNG7dy5U5MmTVJiYqIOHDgwFr0CQNSMGpbz5s3Tu+++O2R8\n1apVEWkIAGIRyx1jjPUGw8SJE81z5uTkmGtnzJgx7L4tW7b4/h3MTYuR5hzM+mTCrKws85zNzc3D\n7tu2bZvf9q9+9SvTnB6Px3z869evm2v/f3nLghs8Y4vljgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKA\nAWEJAAaEJQAYEJYAYEBYAoAByx1jzJ07d0x1Iz2xcLCEhARz7ZQpU4bdt379evM8sWTOnDnmfX/9\n619Nc9bX15uP73A4zLXx8fHm2kBLYx0Ox5DxYI6P4XFmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzgGQOdnZ3mWuuDyKwPNpNGXpXzMOjr6ws47nQ6h+zr6uoyzfnII/bzjJSU\nFHNtMKtthqtlxU5kcGYJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDc\ncZCOjg5TXXNzc8DxZcuW6YMPPhgyFu7jJyYmmud82P3jH/8IOP70008P2dfS0mKas7u723z8rKws\nc+3cuXPNtRhbnFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3HKS1\ntdVUN9ISxsH7ysvLzcdfuHChqe5LX/qSec6EhARzbbT19PSY6v7+97+b56ypqQk4/vTTT+vnP/+5\n39jhw4dNcxYWFpqPv2TJEnPtV7/6VXMtxpYpLMvKytTY2Ki+vj5t3bpVTz31lF555RX19/crIyND\nb7zxhuLj4yPdKwBEzahhef78ebW2tsrtdquzs1Nr165Vbm6uioqKVFBQoMOHD6umpkZFRUVj0S8A\nRMWo1yxzcnL05ptvSpImT56s7u5uNTQ0aMWKFZKkvLw81dfXR7ZLAIiyUcMyLi7O93VgNTU1WrZs\nmbq7u30fu9PT0+X1eiPbJQBEmWNgYGDAUnjmzBlVVlaqurpaL7zwgu9s8urVq9q9e7dOnjwZ0UYB\nIJpMN3jOnTuniooK/eQnP1FycrISExPV09OjhIQEeTweuVyuSPc5Zs6fP2+qW7RokXnOSNwNnz9/\nvnlO7oYHvht+8OBB7d69e8iYRTB3w9esWWOu/c53vmOudTr5Y5axNOrH8K6uLpWVlamyslIpKSmS\npMWLF6u2tlaSVFdXp6VLl0a2SwCIslF/NZ0+fVqdnZ3auXOnb6y0tFSvvvqq3G63srKy9OKLL0a0\nSQCItlHDcv369Vq/fv2Q8bfffjsiDQFALOKixyDWa5ElJSUBx0tLS4fsu3Llivn4H3/8sanu1q1b\n5jlnzpxprp08eXLA8czMTHk8Ht/23bt3zXPe+3OjuXjxoqnOem1Zkv7yl78Mu+/s2bN+28uXLzfN\nmZ+fbz7+qlWrzLVch4xdrA0HAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIA\nDFhbFaKMjAzzvtLSUvO83/rWt0x1t2/fNs85bdo0c63D4Qg4/uMf/1hvvfVWSMfv6Ogw11qXe37y\nySfmOUf6CsEJEyb4bT///POmObds2WI+flpamrkWsYszSwAwICwBwICwBAADwhIADAhLADAgLAHA\ngLAEAAPCEgAMCEsAMCAsAcDAMTAwMBDtJhBZRUVF5trPP/884PipU6f8lmL29fWZ5wzmiYVJSUmm\nuuGeQhnIcE9iLCws1MmTJ/3GCgoKTHNOmTLFfHw8GDizBAADwhIADAhLADAgLAHAgLAEAAPCEgAM\nCEsAMCAsAcCAsAQAAx5YFmM++OADU91nn31mnvOZZ54x1460oOveh3k98oj992x2dra5dsaMGaa6\nJ554wjznSAoLC8MyDx58nFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBjywDAAMTGvDy8rK1NjYqL6+Pm3dulXvv/++mpublZKSIkl66aWX/NYNA8CDZtSwPH/+vFpbW+V2\nu9XZ2am1a9dq0aJF2rVrl/Ly8saiRwCIulHDMicnR/Pnz5f0v2c1d3d3q7+/P+KNAUAsCeqapdvt\n1kcffaS4uDh5vV719vYqPT1de/fuVVpaWiT7BICoMoflmTNnVFlZqerqajU1NSklJUXZ2dk6duyY\nbty4oX379kW6VwCIGtOfDp07d04VFRWqqqpScnKycnNzfV/omp+fr5aWlog2CQDRNmpYdnV1qays\nTJWVlb6738XFxWpra5MkNTQ0aNasWZHtEgCibNQbPKdPn1ZnZ6d27tzpG1u3bp127typSZMmKTEx\nUQcOHIhokwAQbfxROgAYsNwRAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADJzROOjrr7+uixcvyuFwaM+ePZo/f3402girhoYG7dix\nQ7NmzZIkzZ49W3v37o1yV6FraWnR97//fX33u9/Vxo0bdf36db3yyivq7+9XRkaG3njjDcXHx0e7\nzaAMfk0lJSVqbm5WSkqKJOmll17S888/H90mg1RWVqbGxkb19fVp69ateuqpp8b9+yQNfV3vv/9+\n1N+rMQ/LCxcu6OrVq3K73bp8+bL27Nkjt9s91m1ExLPPPqsjR45Eu437dufOHe3fv1+5ubm+sSNH\njqioqEgFBQU6fPiwampqVFRUFMUugxPoNUnSrl27lJeXF6Wu7s/58+fV2toqt9utzs5OrV27Vrm5\nueP6fZICv65FixZF/b0a84/h9fX1WrlypSTp8ccf161bt3T79u2xbgMjiI+PV1VVlVwul2+soaFB\nK1askCTl5eWpvr4+Wu2FJNBrGu9ycnL05ptvSpImT56s7u7ucf8+SYFfV39/f5S7ikJYtre3KzU1\n1bedlpYmr9c71m1ExKVLl7Rt2zZt2LBBH374YbTbCZnT6VRCQoLfWHd3t+/jXHp6+rh7zwK9Jkk6\nceKENm/erB/84Af69NNPo9BZ6OLi4pSYmChJqqmp0bJly8b9+yQFfl1xcXFRf6+ics3yXgMDA9Fu\nISxmzpyp7du3q6CgQG1tbdq8ebPq6urG5fWi0Two79maNWuUkpKi7OxsHTt2TEePHtW+ffui3VbQ\nzpw5o5qaGlVXV+uFF17wjY/39+ne19XU1BT192rMzyxdLpfa29t92zdv3lRGRsZYtxF2mZmZWr16\ntRwOhx577DFNnTpVHo8n2m2FTWJionp6eiRJHo/ngfg4m5ubq+zsbElSfn6+WlpaotxR8M6dO6eK\nigpVVVUpOTn5gXmfBr+uWHivxjwsn3vuOdXW1kqSmpub5XK5lJSUNNZthN17772n48ePS5K8Xq86\nOjqUmZkZ5a7CZ/Hixb73ra6uTkuXLo1yR/evuLhYbW1tkv53Tfb/f8kwXnR1damsrEyVlZW+u8QP\nwvsU6HXFwnvlGIjCufqhQ4f00UcfyeFw6LXXXtPcuXPHuoWwu337tl5++WV9/vnn6u3t1fbt27V8\n+fJotxWSpqYmHTx4UNeuXZPT6VRmZqYOHTqkkpISffHFF8rKytKBAwc0YcKEaLdqFug1bdy4UceO\nHdOkSZOUmJioAwcOKD09PdqtmrndbpWXl+srX/mKb6y0tFSvvvrquH2fpMCva926dTpx4kRU36uo\nhCUAjDes4AEAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHA4L/BrOYPPY2lWwAAAABJRU5E\nrkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ad290320>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFWFJREFUeJzt3X9M1Pcdx/HXDUQ40YKUo7JidS2m\nrP5aV13R2BYltZqsrW0TB1PXH2nsthqZaTpm1G6xKRWNidqtAhW31Cy7hmarTUwg1jYjDjHFpSs2\nG2oyh6gIDn/VwwHe/lh2EbiT953H/cDn4y+/n+/bz/f97ZlXv3ff+9zX4fV6vQIA3NQ3ot0AAMQD\nwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcAgMdS/+NZbb+mLL76Qw+HQ2rVrNX369HD2BQAx\nJaSwPHz4sE6ePCm3260TJ05o7dq1crvd4e4NAGJGSG/DGxoaVFhYKEm69957dfHiRV25ciWsjQFA\nLAkpLDs7O5Wenu7bHj9+vDo6OsLWFADEmrDc4OG3OACMdCGFpcvlUmdnp2/73LlzyszMDFtTABBr\nQgrLuXPnqra2VpJ09OhRuVwupaamhrUxAIglId0Nf/DBB/XAAw/oBz/4gRwOh954441w9wUAMcXB\nj/8CwNBYwQMABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGCRGuwHElqtXr/oddzqd/fY5nU7znI2Njebaf/7zn6a6r776yjxna2ur3/Hq\n6mq9+OKL/cY6OjpMcyYkJJiP/6c//clc63a7zbVz5swZNJaTkzPofHNycsxzIjCuLAHAIKQry8bG\nRq1evVq5ubmSpClTpmj9+vVhbQwAYknIb8Nnz56t7du3h7MXAIhZvA0HAIOQw/L48eN65ZVXVFRU\npIMHD4azJwCIOQ6v1+sN9i+1t7erqalJixYtUmtrq1asWKG6ujolJSUNR48AEHUhfWaZlZWlxYsX\nS5ImTpyoO++8U+3t7XxFYQTgq0N8dQj+hfQ2fO/evdq1a5ek//3jOn/+vLKyssLaGADEkpCuLOfP\nn6/XXntNn3zyiXp6evTLX/6St+AARrSQwjI1NVU7d+4Mdy8AELNY7ngbOHXqlLm2vr7e73hRUZE+\n+uijfttW1dXV5tq2tjZT3YkTJ8xznjt3LuC+G89Jki5dumSas7e313z87Oxsc+33vvc9c21nZ+eg\nsZ/+9Kfau3dvv7HnnnvOPCcfpwXG9ywBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAs\nAcCAsAQAA5Y7xqlr166Za//85z+ba48cOeJ3vKioSE1NTb7tffv2mecMZrnl6NGjTXXf/va3zXNO\nmjQp4L7Zs2eb57nRf/7zH3NtoJ+98yeYZZx33XWX3/Hm5uZ+2zNnzjTPyXLHwLiyBAADwhIADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA1bwxCl/D6sKxOv1mmtv9iCuG/fdfffd5jm/853v\nmGszMjJMdd/61rfMc6anpwfct3nz5n7bfX19pjnPnj1rPv7ChQvNtYsXLzbXBloZNHB87ty55jmv\nX79urv3GN26va63b62wBIESEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDc\nMU45HA5z7c2W+w20YMEC074JEyaY5wymNjs721QXzPnfzNSpU0P6ezNmzDDXbt261Vx7s+WmAwV6\naNrA8Y8//tg85xNPPGGuZbkjAGAQwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAxY7hinRo0aZa4N5omBFy5cCLhv3rx5vj+npqaa50xMjJ9/ZtanGx44cMA855o1a8y1v/3tb821\nkydP9js+bty4ftvBLDcN5t/V7cZ0ZdnS0qLCwkLt2bNHknTmzBktX75cxcXFWr16dcA1qgAwUgwZ\nllevXtXGjRuVn5/vG9u+fbuKi4v1+9//Xvfcc49qamqGtUkAiLYhwzIpKUlVVVVyuVy+scbGRt8v\n0BQUFKihoWH4OgSAGDDkh0mJiYmDPnPyeDxKSkqSJGVkZKijo2N4ugOAGHHLn7x7vd5w9IEgZWZm\nDsu8aWlpIe0bKay/0VhYWDgsx//b3/52y3NUVFSEoRMMFFJYOp1OdXd3Kzk5We3t7f3eoiMygrma\nDyZYA90NT0tL67ePu+H2u+HBBOv06dPNtTfeR/i/iooKrVy5st/Yyy+/bJ7zoYceMtfebkL6nuWc\nOXNUW1srSaqrq+v3lRIAGImG/F9+c3OzNm3apLa2NiUmJqq2tlZbtmxRaWmp3G63srOz9fTTT0ei\nVwCImiHDcurUqXr//fcHje/evXtYGgKAWBQ/Hyahn9v9Bs+1a9fMtZcuXfI7npmZOeiz37/85S+m\nOQ8dOmQ+/o4dO8y1ubm55tpp06aZxvkcMjxYGw4ABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYsNzxNtDX12eu7e7u9js+ZswYff31177tYJ67dPbsWXPt6dOnTXVtbW23PGdp\naal27drVb6yrq8s0p8fjMR///vvvN9cOfNjYzTz55JNBjePWcGUJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcMU4Fs4Tx1KlT5tpAy/1mzpypY8eO+batT0GU/vfseSvr\ncsfe3l7znCkpKQH3NTU19du2PjXzN7/5jfn4v/vd78y1kydPNtdOnDgxqHHcGq4sAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgBU8cerGh4cN5a9//au59tNPP/U7vm3bNu3evbvf\nttVdd91lrrWel8PhMM85adKkgPv+8Y9/hDRvSUmJ+fgzZ84016anp5trEVlcWQKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGLHeMUxcuXDDXHj9+3Fx740PJbravoKDAPOdD\nDz1krrU+iCw5Odk854QJEwLumzt3br/tnp4e05wtLS3m41+/ft1cG8zSSEQWV5YAYGAKy5aWFhUW\nFmrPnj2SpNLSUn3/+9/X8uXLtXz5cn322WfD2SMARN2Qb8OvXr2qjRs3Kj8/v9/4mjVrgnorBgDx\nbMgry6SkJFVVVcnlckWiHwCISQ6v1+u1FO7YsUPp6elatmyZSktL1dHRoZ6eHmVkZGj9+vUaP378\ncPcKAFET0t3wp556SmlpacrLy1NlZaXeeecdbdiwIdy94Sb+9a9/mWs/+OADc+2BAwf8ju/bt0+L\nFy/2bXs8HvOcY8aMMddG8m74u+++qx//+Mf9xqx3w0+fPm0+/n333WeuffHFF8213DmPrJDuhufn\n5ysvL0+SNH/+/KC+RgEA8SiksFy1apVaW1slSY2NjcrNzQ1rUwAQa4Z8G97c3KxNmzapra1NiYmJ\nqq2t1bJly1RSUqKUlBQ5nU6VlZVFolcAiJohw3Lq1Kl6//33B40vXLhwWBoCgFjEcsc4NXr0aHPt\nd7/7XXNtTk5OwH0/+tGPfH/Oysoyzzl58mRzbWKi7Z/kN7/5TfOcR44cCbjv5Zdf7rftdrtNcwZz\ng+3MmTPm2mDm5QZPZLHcEQAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nuWOMsf5OZDDLDYP57cc77rgj4L6lS5ea54klDzzwgHnfxIkTTXMePnzYfPzu7m5zbTDLWBFZXFkC\ngAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABK3gi4OLFi+bapKQkU93169fNc95s\nVc7t4Gb/rQbu6+vrM82ZmppqPv6ECRPMtdYHtiHyuLIEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwI\nSwAwICwBwICwBAADwhIADFhbNcD58+dNdV999ZXf8Xnz5qm+vn7QmFVXV5epLiUlxTzn7a6lpcXv\n+IwZMwbtO3XqVNiPH8xy0ylTpoT9+AgPriwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA5Y7DnDy5ElT3c2WMA7cV1lZaT7+gw8+aKqbMWOGec5Ro0aZa6PN4/GY6v7+97+b\n5/zggw/8js+YMUN/+MMf+o2Vl5eb5nz++efNxy8sLDTX5uTkmGsRWaawLC8vV1NTk3p7e7Vy5UpN\nmzZNr7/+uvr6+pSZmanNmzebH+EKAPFoyLA8dOiQjh07Jrfbra6uLi1ZskT5+fkqLi7WokWLtHXr\nVtXU1Ki4uDgS/QJAVAz5meWsWbO0bds2SdK4cePk8XjU2NioBQsWSJIKCgrU0NAwvF0CQJQNGZYJ\nCQlyOp2SpJqaGj3yyCPyeDy+t90ZGRnq6OgY3i4BIMocXq/Xayncv3+/KioqVF1drccff9x3NXny\n5En9/Oc/H/RBOQCMJKYbPPX19dq5c6fee+89jR07Vk6nU93d3UpOTlZ7e7tcLtdw9xkxR44cMdVZ\n71pL3A0PRiTvhpeVlekXv/jFoDGLYO6GFxUVmWsXLlxorkVkDfk2/PLlyyovL1dFRYXS0tIkSXPm\nzFFtba0kqa6uLqhfAgeAeDTkleW+ffvU1dWlkpIS39jbb7+tdevWye12Kzs7W08//fSwNgkA0TZk\nWC5dulRLly4dNL579+5haQgAYhEreAawfma4bt06v+NvvvnmoH3WVUGSdOLECVPdlStXzHPec889\n5toxY8b4HXe5XDp37pxv2/rZoiSdPn3aXNvc3Gyqs362LElffvllwH0DHy73xBNPmOYMZlXOo48+\naq5F7GJtOAAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAcscQZWVlmfe9\n+eab5nn9rcP358MPPzTPGcxP6PX29vod/9WvfqVf//rXvu2uri7znMH8OHRbW5uprr293Tzn3Xff\nHXDf6NGj+20/9thjpjl/+MMfmo+fnJxsrkXs4soSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHA\ngLAEAAPCEgAMCEsAMHB4vV5vtJvA8HrhhRfMtRcuXPA7/sc//lFLlizxbX/99dfmORMSEsy148eP\nD2udFHgJ47PPPjto2aj1qY133HGH+fgYGbiyBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAs\nAcCAsAQAAx5YFmMOHjxoqvN4POY5Z82aZa4N9MAySSooKDDPc6Np06aZa3Nyckx19913X0i9DPTs\ns8+GZR6MfFxZAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAY8sAwADExr\nw8vLy9XU1KTe3l6tXLlSBw4c0NGjR5WWliZJeumllwI+QQ8ARoIhw/LQoUM6duyY3G63urq6tGTJ\nEj388MNas2ZNyD+sAADxZsiwnDVrlqZPny5JGjdunDwej/r6+oa9MQCIJUF9Zul2u/X5558rISFB\nHR0d6unpUUZGhtavXx/UQ+8BIN6Yw3L//v2qqKhQdXW1mpublZaWpry8PFVWVurs2bPasGHDcPcK\nAFFj+upQfX29du7cqaqqKo0dO1b5+fnKy8uTJM2fP18tLS3D2iQARNuQYXn58mWVl5eroqLCd/d7\n1apVam1tlSQ1NjYqNzd3eLsEgCgb8gbPvn371NXVpZKSEt/YM888o5KSEqWkpMjpdKqsrGxYmwSA\naONL6QBgwHJHADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIA\nDAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAg\nLAHAgLAEAAPCEgAMCEsAMEiMxkHfeustffHFF3I4HFq7dq2mT58ejTbCqrGxUatXr1Zubq4kacqU\nKVq/fn2UuwpdS0uLfvKTn+j555/XsmXLdObMGb3++uvq6+tTZmamNm/erKSkpGi3GZSB51RaWqqj\nR48qLS1NkvTSSy/psccei26TQSovL1dTU5N6e3u1cuVKTZs2Le5fJ2nweR04cCDqr1XEw/Lw4cM6\nefKk3G63Tpw4obVr18rtdke6jWExe/Zsbd++Pdpt3LKrV69q48aNys/P941t375dxcXFWrRokbZu\n3aqamhoVFxdHscvg+DsnSVqzZo0KCgqi1NWtOXTokI4dOya3262uri4tWbJE+fn5cf06Sf7P6+GH\nH476axXxt+ENDQ0qLCyUJN177726ePGirly5Euk2cBNJSUmqqqqSy+XyjTU2NmrBggWSpIKCAjU0\nNESrvZD4O6d4N2vWLG3btk2SNG7cOHk8nrh/nST/59XX1xflrqIQlp2dnUpPT/dtjx8/Xh0dHZFu\nY1gcP35cr7zyioqKinTw4MFotxOyxMREJScn9xvzeDy+t3MZGRlx95r5OydJ2rNnj1asWKGf/exn\n+ve//x2FzkKXkJAgp9MpSaqpqdEjjzwS96+T5P+8EhISov5aReUzyxt5vd5otxAWkyZN0quvvqpF\nixaptbVVK1asUF1dXVx+XjSUkfKaPfXUU0pLS1NeXp4qKyv1zjvvaMOGDdFuK2j79+9XTU2Nqqur\n9fjjj/vG4/11uvG8mpubo/5aRfzK0uVyqbOz07d97tw5ZWZmRrqNsMvKytLixYvlcDg0ceJE3Xnn\nnWpvb492W2HjdDrV3d0tSWpvbx8Rb2fz8/OVl5cnSZo/f75aWlqi3FHw6uvrtXPnTlVVVWns2LEj\n5nUaeF6x8FpFPCznzp2r2tpaSdLRo0flcrmUmpoa6TbCbu/evdq1a5ckqaOjQ+fPn1dWVlaUuwqf\nOXPm+F63uro6zZs3L8od3bpVq1aptbVV0v8+k/3/NxnixeXLl1VeXq6KigrfXeKR8Dr5O69YeK0c\n3ihcq2/ZskWff/65HA6H3njjDd1///2RbiHsrly5otdee02XLl1ST0+PXn31VT366KPRbiskzc3N\n2rRpk9ra2pSYmKisrCxt2bJFpaWlunbtmrKzs1VWVqZRo0ZFu1Uzf+e0bNkyVVZWKiUlRU6nU2Vl\nZcrIyIh2q2Zut1s7duzQ5MmTfWNvv/221q1bF7evk+T/vJ555hnt2bMnqq9VVMISAOINK3gAwICw\nBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMPgvyzfXioTxrBsAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ad6beb70>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFYVJREFUeJzt3X9MVff9x/EXgggMFfnpSKt1rbbE\nynSJTjD+QF0bzFZr90crEavpOpumTmcax1i1S82KomtS6h8iVm1rlt2E/sMfJjDbbHEWMLLEDNoF\ntUaptXgRpiBXBXq/f3wzUuAC73u9954LfT7+8nzO289535z48tx77ueeKK/X6xUAYEQTnG4AAMYC\nwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcAgJtC/+Pbbb+v8+fOKiopScXGxsrOzg9kXAESU\ngMLy7NmzunLlilwuly5duqTi4mK5XK5g9wYAESOgt+G1tbVavXq1JOnRRx/VrVu31NXVFdTGACCS\nBBSWbW1tmjZtWv92cnKy3G530JoCgEgTlBs8/BYHgPEuoLBMT09XW1tb//aNGzeUlpYWtKYAINIE\nFJZLlixRdXW1JKmpqUnp6elKTEwMamMAEEkCuhv+k5/8RHPnztULL7ygqKgovfnmm8HuCwAiShQ/\n/gsAo2MFDwAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABoQlABgQlgBgEON0A4gsXV1dPscTExMH7EtMTDTP+c9//tNce+XKFVPdf/7zH/Oc169f9zl+\n5MgR/epXvxow9t///tc8r1VlZaW5tqqqylybk5MzZCwtLU1ut3vIGB4cV5YAYBDQlWV9fb22bdum\n2bNnS5LmzJmjXbt2BbUxAIgkAb8NX7RokcrKyoLZCwBELN6GA4BBwGF58eJFvfLKK1q/fr3OnDkT\nzJ4AIOJEeb1er79/qbW1VQ0NDcrPz1dLS4s2btyompoaxcbGhqJHAHBcQJ9ZZmRkaM2aNZKkGTNm\nKDU1Va2trXr44YeD2hzCj68O8dUh+BbQ2/Cqqiq9//77kiS3262bN28qIyMjqI0BQCQJ6Mpy5cqV\nev311/XJJ5+op6dHf/zjH3kLDmBcCygsExMTdejQoWD3AgARK6AbPBhbrJ8DStI//vEPn+MbN27U\nhx9+OGDb6te//rW59quvvjLVXb582Txna2urz/H29nYlJycPGLt9+7Zpzr6+PvPxZ86caa7Nzc01\n1z799NNDxl588UV98MEHA8bWrl1rnjMpKclc+33D9ywBwICwBAADwhIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA57uOEbdvXvXXOvPT6T9+9//Nu3btGmTec4vv/zSXBsXF2eqe+KJJ8xz\nZmZmDrtvwYIFA7YnTLBdP9y/f998/N7eXnPtF198Ya5NSUkZMvbiiy/q3LlzA8b+96wsC3+WW37f\ncGUJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGrOAZo9rb2821kyZNMtd+++23\npn0PPfSQec7s7Gxz7dSpU011jz32WFDm/POf/zxgu6enxzTncA9B8+XnP/+5uTY/P99cO9zD1QaP\n+7MqZ6TzP5h1tdN48f16tQAQIMISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAM\nWO44RkVHR5trf/CDH5hrly1bZto3ffp085z+1I70cLHvmjhxonnOkcyfPz8o84yktLTUXNvd3f3A\ntYPHq6qqzHP6s9yS5Y4AgCEISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMGC5\n4xjlz3JHf5awtbW1DbtvyZIl/X/2ZwllfHy8udZp1qcbfvLJJ+Y5d+7caa49cuSIuXbWrFk+xwef\nG3+WmwZrGel4ZLqybG5u1urVq3XixAlJ0vXr11VYWKiCggJt27ZN9+/fD2mTAOC0UcOyu7tbe/bs\nUU5OTv9YWVmZCgoK9Je//EUzZ85UZWVlSJsEAKeNGpaxsbGqqKhQenp6/1h9fb1WrVolScrLy1Nt\nbW3oOgSACDDqZ5YxMTGKiRlY5vF4FBsbK0lKSUmR2+0OTXcAECEe+AaP1+sNRh/wU2pqatjnDdUx\nI4n1Nxp/9rOfheT4zc3NDzzH8ePHH7wRDBFQWCYkJOju3buKi4tTa2vrgLfoCI+R7loP5k/IDTdv\namrqgH3cDbffDfcnWOfMmWOuzc3NHTJ2/Phxbdq0acDYq6++ap5z0aJF5trvm4C+Z5mbm6vq6mpJ\nUk1NjZYuXRrUpgAg0ox6ZdnY2Kh9+/bp2rVriomJUXV1tQ4cOKCioiK5XC5lZmbq2WefDUevAOCY\nUcPyySef1EcffTRk/NixYyFpCAAiESt4xqhQ3WxJSUkx7XP6xt6dO3fMtR6Px+f44M9hJemzzz4z\nzXnmzBnz8f15YNnjjz9urv3xj39sGudzyOBgbTgAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABoQlABgQlgBgEOV1et0aQq6np8dcO9zSwClTpuj27dv92/48d+nrr7821169etVU19raap7z\nxo0bPsd///vfq6SkZMDYrVu3THN2dXWZjz9p0iRzbVJSkrl28+bNQ8YeeughffXVV0PG8OC4sgQA\nA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMeLrjGNXX12eu9We54XDL+ObO\nnauWlpb+7bq6OvOcDQ0N5trLly+b6u7du2eec6QnVv7rX/8asJ2RkWGa8+DBg+bjf/DBB+baH/3o\nR+ba4ZYxsrwxNLiyBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA1bwjFHDPVjM\nl/Pnz5trT58+7XN8//79On78+IBtq+LiYnNtR0eHqe7bb781z/n4448Pu+/zzz8fsN3b22uac+vW\nrebjL1y40FyblpZmrkV4cWUJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUA\nGLDccYxqb2831166dMlc29TUZNq3fPly85zZ2dnmWusyzvj4ePOcIz3Aa9GiRQO279+/b5rz3Llz\n5uNbl1BK/i2NRHhxZQkABqawbG5u1urVq3XixAlJUlFRkX7xi1+osLBQhYWF+vvf/x7KHgHAcaO+\nDe/u7taePXuUk5MzYHzHjh3Ky8sLWWMAEElGvbKMjY1VRUWF0tPTw9EPAESkKK/X67UUvvfee5o2\nbZo2bNigoqIiud1u9fT0KCUlRbt27VJycnKoewUAxwR0N3zt2rVKSkpSVlaWDh8+rIMHD2r37t3B\n7g0juHr1qrn2448/Ntf+7W9/8zl+8uRJrVmzpn/7zp075jljY2PNteG8G37s2DFt3rx5wJj1bviX\nX35pPv78+fPNtb/5zW/MtVlZWeZaPLiA7obn5OT0n6iVK1equbk5qE0BQKQJKCy3bt2qlpYWSVJ9\nfb1mz54d1KYAINKM+ja8sbFR+/bt07Vr1xQTE6Pq6mpt2LBB27dvV3x8vBISElRSUhKOXgHAMaOG\n5ZNPPqmPPvpoyPjTTz8dkoYAIBKx3HGMiouLM9cuWLDAXDt9+vRh9xUWFvb/2Z+vkj322GPm2gkT\nbJ8MPfzww+Y5P/vss2H3vfzyywO2v/sEy5Hcu3fPfPyvv/7aXHv58mVzLTd4wovljgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAByx0jjHUZnT/LDSdNmmSuXbFixbD71q9f\nb54nkoz0e5KD982aNcs059mzZ83H7+7uNtf68zudCC+uLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQA\nA8ISAAwISwAwICwBwIAVPGHQ2dlprp04caKprq+vzzzn1KlTzbXfd9HR0aY6f1ZQWVcFSVJMDP8k\nIxVXlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABa6sGaW9vN9V98cUX\nPseXLFmiM2fODBmzunXrlqkuLi7OPOf33cWLF32OZ2dnD9lnPf8JCQnm40+fPt1cm5WVZa5FeHFl\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABiw3HGQ69evm+pGWsI4eN+H\nH35oPv68efNMdfPnzzfPGRUVZa51msfjMdUNt4TRF5fL5XM8Ozt7yL69e/ea5tyyZYv5+Pn5+eba\n1NRUcy3CyxSWpaWlamhoUG9vr7Zs2aJ58+Zp586d6uvrU1pamvbv36/Y2NhQ9woAjhk1LOvq6nTh\nwgW5XC51dHRo3bp1ysnJUUFBgfLz8/XOO++osrJSBQUF4egXABwx6meWCxcu1LvvvitJmjJlijwe\nj+rr67Vq1SpJUl5enmpra0PbJQA4bNSwjI6O7v85qsrKSi1btkwej6f/bXdKSorcbndouwQAh0V5\nvV6vpfDUqVMqLy/X0aNH9dRTT/VfTV65ckW/+93v9Ne//jWkjQKAk0w3eE6fPq1Dhw7pyJEjmjx5\nshISEnT37l3FxcWptbVV6enpoe4zbJqamkx1c+fONc/J3XC7UNwNH+4/8j/96U/6wx/+MGTMwp+7\n4Zs3bzbXLl682FyL8Br1bXhnZ6dKS0tVXl6upKQkSVJubq6qq6slSTU1NVq6dGlouwQAh416ZXny\n5El1dHRo+/bt/WN79+7VG2+8IZfLpczMTD377LMhbRIAnDZqWD7//PN6/vnnh4wfO3YsJA0BQCRi\nBc8g1s8id+/e7XP8rbfeGrLv6tWr5uM3Nzeb6u7cuWOe85FHHjHXTpo0yed4WlragG89dHZ2muds\naWkx1w73ILjBrJ8tS9Lnn38+7L66uroB22vXrjXN6c+qHD6HHB9YGw4ABoQlABgQlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYsNwxQD/84Q/N+9566y3zvIWFhaa6yspK85wZGRnm2u7u\nbp/je/bsUVlZWf/2jRs3zHN+88035tqbN2+a6jo6Osxzzpo1a9h98fHxA7bz8vJMc77wwgvm42N8\n4MoSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMIjyer1ep5tAaL388svm\n2vb2dp/jH3/8sX75y1+OWufLhAn2/5MzMzNNdWlpaeY5V6xY4XP8mWeeUVVV1YCx5cuXm+acOnWq\n+fgYH7iyBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAAx5YFmFqa2tNdffv3zfP\n+dOf/tRc6/F4ht333ZUw/iz8WrBggbl25syZproZM2aY5xzJM888E5R5MP5xZQkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY8MAyADAwrQ0vLS1VQ0ODent7tWXLFn366adq\nampSUlKSJOmll14a9gl6ADAejBqWdXV1unDhglwulzo6OrRu3TotXrxYO3bsUF5eXjh6BADHjRqW\nCxcuVHZ2tiRpypQp8ng86uvrC3ljABBJ/PrM0uVy6dy5c4qOjpbb7VZPT49SUlK0a9cuJScnh7JP\nAHCUOSxPnTql8vJyHT16VI2NjUpKSlJWVpYOHz6sb775Rrt37w51rwDgGNNXh06fPq1Dhw6poqJC\nkydPVk5OjrKysiRJK1euVHNzc0ibBACnjRqWnZ2dKi0tVXl5ef/d761bt6qlpUWSVF9fr9mzZ4e2\nSwBw2Kg3eE6ePKmOjg5t3769f+y5557T9u3bFR8fr4SEBJWUlIS0SQBwGl9KBwADljsCgAFhCQAG\nhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCW\nAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKA\nQYwTB3377bd1/vx5RUVFqbi4WNnZ2U60EVT19fXatm2bZs+eLUmaM2eOdu3a5XBXgWtubtarr76q\nTZs2acOGDbp+/bp27typvr4+paWlaf/+/YqNjXW6Tb8Mfk1FRUVqampSUlKSJOmll17SihUrnG3S\nT6WlpWpoaFBvb6+2bNmiefPmjfnzJA19XZ9++qnj5yrsYXn27FlduXJFLpdLly5dUnFxsVwuV7jb\nCIlFixaprKzM6TYeWHd3t/bs2aOcnJz+sbKyMhUUFCg/P1/vvPOOKisrVVBQ4GCX/vH1miRpx44d\nysvLc6irB1NXV6cLFy7I5XKpo6ND69atU05Ozpg+T5Lv17V48WLHz1XY34bX1tZq9erVkqRHH31U\nt27dUldXV7jbwAhiY2NVUVGh9PT0/rH6+nqtWrVKkpSXl6fa2lqn2guIr9c01i1cuFDvvvuuJGnK\nlCnyeDxj/jxJvl9XX1+fw105EJZtbW2aNm1a/3ZycrLcbne42wiJixcv6pVXXtH69et15swZp9sJ\nWExMjOLi4gaMeTye/rdzKSkpY+6c+XpNknTixAlt3LhRv/3tb9Xe3u5AZ4GLjo5WQkKCJKmyslLL\nli0b8+dJ8v26oqOjHT9Xjnxm+V1er9fpFoLikUce0Wuvvab8/Hy1tLRo48aNqqmpGZOfF41mvJyz\ntWvXKikpSVlZWTp8+LAOHjyo3bt3O92W306dOqXKykodPXpUTz31VP/4WD9P331djY2Njp+rsF9Z\npqenq62trX/7xo0bSktLC3cbQZeRkaE1a9YoKipKM2bMUGpqqlpbW51uK2gSEhJ09+5dSVJra+u4\neDubk5OjrKwsSdLKlSvV3NzscEf+O336tA4dOqSKigpNnjx53Jynwa8rEs5V2MNyyZIlqq6uliQ1\nNTUpPT1diYmJ4W4j6KqqqvT+++9Lktxut27evKmMjAyHuwqe3Nzc/vNWU1OjpUuXOtzRg9u6data\nWlok/f9nsv/7JsNY0dnZqdLSUpWXl/ffJR4P58nX64qEcxXldeBa/cCBAzp37pyioqL05ptv6okn\nngh3C0HX1dWl119/Xbdv31ZPT49ee+01LV++3Om2AtLY2Kh9+/bp2rVriomJUUZGhg4cOKCioiLd\nu3dPmZmZKikp0cSJE51u1czXa9qwYYMOHz6s+Ph4JSQkqKSkRCkpKU63auZyufTee+9p1qxZ/WN7\n9+7VG2+8MWbPk+T7dT333HM6ceKEo+fKkbAEgLGGFTwAYEBYAoABYQkABoQlABgQlgBgQFgCgAFh\nCQAGhCUAGPwf1HDf+oN+WN0AAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ad255588>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFYRJREFUeJzt3X9MVff9x/HXFcrwTpAfBaqL2I7K\nikOzzvjj0uiKYje7dGL/qSXqmvmH7Vqic50jxh9rXUqlponaPwRau7Zu683Y0rikCcyZbtYhRpaY\nwZYCxhpKFS9KFcbFArvfP/Yd8cIF3vd6Lxfw+fir93Pe+5z38SyvnHsOn3scPp/PJwDAqKZFuwEA\nmAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAIPYUP+Hr7zyis6fPy+Hw6GdO3dq4cKF4ewL\nACaUkMLy7NmzunTpktxuty5cuKCdO3fK7XaHuzcAmDBC+hpeW1urgoICSVJWVpZu3Lih7u7usDYG\nABNJSGHZ0dGh5OTkwc8pKSnyeDxhawoAJpqwPODhtzgATHUhhWV6ero6OjoGP1+9elVpaWlhawoA\nJpqQwvKRRx5RdXW1JKmxsVHp6emaMWNGWBsDgIkkpKfh3/72t/XNb35T69evl8Ph0N69e8PdFwBM\nKA5+/BcAxsYKHgAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADAhLADAgLAHAIDbaDWBiuXnzZsDxxMREv22JiYnmOf/617+aay9dumSqa2lpMc95/fr1\ngOOHDx9WcXGx39hIxz+Uz+cz7//dd98113700Ufm2kWLFg0bS0hIUFdX17Ax3DmuLAHAIKQry7q6\nOm3dulXz5s2TJGVnZ2v37t1hbQwAJpKQv4YvWbJEhw4dCmcvADBh8TUcAAxCDsuWlhY9++yzevrp\np3X69Olw9gQAE47DF8xjvf/X3t6u+vp6rVmzRq2trdq0aZNqamoUFxcXiR4BIOpCumeZkZGhxx9/\nXJKUmZmpe++9V+3t7ZozZ05Ym8P440+H+NMhBBbS1/Djx4/rrbfekiR5PB5du3ZNGRkZYW0MACaS\nkK4sV65cqRdffFF//vOf1dfXp1/84hd8BQcwpYUUljNmzNCRI0fC3QsATFghPeDB5HLx4kVz7V/+\n8peA488884x+9atf+X22ev755821bW1tpjrrvU1JunLlSsDxy5cva9asWX5j1nuW/f395v1nZ2eb\na10ul7n2f88NbldYWKgPPvjAb2z16tXmOb/61a+aa+82/J0lABgQlgBgQFgCgAFhCQAGhCUAGBCW\nAGBAWAKAAWEJAAaEJQAYEJYAYMDbHSepW7dumWvPnDljrm1ubjZte+6558xzfvLJJ+ba+Ph4U92D\nDz5onjMlJWXEbfPnz/f7HBMTY5qzr6/PvP9g/OMf/zDXBvqZvMLCQn388cd+Y0OXdI5m6dKl5tq7\nDVeWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgwAqeSeqLL74w186cOdNcOzAw\nYNoWzKqQnJwcc631hVlZWVnmOUc7/gMHDvh99nq9pjk7OjrM+//BD35grl27dq25trOz0zQezKqc\n//znP+baadPurmutu+toASBEhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABiw\n3HGSio21n7q4uDhz7bJly0zbMjIyzHOmp6eba7/2ta+Z6qwvNhvLww8/HJZ5RlNWVmauvXnzprl2\npPM6dI4//vGP5jm/973vmWtZ7ggAGIawBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA5Y7TlIOh8NcW1BQYK69cuXKiNtuX+5ofQujJDmdTnNtTEyMuTYSrG83PHnypHnOHTt2mGvf\nfPNNc21mZmbA8aH/3sEsTb3nnnvMtXcb05VlU1OTCgoKdOzYMUnS5cuXtXHjRhUVFWnr1q368ssv\nI9okAETbmGHZ09Ojffv2yeVyDY4dOnRIRUVF+s1vfqO5c+eqqqoqok0CQLSNGZZxcXGqrKz0++WY\nuro6rVq1SpKUn5+v2trayHUIABPAmPcsY2Njh/0cmNfrHfx5qNTUVHk8nsh0BwATxB0/4PH5fOHo\nA0FKSUmJyLz33XdfSNumCutvNAbz0CwYTU1NdzzHO++8E4ZOMFRIYel0OtXb26v4+Hi1t7cH9eOu\nCI/r16+ba4MJ1pGeht93331+23gabn8aHkywZmdnm2tvf47wP++8845++MMf+o09//zz5jmXLFli\nrr3bhPR3lnl5eaqurpYk1dTUaPny5WFtCgAmmjGvLBsaGrR//361tbUpNjZW1dXVOnDggEpKSuR2\nuzV79mwVFhaOR68AEDVjhmVubq7ee++9YeNvv/12RBoCgImIFTyTVKQe8KSlpZm29ff3m+ccGBi4\no54C+fe//22u7evrCziempqqa9eu+Y2dPXvWNOfHH39s3n9paam5dv78+ebab33rW6Zx7kOGB2vD\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAOHjx+knPKCeUeS1+sNOD5z\n5kzduHEjpDnb2trMtZ9++qmprqOjwzznSD9nt2PHDpWVlfmNdXd3m+a8/d9iLEN/PHs0ycnJ5trN\nmzcPG5s1a5YuX748bAx3jitLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwB\nwIC3O05Swbwx8cqVK+baW7duBRyfOXOmrl69Ovi5vr7ePOfp06fNtS0tLaa6np4e85yjLff7+9//\n7vd59uzZpjkPHjxo3v+vf/1rc21WVpa5dqTjYnljZHBlCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABqzgmaRGWmkTyL/+9S9z7d/+9reA4y+99JKOHTvm99lq+/bt5lqPx2Oq6+/v\nN8+Zm5s74rbGxka/z9Z/1+LiYvP+8/LyzLXp6enmWowvriwBwICwBAADwhIADAhLADAgLAHAgLAE\nAAPCEgAMCEsAMCAsAcCAsAQAA5Y7TlLXr1831164cMFce/78edO2VatWmefMyckx186ZM8dUFx8f\nb55z7ty5I257+OGH/T739vaa5jx16pR5/8EszVy6dKm5FuOLK0sAMDCFZVNTkwoKCgZ/SKGkpERP\nPPGENm7cqI0bN+qjjz6KZI8AEHVjfg3v6enRvn375HK5/Ma3b9+u/Pz8iDUGABPJmFeWcXFxqqys\n5KejANzVHD6fz2cpPHz4sJKTk7VhwwaVlJTI4/Gor69Pqamp2r17t1JSUiLdKwBETUhPw9euXauk\npCTl5OSooqJCb7zxhvbs2RPu3jCKzz77zFx7/Phxc21NTU3A8Q8++ECFhYWDn7u6usxzBqO7u9tU\nF46n4e+++642bdrkN2Z9Gt7U1GTe/9BbWKP52c9+Zq79+te/bq7FnQvpabjL5Rr8c5CVK1cG9X8c\nAJiMQgrL4uJitba2SpLq6uo0b968sDYFABPNmF/DGxoatH//frW1tSk2NlbV1dXasGGDtm3bpunT\np8vpdKq0tHQ8egWAqBkzLHNzc/Xee+8NG//ud78bkYYAYCJiueMk9ZWvfMVcO9rbDYca7a8a1q9f\nP/jfycnJ5jm/8Y1vmGunTbPdGcrMzDTPOdqiiR/96Ed+nysqKkxzer1e8/4///xzc+3FixfNtTzg\nGV8sdwQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMWO44wVjfBJiWlmae\nMy4uzly7YsWKEbfdvtxxMlm0aJF5W1ZWlmnOc+fOmfdv/Y1OKbjf6cT44soSAAwISwAwICwBwICw\nBAADwhIADAhLADAgLAHAgLAEAAPCEgAMWMEzDnp6esy1MTExpjqHw2Gec+bMmebaqWi0l6AN3WZ9\nEdz9999v3v9DDz1krg1mtRXGF1eWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBg\nQFgCgAHLHYf44osvTHWffPJJwPGlS5eqrq5u2JiV9eVW1mV5kC5evBhwPDc3d9i2L7/80jRncnKy\nef9z5swx1wazNBLjiytLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDl\njkN0dHSY6kZbwjh02+9//3vz/rOzs011CxYsMM85mfT29prqPv30U/Ocv/vd7wKO5+bmDtv28ssv\nm+b86U9/at7/97//fXNtQkKCuRbjyxSWZWVlqq+vV39/v7Zs2aIFCxZox44dGhgYUFpaml577TVe\n4QlgShszLM+cOaPm5ma53W51dnZq3bp1crlcKioq0po1a/T666+rqqpKRUVF49EvAETFmPcsFy9e\nrIMHD0qSEhMT5fV6VVdXp1WrVkmS8vPzVVtbG9kuASDKxgzLmJgYOZ1OSVJVVZVWrFghr9c7+LU7\nNTVVHo8nsl0CQJQ5fD6fz1J44sQJlZeX6+jRo3rssccGryYvXbqkn//853r//fcj2igARJPpAc+p\nU6d05MgRvfnmm0pISJDT6VRvb6/i4+PV3t6u9PT0SPc5blpaWkx1Dz74oHlOnobbReJp+G9/+9uA\n4y+99JL27t07bMwimKfhmzdvNtfOnz/fXIvxNebX8K6uLpWVlam8vFxJSUmSpLy8PFVXV0uSampq\ntHz58sh2CQBRNuaV5YcffqjOzk5t27ZtcOzVV1/Vrl275Ha7NXv2bBUWFka0SQCItjHD8qmnntJT\nTz01bPztt9+OSEMAMBGxgmcI673IX/7ylwHHd+3aNWxbW1ubef///Oc/TXVer9c859y5c82106YF\nvjOTlpbm91cPN27cMM8ZzP1F6z3j5uZm85wXLlwYcdv58+f9Pq9fv940ZzDfprgPOTWwNhwADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLljiDIzM83bdu3aZZ73ueeeM9X9\n4Q9/MM+ZlpZmrh1pGePLL7+sw4cPD37+/PPPzXN+9tln5tpbt26Z6rq7u81zZmVljbgtPj7e7/Pq\n1atNcz7xxBPm/WNq4MoSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMHD4\nfD5ftJtAZBUXF5trb3+D4+3ef/99vzcftre3m+cc6Y2RgVjfRDlr1izznI8++mjA8dWrV+tPf/qT\n39jSpUtNcyYmJpr3j6mBK0sAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADDghWUT\nTF1dnakumIVXeXl55tqRXlgm+a+ECWb/ixYtMtdaV/BkZGSY5xyN9QVlAFeWAGBAWAKAAWEJAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAEvLAMAA9Pa8LKyMtXX16u/v19btmzRyZMn1djY\nqKSkJEnS5s2bR3yDHgBMBWOG5ZkzZ9Tc3Cy3263Ozk6tW7dOy5Yt0/bt25Wfnz8ePQJA1I0ZlosX\nL9bChQsl/fddyV6vVwMDAxFvDAAmkqDuWbrdbp07d04xMTHyeDzq6+tTamqqdu/erZSUlEj2CQBR\nZQ7LEydOqLy8XEePHlVDQ4OSkpKUk5OjiooKXblyRXv27Il0rwAQNaY/HTp16pSOHDmiyspKJSQk\nyOVyKScnR5K0cuVKNTU1RbRJAIi2McOyq6tLZWVlKi8vH3z6XVxcrNbWVkn//WXvefPmRbZLAIiy\nMR/wfPjhh+rs7NS2bdsGx5588klt27ZN06dPl9PpVGlpaUSbBIBo44/SAcCA5Y4AYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgEBuN\nnb7yyis6f/68HA6Hdu7cqYULF0ajjbCqq6vT1q1bNW/ePElSdna2du/eHeWuQtfU1KQf//jHeuaZ\nZ7RhwwZdvnxZO3bs0MDAgNLS0vTaa68pLi4u2m0GZegxlZSUqLGxUUlJSZKkzZs369FHH41uk0Eq\nKytTfX29+vv7tWXLFi1YsGDSnydp+HGdPHky6udq3MPy7NmzunTpktxuty5cuKCdO3fK7XaPdxsR\nsWTJEh06dCjabdyxnp4e7du3Ty6Xa3Ds0KFDKioq0po1a/T666+rqqpKRUVFUewyOIGOSZK2b9+u\n/Pz8KHV1Z86cOaPm5ma53W51dnZq3bp1crlck/o8SYGPa9myZVE/V+P+Nby2tlYFBQWSpKysLN24\ncUPd3d3j3QZGERcXp8rKSqWnpw+O1dXVadWqVZKk/Px81dbWRqu9kAQ6pslu8eLFOnjwoCQpMTFR\nXq930p8nKfBxDQwMRLmrKIRlR0eHkpOTBz+npKTI4/GMdxsR0dLSomeffVZPP/20Tp8+He12QhYb\nG6v4+Hi/Ma/XO/h1LjU1ddKds0DHJEnHjh3Tpk2b9JOf/ETXr1+PQmehi4mJkdPplCRVVVVpxYoV\nk/48SYGPKyYmJurnKir3LG/n8/mi3UJY3H///XrhhRe0Zs0atba2atOmTaqpqZmU94vGMlXO2dq1\na5WUlKScnBxVVFTojTfe0J49e6LdVtBOnDihqqoqHT16VI899tjg+GQ/T7cfV0NDQ9TP1bhfWaan\np6ujo2Pw89WrV5WWljbebYRdRkaGHn/8cTkcDmVmZuree+9Ve3t7tNsKG6fTqd7eXklSe3v7lPg6\n63K5lJOTI0lauXKlmpqaotxR8E6dOqUjR46osrJSCQkJU+Y8DT2uiXCuxj0sH3nkEVVXV0uSGhsb\nlZ6erhkzZox3G2F3/PhxvfXWW5Ikj8eja9euKSMjI8pdhU9eXt7geaupqdHy5cuj3NGdKy4uVmtr\nq6T/3pP9318yTBZdXV0qKytTeXn54FPiqXCeAh3XRDhXDl8UrtUPHDigc+fOyeFwaO/evXrooYfG\nu4Ww6+7u1osvvqibN2+qr69PL7zwgr7zne9Eu62QNDQ0aP/+/Wpra1NsbKwyMjJ04MABlZSU6Nat\nW5o9e7ZKS0t1zz33RLtVs0DHtGHDBlVUVGj69OlyOp0qLS1VampqtFs1c7vdOnz4sB544IHBsVdf\nfVW7du2atOdJCnxcTz75pI4dOxbVcxWVsASAyYYVPABgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAY/B/r2tzQflmANgAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54acf3f978>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFYxJREFUeJzt3X9MVff9x/HXFYpyJxZEYGNTW1uc\n2JZEN5qi0YoSN5os1maNLVHj5h82W53WGetM0SUutVJrUusSkWldarrdhP3TJc1gtus0DdKVpjW6\nH/hjc4wqojLEiRaB7x/flBS8yAu8lwv0+fjL+zlvPud9e5JXzz3nfu4JdHZ2dgoAcFujYt0AAAwH\nhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAIb4gf7hiy++qE8++USBQECbNm1STk5OJPsCgCFl\nQGH5wQcf6OzZswqFQjp9+rQ2bdqkUCgU6d4AYMgY0MfwqqoqFRQUSJLuu+8+NTc36+rVqxFtDACG\nkgGF5cWLF5WSktL1evz48WpsbIxYUwAw1ETkBg+/xQFgpBtQWKanp+vixYtdry9cuKC0tLSINQUA\nQ82AwnL27NmqqKiQJJ04cULp6ekaO3ZsRBsDgKFkQHfDZ86cqQceeEBPPfWUAoGAtmzZEum+AGBI\nCfDjvwDQN1bwAICBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAM\nhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQA\nA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwB\nwEBYAoCBsAQAQ3ysG8DQ0tzcHHb87rvv7rbt7rvvtuc8fPiwXVtXV2fVnTlzxp6zpaUl7HhJSYk2\nbNjQbay1tdWas6Ojw97/L3/5S7v2L3/5i12bk5Nzy9jo0aN148aNW8Zw5zizBADDgM4sq6urtWbN\nGmVlZUmSpk6dquLi4og2BgBDyYA/hj/88MPatWtXJHsBgCGLj+EAYBhwWJ46dUrPPPOMnn76ab3/\n/vuR7AkAhpxAZ2dnZ3//qKGhQTU1NSosLFRdXZ2WL1+uyspKJSQkRKNHAIi5AV2zzMjI0GOPPSZJ\nmjRpkiZMmKCGhgZNnDgxos1h8PHVIb46hPAG9DH8rbfe0r59+yRJjY2NunTpkjIyMiLaGAAMJQM6\ns5w/f77Wr1+vd955R21tbfr5z3/OR3AAI9qAwnLs2LHas2dPpHsBgCFrQDd4MLz05/peb9cXV6xY\noQMHDnR77Vq7dq1de+7cOauuvr7envP8+fNhx0+dOqX777+/21hv1zd7unnzpr3/cNcWe5Obm2vX\nfn7f4IvmzZun9957r9tYXl6ePSfXN3vH9ywBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBg\nICwBwEBYAoCBpzsOUz1/hut2ampq7Np//etf1rbnnnvOnvPvf/+7XZuYmGjVTZ482Z4zKSmp122f\nP0fqc3Fxcdacn332mb3//vzIzLFjx+zaYDB4y1i45Y7jxo2z55w5c6Zd+2XDmSUAGAhLADAQlgBg\nICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGFjBM0y5D9aSpAkTJkR8/1/96lft2p6rZG5nzJgxVt2U\nKVPsOW+3gucXv/hFt9f/+9//rDmbmprs/S9atMiufeqpp+zaS5cuWeP9WZXT0dFh144a9eU61/py\nvVsAGCDCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMLHccpuLj/UPXn2VpM2bM\nsLalpaXZc/ZnueXXv/51q+4rX/mKPeftfOtb3+r2urOz0/q7QCBg7+OVV16xay9fvmzX9vZwtZ5z\nVFRU2HMuWLDArmW5IwDgFoQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABhY7vgl\n8Oijj9q1n376aa/bcnNzu/4dDAbtOd0nNva3Nhrc5Y5//vOf7Tl/+tOf2rW//vWv7dqJEyeGHe/5\n37A/S1P7s4z2y8Y6s6ytrVVBQYEOHjwoSTp37pyWLVumoqIirVmzRp999llUmwSAWOszLK9du6at\nW7cqLy+va2zXrl0qKirSm2++qcmTJ6u8vDyqTQJArPUZlgkJCSorK1N6enrXWHV1ddevk+Tn56uq\nqip6HQLAENDnBYr4+PhbrmO0trYqISFBkpSamqrGxsbodAcAQ8QdX811L4gjspKTk6Myb2Zm5oC2\njRTubzTOmzcvKvs/duzYHc+xb9++CHSCngYUlsFgUNevX9eYMWPU0NDQ7SM6Bsd///tfu7Y/wdrb\n3fDMzMxu20bq3fCOjg6r7vDhw/ac/QnWnJwcu/aL30743L59+7Ry5cpuYz/+8Y/tOWfOnGnXftkM\n6HuWs2bN6vr15crKSs2ZMyeiTQHAUNPnmeXx48e1fft21dfXKz4+XhUVFdqxY4c2btyoUCikzMxM\nPf7444PRKwDETJ9h+eCDD+qNN964Zfz111+PSkMAMBTxdf1hKlo3eG53/fmL29ra2uw529vb7drr\n169bda2trfacvUlJSVFTU1O3sY8//tj62yNHjtj72b59u107ffp0u7a364s9x7kOGRmsDQcAA2EJ\nAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAIZAJz9IOeL15xlJ165dCzuenJzc7Wfh\n+rPcsb6+3q49c+aMVddzmeLtNDc3hx1ft26ddu7c2W2st/d/J/sPBAJ2bX8eLvbDH/4w7N/3/DHu\n/syJ3nFmCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADDzdcZjqzxMTGxoa\n7NqOjo6w48nJyd2WDR47dsye809/+pNde/LkSavuypUr9pwTJ07sddtHH33U7fU3vvENa85XXnnF\n3v+bb75p12ZlZdm1vS1jZHljdHBmCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAG\nVvAMU/15YJj7EDBJqq6uDju+YcMGhUKhbq9dq1evtmvPnTtn1fXnIWwzZszoddtf//rXbq9bW1ut\nOX/yk5/Y+587d65dm5GRYddicHFmCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAG\nwhIADCx3HKYuX75s154+fdqurampsbYVFhbac/bnIVwTJkyw6oLBoD3nlClTet2Wk5PT7bW73PHw\n4cP2/js7O+3aWbNm2bUYXJxZAoDBCsva2loVFBTo4MGDkqSNGzfqe9/7npYtW6Zly5bpvffei2aP\nABBzfX4Mv3btmrZu3aq8vLxu4+vWrVN+fn7UGgOAoaTPM8uEhASVlZUpPT19MPoBgCEp0GlefX7t\ntdeUkpKipUuXauPGjWpsbFRbW5tSU1NVXFys8ePHR7tXAIiZAd0NX7RokZKTk5Wdna29e/dq9+7d\n2rx5c6R7w218+umndu0f/vAHu7aioiLseCgU0pIlS7peX7lyxZ7z5s2bdm1TU5NVF4m74QcOHNCK\nFSu6jbl3w//xj3/Y+58zZ45d+7Of/cyuzczMtGtx5wZ0NzwvL0/Z2dmSpPnz56u2tjaiTQHAUDOg\nsFy9erXq6uok/f9jCPrzPToAGI76/Bh+/Phxbd++XfX19YqPj1dFRYWWLl2qtWvXKjExUcFgUNu2\nbRuMXgEgZvoMywcffFBvvPHGLePf+c53otIQAAxFLHccpu666y679pvf/KZdm5SU1Ou273//+1Zd\nT9OmTbNrR43yrgxNmjTJnvOdd97pdduyZcu6vS4tLbXmvHHjhr3/Cxcu2LX//Oc/7Vpu8AwuljsC\ngIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADyx2HGPdJgGlpafaco0ePtmtn\nz57d67Ynn3zSnmcoyc3NtbcdOnTImvPjjz+299/S0mLXJiYm2rUYXJxZAoCBsAQAA2EJAAbCEgAM\nhCUAGAhLADAQlgBgICwBwEBYAoCBFTyD4Pr163at+8CuQCBgzzlu3Di7diSKi4uztwWDQWvOqVOn\n2vt/4IEH7NqEhAS7FoOLM0sAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGBg\nuWMPzc3NVt3p06fDjs+cOVMfffTRLWOua9euWXXusjxIZ8+eDTs+ffr0W7a5y0hTUlLs/d977712\nbVZWll2LwcWZJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMLDcsYcrV65Y\ndbdbwthz2x//+Ed7/xMnTrTqpk2bZs85nLhPwvzPf/5jz/m73/0u7Pj06dNv2VZcXGzN6dZJ0ne/\n+127dvTo0XYtBpcVliUlJaqpqdHNmze1atUqPfTQQ9qwYYPa29uVlpaml19+mUd4AhjR+gzLo0eP\n6uTJkwqFQmpqatLixYuVl5enoqIiFRYWaufOnSovL1dRUdFg9AsAMdHnNcvc3Fy9+uqrkqRx48ap\ntbVV1dXVWrBggSQpPz9fVVVV0e0SAGKsz7CMi4vr+jmw8vJyzZ07V62trV0fu1NTU9XY2BjdLgEg\nxgKdnZ2dTuGhQ4dUWlqq/fv3a+HChV1nk2fPntXzzz+v3/72t1FtFABiybrBc+TIEe3Zs0e/+tWv\nlJSUpGAwqOvXr2vMmDFqaGhQenp6tPscNHV1dVade9da4m54f0TjbvhvfvObsOPFxcXaunXrLWOO\n/twNX7lypV17zz332LUYXH1+DG9paVFJSYlKS0uVnJwsSZo1a5YqKiokSZWVlZozZ050uwSAGOvz\nzPLtt99WU1OT1q5d2zX20ksv6YUXXlAoFFJmZqYef/zxqDYJALHWZ1guWbJES5YsuWX89ddfj0pD\nADAUsYKnB/ea4Y4dO8KOr1+//pZt58+ft/efmZlp1bnX9iRp8uTJdm1HR0fY8dTUVF26dKnr9Rf/\n3ZczZ87Yte41494eQtbf/f/tb3/r9voHP/iBNeeTTz5p75/rkCMDa8MBwEBYAoCBsAQAA2EJAAbC\nEgAMhCUAGAhLADAQlgBgICwBwEBYAoCB5Y4DNGXKFHvb+vXr7Xmff/55q+73v/+9PWdqaqpd29sP\nOW/ZskW7d+/ueu0uS5Skf//733btqFHe/7/b2trsOW+33DAxMbHb64ULF1pzFhQU2PvHyMCZJQAY\nCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMAQ6Ozs7Y90EostdQilJDQ0NYccP\nHDigFStWdL2ur6+354yLi7Nr77//fqvua1/7mj3nnDlzwo7PnTtXhw8f7jY2Y8YMa86kpCR7/xgZ\nOLMEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAAMPLBtiampqrDr3wV6SNHv2bLv2\n8uXLvW6bN29e1787OjrsOb/97W/btZMmTbLqkpOT7TlvZ+7cuRGZByMfZ5YAYCAsAcBAWAKAgbAE\nAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcDAA8sAwGCtDS8pKVFNTY1u3rypVatW6d1339WJEye6\n1ueuXLmy27phABhp+gzLo0eP6uTJkwqFQmpqatLixYv1yCOPaN26dcrPzx+MHgEg5voMy9zcXOXk\n5EiSxo0bp9bWVrW3t0e9MQAYSvp1zTIUCunDDz9UXFycGhsb1dbWptTUVBUXF2v8+PHR7BMAYsoO\ny0OHDqm0tFT79+/X8ePHlZycrOzsbO3du1fnz5/X5s2bo90rAMSM9dWhI0eOaM+ePSorK1NSUpLy\n8vKUnZ0tSZo/f75qa2uj2iQAxFqfYdnS0qKSkhKVlpZ23f1evXq16urqJEnV1dXKysqKbpcAEGN9\n3uB5++231dTUpLVr13aNPfHEE1q7dq0SExMVDAa1bdu2qDYJALHGl9IBwMByRwAwEJYAYCAsAcBA\nWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAw\nEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAEN8LHb64osv\n6pNPPlEgENCmTZuUk5MTizYiqrq6WmvWrFFWVpYkaerUqSouLo5xVwNXW1urH/3oR1qxYoWWLl2q\nc+fOacOGDWpvb1daWppefvllJSQkxLrNfun5njZu3KgTJ04oOTlZkrRy5UrNmzcvtk32U0lJiWpq\nanTz5k2tWrVKDz300LA/TtKt7+vdd9+N+bEa9LD84IMPdPbsWYVCIZ0+fVqbNm1SKBQa7Dai4uGH\nH9auXbti3cYdu3btmrZu3aq8vLyusV27dqmoqEiFhYXauXOnysvLVVRUFMMu+yfce5KkdevWKT8/\nP0Zd3ZmjR4/q5MmTCoVCampq0uLFi5WXlzesj5MU/n098sgjMT9Wg/4xvKqqSgUFBZKk++67T83N\nzbp69epgt4HbSEhIUFlZmdLT07vGqqurtWDBAklSfn6+qqqqYtXegIR7T8Ndbm6uXn31VUnSuHHj\n1NraOuyPkxT+fbW3t8e4qxiE5cWLF5WSktL1evz48WpsbBzsNqLi1KlTeuaZZ/T000/r/fffj3U7\nAxYfH68xY8Z0G2ttbe36OJeamjrsjlm49yRJBw8e1PLly/Xcc8/p8uXLMehs4OLi4hQMBiVJ5eXl\nmjt37rA/TlL49xUXFxfzYxWTa5Zf1NnZGesWIuKee+7Rs88+q8LCQtXV1Wn58uWqrKwclteL+jJS\njtmiRYuUnJys7Oxs7d27V7t379bmzZtj3Va/HTp0SOXl5dq/f78WLlzYNT7cj9MX39fx48djfqwG\n/cwyPT1dFy9e7Hp94cIFpaWlDXYbEZeRkaHHHntMgUBAkyZN0oQJE9TQ0BDrtiImGAzq+vXrkqSG\nhoYR8XE2Ly9P2dnZkqT58+ertrY2xh3135EjR7Rnzx6VlZUpKSlpxBynnu9rKByrQQ/L2bNnq6Ki\nQpJ04sQJpaena+zYsYPdRsS99dZb2rdvnySpsbFRly5dUkZGRoy7ipxZs2Z1HbfKykrNmTMnxh3d\nudWrV6uurk7S/1+T/fybDMNFS0uLSkpKVFpa2nWXeCQcp3Dvaygcq0BnDM7Vd+zYoQ8//FCBQEBb\ntmzRtGnTBruFiLt69arWr1+vK1euqK2tTc8++6weffTRWLc1IMePH9f27dtVX1+v+Ph4ZWRkaMeO\nHdq4caNu3LihzMxMbdu2TXfddVesW7WFe09Lly7V3r17lZiYqGAwqG3btik1NTXWrdpCoZBee+01\n3XvvvV1jL730kl544YVhe5yk8O/riSee0MGDB2N6rGISlgAw3LCCBwAMhCUAGAhLADAQlgBgICwB\nwEBYAoCBsAQAA2EJAIb/A7JG1bDzDCvaAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ace0c7b8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZZJREFUeJzt3X9s1PUdx/HX2VLL8cOjhXZDfozx\nQ6vSPzYqlF+zhblgsij4h9oBMWNJdUBgxGghFFlYrFRGIjJD6cQlMucljcvcQmxF54au1ICLrp1b\nC5tdh7Vca8ViW2jL7Y/FC9de2/cdd/e9lufjr34/37efex9nXvne93uf79fl9/v9AgAM6QanGwCA\nkYCwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMEiO9D986qmn9MEHH8jlcmnHjh3Kzs6OZl8A\nkFAiCsv33ntPjY2N8nq9Onv2rHbs2CGv1xvt3gAgYUT0Nby6ulorV66UJM2ePVsXLlzQxYsXo9oY\nACSSiMKytbVVkyZNCmynpaXJ5/NFrSkASDRRucDDvTgAjHYRhWVGRoZaW1sD2+fPn9eUKVOi1hQA\nJJqIwnLJkiWqrKyUJNXV1SkjI0Pjx4+PamMAkEgiuhr+rW99S7fffrsefPBBuVwuPfnkk9HuCwAS\nioub/wLA8FjBAwAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgC\ngAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAG\nhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCW\nAGBAWAKAAWEJAAaEJQAYJDvdABLL559/HnLc4/EE7fN4POY53377bXPtJ598YqprbGw0z3np0qWQ\n47t379bu3buDxnp6ekxzWuskqbS01Fz797//3VyblZU1YMzlcsnv9w8Yw7XjyBIADCI6sqypqdGW\nLVs0d+5cSdK8efNUXFwc1cYAIJFE/DX8zjvv1IEDB6LZCwAkLL6GA4BBxGF55swZPfLII3rooYf0\n7rvvRrMnAEg4Ln//S2cGLS0tOn36tFatWqWmpiatX79eVVVVSklJiUWPAOC4iM5ZZmZm6p577pEk\nzZgxQ5MnT1ZLS4umT58e1eYQf/x0iJ8OIbSIvoa/9tpreuGFFyRJPp9PbW1tyszMjGpjAJBIIjqy\nzM/P12OPPaY333xTPT092r17N1/BAYxqEYXl+PHjdejQoWj3AgAJi+WO14GzZ8+aa//0pz+FHP/h\nD3+oV199NWjb6ve//725tqWlxVTX2tp6zXPu3r1bv/vd74LGBjtn219fX5/59RsaGsy1CxYsMNd+\n+eWXA8ZycnJ06tSpiOfk/Obg+J0lABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYMByxxFqsNuOhfLXv/7VXNvc3Gza98QTT5jn/Oc//2muHTdunKlu6tSp5jlvvPHGQffNmDEj\naPub3/ymac5w/v2TkpLMte+//765NtTNa3JycgbcEi81NdU85/z588211xuOLAHAgLAEAAPCEgAM\nCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAVPCNUqIdVDebrX/+6ufYf//jHoPv8fn/g73CeEz9n\nzhxz7ZgxY0x11pU2kuR2uwfdV1xcHLTd0dFhmrO9vd38+mvWrDHXrlu3zlw72IPY+o+HsyrnypUr\n5tobbri+jrWur3cLABEiLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiOU\ndVmgFLxMcThDLY27et/kyZPNc6alpZlrb775ZlPdUEsY+0tOHvx/8wULFgRt9/b2XvOc/e3fv99c\n29bWZq4dbLmhz+cL2u7/ALOhLF++3Fx7veHIEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADAhLADBgueMIFc5T+JYuXWqu/e9//zvovm9/+9uBv2+88UbznOHUTpgwwVTncrnMc4bD\n+sTCP//5z+Y5t23bZq59+eWXzbXTp08POZ6amhq0nZ6ebp7zentiYzhM/zL19fVauXKljh49Kklq\nbm7WunXrVFBQoC1btujy5csxbRIAnDZsWHZ2dmrPnj3Kzc0NjB04cEAFBQV6+eWXNXPmTFVUVMS0\nSQBw2rBhmZKSovLycmVkZATGampqtGLFCklSXl6eqqurY9chACSAYc9ZJicnD7gdVVdXl1JSUiT9\n/3xI/1tCAcBoc80XeMK5VyKi56abborJvNOmTYto32hhvcARq/s+njp16prnKCsri0In6C+isHS7\n3eru7lZqaqpaWlqCvqIjPi5cuGCuDSdYB7saPm3atKB9o/VquPVXBu+88455znCCtf/NiIdy9a8T\nvlJWVqbCwsKgsU2bNpnnHOrmz9e7iH4nsHjxYlVWVkqSqqqqtGzZsqg2BQCJZtgjy9raWu3du1fn\nzp1TcnKyKisrtW/fPhUVFcnr9Wrq1Km677774tErADhm2LC844479NJLLw0Yf/HFF2PSEAAkIlbw\njFCxusAz1Pnnq/ddunTJPGdPT4+5trOz01TX1dVlnnOwh7vddNNNA879/u1vfzPNefLkSfPr//zn\nPzfX3nbbbebawc5v9h/nPGR0sLYJAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAM\nCEsAMHD5uSHlqBfOM5IuXrwYcjwtLU2fffZZYLu3t9c857lz58y1Z8+eNdUN1mc4tZs2bdLBgweD\nxrq7u01zxuqG1+Hc7nDDhg0Dxjwejz7//PMBY7h2HFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaE\nJQAYEJYAYEBYAoABYQkABjzdcYS6cuWKuba1tdVc63K5Bt139RMdP/roI/Ocr7/+urm2oaHBVNd/\nSd9QZs2aNei+999/P2h7+vTppjn37t1rfv1XXnnFXHvLLbeYawdbxsjyxtjgyBIADAhLADAgLAHA\ngLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxYwTNChfPAsMbGRnNt/xUtX9m4caNeffXVoG2rRx99\n1Fzb1NRkquvq6jLP2dnZOei+urq6oO0vvvjCNOeWLVvMr5+fn2+uzczMNNcivjiyBAADwhIADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxY7jhCtbW1mWs//vhjc+1f/vKXkOMbN24M\n2vfGG2+Y55w5c6a5dty4caY6t9ttnnPOnDmD7svKygrati6j/OMf/2h+/RtusB+TLF261FyL+OLI\nEgAMTGFZX1+vlStX6ujRo5KkoqIiff/739e6deu0bt06vf3227HsEQAcN+zX8M7OTu3Zs0e5ublB\n49u2bVNeXl7MGgOARDLskWVKSorKy8uVkZERj34AICG5/H6/31L43HPPadKkSVq7dq2Kiork8/nU\n09Oj9PR0FRcXKy0tLda9AoBjIroafu+998rj8SgrK0uHDx/WwYMHtWvXrmj3hiE0Nzeba8M5p/yH\nP/wh5Pivf/1r/eAHPwhsf/nll+Y5h7r5bn+tra2mumhcDf/Vr36lhx9+OGjMejX8o48+Mr/+ihUr\nzLU7d+4016anp5trce0iuhqem5sb+MlFfn6+6uvro9oUACSaiMJy8+bNgdv/19TUaO7cuVFtCgAS\nzbBfw2tra7V3716dO3dOycnJqqys1Nq1a7V161aNHTtWbrdbJSUl8egVABwzbFjecccdeumllwaM\nf+9734tJQwCQiFjuOEKlpKSYa2fNmmWuXbNmjWnf2LFjzXPedttt5lqXy2WqC2cJ5VBLM6++aCVJ\nzz//vGnOcJ6u6fP5zLXhLE3lAk98sdwRAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMGC54wgVzlK3MWPGmGsXLVo06L7777/fPE8iWbhwoXnf8ePHTXPW1dWZXz+ce3+Gs4wU\n8cWRJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLCCJw4uX75srrU+sMvv95vn\nnDhxorl2NEpKSjLvGzdunGnOcB7Clp2dba4N50F0iC+OLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQA\nA8ISAAwISwAwICwBwICwBAADljv209HRYar797//HXI8OztbH3744YAxq+7ublNdamqqec7rXVNT\nU8jxW2+9dcA+679rWlqa+fXnzZtnrp09e7a5FvHFkSUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBY\nAoABYQkABoQlABgQlgBgwHLHfjo7O011Qy1h7L/vnXfeMb/+1772NVPdnDlzzHOOJNblnp9++ql5\nzt/+9rchx7dv3z5g3/bt201z/uxnPzO//ooVK8y11qd7Iv5MYVlaWqrTp0+rt7dXhYWFmj9/vh5/\n/HH19fVpypQpeuaZZ3iEJ4BRbdiwPHnypBoaGuT1etXe3q7Vq1crNzdXBQUFWrVqlfbv36+KigoV\nFBTEo18AcMSw5yxzcnL07LPPSpImTpyorq4u1dTUBL5a5OXlqbq6OrZdAoDDhg3LpKQkud1uSVJF\nRYWWL1+urq6uwNfu9PR0+Xy+2HYJAA5z+f1+v6Xw+PHjKisr05EjR3T33XcHjiYbGxv1xBNP6JVX\nXolpowDgJNMFnhMnTujQoUP65S9/qQkTJsjtdqu7u1upqalqaWlRRkZGrPuMm5aWFlNdZmameU6u\nhtvF4mr4b37zm5Dj27dvV0lJyYAxi3Cuhv/oRz8y11o/f8TfsF/DOzo6VFpaqrKyMnk8HknS4sWL\nVVlZKUmqqqrSsmXLYtslADhs2CPLY8eOqb29XVu3bg2MPf3009q5c6e8Xq+mTp2q++67L6ZNAoDT\nhg3LBx54QA888MCA8RdffDEmDQFAImIFTz/Wc5G/+MUvQo5v3LhxwL7z58+bX996zury5cvmOadN\nm2au7enpCTmenp6utra2wHY4v4A4c+aMudZ6zri5udk857/+9a9B9zU0NARtP/roo6Y5H3zwQfPr\ncx5ydGBtOAAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAcscIDXWLtP77\nNm7caJ53z549prpjx46Z5/zqblEWgy0jLC4u1vPPPx/Y/vjjj81zhlM7fvx4c63VzJkzza/33e9+\n1zQnd9q6/nBkCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABi4/H6/3+km\nEFs//elPzbWffPJJyPGysjIVFhYGtv/zn/+Y50xKSjLX3nLLLaa6m2++2TznkiVLQo4vXLhQNTU1\nQWO33367ac5YLMtEYuPIEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADHhgWYL5\n8MMPTXVjxowxz7l06VJz7fnz5wfdd9dddwX+vnLlinnOBQsWmGunTZtmqhs3bpx5zqEsXLgwKvNg\n9OPIEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADDggWUAYGBaG15aWqrT\np0+rt7dXhYWFeuutt1RXVyePxyNJ2rBhQ9C6YQAYbYYNy5MnT6qhoUFer1ft7e1avXq1Fi1apG3b\ntikvLy8ePQKA44YNy5ycHGVnZ0uSJk6cqK6uLvX19cW8MQBIJGGds/R6vTp16pSSkpLk8/nU09Oj\n9PR0FRcXKy0tLZZ9AoCjzGF5/PhxlZWV6ciRI6qtrZXH41FWVpYOHz6sTz/9VLt27Yp1rwDgGNNP\nh06cOKFDhw6pvLxcEyZMUG5urrKysiRJ+fn5qq+vj2mTAOC0YcOyo6NDpaWlKisrC1z93rx5s5qa\nmiRJNTU1mjt3bmy7BACHDXuB59ixY2pvb9fWrVsDY2vWrNHWrVs1duxYud1ulZSUxLRJAHAaP0oH\nAAOWOwKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKA\nAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaE\nJQAYEJYAYEBYAoBBshMv+tRTT+mDDz6Qy+XSjh07lJ2d7UQbUVVTU6MtW7Zo7ty5kqR58+apuLjY\n4a4iV19frx//+Md6+OGHtXbtWjU3N+vxxx9XX1+fpkyZomeeeUYpKSlOtxmW/u+pqKhIdXV18ng8\nkqQNGzborrvucrbJMJWWlur06dPq7e1VYWGh5s+fP+I/J2ng+3rrrbcc/6ziHpbvvfeeGhsb5fV6\ndfbsWe3YsUNerzfebcTEnXfeqQMHDjjdxjXr7OzUnj17lJubGxg7cOCACgoKtGrVKu3fv18VFRUq\nKChwsMvwhHpPkrRt2zbl5eU51NW1OXnypBoaGuT1etXe3q7Vq1crNzd3RH9OUuj3tWjRIsc/q7h/\nDa+urtbKlSslSbNnz9aFCxd08eLFeLeBIaSkpKi8vFwZGRmBsZqaGq1YsUKSlJeXp+rqaqfai0io\n9zTS5eTk6Nlnn5UkTZw4UV1dXSP+c5JCv6++vj6Hu3IgLFtbWzVp0qTAdlpamnw+X7zbiIkzZ87o\nkUce0UMPPaR3333X6XYilpycrNTU1KCxrq6uwNe59PT0EfeZhXpPknT06FGtX79eP/nJT/TZZ585\n0FnkkpKS5Ha7JUkVFRVavnz5iP+cpNDvKykpyfHPypFzllfz+/1OtxAV3/jGN7Rp0yatWrVKTU1N\nWr9+vaqqqkbk+aLhjJbP7N5775XH41FWVpYOHz6sgwcPateuXU63Fbbjx4+roqJCR44c0d133x0Y\nH+mf09Xvq7a21vHPKu5HlhkZGWptbQ1snz9/XlOmTIl3G1GXmZmpe+65Ry6XSzNmzNDkyZPV0tLi\ndFtR43a71d3dLUlqaWkZFV9nc3NzlZWVJUnKz89XfX29wx2F78SJEzp06JDKy8s1YcKEUfM59X9f\nifBZxT0slyxZosrKSklSXV2dMjIyNH78+Hi3EXWvvfaaXnjhBUmSz+dTW1ubMjMzHe4qehYvXhz4\n3KqqqrRs2TKHO7p2mzdvVlNTk6T/n5P96pcMI0VHR4dKS0tVVlYWuEo8Gj6nUO8rET4rl9+BY/V9\n+/bp1KlTcrlcevLJJ3XrrbfGu4Wou3jxoh577DF98cUX6unp0aZNm/Sd73zH6bYiUltbq7179+rc\nuXNKTk5WZmam9u3bp6KiIl26dElTp05VSUmJxowZ43SrZqHe09q1a3X48GGNHTtWbrdbJSUlSk9P\nd7pVM6/Xq+eee06zZs0KjD399NPauXPniP2cpNDva82aNTp69Kijn5UjYQkAIw0reADAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw+B8xnNyRJLs5sQAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54acddc358>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFXJJREFUeJzt3X1Mlff9//EXBSkycAgCnY3S2eFk\notlNdKKzK2psaLJ4kyW2RF2T6mxWjdZ0jBhvlrlURdOs6hYVa7PVNDsJWTKzmUGsW8I6pNVkNtAt\n0Js5dI4bpU4qKiC/P775Ebl/HTyHA/T5+Kvnc739XO/j5V67znWdz7miOjs7OwUAGNBDkW4AAEYD\nwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAEPMUP/gK6+8oosXLyoqKkrbtm3T7NmzQ9kXAIwo\nQwrLd999V5cuXVIgENBHH32kbdu2KRAIhLo3ABgxhvQxvKKiQkuWLJEkPf7447px44ZaWlpC2hgA\njCRDCsumpiZNnDix63VycrIaGxtD1hQAjDQhucHDb3EAGOuGFJZpaWlqamrqet3Q0KDU1NSQNQUA\nI82QwnLBggUqLS2VJFVXVystLU0JCQkhbQwARpIh3Q3/5je/qZkzZ+qZZ55RVFSUdu3aFeq+AGBE\nieLHfwFgcKzgAQADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAY\nCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkA\nBsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgC\ngIGwBAADYQkAhphIN4CR5fr1632OJycnd9uWnJxsz3nmzBm7tr6+3qr7z3/+Y8/Z0dHR53hhYaH2\n7t1r1fbU3t5u73/Xrl127ccff2zXTps2za7Fg+PMEgAMQzqzrKys1ObNm5WZmSlJmj59unbs2BHS\nxgBgJBnyx/C5c+fq4MGDoewFAEYsPoYDgGHIYfnhhx/qhRde0LPPPqt33nknlD0BwIgT1dnZ2Rns\nH6qvr9eFCxeUl5enuro6rV27VmVlZYqNjQ1HjwAQcUO6Zpmenq6nn35akjR16lRNmjRJ9fX1mjJl\nSkibw/Djq0N8dQh9G9LH8FOnTun111+XJDU2NuratWtKT08PaWMAMJIM6cxy0aJFevnll/X222+r\nra1NP/3pT/kIDmBMG1JYJiQk6MiRI6HuBQBGLJY7fg7U1tbatX/+85/7HP/hD3+okpKSbq9dpaWl\ndm1DQ4NV19LSYs/Z33XQwsJC/eEPf+g21t81257ca5tScH//c+fOtWsXL17ca2zmzJmqrq7uNYYH\nx/csAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgeWOo9Tdu3ft2vfff9+u\nvXbtmrVt+/bt9pw1NTV2bWJiolWXlpZmzxkVFdXvtkceeaTb68mTJ1tz3rlzx95/W1ubXfugP6Q9\nc+ZMvf32293GoqOj7T8/Y8aMB9r/WMaZJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyE\nJQAYWMEzSrW2ttq1U6ZMsWsHerjW/SthgllBs2zZMrv2oYe8//+eNm2aPWdcXFy/2woKCrq9vnHj\nhjWn+2AzSVq1apVdu2bNGrv28uXL1ngwq3Lu3btn17rHaqz4fL1bABgiwhIADIQlABgISwAwEJYA\nYCAsAcBAWAKAgbAEAANhCQAGwhIADCx3HKViY2Pt2o6ODrt2oKVx929LTk625/ziF79o106dOtWq\ni4+Pt+eMien/n/m3vvWtbq/dh4sNtISyp/3799u1Az0wrqf+3ldjY2O31+Xl5fac3/nOd+zazxvO\nLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIHljqNUMEsYc3Jy7NpLly71\nu+0b3/hG138PtISwp2CWZn7hC18I+ZwDiY6O7vb6/idYDuSvf/2rvY8f//jHdu3vfvc7u7a/J1z2\n/DtMTU2153Tf/+eRdWZZU1OjJUuW6OTJk5Kkq1evas2aNcrPz9fmzZt19+7dsDYJAJE2aFjeunVL\nu3fv7nZ2cvDgQeXn5+utt95SRkaGSkpKwtokAETaoGEZGxur4uJipaWldY1VVlZq8eLFkqTc3FxV\nVFSEr0MAGAEGvfAUExPT6/pUa2tr1zWjlJSUXj8JBQBjzQPf4Ons7AxFHwhSQkJCWObNyMgY0rax\n4qGHvC+IhOt3H0PxKe3w4cMh6AQ9DSks4+Pjdfv2bcXFxam+vr7bR3QMj5aWFrs2mGDt7254RkZG\nt23huhvu/lBwqO6G93Tv3j2r7m9/+5s9ZzDBGsw3F3r+cLH0f0G5cePGbmM9Xw9koB9//rwb0vcs\n58+fr9LSUklSWVmZFi5cGNKmAGCkGfT0oKqqSvv27dOVK1cUExOj0tJSHThwQIWFhQoEApo8ebKW\nL18+HL0CQMQMGpbZ2dl68803e42/8cYbYWkIAEYiVvCMUuG6wfPII49Y2z777DN7ztu3b9u1ra2t\nVl1zc7M9Z38PN0tMTNTNmze7jf3jH/+w5jx//ry9/1/84hd2bXZ2tl07d+5ca5zrkKHB2nAAMBCW\nAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGCI6uQHKce8trY2u/bTTz/tczw1NbXb\njzy3t7fbc16+fNmu/fjjj626YJ77dOfOnT7H161bp+PHj1u1PdXX19v7D+bhcl/60pfs2ueee67X\nWEJCQq+f7wvX0tjPG84sAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgac7\nfg7cv0xxMNHR0f1uu3fvXtd/19bW2nP+8Y9/tGvd5Y7Xr1+35/zKV77S5/i6dev03nvvdRubMmWK\nNefPfvYze/8lJSV2bTBPYuxvGSPLG8ODM0sAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAY\nCEsAMLCCZ5QK5iFYwTww7OLFi32Or1+/XqdOner22vXiiy/atZ988olV99lnn9lz3rp1q99t77//\nfrfX7sqgl156yd7/0qVL7dr09HS7FsOLM0sAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAY\nCEsAMBCWAGBgueMo1dTUZNf++9//tmvLy8v7HF+/fn23bWVlZfac7kPAJCkmxvsnGRcXZ885ffp0\ne9tASyPvF8z7H+ghcD0tWLDArsXw4swSAAxWWNbU1GjJkiU6efKkJKmwsFDf+973tGbNGq1Zs0Z/\n+ctfwtkjAETcoJ95bt26pd27dysnJ6fb+NatW5Wbmxu2xgBgJBn0zDI2NlbFxcVKS0sbjn4AYESK\n6uzs7HQKDx06pIkTJ2r16tUqLCxUY2Oj2tralJKSoh07dig5OTncvQJAxAzpbviyZcuUlJSkrKws\nHTt2TIcPH9bOnTtD3RsGUF9fb9f2d4e7L/f/wO/9fvOb32jt2rVdr1tbW+05g/mh3qtXr1p1obgb\n/utf/1o/+MEPuo25d8M/+OADe/95eXl2bTD/O5owYYJdiwc3pLvhOTk5ysrKkiQtWrRINTU1IW0K\nAEaaIYXlpk2bVFdXJ0mqrKxUZmZmSJsCgJFm0I/hVVVV2rdvn65cuaKYmBiVlpZq9erV2rJli8aP\nH6/4+Hjt2bNnOHoFgIgZNCyzs7P15ptv9hp/6qmnwtIQAIxELHccpcaNG2fXBrPccOXKlda2YG6w\nfO1rX7NrzS9nKCMjw57z9OnT/W5btWpVt9eHDh2y5rx37569/2vXrtm1wSxNzc7Otmvx4FjuCAAG\nwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADCx3HKWC+bHlYJYbfvvb3+532/Ll\ny+15RpKBnpjYc9vZs2etOWtra+39B/N7nsEsI8Xw4swSAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGw\nBAADYQkABsISAAys4BkGwTzcyn1gV0dHhz1nYmKiXTsWxcT0/8+857aEhARrzlmzZtn7nz17tl37\n8MMP27UYXpxZAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA8sde3AfLlVX\nV9fn+IwZM/TPf/6z15jrzp07Vh3L4nyXL1/uc/yrX/1qr23ucsdJkybZ+8/KyrJrp0yZYtdieHFm\nCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADCx37KGtrc2qG2gJY89t7733\nnr3/lJQUq27atGn2nKOJu9yzsbHRnvP3v/99n+MFBQW9thUUFFhzFhUV2ftftGiRXYuRywrLoqIi\nXbhwQe3t7dqwYYNmzZqlgoICdXR0KDU1Vfv371dsbGy4ewWAiBk0LM+dO6fa2loFAgE1NzdrxYoV\nysnJUX5+vvLy8vTqq6+qpKRE+fn5w9EvAETEoNcs58yZo9dee02SNGHCBLW2tqqyslKLFy+WJOXm\n5qqioiK8XQJAhA0altHR0YqPj5cklZSU6IknnlBra2vXx+6UlJSgrh8BwGgU1dnZ2ekUnjlzRkeP\nHtWJEye0dOnSrrPJS5cu6Sc/+Yl++9vfhrVRAIgk6wZPeXm5jhw5ouPHjysxMVHx8fG6ffu24uLi\nVF9fr7S0tHD3OWw+/fRTqy4pKcmek7vhvnDcDX/rrbf6HC8oKOh1Vzscd8PXr19v106cONGuxfAa\n9GP4zZs3VVRUpKNHj3YFxPz581VaWipJKisr08KFC8PbJQBE2KBnlqdPn1Zzc7O2bNnSNbZ3715t\n375dgUBAkydP1vLly8PaJABE2qBhuWrVKq1atarX+BtvvBGWhgBgJGIFTw/utcjjx4/3Ob5u3bpe\n25qamuz9p6amWnV3796153z00Uft2v6uGU6aNKnb+wjmmmFNTY1d614zbmhosOf817/+ZW/bvHmz\nNeczzzxj75/rkGMDa8MBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCB5Y5D\nlJmZaW9bt26dPe+BAwesuj/96U/2nImJiXbtlStX+hzfuXOnfvWrX3W9/uSTT+w5B1pu2JP7E3XR\n0dH2nI899li/23r+3Tz11FPWnDk5Ofb+MTZwZgkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGw\nBAADYQkABsISAAxRnZ2dnZFuAuH185//3K69evVqn+O//OUv9eKLL3a9Dma5YzBLE7Ozs626jIwM\ne8558+b1Of71r39df//737uNTZ8+3ZozPj7e3j/GBs4sAcBAWAKAgbAEAANhCQAGwhIADIQlABgI\nSwAwEJYAYCAsAcDACp4R5oMPPrDqxo0bZ8/Z36qcvjQ0NPQ5/v3vf18lJSVdrzs6Ouw558yZY9c+\n+uijVt3DDz9szwmEAmeWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAwHJH\nADDEOEVFRUW6cOGC2tvbtWHDBp09e1bV1dVKSkqSJD3//PN68sknw9knAETUoGF57tw51dbWKhAI\nqLm5WStWrNC8efO0detW5ebmDkePABBxg4blnDlzNHv2bEnShAkT1NraGtQvzgDAWBDUNctAIKDz\n588rOjpajY2NamtrU0pKinbs2KHk5ORw9gkAEWWH5ZkzZ3T06FGdOHFCVVVVSkpKUlZWlo4dO6b/\n/ve/2rlzZ7h7BYCIsb46VF5eriNHjqi4uFiJiYnKyclRVlaWJGnRokWqqakJa5MAEGmDhuXNmzdV\nVFSko0ePdt393rRpk+rq6iRJlZWVyszMDG+XABBhg97gOX36tJqbm7Vly5ausZUrV2rLli0aP368\n4uPjtWfPnrA2CQCRxpfSAcDAckcAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCW\nAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyE\nJQAYCEsAMBCWAGAgLAHAQFgCgIGwBABDTCR2+sorr+jixYuKiorStm3bNHv27Ei0EVKVlZXavHmz\nMjMzJUnTp0/Xjh07ItzV0NXU1OhHP/qRnnvuOa1evVpXr15VQUGBOjo6lJqaqv379ys2NjbSbQal\n53sqLCxUdXW1kpKSJEnPP/+8nnzyycg2GaSioiJduHBB7e3t2rBhg2bNmjXqj5PU+32dPXs24sdq\n2MPy3Xff1aVLlxQIBPTRRx9p27ZtCgQCw91GWMydO1cHDx6MdBsP7NatW9q9e7dycnK6xg4ePKj8\n/Hzl5eXp1VdfVUlJifLz8yPYZXD6ek+StHXrVuXm5kaoqwdz7tw51dbWKhAIqLm5WStWrFBOTs6o\nPk5S3+9r3rx5ET9Ww/4xvKKiQkuWLJEkPf7447px44ZaWlqGuw0MIDY2VsXFxUpLS+saq6ys1OLF\niyVJubm5qqioiFR7Q9LXexrt5syZo9dee02SNGHCBLW2to764yT1/b46Ojoi3FUEwrKpqUkTJ07s\nep2cnKzGxsbhbiMsPvzwQ73wwgt69tln9c4770S6nSGLiYlRXFxct7HW1tauj3MpKSmj7pj19Z4k\n6eTJk1q7dq1eeuklXb9+PQKdDV10dLTi4+MlSSUlJXriiSdG/XGS+n5f0dHRET9WEblmeb/Ozs5I\ntxASjz32mDZu3Ki8vDzV1dVp7dq1KisrG5XXiwYzVo7ZsmXLlJSUpKysLB07dkyHDx/Wzp07I91W\n0M6cOaOSkhKdOHFCS5cu7Rof7cfp/vdVVVUV8WM17GeWaWlpampq6nrd0NCg1NTU4W4j5NLT0/X0\n008rKipKU6dO1aRJk1RfXx/ptkImPj5et2/fliTV19ePiY+zOTk5ysrKkiQtWrRINTU1Ee4oeOXl\n5Tpy5IiKi4uVmJg4Zo5Tz/c1Eo7VsIflggULVFpaKkmqrq5WWlqaEhIShruNkDt16pRef/11SVJj\nY6OuXbum9PT0CHcVOvPnz+86bmVlZVq4cGGEO3pwmzZtUl1dnaT/uyb7/7/JMFrcvHlTRUVFOnr0\naNdd4rFwnPp6XyPhWEV1RuBc/cCBAzp//ryioqK0a9cuzZgxY7hbCLmWlha9/PLL+t///qe2tjZt\n3LhR3/3udyPd1pBUVVVp3759unLlimJiYpSenq4DBw6osLBQd+7c0eTJk7Vnzx6NGzcu0q3a+npP\nq1ev1rFjxzR+/HjFx8drz549SklJiXSrtkAgoEOHDunLX/5y19jevXu1ffv2UXucpL7f18qVK3Xy\n5MmIHquIhCUAjDas4AEAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoDh/wGjXOOcm4xaagAA\nAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54acb5eac8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFZVJREFUeJzt3X9M1Pcdx/HXCVI40SJ40GGqLUYn\nmWVdM01P4w/UdaFJV3V/dBIhLs2iaWpRR1ti/NHEpCo17aRmEVk1mWTZZfyxuswOZs0aY5CuLmmH\ny4o/WkfV8kumIkcLePtjKRE44H3nHd+DPh9/9T7fdz/f9/VrX37vvvf5fl2BQCAgAMCwJjjdAACM\nBYQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAQXy4/+Lrr7+ujz/+WC6XS9u2bVNOTk4k+wKA\nmBJWWH744Ye6cuWKfD6fLl26pG3btsnn80W6NwCIGWF9DK+trdXKlSslSbNmzdLNmzfV0dER0cYA\nIJaEFZatra2aOnVq3+vU1FS1tLRErCkAiDURucDDvTgAjHdhhWV6erpaW1v7Xjc3N8vj8USsKQCI\nNWGF5aJFi1RdXS1JOn/+vNLT05WcnBzRxgAgloR1NfyJJ57Q9773Pf3sZz+Ty+XSrl27It0XAMQU\nFzf/BYCRsYIHAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQA\nA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwI\nSwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAIN4pxvA+Hf37l1z7YQJ/P2N2MSfTAAwICwBwICw\nBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMGAFD/ppaWkJOu7xePpt83g85jlramrMtc3Nzaa6\n1tZW85wulyvo+JYtW/TWW2+Zagfq7u427//ll1821167ds1cm5mZaa7F/ePMEgAMwjqzrKurU1FR\nkWbPni1JmjNnjnbs2BHRxgAgloT9MXzBggUqKyuLZC8AELP4GA4ABmGH5cWLF7Vx40atXbtWZ86c\niWRPABBzXIFAIBDqv9TU1KRz584pLy9PjY2NKiwsVE1NjRISEqLRIwA4LqzvLDMyMvT0009LkmbM\nmKFp06apqalJDz/8cESbw+iLxk+H/vKXv5hr+ekQPx2KVWF9DD9+/LjeeecdSf//n6utrU0ZGRkR\nbQwAYklYZ5bLly9XcXGx3n//fXV3d+u1117jIziAcS2ssExOTtahQ4ci3QsAxCyWO34LfPrpp+ba\n999/P+j4Cy+8oD/84Q/9XludOnXKXGv9LrKrq+u+59yyZYvee++9fmM3btwwzRnKQ9gaGhrMtV6v\n11y7bNmyQWNZWVm6fPnyoDHcP35nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABiw3HGM6unpMdfW19eba2/dumXatmvXLvOcoSz3S0lJMdVNmzbNPOdwSxNTU1P7vU5LSzPN\n6ff7zfvv6Ogw1548edJc+/XXXw8a27hx46Cnaa5YscI85zfP1cJgnFkCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABK3jGqFBWkMyaNctcO/BhV/eKi4vr+2ePx2Oec9WqVeZal8tl\nqnv00UfNcz7wwANDbtuyZUu/1y0tLaY5h1vpNFB+fr65trCw0Fz7+eefm8ZDWZUTyoPYJkz4dp1r\nfbveLQCEibAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADljuOUQkJCebaYA+2\nGspwSyPv3WZ9sJckTZo0yVw7c+ZMU53b7TbPee8yzYG+//3v93ttfRBccnKyef/79u0z17a2tppr\nJ06cGHR84JLN2tpa85xer9dc+23DmSUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgwHLHMSqUp/AtWLDAXDtt2rQhtz3++OPmee4VH2//Y2ZdxpiUlGSec7inECYmJvZ7bf3v\neubMGfP+X331VXPtiRMnzLVDLbkcOJ6enm6eE0MznVk2NDRo5cqVqqyslCRdv35dBQUFys/PV1FR\nUUhrjwFgLBoxLDs7O7V79+5+C+zLysqUn5+v3/3ud5o5c6aqqqqi2iQAOG3EsExISFBFRUW/U/m6\nujqtWLFCkpSbmxvSXU0AYCwa8cuk+Pj4Qd85+f3+vluEpaWlDbolFACMN/d9gScQCESiD4QolAsc\nocjKygpr23gx3MWgey1atCgq+//ggw/ue44DBw5EoBMMFFZYut1udXV1KTExUU1NTVxtc4Df7zfX\nhhKsly9fDjqelZU15LaRhHI13HpT4UhdDR/IejU8lK+eQgnWpUuXmmuD/TrhwIEDKioq6jf20ksv\nmecc7ubP33Zh/c5y4cKFqq6uliTV1NRo8eLFEW0KAGLNiH/l19fXa9++fbp69ari4+NVXV2t/fv3\nq6SkRD6fT5mZmVq1atVo9AoAjhkxLOfNm6djx44NGj969GhUGgKAWMQKnjEqWhd4vvOd75i23bx5\n0zxnR0eHubazs9NUF8r+H3zwwaDjkyZN0p07d/qNXbhwwTTnJ598Yt7/wYMHzbU5OTnm2qEeLjZw\nnO8hI4O14QBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoCBK8ANKce97u5u\nc21bW1vQ8Yceekhffvll3+uenh7znF988YW59rPPPjPVhfLHtre3N+h4QUHBoPseWJ8ndf36dfP+\nQ/nvP336dHNtQUHBoLGkpKRBt++L1tLYbxvOLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwI\nSwAwICwBwICwBAADnu74LdDa2mqujY8f+o9EXFxc3z9funTJPOef/vQnc+3nn39uqrtx44Z5zrlz\n5wYdLygo0N///vd+Yw8//LBpzu3bt5v3/+6775prh+o1mKGWMbK8MTo4swQAA8ISAAwISwAwICwB\nwICwBAADwhIADAhLADAgLAHAgLAEAANW8IxRd+/eNddeu3bNXPvPf/4z6Pj69ev15z//ud9rq6Ki\nInNtQ0ODqe727dvmOTs7O4fc9o9//KPfa+uDyH75y1+a95+Xl2euzcjIMNdidHFmCQAGhCUAGBCW\nAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABiw3HGMCuUhZF988YW59oMPPgg6vn79+n7b\nampqzHNOnz7dXNvb22uqS0hIMM+ZlZVl3jbc0sh7vffee+b9D/cQuIEWLVpkrsXo4swSAAxMYdnQ\n0KCVK1eqsrJSklRSUqJnnnlGBQUFKigo0N/+9rdo9ggAjhvx80FnZ6d2794tr9fbb3zr1q3Kzc2N\nWmMAEEtGPLNMSEhQRUWF0tPTR6MfAIhJrkAgELAUvv3225o6darWrVunkpIStbS0qLu7W2lpadqx\nY4dSU1Oj3SsAOCasq+HPPvusUlJSlJ2drcOHD+vgwYPauXNnpHvDMJqbm821tbW15to//vGPQceP\nHj2qn//8532vv/rqK/Ocd+7cMdf+5z//MdWFcjX8u9/9btDx3/72tyosLOw3Zr0a/q9//cu8/2ee\necZc+9prr5lrk5KSzLW4f2FdDfd6vcrOzpYkLV++3Hx3awAYq8IKy02bNqmxsVGSVFdXp9mzZ0e0\nKQCINSN+DK+vr9e+fft09epVxcfHq7q6WuvWrdPmzZuVlJQkt9utPXv2jEavAOCYEcNy3rx5Onbs\n2KDxH//4x1FpCABiEcsdx6iJEyeaa0NZbrhmzRrTtsTERPOcc+fONdcaf5yhGTNmmOd89913h9z2\n05/+tN/rX/3qV6Y5rcsyJem///2vuTaUpal8/TW6WO4IAAaEJQAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgQFgCgAFhCQAGhCUAGLDccYyaOnWquXao+zkG88Mf/nDIbaHclzGWLF261LzN+jwp6303JenW\nrVvm2gceeMBci9HFmSUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABiwgifGWB/Y\n1d3dbZ5z8uTJ4bYzLgz3cLeB26z/rXJycsz7/8EPfmCuTUhIMNdidHFmCQAGhCUAGBCWAGBAWAKA\nAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABiw3HEAv99vqrt+/XrQ8aysLF2+fHnQmFVPT4+pjmVx\ndlevXg06PmfOnEHbUlJSTHM+9NBD5v3PmzfPXBvKvBhdnFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABix3HODu3bumuuGWMA7c9sknn5j3/+CDD5rqZs6caZ5zLPn6669N\ndTdu3DDPefz48aDjxcXFg7YVFxeb5nzrrbfM+1+yZIm5FrHLFJalpaU6d+6cenp6tGHDBj322GN6\n5ZVX1NvbK4/HozfeeIO1ygDGtRHD8uzZs7pw4YJ8Pp/a29u1evVqeb1e5efnKy8vT2+++aaqqqqU\nn58/Gv0CgCNG/M5y/vz5OnDggCRpypQp8vv9qqur04oVKyRJubm5qq2tjW6XAOCwEcMyLi5Obrdb\nklRVVaUlS5bI7/f3fexOS0tTS0tLdLsEAIe5AoFAwFJ48uRJlZeX68iRI3rqqaf6ziavXLmiV199\nVb///e+j2igAOMl0gef06dM6dOiQfvOb32jy5Mlyu93q6upSYmKimpqalJ6eHu0+R82dO3dMdZMm\nTTLPydVwu2hcDa+srAw6XlxcrP379w8aswjlavgvfvELc21ycrK5FqNrxI/ht2/fVmlpqcrLy/vu\nIr1w4UJVV1dLkmpqarR48eLodgkADhvxzPLEiRNqb2/X5s2b+8b27t2r7du3y+fzKTMzU6tWrYpq\nkwDgtBHD8rnnntNzzz03aPzo0aNRaQgAYhEreAawfhd57NixoOMFBQWDtrW1tZn37/F4THVdXV3m\nOadPn26uHeqBbR6Pp9+vHpqbm81z/vvf/zbXdnZ2mura29vNcw71wLJg215++WXTnGvXrjXvn+8h\nxwfWhgOAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGLHcM06xZs8zbCgoK\nzPMePHjQVPfXv/7VPOc3N2+2aGxsDDq+a9cu/frXv+57ffnyZfOcn332mbk2MzPTVBfKM5+GO1bf\n3EnrGz/60Y9Mcz7xxBPm/WN84MwSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAM\nCEsAMHAFAoGA000guvbu3WuuvXbtWtDxsrIyvfTSS32vL168aJ4zlKWJjz/+uKluuCWMA82fPz/o\n+Ny5cwc9efKRRx4xzZmYmGjeP8YHziwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAs\nAcCAFTwx5tNPPzXVhbIqZqhVOcG0tbUFHf/JT36i48eP973u6ekxzznUCppgpk+fbqqbMIG/5zG6\n+BMHAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcEQAM4i1FpaWlOnfu\nnHp6erRhwwadOnVK58+fV0pKiiTp+eef17Jly6LZJwA4asSwPHv2rC5cuCCfz6f29natXr1aTz75\npLZu3arc3NzR6BEAHDdiWM6fP185OTmSpClTpsjv96u3tzfqjQFALAnpO0ufz6ePPvpIcXFxamlp\nUXd3t9LS0rRjxw6lpqZGs08AcJQ5LE+ePKny8nIdOXJE9fX1SklJUXZ2tg4fPqwvv/xSO3fujHav\nAOAY00+HTp8+rUOHDqmiokKTJ0+W1+tVdna2JGn58uVqaGiIapMA4LQRw/L27dsqLS1VeXl539Xv\nTZs2qbGxUZJUV1en2bNnR7dLAHDYiBd4Tpw4ofb2dm3evLlvbM2aNdq8ebOSkpLkdru1Z8+eqDYJ\nAE7jR+kAYMByRwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADCId2Knr7/+uj7++GO5XC5t27ZNOTk5TrQRUXV1dSoqKtLs2bMlSXPm\nzNGOHTsc7ip8DQ0NeuGFF7R+/XqtW7dO169f1yuvvKLe3l55PB698cYbSkhIcLrNkAx8TyUlJTp/\n/rxSUlIkSc8//7yWLVvmbJMhKi0t1blz59TT06MNGzboscceG/PHSRr8vk6dOuX4sRr1sPzwww91\n5coV+Xw+Xbp0Sdu2bZPP5xvtNqJiwYIFKisrc7qN+9bZ2andu3fL6/X2jZWVlSk/P195eXl68803\nVVVVpfz8fAe7DE2w9yRJW7duVW5urkNd3Z+zZ8/qwoUL8vl8am9v1+rVq+X1esf0cZKCv68nn3zS\n8WM16h/Da2trtXLlSknSrFmzdPPmTXV0dIx2GxhGQkKCKioqlJ6e3jdWV1enFStWSJJyc3NVW1vr\nVHthCfaexrr58+frwIEDkqQpU6bI7/eP+eMkBX9fvb29DnflQFi2trZq6tSpfa9TU1PV0tIy2m1E\nxcWLF7Vx40atXbtWZ86ccbqdsMXHxysxMbHfmN/v7/s4l5aWNuaOWbD3JEmVlZUqLCzUli1bdOPG\nDQc6C19cXJzcbrckqaqqSkuWLBnzx0kK/r7i4uIcP1aOfGd5r0Ag4HQLEfHII4/oxRdfVF5enhob\nG1VYWKiampox+X3RSMbLMXv22WeVkpKi7OxsHT58WAcPHtTOnTudbitkJ0+eVFVVlY4cOaKnnnqq\nb3ysH6d731d9fb3jx2rUzyzT09PV2tra97q5uVkej2e024i4jIwMPf3003K5XJoxY4amTZumpqYm\np9uKGLfbra6uLklSU1PTuPg46/V6lZ2dLUlavny5GhoaHO4odKdPn9ahQ4dUUVGhyZMnj5vjNPB9\nxcKxGvWwXLRokaqrqyVJ58+fV3p6upKTk0e7jYg7fvy43nnnHUlSS0uL2tralJGR4XBXkbNw4cK+\n41ZTU6PFixc73NH927RpkxobGyX9/zvZb37JMFbcvn1bpaWlKi8v77tKPB6OU7D3FQvHyhVw4Fx9\n//79+uijj+RyubRr1y7NnTt3tFuIuI6ODhUXF+vWrVvq7u7Wiy++qKVLlzrdVljq6+u1b98+Xb16\nVfHx8crIyND+/ftVUlKir776SpmZmdqzZ48mTpzodKtmwd7TunXrdPjwYSUlJcntdmvPnj1KS0tz\nulUzn8+nt99+W48++mjf2N69e7V9+/Yxe5yk4O9rzZo1qqysdPRYORKWADDWsIIHAAwISwAwICwB\nwICwBAADwhIADAhLADAgLAHAgLAEAIP/ASCN3sTB0COeAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54acb1c320>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFatJREFUeJzt3X9M1Pcdx/HXFeTHVSyCHC1GbGsg\nu1adbacpMjtR0gWXxWpMnFTd0prYbjoZ6zpiq+1mViv+SGpNJ2JtMs2yy8j+aNd2MNstcw3i9I8m\nsK6g6xyTiodeVQpYYLc/ljEPDnjfeccd+nz81ft8336+72+/5JXv3fc+93X4/X6/AAAjui3WDQDA\neEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGCSG+w9feuklffjhh3I4HNq8ebNmz54dyb4A\nIK6EFZYnTpzQ2bNn5fF4dObMGW3evFkejyfSvQFA3AjrbXh9fb2Ki4slSTNmzNDly5fV2dkZ0cYA\nIJ6EFZYdHR2aPHnywOuMjAx5vd6INQUA8SYiN3j4LQ4AN7uwwtLlcqmjo2Pg9YULF5SVlRWxpgAg\n3oQVloWFhaqtrZUkNTU1yeVyaeLEiRFtDADiSVh3wx988EHdf//9+ta3viWHw6EXXngh0n0BQFxx\n8OO/ADA6VvAAgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYJAY6wZw87t27Zq5Njk5OYqdAOHjyhIADAhLADAg\nLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxYwYMA58+fDzp+5513Bmy78847zXPW1dWZay9d\numSq8/l85jmHWxX09NNP6+c//3nA2IQJE0xz9vT0mPe/YcMGc631+CUpIyPDXIsbx5UlABiEdWXZ\n0NCgTZs2KS8vT5KUn5+vLVu2RLQxAIgnYb8Nnzdvnvbu3RvJXgAgbvE2HAAMwg7L06dP66mnntKq\nVav0wQcfRLInAIg7Dr/f7w/1H7W3t+vUqVMqKSlRa2ur1q5dq7q6OiUlJUWjRwCIubA+s8zOztaS\nJUskSbm5uZoyZYra29s1bdq0iDaHsReNrw699dZb5lq+OsRXh+JVWG/D33zzTb3++uuSJK/Xq4sX\nLyo7OzuijQFAPAnrynLRokV65pln9N5776m3t1cvvvgib8EB3NTCCsuJEydq//79ke4FAOIWyx1v\nAR999JG59ujRo0HHN27cqF//+tcBr63+/Oc/m2svXrxoquvv7zfPOdznm08//bRqa2sDxqyfGf77\n3/8277+lpcVc+9WvftVcW1hYOGQsJydHbW1tQ8Zw4/ieJQAYEJYAYEBYAoABYQkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGBCWAGDAcsdxKpTlfqEsd+zq6jJt++lPf2qes7m52VybmZkZ0TpJ6u3tHXbb\nxIkTA17ffvvtpjlH+v80mHUJpxTaz9ldvXp1yNgTTzyh3/3udwFjCxcuNM957733mmtvNVxZAoAB\nYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAASt4xqmenh5zbX5+vrn2k08+GXZbYuL/\n/1zS0tLMcy5btsxc6/f7TXX33HOPec4JEyYMu+173/tewOv29nbTnJcvXzbv/9vf/ra5du3ateba\nM2fOmMafeOIJ85yhPIjtttturWutW+toASBMhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABoQlABiw3HGcSk5ONtdeu3bNXDvSMsLrt6Wnp5vndDqd5trc3FxT3eAHjY3E4XAMu23mzJkB\nr91ut2nOUI7/Zz/7mbm2o6PDXJuUlBR0fPCSzRMnTpjnnDdvnrn2VsOVJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAcsdxqq+vz1z70EMPmWsnTZo07LZZs2YN/Hd/f795\nzpGWGw6WmppqqktJSTHPOdyyQGnoUyqtTzesr6837/+5554z1y5evNhce8cdd5jGs7OzzXNieKYr\ny+bmZhUXF+vIkSOSpE8//VRr1qxRaWmpNm3apC+++CKqTQJArI0all1dXdq2bZsKCgoGxvbu3avS\n0lL98pe/1PTp01VTUxPVJgEg1kYNy6SkJFVXV8vlcg2MNTQ0DLxdKCoqCuktCQCMR6N+ZpmYmKjE\nxMCy7u7ugc+BMjMz5fV6o9MdAMSJG77B4/f7I9EHQhTKDY5Q5OXlhbXtZnHbbbYviFz/sVQkvffe\nezc8x+7duyPQCQYLKyydTqd6enqUkpKi9vb2gLfoGBs9PT3m2lCCtaWlJeh4Xl5ewLZo3Q23/i3d\nfvvt5jlHuhs+mPVueENDg3nOUII1lLvhc+bMGTK2e/du/fCHPwwY+/73v2+ec/r06ebaW01Y37Oc\nP3++amtrJUl1dXVasGBBRJsCgHgz6pVlY2OjduzYoXPnzikxMVG1tbXatWuXKioq5PF4lJOTo8ce\ne2wsegWAmBk1LGfOnKnDhw8PGX/jjTei0hAAxCNW8IxT0brBM3XqVNO2ixcvmuf0+Xzm2s8//9xU\n19nZaZ5zypQpQcdTU1PV3d0dMPaPf/zDNOdHH31k3v9rr71mrn3ggQfMtfPnzw86XlhYGPCazyEj\ng7XhAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgIHDzw9S3vR6e3vNtcP9\nkHNOTo7a2trCmrO1tdVce/bsWVNdQkKCec7BP179PytWrBjySBTrcf3rX/8y7z+Un9PLzc01165a\ntWrIWFJS0pBnYoXyE3UYHleWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgC\ngAFPd7wFhPIkxpGeGnn9tlCWML799tvmWutyx0uXLpnnvP/++4OOr1ixQvX19QFj1ich/uhHPzLv\n/7e//a251u12m2uHW8bI8sbo4MoSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAM\nWMFzCzh//ry5tqmpKej4448/rnfffTfgtVVZWZm59uOPPzbV+Xw+85zd3d3Dbjt58mTAa+vKpFBW\nMH3jG98w17pcLnMtxhZXlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAB\nyx3HKa/Xa65ta2sz1/7hD38IOv74448HbKurqzPPOXXqVHPtSEsTr3fvvfea58zNzTVv6+zsNM0Z\nykPIQnmAWGFhobkWY4srSwAwMIVlc3OziouLdeTIEUlSRUWFvvnNb2rNmjVas2aN/vjHP0azRwCI\nuVHfhnd1dWnbtm0qKCgIGC8vL1dRUVHUGgOAeDLqlWVSUpKqq6v56SgAtzSH3+/3WwpfffVVTZ48\nWatXr1ZFRYW8Xq96e3uVmZmpLVu2KCMjI9q9AkDMhHU3fOnSpUpPT5fb7daBAwe0b98+bd26NdK9\nYQSh3A3/y1/+Yq79zW9+E3T84MGDWrdu3cDr3t5e85yff/65ufb06dOmusRE+5+u2+0OOn748GGt\nWbMmYMx6N/xvf/ubef/Lly8317744ovm2gkTJphrcePCuhteUFAw8Ae4aNEiNTc3R7QpAIg3YYXl\nxo0bB35Wv6GhQXl5eRFtCgDizajvZRobG7Vjxw6dO3dOiYmJqq2t1erVq1VWVqbU1FQ5nU5t3759\nLHoFgJgZNSxnzpypw4cPDxn/+te/HpWGACAesdxxnArlw/3s7Gxz7Ug3I67fFsoSvvvuu89c29/f\nb6qbNm2aec6ampphty1dujTg9e7du01zhnKD68qVK+baUJamTp8+3VyLG8dyRwAwICwBwICwBAAD\nwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA5Y7jVHp6urk2Pz/fXPvQQw8Nu23JkiXmeeLJ\n4sWLzdv+9Kc/meZ8++23zfv/7LPPzLXJycnmWowtriwBwICwBAADwhIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAFTzj1BdffGGuTUtLi2In8W+kh6sN3jZp0iTTnHPmzDHv/4EHHjDXhvIgOIwt\nriwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA5Y7DtLT02Oqu3DhQtDx\n3Nxc/fOf/xwyZtXf32+qY1mcXVtbW9DxvLy8IdumTJlimvOuu+4y7//LX/6yuTYjI8Nci7HFlSUA\nGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgwHLHQRwOh6lupCWMg7d9/PHH\n5v07nU5T3bRp08xzjid9fX2mus8++8w851tvvRV0vLy8fMi28vJy05z79u0z77+wsNBci/hlCsvK\nykqdOnVKfX19Wr9+vWbNmqVnn31W/f39ysrK0s6dO1mrDOCmNmpYHj9+XC0tLfJ4PPL5fFq2bJkK\nCgpUWlqqkpIS7dmzRzU1NSotLR2LfgEgJkb9zHLu3Ll65ZVXJP33AfTd3d1qaGjQ4sWLJUlFRUWq\nr6+PbpcAEGOjhmVCQsLA52g1NTV65JFH1N3dPfC2OzMzU16vN7pdAkCMOfx+v99SePToUVVVVenQ\noUN69NFHB64mz549qx//+Mf61a9+FdVGASCWTDd4jh07pv379+vgwYNKS0uT0+lUT0+PUlJS1N7e\nLpfLFe0+x8y1a9dMdcnJyeY5uRtuF4274b/4xS+CjpeXl2vPnj1DxixCuRu+bt06c21KSoq5FmNr\n1LfhV69eVWVlpaqqqpSeni5Jmj9/vmprayVJdXV1WrBgQXS7BIAYG/XK8p133pHP51NZWdnA2Msv\nv6znn39eHo9HOTk5euyxx6LaJADE2qhhuXLlSq1cuXLI+BtvvBGVhgAgHrGCZxDrZ5Eejyfo+MqV\nK4dsu3z5snn/d9xxh6nuwQcfNM+Zk5Njru3q6go6npWVFfCth/Pnz5vn/Otf/2qutT6w7cqVK+Y5\n29vbzduee+4505yrVq0y75/PIW8OrA0HAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADFjuGKYZM2aYt33lK18xz3vw4EFT3e9//3vznNaffZOkTz75JOj4T37yk4CfJfv73/9u\nnjOU2rvvvttUl5qaap4zPz9/2G2ZmZkBr4uLi01zzpw507x/3By4sgQAA8ISAAwISwAwICwBwICw\nBAADwhIADAhLADAgLAHAgLAEAAPCEgAMWO4YppGWMIayvHGwdevWhf1vh7Nz505z7UhPorx+m8/n\nM8/pcrnMtffdd5+pzu12m+ecM2fOsNtWrFgR8Hrq1KnmeXFr4coSAAwISwAwICwBwICwBAADwhIA\nDAhLADAgLAHAgLAEAAPCEgAMHH6/3x/rJvB/p0+fNtUlJyeb52xrazPXXrp0Keh4SUmJ3n333YHX\nvb295jnnzp1rrr3rrrvMtcBY4soSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAM\nCEsAMGC5IwAYmJ7uWFlZqVOnTqmvr0/r16/X+++/r6amJqWnp0uSnnzySS1cuDCafQJATI0alseP\nH1dLS4s8Ho98Pp+WLVumhx9+WOXl5SoqKhqLHgEg5kYNy7lz52r27NmSpEmTJqm7u1v9/f1RbwwA\n4klIn1l6PB6dPHlSCQkJ8nq96u3tVWZmprZs2aKMjIxo9gkAMWUOy6NHj6qqqkqHDh1SY2Oj0tPT\n5Xa7deDAAZ0/f15bt26Ndq8AEDOmrw4dO3ZM+/fvV3V1tdLS0lRQUCC32y1JWrRokZqbm6PaJADE\n2qhhefXqVVVWVqqqqmrg7vfGjRvV2toqSWpoaFBeXl50uwSAGBv1Bs8777wjn8+nsrKygbHly5er\nrKxMqampcjqd2r59e1SbBIBY40vpAGDAckcAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIA\nDAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAg\nLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwSIzFTl966SV9+OGHcjgc2rx5s2bPnh2L\nNiKqoaFBmzZtUl5eniQpPz9fW7ZsiXFX4WtubtZ3v/tdfec739Hq1av16aef6tlnn1V/f7+ysrK0\nc+dOJSUlxbrNkAw+poqKCjU1NSk9PV2S9OSTT2rhwoWxbTJElZWVOnXqlPr6+rR+/XrNmjVr3J8n\naehxvf/++zE/V2MelidOnNDZs2fl8Xh05swZbd68WR6PZ6zbiIp58+Zp7969sW7jhnV1dWnbtm0q\nKCgYGNu7d69KS0tVUlKiPXv2qKamRqWlpTHsMjTBjkmSysvLVVRUFKOubszx48fV0tIij8cjn8+n\nZcuWqaCgYFyfJyn4cT388MMxP1dj/ja8vr5excXFkqQZM2bo8uXL6uzsHOs2MIKkpCRVV1fL5XIN\njDU0NGjx4sWSpKKiItXX18eqvbAEO6bxbu7cuXrllVckSZMmTVJ3d/e4P09S8OPq7++PcVcxCMuO\njg5Nnjx54HVGRoa8Xu9YtxEVp0+f1lNPPaVVq1bpgw8+iHU7YUtMTFRKSkrAWHd398DbuczMzHF3\nzoIdkyQdOXJEa9eu1Q9+8ANdunQpBp2FLyEhQU6nU5JUU1OjRx55ZNyfJyn4cSUkJMT8XMXkM8vr\n+f3+WLcQEXfffbc2bNigkpIStba2au3ataqrqxuXnxeN5mY5Z0uXLlV6errcbrcOHDigffv2aevW\nrbFuK2RHjx5VTU2NDh06pEcffXRgfLyfp+uPq7GxMebnasyvLF0ulzo6OgZeX7hwQVlZWWPdRsRl\nZ2dryZIlcjgcys3N1ZQpU9Te3h7rtiLG6XSqp6dHktTe3n5TvJ0tKCiQ2+2WJC1atEjNzc0x7ih0\nx44d0/79+1VdXa20tLSb5jwNPq54OFdjHpaFhYWqra2VJDU1NcnlcmnixIlj3UbEvfnmm3r99dcl\nSV6vVxcvXlR2dnaMu4qc+fPnD5y3uro6LViwIMYd3biNGzeqtbVV0n8/k/3fNxnGi6tXr6qyslJV\nVVUDd4lvhvMU7Lji4Vw5/DG4Vt+1a5dOnjwph8OhF154QV/60pfGuoWI6+zs1DPPPKMrV66ot7dX\nGzZs0Ne+9rVYtxWWxsZG7dixQ+fOnVNiYqKys7O1a9cuVVRU6Nq1a8rJydH27ds1YcKEWLdqFuyY\nVq9erQMHDig1NVVOp1Pbt29XZmZmrFs183g8evXVV3XPPfcMjL388st6/vnnx+15koIf1/Lly3Xk\nyJGYnquYhCUAjDes4AEAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHA4D/Uys/BfRbuKAAA\nAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ac9965f8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFYhJREFUeJzt3X9MVff9x/HXLUjhFhyCQEZTdWlp\nYf5a7eyETidq2tqtszTLnAStmVlslqrMmJYYtS5utVDXrLRL+LHaJZJudyPL5hYXmHNLXIO4sqQJ\nrCn+WBlziICUQkEFvN8/li/rhQu87/VezgWfj796P+ft57xvD3nl3HPu5x6X1+v1CgAwoTucbgAA\npgPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwCA62H/40ksv6b333pPL5dLevXu1ZMmSUPYF\nABElqLA8e/asWlpa5PF4dOHCBe3du1cejyfUvQFAxAjqY3hdXZ3WrVsnSbr33nvV09Ojvr6+kDYG\nAJEkqLDs7OzUnDlzRl4nJSWpo6MjZE0BQKQJyQ0efosDwEwXVFimpqaqs7Nz5PWVK1eUkpISsqYA\nINIEFZaPPPKIampqJElNTU1KTU1VfHx8SBsDgEgS1N3wZcuWaeHChfrWt74ll8ulF198MdR9AUBE\ncfHjvwAwOVbwAIABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGAQ7XQDmPk++eQTc+1dd90Vxk6A4HFmCQAGhCUA\nGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABqzguQ3cvHnTXNvW1uZ3/O6779alS5d8Xlv9\n8Y9/NNd+9NFHprpQrAraunWrfvazn/mMxcbGmua8fv26ef/PPPOMubavr89cGx8fb67FrePMEgAM\ngjqzrK+v165du5SRkSFJuv/++7V///6QNgYAkSToj+EPP/ywSktLQ9kLAEQsPoYDgEHQYXn+/Hk9\n++yz2rRpk955551Q9gQAEcfl9Xq9gf6j9vZ2NTQ0aP369WptbdWWLVtUW1urmJiYcPQIAI4L6ppl\nWlqannjiCUnSvHnzNHfuXLW3t+uee+4JaXMIDae/OvSb3/zGXMtXh/jqUKQK6mP48ePH9eabb0qS\nOjo61NXVpbS0tJA2BgCRJKgzyzVr1mjPnj3605/+pMHBQR08eJCP4ABmtKDCMj4+XmVlZaHuBQAi\nFssdbwP/+Mc/zLUnT570O15YWKhf/epXPq+t6uvrzbVXr1411d1xh/0K0njXQbdu3aqamhqfsZ6e\nHtOcgdwXbW5uNteuWrXKXPvFL35xzFhycrK6urrGjOHW8T1LADAgLAHAgLAEAAPCEgAMCEsAMCAs\nAcCAsAQAA8ISAAwISwAwICwBwIDljtPU8PCwuTaQ5XaDg4OmbT/84Q/Nc547d85ca12al5SUZJ7z\n2rVr424b/ZNs1h+E6e/vN+//3//+t7n2l7/8pbnW39LQTZs2qba21mcsJyfHPOf8+fPNtbcbziwB\nwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAFTzT1I0bN8y1n//85821LS0t426L\njv7fn0tCQoJ5zry8PHOtdWXSggULzHN+uu/RvvOd7/i8/s9//mOa0/pgM0natm2bufaZZ54x177/\n/vum8U2bNpnnvHnzprk2kIfGzQS317sFgCARlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaE\nJQAYEJYAYMByx2lq9IO2JjLRA7tGmzdvnmnbZz7zGfOc1oeASfZljHfddZd5TpfLNe62zMxMn9cZ\nGRmmOVNSUsz7/8EPfmCu7erqMteO9zfQ3t7u8/rvf/+7ec5ly5aZa283nFkCgAFhCQAGhCUAGBCW\nAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3nKaGhobMtV/4whfMtXFxceNuW7Ro0ch/B7KE\n0uv1mmtnzZplqpuoz9Hcbve425KSknxeW59uWF9fb97/vn37zLVf+9rXzLWJiYmm8bS0NPOcGJ/p\nzLK5uVnr1q1TVVWVJKmtrU2bN29Wfn6+du3aFdBjWQFgOpo0LPv7+3Xo0CFlZ2ePjJWWlio/P19v\nv/225s+fr+rq6rA2CQBOmzQsY2JiVFlZqdTU1JGx+vp6rV27VpKUm5ururq68HUIABFg0muW0dHR\nio72LRsYGBj52a3k5GR1dHSEpzsAiBC3fIMnkIv3CB3rjZBAPfDAA0FtmynuuMP2BZEvfelLYdn/\n73//+1ueo7i4OASdYLSgwtLtduvatWuKjY1Ve3u7z0d0TI3BwUFzbSDB+sEHH/gdf+CBB3y2hetu\nuPXObSA/PjzR3fDRrHfD//a3v5nnDCRYA7kbvnDhwjFjxcXFeuGFF3zGdu7caZ7z7rvvNtfeboL6\nnmVOTo5qamokSbW1tVq5cmVImwKASDPpmWVjY6OKi4t16dIlRUdHq6amRkeOHFFRUZE8Ho/S09P1\n1FNPTUWvAOCYScNy0aJFOnbs2Jjxt956KywNAUAkYgXPNBWuGzwTXbP69LbRD8WaSGdnp7l2YGAg\npHWSlJ6e7nc8NjZ2zLXX1tZW05wXL14077+iosJc++CDD5prc3Jy/I6vXr3a5zXXIUODteEAYEBY\nAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAgcvLD1LOeIH8nNvly5f9jt9zzz0+\nSwEDeWCadQmhJP3zn/801cXGxprnHK92w4YN+u1vf2ue59P+9a9/mWsDWZo5f/58c+03vvGNMWNR\nUVEaHh4eM4Zbx5klABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYMDTHW8D\nXV1d5tr4+HjTtvPnz5vnrKmpMde2tLSY6gJ5T0uXLvU7vmHDBtXV1fmMLViwwDTnjh07zPsP5P1n\nZmaaa8dbxsjyxvDgzBIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxYwXMbuHLl\nirn2/fff9zu+ceNG1dbW+ry22rNnj7m2sbHRVHf16lXznNevXx9329mzZ31eWx+YdvHiRfP+n3zy\nSXNtSkqKuRZTizNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljtNU\nZ2enubatrc1ce+rUKb/jGzdu9Nn26aWPk0lLSzPX9vT0mOrmzZtnnjM9Pd28ra+vzzTn7373O/P+\n4+LizLVf/vKXzbWYWpxZAoCBKSybm5u1bt06VVVVSZKKior05JNPavPmzdq8ebP+8pe/hLNHAHDc\npB/D+/v7dejQIWVnZ/uM7969W7m5uWFrDAAiyaRnljExMaqsrFRqaupU9AMAEcnl9Xq9lsLXX39d\nc+bMUUFBgYqKitTR0aHBwUElJydr//79SkpKCnevAOCYoO6Gb9iwQYmJicrKylJFRYXeeOMNHThw\nINS9YQKB3A1vaGgw1/7617/2O15eXq7t27ePvB4aGjLP2dvba65tbm421blcLvOcCxcu9DteVVWl\ngoICnzHr3fAPPvjAvP9vfvOb5tqDBw+aawP5f4BbF9Td8OzsbGVlZUmS1qxZY/4DB4DpKqiw3LFj\nh1pbWyVJ9fX1ysjICGlTABBpJv0Y3tjYqOLiYl26dEnR0dGqqalRQUGBCgsLFRcXJ7fbrcOHD09F\nrwDgmEnDctGiRTp27NiY8cceeywsDQFAJGK54zQVHW0/dIE8MTAvL8+0LSYmxjxnZmamudZ64yiQ\n5Y4///nPx9321a9+1ef1j370I9OcN27cMO//448/NtcGsjR1omWcCD2WOwKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGLHecphITE821gfwq1LJly8bd9vjjj5vniSQT/Y7B\n6G1//etfTXP+4Q9/MO+/u7vbXHvnnXeaazG1OLMEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADVvBMU4E8MCshISGMnUS+iR6uNnrb7NmzTXM++OCD5v0/9NBD5tpZs2aZazG1OLME\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjuOIp1GWFXV5ff8c9+9rNq\na2sbM2Z18+ZNU91ES/jg6/Lly37H77vvvjHb0tPTTXP29/eb97906VJzrXW5JaYeZ5YAYEBYAoAB\nYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAcsdR4mKijLVTbSEcfS2Dz/80Lx/6zJG\n67K86WZoaMhU19vba57zxIkTfsd37tw5ZtvOnTtNc5aVlZn3v2LFCnMtIpcpLEtKStTQ0KChoSFt\n375dixcv1vPPP6/h4WGlpKTolVdeYa0ygBlt0rA8c+aMzp07J4/Ho+7ubuXl5Sk7O1v5+flav369\nXn31VVVXVys/P38q+gUAR0x6zXL58uV67bXXJP33F1EGBgZUX1+vtWvXSpJyc3NVV1cX3i4BwGGT\nhmVUVJTcbrckqbq6WqtWrdLAwMDIx+7k5GR1dHSEt0sAcJjL6/V6LYUnT55UeXm5jh49qkcffXTk\nbLKlpUUvvPCCfvGLX4S1UQBwkukGz+nTp1VWVqaf/vSnSkhIkNvt1rVr1xQbG6v29nalpqaGu88p\nMzw8bKqz3jWXuBseiHDcDT927Jjf8Z07d6q0tHTMmEUgd8O//e1vm2u5URq5Jv0Y3tvbq5KSEpWX\nlysxMVGSlJOTo5qaGklSbW2tVq5cGd4uAcBhk55ZnjhxQt3d3SosLBwZe/nll7Vv3z55PB6lp6fr\nqaeeCmuTAOC0ScNy48aN2rhx45jxt956KywNAUAkYgXPKNZrkcePH/c7/vWvf33Mtp6eHvP+rQ+s\nWrRokXnOQK5v9vX1+R1PSUnx+dbD6IeyTaSpqclc63K5THWBPDBsvIfL+dv2/e9/3zSnvxOI8XAd\ncmZgbTgAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgwHLHIC1YsMC8bcmS\nJeZ53377bVPdn//8Z/Ocd955p7n2woULfscPHjyon/zkJ5PW+XPx4kVz7X333WeqS0hIMM+ZmZk5\n7raUlBSf17m5ubc8J2YmziwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQA\nA5Y7BmmiJYyBLG8cLT8/P+h/O54f//jH5tpPPvnEtK23t9c8ZyBPl1y8eLGpbunSpeY5s7Kyxt02\n+pn3aWlp5nlxe+HMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFxer9frdBP4\nnw8//NBUF8hDyC5fvmyu/eijj/yO5+bm+jwk7caNG+Y5H3roIXPt3LlzzbXAVOLMEgAMCEsAMCAs\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBguSMAGJie7lhSUqKGhgYNDQ1p+/btOnXq\nlJqampSYmChJ2rZtm1avXh3OPgHAUZOG5ZkzZ3Tu3Dl5PB51d3crLy9PK1as0O7du5WbmzsVPQKA\n4yYNy+XLl488B3v27NkaGBjQ8PBw2BsDgEgS0DVLj8ejd999V1FRUero6NDg4KCSk5O1f/9+JSUl\nhbNPAHCUOSxPnjyp8vJyHT16VI2NjUpMTFRWVpYqKip0+fJlHThwINy9AoBjTF8dOn36tMrKylRZ\nWamEhARlZ2crKytLkrRmzRo1NzeHtUkAcNqkYdnb26uSkhKVl5eP3P3esWOHWltbJUn19fXKyMgI\nb5cA4LBJb/CcOHFC3d3dKiwsHBl7+umnVVhYqLi4OLndbh0+fDisTQKA0/hSOgAYsNwRAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIA\nDKKd2OlLL72k9957Ty6XS3v37tWSJUucaCOk6uvrtWvXLmVkZEiS7r//fu3fv9/hroLX3Nys7373\nu9q6dasKCgrU1tam559/XsPDw0pJSdErr7yimJgYp9sMyOj3VFRUpKamJiUmJkqStm3bptWrVzvb\nZIBKSkrU0NCgoaEhbd++XYsXL572x0ka+75OnTrl+LGa8rA8e/asWlpa5PF4dOHCBe3du1cej2eq\n2wiLhx9+WKWlpU63ccv6+/t16NAhZWdnj4yVlpYqPz9f69ev16uvvqrq6mrl5+c72GVg/L0nSdq9\ne7dyc3Md6urWnDlzRufOnZPH41F3d7fy8vKUnZ09rY+T5P99rVixwvFjNeUfw+vq6rRu3TpJ0r33\n3quenh719fVNdRuYQExMjCorK5WamjoyVl9fr7Vr10qScnNzVVdX51R7QfH3nqa75cuX67XXXpMk\nzZ49WwMDA9P+OEn+39fw8LDDXTkQlp2dnZozZ87I66SkJHV0dEx1G2Fx/vx5Pfvss9q0aZPeeecd\np9sJWnR0tGJjY33GBgYGRj7OJScnT7tj5u89SVJVVZW2bNmi733ve7p69aoDnQUvKipKbrdbklRd\nXa1Vq1ZN++Mk+X9fUVFRjh8rR65ZfprX63W6hZBYsGCBnnvuOa1fv16tra3asmWLamtrp+X1osnM\nlGO2YcMGJSYmKisrSxUVFXrjjTd04MABp9sK2MmTJ1VdXa2jR4/q0UcfHRmf7sfp0++rsbHR8WM1\n5WeWqamp6uzsHHl95coVpaSkTHUbIZeWlqYnnnhCLpdL8+bN09y5c9Xe3u50WyHjdrt17do1SVJ7\ne/uM+DibnZ2trKwsSdKaNWvU3NzscEeBO336tMrKylRZWamEhIQZc5xGv69IOFZTHpaPPPKIampq\nJElNTU1KTU1VfHz8VLcRcsePH9ebb74pSero6FBXV5fS0tIc7ip0cnJyRo5bbW2tVq5c6XBHt27H\njh1qbW2V9N9rsv//TYbpore3VyUlJSovLx+5SzwTjpO/9xUJx8rldeBc/ciRI3r33Xflcrn04osv\nKjMzc6pbCLm+vj7t2bNHH3/8sQYHB/Xcc8/pK1/5itNtBaWxsVHFxcW6dOmSoqOjlZaWpiNHjqio\nqEjXr19Xenq6Dh8+rFmzZjndqpm/91RQUKCKigrFxcXJ7Xbr8OHDSk5OdrpVM4/Ho9dff12f+9zn\nRsZefvll7du3b9oeJ8n/+3r66adVVVXl6LFyJCwBYLphBQ8AGBCWAGBAWAKAAWEJAAaEJQAYEJYA\nYEBYAoABYQkABv8Hda/UINBiMzIAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ac9722e8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFWhJREFUeJzt3X9MVff9x/HXLVcKV0V+FGhd1Xad\nbe9scd2mKxqrqO2myQbWLR1M7ZZmsxk1WtO0xIhdwlIqmia1bSYy7R+l3W5Cm61/uMHULDEWMWWb\nGW4rVBNl/sCLRQUBBXa/fyzjK3CB973ey7ng8/FXz+e8+7nve4++PPee+7nHFQgEAgIAjOgOpxsA\ngPGAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBwh/s/vvbaazp+/LhcLpe2bNmirKysSPYF\nADElrLA8duyYTp8+LZ/Pp5MnT2rLli3y+XyR7g0AYkZYb8Nra2u1fPlySdIDDzygK1euqKOjI6KN\nAUAsCSssW1tblZKS0r+dmpoqv98fsaYAINZE5AIPv8UBYKILKywzMjLU2trav33x4kWlp6dHrCkA\niDVhheXChQtVXV0tSTpx4oQyMjI0ZcqUiDYGALEkrKvhX//61zVnzhz98Ic/lMvl0quvvhrpvgAg\nprj48V8AGB0reADAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHA\ngLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwcDvdACa+K1eumGunTZsWxU6A8HFmCQAGhCUA\nGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABqzguQ309vaaa8+dOxd0fObMmTpz5syAbauD\nBw+aa69evWqq6+7uNs853Kqg/Px8/eY3vxkwNnnyZNOcN27cMD/+97//fXPt9evXzbV33nmnuRa3\njjNLADAI68yyrq5OGzdu1OzZsyVJDz74oIqLiyPaGADEkrDfhs+fP1+7du2KZC8AELN4Gw4ABmGH\n5eeff67nn39e+fn5OnLkSCR7AoCY4woEAoFQ/6eWlhbV19drxYoVam5u1rp161RTU6P4+Pho9AgA\njgvrM8vMzEytXLlS0n+/QnLXXXeppaVFM2bMiGhziAynvzr00UcfmWv56hBfHYpVYb0N//jjj7V3\n715Jkt/v16VLl5SZmRnRxgAgloR1Zrl06VK99NJLOnjwoHp6evSLX/yCt+AAJrSwwnLKlCnavXt3\npHsBgJjFcsfbwD/+8Q9z7XBLE1988UV9+OGHA7at/vKXv5hrL1++bKpzu+1/dIe7YVp+fr5qamoG\njHV0dJjntfrss8/MtYsXLzbXzp07d8jY1KlT1d7ePmQMt47vWQKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABoQlABgQlgBgQFgCgAFhCQAGLHccp/7zn/+Ya0+dOmWuHennTW/eV1ZWZp6zqanJXJuenm6q\nS0lJMc/Z2dk57L5JkyYN2E5KSrrlOQcL5fX/97//ba5tbW0dMpaXlzdkyeo3v/lN85z33nuvufZ2\nw5klABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYsIJnnLpx44a5ds6cOebaM2fO\nDLvv5puEWVe6SFJubq65tq+vz1Q3a9Ys85xxcXHD7nv22WcHbFtX0Fy9etX8+D/96U/NtT/5yU/M\ntcePHx8ylpeXN2Q8Ly/PPOdIK7gGc7lc5tqJgDNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQA\nA8ISAAwISwAwICwBwIDljuNUQkKCubarq8tcO9INq27eN3nyZPOcg28KNpL77rvPVBfK8x9pWd6X\nv/zlEbeHc88995gf/5e//KW5NthNyIaTmJgYdLylpWXAdrBlkcOZO3euufZ2w5klABgQlgBgQFgC\ngAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYMByx3HKehdEScrKyjLXjrQ00ev19v/3tWvX\nzHP29PSYa613DAxlueW0adOG3Td42aL1dT127Jj58bdu3WquXb16tbk2LS3NNJ6ZmWmeE8MznVk2\nNjZq+fLlqqyslCSdP39ea9euVUFBgTZu3BjSbVkBYDwaNSw7OztVUlKi7Ozs/rFdu3apoKBAH3zw\ngWbNmqWqqqqoNgkAThs1LOPj41VRUaGMjIz+sbq6Oi1btkySlJOTo9ra2uh1CAAxYNTPLN1ut9zu\ngWVdXV2Kj4+X9N/PR/x+f3S6A4AYccsXeAKBQCT6QIji4uKiMu/NF3FC2TdRWF/X+fPnR+XxP/zw\nw1ueo6SkJAKdYLCwwtLj8ai7u1sJCQlqaWkZ8BYdYyOUq+GhBOs///nPoONer3fAvmhdDb/77rtN\ndampqeY5R7oaPpj1da2vrzfPGUqwhnI1/Ktf/eqQsZKSEhUXFw8YKywsNM9pff1vR2F9z3LBggWq\nrq6WJNXU1GjRokURbQoAYs2oZ5YNDQ3avn27zp49K7fbrerqau3cuVNFRUXy+XyaPn268vLyxqJX\nAHDMqGH5yCOP6L333hsy/u6770alIQCIRazgGaeidYHnS1/6kmnfuXPnzHOeP3/eXNvd3W2qu3Dh\ngnnOO++8M+h4QkLCkMez9hrK8w/lM8PHHnvMXHvzd59vtmTJkgHbfA4ZGawNBwADwhIADAhLADAg\nLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxcAX6QcsIL5SfShlvGN2vWLJ0+fTqsOc+cOWOu\nPXXqlKkulJ9dG+7mZitXrtT+/fsHjFmXkd78Woyms7PTXHv//feba7/3ve8NGXO5XEN+Y9Z6EziM\njDNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIC7O94GLl26ZK5NTk42\n7Tt58qR5zoMHD5prrUsjQ3lO8+bNCzq+cuVK1dXVDRizLjf82c9+Zn78Q4cOmWsfeughc+1wyxhZ\n3hgdnFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABK3huA6GsdvnXv/4VdHz1\n6tU6cODAgG2rV155xVz717/+1VQXynMa6eZqn3zyyYDtzz77zDTncK9TMLm5uebatLQ0cy3GFmeW\nAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAHLHcepUJb7XbhwwVw73M21\nVq9ePWBfTU2Nec5QlvDde++9Ea2TpIyMDPO+a9eumeb8/e9/b358j8djrs3OzjbXYmxxZgkABqaw\nbGxs1PLly1VZWSlJKioq0ne/+12tXbtWa9eu1Z///Odo9ggAjhv1bXhnZ6dKSkqGvD3YvHmzcnJy\notYYAMSSUc8s4+PjVVFRMeLnPgAw0bkCgUDAUvjWW28pJSVFa9asUVFRkfx+v3p6epSWlqbi4mKl\npqZGu1cAcExYV8Nzc3OVnJwsr9erPXv26O2339a2bdsi3RtGEMrV8L/97W/m2o8++ijo+DvvvKPC\nwsL+7d7eXvOcV65cMdeG8qO6VnPmzAk6/v777+tHP/rRgDHr1XDrjwRLUn5+vrmWv0exK6yr4dnZ\n2fJ6vZKkpUuXqrGxMaJNAUCsCSssN2zYoObmZklSXV2dZs+eHdGmACDWjPo2vKGhQdu3b9fZs2fl\ndrtVXV2tNWvWaNOmTUpMTJTH41FpaelY9AoAjhk1LB955BG99957Q8a//e1vR6UhAIhFLHccp+64\nw/4JSijfVMjLyzPtc7vtf3Qeeughc631wtHMmTPNcwb7x/5/vvOd7wzY3rFjh2nOGzdumB+/o6PD\nXOv3+8216enp5lrcOpY7AoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAYs\ndxynUlJSzLVxcXHm2scee2zYfU8++aR5nlgyeEnjSPs++eQT05x//OMfzY//xRdfmGvj4+PNtRhb\nnFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABK3jGqVBumJWUlBTFTmJfYmKi\ned+0adNMc37jG98wP34otaHcCA5jizNLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwI\nSwAwICwBwIC1VYP09fWZ6i5fvhx0PC0tTZcuXRoyFmnc2Mru4sWLQcenTJkyZN+MGTNMc16/ft38\n+FlZWebayZMnm2sxtjizBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxY\n7jhIXFycqW6kJYyD9507d878+HfcYfv36+677zbPOZ709vaa6q5du2ae8w9/+EPQ8cLCwiH7CgsL\nTXPu3bvX/Pjf+ta3zLWIXaawLCsrU319vXp7e7V+/Xo9+uijevnll9XX16f09HTt2LGDtcoAJrRR\nw/Lo0aNqamqSz+dTW1ubVq1apezsbBUUFGjFihV64403VFVVpYKCgrHoFwAcMep7vnnz5unNN9+U\nJCUlJamrq0t1dXVatmyZJCknJ0e1tbXR7RIAHDZqWMbFxcnj8UiSqqqq9MQTT6irq6v/bXdaWpr8\nfn90uwQAh7kCgUDAUnjgwAGVl5dr3759euqpp/rPJk+fPq1XXnlFv/3tb6PaKAA4yXSB5/Dhw9q9\ne7d+/etfa+rUqfJ4POru7lZCQoJaWlqUkZER7T7HNa6G20XjanhlZWXQ8cLCQr3zzjtDxixCuRr+\n7LPPmmvdbr6gEqtG/ZvZ3t6usrIylZeXKzk5WZK0YMECVVdXS5Jqamq0aNGi6HYJAA4b9Z+x/fv3\nq62tTZs2beofe/3117V161b5fD5Nnz5deXl5UW0SAJw2alg+88wzeuaZZ4aMv/vuu1FpCABiER+Q\nhOlPf/pT0PEnn3xyyL729nbzvNYbVnV1dZnnvOeee8y1w/Wanp4+4FsPZ8+eNc/597//3VybkJBg\nquvp6THPOdzN5YLtKy0tNc35gx/8wPz4fA45MbA2HAAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwB\nwICwBAADwhIADAhLADBgHVaYZsyYYd738MMPm+f93e9+Z6o7fPiwec5JkyaZa5uamoKOb9u2Tb/6\n1a9GrQvm1KlT5lqv12uq+98vYFmM9PpnZmYO2F68eLFpzq985Svmx8fEwJklABgQlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYMByxzCNtIQulOWNg0XjHuw3L1MczfXr1037uru7\nzXPOnDnTXPu1r33NVDd37lzznCMdj9zc3AHbqamp5nlxe+HMEgAMCEsAMCAsAcCAsAQAA8ISAAwI\nSwAwICwBwICwBAADwhIADFyBQCDgdBP4f83Nzaa6xMRE85wtLS3m2suXLwcdX7hwoY4cOdK/3dvb\na57TuipHkqZNm2auBcYSZ5YAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKA\nAcsdAcDAdHfHsrIy1dfXq7e3V+vXr9ehQ4d04sQJJScnS5Kee+45LVmyJJp9AoCjRg3Lo0ePqqmp\nST6fT21tbVq1apUef/xxbd68WTk5OWPRIwA4btSwnDdvnrKysiRJSUlJ6urqUl9fX9QbA4BYEtJn\nlj6fT59++qni4uLk9/vV09OjtLQ0FRcXc3N6ABOaOSwPHDig8vJy7du3Tw0NDUpOTpbX69WePXt0\n4cIFbdu2Ldq9AoBjTF8dOnz4sHbv3q2KigpNnTpV2dnZ8nq9kqSlS5eqsbExqk0CgNNGDcv29naV\nlZWpvLy8/+r3hg0b+n/Ru66uTrNnz45ulwDgsFEv8Ozfv19tbW3atGlT/9jTTz+tTZs2KTExUR6P\nR6WlpVFtEgCcxpfSAcCA5Y4AYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKA\nAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBg4HbiQV977TUdP35cLpdLW7ZsUVZWlhNtRFRdXZ02btyo\n2bNnS5IefPBBFRcXO9xV+BobG/Xzn/9cP/7xj7VmzRqdP39eL7/8svr6+pSenq4dO3YoPj7e6TZD\nMvg5FRUV6cSJE0pOTpYkPffcc1qyZImzTYaorKxM9fX16u3t1fr16/Xoo4+O++MkDX1ehw4dcvxY\njXlYHjt2TKdPn5bP59PJkye1ZcsW+Xy+sW4jKubPn69du3Y53cYt6+zsVElJibKzs/vHdu3apYKC\nAq1YsUJvvPGGqqqqVFBQ4GCXoQn2nCRp8+bNysnJcairW3P06FE1NTXJ5/Opra1Nq1atUnZ29rg+\nTlLw5/X44487fqzG/G14bW2tli9fLkl64IEHdOXKFXV0dIx1GxhBfHy8KioqlJGR0T9WV1enZcuW\nSZJycnJUW1vrVHthCfacxrt58+bpzTfflCQlJSWpq6tr3B8nKfjz6uvrc7grB8KytbVVKSkp/dup\nqany+/1j3UZUfP7553r++eeVn5+vI0eOON1O2NxutxISEgaMdXV19b+dS0tLG3fHLNhzkqTKykqt\nW7dOL774or744gsHOgtfXFycPB6PJKmqqkpPPPHEuD9OUvDnFRcX5/ixcuQzy5sFAgGnW4iI++67\nTy+88IJWrFih5uZmrVu3TjU1NePy86LRTJRjlpubq+TkZHm9Xu3Zs0dvv/22tm3b5nRbITtw4ICq\nqqq0b98+PfXUU/3j4/043fy8GhoaHD9WY35mmZGRodbW1v7tixcvKj09fazbiLjMzEytXLlSLpdL\nM2fO1F133aWWlhan24oYj8ej7u5uSVJLS8uEeDubnZ0tr9crSVq6dKkaGxsd7ih0hw8f1u7du1VR\nUaGpU6dOmOM0+HnFwrEa87BcuHChqqurJUknTpxQRkaGpkyZMtZtRNzHH3+svXv3SpL8fr8uXbqk\nzMxMh7uKnAULFvQft5qaGi1atMjhjm7dhg0b1NzcLOm/n8n+75sM40V7e7vKyspUXl7ef5V4Ihyn\nYM8rFo6VK+DAufrOnTv16aefyuVy6dVXX9XDDz881i1EXEdHh1566SVdvXpVPT09euGFF7R48WKn\n2wpLQ0ODtm/frrNnz8rtdiszM1M7d+5UUVGRrl+/runTp6u0tFSTJk1yulWzYM9pzZo12rNnjxIT\nE+XxeFRaWqq0tDSnWzXz+Xx66623dP/99/ePvf7669q6deu4PU5S8Of19NNPq7Ky0tFj5UhYAsB4\nwwoeADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAz+Dwd1ykLiRuKTAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ac6d79e8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFVFJREFUeJzt3X9MVff9x/HXLQzhFt0F5GJNW7TG\nWuaPdW7aXhtdQVKD2YKaJa0EybL+ITF1Wtd0hBbdYlIrNSal/YMf0zap63YT0iz9owkM27WuARpd\nZgdbhnWTEtbCRVFRwALe/bFv+Ra4wvte7+Ve8Pn4q+dz3n7O+3ial+fecz/3Ovx+v18AgEndFe0G\nAGAmICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAM4kP9gy+99JLOnj0rh8Oh0tJSrVq1Kpx9\nAUBMCSksP/nkE7W3t8vr9er8+fMqLS2V1+sNd28AEDNCehne2Nio3NxcSdKSJUt05coVXbt2LayN\nAUAsCSkse3p6lJKSMrqdmpoqn88XtqYAINaE5QEP38UBYLYLKSzdbrd6enpGt7u7u5Wenh62pgAg\n1oQUlo899pjq6uokSa2trXK73UpOTg5rYwAQS0J6Gr569WotX75cTz31lBwOhw4cOBDuvgAgpjj4\n8l8AmBoreADAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAg\nLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAE\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwiI92A5iZ/H6/ufbSpUvm2rS0tFDaASKOO0sAMCAs\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgBc8dYGhoyFz7n//8J+B4Zmam2tvbx2xb\nffjhh+bavr4+U93w8LB5zpSUlIDj27Zt0zvvvDNmzOVymeYM5u9006ZN5tpgVkY5HA5zLW4fd5YA\nYBDSnWVzc7P27NmjpUuXSpIefPBBlZWVhbUxAIglIb8MX7t2rSoqKsLZCwDELF6GA4BByGH52Wef\nqbi4WNu3b9fHH38czp4AIOY4/ME8fvs/XV1dOnPmjPLy8tTR0aGioiLV19crISEhEj0CQNSF9J5l\nRkaGNm/eLEm6//77NX/+fHV1dem+++4La3MIj2h/dGj8x3Mmw0eH+OhQrArpZfi7776rY8eOSZJ8\nPp8uXryojIyMsDYGALEkpDvLnJwcPffcczp58qSGhob0q1/9ipfgAGa1kMIyOTlZlZWV4e4FAGIW\nyx3vAK2trebakydPBhz/xS9+odra2jHbVmfPnjXXXr582VQ3Z84c85zXrl0LOL5t2zY1NDSYam/H\nP/7xD3Pthg0bzLXf+c53JowlJiZqcHBwwhhuH5+zBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMCAsAcCAsAQAA8ISAAxY7jhDBfNVXhcuXDDX3nXXrf/9/Oa+o0ePmudsa2sz17rdblNdamqqec7+\n/v5b7ht/vtalgZPNOd7f//53c+358+fNtV9/TeI35eXl6YMPPhgz9r3vfc8854IFC8y1dxruLAHA\ngLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIAVPDPUV199Za797ne/a67t7Oy85b5v\n/txxUlKSec78/Hxz7dDQkKkuMzPTPOdkq5KeeuqpMduff/65ac6rV6+aj19cXGyu/dnPfmauPX36\n9ISxvLy8CeN5eXnmOYNZGeZwOMy1swF3lgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoAByx1nqDlz5phrg/lxrXvuuce0L5jljpMtNxzPuowxmONP5r777gvp+OP/3GQOHjxo\nrr148aK51ul0Bhzv6uoas93S0mKec8WKFebaOw13lgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoAByx3vAMuXLw/LPMuWLRv972B+3XBgYMBce/PmTVPdrZb6BZKenn7LfeOX\nNw4PD5vmDPTLirdSVlZmrt2+fbu59lbnNX48IyPDPCduzXRn2dbWptzcXJ04cUKS9MUXX2jHjh0q\nKCjQnj17gvpZVgCYiaYMy/7+fh08eFAej2d0rKKiQgUFBXr77beVmZmp2traiDYJANE2ZVgmJCSo\npqZGbrd7dKy5uVkbN26UJGVnZ6uxsTFyHQJADJjyPcv4+HjFx48tGxgYUEJCgiQpLS1NPp8vMt0B\nQIy47Qc8fr8/HH0gRkz2MChcD4pi2fgbg1v5wQ9+EJHj/+53v7vtOQ4cOBCGTjBeSGHpdDo1ODio\nxMREdXV1jXmJjpmttbU14Pjy5cvH7IvU0/AFCxaY6iZ7wn07tdan4X/961/NcwYTrME8DX/ooYcm\njB04cEC//vWvx4zt2rXLPGcwf1d3mpA+Z7lu3TrV1dVJkurr67V+/fqwNgUAsWbKO8uWlhYdPnxY\nnZ2dio+PV11dnY4cOaKSkhJ5vV4tXLhQW7ZsmY5eASBqpgzLFStW6K233pow/sYbb0SkIQCIRazg\nwRj33nuvaV97e7t5zmA+LTE4OGiqG/+jXJOZN29ewPE5c+boxo0bY8a6u7tNcwbzw2LPPvusuXb1\n6tXm2kceeSTgeHZ29pht3ocMD9aGA4ABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKA\nAWEJAAYOP19IOetZv3ZMkjo6OgKOL168WP/+979Ht4P53aV//etf5toLFy6Y6oJZwudyuQKO5+bm\nqqGhYczY119qPRVrn5J0/fp1c+2iRYvMtXl5eeZa3D7uLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQA\nA8ISAAwISwAwICwBwICwBAADft3xDhDMLxGmpaWZ9p0/f94855///Gdz7eeff26qC+ac1q1bF3A8\nNzdXTU1NY8YeeOAB05xFRUXm43/44Yfm2mXLlplrMb24swQAA8ISAAwISwAwICwBwICwBAADwhIA\nDAhLADAgLAHAgLAEAANW8NwBent7zbXjV7R8LT8/Xx988MGYbavS0lJz7enTp011PT095jkn+8G2\njz76aMx2S0uLac6//e1v5uNv2bLFXJuammquxfTizhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAs\nAcCAsAQAA8ISAAwISwAwYLnjDHXp0iVz7ZdffmmuPXnyZMDx/Pz8Mfv++Mc/mudMSUkx195zzz2m\nugULFpjnnD9/vnnf9evXTXP+4Q9/MB8/OTnZXPvII4+YazG9uLMEAANTWLa1tSk3N1cnTpyQJJWU\nlOjHP/6xduzYoR07duhPf/pTJHsEgKib8mV4f3+/Dh48KI/HM2Z83759ys7OjlhjABBLpryzTEhI\nUE1Njdxu93T0AwAxyeH3+/2Wwtdee00pKSkqLCxUSUmJfD6fhoaGlJaWprKyMr6HD8CsFtLT8Pz8\nfLlcLmVlZam6ulqvv/669u/fH+7eMIlgnoZ/+umn5tp33nkn4HhFRYV+/vOfj27fvHnTPGcwvVq/\nfNf4b7wkaeXKlQHH3377bRUUFIwZsz4Nb2trMx+/sLDQXPvCCy+YazG9Qnoa7vF4lJWVJUnKyckJ\n6n8cAJiJQgrL3bt3q6OjQ5LU3NyspUuXhrUpAIg1U74Mb2lp0eHDh9XZ2an4+HjV1dWpsLBQe/fu\nVVJSkpxOpw4dOjQdvQJA1EwZlitWrNBbb701YXzTpk0RaQgAYhHLHWcoh8NhrnW5XObayX6J8Jv7\n4uLizHMuW7bMXHvjxg1TXWZmpnnOY8eO3XLfxo0bx2yXl5eb5hwaGjIfv7+/31x7+fJlc20w1xW3\nj+WOAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAHLHWeoYH4xMT7efpkf\nfvjhW+7LyckxzxNLfvSjH5n3NTU1meZsaGgwHz+Y7/MM5lphenFnCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABiwXmKG++uorc+3cuXMj2Ensu/vuu837UlNTTXN+//vfNx8/mFpW\n8MQu7iwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA9ZWjXPz5k1TXV9f\nX8Dxb3/727py5cqEsXBLSEgI+5yzVXd3d8Dx5OTkCfsyMzNNcw4PD5uPv2LFCnNtYmKiuRbTiztL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljuPcdZft34/JljCO3+fz\n+W6rp0DS09PDPmcsGBkZMdX19/eb56yvrw84XlxcPGHfrl27THO++eab5uOvXbvWXIvYZQrL8vJy\nnTlzRsPDw9q5c6dWrlyp559/XiMjI0pPT9crr7zCWmUAs9qUYdnU1KRz587J6/Wqt7dXW7dulcfj\nUUFBgfLy8nT06FHV1taqoKBgOvoFgKiY8jXnmjVr9Oqrr0qS5s2bp4GBATU3N2vjxo2SpOzsbDU2\nNka2SwCIsinDMi4uTk6nU5JUW1urDRs2aGBgYPRld1paWkTekwOAWOLw+/1+S2FDQ4Oqqqp0/Phx\nPfHEE6N3k+3t7frlL3+p3//+9xFtFACiyfSA59SpU6qsrNRvfvMbzZ07V06nU4ODg0pMTFRXV5fc\nbnek+5zReBpuF4mn4b/97W8DjhcXF6uysnLCmEUwT8OLiorMtdZPY2D6TXll+vr6VF5erqqqKrlc\nLknSunXrVFdXJ+l/H8tYv359ZLsEgCib8s7yvffeU29vr/bu3Ts69vLLL+vFF1+U1+vVwoULtWXL\nlog2CQDRNmVYPvnkk3ryyScnjL/xxhsRaQgAYhEreEL00UcfBRzfsGHDhH3Xr183z5uUlGSqW7x4\nsXnOBQsWmGuvXr0acDw9PX3Me6+dnZ3mOT/99FNz7d13322utZrs73/8viNHjpjm/MlPfmI+Pu9D\nzg5cRQAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA5Y4huvfee837Hnjg\nAfO8X3+b01SC+Xb6+Hj7Zf7nP/8ZcPyFF15QdXX1lHWBXLhwwVy7atUqU11qaqp5zqysrFvuW7hw\n4Zhtj8djmnPRokXm42N24M4SAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMGC5Y4gmW8IYzPLG8TZt2hTyn72VN99801w7MjJi2jdZ3XjB/H2sXr3aVPfwww+b51yyZMkt923e\nvHnM9rx588zz4s7CnSUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABg4/H6/P9pN\n4P91d3eb6pKSksxz+nw+c+3ly5cDjq9evVp/+ctfRreHhobMc65cudJc63Q6zbXAdOLOEgAMCEsA\nMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBguSMAGJh+3bG8vFxnzpzR8PCwdu7c\nqffff1+tra1yuVySpKefflqPP/54JPsEgKiaMiybmpp07tw5eb1e9fb2auvWrXr00Ue1b98+ZWdn\nT0ePABB1U4blmjVrtGrVKkn/+03lgYGBoH4zGgBmg6Des/R6vTp9+rTi4uLk8/k0NDSktLQ0lZWV\nKTU1NZJ9AkBUmcOyoaFBVVVVOn78uFpaWuRyuZSVlaXq6mp9+eWX2r9/f6R7BYCoMX106NSpU6qs\nrFRNTY3mzp0rj8ejrKwsSVJOTo7a2toi2iQARNuUYdnX16fy8nJVVVWNPv3evXu3Ojo6JEnNzc1a\nunRpZLsEgCib8gHPe++9p97eXu3du3d0bNu2bdq7d6+SkpLkdDp16NChiDYJANHGh9IBwIDljgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUA\nGBCWAGAQH42DvvTSSzp79qwcDodKS0u1atWqaLQRVs3NzdqzZ4+WLl0qSXrwwQdVVlYW5a5C19bW\npl27dumnP/2pCgsL9cUXX+j555/XyMiI0tPT9corryghISHabQZl/DmVlJSotbVVLpdLkvT000/r\n8ccfj26TQSovL9eZM2c0PDysnTt3auXKlTP+OkkTz+v999+P+rWa9rD85JNP1N7eLq/Xq/Pnz6u0\ntFRer3e624iItWvXqqKiItpt3Lb+/n4dPHhQHo9ndKyiokIFBQXKy8vT0aNHVVtbq4KCgih2GZxA\n5yRJ+/btU3Z2dpS6uj1NTU06d+6cvF6vent7tXXrVnk8nhl9naTA5/Xoo49G/VpN+8vwxsZG5ebm\nSpKWLFmiK1eu6Nq1a9PdBiaRkJCgmpoaud3u0bHm5mZt3LhRkpSdna3GxsZotReSQOc0061Zs0av\nvvqqJGnevHkaGBiY8ddJCnxeIyMjUe4qCmHZ09OjlJSU0e3U1FT5fL7pbiMiPvvsMxUXF2v79u36\n+OOPo91OyOLj45WYmDhmbGBgYPTlXFpa2oy7ZoHOSZJOnDihoqIiPfvss7p06VIUOgtdXFycnE6n\nJKm2tlYbNmyY8ddJCnxecXFxUb9WUXnP8pv8fn+0WwiLRYsW6ZlnnlFeXp46OjpUVFSk+vr6Gfl+\n0VRmyzXLz8+Xy+VSVlaWqqur9frrr2v//v3RbitoDQ0Nqq2t1fHjx/XEE0+Mjs/06/TN82ppaYn6\ntZr2O0u3262enp7R7e7ubqWnp093G2GXkZGhzZs3y+Fw6P7779f8+fPV1dUV7bbCxul0anBwUJLU\n1dU1K17OejweZWVlSZJycnLU1tYW5Y6Cd+rUKVVWVqqmpkZz586dNddp/HnFwrWa9rB87LHHVFdX\nJ0lqbW2V2+1WcnLydLcRdu+++66OHTsmSfL5fLp48aIyMjKi3FX4rFu3bvS61dfXa/369VHu6Pbt\n3r1bHR0dkv73nuzXn2SYKfr6+lReXq6qqqrRp8Sz4ToFOq9YuFYOfxTu1Y8cOaLTp0/L4XDowIED\neuihh6a7hbC7du2annvuOV29elVDQ0N65pln9MMf/jDabYWkpaVFhw8fVmdnp+Lj45WRkaEjR46o\npKREN27c0MKFC3Xo0CF961vfinarZoHOqbCwUNXV1UpKSpLT6dShQ4eUlpYW7VbNvF6vXnvtNS1e\nvHh07OWXX9aLL744Y6+TFPi8tm3bphMnTkT1WkUlLAFgpmEFDwAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgQFgCgAFhCQAG/wXn9bvh/S6pFAAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54acb6ea20>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFUFJREFUeJzt3X9MVff9x/HXHdc7vKK9glxWVu2q\nxUlX2eaKK3ZaQdKNpsYfydKWqFk0mV1TozNtJbbYJWa1ojGr7R8gq01as3gTlizN0gamZqtpECPZ\n2kK6gi6jjHR4UUSoSIGxP5Yv3164wPte7+Vc8Pn4737O2895X098ee4593OPa2hoaEgAgHF9zekG\nAGAqICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAM3NH+wZdfflkffvihXC6X9u7dq5ycnFj2\nBQAJJaqwPH/+vFpaWhQIBHTp0iXt3btXgUAg1r0BQMKI6mN4bW2tCgsLJUmLFi1SV1eXenp6YtoY\nACSSqMKyo6NDc+fOHX6dmpqqYDAYs6YAINHE5AYPv8UBYLqLKiz9fr86OjqGX1++fFnp6ekxawoA\nEk1UYfnQQw+purpaktTY2Ci/36+UlJSYNgYAiSSqu+HLli3Td77zHT3xxBNyuVx66aWXYt0XACQU\nFz/+CwATYwUPABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAZupxvA1DQwMGCu7ejoMNd+4xvfiKYdIO44swQA\nA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAANW8NwG+vr6zLVtbW1hxxcuXKh//OMf\nIa+tPvjgA3NtT0+Pqc7lcpnnTE9PDzteVFSk9957L2TsjjvuMM05ODho3v/KlSvNtUhcnFkCgEFU\nZ5Z1dXXauXOnsrKyJEmLFy9WaWlpTBsDgEQS9cfw5cuX6+jRo7HsBQASFh/DAcAg6rC8ePGinnrq\nKT355JMRXcAHgKnINTQ0NBTpH2pvb1d9fb2KiorU2tqqLVu2qKamRh6PJx49AoDjorpmmZGRoUcf\nfVSStGDBAs2bN0/t7e2aP39+TJtDbDj91aHf//735lq+OoREFdXH8HfeeUdvvPGGJCkYDOrKlSvK\nyMiIaWMAkEiiOrMsKCjQs88+q9OnT6u/v1+/+tWv+AgOYFqLKixTUlJUXl4e614AIGGx3PE20NjY\naK49ffp02PHnnnsu5Nrjc889Z56zoaHBXHv9+nVTndfrNc/5t7/9Lex4UVGR/vSnP4WMxeOa6aef\nfmqu/dGPfmSuvffee0eNud3uUQ+Tc7v5Zx4LfM8SAAwISwAwICwBwICwBAADwhIADAhLADAgLAHA\ngLAEAAPCEgAMCEsAMGAd1BQVyc+QfvbZZ+bar3/966ZtkTxSpLm52Vxr/fUqn89nnnO8JYwj/x5n\nzJhxy3OOVF9fb66NZGnq2rVrR40VFBTo/fffDxlbunSpec6xfs4OnFkCgAlhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABK3imqP7+fnPtsmXLzLWff/75mNu+urpl1qxZ5jnXrVtnrv3y\nyy9NdfPnzzfPuXz58jG3bdy4MeT1P//5T9Oc3d3d5v0//fTT5tpt27aZa2tra0eNFRQUjBovKCgw\nzxnJyrBIHto2HXBmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABiw3HGK\n8ng85tobN26Ya++8807Ttkj2Pzg4aK7Nzs421Y33YLWRxlvCN/IBad/85jdNcy5cuNC8//3795tr\nr169aq4da8lpe3t7yOtPPvnEPKf17/92xJklABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYMByx9vAkiVLzLXjPV3xq0v8rl27Zp6zq6vLXNvX12eq8/l85jnvuuuuMbctXrw4\n5PXAwIBpzr/+9a/m/ZeWlpprt2zZYq4duVRzrPGx6hAZ05llU1OTCgsLdeLECUn/e1zq5s2bVVxc\nrJ07d5ofXwoAU9WEYXnjxg3t379feXl5w2NHjx5VcXGxfve73+nuu+9WVVVVXJsEAKdNGJYej0eV\nlZXy+/3DY3V1dVqzZo0kKT8/P+zD3gFgOpnwmqXb7ZbbHVrW29s7/BNdaWlpCgaD8ekOABLELd/g\nGe+3AjH15OTkRLVtuhh5YjCW73//+3HZ/1tvvXXLc7zwwgsx6AQjRRWWXq9XN2/eVHJystrb20M+\nomNq++ijj8KO5+TkhGyL193wzMxMU10kd3jHuxs+kvVu+Mcff2yeM5JgjeRu+Le//e1RYy+88IJ+\n/etfh4z94he/MM+Zmppqrr3dRPU9yxUrVqi6ulqSVFNTo5UrV8a0KQBINBOeWTY0NOjgwYNqa2uT\n2+1WdXW1Dh8+rJKSEgUCAWVmZmr9+vWT0SsAOGbCsLz//vv19ttvjxp/880349IQACQiVvAgxPz5\n803bIlmI0Nraaq5NS0sz1UXyDYyxrql7PJ5R78P6wLDr16+b979nzx5zbW5urrn2Bz/4Qdjx/Pz8\nkNdch4wN1oYDgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABq4hfpBy2rP+\n7JgktbS0hB1ftGiRLl26NPza+mAxSbp48aK59rPPPjPV3XnnneY5582bF3b84Ycf1l/+8peQseTk\nZNOc1j6lyJZG3nPPPebagoICcy1uHWeWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgQFgCgAFPd7wNXLlyxVw71pMQR2776tLHidTW1ppr29raTHXWpzBK/1vWONb4+fPnQ8YWLlxo\nmvOnP/2pef9nz5411y5ZssRci8nFmSUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQl\nABjwwLLbwKeffmqubW5uDjv+2GOP6Y9//GPIa6u1a9eaa0euqBnL5cuXzXP+5Cc/CTv+3nvvqaio\nKGTM5/OZ5rSu9JGkDRs2mGu/973vmWvdbhbgTSbOLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwICwBAAD1ktNUZE8sKu9vd1ce+bMmbDjjz32WMi206dPm+e84447zLUZGRmmunnz\n5sVk/yO3dXd3m+asqqoy73/OnDnm2gceeMBci8nFmSUAGJjCsqmpSYWFhTpx4oQkqaSkRGvXrtXm\nzZu1efNm/fnPf45njwDguAk/ht+4cUP79+9XXl5eyPju3buVn58ft8YAIJFMeGbp8XhUWVkpv98/\nGf0AQEIy/57la6+9prlz52rTpk0qKSlRMBhUf3+/0tLSVFpaqtTU1Hj3CgCOiepu+Lp16+Tz+ZSd\nna1jx47p9ddf1759+2LdG8YRyd3whoYGc+0f/vCHsONHjhzR7t27h19H8pvRwWDQXPvRRx+Z6gYH\nB81zLl26NOz4yZMn9cQTT4SM9fT0mOYc60eSw9m6dau5ds+ePeZaTK6o7obn5eUpOztbklRQUKCm\npqaYNgUAiSaqsNyxY4daW1slSXV1dcrKyoppUwCQaCb8GN7Q0KCDBw+qra1Nbrdb1dXV2rRpk3bt\n2qWZM2fK6/XqwIEDk9ErADhmwrC8//779fbbb48a//GPfxyXhgAgEbHccYr62tfsV1CsTyyUpPXr\n15u2uVwu85yRXKbp6+sz1d19993mOcvLy8fctnr16pDXhw4dMs0ZyQ2uL774wlxrXW4pSbNnzzbX\n4tax3BEADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjFBXJEsakpCRz\n7XhL6FatWmWeJ5FYl3BK0oULF0xznjp1yrz/SH571O3mn2Si4swSAAwISwAwICwBwICwBAADwhIA\nDAhLADAgLAHAgLAEAAPCEgAMWC4wRX355Zfm2tv9wVYpKSnmbampqaY5c3Nzzft/4IEHzLWRrLbC\n5OLMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBguWOUvvjii7Djs2bN\nGrVt1qxZMd+/x+OJ+ZzT1ZUrV8KOp6SkjNp27733muYcGhoy7/++++4z13JcExdnlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAByx2jNN4SxpHburq6zPMODg6a6qxPIZxq\n/vOf/5jqbt68aZ7z9OnTYce3bt06atvPf/5z05xvvfWWef+RPAkSicsUlmVlZaqvr9fAwIC2b9+u\npUuX6vnnn9fg4KDS09N16NAh1rQCmNYmDMtz586publZgUBAnZ2d2rBhg/Ly8lRcXKyioiIdOXJE\nVVVVKi4unox+AcARE16zzM3N1auvvipJmjNnjnp7e1VXV6c1a9ZIkvLz81VbWxvfLgHAYROGZVJS\nkrxerySpqqpKq1atUm9v7/DH7rS0NAWDwfh2CQAOcw0Zf5jv1KlTqqio0PHjx/XII48Mn022tLRo\nz549OnnyZFwbBQAnmW7wnD17VuXl5frtb3+r2bNny+v16ubNm0pOTlZ7e7v8fn+8+5zSuBtuF4+7\n4WP9R75161YdP3581JhFJHfDN2/ebK51uVzmWkyuCT+Gd3d3q6ysTBUVFfL5fJKkFStWqLq6WpJU\nU1OjlStXxrdLAHDYhGeW7777rjo7O7Vr167hsVdeeUUvvviiAoGAMjMztX79+rg2CQBOmzAsH3/8\ncT3++OOjxt988824NAQAiYgVPFGqq6sLO/7DH/5w1LZIrq+53bZDsmDBAvOcGRkZ5tpr166FHff7\n/bp8+fLw63/961/mOT/++GNz7dy5c011M2bMMM/Z29tr3vab3/zGNOfGjRvN++c65PTA2nAAMCAs\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgOWOUcrMzDRvmz9/vnne999/31RX\nX19vnjOS5XaffPJJ2PGSkpKQnzP7+9//bp6zpaXFXLts2TJTXXp6unnO++67b8xtI4+Ndf933XWX\nef+YHjizBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxY7hil8ZYwRrK8\ncaRVq1ZF/WfHcvLkSXPteEsjo31KYVZWlrl2+fLlprrvfve75jnHexJmYWFhyGuv12ueF7cXziwB\nwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcDANTQ0NOR0E/h/165dM9UlJyeb57x6\n9aq5tqurK+x4dnZ2yMPM+vr6zHOO98CwkTwej7kWmEycWQKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAFhCQAGLHcEAAPT0x3LyspUX1+vgYEBbd++XWfOnFFjY6N8Pp8kadu2bVq9\nenU8+wQAR00YlufOnVNzc7MCgYA6Ozu1YcMGPfjgg9q9e7fy8/Mno0cAcNyEYZmbm6ucnBxJ0pw5\nc9Tb26vBwcG4NwYAiSSia5aBQEAXLlxQUlKSgsGg+vv7lZaWptLSUqWmpsazTwBwlDksT506pYqK\nCh0/flwNDQ3y+XzKzs7WsWPH9O9//1v79u2Ld68A4BjTV4fOnj2r8vJyVVZWavbs2crLy1N2drYk\nqaCgQE1NTXFtEgCcNmFYdnd3q6ysTBUVFcN3v3fs2KHW1lZJUl1dnbKysuLbJQA4bMIbPO+++646\nOzu1a9eu4bGNGzdq165dmjlzprxerw4cOBDXJgHAaXwpHQAMWO4IAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABm4ndvryyy/rww8/\nlMvl0t69e5WTk+NEGzFVV1ennTt3KisrS5K0ePFilZaWOtxV9JqamvT000/rZz/7mTZt2qTPP/9c\nzz//vAYHB5Wenq5Dhw7J4/E43WZERr6nkpISNTY2yufzSZK2bdum1atXO9tkhMrKylRfX6+BgQFt\n375dS5cunfLHSRr9vs6cOeP4sZr0sDx//rxaWloUCAR06dIl7d27V4FAYLLbiIvly5fr6NGjTrdx\ny27cuKH9+/crLy9veOzo0aMqLi5WUVGRjhw5oqqqKhUXFzvYZWTCvSdJ2r17t/Lz8x3q6tacO3dO\nzc3NCgQC6uzs1IYNG5SXlzelj5MU/n09+OCDjh+rSf8YXltbq8LCQknSokWL1NXVpZ6ensluA+Pw\neDyqrKyU3+8fHqurq9OaNWskSfn5+aqtrXWqvaiEe09TXW5url599VVJ0pw5c9Tb2zvlj5MU/n0N\nDg463JUDYdnR0aG5c+cOv05NTVUwGJzsNuLi4sWLeuqpp/Tkk0/qgw8+cLqdqLndbiUnJ4eM9fb2\nDn+cS0tLm3LHLNx7kqQTJ05oy5Yt+uUvf6mrV6860Fn0kpKS5PV6JUlVVVVatWrVlD9OUvj3lZSU\n5PixcuSa5VcNDQ053UJMfOtb39IzzzyjoqIitba2asuWLaqpqZmS14smMl2O2bp16+Tz+ZSdna1j\nx47p9ddf1759+5xuK2KnTp1SVVWVjh8/rkceeWR4fKofp6++r4aGBseP1aSfWfr9fnV0dAy/vnz5\nstLT0ye7jZjLyMjQo48+KpfLpQULFmjevHlqb293uq2Y8Xq9unnzpiSpvb19WnyczcvLU3Z2tiSp\noKBATU1NDncUubNnz6q8vFyVlZWaPXv2tDlOI99XIhyrSQ/Lhx56SNXV1ZKkxsZG+f1+paSkTHYb\nMffOO+/ojTfekCQFg0FduXJFGRkZDncVOytWrBg+bjU1NVq5cqXDHd26HTt2qLW1VdL/rsn+3zcZ\nporu7m6VlZWpoqJi+C7xdDhO4d5XIhwr15AD5+qHDx/WhQsX5HK59NJLL2nJkiWT3ULM9fT06Nln\nn9X169fV39+vZ555Rg8//LDTbUWloaFBBw8eVFtbm9xutzIyMnT48GGVlJSor69PmZmZOnDggGbM\nmOF0q2bh3tOmTZt07NgxzZw5U16vVwcOHFBaWprTrZoFAgG99tpruueee4bHXnnlFb344otT9jhJ\n4d/Xxo0bdeLECUePlSNhCQBTDSt4AMCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADD4L4TU\nsKRFwzcCAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ac4fd5f8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFS1JREFUeJzt3X9s1PUdx/HX2aOUK62ltVdERZS1\ns/JDtgFymDJbiLPOgbA/0AaIURPMAgGJkIYAzmBECjERxQBVzCIxOVNjNMasHeIW4koRVLTVpAUX\nV5keLRRo7ZX+SPfHssaj1/Z9x12/V3g+/vL7+b793PvLV15+7/u9z52rt7e3VwCAQV3ndAMAMBIQ\nlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAbuaP/F559/XidOnJDL5dLGjRs1ffr0WPYFAAkl\nqrA8evSovvvuO/n9fp06dUobN26U3++PdW8AkDCiehteXV2tBQsWSJImT56sCxcuqK2tLaaNAUAi\niSosm5ubNW7cuL7tzMxMNTU1xawpAEg0MXnAw3dxALjaRRWWXq9Xzc3NfdtnzpxRdnZ2zJoCgEQT\nVVjec889qqyslCTV1dXJ6/Vq7NixMW0MABJJVE/Df/3rX2vKlCl6+OGH5XK59Mwzz8S6LwBIKC6+\n/BcAhsYKHgAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwI\nSwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwB\nwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAM3E43gJGps7PTXBsIBMy1t9xySzTtAHHHlSUAGBCW\nAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABi4ent7e51uAvEVDAbNtd9//33Y8dzcXDU0\nNIRsW1VUVJhr29vbTXXJycnmOb1eb9jxoqIiHTp0KGTs+uuvN80ZyV+bmTNnmmuRuLiyBACDqNaG\n19TUaM2aNX1XF3l5edq8eXNMGwOARBL1F2nMnj1bu3btimUvAJCweBsOAAZRh+XJkyf15JNP6pFH\nHtEnn3wSy54AIOFE9TQ8EAjo+PHjKi4uVmNjo1asWKGqqqqInlACwEgS1T3LnJwcPfDAA5KkiRMn\n6oYbblAgEOCLWxMUHx3io0O4clG9DX///ff1+uuvS5Kampp09uxZ5eTkxLQxAEgkUV1ZFhUV6emn\nn9ZHH32krq4u/fnPf+YtOICrWlRhOXbsWO3ZsyfWvQBAwuIHy64BtbW15tqPP/447PiGDRv07rvv\nhmxbffPNN+ba1tZWU11aWpp5zhMnToQdLyoq0t/+9reQMes9U5fLZX79n9/rHcqcOXPMtbfddpu5\nFleOz1kCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3vAacPn3aXDtm\nzBjTvt27d5vnPHnypLl2/Pjxprpx48aZ5xxsCWVPT0/ItvWr1y5evGh+/Ui+HPuzzz4z1y5cuLDf\nWEFBgQ4fPhwyNmXKFPOcmZmZ5tprDVeWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgwAqeEaq7u9tcO2vWLHPtmTNnBtw3evTovn9OTU01z7lo0SJz7aVLl0x1N910k3nO6dOnD7jv\nwQcfDNn+17/+ZZrT+sNqkrRq1Spz7RNPPGGu/ec//9lvrKCgoN94QUGBeU4MjCtLADAgLAHAgLAE\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDljiOU220/dW1tbeZar9dr2peUlGSe8/If\nBRtMfn6+qW7UqFHmOQeTlZUVsn3jjTea/r3c3Fzzazz33HPm2gsXLphrf/zxR9N4Q0ODec5Ijuta\nw5UlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYMByx2vAL3/5S3NtMBgc\ncN+kSZP6/rm5udk859mzZ821P/30k6nOuixRkm6//fYB902ZMiVk27o086uvvjK//qZNm8y1kfy6\n44QJE0zjOTk55jkxMNOVZX19vRYsWKADBw5Ikn744QctX75cJSUlWrNmjTo7O+PaJAA4bciwbG9v\n19atW+Xz+frGdu3apZKSEr311lu69dZbVVFREdcmAcBpQ4ZlcnKyysvLQ75xpqamRvPnz5ckFRYW\nqrq6On4dAkACGPKepdvt7vd1YMFgUMnJyZL+9xVXTU1N8ekOABLEFT/g6e3tjUUfSBAzZsyIat/V\nwvo9ndOmTYvL67/22mtXPMf69etj0AkuF1VYejwedXR0KCUlRYFAYNAvjMXI8sUXX4QdnzFjRsi+\neD0Nv/nmm011sXoafjnr0/Cvv/7aPGckwRrJ0/Bwn3JYv369duzYETK2cuVK85zp6enm2mtNVJ+z\nnDt3riorKyVJVVVVKigoiGlTAJBohryyrK2t1fbt23X69Gm53W5VVlZq586dKi0tld/v14QJE/TQ\nQw8NR68A4Jghw3Lq1Kl68803+42/8cYbcWkIABIRK3gQYuLEiaZ9HR0d5jm//fZbc631/nck90EH\nOia3263u7u6QsYsXL5rmHGyl0+WeffZZc+2cOXPMtQM9cCssLAzZ5j5kbLA2HAAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM1wPq1Y5J07ty5sOOZmZkh+1JTU81zZmVl\nmWtPnDhhqvv5j6cN5fIljf/n8/n06aefhox5PB7TnJEst8zLyzPX3nLLLebamTNnRjSOK8OVJQAY\nEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAcsdrwEBLGMMZP368aV8kv9h4\n7Ngxc+1//vMfU93HH39snnP+/Plhx8Mtd8zNzTXNWVxcbH79I0eOmGsjWRqJ4cWVJQAYEJYAYEBY\nAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLh6e3t7nW4C8dXQ0GCuPXXqVNjx+++/X3/9619D\ntq0WL15srq2urjbVBQIB85y///3vw45/8MEHevDBB0PG0tPTTXNOnjzZ/PpLliwx1951113m2uuu\n41pnOPGnDQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABjwg2UjVEtLi7k2\nkqWBH330Udjx+++/P2TfQHXhpKWlmWuzs7NNdddff715ztTUVPO+8+fPm+Z8++23za9vXUIpSb/6\n1a/MtRheXFkCgIEpLOvr67VgwQIdOHBAklRaWqo//OEPWr58uZYvX66///3v8ewRABw35Nvw9vZ2\nbd26VT6fL2R83bp1KiwsjFtjAJBIhryyTE5OVnl5ubxe73D0AwAJyfx9li+//LLGjRunZcuWqbS0\nVE1NTerq6lJWVpY2b96szMzMePcKAI6J6mn4okWLlJGRofz8fO3bt0+vvPKKtmzZEuveMIhInobX\n1dWZa997772w4zt27ND69evN8/xcJE/jP//8c1NdZ2enec4ZM2aEHff7/Vq6dGnIWGtrq2nOgb4k\nOZwnnnjCXBvtnzHiL6qn4T6fT/n5+ZKkoqIi1dfXx7QpAEg0UYXl6tWr1djYKEmqqalRbm5uTJsC\ngEQz5Nvw2tpabd++XadPn5bb7VZlZaWWLVumtWvXasyYMfJ4PNq2bdtw9AoAjhkyLKdOnao333yz\n3/jvfve7uDQEAImI5Y4jlMvlMtdmZGSYaxcuXGjaF8kvC/7iF78w1waDQVPdpEmTzHPu3r17wH3z\n5s0L2S4rKzPNGcnxt7e3x6XW4/GYa3HlWO4IAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgC\ngAFhCQAGhCUAGLDccYSKZAljUlKSuXbq1KkD7isoKDDPk0j++Mc/mvd99tlnpjkj+XXLc+fOmWsj\nOVcYXlxZAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAASt4RqjOzk5zbVpaWhw7\nSXyDHf/l+7Kzs01z3n333ebXnzlzprmWFTyJiytLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQA\nA8ISAAwISwAwICwBwIDljlHq6OgIO56SktJvX0pKSsxfPzk5OeZzXq3Onz8fdjw1NbXfvry8vJi/\n/p133mmudbv5K5mouLIEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFhb\nFaXBljBevu+nn34yz9vV1WWqy8jIMM85kvT29prqIvl1y3/84x9hx0tKSvrte+yxx0xzvvXWW+bX\n/81vfmOuReIyhWVZWZmOHz+u7u5urVy5UtOmTdOGDRvU09Oj7Oxs7dixg7XKAK5qQ4blkSNH1NDQ\nIL/fr5aWFi1evFg+n08lJSUqLi7Wiy++qIqKCpWUlAxHvwDgiCHvWc6aNUsvvfSSJCk9PV3BYFA1\nNTWaP3++JKmwsFDV1dXx7RIAHDZkWCYlJcnj8UiSKioqNG/ePAWDwb633VlZWWpqaopvlwDgMPMD\nnoMHD6qiokL79+/Xfffd1zduvSF/LUtNTXW6hRHD5XKZ6kaPHm2ec7BbRNHePuK207XHFJaHDx/W\nnj179NprryktLU0ej0cdHR1KSUlRIBCQ1+uNd58jGk/D7eLxNPydd94JO15SUtLvqbY1BCN5Gk6w\nXh2GfBve2tqqsrIy7d27t+8v6Ny5c1VZWSlJqqqqUkFBQXy7BACHDXll+eGHH6qlpUVr167tG3vh\nhRe0adMm+f1+TZgwQQ899FBcmwQApw0ZlkuXLtXSpUv7jb/xxhtxaQgAEhEreKL0xRdfhB2fMWNG\nv32XLl0yz2t9wHHTTTeZ58zOzjbXtrS0hB3PyclRIBDo2/7+++/Nc3711Vfm2pycHFNdJD8CFwwG\nzfteffVV05wLFy40vz6uDqwNBwADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAxY7hilG2+80bzPuoRPko4ePWqq+/LLL81zRvKdo7W1tWHHN2zYoL/85S9929988415zn//+9/m\n2tmzZ5vqBvvzv9ydd9454L5bb701ZHvq1KmmOcePH29+fVwduLIEAAPCEgAMCEsAMCAsAcCAsAQA\nA8ISAAwISwAwICwBwICwBAADwhIADFjuGKXBljBGsrzxctblfpF47733zLWjRo0y7XO77f/pDLbc\n8HJz58411U2bNs0852BLIwsKCkK2R48ebZ4X1xauLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwMDVG8mvWSHu2traTHUpKSnmOS9evGiuPX/+fNjx22+/Xd9++23fdmdnp3nOvLw8\nc+111/H/byQm/ssEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjuCAAG\npp/oKysr0/Hjx9Xd3a2VK1fq0KFDqqurU0ZGhiTp8ccf17333hvPPgHAUUOG5ZEjR9TQ0CC/36+W\nlhYtXrxYc+bM0bp161RYWDgcPQKA44YMy1mzZmn69OmSpPT0dAWDQfX09MS9MQBIJBHds/T7/Tp2\n7JiSkpLU1NSkrq4uZWVlafPmzcrMzIxnnwDgKHNYHjx4UHv37tX+/ftVW1urjIwM5efna9++ffrx\nxx+1ZcuWePcKAI4xfXTo8OHD2rNnj8rLy5WWliafz6f8/HxJUlFRkerr6+PaJAA4bciwbG1tVVlZ\nmfbu3dv39Hv16tVqbGyUJNXU1Cg3Nze+XQKAw4Z8wPPhhx+qpaVFa9eu7RtbsmSJ1q5dqzFjxsjj\n8Wjbtm1xbRIAnMaH0gHAgOWOAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgC\ngAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAG\nhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYOB24kWff/55nThxQi6XSxs3btT06dOdaCOmampqtGbN\nGuXm5kqS8vLytHnzZoe7il59fb3+9Kc/6dFHH9WyZcv0ww8/aMOGDerp6VF2drZ27Nih5ORkp9uM\nyOXHVFpaqrq6OmVkZEiSHn/8cd17773ONhmhsrIyHT9+XN3d3Vq5cqWmTZs24s+T1P+4Dh065Pi5\nGvawPHr0qL777jv5/X6dOnVKGzdulN/vH+424mL27NnatWuX021csfb2dm3dulU+n69vbNeuXSop\nKVFxcbFefPFFVVRUqKSkxMEuIxPumCRp3bp1KiwsdKirK3PkyBE1NDTI7/erpaVFixcvls/nG9Hn\nSQp/XHPmzHH8XA372/Dq6motWLBAkjR58mRduHBBbW1tw90GBpGcnKzy8nJ5vd6+sZqaGs2fP1+S\nVFhYqOrqaqfai0q4YxrpZs2apZdeekmSlJ6ermAwOOLPkxT+uHp6ehzuyoGwbG5u1rhx4/q2MzMz\n1dTUNNxtxMXJkyf15JNP6pFHHtEnn3zidDtRc7vdSklJCRkLBoN9b+eysrJG3DkLd0ySdODAAa1Y\nsUJPPfWUzp0750Bn0UtKSpLH45EkVVRUaN68eSP+PEnhjyspKcnxc+XIPcuf6+3tdbqFmJg0aZJW\nrVql4uJiNTY2asWKFaqqqhqR94uGcrWcs0WLFikjI0P5+fnat2+fXnnlFW3ZssXptiJ28OBBVVRU\naP/+/brvvvv6xkf6efr5cdXW1jp+rob9ytLr9aq5ublv+8yZM8rOzh7uNmIuJydHDzzwgFwulyZO\nnKgbbrhBgUDA6bZixuPxqKOjQ5IUCASuirezPp9P+fn5kqSioiLV19c73FHkDh8+rD179qi8vFxp\naWlXzXm6/LgS4VwNe1jec889qqyslCTV1dXJ6/Vq7Nixw91GzL3//vt6/fXXJUlNTU06e/ascnJy\nHO4qdubOndt33qqqqlRQUOBwR1du9erVamxslPS/e7L//yTDSNHa2qqysjLt3bu37ynx1XCewh1X\nIpwrV68D1+o7d+7UsWPH5HK59Mwzz+iOO+4Y7hZirq2tTU8//bQuXryorq4urVq1Sr/97W+dbisq\ntbW12r59u06fPi23262cnBzt3LlTpaWlunTpkiZMmKBt27Zp1KhRTrdqFu6Yli1bpn379mnMmDHy\neDzatm2bsrKynG7VzO/36+WXX9Ztt93WN/bCCy9o06ZNI/Y8SeGPa8mSJTpw4ICj58qRsASAkYYV\nPABgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY/Be0zJlqnH6g4gAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ac382e80>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFTNJREFUeJzt3X9MVff9x/HXHXcUroL8kIuzan9Y\nFFrr7FItF0MnYtrZdPNHYtoSNUu6RbPVyIzpiKt2iVlVapqVtonCav8oWXJTki0mawq1pgltkFay\n0MHWgTZpKFMEpVTKRZHd/bF8+Q65wPte7+Vc8Pn4q+dz3n7O++bUl+fecz/3uILBYFAAgAl9x+kG\nAGA6ICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAM3JH+wZdeeknNzc1yuVzat2+fli9fHs2+\nACCuRBSWn3zyib788kv5/X6dP39e+/btk9/vj3ZvABA3Inob3tDQoHXr1kmSFi9erL6+PvX390e1\nMQCIJxGFZU9Pj9LT00e2MzIy1N3dHbWmACDeROUGD7/FAWCmiygsvV6venp6RrYvXbqkrKysqDUF\nAPEmorBcvXq1amtrJUmtra3yer2aPXt2VBsDgHgS0d3wH/zgB3rggQf09NNPy+Vy6cUXX4x2XwAQ\nV1z8+C8ATI4VPABgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYuJ1uANPT4OCgufbChQvm2nvuuSeSdoCY48oS\nAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMXMFgMOh0E4itgYEBc21HR0fI8aVL\nl+qf//znqG2rmpoac20gEDDVeTwe85xerzfkeGFhoerr60eNZWRkmOYM56/NsmXLzLWIX1xZAoBB\nRGvDGxsbtXv3buXk5EiSlixZov3790e1MQCIJxH/kMaqVatUUVERzV4AIG7xNhwADCIOy3Pnzmnn\nzp165pln9PHHH0ezJwCIOxHdDe/q6lJTU5PWr1+vjo4Obd++XXV1dUpMTIxFjwDguIg+s8zOztYT\nTzwhSVq0aJHmzp2rrq4uLVy4MKrNITr46hBfHcKti+ht+MmTJ/Xmm29Kkrq7u3X58mVlZ2dHtTEA\niCcRXVmuXbtWe/fu1QcffKChoSH99re/5S04gBktorCcPXu2jh07Fu1eACBu8cCy28Df/vY3c+2H\nH34YcvzXv/61/vznP4/atmpvbzfX9vf3m+rmzJljnrOlpSXkeGFhoU6fPj1q7NtvvzXN6XK5zMcv\nKCgw1z788MPm2jvvvNNci1vH9ywBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA5Y73gYuXLhgrp01a5ZpXzi/DdDW1maunTdvnqkuNTXVPGdfX9+4+65fvz7h9ni++eYb8/Hf\nf/99c21DQ4O5duPGjWPG8vPzdebMmVFjeXl55jnDWUZ6u+HKEgAMCEsAMCAsAcCAsAQAA8ISAAwI\nSwAwICwBwICwBAADwhIADFjBM00NDw+bax955BFzbU9Pz7j7kpKSRv57opU+N9uwYYO5NhAImOrC\neVjX/fffP+6+xx9/fNT2uXPnTHOGs4KntLTUXPvzn//cXPvRRx+NGcvPzx8znp+fb54T4+PKEgAM\nCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM0lZCQYK7t7+83186dO9e0\n7zvfsf87e+3aNXPtfffdZ6pzu6Pzv25KSsqo7dWrV5v+3NKlS83H+N3vfmeunejhajcb70F0N49/\n8cUX5jnvvfdec+3thitLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwIDl\njreBnJwcc+1ESyPvuuuukf8eb6ldKFeuXDHXWp+auGDBAvOcS5YsGXffihUrRm0Hg0HTnJ9//rn5\n+L/5zW/Mtb/85S/NtQsXLjSNe71e85wYn+nKsq2tTevWrVN1dbWk//5F2bZtm0pKSrR7925dv349\npk0CgNMmDcuBgQEdPHhQPp9vZKyiokIlJSX64x//qLvuuks1NTUxbRIAnDZpWCYmJqqqqmrUpXxj\nY6OKi4slSUVFRWpoaIhdhwAQByb9zNLtdo/5OaxAIKDExERJUmZmprq7u2PTHQDEiVu+wWP9QBzT\nw0MPPWTaN1HddOJyuSbcHk9ubm4s2tEbb7xxy3OUlpZGoRPcLKKw9Hg8GhwcVFJSkrq6urjbNoP8\n9a9/DTn+0EMPjdoXzt3wS5cumWvHu8N7s2jcDXe5XGP+sbf+49/W1mY+fjjBGs7d8FDfcigtLdXv\nf//7UWM/+9nPzHPOnj3bXHu7ieh7lgUFBaqtrZUk1dXVqbCwMKpNAUC8mfTKsqWlRUeOHFFnZ6fc\nbrdqa2t19OhRlZWVye/3a/78+dq4ceNU9AoAjpk0LJctW6a33357zPhbb70Vk4YAIB6xggejLFq0\nyLQvnIeghfP53rx580x1vb295jnH+xwy1GeW3377rWnOoaEh8/HLy8vNtdYHpknSAw88EHK8qKho\n1DafQ0YHa8MBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA1eQH6Sc8f79\n73+ba8+fPx9yPCcnR+3t7SPbAwMD5jnDebjXV199ZaoL5yFs8+fPDzn+8MMP6+zZs6PG5syZY5rz\nX//6l/n4X3/9tbn2e9/7nrl21apV5lrcOq4sAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhL\nADAgLAHAgLAEAAOe7ngbuHLlirn2zjvvNO374osvzHN+9tln5trOzk5TXX19vXnOH/3oRyHHQy13\nzM3NNc25Zs0a8/E//fRTc+2SJUvMtZhaXFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYA\nYEBYAoABK3huA319feba5ubmkOPFxcVqaGgYtW3V1tZmrv3oo49MdRcvXjTPOTw8HHJ8586d+stf\n/jJqzLoy6PTp0+bjb9682VybmppqrsXU4soSAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAE\nAAPCEgAMCEsAMGC54zT19ddfm2u7urrMte+//37I8eLi4lH7Tp06ZZ5z1qxZ5tq5c+ea6lJSUsxz\nJiUlmfdZH+7W2NhoPn44SxhXrFhhrsXU4soSAAxMYdnW1qZ169apurpaklRWVqYf//jH2rZtm7Zt\n26YPP/wwlj0CgOMmfRs+MDCggwcPyufzjRrfs2ePioqKYtYYAMSTSa8sExMTVVVVJa/XOxX9AEBc\ncgWDwaCl8LXXXlN6erq2bt2qsrIydXd3a2hoSJmZmdq/f78yMjJi3SsAOCaiu+EbNmxQWlqa8vLy\nVFlZqddff10HDhyIdm+YQDh3w//+97+ba0+ePBly/PDhwyorKxvZdrlc5jkvXLhgrm1qajLVXbt2\nzTzn97///ZDj77zzjrZs2TJqrL+/3zRne3u7+fg7d+401+7du9dci6kV0d1wn8+nvLw8SdLatWvD\n+iVsAJiOIgrLXbt2qaOjQ9J/v2+Wk5MT1aYAIN5M+ja8paVFR44cUWdnp9xut2pra7V161aVlpYq\nOTlZHo9Hhw4dmopeAcAxk4blsmXL9Pbbb48Zf/zxx2PSEADEI5Y7TlPGLzFIkubMmWOu/clPfmLa\nF84NnsWLF5trBwYGTHV33323ec6Kiopx9xUWFo7aPnLkiGlOt9v+VycQCJhrBwcHzbUTLeNE9LHc\nEQAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBgueM0lZ6ebq4NZ2neRE9N\nLCgoMM8TT27+zcqJ9jU3N5vm/OCDD8zHtz4xUpISEhLMtZhaXFkCgAFhCQAGhCUAGBCWAGBAWAKA\nAWEJAAaEJQAYEJYAYEBYAoABK3imqWvXrplrJ1qVcztIS0sz75s3b55pznBWMz3yyCPm2nBWW2Fq\ncWUJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLC2KkI3btwIOe52u8fs\ni8UStjvuuCPqc85UfX19IceTk5PH7MvNzY368cOZ0+VyRf34iA6uLAHAgLAEAAPCEgAMCEsAMCAs\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADljtGaKIljDfvC+dJjIODg6a6OXPmmOecicZbbhpKfX19\nyPEtW7aM2bdt2zbTnH6/33z8FStWmGsRv0xhWV5erqamJt24cUM7duzQgw8+qOeff17Dw8PKysrS\nyy+/rMTExFj3CgCOmTQsz5w5o/b2dvn9fvX29mrTpk3y+XwqKSnR+vXr9corr6impkYlJSVT0S8A\nOGLSzyxXrlypV199VZKUmpqqQCCgxsZGFRcXS5KKiorU0NAQ2y4BwGGThmVCQoI8Ho8kqaamRo8+\n+qgCgcDI2+7MzEx1d3fHtksAcJj5Bs+pU6dUU1OjEydO6LHHHhsZDwaDMWlsJgnntyf5nUqbcH4j\ndMuWLRHtm8hTTz0V0Z/D9GX6P66+vl7Hjh3TH/7wB6WkpMjj8WhwcFBJSUnq6uqS1+uNdZ/TGnfD\noy+cu+F/+tOfQo5v2bJF77zzzpgxi3DuhhOsM8Okb8OvXr2q8vJyHT9+XGlpaZKkgoIC1dbWSpLq\n6upUWFgY2y4BwGGTXlm+++676u3tVWlp6cjY4cOH9cILL8jv92v+/PnauHFjTJsEAKdNGpZPPfVU\nyLcRb731VkwaAoB4xAqeCH3++echx3Nzc8fss34OKdlvmGVnZ5vnzMrKMtdevnw55Pi8efN08eLF\nke2Ojg7znJ999pm5dsGCBaa6WbNmmee8fv26eV9lZaVpzieffNJ8fMwMrA0HAAPCEgAMCEsAMCAs\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjuGKGJlhvevC89Pd08r3Vp4D/+8Q/znK2treba\n5ubmkON79+5VdXV1RHN2dnaaa30+n6nOuixSkpYuXTruvoULF47azsvLM80ZzhJSzAxcWQKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGLHeM0ERLGMNZ3niz5cuXR/xnx/Pe\ne++Za5OTk037Jqq72bJly8y1hYWFprr777/fPKfX6x13X0FBwahtt5u/EgiNK0sAMCAsAcCAsAQA\nA8ISAAwISwAwICwBwICwBAADwhIADAhLADBwBYPBoNNN4P8NDg6a6pKSksxzXr161Vzb19cXcnzB\nggX66quvRratfUrSfffdZ64F4hVXlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYA\nYEBYAoAByx0BwMD0KLvy8nI1NTXpxo0b2rFjh06fPq3W1lalpaVJkp599lmtWbMmln0CgKMmDcsz\nZ86ovb1dfr9fvb292rRpk/Lz87Vnzx4VFRVNRY8A4LhJw3LlypUjz7JOTU1VIBDQ8PBwzBsDgHgS\n1meWfr9fZ8+eVUJCgrq7uzU0NKTMzEzt379fGRkZsewTABxlDstTp07p+PHjOnHihFpaWpSWlqa8\nvDxVVlbq4sWLOnDgQKx7BQDHmL46VF9fr2PHjqmqqkopKSny+XzKy8uTJK1du1ZtbW0xbRIAnDZp\nWF69elXl5eU6fvz4yN3vXbt2qaOjQ5LU2NionJyc2HYJAA6b9AbPu+++q97eXpWWlo6Mbd68WaWl\npUpOTpbH49GhQ4di2iQAOI0vpQOAAcsdAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAg\nLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAE\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwMDtxEFfeuklNTc3y+Vyad++fVq+fLkTbURV\nY2Ojdu/erZycHEnSkiVLtH//foe7ilxbW5t+8Ytf6Kc//am2bt2qCxcu6Pnnn9fw8LCysrL08ssv\nKzEx0ek2w3LzayorK1Nra6vS0tIkSc8++6zWrFnjbJNhKi8vV1NTk27cuKEdO3bowQcfnPbnSRr7\nuk6fPu34uZrysPzkk0/05Zdfyu/36/z589q3b5/8fv9UtxETq1atUkVFhdNt3LKBgQEdPHhQPp9v\nZKyiokIlJSVav369XnnlFdXU1KikpMTBLsMT6jVJ0p49e1RUVORQV7fmzJkzam9vl9/vV29vrzZt\n2iSfzzetz5MU+nXl5+c7fq6m/G14Q0OD1q1bJ0lavHix+vr61N/fP9VtYAKJiYmqqqqS1+sdGWts\nbFRxcbEkqaioSA0NDU61F5FQr2m6W7lypV599VVJUmpqqgKBwLQ/T1Lo1zU8POxwVw6EZU9Pj9LT\n00e2MzIy1N3dPdVtxMS5c+e0c+dOPfPMM/r444+dbidibrdbSUlJo8YCgcDI27nMzMxpd85CvSZJ\nqq6u1vbt2/WrX/1KV65ccaCzyCUkJMjj8UiSampq9Oijj0778ySFfl0JCQmOnytHPrP8X8Fg0OkW\nouLuu+/Wc889p/Xr16ujo0Pbt29XXV3dtPy8aDIz5Zxt2LBBaWlpysvLU2VlpV5//XUdOHDA6bbC\ndurUKdXU1OjEiRN67LHHRsan+3n639fV0tLi+Lma8itLr9ernp6eke1Lly4pKytrqtuIuuzsbD3x\nxBNyuVxatGiR5s6dq66uLqfbihqPx6PBwUFJUldX14x4O+vz+ZSXlydJWrt2rdra2hzuKHz19fU6\nduyYqqqqlJKSMmPO082vKx7O1ZSH5erVq1VbWytJam1tldfr1ezZs6e6jag7efKk3nzzTUlSd3e3\nLl++rOzsbIe7ip6CgoKR81ZXV6fCwkKHO7p1u3btUkdHh6T/fib7f99kmC6uXr2q8vJyHT9+fOQu\n8Uw4T6FeVzycK1fQgWv1o0eP6uzZs3K5XHrxxReVm5s71S1EXX9/v/bu3atvvvlGQ0NDeu655/TD\nH/7Q6bYi0tLSoiNHjqizs1Nut1vZ2dk6evSoysrKdO3aNc2fP1+HDh3Sd7/7XadbNQv1mrZu3arK\nykolJyfL4/Ho0KFDyszMdLpVM7/fr9dee0333HPPyNjhw4f1wgsvTNvzJIV+XZs3b1Z1dbWj58qR\nsASA6YYVPABgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY/Ac8aqiaqAyn9QAAAABJRU5E\nrkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ac6d1e80>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFQJJREFUeJzt3X9sVfX9x/HXhdrR2kJ/0HYDBzpo\nYyd2CQtCi6htiQsum63J4miALeMPzISAhJgGAZewCFRiBroEqOIfEpebdHFzi0s7RjSMlTq7iZa5\nleIktYFSoPwoLVpqv38s38bCpX3d621vLzwff3E+5+3nvG8Pvjjnnn7uDfT39/cLADCkcbFuAADi\nAWEJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoAhIdL/8LnnntORI0cUCAS0fv16FRQURLMvABhT\nIgrLd999VydOnFAwGNTx48e1fv16BYPBaPcGAGNGRLfh9fX1WrhwoSRpxowZunDhgrq6uqLaGACM\nJRGF5ZkzZ5Senj6wnZGRoY6Ojqg1BQBjTVQe8PBZHABudhGFZXZ2ts6cOTOwffr0aWVlZUWtKQAY\nayIKy/nz56u2tlaSdPToUWVnZyslJSWqjQHAWBLR0/DZs2frnnvu0Y9//GMFAgE9++yz0e4LAMaU\nAB/+CwDDYwUPABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBA\nWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAw\nEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADAmxbgDxqbu7265ta2uza2fOnGnVBQIBe04gGriyBAAD\nYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBABDoL+/vz/WTWBkdXV12bWffvppyPG7775b\n//73vwdtu37729/ate7KoEmTJtlz5uTkhByfO3euGhoaBo1lZGTY87pyc3OjPidGH1eWAGCIaG14\nQ0ODVq9ePfAvZl5enjZu3BjVxgBgLIn4gzTuu+8+7dy5M5q9AMCYxW04ABgiDsuWlhY98cQTWrx4\nsQ4dOhTNngBgzInoaXh7e7saGxu1aNEitba2atmyZaqrq1NiYuJI9AgAMRfRe5Y5OTl65JFHJEnT\npk3T5MmT1d7erm9+85tRbQ7Rwa8O8atD+Ooiug1/88039corr0iSOjo6dPbs2Rv+hQSAm0FEV5Yl\nJSVat26d/vKXv6i3t1e/+MUvuAUHcFOLKCxTUlK0a9euaPcCAGMWX1h2C/jwww/t2gMHDoQcf+aZ\nZwa99/jMM8/Yc7a0tNi17vur4by3+NFHH4Ucnzt3rt5+++2Ijh+OoqIiu/a73/2uXZudnR1JO4gQ\nv2cJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMLHe8BZw8edKuHeqjz768\n7+WXX7bn/M9//mPXTp061aqbOHGiPeeJEyduuO/y5cuDtt3ljufPn7eP/8c//tGufeedd+za8vLy\n68ZCfexcfn6+PWc4P9dbDVeWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGBgBU+c\n+uKLL+za+fPn27VDrTZJSkoa+PPtt99uz1lWVmbXdnd3W3VTpkyx55w5c+YN95WWlg7abm5utua8\ncOGCffx169bZtcuXL7drDx48eN3Y3LlzrxufO3euPSdujCtLADAQlgBgICwBwEBYAoCBsAQAA2EJ\nAAbCEgAMhCUAGAhLADAQlgBgYLljnBo3zv93zv0SLknKzMy09gUCAXvOa78UbCh33nmnVRfO6x/K\nhAkTBm27S0O//e1v28f45S9/addeunTJrj116pQ1/sknn9hzuj//WxFXlgBgICwBwEBYAoCBsAQA\nA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwMByx1vAjBkz7NqhvrVw2rRpA3/+9NNP7TnPnz9v13Z0\ndFh1d911lz3nPffcc8N9c+bMGbTtLuM8duyYffwNGzbYtatXr7Zrb/QzuHY8JyfHnhM3Zl1ZNjc3\na+HChdq3b58k6eTJk1q6dKkqKiq0evVqff755yPaJADE2rBh2d3drc2bN6uwsHBgbOfOnaqoqNDr\nr7+u6dOnq6amZkSbBIBYGzYsExMTVV1drezs7IGxhoaGgS+nLy4uVn19/ch1CABjwLDvWSYkJCgh\nYXBZT0+PEhMTJf3vY7vc95kAIF595Qc8/f390egDY8Ts2bOtfUPVxZNIPxczNzc3yp38z44dO77y\nHE8++WQUOsG1IgrL5ORkXblyRRMmTFB7e/ugW3TEt3/84x8hx2fPnj1oXzhPw9va2uzaqVOnWnXR\neBo+btw4ffHFF4PG3KfhLS0t9vHDCdZwnobn5eVdN/bkk0/q17/+9aCxn/3sZ/acSUlJdu2tJqJ/\nVouKilRbWytJqqur04IFC6LaFACMNcNeWTY1NWnbtm1qa2tTQkKCamtrtX37dlVWVioYDGrKlCkq\nKysbjV4BIGaGDctZs2bptddeu2781VdfHZGGAGAsYgUPBpk+fbq17+LFi/ac//rXv+zab3zjG1bd\nUCuNrjXUQ5xr9125csWe1/WrX/3Krn3wwQft2vz8/JDjJSUlg7Z5HzI6WBsOAAbCEgAMhCUAGAhL\nADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMLHe8BYTzmaPnzp0LOZ6ZmTloX1pamj3nl7/obDjN\nzc1W3bUfSD2UDz74IOR4QUHBdfsmTZpkzXn27Fn7+DdalhhKOF8udqN5wzkefFxZAoCBsAQAA2EJ\nAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA8sdbwHhLM274447rH0ff/yxPeeHH35o1548\nedKqa2hosOf84Q9/GHK8oKBA//znPweN5ebmWnMWFRXZx3///fft2pkzZ9q1GF1cWQKAgbAEAANh\nCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgRU8t4ALFy7YtUeOHAk5Xlpaqr/97W+Dtl3//e9/\n7dp33nnHqjt16pQ9Z19fX8jxn/zkJ3rjjTcGjSUnJ1tz/ulPf7KP/6Mf/ciuTUlJsWsxuriyBAAD\nYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABpY7xqlz587ZteEsDfzzn/8ccry0\ntHTQvrffftue011CKEmTJ0+O+pyBQMDe197ebs355aWfw5k0aZJdW1BQYNdidHFlCQAGKyybm5u1\ncOFC7du3T5JUWVmpH/zgB1q6dKmWLl0a1lUGAMSjYW/Du7u7tXnzZhUWFg4aX7t2rYqLi0esMQAY\nS4a9skxMTFR1dbWys7NHox8AGJMC/f39/U7hiy++qPT0dC1ZskSVlZXq6OhQb2+vMjMztXHjRmVk\nZIx0rwAQMxE9DX/00UeVlpam/Px87dmzRy+99JI2bdoU7d4whHCehn/00Ud27R/+8IeQ41u3blVl\nZeXA9m233WbP2dbWZtf+/e9/t+q6u7vtOW/0hPmNN95QeXn5oLGLFy9acx4/ftw+/sqVK+3adevW\n2bUYXRE9DS8sLFR+fr4kqaSkRM3NzVFtCgDGmojCctWqVWptbZUkNTQ0KDc3N6pNAcBYM+xteFNT\nk7Zt26a2tjYlJCSotrZWS5Ys0Zo1a5SUlKTk5GRt2bJlNHoFgJgZNixnzZql11577brx733veyPS\nEACMRSx3vAWkpaXZtWVlZda+oZYQXmvGjBl27eXLl6266dOn23Nu3779hvvmz58/aNu9S/ra175m\nH7+np8eu/fzzz+3axMREuxZfHcsdAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBA\nWAKAgeWOcSqcD1sO57MnU1NTb7hv3rx59jyRcr/dMRyLFy+29zU1NVlzHjhwwD7++fPn7dqEBP6X\nHKu4sgQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA8sF4lQ4X2w11KqcW8FQq52u\n3Td16lRrzvvvv98+fjgrn8aN4/plrOLMAICBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBY\nAoCBsAQAA8sd41RiYmKsW4gbXV1dIceTkpKu2zdr1ixrzkAgYB8/Ly/PrsXYxZUlABgISwAwEJYA\nYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwsNxxFPT399u13d3dVt3tt98eaTs3hXB+pocO\nHQo5XlZWdt2+xYsXW3MGg0H7+N/5znfsWoxdVlhWVVWpsbFRV69e1YoVK3Tvvffq6aefVl9fn7Ky\nsvT888+zVhnATW3YsDx8+LCOHTumYDCozs5OlZeXq7CwUBUVFVq0aJFeeOEF1dTUqKKiYjT6BYCY\nGPY9yzlz5mjHjh2SpIkTJ6qnp0cNDQ0qLS2VJBUXF6u+vn5kuwSAGBs2LMePH6/k5GRJUk1NjR54\n4AH19PQM3HZnZmaqo6NjZLsEgBizH/Ds379fNTU12rt3rx5++OGB8XDeaL9VhfPZh7f6gxtXOD/T\nsrKyiPYN5fHHH4/ov0P8ssLy4MGD2rVrl15++WWlpqYqOTlZV65c0YQJE9Te3q7s7OyR7jOu8TQ8\n+sL5mf7+978POV5WVqbf/e531405wnkaTrDeHIa9Db906ZKqqqq0e/dupaWlSZKKiopUW1srSaqr\nq9OCBQtGtksAiLFhryzfeustdXZ2as2aNQNjW7du1YYNGxQMBjVlypSIb2UAIF4MG5aPP/54yNuI\nV199dUQaAoCxiBU8Efr4449Djn/rW9+6bt/Vq1ftefv6+qy6yZMn23NmZmbatadPnw45/vWvf12n\nTp0a2P7kk0/sOd9//327dubMmVZdamqqPednn31m76uurrbm/P73v28fHzcH1oYDgIGwBAADYQkA\nBsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADyx0jNNTH0l27LyUlxZ63paXFqmtubrbndJdQ\nSlJjY2PI8aeeekq/+c1vBrY/+OADe862tja79v7777fqpk+fbs851BLKO+64Y9B2Xl6eNWdWVpZ9\nfNwcuLIEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGljtGaKgljOEsb7yW\n++2Gbp0k/fWvf7Vr09PTrX2TJk2y5xxqaei1HnroIasuPz/fnnOob7csLCwctD1uHNcPCI2/GQBg\nICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgCPT39/fHugmMrN7eXru2q6sr5Hh6ero6\nOzsHti9fvmzPee2XggHxiCtLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBg\nYLkjABisb3esqqpSY2Ojrl69qhUrVujAgQM6evSo0tLSJEnLly+3v5UPAOLRsGF5+PBhHTt2TMFg\nUJ2dnSovL9e8efO0du1aFRcXj0aPABBzw4blnDlzVFBQIEmaOHGienp61NfXN+KNAcBYEtZ7lsFg\nUO+9957Gjx+vjo4O9fb2KjMzUxs3blRGRsZI9gkAMWWH5f79+7V7927t3btXTU1NSktLU35+vvbs\n2aNTp05p06ZNI90rAMSM9atDBw8e1K5du1RdXa3U1FQVFhYqPz9fklRSUqLm5uYRbRIAYm3YsLx0\n6ZKqqqq0e/fugaffq1atUmtrqySpoaFBubm5I9slAMTYsA943nrrLXV2dmrNmjUDY4899pjWrFmj\npKQkJScna8uWLSPaJADEGr+UDgAGljsCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgC\ngIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCW\nAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYEmJx0Oeee05HjhxRIBDQ+vXrVVBQEIs2oqqhoUGr\nV69Wbm6uJCkvL08bN26McVeRa25u1s9//nP99Kc/1ZIlS3Ty5Ek9/fTT6uvrU1ZWlp5//nklJibG\nus2wXPuaKisrdfToUaWlpUmSli9froceeii2TYapqqpKjY2Nunr1qlasWKF777037s+TdP3rOnDg\nQMzP1aiH5bvvvqsTJ04oGAzq+PHjWr9+vYLB4Gi3MSLuu+8+7dy5M9ZtfGXd3d3avHmzCgsLB8Z2\n7typiooKLVq0SC+88IJqampUUVERwy7DE+o1SdLatWtVXFwco66+msOHD+vYsWMKBoPq7OxUeXm5\nCgsL4/o8SaFf17x582J+rkb9Nry+vl4LFy6UJM2YMUMXLlxQV1fXaLeBISQmJqq6ulrZ2dkDYw0N\nDSotLZUkFRcXq76+PlbtRSTUa4p3c+bM0Y4dOyRJEydOVE9PT9yfJyn06+rr64txVzEIyzNnzig9\nPX1gOyMjQx0dHaPdxohoaWnRE088ocWLF+vQoUOxbidiCQkJmjBhwqCxnp6egdu5zMzMuDtnoV6T\nJO3bt0/Lli3TU089pXPnzsWgs8iNHz9eycnJkqSamho98MADcX+epNCva/z48TE/VzF5z/LL+vv7\nY91CVNx5551auXKlFi1apNbWVi1btkx1dXVx+X7RcG6Wc/boo48qLS1N+fn52rNnj1566SVt2rQp\n1m2Fbf/+/aqpqdHevXv18MMPD4zH+3n68utqamqK+bka9SvL7OxsnTlzZmD79OnTysrKGu02oi4n\nJ0ePPPKIAoGApk2bpsmTJ6u9vT3WbUVNcnKyrly5Iklqb2+/KW5nCwsLlZ+fL0kqKSlRc3NzjDsK\n38GDB7Vr1y5VV1crNTX1pjlP176usXCuRj0s58+fr9raWknS0aNHlZ2drZSUlNFuI+refPNNvfLK\nK5Kkjo4OnT17Vjk5OTHuKnqKiooGzltdXZ0WLFgQ446+ulWrVqm1tVXS/96T/f/fZIgXly5dUlVV\nlXbv3j3wlPhmOE+hXtdYOFeB/hhcq2/fvl3vvfeeAoGAnn32Wd19992j3ULUdXV1ad26dbp48aJ6\ne3u1cuVKPfjgg7FuKyJNTU3atm2b2tralJCQoJycHG3fvl2VlZX67LPPNGXKFG3ZskW33XZbrFu1\nhXpNS5Ys0Z49e5SUlKTk5GRt2bJFmZmZsW7VFgwG9eKLL+quu+4aGNu6das2bNgQt+dJCv26Hnvs\nMe3bty+m5yomYQkA8YYVPABgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADD8HzF5fCRUEYeZ\nAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ac3ab710>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFOtJREFUeJzt3X9M1Pcdx/HXDUS4ATs5ORrnj7aO\nDjYlKdFOMFpB10WT2up+1BJ0W5rUZtHIjOmIKXaJS63UmNT2D4TW/lGz9FKyP+zSBOJcO9chnayt\nw86gdjOMWjwsIoyzA3b7YxnpyQHvO+/4Hvp8/NX7fN5+vu/rt776vfve584VCoVCAgBM6CtONwAA\n0wFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYJAa6x987rnn9NFHH8nlcmn37t0qKiqKZ18A\nkFRiCsv3339fly5dkt/v18WLF7V79275/f549wYASSOml+EtLS1as2aNJGnhwoXq6+vTwMBAXBsD\ngGQSU1j29PRo1qxZo49zcnIUCATi1hQAJJu43ODhuzgA3O5iCkufz6eenp7Rx1euXFFubm7cmgKA\nZBNTWC5fvlxNTU2SpLNnz8rn8ykzMzOujQFAMonpbnhxcbG+/e1va9OmTXK5XHr22Wfj3RcAJBUX\nX/4LAJNjBw8AGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAG\nhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCW\nAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABqlON4Dp6V//+pe5trOz01z7zW9+01TncrnMawLx\nwJUlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYuEKhUMjpJpBY/f395tp//vOf\nEccLCwv1t7/9Leyx1W9+8xtzbTAYNNV5vV7zmj6fL+J4cXGx/vKXv8S8rtWCBQviviamHleWAGAQ\n097w1tZW7dixQ/n5+ZKk++67TzU1NXFtDACSScxfpPHAAw/o0KFD8ewFAJIWL8MBwCDmsLxw4YKe\neuopPf7443rvvffi2RMAJJ2Y7oZ3d3erra1Na9euVWdnp7Zs2aLm5malpaUlokcAcFxM71nm5eVp\n3bp1kqT58+dr9uzZ6u7u1rx58+LaHOKDjw7x0SHcuphehh87dkyvvvqqJCkQCOjq1avKy8uLa2MA\nkExiurIsLy/Xrl279Lvf/U5DQ0P65S9/yUtwALe1mMIyMzNTdXV18e4FAJIWP1h2Bzhz5oy59sSJ\nExHHa2pq1NjYGPbY6uLFi+bagYEBU100b/t8+b3WLysuLta7774bNhbN+7tWpaWl5tri4mJzbU5O\nTiztIEZ8zhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLvjHaC7u9tc\n6/F4THNHjhwxr3nu3Dlz7dy5c011mZmZ5jWvXLky7lxfX9+Ej8fT29trPv5nn31mrj1+/Li59gc/\n+MGYsSVLluj06dNhYwUFBeY1o/n3eqfhyhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQA\nA8ISAAzYwTNNhUIhc+2KFSvMtW+99da4c1/96ldH/zkrK8u85oYNG8y1wWDQVBfND5bNnz9/3LlV\nq1aFPbbuNrp27Zr5+NXV1eban/70p+bad955Z8zYkiVLxowvWbLEvCbGx5UlABgQlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYMB2x2nK5XKZa/v7+821OTk5prmvfMX+/9nr16+b\naxcsWGCqi+b5/+c//xl3LjU1/K/A8uXLTWsuXrzYfPy9e/eaawcGBsy14/0Q3c3jnZ2d5jXnzZtn\nrr3TcGUJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDd8Q5w7733mmv7\n+vrGnfvyVsRLly6Z17x69aq5dsaMGaa6b3zjG+Y1i4qKxp0rKSkJe2zdxvnJJ5+Yj19TU2Ou3blz\np7k2Pz/fNO7z+cxrYnym/zI6Ojq0Zs0aHT16VJJ0+fJlbd68WRUVFdqxY4f+/e9/J7RJAHDapGE5\nODiovXv3hv0f+NChQ6qoqNCvf/1rLViwQI2NjQltEgCcNmlYpqWlqaGhIexSvrW1VatXr5YklZWV\nqaWlJXEdAkASmPQ9y9TU1DFfYxUMBpWWliZJ8nq9CgQCiekOAJLELd/gCYVC8egDSeL+++83zU1U\nN52kpKTE9OeiuWkWjYMHD97yGk8++WQcOsHNYgpLt9utGzduKD09Xd3d3dxtu4188MEHEcfvv//+\nsLlo7oZH8+Wzd911l6kuHnfDU1JSNDIyEjZmvRv+97//3Xz8aII1mrvhBQUFY8aefPJJ1dfXh439\n+Mc/Nq85c+ZMc+2dJqbPWZaWlqqpqUmS1NzcrBUrVsS1KQBINpNeWba3t2v//v3q6upSamqqmpqa\ndODAAVVXV8vv92vOnDl69NFHp6JXAHDMpGG5aNEivf7662PGX3vttYQ0BADJiB08CDPRD4Z9ee7a\ntWvmNc+cOWOutb7/Hc2PsE10E+fmuaGhoVte82Z1dXXm2u9+97vm2vF28JSXl4c95n3I+GBvOAAY\nEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAdkeE+fzzzyOO5+TkhM15PB7z\nmgsXLjTXWr/6LDs727zmuXPnIo4XFBSMmbM+r/H+PUVSWFhoro3m6w7H+5q6aL6+DnZcWQKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGbHe8A/T09Jhr586da5r75JNPzGt+\n/PHH5tpPP/3UVNfW1mZe8/vf/37E8YKCAn344YdhY9atmUuXLjUf/69//au5dqJf14SzuLIEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADdvDcAa5du2auPXPmTMTx8vJy/elPfwp7\nbPWPf/zDXPv73//eVHf58mXzmsPDwxHHN23aJL/fHzaWkZFhWjOaHwX70Y9+ZK51u93mWkwtriwB\nwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA7Y7TlOBQMBcG83WwKampojj\n5eXlYXPvvvuuec1otvB5vV5TXVpamnnN8bY7Rprr6uoyrfmHP/zBfPzs7Gxz7aJFi8y1mFpcWQKA\ngSksOzo6tGbNGh09elSSVF1drYcfflibN2/W5s2b9c477ySyRwBw3KQvwwcHB7V3716VlJSEje/c\nuVNlZWUJawwAksmkV5ZpaWlqaGiQz+ebin4AICm5QqFQyFL40ksvadasWaqsrFR1dbUCgYCGhobk\n9XpVU1OjnJycRPcKAI6J6W74I488Io/Ho8LCQtXX1+vll1/Wnj174t0bJhDN3fBz586Za3/7299G\nHN+/f79+8YtfjD5OT083r/npp5+aa0+dOmWq6+/vN6+5ePHiiONvvfWWHn744bCx69evm9a8ePGi\n+fhVVVXm2l27dplrMbViuhteUlKiwsJCSf/7SElHR0dcmwKAZBNTWG7fvl2dnZ2SpNbWVuXn58e1\nKQBINpO+DG9vb9f+/fvV1dWl1NRUNTU1qbKyUlVVVcrIyJDb7da+ffumolcAcMykYblo0SK9/vrr\nY8a/973vJaQhAEhGbHecplwul7nW4/GYazdu3GiaS0lJMa957733mmsHBgZMdfPnzzevOdErn9LS\n0rDHv/rVr0xrZmZmmo9/48YNc+3IyIi5NppzgFvHdkcAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADAhLADAgLAHAgO2O09Ts2bPNtTNnzjTXZmVljTv3ne98x7xOrBLxJdKVlZXmuY8//ti0\n5okTJ8zH7+vrM9eyhTF5cWUJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAG7OCZ\npoaGhsy1E+3KuRPk5uaa5+bOnWtac9WqVebjL1u2zFyL5MWVJQAYEJYAYEBYAoABYQkABoQlABgQ\nlgBgQFgCgAFhCQAGhCUAGBCWAGDAdsdpasaMGU63MG0MDg5GHE9PTx8zV1xcbFozNdX+Vyc/P99c\ni+TFlSUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgwHbHJPPFF1+Y6mbO\nnJngTm4ff/zjHyOOr1+/fszcD3/4Q9OaIyMj5uMXFRWZa5G8TGFZW1urtrY2DQ8Pa+vWrVq8eLGe\nfvppjYyMKDc3Vy+88ILS0tIS3SsAOGbSsDx16pTOnz8vv9+v3t5ebdiwQSUlJaqoqNDatWt18OBB\nNTY2qqKiYir6BQBHTPqe5dKlS/Xiiy9KkrKzsxUMBtXa2qrVq1dLksrKytTS0pLYLgHAYZOGZUpK\nitxutySpsbFRK1euVDAYHH3Z7fV6FQgEEtslADjMfIPn+PHjamxs1JEjR/TQQw+NjodCoYQ0dqfi\nxk38rV+/Pqa5iWzatCnWdjBNmcLy5MmTqqur0yuvvKKsrCy53W7duHFD6enp6u7uls/nS3Sfdwzu\nhsffsWPHIo6vX79+zJw1PN944w3z8QnW28OkL8P7+/tVW1urw4cPy+PxSJJKS0vV1NQkSWpubtaK\nFSsS2yUAOGzSK8u3335bvb29qqqqGh17/vnn9cwzz8jv92vOnDl69NFHE9okADht0rB87LHH9Nhj\nj40Zf+211xLSEAAkI3bwxKizszPi+Lx588adsxgaGjLVeb1e85pf+9rXzLXd3d0Rx/Py8sLmzp8/\nb17zww8/NNd+61vfMtX9/y0hi+HhYfNcQ0ODac1169aZj4/bA3vDAcCAsAQAA8ISAAwISwAwICwB\nwICwBAADwhIADAhLADAgLAHAgLAEAAO2O8YoNzfXPJeenm5et6ury1R34cIF85oTbfe72Z///OeI\n49u2bdObb745+vj06dPmNa3PSfrft1xZ3H333eY177nnnnHn5syZE/Z45cqVpjVnz55tPj5uD1xZ\nAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAZsd4zRRFsYo9neeLOvf/3r\nca2TpA8++MBce9ddd5nmfD6fec158+aZax988EFTXUFBgXnNnJycceeWLVtmXgd3Nq4sAcCAsAQA\nA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAwBUKhUJON4HkEQwGI45nZGSEzQ0ODprX9Hq9\nt9wX4DSuLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADtjsCgIHp1x1r\na2vV1tam4eFhbd26VSdOnNDZs2fl8XgkSU888YRWrVqVyD4BwFGThuWpU6d0/vx5+f1+9fb2asOG\nDVq2bJl27typsrKyqegRABw3aVguXbpURUVFkqTs7GwFg0GNjIwkvDEASCZRvWfp9/t1+vRppaSk\nKBAIaGhoSF6vVzU1NRP+kD0ATHfmsDx+/LgOHz6sI0eOqL29XR6PR4WFhaqvr9dnn32mPXv2JLpX\nAHCM6aNDJ0+eVF1dnRoaGpSVlaWSkhIVFhZKksrLy9XR0ZHQJgHAaZOGZX9/v2pra3X48OHRu9/b\nt29XZ2enJKm1tVX5+fmJ7RIAHDbpDZ63335bvb29qqqqGh3buHGjqqqqlJGRIbfbrX379iW0SQBw\nGh9KBwADtjsCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAQaoTB33uuef00UcfyeVyaffu3SoqKnKijbhqbW3Vjh07lJ+fL0m67777\nVFNT43BXsevo6NDPfvYz/eQnP1FlZaUuX76sp59+WiMjI8rNzdULL7ygtLQ0p9uMys3Pqbq6WmfP\nnpXH45EkPfHEE1q1apWzTUaptrZWbW1tGh4e1tatW7V48eJpf56ksc/rxIkTjp+rKQ/L999/X5cu\nXZLf79fFixe1e/du+f3+qW4jIR544AEdOnTI6TZu2eDgoPbu3auSkpLRsUOHDqmiokJr167VwYMH\n1djYqIqKCge7jE6k5yRJO3fuVFlZmUNd3ZpTp07p/Pnz8vv96u3t1YYNG1RSUjKtz5MU+XktW7bM\n8XM15S/DW1patGbNGknSwoUL1dfXp4GBgaluAxNIS0tTQ0ODfD7f6Fhra6tWr14tSSorK1NLS4tT\n7cUk0nOa7pYuXaoXX3xRkpSdna1gMDjtz5MU+XmNjIw43JUDYdnT06NZs2aNPs7JyVEgEJjqNhLi\nwoULeuqpp/T444/rvffec7qdmKWmpio9PT1sLBgMjr6c83q90+6cRXpOknT06FFt2bJFP//5z/X5\n55870FnsUlJS5Ha7JUmNjY1auXLltD9PUuTnlZKS4vi5cuQ9yy8LhUJOtxAXd999t7Zt26a1a9eq\ns7NTW7ZsUXNz87R8v2gyt8s5e+SRR+TxeFRYWKj6+nq9/PLL2rNnj9NtRe348eNqbGzUkSNH9NBD\nD42OT/fz9OXn1d7e7vi5mvIrS5/Pp56entHHV65cUW5u7lS3EXd5eXlat26dXC6X5s+fr9mzZ6u7\nu9vptuLG7Xbrxo0bkqTu7u7b4uVsSUmJCgsLJUnl5eXq6OhwuKPonTx5UnV1dWpoaFBWVtZtc55u\nfl7JcK6mPCyXL1+upqYmSdLZs2fl8/mUmZk51W3E3bFjx/Tqq69KkgKBgK5evaq8vDyHu4qf0tLS\n0fPW3NysFStWONzRrdu+fbs6Ozsl/e892f9/kmG66O/vV21trQ4fPjx6l/h2OE+RnlcynCtXyIFr\n9QMHDuj06dNyuVx69tlnVVBQMNUtxN3AwIB27dql69eva2hoSNu2bdODDz7odFsxaW9v1/79+9XV\n1aXU1FTl5eXpwIEDqq6u1hdffKE5c+Zo3759mjFjhtOtmkV6TpWVlaqvr1dGRobcbrf27dsnr9fr\ndKtmfr9fL730ku65557Rseeff17PPPPMtD1PUuTntXHjRh09etTRc+VIWALAdMMOHgAwICwBwICw\nBAADwhIADAhLADAgLAHAgLAEAAPCEgAM/gsXVG9Yc2Gj6AAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ac09fd68>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFLJJREFUeJzt3X9M1Pcdx/EXgkQZKj/kWJw/Wq1W\noqVGY+dp1KKmq8al2i2xMiVN/EOz1OiM64ipus2lVjRNavuHyrRt6pZcQprFLS4Qa5ZZgzQlmynM\nFm2mZWoRBKtMrEjZH0tJ0RNenAd3yPPxV+/zefu59/G1L7933/vwTWhvb28XAKBLg2LdAAD0B4Ql\nABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQCGpEj/4KuvvqrTp08rISFBW7ZsUW5ubjT7AoC4ElFY\nfvTRR7pw4YJCoZA+//xzbdmyRaFQKNq9AUDciOhteHl5uRYtWiRJmjBhgr766is1NzdHtTEAiCcR\nhWVDQ4PS09M7HmdkZKi+vj5qTQFAvInKBR5+FweAh11EYRkIBNTQ0NDx+MqVK8rKyopaUwAQbyIK\nyzlz5qi0tFSSVF1drUAgoNTU1Kg2BgDxJKKr4dOnT9eUKVP0wgsvKCEhQdu3b492XwAQVxL45b8A\n0D128ACAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgI\nSwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAG\nwhIADIQlABgISwAwEJYAYCAsAcCQFOsG0D81NzfbtV988YVdO3nyZKtu0CD+nUff4m8cABgISwAw\nEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABjYwTMAXL9+3a6tra0NOz5lyhRVV1d3euyqqamx\na//5z39adYFAwF5z5MiRYcenTZt2z/NlZmZaa/ZkB9EPfvADuxbxizNLADBEdGZZUVGhDRs2aOLE\niZKkSZMmaevWrVFtDADiScRvw5966int3bs3mr0AQNzibTgAGCIOy3PnzmndunVauXKlTp48Gc2e\nACDuJLS3t7f39A/V1dWpsrJSixcvVm1trQoKClRWVqbk5OTe6BEAYi6izyyzs7O1ZMkSSdLYsWM1\ncuRI1dXVacyYMVFtDtER668O/elPf7Jrb968adXx1SH0tYjehh85ckQHDx6UJNXX1+vq1avKzs6O\namMAEE8iOrNcsGCBNm/erA8++ECtra369a9/zVtwAA+1iMIyNTVV+/bti3YvABC32O44AHzyySd2\n7fHjx8OOT5kyRe+//36nx65z587Zte6N0Hpyw7RPP/007Pi0adP04Ycfdhq7ceOGva5r1qxZdu30\n6dPt2hEjRkTSDiLE9ywBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCB7Y4D\nQENDg12bnp5uzb377rv2mp999pldO3r0aKsuNTXVXrOr7ZaNjY2dHl+7ds1a8+rVq/bznz9/3q79\n61//ateuWLHinrEZM2aosrKy01hOTo69ZkpKil070HBmCQAGwhIADIQlABgISwAwEJYAYCAsAcBA\nWAKAgbAEAANhCQAGdvAMAPPmzbNrjxw5ct+5YcOGhf3v7vzkJz+xa90bkQUCAXvNUaNG3Xfu7p/N\nmTNnrDW72ul0t61bt9q1BQUFdm24m8vNmDHjnvEZM2bYa+L+OLMEAANhCQAGwhIADIQlABgISwAw\nEJYAYCAsAcBAWAKAgbAEAANhCQAGtjsOANevX7dr3RuWDRrk/zvbk5t7jR071qprb2+31+yq17vn\n5syZY62Zm5trP/9vfvMbu/a///2vXXvlyhVr/NKlS/aaXW0NHeg4swQAA2EJAAbCEgAMhCUAGAhL\nADAQlgBgICwBwEBYAoCBsAQAA2EJAAa2Ow4A48aNs2uvXbtmrfPvf//bXrMn2x1dkyZNsmunT59+\n37m7tzcmJiZaa164cMF+/u3bt9u1v/zlL+3ayZMnW+NZWVn2mrg/68yypqZGixYt0uHDhyVJly9f\n1urVq5Wfn68NGzbo9u3bvdokAMRat2F58+ZN7dixQ8FgsGNs7969ys/P1x//+EeNGzdOJSUlvdok\nAMRat2GZnJys4uLiTje1r6io0MKFCyVJeXl5Ki8v770OASAOdPuZZVJSkpKSOpe1tLQoOTlZkpSZ\nman6+vre6Q4A4sQDX+Dpye8VRPx78sknrbmu6voT94LO3Xpy0awndu/e/cBrrFmzJgqd4G4RhWVK\nSopu3bqlIUOGqK6urtNbdPRvp0+fDjv+5JNPdprrydXwL774wq7NzMy06qJxNTwxMVFtbW33jDl6\ncjW8J8H6oFfD16xZo4MHD3YaKygosNccPHiwXTvQRPQ9y9mzZ6u0tFSSVFZWprlz50a1KQCIN92e\nWVZVVWnXrl26ePGikpKSVFpaqj179qiwsFChUEijRo3SsmXL+qJXAIiZbsNy6tSpeu+99+4Zf/vt\nt3ulIQCIR+zgQSddfb723bmmpiZ7zX/84x92rbvbpKWlxV6zq88h755zL1h++20QxzvvvGPXPvvs\ns3bthAkTwo5/+7W+b/E5ZHSwNxwADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQl\nABjY7ohOGhsbw46npaV1mktLS7PXfPzxx+1a91ef9eQmXOfOnQs7/thjj90zl5GRYa15v59TOD35\ndXI9eV2PPPJIj8bxYDizBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABrY7\nDgA92Zo3evRoa+78+fP2mv/617/s2suXL1t1Pblj5MqVK8OOP/bYY6qqquo05m4VnDZtmv38Z86c\nsWvHjBlj16JvcWYJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAZ28AwA165ds2s/\n+eSTsOPz589XeXl5p8cu9yZkkvTBBx9Yde5OH0m6fft22PFly5bp3Xff7TQ2dOhQa82e3ITshRde\nsGuHDBli16JvcWYJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMbHfsp+rr\n6+3aS5cu2bVHjx4NOz5//vxOc3/729/sNd0thJKUnp5u1SUl+X91v/76a3vO/bn+/e9/t58/LS3N\nrp08ebJdi77FmSUAGKywrKmp0aJFi3T48GFJUmFhoX784x9r9erVWr16dY/OMgCgP+r2vczNmze1\nY8cOBYPBTuObNm1SXl5erzUGAPGk2zPL5ORkFRcXKxAI9EU/ABCXEtrb29udwjfffFPp6elatWqV\nCgsLVV9fr9bWVmVmZmrr1q3KyMjo7V4BIGYiuhr+3HPPKS0tTTk5OTpw4IDeeustbdu2Ldq9oQs9\nuRr+2Wef2bV//vOfw47v2rVLv/rVrzoep6Sk2GtevHjRrj158qRVd+PGDXvNqVOnhh0/evSolixZ\n0mns+vXr1prnz5+3n3/z5s127caNG+1a9K2IroYHg0Hl5ORIkhYsWKCampqoNgUA8SaisFy/fr1q\na2slSRUVFZo4cWJUmwKAeNPt2/Cqqirt2rVLFy9eVFJSkkpLS7Vq1Spt3LhRQ4cOVUpKinbu3NkX\nvQJAzHQbllOnTtV77713z/iPfvSjXmkIAOIR2x0HgBEjRti1P/3pT625QYP8T3DGjx9v17oXWMaN\nG2ev+dvf/va+c7Nmzer0+He/+521prstU+p6uyX6D7Y7AoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQ\nlgBgICwBwEBYAoCBsAQAA9sd+6msrCy7tid3V0xNTb3v3MyZM+11ItWTbYSuF1980Z5zf/fn8ePH\n7edvbGy0axG/OLMEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAAM7ePqptrY2u7ar\nXTkDQSAQsOdGjx5trZmXl2c/fzAYtGsRvzizBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgC\ngIGwBAADYQkABrY79lOJiYmxbqHfuHXrVtjxIUOG3DM3ffp0a83Bgwfbzz9+/Hi7FvGLM0sAMBCW\nAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGBgu2Oc+eabb6y6QYP4d8714Ycfhh1f\nunTpPXMrVqyw1rxz5479/Lm5uXYt4pcVlkVFRaqsrNSdO3e0du1aPfHEE3r55ZfV1tamrKws7d69\nW8nJyb3dKwDETLdheerUKZ09e1ahUEhNTU1avny5gsGg8vPztXjxYr3++usqKSlRfn5+X/QLADHR\n7Xu5mTNn6o033pAkDR8+XC0tLaqoqNDChQsl/f9m8+Xl5b3bJQDEWLdhmZiYqJSUFElSSUmJ5s2b\np5aWlo633ZmZmaqvr+/dLgEgxuwLPMeOHVNJSYkOHTqkZ555pmO8vb29VxobqLhwE31Lly6NaK4r\nP/vZzyJtB/2UFZYnTpzQvn379Pvf/17Dhg1TSkqKbt26pSFDhqiurk6BQKC3+xwwuBoefX/5y1/C\nji9duvSeOTc8//CHP9jPT7A+HLr9P+7GjRsqKirS/v37lZaWJkmaPXu2SktLJUllZWWaO3du73YJ\nADHW7Znl0aNH1dTUpI0bN3aMvfbaa3rllVcUCoU0atQoLVu2rFebBIBY6zYsV6xYEfaLum+//Xav\nNAQA8YgdPBH68ssvw45///vfv2euJzcXa21ttepGjBhhr/m9733Prr1y5UrY8UAg0GnuzJkz9pqV\nlZV2rXvDsPT0dHvNrj4HvnuuuLjYWvPZZ5+1nx8PB64SAICBsAQAA2EJAAbCEgAMhCUAGAhLADAQ\nlgBgICwBwEBYAoCBsAQAA9sdIzRy5Eh7LinJ/zE3NjZadRcuXLDXvH37tl176tSpsOPr1q3T+++/\n321dOJcuXbJr3RuBjR8/3l5zzJgx953Lzs7u9DgYDFprZmVl2c+PhwNnlgBgICwBwEBYAoCBsAQA\nA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwMB2xwh1tYWxJ9sb75aRkRHVOkn69NNP7dpx48ZZc//5\nz3/sNR999FG79umnn7bqHn/8cXvNru6E+cMf/rDT4/b2dntdDCycWQKAgbAEAANhCQAGwhIADIQl\nABgISwAwEJYAYCAsAcBAWAKAIaGdLQv4jm+++Sbs+KBBgzrNNTc322sOHz78gfsCYo0zSwAwEJYA\nYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYGC7IwAYrNsQFhUVqbKyUnfu3NHatWt1\n/PhxVVdXKy0tTZK0Zs0a+658ANAfdRuWp06d0tmzZxUKhdTU1KTly5dr1qxZ2rRpk/Ly8vqiRwCI\nuW7DcubMmcrNzZX0/98e09LSora2tl5vDADiSY8+swyFQvr444+VmJio+vp6tba2KjMzU1u3blVG\nRkZv9gkAMWWH5bFjx7R//34dOnRIVVVVSktLU05Ojg4cOKAvv/xS27Zt6+1eASBmrK8OnThxQvv2\n7VNxcbGGDRumYDConJwcSdKCBQtUU1PTq00CQKx1G5Y3btxQUVGR9u/f33H1e/369aqtrZUkVVRU\naOLEib3bJQDEWLcXeI4ePaqmpiZt3LixY+z555/Xxo0bNXToUKWkpGjnzp292iQAxBpfSgcAA9sd\nAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgI\nSwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAG\nwhIADEmxeNJXX31Vp0+fVkJCgrZs2aLc3NxYtBFVFRUV2rBhgyZOnChJmjRpkrZu3RrjriJXU1Oj\nn//853rxxRe1atUqXb58WS+//LLa2tqUlZWl3bt3Kzk5OdZt9sjdr6mwsFDV1dVKS0uTJK1Zs0ZP\nP/10bJvsoaKiIlVWVurOnTtau3atnnjiiX5/nKR7X9fx48djfqz6PCw/+ugjXbhwQaFQSJ9//rm2\nbNmiUCjU1230iqeeekp79+6NdRsP7ObNm9qxY4eCwWDH2N69e5Wfn6/Fixfr9ddfV0lJifLz82PY\nZc+Ee02StGnTJuXl5cWoqwdz6tQpnT17VqFQSE1NTVq+fLmCwWC/Pk5S+Nc1a9asmB+rPn8bXl5e\nrkWLFkmSJkyYoK+++krNzc193Qa6kJycrOLiYgUCgY6xiooKLVy4UJKUl5en8vLyWLUXkXCvqb+b\nOXOm3njjDUnS8OHD1dLS0u+PkxT+dbW1tcW4qxiEZUNDg9LT0zseZ2RkqL6+vq/b6BXnzp3TunXr\ntHLlSp08eTLW7UQsKSlJQ4YM6TTW0tLS8XYuMzOz3x2zcK9Jkg4fPqyCggL94he/UGNjYww6i1xi\nYqJSUlIkSSUlJZo3b16/P05S+NeVmJgY82MVk88sv6u9vT3WLUTFI488opdeekmLFy9WbW2tCgoK\nVFZW1i8/L+rOw3LMnnvuOaWlpSknJ0cHDhzQW2+9pW3btsW6rR47duyYSkpKdOjQIT3zzDMd4/39\nOH33dVVVVcX8WPX5mWUgEFBDQ0PH4ytXrigrK6uv24i67OxsLVmyRAkJCRo7dqxGjhypurq6WLcV\nNSkpKbp165Ykqa6u7qF4OxsMBpWTkyNJWrBggWpqamLcUc+dOHFC+/btU3FxsYYNG/bQHKe7X1c8\nHKs+D8s5c+aotLRUklRdXa1AIKDU1NS+biPqjhw5ooMHD0qS6uvrdfXqVWVnZ8e4q+iZPXt2x3Er\nKyvT3LlzY9zRg1u/fr1qa2sl/f8z2W+/ydBf3LhxQ0VFRdq/f3/HVeKH4TiFe13xcKwS2mNwrr5n\nzx59/PHHSkhI0Pbt2zV58uS+biHqmpubtXnzZl2/fl2tra166aWXNH/+/Fi3FZGqqirt2rVLFy9e\nVFJSkrKzs7Vnzx4VFhbq66+/1qhRo7Rz504NHjw41q3awr2mVatW6cCBAxo6dKhSUlK0c+dOZWZm\nxrpVWygU0ptvvqlHH320Y+y1117TK6+80m+PkxT+dT3//PM6fPhwTI9VTMISAPobdvAAgIGwBAAD\nYQkABsISAAyEJQAYCEsAMBCWAGAgLAHA8D+va2g48FPsPwAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54abf67f60>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFJBJREFUeJzt3W9Mlef9x/EPQhkclSJ/jZ3SxuHG\nBB6Q2hb/raBxwWRp7YNZGbJlPrDZanSm6Zip2sWlKjVNavsApbXZ6pqchAeLXbpAnVmmHdLokk5Y\nF6zdDNOKgJTBxBaR34PlR4oe5MPxwDno+/Wo57q+Xvf3cNuP9zn3uThxQ0NDQwIA3Na0aDcAAFMB\nYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgCEh3D/40ksv6aOPPlJcXJy2bdumwsLCSPYFADEl\nrLD88MMPdf78eQWDQZ07d07btm1TMBiMdG8AEDPCehne2NiolStXSpLmz5+vnp4e9fX1RbQxAIgl\nYYVlZ2enZs2aNfw4LS1NHR0dEWsKAGJNRG7w8Ls4ANztwgrLrKwsdXZ2Dj++fPmyMjMzI9YUAMSa\nsMJyyZIlqq+vlyS1tLQoKytLM2bMiGhjABBLwrobXlRUpIULF+rpp59WXFycdu7cGem+ACCmxPHL\nfwFgbOzgAQADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsA\nMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsIS\nAAyEJQAYCEsAMBCWAGAgLAHAQFgCgCEh2g1gaurt7bVr//Wvf9m1CxcutOqmTePfeUwu/sYBgIGw\nBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIEdPPeAnp4eu7atrS3keH5+vpqbm0c8dp07\nd86u/eoxbmf27Nn2mhkZGSHHCwoKdObMGav2ZuPZQZSdnW3XInZxZQkAhrCuLJuamrR582bl5uZK\nkhYsWKDt27dHtDEAiCVhvwx/5JFHtH///kj2AgAxi5fhAGAIOyw/+eQTPfPMM1q3bp0++OCDSPYE\nADEnbmhoaGi8f6i9vV2nT59WWVmZ2traVFlZqYaGBiUmJk5EjwAQdWG9Z5mdna3Vq1dLkubNm6eM\njAy1t7dr7ty5EW0OkRHtjw797ne/s2v7+/utOj46hMkW1svwI0eO6M0335QkdXR0qKuri78QAO5q\nYV1ZlpaW6rnnntMf//hHDQwM6MUXX+QlOIC7WlhhOWPGDNXU1ES6FwCIWWx3vAe0tLTYtceOHQs5\nnp+fP+K9x/G8Z/npp5/ate4XobnvbUrSP/7xj5DjBQUFOnHiRFjHH49HH33Uri0qKrJrZ86cGU47\nCBOfswQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAa2O94Drly5YtempaVZ\nc7/97W/tNUfbbhjKvHnzrLpAIGCvefHixVHnurq6Rjzu7u621uzs7LSP39raatf+/ve/t2vXrVt3\ny1hRUZH++te/jhjLy8uz10xOTrZr7zVcWQKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBA\nWAKAgR0894Dly5fbte++++6oc/fff//wf6ekpNhrfv/737dre3p6rLqMjAx7zdmzZ486t3Tp0hGP\nP/74Y2vN8XxZ2IsvvmjX/uAHP7Br33///VvGioqKbhkfz5egYXRcWQKAgbAEAANhCQAGwhIADIQl\nABgISwAwEJYAYCAsAcBAWAKAgbAEAAPbHe8B7hZCaeSWxtvNxcfH22t+9tlndm1OTo5Vd+PGDXvN\noaEhe27JkiXWmoWFhfbxd+7cadf29fXZtaN9adrN45cuXbLXvN3W0HsdV5YAYCAsAcBAWAKAgbAE\nAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcDAdsd7wNy5c+3azz//fNS5r25F/PTTT+01u7q67NqB\ngQGrbuHChfaaDz/88KhzN3/zpbuNs62tzT7+L3/5S7u2qqrKrv32t78dcrygoGDE46ysLHtNjM66\nsmxtbdXKlSt1+PBhSf/b67t+/XqVl5dr8+bN+vLLLye0SQCItjHD8urVq9q1a5eKi4uHx/bv36/y\n8nK98847ysnJUV1d3YQ2CQDRNmZYJiYmqra2dsSlfFNTk1asWCFJKikpUWNj48R1CAAxYMz3LBMS\nEpSQMLKsv79fiYmJkqT09HR1dHRMTHcAECPu+AbP7X5XIKaem28OjDZ3u7qpZDy/l/OrxnPTbDz2\n7Nlzx2tUVlZGoBPcLKywDAQCunbtmpKSktTe3s7dtrvImTNnQo4XFBSMmBvP3fB//vOfdm1KSopV\nF4m74fHx8RocHLxlzDGeu+HjCdY7vRteWVmp3/zmNyPGKioq7DWnTePThKMJ6yezePFi1dfXS5Ia\nGhq0bNmyiDYFALFmzCvL5uZm7d27VxcuXFBCQoLq6+u1b98+VVVVKRgMas6cOXryyScno1cAiJox\nwzI/P19vv/32LeNvvfXWhDQEALGIHTwYYd68edZcd3e3veapU6fs2szMTKvu2rVr9pq3ex8y3Bs8\n06dPt2vfeecdu7asrMyunT9/fsjx0tLSEY95HzIy+CkCgIGwBAADYQkABsISAAyEJQAYCEsAMBCW\nAGAgLAHAQFgCgIGwBAAD2x0xwmhfWHb//fePmEtNTbXXzMvLs2vPnz9v1c2ZM+eO18zJybllLi0t\nzVqzs7PTPn5ubq5dm56ebtd+/etfH9c47gxXlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhL\nADAQlgBgICwBwMB2x3vAaFsYQ3nggQesuevXr9trfvzxx3btpUuXrLq//e1v9pqVlZUhx3NycvT3\nv/99xNjcuXOtNfPz8+3jt7a22rVsVYxdXFkCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHA\nQFgCgIEdPPeA7u5uu7a5uTnk+NKlS3Xy5MkRj13ul5BJ0vvvv2/VuTt9JOnLL78MOV5WVqY33nhj\nxNjXvvY1a81vfvOb9vHXrVtn1yYmJtq1mFxcWQKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAs\nAcBAWAKAgbAEAAPbHaeoy5cv27UXL160a999992Q40uXLh0xd+zYMXvNpKQku3bWrFlWXVxcnL1m\nb2+vPeduo/zzn/9sHz8jI8OuXbBggV2LycWVJQAYrLBsbW3VypUrdfjwYUlSVVWVvve972n9+vVa\nv369/vSnP01kjwAQdWO+DL969ap27dql4uLiEeNbt25VSUnJhDUGALFkzCvLxMRE1dbWKisrazL6\nAYCYFDc0NDTkFL722muaNWuWKioqVFVVpY6ODg0MDCg9PV3bt29XWlraRPcKAFET1t3wJ554Qqmp\nqcrLy9PBgwf1+uuva8eOHZHuDbcxnrvhZ8+etWuPHDkScnzv3r36+c9/Pvx4+vTp9pr//ve/7doT\nJ05YdZ9//rm9Zn5+fsjxhoYGrVq1asTYf//7X2vN8fxC41/84hd27U9/+lO7FpMrrLvhxcXFysvL\nkySVlpaqtbU1ok0BQKwJKyw3bdqktrY2SVJTU5Nyc3Mj2hQAxJoxX4Y3Nzdr7969unDhghISElRf\nX6+Kigpt2bJFycnJCgQC2r1792T0CgBRM2ZY5ufn6+23375l/Lvf/e6ENAQAsYjtjlPUeLb7paSk\n2LVr16615sZz/Iceesiu7enpsepycnLsNXfu3Dnq3M2fH/7Vr35lrZmZmWkfv7+/365F7GK7IwAY\nCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMLDdcYoaz3a7QCBg197u91QWFRXZ\n64QrNTU14mv++Mc/tufcXzd49OhR+/hdXV12LWIXV5YAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQl\nABgISwAwEJYAYGAHzxR148YNu/Z2u3LuBdnZ2fbcAw88YK25cuVK+/g3fykapiauLAHAQFgCgIGw\nBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIHtjlPUtGn8O+f64osvQo4nJSXdMvfwww9b\na95333328R988EG7FrGL/+MAwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCB\n7Y646/3lL38JOV5WVnbL3NNPP22tOdoWylAKCwvtWsQuKyyrq6t1+vRpXb9+XRs3blRBQYGef/55\nDQ4OKjMzUy+//LISExMnulcAiJoxw/LkyZM6e/asgsGguru7tWbNGhUXF6u8vFxlZWV65ZVXVFdX\np/Ly8snoFwCiYsz3LBctWqRXX31VkpSSkqL+/n41NTVpxYoVkqSSkhI1NjZObJcAEGVjhmV8fLwC\ngYAkqa6uTsuXL1d/f//wy+709HR1dHRMbJcAEGX2DZ6jR4+qrq5Ohw4d0qpVq4bHh4aGJqQxIFLK\nysrCmrudH/7wh+G2gynKCsvjx4+rpqZGb7zxhmbOnKlAIKBr164pKSlJ7e3tysrKmug+gbD94Q9/\nCDleVlZ2y5wbnr/+9a/t4xOsd4cxX4b39vaqurpaBw4cUGpqqiRp8eLFqq+vlyQ1NDRo2bJlE9sl\nAETZmFeW7733nrq7u7Vly5bhsT179uiFF15QMBjUnDlz9OSTT05okwAQbWOG5dq1a7V27dpbxt96\n660JaQgAYhE7eMJ05cqVkONpaWm3zCUk+D/mgYEBq2769On2mklJSXbtaJ9syMzMHDF35swZe81T\np07ZtY8++qhVl5mZaa85ODhoz9XU1Fhrrl692j4+7g7sDQcAA2EJAAbCEgAMhCUAGAhLADAQlgBg\nICwBwEBYAoCBsAQAA2EJAAa2O4YpLS0trLmx9PX1WXUXL1601xzPl2uN9uVeGzZs0JEjR4Yfnzhx\nwl7zwoULdq27NXT+/Pn2mrNnzx517uZtkxOx3RJ3B64sAcBAWAKAgbAEAANhCQAGwhIADIQlABgI\nSwAwEJYAYCAsAcBAWAKAge2OMWbGjBkRrZOk8+fP27W5ubnW3Hi2MH7jG9+wax9//PGIr5mSkjLq\n3M3bG2/cuGGvi3sLV5YAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYIgbGhoainYT\nmHr6+/vt2uTk5AnsBJgcXFkCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAAD\n2x0BwGB9u2N1dbVOnz6t69eva+PGjTp27JhaWlqUmpoqSdqwYYP9rXwAMBWNGZYnT57U2bNnFQwG\n1d3drTVr1uixxx7T1q1bVVJSMhk9AkDUjRmWixYtUmFhoaT/ff9yf3+/BgcHJ7wxAIgl43rPMhgM\n6tSpU4qPj1dHR4cGBgaUnp6u7du3Ky0tbSL7BICossPy6NGjOnDggA4dOqTm5malpqYqLy9PBw8e\n1KVLl7Rjx46J7hUAosb66NDx48dVU1Oj2tpazZw5U8XFxcrLy5MklZaWqrW1dUKbBIBoGzMse3t7\nVV1drQMHDgzf/d60aZPa2tokSU1NTcrNzZ3YLgEgysa8wfPee++pu7tbW7ZsGR576qmntGXLFiUn\nJysQCGj37t0T2iQARBsfSgcAA9sdAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBA\nWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAw\nEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADAnROOhLL72kjz76SHFxcdq2bZsKCwuj0UZENTU1afPm\nzcrNzZUkLViwQNu3b49yV+FrbW3VT37yE/3oRz9SRUWFPvvsMz3//PMaHBxUZmamXn75ZSUmJka7\nzXG5+TlVVVWppaVFqampkqQNGzbo8ccfj26T41RdXa3Tp0/r+vXr2rhxowoKCqb8eZJufV7Hjh2L\n+rma9LD88MMPdf78eQWDQZ07d07btm1TMBic7DYmxCOPPKL9+/dHu407dvXqVe3atUvFxcXDY/v3\n71d5ebnKysr0yiuvqK6uTuXl5VHscnxCPSdJ2rp1q0pKSqLU1Z05efKkzp49q2AwqO7ubq1Zs0bF\nxcVT+jxJoZ/XY489FvVzNekvwxsbG7Vy5UpJ0vz589XT06O+vr7JbgO3kZiYqNraWmVlZQ2PNTU1\nacWKFZKkkpISNTY2Rqu9sIR6TlPdokWL9Oqrr0qSUlJS1N/fP+XPkxT6eQ0ODka5qyiEZWdnp2bN\nmjX8OC0tTR0dHZPdxoT45JNP9Mwzz2jdunX64IMPot1O2BISEpSUlDRirL+/f/jlXHp6+pQ7Z6Ge\nkyQdPnxYlZWV+tnPfqYrV65EobPwxcfHKxAISJLq6uq0fPnyKX+epNDPKz4+PurnKirvWX7V0NBQ\ntFuIiAcffFDPPvusysrK1NbWpsrKSjU0NEzJ94vGcrecsyeeeEKpqanKy8vTwYMH9frrr2vHjh3R\nbmvcjh49qrq6Oh06dEirVq0aHp/q5+mrz6u5uTnq52rSryyzsrLU2dk5/Pjy5cvKzMyc7DYiLjs7\nW6tXr1ZcXJzmzZunjIwMtbe3R7utiAkEArp27Zokqb29/a54OVtcXKy8vDxJUmlpqVpbW6Pc0fgd\nP35cNTU1qq2t1cyZM++a83Tz84qFczXpYblkyRLV19dLklpaWpSVlaUZM2ZMdhsRd+TIEb355puS\npI6ODnV1dSk7OzvKXUXO4sWLh89bQ0ODli1bFuWO7tymTZvU1tYm6X/vyf7/Jxmmit7eXlVXV+vA\ngQPDd4nvhvMU6nnFwrmKG4rCtfq+fft06tQpxcXFaefOnfrWt7412S1EXF9fn5577jn95z//0cDA\ngJ599ll95zvfiXZbYWlubtbevXt14cIFJSQkKDs7W/v27VNVVZW++OILzZkzR7t379Z9990X7VZt\noZ5TRUWFDh48qOTkZAUCAe3evVvp6enRbtUWDAb12muv6aGHHhoe27Nnj1544YUpe56k0M/rqaee\n0uHDh6N6rqISlgAw1bCDBwAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAIb/AxgfXuciT9dt\nAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54abec7828>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFIdJREFUeJzt3X9sVfX9x/HXXWsH11Ja+mvDQXWK\nWS1lCxOhZThKOw0ki2KyqE3LlrkMs0hgxJCGUFzCIlCJiWgWoIpZJFtubLKFJSTtAJcRUq6xy0za\nzBRcZF2HtcVaILRSar9/fGNjy6V93ctt7215Pv7yfM67n/O+HvPy3Hvu557A8PDwsAAA4/paohsA\ngOmAsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwJAa6x+++OKLev/99xUIBLR9+3YtWbIknn0B\nQFKJKSzfffddnT9/XqFQSB9++KG2b9+uUCgU794AIGnE9Da8ublZFRUVkqR7771XfX19unLlSlwb\nA4BkElNY9vT0KCsra2R73rx56u7ujltTAJBs4nKDh9/iADDTxRSWeXl56unpGdn+5JNPlJubG7em\nACDZxBSWK1euVGNjoySpra1NeXl5Sk9Pj2tjAJBMYrobvnTpUhUVFempp55SIBDQCy+8EO++ACCp\nBPjxXwCYGCt4AMBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAG\nwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKA\ngbAEAANhCQAGwhIADIQlABgISwAwEJYAYEhNdAOYni5fvmzX/vvf/7Zri4uLrbqvfY3/z2Nq8V8c\nABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABhYwXMbuHTpkl3b0dERcbyoqEhtbW2j\ntl3nz5+3az/44AOr7pvf/KY9Z25ubsTxwsJC/etf/xo1lp2dbc2ZkpJiH9+dE8mNK0sAMMR0ZRkO\nh7V582YtWrRIknT//fertrY2ro0BQDKJ+W34Qw89pP3798ezFwBIWrwNBwBDzGF57tw5Pfvss3r6\n6ad1+vTpePYEAEknMDw8PBztH3V1damlpUVr165VR0eHNmzYoKamJqWlpU1GjwCQcDF9Zpmfn691\n69ZJkhYuXKicnBx1dXVpwYIFcW0O8ZHorw4dPXrUru3v77fq+OoQplpMb8OPHj2qN954Q5LU3d2t\nixcvKj8/P66NAUAyienKcs2aNXr++ed14sQJDQ4O6je/+Q1vwQHMaDGFZXp6ug4cOBDvXgAgabHc\n8TYw9nO58bzzzjsRx4uKivSXv/xl1Lbro48+smt7e3utus8//9yes729PeJ4YWHhDd/k6Ovrs+YM\nBAL28R988EG79vvf/75de+edd9q1uHV8zxIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAG\nwhIADIQlABhY7ngbcJcQStLcuXOtfX/84x/tOaNZbvmtb33Lqps9e7Y9Z2dn5033dXd3j9ru6emx\n5hz7d+NpbW21a6P5ObvKysobxpYuXap//OMfo8YeeOABe85Zs2bZtbcbriwBwEBYAoCBsAQAA2EJ\nAAbCEgAMhCUAGAhLADAQlgBgICwBwMAKntvAypUr7dpPP/30pvu+uoJnvJU+Y/3kJz+xaz/77DOr\nLjs7254zJyfnpvtWrFgxattdbRQMBu3j79q1y6596qmn7NqmpqYbxpYuXXrD+NKlS+05cXNcWQKA\ngbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAAPLHW8Dly5dsmuzsrJi2jee//73\nv3ZtQUGBVXf9+vWYehnriy++GLX9gx/8wPq7JUuW2Meora21a6M5Vzd7uNrY8Wgerpabm2vX3m64\nsgQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAaWO94G7rrrLru2t7f3pvsW\nLFgw8s/nzp2z5xzviZFjDQwMWHWLFy+251y+fPlN961evXrUdkpKijVnZ2enffxonu5YU1Nj1xYV\nFUUc/+53vztqe7ynW8JnXVm2t7eroqJCR44ckSRduHBB1dXVqqys1ObNm3Xt2rVJbRIAEm3CsLx6\n9ap27dqlkpKSkbH9+/ersrJSf/jDH1RQUKCGhoZJbRIAEm3CsExLS1N9fb3y8vJGxsLhsMrLyyVJ\nZWVlam5unrwOASAJTPiZZWpqqlJTR5f19/crLS1NkpSdnR3VT0ABwHR0yzd4hoeH49EHksR4N06+\nui+aGyzJzL2hM1Y0N82isWfPnlueo7q6Og6dYKyYwjIYDGpgYECzZs1SV1fXqLfomN5aW1sjji9e\nvHjUvmjuhn/00Ud2bTAYtOricTc8JSVFQ0NDN4w5orkbHk2w3urd8Orqar311lujxqqqquw5A4GA\nXXu7iel7lqWlpWpsbJQkNTU1adWqVXFtCgCSzYRXlq2trdq7d686OzuVmpqqxsZG7du3TzU1NQqF\nQpo/f74ef/zxqegVABJmwrBcvHjxDZf1kvTmm29OSkMAkIxYwYNRFi5caO2LZlVOOBy2ax944AGr\nbnBw0J5zvM8hY73Bk56ebte+/fbbdu26devs2vvuuy/i+Jdf6/sSn0PGB2vDAcBAWAKAgbAEAANh\nCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgeWOGKWvry/ieEZGxqh9mZmZ9pzFxcV27fnz5626\ngoICe86Ojo6I4wsWLLhhX3Z2tjXnxYsX7ePfbFliJFlZWXbt/PnzoxrHreHKEgAMhCUAGAhLADAQ\nlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGFjueBu4dOmSXXvXXXdZ+6J5uuIHH3xg13788cdW\nXWtrqz3nz3/+84jjCxYsUHt7+6gxd6lgYWGhffyzZ8/ateP9+0dicWUJAAbCEgAMhCUAGAhLADAQ\nlgBgICwBwEBYAoCBsAQAA2EJAAZW8NwGent77dqbrYwpLS3VmTNnRm273IeQSdJf//pXq85d6SNJ\nAwMDEcfLy8v1u9/9btRYWlqaNWc0K3gqKyvt2jvuuMOuxdTiyhIADIQlABgISwAwEJYAYCAsAcBA\nWAKAgbAEAANhCQAGwhIADIQlABhY7jhNdXd327X/+9//7No///nPEcdLS0tH7Ttx4oQ9ZzAYtGuz\nsrKsui+++MKe87PPPrP3Xb161Zrz9OnT9vG/8Y1v2LX33XefXYupxZUlABissGxvb1dFRYWOHDki\nSaqpqdGPf/xjVVdXq7q6Wn/7298ms0cASLgJ34ZfvXpVu3btUklJyajxrVu3qqysbNIaA4BkMuGV\nZVpamurr65WXlzcV/QBAUgoMDw8PO4WvvvqqsrKyVFVVpZqaGnV3d2twcFDZ2dmqra3VvHnzJrtX\nAEiYmO6GP/bYY8rMzFRhYaEOHTqk1157TTt37ox3bxhHNHfDz507Z9f+6U9/ijheV1enbdu2jWzP\nmTPHnjOau/F///vfrbqLFy/acxYVFUUcP3HihMrLy0eNuXfDOzs77ePv2LHDrv3lL39p12JqxXQ3\nvKSkZOSXotesWaP29va4NgUAySamsNy0aZM6OjokSeFwWIsWLYprUwCQbCZ8G97a2qq9e/eqs7NT\nqampamxsVFVVlbZs2aLZs2crGAxq9+7dU9ErACTMhGG5ePFivfXWWzeMP/roo5PSEAAkI5Y7TlOB\nQMCuzcjIsGvHexJhNE8p/Kq7777bru3r67PqCgoK7Dlra2tvum/sUyp/+9vfWnNGs4TRvWmE5MZy\nRwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYGC54zSVk5Nj10bzdMXxar/3\nve/Z88QqMzMz7nP+4he/sPe5Pzd48uRJ+/jR/PYmkhdXlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAM\nhCUAGAhLADAQlgBgYAXPbSCaFTwz0XgPFxu7b+HChdacP/rRj+zjL1++3K5F8uLKEgAMhCUAGAhL\nADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGFjuiBnv2rVrEce//vWv37DvwQcftOZMS0uz\nj19QUGDXInlxZQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAwsd8SMFw6H\nI45XVFTcsO/JJ5+05hwYGLCPX1xcbNcieVlhWVdXp5aWFl2/fl0bN25UcXGxtm3bpqGhIeXm5uql\nl16Kaq0sAEw3E4blmTNndPbsWYVCIfX29mr9+vUqKSlRZWWl1q5dq5dfflkNDQ2qrKycin4BICEm\n/Mxy2bJleuWVVyRJGRkZ6u/vVzgcVnl5uSSprKxMzc3Nk9slACTYhGGZkpKiYDAoSWpoaNDDDz+s\n/v7+kbfd2dnZ6u7untwuASDB7Bs8x48fV0NDgw4fPqxHHnlkZHx4eHhSGgPipaKiIqZ94/npT38a\nazuYpqywPHXqlA4cOKDXX39dc+bMUTAY1MDAgGbNmqWuri7l5eVNdp9AzI4fPx5xvKKi4oZ9bnj+\n/ve/t49PsM4ME74Nv3z5surq6nTw4EFlZmZKkkpLS9XY2ChJampq0qpVqya3SwBIsAmvLI8dO6be\n3l5t2bJlZGzPnj3asWOHQqGQ5s+fr8cff3xSmwSARJswLJ988smIX9R98803J6UhAEhGrOCJUV9f\nX8TxuXPn3rAvmi/sDw4OWnVffkPBkZrqn+aenp6I4zk5OaP2/fOf/7TnbGlpsWtXrlxp1eXn59tz\njncTcuy++vp6a86v3uTE7YG14QBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwB\nwMByxxjNnTs3pn0TCQQCVt2FCxfsOaN5uNbNfvV+w4YNOnbs2Mj2O++8Y8/Z1dVl1955551W3be/\n/W17ztzc3Jvu+/KXtL7k/ijMeHNiZuLKEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbC\nEgAMhCUAGALD4z36DjNCNEsj//Of/0QcX758ucLh8Mh2NMsdU1JS7NpHH33UqotmuWN6erpdOzQ0\nZNVF85owM3BlCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGVvAgJteuXbNr09LS\nJrETYGpwZQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAwsdwQAQ6pTVFdX\np5aWFl2/fl0bN27UyZMn1dbWpszMTEnSM888o9WrV09mnwCQUBOG5ZkzZ3T27FmFQiH19vZq/fr1\nWrFihbZu3aqysrKp6BEAEm7CsFy2bJmWLFkiScrIyFB/f7/9bGUAmCmi+swyFArpvffeU0pKirq7\nuzU4OKjs7GzV1tZq3rx5k9knACSUHZbHjx/XwYMHdfjwYbW2tiozM1OFhYU6dOiQPv74Y+3cuXOy\newWAhLG+OnTq1CkdOHBA9fX1mjNnjkpKSlRYWChJWrNmjdrb2ye1SQBItAnD8vLly6qrq9PBgwdH\n7n5v2rRJHR0dkqRwOKxFixZNbpcAkGAT3uA5duyYent7tWXLlpGxJ554Qlu2bNHs2bMVDAa1e/fu\nSW0SABKNL6UDgIHljgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCB\nsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBg\nICwBwEBYAoCBsAQAA2EJAIbURBz0xRdf1Pvvv69AIKDt27dryZIliWgjrsLhsDZv3qxFixZJku6/\n/37V1tYmuKvYtbe361e/+pV+9rOfqaqqShcuXNC2bds0NDSk3NxcvfTSS0pLS0t0m1EZ+5pqamrU\n1tamzMxMSdIzzzyj1atXJ7bJKNXV1amlpUXXr1/Xxo0bVVxcPO3Pk3Tj6zp58mTCz9WUh+W7776r\n8+fPKxQK6cMPP9T27dsVCoWmuo1J8dBDD2n//v2JbuOWXb16Vbt27VJJScnI2P79+1VZWam1a9fq\n5ZdfVkNDgyorKxPYZXQivSZJ2rp1q8rKyhLU1a05c+aMzp49q1AopN7eXq1fv14lJSXT+jxJkV/X\nihUrEn6upvxteHNzsyoqKiRJ9957r/r6+nTlypWpbgPjSEtLU319vfLy8kbGwuGwysvLJUllZWVq\nbm5OVHsxifSaprtly5bplVdekSRlZGSov79/2p8nKfLrGhoaSnBXCQjLnp4eZWVljWzPmzdP3d3d\nU93GpDh37pyeffZZPf300zp9+nSi24lZamqqZs2aNWqsv79/5O1cdnb2tDtnkV6TJB05ckQbNmzQ\nr3/9a3366acJ6Cx2KSkpCgaDkqSGhgY9/PDD0/48SZFfV0pKSsLPVUI+s/yq4eHhRLcQF3fffbee\ne+45rV27Vh0dHdqwYYOampqm5edFE5kp5+yxxx5TZmamCgsLdejQIb322mvauXNnotuK2vHjx9XQ\n0KDDhw/rkUceGRmf7ufpq6+rtbU14edqyq8s8/Ly1NPTM7L9ySefKDc3d6rbiLv8/HytW7dOgUBA\nCxcuVE5Ojrq6uhLdVtwEg0ENDAxIkrq6umbE29mSkhIVFhZKktasWaP29vYEdxS9U6dO6cCBA6qv\nr9ecOXNmzHka+7qS4VxNeViuXLlSjY2NkqS2tjbl5eUpPT19qtuIu6NHj+qNN96QJHV3d+vixYvK\nz89PcFfxU1paOnLempqatGrVqgR3dOs2bdqkjo4OSf//meyX32SYLi5fvqy6ujodPHhw5C7xTDhP\nkV5XMpyrwHACrtX37dun9957T4FAQC+88IK+853vTHULcXflyhU9//zzunTpkgYHB/Xcc8/phz/8\nYaLbiklra6v27t2rzs5OpaamKj8/X/v27VNNTY0+//xzzZ8/X7t379Ydd9yR6FZtkV5TVVWVDh06\npNmzZysYDGr37t3Kzs5OdKu2UCikV199Vffcc8/I2J49e7Rjx45pe56kyK/riSee0JEjRxJ6rhIS\nlgAw3bCCBwAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAIb/A/FhYOsDdEreAAAAAElFTkSu\nQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54abf11a58>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFIpJREFUeJzt3X1MlXUfx/EPQgRniDwJaqaVmZ0U\nN9t8wOYDyGy6NbVaD4TW5pqt5TTXGjPRNiuVXFvaHyKla7m2s1Ft/eGCodWsARU1N1iF2mbkgA5I\nCgEFdO4/2s06cIAvx3O4DvJ+/XVfv+vr7/qeLu+P13Wu8zsnyufz+QQAGNYkpxsAgPGAsAQAA8IS\nAAwISwAwICwBwICwBAADwhIADAhLADCICfYPvvHGGzp//ryioqK0e/duLVy4MJR9AUBECSosv/nm\nG12+fFkej0eXLl3S7t275fF4Qt0bAESMoG7DKysrlZubK0maM2eOrl27po6OjpA2BgCRJKiwbGlp\nUXJycv92SkqKvF5vyJoCgEgTkgc8fBcHgJtdUGGZnp6ulpaW/u3ff/9dU6dODVlTABBpggrLBx54\nQGVlZZKkuro6paenKyEhIaSNAUAkCepp+P3336/58+friSeeUFRUlPbt2xfqvgAgokTx5b8AMDJW\n8ACAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABoQlABgQlgBgEON0AxifOjo6zLWXLl0y12ZmZprqJk3i33mMLf7GAYABYQkA\nBoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAASt4JoD29nZz7W+//RZw3O1268cff/Tbtmps\nbDTXWlf7TJ8+3TxnSkpKwPF58+bp559/9htLS0szzRkTY/+/zpQpU8y1iFxcWQKAQVBXltXV1dqx\nY4fmzp0rSbrnnntUWFgY0sYAIJIEfRu+ZMkSHTlyJJS9AEDE4jYcAAyCDsuLFy/queee05NPPqmv\nv/46lD0BQMSJ8vl8vtH+oebmZtXU1GjdunVqaGjQli1bVF5ertjY2HD0CACOC+o9y4yMDK1fv16S\nNGvWLKWlpam5uVm33357SJtDaDj90aHPPvvMXNvZ2Wmq46NDGGtB3YZ/+umneu+99yRJXq9Xra2t\nysjICGljABBJgrqyzMnJ0UsvvaQzZ86op6dHr776KrfgAG5qQYVlQkKCjh07FupeACBisdxxAqiv\nrzfXfvHFFwHH3W63Tp8+7bdt9csvv5hrW1tbTXXd3d3mOYd6/fPmzVNVVZXf2LVr10xzjuYH0xYt\nWhSWWpfLZa7FjeNzlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAByx0n\ngOvXr5trh/s6sf/u++ijj8xz/ver3UYyc+ZMU11cXJx5zoaGhiH3NTU1+W23tLSY5vR6vebjf//9\n9+baob5OLpCnnnpq0NiiRYv0ww8/+I2NZmnqaP67TjRcWQKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABgQlgBgQFgCgAEreCaApUuXmmuHW8Hy3xU8CQkJ5jkfffRRc631B8OGW2k0UHJy8pD7lixZ\n4rdtXW106623mo//2muvmWsfe+wxc21ZWdmgsUWLFg0aH82PoGFoXFkCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3nABG84Nlwy0N/O8+n89nnvPXX381186aNctU19PT\nY55zOH19fX7bK1asMP25zMxM8zEKCwvNte3t7ebaoZamDhy3/gibJKWlpZlrJxquLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADljtOANOmTTPXtrW1Dbnvtttu6//fFy5c\nMM/5xx9/mGs7OjpMdQsXLjTPuWzZsiH3ZWdn+21HR0eb5mxsbDQff//+/ebaV155xVw7f/78gOP3\n33+/3zZLGEPDdGVZX1+v3NxcnTp1StK/f1E2b96svLw87dixQ3///XdYmwQAp40Ylp2dndq/f7+y\nsrL6x44cOaK8vDx9+OGHmj17tkpLS8PaJAA4bcSwjI2NVUlJidLT0/vHqqurtWbNGkn/3sZUVlaG\nr0MAiAAjvmcZExOjmBj/sq6uLsXGxkqSUlNT5fV6w9MdAESIG37AM5rvNUTkc7vdpn3D1Y0n1gc6\nA02fPj3Enfzr9ddfv+E58vLyQtAJBgoqLF0ul7q7uxUXF6fm5ma/W3SMbz/++GPAcbfb7bdvNE/D\nL1++bK4deBczlFA8DY+Ojh705b/heBo+mmC90afh/3+WMHAMNy6oz1kuX75cZWVlkqTy8nLzt0sD\nwHg14j/jtbW1OnTokK5cuaKYmBiVlZXp8OHDKigokMfj0YwZM7Rx48ax6BUAHDNiWC5YsEAffPDB\noPGTJ0+GpSEAiESs4IGfmTNnmva1traa5xzNR8usD44Gvtc4nOHehwz2AU9iYqK59uOPPzbXrl+/\n3lw7Z86cgOM5OTnmOWDH2nAAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHA\ngOWO8HP9+vWA45MnT/bbN2XKFPOcmZmZ5lrr17ndfffd5jmbmpoCjk+bNm3QvqSkJNOcLS0t5uMP\ntSwxkOTkZHPtUD9EN5ofqIMdV5YAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAcsdJ4COjg5z7W233Wba9/fff5vn/Omnn8y1Xq/XVFdcXGyec+vWrQHHp02bpvr6er+xjIwM\n05zz5s0zH7+3t9dcO9x/fziLK0sAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBg\nBc8E0NbWZq6tq6sLOL506VJVV1f7bVv9+uuv5tqKigpTXXNzs3nOzs7OgOMrV67U0aNH/cZuueUW\n05z33Xef+fh5eXnm2ujoaHMtxhZXlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYA\nYEBYAoAByx3HqdbWVnNtY2OjufaTTz4JOL506VK/fWfPnjXPmZCQYK5NS0sz1Y3mR8CuXr1q3jfU\n0siBKisrzcefOXOmufauu+4y12JscWUJAAamsKyvr1dubq5OnTolSSooKNBDDz2kzZs3a/Pmzfri\niy/C2SMAOG7E2/DOzk7t379fWVlZfuO7du1SdnZ22BoDgEgy4pVlbGysSkpKlJ6ePhb9AEBEivL5\nfD5L4dGjR5WcnKz8/HwVFBTI6/Wqp6dHqampKiwsVEpKSrh7BQDHBPU0fMOGDUpKSpLb7dbx48f1\nzjvvaO/evaHuDcMYzdPwS5cumWs//vjjgOMHDx5UQUFB//aUKVPMc165csVc+9VXX5nqmpqazHPO\nnz8/4PiZM2e0Zs0avzHr0/DRHH/fvn3m2meeecZci7EV1NPwrKwsud1uSVJOTo7q6+tD2hQARJqg\nwnL79u1qaGiQJFVXV2vu3LkhbQoAIs2It+G1tbU6dOiQrly5opiYGJWVlSk/P187d+5UfHy8XC6X\nDhw4MBa9AoBjRgzLBQsW6IMPPhg0/uCDD4alIQCIRCx3HKcmTbK/g5KYmGiuzc/PN+37559/zHPO\nnj3bXHv9+nVT3e23326ec8+ePUPuG/j54ddffz3kx//zzz/NtYhcLHcEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjuOE4lJyeba+Pj4821cXFxQ+5bsGCBeZ5gjeZ7Mq2e\nffZZ876LFy+a5vz888/Nx29paTHXInJxZQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKA\nAWEJAAas4JkAhluVMxFMnz7dvG/WrFmmOdeuXWs+/tKlS821iFxcWQKAAWEJAAaEJQAYEJYAYEBY\nAoABYQkABoQlABgQlgBgQFgCgAFhCQAGLHfETa+3tzfgeGxs7KB91qWJ58+fNx9/5syZ5lpELq4s\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAOWO+Km9+233wYcX7Vq1aB9\njzzyiGnOjo4O8/EXLFhgrkXkMoVlUVGRampq1Nvbq23btikzM1Mvv/yy+vr6NHXqVL355puKjY0N\nd68A4JgRw7KqqkoXLlyQx+NRW1ubNm3apKysLOXl5WndunV66623VFpaqry8vLHoFwAcMeJ7losX\nL9bbb78tSUpMTFRXV5eqq6u1Zs0aSVJ2drYqKyvD2yUAOGzEsIyOjpbL5ZIklZaWauXKlerq6uq/\n7U5NTZXX6w1vlwDgMPMDnoqKCpWWlurEiRNau3Zt/7jP5wtLY0CorFq1Kqh9w3n66aeDbQfjlCks\nz507p2PHjundd9/V5MmT5XK51N3drbi4ODU3Nys9PT3cfQJB+/LLLwOOr1q1atA+a3i+//775uMT\nrDeHEW/D29vbVVRUpOLiYiUlJUmSli9frrKyMklSeXm5VqxYEd4uAcBhI15Znj59Wm1tbdq5c2f/\n2MGDB7Vnzx55PB7NmDFDGzduDGuTAOC0EcPy8ccf1+OPPz5o/OTJk2FpCAAiESt4gjTUCo6EhIRB\n+2699VbzvEP9uNZA8fHx5jlH4+rVqwHHU1JS/PbV1NSY5/z+++/NtatXrzbVZWRkmOcc7iHkwH0n\nTpwwzZmbm2s+Pm4OrA0HAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFju\nGKSEhISg9o1k0iTbv19NTU3mObu7u821VVVVAcefeOIJlZeX929XVFSY52xpaTHXJicnm+rmzJlj\nnjMlJWXIfVOmTPHb3rBhg2nO1NRU8/Fxc+DKEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADAhLADBguWOEiY6ONtVNmzbNPGdra6u59t577zXta2xsNM8ZFRVlrl2xYoWpbvbs2eY5\nXS7XkPsWLVrkt93X12eeFxMLV5YAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGAQ\n5fP5fE43gfHnn3/+Mddaf4QNiGT8LQYAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAE\nAAPCEgAMWO4IAAamX3csKipSTU2Nent7tW3bNp09e1Z1dXVKSkqSJG3dulWrV68OZ58A4KgRw7Kq\nqkoXLlyQx+NRW1ubNm3apGXLlmnXrl3Kzs4eix4BwHEjhuXixYu1cOFCSVJiYqK6urr4bWUAE86o\n3rP0eDz67rvvFB0dLa/Xq56eHqWmpqqwsFApKSnh7BMAHGUOy4qKChUXF+vEiROqra1VUlKS3G63\njh8/rqamJu3duzfcvQKAY0wfHTp37pyOHTumkpISTZ48WVlZWXK73ZKknJwc1dfXh7VJAHDaiGHZ\n3t6uoqIiFRcX9z/93r59uxoaGiRJ1dXVmjt3bni7BACHjfiA5/Tp02pra9POnTv7xx5++GHt3LlT\n8fHxcrlcOnDgQFibBACn8aF0ADBguSMAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYxDhx0DfeeEPnz59XVFSUdu/erYULFzrRRkhV\nV1drx44dmjt3riTpnnvuUWFhocNdBa++vl7PP/+8nnnmGeXn56uxsVEvv/yy+vr6NHXqVL355puK\njY11us1RGfiaCgoKVFdXp6SkJEnS1q1btXr1amebHKWioiLV1NSot7dX27ZtU2Zm5rg/T9Lg13X2\n7FnHz9WYh+U333yjy5cvy+Px6NKlS9q9e7c8Hs9YtxEWS5Ys0ZEjR5xu44Z1dnZq//79ysrK6h87\ncuSI8vLytG7dOr311lsqLS1VXl6eg12OTqDXJEm7du1Sdna2Q13dmKqqKl24cEEej0dtbW3atGmT\nsrKyxvV5kgK/rmXLljl+rsb8NryyslK5ubmSpDlz5ujatWvq6OgY6zYwjNjYWJWUlCg9Pb1/rLq6\nWmvWrJEkZWdnq7Ky0qn2ghLoNY13ixcv1ttvvy1JSkxMVFdX17g/T1Lg19XX1+dwVw6EZUtLi5KT\nk/u3U1JS5PV6x7qNsLh48aKee+45Pfnkk/r666+dbidoMTExiouL8xvr6urqv51LTU0dd+cs0GuS\npFOnTmnLli168cUXdfXqVQc6C150dLRcLpckqbS0VCtXrhz350kK/Lqio6MdP1eOvGf5Xz6fz+kW\nQuKOO+7QCy+8oHXr1qmhoUFbtmxReXn5uHy/aCQ3yznbsGGDkpKS5Ha7dfz4cb3zzjvau3ev022N\nWkVFhUpLS3XixAmtXbu2f3y8n6f/vq7a2lrHz9WYX1mmp6erpaWlf/v333/X1KlTx7qNkMvIyND6\n9esVFRWlWbNmKS0tTc3NzU63FTIul0vd3d2SpObm5pvidjYrK0tut1uSlJOTo/r6eoc7Gr1z587p\n2LFjKikp0eTJk2+a8zTwdUXCuRrzsHzggQdUVlYmSaqrq1N6eroSEhLGuo2Q+/TTT/Xee+9Jkrxe\nr1pbW5WRkeFwV6GzfPny/vNWXl6uFStWONzRjdu+fbsaGhok/fue7P8/yTBetLe3q6ioSMXFxf1P\niW+G8xTodUXCuYryOXCtfvjwYX333XeKiorSvn37dO+99451CyHX0dGhl156SdevX1dPT49eeOEF\nrVq1yum2glJbW6tDhw7pypUriomJUUZGhg4fPqyCggL99ddfmjFjhg4cOKBbbrnF6VbNAr2m/Px8\nHT9+XPHx8XK5XDpw4IBSU1OdbtXM4/Ho6NGjuvPOO/vHDh48qD179ozb8yQFfl0PP/ywTp065ei5\nciQsAWC8YQUPABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAb/A+HKXqV6usa0AAAAAElF\nTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54abc01748>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFFlJREFUeJzt3X9M1Pcdx/EXBRkyUH4IWNbaNo4G\nWrVxm04kOkHTxW5Lq1tSy9QtaRbNUqMzTcOM2mVuRanpUts/FFqbrGbZZSRLXNIMonapcYiTbU1w\nXVDnHHOKh1KVgBYZ+2MpKXLI68477tDn47/v5/v2c++v3+TF9+57n/smDQwMDAgAcFv3xbsBABgP\nCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAwpkf7DV155RR9++KGSkpK0adMmzZo1K5p9AUBC\niSgsjx07prNnzyoQCOj06dPatGmTAoFAtHsDgIQR0dvwpqYmLVmyRJI0ffp0XblyRd3d3VFtDAAS\nSURh2dnZqezs7MHtnJwcBYPBqDUFAIkmKjd4+C0OAHe7iMIyPz9fnZ2dg9sXL15UXl5e1JoCgEQT\nUViWlZWpoaFBknTixAnl5+crIyMjqo0BQCKJ6G74l770JT3++ONasWKFkpKS9PLLL0e7LwBIKEn8\n+C8AjI4VPABgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJ\nAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBY\nAoCBsAQAA2EJAAbCEgAMhCUAGAhLADCkxLsBjE/d3d127alTp+zamTNnWnXJycn2nEA0cGUJAAbC\nEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAIakgYGBgXg3gdi6du2aXXvu3LmQ48XFxfr7\n3/8+ZNt18OBBu7anp8eqmzp1qj1nTk5OyPHp06fr9OnTQ8Zyc3OtOcNZQZSZmWnXInFxZQkAhojW\nhjc3N2v9+vUqKiqSJD366KPasmVLVBsDgEQS8Q9pzJ07V7t27YpmLwCQsHgbDgCGiMPy1KlTWrt2\nrZ577jkdOXIkmj0BQMKJ6G54R0eHWlpatHTpUrW3t2v16tVqbGxUampqLHoEgLiL6DPLgoICPfXU\nU5KkadOmacqUKero6NCDDz4Y1eYQHXx1iK8O4c5F9DZ8//79evvttyVJwWBQly5dUkFBQVQbA4BE\nEtGVZUVFhV588UUdPHhQfX19+slPfsJbcAB3tYjCMiMjQ7t37452LwCQsHhg2T3g1s/lbueDDz4I\nOV5cXKzGxsYh264zZ87YtcFg0Kq7ceOGPedID0ybPn26jh07NmSsq6vLmvO++/xPsJ544gm7dvbs\n2XZtWlqaXYs7x/csAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgeWO94Du\n7m67dvLkyda+/fv323P+7W9/s2sfeOABq+5zn/ucPec///nPEffd+pN0Fy9etOZ0l2VK/39mlcv9\niThJ+u53vztsbPbs2frLX/4yZOyxxx6z5wzn//Vew5UlABgISwAwEJYAYCAsAcBAWAKAgbAEAANh\nCQAGwhIADIQlABhYwXMP+MpXvmLXdnZ2jrjvsyt4MjMz7Tm//e1v27VXrlyx6jIyMuw5v/zlL9v7\nPvroI2vOCRMm2K//85//3K79zne+Y9f+/ve/HzY2e/bsYePhPAQNI+PKEgAMhCUAGAhLADAQlgBg\nICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGFjueA8I54Fl2dnZ1r7//ve/9pz/+te/7NovfOELVt2N\nGzfsOW/n5s2bQ7YXLlxo/bsZM2bYr7F582a7NpxzdfnyZWt8pLpQcnJy7Np7DVeWAGAgLAHAQFgC\ngIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAwHLHe8CUKVPs2sLCQmvfyZMn7Tk//vhju7ar\nq8uqmzVrlj1naWnpiPsqKiqGbCcnJ1tzXrhwwX79n/3sZ3ZtOEsjR1pyeesTK1nCGB3WlWVbW5uW\nLFmiffv2SZLOnz+vVatWqbKyUuvXr9cnn3wS0yYBIN5GDcuenh5t27ZtyF/nXbt2qbKyUr/61a/0\n0EMPqb6+PqZNAkC8jRqWqampqqurU35+/uBYc3OzFi9eLEkqLy9XU1NT7DoEgAQw6meWKSkpSkkZ\nWtbb26vU1FRJUm5uroLBYGy6A4AEccc3eAYGBqLRBxJEUVGRte92deOJe0PnVlOnTo1yJ/8Xzs2g\nkaxYsSIKneBWEYVlenq6rl+/rrS0NHV0dAx5i47xbaS73EVFRUP2hXM3/OzZs3at+8c3GnfDk5OT\n1d/fP2zMEc7d8HCC9U7vhq9YsUK//vWvh43hzkX0Pcv58+eroaFBktTY2KgFCxZEtSkASDSjXlm2\ntrZqx44dOnfunFJSUtTQ0KCdO3eqqqpKgUBAhYWFeuaZZ8aiVwCIm1HDcsaMGXr33XeHjb/zzjsx\naQgAEhEreDCEu4Kns7PTnvODDz6wa0tKSqy6cB6YdrvPISO9wZOVlWXX/u53v7Nrv/GNb9i1X/zi\nF0OOf/q1PkQXa8MBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCB5Y4Y4urV\nqyHHP//5zw/Zl5GRYc85c+ZMu/bMmTNWXXFxsT3nSD9OnZeXN2yfu4wxnB+8fuSRR+zacJZR5uXl\nhTWOO8OVJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMLDc8R7Q09Nj195/\n//3Wvt7eXnvOjz76yK7t6uqy6mpra+05f/CDH4Qcz8vL0+nTp4eM5ebmWnMWFRXZr9/X12fX3u7p\nmogvriwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwMAKnnvAxx9/bNe2traGHJ87\nd66OHTs2ZNv1n//8x649dOiQVXfx4kV7zu7u7pDjgUBAv/jFL4aMJScnW3OG8xC2yspKu/a++7h+\nSVScGQAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYGC54zgVzhLGCxcu2LW/\n/e1vQ47PnTt3yL7333/fnjMzM9OuzcvLs+pu3Lhhz9nZ2Wnvu379ujXnZ5d+juahhx6KSS3GFleW\nAGCwwrKtrU1LlizRvn37JElVVVX61re+pVWrVmnVqlX6wx/+EMseASDuRn0b3tPTo23btqm0tHTI\n+MaNG1VeXh6zxgAgkYx6ZZmamqq6ujrl5+ePRT8AkJCSBgYGBpzCN954Q9nZ2Vq5cqWqqqoUDAbV\n19en3NxcbdmyRTk5ObHuFQDiJqK74U8//bSysrJUUlKi2tpavfnmm9q6dWu0e8NthHM3/B//+Idd\n+5vf/CbkeHV1tX784x8PbmdlZdlzhvPjv3/84x+tun//+9/2nI899ljI8YMHD2rx4sVDxty74R0d\nHfbr//SnP7Vrw/mhYIytiO6Gl5aWqqSkRJJUUVGhtra2qDYFAIkmorBct26d2tvbJUnNzc0qKiqK\nalMAkGhGfRve2tqqHTt26Ny5c0pJSVFDQ4NWrlypDRs2aOLEiUpPT1d1dfVY9AoAcTNqWM6YMUPv\nvvvusPGvf/3rMWkIABIRyx3HqaSkJLs2IyPDrv3e975n7evv77fnnDZtml175coVq+6BBx6w5/zs\njalb3fqUyu3bt1tzPvzww/brj/R0SYwvLHcEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKA\ngbAEAANhCQAGljuOU5MnT7ZrJ06caNempqaOuK+4uNieJ1LhPAnStXbtWnvfmTNnrDnDee5UMBi0\na5G4uLIEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAAMreO4Bt1uVcy8oLCy097kP\nIgvn6aZf/epX7VokLq4sAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgeWO\nuOv19/eHHJ8wYcKwffPmzbPm/Otf/2q//v3332/XInFxZQkABsISAAyEJQAYCEsAMBCWAGAgLAHA\nQFgCgIGwBAADYQkABsISAAwsd8Rdr6WlJeR4WVnZsH3PPPOMNefVq1ft13/88cftWiQuKyxramrU\n0tKimzdvas2aNZo5c6Zeeukl9ff3Ky8vT6+++uo9/7hVAHe3UcPy6NGjOnnypAKBgLq6urRs2TKV\nlpaqsrJSS5cu1Wuvvab6+npVVlaORb8AEBejfmY5Z84cvf7665KkSZMmqbe3V83NzVq8eLEkqby8\nXE1NTbHtEgDibNSwTE5OVnp6uiSpvr5eCxcuVG9v7+Db7tzcXAWDwdh2CQBxZt/gOXDggOrr67V3\n7149+eSTg+MDAwMxaQyIlrKysoj23c7q1asjbQfjlBWWhw8f1u7du/XWW28pMzNT6enpun79utLS\n0tTR0aH8/PxY9wlE7MiRIyHHy8rKhu1zw/OXv/yl/foE691h1Lfh165dU01Njfbs2aOsrCxJ0vz5\n89XQ0CBJamxs1IIFC2LbJQDE2ahXlu+99566urq0YcOGwbHt27dr8+bNCgQCKiwstL+bBgDj1ahh\n+eyzz+rZZ58dNv7OO+/EpCEASESs4IlQT09PyPH09PRh+z79NoHjk08+sepitQigq6sr5Hh2dvaQ\nfcePH7fn/POf/2zXfvqVtNEUFBTYc4bD/Sxy0aJFMXl9JC7WhgOAgbAEAANhCQAGwhIADIQlABgI\nSwAwEJYAYCAsAcBAWAKAgbAEAAPLHSN0uyWM4SxvvJW7jPHSpUv2nCMtzQzlT3/6U8jx5cuX6/33\n3x/c/vRXpxyXL1+2a6dOnWrVhXNMkydPHnFfRkbGkO1vfvOb1pw5OTn26+PuwJUlABgISwAwEJYA\nYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwsNxxnMrNzbVrJ0yYYNeWlJRY+86fP2/Ped99\n/t/k+fPnW3UPPvigPWdaWtqI+5544okh2/39/fa8uLdwZQkABsISAAyEJQAYCEsAMBCWAGAgLAHA\nQFgCgIGwBAADYQkAhqSBgYGBeDcBAImOK0sAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAY\nCEsAMBCWAGAgLAHAYD3dsaamRi0tLbp586bWrFmjQ4cO6cSJE8rKypIkPf/881q0aFEs+wSAuBo1\nLI8ePaqTJ08qEAioq6tLy5Yt07x587Rx40aVl5ePRY8AEHejhuWcOXM0a9YsSdKkSZPU29vLs5UB\n3HPC+om2QCCg48ePKzk5WcFgUH19fcrNzdWWLVuUk5MTyz4BIK7ssDxw4ID27NmjvXv3qrW1VVlZ\nWSopKVFtba0uXLigrVu3xrpXAIgb62744cOHtXv3btXV1SkzM1OlpaUqKSmRJFVUVKitrS2mTQJA\nvI0alteuXVNNTY327NkzePd73bp1am9vlyQ1NzerqKgotl0CQJyNeoPnvffeU1dXlzZs2DA4tnz5\ncm3YsEETJ05Uenq6qqurY9okAMQbz+ABAAMreADAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCW\nAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyE\nJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAwp8XjRV155RR9++KGSkpK0adMmzZo1Kx5t\nRFVzc7PWr1+voqIiSdKjjz6qLVu2xLmryLW1temHP/yhvv/972vlypU6f/68XnrpJfX39ysvL0+v\nvvqqUlNT491mWG49pqqqKp04cUJZWVmSpOeff16LFi2Kb5NhqqmpUUtLi27evKk1a9Zo5syZ4/48\nScOP69ChQ3E/V2MelseOHdPZs2cVCAR0+vRpbdq0SYFAYKzbiIm5c+dq165d8W7jjvX09Gjbtm0q\nLS0dHNu1a5cqKyu1dOlSvfbaa6qvr1dlZWUcuwxPqGOSpI0bN6q8vDxOXd2Zo0eP6uTJkwoEAurq\n6tKyZctUWlo6rs+TFPq45s2bF/dzNeZvw5uamrRkyRJJ0vTp03XlyhV1d3ePdRu4jdTUVNXV1Sk/\nP39wrLm5WYsXL5YklZeXq6mpKV7tRSTUMY13c+bM0euvvy5JmjRpknp7e8f9eZJCH1d/f3+cu4pD\nWHZ2dio7O3twOycnR8FgcKzbiIlTp05p7dq1eu6553TkyJF4txOxlJQUpaWlDRnr7e0dfDuXm5s7\n7s5ZqGOSpH379mn16tX60Y9+pMuXL8ehs8glJycrPT1dklRfX6+FCxeO+/MkhT6u5OTkuJ+ruHxm\n+VkDAwPxbiEqHn74Yb3wwgtaunSp2tvbtXr1ajU2No7Lz4tGc7ecs6efflpZWVkqKSlRbW2t3nzz\nTW3dujXebYXtwIEDqq+v1969e/Xkk08Ojo/38/TZ42ptbY37uRrzK8v8/Hx1dnYObl+8eFF5eXlj\n3UbUFRQU6KmnnlJSUpKmTZumKVOmqKOjI95tRU16erquX78uSero6Lgr3s6WlpaqpKREklRRUaG2\ntrY4dxS+w4cPa/fu3aqrq1NmZuZdc55uPa5EOFdjHpZlZWVqaGiQJJ04cUL5+fnKyMgY6zaibv/+\n/Xr77bclScFgUJcuXVJBQUGcu4qe+fPnD563xsZGLViwIM4d3bl169apvb1d0v8/k/30mwzjxbVr\n11RTU6M9e/YM3iW+G85TqONKhHOVNBCHa/WdO3fq+PHjSkpK0ssvv6zi4uKxbiHquru79eKLL+rq\n1avq6+vTCy+8oK997Wvxbisira2t2rFjh86dO6eUlBQVFBRo586dqqqq0o0bN1RYWKjq6mpNmDAh\n3q3aQh3TypUrVVtbq4kTJyo9PV3V1dXKzc2Nd6u2QCCgN954Q4888sjg2Pbt27V58+Zxe56k0Me1\nfPly7du3L67nKi5hCQDjDSt4AMBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYPgfdzRWXStc\nHG8AAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54abede9b0>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFGJJREFUeJzt3V9sVGUax/Hf2LGWoZT+sa2yK6Jd\nDBVoZJMCA0FpQTf4ZwU3xLUWYmIMaiQgMaZhLW6WrEAlJqIX0ComK7vZyfbCeAFpg6DbmFKxi8ZW\nTWsVbFCGaa2l2BZKnb3YbOPQafvMMNMzpd/Plec9j+95jsf8cmZO3zmuYDAYFABgVNc43QAATASE\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgIE72n/xpZde0qeffiqXy6WtW7eqoKAgln0BQEKJ\nKiw/+ugjnTp1Sj6fT21tbdq6dat8Pl+sewOAhBHVx/D6+nqtXLlSkpSXl6fu7m6dP38+po0BQCKJ\nKiw7OjqUkZExtJ2ZmalAIBCzpgAg0cTkAQ+/xQHgahdVWObk5Kijo2No++zZs8rOzo5ZUwCQaKIK\ny6VLl6qmpkaS1NzcrJycHKWmpsa0MQBIJFE9Df/tb3+ruXPn6o9//KNcLpdefPHFWPcFAAnFxY//\nAsDYWMEDAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJ\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgIHb6QYwMfX09Jhr29razLXz58831SUlJZnnBGKBO0sA\nMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBwBYPBoNNNIL4iWW1z+vTpsONz5szR\nl19+GbJtdfToUXNtf3+/qe7GG280z5menh52fNasWTp58mTIWEZGhmlOt9u++G3q1KnmWiQu7iwB\nwCCqteENDQ3atGmTZs+eLUm67bbbVF5eHtPGACCRRP1DGgsXLtSePXti2QsAJCw+hgOAQdRh+dVX\nX+nJJ5/UI488og8//DCWPQFAwonqabjf71djY6NWrVql9vZ2rV+/XrW1tUpOTo5HjwDguKi+s8zN\nzdW9994rSZo5c6auv/56+f1+3XTTTTFtDrHBnw7xp0O4clF9DH/33Xf15ptvSpICgYA6OzuVm5sb\n08YAIJFEdWdZXFys5557Tu+9954GBgb05z//mY/gAK5qUYVlamqq9u7dG+teACBh8cKySeDy7+VG\n8+9//zvs+Jw5c/Tee++FbFt9++235tozZ86Y6i5evGies7W1Nez4rFmzdPz48ZCxrq4u05wul8t8\nfOtL2CTpjjvuMNempKSYa3Hl+DtLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAw\nICwBwIDljpNAb2+vuXaknzO7fN+hQ4fMczY3N5trrT/zF8kPt7S1tY24r729PWTbutzS7/ebj19X\nV2euzc7ONteWlpYOG1uwYIFOnDgRMjZ37lzznPwgzsi4swQAA8ISAAwISwAwICwBwICwBAADwhIA\nDAhLADAgLAHAgLAEAANW8EwCCxYsMNeePXt2xH1paWlD/zx16lTznH/4wx/MtefOnTPVRfKyrtFe\nAnb5vs8//9w8r1VFRYW5dvXq1ebagwcPDhtbsGDBsPFIrj9Gxp0lABgQlgBgQFgCgAFhCQAGhCUA\nGBCWAGBAWAKAAWEJAAaEJQAYEJYAYMByx0ngp59+MtdmZGSY9v3888/mOU+ePGmuvfHGG011kbyE\nLRgMjrjv4sWLIdt33XWXac758+ebj19WVmau7enpMdf++OOPpvGR6sIZ7YV1kx13lgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAByx0ngdGWMF5utOWGv9zX2tpqnrO7u9tc\n29HRYaqLZLnh0qVLR9x39913h2wnJSWZ5vT7/ebj79y501xbXl5uri0oKAg7vnDhwpBtljDGhunO\nsqWlRStXrtSBAwckSd9//73WrVunkpISbdq0adj6WgC42owZlr29vdq+fbu8Xu/Q2J49e1RSUqJ/\n/OMfuvnmm1VdXR3XJgHAaWOGZXJysqqqqpSTkzM01tDQoBUrVkiSioqKVF9fH78OASABjPmdpdvt\nltsdWtbX16fk5GRJUlZWlgKBQHy6A4AEccUPeEb7rUBMPHl5eaZ9o9VNJNYHOpfLzc2NcSf/s337\n9iueY+3atTHoBJeLKiw9Ho/6+/uVkpIiv98f8hEdE1tbW1vY8by8vJB9kTwN//bbb821AwMDprpY\nPA1PSkrS4ODgsDGLSJ6GRxKsV/o0fO3atfrXv/41bAxXLqq/s1yyZIlqamokSbW1tVq2bFlMmwKA\nRDPmnWVTU5N27dql06dPy+12q6amRrt371ZZWZl8Pp9mzJih1atXj0evAOCYMcNy3rx5evvtt4eN\nv/XWW3FpCAASESt4EMK6gse60kaSjh49aq7Nz88311qN9j1ktA94IlkVc+jQIXPt/fffb679zW9+\nE3a8uLjYPAfsWBsOAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDcESHO\nnTsXdtzj8YTsmzJlinnOuXPnmmtPnTplqovkJ9p++OGHsOOZmZnD9lmXMXZ2dpqPf8stt5hr09LS\nzLVZWVkRjePKcGcJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLDccRLo\n7+83195www2mfb29veY5v/jiC3NtT0+Pqa6ystI85xNPPBF2PDMzU19//fWwMYtbb73VfPwLFy6Y\na0d7uyacxZ0lABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYsIJnEuju7jbXfvbZ\nZ2HHCwsLdfz48ZBtK7/fb649evSoqS4QCJjnHOn8//nPf2r37t0hY9dcY7t/KCgoMB//0UcfNde6\nXC5zLcYXd5YAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAcsdJyjri72k\nyJYbvvPOO2HHCwsLQ/a9//775jmnT59urs3NzTXV9fX1mec8e/ased/FixdNc544ccJ8/Ly8PHPt\nTTfdZK7F+OLOEgAMTGHZ0tKilStX6sCBA5KksrIyPfDAA1q3bp3WrVsX0V0GAExEY34M7+3t1fbt\n2+X1ekPGt2zZoqKiorg1BgCJZMw7y+TkZFVVVSknJ2c8+gGAhOQKBoNBS+Frr72mjIwMlZaWqqys\nTIFAQAMDA8rKylJ5ebkyMzPj3SsAOCaqp+EPPvig0tPTlZ+fr8rKSr3++uvatm1brHvDKCJ5Gv7N\nN9+Ya30+X9jxv/71r/rTn/40tJ2enm6e87vvvjPX1tfXm+pOnjxpnvP2228PO37kyBEVFxeHjFmf\nhnd2dpqP/5e//MVcu3btWnMtxldUT8O9Xq/y8/MlScXFxWppaYlpUwCQaKIKy40bN6q9vV2S1NDQ\noNmzZ8e0KQBINGN+DG9qatKuXbt0+vRpud1u1dTUqLS0VJs3b9aUKVPk8Xi0Y8eO8egVABwzZljO\nmzdPb7/99rDx3/3ud3FpCAASEcsdJ6hI3gI4depUc+1jjz1m2jcwMGCec+bMmeZa65sof/WrX5nn\nLCsrG3HfwoULQ7Z37dplmjOSr54ieRiHxMVyRwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCA5Y4TVGpqqrk2JSXFXOt2j/y/xHj8ulQk52X11FNPmfedOnXKNOcHH3xgPn4g\nEDDXInFxZwkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAas4JkERluVMxmM9nKz\ny/fNmjXLNGckq6IKCwvNtUhc3FkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABpN7HRwmhZ9//tm8z+v1mub85JNPzMe/4YYbzLVIXNxZAoABYQkABoQlABgQlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAYsd8RV78SJE2HHFy1aNGzf73//e9OcP/74o/n4t99+u7kWicsU\nlhUVFWpsbNSlS5e0YcMGzZ8/X88//7wGBweVnZ2tl19+WcnJyfHuFQAcM2ZYHjt2TK2trfL5fOrq\n6tKaNWvk9XpVUlKiVatW6ZVXXlF1dbVKSkrGo18AcMSY31kWFhbq1VdflSSlpaWpr69PDQ0NWrFi\nhSSpqKhI9fX18e0SABw2ZlgmJSXJ4/FIkqqrq3XnnXeqr69v6GN3VlaWAoFAfLsEAIeZH/AcPnxY\n1dXV2r9/v+65556h8WAwGJfGgFhZtGhRVPtGs379+mjbwQRlCsu6ujrt3btXb7zxhqZNmyaPx6P+\n/n6lpKTI7/crJycn3n0CUWtoaAg7vmjRomH7rOH5t7/9zXx8gvXqMObH8J6eHlVUVGjfvn1KT0+X\nJC1ZskQ1NTWSpNraWi1btiy+XQKAw8a8szx48KC6urq0efPmobGdO3fqhRdekM/n04wZM7R69eq4\nNgkAThszLB9++GE9/PDDw8bfeuutuDQEAImIFTxRunDhQtjx6667bti+6667zjyv9YGZy+UyzxmJ\n7u7usOPTp08P2Xf8+HHznP/5z3/Mtb98eDia3Nxc85yj/Te9fN/f//5305zLly83Hx9XB9aGA4AB\nYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAYsd4zSaEsYI1neeDnrMsaRliWG\n09vba65tbGwMO37//ferrq5uaPvQoUPmOTs7O821v/71r011P/30k3nO6dOnj7gvNTU1ZPu+++4z\nzfn/X+DC5MGdJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAcscJarQl\nfJdzu+2XOT8/37TvzJkz5jkjsXjxYlOddVmkJCUnJ4+4b968eSHbg4OD5nkxuXBnCQAGhCUAGBCW\nAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABq5gMBh0ugkASHTcWQKAAWEJAAaEJQAYEJYAYEBY\nAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGJhe+1dRUaHGxkZdunRJGzZs0JEjR9Tc3Kz09HRJ\n0uOPP67ly5fHs08AcNSYYXns2DG1trbK5/Opq6tLa9as0eLFi7VlyxYVFRWNR48A4Lgxw7KwsFAF\nBQWSpLS0NPX19fFuZQCTTkQ/0ebz+fTxxx8rKSlJgUBAAwMDysrKUnl5uTIzM+PZJwA4yhyWhw8f\n1r59+7R//341NTUpPT1d+fn5qqys1JkzZ7Rt27Z49woAjjE9Da+rq9PevXtVVVWladOmyev1Kj8/\nX5JUXFyslpaWuDYJAE4bMyx7enpUUVGhffv2DT393rhxo9rb2yVJDQ0Nmj17dny7BACHjfmA5+DB\ng+rq6tLmzZuHxh566CFt3rxZU6ZMkcfj0Y4dO+LaJAA4jXfwAIABK3gAwICwBAADwhIADAhLADAg\nLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAE\nAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAwO3EQV966SV9\n+umncrlc2rp1qwoKCpxoI6YaGhq0adMmzZ49W5J02223qby83OGuotfS0qKnn35ajz32mEpLS/X9\n99/r+eef1+DgoLKzs/Xyyy8rOTnZ6TYjcvk5lZWVqbm5Wenp6ZKkxx9/XMuXL3e2yQhVVFSosbFR\nly5d0oYNGzR//vwJf52k4ed15MgRx6/VuIflRx99pFOnTsnn86mtrU1bt26Vz+cb7zbiYuHChdqz\nZ4/TbVyx3t5ebd++XV6vd2hsz549Kikp0apVq/TKK6+ourpaJSUlDnYZmXDnJElbtmxRUVGRQ11d\nmWPHjqm1tVU+n09dXV1as2aNvF7vhL5OUvjzWrx4sePXatw/htfX12vlypWSpLy8PHV3d+v8+fPj\n3QZGkZycrKqqKuXk5AyNNTQ0aMWKFZKkoqIi1dfXO9VeVMKd00RXWFioV199VZKUlpamvr6+CX+d\npPDnNTg46HBXDoRlR0eHMjIyhrYzMzMVCATGu424+Oqrr/Tkk0/qkUce0Ycffuh0O1Fzu91KSUkJ\nGevr6xv6OJeVlTXhrlm4c5KkAwcOaP369Xr22Wf1ww8/ONBZ9JKSkuTxeCRJ1dXVuvPOOyf8dZLC\nn1dSUpLj18qR7yx/KRgMOt1CTMyaNUvPPPOMVq1apfb2dq1fv161tbUT8vuisVwt1+zBBx9Uenq6\n8vPzVVlZqddff13btm1zuq2IHT58WNXV1dq/f7/uueeeofGJfp1+eV5NTU2OX6txv7PMyclRR0fH\n0PbZs2eVnZ093m3EXG5uru699165XC7NnDlT119/vfx+v9NtxYzH41F/f78kye/3XxUfZ71er/Lz\n8yVJxcXFamlpcbijyNXV1Wnv3r2qqqrStGnTrprrdPl5JcK1GvewXLp0qWpqaiRJzc3NysnJUWpq\n6ni3EXPvvvuu3nzzTUlSIBBQZ2encnNzHe4qdpYsWTJ03Wpra7Vs2TKHO7pyGzduVHt7u6T/fSf7\n/79kmCh6enpUUVGhffv2DT0lvhquU7jzSoRr5Qo6cK++e/duffzxx3K5XHrxxRc1Z86c8W4h5s6f\nP6/nnntO586d08DAgJ555hndddddTrcVlaamJu3atUunT5+W2+1Wbm6udu/erbKyMl24cEEzZszQ\njh07dO211zrdqlm4cyotLVVlZaWmTJkij8ejHTt2KCsry+lWzXw+n1577TXdcsstQ2M7d+7UCy+8\nMGGvkxT+vB566CEdOHDA0WvlSFgCwETDCh4AMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIA\nDP4L5dVatmZX5GoAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54abdad550>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFDhJREFUeJzt3X9MVfUfx/HXjRvJTREhL8XKNIfB\n/JHZbonOFHU5bM6sPyqGruWarmmaK8ecWsuWic4t6w+Fb7qVs92N/sgtN8gsc4VUtFqwFWJpZAUX\nI8K8mtD9/tFiAhd43+u9nIs+H391P+fd57yPx16de8/93OMKhUIhAQD6dZ3TDQDAUEBYAoABYQkA\nBoQlABgQlgBgQFgCgAFhCQAGhCUAGLij/RdfeeUVffPNN3K5XNqwYYOmTJkSy74AIKFEFZaff/65\nTp8+Lb/fr5MnT2rDhg3y+/2x7g0AEkZUb8Orqqo0f/58SdL48ePV1tamc+fOxbQxAEgkUYVlS0uL\nRo0a1fU6PT1dgUAgZk0BQKKJyQ0efosDwNUuqrD0er1qaWnpet3c3KzRo0fHrCkASDRRheXMmTNV\nUVEhSaqrq5PX69Xw4cNj2hgAJJKo7oZPmzZNEydO1GOPPSaXy6UXXngh1n0BQEJx8eO/ADAwVvAA\ngAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAG\nhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCW\nAGBAWAKAAWEJAAaEJQAYEJYAYOB2ugEMTe3t7ebahoYGc+3kyZNNdW43f3UxuLiyBAADwhIADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA1coFAo53QTiK5LVNmfOnAk7npOTo++++67ba6tP\nPvnEXHvx4kVT3c0332yec+TIkWHHx4wZo59++qnb2KhRo0xzJiUlmffv8XjMtUhcXFkCgEFUC2yr\nq6u1Zs0aZWdnS5ImTJigTZs2xbQxAEgkUf8awb333qtdu3bFshcASFi8DQcAg6jDsqGhQStXrtTj\njz+uTz/9NJY9AUDCiepueFNTk2pqalRQUKDGxkYtW7ZMlZWVSk5OjkePAOC4qD6zzMzM1MKFCyX9\n+/WLm266SU1NTbrtttti2hxig68O8dUhXLmo3oYfPHhQb775piQpEAjo7NmzyszMjGljAJBIorqy\nnDt3rp577jl9+OGHunTpkl588UXeggO4qkUVlsOHD9fu3btj3QsAJCye+nQNaGxsNNcePXo07HhO\nTo4++uijbq+tfv75Z3NtX5+Z9jRx4kTznCdPngw7PmbMGH311VfdxgKBgGlOl8tl3v+kSZPMtXff\nfbe59oYbbjDX4srxPUsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgOWO\n14Dz58+ba/v7ibLLt33wwQfmOevq6sy1t956q6kukh9uqa+v73PbqVOnur22Lrf87bffzPu/fJno\nQLxer7l26dKlvcamTZvWawnn5MmTzXNef/315tprDVeWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABoQlABgQlgBgwAqea8DUqVPNtc3NzX1uS01N7frnlJQU85xLliwx17a3t5vqIlnB098Klp7b\nrrvOdv3Q2dlp3v/OnTvNtQsXLjTXvv/++73Gpk2b1mt82rRp5jnRN64sAcCAsAQAA8ISAAwISwAw\nICwBwICwBAADwhIADAhLADAgLAHAgLAEAAOWO14D4vHAso6ODvOcPR8K1p+bb77ZVGddFin132sw\nGOz2evbs2aY5n3nmGfP+n3/+eXPtX3/9Za5ta2szjfdVF87IkSPNtdcariwBwICwBAADwhIADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA5Y7XgMufyrjQPpbbnj5toaGBvOcf/zxh7n2119/\nNdXddddd5jlnzpzZ57aCgoJur5OSkkxz9vcUzJ62b99urt28ebO5tq8/g7y8vG6vWcIYG6Yry/r6\nes2fP1/79++X9O9f6KVLl6qwsFBr1qzR33//HdcmAcBpA4bl+fPntWXLlm7/t9q1a5cKCwt14MAB\n3X777SovL49rkwDgtAHDMjk5WWVlZfJ6vV1j1dXVmjdvniQpPz9fVVVV8esQABLAgJ9Zut1uud3d\ny4LBoJKTkyVJGRkZCgQC8ekOABLEFd/gCYVCsegDCWLcuHGmbf3VDSXWGzo9Xf5OK5ZeeumlK57j\nkUceiUEn6CmqsPR4PLpw4YKGDRumpqamuP3FweD78ccfw46PGzeu27ZI7oafPn3aXNvzx3j7Eou7\n4UlJSers7Ow1ZhHJ3fBI/vu40rvhjzzyiN59991eY7hyUX3PcsaMGaqoqJAkVVZWatasWTFtCgAS\nzYBXlrW1tdq2bZvOnDkjt9utiooK7dixQ8XFxfL7/crKytJDDz00GL0CgGMGDMtJkybp7bff7jW+\nb9++uDQEAImIFTzoxrqCJ5JvQHz//ffm2pycHHOtVX+fQ0Z7gyc9Pd1c+8EHH5hrFy1aZK7Nzs4O\nO/7f1/oQW6wNBwADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxY7ohu/vzz\nz7DjKSkp3bbdcMMN5jknTZpkrrX+nNs999xjnrOtrS3s+MiRI3ttsz7cq6Wlxbz/22+/3VwbycPl\n0tLSIhrHleHKEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBwhUKhkNNN\nIL4uXrxorrUuY/zhhx/Mc5aWlppr//rrL1PdP//8Y57zqaeeCjs+depUff31193GrMsdx40bZ96/\ndQmnFNnSSAwuriwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAB5ZdA/p6CFk4\np06dCjvu8/n0xRdfdHtt1dzcbK79+OOPTXWRPDDs999/Dzv+zjvvaNu2bd3GXC6Xac6pU6ea919U\nVGSuReLiyhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjEBUMBs21\ngUDAXPvee++FHff5fN22HT161DxnWlqaufaWW24x1VkfbCZJv/zyi3lbZ2enac5vv/3WvP8777zT\nXLt48WJzLQYXV5YAYGAKy/r6es2fP1/79++XJBUXF2vRokVaunSpli5dav7xAwAYqgZ8G37+/Hlt\n2bJFeXl53cbXrVun/Pz8uDUGAIlkwCvL5ORklZWVyev1DkY/AJCQXKFQKGQpfP311zVq1CgVFRWp\nuLhYgUBAly5dUkZGhjZt2qT09PR49woAjonqbvjixYuVlpam3NxclZaW6o033tDmzZtj3Rv6Ecnd\n8B9//NFce+DAgbDjL7/8sjZu3Nj1OpI73P3dje6purraVNfQ0GCeMycnJ+z40aNHNXv27G5j1rvh\nbW1t5v2//PLL5lruhieuqO6G5+XlKTc3V5I0d+5c1dfXx7QpAEg0UYXl6tWr1djYKOnfK4Hs7OyY\nNgUAiWbAt+G1tbXatm2bzpw5I7fbrYqKChUVFWnt2rVKSUmRx+PR1q1bB6NXAHDMgGE5adIkvf32\n273GFyxYEJeGACARsdxxiLI+hVCSbrzxRnPtk08+adr2999/m+e87bbbzLXWGydZWVnmOdevX9/n\ntvvuu6/b6+3bt5vm/O8ze4tIbgYhcbHcEQAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAAD\nwhIADAhLADBgueMQNWzYMHPtmDFjzLX9LaO84447zPNEK5KlmVarVq0yb/vv17QG8sknn5j339zc\nbK5F4uLKEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADFjBcw2I5OFmV6P+Hm7W\nc5t1lVJKSop5/z6fz1yLxMWVJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCW\nAGDAckdc9UKhkHnb9OnTTXN+/fXX5v17vV5zLRIXV5YAYEBYAoABYQkABoQlABgQlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAcsdcdXra2miz+frtW3RokWmOVtbW837z83NNdcicZnCsqSkRDU1Nero\n6NCKFSs0efJkrV+/Xp2dnRo9erS2b9+u5OTkePcKAI4ZMCyPHz+uEydOyO/3q7W1VUuWLFFeXp4K\nCwtVUFCgnTt3qry8XIWFhYPRLwA4YsDPLH0+n1577TVJUmpqqoLBoKqrqzVv3jxJUn5+vqqqquLb\nJQA4bMCwTEpKksfjkSSVl5fr/vvvVzAY7HrbnZGRoUAgEN8uAcBh5hs8hw8fVnl5ufbu3asHHnig\na7y/3woEEoHP54tqW3+WLVsWbTsYokxheezYMe3evVv/+9//NGLECHk8Hl24cEHDhg1TU1MTP26K\nhPbFF1+EHff5fL22WcPzrbfeMu+fYL06DPg2vL29XSUlJdqzZ4/S0tIkSTNmzFBFRYUkqbKyUrNm\nzYpvlwDgsAGvLA8dOqTW1latXbu2a+zVV1/Vxo0b5ff7lZWVpYceeiiuTQKA0wYMy0cffVSPPvpo\nr/F9+/bFpSEASESs4IlSR0dH2HG3291rm9s9dP6Y29vbw46PGDGi27a+PgcMp6amxly7YMECU90t\nt9xinjMSBw4cMNXNmTMnLvtH4mJtOAAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUA\nGBCWAGAwdNbhJZj+ljAOxvLGc+fOmWuDwaC59quvvgo7vmDBAn322Wddr99//33znGfPnjXXjh07\n1lQXyTGlpqb2uW348OHdXj/44IOmOUeOHGneP64OXFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaE\nJQAYEJYAYEBYAoABYQkABix3HKJ6LtPrTyTLL3Nzc03bmpqazHNG4r777jPVZWVlmefs7/h7Hm9n\nZ6d5XlxbuLIEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADVygUCjndBAAkOq4s\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMTI/9KykpUU1NjTo6\nOrRixQodOXJEdXV1SktLkyQtX75cc+bMiWefAOCoAcPy+PHjOnHihPx+v1pbW7VkyRJNnz5d69at\nU35+/mD0CACOGzAsfT6fpkyZIklKTU1VMBjk2coArjkR/USb3+/Xl19+qaSkJAUCAV26dEkZGRna\ntGmT0tPT49knADjKHJaHDx/Wnj17tHfvXtXW1iotLU25ubkqLS3Vb7/9ps2bN8e7VwBwjOlu+LFj\nx7R7926VlZVpxIgRysvLU25uriRp7ty5qq+vj2uTAOC0AcOyvb1dJSUl2rNnT9fd79WrV6uxsVGS\nVF1drezs7Ph2CQAOG/AGz6FDh9Ta2qq1a9d2jT388MNau3atUlJS5PF4tHXr1rg2CQBO4xk8AGDA\nCh4AMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAs\nAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQA\nA8ISAAwISwAwcDux01deeUXffPONXC6XNmzYoClTpjjRRkxVV1drzZo1ys7OliRNmDBBmzZtcrir\n6NXX1+vpp5/WE088oaKiIv36669av369Ojs7NXr0aG3fvl3JyclOtxmRnsdUXFysuro6paWlSZKW\nL1+uOXPmONtkhEpKSlRTU6OOjg6tWLFCkydPHvLnSep9XEeOHHH8XA16WH7++ec6ffq0/H6/Tp48\nqQ0bNsjv9w92G3Fx7733ateuXU63ccXOnz+vLVu2KC8vr2ts165dKiwsVEFBgXbu3Kny8nIVFhY6\n2GVkwh2TJK1bt075+fkOdXVljh8/rhMnTsjv96u1tVVLlixRXl7ekD5PUvjjmj59uuPnatDfhldV\nVWn+/PmSpPHjx6utrU3nzp0b7DbQj+TkZJWVlcnr9XaNVVdXa968eZKk/Px8VVVVOdVeVMId01Dn\n8/n02muvSZJSU1MVDAaH/HmSwh9XZ2enw105EJYtLS0aNWpU1+v09HQFAoHBbiMuGhoatHLlSj3+\n+OP69NNPnW4nam63W8OGDes2FgwGu97OZWRkDLlzFu6YJGn//v1atmyZnn32Wf3+++8OdBa9pKQk\neTweSVJ5ebnuv//+IX+epPDHlZSU5Pi5cuQzy8uFQiGnW4iJsWPHatWqVSooKFBjY6OWLVumysrK\nIfl50UCulnO2ePFipaWlKTc3V6WlpXrjjTe0efNmp9uK2OHDh1VeXq69e/fqgQce6Bof6ufp8uOq\nra11/FwN+pWl1+tVS0tL1+vm5maNHj16sNuIuczMTC1cuFAul0tjxozRTTfdpKamJqfbihmPx6ML\nFy5Ikpqamq6Kt7N5eXnKzc2VJM2dO1f19fUOdxS5Y8eOaffu3SorK9OIESOumvPU87gS4VwNeljO\nnDlTFRUVkqS6ujp5vV4NHz58sNuIuYMHD+rNN9+UJAUCAZ09e1aZmZkOdxU7M2bM6DpvlZWVmjVr\nlsMdXbnVq1ersbFR0r+fyf73TYahor29XSUlJdqzZ0/XXeKr4TyFO65EOFeukAPX6jt27NCXX34p\nl8ulF154QTk5OYPdQsydO3dOzz33nP78809dunRJq1at0uzZs51uKyq1tbXatm2bzpw5I7fbrczM\nTO3YsUPFxcW6ePGisrKytHXrVl1//fVOt2oW7piKiopUWlqqlJQUeTwebd26VRkZGU63aub3+/X6\n669r3LhxXWOvvvqqNm7cOGTPkxT+uB5++GHt37/f0XPlSFgCwFDDCh4AMCAsAcCAsAQAA8ISAAwI\nSwAwICwBwICwBAADwhIADP4PnjtVCj69XKgAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ab921b00>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFCtJREFUeJzt3X9MVfUfx/HXjSvpDYgfAkWKlVmS\nP8r8UdemX1GzYWv++Kdk4tpss7Wc5lxjTq1lZZK5Rf0hUralq+7GH801N5i50hxiMmeDVqhNI0q8\nGCkGFLL7/aPFRC7wvtd7ORd8Pv7qfs67z3nfHXp17j33c44rEAgEBADo0y1ONwAAgwFhCQAGhCUA\nGBCWAGBAWAKAAWEJAAaEJQAYEJYAYOAO91986623dPLkSblcLm3YsEGTJ0+OZF8AEFPCCstjx47p\n3Llz8vl8OnPmjDZs2CCfzxfp3gAgZoT1MbyyslLz58+XJI0dO1aXLl3SlStXItoYAMSSsMKyqalJ\nKSkpXa9TU1Pl9/sj1hQAxJqIXODhXhwAhrqwwjIjI0NNTU1dry9cuKD09PSINQUAsSassHz88cdV\nXl4uSaqtrVVGRoYSEhIi2hgAxJKwroY/8sgjmjBhgp599lm5XC69+uqrke4LAGKKi5v/AkD/WMED\nAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAY\nEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBY\nAoABYQkABoQlABgQlgBgQFgCgIHb6QYwOLW0tJhrT58+ba6dNGmSqc7t5k8XA4szSwAwICwBwICw\nBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMHAFAoGA000gukJZbdPQ0BB0fPz48frxxx+7vbb6\n9ttvzbV///23qS4rK8s8Z2JiYtDxUaNG6ddff+02lpKSYpozLi7OvP/hw4ebaxG7OLMEAIOwFthW\nVVVpzZo1GjdunCTp/vvv16ZNmyLaGADEkrDvRjBjxgwVFxdHshcAiFl8DAcAg7DD8vTp03rhhRe0\nbNkyHTlyJJI9AUDMCetqeGNjo6qrq5WXl6f6+nqtWLFCFRUVio+Pj0aPAOC4sL6zzMzM1MKFCyVJ\n2dnZGjlypBobGzV69OiINofI4KdD/HQINy6sj+H79u3TRx99JEny+/26ePGiMjMzI9oYAMSSsM4s\n586dq/Xr1+urr75SR0eHXnvtNT6CAxjSwgrLhIQE7dy5M9K9AEDM4qlPN4HevocM5tChQ0HHx48f\n321bKN9ZhrL/679D7M3Vq1fNc/7zzz9Bx0eNGqUTJ050G/P7/eZ5rSZMmGCuffjhh821t956azjt\nIEz8zhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwYLnjTaC9vd1cm5qa\natp28OBB85y1tbXm2uzsbFNdKDduqaur63Xb2bNnu70+d+6cac7z58+b919RUWGuDeXuXStWrOgx\nNnXqVFVXV3cbe+ihh8xzut1EQm84swQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAE\nAAN+rn8TCGUFR18rUxISErr+ecSIEeY5ly5daq69fPmyqS6UlSY5OTnmbdYHofX2ELRgiouLzbVP\nPPGEufbLL7/sMTZ16tQe41OnTjXPid5xZgkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKA\nAWEJAAaEJQAYsNzxJvDXX3+Za1NSUkzbOjs7zXP+/PPP5lrrA7suXbpknrOjo6PXba2trd1e5+bm\nmuZ8+eWXzftft26dufb6fvrS29LQ68dbWlrMcyYmJpprbzacWQKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABoQlABgQlgBgQFgCgAFhCQAGLHe8CVz7VMb+3HnnnaZtp06dMs/5559/mmt//fVXU93kyZPN\ncy5YsKDXbU899VS313FxcaY5L1y4YN7/jh07zLWbN2821z7yyCNBx2fNmtXtNUsYI8N0ZllXV6f5\n8+dr7969kqTff/9dBQUFys/P15o1a0J6LCgADEb9hmVra6u2bNkir9fbNVZcXKz8/Hx9+umnGjNm\njMrKyqLaJAA4rd+wjI+PV2lpqTIyMrrGqqqqNG/ePEn/3qWlsrIyeh0CQAzo9ztLt9stt7t7WVtb\nm+Lj4yVJaWlp8vv90ekOAGLEDV/gCQQCkegDMSI7O9u0ra+6wcR6Qed6137SiqTXX3/9hudYvHhx\nBDrB9cIKS4/Ho/b2dg0fPlyNjY1R+8PBwPvll1+CjmdnZ3fbFsrV8HPnzplrr1y5YqoL5Wr49VeH\n/xMXF9fjJsbRuBoeyn8fN3o1fPHixfriiy96jOHGhfU7y5kzZ6q8vFySVFFR0esfIwAMFf2eWdbU\n1Gjbtm1qaGiQ2+1WeXm5tm/frsLCQvl8PmVlZfF/LgBDXr9hOXHiRO3Zs6fH+McffxyVhgAgFrGC\nB9309cCwa7eF8p3dDz/8YK4dP368qc7lcpnn7Ot7yHAv8IwcOdJce/DgQXPtokWLzLX33Xdf0HHr\nQ9cQGtaGA4ABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAYsd0Q3ly9fDjqe\nnp7ebdv1N4Tuy8SJE8211tu5Pfroo+Y5W1pago4nJib22GZ9uFdTU5N5/2PGjDHXJiUlmWtvv/32\nkMZxYzizBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxcgUAg4HQTiK6O\njg5z7bBhw0x1Z86cMc9ZUlJirm1vbzfXWq1atSro+IQJE1RbW9ttLCEhwTRnKEsY6+vrzbWjR482\n12JgcWYJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGPLDsJtDbA7uC+fnnn4OO\nT5s2TcePH+/22iqUh3t9/fXXprrm5mbznH6/P+j4Z599pjfeeMM8z7WmTp1qri0oKAhrH4gtnFkC\ngAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABix3HKT++ecfc20oyw2/+OKL\noOPTpk3rtu2bb74xz5mSkmKuzcrKMtWFsoSzoaEhrG19+fHHH821Dz74oLl24cKF4bSDAcCZJQAY\nmMKyrq5O8+fP1969eyVJhYWFevrpp1VQUKCCggLzzQ8AYLDq92N4a2urtmzZIq/X22183bp1ys3N\njVpjABBL+j2zjI+PV2lpqTIyMgaiHwCISa5AIBCwFL7//vtKSUnR8uXLVVhYKL/fr46ODqWlpWnT\npk1KTU2Ndq8A4JiwroYvWrRIycnJysnJ0a5du/TBBx9o8+bNke4NfQjlavjZs2fNtZ988knQ8Tfe\neEMbN27seh3KFe7ffvvNXFtVVWWq++mnn8xz5uTkBB0/dOiQZs+ebZ7nWqFcjX/zzTfNtVwNj11h\nXQ33er1df4Bz585VXV1dRJsCgFgTVliuXr1a9fX1kv49Exg3blxEmwKAWNPvx/Camhpt27ZNDQ0N\ncrvdKi8v1/Lly7V27VqNGDFCHo9HW7duHYheAcAx/YblxIkTtWfPnh7jTz75ZFQaAoBYxHLHQcrl\ncplrPR6Pufb55583bWtvbzfPOXr0aHPtpUuXTHXWZZGStH79+l63zZgxo9vrd9991zTnpEmTzPu3\nvifENpY7AoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAYsdxykhg0bZq4d\nNWpURPZ59913R2Sevtx2220Rn3PNmjXmbdZ7bx46dMi8//Pnz5trEbs4swQAA8ISAAwISwAwICwB\nwICwBAADwhIADAhLADAgLAHAgLAEAANW8GDIu+uuu8zbxo4da5ozlIfATZs2zVyL2MWZJQAYEJYA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAckcMeYFAwLzN6/Wa5jxx4oR5/xkZ\nGeZaxC7OLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADljtiyPv++++D\njk+ZMqXHtoULF5rmvHjxonn/DzzwgLkWscsUlkVFRaqurtbVq1e1atUqTZo0Sa+88oo6OzuVnp6u\nd955R/Hx8dHuFQAc029YHj16VKdOnZLP51Nzc7OWLFkir9er/Px85eXlaceOHSorK1N+fv5A9AsA\njuj3O8vp06frvffekyQlJSWpra1NVVVVmjdvniQpNzdXlZWV0e0SABzWb1jGxcXJ4/FIksrKyjR7\n9my1tbV1fexOS0uT3++PbpcA4DDzBZ4DBw6orKxMu3fv1oIFC7rG+7pXIBALpkyZEta2vhQUFITb\nDgYpU1gePnxYO3fu1IcffqjExER5PB61t7dr+PDhamxs5OamiGm93ah3ypQpPbZZw3PPnj3m/ROs\nQ0O/H8NbWlpUVFSkkpISJScnS5Jmzpyp8vJySVJFRYVmzZoV3S4BwGH9nlnu379fzc3NWrt2bdfY\n22+/rY0bN8rn8ykrK0uLFy+OapMA4LR+w/KZZ57RM88802P8448/jkpDABCLWMETpt4ubLlcrh7b\nXC7XQLQUEX/99VfQ8dtuu63btu+++8485/Hjx821eXl5pro77rjDPGcoDyz7/PPPTXPOmTPHvH8M\nDawNBwADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxY7himvpYwDsTyxra2\ntqjUnjx5Muh4bm6ujh071vV637595jmbmprMtffee6+prrW11TxnYmJir9v+u7H1f6wPLEtKSjLv\nH0MDZ5YAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAgSvQ16PvMCR0dHSY\na/1+f9DxrKws/fbbb12vDx06ZJ4zlD+x2bNnm+ruvPNO85y33GI/J+js7DTVxcXFmefE0MCZJQAY\nEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGLCCBwAMOLMEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBwW4qKiopUXV2tq1evatWqVTp48KBqa2uVnJws\nSVq5cqXmzJkTzT4BwFH9huXRo0d16tQp+Xw+NTc3a8mSJXrssce0bt065ebmDkSPAOC4fsNy+vTp\nmjx5siQpKSlJbW1t5mcrA8BQEdIt2nw+n44fP664uDj5/X51dHQoLS1NmzZtUmpqajT7BABHmcPy\nwIEDKikp0e7du1VTU6Pk5GTl5ORo165dOn/+vDZv3hztXgHAMaar4YcPH9bOnTtVWlqqxMREeb1e\n5eTkSJLmzp2rurq6qDYJAE7rNyxbWlpUVFSkkpKSrqvfq1evVn19vSSpqqpK48aNi26XAOCwfi/w\n7N+/X83NzVq7dm3X2NKlS7V27VqNGDFCHo9HW7dujWqTAOA0nsEDAAas4AEAA8ISAAwISwAwICwB\nwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAAD\nwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADtxM7feut\nt3Ty5Em5XC5t2LBBkydPdqKNiKqqqtKaNWs0btw4SdL999+vTZs2OdxV+Orq6vTiiy/queee0/Ll\ny/X777/rlVdeUWdnp9LT0/XOO+8oPj7e6TZDcv17KiwsVG1trZKTkyVJK1eu1Jw5c5xtMkRFRUWq\nrq7W1atXtWrVKk2aNGnQHyep5/s6ePCg48dqwMPy2LFjOnfunHw+n86cOaMNGzbI5/MNdBtRMWPG\nDBUXFzvdxg1rbW3Vli1b5PV6u8aKi4uVn5+vvLw87dixQ2VlZcrPz3ewy9AEe0+StG7dOuXm5jrU\n1Y05evSoTp06JZ/Pp+bmZi1ZskRer3dQHycp+Pt67LHHHD9WA/4xvLKyUvPnz5ckjR07VpcuXdKV\nK1cGug30IT4+XqWlpcrIyOgaq6qq0rx58yRJubm5qqysdKq9sAR7T4Pd9OnT9d5770mSkpKS1NbW\nNuiPkxT8fXV2djrclQNh2dTUpJSUlK7Xqamp8vv9A91GVJw+fVovvPCCli1bpiNHjjjdTtjcbreG\nDx/ebaytra3r41xaWtqgO2bB3pMk7d27VytWrNDLL7+sP/74w4HOwhcXFyePxyNJKisr0+zZswf9\ncZKCv6+4uDjHj5Uj31leKxAION1CRNx999166aWXlJeXp/r6eq1YsUIVFRWD8vui/gyVY7Zo0SIl\nJycrJydHu3bt0gcffKDNmzc73VbIDhw4oLKyMu3evVsLFizoGh/sx+na91VTU+P4sRrwM8uMjAw1\nNTV1vb5w4YLS09MHuo2Iy8zM1MKFC+VyuZSdna2RI0eqsbHR6bYixuPxqL29XZLU2Ng4JD7Oer1e\n5eTkSJLmzp2ruro6hzsK3eHDh7Vz506VlpYqMTFxyByn699XLByrAQ/Lxx9/XOXl5ZKk2tpaZWRk\nKCEhYaDbiLh9+/bpo48+kiT5/X5dvHhRmZmZDncVOTNnzuw6bhUVFZo1a5bDHd241atXq76+XtK/\n38n+90uGwaKlpUVFRUUqKSnpuko8FI5TsPcVC8fKFXDgXH379u06fvy4XC6XXn31VY0fP36gW4i4\nK1euaP369bp8+bI6Ojr00ksv6X//+5/TbYWlpqZG27ZtU0NDg9xutzIzM7V9+3YVFhbq77//VlZW\nlrZu3aphw4Y53apZsPe0fPly7dq1SyNGjJDH49HWrVuVlpbmdKtmPp9P77//vu65556usbffflsb\nN24ctMdJCv6+li5dqr179zp6rBwJSwAYbFjBAwAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBY\nAoDB/wGuZmUzhiLAcwAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ab786dd8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAFBtJREFUeJzt3X9MVfUfx/HXlRvJFQhFIEmtZqhM\nUYu0kGmC9kNXM/3HJHVtblktJ1lrzInW3DLJ9cNqX5WytaztLv4ot9pg1mxqiMnMgj9CbRmZwoXI\nMK4mdL9/tFjIVd73ei/nos/HX93Pefc579uxl+eecz/nugKBQEAAgMsa5HQDADAQEJYAYEBYAoAB\nYQkABoQlABgQlgBgQFgCgAFhCQAG7nD/xZdeeklHjhyRy+XSmjVrNGnSpEj2BQAxJaywPHjwoE6c\nOCGv16vjx49rzZo18nq9ke4NAGJGWB/Dq6urNWfOHEnSmDFjdObMGZ09ezaijQFALAkrLFtaWjR0\n6NDu18OGDZPP54tYUwAQayJyg4dncQC42oUVlunp6Wppael+3dzcrLS0tIg1BQCxJqywzM/PV2Vl\npSSpvr5e6enpSkxMjGhjABBLwrobfscdd2jChAl65JFH5HK5tH79+kj3BQAxxcXDfwGgb6zgAQAD\nwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHA\ngLAEAAPCEgAMCEsAMCAsAcDA7XQDGJja29vNtceOHTPX5uTkmOrcbv7oon9xZgkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAauQCAQcLoJRFcoq21+/fXXoOPjxo3TDz/80OO11ddf\nf22uPX/+vKkuMzPTPGdycnLQ8REjRujUqVM9xm644QbTnHFxceb9X3/99eZaxC7OLAHAIKwFtjU1\nNVq1apWysrIkSWPHjlVpaWlEGwOAWBL20wimTZumLVu2RLIXAIhZfAwHAIOww/LYsWN64okntHjx\nYu3fvz+SPQFAzAnrbnhTU5Nqa2s1d+5cNTY2atmyZaqqqlJ8fHw0egQAx4V1zTIjI0Pz5s2TJI0e\nPVrDhw9XU1OTRo0aFdHmEBl8dYivDuHKhfUxfNeuXXr33XclST6fT62trcrIyIhoYwAQS8I6syws\nLNRzzz2nL774QhcuXNALL7zAR3AAV7WwwjIxMVFbt26NdC8AELP41adrwMXX5S5n3759QcfHjRvX\nY1so1yxD2f+JEydMdX///bd5zktdBx0xYoQOHz7cY8zn85nntRo/fry59vbbbzfX8mmuf/E9SwAw\nICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA5Y7XAOtjzyRp6NChpm179uwx\nz/n999+ba0ePHm2qC+URaT/++KN5208//WSaM5QlnJ999pm5NpSndz322GO9xnJzc1VbW9tjbPLk\nyeY53W4i4VI4swQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAO+rn8NyMnJMdc2\nNTVdcltycnL3PyckJJjnXLhwobn2zJkzprpQVvBc7sfVLt5mXe3k9/vN+3/77bfNtQUFBebaXbt2\n9RrLzc3tNZ6bm2ueE5fGmSUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBg\nwHLHa0BHR4e5NiUlxbSts7PTPOflfjDsYsOHDzfVtba2mufs6uq65LY///yzx+vZs2eb5nz22WfN\n+y8uLjbXhrKM8uzZs6bxS9UFk5iYaK691nBmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBY\nAoABYQkABoQlABiw3PEa4PF4zLU33nijadvRo0fNc1p/sVGyL42cPHmyec577rnnktsefPDBHq/d\nbtv/Ej6fz7z/119/3Vy7fv16c+0dd9wRdHzmzJk9XrOEMTJMZ5YNDQ2aM2eOdu7cKUk6deqUli5d\nqqKiIq1atUp//fVXVJsEAKf1GZYdHR3asGGD8vLyuse2bNmioqIiffTRR7r55ptVUVER1SYBwGl9\nhmV8fLzKy8uVnp7ePVZTU9P9dJaCggJVV1dHr0MAiAF9XqBxu929ruP4/X7Fx8dLklJTU0O6fgMA\nA9EV3+AJBAKR6AMxYuTIkaZtl6sbSKw3dC6WlpYW4U7+8eKLL17xHPPnz49AJ7hYWH9SPB6Pzp07\np8GDB6upqanHR3QMbL/88kvQ8ZEjR/bYFsrd8J9//tlca32obyTuhrvd7l4PMY7G3fBQgvVK74bP\nnz9fn376aa8xXLmwvmc5ffp0VVZWSpKqqqo0Y8aMiDYFALGmz79G6+rqtGnTJp08eVJut1uVlZXa\nvHmzSkpK5PV6lZmZqYcffrg/egUAx/QZlhMnTtQHH3zQa/y9996LSkMAEItYwYMeLnf9+b/bmpub\nzXMeOXLEXDt+/HhT3aBB9itIl7sOGe4NHusPq0nSnj17zLULFiww144ZMyboeGFhoXkO2LE2HAAM\nCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADBguSN6aG9vDzqempraY1soyw0n\nTJhgrrU+zi0/P988559//hl0fMiQIb22DRkyxDSn9VFyknTzzTeba2+44QZzbVJSUkjjuDKcWQKA\nAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGrkAgEHC6CURXV1eXuTYuLs5U\nd/z4cfOc//vf/8y1f/31l6kulOWWTz75ZNDxcePG6Ycffugx5vF4THOOGjXKvP+TJ0+aa2+66SZz\nLfoXZ5YAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAD5ZdAy71I2TBXGplTm5u\nrmpra3u8tvrtt9/MtV999ZWp7vfffzfP2dzcHHT8o48+0osvvmie57/uvPNOc+2yZcvC2gdiC2eW\nAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAHLHQeozs5Oc21LS4u59pNP\nPgk6npub22Pbnj17zHOmpqaaa0eOHGmqO3PmjHnOEydOmLdZf7CtoaHBvP+cnBxz7b333muuRf/i\nzBIADExh2dDQoDlz5mjnzp2SpJKSEj300ENaunSpli5dGtJZBgAMRH1+DO/o6NCGDRuUl5fXY3z1\n6tUqKCiIWmMAEEv6PLOMj49XeXm50tPT+6MfAIhJrkAgELAUvvnmmxo6dKiWLFmikpIS+Xw+Xbhw\nQampqSotLdWwYcOi3SsAOCasu+Hz589XSkqKsrOztX37dr311ltat25dpHvDZYRyN/ynn34y177/\n/vtBxzds2KDS0tLu1ykpKeY5T58+ba49ePCgqa6+vt4857hx44KO79+/X/n5+T3GrHfDOzo6zPvf\nuHGjuZa74bErrLvheXl5ys7OliQVFhaG9DUKABiIwgrLlStXqrGxUZJUU1OjrKysiDYFALGmz4/h\ndXV12rRpk06ePCm3263KykotWbJExcXFSkhIkMfjCeljBgAMRH2G5cSJE/XBBx/0Gr///vuj0hAA\nxCKWOw5QgwbZr6AMGTLEXPv444+btvn9fvOc1iWMkv1XGzMzM81zrl69+pLb7rrrrh6vX3vtNdOc\nU6ZMMe8/lF+3ROxiuSMAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgwHLH\nASqU5Y4jRoyIyD5HjRoVkXkux+PxRHzOZ555xrzN+uzNffv2mfff3NxsrkXs4swSAAwISwAwICwB\nwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMWMGDq95NN91k3nbbbbeZ5kxMTDTvPzc311yL2MWZ\nJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDAckdc9Vwul3nb9OnTTXMe\nPnzYvP+0tDRzLWIXZ5YAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAcsd\ncdU7cuRI0PEpU6b02vbAAw+Y5mxtbTXvPysry1yL2GUKy7KyMtXW1qqzs1MrVqxQTk6Onn/+eXV1\ndSktLU2vvPKK4uPjo90rADimz7A8cOCAjh49Kq/Xq7a2Ni1YsEB5eXkqKirS3Llz9eqrr6qiokJF\nRUX90S8AOKLPa5ZTp07VG2+8IUlKTk6W3+9XTU2NZs+eLUkqKChQdXV1dLsEAIf1GZZxcXHyeDyS\npIqKCs2cOVN+v7/7Y3dqaqp8Pl90uwQAh5lv8OzevVsVFRXasWOH7rvvvu7xQCAQlcaASJkyZUpY\n2y7n0UcfDbcdDFCmsNy7d6+2bt2qd955R0lJSfJ4PDp37pwGDx6spqYmpaenR7tPIGzffvtt0PEp\nU6b02mYNzw8//NC8f4L16tDnx/D29naVlZVp27ZtSklJkfTP06QrKyslSVVVVZoxY0Z0uwQAh/V5\nZvn555+rra1NxcXF3WMvv/yy1q5dK6/Xq8zMTD388MNRbRIAnNZnWC5atEiLFi3qNf7ee+9FpSEA\niEWs4EEPfr8/6HhCQkKPbd988415zlBq582bZ6rLyMgwzxmKjz/+2FQ3a9asqOwfsYu14QBgQFgC\ngAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAByx0HqPPnz5trz507Z6797rvvgo7P\nmDFDhw4d6n69a9cu85wtLS3mWuuPe3V0dJjnTEpKuuS2fx9s/S/rD5Zdbk5cnTizBAADwhIADAhL\nADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAxcgUAg4HQTiK6///7bXNva2hp0PC0tTT6f\nr/v13r17zXOG8kcsPz/fVHfjjTea5wyF9b/VoEGcZ1xrOOIAYEBYAoABYQkABoQlABgQlgBgQFgC\ngAFhCQAGhCUAGBCWAGDACh4AMODMEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIA\nDAhLADAgLAHAwG0pKisrU21trTo7O7VixQp9+eWXqq+vV0pKiiRp+fLlmjVrVjT7BABH9RmWBw4c\n0NGjR+X1etXW1qYFCxbo7rvv1urVq1VQUNAfPQKA4/oMy6lTp2rSpEmSpOTkZPn9fnV1dUW9MQCI\nJSE9os3r9erQoUOKi4uTz+fThQsXlJqaqtLSUg0bNiyafQKAo8xhuXv3bm3btk07duxQXV2dUlJS\nlJ2dre3bt+v06dNat25dtHsFAMeY7obv3btXW7duVXl5uZKSkpSXl6fs7GxJUmFhoRoaGqLaJAA4\nrc+wbG9vV1lZmbZt29Z993vlypVqbGyUJNXU1CgrKyu6XQKAw/q8wfP555+rra1NxcXF3WMLFy5U\ncXGxEhIS5PF4tHHjxqg2CQBO4zd4AMCAFTwAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUA\nGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBA\nWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBg4HZipy+99JKOHDkil8ulNWvWaNKkSU60\nEVE1NTVatWqVsrKyJEljx45VaWmpw12Fr6GhQU899ZQee+wxLVmyRKdOndLzzz+vrq4upaWl6ZVX\nXlF8fLzTbYbk4vdUUlKi+vp6paSkSJKWL1+uWbNmOdtkiMrKylRbW6vOzk6tWLFCOTk5A/44Sb3f\n15dffun4ser3sDx48KBOnDghr9er48ePa82aNfJ6vf3dRlRMmzZNW7ZscbqNK9bR0aENGzYoLy+v\ne2zLli0qKirS3Llz9eqrr6qiokJFRUUOdhmaYO9JklavXq2CggKHuroyBw4c0NGjR+X1etXW1qYF\nCxYoLy9vQB8nKfj7uvvuux0/Vv3+Mby6ulpz5syRJI0ZM0ZnzpzR2bNn+7sNXEZ8fLzKy8uVnp7e\nPVZTU6PZs2dLkgoKClRdXe1Ue2EJ9p4GuqlTp+qNN96QJCUnJ8vv9w/44yQFf19dXV0Od+VAWLa0\ntGjo0KHdr4cNGyafz9ffbUTFsWPH9MQTT2jx4sXav3+/0+2Eze12a/DgwT3G/H5/98e51NTUAXfM\ngr0nSdq5c6eWLVumZ555Rr/99psDnYUvLi5OHo9HklRRUaGZM2cO+OMkBX9fcXFxjh8rR65Z/lcg\nEHC6hYi45ZZb9PTTT2vu3LlqbGzUsmXLVFVVNSCvF/Xlajlm8+fPV0pKirKzs7V9+3a99dZbWrdu\nndNthWz37t2qqKjQjh07dN9993WPD/Tj9N/3VVdX5/ix6vczy/T0dLW0tHS/bm5uVlpaWn+3EXEZ\nGRmaN2+eXC6XRo8ereHDh6upqcnptiLG4/Ho3LlzkqSmpqar4uNsXl6esrOzJUmFhYVqaGhwuKPQ\n7d27V1u3blV5ebmSkpKumuN08fuKhWPV72GZn5+vyspKSVJ9fb3S09OVmJjY321E3K5du/Tuu+9K\nknw+n1pbW5WRkeFwV5Ezffr07uNWVVWlGTNmONzRlVu5cqUaGxsl/XNN9t9vMgwU7e3tKisr07Zt\n27rvEl8NxynY+4qFY+UKOHCuvnnzZh06dEgul0vr16/X+PHj+7uFiDt79qyee+45/fHHH7pw4YKe\nfvpp3XPPPU63FZa6ujpt2rRJJ0+elNvtVkZGhjZv3qySkhKdP39emZmZ2rhxo6677jqnWzUL9p6W\nLFmi7du3KyEhQR6PRxs3blRqaqrTrZp5vV69+eabuvXWW7vHXn75Za1du3bAHicp+PtauHChdu7c\n6eixciQsAWCgYQUPABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAb/B/PKUrVCdnLwAAAA\nAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ab941400>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAE/dJREFUeJzt3XtM1fUfx/HXicvghIQgkFZmI0wq\nnaVWx7IC6aKbM+2PkqnV+kNXmWSXMeelzZZKrk1qTaH0j1jtbGyVbm0wa5UZ4qBy4dZAV46ZHg6G\ntzwY0vn98Vss5AjvczyH7wGfj788n++7z/d9+tbL7+V8znEFg8GgAAADusbpBgBgOCAsAcCAsAQA\nA8ISAAwISwAwICwBwICwBAADwhIADBIj/QfffvttHTx4UC6XS6tXr9aUKVOi2RcAxJWIwvLAgQM6\nevSovF6vjhw5otWrV8vr9Ua7NwCIGxFdhtfX16u4uFiSlJeXp9OnT+vcuXNRbQwA4klEYdnR0aHR\no0f3vs7MzJTf749aUwAQb6LygIfv4gAw0kUUljk5Oero6Oh93d7eruzs7Kg1BQDxJqKwvP/++1Vb\nWytJOnTokHJycpSWlhbVxgAgnkT0NPzuu+/WHXfcoaeffloul0vr16+Pdl8AEFdcfPkvAAyOFTwA\nYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAB\nYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABoQl\nABgQlgBgQFgCgAFhCQAGhCUAGCQ63QCGp7Nnz5prW1tbzbVTpkwx1SUm8p8uhhZnlgBgQFgCgAFh\nCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYOAKBoNBp5tAbJ05c8Zc+8cff4QcnzRpkn799dc+\nr632799vru3q6jLV3XDDDeY509PTQ47n5ubK5/P1GbvuuutMcyYkJJj3n5SUZK5F/OLMEgAMIlpg\n29DQoJUrVyo/P1+SNHHiRK1duzaqjQFAPIn42wjuueceVVRURLMXAIhbXIYDgEHEYXn48GEtX75c\nixYt0r59+6LZEwDEnYiehvt8PjU1NWnOnDlqa2vT0qVLVVdXp+Tk5Fj0CACOi+ieZW5urubOnStJ\nGj9+vMaMGSOfz6ebbropqs0hOvjoEB8dwpWL6DJ8165d+uijjyRJfr9fJ0+eVG5ublQbA4B4EtGZ\nZVFRkV577TV99dVX6u7u1ptvvsklOIARLaKwTEtL07Zt26LdCwDELX716Spw4sQJc+0PP/wQcnzS\npEl9toVzzzKc/f/222+munCeS164cCHk+OOPP66ffvqpz5jf7zfPa3XbbbeZa++66y5zLfdChxaf\nswQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMWO54Fbh48aK5NjMz07Tt\nu+++M8/5yy+/mGvHjx9vqgvnK9KOHDli3mZdbnns2DHz/j///HNz7fXXX2+ufe655/qNTZ8+XY2N\njX3GwllCGc6/16sNZ5YAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGBCWAGDACp6rwO23\n326ubW9vv+y2jIyM3j+73W7znE8++aS59vTp0+Zaq7y8PPO28+fPm+Y8c+aMef+VlZXm2gceeMBc\n+8UXX/Qbmz59er/x6dOnm+fE5XFmCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkA\nBoQlABiw3PEq0NXVZa7975LGgbZ1d3eb5xzoB8MuNXr0aFNdR0eHec6BfrDt3LlzfV4XFxeb5nz9\n9dfN+3/55ZfNteEcq7/++ss0frm6UK699lpz7dWGM0sAMCAsAcCAsAQAA8ISAAwISwAwICwBwICw\nBAADwhIADAhLADAgLAHAgOWOV4GUlBRzbW5urmlba2urec5Tp06Za3/99VdT3eTJk81zzp49+7Lb\n5s+f3+d1UlKSaU6/32/ef0VFhbn2zTffNNdOmzYt5HhhYWGf1yxhjA7TmWVLS4uKi4tVXV0tSTp+\n/LiWLFmikpISrVy5Un///XdMmwQApw0alufPn9eGDRvk8Xh6xyoqKlRSUqJPPvlEN998s2pqamLa\nJAA4bdCwTE5OVlVVlXJycnrHGhoaei9tCgsLVV9fH7sOASAODHrPMjExUYmJfcsCgYCSk5MlSVlZ\nWWHdvwGA4eiKH/AEg8Fo9IE4MXbsWNO2geqGE+sDnUtlZ2dHuZP/C+cBz+XMmzfvyhtBPxGFpdvt\nVldXl1JSUuTz+fpcomN4O378eMjxsWPH9tkWztPwo0ePmmtPnDhhqovG0/CkpKR+X2Ici6fh4QTr\nlT4Nnzdvnnbv3t1vDFcuos9Zzpw5U7W1tZKkuro6zZo1K6pNAUC8GfTMsrm5WZs3b9axY8eUmJio\n2tpabdmyRWVlZfJ6vRo3bpyeeOKJoegVABwzaFjeeeed+vjjj/uN79y5MyYNAUA8YgUP+hjo/tp/\nt/l8PvOcP/74o7n21ltvNdVd+gmNgQx0H3IoHvDs3bvXXLtw4UJzbV5eXsjxoqIi8xywY204ABgQ\nlgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYMByR/Rx5syZkOOZmZl9toXzPaZ3\n3HGHufb333831V36o1wDCQQCIcdTU1P7bUtNTTXN2dnZad7/hAkTzLXp6enm2sv9EBk/UBYbnFkC\ngAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABYQkABq5gOOvWMCz9888/5tprrrH9\n/Xn48GHznB988IG5tqenx1SXkJBgnvPFF18MOZ6Xl6cjR470GbMudxw3bpx5/8ePHzfXjh071lyL\nocWZJQAYEJYAYEBYAoABYQkABoQlABgQlgBgQFgCgAFhCQAGhCUAGPCDZVeBy/0IWSiXrmj517Rp\n09TU1NTntdXp06fNtd9++23U52xvbw85Xl1drfXr1/cZs652mjFjhnn/zzzzjLkW8YszSwAwICwB\nwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA5Y7DlPWHvSTp5MmT5trPPvss5Pi0\nadP6bLMuS5SkMWPGmGtvvvlmU93BgwfNc15uCWeobUlJSVc856WmTp1qri0sLDTXYmhxZgkABqaw\nbGlpUXFxsaqrqyVJZWVlmjdvnpYsWaIlS5bom2++iWWPAOC4QS/Dz58/rw0bNsjj8fQZX7VqFZcM\nAK4ag55ZJicnq6qqSjk5OUPRDwDEJVcwGAxaCt977z2NHj1aixcvVllZmfx+v7q7u5WVlaW1a9cq\nMzMz1r0CgGMieho+f/58ZWRkqKCgQJWVlXr//fe1bt26aPeGAYTzNPz333831+7cuTPk+FtvvaU1\na9b0vg7nL0efz2eubWxsNNWF8zQ8Pz8/5Hh9fX2/20vWp+EXLlww73/Tpk3mWm5txa+InoZ7PB4V\nFBRIkoqKitTS0hLVpgAg3kQUlitWrFBbW5skqaGh4bJ/cwPASDHoZXhzc7M2b96sY8eOKTExUbW1\ntVq8eLFKS0uVmpoqt9utjRs3DkWvAOCYQcPyzjvv1Mcff9xv/LHHHotJQwAQj1juOEwlJCSYa9PS\n0sy1y5cvN20LBALmOW+88UZz7alTp0x1Y8eONc9ZWlp62W333ntvn9dbt241zRnOr1uGs9wU8Yvl\njgBgQFgCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoAByx2vArm5uVGZJ5xli5FK\nTU2N+pyvvvqqeVt7e7tpzn379pn3H873eSJ+cWYJAAaEJQAYEJYAYEBYAoABYQkABoQlABgQlgBg\nQFgCgAFhCQAGrODBiHfTTTeZt+Xn55vmHDVqlHn/4fy4GeIXZ5YAYEBYAoABYQkABoQlABgQlgBg\nQFgCgAFhCQAGhCUAGBCWAGBAWAKAAcsdgf944IEHTHU//vijec7s7OxI20Ec4cwSAAwISwAwICwB\nwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMGC5I0a8n3/+OeT41KlT+2175JFHTHN2dHSY\n95+Xl2euRfwyhWV5ebmampp08eJFLVu2TJMnT9Ybb7yhnp4eZWdn65133lFycnKsewUAxwwalvv3\n71dra6u8Xq86Ozu1YMECeTwelZSUaM6cOXr33XdVU1OjkpKSoegXABwx6D3LGTNmaOvWrZKk9PR0\nBQIBNTQ0aPbs2ZKkwsJC1dfXx7ZLAHDYoGGZkJAgt9stSaqpqdGDDz6oQCDQe9mdlZUlv98f2y4B\nwGHmBzx79uxRTU2NduzYoUcffbR3PBgMxqQxIFqmTp0a0baBLFq0KNJ2MEyZwnLv3r3atm2bPvzw\nQ40aNUput1tdXV1KSUmRz+dTTk5OrPsEIhbO03BreH766afm/ROsI8Ogl+Fnz55VeXm5tm/froyM\nDEnSzJkzVVtbK0mqq6vTrFmzYtslADhs0DPLL7/8Up2dnSotLe0d27Rpk9asWSOv16tx48bpiSee\niGmTAOC0QcPyqaee0lNPPdVvfOfOnTFpCADiESt40EdXV1fI8ZSUlD7bGhsbzXMeOHDAXDt37lxT\n3fXXX2+e0+VymbfV1NSY5nzooYfM+8fIwNpwADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8IS\nAAwISwAwICwBwIDljsNUd3e3ufZySxhDaW5uDjnu8Xj0008/9b7evXu3ec5wvhx64sSJprpAIGCe\nMy0t7bLb/v1i6389/vjjVzwnRibOLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwB\nwICwBAADVzAYDDrdBOLHqVOnQo5nZGT02fb999+b5/znn3/MtR6Px1SXnZ1tnjMc1v8dBvrFSIxM\nnFkCgAFhCQAGhCUAGBCWAGBAWAKAAWEJAAaEJQAYEJYAYEBYAoABK3gAwIAzSwAwICwBwICwBAAD\nwhIADAhLADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCAsAQAg0RLUXl5uZqamnTx4kUtW7ZMX3/9tQ4d\nOqSMjAxJ0vPPP6+HH344ln0CgKMGDcv9+/ertbVVXq9XnZ2dWrBgge677z6tWrVKhYWFQ9EjADhu\n0LCcMWOGpkyZIklKT09XIBBQT09PzBsDgHgS1le0eb1eNTY2KiEhQX6/X93d3crKytLatWuVmZkZ\nyz4BwFHmsNyzZ4+2b9+uHTt2qLm5WRkZGSooKFBlZaVOnDihdevWxbpXAHCM6Wn43r17tW3bNlVV\nVWnUqFHyeDwqKCiQJBUVFamlpSWmTQKA0wYNy7Nnz6q8vFzbt2/vffq9YsUKtbW1SZIaGhqUn58f\n2y4BwGGDPuD58ssv1dnZqdLS0t6xhQsXqrS0VKmpqXK73dq4cWNMmwQAp/EbPABgwAoeADAgLAHA\ngLAEAAPCEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPC\nEgAMCEsAMCAsAcCAsAQAA8ISAAwISwAwICwBwICwBAADwhIADAhLADAgLAHAgLAEAAPCEgAMCEsA\nMEh0Yqdvv/22Dh48KJfLpdWrV2vKlClOtBFVDQ0NWrlypfLz8yVJEydO1Nq1ax3uKnItLS164YUX\n9Oyzz2rx4sU6fvy43njjDfX09Cg7O1vvvPOOkpOTnW4zLJe+p7KyMh06dEgZGRmSpOeff14PP/yw\ns02Gqby8XE1NTbp48aKWLVumyZMnD/vjJPV/X19//bXjx2rIw/LAgQM6evSovF6vjhw5otWrV8vr\n9Q51GzFxzz33qKKiwuk2rtj58+e1YcMGeTye3rGKigqVlJRozpw5evfdd1VTU6OSkhIHuwxPqPck\nSatWrVJhYaFDXV2Z/fv3q7W1VV6vV52dnVqwYIE8Hs+wPk5S6Pd13333OX6shvwyvL6+XsXFxZKk\nvLw8nT59WufOnRvqNjCA5ORkVVVVKScnp3esoaFBs2fPliQVFhaqvr7eqfYiEuo9DXczZszQ1q1b\nJUnp6ekKBALD/jhJod9XT0+Pw105EJYdHR0aPXp07+vMzEz5/f6hbiMmDh8+rOXLl2vRokXat2+f\n0+1ELDExUSkpKX3GAoFA7+VcVlbWsDtmod6TJFVXV2vp0qV65ZVX9OeffzrQWeQSEhLkdrslSTU1\nNXrwwQeH/XGSQr+vhIQEx4+VI/cs/ysYDDrdQlRMmDBBL730kubMmaO2tjYtXbpUdXV1w/J+0WBG\nyjGbP3++MjIyVFBQoMrKSr3//vtat26d022Fbc+ePaqpqdGOHTv06KOP9o4P9+P03/fV3Nzs+LEa\n8jPLnJwcdXR09L5ub29Xdnb2ULcRdbm5uZo7d65cLpfGjx+vMWPGyOfzOd1W1LjdbnV1dUmSfD7f\niLic9Xg8KigokCQVFRWppaXF4Y7Ct3fvXm3btk1VVVUaNWrUiDlOl76veDhWQx6W999/v2prayVJ\nhw4dUk5OjtLS0oa6jajbtWuXPvroI0mS3+/XyZMnlZub63BX0TNz5sze41ZXV6dZs2Y53NGVW7Fi\nhdra2iT9/57sv59kGC7Onj2r8vJybd++vfcp8Ug4TqHeVzwcK1fQgXP1LVu2qLGxUS6XS+vXr9ek\nSZOGuoWoO3funF577TWdOXNG3d3deumll/TQQw853VZEmpubtXnzZh07dkyJiYnKzc3Vli1bVFZW\npgsXLmjcuHHauHGjkpKSnG7VLNR7Wrx4sSorK5Wamiq3262NGzcqKyvL6VbNvF6v3nvvPd1yyy29\nY5s2bdKaNWuG7XGSQr+vhQsXqrq62tFj5UhYAsBwwwoeADAgLAHAgLAEAAPCEgAMCEsAMCAsAcCA\nsAQAA8ISAAz+B+D4VaY9z4a5AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ab619780>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAE+NJREFUeJzt3X9sVfX9x/HXXctde6V4S21rWFQc\ngdCoYCYUioHR0jEhWxSzRG2AmfgHxsBgxLmG8GMLi0glJoJZgA78A7J5k5psZjNpw8wypm0JLCNr\nk60VDesI3rZYoYxW29rvH/uusXBpX/fS23tbno//7ue8/Zz35ciLc+65n3sCg4ODgwIAjOhrqW4A\nACYCwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAENmov/hyy+/rLNnzyoQCGjbtm2aN2/eWPYF\nAGklobA8deqUzp8/r0gkonPnzmnbtm2KRCJj3RsApI2ELsPr6+tVXl4uSZo1a5YuX76sq1evjmlj\nAJBOEgrLzs5O5ebmDr2ePn26Ojo6xqwpAEg3Y3KDh9/iADDZJRSWBQUF6uzsHHrd3t6u/Pz8MWsK\nANJNQmH56KOPqra2VpLU3NysgoICTZ06dUwbA4B0ktDd8G9961t64IEH9PTTTysQCGjXrl1j3RcA\npJUAP/4LAKNjBQ8AGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwB\nwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhL\nADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMmaluAMk3ODho1wYCAauuu7vbnrOlpcWunT9/vlWX\nmcn/uhhfnFkCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIFlELeBK1eu2LUXL16M\nOT537lz94x//GPba1d/fb9e+//77Vt0999xjz5mTkxNzPD8/Xx0dHcPGpk2bZs0ZzwqijIwMuxbp\nizNLADAkdGbZ2NiozZs3a/bs2ZKkOXPmaMeOHWPaGACkk4Qvw4uLi7V///6x7AUA0haX4QBgSDgs\nP/zwQz3//PN65pln7A/lAWCiCgzG82OH/y8ajerMmTNatWqV2tratH79etXV1SkYDCajRwBIuYQ+\nsywsLNTq1aslSffee6/uuusuRaPRuL7OgfFz+fJluzYZXx1qbGy0a3t7e606vjqE8ZbQZfg777yj\nI0eOSJI6Ojp06dIlFRYWjmljAJBOEjqzLCsr04svvqg//vGP6uvr089+9jMuwQFMagmF5dSpU3Xw\n4MGx7gUA0hbLHW8D7e3tdm1DQ0PM8blz5w7bFs9nltFo1K796KOP7FpXX19fzPHy8nKdPXt22Fg8\nf1au/y3ecDz88MN27ZQpUxJpBwnie5YAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYA\nYCAsAcDAcsfbwMDAgF2bm5trbfvLX/5iz/n3v//drp05c6ZV97Wv+f/Ot7a2xhwvLy+/Ydu5c+es\nOf/973/b++/p6bFrv/GNb9i1zz777A1jxcXFOnXq1LCxBQsW2HPG8+d6u+FPBgAMhCUAGAhLADAQ\nlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMrOC5DcTzcLGRHtj11RU8d9xxhz3nD37wA7v2s88+s+q+\n/PJLe86RVgVdv+3KlSvWnJ9++qm9/7feesuuXbRokV0ba7VVcXGxfve7390whlvHmSUAGAhLADAQ\nlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADCw3PE28MUXX9i14XDY2hbPQ9A++ugjuzYn\nJ8eqi0aj9pz9/f033Xb98sbvfOc71pw//elP7f1v3LjRrv3888/t2ps9CO368WvXrtlzhkIhu/Z2\nw5klABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwBAYHBwdT3QTSx82e7lhQ\nUDBs2z//+U97zra2Nrv2X//6l1X3wAMP2HM+9thjMcenTJmivr6+G8Ycly5dsvefl5dn1/785z+3\nax955JEbxr73ve/p97///Q1juHXWmWVLS4vKy8t1/PhxSdLFixe1bt06VVRUaPPmzXGtPQaAiWjU\nsLx27Zp2796tkpKSobH9+/eroqJCv/71r3XfffeppqYmqU0CQKqNGpbBYFDV1dUqKCgYGmtsbNSK\nFSskSaWlpaqvr09ehwCQBkb9ibbMzExlZg4v6+npUTAYlPTfz2M6OjqS0x0ApIlb/j1L7g9NLl+9\nghhp20h1E4l7Q+d68dy0iceuXbtueQ5u6CRHQmEZCoXU29urrKwsRaPRSfMXB9wN5244biah71ku\nWbJEtbW1kqS6ujotXbp0TJsCgHQz6pllU1OT9u7dqwsXLigzM1O1tbXat2+fKisrFYlENGPGDD3x\nxBPj0SsApMyoYfnggw/q2LFjN4y/+eabSWkIANIRK3gwzM0eRJaRkTFsW3Nzsz3nkSNH7NpZs2ZZ\ndXPmzLHnvNlnluPlgw8+sGvvvPNOu/ab3/zmDWPZ2dk3PLAsOzvbnhM3x9pwADAQlgBgICwBwEBY\nAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBguOXfs8Tk0t3dHXM8HA4P23b9T5uNJJ6fU/v444+t\nupUrV9pz9vb2xhzPysq6YVtWVpY15+XLl+39z5w5067Nycmxa2+2jJHljcnBmSUAGAhLADAQlgBg\nICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADDwdEckpLW11a795S9/add++eWXVl0wGLTn3Lhx\nY8zx++67T+fPnx829vWvf92a8+6777b3H41G7drCwkK7FuOLM0sAMBCWAGAgLAHAQFgCgIGwBAAD\nYQkABsISAAyEJQAYCEsAMPDAsttAPA/XutnKnAULFuj06dPDXruuXLli1548edKqu9mD1WL55JNP\nYo4fO3ZM27dvHzY2MDBgzbl48WJ7/z/84Q/tWqQvziwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhL\nADAQlgBgICwBwEBYAoCB5Y4TVDzPmbt06ZJd+9vf/jbm+IIFC4Zt+/Of/2zPmZ+fb9fOnDnTqvvr\nX/9qz9nS0mJvcx9Y9pvf/Mbe/8MPP2zXLlu2zK7F+OLMEgAMVli2tLSovLxcx48flyRVVlbq+9//\nvtatW6d169bpT3/6UzJ7BICUG/Uy/Nq1a9q9e7dKSkqGjW/dulWlpaVJawwA0smoZ5bBYFDV1dUq\nKCgYj34AIC0FBs07BQcOHFBubq7Wrl2ryspKdXR0qK+vT3l5edqxY4emT5+e7F4BIGUSuhv++OOP\nKxwOq6ioSIcPH9Ybb7yhnTt3jnVvGEE8d8M//vhju/bo0aMxx3/xi18M+6HceP5xbG9vt2vdu9zx\n3A2fNWtWzPHGxkYtWrRo2Jh7N7yvr8/e/969e+1a7oanr4TuhpeUlKioqEiSVFZWNuJXMwBgMkgo\nLDdt2qS2tjZJ//3Xefbs2WPaFACkm1Evw5uamrR3715duHBBmZmZqq2t1dq1a7VlyxZlZ2crFApp\nz54949ErAKTMqGH54IMP6tixYzeMf/e7301KQwCQjljuOEEFAgG7Nicnx6594YUXrG3/+c9/7Dnv\nueceu/azzz6z6u6++257zh/96Ec33Xb9DZ4DBw5YcxYXF9v77+zstGuRvljuCAAGwhIADIQlABgI\nSwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADCx3vA3E83TFkcyYMWNM5hlJPMsYXT/5yU/sbe7S\nxA8++MDefzQatWuRvjizBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADK3gw6Y30\nwLTrt82ZM8eaMxwO2/t/5JFH7FqkL84sAcBAWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAs\nAcBAWAKAgeWOwFcsW7bMqjt9+rQ951g9MA6pxZklABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAG\nwhIADIQlABgISwAwsNwRk97Zs2djjs+fP/+GbWVlZdac7e3t9v7vv/9+uxbpywrLqqoqnTlzRv39\n/dqwYYMeeughvfTSSxoYGFB+fr5effVVBYPBZPcKACkzalg2NDSotbVVkUhEXV1dWrNmjUpKSlRR\nUaFVq1bptddeU01NjSoqKsajXwBIiVE/s1y4cKFef/11SdK0adPU09OjxsZGrVixQpJUWlqq+vr6\n5HYJACk2alhmZGQoFApJkmpqarRs2TL19PQMXXbn5eWpo6MjuV0CQIrZN3hOnDihmpoaHT16VCtX\nrhwaHxwcTEpjwFiZP39+QttG8vTTTyfaDiYoKyxPnjypgwcP6le/+pVycnIUCoXU29urrKwsRaNR\nFRQUJLtPIGHx3A13w/Ott96y90+wTg6jXoZ3d3erqqpKhw4dUjgcliQtWbJEtbW1kqS6ujotXbo0\nuV0CQIqNemb57rvvqqurS1u2bBkae+WVV7R9+3ZFIhHNmDFDTzzxRFKbBIBUGzUsn3rqKT311FM3\njL/55ptJaQgA0hEreDDMF198EXM8GAwO2xbPA7saGxvt2tWrV1t1hYWF9pyBQMDe9vbbb1tzLl++\n3N4/JgfWhgOAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAAPLHSeogYEBu7a3\nt9eubW5ujjleXFysv/3tb0Ov//CHP9hzxvNwr6KiIquup6fHnvOOO+646bbs7Oxhrx977LFbnhOT\nE2eWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAEBgcHBxMdRNIH93d3THH\nc3Jyhm1raGiw54xnaeaiRYusutzcXHvOeLh/HUZ6YiQmJ84sAcBAWAKAgbAEAANhCQAGwhIADIQl\nABgISwAwEJYAYCAsAcDACh4AMHBmCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAG\nwhIADIQlABgynaKqqiqdOXNG/f392rBhg9577z01NzcrHA5Lkp577jktX748mX0CQEqNGpYNDQ1q\nbW1VJBJRV1eX1qxZo8WLF2vr1q0qLS0djx4BIOVGDcuFCxdq3rx5kqRp06app6cnrudAA8BkENdP\ntEUiEZ0+fVoZGRnq6OhQX1+f8vLytGPHDk2fPj2ZfQJAStlheeLECR06dEhHjx5VU1OTwuGwioqK\ndPjwYX3yySfauXNnsnsFgJSx7oafPHlSBw8eVHV1tXJyclRSUqKioiJJUllZmVpaWpLaJACk2qhh\n2d3draqqKh06dGjo7vemTZvU1tYmSWpsbNTs2bOT2yUApNioN3jeffdddXV1acuWLUNjTz75pLZs\n2aLs7GyFQiHt2bMnqU0CQKrxDB4AMLCCBwAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbC\nEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCB\nsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwJCZip2+/PLLOnv2rAKBgLZt26Z58+aloo0x1djY\nqM2bN2v27NmSpDlz5mjHjh0p7ipxLS0teuGFF/Tss89q7dq1unjxol566SUNDAwoPz9fr776qoLB\nYKrbjMv176myslLNzc0Kh8OSpOeee07Lly9PbZNxqqqq0pkzZ9Tf368NGzbooYcemvDHSbrxfb33\n3nspP1bjHpanTp3S+fPnFYlEdO7cOW3btk2RSGS820iK4uJi7d+/P9Vt3LJr165p9+7dKikpGRrb\nv3+/KioqtGrVKr322muqqalRRUVFCruMT6z3JElbt25VaWlpirq6NQ0NDWptbVUkElFXV5fWrFmj\nkpKSCX2cpNjva/HixSk/VuN+GV5fX6/y8nJJ0qxZs3T58mVdvXp1vNvACILBoKqrq1VQUDA01tjY\nqBUrVkiSSktLVV9fn6r2EhLrPU10Cxcu1Ouvvy5JmjZtmnp6eib8cZJiv6+BgYEUd5WCsOzs7FRu\nbu7Q6+nTp6ujo2O820iKDz/8UM8//7yeeeYZvf/++6luJ2GZmZnKysoaNtbT0zN0OZeXlzfhjlms\n9yRJx48f1/r16/XjH/9Yn376aQo6S1xGRoZCoZAkqaamRsuWLZvwx0mK/b4yMjJSfqxS8pnlVw0O\nDqa6hTExc+ZMbdy4UatWrVJbW5vWr1+vurq6Cfl50WgmyzF7/PHHFQ6HVVRUpMOHD+uNN97Qzp07\nU91W3E6cOKGamhodPXpUK1euHBqf6Mfpq++rqakp5cdq3M8sCwoK1NnZOfS6vb1d+fn5493GmCss\nLNTq1asVCAR077336q677lI0Gk11W2MmFAqpt7dXkhSNRifF5WxJSYmKiookSWVlZWppaUlxR/E7\nefKkDh48qOrqauXk5Eya43T9+0qHYzXuYfnoo4+qtrZWktTc3KyCggJNnTp1vNsYc++8846OHDki\nSero6NClS5dUWFiY4q7GzpIlS4aOW11dnZYuXZrijm7dpk2b1NbWJum/n8n+75sME0V3d7eqqqp0\n6NChobvEk+E4xXpf6XCsAoMpOFfft2+fTp8+rUAgoF27dmnu3Lnj3cKYu3r1ql588UVduXJFfX19\n2rhxo7797W+nuq2ENDU1ae/evbpw4YIyMzNVWFioffv2qbKyUp9//rlmzJihPXv2aMqUKalu1Rbr\nPa1du1aHDx9Wdna2QqGQ9uzZo7y8vFS3aotEIjpw4IDuv//+obFXXnlF27dvn7DHSYr9vp588kkd\nP348pccqJWEJABMNK3gAwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBg+D/LDWiW2ZFRjgAA\nAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54ab5cc048>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| }, | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUsAAAFKCAYAAACU6307AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAE8FJREFUeJzt3XFslPUdx/FPbe3KSUvp2XYhQyUE\npRP7B1JCISgHhK26ReGPORtgW/wDs0FgxLiGAS5jEanERNQEqGKiZNkljSb+gWnDzDIi5QjNwtK6\nWcCMNATLFQq0ozBabn8sa6wc9HPHXe9a3q//7vd8+T3fJ0/8+Dz39PdcTiwWiwkAcFv3ZLoBABgL\nCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAx5yf7DV199VcePH1dOTo42bdqkysrKVPYFAFkl\nqbA8evSoTp8+rXA4rFOnTmnTpk0Kh8Op7g0AskZSt+EtLS1aunSpJGn69Om6dOmS+vr6UtoYAGST\npMKyu7tbkydPHvpcUlKiaDSasqYAINuk5AEP7+IAMN4lFZZlZWXq7u4e+nzu3DmVlpamrCkAyDZJ\nheWCBQvU1NQkSWpvb1dZWZkmTpyY0sYAIJsk9TR89uzZevTRR/XTn/5UOTk5euWVV1LdFwBklRxe\n/gsAI2MFDwAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgC\ngIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCW\nAGAgLAHAQFgCgIGwBAADYQkABsISAAx5mW4A6Xfjxg279p57vP9/9vb22nN2dHTYtZWVlVbdvffe\na88JpAJXlgBgICwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgYAXPXeDy5ct27ddffx13\nfObMmfrnP/857LNrYGDArm1pabHqHnjgAXvOoqKiuOMlJSW6cOHCsLHCwkJrzrw8/z+dnJwcuxbZ\niytLADAkdWUZiUS0fv16zZgxQ5L08MMPa8uWLSltDACySdK34XPnztWuXbtS2QsAZC1uwwHAkHRY\nnjx5Ui+++KKef/55ff7556nsCQCyTk4sFosl+o+6urrU2tqqmpoadXZ2avXq1WpublZ+fn46egSA\njEvqO8vy8nI99dRTkv73Jxz333+/urq6NHXq1JQ2h9S4ePGiXZuOPx2KRCJ27bVr16w6/nQIoy2p\n2/BPPvlE7733niQpGo3q/PnzKi8vT2ljAJBNkrqyXLx4sV566SX9+c9/1vXr1/W73/2OW3AA41pS\nYTlx4kTt3r071b0AQNZiueNdIBqN2rW3+n5x5syZw7Yl8p1lIvs/efKkXesaHByMOx4KhXT8+PFh\nY+fOnUv5/v+/eMPh/mCblNj3prhz/J0lABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADIQl\nABgISwAwsF7qLnDjxg27tqSkxNp2+PBhe8729na71n31Wm5urj3nF198EXc8FArpyy+/HDZ26tQp\na87Ozk57/319fXZtIq85/MUvfnHT2Ny5c3X06NFhY1VVVfacvE7u1riyBAADYQkABsISAAyEJQAY\nCEsAMBCWAGAgLAHAQFgCgIGwBAADK3juAo888ohd293dfctt31zBc99999lzrlixwq69ePGiVTcw\nMGDPebtVQd/e5u4/kR82+9Of/mTXzpkzx66dNGnSTWNz587VRx99dNMY7hxXlgBgICwBwEBYAoCB\nsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwMByx7tAIksDi4uLrW2JzPnVV1/ZtYFAwKo7c+aM\nPWcsFrvltkuXLg37vGzZMmvOuro6e/+/+tWv7Npr167Ztf/5z3+s8f7+fnvOCRMm2LV3G64sAcBA\nWAKAgbAEAANhCQAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAISd2u7VguOucP38+7ngwGBy27csv\nv7TnPH36tF176tQpq+773/++PeePfvSjuOP5+fk3LQ3Mz8+35rxw4YK9/2/+KuZIfv/739u1VVVV\nN43V1NTo008/vWkMd866suzo6NDSpUu1f/9+SdLZs2e1atUq1dbWav369bdcowoA48WIYXnlyhVt\n27ZN1dXVQ2O7du1SbW2t/vjHP+rBBx9UY2NjWpsEgEwbMSzz8/PV0NCgsrKyobFIJKIlS5ZIkkKh\nkFpaWtLXIQBkgRFf0ZaXl6e8vOFl/f39Q9/tBINBRaPR9HQHAFnijt9nyfOh8SUYDFrb5s+fb8+Z\nSO1ocx/ofFsiD20SsXXr1juegwc66ZFUWAYCAV29elUFBQXq6uoadouOsY2n4TwNR3xJ/Z3l/Pnz\n1dTUJElqbm7WwoULU9oUAGSbEa8s29ratGPHDp05c0Z5eXlqamrSzp07VVdXp3A4rClTpujZZ58d\njV4BIGNGDMtZs2bpww8/vGn8/fffT0tDAJCN+MEyDHO779e+ua2oqMie8/Dhw3bttGnTrLqCggJ7\nztt9DzkaD3gikYhd+5Of/MSufeihh+KOh0Ihew74WBsOAAbCEgAMhCUAGAhLADAQlgBgICwBwEBY\nAoCBsAQAA2EJAAbCEgAMLHfEMJcvX447PmnSpGHbrl27Zs/56KOP2rVfffWVVff000/bc97qN6Lu\n5BVtvb299v5vtSwxnokTJ9q1t1rymchSUPi4sgQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBY\nAoCBsAQAA2EJAIacWCwWy3QTGHtOnDhh177zzjsp3/93vvMdu3bt2rVxx6dOnarOzs5hY+5SwdLS\nUnv/0WjUrk1kXowuriwBwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwMAPlt0FLl26\nZNeePHky7vjjjz+u1tbWYZ9dfX19du2hQ4dSPufZs2fjjn/wwQf67W9/O2xscHDQmnPevHn2/n/2\ns5/ZtcheXFkCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADyx3vAj09PXbt\nxx9/HHf88ccfH7btr3/9qz1neXm5XTt9+nSrLhKJ2HN+8cUX9rZAIGDNefr0aXv/s2fPtmsXLFhg\n12J0cWUJAAYrLDs6OrR06VLt379fklRXV6cf//jHWrVqlVatWqW//OUv6ewRADJuxNvwK1euaNu2\nbaqurh42vnHjRoVCobQ1BgDZZMQry/z8fDU0NKisrGw0+gGArJQTi8ViTuFbb72lyZMna+XKlaqr\nq1M0GtX169cVDAa1ZcsWlZSUpLtXAMiYpJ6GP/PMMyouLlZFRYX27t2rt99+W1u3bk11b0iRf/3r\nX3btu+++G3f8D3/4gzZv3jz0ORgM2nN2d3fbtX/729+sukSehk+bNi3u+LFjxzRnzpxhY+7T8Bs3\nbtj737Fjh13L0/DsldTT8OrqalVUVEiSFi9erI6OjpQ2BQDZJqmwXLdunTo7OyX97//wM2bMSGlT\nAJBtRrwNb2tr044dO3TmzBnl5eWpqalJK1eu1IYNGzRhwgQFAgFt3759NHoFgIwZMSxnzZqlDz/8\n8KbxH/zgB2lpCACyEcsd7wKFhYV27dq1a61t//73v+05v/e979m1Fy9etOoSWUJ5u2P69q80vvPO\nO9acify6YzQatWuRvVjuCAAGwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADCx3\nvAsk8u7J2/nud7+bknluJ5FljK7f/OY39rYLFy5Ycx4+fNje/7lz5+xaZC+uLAHAQFgCgIGwBAAD\nYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAwAoejHtTp061tz3yyCPWnCUlJfb+Z8+ebdcie3FlCQAG\nwhIADIQlABgISwAwEJYAYCAsAcBAWAKAgbAEAANhCQAGwhIADCx3BL7hySeftOqOHTtmz1laWpps\nO8giXFkCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADyx0x7v3973+PO15Z\nWXnTtkWLFllzdnV12ft/8MEH7VpkLyss6+vr1draqoGBAa1Zs0aPPfaYXn75ZQ0ODqq0tFSvv/66\n8vPz090rAGTMiGF55MgRnThxQuFwWD09PVq+fLmqq6tVW1urmpoavfHGG2psbFRtbe1o9AsAGTHi\nd5ZVVVV68803JUlFRUXq7+9XJBLRkiVLJEmhUEgtLS3p7RIAMmzEsMzNzVUgEJAkNTY26oknnlB/\nf//QbXcwGFQ0Gk1vlwCQYfYDnoMHD6qxsVH79u3TsmXLhsZjsVhaGgNSpbKyMqltt/Pcc88l2w7G\nKCssDx06pN27d+vdd99VYWGhAoGArl69qoKCAnV1damsrCzdfQJJS+RpuBue4XDY3j/BOj6MeBve\n29ur+vp67dmzR8XFxZKk+fPnq6mpSZLU3NyshQsXprdLAMiwEa8sDxw4oJ6eHm3YsGFo7LXXXtPm\nzZsVDoc1ZcoUPfvss2ltEgAybcSwfO655+LeRrz//vtpaQgAshEreDDMwMBA3PG8vLxh2xL5wa5E\n/rTs6aefturKy8vtOe+559bfNn1720cffWTNGQqF7P1jfGBtOAAYCEsAMBCWAGAgLAHAQFgCgIGw\nBAADYQkABsISAAyEJQAYCEsAMLDccYxK5D2iV69etWv/8Y9/xB2fPXv2sNeZHThwwJ4zkR/3mjVr\nllXX399vz3nffffdcltBQcGwzz/84Q+tOf//QmzcPbiyBAADYQkABsISAAyEJQAYCEsAMBCWAGAg\nLAHAQFgCgIGwBAADYQkAhpxYIuvmMO5duXIl7nggEBi2LRKJ2HPeuHHDrp0zZ45VN2nSJHtOIBW4\nsgQAA2EJAAbCEgAMhCUAGAhLADAQlgBgICwBwEBYAoCBsAQAAyt4AMDAlSUAGAhLADAQlgBgICwB\nwEBYAoCBsAQAA2EJAAbCEgAMhCUAGAhLADAQlgBgyHOK6uvr1draqoGBAa1Zs0afffaZ2tvbVVxc\nLEl64YUXtGjRonT2CQAZNWJYHjlyRCdOnFA4HFZPT4+WL1+uefPmaePGjQqFQqPRIwBk3IhhWVVV\npcrKSklSUVGR+vv7NTg4mPbGACCbJPSKtnA4rGPHjik3N1fRaFTXr19XMBjUli1bVFJSks4+ASCj\n7LA8ePCg9uzZo3379qmtrU3FxcWqqKjQ3r179fXXX2vr1q3p7hUAMsZ6Gn7o0CHt3r1bDQ0NKiws\nVHV1tSoqKiRJixcvVkdHR1qbBIBMGzEse3t7VV9frz179gw9/V63bp06OzslSZFIRDNmzEhvlwCQ\nYSM+4Dlw4IB6enq0YcOGobEVK1Zow4YNmjBhggKBgLZv357WJgEg0/gNHgAwsIIHAAyEJQAYCEsA\nMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsIS\nAAyEJQAYCEsAMBCWAGAgLAHAQFgCgIGwBAADYQkABsISAAyEJQAYCEsAMBCWAGAgLAHAkJeJnb76\n6qs6fvy4cnJytGnTJlVWVmaijZSKRCJav369ZsyYIUl6+OGHtWXLlgx3lbyOjg798pe/1M9//nOt\nXLlSZ8+e1csvv6zBwUGVlpbq9ddfV35+fqbbTMi3j6murk7t7e0qLi6WJL3wwgtatGhRZptMUH19\nvVpbWzUwMKA1a9boscceG/PnSbr5uD777LOMn6tRD8ujR4/q9OnTCofDOnXqlDZt2qRwODzabaTF\n3LlztWvXrky3cceuXLmibdu2qbq6emhs165dqq2tVU1Njd544w01NjaqtrY2g10mJt4xSdLGjRsV\nCoUy1NWdOXLkiE6cOKFwOKyenh4tX75c1dXVY/o8SfGPa968eRk/V6N+G97S0qKlS5dKkqZPn65L\nly6pr69vtNvAbeTn56uhoUFlZWVDY5FIREuWLJEkhUIhtbS0ZKq9pMQ7prGuqqpKb775piSpqKhI\n/f39Y/48SfGPa3BwMMNdZSAsu7u7NXny5KHPJSUlikajo91GWpw8eVIvvviinn/+eX3++eeZbidp\neXl5KigoGDbW398/dDsXDAbH3DmLd0yStH//fq1evVq//vWvdeHChQx0lrzc3FwFAgFJUmNjo554\n4okxf56k+MeVm5ub8XOVke8svykWi2W6hZR46KGHtHbtWtXU1Kizs1OrV69Wc3PzmPy+aCTj5Zw9\n88wzKi4uVkVFhfbu3au3335bW7duzXRbCTt48KAaGxu1b98+LVu2bGh8rJ+nbx5XW1tbxs/VqF9Z\nlpWVqbu7e+jzuXPnVFpaOtptpFx5ebmeeuop5eTk6IEHHtD999+vrq6uTLeVMoFAQFevXpUkdXV1\njYvb2erqalVUVEiSFi9erI6Ojgx3lLhDhw5p9+7damhoUGFh4bg5T98+rmw4V6MelgsWLFBTU5Mk\nqb29XWVlZZo4ceJot5Fyn3zyid577z1JUjQa1fnz51VeXp7hrlJn/vz5Q+etublZCxcuzHBHd27d\nunXq7OyU9L/vZP//lwxjRW9vr+rr67Vnz56hp8Tj4TzFO65sOFc5sQxcq+/cuVPHjh1TTk6OXnnl\nFc2cOXO0W0i5vr4+vfTSS7p8+bKuX7+utWvX6sknn8x0W0lpa2vTjh07dObMGeXl5am8vFw7d+5U\nXV2drl27pilTpmj79u269957M92qLd4xrVy5Unv37tWECRMUCAS0fft2BYPBTLdqC4fDeuuttzRt\n2rShsddee02bN28es+dJin9cK1as0P79+zN6rjISlgAw1rCCBwAMhCUAGAhLADAQlgBgICwBwEBY\nAoCBsAQAA2EJAIb/AiaXUEipP7UIAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f54abc0add8>" | |
| ] | |
| }, | |
| "metadata": { | |
| "tags": [] | |
| } | |
| } | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "metadata": { | |
| "id": "eztTXhHaHWlQ", | |
| "colab_type": "code", | |
| "colab": {} | |
| }, | |
| "source": [ | |
| "" | |
| ], | |
| "execution_count": 0, | |
| "outputs": [] | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment