Last active
March 15, 2021 21:11
-
-
Save fehiepsi/1b2abcb8f073d0a555aa9264e3dcc8ef to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "id": "oriented-recommendation", | |
| "metadata": {}, | |
| "source": [ | |
| "Compare to figures 1-6 in https://www.aclweb.org/anthology/Q18-1040.pdf" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "id": "robust-opera", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import argparse\n", | |
| "import os\n", | |
| "\n", | |
| "import numpy as np\n", | |
| "\n", | |
| "from jax import nn, random\n", | |
| "import jax.numpy as jnp\n", | |
| "\n", | |
| "import numpyro\n", | |
| "from numpyro import handlers\n", | |
| "from numpyro.contrib.indexing import Vindex\n", | |
| "import numpyro.distributions as dist\n", | |
| "from numpyro.infer import MCMC, NUTS\n", | |
| "from numpyro.infer.reparam import LocScaleReparam\n", | |
| "\n", | |
| "\n", | |
| "def get_data():\n", | |
| " \"\"\"\n", | |
| " :return: a tuple of annotator indices and class indices. The first term has shape\n", | |
| " `num_positions` whose entries take values from `0` to `num_annotators - 1`.\n", | |
| " The second term has shape `num_items x num_positions` whose entries take values\n", | |
| " from `0` to `num_classes - 1`.\n", | |
| " \"\"\"\n", | |
| " # NB: the first annotator assessed each item 3 times\n", | |
| " positions = np.array([1, 1, 1, 2, 3, 4, 5])\n", | |
| " annotations = np.array([\n", | |
| " [1, 3, 1, 2, 2, 2, 1, 3, 2, 2, 4, 2, 1, 2, 1,\n", | |
| " 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1,\n", | |
| " 1, 3, 1, 2, 2, 4, 2, 2, 3, 1, 1, 1, 2, 1, 2],\n", | |
| " [1, 3, 1, 2, 2, 2, 2, 3, 2, 3, 4, 2, 1, 2, 2,\n", | |
| " 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 1, 1, 1,\n", | |
| " 1, 3, 1, 2, 2, 3, 2, 3, 3, 1, 1, 2, 3, 2, 2],\n", | |
| " [1, 3, 2, 2, 2, 2, 2, 3, 2, 2, 4, 2, 1, 2, 1,\n", | |
| " 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2,\n", | |
| " 1, 3, 1, 2, 2, 3, 1, 2, 3, 1, 1, 1, 2, 1, 2],\n", | |
| " [1, 4, 2, 3, 3, 3, 2, 3, 2, 2, 4, 3, 1, 3, 1,\n", | |
| " 2, 1, 1, 2, 1, 2, 2, 3, 2, 1, 1, 2, 1, 1, 1,\n", | |
| " 1, 3, 1, 2, 3, 4, 2, 3, 3, 1, 1, 2, 2, 1, 2],\n", | |
| " [1, 3, 1, 1, 2, 3, 1, 4, 2, 2, 4, 3, 1, 2, 1,\n", | |
| " 1, 1, 1, 2, 3, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1,\n", | |
| " 1, 2, 1, 2, 2, 3, 2, 2, 4, 1, 1, 1, 2, 1, 2],\n", | |
| " [1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 4, 4, 1, 1, 1,\n", | |
| " 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2,\n", | |
| " 1, 3, 1, 2, 3, 4, 3, 3, 3, 1, 1, 1, 2, 1, 2],\n", | |
| " [1, 4, 2, 1, 2, 2, 1, 3, 3, 3, 4, 3, 1, 2, 1,\n", | |
| " 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1,\n", | |
| " 1, 3, 1, 2, 2, 3, 2, 3, 2, 1, 1, 1, 2, 1, 2],\n", | |
| " ]).T\n", | |
| " # we minus 1 because in Python, the first index is 0\n", | |
| " return positions - 1, annotations - 1\n", | |
| "\n", | |
| "\n", | |
| "annotators, annotations = get_data()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "id": "hydraulic-alarm", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"188pt\" height=\"269pt\"\n", | |
| " viewBox=\"0.00 0.00 188.00 269.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 265)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-265 184,-265 184,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"102,-122 102,-197 172,-197 172,-122 102,-122\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"150.5\" y=\"-129.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-8 8,-197 94,-197 94,-8 8,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"73.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"16,-39 16,-114 86,-114 86,-39 16,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"56\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"51\" cy=\"-243\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"51\" y=\"-239.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"51\" cy=\"-171\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"51\" y=\"-167.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M51,-224.7C51,-216.98 51,-207.71 51,-199.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"54.5,-199.1 51,-189.1 47.5,-199.1 54.5,-199.1\"/>\n", | |
| "</g>\n", | |
| "<!-- zeta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>zeta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"137\" cy=\"-171\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"137\" y=\"-167.3\" font-family=\"Times,serif\" font-size=\"14.00\">zeta</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"51\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"51\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- zeta->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>zeta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M126.04,-154.37C118.72,-144.5 108.52,-131.81 98,-122 92.18,-116.58 85.43,-111.33 78.89,-106.68\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"80.43,-103.5 70.2,-100.74 76.48,-109.27 80.43,-103.5\"/>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M51,-152.82C51,-142.19 51,-128.31 51,-116.2\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"54.5,-116.15 51,-106.15 47.5,-116.15 54.5,-116.15\"/>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.dot.Digraph at 0x7ffa3c05b610>" | |
| ] | |
| }, | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "def multinomial(annotations):\n", | |
| " \"\"\"\n", | |
| " This model corresponds to the plate diagram in Figure 1 of reference [1].\n", | |
| " \"\"\"\n", | |
| " num_classes = int(np.max(annotations)) + 1\n", | |
| " num_items, num_positions = annotations.shape\n", | |
| "\n", | |
| " with numpyro.plate(\"class\", num_classes):\n", | |
| " zeta = numpyro.sample(\"zeta\", dist.Dirichlet(jnp.ones(num_classes)))\n", | |
| "\n", | |
| " pi = numpyro.sample(\"pi\", dist.Dirichlet(jnp.ones(num_classes)))\n", | |
| "\n", | |
| " with numpyro.plate(\"item\", num_items, dim=-2):\n", | |
| " c = numpyro.sample(\"c\", dist.Categorical(pi))\n", | |
| "\n", | |
| " with numpyro.plate(\"position\", num_positions):\n", | |
| " numpyro.sample(\"y\", dist.Categorical(zeta[c]), obs=annotations)\n", | |
| "\n", | |
| "graph = numpyro.render_model(multinomial, (annotations,))\n", | |
| "graph" | |
| ] | |
| }, | |
| { | |
| "attachments": { | |
| "57d7244c-c6c0-49cd-be3b-a819c65e5251.png": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvYAAAFpCAYAAAD3OWwrAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7snQegXEX1xs+raYQAgVBECB1FOirSBVGQKioo+hcEAQsWBBQEkY4KUkRBRJAigtKlCCpSBUFA6b13CBACKS+v7P/8Zt95udm8JK9s3+/C5u67e++dmW/OnPnmzJkzTTk/TIcQEAJCQAgIASEgBISAEBACNY1Ac03nXpkXAkJACAgBISAEhIAQEAJCICEgYi9BEAJCQAgIASEgBISAEBACdYCAiH0dVKKKIASEgBAQAkJACAgBISAEROwlA0JACAgBISAEhIAQEAJCoA4QELGvg0pUEYSAEBACQkAICAEhIASEgIi9ZEAICAEhIASEgBAQAkJACNQBAiL2dVCJKoIQEAJCQAgIASEgBISAEBCxlwwIASEgBISAEBACQkAICIE6QEDEvg4qUUUQAkJACAgBISAEhIAQEAIi9pIBISAEhIAQEAJCQAgIASFQBwiI2NdBJaoIQkAICAEhIASEgBAQAkJAxF4yIASEgBAQAkJACAgBISAE6gABEfs6qEQVQQgIASEgBISAEBACQkAIiNhLBoSAEBACQkAICAEhIASEQB0gIGJfB5WoIggBISAEhIAQEAJCQAgIARF7yYAQEAJCQAgIASEgBISAEKgDBETs66ASVQQhIASEgBAQAkJACAgBISBiLxkQAkJACAgBISAEhIAQEAJ1gICIfR1UooogBISAEBACQkAICAEhIARE7CUDQkAICAEhIASEgBAQAkKgDhAQsa+DSlQRhIAQEAJCQAgIASEgBISAiL1kQAgIASEgBISAEBACQkAI1AECIvZ1UIkqghAQAkJACAgBISAEhIAQELGXDAgBISAEhIAQEAJCQAgIgTpAQMS+DipRRRACQkAICAEhIASEgBAQAiL2kgEhIASEgBAQAkJACAgBIVAHCIjY10ElqghCQAgIASEgBISAEBACQkDEXjIgBISAEBACQkAICAEhIATqAAER+zqoRBVBCAgBISAEhIAQEAJCQAiI2EsGhIAQEAJCQAgIASEgBIRAHSAgYl8HlagiCAEhIASEgBAQAkJACAgBEXvJgBAQAkJACAgBISAEhIAQqAMEROzroBJVBCEgBISAEBACQkAICAEhIGIvGRACQkAICAEhIASEgBAQAnWAgIh9HVSiiiAEhIAQEAJCQAgIASEgBETsJQNCQAgIASEgBISAEBACQqAOEBCxr4NKVBGEgBAQAkJACAgBISAEhICIvWRACAgBISAEhIAQEAJCQAjUAQIi9nVQiSqCEBACQkAICAEhIASEgBAQsZcMCAEhIASEgBAQAkJACAiBOkBAxL4OKlFFEAJCQAgIASEgBISAEBACIvaSASEgBISAEBACQkAICAEhUAcIiNjXQSWqCEJACAgBISAEhIAQEAJCoFUQCAEhMDsCX/rSl6ypqSl9enp60lmHEBACQqCaEMjlctbS0mInnHCCLbrootbcLDtdNdWP8iIEKoVAkyuHXKUSV7pCoBoRoLO89NJLU9ZoHiL21VhLypMQaGwE0Et77bWX3XnnnbbsssuK2De2OKj0QqAPARF7CYMQKECgvb3dZsyYkQh9d3d3sorpEAJCQAhUGwLLL7+83XDDDTZx4kQR+2qrHOVHCFQIAc3dVQh4JVu9CHR2dvZlTtPb1VtPypkQaGQEcBPE6MCsIt91CAEhIARAQD72kgMh0A8C4WPPT3LF6QcgXRICQqCiCKCXurq6ErnXrGJFq0KJC4GqQkAW+6qqDmWmWhAQma+WmlA+hIAQ6A+B7Gyi9FV/COmaEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkNAxL7OKlTFEQJCQAgIASEgBISAEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkNAxL7OKlTFEQJCQAgIASEgBISAEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkNAxL7OKlTFEQJCQAgIASEgBISAEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkNAxL7OKlTFEQJCQAgIASEgBISAEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkNAxL7OKlTFEQJCQAgIASEgBISAEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkNAxL7OKlTFEQJCQAgIASEgBISAEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkNAxL7OKlTFEQJCQAgIASEgBISAEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkNAxL7OKlTFEQJCQAgIASEgBISAEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkNAxL7OKlTFEQJCQAgIASEgBISAEGhMBETsG7PeVWohIASEgBAQAkJACAiBOkOgtc7Ko+IIASEgBIqCQC6Xs49//OPW1NSUPj09PUV5r15S+wggDxwrrLCCnXnmmUk+Gv0499xzjQ/tBDxoPzqEAAhE+/jnP/+Z5KK5WTblUkqGiH0p0dW7hYAQqFkE6IBuvfVWu+SSS1IZRN5qtiqLnnFk4+mnn7Y//OEP1tnZae3t7UVPo9Ze+Mwzz9gSSyxhO++8cyL3Im+1VoOlyy+68/Of/3wi9dKjpcM53ixiX3qMlYIQEAI1iEAQk+22266PpKhTqsGKLFGW7733Xjv//POtra2tRCnU1mtpLyuvvLJtv/32fRlXe6mtOixVbiH02ZkcyUWpkM6/V8S+tPjq7UJACNQwAnRILS0tmj6u4TosRdZDLni3rJB5hMGBA9IGiaPd6BACIIA8dHd3p7YSciJkSoeAiH3psNWbhYAQqHEEohOSW0GNV2SRs5+1OEo28uBmib0wKbLA1fjrYpBHu5FslL4ytYKh9BgrBSEgBISAEBACQkAICAEhUHIEROxLDrESEAJCQAgIASEgBISAEBACpUdAxL70GCsFISAEhIAQEAJCQAgIASFQcgRE7EsOsRIQAkJACAgBISAEhIAQEAKlR0DEvvQYKwUhIASEgBAQAkJACAgBIVByBETsSw6xEhACQkAICAEhIASEgBAQAqVHQMS+9BgrBSEgBISAEBACQkAICAEhUHIEROxLDrESEAJCQAgIASEgBISAEBACpUdAxL70GCsFISAEhIAQEAJCQAgIASFQcgRE7EsOsRIQAkJACAgBISAEhIAQEAKlR0DEvvQYKwUhIASEgBAQAkJACAgBIVByBETsSw6xEhACQkAICAEhIASEgBAQAqVHQMS+9BgrBSEgBISAEBACQkAICAEhUHIEROxLDrESEAJCQAgIASEgBISAEBACpUdAxL70GCsFISAEhIAQEAJCQAgIASFQcgRE7EsOsRIQAkJACAgBISAEhIAQEAKlR0DEvvQYKwUhIASEgBAQAkJACAgBIVByBETsSw6xEhACQkAICAEhIASEgBAQAqVHQMS+9BgrBSEgBISAEBACQkAICAEhUHIEROxLDnH5Eujp6UmJ5XK59Im/s9fmlRueiSP7fV7P6LfaQWBedRoykz1n5ad2SqmcDgaBkInCc3/vQB4KZShkhLPkpT/UdK2eEAj9mC1Ttu309zv3FvbNhe2onjBSWSqPQGvls6AcFAuBrFLp6uqy1tbWOTpi0irsxJuamlIWUD7NzfmxHte4L34rVh71nsogEHUbdTq/joX7QwbIseSgMvVWjlRDJgrJB7og5IT655PVEeSN30NWOEtnlKPGlEalEci2mWgXWR0ZbSLyyf3RlgqflW6tdG3WX/qy2NdRnWY74paWllSy7u7u2TrbbMebJW7cy/NxLTrsOoKnoYsSnU8hCP3Vc3RCc3um8B36u3YRoI6zxCTIfeiPrE6JUmZJSjyPnunv3tpFRjkXAnMikO0zoy/NEvZ4ItoFBrbskb03jGhzpqIrQmB4CMhiPzz8qupplAlHWNXi/PLLL9tdd91lTz75pL399tv21ltvpU9bW5tNmDDBFl54YVtqqaVs7bXXtlVXXdXGjBmT3hOde1UVUpkZNgLRufAiOpcgc3FGjrLEbtgJ6gVVi0CWaIT+4Ix++Ne//mXPPfecvfTSS+nvSZMm2ejRo23cuHG22GKL2RJLLGEf+tCHbJ111rFRo0b1OztYtQVXxoTAEBAoJPO8gvby7LPP2h133GHPP/986mNpK5zHjh1riy66aOpjl1xySfvwhz9sq6yySppNz+rbIWRFjwiBuSIgYj9XaKrvhyDqWYsZucySs2nTptlVV11l11xzjT3wwAP29NNP24gRI1Lnu8IKK9hCCy1kK6+8clI4WNlCAT322GN28skn21NPPWXjx4+3D3zgA7bhhhvaDjvskJ7lyCq1IAFBDPg78ld9yNVXjqIeCktFfULIs8SdennvvffsH//4h/3nP/+xRx991F588UV74403bOrUqTZ9+vR05jkIG7KCbCy99NKJuK2++uq20UYb2QYbbJDeyyfkjXeHHBTKB39nfyvMq/4uDwLZNpttn9l2O2PGjCQf6I177rknkZR33303DfbRBZB5iPvIkSMTwYfo8wz3vP766zZ58uRE9NErm222mW2//fa25ppr9s3+IQfZ9Ch51sIvy2V5ZEGpDAyBkNWsrsvORk2ZMsUuuuii1GboY1944YVkDPvIRz5iEydOTCR+tdVWS/oU3Uv7QN/ed999dtxxxyX9+773vS+1ly222MJ23HHH1DdHO8m2l9C5XAu9q/YysHps5LtE7Guo9mnk0SEGaeIaxOzMM8+0P/3pT/bf//43da7bbbedffe73+0j81mlQZFDYUDoeCcH98ycOTMpnocffthuuOGG1ElDCDbffHP79re/bR/96Ef79cUPZVhDcNZsVrOKn0JQP1yL69TFv//9bzv77LPt3nvvtUceeSTV2yabbGKf+9znbJlllkmknc6ID6SNKWPkqKOjI3VEdFZYn+6//37bY4897NVXX01kDZL/ne98JxG5bJ1HJ8iZ/Gi2pzrEK9p56IvIFe38kksusXPPPTdZGiEjzNattdZa9vGPf9wWWGCBVI9YFjlizQ7nkLMgO9wHgUFGrr/+ejvllFPSc9tuu63ttddeifCEfIT+imcL81UdqCkXjYpAtJcoP7LNgQHs1FNPtSuuuCLNfG+99da2zTbb2CGHHGLLLrtsIvEhy4V9Ybad8B1jyjPPPJP62L/97W/JaEJ722qrrWzfffdNRjUO3hNtLdtO4nqj1pHKPX8EmlxIZoVCmf/9uqOCCASBi0aPdf3QQw9NljZG/l/96leTcsCy1p9CiKzzW/Zd8b7C38My8OCDDyYS8Lvf/c4WXHBBO+CAA2z33XfvW2gbz/PeeuioA7tsuSpY7XMknW2yWVKPy9Wvf/1ru/LKK5NFddddd7VNN900Tf9iheeIskXdZt8V36MOs3LCYA8CeN1119kf//hH23jjjW3nnXe2//u//0tWfo7oBOP5erAs9ddW5qiQKr8QA3fq47XXXrOf//znqQ5xxUM2lltuuTSTF/chB3wKZ3+imIXEgnovJOpYKBkUojsgPvvvv7998Ytf7HtnvIOBQnt7e5Uj2H/2/ve//yU9yLlSBxbim266KVmKK30cfvjhKQucC2Wk0nkbaPqFfSw675hjjrHbbrstGbm+9KUvJSMXbYeD+2PwG4PWbFqFOGT1behJnmM2lT72/PPPt+WXX94OPPBA22mnnRKO0b5oYwzIa7W91IMuHagcVfo+EftK18Ag0g/ihAWWKT2sB1jlv/nNbyb/vVAUvDKrQPib36JhRZLZ++OZSCM69XgGpYICwiL305/+NFl0UT677bZbmqrnPtKsFzIX+BUq5kFUV0lvzSp8rElHHXVUmrX5whe+kAgUnQ8dDnWWrZvoJKLuC+WkMNNZ0hZp0rlceOGF9oc//CH5YO+3337Jqo/lP0vwCuWr8N218HfIf62WJeoMGTnxxBPtt7/9bSLyWAlZX9PZ2ZmIAudou1HW0AUhP9RXVm4KZSjuy56RPyycd955Z3r/YYcdlsgR98Tzca4FecjmUcR+9hqrF2JPqViTBqHHNe373/++feUrX0m+8sgqg1H6x8K2kO0r4nth/zEvfctvtMNLL73Ujj/++KS7f/SjH9nnP//5lBbtJ9u2aq29kPfswKnW8l9L+VVUnCqqrcJGz9/RMXPGtw9rOS4VLHRl6vvoo49O/nrRUWY7y8LvoWRCQVD0UBR85zpkkE8okrjOGWXG9OPNN99sF1xwgV199dXJDx+XnWiw2TxXEbQ1nZXAlDPKPggXVvmvfe1rybWGumOwxazKlltu2dfpRF2Ha0zWRSbkIcDpr9PIEvWQDyz0zA7deOONycLEGTeO008/PVmUOHh3nCO/NV0JVZz5wLoQd/4Ge1wI8Pml3TIAw/KI7zyyRFvPknruj0/oFN6T1QeFcoNcRNqhc7LP4EsMmUdv/fjHP07uPuQlnpGsJCh0lBmBrNyFjn3llVfSLAzGEVzJWG/CbBOD4GgP0T+G/Mb1kP1sW8m2B+6nrYROjvvieXQzMwG0FQYUGNB++ctfJiMNs1+01zgiv4VRd8oMoZKrUgRE7KuoYmjghZ1cNGDcbeicIfOPP/64fe9730t+eVllEkXJKppQIvwW1wu/Z+8phCP7ruz7mcJngS4DDawZED0W0kV+uTeriArfq78HhwC4QsBCRiDUDOi4jjX2pJNOskUWWaRPfoLAF9Z51H3hOeQoSFp/MhTX6NjiPgZ2l112mV1++eXJgo9/9t13391HDslf5HlwJdbdA0EgBtScCzt76mHddddNlnpmcnDTi4hXUZc8E3VJelnSUZh+6KaQlfg96jh7Peo8K1e45KArcDVgweA+++zTJ9PZAWGkU5i+/hYCw0UA2cq2lWyb+c1vfpMCReC2yEJX1odAtEOGs+doP3PrX8ln3JM9R/7jWvY+vsdMOe/Fj/+WW25JA3EGxQcddFBqL9n8RzsbLi56vr4QELGv0vqMhs+CRtxtWLCIXyyWcha6ZTvjchYhFCMKj+9YNlgIBGGA7N9+++0pOyifrHW4nHmst7RCeYM5PtKf/OQnkxX273//e1ogiwUdvDnKhXmQuehk6BCpe3zu6YhwuWAhbhwia6WRSvQA2MaZ+uA78sG6G2Zz9txzzzToQ44qpTdIm4E+8slsIzoNeYHk41+MOxC/Z4lSaRDTWxsZgRgIxyJw/ibSE+uFmO0k0g2Lv+nPsuS7nJiFruSMEYUZA9Y44dLGzCiR7jgq2Z7LiYfSGjwCIvaDx6ykT9BYOVA4RCVhGg4/ZiwIWEfDalvSTMzj5dH5cguKh46aPJ922mnJLxBSh2LkWpDNebxOPw0QAbD+5z//mSLTEDUBn+X11luvz50iCFsMAgb42iHfFkQt0g1Ctvfee6dIPETl+fSnP506pCCbQ05MD84VgSwJoE7QDwyujj322LT+BbeXwL9S9RCDDs7kIT6QKSLmEGmJGSjKEp+5Flg/CIFhIBD9EoQZOSSKHEYJjGUMND/4wQ+mt8d9lejDQodHuyE/zM7je//1r3897R3Bd/IW7X8YkOjROkRAxL6KKjU6NRos7jZ0eCycwQ0HCwINHcsWv9P4y32QJgoxjrAOR1SUXXbZJUWIYIHeT37yk7TIiEOd9eBrKpQ22PH9nHPOMfDFQo/fJXURH3DmPv7me5Dtwac68CdIK0vYIn2uEf+c2QRmcPiw2DvbCVWisxx4yWr3zjfffDNFK8IFBzeCmNkLXcG5EtiHTCIjyEfoMQYhDFSZjYSwsPi7kKyIuNSuPFZLzkPmszqK7xhHmP382c9+ZmeddVZyu0E2sz705dClhThldXukz5n+Fus9gxFCT//+97+frT1HP6s2U4ho4/2tOPZVVOfRIG+99dYUbxwLOFa3IPLRyMvlbjE3aIIoZH+Pa/h9M7WOrzUzDfgtMiiJzr0SinJu5ajW69ERxUJZrK/EG3/ooYdSZIYgSOQ/iFKUJTvwKnX5ogOKfHAOOSBfRG4ifv5mvq/CxRdfnPxE45lwyyh1Huvx/aEnsu2Q9S2Q5Ike9pDFd7Egtho6+fAbzuYXGQ89RnheIo9gDMDdgHCc3IuMcEaWss/WY52qTKVBADlDfmgP6MZoD1i8iSbHOjGMD6G7+D10VCX72ay8Z79TFmZs2RiL2S5m9XF7jHZCP1vOPqA0taa3DhcBWeyHi2ARn6fRshqe+LVnnHFGIvXZzq2ISZX0VRB5tqNnh0r8e1kYR9kqYS0saUFL/HI6GSw0kGKsNBFurVZIDvlElllU+5nPfCaFSo2jkp1miautpK8vJOr8zeZQLKxfY4010sZ00c7Av/D+kmZuiC+HiPDBjYtN9ggzGMaMIb5SjwmBhABtIGtE4G/0ENHEiMwEOaZv6m+wXK0Qklf6AiLl/PnPf06L47lGm8kOXqo1/8pX6REQsS89xgNOAQs3K+Fxt8BXPawHKKZa6KApKEqS/KJg/vrXvyYL3MEHH5ww4Dcd80cgCNkvfvGL5FfPYC9csXi6log9cvuJT3zCrr322rTQOjbz0SBv/nIwvzvAlraGX/CKK66YZkRYsMw13OPCKDC/91T6d8rBBzdDXIiI8MRCRvIvnVHp2qn99GMdGAamRx99NLm3Eqd+hRVW6LPO14pOpTZoE1jm8btnPRPEnhnd6DfUZmpfZodbArniDBfBYTyfJevEqMc/9oQTTkix4qNxcqbB1goRIq9hNaCjZldEQu6xsyWbbXBky11LCnUYVT3PRwsHbWCCHz2zNlhlwDGUecjDPF9YBT9GvVI28rz++uunfQ+IsU+nSjQUycLgKyo6b55EJ2zmbk6E5yMCTgyowRzXA8610L6C2KM3IGH77rtvCqNLRB98oJGf/trI4NHTE42KAO2APhYLPbPJkPqYNYw2krXsVztOtBXIPZtDPvbYY7bKKqukNTWEkS3sX2tFD1Q75rWUP5lQK1xb0QnjU080Cz5hYciSuFobhaMs+WBpZuqTBUpszx0LaisMe1UlD06BC2SNwRDuCCzuirBrZBhlXmtyQH4jzywG//Wvf50GsFiWg3yq4xm4OMYAnzMbgj388MP22c9+Ni38Q4a4HnjWiqwg/+SVvFMGBrK4SjBrSShdCBcH5aoVA8fAa1R3lhoB5AYZwjedwA64rNHHFspSLbkH0mZo8xzjxo1LYTp33XXX5HOf1RG1MmtXahlotPeL2FewxoP8shsjsXSPOOKICuamdEkvvfTSduGFF6ZYwbERTelSq7030/FAbCC677zzTiJq7Few2GKL9U2v1l6pZs9xlI9pcD6QewYqtAE6nyBvtV7OUuc/BoFEwNlvv/3SAkDkB0Ice0uUOg+lfj+yAFkh1C9uXJSt1gYrpcZI7x84AhBdIooR+pWN2jjqyZhA+2CNDYvPceWlj40+BX3Bdx2NhYCIfQXrm82nmEY7+eST7Yorrkg5CbJfwWwVNWmUKqSO7bnZqnuHHXZI75f1bRbM1DkHFiNIPTjhghBHrVheZ5Vozm/Ud4STI8rPyy+/nLZMp+y1ZCmbs2TlvRLWuMUXX9y+8Y1vpHbEAAls68U6R5koC4M/ZP/www/vI2KUP9pLeZFXarWKAOt6CBnNOh/kKmSoXvra0J8/+MEPkvvaoYce2te/qq3UqtQOL98i9sPDb1hP4x9HtBCihmDVphPjg/Kpl1F2KE/Kw4wEi31Qshyy0ubFh44G5fyrX/0q+YFGuD8wqyc5oLSUZ9SoUWkDqyOPPNKmT5+eZF7kfmCqBPxwa1t22WXTbrK4rfCpt/aEPMyYMcO+8pWvJMPHE088kQiZ5GRgcqK78ggwC8pGfris0U6QH/RNuK3VA07ZPvYvf/lLcjdiMBNtReS+Hmp5cGUQsR8cXsO6O+uGQieFvzEkB/96Gl9YZkP5DCuxKnmYMkXZsCoSnovNNSAo4SNYJVktWzbC6kqCfAcLfM6xtBANJI4Y6JUtYyVOKOSAcjGQZQDzsY99bA5f1xJno6Zen5UVBsK47GHBZi1ODPxi6h3LfT0coQdjTQkLrikv8gNR0yEE5oZAuG3RNmg77I+wmS8wZ7F+yA5yRN9TL4NEyoxuoDxEwzrqqKNsn332SRCJ1M9NUur7uoh9Ges3fGBROjQ4LNgXXXRRykG9WGbnByd+s2wIwrqCRu2kqfsg9EFiGOygjPGVrJcOZ36ywAJJFkeyoZlmb/pHC1xoJ8gLssI6FYhKkPh67LhjwMKZsqMvCAV83XXXKU53/2Kiq70IZK3U7O+AoYSFpRz1MvAtrOxsUAXaC30JXOOyyy7r62cKn9Hf9Y2AiH2Z6pdOKjv9B6nfYIMNUvzp6MjKlJWKJ0PZmS5sVIs9FRCEjLp/7bXX0sY8hxxySJoubpRBHrNVf//731P0k0YZzAy28YFLYMMgCBemTTfdNHXY6JN6PKJtcKbsDG4I5/m9732vYdpGPdZrOcuEzLC4nA0SkaOw5JczD+VKK/gDZY5ZXkJL0882GrcoF+bVno6IfZlqiAYWFgMa4KmnnmosIuRA8dSj5W1u0LKhDtEu6jUK0NzKHdejriFnyAIxu7/zne/Yggsu2FDEhTZBpAp8qQntqWNOBJAV5IQzbgUYA4KkMO1ej4NAygdBoWxB7ldaaaW0/uSaa66ZEyRdEQIZBJAbXNZYu3bKKaf0/VKvfWzoBwbBMQNMdBwMZxiM6rXcEvq5IyBiP3dsivpLNC7O7KwIoWFTiWiIjdL4gohgUTjrrLMSaQk3jHokKf0JUdYN59VXX7XLL788hS1EBhoFA8pKvTNDwe66REui7Fzj3Cg49Ccf2WvgQIf9yiuv2N/+9jfbcMMN089cQ47q8cAAQrmjPYR+YJOz448/PhVZclKPNT/8MoXewNWTsLrhpgLJRZ6G38966MictztOnt34pJynqJKFbZK/C68Nv5zZN6ALomyc0QtcY4aLhedxTXq1uLhX89tE7CtQO+wqetxxxyVSX6+d89xgDQWE1Z7vt912W59E4jhTAAAgAElEQVSrQaNgEZ0L5WXWAlI/YcKE2ZTz3PCrl+tBWDkzwJ08eXKK4R+uF0Hm6qW8Qy1HEBX8ywllF514ow180JWrr7663Xffffbss8/2WfSHiqueq18ECCN9zjnnpFnxkhxEJ85HKJ799f1dK0kG5v3SmO0iKAdrUwipTZ/TaDpj3ijV968i9mWu32nTphlWWoht+MORhUZqdJQVS8rRRx9tBx10UN/gBtLSCEcMbigrC7tYEBmDvEZRwFFOZIHddfGH3XvvvdPmKtkp5UaQh3mVEblgQRwxqvEzB6/48FwMEuf1jlr/LVvGlVdeOUXWiqOR9Gat12M58o+sPPTQQykULK6NjXiEa87IkSNT34JLktpLY0mCiH2Z6juIzA9/+MPkTw2Z4YiOqdE6KMpLhJwHH3ywz/rWKBhEOe+6665U9rXXXrtPDhpl1iIwiHbBOoNLL720oRYPD1T1YHHD73z8+PENNasT+ESboK3gwogLH0dYJhtFbwxUXhr5PmQBN5yDDz64RINezPJ52hSG+9kN9YWUir8Lr5W2hsJNDyy+9KUvpV3M1V5Ki3m1vb28Eldtpa9Afq688sq+OO4kH9ZbOqlGOKK8lHWppZay973vfXb77bc33IwFZIV9DL773e/2+YGGpbpRrLDIPGXlvNBCC6U9HXDHgcQ2AgYDbe+0jyWWWKJhMYnZLPBCX7z00kspTKoI/UAlqHHuY8O7W2+9Nbk3luuI/Wki6h26HdmMdSDlykekQ9ox6CVULJg8/vjjaWY8dG6586T0yotAY7DJ8mLab2o0NsjKm2++aYsuumjDdtLgEFigZIjdDsEFm0bxqw7Fy+6AbNDUKIO6fhtG70Uw2GOPPeyYY45J0RwaRRbmhQm/IStnnHGGrbvuuvO7tW5/j8Ff6A3WGlx//fV9g0INAuu26gddMAZ9iy++eN9alEG/YD4PzLZY1lfL5nLd1taaXyuX9HgyVOTbLXLpzbfgKO1CWhLL9q/kifC47Paez88cGSrMoP6uAwRE7MtYibheoHRGjx7dsNam6IRRPhyf+tSn7I477uhbyV/G6qhYUljmWWvx9NNP26qrrtqwslBYAay3YJCHbDTKeotCDAr/JsQjPsPsd9GoBDZ0BeXH6gixZ9F9XI9zIXb6u/EQoC9ZY401yqtTXS5j8NnTMyuiF9cqYaCIGa5oFxB7ZjGC8DeKu2fjSf+sEovYl7H2TzvtNPvGN76RUmz0Tjpgx8WAWYxGwgPFeskll6SY5LHWooxiWLVJ4ZrFgIepY5G1fDW9+OKLfYsAGxUTyh2kBFSWW265ZAwQsa/aplyxjJ1//vlp5i/cYUqdEfqtLl/cTpq4hzU35wef7Mtx1FFHefLlD5WTbSuUf+ONNzZmhznIbyP1taWu/2p9v4h9mWoGRXPjjTemBaMla1gRMjfOfXF12aGy0+foeswNCq70ZlhnTwdX/FKHdXTPsOnpt27jzpisi2lH71b9Yrd/eGJ4RyiWwGDs2LEpEgqErl6OICJz61wo+y233GJbbrllCQlsj82kAnumeu11pHo1m24zOOU6/NOV/+4/5CdPppt1TbWZ/nN3BWZrwSSsW0SBaZRjfv64r7/+elp7UNhZDxwfb7fGp7dSc96xp4938rgHertvJi6339OcbnEi0hunu9ta/Cm6iMLPwFMvxp2hMwIDXBlfeOGFpDdSjntlh98rYSEtRhn1jqEjEBZofNyZFd9oo42Se2NpLNO51E/25GZah7cj/8cee/BKW2jFT9myy4yx5o4ZdsqxP7JNNtnCbrnrBZvms7N53fueF7Cztz0NvawDeTLbx/Kd2T70SEdHRwn7m4HkTPeUCwER+zIhzZQ6u+EtvfTSKcUgtkVNvtk7aHpnfPz40Ef7Hx5c0j/ut9xEdTtpamq1luYR1uYdeM6/t7WMsJF+b1NTi7Wmzh4S7wsY/ZM/IhJA8a0PuFyss846dvPNNxcVikq/LEgInU3hQd0//PDDKeRpSeQgJeiEjery+rXcCGtNrp2+GRinrhEuC60uFX7RZYDbumyU73o0JtG/lr565+byHOCFLOBm8cgjj5QQl/KUZ6CpBPlADsICnX0WSxvue7Fr9UDfO+u+bNuN9kstJ2afbksS4Mqi0PsXzVGNB2swCGVItKA4wA8skSGR+2qstdLkKfQsdc/Ce84M/DhK4c7nQ+LUT9KXtjdNtpntTbbo2JXtydv+YpNaJtih3/ma/eiwE+zT22zjYSZP8ns8Hyk3bf6Zs42VBpXZ38oO1RMnTrQHHngg/VC6PqccpVEaA0FAxH4gKBXhHtxN6HBoZBylsCa4LcGJGx++5fe76+ua/UuLE3ascHTkzVgdEtH3A4KfrHjQPohogZWPWxL9c5JY5APFzCwGu4/2R2yKnFxZX0d5ICGF5aLuGeQR4aPwt2JmkJrONbWlWZq82ag5T+x7ST6/WxMDva50vSt1Qpjwy28xp7OhfbCpytVXX11MGKr6XVgWkYG5yQFT+gx2mMUY2iJr2jhtNz7AAanv1RCcE69vte5mLPS0dP5zklyBAd5AKgs5WWyxxVKo3DiQHz7gJOIyEBTr556ob3QqA77QJXNrU8MquTcdJrQ6cr7ba9doa3V5a19xTTtgv61ti4UWtinLrGFPPPWcXXbZxbbwuAWSSS2Nn3MQe/6qzMG6g3DHKQkulSmWUp0LAiL2cwGm2JdxNcF6297enl5dms6H6oyOPNudQ+Uh7N5Zp8QT5XNy3+Udei/RZ0jgHWOXE0HIoKXPrA2jmtLcfaFNb/gogcNyyy2XQtiVBpPh53GwbwjFCYF//vnn53gcgoZ1CcvS0MjaHK+c80KuNZGzmS4PyXKfepRRid5ZS4fLwXT/7h1N6wiXDKz33u0w+IPiN7v1vgIH9b/ZZpvZ3XffPVeiW4FslTTJkHlI6rvvvjtHWuyyOm7cuGSx72/2Z44H5rhAjc/SCbP/nBhHcsnJubx0Of4cTUz3JRMAA7zq6yJoM2y+w27F2QMs0SNPPPHEbNf1R/0iELqWumdtDnLBNaz1JelPmtxlrXmGW+Kb3M2mzXVrky3SM8Wapr5oP/vnw3bKwd+2JZdexgH3NtXd4X2su4ulZpaf/3KH14pUBgNhBj4i9RWBv+yJFt8EW/Yi1EaC4TdMBw3hKwWhczt877QfmKBA3Hbf7Yql1zr3v/8+YM+98Lp34E76erzj9us9bqnHLQNr/fhFF7F1NtrU2p3ytbgyak2MkMP/SH64WPeK39Gz8c6kSZPyKblSLjxCQYdS4sw1zv3hGL+nnPfeG9+zf3Mt3hPfI+2sAozvhfkozGe8g/vCLYCFS7vssovtu+++fW5Y3Ie/I51QqWQhT+SduCeLrBM0txjlun36uGWm5VresimTW+3uf99p70yf7PsJLGlrrf0x63Zt0OLmfaq9l+P1V8SSXQM3ZIFBz0A65Wwd9ZepkI/53dffs1m54Pe5vWN++Sx8bm73n3322cbCP8J9fv7zn0848CxYEEWL5/qT9f7yPq9rqV57m9hLL71sU96dwtDP0xprPQu02KrLvD8182ld0+y1Z5+z6S3jrMkJCju+BlkqxWzjvPJc+Bu4MPP59ttv9/3EIuNTTjnFTjrpJPvd735nq6yySuFjRf07qxP4Prd6LWqiBS/LplupPPRXPvKSxae/e4p1LXQt5xkzZqQZ0sK2W6y0eE/OLfWYP7zX9H+n+vd2e+uNKXbGeXfaeRcf7GQ/Z6PTOLrJRhL3kiPD5Yvfe+aTmN+/GAcYCFdCTueXN/1efARE7IuPab9vROkwhQyxL0YH3W8ihZyYTtwt7TjmnP7LU+zA7/8kLajMT7ljoXXrgyugmS0LJEK3ySYb2uX/3DS5ZfjWQZ5ffFb5VtqDzYnCmhCKhzN4gVV0EuQi24GFAi9UVnFPdDDZTib7/kKCEn9H2hCZ/jrM/tILhMK/N/LN8yeeeKIdf/zxduCBB6bNyVhnAbEPwlYydL2uIXJNvnjW2twFDELU9Zb98cq/2lHHn2snHHCwjWp913bdcR8bNeHD9tfbr7T3jWLQ57M7zeVVDeAEdmDDwsio63lhUzgoKqwX/uaewutze2f2fVmZy8oDz2blZG7vyl7PyuPc7kdeIPEMAPfff387/PDD7Stf+Upa9LbAAgsMw3UvmQv9k5QBIpD+7vG2zYzRTb6g//lnif29on1u392sZ8Y0l4nR1uUzOZ3TptjVN99u+3/36ynbLFaNGcd0oYIHbZP8EIkEQv/LX/5yNl2Rrb9SZTPSKEda/ZWhMP1K5SObN9oK+RiIzPdXpsFei/ZNehjPkM/AYaDtfjBpeuncxuUGMTeYzGgaayPcjfGkb+xkR11+t/W4DW10zmfdmtwdKL20t+fMnGbNgQ8m1eHdCw4swEeXRL0M7416utoRKG/vXe1olDB/YbGPBT0lb2BuWe9xotTkFoWpUybbP274lz372qs2YtKj9qXDzrcL/nSatb/+lC2z/Ab288uutd0+9RHs+zbTCX6rW/HbfCFuUz5MRl5BJUt9aSg+kXFY2LPsssumGsDlIPCJjoLrkJ+FF144Weu4Z24WRO7jnSgzvseAik6A79k6YFDB+6ITiMHE1772tT6rO88tssgiycIev2dFhbzyTvIU76OD4bmpU6emZ3g/5J4PW56HxT77nqJ+762qfAMfYdP9b9/X1W65/AL7xrcutPufvs2WbRnpBqdX7Dv3fdn2O/xCO/CQ4+zCkw5xi36panreJQTD97///fbKK6/YySefPF9CztR7WKH6a0/ZeuG++UXbQVawAvPeqE9yvNVWWyU5oj55J4NzBuoMRud3UPeRNjIQg4J4LgaP7733Xt8ghHf/8Ic/tCOOOCLlBfkk3cJB7vzSzv+OuXBWuyX9Vse5x2fgRowYZTvuuK39+uQz/P3utuXyO8bbuc/X+UyPb6b3xmu2/ed26cOCcufb48BSLuVdtK8//OEPduyxx86GDRjtueeeKfxgKY/QS5xDn5Qyvbm9m/SXX3753noptOzM7anSXA8dyqA08ClNSrPemk2H72uuuWZf2v3phGHnxwl9zl1xWnIjbWz3VJvcOc2ufcjsUIe+o73DWruc1BOpILmzufb1pkcQCw5Oyc2tNN3oXIsGDoRVDle/qKe5PqAfah4BEfsyVSGkkAaVJaRFT7rXBz6/0NW1R7P7ybvCueOu++23Z/3Rxo1fxB761yW22PjFk9Uewt/d1WJjxo338Je+0NOt++3uouPetr1GPrSSWyiIrJJXS0XXSSid1157Le3AygLa6CSxxrHgOKucg6gFUeYeyFUhWcqSIL5DrGLGJIhUEP4g/byHdRDcf+GFFxpbcQeR4swH8kWeCjvyqFcs8BBD3gWJZFo4QvLxXogRHzYLKblybXIrvRM0j3PkJuYRKbTlyKa37OQjTrRttvu5LTLGLfhuYerxtRQ7ffmzdunVD9huO33Sy99h05tH25iiC+fAXkjnA274SQd2c3uSgRsDrqjvQjmIemGQt9xyy80Xc2QBKzadIO+inm+44Ya09wRpJFLs9ceZuubewjQL80oeYlDIO/hkD9KkvJChM888M/3EM4Sow62EASaDw6HvdxAW+7wTAOk3OXlvbW2zru4unw0YYx/98Aftjv88a2++/ZYttshC1j2jxzqbu+2uex+3r2z5FZf9mX0yn297haUs79+UgYExBJ7Fkscdd1zSIVwnf7///e9t9913L2mmSIvFiAwg7rnnnqQfyn1Q1pVWWinJ6MSJE+cr36XO35FHHpnaw2GHHZaSKgcm2Tb173//2/baa69+jS/FKjuuOE09Iz2qnBtrWlrt9fv+ZNvse7r3m95u3efeWtC0tDlfp+QnvnV7N8oatxbWq/T4pwJme/QqRqeS9zvFAlrvGRYCIvbDgm/gD2eJfZCDQoI48Lf1f2dX8pbFKuChKl2l4HOf8058809sYc0tkPTX7K7/TrKlR4+yMa6gHp/0RrLSL7zYgk7/XFHNaDefgXflDAFBMec1UH5Vf2+aRe6/UDQQ5vCNDMWDlZINi+Z30KEV+8Ad4lvf+lZ6bZ4IDc7EkiVvDFYYMFCerbfeOpEOXCsgJFhjIWylUbZ0It68mz3ijbvVLJybYu+88IT945Ep9oWdW20EUZH8epONtmUmrm233nKtTR/llqjO0Taq+zn738MzbZUPreSEzl/hstCaIGCw4O/1hZZpoDc4WOZZTWAAUWGtBZuWsQNtaXCZZzbm+JGB+Pbbb1+yvMQgNYg7AxA2svvEJz6R0pwwYUKSHwYSQztmZxEtrT6DlaJfeU165eZspK237kfs3rsetusv/6cts9sXbHzTJJvy5GO2zKbbuwX/XW8D7W7N91mMN1+x98avYQu0v+XhU10oenwH7eb8AlvC6rblprsW8ShMrnO6feE9f8+Kgz+03Pf3VMgKZ9oqnzPOOCNtCPTqq6/290jRr5E2H9p6OQhsfwWg/4BIR176u6ec12KQGwaRcqUdeoI+FmNAKeuDfR8IPNHhM+Et/u89N9xra26xp6vC96y9M2cz2kb5kvNWG5t7p1dPjrHuaTPs0TfetDXfN9Kmtox3o0mEQKYzzXao4Yxf3E4WfNAhsR8G9RKYlauOlE55ESiuBJU37zWVWvjW05FzlEL50IXDtfJ8yzvXnnzc3CYn9d1dTuFndNmN9z5sPcss68pnmr3z3GNO8JttmQUmeGfcbh0YGeCD3jG3uDUi78rT+8JCHVQk9OkM3njjjRSru56OqGfKBEnD0v/nP/+5z68eVwIGNEEOil/2IN75Ju7OQtYxHfes96xzqndCM/3vlk7vpLq8vsfY26PabUT3gsm69PYbD9p6621kL/mCxHwI1F7TU5pe9g9mqBIcYMEiSIh9oxxBynAxu+qqq+zJJ5+0T37yk336gUVvdMqlIkuswFlo/KK21rqr2VsvPJpksstJ+8XX3WKf2GA9T7c1zRgwMD3vj5cYVtH+DjQNMhZH8kWejbT099TQrkGmIXAMjuPYZ599kuycfvrpicDoaAwEskYUdGo2clT2t2Kh0eORBbp8dmaUd+Pt3ne9+NJD1ukDCpvpFrGWsT7Qa7Gxfr2naZz1tLTbU0/8zz6x2jK2095H+gTpwu6Dj/JEj2IcKQ/9Agf20YlQoKXApVj46j3FQaA8klWcvNb0W7DSYmFhCrlUo2U610TlnZhjqc/hF+xkqauTacAu65oyyW664X82wRcotvrmGk+/MMldNHxTolYPeOgWBj7Y35pa2eTFu+nkypMncqijUvA5sHj00UfTZk2lGOxUSmiCsD399NN27bXXJv98jrCyQZSQBY6SyINb1VNEnOg8fOA2euTiNsqJ++3XX2STvTahYp09C1rzzG4f4L1ql191o4vOdBu/xJYeLec1e9/7xyerlAtDL4y9JvoiWup7X9x3YoEXU8aNctDJMgg85JBD0oxOttNFLlZYYYU0i1GyztgbdZdb19f6yPo2yvcvuOKSP9lb7810d6yFbMEWnwOExDhR7u7utP2+vU/anr4/QkLMezbtwZ8YHZT/m9C+xe9iyBMLjWOzv+wgerfddkt7IehoDASyA15mvWIH85LoVIeU4SrrUVKUuG6fxRoxxh66+Xp7z/vKKS77rejcLl+n4oPjbnfHXGrlVe3Xp+/vQck8eKzLbc6NbX3GkVJ1qgVVDxbPPfecTZw4Mf1ST/1sY0j54EtZfK07+Dw0xBP44+JugvWrZJ10H5J5iu/t2cl6jy+Enemd7TT79r4/tDe7OmyV5d7n1lm3GE9zst/ii/vexQ+72W69/mrrcA7nnD4NDhgjcIT+iYnCYlYYSuemm27yiDybFPO1FX1XuFcwG0FdZ6eoyRiKFb/rcBsoiTx4pbmndO9gzC1IPW22wGLL21ofmmiP3/cPO/Mvt1izR78Z6R3RzBEt9tYDN9g1N9/vhM6HgO53T/U3EwbViVla8JVGdagL/0LfVGRyDwbgwuZUWKxL1TFXVDD6SZwyIy+UPwaDWb/9jTbaKHXK/FYKOYGIs2B+0cWXsA+7bEx64Vm75PpbbYdddvVNqn1Qx0yfu+5E3mYRdRg8QoFW8LUHvjYDuYmj1QcJ2b/7KfqQL4EXxB7/cg4Gy6xpAZ9qidoz5MLpwUEhEO2Gh+hjkQuO0CeDetkAbiYMNGvROtj0w7vNdTfcxc4+cGd7vdPXoXiTaPM1ahF8oLNltBvWfG2dt59cj/ve49bY5O5p/mgsqB1AksO+BX2C8Wy11VZLuJRCjww7k3pBUREQsS8qnHN/GRZ7dhot5eYpTH3nP9CxfBfc1DXDFcsMe/Dm6+y8K663zlEL20qM3N1K1+x+syM7X7VTjvim/fPuF+28vz/p5IpdJ1FA/k+RyVt/6DB1yuY8WALrhcyF2xWkjU92/UAQNOKUE/2Fo1SKFlmAe+V3oPWEPArOd3+wp3tVexSHXba0//vu4fbEa1PtTyftbytse46dedw+PuDzyEHTnrSdvrC/TZtOFBR8SfNqIi9b2KzwEU1Mv+jHpZdemoh91gpb9ESq6IXIA7M3kNMgz9nvH/jAB9KC7PClLn7WfZsyX0jb6a4tG27se1g4T3/t5cm29OKLpsg4bYz5nRgg07jh4CqUj/gxKyfk942Xn7fLrrouufKwPuKi8892V4RZ0aaGm+8YLPMe2gsGEmb5QmdA6Glr/F3stUvDzbueLx0C0WY4s0ie2b5nfVM3/p5fFKyh5co7RWfladd2D2v50S12tZZp79kK7ha20tKruuFkRVt9jVVsyx0/a29M9YhWnshI17tsDTndjWZnn3yIy+kY719H2UV/viRsZ71ZKS4do93SvxI4AuMAxL50emRoaOqp0iBQXEkqTR7r5q1bbrll8qPliA6pVIXL83JCc/k3t8hd8Mc/eaNe0D7zuS1siXGu9NwHcKc99k5T5pede4FtudWO9uMjD3Hr/iybXBD74PilEBZIC37EHFlLZalwqYb3UvfrrLOO/ec//0llLsnUqMdXdvtRvrjOwdMsTHuzbbvrXnbuOb/ypV9dduWZx9vKS02075z0b3vif5fa5JHe/XSPtI7JT9iN19zq08xpiJfn8IiR/1UaOj+rPUAMCXtaEkyqofIHmQcGgLgXIDOlGAAyjM+5foAMj/VoWSstt5h9aMOPueXRLYzuX9/VlV+MCEm6667/OdEviLfgMz646bz07JP29HPP28uvvmLf2Mfj3vtCwtvuvMfzPfwQIJSbgUXMbLDPARtmxVEKXAZZTbq9ShBghuv666/vG4wWO1vJ1cz7VPbrnukm+5Gjx9jFN/7WfGcSm/zSK3b/Ey/YQ096kIKrr7TlFl7UXpwyw6blnMi7gW1Re9PW3mhr+8XJJ1mHG9V22eVzeQv6bJkcfi8bVvloN/fee2+KshWDXrWXYktF9b1v+FJUfWWq2hx9//vft7POOqvE02H5qXEoGHFxck0eA9sX9Rxz6tn20qSn7I+n/SwppW7/b9xya9gzU6fZq2++aFNeecAX0bb5lHqvtT5RuHhX6SDFHSUWS5Z6sFO6Ugz+zfhTX3fddYnAlmZAw2qJ3sN7Izokat26x9jOX/q6TXpvur3x2lP22jvP2CvP3GpLjmvzYcAoj4zkuzcu4DLjpG46G9b6wM+DM6cX5Uk9RN/JXZEZPp1N4CBSP6vqlllmmRR/GlJbGly8It1dDwLe0dnjcbmbbPOPruFEn5j7M7EJuAzkN9ZjszrW3hQe5G2RBcfYYhOWshVX8B1qPYTSMktNsMmv52caCu8f7N/RRkI/PP/8832ue7JADhbN+r7/q1/9atrBOchtKUpLE2jyKAP0lcxirrnpzvbU5Lftldeft9c9EMSrr71lLz7zuK0zfqTd9swL7u7KTJLZVacfZ8/PWMj2/fZe6e9OfxHn2Y45m9egixDthHYDDrfddlsK38xBexGxHzSkNfeAiH2ZqozGFBswxUYRxU46edbTSafFPVhpscz7VttEph+xkC08biFrb8Jfts39q1059XhgrpE5t5gvYCNafaEbCit9GBSwtNL/61U86To8v8gHShiSWyqLZJGzW5TXIQubb755cmsg5n1JBjRez4l8J1nAzGQuBzP8q4co9Gnk9rZuGz1uWVt07Ah3v3HnGvetHzPTfarHdvik8Xh3o/COh9I2ue8yn76S91rwi+ynBQYPPfRQCnHKIjh1PnnAWXTNTB/YlORwWWRLqk4Xl3emeESctgVsTM9Um+EWely4zGNzQxCY0h/lkZP6c28gj7luX8fjdRifpEva8pu0DTffWVkgL7gVsCYnrktWhotw/Ty/+uqrJ1ecCFJQ/JIR+8mFO7msTk86NmcLWNfIBW3suHZbyPeEmeCD3AnLLG+/PX5v3xLQyfvMV2x62zg77cQL7D/3v5MGy03eoeLNkz+Ka0ArbA/sm7Lpppum9kL7LI2BoPhI641DR0DEfujYDerJ6PDwAQzf6kG9YEA3w8KZ+s5Pf7OYp93Vz0i3GLT5h7j0Tb6At8nPbW6RbfWV/M14XHtn2dKW98tH4XCkv5LmyZgUCq0LA8rTnDehYLAc8GFTnu9+97sNReRQrPjdMz36yCOP9AEELtlwbXMiN5gro/NSgEnIO6F2f/cYD2vZ5HKAmaipZZRb6PGe97Cm7qLTmXO5wM3CrbRNvmCy2Tcvwi2rM+d+0kkGPLISHYMPErpdRvhvuEdhaDp2W+XDUZLBznAzXIHnkQk2QWIzpKFgkh+oO/lIBIQ1ONQlHr9enx7Vw9xFwJfXp9/++o+bbLtttvZFr+5i4DLTnRZP+90em3tU5wx3PXA5ap3pZ9+gh4gg3e/6jsYL24yOLmsf6fNBvgC/yVcOunNOGlDm3K0LH/1iHFky8tJLL/XF+ef6UHApRp70jupDgNlfNivDpa80ay28RST3MuTOjTt/+JwAACAASURBVGGuI1Mf2+YulS7rLT1TvMHkd2j+16Mv2PvHLZjWLS3Q+bb97vY77OLDP28XXPZ3d9zx9uVvYR1Lfma8eFhmB7x8v/HGG22HHXboG3QXEv/ipaw3VQsCRVK71VKc6s0HjYkp6/33398OPPBAu/LKK0vQIaF0ZmGQvmb+Tn8U/j0HZPkb5nvbHM8N7AI4BBaEgsR39v3vf396uFE66MCA3Xb//ve/2wYbbNAHXmxeNnyrSn76Nyo8P4LP1z91m7fTJtQT7jnvfLr8arsT9w431zf5xlad092SlDYvxqablwjofOqLhnmAQZSV9CH5f/vb3+zyyy8f5pvr63GwWXvttft2Vh1s6VJ9pYeylZb//uabk+z0M87xDcw8FKqHtFxu+eU9WtPCvRXMlF7+vo7pHR4K02PHE3mGjez8vxm+udrFf77cPr7zPrb0Qu32+ltTPSqIu+owaPVBYQ+L8wmVmnatjg15Bpv7WffH4lkGwuuvv74R918EZeh41uuTGEzYrZk+lo3ein/0tqZkAPPvWN/TN9ehHhln4/U3tuVXW9+WWbrN7rl/Abvg/aPt2YdbbPIrPTZmwpJ28UWn2Po772VrfPBvtvqqvk7Ep86z/d6s9jr0nNN3hIsaPGONNdYw1uroaBwEZLEvY13T4L75TY9A47uRsmi0EY/ojCF1bNi04YYb9im2RuqoUbw/+tGP7OSTT05RC6LsnMsxwEnhlNOR3/sg2aCchE2dkbMtNvmczZzykn1y44/ZTI+1n7fyYunPd2LebQxbdNNgwstKm+DMLBbkjY6ZvxslKs78gASHiRMnptCODISHcmTnVkK2unwgN36xCbbCihOt1Wdxtt1uG/v0p7fqd5q+vb3N/nLVNb4W51275orL7amnHrfJ77xrk33Tm4fuv88eevg+u/mOJ+3FJx+yq6671m6/+Ta78/5H7bEH/mW3337nULI8xzMxCMQlaffdd++THW4sR3uZI0O6ULUIfOc730mGs+LNfs6jqGnwmzd7NLk767Tp79hFF55trWNXsHMvOtHuuPxK++weP7O3nrrGPrX91+0ZdyObOXOKbbHRxnbwDw/KG+tTOOFehdynl+eR5nx+Cr1KH3PhhRfal7/85dReop2ovcwHwDr42d2pvcZ1lAWBGEWvssoq9otf/MK22267sqRbTYkgbihcCMtiiy1mDzzgi3Z9gSAHCqcalE6QTvKUVYjFxJHy8+51113XfvrTn9pWW22VrCzlci3Ahsrir7CmdrtzRrI6dXe4pdUtrh6SDSLf5fsetHg4RKyxWKc43L7u/zAUGHovFLhGm2BTISzTDHaqqQMiL5HHfOnL+2+kzczOnnvumT6DOkK7M5DK17DLnS+GdVebnK+x6ezyUJbtY/KL6vzFLVj7WJcRle3fOvyeMbnp7lYz0qa2LOAuN52+g6b74/ti2wefe8tWW3GCtXe32UxfNDvNQ/uNn/6Wdbj7zjRflDPaw/rlcjMHleX+bgYH9Mapp56aBjjELOeopL7APYpBBudKHQz62AeEc6WPww8/PGWBc6n05vzKiF5FTpZcckm75557bLnllpvfI4P6va85pfbB7LPrBwwU9F2+dwOujJ0tY3yn92m+jsl3QPbFK7i+driFv9n3k2n1xendrSPSHCi7wbf6b97k8oe3F1wcPWDroPLU383gwG6zlJ8Y9hMmTKh4/1ppXdofTvV6TRb7MtVsVtGdcsopya+cnUe5zoeOq1EOfB/vvPPOFNcfUl/JzrmSmIPDZz7zGTvvvPP6SH1Z85NZDU3HxNHs26Cb+9+zqQoEvt0t6BD4RPX6eLx/GaY5gDoP94qZHkP9L3/5ixE1KlyQaBM6ZhFXolrgOwxWHIHPwHECTyJiMHhkZ2n/7oOztvYR/r3L22BaiuFySL3n52iobj7tvtgCa2QXAuCbmrU6SXn5ldfsWY9Os+LyExOp6W72NRsQeAiMDwK73L1nZHNnIj3DPUJ33nHHHbbtttsmUh86Y+DlH24u9HytIMDsDsaSnXfeebZ2En1tccvRO+voL4Xkm69bY+Dc1uYbU2GocaMI3vRpXVu3tzsfHLM7LbOe7b7Dex+p78tUcdoLrzvjjDPSolnWHUivFrfWq/1tIvZlriEIPNZZSM1dd93VR+wbhdyiXCn7t771LfvZz37WZ6Eul6W6zNXdb3JBVPgRX1AsbsxchEWj34eKfDFFPOGA0WFtwiUnMbn85ivN7vsJ0YPaBemflYXhqw0wiM7m7LPPTnH9R48e3eeC0yjtYRam/X8L4speDwcddJBdcskl6UbwwTAwX5xi9Wyqyfxz6Z24QEEv8l/9l7wFMsnAbAeWSJbDOilJi619pqmr0xb36EUrrLRKWpjPezoh9Hxzseph4a3/1ZJEjCWCwz+QFfZ9OOCAA/rKTNnnW/7hJ6031BACsWD2i1/8ohG/nTYSR9EGgfmmkm8yve0lyWIL60l8jYkbRGakGVD0pM9u+onZ0U6PRsei9V412y+qaOLhHtHH4ub54x//uG9wo/YyXGRr5/nh99C1U9aK55QGh+KB2B577LH29a9/va/RVTxzZcwA1nqiFmy//fZlTLW6kkIWGORBZumEcDFgCrlcRCWFRPWjl475tzy5z/vcpz/9yC+aTR1RGgj4J0XECZsu9wzvmO6LMCFrbNwGHtExN9IM1rwQzMoD+oJQj4ScBB922pw/WZmbBRDVz4fa5Z7e+p0jM3m5SEH+3BLPOIHASrhiEc875xb8FIXLQ6KyWqPN89WZQgESdjdvrZzjlYO8AAa33HJLCvuJu9b8yzzIBHR73SCAbDAIZKf3Y445JvUx9LccYUgoXWG9LdFGvG20e5LTvU34KNc/BMj0KD3eKhj8zmp35CT0Kmfa4vApGRj87ne/S4tmcfXU0XgIDF+KGg+zIZeYDip8q3fdddfUQd9www3pfY1CZHAl2HfffZMfZijcIQNaww/SyfBBBg499NDkivLMM8/0zeCUvGhYbfEPzVOwRNbzpD5/JR+t2dWD35bvbvLXuZBLVuDh55AOCAs07lhEbYiOl7ZQ+k54+Pkv9xvwG/7GN75hl112WcKHQdHABoJB3Dnnj/zgLMJfZksy6564mqi/E5a8jz4zO9yTl4qWNNBzytI0M/3e5lMAeWLvA9ecu3UVwWJPG7n77rtTKNRG1hnZWtL3/hGIfpQz/czNN99sr7/+etKrpepjZ29drjM9CEGbX2xx48k01ia56w2aFs952hF6N7U/b0I53CH7XCLThf4LNoirzFIcd9xxdsQRR6RyD0xHDCIB3Vr1CIjYl7mKaGRE/uD4/e9/n2JUs0kRHXVYolBA9WSVojxRJtwusFLvtttuJYozXOYKHUJyyEDUL7JA6L799tvPfvCDHyQlHJ0Q55LJAR2Mdy50I7O6Eq5FaMtC1cD1/DNDKHJ6JCvf/D1p0qTkksXC0JjJ4p5sWxhqWvX0XHTMYHPkkUemxaPojCAqIS/94xY1XEgYsnRkbveAIgv6qPc8AUlP+T89/OMHtJ5/4fqJuqSN0dxlx/2M8xylUI7SYwM6KBdyQRhUZrVYZ6AB34Cga9ibYsaPM1Z71i/hZ86AMCs7xdGt+XYzuw7t/cvFvp2NIPMq1VvG6F5FW9geem/IaOGhVF6UhzMhtbfYYgv76Ec/ml4Venco79UztYlAoZTVZilqINd0znxCufCdhrfaaqvZr371q9k66XrqvCAfQVYJaXjYYYelTakaXeFQxyEToYwffPDBZI2NIwZDJVHMRLXxPmj2bmXWX32dVR8fzP/GUCCo/2CbXRDQeI4F5ETDwRJNWemMC9vJYNOot/uD1CMvfCArxPr/wx/+4DvBetQNP8C1vb09LayN+2fhkCXtfZWJvbD3w5393zPrHdQ490Pu/X+XnaY0MGT2hktYJFvzVv3ka89/zvQh+UnCBn9AxJAHFgw/8cQT9pOf/CS9pP/By+DfryfqF4FsG9hxxx2Nnd4vvfTS2frY6JMGi0JqKfEPfXr6L+NcE00MsWejt5SA+96zn0NqK+mf9Ez+U0Ds4/lBZIwZrZjJIkITs6C4IYUunVMnDOLlurUmERia1q3JolZfpmlwWLB//etf27///e++kXVJiFyFih8KFOJGfGEsb6uuumrKjRROvlLAAcv9CSeckKz27HEQMsC5HnDKloPysM6CHRF/+9vfprLWk8yXsqmB3ac+9akUUQo3Pjp0ZAdSTzSQesGRMkFYICksso/IHuiRejJ8lFJW9G7fX8/liL71//7v/5JejVku2k30TbWOEwNg2gTthZj1zOrRXrJ9b62XUfkfHAIi9oPDq6h30/CW8ugSEPtddtkluSZEx1wPZA6wgrSddNJJyYWA+P06ZkcgMGJfA6ZQv/rVryZFjQzUixxQ4rAqvfrqq2lRGwu8wkovmRg4AsgEi0lvv/325D/Mouuw6A/8LdV7Z7QHFlR/5CMfSbH745os9tVbb9WYM9oKO5vjc86OxfifR3uJ2eRqzPdg8hSDlb333jstmGXnXdpJzPjWUx8yGFwa+V4R+wrXPo3v85//vDFliL8xo26O6MiC6NeKJS6b78gzBOT4449PO81iVYzOWQonL3zgEFZIouMQ+YTBXlwPBV1hUR1S8iEPURbkm3UlxO/fZptt+gYwssIODF7wBEvCX15//fV2zjnnJKISO7NmdQf31ZLeIO+R54cfftjeeOONVD4Gf5RDMjIwGdFdsyOA3LBHxiKLLJJcukLGQp6yfWyttJdsO49d3JnBo9/IztxRRvWzjdciROwrWOdBdrBknnjiicmfFHcViFx2yrCWiF3kOwgdW8DvtNNOaaHw8ssvLyI3F3mLDgVfabYBP+qoo/pcLbJKPHCdy2uq5jL5DLmN7/xNNKTJkyf3DVzIsDqfgVdbdNKcN9lkk7Tomo1o8CPOHpDhwgWDA0+lvHeGzkAOyDN68Oqrr06uWgsttFDKTCyKpNwiKuWtn1pOLXQPMoNLDr72kF+O0E9B9LlWK7KV7QcIPvDtb387tZloL7Ql6dValtzh5V3Efnj4FeVpGiCj7L/+9a/J9/joo49O70Xx1IqiCSDIb+Sb8I2f/vSn7ec//3myzoYrRlFAq8OXgB2ywBqEc8891wiJysAIJc5vgV+t4YhFmYMO9eKLL+6LglOHVVi2IoEpcoGLAQQfwsI1CHCW1AdpLlvGhpAQ+SWfzOZMnTrVzj///ETqV1hhhZrTf0Movh4pIQJB2pEt2guLSzGa/PGPf+ybOeY6R5bglzBLw341+j/yTMAFZvwJl7z66qurjx02uvXxAhH7CtdjkGDOI0aMSLuQsqCQDayi8ca5wlkdUPKhHF944QXbfPPN0yZcu+++e+q4w+o2oBc10E1gFgM4OiC+sxkPRHjrrbe2Z599NinsIEC1hCNlIb/400NC77jjDhszZowI2zDkG1nAEBAyA6lnMS3RciD3IUPDSKLsjzJT9c477ySZv+iii9LGOrVCtMoOlhIcFALon9CxRJWC3H/zm99MA0iOWpOz2E33scces4022ihFyGItCuVAL+gQAiL2FZSBILuhdFBATKUxCseisM8++6SOOo7s9Fu1kP3s4IPvlOXxxx+3ddZZJ0V4Ofjgg1P2w5+xgnBXbdKBG/JAFAfO4IUlBp9QwqI+8MADc+CYlYdqKVxWHigDZWF9BZulQOrxc60W2a0WzAabjyAq8RwYY+Fedtllk8sbHX/olOy7q01eIo/knwXVp512WtJ72267bcq/XAkGKxm6f24IZAkvASvoo9gY8PTTT+8bCIcejnZSKT1VmG5hftgHBrci9nVg3Rqz4RwxQOGso7ERELGvYP1nLa/RWdPJsTCOhosbxhe+8AV77733Ui75jUaLRY7v1XCQDz4xPQjBwDXgrLPOSrtkRuccHXU15Lna8hCKOOQhzmC61157pbj/zH5AjOMA80KFX8lykZdY+B15mzFjRhqY/OY3v7H77rsvEU8OdTxDr6kgw7whBsvRoV9zzTW28cYbp9kRQvthFAisqRPur4YBduiL0GPPP/98mqW85557UrSkbD6z5R06anqyUREI+Q85QqciX4svvrjdf//9yU2UHY3ZxZkj3ByDXBeS7HLgGO05+vhsX09+2OsEF9d7773XPvnJT6YsRZ9RDe27HBgpjXkjIGI/b3zK+iuNNho1m89A5Jii/uAHP2iPPvpoUkgRAaNaGnDkA4WIdZ5oJ6wVIHRjKNWyglhniSETkB1230SZE9MbGQgf62rBmHwgC+QXWZg2bZrtsMMOyT3kkUceSZb6IGzck+2s6qzKylqcICyhG5iWZ6YMSyTRlWLGj44/Bt9lzeBcEsPtkDwjH1dccUWy2OMjzFEJMjWXbOpynSEQM6K0BQxoTz31VOpnmWEmChPtKch9pXRU8IDgAqHj2asCIs9MPnxgueWWS22lWvqAOhOVmi6OiH2VVV9YFOj0aLD4mxICEXcMrAtMs9OYq6XzgzjQKbPQ7dZbb7WXXnopxdKVshm6YIVFM2SAv9dbb71E1LDGfuhDH0qLDDni3qGnVpwnkccg9viw0ul84AMfSG5l4Q8eHWYMAoqTcmO/JfQA58AZYo817x//+EdaVMfMCb9D7itFVgprCSv9ySefnHbPZf8OBn6Si0KU9HexEQgiHBZuZO5f//pXmhkl3j39bbQRfqtEP0aahf07OhUXHHQsfSwzDuFeVHhvsTHT+2oPARH7KqozFEo01uiEabTEuKcjZLHPxIkT00ZPXJ/XJ4o1mEYf9/Z37u8agwzCcxLGkkgDKEg6aqxxKKdqIRFVVMUDygrKmyM6FaxMHFiYnnjiiWS5Z2dBduXEnQGZKZSFASU0yJuyMhDp8Yq4jjywszDuIOedd56xKVnINGUJq/Egk9Xt80AAXBlch8xwK9+Z5YMA0DYJpYuFj3qKwVe8srBOoz7j+jyS7vupUDdk352VS66TVzaeuuCCC5KLGVHAuIdBXxCpSpCpgZRT99Q+AiFjIbP8TZsgbCxGCGadMZy88sorSXfxycpw4XcQiWsDRSd7f+H7Ct9FaGDWnKBTiVNP22EWn4O8RzkGmrbuawwEROyrqJ6zVoRQOCgdPgsvvHBaQHnllVfayiuvnKYOiV1Nw852iPGdDjSUEuewls6ruDzLc6Ew4hwEPd4JmWSqHwsCRJNoFuyWSl6yBCPKM6809Vv/CMQAjzrgyJ4hzMySYGVaeumlk0U2O4ji3qhv6qQYAyymgXkv7woZI41IB3eKBRdcMNU//qpE8+E+ZCDyTjnCqtx/qXV1KAjEwC/qJeSFv6kXCAuzaSxiJkY891NvWVIRz1JffGKwOBDZifrlmZCPmHmM3zizUd0xxxyTBhusG2JxOHLFc4XyPhQc9IwQGCgC6ClkMvorziuttFKaFYXcsx4Igxq6LMhzyHakwfNZfThQkh19drSt7HtinRL3HHLIIWkma8UVV0x9/Wabbdany6NdFerXgZZf99U3AiL2NVS/NHZcclAIKJ8JEyakz5NPPjlHKWJAwDNhDZuf4uF3Otgg90HmotPndxZDEq6QafS33nor+dNjoS9UenNkSBeKisDYsWNtypQpyfLJLAmk+uWXX05pUBfRYUUnMtzEsRJFHfNOPnQqLHok/QMPPDDNJBHVRLIwXLSL+zzEgBm/2267zf70pz8lcs3ftO8g8pyzeiJ884NwzytHWaMBuiL0CHLA91tuuSVFRcIAQJrsZcAR5Gpe79ZvQqCcCCDLGKkg2ISSRM9iRMOQgizTLkKnxuA18hdke3755floGzxDWrQ/rtM+8KHn77vvvjvdR1/LkW1n80tDvzc2AiL2NVT/NPJQAJ/73OcSsaPR43+N9Xy33XZLI/us1Z3OMzpnFMdAjrDWhQWOHe2Ik00MYCL1YPVj9gAyyT1SOANBtXj3BKnmzGIqOgOmaCe6mxbuOlj0uRYdSDFSpvMJ0saADpcbBngQe2ZtWCCLjHAgcwOVtWLkTe+YOwJBQtAba621lr3++uspNCYW/BNOOMHOOeecPsKdteTzRup7IG2b+kY3xWCANHH9YW0QLnqLLbZY0ku46oX+4v3cFwPQuZdAvwiB8iEQOhNZJloOfewee+yRLPjI8QEHHJDWN4XsBkGnnXBtIHov7om2wN/sHo3ffKw1IY3rr78+FZw2EoPukSNHDiiN8iGmlKoRARH7aqyVueQJRYAiicZOR/zlL385ddaQbYgVLjt8mO7+xS9+YWwUxTGQTpSOHLcOIrAQ1QaSiCI56KCDjFB6KDlCbRFrP/z8wmoxUGvFXIqmy8NAgMHVxz/+8TRt/PDDDydfTAZhuOkcdthhKfThcA82QyH0KjJBB0cEE3y4//Of/6R0kM2QM86Sh+EiXpznYzAWeoN6YjMbZvmQC9r2r371q+SmQ8QlrOvoknhuIPUICWITNRYe/vSnP00zAsgheoToSMwSxKZk6KHsO0Xsi1PPektxEAgjWOgzDGbf+ta3km7FqIULGf0fepAdwglmgD8+9w+krZBL3sX6KMJCMyNAGrQRBr68n/DAzILHEQY9GUyKU8eN8JYmV7QDM+M2Aho1XkYUBoqJKW/8avGDh+RByFEeuEzE9Df3oYjolOPD4kc++PBjpWBWgEECnXIcA1VetQxlkBrKUEhEaqVc1DlkHBmAcDEQg+zjlvGpT33KPvaxj/UNAokGgYUIS/yLL76YzpAyLLuEgONddGYslN5ll12MDV54X6PIAh1rPZeV2RgW6VH3WA5xr+M75CIIDuXnO3ojdr5El6Bz0B9rr7128pln8IfOgLCUS2ekDsz/cY9n/8LHZ4yafBYhfeN6f0fsA+L3ck/0gunm2BTQn8712r76eQmRSnb3XbU5V+pglo7dyjlX+jj88MNTFjjXqt6cH4aUi/bCoJjIU+jXIOTIPMY22gVtJWay0B98aDe0F4xh7Ky899572yc+8Yk0SEA308a4ryoGuzlvH0nm8/I/W/NILcuP1HA4+YxCL3CYd5py3n6a5twBN8pXz7q0F4aKn0TsK14Fxc1A1u+P7ygYrGZ03JxRSignFEzEkg6SRoccCyBDuYSC5lwVCqe4cPX7tnog9tRX1B0dCiEFkQFcJAiDCBnBPYIOCosTMzNMAxNtBxK/wQYbJIsSpJ8Oi9mgQoLbCAq63jsjZCT0RJaMMXOHgQAZod65h2sQe3QKBIYPsgExASd+Q78EseF9HGWRkz5273LfS0ZS2ol98JlzcjrISv6+lNXeI7P5n4h9Fph5fm8UYj+bpPQO+ulbMYhEIAMGu7QF2gTtgT6W/pb2En1sn7T1kvkg9WVpL/OsyXn/6CsEvF0x6O29z8l9ltjH4LrwLfWuSwvLW8m/5xxWVTI3SntYCASZi5dkpxMhbmFB4L74Le7NktlsA4zrPBsEYFiZ1MNlQyDqkQ4FYo7LDGEQ2URsbgO3IGORyehssqQ+SwDLVhglVBIEqEvIR2Gdoi8gIwz0CmWiv4xAZLJ6ZSDP9PeeoV2bRd7d0SfzCr+O5TGZ82cR+yyhn3VzWCG5LzMIaJpl2R9a3vRUPSFQSE6Re9oJM+J8skf0nYV9K/f091s1Gc4g6rSC1JpoMH3tIF/C1Ib8x2hteUfM/G/9DaLjF53Lg8CcZozypKtUSoQACoODjjU+/A2RD3KWJfVZpRNZik6e+zmySiju0bk2EMh2FlGvWRmJ71k5yJKy7AAgrnMtnqsNFJTLuSEQg/3+9MDc6jh7Pb6jUwrlizTLQvDTzIDrO1d9aKyg4kkTJn2YsS7ODYi+p/q7IWPB7+9nXWsYBJDnrE6NULOhE2kP0SZC9gv7UcDit/jQdvprf+UHlXaUbUGZHPQzGu4dMvfeNOu5sN6XP/9KMRCQxb6OZAHlEKS9v0650EofRQ9FVfhM4f2Fv9cRdHVXlHnVVfw2t3v6u14oC3UHWAMXKNp/lrAAx7zkJCsjfO9PZrLvKDW8ObfM44KT87w0O2nC3z7X7bMIzW3W0+xuQr0e98FPIFU9/kzew97vbcpvAscwINftb2oJW2Spc6731xIChW2isB1EWQbSHgrvKWx/pcMlPxDu859PA+P84QE9U1tOBno/05LyA3YGxwxG2EiOMzc0W6fPhPl8X74d+bVE7/2amk/pam8gb5bFfiAo6R4hIASEgBCoWgTgJhCSZvyV3eM3193hvMO/OcmYmcl10PW8Hd9tiz2+a6+TGd9+zZ/yjzOTptlYCV2k7F9VW/HKWNEQ6PG2QBuCtHtYDct1zvTBrw+A/Vqnp9Ld0xvOs6fbmrtnuJcbg2nLtx1fi8Lf+eeLliW9aIgISGMNETg9JgSEgBAQApVHIFkUPRs9vsD3qSefsBOOOzr5BeeaWmzFdda3vb7zdct6P3Nvt5OYQ3/4A3vrzUnJRXFq66LW0tNhp5xyoi00dnSySuaPXjceGfArX9HKQYkQyFvlaTQzO2ba17/+TW8v3daRa7GZOZ/xahvhkW5y9qtTT7KxI1vtp0cfZS/5ZoTTrN06mz2uvhP/b+7zNVt/vbW8Dfri+RQRRzbjElXWgF4rYj8gmHSTEBACQkAIVCUCTizczJ6oxAorTLRTf3mCnX/Wmfat7//Eui+62pZcbV37yuYfmbXSz+9rduJ+3M+PtRefecI+tu5Gdux5V9qO225u7bwkuSbkXQ2qsrzKlBAoMgI0Ich4a1urnf3739gDt91kG2y2nU3Ltdo1N95sG260fmobua4ZdvAhB9l+u3/ZLrzgIvva/j+27/5gP1t60YVx2mGSzNuZSH2Rq2fQrxOxHzRkekAICAEhIASqBoFESghz6bE5WttsxNhxtse++9nkp26wH572X/ve1pvZ0s9NtY8v2WFNXZ02vWmsjWrxrq+jzcYvv7otv8RCtupH1rOxzZ3ugOAWyiZ3z+l2n/sWJ/fOAzSP9AAAIABJREFU8bv8/eooq6a2lZFhI0CDmTUFlSf1rJNByvOS/sGNtrQlWpvtqY4mW2mNtWzBnO9k7oPdJl+L8uZrT9jFtz9tZ11yle30mW3TE3iv+Rt63zHsDOoFw0RAQ6thAqjHhYAQEAJCoHIIQCj6iIqHxsm5C0Gzc/xlJ65gG262lccTn2GfW3dNe65rpN/XZSOb3GO4p9mmjmiyUb5Qtp3FgNl3ZIsya11h5QqolIVAmRFo9YHtGEa1/u90bx8zWnzTqdwIe7XjZfvqJl+2439xXCL1LFRPRvoy50/JzRsBEft546NfhYAQEAJCoKoRgNpDzVniB8VosS6i5LSMsCOP/5V9eIN1rfu1h+wrW33PXm5a0BfW+qJZ5yz43U9u7bYF/U8WznLwbz5SzqwCzx6je9Z1fRMC9YpAriXa0hRzo71704+wdye9aruvvY197oyT7LPb5y31EPsejz6lo7oQELGvrvpQboSAEBACQmAwCGBYTOH3IBh5iu+mRJvpl1raFrKrr7vSVhzXarfecoodcciF9nbrCL8N4jLNxvGvOwYTA58j2yHGDrZECNEhBBoJgSa32Pse9e6Z0+VuOGavv/KwbbfWpvbFk86yHbfY1Nq8obCgtsVDySa/etakaHarakRExL5qqkIZEQJCQAgIgeEgkHcL6HXN8UV8Pe5LP3qBxewvd99uy7hl/vc/290uuO4+p+pO7DtHe6i+qR4iE1riAwIP45di2PcylC4nKj0e/zIfs3s4udKzQqC2EGCg67GhnNc32xPPPGgfWXMT+79z/2y7fOrDtmAnm9GxAN3L5CEwe8fEzvQZXIvfV0NNi9hXQy0oD0JACAgBITAMBOjKWMbnjCMRDL7nN6zq8QV/iy+3tl1x0wW2hFvyf/jpj9q1z86w6W3v2YiOha2j2Qk9ITPdlxh7P5vwpJjdyS/Ht7ry7zqEQCMh4C3AZ7LMRvmQ90tbbWUvTJtsN57xR5vc0WHO9dNBG2lqKXRck799NciJiH011ILyIASEgBAQAkNDIBno8YRn91hI/Uz3xPGL/mnyaB5wfbahWvtju9rPj93ZY2+b7fmxD9vTk5pshnvlONf3qB5+Pxv0cLMT+2Y25eFVTuybkmlShxBoHATYA6LFB7vvjmyyf976km3UPsYuvPR422vPo+1NX4zeyWDX20WXz3A10fZ8g6rZHdkaB6tqLKmIfTXWivIkBISAEBACA0QAMu7ONBjr08ZS+cWxiaR76Ep8gUc4We9pmWm7HPB7+/K2H7Ku15+2PXf6mj030z2JPYQOcXGST4Hf98AD99vqa37Ypnd2WVdyNRCxH2BF6La6QaDb2rxJjJzRamMXN/vjww/YyhMWtmsvPtq++dVf2PQZM7ykhLf0JoNfjppIVdW8iH1VVYcyIwSEgBAQAoNBAP/4nrSlvVN631CnKefewb7lfbtb4Ke3jvJXOevwFX7NTTOs23fKPOfS/9jGay9r9956kR1/wBn2rpvmO/yu7u4FCKhjiy0yxjfn2cpGuTdPmzOXWEQ7mDzpXiFQtQhAxGksjIHjk/nKpbaeFpvk5w6PhzPNB8rjlljO/nv3I/aRZcfaPy461L741UPtdXfL6WA2iw2pfC2KNyB/H/Hup1Vt0RslYyL2jVLTKqcQEAJCoC4RgIpAVJxYQNGdjHc7yWjy0B1N3RCPPJHp8uWAafsdJ/l/ueceW3Op8Xblqd+2O1983a/jUpC3Pi659FL2y1OP8ogf+UCXPSnijg4hUCcIzMW6zuV8TKm8vCP9I5qmeiR7X0TrTah5ycXtqv/+29ZcZin758W/s299eR+bMqPDpvqDPS3e9ppof+0+y0UgWR2VREDEvpLoK20hIASEgBAYJgK9xN7JfTOhKf3PlrZ2e+blFyzXMT2RFUzx3dD6po7kDvyujbebbr/aFh/pfvm5sR6l2+3yTlC6ncR3zZxqjz/zvL8NBx3s9XNhQsPMtR4XApVBoNfKnmfy+SxgxceFLYV25TwpEfrOXFuyv7f7va3Tu2zsgh+06+/7t334/a12/RXn2s6f3d1efWeqx5hq85bCJ+ezYrxLRyURELGvJPpKWwgIASEgBIaFQJ6fQFb4Rpfm5MJdA26+/QG78a9/djednHX6T+29qXDXGOcuY5ZZy35z9Tm2RO4dG+k0vqOz055/4QXb5qOb2Sc/safN7PSFt35zLoLcDyuXelgIVAcC0O74pBylxSlY6fnkB8mvTXrGpnf1OMVvt7fffNs3fPOY9W0t1ua8v3XcODvw8K+nR269/lpb/wOb2n/vedbbS5evV+/xITR7ROioJAIi9pVEX2kLASEgBITAMBHwePXYChMJb7djjzvallh8ot3z0Nt2xgkH2/jxE+zBBx62mdNn2nT3wYeuNHd0+o6aI22dzXe0Yw7+VrLYt7e32vsnTrRTTj7So36MsKbWFr+3qc8lZ5iZ1ONCoCoRSMZ6/+R8ofi7U3wua6HFbdVVt7S3FhhrC/nGbjusvZa9730ftDc6p6dB8tkn/tT2/P6vbcyC42z8Ar6+ZdqTttWW69riSyxl993/qLV0xxC6KovbEJlKLoc6hIAQEAJCQAjUJAJONvIRKd1S77EsD/7RQfYj/+AaAIn3wH3W0THV2trbbaaT/47uThs5stVG+gLbXHOn7fHjE62jpcUNl51+d84WX2wh624albdqYt7HkMlZhxCoAwQKRTmJOC7y3gYWcDI/6e3XffKryVertKVZriZ3T3uvu9lGu9N9c9cM22e/w2y3/Y/1WS4/uljT4gFmPexlrm1Ecltr7qHByGZcSVERsa8k+kpbCAgBISAEhocAi2WdS7R6PO3WVmiKh6909wLoBbG4OVrc+o6nDi433b7Ir7PZSQtW+VxXIvUezt7D2Lv/ffsIJzP+rG9qlXdO4PlCKjS87OppIVBZBDDPI9d58o2rWbO3Dw7aUUvvvg0j/BbWnnd71JvRLZ3W7KFhzdvKVG8tI5MvPmtWaDn+jVD2fm/OB805/+5vTNd1VAYBoV8Z3JWqEBACQkAIFAUBXzTr5AOukui8WxfdI9gXwvrLnWVwmtmS7Iu+mHZaCnvJ/jrTnIhM7x7jRH56era5tdfO5ebLXIqTo0MI1CECcwh2/kI+Hn1z2lE2MXqb4vTcl8W6BZ6AN+95G5ra0m6jndM3d/nv+aaW34m2ear73L/rg4JW6+ySvbjSUqMaqHQNKH0hIASEgBAYOgLsMOtPp7WzfGvJ/02MjnTRP6P4ys++gyb0f0Tcm3rAkU5G/Ke2HhuZm2p/+u+rNv3lv9qbL71jY5ce75bIGf5sfmDA3aU5iObjmfQoJCxAzDmTSpZUH2C4F7NnHgupfJdLg30jvjU1gHTgdpMM+H5mSJzi0mN+bxqbbzPc2tJqY/INzMPI8lTeJjxrU+Z8iEve5WtsdVQYARH7CleAkhcCQkAICIGhIwCZKDzyvD1/PTh8/h7+yuwl2/ujexgkMtPdlbP1N97SHn1sWyc77pqD7zHx7OdMojDJYf49ZwKzptPzeR5mAnpcCPQ2gTllre9KtKVso+n9cdY9vCb/16w3+be4b9ZFIV4hBETsKwS8khUCQkAICIHqQIDY9jmPmNPaMtYmLjPOF9m6Kw4WzLSbZulNkLG7bXCiwrMWI1aHnCgXQqAWEBCxr4VaUh6FgBAQAkKgZAh0u3W+yYl9i5P4FNPDXWEI7dfqLgjJal+ylOPF+RSSB0RBWnkPaG2TVfIqUAJCoE4Q0OLZOqlIFUMICIHSIMCisrSwTEfdItDmfsXNzd4dcm5p9kWARNnJx8VpmuVIPFv5QyZ6Uni/wR/xXJ9ssVEQu34mZo/NjYW/OevyWYNa2SQLDNVeBi8LjfTEUNtLI2E03LLKYj9cBPW8EBACdY1Aa2+0FJH7uq5mLxx2LtxunFynBat+SuM5rs9O3tMgwI/VV199SIM+ZIm1AZCctEYgDQ48XT/3eGQR0iT0YFNLj88a1Ib9jXIcccQR6QM+XV0s+NUhBIiSSbjZvLxH2xEupUOgyRWMTFGlw1dvrkEE8lEC8s0iOuAaLIayPEwEut1SGrLAWR3SMAGt5sfpBr2Oc74ZD1Z77xg9t73X/FwYlztrdeR7DP4GWsTQK5x5/torL7cLzjvPSb1vsuWxwbtzo/16l31so3Xth/t/z0MJOjHqx9V/4sSJdtNNNxnnSh9RlrDa02bSoEVHwyMQ7QV56Ozs9F2eFeGplEIhi30p0dW7hYAQqFkEgqBEAWQDqdmqnG/Gm9y5HbcXwkxC6JtYTet0Hnrf49eacX7PHBAULNJDHeyF9ZJX8o5ttt/Otvj4BrbH175mF19xta394S3sbzdcbmNGe/hLJ/jN/bH62XJUHX8EkVdbqY76qLZcYCxpa0vxMnWUEAER+xKCq1cLASFQuwgESclaIGu3NMr5/BDI13evWbzX0sypyd1zCi3PEFcIynBm9GJQkNxx3P1m1IKjbauN1rOrLr/V1thwCxs1xnfH9RkESH1/i2rnV55K/B444XqhQwhkEShsQ0KndAiI2JcOW71ZCAiBGkcgOiN1SjVekfPLfq9Bvs/lJmOg9+W0czxdTLkIgs8goZ2dPj0yT2fzyDRbkF8+W444+nMUcdAX1EYGDVnDPBCyMdQZroYBqkgFnVNjFenFeo0QEAJCQAgIASEgBISAEBAC5UNAxL58WCslISAEhIAQEAJCQAgIASFQMgRE7EsGrV4sBISAEBACQkAICAEhIATKh4CIffmwVkpCQAgIASEgBISAEBACQqBkCIjYlwxavVgICAEhIASEgBAQAkJACJQPARH78mGtlISAEBACQkAICAEhIASEQMkQELEvGbR6sRAQAkJACAiBeSOQNnNKG92y821+U6wWj1/ve+D6x+Nu+u+5HBtn6RACQkAIzB8BEfv5Y6Q7hIAQEAJCQAgUDYHYmTVtTuW7YPF3rpudb1uty+n8iFyXn806nOBbV9r/tmhp60VCQAjUNwIi9vVdvyqdEBACQkAIVCkCsasxJvtm362128k9Nvueni5s9b5BFVtU8S2zY1aVlkXZEgJCoDoQELGvjnpQLoSAEBACQqBBEMBKj7U+LPcUu3P6DHvg0ces263zD/3vbuue6eTe72vyjWd7/KxDCAgBITAQBETsB4KS7hECQkAICAEhUCQEIPVY6zl3d3fbmb89w9b40Iftr/+405Zddml79fnHbb3V1rADDjjQzfZ5232RktZrhIAQqHMEmtxigAOfDiEgBHoRCJ9X/qR58LcOISAEhEDJEMCXPjczvT5n7dbV1MxaWmvx3hnrW7d/b+0n8YkTJ9pNN91knHUIASEgBECgP10hZISAEBACQkAICIEyIpDD5ybR+OZ8x+ykHpMCBF+mhTJWhJISAjWOgIh9jVegsi8EhIAQEAI1jkCaFQxi70Q+hb/0Ty+jl89sjdevsi8EyoiA9EUZwVZSQkAICAEhIATmRIBYOM2+cJbAloS27I1bjytgimavcJdzYqYrQkAI9IeALPb9oaJrQkAICAEhIATKiEDeCYcE/RuW+mSt7/tSxpwoKSEgBGoZAVnsa7n2lHchIASEgBAQAkJACAgBIdCLgIi9REEICAEhIASEgBAQAkJACNQBAiL2dVCJKoIQEAJCQAgIASEgBISAEJCPvWRACPSDwGabbdYXv15bPfQDkC4JASFQcQTefPPNlIfY8KriGVIGhIAQqDgCIvYVrwJloNoQuOGGG9KukF1dXdbaqiZSbfWj/AgBIZBHAKPD4osvrk30JBBCQAj0IaCdZyUMQqAAAaxfHOw4K0uYxEMICIFqRADd1NLSknQUuko7ZFdjLSlPQqD8CMgcWX7MlWKNIIA1DMu9OswaqTBlUwg0EALoJnQUH+moBqp4FVUIzAcBWeznA5B+FgJCQAgIASEgBISAEBACtYCAouLUQi0pj0JACAgBISAEhIAQEAJCYD4IiNjPByD9LASEgBAQAkJACAgBISAEagEBEftaqCXlUQgIASEgBISAEBACQkAIzAcBEfv5AKSfhYAQEAJCQAgIASEgBIRALSAgYl8LtaQ8CgEhIAT+v73zCU1t+fb8avqBzvRBg870QYP+RvpG5jfSN9LfSN/IXGjQ38i8kT5oMD/oQWbJb6R3lNxJmwsNegaNHmiIBxqSM4q3oYlnFM+giQe6iQdeEw90oxk01d/a/9zuvf2vScxdG3JOsnft+vOpVVWraletxQSYABNgAkyACSwgwIr9AkD8mAkwASbABJgAE2ACTIAJ7AMBVuz3oZY4j0yACTABJsAEmAATYAJMYAEBVuwXAOLHTIAJMAEmwASYABNgAkxgHwiwYr8PtcR5ZAJMgAkwASbABJgAE2ACCwiwYr8AED9mAkyACTABJsAEmAATYAL7QIAV+32oJc4jE2ACTIAJMAEmwASYABNYQIAV+wWA+DETYAJMgAkwASbABJgAE9gHAqzY70MtcR6ZABNgAkyACTABJsAEmMACAqzYLwDEj5kAE2ACTIAJMAEmwASYwD4QYMV+H2qJ88gEmAATYAJMgAkwASbABBYQYMV+ASB+zASYABNgAkyACTABJsAE9oEAK/b7UEucRybABJgAE2ACTIAJMAEmsIAAK/YLAPFjJsAEmAATYAJMgAkwASawDwRYsd+HWuI8MgEmwASYABNgAkyACTCBBQRYsV8AiB8zASbABJgAE2ACTIAJMIF9IMCK/T7UEueRCTABJsAEmAATYAJMgAksIMCK/QJA/JgJMAEmwASYABNgAkyACewDAVbs96GWOI9MgAkwASbABJgAE2ACTGABAVbsFwDix0yACTABJsAEmAATYAJMYB8IsGK/D7XEeWQCTIAJMAEmwASYABNgAgsIsGK/ABA/ZgJMgAkwASbABJgAE2AC+0CAFft9qCXOIxNgAkyACTABJsAEmAATWECAFfsFgPgxE2ACTIAJMAEmwASYABPYBwKs2O9DLXEemQATYAJMgAkwASbABJjAAgKs2C8AxI+ZABNgAkyACTABJsAEmMA+EGDFfh9qifPIBJgAE2ACTIAJMAEmwAQWEGDFfgEgfswEmAATYAJMgAkwASbABPaBACv2+1BLnEcmwASYABNgAkyACTABJrCAACv2CwDxYybABJgAE2ACTIAJMAEmsA8EWLHfh1riPDIBJsAEmAATYAJMgAkwgQUEWLFfAIgfMwEmwASYABNgAkyACTCBfSDAiv0+1BLnkQkwASbABJgAE2ACTIAJLCDAiv0CQPyYCTABJsAEmAATYAJMgAnsAwFW7PehljiPTIAJMAEmwASYABNgAkxgAQFW7BcA4sdMgAkwASbABJgAE2ACTGAfCLBivw+1xHlkAkyACTABJsAEmAATYAILCLBivwAQP2YCTIAJMAEmwASYABNgAvtAgBX7faglziMTYAJMgAkwASbABJgAE1hAgBX7BYD4MRNgAkyACTABJsAEmAAT2AcCrNjvQy1xHpkAE2ACTIAJMAEmwASYwAICrNgvAMSPmQATYAJMgAkwASbABJjAPhBgxX4faonzyASYABNgAkyACTABJsAEFhBgxX4BIH7MBJgAE2ACTIAJMAEmwAT2gQAr9vtQS5xHJsAEmAATYAJMgAkwASawgAAr9gsA8WMmwASYABNgAkyACTABJrAPBFix34da4jwyASbABJgAE2ACTIAJMIEFBFixXwCIHzMBJsAEmAATYAJMgAkwgX0gwIr9PtQS55EJMAEmwASYABNgAkyACSwgwIr9AkD8mAkwASbABJgAE2ACTIAJ7AMBVuz3oZY4j0yACTABJsAEmAATYAJMYAGBN63Yj/stOjvKU+nihgYLCsKPd0Bg3KObTn8HEb/fKMeDHrUvz+isxdxWquVhn24a4NboObw2pM5FifL5Y2r1xg7P+dZ+EhhSt31Bx6UjOjzM01HpjC7aPeIafr3aHPZuqFE9JsdmuGy2xl1qHOcpX7qk7nDZl95zuJfov4bU77To4viSOtyANhCmIfXal3RWbe9A53zBOhJbuu5rWRGPBITH5RKudX88aVEf6Rl6EJWYS6CG8OMR6ebTlnLK0SwkMHoQV6dZEfGQcKWbwqiShS/uT4DHq6JIxkLCN1dWPcIXCIhQJC6yhbI4b96KBxuMkXi4rotKUcq/T7gUeSURKt/tD4xXyuno4VbUK0WRjYeER+PmK1zbcjO6yhnPKXQq7m0h+Ma+ERjd10Q2FBDxYk006xWRi+h9vUsECleCe/sXqtHRo7gF/3IuKSK+yXibu1o//btiQBu3STi15/Vj3s83d9Z/Pd2J5nlZFNIxEcBYrehKrqRJh9pPXi+ea6nv1E5Vji6NY2RL48wr1dHfbDC1mXo1nG/QTZ5o2ClRIvEzfXnWHgeydF7NU9jrngo/HmNaiZ8hVjhvWpd0+ekrPT+P5S0iJaj8XY9Eht1WTjmemQTGfWpfHNPxyQf68kMNBUX1XV7+VJXaKYhVr0qp6D/TZ13UfGmqXJYoCoEbDgfU795Qu92m1i+f6cMvf8UcM0TZkwuqlhLkV8hATvFbNJXBikmbPr9LWrsrlDd4QEFqkCZuMxIyN/4hdwUzKO3N7WGbjlJ/pla4RgOMDV5kPJMI0vjgH+nDt2f61mpR7yJFB3tToH3OKNqWN0qpzBhfTz7Rly0UZWqo5nEbRHfUfyFadzhFGHmo/fG3LdTc7zQKKJ1uf5gOMKA3dD1gWyheq462Pzu6F6cRbdaDGeRyK74jcVeOYLUzLmqPkxyN7uuimE2L3OmVMN3efpY5RvF4VRHFIlala1h9Tk9WXJarv30G+CjOYxN5pWTdYbUQq/LNoojpqyKQ60C2aZPJUTP7Iiv2o5Hts8E+V4AQ1wXhm7NiL0D6+jQn0tmiqN29s7Lvd82tlfvbYkhZXYycTn97Gd3VsGqWFsXmw1rx8kubEbgt+Iwv5ItW7Of2QU+34ryQFelCRdzypxdUyq77L5POxSv26zeCUVOkt71ib+TmZetoayv2kwmOn/xyCWaly03RY6z0Vy+n5rbu8CFVG4crxcSB1yPgT5WoihVs5Qp3qPrxZ/q2XlR79paXvF75XUKdqjt/oXBTMIMV/ssBhf/xA31H6G8fsCc406PWIab52uX2Ii78Lp/v6hp3zyhzeUDtamJXSbx8vG63+pFuZsp+SmDv6Dsq8cySvv8HN3TZ+KoU04v2Yr7c0TxdtPLvH8EbLaFaH4t7r4V9kPeAji4adPRGy/ny2dp1/yXHsJcv1btLUY5DcrfItlftFVAvW0e7OTw7vetmufr3Jih/GFYUI75emcBCReuV87ft5JeUV2+mRIcBPfEf9PGitYMDNnMKN7yh0uEJdfhA2hxI/OhNE+h1qLNYd3zTRXi3mVtm8OU+6N1WPxfs/RDYjWK/Fp8gHV5ekGkBdK1Y+CUmsDsCUTqImtb0ux3q7S4xS8wDauQP6ZevO1lOeLFScEK/cwI4UzX4nSPY3+JzH7S/dcc5/z0ReAOKPUye3XRp7iLkeECDuQEmVTbs96jb6VJ/+Aqndiz5lKYPu93egrLBBBIUxG6vT6+R5e0JOw6b9nrgvr0Y315M2qc6U8Y2kjKYeOyh7juQ195ccEO6KaUo/3H1pc4x0uh2IF/9wRs5dDqkQa+rlnmwOr3hYJlyjLU0wLbbp1WTmTBbXZjHyN/kLTUf3d6cPC8tA9OtYdhHfzF1S+1HOuhvZpYX/ZPsa+aG2XWjQye3OlWZKV1u1ugr1+mXt81BsrdUjDI+oG3Oa/vqeCbb73rUtleMdfogyP+igRvyP100yLH8qtOZI8czCiXbrdKfog1YWc94RbuNfFr5or5kXLLtziJvpDevfVsSfon+a35Zd/X05RgqJZDtSR9HUHerjyToURRdUW1b67wvD0UrY5nsc2cJya5wL4p3/ZMGs958ErXkCodnn2oiGSqKW1t0TzAjWIMZrrgIwCRh7Hze8dmRuMfhxmQI5glDcZFMquafXL6QiKWLolK/Frd39+L+Xv15xPm7p9saDubKcB7h0X7SddNJn8crcZpLi3jIZzz3eJJTh3vVLONg5W0dYdV8ZhUzYQ+inosYJvpcsYrFRN+TuKvJ/MI8ojS3qB0cJJc0/1YX9699PvCuLEJanpY7PPskrgoBtRyemDjdqwOOI1FP62becNjb8fCsLpyWg7ao1wez3JoOgc42dylltSzSMI3piyRFrlAQOZgr8+HQjieUFOUrq5zfi/OkfqhNb1euiUwGCuLa2nZG96JZTivm68zy5fLFRO78zuFwsDWCHfwtTYrJPHlcKLfaRkM+jwgkyzB3WBDY4aQc3HMyjzd6hFm3SkFh5vLl7OU1qkce2ouLkA/tKFsQBRzgk30CuXwilquJRWL5JA9vxmGy1xcR8aRm/g/vhuJZUT5viuu7O6MPeZCdiH7BZOBdsyIKSZjtdMEAgOxG0H8UY0hbKZcL5k9vTWZjV5UBNaGn+2tRPy2IpOTgSoumchvmCiswTeszHQB3hUS2dj9J7/FaVNDXSRlT84P/PRFReKlDqk91kdb7WXMe0Pfpfa/8P1aZPkwrSzd6uBKVHPppn09E4kmjb5d1GklDdmZ2luv0y3qFbul/KRdX56KclWMDTOBqh4VH901RTGr9pS738bK4NoYfyEddHc+M+oIMBZIViwxLs8SQB/MYFSoLs6Hd+1pBZJORqXEuVLSPtrLE96fqoWZpXnr68OxqfdDT/ZU4h/nfmOx/0nW7ueSnB3Fdh3lB5EuaG043ZVuSZS4o7xhlxniYrtzZ35+qHoylkpXsTwMxyEfSMDvsgS5QOL+1GTlQX5fy0YSZ4rSaz/i5Gg7mCWvoQ8xtxRVIisrtpL0/3Z6LHPoJY9xGHbpCWVGbIYu7778wLsW1tv2ih2dfjqFe5Y9gX4B5ZJ/U7VDX0mS1NJXsQp+dhO6Nt9qPAAAgAElEQVR0t/Cw9qRteQJqPx/DGOEJpUUF+mZ2icOzMg+y/lXT7nqf6hEh9EdXdnvYWtZfto5oS12YKZrVFPvHelJ4AmbF/gkWMGATPKAPiiq42Yr9SNyexlC5LhHB4GnU69O1KBq2kU0DGsKpHYnM8khc5SZKU1IZkS3X6FoUAvr7cTGZXzxhQM1B8Tfn0yWyGCybWVQ6BqpJw9cGeyXJe1GD1RlfpCDqd49ap/WETi0nQppQuSLl17UmsKpibz5NrihnzgOHFe3b+HsFxf7hXMQNxURONh+mi7BQsYdsF6X1J1jVwchplrYnvKsot1DKiqZBRMro0+OjeLiaKL+ebF084N6j8vM0PfA9NkUOMhnKnotbXfmUSnUxpskjlEzYCbdOH3ZaF3pbxKSvfG1OGdYiyvGJjXqrYg+rWOrgb2q/nhmK/UNNpKVy64qJytQA+4BBT1UWPMna9ETMVOgn8JXtzxPHJNwYw9W2PFGuJvlQJyBQAmD/O2SylkTSshcU8KIcLDCJMd417CKvIwPIRxlWRmImZQKKfV0qiLgXwARR+lkoQ0mZ5EWVI+mvIaZMdIqifHoqygVTGLCyivBu5ECVYSmv9+dJg4nsrydyDFm2LGg8NgsiIuskBqXXLDboQ+u5kCrPUP6mJjFoVWv1y1su+OgOg38Wk0OTbITKWGCqgD+Ukng6J4rlIhSEyfjjwaLCI8p2rowPaVEon4rT07LIxSZhfLlru6L7UBExbYJAU2PppFAP53FjPHKaPMuQsxX75fogaTlsSkalwmVR7J+u4bNA2l039aPpOhYiUJ8ejUs2DYVfLw/5MKY6jMsyw6M7UVEWPawygOnu9amIa5NdRX6mO1tt0c40dkOxv5PvwG9JBBP5QrmsLPwZ+cCCwtUTZOsUkzRMINJob6doT8XsZAGPLJMqDOov1H+9rNKoSBX6dHXhc8cMDRFGv1lW9bxQoTnlT2b0gH4wouXDh0nYTO3+UZEzF2QqiQnjRCSk1Tv0NeZ+3NGOPaw3VjDp88VFuXkvnrT+Sir6aV1H9MQt449egJeto50r9hQ/xWr5nbgz/9zeitvrKzinyakwHTsjrAKblO5Ziv1IV4g8WaFM/E3X6LZorAQSKur2QVWG9AqRQR/R4emDr6Nij+qv6bNhDNr2DweywvQBHJOLZBqrDHKCoZpIjGNV0pc811bsZZlgShIr/3WbZjWC1b+JmckAVlUsxZku3C7/WlWxR+kmzsTmdMS7zPPacS+p2MsBNznpxJTJl7WCFin2Jq5x2yTyTpRDquIoB0PbUGZ614PB3fEa3YoyJrP2L0QytNkM7UvWkS4bs9J8wkTYpLg4OKgSUnHRFQFHxf4JX130jr1g+/o3qqc1pSYkHP2GPTVFVunUA6JgrdTRlcjpq+FYDTu/f1AnVOZOxHhfxiGVtrQ2gZETlyRWS/HF4FRrz5vIwFQdyi8fWXFuGcSe4MxLmSDixxOKiFCsIKwL808wy6o7BJv9ZclRwja+OWrqdUFYoX+YGd/otqwo9SSdFtr6SvnaA74M6+0xgBVma4tZpV+emY2NH0gTuDprlwcTrPKVxcmd2REjlMpIyKJ0yCyYTeWBh7Wo+IZV0GXUcSxFFKaxcHXFXsOwTB+EoMpinSaDVsVeB3pf1r8OQE7l6msRXEy0pYzqSrVLX003PZdfqupptd+QMmztimVQOf4bX57lV3NroMfaZKHGhcUQfBGZmkAi1jsjn/hiEomISLZmiQcLi8a47RO5a2siyMiu+y+weJ0Ve1nZL8PwviKVekwUIQtmOTFE4gn9tKFcY2eFLRDqCXWpLKphjHGoJRQlaUx+pb54PyVvUq7TkEnUsa2vwTwH/Zoh8w7vSnl9yTravWJvzLxNq27WezM6oyeA1pVuZ8VeDuiaUu0Ic9p2qE2XUuRysWJfT+qKu5NiL0yNH50UlDLHcUgKidYxzupYzZ0vOUxULHK2uz9XVuyRFSi+V7WaqN/OLP3u8rtRzAsUe3w2vsVn46zpy4wnVhS2HTMyDwsUe7NSY7XhLRu+MYF0ag9LDKoP6PxcZP4iNQ3m/jRitCdXvDZbTjfiOf2ysVLo2D7VsGbPjM5t41YUjU7bacV+Mikil32Cj5HXUBKcJu8P5zGNi+nLmqkYt4YnTY/IXjkOCSZfCC4Rn7MMvpEMYDhqGtvGZkxSMK0xlDzC14sHh8o0f2FzVJoc3tnSreUUe9Sn5gtFLnDMvO4rqvIvxxMftqRZqmailC3ol2cmsIUH5r50xjY/8xjkw15Om96ObEzark/Y576mOnfqO2Qx7iaLXM5tbN6KvcZhiT5ICQlFNrJAsR9B+de/aMutQfZWZWrzaNPWZmcoUnLr28whBwtpxqKBU7s0TYjkirw9ExKKURaSW4adwizo9zGr2mn/9dJK43SreAGGxpdy9L/W1VtTZsyKudTDptqRLruQF/virBYJtgwm9QUk63iFnRvKAg++ylgVfuVt9Knq4pC6QGTvtl5Wsd+BHXuo4uYrXqH7y8y0nWp4+hqPcUimc0knx7/QLJ9p0qYoGv8cs6LwWtuZZyUkTKlEgP7yBRbZn3Gwpo/Iopb8beFPt+FV10WJfEbzSGqNeAzb4xckLTjHvGMcDupYA+A0h1t5V7Ef/6NDOFNMmQN7sDd5xw3W+fCbzNoqmXr+9BP8MByRF8I3Hg7px/NEvjyBOB0en9DJke51dpWY4SUwcUwnyT41xgd0YmNlsrmJdFc/i9OlavU3tJUQ+cfy8JndhufY7Ud7+qK0p+dum7rjPKXswVYr1LzQyEf17LOSXiiVolnSodv/n+191n5oeTrZKB2d5OjmpEv+o+O5ZRqCrbQpPLngcVM2NO1SPF9brmgqQZ6ff4V33B/aITvZSs2XOX8HdJgJWqMw/t5MBlBZRn25IaNOyfgpLJOX56xdXvJbsypfgRwovkZkGBwg6+M/p2Ay6Gtc43aVLhUXqB46SMzpsOHnpHRwTH+WbqO/X9JZ64wSh5O6Xa5f3nEJ3d5JlWl+Lqwp+v1BlPSz4n3ZG/Q7mnz2G85hvlNfOehplmFrjK//t6NomrOlGAxXLy8E1h4+qMqxHAyfYTxDtksjUJ8uzz6q3qrheVV6DHW+vJQqZSjw4ReMqc/0+axK3aOqSQUwpYp6cmxPqBsZvSKOXvxuzygajxpGNqcBjBTYr132X/bUXvbO7hl2L6qaZ3h4SE44VYBaYv/hEWVKn+gDGtKPj+hD+ugfgvLZkFpnqu5F0UPKzJIX2T5l9JMh30A5RN/SQAW7on4aQHeTLXDqwsDhlfEqg9g3urnpER2EraFe7O+dK/YuNIZg0Knhwg9S9ACNckDB0rrlxWlo2eDlhQFKNikrymBU3tFcLc2WiXUzYHvPbeqwph92qX2j1Dr1GiU6as/ITCRCWO1QrrFiJmdGOC0M/7dlApEcVUsJwFcFyy07fHTc4WiUwo69+grpw3HLcbtLx9ZXcMK/0zijS/QF6qULtTXgnL97bbpRxHxA7ZMSOej1ysthyJd+KTqu7Ix2dXUb1FLy5KLwjju54OEldQ7tBRmCy2X1xuiInchijUG7pOUS/Gph4g5HKUi/qoO7PQnbnZldgAy5SxlQcrJIiVDDKA5tpCYiF1mU997O1W3faE7e5MRkXv8Hxz+ZKNFnuTT0TJ3WDY0PLYtIWrFm98tvoNwQGFlKdXRwzo/Mv77INXaafTq/tsd3p+V4qsiwpd/qakXDzHVuFxbNUMLzC/0q4X67oTb6WEUlWPaCpueev7qIJqfWn4xS1o1sT/Ok1inpTfovp/je1L2NGPao3f6qFsezwPmpO4GFUBd9+CQ18y61boZUyqOjwwJTo622Lh8qf668OILDQmyro+j7ru4FlY4uHUORG7qbNry6lcH19a6dK/aLiuZNZOjArbfSRaGtz8NKI/1V9utY4YbORNYFHqND9ITpIGh9/wX/Hvaopyg5Ptjr79FF4gXT5qSWJuDyp+gQ9uKl3rPra9yHF85qlRqQ2+jhIUWDP9NnqWytc/VhMlO+50pQtduizKojyzppLninj5UNdUqN1WXH5bAFEaz9GCZ0WxdUlQ7E/BnKH0TJ++HrDI/AbgqH0dV/kjn9ii+AfVRGcDplY+D2qWHXzpf9xa3KgD36xXfenJI4pJ7aUS7OO0IEw2Gsdv+mKMU/+jBtKu8t9eb+BnprE7EXJwkTg32HVVXHfOBLsqEj4NsULFPaV/8cX1z35jZqZ5X+a918vuX3zAxhrrmv5XUhWi8W4ILoy+VE4BmmKOWLmPhjcaejzZqt3q6XozCA2VM1gmC+Qd0zxPnGr9e3Y+/N0NnFkW2lfTlucGp1lETHLq+vUJLalk8k+MwOG+GyDwgcluZ+ol8uvQ1CYQYn+xTFHvNMQ9MbxM+v7g2Bcb9NZ1hpDKaqNMRP+6ZF1aMURTdQxocwpKuMdfKz9esuFhj1MPVZemGnvI3qG1Ln8ogSwTC+iPnpqIHJ/uUxHR7Mn6ZFj0qEw7nK9Ru2y3UteR13b5RJkyuCL22JbeQTi0g7kIHt5Oy1Y8E2NEN+zb/PyJd5xfYNfn2YkWu+vQkBfGKbiMiibYtY5fVrjRtr6ZOvc5tkYFfvrtd/7So3byJeWddGf7y4P/AaW9b0HQ8ohcm3yHrrGJMxVY6z+3C9vmKPtdFoIrz2CqkfM6hWOaYo999/zVP+oms0+mHnhEoX38iXrFCrmlj589huKvAZji+kmsDX74/AGNuwsDIf/hOdDQ7xOblFxynnbWrrs+lTp/ciWvTCLE62DMCRx64/TeLz/DH6kT/+uU3+Ks4YXORpgT4/yX+4RK1GgWDuEusDf6XMUYMMhIM2lUotGgeydNk63sIRnZeQgYVV84YDYPuNMQ/7gXNR6nLIzAxP7WFfsC1jZiT8YK8IyO2ReobxpbI/N/PmLT04v+CfG/j1Hm7Sf71ernefsvnsA85JGqv3M1KenKuRRyJUKdG3R8lXhsMF/cmMePXb3+XXogVh3sLjN6DYb4rBS4kzeO+7wsAMlb59fICBQd0TnSj16ODilrrt0karoZvmUHkfm1r1hYOv7ba6bWJBxINuV1vlXxCQH+8FgWErT4mfPtDX5wgdYyX5YIMVemuB5UqF+uXqO91gpXqxao/PveglF4ezprT8335lI7e8MJmFJ8ndXT06w+Hcv2IfkydbpYtMcOWk/Bms1PfqBFv4NGjkKYq8B3GuIpo6oUEG+/dxXuBw9Wht+dilDNgS28sb4B6GwU7t6uFg81wZxfkUfQ0tgPoyFL69LDtneikCOPMS1hfhv3cXKHs4h6cLiCtMmPu/wWvz/usNFmpLWTJvoYZi352/Yq6eS5RJeyiqbal0Yzan9ws/oFOtPhL5SZsjYOt+i9pLzA3GfXi0nZ/VLfFxjuYdKPYo2BDWNy4GlL+GooLvNmO5nx0V2O1gi0Meir5z2Ze+O3Y6Jr3021pAL5SEoPb7lyqdtObX+rh3Bgssyyhoq2aEw78OAVhyOPmg7vP24dD4RgOMg6oTTRjb2b7hIG6jP7+U/cs8ldrDnX7FCmJvuzrZwLm1FvYmzs/S2k/H7RM6+03ddBtNHKyp3A3o5uyS3Cd3sMAhrXZJl/LoQ+BWvnWGryxb0Ri3KQNr43rzL0YzCZxEUq8f2KbWmZPjsbavHpstKXMYnRPyd/7IocvYjMjWI1w+O14ckozqmn2PWnM1LbnKq/YNrsQhJbbSjpfP6jIht9N/LZPSPoYJUiIV0jKuHZCfU4y+sq8elydFGd2CDoy0GBPBL1DMtSBzorE8CmKSoPVIz5/pDAvJc6Ufh3WPD6uvurK/A8VeDopmLnMRLM921uYofMIqocH2YBXjOKGr8MsvheqHa2VGBtiLZb80M5nKA5Rl7eJE6dAQ0O/04Sg/W/nqNyiPVcLwcX6PDoJJ86WYpe7d+QEpr5OTWM/rV7BddMx3xl2SFrCUC58DJ/sG9UCmvYROMmYSaWXyak1NHvrVN4r/+ARrADDtZgukvjRowyzYiRun+3erCLnRLlOGZg/Ttg2n9iXzZCrPjDxbi2v+uw8FXDsb5bzlx8zLsR8ZUOswQSXYK7oEE3Xsn1i6mJf2Ss82lYGVEnujgZeoX2kStKRZl6DvLbpoz3rJZK0ijncO3miZV8jWrJLOj8K03QR9i1MXPDQmQGht6yUyZerFsQ+an8ktPsXZuuOMtmgAM5YX2Do3K3asnN7Is5SYKuaPDzde5JuVzCb3N++/Nkn97b8bLR1TXJvH/Whf0MxhBEtH7RvV+kQIZo8NAxJejI2wlqNev9HZifUspvZIWdDRf8eXHhOag8OUsdjw7ec8znDNGMvQx19kDqmTOaHMOpNILEp3cC7UqQ2vUlM7UOynDzg8Y2/t/LXp2dkdYkDWVS5nE1+wDV86pJ+/wExdu0FtAJF7MuV+3mU7L69iyk69vlRPpoUGXwIu8kfUGuvaiZz9O/SKJi1N5nnWFT0+pqQe1feP9NMBlInLDvW1d8YDmHaSe4OjeeqmLuhMn3HOinBX982Hk+wqpEOqUjEK09/98Y/098EolTqzGTi8/Mq3LAeqNpBXs+lAm7zCsophGOa5jS9MvQlZae6yWiKYoVevZxywtjYabC/z649xmLOrUxtDZm76+CtI+ZPMZKXz8z9T4iAPpainTSLGNJRWeGDKM5ppUxjWeNbqeFapLRyMPz6OKGb6pDG/j0c4KN+xFAz5vzhpGBZrvvewrc6WhqlPQcO2opEmSfXr68UZ4UOEcQ17LSqdtAzF3+nwk9x6k4fVnAE+szbaSF8qQaiA4bKdiHligt9nHifYVAZkOgublinM86y8TMezMEpbfax/Y4i+Re/TnepCjTmMs1FlgudZXN+pdVx1kAk8GjRgux4DuSeuGGAIWrO1ZL9sfW2rf6O8C/lKhUJLVPrOcLpkvRvLDzYhCGLM0DWfFp2cmLcvjamPsyGH1e5kO0JfNQ1tTWdsaBOmibY50MI+SC/E5P1np0UIBJMTg9nlkfGY9Qg7QW8GW+7kvjl5fTmb8QUcEz/0c7JbDeTg58A2ni7Rnkx1IztSe07ULBj3HQPstv9SFkb0dAHVJh5qFnf07wsw9GMcO4urE7nnTzNXzIfS/wUmcfAKj6/jUVN5/Rgb8/imp17yLOahefxVbuPgchVjhy6UOLvRNenu7pRcbNAnB1/pVzgYSh3jK7TeZjCGd2Hr/lDqdMMjuihZP8kvUUf9S0oF/0B//OPfUxD+ObqOsrRkNU57Edv8r9Hd6cT9u/Q+Jz19PTi5a1uU1khc5yau5j3ZpoNHPrPbcGfPti64ivYFIiKeLYu6xf26moMHuPrVPctKF+bSJXxWpOMR4YMr+HjlTlwXJ+6vledZuJ423JrBtbXh2hzuinPO7or10j7CVTYETPN06fQ/XFdn685ukxch28pzsxtt1dPa3aJ4zZ4sUTZfYY63yEVxvfRzw6udVhcueOu0+R5fLlNTnl2TVs+uI3FlkmdoIyIUz4psOi5CkLNYsSlqxnPIQDwncumYyBn+401elOFdNpQui0qlLLKxmCgawvikyCq6nzny5RPJ83sHT4/LlXH1UPfiPDlpx1g5g1v2ojg9PxeVckEkQyg7GOju49FtqW2wbPLAaXbJThFxanX9N/Ucbsd9MZHOpkUyEhCeQFpUrk5FXGfiiYh0LiviyVOhy/X9qal9O7BzuVxwex8QkWROnDYd2El35tIrofKuR6SNOrPS2lQGTB4sFdfmDv3qaDov2aaDH1O4gTc8LM7yTmvN+lb+ni7/Iu/Hj82CwIFmMIW859Anmov7dCtOYx7ISkyUJ52xKZer9ctbKZ5DJFNu6mMVx35deoxWZQdltXq81OKceD9G/5q7srXfEbyfTsYVl/DF0iKbTYoYPGZ7QvCqem/yqgme8nmhbm5I02NpxNFl8TJ9kBBP9bTA+pVapoDdIzDcdMIZdMAos/SEa5NkeAFNe/Q2BVm3uhWWXEZ3oqL3LZ64OL01y/pIPNTVsVYZT20J4H3Zb+j5dCWFY7OFx96QEcbZy+3oKjspLzyT2sbLHfdf4qlpYhUQRUf3uA7CuY1bL8UQ2t91OaZx9on0+d2UzIzuzkUSfbArVHD2Ci9l7lR/X+1T5BhbrpyLc4yjuXhABJJpi+6KMTpZmXgbvlfTMNqq01gRmZH+EnX0VEtO+gGa5Vl8uUqj5YItDnVfy4lkLDQRcHOhXT4oMUmRrSyj8D2I5mlR5JLWuKSykxXFypUwe5AePTRFMe5boMzoHUQAg6HTQHclijGz8oHwUA6KzQdFeKRrcpdU6HNlUbu6E49KJ/Eork9RZnSc0xWt5rNQrompfsaE8PG6IrIR63tSKNPi9EpNczHxLYe4b4pTKFpZG3cMJJG0yBXL4rR26zC5kvl4ELW4Xp4ZjLec3U2je7wqY/IWEj7dhbRVXmOQ13JzStac03wSt+ez5bVQrk9cUEMZKUNWzfLikXV+rUr06BaDiJEfD5T966n0n66LAosGk/eljF5Z/ak/ibvznIj5TJNVpWyQy2RR1O8d5N+5YNu7O3oQV+WkCFhZQ8nO1u7EE8od0JSN4vmV0OffT7c1US6gs7WWxSeVczlRn4zWchCfsEN50efEC3UtrkdRM02+XVD2a+bJ2+gek6qIc99l67xdIlK+VQeV0a04zyVFxJo/pB1LF9BXTdefAnQtGVD7xKytjwKHgs7hXtTLOZG29ivot5IIU5OsoAjVipjUBKZlwxWIo31jscIqStuSAJmu7FsweFonnXrfUpmR+Aj9UjmtjQWo92RWnQwHfHKC6JTn9fvlbRVXrWbILmQjZCinE2VClws5DhSzcUu7kEq3Os49IKJHTEoLaatsekQE8lWum5UbLMicpy1xQTFJQzGRTX4kFXvEjb68WGmK2wetH1BkQsqNZfzDxFGRYUufP7sPQvr1sijYykOYWCQhX+dKPkZ3NZQZi2ZT7UqWB0oWxls0EPSncsJv6b/khLyAOGwK+iPCo79TZBp9nDKhyWJS7xM+pFvE5MXW4z1eiwrKbG0H5nyKhytxqvQ9pv4WeVbbyrm6sAfdw17HGC9Rf4XTpviy6/5Ltg2n/hGskrmimNWmtiLnL8RQSsTkwmRN0Z1Ufc8TimMBRy7CYhz3hUQa47XjBM6IYCTu60URt/bXUtYxVjxggSaL9uoKxDD218S1w1g5glyUoSNZ+zEC85xTf79KHd1joqmPkY4T4uVr7l/JoEsu7r/NYMMuDsiWqIc9xaUg9nlrW3Gk63j5SUr9H1sbYKaoc/MbfQuW6Q4HU80fatSCwSQftgHIrTbe4AFMEk5cgY8HfRrKz5DLb91fitVQfu7pDWgMF+/S0crGnk2XSnVHgeR2khscKgkmYHlgsjViR6ntcbTYHgFZ7PbxyR3blg7gHMksVvI0/U1vSN5wAg7VHAQOe/CkE6Ux5DEqveg5BNHluY+Dnz18KnQjbBjyZTLx+zr8lAOpPXh3RZ780nKVlv8hzrEM/XAhP7Mwy+V3jK1ysL4zwKYD6dXasGSgvI1PpbCwMsCGpii82PmnYsTBWZxnOcMu+2req7iFV7biyG1ZaieC/6X/CcR/c0Nfhgd0jm1NR9ORLJdHJdSGMrBCSu8mKGSk25NbpKTsQFZgAWe27L+bUq9eEHDqoI0NIeGS0aQNyLERXc50o1g9fvnG0n3QetGv95Ycv9WtuBjByY++VY7he3Wt3X/tVSm3ktnxQNWdBmM3/BTIsSRobDVbnABkRRpGkGcqpe4lD9cqogLneNj/EoxOj8lO8UkDLdKq3FCmL600oV1tOHopySjjv8xDAsYwNhDf/VbsYWP6CAf0Opkb6sAb2EKw/Qt4psU7gxYdLgzsVJ18jwkwgfdFoE8NHJw96pdwaKm02FEeDkedHaSoVx3QZeJ9keDSMAEmwASYwP4T+Jv9LUKPqpkM/fL1gGqlJZR6WVDM7IJBODFhpX5/q51zzgS2RgCH60op+unDkLLNJb1fu2UfEkRfsrVMcERMgAkwASbABLZGYAdWcbaWt/kR3VQ129UOFkRmvNm7hG3RFFzOz3jOt5kAE/gdERhL60Qwo4CtMct6xh13L+hiDKsK4d8RJy4qE2ACTIAJ7A2B/VXsYTpOXXj/QiewG3rRwV71GdiHPQzgcFR12Ea4KTNIM17g20yACfwOCKAHUToR2MLGyv3RZddmSlOHIPd0ts4ydJDvwUStg2nF3wEtLiITYAJMgAm8fQJ7vMcettOlsv7rN8MerssXwoEZHHLFKUE3Dr0NcZCo3+vRVxzMS581YFt0cy+0b79KOYdMgAksS6B/maKDP38y7OjDmg5F5KFD2Ye4YXsYB2j78lDeN6JwDnaSq/kteaFdNoccjgkwASbABJjA8gT2WLGXhRxTr3FCJ9VLav32feLwQim/iwIRWGiBg6lSPsOD8fIywSGZwO+KwLALr7gnVTin+kLfDa85KgJPIAaX5vA0WMpTKsyHc35XgsGFZQJMgAnsIYE9V+xNxKUpPZiOlM4G3V6vcsDN8PS5hxXDWWYCTOClCUizuPjKh07E7cUhe5hV9HMn8tKVwOkxASbABJjABgTej2K/AQR+lQkwASbABJgAE2ACTIAJ7DuB/T08u+/kOf9MgAkwASbABJgAE2ACTGCLBFix3yJMjooJMAEmwASYABNgAkyACbwWAVbsX4s8p8sEmAATYAJMgAkwASbABLZIgBX7LcLkqJgAE2ACTIAJMAEmwASYwGsRYMX+tchzukyACTABJsAEmAATYAJMYIsEWLHfIkyOigkwASbABJgAE2ACTIAJvBYBVuxfizynywSYABNgAkyACTABJsAEtkiAFfstwuSomAATYAJMgAkwASbABJjAaxH4m9dKeKV0hz1qt1rUCx5RKeFd6dWXCDzs31C70SH34TFlgi+RImXvbRgAAB/xSURBVKfBBJjA74HAsIe+pd0mSp3RYXiXJR5St92gRrtL/cGYvP4wRVMZyqfC5N5lshw3E2ACTIAJbJXA9lbsb47I73aTews/0bMe0aBDjbMjyhwEyf23f6A//fkv1OgOt1r4TSIbdhtULR1SIuylv/27f6Cf/nJBN28ne5sUjd9lAkzgtQiMB9RpVOk4n6Ko301/+wf0Lf98Qe3+7jI07l1i0hClUttNBwdQ5HsN+uXnv9A//SlK4aM2cbe2O/YcMxNgAkxg2wS2t2I/HtL4+ZmekUNXIE6Z1AFFw37yQtGXV/fymH757Yeaf1+SyicZCsq/xmMaDnrU7bSp9fmb8v4QK0a4Td7wAfmpodx7axfWtCiMSQc1tDK9tQxyfpgAE9hDArLji1IqM8YK+if6susSDNt0lPoztcI1GlTz6NWIMokgjQ/+kT58e6Zv8kvpRYoOdp0Pjp8JMAEmwAS2QmBriv0YmjiGJArkmtS5zEAhn75uuicTxd6foPzREVm/LPcbGTr46SOU+jG5gweUwk9i3KDLnz69OeXeH01RCj/UvqDPv7JyvxVp5EheloBss/IL28umyqnNI+AO0kEqiBAJcrer9OmX7/NCb/ysc1KiX78RRY4OFKVeufwZumzVyHvSInf+2KTUywUX+VV242RfPwKW/devA84BE2ACOyGwva04condk6azql2pXzbnwcMLOou7FMVev+TWnrd8vfX8vWV2nLfXJDCk1lGeLvuvmQdOex4Br3fX54lu6LLxVcmCNS13NE8XWK2vmg4N9S8P6ag16Zvn5f1tP2PZf9v1w7ljAkxgEwJbU+yVVfZUnjIbjUV+SuXx0dek2G9SOH6XCTABZwL9i0PK/9pXvrLx9UYJbNSXLlGmXoc6S34QGHdxeBf77QdLRPvWg7Dsv/Ua4vwxASawCYGtKfbkT+HAFz4fb5IbvOtPHFH+YNcj2oaZ5NeZwB4TGHdgvan0iXgD2R5X4jayjrNNSynqch9+5i/021s87LQiB5b9FYFxcCbABPaOwNb22HtTx3S8jeIHD2FtZpmIxjTo9agPkw3eYJjCsCCx9IWDvn28O3T7KRgM4oDv0m8uHxDWLfq9Pg3GXgpGw7AYtPyra4ccIj3s0TXS0vOA3bPB8Gp5kAea+3151mFZtkMaDNzk1xNHXrqoHG8wSkHbPA11hwPSfv/kwbCP9AZDcsPMXtj+gjMSrR4RFbm9QQrjsPYymMeDAY39ONitxKrK0QCnQma+j7L0+gMaYn+x1490lszfsN8nCNhk7zLsi/S7UpmaUx87rjPFAkrmr/RlZSVNa29gEIRMmKrOuW4UtAPIv98IO4ZM9aBJyvZgEwkEV2RgCJmTdbkk49mJT56osozD/W4v+ZH3paJeMe9qamswWqYAK4RZqd2CNbrP+de4S2eZQ2Uf/ravMdpVX7YrSIMf7Sq4405yfdnfdsk5PibABJjADgmIF7quCz6BYqg/kVNxv2y6zbRwae/FKg9460ncnedEzOeaxEcuEUhXxN1oXqR4r1YUyZBPuFwuI06Y8BHxYl3cz313dryTcgVE8Q7hRveiXoiLgEsrq8y7yyfi5Wvk3HSN7kQth3Aej/AYPz4RSuZE8fx2OuzjlTgtJEXIp4b1xQqiLlEo15O4vzoXxXRM+JBO7hq3ZuWhML+cowekk40hT+ADRmp9uYQnkhWV60c9wan/nx6uRa2cVeojULyViaN+0pPye5Kirr06ergV9dOciIc8whU7F/L24/WpSEc8prok4QmlxemM9JQS39VEMRkSvkBMpHMFUcglRcQDzp6IyFYs7PTcjh7FXbMiCnjP44qLmqwMcC3G9LRdIlS+Re6NF8R9s4y8+YQvkhS5QkHkFMYyf0lRvprB4/4aZSyIJN5zudKiqUT3KG4rWRHxmWUiJLK1+0l6j9eiAvYyfqOdoDyF5oORI6dfVqmzp6uiiJjjh2y6XBP5i5/b03q8PRe5eADMpEzoefOIULosrh6cGs1IPNzWxamUbbyTvZK5fhD1XER4tHbsilWm2v/DVVlpl6F4ThSKRXCOiEAgIpLpONqNlKk1rtGDuKqgnwjIeLOigPrLohwu2VfEi6K5pbzLnK3OaLny3J+GNFnwiJzC0flaRQbEU12k9f5mqo9COzf1RbEKeuiHusgGzP2s7MtM4bJ1U3txzpv9LvrhOvph2a7QfpPJpIjLtgLZ8ITiooC+z9ayZNsopNF+JrLqmwLyIJrFrEjHIKemvjTbnMjnOrJvzzvfYQJMgAm8fQL0UlncjmJ/K5o5DM4+DPqKQic7+4ki5Ms2pxVivXBQdGvpABQ0KMR3j9pgBIW4nhMhbXBzRcridkrzXo7MlGJ/dS2KUFKl4pfVFMGJgu8RyZptyBIP5/HJJMNXENczkx2JehqDrCetKcpQoCuy/OaBF4p9/UoUQjJcQERiMREJWJRmKFVOE6Cnayh9voBIVq7Fg8ZhhAH1NK6/7xPpyWwCOvGpyGIg1SddUhkNFK/FfS0pfHJw1SdxUKSy//GDKErl0LiHOkM+rs4RFs99oYiIxaCoTymdAZFr2nk9NnPqpCFUFLdmvfIRCosiCy6hKCXGJSdQmBRJxd9IH4o9FPAiJhgeTGLsE84ncV2MKGULQIEwi8XTdUEEZDyukChOZQDKBSY4UrkwmECxr983MXkIiAAmB9lCWZSLaVNe1DgeoXDHwD6eLYry6akoQ4kx8uuKCQd9WyndqnUmMLl5fLwX53GdRUSUbx9wT97Hz5SeLuUrLny+uCg378WT9kwqsemA9r4nLirGjPgJkxd10jbhjLrHxKSZVRWuiaxoEytZhivUJ+osPlVnWtnkJEqZqa54YdJcUeRWtrkH08soU1mtV5jvEldGxa6Xd2USuxKj1cqxjGK/sgwgz09afd+j/el1FcEE6kGXA10WRk+QiwdxC2Z6uPj5/URedKFYtliyXpJygScwPanF+3KCH9f6ck+sLK4d+uJH9C26DLnUGaMl5Sf0kZOJetqk2K8m+8sWiMMxASbABN4egb1S7D1QfiI5y6qzVOh0pQ0rsec2XfBJXGEyQKaV40k1jMR1Ac80hU+uOE/pNkvU10Sxh4KKVcb0+d20IqgoLpoi5PSlYnQtCsbkJCaUjxJOF8LlEC5UvrM8fYSiNlFOPZj05KZWvbCC2ixMrdTKOKbKeV8RcTCcXrHWknk4F3Fd4QbD6bnJSNyfTgZ9Tywpktma8vVjdF8TOazEeQLZyYq9rhQrirEHK6dl0TR/Knm61QZ+XXHUJzFaXkysXJjEWevqOqd9FfLlxLX14VNTZA3lPiTi6bQoK18FHsV1OYmvFD4RO9Xq/64sQlqdxZWlffN1J8ohNX+udN1hInkvTiO64gyZwNeO87vpOFRlVg3jwaQmhC8w1oX5p2bWmAjZ6xz52aDOlAmiUr7Z8vZYT2PShYniRPs1IDzhK5qx+m6TabM8ukQkmRZp5SuKlMMilDeP8CXPtRV7jZULX3WsmBH+toivK44KnKVKLH9OJssRcWqe48lwj+ciptWt+gXQ/PIqeUdUazOan3/96ULFfm0ZUFMY2b6GOufr8TymyYtLJOvWhuX8jv3uI5RutX3a+h8t8Oi2aLQ75auONSlTu3RW7NEsjP7IJaYUeyUNbXFkgezb8853mAATYAL7Q2CvFHu5Im/T28F6olx78OnfMhpog4GvcO1cKxhMDMXbkxXmRR7nF6bvmtOeXh3Uw5kUPSgwNj0RwR4qMWMlatbkYoQJgscVcVT874r65AQrn/aZjZIRudplrJjLcppWK9VVLqdJkXzzSdRME4eIVVO6zkEB1BTZAL44WAdjM65RXST1ScKssKNbrKTrijGJqfSglMX1tOI1m1I9GdSdOEFpi00UbqdtJ3pWzQqPrbyQwJq+4h3AVwNz+ZTfR6JpKM4hYZuHKWFuF0/mRk2R1lnF1W1Lk6T0lcl16mwJ5UabRFKo7LxlDnmbTJKwBc0C4a4cMibLHkx+nNqsikqXBwcFXAa4PxUxhwnchIPzb+avaAVbBSHvGlenScPyeVcn2usycs759N35iv0mMqCm85KKvTEZlNvgZgoEFmGy+pZN2Zc9WIGIiNb+Zyn2si9VJ62s2C8jYxyGCTCB90dga4dn0Znu/AoeRG2Or2Si4WgQ/0q7bT8Ur7U4SqnlZUzt6gVJS80x75g6nY523/TfEAc+8adyNuxHh2668LwIi5urX/BEq+TDeuFQWBAfkOVpxWccJpRmKCwnB4NwApM6+Uf6CDMl3y7PqAXHMIdTYVCOyxa8QcLknFMShq1/eShTlsZ++fMnlD/5RD/Lgv5oU6MzhndgcOpfUlUm7MN70vxd3/ounNIoJyVVu3i9doeGx6bDjyY/A77UISUWnF41Hvvhrt4prPuATo6TdPFn1SnZl0ab+kgvKLMFxznHxQYNb9zglbFiNGUch1RtpwLNjnUOcIBUidHxcieO6STZp8YYecmHLWFMmR4OHQ4f4rkRBIdtncooD+rK5CVSlzw46JANHOw2sMtDpQhiBNu0zhySM98ats6ogby5on4aoM3YUMIcrVdmRjGr841ubnpEBxNObqPQLkrk5/m10J1jfaGzozNKtY4papb78CGdHNpSX5B7ZOXohLKdKvWjx1Sa05bHqL8xYjNX0bJ535TRwkIsCrBjGViU/GrP+3R59lEVlzC82DrJuxKhl1KlDAU+/AKpeqbPZ1XqHlUpulpiHJoJMAEm8LsmsFeK/ayacpscuZidWxF1qX2jaB/Ua5ToqO2oZcHtYoSwEqRcY1iKmB7qtQdr/wflTlF0pBmSGVYovBkokCH6+DOmID8+0tllnw5LwUmKMDd32R5TonroOLFZLmtSmQ3Qz6pmT71unygVhpLcBiVcwxtYI+rNsCrjByJtNHbD+g2CT807tAxsy1mXF1Y4Ekef6JNEhslGF1USVKoOfg6qN5TS0pv8N6b+DSYorb75li2U+cZcv2feAzpud+1WnmAppdM4o0voseolZWWdaxnvnVJuELdU/qWXTFMy26wze+4xAW51FGl1dS+odHRpDyLvuNFmtEbjhoI865orE+4EHaY89BETyx+f/4K5AcwqYiJ+dhjW5DBIqcysmGffd0ePqNE9sgcYdKl1eUkdWThcz6A6r7XPzvt2GdkzuvjObmVgcforhUDf0lI6GVyYxc7U6+XzaIYSnl9Iceb97YbaaGswosQXE2ACTIAJLEngXSj2M8s6hHk9ZSneR4fQxi4SM0O++oPocYniF/9En6F0fKme0c3RhbH6PWxfklRnLzfz/kVhrKq6oNhLvWagLWn3YH5R0XMOTrDyejR/0H0pSl6s5mP0/yTrDl85Zs61UL/tyypVGz3yJvKUwgrzL7+pE7ltZnXch4fOahXKIpSMw0OKBn+mz0s69tlKPiwO23ZbZwPq9lSGwXyDume7XC/10iEU+UbnJ/oIns/fP9PPP/2BGhdFql7g65TjJ51VicIEZadB1SoU+nGYMnCAF3Z9pG+acr9qbGr4l2TknMPdyoBzmmvf7XWpvyxvd1hR5H/9TaYGM7NyFYEV+7XR84tMgAn8/ghsz0HVW2SHlUQ5LmA5WrGb/qYvf56OD7FbXV7fGnTWUnMu896+bJM7c0Qpp2XyFQrlxf4JtxZeX40cKnuDcA1gA3+FuHYbFFuK9GU9l75dw5QiFPpGKQW784cEq+x0eXNDjbM8HajL+lvL2rjfhg1v2OFPVWmIn/ZNi6pHKYrqELeW0moR7bbOsF1MW4Af6r+slr3VQsNvRavTJJgdNd77/vln+ukPQUqUsA1rtdimQg9uqnB2F6SD4y5Fsb3tpoUvEBlnG/qrJfPCjBwyt1sZcEhwk1vwN2F803HcvmaOHCv6fmxdVC58UZn9MWiTHPG7TIAJMIF3S+B9K/ZGtT1j6wm+6b7pC/vGsWqv7m74QZ/OLknJ8aAFxdWPlcbNvfqa99n4DS89mpaKfdy9tziI6nvNtbobYntIJvoH+qlBVLrpQMFP7MD51xhbt7AyH/4TnQ2geHZbdJwKztim9BpC9TJ19l2utL5E8YIZqnZ6dHueI/gj0K7v9PnnP1E0cUG9lefkA2of4avPPxxTJ4qvDlDwD8MbzopncHgxRrb0X0YGbMmucwOOwQz6/UUyZd6mBidyc/ftrJMZfocJMAEm8L4JvG/FHpuU9cWfr+22qigvqM9Bt/t6K9fhIzqG7U7l+lKlM+yrH7SwDQermkeJzZeJx1iBVXWkAB1gJVNeXt2F6DNWvW+W0OzHPeqsrmmpZVr6X3xh0bLiOkhMDs/hwOBh4p/o4zcXxTHxOdrKVg17poatPCV++kBfnyN0fHlMB5ujtyeywZ3d1hm8MetaGCY07cHijI77OAexhOjMj8mPQ6+X8FZ8R7VChHT9/sfnEuUv+vNfnXqK/e+Y7P3ply/0I3CELVQJx/MgK0ToEPS1GE2yslsZcCjyJrfCmGTpi/Dfu6jjeZGhj9JlyRWmRHheWH7GBJgAE2ACVgLvXLGPYj+0VmQoyiet+drHuId9vcedqYOKVmC7/dtLmeM8wfwmru/YXnKCg7QdCufzW7EM0et01f30gRRWvdWSRGFpSB1zf1D7BKujcws4pNZRni6XUPbmRrPoIbbaqIO/iw4yKUMx61RP6JOy/RuHKmeb1lgU+4LnsOBx8kG1AeQ7MBt7WfDeyz3ebZ0FKRrVtoQ9f6azswXtYdzBFjJYoFmn+OMG5fPt6faG8xX5iy71mjkKKXE+02/tG7tlnlnpDRt0cvFVeeqKYlK4k0nZCzKaUc7dysCMRNe97U2gv9E1+x615s4W+2j76oZ8VwKH6I2l/mUTX/nzzrIRczgmwASYwF4QeDnF3nIAcFk6S3XTMwNFYXVDVQ+kovwBSmmjPyPlPpSMzCWFoVgHZwRZ+7Y5fzPzqsbuPpCmFtX1yufPf6Wfu1B0YCVk86tLjbY8jeqiWKlkHMx1SxOV2pj7/OVEmdg4T3+G1DlLUWmArwpb+HowrzzDdkO1XOI7pOO8/i0eBxa7ykloXDBn6TC5kF8kNr7GXZLWG9VktIO7U5Fiv7BehwvqcuO8zIhg0zqb6Lr4MuJQhoPDFI6bq9e3n/OwJuUAWz4GqwtYMOpkTmjdc91DnFvoOJTTn8FEHIb8lctiFcgh+ORWF18PtIOaz0PUnzUwKs92zxpmib9fkpFTdjaVASVOh7p3SmtiJQx2hOZYQHJ+V94Nol/JaF9hYMbyojF7AQFff26UeZmP8scWK2AwZaXL7jPOBtmlEtaxuqa7DuVbJPtGGbC40MFCiFP7mF1OfsIEmAATeH0CL6TYYzA1tCEUGgc1lx5cTRMC1Ua9HZrZxOW0uUtYMTk+Jk1Phm7/kX7C1o4SVsH7Wn7GA1hWucDBy2ieuimY2ltRaZ2kN+ugF+4bZZC/2/M/fcdP+bMjbbUSavjBkbPtesdooPAqZiTs16BxQnIh0xUp0cVReBJAmto80ic/z/TlrwmsksOWPgZIJav4Lt6HVZFjLPEnzrxYDbVMfEzlGa4y6MP0oOOOHiiLZyfS5rWP0rCMIk3tq5e0Ca+v+uFrRrVhGtgxoLfPqNSYKP4Ds7wpEZhNRkp51OO1/A/lwTDD/tyGdZbeRP+R5i6rJaoqFjtwPU+2DE1iWaaOTWGeZ+VlOp4psdmozuC3Qd9+hXX2bmcCYtCB6VP86U7B/ntEZ/2VfoVjh9Qx9qrrWg44dGHr/lC2peERXZRM8iRBmNhPtfsJJOO38aBBF45f0uQBaq8SLpLCOQqHdx1vYfud+haefr7A3n2zgHbpsgTrT7qFFkwEbWKwZN43ZuSY+embY0OrNMuuFmYjGVDjGKJt6yjmHZSW2350aejC0YdBFNaibhwbsb1wXkzULtLadPHL2Yyvp9hGBetTsnkFcpf2vlj6vtBnnJ8Rx9TWwQHdnGEhoCOXLuTldK5qsewrr2LLXyr4B/rjH/+eglho6S7ss+3l5TtMgAkwgVcj8CI+tx7rAn264Y2SKCQK1zYf8g5ZkW7lda+qJFzwNmp3WvgkmlnPxNMlPFVaY35sZifeZXXPpVP/u0QgWxcPDjmYf8vkVRbx2b2U4m148SwEzB5P7SWwp6G7tof3xLq1NPbQZm+Z5AqJ7PmteDQ8wI7Ew1VRQE8TrlBONJ2SH92J09iEIYTRVFfa7564OL2158XsNVd64bxb4HnW8KaKNHzxsmjem+J8uhPnaVnfHhGv3MGH6/T1WDd5z8X7nkhSZLNJEQt4ENepuDpPGx58XaGkyOXwrHilRvJ0JXKGDHrmcB2Jq5zu/VKW3SNC8azIpuMi5PEhvqaoGc8hN/GcyKVjImfUEzznGvXtEzmrJ2SZm9F0XrITN8CTAj/WJl56KWb3OLxBnY3QHvBNSK1jT0wUTivitJAUkXRt0gbuz0Vyqs3aZcIVKYgrmzw9inpyIkuB3LWtHo1C6p6IA1lRf7BU9pPWbkLwZmwXO0tg85/TnovJFRDxdFak4xHh84RErtY0eTZGfWZzeJYWqpPTFfIuk1yb0ZzsG4/0PkDlHqlYASHgBjIgPSSb5dy5b9UyA1mM616QySfixYqolHMiHpvRn8wqHvJbSWpty9afoJ+qq/200hdbG78W51Rfh7xEklrb9KEtQn7vm/DQbfRf8nlOnJs6pWVk/wleuid94Czv0bMKyfeZABNgAq9LgHaZ/G0lK5LxkPAZg4JZOfCIQCQu0tlzceeQiafbc1FIR0ydtHxXKlJZUaypSt9DsyxyyZChzKmdsapsmTtzGf3jdUVkI3bl1RVKi9Orh9nKh0Pe5KB4VyuIdMxnSRuKQrogzhUF+FFcVQoiGbKkCUUjlq0sVFaUCY0nK5ozBjhztiaDnUdkKzWRQzldnoCIxGKK0uuSyk2hJu7mKUije1EvxkXAVlcoE9616vSSfTYesNQPlO1QXGQLZVG/d8g4FDlDsY+VRa2chGy4hC8UEbEYFC/87pH1cW3TFrXigmnBIhOeiMhhIqMUbUp5x8QhWRG3j7fiHAp+BAP/1ITFpdZVsXJtnyw+3Ypy3Kzcy3JN8jW6LYqQwckDZV/G8SCap0WRhUxMpeOLiLTkoSgXYAyFKG2VQyicSYSpyTBQfmrFrIgHpvPrCsRFDgrVFJoV62wiMw+ipitYihLkEiHZDi1VNnq4EmVb+0J4ydzG7VFcn+bs8q612ULZLkNCyoMvhLpHH4H/49miOK2cq0oj5DaQLDtMHBwb5NTN0R0mJVP80CcgrqamLd5XYpN2i4lwrvnfVs+7luJqjBbnXa1/KSMWOYISK/uWYk2TdT2qVWVAyle5oLRdrGxPyaovkoaMlUXF1v7Q353Gptq6B5O6+izte24xHwWsH6FfkvKNeomlMTnHOIHy+jAZL9bvbQsz09E9iHrO0gegf0uWr9R2fAXF3oXJeLIgTuvXwrxuoMazhOzfV0RMb98BTCwdurK5ReSHTIAJMIFXJPCvZNqv9rngFRIewtxaF9tVxjCjGAyH4QhpsuvyFbIzI8k+VeFM6gyeOPuXi81cdo/D9Pd/lRtTfZS7HtBlAtZ05F7j/pjc8PQYjkaXNwmJbRbSNKjcquQNgk8wONmaMiO3S9/GYcmMF86I5Pf/2Dk9duAQS9nL2sO2Gmy9gPWMqGGSZXascvtUF6drh17YKAcnY+uFfAXx3XT6NMZn+wQcVq1fu9giA3OP3T42awSjOEQ7HZe0BHMD+6DeMLYubdl+/uySz3iyVp1h+1LnBiZOsT0hfADus0mN5WFmyXssw2I7BOpodugZeXS8DcaIU936hN9hcrXbQ925g5DZMKzzbJIKtpDBwpXcmeaPonxT7Vy2jxtsLXJjq0WCtmEJc3eMHMHZb64lA/Zo5t0Zwgt0BzLvlu1ho7YlU0EdoH31cFgGPQ35EWd0hYoYYytfR+6n98OhFSwkGH3AsI8NZsGJZSfHAi2WfaV9Yw9OMLEd+XDMBt9kAkyACeyAwO9Osd8Bw+1H2T2Gl9gGpaCgVqOLo7cr9ovfeZUQTor9q2SEE2UCTIAJMAEmwASYwPsj8EKHZ98fuN2VaEzt6iX1oyUqLaHU7y4fHDMTYAJMgAkwASbABJjAPhFgxf61a0u6Wzcb7riBQt8gxZ598LXzxukzASbABJgAE2ACTIAJ7A2Bv9mbnL7DjI478Gqa+Ct9eXaRL5KAl0WYe2t9pmGiTtVVDIOvZE7zdUEac5hVbJO/bpY5dSbABJgAE2ACTIAJ7AUBXrF/xWqSdsO/KIakn+n7l0/04cNn+uZOwna6xTHL3DwOcQBNt8b9A3bs+3NDv+pDHJbTnErClwF+Z/vQr1odnDgTYAJMgAkwASbwvgj86xNc76tI+1Mab9BPg//Sov/+v/+fkmlPJEeXN/+J/l1wmQ8pQzgJggOeE3iq/c//w3A0879u4GToX/4PfID9C7n/bXh5azi7xAZHNhdwNvUf/v0F/fZDLSv93y/U/q99+pf/M6D/Of43S1nD2WUWOW4mwASYABNgAkyACew7AbaK8+o1KM2+9WC6cVXTm+p7s12eS9OEb0Sxhwk6xWzkrAtmK5cxcznrdb7PBJgAE2ACTIAJMAEmQMSKPUsBE2ACTIAJMAEmwASYABN4BwR4j/07qEQuAhNgAkyACTABJsAEmAATYMWeZYAJMAEmwASYABNgAkyACbwDAqzYv4NK5CIwASbABJgAE2ACTIAJMAFW7FkGmAATYAJMgAkwASbABJjAOyDAiv07qEQuAhNgAkyACTABJsAEmAATYMWeZYAJMAEmwASYABNgAkyACbwDAqzYv4NK5CIwASbABJgAE2ACTIAJMAFW7FkGmAATYAJMgAkwASbABJjAOyDAiv07qEQuAhNgAkyACTABJsAEmAAT+P8bcJOUEUvUygAAAABJRU5ErkJggg==" | |
| } | |
| }, | |
| "cell_type": "markdown", | |
| "id": "smoking-spare", | |
| "metadata": {}, | |
| "source": [ | |
| "" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "id": "floppy-snapshot", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"236pt\" height=\"332pt\"\n", | |
| " viewBox=\"0.00 0.00 235.50 332.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 328)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-328 231.5,-328 231.5,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_annotator</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"102,-122 102,-236 188,-236 188,-122 102,-122\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"154\" y=\"-129.8\" font-family=\"Times,serif\" font-size=\"14.00\">annotator</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"110,-153 110,-228 180,-228 180,-153 110,-153\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"158.5\" y=\"-160.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-8 8,-228 94,-228 94,-8 8,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"73.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust4\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"16,-39 16,-114 86,-114 86,-39 16,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"56\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"51\" cy=\"-290\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"51\" y=\"-286.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"51\" cy=\"-202\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"51\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M51,-271.6C51,-259.75 51,-243.82 51,-230.29\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"54.5,-230.08 51,-220.08 47.5,-230.08 54.5,-230.08\"/>\n", | |
| "</g>\n", | |
| "<!-- beta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>beta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"145\" cy=\"-202\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"145\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">beta</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"51\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"51\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- beta->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>beta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M137.75,-184.54C129.73,-167.56 115.58,-140.96 98,-122 92.69,-116.27 86.22,-110.96 79.81,-106.34\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"81.45,-103.22 71.21,-100.5 77.52,-109.01 81.45,-103.22\"/>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M51,-183.99C51,-166.06 51,-137.56 51,-116.44\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"54.5,-116.17 51,-106.17 47.5,-116.17 54.5,-116.17\"/>\n", | |
| "</g>\n", | |
| "<!-- distribution_description_node -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>distribution_description_node</title>\n", | |
| "<text text-anchor=\"start\" x=\"104.5\" y=\"-308.8\" font-family=\"Times,serif\" font-size=\"14.00\">beta ~ Dirichlet</text>\n", | |
| "<text text-anchor=\"start\" x=\"104.5\" y=\"-293.8\" font-family=\"Times,serif\" font-size=\"14.00\">pi ~ Dirichlet</text>\n", | |
| "<text text-anchor=\"start\" x=\"104.5\" y=\"-278.8\" font-family=\"Times,serif\" font-size=\"14.00\">c ~ CategoricalProbs</text>\n", | |
| "<text text-anchor=\"start\" x=\"104.5\" y=\"-263.8\" font-family=\"Times,serif\" font-size=\"14.00\">y ~ CategoricalProbs</text>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.dot.Digraph at 0x7ffa3461c700>" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "def dawid_skene(positions, annotations):\n", | |
| " \"\"\"\n", | |
| " This model corresponds to the plate diagram in Figure 2 of reference [1].\n", | |
| " \"\"\"\n", | |
| " num_annotators = int(np.max(positions)) + 1\n", | |
| " num_classes = int(np.max(annotations)) + 1\n", | |
| " num_items, num_positions = annotations.shape\n", | |
| "\n", | |
| " with numpyro.plate(\"annotator\", num_annotators, dim=-2):\n", | |
| " with numpyro.plate(\"class\", num_classes):\n", | |
| " beta = numpyro.sample(\"beta\", dist.Dirichlet(jnp.ones(num_classes)))\n", | |
| "\n", | |
| " pi = numpyro.sample(\"pi\", dist.Dirichlet(jnp.ones(num_classes)))\n", | |
| "\n", | |
| " with numpyro.plate(\"item\", num_items, dim=-2):\n", | |
| " c = numpyro.sample(\"c\", dist.Categorical(pi))\n", | |
| "\n", | |
| " # here we use Vindex to allow broadcasting for the second index `c`\n", | |
| " # ref: http://num.pyro.ai/en/latest/utilities.html#numpyro.contrib.indexing.vindex\n", | |
| " with numpyro.plate(\"position\", num_positions):\n", | |
| " numpyro.sample(\"y\", dist.Categorical(Vindex(beta)[positions, c, :]), obs=annotations)\n", | |
| "\n", | |
| "graph = numpyro.render_model(dawid_skene, (annotators, annotations), render_distributions=True)\n", | |
| "graph" | |
| ] | |
| }, | |
| { | |
| "attachments": { | |
| "2ec94808-dfd1-4cae-8c8d-18bc91a4b6ff.png": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAu0AAAFgCAYAAAAPeEf8AAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7snQeAXFXVx8+W7KaRQhJCEiAhEAg19KCGXgIWehNEBBQsnxQVFSuiggVFUMECghUbggKCgoCAdEiUFlpC6C0kQHp2d77zu7N38zLZzbY3s29m/g8mMzvz3n33/c4t55577rk1OT9MhwiIgAiIgAiIgAiIgAiIQGYJ1GY2Z8qYCIiACIiACIiACIiACIhAICClXQVBBERABERABERABERABDJOQEp7xgWk7ImACIiACIiACIiACIiAlHaVAREQAREQAREQAREQARHIOAEp7RkXkLInAiIgAiIgAiIgAiIgAlLaVQZEQAREQAREQAREQAREIOMEpLRnXEDKngiIgAiIgAiIgAiIgAhIaVcZEAEREAEREAEREAEREIGME5DSnnEBKXsiIAIiIAIiIAIiIAIiIKVdZUAEREAEREAEREAEREAEMk5ASnvGBaTsiYAIiIAIiIAIiIAIiICUdpUBERABERABERABERABEcg4ASntGReQsicCIiACIiACIiACIiACUtpVBkRABERABERABERABEQg4wSktGdcQMqeCIiACIiACIiACIiACEhpVxkQAREQAREQAREQAREQgYwTkNKecQEpeyIgAiIgAiIgAiIgAiIgpV1lQAREQAREQAREQAREQAQyTkBKe8YFpOyJgAiIgAiIgAiIgAiIgJR2lQEREAEREAEREAEREAERyDgBKe0ZF5CyJwIiIAIiIAIiIAIiIAJS2lUGREAEREAEREAEREAERCDjBKS0Z1xAyp4IiIAIiIAIiIAIiIAISGlXGRABERABERABERABERCBjBOQ0p5xASl7IiACIiACIiACIiACIiClXWVABERABERABERABERABDJOQEp7xgWk7ImACIiACIiACIiACIiAlHaVAREQAREQAREQAREQARHIOAEp7RkXkLInAiIgAiIgAiIgAiIgAlLaVQZEQAREQAREQAREQAREIOMEpLRnXEDKngiIgAiIgAiIgAiIgAhIaVcZEAEREAEREAEREAEREIGME5DSnnEBKXsiIAIiIAIiIAIiIAIiIKVdZUAEREAEREAEREAEREAEMk5ASnvGBaTsiYAIiIAIiIAIiIAIiICUdpUBERABERABERABERABEcg4ASntGReQsicCIiACIiACIiACIiACUtpVBkRABERABERABERABEQg4wSktGdcQMqeCIiACIiACIiACIiACEhpVxkQAREQAREQAREQAREQgYwTkNKecQEpeyIgAiIgAiIgAiIgAiIgpV1lQAREQAREQAREQAREQAQyTkBKe8YFpOyJgAiIgAiIgAiIgAiIgJR2lQEREAEREAEREAEREAERyDgBKe0ZF5CyJwIiIAIiIAIiIAIiIAJS2lUGREAEREAEREAEREAERCDjBKS0Z1xAyp4IiIAIiIAIiIAIiIAISGlXGRABERABERABERABERCBjBOQ0p5xASl7IiACIiACIiACIiACIiClXWVABERABERABERABERABDJOQEp7xgWk7ImACIiACIiACIiACIiAlHaVAREQAREQAREQAREQARHIOAEp7RkXkLInAiIgAiIgAiIgAiIgAvVCIAKVSuDKK6+0q666qu3xcrlcpT6qnksERCAlAjU1NSGl73//+zZy5EirrS2tbWvu3Ln261//2mbNmtX2RGq7UhKukikZgViPjjnmGJs+fbrxd/yuZJmowBtJaa9AoeqR8gQeeuih0Egccsgh4Qs1GCoZIiACXSHwqU99yhYtWhSU9lIf8+fPt5deesm22mor22STTcLt1XaVWgq6XxoErrnmGnv88ceD0q4jHQJS2tPhqFQySmDzzTe3Aw88sC136vwyKihlSwQyQqClpcXOOuuskBs+l9rSzn0ZLOyyyy628847h3yo3QoYdJQRAWaHZs+ebbzHmSKV494LUEp77xkqhQwToJFITi2r0ciwsJQ1EcgAgWQb0VftRbyv2q4MFAhloccEYjnmva/qUo8zn9ELpbRnVDDKVnoE+sJSll7ulZIIiEApCSSVi75sO8hHX96/lMx1r8ojEBV1Bp5S2NOTr5T29FgqpYwSUIORUcEoWyIgAh0SkHWyQzT6oQwJqB9OR2ilXRafTp6VigiIgAiIgAiIgAiIgAhUFQEp7VUlbj2sCIiACIiACIiACIhAORKQ0l6OUlOeRUAEREAEREAEREAEqoqAlPaqErceVgREQAREQAREQAREoBwJSGkvR6kpzyIgAiIgAiIgAiIgAlVFQEp7VYlbDysCIiACIiACIiACIlCOBKS0l6PUlGcREAEREAEREAEREIGqIiClvarErYcVAREQAREQAREQAREoRwJS2stRasqzCIiACIiACIiACIhAVRGQ0l5V4tbDioAIiIAIiIAIiIAIlCMBKe3lKDXlWQREQAREQAREQAREoKoISGmvKnHrYUVABERABERABERABMqRgJT2cpSa8iwCIiACIiACIiACIlBVBKS0V5W49bAiIAIiIAIiIAIiIALlSEBKezlKTXkWAREQAREQAREQARGoKgJS2qtK3HpYERABERABERABERCBciRQX46ZVp5FQASqm8BDDz1kuVwuvGpqasJLR2USGDZsmI0bN05yLoJ4qT9z5syxRYsWFSF1JZk1AmPGjLERI0aovcyaYLqRHynt3YClU0VABLJB4LTTTrNtt902G5lRLopGYOHChbbhhhvaGWecUbR7VHPCKO0//OEPbfny5TZw4MAwCNZRmQRefvllO+igg+yQQw6R0l7GIpbSXsbCU9ZFoFoJ3HrrrfaNb3xDnU+FF4AZM2bYPffc06ZMakYlfYHPnDnTTjjhBJs0aVL6iSvFzBC49NJL7dlnn81MfpSRnhGQ0t4zbrpKBESgjwlMnTo15ADrYG2tluf0sTiKcvslS5bY3Xff3eYGVZSbVHmi1J8tt9zSpkyZokFwBZeFG264IchXsynlLWQp7eUtP+VeBKqSQEtLyyoKhiywlVcMkusV6urqKu8BM/BEyXqjtSEZEEiRspBU1GXgKBLkEiUr81SJQOs2IiAC6RKICocU9nS5ZiW1QrkW/p2VfJZzPsS0nKXX9bwn20rJvOvcsnimlPYsSkV5EgEREAEREAEREAEREIEEASntKg4iIAIiIAIiIAIiIAIikHECUtozLiBlTwREQAREQAREQAREQASktKsMiIAIiIAIiIAIiIAIiEDGCUhpz7iAlD0REAEREAEREAEREAERkNKuMiACIiACIiACIiACIiACGScgpT3jAlL2REAEREAEREAEREAEREBKu8qACIiACIiACIiACIiACGScgJT2jAtI2RMBERABERABERABERABKe0qAyIgAiIgAiIgAiIgAiKQcQJS2jMuIGVPBERABERABERABERABKS0qwyIgAiIgAiIgAiIgAiIQMYJSGnPuICUPREQAREQAREQAREQARGQ0q4yIAIiIAIiIAIiIAIiIAIZJyClPeMCUvZEQAREQAREQAREQAREQEq7yoAIiIAIiIAIiIAIiIAIZJxAfcbzp+x1QCCXy3XwS/e/rqmp6f5FuqLoBLoiY2RXeB5/873kWnQRpXKDQvn1NlHJvbcEdX25ElhTXWqvrVzTc6oerYmOfusrAlLa+4p8ivdNNlSFDVOhAtfS0tKmzPFbba0mW1IURepJIa9CGbXXMUU5xwwU/p16xpRg0QhE+SaVhkKZtydfKRlFE4kSLjMChfUl9ovJ/q+9+qU6VGaCrsLsSmOrAKHTEBUehY1WoSIQG6/C8wrT0d/ZI1DYsTQ3N4dMJmVZeE72nkI5ao8AMix8cV7hYDxeW1iv20tT34lAtRBory/k2WOdUrtYLSWhcp9TlvYyli0NEY3QwoUL7e2337bXXnvNHnroIZszZ469/vrr9sYbb1hTU5MNHDjQRowYEV6bbbZZeA0bNsyGDBli/fv3L2MClZ915ItSvmTJElu6dKmtWLEivKIFvr6+PpSBAQMGhFdjY6PcYsqwWESlYtGiRaEuv/zyy6Euz5492956661Qt5ctWxbq7PDhw23kyJE2adIk23TTTW3UqFE2dOhQa2hoWG1WpgxRKMsi0CsCtI20lfPnz7dXX33VHn30UXv66adDf8iLtnTw4MGhP1xrrbVsk002sS222MLWWWed8Df9pZT7XolAFxeRgJT2IsLtbdJ05MnpPNKLShyN0Z133mm/+93vQgcfG6HJkyfbhAkTbPvtt2/ryKMiwDW33367/fKXvwyKAQr9dtttZwceeKBts802IQ1cMbhHtFjwOdmAqTHrnVSjclaYShyAwRflbN68eXbvvffaNddcEzod5MIACyWdF39zDTJEqaeT4rr111/f9tprL9t7771tzJgxNmjQoCA/XoVW2XhP3gtdcArzp797RyDKPcohviM76uU999xjV199tc2aNSvIol+/fqH+Ij8GYrz4jLxfeeUVe/bZZ+3WW2816nYcxO288852xBFHBAUExZ4jtiGxXheWAdXn3slVV5eWQKxHhXflewxVtJlXXHFFUNIZ4K699tpGn7jhhhuGPo46hVK+ePHi0MYyIH744YftyiuvtAULFtjy5cvD+fSJO+ywQ1Ds6+rq2vrEwnYytqGqR4US0d/FIiClvVhke5kujQEdelTOSA5F+4EHHrAf/vCH9uKLL4ZG6KSTTgqNTOzoUeywuNHpJxsS0qJB4oVyx99vvvmm3XXXXfajH/3I5s6dG5S9o48+OqSHYsg5NFixoycPapx6KdjWyyPTpPL90ksv2aWXXmp//etfg5KGHPbdd187/fTTQwcUle+kDGI6yIoXHdAdd9xhH/7wh8MMzE477RQ+b7755kHpTyqNZCV2Ouk8lVLpjEAchKM0/Pe//w11ecaMGcFavsEGG9g73vGOUHc5qHvUQ945kB3X80JuvEeFnXpNm/CpT30q1Gvq8sc+9rFgjacs6RCBSiEQ2zzqA23cgw8+aOedd14wXmE1P+igg4Ixin6Q+sMMJJ+pR7S3vFN3YptJfxhnMflMH/vHP/7RvvrVr9q2225rJ5xwgk2ZMiW0n7HexTpZKUz1HOVDQEp7hmUVlTMapj//+c924YUXBsvBF77wBdttt91CgxQ7ch4jqeDHx4pKGo0MDVdSWcQqi1XuxBNPDBaHSy65JFjqxo8fb+ecc05oqOL1NHJqqNIpLHEWA54ob7fccot9/etfN5R2BmH//ve/g0WIA3nxWhP7KFPOn+CzLO9973uD3LDCYr396Ec/GuR72mmn2VFHHRUGANHyms4TKZXOCEQ5ohRgIf/Qhz4U6i/1+LDDDmuz5kWZJ+tyrOOxHERrH99HRYLfsApuueWWQfb33Xef7bnnnrbxxhvbt771LcMKHwfysU7zrkMEyo0A5Zb2DOMGyjouLV/5ylfCQJV2Mpbv2C7Gch7fY19G/eMclPrkwUCXdpIB8R/+8Ac79dRTw2zYL37xC3vXu94V6lEybdWjcitB5Z1fKe19KL+kslWYDRoWLOvXX3+9/eQnP7HRo0cHt5atttoqNEoche/J72J6pJM8j3vyd+H3KIlY6bDq4nKDdZZ7XnDBBcECGK11hXlWg1UoudX/LmTG3wzEUNZ/9rOfBZeHc8891975zneGTodXnOWIyluUW7KzSH7mrqSDPKJCjjvFBz7wgfB64okn7Nvf/nYoS8j43e9+d3ChiFbdwjxKrqvLcU3fFPJLnhvlffPNN9uZZ54ZrHpHHnlkGIBzRNkmmcf04mxblCv1lt+i4p68Ng4G+Y6pfayN+MQzQMD3/ctf/nIYiCd9dpP5lszXJGH9VioCHdWl2CfedNNNYXaYQerll18eZpypD8nyHxXzWL+SeY91h3OS9SjWpXgNvx1zzDHh9b///c8+8YlPBJea888/PyjvuJO2l77qUalKSnXeR0p7BuRe2EhhjWMR2q9+9St74YUX7Oyzz7Zdd921TfkuzPKaGolCC23h34Vp0ZBFRe/nP/95UC4++MEP2sEHH2zrrbdem8U3qSwUpqG/VyUQFS++xbKObBmAPf/883bKKacEF5golyjL2JlwTVK+HX3mvKiAx7snz8V6hDxR4rBK/fSnP22bTUF5X1O6qz6N/uqIQKzHkSV/I2/8a7EIYv3Gss5guD35FrYD3CdZX9urc0m5JdOM1yL3CT778uSTT9rJJ58crPrHHntsWPsQZ+pIt/Dajp5R34tAKQhQJmN55x33LxTn3/72tyHQAn1iNHLEOpCsK+3Vr8J8J89P1iPO4+9kGgx2WQ+Gz/znP//5MAj+5Cc/aRMnTmyb7eI6ron5Lryf/haBNAhIaU+DYi/ToIGgoqMwM5LHus60HIsJv/vd75bUJzXmhfxgbcddBnecM844I/jIssAVCwPnFTZ0vcRQsZfTkCNb1g1ce+21hqVon332CbMYuCwlj2I2+Mhro402Ch3fbbfdZt///veDKxRKHG4V0dVCcu1ZUYyyQ9a8iPjyl7/8xf70pz8F6zYDXxhHi2DP7tK9q8gTyjlrGtZdd90wuzNz5sxgfWcAEddKFLPcdS/HOrvaCcT6QTvEZxaY3nDDDfa3v/3Ndt999+BKSH0q5UH94GCNEMEBMIAwcNh///2D0SUOxMmvBsCllEz13UtKex/KPHaUvGONfeyxx4LvOpa5r33ta0FB5rfYYJRCmUrei8+4zaDcoWwyFYmVg0Zq7Nixsih0sexgJSLSDwMxGnQWH2LpLIU8YxYLyxAKGx0QeeGFQonligWROnpGIMoTNyXqMIMj/Nexyo0bN26VKfye3aF7V8W2I1r/mFFB6SEaEcYAZnqwvBPqTocIZJEAZRXfdaIqffrTnw4LtTlie1aqPHM/6jfvuB1iZae9RHknkhP1iEWwnc1klyq/uk/lEpDSXkLZFjY0sRFgdM7iQ5RiLKEoUcRRTx6lVPAK74V1kBBYTAX+5je/sWeeeSZYZ1nkRt6T5xdeW0K8mblVVJbIEO4RhCBDeaPDYVEoDXspra3kI8ol+Y5cWZxKtJmrrroqdIy4QxEeLXZSEarkunrxaq8+M0AjmgVrFagnDLzxXS88d/XUivcN946zPciRWRUU+FiXWeMQB+HJXEjmxZOJUl5JIFk3Ylll4Eu7xOJPBr3f+973wuCyr/oa7htftN204VOnTg2zV5dddllQ3om8hhtNDPjA+YXtqOQuAr0loB1Re0uwl9fTALBADavctGnTwmKxqLDT0dI48CpVB8o9Y+PE5/g3DREL23CR4cAnm8WNNEo8Q18qJb0UQeqXRyZs7kGnQ1hNwoaxkCnyRKZJ1slOIfUMeYJJWcayxHcsMMb6+vGPfzwsfEauKO/IVHJdsySSZR9WKBqEcWSRHLHUqS+xLiflW6q6zH1iGYvKQ7w3ln8GkfjZM83PDBrnxGda85PrVxFIj0Asc9GQwft1110XBr677LKLffaznw3uJ7HsJst1qepSsq1Ott0TfL0IfSIGLNagUZ9Yk6Z+Mb3yoZRWJSClvcQlIqnc0jhhYcclBpeT448/PjRMsfEqcda6dDtmAsgnDdfvf//7YE3UsSoBZBhDaD711FNBIcYdBReopPyzwo0OialdQn+SPwaQ5DuLec0KM/IRFQY4IdvHH388ROhh8EOUJ0LRcQ6/Z5El/uxYC1mkSkxq4rzHfGYxv1mSvfKSPoFYT/BfJ4LZe97zntAmsSYjywczAFjZmcFitpxAA1mt81nmqLx1jYCU9q5xSu2sZEePnzMKEvFl2RAiRnNI7WZFSIj8Y10gnjiKCo0UC4V0rCRAOEdCK7LZB50OChyKcZYP8of7E4uPmVXBakTceB0dE6Bjjko5fq2f+9znQmznuJEVV5bKEthxLjv+hfyzqJzwdZRVogqxEF4Ke8fM9EtxCFBPeOFGSJ+C++Xhhx+e6fqTJMHaLxR3Qq2yXoT2QIcIFINAtjWJYjxxBtKkU8QFgV3XmP5jBTqKUpyCK6U7THdx0LCST8I/ouDhAkJ0DHy3OaKFIcuzBd195s7O55l5XgYxxOBmwelzzz0XNujYbLPN2ja1idOqnaXXF7/HTpOY/Aw0UD5//etfByWOI84SVJNcO5NDVG5hxR4HuMegsMe6nLw+i8o79ZhnwFhArGuiG33nO98JsuZA1rFsS5HvrDTo954SiHWDRacYC1hXQ3Qt6lFsl3qadimui30iM2u0+QyCGcAn28xYj9R+lkIilX0PKe19IF+2GcfCjr/rAQcc0BZCkazERiqLnXwyb3wmXCAr+nGTueeee4KiR+NEY5XF/Bdb1DTIrE8gli+NN1tgxwFYOcmVRYkooXfffbf94x//sCVLlgR0yLYa5dpRuYEFZf2ss84KlmoWnUZFI6nkZpVZMl9ExGDAMWPGjLAOI6msS2HvqATo+7QILFiwwH784x/b1ltvbdOnT18lzHFhv5PWPdNKJ5k/+nSMWVjeWeDNEQe/fM5qW5AWC6VTfAJS2ovPeJU7YI0jUgcxnImBTiVPVuoSZ6fXtyN0IZtNsID2jTfeCM9SrQ0TITsJT8YCRBb5xZmTXkPugwTw0yQ+P4sqmRXS0T6Bq6++OsysYBlkUW+UeTkqukSUwfWN2PIsno71uFrrc/sS17dpE2Dge8kll4QBL0YsBpDlfBCVi11T2ROBtoH6U47tQTnLoJLzLqW9xNJFASLCBNvI4zoRldxy7BhpiFBS9ttvP9tjjz3s3HPPbevoq20aED92YtkPGDAg+GMmIwyUuIj1+nbRckQcd6LesEgxdjrqfFbiZcaMwSqLyHExgU3soMutPpNf6jIh7CjDzJ5Fl7deFyglIAJrIHD//feHfQ1Q2FlXUwkHdQiFnU0JCUqg9rMSpJqNZ5DSXmQ5oLzGF5WXrZAZiTMFiGLH1vPlquAlffCxyv7zn/8MMaqj0ldktH2afFKuWIrYYpuOB4Wd3fqSMi1XBQ75suAYhZRYxNV+0PHGF/HYGaSyBmDEiBFtC42j4l5urOJzIWvc3ggByQ6U1erqVm7yK6f8UtYoV7xYE0W/MWnSpDA7GfuO5Hs5PRt5jf0i0WRwlSGiVPRvL7e+oNzYV0N+pbQXWcpxhE2lxX0CqwK7pzGVXu5HfDaeA0WV7aXx740+0OX+fF3NP/7MWNnxYWdBX5JLV9PI8nlY2lmgSOzxaptBKZRLlO3MmTPD+gX8wKnLlcSFzaB4Jp4vxm8v5KC/RaA3BFBe6ROJoPbqq68GIxbGrEo5YjvB3hwYsh544AG5yVSKcPv4OaS0l0gAWNnZ4Y1FfixY4yh35S5a5yLCgw8+OFgZ2BijWg7WKGBlJ149Icoq8WCXP8KZJd2fKvE5O3umWF8ZlLLLLTvH4n9bWA86SyfLv0dLINZ24rbfdtttYYG5DhFIkwDlDGUdIxYbEzH4rRQrNO0B/SDvLEg95phjQlScRYsWpYlQaVUpASntRRZ8rLwodVjnDj300CLfsXTJxynMqMzwrGwkhC9f9OOLCk25D1AKqcYOhqgHWNmxFI0aNarwtIr4G9kxzUs0mbgLbqXKdU0CizKnHsNhzJgxwQ2Kg7Jfzkesy8wYIFs2XmL2DKUK5V2HCKRJACs7mxAxS8ki7li3uq24e1n1AutZc9e18C9H/rvQRrV+F97bTlh5ZprPVJgW92dx7c477xw2XKP97PbzFSaqv6ueQHn3NGUiPqyxhERkK2ZcKOjg46tMHqHdbMaOPvrw0UgRdx6/WMIeVrpix/M/8sgj9sILL4RY+xyRSbvAyvhLZoiYSWFr8UqX65rEhLJx/fXXh84YK3ss+2u6ppx+i+0S5Rh/fdZpsNNrJbn/lJM8KjWvGHWYoST62OTJk9v6w561nyjpCVLhc/KLQorFVdpjmxAH9Azud99992Dc0axVoSz0d3cJSGnvLrEenL9s2bKw01uluk8kkbCwllCWhMJDuavkA0WGxXp77723ESKxUo9oHWLTEyyvbBxVrQc7HT711FPBEo3iXskHz0h9xieXGSUdIpAWAVxjGAwSeal3s1Q1niV3RTHe80f+c234psY8BLH3QzXeFYUzVv7Tdn6xP7DrMGudiDb15JNPFvt2Sr/CCUhpL4GAmQZEwWPjiEo+UNKxsuMDTVQArHSVfNAIM+X5nve8p+IHKCjuzBRRhlmg2DOLWPmXBhRYdr1lf4VKPuKAe9y4cXbffffZSy+9VMmPq2crIQEiLxGUgb4CK3uvjrxm3qqMt6a02neFlvV4Qq/u3K2LsbZvtNFGob/QIQK9ISClvTf0unAtnd+//vUvmzZtWoh/XOkHVhM2aamGBgo3CUKV4UYQp0SjVbqS5EwZ5rmwurK/wA033FDWG4L1VDbMmMWNptiyvJKPOChjncbzzz9vc+fODVP70ee9kp9dz5Y+AdqQGCaX+P8MfqdOnRrWTfTmWFUdb3GvGF6EZvWdSP3Fny3hb1+rsYrLzErLfG/u39VrR44caZtsskloP9jTI9ajSp+N7iofndd1AlLau86qx2eyFTybD1V6BY0KKw0xDRR+7RyVqshec801bfH2o5JTyRZoLGNbbLGFYSmbPXt2j+tDuV7I2gUWzjHdjb9qJZbrpGxor3AB4nmZLWQxnQ4R6C0BoqiwmBulnTqURr8Y3GD8lcs1W0tzk2cRjd0V9uAPs6r7TG/z35PrqUf47/OshFHVIQI9JSClvafkungdvnvEt2YasNI7+fh8xHjG+vzaa69VrC8sjS+bguy1115dLAnlexpyxTLEOxZmZlHY1bfaDnz533jjjaDEIv80lI1yYMguqY8++mgIWVctz1wOcinXPNIv4FpIqEfKU2/6xei3Hi3sPgSwWhzYUeD932Z/ocI304b5O9+Fo+1D/KJ479GQw6wVseiJJBeywHSADhHoJgEp7d0E1t3TiXO84447VvyitUIuTAeyOJPOnqM3DXNh2ln4m1loWcwdAAAgAElEQVQEBib4eVf6QeeC+w/vdDq4BLFZSLV1OixCZUEmCzQrrTy3V4Z5RmRMGccHmYgfvVs02N5d9F01EIhtBWWKtoOFmXEhd6/aEfReXq2K+tIlizzC1U9sjA80J0/e3C686BJ7a+ESL8d9S5lnRGnHRZZZyqjI922udPdyJCClvchSQ2nFyp56yLRck+WavCXKrfAGabm/mBr074iz3OxWQA9NF77zzys4zX8zvue9SEdsiOjYCYfHYj3cCTh61TAXKb9rSpb88urI9xC5MhhL3cfXZWnNed9Ml6CD4+8l/lXOlrmtqLml2Zr8s3dD/u6yb15mTeSziL1S9NfnHaWdxYkosJWouCZlnpQ9n1lczcZKPdnNuMan7Xm1ahj+5vHdw6smRLfwwubS9VCwXj+b/b2ppt4/N9uKmn5rKqZF/w0ZU4/nzZsXfHHjETmlXv6L/kS6QV8TwM2MgX88etOO5GqabLm7wNAXNr35rL3vfXvZP2c22UvPvWq3/PNPNm/GdfbJUz9rs154w1pcsee8pV7HWnLLSoqBZ4x7H7z++utGGOhy6xNLCkw365CAlPYO0aTzA2GtaKDStlDlvMNvqlvmSno/7+zr/UUjUGvNtd7517VYS627M7S4AuDzh800Vq7ssShnWU1pRI7SzoJUok6Ua+NEvjvqUAjdFeMLd3ROz0qQhxGsdeXOlTlX3Zjs9Y/9fcq32er8u5w3/nU1y62/D9bqcvW2orYxdFo13gmU4sCXG7ni144SW2lHHFwTjx25xrKLPzdWdgYtPanLyI0XRzD61TBZ3+qHG/52sbuS3lTT4HL1Gu0DshX+ub6Ig+yQmS4eKBwsSE1yiYP0Liah06qcQGwnGfAzS5lW+alnzOsGhf9c+1e754EX7PQzjwmW97EbTLR93nuAPf2/x+3uOx/yeuU7+3rf2MhA2etWqQ+elxlo3mk70+03Sv00ul9fESiNBtdXT5eB+xL2kEWZaR8o5XUtjbbCG6E6bHQo7251qMMyiwaAol7X5MoejZQ3VrXu0+dGO1TBUhxJpb1cGycUNiwivAoPLO1bbbVV+LoogxJX0r0ncgWvLgzEgjXWB14+WeLvSNzz5mWg3v8MMYlKZJDlWVloPGLEiIoMA0hZZUBCtJToxw9eXEOwNPPscTDXnXKN2IgfHWJIt07l1/igjIFZ3tuW793/1i3rnIWyzoANRT4LB0o7FlKUdp6fF9FkGJQnLfBZyKvykD0CybrC4G/ixImpZJI6QnVyk4Y98eDDVls32dYb6+FYaTNr6qxxLd9roLHOli7xiC0YYXxAzIxWqIclOArbCAweHJVo8CgBTt3CCdDn6ygiARai4ssWFbvCStzTW9d5s9Nc12wNKHNuca1xJa/eG6S3315ojz5+n7348huu1LvbDCJ2ZW9FbX+MtzZqzFjbfafte3rbLl9HpBHcCHAnKFRqYdARj/a+b++7mJFk2sl0k7+3d/2avks+JIumHn744eDus+WWW4YpTg6+X2+99YJi1xPLa0cggxXWNfCamrdcbkOCcu6S9u/cwm4rvLtBiXfXiaDYubrnPZar8v7Z5VyafijIlcWYLMrsytEea64rlN2a0kqeG8+L3yXT7+he7aXd3rmUIcrsGWecYccff3yYJWPQTWx2Qj4S9rJnhw+Wk/LxutrUvNxefvFFW7x4KRK0usb+NnL0GGsY0C8owi+89qwrxs3unjIk+JWn1Xb0JP/44jLbADNezCCy0RYh7N7//ve3DWB7knZH18R7dfR7sb5vr6wV614x3eQ943MXPn8x5F+qZyXvcRDMjNXaa6/dYR/QHdaYoFpcQa9tqbEFSxZ7yzkoGDmsdol3e7X26hsLrGHIUBs/Zqi3nMw893PDlkeYCcar0hiwks9DPYIFbQnsiyHT7vDTueVHQEp7kWWGhQ4Fpz2Fsne3dpu5T6G3GK4T3gB4A4XC/pc//cZ+eNGl9t9H5riXhVuIa1zRcx/o5bXDXWlfYvseeLjtfuWvenfrLlyNGwUKDgpQPJKNVOyQ4BLZdKT8Fl7X2e2TFlLOjR1TZzJo7z5YEr///e+HFf8HHnhgCN3JltR0PEOHDk290fW+x7sSnxnJ9XN5MSBzW7tbXV+b5xs53fs/G9DfrUfeIT05a65ttdPuNnmrTW1AP/c1bvbBRH1ptHYGZLziltxr6viTnVJHnVRSPh3JNl67JlmuKR8dpdve95Tdq666yojDv+eee9oBBxwQXIJ4Xp47lqlud7j5EVn+ev+32adNnn/uBZs547/29pIVNmHylraLR+fJDVzbFnm9+e89d9obK+rtnTtO6fMFz7Eus/X8nXfeaTfddJP9/e9/DxupHX300e1hTPW7rpSRtG5YWNbSSrezdArvy9/Ffu7Ce3aWx57+nqybxGmP8dm7XYfaycAKN1g14CrodbOfr/x5a/Eyu/bmP9nTT74eZsz22m9f22m7zVxld2MILqQ1S12B9/UkVhoXmeQzUo/4O7ad7TyOvhKBNRKQ0r5GPL3/EYsZVtq0FIq2HGFl9Uanpnapp83nZnv1tZdt7nPz7H377ekW9Tk2ZOS6tuUGa9lVV1xpg7faw965zfq2xWbb9v6hupACCjgvdlM8++yzV7siyYPzmHbnvT3FmnP5rSOGsVGMv8fz//3vf4d42lg1OjqSDWpU9pN5YCEt29bj5nTeeeeFMI/77bdfWGCLIpdGp5PMG57Otbg45Qa4+ws29yZ72xcBXvXX6+yJuQtt16mb2vKml+wPv7zE/vL3mXbORd+0zdbzmQs3xvvaxZIcMCVk22WXXWa33377Gu9ZKM8kr47k2V6C7Z1LueqsbLSXVmffUV7IJ+8o7kSAwhUKRWPs2LE9knnwiPEj7x6TH1w1Ng6wHXfayb9ssRkzH7H13c935Drr+qCtyUaPGmnDR6xtG0/c2raaPKFdF63OniPN3xmsoLCzKQ51IPq2Uw8uuuiiECmqGAeDZWJ6f+1rX+sR957miee64IILwiLctOt4R3miLHMv7s1MBu5IsI7fd3Rdb7+H8U9/+lMjtGcpnpV61dtNlVY+MzVq5SxWztf7MKW86O0VbsRaYg0+K7nijVft1dfdyDJyhPX3BpbwjyWbliwQThz043JZCta9LRu6PnsEStTNZ+/BS5UjKmmMsNCRJbkneQnTe972tPnmuc/6sBGj7Khjj7dxw5fYRb+6xjbacpq9e8d17N7b77CpRxxmpx2+qzX2y7t39OSe3bmGjobnZjqQji92PFH5isoc77wKreOF94rnRCUt+Xts/PgtvmDNokEUTO6fVMgL007+XZhPYlMTmizm94knngibgkS3mOTzrCndrv4WdLsWtwD5WoQmX2xc17TUnn7oHrdq3mgnffbLNn2nybZi6Zv20AOP2+/+NtMWu8tCjY1yBb+mRHaj/JNQrul4YbumI/Ls6JzIj98768SSZYTrGDQlryeNrsgjlpH27km5wRIY06EM7eSK9fbbbx+U1sL7dfRchd/n1fSEsuALwonuVO8uMRt63Ps5c56xl56fa296pKlRvkhhycI3bYmvIl933dFt9+Teaxq8Ft4zzb9hDwvKPnwYEJMf6hex+zsrBz3NC7OU1L+YfmdlpKf3KbwOzsyklVppJx+0ObCOXOFczOdGhrj9FfNZY/sZy3Csy12pr4WyWfVvdxv06clm2j9vPFd4XzLcy8yRR53gynmt3XXLX+3cr5xj89zC/sn/O9EmjRxq/XxNkLky3xcHz82Rpi7QF8+he/Ydgb4puX33vCW/M757uFKkbsXAjSJ4T7BwzRsCb6CGj1jHfQVH2vOz7rRlby22QQ2DbPGC+bZg6Yq8VdhdaersdWcwsugc4gJOlJ1TTjml251Oe51UZw18/D12cnDH//rUU09d7XnbS5+TkmnwmU2E2A2SiAfHHXdccI+ZNm1asIDh+sSCzDQb4KDchUWo/ayf/7HY3SbudFeENxfX2CaT1vehWo01Ngy3I47/iE3bf4FtvsEoV+zdT7LuZXszN8aG5PsEX++QjynEQi0f2a1ijVoNRje/gAud/C677BJ2hO2MZUe/c9ukIr6m85Ky4fOnPvWpUK7i91EGXS0j8br27km5+eIXv2g777yzfeYznwl+7QxSfvzjH7f58ccyFjLQhSNvaOffhI+My5c+fPiI0bbpxpvYg/972F547mVbe6N1bfZTc2zExI1tqJffnCvvzS1L7IFb77LNd9nb67UP2an7oQ3ALu/vPsir92LT5IvvWupZ3Fpr9U3+2Rcrp3Hg04/C/vGPf9z22WefELcdCzt14Nhjjw3rPdI+YMzggNnK0047LSTfnryKcd/LL788rGmYMGFCye4Zn4M25+qrrw4zejCPRzGeHcbcCxcnYqcX4x7kP9mu/uY3vwnrIxiYcPTqnmGWmfbN//XPOZ+brGexdJ0bWvzZNvMdnDeaPM7+8a877N3T97cNa16y711+mx3+4Q/Yxj4oa6ljcapb51css8cfedxmPmX27oO3sLV8EJDLef6I8uTTZG5a8nwSorVVGvlReBRNl9/jrG989i5fqBNFoJWAlPYiFwWUGxqoMWPGhIarVw1UIq955Y5Om8YF/zx6cXatJEbtazbvteVuCR1gCxc8actWLHa/+gFW79aFmubBJVl+jDKG4p5cuNfbZ+/s+vh78jw+d3ZdsggUnkv+jzrqqKD4b7311sG3OFoXkWtcZFx4XU+LFeHLGIC5ZH1post2aYu95tPkLTV0MAPy8dj9mTaYMNE22NCVNFfalvjrT+d+254ZtI195ZRjvBjkZ3fyUUryRcOTSu1ArkRY6azj6QqT7gx4CtPj78I6VXhO4UMnf2/vXNw+sOxed911YaHxZpttFgZluBDwfYwk1N61hfda5e818O/Xr8HGrj/WnnjqEXv2mbm2/toN9vyrb9ukqROt0QcLdXU+3b90sb3q5WBjV8wHhbUOlJH8PBt5qfE81rqPfK1/bkHhcOvjGm65xqy29yP1Ofrj4ioEF95xk6JtK8ZRyLjw72LckzRLdZ9k/ju6Z0ffp/XsxU6/MJ/cj9mT2Hb2+v70fwxeXbkmgKonHxR4/kPhHuyLUEeNGmdve8jHRT7AXNQ0zO69d5Ydesyb5lMpoT2lJrUsb7LHHn7AbrxzgU0/eEroTkmLGtbs7V19PX1sz444YOHqGH2pO+1ez+6qqyqVgJT2IkuWjp/tz7HW9bqBajevtFLEYffGx0M7Ll04z+6653575JXn7aihHvHh2aVuRFhmjd6I0ews9pjfrrYX/cAyR8PMTENxnrvojxCswEQOYbttFDYa39jYEm/3lVdeCaHL0ny+EL67tjXKgS9IDfHX3WH99fnPeVSg52z9ndiUJGeNLu+Wt+baE8+tsPGbbGAHfORMm4d1yRdZWVicjLTZcCv0YqkqcCjsyJe1GpV2IHNcuvbdd98g1yhbXIFiNCSeOXbE6cg+ZyM8asxGG21sD/53lt3f9KbVDR9nwxq5UUuIIDNgQKMviH2fLQzWSTY5yqvkKBZExcCVCoWdzZm8dAQlptmjR3kMvFREhLUbv/VY/nlHcU8qJKncSIlUNAHKC4YOFvjHsI/p1CEaTlwyfeMkVG0fuNKW9vO1XjSBaw9dx9urAdZv9CS78Idn2bpruw9aW7voA946j8jl16xYSt3y2GwYTsLvXqdqiRiVr295QwiWFVT9zo/C+sEgl+8YuOgQgZ4Q6FrJ60nKuiYQoGMjpnfRDm9LgnE2/NdiD95zl/3hD1fbwGFr29rD1rI35i/yDTVztuC5F30HzbftD1fdUrSsJBPGL5NYtMWywpXiIehMcItI7oBJg8uLDofFYqkf9DRMyxKezP9tGDzQNn/nlvb8Y7PsxquvtYX4QngIz5qmN+wPf3/QwwP29zjtS2zgyFE2fG1fO8Buqq39S75joXTkO7S08kpEIDofZh0q7WAWhQOlFAU+drr4+/JK+run9exY82rrG2y99cfZWv2W2IyHZrn70XAbPHAtVw1aF6y5GEMUKs/XKofLmnO8RAQ3GSINuQOVLVvq7/XpNe+4DGGAiHyoG9FqmBYHpVMdBNhYicX9HLE97fmT07bxyh+UyxafLQvfuTHr1VdetTnPvmo77LSNTd5ojA3wmehRo4e7kt7qmtPaWOZq2V26ztcFeR3z7epa3GUGKzzNaWhQaUbDEdvT+HfX33nWGCY3GfKy6ynoTBHo6nBRpHpMAKWdxYschaPuHifqF6KXRd0sfPYGap5vj3zd3663hx5/1TYcP9lGj1jLho9fz9Ya3GCnnnC0N1brW12+FerNrTu8lk4cRYdXVNqJttH7hrnDWxb1BxQ3XnQEvKPAo7TwNxb4qLSnKVesQjlX3GvY8dYtqg2D17Iddv+AbTV+iF3xg6/YGR/9hD38yCz7/Je+ZdfdPctqXZHzyO1293WX2wU//KPX6CHBPSY4R5AYnQwDgRi+JAVi+DHzKucBWUcYkG20/CHv+JmBW1yoFyM/xN86SmtN3yfrBNZyrOSjva6sP3YdGzN2oo0c4QvGowuM//7nK6+0H/zoYntzgU/rJ45HHnnEfn7xpXbjzXfYzy79uZ337W/ZX6/8m9X26+9qy+qbgq0pT4W/xTwySKPcYyGNz8w738X6UXit/haBQgKUJ8rN+uuvH9zNUmk3Pc14kB4zQuec883Q/jUvX2b/vPFOe2peix32/vfY6GED7HMfOsYmbTTdZr34fOhAQx/qbSOhdutY+O8uZjnvvy766c/szC992fM5tzWftKecvPJ+hc/X3t/JNgJ/dowdzNoxS9mb9qO9e+m76iCQnimmOnh1+ym32267ECYtlQYqcXeajnzz4dN//l+zK+NrDR1u2+20sx174vvtqEP3tUHuC7vFdtPt69/4qk3ZcmP71Be/Y0cctke3n6GrFyQ7cBqn130QMX78+HB5uTVQ5LfwFTnw/Ra+wOmBBx4Ick3z2ZrdEhT07NCdDLQVrm+P2Wiy/eCC823ajpPtzn/dYocefJQ94/sanfmxY2zcOh4/3KMh3HLV3zzMGZZhWJPTlSVk1c9dlWb75+Eag1sQVlfknXa5bv+upfs2KXPumvybxeR0tslNhlLJmbvAEEkm59Pww9xNZqtttvAFzr6TowsSpzbkecD73mv1dfkB5Mp71timm022zSaNt4G+8+NRHzjGPn7iMfbQo7PdD9elHnyten/M85CjKFooG7Gsd1Q3en83pVCpBCgztBebbrppWySm3redqDD5eWZaPMroMR/8oB155Ptt1133tefmLbU/XnGpTZ+6ufXvN8C+cvZnbL2NJtgKP5nzmZ+qCXtiNHj9aramZXPtXzf+yzbeaBv73JlfsPUmjHeLe5yp5CIa19DAdumI7SPvzDwzU4exo/fP3aXb66QKJCCf9iILlRX57IrKi04/3YNmh+U33oy4AtWvcZAd+oEP2UEfwNrtVjCiTvj3u7/naLvnvUd7CCw/m5Xy7vNczANLO8/LBhIbeTi7Sjy23Xbb0PHQCKfp200HYjXuV5lzCzqRgXwDrWW+gHi7abvaH2662ZYvZZBQ7z72PpXrmynRnTQ1DLH13BXqUZQ8l7E7dnjfwhSxd2jBWovLRzrjc3zZZ8+eHQYt1XYwAGUtA9Y8prfTOlyV8aRyvqHSUlu4vNb9bQfaAFcg+J6Y0rnmFVbnC+EGuq99VDWi4oBC3+C/NTe4Qu2Lpgf293ChvjeXV0EXvadLMejBkRyMUZdZhM2i+rQHqT3Imi4pcwKTPawpA392lU7PxS6vuOObPn7c+va73/3OWzzv/5i19DVC9e760uy/1fnsWc7e9mVDtLMO0tcG8Y4rDLr5w96mD7x9oB1+0Aetv7se4o1W26a004bSpvoFXdfb26RFPaL9pE9UPSrzQtyH2U+nJ+/DB8j6rbFG7rrrrnbXXXcVwSqZtxXQgnCfvCefK+sed4Qt7nGZodFpcYu7b4vqDZf7aPNFEQ8aI6bTn3zyybBbIvmqxIPOhsY3WtvTekaiAeWVbP/XNXA6nga3sLbUuq9l/QAbMrje1hrYz90ffImVb8ld4+c0NnlccR+wEQeQgVlQ2FmQiNk9P6TrVfaS1iIGKciWUJ7VZi3CF5cQnyjtSX/3rsHFSscrr3ZzTa3Xz+VLFtkzs5/2jXRetqdnP+cr5/r72oThYav1Zh9wBYu2j7lyvhgVxYIj+MD7onPiXjBkr/VFc/2wyXtVa6LEsNOW1zsiyPT2QPZs9kOkGOKGc1Sb3HvLUNevSoC1GZQnZqB7fbQWccpp0/Kl1uKRmAb6jBV1gvawnj4QS7rXi7DDNIv7fRUQlSW4j/nCVXTyHDOcXmcmb7mDrwUb5Nb5X9lTT872dWDuOuMLVPPuhSxxzde/7uSbvPF68cUXw4ZtBDaIh+pSd0jqXAhUpkaVIdni97nnnnvarbfeWoRcRQUvv3iuzhuq4KLir9p+/o7PqX/HdIp7oIZQj7Wu6BX7wJ+dxbdsShOn0Yt9z1Knz3O9+93vthtvvDFVJQbLaehUeEesrpyz2TYKWWPY8pTfXKbhRMKdeTfiA7JFy928WrMMIytb/rlvJp0Ur3QUNzodFFV2acSfHWtZpcq2o7LEZk5Y23ERWtMuu+1fn1e4g2B5Ee3JFYYFr77k61CutWtu+JfNmftiiNAyeK3+rhxgEfR6jETdkl63rNkWu88L9160aInNfuIhe+7FV2yZ++AuWu4ucgvfcP1jiS1YQZ1fbEt9U66aHOFnenZE2eIKRKhH1nAQVUdKRs94VvtVsdzQP+HCgkEHQxZtSu8OlHLGwy32yosv2ND1fUG+R0xiDjLnDShx24PRwU+iOW3xPtGDl/rvOVvRvNSu/v0v7bprbvb60mxvLfc61L/WDj7gYN/74m379WW/shdefs1Ve670trfV4t7dHHN/Bvpz5swJ60Iw+Kge9U7q1Xy1lPYSSH+33XYL1klG2mkd+a6/9V+sceEV9Lh8g9D6R+x8296D0lCcIy5CnTt3blDscCHhvtFSW5y79k2qPNMBBxxgd9xxR1hclNoRRJqXZ3yPsuNvlPDwd7C35s/9738fsv/MnGUP33uXPfrfR1rXnFK1KQz+fzAPRaWx5zlFYbzttttCh4u1rBLl2hkdyjRKLNFUunusrHn+yZUXdjXu13+ATd58cxvvkWM23XgjW3/cWB+Tuazywg23aHGLOeduFMLGmi1fttyt36/Yiy88H9yz1h452l208DdnjUGNbbfd1m5yd4siJ/fwiNZBBmk8c9wcrjdp9jAruqxCCMSyw+CPMoWbHaEfe3OwnstLPaZy2+Jdu9mJH9g/RDmluWNzJZR55p98DjLo3C20nT7QpUbV+DUzZz7ii7xv8OrioSjHjrep79jGxqy7nh186OEeJnIte2v+gryuHjLZWp+6Wa14bp6TgBRJQ5bqUm8kX73Xyqe9yLKn88MPFkXn+uuvt4985CNFvmPfJo9ix3OyayjT6Tx/pTZO+HUjWxT39773vUUHn1S7g9IeFHG08gbb96DDbbFHjqmHt5vl6cyCgh9y1XpeD3OI/IgMhILIpkPnnXdeD1Mq/8uizFlUhlU8hkDsypOFsVPriagNYeGpK9x77j3ap+F9dqR1A5egaKBwtyruGCMbB61lu+6+m++zMICAjrbF5lvYfPd/H9A4wDZzV4PlXOKted3Qettvnz2txdc81ASFpecHdZnF5O973/tS9D3ueX50ZWUQwNrOQnZet99+e9i8rqdHmGn0/2tz9XbcqWfa8gbfgM792Jmj4nvaSdzM2OuiiYXZ7uoydMjgsGlZQ22jnXT66XbjP92PvXEte+du023n3YjXbvbOd0xzBX4Xv8YH1m1Keje19daHYm0XRjsG+gxWdIhAbwjI0t4bel28lo159thjj+AiQySGaJEud0tltMaBgc80xvi/svU4VmiOSlXY47OhrP/hD39oi1ndfV/nLhaittPoOPKdBz7R6HZbb7uDffgT/2ef+Phxts2UzfI/49PZel5U3bt7p+T5yJEOlqltwphWslzXxIkZBraWZwDD2g2OZD1Y07WFvwXFHU3bp/Hrfd1JflkxC1Cj5LiC730Q5ovoMCG615v/VeOL5AbbiOHDPCKGO0+5AlLvSnqdp1VX32j17gHXzxWU5CCv8N7t/R2fI8qWxYIsuN3cZwKSexW0d62+E4HuEGBtyJZbbhlcZIhdnuwTu9Mv5t3/8i1c/YAhNqgfo9d8v8O3wU3GM3bvnXfaj390kd115/9sv/13tqFrDfRva63/oCG22247ej1q9EAOg61/Yz9r7Ffvnxv8s/vHe99dH9pSP8LMVeeKe2EfQJ9/zz332A477GC42OkQgd4QkNLeG3pdvBZlFgsdvmw33HBDjzv5Lt6u5KfFRhZrLKv2UWoIEZdU7CpNyYu+mMwoYEnB2h6Vnu50Ot0RVugyQp9R0Hl4p9Liih/emvl+xTurVit7vovpWmfTUV7is15wwQX20Y9+tE2BqzSZdvT88XvkyjOzloHBC9EvKPNd44Amgejy9nauCeWEd4SWF1T+lNbP8b5YC7Ed5l0B8vdr9I2XBg50H/PwG7MqfoZbFPHjrfGFyPjL4zjQ1SNZZpE3ZZqdnLEMEqJPhwikSYBBIBGJmKnCGED5K1R2u3K/oJjT1lGHWMvl76HUU4cwwmOF948Txk+0d+y8o228+TQ7+tB9bIjvjspJbGI2fsK4/PWt6eBmFq4iyWAYiTNWfJ8fIHSWt9gX0D7MmjXL2E/hsMMO6+wy/S4CnRLoeqveaVI6oT0CsXPGjWKXXXYJ7gX4QHeto28vxex8V6icosT8+te/to997GNtDWlbg5qdbKeSkyg/fH2ZRfnNb36TV8JSSb2DREKYgxjBoLUDCZ1KmAf2d16tsbyDHkhng1IX+q9eHX//+wT3DXsAACAASURBVN9DB8uzRplWqmw7AhVlTl2GA/7euJDQMXf1yOvjSIMBVpQdSrd/FV75M5Lp1SFz/z6E8yQyDFeztTpKBopJuM7T8g9Ek6GE1Lq2giW/pwdWdkI8Yh3EB1mHCKRNYJKv0WDWjnUyrIHCuFXYp3R2T6JncRA1i52BW3INXurzgRkIedris08MZNcZu57tsP22NnbiJBsxbHCIohaiq/m51C3cbGqJuhXqH4Nf2kz/h//DWxxc823X3c5YsI67KBHkkpuTdfZc+l0EOiIgpb0jMil/z+I1wlyxQyiKeyUcyYEHVpJvfvObvqnFkcFXMVpnK+E523uG+Oz9+/e3d73rXcFdgs6nmIMxupPopxz6KpS20IGgqqGkES0BCy7KHEpcXsnnXBZg9fRAKT3zzDPtdPf/lAKXp3j44YeHDyi3XRm8BLmgAfgRZYbc8i++xZLOa+V54WQ/UMzjh7xazjn5QVv+37wiwedoXedOWOd7cqBoPPvss2F2kLKtQwSKQQBr+4477hgU9TvdfaVnR2gIXcmmDVzKVklh8MqRrzb5z7XMRPl+F7W+3ocZqZoQMjW/GDV/X+pQiL0Vvs/PXhW2mXkre+G3+evb//e+++4L+3l80Dd86smgpP1U9W01E+hZq17NxHrw7HTqVNiJEyfaPvvsE5S7xx57rM2dgiTjdFoPku/TS2K+meLk9aUvfSkoMTxvJR9RUcP6TDi8gw8+2C677LIQ2osjTvWmK1fvLogD6W/4NYcPrqhjWcr/nVfh8tzzv3EmdqfuSIO8xxcK+4UXXmhsErb//vt32xJWaWUgyh3f1DPOOCP4qmJtp7xHmXc+YKXzX/lfZ4xiuHWUjbxyjzqCxZ24/K6MtLgi0tLgn5td1q6MuHWRDbn6tSohnaXP73GwSXllIDJs2LBQphXmsSv0dE53CcQ+ggAN7Pnwr3/9K0STSfYbXWk7oy2iLnwY6OFxaSNDgQ6uMnW+8LSeEJB1jf653hdxe0vZz9vLMFPlLaNXKS5l4arveOEv3nE1zH/Tmlj+re0huUHHR2wjyP+nP/1p+9SnPpXqZmwd31m/VAOB7vTl1cAj9WeMFTi+00ARdeKvf/1r2B2NDh7FqPOOPvWs9TrB2KgytfnFL37Rzj777G5F0+h1BvowgaRcmUVBrizaY1FqcRR2f1h6F3/l/4v9SOihwqvtU2unFc5NnN9VXFGuPAf+mLg84c/O99V8FNblvffeO0RJYoOtWH9557zC+hxlk+e3UmZ5uSVk1yrNVTgj9ij1UAZaiwLfJWUcPnNllHv3pEVaRLggNC1halkoyHc6RCBNAsl6hJJOPWJvj5tuuinMWCaV9U7L3yp1AZcXin9rbWmtD4X1dtU6k2w9UdiTdWqVVjW0r/HszngwkP/a174WDDp77rln1bednfHS710nIKW966xSORPF7qCDDgod41VXXdWDTVpSyUYqidD4sfnKl7/85dAwMYvAdzS6hUpLKjfMcCIsvN13331DNARmUspZwY0yZI0Csv3kJz8Z/Jt1rE4AlzAGrQxuOOo9kgtHp8rG6kn16TeUV4wIWDtxb/vABz7Q9ix9mjHdvOIJYMQ6+uijQ9t58803d2uNSBbhNDU1BaPcX/7yF/vhD39YNYasLMqiEvMkpb0PpLrddtsFJRc/vpkzZ67SSEUrQxaVvmTe+IxV5E9/+lOwkrD4lNCWHNGS0Qdo++yWWIxYaEy0DQZjRN5IHuUkV/LNYAy3GLbcxk0CN6CozPcZ5IzdGJmyKPX888+3hx56yF599dW2WZaY1SzW40KMcWYIP3ZkfMopp4Q9FjjKIf+Fz6O/y4sAZY61E/SJLNok0kpc3B3LXzm1n7QF3/3ud+1nP/tZcDOLA3ieodwG8+VVkqojt1LaSyxnKi0K3n777RdWzv/5z3+2xx9/vG1KMHagWbRU0+jQmPJOjOp//OMfdsstt9jHP/7xto1mosJejY3ToEGDwkY0Q4cODYo7ShxH0nWixMWty7eL5Q7ZMgj729/+FnybP/zhDwe3nyjX7mwm1OWbl+mJ0f925513tv/7v/8LA3BmJzjglXWFN+YR2TPzx0ZKJ554YlgwH+svz1iNdblMi2RZZjsqsyzuHjdunP3qV78ydtWmXMb+JusPFgcVDz/8sH3/+98PmyjSLsQ2Ivb7WX8O5S/7BKS095GMWOB17LHHBkvdpZdeGqI1xIpPlrLa4dP44K+Hwo5VhGlNfF+jJTYqd9Xa0eMm8/73vz90OldccUVQhOJgJ8tyjdUAhf3qq6+2//znP3byySfbhhtuGH6Kcu2j6pL5237oQx8KLiVYCdlgLLlOJVmvs/QgKEXIlbaHhfHE4E/u7Jusy9Van7Mkr0rOC+WLaDKf+MQnjIhcuJVQLpMLU2M7lEUO1HHWtjA7SUQc+vZorFE9yqLEyjdPUtr7UHZMQR9//PHG7nBUdrY6jp1jYWPVh9lsuzV5w8J+4403hhezBcSfxS0mq4pJKbnFgRYzKAxmnnrqqRC/HVcTfsuy4kP+iHyDhZ0dbVHe2Pwki+WwlDJd072SZR6FA5kfeOCBQe7PP/985tmRf9oc8otlkF2MNZOyJonrt2ISoDyy4/Cpp54aFHdcTCibsV0t5r17m/b9999vv/jFL2zy5MmhHSA4AUeW2/zePrOu7xsCUtr7hntbhWYRzkknnWRs0nPOOeeEKfbYSCXfS9VwcZ+ki05UTHhnUyiUOjbamT59elh4ysBDDVO+ECUtKmxKg+X16aefDgMyZicK5VkqmbZXxKOcozWIgQUWdnZ2RXnbfffdg+VLsm2P3ury5hvcoojHzGAWpf2ZZ55ZReGIrEsl92Tdjfcmn1H2TOUzK4APO4pGcoAmuXcsd/2SLoGkoYrPbELEnhAsiP76178ewqrGI5bdWLbTzcmaU2uvX2TRKYEHiLCFseaYY44JRjjqkgwea+apX3tGQEp7z7j16qqo3JEIn3GRwS+c6CNf+MIXQrxvjmQD1asbduPiqFDE9+hXiH82lg+ssEcccUSbwh6TrvZOPqmwR7nutNNOIfIKfs5M+7KDZpRrUqHqhnhSOzW5iyeK249//OMQZ5+BBuUwDsaSZTW1m1dIQkmZ85lOmvjtJ5xwQuDImgAWpTFg4+jrTjzWaRaQsxaFuv3Zz37WDj300GAZjHW42utyhRTPsnmMZD2KdYR1NAwm2Xn43HPPtZ/+9KdtxiTKcfR1j2W62A+bvE9suwmPigvkL3/5y+C/Tp2Pu56q3Sy2RKo3/Xx8sup9/pI+eWFnGCs/3zMtSChILO4///nPbc6cOWFTBlafx6Pw+mJlnnwl74W1mNB2WBCIEoNFgWl0zutrRaRYDLqTbqFcYgPP98TpRY5XXnllUObYkIe4xKWWaeHzIDfyiWLJQBElnYEju2AStrDwmQqv19/tT33DLYZ1Zffjiy66KISyI44/jFE2SlVnogxjfeb9pZdesgcffDBE68DvNi46VV1Wie5LAsn2JpZFXGTYYZvZ6D/+8Y9hsTTGD4xcpW6fYr2N7xhgGEgwo4ayjh87fXiy7YdnqfPZlzLUvUtDQJb20nDu8C5Ual5YvWiksCzgJoNrAko8UUiSU9sdJpTiDygV3JMXcbrp3Pfaa6+wlT2LTqO/Xoq3rMikYgM+fvz4MNg566yz7Bvf+EZQ4nE1Qu7xnFID4N5YiAjniJUIOaPAyae555KIsuSdDpwQoN/73vdCh86ibfzHSxkNg3xQh5H1smXL7O6777Z7773XWDTLZmiEJ40DtL4qhz2nrSsrnQD9EP0gbpi0nbRNuJ8QZrjUlnbqEPfkde211wZFnYN8Uc+p7xylGpBXuuz1fB0TkNLeMZui/5IchdMg8aLSE7EDxQ5/Pha34Cc7Y8aMoODxSnb88bvC9+h/l3yIpFIRO/R4Xrw+KpIMFti6HusGjeRRRx0VLByxUYrRYooOqUxvEAdjZJ/PAwcOtHe84x1hYSouFAyCsL5zxAFSfI+yScq0uxiS8o3pUm74jPKIok5ecMVCiYuyTea7u/es9vNjfeY9KhwTJkwIHTsRouBOXWJanYPzkAdHsm52VHeT5SOeH5m3d00cfLOYD0slkY3wvSWsI7NmUdacJ2Wj2ktvdp4/lstYjzASUY8+/elPh1lB6hB9Ylz/lWwv41N01L8VntteW5u8Fp91/qZ+MOPMWq5vf/vbdt5554W8UKeia1ms/9khqZxUIgG5x/ShVDtSkPiemN+M4NmICb85FCssY5///Odt0qRJbQ0JnXVMJzYuPFJsQJKdO5/j38lrkuewGBElgyn+yy+/PCjusfFMptuH2DJ/68i+vUZ8gw02CDMWNP68s0iVxh8/8sg3yhS5FMqxvTQjkEJZJ+WFws7CyM985jPB4ooSycABS6uUtt4XqY5kzvfUZdY3sNvjddddF6Jj4CpDGcAHNtZLzk1+JldRpknZxvMKy0nMA/LEj551KNyPMnfJJZcEl5g4k8K58dX7p1cKIpAegWS5jGWa1LFmMxPNIv/f/va3oU/EwIUCvdFGG4UMxDrRUW6S9Sh5Lsp5sh2M5/Hd//73v2BEY+E27SbujcmNBLlXMp8d3Vvfi0AaBKS0p0GxSGnQEGChxTKGpRtrGX7HNCTHHXdc6IQZ5dOY8eJzslFKZis2hPyOArdixYoQipBpcxYiYvVlcdrEiRODdX/KlCltfuukE9NV49R7YaMoo8ShUBGthZ3z2FWTCB7Tpk0LMicSCe5SdCzddVnhGuRLzHXCOGKRouxgcWUTIAZjQ4YMCR1NVBJ7/1RKYU0EYI08WfTJBlzsc8ACu6VLlwbFg0gZKAK8qMfRck5ZQUbJ+svftAHxHBQOXsgcZf2JJ54Ii57ZqAa5M/DHzYAj1t+O2ok1PYN+E4EsEKCvYw8J2strrrkmhE2mPhAggVC1tJe0oZwXletk/1XY5lEnuJ66SEhjXrgv4tJG+pzPgm2MHIqolYUSUN15kNKeYfnTmNAA0WhgmUN5x6ePTvmCCy4Iyh7KF4vcpk6dGjppOnwaoNjJx8eLDRUKO8ocu7CyQA5FjnMJ80cHP2bMmFWU/6SykGFUZZc15EHHgr8mijqb8mDFwc8cyygWJQZOdBJxYIbFls8ocpQLlDaUNWRKRJC33norDMJQ3FjIzIAAKxELudjwiUFeVNYBRh4Ky0nZgSzDDKO8U9/233//UP8YRBE2DpkyWMN1hbIR9z/gEWOdjtbBqLCjqKNgEKEIZYPvGeCjwFCX44AvdSU95+WnphU+5Sh+9LbEf8n/FU5w9x++43ONn+fn+ofw/8qr+LP1mnBlTK01Ub2JQDsEaMtQ3BkIz549OywMZeEq9YfZaNpVjFDUI+pBHLDynlTcqTPUHdJgzcejjz4a2lNmui+++GLbeOON2/pE6iFH6vUpPp/Xj1yoQ1SXlXUi1JXwtc+shwzwL98xex5Oz1ezduqOn6KjgghIaS8DYcbGhqyykyrKHNPdNCzz5s0LYRiJnY7FPCp5NC7Jjp5GBuUuhp9jceQhhxwSFh/SyNGwxcYs3wCs2nFKuUuvoMSGP3JGQWOxIoOv+fPnh2lYFjsRE5/fkDlRhUaPHh1cLVD6kBcKG0o6L1whiGTAgAwZI9M999zTTjvttHAdyr6OviMQ62KUOfWRukq0nu985ztBaaD+4rrEYJooL9TXpKLBtUllgc8M4DbccMMQmYi6jLtNtC4mnzbZhsQ89IZGPh/uk+8KQa03FS0o7uEdVcLXTtTUWl2T/17fHNTxupZ+tqIuZw22zP+iLKL8JNqYpObRm4zp2oonkCzLfKY93HzzzYMhK9YjNjtiIIwhCoWd9o/39vpE2lHKM20shg1CTWLoIN3kvbg21r/C+pQe9GZPqp6hbr6G5Pjb7xsGvtSYFflqk2vI37KmqfVMr0/UoVaFn+tb1fr0sqaUMkFASnsmxLB6JrrSKKDQ8SK6C6vZaXxQ5Hmnw+dFI0NjQ4PFCwWQV1QcC5Xxrtx39dzqm64SWBNf5MNaAnaZxcpDB4T1nIEZ28xjPcftAbcmfkM5YwaGF+EF8bVkYRTTwij38V5JWXc1nzovfQJJ2ReWA+oxyjcvZkWYQYkDsDijwnusyyghKP3U5ehCQ44L63P6T5FPscXNd7Uo7N6+YAVsxujnP9XmWGOD/uDWTCzrKByuxAeLe1TM21UnuFomwWLJq1LSLaw3hc+Foj1hwoRQjw477LC2PhFDBnWKOpSsR7S5XMMradjoqB51dv/C/HT37/zsU/yXGuEzBJ6ID39bk8or59Q6vuW3fN3y71sVdr7Jf996id4qioCU9jIVJ41HnCqPj4ASF31Xkxa5+DvX8H18L9NHr5psRys7Vh9CbbYn085gcE2UeWfn6ve+I5CULfUTBSK5RwM5i7Lkc3K2pi9yXdPq7tKSN/8F9SGvXLiCnvNZPv+jphZFnc9uDaxd4Qq9r7nxZ8sr8oW5blXa87pI4Y/6WwS6RCCpVMd6lHQJTCaS7A9jX9rX7WXOZ6hQ0ENt8M9N/skdZH3o67Nu4ds6fslr5WGMy7ce4cat86u6myWeVBp8l8pOuZwkpb1cJNVOPtubco+ndWQRiN939Hs7t9FXfUAA+RTKKnYynck4/i5lvQ8E18NbdrU+dnReYdnoYTa6fFlNjml6XzBLOXXreh3T9v6vzwUEpRxVIuj1uLQH5cKjc7jS3uzn1GIR5Lswne//83deS+ny/XWiCHSFQLId5fxCw0esN8l61VEd68r9entOvkp4vXC3mFwNijh1KjjIeN5xKeMv1Hg/apb6ea7C5VyR94FxDrez1tmsoKdTr3RUHAEp7WUq0tiwrKmBKXVHXqYoM5XtQnkmO53uKuGFaWXqQZWZLhOI9bgzeXb2e5dv2IUT84tQXUUPPre+iZMr7lgGUTKwBbKwFCth6GBaUMpROpr9O/89Lkh1zaMuWN7jISWjC+h1SjcJJPvBpF96W6lLKLelrEPtPQZrQzgY6LI2pC64m2Fn91rlla42jIBR6pfnFXUfCDOb5U4/qPVBaadOhcFwPqnwWUflEJDSXqaybK9x6ep3ZfrIVZHt9mQYH3xNv1UFnAp9yK7ItSvnlBLPClfHl7/9hv3r+qvtzrtm2oqaBtt48hTb/73TbcLYdYLSjtUdC+Arz75i373gW6581NuylsG+yG+ovfvd023brbdaNctSLkopwoq8V0f1JPl9R+dkAUhNzv3uXUFfvHCJ3X7LTfafW271Oaw6W17T33XzJttpu3fZIQdNt1demmkX/egKP7fBmlw7HzBwqO251y62x267o7p7/csr7uGZ8l9k4fGUhxQIaEfUFCAqCREQARGoJgLY1Bv7D7Kp79zF9tnrXfb0Y/+1c7/xDfvtH/9qCxYtdkUheLu79rDU1h4+0j584sm+3uZte/GVN+2Qww+1ib4ZDlbFpLtCqw2xmjDqWUVgFQLY1HE5a/AF5lN32s523HayPXj3nfaPm+6wbXZ8p+26x7usv69dGzNmfTvqyH3sit/9zmbPed32e997bBvffDGsdVnNLQaXmmh2F/ByJyBLe7lLUPkXAREQgRITqCMijIebXGfshrbr2uvaW2/Mt9lnf8t+fv55NmHSJnbg9Kk2oJ4QeY3WMKjOJm28iU1717a2tH+DbTpxvCsWRMVAQfGMu9sM1qNmwkRqLr/EktTtskSgxmes+jFP5XVr5Oj1PbzzFjZ6VH+bXz/KNt9kio1bd50we9W/brDdct2ttssBh9k5Z33Jxo0ebg39PGyzP0zS4Sz/bJrCypKMe5sXWdp7S1DXi4AIiECVEaipdXsPVj1/NTSuZSOGsaEN1vOl9pXPfNXunfG0R7fC3919b10lb6prscH93J+9weNlM3Pv4WVwU8irE5q/r7Lio8ftgACxYqgTtYRfqs1vpFdf745m9b5BlLuX1frMVU3Na/aj71xst78w0C6/8Ac2bqzvzdDPvd69PrHIO7i057V3NPjEHx3cVF+XFQEp7WUlLmVWBERABDJAoMW7Dl4sf6tBOfddld93sJ3w4Q9ay2uz7Afn/NQem/tasKQ3+xq6oEy4Ap8PFekRZMKCO6LMcCXONq6u8F3rQrwMPKGyIAIlJxA3Os1HZaeO8Cn/aq5rtmXL37RLv/MTu+vZRfbLi8+22v511sD+StZY8rzqhn1DQEp733DXXUVABESgbAnUeCzHqHDXEBnG/6tr6G8nnHSiHXvUfjbjlt/bN7/9C5v9xgo/zy2FbnVn0RwRp4N3bVDO8362eQWFP1u3aC9bKsq4CPSSQLSQtyXTGn3d68v8V5+xn573c3t0wVC78LtfsAH9l/tycK9XPttV0yRVrpfky+ZySbpsRKWMioAIiEBWCPhiU1fHa0LsaDQN1PZaGzxkXfu/z5xu+07f3v55xWX2i1/+1RYu8yjtuNL4Ds1s0Z5X1V0ZafHY0q6MtAQDe16Jz/+WlWdUPkSgDwl4naBm4euydNlSu+z8C+zqG+61Aw99jy8C952QqXFeYdgngUG0juogIKW9OuSspxQBERCBFAkEbSGfnivuxGjPR4qut1HjN7NPf/4U22W7UXbZ186xP914ny0lnrsvPsWajpYebOoea3qpb9LU5MpJLkSbUXeUooCUVDkSyI9dW3PudST4qNfY2wsX2VtLmu3Jx+62C8/7iT3yyLNeXxqDaxq1qcXDQeqoDgJqJatDznpKERABEUiPQG6Ap4XijrJAN+K7NOK/jquMR8DYfMqu9qUvnm7rbdBsX/3Ex+2Gmx+0lnpXMuo435UMv/S5J2fZTTf/x157481gLZRzTHriUUrlSSDunRQs7H7kfFEIdWXUyFH2yc992j72kffbHX//nX3181+3u+5/ypb64lT2XarNb2NWng+tXHeLgJT2buHSySIgAiIgAi2tW6pHwyBKd/5zfkq/xgbajnscaGd+8VTrv+J5u/DL37T/PPicbxCDxT1/ziL3m1nwygJbsYzdHb0r0iJUFawqJ5CvRSvChFTej6x1FYjPUo0as4GddMqp9skTD7EHb/ujD4q/bnfe94S7ntWFpaq4mCVf+QTiQtbWWbEq51sJj6847ZUgRT2DCIiACJSQABvA1LnLS4tHla51DaMuhHdETcjbCHP+e61P3x9wyAd959TF9oXTv2G/XrzA3vvBk8N5qBkTt9zWxk7e2kNGNgSlPcR+l4tMCaWoW2WNQLPr1r7/qdcj91jHpQx1HFM7y7m9ao1YZz375Gc+Z0NGDLYvfv1C++YXVtgXzzrDpk3bJsSPyYVzCRnJH3yKynq03YefdZQxAVnay1h4yroIiIAI9BWBqCCwCG7pihW2yHdCbV7e4j7qvjkMGoYrHbl+g+zgoz5kp51yvM175XlffOo+uvzm/y9+c549+ugTtmABO6j6NbK095Uodd+sEEC39gEvazzY46C5xYeyTb7dkq//qMs1+bC23vqP3sA++LGT7etfPskevuN631zpG3b9jXf4ue6e5vWoJdSlkJC/UPGk5mVFvGnkQ9JMg6LSEAEREIEqIoCCXePWcXY1XbToLZv11NN29z0z7Pm5z+etfeF3VyLcbtgwaJQdc/JH7NhjDrH6Zg8l41ctdAX/thv/YVf/7Z82741FYU0r1nsdIiACzEP5LFZumT0z92WbM/d1e+G5x+25uc/YsqZma3Z3mCHD17Ej33+EDW5ssbvvuNm+euYX7LzvXejnP+eKO5Gc4qxXVN5VtyqlXMk9plIkqecQAREQgRIRYLMkXFoWLXzbHnn4IRs3cSPbb72N7eVnn7bXRgy0Mb7derP/zpbsWOJHjtvQPn/mF+3leQuDJbFxwAAbPqi/Na9othVN+en/vKpRogfQbUQggwTCuLXFo683LbVnnnnKFnn89Y+e+hlbjN96y3J76omnbPKmm5j162ePz15gX/veD2wZSrrHfhw4cJg9//yzNmTIQFtn5EgSan1C6pfssxkUd4+yJKW9R9h0kQiIgAhULwF2WUcRWGvwINtxp50st8OObhtEMai3BhQMjxKDf3ud6w01vvi0pW6ArT1qoI0YMTxAq3On20H92abdo8549AsWoRJzutUlPpyjQwSqjUCwi/ui04bG/rbxxpvbxA238rpR6wNg/8HDOtb5b3Vev3zYa9N2nW65XX2uq5blq9S+BobIVl/HgLp1AWp0aa82kBX8vFLaK1i4ejQREAERKA4B1AM/XOOuD0o6C0/zkS5QF/i1xpr81c//8kV1bnV31cMVeOK5e3BHfG/9+9o67Ovu++76fi0RZHSIQFUToD64T7q7ldXX9qdSOI1QU/zdX/4nS0KoMPX9fAG3n1nPd/6prs2a7pp6GACzf4K09korTmolK02ieh4REAERKDaBoLFz5JWJ/MZIqBtuVQ+KAkr7suDX7rFl8gq7L6xDgUfxWLFiub02/217/fX5ttBdbJpD9JleKBhcWvjKZzD/dQyH53+FsHic3vZd64l6E4FMEMjXHwbE2NDzg1yGtj4rFerScq9XhEn137yCMQCudSWeKpl/5YfMDKNj/ezxY7XWKWpM+K+tjrV9s3rS+crl3/eiPq+eqr5pJSClXUVBBERABESgBwRcRQi+7VE9oDupD2oF/9WYWwr52b/ljBqfvucTM/cvvDjX7nn0EZvz1KM24+67bf6bb2GH70EeuniJR7KJQSmJarPCLwsev0S46WISOk0Eik2AWsIOqHiMoXPXEQqVnYTd4p5fR0IdqfezGPzmaxXn593V2svdSlW+vV+79F1bBWn9EN74J1+jOk5DNatjNj3/Re4xPWenK0VABESgKgkE9TqhY+c/5m1A4V+U+WDpS/wb3F+8I3fL4IQJE+wrZ3/NPzcE6yGn59ydpngHLgf52+cznndCWOUhindzpSwCXSKAAs4Rq1befh5U+NbaxKf83+GceGI4jmfeGQAAIABJREFUY/Wjk59Xv6CL31B7WsLQ3I8OdfNi3b2LmazQ06S0V6hg9VgiIAIikD0CKM905nmFnv4+byWMSnT6OeZuuO+sVCEYJuRz0anWk352lKIIlCmBfE3KV6TWQXDbkyQ1dz+vdfBRpg+a6WznW85MZ1GZEwEREIHVCcTNeLQpz+psMv2Nd+hhYt+n/aNlMZ/fNVvmuiPnvP9tq/86u0S6/2+IToNTrvvn1IbVfLjI+BR/h5bCTFNMJXPdYZrKDZVInxKI6zi6nol83ckPbvNKe37jJx/0somT1+RQrcJ/OJzFv6q6WnUdbw/OlKW9B9B0iQiIQN8SQNk7/fTTg9LX0uLRSGTZ6VuBdOPueR05YemOSnMIU7eqHemFF16wQYMGhUWj3ZaxpxuVUhbu1bS4T70njyduXVA4WNznkTlQ6gmTV4VH5HPeeefZOuus08arClFU9CNTd+72tSNHHHFED+pSPjZNXg33z74zK4tka2rrw+6rDISpPSv96qnQ1VmfSlGIpLSXgrLuIQIikCqBSy+9dJX0uq3QpZobJdYdAijLdOr5bh3NmqtbO/mCvn7KlCker3rjhPLdgTJQ+DW6BVZ1fz319NP2wH132PJFvgDVQ0421fazgf3qbed3vcMmbDjO7x2Vku48RWWcC6PPfvaz9sorr3R/UFQZCKriKZDz1ltvbTvuuGMPnjeOqs2eevIJu/euO235ct+HIVdvy70uMfw99NCDbfjQtTyGfA+S1yXdIiClvVu4dLIIiEAWCBx33HGrWAVrXRnTUQ4EUAB4IS807TilzudVNe/uTOVHtSKmEK5lBsbLxUjfHXLKFlPsgu983f5++0ybtu9RduZnjrVhI0Z4TojWQSyZ/OK+ciCYdh6nT59u1J8ezWaknRmlVxQC3alLq2RglSqZ89mYEbbJpA3sRz+4yG674x478uRT7H0HvMf6+Q7H+aFv4ei5KI9T1Ymqp6tq8evhRaB8CWBd5yWFvZxkWKicx79X7+yT8o2fu/qkNYTIYyDnyQ4fPtwmb7G1TZk42ua99pqN32573wp+Uxs+ZK0Q35qNn6r1gJHqT+VLP7aT3a1HgUwYZ+dnxIYOGW5Ttt/eNhwzyha9ucy23H6qbb3l5jawoXV9CoNlXpWPtM+eUJb2PkOvG4uACPSUQNIdJvm5p+npulIRoDtvT3H3r/GP5Wh9S1p+uytjksi54h6HArX19TasMT+Vb8OGhl1cw0K6oLBXr9KeB96KvXUQnPxOnyuDQG/qUhuBoInXW33DABvS6O81/a1+4FrWzwd+9b46pJm6lNDWVx+GVwbLvn4KKe19LQHdXwREoNsEuqvEdfsGuqBIBAq78sTfBT91R8aFqfoUTIGzjY8F2nxo+C3+juJepEctg2S7w7gMHkdZ7IBAlHPv5e2Vpa1uUXHarzyytHcgiBS+lokhBYhKQgREQAREQAREQAREQASKSUBKezHpKm0REAEREAEREAEREAERSIGAlPYUICoJERABERABERABERABESgmASntxaSrtEVABERABERABERABEQgBQJaiJoCRCUhAiIgAiLQhwQIScfBurh8dLqCzHjM9vCzR5Nu4d8WjxlT6/+yHTs/tL+griAR/SkCVUUgVKtQtVq3ROML30G4yXcvzvmOqA2+k3C+5vh7YvVp8nNVASvBw0ppLwFk3UIEREAERKDYBKK27mpE0C1cUQ/KuL9qmvzvev87Z3W+C7sHqAshJpv8p4agtBc7b0pfBMqTQI7QqLbCXz7IbfFNyGpbzPdDtfrBI2zEoP6hjhE6Ne+2EVX48nzWcsi1lPZykJLyKAIiIAIi0AmB1TVv4lNz1LiSvswagmLR0NJkTa6I1IffUOyrdzfUToDqZxEI+yq99cZLduM119rcRfV22OHvtrqWfjZpu61snZHDzLdDYL5qpcVdzIpKQEp7UfEqcREQAREQgWITQGmIR/5T/Ca/Q+PSJYts5pNzrLmlxR5/4H5bcswe1ljvm8L4NH+L1Wl7pWILSOmXLQEGvosXLbL777rV/nz7k25Vz9m8JfV26OHvsXXXGRHqTnK4nPCSKdtnznLGpbRnWTrKmwiIgAiIQOcEVjeyt9n+nn12rv135n22zkaT7cMnnWSDRw22G2/4h71zu21svfVHByuhDhEQgQ4IuJK+9jrj7PAPHW9DNpxpAxsabYejjrLJm21uQ/o35msPVQjvNFWlDiCm97WU9vRYKiUREAEREIEMEAiT9a0KxNix42zEyKG2x577ec7cH7emnrWorQrHyvMykG1lQQSyR6C21vr1H2zb7LSnTd5mmrvL+MzUgHrrH9zNVu48LIW9NKKT0l4azrqLCIiACIhAsQh0OCdfYw0NDdavYXjbnTk1rD1lAV2ws3tEGTnIFEsySrfMCdR43ci5G1ldfX8bWN8QzOm5sJCbesPImL8LjtW+KDxBf/eUgOK095ScrhMBERABEcgEAdQGlO+8Ao4y4UeIapF/tXh0C8N/3f/mnDr3bc9/alflyMQzKRMikAUCNbkVHs6RSEss2l7un6k/dR7y0SPKeCSZaGFvrXVhRJxX5bOQ+8rLgyztlSdTPZEIiIAIVCGBVleXdqx8eU+ZOJWPAp8/iel9HSIgAu0TCMq3R1cKuxq40l7rYVNz7i7j/1idu5mtdI7JK+qkohrVPsu0vpXSnhZJpSMCIiACItA3BJKbIyW0hvgx/16XVyg4N/9/q9IhNaNvhKa7Zp5AqCv56EohErvPWMWqVmP9Vsl+Wy1SdSqqWOUeU1S8SlwEREAEREAEREAEREAEek9AlvbeM1QKGSIQN1OJWXrxxRdt5syZGcqhsiICIpB1AkuWLClpFpPtFp8XLlxoTzzxhPXv37+k+dDNRCBNAi+88IKNHTs2zSSrPi0p7VVfBCoLQLLzmzBhgj377LN29dVXV9ZD6mlEQASKSmDSpEklV5hj2zVo0CAbPHhwMDbMnj27qM+pxEWgmATmz59vO+20U7gF5ZuITTp6R6DGQbazbKd3iepqEegrAi0eFYKDYs0on5cOERABEegugW233dYaG33zmBIoGrRX8bV48eJgbHjrrbe6m2WdLwKZIzB+/HgbM2ZMyFcp6lLmAKScISntKQNVcn1LAKU9jkNpINRI9K08dHcRKFcCsR2pJVpGkY+k0h7bLLVdRYau5EtCQP1xupiL3xqlm1+lJgKdEqCTVYfXKSadIAIikDECcYCg9itjglF2RCAjBGRpz4gglI10CBR6e6nzS4erUhGBaiHQF21I4T1hrbarWkpcZT6nynRx5CqlvThclaoIiIAIiIAIiIAIiIAIpEZA7jGpoVRCIiACIiACIiACIiACIlAcAlLai8NVqYqACIiACIiACIiACIhAagSktKeGUgmJgAiIgAiIgAiIgAiIQHEISGkvDlelKgIiIAIiIAIiIAIiIAKpEZDSnhpKJSQCIiACIiACIiACIiACxSEgpb04XJWqCIiACIiACIiACIiACKRGQEp7aiiVkAiIgAiIgAiIgAiIgAgUh4CU9uJwVaoiIAIiIAIiIAIiIAIikBoBKe2poVRCIiACIiACIiACIiACIlAcAlLai8NVqYqACIiACIiACIiACIhAagSktKeGUgmJgAiIgAiIgAiIgAiIQHEISGkvDlelKgIiIAIiIAIiIAIiIAKpEZDSnhpKJSQCIiACIiACIiACIiACxSEgpb04XJWqCIiACIiACIiACIiACKRGQEp7aiiVkAiIgAiIgAiIgAiIgAgUh4CU9uJwVaoiIAIiIAIiIAIiIAIikBoBKe2poVRCIiACIiACIiACIiACIlAcAlLai8NVqYqACIiACIiACIiACIhAagSktKeGUgmJgAiIgAiIgAiIgAiIQHEISGkvDlelKgIiIAIiIAIiIAIiIAKpEZDSnhpKJSQCIiACIiACIiACIiACxSEgpb04XJWqCIiACIiACIiACIiACKRGQEp7aiiVkAiIgAiIgAiIgAiIgAgUh4CU9uJwVaoiIAIiIAIiIAIiIAIikBoBKe2poVRCIiACIiACIiACIiACIlAcAlLai8NVqYqACIiACIiACIiACIhAagSktKeGUgmJgAiIgAiIgAiIgAiIQHEISGkvDlelKgIiIAIiIAIiIAIiIAKpEZDSnhpKJSQCIiACIiACIiACIiACxSEgpb04XJWqCIiACIiACIiACIiACKRGQEp7aiiVkAiIgAiIgAiIgAiIgAgUh4CU9uJwVaoiIAIiIAIiIAIiIAIikBoBKe2poVRCIiACIiACIiACIiACIlAcAlLai8NVqYqACIiACIiACIiACIhAagSktKeGUgmJgAiIgAiIgAiIgAiIQHEISGkvDlelKgIiIAIiIAIiIAIiIAKpEZDSnhpKJSQCIiACIiACIiACIiACxSEgpb04XJWqCIiACIiACIiACIiACKRGQEp7aiiVkAiIgAiIgAiIgAiIgAgUh4CU9uJwVaoiIAIiIAIiIAIiIAIikBoBKe2poVRCIiACIiACIiACIiACIlAcAlLai8NVqYqACIiACIiACIiACIhAagSktKeGUgmJgAiIgAiIgAiIgAiIQHEISGkvDlelKgIiIAIiIAIiIAIiIAKpEZDSnhpKJSQCIiACIiACIiACIiACxSEgpb04XJWqCIiACIiACIiACIiACKRGQEp7aiiVkAiIgAiIgAiIgAiIgAgUh4CU9uJwVaoiIAIiIAIiIAIiIAIikBoBKe2poVRCIiACIiACIiACIiACIlAcAlLai8NVqYqACIiACIiACIiACIhAagSktKeGUgmJgAiIgAiIgAiIgAiIQHEISGkvDlelKgIiIAIiIAIiIAIiIAKpEZDSnhpKJSQCIiACIiACIiACIiACxSFQd5YfxUm6h6kunWm//9Ln7bxrF9iEnbexdfv3MJ1qu2zBM3b3rTfYTXfcbzNnvWxLB4+09YaVL7ylL8+ym/58if35mfVs2uRhVSXNpc/cbX++/Ed2f/+9bZt1Cx5d9aOCy8ICm3nD5faDH11il1z+Z6/Ls+x5G2lbbjzS6tN46gWz7IbfX2LXLtjSdp5Qvm1DGigykUZqdXmpvTzzWvvND261hTvsYBUlWu/Xbr36J/b7h0fatC1H9lhsC56Z6f3jrXbr3Q/bywuarH7ddW1YW6XiHrNs2OT1rP1ascCeufVqu/wn91v/vV0n6XEudGE2CRS3/iyYdatd/Zuf2MPD9rZeFOGV6HK9OJbcdX7uwN2m5MYPbcw1Nvb0NTp38i0rMzHj1PE5z114jU7+0It8VvSl82fkLjt5am50K7PILvCbenLushlLivr4L11/am761E1zo9co/6G50ePH5zadslvuyJM/l7v4qrtyc1bL1pLcnFuuyJ1/6pG53aaMzjW2Ps+mn5tR1PxnJfGXZrQ++6bx2RtzB161eu5UP1ZnUgnfLHnsstyRm47P7XbqZbmrrjg/d9yUxtZ2sDE3/uTrc/N7+pAv3ZW74tyTcwdOHd9Wp6aeP6enqaV43YzcxUfulpu66dBO+o6huaGjR+fGbzo1t9uBx+VOPffi3FV3zek5jxSfoLdJ9a4uz889dtXFuc8dNz03ZXQsK7vlLn6pt7nq++uXzPEye/6puSN32zQ3tJe6wPwZF3tdGtqmU1hjXrew/2/v26ES25Z2645xx8AMM8wgwxtBBjeCG8GJ4ER4ItwR/BGcCP/MTE+kO9KOtCPtSHakO5KOtCPpSDqSjrQj6EiM5v1qvVhv3t10/7X26LFlPebjm1U1q2rOWUVRlcxVVevkQp01cioWq6lbe9cHj+r67EDVShnoN8Y3kZLyEck/HzBpwRwIrJB/Xp/VHWS4kzejqno9RzN9PlnIgbORbVK70yR6uaHd7D/o/VfTGEhS9eyYdmDyOyzX0Yj4v+HLC3U7l3R5+ZG+vuH3aGxE2P4kvCpXGAIvbdrN79D7L2++b3379I7+yHbo/uaeTvOr8VZvFY/ppoih6h1TMf1v+mg2JVaio/MmpXm8hy/U73bo5uaG2u8+0od3/4HMTFJl/5SOm3nDc8GUsUXpYpn69zf00bdHv/PNTdrOZmmz/YH8R1Pvu/DHb0gDwxuqF/+g9vYZvRzvEnNqOZ+gUfaf9OHrG31tt6l3WqTsHF2HyIUHMQvOugylqzmKXvCTNNUvO1QH1/eO85T+9yerfdFci073ilhlhUwYDunlpU/d+3vIsUv686/39CdqjsQyVG7u0X6zTNv+7tEF27f6zxfjZWCzkaBsdoval2ESY/X9WEUNm4ksJUCz3xcofHhTp2z5HX15i1KmcQGaKmPlcoN4FbeLOeZ4b4/+81/v9RoiG/TCA2KjpQ20oZi/p5u/FmiEfLqmCKySf1jopqlYHmHl9G/6vGwEfBT5uW7d2Tzk5LZaA0oc3NZUnCKqYjdfB3fqpFZRpdqRupvbvRRQ4W91+1EdZeBhiWVU7exWPQ1e1evrQD0/3qqzVkHFLY8CvASxirpaOZbP6iRjejHw/8KFjzcM3vSrhsqYngt4UeIYfLdz6PWq8kM87a+vHnf/T6eQh1bS8rD6edqV8MdPH6NlN+CuoY956uDRUfTrwxk8fSXVuHqaskqWAf6vvl4U1szTbmvn05HKWCuFWGG6COiE4tW4I1Wxe05jOdW6dksQfwzW7u5SeBlyN2fK3d/D026NE/QDcwV55lX3wZWqxIwVe7g4fae/10d1UU0afJFS/gtQD6qVFE/72vHO0hq0Wv65q8WM+Xx5nvalHUTd3Jrdk7uZb1I9xQ51m89hM0v100tqnzYpO3uRy7Zp1ra84SW8TL0snXTgRd/NUwL71zc2NmlrO0+7hzdYyWhRCntMtOvbB9o/76+4L5u0uWlWCE+Yb20blCjDM39eIQhj7fr6YRcetxfH2xubKMv3++XdHHUPqbx3v7wCl1TS5qRDHMIfS0J6XYrp0PnlF60xm6B7+7WR3qVTeNmPy4mpGts/36F62395cmNjjd3Rbn4PbCvkB+aMy26XrmpJXcZ8+0j/+UeayiuXb1MNwWwvLYWXWe7PVu0v8zY6Nm/XhtgH3/7GPY1RcbfoP59sbNPOOfivxLPRC+EomM+FOXXVk5FPrXLrRyGwWv5xy/Rl9GppSvt8gmObyvXi73VwZhmjMrGMF7o8vacsjJv6tv/Lm9lDOm8mrYefbzo09H91eXenlLCb5SbtxM1qv9Nfp22IzB94DTvU3Nmn+5UD8gP7JFX9mgj0sO1DUy4Wu9gI3anf/Fg+WqzJC3ydoPIpDndVTSHyjf6ql6l572+wLFCRfPqLItC97065HWyLdk4PqRDlbVhCP7/ocK9vs1dg8C1NaZ8Xte06PEnFKbW9eSv53b7DHtj2cIcOd7ZCe5beKZOltuMcwQ9VjMNbRtm0zRffvade6PvLfAiDZ3eH3gWcA1hmTVKWIDARAeyvXZgveU98+b/p0++3tTkEvi0qwmnRMAXc22f6c2ePRG8Pgex/0KORdVDuG3VwdiJUHd/aoWZ5k176C3Pi/yCEpas/C4GfprS/3HeoF8pJCMPzMp0rdISwUHxQqduf7v3lgu2y0LktWL4Nbwr61kMIqi4m7HmavJGn4/Y+DnlOuBLbOMxjXJsIceX7Og6K9noT2uv74QI3vUtSoaQwqSZg3oPifw/vSi8U+CF1mkXa/Wt21+aYxhBOc1J7pn0+4gO63G7QwcyFTskfI4Qr0+oAf3Ao0GnbZrw37POhLabnWb8k7cC59ZXWji51Qzo61A6Ioa3gi9BhdPQBOLhfBq5MD9zfIPbi8dRoZg5MgiC0yuT2h/TT8T1wDWpjUD3O7nfpsIzD6FYQgKm+sr1kyCLmnWnbbH5t0Fa313cEE5i1BXO/v5Gl/cMSIcKIfn09pX3XVjt32fPRmLuUZf+ekpdR7ZjGgPlSm2HSAfNff3p5BD5ysh/4nFePZpZpmEd5TpyHDn1w2EpsWXe/vtul3XaYQr5B+fo+4ez3D7lmn0tYxjllt36Ydg6dZ8k8O+y76dCYb1i3CZoyzHkv7B3fkTBphGX7fDJnGfyjy5A55KVvn+a4uaz9/E9HqXFYpYkHUR/VQSajXOeutKYMHq/VCcL+ZRDGKlK6wNGj4GvAB7VycYQES6lcwQh9FYkhlFMFoZyu1O3Dg3p8fNT+PT2jpOdbdVQrIUQWwohF9X8xRxyeJ3WFujk8mvk8Go3hoKy3FYMnPvCptzPeuEMjX9XDSWl8ADRaUBeu81HPdwg/xe3VwiPaQk+VWuraGwMxuOPTPnk+UbnQ0IkDdV0zQsFFMR4LhYd8VRclM/QYqYjvQVSz4a5Dq5kj9WTvk+0AUnDIx1eEPGupEsJDxlIFVa3VVBXhuWLANZos+BxOe1QnBfNQiIl9ZDzOcVfIL24PDipdtZhejHCmBpaIXKGqJw/+h5umGRumwwraChpM5gqqgLCpMdBZpnaB+kw+8g/5OC1/MG80CgjFGc+oUrWmahwajg8AR1OqcnQ3oe2MLUJ5IhxfLJlThYIe9iwSS6pMqaGOLm7V3YPOV8xbzFrWxaHSThrauERSB4qPVg7uDlTOCksXR+gr27Gw1yd1fVRVmbjOtzWMYwU8EsEB9Xiuoa58+QIHEu+uEB60pMuJ3Il+mFkLf4rwbbZD2JF4QR3djRs4MHgQ6zyWvIokK+rs0cvj0wwleqceLoAV0yGwLkAOmSFLo8CudnLnOWitBheqZMifqP3AOOTCWO5EVeaI0Qu5ni5UJT7mOYh/RfYyKjb5eVVyHURFu0+AuzUujAcwLx2pcDGA786YNjC+LMdMHCMcrvJCzQXj4EwV7AdRZ4mr93qtqsaBQ+5/JHfmxXtGGnu6qgGX8RzBYxJHeMATg46eIHd4vO1jFQVvFKoHynEm9vFCl/faWMdUqnHr4LtpeZkpgEMXanNdNK4yGo3p81715FodLXIQFSFBT8AzyRjGrwI5gSAQzPcIz6My1TN/Whg8qdsLhEMsQG6BBkra/AiZccG42egRNFE6egidwxWPDctYhI2OISQwy5oksI8XWgh9yoEqjMOks4Z/fmgpLMKMdRKKq8JEuefHa08I+GCU4w75+HilDjRdZUwr8UxJVRstb6jlmeeSV/X8cKVOWMdgHk+21AM3j+eO0jgUJtN8FKGdr0LPYi+XZwcIdsFhZJkHIhYmCHN4VMFcacM8klSVs8fx+Jvznl3mYT6qTTho//oEGq9iDkLo1xTPl8Z8xDSagu50NYXQWZR/uA0HmLPN8OaarIW8jKYq6ug2GPzHAzOwxPIOopIfmc5zbyalnaMFRFIOpZ2jithjCWsCOERpH1zXVJIVtNyRbaKA0l0Zx3nXgfUy/fPZOJJCpHLt090BFFAztqsplPTXnq8PVMUW85jriEMYP6JMVsLMuLI8oGNlHwr9EceCRaSDq0eFQC/axUp8KW4QeTSnjqYgPp/GBt+6rSocsQFxJZVvuPPXK1WyMVCsxsbHvNcMSvsTjAmr3ojKnDw5K52otA/UbSOlKQxxV2QAPSIR+gyB0bApazypDJ6f1RPoxpwIolBqnnDvWfs3cE4uz1eqiskrWTlRd6ZWyhNMI2MoKhGVRPzsYHb1x/H1AQoslOdICoLWrpAiksQRjIqxMulU2mfhj+erqm48JhvKAcEzlEVNqALzQIXwVd0dZEDHEZVq2ZT7wa1qWLHDbYIZ72mTNhTIRokncdszKO0P6G+G+cKPzl4foHAwn0VV4cxOA+AXGC8aFvGqsuv4Cu04qJZUjhULc1KG0v5wC1yRCyAFg73WaqkGG0Xm8xiXMUC/cirORgxyBRwcHOCd1JhfzUnRf9j873L7NUMw7pyc8PYzt8eYwKKZlrp1hK/QaZHp7vGkYPWD8R7TI2hykh3B0aKen9SdZeiRyp3AiDJp2hQ03HqH0n6nrqowjODsKGgGHRum43GLIaJTULSNs1IcylVNXTw8G/yCeMcXVU0WazI71Zo96tciSjtacWVzFlAEkbLsuM1DYzx+iLZjyfIo6Mc9FqDDmim7Qb+lwPBcd6rG2BoGLA/FLLysKcNnJY2W45Uzh1Gkx/a3G20zRo95OtPlQSTjmnueEJFGLzdaOHM4VAaI3sPOkbhNfpcu4NxAFBY2XDiWfoXlgMl7xE4vX2qCJWLIFDiMWg7F51ndtnK2uXSenC1wSIHG7ToA/x2DI+Bipnk2RGnnwQR9adFl0IcacHCTCb+iZp5LENXGNJ5MHCGfbpEXJ8cGTaagKlXkM7HJQNNBotVnv2AsLI9noV/BiHDoaVDaL2C8NKATxeE84zwsLThTklaEOH0e5nwuGc0wbKgWZG8LzlPrHdCfWwUwu/AMAxoBNWCYoP/2ydYe+QfGocM4cAKwMP8MbhuQj2z0cZQ+vfBXGCAH2tzFci+GiFdPLuD1n7+O0h4twSvxgAnb/u9O3d3dqqszeEeTLBCcSrs1SDZhGai0czgnjSjiqubQSlCK3fMSKaiTxyd9ErNPYDYr3F9pV+rxwO7xdLMiBKn1nAkK1p8hUFmQVtkLE69YnvbnCxa6MaeH0ejwAJOpOTkEMp4vOUy+eQcvOhMVC15/5dIIG2kQXqBwnVwVAz+dpx3MdlIYK1zaJO+Gd5LSbhu/3Jl7QhiH6GL6cT+FNmh5YKLVW/+evd6pFhTUCFYAHj1vYJUoZSo4IROS5zvcYKVZ83bnlENHNd9FvQ1LEfD3tNuVCV/+eIUyYShgEShfHmirxmoDFNlb90MeRS0MK7fRpfzws7uGZfCwEnL3pBs8dtayvucy4uw5Y+MEH7NRwh4ieFYahgb7dJIzjBQfWYBVoowxYfkmA3o+Gxt+ERhXhSOnUEfP7eEz46mUSrmUHqZZk0dY8Fb9APEbR+3eM+hdx5JXg3yg1PAyvX0aLfm89OrxgAdWGPjg+SRjTB4RVbjwqYS/tNWuDdLfAAAgAElEQVQTxQSUqrq84iZtMuYRP+XPUIJ8VhAZx1tD1uhOjDtfPAI7sJDSbpfVzJcuZ9DcNPagsF9exxXziEfMMAVYZQN3vxe4w+wYgRe5cOGRRA7DwJeX8fngGgY4xiRwbng80JQaXXnwG7cg1G2OKayMu901r5izdAeCv8Pn0QpNi/mFV+Aa107lHmF7TcU9Yq6EOZpizj1BMnQAB9x4ZXTmkI8a9qywuldXGSte1cQqgndIfMAKUdrhxLmAkzCWaThXWOylLDKXQM/R5guNJ7GSl4ReZW80+nfAYZ+N+du7GLEqnrXPgbxCUnG2y0a3mv6RTKkkrwY8OeEdgEZM3cdvRf31rqXTNvTJC18F5kmdWbqEawXXqGph/nmEoYQxSMKh4pGsducj5OKZTxt/HaXdmGx1YjIFivv/PhM1Aw0vPKJAaoQYJMierEkKyo8P441jxkdVxeMiQR0s6Mw6fD3t3IzxRKgv/zkJTllebLSVt1Z4RtR4H0qUtnwLS9mrAOIdCHXdAOE+x+EddtUz70/TsNG8KCGFgPGvz87UxZ0PxYV85n00QWnHkuodllQrNu9ANEjYTVDa7YqOO7Y1K1Nn5nJxHJ5md0OnUNp57Hl7hu+4ozy7wea7HO+uU/s9niTjWNEIIpdxlkR/pX0if9i2RBG2CrjZY9x2v7jE3EZjErB5BsfdsQnrAEVGU1IsJSKFFZ6gniooeuaEysa3GzTwhVFO1JdHx8YJsSfdrxobn5N71cGsbgKtuVtl/raMbSi4fsJafw+TpqV4ROAFf/IU9zOUdvak+3H7eDx85KbBN4HKk92g8zH4PB2331hQaX8+yxmKi1eGLkJj49VjHjsfxLDNqWCuMPgqpizeoZggT4YvfU6a69gA14x4jEeQtxqqsrV9g2ZR2u3xx70GOqxZS+n2M0jscf+TmLS87GdzQGD1w91/y2D3lTM6cbzCYDGVukC6CyUsfgiv/YErb4mpn8A73sDKt7ft9kIDlHY4IQ5y2NLHq7UhBSw2l9jHyF8pHMDJaa7OeubClfGsfXXL36hTmHlN5xERdJAnn4GyzxUe/kHfDeeYvv3Y53u+BaXaMlp5W7Z9LBbmH3PODuKrAXSN8UqXB39u3gq2xyyUERWKtf8VrdDF/SFlHUFhEI0d6fleeoiLur9P70PSRIXHkkGWqU7Xqpcz/rmvdDFP0T/fI5vad+OQ2vhQivvduX/bYlzGijuUD2j0sH1Ilzj3GElv0QsO2XkOD6EDOCNKeuq3r9Tp9Iiy23M3y/ywd7pP7e9Ryp1cUjOsOMSqLe6GvTBfU97+/hfi29ZpEzhxVsPvb+PQFtF4jnb29mm/bmZDna2OjTxi1Bf6dDnCQTRP220DgXo9eE+sqkvHx5ydMUlbIz5Q5R3Y0cYWYkR/1kKKvXURE3+0SxMDIPVO6fAvzu8Xo/xONjD+8GaCjwuHnyr0tsjWqa0y7TUuadjZoOJ+OeDwMb+PA0MecHrUuQ8LQQJaycfpvz+jfW84yNlHMWlb3fwnGme1L4lDv+ng1mZx+Ktyf0z99B41s65ybD+ZfpjNnSXZfiE/AdIUeK+thJZtVxM1m/g75B0+mjx99Ig+nR/+pbPsNjKVBoqXTSoiY2f8wzuM6Bt9PDymbv3YA5m34au9k8imjSzEznq20wncYCS+4xCxHfER3RyfEkeTz2yOtEPNnmu4oZWpUe73e2IRXQ4ZU8/3C9zwRPO2jfMiNJbYaVJu7w9kecbYnV9Sv94cH+zn9m4WaScfob//fqO3j+d02a9TM2HvyBD5Rm5os3wTOD/4kaRZwsslwvYyoJE8lYssF/wuzo/hd3/SPWSk3a9SZ79LW/W9UPk1BP+hs84CbfPf5nbCR54lCLd1gnhD5DIHOd3T8eFHTX4mi0XaDmiqma+Dpeb81xbl926oV24je26Tjv9mTjSu75/oz3+mqVPjvDBl59iGVYgM8PXiLnXzl9RBNt9A9qclziWYc2xna63WbULG8cgw1w4dUS1WybOgWotwN/xlL1DRxp8bFkGsez+Q0CctBj6/g4AHffzPfG10c0znmuCOUjbvnmT4vnFtI/JPdo/+4FTs387pEPpWfken1YX5p39Oxzxnx9AqPlzdt9Wr/Qmd1uoAXkHm+eHetptT3B8t/Hs1SruW5CfhywTb22nKQ5vvJ07nbjwOQBsXom+84E8XQWygjgS9X3762IAWBycuwQTXvteERKR7Ss36uX8JGylKwfXP14YmIBe8+qcQyD3aqrapXU8sWNicn6eqdNzMg65ZWqNfrFhBwGyn07Ttqz3NUA+SkuzddGnP/QlOpd/zRNczH+h1u18L/d27oY6mebzQzX6TfHR27fNtc8DwtzZkLhp019FHCnZNBmGKWoJN5i7e9huh8I47VPS8MaJ+B0Ko3R8/8cAD5di8ByHKrOWeUBNpvqMB5Naix+Waf2HMw66NdB2JcureV1661D4/J9N+eDPSr1nzhPcL/zuccAxuqNCAzVA+zHLZqcDdn1gP4vy3u0aVmI1Chz5dpnz0Hb1nzeNrh25AmxqEa3ixkmRejMX46tJNR1edepdIiHcTgBB4whBjMNSnQnIpKOhKpVkUlBsb2S1EYzCA68UmfeSJ+9MpnfaadGgfOxj1N11TBfyEJFk9amLStq7+JR13EAe8G2ykBwMwpBuEKtRKRxSw7QDIg7+f/CSxAx7b8b43hAw8hwwxZyKPmPB+4nPHGSHMSU5QkjUREqHt1QpDq10b22U6vClSvXNMzd19+uurOW5v9PndPyk/vMLcUQ7nZZQ26p5TuVynXhHOGijsocOyornEAbZLfo2f/Wye9UaI8xIJFH7mVVbaDdlrvtNFXhm+zcbiVqi+AKOsnCb6+AnvvkHfQnhPhLreAPUuyj/DDsaYmwB5f9zsBYz1FnQ3YwbYQHQbrcWrvVajtE9q81aRyunzmcPP6cVu0PY2QILFTPD9dNj8SSecNVqEHNPfndSelT1/QWgifbJL7F5S9xDEteprhBBwiFfcK57S/XlAJrhVtwHlRzDGO4iHvmoC5q6M+li9OT6GAghS2NkBOfxJH3WOn72nfYRy4q/g3TrutqkcKpWnLX5I96ytaeXO6xmbti7Xe8MeMtAe0zEUis08VgSw4vPuk06T3hK3NYXyPcs/eEthF5HbycEGqqYHR2F8JLwlzH8Hq3D3UHKOoUiMkHRtN0vbkb/ImlvnL3iGL6dUTxCarm/O+ZNKx0qWhSl8SVrWRbviN+n7dXgOGuppSlYMGSR7dJpfh0aN29DXlnyMC3TJ04P/NSuNbSL5X5lif72HAvFFS2h3eJy1iu6fH1KbcpRLfqSPX7Cic35K3b3xSkrvFCsrbJjONd5YrTCt1k3dm+rfp2XdHVIXWUSPOdEdjJVdrMZsfvhiKE7LqkMvp4+VGt3sZ6VtKQJ2ygZyRt09avfKdIlx3X3/xbLnOTP3Tr5LnTAn19s9NYt/0TeeW25O6eYFKyCBtIZ3VjKXTNnVNedZTy8cVt2QerrA8bzmdyOxvQ1//Cdt5fN7H+FK8f8ELc4/PYSk1MR8dh87IOoTDTq/tq3i3k+K057QspCVE/N1KY1lygxrDrg+Ydm265prR13EgMezSApeofx8dSznKywLDvWSnEtXyyndWwqsy/oOHW8eIqHELgj3975G/RvEqMaqSvGYhvh300GiLmTYDdmRMREQHieNUXlJ1xi7iR9NfIFj+Zta3pSK4cQyJ7wAoX2JmPTbWD48J/zrdOjycBeKdtgkCb6sF4y4119gCN24thdha5qRaTCOrQMTtwRNaKL5+AXer11YANm9LqX329SB8tAsr36ZccrmeV/DUp9FGhO3YMETv2UIK14xWBpNeZu1sjvoI0+EvKVq/bJGco6OsYUeyWO7kg+Jz0tjG8U6mdmbv16eU8diX97icU/bzVNkns5phix9adPpvfHCCN45xIzPN+eUw0PIH8u2XqXMgEPhvI4Y5dtYQdmi+iWM9fM92smuzt3i2Ia2yq4FMQQM6Z1zKHUHuXGMf6h8H/cxb4a1J4IV3n1DPn79QLs7p7qDJ6Ce1cwlAZW5b681z7ob6/4N+ToWsLa/3e8Zv+2rnabHfgn8w3lGtOtFNwQCav/ht3+S0o7dBOn8/Et+201qX9YIYcYgKP8Db8jlOFET9ps1m20axSt03t776ftHzRH9xt65lQ4vtuLsYfmvv0s37fr82K60jcsqfES9S3jUt/9Bhy872KrQpr2i377KRerrI/FOmASfpWw+z2G8/8aKzyzfzv7uEFuxyun/Q/+6JGp27qG8Y9+ljyLjV/IWVoTarYw2mX17j6Qkp11LQR3e71Pz9CvFCkfUnrQ07Fe45x62INWxXer/IZNlGitRUN53tlenLHiqn/cGb/Uyv4U3rR9ajn2ZGAnOtkJfXvOHb0hI1VuvNvbbdPnZbFIUKzTu1cVFaSxL9bqx6efbJZ0aWh2fVTofFmmvjgR2O3Uqalr7V+yNxvI8/hrCE3uJ55xpc67Lvl0ASsNKbD0s++/lt+n//nFDW8fYs3sKo37O5s7Sx/HWK6x8LGM7qKvyPp8jm0imm3ASgHYQJcK6vunb18L6wivml9W49sr3j00qN++n2DGwzLkkrHV+z9aQZ/2a6biHLTEWHX7H2akJEybksTW9QcBqInYp/GOUiq2ivZUw4EQgfF/4aUq7b2tmuLlVhoe9d0GIO00v8CqnsTkqgf3S6eI+vZSxxN69pJ3EDAWu5FXb/kooljcTaI+bMOoj29fMBAIP6DG2o3TydMmGypQK2kq6/AMKHbZ3Kf+vD/TlLUV78Ar5edbmbcYmpAUrrLzRrgOv02S1HcvK3f6E93g/v9mi3hKNAZ9e4vDMTv6/sGczQrnDc6rPvBl2k/LwIPauYRTzvsC9LASofhYhj3192dM76t40l0BjMDJhTPzj3Wf6Hq/Dq5//IVupfBCb/RbOzGybzvNvyPLaDysC5wRMfo5sE3SkX++CbDUXC77c4FDfFD14QfbbKcTdFCWFvTKiDg738m4u7UrVac+hJC+HxrahlOe08f6OXRFtcAUfRMYB09090qrbxN73siE12ud0Ay9fG+9t4rv8vLKYM1ibNIYzHrPPCQYmgf/r0SEOgf4H+wijlWM6nXfZO7D84Adb1tkJKJTInLr0C4ZcvXk+Bf3xQfFd0lVwbsUUq6tQEIunl9TQPIZv9OXPMu0EZOFdzVwyJVpry7PTtB+63PZ4VHo41R46D+Msmyli49ABNX1/CfzD46ddb1il7kyhlI1WPLcb0P2ySjszWAdKycb+A06msyeTU5dDuCE1efsQXlgD72lIxP+dUDLx/8RzN0HptGHJv32kQyhDoaXiYNPeDqJpeMoJv9E7L1P5PE3nN4jYE9Zv9kpNQ3zh1f3kp5gw9z/oey1j2QUPdfqMBq8AGT38ikOtlxMGo3++S82bYcAhFROqLdCBKYS+wxjQvXGrAPL+eJ/+1pbVE1QMDmsSXvUQS/+nL7R7C2MEBwpHvD+Seese24+w19yyP8JLCX86vKT9U2wExhUB5r+UobmJvaxpU6PqUTvUGsf2DWMDfCSPKFNh/BmO2M97uglnSMKo/vMx7bfDJ7BR7xDRoSbIuiX0ZtjB9sd3xqHoSJIaiJiVtpe7LBpL7GCbpT7e39mDDrlwjMOlewh5pOvkG5THtkRN0n/HFplDPO/wVrMJBxXDMMAWDuuMJvZSX0LGLPMa3ezT4Sd9y146n/2hBjNHL9JNHKxNtLHCtsyOoSwOgjH6G/0ztyqFlb9lD5iBiCfTCLeNLA70HxpbdL/RX7tlOvZblV3JXBLWGduzNeXZKVtP6XJe5yd88B3bXu9DPhz1ze0rcSrvGBJgCfyTBp0aXI+gFOFboXjrYLu+S+er91TQ0pR2xzkCx48QtOd+BE/GTp6aiB9yjuV1fR70BP4KLt124voNexW8OCPSRtd210e3Cy7c+SS7U7SI7+ufu9g36K1N+wIHSE/LO3Rf3te9N1NW0Mc2kfLhFp0iRFKoQsAHVHdPaZhwaw3wG+FgUFeLybXIxYaTuW+bfRCLlhfQFvSj0zOewaOlBalwXNgPZ97zPMOLNs+XppC6P+cDtOaBie9/I9IADpN5XtI/ermpU3l/A1GBHKqCu0Ttd7pctDw63y736bTv+9p4Gw0/npmPcPC5aygx7A/0IbXRpI36WDJvQrnsIbLEXn7LaKQNNP9mz34XxrUZeOONx9FdAsbGc8/9zk/7DYVsr2woHggHCM+bSZKeJmHlrKPZJjHa3dvxGjwBtOUpJ/SGOT7guoDtBlNVE/hSmnaKSaMF3+gDJqdAYxYRU3ax0rm9N9te7sCqA/o97CBMYfmdFoaSsS0htOKxe8ltaTSGA6kI3akpmnC+NHfPEaFij3YT48Zt5M2972/093/+pB4OoE4hFgJ6x7dxGHsnZTxHmdhv7S+HbFvvvNIssPw+jHBzy7zvFhW7bJxZDgVWqz3YgHwpWlr7Oe0HeKohAMc9moFANhKsiH+lU4SyvJ8kRF70UINaw+LF6VfCsEX38tTY3/72if5dbpLHH7aiuSQcXfPp6nl2unbM9xaHdW6a5P8NhvBNEAFgNc2M0Jezhw5enH82inCyGL6Zt8/7miPCn5xwLuQQW+FesNI3z9IaHM5d6GBTb8EJCFk/8+1xZkEkg0BqW0cq6VlKsydE8UkOw0WZWSE5Oc/Z9Z16fHrS0tAPXkOyHNjbYCY80pIsJFXNyNCov8LJGEoqkxynlPfL1oXMMFbyiWj1OqSHnJBmHICfkHK30LpQD89GW1+f1cMVkg6losjAibTvU3ZBwwHJJ5LIBpmqIHUwUrcH/mtUkeI9oqKeDKHP46xzET3dcEhHJjx6VicZxtP4hwyQTxO+CHxsS6rhTaxwrapWimQkPUHmKAsyYHl3VBpn7SSfTIb25EP25EucZOpWb/HgepzNj/sTTVXVyfUj6ItbjBT0T7fqrJFTMU6ffOWTdMW3Y5wa3J4JtubNoveEhEJWRlRkYfNLWhLKH0gGURjTGo/3uHWv6un6AGmwzTHySaCDvl1rGVMjyJh5oq6R1fiRs54OBmpa1nIkV0JCsQdfLHDTluSKs1i27GlxBw/qDGnRIS91ekr50RKSlpl04JdESxuqcfIbSh74JzezJ7gpXExItGLvzDgjKmdY9E9+g4yrjaTWhzhkhDvRFZdmTwzkK2eC8LPdtydo4kRUFj+ATm+NNKyOZDitR99SOcOnyb+eLLTIQFuw+A7jEsupxtkd0nrrtb0+g39OqiqD7J/Jxq1vX30r5Zu2MWDaKwVlddUAu1NntYwlewkZdmvuVItmRQvTmB1kM9ER06R/YkB7Fu1CcMatcaGhvMx9RaIyi19BQz6JfJ4xD2GnhjFuQXRo64fx5zh5IL6NIzmZjTgHWlr6sazyymCkijsrBNOKVoc96RPS1LvE5AMyilv8jSRHB3cu7nBlzibMjf5U6+2bne9jyAb+5POKfoszhpoJ3qKgOz9Z7kqu5JifjYyjhpyKIkGQO+vxYnOJLUFVFBms/fqBJI+wf7SxiLkzfK+MZ+2JFP15wTn+QcmJnP27dvXPyoiKvgVmBDb7iCzjniSSC/PPWH7rchGyrXSgrh6edRn7OlBPdxeqVYqrCGdE9SE0e7JE3xyBoOojk9fQB5/8e55RJ8+deW4MINDMlM8aAcUCGGBy4QOkTzaJMCjT6DjLlCmsnP+PRKCgcqruQlUdBGQ8G6c419ubKlRUpZRTyVhExUtn6vFqzAzcHy7rxKZR65nOjHpZOXEws6ufjyeqYBO+lmJrKiUaUfoocSFwDW4btvTV/jg460GadndaOkf2SjC9Ny1lSAtcj+wpfblfWibWMFCCi3ZkHIXQdYpSU7E0+4wU9jlj7KJIT924gsJnCmKMZa6qqqWMqlppxJ0pmJOlljo6aqlKBtnxLONtoG6hbFmTim2cxpjGVOFkUjY9N0YXDqWcoklVqh2oo5MjddAoqVQspUqFuDUZcl2ReMahlEziD9OgNdsZTRVUpVJQmXhUxXIHUKzM9OQoO1lQ1SqeIQW5fsHwsmV486VTGImxeErlYChe+OQBf7UrSsgWGiyEILDtMgMGUK5UUaVcSsWAS/UMioP1HONaqeIZ0ng/GU2FopcxxwXZWX2yxMMwaCj4h3U8AzKXvsJAs+RNmJHhR66vD+qoYNAaBK5T8YCRdFHRDEg/ZUsvzknL02fXdTUGExf2XFuKW65xpI5aMNQzVaXblDz5jOnKvx5OGz9W1KLImuo2Mp6R3ZP740cX5qSm9dUPq8B7r0hqyBmIx+VGc6Ct2zt1d4d/t7fq6uIM/ampSi45HivQSKFxpty6nrOaBWnM1WZzzvA6P4wXIQOxSKewSXwqp9UkXuZSB9d2pZzlAXi2daROTg5UowLjBantS0bmSHMMOK382SQNl/nHohmUG8uoUqWkCqm4isZL6ogNfHNMYBiVqhWVK8CppHUV9FQb0xNnK/VIemSLLVlGHuaeW/cbj+rE5B2tHsyxlYY6ODnRxroAp1kG8zG2HI3pDWOea/kbv55xtzk/IsmKOro1FC3zxdcnddXIGPQEJ0WQoelw8PkoqFbWTb2dOKTvoskF5hIHX/srvg49xsdRthqetSnbGDePXqGRCJxrdgeRX0ZfVrgtGvTPmvp8ZdI/FOaqK/ssZ6VlhRdGX8vheB1Tw8L8Axmv1REm9zyy36zfOZ+m/NLCOhwWpDzOEidha78WUtpf745UpZBRcbsHxupcRMVSOTA7FGCfip23XtXDRUvVKjkVtwkSBirKikXjxMkIsMLPqqmxAA8DlL2GLb80y0/qwl2G5gW/1pVE9vZCQUkWaurg4lY9GjPY0xUUvBwEm6vOaDKnKjVMNgGK6uvTtWoVfBRBCMTq0a1vWvFA2FhB9sU8ZEL19UY+IQ2vSZBxMJ97mg5sgfXg+boFZSoJr7NP3RGkec5AaWz5p013lj5QdycNVQVGTmxZ8a6oGlYnLDoCs7aQQtrOSFFMXgcQzHy9IqX62PsUhVLqxNdj8GDCaly7vSwD9cCeQxhxToZFewoNjPPsWGmNe75VRxV3H3kyxkR59wwFJoX6sHoCuju6elD6gsws/PGsrmsu3mAaO7nTlbCBXZjCUHNNMq/w9jeAbbjBYo61jWYeL1QNxpGbf9kTWqhiMvbxhr4+wJjFCtAYX8a2pa6e9AneocxhJajKZTB+xsqRc/xtcgK8dlDDapnLUI7Ec5os0eQ7+tmCwZJ08VEsA1o7uJpB8cTqDtOJ1g+0P1OCkVSB8hODQlVQjQus0GgDb7swEZxpSig8NC45EkuV0EYYkgYtuz/1/w36ODAVEH1sonACXADHwd0JxsUtK3Weapw9aMoWyzTmO2dbdIPX7qjgup9vIfOxKuiexCLMf9dPXuXNv8G4+6BO2JhMesvylA1jPBZPqhSMNlZYL65Nvggs3HowF40FFas5JsJWJLH6UoiqOJwfbhV1XOQsvKx/NQCfVDNOece0FoNxc/38rM54dY0V2uqBuribfgzYqBzLSdAN5HWuhlVgjWC53PHYsHw6w9z2+nAGYwGGtYNuIa9KVdXSeJzlOCvdLrnJin8N87gdGCjO162Cr8yogDYHkONx7id4qnFybbQraHDs93VlKQ6vKBs3llzS5qMcjNnxfMVGELfbM16GfEi55D8bNzzPn2jWIhT/g5pt9dKQi+yAgFNjLPJmnUsgww+qLtnIcwR0DFMX4tUQNtoc46DzbAt86EBjaTzL/W3AweWiRXY2se6jeS4f1QUcBiW3jGAjG++c8Tss/xowAh2yX+9fFQ4Ht+h7RV9bJWPORF0FyFd2sMZjbOh533dTyML8A33zouHVTdnQzNR8HAda/xgDN8+yIVrTViitOeEVuozJKxEYhQ/u1nt//y++BSH5i104hIo9k4fY1X68u6mlH3/BXl3OjDfk/Xfa/zm0Hg6BIT7152GWTpCAp77l7eYIJ/Pvef/6FpKg4LSVteN72Kc+dsZ5toB7i5jpDh/q42gjwxHSfnMUClSwgh3D07cJ+6nuERZwlMhjP597v/v0xfz4N7HnGWE0u33sMkukcWhry4EjR+HpYJPY5nbePzY5xoETc40QGSWN7DfBIRH5fAP2m2HP/wZHUUEih3E4qgV6Dfq6R/g8PkqwuYX2I+kR08EI4aX6m0gQs+BQjLBXU6MztDmLE22O4sy+o968Ua/VkyFSb+82qYe9/M0E9sUzbzE/4Z/OWvx/8Bawv+98oq+JFj3g4GF6bihQB/bX9pgF01lKOwYCIeGQc6H7gqQoWRwQXhCTuZs41YdoKzDh8GQjoL0Fmkz/4AYPOdU2aH6D+cE9rlP1YfqXhgh12cWgjTi9Onhi4SzH01c9x5vLojGWBX3ahLwIIsURJ9ThQ4BBL8zRevMTLvsemPOx98Q2eCWhzxwvvR62wEMuzVP2iOPcc/bjTWSrzrrmO+y1ReSOF5ScRpa1ucqfpk2YgziUaJ9lLA6GbpvyGDKyN8ThUKOf0xRlvtPH4cUhshGPxwEJe3jfsKYraEJX6++q+cTZ5hXNJVMC82vxrE+nQA/dHg6danTC4weanEF5Wph/TDrFeY9NzlKMsxNLyQ0GHuwg+eIGDi6H51HRMfkFlfY+XeIQar2PFPP3zcnJBfkAZrZIveMXOs/7EILcEgQEAR0B5Dio45DYfbmDgzXpycZk/xRKP755adPODMJT4BYEBAFBQBAQBASB2RH437N/8jO/4Li7RfrXhyFVrpBAaJqmbMBbDotodW6CaRoh7wgC645Aj47LZXr3JUtnzSkUdu4Oh0tLIJmFKOzrPrjSPkFAEBAEBIHfAIGlhXz8IViMENZLi+08fSa1EbJDno52kWnxh7RQKhEEfk0EkI1Uj9uMrS/YcTTN1TtHTlRzhEUAAAY9SURBVAGkec9P87K8IwgIAoKAICAICAILIfBrKe28YK959RAbGR73+vk4xbobBd6r3j4sU3a3R83zOnanyyUICAKBCFi5Cz7TPvIFnN7z3mz/a9iD8YwkSzs3eG9//t3s/qXLXUFAEBAEBAFBQBDwQ+CX29PePy9S9o+/9YyY3KNIjFI4kJDA6cCNDc7eiENHfCAMOWa2q8dIj767kkNBfmDKPUHg10UACctYEX//FSaxfkViSRymTNAW8xZOoQ75cDYOvX3B4bDS4SWdIiPkyg6n/bpASssFAUFAEBAEBIGVIPDLKe2MwrCLLGr7x0jt/Jm+jZNwagBF4xnKF5F5tLlLxW3ZbLsSqpFCf1MERtRDttb943Nqf/pmKe96ZyMUTyHC0G4dGSHtURl+UyikW4KAICAICAKCwJoh8Esq7WMMOfQcvH8IwbOBEE5bCAO0tZQYPGs2StIcQeBHI8DhrTi8HPbIbGxuaoe5hbV+9CBIfYKAICAICAKCwBiBX1xpl6EUBAQBQUAQEAQEAUFAEBAEfn8EfrGDqL//gEgPBQFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQKitK/ZgEhzBAFBQBAQBAQBQUAQEAQEATcCorS7EZHfgoAgIAgIAoKAICAICAKCwJohIEr7mg2INEcQEAQEAUFAEBAEBAFBQBBwIyBKuxsR+S0ICAKCgCAgCAgCgoAgIAisGQL/HzpUFUD0sm97AAAAAElFTkSuQmCC" | |
| } | |
| }, | |
| "cell_type": "markdown", | |
| "id": "dramatic-directory", | |
| "metadata": {}, | |
| "source": [ | |
| "" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "id": "collaborative-ballet", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"322pt\" height=\"305pt\"\n", | |
| " viewBox=\"0.00 0.00 322.00 305.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 301)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-301 318,-301 318,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_annotator</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-206.5 8,-281.5 170,-281.5 170,-206.5 8,-206.5\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"136\" y=\"-214.3\" font-family=\"Times,serif\" font-size=\"14.00\">annotator</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"49,-8 49,-194 199,-194 199,-8 49,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"178.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"121,-39 121,-186 191,-186 191,-39 121,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"161\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- epsilon -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>epsilon</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"52\" cy=\"-255.5\" rx=\"36.29\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"52\" y=\"-251.8\" font-family=\"Times,serif\" font-size=\"14.00\">epsilon</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"156\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"156\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- epsilon->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>epsilon->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M45.27,-237.74C37.06,-214.34 26.42,-171.46 45,-142 61.39,-116.01 94.43,-102.49 120.22,-95.64\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"121.16,-99.01 130.05,-93.24 119.5,-92.21 121.16,-99.01\"/>\n", | |
| "</g>\n", | |
| "<!-- theta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>theta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"134\" cy=\"-255.5\" rx=\"27.9\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"134\" y=\"-251.8\" font-family=\"Times,serif\" font-size=\"14.00\">theta</text>\n", | |
| "</g>\n", | |
| "<!-- s -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>s</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"156\" cy=\"-160\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"156\" y=\"-156.3\" font-family=\"Times,serif\" font-size=\"14.00\">s</text>\n", | |
| "</g>\n", | |
| "<!-- theta->s -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>theta->s</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M138.04,-237.35C141.29,-223.51 145.93,-203.79 149.68,-187.86\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"153.11,-188.58 151.99,-178.04 146.29,-186.97 153.11,-188.58\"/>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"84\" cy=\"-160\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"84\" y=\"-156.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M98.57,-144.83C108.75,-134.94 122.52,-121.55 134.03,-110.36\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"136.47,-112.87 141.2,-103.38 131.59,-107.85 136.47,-112.87\"/>\n", | |
| "</g>\n", | |
| "<!-- s->y -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>s->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M156,-141.7C156,-133.98 156,-124.71 156,-116.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"159.5,-116.1 156,-106.1 152.5,-116.1 159.5,-116.1\"/>\n", | |
| "</g>\n", | |
| "<!-- distribution_description_node -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>distribution_description_node</title>\n", | |
| "<text text-anchor=\"start\" x=\"188\" y=\"-281.8\" font-family=\"Times,serif\" font-size=\"14.00\">epsilon ~ Dirichlet</text>\n", | |
| "<text text-anchor=\"start\" x=\"188\" y=\"-266.8\" font-family=\"Times,serif\" font-size=\"14.00\">theta ~ Beta</text>\n", | |
| "<text text-anchor=\"start\" x=\"188\" y=\"-251.8\" font-family=\"Times,serif\" font-size=\"14.00\">c ~ CategoricalLogits</text>\n", | |
| "<text text-anchor=\"start\" x=\"188\" y=\"-236.8\" font-family=\"Times,serif\" font-size=\"14.00\">s ~ BernoulliProbs</text>\n", | |
| "<text text-anchor=\"start\" x=\"188\" y=\"-221.8\" font-family=\"Times,serif\" font-size=\"14.00\">y ~ CategoricalProbs</text>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.dot.Digraph at 0x7ffa343c19a0>" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "def mace(positions, annotations):\n", | |
| " \"\"\"\n", | |
| " This model corresponds to the plate diagram in Figure 3 of reference [1].\n", | |
| " \"\"\"\n", | |
| " num_annotators = int(np.max(positions)) + 1\n", | |
| " num_classes = int(np.max(annotations)) + 1\n", | |
| " num_items, num_positions = annotations.shape\n", | |
| "\n", | |
| " with numpyro.plate(\"annotator\", num_annotators):\n", | |
| " epsilon = numpyro.sample(\"epsilon\", dist.Dirichlet(jnp.full(num_classes, 10)))\n", | |
| " theta = numpyro.sample(\"theta\", dist.Beta(0.5, 0.5))\n", | |
| "\n", | |
| " with numpyro.plate(\"item\", num_items, dim=-2):\n", | |
| " # NB: using constant logits for discrete uniform prior\n", | |
| " # (NumPyro does not have DiscreteUniform distribution yet)\n", | |
| " c = numpyro.sample(\"c\", dist.Categorical(logits=jnp.zeros(num_classes)))\n", | |
| "\n", | |
| " with numpyro.plate(\"position\", num_positions):\n", | |
| " s = numpyro.sample(\"s\", dist.Bernoulli(1 - theta[positions]))\n", | |
| " probs = jnp.where(s[..., None] == 0, nn.one_hot(c, num_classes), epsilon[positions])\n", | |
| " numpyro.sample(\"y\", dist.Categorical(probs), obs=annotations)\n", | |
| "\n", | |
| "\n", | |
| "graph = numpyro.render_model(mace, (annotators, annotations), render_distributions=True)\n", | |
| "graph" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "id": "specialized-revolution", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"428pt\" height=\"305pt\"\n", | |
| " viewBox=\"0.00 0.00 428.00 305.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 301)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-301 424,-301 424,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_annotator</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-206.5 8,-281.5 170,-281.5 170,-206.5 8,-206.5\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"136\" y=\"-214.3\" font-family=\"Times,serif\" font-size=\"14.00\">annotator</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"178,-8 178,-281.5 276,-281.5 276,-8 178,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"255.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"186,-39 186,-186 256,-186 256,-39 186,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"226\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- epsilon -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>epsilon</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"52\" cy=\"-255.5\" rx=\"36.29\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"52\" y=\"-251.8\" font-family=\"Times,serif\" font-size=\"14.00\">epsilon</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"221\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"221\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- epsilon->y -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>epsilon->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M66.36,-238.71C75.09,-229.24 86.53,-217.03 97,-206.5 131.35,-171.97 172.66,-133.39 197.86,-110.16\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"200.46,-112.53 205.45,-103.18 195.72,-107.38 200.46,-112.53\"/>\n", | |
| "</g>\n", | |
| "<!-- theta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>theta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"134\" cy=\"-255.5\" rx=\"27.9\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"134\" y=\"-251.8\" font-family=\"Times,serif\" font-size=\"14.00\">theta</text>\n", | |
| "</g>\n", | |
| "<!-- s -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>s</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"221\" cy=\"-160\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"221\" y=\"-156.3\" font-family=\"Times,serif\" font-size=\"14.00\">s</text>\n", | |
| "</g>\n", | |
| "<!-- theta->s -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>theta->s</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M146.21,-239.01C153.93,-229.43 164.26,-216.99 174,-206.5 181.65,-198.26 190.41,-189.59 198.28,-182.05\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"200.92,-184.37 205.78,-174.95 196.11,-179.28 200.92,-184.37\"/>\n", | |
| "</g>\n", | |
| "<!-- s->y -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>s->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M221,-141.7C221,-133.98 221,-124.71 221,-116.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"224.5,-116.1 221,-106.1 217.5,-116.1 224.5,-116.1\"/>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"241\" cy=\"-255.5\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"241\" y=\"-251.8\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M247.84,-237.75C255.94,-215.45 267.15,-175 257,-142 253.71,-131.31 247.46,-120.85 241.07,-112.08\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"243.65,-109.69 234.75,-103.93 238.12,-113.98 243.65,-109.69\"/>\n", | |
| "</g>\n", | |
| "<!-- distribution_description_node -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>distribution_description_node</title>\n", | |
| "<text text-anchor=\"start\" x=\"294\" y=\"-281.8\" font-family=\"Times,serif\" font-size=\"14.00\">epsilon ~ Dirichlet</text>\n", | |
| "<text text-anchor=\"start\" x=\"294\" y=\"-266.8\" font-family=\"Times,serif\" font-size=\"14.00\">theta ~ Beta</text>\n", | |
| "<text text-anchor=\"start\" x=\"294\" y=\"-251.8\" font-family=\"Times,serif\" font-size=\"14.00\">c ~ CategoricalLogits</text>\n", | |
| "<text text-anchor=\"start\" x=\"294\" y=\"-236.8\" font-family=\"Times,serif\" font-size=\"14.00\">s ~ BernoulliProbs</text>\n", | |
| "<text text-anchor=\"start\" x=\"294\" y=\"-221.8\" font-family=\"Times,serif\" font-size=\"14.00\">y ~ CategoricalProbs</text>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.files.Source at 0x7ffa74384490>" | |
| ] | |
| }, | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "graph.unflatten(stagger=2)" | |
| ] | |
| }, | |
| { | |
| "attachments": { | |
| "42a89f65-19d2-4335-bae3-b30cf4b3e8d2.png": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAApEAAAGbCAYAAACcWMswAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7snQWAXEXSx2sluzEikEAgCYRAgKDBgwSC20GAg3C43+F6B+HD3S24azj0cPeE4O4eIHhC3Fbnq1/P1vIyRFZG3sxUw2Rmn/Tr/ne97n9XV1WXJDSJJ0fAEXAEHAFHwBFwBBwBR6AZCJQ241q/1BFwBBwBR8ARcAQcAUfAEQgIOIl0QXAEHAFHwBFwBBwBR8ARaDYCTiKbDZnf4Ag4Ao6AI+AIOAKOgCPgJNJlwBFwBBwBR8ARcAQcAUeg2Qg4iWw2ZH6DI+AIOAKOgCPgCDgCjoCTSJcBR8ARcAQcAUfAEXAEHIFmI+AkstmQ+Q2OgCPgCDgCjoAj4Ag4Ak4iXQYcAUfAEXAEHAFHwBFwBJqNgJPIZkPmNzgCjoAj4Ag4Ao6AI+AIOIl0GXAEHAFHwBFwBBwBR8ARaDYCTiKbDZnf4Ag4Ao6AI+AIOAKOgCPgJNJlwBFwBBwBR8ARcAQcAUeg2Qg4iWw2ZH6DI+AIOAKOgCPgCDgCjoCTSJcBR8ARcAQcAUfAEXAEHIFmI+AkstmQ+Q2OgCPgCDgCjoAj4Ag4Ak4iXQYcAUfAEXAEHAFHwBFwBJqNgJPIZkPmNzgCjoAj4Ag4Ao6AI+AIOIl0GXAEHAFHwBFwBBwBR8ARaDYCTiKbDZnf4Ag4Ao6AI+AIOAKOgCPgJNJlwBFwBBwBR8ARcAQcAUeg2Qg4iWw2ZH6DI+AIOAKOgCPgCDgCjkC5Q5C/CDz88MNy//33SyKRkNLSUqmvr5eSkpL8rZCX3BFwBPIKAfoeEv0OH/qg6667Tjp06JBX9fDCOgKOQMsQcBLZMtxicdcHH3wgzz33nPzjH/8IRJKPk8hYNI0XwhEoGgQgjkxiSVdeeWX4eHIEHIHiQMBJZB63Mx13jx495IILLgiduGkD8rhKXnRHwBHIMwRMGwmZHD58eJ6V3ovrCDgCrUHASWRr0MvxvdGlpLKysqCJ9OQIOAKOQLYRME1ktp/rz3MEHIHcIuCONbnFv1VPtyVsOnD73aoM/WZHwBFwBJqJQLTv8YlsM8Hzyx2BPEfANZF53oAUP6oFcJvIAmhQr4IjkEcIuClNHjWWF9URSDMCrolMM6CenSPgCDgCjoAj4Ag4AsWAgJPIYmhlr6Mj4Ag4Ao6AI+AIOAJpRsBJZJoB9ewcAUfAEXAEHAFHwBEoBgScRBZDK3sdHQFHwBFwBBwBR8ARSDMCTiLTDKhn5wg4Ao6AI+AIOAKOQDEg4CSyGFrZ6+gIOAKOgCPgCDgCjkCaEXASmWZAPTtHwBFwBBwBR8ARcASKAQEnkcXQyl5HR8ARcAQcAUfAEXAE0oyAk8g0A+rZOQKOgCPgCDgCjoAjUAwIOIkshlb2OjoCjoAj4Ag4Ao6AI5BmBJxEphlQz84RcAQcAUfAEXAEHIFiQMBJZDG0stfREXAEHAFHwBFwBByBNCPgJDLNgHp2joAj4Ag4Ao6AI+AIFAMCTiKLoZW9jo6AI+AIOAKOgCPgCKQZASeRaQbUs3MEHAFHwBFwBBwBR6AYEHASWQyt7HV0BBwBR8ARcAQcAUcgzQg4iUwzoJ6dI+AIOAKOgCPgCDgCxYBAeTFU0uvoCOQTAh999JHU1dXlU5G9rDFHYMCAATEv4ZyLl0gkGk988MEHc77Ij+YVAiUlJUK7rrLKKsJvT/mNgJPI/G4/L32BIUDnOmjQIJkyZUroaD05Ai1BgMHZBmvkKF9liXLbhGrVVVdtCRR+T4wQMLmsr68X+5SW+oJojJqo2UVxEtlsyPwGRyBzCDBo0tHefPPNstdee4l3sJnDulBzZnA2AjlmzBhZeuml87qqbdq0CSS4rKxMqqur/Z3I49ZkQjBq1CjZZJNNQi3ydXKTx02Q9qI7iUw7pJ6hI9ByBGymbjl4J9tyLIvxTtM6GonM90kI9YB4UA/IMcnfifyVbNqxpqbG2zB/m/AvJXc98l8g8QOOQO4QsME/dyXwJ+czAshPbW1tPlfhL2U3zSon3Fb4L/Dk1QEmAGiWSfzO90lOXoGfocK6JjJDwHq2jkBLEDBNEvemaiVbkp/fU1wIID+VlZWNAzQylO8J0gGRjBKQfK9TsZbf5JG2LATZLNZ2jNbbSaRLgSMQIwS8Y41RY+RhUUx+CkWOCq0+eShSGS1yochpRkGKeea+nB3zBvLiOQKOgCPgCDgCjoAjEEcEnETGsVW8TI6AI+AIOAKOgCPgCMQcASeRMW8gL54j4Ag4Ao6AI+AIOAJxRMBtIuPYKl4mR6AAEIjGK8T2iY+FaaF6UXsoM7S3e+ZkKxUN7WL5RY+RJ57JxBPkvJ2L5jWnfAsAaq9CjhFIlU1zBDI5pXipziRcEw1dxO/oNal58rddE73X8ki932U9x0JRJI93ElkkDe3VdASyjYANYgx4EDsjiJQj+hviR+gW4sdNmDBBRo4cKa+//rp8++23MmnSJPn5559l7NixUl5eLj179pRFF11UunfvLn369JEttthCVlttNenYsWM4X1FRMdtOLeRr3r2pg2y28fDnFT4C0YlLKmnkfSBYelVVVZD1V155RV577TX55JNP5I8//pDffvtNfv/9d5k5c6Ystthissgii8hCCy0kffv2lfXWWy/sZNW5c+cg43jg894g8yTyNmJZ+Ch7DeOEgJPIOLWGl8URKDAEGEgZ6FIHVKr5/fffy4gRI+T5558Pv8eNGxcGxhVWWEFWWmklWX/99aVTp06y8MILy4ILLhiIJoPt+PHjZeLEifLDDz/If/7zn0A227dvH4hlv3795G9/+5sMHTpUunTpEtC0gX1OZSgwuL06OUQgVb4sBiIToUcffVTuuece+eabb8JEiWNLLbWUsKc5e0gjuxBGPtyHnHMNH+T7sssukwMPPDBMiLp27Rp2IWLXl91331169+49m+Y9hxD4o4sQASeRRdjoXmVHIBsIRAdVNCWQwDfffFMeeeQRefjhh+WXX36RgQMHyjrrrCNHHHGErLjiitKrVy9p27ZtKJ4tTRsJ5Bi/0WraLiYcmzVrlnz99dfy2WefhfwZrI888sgwQG+77bYyZMgQ6d+/fzaq7M8ocgRMzn/88ccg58jixx9/LMsvv7ysvfbaYStTfqNdbNeuXUCLe+xdMa09xzkWlX20lz/99FPQXL7xxhvy8ssvy0UXXRQ0ljvvvLNst912QeZd417kQpjl6juJzDLg/jhHoNAQsAEwOuBRRwYzyB7Lc88++6ycfPLJYWmaAfSMM86QHXbYIUDBIGrXRpe9+W3no988h+tt8GUwRnOJBhMNJIMt2s+rrrpKrrvuOjnnnHNk9dVXl7PPPjssfaO1tHvDAyKJ454cgSgCUbk2+bBj0b+Z9DCRQc6eeOKJoCHce++9gxYSrbjJXPTe6O+onSPX2vWm0WQJe/HFF5cll1wyTI54t7j/gQceCGTyiiuuCNpN5J2JWYcOHeYo5y7jLt/pRMC9s9OJpuflCBQZAgx8JL4Z0KIDLseuv/76sMQMuTv00EPl008/DVoUCKQ5wNggaaTRCKINpPZt0Eb/jg6Ilg9Lfhw/7LDD5N1335UvvvhCNt1007DMveaaa8qLL74YtJyUz77JG40mBNTqVGRN6dWdCwLRrRaRF1JU1vn9wQcfyLrrrhs06z169JD3339f3nvvPTn++OMDgYySReTUZDwq69H3weTaZNqKxuTIznE9f++yyy7y6quvhjLsuuuustNOO4XJEprQaNmtDPauupzPpcH9cLMQcBLZLLj8YkfAEQCB6KBopM4GPJwHbrjhhqAZRBt43nnnBRuvgw8+OCy92SBKHqmDZLrRZaDFGeekk04KBJYysPTHYP/000/P5smNpodB2QfXdLdC/uaHjJp2nFrwm2NGzj788EPZfPPNZcsttwzaQcjjJZdcErTttv1kNmqP3GIKcvTRR8tXX30lxx57bJi0MWl68MEHZ5PpVAKcjfL5MwoXASeRhdu2XjNHIKMIGJG0AZW/0YagZWS5+qCDDgqDKnZgeE/b9fZN4bJB2Ezzglf3IYccErxgN9poI9lnn31CGb/77ruAE2Q4G8Q2o43imacdgahMmOwyKULG11prrRAtAK0jExW07kY0TWtJgTI9WeIZlA1Zxwlt//33D3JN9AJkHg0ldsNcY3KejXcv7Y3hGcYOASeRsWsSL5AjkF8IMEAStgSbR5b00DbiWICzjGlxGLxskIsusWV6IDMtKd/mjEN5zz///OCgwHL3sssuK/fdd19YyrYBNr9awEubKQRs6Zj8zfRhzJgxwYHl/vvvDzaQt912WyCSUaLIfRaVwOQ+U2UkXyOHlMFILN/YZyLnyDbOZTfeeGPjRCkbxDaTdfa844GAk8h4tIOXwhGILQKmybPB0LQxkDLOQRg322yzsITNEvHNN988my2WLV8zsPIbm0VLFucuk5W359tz7e9u3boFb+6HHnooEN499tgjEAXKmVrnKPHNZFk979wiYJMdSmFybiWClKF9xImL0FLEeOyjsUqjyYiZkU/usYlMJmuWSghN1nk2YYPuvfdeee655+S0006T3XbbrXEFwMqJfEfrnsmyet6FhYCTyMJqT6+NI5B2BBigUgdUSBYE8KmnngrxHPFExYGF35wzbYgNoNFvCpiNgdWeEwXEBk07R9222mqrEKtyypQpwSGBpUkS9YBUUnfq46nwETA5t0kE33yIS4rN49133x0cVo466qjg/WxyEpXnXMp66nvF39SJd3WDDTaQF154IdSFMENoUambEUjqkvqeF36Lew1bi4CTyNYi6Pc7AkWCAAOOkTAGG8KYEMLk8MMPD0HD2U2DAYlrotfGHR7KixMQGsnlllsuOEq88847s9lI+uAa91ZMT/lMvqMaRYLbEzIH8oWN78Ybb9woG2YikZ6npzcXq4t9MxFaZpllQoxWohXgdIMmnsQ5e3fTWwrPrdARcBJZ6C3s9XME0oQAg5E5C7BkTcgc7MHwBLXEYGTamzQ9NivZQBLxpiU49DHHHBMcb1566aXZlt6zUhB/SM4RMPlF3tlhBq0dS9iEhooGwodoxllDjUxHJz/8higi51deeWVYkjc55zh1iToD5bwhvAB5gYAHG8+LZvJCOgK5Q8C0igw0LIthrD98+PBAstjT1xKDFANv9JO7Ujf9yZTXBlvqesIJJwTnIMK2EMgZsmx1a3qufmU+IhDV3hEqh7bHs5lg3uxZTUJG+M13VObzob5mowlZxD6S8Fd///vfQxgglruzYaOcDzh5GZuOgJPIpmPlVzoCRYGAEarogGqD5S233BK0GHfddVewfyTZ9bYEGGftzNwa0Mpug+h+++0XwhKxNzF2cBBK6skH8sD1Rpbnlqcfjz8CJtcmw3zTtoTwIVQV7X7xxReHYzaZMvk2mYlrLe39pXzRd5m/zfGG/bjZ8QnHOCaFRFcwOY/eE80rrvX1cuUGASeRucHdn+oIxBaBqGYuWsi33347OBTceeedwS6MQTR1wIltpZpZMDBAQ/PRRx8Fr21sJC2Miy3Zu9ammaDG7HIjjtFi0e44WBEOZ/DgwXL55Zc3hoYyEhmzarSqONQJ+WZPbogkwdNxkmPJm3OWnES2CuaCvtlJZEE3r1fOEUgPAm+99ZZss802YX9elvhSU6ENMhAMSOKZZ54ZSARBm3GqiO5CYlqsVCz87/xAIFVm+Zu2PuCAA2SxxRYL+66bZtK0z/lRs6aX0uwgjzvuOBk7dqwMGTIkyDnL3ci/y3jTsSzWK92xplhb3uvtCMwDARtgGUQmTJgQdr3YcccdQ4w5EsfNJoy/GXwLMVHPU045RZZaaqmwvDl16tS88z4vxHZJR51ME2nfyDBB6Nnbnb2oiTZgJGpu2vl0lCOXeVA/iCR1v/TSS2XJJZeUrbfeOvztBDKXLZM/z3YSmT9t5SV1BLKCAIOHfRhMIJBo4K6//vqgnWBAZSnb7AIpVD7aQc4LTLOBo15Wd5bzr7322kCeTUszrzz8XPwRiBIlPLFxoEHbTgxIZMA0dSbv8a9R80po5Bh5pq44zCHnBCcnGcFuXq5+dTEh4MvZxdTaXldHYD4I2KDBNmkMKsSCJK4cgYk5ZnaApqnkO3VZcD6PyJvTRoz57tWrl7z++uuy8sorB4eitddeu+CIc940TJoKijzjYMJEaebMmcFcg7A3BBW3xIQhusNSIcq6OQgh52jckfM11lgjbAfK3uDg4/a/aRK6AszGNZEF2KheJUegNQjYwImHKkb3aGYWX3zxxgDLrck7n+/t27ev4M06bNiwRqeifK5PsZcdcmhxEdEw8zdad9NCF6IjTVPavF+/frLddtvJWWedFSaORjKbcq9fU3wIOIksvjb3GjsC80TABlHIY48ePUKcPFu6LublLTDAPvKHH36Qm266aZ4Y+sn4I2D2gB988EFoV/Z+t60M0b4Vqh3k/FoGOb/mmmvC9p/s4lSI2tf5YeDnm46Ak8imY+VXOgIFj4ANGIS2ueCCC2T06NHSvn37UO/q6upGLU3BAzGXCuJsce6558oRRxwRHI485S8CNiG68MILg3kCWxvaBKqYPZPBBTkn6P6JJ54oVVVV+dvIXvKMI+AkMuMQ+wMcgfgiwJKdfczDmkHkvPPOC16a3bt3D4WHXNqWb8W6vGUONXhpYyN5xx13NHqxFrOGNr7S/WfJaB8+FlHAbH5xInn++eeD3a/JuU2kilXOrf6EOsJOEjkHO/oHcCNZX5EPbe9lzCwCTiIzi6/n7gjEGgHTvFBI+/3dd9/Jc889J2eccUYYLGxQ4ds+sa5UBgpHvRlQGUzx1mY5mxiSv/zyS2NQZgiKp3giEJVh2tAcRdjCk0mBLWNHZbxYZZ0WNIywi8TZaNKkSeHdt3egWAl2PKU7t6VyEplb/P3pjkBOEYD4MDAYAeL70EMPDZ6qK664YiibDcA5LWiOH26aLIrB74EDBwZ7UcIeMaAWM+HIcdM06fG0mSVrS3ZpwVzj8MMP9/aLoBh93zfddNOwLeKTTz45W9xI7xOaJHZFcZGTyKJoZq+kIzBvBEzDgJ0fIT4gkhDKqKZy3jkU9tmohoqaQkROOumksIe4pShRKWw08q92tJ95YltbYtdKOJ/ll18+VMjO51/t0ltik2Pe/QUWWCAEIccOOEocXeueXszzOTcnkfncel52R6CVCDAwmJ0YWeGNufDCC8uAAQMac3atQ5I0MrgaFoSDYQcfbMRY+o+ea2WT+O0ZQID2sSVsfo8fP14efPBB2XPPPRuf5rEQk1CYptbIJHvIjxs3Tl577bUg5yTvEzIgpHmapZPIPG04L7YjkA4EooPCrFmz5PTTTw9xEBlQ3e7pT4RNe8URW76uqKgI8fTQ1LhmJh3SmPk8jOy/8847YZl2tdVWayRGmX96fjwB+bYPKxRMmPBev/XWWwN5tD4jP2rjpcw0Ak4iM42w5+8IxBgBBgQGDDRqhPVhb+hNNtkkHPPBYt4Nx4A6ZMgQeffddwUC7njNG69cnjXNmWner7766hCmieVaiJKneSOw//77By92S66JnDdexXTWSWQxtbbX1RFIQcDIItqGV199VZZYYglZdNFFg2YtOvA6cH9FAIw22GCD4MH+4Ycf+hLfXyGK5ZEpU6YEQkSAceQfW0gnRfNuqq222ipMML/++mufLM0bqqI76ySy6JrcK+wIzI4AAyhE6IUXXhDsn2y5Fs2ax4Obu7SAE8v+LGmzbZ6neCOAth1ZHzVqlCyyyCJhORsZN6eyeJc+t6VDzjfeeGO58cYbfZUit00Ru6c7iYxdk3iBHIHsIYA2zYIIo53517/+1ThIGJnMVGkw0dcQ0PpfvX7CH/qpk3od2DnCv+Hgn9FZMlWUFuVr2trtt99e7r33Xt/Zo0UoZucmyCLadmT95ZdfDnvBk2wClWlZ51nIdFKuk4HPg3jXVymRreOk1KmcJyWe6zjAsdrwTlD+8HokX5rsgBZ5Cs/fcMMNgzOS72CTdfhj/UAnkbFuHi+cI5BZBBhE0cRAINHOsJTNMQZVUqbtxRgT6/S/xjDd9bOkWv+qYQTVf+NMIg2jZZZZJgzyBGn3FE8EkGlbtsaGdbPNNgsF5Xi2vLJrVK6R6rrAFI0x/qF/VEn9TA0xpIeq9a8aPVddp1sN6h91oifqZunR5ESr8T0Jpc9eAifixhIC7I8/KLMnRyCJgJNIlwRHoMgRgAARG3KppZbKKhIl+jQ+ZfpvY0dUWilt9C8+Sm+T5eGiGCdCIqHlYvcaT/FEwJatKd23334btGrZTjXKCkurNdSQKhdLdAWgZsavstt+/5G+PftK144l0kGX15dfZmU58pATZEqd7o7UboaUJDpqOIAO+q1vib6npX9Ot7JdfOnXr5/MmDEj2EZ6cgQMgXKHwhFwBIoXATQMDLCff/659OzZM/zmWLZSSYJnaTekX/ys099l9brVIirKkobuqQT9S/zmuxZfs3PnzsHLd+zYsdmCzZ/TAgSQa7zof/vttxDaJ9up46wymYmol8+UGRO/lQPWXV8e/7yzrLPVlrL9fj2kftyv8spzL8rt118uvyc6yFVXHi+LaJmrdS5Vrq9AkkDyLvDJ/tDNZIn+4eeff5Zll1022/D582KKQPx65pgC5cVyBAoRAdsbmy3gbOeOjNcz2HXZYKjfYXmPr3pRJU3S7stOh1MsAsYv2XI2Jdtoo43k/fffj18hvUQBAZscvf3228Eekhif2U6JyjJpW6Z7r9dMl0evvlIe+Xyy7HviqfL8Y7fKJWeeIJdde6M8Peop6d61TB68brg8+saXYWLVRnTf6lIWunW4TiQnXFkvO1pQNXEhGsGbb76Z1Ylmtuvqz2seAk4im4eXX50FBOjwLXhzNIgzxy1Fr0ktUvS61HP+9+wIGBHCzgkSmWktZEK1jAl1FqhXEhnaKRBKJZDq8EBK1EAjNUZl+CQdEIKTQUwTePEhtiZxNkMdGuQ3VV45l2mnhOgzUwOgm6d96vF0QDuv97E1+UejA2Cf29JoAcg59xJkHBvWTNv6zrHO9TME68ZZk6fI5efeLvVtest+B24ttappr5GO2ueVSTe1Sz7vrCNkMZksLz3xlZ4jpzqdXKk9pb0v4aXJTVpvvfXkrbfeSr67uSmCPzVmCDiJjFmDFHNxGIjo6Pm2ZVYjOTbwRQcrzvG3HYveW8w4NqfuhvO0adOkR48eGR4cdPBj2ZrBUG3C+NTjmYrTgBKx+nrV0pRUS42uZdeW6jJ78mIpVXuwOCZk0uSzT58+8uuvvzbKI7iaPLJ8+sQTT4SJUTacOHiuLbXz2wgUZbLj6cIz+s6SZ7onIZTd3n2+W0r+rE9B446cZ4JIzw/TkpJKvaRGxn79qUyZIdJ9xQ2kb69F1HSD0ENq86jto2+ArLf+xrJgZUJGacitGfV6rq6dvifl+pZwPvnf/J6V7vPWT2A3jQNZuts53eX1/LKHgJPI7GHtT5oPAtbR22U2QEUHa87RgdmAGM0yE4PkfIqc96cDodOErRi2felMDUrGSJbJZ5UqQUT9WKLfM6ZNlbfee1teHjlKNXmfSM3kX+WTb7+XGSx3K5kM/8VUEWkDKxXs0qVLcDog2QCL7djZZ58tvXr1kttuuy2cs4lP+CMDyd4Nsrb3yd4fCKWRynQ+2oidyVI687Y8KTeppeTPMKBNsF/NBQlK6Np0uWrhv/r8I6WDJbLW4M2lbWmtVNCf6asR3pfStrLAQkvIgu0qZezH78i0OtXM17XXE9hABrUkVzV8Z+/LZAnsTM6z93R/UpwRcBIZ59YpsrLNiUTS2c9p4LVrCdtBig6eLR1oigzuRtzAsrq6OgyuGccuLMkl7asmT5woa621prz3/lvSo1dvuf/+h2TNJVeSA48+R2YFrQy6SLTS8dRERuWF8EjshEIiqPVRRx0lK6ywgpx88skhtAwkCBk1MpQpWYsSR8hdlCzxd0s1eU0pb5RUN+X6plxjml4rd0vJH/djSjB+/Hjp2rVrTkiklM5QB5ka+WnMVJlRmpBlll9EOpSozNSXBxKp4qEL1yrr7brK9Mq2Ul49Tcb8+jvhC4R5VxisgyNa7obt7t27y0R9bz05AoZA9l28HHtHYC4IRJeuv/jii7CVHJqD33//XVhuxW6PAXmhhRYKhAftDx6DxC9bZZVVpH379oFwtnSgmUuxCvowpIMBFk0kuGYNO33uqSefoqFWNpB9999P6kvayaknnSz7bdRTdrz8HanScZLgyxroRAdZG0Hj2RRg2K1bN5k8eXLYj/mee+4JsmqEjm+cEXbYYYesVoC2nD59enjmjjvumDFTBVtyNtnZfffdQ8ijdCSbQIJha+tB+XB+2nTTTRvbJh1lbHIeaBTrJ0pN6UwZr4Ehbz5zfxl5brmoIYnUVoyXNmrOUauONwntw8b/MVna1S6m/LKtqFO3VOhidinvQYDBNJJNfnKrL7S2XXDBBZ1EthrNwsrASWRhtWcsamPaLOt4bDC1wtmAwHnIy5dffikff/xx2EnijTfekK+++ioQQkLOQBQ7duwYvCk5xjfaBGybuBftD/H5xo0bJ4sttpisuuqqMnjw4PCNJmhOS7RGnKwclMvKmDUSFYuW+nPpleLQbumsv4Z3DpqThNo01gXlCf9oEJ9aJRg1r8h3bz8ik7pvJpPq20gXPVVSViVLr72JrLb8r+qRqlo7/cwo0ZiReq5GB8/2dZODHWVdmW5Xp/Ekyxu8tmdpKKC2YXBN2lYmoeVu7d5sKVzH3fqSWh2D1a5Oh+R0pKjMmCyhhUSry99R+cIWElkG3+jxdJRjXnmYBo9nZ+q5qSSSdy5d3s/RPoR6tqYelNPKlSks5tUWwcN6Vhtdvu6glo9l0nfpVWWNxbqoFLeTmSrk5Qk1h1Anm/qaOnn9m5/ka3XEkfpOGopc9ZP6AqCXr1E5rlT7DrSW2Uwmzyb9Lq+TAAAgAElEQVTz9p3NMvizYoqACoOnPEXg9NNPT6gGrrH0SgJiURPKoYNpgm8rky7jhbLpAJuYOXNmYsyYMYljjjkmocQwoQNDQsNuJPbee+/EQw89lJg0aVJCNY7hw32Wh+UXzZPzfHSpKvHaa68l/v3vfyeUPCZ0xpxQbUhCd6ZIKDFNqJYolMmuj+aVWtZcg6iDcOKWW25prHcmywMO4KxEPaHEPPxOe0Istfl1Jw79h3ZVuaj5ObH39oMTpVKWGDL0oMS7P/ycmE6bJ6bpOW33qmp14q5SgZmpOExPTOTeOj2mn9qaas2LTEOOCb0qea5ey94gcyqBeoWeR+z46DmtqX6SchhubGUCO+QJzL7//vuEaiNDm6nNWGKvvfZK0I5KgqC3id12263xfTD5beXj53q7tSnfGlg7PD8q7+l8vuVr7xXP0uXOuZatJScsb7Bsadktjy222CJx6qmnhnbLegpyOC5x7VnHJhYpqUycfONzKuPTgnzOTMxK1NXXJWbp78lTfk8MXGRBbbdVEq/+8Fuitv7XRP20XxOfjvk6MaZG5X7mjOwXvaEfHj16dEJXf1r1/BdffLFRJluVkd8cCwRyZ1wRU1LtxUoPAlGNlnb8IVPtuOWiiy6S1VdfXVZaaSXRgVcef/zxEBqF5eubbrpJtt12W+nUqVPjsrS+JeFe+7bf9jd58iw0DGuttZacf/758t5778lnn30WlhDXWWcd2XLLLYNW8qCDDgoazNT8woEiTdZO4IfBvJkUpAMOWo6WV397bUC2MCSphlGdCRIlC8oJp54jC7Wrl+fvv0HWW76/bL71UPnip3q1FyvVAMuqZyzVdTz11j5xl7/LW29/LFVqG8mnVs8lxQJtpVmINWyR2PAUPFmT2yY2HAgRKClNelU44AdmLF+jJSO1bdtWdBIQzDGOO+642ewQMceIvhtWunR+827wDN6N6HvDs/nkU7K+I/W7JXUAE7b11ElqS25v9T1EetRFaVmkSycN6FMq733+o0xWRxpWqSu0j1T9tbbbLKmb+bvUYKPcq6cs3XMBnWZ1lRljP5QNV9xKHn3saxX47HuagR0f5BzTjahctRoYzyCvEXASmdfNF8/C0+GzjMY3nQ3E7fjjjw9Bfp999tngdPDJJ5/I3XffHbYfo2Nnuc8GZBswqN28SA3nLGSKkUmex7MxAB8wYICo1iGEpLj66quDYT0Edo899ggEk2u5jzzybXBNZ8uDI8QHg/m0Epygb2igbSUNAcPVoSChv+vqymWZFQbIF2M+lRNOO04W1hXut55/UlbqvYQcc/L5MosQP3qvKmfkpbc+kc8//RRpUNLIunfDhoh6AcNp2MmD9b2G5yXtxjjaMNgG3qi/yTA4JqQnRQdS7CHb6bZ1JrvgiFf2ueeeG8w1dtlllyBvacV3DtXgGdEy8Dfti5zzzbvB73SmKFlNd/0sP1uWt+/mlp98KCcEiG37on1Mc/Nq6fU41dRKe1l8uWVVGnWr0aeekOpa3cWGuKlqklGmslmWmCVTJ/0ik2ZWSd9VV5LOiUqpra+Sdr1XkouuOlV23LSvmnKkxxyjufUAM7BDztPdzs0ti18fHwScRManLfKyJAxSqR86GDoc7BUvvPDCYJ84atQoufzyy+X555+X/fbbT3r37h3Imw1yDA52H7/tOMdSP0YseUbqIMM5GzQBlPMdOnQIGk7CrFAO7NYwrt9zzz3DPrrkY2Q0tS552SjNKDT1JYERcQ7TObgmIz0mPawTDTFM1KJRn4ZdYk3geh0W7i3/GXac2sG+L/v+Yxu1hZwpN1w8XO5/6DltPHWSqmgno7/8RvbZY6jqEJN5QQYJRc43eZRqAPN61VAma8K/ENCGqxs5YwPDTF7UDITmfml0ggNRJP6gya7hyvcSSywhW2+9dSOJs3Nzz7l1Z5Blyobs22TO5Nvej9Y94c+77RmGRbrrhjxa3ny3Rj7BggkrNtSGR7pwaEo+pfoO1CfaSF8N6l9WXifjP31dxoz9VcUVOdY2471Qovnq44/JxOp6GbTZBkoqVZNfjqqym+yx2z+kRwdse9PjtNSUMts11tci50suuWTonz05AiDgJNLlIC0IWKdinQ0aR7SBl112WSBuaq8oQ4YMmY0QBgFsGOyMKEYHjHkVjOvtWiOSlgf32SBhgxzl4zfBcu+7774wo8ZBh2Xuo48+OgxOfOw68rB851WOfD9nmDG4vvvuu42YpqVeOjhC5SB19UoIA+9TTSRepiWJKfLAXXcoZWwnbWqU+HdZSK695SZ56p5z1Uu1TF4b+Y5M5z78UnXjYBUTdUiwgathkbxWAzGHhqrVpUC9LjjxJIklsSWhqn+uXlOWyJ9pqSA8NjmJwikMzTfJiJp9Q16i8phJuYrmbe+HVdW0eKnH0wEFz81EvlHNo2lTW1Jek/N11103mM7g/JT1VFYnbVQIO3XrLvv9c7ASxh9k+PD7pVJllSBWuku2TP5prAw7brhM0LiQ2/9tXZ1HzdLjHVWo0Cizp7wue+cg4hVti6y/+uqrsuaaa2YdOn9gfBFwEhnftsmLktGxG3Hkm1A822+/vaiTjFxzzTXB03q55ZYLdWEgbY0mobWA8Gw6QysD9phPPvmkvPLKK4EAQHwZbIwQp3vZr7Xlz8T9RoII78Oyv9U9Pc9q0P5pZiH+nQ6gdWobqb7U+mOivPzs4/LVT1OkvqKD1JQtoNe0l8Ea8qdtZYUstOSSepcStNoqufvSE+Sl0W/r0jZUUQdT7PrYyUNtI0tqq2X00w/LudfepoHLZ8gpJxwnB/9rL5k6BQ/pSiWSZgNIV6cFaNRMtr6GUVlWZ4Fg5+spvggg2yuvvHIwr8lJP6Rxq2bVqYd1WSfZf9g5stKCneS/V14k62+0nRxw7EGyz657yMBB28m4kvZyznVPysAlOukroGGBpk2SEw/dU725V5fXv01q8LONsvWLkMjVVlutKCbY2cY4X5/nJDJfWy4m5UZTADGDcL2g23RBGLEvpLPZf//9g/0MnXeuCRlloJzWGfJN2TfaaKNQ1q222kqIb4fmlER5M6kxiknzNWrS0Mji6JTOOqt1qpogYqZAnDuwV7MBDaycZHKl8stvP8sOW24t1416W2rGjZfJP38mZ/7fVbLieqvLv/bZWson/iCXnH6wHH/iVfLVRNXIqKMNsSNLgxmE2tyqdvO+O2+RY/95hDzw3Nty6hnnSVXNVNV6vyX/PGCYkk5oaHLQTehCeVLfkz7kTfOGowaabWwgPcUTAZssYftLbFn2f852qmpTLu1VZitq28pCC/eXp955Rifcq8q3n30oIy69Xu559Anp0LufnHrxFXLwfhtK+1qd8CYmS5uyznLOsMOlatwUmabxVNvVZd+xBtLNyg2mQMh5rvvzbLedP2/uCDiJnDs2fqYJCNA5QxovuOAC2W677eTwww+X//3vf9KnT59ASOh8uMaWpdJJUppQvMZLoo4zlIW/bXkMz+QzzzxTHn30UTnrrLNkjTXWCIGjc1XW5tQrHddSTzzb0USmMyUXnUVqcWbRAbFUJulStjoK6J+J9gvL4K22kWN23UIePulIWWnttWSjIfvKknps5OP3yBIdOkpJl55y3OkXytILlcvUsg662NdG6nQQxvMaAlmizgi77jZUBq21nLTp2FnOOO9MOf+Cs+XCi0+QBx98TLWReGzbgKtdXdgWxLzE01NTsCMYPvKESYCn+CIAASL17dtXXnrppawXlGgDGqBHZVcjqCYqZJFea8sDd18uP437XKpmJmT8tFny4isvyhGH7Cud60s1APkfGlO1s1SpTWRi4Z5SqVtv65RcQ0nmYCle0fr666/DJg/E7c2E6ULWG8QfmBYEPNh4WmAsnkyMeJlmD5KIBg9t3siRIwMBM/LFNXMyYM8FOUvdQYNyUT5LEEnCARGWZdddd5WBAweGgYYA5lZXq3suyp8pCWMwgABtvvnmYXegH374IXjRU1cj23Nqw6aUZ7YZarDj0uU57XGS9l8d5fCjT2ZIlKNOOEnPJQ296jV8iW7coZhrqByaRwfT9p0WUAKqHqy6Ml2i9pEa7FH/TgYSr1YF4xKLdFP1ZHfdXljZqXLGhWqqpat6uY5XO7Lu9bp0HpawdeDVqJSijg3psgRH9pEFTDbAkYmTp/giYIHGWY597rnn5MQTT2w0b8kGKVJJVBMM/UcnVRXlKofId0kPlWQ9qA7X7ZFT5jkJXQUpn6E69M7qWFYrlajfa2bpBEyFW5fDpTz73tnIORE1IJE4kHlyBAwB10S6LDQZAbMpNPLFLjEQLmaoTz/9dCCQ0UTHM7dPkx+apguj5bAsU8vGcTpIbCMhkSx1f6qhZaivEYY0FSc22RhZZBDdZJNNZMSIEY11pd6tIcyMieHT8CPsIKN/sA9wCNLDiMpJPWDXomcMY2sYTIFJy6Bb6GkgZqlUj9YyiBvabx1iNXi4/t1eqtRhIblcrhobJZgl2L6qhSV+4CW67M31OPhATJPuNemBH8zACM373//+d9UUqarIU6wRoL0GDx4ctO60n73XtmKSycIHq1z6RJTiCHw4UJF8F/R3mR6DY5aGkxBFvOxxHlOtu06AiIpKeKy0zYKaWVnsfunvo85OzczCLy9ABJxEFmCjZqpKdIBGLFju/de//hWCekO6+vfvHzrkfI+3SB3RWBAOiLAsG2+8sXzzzTeNkLaGVGWqXVqTrxEhtI26u4/ccccdoQ1topCd+sIYtRYN3tcJJYwlqkXUzTuU9dWLbtKRJJWqiizXsumR5B7DZaq1rFavbB1Y20AuyUJNFUK4H42NUo9RJAc1BfJoTLU1gEXuBSeWSDGDOOSQQ9KUq2eTCQSQY7NzXn/99WXChAkhuH7sJohh9oSgsjGiatxVK4ltMVp0JkL16qGdi4ScY/NOeDbrG3JRDn9m/BBwEhm/NoltiYxQQBZ1W7ew/MluM7rFYOPyZz7PUq1+BCWHXLG7DuF/8Og0e8FCMyhnQKCuDBJoX/Fc/e233xptnoxkZlYog8pRB8/kAFmqKhkIYDlqGf09ccpUKanC0Ul3e5n+owxacXm5cPitOrAmpKqdnh87Vpf6knnU6/J3SZtKmVk3SypReSbVP0G7GQbnBlKZfGDr/oV449mPqQQywnvhKZ4IIOf0TXyztzeTwzPOOCNoBmPVZwUSmXwP1I0MoW1UPCLOalqck8RKE7aQhEgDs+xMLnNSVX9oMxHIkUg2s5R+eSwQoAOGbGADie3cAw88EMhjtIOORUFbWAjqQefIsiSEAJIAiRw6dGiIccnyfawGnBbWM3ob9bW66j7sYctJ7MVM25BprQML2cll7ogDjMaRLFMnhD8mTJTddtpbvvtlilw/bJiMePxl+eXXL2WaOrI8edsIeWd6nVx24r5y57M/yVv3XiKnn3iq3DPiXjn832ejq5QDd91LplclnRCwokzqKtMAWkMWYKN7vYdg+nj9+sCaPmwzlRNtRLuhOb7iiivChgj0YXGZHAY5VU16nU6YylWKpUYdynQyRczTBPa89brMrVEOsp1uvPHGYAZgY0Cm+4Vs18+f13IE3LGm5dgVxZ3WWZiWBe0c2hd2nsEbNdUgPZ8H0mjZ7TdaJpa2d9ppp0AkR48e3UgWwMbqn+/1pi6Q5//7v/8LW/WxNaQ5H2W0bg1KyGAoFpK6zPBTjy+0UDe5638P6O8amVXSUcp1H+0yDRH0yY9j5YoLTpWuOrj+5+xb5KRT1G2mQu0glSCUJqplt7121ww66j7bDe464RmoNVunhjTHKrACEzTWDz/8sNx6661OIEPbxTcZeeSbD841s2bNkvfeey/YPseHFCWjWeA/U6rmGyU1dRpXUqdZ5TqxbV8pC+v27AlMN3T1IFPJ7ETJ38j166+/rhEPHgzY0SfaO5CpMni++YNA5iQxfzDwks4FgejyHJ0HSxrnnHOOPPPMM2FZoxgS9cb27ZZbbgl7S2MHah0o5wplCdMGVxxE0LiytzjJBt+MtrURSZ7Hah6f5NP1B843HaVt/SyZoc4Gs2ZNl+dHvibLb7Kj9KvQgOJ63Uz1Z6moVgeEkI963as9GWGEKvXvoLMJx815p2VaHJswWNvzjUMNAyr7v3uKPwK8q7QbqwnsoU1IsptvvrmRQMZBG8lu8DjQEE+1tqpGtt5yoHzx+ViZ8OtkGbjxutJ7QZVj3c0mk4l3nmSyfu+994bYmpi7GNm2azJZDs87PxBwEpkf7ZSTUkY7VYzQMao+9dRTQ0BxIx05KViWHwpRaN++vdCZ3nTTTY0x5hiUUjWxWS5aqx9nJNjMEti5BlJ09dVXh7wh0NmpozrzBBswTZA+dajhb35ydFZppXTUQOLVqrEcsN4g2WTgenpiAaWLM5NXlKp/NhpC/Y99iNXlRhlklDCaFrJlJDJZsCSpBjNw4V3Yf//9G/GxAdau9e/4IBB9V/nNBw3yE088Eey6SbEwVVHxDN7YlKdNB1l2lf6yvpK3q+66Xy4dfpno1tlECMpooi8wkkgQ/cMOO0xOO+20gJlNqjNaAM88rxBwEplXzZXdwhp5YNnnH//4RyAXxx57bFERSBCnU2WAYVeXu+++O2CBx3YhzMZpYwgR9bOJwaWXXhq0zoQ3gkAb0cys9EHuIp6nQR0JFSQ4MwMrYXt0eK2oVELfQY/qf3jeqI1uqY6q9cRHCYNrgxYlSiIbNJENKslWVcM0kuwFj8aWiZWRkkKQh1aBE+Obo23Db+QeBxs8tdmelTaMwySA0Ff1RCMoUec+1ThecsW1Mm3KL3L8KSfLAp27qjkH70UQ6IwlsLF3nsgb9H/YQ5pjkvUVGSuAZ5xXCDiJzKvmym5hjUS+8847IZj4hRdeGApgtmHZLU1unmbLX0Yedtlll7DPNjvcFAppMBsnEKZOffr0Cd6rJ5xwQqMmkvpHP5lpjQYVS6OmhR/JP4j7qG7X0kYHOGKKl7APO9+lbYim16idsTvC4nXy/1DUZC7Jf1tTdvDBFvKf//xnCFbdvXv3MLjGQovVmooVwb20XZQoQpRow/vuuy+YqpCi503eswkNZSwjRJXGQMWUI8HSNcHHG2S5TIUekpnJRBn4VFdXBxvpSy65JETgMGxSccxkWTzv+CPgJDL+bZSzEtJZEE+NINRXXnml9O7dOwyWtoMJ5ws9GZHm237/97//DRpJYmRah5uvOFgbUjery8yZM+X4448Ptq/EA2XwYOLAoEJKa7sjQqEXIuiyGjc2skDVjOo2hyptYdfrNhqUWdS5oK0uZ1eo53aJDrDBAaesXTJIM4NsQxRnyleBI40STe7lZzLaDze0zJ7MsAEHnGnGalihfffdd7al/rTiQrk9pQ2BOck5mbNBwhZbbBGCaJOQddPC2fJt2grRlIzC+6DvYqkuXKuolqqZBpEK2O2mAvFVgS4ry+ywzcoEeF1//fXhvScaB39bH2jvQlOq49cUPgKZlcbCx6+ga0gnevnll0uvXr3kb3/7W2zCYOQadOwGTz755BD6Z/r06bkuTtqfj/0n2lZMF9Zcc81QRwYQ2zYuO8vbaa9WqzI0rdSkSZMCLtiMIgcMqJnX0Laq6H7zPBBAlodp+KiXX35Z8EA22aZNkfmoZnIe2RTUKer9xx9/hJUnVlxSt4wtqMp6ZVqNgJPIVkNYuBmgbbn22mtDLDzi4PmSXbKtGWgOPfRQgVBEYyoWgiQwaJom4vDDD5ffNSYjWteohqYQ6tncOhhZPOWUU6Rfv36y9957hyyiJMM1kc1FNbfX03a02YorrijnnXdecJKyXWxS2za3Jc3u08Hl4IMPDgH00dC6XGcX/3x7mpPIfGuxLJb3sssuC/HU6GRtCTuLj4/to5ips3sDO16wcw+kq5ASkwXqRFgPPFiPPPLIEFy+mIkkdcfR6M4775Szzjqrsc2jA2wxaq3yWe4t8gBLtgceeGBo06uuuqpRA1ms5OmTTz4JXutMmHzpOp8lPDtldxKZHZxj/xQjQqaJosDY/rF0RyrWDnVODQdGLPFsv/32YYn3sccem21JM5/JhA0a1A+yTIB1PnvuuWejXRSYMPBaYhejQky0Ix/q+uOPPwZPXgbWddddd7ZJlb8b+dn6BNcnMWnq0KFDIE7nn3++PP74443vM23LyoPJQj6/23NqpWh9qCdRJwYNGhQ81jFlIRWj+cqcsPJjc0bASeSccSm6oxAGIwZ0qgyWyyyzTNjNAYJpnWjRATOXCtOx4rGIlg6nIxtsuLyQBho00Nj/TZs2TY444oi/aF2pK/ISJZVzgSzvDpvM441NKB8G1YMOOmiOg6prbPKueUOBaTfamf6PDRSISMCGAkyMUt/p6N/5Wds5l5p3l/rSz7OMzSSJHbosgY0nR2BuCLh0zA2ZIjtOB2mG5HjnsqzDgBntQLwz+VMobPAhBAZbp7EExDGSfeezCFn9qAPx9LCNHTFihNxxxx2Ngy7nTEtRaPayZhcKwSCo+Pfffx/2isfpiLoaycjnNi72stskwcgh36y8bLDBBkHrTNgfjkX7xkLDDAyoH5NFJok//fRTsIG3lQjTwhZavb0+6UPASWT6sMzrnKLaM+zfcBqhM6WDoUPhuxC1TS1ptOjAAtlg5o4Xux1vSZ5xuccG1mh5aHe2PGO5j4kF31F5od6FlhhUqTf2jzfeeGMId8SSp2ltIJJRDAqt/sVQH5NbI4n2TWibL7/8crZA8vZeFNpE2urMBgPYP7M/NrLPx+S70OpcDLKdzTo6icwm2jF+Fp2JdRpondhDuUePHo3L2MxIC03b1NLmAAs+aKMg2OxgM3LkyEbbqXwmVVZ201CAkWmo11prreBYQnzE559/PhAqI1OFRqho37vuukvOPffcsEf24osvHiYJ1Bc8fGBt6dsTn/uQX+v3TH75xmmOifTXX38dlnc5VsgaObZy/c9//iOjRo0KkQei9UXObbUhPi3nJYkTAk4i49QaOS4LHSpbHNKpEB+M2SidiA2eOS5ebB5vRMI0tDvssENYBiK2GgNTvhMq2tvIJN9GmKj3zjvvLMccc4zstttuIbae1dUGWf6OOmnFptHmUxCbGFB+PjfccIMccMABYQkbjTzHjDyCQxSj+WTtp2OKgE2Ko23JMWShS5cuoe2ZHBLqikD7NpkykhWVmThW0WTZymbltuOUHy37cccdF5wDV1999SDntpRtfb9PmOLYuvEpk5PI+LRFLErywQcfhJiQBBj31DQEsJODaNAhR5eBmnZ3/K9iYCHZ4IPzwUknnRR2+mDwgTibxoJrGJTzSXtBWY1IUH48dLGNw0t38803b9RWxb+lvIStRQBZgEhCGnEsfPTRR4MmGscqYkja5MomTfZ3a5+bifutbPb+2jP4m1WU4cOHy9FHHy233367bLnlluF0nOuTCYw8z9Yj4CSy9RgWRA42+LOk0a1bt0AkPTUdge222y6QSHPIaPqd+XOlyQglPuSQQ+TZZ58NwYgvuuiiQBohkrZEmE/aCwZOG1gJIn7BBRfISy+9JJtuummjCQeTA0+Fj4BpGwndhSwvvfTSwWlu9OjRss022wRbcVJUe5lK0uKKkk3uqBce6EwG2Sxhq622aixyvtQlrhgXY7mcRBZjq8+hztbBvPPOO7LhhhvO4Qo/NDcE6HjZ3eG3336TcePG5f1ydmo9jWTZAMt5tDWDBw+We++9V6677rqwvE0YII4zSOVTov0+//zzMJi+/fbbwYmGpT3TNuVTXbysrUPANOjIhC13s70l/SK2kjiYYQ9s2uvWPS3zdxvZpT68l0QZ2GyzzeTFF1+UN954I4Stsr4/86XxJxQiAk4iC7FVW1AnOhJIAuFqtt12W3ccaAaG4NanT5+wRPTLL7804878uDSqgTRNhQ08LGmjtRs/fnxY/sNO0gZfqx33RD8ct3wyjYA9N/qcKDlkYGXJknio7NDz4YcfBgJJctvHTLdO/PI3uebbEjLE6szDDz8cnOjoH4nGMGXKlHCJTbKi10drlg1ZT33HUv+mb4L8Ynaz6KKLhqDiK6ywQqNG1eobrXf8WsdLFEcEnETGsVVyUCY6HZZi2Zlj7bXXzkEJ8vuR3bt3DyRywoQJBWdXxMBiHyNWtJZpJiHQ2EbiiLLxxhuHb1J0QDKHI5MzG6zBLNOJZ/Ecno3jmJUbZyh252DnIezDbrvttsZwVlZ2rvWBNdMtFJ/8aWubBFm7R2WBTRi++OKLsNc2kw1WH+w8/adpKJE1ZM7kLtNEkjLwfN4zMymxd4sVAogvEz62amUnMpNr07zyt8t6fOQwn0riJDKfWiuDZaWT++qrr8KSDcs3PnA2HWyzB1xvvfXCslexJGTGlq/ZQu60004L9mNMRAiJg7bGtH7RwdVIXHTAziRmlNPiPuJ5ymBLSJOVVlpJ+vfvL99++23wOucc1+bbcnwmsfO8kwhESSBOh+yjvs8++8gSSywhu+yyi/z++++BhPEx+bH3I9MEkhLyDCOBvJP2bDyv+/btG2Kc0r9TZiOOlNNtfV3CW4uAk8jWIlhA97/11lvBkNw6pQKqWkarYqSIXS4wBygWAs5AFR28wGG55ZYLy8Ps5EO80VVXXVVuueWWRjIJNvahUbgn08kG8V9//VWuuOKKMPCz7E7MS0L5oEnlGtPcFEv7ZRr3QsnfJonRiRBbnp544olh0jh16lRZbbXVws5GBCk3EmchwKx/yDQeyC3PwrSErVgxL3nhhRfCPtiEK2JbR0v23ma6TJ5/4SOQ+R688DEsiBrSAY0ZMybYy9hMtSAqloVK2ODCzjU4aBQDflbn1AHStIvsbINWktAoZ599dtBu44DDEjL3RrcVzGQTse819l8sPw4YMCB40EMcmTBZ+B6ebwMwRLIY2i+TmBda3tHJEvIOSeQbTd7yyy8fJk1sFWgOWUcddVToB9g+1iYw9p0pbISd0fwAACAASURBVJDbsWPHBvKIdh3iSJQBnGfYOMKeb5M2I5GZLlem6uv5xgcBJ5HxaYucl2Ty5MlhOZsBNeOdi4YerNNPvczUz1Spovb1tVLLsVpdnqkfrwcmK9mYqheqAXtVtVTruQl6tIprElWSqJsmyQiGf0i1OgTzOyFTNL+qkHc4oHmppVJGsTUiVUxhkaIaRH5HtXe2RMZxAjV/9NFHQevH8jZe7KussspsWycaaTOZSyVxNojbMiHno0vOqeftHAOpPQ+nCOw233zzzcaQJlEHICO/aI+ixzMqOJ55XiAwpyVf5IXjNvlAE/nKK6+EyQke0PwNwbzwwgtl+vTpc9W4I7vIs33PDZDoddFrmYzdf//9wY4d8wy0//fcc0+IMrDjjjs2Llfb+2nljdo2z+2ZftwRaAoCHvysKSgVwTV0TISn6dSp02zLjZmrum45JjqHSZQlH4EzZGKWdqZKYjlSVyU//jxBO+Hr5WddhuzRWeTNF0dK2+U2lBNOOkE2WqOfVJRUSr1qA8rKdODXW6CK2rWHf5UGh28p1UDYCX1OBrd3BjsI0yKLLBIM7YshRUmj1Tf1GGQOXAjGPmTIkGDcj2bk6aefDrvesH0iIUYgetiTQi5ZaiYfI5KWp2FsAy6DoP1mIGXgfv/998NAjoc1y4zLLrusHHjggSGQMgN6KtkthnbyOrYOgSj5iuaUetxkC3Og++67L2gFn3zyybB15jnnnCMrrrhikHPCpyHnXMc9qTKJTEfztgkSz+Ycmnw2hHjttdcCUUTmceojxBYhqsibPEmpZZwTEqnv7Jyu8WOOwLwQcBI5L3SK6BydFdv29e7dO3RWdC7WGWUEhoQ+AxKppE/dM6S0RElfqe4WwbOVQP7+x2TZZus9ZIc9DpKzLjtPFkjMkB8+eFL6rHOwjHz5be1En5E1lu2pBBIi2k7KSlSLqXnVS4WUkRWUUglqveZZWq8UM4MkEnzAjyVbwn7w29Of9o6QSUgfn3XWWScQxtNPPz14ubIbCFvLsRwIAWdZjmVnPoTc6dq1q7Rr1y4MlJzD/gyNOdodI47YoSGriy22WLDJZPluxIgRwTTD2gZ5tgE5o3LtDV+UCNg7bw5c2Nli0sHe29goIt9PPfVUMO3ANhcZhlQSZgdCiQa8R48egoMa8olHNX0Jcs4+3piGoNHnOVyHveMmm2wi119/feizrb82OS/KRvBK5wQBJ5E5gT1+D6Xjwn6MTjA7g6zuPxxGeIikes+iOQwaPZa5x8nO2+4iHXuuLgcfd4DSQl2rrm0ni2rHvGjnWvl5fLm889EXstryPQOQ5dJGSeI0/dVRr9QlpoRqwBoWulnKrsgw3HTcfCA72EH57D4JuOHAt3mCRo/169cv7JqBp7R5RuPligYHbSV2ZQzAEEcGUhKaSpwaOnfuHBwFhg0bFmLfQTKj3qY2qBuB5V4fYDP8IhRx9tE+07TkTMb5jWyiEeeDPKI5p68lbiNBv9k1hmPfffdd2FqRPgQZZxLFHt5EOuBedlBiomTvEPlHtY4m83xnpw8v4gb3qjci4CTShaERATRpzICzk1hiJkYgmkQWo5VS1nSQRJvpMuG39+TzLybInjsNUu1iiVJEiGaNlHdcW14fOVo+GDdN1hywspRoJ1qjrLNctZBS314716QGMnSyiaTqUXWcWdFCghmaNIISO4lMSpANajag2d+pmm7O24DIwMnWg4QiMc0huT3yyCPBSQcnmejgmXxS8l8mQNGBlKN2zAlkFCn/nW4ETO7IF1mzT1QeOQapRN7ZVpH4pHxIXGf9Rmr/kZqHyb9dF3225RPNL9119fwcgSgCTiJdHhoRMBKZjQ6oVrmdbpDXsMqctItMtFEtYmlb+e3DL2Tq9A7SuTwRdIvTVbtY0aZMKmcmpFffFWWRfpBF1TYqiazXZfHHHrlNevfdUFZYfmld1p6ueVTqWV3W1pqV1beRutJa/Z15UUdjRjy2bOCXD2KbOhhamVMdV6J/R++xgdjus8Ey9f4oFnMaiOd0LB/w8zLmDwKpss7f85Lr1Jql3j8vmbZ8Xa5TUfS/c4EAKh5PjkBAgKUTNJHz6tDSBVWdelAnwkKzLkWHped6qS7RpZ6EBoOerMuf6mU9aYouy+ipjolpMl1NHOsrJ8iUcu2cZ02REnaHKG0jlSWlcsZp58rV1z4clsKxrVRq+ac/NqaRDUvb6Sp7aj7gBcHBMYll1qhmIPVa/9sRcAQcAUfAESgUBJxEFkpLpqEeLCVOnDgxDTk1JQtdbq5n2Tl6bTIUz0IdOikhnCDPvjJSAwDhqasEt7RKppV0lva6BF5aXy0jX31bNZSa9P7HnnpMzj/74EAcIaa6wB20kCHhWBOWwzOXII0sUWHThP2TJ0fAEXAEHAFHoBgQyOzoWgwIFkgdIULsBfv1119npUYQPaWH+iysHnVZWwllSQnbdc2UDkv3lgUWKJWPXn9B7v7faPm5rJ3IzFJpo1rG0vrf5J3Px8lnP/6ajP+oWXRfeAnpvIAujuN/U8LWdZoXHtL6f52SzpL6zIo5mkgM5l966aXgVZwNTW5WGskf4gg4Ao6AI+AIzAOBzI6u83iwn4oXAhAfgtUSh4xQKplekmWZOrnQzPIzwcNxhNEoj3qiS8/esvqAFaWsdoqcftQhMuqFlzXcxSyZMW2WPPf8y7L3/ofLxhttIm3UHlKjkst3n34s738zVspV/VivTjpJ5WZdcklbiSdRIzOZzFFk1KhRIciwk8hMou15OwKOgCPgCMQFASeRcWmJGJQDm0hs+ohHlmkipBEck5pH1RzWl2p8RyWAEMsS/VG6QC954uH/yXKLdZAZP34ie2s8tK6LdZNuXXvJkB2PlyuvuVT6LtxZ2syYJUN32EY2WW1tueG596VkpmodFcd6trxRDSQKSI1OmHHvbJayJ02aFMLRLLnkkhkn4DEQFS+CI+AIOAKOgCOQYWMxBzivEGBJlmDNxC/LeFKHGBhfMixPkufV1yn5I9yL7llY0rGLPDf6JTn1tOOlXfs2Gkewrew0dC8Z9coLsu7aK6nno0hFuzK559ERslr/pWSGLoeXlqnTjeohy0uDX3aD/rHROjKjVSKAMLEOIeKZJuAZrYhn7gg4Ao6AI+AINBEB10Q2EahiuIzQESzHPv7441nQpiF6yYVmfkH12ujuM/X1SiArOkhdfbkssmg/GXbyeTJZl7JnzRwv/x1xiay6Sr9wLbvdlJS0U8LZRRbo0F4dcPSohgQqJ95a2OZQg6brdbX8y7J3BhNL/8QvZHu/Xr16ZfBJnrUj4Ag4Ao6AIxAfBJxExqctcl4SbPvWXXdd+fbbb4NdZCYTdov2Sf6qD8QVp5hESYXUEusxhOupVreb6qCdTNSophEHHK7RJesS3RdbyqukrFT/Jr4Pa9kJtecsIcSPkkz9M0kf9boMJjSPaG/ZuxYimWl70gxWxbN2BBwBR8ARcASajEDmIzA3uSh+Ya4RgAxBIrHtmzVrVliexd7PSFFGlmmTXjCBACafpT7b+rtMn6vUMOgqIYnJHWhUXEM4HRxo+IkRJXvZ6JaDgTw2uNBYngAKk0xzMjz4hnizKwr74t58881pfpJn5wg4Ao6AI+AIxBcB10TGt22yXjJIIrEi11xzTRkxYkSw7cNO0lJGNWwN3tk8M1BBjCUDA4RMqn2jahdLNEA5lLG6ZpYSyTKprdFjGpx8WlWdtK2ZrlrHMqmp1fKGe2GZ3NOQTWMt0vMDLEJZ9fPWW2/JhAkTAm7hceH5nhwBR8ARcAQcgcJGwElkYbdvs2sHARo2bJicdNJJMmPGjEZCZKSp2RnO5QZdqVYCmKSJ6Bvtw+VJ6pg8YgvSdiXn2Xc2Ua+xJTWDB+77n3z63Y/y3uOPycjX3pTSNpUN+svkg1WPattoz6UkLT8MwQav22+/PdiSopHk74yS7ZYX1+90BBwBR8ARcATSioAvZ6cVzvzNLKp1JOg4NpFvvvmmDB48OCzZ2rJ22rRsLEWT0Nrp/5FV7SSlDOfRghILEnvHcvyukxfqqVKClLepl5133lR2GvKj1FS0C8vaqpSUyhDVB01kInhrE848E4Jue9g+/fTTcvbZZ4fqGFbhD0+OgCPgCDgCjkABI+CayAJu3OZUDe0ZRJG00EILhd1rHnrooaBVi9pFNifPeV9rtDF5FX/9eYRfuMTgh12pn4b9tXG0gXCG1WI9V6/H69VDu6y9VNRNkxp4o7JFqCdazmSO5JMZMQebN954Q2bOnCnbbrstD8wQViFrT46AI+AIOAKOQKwQyMzoGqsqemGagoA5iaBpRMN2zTXXyF133SVjx47NzPIshBWHmeT/gS7+GdExqXlU9+vkKnYgjdhGlgYnm1Lu03BAJWVKInVLxDLUjOUL6P7aIh30ZwXXh2s40Ua1kOkXc/CqqqqSww47TA455JDghMQxW+JuCuZ+jSPgCDgCjoAjkM8IpH90zWc0irjspoUEApayCTqONnL48OHuKJIiF5BFiPYXX3whn3/+uQwdOjRcAQGP4ljE4uRVdwQcAUfAESgCBJxEFkEjN6WK0eVstGqkY489Nnhp297QUU/tpuRZqNeY/ejBBx8sRx55pPTp06eRPLpjTaG2utfLEXAEHAFHIBUBJ5GpiBTx30YWIZSkjTbaSJZddln55z//KbW1tcH72FPSeebFF1+UL7/8Ug466KDZPNgdH0fAEXAEHAFHoFgQcBJZLC09n3raEi3faNPMNvKss84K2siPPvoo2PxBNKPf88k2708bobZ6UyEI9SmnnCL77rtv2ObQtI9p81zPe9RaVwGwJk2bNi2YC/D58ccfg9xhQvDZZ5/JmDFjZoth2ron+t2OgCPgCDgCLUHAVUstQa0A7zFbvlTbyPXXX1/23HNPOeaYY+TZZ59t1EZCmCBTtvRdgJCEKkFcsBENsSn1N59zzz1XJk2aJBdccEFjtaO4OZlsnTSYbP3yyy8hgDtkEi048ta/f/9A2nfbbTe54447/uL05di3Dnu/2xFwBByB5iDgmsjmoFVk1zJwoxW66KKL5Pvvv5fbbrutkUgBRTE4kUAawQEiyW+2g7zuuuvk//7v/wI2ntKPADjjuLTkkkvKoEGDGs0FjCB26dJFLrvsMnf4Sj/0nqMj4Ag4As1CwElks+Aqvoshih07dpTzzz8/LOGyrE1ioC8WrQ8YQGrY2nDttdeW7bbbTnbddddALt3ZKDPvBATdQk0hf2ghLe2+++4hlmkxyWBmUPZcHQFHwBFoHQJOIluHX8HfzWAOidp5551lxx13DB+0cbbMW+gAQJRN43j55ZcLS6znnHNOwIQ4kZ7SjwCYI1+knj17yuabb944YWnbtq0cfvjh6X+o5+gIOAKOgCPQbAScRDYbsuK5gcHctvaj1hdffHHQSu6zzz5hkMdOkISWiL/tO58RMo0X9TFNF9/XX3+9XHnllcHJAy0YqbKy0j3W09DY5rRkxJEszZQC+Tv11FMb2+K4446Tfv36NRJ7ayfu4bcRftMQR/OMXpuGYnsWjsBcEWiqrEVlFtmNvgvIsOVjch39tt+Y2nhyBHKFgJPIXCGfB8+15Wq++UAaH374YXnmmWfkhBNOCDWgkzOiGSWceVC9vxSRupgWLKqBfOGFF+Tkk08OJHLBBRcM9xk2qb//kqkfmA2BKMmzQZILUgdLzpnN7QorrCAHHHCAoIW0CYzlE8Xf2s+OcY21E+ei13qzOAKZRMDk2Ugi36nyHiWMJqvIvMmq/YYkWn8U7ZcoP9fi3Bh9HzJZL8/bEUhFwL2zUxHxv+eKAB3WEkssIW+++aZsuumm0r179+C1bSQzSsDmmknMT9BxUw/TZL3++uthKR9P7H/84x+zkceYVyWWxTMZMYLI4GeDJeeqq6vl119/DZ+pU6cG7faUKVNkkUUWkd69e8s777wTtMEQygUWWEAWW2wx6datWxhILW8bkKMDL2DY3/bsWALkhSoIBKJkkArZBMdIJcd+//33IOdEepgxY0YwE5o5c2YghO3btw8yzqdz586y8MILS48ePcJEHjmOJvJ0mS4IscnLSjiJzMtmy02hjVyxnHjffffJBhtsEJZ2995778YBPLWDy01JW/ZU0wBwN53y+++/HwKuo4VEE2YDgHfYLcM3epdpThg0f/rpJ7nzzjvlscceC5ij0WY5O6qRsXv32GOP2Ug+ZB8Cuc466wSHp+233z4QTgZfG7i5137ns3y2HnXPIVsIRPsSfjM54nPXXXfJPffcI2+//XYgjci5hUmjXzHyaRMh5JvfaCM5t/zyy8vf/va3EOKKCT0mNZwv9FBr2Wo3f07zEXAS2XzMivYO0xoBwFprrSXPPfecbLLJJvL1118HZxMS1+TrsnaUYDz55JOCF/AZZ5wRtK0kOnEnIQGKFicG1IkTJ8qZZ54ZzCJ+++03mT59uvTRrSOXWWYZWXXVVYPmxYgkg2i7du0acbcBlfMMwgyu3P/dd9/J1VdfLccff3wwOUA7SXzTQw45JGgsLXn7tbjp/MZmIoDj3Y033ii33367jB07VsaNG9cY3QE730UXXVQ6deoU5Bt5RssIqaSfQa75IP/IObFSuf+DDz4I7w1RIiCOaCeZPB199NFBW+nJEcg2Ak4is414Hj8vlRwSw4+l7a222iosyeC9bBqkVC1QHLV3lDG1nCyf3n///cED+LTTTgt7Y3tqGgJgh4yYFoW7IG1gTHikBx54QB566KEw+UCLQhzIgQMHhsGPgdQmKdH7U59M/iaHpn2BNLLUTYJQskTIoH3FFVeEyc0WW2whQ4YMkW233XY2Qmntb9qfKMF0spmKvP9tCCA3Jqv8jibk5vHHH5cHH3wwfCPb9I/rrruurLfeemGCwzX2XsxNztAw8iExqUK7vtRSS4X35V//+lcglZh2vPrqq/LUU08Fxz+eMXToUNlmm22ka9eu4b1Dtimr/Z7b87x1HYGWIlCiwjX7W9DSnPy+rCOAlux///tfWAIk0ZTZ7iR4JgP2xhtvHOzT7r777jA7tk7LypTtcjWlMaKdK9fTMV944YUhuPpNN90UbCEhxdlOFkzbzASy/fyWPI92jsqf2ZT+8ccf8sgjj8hRRx0VNCeYQmAGgZe/JUihOR3wu6VdkskYeVk+aG9eeumlIKMMxNi2oj2HtNryIeWwspvctgSDON6Dhhay3lJMm1KnaLvTBmiakeF0JmuXTNajqeWl34gm/sam8b333pP9999fJk+eHFZq0IpDHJEzZNLiykYn1K3pFw0LvtkOlAD8rKCQ6Mc222yzQCaj/VwcJvO8j5gJzWuy2NS28Otyj0D2R8jc19lLkEYE0D5BGj/++GPZaaedAknAXnLrrbcOHWccOq25VZcOnPLTmWGbB7lhAGBfZmw9W9PBz+2ZhXwcvBjQwJMBkyU7CDmEbpdddgmTDOQhOphaSCXuNa1JS3HnvujARFlYMmQygCx++umnoRwsGw4fPlzMvtIICm1jecRZbgtZhvKhbkYiTWZHjhwZyCOmGcj8YYcdFmxybSJjJJv7kCt7T1pTVyOQVpZll11Wrr322uCM9sorrwQ7dd4tFA2UB/lv6XvVmnL6vYWPgIf4Kfw2zmgNzYaHgRnyyJL2fvvtFxxR0ELFufOiA6Z8hO6B/K600koyevToYE9HZ2/LphkFsIAytwENc4AVV1xRbrnllmCvxSDWR20ewZSPaQqNbEbJZ2sGOvIlRQdpBlIbcAcMGBDsW9FE/uc//wnfr732WiCeJPsuoCbxqmQAATOpwBZ8hx12CB9sb9EGon2EQNqEyB5v5NHkrLVEEpk2cmp5I79o+Lfccstgp445x6WXXhqWwJ944onw3nlyBNKNgJPIdCNaZPkZEaDadJ777ruvPPvss2FnF2x42G+bEC3W6dl3dOCOniMf+7s5UBpRSM0/9bnRv4n/yDL8NddcI5dcckkoK5orIztOKubeAql48/eXX34ZtNH//Oc/g3YaxxacZZhg4CTA4GskEXJnAynffNKhpUltf2tDyoB3LMvYq622mhx44IGhTCz5Yff6448/zlZZq5/J49yR8DOFjoDJlMkCZIxtYFmqps8j5BSTEnZXIkXl3LAxeTI5Ry5bM2FKfWfsuXzzHuFMhgf3J598Evo43klsKTHrSJXtaJ8YPWdl929HYF4IOImcFzp+br4ImLbOCAB/ExwaBwrsNYcNGxY0fNjBsGQcnYGbljKqLaJztQ62qR2a3RMlfdEO2o6TH8/CTmzDDTcMoTKwXWIQoMMlWefMb+rkaf4IgCv2YGCJsT/avjXWWGO2mHapS3tRbK2dbTBr6eBqbWcDdfTbtJ88g+OQSkwuWIbE4QdC8P333zfKANdBMvnmXn57Kj4ErP2t7yC2I0vH2BziPPPf//43TJhIqf2F9Yk2KY3KtZ1rKaLRfoo8LG8rg+UPycW5jJBCzz//vKy++urBrIM+0UxJrAz2Hra0TH5fcSLgo2RxtnvGa80y9+DBg8MSz1lnnRWWfFZeeeXgRUhnFSV8XBvtBI1MNLWQ1qHScUY7QgZ/I6p8s1SNQTdhZCANlI3lHlJrNQNNLWshXWck69BDDw32pOxxjS0WWKLxi+OgFC0T5cTzFa3k0ksvHeSTrT1JyJQNshDgXDhYFZKs5GtdbPJB+fG2ZkKMqQYavvXXXz+WMm5YRyfP2CN/9tlnwcGNyR62m9HEexElufnaXl7u7CPgJDL7mBf8E40k4o2LlyYODCwXHnHEEXLVVVeFcCyE0GFmTAw0Ep01nR6fltgi0gEa+TSiAKlk1k1MQuKq7brrrqEDfeONN8LsfPHFFw/P9s6z+SJpmgy0uWyFyW4+aKBN6xKdJDQ/98zdQVuzrG2aUWSU3xACQqMwuGLfhlwSYsWIZBwJceZQ8pwNASYPxHvEvpAlYVZW0EASusdkIq6ywbsYnRyjfWfZnYDnxK+EUOJVbhNtb3VHoCUIuHd2S1Dze+aJgHVedE4kBm40UzhYQB5ZWsGmCOcbBmviqLHTCMtEdM6EpSDZ0sw8H6YnrRPH9pJ4hN98802IRciSOiFe0Dwee+yxsuOOOwZikDrrpqNt6rPmV5ZiOU8sRogX2GH7CBkzDE2LZ4QyTpjQ9izxQQzMSxwSCVlkNxA0NnfccUeQG4JEx1WjGidMC7ks9E8EsT/vvPOCzTROKyQjZ6l9SZywoGz2TvJtfzPxIywcqwfYrt96662NzkDeD8apBfOjLE4i86Od8q6UUW1itDOjImuuuWbw5KaD/uqrr+Tmm28Oy6AM7JARBnlsFiEpXEtCa4hWExLIAA9h5PuHH36QUaNGBdI4fvz4oGWiI+R+tJ7czz605GtkM1XzaGW183kHdoYLbFpFcGViQCgTNLssZ7MUDJ5RDMERghZHPCmrOfnY5IFyUn7+ZnkbBwTCpbBs+dFHHwX54b45EYdUWcpwU3j2GUYgKhO0LTvBoLmDdNnKBUUwTXac239OZWOyxLtJ0HPsmCGSBOPHZt0IJO8D19Fn8r5zfE55ZbgpPPs8QcBJZJ40VD4VM7XDSf3b6gJZxMYIu0TiCeLw8vPPP4elb+x3XnzxxUAw6cgIF0QMRwgAAz0fPBDpDLFlO+GEE6SPhpHByJ3gygz8pCiBTS3H/P7OJ8wzWVYGEVvWJSA7to8dOnQI8RdZImPgBWfwjGKaim8my9icvK1cqeWzvxk8mdSwxzEaciY8yFp0MLX6Nue5fm38EaBd7fPvf/87TE4JA0XfYnJuZCtVfuJWu9Ty8bdN7vimHth54lSIhhWzFN5r+lvO26QpbvXy8sQLASeR8WqPoiyNET1CAvGxxHGSzYpZdsFJhxho1sHREfKbRCcZ1SRwzDr8cIGnFiFAO6B5IZAxBBIiT9BuBhp+811oiUkKRPK6664LIYCwIYvKGvVNHaQLDYNirI9NmG644Qa58847g+d+//79Gyej1iflKzY2+WHFhgkgmyqMGDEihAEixiW73jCJsuQynq8tnb1yu2NN9rD2J0UQiM746aiss7JOjkvtOJ0anR5/M0uGVPKba/nbSCj3RLUE3gGmR+TAEbKI5hGP9r///e+BrJtBvrVlep4Wj1yoG8QZu100NBDJVNnMd0IRD6TjVQr6FvajxnYbm1iiOFh/g0wUQqIeEEi+6S+xQyc0Fw5DaF9J0T7WJumFUHevQ/oRcBKZfkw9xyYgYANyU4lelByaFpJ7OT4/bWNTn9GEYhflJeCNYwG2p8RVhNTbchjftvxVaOBAIlneGzp0qKAFf/nllxs14DbBKbQ6F3t9iBmLCQO7Lm266aZh4mBLu/PrZ/IFO+phE2+bCGFaxK427DL12GOPNdoIUyefLOVLy+amnE4ic4N70T+VAdoG4uh3qibRztkSCx0azjVGIKOD+ZzycwLZPFEDX7SOEEfTQLADETv6QKZY5rXEtVxDWxaKlsbqZnKIRgaPbbZIZAtHSAb1tk/z0PWr44SAtSEyzG9kGI0zuxgR15Zj1qcg402ZsMapfnMqi9XBvqkXibpin04Q9b322ivYpnONvd9zysuPOQIg4CTS5cARcARmQyBq44gjzUEHHRR2uujbt28gmIWikZlfszOAGhZsldirV6/gjT59+vT53ern8wQBiKMRyJNOOilEfCCUDwmCZROpPKlOi4pJ/Um816w0MGEiti8xJI1ktihjv6koEHASWRTN7JV0BJqGgGleTAuD9o3BZd111w1amWgA7qblmJ9XUX/qDWk2TFjmxCZ0+PDhvsSXn836l1LTxrQvmjfa9corrwwhxkwTXwwkyjAwOYdE47yICYcRzL8A5wccgQYEnES6KDgCjkAjAgwaxOtkYHn99deDHSTLe0Yqie1ZiN7YqSJgZhAWK4/644xAKJTLL79c0NB6yn8EaGec9oYMGSJs3zlo0KBG4sS5QidRc4AEogAAIABJREFURpaZLNk7Tng0CDU7fRGPt9BMVfJfauNVAyeR8WoPL40jkHMEIEss2WIfxjaRxN60cD6QqmJY4qMRTBPJNx8GWUJQde/ePdjMYS/Jsegn543nBWgyAkYSCeWDJpJdraLE0TR0Tc4wDy+kvtST9xo55jcJUj1w4MCwVa3JvhHqQifWediMOS2yk8icwu8PdwTihYBp4FjSGjNmTIgLaaTRBli7Jl4lT39pok4FZh/JgDp48GB55ZVXwtK2DajFoLVKP8K5zZG2YyJw7rnnBs1bt27dAok0J5rcli47T6e+9jFnR3vyGWecEbaOZYvTVALpRDI77ZMPT3ESmQ+t5GV0BLKEgA0OBNkeMGBAIJCmnchSEWL5GAZalj3BhwDNONpYTD0K7INqLJttvoVityx2vdppp53ciaQBLXvnV1hhhaBxx1ubYy7j8xWnorzASWRRNrtX2hGYOwJsNfnTTz+F/bFJPngksWLJzzRV7Os+cuRIef7558PJYtHOzl1q8u8Mcs1S9r777tu4ZJt/tUh/iW35mm8mSsg5oa34u1hMWdKPauHm6CSycNvWa+YINBuBmTNnhuW9NddcM9hJOTlKQmhEmkEURwPiZS6xxBJyzTXXhAs471g1W9xyesOTTz4ZQvqwK5E5luS0QDF8+HLLLRf6gmuvvbZRxl3WY9hQOSySk8gcgu+PdgRyjQADQlTT+P3338t3330nyy+/fONStpOjZCuBE9oYPpAO7EXZ5QOPdU/xRsDiQdKG/GYysM8++8iJJ54YJks+YZq9/cyEBTtJ9g9ndYIJJn1BtL+Id6t76bKBgJPIbKDsz3AEYo4AAwMDK9sb9u/fXzp16tSoWfNB46/L1QymXbt2DZ7rF198ccxb14sHGbJQNbQdcRDHjx8vG220UZBzHGw8zY6ATZrYW5uNBu644w6HyBH4CwJOIv8CiR9wBIoTgT/++EP++9//ht1pGFgZdD1G3NxlAdLdr18/efDBB4Nm0lN8EYAQ2Q40yPaLL74YwjUtu+yyQcYJYeWTpWT7md2jaR35hmw/8sgjjasTbhsZX1nPdsmcRGYbcX+eIxAzBGxAGD16dFjW6927dxgsLOQHg4invyIALniw4nTgwcf/ik8cj5jTyPnnny/XX399II92zOU82WK890aowYQPMWMJa2XHbbk7jm3sZcouAk4is4u3P80RiBUCtmTFct5rr70WlmcZNGwgMW1ErAodk8KA0QILLBCcbHDScE1WTBpmPsWwpewNN9yw8UonRX+CFpVjfvNBa8vk8plnnpkPun662BBwEllsLe71dQRSEEDriAYSIkT8QwvlYQTSNTRzFhmWQSGSLGkTrNpxmjNOcTganQy98MILgRClatq9/ZItBQ6pH/oItj+96aabPGZkHAQ6RmVwEhmjxvCiOALZRsAGix9//DEsy2Ij5qlpCIAdRBLM3nzzTZk8eXLTbvSrcoIAbUWbvfrqq4H4e2o6AuBGbFRWK2bMmOETpqZDV/BXOoks+Cb2CjoCc0fAlrMJVcO2b76sN3esUs9AStDgtm3bNny+/PLL1Ev87xghgGzTZh999FHYicVT0xEAu2WWWSaE+WEbRE+OgCHgJNJlwREocgQgku+9916w72OJz1PTEDBSgk0ky314t3uKJwLIuNn5jh07VtZaa614FjSmpUK+Ca4/depUqaqq8p1rYtpOuSiWk8hcoO7PdASygIAZxUe/GQxSj1OUMWPGSJcuXdI7OCTUqzuhmesALqLPDXUmXp8eque37vKix8v1w791HNMT6hcudXqvhjWWskSNJHQpLY7JTAEgk+yn/dVXXzViG2rX4JRg3u9R7ONYn0IuE21lRJ/g8Lkw2yAIVD3yXa+hs5CNen0jVObrpVqqOMd7oR99RSUEjOJHXS2XqCxxIdeHFyonTcUkc7HFFpPPPvvMVyxy0gLxfKiTyHi2i5fKEWgVAhAYkhEYy8z+tkHVlq8JvMxyNsfTlUogghDJZEnCv4lEmZSVVuoPCCYDqQZ5rp6lg2qZVLTtIAn1Eq9SNllWUSk1erxMh9O63IyZ84XBMOZCBleWSUlgGA1ezd9ob/iO3jPfB/gFaUPAcH/jjTfCsmw65byphawJkwolkEoClSvqu6H/KDesrZsus/RYvQp6iZLEOv1AIhOBROo2m3qO/5LvCxQy+y+E4bXOOuvIu+++63Lc1EYvguucRBZBI3sVixcBSKJpxMyxADQgOVH7R5Zi0aalMyVKdBDUkRKdYkmiXP8l1UibCjikDoQl5SJKKGv0u215vUyfOUs6dmirJFPHTiWQ7SorpLasvRLJ9BHbdNYvmhdLfZ988kk4BLYsnZrmMXpdLshLpuqcb/ki75htsPtK6uQqG3Vpr9pEnU6o7OtEqYFAwhYr9Gil6GSqROliWb2Ululv+GMZ70eF/uRv3gF9MfQLzWS2k5FwnGsgkZ4cAUPASaTLgiNQwAhEl1QJ0XH88cfLL7/8MpsmhgEVg/kOHTqkd3BlUIRIJnS/aSWRZTpwljGIJqZLSalqXljClvZSU7mA1NdMk4qK8rAPdVu9p1w1lCzvzZR2sdV6GCGEnGAXiXc2WEIgjaRDLPfaay857LDDQj18B6DcvGymHf7tt99y50BWV60ywKSorVTo79rpn8mRw/aSlfuvKh3Luktl5UKy5FL95IADDpA3X/5CpihULGOjtQwLCygjlUTyd7YT+PFhC0Qw9MlQtlsgvs/TqY4nR8ARKFQEIC6mcYQ8XnLJJXL11VfLqaeeKrvvvrv07NkznIe8VVZWptXWKRBIVCcoUerRJ9bKTz+PkQceeUqdUCbpQR1MKzvJkiv1l6FbrCtt6qZJXcUC8uR9d8mXX30t0+tKZMDADWTLwevptbkYOucvFeDLgNqxY0eZMoVhP2lC8O2334bYkddcc00gj0OHDg0EM6r9nX/ufkU6EYDco3FH5nOSattJjWrhy2WqlEz/RrZeexN5dswEWa7/FrLz9n2kTduJ8t3Y7+Txxx6XETe/Lh9Pe0+66DtZJm1UxpB/3if0PrnRzCPHrFYwWTK5zwmO/tBYIeCayFg1hxcmFQFbdjIbMwZhftvySi6WpVLLmM6/rV4282+p5sruBy/7beVkn+dhw4YFb8tjjz02EEgwZQu4TOPZs+dicuRh+8lCC3ZRtUqdrDdoPdl2+x3UtaBS2tXPkqm1pTJ0+y2k5yILyrY77y6bbbRBI7yUL7okn07cW5IX2BpeEJTq6uowwG6++eay3HLLybXXXtuYLddaW7TkWU29x+Qn+n5E94WOvjtNzXNe1xmZAAd75ryub+65qDy2hoBbPpMmTUq/xr2plWqr9K9kqto6Vsn3X46Xr76eJIM3PUze+OApueuBS+TWEXfJCy+NlB+//14OP/Dv0rZMtX+6vF2h/LGkZKbyx+qgkiwNasnsJnvvKioqXJueXehj/zTXRMa+iYq3gHMaoPAiJjZfdAAvJISsXvvuu6/ss88+raqaLTlFiSm/IRKcY2C97LLLQvDljCxnB40JH5auk5ZcpSVt9Lk1suXmm8hdd/1Pvvr8Qxmw3nrSplwHp6o6qWxTKn+MmyJTq0ukj9qu6cJwuN8GsSghahU4abgZMm7Eu1OnTjJu3DgZOHCgsK0e+EZJ1T333CP33ntvwDz1XBqK0piF5W02mXbCcKNMmXh3yNPq27Vr17RVKRUrk+nmPsDy4XvLLbcMbZDtpIEGpL6NhtBSG+BptRomRwvQo9vC0gZO2LBMrRKlTmVlcvGVZ8rk8qQ9cb2GM6grV02+rmXrrtb6X/Z1PxYeqVevXsLGBLnAL9vt5c9rGgLZl8amlcuvcgQCAjboMghiWwaZgATx4TcfBq9C+VAvQu3ceOONoe6m4Wlu/bjPMOI3OKEds86f7zXXXFNuuOEGefnllwMZwoOY77QlC/HDwFeKfSQLcqrtrCuVZZfuJ0v36Sm//zxW/vh9nHqo4lRQKZWqjRz9zofSe+llpaIchxzdZUSJZGq5TLOUtrK2ICMjkBAoSHj79u0F79/TTjstaHlJRtp22mkngXRaWzS3PZt6vb0PtCW/v/nmm1CG6DtDOZqa3/yuMxklf/IFi4kTJ6Ytf8PM2nt+5ZnbebBAU4xjCJr3XKQS9cEuqef9qpCllltJBqy2tNx915Vy4vHDdMvR52TkqLflldc+kO9+052P1BSkbSCMJUoZJ6mmXgOl67vDhKokmIlkN1k/NG3atGC64ckRMAScRLos5B0CDFQMLiTTMMxt8Mi34wx0lDmq2WlJHaLYRBsY4oM24fbbbw+EZ7/99lOHlopGkpZOcpYM8aMaKvXErlcSWa+9TUIHwsqKDkoO62XtNVbBlVmefeYZKVVSW11SKeVVE+STr76XFVZdTSrVEydgocMnA//06eqQo9fZJ9eCC1Ymf8gjjkloJE866STBJhIyiQ0ZdUB7HtXetKRNm3IPmHCdPSuqdeYccpXOd4Y8jeilM1+rK+WFAFpqCgZzusbuX3DBBQUiFG2Lxswz/CNRrnutl6pGsa6tdOrcTe589HZZe72l5NKLz5e/bft32XzDLWWLDbaUsy66UiddSh5rq3XShb3yD7LyShvI6+9+26CFzP5ytskN5hqQSDD25AiAQBrVDg6oI5B+BKzzYiAx8sBvBmXryHIxIKS/pskcIXSWrF4tqZ9hEyWjOBTgWDNo0KCgNYviBwFiNwqca9KX2P2GwUbt5VQLGRbn1EsbLVmlDpLLLd1HFuwk8rNqy35Q0rV4335S+uv70q3vKtJhwUUkUTVRZwkVuoRXL48//nhYRjv44IOD97NpAdNX1ubnFCVrEFyLswmpoh1PPPFEOeKII8Iy9ltvvTXbA1rSpk0pYbRN+W3vCXIQ1ebxdzqSPcPysnc0XfUj/2hZW5MvMtO9e3fBLjIXqbZUw1fpi1CamCm/j/lIhgzaUt7STY4uvvZ62W6zwVJWWyYzdKm7tNuCWjx1p9F3pobXp3ycvjydNRpQZ/2DGJPoJLO/sxRtgXNejx49cgGfPzOmCDiJjGnDeLGSWkbDAeJgyZY2WzOgxBXf1Dql/t3Uctt9RnQgEE8++eRsy8JcY+chj2j7Wvq8OZcL2qhJQ/yof0BD0viUbTS+eG2JBhfvIhttuo089tCj8tr7H8mySnKvf/YjGbTJFtJBQ6CUqke3VFTJDOkgg3Tp/Y81Vpd23BzCntRLlcaY7FBbI//f3rsARHqV9/8Pl13IxgSiMZBUA9EkEG8QTQPx8odYW0jVgG0VNFqIGkH91cVaf2x/f9uuVl3iDdKfyqZVIdYKsZclNnaJtS6xSSDWdlmNQrQWVk1go8myMVlgF3h/3+9558y8M7wzzAwzw+15NxNm3st5z/mc23Oec87zLGU/KWdXCkzass8uyG5oPeezFuVMTqGcv4D7crH0AR92vNnYuGNM7qXg8PLjdDYFRwo8VhBnmeXShFtuuUVaWlrCNIQpeL1vEN78i/xu61CqBEhGwMuAv1Opybbh23f4JjiBk4wbNZGPPvpoAk+l7lYa2qdnGuwRl3/69Adk7MTT0nnnv8v73lQlSxAud8PIONNKjzZZi6fl1zC+n5W9JOfm/I5M/OC3jEYetrBkF2xHZnqDttW6nz592pTz1LYTqWOsIWWeQGqGo5mPt75RCSiBGAQoHFqtFDsAq73ze4T3cTME17Jl4kB00Alhyww6zeeXXSF7zt8jUxP/I+PHviMzjy1ISVGx5GZjTSc2IWSdoY3JRTMFX3rZ5WaajyvFliA80tak25lBSKVYSY8f2VhzifTkQNh0lujrAx5yIMzxnSt4n3Efl6LD25HSdl5paemqkG0eaMe7Ck3GTzC/uC6YvrNTLezGk5jdWMuIxR0op1ly7MfHZTeMjv/GHtQFrPvNxa4blmyzphXLP376k4flqbNnZM8Kpt7ZS+OzgqlwwcY04xsxw4cdbH7/+9+XF7zgBTqdnWH+m/l1KkRu5tzRuCmBdRJgx2mntK1A4w2S1/nh2j26PkzvwS7U/Qh2Y69A0MvZfY7UvvqVkr/0uBy659/l1XWvwZpJ7OBGZ5oDrZ5ZQ+nQpBPXVNKvB82eYI8qBUK4hON5yJKYHuf9MAEEjQ4/Dj7nQOBcwju4LjAnh50vXS7ib4oOO23Nv1wDWVlZGTNkq81RLU5MTGm9eO211xrfz96ZjbS+0Bs4tIhcC5y763x51Y1vQ7kW+fC7b5Fj4/9lBk0c6Zx++rR84I8/KFddfS2sFDyBuosyPf+Y/P5bWuVb9/8HprdpKirzE4iW15EjR4wFAj2UgCWQ+dKo7JWAEkg7ASuoWA3CWoIL10vSJRzv8xM2UxVhhp0NjcrZszR+h6k9dIiXl71ESp51nxxfuURe9oJL4e6NpkzgJvEM/GZjc83E0WPyve+Ny6k9F8m7b8Iu5+WzEDR3Y2rQ6HXksccelwe+fUQmHjktN76uXu4fOSwnnnhMnvfc58vvNd0i+Xmw4bgEbSxeyKlCanVScdglANQycoqUGppYhxXm18qLWGHoteQJkPvll19ujMLTHBPXR2b0oBacFgqwzreh9d1y7/0PyZf+8ZtyzTVVcl4+jIrvOk/mTs1hkJQtb3zbu+Q3LiiQX88vyXcP98sD3xyRd77vg5KL+oDxk9mIlsmDAyAOxn70ox/Ji1/8Yp3OziT8Tf4uFSI3eQZp9JRAMgSsIBgpTEaGZe/jNN99991nOgoKO1aYdIW+5KWu8D2cnH52p5WzoU3kO5Yh1GXvOkdedOVzZP70FXLOLnRWnLqD0Leb1yFQVrz4JfLoI4/KqV9Dq4gAdyN+S9ydD+0ip/6efWGRVGOn9/f/+zvogHPllvZ3yROnTkrf526Xn82ekLJSGDbH1vBsaCZXoNVMlRRJVty4Yk3aFBUVReINdrbkaAX6VTfpibQTsOWc+cUBEzc6/e7v/q55r80XCkqpXC+6OlEo/BykQYjMKyiS27/6d9Ix8VP5+j3fhKmrR8x2mRe+8IXy2tf9rpxXdLHQ1/Zy9jnyqte8VC56dpEs4TkzAOIutQwf5MJNNVx3zA1kWpYznAGb+HUqRG7izNGoKYFkCURquyJ/R4ZbU1MjH//4x82mEK/JlnVpz2xfR0mSH6wJw2Q0pvNocNyRxTOwS4nvy9A4/vKJp+WlNS+DXhHCITpPyHsQ+DBdzV0w6HjPPzdfluZwns9irRinurm6cRnT2TnY0XreOZgahwD5nEtLjGeP8847T87N2y1PLswjnGcgCAiceGcutDypWlHGDpWCJHeb0zTTc5/73Eiswd/kv1YeRH1YL6SEAIVECj8cMH0TZqXq6uqCQiPXIqZXgGT5dzcHUifOmpALV4ZXvbBcrnzJ1ZANYUPU7LhmpXGwmYzyomvAfSV7HtPgGITgefzB98BtKaESXyBsE+joIT8/36yf1kMJWALJqxiUoRJQAtuCADvW6667zth/Ow6XazysaZj1CT7sEF1J0v3G3dowoL7MNY40IA5BELbwzi4+JY+czpWrLnZkIbtQctmho1NdwmLHPGgQlzD9nUd7J1jPuAgBMhvaSehKjVC2xOlpZ5fk70ZTBmESF/EGd8PNbvxd4I4anLH3u9JsarKNHSvjwE011M5ceumlqQlYQ0kbAa7t47rI+++/P7guMv0aSJscrse1XS7LM/wgBqzsrcA/tnuNw6xsOQe/zuKW3BXUFa4fRn3JwodrgrkGONMHl2xwuctll11mLA6sr13IdOz1fekkoEJkOulq2EpgCxBgh0AtDDUz3H1phLPAtLY1Vp1MMlwFZEiQZOeXxelraGDOLJyG3gV7p6FWuefwsDwHxpQLslwTQxQ0MZFtBM5saCPPwKRJDp6hqSDKpMsQQo3WCAKi0WTyPNzI8SK/0gAQD+gs3R2tRg1KBSc251DoTNHBOPBDZjTarh1risCmIRjvsgzaSX3kkUeMVtIKkHbTUxpeHRYkdY0c3NAbjdl2zc1lEA1ZKumIhvtrWPbhGNEVNzl1zcEWzuVQQ2/KcualSGpqqb19y1veYoRvuzwg3bw0/M1PQKezN38eaQyVQNoI2LVNFICuv/56ueuuu+S3f/u3TUdBAYlCZPJHQIA082/oHdEJ0ozJkX/7ltx/35g869nPwq7wC+Xkr56Sqt97ETSUsLXoPCFLudhkAPdwuyAsns2F+z4plBVMfS8vuzurOY38yPGfy5OLjlx2xSUQStENY0rc9QaHbpZKHvbPeBc8LJp3u+lEB424pLILpt08rhWjHUgVIpMvKel+kmXZCorcXcwlCJyepXtKKxBlQiNJU1QCcz7cELactcdoFSk0Go0kXXyyygSOXE6/Y4mGnMF0Nso43R3uknlchV2gDB8s5/Rw9bd/+7eGV9qn/jOcPn1d8gRUE5k8O31SCWx5Al7Bh50rjWZbt3DsLNajdaDsaORHHPxDgW4Jix1PLy7JGciUJ355Sh6deUKa3naTFOcswDi4a9InFxoa3k/zPCvL8Nyx/GsZf/SULM38SHIXluX0U2ekf+DL8tWv9snxn5ww9iK/++hTMDg+K0//8mfY1b1bfj23KP8zj+ns/x7HOsjzqMzBQd1myCOQG7P4/08e9kNu/NC0DzfUWF/Z8Yemd2aagBUiua6PGjV6FOLB83bQlNY4sQxyXWRWPsrOHncFpBEa80yp5GazFQ5yaAdyeQ/qCDe4PYXKQ7sC0F9mnYv1yvAolc0Vk+k7vOWcbHh85StfMWWcxtpZ7q3gnb5YaMhbhYBqIrdKTmk8lUAaCHi1L1deeaXZdDA+Pi6vfvWrzQYbro1cz5R2ZJTZAb3mNa+BOZwXY03kbphZuUh252FKmm4tA9PDjBOFSGpr+H6az3nFK16BKe1nwDTLY3JpycVy8803Y1f0HDa0LELofRKu2C6Wm956k9Ew8eCO6be+9a1GOKA7R4ZjPR0lMx3oajJDaiLGl2FPTk6a9aQUTKwwEplm/b3xBCLz5s1vfrNwMxndgNLUj/XPbe0hblSMszCAYlxyYQM1N3delpe4bpLT2dgUhuKXhdGQswKPMWn0emhZ2TLP+Nx5551yww03BJcAbDSnjcoffe9qAqqJXM1EzyiBHUOA01K2s+D3j370o/Jf//VfYt2bEcT6pmk9k8dm6g42ICF8cSfzJZdcjO/ZZmczd1vTC403PjnGnuSSXHTRRWZBPzeuPOc5lxihtrDwAnniiSdgruUSbAg6V573vMvk8uc/P6gR5P2lpaXGnAuFRwp5PNajQWG8vcIGGXFK9P3vf78KkJu8xtjpV5v/tOnJcj02NmbKI79vBsHIGNGH0HgGZfbb/3Cn/PevzmD2Gwb3YTOy7Eos3eD6SePCJn0HOVhO/MvB5LFjx+Smm27aFIzSl3INORkC6S2NycRIn1ECSiCjBNiB2qk+bjrYs2ePcQ3HzmNdayLNfLY3KdhzDSPj7NDtdHBOLsyKBzotRCN4jfFZ5jRj7i6cc02bcJpvCeskee3Yse9LRUWlFBScb+K4axem+XDwmvfge1LhF5zhUICkRtNqar73ve9JWVmZXH311eaVVsAMi4D+2BQErFBky0dBQYER/j//+c8Hy8xmyD9qIrnhZgHrJD/30b+Uxqb3yfGxH8sH/+Iv5MLzcA0+5Vdo/yqNh+VgmXFg+fKXvzxoTJ/n1zMYS2PUNegNIKDT2RsAXV+pBDYTAXYaVgNI8x00wkzD45ze5vQwzXus/+B41Z2eXqaPa7NYEp2REfr4cQVZO3VuNUe206fZE/6XA2HOwRbsa172m6YjW8Smg3POOUcW5p+ClmR3cME/tZvWTBHDoDaS6aTmM5kOkM9QkLS71qmFpBDZ1dUVFIiTCXf9XDWEeAjYgZIt58yrj3zkI8YnO8s6haTQcod4QkzPPdaO+HnYfNP37X+FB5vdsuuCPHnLebDNCBNWi9hok0+D+fShnabDOxswOzsrf/VXfyV///d/H1wLSZZ6KAFLQDWRWhaUwA4mwA6BnSc7Dqsh/OQnP2ncwlEbuf6O1RUWLWJ23u57eAa7tbnOK9Ap2WlF/+zgeBdW8mDqB1HFAbeI6Eh3wX7k0tIC4snNCm6YrrDKRWP0QBI6x+8OXc+t47AaVGt4mRs0mKZUrhtdR/T00RgEbPnmX5Y1DjJe97rXSW9v7yaapqWNVO7SzseSjQvluc+7VM5/JtwzwhZqNjba7MbgayXrTIxUrv+SnZXg36GhIWO4n+t+ebD8WyFz/W/SELYDARUit0MuahqUQAoJcAfmG9/4RrnnnnuCmr3kgg8XII0q0Xy8B83+xBbsuEbMtRGJ+1w7Pu5vYzcycI7f0+gOznaejDm1kIcOHZJPf/rTpoPlodqZ8FzdCr+YZ3/+539uyvlPf/rT9S3dSFGCTQ3BYGiZAyKnEJr3RbNGUjh4oncmU1VSZ+vUL9oUEqm1n5ubM9ra/v5+Offcc805OzPAe/RQAiSgJUHLgRJQAkECVhii+RNOZVm/0OlG5CdIuiKobaJMrxr4MDb87T2X3ik2ahuthuahhx4yG3VuvPHGoAZ3M2zKSHcebbfwWdZptoba5De96U2bY02rGQy5Jq5kF2xCLuWhlNMVKOsBzQPxL/3ZpP+ghpbLW7iLneXbflgXdOlG+vlvlTeoELlVckrjqQQyQICdA9cTsnPlWqgvfelLRvOWmSNSIxkpGNr1k54d30aLGflcemJLoYPame985zvyjW98w7iJpGBptTPpeauGmk4CzNPOzk758Y9/LMPDw+l8VXxhU5u+4trvOWusRy5CiMTu8RyUebqzMUca7fsE3kD7pz09PfLFL37RCI9WcPQOpuJLkN613QmoELndc1jTpwQSJMCNNBSMqKHhTm36zGVny3V/6dBARE56h0fXXqWnD3Se/BgNJKf0vOf42ytcJpjoiNuZzsi1X/zNqc/f+Z0IUlAeAAAgAElEQVTfkaqqKsPEfqK+LZg4mm5ZdnWp9lwgunRpx6+0BWhMvFDrybWbFFAZMP7nPuIjRKcuyVGTsF0vWOGf5qb+5m/+Rtra2uSxxx4LGxSko7zH5MmFvSxXuInCI+e2sRrSXS5hTnKLWeq6ba9wyOlq/ubf97znPWaDHcu5ESKxFpNlneUzF5t7uCGOdlxtmXarXrCwB8pr+NxB5K+YHPTiliGQutK4ZZKsEVUCSmAtAuxMzj//fCM0PfDAA2aTDYVL05HgWuoO9oxshuwnFDJdJNqPuxaSm2v4YUcLgcqsjwycM79TGKtAOm16+Zc+sjnFf+uttwZf5BUk+d33MLhcMTF4PdTfms6Y14Mm1iFAmnPoqM3qNyNJ2i+eB+1p/Zs0AZtnDQ0NRvv+4Q9/ODhY2hCTPyzaqAocKhnTKfAbT+NVZg0iPixi6ei0vRYaWOc5cOR6Ub6XMxMsj2SVzcixCJqibgc1Fr9tF6K1D9HO2+f171YkkI7yuBU5aJyVgBLwELAL52kHkRoa+tRmZ5J6IXJzYrfppLaKQjN3q3MKmzvXnw+j5gnZzzQdLptaj1kWngvInBAN8AMuJnlPNnag06FyYMoyvNtlGFEE1c2JcVPHyuYx85cad+5E/sd//Ef5whe+YOK9U5YpWAGSf3/wgx/IH/zBH8jAwECwnHMXe7Yr0rrFz5RdlkWKunTJ6D3cEmuLt6eY4yYtv2GotskPFSK3SUZqMpRAKglYbSM3kPzlX/6lVFZWyte+9jXXuwymt7b7YYVHChoUGJn2t73tbfKHf/iHJuk0YB7PwWlAB1pSKwy69tepNaWtP3yo4XGoc4JZF/xcoQ1ACK5GjkTrbJSQ5mGrjmS37Gm2VaYknKQPlnPmMQ3r0zPSJz7xCdm/f7/ROHMgFVW7nPQbN9eDTL9d8zg/P2/ciTY3N5vNNDzIwGwoYxnkh2XZ/OBhyyLLs+tu1D2P61yOYW8L3G2DCPzUP9uEgAqR2yQjNRlKIFUErAaGHQy/U2C67bbbjJtBuoljh7vdDzN1hw6UaT18+LBxu8iNRtZjTSJTnTCMYnAFO+LgNCAnq21niw4ZvSy8JuMMdZP4kR0w5ZJleQcn90P4Izrq7Z4vqUyfFSBZxpmvFKbob507ta+99lo5ceLEttdGejXut9xyi1myws10/Gv5GEE6MIbhtDb/cYUv/wvKk7DhanaQ248d6Gj5TGWR3ZRhqRC5KbNFI6UENoYAOwx2phSg+OF3Ghy/6qqr5D/+4z/Mh+uleHi1NFtdY8MO02qe+N1qYmkP8vHHH5d//dd/NcK05UMm8aSZnS3/rXDTAjz1OEvsgGGHD53tkjHlgk0Kpj+GdncF2kgz5c3vJIyrlDFzzmKzA7Rl+L6EjQ3LAeHextGWFNX0JFZnbH6zjDMvrUD1mc98xnhB4rSuWQ8Y4G03niT2ls11N9Ni08EBki3rb3/72+Xee++Vu+++O8jCtgH8S4GRwja3gJnVu7BZacY/3AhmlnzsQtnkbYF/OBc8VJDcXIUgxbFRITLFQDU4JbDdCNiOhi7i/vmf/9l0NhQmbWdkpruordiiBztJm0YrMDA93/rWt8y05te//nVjzie5g1OlSxBQ2cNiTSmsRfMdZ6C4oSC5QMmQ09a0Lg3vO2aVGTfWYNoQnsOhjFxCx013jtzUAGuaeJakjSUY21Gr9Jhc1vg8xbJAreR//ud/mvLd2trqTucGNNM+j2ypUywztrzbgRBN+XCw9G//9m9CRwN+xwqFRlPHOcBBmV3B2l2B5xz85c+zWJKxhLJ5FgMlyJUonyir4GckTXdE5BesntsGBNR39jbIRE2CEkgnAQo9VgP3ile8Qqip6ejoMBrKl770pebV1Nis30ViOlMRPWwrBDOdPNjJfvvb35bx8XFjO/AlL3lJ9IfXuoIwd+Xskq8NfFV+NTMrK9nw4Q13jVdc9SJ59W9fL7gkS7RUBMHxLPronBVoviA49vf1yxOnlwSWKOXp7PMgZy7IpZeVwMD5640Qyp7a1QAwzltXgF8L30Zc5xpYemjhOli6RbzpppuMCSBrF5Say616sB57yzvrMteBcskGN9FFO7jZiyVtGerGbJTV+78zIg/94IeQHlFuc3fLcs4eTG2fRdiONL7h9XLZpZdKNvzUh+a7rTpSy2o0xlv1vAqRWzXnNN5KIEMEKFTZHZzsQN/xjncItZJNTU2yuLho1o9xqjeRdYIZinpCr2E6KUCwQ33kkUdkdHRUrrzyynVpWY1VP/Sfb3pTg/zHd74lN9/yfpn4nxPQOj5D7oYpldrrr5FczhZySjArF3oeaC2xBrL1nTfLI7Pz8trqclm8sFr+9RtfkIsuKZKziN9u5IERZKgC4qI02z+rMJlQfvvdTAHdTuOyjHMQ8cpXvlLe8IY3yN/93d/Js58NP9Zb+LAzBqyr73vf+8xu9H/5l3+Rl73sZSZVdiC1KonUpKN8chNYLgyf1/x/18lLriqRhtc1yAPf/xkGR8+UA5/5qLz7PTdLPgo07ZzS2qVZ2xs4XOuXod+r3qEntiQBnc7ektmmkVYCG0PAaiXr6+vNtPZ3v/tdM+2bkMmbjYl61LfaKWze8OUvf1mOHz9uvNK88IUvDD4TtXONGqp7gXoX84Gwd23NdfLAg/fKFVeWQWjMkT98y83yNDzbnUWHm4Ppau7VlpUF3Iy1kZgmvOTiZ8n1ryyT176pCTuHLzTh5EJ4DHXDgXVn7pbvNWKil+MlYKd7ef/FF19sNNI/+9nPjJF5ugHd6gcHfq9//evln/7pn+TIkSNSUVFhkkTBMvqyFKyHRMHLZSHE2l2OjC4oehY23H0Sz63IxZc8HwLk2zEb4bpszEJ5dnWXLK22xKoAudXLjl/8VYj0o6LnlIASCBJgx8KpaquhsZ0sp7KpxXjyySelv7/f/LVrrrhon89F75Q2DrCdemdcrXA4MzMj9BVMg9MPPvigXH755Sbu1sA605zcgek/TFEv5RTKkzmXSMGznpKai58pz1z+lfz6sWm5+qV18j+/nJPcpVPQQqLbdc6HEFmATa7nyBm88tnLu+SpcwokL/eM7MaaSkwcQlPpCGRPyTqLTTlmUjsbvyGEcm2qXSeZXGR3/FPMZ1tu7QYzGt2nIHnNNdfIi1/8YvnqV79qBC4OnFiG+LHfCXAjNPJ2IOQt0zzHj127zO9cy/zyl7/c2D1lOX/BC15g1oDaOh6tvq5k7ZZdkAGzqJHMyYNnxguwLONcKd71uNGeP33+JXI+BMc9EDLz8IHOUnKMLcmAM4BAOXWHVDu+mG0rAMm2jNsKgiZGCSiBxAhYoYodKzWRtCN5++23y09+8hNjFoe7W9mh2Q4seSEssXjFczdtX1KQ5MFOkwIC17/deOON8s1vflMuxXquVB1mgwE66Vx0wOej/3WkQH6Z8wxpf9fNctE5Z+SJyW/K//mTz8iMUwBBEuIgOt5lPMPnzuFmBhxnofXhrm13241rmtw03J7Wm185dR52MlWJ2MHh2EEGBUqui/zABz4g73znO+VDH/qQGTRZgZN/rdDGe1n2M33YAZytc6yH/M74sLxT+KUGknWWMwgs59GExkzHXd+3dQmoELl1805jrgQ2jIDVvrCDuvDCC423j66uLrPLk94ufv3rX5vOy9uJbVhkPS+2mhl2nnNzc/LpT3/amO9hnD/3uc8F7eOlKq4U/86YPdc4MFXN30/nPVOuveFG+coXPi2XQGtz91d65ANdX8bO7XmZz4HQmYX7MUUoWSflDH6fA+FyiaaAjK6S04UB78nUChk7K9zRreJjqvLMG44VDq1G+v3vf7/Zsf8P//AP8qIXvcjs4mZd4H1WQ2+FyXTEJ1qYfL+3vlEzam1fTk1NSXV1tdAO5F//9V+bDw9bF6KFqeeVQDwEVIiMh5LeowSUQBgB27laIZEX/9f/+l9y7NgxM+X32c9+1qyZZMdmOzSr1dlIlIw348Np+L6+PuOh40c/+pHccMMNwU44lfHjcsVdkPOMThHmfbKwyxpLHiEOFsirGm+Sd3/w3VKQNS//+Kn98vm7f4jr/IdpdqwtW8Q9e5bOymnMCOLR4NIyLktzNZEBIdIYA3JN/6Qy7hqW/zrB8847z2y6ooUCTg1Tg801k1aYpNaP5T6Th9V8WkGWf6mJfM973mM2vtHCwOTkpIkrDzszoJrITObS9nyXCpHbM181VUogrQTYCVlNB1/EzoifK664Qu68806zk5XTfZ///OdNh3v69Ong1JlXUxOptfETNP3ORSaO9/D9tjPlXxu2/UuPO9xIQLMmFAQ4dd3d3W3WQdrOlGs/UykAGIGPa8nwZQm7W7m1gKvEVjhtvfs8ef+BT8pNv/9Kyfv1jPzvm98qDxz7H1hNoUCI6VGut6N9SPM8n+SHf6CLxFealjRrzNz/zDv4XY/UEYgsC7ac057iBz/4QTMAKSwsNJq+9773vWYQZb0asdzZ8mjLsPevLZeR90SLfWQY3rWOXmHwF7/4hXzkIx+R0tJS+eEPf2jqI73Q2GUa9r12/We098V1nuam9NjRBFSI3NHZr4lXAusjYDtVhuKd1mtsbDTCI6eLf/rTnxqXgQ888IBxnWg7L9t5stO1z3ttTdpO09tB2g7Q+5fPMkxqGDntyHBtOOxoOW1Nu4/sSLm7llPvNKz8m7/5m2EaGfse7/vWR4dPs5N1beutwKvHCg2HcwoaiqqzmLY+I+fI5/76/0rti58nC09Nye+89kb5+S+fppyIVZAOtJHZEDqhZ6QvYvzmX8qTFCKXTP/tGlHh/fxJI+R6pJaALeP2L8seyxV/X3bZZXLHHXeYAckPfvADI0xS+/f973/fLOngwXt52PJuLRnYMsxwvOXZbwDkJ0CyzNuwqf3kemQKj9Q60kA+jYiPjIzIq171KlPOvfXT1sH1lnWWOXcsowUvtaVu64SmQuTWySuNqRLY1ARsZ2i1N+yo3va2t5nOlRtXuDaLm2/YuVGDY++3vrj527qZ43eG49fJeTtcvoMHz/G73TDDjpp+vrnjmmsdFxYWzNpHCrI01WKf8f5NC1xKfDlY1LhyFptr4L0GU9TGlA+EQbNFhvHfUyJf+Mpt8gyafnzsF9Bw7ZN5eLPJdvJkF3bknILbwyyzRpIaSgiSmOKmsXFOYrsT2wgDYVOQpKipR3oJ2EEKBTiWOX64hIMCG4VH7vSnMEkTUX/2Z38mTz/9tBHgrNBn6wfLtrd82+9WwPOmwgqWVhD1lntq/Wmmh5vbWM+4Lpnl/I1vfKMJ34brV5fSS0pD3wkE1Nj4TshlTaMSSDMBqymxr2FnZzvOPXv2CO1Kct0hp/uoFfziF78od911F+wfXmQ+1OhccsklcsEFFxiBkIfV9kSLOjtj+x76t/75z39u1qY99thj5nPdddfJxz72MamtrTXT7Dxs58vnqAGlsBk5ZRntfcmdD8wxY/qa4i5ijDjAXBK80uRBpHRWsmQxt0AuKrteRr/1eal53Qfk61/9mvzxM4rktv/7F3I6e5ecdxY7ydFSZzmLxqXc7KOz8omPfUr+d/cn5GK4Y6TgyLDpKJHk4CwxuajqU3ERsOWOZYll1Qp21H7TNBTtLz766KNG2z04OCjFxcXGaH15ebkxXE7NIH3Rs/x5tZEU8rz1yAp9PMd3crDFMk4zPdR8cqqaHy7HaG9vl9/6rd8K2ja1z3qFV55Lb1mPC5/etM0IqBC5zTJUk6MENoIAOyirmWGnx++2s+U1drA8f/XVVxtXiX/yJ38iExMT8o1vfMMIldRW3gMPLjSETGGSa864bpHu5xgO/7ITpaaRHwp/nKZmZ00BkoIqDUNzx+y73vUus4HgN37jN0wHz+cjBVMb37R3qtAQZq3kml3WuzB5vct5HC60l+GlBm7izkIXCbs+KzlwhYhp7hde9wbp+9h/y9s7Pit9/V+WF9b/nuxZPoPrNPS8C+Z/Fs1U9o8nfiR3fOkL8pYPdsjFV1zpTmEH5xU3Ivd31jut0MgyZQUzKwzack9vNy0tLebDAQ19znMzF80EffjDH5ZTp04ZG43UYFLwpNkpWjlgOWaZfOqpp8w9XEvMgRHrx0MPPWTKcVFRkXFRyDJOqwJc6+jVTHpzwwq6jKe9Z2fllqY23QRUiEw3YQ1fCewQAlYg83ZY3o7LakcsDnai1MhQoGTnyHupaaG3mH//9383rgfZAXMqmh0pr7PDpA9jbmagwPia17xGqqqqjDbT77Dvt+/OdEe6BKlvEbPO+dwswylnbJRZocANoXJpFzSGECSNPUgIimedZ8nr2z8kf/TjE/LZnn7508YKubq8VEqv3QNBEVpL2oqEp5tXvea1Mru0aIyPU6jMwrUz3BCEKe9ddCtCn8V6pI2AXxmKVb4o9NG25Dve8Y7gEg5uOrv//vuDXp84MGJ55zpKDpBYvilU0tA5hUxu2rn++uvNAMtqF/0SGFnHeI/fOb9nY52j5nwhZ7dkLUH7mnNGclfmJXcZJu+ffpYsZe+W4gJ39iBWGHptexJQIXJ75qumSglsKQLs6KjFee5znyvNzc3ylre8JRh/K2BSE8kpQDvN7e0craYxFR1mKsFx3SM3yEB2dHfCZGOyGeZ7luA67gwES7qJwxZsTERDWwtTP+Lslv/z0Y/L44/9Ur741W/IDyen5HnwVpONrdhOwGoM787FVDhWWUJ/6R5mdaTxEKKdeSrzL5Vh2TLKMCkccnlHXV2dGRxZwdCv/Hqfs3UhlfGKJywulNhtluU+JotOoSxnn4s4Y2C05xQe3y0XXfy8eILRe7YhAR2ybsNM1SQpga1IwE47ezU9tgNlJ2unxCO1i7zH29FuprRnIW65+EBqNNGCS2xMU56Up+ZPSza0kfROcwZbrR1852YbB5Jibt758pfdt0nlCy4zIiGFw2yG4W6rkdNPPC5f6rlVHnva9brDFZHZ3L2NIGg6SI/NScAKi97YUWj0Cob8zrJuy3NkufYTMjOSWpYrFN4HBj4vz95zifzZ/s/ClScGdHl5KHe75IbXvSoj0dCXbD4C2uJsvjzRGCmBHUPA2ylSw8hO05pAIQRet59IKPa+DetYIyPk9xvpoT9rY/cR1+dOPS2PzvwMG4yOyuLZZayFhACJDnoJU9pZWPfIe6DzkYILLpaRe/9NnvucCyX7LCRPY0ElW747er/8/o2vlz/94/3yq9MUIl3hMgvPIyTjLlGPzUmAmnTvAIm/bdn2DpZs7HnOCpnec976kamUrsCHe1b2kvxiekLOYp1uT89t8tCPfylfHbpXGltbpe2tr81UVPQ9m4yACpGbLEM0OkpgpxKwHazVOMbiwM7VuylmswqSRkigBLh8FprFF8gVz6+S48enpedTt8ql2PhzyzvbTDJzsrC3eglrzjC1ubyMZjlrt+y64Nny91+/Qy6gT0MaJ4e2seq6Kjnw8Q/JHjyzQBM/xgg5m3Fs0ME/1yJhLHJ6baMIWHuofD8FRLs7m79t+WUd4Mc7cIos215BNFNp2WWMDCzJH2Dw0vknb5ecM09Iww2NctW1TdJ78JPwC6/GpTKVF5vtPbomcrPliMZHCewwAt5O0n6P7Di3LBJ2vpyqxtTfsZ9MoiNexLRgvvGP7TUMDouYcgYzg7lY+7grl6IgN9vskhdU/LYcuBrG2PHTeK3BpoZnFObBPJDIIjzgQM3JyWxKJQFN5JYltSMiHlm+4ynnkfdE/s4IuNynUULzJeecq+TDH/+U7D9wq9GBr6AkmiLOH3rsSAIqRO7IbNdEKwElkAkCNA/OyWwz5YPeNsuIf1zD6Hl7YAba6HJ4IwyN8zLN/uRmr0i+g53ZsBeZywAwbc2NOTyMhpN/jTIStifxT/tyg0SPFBM4g3K7eykXNk0ZcK4pi8bmKbZ3yRnYOt2da0q2HjuPgE5n77w81xQrASWQQQKhRpbfjNVw/MUnIPHR9wx0OZKH31mCHdrGWfZuo90xt3A9GqYSjT8abPNexs5u/srBGlIzfW2Cy0MI7Nz1UAKpJ0Dnmxzg5MrT+HD9Lt0r4RxMTgnsnMJgVepfqiFuCQIqRG6JbNJIKgElsCUJUMDzLhczUqGR+sx0Nr8tcy2jmdt+Gp8cdMf8BA54tIG06D5jwlqR0wuYEudhNtO4l3ibEUZpc1IPJZBiAjkoV1A4YnyTL1COQ4hcQvlFucWa33kKl8sB+1Mpfq8Gt/kJqBC5+fNIY6gElMAWJUDRkBum3YlnmwieCJxhx4x/ZvuNWePI1ZHu9Le5wzzMb7gHHfn3jz0kH+v6rDyBMz0f/jM5Mfs41le6wqi5PeJN9o2r/xrx0wihlHH5CZ6huSDzcc+sflbP7DQCpkyyKGKAwzWZ7rpM9y+X/Gbb8rzTwGh6dfZDy4ASUAJKIG0EArIiw3eFQn6zaxrdtxqR0VwMbFII3hw4Hbhfss7ISyqvka8d+gY2a8OX8hJ1jzBUjelxiqFUbS5D8IPXvDgOCohu5KyoGPpFAZKXEVD4xTjC1Vu2JQFYBzBLJUwhCZVf/jQG71UdtS2zPZ5E6RKaeCjpPUpACSiBDSeAntoIdfwfTcFAiMRX9t8OvlBTFL/5l1CvH97/85cVajc8wRoBJaAENjkBHT9s8gzS6CkBJaAESMAx6ybRZGMntnX9uIsbbeAvmwKkwynosAWYa3Nz944vQcHED583Ck2sdQspId2TvLB2eHqHElACO4uACpE7K781tUpACWxRAvRsQ3NBXKrI6WzXowk2NXBRGjY5UAiMdJMXLakheTAwdW1OuEJkaH1ktKf1vBJQAkrAJaDT2VoSlMAmImBdnZ0+fVpOnjyZwPTkJkqERiUtBPwUgWaJmkcA5NesgP9saiuffPJJExd+51Q3XebRI1BwY4+ZDPf6al7CfblyZmkZaytDdidXOF0OdWf8G3dSg8AKxbZezM3NpSZgDWXDCDz11FPBdo1+wuNfgrFhUdYXxyCgQmQMOHpJCWSaAP3p8vijP/ojee9732saWDa0eigBQ4BSY4Q0aQRJz8HLLDcUvKzwxd20i4uLkp+fH9BWskxRgOTT3HHrerzJwpT4ytnTsnsX3SzuRtnjDlzeGhIfQ++z5TIyBmHRSckP66Xlmc98Ztza1pS8WANJKQFve2YHNil9gQaWcQIqRGYcub5QCUQnQH+6v/rVrwImNKgwsuY0oj+jV3YGgUhNZFB081wwoqDHNA87auuLfPduCoWu4JdtDJ5THkUogYCWoX186Nh/yTf++W4YOl+G/b89Zvqc+kgH5fD6mhqpqXllALZ5Mu2HFYStFlXrQ9qRp/UFkZplHSCnFXdGAlchMiOY9SVKID4CbGQjp3e8QkF8oehd25NAuBgZTYyzU4RWgLQsKIAFy5JZWOlVamZB2NwllVdXSPkVz5HbPnEA9ig/Z6bBX/d7b5C/v/Nv3V3gCMwVHiNF2vQQ9/MTrfUhPawzEap3UKBT2Zkgnv53qBCZfsb6BiUQNwHbadqOUjUvcaPbATdGCm6rdYEsNzkwFOk3GOFSCWq6vYc3RO7yzsEGnfxzdsvN73yb3PrXd8nJx+fkfe97nzEltFH2pCMFycjfOyDjt00SmXccmPDQfNwe2apC5PbIR03FNiFgG1ZtYLdJhqY0GWsb04hWfnie09neg8pIuuk27hcxvZ1jnHXvEdmVLznZ35GcxV9hueQFMn/OxXIOp7+NIAkhAIFkO2cx1Z2L53LMdHe6Dm890DqRLsqZDZeDHB6an5nlnq63rd0qpevNGq4SUAJKQAkoASWgBJTAliWgQuSWzTqNuBJQAkpACSgBJaAENo6ACpEbx17frASUgBJQAkpACSiBLUtAhcgtm3UacSWgBJSAElACSkAJbBwBFSI3jr2+WQkoASWgBJSAElACW5aACpFbNus04kpACSgBJaAElIAS2DgCKkRuHHt9sxJQAkpACSgBJaAEtiwBFSK3bNZpxJWAElACSkAJKAElsHEEVIjcOPb6ZiWgBJTAhhBwYCg8K2tJsuCKBk5qYEh8WRbkaXgTgeHw0yIr2fP48Hyu5CzRI/ey8Z+9gFM5K09JlpNjvGprB7Ih2acvVQKbhoC2AZsmKzQiSkAJKIFMEaDkCN8z9JxovCfCYw0+9GLjuqbJC0QEfmmy6aUGQqQ3aqs9Lnqv6ncloAR2CAEVIndIRmsylYASUAKrCBghkv4MXaEym64P6ZZuBS4S6SzbobZyCQJkFkVM4ybRFTo9f1cFqieUgBLYKQRUiNwpOa3pVAJKQAlEEghoISkiLjlnzNWVM2fkJ5M/l8UlV7C899v3yMqKq3p0Owz+X1WRkSj1txLYiQRUiNyJua5pVgJKYEcT4HpGCa5odCeqs7Ny5Gtf+5pc8txLpPF1fyzzCxAqV85I15///1JUXCSf+sxnMOWNA/epDLmji48mXgkECeQqCyWgBJSAEthhBMy09K6AMJgFmTBHdsu50tzULM1vbMbFeVnO3o2Z7mwzlb0EmZMCpJn1zlLdww4rLZpcJRCVgAqRUdHoBSWgBJTANiYQ2CljtJJc/+jqGV3BMusc/F7Cmkh3EST/T/mRB4VKHnZCOxBM4Kr+UQJKYCcRUCFyJ+W2plUJKAElYAlw30zge5ZDkRAfqBodaBqtwCgOfuPfCgRMo3/E7xU17aNlSAkogQABnZfQoqAElIAS2HEEoGX0PSgknqXxH4iU1DlSnAyKlOa71UT6Pq4nlYAS2FEEVBO5o7JbE6sElIASAIGo6xqzjfBo1j/y/7DpQ00DVk+6mkg8xzv0UAJKQAmQgAqRWg6UgBJQAjuOgDsJFRQHg1+8XmhwD5dLgk1wyirbXldBcscVGU2wEvAhoNPZPlD0lBJQAkpACSgBJaAElEBsAipExuajV5WAElACSkAJKAEloAR8CKgQ6QNFTykBJaAElIASUAJKQAnEJqBrIqW+osYAACAASURBVGPz2fRXV1ZWZGpqCmbesmR5eRlub41PCT2UgBJQAhkhwDYoG2slHdiU1PYnI8j1JUpg0xBQIXLTZEVyEZmYmJDLL7/cNOJLS9HMdiQXtj6lBJSAEoiHgAqR8VDSe5TA9iOQhdGjOhzYovnKrLNaAPuXGkk9lIASUAKZIGC7D7Y/bHv4mwKltkOZoK/vUAIbT0A1kRufB0nHgA02G2srQFITmZurWZo0UH1QCSiBhAmcOXNGdu/ebQRIFR4TxqcPKIEtTUA1kVs4++zo3yZBG/AtnJkadSWwhQl4Z0WYDG2LtnBmatSVQAIEVIhMAJbeqgSUgBJQAkpACSgBJeASUBM/WhKUgBJQAkpACSgBJaAEEiagQmTCyPQBJaAElIASUAJKQAkoARUitQwoASWgBJSAElACSkAJJExAhciEkekDSkAJKAEloASUgBJQAipEahlQAkpACSgBJaAElIASSJiACpEJI9MHlIASUAJKQAkoASWgBFSI1DKgBJSAElACSkAJKAElkDABFSITRqYPKAEloASUgBJQAkpACagQqWVACSgBJaAElIASUAJKIGECKkQmjEwfUAJKQAkoASWgBJSAElAhUsuAElACSkAJKAEloASUQMIEVIhMGJk+oASUgBJQAkpACSgBJaBCpJYBJaAElIASUAJKQAkogYQJqBCZMDJ9QAkoASWgBJSAElACSkCFSC0DSkAJKAEloASUgBJQAgkTUCEyYWT6gBJQAkpACSgBJaAElIAKkVoGlIASUAJKQAkoASWgBBImoEJkwsj0ASWgBJSAElACSkAJKAEVIrUMKAEloASUgBJQAkpACSRMQIXIhJHpA0pACSgBJaAElIASUAIqRGoZUAJKQAkoASWgBJSAEkiYgAqRCSPTB5SAElACSkAJKAEloARUiNQyoASUgBJQAkpACSgBJZAwARUiE0amDygBJaAElIASUAJKQAmoEKllQAkoASWgBJSAElACSiBhAipEJoxMH1ACSkAJKAEloASUgBJQIVLLgBJQAkpACSgBJaAElEDCBFSITBiZPqAElIASUAJKQAkoASWgQqSWASWgBJSAElACSkAJKIGECagQmTAyfUAJKAEloASUgBJQAkpAhUgtA0pACSgBJaAElIASUAIJE1AhMmFk+oASUAJKQAkoASWgBJSACpFaBpSAElACSkAJKAEloAQSJqBCZMLI9AEloASUgBJQAkpACSgBFSK1DCgBJaAElIASUAJKQAkkTECFyISR6QNKQAkoASWgBJSAElACKkRqGVACSkAJKAEloASUgBJImIAKkQkj0weUgBJQAkpACSgBJaAEVIjUMqAElIASUAJKQAkoASWQMAEVIhNGpg8oASWgBJSAElACSkAJqBCpZUAJKAEloASUgBJQAkogYQIqRCaMTB9QAkpACSgBJaAElIASUCFSy4ASUAJKQAkoASWgBJRAwgRUiEwYmT6gBJSAElACSkAJKAEloEKklgEloASUgBJQAkpACSiBhAmoEJkwMn1ACSgBJaAElIASUAJKQIVILQNKQAkoASWgBJSAElACCRNQITJhZPqAElACSkAJKAEloASUgAqRWgaUgBJQAkpACSgBJaAEEiagQmTCyPQBJaAElIASUAJKQAkoARUitQwoASWgBJSAElACSkAJJExAhciEkekDSkAJKAEloASUgBJQAipEahlQAkpACSgBJaAElIASSJiACpEJI9MHlIASUAJKQAkoASWgBFSI1DKgBJSAElACSkAJKAElkDABFSITRqYPKAEloASUgBJQAkpACagQqWVACSgBJaAElIASUAJKIGECKkQmjEwfUAJKQAkoASWgBJSAElAhUsuAElACSkAJKAEloASUQMIEVIhMGJk+oASUgBJQAkpACSgBJaBCpJYBJaAElIASUAJKQAkogYQJ5OzHkfBTG/nAwrgMfmiffOruOSmtrpTi/I2MzNZ798LspHzvvm/Jt+77nkzOLsgzLnyOFG5lhguzMv6tr0j/3U/Ji6pLZSsnJbnStCCz43fLV3pG5KlrrpHSSABaX5LDmrGn5mR8uF96PvsF+UL/P6BeTsov5EJ50eUXSm7G4pDiF7FO3v0V6RlZklde85ytm44UY4kd3IJMjnxPnipFexz7xvivMh/uu0/Gxu6TkfvG5b9/MSu/mluS/AsvlGd4C9fsiAw9lC/lz3lG/GHrnWsTmJuWkaGDMvjQhfLKF1249v2J3LGZ+j0njcf8aLfTUFPhlBTkOXl5yX6KnLYjoUge3VvigLX5FHkvpDEd2yHok6O9TktFQZCdZSh5JU5d52FnJt2JnBpw2uIoCwVFJU5ZWZVT17TXOdB3yDk6M78qZicnDjt9B9qcppoypyDPLQtS1e1Mrbpzu5446Uwc6nU6W+qciqK8QJ7WOL0+maj1ZfOWgfmJPqeprMSp2dvnHBroRv20eZnnlLQddk5u3qivjtn8lHOk74DTVlfhFAXqZF7dwKZJw9RAW5S+qAT9y+o2ZnUCfc5MHHAqVvVrBU5JRY3T1HvU54EYp6a6naq8IqfpcJJxCQY970wcPuC0sG0M9JNs6/MKCkJtpaB8VdQ5LZ3dTh/yjP1CSduoG8LJw05nQ41ThnYl+T47zynrTDD9MdBspUvzU6POQPdet29KsZyyWfu9tA5286s7ZGikQ2R2WFqrb5A7jltRu0xa+nqkGWqTMMXJwoLw39wsRlAjgzI4eK8cX8TvhZCI7vkquFWPOAhMDzZL7ZvvlNmSKqlrKoe2ak4mx8dk7NgJWVw8LvfceoNUzx2R8YO1qRsFR8artFkOjjSLzI3Jvtrr5NZj4WWhtRTZOTcn09OI19CwDN15m9yDz59KkVS17JeDPe1SGRiiLyzkQwvdKPW4d+jeyBfthN+oJfmlUl1dLEODizETrPUlJp6Nuzg3LO31N8tQeZ/M9rSaetdYWyoL1W+QO48vyvGhIZk8WC/VGxfDhN+cX1wulcUL0h+7SCYcbioeKG0+KENoftz2pxbtj43kcRnsGpL9tc1SnNCLFmSkp0eOLXoTWyZ7j4xJT23iusTxgwflwcUTMt7VL7P17QnGxY34wuSgdDS3y+3HTuFEnpTU7ZWujlaUq9CM3cLcJNrXg9K1/6Dcces9ckcgzQWVgZaisF66hvCRaelvrJab7zoRuCNPqvb2y/76YskP77QF3Tba7lmZHh+Wwf475UE8ssCTO/QoLK2WUhkU5kIqj03b72VKyh/1aBClqM05EseLTx5pc0owamo65Ln55KjT29bkNLR1O6NbaqgeR4LTccsERrgFJU4DRsaRuKYOtThlVpMnFc6BiXREYHWYRzvLQhrRgibn8OpbnPmJAaelzGpmMJIuQ5mJTMDJPqfGjrbTqYmcX692wCeBKTk14/TWBDSx4q+JdLS+pIR0qgMZ3evWgYqISjd/tM9pa2hw9h6aSvUrUxjevBO1SlCjFqiTm0kT6U38xIGKiBmZJNq+kwNOXbDtDNTBsk4nKf3b/GGnpcjW4zInGSXejLctzytzWgamnJitFjTHAy1lTp7Nq7BO1qU1f6gpeF0kznjNDDgNSEuR1WymsNRtqaAguxSlWBMZTH+m+r04gWdsY01hceKjs8LaDmmvoMLRM6oprJb2g4MydLBDqhMPMpUDgy0Q1pwM7e+X0oPQ2LVXrtIyljb2S397WSAdx2RkbC4jaQovC5GL+Nwo5Jc3S/9wj9SgleOx+PDt0twxHK58zi+UwsD1tEV8YQyj+x4ZT9sL1hMwNPn++EKBan1ZD+A0PTsi/YMPm7ALC8MbsfzKVjkILWRPY2ma3r3+YKf7m6V9KIqmCQVyrSK5/hisL4TVfdEx6emKaFvWeMXkwS65Z7FMqio8DVBh8ao2do1gzOXZwR4ZtAo/eVj6exKLy9xwu9S+4Q552ChFS6RlCOWreY314ZjJaO7HWsiWEjeKZhYw/MhHnx1WOuPJ2OJm2dfMMCNDiwh8u/9MZz3IRL+XQP5kTIhcs7PzjXS5NLbXr94s4HuvnlxFYHZIhgq75GBz9Ima6uZaTBi7R6amIOIuC6Wtsq8RK3sCx4lBTEl55dx4GrVVUBI5MStDrY1y22RmhOtEYqb3bmECk1iyERQatlY6Fsa7pLl9WGa3VrTDYuuKuVXSAJWZPU4Mdkl/vIlaGJGeg8ekoG6ftJd7G6FkBOhpGcSmOCkrC7bDjMtgvHGZG5L21tsherpHSVu/HMSUc3xHsdQf7BfKkYs+QqRgOJBME1uJKfXqVTv84ouR3hUHgWQyJY5gk70lY0JkshEsb8eovH6TUUs2MZl+rrhV+rGuKrbC1jYUJVJZGW/jk6mE5EtlbXnoZYuTMj6dqXeLTPY0S+udW7S3zxwmfVOiBGAhIV4ZIdGg03o/13E2/inW7qX1LRkKPF/qO/ZJlVUkLt4rPT3xzTfMDUFzeLxEmvc1rt86yFiP9BwrlNaDQ7LPRgZx6eqfjIPDgozt75BgE5VXI/v31yYm+OXXyj5M9+Vh40GqdIf51ftkaF91HPHXW7YDgU0rRM6OjchkzFIN0yaz8WmIFrDVfnxsDAJIfPenNGOxFd8bTZrYGR+flNgxQdomx2UM98WZxKSjPDs+bjq0grr90hGr3i9My+TkbMoamngjnB+mtlxnQ7eAjTvcUMSysEZaZodapf799ya+ODrwjvHJ6bANYfGmN9Z9LMdmQxQk6djlxy+UOOtLAoz83jI3jfI9Ni7T3t1wfjeuOjeH+uyp8KyzKJvRq2ygjiAvycP76KqgvSdQH6cjbjZ1EuFMRn+ZuOlKURsCNonnHxMBRmwXTPlNrHwtYLNi6J0uu7XqQBhHmIrqamz2bI6MSdn3opdhzKY98ul01alyzHTUh2Y6HsYUddhMR2Q8zG9sOMF086mKdulIYgNNeJBYbtTTL8fLOhBWubR21IuNzcM9XTKyFiQI9V39wd2qUoANOY3FvpGOebK8uVUqUTrWel3MQHgRfcTI2PSat615Q4braKhdnVzVNqwZV3ODrZfjxmxeUke6ynhSkUnwoTjXTq77tqluz2LmNTfWTDgHqqp8N3pwm3vv3ianiiYIGgZiLh4+yUXqNSVOQVGFU1MXMIcCMwplNU1OZ+8h58jRo87ExIT5TNGUzMwRp7utAWZTYA6BJhHwKWrxbvuYcg7h3Q1VCDNwvaAAZhkORS5hnnemRgecAy01TglMQDSZILiQuSJodiEPG0Ei97HM0AwP42vMRtiF1gVOWUOnc3gq8h3rzhLHmR919paJU1DVGXuT0kSvU1PgxqcEC7B9LMkkFJmZ3qrQwvaCFt+NNTbAsE04eXXOQNjmmkNOQxwmflgO9taVOUUlVU5DS5vTRtM4TE9BhdPUPRqx4WjeGT1QFWYeAzsdXRMZJs8rfBa+n3SO9u116sqKXLMYdrMPzCfV7B1wJtaZdSeP9rrlGBukqlCOayrcMt3Se9jpXmNjTbz1JTFGkdkNsyKHmH7Ul7Iap66uCma9sBmqqMypatjrdA8ccUaPuvWMdc1rtenk1BGnr9OtzyV7aWZk3jna24B6Eyj/Bchzb4Gb4cY6miAB2ybkJTbZ8b2Cel3V0ucc9WM9P+McPQyTSE2sj+KUBTazzE8cQrko8WwewIaAmk7PBi6ka8BNF5rVQJmFeZS6bv/3RGLx/sZGjAbbZng3ZKCuh9qSAqeqO7JVAJEp5HMLmBYVORU1dUG+THMF2oZD0QoY032oG2Z3aAqrxulj3Zk57Oytsqa+aIplNGYbapIA81xNJaFNboaFN95NnnZ4Bm1FxMaamSMHnAbmUZAh2pyyFqcvWrzNS9NXp0721SEugY1oo3uxeTOUt1XdU+bt0Y55c3+B0xBoiA63eNJV1ZtY2ziDjYHgWGNtc80f8WywyXPq+mK3tPOHGsLaqWA40SIf47zvRqkwNthYs7pohoc4io2wyZp1yngdRfli3a4oMv1CnWlX0X6jLBSgDWvrHV07L7E56XAn5AWYMCyCWSe2e2WQHUrqUCdhUsqWq+imCJMt4/H1ezGyO6WXJKWhxQgsISHS2MwK3zE3hU6KwpvdTcYGKZYQefJwm9l5XFADYS3YsUAIbArZmfQ2at6MnkEjY9+T50qAESk76Qw0hBrihqAQedIZ7W5xasIaTO4ud9/LziIU/0CjbkJGx9ld4xQV1Tidhyack4H4UqhsKLGdaY3THbPRjQHf79L8hNPXAGEkjI/fjY4TJsih8TWd0TqO+IXICacTQq7NpwIMGsJfvXZl4q5FI5CU7XVGvQJGYBchBcTIjnv+5Iwzw44zIDhLSRuEeJybcT9hcQhwLKpocwaOzgQ6ZNhxHAjtfM+rWENIj8oSQkxfg9nlV9LUFyaMujYGvR17+O7sROpLMoxCUbZCd55TAYEkyObkEWdv0O5hKA/Jm/VlBrbsmiLqc8neI0hvnVNEYcvTsQcHaVN9Zuen5FVF1IUp7FJ3WRTU9YXZC52HAN7SFBg0BMIs64RQ292ABr/MqWlocfZ27sXgrShUztARziBfe1E/iioanLbOA86BA51OS1XonqKWI2sLX2H5Ou+cDJSfiV4KMS4TMpsKnDflK0IInjnUBluE7kDviFemQPyCu2sxWGnqm/DE56jTh4FSmS2/5l2otxPIE7RNBej0gm1fxYFVg9lVxXH+JMr+lDPaGVIE1PRiMGDjbRssPhgmREKoZ/mlgA/ObW0trsBv87Ykok7aF6e1TkE89QqRKC227BgmqOth7UQYjJPoP9Du454jgXxajxBpdokXNDiHPA1KWFu7Rt6Mtnn7shLHjMFSeSQkRKIdQHyS2ZGf8To6f9TprmNdjqw31CMdcGoCO+WpXFllEcTyte1bQZXTGVYxZ5wjnTVhwr2vELmuMr52v5fKYrBWWBsjRKLi9I4edY5CExj6jDqjo0ecQ32dGLWykfM3uzAzUBfS5kXTRJ48FBAAYEg2skXwmlOAZqt3YsptDL0N4dFOpyzQ0PkLkY4TMhPhdorhoGl6xTbU6FzrGpwGo/GChhLCcA1GK0V1vcHGe2aAgkKR03J4tXR20jPazFujUVkrs93r6MCP9DpNFSEhuKhmr3Noyk+F4z5x8nBL0FwB43A0vhdFvSs+IRKCNTSCQaG7gEJ0ZJBrVCaM7NsCDUIeNKiRKTzSEhAKilqCnULoDdAK2E44qumOk87hFjTkkdoyE8i8c8TTyFPLFvn+yNRE/iZ3jmaj5rsxdmwFNH8TP2vWl3UxQiqNGS7EAaaaIhXyrtYmED+Um9GAIB6qahCSPeZWCqqgZQsIyxSSW6AZKChpCmgiPQM3zGRE9pfzqENuWfE3RUJzJVYwzYNGtwYG9sOL/JTTXWXrbIlTUVHm1HVHmsXCDElFID15DRFa8cjci/6bGiRbrmNpvuZHO938RXs54KuUmnL66mw9LlndfgTbQcaZAnNDoMNjR1cHbTGEuwPxl8tQvYWWbCBKafYIkULHAVV7MQDzsEDn2R1sGwt8ZnHSW6cYk3AhEmX4cFOwfcPCHqRtdTtsUjDVC+UGB52hBCUtRLLeQUFQAocZYSTxjppgnaajjSic0Zv01dm6z78YWHk5e5An/TVMiET5GhiN6LPRf4+OOkcOD2AGD0oQtlXJaiIRyczU0RkogNx2nwbR/eiy3Qr2/5wxXHUTyrBpKzgL6VdWONjwDDhXOUVZbxlfo99LOsOTe3BjhEg7Eo3511+IdKClhNUfM5KOpomcCk6X+mvNQjYr0YgdXlVCKCGG3uGriUR70m2nZP2EyHDtHTVovn0A88xOYUBQmfDLw3krEDPN6xttGu1UUHj0NkD4DiENyoWoxwym5/v6DjsTfnUm6lP+F2IKkdB6TBzpczq904zQ0B7wHRKuUZm8HVpNX4QW0zsQqPBpgOMQIgODDd+RJpPubYR9hCx/OoGzgU6GnZp/Q8X7KPjYfPQXItesL+tiRMEuIHj5DnC8Qledvwb7SGiA4tXwrGZzNKSVzlstsEINEhQE6vxU5d6BYZSObqavxrQr/BSh3vsV9ZDQG+5Ja3V8o5+JT4hEegMCqzvNHyU82IENDiS4TCisOcNgNlg+OG06FSWQ+E4nLERS++8D0SssrEpbOutUIJmRQiRa67AZD/Ety7iLtj0p0HvSlKwQ6SoH/Po4CCDBWS5ooKOUVVP37YDGlNko9Su+rPW/K0yIjOgvovTd6xEiMeUVEt6ipHu9dTSolOHyjqidMoS8oBC4ut5M9da4g8Ao5YQw56EAsIPWVf3Dusv4Gv2ef26m7ezGbKwpaJKBiSmZmvJ+JmRi4qgcOdQtcMOEdjz6EXuv9gK83YR22fkZzq+srw0sYD4lszEW00ePwdpX8oMOqfOkFmZioq13nhuCOQdsAM4rLZZZbhJY9VkQmB8LHMdlZGRy7ZdHuaO0Hu8amZaZqQkZJecqjB3tcepe2EPskmihF1djp3JrvZQXRgk82dOn7pBG2L0qLi6WYjDLP+cCuer6m+XWe47LYkGZ1O3tk9HJEXi5SeLFxY2yb2+NVFTUSef+xhi71LHhJuGdDgsy3HPQmNYoLcQuyVX5hrycyw/l+6kx8RTLNWnN0uQI18zn1UpjfbS0w45btEueN8SsL+tiNImF9LG26pZLfW2JG5NFbAqa9km2Z+NUUT08K0WNbKW072+RqrIKaejaJ7EMNszB89GqA2UsGDSg+WErLi4NbmwoRH30v8eePQHvSj7vWfXi5E4swEZqv/HqVCDV8DgS9YA91Y5q6DV5nOiHtxFvnLx2RKulOcO2J/PgucOvvcgvLQ3Wi/DNkemtU1EZYltJx746+HgJHMd6pGs4YoMETOl09T8sJc37pNGvYEQP3OcKzfrAFmRNu7R6jE+4NxZi13hz0NzPqXvQDvg2yuvcZOgTq9inSqTt8EREnz2FPntCjo4ekYEDDYJlQ+s70l5HsSmq6y53s2Q5vEFF65RR8+s7GsVtuRbl3i6PnWDYDe7pulfY6pXVoz+MkuL8KG0M7Wems9+IEp20nk6r28OoMafQUF4K10Crj/LySqmtzpfp0oOrL8Z5BhudAgd3YuJrRGHJxztK4fAp6HkvznCTvS18h7E3FAgfQ2OmQOaNH5SO9n7/V+RXQBByL+X7dZD+T60+SwOo+BSjgBeXlkt1I3YYHoT7wHffIzRks3jsoPSM7ZOD1asfTduZvCoYj2+XcivtI36FhSgb5XChVg4XW+t6MeygwQZb/aowFmR6pF96hqZDVyL6jFWPrDoxLsMjrmOryUEYxR+OElNkXCDr4BqML4lyX1j4czI8OGLKBUBImCm6VfFY74n1MMKOTssNu7JZ1SIb1dJKngnsIF0j6dHriZvG0uZ+GWtend65yWHsmB0J7j5OOCttkKwf+B7LXRnjyL6SeZNOu6rjwyOmTsIcOQZYscAVS20jhMx7HzSxGoOh6YXmRt9S5pHXbYo35q/XKHfAPqGbwnTWqdhJLYZw2LrvHrndQD8BV4iD0lXfGhJ2YRB8aKFKumC6JlZuxH5L4Cra+p5786XxkL+rxXw42eiouF3+1HRQMISOst0Ol7Th740cQM6J6RrWLeBGSwHaZbRFkP99DrTV1bVSPos+ZdLncipPraeOzsG4+nggMlRaxIpXZaPUFtwud7AxOD4iw0iXacrG4ejENGd5Ul7NE4keG1fGE41pvPdvjBC5VuyK66Wxsj9JkwP5Ug7hQ6DJEuiJjMmBytLwNwYKItY0uPeuFZ+0XYeP8Em3yyptHYTf1Bgah7TEAXYYYYdzcLxcrr+dvI7LGDWdSVWOJCOYD21VK8zpJPl4Qo/Bb+xwP+yyDU5KYS3eCbuYtz8YS2SIETrCmjSNSRE8P0wK2vgUHtBaWg0fBOq09Qt+MU6IEQV9kTsov0DTOowGOlJpFhS6CtDBlPq9MNlzczIOH8A9sK83C21qazU8Mt35cEDwSjbMxJ5LWlhd8zXwbe8WrjXv5A0ccBXIg0b4PTUNc0c8F9eTm+ymtNapNdIKe4kdHRVyuyu5yeK9XdIz3ipukzwOQe5eya8fkNZ1g6XP7X70TIVSOtIl+8b84gUTTPmcjXPbpuMUYLtqpTmsIcDzxaF7aHoIVss2NOMrG2uluMsvPRt3LqyOwjzWdKyJE2800S8F2zbLFm3dNGac3CExlR35iSdsI8t44rGN64mNmc5eM2pwyQSbXY2la97oe0Nle0fQiOyDmHIcj2jtF8ZhgxJP5lVAg1TrG0SGToZsSM6l2yBk1BTlS+0+8ApcT9f0ftTXZ+ICKu4gbLCV05Wi4DMyAk1D6/q8KmDYzzbb2AhL1jZYtLTPoVwEZdv0iSphr0+KEeppe11gCth110ZlSOjA0hLYjGS7XdLcEXMKOhqK1efnZKwfbt6gFWkfLpb2QQiv/fukeVv5QA1olUzivd9X0zBnvFoVX88jUZ7bbKfTWafiSGt5+z5pCK6kelgOdg0Z7bZZWvBwCTSVsZbExPEC3sJp8aETUlCE2bZheBSDi8vVn2EshSkMLq2QU8PS0z8d8QI6YvAqHU7ArqrbIsUZk9TfBiPjgzB2ntFBbyKpwBRlsH1CWQtvqyIDgqay2M7PY+lA4OZZM7UZOJJpmje4jEemMhW/N6kQiXaxEurxJAR9A6W8Q4YG2wQmfqCMvBWuEwdDhstnhzHiHJKFkibpH9qH1TCb4zjBUdJGRQVrl6oDS9eSGl1tVLzjeO8cpo4aK6+SNw+KdIyMQZjEaDnZcuX7vkUYAOeQJIWHVxCYTcaweGJxWQ+jYmjQhzqrTId34o5WeN4YDzbOc2MwYH/wuBTVdcOocuR0XGJxNHdjOmpfbblcd/OwFPdgzelBDAQ2bY+VRPqCj2AKO5iuU1hLuoZwELaWbI1puvVEK2PPpqFOxRP3Qqyhbg00hLj/FNar94M9p7bnqjDFjGVWRVOQ0AAAEztJREFU6z2mMRMyslAjXWgzJidjfcalPyjRLsqDPT0yFiG0FNc3Bgf/jNf40PAagtF6Y7/G8/mlUh19oeEaD2fgMupJsFpNr9XfetcTY310sRu/0BIWaIvXs7QMQ+uU9xsZQOj3ik0rRPpFNpFzxY3QQE4OCN2jzg7CIj/WAZZWVkpl/X6ZbcTaKqxtaC5NJMR03FuMTRmBcMeHZHiNvoJ3LkzDW0XsIVQSEbWdVh4YbTiUJOIf5ZFp6B1r3y13Hc+Tmq7+CD+3UZ6J9zTXlQYGqg8PD0fdkOQNznoHWvMVXDNmB8Gz42nIb08M1s2oUGq74O3lMAZt6MKGsWasGFPw5ahrtR2TUn1wVMaHO6Ry3f3vJNao1cut90KL09QjB5OdplgT/ma4AW1VeUiYmcSOrJhKD3j4sE1CCbhvWbk6nXUqrmzNl+qO0CyWLD4oXa3N0oX1i/X7Wte/RICbMnqw9gOeZZoDQkn0aLkbbIKl4Dg2TQ1HNPyl2FRVZxsKrIjFOu/B6eghZvbKHKbt4f5w08QHqcdeiHKL6wTa1Zhxw3pvizuvXDB2NQf3E7gHhMCxJJQHG17GA9FP4Z9tK0RCdJQRCA75+4/CJRrU0WhoJ+FGbRxu44a6miFUrpdizGY9zsBL4a86sEOa/lLRGccMFY3QvuaeNGgswYYCLHYCN9euG0ycaU//bWM9++UeMy1cKvWpHiEXYkBSGkgDdnPuH4ot2S9MdsHX7hr5a5FgPU5wWeoitKeRnUcK0aWE0Rw6x4Oz0npk2mweWuC6H9a1Mfi9b4VQmYL4Lgzvl66A0+bK2uqtKyjFyYLry6zthFMjQzIW47mFaXcdJBYNSGNzZYw7N/mldNYpT9JdbVKUlrYUrhAbg3PacuLee+XhEp5bf7s4N0yLCwWYGYtvWpwbbODWOnCckmFoRKfDsrBYGve3Y/AWONiH7E9OGzkHt5hRiCRVaBZGsFFp/6QsrB9bUu/3fagQli4qrRQ5KUMxtTZwuxpYQJlXC6sRgXSUYu21LR3Hh7CPwfdFMU5mqIzHiEHKL2VMiAwztRP2I+VpQoCzMtSMhdKyT/rb7cjc3XkZ19uCG28wukPlWq0gxO5e7/qTddS+6ub6YGdx/LZWrPNa/TYTZ/iuPQjftWON+1NgYiKcwsLIoIxgV2JJ+/6oI+QFaMTGMPKKLSrFRTe0o9dNWHwPJXwXNi2Nu0ugua7Mb0ZwYY11qMHdrL7rZyqlud423yfkzvbW6FqA6UFphfa7PG5tRjmEAdt7LMo9+7tWret1cXBwZMEkUwjXz4hTzB1oZCexc3pfrRUX1612XJXb0xBK7TJR32kkCq9BFMmwCH/l+kNYlYTQiTgCz6/dhx26gUdODMnB4WgPeSw81OCZ6hjvXfclm6+LGCisryXwT00665QHv1ExwX+5bxIKpXGfRzDDLtwqaCf9sbL+eVMSy+wONt/th3mZomasw4+3fsCfdntN0PTQ4oPY7BMxp51fDcEUbr2saHT8jmZs9JtOIKcXZHKwGdPQHbJ6rBorPTFegb5qfwd8glfWB4WvGHcnfcm/DMUKDmu4sa7VFQJhuucglrlFux0zfiMP82IR1sKGdtHno60LuluHdnj/YJT+GuUrGL+wiGamjDPmnLUcgbo1cU7RoPifz5gQOTftqbFc4JpsyjzrxRa9HYcnfZy+bsVOzVlMEQ8OY6qNI3UIDHPxCq/FUHtbNQB26e0f8bY21HA2m111bsWNsrbBk8C5GInNr2dnYZuAh+WOxmpMnWCEYzdrQIM6jrU5zTCh0DHXLgc7yv1z0vfsNGxS7ZN9PYMyFrWsT0rPvn6ZrejE2h9/8xUL413YhHK1XHfdVVJe3y/Tvu+K/2TYJqJTcWwciBZ0hOAQXqSwey7fcoXJDjAIIcAgAFqBjsGQkDm7Ko+w1KA48OITWEIQTDR2BaNMMazKffukzg5LT9wlb2Ye9Y/B5qQbk4VZ7Abnur3KVhmvPyhdcXcemHlp3W+WYpiD63qx9nA6os7MjuxHpxK4B7kyMubTK8asL+tlBJtnsGl32zGY0hoelGFsouH6PQp58VY1bwvna98xkLx8rGeyx8PYdOft8OYmh6Rj/1BQyPTdpIY2Z80mx8MqmpDEdAU3eMadyGDUzZc5xMWG4RtXc1c51pN2its0nJChfT3+Hd4sTNFgowacBUgXTGWVhr3KKwREE5rCHoj5oxALNW2Noi3eIM/pERmZDPzylrdozLFxzD676LmfL09nnbKJmzbTLrRbGqVEVEL9ALcx5ijgOslS+2jEXzCd9Wz3Rbp8aqB5Zm4IdfUYgqttlESWVhZDcVAdfOtx6d/vbcd4AVPwXTBx1VQSyJtTcs/NtTBtNhY1LsHgMINwEDMF1R2z0j7Uv0o5wToQlp4ouMKgcFaiEctOji1KBewxF4ddXONHtPLifWyddbSwEUthbMN6DH277wwSBmZYg0qjEyUtWEbgbbe5bnZfRZD1XdAqd0W2uwscMAwGLUWcmIQM4knDust4zH7PfdHccKuUX3adXH81TMS1j6xdFtbImpiX02bG3Bsw/Ey2eXwg011Qg78frzWjcxLuzdBvw0I/Ph4fpt4HJw7As0AUi/o8nwfXVQVwyVVR1+IcgK9qH581Ef6ii3Bvk9PUUAN/u3lOSQP8GMMnczAeSA/D6j1qQ4JrpaA7Mri2WsvP7kSvUxdwzxct3nnwzXw4qoX9KNg8VvMF/nUbDoS7epufOuIcgGeYopoD0X2EIuiU+s6G31LricNNK9yM9U1FSUDs00GXe8xreISJdD7kdfnHdxVU1DlN8KNcVQK3k0jz4d6Q+7m8sjqnBf6Gq/YeDr7U65s2r6LJOdB9wNnbUOHUHAi5y5qBOz2sW4pR3lBemgbC/DnHTlXoqvX/bstEXgni2Nnt9PYiHk1VTlEZ3GmGea3Ig6/nJvhI9oSxRn1ZHyOve09/Bnl5YF0CZk2d8C2+2n0JPT+hu3b50b2kX2VkcuCpqiroDg51uKjKaWhqcOoq4P+9pMHphi/uGhtOQYXT0NLk1NSFXHTOwF9y8D1wZTblkwkhL1SITxRvFCFvV/Bq03LYt+3wCdpzah6uMkMu0fLgSSlWtabvbGwQBJ88p6wF5cjL5+Soc6AKbg+N/97VbJ2Th52WYLtSgDbX557YkQ2/OtMX5pKvZm+3093Z4tRUtTiHAonweqMxrjB9XjljPX4wv3za8HTWqXm2tQF3pgU1fi7t3CTT4wjGcM4qjzrenERYNWH+ySuczkg3u7x/asCBjGfKeB58u8fK71XZcXLAwbJHT/sSre886Yz2Njnw0xG8l23a3u5DzpGJGcd1NUr/7VPO0SMDzoE2+lZHe1HTGe6WMhgB9GEe132Me1nDAafv0GHnCFwdjhq3xfxLt4eHnIG+brRJNQ4Mjgfen7h3tYzV0aDvbMQVntoOhLlVgmviAbdNN+22b3s04fQa39s2rej/m/Y6B3p7UR/a4B+evuJdN5DBewrgdhSuVm11WE8ZX6vfYxYepo/3YHvY4oR6tVUlbN0n0ur2cH6022mqq4KPVm8lsN/Z4dWgsYdAtmYy4Ed5oNNpCyukbjgF7Pz39oa716Jz85YKj5Dn9/5QPCo6/fzHTjkDkWFAEKtDQTCNAAU0dJBldW3OgYEjAXeA8El7oAWFyJOBJiMhSNQ0OW2dfb5uwBjc/NRhuPorC3V0ng6xpftIYg2P5WmdxAcLO+KSVwR/tlVORRn82ta0ofP1F6K9WeIttHn0JbpmfvncgIa0DWWhLEZZqGuKLczaUGcOd0ctC01tB+AHPHinc7gtohxAwGjppR9zHGGdLISCuu7w/Jk55LSUBNz6kSHzH76GI/vFmSMo5z7uJPMg5B2A42DfdsgHkd+pk0d7HXgW8jRYbnkyjf/MDPznIn5soFoOOAOj9l2J1JeZdTGanzrk7K0pWl1uvWUu+D3k33nqUKfTVAMBMOK+grIap6kNAudqh7WmcXcFqkDdRVmuaRtwXNmULEL1Lg+CZR/CODkKF5oYHISXO9bHFnSwbr1i/oV3gAHGVU24BwMvZMwMhNQ2DCDC41vgVDS0OZ0D/j54w/ITHVcfOhimOSjMBtJeVNGANqzT6T7iL17MTxxyOhvK3HcXVcC/uDugLSli59XtrHpsftTpRZorMOANdXRu3a9CfG26/cpb7HOuP3svgwIMbgfY084cdg6s4oyBG9vnzkOG4fzRATP4CQkabj7ynraB8FYl1XVqog/tctXq8mbqTsNeT5thCcBlZxVciTLiEcdRCGt1VciPMOEuUCbhprQEPuCbeo/iqZPGR3lkm2fKuO1HIgMPvr4P5Q2D2sg8NGUG/Q7a7lA75wnk5FFnoLPJDJTD8j6sDyiBkLPX6fVrm9AmdkIAWlV2fOuzTbPP3wIILnE2fBtTR2cgdLeAE+sI2oOqBigYkK8VRRicQ/hGeYxs58Oyan7KOUz/85FlAP1LU99RtDt7oVyAjINw9/YeDrRR4ZmdaBmPv99DdfQoD4qaDiUnP0QrmxHns/gbhW2bHZhyxvozTFhiYX8hXBtiio3T2VTPcwrK/KV9Pyyehc3AY3PV0ospmXYf3btZC8j1j8UwPoqdFMFJtblpTIjAs0poli0lDLkpYRxzp3ML8CzD3WR4Qf66QsZ6wLERpAFT+giT7piMtxosEE7E1M0cXA+OTBcaF2yJPLeuqKfoYU4rG6bYNVyNHSthWQbeNEi/gCUMtTA+voo1lxNgmnYWT5VW+rtxs9Gcg9mIcUyVLeRjKhwGoMtTCGoBYY8h7DnEsLS8Gpt63JjOwkwIDGAmNm3kwzVpRnMwxNzaIZOtPdJRirIWmM5mXXOrGv+irsGE1djIg3K8tFOOYpNRpU8c4jq1gDqLtbnMj3LkR3j9Q15hmnUWNGhDz6c6x/WKTXsT2pzxSS7NWZB82IbkDvgUFrG4kz2H6bmxSZTE0kos1fCpM3GHtPaN6axTa799a98xR0seaDNmua6f/QntiRbTcgLai1UN3dZOa/Kxh6ketE1chgMHw+gbsWHSz1dntBegf6CpnmlTJz1sUVcn51BHA+10tMd5Pl1lfHYc9kZnS6W2PqLPixWZJK5tQyESfkmxqaZ9ugMbQTqwsmiNA4uAu6rrZbJnVvpr17hXLysBJRAiAJur7VhoPtaIQQpce6zZL00fhKCOZ2aHpHnNmxW0ElACSkAJbHYCm9PtYdLUsCAWnknefOecNB2CP+Z4woGB1NLSUmga47lZ71ECSsAlgA1ZjY1y+8PV0tcRhwDJhzBSL8VuJdWCaBlSAkpACWwPAhnbnZ0RXAtwD3WQ+/Ljtya/AI8mBxdapTkuiTMjqdCXKIHNT2CkJ2C3EVPV0bakRqRiEt46pmFouXbzp05jqASUgBJQAnEQ2F5CJCfUzDQZbEBBI9neH3LBFsmCax2HumBuoXUSZlkiTWNE3q2/lYASCCMQtKV6TPbDDMlB2JCKZgFkbhKDO5gSaR7GffuTXg2pGaAElIASUAKbjMC2WxM53V8v1TffE7TRhN3IUoEF6KWwcZafD7tpWPA/zYW0MBFY3tIj/T10ibjJckWjowQ2PQEY9KdgeMfxoM3DvKIyLEovxeJ91DXsqpnj5jNs/HkYC8wb4G3jICxh66qRTZ+xGkEloASUQNwEtp0QyZTPjcOS/P4eGBo/Jic8tmB5raCkCruV4Bmmo1Xqy3V1f9wlRW9UAqsI0NvFftnf0y9DD54IGeE29+VJSUWt1La2S0drow7UVrHTE0pACSiBrU9gWwqRoWyhaRFoQ2DhPb+Q5g3wKVTBcesXW03BpiNAUxc0QYQ5bZqR4mY1rWqbLpc0QkpACSiBlBLY5kJkSllpYEpACSgBJaAElIASUAIBAttsY43mqxJQAkpACSgBJaAElEAmCKgQmQnK+g4loASUgBJQAkpACWwzAipEbrMM1eQoASWgBJSAElACSiATBFSIzARlfYcSUAJKQAkoASWgBLYZARUit1mGanKUgBJQAkpACSgBJZAJAipEZoKyvkMJKAEloASUgBJQAtuMgAqR2yxDNTlKQAkoASWgBJSAEsgEARUiM0FZ36EElIASUAJKQAkogW1GQIXIbZahmhwloASUgBJQAkpACWSCgAqRmaCs71ACSkAJKAEloASUwDYjoELkNstQTY4SUAJKQAkoASWgBDJBQIXITFDWdygBJaAElIASUAJKYJsRUCFym2WoJkcJKAEloASUgBJQApkgoEJkJijrO5SAElACSkAJKAElsM0IqBC5zTJUk6MElIASUAJKQAkogUwQUCEyE5T1HUpACSgBJaAElIAS2GYEVIjcZhmqyVECSkAJKAEloASUQCYIqBCZCcr6DiWgBJSAElACSkAJbDMCKkRuswzV5CgBJaAElIASUAJKIBMEVIjMBGV9hxJQAkpACSgBJaAEthkBFSK3WYZqcpSAElACSkAJKAElkAkCKkRmgrK+QwkoASWgBJSAElAC24yACpHbLEM1OUpACSgBJaAElIASyAQBFSIzQVnfoQSUgBJQAkpACSiBbUbg/wEjycCAvULonwAAAABJRU5ErkJggg==" | |
| } | |
| }, | |
| "cell_type": "markdown", | |
| "id": "fabulous-milton", | |
| "metadata": {}, | |
| "source": [ | |
| "" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "id": "approved-sleep", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"440pt\" height=\"300pt\"\n", | |
| " viewBox=\"0.00 0.00 440.00 300.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 296)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-296 436,-296 436,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"102,-122 102,-236 424,-236 424,-122 102,-122\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"402.5\" y=\"-129.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_annotator</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"264,-153 264,-228 416,-228 416,-153 264,-153\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"382\" y=\"-160.8\" font-family=\"Times,serif\" font-size=\"14.00\">annotator</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-8 8,-228 94,-228 94,-8 8,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"73.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust4\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"16,-39 16,-114 86,-114 86,-39 16,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"56\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"51\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"51\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"51\" cy=\"-202\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"51\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M51,-255.7C51,-247.98 51,-238.71 51,-230.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"54.5,-230.1 51,-220.1 47.5,-230.1 54.5,-230.1\"/>\n", | |
| "</g>\n", | |
| "<!-- zeta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>zeta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"227\" cy=\"-202\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"227\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">zeta</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"51\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"51\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- zeta->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>zeta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M223.8,-183.8C219.51,-165.69 210.11,-137.68 191,-122 162.08,-98.26 119.05,-91 88.34,-89.07\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"88.19,-85.56 78.03,-88.59 87.86,-92.55 88.19,-85.56\"/>\n", | |
| "</g>\n", | |
| "<!-- Omega -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>Omega</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"146\" cy=\"-202\" rx=\"36.29\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"146\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">Omega</text>\n", | |
| "</g>\n", | |
| "<!-- Omega->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>Omega->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M138.37,-184.23C130.09,-167.25 115.66,-140.86 98,-122 92.66,-116.29 86.18,-110.99 79.77,-106.37\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"81.41,-103.26 71.17,-100.54 77.48,-109.05 81.41,-103.26\"/>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>beta_decentered</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"340\" cy=\"-202\" rx=\"67.69\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"340\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">beta_decentered</text>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered->y -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>beta_decentered->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M329.63,-183.96C317.37,-165.44 295.16,-136.53 268,-122 237.52,-105.69 141.28,-95.93 87.77,-91.62\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"87.92,-88.12 77.67,-90.83 87.37,-95.1 87.92,-88.12\"/>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge5\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M51,-183.99C51,-166.06 51,-137.56 51,-116.44\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"54.5,-116.17 51,-106.17 47.5,-116.17 54.5,-116.17\"/>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.dot.Digraph at 0x7ffa34152eb0>" | |
| ] | |
| }, | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "def hierarchical_dawid_skene(positions, annotations):\n", | |
| " \"\"\"\n", | |
| " This model corresponds to the plate diagram in Figure 4 of reference [1].\n", | |
| " \"\"\"\n", | |
| " num_annotators = int(np.max(positions)) + 1\n", | |
| " num_classes = int(np.max(annotations)) + 1\n", | |
| " num_items, num_positions = annotations.shape\n", | |
| "\n", | |
| " with numpyro.plate(\"class\", num_classes):\n", | |
| " # NB: we define `beta` as the `logits` of `y` likelihood; but `logits` is\n", | |
| " # invariant up to a constant, so we'll follow [1]: fix the last term of `beta`\n", | |
| " # to 0 and only define hyperpriors for the first `num_classes - 1` terms.\n", | |
| " zeta = numpyro.sample(\"zeta\", dist.Normal(0, 1).expand([num_classes - 1]).to_event(1))\n", | |
| " omega = numpyro.sample(\"Omega\", dist.HalfNormal(1).expand([num_classes - 1]).to_event(1))\n", | |
| "\n", | |
| " with numpyro.plate(\"annotator\", num_annotators, dim=-2):\n", | |
| " with numpyro.plate(\"class\", num_classes):\n", | |
| " # non-centered parameterization\n", | |
| " with handlers.reparam(config={\"beta\": LocScaleReparam(0)}):\n", | |
| " beta = numpyro.sample(\"beta\", dist.Normal(zeta, omega).to_event(1))\n", | |
| " # pad 0 to the last item\n", | |
| " beta = jnp.pad(beta, [(0, 0)] * (jnp.ndim(beta) - 1) + [(0, 1)])\n", | |
| "\n", | |
| " pi = numpyro.sample(\"pi\", dist.Dirichlet(jnp.ones(num_classes)))\n", | |
| "\n", | |
| " with numpyro.plate(\"item\", num_items, dim=-2):\n", | |
| " c = numpyro.sample(\"c\", dist.Categorical(pi))\n", | |
| "\n", | |
| " with numpyro.plate(\"position\", num_positions):\n", | |
| " logits = Vindex(beta)[positions, c, :]\n", | |
| " numpyro.sample(\"y\", dist.Categorical(logits=logits), obs=annotations)\n", | |
| "\n", | |
| "graph = numpyro.render_model(hierarchical_dawid_skene, (annotators, annotations))\n", | |
| "graph" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "id": "uniform-chester", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"402pt\" height=\"324pt\"\n", | |
| " viewBox=\"0.00 0.00 402.00 324.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 320)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-320 398,-320 398,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-194 8,-308 330,-308 330,-194 8,-194\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"308.5\" y=\"-201.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_annotator</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"16,-225 16,-300 168,-300 168,-225 16,-225\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"134\" y=\"-232.8\" font-family=\"Times,serif\" font-size=\"14.00\">annotator</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"279,-8 279,-186 365,-186 365,-8 279,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"344.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust4\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"287,-39 287,-114 357,-114 357,-39 287,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"327\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>beta_decentered</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"92\" cy=\"-274\" rx=\"67.69\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"92\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">beta_decentered</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"322\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"322\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered->y -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>beta_decentered->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M105.31,-256.2C119.03,-239.42 141.54,-213.42 164,-194 205.5,-158.12 259.88,-124.48 292.81,-105.36\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"294.98,-108.15 301.91,-100.13 291.49,-102.08 294.98,-108.15\"/>\n", | |
| "</g>\n", | |
| "<!-- zeta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>zeta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"205\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"205\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">zeta</text>\n", | |
| "</g>\n", | |
| "<!-- zeta->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>zeta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M211.62,-256.24C218.28,-239.95 229.24,-214.71 241,-194 254.88,-169.56 259.88,-164.3 277,-142 284.85,-131.78 293.97,-120.87 301.95,-111.62\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"304.67,-113.82 308.6,-103.98 299.39,-109.22 304.67,-113.82\"/>\n", | |
| "</g>\n", | |
| "<!-- Omega -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>Omega</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"286\" cy=\"-274\" rx=\"36.29\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"286\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">Omega</text>\n", | |
| "</g>\n", | |
| "<!-- Omega->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>Omega->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M283.59,-256.02C280.6,-230.61 277.23,-181.46 289,-142 292.11,-131.56 297.87,-121.15 303.71,-112.35\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"306.59,-114.35 309.49,-104.15 300.87,-110.31 306.59,-114.35\"/>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"330\" cy=\"-160\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"330\" y=\"-156.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge5\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M328.02,-141.7C327.14,-133.98 326.08,-124.71 325.1,-116.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"328.57,-115.64 323.95,-106.1 321.61,-116.44 328.57,-115.64\"/>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"367\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"367\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M361.38,-255.99C355.37,-237.79 345.76,-208.7 338.75,-187.49\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"342.01,-186.2 335.55,-177.8 335.36,-188.4 342.01,-186.2\"/>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.files.Source at 0x7ffa34453490>" | |
| ] | |
| }, | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "graph.unflatten(stagger=2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "id": "seventh-principal", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"349pt\" height=\"388pt\"\n", | |
| " viewBox=\"0.00 0.00 349.00 388.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 384)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-384 345,-384 345,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-258 8,-372 330,-372 330,-258 8,-258\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"308.5\" y=\"-265.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_annotator</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"16,-289 16,-364 168,-364 168,-289 16,-289\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"134\" y=\"-296.8\" font-family=\"Times,serif\" font-size=\"14.00\">annotator</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"247,-8 247,-186 333,-186 333,-8 247,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"312.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust4\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"255,-39 255,-114 325,-114 325,-39 255,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"295\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>beta_decentered</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"92\" cy=\"-338\" rx=\"67.69\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"92\" y=\"-334.3\" font-family=\"Times,serif\" font-size=\"14.00\">beta_decentered</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"290\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"290\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered->y -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>beta_decentered->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M101.39,-319.91C121.33,-284.46 170.55,-201.32 225,-142 236.6,-129.36 251.29,-117.13 263.77,-107.61\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"266.07,-110.26 271.99,-101.48 261.88,-104.65 266.07,-110.26\"/>\n", | |
| "</g>\n", | |
| "<!-- zeta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>zeta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"205\" cy=\"-338\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"205\" y=\"-334.3\" font-family=\"Times,serif\" font-size=\"14.00\">zeta</text>\n", | |
| "</g>\n", | |
| "<!-- zeta->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>zeta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M205.84,-319.95C208.14,-284.92 216.5,-203.05 246,-142 251.47,-130.67 259.88,-119.71 267.88,-110.72\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"270.47,-113.07 274.72,-103.37 265.35,-108.3 270.47,-113.07\"/>\n", | |
| "</g>\n", | |
| "<!-- Omega -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>Omega</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"286\" cy=\"-338\" rx=\"36.29\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"286\" y=\"-334.3\" font-family=\"Times,serif\" font-size=\"14.00\">Omega</text>\n", | |
| "</g>\n", | |
| "<!-- Omega->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>Omega->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M278.82,-320.25C265.22,-286.13 238.61,-206.34 257,-142 259.99,-131.53 265.72,-121.11 271.58,-112.32\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"274.46,-114.31 277.38,-104.12 268.74,-110.26 274.46,-114.31\"/>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"298\" cy=\"-160\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"298\" y=\"-156.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge5\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M296.02,-141.7C295.14,-133.98 294.08,-124.71 293.1,-116.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"296.57,-115.64 291.95,-106.1 289.61,-116.44 296.57,-115.64\"/>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"298\" cy=\"-232\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"298\" y=\"-228.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M298,-213.7C298,-205.98 298,-196.71 298,-188.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"301.5,-188.1 298,-178.1 294.5,-188.1 301.5,-188.1\"/>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.files.Source at 0x7ffa34138430>" | |
| ] | |
| }, | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "graph.unflatten(stagger=3)" | |
| ] | |
| }, | |
| { | |
| "attachments": { | |
| "8705823d-a263-4cbf-8b22-d70e5bd2af06.png": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxoAAAFSCAYAAAB11Kl6AAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7snQeAVNXVx8/u7NKLAlLUCCsiqAg2FBEQwYYNNfaWEHuNRqwxn4ktxhaNRo09dmOPvWtExd7FDoiCCijSl23f+d3Zuz7G2d0pb2bfzJ6rj9l5894t/9tOvyV1msSSIWAIGAKGgCFgCBgChoAhYAgYAiEiUBpiXpaVIWAIGAKGgCFgCBgChoAhYAgYAg4BYzRsIBgChoAhYAgYAoaAIWAIGAKGQOgIGKMROqSWoSFgCBgChoAhYAgYAoaAIWAIGKNhY8AQMAQMAUPAEDAEDAFDwBAwBEJHwBiN0CG1DA0BQ8AQMAQMAUPAEDAEDAFDwBgNGwOGgCFgCBgChoAhYAgYAoaAIRA6AsZohA6pZWgIGAKGgCFgCBgChoAhYAgYAsZo2BgwBAwBQ8AQMAQMAUPAEDAEDIHQETBGI3RILUNDwBAwBAwBQ8AQMAQMAUPAEDBGw8aAIWAIGAKGgCFgCBgChoAhYAiEjoAxGqFDahkaAoaAIWAIGAKGgCFgCBgChoAxGjYGDAFDwBAwBAwBQ8AQMAQMAUMgdASM0QgdUsvQEDAEDAFDwBAwBAwBQ8AQMASM0bAxYAgYAoaAIWAIGAKGgCFgCBgCoSNgjEbokFqGhoAhYAgYAoaAIWAIGAKGgCFgjIaNAUPAEDAEDAFDwBAwBAwBQ8AQCB0BYzRCh9QyNAQMAUPAEDAEDAFDwBAwBAwBYzRsDBgChoAhYAgYAoaAIWAIGAKGQOgIGKMROqSWoSFgCBgChoAhYAgYAoaAIWAIGKNhY8AQMAQMAUPAEDAEDAFDwBAwBEJHwBiN0CG1DA0BQ8AQMAQMAUPAEDAEDAFDwBgNGwOGgCFgCBgChoAhYAgYAoaAIRA6AsZohA6pZWgIGAKGgCFgCBgChoAhYAgYAsZo2BgwBAwBQ8AQMAQMAUPAEDAEDIHQETBGI3RILUNDwBAwBAwBQ8AQMAQMAUPAEDBGw8aAIWAIGAKGgCFgCBgChoAhYAiEjoAxGqFDahkaAoaAIWAIGAKGgCFgCBgChoAxGjYGDAFDwBAwBAwBQ8AQMAQMAUMgdASM0QgdUsvQEDAEDAFDwBAwBAwBQ8AQMASM0bAxYAgYAoaAIWAIGAKGgCFgCBgCoSNgjEbokFqGhoAhYAgYAoaAIWAIGAKGgCFgjIaNAUPAEDAEDAFDwBAwBAwBQ8AQCB0BYzRCh9QyNAQMAUPAEDAEDAFDwBAwBAwBYzRsDBgChoAhYAgYAoaAIWAIGAKGQOgIGKMROqSWoSFgCBgChoAhYAgYAoaAIWAIGKNhY8AQMAQMAUPAEDAEDAFDwBAwBEJHwBiN0CG1DA0BQ8AQMAQMAUPAEDAEDAFDwBgNGwOGgCFgCBgChoAhYAgYAoaAIRA6AsZohA6pZWgIGAKGgCFgCBgChoAhYAgYAsZo2BgwBAwBQ8AQMAQMAUPAEDAEDIHQETBGI3RILUNDwBAwBAwBQ8AQMAQMAUPAEDBGw8aAIWAIGAKGgCFgCBgChoAhYAiEjoAxGqFDahkaAoaAIWAIGAKGgCFgCBgChoAxGjYGDAFDwBAwBAwBQ8AQMAQMAUMgdASM0QgdUsvQEDAEDAFDwBAwBAwBQ8AQMASM0bAxYAgYAoaAIWAIGAKGgCFgCBgCoSNgjEbokFqGhoAhYAgYAoaAIWAIGAKGgCFQZhAYAsWMwJIlS+Thhx92F6murq6Ym2ttMwRyikBJSYmbQ3xeffXV0qFDh6zKe+aZZ+T222+X5cuXZ5WPvdx6EGDs+TR8+HDZa6+9pEePHlkBcM0118jkyZNtf8gKxfBfpq/79Okj++23nwwZMsQVEOz/8Eu0HHOBgDEauUDV8owMAlVVVTJjxgzp2bOnjB8/XkpLS22hikzvWEUKDQGYDC42fuZWtumzzz5zzMq+++7bMDeNkMgW1eJ+3wuL3n77bZk+fbogTMo2vfLKK9K/f38ZNWpUw/5g4zBbVLN/f968eYIwYtasWbL++uvb3p09pC2SgzEaLQK7FZovBNiU2rRpIwMHDpQxY8a4hco2kHyhb+UUGwKeyMtWk+FxIb+KigrZcsst3a2yMtuSim3MhN0ePwZra2tl4cKFoWU/ePBgt0eQPwIpSy2PwOzZs+W9995zFaFfbO9u+T7JpAa2qmeCmr1TMAh4xsI2joLpMqtohBHwG31NTU1otYSA4IrFYqHlaRkVLwJBYtMzHdm2lnxgXEhGzGaLZnjvBwWD1i/h4ZrvnIzRyDfiVl6LIWCETItBbwUXCQJhEXZBOCAgEASYWWORDJIcN8OPwbAJTyNqc9xxGWQf7ONg/2SQlb3SggiYfrAFwbeiDQFDwBAwBAwBQ8AQMAQMgWJFwBiNYu1Za5chYAgYAoaAIWAIGAKGgCHQgggYo9GC4FvRhoAhYAgYAoaAIWAIGAKGQLEiYIxGsfastcsQMAQMAUPAEDAEDAFDwBBoQQSM0WhB8K1oQ8AQMAQMAUPAEDAEDAFDoFgRMEajWHvW2mUIGAKGgCFgCBgChoAhYAi0IAIW3rYFwbeiDQFDwBAwBAwBQ8AQ8Aj48L2c6xEM78r9pUuXyuLFi2XBggXy8ccfy2effSZffvmlfPXVV/LDDz+4AwwXLVok5eXlwqGanTt3ll69erlDMfv27SscSsjf/Na+fXt3mK0/Y4r8fQjZsEMHW++2bgSM0Wjd/W+tNwQMAUPAEDAEDIGIIBA8q4a/ly1bJnPmzJEZM2bI+++/7xiM6dOnS+/evWWdddaRrbfe2jER3bt3l06dOrmrurraMSQwHpyuDTMybdo0ueKKK6SqqkoGDRrkmI6BAwfK6quv7t61Q20jMgCKsBrGaBRhp1qTDAFDwBAwBAwBQ6AwEYDBgFl499135fXXX5dvvvlGli9fLmuuuaYceOCBsvbaa0vXrl1XaFxQI1FWVibt2rVzDES/fv1k8803d8/yzLfffivvvfeevPPOO+5Cs9G/f38ZPXq0rLHGGu4502gU5riJaq2N0Yhqz1i9DAFDwBAwBAwBQ6CoEfAajKAm45NPPpH7779f5s2b5zQO48aNkyFDhki3bt0azJsSQUk8RTvxd77zzKqrruouNCFff/21vP32247xePPNN2W99daTXXbZxWlLPOMSrJedzp0MVbvXHALGaDSHkP1uCBgChoAhYAgYAoZAjhDwxPz8+fPlzjvvlGeffVZGjRol22+/vdM2dOnSpaHksEyc8OPAXwONxxZbbOGYjeeff17OPPNM2X333WXMmDHOhwNfkbDKzBF8lm3EETBGI+IdZNUzBAwBQ8AQMAQMgeJGAN+Lc845R/r06SNnnHGGYwJw5vYJZiRXBH+PHj1k7Nixzm8DU6077rjD+YL85je/cSZanhEyk6riHoO5ap0xGrlC1vI1BAwBQ8AQMAQMAUOgCQTQGDzxxBNy8cUXy2GHHSYTJkxwUaMSifrE701kmdZPQSaCCFU77bSTbLzxxnLqqac6c6oLLrjARa4ieXOqtAqwh1s9AnaORqsfAgaAIWAIGAKGgCFgCOQLAZgLLkLR3nXXXXLDDTfIySefLLvttpszV4rFYk57kXjlgtmgDF+ezx+tytVXX+2iWh1yyCGCzwjO6fwOs+HrH/TfyBd2Vk7hIWCMRuH1mdXYEDAEDAFDwBAwBAoYgcrKSrn77rudNmPSpEnO4ZtoUVFJRK065ZRTnL/GcccdJy+99JILjQuTQcoF0xOVtls9wkUgOqM63HZZboaAIWAIGAKGgCFgCEQOAULV4gcxefJkOeGEE1xEqaglz0hMnDjRRaG68sornTZj5MiRkWKIooab1eeXCBij8UtM7I4hYAiEgEAytbpJwUIANsUswN/bVBc77n6scWIyh5ph5mEpGgjgTMzBcJzXQCr2sdgY6n4+8gmT8eijj7oITzhgRykF+8fPq/Hjx7t+IyIWWpcRI0Y4cytLhkAqCBijkQpK9owhYAikjcBzzz0nl19+eUPEkrQzsBcyRsATC3xinlHsRIEn4jgB+R//+IestdZaztbdUssigHkQzN9JJ53kDoMzJqNO7rnnHnnyySflrLPOcgxYlIQByfrHzy2iUtGX1J9wu0OHDm21/dmys6rwSjdGo/D6zGpsCBQEAjNnznTRSg4//HCLVpLnHoNggEDYeeedcxYSM89NSqm4pUuXSocOHeSggw76xcnJKWVgD4WKwPfffy9XXHGFO9W6tSfmIyd9Q6gfc8wxMmjQoIIQwnhGiEhYnOvBKeUcJojDeM+ePY3ZaO0DO4X2G6ORAkj2iCFgCGSGALa92B9D+CaTlmWWq73VHALe5AGHztaQgmOLNsPgrrTSSq2h6ZFuI+MwV2c/RLrhSSq3cOFCueaaa2THHXeUzTbbLMkT0bvlmQxqxhxDk7HXXnvJeeed5w4V3HPPPc1fI3rdFrkaGaMRuS6xChkCxYGAJ3Yx2/F/G7ORn771Gg0fkjI/pbZcKX5ceaLWGNuW64tgyfSH74vW1ieseX7d4xMtQPfu3WWbbbZxZn2FwIAF6+jbstpqq8kee+wht99+u4wePVpWXXXVhtPDbX2PxryLWi0svG3UesTqYwgYAoaAIWAIGAJFgQAE+rRp0+Sdd96RLbbYQlZZZZWC1e565mnUqFFOa3jfffeZWWxRjNLcNsIYjdzia7kbAoaAIWAIGAKGQCtDwGsA8E955ZVXnD/D5ptv7gIz+N8KERK0FrSBg/wefvhhIQBDIbenEPug0OpsjEah9ZjV1xAwBAwBQ8AQMAQijYA3I5ozZ468/vrrghYAvyFvThbpyjdSOW/+RhsqKipk6623lksvvbSRp+22IRBHwBgNGwmGgCFgCBgChoAhYAiEjAA+UphMkTbaaKMV/FVCLirn2SX62vD9gAMOkClTpshnn32W8/KtgMJFwBiNwu07q7khYAgYAoaAIWAIRBQBzKaefvpp5wDesWPHiNYy82phDjZhwgR3Vo8lQ6AxBIzRaAwZu28IGAKGgCFgCBgChkCGCPz4449Oo7HllltmmEN0X8MvA60G5yQRUWvx4sXRrazVrEURMEajReG3wg0BQ8AQMAQMAUOgGBG4+eabZfz48TnRZkDo19bWSk1Njbv4O99O2ZTXo0cP2WSTTZzmhjq0RD2KcewUU5uM0Sim3rS2GAKGgCFgCBgChkCLIwAR/vzzzzuH6WI8X4L24RTO58iRI11krSCjk2+mp8U73CrQKALGaDQKjf1gCBgChoAhYAgYAoZA+ggsWLBAvvrqKxkwYED6L6fxxqJFi6SysjLvzAzME9oLPocMGSJTp06VpUuXplFze7S1IGCMRmvpaWunIWAIGAKGgCFgCOQEAST4wWvy5Mmy7rrrSteuXbMor0400/pLs9E/pa5W/1ECX69vZ82UKa++KfMXLtbHquTj916TG6+/XeYuWCK17rncpaDGAqfwLl26uDM1fCpGLU7u0CzunI3RKO7+tdYZAoaAIWAIGAKGQJ4Q8MzGSy+9JGPGjMnObwLGguQYDP6AefBflsvUD6fIjFnfSvuO5fLIXTfJ8cf8Qa676zGprml4If5+Dv6FkfBngrRr107WWGMNdwK6T2Y6lQPQCzTLsgKtt1XbEDAEDAFDwBAwBAyBSCEAAQ6R/cknn6wQbSozCX9JvG3uQ529+dD89R+9yqRn79Xk1defkYvOPVemfvChDNxsKznwoImyUqcO8WfzhExZmdZFtRrffPNN3k248tREKyYLBIzRyAI8e9UQMAQMAUPAEDAEDIEgAjAVs2bNkr59+zqmwzMfmTEb5AyTodoMx3DE9FJmRhmNAQM3lPWnfyfL69rJwYceK516dJMu7TtKWekyfQbyrjxYrdD/9m1r27at9OrVSz788MPQy7AMCx8BYzQKvw+tBYaAIWAIGAKGgCGQYwSaMwcK/s4ZGvhnYF6UXVLfD8dkoM9AWxLnN0r0j7mzvpbqyjrZYMSGssaqfaRUlosok6HxoPTJbMttutYwTZ5xisVi0qFDB+cM7jHInKlqulz7tfAQMEaj8PrMamwIGAKGgCFgCBgCLYiA98XwjIT/zpkWnAhONKiwTwOvq1NGQ3mO0pLlUr18gXz6+YcS67WKrLpqTymtW6bsiLIaqt0o12hQZZhY5ZbXaEAfDNBqLFmyxEynWnBMRrVoYzSi2jNWL0PAEDAEDAFDwBCIFAJeYl9dXS2EsF24cKH89NNP7m//iTaD+zhJ+xCw2Ws2YDJKlaFQOEqq5WvVZkydtkC232FTKautlqrStmpUVSPta5dLXYmaTJXkicugOsrUlJeXOwbLm1NFqtOsMi2KgDEaLQq/FW4IGAKGgCFgCBgCYSMQNGPyPhJNleE1EsmemT9/vsybN0/mzp0rc+bMcZ8wFsuWLZOqqipHYHPBfBDmtU+fPo7wRrvBJylTAjweP4qD8dBkiBBQCmZj/rwfZPbcn/Rk7j4Sc/eUEUGLoUwIrhx1deV6qXmTux83t6op0bC4+mzMPeccPkJJtI22YkJlyRBIRMAYjURE7LshYAgYAoaAIWAIFDwCQWYj2JjE+54RWbx4sXz77bcye/Zs90kUJT7RSrRp08ZdMA58YhbVu3dv6d69uxL7PWSVVVaRlVde2WkxSOeff76QX/v27bPDURkDx0DAceCtgaKitkSqFy6RKtVkxNrgGM6PNe7/6pI2sujHb+WFZ1+SDqv0kzEjN1UGQJ9QDQdnayjr4Tw4wmMz4kwUDFewreajkV23F9PbxmgUU29aWwwBQ8AQMAQMAUNgBQQSGQuIYhiIGTNmyPTp0120JM6AeOCBB5wDNwzDSiut5D432WQT9zeaiuAFUR00h0rUmvAsfhowIVklVUE4VgJTKHzCnXZCNQiqQVm6WLUXqk2oLtWoVMpElJfW6HdlhPS/bz75XOZ+Pl+2GLmxxp+K6XvVymDUSrV+q9VMwtQ9wIjhCA6TZQxGVr1dlC8bo1GU3WqNMgQMAUPAEDAEWjcCMBiYOnGmBdfUqVPdJ0wGTERFRYX079/faSh23HFH2WOPPZxTs9de8MkZEc35V3ji2n9CeKPtmDlzpvTr1y/jTqhzkaacKiP+oUyGYxCUUSAS1TxlkubMWSir9eysPhqlUqWsRNvaSmnXsa10X3klmfMjUajQhiiDoUxKnf6tLEe9n0fG1frFizBuP/zwgztLI1MTsV9kajeKBgFjNIqmK1dsiHdA83anyaQM2JSy8E6ZMkU++ugj+eCDD1zsbxzauHgXSQ4SntVWW00GDhwogwcPlg033FA22mgjtyAHJUVeosNnsvKKFOqUmxXsi0QJm8+E+9j90hevvfaak7Rxfffdd65PcDAEW6Rl9A39su6668r6668vG2+8say33npuk0zMn+/+FNeUK1xED3rsgzjztx+z/I2Zw5tvvimvv/66w/zjjz92RAqOnfzGePfzAeJh6NChbj5suummLl6+J0b4DOLP3zYnimgwpdGU4Ljz44DX/XzkbyL1vPPOOw3jjrUYQhgfAC7s3r2Enfk+ZMgQN98322wzWXPNNRv1ASikccd+5VNw7/DzMzif/D3/jscYiTr72fvvv++u9957z81jGAXWSOYqa+RvfvMbWWuttZzpky8L5gOmwzMF2exfvq6clI3GZIsttnDlNMesNDas8M0gxV27dR3XG3UlMVmpd3f5dtqrcvihR8i4URtLm3bKgpR3lq12GC8De3d1zAgmUgt/nCM33nmbfPvDEhm33U4yarMhTiNSz7I0Vmyz9307+aysrHTmZmuvvXbDe8Hx3mxm9kBRI2CMRhF3b3DxxkmNDQ2ntldffVVefPFFR1Sh6mTxZePaa6+9nBNb586d3cXC6Dc7FpHPPvvMSYMeeugh5xi3wQYbyLhx49z73bp1c0QYCyrlmlNY4wPLb4xghQMd6nWYiJdeekmee+45t0mCJQzd8OHD3caIpIg+6dSpk8vYRzqBMfz000/dBnvnnXc69TXvbbPNNo4Z5B2YElJr7xe/8fHJfIB5gJF47LHH5Pnnn3e4w6Rx8BR21+CIeQQMBsSKD1vJpkp/vfHGG/L44487x9DVV19dNt98c9lll10cEQNzTlx539fgnw3x4jrQUkEi4Mcd6ynjzs/dyZMnyzPPPOOIYcxrGG+jRo2Sgw8+2I1B5jrzl3nrhT+swzwPM3zddde5dRbTnu23394R07zjCWg/3gqN4KO+PtF2BGJIzJl33vEaRgz8/HqJNJ15CLMwaNAgWWeddWT33Xd3hC9MWlDIEsw/zAEVzBfs6U/6af/9928QaGSyBmA4hWJD3TI0aQBb565RJn3XGii/O3IfOfvcf8qFrzylGos2joE455x/ykP/vQMrK6lRHw5RPceCBVWy0+57yIbr9dcsqlWzUa7PhpfoG4RhY8eOdZkW2pgLDwnLKRkCxmgkQ6UI7vkFjY2NBQAiCsbi7bff1pjbq8qYMWPk5JNPdhJxL2lJXIDJAwc3iC4kZ0hmPOEEgcYi+vTTT8v999/vFnaIYrQe5GmMRtODyNsI0y8QrG+99ZbDeNddd5WzzjrLqd2DhEIwN+5DANM3ELWjR49u6BecF+mXRx99VG699VbHbCBxZ/OFeGnN/QJuaItgzsAbIgViBUIE7DGb8I6ciXjzHWYDRgRijjmByQXzAQYEQgcm/IgjjnD3t9pqKzfHIHwgFjMhMJoeQfZroSBA3/v5/u6777qxxzoMcwoxfN5557m5yXOJ48SvyYxLhA0QzltuuaV7DgL8yy+/dAKKf/3rX258Dhs2zGk6WIcZ18nyjCJutJO5idAFgRjMGH/z+f3337uLfYyLvYc5yDvMw3322cetccn2ncQ9LV9tB3eIbvqFPZi+Sezb1OoSZwecj4bTZKgPhuopMINq06G77L3fYbLB0M3lvY8+l0XLy6W8rlLemfKSChJfkN7l1TJr5mdyx71PyK8POEgq3IF+epifakPqnAFV9snji9CGdZX9iHuZtTX7+lgO0UTAGI1o9kvatUq2oLI4Q0ihlkeTganHRRddJKh0ITh5J8hkJC4OfsHw9/133oEQ3mmnnZxd61dffSX/+9//nEQdjQjljBgxwm2kiXnSsGT30m5wgbzgNofAwouEjgWZfoHJoF+QhB966KGOAfSpqX5JbLrvRz7p21/96leOgPniiy8cMU2/sAnTLzCLMCjJ+iDZvcSyovw92Rzw2LPZ4/T57LPPyiuvvOKwAe/x48c3REqh/cnyaKrNvMNcAlMIQaSYSJ3Rkjz55JMycuRIJ6WG4fPaqGT5FTr2ydrUmu75cZM4hrjPeIAZgMHADA+BzG9/+1s3V0n+nWRjIHgvMW+YXgQIMBXkBxODhuSmm25yBB+aDsYd2rXgGpTYL039llhm4rtNfU/2LmUh/WbdA4vg5RkLiFb+5pN1kD2FvQQNOmsb8xZtIXMZzTxMhsfS18e3KRm2yXBuqh2Z/jZgwACHO/sjgoxMUzw+FEwoOgoMqNQgStcd0bMyYrESGbTeMBk4eJizhCqpK5UJ2wyXm+5/XhmKWvlaTbdqdZwMHrKh9FNm1p2voZiGnVhPGWesgZYMgUQEjNFIRKSAv/vNDkkXJh1oGzBpYiFmc0P6wwIVvHxzky2+/l6y33jP30dqi4060niIOHw+kKpDQG+99dbOdCe4mTWWXwFD32TVfb9g1vTII484JgNTCTQRYOTN1JLhkuxeY32W2F9sdGxwu+22WwOhQ9lI2+kXTIJgfHjPX002pMB+BHe0DeB+7733uvmACYrH3se3DzarKbyDY76xdyCMYOogjtByoEXEVBG7+gMOOMARhdTLM5IFBqlVtxkE6FvmFJ9oMZ544gnH7GMKCcOJAIa/E8dPc+POP9/YczC7MBUIE7zgB60mZe+8886O6SAF3/frEp/+78Q1xJfrf28sD94LPsNzMPeYM6GFYO7BGMB0wUQg4UdLwyfzkL+9zxnzE4KVvYu9w88VXzdfDvf9upWIS/B74m++TWF/JpZDPRE0sOZmymigdYCnQP2AJkP1GK7aZZhPOXMq9QeLVcvM6dM0atY3skrvPjL5pTdk8KABMufTj2XDYVvIBuv2lFuuvla6n/5HWXft1SVG5CoO4nAZZ5d8m2H4GN/+eyIW2ZVibxc6AsZoFHoP1tffL75Iy//5z3863wrs9FGjo5bPR4JgpkykuhBXbCxoU4455hgn8W2NiX5h0WWzPffcc92muu222zrmzzN+4OKfywVGlIP2CbMKGEGk7TCDp556qpMMUr9i2RgSCSYImzPPPNPhDwGDs3wy86iwcQdPcId4guFAe3X88cc7f5u9997bFZfLPg+7PZZfeghATP/1r391knvWRK9JzDWDCcOB0AdzIoQYMBposVlz0HpA2PvEGPVjEIa8uXXAP+/Hrs8Hxor9BsdnLsLEwuxgxsk7fP/888+dGSHCD+ZEYqhY9o5kdfNlFer6RD/8/e9/l3333deZXYab1B9SzaBIn773plxw0XXSrqeaRW+3nayycle5TxmcmUvay1ZbbyDfTf9QJp1wohx1/BGy89jRyrTwXvaMBmUjyIHRmDhxYkPzbG0Lt6cLPTdjNAq9B+vrz0IMcX/ZZZc56Sm24khV82mT7xcXmIrtdLHDwfw///mPHH744fLnP//ZSdsKdcPIZpiwCGOHjZkZ2gWkdcmk6dmU0di7njjwJghIN2EEb7nlFvn1r3/tiCG+F0vy4wviB9OlU045xUkTMTGBqWI+gIVnSHLZbsqgLBh97OWxLb/wwgudiQvzwTM8rXFO5BL3lsg7OO5w1j7ppJMcoX/YYYc5DVe+5jttpy6UB1FP2Wiz8fsiCtNf/vIXNxZJwTmA6SvMOExwsvHo1xH8J2AmYBy4iMwGI8F8oyxMnGB08E/gOwzXNddc4/yf8OPDtyyIRRA3v38klp/4vSX6N9MyEWxQf4J1sP/PGY2CAAAgAElEQVSFnWIatrZWj/0eNnobuXzNwVJV1lb6rNZbOsbKZdJfzpIqXYN69OopV1x7lcxfViW9VuvrtBn+pPBs60OfIbiizzFr832Vj/U127rb+/lDwBiN/GEdekleCsWkhqi6+uqr3UYBMdmUPXjoFdEMWWCCGwLSm379+jkpLuYiENg4xmGyE3wu8b1c1C2fedIXfpHl8+6775Zrr73WOd7jxIm5Uj5TIr70C4Q32oyHH35Yjj76aEeE0C++7ryTa8lrWBgEsfZ5Mi9whL/00kud6QKahWB78rUJBjddiCv8mogOBFGHhJNxEXTY5XkItnwKB8Lqh9aaT+JYwkfijDPOkBNPPNGtw8y3fM+l4JyHuSYaFX4bnFSNVuPKK690fg7UnfGGEIS5whrA/uHXAbQSMBKE2/UXfn8wEKzpXAgrCH6AthCNBGPXf9JuokMRBYvfseFPTNSV8pJhlLhPJL5bCN8RJozRoBCYbiIAJPkxk6zN6bWJU75xDm8jnbv1lq7demro2yq1pyqT5arpWH3tAVLG9zoNj7xSN31uufPhqOLAPi0orgtJr8Tg075/EG7+8Y9//IVGKvOc7c1iQ8AYjQLuUSY6RBUShRtvvNFpDlCRk4KLdD6a2Fh5ENY+5OchhxziwuKyOeVTwpeP9ieWgZ/MHXfcIQ8++KDb4LGfZoNpDKfE98P63lh5bIAwf0jbITSQVO6www4rbBZh1SHX+QSJPSLX3HzzzXL99dc7HxiYjCjgDkEHYQHhCcPJGSlHHnmkI/DQPJIaI7hyjZ/lnz4CwTHH294fAyIerRXaDPrbP9fYPEy/5F++0VzeEP4IniAGCYmLtuVPf/qTYzJ+//vfywsvvOD+Zkwee+yxLlACocwxcUILAUOB6eWkSZMcU8HazfOJ5Qa/+7/5THY/2IrEfH7ZwsK8Q9+z/6HdQXNMMAqEb6RQ2gyTpuxCqfaFdojUlJbpeFNmTy2iytFaqE9HXYkyurAV9XtPDUIkLT8Md3DGwPMaFhzTKcwDQ2tXYXa31boJBIzRaAKcqP+Es91TTz3lCFo2DKS3pChKRFEhwwxB1FJviFwkXcWYiJYCg4ET4P/93/85EzI2naj1C5sdBBFEB9J1Ng4k7vnwYQir3z0TwSdmGv/+97/lvvvuc75JOJOSWoLRSGyfJzrBHEIN51wOZUSbBOEHAcL4iEJdE+tu35Mj4PsKJv2BBx5wATgg5hl79Dd9nb3UOnnZ6dylntQDsyXO6IDpQMOKCdTXX3/dMOYYl9QdgRXjMfE8DtpDXiRPKAcJZhu7K/aKxwrtEeapjA/8GLyvRtbMBvZPqqfgtO8S9hc1oyJ0bY1Gm4L5KNX+wg2jVj9r66r1d+pHWFvVcjjfjux0GuxzV1xxhfM9tL5fse/t24oIhMHYGqZ5QoDJ7C+IQhz9IKwIjYr0ls0kKEXLU7VSLgab4RNOOME5JBONhQ2a9tAW366UM4vQg8F+QbIJ84ekBw0OIRnz6ReQDixsdNQNJ/EDDzzQnb2BPwltCPaJ3zDTyTtfz9IG6opU7b///a87TBIJrNdkUI8ggZSvejVVDvWB6IMB5RwENmvs40lRxrqpNrW23zxhxVxhzmAOh6M/hHrwzIQo9GeQoIV5wDwKLTO+dGiXEfrgP4BJFJpXTtD2kfA8o5TIWPA9kVBO/N7axkRie/1+jOM7wQDQEnG4algJNoOTv9XpwjEYuvvX+14ogwuTwW88o+ZSopqOWtFwuGg2XBzc+G/p1iVIf2BJQdvQ2Fjfp4tk63reNBoF1N9+0+KTQ94wu8D8AhtQt6AooxHF5OvFBgxxNWHCBCfxZ6PDUdET4tS9EBesYL9gfoBfBpIriI5kG3JU+shjjSST0IRER7rtttucQycHg/E7fRf1PgF/winfcMMNzv8EX4igaUdU6h+sB3XGrAICj7l8+eWXOwfx8CPTRGW0FVc9fF/CKN5+++2y1157OZM4r7WMyrxPVg/8NmAw8J/A1PD00093UaK8P0VwHU72fnH1ZO5a48cIn/jJEAQEMzUcpyHQs06OV8AUKq654JuekuHuBW65v38+B1wZxAwL9kwGr2Neh0ANIWdU1tcMm2Wv5QGBaFKmeWh4IRcxc+ZMF7Jw//33dweOsQAUymSH2fDnRxCRyodA9BL0Qu4X2oI/BueJcFaFZ0AKoU0QSETFIs7/BRdc4LQajKmo9wsYE1oT9T0befDQw6jjTt2RHGNGRTAHCFZLhYGAn9uswwhLcKSOqqAniKgnFvG/wIwK5gItIBL3Pffc0x18x7wvpLWrEEYM5mr4wOFcz6nw+FYWauK09nvuuccJdXBwLxTao1DxLoZ6G6NRQL3IhEYCRVxuTHIIGRg1u/9U4MQHANU9EXeQQtMmUqEuWL5fsLVHM0DbCoHoCPYVbUDCTjQkiN/TTjutIBhY/H0wUWMeeC2M12ZEdTwFJYP8jTkLxOrf/vY3Z0plKfoI0G/4X6ENROCDJsoT6FEm0qmjnxcEIUCbQUQkNILcj7LpbfRHRdM1xLEeP0rMnb2pZNNvRO9XGCQiqyFUg3Hy5zBFr6ZWoyghYIxGlHojSV3YtCCc/IW6Et8GTHMgDP3mEFWiKkmT3C2I2eOOO845THN6ciER5p5QDPYL2hkYJpzyYaS8fW4h9QvtQfJGrH0cqpG8Ra3+Hnv/iRMupkdoBbyZV9Tq3Ngc8PepL2aEmN5g5w/zxBV1bVJz7Sq234NrMZJpIpuhwcQMhj6M+lrs50WwnkilL7nkEnfuEsEULOUGATCHKUU4iNYIrbHfP6LMmAbHPH9zFssjjzziLCkI8OL37UJbc3PTy5ZrYwgYo9EYMhG5H1yEUHPjgIUzH4SJ39wKcZJTZ2KrE6UFqRrhYAupHcF+4TR2iA7iiXtHUN83ERlGKVXDE+qYVSDlpG+i2i/gT6hkImahhQF33ydRxz44b/nb1xuzL/BmLBUS453S4CrwhzzBxafXot1///1OYALBSErs1yg2OVhHz8iiHcdkkqiAqZwQHsV2Rb1OjBsuNK/sd2gEzjzzzBUCb0S9DZyhwuGL+FkSRj/RH6mQ9u+oY11s9TNGowB6lAnsVZYQ59hFFgshgi8DJi/Ed/cbdgF0iasi/QLRweFw/kyKQu4Xv1HwSfQZ+oWDvoJMVRT6xhN9mBpVVFQ4zR7zo1Cx99ovPjGhQjvGKeK2cUdhtP1cB0+k33XXXc65d+ONNy64NSuIqG8P444wy0TKw8mX+1Gb89EaCZnXBmzRbCBMQBPL+oomKcp4UzfWI4LPIAzhtPtCNNnOvNfszWwRMEYjWwTz9D5RQT788ENnIkLozkJOQYKWTQ5/AKSDSEy85Md/Rr2dn3zyiUybNs05Uhd6xKDgZke/YHv+0ksv/aJfotAnHH6FyR0EH+OJ+haygyWYwmgjISf0LdLlQmO8ozAucl0HtGich3D88ce7cecj5hUiU8ic8cwGp3YTpAMn38rKylzD2Ory9zjTcP4Gb3w1CPWOoCrZ3hfcC/MFWOL+y3fC8iLUQdvKuPcm274t+aqblVO4CBijUQB9xwR/6623HOGBxDO4aBVA9Veooq+73+T4kdNmOTiOBbdQGAzqzdkNTz/9tJP8I+kpRGLDdw51D0rWfb/QN5xP0RKbXmNjGy0Spl0EE4AoD46pxt4phPu0A2YVJ13m++effx5pSWchYBp2HTFdxa/hV7/6lWMyCnktBhtff39iPRENEZ4U8loWdp+HlV9wjeVvBIaYp3Jo4lVXXeVwR1ji11rvwxFW+anmQ/mUDd3x7LPPOn8Szlgh/Db+SMUw7lPFwp4LBwFjNMLBMae5zJ8/3zlhYRuJb0YxJkyPkO4gMSyUhJ0tFwdcFeMp5xDy2G9/9NFH7oyNqCTU+EjZ2KgxQyimBAHCieaYUxD4wVJ0EECw8M4777izT9A8FVuCgeJQVc56gJm3lDsEIOaZ65h+YorE/vHPf/5zhdC3LcXsUTdC2KJxwUyQ0M1HH320CxTCb5YMgXQRMEYjXcRa4HmIWcJejhkzpmglTRxixEbHaeekqC9oSHzeffdd54QM4eFTS20OYQ9L2oHkCiaKKFqvvvpq2EVklB/jglOYCQ+J+UHUx0kmjQRvzBMwlzQzlkwQzM07U6ZMcXMBgU+xzPMgUhCSEL7MrR9//DE3IFquDgG/bqFFRjv229/+tuEMI8wmOceIlO9xRr1mzJjhTKU++OADVy+EgN4sON/1seFSHAgYo1EA/QhBy2nNqC+Z6P4qgKo3W0W/cCEh3HDDDYXNvBCIx8WLFwtmBvRJr169iqpPgp2GSRhRqPCJoF9aom98dBzKRp0PAc7fSAGLdeNjvk+dOtVJOGkrJhXms9HschLqA8FxRx+gRWMu+EPtQi0sAplB9CJYQJvx/vvvuxr5Od8S8z4CkOSsCsF9HIEOlgoc9Iq/IkIdzqhg7pO8CZX/DPZJOv3i30vMj++sL6ytaDAIdcw4nzRpkmy22WaOuS4mmiNnnWoZN4qAMRqNQhONH5jgLDjDhg1bgckoFgLLL5SYwOAPgMkIYXyjnjDxop7UObhpFFO/0BY2GSRuc+fOdWZtECP5TkFMkbbC4GErXIzJzwcID5hZf7BXsYyrQuozP9YhxFiXGP8QYGibijExxvA3o41o0H1wBcakjb9wezzZnsFai6nqtddeKyeeeKI7U+fII490DG5iSofB4F3/fGPvEfRj3Lhx7gDdv/71r8LhswjR/BwI1jexLvbdEGgOgbLmHrDfWxYBDoHDP+PUU09t2YrkqHQWML+R4QTbs2dPx1jxd5QT5mwQ34SBLcYU7BeYXE4O/vTTT1vMR8hvkByUxlXMuDOePJEHgYv5FIx4SzB5xTi2U22T7wPmgvdT2mWXXdzrxUh80yYuQqhjo8/BsJhTBdeCVLGz51JHwOMefGP77bd3p4gTIOWMM85wJm2EgkewxR5Jv3in7FRL8msoNMWCBQtcyFr22ieffNJpM3D25tDQIHORat72nCHQFALGaDSFTgR+Y4PDKbd3794hSpU4YKokoXW6ydTfKamLS63rSrjDFX+2pK7+ncRXs8TJS8uQpOHgi8Q6ygkJJ9oMfARY9HOR4n2hKm2plbIanaalelK0xFxvaKybFYqM95P2Usj94/sFpo+/2ZxagsDyGyS4YzuOU26HDh0apHS+nk31QxxPNTv0ozzo0wic7rv+o3/XSaletVLKPCip0fv51+LQZnB/+eWXZezYsW7+W8ovAhBcMBuML4Ih8De+ZPRNpkyfvqoJ+/uYjrASqa2ulHlzfpT5OrcwBVxF+7wsxojTMafPMqUZjQxMN+u1LrlOa621ljz66KNuvmPS2hJzPtdtjHL+nrGDmcCMaffdd3fRnx544AHnK4EvIyatrAkEjmAfQsPLbwgk/OGl+HlgBgfD+NNPPznmEeEYUa4wP+Vi/8IPA6bG+2EE+zuVtTXKWFrdooGAMRrR6IdGa4Gt7DrrrNPo75n94Kksv2nx/ecLQiu+yynz4YgwIpDo7uc3u8wKTfpWcCGDeGRjg4iHqIzqoUDUjUhg+GbkLDmKREMMllRLWZWeet2m1hHA1fpvjP5x/aL/6P/8wh/0UFgp2C+o9CGs2LA80R9WOanmQ7kQejAZbKT0QfqbIKA54Oqvn0uPk3Ew2/xWKrUlMHhQfFX6d/4ZDcY+pgsvvviiI3KjruFLtR8L6TnGl1+DkPiSvL16xu2oq1HhQbVjJBYtni//0/DY06Z/L127dZaF836Uqq6ryoF7bScrd2iDiEHHXkzKavUwSv3MNZNBe7k4m+a2225zaxwEraXcIuBxD5bi1zbWPZiBffbZxzllI3hEC8HFeghzgCkfn6yLrNOeCeZ33ofhQIvBGEY7ikCPQ38PPPBA529k4Wpz27+Wu+hKZinSCGA2hYNeuEk3Lc9ruIwhWNUO1/2tZCvEK1I7/ZvNrrSuUjc8CNncElwslCyCRL3APj2qdvgs4NjOV1RUhNstgdxK6uL9UCptRMqrpaZETWe008pcvwU0UtpZpUoIe9I53ofhVot+ganCRp3NirMr8pn8pgujg8maN+eA2UhVsuyUcw63+hQESn/z+rz4LFBCULUZtcpkKLr5bGpDWRAIMN4Qe57IbZGKWKFOKoxEmLWJuZA+g/sziPFlt1zqdA2Z8dFrctudj8see0+QEcM3lumfvCy/OeoiWbywRk49ZjeBtyhD+8H8rh+vuZjfiV2M6RTzqqU0mIn1se9xBGAmCJjCxZhkD0Ioh5YCYYRnJmAsGKOs07yD8A5LAS4EFv7AXz+OsxnP1jeGQCoIGKORCkot+Awh5pBk5DyxA6oUV0UgKm+L6y8gduIbXHx7W2Gz84xKyDufN0XCRKYlGY1kknu/IMNozJo1yznP5SwhXVTAyyGOS5G3L9Oi2jmpZq0yISUwhr4P9Lm4RUWOOkVLHjRokLzxxhtOo5BrRqMx7FH9f/HFF86GnJTeBgkL4Qa5/hsctHGmrc4ByKXPqLlUeU2JVMWUkanlnI4Ag+JKzl3ybadtQUKAMZdMw5ceBrmrdzHm7PuCMY+5ycCBA10zuZ8p7jWlMYnVLZOaqsUy+ZEHVIDTXcaMHSUrd+kkvVYZLqt2XCrXXnOHHH/4XtKhNC5scGU1jM/cI015rL3Mt2zamvuatq4SgusBDK+PRAkK/ObHa7DPmuu/YJ6tC01rbT4RaBlxXT5bWOBlYUfp1dfJCLDMmqeEE0yFUqp1ahZVW1ul5JVedXopQcO3khrua+76O+Su1MWkplbNV2A+uBzxFSds+deTuJnV5+e3sFNmEUU6E3Zy9dYr1cSzMDz/+te/XNg/tCzcg+hDguTt5tPJM9Wy0SBV6VVaQ31/0j5QzUatsoDV9JSaUCkhDMNRp33ikqOhIZJTb1+qdeE5GED6xMd3T+ddNA/pJiKtXHLJJUI0FH94GOXPnj3bEUFIXNNyhqznIzw6rk4wbGqWUqK41qn4GDOVOmXa6M/ymuWKs2LMpc+mO3bSbW/i836c8UlbvSQdKfOFF14oN998c+IrK3z3dfYEiK9/NmPVv5uuWSPv8U4QxyCewbYG65nsb9/I4Pvc83Xzn0EwkuWTyj2fL+MObZ4Pa5usjCY7I/CjGkOpdrKNLK/5Sd586mUpb1cpsbZoCHWu69hrozvygmVqphXT9U/NJkUZ3Todp3Hz1dzM7WR1R5hgZ7gkQyb/95jDyS5q4u8H/2a98PeDfzeWR/5bZCW2NgSM0Yh4j0PQorIPLijZV9kTfhCmrFYQrNVysx4UtKqqVrtC2JSr3Se2nzE12SlrL+3adJEpr73piq5h43OSXza+cDc/7E3ZyD1BmwpB0Nwz1Lm5Z5L97tqqTAX2sPvtt5/TYDzzzDOOYILpwAkv3H6hxPqkZSxXbOtqKuWjN9+SfQ46Uu10d5XtR20h1974H5m/ZJkSxvqsEiNeFh+U0wdyCuVPiHvaTEqGVbJ7POsJXW8vnOy5ZPcg7h566CEXBQX75E8++cQRPpiwYA7g30mncW60IvnDxUXHuIqV5b/qYHn+uX+Vyy67Ql579U1ZuqySh+Tt1yfL3877u9x9972O0aEdvu3plJnus8kIB9pK4iAvwl+efvrpzrwwGW7+XmI+wXr4/DKpG++Qdzr96d/xGCaWG7QpT/wt8Xtz/U5ePj//brL2enya+uR95jpt9bbtvi2J9Ur1O4E24uaPy2RpZbnO3Rr33QVyqF4kX/2wTE7887Hq1NtRx2d7ZT70g3q4WZ6fBCYwtqzBYOeJ1fyUbqUEEUg2Pvk92f1s7hnqhkAuETDTqVyiG0LeSDCR8rPgN7ZRp1uMWvoHzG7Y5Grlnbfflddee0N+f8oZ8sod18vaO+0vJQtmy/8mvyZDhw3X+OoDZLVfra5SdOyG2fS8RiNMF2TNWzc47E6vvPLKUJytIVg58BDi1EezSgdHzCbeeusth/9rr70m2267rYwaNcpF9/CRj9LJL9W+KlHznfbVtfLc07fIUae8Ki9N+Zt0Kmsj9/77Mpl0+tnSs8+qMmH8SO2J5RJzzsq5ncpIOL///nsnTcdHIpX0zjvvOB+DZIRec+9Tlj+Yj2gr//3vf2X8+PGO2QF3ks83Ffzj5lL1ZlOYmqmBYExN0nbZYZzULV8qc6s7Sb+1Bknb9h2U766VTTZcWx55+zuZsPtuUq4mVOmU1Vzbmvo9SEhD4PGdtu+7776O2eIexO/kyZPl4osvbnRN8OsF4XEvuOCCBuKb973jaFP1SPYbeSIIYOzTD//5z38a+iLZ8/4e9SVRNn0XZASYm8xR2oiGKpFJCOaLI3ZjWizqRjlghJnT888//4txStmeGGuqvv433xdoNTEjQrBASmW8NZa/uue6OYvvz7JYmbRXZuK9N16WJ594Tqp0rqw7ageZuNNmqslUvyz8v3WdLaslzpxKqVl388Bv0G76GAaLlK+x3xhmdt8QMAQKG4HcUieFjU0kag/h7Rf8sCqEfNTZq9dLSvHIqFpeK2efdY6066HO2A/cLr896mhZ8OFk+WrWXNltz71l7OjhKgnWXc4rMNxn/a4X4ubHpgYhxIFlHBSXbcKBGMKDPPv16+eyS4dQgFDzhDWESkVFhQsviI9G2P0SbGudmqot+WGqns56mRx87v2ycrvuqsFYLhttOFJ22+EHWbmrSjyVsIJswXEfgsT3R73wPVvoVniftkJ80Cee4GquAHAngXs6xArPMu695gKNHpgThQlmMV3TnV/WE7ziHhtt1Gxlk403lHsemSyff/6l9Bg2VMpVSzRz9hxZR2PWl2msUcyrdNA4qXJJ/ZyJ+3RoPs5xCQIwbk5Yov32s6Yv84kRHKPMBU7opd2c0M4nfdGcr4wnvhm/ntjnE8Lem6P9Epum7/h3GQ+Yt6VyeJ1vC2UnRi7jbBbqQhhffm9qbvKub0djtYRBpV733XefGz8+gUVi2Y3l4e9TF96jzaRkPjLN5ZH4u660OmfVHMoJezDdq5J1h2ykc2SA1Cz7XvbY63A572/XyOl/PFZ6dWRcqfbOT2itS5xli4/e+JynhHomRP9yw7F+jV5h9KUwFGlrEH+w5l7i/cQ22XdDwBAwBJpCwBiNptCJwG+coYFWozmiIp2qxvch/o0Tp5BdmwwfAbkkSxe/L2993UW6diqT7xZouMVlSmC26aDbYpw9gTyL01rO/iSdYpt9lk2OCDvEBv/1r3/twvo2RXg0m6E+gKkNhAxaoYkTJ6byinvGb7CYrk2bNs0ROJxnMGHCBEc4kxdSzjD7JVi5UgX5+2mz5fsfY7LZkO64yKjfQBsZsMkoufT6rbU/lujjNfLVO2/J2z+WyoQtN3F+BgRJSjxnI+VGN/IgfQDDhZ8GkvV0zg6BMCZOO3iSUulPniWsM9LuAQMGyHbbbScclEYdPvzwQ+eQ7g+w8/k2UvWG257OirMXriYaVaqNqKGUdO+9mqy/5sryxczpstZa/WXNzgvk/pemy4F7bKvEoDIZamL1zexvJdahi/Tp3sWxKFXSFk8ZxVxNS1TiXKcaqDo966S0GsKQcArMrey0fZ6o3nzzzeWwww6TV155Re6//3556qmnhHtHH310k3iCDVqPo446qjl4Uv7d433LLbe4g8RSZTobK+Cqq65y/Xncccc1qq1o7N3E+9Tt1VdflZtuuknOP/98Z3KaTfIENn5BZ599tvPX8iGtUxnHSctWxoGxiN9bGSaoajdV3q6TrNpF61rXTc466tey3x8ulVXXHyon7bWNfK/a3Vi79tKtRzcp02FVE2Ns6XxcsEgWLF4kq/XuKWWOGUltbiWtU/3NYJswm2KOWTIEDAFDIFsEjNHIFsEcv08oOsxPwjywS926tdbKMDgprR5KpZ+QRBBVn7/yksxeqZesXK5xjhbMlapFKntrC9HE0XHsZi4IUr3ojJfCBQBGgw0eiXYUEuYaMD34Cay//vpOSgqDgZQYBjBXZ2lwWkZN5RLtk3ny/ocfyYj+Y6TGRaHRHqteIrMWLZOVOqrfxKxP5N1vOslOYzbVaDb0a3bEbWOY02ba3pRpS2PvZnIfXCGQCYRQUVHhxgMMH0wokml/kBh5Z0z01VesTcfOskb/AfLJC6/L199Ml7Zda6VL918pE6mO/84krU5+UGfgDjAU3dUvp/69uN89DAt+Mjju69kH7m9Sdv2Q2CZw51CtjTfe2JmQZUtE1zfBPppAgD6A2UOTgUCBdZiU2DdNZJHmT21l3G7bSOnx58qDd78gx+82XJ564nFZabX+su02o5WhiEl5rfp2KMP96L0Pyuxl7eWwQw6QTqq4KQ36y7n12RfdMFrTqgvCmcbM1NLKyB42BAyBVo9ANKi5Vt8NjQMAkYWtOuFFw0tet44NuLP8VYJ2uVQvXSA3XHGP9KoYpvbrC2XBUj1NtFLV9XXtZMnCn2R5WVvp1LGTI6rYyfyGGyavwWaOWUaqfgDhYZI8JwgMzFZIvr1swP4Ec07RzQnhoWZSHbuXaxSaMrnpqnvkoJ23lHJlNBBozlGTpFmVpdJ1jfZSMWJH+V11TK2+CX4LI8J5G+EnxiDEbdAcJfxSfs6RELajR49uwB3mE9M1GI+gZDmMOtSVlkufNfrKmn0+lY8/ekM+rWwjI3beWZUSiqRijvnUgIFrS3Usfn5I3PAKHpt5pPNDmb+S2jKJ6VVZrlGEsKl3HudxQ5d06shYCo4nGIzgd0yVttpqK5ell7ink789mzoC4MvFmEezzBku2aefTRx/zqteu6xrcVlb7e+2MenQXsdTrK1sOmJTKevYQ9lddUrHP0c1aWVtVJNWPV++nvady4Lx6D7dh1/bG26431JNXmOFuZg/nDAn61uqFbLnDAFDoOARyAVNUvCgRKkBRJnBjrk52+R06oy0HDMbb6ke07C2JbVL5aE7bpTbX35dBp1ZxkEAACAASURBVPYdoBr9allWtUS++na2fPX1t/L0Y6+oJHmpYzKcZ4ASRGEnNrk5c+a4vKMgsaUeEHr+8kQgJgWEuuRMh1ylEg1r2b3vENlw/dVl6ou3ykl/vEyl7fNk+ufvy+U33SlLf5wnHcviJ2W//eHn8UP7iNFPCNyQE/2Cky1EPsRHPlIy3NFicJYBoUY9QRTGOMTPon2nrlLxq1VlsY73n2rbyypdlI2o6aAjfbnUKuM7f/5PzsRHoYDDUHoOXWCdLFo4X2Z/970GMPhOPn7vfVlaRRhXfk6fyQBX2sVc9/bx/m8//8EFRtekzfkYhXHhAsIGDjqbOnWq65fsfbPiDKprgf7JmHKhqpU5nf/1XNUwd5CJe2+jDG57GThoPem3xmra3zqv1TxveWlbKdE52L1XVw1SoOaUdazJGopc86jW4BG4EzFA475D8b/jAzZ1vBiDaGsR9jDe/FxLPQd7MiwEwN5fwXUheD9xzUj8Lfh+Yl5+nQmrvpaPIZAMAdNoJEMlQvfWW289d5ZAGASVbxYmUHCYTpPhdroaqV6yWG667haZt2ChbD9huCwp7SVr9BkiPRbeKEcduLcM320/uXm7Ue6dXHGn2AX7KFupOJnmspuawhsiDxMeH8UqF/WojqlJW8fV5R9XXiv77ryr3HjZaXLH1WdKpy6ryLEnnSFDB6+rxO0PcsXpx8vUjpvJziM3UgG89o5qQMJOvl+Q6ubDpC0Rewg7CB4vWUbayjOeAEp8Pt32E2K0Rv2N+q87SD754jtZbbNNpF2dBmFQjUSNRv/56Ye58tLz/5MBQzaR7uuupcSm+mXESmT+vLnyyssvytzFNbJWRX/59nPViPy0UHbeepSUVi11ZonpJs/M8h7+RfjDeJM1cMgH/unWuVif9+MLwQLz/b333nOMBn3Ab9mNuzizgabwk48/1vk8UGI1i+SA486VwaN3kt3GDZeZX74nfz7vCtl6xz1k393UL0sZC3yBnJmrai7d2S+V82XiIYfJctU6n3D8sS6wQVypkb4gyLcXXyhMWL15YnbtLNbRkb92Bdc5zyj40lkTOCH8888/d9EaWTPYQ1kzCEmODxUH+2ER0VT0yuzHc/7wsJIKD4HwqZLCwyDSNd5www3lmmuucQ7NbHBhLPqOyXCiWfYkJdh004p16CZ/uvBi2XN+jew1el1V1S+TUVvvLJfc010+mPaDbL31WOm1clf1A+CtuPGUBy6usk9XbvZL2FkgvT9KGO38ZQnh3IHoxXTq9ddfD7VfgrUjvgzmEquuPlCeefsNeerxB2Xmd8tl6OajZKN1KlSDUaamRJ1luzGbyAeTOfshHpGGblX3mlAT/hm0OVeO781VlrK9zTh18FI47oeRYLY5y6CmrKO0795HHXPLVVrcXqqU8Ivp3KCv8ZFy0b2UkavTw/wg5rrqac5rVawhsW8r1bxuuMzv3U5ufnKaVI5cLu1K9ZmS9LU/QUICnxTOEfEHdoYR9SgMvFpLHowvxhprEYIPvnOeRnjMXvyMiieffEpu/ff18tWMb2TTcTvKyccfI0opqqCnn6y9Si9ZumCxssKqWdXQBbE6dSbXQzxZhiuXLpd3358me+y9r4wau7V0Jnyvrhku6RoQX+Lji0EqS4Jn3j/44APHWIV/flNrGTnhtxOGAt809kjWBYIeEG4drTqMMFH5iE5Hn8EgEn4aBgTGA2b2yy+/dIwHAVYIJLHJJps4LR3PoqUOay0Nv+WWYzEgYIxGxHuxoqLCLSQsKGH5afy86bBhYferMjLdRDceMU420ROnuVtVqlFH1Nl4+MhxMmykBkfR/YsgimEnL60hX0xi5s6d65xeo5zYkCH+IEI4OA0/jbBTufrM1GDepoRtSXkn2WbCgeoEzunVHB6HTkrPHNB+Wrmj9p8yHVUaQUmNJ9SUoko/fw7rmWm9gv3CJgWRy0YWvJ9p3um+R5leigzuEEH4abCpskGmwpTG2WrPDOs3f8ON9rh0evpX38nKq/aW7srAqY5PSsoUZQ33xenrJepsW6OfHGxZqpqjKhg63DD0Yv7UIOlW85aSal1S9ZBLqY0fbphuW2kLF2MLpnvo0KGOQPBEYCptTbdMe75xBDzeXptHBKps5rszqUMToXHLCBiw+upryDHHHSMdVDpABDN0zYynEua5DqPSjgRgQIehA00lOrV6Ee2sRJ3CP3v/LXm2Z3fZff89pUPHDmo2BVOkJ91j1oqPEO9kkD5WDQtEKG228ZYBgGm+0tSaimYJ3yA0Fhwc+8Ybbzh6YNiwYS5SG6akCEL8uuHz8uuFrwqMCiHZieRHHk888YR7j+ASgwcPlv4ayruxaII2BtLsUHv8FwgYo/ELSKJ1g0m+0UYbudCWYTEaroVsRm5b0+3I8Q/x7/Ac6CvaSpf6M+BU28HPPohOEl4jyS3eSCn5hZFPFlSk56G2M6VapP8QEm4iI2FOkQ3h0WjJpXo4GT8SUcYTDEp4xAg0rMSKI46VJFmmkY7qSjTcqz5aq32KCVBYk5o+geBlc4Lo6Nu3b6PVzeUPXtrGXABrNlfC5lKn9BIjFQ4DRiPuYwExP23G11KqIUa/VSKyf0U/DSeKJoLfnQuufjIjlPVQBqJMibyffpwvS9v1lI5twQfGHGfwav0FWlDt5N0b2i/pVc49Dea002twcID3EnTb8DMANMtXPOYQYjB8EHtZBYBQBgBNQ03dAvWBU+dvnbkump8yE2Uu+EClVOkcZj67QFI6vliRGYdEQIupNoMf6lRb1nuVlWTB9zPkvw/+Vw7+3YGyUqfODcM7vr6n13jGHuMOPzmIULSHNubSwzDTp4PMhl8DOA8GzQUhvdFQYEZNmGVCftMvvm+CfdTY36yhrN9cO2ugC8zjWNefe+454WBV9jKYDmgN9jZfB/Lzf2faNnvPEAiLJjEkc4gAC8Djjz/uzjBoKfOVHDbPZY1JAg7HHMqGxDrqCSIXCRCO+kid8utTAvGhEu8f5shzb3wk876qls+m6RkQ/bM/4DARdzY4bH+RcEbBQZ+xgVaDzRcmKCNzovihA44R4JwU5lb33qvLBhsMld59ekPtx/nuejAWLlwkc+b9oBHAuujhbavo5v+aLG/bXboPHySzZs9VzcMyp3347tuFsrxynp6gPkv69+ymPZRZol0cPIdtdU6Y2Myq1arfIgoaY49DKPFZyjT6GnwDZquldeUyW6P8DWoTk7ZOY6EzWk+gL61rq8IEPvHqRmUGU6FnGckc+c+tj8lC6S4T9xwrtcti0rV3f9nnwLFyjvpxdOrQSQ6euL9q2NDw6asQiPU9lqogCKKS9mGeA8EZnolYqx46KTfeE/Qweo8++qg7SwjmdtSoUS7yIeMvLMYPf40RI0bI8OHqC6SHoL7wwguO6cAfFHNNfuMZUlhlpgyEPVh0CGSmWy06GKLdICT8qD4/+uijaFc0i9phS4r0Jhi6M4vscv4qdq1I1iFUMS3KZ3IEhBIr5WrONGzbXeUPR+8nbTq011txDVWYdUFlj0kbZ4jEi81ETh9ejSB+hgwZ4kLdov1KNcXlwj+TXm7zVMlxH2Vsd9xpJ9lqzJayzqCB0tadJo22iASxplJnvbfu4CHSr+8a+kpM+vWrkMUabQrfpr4Va8v6Q9dzRFm3Hn1l3Lhh0kbFN2rFklWC2OAU9oqKiqzysZfDQYDxAtPHXMDmPSiBTqeE+HtqkqeRpTbZcqRsNmJDlBmOt2V0ohGLoRvTUMloJ+s4qROGQx9gnbn/3gfk+3nfy3Q9ub6dmk2WqhnWRhsMlqkfTZVHH3lMmW+Y5FRZixVrTt0wmyKtu+666TTLns0SAa854DDOP/3pT+50ew4qPeaYY9y5OUEmg2fDIv69puPAAw90ZWFGBZNzySWXOF+QTMd5lnDY60WGgGk0CqBDUWXCbDz//PMqdd2gYZEpBgcuv8CixkVSuOmmm7r2hbWQ5rJ7WZSffPJJxwDCdPiU834BHy2ss54mvOX4nRw5rMdrOQOLOLkSTqsxo4DwQFvjx10U+gUNHxJmGI2g+RS4ow1oNil4jpVQmqxd+w4yeP3B+mc9tdcgB47nAs3WvkNHWWvgIDVpaeMOTOuo9vCbbbqxnnnQXvqtuZb6x2ighho916RTN+lRVhk3tqqO+zo1Wxd9IOjczt+0Cy0Z/hkmVU4Fwfw8g5QX23a0aTjfBomwVOdFTAcUJnZtO64ifzn7XClTf6ASjWDmdBpK6NeoBiNWq/4bVW2lWhmN0nZqOtdWt+nSVeSQIw6XZVffId00KMdu+x6kz5eqJqOtHHG0js3qOHNcrnnFD5KETQ6kRngPxptfg3E2RrDAnMrVQaT56anol+LHDvizbqER5UT7t956Sw444ADnrJ1LzX7ieOV7v379nBYVLccjjzwiZ555phxxxBHuezCcduK70UfbatjSCJhGo6V7oJnyWZBQn0JcIWFA0lFsiYXr+uuvdydwQ9Ty3V9RbivO0TAbONfhxE7KxyIM8eu8kPWgOVgOSFqlL+p9CcKb0ji+vvjii7LFFls4U5Go9AnzAWdIfHo428JjDmOUenIgxhkO9xJOuvhHJAiEG5QgEINKFKAFUdOt1Xr10Afx4dB36k2xqjUkWxmO47B8palrfvy5GN50Aqk5pmq77LJLXsZT6pi17icxJUHLRFQmbNw9g0i/pSr5jdP7OkZKO0qPnr2kSyfMU7CDB1t15FbbqiWLlsjvjztU/n3D7TJ0g/Vk2CaDdRwslM+/nSsn/f730i6mZpu9ukmv3qtI+66dpVv3laRP725qW99Nx6c6imtmMBsNVyPdFiR2eQQmA8ECkvSMTBIbKcdu/xIBsPdMHk7aEPX4+/E5bty4FRy8g/thsr9/mXvTd5Ll4e8h2KioqJDDDjtM9txzT/njH/8o9913X9MZ2q+GQDMIhEeVNFOQ/ZwZAp74ICwdkqaXX345NaltZsW1yFvYhWKCtOuuu7ZI+dkUyqaAPT22zflKOCYrbeKI5BJ1aiY6VcxFsYm7iIdRD8YdklvOrNhxxx3DyDK0PKgbm6AP+cinlwymVUg9hnHWgH+TMwf84iIB6b/oS2KxMmXqlMVwURSwt9fIYPpqrTryltYoo+yySZ5XsvpRfxKSTXyV8InBTproMqkSsMnytXvhI/Db3/7WOYTD5EKcpds/BIPSYGY6OlRLgXCAk+e1mk54oDcYUu3bd5WJRx7iTghfW02YBq7ZT6NNrSwjhg6WDhqjQ907XKACGJOY+nI4g0nNuIQIaTpO4XuJYNVwNTIWqbvfX2DSYaAQ9KCdzYfAJPzeKZwcPWHPOLrwwgud7+VFF13koj/lXCOeAkysPTiNE1r/73//u/tE45XueE+hKHukFSBgjEbEO5lFh8mN9ByHMDYDnLf8hPebRaEsAMH68jeOh+edd56ccMIJEe+J5NXDrI245LfddpuLDJLYvlz1C2SsC0ijJ7gjVYfoiIswk9ezubuJ9WZTufnmm2X33Xdv7tW8/86c4NRiGCC0SSQksJlh7Sg8TY0zBjAapDgjUv8vRBqEJloQ3uYfta9H0+TCQHv7Ffdm04m6wyjBcMC0EtuewA+ZtafpsuzXzBGgPzgADbOWBx54ICPmFpYSP2/lL9yYqdE83bChWsoolJQsd2fkbDB0M5n4u9/K6musoYysPsN40tDj5bXlslRN9fRESMdqxJTJLeU9Z3zFdq5Xw1hMbU2gXWhkH374YcFW34/HzJGyNxMRSFxf+Z25DpPBfD/99NOdIJHnosLksc6uvfba8p///EcefPBB+cc//uHMOpO1JbG99t0QCCJgjEbExwOLDhOei+gTbHTPPPOMk3wW6oT39cYnA5Opfv36OYe3QknBPqFf9thjDyeFxn7bJ9/G3LSJMzRKHWlREmurgVSZxu0cseEIlgyTNwVBunnVVVc5e92oaTNoGtiSDj/8cGdiRLQyX/d0m/6z8RQYJkHP2VKBNroM/la9hmqQOCujtDYuTcaBF6KxTEMNV8eq9Cnql/rS6tvDnH7zzTfl2GOPddqMqBAc6WJarM/7/jjyyCPdGjx58uS0CUN0YaVlyoqqrWOpjqUy9QTn7xLGWIyIURpStlznt46vcr3XVodRTJ8vYw9QsxYOb+lUQmSq9jrENHCBMqlODeKYCzc89YP/WAtU06bl8S1Z8lJ1frvuuuucHyBO4MH7yd6ze5khENyvCc99xhlnOFO8U0891ZlH+32+Jee939u8Twbf2Qduv/12t8cxTmBKc7u/ZYavvRVdBFLfDaPbhlZTMxYj1JmEoSP0XXCyt+TilG4H+HpzNgg+ABw8VMibG/2C09zll1+eFdGbLo5hPu+JXT4hoNhYIHij3C9E/sKGGHNCTO8KNYExuBN1jfmN2ZTvj0JtUzHW26+xCHtOPPFERyhycGQhJ9rEGvzss8/KoYce6oIPFNJeUojYQ7BffPHFjoCHaWUdi3pizP/hD38Q/PbuvfdeZ4lgyRBIFQFjNFJFKiLP4XyMX8AVV1zhIlUUaiJUI8QstvYVFRWuGYVMXGHWhmbjz3/+sxCqt1A3a046xyaXdrARRrVfPL5EZkIiSBx47+tQaHMCbQz+MEg0f6/Ovj4V8nwotD5Itb70Cf21/fbbO4bw3HPPdRHCCjVhhutNVzED9UxvobYnyvVm7ODzdvXVVzvLBAh3wnRHea+gzn4d4vyivffe20VZJAJmoa63UR4jxVo3YzQKrGeROEHQcrAd8bYLgRhhY/YX9YUQv/XWW6Vfv35uw45SRKNMhgMbBapmHEVZjM8///yGiCKZ5Jevd9goPOHEJz4mF1xwgWNkd9KzJSB8aVvUNkJfHz6pI7hvu+22DaYshTAnfB9TV6LOEPGHccOJzB5z2mYpGgj4MRc0b0GrQd8RltT72HjCLIpjMDjX+RtTPRglzFZZh4PzKhqoF3YtvDmnHxO0hghOnJFz8MEHO9+MKK6vQdT9GsunP8OIs66efvppp733gTiCbSzsXrPa5wIB28lygWqO88QRlk2OSEdIo6K4qSUuVv47mxvOZYTwJJwtp037xdZvdDmGLyfZU3ekU0ipvvvuO7nssssc8RHlFCRk8ZdBk0Eb9tlnn4a46VHbCINjxY8XIrYcffTRzpmSEJHcj/LGFyRGmQeYTP3lL3+RDTfUw9sCzF3UsI/yWM5H3YJjDz8mxhvmU/fcc49jcv24y0ddsinDC31YoyAef/Ob37jsMMclChLJz61symnt7yauQ5wVhdkzWoE11Mk/2VoWNcyCdaRuCAUR6qDt5mA/NDSWDIHmEDBGozmEIvo7m9ydd97pou7ccMMNBaG+h8nAYZpwtsTp5qTdYtvQMD9A08TBS3fddZc7hDCqCYIXiRRnUfz73/920ln8MohwVijJb4Q4VZ599tkuBCOqfdoW5bFF/Yjg8vrrr7uIa0iVYTKiLjQolHGR63pCoEOwE3YcZuNf//qXQEh6LWGuy880f+YEdSSiHL5NhLI95ZRTpG/fvo7hQNscZSY903a3xHvBuQxBziF4mHpyBlChnlNCmwiBvP/++7swz59++mnBMNgtMQaszDgCxmgU6EhgwyAyzSWXXOLs0/F3CG4SQalpvomXxLL5DpPx+OOPuzCwMBn4mhRjglhk04Zg59Twhx56qCH+eDJc8olBYvmUjbkUElkc83Fop+5RJtAbw4uNm4g5xx9/vCPg8QHyB/j5dvNu8O/G8grrflPlMlchTAkfzBU8qDKs8i2f3CHg5wifhLceO3ass71HK+Bt14PzLXc1aTrnxDpA8D722GNy9913O0Jx0qRJTlBFqFXqTUQhIiLxnUMJmUOJ60a635uuYXH/6s2niCZHwArGCRrYQk2Md/Y4TIR32203+ec//9mg1WBcWDIEkiFAKG5LBYKAl9766rKI9VM/BxxIb7zxRrcxQLQgVfcpuCHms5nUzZfN5gXBzQZHXQnTW0wp2C8stnwn1v5BBx3kGEAidBBNCPt7b06V2Jf5wIO6Ub43z8FWmAgiaMWOOuooZ7pTaMmPMepNu7bZZhvXBIg+/B7Qmvn2cp/nPaEUfDcf7aZc6kLkli+++EJGjx4thxxyiAttSV0KVcqZD+yiWIbvLwQ+mMMgTOFgM6S9BIcIhghtqfoHxzpCBaTqhOZlvsOQU180zDAZMBeEG2ed6tatm/v0fzNGcWDG1JW/MbH0yc8jv/Y11dZUnmnq/UL8jX2ZNZYzKbgKNfl+9p/sabfccovTjOG3ke/1tFBxbI31NkajgHvdE/MQiGx2mFJBYOH7gMYAooaU7wXAb258fvzxx65e+C0QihTVcbEnNm2wh5AkdCHtnzZtmjsMa80112yx5tMfJD6RvOKQj8QSLcD666/fYvUKu2CYDQiha6+9VqZMmSJDhgxxxFFLJjBnXOBASUhUzifBIRR/K0uFj0DHjh1l4sSJzv8M4gtfhwkTJrh1GTOrlkqesYaJQOjBegwjNHLkSLdGYToFs4HAYcSIEXLOOec4E0ou2oDWg6hatIO1jE/s9GE6evToIT179nQXf8OE0NZEZsKvOy2FQUuWC/5oiFhvMVHzzGkiRi1Zx0zLZjygBefQweHDh6/AfGaap71XnAi03ApYnHi2SKvYMCAUIabQHMBsEDkIYsabZOSzYiyuSHGIzY7zG1oXDldD3doaUlDyg2STTZhoIyzI9MnWW2/tNu18M4CUh3YFEzakmuutt15DBLNi6RePKYQUuKPpg9lAs4Efh2e+89FeXxcEAoSixlEdCTGO69ttt50j2IqB4MgHloVQBnMaIh6NMieHf/bZZ0640NLmiO+8844zcUFLgdkqgik/NjfYYAPn27Txxhu7vYI5gqOv1wIyPhm7aD/RTCMw4tPfg4BGk+OZEZgO3met5zPfa1yUxgltBxc0RgiY2AeLDQ9MwTgxnDZ6bXKU+sDqEg0EjNGIRj9kVIugqQULGAvZ7373O2f7jSMymx2H4eF8xoYRJGqCC16qi19QMhX8m/d93hBVbD6cIMq9XXfdVbbYYouCtktNt3MSTWAgco855hhH8NInmC9guoCkneTNmTymvj+y6ZfEd5Gmv/baa056SSABQsLCBLWktDVdXFN5PshI4LOBYz4+TIQgfeqpp2TTTTd1BFdwPgTN/BJxS6XMxH4LzjOIMLQYSIjRNGLaCOHpx0gm5aVSJ3smfwgE+5D5BBOJiQwaQ3wg9t13X9lhhx0cIe9TunO8qdb48evXEZ5lDKLFQLtCwAFCoo8ZMyZpoAcYcvYNTKuC88fXkfWCK2j2AwGNMIkLEyw+0dTBiOAfhc8XB9OhFSGyGpo7zEk5MwktCtqPYArOmcb+Tny+KUyi8hvzn3WHc4kQLBRbYkwjOEGggwAt2He01da3YuvxzNpjjEZmuEXireAk9sQOJiOoMVnMOVTnzDPPlAEDBjiGI2i2k0gchdEgpF6ETISg3m+//dzmyibG5ttaFpzEdoIzFw6AbPREqUGbcPrppzstFD4rvXr1cs/4lLhYN9c3ic/77z5PVPcEDcB8i8gy1APJeiJD1Fw5Uf89EXsIL2LVE44Rpu7+++930bVoO0RPkPDzbfNEW2Jeydru+zbxWfIAWwgunEDRHIE/ZoNIvYOMTbJ87V7hIRAcA/QvQh9MEtEmoGEmFOhJJ53U4DMUnKOJ4yfd1vN+MD9P3OLk3b9/f8dswyRg9kRKVh7jNZl5YbJnyYO5wwXTTqJ82g0DQvlE2+NvGA1CN7P+wfAgAMN3CsZj0KBBbm7wiakvZ0MlCj6Sle/XNVdwxBNCPxLrPilZeyLehGarhyaD9Y1+hdZI3I+azcAeKHoEjNEosi5mIeOCwEd6igkV0lxO4CY6CpJ0JL3+uXSbH1zkyQNJOacaI9EgohTSDXwSIOZswYlvwB5rNuI+ffo48wqkPxACnC6MLfeRRx7ZcEJ6un1C/sF+QSpJv7DJQeTA2MDQIFVDMtmaEpgjSSRuPRhgunbFFVe4scqmuNFGGzkCy+OXDiGQOIcoi4SjN9ojzEjYgHGU9OFQ6Zt8mm+1pr6OSlv9fITJJfAFTC6+G6zHzPvTTjvNCReYo4mEdSZt8OXxiSaBs5XQMiBkwoTQC3ooLxfCBT93GNcwFFz+HuXBdGFC5gMz8BvCD/w/MCfEl4q/iYgF04E5F/MS3PjuozT5uek/g2teJrjl+h3qh2ADoVsY/Zzr+maSP30Bw4nwin2GPibZ3p8JmsX7jjEaRdS3fsOhSZ7oQUUNgYXqHP8NGAGYABYGzEiwyWUh905+bAzePpf8yIdFA6dhJFRcbAhEzkFaSwhX7P7RXuBoGCRk/YZQRBCn3ZTgpgiufnPEjhuCA6YDSTuH5LEhQ4hgQ42NM/0CkcxFv5BXMD/fL16CyBkSM2fOdP1ChC/uEw2HE6dbG4NBR4EPuPHJBf5shJdeeqmbB0hXCfOJYyv25MwLMOcdPw/8XPAd7/NiXkC4cSG99WYjM2bMcIQSmr3E05Y9kefGgPal1lBKAhEh67gl2sfBURb8Pf5z8NcVn13hF/vSUggwNhg3fDJfYWRx/N9pp52cQAbTKsYIAgbMWnEkZ9xBsKXKhLIesw5zBg4+E2ivMctkfUaYhMkqxK1fb9LHQgde/dgLBi1dYWz6TN1YZuSSmGvxH/zcYY6AQ3AuYULFRYhUn2gHewimhpxDhPM65lcw7GhmEAwwf/mbfY05xxoHDuCRCyaqoXIp/hHEm78R9px66qnu7Uz2QwelBzTFOqz4GDmoIMr9G0jsJRnll5C71o12QUsQJh0foEzaGUJVLIsII2CMRoQ7J52q+cmdbJKz4EFIITUnnCbSVk6yvfjii10RSHuRsCFtR6XNhgfjQV5sXBBSxP1n0cc8ihPJuYfEiZOwIYwx2UpWdjptKMZnE/sliBH9gr0+Jhb4cOBQB8HAoYbgDxMYsMwgpAAAIABJREFU7BfPDPIe+HPhlIl5Av2CHwCbOUTMWWed5T69uUQxYttcmzzhEcTc/w3RwkFrmLPALDMfOOgPgsUzd57BCxIwEE3g7+eFZ/KYQxBNmGnRp6RGiUadV+g+4jHh+AsyQL8ppwGzEQYB0Bw29nvuEPDjJZHwRXiAcIH5jiAAcyp8KCCcIaAZQwgEWEsxsWP8kAfjzZ9ngTABfwiIckwhcThHuMBcx0QJgi+ROfYtTU+qjoBJ33RMRLVekArKRLiRG3NZ/sxe1I9biE73CoP451HM92Rz0OUReM5HsCJaH23mor0w75jl0FbWRrQh7FHMPXBBUIDmg4NGYdrQJPHJXgYDBx7k5csK/u0aool72aZgHvxNvWGC/HqQrNzmyqRW2hNSWqfnmShWdXUqcKIX3FqhGirXJ/SHYlwbZ+jqSkrjrAVtrquSmtKYVJeU61O1Ugau+rt7vrnCU/jdYwr++Ofgj4M1RbBfU8jGHilyBIzRKPIO9s3zEx/CE+dsQhmySEOcsiCioeBiEUdKBiFFYsOD4EIqB+HLRgbTwqbYmonYsIaN7xeIADZYLm/b/NVXX7n+gcGDuPBELe/QJ2y2bKoQKZhI0CfJ7JzDqmsx5gOGxINH2gxRAObMBzZNcIfQAXf6hD5iPvDJZgrhCHPer1+/tDfXOJMBscBfEATxjb8EgidAfEENOBKo/h9HHLi/68mEMKiFYuzYiLaJuQsjQWAANBqMsalTpzopPkELPKPLGPMMAwSq11AzDnkGIrqiosLNe+z/+d4oY5sRFmp+qUOz1BGrngFmMCqTDOPgxh+MRZxAj2vm+BYfkNkOS0+0gxXt8z4ObvhrnXB0h1GD8QATzqnAmR3cmNP+k/WRuQoTAiPDJ34l7F2ZEP7pQIkAAw11egzeiiWAq7JJTgDhhBH6WaOaslhNrSz4cba8O/VTmf3DYunQRrVhNZWytLJGVl2jnwxdf7CuVW2ktET9I/U/WBG35gRVqOk0pplnwRmGinEM3pYMgSACxmi0ovEQlLiw4bEAsjh4iQtQBBdfnkl8x3/3BHKuF+ti755EPGkvGyWO+5mcuWH9kv6I8Zgh/SSIAhcpiGWy742VlDhvEp/zRFg9iUZJ9ZoMlRY7yWpcYsx78WfcI/XJ3+GTm9mSdD5f+8wnAsx7tBUIBrh8xB7MUDlBGgbXay1hIBAssF5D0HkTv4YRATNQz5xmvx4zrvSCoXCjS6XjtUro6pBkpKkx2M98bpz61TvxJ92bjgkJNwXnE39zoent16+f8zckwAVCMPxS0OwGL8yr0ITAzHmBAXjCcCAo4OJdfgsjBfdLzKbwi8wuxU2X6QCEEjB5pXUL5IPXJsstdz0tNR06ytAN1lFGQxlD/a1y6SK55dqr5Kk1+sue++8rAyo0wp1WoFQ7B4YlV4wGjBtCF7RrlgyBRASM0UhEpIi/+83INzHxO/cT76X6PfG5IoYx1KYFcQsTwzDzCrXBEcksEZ/E78FqJv6W+D1Zk5p6xhMjTkodJMyUQoPPKE1GqekPjpCrU/t/JTj4m5Ts0WT1sXvRQiDZ+OAevgeJoV+bq3kwr2T5Nv6+H0X1/K17kHtxxsGPrrpaZS5UHF6jDAcDrqREf9d7EL08zmiE/YAJ4ZtjNbIcmIntaOo7v3GhdefCFM0nGAiYNy7MfzE1hfnAxAcTYJzRYeyIlMj9Tz/91GmK/JUYnS/IyCX+7dALMH0EhTjggAN+sac2VC6VPxpw5A9tp5pCzf7oPTnxhNNlcacB8tdLzpbh66p1QVlMqkrbSl3lAunbq70cO+n/5Gtluk4+5WSpWK2XM5lyfVKfX5xdzLKTAvWHEYb5w4w3EYdUmmnPFDcCxmgUd/+61iUu0q2gyQXRROuXluumlsbeESRQaXVqV63/1WCeorbU3A1G26+twT4+bpBSq0xGSWm5s8+GYAiPTGi5fmhtJbf0uFsR7xXZVZhYN9Ywr9FxqSNNCWf9V4lY96RywNj5l9RhVhuTZTVKPug9NfJSibn6LrnMIWizH5lN4eQZ9eAzjT2PqSMXZlO8xwWDj5kkWqOgQz1+BvjIEJKYs46QzqN1gukgDC9+XYQJRgNCnq619YwF5ft6+fuYdyHlzyZhtlaqXF6V9kmtMhltqn6Us8/4s7z1+UL5/Xl7yIbrryNlMe0z9eFoU7NM+6qtbDZ6nOw67jG55q4HZL3Bm8mhB+8hZXELTccMsu7Eeyi7fgpijkYDkzR8aYLMVjZtt3eLBwFjNIqnL60lhoAhUCAIqEBYYhApterkCQFX2kaJCZFKJSw47SBOAuDmCeGmBJI+F1NiZrmTGOv3Gv2N9xoYDojEuOdHgUBg1YwUAmgFGD816qv3jTykEayuuuhS+eirb6S0cy85+fjjZP8D95KVu7STB2/7t5x/wd9l+uz5Mmq7HeXIwyfKr3ceH9DEwXJkR8TmAhrPCGA6hbM4l78Hg8HZOoQgDhLQ+Mih9SD87s033+yiSKENQWuCAz4X5yFxRg5+MsF38avD1M2nxpihptsKjjU6s3H0Fln4zRdy/0MvSJtfbSRbjR4hndUuKu57oRHGYhrARZeBNrEq2XKLEXLRlffJq1PeVR+0sVLRe6U4i6HrS0PPhNhFtA2TXxg37yuUWXubRsN+LUwEjNEozH6zWhsChkABI6AC4Lg5SvVyefjBh+Syq66R1197T9bbbKQ88sBd0r1rR22dEmzKTNRUVcp1194g77zxotzz2Bt6ivOBsuuEnWX4ppsgUlXbbS+hLGBArOotjEBc2g9x2Ful8Ice8TvpVrJEDj3hHNnnmOPlj2ecGNdY1C7Tc2FGyn8ffkR+f8b+ctDhh0o7KGCnLYiH823hhjRafCLh25RmxD/rfWgIVe0TZliE4eXiDCkiiBEBDIk+Wg9869CCYIoVZGYSy2+0ooEfanRu1yi2MV0vSlXj+eWM2bIspgeRli2R3l000mNtla4jGK+ha9JuQPBQ0kbad15Z2qka47s5c+XHn35URmNl5z/jjOJQWOnfLvAEbEcDwxHXScWLT48LgblAywOjYckQSETAGI1EROy7IWAIGAI5RIAtPKZiyFo1gyprt5JM2HtP2WHXHWXS7jvI1S/8T4487TK57KyjpHe3zkoDqCyzvEwOPvIoWfz9+jLl4yvk/HP+EqcPlLCrVSl0XI9h2owcdlmRZv3zmIFX8IQwBlIaUFX69CgX9TGW9j1W0/CoVdJOw6fO+vJjufbm+2Tvw0+SXXfaVjo40z99CG2Ii3AU3ZRI6Cf73oABgARS8Fl8aIYPH+4ub46FLwimVvhlYD706quvuuiN+C6QEstKFSX0D/H+QOxQJ+076InsvFzXXpYp11BXouFundBCz/TRv2OYsKkpVY0KMDCx7NBew9VrHWphVvT5MvUKr6kPfxvXbTiuI4HZSL8XaR9mZj4Mc6btTRUXe66wEDBGo7D6y2prCBgCRYdAqYbbbCc77bKdTPmpVJ677wa5fM0+cuKRe0n39vhktFFzKrWLL4eygNyoJw6KDgdrUFQQKFHfjJrSWj1BA/8LNdurqpaZMz7QSEePy3rDxsgO24+TduUwJGgx6mlVJyH3KX1iNSptz6QemA0RZhyNhj/kloNYCbnrzacy8V1grqs4wZlIxtR8ql//AbJaz5Xl2yXL5PMvpsnaa6wk5Wg0VE1Rpj4cMA+16qsx88vPnLN+v4rVZZXuvaRSfb2++W6u9FttFSlTxsRJOlyoW/op/hnXi8b7Ld3eo22EGQYHS4ZAIgImBktExL4bAoaAIZAPBOrpMoJP6VFaSti1lRNOOUVGDO4mt197vdz/2MuyVAmEMgyvcRHHsQOTh0jLjfMBnJWRawQgXGPKYJQro1GimrMvZ0yVG259WvoN2kB2HL+ldG3fRolfHMcxx/HuxQzoILOR61pGK/+gNgRTIs4AgdHIRrqvAW2lXOc//jNoL9uqedbvTzhQSivnyOOPviA/LfXRvoBezaiUNVy66Ce55+GnZfW1BsqorYapCVWlTH7sHrnxprukqk7XGfrMUX4BdgLZRX3vZdKDMFcwGt5JPlo9Y7VpaQSM0WjpHrDyDQFDoPUioLs6hEhdaZlUqxR59bUGyRl/OlHW7Vgl55/1N5ny9seq0VBCAykkbuJIjevpA+cUXk/Y+QPdWi+Q1vJQEdBhVq1nN+CE/MV7z8ikSX+RmQtKZHvVZKzcUU/bdtLw+OjzBGqo5RdQZszfIDPh/8bEinC63rwqsya52HQqZFCmTo/6mPVdtex62ElywqSJ8u7kx+TWm26TRQt+dOdklOjp3/PmzJaLzj5XNR4qtPjTabLJ4LWkbnGVlC6ZJR+997EKM8pUcKEmboQnpgf1vTrOSalfR1xZaSTfNkym8F0hvDApuzanUQF7tCAQMEajILrJKmkIGAJFhUBAmIi0klhSzsa9rKMM2Ww7Oe7EQ6Xzsuky6fRL5Kvp8/S3qgCD4QmbeCY1usl7x9aiwsga02II1KndfpXa+lerF3LX8o7yqUZdmvL0ffLU86/KMg23qsY8SprGz8yoPzlD65quwU2LNS+0gj2TkUxrQRjcGTNmuLISmZGUK0CUqFp8XxTl2BK5557b5MMvftJT5feRP520v8z86CW5+Z7HZP4SZRsWzZUjf3e0VHdfR/589v/J8MEV8tyTT8hrn06Tnr1/pWdtaP+owKKkrlL7r1qdzNGk6j+OCsRwKmg81XwNg2sOh0vOnTvXnaWRDIvmc7MnihkBYzSKuXetbYaAIRBRBCDK4rLgepml+wrxVtqmi2yzx45y8BG/lq/feFpOufDfsmipPl7CP8GkckjoBBgVNdWwZAiEhoAOpw7VelaESutXWmdjueW686Xmh1ly1hmnymPPvugckfXoSH7WFDeeipfd+pgNj3mQwIYIJwQuBwCSMhUEOMWRah9qNPpcdaxSZnw2WXYbu6WM3GKsHHDwCXLNDffK1I+/lGXLl8qSZfPltddflkv/+mfZc/d9ZeTmY+S0M86WWd/OkeV6qvzS2vbKZyyWu2+8TrbZanu594GHZfGSpW4Niac4s+G/pfOJ2RTnhhClK9O2plOePVtYCNjuVFj9ZbU1BAyBgkfgZ2IszmrUb/COqogLGGvLu8vRR50g+4wfLo/deIX87a7HNJKMfzpOuMybO0ceefRxqaqukpoaZ1tlyRBIHQFnNxO/vKlL/KuORzXXq5Mlaj9FqKIOMnTsr+XGa/4msQXfyWl/mCTPv/iKVGFyo68zbOOhUutZ5zj3kXo9ivBJGP9NN91UXnzxRde6jKX8SqHVlanGskSDQdTUSpfSjvGzddQRvyTW1vmBLFWtx5KqGln441zppFGm2rTBPKpShQ/6boceUtW2nZTqOTxtSxbLwvmLpKpdd7nmlltl1912kg4dO2jtGAPxQBP1PZh2j8BocCp43759037XXih+BIzRKP4+thYaAoZAxBAoVSKtFPMFjexTU6unbqnUsnP1j1JdpvbvuiqXIsFs10v++o9zZfxWa8rfjjxEnnjyYyXsqkSNqFSGXCULpr8hTzz3tlRV6unhZVhcWzIE0kEgzri6NxytGf/Ov0Q6wp4fL41yDUhQqUTtsLET5JyzJ6mmY6mccOzJ8uT/NITr/7f3NvCt3tWd58m9N5HyKkEW5MCABAUkIEUKpbUTWmQIWRlmqM2HoRJTWju0VKYU7MwU7GxnWnc/LXZ2dtYOnfnY6fYzdvqB2ulOa192WytLqX3ZtvZNp1h36Ix1F1jrtmXsy5t1mxDLSe797+88L9Ij6dGrLVu2zgOKrx49z//l+3875/9yDk4V32Cnk9eh7OKv5h88P0VeT2JOxbPWrVQPPvggfe1rX9MOhDd+ZoGdcsLM8E0OWKa7h8amvkBXM9+n737/u7SLz/e+92168t/9G3qD5266x/8u2oSDxd3dH9B3f/A9fL5D3/nmGv3SP/1JmClGH/HDH9Ajj0yQ7y1vJ99rXkk3wxTuGSgvmpEJnMfhKQ7t3EYdJWHm6wc/+AHxhy1vySUEigmIolFMRL4LASEgBJpIQBPn0POy9Sg+xKl7/34RXsF5ClIf7M/euBmCAJHzbj9NTY3T+zvvoZ97+NcxM3or3aJZoiJ67Tseon//vzxKt8Mj8Qu6GZkmplqCPnUEtJUHY3UNf/RZd1YUeHXsBj3/PCsOZ+jFF2+wzTM6CxPMP/0zH6XfHvsUOff+jv7l4Kdp4fyXaSf7Er0IxZiFCRzraMOTGvY1gw9Gs+D99a9/vfEVDfuga7p7BgrfTVgJuQFF5fpLMDt7+xl6IHQP/d5/+Dx96++3UbZw8sd1gAvOqAZn0P80YtXub/7mb+gtb3mLtsIilxAoJiCKRjER+S4EhIAQaCYB7DVhH1k8wmvWYviEJu3TN/5hm763/R1sQ8Fqhr45G7PKZ2GJKkif+9y/obcGXgP5D3uq8b8sHIT91//8DP3eF8/TfhbbJOqZhmxm3iTsE0NA27DHFs9yW52wXQpKxnPPZujS3/w1/Z9PP0PPX3+BnvnKn9BffvWv6AewKkRY2Xjjm95Enrvd9Hf/3yV69JF/SY/99r+jL//ZX9B3d6/VPSN+YmA1mNBIJEJf/vKXj+HcgqlEYosVVj+fx6rK9zJn6CMfi9OPeO6g2ekn6Ns739H7Ie5rsLKaOwzeQF+ysrJC73rXu3IKVcNbxRrkLK+1NgFx2Nfa5SOpEwJC4BQS0MxJarOHir4Hk5Tr/3mN/uBLX6E7vnGG7n7xX9DbHuiEtZ+zcMJ1HbOOt9Fbuj5A//axH9LE589DCUG3jQPgP/z7r9Pv/fEmRX/6IbrrVpkzOoXV5GizxKsaiPEcDg7feedt9D/2fYR+/KFeWEK7ldzuu+jsLfCqAe/Tt7/s1fSpz/5r+uhzz0FQxWrHubvolS97GZ27GR6oobRITcwX2wc+8AEaHh7WthXdfffduS1UDVuhqqNGsOUw1hky3/0OVjAy9PrXeuiZ/3KJfvwn3kHnEyv018/8Nd0efifd7b7TOGPD26fqv9iyVjqdpgceeEB72VQyRNmon+VpfUMUjdNaspIvISAEWpaAvj1Bn0O8/U4XvfXeEP3bf/8E7Ttd9COvvYdugzLBpzhg2xJ5uA6LMzfRg+/+AL3S+xPavVtuPkev9fnozlu/SS9q5nHlMHjLFvYJSJi+c4ZVBIUDwrfTG/1vgZfrt8G5G2of6heLoOwa7jr+9yoc+H2190c0ZVe3MIT9/1p95UPkeFAOg+dK/FWvehW99rWvpWeeeQY+SHq0+6ZVpuYK4lwQurna2+5w00+975/T/e/7Id3quI1uPeunNwTfQTc7bqXbnLdygRmfXLJr/gfn5amnntJWM9hvSHPzVHOy5MEWIyCKRosViCRHCAiB001A93XGW1YUxLabyOG4i17zmrvI+xo/ZoRxqBZewm+B3nAdg7hiYQ4HbVmCOwNLVPe+5W6scrykiXw333k3ObE3/oZ2+Fa68tNdaw4/d5rLNm2bjClo8hdDpcDKBd/mE0Os6upPsCrB9/kbr8jh/7z1CnUPm/1QRfmvFqDxhvHPNv7DnrL7+vroi1/8IoXDYc1z9lGsZuQURxSe41YH/RPfq4itSNx8/Qztn1N01ytwyJx9dBhKoVlqZlHp71cvuGeffZZ+53d+h9bX16s/LE+0LQFZ5WzbopeMCwEhcDwEMIxrhzRYcGMzorxywR8M/vQCFAnslz7zQ/zdh0dwuEaDxZmzOAROZ/dwCFybN8aj2FZ1/Ye0h99uQVislDR8sUKjpQaf/H9yImPD4cqLrU2gpMro5zV0R3xQMWD+7AZWz85BQsUGPr1ywLLUS6il13HA+MaZLGruCzgfhPqocNiYlWKWKGqVUq10uOJxPdQ+esvgWqn/T6+brQ3TPnVs5jYQCJDL5SI+MJ0T7A/SXu2jKrjLCuANTELwRrYbMCyBL+hD8G8HpjFQRtA1NO/ubJaYJz60FVZNm0Q5azMhpVfeBLJZTop+93d/lz784Q9r/jP40lZrzHLUSs/sV/LvlIRTGpXcOWUEZBrslBWoZEcICIEWJ8BjujZhzFuecBX0wndoc8pEd2r/LZgJUrdCaHgOSsVtkAf2af0bKTr7nU36hx/s0ltc92jPN3bxtitrIlg80Oa7jbQ0Fqq81eIEWLktuqw6glYjbmJ7U5gJ1/6t10z9v3wDFoa4Lude0iRV7fm6L0Pw1qwg4eLap6+ONKq51J2CQ3+BlQoWqu+55x66//77tUPhb3vb23D+BWci8tAOPV6dH9ouo4R5upvNMtEKLl96pRFXLz9z2xe/+w//8A90/vx5beuUllfc00uPew5WMKB48j3WPbS/WPXC3+uoR1y++moZp+dsxVRpgcl1ogmU9jQnOjuSeCEgBITA6SVwk2Zo9CZYmnqO7rrTRw9/7MOU/n+/hXvYJ9/oZRU4LbKGLiY0Gqi8JwRqJ8ALfPzRBFXtPyyasLEE/qrZx6o9sBZ50hTKb775ZnrHO94Bc8HPa2c1ToNzzWw2S7//+79PP/3TP018DoUvs+vQToYYfYq+WqKfFdE0Uk3Byn/Mf7VIkUkymkRAVjSaBFaCFQJCQAgcJgFtGwK2YrB9/Ftvezn95E+9F1taeLtKI5bv8ynTtspochz+g5FfFwtM4a7SDOhh5k7CamcC+lkPXQTVTTUbdfom08jByauHrGiYqxqvf/3r6Ud/9EdpdXWV3vzmN+e2Gp3EMud8Xbx4kdja1K/92q9pWbhxAysUvKqhffT5a105tCqIxtQFaxfa1lFe0+XlDu53+Ltcp5WAKBqntWQlX0LgmAkc1X7kY87mkUbPh3GhV+DCZhb8Zc/NCk65CAdxy12mwFPudz5MfhMEBW2zFO/LZ7O7GPiv4xD6uXMnQ8DjPLKww3+3t7fpT/7kT+h2WE+S63gJ7O7u0j/C/waXiznDb7dtSFOiWcVl7+Ta//l8CN+EMGqcGThpsqiZT/579uxZet/73kebm5ta3fzoRz+aq59m+7TjcrylxzqArihYy+6b3/wmfelLX6KHHnpIW83Ip1s/k8FFqJ39MMwIaGfQtPLls2XoYnJhagWslzw/bxRwK3I47nI46fGXH51Oes4k/UJACBwrAR6cnnzySW0WT65DIsDKBcZm3uHMM4dn4GeDB/TrrH3oW6O1iHiwZv7f+c53qkZ8HZIBfAdjzMf2qxu3aCZNdQHvZA0PnOdXvOIV2uHby5cvQ2eSncFVC7/JD7DyFwqFiL1kV7vUDa6DMI3EsucZB9ux0ue88V07b3DCrmKBmevmz/3cz9Fv/dZvaXWUrVCZAnwrZ82aRlYcFxcX6WXwm9Ld3U28LYzzqXUZrECgL+GVDN3ctn7Ki80j86U/A+MWKGNdkTROj7DxC6O/MjkUs2tlPpK26gRO1khSPT/yhBAQAi1C4EMf+pBmX50vFjh4Vk+ugxFgY6NnYaISRmSgXMAiELQCHthfBNpzmskf/TJnSWuJjd//73+fpvMQIF6CNaEX+BwIz8JCMnjk05+sJYiWecYLHw+PPvroiRDgWgZaExPC9ZDb/W234eB4pUub2L5BK3/2Z/T//PkKfeE/LcEJuYvu+7GfoP6fi1H4p+6n225lnw8n+3oTvKo//PDD9Ju/+ZvaGQe21lRPWz3q3JtKBgv+L7zwAiUSCfrGN75Bv/qrv6o5ICy4eEUC5fjtv79Cf/5/L9MfIH9b3/4e3fVKH/U//FH6Z+9/L93hOEt//Ae/T//xyT+g7zybpQd+KkyDv9BP73ygy7IyctS5lPiaTUAUjWYTlvCFQJsSuOOOO4g/fJmDqcxUNV4ZeGMCb3NiReM6tktdhyZw7gY2T2GPyQvnrkM9yHfnzLtW5mehsLz6NR304Ht+ih75zK/T8soz9J8W/4h6/+lDjSf2iN80t02xUMtWfXg1Q+raEReCTXRcB7ls+KpUHry/n+XU97znJ+nBB99J/9eXv0L7Z26jX/2fPkv3+t9At5zAFQ0bHJrXdd5yxCuNDz74IK2trdHLX/7yimzswjmqe2aZcTleunSJvvCFL9Bv/MZvwJnjG0vTrPnlUPRPXvNq6v/YR4n2/5GGPvNb9M8/Pky/8Ev9Wu90Tr1A733wJ+n3fu9JGoay8vHBX8Q9XgXRL211hCuCXKeKgCgap6o4JTNCoHUIWAcMGTwOXi68dnGWB2H02mehVmjrQ7pxngIlg2/XM2DfBK/OdOYO8gdeR2960/9Ay199DbyTe0+UyUlZLTt4/WpGCFwPaykbzZztGWzgO+OGgPp3dAfMsr5486tg9OAOOKXk5Y6TLXwWt8ef/dmfpWvXrtGnPvUpmpiY0M46mFv9ip9tRrmUC9OcoLCuZLz44ouUSqW0g9+f+cxnNAtaxf255rfDCPQMd1BQOF5x6xl62U130y23vhw7MbFZ6vpL9L2dK/Qfnvgi/cr//L/Rhz7wXnKiaDksVjTlOr0ERNE4vWUrORMCQkAICAEhIARajAAL8p/85Ce1VcfPfe5z9PM///P09re/PXfm4biTy8I/p+25556jP/3TP9VWMh555BF673vfm9uWWKgQmUe+dcUBGzyxDfOsdpaMfaPceClL3/7Wf6P/44//nH7swQ/RP3uoE5Mj7K50H64+eMpE89Qi1yklIIrGKS1YyZYQEAJCQAgIASHQegR49YK3lA0MDNAf/dEf0Re/+EX67ne/q22n4vMsxSsGR50DVjLYIR8f/OYtU6Ojo/TAAw9oybCmjZ/TFA7tB1h94xNj2EKl25ziv1ipeul5Sqf+lp5eeppe8cYQPYStcXc6z8IsNz8FoxbY+mnjO/KosyzxNZGAKBpNhCtBCwEhIASEgBAQAkKgmAAL6HyGjY1msBWnP8NB+G9/+9v0Mz/zM7mD1tYtTOb7B1VCzDDN8Iq/swL09a9/nebn57UVFl7JuPdzENq7AAAgAElEQVTee6sqP7zBTb90AxU3wyLezfQifePSRZq4tEIdr7mXPhp5D738jrOwcXcd583Oaecz2KS2XKebgJTw6S5fyZ0QEAJCQAgIgRNHgMXVgwrVrZppzpdpsICVjUgkQh/72Mc0RYPPQbBJcFYAij+HlR9ruGaYfI99nrBJ8s9//vPage9f/uVfLlEyzC1T5l9+X1cyWJzUz1poJm5hLps3T2Wfu0Z/9Zd/SX+1fpGeSW6SgqW8szjHgTUNbKviQxqHlSsJp1UJiKLRqiUj6RICQkAICAEhIAROPYFbbrmF3va2t2lKBh8U5wPiH//4x4md4zXjMhU4q8KxsrKinRX52te+Rp/+9Ke1dHR0dNSo7EFbYG/fmsahqx03zpyDL5Rb6K1vf4DGx/4VffcbSfrXj/46/cXXLsNlj66U3IRnTqsy2YxyO6lhiqJxUktO0i0EhIAQEAJCQAicaALWFQJ2bPie97xHO4DNjg4//OEP02c/+1lKp9PamY7ibU6NZtwaDpvY/cAHPqBZlYrH49pqBis9TqezZiVAP5Whm6nlBQo+Gs5KxktYuVB3vYre/+Gfp6mxT9KLW8/QL316mP5i6++w4nGGboaPxjPsSlyuU01Azmic6uKVzAkBISAEKhO4rtmlfBH7peGLGZ7B6WZ4Z76RJXbUfFZGiMrw5NdDIcB18Lkffp9ugW8Yp+KDwjfTzY7rdAec9F2/DrEVU6Kneea7YBuSsWWKrVLx+Q127MerG294wxuor6+P3vrWt9Kt4MIfh8NRk/lgViyuX79O+/v79Pzzz9P3v/99zYfHl770JXrppZe0Q+kcF1+N+KDhoxa8kHEDThf5HzfddB2fffQqsMb9EraAOe+gh6I/T7+5/yL9+ud+hwb7B+l3/+M0/fibXk0OHAbXFkGwjUq3cmtumZM9VYfSuFogEBlGWqAQJAlCQAgIgeMiwBbw1XUMBRDw4G+c6CV8h8LBVmFkA/VxlUp7xfvCP/53+uLsF+gOHBj+0PsDdObmW+kNb34bveyuWzVXMYZdo7aAwkqBqVR5PB5tReMXfuEX6Ktf/SotLCzQD3/4Q03peP3rX6/532CHf7fffrt2cJs/pj8OVizYBwYrF2ymlq1aXblyhb71rW/R9va2dgaDrUnxygkrLOZljb8e4OxQlHdPnWGtA6sVL+Isxg1WNW7s01ncO3fbXfTBgTh9//kb9Nvjn6df+dmP0P86PUM/EXoL3ZmPXo5s1AP9hDwrisYJKShJphAQAkKgGQR4kwPddDM99+zzmkBC1/fp2Wefo+ssHMiw3wzkEmYRgX/8wVV65qsrdOHyn9Cdtw/SG+99O33sl/4F3QpP7/rGGt6W0x4z3Kxk8DYpc5WDBX9WJj74wQ9qKxpsdpatQv3t3/6tZnqWlQk+UM7nPNg5In/4HQ6Df9vb29OUE96WxQpKNBrVVkXcbremlJjnNDi+RpUMvTh1o7bPPpehb//9FVp/5uuUfek5+q+wOrX53+6j17/2teS+9TYKv+ud9OTv/u+U/C9/Tb/0sTh94pMfp+77f4ze9MYfobvuvFMrZ2OBwzzuIe3lhBMQReOEF6AkXwgIASFwEAIKKxmZzPdo5cur2I7xcnrooS7agBBw7fkMfeB97z1I0PKuEKiJwCtf8xb61Gc+S/df+ga28N1NvzL0CfK/6UcgaN6g63CywGtt7aFm6LjMVQkrPFPxeC0Edv68//3v15QJnhzgrVC8csGfF154QVMgWPHgFY47IbzffffdZc9cWLdtHWR7mrbtydg+9cL+SxTseif99lt/DCsZLnoxy9sysdrB1rYcd9Dgv/pVenbvJZTtOXLAVx+n+4a2/8rYRVVTrZGHTgoBUTROSklJOoWAEBACTSEAocRxhu697yforaF30gvsgOumlyDjWfYzNCVeCVQI6ARuOnsrhbrCFOrsRt2DRHrjDHxG83kBNoWa30rUDryKhf3i7yYDvs8KBa9M8Oc4L13J4IM0ilwuNwVD76C34aM55YO/DP2YOG+uInrjj76d/D96n5Zc3lzFnsMVFA7WU8zPceZF4j58AqJoHD5TCVEICAEhcGIIsMBy+x1uemPgZdg6cUY7yImjnEg/zyPLJQSaT0C3jHpWUzJu4plt3uuvSa/4zv+T40LNL4SDxMAFyGe9WHHAv9mi1Eu4xd8d+K+C8z6F8rzBnsC1u9e1szdc0Pp6Ff+bC1lf1dC2yXH5c7BynXgComic+CKUDAgBISAEGidwg1cvXsKsI/QKxdansB3j7BlYn8J92IxpPGB5UwjUSEBBuT2jXkAF5BNDOEiMmfCbb7ygOXaDxqGJnyJz1gjzWB9jq1OsYfAqBfcnfO6Dy48nLfi/bIeKVQ3sl9KUCX2tAw9p96WQj7Xwmha5jCJNQysBCwEhIARan8BZHATXxn3tgoKRu8TNkgWG/LOJBLRZ7Ztu1QRNrnVadRTbyk0kfshBa1rgGfzPyXqhVoj6xkuUKxetFh3/V+9f9O/mPe1H43fz3/L3NBGQkeQ0labkRQgIASEgBISAEBACQkAItAgBUTRapCAkGUJACAgBISAEhIAQEAJC4DQRkK1Tp6k0JS+2BNjcH9seX11dtf1dbgoBIVAbAbazzxebozys6ytf+QrM62ZyjsYOK1wJ53QT2Nra0ky3Htb1h3/4h5pvCrlahwCb7k2n09TZ2dk6iZKU1E1AFI26kckLJ4nAuXPn6NWvfrXmEXVlZUVLejlzgScpX5JWIXBcBLj9vOtd7yJuWwe93v3ud2vOxtiLsVxCoB4CPp+PXve612nO7A56/eIv/iJ985vfPGgw8v4hE+CJjQceeIDuvfdezZkgXzJ+HzLkIwgOluSM0juCyCQKIXDUBFiAefbZZ+n555/XopZO6qhLQOI7bQRM78GvfOUrNS/EB7lk+DkIPXnXJHDQfl3qYevWJWvZcDkftKxbN6enN2WiaJzespWcgQB3UuaHgdh5XBVQQkAI1EbgsAd9EfBq4y5PVSZwUOFT6mFlvsf5q1k2ZhkftKyPMy/tGrcoGu1a8pJvISAEhIAQEAJCQAgIASHQRAJidaqJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhIQRaOJcCVoISAEhIAQEAJCQAgIASHQrgRE0WjXkpd8CwEhIASEgBAQAkJACAiBJhI4fYpGNkkLowM0MDxHyUwTybVL0NkULc3M0ML6CYWZ3aFkYoYmplbphObggDUtSzvJJZoZnaFVGwDZ9BJNDA7Q8Mwq7RwwJnm9CQQyKUrMTdAwyigWQzmhHJdOeMeWSa/SwsQELaWbwOvAQWYpvb5EU6MLlGowrJ3VKRocGKSJREtmsMFcNeu1g/Nu9T4sk0J9nxqlhUYrVLPQt3q4hybLVR4DWx1DLenLpte1OjaXrOXpY3hGHeO1tzapesNB5XU5lMPR6Mej4iv5TGwMeRUwah+P9YdjzOfJjXpXrcR1nv6RjeZmY2texWuoCy6PV/n9nSoSHVLjs4tqY3uvJF27m8tqdjyuomG/cjn0ukCdk2qr5MnTemNXbS5Oq5H+iAp6HEZ7CKvp7eL8bqnJTvN3l+pd3C1+QL4fI4GtxbgKejtVfHpezU8PqU6XUZfJo3rnSwrzGFNaPerdjXk1ORRVYb/LqI9eNdTkLqV6qswn0F6Wi9qLq18t1x5A/sndeRUx+xyHXZtrJNDT9s4h8kav3nJ92N62WpufLOp/Xaq/rgq1oaajYdWJ9lJZNnIpl8ejvBgTw739amh8Wi2ubanT0JMfTJardQw8uW1rO9enepRDk3kdGMNbMz/HuqLh7BqmpdUkpVNLFOvYp/198+Oj2MwSLSUSlLB+lnBvaYHmZqZoONZFHcTPZymTzWtoln8SFXw5Bi3uhEeZSQxS7IkrR5MLX4xmuC5gtnM4UFoXEgmU/cIcTYz2UVdHhtafepweffiDdN89PuoamClYvcpmneTr6qOegJOy+0eT/NaKJUtZJ7h0dVA2UwkAnssBQmOR9tIyxZhdH6ae2BPkHF6gmcEYxQanKLE0RH6MKERX8e/1E1VcWXJToMtHlLnWMowLEoL2Ego5KXO1UnupIelZayOSNlWW2GHxRitovT4M5e4OUU9ftyajNHaFaHBhldZTWJGfCBEEnZx8xHLT3BLLRjwmztDU2DD1cV+/vkCPP/oJ+uD9r6OOji6KTSxR6gT36QVJrzsftY6BjZVOa7zFfWoXubNXG65lR5aPVtF/1iwrEeSJq5UaEra7EldeaHFRqxa3u6am41HVG59Ua6dBra+BQ1Me2Z5XvR5zBpVU01c0LJnYGPHnVqXIFbWdWdzbnFf9fnM2npTDjzpTXN67sypsrG41dUVjr3RVpSllUneg22o6bJah/ewqcxyK9qr+8WV1subI64Zxgl7YNGZpsVq7VpjsrcUhFe2Nq9nNVq1zSG+F9rDc34orGibjDTXkNdpLoysaCGprcQRlFFUji5uqhUupBdrD4fBu5T5sLe4xxrJ6VzQsxbM1qTrNcYxnrefL1ao9tbUyqaJBs42hLnvCamT5hPbshyLLVR8DW6AhHCgJeXlJVjSqKk7uDnfVZ4ofcHcP02CQJ2It6q67iwZnFnCuYJi66g+yOIo2/Z6muYFhSnVHCR3ckV+FdcFpG78zEKO5xBSFtRleTPhcfoJiw4nCWV6nm9zG77aBHMbN7DpW16aoNbdGOslpjy+Xc+Y4tbBEc6M9mH2TqyUIpOZo5iLPhKL+FvVhvr4pWliaoQGs1rXkVaU9OKtVyGPNlJMaGIZKUuzrm0AZLdBEX4BatJRK0nw8Nw6Hdyv3Ye7iBtwIaIRR0A2UbUNYyYdMtJBM0mLcT/ri5wV67H0h6ptLNxLz8b5zKLJc9THweDN58NjdHa3fyxzr1ikr4rJtp2I5BKhvsId8rc+5Yi5a7cf0zACN7gzQ3ETPsQyUNdcFH9LZ58rhu4pl5CXrgeem14sdWhroo8dT1khbrTQlPSeNQGY9SZdPWqK19Ep7OJHFJoluHoFjmez0UR+Meyz1e418XaXzg300vF73/qPmcZGQ24pAyygajVIPDMJCSE/TJcpGk3fy3ktNUWwsQ8NzYydgRchJoe5AnvF+ipLpo0OemorRwFNXjy5CiaktCKRTR1iJD5GotIdDhClBCYEDEeigHuzsGPIbgexfosdjoyS6xoGgyssNEjixisbO+mqVg04wabZT20xzNpOm5Po6hNTanm+QdZnXMkinZaaB04Klz8pJQd5SSVpPpqjGLJaJu+g2zMlNxMaIYNpxFAcj67qyaUrh4NpRz5kUbsUo2ERXV/K1h7MZSifXaZ3rQpW87CwNUM8jF6juo61GHEkIk1YjBvUntvQNrscpTj+0rbprMswA11SXzDgw656qXElLE4jakau39VaUovRld6BUov6Xz6cRF8qSeVibmE3C8reQv+JnM2m0NeQ3XbbAzLiqtduKMed+zGbK56piCGCU5n7BKJt6EGd2LG1Xq6NJShaDqBB5w+3BDJPTrrU99Gn1JBzv5/vv5vU/DbWtDNpUjXnJcH3mcqv1BdT8+saNBttD3e2OCxQGWtBmuH3W1KfY1KuGeNfah2nxGXUc/XzZZm2TLr2cuE9JVRmjbV4+6lvOLhqb6KXcmv+VGRpb2KmYitbMH+pujRWpoXpTkUjRjw2Nf0h/urBv0savRmTOA/ST9WTz0J890CmUQ3x5azKYPwBc9TD4phrv7FTjm6UJYNOm0zCj2Amzno7e+YqH8XY3ZmFS1QvzcEEVjhimQB0e5Q/jIN/0olrZ2FCbm5vaZ4vNqG6vqMl4L0yGwqScS/94CmzWbalFxN3biTCN310uDw6rlx7e2t1aUbMjejq9Q3zic09tTPcqr2ka0RVRxRYst9emVT+nVzMFbB7ydSl/74ha3iqNo5ROpTt7am0kqDzh6bwZWMth6oqHwTenVdgwvenFyfyDHj3bnu60HAavbGay4OC4A8wKDoQvqt4azNtyPRiK+JUHpkR7++MqzmZhOT+uoIpOrhWZCgSn8U6FzjufRhzQc+TKO6hKLQHvqo3ZIRXxwwwdl535rsOrwkPz6qDnenc3pvV67PKqTtTjcFCv0/3Ty2qy4mHwXRwenIUZxjDqnUN1ltq/NSrMHszljqjeoEd5ghHVH4+r/t5O5QFblz9Sw2HDbbU8zu0GZhg7IyrCZofBzMW84+NqfnlNbRjtbHPTapoRhxvX5tW4kb7oMidnS833B3P8HTBbXNANbLMxiLDywwxyOIqyhGGICJtURbvu7J9VGzbNZG93Uy3PjqNtcbpMc9mIe3lc9ebMsXJ5u1QwvphvH3to7yPIV87sLD+DeEZW6jcvudyvPEYdytUP1BOHI9/XuFx+pXUVRRf3C3Gk3ePxa+Uf6eR84F30axHUr41iIwnm+5xvmM3lcnUExzWOu2vjKpwzieyFSc5yL5uB1NceVnKHYw3ztnubah7llev3uG2grMLVGOI9jT3385Y25fB0qv7pjfr5a9nBuBIsOgy+tahGImhP1vbugsnhxTK9HOrE2vy4iqM/cTn8Nn1BvvD2tpbVeLQzZ94dgzvqD9pFMKomV+zDr3vcaKA98FhUd7vjugNzm0O9MFePthcMh7V+iOuy1kfM2x2MPwTeKOna+jDmzv3YuIpifPZ4g6oTaez08sFph/KGYWChXENBmS5P9uNZXTaIo/+LYhx2aO8NqcUKY+/muGnY5ACHwTEOR3L1r84Dv3vLqt9i1MURni0dn+vMH5vd7rTIQCzreMP9anpN71zZGEIEfUpeBmITvH4V6R9XBefS2aALyzNav+dRwaHCfrM+Wa7RMTDfHsv/q5Hxb09tbyyqaZbxvDBa4x9RGxwBy5C9ev+st3e0j864Kted5NLE76Gv4DHCH+YxFLIamHXG59EPmrJznXWjfIYP/Rc69BAbDLAuRYOtMDiCBYoGW2NhAb9gkK6gaOwuxxVMRSpXGIJKTviA4BDN++EwKwL/tfrk2J6N5OJx6NJPUa531XyvafmBCz8v3WxDeOGOzppOLxrYJsLUBA1Lh5JXUKCETIYhSMCCBCyZ7BrBsYDRm7OSElaTB5BY92DBy++JqNktS1ZqVDQKhH0Kq9lqskmVOlK7orGpRvx5gd+F8i6Murqisb3Yrws5/iFl9JN66nJWtyCATxaIsmpvd1ttw+9H1BQwvXEoeri3rX8K0gCBaLYXA1swruY3tg3FFza+5/u1+sd1yxEcadBCGjrA2V7lQRje6GyBwrK3OauiFqtchHLJ6xHwjzIOnwbaIJvnZ69o4NmhoFZfvVCqrXnTrb6xYMgCsI0EzySR/+kIW15hoTUvPO1ujFv8QuTToKdzV61hYM/7XNAFsOii3j55YMq3H0t925rVLaU5Oovawhasb+kWylyR2QJ/KpvzEBoiutKks4CisbyhZqHMsOIZ6R9SIyNxFeHBQmOl14c9lH8/FEd/hG3Xj6vxgmfgk2TeXlAsW/X3do36A0UqmrfMFF/eytUrrl+F9RtlM8JKr0P5WQGyFMEeBOShoBEO2vWkVYhC2lkgZEUxV/5QNDa0MkEfZLnvKTZ7ZZOBetpDgaKxvKKlkQXRqKG85hUOl4rMlmG4vQj2GHCj02qNJ4C0egZhcKjTqBfMoxEraoWC7yL8PIXh48mLiae8cGkwKxp/1B4UXExQ+AuUzvKKxu7KEJQkr4pMrqgto1D3IEyMh82yZ18pWznaDY0bdbeHBtsdT5JNYvzSFERwt9TDzfG8ENQ5vmb0f2a2DsAbLaH2PozrB/rhqB8TQp1qqMAaWL5v4H4sXqxY721gsobLhOtjvjy0iUEIeFo/5MVkWJkx79gVDaRzsTdvnZEcUVUw79lg/rbnI3lZhS20FXf/uysqbsomYFfeR9OairMiZEx0cM2oT5ZrdAzMNa0q/2hk/OPJE2OCyxxfoWiscH8CBY0n26L9Vp9CLAPoEz12idlDvxxGv+KADFGg1MIq1yTG1vxYKIqGHb+CewWKhqsX2vEGBj7rZ02tra2oxVnMrGoCVKGiYQZmbQBlVzR2Fw0h0QvzkUUtxDoDgBnyacywagKkKd1zRBsjym9UIHtFA3Njlg7Wqmjo6UTjyP3OGi00VENQZAGxn2cDvNHcisb2PAuTHtvZxd3F3vzsboXKWrEAdjHrgdmaEuGoRkVjl2djTR4ssFSMrPqPtSka6OixspBrZC5WtIrDrqJo7KEzNGZ7HFiJKe4rV/oN04SefrVS/CMMMPebQoU5W1EcPQbD5X4orjarUzxQmc4QWdjjVa2SKErCK7zB3L14t2wntTmugjmh0c68LafPNL9I9isalroeLtEgN3KKHrc1u7GW6zmXkQMrZcVi49ZkfuXKC8FwS1PUdi0c2DRhXsAPRnpVr7bChBlXTCxwp+2JTBsrGhblHiuixRP/e2hDel2xF/6s5rVdmBWPF8/AsuJpljdWCoJ+KP0rRTnehjnlGlbQqhQr6oVZJpWd2m2Cn7ZyYV2FtAautWtDMEYdLJCT8BxPLnD90ZQNb1hFIjyQ4QcewHjWDSt6Q8V5LJv4WtqDsuTNoc0q9xatPph1WkuTXX8GgX4kiFWM4pUsLV0WwRX9ZbRuB5SW9yE0e1HG4wUrC7pwaSpntkoYBLf85Id9XVObrMCwyXCbNr+F1WGzDnGZFTSaesaNg7SHetodBEOeJIOyG8RSbkkfto38mHUMDgwL83MIvLU+tkofhp5Hn0DEZIdNfeYxNDeOFNW5remw8ZuNvIG8dRp565zkhlN6Hb+iYZVFuK0XTdA2nD+YJjYn+SAnlQwNQLGdC9sBJc1udMBDexijocxHCrciaCBrkeUOPgaWllnBnYOMf5Azc2MG+hOPH3KtdcIHyu94zmGuuZJelB5z3IF8U9x/a0+iP8yZ5EYbbFWHfa25omF2TBX/2jR8Bo/VDli81QbPcorGVm5rjv3se17ocKloiaqOOFiAM+OwXdHgZJhCVOGKRq4areSFc8KMeKkgazwJYVhb+oQwWyJHaxXNVJo4zxBMiiWsXITl/rGLThiNwG7LU42KBoe8jS0us7PLarNMf1Iudrv7FRUNzPxu8nYfbGfIDQ5Y6Rm3GUCUqqJoWAdBLCkXJz2vDAZV6ThSg2BldFJlPdSvDeUFPfgLsdlhZ4dHv8dKkiZEoo6WFajYa67eFgpXNPLB7kJIMAUnuxWNPcsgHCzZq7itZs2tWV6sCBWn1qy7aCteu5lxq2AetPfcbl0t4xWrYmUlH6VFwCueteOH1uI5Zdhu0ONBMcehtLARAGYGo3mlx3623U1CQVEAACAASURBVGKz3dFbX3la2NWkaOQEUi7/EvEuF5p19bVkxY8H+Zwiylv+yodTXLSl32toD3gpn7fiGWIzRKvwWSrAcL/KW1ZKJ2/0960TOLbbREoTbrljjbsTK+Y2PKx9Rpk6u5yrJ3aKhqkA2Cn+nJRdtKn8DHRJm6t13MB0T07haaA91Nzu0IYjrIBjMsZuqMTIkM8Pe0rfshbA4fCu1oftLka1tu+I2E+GqNzEoz7OWifKrG2xtAvD2Gu0H1cZOaAVFI3t2XzfViwjHCR/+clhhwrbbbvdnVcRg4/dRBPXhD2UjcsDX1k2Ta2qLHdIY2ClLuFA419BGyyeNNBj3cXKkCnHlLR19AXmzhgeP+0QcSh5D+qtq2icw+DaepcrSvPrE9RVcB6ZPYDygbZVmhsboycvlU925WPMWUrCA7V5FThyNW6GerrJ9fiTOOh7DYd4+GBmEzwMWGy4enpi1F0m0Zkl2GSHYSNHqIN2cHio5JgoMuDm5Gmnkq/Q6mqKqMtiiak8Ju2XnYUBGlzvoblk34Fy2dEFC0xdVSJr5OdrT1Kfcwn+BAAIh1Qz1+Ah1QzH5afIwCiNjQ00ZiGro49GhxYos+qknrG+QlvlBWnFwcES8NUyk6XE1IxmprTTndUOmJdcGdiRx03N9/q1deJq2Vcjw52FCZrjFx3d1NfjLglav1Hqh6H4Qa6G6OjKehZ1doNvJE0LWRwsHCiuV5ZKiwPMJYjSOFRvGOWyPabfgbSHiC5cRAJwOC6NP76iBDq53LXLQd0wJVy+JcKT7lg/rY4lqWNwlCoZostoh62LmFmyYm/7HjbqO8zSQrlp/y6+3Lhv0NxPE87/lWao+JUGvydnpuiC1hDggbhc54FfO2KD1Df8ND2F/uHa+SmaS8do2GdEijznsu3voYF6DUA0mHb9NXi1DZkJsQbkI58PDC8hc/s4TM0Mc0WVpKmpi6irfuqAv471dUuhGUFknR2oKZe0+ryfTFAyC6MNpY9VT7kzQKGAzYsdAfJBar3A9ZoNB+BPcS50AxVlPEKn52jqPArDg/qTQh7SxUlBS9GceegNJ5VAnz8ayCOocdzgenGQ9lBru0tOjNHTyI6rr9wY1kED8GLvnktQJjRAA8WwzOwfiHelPgw+oSaeAk0Hxoqe4lavx+7uo7n1ZepeSpMvNgBy+atrcIyi61OUDo3ScIW+mQ04ZPGaTY0pLuAj/w5PEoVxWr4eJH++2DCFRx9GP7RPF+YWKD04XNgW3D0U63bQ009jzL4wRwvpwXzfo6UoA39nCXL3JcrKP5V4HtYYWKlADjT+WQNGv+SzGTLcHT6tTmrdSfGB99QMTXBfQR7qjnUVl2IudLePQ9CkiJa9WlPRgKO1jgAGHBtsgUCIuqGBpH0zNr/WdgvyqnHB0gmPFEUVwIk4fPQkhqujuco7sYKAik6ahyxHcoaGB+fsE+QMUhBLLHw567FYg0FvYDhJfQtJKiur2sd4dHcdnXDAOEgBUyPEQOt2o24EWBDoKNv4aksgTABOrVJPycNZSq9CIMDAk7t4FKnrSlJilTsJyBMLcCyZKNNlouCMooMeVetQlaHEwqquHPgCZCcP1ZXUSg/DadJoIkmjxc/A+sU6Kzsp8wcbQGho5t0MGlqpeO+jgA+bfy7qnIqjKP5evp3oT/pic7QeK34LHXgqQXMoZ7PZ26S09CWbO86qjpFQNzVBkFssJkVy/YxNYAe6laJEglVYXK6Oyk7mnFDmuhz0FAZ7glvJpVWYrh7gganoQp/bGhe37zzDAoQox1VtPN2hxNgw2egZWhYCZmeIf2vdYcdh5ozL2AgPfVK9dSmzCuWHX8+s0tRwqkz/1YH+3Ei0E9al8Lhd6RxVeygfT5IWErqAEwhVcE7ohsO44VCDhXAw3rSToCWeyMCIHgrYUdST5Qz0EOYnSi5naBAO8AZL7tMO2tIc+htDn9xHTeC6UKaXL33/CO/oEytmhBB4LRgOlD9M1A32DNMFFoYvztBMapgmApaMYTIgkTQV7os0t5CiYSjNuSu9QFOrHRRLlheiy2M6ojHwIONf+cTnf8F4ke9OCnuTdGLBkEED9cwd1xLrkT/TmopGNQwdPZgJnau7k9eDdVIAAio9zR3kZVrlKaWQrzDGXOF79Gerpadpv+/AzKouhPkGFig50WhnbZfANM3A+3c6ho64u3wHbPfmkd7DTFfPAGYljyLSDAS4uSl4yk6RuxtxYhXpiRqF4JLkIayUNgZ7KAZpfKa75IkD3MDqhznCQek6ytLLprGiOAXv1JCWQrEYms7j+uyuXW58UNgxOX0ZY40+u1w662lO0Dqg3FvHKLvg6ruXoSQ8aE/NLNEOBsSBrhC5n7pszBPXF1LrPQ0T2GkjVVUlXWPl4GlWTPaxcMQvHmY/coR0YDI1xdFhFW8quYSVziOMOxfVwSJNwSyqJnp1jWH1efBwdaCKOJrQHjIwpWzou/argBUTVOOPB+OdhRn8dS0mi8JSY8ylj2HyYB3C8RQUjCycBWMJP+A4T1dMWbr0hZa4U+CXx4WJKUOHLU1cvflzw2FyH3nOP4l+9TItzKzTxFRXLtj03AQtUZjC/gt0AfXk0twMJUencr1PCquySVbkGur4j2cMrGv8KwVcx50MrSe03g79XfWdCXUEfCyPnlA/Gj6KzUxQn68xZiEs8XXyDgdcF7G9JVk0WGeT8NGB3xxBzER3NxbH4byV921Qsqx2wAiyS6M0egHdLxz0DUBgjNl9Bqb0gR1xpZeGqc98BisrRhM4YCpa5HUoBQvDPVAqYzRH+Kyu0sIEtmP5DjDIYSp1R8tekb37w8gy2+fPLQJUlTQPI0bKphM0gX1Ovp4pyuCTWIWjzMEeqrjbBkvnwzHsM+HrKp5f0onkE8Q+YzgjHsx4xg5J6EIHPTdI3VjpGUx00OACZtXmRinWdZTq2KEgLx8IbyHMFTv+nSn/KP/i1rbi6Je+alb5+Vb9lftATabjLVVV8ty6eTDawI6+7ar56Wxie8C+NrMYCmfNm5+rWmPIoq/U9QBrm6n17fxzO6sYJ7t81DWapNDYEq1iEmO4L3Ckkzz1p5rfYB9hxv5VfHN09xRtSddDbTR/zp5Binn1MK4szNFqrl9ap6mJdQoMz9DccBgb13BdXqKZdeOBLFb04NOje3jAdudK1bwe8RjY0PhXNROVHmC5wdRgj2aMr5Sag/52Mlc0kOuOUHfjgklgmJYwa90de4IuX34MWnmIEjMxfQsKllqHh5co643SHITxVpn7uwpHXGnqbqxR2tUSbVvLNbr09FM1bRHbv3yBzhuzV+RxYzvTwCHPQNslsvn3MtiSNtD3CTqfjdD06joNHvo+pH040YNaFjvEmmTdsgGBpbkyVxZbvwYwe/cU7YTGsRQ+ajtQ2ZeUG95pEzS500OPPH2Vzg/GaKIDziC7O/A4wsWWuIlLLuocWaCZvkNQBLAdZRR7xR+74KTo4jotNDoTYZ+Z1rmLbU653UU4C8KrG5WqV36/PZQO676J1slRnSlJ03oqS4NVt7LVGeyRPM6TFxAg0ljxRMMNHUK1L5vsZrcHczkSCeA+LovR6QBTM2WzcbAfzBTx7oBGgGObHiZUYk+kqCOObW9Ymm5mkR0srzZvp5do4ZJ534V+vPicykHz10WDg0F6/FFEchX9OBSy7h4n8dnSuUwPzQziTBMNUs8w5If9KziTAQWjq4eyiRlawO8Ljfb7RzYGHmT8symPmm/xmWTj4X1WOvBvX80vt9yDJ1bROCjJjj6sZKS6MdP5Eex3xwGwBSxj41yIG12lrw9Lo6PYFnLsPYqxn5K34GCrQGIHKywso1W4sjiAm8K+wmpp572ZE5M9FULCT5h1mHn0vHag2RWOQ4gz9uE6D3ubS+VkNO1XnFGJdX8ChxkdFJ6dO1wlw41zRsaZ1suJBKWw7S1QJSM78MZMoVB1BRqn/93GmWPeK5xsZPyskhbz5ww8oHd/hA9TBmkcKwOFBhpqCAR1ZRhLwF2jPdT9GJbWe3w0hu1eAQiJzo4Qja5g366meBz0SiHsHnrs4j65ootQXHwHDbCF38eeXWTvKU2A4FWhyhUgv4rhQvU6uVx4ZQYnejA9cpVWsVKV7e6uIthiuxDY8KHzVhGA9dWla9A1sGqK8zKxaoJWNoUD45hJr3sC5AjaA/ohs4+7lljCdiK08SqgWXaq8sihtjs3jDbodWYfZ8pwTitWyegHR81nLcx98zgjOdxN73sCI6B3CMY9TpiSgZysTkyRdkSFr+AgxnCrUHM4+QvA4ER47BM4FH4NE7ZLWPHuwgF8HPIeWCU9Opzl6HPReVikuLo0R4lMiDJ4zo1t29Xqi5n0kr9HNAYeePwrSXitNzCZxMOiNrmLPgATK+Q7ypZTazpre+6Ebp2qLXOVn9pBI5wj59gG7bB2jMOtKQh6yeQ6LU0chpJhqqOVU1H5VxxgCxlbT/Yv0ASWIiuGisNXozFYyKgcqP5roA8rN8NVPjFtjz1fHV3opMznsZ/sMETDWpLZzGfWp3SLKTxV0NN1yDnCAcicTHdpisaWIAxWuLKpCYqNVilf832cW8kZFtvHzH2ictgVoq3yEyy2jLGSgcvT1fCBtGxygSZw4G9hi7cvoK1hr30SbW09MXdISgbEg8QYTUDJ4CvU3XWyZh2rlELpzz7MGvqN2xCgllYr9gu5PdounG1reGQvTcWR38EqtqmsX4EhgoV05RSk5wag5GaOVLCtnCLUTZwV0rtUCGVjM1W2oMIqz+AAzfFsZp3XkbQHTGh1mwWC2eyxKgWyg0mLgakqhVZnPqs+3tVNsIWgXdfQR8ykKr2RoVVs4YThOv3KIE8z+jK+A3Wv4jbRSsEe02+ZVUxMPsGzlLgcfhqaGSvcoXFY+fPFsMXcqNW8UoG2OYX+fnTYPOTtpG6sZmuSzDVsn5rA76vY/g45omHR+UjGwMMZ/xor/g7IfsaeNEytrEJJrij7NRbJkb3VMopGbpmIs17wpRksdmgp1k3DsKUzh21Tuo5fYgSufMQWSwH7WNMqHQdgtShpuXuAGtIV69EbKFJz5XGYok2UxqYlNJvELG6M1vvGjFmE8slvxi9ZzKyvr6cOZRtPYfEfAF7FjGIpPWl0wki1Zn2s6MpW2Qie2zmATfKlon6IYjlh8Co9BYGh7DgM6xsDWEULjNa6XxUHEWNBI7X79PTYRMk5I/1Hy/JrLd1UcbtDnVo1B2bsic2fCzBBWfY9lymmbHICQvECtlBN4UyVMaxYtlwUM2/0exqKC+aJtWvH7tACEp9LYnE+G420We9ZWZbhGhoeJTh2065rPLjb1F/9V7Z+pu/R9sOsTjMPUFduD3XAKpd/GAGJmYfrrj0N61k4TFqGz04CZn3HnLDUF6ojYjxaJrx8IFUfqBiEk02ZG+W2f2lMm1wo7Ts4NpytmMAZpx1M8DSgHB5Ne4CwONCZU5wuQEifMPfgF1HPrOOcFMpjcNBX+EtVnFUfKAqv6HmYrh3o5jUNXPuXaKxvEDPqRYnTvsLsPbZPD+8M0KhZZTDpaBpN2uf+r/g19Ckl94qfOaTvdVKAUTOY+O7D1nAtfg/1YgvrVPFy9KHlD4fCh/u0lSPYsUW7nKNsbLTAlLGz2zzLgfHqsccphR0V9TbNQpRNGgOtkRzC+HeQ4g/19ZCpalxdgJKctg/taGVn+zRUu9syikYmbWmyBYcdq2Wh6HeeMTVu7VuFC8tj7DtiABZodrAdaQF2ylNpHMyDUMmzrTVd2PIRMBYa6MIEja1auxteKYkRxg+jAzb26BcHbImq0kE6Zw/sd8O9s35dpif7uqhnFBaodowAsBKTxH7IGGZuhjODNDMcKI6p6d9ZmOzy3Uf33/9mCvTMUfqAMRYcfL9W/bBr2eiKhMvC0mUrJCbXq7QwtWBRGKEoJiZoeCGviOyUSNkWu9hXMSDlMo3tGqhTLPeFRkcJzqz06+p5+giX0dw6fHLoKcnCd0QCZ126YF8+2QOb2XUIFIGBMeo16yCfM4JVsnRR9d1ZHaMp1EP9SsNSVemwmEFa9HUA1u+LAoDkmDPluY+BCtOBuSfYvO3UMMGtgX7xPtKS4GEWt+9Rung1TYklHKDEPu40HyAt0y7NlBb8tXDn98pdTot51sswFGEVJjKpJRrGAU5TEbE1rGDJe7lY0C0ZFwSMYlbmL3lAFQXOcvlggSeTi4j/XebJjgHMDIaNwf3psqudmQR8Z0DacARHsDplSlC5bFjKM2+KuEyMVW5Xbw8cQL6OoZ8uqS/aE4XPFOTfRwPwd2NW+2sXHoGpc3DA1jydE3ixVTRsdwnBNn8A1tGq7UwqzBSs7pjxIXH2RWxR3i1jTT4czlcukNLyg+A7Nug3Ht+nS49hxr0P1nkwMaW9hXjTsGw0CsML3RNuzKgXTT5YeFQcNw7aHmpsd76BCRrITbxepEexxNEzikPBKW7n6BNSWHEd7aNQzxLKA5MOxlyDDuAweLMJ4wp9GKYR+yYGyRxC9y8/Qe8LdOOMIc5bQObIQIFIry/RBPwUdEMRGp2ybK3C9le3WbAXYMHOqkTB4tbcMCyHmZ0nyw+FlUn7ls1XqAb7AwRSPJFlXzH12HfWMXkKa1jvfky3Gu4KUhzn1ZYGfKWpO4T8mYHmFQnoGvsBmLHtKVqtgF8XnOXQL/hEwgqHTYoK01hFljusMbAUjHHnwOOfdaKvTCws65o/FfX17MNjNGwqyRfRJ0BJLp5QwhmcsRltDy0uyJrrycbrWZkkHsrtSl4Rj+y3XXg5Nt3Zax63Pap3vrwP4Erp2p3vVSgahIFPGY/beW+dxnPm86a3b4cD3iq9KhjpV+OLm7YeGa2eUzm9wUhURXvDyu9xKG/vrNpc7M+nQ/u9H+7n874ddQ+3Rvzw+l3RKe/mtIqwd/CidFq/O4JxtdwYsvI49/KePf0jVn+pha8UsrD3tl4+kqJf9uDRNmjNazkPwtVD3FuJF3jeLvY+ug2vnLm6ArauYERFoxHV6XUpT3hcLU/35rx2OvwR1d+P34aWcxGvxb25MnEEo2p8clwN9QZVeHwjV2e24fkU43CFskN9ic6rrerZKXlidzmu/DnPzvB860UaRybV9DTSEe1UHn+v6i1g6VAepHM252J+T630e3Jpw9mGIu/oe2rZ8jt7IfeHjXru8oDFoprN/Y58hPtVf2+n6p83fKwXeJ62Y+BQDoTj9Xeq3qFptVZSf7fVfMSVS5+3f8W2LWpgtiYVJrvz5eFBmNFeFQl6lcvbqyaXx1XYLAdXUPX2R1U4Mg7frXwV5tO+rsPDcSTvsdk7ZOepFZ7Yc7zhpdXkUFJyFW6g/g9Z+sJSb7HWd3fVykinUYfRZ07n652Wqw2933D47fuGPcNzvdaPlHhtrpDGMj9Vbw8WT9CI0zZvOW+/XJZ2HoeR5yF/rl3a94keFZm277fLJF2/bfVUT141tGbji3dzXEFcMupZEN7Di0O0eOS2Tb9WMGq8M1+vbfPgCqvxNaMdWaKoedw4UHuoo91p2UHbYu/gZfs5lEe+08nn5lB4V+vD9Og2ZyOad/CyaWTeJYPwWkFbJIdXhXujqjccVB6XX/XPLlp+R38Y7cdvvRbv59tq2urlfXKruLLU8H1PbU52FtR3V3hEza+sqbU1fFZW1OL8rJociato2J8fz5C+yNCssqlCljgPmr/C5JtygKu3jAf2rWm9j3ZF1aJN0yqGUYssd/AxsDhW6/cDjn8F9Tus7JynF8hOnZOlcsDWvIp6LfUW5dobH1eT05NqfKhXBT0YyyJ5OYTrt8PbqeKLjdS1SiwO9hsd7PWDvb23NqmikU7lte2kWCgKQyCA0F41mj21MT+i4tGw8lqEDYbuYgGRhRhrn723CQEpWCBklu2AMFgER+yFivniMNARRUaWlSYvLUPRcEAwi8TV+PyK2jTi31ocQYcA4aeo03P5wyoaRweyad8C97aW1UjEZoCF0NQ/uaLHWZVTnQ/UqGhYBXoHGkv18rJJBxpUHHXBX6EuRKLjaqV07C0JbHt5smxdiKKR5tvgtlqOF9UD5jm9pgvcu8uq36LgeSKThfVoe1H1e/PCJw9EkXHjXUuqtldQz4OlgoUDisD48lZ54bkkZ6U3diFM9nfmlQW9HqPtYDBa3jaEY3RO4f5xNb9mxrWlFseHVD/qU2E9ZGUhqoYmjTrM0e2uqZFwYfguTveKrhXsrQ1ZlB0XlI/Curi9Mq4iVkaVBntPr5rf4ki31cp4v4r4i5np6YuP2A+gW/PRAsWLHB4Vjs+rDa3OMIt8eA4oH7NolFq/AeWwgAPe64yi3WoVBX3LrM4K618WQcWlgr1xNYKJCEBSa9MY6FEOBc/wYN8/pKYrj/acOKU259VI3C7P3If0q/iQtd7qr+j/3VNbWv3S4+Z+pDfKwpBfeTwYlEYW1VZxl4K44lAIi/tKQt3n9Or5tsZR47/LtgdmGFe9xXwwAdMJhjoftMXJeGmZo011RieL2j3KbbpfdWJSp7DfRv2IDKEPraGTKMgS2sMIFM/iesoKKfoLbQIH7WA6zgN7kbDKAz36/K3tFTU5BEGzuJ1r6ed6slUIEWPQ/FDpeMWTVp3x0vrdyLhRf3vYaqjdccb2thYxPnlLFEBXZ1zN6g3Qkv9D4A2RrOY+zIiZ+6Lekj4F7Qv1q3SSQ39JU9YL6gXXsRGMIXqjKlACHFA+uJyhSM5qdaG4X9br+9Bs6RhRWDn424aa5kmvkvSWKks8WePx+lUQSg5PNM0vb6jt4jZfGoF2p6H8lQlLQZEIg4Gtgq69oyuw3ridPGUGWqcsh9caGwPLZaLofkPjH/oyHr+K+hOHFzKeKYtuQknlycCCMUWfrBuBTFBwcd8SLR6rWaHABBoq7uZkEP0gxiPImpOLtZd9jQQO5bGbOBR01m12YXsT9sNjcwxNDbhpBxv0ta1TvETJy5LaXzYpBosu8KlwKdNF01iSt7P4pJ1N4PMYHfBUjdO/uaXWTBpbiHwFXjgPA3IWPh+S2KeTyToRJbZw+dhO1vFfmdQqrabd1NUNq0mtkKA6kPAWJo2pG9ZdcMo6V4YcBnizU8cstst1w4FfSdZ46xqWK3fwli+EJeuClwsTkeFD0NhSkHVim0mAHSeVhFZHqgsf5QPW67xdASn0BWB1zKeHvZNKwVVy4ICH97ElBeaVeasBMolD4YUc2NLZaipDbmxJKPY9kk3BmtcgrIvg4H0IrLStU9o2Rd6awm2Ot5pguwi2WKzCq5MzvkJpmJBsmEyW7cantPIIoDzQPCwXymqVywoH7bieNky7NV/kvojr1w73DR2w7GXtj44qyXW0h4Mnic/CYesrtqc40XYDXM8rtL+Dx9eEEMCLTcOm0Q7c8P0S8GEMabjy26TviNuD1pem0JeidbG3cN+hZsYmfw3cyqCv0foyrjNIY/VuGP0TzoChacGsPvrWghew/Qt+t5I76HexNbZS/99AUo/olcPKH7fHNLnBtFwz5HEqxYZSyj1wgBw3bwxsfPw7QHZKX4VMuY6+gnfjuSGPdBnySBamstNu9B1NYFqaiMbutKGikaYFHAQfTA/j8PJwVZOjfMh6AnafU1M7NNfdGGR5Swi0IwE+ANqDg+ABuBGf66neC+4sYS83DsAm14/SY3I7lozkWQgIASEgBITA0RBoMz8abDe6hz7yVAYOvQarKxlcBk6sSmCW6dRNfx5N/ZJY2pXADnyU9OBAom+8JiWDMXVgRrfDBx8h7cpM8i0EhIAQEAJC4JQRaBmrU0fCNcuWc9jgG5Y77Uxg2iQiC8/RM9kBigVsfpRbQkAI2BJIzU3BESJ+wnJvWctJBW/u0MLEKnXBC+9h7hyxTZzcFAJCQAgIASEgBI6EQHspGizCaFLMPl3AysbgXNLWJB0/wfudlyb6qGsAnovnBqubYjuS4pJIhMAJI3DlCXg/hrnZdJHtvlw2sK93Fec44OV5JgQTkt2iZpywEpbkCgEhIASEgBAoS6Dtzmik53qo6+GndW/HjMXhoWAoRD6cInQ6zYOpOLAEFwqBftignxpoysGlsiUiPwiB00Agswqv3z30+CXT0LyDXF4YTAj4cGDXqR8Eh7GFVPIyDuFHoMzP0FiPT1YzTkPZSx6EgBAQAkJACBgE2k7R4HxnknM0NjYFZ32X6KopBxlAXN5OeDKGB+7hAeoJyOyqtBQh0DABWLxJwNrUxMwSXbhiusszQmMFH0YWegYHaRjOsk6bBaiGmcmLQkAICAEhIAROEYG2VDTy5ceeS2GGFpvIne4OmITEpwXN8Z2i+iZZaVMCWaxeaKZtYXrVjXbmw6FvUePbtDJItoWAEBACQqBtCLS5otE25SwZFQJCQAgIASEgBISAEBACR0qgzQ6DHylbiUwICAEhIASEgBAQAkJACLQtAVE02rboJeNCQAgIASEgBISAEBACQqB5BETRaB5bCVkICAEhIASEgBAQAkJACLQtAVE02rboJeNCQAgIASEgBISAEBACQqB5BETRaB5bCVkICAEhIASEgBAQAkJACLQtAVE02rboJeNCQAgIASEgBISAEBACQqB5BETRaB5bCVkICAEhIASEgBAQAkJACLQtAVE02rboJeNCQAgIASEgBISAEBACQqB5BFpS0chm0pRcXaK5uTlaSqxScidbQCCVWKJU4a2C3zOpVZqbmKCFVPPAScjHTSBDqcQcTUwlaKcJSeE6tDA1KnWoCWwlSCEgBISAEBACQqA9CLSWZ/CdVZoaHKSx85fpmsbfgc++9tcT7Ka+WIy63es0MbpKPespmgiYhZSh5NICLSwtUQKKyaWr/I6H4is7NNNtPiN/TzyBbJoSCwu0pJXzRbrCxRwcp83kKOWqQqOZzO7QOurQUiJhqUMu6l/O0FxPo4HKe0JACAgBISAEhIAQaF8CrbOikV6gCkqBnQAAEdhJREFUWNe76REoGc7ICC1ubNOeypLa26aNlTka6EjR3KMP00c+8QRdurZDO2lroWF5wx2g7p5u6tAUE7lOJYFslpwdAerqIMocejFzHQpRT5/UoVNZdyRTQkAICAEhIASEwJETOHfkMdpGuENzWMl46gp+9A9RYmmCQk7jQWcHhbpj+PRQbGaA+j5xnq5gvWNnJ4MH3MZD/AykT+omZ2KKnn7yqm0scvOEE9CUSaxddBMtzX2Qzh+msuH0UVePL1+HnpA6dMJriyRfCAgBISAEhIAQOGYCrbGikZ6jqaf1zVL+voG8klEAx02hQWyZmQ6TC/d3dux35rvdpoZyzGQl+uYRcDoJ/2/a5XabCmzTopCAhYAQEAJCQAgIASFw6gm0hKKRTa5Tree2A4NzNNbpwNYpe0WjqRLoqa8OkkGNgOgZUhGEgBAQAkJACAgBIXBgAq2haGSyuZMVl3EgN1kxWz4aGOymLFY0KhieqhiC/CgEhIAQEAJCQAgIASEgBIRAcwm0hKLh9vlgI8q4Lk9RbHiV+ARGucvdN0yjXe6jUTSyGUpjxSWZShP0oZquLE6qF6y3wKJRCmGsJxFGTSGYD2VpJ5XEeynSjqQc0pVJF6dDz6MWT7k8Ig/MoeIztunL6HlYr4+hNahMOkVJfj+dabjMMzscRpJSZTNom3i5KQSEgBAQAkJACAgBIdAggZZQNKgrRj05TWOfLj/eg1tz5X1luHtodLSnvh0u2SQtTAxTX6iDeA8+fzoC3RQbhNJS4nAD5nLnhqkn0EFOdwcF7ruf7nvz6+hlbh91Dy/YpiubXqelKYQPk0juewZoiTUNNseKdPrc99CbEcb99yGMjm4aXa2sNeysz9BAt4/cTjf5QvfhvTfTPS9zU6BvlBLpcppA5Rqg+YWYGKQe5L8jMEyr2uMw6TqFg/YdL6PXaelDPDhwHZtL5QV6Njkc66IO5CH3TEeIBpfSFSPMphM0NdBFPliJ6hkcpbExZsMMcXAf+Viq5AhFCzlLqQUuAzCAMYDhsTEaxGHtjkAfTa0Cbg0YOA0TSLsP53Y6fCG67/776M33oOxDMT2MijmQH4WAEBACQkAICAEhIAQOREC1yLU936ugayhkJvdxeCNqfHlL7dWRxo0Rv/G+R8VXil/cUytxL373qPDIstqyC3hvU832epUnGFfzG9tG3Ltqc75f+R162hzBEbW2a4a9pzam+1Vv2Kvg9cOIO6ymN5bVUKdHufydqjeK3zstv7siana7OG38HWFNhpXHE1Yji5tq10jf9tq06vUaYbvCanLTLuF24fG9LbU4Ei2M39Gr5jcXkT6v8gYjKhofUSNDvcrvMtPvV0Nre2p7eUh1erwqHB1SI+PjaiRuecbRqaa37OPcXoyrIFi5OkfUijWfYDvf79c5ObwqOrtZpmy31aL2nEdFJjdUDjWe3uKwc+lEeoPjatMmGbsrQyqItEcmV9SWEcDe9ooaD7ty9aN33j4Dm+NmHXKp/mWbwOWWEBACQkAICAEhIASEQFUCVPWJI3sAQvZ4WMGiVIGyAWd9yhsZUYs1CtflFQ0W4iOaED+e1xKKcrerlvuhiEARmC9RBEwlRU+fd2itSEjeVjCIZaTdpTzeoOqftwrSe2ptyBRgSfnHS8VjXdnyQLjNi9ZmAncXe3NsHGWE68pFtanGg2b6HFCkolCGCuPZXe5XXoO/yx9U/s64WtwqDHV3MZpLh39koyTKvbURTckgF5SZEob8+JaajZjCvtcmr+AEZZGVNi80RTuVans2klfq7FhsTqowlBH/SHEZcfTTKmwojFzOdgqfKBolxSo3hIAQEAJCQAgIASFQN4EWUjT0tG9ps+jFygZ/x+w2ViFsZVdLtu0VjW21MtSprVIsVwpgY0T5IeB6SpdC9BjWhnKCOLmiarFICl7uz8+WR22UBbU1qTpNRSo8a5mpR/B7K6qf8+0fsZ2hV3uLKpqbyfdixaHest5Ti70OQxHyKxsdAQGuqXiOfaea3LKJA+noNQX18HRReWyoEUOZYUWs7AVFQFNGmIUnrlasHI0yIAdWhcqV1e68ipjvlygau2q+l8uh3Pu7ajZsciAVtFH4RNEoW3LygxAQAkJACAgBISAEaibQIg778ru/fD1TtJ4aoAXs6R9+/ALl3aZdpacfex8FVkdoKTFB3bWaIM2maWGgh4Z3BmlpdZhwhrzMlaXE1Axdxq+d7iyt4/BxyZXBXn/cZL+CdG2dVmEeq68r/5RTc+7A/kBwrqDDJqIOnDHAVL1mYisD7+bak/qVgZPCBWTWgTMUO4i75BQHvGLjeIMePFKwupoi6goYb9fyB2nj5GmXE+c/7N7BeRQf7jN0B86wcHzFFxwoalnjZ3BIO40/5mNZOEucu8QvuKirO1T8Zv57AGcuukbp4QsAcXWOJpD37hgHmqGlCb0MCOco+uzi51D4jA2n385hH/tkOY8y8ODlFA6vp4uTkaVsLgN4JAHWo4H6zvsUBynfhYAQEAJCQAgIASEgBEoItJyioaXQHaLY1Cr1wUHfGDyGP3Yhr25cu/gY9XRBKVifqq5sZNZpqqePRrPDlISSEbAVrk0mSUqs6k4D+RDyYKLMw8EgBY1XspoZqjLPlaDmRw1HcyUCMhSbpXVNbnYkZ2gYvkJsLyfiNiJ3ZkpUEdtX6rtZiyM8KCmmogHlhwmYVzKxaiiGrKRU4tJB3X1QRC5cxKv7yPsqZWN95Myu00JCLwNPKJBTYOrJQ2Y1oZtHzuAQ+3CqTOl0gKOhxThhFQsRmApfPXHJs0JACAgBISAEhIAQEALlCbSmomGk1wkLQxOrsAw1M0B9w+fpiiGg719+nGID3ZRc6qsgjGJ2HP42rl7FS445mlkfpKlKyyCZFKW0pQqPZnVpprs8tMP/ZQfmc3UB2zcAPyITFVYDDj/yxkOEopG/MpTSAdYUni8QwLrHRW395xrM7bKw70slaF3HoFkFa+RKwUSvVk26xrDqM1ihfjQSurwjBISAEBACQkAICAEhUCuB1jBvWzG1bgphZWM9MUTY15+7rp4fpalkpRfd1DM6RnAijknzy/R4DNuxWJotd2GFQP8Zf4/c1wK2URkLFJnDdJhRLq9NuZ+h/CKL9d9lIsO+rNzOKHNlBE4YzXWaAh2mTBB2tzMIQ7uKfZnYPSz3hIAQEAJCQAgIASEgBJpG4PgVjRTv0U9XzWBH9xQlZiKYBTevy5ixrvyeMzRMC+Y7V8/TQN8UJa2T8Lax7sO5Xsr2l6O4eRUO+irn6ihS0Ugc2C6VW4S4Rql0Ja0O4cNHSG5zFQ6fsNKRtWzFyuAMS2OXESrOj6RMraWxgOQtISAEhIAQEAJCQAgIgQMQOH5FA4705gbHKFGDUNgRg9O3vKaB89TVXnISb0Va6IfRVlz7Fx8p73WcHfgZKyaXEwmqRdXYSSYLPYA3XBAdcCpnvJxcokQNMjY7CExWy37D6WnkRRyAD+ic+e0UTspX1OngadxMvjcU0s5IsHNEE8M1sK2lDIpT6ja1nX04KKziGFF7N5uC8YGKKS2OQr4LASEgBISAEBACQkAI1EDg+BUNeGzuuLpAYzgXUfVywmoTT30bV4fP8qXsy9hCNbNAQ/C2x9flJ/pwBiNd+jQOoId8xu1LUzS2VFmKz6YmKDa6XlmYLo2lzB0fhUKGa/T9CzQxUSVcHJoejU213MpHqK8bJ1z069oqtruVyS3fzqb1cxlEXuqLhfQnQ10UMJQ9ugSFK10hgDI/hbpCpAdxjRJjM1WUFT7HM0BzNSh2ZaKT20JACAgBISAEhIAQEAJlCBy/ouH2UcCzTxfHBnDmosrMMkzVmlvwYYSW+npqUTSQc2cXTcGEqnZeA8ePnx7EIfOSuGDpqsdvYLpKT0EAXUiXoZZewDasOQqMDpCvzCNlb5fJYlesJyekX3l8AFavyki/WAGa6YvRet8Y9ZnT/2UjO9ofnN2jNGya5Lq6RDOJMpmFepazshXGO11GOt09FOsyNY2LNDGWKDXzy4/yFisz6GymQNlz9sSo2whi/9KYpgzaq4wZWp/QzR6Pduc2cdUODCsySZghlu1ZtSOTJ4WAEBACQkAICIH2InD8igZEdc13w7WL9EgffF2Uka+5WHaWpmjJsErk7R+jAX6v6OJ9/rZXwHJeY/8SPdpTqkiERkcpYm7NwpmOj3R10/DcOqU1M7aQb3dSOCcyQF2hAUr2zNBEkYCqm7u1jV2/CaE4J/SWCMgspJtC9mV6Eg46ekZhgco8mM6CLZSlGKcpM0gzw4EKEdn9ZBHO7X7Wc5gX4PezlsPd1hcKwymkHaDhmRHj0P5VWhqdsl9R2FnAuRyYLHaFaWJm0KKsddAAFE5zA9bVJwdgcSxVtGoEBWFqghKmieB0Eows6XP3wSSyqTDu06XHuqmrb4KW8JCWVnBPry/QKMzrdk+4aQzl6Svikc0ZAyg035t/LAULZgG67/776c2+bppJFwUgX4WAEBACQkAICAEhIATgmvnYrz21HDU9asNTtKtTxWc3Cr1m49vGfL/C7ieFMlOu8KTaKPLKrWeDvUKbXp8dKjxb7Fp6Vy1GPVoY/HF4o2q2KKDtxWje+7fpxbvgr0N5o/Nqq4Tbpho3vGJDgla987slT+ytxBW2Funxu3pVySOb0ypi6xXdeIfTXM27eUms5o01NeQ1w/Go/mUbgHvLundyLY0uFV0szYPans175SZ77+Hbi3GjrBzK3w9W1qh219R4J8ob5TyyYhO+2lNr450K+p5RTuAd7lcjk9NqenJE9Ye9yhvpVVidypUjOVzKH5lUa2Y8ext6HLblZ/IPq/E1u/i31bTVc7ide3R4eMfCTS7+TrtnypaD/CAEhIAQEAJCQAgIgfYg0AKKhlKb40HlCvarydlpNdIfUUEPlAUIj15/pwqHg8rvMpQHV1D1ji+rYvUBIajZeFRF/HklQlMmHF4VjsbVCBSXPfxvYx6CKgu5BQIoC6mIeyUf6vbKpIoGi5+DkO/vVePLWwip8NqcH1JRCMBYj7AIv34V6R9S86zIQPCdHepVQZfldzzr8kdU/+RKQX72tpbVSMRfGBaHi7wXP1tbFd1Si+NIX2cRGw9Yxkf09IHf/Ei/6i3Oswt5wDOaMqblIarCXlOR0/Pi8IZV/9CksuDTkrW3uahGev26woC4ItGoivaGldfjUcFo6fOFedlTzDTM9aCgrDyqMw7FZXdZRcHS4e1U0ZFZtbJpozDsIU9DiM+qkGhhcRizqkTH0PLHDIo48fO9cTU0u5ZXfvfW1IjfSJsjqMY3aisJeUoICAEhIASEgBAQAu1E4CbO7HGv7GThqG2Vuqkn57o7SzspWFVKpSnNlqWcMH+KQ+Pd2K5ylMcSMrwtJ4UtN4ifHcwFKnq7PlyKWTgQTCbTlMk6qSMQwvYyiznYw42quaFl0lo5sm8SJ07yB2BhqnaMqAewPpXkgzlcBnxYXKsAcA6IMza+UEcZz9+WLGHLGZsr5u1vbh/K0OcjdwNHMkogZdO0moDn8RC2ZvkOI8CSGOSGEBACQkAICAEhIARONIGWUDRONEFJvBAQAkJACAgBISAEhIAQEAIlBFrgMHhJmuSGEBACQkAICAEhIASEgBAQAiecgCgaJ7wAJflCQAgIASEgBISAEBACQqAVCYii0YqlImkSAkJACAgBISAEhIAQEAInnIAoGie8ACX5QkAICAEhIASEgBAQAkKgFQmIotGKpSJpEgJCQAgIASEgBISAEBACJ5yAKBonvAAl+UJACAgBISAEhIAQEAJCoBUJiKLRiqUiaRICQkAICAEhIASEgBAQAiecgCgaJ7wAJflCQAgIASEgBISAEBACQqAVCYii0YqlImkSAkJACAgBISAEhIAQEAInnIAoGie8ACX5QkAICAEhIASEgBAQAkKgFQmIotGKpSJpEgJCQAgIASEgBISAEBACJ5yAKBonvAAl+UJACAgBISAEhIAQEAJCoBUJiKLRiqUiaRICQkAICAEhIASEgBAQAiecgCgaJ7wAJflCQAgIASEgBISAEBACQqAVCYii0YqlImkSAkJACAgBISAEhIAQEAInnMD/D3KWxZ3MZdVcAAAAAElFTkSuQmCC" | |
| } | |
| }, | |
| "cell_type": "markdown", | |
| "id": "eastern-closer", | |
| "metadata": {}, | |
| "source": [ | |
| "" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "id": "antique-particle", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"402pt\" height=\"269pt\"\n", | |
| " viewBox=\"0.00 0.00 402.00 269.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 265)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-265 398,-265 398,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"244,-122 244,-197 386,-197 386,-122 244,-122\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"364.5\" y=\"-129.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-8 8,-197 236,-197 236,-8 8,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"215.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"158,-39 158,-114 228,-114 228,-39 158,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"198\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"201\" cy=\"-243\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"201\" y=\"-239.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"201\" cy=\"-171\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"201\" y=\"-167.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M201,-224.7C201,-216.98 201,-207.71 201,-199.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"204.5,-199.1 201,-189.1 197.5,-199.1 204.5,-199.1\"/>\n", | |
| "</g>\n", | |
| "<!-- eta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>eta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"351\" cy=\"-171\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"351\" y=\"-167.3\" font-family=\"Times,serif\" font-size=\"14.00\">eta</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"193\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"193\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- eta->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>eta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M342.42,-153.49C336.15,-143 326.73,-129.95 315,-122 289.62,-104.79 255.59,-96.54 229.92,-92.59\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"230.22,-89.1 219.84,-91.19 229.26,-96.03 230.22,-89.1\"/>\n", | |
| "</g>\n", | |
| "<!-- Chi -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>Chi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"279\" cy=\"-171\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"279\" y=\"-167.3\" font-family=\"Times,serif\" font-size=\"14.00\">Chi</text>\n", | |
| "</g>\n", | |
| "<!-- Chi->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>Chi->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M268.04,-154.37C260.72,-144.5 250.52,-131.81 240,-122 234.18,-116.58 227.43,-111.33 220.89,-106.68\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"222.43,-103.5 212.2,-100.74 218.48,-109.27 222.43,-103.5\"/>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M199.3,-152.82C198.25,-142.19 196.88,-128.31 195.69,-116.2\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"199.16,-115.76 194.69,-106.15 192.19,-116.45 199.16,-115.76\"/>\n", | |
| "</g>\n", | |
| "<!-- theta_decentered -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>theta_decentered</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"86\" cy=\"-171\" rx=\"70.39\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"86\" y=\"-167.3\" font-family=\"Times,serif\" font-size=\"14.00\">theta_decentered</text>\n", | |
| "</g>\n", | |
| "<!-- theta_decentered->y -->\n", | |
| "<g id=\"edge5\" class=\"edge\">\n", | |
| "<title>theta_decentered->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M107.4,-153.8C124.69,-140.71 149.09,-122.24 167.42,-108.37\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"170.01,-110.79 175.87,-101.97 165.78,-105.21 170.01,-110.79\"/>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.dot.Digraph at 0x7ffa34061280>" | |
| ] | |
| }, | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "def item_difficulty(annotations):\n", | |
| " \"\"\"\n", | |
| " This model corresponds to the plate diagram in Figure 5 of reference [1].\n", | |
| " \"\"\"\n", | |
| " num_classes = int(np.max(annotations)) + 1\n", | |
| " num_items, num_positions = annotations.shape\n", | |
| "\n", | |
| " with numpyro.plate(\"class\", num_classes):\n", | |
| " eta = numpyro.sample(\"eta\", dist.Normal(0, 1).expand([num_classes - 1]).to_event(1))\n", | |
| " chi = numpyro.sample(\"Chi\", dist.HalfNormal(1).expand([num_classes - 1]).to_event(1))\n", | |
| "\n", | |
| " pi = numpyro.sample(\"pi\", dist.Dirichlet(jnp.ones(num_classes)))\n", | |
| "\n", | |
| " with numpyro.plate(\"item\", num_items, dim=-2):\n", | |
| " c = numpyro.sample(\"c\", dist.Categorical(pi))\n", | |
| "\n", | |
| " with handlers.reparam(config={\"theta\": LocScaleReparam(0)}):\n", | |
| " theta = numpyro.sample(\"theta\", dist.Normal(eta[c], chi[c]).to_event(1))\n", | |
| " theta = jnp.pad(theta, [(0, 0)] * (jnp.ndim(theta) - 1) + [(0, 1)])\n", | |
| "\n", | |
| " with numpyro.plate(\"position\", annotations.shape[-1]):\n", | |
| " numpyro.sample(\"y\", dist.Categorical(logits=theta), obs=annotations)\n", | |
| "\n", | |
| "graph = numpyro.render_model(item_difficulty, (annotations,))\n", | |
| "graph" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "id": "greek-ballot", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"370pt\" height=\"285pt\"\n", | |
| " viewBox=\"0.00 0.00 370.00 285.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 281)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-281 366,-281 366,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-194 8,-269 150,-269 150,-194 8,-194\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"128.5\" y=\"-201.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"126,-8 126,-186 354,-186 354,-8 126,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"333.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"151,-39 151,-114 221,-114 221,-39 151,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"191\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- eta -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>eta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"43\" cy=\"-243\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"43\" y=\"-239.3\" font-family=\"Times,serif\" font-size=\"14.00\">eta</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"186\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"186\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- eta->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>eta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M50.77,-225.68C61.36,-204.62 81.91,-167.63 107,-142 121.39,-127.3 140.48,-114.36 156.29,-104.94\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"158.25,-107.85 165.15,-99.82 154.74,-101.79 158.25,-107.85\"/>\n", | |
| "</g>\n", | |
| "<!-- Chi -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>Chi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"115\" cy=\"-243\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"115\" y=\"-239.3\" font-family=\"Times,serif\" font-size=\"14.00\">Chi</text>\n", | |
| "</g>\n", | |
| "<!-- Chi->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>Chi->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M112.31,-225C109.85,-204.2 108.4,-168.47 122,-142 129.71,-126.99 143.74,-114.63 156.71,-105.63\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"158.95,-108.34 165.42,-99.95 155.13,-102.48 158.95,-108.34\"/>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"319\" cy=\"-160\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"319\" y=\"-156.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M298.51,-148.22C276.41,-136.59 241.02,-117.96 215.84,-104.7\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"217.21,-101.47 206.73,-99.91 213.95,-107.67 217.21,-101.47\"/>\n", | |
| "</g>\n", | |
| "<!-- theta_decentered -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>theta_decentered</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"204\" cy=\"-160\" rx=\"70.39\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"204\" y=\"-156.3\" font-family=\"Times,serif\" font-size=\"14.00\">theta_decentered</text>\n", | |
| "</g>\n", | |
| "<!-- theta_decentered->y -->\n", | |
| "<g id=\"edge5\" class=\"edge\">\n", | |
| "<title>theta_decentered->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M199.55,-141.7C197.55,-133.9 195.13,-124.51 192.9,-115.83\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"196.28,-114.92 190.4,-106.1 189.5,-116.66 196.28,-114.92\"/>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"319\" cy=\"-243\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"319\" y=\"-239.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M319,-224.82C319,-214.19 319,-200.31 319,-188.2\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"322.5,-188.15 319,-178.15 315.5,-188.15 322.5,-188.15\"/>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.files.Source at 0x7ffa187c9a90>" | |
| ] | |
| }, | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "graph.unflatten(2)" | |
| ] | |
| }, | |
| { | |
| "attachments": { | |
| "27186967-a3b2-4ff5-b7dc-c90229906867.png": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvQAAAGyCAYAAACLNVD6AAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7snQeAFEX2xt9mMiigGFBARYKAAVAQARUxgAEEPePpmfV/xhPznZhFvTOcnmIOJ2cOiBEUFRAREREFVEQQESXnzfuv782+oRl2YUPPTPfM1zrMTk9Pd9XvVXd/9frVq4wytwgXEiABEiABEiABEiABEiCBUBLIDGWpWWgSIAESIAESIAESIAESIAElQEHPhkACJEACJEACJEACJEACISZAQR9i47HoJEACJEACJEACJEACJEBBzzZAAiRAAiRAAiRAAiRAAiEmQEEfYuOx6CRAAiRAAiRAAiRAAiRAQc82QAIkQAIkQAIkQAIkQAIhJkBBH2LjsegkQAIkQAIkQAIkQAIkQEHPNkACJEACJEACJEACJEACISZAQR9i47HoJEACJEACJEACJEACJEBBzzZAAiRAAiRAAiRAAiRAAiEmQEEfYuOx6CRAAiRAAiRAAiRAAiRAQc82QAIkQAIkQAIkQAIkQAIhJkBBH2LjsegkQAIkQAIkQAIkQAIkQEHPNkACJEACJEACJEACJEACISZAQR9i47HoJEACJEACJEACJEACJEBBzzZAAiRAAiRAAiRAAiRAAiEmQEEfYuOx6CRAAiRAAiRAAiRAAiRAQc82QAIkQAIkQAIkQAIkQAIhJkBBH2LjsegkQAIkQAIkQAIkQAIkQEHPNkACJEACJEACJEACJEACISZAQR9i47HoJEACJEACJEACJEACJEBBzzZAAiRAAiRAAiRAAiRAAiEmQEEfYuOx6CRAAiRAAiRAAiRAAiRAQc82QAIkQAIkQAIkQAIkQAIhJkBBH2LjsegkQAIkQAIkQAIkQAIkQEHPNkACJEACJEACJEACJEACISZAQR9i47HoJEACJEACJEACJEACJEBBzzZAAiRAAiRAAiRAAiRAAiEmQEEfYuOx6CRAAiRAAiRAAiRAAiRAQc82QAIkQAIkQAIkQAIkQAIhJkBBH2LjsegkQAIkQAIkQAIkQAIkQEHPNkACJEACJEACJEACJEACISZAQR9i47HoJEACJEACJEACJEACJEBBzzZAAiRAAiRAAiRAAiRAAiEmQEEfYuOx6CRAAiRAAiRAAiRAAiSQTQQkQAIkkOoELr/8clm+fLmUlpZqVTMyMlK9yqwfCSSFQHZ2thQVFclTTz0lmZn0GSbFCDxoWhLIKHNLWtaclSYBEkgbAm3atJETTjhB2rVrlzZ1ZkVJIFkEzjzzTCkpKdGOMzvPybICj5tuBCjo083irC8JpBkB+Cx22203eeKJJ6RPnz5pVntWlwQSS6C4uFjy8vJU0OMFjz0XEiCB+BPg87D4M+YRSIAEkkgAgt4eRPKBZBINwUOnBQEIePPK0zufFiZnJQNCgF3ngBiCxSABEogPAcTxmqhnCEB8GHOvJOAlwLEqbA8kkHgC9NAnnjmPSAIkkAQC9BYmAToPmdYEOCg2rc3PyieYAAV9goHzcCRAAiRAAiRAAiRAAiTgJwEKej9pcl8kQAIkQAIkQAIkQAIkkGACFPQJBs7DkQAJkAAJkAAJkAAJkICfBCjo/aTJfZEACZAACZAACZAACZBAgglQ0CcYOA9HAiRAAiRAAiRAAiRAAn4SoKD3kyb3RQIkQAIkQAIkQAIkQAIJJkBBn2DgPBwJkAAJkAAJkAAJkAAJ+EmAE0v5SZP7IgESIAESSCsC3kmUMNcBJjGz91gQ9p2tt8+2vfd7zpsQS4+fSYAEtkSAHvot0eF3JEACJEACJLAFAhDeNhuxifuSkhIV9lhslmLbhW2DzybkbZ39hmJ+C8D5FQmQQIUEKOgrxMKVJEACJEACJFA1AhDiNisqxDkEuYnyirzvJvJtO7wXFxfrPmz7qh2ZW5EACZBAhABDbtgSSIAESIAESKAWBCDQzcu+fv16/fvHH3+UMWPGyKxZs2TevHmyePFiWbRokdSvX1+23XZbadmypey8887Ss2dP6d+/v2y//faSnZ0tderUqUVJ+FMSIIF0JUBBn66WZ71JgAQCRwBC0OvthbcW6+C5tXd8v2HDBvnoo4/k448/lh9++EGWLFmignH58uWyww476AsCsX379nLIIYdI9+7dJSsrS+vrDecwEWr793qWAwcniQXy2qUibzwE+3333SfPP/+8QNAXFBTITjvtJEcccYT07t1bTj75ZNlll13UJuvWrVN7/fHHHzJ37lwZN26cXHvttbJ27VrJy8tT2/3lL3+Riy++WMU/jg3bIYwH9oGtioqK9B3rUR6vTZOIiYcmARJIIgEK+iTC56FJgARIwAiYMLOQC+/7m2++KQ8//LDMnj1bli1bpoJx7733VrEIwQ6h2Lx5c2nUqJF+D3H/+++/y08//aTiEMKxYcOG0rRpU/UGn3HGGdK1a9ctDuCkZSIEIKjNFtYBwvvChQvl8ssvl08++UTF9emnny7vvfeetGjRQrbZZpuop906ZRDfCKtp1qyZtGnTRncOkX7ppZeqHSD0V6xYITNnztSOAfaz3XbbyXHHHSc33nij1KtXTwU8jo3fwZtv5fF2Mmg3EiCB9CRAQZ+edmetSYAEAkgAwgwvCLbXX39d/vOf/8jkyZOlQ4cOMnjwYPXktm7dWoUexJ1X9KM69tk6Byb08vPz5bfffpPvv/9ew0CGDBmiXt4+ffqoJ7hbt25RD34AsSS1SLGMX3zxRbnzzju1s3TJJZfITTfdJG3bto16y82jbkIehbcnIPaUxOxsAh3bNmjQQEU7QnGOPPJI9fRPnz5dnn76afX29+jRQ4YPH65PW3Jzc5WJHcPi95MKigcnARJIKoEMd2GJDMVPajF4cBIgARKIH4FWrVrJU089pQIWIiiICy7F8Kzfcsst8tJLLwnKfNFFF8lhhx2m3nd4ZO1ybSIT9fDWx76HwDPRaKLexB/e0WH47rvvVNzD81+3bl0566yz5LLLLtPjcNlIwDg+8MAD8uCDD0rjxo3l5ptv1icjOTk5mz3lMNuYXSDwzR7e78wuFkpj25lNzU74LUKpXn31Vfn73/+unYdrrrlGn7RgH9jOXkGxm7etBaVMLAcJpDoBZrlJdQuzfiRAAoEiABHmDZXAZ4RvDBs2TPbaay9ZvXq1jB07Vj3zf/7znzWmGiLbBKJXHOJvr5izv71Czyvu7Xvsr3PnzioMEYM/YsQIefvtt2XHHXfUWHCE9Hg7BLF/BwqoD4VB/bDEvmMdxinsu+++Kqjvvfde+fzzzzU2HmIei1dQm6fca5NYMe/dBsezJy14r+w7DKJFh2v+/Pn6dAXhPUOHDtWwKhzL7IPyeFNmagG5kAAJpAUBCvq0MDMrSQIkkGwCEF0m5FEWfIb4euyxx2SfffZRUT9hwgR59tlnVdibuIwVh/itCXlvnbzCEn9jsXWxwt/7OwjJgQMHyocffigvvPCCPh3A8REPjphvlAPvKCsWK5d3H2H+G/UBJ6uf2WjNmjVy3nnn6YBWvIMPQmFiRbuXtZe592/jv6Xf2n6823i5Yj06EXhq8+uvv+q4CXTK8OQA4VPWnuz3YbYJy04CJFB9Agy5qT4z/oIESCBkBBC+kuyQG6+gh3ibOnWqnHDCCTpIEnHSyEhjos7CL+xzPHGjXCZq7Tj/+9//1HsPzzQEI8SjxXtX1JmIZ/niuW/rnFj9TRTPmDFDvfAIq0GHC7Htto3FwcezXLH7tnKi02H88fecOXPUW4829MQTT+gTFts2mcIe7RZtOBHtN5YVP5NAuhKghz5dLc96kwAJJJQABI55ukeNGiUHH3ywDnJFCEe7du20LBBjNsGQ15sfz4KaUPWGapx44ony7bffatpEeOu/+OKLaBFSSaShLl4xD+ZPPvmkZg9CGBI6NhDzsR72eNqjsn1bJ8/rwe/YsaPaBvnskbVo2rRpWp9EtZ3Kysr1JEACiSfA0U+JZ84jkgAJpAkB85ZadSGaIZY//fRTzUMOwWxeV7zbwFcIzUR6gnE8E60m2FG2Z555Rl577TXp27ev3HDDDdoB8QpgryAOg0mt7Cir/W3eZIjgW2+9VTMLIc0nMglhG+MCe8BGibSLMTX7oIzWprxPTEaOHKmhUr169ZJ3331XOyRWR69dUqkzFob2xjKSQCIJ0EOfSNo8FgmQQNoQgPCCAISIgtcdg12RoQTxzitXrlQxjwXCDNtYdplEC0bz+HpDaUz44X3QoEEas/3444/LUUcdpWVFHbDgPUwiEWU1QewtN/4+55xzBE9OMNAUg1CxzsvEbJWsBozyWFuxspvtsB4dRTztQZjQyy+/rMX01jVMdkoWYx6XBMJMgII+zNZj2UmABAJNAIILoh4zgyI84vjjj9dUkSa0Al348sKhrJiQCnHl6JQgZz06H4WFhfqO+oVl8XLH3/ZCHDq88hjXYOtQp7DZCeFRmGsA2ZEg6q0DA88+w3DC0kpZThKoGQEK+ppx469IgARIYIsEIAYhdjGhE7LYIDvJv/71L/X6hk0ooqKYaRaZb1q5Acb7779/6OqBOhh3iFvzWGOmVohgzMaLyZ2wIJsMtglTZ8Xqh1loEUuPAdfjxo2r8ImEVpILCZBAShGgoE8pc7IyJEACQSEAwQiP9kEHHaQTNiH+PIxhD9YBgcBFmNDzzz8vTZo0kaOPPlq99GGqkze8COFCGBeAdJRvvfWW1snrnbcQl6C0p62Vw2sHhHZhllmES3322WdarzDZaWt15fckQAKbE6Cg35wJ15AACZBAtQlA3EI4WXgD/h4wYIAMHjxYrrrqKhVU9jJhWe2DJOEHKDPKay+E2bzxxhsaVw/vtj2J8NY7CcWs0iG9HndMGPXII49oXZD2EfXw1hN/h0kEWwfE7IXwG2TpQfvDuACzD8ZzMASnSs2FG5FAqAhQ0IfKXCwsCZBAEAlADCJMwxvScdJJJ+ksr7fffntKxS9DMELUT5kyRUaPHi3PPfecCmEs1qEJoo1QJhtwvGHDBp1p9dFHH9UQIhPuZr+glr865UKdMBEWxm2ce+650YHMYeqkVKe+3JYE0p0ABX26twDWnwRIwBcCXk81PKOTJ0+Whx9+WMVvojPX+FKhSnaCeqJOubm5miIR4UQzZ87UrYMuiM0zjTENZ511ls6Qi84I1ge97JWYo9LV1h4xMRhSpGL8BtZB0Fv2pUp/zC9IgARCR4CCPnQmY4FJgASCSACiEGJp7dq1cvbZZ8v7778vzZs3V8GIMIdUWVBHS1eJzD1XX321nHbaaZKfn69VDLIHGDb65JNPZOnSpfL3v/89+mQB61NtgR2sI4lxD3feeafMmzdPOy9hy06UarZhfUggHgQo6ONBlfskARJIOwKWIxxpHW+66SbZc889o4LRcsynChR45y3efNiwYbLNNtsIPMFBE/MWAmSe+fXr18vhhx+us6sia4/FySNcyuyXKjaCLVA/1GvXXXfVTuYVV1wRbZMWJpUq9WU9SCDdCVDQp3sLYP1JgARqTQDiCV54xJXPnz9fLr/88lrvM0w7ePrpp+XGG2/UwZdBWiy0xMJpRowYIfvuu6+0bt06dCkpa8MVHco77rhD2yeeHGEJWuerNvXjb0mABEQo6NkKSIAESKCWBCAYMdCyb9++mi4w3byfLVu21Iw3GHwZpAV2gG3wvnDhQrnvvvs05AYLPNepFjfvZY+6eeuHv++55x4ZPnx4kEzEspAACfhEgILeJ5DcDQmQQHoTeOGFF6Rdu3b6SjfvJ8TiNddco6Es3377bWAagoXUoEDPPPOMHHDAARo/jvJiHEAqL9YGTdSj3khhiXSjEydOTKnMS6lsR9aNBKpKgIK+qqS4HQmQAAmUE7BBlOYFXbdunSCWHLONprLXt7IGAPGISacw0BQ598HHcr4nk4cdG6FA8E5jcKgJXcTNp/KCulscPd7xOS8vT26++WYNCUNnx5uXPxUHBqeyfVk3EoglQEEfS4SfSYAESGArBCCGvKL+9ddfF8zOidCTVEpRuRUM0a/BAkxOOOEE+fzzz2XBggX62QR1MkU9Com4cQxWRtYhiFvvq6p1DNt2sU+JTNQfe+yx8sMPP8jy5cu1rULUM41l2KzL8pLA5gQo6DdnwjUkQAIksEUC5v2EkMXft9xyi9x22236m2SL1y0WPE5fmnjHjKsXXHCB/O1vf9vE+xsrLuNUjAp3C3s89thjgYvvr7CwcVwJDng1atRIzjzzTLn22mv1M2yHFxcSIIFwE+BZHG77sfQkQAJJIACBal5pDIJFyM3BBx8c9fwmoUhJPaS3E4OZSSdMmKAi0bzCyezkzJkzR/AaNGhQUhkF4eDWsTrjjDPk1VdfTbuxHkGwActAAvEiQEEfL7LcLwmQQMoSgEA1cfTSSy/JoYceukmIScpWvJKKeb28nTt3lrp168rUqVO105Ns7zzs079/f9/KoVNQleHl/ilzn/Tdeb9LI+/i3iN/4+lNMT6qJ7xEfxTZ3H5nXnPdXeTb6P70o4+L2QHvmCMBE4EtW7ZMy5bMDpePVeSuSCCtCVDQp7X5WXkSIIGaEDARhNhjDLS88sordTcWupBMEVuT+vj1G9Qbcdm33367nHfeeVEPvV/7r+5+UB5kdOnXr59/gj6ivKOCvqy0REU7ljLXHlTMQ9Q7MV8mxVLo/sWqwrIiKcF6/VzitnaC330uLna/10/Ygar/yM7i8K+1S0wMNnToUHn44YdVzDPkJg6wuUsSSDABCvoEA+fhSIAEwk8Awgiv7777Tt87dOgQ/kr5WIP9999fB15iSaaXHqkpIegHDBjg20RSLumlq5V7Zbh/MzKdZM+SIqfGS91n15txL+h5yPNs98qRTKfdi913ddcXuO0jkEszsqWoJPKUJxsx7G5/eOnUMG6funOfl1gv/Pnnn6+z+3oHL/t8SO6OBEgggQQo6BMIm4ciARJIDQLmoR8zZoxAvKarR74ya7Zo0UIn2gKnZGb9GT9+vOy2227StGlTH8uxUdBDfJdmZUhmdqSDV+Y87+tLCiQ/03nf3XdlTsFnZ5bJ+kKX8z67oWQXrZOijELJh7J3eeGh8N1oDPdy4r68k1AZU7/Xg8uqVatk/fr12n7Zhv0mzP2RQGIJUNAnljePRgIkkAIELGZ80qRJOlkRc3hvalTkO+/Zs6c899xzSWUzZcoU6dKli78x4hnO+46X86YjcAZLpuu4ZJRukHNPPVm67Lm3fPrFty68xjnrMYZA1kn9jFzJzxV5dsR10nb3LjLRpfYsRhyOOuMRZqMBN+b7j+zU538h2L1eeswbUFhYGE1b6fPhuDsSIIEEE6CgTzBwHo4ESCB1CGBW1AMPPJAxyDEmRQcHIR0jR45Mqud31qxZsscee/jsgUYoTSTwBoExOYhBLytwajxfzjltgPz+00K55MJrZC1Ccpycz5BcyckuldLVs+T2Ox+RtWU7yl57dZLMcoEdv4j5zc8zyzwEcY9OF55c/PTTT8onNiRn819zDQmQQJAJUNAH2TosGwmQQCAJQPwUFBTIokWLpFOnThRDMVZCmM0hhxwi8JBbrv5kGHL+/Pma0cVCpPwoQ3nAjUa54waaCQ+7e+Ft/36HyZ8HHSS/fT1VHnjibVmTmeXi6d2MtGUr5YoBA2X2hgL5z+MPSpMG9SIx885L7wJ2yuPmI5Hz/kfPV17rgQMHynvvvaeC3jtrbOW/4DckQAJBJUBBH1TLsFwkQAKBJQABhAGxO++8s9SpUyew5UxmwRo2bCgYlGox2skoy5IlS6R169a+PyWIiG6E04gLrXGhNyVZzhvv2kFmI7nuthukUb218u9bh8mSDaVS5EbFzv/mU3l78s/Sud/pcviB7SQPg2Axu24WZhyGJz8yLFZjbhK0oA1j7oSPP/5Yj5iNmH4uJEACoSVAQR9a07HgJEACySIAjy8mlGrfvr3vYjFZdfL7uCYQ8SQjWeEca9as0bASLH6VwcS8iW/E0Zdk5UpBVl0pymog2+3ZVq697iwpWfCr3PKP+yW/sECuOulsWZC1jdzz0N3SKLNQslwKS3j2UaYM9zQDEfQaRY/YfI2nj7+yx7G33357WbFihbZhjgPRZsKFBEJLgII+tKZjwUmABJJFAGLot99+U0GEJR4ZQiDpIoMuXf5yHMTpvPsvGiDN8nrIvILf5LlHR0qHdrtKthNje+1/uDz/0RTZoOpyjRtwucHlPY/kOdfRmRYnYjoR76obi7HnuCzGpLi4OC58qlJoPB3AkwIVzo6TL4syc155l8UGuHPdXTTPwazjEljmuDWlGU3lL+deKnvulCFvPHqTjHzuTRk3e7kMufoeOaB183LRnqNeeXHCvsAVCzdiNU3Jhsj3PhV1a/VFNiKEjfnKZ2sH5fckQAJxIUBBHxes3CkJkECqE8Asm02aNNFq+uX9rZCZJS93Iq+4OEvyS5fJ+WdeKpcPu0rauIwpg47pJYumj5dTjxwin82Y5bzE9Vw2xDznAXZ7g8fX5TnfbNHvsLaC7zbbuGYrzEMPQZ+sBakzMWutr4M+NU98hJxLOb/RmZ6BsJssyXDVzWm0k1w/4gbJWL1Ghp19sRRts4/ceu1JUr9krYupd558GKcYqS0LJM/lo0fHIBv/ZGW7nPXYT2IUPdrvypUrk2UeHpcESMBHAvG7mvtYSO6KBEiABIJEAALRBH1cxTwqXYbLtBPmTpwjr3lByR/y2cTvZeacH+TV0a/LSy9/ILPGjZSckl/kn4+/LqudqCwtT4UIgRnx8sP/65SmplssX+Is6BHCYTOQxp3Rxlpt8hdi+CHo/fRA2xRQii8aGYMYeGSUxyDZIs0s36vvANk2C52ZVdJy772lSa4bHOs6A5DrmIgK00lluvAb5+p327s89c5QmKQKv4h/wE0EE1JXrl27thJ6XE0CJBAmAhT0YbIWy0oCJBAIAhD0COcw7298CwXph6XICVPMTLpK/vva27Jt82Yu3Np9k1Uk2+/bVhrVryMfuawyxU4NunmNJNu9FzupmB8tXElEKEItupcLDin30vtfeghoeOgh6pOZPaVBgwY6eZKfHYpIB8mx09Abz9MHU+FuFtgcWS/3jRguc8uyZNum28ncT56XOUtXOMPUUzGfi95AqZuAat0KZ00n5jG9rDMlVifyprxw4UJp2bKl/w2AeyQBEkg4gUReOxJeOR6QBEiABOJBAAKxcePGsm7dunjsPmaf8PtaCAbUOj7mqec9x60uyajn/sqUnFwXye3CN5wf2IVvuLzoxeud3CwS9b+68pYVrHO/cT9Q4em8/RD0cXIFe0NckjlTbL169QQDY+1JAWru37IRHiykS3GRZJSskx9mTpE77xsje+0zQD79epI0KsmXY/Y8UH5w9sl29st2XvzhN1wp7Zp1lCfe/dJZxdnFrYdps11cvc4am4Bl6dKlOg7Ezw5PAorNQ5AACVRAgIK+AihcRQIkQAJbIgDB2qhRo2j8sW8DLis8KKQ7BL1LK4hQGiz46F4ZLmC7EDHdiLt23xVvKNZ0iEsXL5AhRx8pe3XqIUUQ8xgUmpOj3nsT9HFT8ziEOx488zaRUaTQif8XKUURUuK3YLXuFYygXSP0jZzHPtPFxGc4n/uNV/9D8l3Gm0eeeVJa7dBEBh/dRQpW/CTvvj7d5aZHp6pM/nHbcDlwv91kbWaOZLqwG2cljb+HuM9w3ydiWb16tSDshgsJkED4CVDQh9+GrAEJkECCCUCsIh0iBJGvAy4rqofz5qoId+E1bvof1fQZ5ZHWGS6mHkJQXJiHlOZJPaRcceKyWYvWcueIm6S4sEzWI7sLBta6wbGl+jf2hQPF10OvRyiPo49vh6ciaJF1zZs3l19++cVXQa83zajeRqYbNzUU+lTuqUhG8VoZ/fzL8ubYWTLg9NNkv/aNXXhNrtz95FvSIrdMhp11vCxatd51wjDTbKbUcXFROc4mmZnuiUpRvq4vcmE6kQz3ldfLr28w8dfeLr4f9mHaSr+ocj8kkBwCFPTJ4c6jkgAJhJgAwkh23HFHWbx4ccT77VdKxIqYZGigjIryDAxqdf/DM69hGU7sa7iGC9NAPLeOeUU6xcxcyXGxHdnu76j2dNlmNP4bK3RlNFAEH3xfMCAVcfTJnLAIE3/Nnj3b15CbqHfejWcoc3Z3yWrQw3Jjl90fhWvl7zePkLLGLeTmW65ynS9Ic9flarS9XHnJkVJvzUK566EXZAOs5p6qZGSVSv1SZ5WydXLz366Qs845X85xWXGWLo9/5hmI+DFjxkj//v3V9vEJS/K9WXGHJEAClRCgoK8EDFeTAAmQQGUEEMLRpUsX+f777331/sYeLyLkMRDWLWWFLuWhk4fO41uYmS1ZpcXq5UXuczdTETbQlPMagZPpflGmvmONy161frXcf+sIuf2WETLypXdd4H2h29p5iRErEqcFTzHwQhy73yEvVS1ymzZtZO7cuXp8v8oQEfTu3/L0lS7RpJQWFaqX+5bht8usn5bLWf93oezSorHbxol2J/xzs0vlghvvkh2aNZZnb7lOps/5xX3nOjuwLGzm0lnu3u9Y2bPdjvKv+/8pzbbdpqpVrNZ28MIbB3S4Zs6cKfvttx899NWiyI1JIJgEKOiDaReWigRIIOAEOnbsKAsWLBDkOo9XuEJE0LtsMfqH88ZrTnmkNnQJKZ2gd/lSIokpXZIUTafo4rMh7TUQBL9xAg4BHLl5mfLxG09Jt5695KiTDnfbOKlfAk9+1N/sK22IRgwYxpMMxLEna9lnn31UtPq+AK57gV6W+8dV0z0dcX/UaSannHuuXH3lRZIHQyCUxYXQ5EBI5+4kd/7nPjnzhH7uyc4aN5jZPUUR1xFwXvwXX5kgy+rkybDL/yqN3EjneA+KhX3QbnPcuApkavKmGPWdFXdIAiSQEAIu8JILCZAACZBAdQnk5ubKTjvtpIKxW7du1f15NbYvT1vpvL2devaV45Y2kJbbOJHsPMSq2Z1kz3DiHiIyzOLQAAAgAElEQVQQ/vaIrx7fwQdfLPlr1sr999wjT773nWRu1xjjMZ2X33n4C913TkTG4yYAb/Unn3yiXJIVPw/ABx98sFxyySVSUFAQt46F1s+Bx9OT628a7rpSkTh4TDqFAcpZrhOmT0JcGNRRg4bKEccc7wbMZrt4eReh48Ki3nn5Ofl56o/ywTevu45BbuRpSxz6WRDxKCte+BsZbvD0BKLe1iXTVtU4IbgpCZBABQTooa8ACleRAAmQwJYIWNhC+/bt5fPPP4+vaHVCXiNqnAg/7MSz5dWXnpeOOzXScA4spZDkGocNoR5RgjpjqROYWUVr5PhBp0iTHfeTHCfmM52Qy3OhOCU5zsef7cS8Zc3ZUmVr+N3jjz8u5513XlJjs3fYYQftdE2aNCluT1FKXCpKcSFQkpWj8wIAaR7+QRiOs452s9z3Je67Ugx6dU9V6jsblLnxD2tcytGBg/pJ9+0y5cAjznC/d5mKEFaFQcw+L16xjvY7evRo6devn45xMLHv8yG5OxIggQQSoKBPIGweigRIIDUImKezV69e8umnn0YrZULf3mtTW0g6vMrUE+8EIjLZ5DbWdXXcAFd45qHi4XGPZDDHNhYTH/l1Vl6OPHjfP+Xqi8+XabPX6G9zS9e5QZnOw+96CVk6OVLtF9TXW/f8/HwZN26cnHLKKfHt7Gyl6LBTnz59VLzGa9BnlhPEJfB+u/STZU64IywK/aqsbNepQvkgzt0KfHZ63Xnh3Wfnni9ygVF1C4plZW4TGfnKLbJi1jT5260jdUIw3bB88aMtaTEiDSX6/thjj8mwYcOiqUXpnY8i5x8kEEoCFPShNBsLTQIkkEwCED/FTlQffvjh8sUXX8Q/ZCGSq9LFXaPWLtVhlguxccKxpMTJQl3XQEVkthRIpks2j4QrLvG8rC1pJLu030FmvHuHHN5+N5mzLt955jOlkROZGzR+G9NQ1X4xMWhjCX7//XdBSFIQvL8DBgyQDz/8MCpka1/bTfcA/FmZkaclOsYhMirZCWWI+3KBD3O4V44zFiYDgzc/Y80CmT3zR/ns46+ltHkbWfj2CLnv1rvkrvufct+rUXVQsV9CG/vB/iDsMUMsxn907dpV94+XXx0HLTgXEiCBhBOIR/hkwivBA5IACZBAIglA/GDAJzLdID77m2++EQyS9VMYbfTRomYR34vKPP3HCUX46J3wK4GTvaShTJn6pSzPdTHRKgZL5Ns5P8mKxb9L2Zps2emgg6RX20zp3aqvfDZrjHTc1on+zIbOE1zotnVx27VcTAya+ESIyx577KGdHnDC934J0+oW9dBDD9V4cWQkateuXXV/vtn2sEtEbm/8Cp+99tr4N76xQa6ul+UGwGIpzsmWdb8tkaemzJPs4ixZuKJU6jXaUeZ9PVrW1aknq93sto0bNNBt/WJnA1+xv48//lj23HNP3b8dI/qBf5AACYSSgJuQrvw5XCiLz0KTAAmQwNYJtGrVSp566ikNv/BLWEIgYV/XXHONwCP9xBNPRL2c5vXceskq38JEoYlFFZEIkXGhN8gnj1w3WoZSJ8jLNuiO1rq4+FwXq7126W/y7bfTXQiIC/PIrCdd3ODUGZM/kSw38dG63G2l+wE9ZZuSHCmqt9TJ+WaVF6KK39htBO94QSyC9wEHHJDUPPRmo+HDh6tXGmEmtV022sXCm9weNebdvTxKf9MOmX1V/hvtSGXKekc/D7nqnc20o5CxLuK9R0pRtwLtCF51dIr8aLfoYCH0COk8X3jhBdl///2jM/rCbn6FJaGsxr62vPl7EiCBqhGgh75qnLgVCZAACUQJeAXs4MGDZejQoVExD1Hkr5gpdQLeTRIFxVdWoBlqMI1UlhtYaZluNmTWdcKwwKWydFu67Zo2aSIH9unrBH2eE4ulbl2m9Dm4l6xzv2xQ7AbUuh2sqStSH7H0Pi0mCKdPny5r166Vnj17qkDEej/EaE2KaceFfeCp930p97hH5Lp7iqLCHt0tJAbFRzxZiYh1SPnyfEVuNtg6bgbZtVLPTRywNGelNCtqgZ/Ihrp1JK/Ahb/gzlzeOfDrCYd56G3MR/fu3aPpKpNpI99twh2SQJoSYAx9mhqe1SYBEqg5ARNAEIyYmKeBC49AnLZ5VGu+542/LPf5uhVOzGM1VmTW1zeV4Rl5Ln7excC7L+u6EO5M552v52KzMUOs5NV1Xt26OlNslkuRmOHWZUhdF2nvxDx25sR8Q7ejTLfGj8V4QDS+9tprvj4JqU35rFwdOnRQO914443awcAL3mq8V3fx2kUHKusLiejdN/ol/o6sx8Reajb3QpS9/TYXHzId+5w67vmIE/MwqLOJs5pkujkDMrPcSwfXRuLba+I5t3rau+3vjjvukPPPP1+rbevsXVdyIQESCCUBhtyE0mwsNAmQQHUIxCPkxisGR40aJffdd59MnjxZi4XvaiLCqlOnIG2L+kLML1++XNq2bStfffWV7LLLLkn30JuN8I7By8cdd5z8+uuvm9gnWU8P4m2/2M4K7PPll1/KCSecIHPmzNFBy/GqO0Nu4m1d7p8ENidAD/3mTLiGBEiABLZKwCsWBw4cKD/99JMKJfOqbnUHKbSB1fmZZ55R7zzEvInFWGGZjGqjLPDQI3b81ltv1Y6Gv2FRyajVlo9p9QN/sw/GEpx55pk6mRQXEiCB1CKgT3K5kAAJkAAJ1IwAxBJCbkaMGKHezxkzZmg4RzqJJojHNS4zC8I5PvrooyhIE5P2XjPCtf8Vjg8R/9xzz2mmmyuvvFLtk+xy1b5mle8BsfdYzFv+8ssvy+zZs+WVV15J6XpXToTfkEBqE6CHPrXty9qRAAnEiYA3xhmiCYNj4aVHekTkX4fIhWC03N9xKkbCd4s6oW54oW54xwIxDy840nfGsjFvfaILa55plAevXXfdVc4991ydPwDfoS54YbF6JbqM8Toe6oOOJZaioiK5/vrr9elEXp4be+FYcCEBEkgtAvTQp5Y9WRsSIIEkEahfv756p5GyccOGSBpJE08QveYxTVLxfD2s17ONv3/44Qe5//779T3IC0T83XffLbDV1KlTpZtL5wmxiw6Yif8gl786ZbN0l5gnAZ0YdLROPPHEaGab6uyL25IACQSfALvpwbcRS0gCJBACAvB67rvvvhrS8e9//zsa0gHBm2oeUYvPhghG3ZA15eqrr5btt98+6rEPqskwGHTu3LnSq1cvWbRoUXTiK/NmB7Xc1S0XOilYxo0bp2E2I0eO3CTUBh0ZLiRAAqlDgII+dWzJmpAACSSJgAlcvE+ZMkVuuOEGmTVrVtTra2EpSSqe74eFWLRwFXi8V6xYIVdccUXcsqb4WQF4rlu2bCkXXHCBHH300dHBsYipTyU7WcjNaaedJm+99ZY0bdo0Wj8wQMeGCwmQQOoQoKBPHVuyJiRAAkkiYOE08FY3bNhQPaL9+vXTGWSxwJMNEYUFQitM3lET7ii7V/CiTt9++63mdn/xxRelTp06oRD0sBXsdNddd6mtEI6CzxaiYmMeUFezmRou4It3PIOFRHXq1EmGDRsWnRfA6m6TVQW8SiweCZBANQhQ0FcDFjclARIggYoIQEBhgTCEEMSgy969e8s555wjiGG2kBvbzsIhKtpXENeZqIeIR2cE74WFhTJgwAB56KGHZI899og+jcB3QV2sbKgPPNRvvvmm5ma/5pprorYzcW/2DGpdYstldYOwxxiOffbZRw466CC59NJLN7MNtg2ynWLrxs8kQAJbJ0BBv3VG3IIESIAEtkjAxJH3HSkSFy9erGIRIsvEPrYJU2gHxK+VHX8jNAWCEQNKjznmGDnllFOUDeqFegZZKJrnGuWFDRo1aqThKEjpeM8992jZsR71DXI9KmqM1ulCRwvpUzGe4d5779WsNlxIgARSnwAFferbmDUkARKIMwETivYOMQgv/AcffCDvvPOO3H777VERb4IxzkXybffejgjqhycOhx12mLRv315FsIlfE/6+HTgOO4JdUE4sJth32mknefvtt+XJJ5/U1I72NMU6KHEoRlx2ifKuWrVKjj32WK3bu+++K/Xq1dN2F6YOZFzgcKckkAYEKOjTwMisIgmQQHwJmFDEuwlFCMfGjRurBxgZRjB41Ct+USITl7F/x7e0W967lcnevXHk69ev15lGIRAxKyzi5r2dmCDVo6Ja2hMEr51gk912203ee+89GTNmjJx11lmavx3bxsaae+1V0f7juQ7HBne8e1/G/LfffpMjjjhC2xxCibCgnqgfXsksezy5cN8kQAIRAhT0bAkkQAIk4AMBE/LYlQkp/A2xiPz0iDW/7LLLogMtLU2iiUfv730oTq12gbANLPY0AXHzq1evluOOO04nzxo7dmzUk20ebWzvrXetChCnH8fOBeBlvsMOO2iKx2nTpkn37t1l+fLl0YmZbMBpskSxCXkrL8rj7XBhHMDee++tLwxQ9nrkrfMSpPYVJ/NytySQ1gQo6NPa/Kw8CZBAPAmY93qXXXaRGTNmaKw24pshkCEuzQscJA8qhJ8JXxOGa9asUZFbt25dmTx5sr7bbLjx5BfvfZun2+oM7zYEPQaTYlZZTJTlHReQLEHv7TRZJwvvKNsDDzygOfUffvhh7TTa9/Fmx/2TAAkEiwAFfbDswdKQAAmkCAGIPwgxeOAhfjE76c8//6xxzhiMaWLZPKdB8aBaJ8OEIcI3mjdvLqeffrqMHj06Gu4BM6F+2D6si3mvUX7UFx0ZrMNgUni9u3TpIkceeWQ0zWishz9R9TZboGz2ZGflypWy4447qqD/9ddfZdCgQVExH5S2lCg+PA4JkIC7HhMCCZAACZCA/wQgqkwkYu8Qg3ghVhsDMDFg8YknntBtvCEU/pekenuESEeZ0CFBBpszzjhDJk6cKNddd100zMMEo3VaqneE4G3t9cKjdGCAGX+XLl2qKTnRoYH3O1keevDGsa09DR48WBAihI7HzJkzZdttt1Wo6DgiXCpZ5QyeZVkiEkgfAhT06WNr1pQESCCBBCDCIAy9XmD8DdGFsBvMKDt8+HDNFz5nzpyoYEM4jgl8ezfR70fxvR0I/G3i3cJPcIz//e9/0rp1a8nPz9fJo3r06KGHRn28dbI6+lGuZO3DbGJ28r4jBOfBBx+UTz/9VDthYGIZi7y8Yhnad/b0InZb1NXWmVC3z/DA4297t32vW7dOzjvvPNluu+10Qqx58+ZpO7KByWYbpKlEHQTJfOwlpe6D96UlcK/i8vWeTfGVbuu+iyQE0nckB9q4y9h96Y+4kAAJJJEABX0S4fPQJEAC6UUAQg0LRH3nzp01BOfiiy/WmTxPPvlkjdlGnncTeeYtN7HmBy2IPTwpMKGIz/gby4QJE+SAAw5Qb/zTTz+tMf/IZ64CsXwJc4hNTfjBFphx9YsvvpBRo0bJpEmTNL4ek4ZhXIQtxtA+m63xbvzsSYB957WBdd5gG3xvtv/44491MPLOO++sOeVRDmQYQriN2dFrn83quNk8X97bPv6OfMZmGzeNrC8r7xfgCzQB28Z1VTfZerNjcgUJkEDCCVDQJxw5D0gCJJCuBCC8INa8gh1pIL/++mvBwFkMbjzppJPUK25izQSeiUA/2JlgRHngCUYe9kMOOUQnijrttNPku+++k4MPPjg6INQrTiE002kx0Q1O6Oy88cYb8tJLL2mYS9++ffXpBbz2X331lbI0YW+Mwcor3GPt6O1QgS0GICMsCxmRkOv//PPP1+Mgpv/++++XNm3aRMctYL/4Tew+1T6bKvTyFRtt57oZzuNe/ln7meVe93KvPL7D6IhIV6/cY68efax1bdj7e/ycCwmQQFIJZLgLgT1US2pBeHASIAESiBeBVq1ayVNPPaWe8C16M+NVALff2EutiXsTe/DaI5f4HXfcoZ5ghHdgIOqQIUM0zALb+TEo07zEEO2vvvqqPPvssyoKIRz/+te/RjsSQFGZeE8Wwziap9JdezszsRvBJhD3mGtg6tSpmuqyd+/e6tFH7D1siImrkBUoNzdXB0MjpAoz7SKnP8Jo5s+fr+Ez33//vXrf8UL8/oEHHijHH3+87i9WuFvbMTt4Ow8byxiR4hs/b6rwcePHFuprjwp6bO06CG5TfAfpnqUv+xT5Xrcp9+djr7GLdVLSqZ3EMuBnEkg0AQr6RBPn8UiABBJOIAiCviqVNu8uBjbCE/z444/rgNS99tpLBg4cqCIPYg9hMCa2Iea8nQITf3iHoMILIhKdhenTp8v48eN13xCUhx56qFxwwQXSs2dP3a5iYViVkqfvNuggmS0WLFggH374oYp7CPVffvlF/vjjDx2oChtAwCOkCuIese94YXArRD887/D2YxZeCP/aL15BD9tG9ggbe+1s7SUSJ+820vAa9+SmtEQyMiHnnXwvc3V060oRPuQ+R/6NdBAyMzeX9BT0tbce90AC1SVAQV9dYtyeBEggdATCIOhNmHuFOv5eu3atfPDBB+pJRyjO4sWLVSBChHft2lVatmypHnyIQwjBFStW6AvpMTHYFqEgEJgY4IltIRpPPfVUzSuPpwJYzJPq11OA0DWQWhTYOlPecQmwGwQ8+FqnCjZDRww2bNGiRZQ57G78vX/bupoXDYJ+o1c+0lnEsfCKhAGhM5KTnSvFzhWf6WL3ddHyIMuRW+lc9Qi9wXfaPt3Xbpi3lGIWXVdH7Cfyz6alpKDflAc/kUAiCESu5ok4Eo9BAiRAAiRQKQGIIK+Yx2eIKKS3PProo3VgJBasQw5yzGqK7CvwuCPUAwIesfjInQ7hiLz38OwjxSFCjeAZNnHp9SrbPr3Hr7SQ/GIzAtYJMgEP+2CBmIc9raOGFKUYCI3OV2VivbL1mx20Sis2HeuAcsCbXoZAGjjinWjPznLivLhIMrPzpLDcg5/t3hFi45KXSlkp2iQ88yJF7pgoX7FT9c4TKJmlxZKRhWOUdwSqVCZuRAIkEC8C9NDHiyz3SwIkEBgCYfDQx4pswFMB5QZawvtraQwhEiEWTTgaZHyGgIcnH6kwTbyboLTBtZalxhuPj21MTPorKgPTBOJWELCDmEeHycJXYCt7+mF2atq0qbzyyisaEw8bGmcve28h/baDeejLygplydI/XFvpIsVrC2StS03q/PSSU7eh1HNPeSZOGi/t2uwsTz32H7nmyhtknft+fWmO5NVpIG3d2ICJEz+SvEwIevcEAoI+c3O/IMpuIV9xA88dkwAJbEJg0y484ZAACZAACSSFgFdge8WcrYdgxGtLA2MRi/3jjz+q2PcKfvP8o2IQmrH78H6flMqH/KCIiYfNwBXvJuZRLXy2AbAYLAvWxhvfednjs99C3tBGOhEIn6njnuDsIkv+WCHzfl4ge+VEvOz/nThJFi6bKx3cYF546M84/yz57ItPpTC7rnTtP1DmLf1Fpn0+Thpk5UtORoHT8W6rDHrnQ950WfwUIkBBn0LGZFVIgATCTcAr6EzYxa7zrrfa2jb9+/eXsWPHbuKdj/09fmPrYr+zfYebYmJLH8vMOlLe9ciC07FjR4GX3muzWPtV9J2ftVF7l/+H/dZv0kAKXCexrhRKHRcKVA/B9C68piy7jpSsWyvHn3C63HTzcPnkvZelSb267hcYMYvQLTc2wLMfP8vIfZEACdSMwObPymq2H/6KBEiABEggSQQsbAPx8n379k1SKXhYEKhI4CMdKER9JOyl8nSgCSWIsJjybPIFOaVSF4HyzntfVuLeN/wgxw35uww65Uy58m9XSEZxoSs0xHy288q7cCG3CRJXbkx8mdCS82AkQAIVEKCHvgIoXEUCJEACYSDgFY8Q9Uh9iPCOX3/9VUNuYsVlGOoU9jKah97elyxZoukqO3TosEm4TdLrWT4INse1k9KSxq44SHPqUlWuWywnD7lM9utzgAy76gopwfwHGExbVIj8Npo3x23oSV2Z9JqwACRAAo4ABT2bAQmQAAmElIA3vAPi3UQ9UlXib/MIh7R6oS82bDBp0iRp27atNGjQQOsTnE4WElKWurlfXcy/y1hT4mL789f8IIMH/Vk69z5Grrr2UnFJcNx4ADdjrMtsk5WbF5lOqsyJevcqg4ffvbiQAAkEgwAFfTDswFKQAAmQQLUJaEy0R1Thb0w8hfSVsd9Ve+f8QY0IgLvlpoegv+qqq+Suu+6K2sM6YTXauY8/0hTyLmQefvdMWScFC+ZJ/14DZffDjpdLrjrPTSbl0lpGppB1qj7HbewGwOKpDwS9889bwI2PReKuSIAEakGAgr4W8PhTEiABEggagaOOOkomTJhA73ySDON9aoKZYhctWiT9+vWLZh0KiocegrzM5bNRYe6UwNnHHyczv1kgo995TxauXiPZJRj2Ci++28KJeH1z8fOYJRYv5KLHiwsJkEAwCFDQB8MOLAUJkAAJ1JoAxOIhhxwikydP1n0FxRtc64qFaAewAbjjfeLEidKqVSux3P+BCoFy5SvJdPHxzlVf7CaQem3cp9J2j+3k+wnjZeBRf5GV69aonEfcfFaZC8xxdcLnEpd3HsJe12OSKi4kQAKBIEBBHwgzsBAkQAIkUHsCEIyYibRZs2byzTffbJLjvPZ75x6qQgBiHjnfIeLvvPNOuemmmzQvPQS+Te5Vlf3EfRtXzmxXpmINq8mVkgb1ZfIXY2W/di1k4WfvSteDhsiStRvcLLHwzmOe2CIn390kWu53SIQjOuNscdyLyQOQAAlUjQAFfdU4cSsSIAESCDwBC+fATLGffPIJPfRJsJh552fNmiW//fabIJWodwnKJF46nNV55gtcBhtMD4W2U1i/oxP146Tzbrmy5Jtx0mHvwbLG5Z2XzPouneUGySktkGwn8JHBsqzM/SozNwmEeUgSIIGKCFDQV0SF60iABEgghARM0Hfp0kWmTp0awhqEv8gWcoNxDMhuY+E2waxZkeQ4d3uZ1HeDY8skJ7PAZbNpIuM+nybd9+kgy3/+RDru1l2KnYe+MKexFGbWdeE3zkNfVKRZbtxAjWBWi6UigTQkQEGfhkZnlUmABFKTAMQjBGXv3r010w2X5BBA6NOzzz4rF154YYDSVEJ844W4d4TK4FXovPOIhs8RNwbWed4LXU76XGmwTWt5670X5LC9W8mSn76QXdsPlIVrNmioTUmG2zrL7aPEheC4eHouJEACwSBAQR8MO7AUJEACJFBrAgjnQMhH9+7d5YcffpCCgoJa75M7qD6BBQsWyOzZs2XIkCEBEfQm5u09kp2mpCBL1rtOYGbmGildn+/i4xtKRh3MH7tBGm7TRkaNul898YvmT5R9OhwqY8aNl4xSNx6gzL3cuAAuJEACwSFAQR8cW7AkJEACJFArAvDOwztcp04d6dy5s2ZZsZzo2DGz3tQKb6U/Nq4WP//OO+9Iz549JTc3NzDMkWES5UN7WLV6lVx++aUyZHB/WVLgMtiUbiN/PeUYueTyC2XBojUi+XXlj+VzZPj1D0RSU7pt1vw+VYYecawcfOgh8uBjT0pRqUt5yayVlbYJfkECiSbALnaiifN4JEACJBBHAjboEmE348aN0zSWJvQtxj6Oh0+7Xcd2khD29Prrr8vJJ58cGDGPSeGtswEDNWzYSO75579c2EypFGaVSm5xnuRnYpArcs27AbKFBdKseWe5d9TLcv9zBVKW4wa/FjkB72LsCzNz3KRTLoN9hptd1nnqXcQOFxIggQAQoIc+AEZgEUiABEjADwLwvnoz3UybNk13a2KOgt4PypvvwwbC4h0TSWEegBNPPFEHxAYl93yGyx2PMawZGdkuVj5Xiovc05wyJ9SRUz6jQOo4NZBXDDe+E/BOtJe6P5H/piCnvmQ4D72bacqluMxzg2gLNcuN6wtILqaa5UICJBAIAhT0gTADC0ECJEACtSdgMfQQ8EhdidSJtpjorP1RuIfKCEDAjxo1Sg499FDJycnRvPN4BWNxs7u6DgfCZIqKSiTbla80260rLnTKPVvFfqaLnYdYL87KlOxMl3ve/Z3rfrA+t64Ulrn6uC/LMupKplP72Rhci0w3XEiABAJBgII+EGZgIUiABEig9gQs/APCHikTly1bJkuXLlUPPV7FxZwIqPaUN92DsbW1b7/9tgwYMEAnlwrSExFob5Qp04nynByX28Z9znH/5GY3Eper0nU8XA1y6kkdcV541el1tPx41XOf85xaQEacbDe1bKbbPjMrz21DCeF3e+L+SKCmBHg21pQcf0cCJEACASUAkQnx1rdvX3njjTeiwhIzlnLxl4CNWUBozfLly2XKlCkydOjQKPMgiXp/a869kQAJBIkABX2QrMGykAAJkICPBDAgFh5jhtv4CDVmV+g8QcxD2D/00EPqnW/YsGF0q6DE0MePAPdMAiQQBAIU9EGwAstAAiRAAj4TgNDce++9NR86Foh6ikufIZdztfCaMWPGyKBBg6LZbWADeuj9Z849kgAJbE6Agn5zJlxDAiSQggTMk5qCVdukSiYg8b7nnnvK4sWL3SDIIor5OBneOknr16+XGTNmyBFHHKEDYS3+PN0EPdqaLexAxqnRcbckUAEBBlRWAIWrSIAEUoeAeUnvvPNOefrpp1OnYlWsycqVK+Wss87SkBAu8SEAAf/LL79oqM1ll12W9l558ODTifi0Ne6VBCojQEFfGRmuJwESSAkC8JBecsklsmrVKq0PhEY6LX369JFvv/1Wjj766HSqdkLrijY1evRoOeaYY6Rly5YJPXbQDoaO4/XXX09BHzTDsDwpTyDDXYjS6+6W8iZlBUmABGIJID84LnXp6Dl85513ZNiwYTJ9+vQA5USPtVB4PyOsJD8/X1q0aCFz586VZs2apbWH3isp7JwLr3VZchIIDwF66MNjK5aUBEighgRsch8LA0inuObWrVtrHD3qjhdDb2rYiMp/Zm3I9oK29Mgjj0ivXr2kefPmujqd2lhl2ssAACAASURBVNeWaJLDlujwOxLwlwCDKv3lyb2RAAkEmIANVAxwEX0tGsTnzjvvLKtXrw7cREe+VjSBO0MbMi+0dZCQrvKiiy5KYCmCeyg7x9LtXAuuRViydCFAQZ8ulmY9SYAE0pJAgwYNpEOHDjJx4sS0rH88Kw3RipCb3377Tbp27arZhLiQAAmQQDIIUNAngzqPSQIkQAIJIGCC8+yzz5YHHniAoSA+MfeGkowaNUq6dOmiMfSWrtKnw3A3JEACJFBlAhwUW2VU3JAESIAEwkXA4ubnzZsn7dq1kw0bNkh2NodO+WFFsMVgawj5N998U3r06KEe+pycHHac/ADMfZAACVSLAD301cLFjUmABEggPAQsjnmbbbbR0JCCgoLwFD6gJbVOEooHnsuWLdOQJqxnZymgRmOxSCANCFDQp4GRWUUSIIH0JQBRjwmPkN0G6RW5+EMAAn7s2LHSqVMnqV+/ftQr7w3H8edI3AsJkAAJbJ0ABf3WGXELEiABEggtAfMcH3744fLWW2+Fth5BLDjy+z/66KPRVKAQ85YBJ4jlZZlIgARSlwAFferaljUjARIgAY3zxnLhhRfKY489RiI+EIBwR27/n3/+Wbp16xYV9BDz9ND7AJi7IAESqDYBCvpqI+MPSIAESCA8BExgHnXUUTJ58mRZv369epERU09vcs3siE7SlClTBJN2IZTJxipw0q6a8eSvSIAEak+Agr72DLkHEiABEggkAQh2pFKEeIcIRQaWpUuXMt67FtYCSwj4G2+8Ue6+++5a7Ik/JQESIAH/CFDQ+8eSeyIBEiCBQBGA8IQAhecYwh6DYxEqAqGPdfiOS/UIgOncuXNl/vz5MmDAgOr9mFuTAAmQQJwIUNDHCSx3SwIkQAJBIOANqxk6dKi8/vrrWizzNAehjGErw7Rp02TXXXcNW7FZXhIggRQmwImlUti4rBoJkAAJINTG4rxnzpypXmUM5jTPPQdxbrmNVDTQtWfPnnLZZZfJkCFDOAh2y/j4LQmQQIIIUNAnCDQPQwIkQALJIGCeeAhTvBo1aqThIttuu210MGcyyhWmY5qox/svv/wie++9t/zxxx8axsQOUZgsybKSQOoSYMhN6tqWNSMBEiCBTQbAwlPfvHlzjQHH4g3HIaqtE4B4Hz9+vHTt2lXFPBcSIAESCAoBCvqgWILlIAESIAGfCXg9yybe27RpI9999110YKzPh0zJ3ZkXHk87nnvuOTnzzDM1axAHFaekuVkpEgglAQr6UJqNhSYBEiCBrRPwZrmxHOkDBw6U999/n1luto5Pt7BQJYh3ZAj64osvZNCgQfrkg3nnqwiRm5EACcSdAAV93BHzACRAAiSQPAJe0QkR+qc//UnGjh1L73I1TAJueL322mvSvXt3qVOnjn6mh74aELkpCZBAXAlQ0McVL3dOAiRAAsEisMMOO2j894IFCzigs4qmMeGOlJ+DBw+W4uJieuiryI6bkQAJJIYABX1iOPMoJEACJBAIAvAsI45+1qxZgShP0AuBkBs85Vi2bJlMmTJFTjnllOjsu0EvO8tHAiSQPgQo6NPH1qxpihCwmF57T5FqsRoJIoB2s9dee8mMGTMSdMRwHwYdIDB7+umn5bDDDpO6deuqdx5POeCp50ICqUDAez+xAfSpUK90qgMFfTpZm3VNCQIQE1iQZcPERkpUjJVICAG0mf79+8u4ceOYtrIKxC3c5o033pBjjjlmk3SVOTk5VdgDNyGBYBOAgLf7CseFBNtWWyodJ5baEh1+RwIBJGDek912201LxwtwAI0U4CLZYM5FixbJzjvvTFG/FVvBE49zDhNKIYd/bm7uVn7Br0kgfAQQVtauXTt56623VNybwA9fTdK3xNnpW3XWnATCScC88pjtc+rUqbzwhtOMSSu1PVo/4YQT5Prrr9dZT7lsmcADDzygMfQ33njjljfktyQQQgK4Jnz55Zfy4IMPRtO0cuK08BmSgj58NmOJ05yAeejx3qVLF3pT0rw9VLf69kSnffv2sm7dOgr6rQDEeTZ9+nS59tprpVOnTpwhdiu8+HU4CaxcuZJiPpymi5aagj7kBmTx04+APQqF0ODENuln/9rW2NpP165dZdq0aRqyZU99+Kg9MpGU9xzDWBVkBOrduzefhtW28fH3gSVgbR6eeYbbBNZMWywYB8VuEQ+/JAESIIHUJHDIIYfI559/Hr15o3PI8RgRW9tTMHx67LHHdBBx06ZNKXRS81RgrUggJQhQ0KeEGVkJEiABEqgaAfO+7b///oJxGKtWrYp66Bk3K5uEsIHVv//9b/nrX/+q69nhqVob41YkQAKJJ0BBn3jmPCIJkAAJJJ0AxPs+++wjH330UTTTjdcznfQCJrkAYFFUVKSdHgwcRugNFxIgARIIKgEK+qBahuUiARIggTgQgFCFtxkhNoijHz9+vAp6rEv3iZLAwft6/vnnZb/99tNwG/DimJU4NEjukgRIwBcCFPS+YOROSIAESCAcBMwLj/d9991Xvvnmm2jITXY28yR4rXj11VfLDTfcEO3w8AlGONo4S0kC6UiAgj4drc46kwAJpC0Bi6HHe7du3TSDC5dNCUC4b9iwQXPPIzWsCXlm/2BLIQESCCoBCvqgWoblIgESIIE4EPAO7tx99901Nvznn3/mgE/HGmws/OjNN9/UMQZNmjSJro+DObhLEiABEvCFAAW9Lxi5ExIgARIIBwETrCgtBsYifeW4ceMoWsvNZ6L+iiuu0JkzLS834+fD0b5ZShJIVwIU9OlqedabBEggLQlAsNoLADBh0tixY5VFuoeUoLODgcEItUE6z44dO27CJN35pOUJw0qTQEgIUNCHxFAsJgmQAAnEg8Bee+0lc+bM0QwuzLMeeWrx2WefSdu2bSUvLy8eyLlPEiABEvCdAFMa+I6UOyQBEiCB8BBo166dzJs3T2PHIejTfXIpMLj22mvloYceSvsnFuFpxSwpCZAAPfRsAyRAAiSQxgSaN28ueE2ZMkXSMW2lNxUlQmoWLVqkk0kddNBBadwqWHUSIIGwEaCgD5vFWF4SIAES8JlA//795Y033kjbiaVM1CPjz1dffSUtW7aMpqr0GTV3RwIkQAJxIUBBHxes3CkJkAAJhIMAxOxhhx0mY8aMSUsPvddKGEdw0003yR133KHhNhD4XEiABEggDAQo6MNgJZaRBEiABOJEACK2TZs2smTJkrT0Snsz/sydO1fHEwwYMEBpp/t4gjg1Oe6WBEggDgQo6OMAlbskARIggbAQgIe+devWsnTp0rQU9GYneOOR3aZDhw6a8Sc/Pz8sJmQ5SYAESEAo6NkISIAESCDNCTRo0ED2228/ef/999OKBDoz9oKIf+SRR+S8885TBnXq1EnrDk5aNQRWlgRSgAAFfQoYkVUgARIggZoSsMmSTjnlFE3VmE6LDYbF+y+//CKzZ8+WoUOHRhFwIql0ag2sKwmEmwAFfbjtx9KTAAmQQK0ImKjFjLETJkyo1b7C9mMT7Hj/4IMPpEePHpKTk6PVMM992OrE8pIACaQnAQr69LQ7a00CJEACUQIQr9tvv72sX78+raiYoEf9X3jhBTnppJOik0l5B8umFRRWlgRIIJQEOFNsKM3GQpMACZCAfwQgXrfZZhvN6rJmzRpBTD1ErteD7d/RgrMnzAqL5Y8//pDPP/9c3nzzTR0QG4Qlthz2JCUIZWMZEk8A5+Irr7wigwYNSvzBecRQEKCgD4WZWEgSIAESiC+B3NxcOfLII+Wll16SM888Myrm43vU5O4dohnZbUaNGiV9+/aVvLy85BbIc3QI+KKiIu1g8GlBYMySlIKgjWLQOtqBt6OdlMLwoIElQEEfWNOwYCRAAiSQOALwVl900UVy+eWXyxlnnJEWgh51hlh655135Pjjjw9MnSHaIOS9Xnp66BN3LgTpSBDxsU9rglQ+liU4BILxbDE4PFgSEiABEkhLAhAO3bp1kxkzZkhBQUFapGxEneEF/+STT+Tkk08OlN3NG2thQYEqHAuTUALezpyFwSW0ADxYKAjQQx8KM7GQJEACJBA/AhAJxcXFmuEF4mHt2rXR8JNUEhCx4Qqo27///W859thjpX79+oEKZ8CTA69nNpXsEL+WnJp7pu1T065+14oeer+Jcn8kQAIkECIC5gnGgFjEkDdq1Eh+++23lPTQW13NPOjEYCAsBH2s2E+mCb0CDn9T0CXTGjw2CYSDAAV9OOzEUpIACZBAXAjY43wL7Tj33HPliSeeiIrIVI7dhqD/6quv5IgjjlBvOLziXEiABEggjAQo6MNoNZaZBEiABHwkYN5piPpzzjlHXn75ZfVYp6LANW836jpy5Eg55phj9KlEKndcfGwq3BUJkEBACVDQB9Qw6VYs3Ezthur9Gxxib7Te73FTjv2d97P3+9i/zSPJQWfJa22wldcO+Ns+e+1uf9t3EJqx7cTaitf+VrPYfcXuL3kEgnNkS4/Ytm1bWbZsmaxYsULz0nvZVVbaWOZe28Sed7HbYp/ebWJtE/sdvo/dp9m+svJ524G3fT3//PNy6qmnRuvJbCJbI+jP92a/WNtuae/eduNtX/a3d1/WHuy7yn67pePxOxIIGwEOig2bxVKwvBBnFidqN1t8xuNw3GBxMcbnwsJC+f7772Xx4sWyatUqWbdunQ7ew+8xEU6TJk2kbt26ssMOO0irVq2iXrfYm7QNNvNe5LEO4oVLYgnA3hbq4LUTbA+bYx2ykCxatEjmz5+vQhN2RxYW2B6eVcR9m/133XVX2WmnndSW+L3d0PG32djs7v2czjHKdu7B8uANmzRu3FgWLlwoTZs2rXL8tp1Xdt4af2tRdm7Dhj/99JPaEucxZqddvXq1IA8+7IjBqZjkCjPXtm7dWs9pu0ZgX2Yr7/nrvW5srQVbHVHO2bNna2Yfu8Zs7bf8vvYEYCuzoffcN3viCNgG5/yCBQt00q/8/Hw933Huoz1YO8H5jzbSsmXLTe4h3jaC/dp9xHvsdD7na29F7iGIBCjog2iVNCuTeQG9N1VcwCHgZs6cqYPWJk2aJL/88otst912+qpXr54KANz8cWG2Cz7E35IlS/QmgIt9jx49dLIcTMqx55576u/s4m5izysk0wx90qtrtrB3FAhC8scff5SxY8fK+++/L99++63ewJs1a6YCE5lYIOJxY8cNHjbfsGGDznD6+++/67pOnTrJoYceKv3795fdd99ddtxxx2jnIDs7O/oUAG3He5NPOpCAFGCPPfbQc69z587KbWuLMYztGEOEzZkzR2dhHT16tEyfPl3tBHtYB9zOYwhs2BGdNdgQgh/n8i677CJ9+vSR4447Tm252267bfLkANcPr+DfUlm9Hbwnn3xSxXx1Oi1b2je/qxoB61Dh3MO5i/MR12t0riZMmKDtBOc82gPOe5zrOOdhZ2wLW+M7vODkQRtD+0NbPfjgg/WcRxuByDd7o2R2f4ntaFat1NyKBIJPgII++DZKmxLiAg3R/tRTT8kDDzygF294W3Ejx4Q3++yzj4p4XJhxAccFHr/BOz57RSE+//zzz/LWW2/J008/Lf/4xz9k5cqVctJJJ8kVV1yhXh1L0WcXeHpsktfUINzGjx8v1113nWZYQacNN+e///3v0rt3b+2cwb4QAN4nKRXZDN5e5BVHHDjiwSHy8dTmtttuk169eum+sZgQ9O4veQSCc2RwHjp0qHakTznllCp7r2ELvOBxhzj75z//Kf/73//0HG7lnpiddtppmiKyTZs2W/X6W0cL5/e0adPk9ddf1/MW7QT2wuRXyBvfokWL6NOYqhC0MuIa8q9//Uvuu+++Ta4bFbWnquyX21SPADgvXbpUpk6dquc4OnoNGzbUjh5Cvg466CB1vmA7CHi7VuNvLFhv5y1siY7gr7/+Ku+++648+uijKvLR5m6//XbdF5wBtti9onol5tYkEHwCGe5kKAt+MVnCMBMwz0hsU8NF2S7GEF+4YeNie8ghh8jdd9+tQgCi3n4PBvjbuz+78duN2jiZ4DfPIb6H0MPNA3GzEPe33HKLCj6EF2DxdgjwOeg3d+NndQ7ae0X2RhltPcTal19+qZ01CEA8QYHoPvzww7Uqtp3V0/uO7yuyj9dD7P09vP3XXHONzJo1S9q1ayf/+c9/1KOHDqLtK7Zd6RdpsnhtBbtAEMHDiZAY89B725uxN2b4DbaFiL/nnnu003T66afL8OHDo/ntKzu/vHYy3LYO7/idhfPg+x9++EH+7//+T6ZMmaIdvUceeUQ9+HhiU9E5Edt+sA+UF+c9ngShs4fF6lJRu7JyJfId5bDrVyKPW9tjec8j7MvLH/XBE7gLL7xQn75BxPft21fPRTt38XuzO+wEMY/vbJ3Zyt6tXRkvfMZx5s6dKx988IGOBenevbu2E3QWcE+xNm3tzMpZ27rH6/coJxxaN954ozq44rHAoXLppZdq1qegnAPxqGcq75Me+lS2bkDqhosRLrB4t3AHXFDhVXn77bflxBNP1JsqvCv77rvvZhcT78UFf9tne6/Iw2rr7MINFHh8e++99+oL4h4XeXiEzzrrLLn//vuj3n/sF49y8aiXS80JgKM9QbG9oA3Ayz5v3jz1wGM8BLy2F1xwgW4Sa2v7XazNKytVRd57hGP169dPj4fyPPvss9KzZ0+N04bQ32uvvVQwoG2m4+J96oHzBQIKQnnbbbfVsDeMS/ByNRFkYgufzz77bH0Sdthhh6lN69Spoy8s+K39xmvfWNt62cfaG/swcYuwG4hBHB+heMhSgzo888wzMnjw4Kjwi32agzAeeH1h61GjRqlAwnXH2qldmyoqYzq2i5rWuSIvOsKo8DrwwAM1nAZPytDBBmu80D68HT5b57W71y6x7cM+2/UenxF2h3AtXPcR8oV7i91nEFJmx/but6Z15u9IIAgEth4cGYRSsgyhJoALJi60dsHGjRlCChdbeBy+++47FXi44GKxm7+flcY+UQ6IACzwDMFbCy8OBEjz5s1lxIgR0UN6by5+liPd94WQifbt22tnCp0oiKzzzjtPRRbaRTwWdMywb4gDiDZ04JYvXy6IocbjeDwZwBMbtBF7xaMcQd2nt9NrHW+swzmB8AWI5P333z9qHxNAYPm3v/0t+oQL4XLvvfeefrYQCT952jmJ45sAhDBE/PWHH36oT/gQsgHBaB00bGcCE2EdEHcQc/Dw33HHHWoSaxt497IIqr2CXi7w9l7rca4NGTJEBznjmn/ZZZdp5xrbWHvzu07YNzry6MChI4GxEmgfe++9t3Tt2lU79Aj5sWtOPO45fteJ+yOBrRGgoN8aIX5fawK4WNqFG3HtuJgiVdw777yjMZTwuJkH0AR3rQ9ayQ5MDJgoQVjPq6++qh6c1157Tcvy6aefbvaUoJLdcfUWCMDusCtsiqcxiHneeeed5dZbb9UMFhCKFXlxt7DLWn3lvWnjRn/UUUdp3O0NN9ygsdgnnHCCljMdb+44H3CO4skVnljgvIAAvvPOO2XMmDEqlL2eTAh3hOTMmDFDvv76a52ICrbFYgIa77bfWhmu/Mewi52/aFPejgU6iAifeeGFF1SwwROMQbXYxp4QwDsL++IahIG5GDxp4Vc4hO3bj7Km8z5snBMYoNOE8UoQ9RDyBxxwgHaq7GmIhVT6zQttxc5jtEP8jXO+S5cucskll+hAaIzluPjii/X6ZG3W73JwfySQSAIU9ImkncbHgscEHlHcbPGIHOknkXkGF3S76ZsA9AoHv5GZVwjixeuRg5cWXj4IGMRw46Jv3hu/y5BO+4NNkS2lY8eOGsYE0QXhDCFvN13YxLx68WIT6921NocsSehcIi4b9u7QoYN88cUX8SpGIPdrbCB8EWoDoYuByVhgI3CBhx5/w+uJ2HiEyT322GMaMtfKDT7EYucU9oN94t1EvR8Vt+sCymHhUSbasH8cDx57PHFDTD1sicG02Aa/hYjzLqgLOnQYs2P1jOe1xw8GYdkHBqLj6ddDDz2kA6vRpuxJmZ171tmPB3OzuYWF4R0vtEt0ONAB/Mtf/iLjxo3T0By0Ay4kEHYCFPRht2DAym8izW60uMnjQooYW2QcQOaM66+/XoUDLuS4qNs7LrZ4xWPBMezlFRxYh2PiHTccPBpGZwNeRzwWxuN8u9l76wahQsG/uaWMib0jWxFu5vCCI+MJHrmb2DM7gD0EWjxtj5Ja+7J3a3s4PuLEMTAbg6bhucc4C7Rb1MPs7v3b2vfmBMK3xnsOgA0GteIpGuqL71BX2BCdHghlPF1BqBri5fE9tquIKb7z2tgPMrZPvFe0f6xDOkx4htHhwIBreIbRmUTnDeMCrC3gGvTZZ59pyJXtK5Xs6gfvquzDPOBoB3ihk4fxCWgTZ555ZjSrlO0LrLFYu6nKMaq7jR3D3u0a7y0D2gI6pngahc7f448/rue8Xe+re0xuTwLJJhAf9ZTsWvH4SSeACyku2IhNxsUdGTAmTpyoj8KDvODmhNABjPiHqEH4gY369wq72BtEkOuUqLJ5QyzwNzy5CMXAeAnc2CHugrrAnmivf/7znzXkCmIQ5Uf8rYk8E5EmEoJal9qWCywQUoPwM9QdoSo4j5E+FOks4dWEaMZ2WOy9tset7e/tmoMyo/0NHDhQn7ZgjA7mJEA4EUI+sCD8AukwcX6bffGe6ratLePY3xs7E/PoCCO0DoPQ0QkMStuILbd9hr3RrlFmdPwQZ4/B1FisbpX9lutJIGgEKOiDZpGQl8d7c0TcJAYh4WaKVJEYZIcLf5AXiE6UERd6xHrjaQLKj/RnWMyrxJv/5lY0JshDPmjQIJ1T4OOPP9ZH2uAW5BukPY5HreCtQ/YUhG4ce+yxGndttrf3VBZ+YIGQKEzwg0xAEO/wZD744IOa/93OYbwHqZNm7c9sg3fE/sNjjImGjjjiCB2QjfpA5CO2G4vVAdsHuY1qYQO4QLSD20033aQvzDeA9JB+hlvFo9qwt9kcnVbE0yP7EVI3oiPPhQTCRoCCPmwWC3h5cYGEAMKU3RDwiE/GBC726D3IN0yvELCLPR7Z41Hsn/70JxX1qAfqgBduWFw2EkDYDGyPDhBEIQY9I6wBf2MxvkFk5rUryocsSEijijohxhrZeGwbEzBBrIcfZULbRl2RDQYDlxFPj1SfAwYMiIpf7/kctE462puJdNQFNsQTFzxxw7UIk47hKZx1Mu09yNcmP+war32AN0QwOnzIL4+xCt4wnHgdt7b7jXUyoM0gfe4bb7yh85NQ1NeWMH+faAIU9IkmnoLHwyNKE7m4SELUwSuLOFZ4bHChxAuCzm60QcRgIh6CzR4VYx28zYj/Rnw9wm/MmxtkgZoIvrA57G1xp7iJYyAcsljAuwsvLzhiEJrZPxHlqu4xvHa3QdqoG1IvYqZhdEqsk4J9p5rwgw1N3MCGNuAUISnIGoPwG3i3MXETFtjUmAXpnEZZUDbYzcpn7Q7rEA5y1VVXaTiI5ai3cxjvqWbX6p4HVdneGHk7Q5hHAnMAQAzjXDc7WKevKvtNxjbWjnFs7/Xp3HPP1U4fOik4H9jhS4Z1eMyaEKCgrwk1/iZKwCsAcOFD5gjEzMMzjxzVQRbwVTGj3egxABCzi2KgLNLhWQemKvtI1W3s5g4bQ9TDg4t3pDkMu929NsNAbnjrIOpTcTFRi7pZmATCpVBfiHlkBEmV5eabb5a+fftq1iWIeq9YAwd85rJlAmAEVmgrGCODgeTI6w8xH2Z+uHZZG8BYGmRIutHNk8LO3pbbA78NDgEK+uDYIpQlgXCz0BN4PDC4CDHIePwadlFnF3K7SSHs5pZbbtGBvRZGEkqj+VRou7Fjd8OHD5cpU6Zo1pBUmGHXOmx4h1BBTD2yvOAGn2oL6oi2js44PNlYkK/7ueeei6arTJU6o57//e9/1aYY4Iu6e0Oown7NSoSdrAMILzbizhGWiHVhn13bnsrak4UzzjhDn+og3bLVORF8eQwSqCkBCvqakuPvlABuiCbqR44cqSkfMVFTqiz2BMJEDx4rI9c1Bn6l+0Xe6v/ll1/KXXfdpTPvIszGvLxh5mP2Rh3wQrgJJlFCCNk333yTUrZH/VBfmxugc+fOmu0H6Tu9YjcVzmm0TdRp8uTJmnULXlh0TK2e4MClcgJghRcyBiG/PDIJod3gHoBOEkR9WBcLt0MdUB/UC2GWw4YN0zFhYb6ehdUmLHf1CFDQV48Xt66AAG6CmGn12muv1Zhji7XFpmG+CKLsuMibuMNNHxd65FaHJxoD7WyxOPIK8KTMKnsqYU8swAMTsiAcCakpt9tuO61rKng5LY4c9THBi4wvEyZMiOZiBwcTgGEXgnaeIqxsyZIlOsEa7GhtP1UasXlfMegZHmbESyOnvtk5VerpVz2sXdtTWDu38SQWGYQs7SeuBdZZ8uvYid6Pnc849+3pI+bN6Natm4YTgoVx8J77iS4nj0cClRGgoK+MDNdXi8B5552n4ShIBWdezWrtIKAbW128HRNMUPPSSy9pCj+IXFzkU0HEbs0EqKOJeXtH7Ozxxx+vGUS8rMLckTMOqAOEitULfyOP+dFHHy3nn3++skiVGzvaMLyQyMWNSdUs9AZ1D3tnxduuzWZY165dO60vMpqg/qnWedna+VyV742XnfvghE4fBkxjRm0vs1RrK+CD+u2777765AGDZO1JTirWtSrtgdsEmwAFfbDtE4rSIc4QqcpwY0zlBRdx3OBwc8NFHpMlwXNj4tVEbqoyQP2srrjRffjhh4JwG4yXSKcbHELLpk6dqh5e3OCxhFn0WtkRRoaB7M2aNdukCVsdU6FdWwfNzlXMM/H7779rFqt0asNVtaW3faOdIH0rspch65F1+qq6r7BtZ08cMCboyCOP1CeyK1asiJ7vdi0MW71Y3tQlQEGfurZNSM0weRQu8EhdhgtcKl/kWmzbDgAAIABJREFUcEODmMeFHo9lb7vtNp04afbs2co6leuO+pl3ChyQmhQD4kaMGKEsUr3uqL95IxErfN9992maPsyAjPVhFr0oO3JvL1y4UCdTs7qincOuqdRRtbp4hT06pAgXXLp0aag7Zmo4nxfr7KEdgBm81C1atJCWLVtGQ7J8PmRgdof62hMKhNv16NFDn0baeRHmTnxgILMgvhKgoPcVZ+rvzC5ieMcLog6zSCINnAm+VKVgdbZ6Ig4Xg+qOOeYYTWuYLqIW9X/qqadk22231Qm30qHeaNMmavCODCl4KoU87fiMm3xYFogUa8t4R+fsyiuv1FAKfIZ98ULnFSFl+DtVFtTF7IW6oo5Iz4lQqrvvvlu/87LB3+m8WJtH+0aH55VXXtG5JqxtpPK5b09j7ckkwgqR7WrevHnp3CRY9wATSJ0rdYAhp1LRvIM/8fgVOcch6u3Gl8oXeBMDJnhQZ8wiisew3377bUp5Mitqs3aDQzwpxA+8mmBgNk9l26NusfVEqk54tNevXx8q0esVrbAzzmF4IPv3779JHbGdd3BwRW0ibOvMhhCk1lGBWEVbRk51dMytwxO2usWjvGBjHR9kPkJKYky0hnWWMCAexw3CPtE+UE97R9tBqBFeJvKDUE6WgQSMAAU920K1CHhv8BgIi2wHu+++e/TmmE4eLVzgEUcKcXuGy1mc6nW3GxvCTTD4GTc2E4doRKlef++Jgroiu0+rVq3Us21CsVonU5I29nbC0EH/xz/+Idddd11azq1gLJB3Hx0aTDwFW1pGp3Rq0xU1R+v0oKMzfvx49c7bYqEnFf0uFdehXWDSRISmwYHDhQSCRoCCPmgWCUF5cGHDa/To0ZrpBX+bV8tuACGoRq2LaGIAg2OR6g8DRNNhweCwSy65RKvqFYdhErW1tZN1ZPB06tFHH63t7pLye5yz77zzjnbGjzvuuJT3uFYE2TzQeIctR40apTzMcZFObboyPlgPNm3btpV69ept0nlNNz5oJ5iH5IorrghVJ74i23Jd6hGgoE89m8a1RhBweEEIIEdvmzZtNnksmW4eLeOBLAhIZZnqy/Tp0zXECBPK2GNnvGNJJ9tbXSGEEXKDjDdhWlB+CNcXX3xRjj322E1CbcJUj9qWFQxMwHft2lUnE8KcCukmVCvjiI4NQivRicdYA5zrNl7EHDmV/TYV16Ot9OnTRz799FPNjsSFBIJEgII+SNYIQVnsIo483Ag1wIJ1eCEuNZ1uhFZXvCPjDTy1mEExVQUuRCBmhEXuedja7G3v6WR7O1VRd4Rb/fOf/9QOjQn9IHdu7BxGRwRP2S688MJQDer1+zLpfbqIzEW33367xtJziRD4+eef9ZqG2Hm7zhubdDrnrROMcKzmzZvrbMPgYu0nyOc823J6EKCgTw87+1ZLXLwgBBYvXqyzBKZTiE0sRFzAcUPDO1K54ZH0+++/H10Xu30qfEaaTnh0uUSeSMD2gwcP1pmDzXMZdDY4h9ERQaaiAw88UNtuup7HOH+t7rAfxoXgKRRyj5tYC7o941k+MEAGJDyBxN/pvhiD3r17y0033RR1ZlHMp3vLCEb9KeiDYYfQlAI3QEyqgzzElu0gNIX3uaBgUVRUpIIeF3pc5BF6YRf3VLvIz5o1S0WrTffuM87Q7c46c506dZK6devKd999F4o6WKaqd999V4466qhoB9Q896GohE+FNBviXIWw32233XRirYkTJ+rndO3oGF48qfjggw+kW7duuiqdPPKxTcw6f9ZOZs6cqY4tXPvxXTqziWXFz8khQEGfHO6hPSouWggvwQQj6X4BMxGAd3g8kZscIQzGJdX4PPzwwzp4Ekuq1a2mJ6SJviFDhkRD0ILekcPEWLDf119/LcitjQX1QLnTza7mcUW98QKDU089VTD7tX2uadtIhd/9+uuvOq4AnKyNpEK9aloHy36EtoFUr9OmTYty4ROMmlLl7/wiQEHvF8k02U9+fr6MGzdOJ5OKq/cK87lEX/gDj3tr9sh3k11F7VSzfXnNjIu6xZJjPSanQQy9TTwSdGG3pSaLstsLNyr8jcGCAwYM0DrHa3HPOjaaPfYgZkisj/5d3i4SPP+PCUC84zw4/PDDozG1YRDFiIvGhFKdO3dW4WqvuJ3TzkxFZcXuVSgFrj1tKHbtq6BIikuXSb6z3Xr3fUmp+6N0vZSWufj1oiWSDztjvi63Ol7mtQ6Z1R9tG+krJ0yYEH3SFtsMU/kzznOc7/ZC5i48ibWlJm3bPftw9nMTejkjZpW5cK/yV4Z712u6nssuU1oGzI1OlZt5ujRHstwrowwSpfbXaj9sBjY2Xgh/I1QN7QSLtR8/jsN9kEBNCVDQ15Rcmv5u2bJlGl6AWVJxUavJBX6r6GLv3k5wOB9i+Wurv45soDeJyJ/4tfcVWRufpr/vvvvKlClT4semitX3azPY2EQebI9xAnGxeXmBK7ZVzJf4aBtau8DnJC6Yi2HRokWh8WK++eabOila3AR8jC3W4nRzAj6rxLUnJ+yzM0olv6BQpk6aLhM+eUMKV6yUNTCqE/Wry/JEshtLHXf+luhpWuy+SZyoQzghOuZY4tnWk9hct3po1Bvn/n//+19B9h9ku0F4YY0XZ2+n2Z0VM6MviPzIdb385NXrNf6BrTdewPG7ICxgYh0dnDeYZOu9996LOj6CUEaWIb0JxEfVpDfTlK79mjVr9OIeTy/tJgDdxdwu7d73zSGXe3v0ZmA3BPeneYFiBEG51t98N7Vcs8cee8icOXNquZfk/9xuXt6b2MqVK3XshHns41PKcF6Sdt55Z1m+fLlgFl0wC/oA2a+++kr222+/hAnWuk6Ul+XlOi98rmSW5svSn76Snh07yYKSRrKtE45dWu8o0774RlZn15dcd84XSU7kPIaYKytyntvEtAuIWMTQw35r166NTxMP8F6tA2/vkyZNklatWimPGs8a7MQ8vPNYyjKct977gufeXeEjr4i81w0zSpzH3rUZ91t47oOyeJ1YSNs8e/ZsDhYOinFYjgRdJQk6ZQj8+OOP0rFjx+jFHRe4uC3lYn7r+6/Ae4c7iLsZqCc3ulSw3dZ3Xq0tIOjnzp2rv4krm2qVqvobez3z8EYh8wcGDCL7BwRr3DyXsb23rRR9ox9vKxvG+WuIHXjpP//8c73BJ6zDW8N6zZ8/X5+2JGrJch3qbCfcyjKdl3PtH3LCIYfKn+9/Qob26ib79DpG3nhzpBx/QGeZtGit1HOCP9sVrMAJvywn5tFBL05QQa1tt2/fXtDpCfM5XBNk5pnHbzHfBJ5UoINj8eE14REJrcEeN3bKNr1r4JNdm902eu12FscL6zXsJvkL6o7z2hjUr19fr4M//fSTvteETfJrxRKkEoFgnCmpRDTF6wLBghRmWHABi4+wi3jZ7aJvfQa9YJYhqDZye8fnMv3sXaDgN/p8Skoi8d8bt4ivqEdM8vfff6+Hiw+bTWvr1ye7GUWYbnq7xTE++ugjHUAJcR8/u1dQG/eEpbS0eJNXmVuHEjrTaog1LKrCHu3BbZuMBbZGlqPx48drOZI5QM6beQnlsKcF3qcGmBQHTxUStRQ5UebkkGSXLpEXHxkpszN3kv7H9NEQG5zT7foMlTbNm8gzD7/qiuRuS2515OYE6+J8TswC26Fz1q9fP508L0zncE0J2RM37zUA+0IbwYBYtCcTsr7wKBe/2dm4lkQGSWS4zhssbtd6HNNtpm03IyMyZseO7UsZagoLrREFcwsGyDZu3FgFPZZkl6sWVeJPU4QABX2KGDJR1YBnDx56XLzwspuAr8ePaPKNu3QeGz1OKS7y7gZfWqifLePAxhuRKw8cOu4ZrQvV1ZdkOo+Kr4Xb8s523HFHWbJkibJJpqjbcik3/9Zu6sbUKwSx9TfffCPwWmK9ifrN9+L3Ggj38k6js7e2t2InACDy3Y0eN3v3vwr7oqJIxy6Rto6tLWZNRriVDbSM/T4Rn02Q4liwJexlbdFsjO8QPuX1vMa7bNk4p53dMoo3yH+feVZ23aOTNNZRks6WTkBLRq60bNpYXrl3mCze4E5xt3126QbXdXehN+67+A3D3rzmYIjUrEjTGpfr2+aHTMoa1A1tAokObLH2gs/wzkPI+z7Owh03JytTSooKJDcL1/FC7ZTjXM7MynXnshtj4cR+sfs+C6lDSzc6EVCWZAnn2OPiM8aT4Xqfyu0kKY2TB60RAQr6GmFL3x/hMSxmyUvkBUyfwLp/1IlTghkcXWxluScNloiUxXUw8F+596TAOWpLIAARc+N+WApPYAIWeGwwVXrsxT8Bh67VIXCjxM28b9++cvrpp+vjdruRY/0ff/whTZs2jYr5eNkfA+DsFQ2XMtO5O35mDjpozs640bu/szIhSpzvNzvyKDyz3P61glGDH4MHzoulS5cm1fYoB15ofzk5ObLnnnvKaaedphlt8BkLvocHFOFTCVtKCt156Aa8Ll4kU2evk6aNm0kDV8YSZ+wSZ9FcV6ZGTXIl24XjTP5+vg6D1YGwOOmdhzYbii8Bi3YaXVnQMUeO8XRY/vSnP0mPHj00HhznfMQrnqHjQSyrC7j4dU3LcHzdUdzgaGd5J9pzcrKdpd3+s9Cxy5TcXEzqVSJ13ZiLUteBz3RPd1AOlCvW0ZBs++CcwrgyLH7xSXadePzwEqCgD6/tklJyPIbFYKB4CbpIpWJc9PjoLvAIsCgu3CAXnfEXzbKDm0+WuwlkZbn0Zu6mn5Hp3jPrOS9PI3n6uRfVQw8dUOpEAwSguupVLbqLb5zoQSRhMhbw8d2zFacye3e7atUqzWwBb/NFF12kQh43UeSj3m677XRTE4zxKM5G3RYJq9GQDBjM8Xxr9Jty3ICBMmzYldK3Tx/Zv3sP+WDceMcZdt6YZjMe5draPnEzR3gCZlGO77mx5ZKYqID4QTnQuRw1apTstNP/s/cmAHFe5fr4CyEZmqaFLha0Wqi2Qt2gWkt69Upa/wquxBWqVaj6E6wL6PVK6lUb18SV1I3U5UKrFqrehvZWQ2/VUGsNvbaGukH0KqRWk1pbSJdAwvL9n+d8c2a+mflmgGGGYch7WjIz33KW55zznue85z3vOVMuv/zykPcWXrd9KHGMqbmbAy07lldk/5//T46CoJ1ScKqp01ysuK0xk3RHzi45QY6hHx948CFT5dN4JxfbY9lbw3bYqclPvFhsv2U/5iToeCBp7N/0zMUD0l71qleZgwOJA9uy12Y8VVjQZI6rNUePPCY39/XhxNVPyyc/+Sm56aaboe1G3aO+A4F87EX6P7mms1O++KUOsy+J8pT5ymT/im43JPRc4bATwej7+lsRWE4EuPdIgyKwYARI+IqKitI80AVtZg2XgwCnyQ02062ZzZEvfroDS/K5OI78g3Jr77flrOoGOa8oIH8Z+pVcf/tvZct734Hl2vVyQcUzZS2V84iCs1ZEg+BOFNJF5pkCDxvhUvXHP/5xM/Ckg9Rz8LBL41u3bk1JXdhB0poLkfDxIKlrr71W3vve98pf//rXEKFP1cDu1+hyzP4IiCXjqw5+ymEylTszIddd8x25uusH8pPb/ltOKyyQyccmpKzoDHn5y14ug38elQueeCpMN+C72uX+7oSNxMFoeOnd3tBCk2S66p9+qWmmwbpPJ0Z+uNlrth7tJ9si80ItYnd3t1x//fVmosZJ5/r16007WpYNvHPwLZ4zLfff/3dw9VlY2kzCjAamFjmYhLOHwqzixFNKUE+/k/FDD0Ery6rjPZD9Y1hRyIOZRqKCp/gevTnRfOqqq65aHnyi8s/6Y72wLdmQjjbF+v/Tn/5kZBUngT/60Y+EJwi/5jWvMSZ21sTFps3nFp8P2+OMEEa9cmXGkRM2FMgrXl0nRx6/Qf7vvkPynAsuNDbpczCpPDo7I6UlT5dT198uFS+5VErPKoROZ1rWQR4cwaQvF/LBwaZZNAtMAvOMxj/HoWEW+zyFgP0OeUI3qGh73k25UXAn/ZP7LayGPjlskk5aX1QEYhBQQh8DiV5IhAC1kNRc2dMmEz275Hsc1CmbMR5MgwbkzICSzQXkP3t7pSD3mAz/6HvS3H6VXPyUPPneZ98vP7jnoHzkP66UvHUnYCAyNMEEl8uni8ZFlpLaGmptaKOczmAH1VSlYwkEP+1kgYM57bC56Yvkj/We7kCb+Vyjpkd9wXUdPx4d2y8f2/Ip+fT1N8qJhadiD+Us2l+uXPbaTfL53jvkH49gsMb+TtrgktDPoNGsJY/ny5zJcUKYZjJPzGy/oLnS4klP6pBlHbLuvBpNXiP5IGnj5IxtlKSeNsDLElAVufBY4xyF1hc9c3Dv3fLed39Q8rnhmRbyIGf33/krYzxPssZDptbBJGMOjcEBtrOs02XJqJsIXVbSi4n1R7+MSZuk2H5YZ1Sg8DOdgW3CthWmw/QOHjwoJSUlKUo7ktDPID1jQoN0ctaul4ur/0Xu+84P5O577pazNtdB2MPgCtdzph6SR47MyhlnoXPnYLUEk7sc7JWZOwHeZWDB5aBtYAsG2ggPraKRFiU+hQfxCn6nDKGXHO69SoO3HGLHvqRkPp0tVONeKAJK6BeKlD5nEKAGmral1KSkXYhxHKC5DD+okYHg/tDHr5JHqL479qD8/eAaKdgAAgfN7J9H9sHU5kQs4Z+AV1wNP8U637XDyXJUITXbJElf+tKXIgbJdKTN4+k7OjpSFjXrk9o52oFzwsbTTz/3uc8JXXHSww3Nb9IdYLUrJ9DMxuyCzJW1zuPy/Z4bZWJmg1RccJEEoHU3G54D62XbdTfKJ79zEoZ52P9jcA/MTqKN5JvhnMM6jLDSnd1Q/CRgnFzRVOnqq68219NNxOIVjunavvnd737X1Bvr85JLLpFrrrnGnCXA/ssJCCfoyzL5QJ7mcmm3T2vpdfLcF7xEOr72YSlEXbO/HlszJV975+/ktj+MSwB5gyJWcqcfkcncE8XJXyP506jRZWL0tB0nkSahZT9eFnx8KpP9m+mnU84ybq5EWJOWiooKsyrAE6F/9rOfmVUd25ZThYPV+lvFQdGTz5Knn1sCG/7fyT8fuViefGJApo7Nyv6798hzXvQK2bDmKDbQYhKPjbJ0imAn52HIrKTHp+nyZsRwbxsSH/wefiFl36jwoLLDOyFKWeQakSKwSASsEnORr+njxysCJPTU3qSbrISIeEhAQ//CTVOwpV8LunZkfL/sf+A0OfN02C3nHJY/Dx+AZvdkVzMPbV7QaCeNoty/BfBwIWLEwY8DVjYF5pmD07/+67/K73//e+mDfas9GfaJT3yicWOX7jBDzZrBjVp1zucelT+M7AcZPEG40Zmathx4yFhHdocJ3jRMataDFOaCmDx86DfytHMrZeLwI+4E0MTiBgq6dNN7TnRJlhmst6Bg8sv6wbRJMNj+SOTpTpPnR/z4xz8O5W/Dhg3LsuISKjjqiIdFPenMEtTDnBzDZkgSeWpXGbhR8sD+B2FsdVROLjoNJ8nmyIGRO6T82a+TR45No++nu/bCVUTtMfeMsM2nisQupQGkOw/cL8AzJnjq6T333COvfOUrTfvhdbtB1k4Sl1IO+66VjbZcDkyrNl54geQcnZTbB26XKZhhrccK7M/uGJanlMF0Etp3u1r4ve9dL/shD6IpujWnC+UvdAYJ2w2186nIeWwc3Fx+8sknG5w0KAKZRkA19JmugSxLnxsj77//fiNgKcTSZ3/rSuDgHlbYw3OJFtbVaLEBLNPvuvm/ZP1Tz5eTYXOdN/cYNEwwczjldGMyzcNoHNhVgiOEdDURAh8ynrGngyJwqZ5aTw6AxCgdwW+isNRB39blz3/+8xitLQkivX5Qc8+QTo2hixcHYNQflstzMIGDAxucMnRERmErf/5Tnm42SIIOSj7I/wkzjkxMPSonbzhBCtefJE962tmyNh9eMlC5fC0ddexXp8SfGnq7cpX0qZp+kS/iGuuGJJ6f7JucmJFweOvMPsPVpOUK5sRP2SDPPK9CNuTOyKOP/B22z6hW1OMJyOvamfXyyPgxmZST5JlPe5KZ05148gYpecpZsmEdJm9wWbtcKnrixr0knJinsx8vBvul9u9EaX3zm980ZWWbZXkZ+MlN015Zk8o8hMi8SS9HzsRqSFHxyTL6u9/K4Ze9UuQff5S8JzxNTj/pKDzd0EgLJjWQp+xfzJe3Y3PBlgKdShyu5JpgPniD5lwk20uXxdF9iGWgbOSKbCqxcQug/yoCi0dg6a188WnqG1mMAJdkf/rTny7PZjoa0POPohraWZJ1boTKnZ2S3m8NyOnlJ8HMIiC5j03Kw4/Dq8c6LM+bxyegzT2CT0h1/jEEB6p0Q09NaGlpaTBJd3BMdZqcKNjJAgeSVAwmdmJml48Zpx3AeO8FL3iB3HHHHeaaHfRTXS7GZxwpkokDOjgnRVonSXn5ObCVfUS+s/Pr8jgI/hpoa3Onp3AXRG/qmPyk/xa0i7Xy2GnPlDtv6cEqAwZY7KEwwda/+yttBJ/E5ze/+Y1ccMEFacUnWIy4H7Yt2HZBMu/CEDm1oYtNaqGXK0zDNSF4vATOOE1qX/JUGf37mDyOtgSrftTRo6aa7n/kiDztoma54HRoPNEGTn/SRXJ7/+eh2Qe7n14eexvixrq88847TZtfCSEV/TteORg324KdgHpJ66mnnmqUNnayb2VCvLiSuW7Khj49By39C1+0SdYdOyI/3v0jubHvZnn5G5tk3dEJyAG4p4UMWou/mtpaeeKTuQoWSV1oxz4Db0kk9TykahabateuXYdPbojnX2T7TzavXrnIOOgJqBTyPp11lExe9Z3jEwEl9MdnvSdd6uc+97ly2223pU37zIwFFS6kc8Ff0M2RzJOUw1vBlz+6RX7yqxEpqThb1kB4z0wdkcMz0AA+NCZHp/HW9BoMyHuh0Yco5zuG5C9doC8ENB7ARJvz1STgWZZaDKS//OUvTbnSWTZ4ngahR12Z6sJyTM4p8oY31MtJmKTtuek62fmfP4B/bHg+WYv9EkfXyYtfdK6cfdHLYXLzDzl5Bra2znqZRp0bYyfGEZzI8Ws6WwAx4YSHJ4ymE5+FtMGFPMNDpUjolyuv1JGuWYOdjGsC0vjed8vh3+6XBx7MwepaLrTyqK0j98vvHjwsV37izcJtumudw6i79SD901I4C3eFa/HuMgTKC5LHn/zkJ1lTl6mEhe3BTtjpzYyE1a7GpsushOZUs/BK85Szy+S0M/LlwK/3yn2T66XwZO6oOQl/2CUD+T8LLzesG5NHU2huhnXNK6eNz3ysiiIutw6xhRabvvPW5uM5rFphk20qgj2szcZFE0uaJXonQqlIR+NQBJJBQAl9Mqgdx+9QyNPzA20H0xUMjQ9yeRIzw8swns+BoE+MPyDf+vK3ZQJE/sJnlsGdHTZLbThZik47WY4c/p08p/J8KS55AU6ifBYGAJD8IKGzxC5debbx0iMMN0amU4ud7jIwfuafA7kdqOy+AG6w5IDqZ/aTknxhExt8btCLIcysAhiwscyOgf6T2z8ERyiPy4evaJHznrlR/vVZ5XLqUwrkde+7Rc45E67jHsyTt73qEjm1+AI5MuXxxrNMEzma23CTqfUMki7ykxKMEQl9jnNFYblCAFpvTr6n1pwuz33x6+QdDdXysbe9ReDBG1k4Sd55+Vvl9Vdsk4bqc+UIvNv8feyAvPnVVfK0572VSzXY7Jx+D0sWC8o3boo955xzlgueFZcO+zi19jwVfGxsLNTn0zEBhNEkyg/f8zCt+v9qXiH5kD0vevkbZD1c2czBBfE656gcmzoqNAfsuPrL8vs//MHgRbM6G45OHpFvf7tLvvKVr8g9v75bvt75NfnMZ7bLL34xiLznyrGjqbNxt5MemiBSLnIlwzsRWnGVqRk6bhBQQn/cVHVqCkr7RZL5dBL6yJy6upgcYyg5B3vFtSBwT5ALXvx6eWvNC2QSGjw54Sz5/u6r5azTpuTAfZPyqc5rpOhJRZIL42trmrJcBJs2yyRL2S7gvaSd5JT4cfA6cOCAqZ50DOxuxNSnUSzhOHp4NsnBfgnJWS9ve38bfGR/W15w/rkyOvZHObb+ZLn6Oz+WNzU9W05yNsgJT8iTHZ/5qDz2OLzg4G2zurNMZJ75JunhZJc42cmQKc8KDMwfvRbt3bt3+SaemJg5IOr0PJS7tlA+/bUvyJtrSmBCcbFc9oqXyPNrrpCPfuZ9ko/Nz+ux6fnJT3ymfORT9TL5+MkyFUAfP+aaDqUbTrZrbm7mpuHlkhnpLlMy8ds2TE9Xf/zjH80E3mtjn0yc8d7BLhkoXngi7DEpesJZko8TYsvLnooJPFZo5h6VtWDu1Mxzs34+Nuq6ygQvdcF+mvx18tKaF2FF4aichY3pV1zxLuNL/67BX7mTETNpWHrgeGJlHz0D8YRdDYrASkEgNa18pZRG85F2BEjq+EdhRuKajmBEtSFjsJ003/G3js7uYEcL8n7j/3ltf13b2nOf3ygHDjX6Z8fYU0caXET+8n9tvqtWe20HfmppSeye//znhzTb88Wxku/byZC1r6cp0a9+9StTvnQGVyjB8MJUrR24nyjVNZfJHS+9DNdgSgXTKziqxHeY3+BsgrVzsJs/s1CeAhIwjQ3UXIjP4UZKml3hJGGuJ7ktao4L9cFfyZfC1rmduN17772w9S83E0gSDts2kk8hvW+SqL31rW81G3nt6ou3TKlOnW4o0Xnd2uT3E4ul6b2fwl84JWMZh/nbVN6M5EM7vP7UU2TNDDTzc/DzLY/hLnzUpjkQA07KrbeitE1c01yOZKOPLm99fT0039+Wl770paEVu8XGTa9G7iQdkzrPyzxfgKY0eThgjHulZmFH/w+swJ75tHPlpDmY+qANnAAyPwW3xIGZXPlnoECesuEIvJo9wWyWz8dG68cxfV8HBwizEBqngexLL7sAAAAgAElEQVQ7gVNkXdHT0AcflTM2rJWCucflsHO6nOI85JrhLTbz3vyibVAW2tVJuvvcsmWLeSLbFThLgEVfXUEIqIZ+BVVGNmSFAu2KK64Q+ki2giwb8p2uPHq1eDfffLNceOGFRrtHAb/SzS4Wi0ljY6P84Ac/MANa9MC/2LiW/nyU6OLhUfBwkYtB3pgKMQF6vMByO+k7n07FJM7m25bf1n8vDjt73eteF9LOZx6f+Agzb3RJSNtfbv70hoznG2QftMxsjF5Lreoaam5Rd9j0mK7AOvROZn74wx9KQ0ODkjQA/uQnP9nY0dtDybzyLtn6MHFAI59nDv9zsJkVhpW5IOX4uOMXd8qmSy42xJnPsT3SL4JZ3aE7YkzWOUnnpJ59e13gBCzkuSuIZoKA6znU9kMGMF4mlUsSnoLOz7zQht7m66GHHhLuKcuGCXyydaXvZRcCSuizq74ynlsKs7e97W2G2FnhlvFMZSgDXvJDoX7LLbeENtIRJ6vZzlD2Up7s61//ernrrrsydnpmuECuhp3Ci39mCyyI/BpsgJvJeQxaXgz8uORw8DdPkNS750gap0leNWGSKFliw09quUmMX/va15rY0ra/IMm8Rr9mCQlXWmiXbNtxxsk8M8o5GA8Pw2fuLEg8TK7otnTG1GXqg61HGzPJ649+9CN597vfHSL5qU81e2Kkm2KaWdpD5ZJpI652nmWmrxn0U3TJNVw1hbnkPw7eL7+997cyduBvsH2/F4fEzslp2LBt9z6F2iZmdXk4y4DecPJz4c4WkdDscwbPczWO5xasgSafaeQhatMHcW2aogLpzIH8pyKwvXByQ5evVNg84xnPCE0+ottSKtLTOBSBxSCQmla+mBT12axGgAKWQp7CiwdMJSPgsxoAT+YtMeIlfiepozcYK9hXm4A/8cQTzSa522+/fQWQHSu66MLTVb/97f5/yCNzD8rEw+PmzAIO6JZM8Gl3GpDa1sf2T48o3AjNzXEMvLaS6575I+FpamqS//qv/1oxE3OeLmA2QOQ8AlMbkUMP3S+zj83JYZwzAJqW2orzxEY8LCbcV1BcXGx899traUs4SyL+2Mc+Jrt37zYENhXtegaHilHb7sC15M8H9kAR8iPpvu47Rju/+bWvN64mTQi2U36F80w4OJuWhw9PyeQj/wThn5YHH35IPvmJT8t9f+dBh7Py4D8fltljkzJ79HGs1OXI5PQM5AAOIsRkINeQ/aUFlp2af+JAj1bveMc7zEqXdxxYWgr6tiKwNASU0C8Nv+PybWqe3/jGN0pnZ6cRZlbQ26XH4wkUO8DR3ObMM88U+uknEaDgtzboqwUPlvXSSy81NrUMtr553f6lvayGlXMZni7rSNJ5YU4eBol/xzv/XZ7+nBJ5y+veIDNwY2doAZ41H3w2BZp5v/J997vfhWvNN5h6t38rve6ZP2roOUnjCaHMd6ZX3HCuLWbGj0NL+wT5y19ul3e/6zty9pP/Ia+sfTMIXPq83LDt2rbMunzVq15lqnmlr7T4tcVUX2M7YZ/n+RrEw7Zr29/ZbhYb6DM+2DmxkfWlUnLWU9AWL5T3vO995gwJo8lHtBhZTLs0dQGmcut//7fkrDtZhu+5S0b+OGw05Weffbb86u675aF/PiQ/uX1QTinYID+8oVf+9Kc/yU9/drusx8Tsum9dY1xYpiIYUx6Y3YyMjMjll18ecqNp+30q0tA4FIFkEYAbV0gzDYrAAhGwAx+FGrVYtCMkKeB1En2S+9VmahIPGm/X4Qbhq666yhC75QocRJaz+3KJm/XLTZT0fEH7WrYD76moyQzwS8WL2rk5+KjO5Vr+dJ7McM0d2HBrLO1q17g7MoPJuEvxnAosNbDN80RRTuQeffRRc2JkNgTbZvi5bds22bdvn9xwww2GPB3DRIgnHWciwHeWrD2WJ0dgXbM+B2fI0m7qGDydgOevnZmSgPEpntrAOmS52a5Zdp5EOj4+bmQaAzHK1OSM+bL5S22pFx6bbSunnXaavPzlLzeuPC1edoPoYvu8eR59lqZV/HNyA3KM54thxr0WB5BNzxyDht3d+2I3xc/MTcp6eEBycKDc49jkLnBpuQ7v8NCpP/zlr1JxbqmxnXdgkjNnTovFmg5W7vgN6wGG0K9ft3SzLeIxNTVl3GPSB/1y9RWme/7558vWrVtl8+bNC6/ARTw5MDAgbW1tRh4stk4XkYw+mkYEVEOfRnBXY9Ts6BzgKMwp5GlT7R10MjX4ZQprlp2DBb3+0K3aag4k7uvW4TCnF7/YaOlJgniNGGQsUB2BHW/OHAZreEORPJ4+ioDlfKPpQ1v1Bj6eCg0Gy8zyX3311VJXV2eW3rMxvOUtbzEaevpeZ9/OaDmAJxnYOhwO5NrMr0WeYDIBYOnuMh3BklPKreuuu87sgeHEzBKa453Y2NVXmtz09/ebCbydxPPewvCx8oEmcLBrh907jODxPQ8eqNaZ/pjHA6GwX2L62JTkwx89+6435KzLw74YrKSsWS9rOBlAc3h4/CF56B8PyrOf9QwQebyPuKaRP04MWJ+03DmGjbF5MM9Za0+OXkIjIqlmv+/u7pYvfOELme0rSyiHvrp6EVBCv3rrNq0lo8AkqeOyIwU7w3Jqi9NauEVEzokNScAHP/hBs7dgNQc7cfvMZz4jX/3qV81BSgx2GXphg/tSETIMPjISTjIxsTBnRkKr63AQ52mz5jmSB8/jKeKFLDPb+9e//nWhjfHylH2p2LnvM982v2eddZZxX8nVpUwHs5LCuoQ4OULGxp2xa2DmgclZHnfGpiGwTbMu+cnViiuvvDKiLjM6WU1DeRcbJeUb2wq9d3Gyd99994U83vD6Qtp9uMvxW47Rah+bhjYd71MXwKsOVtjW5uWaDdDHQOq93ZT9mnMAty5w2Bz6OBUJxWcUyZPPfKKxn5/lSeHQzFM6cE8NnzXyisQeNvvGzCcFgcobTn5pcno8jncpgFCjSCMCSujTCO5qjNpqKSjISWTpopFeIWxYiIDPZlxYfosBBwyaoXCV4j3vec+CBrdsLzvr91nPepa88IUvxEmMnwnZzqfr0Bl/vCJZOfPEQZzK+Bz4pM4FMXBpAklgNIOP/u2fQvRVW++cvFqSR/J3ySWXmPMYsmlwt5MR4sZ8vw+2y9dff73vYXHLSWhpJMX/6ZAEelgocfEDJH8tyJs1vYiul6X8ZtlJWPnJ/UBnn322WWWzq4y8br8vJZ3V8u7nPvc5szmWuLDtGMKMz/kCCbkb3An29DEQbDB302dwiyeAs67NhJz1jj4c7rfuO2thRD/DlRuZRJ3gXIIZmIdhZW4aWnuo9YP1NGfidVcOXGLPGHPzsArAA+qSCCyjVVggY/KdnhvMpO90ng7L2UjEch9/B5UIZnc3Ji1QKPCQO17lFWbXvBPxnjdjfFKDIpAcAkrok8PtuH3LkgAKY5I4Hqzx4Q9/2NifMiwnAVjuSmCZ7Z8dyGhuQRd3p8PV2moPlvywnKx3rtAcPnx4QYN66rAhOfCQCO9PfDdWsxh4edw77XD5Z0LwOd53LWsXnyMvAaTN/LXXXmtwWAipWXxq6X2DebZ/9EdP70z02sFg27glM8vVp1lnweqDMYZbj4bdM6TQ7SDLZ8kov9OE5Etf+pJ84AMfiACdRC4b6zaiECn88aY3vcnsMeAGWSv/7eps4mTC/dV0Q/OTk4LgW+EvvOv5c+8bUo7r7rESJLx0Qcu2YmbwxjEto3D18/weTs/EgOdirrlRz/sv32Nb4Vh3GO5pJ2A3Tztzw8ipQXC/heJxJyW2DPZu7NWYF0MxROU9dF2/KALzI6CEfn6M9AkPAhTkdqCjsLvsssuMqck3vvENI/hWs0aLZbckiN+HhoaMXSk11bzOa6s5eIkdPaRw2fm973WP+uRKRbKDZjZhZtv///t//0/e/OY3ywUXXGCyn83tnmX65Cc/Kf8NLyJ/+9vfIqrDtvlsqqP58sp2yvqy7flDH/qQOSDola985XyvHpf3bRtgH+eeEco8fuf11S7zLKHnpI9nr3zxC5+DX/4NOAQrqNyJ4t80I3LpO4/Mcs+/MPSe4ybHj2jVfIy2Xgn9cdnJUlRoJfQpAvJ4icYSWpaXQo6B9tSf+tSnDBlYzQLekjYSAdqP86Cl73//+yFPB6u57Kxnlt9uhGNZ/+M//sP4YKfvbtqorubye4nt//7v/8rPfvYzs/TOwPaQzWVnny4tLZXPfvaz8qIXvSi0J8YUbhUGS+RZ7r/85S/yve99z9jPa/BHwE7UuUJXU1NjJrG//OUvTZtfzR7NWD5bxv3798s6yLiW5nfgGlYJKAvNakI4xKpzvJp6Pud9wmt7g+/BW7Fx+NeJXlUE/BBQQu+Hil6bFwESO2s3zdPyeFR6c3NziNxYgpPNRIcgePNviRsHsc9//vPGzIak3jvgzQtcFj/AcrLsxIHfi4qKDBGqr68P+Xm2g2C217ute1seq6njprhXvOIVxkSDK1N2gmvbQDZWr60r+htn6OnpMZ8s02qoR2+dsDy2XDQTpNyiyeC5555rHltt5fWWPZnvxMp6uuGEnjL/a1/7mtx7770RqzleXJNJZyW84617frcKHJ4EzX1iN954IxoILeGBCf+lm1zq443dPGzkeTbG3Cw08XTHCWpOg3lu1DWbdbEihPvuxl2Xtrvp4d1UHV+9EkDUPGQUASX0GYU/+xK3BIaCnYG/KfhIcKih//jHP559hYqTY++yMkmsJbLUznJQ27NnTwQGcaJZVZdZ3yT1VjPX2NgolZWVxnWjxYi4MVhNaDYCEO25yRIWaijpD5rkl+3etv9sLKPNM8vAuqK7RpqRNTU1mYNzGGy5s7l83ryznHaV6d///d/NLW4Ktn17tZQzleWgrLdynzjxVGQqNHjKMLHkH1fost3szhJ4S+ZtW/nhD38oV1xxhVRU4tBA8m/Y5K+h/b4h7TP4mDHtxxxwS1/4ZgOuS9qPGVmI/kVtP4j7LMj+LDbz0ssPIjLmOSak69S7VDYEjWvFI6CEfsVX0crOoCUD/KT5CYk9SQGD3Si7sksQP3ccpDhY0bTIDmgPPPCAvO51rzM+q7PlIKH4JVzaHUv2uDl0cHBQvvOd70QM/MQsW4Nt1zb/HLBvuukm+e1vfyt9fX2rytTAaibZ1k866SRzyBTNKnjAEoNXc5mt9WnzbVeY2F7/8z//09QpA+vbEv1sL2M682/3Hrz97W83h+ixrRBTynp7L53ppzNuO4n39n2aFJaVlRlzNPJ3gYcdEnTydZzAAR6OvUPU2qP9GDVGcKOuS+dxpgImQ3Nwu7oGhN2ZwRNsZ/TkhAO0juI0Ldria1AEUoWAEvpUIXmcxmMHQgr18vJyY49aXV1tTpBdDXbV1E7xj8KexIZl42ZQegVZzfajC2nOdgCk5wtqdLlR9J577gn5fM5mQk8CT4LCP5IV2s1zNeLgwYPmFNHVRHJZ12zLPDSMZeXm0H/5l3+Riy++OOu1rtHtmG2SJ33S7SrbanFxsSHzrE/2c9a7hvgIsM9budfR0SGPP/64cWXJ61aTH//tlX3HmpDatvCrX/1KRkdHzUoE28gayAIeiGWU72gvb61/o2zIO1FOCayHu8wT5P0f/AQORMNJ1XSraUxseCYGyHyuI5tfXisnrQvI+jUByV9biL52stz7++EglqRhSsVWduvIjtxpK8qOelqxuaTws5psDoavetWrZMeOHcYMI1rLuWILMU/GWC4OYjS3qKioMOY2LPdqI3XzwBBz2w7sJL20p+fKzKZNmwxRsiQp5qUsucAy2Tr+zW9+Y85c4HkDJL2rUZNr2zLLxwOESNJOha/tt73tbauqnXOF7cwzzzTlO+ecc0IrSra+rdlFljTTZc+mV6ZzhZIrHdwwSvJLOZnNk3jbr1kGlun222+XO++806xamXIbFT3lPibAOPfi2u9eKw8/+jeYH/E8jlzp+vo35Lu7bpGjeGCai5M8KI0MyzkmfTf3yuFH/yoXPf8Z8pFPf1oeO/aIVJ7P8yuWvQo1wVWMgBL6VVy5y1E0CjqjvQDh5WDI79Rkkgg88YlPNBockgWr4V7JJJh546BktXT2N3GkmQ01szz2m2X1DmzLgfNKTMPiQCxY98985jON60NqdjnQE0eaK0XjutLKYok788vv1sSKv6mZf/GLX2w2inIFynp2WmllWEp+bL+1fZlxsW65EfAPf/iD8U9vsbFYLSW95XyXcod1xvz/9a9/lec85zmyfft2eclLXhLa9OhX/uXMYzalRawsXvx88pOfbMg8TVNojsZr3v7E3ys1WDlv80wNPTe9c7WRWvlbb73VHDZmxyweXocdrzLH8+poS79mg+RtOF2a3vce+eDmjTJ39G/S3PRx+cv+UZjjMICto/hOzgnirIFW/oRZeV5FqZz/ojpZD7v7dWTzOTi/BR9ooeaTR2dpUASSRWDl9rZkS6TvZRwBCsqPfvSjhtQ/73nPM2YKVrBb4ZjxTPpkIFrA202xHPz5nbbi1EqxDHYS4xPNcX2JGnri9OpXv1puu+220ABPbInZSg3R7ZK/qcWlRxuescDyMNhl+ZVajlTky2LBtk6iRoLz2te+1kRt+0gq0lmuOFhn1Lhu3LhRuBH2Xe9613IlverTYVt52tOeJr/73e/kf/7nf4w7VzsxpMxfye3FO/lgnjn546FZu3btMmWh2RmfseWI0KYHRZmZvIC+5+WtlUtqXirrHr1bLnppixx9/FGjpeemV+53PQpmfxS/TsSEwN0HC8pv4qBNPs28QMW441ZNb1Z9n0lnAZXQpxPd4zRumuBQQNI3Pb0DVFVVyb59+wwaK53UMX9Wq3zkyBGTd640fPe73zWnJBoB7vk7TqvYt9h2orN582ZD6rlSw08Ganytzb3vyyvgIvNPAsIB/PrrrzcTUm6cpGtS7woTy2JJ7wrIdsqzwD5AHFjmU045RX784x+bPvHSl75UHnvssaxapWBZOCnhpPxjH/tYzGmwKQfvOI3wvPPOM6Z2XNGhZtv29ZVM6FlV7Ot21Y3mNSTyNK3jHgs7VrGvW/JPLXoogJAbzzY5a6FXz5VPff5L8sKN58mxvw7KRa/8IPajHDUcfRaa/dzcGclz1mKD7Anu64bMk/HjL4dOMBmU0AeB0I8kEVBCnyRw+lp8BCyxozDnSaIk9iQD9ICzkomQ1yacpyGWlpYac4uuri5jR8lAwW4JT3wEjs87dqLD0r/sZS8zy9as+3e+851mI6LFd6WhYwdu5o+bQqnBveqqq4z5EDeI8rrNO5+17XullSOV+bGaSZb15JNPNnV5NswPaFZF4pMt4ROf+IQ50ZcbOLlpm8HW4UpfNcoWjJlPYsk9CVwJIb50jvDII4+saAWOzTcJfW9vrzlk7Ne//rU861nPCo1T3vEqF+UioTfbpknI8ZeHTbA52Cg7l5cv604+RW64pUvOPn2d/OXnP5A3/Ns35QheyM2Zgg5/GpSfm2UD7vswuTH6e2NyQy09f7qGOu4P/VcRWDwCSugXj5m+kQABCnP+WRJEbf1b3vIWo/n41re+Zb4fOnQoQuNpiaD3M0ESSd/yCmebFgcifreaJNpQkgTwwJlrrrlGPvOZz5iNkAyW+JHssHz2d9IZWmUvWhJIXPj9BS94gdF28XwC+m6njS1Nl4i1xZ0QWOztZ7pg8bYvmz41ifY78/fc5z5X/vznP5uTMJ///OeH6tiWyX6mK48rIV7bh1mH1nMJ2/vOnTvNBI3mR+wbnPzYPkUMvVguRzmi65N5sO3r73//u1xyySVmUkYNPffAMNgJuZVRy5HP1ZyG7Q9sH8SWKzqc8HFF5Nvf/rb86U9/iiDHfjLTK5dTiRXjtelFy36bDmUT80lnB+z3NB9im7ftxCvTzDvGLCYccmhPQ6IPdn9M1shJpz5H7rjtOlkzNy63dX5CvvyDW+WIg/FjZh1Mb2Apn3MUz/Id12aexjhz05SHU/BfD20+2rAGRSBZBJTQJ4ucvrdgBChU6fWG5I5L9tSAcKD1+qm3pDpdwt1mNlH83Nz17Gc/W376058ad2X0s8yBikTBbyBaMADH6YPE7LTTTjObK3maLG1Sv/KVrwhNmRgsIeNz6dxs6q1zpmUHen5ywGZ+vvjFL5r80VactvNPeMITTJ2ne5KRDU2DdUOcGN761reaU0Kp8eaEh56NLL6WBC03ZrZ/2j7K1QT6Dj/rrLMMueRJ1rbOswHv1ZDHr3/966av06b+5ptvlkcffdS0IdvnWcboekt1uZmeNZWzads02eepZOKZEv/2b/9mNPQLCvBmY0KQ2JPKrwEHJw2fgQ/63GP5sqHy5TJ4y2ckf83D8uG3vE1+Mfgn6Ofp8WYSyvjHXe0+betpbYPrbLe5cHVJN5fK5xdUC/pQHASU0McBRi+nDgE7mNJshQKUAv4DH/iAObyGGhwKXVeoueYsqUs5MiamYQd97ye9X/DkT26AvPLKK2VgYMC47PMGJfXJ1wq1plu3bpX7779feOoiyTLtbCcnJ0OE2Vs3yafk/ybjtqST5NT+5oSSk40zzjjD2MxTW0cNtF194XN2Qucf8/Fx1ZobsbTsq6UwReNqBvcY8DwGmrLQHaSXrC0HMuyT/GP+uLLGfTpPetKTTB/mRIP7H7yra9aueznydjynQZxJoC+77DLjWYgKHK7o0PMVFTq2HbHe0lUnbIuMm2nwu5XflEXDw8PG9TDlEPP3oQ99KInqspp096xX7nWlOfzcmhxZP/24lL3ivfKFD10KbzaPyStq3ySjBx+FLT1c3q7hai8N7+kqB+Y2s+slJ29CZqeRT5jf5PJgKg2KQJIIaOtJEjh9beEIWPJsB2BuNOXyZhOOmKfnCS5zkuxZ4W7J18JTWNyTjJ/EbmJiQriBk+4IueGVebj88stD2kgv6bfansWldHw/7R1IWbfE+I477pCf//znxq6em42pDae2jPiyfaQjeNuTJX/c6EkiTzLKCRwJoN0nwTzYd/hptdPpyFu2xGknXHayQ7OE973vfcZ8jv2opKTEaO9J2NJVj9FYMU+clJHI0x0lD327+uqrjVceaudt/7V59k5MouPS36lDwOLMPs92wokVN8vSRp31w8kg24i9n672wnxQzvOTe3hI5L/85S8bGcSVgxtvvFHy8/OTKnhobyztZDwbZWfyZkDaT5QcmMhf8fFOefmFZbL+kd/Iqy9tkH/MYC/ObIDSBcyfG2EfBaEXed75lfL73/4R+ZyWabs/Nqlc6UvHOwJK6I/3FrAM5bcDK4mR/WOy1NLTpeVHPvIRs6GKBO+b3/ymyRGFPcmUJYUU+pZk2QHAS7rsfXvNvm8HDhsXPynQubmPhO6pT32q/OMf/zAaG2rzbF79YFFC4IdK/GvEkvXNfRQWO/7mygxNmmjbTB/nrAduROWyvK0/xupXz7weXcfedmDrmc9xMOdv2za4ItDS0mI0c0yP2vn77rvPmI54gyWvERf1h0HA2z8sTj/4wQ/kwQcfNPeILV3V7t27N6L+vPXCeKL7a/Rvbzvg89565LP8o9kPiTs3rnNlhasEXGljWyORjM6vuaBh2RCwdcBP+qsnqeeKLL3hfP7zn5fvf//7ZgIY3d9Y16xD1jHlhbfteL9b+WAVQYzHtiMWkqs2/M1VYR52yDbJtNnnKYMWK88Nb4dHmrWIk/bytH+fFnd/1Yl0Spmbj3vUtItMgtQ72DB7w89vhO/5p8qhO2+TK9/xMXlYzkIcKBs2wM7IqdDoT8kJzhp5LA8Tg2MbZM1a2thrUASSQ0AJfXK46VuLRMAK7ehPnkpJrfhDDz1kzDDoHpJeNWjLzgNgHn744dBgziQpvL2C2w78Votqf3vToXaG8V500UVGS8xBnzbTJPJf+MIXzIFRdvMf04jOY/SAs8iiH9ePR2PpJWok0gcOHDCaMwaSwac85SmmPVDraokb79n37Kd34Lb3eY/X7WSO16kN5EZsEgpu2GN+qI2ntpCu6Szp4LPRefX+5v3jNUTjYrGyePA+++x1111nJugf/vCH5TWveY0xW9u0aZO5bjfQeuvGi6clZ5aw2brkp91rQ1nwyU9+Up7+9KfLhg0bjLygHTTbEPe7rF8P8wXkJfrP5pfXNaQfgWj8bZ+ljOYEbGxszJi6sM6++tWvGu9nJPd2lZZthH8k3HzXynZ+Mm5+escBXvPKBa4akcTThp9ynis3XBFmn6cCx2569baLBbUN03zg1QY03hjCB+3pHZlCviB7ZpE/0HRY3eCPq43YKOwUyy0/7Zennv0E6b2uW27AOMSTYxnVjIOxDAzsF/fcjRWmcgogXFdKlv4WunpTyEFH8CwYrd6CaslWLgJWOFNQc2CnsL/77rvlhhtuMIKZmnuSvbPPPtuQcprpcECnZpdmEpwUjI+Pyz//+U/jKo2ux2iv+cc//tFoDmkbTfL49re/XS688EJDCBjswGORWZBQX0EwegeyFZStuFmhqGGeacfKQdX+5if/qKEnAacZDl2F8jnaRBcVFRmNGuuebYCTMk7CuOGWWllq3ln/9GzCTZBsOxzUWe9sG7TlraurM6sybC/eyZ/F0F6Lm3m9kRAB1l80Kac2luZM7MfccH7mmWeafkybak6muFmVJg+8xj/2XU6+WaesT2pTf/GLXxh5wIkCJ+A8E4DnG9DEhnLBS/yYwdVUj2ybxDTb5FJ0Q4kug1dusc9zQk83wVS6kNRTtvOP7cVOxLnKx77MSRvbCOud2v3Dhw+bfs82QjnANsSJO72UcVLJPm/PD4nO12LbisuUaDM/Kcdy1ss6mM1ws2ve3IR84I2bpe6zN8mmc/KNZt5sk53Fhlfy+pxJGf7tL6T6X14mj06fKL2//LW88vxzcHos9hpA1587+5j8c+0ZcgqU83PrZmSteT8ysH/RUxj3ItFMNB2BfdOfdx8AACAASURBVLWtrc0oU7K9zaUDn2yIUwl9NtTSKs+jtXOMHpwpxKid4ymEFNgU/Fy25W/aXXPQf/zxx41pRWFhoRHcNJshYSdp4GEntO0lcaCQ58BiJw1WYHkHl8UK+ExXizfvmc7LQtNnHRNnP7Ji659xsa6oUeOkjAM2yd3vf/97Q/ZY56x/2m6z3nmiKev+9NNPNys7rHvW+7nnnmv+GKLTZduy+eB9HcAWWoP+z1kyb7G0fc1O1lhXth+zD3PiRsLPSRvvsS+TxLH/UrPPCRvrkoSM/ZkrN3QtyImgN27bB2x7WqwZhX9pVsZVvz6yMnK2uFzYtuGVV/zulfe2rJyEcw8EV11+85vfmNU0rsyQqNs/TsrtHyf1nNyxbZD8cz9UKTZt23bA9udtk0zH9nX7udDShAg9/MpPw5/8WrihnIEP+VwQ+ldUXSiXbf++NLzkOaD4tJGnph0rB5Bj2LGFza4zcssN3dLwlg9K752/ktrnngcF/4x8/Ws75IfXfEM+eN1/y6sqn4E5AEx6YJITHZTQRyOiv/0QiJ0K+j2l1xSBNCJgB2n7aQU/hTK1MtTOWjvnRNoeZtErpL3CnPdI4HjNLuXaInmFfBqLqVEH64BAWELtnWR5yRi/k4xzbwWf4eZVvmPbBuOIHpBtfdt73vqPjtvmwS8eXtOwOARs37J14u1jvEeSTtOH6Dry9mfbFmzKtq5tvfO69xmbljfNxeVan14uBLx1xe+sR6+85zW2E07caJbj7et+dW7bjW0jthxWrvC3/U6FjzWzsc/b/CRVfpB48z5I+rXd18mde26TO3/9f/Lb914h+xteLe+54u1yxmln4D72eoCgOzDTcWbXyivfcKls/evfJXfmqKzJo9HNGnlf6/vkO1/skKlZTDQwB1CTm6RqRF8KIqCEXpvCikDAasftpxW49rfNZPRvXo8nnKOv87e9Fn1vRYBwHGQiGvfoeo+GgM9bMj5f3UXH7f0dfS9Ru4nOg/5eGALRGPO33zVvbN7+7J102Wei4/B7ZmG506cyhYCfzPbr9379ldf86twbp997LKu9bvfJ2N/RbXKhuJhDpOjVxtjRM8zJ5U0NcvlljTic6jqZWosNsnM5so43ob2fxQbaWeOGkmWg1j5f2j74HzKdcwImGzCl4mOIY/06nB6bZ9i8G7+Pht4kp0ERmAcB3YExD0B6WxFQBBQBRUARUAQUAWMbj2CIEzzV5GBjbE4uzMBkLUxwXJLOW8dm4IoXZD7HPENtPk1voNmX9ULlvMvz4YefZqD4TWt6rijEGtso5orAwhFQQr9wrPRJRUARUAQUAUVAETgeEaCCnnbx0NTjX/ygD/t8mZmdxgZXGMvAaw39yztzjqxbCy08zGjWkqTjUUPqwdyp5Qd1Nxp6mcU9aONJ8GdxP5fM3qwAaFAEkkNATW6Sw03fUgQUAUVAEVAEFIHjBgHaxFCHbk9/gvYdm1/zwMhnoBrNhdvKtWsmwdtxeNQctfEIML3B6Svg6dDiYxOsA7t7HC8VVNG7+v4j8M4zPTkF3/Rk/q7lzWIg9e5Lse8xbeNgx1ygO0xMImgChwkDP+ksnx8aVhcCqqFfXfWppVEEFAFFQBFQBBSBVCNAsk1SDBt62tEbuxt85OTC3IbUeU0eNO4b8G2tuWdM4XFN1sD0xnzk4fG1Mn0UpBpzglkcRvWEk8+Qu/7+oLyn5vny/RtvgUd7vJtEIDk3Nv6g8ceOTRlb/kl8n5uZ5Vf85mFYCDmPyTF63lEynwTKK/8V1dCv/DrSHCoCioAioAgoAopAliNALfzaAPzTUxkP7f74Iw+jRHDhie9O7hqQ7eQKOAczH5L50CZimAGtz8UBWHknyBHcOjHX2AuByOdi0y419CZZDasMAdXQr7IK1eIoAoqAIqAIKAKKwMpDIAd28nPG7IUaep5wu8acMEuzmTm411xH4p1EMCsHQRsa+vH/RmennJTLE9DXyXnPukTuHrzLPXhxmvb7TCC5dJLImr6yjAiohn4ZwdakFAFFQBFQBBQBReD4RICbYbn5laR6zRqY10AjT5Kfg820eWb37AyASc7shohyYsDD2J719DIZ7L9eum69Sy6/cotcgIOvjuWsxR8emp6BCZD601mNLVAJ/WqsVS2TIqAIKAKKQFYjQI1rW1ub8cPOg5Q0rBIEjK07zV5oj2/tXujWkoQef3CF6Q3W5z5PzPZrB65m3o0z5GMfdvsnBRAPLucXng6bfrMV13W3qaY2q6QhxRZDCX0sJnpFEVAEFAFFQBHIKAIf/ehHzemp9qRUP28mGc2gJr5EBLzMmoScfwyRjJsknXV/xRVXyHnnnRdxWnL8DHBSQPeaNtDXDn300M6e1F5ZfXzssveOEvrsrTvNuSKgCCgCisAqRGB2dlauuuoqQ+T8TlpdhUU+fooUVNC7BbYrL6TblmRbYh+GhJM6S+xDWvhEiGHz6wz+jKMduNSho01+zxNslM3BibYaViUCSuhXZbVqoRQBRUARUASyFQG7yZFEjqTe/s7W8mi+gwiEyDy+4PRYq5X36tLDZjjuO7b+LYbRv+Nhy9NnrVbeJfRzIPUg9MZGXzX08XDL5utK6LO59jTvioAioAgoAqsOAauVz8vTIXpVVW6IR/NLeGNqInodM5mLsM7x/iBSrv09fc/n41CrY/g5J+tkHeYOMzDfyhMceqUnSq2qJuUtTOTui1VbTC2YIqAIKAKKgCKgCCgCqwSBmFlANJ3zmO6EnlXvNquk9n2LEd0CfB/Si4qAIqAIKAKKgCKgCCgCKxGBGHaPTAYJvTkWlqY2vMTvdI0Za6fvPqD/ZjMCSuizufY074qAIqAIKAKKgCJw/CDgHjOL8oZt8GNt4i2ZJyy01z8WxIeEHhb1xnWmhtWGgBL61VajWh5FQBFQBBQBRUARWKUIRJJxx2jdw4GbZh3jzcY1r3FyuCXWPcxqlQKixQoioDtutCkoAoqAIqAIKAKKgCKQVQi4RN66s6Qmfg4nztKBTU7ujDizudj/mgsvSdP4WyMzsLThAbHGSw5Uubo3Nqsqe0GZVUK/IJj0IUVAEVAEFAFFQBFQBDKNgNXIezXzjszOTRuSnou/OecYPvPxGxQvB9p6J8+Qefe6uq3MdA2mK301uUkXshqvIqAIKAKKgCKgCCgCKUWARD5M5o2JDaxw1qyB33lcBrWXv/5tTO6553fizDnyPzf3ybEpnmVAzT2fpad772QgpZnTyDKIgGroMwi+Jq0IKAKKgCKgCCgCisDSEHBJfS5saVpb3y/33f93efoFG+VU2tE/NiGXvunN0vj2Fql71Qvh6Ab29PhPSf3SEF+JbyuhX4m1onlSBBQBRUARUAQUAUVgHgTcg6e4AdbdBPvlq7+e8A3az2tYnQho1a7OetVSKQKKgCKgCCgCioAioAgcJwgooT9OKlqLqQgoAoqAIqAIKAKKgCKwOhFQQr8661VLpQgoAoqAIqAIKAKKgCJwnCCghP44qWgtpiKgCCgCioAioAgoAorA6kRACf3qrFctlSKgCCgCioAioAgoAorAcYKAEvrjpKK1mIqAIqAIKAKKgCKgCCgCqxMBJfSrs161VIqAIqAIKAKKgCKgCCgCxwkC6of+OKloLebqQYAnAzLk5uZKV1cXTgDUU/9WT+1qSRQBRUARWH4ERkZGzJjCwDFGx5Xlr4OlppiDinPZwVJj0vcVAUVg2RBgt7344otDQle78bJBrwkpAoqAIrCqECCRn5ubk3POOUd27txpypaXp/rebKtkJfTZVmOaX0UACExPTxuBOzMzo4JXW4QioAgoAorAkhEgqbdaetXQLxnOZY9Ap2DLDrkmqAgsHQGv2Q1jU+G7dEw1BkVAEVAEjlcEpqamQsqh2dlZVRRlYUNQDX0WVppmWRGwhJ5EXu0dtT0oAoqAIqAILAWBaLNNVRItBc3MvKuEPjO4a6qKgCKgCCgCioAioAgoAopAShBQt5UpgVEjUQQUAUVAEVAEFAFFQBFQBDKDgBL6zOCuqSoCioAioAgoAoqAIqAIKAIpQUAJfUpg1EgUAUVAEVAEFAFFQBFQBBSBzCCghD4zuGuqioAioAgoAoqAIqAIKAKKQEoQUEKfEhg1EkVAEVAEFAFFQBFQBBQBRSAzCCihzwzumqoioAgoAoqAIqAIKAKKgCKQEgSU0KcERo1EEVAEFAFFQBFQBBQBRUARyAwCSugzg7umqggoAoqAIqAIKAKKgCKgCKQEASX0KYFRI1EEFAFFQBFQBBQBRUARUAQyg4AS+szgrqkqAoqAIqAIKAKKgCKgCCgCKUFACX1KYNRIFAFFQBFQBBQBRUARUAQUgcwgoIQ+M7hrqoqAIqAIKAKKgCKgCCgCikBKEFBCnxIYNRJFQBFQBBQBRUARUAQUAUUgMwgooc8M7pqqIqAIKAKKgCKgCCgCioAikBIElNCnBEaNRBFQBBQBRUARUAQUAUVAEcgMAkroM4O7pqoIKAKKgCKgCCgCioAioAikBAEl9CmBUSNRBBQBRUARUAQUAUVAEVAEMoOAEvrM4K6pKgKKgCKgCCgCioAioAgoAilBQAl9SmDUSBQBRUARUAQUAUVAEVAEFIHMIKCEPjO4a6qKgCKgCCgCioAioAgoAopAShBQQp8SGDUSRUARUAQUAUVAEVAEFAFFIDMIKKHPDO6aqiKgCCgCioAioAgoAoqAIpASBJTQpwRGjUQRUAQUAUVAEVAEFAFFQBHIDAJK6DODu6aqCCgCioAioAgoAoqAIqAIpAQBJfQpgVEjUQQUAUVAEVAEFAFFQBFQBDKDgBL6zOCuqSoCioAioAgoAoqAIqAIKAIpQUAJfUpg1EgUAUVAEVAEFAFFQBFQBBSBzCCghD4zuGuqioAioAgoAoqAIqAIKAKKQEoQUEKfEhg1EkVAEVAEFAFFQBFQBBQBRSAzCCihzwzumqoioAgoAoqAIqAIKAKKgCKQEgSU0KcERo1EEVAEFAFFQBFQBBQBRUARyAwCSugzg7umqggoAoqAIqAIKAKKgCKgCKQEASX0KYFRI1EEFAFFQBFQBBQBRUARUAQyg4AS+szgrqkqAoqAIqAIKAKKgCKgCCgCKUFACX1KYNRIFAFFQBFQBBQBRUARUAQUgcwgoIQ+M7hrqoqAIqAIKAKKgCKgCCgCikBKEFBCnxIYNRJFQBFQBBQBRUARUAQUAUUgMwgooc8M7pqqIqAIKAKKgCKgCCgCioAikBIElNCnBEaNRBFQBBQBRUARUAQUAUVAEcgMAkroM4O7pqoIKAKKgCKgCCgCioAioAikBAEl9CmBUSNRBBQBRUARUAQUAUVAEVAEMoOAEvrM4K6pKgKKgCKgCCgCioAioAgoAilBQAl9SmDUSBQBRUARUAQUAUVAEVAEFIHMIKCEPjO4a6qKgCKgCCgCioAioAgoAopAShBQQp8SGDUSRUARUAQUAUVAEVAEFAFFIDMIKKHPDO6aqiKgCCgCioAioAgoAoqAIpASBJTQpwRGjUQRUAQUAUVAEVAEFAFFQBHIDAJK6DODu6aqCCgCioAioAgoAoqAIqAIpAQBJfQpgVEjUQQUAUVAEVAEFAFFQBFQBDKDgBL6zOCuqSoCioAioAgoAoqAIqAIKAIpQUAJfUpg1EgUAUVAEVAEFAFFQBFQBBSBzCCghD4zuGuqioAioAgoAoqAIqAIKAKKQEoQUEKfEhg1EkVAEVAEFAFFQBFQBBQBRSAzCCihzwzumqoioAgoAoqAIqAIKAKKgCKQEgSU0KcERo1EEVAEFAFFQBFQBBQBRUARyAwCSugzg7umqggoAoqAIqAIKAKKgCKgCKQEASX0KYFRI1EEFAFFQBFQBBQBRUARUAQyg4AS+szgrqkqAoqAIqAIKAKKgCKgCCgCKUFACX1KYNRIFAFFQBFQBBQBRUARUAQUgcwgoIQ+M7hrqoqAIqAIKAKKgCKgCCgCikBKEDh+Cf3UkPRuaZKmtm4ZmkgJlhpJCIFD0r8DuGYVIhMyNtgnO7d0y+BUVmU8ZZmdGhuU3h1bpNuv4rS/pAzn9EQ0IUP9O2VLW4s0NDRJS9t22dk/IlndlKcOyVAfyrRzcEWW49DADmlpapHt/WPpqdLVFuvEmAz0bpftvSO+JVs8nlNyCDJ7x5YWaWpokKaWNtnePSBjvo0ezw71S/f2NtRZA/oIn98iO3oH5ZDv875ZzMjFqUMj0t8N3Pq0nS1nBSQcD5eaEco2yOvtOwYkpfTTyYYwvttpr6t2yooCTiCQ/F9Z+75Qafe1ljioE/NX1LwnG1BYOXmc3O00lsSvB2Ja0rrXmUxLjvc5nfXVTkVRQcK2UFBQ5JSUVThVNY1Oa0eXs3t4PDY34/ucXZ3tTnNdlVNS4LYFCdQ4PenJeGz6K+DKwX09TkdrvVNdVuQETH8IOHW7YjOm/SUWk5VyZXK4y6kvK3GqW7ucXT0dTmNFICjbAk5J827Hp+WvlKzH5mNy1NnTtc1prqlwigJunwzU9Ky8Moz3ODXB/Emg2uk8GFsUveI4k6N7nZ6OVqe+uswpSDTeLhbP8b1OR02JU1a3zenZ1eNsqysLyi9xAhXtzj6PDJ8c7nFaq0qckupWp3P3Xmff3t1OZ3NFKD+BskZn14qqv0lndE9QLldYuSyOl79o20oPAgsdD5NJfXx4t9O1rdntC1Z2VHU4o8lEFuedvKVONJbl/cJazE7xJ2PSvXmjXH7TA8FkA1LV2i1ba4slP9+bkymZwqx7auKQjGFW3tt9g9yFV6Z4MRgiJuUrfIa+LBgvIpFD0Bb0HjgqR+O+UyEtLRslokriPrvYG5XS0jsgLYJVgKaN8rJrDwQjCEhFc7fsaChGPU/IxNiIDA70S1/ftXL1rfh7f4sUVbfIjp3bpaE8mDPUe355rWxGu+q/6a7FZmSVPF8o5Rs3SmHfDQnqE33HW1rtLyun7if6paX2cukr75JDO5qkEDnbvKlUpja+Rm5AHz3Q1ycjO2tl48rJ8bw5yS8ul8riKemOL2DmjSPtD3jGEtM7tE/EhbywdKOUSq8cjvsEbiwKT/CAhlp5/9Bm2T22RWopzsELimsr5fJbD8vRe/ulf2y7VJbj+shO9Id3ydDGHqz2NEhxMA+VkHnl+Zuk9up75ej+a8EvtsvmFns3UUaX4x74C3JaWYuRabBfbl+OJDWNIAILGw+TgWtqKl9KN26WWqyE96WrUuMQ/RV7eXJXfWgmLlLmeJTu8fN8sMepK6Imfm/4GczwO5vrnbrmDmdvVqmw4hdzee7sc1rLxCmoqHHq6+t9/xq37VkejdqeRqcoqPURKXGwKBAboIXvrAuvxkhBlbPNq74xbww72yqWQUM/OZmmVYvYYi/2yr72spBW109D72h/WSyky/L83la33iq2DUekN7mvCytPdU7rrtFlyUeyiUyiT/iG0Q6nKti3V6SGHpke3dXu1NfVO+27huft13HL6Vv4VXhxT3NIVsdbEV8onpO7g3K/uitynKHWvrHOqd+223EV7sNORxVXq6qcDt9ucNDZ1YzV2ZJqpyO8eL+iwPfynXk19PH60ooqUXZkZt7xcCnFGO9yqi1vOS419J7pUH5xodFCWR39gtTAxQ2ypWGLbPZqAQo3SsvOXmh6NSwGgQloMrrHqmX7CDSDpYt5Mw3PFhZGVr/fkkAhNPp9/TJRWSlX3guV3+G75MqGrVI7Ag1OKEtoU2xUaQ0T0teCdYWtaHOZxs2nnIXFfuB5HtT+4oNapi8NSHfvfpOJwqgGnF/ZJDv7mjKdwYTpTw1BK9q9EfttNsU+hyXXeVpk7DvLfKV0M1YqN8+faMJyzv/66nhiAfW5MDwnpH9nnxn/A9HyHzKqrbsvhNfUAOzO74LML6qUjaV+MBbLZuzPWEAV+r28LNfyUcYIvhMv1alBaWsYkKa+LZ5xLd7Den0+BOYdD+eLINH9fNQp7FsTLoknej/BvSzcFJucoK9saEGnXulDRIKaWhG3sNS5vU8Km7ZKU+lKyNBC20I5NgluEvYhE/Z3y86B5c3/2E5swrp2TFfmlxf21Z3ayKAMhjQbWVbUiQEQkK0yOJFl+V5sdo+Xci4Wl6SfH5GBoYTGO6GYh3r7XcVfcakhxas3HJK+ps1y9chq70yrpAbTSEOzkNAnV6n5G7dI35ZssiRNrpzpfIsajx135UtxPmzOB0dWvHcALxaF0NCXhi48IEMjY+mEKiLuqUGsDrXdmtiGdNlyowmtGgTg/eJQVhbmkPTC08g1+1eykXwqgD1eypkKrBYYx9SYjC2o0cOLyFBwtruA1YEFpr4iHxvZAWXRDdk6s1+RkGZtplY9oafrocGxRPUDd1aHFjaznYLbraHBQRkaW9jziVJd/L0J5NOz84p5GRqSxFlB2UaGZHAIA/+SswwtwPZeOQBaetfVl8trLjpPnngCNpBsgjlTXFdhfqWEe0iQ6SVnxy/qRNewzBUxMV7SJrYgrmgLg0NjCSc2UyPd0rD5s0Jrn8WFVNZdVMpwmTU2hLwnNSlbYH/BxmQ3DfSXkUOLXpngpuahQbbvxVfUxCFPeiYfQzKUwDfdBIgx+zX7SeL+5MUROEQ/DFxHgCvLG699U4bwmcEkMIlpP8AmXjoxz0ZcwHsGX7fMi5INKKP3ebrUGwJuC8/HhAy01UpTyLFB4pz63bV5pxxeXOtIU5+C84XY5pV8OcPjzML7zcRYtEwN9j/K/nggWTmQ6Bm/Cpj3GsYqjjvovyNxE08QiS+ewedhNjuxIFmKfrYg4k/nGXh2Ef3RbfOQTcmULUGxk7l1CGZ1te+/fWUpi4BnNDQTY257iC/P7Zg6H6eJRSkkUym/oxOOfTz2iu0HSY2Htl26/Y2KwiSGrNg8JXtlKbb9GXl3b6tTEtoIiU2xkXvBYrLETWM1XbG7XulCqBPu+qroCrOuJ+GmpnFuMKsucQqKKpzqmhq4TMRGm0CRU1aNDVGdu5w9+/Y5w8PD5m/0IDd5jTq74Z6oBq4ACwoK3L8yuNLy5G64C+6L4JqtxN7HZ5nPrs7x0T1OV7ubT7qChCMwZ19nnVNi3R4VwM1ilMutg3s7nUbm17j4DG72FMRf1+7sHo2zCS0GuagLw9ucihDuNk7PZ1HV/BvwJvc67UGXeoGyVmdPbLXMl4vI+/vanTLvpthEG5siNtAWOI27vTgcdDqrF7Ap9iA3UtN9KlwE1jc7zdhUXVNWYNpCVWNXhKs0ZnR8d6tTEcI/6IIvEGwPqO/qztGY8qal7mwqB/c4HfVVThHbWnWNU1MN14Bw71nV3OPsaq9IuCl2of2FfaW1pswpKqly6hqBUSP6C12CFlQ49R1759ksPekM72o1mBaVVTs1Na470UBRmVNV1+p09Oxx9u5z+xn7mulqNowPO7s7W506unmr2IZtzsB/7zanmn3VtJES1LmnwcE94u6ORqeqxO3Hzc10J1aCDfdw9Qj3drt8+wncye3dBTefda7cqO50N99h43UX2oV1s8j0AiU1TsfecAbHg33SdQ0abAtl9U7X8CL7I9z71VmZ4W1b6OshWYP7VR0+gnFyGPVcZ1y+llQQX7p/JT4oc1Wj07F7NI4cZLnhGrCxGnIn4NTvJuijTk+jx/UfNnf5pOipIH4ddjprioL1YWWHJ98lzc4e+8bBztDGMbsp9uCebU4d+5tHDhXA5eB8GKalT6H97O2he024YwxEO2dYRDlteUN1E3QHbDcEQ642du7z7Tfjw3ucHo4zbPOBOmeXieugs7ejHvXqkc3IX32XZ+OulQPe9oP+2bzUDdTsU2xfBQGnyLSvKshKtLWadrhTbQ6N276bYhPiOep0VAflJtpfuP4j23xBTZdzcC/GBNM/Ip8LeMZZ20/oAjsUV9T4bKsl9Glkf41TVgJXmVXVTjVlJ/ALgBNwE65XXAz3tLvjbyhNbLodDcc4SVkQdL0c6rNVrsyKSdezmThyU+yks3dbVcj1plsOtJ1QmhXGYcjB3e1GJnplQwFlczPqxJMnwyu64F4U7j3dZ8Gb5pXXnjJR/sLdbKNxT1rkuJ7AITd2R/fZAqeieVfYVSPq3cgk6zbatHuMSe3zOdYYd/b1YKxA2TjW1ICXVQddfBZg7Gju3BvcGB2DaPjCEsZDNxLkAZiR5xl36lYuBehCuMeJL9p3OXVpclspCYq7Mm8titDvc9rLAhGEfhSEoQ6NNmJgTUDox3c3O2UAv6AaA1Zo7EUjrPd4TvEMMBHCyuOpQUpaHT8nLKOd1aG8eN89iI7AzuXNZ0nrHme4q8YQMuvTl4Nx/S6bMXTKDhCLomrjeWE8eJkDWl1JUMAXQLjEb2nx6/wgfLb3dDmdHRBW8NteFiEw7eABkgp3AXEpikc4ReY7frIJ7yyY0E86e5o99VXU6OyJyOQCCP1ol/GUJAF4TIjAbxSTAXdg4IAy6s3w5EHn4EEM7nayIBCye0dxjdfxF5GHNNYd8jS5D+QWQjNQ0RxJVukZAiQr3M4i/dAvpr8c3NXoTjQxWfNwWYwqrpcp1rkv0TSY2QEq4FS0e4j/+B6nNeRX3UNSEFcd2/0ofEzXhX2Wm4ENhH4fylvFfuIhLSEvV5P7DEEQTHJrurw1hjrAxMZgUdLoePm/g3xsgweNai+hBKHfB5JZjUG+ApP75vZ2p5UTJisP0M52j49j4AURDg6i27ZtwzNhIizzEYmYDjDpjAfbz3BnTYiQELNR265i2hbQpa96nB0hRZxoeGfSGJSoIDB5BvbewRY0ci8mPRFlxjP1YAKUfxz4w+2m2vHRm0Tl3s37KGSqmx7kan2PJ9/jYdkRQegxWe6qA4HCQF/XiIl0ozuRtjhTtvoKnTT0KSglOjFJLYsgINGEfhHlJEIHdzmNaFdl9Z3OXisUSI5bq4L4BpwynCcQ1tuQBMFDm3d8AKHvGd7l+lunBzIQGZKiEwAAIABJREFUtnZMPMP5LIMXsEkQvFZMRqmQaHXa0Rbbmz3PQLb56BhiWqDvBdtP4UWsfY9Xw3TQ2dNeHUE8I8bIBeGJ9hts26OYpFvvR8Ix2dvmOeBNjjujo6PO6HBn+JwAyKPdw7jG66NBhcC+Pc4u9MtQXy2LQ6hR2PE97ZAlmPTWwSOep2iTGM9C7RiyYDgCGNcbnEu0K5woJ1Tukxi/QkqyeHIgLqFnUTGGQP7V27aICfHu0eDYAlxCvRx102jHf/SZ6kSHJgTH1IoFuQ90izGMyVo9Jm9hhQYI/W4oOTDhN2S7EW2tHRNPyp+gnOE4MIm8N4IMl/GsGLTFbRHPFDh1PVGaSosv5bdRDJRETlTZlSiPg5PZgqr2uErDZMfDUBVjAt4F73lFGE979h0Myq1xZ7in0fBFo9TBeQj+HhSV0Ie7SgShh9atBwdFQEPu/du7d6+zZ1cnNIUuifPT0B/sqQkfLBGP0I/vCnaWEqc5esTg4UpWC4LDiDohMAxJsyza5HiP02yfiUPoHU95YjUX0Fhus5pTDH5V0KrWd5mJBQfoRs68S+pDGvqDPRj0MLuN0EQGkRvfVRcub1CDGQY1mW88/MLVxnonHZxd18c7pQPErsYKH0wskh48bHYXSOjHIRRtJ2P+YgXFfIR+3OmpC2oGi5pjJmaTwN3FIHpgZ0Yn8a4VZPHcp5HzprHuSKiNlhyka9SnrjGotoYEfiSht0/P218mw209UL8rZlK3pzGomY2ZTLkphAbHgnonND8NJj7p7fNou3uDg5a3q3kHV4EbupoaTlwQAScsOHSmABrI1uCSUHgS7TPQgkhawlDl5+vuIFyO2UkCVlvKajqcCP5CTZfHBWhJRYVTEeyzYeQxeQlNMNFfI2eXPhXkf2kSfdr2Pd+82tdwMJ87oEOO+aYFOdPhIY9YCYzkx+wf4cG4oqbOqTPaO8gAKEiqoYUtqokmNP55Nlc9/bagcY//gx5CLyCgZVUgZaOeRzGgdoTyVOBRaoSfSWufAqloL7MTTL9+v8ByBlctA74rHB53ukauRi9peu9TK17vdO6LfGYcLh5DpBMH7ZVVBfuFB8pxuIK2CqJ5XSP61pZ1D+mXR74wjglgeGUmdpzDIwvBk1H5rNz4ZsnZHSa68ca7SQ+xivMMiV8VFSExhJ2pettAdBucdHaF5L6PnDGZRh6tLEmC0LvlBlm3Y2q8OPCgV3FY0Lg7Rj5bDEcpBwqw2hPd1OwDCT73eg7rLMDKUnNPlDtXOw6R1GNlowKa9PagTA5F65Wvvi4dD2I8ddsS26rfPJ7jRVlwsm/6VfRDSx4Px53djeCWPtYRHO+9ykP/AzaV0IebUQSh92rs4n/3I/QOtOd2dhzP5Ga0syo4o/TXPoUbMDpzhAmHze7e+Qn9vrAJka+g85qKcEk6unHapECozAQDnTpSUxB8AMIrNJPHzNbHuidBV018i7PiGu8SLzWTcfI5CROinq4eZ89onAcSJxV5NyGhhzZqH08E9GhhsBRW1+knBOYj9B7BHYglnGBnIU1PbFtbAKFPa92FJyMlOIchHurhk2D9Cf28/cVLwKL9Q6PWwhPTCh+f0MxjkDD6DqyR5wT4aoK9gzNXQmLOGgg3nT3Nllxwoh7d4NBPgoNsgWtbEvWAZ5Ier517zdOiVytsbAk0b9E5ivd7YYTeM8D4YhuMPWJSF0tQw5MUKBagAImjO4uX1cjriyX0xNCHYNBHtyWirjmiJ5m09ik3nd31dpITi5d5YgHlNAQKqx5mtckneBU6AfSrSNy9pDFOHqB+CCmV4vlj9/Yda0bmk5d4l0JkMUH7ou94W1e+4xwinxdPZiCVhN5LqH3zTrnDOsbqBsxX/ALrx51UU6Mc2Uh3hdpHfEI/LxmfV04sjNA7UQrILt8ODNMmlJdyz781+iEQvnYQ1gbWhMlfwYD2GsKElhN+mfCOxZhYRGUkpJgMgJP5vW6yA8IdmkAGokxbUzAeBvt1vHbsVdKKj4LKgXFcukxusuOkWLQS/1Aizbv7ZYs9+dM8xFNisXEGm7UGdmyVrTe5fpr93k/sPWhKhgaGQq9FHGQXvFpZu0kKrr4WG1IOBzfIpeGkOc8RuEW1DbIpTqbpH74XG90DlcVyCJvdYjapoQCFzJ7x+HVABgZGRDaW+8Gy6GvFm7bA602x1G68XG7lZvsH+qS7f0pqN8dmNr90kzQ0LTqJBbxwQK7eWCjdhXBlyfo/jBMD7VuBIqmobZIt27fglNjCBcQV/Qh82W9tlIGtQ1LcEjyZMPqR4O+JCSK/uDTSWnc4KXH7Taz0ItnUEP/03sJS5tmeuutfuNja9DxXvFm2tPbKxEC+1G7dnAABbB6KaZzoq4OJdrqVS+2mEpwjgPwdxQa2MaRbGZVHZC6UvzJsuqyMn9uNLVulfnCHjFVukbaN/mXl1SnUJfcTRsbk+UV/wn7JwE0eu9q9jKQQ3xM8w+5yaGFuO+JnNNGdiT7Z3u3Wa8mmTVIe79l8nMvRUiFXX8lc75edO/pla3dtqOz5oYIGZBNc5KVB0sXLmQRw0qhft80vdXFm6452bJDWPhXMab6RzYnabdwiBW8MyY4ddyGGMimGH/HBwdiGMpVfDHe7OM2UKeHU86EpbIIMPYYvnu++bRE1VV6Kl13H7VLsV3FIA8e7uM9gs/QYvvo95lsa5HvH9ttN/spqa+O2L+tPPZHDyaXj6ZvDxBcTVOFUP/zY05tBCeWJfzTlW/ploLRXBnEWc1PD4uS+f4xpuppfK1vaKuRa9u+jt8r2HUPStD2qUCO90n1voTTgXIjYlriAfHleij4Xw30bJ6WaBkh5BG95vo2xENcxRWKLgqw3orHUpk232Te5FAYnvG+M20gLpbZts5TccA1SOiq3b98hQy073CFjyePhFM7N2AkJiePKCqfQZwdt5sKfEygbfhmpe3gQblbNQcbLErKc0OdjvCwXyPXYUI7DJDZVygQ+gWdSAQ4yggFeQdiwohpQPuIulWvdgTupFBb3kivw/N5Bw+obNEI1MLRT2lq6/R5CH6qQCixLMOQb4pnCUNok3Tt6pfxSumc8LIPL2YpNMYqkpm27NJTy2GwEDLaFmMEUo3FUlpf7E69FFL+0oVsGG2JfmMABW907BkITKJP2okJ6626svzfYPstTNX+LUzpM6IBDbczdKRkb6JYdfWPhOzEggTjbayAU7GrlUfGUmnPcXWI672gDop0o5Fe2SO9QS+wjh4akrxv1HORoR6kcwFP5sU8mvsJJZXBMivugx5UeFRBJpRM38vCNqYG+UHmKS6MEWNT75VBQlGDAJ8qHB0AeUZsbfdKIL4d8Hk7nJfTvUE1HYJjePpWyIkF2DJgmfUj6t7aJD583SZVboY3vRmwnrsao7KEtztuAKSvxGkl/EMeoSOL/HOqVPlOGgJSnSEEUP7HlvTOIAwk5AQmUY0IZN+li2djQ5ttP4r6SoRvlTVukZvulcisKtb97B9pct2dyKDLS1y0jJQ2yc9O8DSbpEuT7aje80aEthibK8HzjpSk406HPkjlMBhJ2g8rNsqngGrmWFXhgQPpHoANCJS59PByS/gF3WjrS2yYt/XGwQp8NUi0ohtIl3WOrIcsJfWyBIq+Uy+ba0iQJfb6Ul6PJ3EpptR8axDG0iNLI6EODcpH77HzZSdt9+NwdcRtZaVOvDEXPvNOWbmTExZvbZHPBraYTRWvM0p8F1BdU//E0KalNf0KG+nbKDpxYeAia6aaNlVJ4w/7w6cWLSiyddTchg5RkDIHlOA3XU/CJEenHoLGjd0QKN0GriJWja+5y22gsPOVG2F57F+5Ao9EPoY25eEQgiTQcuQATk9LYGJK/gkFjsBeaUhD5KciLJgzegZvkQJDUJx/vYt6kwE9POIQJkkV93lSoCQ9c7ZYdK5xjeGFjnPEqPblNVazp7FOpyiPigSs/0zsDm2THUJ/4LGimMLEFRuW3FJ3g1TFoKN1pNicFWdlY4pRuBNpXznAQok+kjfPGir+MsWprQ4nceg1q7IFerNxtl9oWcBwThqS7e0xKcZr5xpVaELhCHVuoXM73jClYczIuTMtTMB5iXBsxDb5IGrpHMPlZWWCtej/0G9u6ZeumxBq7eFVS2dImVWQRCHdhmWUoakScGhowAjlQgZlaRis27Bt6YlFOpeOVPMnr+VgVCRKx1STaw2hAIHS3yCasCrX0F0tLL8hnN8x4YOqTfEhn3fHsAisB56VzyRfB+yYEXi/8jJeXNwg88Ev3wID0bm+a55TmUmloqRHY2CLsx4pHf5TJGMzf4NOaJSmBNixscrC0LB8a2IHJWKls3DIklVv7ZACTtLbNWM1ZWrQr6u0Jj1/miVhbp8i8ckXLdtyjNF1cUUVZRGbS2acWkY15HqWsNr3zaKRv/3leW1G3I8zFsra9+EEK00CSQIag6Z3fU9l1LR+yznIamKLs2B5Wdg51S+8YTEsboFlZqQEmEyGFPeok9N03v5BlxnSHAbLMPJyC8RDpus0i6lwg3zws/8VVT+gFWqekNXrlbdLX2yzwkAKe8VnZ3NIrI1ZoHeqXtrY+mSqpl+6+LTEmvctflW6KD3AWm6nEQYWKC91OVGiMMldRwHLflk3lctHl/VK8A/auO0FSU1zE1Nedh5QdpQBKb31MwNxrc+V5cmmvSNvAIIj9Jn/7cZ9sFGNlqa+9ypD6B67FSsvOoZDAnhjcKm07D8DjYof0JWvfGZEmTBxaKqX84i0yWIkVLRD75PZW+BRkhV3y9kNq6xNzLo95RgDmLKtgVp76PpWOCh7DQWOJayYdqaYiTpqLuYHmEYkpVirSW844rKnS0ZFBdyVlORNPV1owjd2y2VWdwO5Gtve5dTbYjdXmjU0wWU1XwimIl3uWbDRY3RpLGKXX1AyyrJgPp3I8PIoDAkcS5iATN1c/oV8iqsWboZkf6RH4IJdDvU1SieW30spKqazdKoc2Y5keNoSZ7wTFYvY0MmDptn8BxI0n6A6lXP5i1myO8QtIZbTNxBLrIbOvj8h2bPj67O0PYNP6Dtm5uTSF2Uln3UEAGkHGgCXkdJKGMejjN71LbjoQkOrt3dJSvlg2WCibtmPg3I0JNKh8/5aNmByWSjn62qa2Edm4c68M9bdJ5WKjjakp2FdjovGya+6VwyUtWA3YtKo08tHFLcaOyODwjU2V6PPRD0T89uxlqNyYAqwTJpbGm+nsU6nLNidbbt08IANY7Zuf0sPUb2hsAc+lLo/zxVRsjO8ZQHBw0ubqCWhDVnYe6Dc22POG+Stw3ijS/0ChbN7SAhnLcBinv3fDtG4ASskJ2dTSkNguPf2ZS5wC9iyWW6X7Azj9eyzR45Bllt8EygW6OIQUjIdo71bxv7+/f0ETvUM4qXwBlCxRYRZ8Twn9vFAdkgE0+vyt+3CcMWd4PN4djQmDY9/2BhD8eSNI/EBKhAA2flZixsFw9HbZDmKUMFp4JtjSAC8fiXO2+LtT8FZCwVdQC3K3ZOa1+PTT9MZU/1bZfpdrulK5aWOKCWA6664Y7QJeqE04DNIwkLhdLAG/QXiU4mYruiSoje9+IHEKE/CYsfOQNO0BacFGoinaK7KvDfbJDti22/E1cSTz3J3ola0795uHApWbspi0zlPO4O38jdgcZgdBEBPTP+OFQ/AqETS4r9hci5pcjpBQUiWZgXT2qSSz5Nfz0P4Mz0A40AsvZWOJ4x7rbpK2/onFb9JOHO2S7pbCxtJOGA/0YbVrSbGtpJdhirfRys79sgMmeQn1X1RoYAV/scQtHa1/XhQr22QLDtNgOHrXDtm6daf0TdRKS+1Sycy8KS/tgcJNWAG2wmxE+hJqLsdA+N0xO7AJ3gFN0VIwHhZCmVsaLMa9wC64whGvYFMjcNSxZR4+Fu/lJK5nH6GP3oWf1h5xSPoaNgmav3Rjid5t7ljKWTDQnmWfCdhJ+uR1YmwsJASWYrO6saEW2zTccODqJth4xxEtU0PQMDfI4OatsjnF/XeiH4IB+4jK4BYwrgevKXQ0bKQa88FiwbDaB5epLYyBVNqNhb7LyiSfnjxFlyPcXmD24lPudNZdJYiZHZYe6N0qO8eic+f+jmh7i26I2IQ45G6No51iyPbUk9TUfHs7YNLUBsE7Am9CWzYVB99ceE/zL5XPVWqpXTkvR9EnYwZp1GXMNZ9oVsQln7YUk69CuBNtChOTnTsHYx6xFybg2cbcLaiTLS2WasZ9PPkbnmo1E7fkY4r7bjr7lM3uvPmer5zFUHzYTVqHb5W2JrjXixPpof4W2bw1Hx7MKpeAVupfzUefrQ0xeuxX640z7qCmwjLSPx9xih7zsH0u2I1j7ocuLCTCBM9sbGoIarJhBnhDizTsjGOyBvPbFqzkV7ZFarjD3qAgE/2ECsZ+O4GOX4j574S8GM1rV27jKpaG7VZLf0Cu/ewN8KsIxwUp5gPz53yxT2Cv1ZbNwQkk9gDshAl0vChggTBg9DZF0rQlXC9LHw8rpaHWXd+gW6gbWpriT8THeqUJVhzlW5qSUo7QimJgkStyWUfo6Rs63Ddo4hGvRue57iGDR+MMKjSxaYL3kkMwY+nthzkAyTeIycSCCQ9m+XZGebgPM+EhzwAEd36wvW+AP1jbjw7DxjVGHHoEjuvj3L9c+bXwqV1hZ6/75Vo4Pq3dAo2JZZBYWRiCr/qGjZigTLTIzrZFDNhomC3QTG9Cp9/eF0eoTXBPAQRDdSdWLuIMOiBtLXBncv5FF8nZ5U0CZdPSgneTDFrFfJwxfmJe2zrjuS0i5HvcIO7fuT0i3xMjfdIG7Y0l/LGbkulv19YwJzPhQh8ahGtA/Exn3eXjjIAt1cER9+hdsJ9siTXJGkPb3HlvsMxcOve20+DlhP2FrsZs23tAeuG+NNyO0c7hz7mtN0z4Dxk3Xt4A374YDK++F+5h4WazH+mPYFbAyVN0XUS9GP6JKEOxol1EpxB6EEumtjYwIsiOQW8Hg6eHtq0yYJkC+3pMgp62EnMveME70YwjW/hkOL/xIkp8fQLltFmNbXf2XWyE275TcFKsCQe6t0r3mF+8I2Yz8lEMgHU7d8ZOyD11NhFTf37xJbgGU6ri4O2jcCwwZB/FCl//QDBz3vYWrz4xIbMYHvVijvjS2afc7HIFyaaOSaBfg5u3nKXShDMbrCLm8O3vl02wY94J+w43PsQ7BnMImIhVbu6X8h07opQwC2iLJNJhkOKMl5Hx+BUlbm1ywrilwnig4irgTS2bZbtHxpnLqNedW3tDXsAe8LVJXwCejIsywUQa9d1es5/e9hCv/cz3DDTZW2lra8IDcuu7oJ1twEoKTIsomyYwXg90t8EjFxRktdhQHzXslRtXuwwHpHfLzvD+O1yZgKluS9NOOWQnQ/AqNRIrbMxgFGplvsLQYxr0AJQVY8EkIbmGwFli+ETwdv5GnNGD48PdUIL9geEzJ2wMi/705C9eG0JVBAP7jP9T4cvhstu3CjfD5NXWyb3b42jIYVaJvkKnaSWN2CfgsRZIxXhYuQXuPy10D9wkl5JTdUNJGRQCU6jLfu6xq2ySIbQLb/qmHN4xwdsGPYBP9DdJ+dkXycXnl0t5y4DPOOR52Ps18dlfK+3uwYgjpFEOp6R5D84FW3wY76kLnVwncU5gHd5W5jCNeH+BAE5Vw7HkFTWNzrZdUcccB7MUcSQ9TgQsqqpz6utrnKqyAqegDCeqDvc4Nfb45+B9Hplsg3uSYDAPPNo50RFuw52RJ7b65D1Q0ezsjnvCmj+O413hE+BgqOCU1GzDcfc2IziRdW+X01hR4JTFHHEfFZ/n1DvGUx99DJx/8nGujkccscw6KmrclVRbcMZxcps9PtucohsFMk4VhiIt1A4CONa6rr7OqakocQpK6pyO3ducaot1QYVT11jvVAMje7ig90RLKcCR2Ns6nG3NNU5FXZczakuXproz0Y/2OPUlnnZcUObUNW9zOjqRj9Y6pwLHcNfV4ChrT3sJlCCfu0K5c+brLwd7asL9CfEUVNS47bykwCmq3ubs7qwLnqiIY9TLapzGRvSB1t3B0vN0QHvqpn9/CwQQT0mFU13f7vREHW/PSCa9pwbjFMHOcNaDadiPvU5rmScNnB5cXVfv1FVXOEXApbFrl+d+kVNV34h7deH42BYsToEaJ+pwSDcRnP4MHY6LZ5wTDSd3h0855enOcQ6ijMq79+ckjh+3J97yaProU0QjX50c7nLqgm0gUNEaJQMOOrubeeJlkVPT4X+Sck9NQah9lDTuSeokyXCOPCf/Qg6U1bU7HR3tTn1VldMaPAo+ss/gdGYfIc+TKUEk3Xz5yfB09inUWHuoHfE0Sj+hOn85earlntaycDl8ZDa0jE5Np9/4grYc6tdFTqPf8dzeE0IFJ5r7AtnlGYOqfE5yTtAMza1hp7Mm3BaZ34r6VmdbZ6fT0d7s1JShH9V5TuxmGdHXqtt3e+T1QvDEQbFeOVPk3y5MliLkQY3/qaLRMsOvCsf3OK3mtFh/uWTGQ4w7fq8is55xBX0UMtWMG1UYNzAOtO/Z53RUecYV3gcm3rgiTgqu8e/je5vDsjtQUe9s69jmtNZBVm7z68vhugxxk6TkT3SbiJRHZe1+Eu2g01UTxpKnO8fSGZ5WazHBCcp+AnYSuNn2VlDtbIs4RnoSw129U4L6KqnvcXwPpE/BeHgQp1QzjYTtgulHw4TfEZwQJ8n6ddvd9WF5KwXgiT7x+F0Sv4sr7tr4bqcdAqGixL9jFaAj1NS1Oh7+EacIk86+nnanub7aKfEQNFZKAUlGa2fkEeOTw05XY0UEUUlUgRXtfg0UaYLMRKYH8lvX4aY1SUIPol9R57R27HL2jroj1+guDHDV6PhRjaagrNqpbwapGY7tCiz05CiwqvEZIEA0Gzv2+AueOGiFLhuh5mlgJk8FTklZhVNSgM+qRpDaUZ/OGRUxiHN9UbATFNQ5Pb5ScL7M7HM6UX8VIIp+dREg6QNB6/STJ9FRD+9y2pvrnKqiqHYFrGoaW52OPeEMUkjA21E4zUCRU93c47jckoIqnJ8ASH5XRP2M4r53wAOJqe+MmZylpe5smQ/ucTrqy2LaE/PasfegM9xRYeq0oqbZ6di1z3Hna4vpLy4pjGivbHOde91BG3240dY92g881kT0tclREOnqonmIjcW/BOQlyPAwIW6uq4rpzxKsw20+QmFyHya+EbKEk9R2yA+3Tw13VIXzEQDJZxzEr7XRqY6SQRFyA31vm2lPkYI+UFJtZIvhqihnOyYzZaEJpPtsUVU9Jnq7fAeAiGaLwawLJImyIURmgzKCMqSxFeTY024j3h3f5/S01qDPIk2036qa+uCkq8gpqW50OiMGRr550NmzrRGELLqvAa9q5Le9K1JeRvevBL/H97Q6WFAM9ydMklupaTgIDH3wMTi3u/hM7utxWutj65zPeJUhTD7lfSrYDuqi5SEmhlX1zU57VHuLW87IisEY0Rgrh4zypBWyPno2M+rs2taKCZBXpgBLTsw5Nhitz7DT047JaHQ+QaRr8EwXn2FbaoXyIapNu+21A0qbBBUYfWty1NndjrYVNa6yH9Z37XPG97aCALkKrdbO3UG5iUgWhCcmPZ2tpp8XRcVvSHJzq9PeFZQziK/Tp5+yTPWtwfZq+mn9/9/e2UMldkRxfHJOzpFUcSvpQqed24UudEsq6TSVpgqpNNWmtNNOuiWVpopbaRe3iqnWrRY7tmMr2UrSvY78Lw+QhyBPBT3M/Gg8wuO9ub87H5eZ+3GLd++aW5tmGjeHv4x49tIP7e0xG3k9PNfv97TJllxfvl3djPlrtB98v9Ax9Ndfv2mffLzqrqHX7feSd1PreHL97427v6TdgdfVSXtzUIfqi6/2ujyG9TT4/7V+yGnuWN1L3O2ub4z4rLtG6AdEoq02v2g8xPOvrjmM5UnOWVpv1mzM2PNNZs1r6tOJa6y/ai0eNTe9tzHTkVtcOhul69pkW2ovaR7Y1qbo8KhJNP5B62FS/Kt/Dtrrw+NLPBeW19p7I+yhq78Pxtqe69pgG5w6rgY2nJfWx/xgHKGNr+w9GUa8RhJQQKz8n+QwoKC8xU6J9o7LjR232blQ56+lA5QrhfJtX7by7o2OSPu1Ggbv2VJqMqU5aumw2TJ35Prn/vKvayiU8OaNkS2575sWUGgZEVqRXD4sOlz3H3DpvO/tdL3Skul43Hy6zGUiYzmrs8pCkh9dln3sA1SN8+yi6bKF4uMDisc+ZEYfROYyY25Ri9JhfkCH9jy5NJ1bNLsCb5ThJ3urCXI9uVDdAisLrcqDL3PjtTF93Q00ptsPzRNrMWt1A7KdfhHp+LixqOO9fr+8JUCqN+y4sdPv5G6QV+XIxO3UJ61AW6TnFrrP7d+0VdMY23F1+RHv5GxMxC43NtbioWZ/NdaUlvXi/IP7nHvtPirgaOiUO1Ub44v0DMVGWMGRrGV0SVQwjPt6ralS5TpOfSyTezTqiS7tya7z74yO7G1+mFjBcQZN6/UH9ZWXck+YZRNmOqYmoUktp+YIxXjUNTgzYrKiCtdzl/23kzRCc4nJYOtDT6+ad+otrX13zHuTMD775+a2ahlLOnO4BUemnSxbcmM0l4w4Q97NWNM8I+f6xVw8Bz9KPmubXBVtbcppPkszZ0Vy68iWlMFNLlDl3KOe/oxfFkOtCeaiGUn2bE56SSN8r8VTWA9bSqFZ00ISdeZSraFTmsiaNcU0NXOuUExfGwWDfmxXbLhjBcSWGyrJfbFzR+nn7g0UbLqfL7p6pemOCmNvygcQgMAwAQsqU3DdRencXSj+YvxPne4XG1X9INB3mqduY+LFww/jfwhAAAKhE2i545JiOCL58Z9tJDdeQkczx/J/Pcdtn2HTLVd10f30tuXWT8qTjXlrSSanXfacZUbiBQEIpCZQd5VSyf3xKe+qd6PKAAAD2UlEQVQOFVWWyj7Xzl9Ou1pT2ghJ3VIuhAAEIOAFAaXZrJxl3MZpCWPeC4XGQsxdlpsnYR+dKR+25TzScU7KNDqRqmRWI1VaW3mSFvIQCPhBQFVa4xz/6bMU1Y8qrlEsu4IfBJACAhCAwAwJKKNMIg1Tw1WVWrq2ooTcxVRbKDNsG7eeJgEM+pE01ck7/Vy5TrVTXz6qjU0bFMkn/HS/5PJbdaUuKj8o3+jIJvAmBEIgoCTK8ZJy6XZVH6Gq+IrRycwUslLXD20VmNrQEXF19+He8yFgRUYIQAACFttlrjUvXnyjuIwVl1fq6ZJi+H59l3XlagpXYhDOFQF86Meoq3FUdPmf3/Vz5yorhFu1YFZFKWUyljNXgWUWjKH02iubFeVw3pq/IM8xsvM2BJ6OgIq3mZH+5+d+TvWFpWUFNilXuY01RcS2FLjUqNfdJwXVre0fq4bClKrGPp2QPAkCEIDAMxA4U02JH93b/wYfveCWt1X/oZJP5+L4DK3mkQ8jgEF/B7dWTZXvdisqKnXpvgyVpVOqTEUfqyLrjiqsrXBsdQdGPoLABAKRq6uK7W7lyJ1++NI37OMvLbjvVguusFVWJc0SP5onkORjCEAAAjcEIhnuRVf87d94c1Ibk69UCPH49zy+8x52Ewz6VEq1dHnaJeyna1RA3iJGfCp0XASB+xCwtHdKAWYunxlVdbVAc4bafQByLQQgAIEkgcjShjaUHlsnn8yn/vYODHp/dYtkEIAABCAAAQhAAAIBECAoNgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8EMOj91S2SQQACEIAABCAAAQgEQACDPgAlIyIEIAABCEAAAhCAgL8E/gfwPHc3HJrhIAAAAABJRU5ErkJggg==" | |
| } | |
| }, | |
| "cell_type": "markdown", | |
| "id": "compliant-helen", | |
| "metadata": {}, | |
| "source": [ | |
| "" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "id": "alpha-junior", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"654pt\" height=\"300pt\"\n", | |
| " viewBox=\"0.00 0.00 654.00 300.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 296)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-296 650,-296 650,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"244,-122 244,-236 638,-236 638,-122 244,-122\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"616.5\" y=\"-129.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_annotator</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"478,-153 478,-228 630,-228 630,-153 478,-153\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"596\" y=\"-160.8\" font-family=\"Times,serif\" font-size=\"14.00\">annotator</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-8 8,-228 236,-228 236,-8 8,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"215.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust4\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"158,-39 158,-114 228,-114 228,-39 158,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"198\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"201\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"201\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"201\" cy=\"-202\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"201\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M201,-255.7C201,-247.98 201,-238.71 201,-230.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"204.5,-230.1 201,-220.1 197.5,-230.1 204.5,-230.1\"/>\n", | |
| "</g>\n", | |
| "<!-- zeta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>zeta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"441\" cy=\"-202\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"441\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">zeta</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node8\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"193\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"193\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- zeta->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>zeta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M438.1,-183.85C434.04,-165.5 424.82,-137.03 405,-122 378.15,-101.64 283.35,-93.57 230.07,-90.6\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"230.16,-87.1 219.99,-90.07 229.8,-94.09 230.16,-87.1\"/>\n", | |
| "</g>\n", | |
| "<!-- Omega -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>Omega</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"360\" cy=\"-202\" rx=\"36.29\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"360\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">Omega</text>\n", | |
| "</g>\n", | |
| "<!-- Omega->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>Omega->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M354.67,-183.86C348.18,-165.81 335.47,-137.84 315,-122 290.6,-103.12 256.19,-95.02 230.13,-91.56\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"230.22,-88.05 219.89,-90.38 229.42,-95 230.22,-88.05\"/>\n", | |
| "</g>\n", | |
| "<!-- Chi -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>Chi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"279\" cy=\"-202\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"279\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">Chi</text>\n", | |
| "</g>\n", | |
| "<!-- Chi->y -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>Chi->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M273.49,-184.16C267.32,-167.12 256.03,-140.7 240,-122 234.91,-116.07 228.54,-110.67 222.14,-106.05\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"223.76,-102.92 213.51,-100.23 219.85,-108.72 223.76,-102.92\"/>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>beta_decentered</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"554\" cy=\"-202\" rx=\"67.69\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"554\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">beta_decentered</text>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered->y -->\n", | |
| "<g id=\"edge5\" class=\"edge\">\n", | |
| "<title>beta_decentered->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M543.95,-184.11C531.82,-165.43 509.59,-136.11 482,-122 438.89,-99.96 298.23,-92.42 230.34,-90.03\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"230.2,-86.52 220.09,-89.69 229.97,-93.52 230.2,-86.52\"/>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge6\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M199.78,-183.99C198.5,-165.98 196.45,-137.29 194.94,-116.15\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"198.43,-115.9 194.23,-106.17 191.45,-116.39 198.43,-115.9\"/>\n", | |
| "</g>\n", | |
| "<!-- theta_decentered -->\n", | |
| "<g id=\"node7\" class=\"node\">\n", | |
| "<title>theta_decentered</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"86\" cy=\"-202\" rx=\"70.39\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"86\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">theta_decentered</text>\n", | |
| "</g>\n", | |
| "<!-- theta_decentered->y -->\n", | |
| "<g id=\"edge7\" class=\"edge\">\n", | |
| "<title>theta_decentered->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M102.25,-183.99C120.89,-164.48 151.51,-132.43 171.96,-111.03\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"174.61,-113.31 178.99,-103.67 169.55,-108.48 174.61,-113.31\"/>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.dot.Digraph at 0x7ffa186333a0>" | |
| ] | |
| }, | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "def logistic_random_effects(positions, annotations, reparam=True):\n", | |
| " \"\"\"\n", | |
| " This model corresponds to the plate diagram in Figure 5 of reference [1].\n", | |
| " \"\"\"\n", | |
| " num_annotators = int(np.max(positions)) + 1\n", | |
| " num_classes = int(np.max(annotations)) + 1\n", | |
| " num_items, num_positions = annotations.shape\n", | |
| "\n", | |
| " with numpyro.plate(\"class\", num_classes):\n", | |
| " zeta = numpyro.sample(\"zeta\", dist.Normal(0, 1).expand([num_classes - 1]).to_event(1))\n", | |
| " omega = numpyro.sample(\"Omega\", dist.HalfNormal(1).expand([num_classes - 1]).to_event(1))\n", | |
| " chi = numpyro.sample(\"Chi\", dist.HalfNormal(1).expand([num_classes - 1]).to_event(1))\n", | |
| "\n", | |
| " with numpyro.plate(\"annotator\", num_annotators, dim=-2):\n", | |
| " with numpyro.plate(\"class\", num_classes):\n", | |
| " with handlers.reparam(config={\"beta\": LocScaleReparam(0)} if reparam else {}):\n", | |
| " beta = numpyro.sample(\"beta\", dist.Normal(zeta, omega).to_event(1))\n", | |
| " beta = jnp.pad(beta, [(0, 0)] * (jnp.ndim(beta) - 1) + [(0, 1)])\n", | |
| "\n", | |
| " pi = numpyro.sample(\"pi\", dist.Dirichlet(jnp.ones(num_classes)))\n", | |
| "\n", | |
| " with numpyro.plate(\"item\", num_items, dim=-2):\n", | |
| " c = numpyro.sample(\"c\", dist.Categorical(pi))\n", | |
| "\n", | |
| " with handlers.reparam(config={\"theta\": LocScaleReparam(0)} if reparam else {}):\n", | |
| " theta = numpyro.sample(\"theta\", dist.Normal(0, chi[c]).to_event(1))\n", | |
| " theta = jnp.pad(theta, [(0, 0)] * (jnp.ndim(theta) - 1) + [(0, 1)])\n", | |
| "\n", | |
| " with numpyro.plate(\"position\", num_positions):\n", | |
| " logits = Vindex(beta)[positions, c, :] - theta\n", | |
| " numpyro.sample(\"y\", dist.Categorical(logits=logits), obs=annotations)\n", | |
| "\n", | |
| "graph = numpyro.render_model(logistic_random_effects, (annotators, annotations))\n", | |
| "graph" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "id": "based-foundation", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"577pt\" height=\"324pt\"\n", | |
| " viewBox=\"0.00 0.00 577.00 324.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 320)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-320 573,-320 573,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-194 8,-308 402,-308 402,-194 8,-194\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"380.5\" y=\"-201.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_annotator</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"16,-225 16,-300 168,-300 168,-225 16,-225\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"134\" y=\"-232.8\" font-family=\"Times,serif\" font-size=\"14.00\">annotator</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"333,-8 333,-186 561,-186 561,-8 333,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"540.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust4\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"341,-39 341,-114 411,-114 411,-39 341,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"381\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>beta_decentered</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"92\" cy=\"-274\" rx=\"67.69\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"92\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">beta_decentered</text>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"376\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"376\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- beta_decentered->y -->\n", | |
| "<g id=\"edge5\" class=\"edge\">\n", | |
| "<title>beta_decentered->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M105.21,-256.08C118.86,-239.23 141.31,-213.16 164,-194 218.88,-147.66 297.71,-115.63 342.16,-99.99\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"343.58,-103.2 351.89,-96.63 341.3,-96.58 343.58,-103.2\"/>\n", | |
| "</g>\n", | |
| "<!-- zeta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>zeta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"205\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"205\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">zeta</text>\n", | |
| "</g>\n", | |
| "<!-- zeta->y -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>zeta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M210.4,-256.23C216.29,-239.48 226.8,-213.49 241,-194 269.35,-155.06 315.98,-123.31 346.34,-105.27\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"348.31,-108.17 355.2,-100.12 344.79,-102.12 348.31,-108.17\"/>\n", | |
| "</g>\n", | |
| "<!-- Omega -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>Omega</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"286\" cy=\"-274\" rx=\"36.29\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"286\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">Omega</text>\n", | |
| "</g>\n", | |
| "<!-- Omega->y -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>Omega->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M287.43,-255.72C290.24,-229.5 298.26,-178.82 320,-142 327.65,-129.05 339.37,-117.26 350.12,-108.1\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"352.51,-110.66 358.06,-101.64 348.1,-105.23 352.51,-110.66\"/>\n", | |
| "</g>\n", | |
| "<!-- Chi -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>Chi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"367\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"367\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">Chi</text>\n", | |
| "</g>\n", | |
| "<!-- Chi->y -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>Chi->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M358.88,-256.62C348.62,-235.59 331.95,-200.12 329,-186 325,-166.86 322.06,-160.28 329,-142 333.7,-129.6 342.78,-118.25 351.72,-109.26\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"354.22,-111.7 359.09,-102.29 349.42,-106.61 354.22,-111.7\"/>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"526\" cy=\"-160\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"526\" y=\"-156.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge6\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M504.69,-148.91C499.86,-146.63 494.76,-144.23 490,-142 461.98,-128.87 430.04,-114.03 407.11,-103.4\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"408.42,-100.15 397.87,-99.12 405.47,-106.5 408.42,-100.15\"/>\n", | |
| "</g>\n", | |
| "<!-- theta_decentered -->\n", | |
| "<g id=\"node7\" class=\"node\">\n", | |
| "<title>theta_decentered</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"411\" cy=\"-160\" rx=\"70.39\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"411\" y=\"-156.3\" font-family=\"Times,serif\" font-size=\"14.00\">theta_decentered</text>\n", | |
| "</g>\n", | |
| "<!-- theta_decentered->y -->\n", | |
| "<g id=\"edge7\" class=\"edge\">\n", | |
| "<title>theta_decentered->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M402.53,-142.05C398.38,-133.77 393.31,-123.62 388.71,-114.42\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"391.76,-112.69 384.15,-105.31 385.5,-115.82 391.76,-112.69\"/>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node8\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"526\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"526\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M526,-255.99C526,-238.06 526,-209.56 526,-188.44\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"529.5,-188.17 526,-178.17 522.5,-188.17 529.5,-188.17\"/>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.files.Source at 0x7ffa187bb040>" | |
| ] | |
| }, | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "graph.unflatten(2)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "id": "printable-afternoon", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/svg+xml": [ | |
| "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n", | |
| "<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n", | |
| " \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n", | |
| "<!-- Generated by graphviz version 2.43.0 (0)\n", | |
| " -->\n", | |
| "<!-- Title: %3 Pages: 1 -->\n", | |
| "<svg width=\"356pt\" height=\"372pt\"\n", | |
| " viewBox=\"0.00 0.00 356.00 372.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n", | |
| "<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 368)\">\n", | |
| "<title>%3</title>\n", | |
| "<polygon fill=\"white\" stroke=\"transparent\" points=\"-4,4 -4,-368 352,-368 352,4 -4,4\"/>\n", | |
| "<g id=\"clust1\" class=\"cluster\">\n", | |
| "<title>cluster_class</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"108,-122 108,-300 340,-300 340,-122 108,-122\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"318.5\" y=\"-129.8\" font-family=\"Times,serif\" font-size=\"14.00\">class</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust2\" class=\"cluster\">\n", | |
| "<title>cluster_annotator</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"189,-153 189,-228 259,-228 259,-153 189,-153\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"225\" y=\"-160.8\" font-family=\"Times,serif\" font-size=\"14.00\">annotator</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust3\" class=\"cluster\">\n", | |
| "<title>cluster_item</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"8,-8 8,-300 100,-300 100,-8 8,-8\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"79.5\" y=\"-15.8\" font-family=\"Times,serif\" font-size=\"14.00\">item</text>\n", | |
| "</g>\n", | |
| "<g id=\"clust4\" class=\"cluster\">\n", | |
| "<title>cluster_position</title>\n", | |
| "<polygon fill=\"none\" stroke=\"black\" points=\"22,-39 22,-114 92,-114 92,-39 22,-39\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"62\" y=\"-46.8\" font-family=\"Times,serif\" font-size=\"14.00\">position</text>\n", | |
| "</g>\n", | |
| "<!-- pi -->\n", | |
| "<g id=\"node1\" class=\"node\">\n", | |
| "<title>pi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"53\" cy=\"-346\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"53\" y=\"-342.3\" font-family=\"Times,serif\" font-size=\"14.00\">pi</text>\n", | |
| "</g>\n", | |
| "<!-- c -->\n", | |
| "<g id=\"node6\" class=\"node\">\n", | |
| "<title>c</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"53\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"53\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">c</text>\n", | |
| "</g>\n", | |
| "<!-- pi->c -->\n", | |
| "<g id=\"edge3\" class=\"edge\">\n", | |
| "<title>pi->c</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M53,-327.7C53,-319.98 53,-310.71 53,-302.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"56.5,-302.1 53,-292.1 49.5,-302.1 56.5,-302.1\"/>\n", | |
| "</g>\n", | |
| "<!-- zeta -->\n", | |
| "<g id=\"node2\" class=\"node\">\n", | |
| "<title>zeta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"305\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"305\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">zeta</text>\n", | |
| "</g>\n", | |
| "<!-- beta -->\n", | |
| "<g id=\"node5\" class=\"node\">\n", | |
| "<title>beta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"224\" cy=\"-202\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"224\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">beta</text>\n", | |
| "</g>\n", | |
| "<!-- zeta->beta -->\n", | |
| "<g id=\"edge1\" class=\"edge\">\n", | |
| "<title>zeta->beta</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M289,-259.17C277.24,-249.01 261.06,-235.03 247.79,-223.56\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"249.82,-220.69 239.97,-216.8 245.25,-225.99 249.82,-220.69\"/>\n", | |
| "</g>\n", | |
| "<!-- Omega -->\n", | |
| "<g id=\"node3\" class=\"node\">\n", | |
| "<title>Omega</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"224\" cy=\"-274\" rx=\"36.29\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"224\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">Omega</text>\n", | |
| "</g>\n", | |
| "<!-- Omega->beta -->\n", | |
| "<g id=\"edge2\" class=\"edge\">\n", | |
| "<title>Omega->beta</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M224,-255.7C224,-247.98 224,-238.71 224,-230.11\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"227.5,-230.1 224,-220.1 220.5,-230.1 227.5,-230.1\"/>\n", | |
| "</g>\n", | |
| "<!-- Chi -->\n", | |
| "<g id=\"node4\" class=\"node\">\n", | |
| "<title>Chi</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"143\" cy=\"-274\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"143\" y=\"-270.3\" font-family=\"Times,serif\" font-size=\"14.00\">Chi</text>\n", | |
| "</g>\n", | |
| "<!-- theta -->\n", | |
| "<g id=\"node7\" class=\"node\">\n", | |
| "<title>theta</title>\n", | |
| "<ellipse fill=\"white\" stroke=\"black\" cx=\"64\" cy=\"-202\" rx=\"27.9\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"64\" y=\"-198.3\" font-family=\"Times,serif\" font-size=\"14.00\">theta</text>\n", | |
| "</g>\n", | |
| "<!-- Chi->theta -->\n", | |
| "<g id=\"edge4\" class=\"edge\">\n", | |
| "<title>Chi->theta</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M127.39,-259.17C116,-249.07 100.35,-235.21 87.46,-223.79\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"89.65,-221.05 79.85,-217.04 85.01,-226.29 89.65,-221.05\"/>\n", | |
| "</g>\n", | |
| "<!-- y -->\n", | |
| "<g id=\"node8\" class=\"node\">\n", | |
| "<title>y</title>\n", | |
| "<ellipse fill=\"grey\" stroke=\"black\" cx=\"57\" cy=\"-88\" rx=\"27\" ry=\"18\"/>\n", | |
| "<text text-anchor=\"middle\" x=\"57\" y=\"-84.3\" font-family=\"Times,serif\" font-size=\"14.00\">y</text>\n", | |
| "</g>\n", | |
| "<!-- beta->y -->\n", | |
| "<g id=\"edge6\" class=\"edge\">\n", | |
| "<title>beta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M205.49,-188.59C175.94,-168.77 117.99,-129.9 83.88,-107.02\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"85.59,-103.96 75.34,-101.3 81.69,-109.78 85.59,-103.96\"/>\n", | |
| "</g>\n", | |
| "<!-- c->theta -->\n", | |
| "<g id=\"edge5\" class=\"edge\">\n", | |
| "<title>c->theta</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M55.66,-256.05C56.87,-248.35 58.34,-239.03 59.7,-230.36\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"63.19,-230.7 61.29,-220.28 56.28,-229.61 63.19,-230.7\"/>\n", | |
| "</g>\n", | |
| "<!-- c->y -->\n", | |
| "<g id=\"edge7\" class=\"edge\">\n", | |
| "<title>c->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M41.43,-257.66C35.89,-249.35 29.85,-238.63 27,-228 14.8,-182.5 10.01,-165.94 27,-122 28.65,-117.74 31.13,-113.69 33.97,-109.99\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"36.61,-112.28 40.58,-102.46 31.35,-107.66 36.61,-112.28\"/>\n", | |
| "</g>\n", | |
| "<!-- theta->y -->\n", | |
| "<g id=\"edge8\" class=\"edge\">\n", | |
| "<title>theta->y</title>\n", | |
| "<path fill=\"none\" stroke=\"black\" d=\"M62.94,-183.99C61.81,-165.98 60.02,-137.29 58.7,-116.15\"/>\n", | |
| "<polygon fill=\"black\" stroke=\"black\" points=\"62.19,-115.93 58.07,-106.17 55.2,-116.37 62.19,-115.93\"/>\n", | |
| "</g>\n", | |
| "</g>\n", | |
| "</svg>\n" | |
| ], | |
| "text/plain": [ | |
| "<graphviz.dot.Digraph at 0x7ffa186a62b0>" | |
| ] | |
| }, | |
| "execution_count": 13, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "graph = numpyro.render_model(logistic_random_effects, (annotators, annotations), {\"reparam\": False})\n", | |
| "graph" | |
| ] | |
| }, | |
| { | |
| "attachments": { | |
| "d713a463-d7c4-4ed0-b89f-f9470036e9ff.png": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvwAAAHcCAYAAACqHH4kAAAABHNCSVQICAgIfAhkiAAAIABJREFUeF7snQeAFEX2xt/ObCRLRlCCkpTgiYhiQjGLCRXzmT09wBww/NUzYY6HOQdOMQuekWAiCaIEQUBykJxl8/zfV0ut7dwuTOiZ6en56m7c3aGnu+pXNVVfvXr1KiukSZhIgARIgARIgARIgARIgAR8SSDgy1KxUCRAAiRAAiRAAiRAAiRAAoYABT8bAgmQAAmQAAmQAAmQAAn4mAAFv48rl0UjARIgARIgARIgARIgAQp+tgESIAESIAESIAESIAES8DEBCn4fVy6LRgIkQAIkQAIkQAIkQAIU/GwDJEACJEACJEACJEACJOBjAhT8Pq5cFo0ESIAESIAESIAESIAEKPjZBkiABEiABEiABEiABEjAxwQo+H1cuSwaCZAACZAACZAACZAACVDwsw2QAAmQAAmQAAmQAAmQgI8JUPD7uHJZNBIgARIgARIgARIgARKg4GcbIAESIAESIAESIAESIAEfE6Dg93HlsmgkQAIkQAIkQAIkQAIkQMHPNkACJEACJEACJEACJEACPiZAwe/jymXRSIAESIAESIAESIAESICCn22ABEiABEiABEiABEiABHxMgILfx5XLopEACZAACZAACZAACZAABT/bAAmQAAmQAAmQAAmQAAn4mAAFv48rl0UjARIgARIgARIgARIgAQp+tgESIAESIAESIAESIAES8DEBCn4fVy6LRgIkQAIkQAIkQAIkQAIU/GwDJEACJEACJEACJEACJOBjAhT8Pq5cFo0ESIAESIAESIAESIAEKPjZBkiABEiABEiABEiABEjAxwQo+H1cuSwaCZAACZAACZAACZAACVDwsw2QAAmQAAmQAAmQAAmQgI8JUPD7uHJZNBIgARIgARIgARIgARKg4GcbIAESIAESIAESIAESIAEfE6Dg93HlsmgkQAIkQAIkQAIkQAIkQMHPNkACJEACJEACJEACJEACPiZAwe/jymXRSIAESIAESIAESIAESICCn22ABEiABEiABEiABEiABHxMgILfx5XLopEACZAACZAACZAACZAABT/bAAmQAAmQAAmQAAmQAAn4mAAFv48rl0UjARIgARIgARIgARIgAQp+tgESIAESIAESIAESIAES8DEBCn4fVy6LRgIkQAIkQAIkQAIkQAIU/GwDJEACJEACJEACJEACJOBjAhT8Pq5cFo0ESIAESIAESIAESIAEKPjZBkiABEiABEiABEiABEjAxwQo+H1cuSwaCZAACZAACZAACZAACVDwsw2QAAmQAAmQAAmQAAmQgI8JUPD7uHJZNBIgARIgARIgARIgARKg4GcbIAESIAESIAESIAESIAEfE6Dg93HlsmgkQAIkQAIkQAIkQAIkQMHPNkACJEACJEACJEACJEACPiZAwe/jymXRSIAESIAESIAESIAESICCn22ABEiABEiABEiABEiABHxMgILfx5XLopEACZAACZAACZAACZAABT/bAAmQAAmQAAmQAAmQAAn4mAAFv48rl0UjARIgARIgARIgARIgAQp+tgESIAESIAESIAESIAES8DEBCn4fVy6LRgIkQAIkQAIkQAIkQAIU/GwDJEACJEACJEACJEACJOBjAhT8Pq5cFo0ESIAESIAESIAESIAEKPjZBkiABEiABEiABEiABEjAxwQo+H1cuSwaCZAACZAACZAACZAACVDwsw2QAAmQAAmQAAmQAAmQgI8JUPD7uHJZNBIgARIgARIgARIgARKg4GcbIAESIAESIAESIAESIAEfE6Dg93HlsmgkQAIkQAIkQAIkQAIkQMHPNkACJEACJEACJEACJEACPiZAwe/jymXRSIAESIAESIAESIAESICCn22ABEiABEiABEiABEiABHxMgILfx5XLopEACZAACZAACZAACZAABT/bAAmQAAmQAAmQAAmQAAn4mAAFv48rl0UjARIgARIgARIgARIgAQp+tgESIAESIAESIAESIAES8DEBCn4fVy6LRgIkQAIkQAIkQAIkQAIU/GwDJEACJEACJEACJEACJOBjAhT8Pq5cFo0ESIAESIAESIAESIAEsomABEiABEgg+QRCoZCUl5fL559/Lm+88UbyM8AnkgAJVBI499xz5ZhjjhF8L7OyskiGBHxHgILfd1XKApEACaQLAQiLX3/9Vbp37y4XXHBBumSb+SQBXxH47rvvzPcQgp+JBPxKgILfrzXLcpEACXiegLUm5uXlSd26dT2fX2aQBPxIoGbNmn4sFstEAn8hQB9+NggSIAESSBGBQCBgXAiYSIAESIAESCCRBGjhTyRd3psESIAEqiFg/YTx076quZRvkwAJJJAAffYTCJe39gwBWvg9UxXMCAmQAAmQAAmQAAmQAAm4T4CC332mvCMJkAAJkAAJkAAJkAAJeIYABb9nqoIZIQESIAESIAESIAESIAH3CVDwu8+UdyQBEiABEiABEiABEiABzxCg4PdMVTAjJEACJEACJEACJEACJOA+AQp+95nyjiRAAiRAAiRAAiRAAiTgGQIU/J6pCmaEBEiABEiABEiABEiABNwnQMHvPlPekQRIgARIgARIgARIgAQ8Q4CC3zNVwYyQAAmQAAmQAAmQAAmQgPsEKPjdZ8o7kgAJkAAJkAAJkAAJkIBnCGR7JifMCAmQQNIJhEIh157J4+ldQ8kbOQjE0kbZFtmESIAESOCvBCj42SJIIMMJQFCVl5dLIBAQ/G5/4vftCaft/VuGI2XxXSRQleBH27Pv29/x07ZjFx/PW5EACZCALwhQ8PuiGlkIEoiPAEQ+BFNhYaEsWbJEVqxYIZs3b5YtW7ZIQUGB1KxZU+rVqye77rqr+Rkuwij+4+PPT2+fgFPc40pn+7O/2wnqjiaq238S/5UESIAE/EmAgt+f9cpSkcD/iPJwJBD0y5cvl99++02mTZsmEyZMkN9//10aN24sjRo1MiIfL0wC/vjjD1m/fr0sWrRI8vPzpVu3bubVtm1badGihZkEZGdX351wQhBOn3+DQPjE0VLB+xs3bpS1a9eaNrdw4UJZvHixzJkzR1atWmUmo2iTaJ+1atWSpk2bmrbYvHlzad26tWmT9evXN/9WXdur7n3WDAmQAAn4kUD1I7QfS8sykUCGEoCrg3V9WLp0qXz++eeyYMECQwPivn379tK3b18jlHJzc8211QkiWP9/+eUX+fXXX+WDDz6Q0tJSI6yOOOII6dKli+Tk5FT72QzFz2JXQ8BplcclxcXFMmPGDPnmm29k9erVph1B1O+8886yzz77yCmnnGKEPN7Ly8szk1GsQmESgIkB2ubXX38tW7duNU9s1qyZHHLIIdKxY8fKNh2+WlBN1vg2CZAACfiKAAW/r6qThSGBqglAOG3atEnefvttGTlypBx22GFG4MNFBwIKqTqBH35HTBAgovCClRXW17lz58ozzzwjderUkf79+0ubNm2iumf4M/h3ZhCwk1CUdubMmfLUU0+ZCWSvXr1MG4XlHu0zGAxWArHtFMIdE02If6xK7bnnnqYNl5SUmMkCVqumT58uDz30kGmXAwcONO0y0naeGTXAUpIACWQKAQr+TKlpljMjCIS7SOBvCKCxY8fK9ddfb6zwVphb4YOfeNlVAIDanihyijT493fo0MFYUI855hj55JNP5Mwzz5TLL79cTj31VCPG7CZgWwHbu3dGVFKGF9LZRsvKyowwf+SRR0wbveOOO0wbdbZB217QPp1tyNl+nfeEaxkmALDud+3aVc4++2z56KOP5LzzzjP3RtvEpNX5GbbJDG+ULD4JZACBLO303IvLlwHAWEQS8DIBiCJ8pa2AgdvO0KFDjS/0xRdfbMQ5/i0RAsc+G9ZVTCrWrFljRH/Pnj0rn2c3B3uZYbLz9thjj5l9EZdddlmyH52S50Hko/1t2LBB3n//fZkyZYrsu+++ctZZZ213H0i8mcUelLfeestY/Xv06CF9+vSRunXrmtuiXTJlLoExY8bITz/9JFddddVf+s/MJcKS+5EALfx+rFWWKWMJQOzbF1x3XnjhBenXr5+xbMKtIRFC3wkbwgnW05tvvll++OEHee2118zPAQMGGN9+JhJAG5w3b548+uij0rJlSyOyWrVq9Re3nURQgrjHpBeb1IcNGyb33HOPXH311cZtiIkESIAE/E6AZg2/1zDLl1EEILjh74xNj0OGDJGnn37abHSE2E9Gsm4XyMN+++0njz/+uLGowp2oqKgoGVngMzxOAHs+MAE8+uijTbtAVJ1ET0QtEnw/EM3npptuMhvML7nkErMPhYkESIAE/E6Agt/vNczy+Z4ARDZecJXAC370cON54IEHpGHDhsZdwb4S5c4DyHay4XweIqm8+OKLxooKP224Vdh80pvQ902zsoBon9hLgokoVn9g1T/uuOOM0MfkEK9Ei37c37ZNPA++/RdddJFccMEFMmnSJLNZGG2TiQRIgAT8SICC34+1yjJlJAGIKoTJfP3112XQoEEm1KZXEiKkwE8d/uoQfokWd14pN/NRQQCTO4TLRNu88cYbKzfmppIP2uDJJ59sJh8vv/yyTJ48OZXZ4bNJgARIIKEEKPgTipc3J4HEE4BwgaAaPXq0EfzPP/+8cZPwUkI0H7hxYPPw4MGDqz1wyUt5Zl7cIzB//nx56aWX5Nprr5VOnTp5asK3//77G7c3TEaxAsVEAiRAAn4kQMHvx1plmTKOAEIbIvQgRHXt2rU9FXUEbhQIlQj3Hrj1wIf7008/Ne4TNrIP3Xv812Stq9m6deuMexlcaNq1a2fagnWtSVWpne49yAvOlDjhhBPMhMTpdpaq/PG5JEACJOA2AQp+t4nyfiSQZAIQVv/+97+le/fu0q1btyQ/PbrHwXcaGzW//PJLWbZsmfkwxX50DNPpamzUvvfee805DYcffrhn6xoTABxEt9tuu8kTTzxBt7N0amTMKwmQQEQEKPgjwsSLSMC7BOAbPWvWLBPzHqEvvewfD3EPKy/OAxgxYoR3oTJncROwfvv2DAhY9r3aNpFX5A/+/Fgtgz+/V/Mad8XwBiRAAhlJgII/I6udhU53Ak53ifvvv18efPBBqVGjRqVIgVjxomCxkXwwOXnvvfdk8eLF6V4VzH81BCD04WZ2ww03GDczrO6g/r2W8D2xkYKQT5wUjUhXDNfptZpifkiABOIh4L3eN57S8LMkkEEEYJWElfyYY46RNm3apEXJrftOgwYNzKFHt912m3GfYPIfARy4hoO1dt1117QqXNeuXc3+kmnTpqVVvplZEiABEtgeAQr+7dHhv5GAhwnAgopDrY466ijP+kaH47OrDhD+8OnGSsX3338ffhn/9gEBWMkPPfRQyc3NTavS1KpVS4488kh59tln0yrfzCwJkAAJbI8ABf/26PDfSMCjBCCcFy1aZCLfwLpv3SW86MbjRIj8Wbce5L1///4mlCgOPcIkAC9MApjSj4CtO9Qf9pVs3rzZbCT3epsMJ438YqKyatUqGTduXGUkqfDr+DcJkAAJpBMBCv50qi3mlQS2EYC4GjlypMD9IN0sqLYSIQxxXgAO5FqwYIF5G+VKN4HIRvknAdQd6vW+++4zp9imY11atzO4nOFALpTHvse6JgESIIF0JUDBn641x3xnNAH4GI8aNUoOOuigtOUAS3/dunWNnzeiDFHsp21V/iXjv/76qyD2fo8ePcz76Sr6DzzwQFMOOxn1R+2wFCRAAplKgII/U2ue5U5rAj/++KM0btxYGjZsmPByhPQJanjX//z1Zd6LM8GtB7HPcRIrU/oTwKQNE1FY91G3EPvpJvidLmcHHHCA/PTTT+lfMSwBCZBAxhOg4M/4JkAA6Uhg+PDhZtNr0lKWfZJV/fp35Xux5cL6fCOKixX8dJ2IjaVXPoW9GIhhj8hRfkh77723YMWC+0r8UJssAwlkNgEK/syuf5Y+TQl8++230rNnz+TmHgI/SwW/ebnzaFh/mzdvbk7dpdh3h2kq77Jy5Upz+FuzZs1SmQ3Xno1yIB4/NiAzkQAJkEA6E6DgT+faY94zigD89iGKIUAQkhO+724m3Nu+8KzKhPfLS6UsVCblqvV1W62+yvW/8UXTse4ederUMe4fOOE03dw/3OSfLvdCG7Ft0W5otT/XrFljXM38kmrWrGnaJA/h8kuNshwkkLkEKPgzt+5Z8jQjAN9iiK2lS5ea6Db4222BHFJRj5cYMW9fcOPBs0XKVPFD8Ju/4+RnBT/KgfL8/PPPtPLHyTRZH0fdQeSHR7BZvXq11K9f35Mn6sbCBqdXo31u3bo1lo/zMyRAAiTgGQLZnskJM0ICJBARAUQOadKkSaXYd1P0W7/6xYsXS3FxsckPhL55ZQWkmbrf1K1T27yvEfUjym8kFzVq1Mi49TClBwEIfbS7e++9V/r162c2XuMsiI0bN8pOO+1kJm5utstUUbEbj4uKilKVBT6XBEiABFwhQMHvCsbob+L0V/bDwBg9gdg/YdnZn7DAZUpCW4G1sXbtCtGNcrsnrkISCJXIy3ffLg+8+bmUlBdKVqBUgvqM0vI8/bdSueHZoXL+kXtLrpSquV9PUA2648wPS+r69etNNUZSHuf3J5F1b/OSiO8o7u18JaIc9v42/26Vw97nrrvuktdff13OO+88c4haYWGhOVfB1VRaJmuzNYRraYnMnvitDH3zK5m3do50O7iPnHfB6VJD3cFyy0ukLJArOVKoE1Ntqy5NRjGJQVmxGZnpTwK2XTmZgBPez6T+mG2CBNKJAAV/imoLliNsVkyWcElRMRP2WFifjz32WHn22WcT9gwv3hjtBYLf+ha7mUe46iyeNUGWNtxLvh/5d3nh3f/KqeddLt8+c4tMLdpN7rvjCinPKpLcsoCUqrjKDsLq6Y64KygokBtuuEGefPJJU6QdfS8gLvAZfI+stdlNFrgXDjQD50QlCCPcH6spKO8XX3zh+qNq1aol2dnZrlrbnXUDX/65c+fK7bffLk888YSJztOnTx9Xy4F2WausREZ+9Ip8Pq1Ebn34Ztm8aImcf0ZfWVNaS27750k6GS2XEuNklh/33hJn5iH4kUaMGCFTp051tVzpfjMbuQjjWK9evUxx3JpQpjsb5p8EvEiAgj9FtdKiRQv57bffUvT09H/s+PHj5bPPPsuoAcYKLVhQsYkQf2OAdWuQxVbc7Ibt5bpL95XVy+ZKqDRL6qooXb10rRS03keyVVIFQ0G1pIr+rv79avV3yZBqJjE33XSTXHXVVRGVCWWHNRmWV7fKH/6twL2t73YingHBhHp85ZVXzMTljDPOCM9C3H8j/9Y67WYZrNh79dVXzcQLh1SdcMIJlW5gbj4L7bL4j43y9rDP5aQBN0p+tk42m9WXi/9xpRQ2ayS5JUEJ5QQlN6tQl6IKpDQ7qJZ+d5L9zpWUlAjdev5karmgfeHcBdR/up747U5L4V1IwPsEKPhTVEdOK5mbg2OKipPUx1p2bordpBYgjoehzHB/2bRpk7mLk0Uct624l9pGmzRqqr+rEF23XDZu+EMCedmyct1qadA1T+V+trr3bFb5lSNlem2wXH38Ayr6Y0zO7wCEL07dtXUayXcCQtOmSK6PNpvIX7169RL2DFt+HJ6GsrRr1y7aLO7weidjXOwGJ9zT3rdr164yaNAgc+Iz9pW89957rgvjMt07Uli2ThbNXCr1CmpIfkinnjV1gnTRhVIYzJbi0iL55K3XpWnHA2Xfv7XRduneRNRObPr27SudO3feIe9MucC2AezZwMFktl250b4yhSHLSQLJJkDBn2zi256HDhOdY/iAnKLspNVjrShEpjNpgLFlxabIFStWmDpzs/zqqaz+z+qrrJ4RY959U7ZID8nPDcm8Fb9L84L6KvdLpbC4RAryNCwj2m52jonXE0+y7R/RXbp37x7xrdwsd3UPTfQz7P0T+ZxE3htieNKkSZX9GJ6F1SeIQDdTeaBc8sqKZOWaDbJi9RZ1J1NDvtSUHO1D1y9fKTs1zZMaBbV10pQvAd1XkhVEdCl39vVgdQRtlH7p/1uj4e03kW3tf5/Od0iABKIl4E6vGO1TeT0JkEBMBCA+cBjQggULjKuGmxPGkNrvs0pz5dfxH8jDQydKa43zX0PFVsmGjTJ76jj5/puvZfSMlTopKFef6TKNyx9fYE476YVwxEm7e+21V0xM+KHUEHAKPPs7VkRwRoSbKVAWlOyc+tJyt5C88NprsmDJKskuKdK9A7PkgzFjJC+kLkVHHidt2zSTLA0bG2+7dOYdLiton1hVYyIBEiCBdCZAwZ/Otce8ZxwBCCts9GzQoIERyW4mWOvVG1refvdjKdaNnt32bqORePLl4N4HyPD/vCDPvPSudNuzrV6l3Ybmw43OA6Ifp5hiE3bTpnAnYkoHAmiHeNmzIOzfaJerVq1ydSJaHlQnsoK6cv4lA2T2N8Pl7+f0k76n/F3ufPh5OahbT1m9YqHcqfs/fpixQDeXFGvgqHjXnf6sAXvgltN9LB3qh3kkARIggXACdOkJJ8K/ScCjBJwW1QMOOEDGjh0rbdtCgLuYNMzmTXc9KFfdVkdyNcKLxuWUK28fLBffUCAh9TOvkQc3HnWZCKmo0n+LJ6E8EPyIv7/zzjvTbSIemEn8rG2HzvaIx6Muccru8uXLXXU1QysLBPPkhNPOlt3ad5a77n1QmuzaSvpfd520a6aTxDKN/a9tc836Dbr9RCNIZWe5tml3y5Yt5lThREZrSmLV8VEkQAIZTCC+ETuDwbHoJJBKAghJOkbdGdx06cFRWnDSKchrKvX1cK18FU6hrDLJyWsidevXk5pmk6xekbXtZa6OPdm8wz2ppboPIblbntjzxk/GRgCn7EIcz5w5M7YbVPUp4zoWlGBOLemyz/7yzgcfyROPPSwdmjeWEp2gBgMFslPtPP2p16kPf8VJ0FXdKPr3Fi5caE4OpktP9Oz4CRIgAW8RoOD3Vn0wNyQQEQH4u2OjK9wn3EqQVSGIed2eKyr0sxGLR39KQK36ARVWapHPsd4S+lPfiivBQoxwh/PmzZPdd9/d3CvcahzXA/jhpBNA/WH1adiwYcb3HRO4eCdxAbjoYDUooMFgs3JU0OuxWngL7QWrTfpOqR4Kh0lBaba6/5THd0iWzTN+TpgwQTp16sTVp6S3JD6QBEjAbQIU/G4T5f1IIAkEELcdh93ArcetZPywoaT0rCGjsfA//UW9JPRnwFhQAzohgAUVosuNhIgusKIiJKV5/raXG/fmPZJPAPWHw7eef/75ypj88eYiy6wo6V0c7QPtM6RtMkeDxW7ctF4mzZgl40Z/K1vK9FwGI/5jT3aCgsno6NGjo4oeFftT+UkSIAESSCwBd0btxOaRdycBEggjAGF12GGHyZQpU1yLew5dBa+IkP6nHApLD9lSu77qrAqRX2FRhT01UOE2AT/+OBKE1Zw5c4wwtC49cdyOH/UAAdQpNu4eeeSR8vHHH7ti4YcNH2dDBPTeAY3Cg0g8Zg9JSNuhngVRu35DeXHof+T+W6+SfD2Aqzwr/q1pKMfbb78t+++/vyAMbryrFB6oGmaBBEggwwlQ8Gd4A2Dx05MA3CUgknH6JyzkbrlPVJhSK3ymjZlfxX2F24TlBLt/xVWxkHO6S2Az5FNPPSUnn3yyZGtUIKb0J2BXaG688UYZPnx45QFx8ZXM0eIcvxq3ngB89nVSqj91JmA268L1J96ElaehQ4fKhRdeyFWneGHy8yRAAp4gQMHviWpgJkggOgIQVrA84vTPESNGmA/bU0Gju5PjaiOm1D9aBVSF3zT+hsDPNiK/4jCjPwW/mQ9EmSD47eTk888/N0J/v/32i/IuvNyLBJwuWR06dJBWrVrJuHHj4s4qppym1aHBVb70tjp6BQP5Zm9JIEtFv7alIFzP4n6iCNomDoLD3hK6mbkAlLcgARJIOQEK/pRXATNAAtETsCIE/tKfffaZOYgrndK6devkiSeekFtvvVVycmCXZfIbARtJysayT5fyoW3Cd//8889PlywznyRAAiSwQwIU/DtExAtIwLsEEDLwJj10CC4UmzZtqvSZtq4zXsw5Tgh+66235IQTTpA2bdoYCyqT/wjsscceZjIHK797Lmfuc3K6mSGfo0aNMpZ9nGjNRAIkQAJ+IUDB75eaZDkyigBEMk45xeuQQw6R9u3bm1CI8IvHy6ubDJEvnBA8Y8YMOfHEE02dUfD7s+nWrl3b7M947LHHZP369Ub0x+12liBUdkIC6/57771nIg3l5uq+ACYSIAES8AkBCn6fVCSLkbkEIJivvPJKmThxovz4449G7HtVRCNfgwcPlqOPPlpatGjh2Xxmbmtyr+RohzgvAqL/6quvNmIfE1SvJqw8nXPOOdKnTx8zgfbqd8ir/JgvEiABbxPwbu/rbW7MHQl4hgCEVMOGDeXMM8+UV199VX7//fdKC7/TXSGZGXY+1/4OKy989uHGA1GF5NWViGSy8uuzrGC+6KKLzOTutddeM1GlUtUmnZzD87BlyxZ58sknzQTl7LPPNhMTCn6/tkx3ymXbkFdXrdwpZWLuEj4+JOYpvGs4gfjjl4XfkX+TAAkklYC1mh588MEC4XLppZfKM888I7vssovJR6qFCzp3bNx8+umnBW4eV111VSUfL1t8k1qJPnyYs24HDhwo9913n3z55Zdy3HHHVa5CpbJtol1aV5533nnHnFqN/TDIUyrz5cOm4MsiwbgyZswYT6+oeh38gw8+aIxVTMkhQMGfHM58CgkkjADECYQLQlzCco6Dj/r37y9DhgyR5s2bm+cGg24EK4ytCMgbTl7FpuKbb75ZcEowU2YRwKB+zTXXyBlnnGHCyeJAq1QnCH5MSj799FOzUfehhx4yE1ImEoiEwLx586Rv375y4IEHcoIYCbCwazAWbN68mYI/BnaxfoSCP1Zy/BwJeISAFS74idSzZ0+5/PLhb2U0AAAgAElEQVTL5d577zU/99xzT/O+/Xf8nggLpvP+9nlLliyRl19+WdauXSt333231KxZk248pjYyK0FYY/KJDbGXXXaZEUp41apV6y8gEtEu7QPC2ycmoDhN97///a+ZkGJSksjnZ1aN+7+0aNNov/Xq1fP03hQv1gS+i/n5+V7Mmq/zRB9+X1cvC5cJBKy/sdPv+Mgjj5TTTz9dHnnkEXnxxRdl69atRmgn0t/U3h8/ESlo7Nixcs8990jjxo3NT4h9JOTTmddMqKNMLyPqG6tMCHUJ1665c+caizpEdzIT2iZeK1askAceeMC48WBvAdoo22Qya8Ifz7J9mT9Kk7xSYGJtJ+CcZCePOwV/8ljzSSSQFALWvadXr15GVC1atEgGDBggK1euTKh13XbghYWFJhQj/DOxnwAvWnOSUvVp8RCI6xtuuMGIf6xGzZo1K6Ht0gkF343p06cb17eOHTsaN6PwVYa0gMhMkgAJkECUBOjSEyUwXk4CXiYA0Q2rkxXf8Oe/88475YMPPpB+/foZd4oePXrIrrvuanz+3Up4HmKYIywoLLht27Y15wLg4CW7xwDPojXHLeLpex9Y+rHag4kgzpDAoXG9e/c25zLA7aeqdum0CEZacudnEHITPtdwKcLK05tvvmnaKNot22SkRHkdCZBAOhNwb8RPZwrMOwn4hADEPlK4iDnllFOMuILPMiL41KhRQw499FDp1q1bpauNFT9WKNl7OEWRdQmy/1ZcXCxz5syRL774wrhJ1KlTR2677Tb529/+9heiqdw07JOq9U0x0HZs+2nXrp289NJL8tFHH5lVoSZNmshRRx0lOKUXB1+FC3I7ka0KhrO92n/HatPkyZNN+4RbW+fOnWXo0KGmzdvvSlX34nskQAIk4DcCFPx+q1GWhwSqIAAxhE2J2MS7bNkyI9KHDx9ufPwh+hHDH64WEELh4tyKLCu+EEsd4v6rr76Sjz/+2EQFwkFahx9+uDmwiCeUVlEBfKtaAojac8EFF8jChQvl559/lqeeesqcJYG2ut9++0ndunUrJwjhE1k7OcXNbTvFpBSrTV9//bXxz2/ZsqVZPejQoYNxI2IiARIggUwkQMGfibXOMmccASuMIOYRnx+uE7Dww+oJ0X7hhRfK4sWLTchM+P5jEtCoUSMj5jds2GAElLXkQ5jh88cff7yJwAPBhgTBFW6RzTjQLHBUBKyAx08I81atWhlxjgnloEGDzAnSO++8szkBt0uXLqY9FhQUmHaKz0DcY5UJ5zysXr1aJk2aZNx1cMgbzqXA6gHaJ661z8JnwicOUWWaF//l++40COAfyJYNhAS8SYCC35v1wlyRgOsEnC4M1ooPiz6s+3hBCCF85pQpU4y1dcGCBTJ16lRj9Ud88r333ttYYlu3bl2txdX1TPOGvibgbJNOoQjXHkwmISYR0WfkyJFmHwoOlispKTGCfvbs2dKpUyfjnoYJANop2uZbb71lJg/2fuECNHwFy9eAE1w4p9i3v4fzTnAWeHsSIIEICVDwRwiKl5GA3wlgoIYFFa45SNYS6rTaczD3eyvwVvnQ3nbffXfzQrJtEZNRuOtcccUVJg463nduVmc7TWw9YlUFUb+wqoLVlfnz55u+Ay8mEiABbxJgWE5v1gtzRQIpJwDRZF/IDH63VryUZ44ZyCgCth2Gb0q3wt75PsV+4psGNkNjVRCuf1hRweF+48aNoztP4tHzCSQQMwEK/pjR8YMk4C8CToGP3yGi7E/n787r/EWApfEKAWcbs23PKfqtqHe20/D2a//2Spn8lA9E4+rfv3+lwD/wwAPluOOO81MRWRYS8B0BCn7fVSkLRAIkQAIkQAKJJXDCCSdI9+7dzf4enKmAxBXAxDLn3UkgHgIU/PHQ42dJgARIgARIIAMJ4PTsRx991GzmP+igg+jOk4FtgEVOLwLctJte9RVTbsMjKWCpGydPItTib7/9ZsIubtq0SX799VcTnQXv429Es0AM7Pr165tTKRH5AhExEM+9TZs25pAlu1HOLrHbzXP275gyzA+RAAmQAAkkjYBzg759KPpyvI/QvdgkjbMR8PuSJUvMWLFq1SozTuA07auvvtqMFRgjcJgarP74G+MENvIiipJzHGKkpOiq1snOfhJjOOoAG6Y3btxoIlchdPKiRYvMGL5582ZTNxinMWajXlq0aGHGcJy5grqpVatW5d4sjuHR1Uk6Xk3Bn461FkOebYcBcY9TJxGvGp05OmMIenTIBxxwgJx11lmmg0CHjc+g40BHgk5l+fLlsnTpUpk4caLp6BEeD8u6OBzHxsWOIWv8CAmQAAmQQIoJON1xysrKZObMmSYUKsYMREKCgMcZCDgXAWccYOzAWIGD9iA4cR0mBTAiQXTivU8++USwwReuP8ccc4wZVyj2Y6toWz8Infzpp5/Kjz/+aAxuEPM4awJ1g3rBpMuO4dawh3F83rx5JrIS6gMbrDEhQF2cdNJJ5mR0TA5oqIutbtLlUxT86VJTceYTX3JEU3jhhRfMqainnHKKmeUj3jU6Cufs3vl706ZNBS+coIr30ekgFjY6dnTwzz//vAwePFjuvPNOE7GBnXmcFcWPkwAJkECSCaBvh8hH/w6hD4s9Dt4799xzzdkGOKHYuaJrs2fHChiN8GqlB6fBAIT3MeZAYEL4f/TRR9K3b19jUMI9MeYwRU4A9YLwpzhIbtiwYdKnTx/DEmIfY7jT4IZrbb1kZ2ebCRpeiKSEhH+HwQ5jOF5PP/20+fnAAw/IHnvswTE88mpJuysp+NOuyqrPML7IsNpj1o+fSFiC/eabb+Thhx+Wjh07yujRo03nEE9Cx48XngeRD8vBP//5T4FP56233iqdO3euXMK1ETbieV4iPwtOsIIgoZO0HWUin8l7pzcBtHuII0xuMaCyzaR3fWZq7tGOnS+s4j711FPGcvzss88aFxAkG/LUcqqqvVf1HlxHMAFAwpgwYMAAuf/++6Vr167y2GOPSc+ePY3FH5+1IjX8WfaZmfKzqjEc4vzzzz+Xxx9/XA455BAZNWqUWVWJJ2HFBi/UMVYFMMm77LLLzMTulltuMVoBfRsSx8V4SHvrsxT83qqPuHNjO0+I2O+//17++9//GiGOWbw9vCbuh4TdAL6A6JDGjx9vjrVHR4IYzYl6npv5h+C/9957jS8jEwlESgADM1wcTj75ZGMJZSKBdCNg/fbhpvnhhx/KtGnT5NhjjzUrtk6x51a58H1BX3vllVfKkCFDZMyYMSaUJ1xJmSoI2IkPfmIMh/stOMFl55133jGCPBEJAh+GQbyee+458xyM4ZiwVTWZS0QeeM/EE6DgTzzjpD4BnTh86+FqM3XqVLnkkkuMRQUWATsZcCtD6JRswnN79OhhXH8mT54s119/vVxwwQVy4oknenqJEBaloUOHyquvvmqKws7Nrdbh3/ug3RcVFcn7779vopNQ8Pu3rv1eMmzy/Ne//mWE9913321cROwqsdtlt+MFXFBuvvlmmT59urH4Y0/YwIED47Zau53fVNwP4w9WD+EOhdUWbJbGGA5XG/jYJzKh3tGf4VmokxtuuMGctdCrVy+Oi4kEn8R7U/AnEXYiHmVdd6xlAEIEnSnSQw89VOl6Y5dK3RS0VS2/wo+zd+/eZhPQRRddJDiCHfsFcK0X3XuQJyw9W7/TRNQR7+k/AhiQYXlz8/vkP0oskdcIQExaUTlr1izjB/7EE0/8RdQlYh8Wnum8L/rcfffdV9577z3j6gPL/3XXXWdWWu1YVtX44jWebuQnfAxH3wKxjZXyBx98sHK/QyJ4VHVPGDCwwRruPnDzQd3hYDWvjuFu1EGm3INx+H1S0/hSzp0713SaWI6D5QT+kUjJFiXosLEEiWXbsWPHGn9NRARgIgESIAESSC0BGIVGjBhhRPbbb79t/MJTmeBChLHqnnvuMZt8Mzlh1ePyyy83YbBvv/12446bioQxHK66cO/B6veLL75ognUwpTcBCv70rr9KMY+OEgIb1nWIfqcLT7IFv30eJh533HGHWSLGAS3YQMxEAiRAAiSQGgLom7HfCqtTENrw3U72+BBeclj7EfQBrqew9q9evTr8El//Df54IfjFk08+Keedd55xcXKGyUx2HdnnIUITPAUQxeeZZ54xroxM6UuAgj8N6w4CGi+nDz38LxF269RTTzUbruzyG5ZRk91Z4Nl4Ll5YlrzqqqtMSDFsOsKScnje07AKmGUSIAESSAsCdrzAT/iEI4DDtddea+K1W7GZ7DHCCQ7jRM2aNY17Ub9+/eT//u//zHiBvWh2vEgL0FFkMnwMx1h+3333mXNtDj/88L+M4alwhbVjOH7CTRdjOM5WQBCQ8LxHUWxemmICFPwproBYH48O2m7ugaUGcY0vvPDCWG+X0M9htQEdxtdffy0jR478y0QloQ/mzUmABEggwwlATOKF03EhqhGieZdddvEkleOPP95MRBBrPpWTkGTBwRiOle8bb7zR+MwjSpIXEyIsYV/Bu+++a6LxOY2NXswv81Q1AQr+qrl4+l10hJhl4ycONFm4cKGJnVvVBhyvFASHd8GqhMkJogcxkQAJkAAJJJ4AxokVK1YYt8pHHnnEuPF4VbDhjBhEd/vuu++Mgcivoh/lsnUAH3kcYgnffS+Xt0WLFjJo0CCjNTB5ZEo/AhT86VdnJsfoGBA/+dtvvzXWARyE5cXOwuYJPxHuCxuRsDkL0XvsyY5eHXzStGkw2yRAAiRQSQD965dffimdOnWS/fff35PR0mxmMU7AOARrMvz54drj54RIST/88IPxk0eEIq+P4WhDOIUZ/vzW5cquIPm5nvxSNgr+NK1JWPhhAcHhVph5ezWhA7MvdAyI89uhQwf55JNPTJYp9r1ac8wXCZCAHwisXbvWuGEg1KKzP/aiuLTiEe4tl156qYkSA8OQHxMO1vrss8/kyCOPNKGhvZqcbQZ5xB4DRA8aN26cmTxyDPdqzf1vvij4/5eJ59/BF2zVqlVmAw1i3NtTEb2ecduZY2MxTgHGkeFMJEACJEACiSPw0ksvmQg4iLiSDsm6pl588cXy22+/mZffEsbCxYsXm8g8hx56qCct+1UxR76xJ++II44w0Z6Y0osABX+a1Be+aNYFBjNuuMUgfjKs+6nYxR8LNrvzH6498NXEibxMJEACJEAC7hKw48WSJUvMSeLYrOvlPV629HbVAT/tgYjw53dGhklXi3L4GP7444+bMbxx48ZpN4ZjpX758uXmtGSm9CFAwZ8+dVXZYeM49I8//ticZOv1JVonXptXWAhOPPFEc26AX5dr06hZMaskQAI+I2BXU9HHYqMl/MPTIYWPZwcccIDxcffLOGEnXfDdHz16tPTt29dUS7jbjFfryuYTLj3nnHOOXH/99WYyxpQeBCj406OeKv3k8OXC6YiIu58OFpvq8O6zzz4mHBkj9lRHiO+TAAmQQGwEIPjh9gmXESsqY7tT6j6FMiBEJ07hhQuoncSkLkfxPdmuTGDygsg8Xo+st6PS9urVyxzIxYg9OyLlnX+n4PdOXWw3J3apE504LPzoxO172/2gR/8RkxVsynr++ec9mkNmiwRIgATSl8DEiRNlv/32qzx1Pd3GC+uqij1fMHClqyuPswWhDIiuh30JOGQr3erEWRbUz3XXXWfOTGBKDwIU/OlRT5W5REeByDxe3tUfKVJ0eLDwr1u3LtKP8DoSIAESIIEdEIAVefbs2YKV1HRxFwkvEsQx8t6jRw+ZOXOmrF69OvyStPrb1sPPP/8se+21lzksM93TGWecYfz4N27cmO5FyYj8U/CnSTXb5cz58+fLrrvumtaWAYscZYIFasaMGWlSC8wmCZAACXifwPr162Xz5s1mQ2g6Jzvuwcr/1VdfpXNRzAoFXHIxeWnfvn1al8WZ+TZt2tCtJ01qMztN8slsKgFYbbAzHhYPpFiWAxHRuDxUKDkl2VKerR1QVkiyy4JSGtokxUV6+l9ZthTlBiQ/N0dysoL6DJGglEnIfC4owaxS/UyOZIXKJZAV33wxGAwaCxQ2MB144IGVdRxLubzUQOwghXKgztIlbKqXGCYiL856Sfc2FgsfiI033nhDPvjgg7R1j7BW0i1btsiiRYtk0qRJxmXF1m0sXFL9GZQJK7aoG7faJQQ/Dq1q2LChe8XD3szyjVIeqCFzZk+VIc+9J11a5MhJA2+VuurekSNFUi75EtIxIxAokazyXP0l9sc7WZx00knGdeTMM890jVHsOYv9k2i3sIZDJMdc1xiMTdqkY3INKStaJ+vK86VWQQ3JD5VKifJX8lJaVCxbQtlSoyBfcvW9RCSM4a1atTIuSt27d698RMxlS0Qmec9KAhT8adIY8AXCQR2w2tSvXz/mziKgVoZQKEeKs4oFlR/aWiRPDLlbBj/6rZx53hFyfPd95IGX7pMlS0vlscee04OyOuqz8iQQqhD92uNvI1bZ68RE0C7Xtm3bVoYPH24GbL90EthjgRjS06ZNM2xQNqbUE0D7QtQSiIZMTdjEibM7jjvuuLT8vllhD7H/1ltvmX1A9erVM2VJ1/4DE7HddtvN1SYJYYmTUOvWrevafcuyiiSrrKb8vnyqvPDiWzJw4EBZOW+s3DDwWnng0YekQW6ZGoP0cUZcap8Xp8h01mfPnj3lrrvuqrIvtf2r1+sf+cMkDL7vderUibO9lqkZLg9WP/n0w4/lqutuloff/lSO69lZxX6ZbCksk1sHninLcnvIf4Zcpte5OPHb1qLAHWXBycgLFixwrZ3xRokjQMGfOLau3xmCHx05BrjYU5YEykulNJijvvOL5aYBl8jPS+rJzHnfS0FeuQTLg3LoSX1k/Ncj5Pzz+sg/bntBLjzvGKmtphrtW7QPV6u/CwIWnR86jJo1a5qfiNgDK5cfhD8G8MMOO0zef//9uCZnsdcxP1kVgY8++khg+cz0hO9cfH1I6ghixQwiA/WI0IAoB15WfKQuZ/E92W2jADaGNmrUSGCBdSuZVd7gVnlk0L9kl17nS5uWTaTFTkfLq8+8KWPGTpCTe3VXwa/ji16n5hvz2Dg1f2XWc3JyTHkQtAIC0yYnt3QYOyD4MfZB8MeasIIiUqKQ83Qs1pNv+xwt+z3zpAy+5T7p+t5z0nKnApk9/n35dPQiefzNu3WlpX5cKy3V5RPlwFiH719xcbEUFRWZ83WYvEsgjgU37xbKrznDlwsdBsKUxZ5CUhrIkdzyQhn58hB5Z+Qiufn2q6WGrvllq8uOmvKN1aDrPgdL3+OOkNuv7S/jps42j6uwU6vwN915/E0HHQY2LuEnBL/tsPHTvmIvZ+o/aaNMoHx8pZ5B6ltEanNgJ9mpzUV8T3d+p+yd7Hcrvjv769PLli2TZs2aVWkRj7WkwfKALJ87Tt4fOVF26dhGB4SgZBeUS4OGAfls9FgdFdTlUweJgBkf9H8uLmxiPMB+BDthx1iIlVT4w7s5WYr2XtGOU4WFhQZ/vEE3zAisi+0Yi/Nq7CS3PjZYNs4eKy+//r5sXPWbXHPlYDnslLOkR9fWelH8Y3V1bQbfPegRTMQh+pm8TSBxLcHb5U7L3KFzwTJtfLPoUu0kirQT0FjAz74pjZvtJq10E3B5qFg76jLtpLVJ6CurZi3Ze692EixaJe+9O1J5latvpgpx05VX/NcNiNYChdWLaDtPN56fyHtYcZLIZ/De0RGIdkCP7u7evtoPk85wwW//TufJtW01qB+30qZNm8xhW27eEz3/lFFfy8ZgtjRs0lh0N5dqyXyp37S+/PLzXF15CW4ToXD7dFdaQOBDJMMwBNF85513mlNqcSgXkh073PiJZ0Vyn2ifi+sxziFhxSLmpBOp8pB66WeplV9TKCtXdtnrCBlwybHy0VuvyAM33ilTVgXkiv7nSu08RAJK3MFYaF/YQ+NkFnO5+MGEE6BLT8IRu/MAK1TQYcS1CVT997GrKhRaL4sXr5b8biEpCMD3UjdbqZ9+uZoNgrAc6Ibd2jXV/zOYJfMX/65dPTrBgFmyDargL1Pxr849cRUOZcJADTclhOeEH2vz5s0rN+Hh35hIgARIgASiIwBRDJcn9LFuif5y7Y9XLVwj5SVFsnzerzJ9q/qhl4WkcEOprFqNDaSlOlxgVNBVZFj7jQuoO8mOBTiw6uWXXxZMaFAuhB4dN25c5UNiLesvv/wiiIA3duzYiA+0XLx4seBzEO+RuE6hLrC5FXmM5PrqyMGlFlyLdDU+T1ddFLzk6bh94gUXy4efni+Pv/69DHj2E9l91/oS0Pop00sSNZJC6EOP2AkS8hxrHVRXXr7vHgEKfvdYJvxO+HLF+2WClb5iKbCWNN+tmczbUiyFutNKV2ZV7Ktbj/4skz+0y66hPv5bJau0RNq33Q22HHX5qRD9W7X3yNWOxPTocSaUZ+3atfLll1+aFzpPuPkgXCc2almXn/DH2AlQOJN4+YQ/h3+TAAmQAAnouJBVbsaKkqIy+WbMSJlXW/3Qs7bIzNkLVVA2MK48qvxU7MM8VBHdDf91I0Hww0cc/Tui1I0aNcqITJzyipUMpHj6fmxmRwS87777LuLsLly40Ah3BNKINOFkWmykjiev8OHP0slVGVbjlXlAiWO1pVTfC+TnSU4gW2pmFcpWNe7VVF9/GOiKizWPGl0pK6jRlDCOa7Q9XWeILx/K3yY7HuNvNyeZkXLldZERoOCPjFPKr0IHgU4Pghi+crFb+TUUJ7R6sJZcMOAi+ccNz8iSFaukXdtd1a8/YEJ6BbJqSPaW5TJ52s+yMbSTnNvvUF2K/ENefPRFOfbSgdKirnbpuowYr90AZYJgx7kC/fv3N4xXrFhh/DSHDh0qN9xwgzRo0ECuv/56OeKIIyo7J6c1gZ1LypsmM0ACJOAxAtiYbTeIupU1hGeun5cr+bXqyhkaHenAXXZWmVksQ0KLZd7YgG7/Csr0n8bLlEUr5YwTT6yw+Ge7I/gxVkBcn3/++WbzLlaEMS4cddRRctFFF5ki4ppYhfSYMWPkp59+kquuuipiwYpVlF69eplXJAljFc6ceffdd41rbuxWfnWtVb/8gjKN3Ker85he5WjdfPzCC7KpoJX845zd5Jk7rpVDD+shB7SsL19+MVzeeO51ufaee6R9x90kR0NvSzbcgTBhiF0CWtbwOoA24VgcSStI7TWJWulJbal8+HQr+CH049oco+aBcl0KLNm0Snqd1l9OPLyjPHb/U7Ji1WrtujVB8JcVysTxP8jYCXPk1kcekW6t86WoZJ0M/88ItfBoXHm9Rh2LYFyoeFXyxhuw7US+WwubfWxHAXHfqVMnY9lH+ETE2H5BO7HXX39d2rVrZzpWxBCHZQXRGpwdTDydvQ+bC4tEAiSQwQSwkTIay3MkqOA3vvdBO+kQUSbrV23VSG8w2JToJtFN0rLjLsa6X1RapisAWBmGVSl2MVlVfmDhx/iHzbu9e/cWnFh77rnnVnWpJ9/DGGXdXyD4Y00Q+AivbSZB+ipRq/266d/Lgy98Jaef/ne549E7pUHJKnn9qVdlo0bkO/Kww6XL7i3lj63ZGqe/WMpzdHVAV/DdWn1BWawx0mnpj7V8/FziCFDwJ45tQu6MjUsbNmww93ZauiN9GCocS3zTvn9Pvvh+ulxz272yR8sCufP6a2XqnCVq5S+Wb999RR56Zbicctk/5JwjuslbL70kv64rlsY5Gk0nWCIhXSJQb/5teXA+OXKhbz8FK5TdkIUOLFzEt2zZ0gh+RGTAT8Tffuyxx+TNN980vptPPPGEjBgxwqwKWB47+hkpK15HAiRAAulIYOeddxZE6nFTgMFlZ/eDrpBDWu0kC2cvUNfQkGzBYZAry6XvwT3V1lMinfY9UM7rd5oKUYSAcE9eoBwojz1IzFrHsU/BWppjte4ns37tIXGYjDnHqejyoIdmwoEqoC5OOuSWrV8u1908WNr2OFr69u0lBTXb6xh5q4wZ/rp8N2mGrgaoy5Ou3pdll8n3X42UR594RsZNmKDjuDubeTH2oj7gfZAOdRAda39d7e4U3F9sPFUadA6wDsBfEYLfdhbRfsFwsq6egSglhVvkpoEXScvWjYwrz/LVK2SvidOkW7sjZdgzT8ncjQWyfP5c+eC1F2TrljJ57rhT1aoPQV8qs2f+KlNmLpJ+eoCPidtjNvna5dTIRT/KsG7dOrO5DJGHrOCvbrMuXH/skuvIkSPNBGCXXXaR6dOnGxcgLLHC9eess84ycY5xf3svTCqqu6+nKpqZIQESIIE4CSBWPYRY/FHd/swInEeCefXkitsGyccjvpQ1ffaXNUvGSFmtttLzgO5SqP6g/7rxUumy//Fy6ol91DUUe7zi3+eFHKAsiNBjD1lz4vlz7IkTWoI/jvHInjVjV1/wXrRjOFbQgbYsK1vX2bfI18NHyIfj5svQT4eou62G7C4vku7Hny/7vPSRvPrqJ3Js965aFzouqzFvyg+TJdi4nXKsrYY2Xc2P0+MK+ccePOiS2N2MEwyet68kQMGfJo0BghXWAfhmrlmzptJyE3VngZ6iPFtKshvLyt/nqdVknnYfBZKTXyrrVsxVa8CxMn3ZBpk75xfZus1C03L3LpJX8ocUqqdgcMMqGTdtqZzY5ygT3re8DFYC7C+wnXt0HfzcuXMF1ihrsYlUlIND69at5eSTTzYdJvggPfDAA2YSAPF/7733yuWXX26YIdlrYvedTJPGwmySAAlkNAG49KBf3Lhxo/F5dyOFMHYE/pADevWT7Ly6cuDeHeWY0wfKkKf/pXu/NCRncUCOPay7jNHxoUzdTIJlGv45mO/Go2XixImy++67p7WoxPgDYQw3Vmu0A5xox3AE3tCo2lKsm3P1RB055uwLZOXZl6spDlMyNehl50jd/Loy9JORugqQLX/g8LWsrfLRm1/J+ZdfJO1a63iLaEoVJ/yFzDcAACAASURBVHjFXT/Yd4cJph27oy1P3BngDSIm4N6aW8SP5IWxEMCXCUIVYhYRBeyXCjPsaBJ8//LVxn9QnzNkvfpZFpeVyJbyDVK0uUhuva6/+gaWyle/LtGl2hLd5a/Hd5esl3mzv5fd1LWmtnr5P/fAo7KisEhy8nKkVP35s4zQx0FZKriRlwizY/M9fvx447dv/46kPLbs+Gl/Bx/8fuONN5rOFC9YU8477zzp16+fmQjgpNXRo0cbiwSeY1/gV9XvzveiYcxrSYAESCCVBGAJxyrnypUrTTbc6MtydTwIqMDE//c7sLf88ttCeWzwdbpxNCi5Gs0tV11G8ms3kFwdE4pU1AbjNB87++h33nlHDj300MpxIpVsY302xiiMSXBLgqEr1jEcQj2kjGtguNV9FSVZeZId2CoFunkWK/gwwIX0cM1SbLPTaDw1dazbWpQlv83+Vl578zUp/AMOuTpjwKwhjmTHauiR9u3bRzWGx/FYfjQOAhT8ccBL9kfxBYNVG7F8w8NRRpwXNctnBXNVqOdKgWr1oFoACrI0Nr9uwArASgOrgb6fpT9hmwlkq6WoXC37WUX6zGzpe/kAWTxxhIz8Zrx2KtgNoNEZtPPJgl9PpGpfr0Rnh/j7iGPcoUMHYx1wCvgdlQfXgof9DH7iHvaFjhXW/WHDhsmLL74o3bp1M5MAG90BkR0eeughs1qCz9jBBVxtRwZLDBMJkAAJpBsBiH28EGrS9mdxl0HHB1E3ErjqZKkVORtjifb/eSofMV5IQEM9ItKb7vPK138rhxEojmT7ZGzW/fzzz+Xggw+O427e+egee+wh06ZNi2MMx1itdaDqLUvHrjyMexpZLysvX8dp2PxRT9irl6N1X/F7tkZLunjA1VKw/Ge557GnpESD80dom6sWHMZcuCYh1GibNm2iHsOrvTH/IWEE6NKTMLTu3tgKXIjjWbNmVXYW1krg7tP+erdyFfZb1mySeVuXyx+F5XK6+u73v/Ffsu9nw6RB/fra6UD2awcURSbQmcNqs//++5ujuROR8AyIedz/8MMPN5MDhBBDJwXfVuwDQLz/JUuWyCWXXCKDBw82y9+WKVZUrO9/MjgnggHvSQIkkHkEsIFyzz33NJHOENEmsQm9v5iQzksWr5AlS5dIsVr8a8TpH27HvG+++UYOOuggE6I5nZMtD84RePjhh5MyhmMMvPLKK+X1556V7r+ukMZ1y2X4C9fK/IWz5On7b9fxO3Z3L9wbh6Dts88+lWchpHP9ZELeKfjTpJatRR/iFZYORKq57rrrkpL7kB6yVWenXeXbGVP1eRp2LdRJfp54ghRrB58Nl55KU4FaDbap/urEv7U2wcf+P//5jzz++OMJK4MV6bajxU+IeBx8gnycfvrpcsYZZxiXIuwFgOhH1KC9995bevXqZSYKrVq1MnsMMHFwJnvPqjLvmkWtqpvzPRLIYAL2u+X8jtnfOSn/a8NAP/bcc8+ZU2kTZVTBEyvOfUU4h6CcdMZ50ufvZm1Y3UNNoOe4ElZZhw8fLtdee625D+o6XevZjuFwt4J70tNPPy0DBw6Mi8/2PgxWGO8Qye6Rxx/FhjvE9pGs17P19F2cxxPbjMx+3zBWImw2QmUzpQcBCv70qKe/CM5T1MJ+7LHHyt///ndp0qRJwkugXbfpILJ1GbBc/TTRcUDQ5wQ1DJf+NB0w/AmrU/nbcmg7CnR8CKmJ/QhYsUhUcop0+3u4cMezYQ3r06ePHHfccWZDFaxikydPNht/EfITS8pwETr11FOlS5culUuX+KxTgNh7O8VIosrG+5JAJhLAd+tf//qXLF68WGbOnGl81LGZE1ZMbsb/a4uARRzWZFhhr7jiisQ1F3P0K9x3VEAG8iSoY4GeCbVtf1fsj0Vd4yRdJLhkIqWr2EfenWMPIsnB2HT22WcnZOXCGrcMNHDTV0iNVllaMaHgFt2wW0fdgHAWgLrzRpGc490XX3whe+21l3HnYUoPAhT86VFPf8llixYtjPhER45NqonuBEvVNxOn82UFVejrcd3w8Q/php8d6PsqycKlBgL6ww8/lKuvvtpTFhtwhPiHmxFcfSD+ETYULkDw9b///vtNtAhMUu7RUwvR2dkO0O4DwD0SXR9VguWbJJAhBPBde/XVV41LxA8//CD33Xcfv3PV1P0//vEP2Xfffc1qZqKMQ2Yc0PFARwazF0wtQir6ofiryVSEb6N+v/32WznggAMi/ET6XIbzZXBKMKzj2E+W8DHDTMK0XnQfXnl2TY3Br6fjYk9GDAljOPbfIRQ2VpCY0ocAN+2mT11V5hQi85ZbbpGxY8fK/Pnzjei0r0QUJ0s3amUFEIVHQ3npA7DDH0d7I5k+PcLdP8gjYvUibj6WmNHpWaGciHxHe0+n9QKDDfKKiAqI/w8LE1yQEJEAEX8Q8hO+i7DUYC8ATn2E1dF5D2e9hNePvS7aPLp9vTNfzjxVlfcdved23ni/zCZQ1XcJwujmm28230kkGD8GDBhgBFNV7TOzCYoJSQzDCg4qxAntTkZussF5LLAe6iKwGRQqPD2jV/zO/K1evdqs4nTv3t3NrHriXignzpTBhAZhLRNVL7awIXW4ytVN1KU5Aa0nNWzpPwQ06lK0CfnEuIh8w+AF9yQk+12N9n68PrkEaOFPLm/XnoYvHZYDYSH45z//aQ6vSlTKgcvONmsAuvCg6dodaVu/vqPu3VoxYBk48cQTTRQJpIRbN/6a22r/skuuyI91Dwj/HR/u3LmzvPvuu8bCOHv2bLNagUNhMKDiADGE/YQFxHbitozOThGf9YoLgjMvzjw6f7eCyllf9t+9Un/VViz/IS0JWJ9n275se0Pfh/1L11xzjdlob08vDb8O13vlO5bsCrAsUP5zzjlHbrjhBhPsAS6J4d/ruPOG4QGxOjVpDB/9wxqDYpcXyCP2qWE1tXXr1nFn0Ys3gNELK8mffvqpCR+dyH40W12tkCoceLR+9JyEHY3XVTFDHjHWIWrSxRdf/D9726r6DN/zDgFa+L1TF1Hn5JBDDjGduNOyHPVNkvyB1157zQw4PXvqUexpntD5If7w9ddfL7fddpsJA3rYYYeZTb8IN4qNwCeccIKJ/4+oQBAwKLt9eaX44QNNVYIA71kB5vw9XGR5pUzMR/oTCG+X+Nu+h6hb559/vvm+VXUdSh/+fvoTia0EBQUFZpPoJ598EtsNkvgp2zeOGTNGpkyZYvzc/ZhQTkzG4Nbz3//+t9JAlA5lhStx48aNpWPHjumQXebRQYCCP02bAzoMfOlgvYGFH9ZlJK8JSmd+4G8LYQyf20SuSCS7SrEygBfcCw488ECzUQ4d+fvvvy+vvPKKsYbg3xB/GSsydgUAvpBOPlX97qzTeMpV1b3xHvKA0zhxdP0bb7xh/H3hxrTTTjtJfQ25ihc2/+GF9/ETrliY3GB1A5/F5mY7mQlvg3gGEwlsj0BVbRPtCXtn0L7w/UHULKwIwkUFAvZvf/ub8SGG9Rcb6vE+3AvwvYNYxJkbWGULn2R7rX/cHhc3/w2GhxkzZhj3QyTnRN0ycfN50dwrvP6XLVsmd9xxh3GhRJ2jDv2aWrVqZaz7Rx55pDEKIXmtjTrzAzfiRx55xKywYWWNKb0IxL7mll7l9FVunRtEEaLzpJNOkkGDBhkxjZCTzmgAXig4Nr8uWrTIhAd76623zIDtx2QHUfvThgB96qmn5MknnxQMZBApsOjA9adt27ZGUNs9AhAtTqskfredbbzWStwH98DgifaBswfgh7l06VIj3FFHiHaCMGv4ic4c1+Ez9nO4h93I/P3335tY0hikMAmAtQfiC/GyUW5ci+Rsq36sc5YpPgJOMYc2g1B/aFsLFy6Ujz/+2Pg3o79Am8SqINx5nN8z286QCxg9cNDU//3f/5lJaPPmzeWYY44xq3CYiNv2bHMc73cqvpIn99Pgdvfddxs3UPQzMEqAvf2uppKFsw5Rb88++6wxKMDo4Nfk5I6Ie9gDBkMY9lugfrw4huPAT7hZwYXVTwY7v7axqspFwV8VlTR4z3bQEGCXXnqpiemLF8LTocPwUsJA/OijjxoXF7i72A4+lYOMG3wizT+uw4ALYY+oSrCqwwKJTh7Wfqx8INoBroOrApax0aFaTlasx5tn3AcDKtoJwqJioOnatatxjcDgasU5nhMujqwvNMqBw8msuxLKArcyDAaIl40VDWyixIZmPM+tvMdbdn7emwTQPtDWID5ff/114/6GPg1Wewh19Bf4XuC6qvzxnd9BTKLxHYPVFPdD/Pmvv/7auLL8+9//NmGMEXo3vG17k4y7uQI/sLHGBzBAIALbx7j7tOjvZvsJGBFQ96inSPvX6J/mjU/Y8qGtwmKOYBAwCF1wwQWes54j/C3OzMFYAeOObTd+ryNvtBT3ckHB7x7LlN0JAyE20MDK/9577xkrTlWDY6oyCAELX1usRGCgwYCeiR2FFcAI/QnLPtwUwAEvMIFbzfPPP2/C59WqVctM3rA/wArxeJmNHj1a+vXrZwYXRO2AQELCgGPzYZ+xI6FuhRomJpg04IVJAOJmn3vuuca6OmzYMDPR8VJbTNV3gM+tmgDaNiaMEBKYPMK1wbZLpxhFu3S20/C72WtxPyT8hDuIjSKCie5NN91kVtoQ0hPtM1OS87uMTbsQlBDWmARhop/q76fNH9x45s6dK9jnZesxE+oI5ceYAEMJDn/EhBWGn1TXi5P9ZZddJscff7xZMUOyK8WZUD9+KiMFf5rXpu0YYRVBh3nrrbcaNw1MAGCJtV/ORHceVsxanPh7wYIFJooGhC06M5tX5CVe8Zou1RYuoO3f4QMahDF85CFKEFED8f/h73/aaacZixdCoMEFCJEdsBcAdeu8B0QTVnawVwDJCiA8D2FQYT1dtWqVEVdwwXHyx33wt1NghefPyTv83+y98BPWH5xVANcttEH4VOOgOLsEjGucz06XemQ+3SOAyS0S+im0cQg8tO+q2q59qhWF1bWd8PdxPdqp/RzaH84uQVhdHLKH+PQQMM2aNauc7LpXQm/dKfz7jXNGsL8BIg5GImvpd36vw3m6XSKnKxcMHbAeY1KGfiq8f3H72V67nx2bMTkdMmSIOSQNfTYmweirbb+caC7OMRz1jzrCeIGD7hBVD/nRL4uJ7hMM6Bi+7aRN/LA7tSpCfeIv/Twi++mv4RtFKz7m330ZXmtfzvxQ8Hu5diLIm7NjhrUGlhu4h9x+++2m42jXrl1SBJbtLJAf/A7R9+KLL5rBFQOrTYkeSCJAlpJLoik3BgCIf1h7cCgLNi7i5F/sg4DrDFZx4Ca12267yZlnnmmEEvxzcaAZJlh4Hwn1gLYwfvx4486AgR7CB3mpKj9VvVcVrB1dh/xjJQE+13DxwaZytEds9mUiAbRLnGb90EMPGas+JoWwcCJV17aqe786mvZ65+fwO74bOOEb+2iw4oV26fdoI04WdgIECzIEJvzlsb8Bq7B2ZSVa1tXVwfbet4Ifey4gKDHhQwCKRBumtpenVP2bkzcMORg3n3nmGWPAgwGoadOm1X4v3MyzcwxH/Xz55Zcm8ARchhHlqSJBzFdI+D/DMeA33SOm/9Nptvkdgh9/2d/xN1PqCVDwp74OXMsBOg4Iuv79+5toDBdeeKFZwrbHkrv2oCpuhGfbDgOiExvu3n77beM36vy3ZAwmVWQvrd6yrgvINHjBNQEuUeAL6yg2NsIaBtGEEzSxwREnAVuLDCYH+Nxdd91lDmbD0j1chPCevXeiB1a7ZwEDFqKDYDDH5AOrE0yZTQB7VyAicIIq3Nec7T0ZZNA2sTcA4Yxhufzuu+8SdgptMsoT7TNsH4x9NpgA3XnnnfLjjz+aoAroX+yKQLT3jeZ6PGPEiBFm5RcGDJxtgnphErOiC2MdJqVwoUH0NPBJVsI4A1dSuGdiQrjzzjubR+N9HLtpftezFv6U/uoSWvHmNl2/TdxXzgis8Hfa+jkBMCCTnMJXW5L8eD7ObQLozGEts2Eh0Zlfe+21JqYxLMAYXPGy4tGK9Iov845z47we1jl7LywRwyKAyQbC6SHShj1JF3lKxiCy49ynxxWWFbjhBXGO9/BC3SISE6w+2NiGMGmIrINoORisIa7h+vPggw+aVQD8G66397A/k0EC+YXVECEUsfKEKBQQFs42mIx88BmpJ4B+A/0PDAFYlUI0J4QVxvtoJ7ZfSWROrdC1z4OlHxNp5AWhPPF9QdvMhGT7ZLiMIKAChD8mP6gfazyw39Novq/O8cH5efRNGC/QBhCkAOMSDi/E5A8TD/QTiTZCpEO92j4fUdJQH5gUwU0XqyDTpk2rPM/Fjrv2ZzTfn/Ax3P6NMfyzzz4zhkIYmRCNB2Lf5gnfGymvCMRQXl6mv8I1T89nKVM9oV8bo+/x7/gO6ffa3Ne8pYYqaA5MFrIwOdDVgG3uQOlQJ37KI6fUPqpNO6DZIsF6Bh/ZL774wvhUo7PFUu7RRx9tLsH16DDMFznChC+xTfgsTt2DhQZRXyDwEVMYKwpWtNrnRHh7XqYEwuvRQgl/33bEsOj37dvXLItj4EQkDky6MNHDBAF1Zq9NFuDwvGJQh980Bq5bbrnFDPLh1yQrb3xO8glA8EFAIEIU3PwgKGy7RG6S1Rbsc6zIgaCBcQSrkvi+YAIQTX+YfJLxPbEqzhDasChjrw2ixGB1GFzg4w83UWc9RfN0PMtyxliBSRVOlUUfhfM+YEVGyNWq8hTNc/x0bTgLuGti7MYYjgOv0DaxsR3t1H5vwDiaNuscw/E79lAgiMPUqVNNaGWcYL3nnntWOYZrIFfjtBOUEq1bNR6W6V+BHIH0NyqivETrU3+GNDhHlspLlQsBvDTfaAPBoPlHfdHCD1zJThT8ySaegucdccQR0r17d+Pe8dJLL8m9995rIqlgWR0pWtGPz2BTKeJdw+qAZUfcC76wTj/QWAeKFCBK60fCzx/CHiIK7juY1CESjx2sU104OyBhDwHOioCbD/KJ/SVMmUEAm/9Q53ClsWLfC/0D8oDvCVwP0S/CdQIbeTMtQWhi1RDCH+ME+nVEVcNqIcJFIqpYJMmKfFyLcQUrjxCq2IyLlT7s7QFjBB8IF7eR3D8Tr8GYiknyfvvtZ/ZwYV8UDCfYG4W9F+AYyxiOlRz0xTiHBfWCsw8QCteO4WD9P99RdeWBZX/erJlyz113y6Ily6UkkKsSPlsGXvFPObLX/nL/PffI+B9+lJKsPF05aic3D7pe2rVvw/r2QOOl4PdAJSQiC7YztT/taamwviMGPE7Lg+DCJiF07DiJEb6DSFV1xOhQcHAUrPlfffWV6Qiw4Q3LwRCbVX2munsloryZfE9Y41A/8PlEFBJYUWG1Q51UVy/J5OVsi1iFQBQi5BF7DJyHjXkhr8nk4vdnoU0iwVUAIWZxeBaEo30/lfWNZ6MPs5NRfIewNwaRfHCyrz0cMJPcTOBDjxcMN3jB4g9rf+/evQ0n7LmAOxYmR/gbybpH2bpE3YLjqFGjjNUYhiHsM4KFGuNLKus83b5vzn4TeceKPV4Q/rDKY/zFCxNURHODYc+223DOtr6wb+Wdd94x9YO6g5slDESo9/DPWF7O9+G5D6N+2457yEtvvCW3nn2svDF1jfz7xdfk2H07SjArJP+89AwZ9c0EOfjM/nLvFaf9uSE/YK376VYT/skvBb9/6vJ/SlLdFxg+3bAQwNqKUI0Q8PD1RmdtP2Nn9vjbDozY+ImTfdHJQKjZwdB2JtU9738yxjdcJQD+CHGIg6/gNuMUKV6ok78MGDrIYMDC3gMcsnTWWWfFZJ1yFSBvlhACaJcQ+3DdQN9hw256oU2iwOH5aNWqlRFS8C/H6qU1gCQEjsduGs4C2YMIhPsIBCHqEfvAMAEAI+tCgn0PiAKGfRA2wQAESzHcSRFtzEvGB49h32F2qqoXsMeqlN1kDUMcJqk4w2VHYzhWVuDCdo9a4dG+bT3a8X5HGTJBOdXKX5ECsmvzxpI7Z4vUraWuWYGtsn7tEnnlgzFy5V33Sb+jDjGXGRefyrTtD3r0OKEk7XcK/qSh9t6D0JlgGRcRVPCyljfnwVi4xvkK7xis2Pde6TInR6g3hHGDBc5Gc6hqoPACEeQLk0XE6MfmMPjywvLL5E8CmITOmTPHTPK8nNAuIXDhdoI9Md9++60RRpmenMYeiHq87DkK6HdwmjFW7OAOZVd6o/Enz3S+8ZYfrLH5HG6daMNVjeG2Puw47hzDYx+/t+kC3bCbpRP7rJD67pcWyT0PPCk9ep0khx1+sLr+lEsu/PiZPEMg8t2anskyMxIvAfvFd1pe8B7+xgs+fOi88cIgiPfQaeAa+9MKSnuvePPEz0dHAB01One8EFZwwoQJZtK2vaXZ6J6QuKvRZuBCAX9h7DVA9A6m9CeANgkxiDaJ33///XezURciGlFH0HdYQeKl0lpRizyhr0PwAbg9QMza75kVuV7KdzLyYscF28/jp3X9QZ3a/sa+h5/OMYLjQ2JqyXINH5ftGI66iWQMd9ZrdDmFu566dakLj+iW3aItK+WY066RvQ87Q045+gCpk5Ml8Ozn3tzoqCb6agr+RBP22P2dX/DqfkeWq/u37b3vsaL6OjvWMmNPqcSGyKrqzWsQnO0Hm71bqRsF9oUw+YMA6teKZFjJcV4EVnScbdNrJQ3v07CvCWdb4PBAO0HBNZmYwtnYv50sLBsno6o+l4n8ElHmqthu7z3nd29H10Wa34odHAi/E5Ktm4vktuvvlrJgSPbs3F4t+wEJlsH1J1vj9dOYEynTZFxHwZ8MynwGCSSIADbDde3a1fjMxr48m6DMRXBbuPZAGK5evTqCq3lJOhCAqIBQRkQwe/BeOuTb5hH5R3QauKl4cUUinVgyrz4jUKH0tVA4OwMR9bMlR0NtHnTYfjJ7zIdy3RVXy4yF6yWk4r84q4zx9j1W/RT8HqsQZocEIiWAWPuwQiKkGkSKc7Pu9u6BABsVQTY0lrKU6oIs3tBPmBcOSFHXDP3VLNqaDr5ke7eL+d+Q5zZt2phIUQgDiOR0r4j5xvxgSghY6yEejgOcsNEz0nCOKcnwdh6KvU0bN2400WXScSK9naLxn0ggZgJlAT23p8wcoaXGfT2VuVSt+TUK5NjTztczHAbLhA/ekusH3SGL1m3SiD1BKVNrPw7msm5+MT+YH3SFAAW/Kxh5ExJIPgFEZ4CvpvM0RIiuHSer7vH1170Z2z4Aoa/br8xfzrvosS47vmWMVyBSBGKz//TTTxwUYmTolY9ZVx7EXsfJythADh/jdBPMdpMjzi557bXXKjepeoUz80ECKSOg44sZG/TEXFELPkJ0wlBUriainkdcIu8Oe04W/vCxXDHgFvltyWr97pdKuX4A44oewmtsShXpz99SVpYMfHDiRvIMhMkik0CyCEBE/fjjjyZCAw4yiiphoxVean1RJ8uKZVftwP8U/OjUcQQ6OnW8m5huwgpBuCT9/PPPdJ+IqhK9eTEmnKjLFStWSOPGjb2ZyR3kyrZLxDzHxuO5c+em3aRlB0XkP5NATAQq5D4kP8aGctmi1v6ArgoHdDwqCWRLr+NOkofuu0WmjXxbBvxzoEyetdhY+bFibONzVqwPUPDHVAFxfigxI3mcmeLHSYAEtk8AwmrcuHGCg6wis+r/eT94XkLM479G+5frxipE/dFLEEqtvBQmm4pr8Clr9d9+jqL/V+sCgkkLonvgFEmm9CYAsYw9GV26dKlsl9G2T68QQL7hboYJDBMJkIAOCxqFy7h56n82btwgb3/ylaxcukTm/DRVtiJEZ16B9Oh+sNSqV1dGffGh/L3vyfLSy68adDAdMaWWAIOkppY/n04CMRHAgTdTp041hwRFnWDc3yb5g+qHKRpDOaRB1MpV5AfNREB9L/XfcaoiJgcBrMkmwDRghSD2Huy///4ybNgwufXWW6MuDj/gHQIIX4l9JTjFO52FviVar149mTlzJi383mlizEkKCQQ0Kk9IrfqFxSWytahMPv76GynMKtARQ1PhH1JeUENy6zWTz0aOwnYw7QOypUwnzls2/yF19HCuCis/Vggo/lNRjRT8qaDOZ5JAnAQmTZokrVq1EpyaHH1Ch6tS3vwolTUrl8nLb7wv7Tp1kY2rlkitus3l6OOP0vgLuhEY0h+uPwlOOIALh8dQ8CcYdIJvDxeYoqIiKSjQwd0HCSFFcRo5YvLjdFMmEshkAjAAwRc/NztPGjVuom786r0f1I25GCtCxarjy6WgXh2pWbe2/q2uPAE1HJmBRlNFBAisK2cywpSWPfEjeUqLx4eTgD8JwH8fm11jSRUuOhXW+8KNv8vNgx6U4rxa0qnzntKxzc5y26Cr5D8ff6fnqWhHbjvrWB4UxWdgEZ41a5YRi0zeJuCMpASLvt2si1xDHGPFJtZwlsbVTAVFGaaaaHvlJbrChFhS+qtaDMs1Ski2uqBhzyBERqITDi+C2EfEIVtOlM0eMMboI4muAd7fWwQ0Ko8KfETgMcu+QT1oLQt/42DOHLNJP0d/DwRy9J/1IE+sFKuFPwDhj8M7KwuT+O+ut7h5IzcU/N6oB+aCBKIiMGPGDOnYsWNsbhPaAVvP/Hm/zpMJE2fJeWpd32XnptKlxwGyT+N8GfrhN9pR62Ys5EpFVqITTneG6F+wYEGiH8X7u0DAKX7tJlf8XLt2rWmTsbjzlEPpY6W/XN3MylTU66/YMA73smzIewgN/beSEBzPtGVusxi6UJxqbwHBj/CcW7duNYLfWa7wv6u9Cf+BBHxCIEuFvup5I96NgMdPI/gh6HVNWEV+QK+p+HubyFexH2uf4BNsnikGBb9nqoIZIYHICcyfP19at24d+QccV1Zs2sUm3SzZsKVQdMes1CzIqViS1eu2lOdJk8Z56vIDyaX+/TCnJjhBPHXo0MFERWHy3U9gCQAAIABJREFUPgEr8nFK8uTJkytDV8IabsNaRlsKiAno/aCG+8vNKlFXslIpDeSpD7DuKjEOwdpi9QTPMoT6hMCI9gExXI/VCuyXsStPODl41KhR8s477xgRYznEcGt+hARIgASSSoA+/EnFzYeRgDsE1qxZYw41is3KCFllYvSYcGkQVCF1zVi6eIGsWDRbluW1lX9ffpbqqywNtZYjOWGbduHGYC2dsVhyqyPQoEEDwWFiSIkQUs57unV/3Ceee1l+8d6nOqbVvR9PnnFPiHq0gyeffFJWrlxpNl0/9NBDRhjHLPjNyZ3aJrUtTp44QWbNXSjN23WW/bp3lqBaDzesWi7ffjdV9ureSVo0a77NwF+x+c/NduhkhrJY9x1EkRo0aJBMmDBBdt99dznttNPMpfE821nv+D2ee1VX14l637YhWwa0h1jrPlF5TPR9UeZMLHe8XJ3tnvzipRn55yn4I2fFK0nAMwRgSa1du3ZMAmGbRDIhOaGaIPohtObPnS+Tx0+Qos1rJD8vXycBJVKsS7Q5xq/6T3uq7aDxE+E03UqIiHLLLbfI448/HpeIri4/q1evNuLtzTffrO6SiN6HqCktLZWFCxeak1hxeFgsyYq7xYsXm3qEtTyRCfmGaP3www9lyJAhMTO2+QbLX375RdavX29i1cPq3bJlS7O3JDbhqu0M7gDZudJj373lh8lTpESjgQSDGkFKLfxZ6s5Tq0EjadywiboN6KE/8ONX/34322A4f5QDdX3uueeaaD34HQll3nPPPWMs51+fAvEDl6E99tgj/PGe/hts8OrZs6f5iVe6TVriAYw++LLLLjMb1PFdYIqcANrJhg0b5JprrnHlOxT5kzP7SvdG68zmyNKTQFIJQOTgRFP8jFZcwZUnyxy4pd48mmv4W4bUP/rA3kfI/of2ltC6i6TPccfL+x98IB12ydcVAI244CidfV60z90eINwL5bnkkkvkiCOOiLpM27u3/Te4YkCo9e3bN5LLq70GwvmPP/6QF154QY499lhp06ZNtddu7x+sQMJprvAVP/PMM7d3uSv/Bos89n4cfvjhcd0PeYfIQZ6nT58u++yzjxx00EHSrFkzGT9+fKX4i+YhOMCnTDf+lajoz9N23bvXgfLdlDmy7m9dpUntgKxevV52aaZRqXJq6223SnagRE/x1OloAi3LECao78GDB8vIkSPNGQOIy9+tW7fKCVo8Vm3kHQn7V7777ruEtPto6iDSa611H9fjtO9ETroizVOyr7vjjjvkxhtvNI91sy9MdjlS9Ty0IaxS4zsA1zmmxBOg4E88Yz6BBFwngNN1sZkwlvCHJj4CLHLbbPvGm99EQFHfaDXk9z3jOLn91etkwpRfpH5hmdwxZJQ89OBtUisv12yhnP/Lj/LMv9+Rf95/m7SuU7Mi9Jpx8wlKqfG3VpcPvX80CZ3+unXrpFevXgmL4Y6NztgcDHeMeESatchisGrVqpXJbyzJLmvDlQn1GOt9In02nodnQZS3bds2ZpFi843nguWll15qJmnYU/L++++b7DgFYaT5MxNR0ybVqh7KlVa7t5VJU6bL3AVLpXHHXWTjho3SqmNLyQ5tkrUbCmXer1Olw9/2kxq56vuv/v66N9BMGAIaxQcrVuXaHrM1vg9WpyCrsSqg09tIs1NZDohZHA53//33y7x58+Sbb74x4h/1jxSv2LM87f2iyiAvThkBhGytVatWRq1quAk7lj7Czedn4r0o+DOx1lnmtCcA9xdYq5s0aRJ1WYwrj0nwmYbfcI5uhsTm3IoQaw2a1lfRruJIQyLW36WHXD+ghRFV2FFZopOC5q1byda1JbKxsEiK6tSSHPhWaDx/zBaCId0ErPerWDuwz9nxTwhwLPFCkCcqubkyEa/Is2V06z6JYraj+2KVA5MV1B9e+fn5MYfkxEbcLPixo11qG8otqCUddm8p4ydMlC671pH1f5RKDZ3oirbT2jULpUPnvUxYQMwtQ3Avy8lVFyBIe1jlcRf8al3RopuA2nJDlKBcEP2wQmKihBWd008/3Qg9O3GMtR5xD7vSE+s9dlRHifj3cLFmy5CIZ3n1ns7+JJ3qzgs8bbv3Ql4yKQ/JCHSQSTxZVhJICoH27dvLnDlzYnpWhfSB6q+wqZZrFJKy0jK1gGq8c/WT/lmtqvWb7yad92wlQRVRwWDNylN3Q7qBN6A+1oHsfNVdObJ55Vz5cdIUmbNwtVpUNYBieY7Krdj8WXFyMCypXk8Y3N0Y4O193LhXJMzcFigYtLGPBO5IEL74G4dTYbUmXBBGkj/4mKFt4hXSUH+Ixd9KVxByStbLux9/Ls3bdpJs/ceirHzJD6gPv04K8lSEl6prEZ5fWlIqZUV/qLtViYYHXSPFWzboSoGN6FNaEcozooz8eREi9KCMmNSgTFbkY9+GGyI3WXUfZbF3eLmz7brdrnb4cI9ckOzvr0eK7Uo2qmo/rtyYN9kuAQr+7eLhP5KANwlggx82EcaW1AqqLhAS0tCHkOelxfLG66/JxLHfy1efvi/3PT1aBt0ySPZq3Vx+m/mdXHnbs7JVY5/D9SdXZVi2FKvfvx6IpCcr/jpjmrzz8SeybPlq/VsFlwqvWBIONlq2bJm0aNEilo/zMykgUJVbVMOGDWO28FcUocJCb35X0b9Tw0ayZ5sm6ipWT1o0b4g5quSF1unp0Btk8pSfpax4q4n9rVpcw2eWypRx4+THn2fIwvkL5NMPPxBdFMCNtM2qv3+U7jz4JPaVwHUDgj9cpKSrWK/gzP+SAAlkGoHYRudMo8TykoDHCGCT5MSJE2PPFU5PQdxzbNxV3/w+x/eRgpq1pGmTFvLAU0Pk7L7HSm5OtjStmyO/LfxdLa5q3VTLdiksr/rKkT9ky9KpMnldXblx0BVy8D6dNC9q+cdhXSG49ESXcMpu584afpGbt6IDl6KrnVZdZMGK4aZNmxrBH58YVku/buBFqFiI+Tr1GkjPg3tIDWw0CYQkXw/lCgXLpVD3lwTU7cysC2jbzIFLz5bNUqtuQ+napbOsW/W7rNtSZP49W6+DT3+0CRZ+uM/Bym+TLauz3NHel9eTAAmQQLIJUPAnmzifRwIuEOjatasgFj9CTUaf4DSh23dUJBl3fv2zUaOdpaMK7i77dJf2LZpKXk5Ao6UEJC+gJ57CjcdcZjz+1VKq557qv7362hsy78cpKs705FPs1NX7IdKKcfaPMo1Ty+ypp55a6RoS5cd5eRIJVGXptgIfm8lbtWolS5YsiTpHFQ49287WVdcybLItKdoq8zcEZI9d62vL05M99a5l6tKDEz6zcvK3HchV0Y4xOShAsw7CxUhXAnSSWlxeMcQFdWVq27nRUeUL+2Rat25t9iZUJfTjm9hElRVeTAIkQAJxEaDgjwsfP0wCqSEASzhCAyIkok3Wx3iHOVI9bmLvq1AvUp/nLL1XrjpHw0UDgqrCVUMdINT8XxbI1XeKVCyFZOZPE2TSuN+M9bVY37n0ilulWWiJvPbmu7JWLaGQ+hVRUCLvVpBnHNY0adIkOemkk8wdKKIMhrRMqLtDDjlEpk2bFnX+saME00pE6pkxfYp88/W38t24ydK8zW4S1Hj7kOyYXJaYvSLaxtTSj7Rp3XJZunStlOvm8WJtpwEsW2k+SrTt5pooPfrZLN2LAje2CJL9HuEnJtRYeWKbjAAcLyEBEvA0gchHZk8Xg5kjgcwj0Lt3b3PqZ9SbJHGiKVwmFNnKVSvUZaGG+kVDaqntHm4PxvhfEZUnS91zyrJVyqtLxIgP3pWrr35YRn49Rr785nO57opbZOc2u8gD990l11154za7PkRbZMlu7ESoQ2yCpP9+ZNy8fBXqFO1ywYIF5qyC6JJtO2qZL9wqE3+YJDXrNpU9WjaWMrh6qYjH3pNsjSD109RpMmfqFJk1e64sWzBTY///JNOnTZfJs3/TfSU/yRidLCzbWCjTf/hW5wWlUhjIlxzdcxJJgri3E1Gc/Az3OdtWI/k8ryEBEiABLxJgWE4v1grzRAI7IACRjwOURo8ebVx7GjVqtINP/PnPIQ1ZGITrjQqbU8+5WI4/u7/+Y5k55RSqHVscQ+VbVbBt1Z+5UrtuDcnVa68cdLNG7/lRDu/dQ2bMnSUlGp0lr/wP6XfhVfohPSHVfFiPmtffIvGWtpZUHGTUpUsXWlEjrkHvXog6hb/7+eefbzaV77XXXpWhK3eU6woLPOz7ObLXPj2k6z49JaCn7JrN5TgoDisA2KCr1v5DDz9SDuitBz6p+A+Vrpc6DYv1BN4G0qnrbvqYmvoqkV6H6gFu26IHlZcVaz4im4yiDBD9iBqFVSds2mUiARIggXQnQAt/utcg85+RBOB2g4gosIxjwytSpFZIEzRTBRREUTksn/DMN4cSqdjC5lw9uGit+i4/9eTT8tXXP0j/y/+uU4CALFa3idNPP0SFE1YBApKr+h6fz9a8/D975wJQWVXv/x+vOYyaML5ATWE0BfV2Qb0GWgrZA7QHeHvAWF2wh2Bl4LUC896ibgZmBXYzZsor2EOYXjDWbdC8DnYrGMsL9oIxDcY0GP0njOlwmBlY/+9v7bMP+5yzz/scOBx+W89wzn6svdZnvX7rt37rt3QYPGjAvzroEA4Wqnh7ejb/uPDCC/UToaYhhODlljUgYHruufHGG+m5557DwlpnyHmqB4w8zwQ/+wRzHL2uHEY6vBDcffCYEr73j7JJD7T9XNbmX4KwfzLcg2ay+VkmPqzJx2ZbWAfA/vkRAf07nIO9Rj377LN07bXXhvOY3CsEhIAQSFgC4bWCCZsMiZgQ2HgEWNh/3eteR9///vfDc4WoBXK212ezHvzAplm8y67heJMX5i5Bq59Nb3v7W+mC0jfQOyovhdCVpndVPf542ELDHjqFNzbicCCVcSNiLJvkb8avUHKDZyl4DQIvjGQ7aT7EVjoUcol9D+fh6aefTm95y1toamoq5MiuLPfmQaNrrwOX6ZkRCAvuGGRCw6/LHZveoKxmZeeQY5MDg1X2tY8NsvRME69FcZmuIQzDTCfkqNC+ffvoX/7lX+i0007Tz0q5DJ2d3CkEhEBiEhCBPzHzRWIlBAISWILLQtaGv/71r6c//vGPWnA2TWQCPoiLWiDS5g1pLmGGDXqM7+ksRMGMwpG2mc6/4NV07jlb6Vg2i+BxAf+nWwwI/AgDzntcQj+GDaxwZWEfz8NnT7Ao6OusDb7rrrvo6quv1jMVpmAlwlVI+BLuJmv+8XcW+NkGnl1bhnIs8QiS/4eAziZnekdoDDThr8c1a2T4iNKDS1yEh04MVHmHaJRdBTM0CPx8By/s1QHhMIefHLSr8AaNCsd5YWFB76YrZTIoLrlBCAiBdUJABP51klGrFU1vodH87X1+teIj77EnwIIIe+phobmjo4NuvfVWmpubc2kyjR1B/ZnHaB/nLDQtQ1BC8Claisc3tpOGTfRhlo5wD3tFWeKxAUx8tMbVJcizIKZ/afmMfatoyUz/5m+GCYV9vK3lqbe3V9t7v/nNb7a/Wc6uawK8xoRt+NlFp7+y6JlALkmmUM+DRv7NZRPmOfpGvsrfzI++RZ/XM1ZcHmH+o2etXIcujyEeZhz/8pe/UGVlJZ1yyikhPim3CQEhIAQSn4AI/ImfR6sSQ2+B3iqYmREIrdNelehu+JeYttIs+F900UVaaGYBmrWpdnnnCYzNcCAUpcIyXwtJGbDBN48MWEGzJh8mPrClTufBAGz2DYedLs2plqdS2ZmP/mt8jH/5kuG13wzP868Ztz/84Q/04x//mD7zmc+EvKjTPkQ5m6gENm3aRO9///vpiSee0IPRYO2HqY03BH1TaGeR3xD7tRxvSPW6lC2zln/JgW+84Bzee5ZQnjFQXdbq/MgOdsN58OBBete73kXp6eLTIjKK8pQQEAKJSEAE/kTMlQSIk3UAYH4XU4sEyBhXFKymBiz88+JCFqxGR0fdkfSbX6ytNz+4W3/Xf83vluvu+/RFvsstdPFTrif1eddV1332rPhdL774Iu3YsYN4YSfvzOo3nvZByNl1ROCss86ir3zlK/Tf//3fejDK6zb8HUb5WSlfuqgZJU7/tf7SJc9djo1Lxjnzu+st7kJpPG33brN9O3LkCP3gBz+gtrY2cRFrB0rOCQEhsK4JiApjXWdfaJEPpllje3D2SMHuHdmrBv/mjpk/3KnqDZnwNwNuGI877jjKycmhE088MaCgJkJcaHkTzV1mvnI+nXDCCfSe97yHvvOd7+jFtaYgbc37tcoTaxyOwif64OCgLj+XXHJJwDIUDRt5du0JmOWttLSUPvrRj9LPfvYz7Y3JnJ1a+xiy9Zlh9MObv/3617/Wwr5ZLoO1m4kQf4mDEBACQiBUAiLwh0oqCe7z7sC4g3v44Ye1+zyevs7KyiKHw6Ftw/ngjtnUyJkDAF7MxlPePF3Pgj/7qc7Ly9Mdp9nBr5VgmQRZFHYSmDsL+XzwBkFvetOb6CMf+YjWqubn5+vzZt6sZb5wHPjT09OjBSs25RH/5mFn97p6wNoe1NXV0czMjF5gzh6ZuG2xthlrmTBWcPCid14Az555zPZvLevLWvKQdwsBIZCcBETgT8589UkVC+zcwbKGlQXEe+65R2uFGxsb6eyzz9YaVxbAWItvavTNDo+fM59nTRj7Tn/++ef1xjrcQXI4X/ziF+ncc891zwr4REBOxJSAmSecRyxAf+tb39L5xx8ewDU3N9P27dv1wsO11qiag8Zvf/vb9OCDD1J3d7cub3yIUBXTYpFQgVnzlpUJLS0tWtP/y1/+UruTXWuBn9/Px/DwML32ta/VJmaZmVjBok3X5BACQkAIJBcBEfiTKD/NDsyaJO68+DwL6LyjKQuBbFd79913U0FBge7cWCAztVrms9awzAEAX+P7WKhkkxHeHfWtb30rjYyMUENDg/7NtuT8d/PmzbZkpTO1xeJx0mRv5p150fqb7+EFhi+88AKdeuqpehDG7gRZsLrlllu0//DPf/7z7u+mRtUaVvCYhHeHXfnjELh8sQ037wr81a9+VQv7ay3shZcyuTsWBLZs2aLbHZ6B2rt3r/bgwwK2tdyY7UOsyod3XbKGz7OVPFjmRe9sysOzm/7KcCzSL2EIASEgBNaSgAj8a0k/ju/mjos/LOjdf//99POf/1wLgywEsqDPJjxm52Z+twqU3oK5vyl4Fv7f+MY30uWXX67f8cMf/lB7X3n729/uYaPNQt9aa5rjiDumQZvCDv9lbta8ePrpp/UAizc0YgGfB2AsSLEmn4Wn1tZWuv766/UCSZ6t+fd//3fatm2bziOzPHjnbawib5YnM/4c7uzsrPYexAOTf/u3f3OvLYhXHGKVFgkntgTMus/7LXR1ddE3v/lN+p//+R89K8jllw9ruYnt242wzfLJYfMsGNehqqoq+vCHP6xNFOP5/linR8ITAkJACIRLQAT+cImtk/u58+IFuDfffLMWCtn0hhfMsXBvdr5Wocv8HkgQC3SNO8wrr7ySLr74Yu0phn3DX3PNNVrYFEE/8kLDzNmlIXsPYQ055yUvgiwqKqKtW7fqHU150PXnP/9Zn+c1FZz3nB/veMc7tB0/C1c8UHjf+96nz8f74DizXTTvVnrbbbfpwSC7Zzz55JP14CVQOYp33CT8tSFgzXPee4FNCQsLC/UAlf3184fvMYXyWJURM0zzLw+gx8fH6cCBA/S5z31Ol00eGPMRq3euDWF5qxAQAkIgMAER+APzSfirVq0VR9b8/dRTT9EnPvEJbSvL9txWs5x4JYrfkZ2drX3Cs/D5r//6r/TXv/5Vv9/sVGPdoccrLbEK1zt/goXL9x86dEgP1ljAZ3t31kayB54vfOELdMYZZ9iaX33pS1/SjPl5U3DhwR3nA2tReWMunnlhk66TTjrJnR/e8TGftYbjnQarYGTeZ97Dgj7HfdeuXdr15mc/+1m64oor9GtEoPKmvTF/czngQSqbA3LZ4PbhgQceoLKyMg+nAZGWQWsZNgnz2qX5+Xn6xS9+oe31eR0TexyTMrkxy6CkWghsRAIi8CdRrptCF5t88ALJD37wg3p7ez7i3bGZJj/mwIKn6e+88079+dSnPkUf+9jHtLBqHqsxAEmUrLUKLtY4mfnFefPkk0/qRdA8QGJtPXtCYveaLPCfeeaZ2lzH38HPs+ae/1oFcDPP2Wb+P//zP7VbRM4LHgCUlJRoYcvqkcQq2HvH2RpX7/s4Xnxu//792qyL7aLZfOx73/ue9uQU77Lnj4ucT0wC1vLA2v6vf/3r9JOf/ES7a+Vyz04AeF2Kt32/Wc74rzUMa3k064B5D5u9sXcgDpfN3v7jP/5De7Jie305hIAQEAIbiYAI/EmU29zZ7d69W3vg4alyXjzLneFqCddmJ2z+NT1zsF3/HXfcoWccWHi1dtBJhD9gUjjNphBt5gkLyN///vfpt7/9rZ4ZYXeFbKLDAgkLyrzw2WoOFYrg7J0HZqRY+3/VVVfRpZdeSo8++igNDQ1pDTzPAPDsAZvb8GHmjRlf83kzzuY9Zlp4s6JHHnlErxPhfRzYrOuGG27Qg4pw4x4QoFxMGgLewjoL9mx+xjODvJiXFRas8ef7eNDLigIuSzw4Nde0WNsQa5nn6zzLND09rQfOXIe4PnE5Z7e1pitYO0cFSQNYEiIEhIAQsCEgAr8NlPV4ijtAFuRYg/XTn/6Ujj/+eJ0M7gxN4Wwt0sWa55qaGv1q1va3t7evih35WqTV3zs5D1jA4IMXr7JG87777tN5wwOzL3/5y9rMhg8+Zwow5jP+wg3nvCkg8cCCBSAWrnhtAPvF57UdPCPDCxjZ1j4fdv9WYd181hS22GTHHDDwYIVnCzgddhtprWXZC4eP3Ls2BMyyxX9Z28+Ly9/whjfQJz/5SS38f+1rX9OzUyy4s9b/nHPO0TMAbI7DAwX2tMNafPZC9qc//Umbv/GCdTYX4sXBvNbFbkGutXyvTcrlrUJACAiB1SUgAv/q8o7L27izZI8T7A2FO0gW6vgwhf24vDRAoNb38nfWzL3zne/UWjfecOnTn/40sbcOs7M3BdwAQSbkJY6/NQ3mb1NQZ+337373O72LMa+p4MWCLIzwBj/sj55dZ3q7Q7UmNJZCiZWxOahgUx9e1M1uEtmUiM1xeJ0Au/jk/OE1ABw/jgfbQHO6eB8GTgMLXpyX7PGJBwv+8tDf+VAzlIdJ7BU9xXCZrh9TOOE+j28pyAfjPDaKw0Vj2zjXg3y/vmoMuPRXORKGAJcv70EhlxkW5svLy7VdPwv07O2JBfrHHntMu6NlwZ7LIt/H5Y81+FyOebDKs2OmJt9MqHc59P4dLhBFh1GksAA+5SjKPtqBZayfScFeJ/ieehRpQiE8gjLnOIJrGVC6pKRSargvkfuFgBAQAjEkIAJ/DGGuZVCsBePOkc1CrEJotB1bpGky32vGhbVsTU1N2k0ke41hm37rPWsVz0jTZ33OW2Bh4f5///d/tZDPuxCzZpJNmdiDDmvyTU85sRTog6UjEF+2Z94Kjz/84R1RWYPPHzaN4A8fHFf+8L3mbswcZrzTAFHJJbFbNkNiMzU9AtBDAZdAb1zHXArHFh9TwDfFLMvzwWDJ9VUlEKhs8jXW5vPeIfyprKzUcbM+Y7Yx5l8uk4HCjEXiljCsxF7BrqCW6SiKVzrKHJbMG/HjOLq+G+U0Fm+VMISAEBACkRMQgT9ydgnxJHdybCrDnRy7wbQuwkyICFoiwVo31iCzS75f/epXdNlll8W9Y14NBsyeF92yaQ77FmeTA969mAc3r3zlK7VHHKsmn4WRWJrrRJtGLkOcBlNgYvMJHpSY2lcOn6/xx2pHHe17Q3ne0N7j3St6ey3iK8UCfZoWqljjz0eK/sJCmFWbbw4AROAPhXei3mMtn3Zx5DoVbyHf+l4MdbV4j4KIv5gJWz5MigcaXAZTUea4rkCrr9K4tK6I/nZxl3NCQAgIgdUgIAL/alCO8TusGq3f//732mZ/YGAgoT1PcGfM8WbtMG8MxTuv8k6b3lPvMUYVcXAmYw7A+p1/s8kLL7hlswJeNzE2NqaFel6rwBubsT3xzp07tVcQfzsOBzLliTjSET5opxH1Hjhahal4a/WtyWBRX/HmY6lcfowrLGJp8R3/8PXlJd7UDYMoHpQYpyH84Qt+a0FQC2Yi8EdYPNb8MbPtMMug9bf3YFUXC535sT/MQS+Hn3p0gY6mZdJyShpl8CwYJpKM6/iaskSpij+b6CgGAVz8dEcbn2jFPqESohAQAklJQAT+dZytL7/8svbywgsm2eaaj3h1dpFisosPew9iLxzsjYMX6CVivM3O3RSG2V6Y/eL/5je/0d5ozIWDvOD1Ax/4gP7NQjKnlwV+87BLf6Qs4/GcNX6JGFfMPXChhtB/lFX4+AsKqRmmyA9l6lGta4XkBZk+g5YgXLENv5F/0L2m45dpeREPgBLmqhDwLpvmb++/8YyMOfDn9Sx/mtiHvSYGaf7vTrr+xpvpzNNPQJnDwBNlbXHpMO0b+z/a/dOHKecfLqA3YnOvV2Lw752GeMZVwhYCQkAIeBMQgd+byDr4zR0Pdx7sdo4XULJ3FPPcOoi+Hpy87W1v05syscCfiB0hx4mZ8qDk3nvv1QtuebEtb2S2detWbZfPXkWs2nEzD0zBYD3kRaLHccllDnHo7y/Sjq/fRX96cpqWUtMh3KfDzWglVV/1Rvrut+6hvb8ewyLJdDo26yRq+MB1cAv6KpQrEfYTPX/XY/y4zueecRad/6pcuuWTn6fRx5+l7+66l07ZBM0/t81pqVi7cyaNjT5KN8HlbVbW8TxmlUMICAEhsKYEROBfU/yRvZyFUV5M+fDDD2vf0utpx0iOO38uvvhi7fudN9xhF3rxFvpNIdzQ/LpMPVy9ML+bbep5xoQ36HnmmWeb4eX6AAAgAElEQVT0xmWszWcf4Oz94ytf+Yp7FsVfrplpWE2TF39xSZbzafB8wkL/8cdvoeabb6Iv3Pxh+sI9O+k/+35C1W8pp/TUo3T11RXaRCw1r5Ru/9TH9GyL5yHSVrKUh7VMh1m/+e+WrHS65NLX0LkXvJIeePiH9LGmPLq7698oy7GJNi1tIseJJ9OZJ5xOJ519Jh2HgecRDAQylp2YbMqEXT/s+5fQhqcdxWxUxlomSd4tBITABiIgAv86zGwWWlk45YWv7IZzvQiYVqGe08Abcd16663aL7w/W/dYZY9V6868zEWzLOCzP/q7775b2+WzfT67NWU3orynAX+3s3GPVbwknMAE2OtOKhY/YkUkpWVspjPPOBMWPZmUgw3KUlPgGhED3/t/uosuqXwXfehftlHWMZkWbaoI+oHpytVwCFjbryXlgLC+TK97Ww2df84FdM93eugbrz6PbvjgO+g4lM/DMC/bvHyEMpfZxszlKYrXkeB/vdIE36V0hkNf7hUCQiBaAiLwR0twjZ7/wQ9+QOeff757h9Q1ikZUr+XdWHlhKy88ZrOk1ThMQX9wcFBvHsX+vfngeLAvb/aqw5uWmYtWxTxnNXLF/zvcQpEWlODfHKY8eoUk/J/T0iLddvuXKCvnlXTd+95Nx2x2QNgXg33/NOVKrAgc5plK+OHP2LSZbvr3z2Hh+GH6+hdvp7NffT5VX15M6SlY1EubKZ0Fe17Ai0XlhEEAr0PRZdqQ/WMVHQlHCAgBIRCUgOmkOuiNckPiEGAhlE1MamtrY2YKY5q6sEBs+l6Pd4pZc87mPOyz3nx/uAI2389xNv/yd+uHF9gdOnSIXnzxRRoeHqb3ve992gaf3Wd+6EMfIhb8WYvPPvJ5MTGbg/CGU6zN4896mT2Jd16tXfjs7dwQ+7XghEW6KcuLtHzoRbqt/auUlnsO3fD+6+ikYzdTBryjuPz3rF105c0bgkAGxHkeeKZiw63UrJOp+TO30GXnn0Afec/76anZeYxOj2Brrk10hNeRpDhx5yJM0zCziKLMdv56GgqzVoZfqQ2BTBIpBITAGhMQDf8aZ0Akr2ef76yBZg15LA9T6I5lmP7CMqfHecfWvXv36t002UWnddrc37N251nIN5/ldPzlL3+hiYkJbY/PO/zy7py86dUNN9xAO3bs0Atu+T7r+yJ9t1185FyMCLjdaRpifxrn2dJR2nHXN+jQ356n7ruvh2kP7KF5IyTezVTBzCclM0Yvl2CEgD2BtCUY9KQdJid20XXAbOcVJ2+lWz/TSn+9/l/pQx9opm/saIO4j83r2IMUZqUWXv4b7Zt6ls47fyssfFjgR7gQ+MWux56vnBUCQiD2BETgjz3TuIf4y1/+UtuYx0tAjVe43mBY4GbtOgvr8/PzevFxJIcpuLMt/o9+9CM9gOA0XHDBBXqH25KSEv2Xwzc19uHOJEQSL3kmFgRY0GfpCLM4EOiXIDwtwTzizK2n0d7HHqYbPtJMX+/uovNOP0lr9zE3E4uXShhCICABxYNMfNLhGyrlKNaXODKo8OIr6Itdn6N/2fZh6rj9FEqbP6Tt/JfJQc9OPUV3fHmI7u75HAR96PWxGF2k/YCI5aIQEAIxJiACf4yBxis4U4PNgupjjz2mzVEiO3jBGJ50LSDTu5Jqu2dFv4Cf+b8tplDVm6+kuecn6fu7HqWqmqspB64OY32YswlZWVk6aF48y/bz1sGGdcbBWxNvXmPzo97eXrrnnnvoT3/6EzU1NdEnP/lJOuusszx2t7XGn8MSgT/WORqv8HhP08MopexjX0HI4o2NMuiqd9TQOy45g977vpuprm6J+r77VTor5wSIXxmUDo2raSohJlnxypeNHW4KtPQss6cdTqWXM5axQDeF0tI300Wvfxvd883nqar2ZgxM/4FuWza62HPOu4TuvecyzECl0lGU4TQ6hKHpsbopliHqxi5LknohsFoExIZ/tUjH6D3sd593eC0sLIxMw29Z02iIRYZotARb96n945Rzai6N/HwXvaOqjkZ/Nw0N1qYYxdwzGBa6WRjbtGmTNq/hzaz48BbETe09D3g47fv27aOHHnpIb9z14IMP0rXXXqvNde666y5tvvOpT32KXvWqV7k3weL3eH/4PdZzcUmgBBoTAoYhjyEWpfCuW7z5FltEpDrojW+vp53fuYsW//JravpYC008zRueHdabbxnP6T125RACMSegsJ7kyKKiv7/4si5j7IyHSx1aNLrkDTV0yy03siWPvnDkqJOm9j1BD//6txD4ofGH0J/Cnqd47kp2gI553kiAQkAI2BMQDb89l4Q7a2ql2fSFzWAcDoePDXpokXbpk1g9paeVjY4nNS2DLrzwUnrwkf+hdAjW1914E13x+jfTscfF1080p+u0007TLjFNYd+qzec0/eEPf9AC/lNPPaXdd/JMAB+vec1r6LbbbtPnvJ8JjYXclegEDFEfAhIiCm/mEJ643OI7Fu8upTjo8re9k7qwWPfm1s/TRz78MbodXnsuviAPd/PMALSu+GaEkegplfitJwJPYn3QPf/VS//z8/9DAVuit/3zNXTBWXlGa7p5C9U13EBPTcEtJ6z4WaXyxO//l9p+8CequO92Sk/jthvuY3XJlNK5nvJd4ioE1jMBEfjXUe6xUMv+99kW3VsTHl4yuAta0o8orWEyPpmYks5/1TlUWfZ6chzDnmrY1hSLION4cJrYDeazzz7rfgtr83kRb3d3t95QiWcB3oMdK3lX3tPhf53vZ7Mm1vDzrr0i7Mcxg9Y6aD0+xT/QlC6gTDw69jgdPbJEk/83Tm/4x3MpI4M3QCqn8y+4j3b++Mf03nceoNbW6+HBqoYysQmSUbbXOhHy/mQjcObWrfSxmz9OjR87SpkZx1HGiVloh8yZpSU68aQzqONLn6FjWV+SmknnvOpkbLSFNg5tKvvm0TtIQ+ECR7P4j4elcggBISAE4ktABP748o156IuLi1q7z0fkgi60Stw5Qdhn84hUBW3p0t/p90/8kQr+6QrafCyEfWitePOYjGW8Kw79kTXurKGfmZnR/vhHRkb0DsKs8d+2bZu2zd+KzpXvt9pjm9/FRjvmRSyxAmS7fQj7RxeP0OQTT1Fd40dpW+PHaTk1jZ7d/zTln3UavXQ0ja6/4Rb6YOOnsIspi1AEs7cDlI9dkuUQAvEg4Mg8hk49jZ0MHMF+EA5CEdQa+yXMNmUswf0mbPyP3YL9PI4egStOKFdQXtOWD2s3nRlYkYJlvno5rzHDGo8YSphCQAgIAU8CIvCvoxLBWn22Yzf9xEcf9TRjvS58RL/wwtP09HPpdPVp8HaiuPdKoU0YCGBD+OhfEyQE1uCPj49rgf7ss8+mz33uc5Sfnw/tbYbbbCnywU2Ql8vlhCaQgjLPa8ozUEaKL/onxJU1ohCZ+CTKJ3vlOfHU0+lybL7F90LW0sKULi88mmVNakKnUCK3HgkYG8Cx4gRiPgpYOnbVxcIhSuMix8ZksNVX2BzuSHoGpS056eUXD9Hh5/9KCyix6SjBvIO01qS4nSesRwoSZyEgBNYTARH411NuIa4s7JsbS0Wq3WbN/hIWjXHnxIY97L/8t488TMedUQIhH2YQuL7MPs0xEOD+SGEbeVjZaEU/C1QKnRkLV+ZutNEiPHLkiHadyd51WMjndJmLdUXQj5bu+n6e5fYUaEf1wZsY8YwUf+Vyyb/hHWUTL4RMY7Ee2lMuqHyRD7jvFGHfQCH/xpgAyhi3gdoch8uo3kSLy5uhLDGGnUvadedRrCJ3puTQB2uvpmf//DSd96o8PSDg/SOMsqpHCXIIASEgBOJKQAT+uOKNbeAs/LI5j9OJnRshFEd+cEfFWiiEoO3002j/r39P2XDByYIT+5hOg8bqMPxHpxw9RL/82Q9p0+mlVFJ0pqtj42cif7v3k5wetss3hX1Opwj63pQ26G8eeLrLGgtIBge3KK/lLR6cug5oWeUQAvEmoMsbyiaXPaPwuXaA4PKpiyn/t8m4lHksveaKCnwssUKb6y6zIu/HO7skfCEgBEAgGqlRAK4BAV6keujQIa0Bj+RgUZ+FfC03ueQn1lTB0hQ7l76EU4oWcf0oFpSlY/v4hUNL9OD37qfnD76oTSR4kJCSciSmAj8vRGaBX4T8SHJUnhECQkAICAEhIASEQGACouEPzCehrrKQv2XLFu2zns16IjKpgZCvzWUguPOQIZUHDpgtOLVgK/Xf9y16Q/Fn6JScY7C4bBPMfY7QMdgY69QTt+B+PJN6xFhACQfTvLmRMWqIDJF1wMIeei688MLIAkrgp3hTMNM0KYGjuWGiZubFRs4TNp+777776De/+c2Gyff1kFCeseU2PbqZ2/WQUomjEBACa0VABP61Ih/me03tN3u04d1pp6en9W6yEWnFYY/DZhK88JE3gllaTqWyqnfQZ7/8FirY+k04lMCiR7iae8Nba6n7q/+B+3g+QNFDP76P2r42THd8/iNUcnExBgrRFx9ehMx7C5xyyik6LckgjHE6eBHyBz/4QffC4zCzW26PA4EDBw5EsUN1HCK0ykGyQPne976XnnzyycjajVWO70Z4ndneXX755RshuZJGISAE1pBA9BLbGkZ+I73aqhF/9atfTT/72c+ooaEhQgSs5scCXJjtpOrNt9Lp+BPPpHvvu5d29v+Qnj7wMrT3aXRg6rf0x788B2coR+iPv/sN3ByeSD8Z+C86fjMvmIzw1V6Psb99Pni3XT4iGsDEJioxC+UMuIP89Kc/rfcSSIb0xAxMAgR0zjnnJEAs1i4K5557LhUUFOgISNlcu3ww38yDMMmLtc8HiYEQ2AgEROBfh7l86aWX0q233hqhwG9I6vyvufBMS++px9AFr34Ntf1jKQQB9hCdSsO7fkiHsXhXYSbg1z//OS1hQ65jM1Fk2JxHe0WJ/mDtPgsevHtwshw8C1NcXJw0MxbJki/WQXOypCmcdFgFfBH2wyEXv3tNE55kmNmMHyUJWQgIgVgQEIE/FhRXIQzT3IVfxcLk2NgYzc3N0QknnBD2283OPs3l5tCQ3VOxEyRvuHWIji7A5CfTQX99KZVed9IraF96KlXVbqP7v3EH7Sz4R6p908WUsgTNVBRLvk3hizfcyszM1LsHJ9NhMua/IlwlU86u77SI0J9Y+We2g9JGJFa+SGyEQDISiEJkS0YciZ0mU3hk95WNjY30gx/8IGxvPayX1yb5+GjXcVog5XTzVjBpdOjFObryssvoyjdU0V/n5+h47Bj5/AJs/TM20yda6mlHx230q8cep6PLR6OGxZ3dgw8+SJdcconb934yaGHNfBJhP+oiEtMArPkS04DXSWBSLhMvoyRPEi9PJEZCIFkJiIZ/nebs9ddfT5/4xCfo2muvdWvHo9MSKUrHzqUpx59K3x34IR3FRjK5p59Gf597ka79SBOlb86kzE1n0Y6vFlHGK7L1PpGRHFaB/oUXXqDHHnuMbrrpJrcWPLo0RBIjeUYICAEhIASEgBAQAslNQAT+dZq/p59+Op199tm0d+9euvLKK92piEpghqo/FYL+6Wedi79LlAqpftOpOXQyPinQ6POOp688/Uys94V7TrjtDPfw1t7fdddd9KY3vUl7HYoq3uFGRO4XAkJACAgBISAEhMAGIiAmPesws80FXpWVlfSLX/yCFhcXY5IKxbua8pbv8MC/DPv+ZfjuTGff0Aidhf1lLO5V2H9XwQ9/KjblCvewCvX79++nhx56SLtJlGntcEnK/UJACAgBISAEhIAQCJ2ACPyhs0qoO1lIPv/887Xrx4mJiRjEjTeJx+Yv8MGftsyafgj3vHU82/rr3XWxRhfnj7Cwj1mAlAj9cvJghQco3/ve9+iGG24g9mgjhxAQAkJACAgBISAEhED8CIjAHz+2cQvZ1JSfeOKJdPXVV9MXv/hFvXjX22QmnAi41vHCLz+KBHZ95I252HtPCnvy0at6IeTjxCYs7NWDAD4f5sE+p/nDG/+wd543v/nNYsoTJkO5XQgIASEgBISAEBAC4RIQgT9cYglwv9UEpry8nFjw/8Y3vqGF6YgPLfFrvz3GX/7j/m6cNwR98zo/EP5x9OhR+u53v0tlZWU63tEMUsJ/uzwhBISAEBACQkAICIGNR0AE/iTI889//vN68e7PsTkWC/3RavtjicQU6Pkvx627u1sHz9p9OYSAEBACQkAICAEhIATiT0AE/vgzjusbWNvPXm4++tGPUl9fHz3zzDMJpTU3Bx8s7N933316YPLxj39c2+6bMxVxBSSBCwEhIASEgBAQAkJggxMQgT8JCgAL1RdeeKE2k2ltbU0oDT8L9Ry/0dFRGhgYoK997Wt6gMKH1TQpCbJBkiAEhIAQEAJCQAgIgYQkIAJ/QmZL6JEyTWZYeH73u99NF198sd7IytT0mxp269/QQ4/sTu93Pvroo/Ttb3+bbr31Vjphywl6V13jgPsf/t/4g1P44v54/jKvuJ+LLGrylBAQAkJACAgBISAENhwBEfjXeZazoM8CNP/NyMigG2+8UQv9d9xxB+3bt8+t7TeF8NVIrvkuXqC7a9cu+tKXvkR1dXVUXFzs0uor/PUU4Y148TleeMx/Ax3Brgd6Vq4JASEgBISAEBACQmBjEZCddtd5frOgbx5sJ58GP/rbtm3TZjMs/H/1q1+lgoICLfjzveY98Uw2v+fw4cN099136821vvnNb1J2draOm+H5h8eZLLSbcTdU/MqdFtylZXoW/vle0/sQvutHIvMQxE/KIQSEgBAQAkJACAiBjUZABP4kynFT+E9PT6e3ve1tdMYZZ1BTUxNVV1dTVVUV5ebmaqHfagZk/R4KCvN+f/ceOXJE+9nnBbpOp1O7C92yZYu+HX568HFt2oWNu1i+5zMYhuBiqmHMg5N6oy/cz38Vdv3V3kF1CHwfbwgmAr8//nJeCAgBISAEhIAQEALeBETg9yayzn+bQj//veiii+g73/kO7dy5k9rb2+myyy7Tgj97yDE1/tbkWmcL/GEwn7MT/J9++mn6/ve/T88++6x+V0VFBR1//PHuoJaVaa7DQr7LRp+FehbwId27w8TvZd7JF//rO5eWMDsg1mf+8kTOCwEhIASEgBAQAkIgEAGRogLRWWfXWGA3Pxx1FqBPOukkuv7667Wm/4knnqC3vOUt9JOf/IRYE28edsJ7oKRb7+fvL7zwAn32s5/Vdvonn3yyXpx7zTXX0HHHHaeDcceJtfi8T8DyUYjxRxHBJZfgj/Os8cfvVIXzuM7q/yM4d5gHBKmuXX212j9QzOSaEBACQkAICAEhIASEgDcB0fB7E0my3yxs82Les846iz796U/Tu971Lurq6qJ77rmHeJfeK664Qg8K2OafBXTTg47V9MeKZAna9hdffJHm5ubo+eefp/vvv58ee+wxuuqqq/QCXatG3xtlqjbFSSXnwt/pZw8+SL/85c9p5rmX6MTc0+mKy19Lb7/qSnp0769gDrSTDi6k0dkFr8LAoYoKzzkbGn88KcK+N1L5HQMCernIyj8o3wfp0Esvu1aOpKL+pOldoVMx8JQiGAPgEoQQiDMBNh9l88+DB1GXX35Zv01Rmq7LJ5ywBTPGLPrwuja+IrU6ztkhwScIARH4EyQj4hEN00THFOJZG3/++efr3W73798PgfuX9KMf/QgWM9Csw9NPZmam1tCzzf2mTZv0hxf58gLcQ4cO0f/7f/9Pa/PZ+w6HzWsFLr/8crr55pu1QGR3eJgJuRrXzcccT299+z+Teun/aNuNP6SOL/8nBgxvQByIzt56Bj1/4Dk698Iyes97aynvtFwI+nqpr+uQxtmOs5yLBQHMPi0p+utf99OeXT+i/h8/RFtf/Tqqq30rvfbSS1AfXDNNsXiVhCEEhEDcCCi1iLrsoGf+Mk2P/GSAfjz0v3TS+ZdRw7a3wNS1GGatGLyn8ihf+pO4ZYIEnHAEROBPuCyJTYQ8BG1XkKbWnoX7/Px8/eGFtX/729/oueee08I8a+35Nwv5/OF7eYaA7f55ETBv8HXCCSfQKaecov+y0G8edu/0SI1uW7mRTYMQn0pbzzyZ0jM20RZoXNIh7B89fIR+sutnVP7Wd9F7t11D6Y4MSjdUMHhGRH4PlvIjhgR4bYlRvlJQLs899xxaet2rqfXzd1DR699Fl732MtqUJoJBDIFLUEIgrgTgrFo7hDj/vPPppWf+SF/q7KZz33wtlZaWoE9DXcb/5nq0uEZEAhcCCURABP4EyozVjIopnJuC/Omnn6619uZhDg74t3fD6P07qKBvTRg3tPwbf3XDi2aZ7fmPHl6mwW//F+2fI/r4B95NaemHKUOv5rU+LN+FQDwIGAI/nNpiHQmXuRQ69hWb9N/NxxzrWjAOb1HaRSwOKZPxyAQJUwjEjIBSGainvFYsnTI3H0MpaYqOPWYLpeIvzxgv81oxfUhljhl0CSjhCYjAn/BZFPsI2gnoK7vfrrzPFPr5r/dgINpYsVyF1btawPrbgVn62u130EvHZFPzJ26gzVD3w3knxgJotGVZebSo5flgBNgjlD4M71GpsO9NSTX2ftAuYs2BsDlYDRaeXBcCQmBtCWCmLi0FdXiZ6zb3J1yPMbOs+xMW+s2ORQT+tc0oeftqEhCBfzVpJ8C77IT9QNEK9/5AYZnXtIYfAj276Tx69DDtxALi/c/8hb7U2wthP0276VymTNa3hhKc3CMEoiMA71GUwhp8eI3SHqGMNSPsOYolBUM0MEptdC+Sp4WAEFgNAsYYnesxL8xdcQetIOgbO75w32L2L9LPrEaeyDvWnoDoT9c+DzZkDBRUp6nwrZ8ObX7VO99Jp70ihT70z++gnz70Gxa7oISBW85Uc9p1QyKSRK8WAZbltSqfhX7z8BIC+PJqxUfeIwSEQFQE9AQyYYaYDUj1/i84tODPtZjFHq3zd334ouse/iqHEEhSAiLwJ2nGJmayIFDxTrmIHMtXqeyTnzbRqeeeRz8Y+DZdeeFWamm6kQaHhuko2mLWxSzDH+fy8hK0/qaWBg+LsjUxs3edxopn/dUy7wB9mI5AKEBx0+tWeNnfUooDcsIRnOc9JI6i6FnK4TpNr0RbCCQ7gRRtLop9XHjyDn+P8h4w+Mv9zkr/Yf0hw/lkLxOSPrGQljKwBgT0NCv0+EqxRRkvlFym0wouoe57v0WXnXcytX38Jhp44GE6gruWIXjx3WzmY8j5oolZgyxL7lfy4r6lVJTIzXoxnx5cYhM4hQV/GRmZWkIwrPt5JGAMVpMbiKROCKxvAmzMw84g9F82zYOkz557/OuKROBf3zkusQ+FgGj4Q6Ek98SGALSoWmCCaEUpR2jxKLSn+M6baqmUDMrNP4s6vtRB55yQQde9+5+p5/u7aYm1M7iLffnwoRtsPTUrhxCIDYFUjCaX2egXf9OXFqAVTMNv1uZvptNPz3IJ+6bQIIJBbKhLKEIgngS4nh6FOslYt6vQZ7BiSXqOeDKXsBOdgAj8iZ5DSRQ/YwmVoiVs3HXguQP00EO/xy6/2fTEH39Hf52ZgUifRq844WT6h4svotNO3kJfv/02uuOOLvrrszMQ8kXQSqKikFBJWU7BTFManHIuL1DN6y6n6xtb6clnDtHZMDW76g2XuQR+HqjyYWr7EyoJEhkhIAQsBNghxDIvxofZ6KGFI1AcKXpp/gVsMsnnUYddH4EmBDYSAfHSs5Fye43TqhtZtovGzr7zB1+i17/lPVRSfR2lQ21/6KW/w84yh5xHFF3znvfT1bV1egJWpWyihZf/rrUzK0K/CP9rnJVJ9Xo2HXOoI0hTBr2jvo4e+r+n6M9PO+nr3/wavfLEY/WskqEZYWM09vqRVMmXxAiBpCOgTUbh1vmPf/gtjf/hz/RPr7mMXv7bX+jRX43QRRdfiF3lHTrNabKhXtLlvSTIPwER+P2zkSsxJsDCEnvnSU/fRGedcx6lb00hZ4aCsMUaF35ZCh2/5WS66J9O1D6T2YyH7S8xJ4BvfINhmckLf+UQArEikM4m+7zXRCoE/vffQOX//CJtdjgo4xVZ2PztMMx7NkHgR5lTMBCQohcr7BKOEIgfAZiM0nI6dod/JVXXbqOr33Mt6m8qHZvuoE2bNhmL8vXGj3IIgY1DQAT+jZPXa55SY2ddLNJFO6tFdzS4aHohTEEbAy8oLOCnY2cULeTjNzfHWrMK4Z9NKYzmWRrpNc/IJIsAttlCecP+DxiMpm06lk45+RhszLMEDz3wE8XrTswi5yqTSZZ8SY4QSDoCKVgTxnqh47ecQMdnn4C6jLrNqXQP2v0v3006GJIgIeAiIAK/FIXVIwBJ3xDjXTIUSh8LWwQbardwr38b13UD7ZbvLYK+5evqRV7elLQEtOLeVTK5bGmbnXT8hyOVtfvmYZbepCUhCRMCSUIggzBhh8PoTNyCjl1/kiQplmQIgWAEZNFuMEJyXQgIASEgBISAEBACQkAIrGMCouFfw8xbWFjQb0+RVYBh58Lhw7Ct5o27YPwfDT8Ogw8ORw4hECoBs9yEer/dfaanELPsSRm0oyTnhMDqEBDPPavDWd6ydgRE4F8j9qeddhrdfvvta/T29f/aubk5OvXUU6NOCDfyTqeTxsfHoxo4RB0RCWDdEOAywwPOgwcPxizOzzzzjC6DcggBIbD6BJ588knd/puD7miUSKsfe3mjEAiNgAj8oXGK+V133323u4GRxiV8vNwwZ2Vlhf+g1xPMvrS0lO6///6ow5IANg4BLn8nnngiveIVr4g60QUFBfTggw/Srl27og5LAhACQiB8AocOHaKysrLwH5QnhMA6IpCCjktsGdYgw6zYReAPLwNiyY7D4g/ngeRDePmwUe/mfSRS4U3KPKIpN6ZpkJS/jVqaJN2JQMDaD3B8oqnTiZAeiYMQsCMgAr8dFTknBISAEBACQkAICFNDnz4AACAASURBVAEhIASShIB46UmSjJRkCAEhIASEgBAQAkJACAgBOwIi8NtRkXNCQAgIASEgBISAEBACQiBJCIjAnyQZKckQAkJACAgBISAEhIAQEAJ2BETgt6Mi54SAEBACQkAICAEhIASEQJIQEIE/STJSkiEEhIAQEAJCQAgIASEgBOwIiMBvR0XOCQEhIASEgBAQAkJACAiBJCEgAn+SZKQkQwgIASEgBISAEBACQkAI2BEQgd+OipwTAkJACAgBISAEhIAQEAJJQkAE/iTJSEmGEBACQkAICAEhIASEgBCwIyACvx0VOScEhIAQEAJCQAgIASEgBJKEgAj8SZKRkgwhIASEgBAQAkJACAgBIWBHQAR+OypyTggIASEgBISAEBACQkAIJAkBEfiTJCMlGUJACAgBISAEhIAQEAJCwI6ACPx2VOScEBACQkAICAEhIASEgBBIEgIi8CdJRkoyhIAQEAJCQAgIASEgBISAHQER+O2oyDkhIASEgBAQAkJACAgBIZAkBETgT5KMlGQIASEgBISAEBACQkAICAE7AiLw21GRc0JACAgBISAEhIAQEAJCIEkIiMCfJBkpyRACQkAICAEhIASEgBAQAnYEROC3oyLnhIAQEAJCQAgIASEgBIRAkhAQgT9JMlKSIQSEgBAQAkJACAgBISAE7AiIwG9HRc4JASEgBISAEBACQkAICIEkISACf5JkpCRDCAgBISAEhIAQEAJCQAjYERCB346KnBMCQkAICAEhIASEgBAQAklCQAT+JMlISYYQEAJCQAgIASEgBISAELAjIAK/HRU5JwSEgBAQAkJACAgBISAEkoSACPxJkpGSDCEgBISAEBACQkAICAEhYEdABH47KnJOCAgBISAEhIAQEAJCQAgkCQER+JMkIyUZQkAICAEhIASEgBAQAkLAjoAI/HZU5JwQEAJCQAgIASEgBISAEEgSAiLwJ0lGSjKEgBAQAkJACAgBISAEhIAdARH47ajIOSEgBISAEBACQkAICAEhkCQEROBPkoyUZAgBISAEhIAQEAJCQAgIATsCIvDbUZFzQkAICAEhIASEgBAQAkIgSQiIwJ8kGSnJEAJCQAgIASEgBISAEBACdgRE4LejIueEgBAQAkJACAgBISAEhECSEBCBP0kyUpIhBISAEBACQkAICAEhIATsCIjAb0dFzgkBISAEhIAQEAJCQAgIgSQhIAJ/kmSkJEMICAEhIASEgBAQAkJACNgREIHfjoqcEwJCQAgIASEgBISAEBACSUJABP4kyUhJhhAQAkJACAgBISAEhIAQsCMgAr8dFTknBISAEBACQkAICAEhIASShIAI/EmSkZIMISAEhIAQEAJCQAgIASFgR0AEfjsqck4ICAEhIASEgBAQAkJACCQJARH4kyQjJRlCQAgIASEgBISAEBACQsCOgAj8dlTknBAQAkJACAgBISAEhIAQSBICIvAnSUZKMoSAEBACQkAICAEhIASEgB0BEfjtqMg5ISAEhIAQEAJCQAgIASGQJARE4E+SjJRkCAEhIASEgBAQAkJACAgBOwIi8NtRkXNCQAgIASEgBISAEBACQiBJCIjAnyQZKckQAkJACAgBISAEhIAQEAJ2BETgt6Mi54SAEBACQkAICAEhIASEQJIQEIE/STJSkiEEhIAQEAJCQAgIASEgBOwIiMBvR0XOCQEhIASEgBAQAkJACAiBJCGQvm7S4Ryn/rYuGnKWU3NbPRVnr5uYJ25EnbM0PjpK4+P4TM4SVbZRV3V+4sbXJmbO2UkaHhqk8exaal1ncbdJTmSn5qfBoJ9GqZpaawu9wpin0e1ttH00k6pb26i6MDOyd8hT8SMwP0lDg4M0NDpJs/NEufmlVF5bS9XrvJGbnx6mof5RyqxtpUStmvOTiOPQENq+DvKpOvHL8bBCdk4PUlfHIM0W11NrYznlhvV0tDdL+xEtQe/nndOjNIj67izvoPpi76vy25ZAqG1kqPfZvmQDnFRxOBZGOlVVWZHKy3IohyPST45q2LMSubGmPIXs0J8c64U4xD+5g1xQM3t6VFNVkcoih8opqVEtPXvUxMxCXJM9s7tJVZQUqJyA5SFL5eTlqYKiMlXT0KK6B0bUlE+0FtTUnj7V2VSjyopylMNVJgpaxuIa/0QLfGFqRPV1NqmasgLko/96sbC7zn2dCtrVRKIlZIPHZ2qgQRXllaiG7j7V192kSrKMvCTKUVV9M+uOztyYq24WZLna6zzVlEhVc2FGjfR1qpa6ClWU43DFMUvV7U5U1FOqs2QlnlUDc6saUWk/YoN7xl0vzD7LoaoGYhN2socSahsZ6n3JzitQ+uKi4c8sbabB4Wai2SGqL72K7t1vjpwKqK6ni2rzM8lDz+h0Ev83PwuN83A/9fc/QvsX8du5MuKyfCXcKkcEBJzTQ9TV2EhtDyBDCqqoY88QNZevjr4otxKzM5XIuskuqiy+iR5ZdCUgp4o6e5upmPN/fpamxw2N2+COR2jnjtuJsgqopm07dTWbmi0uKblUXFlN06ND9EgEHJLlkWxogvOpnw4GTJC1ssxL1QnIanUvOkebqbJ2B2V3TNH2xny8vJYqMUFTWnkn7Vs8AK3/KDlrqz3bytWNYthvc1I2FZYiLf2BS2XYAcfsAdSH7GKqrHbS+NAD9HjMwo1XQGjvnGZjibivet8n7UdscpbrRSllD+4kMzdjE25yhxJqG0lJ2JbGJWcDjQZicW3EopmnnAa1J4RA5/Y0qDxon2usI+C5EdXdUKOqGjrVyOoqOUKIceLfoke/WnvoUHk1PWrCR3O+WmmYUd0lphYTfyv6lG92Qos/YNV2EuI8oLz1nQsDNaui4V9YWDNYwTMFdSUngIZfgdqe9jpVVdOkesYSOB3BU5pkd0y4NLeYyRzxTBqX/ZqqBtWzdpU0NNYB6sXuugTV8FtSNtKQsw40/EotTPSpppoqVde+26cNDC2jgtwVIB+l/QjCLszLYy0FrjInGv7g6EJtI0O9L/gb43pHwHoW1ze7A4+Lht86MsnOZWN7t4o/pEFLdnkzNRb1wiaZtQuuuYDsUmrc3k+NIYUgN1kJTPdWU+l1u+gATubVwNa7v3qV7UA9SgRlZ8MQx6Xn4G++RyblV2NGoHeWCq/ZqeO9f2c9NVZP0mDtyoxEZnY29Imkr8frcI53UHVvKQ11lcfrFdGFm+k1W+YTWi6Vt/ZSgsbeJ7Yb5sRkL23fy7o+lGGv9Uhc9lFFE/twjlJz7TDVD7Zids73yES5pCBzT75Pre6ZbA0+nq1HbNKTWVhLXf21sQnMO5Qg+YgVJdJ+eDOL4nd2rqyhChlfqG1kqPeF/OI43Bi0nsXhnTZBxt1Lj273wz4KqbqxkmD5I0eUBOaH6qncJew7itppEML/isgcZeCRPh5ivmZXN1NtnvmSg7RrOxauRfrOSJ6bH4ZQ00aj85E8LM8IAf8E5kfHaZ//ywl+ZZYG66vpzsl1XjG8BloJDj0O0UuSfIwDGQly7QmE2kaGet/apShx6lncBf5IIRc2wjNBZYiSYaQvSfbnZvupvv5e1/xKETWzrfy6QlpMpcWWOQB4E5pctTybpf76WtqxTywuVw35BnrR9OT0uk3tZFct1e9MfM34ugW8ShGXfFwl0PKaiAiE2kaGel9EkYjBQ4lUzxJO4J8dHabJgAuTnDTLvutCOJxwV6jdTk6Hdn8IQYZxyzziaUkIx2V8nAJHBWmbHKfRccM9Xxgvs7nVScOtrbTL1S9nVbVSa4TSPru+nLSmxeZt8TkFcxWvAUrAohEsEsiDSQwaRqFdnQyYEfM03FxJ9Sa8YOFarq+Uudk4rK9DmeLywfGPID94UXxwfq4yiHozOj5N4b4mmjrnET/nPBZwj9N4oAiEnJ+eGTg/PU2eLQK/i9OLeucPEFzYBr0nrHISaZtklgF2pYt0+IuvTVycyP+Vtxr5zO54wwiCZgfrqfKmRyI31jE5sgvScF6M9MyjHRqPsOzb4IjgVOTszZdFUz8I7IJ2fZov6g3KRiC+keRjaO2HkVLuM3R/FygSYeZA2OVXtyHc3htup0Mtbs5ZsLPGDUx1v4H2MKxaG0VZt5YX492TYbNMhHbOM4vDk2+c86HRDvU+3+IWXny80zI/jXoWRFYLv5652mWEOx1O4+6bOPsz8V4qMNVZ5FqkggWaQRftTqj2khLVbuM7cG5it+qGK8YSuFJzVPWpQMsP58Z6VENZnsrKKVJlFS73a44cVVAGF5TdA2rP2JiamJjQnyl2RzmzR3U2VMFNW5bKyjI+OR5+2qbUAN5dVYIwXdezsnKwqNg3FnNTe1RPixHPvCZejbegxrqrVJ7DtVA1q0J5e9ubGelWdRxf7bLSXNCapQqqWtRuX7+UoWXZTLcqc4eVA7dzrrguzKkpTvvUjJrzjb5P2DN9Va5FoTmqomfK53r4JxZUX5XpZo6Uw3bRrhmq1wLfkk7lEQPLglX/bjkX1MRAi6qCC8+cogpV19Cg6qpK4B6UVFZBhWrZ7b0UeEJ1V5iL+cy8cKzke57NwvOFCTXQwuXH5YLWtYjWkVOi6rrHbBYlh0ltYUrt5vDh5jYHLksrKkpUAcpqXkWLGujjBe5GPO3c1S7MjKmBzgadfkdOnf9F8zO8KL4M4eapspoG1YAF8hXsWhH1pqSuRwVb7xt2nTMRzE2o3XBHqeNXZLgNnRtpV2Vul4l5KLvWZd3h5qfxormJPaqvvUFV8HscVcrwBwAXjZ01yDfLInJHgarpmVhpX7htqDHKC1pQoy3LKlINAxHUBbhIzXG1H6Y7WQ7T4Vhpd7KyCpRuNryOhandqrOuROXl5KiisgpdBvJ4ET7ypwjtxIC/Bb5wQzk20KkaKuC+1VGmehjlzG7VVGIuqnWogpaRgO2pEZUFNdJesuLiVbNAeXe3h0XK6hl3j3tBrMstJ+pIH8qXux3k5xH3spY9AesHp7sd/E0Xz0YeoD4W1ajOPd5115ta4N8T7eYCysBuOSNmb3l9xPUDdKbgRrmljtk5VEm3nzTPjalulI+cvCI4tmhSTai/ZQU5Kq+kCu6Qa1SP+7Hw8jHk9oPTqtuQClXArpVLylQZXHNzO+tAP1yDBccRdWURlF9m3YTyngN3t1V1aMvYBSvXFdTbms4R2/LGbo4H4Oa4qoTdZpYpjVm3uxWeZTanTLXs8XUz4VHSzDYDdaOA6ypzgLxQ0tCHfsKUhwIt2p1TY31wY819FtJQARnGdEGdVVAGF74jfhdvJ0Q751XtwpJvQm0jOyNvS8OKj1da2O0wuzTPQz9ZVIYyXpSnHYdoWaLP0m+gRQ2nvVQolUZflKdK0P82NcHRBuTNHOR3Fdr6ht2B27JQr1KoN0Z6X1gC/1SnKnEUeQj87LGCE+7RQQYQ+Od2N6gCFubKOi2eaCCw16z48Xd33Mgoq5A001Phfo+jxo7wHITVlY6yyiLwz+xuVzVe8cxrgn97hKk7eVNY0N6HTEkbg4HOMpXDjcjAhFsA5wJZlWcKF2Wq019nHiBTpjpLVgZaEHB6xoyOkxvglfRDaCxrUN1+3R5B4C6z3O8SyAK8NoRLYQj8U9ZBC3d2U57hBxX459SepiKdp3kYwFmbacMTFAsdLGBZRz4Lam5mRk2hHJmCdFZNHwaGM2pGf+Y8haOZAVUHwbigpluNmHsZcEfRVOIqSxCoUFv9dNPBec3tUU1FGCBllaCjsYYC7zstZR4CmIfAD88eDRVGh7siqPoR+Kd6VBULvY4Sr7I2hfw3BmdZFT2egy1LzCOqc1NGw+lRHlG+xsba4Yse9cVSTnPcbmwiyU/UfQzAPdoQ1Ie+iQEIvXkqD4NA3vOhpalKFbh94BtlgveOKNEDoCbV0t6uWqAUcN8DVt7FMWhmYrBtlKEp1Vez4sWmYfeU67xRxrzFiRn2sMVtWkmL8igCLETXFRjlzJHnOVBRY6oHgs5KmrgeQ+DHwKcJ5TULg0d3uQixXi/MIX7ItxqTEwa/u6E4MNIEBYIFgIfAv5vLMN6JTrHGNeBeEfyzoEiwrx1ze5owGMtTFZ171JQr8AUIU+1lJjveq8CrTQiaCSs3hCLwR8beMxIR1Q/Q3NMOoT3PTKvRDtsL/OylBPfl1SnPsfGE6tHKC8+yGlI+htN+ILlze1pQb+EBrgpe9CzZuaA97hlxzyrrDmMfkMjK78xAnSGgFzQpj2Z9ps9o49D/lnROWDKIFXIQrqBwW5ExIPCjv2yC8J9VgEFDjSF8ua9DaeenyKoFtF9lqB+OogY1YB3hwMtgJ/Ji5R1+BP6FMX0fkXd9Zr0kK0JcLLkt8GgoEqidc9ONQL4JtY0M9T6PqhhBfDzSAllOKynQn1tEhon2lUFcSfuK8iSkeqbDx+AA3psckH1bvGSRMShZHCizVX0haGc90mr/Y3UF/qwqCJdj6NStnxE1MrJHDfRAC1vAnZCnwG9Ge6avwi3c+NXwzw24OqM8uLrzArSwW9WZmjxHheqecHWyVjX3WIsqcDVO9gK/UtbMtQr8RjyhfXRnPnfQGN27XGAuTPSoOozYs/Jq3Bp+Q3vO2nfvLh4N6EDVSnpD7JBXsnhG9bgENd2pQ4OYV1SlGlo6VXcfb/DTDmHQ2sCh44RW0+4YaTK1YBCaseFZ9MUuRIEfwkx3xUpn5yhq8WzAObLBBH5Lfpb1eDMeUy0FRuPJ5cn7qrI8m1W3xw4N6umIaoEw7sDMgy89zFYVGeHzJko1EW2Ys+JuzP75OQxkV2Yj7DT8Sg+iXfHIshP4LYNYzMCNeKV0ATM8RidV4KHBdd8WZZ2zCgSUx7MX3FEidO4gq6CVhlauyezZoslP5NBKfvBMSQ06dc9cn4N2yS2cFBRBS+mKi4XJHFzBmoN3/7NK9sXFetZHA+7nkYWRFi3sE9rOPlu5eApC3crgwactcecPl4ECVVZV5Ro48oAR2kvWPFo6KT/RsJzeo+pMgb+gBcMK+2MlfWDNWmevmS4ra7Jr3yY6teBkO/tgVQQEEL7sY7ZyNpjAHzV7flWU9YM1f7vrVuq4ncDP7om5TObZ7XA206MqUIc6p7xphJaPwdsPNIN6kA4h11agX2lnsamK7ay4d8w8fodTfhf2qAZXH++AG2fvvmqPyZFnOr0vQiWzotziDSCLVJ23xtbSFxbYmSHwoELPJGBg7cMbqUJ/0WQq8liIG/BO+QwUikZec9viE0UdRNOKjML9js9NidPORSvfhNpGhnpfNPGZYsUt8qzILl/YmsJU6PIsqkc7HUI9Qx0t4zbe24JBFw/OTweUIj4SinfhCen36gr8bi23KQjZ/bUX+LnhKTKFcT8a/qluU6vtmrr2QrCyJwAaHtPExXrPRPvKO2w1/ArRMN/BFdantkEIxVSTmU42/7C5Rb8SjZMegKDT9BUW+bo5eGFGmBb3lsQCZq8rbFc8vLXbxqMYnPSY5jp4B48ube02ML040KN6BmJgmmIkPLBJz9wUdsLEbIl7p04eODUpH8sbDiuIwL+AQZOpUSnyaaB5UOQqf3nQBnnzDEHg57KgR9925QDhWQd/jrKesLX8U91lRvztBCJXfK07YdoK/EiZu5OxFfgtHbKjRvkkZWTFz79doxN1nUM5r3Jr8/2VQVeJjSY/0X0OuE3J/AxewMoUGFgr6iskIR7W+ELAsZXBvcuSze/QOinkjWvQaJgH2gTEpyAc60EB13c2m/Roc6xmcQ5VFva0hPc7Q+jA8MhK+liDP+UdCEd6ZQAGBYxnf2YOQl2mFT5Pz3koNHzrts8DticCC/yxYI/+Ito+CTGfg7BhzsbYCfymb/csGyEXBRZKgTIbM9nQ8lEFbT8MgYQHk3bjDQbP7aDRDmdBUxmu4BJG+bUKXmhvvd+00h7bDYAUBlYrM0c1Nko4Pfgx+3af8FcUJ3mYkfTX7Y+59yXyFfjdSj4fodFafDEAdCt57OpzgrRzMZBvQmsjrW1NgF29o4mPHjRz24oZNNuMtShYkXeeTWwI9Qwyo1YiQV701lNzzs90Q3Hsz5TPtmXzfzLufvjRUK0cWTXUN9pBpR4LMXknQV6oMEy9bW10b4CtDwM7mMHOicPj7nchSJ+juLKcsu68FwvODtKsXrSZ63NP1Ccsq0xzKmup3E+k5wc7qB8Lah3FuTSLRUU+y1OQgGyOnt6wcj8ND09iC87C0KKHxYyzbica8M7TVqn91XsemVRYD1/gQ4V0DXvcWHyctrcNUutgrde92VRcXW/ra9s7xEh+Lz6wjXKzGykb3HjxzcHFFa84WXllVNvaRm2N5i674b0hs7yV2iqmqd9ZSm313uwsGYP3+vAP+qpx6urai90ECigXPnZHR30z2pmZSw7s5ckpWhwfonEnFjz63mb/JoTZ1fGIfragspK8Y28+ZO5F4H9fU9+Fz54vLKbGtjoabhun3MbWgPGb14uorCUpBnUOPNxICrBQOsDC8ujy0/qiTJQ3O+y5VJiP81x3HNmUa9c8IE/11iJ8zzQWVuGP3W12oYd7zjnURb26Pcyi0vJi/4/DT3tzaStdx9tXH+ilDrQt5bVmPlnzv5Rqq/P9hxOXK9hhtNjunfmUnw8x8HHEeRGLUWfxcjPK073UtQslOgdkJ1G3pr0jhj7DnQm4ZQjtZ2uhTRvn/Vzov2PDPgb1A1HmLgWk/O7QmukqzAd3tlJjbTH1euRxJlU2N1OmbwcQIozA7YdzqIM6OA/zuO7aB1nYOkTD+dj/hUqp3l0u7e/1PRtG+c2tptamfpofRprbqgOUByzm5abM61jZOyKb8nX58jpy8ynXzAjsCm8tsjS5nTq4zFIO6l6p392xs/M5XLt9iaapt2OX0d0XVlKp30YlG/lZTXk7dyCURXqko4vGG7ss/XNitHNxlW+88yWE39HEZ7yjjR5A1mZV+5PncrEfyShl9w7RfHE91eeHECHrLajg3B0d3N9Lja21NIw9f6ylL7cW9XrStsMK80VEqyvwo9XJRY9qx6OwsJjKMRKYzt8ediLMB7Ao33XAUwHXRq9Kk4l35NO9q7adutGA2CXHSaMoICzMOca3U3Njr91NaOmLqAjTGnxkhrhiXd9sFWAdhWi87IPnHrYaBSxv5526CTo41E/Dzlqqjk3Z8vdSz/NFddTVXI4t4536fCbKSDYa1sLiYiqMdpMSbNbWOjROrd4xgfeE0f4O6p00Lxjv9r4t4O9JdGK63Z6lobZmspH39eOFZgbiu85Cv3nh9bbxfhrU4TuwJXuh18XY/syvxSZ3tb5hziONvV3D7sGQHaWY1rlgUkk881MnP7BwYxDCYIFbYxb4UWbtmPiSjOzM+NCwa1soHnwEqpTYHKka0tYje/GiRbQtw+SsrbYVOry9XkUWs1g8xRw5TdwKOj0G3PPDGBzzK7APRlfzpG06uCIVFbkqUya85+B2GxEt4ojGin1M64ef1BRCIVBwy+PY12Ef3XtNMY3WtNH2rmYqN/GUVlOln2ejPT06OKSFVEdhqV+lBOdVaW0zxP3oj8DlN5cq0V75ptVJ08MYRA5Or0QgkorLgplZZL2SMo2+U4/NQSGi5hplfVAXehzQNATsJoqrqTxrB93L4PcP09AkUXFYXUS827k4yzcuTKH/iSY+49Q/ZAzQCgHZbyucXUzVzWiDIzmKa6kyB/l5YJEev/P1lD/aQF3bOzCAdrVo2eVUHYvKg7itrsAfDEZuJVUX90bYiUJjXYhq8gBnzj4aZrWQt2bJNZLiUbi+d82OWbhN49pKlF/fT+MdERYUf/GHROIumPgSsJHUjcedRuOxOEnwloc88Bdw7M87kOe18Hcfy87aXyyd05hF6sIupmhYi2trUTzupEfcMyH+nvJzHi65gAo9XTl1jQ/GfJA0jVkfo5kxBSM/8Yj56XkaH9yOBgebnEFjVl9aTNk79/nZj3Rt61xM8zMSjnbTiJGEY/vMPE1OGiXA9rLXyfzCQswD7NXC18Fpw61gfigPJuA9k3BJx8MAKm3DzGZjYOEnLvGPFftVqh/FbdTbMkTlt/Ns4kHat/Mmej3qcE0H6jGUKfHr6dBfjLoaUGufE5c8iSDQ+Uns1t6FXYonKbscs6uYTd+x1+h3IwgtwCPzNMpSNx+YGfTeOTvAgyuX4G55Whf6EI7MQi3g38vje8wxwrMujzPid4TdzsVZvgk7pVHEZx5usPcZLzR25g775cEfyIQM0dtAo9U7iLf9Obh3B113YT911XVh4F5PpTEUjhLMD38+1WJkU50fnJHdHcWNzYQFivrY27UdJhSedznH4eMfpxxFzQQrkTU8Vvwpzwd1rBxBNFlL7uKgtZBeHDxDzLdoB2DaMh/B+xL8Eef0EHVgFJNf2UXz+AwNY1M37OQcwHokaIo433T7zOYIcWA2q6eoXEfA/Asa1RBvQKfV20jl+YXUOJRLjf2j6CxbqTZIa7MWdS4e+RkipFW8zVoXQ6iXVq1gnGce4g2B/b3rY9bLH3q8X+wOP3bsV6d+ZFJpxzCNdldRntnuL+6jnTdBWwhzr+3jcWigNCuYxpjNFDqOVWmmQikDEPT7sY9KIdLeS/gMD1N/BwSnfLcaLJRQwriH99wxpfUIKWAqyJ1LQU1MMQOgbYv4QP8er+wNg4DnrXGWb8KOVxTxsexdYpi0hv3ykB7IrtyOQWM7wQuT6zhIj997HV2aD5NbDFgjLFU+704wgR+zWcXlVBhpvSxspsH+BoJbTij5b6fqxv6VTbxmh6i5eZCceTXUO9gaN5t0H8JBThzgkX2Qe8K+DA2Ae1pxEY1RwAbBqpEIZaov7Nis4QNOmuyHJr/wKuqYrcWUKdYoVOb7n5aLKKbTmBWJVXVciQCvazEOrG+J9ygM08mt5YV06XVDlNsFm+ntYWgVVrXOrUZ+RlQI4vAQzHjcmp2D2CjOMgC0exsG+e5mE4t/cu3uWTfnXCnBGonJ0xDM2wAAIABJREFUgG1XvBIUQ/arVj+w1gq700+OD1BLWZ62+edjcd9OuqG0FIP4+IA0Z48XsdZiMl7ZEUa48zCRrS4+j7b1EzUPj0LwxwxHpPJEyO+1KNW4vw1SVW2DZSWdeQGzx9O2N5knrf10rrHWL+D9a3cxLvJNFMkJOz4W8wieeYx9T7+SmGysORyeHKOehhLYoLiOg4/Tjm2lVN46GpN3J5zAH0Ve6kdzq6HZn+wj+BWn2X4sNsX8Wj7swYsr22i2GrbKsI2uzY/2LdE+n0t67Q4fEEKHQmggnNPYLTDkNhsCf7FZZLDjYbCW2F2KEa/1LSl4ZMw8dgUt37YT02RF1Apttedi8ejyMBvSGFbW4zhAw9CGB28IYCozPh3CfUa8ct3zwotYtxgsA6NJyyR1wAb4dtg2ZdVgCjGC6bXVqnPxzM9oCMbnWbRbhXAS6jom4ZAgYBnDuhSzechDe+cWHuITubiGynVLH4vQzA6H0Og52RQxIJ0w4xtb9qtVPziRmYXV1AEHD5O726nCVPdD27+jvpmGYolIE7X0F/uHtC150CPmcbC8EYu9a8tvoF37sXVWBxZARqw5DJoKrxt43Zl5KsKyiPWFheYo7QB2cJ0OFAfMppjVAmv0oKtJsCPe8k24yY0iPqw8ceXLwaFBGg2h/IZwi/8EYC1A/fZRmp7ooya3uv8g7b29nuBXI+oj6QR+XkQ5jMqe2TaGrcV55M3bYvMWyKM02AFtb9Q9YVTZ6cowmNGYAvniI9TREURghMeW1tquIKN+z7JQWl/pGiUegJ1loJbYYpJSUA6TjqjLVIIEAK8HbTsN2/Oc0sgWUrlTYpPnPBPlur4fC4D7pwMne7q3npqhZQtV2ZQP23ljQIF1WYNY5xE4+IivOofaqGOvMR1dXF4aoaAY7zrHyYtlfkaMa1UfLK4ud2t6DsIMbTTA253TpvlLHlXDU8t6PopR9o0+9iAWxG8Pojmep8HGeuoNQWkSDpPYso9v/RiH44WuaWvqMmG+2AoBfJQ6sZmBPg5gcWfMG5F8Ki01B6X7qAte3gIOz1ggx6x7jLPKnfDRLsObClbGUaV/NzfhFIMQ781Ff25yOAgFEBbNh/ik+zZemFlsSvyTNBhQCziNAYHRZjvK4Tkmapkm3MgGuz/+8k2wGHhejyI+cBThHlAd6Ke2IB39LJSM9Z6VMXhUhxqpttez5mTCHK0LA3dsHOpqC/fBFHk6eFhB7oi7wO9hPx7YmDxIVEO5PEuDteXUDL8svY2mlstweRTK07y61RTIFjEv59swYbX/uOVs2LV6JRaltaZADoHuznpMufq+Td/tHIfWtRYLOtqoOoyKnVneTPUFxvse78dUrz8AvCjFdbGoHjMiNvfNs2s8vTIoFgcPwlZWJy2G3zSGFglwQ30xDrhQm/fJK9hMmud8ruExsyDgqxM3+tzCi43NBSMHH6DmerhH87nJeP0sKnR1Wya8MdnRtU9OJhrySrfE34uGxh9/S9z8vN/+DcbZaQyGzWVstqZD1rTb1t8o61ygyFmvRZufob5nte6z5pWffGM3pM1FrggdGIQLXT83onS6vX6V4ZnS+CbCPcsd1NY4SDz8MMishBDjkn0WH2+Da14bt8U6aKw76aik5tlGmKRZKmyQ14ZyOXbsY1w/bOugHwExs5iauxrhOJgPi9mJC0As8rEUDhdc3Qwd2AnBZbsfsweY1DZi9r24uTZO5mZYmDluLnK3rC2wZLYzsG1rKMWCMdoexdWVZIr8B/rhJWna9jbP9XQeeYn1i63VLiUP3G1uhzmyfRDQfYzSsF5ImkP1GOzl+rtvDc/HRL7x0z74JCuE+yKPD/KlvsStgHgE5bfDj5p/fhRr3tDPNzbme0QxeD1D+w2PbL6D5Wwqh9vVepexxoqZrw+BkE/EXeCfn7Ykgxem+KkwQWPM2nrXTYt2AhiusQlPPTyKzMJMpn8INoWs9UIln7dtJG3emItpNdMS5pEOavOYTmYtTS2h73FlPkwt7GxlLOkLtMgjExqYZuyWYxxwpwa/S5Wt0OTOugLAzMQ4/GnXlmIAM99I25sLbSIc6FQxtXbVGY3Q413U6kdgnGdXnCx/58EVVKPvO6a3l1P+eZfSpefBTKjLbxMUKCJe15CP1pIdjdBgKRM+lQG1zO1rfXEIXmcsHRHYjsJtHdzoG4fdOofsfHdDuojF3uNmKmA+YIy086kevp7N4nLwkZvgVrYeQtmkq4zD1SB7BYINaXH1EBXCO1A4AzbKhk/pVnN0f5B2NWKqftSrSUBctrf1uz3oHMDAzDeHLAsQwcu7UWE3qOaxDwvmraa+85OD2MNh0D0gsFtgHnWdQ3F3VxkUDL/NQ7T5aSPw+BZai1C0CFbesPQDnoKT3/j6Bm45g7DdlYC/+7u5kJq3t5DRTBygwdYum/zFs7P98L0PbylZZdSxvRH6TethGRAi7vZp8vd+u/MWM44DMDOcNu+ByRraXHNYal2D4lHf3UEyRzPhnky57Lc1mmIkXNXdXk6l1R1YgzNrlA8EOD3aT61YiF/ekU1tWHPimWa7ePuec5ptLeepz+VYsI9Bn4R4zaOAuJeE2vZlEBi299qXjdxCox3LQv9SbE1kaPnIgyp3mbFpPyDBUxvbz+rjAD1wA8xnazHjCS0SKxDmpydpuBcuQuF6cBQLE8P3XBhq+eX23uxPD1B/l3UmAYo67BfQ3L8yIJi1qXSs2Al4sPxi3uDVVvEAsdWcTVnci7LZ6GuqOz2Isvq4KwQ21fQ008uuhkmlyfJxyB+Ddg0Q8hp9CXddeXXYc8NnoOtVl2wTFP92Lnr5JtQ2MrT7oolPfj1cZLoncPbSLVD5V7b2QqEIRSLK+Cz63X4M1oorB9HPYw8UD91DaPVsfrCLBu10etj3xTCzxv4Opfm2uRnWSf97csXgyhy2ui5w7QCpd6jLwU57ke1NOddX5d7Snncks9vBdmXnROs7V747HA6VlZOniirqVPvAhO1ueOauhYCo41tUUaNqqspUQY5D5VX1qIkB165o7ut1qtuyQ62x+6rrnbz1vO3ObC62E92qwrUVuPE+33g7ihrsd5kNKXvm1Eh7icEN2323j3jtPTjVp2r4/bjWaRtR63bjuC/Ajq8hRYdvmsI21O6dVRGmAzua+u4PHlJwHjvZVnjvZLvgsSU9b+teUObKy6wcVdI0oHrcW9Yjb8vqVF1VCbZTNxl5blFeUNWiOjtbVE1JiWraY94zp/Zgu3V0Mygr/j452CXPvqwFT+SE6q4wtlp3l8eaJtXe3a06WxpURQHSgbKJ7nbl/VkFqqxl98ouk7w7pGUnW58Nhz2uk3LklKiqmipVUZSnsvKqVOfu9pVtw7OKVFVdjSqraFdjZhFuLwiQdoQXpM4tWHY0Jp9dCq2Eos1P67b2OarObsvEhd3G7teaJ3bjHvDeqxPx4V0X3Tz97MYbLGMXxlSTpV0MtlPszECDgiMCxMmhCur61JS1TZkbUe0l2CE0q0S1uMulJQJznmkKf6dT38SMNOS589xRVKPaO9tVU1WRKmsfc7Wp1rpDyjZ92PmyIc8st7xjqFe/AEY6XX7rFZ61a9N8o+vnDLdtDnf4RbbbKiO7o2GPN0ffJy1g8/aVNoB30/UulUaf5VAlLSM+14zdurPA13c/9+D5iAQEaz+YLvr5pqIVlr55hva1biCyXanDKL8zfRUrMgLKTVZRhaqpqVAleVkqp6xd7e5e2XndUVCh6upwrWm3q3xYy6z9jsALlp3dKatK+WwazP2pu0xz+SxQVQ3tqrO7U7U3VamiHLSfFSt1hzk58kpUw8DUShlFue8023yf8r2gpvpqVB6ey6vxagfcISRQOxeNfBNqGxnqfcwnivgsjKEf5N12/bZH6Od7fOsYvzZoPdttyJRZFd3KWxTi/pF3Uc+p6ous/qyULP2NvH7H5OfCSKeqqShRebaAHCqnqAyCA4TnoG9bUGN9LaoBW4Nj/ZEH7CyusE3dykOGXZiAEFfkUen9Z5BDFaGB9JXHp1SfdxiOPFUBIUp3SZw5DgiPFQ2qvW+PmnC1vlMDEAbLICR5FYisgjJV09Ci+rxz0pX2handqqXCRmiEcFXXuScGmYxGAnHDAi4txBRVNaiW9nbV0lClCrKyVF5Fi9rtIUF4ZsqYe1t0CBu2vIJmor5hZneLqiorUDle+ajzx5GjCkrQOLeE0ilgENPdpOrAzJM1C+01qqGlb6VcQRhqKbMKzOgECqpU+x5DuFgYaXIJUly2stD4e/Ke29OkK5u7DEEYbtrtPWCdU2PddaoEA0LPsob4VDQh372759B4ue9amFK7Wyp8yj+hfNT0jKk5pAE+OVROSZVq6t6txlyvmxvp0XnsEy/udOpQHq2DVHQihkDpSivyo6yhzxUWtg2vWBG8HBgE9FjLcqR1bqJPNWCA5V2vOV0VdRjUWDtBE0ZE+TmlBtqbMFDzLAfEHLheag4Tqq+lTlUVeQmY6LArcE8P34OOpacJgx1dj1bKhCOvDO1Qp3IVqcCZizS3NNRhoOYtyHJ7UqcamtqVXbI50IWJAdVS5SrziHtFjTF4zcuBUqLG5v0LI6obAk2Rd7lE3pagDWiKpm2ZGVB1Vg7cPrazsIn2uqdBVYG15yDYeGe3bqxn1O5OHqx6MUAYJZwOa3VB2epr8m37WRFT0tDj2fYHJr9yVecj57VXeeAwmUuPr9AcNntrXCKtH8oot/7auaZOV3+Ed421FKm8ohJVlJeDv1VoAztVt2sQloWyUgdBxLef46zwl4+Q4cNoP3Ry58C1ocSnfXfklKkmP8q1gFkWUflF2Wrw6v+5H+125anH4AFCVEWnLkMTfWgf0Hd7lFkH6j7aId0+6DIDgd1LntEyiHc9mtmjOmu8+yYW7KE8GZlRE51FRj8M+aFzYEzN2GcM+jj0KbqOoR9B216D+l6BMpuDdzb1TfgM7DAyS5x2zpKxYcs3obaRod7nVcjCjo9HWtAGY8DmreDLKmlAHxGgnw9Qz3TwkCnz8opUCZRsORgAsryoB4kNFZDRDOVkABEtYDXyvpjCJ9CBJckBs5vWesLkHXXVZ8ONM+zw2aSHpxZ5KlT/ZbdZWPQC37yPz5dSN8wuGnN9k++chW072+tjSrS4OH9lMeP8NE1jAtntZcf30YjOOOE7mL24zDsz8UqYFuEFsbVKhXtHmKYM4x1sysi72RaXw9wkqM8yTIeO8v4F8AaAKaXYxikiVGE+hCk/uD4dZ9My+LQtxYZr1jSw96PhyXnKLoTZQL5N6pAvvImbEyY+xdjtxD8uXt8BkxqYCWTi3kJshGS3O3uYkV+5XS8+n4Tfa4SPvONd/3RcUB4n53NRXmziHs7LnKgTPA2Pkl5YXOpVvmFeBi8xszAOKC4v9rIZjV2dCy26UeZnaC9J3LuQ3+OTbKrI5QD5Do88/stkHJPBJocwSeDyko/yUrhiGRb7l5plHyYX2dgnojAf7XGUxT2iSEbEfhXqB/o1p7nxlaWdyEY/UuzV3vmkO9b5yOFhXdDsvNGPFce6o/RJgO8J56yrL0U7XAr/1B5F02zPYb5bjo244laMUFZG0V6z1Vg23lXqepcTJk7T2SjDIdUX9Nnou9glL0o+5aL/Kg7tQV8oa3wm/vJNeAmMJj66fKENnkdPyP1wfiiNUaB6pk3F4OlJF0aYK6LcTEJe8ejnw0ue37uTSOCfpn4s2G2cboZXmma3BxW/KcciwI7SSprsmqXecr93yQUhIAT8EpA65xeNXBACUA1JnyTFQAgIgUQhkJ4oEYkuHljIgp31tu2cp5qBxuDCPr8sE1p6aIoScol7dDDkaSGwCgSkzq0CZHnFuiUg9WPdZp1EXAgkKYG4e+lZFW5O9sLCfqpC35XUiR35tjvrqbZwVWIoLxECyUVA6lxy5aekJrYEpH7ElqeEJgSEQNQEkkPgZ0s8bf8E/7XQ9Df2jvu4HzRJsW3+YEc1ldZPUnOvtwu7qHlKAEJggxCQOrdBMlqSGREBqR8RYZOHhIAQiBuBpLHhn+6tpNLrHnD7JIfnFyrCgrZ8rJzMzITfWSxsmuYFMHDFW1jXRb1d2GQqpIUzcWMvAQuBdU1A6ty6zj6JfJwJSP2IM2AJXggIgbAIJI3Az6meH8eOpG1d2HTrcTpg7lTiwpGVV0LlldjRtrmeKgvjtjY/LPhysxBY7wSkzq33HJT4x5OA1I940pWwhYAQCIdAUgn8Kwnn3c/gPhNu3DKzcykX7utyQ3GdFA45uVcICAELAalzUhyEgH8CUj/8s5ErQkAIrAaBJBX4VwOdvEMICAEhIASEgBAQAkJACCQ+gSRZtJv4oCWGQkAICAEhIASEgBAQAkJgLQiIwL8W1OWdQkAICAEhIASEgBAQAkJglQiIwL9KoOU1QkAICAEhIASEgBAQAkJgLQiIwL8W1OWdQkAICAEhIASEgBAQAkJglQiIwL9KoOU1QkAICAEhIASEgBAQAkJgLQiIwL8W1OWdQkAICAEhIASEgBAQAkJglQiIwL9KoOU1QkAICAEhIASEgBAQAkJgLQiIwL8W1OWdQkAICAEhIASEgBAQAkJglQiIwB8W6HmaHOqljq4hmg3ruVBunqfp0UHa3tpLo85Q7pd7hIAQEAJCQAgIASEgBIRAcAIi8Adj5Jymod4OaqwupfzMLXTeVdfRLb3jNB/suVCuz4/T4PZWI+zsLbT10mvohq5+mg7lWblHCAgBISAEhIAQEAJCQAiEQEAE/mCQnE7KzC2k0lyi+cVgN4d5HZr8zMJKqq7MJzoY5rNyuxAQAkJACAgBISAEhIAQCIFAegj3bOxbsgupvLKQqJxosPca2hVLoT+3mCoxkKDyXGrcvpNueXxjo5bUCwEhIASEgBAQAkJACMSegGj4Q2WamUn4P05HNmVnxyloCVYICAEhIASEgBAQAkJgQxMQgX9DZ78kXggIASEgBISAEBACQiDZCYjAn+w5LOkTAkJACAgBISAEhIAQ2NAEVsmG30mz007KzbfYrThnaXJympyZ+ZRfmEt2Fi3O+Wmanp6ledxTjHtCtqhB2PzcLFzpZOcifLw35GddxWF+epKmOQAs2C2M4HkipHkSYTgz8f5CyrVL4IYuepJ4ISAEhIAQEAJCQAgIgdUgEEcNv1P7le9qroaHm2zKr+83fNfDFWVvYzkE4FPpvAsvpQvPOxUDgUrqsjifnx/dTvXl+ZS9Zau+51Lck11YS72TgR3Uz+K5xnII1/nlVNvcSm3NtVS6dQuEfiyObe6n8aC+NJ002d9MlYWIb3ktNbe1USM86OQWVlPXMDzvB369zi+Og457JsIovpAuvfA8OnVLNhVWt9IQBj1yCAEhIASEgBAQAkJACAiB1SQQH4F/fpg66mupvr6ebrpzF+09sEjs3GZ2uIPKiyE8T+ZSdXMLNdWUUA7OL+5/gG6qbqSh+Xka7Sin4tpemoeA39bejnuKKIvv2beTrqtuo3FbOvM03FpKhZc203BhB41COz86NERDo5M0OzVAjbnT9MCd2+hCuMDs8iv1z9JgfTEVb+snahzGDME4DSOM0clZGu/Ipd7q62hnQA89ThrvQtyr+ym3eYim553kdCqaGemmqryDtG/X7XRVMd4fZNBimzw5KQSEgBAQAkJACAgBISAEIiWg4nnM9KgyBynETZEjSxVUdKo9M9YXLqixlgLjOjlUXlGRKqrpURMLnveMNOS57slRdXs8LuobJzpLFAYFylHWrabs0jO3W9XlueKRVaF6fG5aUCOIhwNh5DXsUb5vUGqmp0Jf12kpalcTXu+Z6atSOYT47Z7zicHcQJWOHz/rsHkWoavuMpNTheqzi4BPqHJCCAgBISAEhIAQEAJCQAgEJxAfDb85+oD9PKxjjCMbmv3BZnY5bzkyqRizAEX6zCLtd5bT9t56KvQwuM+k0tpKPRNAdACa+0lrAETTMONp3Yt9q7Iwa1BP+Z5XjV/ZldTRVkEQ2LHB1QPUDPMeD+ue8Taqv30fLTrKqLWt3NbeP7e6nsp1ADbH/2/vfsHiutI4AH9RUEUcVAUHqyAKqsAFF1bBqrAqWRUcrKsLq0LV4jZRpapUFRRU7aybqhAVqpqoTlQGdffc+UMHMsMmefb0NM17nyeEmbn3nHtfzO/eOec77ZPY3vwuXs1sxPbK24P1b65sxEr9NUXazn/ci73GkDa8RYAAAQIECBAgQCCDQOZJuwPJPY1pvzls5my6KajvATprTt1Mv1+zz6u0y8s0GXdwa+7txg+doTZpnP7ysIO7e0+tP0g3BEfxTVrR9vV3u/HkLI3Rn64/a8XBzl487zSxHquXbki6x3Z+pkL5nfMfMqyndbAT++nkxuan0hj+xuWbifrYtFrvzbrdzmq6P8XJSbppWZytX9gIECBAgAABAgQIZBXIHPjf4dxTih6vn5wPCdIXR9eLXvVetFN4rqe+dl+fxuFhJ6pHTExdXwlnfDlWF8fim6O6o2YcnLRicyM9jW83Yv+wk8Rjcj5N+O229h4/29E4aHROf6y5F5sPngw/dnwu5rpfZcR4mqtgI0CAAAECBAgQIPBbCJQP/O99lXXc729n0Tzr/T749tA2U6Wc+emIo/oG4TyVzKwPnI84TRNzu3k/PcR/ezjO0KYuvZkm9Z52G6grETV3Ups2AgQIECBAgAABAr8Tgbxj+HNfZLsVqRhOb0u//48H5zcHiuG3+we+THX+ey2kLw8+YOvW+68PbNV1+20ECBAgQIAAAQIEfkcCH3fgH5wXcD7wtH8E8PjAJIKbvUXA+kOE6kNarcvzA0Y0M/LtV6fNOBv5qQ8IECBAgAABAgQI/PYCH3fgj9lYnO6jpcA/ssZ+d5+Lp/qpos98PbwnbeNpNm1/IM/rZjPSdNr33KbiYgHh5kEcvsM9Q/us8Q6LgL3nadidAAECBAgQIECAwBCBjzzwT8fyykzvss7T5NmTaxfDPeuM20/bxEqs9iv6zKcFu/rlNn9Mgb23yxCrEW9Np5uHbtHQOP8hdnYa155DPUl4e33XNwEjNL1NgAABAgQIECDw/xX4yAN/mna7uR1pca/O9vpwL/ZHPmFvxuFJXdgzYubBdqz2y/6kGv3rqXpPd/tPqtd/+HZZzfrDujpQf4x/mjswONz/13UCUtHNrzbiwajH/O1m7K2uRyOtGLz6IfODW2kF4UYzXn7QXIPeJfqPAAECBAgQIEDgkxLIHPgHQvIo1l6Zzc7HaSLtqCx78f7VHaY2Ym9nKQ3SSdv50cgn7K3DVHs/FegZm9uKJ18OVtKZio0vN+JW7/xePd2I9b3TK+fRisbuThz2S4eeNaM5cGMxvrIdm3P9m4bn8XR1MVa2U8WefjJvp0o+qVb/+uJybLYexN7m1Rr8A06pj6GTh8+exMr0n+KLL27H9OJ2NK86jPL1PgECBAgQIECAwCctkDfwp2Dcq1iZVsw6jbNhRWxOG3F2EaRTicwhT+jb9T69P9N53eaVP9ns5kEcbC10Qv/zr1ZTYG9eCuztVB9/feNptGbux8HhTiz2n+732hlf3o39R93j69V8j/42H7PLadXc3bQq7u52bCzPx/rJVMz3M326sfhrGrg/u7IbjU7wno3t/d240xvZE+c/xdE//hK3P/8sbty4ETc++zxu//nvcRDrcXCwHfNX+o9WM+q1uLrbaSrz+Xaab53sx1GvfOh5Gnq0fxXhiomXBAgQIECAAAECBDoCVY7t5+Pq8cN71dKtsaruov9vYuZOde/hP6t//5I6ffF99ej+3Wph8tfP6/3Gbi119jnu7PNttXXvTjUzcXmfyYW16v6jb6sXl879TfXi+HG1NjdZpVxeTcwsVXfX1qq7SzPV5ORMdXcr7f/muot9Uz37+mG1NHn5nNNyXNXC/a+rF798X62l8xi7tVCtbf2rOn5Wn+Dl7U26pq07M53+B687Juaqe4+Pq5+vHvAsXV/H4Eqfaf879x5Wj48Hjnj2uFoY67V76351fO21XO3IawIECBAgQIAAgU9V4EZ94X+0e5/2yzTk5jTVx2+Px9TUdGfBrXcfMt+Ol6laTzPV54/xVIGnntTbObgVp2kczfT81MWqv6Pc2mmsfTOtCNaq+59N3xakbwOuPtQfdex179fVfU7qc1he7p3TdXv7jAABAgQIECBAgEDEHzLw+8MSIECAAAECBAgQINAVyDuGnzIBAgQIECBAgAABAkUFBP6i/DonQIAAAQIECBAgkFdA4M/rq3UCBAgQIECAAAECRQUE/qL8OidAgAABAgQIECCQV0Dgz+urdQIECBAgQIAAAQJFBQT+ovw6J0CAAAECBAgQIJBXQODP66t1AgQIECBAgAABAkUFBP6i/DonQIAAAQIECBAgkFdA4M/rq3UCBAgQIECAAAECRQUE/qL8OidAgAABAgQIECCQV0Dgz+urdQIECBAgQIAAAQJFBQT+ovw6J0CAAAECBAgQIJBXQODP66t1AgQIECBAgAABAkUFBP6i/DonQIAAAQIECBAgkFdA4M/rq3UCBAgQIECAAAECRQUE/qL8OidAgAABAgQIECCQV0Dgz+urdQIECBAgQIAAAQJFBQT+ovw6J0CAAAECBAgQIJBXQODP66t1AgQIECBAgAABAkUFBP6i/DonQIAAAQIECBAgkFdA4M/rq3UCBAgQIECAAAECRQUE/qL8OidAgAABAgQIECCQV0Dgz+urdQIECBAgQIAAAQJFBQT+ovw6J0CAAAECBAgQIJBXQODP66t1AgQIECBAgAABAkUFBP6i/DonQIAAAQIECBAgkFdA4M/rq3UCBAgQIECAAAECRQUE/qL8OidAgAABAgQIECCQV0Dgz+urdQIECBAgQIAAAQJFBQT+ovw6J0CAAAECBAgQIJBXQODP66t1AgQIECBAgAABAkUFBP6i/DonQIAe056tAAABSklEQVQAAQIECBAgkFdA4M/rq3UCBAgQIECAAAECRQUE/qL8OidAgAABAgQIECCQV0Dgz+urdQIECBAgQIAAAQJFBQT+ovw6J0CAAAECBAgQIJBXQODP66t1AgQIECBAgAABAkUFBP6i/DonQIAAAQIECBAgkFdA4M/rq3UCBAgQIECAAAECRQUE/qL8OidAgAABAgQIECCQV0Dgz+urdQIECBAgQIAAAQJFBQT+ovw6J0CAAAECBAgQIJBXQODP66t1AgQIECBAgAABAkUFBP6i/DonQIAAAQIECBAgkFdA4M/rq3UCBAgQIECAAAECRQUE/qL8OidAgAABAgQIECCQV0Dgz+urdQIECBAgQIAAAQJFBQT+ovw6J0CAAAECBAgQIJBXQODP66t1AgQIECBAgAABAkUFBP6i/DonQIAAAQIECBAgkFfgv5QObTrsWYKJAAAAAElFTkSuQmCC" | |
| } | |
| }, | |
| "cell_type": "markdown", | |
| "id": "hollow-destiny", | |
| "metadata": {}, | |
| "source": [ | |
| "" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.8.5" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 5 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment