Created
July 26, 2025 04:11
-
-
Save frauzufall/539b1e367d40b2538d71f577e9cf3585 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "id": "099e147f-2559-4387-8935-233f5d6cc239", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import numpy as np\n", | |
| "from scipy.ndimage import laplace\n", | |
| "\n", | |
| "def op_mean(array_2d):\n", | |
| " \"\"\"Plain mean of a 2D array.\"\"\"\n", | |
| " return np.mean(array_2d)\n", | |
| "\n", | |
| "def op_mean_laplace(array_2d):\n", | |
| " \"\"\"Mean of the laplacian of a 2D array.\"\"\"\n", | |
| " return np.mean(laplace(array_2d))\n", | |
| "\n", | |
| "def op_std_dev(array_2d):\n", | |
| " \"\"\"Standard deviation of a 2D array.\"\"\"\n", | |
| " return np.std(array_2d)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 42, | |
| "id": "06d53669-e48a-4d6d-a0e9-8ba3301b145c", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import dask.array as da\n", | |
| "import pandas as pd\n", | |
| "import time\n", | |
| "from dask.distributed import Client, LocalCluster\n", | |
| "\n", | |
| "# --- Setup Dask Client ---\n", | |
| "# client = Client(LocalCluster(n_workers=4, threads_per_worker=2, memory_limit='2GB'))\n", | |
| "\n", | |
| "def run_dask_benchmark(methods_to_test, shapes_to_test, chunk_configs_func, n_trials=3):\n", | |
| " \"\"\"\n", | |
| " Runs a parameterized benchmark for Dask's performance with different\n", | |
| " chunking strategies.\n", | |
| " \n", | |
| " Args:\n", | |
| " methods_to_test: A dict of {'name': function} for the 2D operations.\n", | |
| " shapes_to_test: A list of array shapes to test.\n", | |
| " chunk_configs_func: A function that returns chunk configs for a shape.\n", | |
| " n_trials: Number of times to repeat each measurement.\n", | |
| " \"\"\"\n", | |
| " results = []\n", | |
| "\n", | |
| " for shape in shapes_to_test:\n", | |
| " chunk_configs = chunk_configs_func(shape)\n", | |
| " for chunk_name, chunks in chunk_configs.items():\n", | |
| " print(f\"\\n--- Shape: {shape} | Chunks: {chunk_name} ---\")\n", | |
| " \n", | |
| " # Persist data for this round of tests\n", | |
| " dask_arr = da.random.random(size=shape, chunks=chunks).persist()\n", | |
| " \n", | |
| " for method_name, core_func in methods_to_test.items():\n", | |
| " print(f\" -> Testing Method: {method_name}...\")\n", | |
| " \n", | |
| " # Benchmark the Dask Gufunc implementation\n", | |
| " for _ in range(n_trials):\n", | |
| " start = time.perf_counter()\n", | |
| " da.apply_gufunc(core_func, \"(i,j)->()\", dask_arr, allow_rechunk=True, vectorize=True).compute()\n", | |
| " end = time.perf_counter()\n", | |
| " results.append({\n", | |
| " 'method': method_name, \n", | |
| " 'shape': str(shape), \n", | |
| " 'chunks': chunk_name, \n", | |
| " 'time': end - start\n", | |
| " })\n", | |
| "\n", | |
| " # Clean up Dask memory\n", | |
| " # client.cancel([dask_arr])\n", | |
| " \n", | |
| " return pd.DataFrame(results)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 43, | |
| "id": "a24bb0eb-8390-4449-b2e7-e8d0150bf37b", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n", | |
| "--- Shape: (50, 50) | Chunks: Small ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (50, 50) | Chunks: Ideal ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (50, 50) | Chunks: Realistic ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (50, 50, 50) | Chunks: Small ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (50, 50, 50) | Chunks: Ideal ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (50, 50, 50) | Chunks: Realistic ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (5, 100, 50, 50) | Chunks: Small ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (5, 100, 50, 50) | Chunks: Ideal ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (5, 100, 50, 50) | Chunks: Realistic ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (5, 5, 50, 50, 50) | Chunks: Small ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (5, 5, 50, 50, 50) | Chunks: Ideal ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n", | |
| "\n", | |
| "--- Shape: (5, 5, 50, 50, 50) | Chunks: Realistic ---\n", | |
| " -> Testing Method: Mean...\n", | |
| " -> Testing Method: Mean Laplace...\n", | |
| " -> Testing Method: Std Dev...\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "import seaborn as sns\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "\n", | |
| "# --- Define Test Configurations ---\n", | |
| "METHODS_TO_TEST = {\n", | |
| " \"Mean\": op_mean,\n", | |
| " \"Mean Laplace\": op_mean_laplace,\n", | |
| " \"Std Dev\": op_std_dev\n", | |
| "}\n", | |
| "\n", | |
| "SHAPES_TO_TEST = [\n", | |
| " (50, 50),\n", | |
| " (50, 50, 50),\n", | |
| " (5, 100, 50, 50),\n", | |
| " (5, 5, 50, 50, 50)\n", | |
| "]\n", | |
| "\n", | |
| "def get_chunk_configs(shape):\n", | |
| " # Same function as before\n", | |
| " n, m = shape[-2], shape[-1]\n", | |
| " other_dims = shape[:-2] if len(shape) > 2 else ()\n", | |
| " return {\n", | |
| " \"Small\": (*[1 for d in other_dims], 20, 20),\n", | |
| " \"Ideal\": (*[d//2 if d > 1 else 1 for d in other_dims], n, m),\n", | |
| " \"Realistic\": (*[d//2 if d > 1 else 1 for d in other_dims], n//4, m//4),\n", | |
| " }\n", | |
| "\n", | |
| "# --- Execute and Plot ---\n", | |
| "df_results = run_dask_benchmark(METHODS_TO_TEST, SHAPES_TO_TEST, get_chunk_configs)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 44, | |
| "id": "14771816-2083-4b4e-b96d-cd9dd865df53", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import seaborn as sns\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "\n", | |
| "def plot_dask_results(df):\n", | |
| " \"\"\"\n", | |
| " Generates and saves a separate plot for each benchmarked method,\n", | |
| " comparing chunking strategies.\n", | |
| " \"\"\"\n", | |
| " print(\"\\n--- Generating Dask performance plots ---\")\n", | |
| " \n", | |
| " for method_name in df['method'].unique():\n", | |
| " print(f\" -> Creating plot for: {method_name}\")\n", | |
| " \n", | |
| " df_method = df[df['method'] == method_name]\n", | |
| " \n", | |
| " g = sns.catplot(\n", | |
| " data=df_method,\n", | |
| " kind=\"bar\",\n", | |
| " col=\"shape\", # Create a subplot column for each shape\n", | |
| " x=\"chunks\", # Compare chunking strategies on the x-axis\n", | |
| " y=\"time\",\n", | |
| " sharey=False,\n", | |
| " height=6,\n", | |
| " aspect=1.0\n", | |
| " )\n", | |
| " \n", | |
| " # Configure titles and labels\n", | |
| " g.set_axis_labels(\"Chunking Strategy\", \"Execution Time (s)\")\n", | |
| " g.set_titles(\"Shape: {col_name}\")\n", | |
| " g.fig.suptitle(f\"Dask Performance for: {method_name}\", y=1.03, fontsize=16)\n", | |
| " \n", | |
| " # Create a dynamic filename for each plot\n", | |
| " safe_filename = method_name.lower().replace(' ', '_')\n", | |
| " output_filename = f'dask_benchmark_{safe_filename}.png'\n", | |
| " \n", | |
| " # Save the figure\n", | |
| " g.figure.savefig(output_filename, dpi=300, bbox_inches='tight')\n", | |
| " print(f\" ✅ Plot saved to {output_filename}\")\n", | |
| " \n", | |
| " plt.show()\n", | |
| " plt.close(g.fig)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 45, | |
| "id": "471989a4-7741-4d0a-aad8-9d8dac7be749", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "\n", | |
| "--- Generating Dask performance plots ---\n", | |
| " -> Creating plot for: Mean\n", | |
| " ✅ Plot saved to dask_benchmark_mean.png\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAACWYAAAJrCAYAAABpk9gQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA5ZJJREFUeJzs3XlY1OX+//HXoKAgWxjiLuJCbmiSuJW7KVrH3JKyRE2lUlO0Rf16TNOMzBZTU1Ncj0uW4pZhtuFxzzS3zA3NLdFUNgFBmN8f/pjTNIgsgwP4fFxX19Xnnnt5f2bI3s7nzX0bjEajUQAAAAAAAAAAAAAAAAAAq7GzdQAAAAAAAAAAAAAAAAAAUNxQmAUAAAAAAAAAAAAAAAAAVkZhFgAAAAAAAAAAAAAAAABYGYVZAAAAAAAAAAAAAAAAAGBlFGYBAAAAAAAAAAAAAAAAgJVRmAUAAAAAAAAAAAAAAAAAVkZhFgAAAAAAAAAAAAAAAABYGYVZAAAAAAAAAAAAAAAAAGBlFGYBAAAAAAAAAAAAAAAAgJWVtHUAAAAAAACg6GjXrp0uXrxoujYYDHJ0dJSLi4uqVaum+vXrKzAwUH5+fjaMUhozZowiIiL03nvvqUePHvmeb+bMmZo1a5ZZm52dnVxcXFSzZk0FBgYqKChI9vb2+V4rp9asWaPly5crOjpaycnJkqTvv/9elStXvm8xIO9SU1M1a9YsRUZG6tKlS0pLS1OlSpX0ww8/2Dq0LO3Zs0f9+vUzXUdERKhu3bp37d+1a1edOnVKktSrVy+9++67BR4jAAAAAABAYUNhFgAAAAAAyLXGjRurWrVqkqSUlBTduHFDx44d0969e7Vw4UIFBARo6tSpqlKlio0jta6HH35YTzzxhCQpLS1NZ86c0S+//KJffvlFX3/9tRYuXCgnJ6cCj+Onn37SuHHjVKpUKbVo0ULu7u6SdF/WhnV88sknCg8P18MPP6z27dvL0dFRDz30kK3DyrE1a9bctTDr119/NRVlAQAAAAAAPMgozAIAAAAAALnWu3dvi52ojEajtm3bpqlTp2rv3r0KCgrSqlWrilVxlo+Pj8LCwszafvjhBw0bNkwHDhzQ/PnzNWLEiAKPIzIyUpI0fvx4PfvsswW+Hqwv8zNcvny5vL29bRtMLlSsWFG3bt3Spk2b9NZbb8nBwcGiz5o1ayRJDRo00OHDh+93iAAAAAAAAIWGna0DAAAAAAAAxYPBYFDr1q315ZdfytvbW3/99ZfGjx9v67AKXLt27fSvf/1LkvTNN9/clzUvXbokSaZdy1D0ZH6GRakoS5JKliypf/3rX4qNjdV3331n8XpycrK+/vpreXl56fHHH7dBhAAAAAAAAIUHO2YBAAAAAACrcnV11bhx4zRkyBDt3r1bR44cUf369U2vnzp1Sps3b9bOnTt18eJF3bhxQ2XKlFGdOnX07LPPqkuXLlnOu3PnTi1dulSHDh1SXFycnJyc9NBDD8nPz099+vRRkyZNchTftm3bNHLkSKWlpSksLExdu3bN9z3Xq1dPERERunjxoll7SkqKVqxYocjISEVHR+vWrVuqWLGi2rdvr8GDB1scXbd27VqNHTtW3bt315gxYzR79mz9+OOPunz5sh599FFVqlRJERERpv79+vUz/Xv37t3NdvM6dOiQwsPD9csvvyg2NlYuLi5q2LChXnzxRbVs2dLiHsaMGaOIiAi99957ql+/vj777DPt27dP165d06uvvqrhw4frxRdf1N69e7V06VKVKlVKn332mQ4ePKjU1FTVq1dPI0eO1GOPPWZ6n8PDw/Xbb7/p9u3batSokV5//XXVq1fPYu2dO3fq+++/1759+3T58mXdvHlTHh4eaty4sQYOHCg/Pz+LMTNnztSsWbM0bNgw9e3bVzNnztQPP/yga9euqWzZsurQoYNGjBghV1fXLD+zM2fOaMmSJdq1a5cuX76sEiVKqHz58goICNDzzz+v2rVrm/WPi4vTkiVL9P333+vcuXPKyMhQ1apVFRgYqAEDBsjR0THLdf6pXbt2Zj8nvr6+pn9/7733zHai+/rrr7V69WodO3ZMSUlJ8vT0VLNmzTRkyBBVr179rnN///33+v3337V06VL9/vvviouL09KlS9W0adMcxXgvPXv21KJFi7RmzRqL/14jIyN18+ZNvfDCCypRokS288TExGjhwoXatm2bLl26JDs7O/n4+Kh79+4KCgpSyZLmX11ev35dmzZt0n//+1+dPn1af/31l0qWLClvb2917txZwcHBKlWqlMU6me/x8ePHtWXLFi1evFjHjx9XRkaGHnnkEb3yyitq3bp1Pt8VAAAAAAAAS+yYBQAAAAAArK5Vq1Zyd3eXdKfo5u8WLVqk2bNnKy4uTrVr11bHjh1VvXp17dmzR6GhoXrvvfcs5ouIiNDAgQP1008/qXLlynryySf12GOPydnZWZs3b9a3336bo7hWrVqll19+Wfb29lq0aJFVirIkKTExUZLMjnWLiYlR79699f777+uPP/5QgwYN1Lp1a6WlpSk8PFw9e/a0KOTKdOPGDfXs2VPr169XrVq11L59e3l5ecnf31/du3fXww8/LEl6/PHH1b17d3Xv3l3+/v6m8atXr1afPn0UGRkpT09PderUSdWqVdOPP/6ogQMHatasWXe9lwMHDqhnz546dOiQHnvsMbVu3VplypQx6/PTTz+pb9++unr1qlq0aKFq1arp559/1oABA7R//34tX75cISEhunXrllq2bKly5cpp586deuGFF/THH39YrPn222/riy++kJ2dnRo3bqy2bdvKxcVF33zzjZ577jlt2bLlrvH++eef6t69u7799lv5+fmpRYsWunnzpv7zn/9o4MCBSktLsxizceNG/etf/9LKlSuVmpqq1q1bq0WLFrK3t9eqVass1jt16pS6deum2bNn69q1a/L391fz5s11/fp1zZgxQ88995wSEhLuGuPfderUSd27dzddZ35+3bt3V9WqVSXdORb0rbfe0qhRo7Rv3z7VqVNHTz75pBwcHLR27Vp1795d27Ztu+saixYt0tChQ3Xz5k098cQTCggIMBVJrV27Vr6+vmrXrl2O4s1KrVq15Ofnp507d+rPP/80e+2rr76SJIujTv/p559/1tNPP63Fixfr1q1batGihRo3bqzz589r8uTJCgkJsfjs/vvf/+rdd9/V8ePHValSJXXo0EF+fn46c+aMPvzwQwUHBys1NfWua3766aemo0Zbt26tatWq6cCBAwoJCdHWrVvz8lYAAAAAAABkix2zAAAAAACA1RkMBtWtW1c7d+7UyZMnzV7r1q2bXn75ZVWpUsWsPTo6WgMGDNDixYvVtWtXs12SZs2aJaPRqOXLl5t2ZMp07do1xcTEZBuP0WjU9OnTtWDBAlWtWlWff/55ljsO5YXRaNQPP/wgSapTp46pbeTIkTpx4oR69eqlsWPHytnZWZJ0+/Ztffjhh1q4cKHGjh2rpUuXWsz5008/qXnz5po1a5ZpXKbevXvrxRdf1F9//aUhQ4ZY7IJ0/PhxTZo0SUajUe+//76eeeYZ02tRUVEaOnSoZs6cqUcffTTLnbNWr16tIUOGKDQ0VHZ2Wf9O36JFi/T++++rW7duprawsDAtWrRI48aNM+2E1Lx5c0lSenq6QkNDtWXLFs2fP19Tpkwxm++tt95SkyZN5ObmZtb+3XffacSIEZowYYJat26t0qVLW8SyZs0a9ejRQ5MmTTIVxv3555/q06ePDh8+rC1btuipp54y9T9y5IjGjh2r27dva/z48erbt6/ZfWbu4pYpJSVFr7zyiv7880+98sorevXVV03rJCcna/z48dq0aZOmTp2aZVHhP7311luSZNr57O+7nGVatWqV1q1bp4ceekiLFi0y+7maNWuWZs2apdGjR2vLli3y8PCwGL9y5Up99tlnat++/T3jyatevXrp0KFDWrt2rYYOHSpJOnv2rPbt26cmTZpke0Tj1atXNWzYMMXHx+vtt99WUFCQ6TO4ceOGRo4cqe3bt2vevHkaNmyYaVz9+vX1xRdfqFGjRmbzxcXFadSoUdq+fbuWLl2qQYMGZbnusmXL9MUXX6hhw4amtsyd16ZPn66OHTvm8d0AAAAAAADIGjtmAQAAAACAApF5TF9sbKxZe0BAgEVRliT5+Pjo1VdflXTnOLS/u3btmlxcXCyKsiSpbNmyqlu37l3juHXrlkJDQ7VgwQI1atRIX3zxhVWKstLS0nTq1CmNHj1ahw4dkiQFBwdLurOzz/79+1WnTh1NmjTJrLiqZMmSeuONN1S7dm3t2bNHJ06csJjb3t5ekydPtijKyomlS5fq9u3b6tixo1lRlnRnl6A+ffpIksLDw7Mc7+3trZEjR961KEu6s+vT34uyJOnll1+WdOeIwOeee85UlCVJJUqUUEhIiCRp165dFvN16NDBoigrs71z586KjY3Vnj17soylfPnymjBhgtluZRUqVNALL7wgyXLHtjlz5igtLU0vvPCCXnzxRYv7rFSpktnRmxERETp37pzatm2rkSNHmq3j6Oiod955R2XLltWGDRsUFxeXZYy5tXDhQknS0KFDTUVZ0p2Cx2HDhsnX11fx8fFavXp1luOfeeaZuxZlubi4qHr16ln+N5gbXbt2laOjoyIiImQ0GiXdKZKT7hx1mJ0lS5YoNjZWffv21fPPP2/2GTz00EOaNm2a7O3ttXz5ctPcklSjRg2LoixJcnNz0/jx4yVZ/tnxd6+99ppZUZYkhYSEyMXFRWfPnrXY/QsAAAAAACC/2DELAAAAAAAUiIyMDEl3ikn+6ebNm9q2bZuOHTumGzdumI4su3r1qqQ7xT1/16BBA+3du1dvvvmm+vXrp7p162ZbOJTpxo0bCg4O1oEDB/Tkk0/qgw8+yHLXpZzau3evfH19Ldrt7e01evRo0447UVFRkqQnn3xSJUtafv1iZ2enxx57TCdOnNCBAwdUu3Zts9fr1KmT58KZvXv3SpLZcXl/16tXL/3nP//Rvn37lJ6ebjriLlOHDh0s2v6pdevWFm3u7u5yd3dXbGxslq9Xq1ZNknTlypUs54yJiVFUVJSio6OVkJCg9PR0STLtuHbmzJks523evLkcHR0t2mvUqGGaN1N6erqpUOvZZ5/N9h4zZX6WgYGBWb5epkwZ1a9fX1FRUTp8+LAef/zxHM17N5cvX9a5c+ckZf0ZGgwG9ejRQ++995727NljKoj7u06dOt11/o4dO1plZyhnZ2c9+eSTWr9+vfbs2aMmTZpo3bp1KlOmjDp37pzt2Hu9p15eXqpWrZpOnTqls2fPmhVSpqena+/evdq/f7+uXr2qW7duyWg0mgq4/vlnx9+1bdvWos3BwUFVqlTRb7/9ppiYGFWoUOGe9w4AAAAAAJBTFGYBAAAAAIACkXkc3D93Qvrhhx80duxYi520/i4xMdHseuLEiQoJCdH69eu1fv16lSlTRg0aNFCzZs3UrVs3VaxYMct5PvroI92+fVuPP/64ZsyYkaNiruw8/PDDeuKJJyTdKZBxdnZWzZo11a5dO3l6epr6nT9/XpI0Y8YMzZgxI9s5r1+/btFWqVKlPMeYWYhUuXLlLF/PLPi6deuWYmNjVbZs2VyvfbfilTJlyig2NjbLzyNz96/U1FSL12bNmqW5c+eaCvSy8s+fiXvFktV6sbGxSkpKkqQc75qW+Vm++eabevPNN7Ptm9VnmVuZn5+7u/tdd0yrWrWqWd9/uttnb209e/bU+vXrtWbNGqWkpOjKlSvq3bt3loVyf5f5nvbt2/eea1y/ft30WZ09e1bDhg2zOB717+72cyLprn9OZL7Pt27dumc8AAAAAAAAuUFhFgAAAAAAsDqj0ahjx45JktluUDExMQoNDVVKSooGDRqkp59+WpUrV5aTk5Ps7Oy0fft2vfTSSxbz1ahRQ5GRkdqxY4d2796tAwcO6JdfftHu3bs1e/ZsvfvuuxZH60lS586d9d1332nnzp1au3atevXqla/78vHxUVhY2D37Ze4W5u/vbyqiuZtatWpZtOVnV6/8ysna9ypwy2qXtLv59ttvNXPmTDk5Oenf//63mjVrpnLlyql06dIyGAz66KOPNG/ePLMj7XITS35lfpZPPPGEHn744Wz73q3w534rVarUfVknICBAVatW1bfffqu//vpL0r2PMZT+95526tRJTk5O2fZ1d3c3/ftrr72mkydPqm3btho0aJBq1KghZ2dn2dvbKzU1VQ0aNMh2roL+WQEAAAAAAPgnCrMAAAAAAIDVRUVFKS4uTpLMjnb74YcflJKSoo4dO+qNN96wGPfHH3/cdc6SJUuqdevWpuPsEhMTtWjRIs2aNUtvv/22OnbsaFHk0bJlSwUFBSkkJETjx49XUlKS+vXrZ41bzFbmLk7t27fPstCsIHl5eencuXM6f/68xRGJknThwgVJd4p3/rmbmS188803kqTQ0FD16dPH4vWzZ89abS13d3c5OjoqOTlZZ86cyfL9+acKFSooOjpavXr1uucRfdbg5eUl6c7uXomJiVnumpW541RmX1sxGAzq3r27ZsyYoZ07d6pGjRp69NFH7zmuQoUKOnv2rAYPHnzPYqpMp0+f1vHjx1W2bFnNmjXL4ojQ7P7sAAAAAAAAsBV+TQwAAAAAAFhVQkKC3nvvPUl3CqPq1Kljei2zWCurnYWMRqM2btyY43WcnZ01fPhwubq6Kjk5+a4FPE2aNNHixYvl5uamd999V3Pnzs3F3eRNq1atJEmRkZF33empoAQEBEiSIiIisnz9q6++kiQ99thjFsUttpDdz8S1a9e0c+dOq61VokQJtWjRQpK0evXqHI3J/CwzC8gKWvny5U27rK1du9bidaPRaPpsmzZtel9iyk6PHj3k4eEhd3f3LAvrspJ5HGhu3tPMn5Ny5cpl+XO7YcOGHM8FAAAAAABwv1CYBQAAAAAArMJoNCoqKkq9evXS2bNn5enpqcmTJ5v1qVGjhiRpy5YtunLliqk9PT1dM2bM0IEDByzmTU5O1qJFi3T9+nWL1/bt26f4+HiVKFFC5cuXv2tsfn5+Wrp0qTw9PfXxxx9r+vTpeb3NHGnfvr0aNGigQ4cOaezYsVnGHhcXp5UrV+r27dtWXbtfv34qWbKkvvvuO61fv97ste3bt+uLL76QJA0cONCq6+aVj4+PpDuFUqmpqab2hIQEvfXWW0pISLDqei+//LJKliyp5cuXa/ny5RaFcxcvXtSRI0dM188++6wqVaqkyMhIffDBB0pMTLSY8+rVqzku9MqJzM/ms88+0++//25qNxqN+uyzz3Ts2DG5urrq2WefzfXcW7duVefOnRUcHGyVWMuXL69du3Zpz549OZ5z0KBBcnV11eLFi7Vw4UKzzz3T+fPnzX5+vb29VaJECZ04cUJ79uwx6/vDDz9o8eLF+boPAAAAAACAgmD7X4sEAAAAAABFzpdffqm9e/dKklJTU3Xjxg399ttvio2NlXRn16apU6eqUqVKZuPatm2revXq6ejRo+rUqZMCAgLk6OioQ4cO6cqVKxo8eLDmz59vNiYtLU1hYWGaNm2aateurWrVqsne3l4XL17Ur7/+KulOsY2Hh0e2Mfv6+mr58uXq37+/5s+fr5s3b2rChAkyGAzWeVP+xs7OTrNnz1ZISIgiIiK0ZcsW+fr6qmLFikpLS9P58+d14sQJpaenq0ePHlbducrX11cTJkzQxIkT9eabb2rJkiWqXr26Ll26pAMHDshoNGr48OFmR0zaUnBwsNavX6+oqCh16NBBjRo1Ulpamn7++WeVLl1aPXv21Jo1a6y2np+fn959912NHz9e77zzjsLDw1W/fn0ZjUadP39ev//+u4YOHar69etLkpycnDRv3jyFhIRowYIFWr16tXx9feXl5aWUlBSdPXtWp0+fVtmyZfNUKJWVoKAgHThwQOvXr1fPnj3VpEkTlS1bVkePHtWZM2dUunRpTZ8+/Z4/81lJSEjQmTNnsiyGul/Kly+vzz77TMOHD9f777+vBQsWqFatWvL09FRiYqJOnz6tc+fOqWHDhurWrZskycPDQ3379tXSpUvVv39/PfbYYypXrpzOnDmjo0eP6pVXXtGcOXNsdk8AAAAAAABZoTALAAAAAADk2v79+7V//35JdwpXnJ2dVbt2bdWvX1+BgYHy8/PLclzJkiW1bNkyff7559qyZYt27dolZ2dnPfroo/r000918+ZNi8IsJycnTZo0ST///LN+++037dy5U2lpaSpXrpyefPJJPffcc2revHmO4q5WrZpWrFih/v37a8WKFUpKStLUqVNVokSJ/L0hWfDy8tLq1au1du1abd68WcePH9fhw4fl5uamcuXKKSgoSO3atVOpUqWsvnafPn30yCOPKDw8XPv379fx48fl7Oys1q1bq1+/fmrZsqXV18yrKlWqKCIiQp988ol++eUX/fjjj/L09FTXrl01fPhwrVy50uprPvPMM6pfv74WLVqk3bt368cff1SpUqXk5eWlvn37KjAw0Kx/rVq1tGHDBq1atUrfffedjh8/rl9//VXu7u4qX768Bg4cqI4dO1otPoPBoGnTpqlVq1b64osvdPToUSUnJ+vhhx9Wjx49NHjwYNNOY0VVkyZN9PXXX+s///mPoqKidPjwYaWmpqps2bKqUKGC/vWvf+nJJ580GzNu3Dj5+vpqxYoVOnLkiEqUKKHatWvr448/VpcuXSjMAgAAAAAAhY7B+M/92gEAAAAAAAAAAAAAAAAA+WJn6wAAAAAAAAAAAAAAAAAAoLihMAsAAAAAAAAAAAAAAAAArIzCLAAAAAAAAAAAAAAAAACwMgqzAAAAAAAAAAAAAAAAAMDKKMwCAAAAAAAAAAAAAAAAACujMAsAAAAAAAAAAAAAAAAArIzCLAAAAAAAAAAAAAAAAACwMgqzAAAAAAAAAAAAAAAAAMDKKMwCAAAAAAAAAAAAAAAAACujMAsAAAAAAAAAAAAAAAAArIzCLAAAAAAAAAAAAAAAAACwMgqzAAAAAAAAAAAAAAAAAMDKKMwCAAAAAAAAAAAAAAAAACujMAsAAAAAAAAAAAAAAAAArIzCLAAAAAAAAAAAAAAAAACwMgqzAAAAAAAAAAAAAAAAAMDKKMwCAAAAAAAAAAAAAAAAACujMAsAAAAAAAAAAAAAAAAArIzCLAAAAAAAAAAAAAAAAACwMgqzABR6vr6+euedd2wdhtVNnDhRAwYMsHUYBWr69Onq3bu3rcMAAKDQIs9BXqSlpal169Zavny5rUMBAOCuyHNQFJ06dUp169bViRMnbB0KAKAYIB9CcRcaGqoRI0bYOgyg0Ctp6wAAPLiOHz+u2bNn6/Dhw/rrr7/k7u6umjVrql27dnrxxRdtHV6BOn/+vL766istWLDArN3X1zfL/qNHj9aQIUPM2mJiYjR16lTt2LFDGRkZatq0qcaNG6cqVarkKaa1a9dq7NixWb62fft2eXp6mrV9//33mjVrlk6dOqWyZcuqR48eevXVV1Wy5P/+1xIcHKwlS5bo+++/V/v27fMUFwAARRF5TvHPc3LjxRdf1N69ey3aH3/8cYWHh5u1paamasaMGVq/fr3i4+Pl6+urkSNHqmXLlqY+9vb2GjBggObOnatevXqpVKlSeYoLAIC8IM/JX56TU5s3b9YPP/ygQ4cO6Y8//lBAQICWLVuWZd+c5A+Z9u/frw8++EC//fabnJ2dFRgYqNDQUJUpUyZPcY4ZM0YREREW7dWrV1dkZKRZW0ZGhsLDw7Vy5UpdvXpV3t7eCgkJ0VNPPZWntSXr55g1a9ZU69at9emnn2rWrFl5jgsAULyRD92ffKhdu3a6ePGiRXufPn3yXPBm7e9ocuPChQt3fVb20UcfqWvXrmZtp0+f1tSpU7V//37Z29urdevWGjt2rDw8PPK0/syZM7PMbxwcHHT48GGL9i+//FILFy7UhQsXVKFCBb344osWP9+DBw9Wz5499fvvv+uRRx7JU1zAg4DCLAA2sX//fvXr108VK1ZU79695enpqT///FMHDx7U0qVLi33iunTpUlWqVEnNmjWzeK1ly5bq1q2bWVvdunXNrm/evKl+/fopISFBISEhsre31+LFi/XCCy9o3bp1euihh/Ic22uvvabKlSubtbm6uppdR0VFaejQoQoICNC///1vnThxQnPmzNG1a9c0adIkUz9PT0+1b99eCxcupDALAPDAIM95MPKc3CpfvrxGjRpl1lauXDmLfmPGjNGWLVvUr18/eXt7KyIiQkOGDNGSJUv02GOPmfr16NFD06dP18aNG9WrV688xwUAQG6Q5+Qvz8mNlStX6siRI2rQoIFiY2Oz7ZvT/OHYsWPq37+/atSooTFjxujy5ctauHChzp49a/FwNTccHBw0ZcoUszYXFxeLfh9//LE+//xzPfvss2rQoIG+//57jR49WgaDweJBZG5YO8cMCgrSkCFDdO7cOVWtWjXPcQEAiifyofuXD0lSnTp1LHbnql69er7mtPZ3NLn11FNPqVWrVmZtjRo1Mru+fPmy+vbtKxcXF4WGhiopKUkLFy7UiRMn9OWXX8rBwSHP60+cOFFOTk6m6xIlSlj0WbVqld5++2116tRJAwYM0L59+zRlyhQlJyebFdrVrVtX9evX18KFCzVt2rQ8xwQUdxRmAbCJuXPnysXFRV999ZXFw7Br167ZKKr7Iy0tTRs3blRQUFCWr3t7e1skrv+0YsUKnT17Vl9++aX8/PwkSU888YSefvppLVq0yCKhzI1WrVqpQYMG2faZNm2afH19tXDhQtPOEWXKlNG8efPUr18/1ahRw9Q3MDBQI0aM0Pnz5/O8ywUAAEUJec6Dk+fkhouLyz3v/dChQ/r666/15ptv6qWXXpIkPfPMM3rqqac0ffp0rVq1ytTX1dVVjz/+uCIiIijMAgDcN+Q5+ctzcmPatGny8vKSnZ1dtjtK5SZ/+Oijj+Tq6qply5bJ2dlZklS5cmWNHz9e27dv1+OPP56nWEuWLHnPe4+JidGiRYvUt29fTZgwQZLUu3dvvfDCC5o2bZo6d+6c5UPBnLB2jtmiRQu5ubkpIiKCo3kAABbIh+5fPiRJXl5eVp/T2t/R5FbdunXvuf7cuXOVnJystWvXqmLFipIkPz8/DRgwQBEREerTp0+e1+/UqVO2u26lpKTo448/Vps2bfTpp59Kkp599lllZGRozpw56tOnj9zc3Ez9AwMDNXPmTN28eTPPu7ACxZ2drQMA8GA6d+6catasaZG0SlLZsmWzHPPdd9/pqaeeUv369dW1a1dt27bN7PWLFy9q4sSJ6tSpk/z8/NS0aVO99tprunDhglm/tWvXytfXVz///LMmTJigpk2bqnHjxnrzzTcVFxdnsW5UVJSef/55NWrUSI8++qiGDBmikydPmvVJS0vT6dOndeXKlXve+y+//KIbN26oRYsWd+2TkpKiW7du3fX1LVu2qEGDBqYvkiSpRo0aat68ub755pt7xnAviYmJSk9Pz/K1U6dO6dSpU3r22WfNjvN5/vnnZTQatWXLFrP+mff5/fff5zsuAACKAvKcByfPya3bt2/r5s2bd309MjJSJUqUMPtyrVSpUurVq5cOHDigP//806x/ixYt9Msvv9xzFw0AAKyFPCd/eU5uVKhQQXZ29/76Pqf5Q2Jionbu3Kl//etfpqIsSerWrZucnJzynWelp6crMTHxrq9/9913SktL0/PPP29qMxgMeu6553T58mUdOHAgX+tbM8e0t7dXQEAA32UBALJEPnT/8qFMqampSkpKsuqc1v6OJreSkpKUmpp619e//fZbtWnTxlSUJd35Hsjb29tq348ZjcYsX9uzZ49iY2PN8jZJ6tu3r5KSkvTTTz+Ztbdo0UJJSUnauXNnvuMCiisKswDYRKVKlXT06FGdOHEiR/1/+eUXTZw4UV26dNEbb7yhW7du6bXXXtONGzdMfQ4fPqwDBw6oa9euGj9+vIKCgrR7927169dPycnJFnO+8847On36tIYNG6ZnnnlGGzdu1NChQ80SkXXr1ikkJEROTk56/fXX9eqrr+rUqVN6/vnnzRLimJgYdenSRR999NE97+XAgQMyGAx33b41IiJCjRo1kp+fn7p06aKNGzeavZ6RkaHjx4+rfv36FmMbNGigc+fOZftF2L3069dP/v7+atiwoV5++WWdPXvW7PXffvvNtNbfeXl5qXz58jp27JhZu4uLi6pWrar9+/fnOSYAAIoS8pwHJ8/JjbNnz6pRo0Zq3LixWrZsqU8++URpaWlmfY4dOyZvb2+zh6WSTA8Q/7l+vXr1ZDQa8/0gEwCAnCLPyXueU1Bymj8cP35ct2/ftsizHBwcVKdOnXzlOcnJyfL395e/v78CAgI0adIkiwedx44dk5OTk8Xuo3fLc3KjIHLMevXq6eTJk/nKPQEAxRP50P3Nh3bv3m0qLGvXrp2WLFmS7zkL4jua3Jg1a5YeffRR+fn5qWfPntq+fbvZ6zExMbp27VqWuYufn1++1pak9u3by9/fX40bN9brr7+uv/76y+z1zO/H/rl+vXr1ZGdnZ7F+zZo1Vbp0aZ4DAtngKEMANjFw4EANHjxYzzzzjPz8/OTv76/mzZuradOmsre3t+h/+vRpbd68WVWrVpUkNW3aVN26ddPXX3+tF154QZLUpk0bde7c2Wxc27Zt1adPH23ZskXPPPOM2Wv29vZavHixab2KFSvqgw8+0A8//KD27dvr5s2bevfdd9W7d29NnjzZNK579+7q3Lmz5s2bZ9aeU9HR0XJzc7NI5iTp0UcfVWBgoCpXrqwrV65oxYoVev3115WQkGCqTI+NjVVqaqo8PT0txme2XblyJcv5s1O6dGn16NFDTZs2lbOzs44cOaLFixcrKChIERERqlChgiTp6tWrZmv9c/2sfquiSpUqOnXqVK7iAQCgqCLPebDynJyoUqWKmjZtqtq1ayspKUlbtmzRnDlzdPbsWX3yySemflevXr3nvf9zXunOTl9t27bNU2wAAOQGeU7e85yCktP8ITPPKVeuXJZ9f/nllzyt7+npqUGDBqlu3boyGo3673//qxUrVuj333/XsmXLTLuQXr16VWXLlpXBYMg2ztwqqByzSpUqysjIUHR0tNkuWwAAkA/dv3yodu3a8vf3V/Xq1RUbG6uIiAhNnTpVV65c0RtvvJGnOQvqO5qcsLOz0+OPP64OHTrIy8tL58+f1+LFizV48GDNmTNHbdq0MZv7butn5jYODg65Wt/V1VUvvPCCGjVqJAcHB+3bt08rVqzQ4cOHtWbNGtPnevXqVZUoUcJiBzgHBwe5u7tb3HvJkiVVvnx5ngMC2aAwC4BNtGzZUqtWrdLnn3+u7du368CBA1qwYIE8PDw0ZcoUtW/f3qx/ixYtTEmrJD3yyCNydnbW+fPnTW2lS5c2/XtaWpoSExNVtWpVubq66rfffrNIXPv06WOWJD/33HP6+OOPFRUVpfbt22vnzp2Kj49X165ddf36dVM/Ozs7NWzYUHv27DG1Va5cWcePH8/RvcfGxpqdvfx3/zyTumfPnurZs6c+/vhj9ejRQ6VLlzZtAZtVwlWqVClJytM2sV26dFGXLl1M1x06dNDjjz+uF154QXPmzNE777wj6c42tNmtn9VvEmZ+BgAAPAjIcx6sPCcnpk6danb9zDPP6N///rdWr16t/v37q1GjRqb1s7v3zPgyZb7Xf/8tWwAAChJ5Tt7znIKS0/zhXnnOP/OMnBo9erTZddeuXeXt7a2PP/5YW7ZsUdeuXXMVZ24VVI6ZeTwVeRYA4J/Ih+5fPjR37lyLOQcNGqTFixfrxRdfVPny5XM9Z0F9R5MTFStWVHh4uFlbt27d1LVrV4WFhZkKs3KSu9wtvuwEBwebXWcenfn6669rxYoVGjJkiGnurIoMM9fP6t7d3NzIm4BscJQhAJvx8/PTrFmztHfvXn355ZcKCQnRzZs3NWLECIuq6sxdDP7Ozc1N8fHxpuuUlBTNmDFDrVu3VoMGDdSsWTM1b95c8fHxSkhIsBhfrVo1s+syZcrI09NTFy9elCTT0TbBwcFq3ry52T/bt2/XtWvX8nzvdzu3+Z8cHBzUt29fxcfH68iRI5L+l3RldfZ0ZrKW2Se/HnvsMTVs2FC7du0ytWUmz3dbP6vk2mg0WvxGJAAAxRl5zr0VlzwnrwYMGCBJ2rlzp9n62d37P9fPfK/JswAA9xN5zr1llecUlJzmD/czz+nfv7/s7OzylefklbVyzJx+1gCABxP50L0VRD5kMBjUv39/3b5926y4LL+s8R1NXrm7u6tHjx46c+aMLl++LClnuYu11n/66afl6elpce//PNrx7+vzHBDIPXbMAmBzDg4O8vPzk5+fn7y9vTV27FhFRkZq2LBhpj4lSpTIcuzfE8DJkydr7dq1Cg4OVqNGjeTi4iKDwaDQ0NA8fZmSOWbatGlZbhd6t5juxd3d3SzhvpfMpD0uLs403sHBwbQF/d9lty19XpUvX15nzpwxXWe+F1evXrX4C8XVq1ez3N49Pj5eDz30kNViAgCgqCDPyV5xyHPy6p/3nrl+TEyMRd+73XvmWPIsAIAtkOdkL6v/1xeEnOYP2R27c/XqVavmWKVLl5a7u7tFnrNnzx6Lh3YFkeNZI8fM/KzJswAA2SEfyl5B5EP3a87cfkeTH5k7f8XGxqp8+fKmue+Wu2TmNtZc/5/3np6ermvXrpkdZ5iamqrY2Ngs7z0+Pt6iYBDA/1CYBaBQqV+/vqS8nc2cec72mDFjTG23bt3K8rcJJOmPP/5Qs2bNTNc3b97U1atX1apVK0l3zpmWpLJly6pFixa5judufHx8tHHjRiUkJMjFxeWe/TO3s/Xw8JB0Z6vZ2rVrZ/kbBocOHVKVKlWyPN87r86fP2/2JVSdOnUkSYcPHzZ7OBkTE6PLly/r2WeftZjjwoULeuSRR6wWEwAARRF5jqXikOfkZ23pf/cu3TnOYM+ePUpMTDS7z4MHD5rFl+nChQuSpBo1algtLgAA8oI8x1JW/68vCDnNH2rXrq2SJUvqyJEjZkc8p6am6tixYwoMDLRaTImJibpx44bZvdepU0dffvmlTp8+rZo1a941TmuwRo554cIF2dnZqXr16laLCwBQvJEPWSqIfOh+zZnb72jyI/P7ncz1vby85OHhcdfcxZrP24xGoy5evKi6deua2jLv7ciRI2rdurWp/ciRI8rIyLBY//bt2/rzzz/Vrl07q8UFFDccZQjAJnbv3p1llX9UVJSkO8ldbmVV4b9s2TKlp6dn2f+LL74w24pz5cqVun37tilxfeKJJ+Ts7Kx58+ZluWXn38/lTktL0+nTp3OUcDdq1EhGo9Eiofr7fJkSExO1ZMkSPfTQQ6pXr56pvVOnTjp8+LAOHz5saouOjtbu3bvVuXPne8aQlazWj4qK0tGjR/XEE0+Y2mrVqiUfHx+tXr3a7L1duXKlDAaDxfoJCQk6d+6cHn300TzFBQBAUUOe8+DkOTmRmJhosfW80WjUnDlzJEmPP/64qb1z585KT0/XF198YWpLTU3V2rVr1bBhQ4tdvI4ePSqDwaBGjRrlOi4AAPKCPCd/eU5ByGn+4OLioubNm2vDhg1KTEw09V2/fr2SkpLylOfcunXLbK5Mn332mYxGo1me1b59e9nb22vFihWmNqPRqFWrVsnLyytP3xsVZI559OhR1axZM0cPnQEADxbyofuTD8XGxlrcf1pamj7//HPZ29uradOmuZ6zIL+jyYms3qeYmBitWbNGvr6+ZjtRPfnkk/rpp5/0559/mtp27dqls2fPWvX7sRUrVuj69etmeVuzZs3k7u6ulStXmvVduXKlHB0d1aZNG7P2U6dO6datWzwHBLLBjlkAbGLKlClKTk5Wx44d5ePjo7S0NO3fv1/ffPONKlWqpB49euR6zjZt2mj9+vVydnZWzZo19euvv2rnzp1yd3fPsn9aWpr69++vwMBAnTlzRitWrJC/v7/at28vSXJ2dtbEiRP15ptvqkePHurSpYs8PDx06dIlRUVFqXHjxpowYYKkO4lTly5d1L17d4WFhWUbp7+/v9zd3bVr1y41b97c1L58+XJ99913atu2rSpWrKgrV65o7dq1unTpkqZNm2a2Lenzzz9vOrd84MCBKlmypBYvXqyyZctq4MCBZuu9+OKL2rt3r44fP55tXEFBQapTp47q168vFxcX/fbbb1qzZo0qVKigl19+2azvm2++qVdeeUUDBw5U165ddeLECS1fvly9e/e22LFh586dMhqNpvcVAIDijjznwchzLly4oPbt29/zfTl69KhGjx6trl27qmrVqrp165a2bt2q/fv3q0+fPmZfTjZs2FCdO3fWRx99pGvXrqlatWqKiIjQxYsX9e6771rMvXPnTjVu3JgjdgAA9w15Tv7ynD179qhfv34aNmyYhg8fnu16P//8s37++WdJdx6iJSUl6bPPPpMkNWnSRE2aNJGUu/whNDRUQUFBevHFF/Xss8/q8uXLWrRokR5//HHTg9xMvr6+CggI0LJly+4a49WrV9W9e3d17drV9BB6+/btioqK0hNPPGH2XVD58uXVr18/hYeH6/bt22rQoIG+++477du3T9OnTzd7IL127VqNHTtW7733XrY/UwWVY6alpennn3/Wc889d9e1AQAPLvKh+5MP/fDDD5ozZ446deqkypUrKy4uTps2bdKJEyc0atQosyMabf0dzcyZMzVr1iwtXbo024KxDz74QOfOnVPz5s1Vrlw5Xbx4UatWrVJSUpL+7//+z6zvyy+/rMjISPXr10/9+vVTUlKSwsPDVbt2bfXs2dOsb+ZOVT/88MNd15aktm3bqkuXLqpdu7YcHBy0f/9+ff3116pTp4769Olj6le6dGm99tpreuedd/Taa6/piSee0L59+7RhwwaFhoZa/Fzu3LlTjo6OVt2dDShuKMwCYBNvvvmmIiMjFRUVZarsr1ixop5//nm98sorcnV1zfWc//d//yc7Oztt3LhRt27dUuPGjbVo0SINGjQoy/4TJkzQxo0b9emnnyotLU1du3bV+PHjZTAYTH2efvpplStXTp9//rnCw8OVmpoqLy8vPfbYY3lKrqU7Z44//fTTioyM1KhRo0ztjRs31oEDB/TVV18pNjZWjo6O8vPz07vvvmuW4Ep3kuply5Zp6tSpmjNnjjIyMtS0aVONHTvWYvvWmzdvZnmG+D8FBgYqKipKO3bsUEpKijw9PdW7d28NGzZMDz/8sFnftm3batasWZo1a5YmT54sDw8PhYSEaOjQoRbzRkZGyt/fX1WrVs3N2wQAQJFFnvNg5DlJSUmSdM/1K1asKH9/f23dulV//fWX7Ozs5OPjo0mTJpl96ZVp2rRp+uSTT7RhwwbFxcXJ19dXc+fONT18zZSQkKDt27fr7bffvuf9AwBgLeQ5+ctzcpo/SHd245g1a5ZZ24wZMyRJw4YNM8sNcpo/1KtXT4sWLdL06dP13nvvqUyZMurVq5fZ/Uh3cqycxOnq6qo2bdpo586dWrdundLT01WtWjWNGjVKAwcOlJ2d+YEdr7/+utzc3PTFF19o7dq18vb21gcffKCnn37arF9O36eCyjF37dql2NhYde/ePdv1AQAPJvKh+5MP1a5dWzVq1NCGDRt0/fp12dvbq06dOvrkk08sjmC29Xc0SUlJMhgMFt8x/VPLli11/vx5LV++XPHx8XJxcVGTJk30yiuvWOwqVqFCBf3nP/9RWFiYPvzwQ9nb26t169YaM2aMWaFb5vrVqlXLdm3pzs/EgQMHtGXLFqWmpqpixYoaNGiQXn75ZTk6Opr17du3r+zt7bVw4UL98MMPqlChgsaOHavg4GCLeSMjI9WxY0eLo6EB/I/BmNVeiwBQjGX+1t1XX32lBg0a2CSG8+fPKzAwUPPnz7dISq0pMTFRTZs21bhx49S3b98CW+durl69qvbt2+ujjz5Shw4d7vv6AAA8aMhz7p/ly5dr+vTp2rp16z2/eCsIixcv1oIFC/Tdd9+pdOnS9319AADut+KQ50ybNk1ff/21tm7davFArTCJiopSSEiI1q9fL19f3/u+/ogRI3Tx4kV99dVX931tSXr11VdlMBg0e/Zsm6wPAMDdkA9lzdbf0fTq1UsVK1bUp59+et/XPnXqlLp27ap58+ZZHDF4Pxw7dkzdu3dXRESE6tSpc9/XB4oKu3t3AQBYW5UqVdSzZ099/vnnBbrOvn375OXlpd69exfoOnezZMkS1a5dm6IsAAAeIA9KnrNnzx69+OKLNvnCLy0tTYsXL9Yrr7xCURYAAPdRfvOcPXv26NVXXy3URVnSnd26unbtapOiLKPRqL1792rkyJH3fW1JOn36tH766SeNGDHCJusDAFDYFcZ8yJbf0SQmJur333+3We6wZ88ePfroozYpypKkzz//XJ06daIoC7gHdswC8MApDL9RAAAAUBDIcwAAQHFFngMAAB505EMAUDSVtHUAAAAAAAAAQGHwxx9/KDw8XAcPHtTJkyfl4+OjTZs2ZTvmypUrWrx4sXbs2KFz587JxcVFTZo00ahRo1SpUqX7FDkAAAAAAAAKI3bMAgAAAAAAACR99913mjx5sho2bKgzZ87IaDTeszDrxx9/1NSpU9WzZ081bNhQN27c0Jw5c3Tt2jVt2rRJHh4e9yl6AAAAAAAAFDYUZgEAAAAAAACSMjIyZGdnJ0kaM2aMjhw5cs/CrPj4eDk5Oalkyf9tTH/58mW1adNGb775pgYOHFigMQMAAAAAAKDw4ijD++D48eOSJF9fXxtHAgAAULiQJwEAgMIksygrN1xdXS3aypcvLw8PD125ciVPcZAjAQAAZI08CQAAFDUUZt0Hqamptg4BAACgUCJPAgAAxdGZM2d07do11ahRI0/jU1NTZTQalZSUZOXIAABAUefk5GTrEGyK75IAAEBRQ2EWAAAAAAAAYCVGo1FTpkxRuXLl1LVr1zzPk5aWpmPHjlkxMgAAUBz4+/vbOgQAAADkAoVZAAAAAAAAgJXMnDlTu3fv1oIFC/K1o4W9vb1q1qxpxcgAAAAAAABwv1GYBQAAAAAAAFjB6tWrNXv2bL377rtq3rx5vuYyGAwP/FFFAAAAAAAARZ2drQMAAAAAAAAAirqtW7dq4sSJeu2119SrVy9bhwMAAAAAAIBCgMIsAAAAAAAAIB/27NmjUaNGqXfv3ho6dKitwwEAAAAAAEAhwVGGAAAAAAAAgKTk5GRFRUVJki5evKjExERFRkZKkgICAuTh4aHg4GBdunRJW7dulSSdPn1aQ4cOlbe3t7p166Zff/3VNJ+Hh4eqVq163+8DAAAAAAAAhQOFWQAAAAAAAICka9euacSIEWZtmddLly5V06ZNlZGRofT0dNPrBw8eVEJCghISEvTcc8+Zje3evbvCwsIKPnAAAAAAAAAUShRmAQAAAAAAAJIqV66s48ePZ9tn2bJlZtc9evRQjx49CjIsAAAAAAAAFFF2tg4AAAAAAAAAAAAAAAAAAIobCrMAAAAAAAAAAAAAAAAAwMoozAIAAAAAAAAAAAAAAAAAK6MwCwAAAAAAAAAAAAAAAACsjMIsAAAAAAAAAAAAAAAAALAyCrMAAAAAAAAAAAAAAAAAwMoozAIAAAAAAAAAAAAAAAAAK6MwCwAAAAAAAAAAAAAAAACsjMIsAAAAAAAAAAAAAAAAALAyCrMAAAAAAAAAAAAAAAAAwMoozAIAAAAAAAAAAAAAAAAAK6MwCwAAAAAAAAAAAAAAAACsjMIsAAAAAAAAAAAAAAAAALAyCrMAAAAAAAAAAAAAAAAAwMoozEKRNnv2bHXs2FGzZ8+2dSgAAAAAgAcMfycFih7+uwUAAAAA2Ap/J30wUZiFIislJUXr1q1TRkaG1q1bp5SUFFuHBAAAAAB4QPB3UqDo4b9bAAAAAICt8HfSBxeFWSiybt++rYyMDElSRkaGbt++beOIAAAAAAAPCv5OChQ9/HcLAAAAALAV/k764KIwCwAAAAAAAAAAAAAAAACsjMIsAAAAAAAAAAAAAAAAALAyCrMAAAAAAAAAAAAAAAAAwMoozAIAAAAAAAAAAAAAAAAAK6MwCwAAAAAAAAAAAAAAAACsjMIsAAAAAAAAAAAAAAAAALAyCrMAAAAAAAAAAAAAAAAAwMoozAIAAChGTp8+rQEDBqhRo0Zq2bKlpk2bptTU1HuOW758uUJCQtSsWTP5+voqMjLyrn1/+uknBQUFqVGjRmrSpIlefPFFXb582Zq3AQAAAAAAAAAAABR5ha4wK68PE41Goz7//HO1adNGfn5+6tOnj3799VeLfjExMRo+fLgeffRRBQQE6P/+7/+UmJho1mfMmDHy9fW1+Gfbtm3Wuk0AAACri4uLU3BwsNLS0jRz5kyFhoZq9erVCgsLu+fY9evX68aNG2rduvU9+w0bNkwBAQGaO3euwsLCVL9+fd26dctatwEAAAAAAAAAAAAUCyVtHcDfZT5M9Pb21syZMxUTE6OwsDClpKRowoQJ2Y6dP3++Pv30U73++uvy9fXV8uXLNXDgQK1fv15VqlSRJKWlpWnQoEGSpA8//FApKSl6//33NXr0aM2bN89svipVqmj69OlmbTVq1LDi3QIAAFjXqlWrdPPmTc2aNUvu7u6SpPT0dE2aNEkhISHy8vLKdqydnZ0uXLigdevWZdknNjZW77zzjsaNG6fnn3/e1N6+fXtr3gYAAAAAAAAAAABQLBSqwqy8Pky8deuW5s2bp4EDB6p///6SJH9/f3Xu3Fnh4eGaOHGiJGnLli06efKkNm/eLB8fH0mSq6urXnrpJR06dEh+fn6mOUuXLq1GjRoV1K0CAABY3bZt29S8eXNTHiVJgYGBevvtt7Vjxw716NHjrmPt7O69keo333yjjIwM9erVyxrhAgAAAAAAAAAAAMVaoSrMyuvDxP379ysxMVGBgYGmNgcHB3Xs2FFbt241m9/X19dUlCVJLVu2lLu7u6KioswKswAAAIqa6Oho9ezZ06zN1dVVnp6eio6Ozvf8Bw8eVPXq1bVu3TrNmTNHMTExqlWrlkaNGnXPIxCzYzQalZSUlO/4AAC4n/75/66kpKQcFTojZ5ycnGwdAgAAAAAAAJBvhaowK68PEzNf+3vBlXTn6MElS5YoJSVFpUuXVnR0tEUfg8Gg6tWrW8z/xx9/yN/fX7du3VLt2rX16quvqkOHDnm+Nx44Wh9fggMAigNrPnSMj4+Xq6urRbubm5vi4uLyPf/Vq1d15swZzZgxQ2+88YY8PT21fPlyvfrqq1q3bp1q1aqVp3nT0tJ07NixfMcHAMD9lJycbHZ94sQJOTo62iia4sff39/WIQAAAAAAAAD5VqgKs/L6MDE+Pl4ODg4qVaqUWburq6uMRqPi4uJUunRpxcfHy8XF5Z7z16lTRw0aNFDNmjWVkJCglStXaujQoZoxY4Y6d+6cp3vjgaP18SU4AKA4KEoPHTMLzadPn6727dtLkgICAtSpUyfNnz9f06ZNy9O89vb2qlmzpjVDBQCgwCUmJppd165dW87OzjaKBgAAAAAAAEBhVKgKswqL4OBgs+t27dopKChIn376aZ4Ls3jgaH18CQ4AgDlXV1clJCRYtMfFxcnNzc0q80tSs2bNTG329vZq0qSJTp48med5DQYDxxUBAIqcjIwMs2snJyf+fwYAAAAAAADATKEqzMrrw0RXV1elpqbq1q1bZrtmxcfHy2AwmMa6urpaFPNkzl+hQoW7zm9nZ6cnn3xSH3zwgelYxNzigaP18SU4AADmfHx8LI5nTkhI0NWrVy2Oc86L7IrMb926le/5AQAAAAAAAAAAgOLEztYB/F1eHyZmvnbmzBmz9ujoaFWsWNFUSJXV/EajUWfOnLHKw0oAAABbatWqlXbu3Kn4+HhTW2RkpOzs7NSyZct8z9+2bVtJ0q5du0xtqamp+vnnn1WvXr18zw8AAAAAAAAAAAAUJ4Vqx6xWrVpp7ty5io+PNx2Vk5OHiY0bN5azs7O++eYbPfLII5KktLQ0ffvtt2rVqpXZ/Bs2bNDZs2fl7e0t6c6DxdjYWLVu3fqu82dkZCgyMlK1atXK025ZAAAA90NQUJCWLVumoUOHKiQkRDExMZo2bZqCgoLk5eVl6hccHKxLly5p69atprbDhw/r4sWLun79uiTp4MGDkiQPDw8FBARIkurVq6dOnTrp3//+t2JjY+Xp6akVK1bor7/+0ksvvXQf7xQAAAAAAAAAAAAo/ApVYVZeHyaWKlVKISEhmjlzpjw8PFS7dm2tXLlSsbGxZg8JO3XqpHnz5mn48OEaNWqUkpOTNW3aNLVp00Z+fn6SpIsXL2rMmDHq2rWrqlWrpri4OK1cuVJHjhzRzJkz7+8bAgAAkAtubm5asmSJJk+erKFDh6pMmTLq1auXQkNDzfplZGQoPT3drG358uWKiIgwXS9cuFCSFBAQoGXLlpnaw8LC9NFHH+nDDz9UYmKi6tWrp0WLFsnX17cA7wwAAAAAAAAAAAAoegpVYVZ+HiYOHjxYRqNRCxcu1PXr11WnTh2Fh4erSpUqpj729vZasGCBpkyZolGjRqlkyZLq2LGjxo0bZ+pTpkwZOTs7a86cObp27Zrs7e1Vv359zZ8/X0888UTBvgEAAAD5VKNGDS1evDjbPn8vtMoUFhamsLCwe87v5OSk8ePHa/z48XkNEQAAAAAAAAAAAHggFKrCLCnvDxMNBoNCQkIUEhKS7VgvL69sd75yd3fXnDlzchQrAAAAAAAAAAAAAAAAAGTFztYBAAAAAAAAAAAAAAAAAEBxQ2EWAAAAAAAAAAAAAAAAAFgZhVkAAAAAAAAAAAAAAAAAYGUUZgEAAAAAAAAAAAAAAACAlVGYBQAAAAAAAAAAAAAAAABWRmEWAAAAAAAAAAAAAAAAAFgZhVkAAAAAAAAAAAAAAACwmowMo61DQBFR3H9WSto6AAAAAAAAAAAAAAAAABQfdnYGzV65QxevxNk6lELhdlqK2fU7c79VSfvSNoqm8KhUzk1Dn2tp6zAKFIVZAAAAAAAAAAAAAAAAsKqLV+J09uINW4dRKGTcvmV2fe5SrOxKlrJRNLifKMwCAAAAAAD3lJFhlJ2dwdZhoAjgZwUAAKBo+OOPPxQeHq6DBw/q5MmT8vHx0aZNm7Ids2fPHvXr1y/L16pXr67IyMhs+3Xp0kUff/xx/oMHAAAoIijMAgAAAAAA98T28+bYfj5rD8L28wAAAMXFyZMnFRUVpYYNGyojI0NGo/GeY+rVq6cvvvjCrC0xMVGDBw9Wq1atLPq/99578vHxMV0/9NBD+Q8cAACgCKEwCwAAAAAA5Ajbz/8P288DAACgqGvXrp06dOggSRozZoyOHDlyzzHOzs5q1KiRWdvatWuVkZGhp556yqJ/rVq11KBBA6vECwAAUBTZ2ToAAAAAAAAAAAAAAPeXnZ11HhNu2rRJ3t7e8vPzs8p8AAAAxQk7ZgEAAAAAAAAAAADItb/++ku7d+/WK6+8kuXrQ4YMUWxsrDw9PdW1a1eNGDFCpUvn7whwo9GopKSkfM0BAChYBoNBjo6Otg4DRUhycnKOjlW+GycnJytGY10UZgEAAAAAAAAAAADItc2bNys9Pd3iGEMXFxcNGjRITZo0UalSpbR7924tXLhQ0dHRmjdvXr7WTEtL07Fjx/I1BwCgYDk6Oqpu3bq2DgNFyJkzZ5ScnJzn8f7+/laMxroozAIAAAAAAAAAAACQaxs3blS9evVUvXp1s/a6deuaPZBv3ry5ypUrp3feeUeHDh3K17GH9vb2qlmzZp7HAwAKnsFgsHUIKGKqV6+erx2zCjMKswAAAAAAAAAAAADkyrlz53To0CGNHTs2R/0DAwP1zjvv6MiRI/kqzDIYDIX6uCIAAJB7xfnoSztbBwAAAAAAAAAAAACgaNm4caPs7OzUpUsXW4cCAABQaFGYBQAAAAAAAAAAACBXvv76awUEBKhcuXI57i9JDRo0KMiwAAAAChWOMgQAAAAAAAAAAAAeMMnJyYqKipIkXbx4UYmJiYqMjJQkBQQEyMPDQ8HBwbp06ZK2bt1qNva3337T6dOnNWDAgCznfv3111WtWjXVrVtXpUqV0u7du7V48WJ16NCBwiwAAPBAoTALAAAAAAAAAAAAeMBcu3ZNI0aMMGvLvF66dKmaNm2qjIwMpaenW4zduHGjHBwc1KlTpyznrlWrljZu3KiFCxcqLS1NlSpV0ssvv6whQ4ZY/0YAAAAKMQqzAAAAAAAAAAAAgAdM5cqVdfz48Wz7LFu2LMv2t956S2+99dZdx4WEhCgkJCRf8QEAUJwY7EpIMkgySjL8/2s8COxsHQAAAAAAAAAAAAAAAABQXBnsSsqpXB1JBjmVqyODHfsoPSj4pAEAAAAAAAAAAAAAAIAC5FKlmVyqNLN1GLjP2DELAAAAAAAAAAAAAAAAAKyMwiwAAAAAAAAAAAAAAAAAsDIKswAAAAAAAAAAAAAAAADAyijMAgAAAAAAAAAAAAAAAAArozALAAAAAAAAAAAAAAAAAKyMwiwAAAAAAAAAAAAAAAAAsDIKswAAAAAAAHLJYFdCkiHz6v9fAwAAAAAAAMD/UJgFAAAAAACQSwa7knIqV0eSQU7l6shgV9LWIcEK/vjjD02YMEHdunVT3bp19dRTT+VonNFo1Oeff642bdrIz89Pffr00a+//lqwwQIAAAAAAKDQozALAAAAAAAgD1yqNJOX/wC5VGlm61BgJSdPnlRUVJSqVaumGjVq5Hjc/Pnz9emnn6p///6aN2+ePD09NXDgQJ0/f74AowUAAAAAAEBhR2EWAAAAAAAAIKldu3aKiorSp59+qnr16uVozK1btzRv3jwNHDhQ/fv3V/PmzfXRRx/J3d1d4eHhBRwxAAAAAAAACjMKswAAAAAAAABJdna5/6ps//79SkxMVGBgoKnNwcFBHTt21LZt26wZHgAAAAAAAIqYkrYOAAAAAAAAACiqoqOjJUk+Pj5m7TVq1NCSJUuUkpKi0qVL53peo9GopKQkq8SIO/75fiYlJeWpGA8AAFtycnKydQgAAADIBQqzAAAAAAAAgDyKj4+Xg4ODSpUqZdbu6uoqo9GouLi4PBVmpaWl6dixY9YKE5KSk5PNrk+cOCFHR0cbRQMAQN74+/vbOgQAAADkAoVZAAAAAAAAQCFjb2+vmjVr2jqMYiUxMdHsunbt2nJ2drZRNAAAAAAA4EFAYRYAAAAAAACQR66urkpNTdWtW7fMds2Kj4+XwWCQm5tbnuY1GAwcVWRlGRkZZtdOTk68xwAAAAAAoEDZ2ToAAAAAAAAAoKjy8fGRJJ05c8asPTo6WhUrVszTMYYAAAAAAAAoHijMAgAAAAAAAPKocePGcnZ21jfffGNqS0tL07fffqtWrVrZMDIAAAAAAADYGkcZAgAAAAAAAJKSk5MVFRUlSbp48aISExMVGRkpSQoICJCHh4eCg4N16dIlbd26VZJUqlQphYSEaObMmfLw8FDt2rW1cuVKxcbG6qWXXrLZvQAAAAAAAMD2KMwCAAAAAAAAJF27dk0jRowwa8u8Xrp0qZo2baqMjAylp6eb9Rk8eLCMRqMWLlyo69evq06dOgoPD1eVKlXuW+wAAAAAAAAofCjMAgAAKEZOnz6tKVOm6MCBAypTpoy6deumkSNHysHBIdtxy5cv17Zt23Tw4EHduHFDM2bMUOfOne/aPyMjQ7169dLRo0fv2RcAAKCoqFy5so4fP55tn2XLllm0GQwGhYSEKCQkpKBCAwAAAAAAQBFkZ+sAAAAAYB1xcXEKDg5WWlqaZs6cqdDQUK1evVphYWH3HLt+/XrduHFDrVu3ztFaq1atUkxMTH5DBgAAAAAAAAAAAIotdswCAAAoJlatWqWbN29q1qxZcnd3lySlp6dr0qRJCgkJkZeXV7Zj7ezsdOHCBa1bty7bda5fv64ZM2bozTff1Lhx46x4BwAAAAAAAAAAAEDxwY5ZAAAAxcS2bdvUvHlzU1GWJAUGBiojI0M7duzIdqydXc7Two8++khNmzZV06ZN8xoqAAAAAAAAAAAAUOyxYxYAAEAxER0drZ49e5q1ubq6ytPTU9HR0VZZ49ChQ9q0aZM2bdpklfkkyWg0KikpyWrzAQCsz2AwyNHR0dZhoAhJTk6W0WjM83gnJycrRgMAAAAAAADYBoVZAAAAxUR8fLxcXV0t2t3c3BQXF5fv+TMyMjRp0iQNGDBAlStX1oULF/I9pySlpaXp2LFjVpkLAFAwHB0dVbduXVuHgSLkzJkzSk5OzvN4f39/K0YDAAAAAAAA2AaFWQAAAMiRL7/8Un/99ZeGDBli1Xnt7e1Vs2ZNq84JALAug8Fg6xBQxFSvXj1fO2YBAAAAAAAAxQGFWQAAAMWEq6urEhISLNrj4uLk5uaWr7lv3rypjz76SKGhoUpLS1NaWpoSExMlSSkpKUpMTJSzs3Oe5jYYDBxXBABAMcPRlwAAAAAAAACFWQAAAMWGj4+PoqOjzdoSEhJ09epV+fj45GvuGzduKDY2Vm+//bbefvtts9feeustPfzww9qxY0e+1gAAAAAAAAAAAACKEwqzAAAAiolWrVpp7ty5io+Pl6urqyQpMjJSdnZ2atmyZb7m9vT01NKlS83a/vrrL40aNUrDhw9XixYt8jU/AAAAAAAAAAAAUNxQmAUAAFBMBAUFadmyZRo6dKhCQkIUExOjadOmKSgoSF5eXqZ+wcHBunTpkrZu3WpqO3z4sC5evKjr169Lkg4ePChJ8vDwUEBAgEqVKqWmTZuarXfhwgVJUs2aNdW4ceOCvj0AAAAAAAAAAACgSKEwCwAAoJhwc3PTkiVLNHnyZA0dOlRlypRRr169FBoaatYvIyND6enpZm3Lly9XRESE6XrhwoWSpICAAC1btqzggwcAAAAAAAAAAACKGQqzAAAAipEaNWpo8eLF2fbJqtAqLCxMYWFhuVqrcuXKOn78eK7GAAAAAAAAAAAAAA8KO1sHAAAAAAAAAAAAAAAAAADFDYVZAAAAAAAAAAAAAAAAAGBlFGYBAAAAAAAAAAAAAAAAgJVRmAUAAAAAAAAAAAAAAAAAVkZhFgAAAAAAAAAAAAAAAABYGYVZAAAAAAAAAAAAAAAAAGBlFGYBAAAAAAAAAAAAAAAAgJVRmAUAAAAAAAAAAAAAAAAAVkZhFgAAAAAAAAAAAAAAAABYGYVZAAAAAAAAAAAAAAAAAGBlFGYBAAAAAAAAAAAAAAAAgJVRmAUAAAAAAAAAAAAAAAAAVkZhFgAAAAAAAAAAAAAAAABYGYVZAAAAAAAAAAAAAAAAAGBlJW0dAAAAAAAAAAAAAID7648//lB4eLgOHjyokydPysfHR5s2bbrnuHbt2unixYsW7YcOHVKpUqVM1zExMZoyZYq2b98ue3t7dezYUWPHjpWzs7NV7wMAAKAwozALAAAAAAAAAAAAeMCcPHlSUVFRatiwoTIyMmQ0GnM8tlOnTho4cKBZm4ODg+nf09LSNGjQIEnShx9+qJSUFL3//vsaPXq05s2bZ50bAAAAKAIozAIAAAAAAAAAAAAeMO3atVOHDh0kSWPGjNGRI0dyPPbhhx9Wo0aN7vr6li1bdPLkSW3evFk+Pj6SJFdXV7300ks6dOiQ/Pz88hU7AABAUWFn6wAAAAAAAAAAAAAA3F92dgX3mHDbtm3y9fU1FWVJUsuWLeXu7q6oqKgCWxcAAKCwYccsAAAAAAAAAAAAADm2ceNGrV69Wvb29nrsscf0+uuvy9fX1/R6dHS0WVGWJBkMBlWvXl3R0dH5WttoNCopKSlfcwAACpbBYJCjo6Otw0ARkpycnKtjlf/JycnJitFYF4VZAAAAAAAAAAAAAHKkXbt28vPzU8WKFXX+/HnNnTtXzz//vNatW6cqVapIkuLj4+Xi4mIx1s3NTXFxcflaPy0tTceOHcvXHACAguXo6Ki6devaOgwUIWfOnFFycnKex/v7+1sxGuuiMAsAAAAAAAAAAABAjowfP97074899phatmypwMBAhYeHa+LEiQW+vr29vWrWrFng6wAA8s5gMNg6BBQx1atXz9eOWYVZoSvMOn36tKZMmaIDBw6oTJky6tatm0aOHCkHB4dsxxmNRs2fP18rVqzQ9evXVadOHY0dO1aNGjUy6xcTE6MpU6Zo+/btsre3V8eOHTV27Fg5OztnOe+RI0fUu3dvlS5dWgcOHLDWbQIAAAAAAAAAAABFXrly5eTv76+jR4+a2lxdXZWYmGjRNy4uThUqVMjXegaDoVAfVwQAAHKvOB99aWfrAP4uLi5OwcHBSktL08yZMxUaGqrVq1crLCzsnmPnz5+vTz/9VP3799e8efPk6empgQMH6vz586Y+aWlpGjRokM6ePasPP/xQEydO1Pbt2zV69Ogs5zQajZo8ebI8PDysdo8AAAAAAAAAAABAcebj46Po6GizNqPRqDNnzsjHx8dGUQEAANx/hWrHrFWrVunmzZuaNWuW3N3dJUnp6emaNGmSQkJC5OXlleW4W7duad68eRo4cKD69+8v6c75kZ07dzbbNnXLli06efKkNm/ebEr6XF1d9dJLL+nQoUPy8/Mzm3fNmjW6ceOGevbsqWXLlhXIPQMAAAAAAAAAAABFVUxMjH755Rd169bN1NaqVStt2LBBZ8+elbe3tyRp165dio2NVevWrW0UKQAAwP1XqHbM2rZtm5o3b24qypKkwMBAZWRkaMeOHXcdt3//fiUmJiowMNDU5uDgoI4dO2rbtm1m8/v6+ppV4rds2VLu7u6KiooymzM+Pl4ffvihxo4dK3t7eyvcHQAAAAAAAAAAAFA4JCcnKzIyUpGRkbp48aISExNN19evX5ckBQcHq2PHjqYxmzZt0ujRo7Vhwwbt3r1bX375pV544QWVKFFCAwYMMPXr1KmTatWqpeHDh+vHH3/U5s2bNW7cOLVp08ZiowQAAIDirFDtmBUdHa2ePXuatbm6usrT09Niu9N/jpNksfVpjRo1tGTJEqWkpKh06dKKjo626GMwGFS9enWL+T/55BPVq1dPbdu21ZEjR/JzW5LubM+alJSU73nwP/98P5OSkmRnV6hqDQEAuCcnJydbhwAAAAAAAIAH0LVr1zRixAiztszrpUuXqmnTpsrIyFB6errp9cqVK+vKlSuaOnWqEhIS5OLiombNmum1115TlSpVTP3s7e21YMECTZkyRaNGjVLJkiXVsWNHjRs37v7cHAAAQCFRqAqz4uPj5erqatHu5uamuLi4bMc5ODioVKlSZu2urq4yGo2Ki4tT6dKlFR8fLxcXl3vOf+zYMX311VeKiIjIx92YS0tL07Fjx6w2H+78JsffnThxQo6OjjaKBgCAvPH397d1CAAAAAAAAHgAVa5cWcePH8+2z7Jly8yuGzVqZNF2N15eXpo5c2ae4wMAACgOClVhVmFgNBo1adIkPf/886pRo4bV5rW3t1fNmjWtNh+kxMREs+vatWvL2dnZRtEAAAAAAAAAAAAAAAAA/1OoCrNcXV2VkJBg0R4XFyc3N7dsx6WmpurWrVtmu2bFx8fLYDCYxrq6uloU82TOX6FCBUnS5s2bFR0drQ8//FDx8fGSpFu3bpnmK1WqlMXOXDlhMBg4qsjKMjIyzK6dnJx4jwEAAAAAAAAAAAAAAFAoFKrCLB8fH0VHR5u1JSQk6OrVq/Lx8cl2nCSdOXNGjzzyiKk9OjpaFStWVOnSpU39Tpw4YTbWaDTqzJkzatmypWlMXFyc2rVrZ7FOkyZNNHjwYL3++ut5u0EAAAAAAAAAAAAAAAAAD4RCVZjVqlUrzZ07V/Hx8XJ1dZUkRUZGys7OzlQ4lZXGjRvL2dlZ33zzjakwKy0tTd9++61atWplNv+GDRt09uxZeXt7S5J27dql2NhYtW7dWpLUvXt3BQQEmM0fERGhzZs3a/78+apYsaI1bxkAAAAAAAAAAAAAAABAMVSoCrOCgoK0bNkyDR06VCEhIYqJidG0adMUFBQkLy8vU7/g4GBdunRJW7dulSSVKlVKISEhmjlzpjw8PFS7dm2tXLlSsbGxeumll0zjOnXqpHnz5mn48OEaNWqUkpOTNW3aNLVp00Z+fn6SpMqVK6ty5cpmce3du1clSpRQ06ZN78O7AAAAAAAAAAAAAAAAAKCoK1SFWW5ublqyZIkmT56soUOHqkyZMurVq5dCQ0PN+mVkZCg9Pd2sbfDgwTIajVq4cKGuX7+uOnXqKDw8XFWqVDH1sbe314IFCzRlyhSNGjVKJUuWVMeOHTVu3Lj7cn8AAAAAAAAAAAAAUNjMnj1b69at0zPPPKOhQ4faOhwAAIqNQlWYJUk1atTQ4sWLs+2zbNkyizaDwaCQkBCFhIRkO9bLy0szZ87MVUzDhw/X8OHDczUGAAAAAAAAAAAAAAq7lJQUrVu3ThkZGVq3bp1eeukllS5d2tZhAQBQLNjZOgAAAAAAAAAAAAAAgG3cvn1bGRkZku6cXHT79m0bRwQAQPFBYRYAAAAAAAAAAAAAAAAAWBmFWQAAAAAAAAAAAAAAAABgZRRmAQAAAAAAAAAAAAAAAICVUZgFAAAAAAAAAAAAAAAAAFZGYRYAAAAAAAAAAAAAAAAAWBmFWQAAAAAAAAAAAAAAAABgZRRmAQAAAAAAAAAAAAAAAICVUZgFAAAAAAAAAAAAAAAAAFZGYRYAAEAxcvr0aQ0YMECNGjVSy5YtNW3aNKWmpt5z3PLlyxUSEqJmzZrJ19dXkZGRFn127typ0NBQtWvXTg0bNlSXLl20YMECpaWlFcStAAAAAAAAAAAAAEVaSVsHAAAAAOuIi4tTcHCwvL29NXPmTMXExCgsLEwpKSmaMGFCtmPXr18vSWrdurXWrVuXZZ9Vq1YpJSVFr732mipUqKCDBw9q5syZOn36tN577z1r3w4AAAAAAAAAAABQpFGYBQAAUEysWrVKN2/e1KxZs+Tu7i5JSk9P16RJkxQSEiIvL69sx9rZ2enChQt3LcyaOHGiPDw8TNdNmzZVRkaGPvnkE73xxhtmrwEAAAAAAAAAAAAPOo4yBAAAKCa2bdum5s2bm4qyJCkwMFAZGRnasWNHtmPt7O6dFmZVeFWnTh0ZjUZdvXo11/ECAAAAAAAAAAAAxRk7ZgEAABQT0dHR6tmzp1mbq6urPD09FR0dXSBr7t+/Xw4ODqpcuXKe5zAajUpKSrJiVAAAazMYDHJ0dLR1GChCkpOTZTQa8zzeycnJitEAAAAAAAAAtkFhFgAAQDERHx8vV1dXi3Y3NzfFxcVZfb2zZ89q6dKlCgoKUpkyZfI8T1pamo4dO2bFyAAA1ubo6Ki6devaOgwUIWfOnFFycnKex/v7+1sxGgAAAAAAAMA2KMwCAABAriUmJmr48OGqXLmyQkND8zWXvb29atasaaXIAAAFwWAw2DoEFDHVq1fP145ZAAAAAAAAQHFAYRYAAEAx4erqqoSEBIv2uLg4ubm5WW2d1NRUDR06VHFxcfriiy/yfdSQwWDguCIAAIoZjr4EAAAAAAAAKMwCAAAoNnx8fBQdHW3WlpCQoKtXr8rHx8cqa2RkZOj111/X0aNHtXz5clWoUMEq8wIAAAAAAAAAAADFjZ2tAwAAAIB1tGrVSjt37lR8fLypLTIyUnZ2dmrZsqVV1pg0aZJ+/PFHffbZZ/L19bXKnAAAAAAAAAAAAEBxxI5ZAAAAxURQUJCWLVumoUOHKiQkRDExMZo2bZqCgoLk5eVl6hccHKxLly5p69atprbDhw/r4sWLun79uiTp4MGDkiQPDw8FBARIkubOnatVq1bppZdekoODg3799VfT+Jo1a8rZ2fk+3CUAAAAAAAAAAABQNFCYBQAAUEy4ublpyZIlmjx5soYOHaoyZcqoV69eCg0NNeuXkZGh9PR0s7bly5crIiLCdL1w4UJJUkBAgJYtWyZJ2rFjhyQpPDxc4eHhZuOXLl2qpk2bWv2eAAAAAAAAAGvLyDDKzs5g6zBQBPCzAgDILwqzAAAAipEaNWpo8eLF2fbJLLT6u7CwMIWFheV6HAAAAAAAAFDU2NkZNHvlDl28EmfrUAqF22kpZtfvzP1WJe1L2yiawqNSOTcNfa6lrcMAABRxFGYBAAAAAAAAkk6fPq0pU6bowIEDKlOmjLp166aRI0fKwcEh23E3btzQxx9/rG3btik2NlaVK1dW37599dxzz92nyAEAAJBbF6/E6ezFG7YOo1DIuH3L7PrcpVjZlSxlo2gAACheKMwCAAAAAADAAy8uLk7BwcHy9vbWzJkzFRMTo7CwMKWkpGjChAnZjh0xYoSio6M1atQoVahQQdu2bdPEiRNVokQJPfvss/fpDgAAAAAAAFDYUJgFAAAAAACAB96qVat08+ZNzZo1S+7u7pKk9PR0TZo0SSEhIfLy8spy3NWrV7Vnzx6999576tGjhySpefPmOnz4sL7++msKswAAAAAAAB5gdrYOAAAAAAAAALC1bdu2qXnz5qaiLEkKDAxURkaGduzYcddxt2/fliS5uLiYtTs7O8toNBZIrAAAAAAAACga2DELAAAAAAAAD7zo6Gj17NnTrM3V1VWenp6Kjo6+67gKFSro8ccf19y5c1W9enWVL19e27Zt044dOzR9+vQ8x2M0GpWUlJTn8bD0z/czKSlJdnb83ioAoGhxcnKydQgAAADIBQqzAAAAAAAA8MCLj4+Xq6urRbubm5vi4uKyHTtz5kyFhoaqa9eukqQSJUpo/Pjx6tSpU57jSUtL07Fjx/I8HpaSk5PNrk+cOCFHR0cbRQMAQN74+/vbOgQAAADkAoVZAAAAAAAAQB4ZjUaNHTtWZ8+e1YcffihPT0/t3LlTU6dOlZubm6lYK7fs7e1Vs2ZNK0f7YEtMTDS7rl27tpydnW0UDQAAAAAAeBBQmAUAAAAAAIAHnqurqxISEiza4+Li5ObmdtdxP/30kyIjI7Vhwwb5+vpKkpo2bapr164pLCwsz4VZBoOBo4qsLCMjw+zaycmJ9xgAAAAAABQoO1sHAAAAAAAAANiaj4+PoqOjzdoSEhJ09epV+fj43HXcqVOnVKJECdWuXdusvU6dOrpy5YrF8XkAAAAAAAB4cFCYBQAAAAAAgAdeq1attHPnTsXHx5vaIiMjZWdnp5YtW951XKVKlZSenq7jx4+btR89elRly5aVo6NjgcUMAAAAAACAwo3CLAAAAAAAADzwgoKCVKZMGQ0dOlTbt2/XmjVrNG3aNAUFBcnLy8vULzg4WB07djRdt2rVShUrVtRrr72m9evXa9euXfrggw8UERGhF154wRa3AgAAAAAAgEKipK0DAAAAAAAAAGzNzc1NS5Ys0eTJkzV06FCVKVNGvXr1UmhoqFm/jIwMpaenm66dnZ21ePFiffzxx5o+fboSEhJUuXJljRkzhsIsAAAAAACAB1yuC7MuXLig77//Xvv379fp06d148YNGQwGPfTQQ/Lx8VHjxo3Vrl07ValSpSDiBQAAAAAAAApEjRo1tHjx4mz7LFu2zKKtWrVq+uSTTwomKAAAAAAAABRZOS7M+vHHH7Vw4UL98ssvMhqNqlq1qipXrqzatWvLaDQqPj5ev//+u7799luFhYXJ399fL730ktq2bVuQ8QMAAAAAAAAAAAAAAABAoZOjwqxnn31Wv//+u9q3b69PPvlELVq0kLOzc5Z9ExMTtWPHDm3ZskUjR47UI488oi+++MKqQQMAAAAAAAAAAAAAAABAYZajwqymTZvqs88+08MPP3zPvs7OzurUqZM6deqkq1evaunSpfkOEgAAAAAAAAAAAAAAAACKkhwVZo0ePTpPk3t6euZ5LAAAAAAAAAAAAAAAAAAUVXa2DgAAAAAAAAAAAAAAAAAAips8FWbt2rVLCxYsMGv76quv1KZNG7Vo0UJTp05Venq6VQIEAAAAAAAAAAAAAAAAgKImT4VZM2fO1O+//266Pn78uN5++215eHgoICBAy5YtU3h4uNWCBAAAAAAAAAAAAAAAAICipGReBp0+fVpPPvmk6Xr9+vVydnbW8uXL5ejoqAkTJmj9+vUaMmSI1QIFAAAAAAAAAAAAYB1//PGHwsPDdfDgQZ08eVI+Pj7atGlTtmOuXLmixYsXa8eOHTp37pxcXFzUpEkTjRo1SpUqVTL127Nnj/r162cxvkuXLvr444+tfi8AAACFVZ4Ks5KTk+Xs7Gy6/u9//6vHH39cjo6OkqQGDRpo48aN1okQZjIyjLKzM9g6DBRy/JwAAAAAAAAAAIDsnDx5UlFRUWrYsKEyMjJkNBrvOebo0aPaunWrevbsqYYNG+rGjRuaM2eOevfurU2bNsnDw8Os/3vvvScfHx/T9UMPPWT1+0D+GexKSDJIMkoy/P9rAABgDXkqzKpQoYIOHz6sXr166Y8//tDJkyc1cOBA0+txcXFycHCwWpD4Hzs7g2av3KGLV+JsHYrN3U5LMbt+Z+63Kmlf2kbRFB6Vyrlp6HMtbR0GAAAAAAAAAAAoxNq1a6cOHTpIksaMGaMjR47cc4y/v7+++eYblSz5v0eMjRs3Vps2bbRu3Tqz54WSVKtWLTVo0MC6gcPqDHYl5VSujpKuHJNTuToy2OXpETIAAMhCnv6v+vTTT2v27NmKiYnRqVOn5Obmpvbt25teP3r0qLy9va0VI/7h4pU4nb14w9Zh2FzG7Vtm1+cuxcquZCkbRQMAAAAAAAAAAFB02NnZ5XqMq6urRVv58uXl4eGhK1euWCMs2IhLlWZyqdLM1mEAAFDs5Kkw6+WXX1ZaWpqioqJUoUIFhYWFmRKx2NhY7d27N8tzowEAAAAAAAAAAAAUH2fOnNG1a9dUo0YNi9eGDBmi2NhYeXp6qmvXrhoxYoRKl87f6SdGo1FJSUl5Hm8wGOTo6JivGPBgSU5OztFRnwD+hz9rkVv5/bPWycnJitFYV54Ks0qWLKnQ0FCFhoZavObu7q4dO3bkOzAAAAAAAAAAAAAAhZfRaNSUKVNUrlw5de3a1dTu4uKiQYMGqUmTJipVqpR2796thQsXKjo6WvPmzcvXmmlpaTp27Fiexzs6Oqpu3br5igEPljNnzig5OdnWYQBFCn/WIrfy+2etv7+/FaOxLg4IBgAAAAAAAAAAAJBrM2fO1O7du7VgwQKznSrq1q1r9kC+efPmKleunN555x0dOnRIfn5+eV7T3t5eNWvWzPN4g8GQ57F4MFWvXp0ds4Bc4s9a5FZx/rM2R4VZEyZM0ODBg1WlSpVcTX7u3DktWLBA77zzTp6CAwAAAAAAAAAAAFD4rF69WrNnz9a7776r5s2b37N/YGCg3nnnHR05ciRfhVkGg6FQH1eE4ofj2ACg4BXnP2tzVJj1559/KjAwUM2aNVOXLl3UvHlzVahQIcu+Fy5c0K5du/TNN99oz549atmypVUDBgAAAAAAAAAAAGA7W7du1cSJE/Xaa6+pV69etg4HAACg0MpRYdb8+fP1yy+/aOHChZowYYLS09Pl7u6uSpUqyc3NTUajUXFxcbpw4YLi4+NVokQJtWrVSkuWLNFjjz1W0PcAAAAAAAAAAAAA4D7Ys2ePRo0apd69e2vo0KE5Hvf1119Lkho0aFBQoQEAABQ6OSrMkiR/f3/5+/vr+vXr+vHHH/Xrr78qOjpaly9fliS5u7vrySefVKNGjdSmTRuVLVu2wIIGAAAAAAAAAAAAkHfJycmKioqSJF28eFGJiYmKjIyUJAUEBMjDw0PBwcG6dOmStm7dKkk6ffq0hg4dKm9vb3Xr1k2//vqraT4PDw9VrVpVkvT666+rWrVqqlu3rkqVKqXdu3dr8eLF6tChA4VZAADggZLjwqxMHh4e6tmzp3r27FkQ8QAAAAAAAAAAAAAoYNeuXdOIESPM2jKvly5dqqZNmyojI0Pp6emm1w8ePKiEhAQlJCToueeeMxvbvXt3hYWFSZJq1aqljRs3auHChUpLS1OlSpX08ssva8iQIQV8VwAAAIVLrguzAAAAAAAAAAAAABRtlStX1vHjx7Pts2zZMrPrHj16qEePHvecOyQkRCEhIfmKDwAAoDiws3UAAAAAAAAAAAAAAAAAAFDcUJgFAAAAAAAAAAAAAAAAAFZGYRYAAAAAAAAAAAAAAAAAWBmFWQAAAAAAAAAAAAAAAABgZRRmAQAAAAAAAAAAAAAAAICVlczP4F9//VV79uzRtWvX9Pzzz8vb21vJycmKjo6Wt7e3ypQpY604AQAAAAAAAAAAAAAAAKDIyFNhVmpqqkaNGqXvv/9eRqNRBoNBbdu2lbe3t+zs7DRw4ED1799fr7zyirXjBQAAAAAAAAAAAAAAAIBCL09HGc6YMUM//fSTJk6cqMjISBmNRtNrpUqVUufOnfX9999bLUgAAAAAAAAAAAAAAAAAKEryVJj19ddfKygoSH369JGbm5vF6zVq1ND58+fzHRwAAAAAAAAAAAAAAAAAFEV5Ksy6du2afH197/p6iRIllJKSkuegAAAAAAAAAAAAAAAAAKAoy1NhVoUKFRQdHX3X1/fv36+qVavmOSgAAAAAAAAAAAAAAAAAKMryVJj11FNPadWqVTpw4ICpzWAwSJJWr16tb775Rs8884xVAgQAAEDOnT59WgMGDFCjRo3UsmVLTZs2Tampqfcct3z5coWEhKhZs2by9fVVZGRklv1iYmI0fPhwPfroowoICND//d//KTEx0dq3AQAAAAAAAAAAABR5JfMy6OWXX9bBgwf1wgsvyMfHRwaDQe+9957i4uJ0+fJltW7dWv3797dyqAAAAMhOXFycgoOD5e3trZkzZyomJkZhYWFKSUnRhAkTsh27fv16SVLr1q21bt26LPukpaVp0KBBkqQPP/xQKSkpev/99zV69GjNmzfPqvcCAAAAAAAAAAAAFHV5KsxycHDQggULtGHDBm3ZskUZGRlKTU2Vr6+vRo4cqW7dupl20AIAAMD9sWrVKt28eVOzZs2Su7u7JCk9PV2TJk1SSEiIvLy8sh1rZ2enCxcu3LUwa8uWLTp58qQ2b94sHx8fSZKrq6teeuklHTp0SH5+fta+JQAAAAAAAAAAAKDIylNhlnTn6MJu3bqpW7du1owHAAAAebRt2zY1b97cVJQlSYGBgXr77be1Y8cO9ejR465j7ezufcL1tm3b5OvrayrKkqSWLVvK3d1dUVFRFGYBAAAAAAAAAAAAf5PnwiwAAAAULtHR0erZs6dZm6urqzw9PRUdHW2V+f9elCXdKdavXr16vuY3Go1KSkrKb3gAgAJkMBjk6Oho6zBQhCQnJ8toNOZ5vJOTkxWjAQAAAAAAAGwjz4VZ+/bt05o1a3ThwgXFxcVZfNlmMBi0YcOGfAcIAACAnImPj5erq6tFu5ubm+Li4qwyv4uLi9XnT0tL07Fjx/ITGgCggDk6Oqpu3bq2DgNFyJkzZ5ScnJzn8f7+/laMBgAAAAAAALCNPBVmLVq0SNOmTVOpUqVUvXp1ubm5WTsuAAAAPCDs7e1Vs2ZNW4cBAMiGwWCwdQgoYqpXr56vHbMAAAAAAACA4iBPhVnh4eFq3Lix5s6dm+WuCQAAALj/XF1dlZCQYNEeFxdnlUJ6V1dXJSYmZjl/hQoV8jyvwWDguCIAAIoZjr4EAAAAAAAAJLu8DEpOTtbTTz9NURYAAEAh4uPjo+joaLO2hIQEXb16VT4+PgUyv9Fo1JkzZ6wyPwAAAAAAAAAAAFCc5Kkwq2nTpjpx4oS1YwEAAEA+tGrVSjt37lR8fLypLTIyUnZ2dmrZsqVV5v/999919uxZU9uuXbsUGxur1q1b53t+AAAAAAAAAAAAoDjJU2HWv//9b+3atUvh4eGKjY21ckgAAADIi6CgIJUpU0ZDhw7V9u3btWbNGk2bNk1BQUHy8vIy9QsODlbHjh3Nxh4+fFiRkZHatm2bJOngwYOKjIzU3r17TX06deqkWrVqafjw4frxxx+1efNmjRs3Tm3atJGfn9/9uUkAAAAAAAAAAACgiCiZl0EVKlRQnz59NG3aNE2fPl2lSpWSnZ15jZfBYNAvv/xilSABAABwb25ublqyZIkmT56soUOHqkyZMurVq5dCQ0PN+mVkZCg9Pd2sbfny5YqIiDBdL1y4UJIUEBCgZcuWSZLs7e21YMECTZkyRaNGjVLJkiXVsWNHjRs3roDvDAAAAAAAAAAAACh68lSYNWPGDM2dO1deXl6qX7++XFxcrBbQ6dOnNWXKFB04cEBlypRRt27dNHLkSDk4OGQ7zmg0av78+VqxYoWuX7+uOnXqaOzYsWrUqJFZv5iYGE2ZMkXbt2+Xvb29OnbsqLFjx8rZ2dnUZ8GCBdq0aZMuXLig27dvq0qVKurTp4/69u0rg8FgtXsFAACwtho1amjx4sXZ9skstPq7sLAwhYWF3XN+Ly8vzZw5M6/hAQAAAAAAAAAAAA+MPBVmrVq1Sq1bt9Znn31msVNWfsTFxSk4OFje3t6aOXOmYmJiFBYWppSUFE2YMCHbsfPnz9enn36q119/Xb6+vlq+fLkGDhyo9evXq0qVKpKktLQ0DRo0SJL04YcfKiUlRe+//75Gjx6tefPmmeZKSEhQly5dVKtWLZUqVUq7du3SlClTlJiYqJdfftlq9wsAAAAAAAAAAAAAAACgeMpTYVZaWpratGlj1aIs6U7B182bNzVr1iy5u7tLktLT0zVp0iSFhITIy8sry3G3bt3SvHnzNHDgQPXv31+S5O/vr86dOys8PFwTJ06UJG3ZskUnT57U5s2b5ePjI0lydXXVSy+9pEOHDsnPz0+SLI77adGihS5duqSIiAgKswAAAAAAAAAAAAAAAADcU54qq9q0aaN9+/ZZOxZt27ZNzZs3NxVlSVJgYKAyMjK0Y8eOu47bv3+/EhMTFRgYaGpzcHBQx44dtW3bNrP5fX19TUVZktSyZUu5u7srKioq29geeughpaWl5eGuAAAAAAAAAAAAAAAAADxo8rRj1rBhwxQaGqqJEyeqV69eqlixYpa7Z/29wConoqOj1bNnT7M2V1dXeXp6Kjo6OttxkswKriSpRo0aWrJkiVJSUlS6dGlFR0db9DEYDKpevXqW89++fVspKSnat2+f1q1bp2HDhuXqfv7OaDQqKSkpz+OlO7E6Ojrmaw48OJKTk2U0Gm0dBoBiYP78+dq0aZOeeuopDR482NbhFDtOTk62DgEAAAAAAAAAAABAAchTYVbnzp2l/8fencdFWe7/H38PsoODUUhuJaDgnstxIQrN4ihWx1JLWgzTbEyycjml1s+9k1FWipaoeCC+5XK+lqXl1mq51TlqtliZ4JKeg5oygIIgM78/+jqnCSUYBocZXs/Ho0fd131d13xuurn9OPOZ65K0b98+rVy58pL99u3bV615CwoKZDQaK7SHhITIbDZXOs7X11d+fn527UajUVarVWazWf7+/iooKFDDhg2rNP+hQ4f05z//2Xb8yCOP2LZJdERZWVm1fx6/FxAQoHbt2tVoDtQfubm5Ki4udnUYANxcaWmp1q5dK6vVqnXr1qlHjx7y9fV1dVgepVu3bq4OAQAAAAAAAAAAAEAtcKgwKyUlRQaDwdmx1ClNmjTR//7v/+rs2bP65z//qSVLlsjLy0uPPfaYQ/P5+PioVatWNYrJ03/mcK6IiAhWzAJQY0VFRbZnicViUVRUlIKDg10cFQAAAAAAAAAAAADUfQ4VZo0dO9bZcUj6dYWrwsLCCu1ms1khISGVjistLdW5c+fsVs0qKCiQwWCwjTUajSoqKrro/E2aNLFr8/X1VceOHSVJPXv2VHBwsJ5//nndc889CgsLq/a1GQwGtirCZcW2lwCcwWKx2B0HBgby5xkAAAAAAAAAAAAAVIGXqwP4rcjISOXk5Ni1FRYW6sSJE4qMjKx0nPTr1m2/lZOTo6ZNm8rf3/+S81utVuXm5lY6vyS1b99e5eXlOnr0aJWvBwAAAAAAAAAAAAAAAED9VKUVsxYsWCCDwaBHHnlEXl5eWrBgwR+OMRgMSklJqVYw8fHxWrRokQoKCmQ0GiVJGzZskJeXl+Li4i45rmvXrgoODtb69evVpk0bSVJZWZk2bdqk+Ph4u/nfffddHTx4UC1btpQkbd++Xfn5+erdu3else3atUsGg0HNmzev1jUBAAAAAAAAAAAAAAAAqH+qVZg1atQo+fr61lphVlJSkrKzs5WSkiKTyaS8vDylpqYqKSlJ4eHhtn7Jyck6duyYNm/eLEny8/OTyWRSWlqaQkNDFR0dreXLlys/P18jR460jevXr5/S09M1duxYjR8/XsXFxUpNTVWfPn3UqVMnSb+u0DVq1Cj95S9/0bXXXqvz589r586dev311zV06FBdddVV1bomAAAAAAAAAAAAAAAAAPVPlQqzvv/++0qPnSUkJERZWVmaNWuWUlJSFBQUpCFDhmjcuHF2/SwWi8rLy+3aRo0aJavVqmXLlunUqVNq27atMjIy1KJFC1sfHx8fLV26VLNnz9b48ePl7e2thIQETZkyxdbHz89PERERyszMVF5envz9/XXNNddoxowZuuOOO2rlugEAAAAAAAAAAAAAAAB4lioVZknSzTffrClTpujmm2+uzXgUFRWlzMzMSvtkZ2dXaDMYDDKZTDKZTJWODQ8PV1pa2iXP+/r66rnnnqtSrAAAAAAAAAAAAAAAAABwMV5V7Xj06FGdPXu2NmMBAAAAAAAAAAAAAAAAAI9Q5cIsAAAAAAAAAAAAAAAAAEDVUJgFAAAAAAAAAAAAAAAAAE7mXZ3Oq1at0rZt26rU12Aw6G9/+5tDQQEAAAAAAAAAAAAAAACAO6tWYdZXX32lb775pkp9KcwCAAAAAAAAAAAAAAAAUF9VqzDr2Wef1e23315bsQAAAAAAAAAAAAAAAACAR/BydQAAAAAAAAAAAAAAAAAA4GkozAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcrMqFWc8995y6dOlSm7EAAAAAAAAAAADAjS1cuFAJCQlauHChq0MBAAAAXK7KhVl33nmnmjdvXpuxAAAAAAAAAAAAwE2VlJRozZo1slgsWrNmjUpKSlwdEgAAAOBSbGUIAAAAAAAAAACAGjt//rwsFoskyWKx6Pz58y6OCAAAAHAtCrMAAAAAAAAAAACAeubQoUOaOnWqBg4cqHbt2um2226r0jir1arFixerT58+6tSpk4YOHao9e/ZU6JeXl6exY8eqS5cu6tGjh55++mkVFRU5+SoAAADqNgqzAAAAAAAAAEkHDhzQgw8+qM6dOysuLk6pqakqLS2t0ti8vDw99dRT6tWrlzp16qTExES9++67tRwxAACA4/bv369PP/1U1157raKioqo8bsmSJZo/f76GDx+u9PR0hYWFacSIETpy5IitT1lZmR566CEdPHhQc+fO1fTp0/X5559rwoQJtXEpAAAAdZa3qwMAAAAAAAAAXM1sNis5OVktW7ZUWlqa8vLyNGfOHJWUlGjq1KmVjj1+/LiGDh2qiIgIzZo1S8HBwdq/f3+Vi7oAAABcoW/fvrrlllskSZMmTdI333zzh2POnTun9PR0jRgxQsOHD5ckdevWTf3791dGRoamT58uSdq4caP279+v999/X5GRkZIko9GokSNHau/everUqVOtXBMAAEBdQ2EWAAAAAAAA6r0VK1bozJkzWrBggRo1aiRJKi8v14wZM2QymRQeHn7JsS+88IKuvvpqLV26VA0aNJAkxcbGXo6wAQAAHOblVf2NdXbt2qWioiIlJiba2nx9fZWQkKDNmzfb2rZs2aKYmBhbUZYkxcXFqVGjRvr0008pzAIAAPWGQ4VZVqtVK1eu1P/+7//qyJEjKigoqNDHYDDou+++q3GAAAAAAAAAQG3bsmWLYmNjbUVZkpSYmKhp06Zp69atGjRo0EXHFRUVaf369frb3/5mK8oCAADwVDk5OZJkV3AlSVFRUcrKylJJSYn8/f2Vk5NToY/BYFBERIRtDkdZrVadPXvW4fEGg0EBAQE1igH1S3FxsaxWq6vDANwKz1pUV02ftYGBgU6MxrkcKsxKTU1VZmam2rZtq7/85S8KCQlxdlwAAAAAAADAZZOTk6PBgwfbtRmNRoWFhVX64eG3336rsrIyeXt76/7779fu3bvVqFEj3XHHHXriiSfk4+PjUDw1/cARFf3+53n27FmHVgoBAFwaz9ra5+oPHQsKCuTr6ys/Pz+7dqPRKKvVKrPZLH9/fxUUFKhhw4YVxoeEhMhsNtcohrKyMu3bt8/h8QEBAWrXrl2NYkD9kpubq+LiYleHAbgVnrWorpo+a7t16+bEaJzLocKsNWvW6M9//rPmzZvn7HgAAAAAAACAy66goEBGo7FC+x99eHjy5ElJ0jPPPKO7775bjz76qPbu3av58+fLy8tLEyZMcCiemn7giIp+/wbvjz/+yDe4AcDJeNbWvrr8oePl4uPjo1atWjk83mAwODEa1AcRERGsmAVUE89aVJcnP2sdKswqKSnR9ddf7+xYAAAAAAAAALdisVgkSddff70mTZokSerVq5fOnDmjZcuWKSUlRf7+/tWet6YfOKKioqIiu+Po6GgFBwe7KBoA8Ew8az2f0WhUaWmpzp07Z7dqVkFBgQwGg22XHaPRWOF+kCSz2awmTZrUKAaDweDylcNQv1BgCgC1z5OftQ4VZsXGxurrr7/W0KFDnR0PAAAAAAAAcNkZjUYVFhZWaDebzbYPGC81Tvq1GOu3YmNjtWjRIh06dEgxMTHVjocPHJ3vQhHdBYGBgfyMAcDJeNZ6vsjISEm/bjfUpk0bW3tOTo6aNm1qK0iPjIzUjz/+aDfWarUqNzdXcXFxly9gAAAAF3NoY+9p06bpq6++0qJFi3T69GlnxwQAAAAAAABcVpGRkcrJybFrKyws1IkTJ2wfQF7MH61qde7cOafEBwAAUBd07dpVwcHBWr9+va2trKxMmzZtUnx8vK0tPj5e33//vQ4ePGhr2759u/Lz89W7d+/LGTIAAIBLObRiVv/+/WW1WjVv3jzNmzdPfn5+8vKyr/EyGAz617/+5ZQgAQAAAAAAgNoUHx+vRYsWqaCgwLYK1oYNG+Tl5VXpqg7NmjVTdHS0tm3bpvvvv9/Wvm3bNvn7+7MdIQAAqLOKi4v16aefSpKOHj2qoqIibdiwQZLUo0cPhYaGKjk5WceOHdPmzZslSX5+fjKZTEpLS1NoaKiio6O1fPly5efna+TIkba5+/Xrp/T0dI0dO1bjx49XcXGxUlNT1adPH3Xq1OnyXywAAICLOFSY1a9fPxkMBmfHAgBAnWCxWOXlxZ9z+GPcKwAAAJ4jKSlJ2dnZSklJkclkUl5enlJTU5WUlKTw8HBbv99/OClJ48aN05gxY/Tss8+qT58++vrrr7Vs2TKNHDnS5ds3kbOiKrhPAKB++uWXX/T444/btV04fv3119WzZ09ZLBaVl5fb9Rk1apSsVquWLVumU6dOqW3btsrIyFCLFi1sfXx8fLR06VLNnj1b48ePl7e3txISEjRlypTavzAAAIA6xKHCrDlz5jg7DgAA6gwvL4MWLt+qo8fNrg7F5c6Xldgdz1y0Sd4+/i6Kpm5p1jhEKfdceuUEAAAAuJeQkBBlZWVp1qxZSklJUVBQkIYMGaJx48bZ9bvYh5N9+/bVSy+9pFdffVXLly9X48aNNXbsWD388MOX8xIuir/f/Bd/v7k4/m4DAPVX8+bN9cMPP1TaJzs7u0KbwWCQyWSSyWSqdGx4eLjS0tJqFCMAAIC7c6gwCwAAT3f0uFkHj552dRguZzl/zu748LF8eXn7uSgaAAAAoHZFRUUpMzOz0j4X+3BSkgYMGKABAwbUQlQ1x99vfsXfbwAAAAAAwOXmcGFWUVGRMjMz9cknn+jYsWOSpKZNm6pPnz4aPny4goODnRYkAAAAAAAAAAAAAAAAALgTL0cG5eXl6Y477tCCBQt09uxZde3aVV27dlVxcbEWLFigO++8U8ePH3d2rAAAAAAAAAAAAAAAAADgFhxaMevFF1/UyZMnlZ6ert69e9ud+/TTT/XEE09o7ty5ev75550SJAAAAAAAAAAAAAAAAAC4E4dWzPrss8+UnJxcoShLknr37q1hw4bp008/rXFwAAAAAAAAAAAAAAAAAOCOHCrMKi4u1pVXXnnJ81dddZWKi4sdDgoAAAAAAAAAAAAAAAAA3JlDhVlRUVF67733VFpaWuFcWVmZ3nvvPUVFRdU4OAAAAFTPgQMH9OCDD6pz586Ki4tTamrqRXO237NarVq8eLH69OmjTp06aejQodqzZ0+Ffv/85z81bNgwde/eXT179tRDDz2kffv21cKVAAAAAAAAAAAAAO7NocKsUaNG6auvvtJdd92llStXaufOndq5c6dWrFihu+66S3v37tXDDz/s7FgBAABQCbPZrOTkZJWVlSktLU3jxo3TqlWrNGfOnD8cu2TJEs2fP1/Dhw9Xenq6wsLCNGLECB05csTWJycnRyNHjlRgYKDmzp2rZ599VmazWcOHD9eJEydq89IAAAAAAAAAAAAAt+PtyKDExEQVFxdr7ty5mjZtmgwGg6RfV1q48sor9be//U39+/d3aqAAAACo3IoVK3TmzBktWLBAjRo1kiSVl5drxowZMplMCg8Pv+i4c+fOKT09XSNGjNDw4cMlSd26dVP//v2VkZGh6dOnS5I++OADWa1WzZs3T/7+/pKkmJgY3XLLLdq6davuuOOOWr5CAAAAAAAAAAAAwH04VJglSYMGDdJf/vIXffPNNzp27JgkqWnTpurQoYO8vR2eFgAAAA7asmWLYmNjbUVZ0q8F9dOmTdPWrVs1aNCgi47btWuXioqKlJiYaGvz9fVVQkKCNm/ebGsrKyuTr6+v/Pz8bG0NGzZ0/oUAAAAAAAAAAAAAHqBGFVTe3t7q3LmzOnfu7KRwAAAA4KicnBwNHjzYrs1oNCosLEw5OTmVjpOkyMhIu/aoqChlZWWppKRE/v7+uvXWW7V06VK98sorGj58uEpLS/XSSy+pSZMmuvnmmx2O22q16uzZsw6PBwDUPoPBoICAAFeHATdSXFwsq9Xq8PjAwEAnRgMAAAAAAAC4RpUKs7788ktJUvfu3e2O/8iF/gAAAKh9BQUFMhqNFdpDQkJkNpsrHff7lbCkX4u6rFarzGaz/P391bJlS2VmZmrMmDFatGiRJKlZs2b6+9//XqOVs8rKyrRv3z6HxwMAal9AQIDatWvn6jDgRnJzc1VcXOzw+G7dujkxGgAAAAAAAMA1qlSYNWzYMBkMBn311Vfy9fW1HV+K1WqVwWDgAzYAAAAPkpubq7FjxyouLk533HGHzp07p2XLlmnUqFFasWKFrrrqKofm9fHxUatWrZwcLQDAmSp7DwC4mIiIiBqtmAUAAAAAAAB4gioVZr3++uuSJF9fX7tjwJUMXg0kGSRZJRn+7xgAgPrLaDSqsLCwQrvZbFZISEil40pLS3Xu3Dm7VbMKCgpkMBhsY19++WVdddVVSk1NtfXp0aOHbrrpJr3++usaP368Q3EbDAa2KwIAwMOw9SUAAAAAAABQxcKsHj16VHoMuILBy1uBjdvq7PF9CmzcVgavKt3OAAB4rMjISOXk5Ni1FRYW6sSJE4qMjKx0nPTrilht2rSxtefk5Khp06by9/eXJP3000/q3Lmz3digoCBdc801Onz4sJOuAgAAAAAAAAAAAPAMXo4MeuCBB7R9+/ZLnt+xY4ceeOABh4MCqqphi14K7/agGrbo5epQAABwufj4eG3btk0FBQW2tg0bNsjLy0txcXGXHNe1a1cFBwdr/fr1traysjJt2rRJ8fHxtramTZtq3759dtsSFRUV6dChQ2rWrJmTrwYAAAAAAAAAAABwbw4VZn3xxRc6efLkJc+fOnVKX375pcNBAQAAoPqSkpIUFBSklJQUff7551q9erVSU1OVlJSk8PBwW7/k5GQlJCTYjv38/GQymbRs2TJlZWVp+/btmjBhgvLz8zVy5Ei7+b/77jtNnDhRW7Zs0QcffKCHH35YpaWluuuuuy7rtQIAAAAAAAAAAAB1ncN7vxkMhkueO3TokIKCghydGgAAAA4ICQlRVlaWZs2apZSUFAUFBWnIkCEaN26cXT+LxaLy8nK7tlGjRslqtWrZsmU6deqU2rZtq4yMDLVo0cLW55ZbbtErr7yijIwMjRs3Tj4+PmrXrp1ef/11tWzZ8nJcIgAAAAAAAAAAAOA2qlyY9fbbb+vtt9+2Hb/22mtatWpVhX6FhYX64Ycf7La9AQAAwOURFRWlzMzMSvtkZ2dXaDMYDDKZTDKZTJWOTUxMVGJiYk1CBAAAAAAAAAAAAOqFKhdmFRcX6/Tp07bjM2fOyMur4k6IgYGBSkpKUkpKinMiBAAAAAAAAAAAAAAAAAA3U+XCrHvvvVf33nuvJKlv3756+umndfPNN9daYAAAAAAAAAAAAAAAAADgrqpcmPVbH330kbPjAAAAAAAAAAAAAAAAAACP4VBh1rFjx6rUr2nTpo5MDwAAAAAAAAAAAAAAAABuzaHCrL59+8pgMPxhv3379jkyPQAAAAAAAAAAAAAAAAC4NYcKs/72t79VKMwqLy/X0aNH9c477yg0NFT33XefUwIEAAAAAAAAAAAAAAAAAHfjUGHWoEGDLnlu1KhRuvvuu1VYWOhwUAAAAAAAAAAAAAAAAADgzrycPWFgYKAGDRqkzMxMZ08NAAAuM4NXA0kXVsk0/N8xAAAAAAAAAAAAAOCPOL0wS5IsFotOnjxZG1MDAIDLyODlrcDGbSUZFNi4rQxeDi22CQAAAAAAAAAAAAD1jlM/XS0qKtKXX36pjIwMtWvXzplTAwAAF2nYopcatujl6jAAAAAAAAAAAAAAwK04VJjVpk0bGQyGi56zWq1q2rSppk2bVqPAAAAAAAAAAAAAAAAAAMBdOVSYlZKSctHCrJCQEF1zzTWKi4uTtzdbHQEAAAAAAAAAAAAAAAConxyqnho7dqyz4wAAAAAAAAAAAAAAAAAAj+HlyKDz58+rqKjokueLiop0/vx5h4MCAAAAAAAAAAAAAAAAAHfmUGHW7NmzlZSUdMnz99xzj+bMmeNwUAAAAAAAAAAAAAAAAADgzhwqzPrss8/Ur1+/S57v16+ftmzZ4nBQAAAAAAAAAAAAAAAAAODOHCrMOn78uMLDwy95vnHjxsrLy3M4KAAAAAAAAAAAAAAAAABwZw4VZjVq1Ei5ubmXPH/gwAEFBwc7HBQAAAAAAAAAAAAAAAAAuDOHCrNuvPFGrVixQt99912Fc99++61WrVql+Pj4GgcHAAAAAAAAAABQl1ksVleHADfBvQIAAFD/eDsy6PHHH9dnn32mu+66S3379lWrVq0kSfv379fHH3+s0NBQPf74404NFAAAAAAAAAAAoK7x8jJo4fKtOnrc7OpQXO58WYnd8cxFm+Tt4++iaOqWZo1DlHJPnKvDAAAAwGXmUGFWeHi4Vq9erblz5+rDDz/U5s2bJUnBwcG6/fbbNW7cOIWHhzs1UAAAAAAAAAAAgLro6HGzDh497eowXM5y/pzd8eFj+fLy9nNRNAAAAIDrOVSYJUmNGzfW888/L6vVqlOnTkmSQkNDZTAYnBYcAAAAAAAAAAAAAAAAALgjhwuzLjAYDPL19VVgYCBFWQAAAAAAAAAAAAAAAAAgycvRgV9//bVGjhyp6667Tj179tQXX3whSTp16pQeeeQR7dy502lBAgAAAAAAAAAAAAAAAIA7cagwa9euXbr33nt16NAh/eUvf5HFYrGdCw0NVVFRkVauXOm0IAEAAAAAAAAAAAAAAADAnThUmPXyyy8rKipK77//vsaNG1fhfM+ePfXVV1/VODgAAAAAAAAAAAAAAAAAcEcOFWZ9/fXXGjRokHx9fWUwGCqcDw8P18mTJ2scHAAAAAAAAAAAAAAAAAC4I4cKs7y9ve22L/y9vLw8BQYGOhwUAAAAAAAAAAAAAAAAALgzhwqzrrvuOm3cuPGi586ePau33npL3bt3r1FgAAAAAAAAAAAAAAAAAOCuvB0Z9Nhjj+n+++/Xww8/rFtvvVWS9MMPP+jnn39WRkaGTp06pTFjxjg1UAAAAAAAAAAAAADOc+DAAc2ePVu7d+9WUFCQBg4cqCeeeEK+vr6XHLNz50498MADFz0XERGhDRs2VNpvwIABevnll51zAQAAAHWcQ4VZ1113nRYvXqzp06frqaeekiTNmTNHknTNNddo8eLFatOmjfOiBAAAAAAAAAAAAOA0ZrNZycnJatmypdLS0pSXl6c5c+aopKREU6dOveS49u3ba+XKlXZtRUVFGjVqlOLj4yv0f+655xQZGWk7vuKKK5x3EQAAAHWcQ4VZkhQbG6uNGzdq3759OnjwoKxWq1q0aKEOHTrIYDA4M0YAAAAAAAAAAAAATrRixQqdOXNGCxYsUKNGjSRJ5eXlmjFjhkwmk8LDwy86Ljg4WJ07d7Zre+utt2SxWHTbbbdV6N+6dWt17NjR2eEDAAC4BS9HBv3www+2/27btq0SExM1YMAAdezY0VaUdWGZUgAAAAAAAAAAAAB1y5YtWxQbG2srypKkxMREWSwWbd26tVpzrVu3Ti1btlSnTp2cHCUAAIB7c2jFrMGDB2vs2LEaNWqUvLzsa7vy8/M1ffp0bdy4Uf3796/23I7sZS1JVqtVS5Ys0ZtvvqlTp06pbdu2mjx5coWK/by8PM2ePVuff/65fHx8lJCQoMmTJys4OFjSr98EWLZsmT755BP99NNPslqtiomJ0eOPP64//elP1b4eAAAAAAAAAAAAoK7JycnR4MGD7dqMRqPCwsKUk5NT5XlOnjypHTt26JFHHrno+Ycfflj5+fkKCwvTrbfeqscff1z+/v4Ox221WnX27FmHxxsMBgUEBDg8HvVPcXGxrFarq8MA3ArPWlRXTZ+1gYGBTozGuRwqzLrzzjv18ssv68MPP9ScOXNs+0J/8MEHmj59us6cOaMpU6ZUe15H97KWpCVLlmj+/PmaOHGiYmJi9MYbb2jEiBF655131KJFC0lSWVmZHnroIUnS3LlzVVJSoueff14TJkxQenq6JKmkpESLFy/WnXfeaSs8W7VqlR544AFlZGQoNja22tcFAAAAAAAAAAAA1CUFBQUyGo0V2kNCQmQ2m6s8z/vvv6/y8vIK2xg2bNhQDz30kLp37y4/Pz/t2LFDy5YtU05Oju1zOUeUlZVp3759Do8PCAhQu3btHB6P+ic3N1fFxcWuDgNwKzxrUV01fdZ269bNidE4l0OFWbNmzdKf//xnPf3007rzzjuVkpKiH3/8UevWrVOXLl00Z84cXXvttdWe19G9rM+dO6f09HSNGDFCw4cPl/TrD71///7KyMjQ9OnTJUkbN27U/v379f7779uKyYxGo0aOHKm9e/eqU6dO8vf31wcffKCQkBDb/HFxcbrtttuUlZVFYRYAAAAAAAAAAADwf9auXav27dsrIiLCrr1du3Z2H8rHxsaqcePGmjlzpu1zOUf4+PioVatWDsdrMBgcHov6KSIighWzgGriWYvq8uRnrUOFWZJ044036r333tPIkSP18ssvS5JGjx6txx9/3OFfskvtZT1t2jRt3bpVgwYNuui4Xbt2qaioSImJibY2X19fJSQkaPPmzXbzx8TE2IqypF+Lrho1aqRPP/1UnTp1UoMGDeyKsiSpQYMGiomJ0eHDhx26LgAAAAAAAAAAAKAuMRqNKiwsrNBuNpsrfFZ2KYcPH9bevXs1efLkKvVPTEzUzJkz9c033zhcmGUwGOr0dkXwPGzHBgC1z5OftQ4XZp09e1YvvPCC9u7dqzZt2ujQoUNavXq1unTpot69ezs0p6N7WV8499uCK0mKiopSVlaWSkpK5O/vr5ycnAp9DAaDIiIiKp3//Pnz+uqrr2q09FlN97uW2IcV1cN+13XXkiVLtG7dOt12220aNWqUq8PB7/CsRXV58p7XAAAAAAAA8FyRkZEVPh8rLCzUiRMnKnyedilr166Vl5eXBgwYUBshAgAAuD2HCrN27Nihp59+WsePH9f48eP10EMP6fDhw5o0aZJGjx6tQYMGafLkyQoODq7WvI7uZV1QUCBfX1/5+fnZtRuNRlmtVpnNZvn7+6ugoEANGzas9vxLly5VXl6ebZtER9R0v2uJfVhRPex3XTeVlpZq7dq1slqtWrdunXr06CFfX19Xh4Xf4FmL6vLkPa8BAAAAAADgueLj47Vo0SK7z+c2bNggLy8vxcXFVWmO9957Tz169FDjxo2r3F+SOnbs6FjQAAAAbsahwqwHH3xQbdu21aJFi9S6dWtJUsuWLbV8+XItW7ZM8+fP1/bt2/XRRx85NVhX2Lp1q9LS0jRmzBh16NDB4Xlqut+1xD6sqB5P3oPVnRUVFdn+v1gsFkVFRVW7iBW1i2ctqovnLQAAAAAAANxRUlKSsrOzlZKSIpPJpLy8PKWmpiopKUnh4eG2fsnJyTp27Jg2b95sN/67777TgQMH9OCDD150/okTJ+raa69Vu3bt5Ofnpx07digzM1O33HILhVkAAKDecKgwa8yYMXrkkUfk7W0/3GAwaOTIkerTp48mTZpU7Xkd3cvaaDSqtLRU586ds1s1q6CgQAaDwTbWaDSqqKjoovM3adKkQvu3336rsWPH6rbbbtOjjz5a7ev5Lfa7xuXGVmx1k8VisTsODAzk2QC4OZ63AAAAAAAAcEchISHKysrSrFmzlJKSoqCgIA0ZMkTjxo2z62exWFReXl5h/Nq1a+Xr66t+/fpddP7WrVtr7dq1WrZsmcrKytSsWTONHj1aDz/8cK1cDwAAQF3kUGHW2LFjKz0fFRWllStXVnteR/eyvnAuNzdXbdq0sbXn5OSoadOm8vf3t/X78ccf7cZarVbl5uZWWJL10KFDGjVqlLp06aLZs2dX+1oAAAAAAAAAAACAuiwqKkqZmZmV9snOzr5o+1NPPaWnnnrqkuNMJpNMJlNNwgMAAHB7XlXtuHfvXuXn51ep75EjR/Tuu+9WO5j4+Hht27ZNBQUFtraq7GXdtWtXBQcHa/369ba2srIybdq0SfHx8Xbzf//99zp48KCtbfv27crPz1fv3r1tbcePH9eIESPUpEkTzZ8/Xz4+PtW+FgAAAAAAAAAAAAAAAAD1V5ULs4YOHarPPvvMdpyfn6/rrrtOX3zxRYW+u3fv1uTJk6sdTFJSkoKCgpSSkqLPP/9cq1evvuRe1gkJCbZjPz8/mUwmLVu2TFlZWdq+fbsmTJig/Px8jRw50tavX79+at26tcaOHauPP/5Y77//vqZMmaI+ffqoU6dOkqSSkhKNGjVKp0+fVkpKivbv3689e/Zoz549+u6776p9TUB9Z7FYXR0C3AT3CgAAAAAAAAAAAADAk1R5K0Or1Vrh+Ny5cxfdU9pRNdnLetSoUbJarVq2bJlOnTqltm3bKiMjQy1atLD18fHx0dKlSzV79myNHz9e3t7eSkhI0JQpU2x9Tp48qe+//16S9Mgjj9i9RrNmzfTRRx857XqB+sDLy6CFy7fq6HGzq0OpE86Xldgdz1y0Sd4+/i6Kpu5o1jhEKfdcemVEAFV34MABzZ49W7t371ZQUJAGDhyoJ554Qr6+vpWOs1qtWrJkid58801bLjV58mR17ty5Qt9PPvlEixYt0vfffy8fHx+1adNGL7zwgq6++upauioAAAAAAAAAAADA/VS5MOtycXQva4PBUKW9qsPDw5WWlnbJ882bN9cPP/xQpVgBVM3R42YdPHra1WHUCZbz5+yODx/Ll5e3n4uiAeBpzGazkpOT1bJlS6WlpSkvL09z5sxRSUmJpk6dWunYJUuWaP78+Zo4caJiYmL0xhtvaMSIEXrnnXfsCt3feecdPf300xoxYoSeeOIJnTlzRv/85z917ty5SmYHAAAAAAAAAAAA6p86V5gFAAAAx6xYsUJnzpzRggUL1KhRI0lSeXm5ZsyYIZPJZLc19G+dO3dO6enpGjFihIYPHy5J6tatm/r376+MjAxNnz5d0q9bWc+cOVNTpkzRvffeaxt/88031+ZlAQAAAAAAAAAAAG7Jy9UBAAAAwDm2bNmi2NhYW1GWJCUmJspisWjr1q2XHLdr1y4VFRUpMTHR1ubr66uEhARt2bLF1rZ+/XpZLBYNGTKkVuIHAAAAAAAAAAAAPEm1Vsw6evSovv32W0lSYWGhJOnQoUMyGo12/X7++WcnhQcAAICqysnJ0eDBg+3ajEajwsLClJOTU+k4SYqMjLRrj4qKUlZWlkpKSuTv76+vvvpKERERWrNmjV577TXl5eWpdevWGj9+vHr37u1w3FarVWfPnnV4PACg9hkMBgUEBLg6DLiR4uJiWa1Wh8cHBgY6MRoAAAAAAADANapVmDVv3jzNmzfPrm3GjBkV+lmtVhkMhppFBgAAgGopKCioUDAvSSEhITKbzZWO8/X1lZ+fn1270WiU1WqV2WyWv7+/Tpw4odzcXM2bN09//etfFRYWpjfeeENjxozRmjVr1Lp1a4fiLisr0759+xwaCwC4PAICAtSuXTtXhwE3kpubq+LiYofHd+vWzYnRAAAAAAAAAK5R5cKs5557rjbjAAAAQB13YWWrF198UTfffLMkqUePHurXr5+WLFmi1NRUh+b18fFRq1atnBkqAMDJ+PIVqisiIqJGK2a5yoEDBzR79mzt3r1bQUFBGjhwoJ544gn5+vpWeY7MzEw999xz6tOnj9LT02sxWgAAAAAAANR1VS7MuvPOO2szDgAAANSQ0Wi0bTf9W2azWSEhIZWOKy0t1blz5+xWzSooKJDBYLCNvbAaV69evWx9fHx81L17d+3fv9/huA0GA9sVAQDgYdxx60uz2azk5GS1bNlSaWlpysvL05w5c1RSUqKpU6dWaY4TJ05o4cKFuvLKK2s5WgAA6iaDVwNJBklWSYb/OwYAAADqr2ptZQgAqBnemABQmyIjI5WTk2PXVlhYqBMnTigyMrLScdKvWw61adPG1p6Tk6OmTZvK399fkipd1ercuXM1CR0AAMDlVqxYoTNnzmjBggVq1KiRJKm8vFwzZsyQyWRSeHj4H87xwgsvqG/fvjp27FgtRwsAQN1k8PJWYOO2Ont8nwIbt5XBi4+hAAAAUL95uToAAKhPLrwxIRl4YwKA08XHx2vbtm0qKCiwtW3YsEFeXl6Ki4u75LiuXbsqODhY69evt7WVlZVp06ZNio+Pt7XddNNNkqTt27fb2kpLS/Xll1+qffv2zrwUAACAy27Lli2KjY21FWVJUmJioiwWi7Zu3fqH4//5z3/qgw8+0IQJE2oxSgAA6r6GLXopvNuDatii1x93BgAAADwcFQEAcJk1bNGLNyUA1IqkpCRlZ2crJSVFJpNJeXl5Sk1NVVJSkt0KD8nJyTp27Jg2b94sSfLz85PJZFJaWppCQ0MVHR2t5cuXKz8/XyNHjrSNa9++vfr166f/9//+n/Lz8xUWFqY333xTJ0+etOsHAADgjnJycjR48GC7NqPRqLCwsAqrkv5eeXm5Zs2apdGjR6tx48ZOicdqters2bM1msNgMLjltpJwjeLiYlmtVleHAbgdnrWorpo+bwMDA50YDQAAAGobhVkAAAAeIiQkRFlZWZo1a5ZSUlIUFBSkIUOGaNy4cXb9LBaLysvL7dpGjRolq9WqZcuW6dSpU2rbtq0yMjLUokULu35z5szRSy+9pLlz56qoqEjt27fX3//+d8XExNT69QEAANSmgoICGY3GCu0hISEym82Vjn3zzTdVXFys4cOHOy2esrIy7du3r0ZzBAQEqF27dk6KCJ4uNzdXxcXFrg4DcDs8a1FdNX3eduvWzYnRAAAAoLZRmAUAAOBBoqKilJmZWWmf7OzsCm0Gg0Emk0kmk6nSsYGBgXrmmWf0zDPP1CRMAAAAj/HLL79o/vz5ev755+Xr6+u0eX18fNSqVasazWEwGJwUDeqDiIgIVswCHMCzFtXF8xYAAKB+oTALAAAAAAAA9Z7RaFRhYWGFdrPZrJCQkEuOmzdvnmJiYvSnP/1JBQUFkqTz58/r/PnzKigoUGBgoLy9q/8WnMFgYKsiXFZsxQYAlwfPWwAAgPqFwiwAAAAAAADUe5GRkcrJybFrKyws1IkTJxQZGXnJcbm5ufryyy/VvXv3Cue6d++uJUuWKD4+3unxAgAAAAAAoO6jMAsAAAAAAAD1Xnx8vBYtWqSCggIZjUZJ0oYNG+Tl5aW4uLhLjpsyZYptpawL/va3v8nf31/jx49XTExMrcYNAAAAAACAuovCLAAAAAAAANR7SUlJys7OVkpKikwmk/Ly8pSamqqkpCSFh4fb+iUnJ+vYsWPavHmzJKlt27YV5jIajQoMDFTPnj0vW/wAAAAAAACoe7xcHQAAAAAAAADgaiEhIcrKylKDBg2UkpKiuXPnasiQIZo0aZJdP4vFovLychdFCQAAAAAAAHfCilkAAAAAAACApKioKGVmZlbaJzs7+w/nqUofAAAAAAAAeD5WzAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcjMIsAAAAAAAAAAAAAAAAAHAyCrMAAAAAAAAAAAAAAAAAwMkozAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcjMIsAAAAAAAAAAAAAAAAAHAyCrMAAAAAAAAAAAAAAAAAwMkozAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcjMIsAAAAAAAAAAAAAAAAAHAyCrMAAAAAAAAAAAAAAAAAwMkozAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcjMIsAAAAAAAAAAAAAAAAAHAyCrMAAAAAAAAAAAAAAAAAwMkozAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcjMIsAAAAAAAAAAAAAAAAAHAyCrMAAAAAAAAAAAAAAAAAwMkozAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcjMIsAAAAAAAAAAAAAAAAAHAyCrMAAAAAAAAAAAAAAAAAwMkozAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcjMIsAAAAAAAAAAAAAAAAAHAyCrMAAAAAAAAAAAAAAAAAwMm8XR0AAAAAAAAAAAAAgMvvwIEDmj17tnbv3q2goCANHDhQTzzxhHx9fSsd17dvXx09erRC+969e+Xn52c7zsvL0+zZs/X555/Lx8dHCQkJmjx5soKDg51+LQAAAHURhVkAAAAAAAAAAABAPWM2m5WcnKyWLVsqLS1NeXl5mjNnjkpKSjR16tQ/HN+vXz+NGDHCru23BV1lZWV66KGHJElz585VSUmJnn/+eU2YMEHp6enOvRgAAIA6isIsAAAAAAAAAAAAoJ5ZsWKFzpw5owULFqhRo0aSpPLycs2YMUMmk0nh4eGVjr/qqqvUuXPnS57fuHGj9u/fr/fff1+RkZGSJKPRqJEjR2rv3r3q1KmTsy4FAACgzvJydQAAAAAAAAAAUNsMXg0kGS4c/d8xAAD115YtWxQbG2srypKkxMREWSwWbd261Snzx8TE2IqyJCkuLk6NGjXSp59+WuP5AQAA3AErZgEAAAAAAADweAYvbwU2bquzx/cpsHFbGbx4axQAUL/l5ORo8ODBdm1Go1FhYWHKycn5w/Fr167VqlWr5OPjoz/96U+aOHGiYmJi7Ob/bVGWJBkMBkVERFRp/kuxWq06e/asw+MNBoMCAgIcHo/6p7i4WFar1dVhAG6FZy2qq6bP2sDAQCdG41y8+wAAAAAAAACgXmjYopcatujl6jAAAKgTCgoKZDQaK7SHhITIbDZXOrZv377q1KmTmjZtqiNHjmjRokW69957tWbNGrVo0cI2f8OGDR2avzJlZWXat2+fw+MDAgLUrl07h8ej/snNzVVxcbGrwwDcCs9aVFdNn7XdunVzYjTORWEWAAAAAAAAAAAAgCp75plnbP/9pz/9SXFxcUpMTFRGRoamT59eq6/t4+OjVq1aOTzeYDD8cSfgNyIiIlgxC6gmnrWoLk9+1lKYBQAAAAAAAAAAANQzRqNRhYWFFdrNZrNCQkKqNVfjxo3VrVs3ffvtt3bzFxUVXXT+Jk2aVD/g/2MwGOr0dkXwPGzHBgC1z5OftV6uDgAAAAAAAAAAAADA5RUZGamcnBy7tsLCQp04cUKRkZG1Mr/ValVubq5T5gcAAHAHFGYBAAB4kAMHDujBBx9U586dFRcXp9TUVJWWlv7hOKvVqsWLF6tPnz7q1KmThg4dqj179lyyv8Vi0aBBgxQTE6MNGzY48QoAAAAAAABwOcTHx2vbtm0qKCiwtW3YsEFeXl6Ki4ur1lx5eXn617/+pY4dO9rN//333+vgwYO2tu3btys/P1+9e/eucfwAAADugMIsAAAAD2E2m5WcnKyysjKlpaVp3LhxWrVqlebMmfOHY5csWaL58+dr+PDhSk9PV1hYmEaMGKEjR45ctP+KFSuUl5fn7EsAAAAAAADAZZKUlKSgoCClpKTo888/1+rVq5WamqqkpCSFh4fb+iUnJyshIcF2vG7dOk2YMEHvvvuuduzYoX/84x+6//771aBBAz344IO2fv369VPr1q01duxYffzxx3r//fc1ZcoU2xcDAQAA6gNvVwcAAAAA51ixYoXOnDmjBQsWqFGjRpKk8vJyzZgxQyaTye4Ntd86d+6c0tPTNWLECA0fPlyS1K1bN/Xv318ZGRmaPn26Xf9Tp05p3rx5evLJJzVlypRavCIAAAAAAADUlpCQEGVlZWnWrFlKSUlRUFCQhgwZonHjxtn1s1gsKi8vtx03b95cx48f19/+9jcVFhaqYcOG6tWrlx577DG1aNHC1s/Hx0dLly7V7NmzNX78eHl7eyshIYH3kwAAQL1CYRYAAICH2LJli2JjY21FWZKUmJioadOmaevWrRo0aNBFx+3atUtFRUVKTEy0tfn6+iohIUGbN2+u0P+ll15Sz5491bNnT6dfAwAAAAAAAC6fqKgoZWZmVtonOzvb7rhz584V2i4lPDxcaWlpjoYHAADg9ijMAgAA8BA5OTkaPHiwXZvRaFRYWJhycnIqHSdJkZGRdu1RUVHKyspSSUmJ/P39JUl79+7VunXrtG7dOqfFbbVadfbsWafNBwBwPoPBoICAAFeHATdSXFwsq9Xq8PjAwEAnRgMAAAAAAAC4BoVZAAAAHqKgoEBGo7FCe0hIiMxmc6XjfH195efnZ9duNBpltVplNpvl7+8vi8WiGTNm6MEHH1Tz5s31888/OyXusrIy7du3zylzAQBqR0BAgNq1a+fqMOBGcnNzVVxc7PD4bt26OTEaAAAAAAAAwDUozAIAAECV/OMf/9DJkyf18MMPO3VeHx8ftWrVyqlzAgCcy2AwuDoEuJmIiIgarZgFAAAAAAAAeAIKswAAADyE0WhUYWFhhXaz2ayQkJBKx5WWlurcuXN2q2YVFBTIYDAoJCREZ86c0UsvvaRx48aprKxMZWVlKioqkiSVlJSoqKhIwcHBDsVtMBjYrggAAA/D1pcAAAAAAACA5OXqAAAAAOAckZGRysnJsWsrLCzUiRMnFBkZWek46dcth34rJydHTZs2lb+/v06fPq38/HxNmzZN3bt3V/fu3TVw4EBJ0lNPPaV+/fo5+WoAAAAAAAAAAAAA98aKWQAAAB4iPj5eixYtUkFBgYxGoyRpw4YN8vLyUlxc3CXHde3aVcHBwVq/fr3atGkjSSorK9OmTZsUHx8vSQoLC9Prr79uN+7kyZMaP368xo4dq+uvv76WrgoAAAAAAAAAAABwTxRmAQAAeIikpCRlZ2crJSVFJpNJeXl5Sk1NVVJSksLDw239kpOTdezYMW3evFmS5OfnJ5PJpLS0NIWGhio6OlrLly9Xfn6+Ro4caevTs2dPu9f7+eefJUmtWrVS165dL9NVAgAAAAAAAAAAAO6BwiwAAAAPERISoqysLM2aNUspKSkKCgrSkCFDNG7cOLt+FotF5eXldm2jRo2S1WrVsmXLdOrUKbVt21YZGRlq0aLF5bwEAAAAAAAAAAAAwGNQmAUAAOBBoqKilJmZWWmf7OzsCm0Gg0Emk0kmk6nKr9W8eXP98MMP1Q0RAAAAAAAAAAAAqBe8XB0AAAAAAAAAAAAAAAAAAHgaCrMAAAAAD7Rw4UIlJCRo4cKFrg4FAAAAAAAAAACgXqIwCwAAAPAwJSUlWrNmjSwWi9asWaOSkhJXhwQAAAAAAAAAAFDvUJgFAAAAeJjz58/LYrFIkiwWi86fP+/iiAAAAAAAAAAAAOofCrMAAAAAAAAAAAAAAAAAwMkozAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcjMIsAAAAAAAAAAAAAAAAAHAyCrMAAAAAAAAAAAAAAAAAwMkozAIAAAAAAAAAAAAAAAAAJ6tzhVkHDhzQgw8+qM6dOysuLk6pqakqLS39w3FWq1WLFy9Wnz591KlTJw0dOlR79uyp0C8vL09jx45Vly5d1KNHDz399NMqKiqy67N161ZNmDBBt9xyi2JiYjRz5kxnXR4AAAAAAAAAAAAAAACAeqBOFWaZzWYlJyerrKxMaWlpGjdunFatWqU5c+b84dglS5Zo/vz5Gj58uNLT0xUWFqYRI0boyJEjtj5lZWV66KGHdPDgQc2dO1fTp0/X559/rgkTJtjN9dlnn+n7779X9+7dZTQanX6dAAAAAAAAAAAAAAAAADybt6sD+K0VK1bozJkzWrBggRo1aiRJKi8v14wZM2QymRQeHn7RcefOnVN6erpGjBih4cOHS5K6deum/v37KyMjQ9OnT5ckbdy4Ufv379f777+vyMhISZLRaNTIkSO1d+9ederUSZL05JNPatKkSZKknTt31t4FAwAAAAAAAAAAAAAAAPBIdWrFrC1btig2NtZWlCVJiYmJslgs2rp16yXH7dq1S0VFRUpMTLS1+fr6KiEhQVu2bLGbPyYmxlaUJUlxcXFq1KiRPv30U1ubl1ed+rEAAAAAAAAAAAAAAAAAcDN1asWsnJwcDR482K7NaDQqLCxMOTk5lY6TZFdwJUlRUVHKyspSSUmJ/P39lZOTU6GPwWBQREREpfM7g9Vq1dmzZ2s0h8FgUEBAgJMigqcrLi6W1Wp1aQzcs6gu7lu4o5ret4GBgU6MBgAAAAAAAAAAAEBdUacKswoKCmQ0Giu0h4SEyGw2VzrO19dXfn5+du1Go1FWq1Vms1n+/v4qKChQw4YNqz2/M5SVlWnfvn01miMgIEDt2rVzUkTwdLm5uSouLnZpDNyzqC7uW7ijmt633bp1c2I09ZfFYpWXl8HVYcANcK8AAAAAAAAAAIDLpU4VZnkyHx8ftWrVqkZzGAx8gISqi4iIqBMrDwHVwX0Ld1QX7ltIXl4GLVy+VUeP126xvbs4X1Zidzxz0SZ5+/i7KJq6o1njEKXcE+fqMAAAAAAAAAAAQD1RpwqzjEajCgsLK7SbzWaFhIRUOq60tFTnzp2zWzWroKBABoPBNtZoNKqoqOii8zdp0sQJV3BpBoOBrYpwWbEVG9wR9y3cEfdt3XH0uFkHj552dRh1guX8Obvjw8fy5eXtd4neAAAAAAAAAAAAqA1erg7gtyIjI5WTk2PXVlhYqBMnTigyMrLScdKvWwn9Vk5Ojpo2bSp/f/9Lzm+1WpWbm1vp/AAAAAAAAAAAAAAAAABQHXWqMCs+Pl7btm1TQUGBrW3Dhg3y8vJSXNyltxzp2rWrgoODtX79eltbWVmZNm3apPj4eLv5v//+ex08eNDWtn37duXn56t3797OvRgAAAAAAAC4lQMHDujBBx9U586dFRcXp9TUVJWWllY65vjx40pNTdXAgQPVpUsXxcfHa8KECTp69OhlihoAAAAAAAB1VZ3ayjApKUnZ2dlKSUmRyWRSXl6eUlNTlZSUpPDwcFu/5ORkHTt2TJs3b5Yk+fn5yWQyKS0tTaGhoYqOjtby5cuVn5+vkSNH2sb169dP6enpGjt2rMaPH6/i4mKlpqaqT58+6tSpk63f0aNH9fXXX0uSiouLdfjwYW3YsEGS1L9//8vxowAAAAAAAMBlZDablZycrJYtWyotLU15eXmaM2eOSkpKNHXq1EuO+/bbb7V582YNHjxY1113nU6fPq3XXntNd911l9atW6fQ0NDLeBUAAAAAAACoS+pUYVZISIiysrI0a9YspaSkKCgoSEOGDNG4cePs+lksFpWXl9u1jRo1SlarVcuWLdOpU6fUtm1bZWRkqEWLFrY+Pj4+Wrp0qWbPnq3x48fL29tbCQkJmjJlit1cO3fu1OTJk23Hn332mT777DNJ0g8//ODsywYAAAAAAICLrVixQmfOnNGCBQvUqFEjSVJ5eblmzJghk8lk96XB3+rWrZvWr18vb+//vs3WtWtX9enTR2vWrNGIESMuR/gAAAAAAACog+pUYZYkRUVFKTMzs9I+2dnZFdoMBoNMJpNMJlOlY8PDw5WWllZpn0GDBmnQoEF/GCsAAAAAAAA8w5YtWxQbG2srypKkxMRETZs2TVu3br3ke0VGo7FC29VXX63Q0FAdP368tsIFAAAAAACAG6hzhVkAAAAAAADA5ZaTk6PBgwfbtRmNRoWFhSknJ6dac+Xm5uqXX35RVFSUw/FYrVadPXvW4fHSr19kDAgIqNEcqD+Ki4tltVpdHQbgdnjWorpq+rwNDAx0YjQAAACobRRmAQAAAAAAoN4rKCi46OpXISEhMpvNVZ7HarVq9uzZaty4sW699VaH4ykrK9O+ffscHi9JAQEBateuXY3mQP2Rm5ur4uJiV4cBuB2etaiumj5vu3Xr5sRoAAAAUNsozAIAAAA8jMGrgSSDJKskw/8dAwCAyyEtLU07duzQ0qVLa7SihY+Pj1q1alWjWAwGQ43Go36JiIhgxSzAATxrUV08bwEAAOoXCrMAAAAAD2Pw8lZg47Y6e3yfAhu3lcGLtB8AgD9iNBpVWFhYod1sNiskJKRKc6xatUoLFy7Us88+q9jY2BrFYzAY2KoIlxVbsQHA5cHzFgAAoH7hExoAAADAAzVs0UsNW/RydRgAALiNyMhI5eTk2LUVFhbqxIkTioyM/MPxmzdv1vTp0/XYY49pyJAhtRUmAAAAAAAA3IiXqwMAAAAAAAAAXC0+Pl7btm1TQUGBrW3Dhg3y8vJSXFxcpWN37typ8ePH66677lJKSkpthwoAAAAAAAA3QWEWAAAAAAAA6r2kpCQFBQUpJSVFn3/+uVavXq3U1FQlJSUpPDzc1i85OVkJCQm24wMHDiglJUUtW7bUwIEDtWfPHts/hw8fdsWlAAAAAAAAoI5gK0MAAAAAAADUeyEhIcrKytKsWbOUkpKioKAgDRkyROPGjbPrZ7FYVF5ebjv+6quvVFhYqMLCQt1zzz12fe+8807NmTPnssQPAAAAAACAuofCLAAAAAAAAEBSVFSUMjMzK+2TnZ1tdzxo0CANGjSoFqMCAAAAAACAu2IrQwAAAAAAAAAAAAAAAABwMgqzAAAAAAAAAAAAAAAAAMDJKMwCAAAAAAAAAAAAAAAAACejMAsAAAAAAAAAAAAAAAAAnIzCLAAAAAAAAAAAAAAAAABwMgqzAAAAAAAAAAAAAAAAAMDJKMwCAAAAAAAAAAAAAAAAACfzdnUAAAAAAAAAAAAAAC6/AwcOaPbs2dq9e7eCgoI0cOBAPfHEE/L19b3kmOPHjyszM1Nbt27V4cOH1bBhQ3Xv3l3jx49Xs2bNbP127typBx54oML4AQMG6OWXX66V6wEAAKhrKMwCAAAAAAAAAAAA6hmz2azk5GS1bNlSaWlpysvL05w5c1RSUqKpU6decty3336rzZs3a/Dgwbruuut0+vRpvfbaa7rrrru0bt06hYaG2vV/7rnnFBkZaTu+4oorau2aAAAA6hoKswAAAAAAAAAAAIB6ZsWKFTpz5owWLFigRo0aSZLKy8s1Y8YMmUwmhYeHX3Rct27dtH79enl7//djxq5du6pPnz5as2aNRowYYde/devW6tixY61dBwAAQF3m5eoAAAAAAAAAAAAAAFxeW7ZsUWxsrK0oS5ISExNlsVi0devWS44zGo12RVmSdPXVVys0NFTHjx+vrXABAADcEitmAQAAAAAAAAAAAPVMTk6OBg8ebNdmNBoVFhamnJycas2Vm5urX375RVFRURXOPfzww8rPz1dYWJhuvfVWPf744/L393c4bqvVqrNnzzo83mAwKCAgwOHxqH+Ki4tltVpdHQbgVnjWorpq+qwNDAx0YjTORWEWAACABzlw4IBmz56t3bt3KygoSAMHDtQTTzwhX1/fSsdZrVYtWbJEb775pk6dOqW2bdtq8uTJ6ty5s63Ptm3b9I9//ENfffWVfvnlFzVr1kyDBg1ScnKyfHx8avnKAAAAAAAA4EwFBQUyGo0V2kNCQmQ2m6s8j9Vq1ezZs9W4cWPdeuuttvaGDRvqoYceUvfu3eXn56cdO3Zo2bJlysnJUXp6usNxl5WVad++fQ6PDwgIULt27Rwej/onNzdXxcXFrg4DcCs8a1FdNX3WduvWzYnROBeFWQAAAB7CbDYrOTlZLVu2VFpamvLy8jRnzhyVlJRo6tSplY5dsmSJ5s+fr4kTJyomJkZvvPGGRowYoXfeeUctWrSQJK1YsUIlJSV67LHH1KRJE3311VdKS0vTgQMH9Nxzz12OSwQAAAAAAEAdk5aWph07dmjp0qV2q1W0a9fO7kP52NhYNW7cWDNnztTevXvVqVMnh17Px8dHrVq1cjheg8Hg8FjUTxEREayYBVQTz1pUlyc/aynMAgAA8BArVqzQmTNntGDBAjVq1EiSVF5erhkzZshkMik8PPyi486dO6f09HSNGDFCw4cPl/TrNwv69++vjIwMTZ8+XZI0ffp0hYaG2sb17NlTFotFr7zyiv7617/anQMAAAAAAEDdZjQaVVhYWKHdbDYrJCSkSnOsWrVKCxcu1LPPPqvY2Ng/7J+YmKiZM2fqm2++cbgwy2Aw1OntiuB52I4NAGqfJz9rvVwdAAAAAJxjy5Ytio2NtRVlSb++2WWxWLR169ZLjtu1a5eKioqUmJhoa/P19VVCQoK2bNlia7tY4VXbtm1ltVp14sQJ51wEAAAAAAAALovIyEjl5OTYtRUWFurEiROKjIz8w/GbN2/W9OnT9dhjj2nIkCG1FSYAAIBbY8UsAAAAD5GTk6PBgwfbtRmNRoWFhVV4k+334yRVeMMtKipKWVlZKikpkb+//0XH7tq1S76+vmrevLnDcVutVp09e9bh8QaDwaO/SQHnKy4u9tglkYHawrMW1VXTZy0rIAAAANS++Ph4LVq0SAUFBTIajZKkDRs2yMvLS3FxcZWO3blzp8aPH6+77rpLKSkpVX7N9957T5LUsWNHxwMHAABwIxRmAQAAeIjfvon2WyEhITKbzZWO8/X1lZ+fn1270WiU1WqV2Wy+aGHWwYMH9frrryspKUlBQUEOx11WVqZ9+/Y5PD4gIEDt2rVzeDzqn9zcXBUXF7s6DMCt8KxFddX0WdutWzcnRgMAAICLSUpKUnZ2tlJSUmQymZSXl6fU1FQlJSUpPDzc1i85OVnHjh3T5s2bJUkHDhxQSkqKWrZsqYEDB2rPnj22vqGhobrmmmskSRMnTtS1116rdu3ayc/PTzt27FBmZqZuueUWCrMAAEC9QWEWAAAAqq2oqEhjx45V8+bNNW7cuBrN5ePjo1atWjk83mAw1Oj1Uf9ERESwYhZQTTxrUV08awEAAOq+kJAQZWVladasWUpJSVFQUJCGDBlS4b0ei8Wi8vJy2/FXX32lwsJCFRYW6p577rHre+edd2rOnDmSpNatW2vt2rVatmyZysrK1KxZM40ePVoPP/xw7V8cAABAHUFhFgAAgIcwGo0qLCys0G42mxUSElLpuNLSUp07d85u1ayCggIZDIYKY0tLS5WSkiKz2ayVK1fWeKshg8HAdkW4rNiODQBqH89aAAAA9xAVFaXMzMxK+2RnZ9sdDxo0SIMGDfrDuU0mk0wmU03CAwAAcHterg4AAAAAzhEZGamcnBy7tsLCQp04cUKRkZGVjpN+3XLot3JyctS0aVO7bQwtFosmTpyob7/9VkuWLFGTJk2ceAUAAAAAAAAAAACA56AwCwAAwEPEx8dr27ZtKigosLVt2LBBXl5eiouLu+S4rl27Kjg4WOvXr7e1lZWVadOmTYqPj7frO2PGDH388cd69dVXFRMT4/yLAAAAAAAAAAAAADwEWxkCAAB4iKSkJGVnZyslJUUmk0l5eXlKTU1VUlKSwsPDbf2Sk5N17Ngxbd68WZLk5+cnk8mktLQ0hYaGKjo6WsuXL1d+fr5GjhxpG7do0SKtWLFCI0eOlK+vr/bs2WM716pVKwUHB1+2awUAAAAAAAAAAADqOgqzAAAAPERISIiysrI0a9YspaSkKCgoSEOGDNG4cePs+lksFpWXl9u1jRo1SlarVcuWLdOpU6fUtm1bZWRkqEWLFrY+W7dulSRlZGQoIyPDbvzrr7+unj171tKVAQAAAAAAAAAAAO6HwiwAAAAPEhUVpczMzEr7ZGdnV2gzGAwymUwymUzVGgcAAAAAAAAAAADg4rxcHQAAAAAAAAAAAAAAAAAAeBoKswAAAAAAAAAAAAAAAADAySjMAgAAAAAAAAAAAAAAAAAnozALAAAAAAAAAAAAAAAAAJyMwiwAAAAAAAAAAAAAAAAAcDIKswAAAAAAAAAAAAAAAADAySjMAgAAAAAAAAAAAAAAAAAnozALAAAAAAAAAAAAAAAAAJyMwiwAAAAAAAAAAAAAAAAAcDIKswAAAAAAAAAAAAAAAADAySjMAgAAAAAAAAAAAAAAAAAnozALAAAAAAAAAAAAAAAAAJyMwiwAAAAAAAAAAAAAAAAAcDIKswAAAAAAAAAAAAAAAADAySjMAgAAAAAAAAAAAAAAAAAnozALAAAAAAAAAAAAAAAAAJyMwiwAAAAAAAAAAAAAAAAAcDIKswAAAAAAAAAAAAAAAADAySjMAgAAAAAAAAAAAAAAAAAnozALAAAAAAAAAAAAAAAAAJyMwiwAAAAAAAAAAAAAAAAAcDIKswAAAAAAAAAAAAAAAADAySjMAgAAAAAAAAAAAAAAAAAnozALAAAAAAAAAAAAAAAAAJyMwiwAAAAAAAAAAAAAAAAAcDIKswAAAAAAAAAAAAAAAADAySjMAgAAAAAAAAAAAAAAAAAnozALAAAAAAAAAAAAAAAAAJyMwiwAAAAAAAAAAAAAAAAAcDIKswAAAAAAAAAAAAAAAADAySjMAgAAAAAAAAAAAAAAAAAnozALAAAAAAAAAAAAAAAAAJyMwiwAAAAAAAAAAAAAAAAAcDIKswAAAAAAAAAAAAAAAADAySjMAgAAAAAAAAAAAAAAAAAnozALAAAAAAAAAAAAAAAAAJyMwiwAAAAAAAAAAAAAAAAAcDIKswAAAAAAAAAAAAAAAADAySjMAgAAAAC43MKFC5WQkKCFCxe6OhQAAAAAAAAAAJyCwiwAAAAAgEuVlJRozZo1slgsWrNmjUpKSlwdEgAAAAAAAAAANUZhFgAAAAC4gMVidXUIdcb58+dlsVgkSRaLRefPn3dxRHUH9wkAAAAAAAAAuC9vVwcAAAAAAPWRl5dBC5dv1dHjZleH4nLl58skGSRZJYNBs9I/VANvH1eH5XLNGoco5Z44V4cBAAAAAABQ5yxcuFBr1qzRHXfcoZSUFFeHAwCXRGEWAAAAALjI0eNmHTx62tVh1AmBjdvq7PF9CgxrqyN5Ra4OBwAAoM7gQ0cAAAB7JSUlWrNmjSwWi9asWaORI0fK39/f1WEBwEXVua0MDxw4oAcffFCdO3dWXFycUlNTVVpa+ofjrFarFi9erD59+qhTp04aOnSo9uzZU6FfXl6exo4dqy5duqhHjx56+umnVVRU8U3/jz76SH/5y1/UsWNH9evXT6tXr3bG5QEAANSqupJLAUB1NWzRS+HdHlTDFr1cHQqAeqy2cykAqK7ff+hYUlLi6pAAeBjeSwLch8VidXUIcAPcJ0DdU6dWzDKbzUpOTlbLli2VlpamvLw8zZkzRyUlJZo6dWqlY5csWaL58+dr4sSJiomJ0RtvvKERI0bonXfeUYsWLSRJZWVleuihhyRJc+fOVUlJiZ5//nlNmDBB6enptrn++c9/6tFHH9WQIUM0ZcoU7dixQ08//bSCgoLUv3//2vsBAAAA1EBdyaUAAADcUW3nUgCqxmKxysvL4Oow6ozz58/LYrFIkiwWi86fP+/iiOoO7hWg5ngvCXAvXl4GLVy+VUePm10dSp3QuGVn/Sd3txq37KyZ6R+5Opw6oVnjEKXcE+fqMAD8Tp0qzFqxYoXOnDmjBQsWqFGjRpKk8vJyzZgxQyaTSeHh4Rcdd+7cOaWnp2vEiBEaPny4JKlbt27q37+/MjIyNH36dEnSxo0btX//fr3//vuKjIyUJBmNRo0cOVJ79+5Vp06dJEmvvfaaOnXqpJkzZ0qSevXqpSNHjmj+/PkUZgEAgDqrruRSAAAA7qi2cykAVcMHjvbKz5dJMkiySgaDZqV/qAbePq4Oy+X40BFwDt5LAtzP0eNmHTx62tVh1A1XdFb4FZ1llfiZAKjT6lRh1pYtWxQbG2tL/iQpMTFR06ZN09atWzVo0KCLjtu1a5eKioqUmJhoa/P19VVCQoI2b95sN39MTIwt+ZOkuLg4NWrUSJ9++qk6deqk0tJS7dy5UxMnTrR7jQEDBmjdunX6+eef1bx5cyddMQAAgPPUhVwKAADAXdV2LgWg6vjA0V5g47Y6e3yfAsPa6kge238BcB7eSwIAAKh9daowKycnR4MHD7ZrMxqNCgsLU05OTqXjJNkldpIUFRWlrKwslZSUyN/fXzk5ORX6GAwGRURE2OY4fPiwysrKLjrXhdeqbmFWWVmZrFar9u7dW61xF2MwGHRrjzCVW66s8VzwTA28vPT111/Laq0b+wdzz6IquG/hjpx13/r5+SkmJsYpMdWFXKq6nJUn8XuLquDPG7gb7lm4o7qYI1VVbedS1cF7Sbic+PPGHbRydQB1Dvct3FFdzJN4L4nfW1SOP2/gbrhn4Y7qYo7kbHWqMKugoEBGo7FCe0hIiMzmSy9dXVBQIF9fX/n5+dm1G41GWa1Wmc1m+fv7q6CgQA0bNqx0/gv//n0cF44ri+NSDAaD3b9ryhhcvTfzUD85635zBu5ZVBX3LdxRXbpv60IuVV3OzJP4vUVV1aXfW+5bVAX3LNxRXbpvq6q2c6nq4L0kuEJd+r3lnkVVcd/CHdWl+5b3kvi9RdXUpd9b7ltUBfcs3FFdum+drU4VZnmqLl26uDoEAACAOok8CQAAoCJyJAAAgIsjTwIAAO7Gy9UB/JbRaFRhYWGFdrPZrJCQkErHlZaW6ty5c3btBQUFMhgMtrFGo1FFRUWVzn/h37+Po6CgwO48AABAXVMXcikAAAB3Vdu5FAAAQF3De0kAAAC1r04VZkVGRlbYU7qwsFAnTpyosAf178dJUm5url17Tk6OmjZtalsu/mLzW61W5ebm2ua45ppr5OPjU6HfpfbLBgAAqCvqQi4FAADgrmo7lwIAAKhreC8JAACg9tWpwqz4+Hht27bNtjqVJG3YsEFeXl6Ki4u75LiuXbsqODhY69evt7WVlZVp06ZNio+Pt5v/+++/18GDB21t27dvV35+vnr37i1J8vX1Vc+ePbVx40a713j//fcVFRWl5s2b1/QyAQAAakVdyKUAAADcVW3nUgAAAHUN7yUBAADUPoPVarW6OogLzGazbr31VkVERMhkMikvL09z5szR7bffrqlTp9r6JScn69ixY9q8ebOtbfHixUpLS9PEiRMVHR2t5cuX6/PPP9c777yjFi1aSPo1KRw0aJAkafz48SouLlZqaqpiYmKUnp5um+uf//ynHnjgAd19991KTEzUzp079eqrr+rll19WYmLiZfppAAAAVE9dyaUAAADcUW3nUgAAAHUN7yUBAADUvjpVmCVJBw4c0KxZs7R7924FBQVp4MCBGjdunHx9fW19hg0bpqNHj+qjjz6ytVmtVi1evFhvvvmmTp06pbZt22ry5Mnq0qWL3fx5eXmaPXu2Pv/8c3l7eyshIUFTpkxRcHCwXb8PP/xQr7zyinJzc9W0aVM9/PDDGjJkSO1ePAAAQA3VlVwKAADAHdV2LgUAAFDX8F4SAABA7apzhVkAAAAAAAAAAAAAAAAA4O68XB0AAAAAAAAAAAAAAAAAAHgaCrMAAAAAAAAAAAAAAAAAwMkozAIAAAAAAAAAAAAAAAAAJ6MwCwAAAAAAAAAAAAAAAACcjMIsAAAAAAAAAAAAAAAAAHAyCrMAAAAAAAAAAAAAAAAAwMkozIJLvPvuuxoyZIi6deumrl27KjExUU8//bR++eWXyxbDpEmTdNttt9mO33rrLcXExOjUqVOXLQa4n7S0NHXp0qXSPs8++6z69u3rsteHZ0tLS1NMTIztn549e+qee+7Rp59+WiuvN2zYMJlMJrvXr849+PPPPystLU15eXl27Tt37lRMTIy+/vprp8UKeAJyJLgz8iS4EjkS4PnIk+CuyJHgauRJgGcjR4I7I0+CK5Ej4XLydnUAqH+WLFmiuXPnavjw4XrsscdktVq1f/9+rV27VsePH9eVV17p6hABoE7z9/dXVlaWJOn48eNatGiRRo8erTfeeENdu3at1de+66671Lt37yr3P3r0qBYsWKA+ffooPDzc1t6+fXutXLlSUVFRtREm4JbIkQCgZsiRAM9FngQANUOeBHgmciQAqBlyJFwuFGbhssvOztadd96pSZMm2dp69+6thx56SBaLxYWRAYB78PLyUufOnW3H1113nXr37q01a9bUeqJ49dVX6+qrr67xPMHBwXbXAIAcCQBqihwJ8FzkSQBQM+RJgGciRwKAmiFHwuXCVoa47AoKCtS4ceOLnvPy+u8t2bdvX82cOVOZmZnq3bu3unTpokmTJqm0tFT79u1TUlKSOnfurCFDhuiHH36wm2fZsmUaPHiwunXrptjYWJlMJuXm5tbqdaF+ysvL0+jRo3Xdddfpxhtv1JIlSy7a7z//+Y8mTpyonj17qlOnTrrvvvv0zTff2PVZs2aN7rnnHvXo0UPdu3fXsGHDtHfv3stxGXBz4eHhCg0N1bFjx2xtu3fv1gMPPKDOnTurW7dumjBhQoXlq1988UXdfvvt6tKli2688UaNHz9ex48fr/S1fr+0allZmZ5//nn16dNHHTp00A033KDRo0ersLBQO3fu1AMPPCBJGjJkiG05WOniS6taLBb9/e9/V2Jiojp06KC4uDg99thjKiwsrPHPCHAH5EjwNORJcDVyJMBzkCfBk5AjoS4gTwI8AzkSPA15ElyNHAm1hRWzcNm1b99eK1asUPPmzdWnTx+FhYVdsu+HH36o1q1ba+bMmTpy5IjmzJkjHx8f7dmzR8OHD9dVV12lF198UY8//rjef/99W6L5n//8R/fff7+aNm2qoqIirVixQklJSdq4caMaNWp0ma4U9cGYMWOUl5en6dOnq2HDhlqyZIn+/e9/y9v7v49Xs9mse++9V4GBgfp//+//qWHDhsrOzlZycrI2bdpkW074559/1h133KFrrrlGpaWleu+993Tffffp3XffVUREhKsuEW7gzJkzMpvNat68uaRfk8Rhw4apd+/eevnll1VcXKxXXnlFY8aM0cqVK23jfvnlF5lMJjVu3FinTp3S3//+dw0bNkzvvfee3T1cmfT0dK1YsUITJ05U69atdfr0aW3dulWlpaVq3769pk6dqpkzZ+q5555TZGRkpXPNmjVLK1euVHJysuLi4nTmzBl98sknOnv2rBo2bOj4DwhwE+RI8DTkSXA1ciTAc5AnwZOQI6EuIE8CPAM5EjwNeRJcjRwJtYXCLFx206ZN06OPPqpnnnlGktS8eXPddNNNGj58uO0h91uvvvqqfH19JUlffPGFVq1apSVLlig+Pl7SrxWfo0eP1o8//qg2bdpIkqZMmWIbX15erri4OMXGxmrjxo0aOnRobV8i6oktW7bom2++UWZmpmJjYyVJPXv2VO/eve3+QpKVlaWCggL94x//sCWEsbGx6tevnzIyMvTkk09Kkh599FHbGIvFori4OO3du1dvv/22xo8ff/kuDG7h/Pnzkn7d8/qFF15QUFCQrVp+7ty56tChgxYsWCCDwSBJio6O1m233aZPP/3Utmf1c889Z5uvvLxcXbp0UXx8vHbs2KEbbrihSnF8/fXXuuGGG3TffffZ2vr162f771atWkmSWrdurY4dO15yntzcXC1fvlzjxo2TyWS66FyApyNHgichT4KrkCMBnok8CZ6CHAmuRJ4EeB5yJHgS8iS4CjkSLgcKs3DZRUdHa926ddq+fbs+//xzffnll8rOztZbb72lN954Q23btrX17d69uy1JlKSWLVvKy8tLvXr1smuTpH//+9+2RHHPnj2aN2+evvvuO+Xn59v6Hjx4sFavDfXL3r171bBhQ1uCKEkNGzbU9ddfr++++87WtnXrVvXs2VMhISG2P9y9vLzUvXt3u2UlDxw4oJdeekm7d++2WwKT+xa/d/bsWbVv39523KBBA7366quKjIxUcXGxdu3apSeffFLl5eW2Pi1btlSTJk309ddf2xLFTz/9VK+99pr279+voqIiW9+DBw9WOVFs166dMjIylJaWpt69e6tDhw52y2RX1Y4dO2S1WjVkyJBqjwU8BTkSPAl5ElyBHAnwXORJ8BTkSHAV8iTAM5EjwZOQJ8EVyJFwuVCYBZfw9fVV7969bQ+rzz77TCaTSQsXLtSCBQts/YxGo904Hx8f+fv72yWPPj4+kqRz585Jko4dO6YRI0aoQ4cOmjFjhho3biwfHx+ZTCZbH8AZjh8/rtDQ0ArtFyr0Lzh9+rT27Nlj9wf7Bddcc40kqaioSCNGjFBoaKgmTZqkpk2bys/PT8888wz3LSrw9/fX//zP/8hqtergwYOaO3eunnrqKa1du1ZWq1Xl5eV67rnn7Cr0L/j3v/8t6de/5IwZM0Y333yzRo0apSuvvFIGg0F33313te65Rx55RF5eXnr77be1YMEChYaG6r777lNKSort2wNVkZ+fL29v7wq/P0B9Q44ET0GeBFcgRwI8G3kSPAE5ElyFPAnwXORI8BTkSXAFciRcLhRmoU648cYb1aZNGx04cKDGc3322Wc6e/asFixYYEs0z58/L7PZXOO5gd+6sE/w7/228l6SQkJCdOONN+rxxx+v0PfCX3r27Nmj//znP0pPT7d9E0WSCgsLdfXVVzs5crg7Ly8v2zKlnTp1UkREhO6++24tXLhQTz31lAwGg0wmk2655ZYKY6+44gpJ0gcffKDg4GC98sortor7o0ePVjsWX19fjR07VmPHjtWhQ4e0evVqpaWlqXnz5rrjjjuqPE+jRo10/vx5/fLLLySLwG+QI8FdkSfBFciRgPqFPAnuiBwJrkKeBNQf5EhwV+RJcAVyJFwu1V/7DKihkydPVmgrKSnRv//9b1111VU1nr+kpEQGg0He3v+tO1y/fr1tOUvAWTp27KjCwkJt377d1lZYWKht27bZ9bv++ut14MABRUVFqWPHjnb/xMTESPr1vpX++40USdq1a5dDf3Cj/unYsaNuvfVWvfXWWzpz5ow6d+6snJycCvdbx44d1bx5c0m/3nM+Pj52VfZr166tURzXXnutxo8fr0aNGiknJ0dSxW9ZXUqvXr1kMBi0evXqGsUAuDNyJHgS8iTUBeRIgOcgT4KnIEdCXUGeBHgGciR4EvIk1AXkSKgtrJiFy+7222/XTTfdpBtuuEGNGzdWXl6e/ud//kenT59WcnJyjee/sB/25MmTlZSUpP379+vvf/97hWVagZqKj49X+/bt9de//lUTJ05Uw4YNtXjxYgUHB9v1Gz58uNauXav7779fDzzwgJo2bapTp07pq6++Unh4uIYPH67OnTsrMDBQM2bM0MMPP6y8vDylpaUpPDzcRVcHdzNmzBi9//77ysrK0pNPPqnk5GQ98cQTuvXWW2U0GvWf//xH27Zt06BBg9SzZ0/FxcUpKytLs2bNUkJCgnbv3q133nnHoddt37692rVrp4CAAH388ccym822Z3HLli3VoEEDrV69Wt7e3mrQoIHt2we/FRERoaSkJM2bN09ms1mxsbEqKSnRJ598orFjx/K7gHqBHAmehDwJdQU5EuAZyJPgKciRUJeQJwHujxwJnoQ8CXUFORJqA4VZuOweffRRffzxx5ozZ45OnTqlK664QjExMcrMzLQ9WGoiJiZGzz33nBYsWCCTyaS2bdtq3rx5euKJJ2oePPAbBoNBr776qqZNm6apU6fKaDRq2LBhOnnypD788ENbvyuuuEIrV67UK6+8ohdffFH5+fm68sordd111ykhIUGSdNVVV2nevHlKTU3VmDFj1LJlS82YMUNLly511eXBzURGRmrAgAFavny5TCaT3nzzTaWlpWny5MkqKyvT1VdfrV69eunaa6+VJPXu3VsTJ07U//zP/+itt95S165dlZ6ern79+lXrdbt27ar169fr73//u8rLyxUREaEXX3xR119/vSQpNDRUU6dO1dKlS/Xuu+/q/Pnz+uGHHy4619SpU9W8eXP94x//UFZWlho1aqTu3bsrKCioZj8cwE2QI8GTkCehriBHAjwDeRI8BTkS6hLyJMD9kSPBk5Anoa4gR0JtMFitVqurgwAAAAAAAAAAAAAAAAAAT+Ll6gAAAAAAAAAAAAAAAAAAwNNQmAUAAAAAAAAAAAAAAAAATkZhFgAAAAAAAAAAAAAAAAA4GYVZAAAAAAAAAAAAAAAAAOBkFGYBAAAAAAAAAAAAAAAAgJNRmAUAAAAAAAAAAAAAAAAATkZhFgAAAAAAAAAAAAAAAAA4GYVZAAAAAAAAAAAAAAAAAOBkFGYBuOxiYmI0c+ZMl7x2WlqaYmJidOrUqUr7TZo0SX379r1MUQEAAPyKPAkAAKAiciQAAICLI08CgLrP29UBAPAchw8f1tKlS7V161YdP35cPj4+io6OVmJiooYOHSp/f39Xh+gWLBaL3n33Xb3xxhs6dOiQysrK1LhxY1133XW699571blzZ0nSTz/9pPXr1+vOO+9U8+bNnR7HG2+8oYCAAA0aNMjpcwMAUN+QJzkHeRIAAJ6FHMk5yJEAAPA85EnOQZ4EoC6gMAuAU3zyySd6/PHH5evrq4EDByo6OlplZWX617/+pRdeeEE//fSTZs2a5eowq2zWrFmyWq0uee3Zs2frjTfe0M0336zbb79dDRo0UG5urj777DO1aNHCLklcsGCBevToUStJ4vLly3XFFVeQJAIAUEPkSc5DngQAgOcgR3IeciQAADwLeZLzkCcBqAsozAJQY0eOHNG4cePUtGlTZWVlqXHjxrZz9913nw4dOqRPPvnEdQE6wMfHxyWve/LkSb355pu6++67KyTVVqv1D5eDvRSr1apz587xDQoAAC4z8iTnIU8CAMBzkCM5DzkSAACehTzJeciTANQVXq4OAID7W7p0qc6ePatnn33WLkG84Nprr1VycnKF9g8++EC33XabOnTooFtvvVVbtmyxO3+pPacv7Fn9Wxf20P6jOS/m6NGjSkhI0G233aaTJ09e9LV//vlnxcTEKCMjQytXrtQtt9yiDh06aPDgwdq7d2+FOdevX68BAwaoY8eOuu2227R58+Yq7aH9888/y2q1qmvXrhXOGQwGXXnllZKkt956S48//rgk6YEHHlBMTIxiYmK0c+dOSVLfvn1lMpn02WefadCgQerUqZNWrFghSVq9erUeeOABxcbGqkOHDhowYIDefPNNu9fq27ev9u/fry+++MI297Bhw2znCwoK9Oyzz6p3797q0KGDEhIStHjxYlksFrt5Tp8+rb/+9a/q2rWr/vSnP+mpp57S999/r5iYGL311lu2eGJiYvTdd99VuOZFixapbdu2ysvLq/TnBgBAXUWeRJ5EngQAQEXkSORI5EgAAFwceRJ5EnkS4HlYMQtAjX388cdq0aLFRRObS/nXv/6lTZs26d5771VQUJCys7P12GOP6eOPP9YVV1zhUByOzHn48GElJycrJCREy5YtU2hoaKWvsW7dOp05c0ZDhw6VwWDQ0qVLNXbsWH3wwQe2iv9PPvlE48aNU3R0tCZMmCCz2aynn35a4eHhf3gNTZs2lSRt2LBB/fv3V0BAwEX7de/eXcOGDVN2drZGjx6tyMhISVJUVJStT25uriZMmKChQ4fq7rvvVkREhKRfl0tt3bq1+vbtK29vb3388ceaMWOGrFar7rvvPknSlClTNGvWLAUGBmr06NGSpKuuukqSVFxcrPvvv195eXlKSkpSkyZNtHv3br300ks6ceKEnn76aUm/7tv9yCOPaO/evbrnnnsUGRmpDz/8UE899ZTdtfTr108zZ87U2rVr1a5dO7tza9euVY8ePar0swMAoC4iTyJPIk8CAKAiciRyJHIkAAAujjyJPIk8CfBAVgCogcLCQmt0dLT1kUceqfKY6Ohoa/v27a2HDh2yte3bt88aHR1tzc7OtrU99dRT1ptuuqnC+Pnz51ujo6MdmvPC2F9++cX6008/WW+44Qbr4MGDrfn5+Xbz/f61jxw5Yo2Ojrb26NHDru8HH3xgjY6Otn700Ue2tttuu80aHx9vLSoqsrXt3LnTGh0dfdHr+b0nn3zSGh0dbe3evbs1JSXFmpGRYf3pp58q9Fu/fr01OjraumPHjgrnbrrpJmt0dLR1y5YtFc4VFxdXaBsxYoT15ptvtmu79dZbrffff3+FvgsXLrR27tzZmpuba9f+4osvWtu2bWs9duyY1Wq1Wjdu3GiNjo62ZmZm2vqUl5dbH3jgAWt0dLR19erVtvbx48dbb7jhBmt5ebmt7dtvv63QDwAAd0KeRJ50AXkSAAD/RY5EjnQBORIAAPbIk8iTLiBPAjwLWxkCqJGioiJJUlBQULXGXX/99brmmmtsx23atFFwcLCOHDnicCzVmXP//v0aNmyYmjVrpszMTIWEhFTpNQYMGGDX909/+pMk2V4jLy9PP/74o+644w67n0mPHj0UHR1dpdd47rnnNHXqVDVv3lybN2/W888/rwEDBig5Oblay4s2b95cN954Y4X23+55XVhYqFOnTqlHjx46cuSICgsL/3DeDRs2qFu3bjIajTp16pTtn+uvv17l5eX68ssvJUmfffaZfHx8dPfdd9vGenl52b4h8FsDBw7U8ePHbcvCSr9W7vv7++vPf/5zla8ZAIC6hDyJPIk8CQCAisiRyJHIkQAAuDjyJPIk8iTAM7GVIYAaCQ4OliSdOXOmWuOaNGlSoS0kJEQFBQUOx1KdOUePHq2rrrpKGRkZ1Upwf/8aFxLGC69x7NgxSbJLVi+49tprL7qn8+9dSKTuu+8+nT59Wrt27dKKFSu0ZcsWjRs3rsLe1JfSvHnzi7b/61//Ulpamvbs2aPi4mK7c4WFhWrYsGGl8x46dEg//PCDYmNjL3r+1KlTkn79WYSFhVVYGvZiP5u4uDiFhYXp3XffVWxsrCwWi9atW6ebb77Zdo8BAOBuyJPIk36PPAkAAHIkcqSKyJEAAPgVeRJ50u+RJwGegcIsADUSHBysxo0ba//+/dUa16BBg4u2W61W238bDIaL9ikvL3d4zgv69eunt99+W2vXrlVSUtIfhevQazjDFVdcoZtvvlk333yzhg0bpi+++EJHjx5Vs2bN/nDsb6v0Lzh8+LCGDx+uyMhITZo0SU2aNJGPj48+/fRTZWZmymKx/OG8FotFcXFxeuihhy56vmXLln84x+81aNBAt99+u1atWqXp06dr165dOn78uP7yl79Uey4AAOoK8qRLv4YzkCeRJwEA3BM50qVfwxnIkciRAADuizzp0q/hDORJ5EmAq1CYBaDGbrrpJq1cuVK7d+9Wly5dnDav0Wi8aOX9hQr5mnjyySfVoEEDzZgxQ0FBQbr99ttrPKckNW3aVNKvydjvHTp0qEZzd+jQQV988YVOnDihZs2aXTKJrsxHH32k0tJSvfbaa7ZYJdktZ3rBpea/5pprdPbsWV1//fWVvlbTpk21c+dOFRcX21XwX+xnI/26tOqyZcv00UcfacuWLQoNDdUNN9xQlcsCAKDOIk/6L/Kk/yJPAgDUd+RI/0WO9F/kSAAAkCf9FnnSf5EnAe7Ny9UBAHB/Dz30kAIDA/XMM8/o5MmTFc4fPnxYWVlZ1Z73mmuuUWFhob7//ntb2/Hjx7V58+YaxXvBrFmz1K9fP02aNEkffvihU+YMDw9XdHS01qxZY7fU7BdffKEff/zxD8efOHFCP/30U4X20tJSbd++XV5eXrZlSS8kXlXZo/qCC98++O23DQoLC7V69eoKfQMCAi6apCcmJmr37t367LPPKpwrKCjQ+fPnJUk33HCDysrKtGrVKtt5i8WiN95446KxtWnTRjExMfrf//1fbdq0Sbfeequ8vakfBgC4N/Kk/yJPIk8CAOACcqT/IkciRwIA4LfIk/6LPIk8CfAU/PYBqLFrrrlGL774osaNG6cBAwZo4MCBio6OVmlpqXbv3q0NGzZo0KBB1Z53wIABevHFF/Xoo49q2LBhKikp0fLlyxUREaFvv/22xnF7eXnphRdeUEpKip544gktXrz4kns4V8e4ceM0ZswY3XPPPRo0aJAKCgr0xhtvKDo6+g/3Bf/Pf/6ju+66S7169VJsbKyuuuoq/fLLL3rvvff0/fffKzk5WaGhoZKktm3bqkGDBlqyZIkKCwvl6+urXr166corr7zk/HFxcfLx8dHo0aOVlJSkM2fO6B//+IeuvPJKnThxwq5v+/bttXz5cr366qu69tprFRoaqtjYWI0cOVIfffSRRo8erTvvvFPt27dXcXGxfvzxR23cuFEffvihQkNDdcstt6hTp056/vnndfjwYUVGRuqjjz6S2WyWdPFvB9xxxx16/vnnJYklVQEAHoE8yR55EnkSAAASOdLvkSORIwEAcAF5kj3yJPIkwBOwYhYAp7j55pv17rvvql+/fvrwww81Y8YMzZ07V0ePHtWkSZP0zDPPVHvOK664QgsWLFBAQIBeeOEFvf322xo/frxuuukmp8Xt4+Oj+fPnq3PnzhozZoy++uqrGs/Zt29fvfTSSyorK9PcuXO1efNmPffcc4qIiJCfn1+lYyMiIjRlyhQ1aNBAb775pqZNm6ZFixYpICBAs2fP1uTJk219w8LCNGPGDP3yyy96+umnNX78+ItW/v9WZGSk5s+fL4PBoOeff14rVqzQ3XffrQceeKBC35SUFPXu3VtLly7V+PHj9eqrr0r6tao/OztbI0eO1BdffKFnn31Wixcv1sGDBzV27Fg1bNhQ0q/fFEhPT1diYqLefvv/t3eHLs0tcBjHn/d6g4ggCi4J2gfCEMQiFquuGixW18Q6i3+ATWwLgggGuxhsYlq1aLcsT2X4Btl75r2Xm+YOk8+njZ3wsPQNP86uc3JykkqlkqOjoyT5z99ia2srExMTWVpayvLy8v//0AAwJnRSQSfpJADo00gFjaSRAGCQTiroJJ0EP8Gvj8F36wHwber1eubm5tJqtcqeUqrb29s0Go1cXFxkZWXly3edTifr6+vZ399Po9EoaSEAMGo66ZNOAgAGaaRPGgkA+Ced9EknwXjwxiyAIXt/f//zn899Dw8PeXx8zOrqakmrytHtdr987vV6OT8/z/T0dKrV6r+ev76+Tq/XS71eH9VEAGCEdFJBJwEAfRqpoJEAgEE6qaCTYHz9XfYAgJ/m5eUle3t72d7eTqVSyfPzcy4vLzM/P5+dnZ2y543U8fFxut1uarVa3t7ecnNzk3a7nYODg0xOTv557v7+Pk9PTzk7O8vm5mYWFhZKXA0AfBedVNBJAECfRipoJABgkE4q6CQYXw6zAIZsZmYm1Wo1V1dX6XQ6mZqaysbGRg4PDzM7O1v2vJFaW1tLq9XK3d1dXl9fs7i4mGazmd3d3S/PnZ6ept1up1arpdlslrQWAPhuOqmgkwCAPo1U0EgAwCCdVNBJML5+fXx8fJQ9AgAAAAAAAAAA4Cf5q+wBAAAAAAAAAAAAP43DLAAAAAAAAAAAgCFzmAUAAAAAAAAAADBkDrMAAAAAAAAAAACGzGEWAAAAAAAAAADAkDnMAgAAAAAAAAAAGDKHWQAAAAAAAAAAAEPmMAsAAAAAAAAAAGDIfgOWbVEyUzYrsQAAAABJRU5ErkJggg==", | |
| "text/plain": [ | |
| "<Figure size 2412.22x600 with 4 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| " -> Creating plot for: Mean Laplace\n", | |
| " ✅ Plot saved to dask_benchmark_mean_laplace.png\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAACWYAAAJrCAYAAABpk9gQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA9mxJREFUeJzs3XlY1OX+//HXjIKAbKmI+4ImuRGJO+aaKXo67kmWopaRoSa2acdjmWbEKVvQcl9zqcwlKzXL0lzSXMol0xTNLXFlkx3m94c/5ts0gAiDA/J8XFfX5dyfe3l/ZkZ8N/Pmvg0mk8kkAAAAAAAAAAAAAAAAAIDNGO0dAAAAAAAAAAAAAAAAAADcbSjMAgAAAAAAAAAAAAAAAAAbozALAAAAAAAAAAAAAAAAAGyMwiwAAAAAAAAAAAAAAAAAsDEKswAAAAAAAAAAAAAAAADAxijMAgAAAAAAAAAAAAAAAAAbozALAAAAAAAAAAAAAAAAAGyMwiwAAAAAAAAAAAAAAAAAsDEKswAAAAAAAAAAAAAAAADAxijMAgAAAADgDuvcubN8fX3N/91333164IEH1L59ew0ePFhvvfWWDh48aO8wNX78ePn6+mr16tU2mS8qKsrivn19fdWwYUO1bNlSgwYN0tKlS5Wenm6TtfLr888/V9++feXv72+O6dy5c3c0BhRcWlqapk+frocfflhNmjSRr6+vOnfubO+wcrV7926L9/9vv/2WZ/+ePXua+/7nP/+5Q1HeOdk/Y8aPH2/vUHKU/TMrKirK3qEAAAAAAIASqqy9AwAAAAAAoLRq1qyZateuLUlKSUnR9evXdfToUe3Zs0cLFixQy5YtNW3aNNWsWdPOkdpWpUqV9OCDD0qS0tPTderUKe3bt0/79u3TV199pQULFsjFxaXI4/jhhx/0yiuvqFy5cmrbtq08PT0l6Y6sDdt47733NH/+fFWqVEldunSRs7Oz7rnnHnuHlW+ff/65GjVqlOO1X375RSdOnLjDEQEAAAAAAMCWKMwCAAAAAMBOBgwYoL59+1q0mUwmbdu2TdOmTdOePXsUHByslStX3lXFWT4+PoqIiLBo27Jli0aNGqUDBw5o7ty5eu6554o8jo0bN0qSJk6cqEcffbTI14PtZb+Gy5YtU506dewbzG2oVq2aUlNT9eWXX+rll1+Wo6OjVZ/PP/9cktS0aVMdOnToTocIAAAAAAAAG+AoQwAAAAAAihGDwaAOHTros88+U506dXTlyhVNnDjR3mEVuc6dO+vf//63JGnDhg13ZM0LFy5IknnXMpQ82a9hSSrKkqSyZcvq3//+t2JjY/Xtt99aXU9OTtZXX30lb29vtWvXzg4RAgAAAAAAwBbYMQsAAAAAgGLI3d1dr7zyip5++mn99NNPOnz4sJo0aWK+fuLECX399dfauXOnzp8/r+vXr6t8+fJq2LChHn30UfXo0SPHeXfu3KklS5bo4MGDiouLk4uLi+655x75+flp4MCBatGiRb7i27Ztm8aOHav09HRFRESoZ8+ehb7nxo0ba82aNTp//rxFe0pKipYvX66NGzcqOjpaqampqlatmrp06aIRI0ZYHV23evVqTZgwQX369NH48eM1c+ZMff/997p48aIeeOABVa9eXWvWrDH3HzJkiPnPffr0sdjN6+DBg5o/f7727dun2NhYubm56f7779fgwYMVGBhodQ/jx4/XmjVr9Oabb6pJkyb68MMPtXfvXl29elXPPvusRo8ercGDB2vPnj1asmSJypUrpw8//FC//vqr0tLS1LhxY40dO1bNmzc3P8/z58/Xb7/9poyMDPn7++uFF15Q48aNrdbeuXOnvvvuO+3du1cXL17UjRs3VKFCBTVr1kzDhw+Xn5+f1ZioqCjNmDFDo0aN0uOPP66oqCht2bJFV69eVcWKFfXQQw/pueeek7u7e46v2alTp7R48WLt2rVLFy9eVJkyZVSlShW1bNlSgwYNUoMGDSz6x8XFafHixfruu+905swZZWVlqVatWgoKCtKwYcPk7Oyc4zr/1LlzZ4v3ia+vr/nPb775psVOdF999ZU+/fRTHT16VElJSfLy8lLr1q319NNPq27durnO/d133+n333/XkiVL9PvvvysuLk5LlixRq1at8hXjrfTr108LFy7U559/bvX3dePGjbpx44aeeOIJlSlTJs95YmJitGDBAm3btk0XLlyQ0WiUj4+P+vTpo+DgYJUta/nx37Vr1/Tll1/qxx9/1MmTJ3XlyhWVLVtWderUUffu3RUSEqJy5cpZrZP9HB87dkybNm3SokWLdOzYMWVlZem+++7TyJEj1aFDh0I+K3lLT0/X119/rW3btunIkSO6dOmSMjIyVLVqVT344IMaMWKEvL29rcb9/e+cwWDQrFmzdPjwYaWmpuree+/VE088od69exd5HNLNXRE3b96szz//XIcPH1ZcXJw8PDxUq1YtderUSUOGDJGTk5PFmMOHD2vhwoXat2+frly5IhcXFzVt2lRDhgwp8uccAAAAAAAUDjtmAQAAAABQTLVv316enp6Sbhbd/N3ChQs1c+ZMxcXFqUGDBuratavq1q2r3bt3Kzw8XG+++abVfGvWrNHw4cP1ww8/qEaNGnr44YfVvHlzubq66uuvv9Y333yTr7hWrlypZ555Rg4ODlq4cKFNirIkKTExUZIsjnWLiYnRgAED9NZbb+nPP/9U06ZN1aFDB6Wnp2v+/Pnq16+fVSFXtuvXr6tfv35at26d7r33XnXp0kXe3t4KCAhQnz59VKlSJUlSu3bt1KdPH/Xp00cBAQHm8Z9++qkGDhyojRs3ysvLS926dVPt2rX1/fffa/jw4ZoxY0au93LgwAH169dPBw8eVPPmzdWhQweVL1/eos8PP/ygxx9/XJcvX1bbtm1Vu3Zt/fzzzxo2bJj279+vZcuWKTQ0VKmpqQoMDFTlypW1c+dOPfHEE/rzzz+t1nz11Vf1ySefyGg0qlmzZurUqZPc3Ny0YcMGPfbYY9q0aVOu8f7111/q06ePvvnmG/n5+alt27a6ceOGPv74Yw0fPlzp6elWY9avX69///vfWrFihdLS0tShQwe1bdtWDg4OWrlypdV6J06cUK9evTRz5kxdvXpVAQEBatOmja5du6b3339fjz32mBISEnKN8e+6deumPn36mB9nv359+vRRrVq1JN0sgHn55Zc1btw47d27Vw0bNtTDDz8sR0dHrV69Wn369NG2bdtyXWPhwoUKCwvTjRs39OCDD6ply5bmIqnVq1fL19dXnTt3zle8Obn33nvl5+ennTt36q+//rK4tmrVKkmyOur0n37++Wc98sgjWrRokVJTU9W2bVs1a9ZMZ8+e1ZQpUxQaGmr12v3444964403dOzYMVWvXl0PPfSQ/Pz8dOrUKb3zzjsKCQlRWlparmt+8MEH5qNGO3TooNq1a+vAgQMKDQ3V5s2bC/JU5NvVq1f10ksvaevWrfLw8NCDDz6o1q1bKykpSUuXLlXv3r1z/LuRbfPmzQoJCVFMTIzatWunpk2b6siRI3r55ZetjlctijjS09M1ZswYjR49Wtu2bVONGjXUrVs3+fr66vz583rnnXd05coVizGLFy/WgAED9OWXX8rT01OdO3dW/fr1tXv3bj399NN5/hwCAAAAAAD2x45ZAAAAAAAUUwaDQY0aNdLOnTv1xx9/WFzr1auXnnnmGdWsWdOiPTo6WsOGDdOiRYvUs2dPi12SZsyYIZPJpGXLlpl3ZMp29epVxcTE5BmPyWTS22+/rXnz5qlWrVqaM2dOjjsOFYTJZNKWLVskSQ0bNjS3jR07VsePH1f//v01YcIEubq6SpIyMjL0zjvvaMGCBZowYYKWLFliNecPP/ygNm3aaMaMGeZx2QYMGKDBgwfrypUrevrpp612QTp27JgmT54sk8mkt956y2I3na1btyosLExRUVF64IEHctw569NPP9XTTz+t8PBwGY05/17cwoUL9dZbb6lXr17mtoiICC1cuFCvvPKKeSekNm3aSJIyMzMVHh6uTZs2ae7cuZo6darFfC+//LJatGghDw8Pi/Zvv/1Wzz33nCZNmqQOHTpY7cYjSZ9//rn69u2ryZMnmwvj/vrrLw0cOFCHDh3Spk2b9K9//cvc//Dhw5owYYIyMjI0ceJEPf744xb3mb2LW7aUlBSNHDlSf/31l0aOHKlnn33WvE5ycrImTpyoL7/8UtOmTcuxqPCfXn75ZUky73yWU1HNypUrtXbtWt1zzz1auHChxftqxowZmjFjhp5//nlt2rRJFSpUsBq/YsUKffjhh+rSpcst4ymo/v376+DBg1q9erXCwsIkSadPn9bevXvVokWLPI9ovHz5skaNGqX4+Hi9+uqrCg4ONr8G169f19ixY7V9+3bNnj1bo0aNMo9r0qSJPvnkE/n7+1vMFxcXp3Hjxmn79u1asmSJnnrqqRzXXbp0qT755BPdf//95rbsndfefvttde3atYDPxq25urrqww8/1IMPPmhRwJmenq6oqCjNnj1bb7zxhubMmZNr7OPGjVNoaKi5bc+ePRoxYoQWLlyowMBAPfjgg0UWxzvvvKNvvvlG1atX14cffqj77rvPfM1kMumnn36y+Pv7448/6s0335Snp6eioqIsdjQ8duyYnn76aUVFRally5Zq2bLlLeMGAAAAAAB3HjtmAQAAAABQjGUf0xcbG2vR3rJlS6uiLEny8fHRs88+K+nmcWh/d/XqVbm5uVkVZUlSxYoV1ahRo1zjSE1NVXh4uObNmyd/f3998sknNinKSk9P14kTJ/T888/r4MGDkqSQkBBJN4sS9u/fr4YNG2ry5MkWxVVly5bViy++qAYNGmj37t06fvy41dwODg6aMmWKVVFWfixZskQZGRnq2rWr1RFnHTp00MCBAyVJ8+fPz3F8nTp1NHbs2FyLsqSbuz79vShLkp555hlJN48IfOyxx8xFWZJUpkwZc0HJrl27rOZ76KGHrIqystu7d++u2NhY7d69O8dYqlSpokmTJlkUmVStWlVPPPGEJOsd2z766COlp6friSee0ODBg63us3r16hZHb65Zs0ZnzpxRp06dNHbsWIt1nJ2d9frrr6tixYr64osvFBcXl2OMt2vBggWSpLCwMHNRlnSz4HHUqFHy9fVVfHy8Pv300xzH9+7dO9eiLDc3N9WtWzfHv4O3o2fPnnJ2dtaaNWtkMpkk3SySk24edZiXxYsXKzY2Vo8//rgGDRpk8Rrcc889ioyMlIODg5YtW2aeW5Lq1atnVZQlSR4eHpo4caIk658dfzdmzBiLoixJCg0NlZubm06fPm21+5ctubq6qkuXLhbvH+nm3/Vx48apcuXK+vHHH8277/1To0aNLIqyJJmP3ZRuFksWVRxXr17Vxx9/LOnmrmN/L8qSbr4v27RpIzc3N3NbVFSUTCaTJk+ebHXMrK+vr8aPHy9J5nkBAAAAAEDxw45ZAAAAAAAUY1lZWZJufmn/Tzdu3NC2bdt09OhRXb9+3Xxk2eXLlyXdLO75u6ZNm2rPnj166aWXNGTIEDVq1CjPwqFs169fV0hIiA4cOKCHH35Y//vf/3LcdSm/9uzZI19fX6t2BwcHPf/88+Ydd7Zu3SpJevjhh1W2rPVHGEajUc2bN9fx48d14MABNWjQwOJ6w4YNC1w4s2fPHkmyOC7v7/r376+PP/5Ye/fuVWZmpvmIu2wPPfSQVds/dejQwarN09NTnp6eio2NzfF67dq1JUmXLl3Kcc6YmBht3bpV0dHRSkhIUGZmpiSZd1w7depUjvO2adNGzs7OVu316tUzz5stMzPTXKj16KOP5nmP2bJfy6CgoByvly9fXk2aNNHWrVt16NAhtWvXLl/z5ubixYs6c+aMpJxfQ4PBoL59++rNN9/U7t27zQVxf9etW7dc5+/atatNdoZydXXVww8/rHXr1mn37t1q0aKF1q5dq/Lly6t79+55jr3Vc+rt7a3atWvrxIkTOn36tEUhZWZmpvbs2aP9+/fr8uXLSk1NlclkMhdw/fNnx9916tTJqs3R0VE1a9bUb7/9ppiYGFWtWvWW914Yv//+u3bt2qVz584pKSnJHHdmZqaysrJ05syZHAtN/1kIma13795asGCB9u3bl+PfZ1vEsXv3bqWnp6tx48YWRYu5uXbtmg4ePCgnJ6ccn3NJ5p3+9u/fn694AQAAAADAnUdhFgAAAAAAxVj2cXD/3Alpy5YtmjBhgtVOWn/3z11jXnvtNYWGhmrdunVat26dypcvr6ZNm6p169bq1auXqlWrluM806dPV0ZGhtq1a6f3338/X8VcealUqZL5uDCDwSBXV1fVr19fnTt3lpeXl7nf2bNnJUnvv/++3n///TznvHbtmlVb9erVCxxjdiFSjRo1cryeXfCVmpqq2NhYVaxY8bbXzq14pXz58oqNjc3x9cje/SstLc3q2owZMzRr1ixzgV5OcttJKLdYclovNjZWSUlJkpTvXdOyX8uXXnpJL730Up59c3otb1f26+fp6Znrjmm1atWy6PtPub32ttavXz+tW7dOn3/+uVJSUnTp0iUNGDAgx0K5v8t+Th9//PFbrnHt2jXza3X69GmNGjXK6njUv8vtfSIp158T2c9zamrqLeMpqKSkJL300kvavHlznv1yiz+31zS7PSUlJce/z7aI4/z585Ju7mqYH+fOnZPJZFJKSoqaNm2aZ9+/HxsKAAAAAACKFwqzAAAAAAAopkwmk44ePSpJFrtBxcTEKDw8XCkpKXrqqaf0yCOPqEaNGnJxcZHRaNT27dv15JNPWs1Xr149bdy4UTt27NBPP/2kAwcOaN++ffrpp580c+ZMvfHGGznuKNO9e3d9++232rlzp1avXq3+/fsX6r58fHwUERFxy37Zu4UFBASYi2hyc++991q1FWZXr8LKz9q3KnDLaZe03HzzzTeKioqSi4uL/vvf/6p169aqXLmynJycZDAYNH36dM2ePdviSLvbiaWwsl/LBx98UJUqVcqzb26FP3dauXLl7sg6LVu2VK1atfTNN9/oypUrkm59jKH0f89pt27d5OLikmdfT09P85/HjBmjP/74Q506ddJTTz2levXqydXVVQ4ODkpLS7tlEVBRv1fyMn36dG3evFk+Pj56/vnn1bRpU91zzz3mIwWDg4N14MCBXN/n+ZGfsXcyDhcXlzx3bwMAAAAAAMUbhVkAAAAAABRTW7duVVxcnCRZHO22ZcsWpaSkqGvXrnrxxRetxv3555+5zlm2bFl16NDBfJxdYmKiFi5cqBkzZujVV19V165drYo8AgMDFRwcrNDQUE2cOFFJSUkaMmSILW4xT9m7OHXp0iXHQrOi5O3trTNnzujs2bNWRyRKN3ezkW4W7/xzNzN72LBhgyQpPDxcAwcOtLp++vRpm63l6ekpZ2dnJScn69SpUzk+P/9UtWpVRUdHq3///rc8os8WvL29Jd3c3SsxMTHHXbOyd5zK7msvBoNBffr00fvvv6+dO3eqXr16euCBB245rmrVqjp9+rRGjBhxy2KqbCdPntSxY8dUsWJFzZgxw+qI0Lx+dhQH2e/zd999V/fdd5/V9Vu9z7P/3v5T9m5W5cqVsyhis2Uc2QWH0dHRt5xfkqpUqSLp5vtj2rRpdi2IAwAAAAAABcf/0QMAAAAAUAwlJCTozTfflHSzMKphw4bma9nFWjntLGQymbR+/fp8r+Pq6qrRo0fL3d1dycnJuRY2tGjRQosWLZKHh4feeOMNzZo16zbupmDat28vSdq4cWOhdp4piJYtW0qS1qxZk+P1VatWSZKaN29uVdxiD3m9J65evaqdO3fabK0yZcqobdu2kqRPP/00X2OyX8vsgpaiVqVKFfMua6tXr7a6bjKZzK9tq1at7khMeenbt68qVKggT0/PHAvrcpJ9HOjtPKfZ75PKlSvn+L794osv8j2XPWTHn9NRoT/++OMtj/TL7f7Wrl0r6ebufPn5+1yQOFq3bi0HBwcdOXJER44cueUa3t7e8vX11Y0bN/Tjjz/esj8AAAAAACieKMwCAAAAAKAYMZlM2rp1q/r376/Tp0/Ly8tLU6ZMsehTr149SdKmTZt06dIlc3tmZqbef/99HThwwGre5ORkLVy4UNeuXbO6tnfvXsXHx6tMmTLmXVpy4ufnpyVLlsjLy0vvvvuu3n777YLeZr506dJFTZs21cGDBzVhwoQcY4+Li9OKFSuUkZFh07WHDBmismXL6ttvv9W6dessrm3fvl2ffPKJJGn48OE2XbegfHx8JN0slEpLSzO3JyQk6OWXX1ZCQoJN13vmmWdUtmxZLVu2TMuWLbMqnDt//rwOHz5sfvzoo4+qevXq2rhxo/73v/8pMTHRas7Lly/nu9ArP7Jfmw8//FC///67ud1kMunDDz/U0aNH5e7urkcfffS25968ebO6d++ukJAQm8RapUoV7dq1S7t37873nE899ZTc3d21aNEiLViwwOJ1z3b27FmL92+dOnVUpkwZHT9+XLt377bou2XLFi1atKhQ91HUst/nS5cutWiPjo7Wq6++esvxR44c0dy5cy3a9u7dq+XLl0uShg4dWmRxVKxYUY899pgk6bnnntPx48ctrptMJu3atcvi7+rYsWMlSRMmTNCWLVus5jSZTPr111+1ffv2fMUNAAAAAADuPPv/SicAAAAAAKXUZ599pj179kiS0tLSdP36df3222+KjY2VdHPXpmnTplntytKpUyc1btxYR44cUbdu3dSyZUs5Ozvr4MGDunTpkkaMGGFVfJCenq6IiAhFRkaqQYMGql27thwcHHT+/Hn98ssvkm4W21SoUCHPmH19fbVs2TINHTpUc+fO1Y0bNzRp0iQZDAbbPCl/YzQaNXPmTIWGhmrNmjXatGmTfH19Va1aNaWnp+vs2bM6fvy4MjMz1bdvX5vuXOXr66tJkybptdde00svvaTFixerbt26unDhgg4cOCCTyaTRo0dbHDFpTyEhIVq3bp22bt2qhx56SP7+/kpPT9fPP/8sJycn9evXT59//rnN1vPz89Mbb7yhiRMn6vXXX9f8+fPVpEkTmUwmnT17Vr///rvCwsLUpEkTSZKLi4tmz56t0NBQzZs3T59++ql8fX3l7e2tlJQUnT59WidPnlTFihULVCiVk+DgYB04cEDr1q1Tv3791KJFC1WsWFFHjhzRqVOn5OTkpLfffvuW7/mcJCQk6NSpUzkWQ90pVapU0YcffqjRo0frrbfe0rx583TvvffKy8tLiYmJOnnypM6cOaP7779fvXr1kiRVqFBBjz/+uJYsWaKhQ4eqefPmqly5sk6dOqUjR45o5MiR+uijj+74vfzwww95vu4DBgzQgAEDNGrUKI0ZM0bvv/++NmzYoHvvvVdXr17Vvn37FBAQoMqVK+dYmJpt8ODBmj59utatWydfX19dunRJe/fuVVZWloYMGWI+4vVWChrHiy++qHPnzmnLli3q1auX7r//flWvXl2xsbH6448/FBMTo++++05ubm6SpM6dO+s///mP3nrrLY0cOVK1a9dW3bp15erqquvXr+v333/X1atXNWLEiGLzswgAAAAAAFiiMAsAAAAAADvZv3+/9u/fL+lm4Yqrq6saNGigJk2aKCgoSH5+fjmOK1u2rJYuXao5c+Zo06ZN2rVrl1xdXfXAAw/ogw8+0I0bN6wKs1xcXDR58mT9/PPP+u2337Rz506lp6ercuXKevjhh/XYY4+pTZs2+Yq7du3aWr58uYYOHarly5crKSlJ06ZNU5kyZQr3hOTA29tbn376qVavXq2vv/5ax44d06FDh+Th4aHKlSsrODhYnTt3Vrly5Wy+9sCBA3Xfffdp/vz52r9/v44dOyZXV1d16NBBQ4YMUWBgoM3XLKiaNWtqzZo1eu+997Rv3z59//338vLyUs+ePTV69GitWLHC5mv27t1bTZo00cKFC/XTTz/p+++/V7ly5eTt7a3HH39cQUFBFv3vvfdeffHFF1q5cqW+/fZbHTt2TL/88os8PT1VpUoVDR8+XF27drVZfAaDQZGRkWrfvr0++eQTHTlyRMnJyapUqZL69u2rESNGmHc+KqlatGihr776Sh9//LG2bt2qQ4cOKS0tTRUrVlTVqlX173//Ww8//LDFmFdeeUW+vr5avny5Dh8+rDJlyqhBgwZ699131aNHD7sUZl2/fj3PYwizj218+OGH9fHHH2vGjBn6/fffdfbsWdWsWVOjRo3S8OHD9eSTT+a5TteuXdWlSxfNnj1bW7duVXp6uho1aqQnnnhCffr0yXe8BY3D0dFRH374ob766iutWbNGhw8f1uHDh+Xp6anatWsrJCREXl5eFmOGDBmi1q1b6+OPP9bu3bu1a9cuGY1GVapUSQ0bNlTHjh2tXmMAAAAAAFB8GEz/3GseAAAAAAAAAO4SgwcP1p49e7RkyRK1atXK3uEAAAAAAIBSxGjvAAAAAAAAAAAAAAAAAADgbkNhFgAAAAAAAAAAAAAAAADYGIVZAAAAAAAAAAAAAAAAAGBjBpPJZLJ3EAAAAAAAAAAAAAAAAABwN2HHLAAAAAAAAAAAAAAAAACwMQqzAAAAAAAAAAAAAAAAAMDGKMwCAAAAAAAAAAAAAAAAABujMAsAAAAAAAAAAAAAAAAAbIzCLAAAAAAAAAAAAAAAAACwMQqzAAAAAAAAAAAAAAAAAMDGKMwCAAAAAAAAAAAAAAAAABujMAsAAAAAAAAAAAAAAAAAbIzCLAAAAAAAAAAAAAAAAACwMQqzAAAAAAAAAAAAAAAAAMDGKMwCAAAAAAAAAAAAAAAAABujMAsAAAAAAAAAAAAAAAAAbIzCLAAAAAAAAAAAAAAAAACwMQqzAAAAAAAAAAAAAAAAAMDGKMwCAAAAAAAAAAAAAAAAABujMAvAXcHX11evv/66vcOwuddee03Dhg2zdxhF6u2339aAAQPsHQYAAMUKuQ0KIj09XR06dNCyZcvsHQoAABbIbVASnThxQo0aNdLx48ftHQoAoAQjD8LdLjw8XM8995y9wwCKtbL2DgAA8nLs2DHNnDlThw4d0pUrV+Tp6an69eurc+fOGjx4sL3DK1Jnz57VqlWrNG/ePIt2X1/fHPs///zzevrppy3aYmJiNG3aNO3YsUNZWVlq1aqVXnnlFdWsWbNAMa1evVoTJkzI8dr27dvl5eVl0fbdd99pxowZOnHihCpWrKi+ffvq2WefVdmy//fPT0hIiBYvXqzvvvtOXbp0KVBcAACUFOQ2d39uczsGDx6sPXv2WLW3a9dO8+fPt2hLS0vT+++/r3Xr1ik+Pl6+vr4aO3asAgMDzX0cHBw0bNgwzZo1S/3791e5cuUKFBcAAPlFblO43Ca/vv76a23ZskUHDx7Un3/+qZYtW2rp0qU59s1PzpBt//79+t///qfffvtNrq6uCgoKUnh4uMqXL1+gOMePH681a9ZYtdetW1cbN260aMvKytL8+fO1YsUKXb58WXXq1FFoaKj+9a9/FWhtyfZ5Zf369dWhQwd98MEHmjFjRoHjAgDcnciD7kwe1LlzZ50/f96qfeDAgQUueLP15zG349y5c7l+FzZ9+nT17NnTou3kyZOaNm2a9u/fLwcHB3Xo0EETJkxQhQoVCrR+VFRUjnmNo6OjDh06ZNX+2WefacGCBTp37pyqVq2qwYMHW72/R4wYoX79+un333/XfffdV6C4gLsdhVkAiq39+/dryJAhqlatmgYMGCAvLy/99ddf+vXXX7VkyZK7PrFdsmSJqlevrtatW1tdCwwMVK9evSzaGjVqZPH4xo0bGjJkiBISEhQaGioHBwctWrRITzzxhNauXat77rmnwLGNGTNGNWrUsGhzd3e3eLx161aFhYWpZcuW+u9//6vjx4/ro48+0tWrVzV58mRzPy8vL3Xp0kULFiygMAsAcFcjtykduc3tqlKlisaNG2fRVrlyZat+48eP16ZNmzRkyBDVqVNHa9as0dNPP63FixerefPm5n59+/bV22+/rfXr16t///4FjgsAgFshtylcbnM7VqxYocOHD6tp06aKjY3Ns29+c4ajR49q6NChqlevnsaPH6+LFy9qwYIFOn36tNWXrLfD0dFRU6dOtWhzc3Oz6vfuu+9qzpw5evTRR9W0aVN99913ev7552UwGKy+kLwdts4rg4OD9fTTT+vMmTOqVatWgeMCANxdyIPuXB4kSQ0bNrTanatu3bqFmtPWn8fcrn/9619q3769RZu/v7/F44sXL+rxxx+Xm5ubwsPDlZSUpAULFuj48eP67LPP5OjoWOD1X3vtNbm4uJgflylTxqrPypUr9eqrr6pbt24aNmyY9u7dq6lTpyo5Odmi0K5Ro0Zq0qSJFixYoMjIyALHBNzNKMwCUGzNmjVLbm5uWrVqldUXY1evXrVTVHdGenq61q9fr+Dg4Byv16lTxyqx/afly5fr9OnT+uyzz+Tn5ydJevDBB/XII49o4cKFVgnn7Wjfvr2aNm2aZ5/IyEj5+vpqwYIF5l0kypcvr9mzZ2vIkCGqV6+euW9QUJCee+45nT17tsA7XgAAUNyR25Se3OZ2uLm53fLeDx48qK+++kovvfSSnnzySUlS79699a9//Utvv/22Vq5cae7r7u6udu3aac2aNRRmAQCKFLlN4XKb2xEZGSlvb28ZjcY8d5S6nZxh+vTpcnd319KlS+Xq6ipJqlGjhiZOnKjt27erXbt2BYq1bNmyt7z3mJgYLVy4UI8//rgmTZokSRowYICeeOIJRUZGqnv37jl+OZgfts4r27ZtKw8PD61Zs4YjegAAZuRBdy4PkiRvb2+bz2nrz2NuV6NGjW65/qxZs5ScnKzVq1erWrVqkiQ/Pz8NGzZMa9as0cCBAwu8frdu3fLcdSslJUXvvvuuOnbsqA8++ECS9OijjyorK0sfffSRBg4cKA8PD3P/oKAgRUVF6caNGwXefRW4mxntHQAA5ObMmTOqX7++VVIrSRUrVsxxzLfffqt//etfatKkiXr27Klt27ZZXD9//rxee+01devWTX5+fmrVqpXGjBmjc+fOWfRbvXq1fH199fPPP2vSpElq1aqVmjVrppdeeklxcXFW627dulWDBg2Sv7+/HnjgAT399NP6448/LPqkp6fr5MmTunTp0i3vfd++fbp+/bratm2ba5+UlBSlpqbmen3Tpk1q2rSp+QMmSapXr57atGmjDRs23DKGW0lMTFRmZmaO106cOKETJ07o0UcftTjaZ9CgQTKZTNq0aZNF/+z7/O677wodFwAAxRW5TenJbW5XRkaGbty4kev1jRs3qkyZMhYfuJUrV079+/fXgQMH9Ndff1n0b9u2rfbt23fLHTUAACgMcpvC5Ta3o2rVqjIab/1Rfn5zhsTERO3cuVP//ve/zUVZktSrVy+5uLgUOrfKzMxUYmJirte//fZbpaena9CgQeY2g8Ggxx57TBcvXtSBAwcKtb4t80oHBwe1bNmSz6wAABbIg+5cHpQtLS1NSUlJNp3T1p/H3K6kpCSlpaXlev2bb75Rx44dzUVZ0s3PfOrUqWOzz8JMJlOO13bv3q3Y2FiLfE2SHn/8cSUlJemHH36waG/btq2SkpK0c+fOQscF3I0ozAJQbFWvXl1HjhzR8ePH89V/3759eu2119SjRw+9+OKLSk1N1ZgxY3T9+nVzn0OHDunAgQPq2bOnJk6cqODgYP30008aMmSIkpOTreZ8/fXXdfLkSY0aNUq9e/fW+vXrFRYWZpGorF27VqGhoXJxcdELL7ygZ599VidOnNCgQYMsEuaYmBj16NFD06dPv+W9HDhwQAaDIdftXdesWSN/f3/5+fmpR48eWr9+vcX1rKwsHTt2TE2aNLEa27RpU505cybPD8huZciQIQoICND999+vZ555RqdPn7a4/ttvv5nX+jtvb29VqVJFR48etWh3c3NTrVq1tH///gLHBABAcUduU3pym9tx+vRp+fv7q1mzZgoMDNR7772n9PR0iz5Hjx5VnTp1LL44lWT+MvGf6zdu3Fgmk6nQX2oCAJAXcpuC5zZFJb85w7Fjx5SRkWGVWzk6Oqphw4aFym2Sk5MVEBCggIAAtWzZUpMnT7b6wvPo0aNycXGx2nE0t9zmdhRFXtm4cWP98ccfhco3AQB3F/KgO5sH/fTTT+bCss6dO2vx4sWFnrMoPo+5HTNmzNADDzwgPz8/9evXT9u3b7e4HhMTo6tXr+aYs/j5+RVqbUnq0qWLAgIC1KxZM73wwgu6cuWKxfXsz8L+uX7jxo1lNBqt1q9fv76cnJz4ng/IBUcZAii2hg8frhEjRqh3797y8/NTQECA2rRpo1atWsnBwcGq/8mTJ/X111+rVq1akqRWrVqpV69e+uqrr/TEE09Ikjp27Kju3btbjOvUqZMGDhyoTZs2qXfv3hbXHBwctGjRIvN61apV0//+9z9t2bJFXbp00Y0bN/TGG29owIABmjJlinlcnz591L17d82ePduiPb+io6Pl4eFhlexJ0gMPPKCgoCDVqFFDly5d0vLly/XCCy8oISHBXLkeGxurtLQ0eXl5WY3Pbrt06VKO8+fFyclJffv2VatWreTq6qrDhw9r0aJFCg4O1po1a1S1alVJ0uXLly3W+uf6Of3WRc2aNXXixInbigcAgJKE3KZ05Tb5UbNmTbVq1UoNGjRQUlKSNm3apI8++kinT5/We++9Z+53+fLlW977P+eVbu701alTpwLFBgDArZDbFDy3KSr5zRmyc5vKlSvn2Hffvn0FWt/Ly0tPPfWUGjVqJJPJpB9//FHLly/X77//rqVLl5p3Hr18+bIqVqwog8GQZ5y3q6jyypo1ayorK0vR0dEWu2wBAEov8qA7lwc1aNBAAQEBqlu3rmJjY7VmzRpNmzZNly5d0osvvligOYvq85j8MBqNateunR566CF5e3vr7NmzWrRokUaMGKGPPvpIHTt2tJg7t/WzcxpHR8fbWt/d3V1PPPGE/P395ejoqL1792r58uU6dOiQPv/8c/PrevnyZZUpU8ZqBzhHR0d5enpa3XvZsmVVpUoVvucDckFhFoBiKzAwUCtXrtScOXO0fft2HThwQPPmzVOFChU0depUdenSxaJ/27ZtzUmtJN13331ydXXV2bNnzW1OTk7mP6enpysxMVG1atWSu7u7fvvtN6vEduDAgRZJ9GOPPaZ3331XW7duVZcuXbRz507Fx8erZ8+eunbtmrmf0WjU/fffr927d5vbatSooWPHjuXr3mNjYy3OZv67f55Z3a9fP/Xr10/vvvuu+vbtKycnJ/MWsTklZOXKlZOkAm0j26NHD/Xo0cP8+KGHHlK7du30xBNP6KOPPtLrr78u6eY2tXmtn9NvGGa/BgAA3K3IbUpXbpMf06ZNs3jcu3dv/fe//9Wnn36qoUOHyt/f37x+XveeHV+27Of67795CwCArZHbFDy3KSr5zRluldv8M7fIr+eff97icc+ePVWnTh29++672rRpk3r27Hlbcd6uosors4+pIrcCAGQjD7pzedCsWbOs5nzqqae0aNEiDR48WFWqVLntOYvq85j8qFatmubPn2/R1qtXL/Xs2VMRERHmwqz85Cy5xZeXkJAQi8fZR2e+8MILWr58uZ5++mnz3DkVGWavn9O9e3h4kC8BueAoQwDFmp+fn2bMmKE9e/bos88+U2hoqG7cuKHnnnvOquo6e0eDv/Pw8FB8fLz5cUpKit5//3116NBBTZs2VevWrdWmTRvFx8crISHBanzt2rUtHpcvX15eXl46f/68JJmPuQkJCVGbNm0s/tu+fbuuXr1a4HvP7Vznf3J0dNTjjz+u+Ph4HT58WNL/JWU5nU2dncxl9yms5s2b6/7779euXbvMbdnJdW7r55R8m0wmq9+UBADgbkNuc2t3S25TUMOGDZMk7dy502L9vO79n+tnP9fkVgCAokZuc2s55TZFJb85w53MbYYOHSqj0Vio3KagbJVX5ve1BgCULuRBt1YUeZDBYNDQoUOVkZFhUVxWWLb4PKagPD091bdvX506dUoXL16UlL+cxVbrP/LII/Ly8rK6938e7fj39fmeD7g97JgFoERwdHSUn5+f/Pz8VKdOHU2YMEEbN27UqFGjzH3KlCmT49i/J4hTpkzR6tWrFRISIn9/f7m5uclgMCg8PLxAH7Jkj4mMjMxxO9HcYroVT09Pi4T8VrKT+ri4OPN4R0dH89b0f5fXdvUFVaVKFZ06dcr8OPu5uHz5stX/cFy+fDnHbd/j4+N1zz332CwmAACKM3KbvN0NuU1B/fPes9ePiYmx6pvbvWePJbcCANwp5DZ5y+nf96KQ35whr+N3Ll++bNO8ysnJSZ6enla5ze7du62+vCuKvM4WeWX2a01uBQDICXlQ3ooiD7pTc97u5zGFkb3zV2xsrKpUqWKeO7ecJTunseX6/7z3zMxMXb161eI4w7S0NMXGxuZ47/Hx8VYFgwBuojALQInTpEkTSQU7uzn7HO7x48eb21JTU3P8bQNJ+vPPP9W6dWvz4xs3bujy5ctq3769pJvnUEtSxYoV1bZt29uOJzc+Pj5av369EhIS5Obmdsv+2dvdVqhQQdLNrWgbNGiQ428gHDx4UDVr1szx/O+COnv2rMWHUw0bNpQkHTp0yOKLypiYGF28eFGPPvqo1Rznzp3TfffdZ7OYAAAoKchtrN0NuU1h1pb+796lm0cc7N69W4mJiRb3+euvv1rEl+3cuXOSpHr16tksLgAA8ovcxlpO/74XhfzmDA0aNFDZsmV1+PBhi2Od09LSdPToUQUFBdkspsTERF2/ft3i3hs2bKjPPvtMJ0+eVP369XON0xZskVeeO3dORqNRdevWtVlcAIC7E3mQtaLIg+7UnLf7eUxhZH+Wk72+t7e3KlSokGvOYsvv00wmk86fP69GjRqZ27Lv7fDhw+rQoYO5/fDhw8rKyrJaPyMjQ3/99Zc6d+5ss7iAuwlHGQIotn766accfwtg69atkm4mf7crp98AWLp0qTIzM3Ps/8knn1hs1blixQplZGSYE9sHH3xQrq6umj17do5bev793O709HSdPHkyXwm5v7+/TCaTVcL19/myJSYmavHixbrnnnvUuHFjc3u3bt106NAhHTp0yNwWHR2tn376Sd27d79lDDnJaf2tW7fqyJEjevDBB81t9957r3x8fPTpp59aPLcrVqyQwWCwWj8hIUFnzpzRAw88UKC4AAAoCchtSk9ukx+JiYlW29GbTCZ99NFHkqR27dqZ27t3767MzEx98skn5ra0tDStXr1a999/v9UuXkeOHJHBYJC/v/9txwUAQH6R2xQutykK+c0Z3Nzc1KZNG33xxRdKTEw09123bp2SkpIKlNukpqZazJXtww8/lMlkssitunTpIgcHBy1fvtzcZjKZtHLlSnl7exfo86GizCuPHDmi+vXr5+vLZwBA6UAedGfyoNjYWKv7T09P15w5c+Tg4KBWrVrd9pxF+XlMfuT0PMXExOjzzz+Xr6+vxU5UDz/8sH744Qf99ddf5rZdu3bp9OnTNv0sbPny5bp27ZpFvta6dWt5enpqxYoVFn1XrFghZ2dndezY0aL9xIkTSk1N5Xs+IBfsmAWg2Jo6daqSk5PVtWtX+fj4KD09Xfv379eGDRtUvXp19e3b97bn7Nixo9atWydXV1fVr19fv/zyi3bu3ClPT88c+6enp2vo0KEKCgrSqVOntHz5cgUEBKhLly6SJFdXV7322mt66aWX1LdvX/Xo0UMVKlTQhQsXtHXrVjVr1kyTJk2SdDOx6tGjh/r06aOIiIg84wwICJCnp6d27dqlNm3amNuXLVumb7/9Vp06dVK1atV06dIlrV69WhcuXFBkZKTFtqWDBg0yn2s+fPhwlS1bVosWLVLFihU1fPhwi/UGDx6sPXv26NixY3nGFRwcrIYNG6pJkyZyc3PTb7/9ps8//1xVq1bVM888Y9H3pZde0siRIzV8+HD17NlTx48f17JlyzRgwACr3Rt27twpk8lkfl4BALgbkduUjtzm3Llz6tKlyy2flyNHjuj5559Xz549VatWLaWmpmrz5s3av3+/Bg4caPGB5f3336/u3btr+vTpunr1qmrXrq01a9bo/PnzeuONN6zm3rlzp5o1a8ZxOwCAIkVuU7jcZvfu3RoyZIhGjRql0aNH57nezz//rJ9//lnSzS/TkpKS9OGHH0qSWrRooRYtWki6vZwhPDxcwcHBGjx4sB599FFdvHhRCxcuVLt27cxf6Gbz9fVVy5YttXTp0lxjvHz5svr06aOePXuav4zevn27tm7dqgcffNDiM58qVapoyJAhmj9/vjIyMtS0aVN9++232rt3r95++22LL6ZXr16tCRMm6M0338zzPVVUeWV6erp+/vlnPfbYY7muDQAofciD7kwetGXLFn300Ufq1q2batSoobi4OH355Zc6fvy4xo0bZ3FEo70/j4mKitKMGTO0ZMmSPAvG/ve//+nMmTNq06aNKleurPPnz2vlypVKSkrSf/7zH4u+zzzzjDZu3KghQ4ZoyJAhSkpK0vz589WgQQP169fPom/2TlVbtmzJdW1J6tSpk3r06KEGDRrI0dFR+/fv11dffaWGDRtq4MCB5n5OTk4aM2aMXn/9dY0ZM0YPPvig9u7dqy+++ELh4eFW78udO3fK2dnZpruzAXcTCrMAFFsvvfSSNm7cqK1bt5or/6tVq6ZBgwZp5MiRcnd3v+05//Of/8hoNGr9+vVKTU1Vs2bNtHDhQj311FM59p80aZLWr1+vDz74QOnp6erZs6cmTpwog8Fg7vPII4+ocuXKmjNnjubPn6+0tDR5e3urefPmBUq+pZtnkj/yyCPauHGjxo0bZ25v1qyZDhw4oFWrVik2NlbOzs7y8/PTG2+8YZEASzeT7qVLl2ratGn66KOPlJWVpVatWmnChAlW27veuHEjxzPG/ykoKEhbt27Vjh07lJKSIi8vLw0YMECjRo1SpUqVLPp26tRJM2bM0IwZMzRlyhRVqFBBoaGhCgsLs5p348aNCggIUK1atW7naQIAoEQhtykduU1SUpIk3XL9atWqKSAgQJs3b9aVK1dkNBrl4+OjyZMnW3wQli0yMlLvvfeevvjiC8XFxcnX11ezZs0yfxGbLSEhQdu3b9err756y/sHAKAwyG0Kl9vkN2eQbu7KMWPGDIu2999/X5I0atQoi3wgvzlD48aNtXDhQr399tt68803Vb58efXv39/ifqSbeVV+4nR3d1fHjh21c+dOrV27VpmZmapdu7bGjRun4cOHy2i0PLzjhRdekIeHhz755BOtXr1aderU0f/+9z898sgjFv3y+zwVVV65a9cuxcbGqk+fPnmuDwAoXciD7kwe1KBBA9WrV09ffPGFrl27JgcHBzVs2FDvvfee1dHL9v48JikpSQaDwerzpH8KDAzU2bNntWzZMsXHx8vNzU0tWrTQyJEjrXYVq1q1qj7++GNFRETonXfekYODgzp06KDx48dbFLplr1+7du0815ZuvicOHDigTZs2KS0tTdWqVdNTTz2lZ555Rs7OzhZ9H3/8cTk4OGjBggXasmWLqlatqgkTJigkJMRq3o0bN6pr165WR0IDuMlgymmfRQAo5bJ/G2/VqlVq2rSpXWI4e/asgoKCNHfuXKuk1ZYSExPVqlUrvfLKK3r88ceLbJ3cXL58WV26dNH06dP10EMP3fH1AQAoDcht7pxly5bp7bff1ubNm2/5YVxRWLRokebNm6dvv/1WTk5Od3x9AADuhLsht4mMjNRXX32lzZs3W32xVpxs3bpVoaGhWrdunXx9fe/4+s8995zOnz+vVatW3fG1JenZZ5+VwWDQzJkz7bI+AAD/RB6UM3t/HtO/f39Vq1ZNH3zwwR1f+8SJE+rZs6dmz55tdcTgnXD06FH16dNHa9asUcOGDe/4+kBJYLx1FwCAPdSsWVP9+vXTnDlzinSdvXv3ytvbWwMGDCjSdXKzePFiNWjQgKIsAADucqUlt9m9e7cGDx5slw8B09PTtWjRIo0cOZKiLAAAilhhc5vdu3fr2WefLdZFWdLN3bp69uxpl6Isk8mkPXv2aOzYsXd8bUk6efKkfvjhBz333HN2WR8AgOKqOOZB9vw8JjExUb///rvdcobdu3frgQcesEtRliTNmTNH3bp1oygLyAM7ZgFADorDbxwAAADYCrkNAAC4m5DbAACA0oo8CABKHnbMAgAAAAAAAAAAAAAAAAAbY8csAAAAAAAAAAAAAAAAALCxsvYOAAAAAAAAACiuTp48qalTp+rAgQMqX768evXqpbFjx8rR0THXMbt379aQIUNyvFa3bl1t3LixqMIFAAAAAABAMUJhVjFy7NgxSZKvr6+dIwEAALA/ciMAAGBvcXFxCgkJUZ06dRQVFaWYmBhFREQoJSVFkyZNynVc48aN9cknn1i0JSYmasSIEWrfvn2BYiE3AgAA+D/kRgAAoKSgMKsYSUtLs3cIAAAAxQa5EQAAsLeVK1fqxo0bmjFjhjw9PSVJmZmZmjx5skJDQ+Xt7Z3jOFdXV/n7+1u0rV69WllZWfrXv/5VoFjIjQAAAP4PuREAACgpjPYOAAAAAAAAACiOtm3bpjZt2piLsiQpKChIWVlZ2rFjx23N9eWXX6pOnTry8/OzcZQAAAAAAAAortgxCwAAAAAAAMhBdHS0+vXrZ9Hm7u4uLy8vRUdH53ueK1eu6KefftLIkSMLFY/JZFJSUlKh5gAAAHcHFxcXe4cAAACAfKAwCwAAAAAAAMhBfHy83N3drdo9PDwUFxeX73m+/vprZWZmFvgYw2zp6ek6evRooeYAAAB3h4CAAHuHAAAAgHygMAsAAAAAAAAoQuvXr1fjxo1Vt27dQs3j4OCg+vXr2ygqAAAAAAAAFDUKswAAAAAAAIAcuLu7KyEhwao9Li5OHh4e+ZrjzJkzOnjwoCZMmFDoeAwGA8cWAQAAAAAAlCBGewcAAAAAAAAAFEc+Pj6Kjo62aEtISNDly5fl4+OTrznWr18vo9GoHj16FEWIAAAAAAAAKMYozAIAAAAAAABy0L59e+3cuVPx8fHmto0bN8poNCowMDBfc3z11Vdq2bKlKleuXFRhAgAAAAAAoJiiMAsAAAAAAADIQXBwsMqXL6+wsDBt375dn3/+uSIjIxUcHCxvb29zv5CQEHXt2tVq/G+//aaTJ0/qX//6150MGwAAAAAAAMUEhVkAAAAAAABADjw8PLR48WKVKVNGYWFheuedd9S/f3+NHz/eol9WVpYyMzOtxq9fv16Ojo7q1q3bnQoZAAAAAAAAxYjBZDKZ7B0Ebjp06JAkqWnTpnaOBAAAwP7IjQAAAP4PuREAAMD/ITcCAAAlBTtmAQAAAAAAAAAAAAAAAICNUZgFAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2BiFWQAAAAAAAAAAAAAAAABgYxRmAQAAAAAAAAAAAAAAAICNUZgFAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2BiFWQAAAAAAAAAAAAAAAABgYxRmAQAAAAAAAAAAAAAAAICNUZgFAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2BiFWQAAAAAAAAAAAAAAAABgYxRm4a43c+ZMde3aVTNnzrR3KAAAAACAuxz/DwoAAPB/yI0AAAD+D7lR6URhFu5qKSkpWrt2rbKysrR27VqlpKTYOyQAAAAAwF2K/wcFAAD4P+RGd58NGzZo5MiRat++vfz9/dWrVy+tWrVKJpMpz3GdO3eWr6+v1X+pqal3KHIAAOyP3Kj0KmvvAP7p5MmTmjp1qg4cOKDy5curV69eGjt2rBwdHfMcZzKZNHfuXC1fvlzXrl1Tw4YNNWHCBPn7+1v0i4mJ0dSpU7V9+3Y5ODioa9eumjBhglxdXXOc9/DhwxowYICcnJx04MABi2tpaWl699139cUXX+jGjRt64IEH9N///lc+Pj6Feg5gOxkZGcrKypIkZWVlKSMjw84RAQAAAADuVvw/KAAAwP8hN7r7LFq0SNWrV9f48eN1zz33aOfOnfrvf/+rixcvatSoUXmO7datm4YPH27Rdqvv/gAAuJuQG5VexaowKy4uTiEhIapTp46ioqIUExOjiIgIpaSkaNKkSXmOnTt3rj744AO98MIL8vX11bJlyzR8+HCtW7dONWvWlCSlp6frqaeekiS98847SklJ0VtvvaXnn39es2fPtprTZDJpypQpqlChgpKSkqyuT506VV9//bXGjx8vb29vzZo1S0OHDtVXX30lNzc3GzwjAAAAAAAAAAAAgP199NFHqlChgvlxmzZtFBsbq4ULF+rZZ5+V0Zj7QT2VKlWy2kwBAACgNChWRxmuXLlSN27c0IwZM/Tggw+qf//+evHFF7Vy5UrFxMTkOi41NVWzZ8/W8OHDNXToULVp00bTp0+Xp6en5s+fb+63adMm/fHHH3r//ffVuXNn9ejRQ2+88YZ++OEHHTx40Grezz//XNevX1e/fv2srl28eFGrVq3Siy++qP79++vBBx/UzJkzlZCQoJUrV9rmCQEAAAAAAAAAAACKgb8XZWVr2LChEhMTc9zgAAAAAMVsx6xt27apTZs28vT0NLcFBQXp1Vdf1Y4dO9S3b98cx+3fv1+JiYkKCgoytzk6Oqpr167avHmzxfy+vr4WRw0GBgbK09NTW7dulZ+fn7k9Pj5e77zzjqZNm6bDhw9brbl9+3ZlZWWpe/fu5jZPT08FBgZq27ZtGjFiRIGeAwAAAAAAAAAAAKAk2Ldvn7y9veXq6ppnv/Xr1+vTTz+Vg4ODmjdvbj4BpzBMJhMFYQCAEuOf/2YlJSXludskbo+Li4u9Q8hVsSrMio6Ottqdyt3dXV5eXoqOjs5znCSLgitJqlevnhYvXqyUlBQ5OTkpOjraqo/BYFDdunWt5n/vvffUuHFjderUKcfCrOjoaFWsWFEeHh5Wa65aterWN5sLkkjb4ocbAKAkK85JJAAAAAAAAEq3vXv36uuvv9bLL7+cZ7/OnTvLz89P1apV09mzZzVr1iwNGjRIa9euVc2aNQu8fnp6uo4ePVrg8QAA3EnJyckWj48fPy5nZ2c7RXP3CQgIsHcIuSpWhVnx8fFyd3e3avfw8FBcXFye4xwdHVWuXDmLdnd3d5lMJsXFxcnJyUnx8fFyc3O75fxHjx7VqlWrtGbNmjzXzGkud3f3PGO9FZJI2+KHGwCgJCvOSSQAAAAAAABKr4sXLyo8PFytWrXSkCFD8uw7ceJE85+bN2+uwMBABQUFaf78+XrttdcKHIODg4Pq169f4PEAANxJiYmJFo8bNGhwyx0ncXcoVoVZxYHJZNLkyZM1aNAg1atX746vTxJpW/xwAwAAAAAAAAAAsJ34+HiNGDFCnp6eioqKuu2TSipXrqyAgAAdOXKkUHEYDAZ2nAcAlBhZWVkWj11cXPh3rJQoVoVZ7u7uSkhIsGqPi4uzOjLwn+PS0tKUmppqsWtWfHy8DAaDeay7u7tVoU72/FWrVpUkff3114qOjtY777yj+Ph4SVJqaqp5vnLlyqlcuXK5zhUfH59nrLdCEmlb/HADAAAAAAAAAACwjZSUFIWGhiohIUGffPJJjqfLAAAA4P/cXgl7EfPx8VF0dLRFW0JCgi5fviwfH588x0nSqVOnLNqjo6NVrVo1OTk55Tq/yWTSqVOnzHNER0crLi5OnTt3VosWLdSiRQvNnTtXSUlJatGihaKiosxzXblyxerYwujo6DxjBQAAAAAAAAAAAEqajIwMjR07VtHR0Zo3b568vb0LNE9MTIz27dunpk2b2jhCAACA4qdY7ZjVvn17zZo1S/Hx8XJ3d5ckbdy4UUajUYGBgbmOa9asmVxdXbVhwwbdd999kqT09HR98803at++vcX8X3zxhU6fPq06depIknbt2qXY2Fh16NBBktSnTx+1bNnSYv41a9bo66+/1ty5c1WtWjVJUrt27WQ0GvXNN99owIABkm7uvLV9+3Y9++yztnlCAAAAAAAAAAAAgGJg8uTJ+v777zV+/HglJibql19+MV9r1KiRHB0dFRISogsXLmjz5s2SpC+//FLff/+9OnTooMqVK+vs2bOaM2eOypQpo2HDhtnpTgAAAO6cYlWYFRwcrKVLlyosLEyhoaGKiYlRZGSkgoODLaru/5nUlStXTqGhoYqKilKFChXUoEEDrVixQrGxsXryySfN47p166bZs2dr9OjRGjdunJKTkxUZGamOHTvKz89PklSjRg3VqFHDIq49e/aoTJkyatWqlbmtSpUq6t+/vyIjI2U0GuXt7a3Zs2fLzc1NwcHBRfk0AQAAAAAAAAAAAHfUjh07JEkRERFW17777jvVqFFDWVlZyszMNLfXqFFDly5d0rRp05SQkCA3Nze1bt1aY8aMUc2aNe9Y7AAAAPZSrAqzPDw8tHjxYk2ZMkVhYWEqX768+vfvr/DwcIt+/0zqJGnEiBEymUxasGCBrl27poYNG2r+/PkWSZ2Dg4PmzZunqVOnaty4cSpbtqy6du2qV155pUDxTpw4UeXLl9c777yjGzduqFmzZlq4cCHnaQMAAAAAAAAAAOCusmXLllv2Wbp0qcVjf39/qzYAAIDSpFgVZklSvXr1tGjRojz75JTAGQwGhYaGKjQ0NM+x3t7eioqKuq2YRo8erdGjR1u1Ozo66uWXX9bLL798W/MBAAAAAAAAAAAAAAAAuLsZ7R0AAAAAAAAAAAAAAAAAANxtKMwCAAAAAAAFlpVlsncIKAF4nwAAAAAAAKA0KnZHGQIAAAAAgJLDaDRo5oodOn8pzt6h2F1GeorF49dnfaOyDk52iqb4qF7ZQ2GPBdo7DAAAAAAAAOCOozALAAAAAAAUyvlLcTp9/rq9w7C7rIxUi8dnLsTKWLacnaIBAAAAAAAAYG8cZQgAAAAAAAAAAAAAAAAANkZhFgAAAAAAAAAAAAAAAADYGIVZAAAAAAAAAAAAAAAAAGBjFGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAAAANkZhFgAAQClx8uRJDRs2TP7+/goMDFRkZKTS0tJuOW7ZsmUKDQ1V69at5evrq40bN+ba94cfflBwcLD8/f3VokULDR48WBcvXrTlbQAAAAAAAAAAAAAlAoVZAAAApUBcXJxCQkKUnp6uqKgohYeH69NPP1VERMQtx65bt07Xr19Xhw4dbtlv1KhRatmypWbNmqWIiAg1adJEqamptroNAAAAAAAAAAAAoMQoa+8AAAAAUPRWrlypGzduaMaMGfL09JQkZWZmavLkyQoNDZW3t3eeY41Go86dO6e1a9fm2Cc2Nlavv/66XnnlFQ0aNMjc3qVLF1veBgAAAAAAAAAAAFBisGMWAABAKbBt2za1adPGXJQlSUFBQcrKytKOHTvyHGs03jpl3LBhg7KystS/f//ChgoAAAAAAAAAAADcFdgxCwAAoBSIjo5Wv379LNrc3d3l5eWl6OjoQs//66+/qm7dulq7dq0++ugjxcTE6N5779W4ceNueQRiXkwmk5KSkgodHwCgaBgMBjk7O9s7DJQQycnJMplMBR7v4uJiw2gAAAAAAACAokdhFgAAQCkQHx8vd3d3q3YPDw/FxcUVev7Lly/r1KlTev/99/Xiiy/Ky8tLy5Yt07PPPqu1a9fq3nvvLdC86enpOnr0aKHjAwAUDWdnZzVq1MjeYaCEOHXqlJKTkws8PiAgwIbRAAAAAAAAAEWPwiwAAAAUWvbOVm+//ba6dOkiSWrZsqW6deumuXPnKjIyskDzOjg4qH79+rYMFQBgQwaDwd4hoASpW7duoXbMAgAAAAAAAEoaCrMAAABKAXd3dyUkJFi1x8XFycPDwybzS1Lr1q3NbQ4ODmrRooX++OOPAs9rMBg4tggAUGIYjGUkGSSZJBn+/2Nk49hLAAAAAAAAlDZGewcAAACAoufj46Po6GiLtoSEBF2+fFk+Pj6Fnj+vXa1SU1MLPT8AACWBwVhWLpUbSjLIpXJDGYz8PhwAAAAAAABQmlGYBQAAUAq0b99eO3fuVHx8vLlt48aNMhqNCgwMLPT8nTp1kiTt2rXL3JaWlqaff/5ZjRs3LvT8AACUFG41W8s7YJjcara+dWcAAAAAAAAAdzV+dRMAAKAUCA4O1tKlSxUWFqbQ0FDFxMQoMjJSwcHB8vb2NvcLCQnRhQsXtHnzZnPboUOHdP78eV27dk2S9Ouvv0qSKlSooJYtW0qSGjdurG7duum///2vYmNj5eXlpeXLl+vKlSt68skn7+CdAgAAAAAAAAAAAMUDhVkAAAClgIeHhxYvXqwpU6YoLCxM5cuXV//+/RUeHm7RLysrS5mZmRZty5Yt05o1a8yPFyxYIElq2bKlli5dam6PiIjQ9OnT9c477ygxMVGNGzfWwoUL5evrW4R3BgAAAAAAAAAAABRPFGYBAACUEvXq1dOiRYvy7PP3QqtsERERioiIuOX8Li4umjhxoiZOnFjQEAEAAAAAAAAAwF0iK8sko9Fg7zBQzN3t7xMKswAAAAAAAAAAAAAAAGBTRqNBM1fs0PlLcfYOxe4y0lMsHr8+6xuVdXCyUzTFR/XKHgp7LNDeYRQpCrMAAAAAAAAAAAAAAABgc+cvxen0+ev2DsPusjJSLR6fuRArY9lydooGd5LR3gEAAAAAAAAAAAAAAAAAwN2GwiwAAAAAAAAAAAAAAAAAsDEKswAAAAAAAAAAAAAAAADAxijMAgAAAAAAAAAAAAAAAAAbozALAAAAAAAAAAAAAAAAAGyMwiwAAAAAAAAAAAAAAAAAsDEKswAAAAAAAIBcnDx5UsOGDZO/v78CAwMVGRmptLS0fI2NiYnRyy+/rNatW8vPz09BQUH64osvijhiAAAAAAAAFBdl7R0AAAAAAAAAUBzFxcUpJCREderUUVRUlGJiYhQREaGUlBRNmjQpz7GXLl3SwIEDVbduXU2ZMkWurq76448/8l3UBQAAAAAAgJKPwqy7UFaWSUajwd5hoJjjfQIAAAAAQN5WrlypGzduaMaMGfL09JQkZWZmavLkyQoNDZW3t3euY//3v/+pSpUqmjdvnsqUKSNJatOmzZ0IGwBgR3zuivzgfQIAAFB6UJh1FzIaDZq5YofOX4qzdyh2l5GeYvH49VnfqKyDk52iKT6qV/ZQ2GOB9g4DAAAAAIBibdu2bWrTpo25KEuSgoKC9Oqrr2rHjh3q27dvjuMSExO1YcMGTZs2zVyUBQAoHfh8/v/w+XzO+HweAACgdKEw6y51/lKcTp+/bu8w7C4rI9Xi8ZkLsTKWLWenaAAAAAAAQEkSHR2tfv36WbS5u7vLy8tL0dHRuY47cuSI0tPTVbZsWT3xxBM6cOCAPD091bt3b40dO1YODg4FisdkMikpKalAYwEARc9gMMjZ2ZnP5/8/Pp/PW3JyskwmU4HHu7i42DAaAAAAFBUKswAAAAAAAIAcxMfHy93d3ardw8NDcXG574Ry5coVSdLEiRP16KOPatSoUTp48KA++OADGY1GPf/88wWKJz09XUePHi3QWABA0XN2dlajRo3sHQZKiFOnTik5ObnA4wMCAmwYDQAAAIoKhVkAAAAAAACADWVlZUmS2rZtq/Hjx0uSWrdurRs3bmjBggUKCwuTk9PtH+Xk4OCg+vXr2zRWAIDtGAwGe4eAEqRu3bqF2jELAAAAJQOFWQAAAAAAAEAO3N3dlZCQYNUeFxcnDw+PPMdJN4ux/q5NmzaaNWuW/vzzT/n6+t52PAaDgWOLAAC4Szg7O9s7BAAAANwBRnsHAAAAAAAAABRHPj4+io6OtmhLSEjQ5cuX5ePjk+u4W+1qlZqaapP4AAAAAAAAULxRmAUAAAAAAADkoH379tq5c6fi4+PNbRs3bpTRaFRgYGCu46pXr64GDRpo586dFu07d+6Uk5MTxxECAAAAAACUEhRmAQAAAAAAADkIDg5W+fLlFRYWpu3bt+vzzz9XZGSkgoOD5e3tbe4XEhKirl27WowNDw/Xli1b9MYbb2jHjh2aNWuWFixYoKFDh3IcIQAAAAAAQClR1t4BAAAAAAAAAMWRh4eHFi9erClTpigsLEzly5dX//79FR4ebtEvKytLmZmZFm2dO3fW9OnT9eGHH2rFihWqXLmyRo8eraeffvpO3gIAAAAAAADsiMIsAAAAAAAAIBf16tXTokWL8uyzdOnSHNt79OihHj16FEFUAAAAAAAAKAk4yhAAAAAAAAAAAAAAAAAAbKzYFWadPHlSw4YNk7+/vwIDAxUZGam0tLRbjjOZTJozZ446duwoPz8/DRw4UL/88otVv5iYGI0ePVoPPPCAWrZsqf/85z9KTEy06DNv3jz17t1bzZs3l7+/vx555BF9/PHHMplMFv06d+4sX19fq/9SU1ML9RwAAFCSzJw5U127dtXMmTPtHQoAAAAAAAAAAAAAFBvF6ijDuLg4hYSEqE6dOoqKilJMTIwiIiKUkpKiSZMm5Tl27ty5+uCDD/TCCy/I19dXy5Yt0/Dhw7Vu3TrVrFlTkpSenq6nnnpKkvTOO+8oJSVFb731lp5//nnNnj3bPFdCQoJ69Oihe++9V+XKldOuXbs0depUJSYm6plnnrFYt1u3bho+fLhFm6Ojoy2eDgAAir2UlBStXbtWWVlZWrt2rZ588kk5OTnZOywAAAAAAAAAAAAAsLtiVZi1cuVK3bhxQzNmzJCnp6ckKTMzU5MnT1ZoaKi8vb1zHJeamqrZs2dr+PDhGjp0qCQpICBA3bt31/z58/Xaa69JkjZt2qQ//vhDX3/9tXx8fCRJ7u7uevLJJ3Xw4EH5+flJksLDwy3mb9u2rS5cuKA1a9ZYFWZVqlRJ/v7+tnkCAAAoYTIyMpSVlSVJysrKUkZGhp0jAgAAAID8mzlzptauXavevXsrLCzM3uEAAAAAAIC7TLE6ynDbtm1q06aNuShLkoKCgpSVlaUdO3bkOm7//v1KTExUUFCQuc3R0VFdu3bVtm3bLOb39fU1F2VJUmBgoDw9PbV169Y8Y7vnnnuUnp5egLsCAAAAAAAAUNz8cwfglJQUe4cEAAAAAADuMsVqx6zo6Gj169fPos3d3V1eXl6Kjo7Oc5wki4IrSapXr54WL16slJQUOTk5KTo62qqPwWBQ3bp1c5w/IyNDKSkp2rt3r9auXatRo0ZZ9Vm/fr0+/fRTOTg4qHnz5uajFAvKZDIpKSmpwOMNBoOcnZ0LPB6lS3Jyskwmk73DAFCC/fPfrKSkJBmNxaruu0RzcXGxdwgAAADAXYsdgAEAAAAAQFErVoVZ8fHxcnd3t2r38PBQXFxcnuMcHR1Vrlw5i3Z3d3eZTCbFxcXJyclJ8fHxcnNzy9f8f/75px5++GHz45EjR5qPSczWuXNn+fn5qVq1ajp79qxmzZqlQYMGae3atapZs2Z+btlKenq6jh49WqCxkuTs7KxGjRoVeDxKl1OnTik5OdneYQAowf75M+T48eMUCNtQQECAvUMAAAAAAAAAAAAAUEDFqjCrOKlatapWrVqlpKQk7d27V3PnzpXRaNSYMWPMfSZOnGj+c/PmzRUYGKigoCDNnz9fr732WoHWdXBwUP369Qsct8FgKPBYlD5169ZlxywAhZKYmGjxuEGDBnJ1dbVTNAAAAAAAAAAAAABQfBSrwix3d3clJCRYtcfFxcnDwyPPcWlpaUpNTbXYNSs+Pl4Gg8E81t3d3eoL5Oz5q1atatHm6Oiopk2bSpJatWolV1dXvfXWW3rsscfk5eWVYxyVK1dWQECAjhw5cuubzYXBYODYItwx7GoDoLCyj/3I5uLiwr9jAAAAAAAAAAAAACDJaO8A/s7Hx0fR0dEWbQkJCbp8+bJ8fHzyHCfdPJbt76Kjo1WtWjU5OTnlOr/JZNKpU6fynF+SGjdurMzMTJ0/fz7f9wMAAAAAAAAAAAAAAACgdCpWhVnt27fXzp07FR8fb27buHGjjEajAgMDcx3XrFkzubq6asOGDea29PR0ffPNN2rfvr3F/L///rtOnz5tbtu1a5diY2PVoUOHPGPbv3+/DAaDatSokWufmJgY7du3z7zTFgAAAAAAAAAAAAAAAIDSqVgdZRgcHKylS5cqLCxMoaGhiomJUWRkpIKDg+Xt7W3uFxISogsXLmjz5s2SpHLlyik0NFRRUVGqUKGCGjRooBUrVig2NlZPPvmkeVy3bt00e/ZsjR49WuPGjVNycrIiIyPVsWNH+fn5Sbq5Q9eIESP073//W7Vr11ZGRoZ2796tJUuWaODAgapUqZIk6csvv9T333+vDh06qHLlyjp79qzmzJmjMmXKaNiwYXfwWQMAAAAAAAAAAAAAAABQ3BSrwiwPDw8tXrxYU6ZMUVhYmMqXL6/+/fsrPDzcol9WVpYyMzMt2kaMGCGTyaQFCxbo2rVratiwoebPn6+aNWua+zg4OGjevHmaOnWqxo0bp7Jly6pr16565ZVXzH3KlSununXratGiRYqJiZGTk5Nq1aqlyZMnq3fv3uZ+NWrU0KVLlzRt2jQlJCTIzc1NrVu31pgxYyzWBAAAAAAAAAAAAAAAAFD6FKvCLEmqV6+eFi1alGefpUuXWrUZDAaFhoYqNDQ0z7He3t6KiorK9bqjo6PefPPNW8bp7++fYxwAAAAAAAAAAAAAAAAAYLR3AAAAAAAAAAAAAAAAAABwt6EwCwAAAAAAAAAAAAAAAABsjMIsAAAAAAAAAAAAAAAAALAxCrMAAAAAAAAAAAAAAAAAwMYozAIAAAAAAAAAAAAAAAAAG6MwCwAAAAAAAAAAAAAAAABsjMIs3NUMxjKSDNmP/v9jAABKp5MnT2rYsGHy9/dXYGCgIiMjlZaWdstxy5YtU2hoqFq3bi1fX19t3Lgxz/5ZWVnq27dvvvoCAAAAAAAAAAAAdysKs3BXMxjLyqVyQ0kGuVRuKIOxrL1DAgDALuLi4hQSEqL09HRFRUUpPDxcn376qSIiIm45dt26dbp+/bo6dOiQr7VWrlypmJiYwoYMAAAAAAAAAAAAlGhUqeCu51aztdxqtrZ3GAAA2NXKlSt148YNzZgxQ56enpKkzMxMTZ48WaGhofL29s5zrNFo1Llz57R27do817l27Zref/99vfTSS3rllVdseAcAAAAAAAAAAABAycKOWQAAAKXAtm3b1KZNG3NRliQFBQUpKytLO3bsyHOs0Zj/lHH69Olq1aqVWrVqVdBQAQAAAAAAAAAAgLsCO2YBAACUAtHR0erXr59Fm7u7u7y8vBQdHW2TNQ4ePKgvv/xSX375pU3mkySTyaSkpCSbzQcAsC2DwSBnZ2d7h4ESIjk5WSaTqcDjXVxcbBgNAAAAAAAAUPQozAIAACgF4uPj5e7ubtXu4eGhuLi4Qs+flZWlyZMna9iwYapRo4bOnTtX6DklKT09XUePHrXJXAAA23N2dlajRo3sHQZKiFOnTik5ObnA4wMCAmwYDQAAAAAAAFD0KMwCAABAoX322We6cuWKnn76aZvO6+DgoPr169t0TgCA7RgMBnuHgBKkbt26hdoxCwAAAAAAAChpKMwCAAAoBdzd3ZWQkGDVHhcXJw8Pj0LNfePGDU2fPl3h4eFKT09Xenq6EhMTJUkpKSlKTEyUq6trgeY2GAwcWwQAwF2CYy8BAAAAAABQ2lCYBQAAUAr4+PgoOjraoi0hIUGXL1+Wj49Poea+fv26YmNj9eqrr+rVV1+1uPbyyy+rUqVK2rFjR6HWAAAAAAAAAAAAAEoaCrMAAABKgfbt22vWrFmKj4+Xu7u7JGnjxo0yGo0KDAws1NxeXl5asmSJRduVK1c0btw4jR49Wm3bti3U/AAAAAAAAAAAACWZwVhGkkGSSZLh/z9GaUBhFgAAQCkQHByspUuXKiwsTKGhoYqJiVFkZKSCg4Pl7e1t7hcSEqILFy5o8+bN5rZDhw7p/PnzunbtmiTp119/lSRVqFBBLVu2VLly5dSqVSuL9c6dOydJql+/vpo1a1bUtwcAAAAAAAAAAFBsGYxl5VK5oZIuHZVL5YYyGCnXKS14pQEAAEoBDw8PLV68WFOmTFFYWJjKly+v/v37Kzw83KJfVlaWMjMzLdqWLVumNWvWmB8vWLBAktSyZUstXbq06IMHAAAAAAAAAAAo4dxqtpZbzdb2DgN3GIVZAAAApUS9evW0aNGiPPvkVGgVERGhiIiI21qrRo0aOnbs2G2NAQAAAAAAAAAAAO4mRnsHAAAAAAAAAAAAAAAAAAB3GwqzAAAAAAAAAAAAAAAAAMDGKMwCAAAAAAAAAAAAAAAAABujMAsAAAAAAAAAAABAnjZs2KCRI0eqffv28vf3V69evbRq1SqZTKY8x5lMJs2ZM0cdO3aUn5+fBg4cqF9++eXOBA0AAGBnFGYBAAAAAAAAAAAAyNOiRYvk7Oys8ePH66OPPlL79u313//+VzNnzsxz3Ny5c/XBBx9o6NChmj17try8vDR8+HCdPXv2DkUOAABgP2XtHQAAAAAAAAAAAACA4u2jjz5ShQoVzI/btGmj2NhYLVy4UM8++6yMRuv9IFJTUzV79mwNHz5cQ4cOlSQFBASoe/fumj9/vl577bU7FD0AAIB9sGMWAAAAAAAAAAAAgDz9vSgrW8OGDZWYmKikpKQcx+zfv1+JiYkKCgoytzk6Oqpr167atm1bkcUKAABQXLBjFgAAAAAAAAAAAIDbtm/fPnl7e8vV1TXH69HR0ZIkHx8fi/Z69epp8eLFSklJkZOTU4HWNplMuRaEAQDsz2AwyNnZ2d5hoIRITk6WyWQq8HgXFxcbRmNbFGYBAAAAAAAAAAAAuC179+7V119/rZdffjnXPvHx8XJ0dFS5cuUs2t3d3WUymRQXF1fgwqz09HQdPXq0QGMBAEXP2dlZjRo1sncYKCFOnTql5OTkAo8PCAiwYTS2RWEWAAAAAAAAAAAAgHy7ePGiwsPD1apVKw0ZMsQuMTg4OKh+/fp2WRsAcGsGg8HeIaAEqVu3bqF2zCrOKMwCAAAAAAAAAAAAkC/x8fEaMWKEPD09FRUVJaPRmGtfd3d3paWlKTU11WLXrPj4eBkMBnl4eBQ4DoPBUKyPLQIAAPl3Nx97mXumBAAAAAAAAAAAAAD/X0pKikJDQ5WQkKB58+bJzc0tz/4+Pj6Sbh5P9HfR0dGqVq1agY8xBAAAKCkozAIAAAAAAAAAAACQp4yMDI0dO1bR0dGaN2+evL29bzmmWbNmcnV11YYNG8xt6enp+uabb9S+ffuiDBcAAKBY4ChDAAAAAAAAoJTIyjLJaDTYOwyUALxXAAD/NHnyZH3//fcaP368EhMT9csvv5ivNWrUSI6OjgoJCdGFCxe0efNmSVK5cuUUGhqqqKgoVahQQQ0aNNCKFSsUGxurJ5980k53AgAAcOdQmAUAAAAAAACUEkajQTNX7ND5S3H2DsXuMtJTLB6/PusblXXgOCVJql7ZQ2GPBdo7DABAMbNjxw5JUkREhNW17777TjVq1FBWVpYyMzMtro0YMUImk0kLFizQtWvX1LBhQ82fP181a9a8I3EDAADYE4VZAAAAAAAAQCly/lKcTp+/bu8w7C4rI9Xi8ZkLsTKWLWenaAAAKP62bNlyyz5Lly61ajMYDAoNDVVoaGhRhAUAAFCsGe0dAAAAAAAAAAAAAAAAAADcbSjMAgAAAAAAAAAAAAAAAAAbozALAAAAAAAAAAAAAAAAAGyMwiwAAAAAAAAAAAAAAAAAsDEKswAAAAAAAAAAAAAAAADAxijMAgAAAAAAAAAAAAAAAAAbozALAAAAAAAAAAAAAAAAAGysrL0DAAAAAAAAAIqrkydPaurUqTpw4IDKly+vXr16aezYsXJ0dMxzXOfOnXX+/Hmr9oMHD6pcuXJFFS4AAAAAAACKEQqzAAAAAAAAgBzExcUpJCREderUUVRUlGJiYhQREaGUlBRNmjTpluO7deum4cOHW7TdqqALAAAAAAAAdw8KswAAAAAAAIAcrFy5Ujdu3NCMGTPk6ekpScrMzNTkyZMVGhoqb2/vPMdXqlRJ/v7+RR8oAAAAAAAAiiWjvQP4p5MnT2rYsGHy9/dXYGCgIiMjlZaWdstxJpNJc+bMUceOHeXn56eBAwfql19+seoXExOj0aNH64EHHlDLli31n//8R4mJiRZ95s2bp969e6t58+by9/fXI488oo8//lgmk6lAawIAAAAAAKDk2bZtm9q0aWMuypKkoKAgZWVlaceOHfYLDAAAAAAAACVCsdoxqzDbw8+dO1cffPCBXnjhBfn6+mrZsmUaPny41q1bp5o1a0qS0tPT9dRTT0mS3nnnHaWkpOitt97S888/r9mzZ5vnSkhIUI8ePXTvvfeqXLly2rVrl6ZOnarExEQ988wzt7UmAAAAAAAASqbo6Gj169fPos3d3V1eXl6Kjo6+5fj169fr008/lYODg5o3b27+DKmgTCaTkpKSCjzeYDDI2dm5wONR+iQnJ1v9siqA3PFzFrejsD9jXVxcbBgNAAAAikqxKswq6Pbwqampmj17toYPH66hQ4dKkgICAtS9e3fNnz9fr732miRp06ZN+uOPP/T111/Lx8dH0s0P05588kkdPHhQfn5+kqTw8HCL+du2basLFy5ozZo15sKs/K4JAAAAAACAkik+Pl7u7u5W7R4eHoqLi8tzbOfOneXn56dq1arp7NmzmjVrlgYNGqS1a9cW+Bf60tPTdfTo0QKNlSRnZ2c1atSowONR+pw6dUrJycn2DgMoMfg5i9tR2J+xAQEBNowGAAAARaVYFWbltj38q6++qh07dqhv3745jtu/f78SExMVFBRkbnN0dFTXrl21efNmi/l9fX3NRVmSFBgYKE9PT23dutVcmJWTe+65R+np6be9JgAAAAAAAEqfiRMnmv/cvHlzBQYGKigoqFC/0Ofg4KD69esXOCaDwVDgsSid6taty45ZwG3g5yxuBz9jAQAASodiVZhV0O3hs6/9veBKkurVq6fFixcrJSVFTk5Oio6OtupjMBhUt27dHOfPyMhQSkqK9u7dq7Vr12rUqFG3vebtYkt63ElsRw+gsP75b1ZSUpKMRqOdorn7sCU9AACAfbm7uyshIcGqPS4uTh4eHrc1V+XKlRUQEKAjR44UOB6DwUCOiDuKzxkBoOjwMxYAAKB0KFaFWQXdHj4+Pl6Ojo4qV66cRbu7u7tMJpPi4uLk5OSk+Ph4ubm55Wv+P//8Uw8//LD58ciRI81HFt7OmreLLelxJ7EdPYDC+ufPkOPHj/Ohkg2xJT0AAIB9+fj4WP0yX0JCgi5fvmz1y3oAAAAAAADAPxWrwqzipGrVqlq1apWSkpK0d+9ezZ07V0ajUWPGjCnSddmSHncSWyUDKKzExESLxw0aNJCrq6udogEAAABsq3379po1a5bFLxNu3LhRRqNRgYGBtzVXTEyM9u3bp169ehVFqAAAAAAAACiGilVhVkG3h3d3d1daWppSU1MtdrCKj4+XwWAwj3V3d7f6Ajl7/qpVq1q0OTo6qmnTppKkVq1aydXVVW+99ZYee+wxeXl55XvN28WW9LiT2NUGQGFlZWVZPHZxceHfMQAAANw1goODtXTpUoWFhSk0NFQxMTGKjIxUcHCwvL29zf1CQkJ04cIFbd68WZL05Zdf6vvvv1eHDh1UuXJlnT17VnPmzFGZMmU0bNgwe90OAAAAAAAA7rBiVZhV0O3hs6+dOnVK9913n7k9Ojpa1apVMx8p6OPjo+PHj1uMNZlMOnXq1C1/y7Fx48bKzMzU+fPn5eXlle81AQAAAAAAUDJ5eHho8eLFmjJlisLCwlS+fHn1799f4eHhFv2ysrKUmZlpflyjRg1dunRJ06ZNU0JCgtzc3NS6dWuNGTNGNWvWvNO3AQAAAAAAADspVoVZBd0evlmzZnJ1ddWGDRvMRVLp6en65ptv1L59e4v5v/jiC50+fVp16tSRJO3atUuxsbHq0KFDnrHt379fBoNBNWrUuK01AQAAAAAAUHLVq1dPixYtyrPP0qVLLR77+/tbtQEAAAAAAKD0KVaFWQXdHr5cuXIKDQ1VVFSUKlSooAYNGmjFihWKjY3Vk08+aR7XrVs3zZ49W6NHj9a4ceOUnJysyMhIdezYUX5+fpJu7tA1YsQI/fvf/1bt2rWVkZGh3bt3a8mSJRo4cKAqVap0W2sCAAAAAAAAAAAAAAAAKH2KVWFWQbeHl6QRI0bIZDJpwYIFunbtmho2bKj58+dbbA/v4OCgefPmaerUqRo3bpzKli2rrl276pVXXjH3KVeunOrWratFixYpJiZGTk5OqlWrliZPnqzevXvf9poAAAAAAAAAAAAAAAAASp9iVZglFWx7eEkyGAwKDQ1VaGhonmO9vb0VFRWV63VHR0e9+eab+Yo1v2sCAAAAAAAAAAAAAAAAKF2M9g4AAAAAAAAAAAAAdxeDsYwkQ/aj//8YAAAAKF0ozAIAAAAAAAAAAIBNGYxl5VK5oSSDXCo3lMFY7A5xAQAAAIocWTAAALcpK8sko9Fw644o1XifAAAAAACA0s6tZmu51Wxt7zAAAAAAu6EwCwCA22Q0GjRzxQ6dvxRn71DsLiM9xeLx67O+UVkHJztFU3xUr+yhsMcC7R2GlZMnT2rq1Kk6cOCAypcvr169emns2LFydHTMc9yyZcu0bds2/frrr7p+/bref/99de/e3aLPzp079dlnn+nXX3/V1atXVb16dfXt21chISFycHAoytsCAAAAAAAAAAAAiiUKswAAKIDzl+J0+vx1e4dhd1kZqRaPz1yIlbFsOTtFg7zExcUpJCREderUUVRUlGJiYhQREaGUlBRNmjQpz7Hr1q2TJHXo0EFr167Nsc/KlSuVkpKiMWPGqGrVqvr1118VFRWlkydP6s0337T17QAAAAAAAAAAAADFHoVZAAAApcDKlSt148YNzZgxQ56enpKkzMxMTZ48WaGhofL29s5zrNFo1Llz53ItzHrttddUoUIF8+NWrVopKytL7733nl588UWLawAAAAAAAAAAAEBpYLR3AAAAACh627ZtU5s2bcxFWZIUFBSkrKws7dixI8+xRuOtU8acCq8aNmwok8mky5cv33a8AAAAAAAAAAAAQEnHjlkAAAClQHR0tPr162fR5u7uLi8vL0VHRxfJmvv375ejo6Nq1KhR4DlMJpOSkpJsGBUAwJYMBoOcnZ3tHQZKiOTkZJlMpgKPd3FxsWE0AAAAAAAAQNGjMAsAAKAUiI+Pl7u7u1W7h4eH4uLibL7e6dOntWTJEgUHB6t8+fIFnic9PV1Hjx61YWQAAFtydnZWo0aN7B0GSohTp04pOTm5wOMDAgJsGA0AAAAAAABQ9CjMAgAAgE0lJiZq9OjRqlGjhsLDwws1l4ODg+rXr2+jyAAAtmYwGOwdAkqQunXrFmrHLAAAAABFa+bMmVq7dq169+6tsLAwe4cDAMBdgcIsAACAUsDd3V0JCQlW7XFxcfLw8LDZOmlpaQoLC1NcXJw++eSTQh85ZDAYOLYIAIC7BMdeAgAAAMVXSkqK1q5dq6ysLK1du1ZPPvmknJyc7B0WAAAlHoVZAAAApYCPj4+io6Mt2hISEnT58mX5+PjYZI2srCy98MILOnLkiJYtW6aqVavaZF4AAAAAAAAARSsjI0NZWVmSbn7Ol5GRYeeIAAC4OxjtHQAAAACKXvv27bVz507Fx8eb2zZu3Cij0ajAwECbrDF58mR9//33+vDDD+Xr62uTOQEAAAAAAAAAAICSih2zAAAASoHg4GAtXbpUYWFhCg0NVUxMjCIjIxUcHCxvb29zv5CQEF24cEGbN282tx06dEjnz5/XtWvXJEm//vqrJKlChQpq2bKlJGnWrFlauXKlnnzySTk6OuqXX34xj69fv75cXV3vwF0CAAAAAAAAAAAAxQeFWQAAAKWAh4eHFi9erClTpigsLEzly5dX//79FR4ebtEvKytLmZmZFm3Lli3TmjVrzI8XLFggSWrZsqWWLl0qSdqxY4ckaf78+Zo/f77F+CVLlqhVq1Y2vycAAAAAAAAAAACgOKMwCwAAoJSoV6+eFi1alGef7EKrv4uIiFBERMRtjwMAAAAAAAAAAABKM6O9AwAAAAAAAAAAAAAAAACAuw2FWQAAAAAAAAAAAAAAAABgY7d9lOG5c+f03Xffaf/+/Tp58qSuX78ug8Gge+65Rz4+PmrWrJk6d+6smjVrFkW8AAAAAAAAAAAAAAAAAFDs5bsw6/vvv9eCBQu0b98+mUwm1apVSzVq1FCDBg1kMpkUHx+v33//Xd98840iIiIUEBCgJ598Up06dSrK+AEAAAAAAAAAAAAAAACg2MlXYdajjz6q33//XV26dNF7772ntm3bytXVNce+iYmJ2rFjhzZt2qSxY8fqvvvu0yeffGLToAEAAAAAAAAAAAAAAACgOMtXYVarVq304YcfqlKlSrfs6+rqqm7duqlbt266fPmylixZUuggAQAAAAAAAAAAAAAAAKAkyVdh1vPPP1+gyb28vAo8FgAAAAAAAAAAAAAAAABKKqO9AwAAAAAAAAAAAAAAAACAu02BCrN27dqlefPmWbStWrVKHTt2VNu2bTVt2jRlZmbaJEAAAAAAAAAAAAAAAAAAKGkKVJgVFRWl33//3fz42LFjevXVV1WhQgW1bNlSS5cu1fz5820WJAAAAAAAAAAAAAAAAACUJAUqzDp58qSaNGlifrxu3Tq5urpq2bJleu+99zRgwACtW7fOZkECAAAAAAAAAAAAAAAAQElSoMKs5ORkubq6mh//+OOPateunZydnSVJTZs21YULF2wTIQAAAAAAAAAAAAAAAACUMAUqzKpataoOHTokSfrzzz/1xx9/qF27dubrcXFxcnR0tE2EAAAAAAAAAAAAAAAAAFDClC3IoEceeUQzZ85UTEyMTpw4IQ8PD3Xp0sV8/ciRI6pTp46tYgQAAAAAAAAAAAAAAACAEqVAhVnPPPOM0tPTtXXrVlWtWlURERFyd3eXJMXGxmrPnj0aMmSITQMFAAAAAAAAAAAAAAAAgJKiQIVZZcuWVXh4uMLDw62ueXp6aseOHYUODAAAAAAAAAAAAAAAAABKKqO9AwAAAAAAAAAAAAAAAACAu02+CrMmTZqks2fP3vbkZ86c0aRJk257HAAAAAAAAAAAAAAAAACUZPk6yvCvv/5SUFCQWrdurR49eqhNmzaqWrVqjn3PnTunXbt2acOGDdq9e7cCAwNtGjAAAAAAAAAAAAAAAAAAFHf5KsyaO3eu9u3bpwULFmjSpEnKzMyUp6enqlevLg8PD5lMJsXFxencuXOKj49XmTJl1L59ey1evFjNmzcv6nsAAAAAAAAAAAAAAAAAgGIlX4VZkhQQEKCAgABdu3ZN33//vX755RdFR0fr4sWLkiRPT089/PDD8vf3V8eOHVWxYsUiCxoAAAAAAAAAAAAAAAAAirN8F2Zlq1Chgvr166d+/foVRTwAAAAAAAAAAAAAAAAAUOIZ7R0AAAAAAAAAAAAAAAAAANxtKMwCAAAAAAAAAAAAAAAAABujMAsAAAAAAAAAAAAAAAAAbIzCLAAAAAAAAAAAAAAAAACwMQqzAAAAAAAAAAAAAAAAAMDGKMwCAAAAAAAAAAAAUOpkZZnsHQJKCN4rAICCKluYwb/88ot2796tq1evatCgQapTp46Sk5MVHR2tOnXqqHz58rc958mTJzV16lQdOHBA5cuXV69evTR27Fg5OjrmOc5kMmnu3Llavny5rl27poYNG2rChAny9/e36BcTE6OpU6dq+/btcnBwUNeuXTVhwgS5urpKkjIzM7VgwQL98MMPOnHihEwmk3x9ffXcc8+pefPmFnP5+vpaxVGpUiXt2LHjtu8bAAAAAAAAAAAAwJ1jNBo0c8UOnb8UZ+9Q7C4jPcXi8euzvlFZByc7RVO8VK/sobDHAu0dBgCghCpQYVZaWprGjRun7777TiaTSQaDQZ06dVKdOnVkNBo1fPhwDR06VCNHjryteePi4hQSEqI6deooKipKMTExioiIUEpKiiZNmpTn2Llz5+qDDz7QCy+8IF9fXy1btkzDhw/XunXrVLPm/2Pv/uOirvL+/z9nkt8yw1JKkrYCrqiVq5IaS4HZeinX1lpKV2xdBWHsVGSJuZXVliZXIbtWCm2iYRKXSfZL2/LnbruS5nZtq2m1Vn4dLNMNNWUGkF8y8/2jj7NNKMo4MAM87rfb3nLOnNd5v96zp7cneM05AyRJzc3NuuOOOyRJCxYsUENDg+bPn6/7779fxcXFkqSGhgYtWbJEN9xwg7Kzs2U0GrVq1SrddtttKikpUWJiott1b731Vl177bWu1wEBAe26ZwAAAAAAAAAAAAC+ceCQTfsOHPN1Gj7nONHo9vqrg9Uy9gryUTYAAHQfHhVmLVy4UH/96181Z84cjR07VpMmTXK9FxQUpEmTJunPf/5zuwuzysvLVVdXp6KiIkVEREj6bgeruXPnymKxKCoq6pRxjY2NKi4udhWESVJCQoImTZqkkpISzZkzR5K0YcMG7dmzR2vXrlVsbKwkyWQyadq0adq1a5eGDx+u4OBg/elPf5LZbHaNn5SUpGuvvValpaWtCrP69evXalcuAAAAAAAAAAAAAAAAAD2b0ZOgd955R+np6brpppvcCphOiouL0/79+9s9bkVFhRITE11FWZKUmpoqh8PR5vGA27dvV21trVJTU11tgYGBmjBhgioqKtzGj4+PdxVlSd8VXUVERGjz5s2SpPPOO6/VPZ133nmKj4/XoUOH2n1PAAAAAAAAAAAAAAAAAHoej3bM+vbbbxUfH3/a98877zw1NDSc9v3TsVqtmjp1qlubyWRSnz59ZLVa24yT5FZwJX1XIFZaWqqGhgYFBwfLarW26mMwGBQTE9Pm+CdOnNDOnTuVkJDQ6r0lS5bo6aefVkhIiK688ko98MADio6OPuO9no7T6dTx48c9jjcYDAoJCfE4Hj1LfX29nE6nr9MAuhSes2iPc33OhoaGejEbAAAAAAAAAAAAAJ3Jo8Ksfv36tVnItH37dl188cXtHtdut8tkMrVqN5vNstlsbcYFBgYqKMj9nGOTySSn0ymbzabg4GDZ7XaFh4e3e/wXXnhBVVVVrmMST7r++us1btw4XXDBBfriiy/0/PPP6+abb9aaNWtOuZPY2Whubtbu3bs9ipWkkJAQDRs2zON49CyVlZWqr6/3dRpAl8JzFu1xrs/ZUxWFAwAAAAAAAAAAAOgaPCrMuvbaa/Xiiy/qP/7jPzRw4EBJ3+0gIkmrVq3SunXrdP/993stSV/aunWrCgsLdffdd+vSSy91e2/+/PmuP48ePVoJCQmaMmWKVq1apezsbI+uFxAQoEGDBnmc78n/H4CzERMTw45ZQDvxnEV78JwFAAAAAAAAAAAAei6PCrPuvPNO7dy5U//93/+t2NhYGQwGPfXUU7LZbPrmm2+UkpLSaneps2EymVRTU9Oq3WaztbkDlclkUlNTkxobG912zbLb7TIYDK5Yk8mk2traU47fr1+/Vu2ffvqppk+frmuvvVb33HPPGfMfMmSIYmJi9Omnn56x7+kYDAaOLUKn4Tg2AOhYPGcBAAAAAAAAAACAnsvoSVBgYKBeeOEFPfnkkxowYIBiY2PV1NSk+Ph45efna/HixTrvvPPaPW5sbGyrIxJramp0+PBhxcbGthknfXdc0PdZrVZFR0crODj4tOM7nU5VVla2Gv/LL79Udna2Ro4cqby8vHbfCwAAAAAAAAAAAAAAAICey6Mds6TvdnaaPHmyJk+e7LVkkpOTtXjxYtntdplMJknS+vXrZTQalZSUdNq4UaNGqXfv3lq3bp2GDBkiSWpubtbGjRuVnJzsNv5bb72lffv2uY5g3LZtm6qrq5WSkuLqd+jQIWVlZalfv35atGiRAgICzir/3bt3q7KyUlOmTGnvrQMAAAAAAAAAAAAAAADoRjwuzOoI6enpKisrU05OjiwWi6qqqlRQUKD09HRFRUW5+mVkZOjgwYPatGmTJCkoKEgWi0WFhYWKjIzU4MGDtXLlSlVXV2vatGmuuIkTJ6q4uFjTp0/XzJkzVV9fr4KCAo0bN07Dhw+XJDU0NCg7O1vHjh3TI488oj179rjiAwMDNWzYMElSSUmJvvrqK40dO1aRkZHas2ePFi9erAsvvFA33nhjZ3xcAAD4nMF4niSDJKckw/97DQAAAHQfe/fuVV5ennbs2KGwsDBNnjxZM2bMUGBg4FmPsXz5cj311FMaN26ciouLOzBbAAAAAAAA+BOPC7M+/PBDvf766/r6669ls9nkdDrd3jcYDHrrrbfaNabZbFZpaanmzZunnJwchYWFKS0tTbm5uW79HA6HWlpa3Nqys7PldDq1bNkyHT16VEOHDlVJSYkGDBjg6hMQEKAXXnhBeXl5mjlzpnr16qUJEybo4YcfdvU5cuSIPvvsM0nSXXfd5XaNiy66SO+++64kKSYmRhs3btS6detUV1enH/3oR0pJSdGMGTNcu30BANDdGYy9FNp3qI4f2q3QvkNlMPpVzTcAAABwTmw2mzIyMjRw4EAVFhaqqqpK+fn5amho0GOPPXZWYxw+fFjPPfeczj///A7OFgAAAAAAAP7Go9+evvjiiyooKFBQUJBiYmJkNpu9llBcXJyWL1/eZp+ysrJWbQaDQRaLRRaLpc3YqKgoFRYWnvb9/v376/PPPz9jnuPHj9f48ePP2A8AgO4ufMAVCh9wha/TAAAAALyuvLxcdXV1KioqUkREhCSppaVFc+fOlcVicdvh/XR+97vfafz48Tp48GAHZwsAANCxvvzyS5WUlGjnzp3as2ePYmNj9fbbb58xbvz48Tpw4ECr9l27dikoKKgjUgUAAPAbHhVmlZSUaNSoUVq8eLHCw8O9nRMAAAAAAADgcxUVFUpMTHQVZUlSamqqHn/8cW3dulVTpkxpM/7DDz/Un/70J61fv173339/B2cLAADQsfbs2aPNmzfrpz/9qRwOR6vTdNoyceJEZWVlubW152hoAACArsqjwqz6+npdd911FGUBAAB0IXv37lVeXp527NihsLAwTZ48WTNmzDjjD8FWrFihiooK7dy5U8eOHdPChQs1adKkVv2qqqqUl5enLVu2KCAgQBMmTNDs2bPVu3fvjrolAACADmW1WjV16lS3NpPJpD59+shqtbYZ29LSonnz5unOO+9U3759vZKP0+nU8ePHPY43GAwKCQnxSi7oGerr69v1S3egp+M5i/Y412dsaGioF7M5O+PHj9fPf/5zSdJDDz2kTz755KxjL7jgAo0YMaKDMgMAAPBfHhVmjR07Vl988YW3cwEAAEAHsdlsysjI0MCBA1VYWKiqqirl5+eroaFBjz32WJuxa9askSSlpKRo9erVp+zT3NysO+64Q5K0YMECNTQ0aP78+br//vtVXFzs1XsBAADoLHa7XSaTqVW72WyWzWZrM/bll19WfX29MjMzvZZPc3Ozdu/e7XF8SEiIhg0b5rV8ujqD8TxJBklOSYb/9xrfV1lZqfr6el+nAXQZPGfRHuf6jE1ISPBiNmfHaDR2+jUBAAC6Oo8Ks377298qKytLJSUlmjp1qtt27gAAAPA/5eXlqqurU1FRkWvt1tLSorlz58pisSgqKqrNWKPRqK+//vq0hVkbNmzQnj17tHbtWsXGxkr6bjeJadOmadeuXRo+fLi3bwkAAMBvffvtt1q0aJHmz5/v1SN6AgICNGjQII/jDQaD13LpDgzGXgrtO1THD+1WaN+hMhg9+lFptxYTE8OOWUA78JxFe/S0Z+wf//hHrVq1SgEBAbr88ss1a9YsxcfHn9OY7CaKzsZuokD78JxFe3TF3UTPlkc/bejXr59uuukmFRQU6Pe//72CgoJaVckbDAb94x//8EqSAAAAODcVFRVKTEx0K6hPTU3V448/rq1bt2rKlCmnjT2bb0NWVFQoPj7eVZQlSUlJSYqIiNDmzZspzAIAAF2SyWRSTU1Nq3abzSaz2XzauIULFyo+Pl6XX3657Ha7JOnEiRM6ceKE7Ha7QkND1atX+38sZzAY/PoHjV1R+IArFD7gCl+n4bf4JQoAdJye9IwdP368hg8frujoaO3fv1+LFy/WzTffrNWrV2vAgAEej8tuouhs7CYKtA/PWbRHV9xN9Gx5VJi1cOFCLV68WFFRUbr00ksVHh7u7bwAoMd67rnntHr1al1//fXKycnxdToAugmr1aqpU6e6tZlMJvXp00dWq9Ur43+/KEv67heHMTEx5zT+uX7zEQDQsfjmI9qjK37zMTY2ttVapqamRocPH2619vm+yspK/f3vf9fo0aNbvTd69GgtXbpUycnJXs8XAADAHz366KOuP19++eVKSkpSamqqSkpKNGfOHI/HZTdR7+KY5zPraTvdAeeK5yzaozs/Yz0qzCovL1dKSor+8Ic/cJ40AHhRQ0ODVq9eLYfDodWrV2vatGkKDg72dVoAugG73S6TydSq3Ww2y2azeWX8UxXrn+v45/rNRwBAx+Kbj2iPrvjNx+TkZC1evNhtLbV+/XoZjUYlJSWdNu7hhx927ZR10pNPPqng4GDNnDnznI/tAQAA6Mr69u2rhIQEffrpp+c0DruJehfHPJ8ZX0wCgI7TnZ+xHv2N2tzcrHHjxlGUBQBeduLECTkcDkmSw+HQiRMnfJwRAPjWuX7zEQDQsfjmI9qjK37zMT09XWVlZcrJyZHFYlFVVZUKCgqUnp6uqKgoV7+MjAwdPHhQmzZtkiQNHTq01Vgmk0mhoaEaO3Zsp+UPAAAAtAfHPAMA4H0eFWaNGzdOH374odLT072dDwAAADqAyWRSTU1Nq3abzSaz2eyV8Wtra085fr9+/Twel28+AgDQfXTFbz6azWaVlpZq3rx5ysnJUVhYmNLS0pSbm+vWz+FwqKWlxUdZAgAAdC1VVVX6xz/+ocmTJ/s6FQAAgA7nUWHWPffco9zcXM2ZM0dpaWmKjo4+5e5ZERER55ofAAAAvCA2NlZWq9WtraamRocPH1ZsbKxXxv/iiy/c2pxOpyorK9s85gcAAMDfxcXFafny5W32KSsrO+M4Z9MHAADAn9XX12vz5s2SpAMHDqi2tlbr16+XJI0ZM0aRkZGtdhJ9++239Ze//EUpKSnq27ev9u/fryVLlui8887T7bff7rN7AQAA6CweFWZNmjRJkrR792698sorp+23e/duz7ICAACAVyUnJ2vx4sWy2+0ymUySpPXr18toNHqlcCo5OVlvvfWW9u3bp4EDB0qStm3bpurqaqWkpJzz+AAAAAAAAPCtb7/9Vvfdd59b28nXL730ksaOHdtqJ9H+/fvr0KFDevLJJ1VTU6Pw8HBdccUVuvfeezVgwIBOzR8AAMAXPCrMysnJkcFg8HYuAAAA6CDp6ekqKytTTk6OLBaLqqqqVFBQoPT0dEVFRbn6/fBbjZL08ccf68CBAzp69KgkaefOnZKkyMhIjRkzRpI0ceJEFRcXa/r06Zo5c6bq6+tVUFCgcePGafjw4Z14pwAAAAAAAOgI/fv31+eff95mnx/uEjpixAh2DgUAAD2aR4VZ06dP93YeAAAA6EBms1mlpaWaN2+ecnJyFBYWprS0NOXm5rr1++G3GiVpxYoVevPNN12vly1bJum7LepP/mAtICBAL7zwgvLy8jRz5kz16tVLEyZM0MMPP9zBdwYAAAAAAAAAAAD4J48KswAAAND1xMXFafny5W32OdU3GPPz85Wfn3/G8aOiolRYWOhpegAAAAAAAAAAAEC3claFWUVFRTIYDLrrrrtkNBpVVFR0xhiDwaCcnJxzThAAAAAAAAAAAAAAAAAAupp2FWZlZ2crMDCQwiwAAAAAAAAAAAAAAAAAaMNZFWZ99tlnbb4GAAAAAAAAAAAAAAAAAPyb8Ww7XnPNNfrzn//ckbkAAAAAAAAAAAAAAAAAQLdw1oVZBw4c0PHjxzsyFwAAAAAAAAAAAAAAAADoFs66MAsAAAAAAAAAAAAAAAAAcHYozAIAAAAAAAAAAAAAAAAAL+vVns6rVq3S+++/f1Z9DQaDnnzySY+SAgAAAAAAAAAAAAAAAICurF2FWTt37tQnn3xyVn0pzAIAAAAAAAAAAAAAAADQU7WrMOt//ud/dN1113VULgAAAAAAAAAAAAAAAADQLRh9nQAAAAAAAAAAAAAAAAAAdDcUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAAAAAAAAAABedtaFWU899ZRGjhzZkbkAAAAAAAAAAAAAAAAAQLfQ62w73nDDDR2ZBwAAAAAAAAAAAAAAAAB0GxxlCAAAAAAAAAAAAAAAAABeRmEWAAAAAAAAAAAAAAAAAHgZhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAAAAAAAAAABe1suTIKfTqVdeeUWvvfaa9u/fL7vd3qqPwWDQP//5z3NOEAAAAAAAAAAAAAAAAAC6Go8KswoKCrR8+XINHTpUv/zlL2U2m72dFwAAAAAAAAAAAAAAAAB0WR4VZq1evVr/8R//oYULF3o7HwAAAAAAAAAAAAAAAADo8oyeBDU0NOhnP/uZt3MBAAAAAAAAAAAAAAAAgG7Bo8KsxMREffzxx97OBQAAAAAAAAAAAAAAAAC6BY8Ksx5//HHt3LlTixcv1rFjx7ydEwAAAAAAAAAAAAAAAAB0ab08CZo0aZKcTqcWLlyohQsXKigoSEaje42XwWDQP/7xD68kCQAAAAAAAAAAAAAAAABdiUeFWRMnTpTBYPB2LgAAAAAAAAAAAAAAAADQLXhUmJWfn+/tPAD0YA6HU0YjxZ5oG/MEAAAAAAAAAAAAANCVeFSYBQDeZDQa9NzKrTpwyObrVHzuRHOD2+snFm9Ur4BgH2XjPy7qa1bOr5J8nQYAAAAAAAAAAAAAAGfN48Ks2tpaLV++XH/961918OBBSVJ0dLTGjRunzMxM9e7d22tJAuj+Dhyyad+BY75Ow+ccJxrdXn91sFrGXkE+ygYAAAAAAAAAAAAAAHjK6ElQVVWVrr/+ehUVFen48eMaNWqURo0apfr6ehUVFemGG27QoUOHPEpo7969uv322zVixAglJSWpoKBATU1NZ4xzOp1asmSJxo0bp+HDh+umm27SRx99dMrcp0+frpEjR2rMmDF65JFHVFtb63q/paVFS5cu1S233KKxY8dqzJgxuvXWW/Xhhx+2GqupqUnz589XUlKSRowYodtvv11Wq9Wj+wYAAAAAAAAAAAAAAADQfXhUmPX73/9eR44cUXFxsdauXauioiIVFRXpnXfeUXFxsY4cOaIFCxa0e1ybzaaMjAw1NzersLBQubm5WrVqlfLz888Yu3TpUi1atEiZmZkqLi5Wnz59lJWVpf3797v6NDc364477tC+ffu0YMECzZkzR1u2bNH999/v6tPQ0KAlS5bokksu0fz58/X73/9eZrNZt912m7Zt2+Z2zby8PL366qvKzc1VYWGhmpqalJmZqZqamnbfOwAAAAAAAAAAAAAAAIDuw6OjDN977z1lZGQoJSWl1XspKSm69dZbtWrVqnaPW15errq6OhUVFSkiIkLSdztYzZ07VxaLRVFRUaeMa2xsVHFxsbKyspSZmSlJSkhI0KRJk1RSUqI5c+ZIkjZs2KA9e/Zo7dq1io2NlSSZTCZNmzZNu3bt0vDhwxUcHKw//elPMpvNrvGTkpJ07bXXqrS0VImJiZKkb775Rq+99poef/xxpaWlSZIuu+wyXX311SovL1d2dna77x8AAAAAAAAAAAAAAABA9+DRjln19fU6//zzT/v+BRdcoPr6+naPW1FRocTERFdRliSlpqbK4XBo69atp43bvn27amtrlZqa6moLDAzUhAkTVFFR4TZ+fHy8qyhL+q7oKiIiQps3b5YknXfeeW5FWSfb4uPj3Y5n3LJlixwOhyZNmuRqi4iIUFJSkts1AQAAAAAAAAAAAAAAAPQ8Hu2YFRcXp3feeUfp6ekKDAx0e6+5uVnvvPOO4uLi2j2u1WrV1KlT3dpMJpP69Okjq9XaZpwkt4Krk3mWlpaqoaFBwcHBslqtrfoYDAbFxMS0Of6JEye0c+dOJSQkuF3z/PPPb1XEFRcXp9dee63tG22D0+nU8ePHPY43GAwKCQnxOB49S319vZxOp09zYM6iPZiz6GrOdc6GhoZ6MRsAAAAAAAAAAAAAncmjwqzs7Gzl5ubqxhtv1M0336yBAwdKkiorK1VeXq7PP/9czzzzTLvHtdvtMplMrdrNZrNsNlubcYGBgQoKCnJrN5lMcjqdstlsCg4Olt1uV3h4eLvHf+GFF1RVVeU6JvHkNU81lslkanOsM2lubtbu3bs9jg8JCdGwYcM8jkfPUllZ6dHudt7EnEV7MGfR1ZzrnP1+UTgAAAAAAAAAAACArsWjwqzU1FTV19drwYIFevzxx2UwGCR9t9vT+eefryeffNLtiL+ubOvWrSosLNTdd9+tSy+9tMOvFxAQoEGDBnkcf/L/C+BsxMTE+MXuQ8DZYs6iq/GHOQsAAAAAAAAAAADANzwqzJKkKVOm6Je//KU++eQTHTx4UJIUHR2tSy+9VL16eTasyWRSTU1Nq3abzdbqyMAfxjU1NamxsdFt1yy73S6DweCKNZlMqq2tPeX4/fr1a9X+6aefavr06br22mt1zz33tLrmqcay2+1t5nomBoOBY4vQaTiODV0NcxZdDXMWAAAAAAAAAAAA6Lk8LsySpF69emnEiBEaMWKEV5KJjY2V1Wp1a6upqdHhw4cVGxvbZpz03XFBQ4YMcbVbrVZFR0crODjY1e+LL75wi3U6naqsrFRSUpJb+5dffqns7GyNHDlSeXl5p7zmkSNHWhWNWa3WNnMFAAAAAAAAAAAAAAAA0P2dVWHW3//+d0nS6NGj3V6fycn+Zys5OVmLFy+W3W6XyWSSJK1fv15Go7FV4dT3jRo1Sr1799a6detchVnNzc3auHGjkpOT3cZ/6623tG/fPg0cOFCStG3bNlVXVyslJcXV79ChQ8rKylK/fv20aNEiBQQEtLrmlVdeKaPRqI0bN+rGG2+U9N3OW1u2bNHdd9/drvsGAAAAAAAAAAAAAAAA0L2cVWHWrbfeKoPBoJ07dyowMND1+nScTqcMBoN2797drmTS09NVVlamnJwcWSwWVVVVqaCgQOnp6YqKinL1y8jI0MGDB7Vp0yZJUlBQkCwWiwoLCxUZGanBgwdr5cqVqq6u1rRp01xxEydOVHFxsaZPn66ZM2eqvr5eBQUFGjdunIYPHy5JamhoUHZ2to4dO6ZHHnlEe/bsccUHBgZq2LBhkqQLL7xQaWlpKigokNFoVFRUlIqLixUeHq709PR23TcAAAAAAAAAAAAAAACA7uWsCrNeeuklSd8VJn3/tbeZzWaVlpZq3rx5ysnJUVhYmNLS0pSbm+vWz+FwqKWlxa0tOztbTqdTy5Yt09GjRzV06FCVlJRowIABrj4BAQF64YUXlJeXp5kzZ6pXr16aMGGCHn74YVefI0eO6LPPPpMk3XXXXW7XuOiii/Tuu++6Xj/66KMKCwvTggULVFdXp1GjRunFF19UeHi41z4TAAAAb9m7d6/y8vK0Y8cOhYWFafLkyZoxY4ZrjXc6TqdTS5cu1csvv+xaZ82ePbvVcdYffvihFi5cqM8++0xGo1GXXXaZ7r//fg0dOrQD7woAAAAAAAAAAADwT2dVmDVmzJg2X3tTXFycli9f3mafsrKyVm0Gg0EWi0UWi6XN2KioKBUWFp72/f79++vzzz8/q1wDAwP14IMP6sEHHzyr/gAAAL5is9mUkZGhgQMHqrCwUFVVVcrPz1dDQ4Mee+yxNmOXLl2qRYsWadasWYqPj9eKFSuUlZWlNWvWuIrgrVarpk2bpiuuuEILFixQU1OTiouLlZmZqbffflt9+vTpjNsEAAAAAAAAAAAA/IbRk6DbbrtN27ZtO+37f/vb33Tbbbd5nBQAAAC8q7y8XHV1dSoqKtJVV12ltLQ0/eY3v1F5ebmqqqpOG9fY2Kji4mJlZWUpMzNTiYmJevrppxUREaGSkhJXvz/96U9yOp1auHChkpOT9fOf/1xPP/20qqurtXXr1s64RQAAAAAAAAAAAMCveFSY9X//9386cuTIad8/evSo/v73v3ucFAAAALyroqJCiYmJioiIcLWlpqbK4XC0WTi1fft21dbWKjU11dUWGBioCRMmqKKiwtXW3NyswMBABQUFudo43hkAAAAAAAAAAAA92VkdZXgqBoPhtO99+eWXCgsL83RoAAAAeJnVatXUqVPd2kwmk/r06SOr1dpmnCTFxsa6tcfFxam0tFQNDQ0KDg7WL37xC73wwgt69tlnlZmZqaamJj399NPq16+frrnmGo/zdjqdOn78uMfxAICOZTAYFBIS4us00EXU19fL6XR6HB8aGurFbAAAAAAAAICOd9aFWW+++abefPNN1+vnn39eq1atatWvpqZGn3/+uZKTk72TIQAAAM6Z3W6XyWRq1W42m2Wz2dqM++FOWNJ3RV1Op1M2m03BwcEaOHCgli9frrvvvluLFy+WJF100UV68cUXz2nnrObmZu3evdvjeABAxwoJCdGwYcN8nQa6iMrKStXX13scn5CQ4MVsAAAAAAAAgI531oVZ9fX1OnbsmOt1XV2djMbWJyGGhoYqPT1dOTk53skQAHoQg/E8SQZJTkmG//caAPxfZWWlpk+frqSkJF1//fVqbGzUsmXLlJ2drfLycl1wwQUejRsQEKBBgwZ5OVsAgLe0tZs28EMxMTHntGMWAAAAAAAA0NWcdWHWzTffrJtvvlmSNH78eD3yyCPndCwNAKA1g7GXQvsO1fFDuxXad6gMRo9PnAUANyaTSTU1Na3abTabzGZzm3FNTU1qbGx02zXLbrfLYDC4Yp955hldcMEFKigocPUZM2aMrr76ar300kuaOXOmR3kbDAaOLQIAoJvg2EsAAAAAAAD0NB79xv/dd9/1dh4AgP8nfMAVCh9wha/TANDNxMbGymq1urXV1NTo8OHDio2NbTNO+m5HrCFDhrjarVaroqOjFRwcLEn6//6//08jRoxwiw0LC9PFF1+sr776ykt3AQAAAAAAAAAAAHQdHhVmHTx48Kz6RUdHezI8AAAAvCw5OVmLFy+W3W6XyWSSJK1fv15Go1FJSUmnjRs1apR69+6tdevWuQqzmpubtXHjRiUnJ7v6RUdHa/fu3XI6na5jrWpra/Xll19q7NixHXhnAAAAAAAAAAAAgH/yqDBr/Pjxrl+4tWX37t2eDA8AAAAvS09PV1lZmXJycmSxWFRVVaWCggKlp6crKirK1S8jI0MHDx7Upk2bJElBQUGyWCwqLCxUZGSkBg8erJUrV6q6ulrTpk1zGz8nJ0ezZs3S5MmT1dTUpGXLlqmpqUk33nhjp98vAAAAAAAAAAAA4GseFWY9+eSTrQqzWlpadODAAa1Zs0aRkZG65ZZbvJIgAAAAzp3ZbFZpaanmzZunnJwchYWFKS0tTbm5uW79HA6HWlpa3Nqys7PldDq1bNkyHT16VEOHDlVJSYkGDBjg6vPzn/9czz77rEpKSpSbm6uAgAANGzZML730kgYOHNgZtwgAANAh9u7dq7y8PO3YsUNhYWGaPHmyZsyYocDAwDbjZs2apV27dunQoUMKCAjQ4MGDddddd+nKK6/spMwBAAAAAADgax4VZk2ZMuW072VnZ+u//uu/VFNT43FSAAAA8L64uDgtX768zT5lZWWt2gwGgywWiywWS5uxqampSk1NPZcUAQAA/IrNZlNGRoYGDhyowsJCVVVVKT8/Xw0NDXrsscfajG1ublZmZqYGDhyoxsZGvfbaa/r1r3+tl156SZdffnkn3QEAAAAAAAB8yaPCrLaEhoZqypQpWr58uW677TZvDw8AAAAAAAB0ivLyctXV1amoqEgRERGSvts1fu7cubJYLG5HQv/QwoUL3V4nJyfrmmuu0Zo1ayjMAgAAAAAA6CGMHTGow+HQkSNHOmJoAAAAAAAAoFNUVFQoMTHRVZQlfbdLqMPh0NatW9s11nnnnafw8HA1Nzd7OUsAAAAAAAD4K6/umFVbW6u///3vKikp0bBhw7w5NAAAAAAAANCprFarpk6d6tZmMpnUp08fWa3WM8Y7nU61tLSopqZGb7zxhr788ks98cQTHufjdDp1/Phxj+MNBoNCQkI8jkfPU19fL6fT6es0gC6D5yza41yfsaGhoV7MBgAAAB3Fo8KsIUOGyGAwnPI9p9Op6OhoPf744+eUGAAAAAAAAOBLdrtdJpOpVbvZbJbNZjtj/GuvvaZHH31U0ne/PH3mmWc0cuRIj/Npbm7W7t27PY4PCQnhy5Rol8rKStXX1/s6DaDL4DmL9jjXZ2xCQoIXswEAAEBH8agwKycn55SFWWazWRdffLGSkpLUq5dXN+MCAAAAAAAAupRrrrlGQ4YM0bFjx7R+/XrNmDFDRUVFSklJ8Wi8gIAADRo0yON8TvdFS+B0YmJi2DELaAees2gPnrEAAAA9g0fVU9OnT/d2HgAAAAAAAIBfMZlMqqmpadVus9lkNpvPGB8ZGanIyEhJUnJysmw2m373u995XJhlMBg4tgidiiPZAKDj8IwFAADoGYyeBJ04cUK1tbWnfb+2tlYnTpzwOCkAAAAAAADA12JjY2W1Wt3aampqdPjwYcXGxrZ7vEsuuURffvmlt9IDAAAAAACAn/OoMCsvL0/p6emnff9Xv/qV8vPzPU4KAAAAAAAA8LXk5GS9//77stvtrrb169fLaDQqKSmp3eP94x//0IABA7yZIgAAAAAAAPyYR0cZvvfee7r++utP+/7EiRP11ltveZoTAAAAAAAA4HPp6ekqKytTTk6OLBaLqqqqVFBQoPT0dEVFRbn6ZWRk6ODBg9q0aZMk6a9//atWr16tcePGqV+/frLZbHr77be1ZcsWPf300766HQAAAAAAAHQyjwqzDh065PbDpx/q27evqqqqPE4KAAAAAAAA8DWz2azS0lLNmzdPOTk5CgsLU1pamnJzc936ORwOtbS0uF4PGDBATU1NWrBggY4dO6Yf/ehHio+PV1lZmcaMGdPZtwEAAAAAAAAf8agwKyIiQpWVlad9f+/everdu7fHSQEAAAAAAAD+IC4uTsuXL2+zT1lZWauYP/zhDx2YFQAAAAAAALoCoydBV111lcrLy/XPf/6z1XuffvqpVq1apeTk5HNODgAAAAAAAAAAAAAAAAC6Io92zLrvvvv03nvv6cYbb9T48eM1aNAgSdKePXv0l7/8RZGRkbrvvvu8migAAAAAAAAAAAAAAAAAdBUeFWZFRUXp9ddf14IFC/TnP/9ZmzZtkiT17t1b1113nXJzcxUVFeXVRAEAAAAAAAAAAAAAAACgq/CoMEuS+vbtq/nz58vpdOro0aOSpMjISBkMBq8lBwAAAAAAAAAAAAAAAABdkceFWScZDAYFBgYqNDSUoiwAAAAAAAAAAAAAAAAAkGT0NPDjjz/WtGnT9NOf/lRjx47V//3f/0mSjh49qrvuuksffPCB15IEAAAAAAAAAAAAAAAAgK7Eo8Ks7du36+abb9aXX36pX/7yl3I4HK73IiMjVVtbq1deecVrSQIAAAAAAAAAAAAAAABAV+JRYdYzzzyjuLg4rV27Vrm5ua3eHzt2rHbu3HnOyQEAAAAAAAAAAAAAAABAV+RRYdbHH3+sKVOmKDAwUAaDodX7UVFROnLkyDknBwAAAAAAAAAAAAAAAABdkUeFWb169XI7vvCHqqqqFBoa6nFSAAAAAAAAAAAAAAAAANCVeVSY9dOf/lQbNmw45XvHjx/XG2+8odGjR59TYgAAAAAAAAAAAAAAAADQVXlUmHXvvffqk08+0a9//WtVVFRIkj7//HO9+uqrmjJlio4ePaq7777bq4kCAAAAAAAAAAAA8I0vv/xSjz32mCZPnqxhw4bp2muvPas4p9OpJUuWaNy4cRo+fLhuuukmffTRRx2bLAAAgJ/weMesJUuW6Msvv9SDDz4oScrPz9dvf/tbORwOLVmyREOGDPFqogAAAAAAAAAAAAB8Y8+ePdq8ebN+/OMfKy4u7qzjli5dqkWLFikzM1PFxcXq06ePsrKytH///g7MFgAAwD/08jQwMTFRGzZs0O7du7Vv3z45nU4NGDBAl156qQwGgzdzBAAAAAAAAAAAAOBD48eP189//nNJ0kMPPaRPPvnkjDGNjY0qLi5WVlaWMjMzJUkJCQmaNGmSSkpKNGfOnA7MGAAAwPc8Ksz6/PPPFR8fL0kaOnSohg4d2qrP+vXrNWnSpHPLDgAAAAAAAAAAAIDPGY3tP4hn+/btqq2tVWpqqqstMDBQEyZM0KZNm7yZHgAAgF/yqDBr6tSpmj59urKzs1stwqqrqzVnzhxt2LCBwiwAAAAAAAAAAACgh7JarZKk2NhYt/a4uDiVlpaqoaFBwcHBHo3tdDp1/Phxj3MzGAwKCQnxOB49T319vZxOp6/TALoMnrNoj3N9xoaGhnoxG+/yqDDrhhtu0DPPPKM///nPys/Pdy2m/vSnP2nOnDmqq6vTww8/7NVEAQAAAAAAAAAAAHQddrtdgYGBCgoKcms3mUxyOp2y2WweF2Y1Nzdr9+7dHucWEhKiYcOGeRyPnqeyslL19fW+TgPoMnjOoj3O9RmbkJDgxWy8y6PCrHnz5uk//uM/9Mgjj+iGG25QTk6OvvjiC7399tsaOXKk8vPz9eMf/9jbuQIAAAAAAAAAAACAAgICNGjQII/jDQaDF7NBTxATE8OOWUA78JxFe3TnZ6xHhVmSdNVVV+mdd97RtGnT9Mwzz0iS7rzzTt133338CwYAAAAAAAAAAAD0cCaTSU1NTWpsbHTbNctut8tgMMhsNns8tsFg8Otji9D9cCQbAHSc7vyMNXoaePz4cf3ud7/Trl27FB8fr+DgYL3++uuqqKjwZn4AAAAAAAAAAAAAuqDY2FhJ3x1P9H1Wq1XR0dEeH2MIAADQVXhUmPW3v/1N1113nd58803NnDlTb7zxht58801ddNFFuvPOO/XII4+otrbW27kCAAAAAAAAAAAA6CJGjRql3r17a926da625uZmbdy4UcnJyT7MDAAAoHN4dJTh7bffrqFDh2rx4sX6yU9+IkkaOHCgVq5cqWXLlmnRokXatm2b3n33Xa8mCwAAAAAAAAAAAKDz1dfXa/PmzZKkAwcOqLa2VuvXr5ckjRkzRpGRkcrIyNDBgwe1adMmSVJQUJAsFosKCwsVGRmpwYMHa+XKlaqurta0adN8di8AAACdxaPCrLvvvlt33XWXevVyDzcYDJo2bZrGjRunhx56yCsJAgAAAAAAAAAAAPCtb7/9Vvfdd59b28nXL730ksaOHSuHw6GWlha3PtnZ2XI6nVq2bJmOHj2qoUOHqqSkRAMGDOi03AEAAHzFo8Ks6dOnt/l+XFycXnnlFY8S2rt3r/Ly8rRjxw6FhYVp8uTJmjFjhgIDA9uMczqdWrp0qV5++WXXom727NkaMWKEW7+qqirl5eVpy5YtCggI0IQJEzR79mz17t3b1Wfr1q164403tHPnTu3fv1+33HKLHnvssVbXjI+Pb9V2wQUXaOvWrR7dOwAAAAAAAAAAAOCP+vfvr88//7zNPmVlZa3aDAaDLBaLLBZLR6UGAADgt866MGvXrl26+OKLFRERcca++/fv1z/+8Q9df/317UrGZrMpIyNDAwcOVGFhoaqqqpSfn6+GhoZTFkZ939KlS7Vo0SLNmjVL8fHxWrFihbKysrRmzRpXxX1zc7PuuOMOSdKCBQvU0NCg+fPn6/7771dxcbFrrPfee0+fffaZRo8eLZvN1uZ1b731Vl177bWu1wEBAe26ZwAAAAAAAAAAAAAAAADdz1kXZt10000qKCjQddddJ0mqrq5WSkqKli5dqjFjxrj13bFjh2bPnt3uwqzy8nLV1dWpqKjIVQDW0tKiuXPnymKxKCoq6pRxjY2NKi4uVlZWljIzMyVJCQkJmjRpkkpKSjRnzhxJ0oYNG7Rnzx6tXbtWsbGxkiSTyaRp06Zp165dGj58uCTpgQcecB3F+MEHH7SZc79+/VrtygUAAAAAAAAAAAAAAACgZzOebUen09nqdWNjY6tzos9FRUWFEhMT3XblSk1NlcPhaPN4wO3bt6u2tlapqamutsDAQE2YMEEVFRVu48fHx7uKsiQpKSlJERER2rx5s6vNaDzrjwUAAAAAAAAAAAAAAAAAWjnrHbM6g9Vq1dSpU93aTCaT+vTpI6vV2macJLeCK0mKi4tTaWmpGhoaFBwcLKvV2qqPwWBQTExMm+O3ZcmSJXr66acVEhKiK6+8Ug888ICio6M9Gkv6ruDt+PHjHscbDAaFhIR4HI+epb6+vlXRZWdjzqI9mLPoas51zoaGhnoxGwAAAAAAAAAAAACdya8Ks+x2u0wmU6t2s9ksm83WZlxgYKCCgoLc2k0mk5xOp2w2m4KDg2W32xUeHt7u8U/n+uuv17hx43TBBRfoiy++0PPPP6+bb75Za9askdlsbvd4ktTc3Kzdu3d7FCtJISEhGjZsmMfx6FkqKytVX1/v0xyYs2gP5iy6mnOdswkJCV7MBgAAAAAAAAAAAEBn8qvCrK5m/vz5rj+PHj1aCQkJmjJlilatWqXs7GyPxgwICNCgQYM8zslgMHgci54nJibGL3YfAs4WcxZdjT/MWQAAAAAAAAAAAAC+0a7CrAMHDujTTz+VJNXU1EiSvvzyy1a7XH399dceJWMymVzjfp/NZmtzByqTyaSmpiY1Nja67Zplt9tlMBhcsSaTSbW1taccv1+/fh7l/H1DhgxRTEyM6zPyhMFg4NgidBqOY0NXw5xFV8OcBQAAAAAAAAAAAHqudhVmLVy4UAsXLnRrmzt3bqt+TqfTox1FYmNjZbVa3dpqamp0+PBhxcbGthknfXdc0JAhQ1ztVqtV0dHRCg4OdvX74osvWuVaWVmppKSkducLAADQlezdu1d5eXnasWOHwsLCNHnyZM2YMUOBgYFtxjmdTi1dulQvv/yyjh49qqFDh2r27NkaMWJEq75//etftXjxYn322WcKCAjQkCFD9Lvf/U4XXnhhB90VAAAAAAAAAAAA4J/OujDrqaee6sg8JEnJyclavHix7Ha7axeu9evXy2g0tlk4NWrUKPXu3Vvr1q1zFWY1Nzdr48aNSk5Odhv/rbfe0r59+zRw4EBJ0rZt21RdXa2UlJRzzn/37t2qrKzUlClTznksAAAAb7LZbMrIyNDAgQNVWFioqqoq5efnq6GhQY899libsUuXLtWiRYs0a9YsxcfHa8WKFcrKytKaNWs0YMAAV781a9bokUceUVZWlmbMmKG6ujp9+OGHamxs7OjbAwAAAAAAAAAAAPzOWRdm3XDDDR2ZhyQpPT1dZWVlysnJkcViUVVVlQoKCpSenq6oqChXv4yMDB08eFCbNm2SJAUFBclisaiwsFCRkZEaPHiwVq5cqerqak2bNs0VN3HiRBUXF2v69OmaOXOm6uvrVVBQoHHjxmn48OGufgcOHNDHH38sSaqvr9dXX32l9evXS5ImTZokSSopKdFXX32lsWPHKjIyUnv27NHixYt14YUX6sYbb+zwzwoAAKA9ysvLVVdXp6KiIkVEREiSWlpaNHfuXFksFre11vc1NjaquLhYWVlZyszMlCQlJCRo0qRJKikp0Zw5cyRJ1dXVeuKJJ/Twww/r5ptvdsVfc801HXlbAAAAAAAAAAAAgN9q11GGHc1sNqu0tFTz5s1TTk6OwsLClJaWptzcXLd+DodDLS0tbm3Z2dlyOp1atmyZ64idkpISt10cAgIC9MILLygvL08zZ85Ur169NGHCBD388MNuY33wwQeaPXu26/V7772n9957T5L0+eefS5JiYmK0ceNGrVu3TnV1dfrRj36klJQUzZgxw7XbFwAAgL+oqKhQYmKiqyhLklJTU/X4449r69atp93xc/v27aqtrVVqaqqrLTAwUBMmTHAVyUvSunXr5HA4lJaW1mH3AAAAAAAAAAAAAHQlflWYJUlxcXFavnx5m33KyspatRkMBlksFlksljZjo6KiVFhY2GafKVOmnPE4wvHjx2v8+PFt9gEAAPAXVqtVU6dOdWszmUzq06ePrFZrm3GSFBsb69YeFxen0tJSNTQ0KDg4WDt37lRMTIxWr16t559/XlVVVfrJT36imTNnntOR0U6nU8ePH/c4HgDQsQwGg0JCQnydBrqI+vp6OZ1Oj+NDQ0O9mA0AAAAAAADQ8fyuMAsAAADeZ7fbT7mrp9lsls1mazMuMDBQQUFBbu0mk0lOp1M2m03BwcE6fPiwKisrtXDhQv3mN79Rnz59tGLFCt19991avXq1fvKTn3iUd3Nzs3bv3u1RLACg44WEhGjYsGG+TgNdRGVlperr6z2OT0hI8GI2AAAAAAAAQMejMAsAAADn7OTOVr///e91zTXXSJLGjBmjiRMnaunSpSooKPBo3ICAAA0aNMibqQIAvMhgMPg6BXQhMTEx57RjFgAAAAAAANDVUJgFAADQA5hMJtXU1LRqt9lsMpvNbcY1NTWpsbHRbdcsu90ug8Hgij25G9cVV1zh6hMQEKDRo0drz549HudtMBg4tggAgG6CYy8BAAAAAADQ0xh9nQAAAAA6XmxsrKxWq1tbTU2NDh8+rNjY2DbjpO+OHvo+q9Wq6OhoBQcHS1Kbu1o1NjZ6mjYAAAAAAAAAAADQZVGYBQAA0AMkJyfr/fffl91ud7WtX79eRqNRSUlJp40bNWqUevfurXXr1rnampubtXHjRiUnJ7varr76aknStm3bXG1NTU36+9//rksuucSbtwIAAAAAAAAAAAB0CRxlCAAA0AOkp6errKxMOTk5slgsqqqqUkFBgdLT0xUVFeXql5GRoYMHD2rTpk2SpKCgIFksFhUWFioyMlKDBw/WypUrVV1drWnTprniLrnkEk2cOFG//e1vVV1drT59+ujll1/WkSNH3PoBAAAAAAAAAAAAPQWFWQAAAD2A2WxWaWmp5s2bp5ycHIWFhSktLU25ublu/RwOh1paWtzasrOz5XQ6tWzZMh09elRDhw5VSUmJBgwY4NYvPz9fTz/9tBYsWKDa2lpdcsklevHFFxUfH9/h9wcAAAAAAAAAAAD4GwqzAAAAeoi4uDgtX768zT5lZWWt2gwGgywWiywWS5uxoaGhevTRR/Xoo4+eS5oAAAAAAAAAAABAt2D0dQIAAAAAAAAAAAAAAAAA0N1QmAUAAAAAAAAAAAAAAAAAXkZhFgAAAAAAAAAAAAAAAAB4GYVZAAAAAAAAAAAAAAAAAOBlFGYBAAAAAAAAAAAAAAAAgJdRmAUAAAAAAAAAAAAAAAAAXkZhFgAAAAAAAAAAAAAAAAB4GYVZAAAAAAAAAAAAAAAAAOBlFGYBAAAAAAAAAAAAAAAAgJdRmAUAAAAAAAAAAAAAAAAAXkZhFgAAAAAAAAAAAAAAAAB4GYVZAAAAAAAAAAAAAAAAAOBlvXydAAAAAAAAAOCv9u7dq7y8PO3YsUNhYWGaPHmyZsyYocDAwNPGHDp0SMuXL9fWrVv11VdfKTw8XKNHj9bMmTN10UUXdWL2AAAAAAAA8CUKswAAAAAAAIBTsNlsysjI0MCBA1VYWKiqqirl5+eroaFBjz322GnjPv30U23atElTp07VT3/6Ux07dkzPP/+8brzxRr399tuKjIzsxLsAAAAAAACAr1CYBQAAAAAAAJxCeXm56urqVFRUpIiICElSS0uL5s6dK4vFoqioqFPGJSQkaN26derV698/ehs1apTGjRun1atXKysrqzPSBwAAAAAAgI8ZfZ0AAAAAAAAA4I8qKiqUmJjoKsqSpNTUVDkcDm3duvW0cSaTya0oS5IuvPBCRUZG6tChQx2VLgAAAAAAAPwMO2YBAAAAAAAAp2C1WjV16lS3NpPJpD59+shqtbZrrMrKSn377beKi4vzOB+n06njx497HG8wGBQSEuJxPHqe+vp6OZ1OX6cBdBk8Z9Ee5/qMDQ0N9WI2AAAA6CgUZgEAAAAAAACnYLfbZTKZWrWbzWbZbLazHsfpdCovL099+/bVL37xC4/zaW5u1u7duz2ODwkJ0bBhwzyOR89TWVmp+vp6X6cBdBk8Z9Ee5/qMTUhI8GI2AAAA6CgUZgEAAAAAAAAdqLCwUH/729/0wgsvnNPuFgEBARo0aJDH8QaDweNY9EwxMTHsmAW0A89ZtAfPWAAAgJ6BwiwAAAAAAADgFEwmk2pqalq122w2mc3msxpj1apVeu655/Q///M/SkxMPKd8DAYDxxahU3EkGwB0HJ6xAAAAPYPR1wkAAAAAAAAA/ig2NlZWq9WtraamRocPH1ZsbOwZ4zdt2qQ5c+bo3nvvVVpaWkelCQAAAAAAAD9FYRYAAAAAAABwCsnJyXr//fdlt9tdbevXr5fRaFRSUlKbsR988IFmzpypG2+8UTk5OR2dKgAAAAAAAPwQhVkAAAAAAADAKaSnpyssLEw5OTnasmWLXn/9dRUUFCg9PV1RUVGufhkZGZowYYLr9d69e5WTk6OBAwdq8uTJ+uijj1z/++qrr3xxKwAAAAAAAPCBXr5OAAAAAAAAAPBHZrNZpaWlmjdvnnJychQWFqa0tDTl5ua69XM4HGppaXG93rlzp2pqalRTU6Nf/epXbn1vuOEG5efnd0r+AAAAAAAA8C0KswAAAAAAAIDTiIuL0/Lly9vsU1ZW5vZ6ypQpmjJlSgdmBQAAAAAAgK6AowwBAAAAAAAAAAAAAAAAwMsozAIAAAAAAAAAAAAAAAAAL6MwCwAAAAAAAAAAAAAAAAC8jMIsAAAAAAAAAAAAAAAAAPAyCrMAAAAAAAAAAAAAAAAAwMsozAIAAAAAAAAAAAAAAAAAL6MwCwAAAAAAAAAAAAAAAAC8jMIsAAAAAAAAAAAAAAAAAPAyCrMAAAAAAAAAAAAAAAAAwMsozAIAAAAAAAAAAAAAAAAAL6MwCwAAAAAAAAAAAAAAAAC8zO8Ks/bu3avbb79dI0aMUFJSkgoKCtTU1HTGOKfTqSVLlmjcuHEaPny4brrpJn300Uet+lVVVWn69OkaOXKkxowZo0ceeUS1tbVufbZu3ar7779fP//5zxUfH68nnnjilNdsamrS/PnzlZSUpBEjRuj222+X1Wr16L4BAAAAAAAAAAAAAAAAdB9+VZhls9mUkZGh5uZmFRYWKjc3V6tWrVJ+fv4ZY5cuXapFixYpMzNTxcXF6tOnj7KysrR//35Xn+bmZt1xxx3at2+fFixYoDlz5mjLli26//773cZ677339Nlnn2n06NEymUynvWZeXp5effVV5ebmqrCwUE1NTcrMzFRNTY3nHwIAAADQgZ577jlNmDBBzz33nK9TAQAAAAAAAAAA6NZ6+TqB7ysvL1ddXZ2KiooUEREhSWppadHcuXNlsVgUFRV1yrjGxkYVFxcrKytLmZmZkqSEhARNmjRJJSUlmjNnjiRpw4YN2rNnj9auXavY2FhJkslk0rRp07Rr1y4NHz5ckvTAAw/ooYcekiR98MEHp7zmN998o9dee02PP/640tLSJEmXXXaZrr76apWXlys7O9sbHwkAAADgNQ0NDVq9erUcDodWr16tadOmKTg42NdpAQAAAAAAAAAAdEt+tWNWRUWFEhMTXUVZkpSamiqHw6GtW7eeNm779u2qra1Vamqqqy0wMFATJkxQRUWF2/jx8fGuoixJSkpKUkREhDZv3uxqMxrP/LFs2bJFDodDkyZNcrVFREQoKSnJ7ZoAAACAvzhx4oQcDockyeFw6MSJEz7OCAAAAAAAAAAAoPvyqx2zrFarpk6d6tZmMpnUp08fWa3WNuMkuRVcSVJcXJxKS0vV0NCg4OBgWa3WVn0MBoNiYmLaHP901zz//PNlNptbXfO1115r11jf53Q6dfz4cY/jDQaDQkJCPI5Hz1JfXy+n0+nTHJizaA/mLLqac52zoaGhXsym53I4nDIaDb5OA36OeQIAAAAAAAAAALzNrwqz7Ha7TCZTq3az2SybzdZmXGBgoIKCgtzaTSaTnE6nbDabgoODZbfbFR4e3u7xT3fNU41lMpnaPdb3NTc3a/fu3R7Hh4SEaNiwYR7Ho2eprKxUfX29T3NgzqI9mLPoas51ziYkJHgxm57LaDTouZVbdeCQ52u07uJEc4Pb6ycWb1SvAI4yvKivWTm/SvJ1GgAAAAAAAAAAoJvxq8IsSAEBARo0aJDH8QYD3/LH2YuJifGL3YeAs8WcRVfjD3P2+/bu3au8vDzt2LFDYWFhmjx5smbMmKHAwMA245xOp5YuXaqXX35ZR48e1dChQzV79myNGDHilP0dDofS0tL06aefauHChW5HP/vKgUM27TtwzNdp+JzTcUKSQZJTkkH7v6mRwejbglcAAAAAAAAAAIDuyq8Ks0wmk2pqalq122y2VkcG/jCuqalJjY2Nbrtm2e12GQwGV6zJZFJtbe0px+/Xr1+7cz3VWHa7vc1cz8RgMHBsEToNx7Ghq2HOoqvxpzlrs9mUkZGhgQMHqrCwUFVVVcrPz1dDQ4Mee+yxNmOXLl2qRYsWadasWYqPj9eKFSuUlZWlNWvWaMCAAa36l5eXq6qqqqNuBefAYOyl0L5DdfzQboX2HSqD0a/+cwAAAAAAAAAAAKBbMfo6ge+LjY2V1Wp1a6upqdHhw4cVGxvbZpz03XFB32e1WhUdHa3g4ODTju90OlVZWdnm+Ke75pEjR1odW2i1Wts9FgAAQEcrLy9XXV2dioqKdNVVVyktLU2/+c1vzlhE1djYqOLiYmVlZSkzM1OJiYl6+umnFRERoZKSklb9jx49qoULF2rmzJkdeTs4B+EDrlBUwu0KH3CFr1MBAAAAAAAAAADo1vyqMCs5OVnvv/++7Ha7q239+vUyGo1KSko6bdyoUaPUu3dvrVu3ztXW3NysjRs3Kjk52W38zz77TPv27XO1bdu2TdXV1UpJSWlXrldeeaWMRqM2btzoarPZbNqyZYvbNQEAAPxBRUWFEhMTFRER4WpLTU2Vw+HQ1q1bTxu3fft21dbWKjU11dUWGBioCRMmqKKiolX/p59+WmPHjtXYsWO9mj8AAAAAAAAAAADQ1fjV2SXp6ekqKytTTk6OLBaLqqqqVFBQoPT0dEVFRbn6ZWRk6ODBg9q0aZMkKSgoSBaLRYWFhYqMjNTgwYO1cuVKVVdXa9q0aa64iRMnqri4WNOnT9fMmTNVX1+vgoICjRs3TsOHD3f1O3DggD7++GNJUn19vb766iutX79ekjRp0iRJ0oUXXqi0tDQVFBTIaDQqKipKxcXFCg8PV3p6eod/VgAAAO1htVo1depUtzaTyaQ+ffq02lH0h3GSWu0IGhcXp9LSUjU0NLh2J921a5fefvttvf32217L2+l06vjx4x7HGwwGvzpSEv6tvr5eTqfT12kAXQrPWbTHuT5nQ0NDvZgNAAAAAAAA0PH8qjDLbDartLRU8+bNU05OjsLCwpSWlqbc3Fy3fg6HQy0tLW5t2dnZcjqdWrZsmY4ePaqhQ4eqpKREAwYMcPUJCAjQCy+8oLy8PM2cOVO9evXShAkT9PDDD7uN9cEHH2j27Nmu1++9957ee+89SdLnn3/uan/00UcVFhamBQsWqK6uTqNGjdKLL76o8PBwr30mAAAA3mC322UymVq1m83mVkcz/zAuMDBQQUFBbu0mk0lOp1M2m03BwcFyOByaO3eubr/9dvXv319ff/21V/Jubm7W7t27PY4PCQnRsGHDvJILur/KykrV19f7Og2gS+E5i/Y41+dsQkKCF7MBAAAAAAAAOp5fFWZJ3+2+sHz58jb7lJWVtWozGAyyWCyyWCxtxkZFRamwsLDNPlOmTNGUKVPOmGtgYKAefPBBPfjgg2fsCwAA0J29+uqrOnLkiH796197ddyAgAANGjTI43iDweDFbNDdxcTEsGMW0E48Z9EePGcBAAAAAADQ0/hdYRYAAAC8z2QyqaamplW7zWaT2WxuM66pqUmNjY1uu2bZ7XYZDAaZzWbV1dXp6aefVm5urpqbm9Xc3Kza2lpJUkNDg2pra9W7d2+P8jYYDBxbhE7DcWwA0LF4zgIAAAAAAKCnMfo6AQAAAHS82NhYWa1Wt7aamhodPnxYsbGxbcZJ3x099H1Wq1XR0dEKDg7WsWPHVF1drccff1yjR4/W6NGjNXnyZEnSgw8+qIkTJ3r5bgAAAAAAAAAAAAD/x45ZAAAAPUBycrIWL14su90uk8kkSVq/fr2MRqOSkpJOGzdq1Cj17t1b69at05AhQyRJzc3N2rhxo5KTkyVJffr00UsvveQWd+TIEc2cOVPTp0/Xz372sw66KwAAAAAAAAAAAMB/UZgFAADQA6Snp6usrEw5OTmyWCyqqqpSQUGB0tPTFRUV5eqXkZGhgwcPatOmTZKkoKAgWSwWFRYWKjIyUoMHD9bKlStVXV2tadOmufqMHTvW7Xpff/21JGnQoEEaNWpUJ90lAAAAAAAAAAAA4D8ozAIAAOgBzGazSktLNW/ePOXk5CgsLExpaWnKzc116+dwONTS0uLWlp2dLafTqWXLluno0aMaOnSoSkpKNGDAgM68BQAAAAAAAAAAAKBLoTALAACgh4iLi9Py5cvb7FNWVtaqzWAwyGKxyGKxnPW1+vfvr88//7y9KQIAAAAAAAAAAADdhtHXCQAAAAAAAAAAAAAAAABAd0NhFgAAAAAAAAAAAAAAAAB4GYVZAAAAAAAAAAAAAAAAAOBlFGYBAAAAAAAAAAAAAAAAgJf18nUCAAAAAAAAAAAAAPzf3r17lZeXpx07digsLEyTJ0/WjBkzFBgY2Gbc+PHjdeDAgVbtu3btUlBQUEelCwAA4HMUZgEAAAAAAAAAAABok81mU0ZGhgYOHKjCwkJVVVUpPz9fDQ0Neuyxx84YP3HiRGVlZbm1namgCwAAoKujMAsAAAAAAAAAAABAm8rLy1VXV6eioiJFRERIklpaWjR37lxZLBZFRUW1GX/BBRdoxIgRHZ8oAACAHzH6OgEAAAAAAAAAAAAA/q2iokKJiYmuoixJSk1NlcPh0NatW32XGAAAgB9jxywAAAAAAAAAAAAAbbJarZo6dapbm8lkUp8+fWS1Ws8Y/8c//lGrVq1SQECALr/8cs2aNUvx8fEe5+N0OnX8+HGP4w0Gg0JCQjyOR89TX18vp9Pp6zSALoPnLNrjXJ+xoaGhXszGuyjMAgAAAAAAAAAAANAmu90uk8nUqt1sNstms7UZO378eA0fPlzR0dHav3+/Fi9erJtvvlmrV6/WgAEDPMqnublZu3fv9ihWkkJCQjRs2DCP49HzVFZWqr6+3tdpAF0Gz1m0x7k+YxMSEryYjXdRmAUAAAAAAAAAAACgwzz66KOuP19++eVKSkpSamqqSkpKNGfOHI/GDAgI0KBBgzzOyWAweByLnikmJoYds4B24DmL9ujOz1gKswAAAAAAAAAAAAC0yWQyqaamplW7zWaT2Wxu11h9+/ZVQkKCPv30U4/zMRgMfn1sEbofjmQDgI7TnZ+xRl8nAAAAAAAAAAAAAMC/xcbGymq1urXV1NTo8OHDio2N9VFWAAAA/o3CLAAAAAAAAAAAAABtSk5O1vvvvy+73e5qW79+vYxGo5KSkto1VlVVlf7xj3/osssu83aaAAAAfoWjDAEAAAAAAAAAAAC0KT09XWVlZcrJyZHFYlFVVZUKCgqUnp6uqKgoV7+MjAwdPHhQmzZtkiS9/fbb+stf/qKUlBT17dtX+/fv15IlS3Teeefp9ttv99XtAAAAdAoKswAAAAAAAAAAAAC0yWw2q7S0VPPmzVNOTo7CwsKUlpam3Nxct34Oh0MtLS2u1/3799ehQ4f05JNPqqamRuHh4briiit07733asCAAZ19GwAAAJ2KwiwAAAAAAAAAAAAAZxQXF6fly5e32aesrMzt9YgRI1q1AQAA9BRGXycAAAAAAAAAAAAAAAAAAN0NhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAAAAAAAAAABeRmEWAAAAAAAAAAAAAAAAAHgZhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAAAAAAAAAABeRmEWAAAAAAAAAAAAAAAAAHgZhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAACnsXfvXt1+++0aMWKEkpKSVFBQoKampjPGrVixQhaLRVdccYXi4+O1fv36TsgWAAAAAAAA/oTCLAAAAAAAAOAUbDabMjIy1NzcrMLCQuXm5mrVqlXKz88/Y+yaNWt07NgxpaSkdEKmAAAAAAAA8Ee9fJ0AAAAAAAAA4I/Ky8tVV1enoqIiRURESJJaWlo0d+5cWSwWRUVFtRlrNBr19ddfa/Xq1Z2TMAAAAAAAAPwKO2YBAAAAAAAAp1BRUaHExERXUZYkpaamyuFwaOvWrW3GGo382A0AAAAAAKCnY8csAAAAAAAA4BSsVqumTp3q1mYymdSnTx9ZrdZOz8fpdOr48eMexxsMBoWEhHgxI3R39fX1cjqdvk4D6DJ4zqI9zvUZGxoa6sVsAAAA0FEozAIAAAAAAABOwW63y2QytWo3m82y2Wydnk9zc7N2797tcXxISIiGDRvmxYzQ3VVWVqq+vt7XaQBdBs9ZtMe5PmMTEhK8mA0AAAA6CoVZAAAAAAAAQBcQEBCgQYMGeRxvMBi8mA16gpiYGHbMAtqB5yzag2csAABAz0BhFgAAAAAAAHAKJpNJNTU1rdptNpvMZnOn52MwGDi2CJ2KI9kAoOPwjAUAAOgZjL5OAAAAAAAAAPBHsbGxslqtbm01NTU6fPiwYmNjfZQVAAAAAAAAugoKswAAAAAAAIBTSE5O1vvvvy+73e5qW79+vYxGo5KSknyYGQAAAAAAALoCjjIEAAAAAAAATiE9PV1lZWXKycmRxWJRVVWVCgoKlJ6erqioKFe/jIwMHTx4UJs2bXK1ffzxxzpw4ICOHj0qSdq5c6ckKTIyUmPGjOncGwEAAAAAAIBPUJgFAAAAAAAAnILZbFZpaanmzZunnJwchYWFKS0tTbm5uW79HA6HWlpa3NpWrFihN9980/V62bJlkqQxY8aorKys45MHAAAAAACAz/ldYdbevXuVl5enHTt2KCwsTJMnT9aMGTMUGBjYZpzT6dTSpUv18ssv6+jRoxo6dKhmz56tESNGuPWrqqpSXl6etmzZooCAAE2YMEGzZ89W79693fq9++67evbZZ1VZWano6Gj9+te/1tSpU936xMfHt8rjggsu0NatWz27eQAAAAAAAPiVuLg4LV++vM0+pyq0ys/PV35+fgdlBQAAAAAAgK7ArwqzbDabMjIyNHDgQBUWFqqqqkr5+flqaGjQY4891mbs0qVLtWjRIs2aNUvx8fFasWKFsrKytGbNGg0YMECS1NzcrDvuuEOStGDBAjU0NGj+/Pm6//77VVxc7Brrww8/1D333KO0tDQ9/PDD+tvf/qZHHnlEYWFhmjRpktt1b731Vl177bWu1wEBAd76OAAAAAAAAAAAAAAAAAB0UX5VmFVeXq66ujoVFRUpIiJCktTS0qK5c+fKYrEoKirqlHGNjY0qLi5WVlaWMjMzJUkJCQmaNGmSSkpKNGfOHEnShg0btGfPHq1du1axsbGSJJPJpGnTpmnXrl0aPny4JOn555/X8OHD9cQTT0iSrrjiCu3fv1+LFi1qVZjVr1+/VrtyAQAA+KOO3Jn0/fff16uvvqqdO3fq22+/1UUXXaQpU6YoIyODwnUAAAAAAAAAAAD0SEZfJ/B9FRUVSkxMdBVlSVJqaqocDkebxwNu375dtbW1Sk1NdbUFBgZqwoQJqqiocBs/Pj7eVZQlSUlJSYqIiNDmzZslSU1NTfrggw9aFWD953/+p/bu3auvv/76XG8TAACg053cmbS5uVmFhYXKzc3VqlWrzup4nZM7k2ZmZqq4uFh9+vRRVlaW9u/f7+pzssD+3nvv1ZIlS3T99dersLDwjLueAgAAAAAAAAAAAN2VX+2YZbVaNXXqVLc2k8mkPn36yGq1thknya3gSpLi4uJUWlqqhoYGBQcHy2q1tupjMBgUExPjGuOrr75Sc3PzKcc6ea3+/fu72pcsWaKnn35aISEhuvLKK/XAAw8oOjq6nXf+b06nU8ePH/c43mAwKCQkxON49Cz19fVyOp0+zYE5i/ZgzqKrOdc5Gxoa6rVcOnpn0jlz5igyMtIVN3bsWDkcDj377LP6zW9+4/YeAAAAAAAAAAAA0BP4VWGW3W6XyWRq1W42m2Wz2dqMCwwMVFBQkFu7yWSS0+mUzWZTcHCw7Ha7wsPD2xz/5D9/mMfJ19/P4/rrr9e4ceN0wQUX6IsvvtDzzz+vm2++WWvWrJHZbD7Lu3bX3Nys3bt3exQrSSEhIRo2bJjH8ehZKisrVV9f79McmLNoD+YsuppznbMJCQley+V0O5M+/vjj2rp1q6ZMmXLKuLZ2Jt20aZOr7VSFV0OHDpXT6dThw4cpzAIAAAAAAAAAAECP41eFWV3N/PnzXX8ePXq0EhISNGXKFK1atUrZ2dkejRkQEKBBgwZ5nJPBYPA4Fj1PTEyMX+w+BJwt5iy6Gn+Ysyd19M6kp7J9+3YFBga67TbaXuwmis7kDzszAl0Nz1m0hz/tJgoAAAAAAAB0Br8qzDKZTKqpqWnVbrPZ2tyBymQyqampSY2NjW67ZtntdhkMBlesyWRSbW3tKcfv16+fJLn6/jAPu93u9v6pDBkyRDExMfr0009P2+dMDAYDP2hEp+EXKOhqmLPoavxpznb0zqQ/tG/fPr300ktKT09XWFiYx3mzmyg6kz/szAh0NTxn0R7+tJsoAAAAAAAA0Bn8qjArNja21Y4NNTU1Onz4cKtdGn4YJ333A74hQ4a42q1Wq6Kjo12/LIyNjdUXX3zhFut0OlVZWamkpCRJ0sUXX6yAgABZrVZdddVVbmN9/1oAAAA4tdraWk2fPl39+/dXbm7uOY3FbqLoTP60yx3QVfCcRXvwnAUAAAAAAEBP41eFWcnJyVq8eLHbjg7r16+X0Wh0FU6dyqhRo9S7d2+tW7fOVZjV3NysjRs3Kjk52W38t956S/v27dPAgQMlSdu2bVN1dbVSUlIkSYGBgRo7dqw2bNigjIwMV+zatWsVFxfX5lE8u3fvVmVlpaZMmeLxZwAAANAROnpn0pOampqUk5Mjm82mV1555Zx3AmU3UXQmf9rlDgC6I56zAAAAAAAA6Gn8qjArPT1dZWVlysnJkcViUVVVlQoKCpSenq6oqChXv4yMDB08eFCbNm2SJAUFBclisaiwsFCRkZEaPHiwVq5cqerqak2bNs0VN3HiRBUXF2v69OmaOXOm6uvrVVBQoHHjxmn48OGufnfddZduu+02zZkzR6mpqfrggw/09ttv65lnnnH1KSkp0VdffaWxY8cqMjJSe/bs0eLFi3XhhRfqxhtv7IRPCwAA4Ox19M6kkuRwODRr1ix9+umnWrFiheuoaAAAAAAAAAAAAKAn8qvCLLPZrNLSUs2bN085OTkKCwtTWlpaqyNwHA6HWlpa3Nqys7PldDq1bNkyHT16VEOHDlVJSYkGDBjg6hMQEKAXXnhBeXl5mjlzpnr16qUJEybo4Ycfdhvr8ssvV2FhoZ599lm99tprio6OVl5enlJTU119YmJitHHjRq1bt051dXX60Y9+pJSUFM2YMcO12xcAAIC/6OidSSVp7ty5+stf/qKSkhLFx8d33M0AAAAAAAAAAAAAXYBfFWZJUlxcnJYvX95mn7KyslZtBoNBFotFFoulzdioqCgVFhaeMY9rrrlG11xzzWnfHz9+vMaPH3/GcQAAAPxBR+9MunjxYpWXl2vatGkKDAzURx995Hpv0KBB6t27d6fdKwAAAAAAAAAAAOAP/K4wCwAAAN7X0TuTbt26VdJ3xz2XlJS4xb/00ksaO3ZsB90ZAAAAAAAAAAAA4J8ozAIAAOghOnJn0lPFAQAAAAAAAAAAAD2Z0dcJAAAAAAAAAAAAAAAAAEB3Q2EWAAAAAAAAAAAAAAAAAHgZhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAAAAAAAAAABeRmEWAAAAAAAAAAAAAAAAAHgZhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAAAAAAAAAABeRmEWAAAAAAAAAAAAAAAAAHgZhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAAAAAAAAAABeRmEWAAAAAAAAAAAAAAAAAHgZhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAAAAAAAAAABeRmEWAAAAAAAAAAAAAAAAAHgZhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAAAAAAAAAABeRmEWAAAAAAAAAAAAAAAAAHgZhVkAAAAAAAAAAAAAAAAA4GUUZgEAAAAAAAAAAAAAAACAl1GYBQAAAAAAAABAF/Dcc89pwoQJeu6553ydCgAAAADgLFCYBQAAAAAAAACAn2toaNDq1avlcDi0evVqNTQ0+DolAAAAAMAZUJgFAAAAAAAAAICfO3HihBwOhyTJ4XDoxIkTPs4IAAAAAHAmFGYBAAAAAAAAAAAAAAAAgJdRmAUAAAAAAAAA8EsOh9PXKaALYJ4AAAAA8Fe9fJ0AAAAAAAAAAACnYjQa9NzKrTpwyObrVHzuRHOD2+snFm9Ur4BgH2XjPy7qa1bOr5J8nQYAAAAAnBKFWQAAAAAAAAAAv3XgkE37DhzzdRo+53SckGSQ5JRk0P5vamQw1vs4KwAAAABAWzjKEAAAAADgt5577jlNmDBBzz33nK9TAQAA8CmDsZdC+w6VZFBo36EyGPneNQAA6Nn4uRGAroDCLAAAAACAX2poaNDq1avlcDi0evVqNTQ0nDkIAACgGwsfcIWiEm5X+IArfJ0KAADwAYfD6esU/AY/Nzo95gngX/hKDQAAAADAL504cUIOh0OS5HA4dOLECR9nBAAAAAAA4DtGo0HPrdyqA4dsvk7F51pONLsKkBxOpx5/boPO6xXg46x876K+ZuX8KsnXaQD4HgqzAAAAAMCPOBxOGY0GX6cBP8c8AQAAAACgZzpwyKZ9B475Og2/ENp3qI4f2q3QPkO1v6rW1+kAwClRmAUAAAAAfoRvPv5by4lmSQZJTslg0LziP/PNR/HNRwAAAAAAAOm7Y5454hmAv6MwCwAAAAD8DN98/De++QgAAAAAAAAA6KoozAIAAAAA+C2++QgAAAAAAAAA6KqMvk4AAAAAAAAAAAAAAAAAALobCrMAAAAAAAAAAAAAAAAAwMsozAIAAAAAAAAAAAAAAAAAL6MwCwAAAAAAAAAAAAAAAAC8zO8Ks/bu3avbb79dI0aMUFJSkgoKCtTU1HTGOKfTqSVLlmjcuHEaPny4brrpJn300Uet+lVVVWn69OkaOXKkxowZo0ceeUS1tbWt+r377rv65S9/qcsuu0wTJ07U66+/3qpPU1OT5s+fr6SkJI0YMUK33367rFarR/cNAADQ0fxlnQUAANCVdPQaCgAAoCthbQQAANA+flWYZbPZlJGRoebmZhUWFio3N1erVq1Sfn7+GWOXLl2qRYsWKTMzU8XFxerTp4+ysrK0f/9+V5/m5mbdcccd2rdvnxYsWKA5c+Zoy5Ytuv/++93G+vDDD3XPPfdoxIgRWrp0qVJTU/XII49o/fr1bv3y8vL06quvKjc3V4WFhWpqalJmZqZqamq884EAAAB4ib+sswAAALqSjl5DAQAAdCWsjQAAANqvl68T+L7y8nLV1dWpqKhIERERkqSWlhbNnTtXFotFUVFRp4xrbGxUcXGxsrKylJmZKUlKSEjQpEmTVFJSojlz5kiSNmzYoD179mjt2rWKjY2VJJlMJk2bNk27du3S8OHDJUnPP/+8hg8frieeeEKSdMUVV2j//v1atGiRJk2aJEn65ptv9Nprr+nxxx9XWlqaJOmyyy7T1VdfrfLycmVnZ3fERwQAAOARf1lnAQAAdCUdvYYCAADoSlgbAQAAtJ9f7ZhVUVGhxMRE12JOklJTU+VwOLR169bTxm3fvl21tbVKTU11tQUGBmrChAmqqKhwGz8+Pt71y0JJSkpKUkREhDZv3izpu+MJP/jgA1cB1kn/+Z//qb179+rrr7+WJG3ZskUOh8OtX0REhJKSktyuCQAA4A/8YZ0FAADQ1XT0GgoAAKArYW0EAADQfn61Y5bVatXUqVPd2kwmk/r06SOr1dpmnCS3XwRKUlxcnEpLS9XQ0KDg4GBZrdZWfQwGg2JiYlxjfPXVV2pubj7lWCev1b9/f1mtVp1//vkym82t+r322mvtuOt/a25ultPp1K5duzyKP8lgMOgXY/qoxXH+OY2D7us8o1Eff/yxnE6nr1ORxJzFmTFn0dV4a84GBQUpPj7eKzn5wzqrvVgbobPw9wy6GuYsuhp/XBudrY5eQ7UHayN0Jn/6u4Y5izPxp/kqMWdxZqyN/o21EboKf/q7hjmLM/Gn+SoxZ3FmXXltdLb8qjDLbrfLZDK1ajebzbLZbG3GBQYGKigoyK3dZDLJ6XTKZrMpODhYdrtd4eHhbY5/8p8/zOPk65Pvn24sk8nUZq5tMRgMbv88F6be7VvAomfyxlzzFuYszgZzFl2NP81Zf1hntRdrI3Q2f/p3ljmLs8GcRVfjT3P2bHX0Gqo9WBvBF/zl31vmLM6Gv8xXiTmLs+NPc/ZssTZCT+cv/94yZ3E2/GW+SsxZnB1/mrPe5leFWT3dyJEjfZ0CAACA32BtBAAA8G+sjQAAAP6NtREAAOgqjL5O4PtMJpNqampatdtstlZHBv4wrqmpSY2NjW7tdrtdBoPBFWsymVRbW9vm+Cf/+cM87Ha72/unG8tut7eZKwAAgC/4wzoLAACgq+noNRQAAEBXwtoIAACg/fyqMCs2NrbVGdQ1NTU6fPhwq3OnfxgnSZWVlW7tVqtV0dHRru1PTzW+0+lUZWWla4yLL75YAQEBrfr98Pzr2NhYHTlypNXWrFartc1cAQAAfMEf1lkAAABdTUevoQAAALoS1kYAAADt51eFWcnJyXr//fddu1NJ0vr162U0GpWUlHTauFGjRql3795at26dq625uVkbN25UcnKy2/ifffaZ9u3b52rbtm2bqqurlZKSIkkKDAzU2LFjtWHDBrdrrF27VnFxcerfv78k6corr5TRaNTGjRtdfWw2m7Zs2eJ2TQAAAH/gD+ssAACArqaj11AAAABdCWsjAACA9uvl6wS+Lz09XWVlZcrJyZHFYlFVVZUKCgqUnp6uqKgoV7+MjAwdPHhQmzZtkiQFBQXJYrGosLBQkZGRGjx4sFauXKnq6mpNmzbNFTdx4kQVFxdr+vTpmjlzpurr61VQUKBx48Zp+PDhrn533XWXbrvtNs2ZM0epqan64IMP9Pbbb+uZZ55x9bnwwguVlpamgoICGY1GRUVFqbi4WOHh4UpPT++ETwsAAODs+cs6CwAAoCvp6DUUAABAV8LaCAAAoP0MTqfT6eskvm/v3r2aN2+eduzYobCwME2ePFm5ubkKDAx09bn11lt14MABvfvuu642p9OpJUuW6OWXX9bRo0c1dOhQzZ49WyNHjnQbv6qqSnl5edqyZYt69eqlCRMm6OGHH1bv3r3d+v35z3/Ws88+q8rKSkVHR+vXv/610tLS3Po0NTXpmWee0Zo1a1RXV6dRo0bp0UcfVVxcXAd8MgAAAOfGX9ZZAAAAXUlHr6EAAAC6EtZGAAAA7eN3hVkAAAAAAAAAAAAAAAAA0NUZfZ0AAAAAAAAAAAAAAAAAAHQ3FGYBAAAAAAAAAAAAAAAAgJdRmAUAAAAAAAAAAAAAAAAAXkZhFgAAAAAAAAAAAAAAAAB4GYVZAAAAAAAAAAAAAAAAAOBlFGYBAAAAAAAAAAAAAAAAgJdRmAW/9dZbbyktLU0JCQkaNWqUUlNT9cgjj+jbb7/ttBweeughXXvtta7Xb7zxhuLj43X06NFOywFdT2FhoUaOHNlmn//5n//R+PHjfXZ9dE+FhYWKj493/W/s2LH61a9+pc2bN3fI9W699VZZLBa367dn7n399dcqLCxUVVWVW/sHH3yg+Ph4ffzxx17LFegOWBuhq2JtBF9hbQR0b6yN0FWxNoKvsDYCujfWRuiqWBvBV1gboTP18nUCwKksXbpUCxYsUGZmpu699145nU7t2bNHf/zjH3Xo0CGdf/75vk4RAPxScHCwSktLJUmHDh3S4sWLdeedd2rFihUaNWpUh177xhtvVEpKyln3P3DggIqKijRu3DhFRUW52i+55BK98soriouL64g0gS6JtREAeIa1EdA9sTYCAM+wNgK6J9ZGAOAZ1kboLBRmwS+VlZXphhtu0EMPPeRqS0lJ0R133CGHw+HDzADAvxmNRo0YMcL1+qc//alSUlK0evXqDl9EXnjhhbrwwgvPeZzevXu73QMA1kYA4CnWRkD3xNoIADzD2gjonlgbAYBnWBuhs3CUIfyS3W5X3759T/me0fjvaTt+/Hg98cQTWr58uVJSUjRy5Eg99NBDampq0u7du5Wenq4RI0YoLS1Nn3/+uds4y5Yt09SpU5WQkKDExERZLBZVVlZ26H2hZ6qqqtKdd96pn/70p7rqqqu0dOnSU/b75ptvNGvWLI0dO1bDhw/XLbfcok8++cStz+rVq/WrX/1KY8aM0ejRo3Xrrbdq165dnXEb6KKioqIUGRmpgwcPutp27Nih2267TSNGjFBCQoLuv//+Vlta//73v9d1112nkSNH6qqrrtLMmTN16NChNq/1w21Xm5ubNX/+fI0bN06XXnqprrzySt15552qqanRBx98oNtuu02SlJaW5toqVjr1tqsOh0MvvviiUlNTdemllyopKUn33nuvampqzvkzAroC1kboTlgbwZdYGwHdA2sjdCesjeBLrI2A7oG1EboT1kbwJdZG6CjsmAW/dMkll6i8vFz9+/fXuHHj1KdPn9P2/fOf/6yf/OQneuKJJ7R//37l5+crICBAH330kTIzM3XBBRfo97//ve677z6tXbvWtQj95ptv9N///d+Kjo5WbW2tysvLlZ6erg0bNigiIqKT7hQ9wd13362qqirNmTNH4eHhWrp0qf71r3+pV69/P4JtNptuvvlmhYaG6re//a3Cw8NVVlamjIwMbdy40bXV8Ndff63rr79eF198sZqamvTOO+/olltu0VtvvaWYmBhf3SL8WF1dnWw2m/r37y/puwXkrbfeqpSUFD3zzDOqr6/Xs88+q7vvvluvvPKKK+7bb7+VxWJR3759dfToUb344ou69dZb9c4777jN3bYUFxervLxcs2bN0k9+8hMdO3ZMW7duVVNTky655BI99thjeuKJJ/TUU08pNja2zbHmzZunV155RRkZGUpKSlJdXZ3++te/6vjx4woPD/f8AwK6CNZG6E5YG8GXWBsB3QNrI3QnrI3gS6yNgO6BtRG6E9ZG8CXWRugoFGbBLz3++OO655579Oijj0qS+vfvr6uvvlqZmZmuB+H3/eEPf1BgYKAk6f/+7/+0atUqLV26VMnJyZK+qwq988479cUXX2jIkCGSpIcfftgV39LSoqSkJCUmJmrDhg266aabOvoW0UNUVFTok08+0fLly5WYmChJGjt2rFJSUtz+Y6W0tFR2u12vvvqqa8GYmJioiRMnqqSkRA888IAk6Z577nHFOBwOJSUladeuXXrzzTc1c+bMzrsx+LUTJ05I+u487N/97ncKCwtzVdIvWLBAl156qYqKimQwGCRJgwcP1rXXXqvNmze7zrN+6qmnXOO1tLRo5MiRSk5O1t/+9jddeeWVZ5XHxx9/rCuvvFK33HKLq23ixImuPw8aNEiS9JOf/ESXXXbZaceprKzUypUrlZubK4vFcsqxgO6OtRG6C9ZG8AXWRkD3w9oI3QVrI/gCayOg+2FthO6CtRF8gbUROgOFWfBLgwcP1ttvv61t27Zpy5Yt+vvf/66ysjK98cYbWrFihYYOHerqO3r0aNcCUpIGDhwoo9GoK664wq1Nkv71r3+5FpEfffSRFi5cqH/+85+qrq529d23b1+H3ht6ll27dik8PNy1gJSk8PBw/exnP9M///lPV9vWrVs1duxYmc1m1wLAaDRq9OjRbltP7t27V08//bR27Njhtk0m8xYnHT9+XJdcconr9Xnnnac//OEPio2NVX19vbZv364HHnhALS0trj4DBw5Uv3799PHHH7sWkZs3b9bzzz+vPXv2qLa21tV33759Z72IHDZsmEpKSlRYWKiUlBRdeumlbltnn62//e1vcjqdSktLa3cs0F2wNkJ3wdoInY21EdA9sTZCd8HaCJ2NtRHQPbE2QnfB2gidjbUROguFWfBbgYGBSklJcT3Q3nvvPVksFj333HMqKipy9TOZTG5xAQEBCg4OdltYBgQESJIaGxslSQcPHlRWVpYuvfRSzZ07V3379lVAQIAsFourD+ANhw4dUmRkZKv2kxX8Jx07dkwfffSR21/+J1188cWSpNraWmVlZSkyMlIPPfSQoqOjFRQUpEcffZR5C5fg4GD97//+r5xOp/bt26cFCxbowQcf1B//+Ec5nU61tLToqaeecqveP+lf//qXpO/+4+fuu+/WNddco+zsbJ1//vkyGAz6r//6r3bNtbvuuktGo1FvvvmmioqKFBkZqVtuuUU5OTmubxacjerqavXq1avVvzdAT8PaCN0BayN0NtZGQPfF2gjdAWsjdDbWRkD3xdoI3QFrI3Q21kboLBRmocu46qqrNGTIEO3du/ecx3rvvfd0/PhxFRUVuRahJ06ckM1mO+exge87eZbwD32/Ml+SzGazrrrqKt13332t+p78D6KPPvpI33zzjYqLi13fUpGkmpoaXXjhhV7OHF2V0Wh0bWE6fPhwxcTE6L/+67/03HPP6cEHH5TBYJDFYtHPf/7zVrE/+tGPJEl/+tOf1Lt3bz377LOuavwDBw60O5fAwEBNnz5d06dP15dffqnXX39dhYWF6t+/v66//vqzHiciIkInTpzQt99+y0IS+B7WRuiKWBuhs7E2AnoO1kboilgbobOxNgJ6DtZG6IpYG6GzsTZCZ2n/3mdAJzhy5EirtoaGBv3rX//SBRdccM7jNzQ0yGAwqFevf9cmrlu3zrXdJeAtl112mWpqarRt2zZXW01Njd5//323fj/72c+0d+9excXF6bLLLnP7X3x8vKTv5q3072+rSNL27ds9+ssdPcdll12mX/ziF3rjjTdUV1enESNGyGq1tppnl112mfr37y/pu7kWEBDgVoH/xz/+8Zzy+PGPf6yZM2cqIiJCVqtVUutvXp3OFVdcIYPBoNdff/2ccgC6MtZG6C5YG8HXWBsB3QNrI3QXrI3ga6yNgO6BtRG6C9ZG8DXWRugo7JgFv3Tdddfp6quv1pVXXqm+ffuqqqpK//u//6tjx44pIyPjnMc/eVb27NmzlZ6erj179ujFF19stYUrcK6Sk5N1ySWX6De/+Y1mzZql8PBwLVmyRL1793brl5mZqT/+8Y/67//+b912222Kjo7W0aNHtXPnTkVFRSkzM1MjRoxQaGio5s6dq1//+teqqqpSYWGhoqKifHR36CruvvturV27VqWlpXrggQeUkZGhGTNm6Be/+IVMJpO++eYbvf/++5oyZYrGjh2rpKQklZaWat68eZowYYJ27NihNWvWeHTdSy65RMOGDVNISIj+8pe/yGazuZ7BAwcO1HnnnafXX39dvXr10nnnnef6ZsL3xcTEKD09XQsXLvz/27vzoKrKBo7jP0BM1DRQKRVFaDpXg0wtGXF5HUEjccFlUkvRFmckyQo0lywM0TETLZdMDbchcEtt1MYVJJ3GpFGqmcqUMjCb3ChFQyU47x8O93oFF/TKZfl+ZprJc57znOfeyeb7x3PP0fnz5xUcHKzLly8rIyND48aN4+8AagTaCNUFbYTKgDYCqj7aCNUFbYTKgDYCqj7aCNUFbYTKgDbC/cDGLFRKr732mvbu3av3339feXl58vT0lMVi0apVq6z/87kXFotFs2bN0qJFizRmzBi1adNG8+fP15tvvnnviweu4+LiosWLF2vatGmKi4tTgwYNFBkZqbNnzyotLc06ztPTU+vWrdNHH32kxMRE/fPPP2rUqJGefPJJ9erVS5LUuHFjzZ8/Xx988IHGjh2rVq1aKT4+XklJSc76eKgi/P39FR4erjVr1mjMmDFKTU3VwoULNWXKFBUWFuqRRx5Rp06d5OvrK0nq3r27JkyYoM8++0ybNm1Shw4dtHTpUoWFhZXrvh06dND27du1cuVKFRUVyc/PT4mJiercubMkycvLS3FxcUpKStKWLVv033//6Zdffilzrri4OPn4+GjDhg1avXq1HnroIXXs2FH16tW7ty8HqCJoI1QXtBEqA9oIqPpoI1QXtBEqA9oIqPpoI1QXtBEqA9oI94OLaZqmsxcBAAAAAAAAAAAAAAAAANWJq7MXAAAAAAAAAAAAAAAAAADVDRuzAAAAAAAAAAAAAAAAAMDB2JgFAAAAAAAAAAAAAAAAAA7GxiwAAAAAAAAAAAAAAAAAcDA2ZgEAAAAAAAAAAAAAAACAg7ExCwAAAAAAAAAAAAAAAAAcjI1ZAAAAAAAAAAAAAAAAAOBgbMwCAAAAAAAAAAAAAAAAAAdjYxaASslisWj69OlOuffChQtlsViUl5d3y3GTJ09WSEhIBa0KAADUZLQRAACADW0EAABgQxsBQOVWy9kLAFCz5ObmKikpSV9//bVOnz4td3d3GYah3r17a+jQoapTp46zl1glFBcXa8uWLUpJSVFOTo4KCwvl7e2tJ598Ui+88ILatWsnScrOztb27ds1cOBA+fj4OHwdKSkp8vDw0KBBgxw+NwAANQFt5Bi0EQAA1QNt5Bi0EQAA1QNt5Bi0EQBnY2MWgAqTkZGhN954Q7Vr11ZERIQMw1BhYaEOHTqkOXPmKDs7WwkJCc5e5h1LSEiQaZpOufeMGTOUkpKi0NBQ9evXT25ubjp+/Lj279+vFi1a2EXkokWLFBQUdF8ics2aNfL09CQiAQC4C7SR49BGAABUfbSR49BGAABUfbSR49BGAJyNjVkAKsSJEycUExOjZs2aafXq1fL29raeGz58uHJycpSRkeG8Bd4Fd3d3p9z37NmzSk1N1ZAhQ0pFt2mat31c7M2YpqkrV67wCwsAACoAbeQ4tBEAAFUfbeQ4tBEAAFUfbeQ4tBGAysDV2QsAUDMkJSXp33//1cyZM+0CsoSvr69GjRpV6viePXvUt29fBQYGqk+fPtq3b5/d+Zu9k7rkndbXK3nH9u3mLMvJkyfVq1cv9e3bV2fPni3z3n/88YcsFouWL1+udevWqWfPngoMDNTgwYP1ww8/lJpz+/btCg8P1xNPPKG+fftq9+7dd/SO7T/++EOmaapDhw6lzrm4uKhRo0aSpE2bNumNN96QJI0cOVIWi0UWi0UHDx6UJIWEhGjMmDHav3+/Bg0apLZt22rt2rWSpI0bN2rkyJEKDg5WYGCgwsPDlZqaanevkJAQHTt2TJmZmda5IyMjrecvXLigmTNnqnv37goMDFSvXr20bNkyFRcX283z999/66233lKHDh309NNPa9KkSTpy5IgsFos2bdpkXY/FYtFPP/1U6jMvWbJEbdq00alTp275vQEAUJnQRrQRbQQAgA1tRBvRRgAA2NBGtBFtBFQvPDELQIXYu3evWrRoUWb43MyhQ4e0a9cuvfDCC6pXr56Sk5P1+uuva+/evfL09LyrddzNnLm5uRo1apQaNmyoFStWyMvL65b32LZtmy5duqShQ4fKxcVFSUlJGjdunPbs2WP9RUBGRoZiYmJkGIbGjx+v8+fPa+rUqXr44Ydv+xmaNWsmSdqxY4eeffZZeXh4lDmuY8eOioyMVHJysqKiouTv7y9JevTRR61jjh8/rvHjx2vo0KEaMmSI/Pz8JF17nOpjjz2mkJAQ1apVS3v37lV8fLxM09Tw4cMlSW+//bYSEhJUt25dRUVFSZIaN24sSSooKNCIESN06tQpDRs2TE2bNlVWVpbmzZunM2fOaOrUqZKuvdf71Vdf1Q8//KDnn39e/v7+SktL06RJk+w+S1hYmKZPn66tW7fq8ccftzu3detWBQUF3dF3BwBAZUEb0Ua0EQAANrQRbUQbAQBgQxvRRrQRUM2YAHCf5efnm4ZhmK+++uodX2MYhhkQEGDm5ORYj/3888+mYRhmcnKy9dikSZPMHj16lLp+wYIFpmEYdzVnybXnzp0zs7Ozza5du5qDBw82//nnH7v5brz3iRMnTMMwzKCgILuxe/bsMQ3DMNPT063H+vbta/7vf/8zL168aD128OBB0zCMMj/PjSZOnGgahmF27NjRjI6ONpcvX25mZ2eXGrd9+3bTMAzzm2++KXWuR48epmEY5r59+0qdKygoKHXs5ZdfNkNDQ+2O9enTxxwxYkSpsR9//LHZrl078/jx43bHExMTzTZt2ph//vmnaZqmuXPnTtMwDHPVqlXWMUVFRebIkSNNwzDMjRs3Wo/HxsaaXbt2NYuKiqzHfvzxx1LjAACo7Ggj2qgEbQQAAG1EG9nQRgAA0Ea0kQ1tBFQfvMoQwH138eJFSVK9evXKdV3nzp3VsmVL659bt26t+vXr68SJE3e9lvLMeezYMUVGRqp58+ZatWqVGjZseEf3CA8Ptxv79NNPS5L1HqdOndLRo0c1YMAAu+8kKChIhmHc0T1mzZqluLg4+fj4aPfu3Zo9e7bCw8M1atSocj1+1MfHR926dSt1/Pp3Yufn5ysvL09BQUE6ceKE8vPzbzvvjh079NRTT6lBgwbKy8uz/tO5c2cVFRXp22+/lSTt379f7u7uGjJkiPVaV1dX6y8IrhcREaHTp09bHxsrXdvZX6dOHT3zzDN3/JkBAHA22og2oo0AALChjWgj2ggAABvaiDaijYDqh1cZArjv6tevL0m6dOlSua5r2rRpqWMNGzbUhQsX7not5ZkzKipKjRs31vLly8sVwDfeoyQoS+7x559/SpJdzJbw9fUt853PNyoJreHDh+vvv//W4cOHtXbtWu3bt08xMTGl3l19Mz4+PmUeP3TokBYuXKjvvvtOBQUFdufy8/P14IMP3nLenJwc/fLLLwoODi7zfF5enqRr30WTJk1KPTq2rO+mS5cuatKkibZs2aLg4GAVFxdr27ZtCg0Ntf43BgBAVUAb0UY3oo0AADUZbUQb3Yg2AgDUZLQRbXQj2gio+tiYBeC+q1+/vry9vXXs2LFyXefm5lbmcdM0rf/u4uJS5piioqK7nrNEWFiYNm/erK1bt2rYsGG3W+5d3cMRPD09FRoaqtDQUEVGRiozM1MnT55U8+bNb3vt9bv4S+Tm5urFF1+Uv7+/Jk+erKZNm8rd3V1fffWVVq1apeLi4tvOW1xcrC5dumj06NFlnm/VqtVt57iRm5ub+vXrp/Xr1+u9997T4cOHdfr0afXv37/ccwEA4Ey00c3v4Qi0EW0EAKhaaKOb38MRaCPaCABQtdBGN7+HI9BGtBHgDGzMAlAhevTooXXr1ikrK0vt27d32LwNGjQoc2d+yQ76ezFx4kS5ubkpPj5e9erVU79+/e55Tklq1qyZpGuxdqOcnJx7mjswMFCZmZk6c+aMmjdvftPIvpX09HRdvXpVn3zyiXWtkuwed1riZvO3bNlS//77rzp37nzLezVr1kwHDx5UQUGB3Q7/sr4b6dqjV1esWKH09HTt27dPXl5e6tq16518LAAAKhXayIY2sqGNAAA1FW1kQxvZ0EYAgJqKNrKhjWxoI6DqcnX2AgDUDKNHj1bdunX1zjvv6OzZs6XO5+bmavXq1eWet2XLlsrPz9eRI0esx06fPq3du3ff03pLJCQkKCwsTJMnT1ZaWppD5nz44YdlGIa++OILu0fRZmZm6ujRo7e9/syZM8rOzi51/OrVqzpw4IBcXV2tjy0tCbM7eYd1iZJfJ1z/a4T8/Hxt3Lix1FgPD48yI753797KysrS/v37S527cOGC/vvvP0lS165dVVhYqPXr11vPFxcXKyUlpcy1tW7dWhaLRZ9//rl27dqlPn36qFYt9hgDAKoe2siGNqKNAACgjWxoI9oIAADayIY2oo2A6oC/eQAqRMuWLZWYmKiYmBiFh4crIiJChmHo6tWrysrK0o4dOzRo0KByzxseHq7ExES99tprioyM1OXLl7VmzRr5+fnpxx9/vOd1u7q6as6cOYqOjtabb76pZcuW3fQdz+URExOjsWPH6vnnn9egQYN04cIFpaSkyDCM2743/K+//tJzzz2nTp06KTg4WI0bN9a5c+f05Zdf6siRIxo1apS8vLwkSW3atJGbm5s+/fRT5efnq3bt2urUqZMaNWp00/m7dOkid3d3RUVFadiwYbp06ZI2bNigRo0a6cyZM3ZjAwICtGbNGi1evFi+vr7y8vJScHCwXnnlFaWnpysqKkoDBw5UQECACgoKdPToUe3cuVNpaWny8vJSz5491bZtW82ePVu5ubny9/dXenq6zp8/L6nsXw8MGDBAs2fPliQeuQoAqLJoI3u0EW0EAKjZaCN7tBFtBACo2Wgje7QRbQRUdTwxC0CFCQ0N1ZYtWxQWFqa0tDTFx8dr7ty5OnnypCZPnqx33nmn3HN6enpq0aJF8vDw0Jw5c7R582bFxsaqR48eDlu3u7u7FixYoHbt2mns2LH6/vvv73nOkJAQzZs3T4WFhZo7d652796tWbNmyc/PTw888MAtr/Xz89Pbb78tNzc3paamatq0aVqyZIk8PDw0Y8YMTZkyxTq2SZMmio+P17lz5zR16lTFxsaW+cuA6/n7+2vBggVycXHR7NmztXbtWg0ZMkQjR44sNTY6Olrdu3dXUlKSYmNjtXjxYknXdv0nJyfrlVdeUWZmpmbOnKlly5bp999/17hx4/Tggw9KuvZLgqVLl6p3797avHmzPvzwQ3l7eysuLk6Syvwu+vXrJzc3N7Vq1Upt27a99RcNAEAlRhvZ0Ea0EQAAtJENbUQbAQBAG9nQRrQRUNW5mNc/Vw8A4FQRERHy8vLSypUrnb0Up9qzZ4+io6OVmpqqp556yu5cXl6eunXrprFjxyo6OtpJKwQAABWBNrqGNgIAABJtVII2AgAAEm1UgjYCKj+emAUATlBYWGh9J3SJgwcP6siRIwoKCnLSqpzj8uXLdn8uKipScnKy6tevr4CAgFLjN2/erKKiIkVERFTUEgEAwH1GG9nQRgAAgDayoY0AAABtZEMbAVVTLWcvAABqolOnTumll15S//795e3trd9++01r165VkyZNNGzYMGcvr0IlJCTo8uXLat++va5evapdu3YpKytLsbGxqlOnjnXcgQMH9Ouvv2rJkiXq2bOnfHx8nLhqAADgSLSRDW0EAABoIxvaCAAA0EY2tBFQNbExCwCcoGHDhgoICNCGDRuUl5enunXrqnv37powYYI8PT2dvbwK1alTJ61cuVIZGRm6cuWKfH199e6772rEiBF24xYvXqysrCy1b99e7777rpNWCwAA7gfayIY2AgAAtJENbQQAAGgjG9oIqJpcTNM0nb0IAAAAAAAAAAAAAAAAAKhOXJ29AAAAAAAAAAAAAAAAAACobtiYBQAAAAAAAAAAAAAAAAAOxsYsAAAAAAAAAAAAAAAAAHAwNmYBAAAAAAAAAAAAAAAAgIOxMQsAAAAAAAAAAAAAAAAAHIyNWQAAAAAAAAAAAAAAAADgYGzMAgAAAAAAAAAAAAAAAAAHY2MWAAAAAAAAAAAAAAAAADjY/wGQ5m7NMkjF4wAAAABJRU5ErkJggg==", | |
| "text/plain": [ | |
| "<Figure size 2412.22x600 with 4 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| " -> Creating plot for: Std Dev\n", | |
| " ✅ Plot saved to dask_benchmark_std_dev.png\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAACWYAAAJrCAYAAABpk9gQAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAA5iVJREFUeJzs3XlY1OX+//HXjIAIOJCGuJaiSW6EoiJiapopWkdzSVoUtYxKLbFOaadM04yorETLDZc8Lpm5tIlpmX4Vs1xyy7REyyWRUjYB2eb3hz/mNLHIMjggz8d1nevqc8+9vD/MgO8z8577NpjNZrMAAAAAAAAAAAAAAAAAADZjtHcAAAAAAAAAAAAAAAAAAHCjoTALAAAAAAAAAAAAAAAAAGyMwiwAAAAAAAAAAAAAAAAAsDEKswAAAAAAAAAAAAAAAADAxijMAgAAAAAAAAAAAAAAAAAbozALAAAAAAAAAAAAAAAAAGyMwiwAAAAAAAAAAAAAAAAAsDEKswAAAAAAAAAAAAAAAADAxijMAgAAAAAAAAAAAAAAAAAbc7B3AAAAAAAA4Prr0aOHzp49a7k2GAyqUaOGatasqVtvvVWtW7dWcHCwfH197RilNHHiRK1bt06vv/66Bg4cWOb5oqKiNHv2bKs2o9GomjVrqlmzZgoODlZISIgcHR3LvFZxffLJJ1q+fLni4uKUnp4uSfr666/VsGHD6xYDSi8zM1OzZ89WTEyMzp07p6ysLDVo0EDffPONvUMr0pYtW7RmzRodPnxYiYmJql69umrVqqVbbrlF7dq10z333KPbbrvNpmuuXbtWkyZN0v3336+IiIhijTlz5ox69uxp1WY0GuXq6ip3d3fddttt8vPz03333acGDRrYNF4AAAAAAICyojALAAAAAIAqrF27drr11lslSRkZGbp06ZKOHj2q77//XosWLVLHjh01Y8YMNWrUyM6R2tbNN9+sO++8U5KUlZWlkydPau/evdq7d6+++OILLVq0SC4uLuUex7fffqsXX3xR1atXV+fOneXh4SFJ12Vt2Ma7776r6Oho3XzzzerZs6dq1Kihm266yd5hFSonJ0fPP/+8Pv/8c0nSbbfdJl9fXzk7O+vcuXPas2ePduzYodTUVL3wwguWcXkFUvYsOuvdu7fld+Py5ctKSEhQbGystm7dqnfffVcPPPCAXnjhBbm6utolPgAAAAAAgH+iMAsAAAAAgCpsyJAh+XaiMpvN2r59u2bMmKHvv/9eISEhWrVq1Q1VnOXt7Z1vx55vvvlGY8eO1f79+7VgwQI988wz5R5HTEyMJOmll17SAw88UO7rwfbynsPly5ercePG9g2mGFatWqXPP/9crq6uev/999WpUyerx9PT07V161ZlZ2fbKcLCPf/88/l2ksvIyNAnn3yit99+Wx999JFOnDihxYsXy8nJyU5RAgAAAAAA/I/R3gEAAAAAAICKxWAwqFu3bvr444/VuHFj/fnnn3rppZfsHVa569Gjh/71r39JkjZu3Hhd1jx37pwkWXYtQ+WT9xxWhqIsSfriiy8kSY888ki+oixJqlGjhvr27Wv5XajonJ2d9fDDD2vZsmWqXr269uzZowULFtg7LAAAAAAAAEkUZgEAAAAAgEKYTCa9+OKLkqTvvvtOhw8ftnr8119/1axZsxQSEqI777xTrVu3VkBAgEaMGKEvv/yy0HljY2P1xBNPqHPnzmrVqpU6dOige+65R88995x++OGHYse3fft2tWvXTm3atLEUm5RVq1atJElnz561as/IyNCiRYv0wAMPqH379mrTpo169+6tyMhIXbp0Kd88a9eulY+PjyZOnKjExES99tpruvvuu9W6dWsNGzZMEydOlI+Pj3bv3i1JGj58uHx8fCxj/u7gwYN65pln1KVLF7Vu3VqBgYF64okntHPnzgLvIW/utWvX6vjx4xo/fry6dOmiFi1aKCoqSpI0bNgwy/o//vijHn/8cQUEBKht27Z65JFHtGfPHst827dvV2hoqDp06KC2bdtq5MiROnLkSIFrx8bGatq0aerfv78CAgLUunVrde3aVePHj9fBgwcLHBMVFSUfHx9FRUXp4sWLmjp1qrp166bWrVurW7dumjZtmpKTkwscK0knT57UlClT1Lt3b91xxx1q166d+vbtqylTpuj48eP5+iclJWnWrFnq37+/2rZtqzvuuEP33Xef3n//faWnpxe6zj/16NFDPj4+MpvNkmR5/vJ+9n/3xRdfKDQ0VB07dlTr1q111113adKkSTp58mSRc585c0ZbtmzR8OHD1bFjR6vXTGn99ddfkqRatWoVe8zEiRPVs2dPSVd/N/5+rz4+PlZ9s7OztWTJEt13331q06aNOnXqpHHjxunYsWNlivtaWrVqpUceeUSStHTp0gJ3/CrJcz9hwgT5+Pho/vz5ha65detW+fj4aMCAATa9FwAAAAAAcOPgKEMAAAAAAFCorl27ysPDQ4mJiYqNjVXr1q0tjy1evFhr1qyRt7e3mjdvLpPJpD/++EO7d+/Wrl27dODAAU2aNMlqvnXr1lnafH19FRAQoIyMDMXHx+vLL7/UTTfdpA4dOlwzrlWrVunVV19VzZo1NX/+fLVv394m95uamipJVsegxcfH67HHHtPx48fl4eGhNm3ayNXVVT/99JOio6MVExOjZcuWqUGDBvnmu3TpkgYNGqSUlBT5+/urVatWcnR0lL+/vyTp//7v//Tnn3+qS5cu8vT0lCTLY5K0evVqvfLKK8rNzVXLli0VEBCgs2fPauvWrdq6davGjRunsWPHFngv+/fv1yuvvCJPT0+1b99eGRkZcnV1terz7bff6sMPP1Tz5s3VuXNnnTx5Uj/88INGjhyppUuX6ujRo5o+fbruuOMOBQUF6ejRo4qNjdUjjzyi9evX59vp65VXXtEff/yh2267Te3atZODg4Pi4uK0ceNGbd68WTNnzlTv3r0LjPePP/7Q/fffr+zsbLVr105XrlzRvn379N///lcHDhzQypUr5ejoaDXms88+04svvqjMzEzVr19f3bp1U25urk6fPq1Vq1apdu3aat68uaX/r7/+qscee0x//PGHPD095e/vLwcHBx06dEjvvfeevvrqKy1btkw1a9YsMMa/6927ty5duqR169ZJku6//37LY7fccoukq8eCTpw4UevXr5eDg4Pat2+v2rVr68iRI1q7dq02btyoWbNmqWvXrgWusXjxYv33v/9V69atdeedd+rChQuqVq2apKvFf5MmTVKDBg30zTffXDPePPXq1dOpU6e0bt06DRo0qFj36u/vr7S0NG3atEkuLi6FPoe5ubl65plntGXLFjk6OiogIEAmk0kHDhzQkCFDNGjQoGLHWRr/+te/FB0draSkJB0+fFh+fn6Wx0r63A8cOFBffPGF1q1bp8cff7zA9fIK8Mr7vgAAAAAAQOVFYRYAAAAAACiUwWBQy5YtFRsbq19++cXqsf79++uJJ55Qo0aNrNrj4uI0cuRILVmyRP369ZOvr6/lsdmzZ8tsNmv58uX5iqn++usvxcfHFxmP2WzWW2+9pYULF+qWW27R/Pnz1aRJkzLe5f/mzitwadGihaVt/PjxOn78uAYPHqxJkybJzc1N0tWdgd5++20tWrRIkyZN0ocffphvzm+//VaBgYGaPXu2ZVyeIUOGaNiwYfrzzz8tO1b93bFjxzR16lSZzWa98cYbVrvybNu2TWPGjFFUVJTatm2roKCgfGuvXr1ajz/+uMLDw2U0Frxp+uLFi/XGG2+of//+lraIiAgtXrxYL774ouLj47Vo0SIFBgZKknJychQeHq5NmzZpwYIFmj59utV8L7zwgjp06CB3d3er9i1btuiZZ57R5MmT1a1bNzk7O+eL5ZNPPtHAgQM1depUS2HcH3/8oaFDh+rQoUPatGmT7r33Xkv/w4cPa9KkScrOztZLL72khx9+2Oo+z549a7WbWUZGhp588kn98ccfevLJJ/XUU09Z1klPT9dLL72kzz//XDNmzNDrr79e4M/rn/cqyVKYFRERka/PqlWrtH79et10001avHix1etq9uzZmj17tp599llt2rSpwB2sVq5cqffff9+yW5UtPPLII9q1a5d+/vln3XXXXbrrrrvUtm1btWrVSi1atLAqSswzZMgQBQYGatOmTbrpppsKvNe8eLds2aKbb75ZH374oZo2bSrp6u/K9OnTtWLFCpvdR0GaN28uR0dHZWVl6ZdffrEUZpXmue/cubPq16+vuLg4/fjjj1ZFXpJ08eJFbd26VY6OjlavSwAAAAAAgL/jKEMAAAAAAFCkm266SZKUmJho1d6xY8d8RVmS5O3traeeekqSFBMTY/XYX3/9pZo1axa4w1Xt2rXVsmXLQuO4cuWKwsPDtXDhQvn5+emjjz6ySVFWVlaWfv31Vz377LOW4/ZCQ0MlXd3Rat++fWrRooWmTp1qVVzl4OCgf//732revLl2795d4LF5jo6OmjZtWr6irOL48MMPlZ2drV69euU7Kq1bt24aOnSoJCk6OrrA8Y0bN9b48eMLLcqSru769PeiLEl64oknJF09IvDBBx+0FGVJUrVq1RQWFiZJ2rVrV7757r777nxFWXntffr0UWJiYqFH8dWtW1eTJ0+2KgyqV6+e5Xi62NhYq/4ffPCBsrKy9Mgjj2jYsGH57rNBgwZWO7ytW7dOv//+u+666y6NHz/eap0aNWro1VdfVe3atfXpp58qKSmpwBhLatGiRZKkMWPGWIqypKsFj2PHjpWPj4+Sk5O1evXqAscPGDCg0KKsmjVrqkmTJgX+Dhbl7rvv1muvvSYPDw+lpKTo008/1dSpUy3HdI4bN67QYyevZenSpZKksWPHWoqypKu/K5MmTbLsCldejEajPDw8JFn/vSrNc280Gi2/d/88mlK6ultbVlaWevToYfkbCQAAAAAA8E/smAUAAAAAAIqUm5sr6WoxyT9dvnxZ27dv19GjR3Xp0iVlZWVJkhISEiRdLe75uzZt2uj777/X888/r+HDh6tly5ZFFg7luXTpkkJDQ7V//37dc889evPNNwvcdam4vv/+e/n4+ORrd3R01LPPPqtevXpJurozlSTdc889cnDI/zaK0WhU+/btdfz4ce3fv9/q2Dzp6s5bJS2c+XuMkvUReX83ePBg/fe//9WePXuUk5NjOeIuz913352v7Z+6deuWr83Dw8NyfGVBj+cdX3jhwoUC54yPj9e2bdsUFxenlJQU5eTkSJJlx7WTJ08WOG9gYKBq1KiRrz2vwOfvu6nl5ORYCrUeeOCBIu8xT95zGRwcXODjrq6uat26tbZt26ZDhw6pS5cuxZq3MOfPn9fvv/8uqeDn0GAwaODAgXr99de1e/duS0Hc3xV2ZKAk9erVy/I6LanBgwerX79+2rp1q3bv3q3Dhw/r2LFjunLlir766it9/fXXmjp1qoYMGVLsOePj4/Xbb79Junqk4D9Vr15dffr00bJly0oVc3EV9PeqtM/9wIED9cEHH+jLL7/Uiy++aPU3h2MMAQAAAABAcVCYBQAAAAAAipR3HNw/d0L65ptvNGnSpHw7af1damqq1fWUKVMUFhamDRs2aMOGDXJ1dVWbNm3UqVMn9e/fX/Xr1y9wnpkzZyo7O1tdunTRe++9V6xirqLcfPPNuvPOOyVdLeBwc3NTs2bN1KNHD6tdfU6fPi1Jeu+99/Tee+8VOefFixfztTVo0KDUMeYVIjVs2LDAx/MKvq5cuaLExETVrl27xGvXq1evwHZXV1clJiYW+Hzk7f6VmZmZ77HZs2dr7ty5lgK9gvzzNXGtWApaLzExUWlpaZJU7F3T8p7L559/Xs8//3yRfQt6Lksq7/nz8PAodMe0W265xarvPxX23NtCjRo11LdvX/Xt21eSlJaWpu3bt+udd97RqVOnNHXqVN15552qW7duseY7f/68pKs77Lm6uhbYpzzvR7pasJecnCzJ+u9VaZ/7Ro0aqUOHDvr++++1efNm3XfffZKkn376ST///LPq1KlT5gI+AAAAAABwY6MwCwAAAAAAFMpsNuvo0aOSZLUbVHx8vMLDw5WRkaHHHntM9913nxo2bCgXFxcZjUbt2LFDjz76aL75mjZtqpiYGO3cuVPfffed9u/fr7179+q7777TnDlz9Nprr+U7Wk+S+vTpoy1btig2NlZr167V4MGDy3Rf3t7eioiIuGa/vN13/P39LUU0hbntttvytZVlV6+yKs7a1ypwK2iXtMJ89dVXioqKkouLi15++WV16tRJderUkbOzswwGg2bOnKl58+bJbDaXKpayynsu77zzTt18881F9i2sQPB6q169+nVby8XFRX369FHbtm3Vu3dvpaena/v27cXekawi+OWXXyxFgX/fEa8sz/2gQYP0/fffa926dZbCrLzdsgYMGHDNXekAAAAAAEDVRmEWAAAAAAAo1LZt25SUlCRJVjvDfPPNN8rIyFCvXr3073//O9+4vCPNCuLg4KBu3bpZjrNLTU3V4sWLNXv2bL3yyivq1auXXFxcrMYEBQUpJCREYWFheumll5SWlqbhw4fb4haLlLeLU8+ePQssNCtPXl5e+v3333X69Ol8RyRK0pkzZyRdLd75525m9rBx40ZJUnh4uIYOHZrv8VOnTtlsLQ8PD9WoUUPp6ek6efJkgT+ff6pXr57i4uI0ePBg9enTx2axFMbLy0vS1d29UlNTC9w1K28np7y+FYGXl5eaNm2qw4cPW3bLK+446eoOe5cvXy5w16yzZ8/aLM6CbNiwQdLV10erVq0s7WV57nv37q1p06Zp165d+uOPP1S7dm199tlnkq4edQgAAAAAAFCU8v0qIgAAAAAAqLRSUlL0+uuvS7paGNWiRQvLY3nFWgXtLGQ2my2FC8Xh5uamcePGyWQyKT09vdACng4dOmjJkiVyd3fXa6+9prlz55bgbkqna9eukqSYmJhCd3oqLx07dpQkrVu3rsDH16xZI0lq3769HBzs/927ol4Tf/31l2JjY222VrVq1dS5c2dJ0urVq4s1Ju+5zCsgK29169a17LKWt8PS35nNZstzGxAQcF1iylu3KDk5OZajFf9eMObo6ChJys7OLnBc3bp1Lcdrfv755/kez8zMVExMTKliLo4jR45o+fLlkqSRI0da7WRVluc+78jH3NxcrV+/Xlu3blViYqLatWtX7GM0AQAAAABA1UVhFgAAAAAAsGI2m7Vt2zYNHjxYp06dkqenp6ZNm2bVp2nTppKkTZs26cKFC5b2nJwcvffee9q/f3++edPT07V48WJdvHgx32N79uxRcnKyqlWrprp16xYam6+vrz788EN5enrqnXfe0VtvvVXa2yyWnj17qk2bNjp48KAmTZpUYOxJSUlauXJloQUrpTV8+HA5ODhoy5Ytlp2A8uzYsUMfffSRJGnUqFE2Xbe0vL29JV0tlMrMzLS0p6Sk6IUXXlBKSopN13viiSfk4OCg5cuXa/ny5fkKjs6ePavDhw9brh944AE1aNBAMTExevPNN5WamppvzoSEhGIXehVH3nPz/vvv6+eff7a0m81mvf/++zp69KhMJlOpjgvcvHmz+vTpo9DQ0BKNCwsL0/z58y3FV3+XnJysKVOmKCEhQW5ubpaCJkmqVauWHB0d9eeffyoxMbHAufNiiYqK0okTJyztOTk5euONN6z+VthKRkaGVqxYoWHDhunKlSvq2LFjvt+Jsj73gwYNknS1SPKTTz6RxG5ZAAAAAACgeOz/dUoAAAAAAGA3H3/8sb7//ntJV3e0uXTpkn766SdL4UXHjh01Y8YMNWjQwGrcXXfdpVatWunIkSPq3bu3OnbsqBo1aujgwYO6cOGCRo8erQULFliNycrKUkREhCIjI9W8eXPdeuutcnR01NmzZ/Xjjz9KulpsU6tWrSJj9vHx0fLlyzVixAgtWLBAly9f1uTJk2UwGGzzQ/kbo9GoOXPmKCwsTOvWrdOmTZvk4+Oj+vXrKysrS6dPn9bx48eVk5OjgQMH2nTnKh8fH02ePFlTpkzR888/r6VLl6pJkyY6d+6c9u/fL7PZrHHjxlkdMWlPoaGh2rBhg7Zt26a7775bfn5+ysrK0g8//CBnZ2cNGjTIUtRiC76+vnrttdf00ksv6dVXX1V0dLRat24ts9ms06dP6+eff9aYMWPUunVrSZKLi4vmzZunsLAwLVy4UKtXr5aPj4+8vLyUkZGhU6dO6cSJE6pdu3apCqUKEhISov3792vDhg0aNGiQOnTooNq1a+vIkSM6efKknJ2d9dZbb13zNV+QlJQUnTx50qoIrjji4+P19ttva+bMmfL29laTJk1UvXp1JSQk6PDhw0pLS5Ozs7PeeOMNq7gcHR3Vo0cPbdq0SQMGDJC/v7+cnZ0lSa+99pok6eGHH9bOnTu1detW9e/fXwEBAXJ3d9eBAweUkJCgBx98UCtXrizxveaJjIy0HHOalpamCxcu6KefftKVK1dkNBoVEhKiF154QU5OTlbjyvrc+/n5qWnTpjpx4oR+++03ubi4qG/fvqW+DwAAAAAAUHVQmAUAAAAAQBW2b98+7du3T9LV4gU3Nzc1b95crVu3VnBwsHx9fQsc5+DgoGXLlmn+/PnatGmTdu3aJTc3N7Vt21azZs3S5cuX8xVmubi4aOrUqfrhhx/0008/KTY2VllZWapTp47uuecePfjggwoMDCxW3LfeeqtWrFihESNGaMWKFUpLS9OMGTOsji+zFS8vL61evVpr167Vl19+qWPHjunQoUNyd3dXnTp1FBISoh49eqh69eo2X3vo0KG6/fbbFR0drX379unYsWNyc3NTt27dNHz4cAUFBdl8zdJq1KiR1q1bp3fffVd79+7V1q1b5enpqX79+mncuHFlKsgpzIABA9S6dWstXrxY3333nbZu3arq1avLy8tLDz/8sIKDg63633bbbfr000+1atUqbdmyRceOHdOPP/4oDw8P1a1bV6NGjVKvXr1sFp/BYFBkZKS6du2qjz76SEeOHFF6erpuvvlmDRw4UKNHj7bsNHa9REVFaefOnfruu+904sQJ7dmzRykpKXJxcVGTJk0UGBiohx56KF8xpiS9+uqr8vDw0P/93/9p06ZNysrKkvS/wiyj0ajZs2dr2bJlWrNmjb7//nu5uLjI399fc+bM0U8//VSm18GmTZss67i4uMjd3V2dO3eWn5+f/vWvfxV4jGaesj73AwcO1JtvvilJ6t27t1xdXUt9HwAAAAAAoOowmP+5zzsAAAAAAAAAAAAAAAAAoEyM9g4AAAAAAAAAAAAAAAAAAG40FGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAAAANkZhFgAAAAAAAAAAAAAAAADYGIVZAAAAAAAAAAAAAAAAAGBjFGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAAAANkZhFgAAAAAAAAAAAAAAAADYGIVZAAAAAAAAAAAAAAAAAGBjFGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAAAANkZhFgAAAAAAAAAAAAAAAADYGIVZAAAAAAAAAAAAAAAAAGBjFGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAAAANkZhFgAAAAAAAAAAAAAAAADYGIVZAAAAAAAAAAAAAAAAAGBjFGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAAAANkZhFoAbgo+Pj1599VV7h2FzU6ZM0ciRI+0dRrl66623NGTIEHuHAQBAhUJug9LIyspSt27dtHz5cnuHAgCAFXIbVEa//vqrWrZsqePHj9s7FABAJUYehBtdeHi4nnnmGXuHAVRoDvYOAACKcuzYMc2ZM0eHDh3Sn3/+KQ8PDzVr1kw9evTQsGHD7B1euTp9+rTWrFmjhQsXWrX7+PgU2P/ZZ5/V448/btUWHx+vGTNmaOfOncrNzVVAQIBefPFFNWrUqFQxrV27VpMmTSrwsR07dsjT09Oq7euvv9bs2bP166+/qnbt2ho4cKCeeuopOTj875+f0NBQLV26VF9//bV69uxZqrgAAKgsyG1u/NymJIYNG6bvv/8+X3uXLl0UHR1t1ZaZman33ntPGzZsUHJysnx8fDR+/HgFBQVZ+jg6OmrkyJGaO3euBg8erOrVq5cqLgAAiovcpmy5TXF9+eWX+uabb3Tw4EH99ttv6tixo5YtW1Zg3+LkDHn27dunN998Uz/99JPc3NwUHBys8PBwubq6lirOiRMnat26dfnamzRpopiYGKu23NxcRUdHa+XKlUpISFDjxo0VFhame++9t1RrS7bPK5s1a6Zu3bpp1qxZmj17dqnjAgDcmMiDrk8e1KNHD509ezZf+9ChQ0td8Gbr92NK4syZM4V+FjZz5kz169fPqu3EiROaMWOG9u3bJ0dHR3Xr1k2TJk1SrVq1SrV+VFRUgXmNk5OTDh06lK/9448/1qJFi3TmzBnVq1dPw4YNy/f6Hj16tAYNGqSff/5Zt99+e6niAm50FGYBqLD27dun4cOHq379+hoyZIg8PT31xx9/6MCBA/rwww9v+MT2ww8/VIMGDdSpU6d8jwUFBal///5WbS1btrS6vnz5soYPH66UlBSFhYXJ0dFRS5Ys0SOPPKL169frpptuKnVsTz/9tBo2bGjVZjKZrK63bdumMWPGqGPHjnr55Zd1/PhxffDBB/rrr780depUSz9PT0/17NlTixYtojALAHBDI7epGrlNSdWtW1cTJkywaqtTp06+fhMnTtSmTZs0fPhwNW7cWOvWrdPjjz+upUuXqn379pZ+AwcO1FtvvaXPPvtMgwcPLnVcAABcC7lN2XKbkli5cqUOHz6sNm3aKDExsci+xc0Zjh49qhEjRqhp06aaOHGizp8/r0WLFunUqVP5PmQtCScnJ02fPt2qrWbNmvn6vfPOO5o/f74eeOABtWnTRl9//bWeffZZGQyGfB9IloSt88qQkBA9/vjj+v3333XLLbeUOi4AwI2FPOj65UGS1KJFi3y7czVp0qRMc9r6/ZiSuvfee9W1a1erNj8/P6vr8+fP6+GHH1bNmjUVHh6utLQ0LVq0SMePH9fHH38sJyenUq8/ZcoUubi4WK6rVauWr8+qVav0yiuvqHfv3ho5cqT27Nmj6dOnKz093arQrmXLlmrdurUWLVqkyMjIUscE3MgozAJQYc2dO1c1a9bUmjVr8n0w9tdff9kpqusjKytLn332mUJCQgp8vHHjxvkS239asWKFTp06pY8//li+vr6SpDvvvFP33XefFi9enC/hLImuXbuqTZs2RfaJjIyUj4+PFi1aZNlFwtXVVfPmzdPw4cPVtGlTS9/g4GA988wzOn36dKl3vAAAoKIjt6k6uU1J1KxZ85r3fvDgQX3xxRd6/vnn9eijj0qSBgwYoHvvvVdvvfWWVq1aZelrMpnUpUsXrVu3jsIsAEC5IrcpW25TEpGRkfLy8pLRaCxyR6mS5AwzZ86UyWTSsmXL5ObmJklq2LChXnrpJe3YsUNdunQpVawODg7XvPf4+HgtXrxYDz/8sCZPnixJGjJkiB555BFFRkaqT58+BX44WBy2zis7d+4sd3d3rVu3jiN6AAAW5EHXLw+SJC8vL5vPaev3Y0qqZcuW11x/7ty5Sk9P19q1a1W/fn1Jkq+vr0aOHKl169Zp6NChpV6/d+/eRe66lZGRoXfeeUfdu3fXrFmzJEkPPPCAcnNz9cEHH2jo0KFyd3e39A8ODlZUVJQuX75c6t1XgRuZ0d4BAEBhfv/9dzVr1ixfUitJtWvXLnDMli1bdO+996p169bq16+ftm/fbvX42bNnNWXKFPXu3Vu+vr4KCAjQ008/rTNnzlj1W7t2rXx8fPTDDz9o8uTJCggIULt27fT8888rKSkp37rbtm3TQw89JD8/P7Vt21aPP/64fvnlF6s+WVlZOnHihC5cuHDNe9+7d68uXbqkzp07F9onIyNDV65cKfTxTZs2qU2bNpY3mCSpadOmCgwM1MaNG68Zw7WkpqYqJyenwMd+/fVX/frrr3rggQesjvZ56KGHZDabtWnTJqv+eff59ddflzkuAAAqKnKbqpPblFR2drYuX75c6OMxMTGqVq2a1Rtu1atX1+DBg7V//3798ccfVv07d+6svXv3XnNHDQAAyoLcpmy5TUnUq1dPRuO138ovbs6Qmpqq2NhY/etf/7IUZUlS//795eLiUubcKicnR6mpqYU+vmXLFmVlZemhhx6ytBkMBj344IM6f/689u/fX6b1bZlXOjo6qmPHjrxnBQCwQh50/fKgPJmZmUpLS7PpnLZ+P6ak0tLSlJmZWejjX331lbp3724pypKuvufTuHFjm70XZjabC3xs9+7dSkxMtMrXJOnhhx9WWlqavv32W6v2zp07Ky0tTbGxsWWOC7gRUZgFoMJq0KCBjhw5ouPHjxer/969ezVlyhT17dtX//73v3XlyhU9/fTTunTpkqXPoUOHtH//fvXr108vvfSSQkJC9N1332n48OFKT0/PN+err76qEydOaOzYsRowYIA+++wzjRkzxipRWb9+vcLCwuTi4qLnnntOTz31lH799Vc99NBDVglzfHy8+vbtq5kzZ17zXvbv3y+DwVDo9q7r1q2Tn5+ffH191bdvX3322WdWj+fm5urYsWNq3bp1vrFt2rTR77//XuQbZNcyfPhw+fv764477tATTzyhU6dOWT3+008/Wdb6Oy8vL9WtW1dHjx61aq9Zs6ZuueUW7du3r9QxAQBQ0ZHbVJ3cpiROnTolPz8/tWvXTkFBQXr33XeVlZVl1efo0aNq3Lix1QenkiwfJv5z/VatWslsNpf5Q00AAIpCblP63Ka8FDdnOHbsmLKzs/PlVk5OTmrRokWZcpv09HT5+/vL399fHTt21NSpU/N94Hn06FG5uLjk23G0sNymJMojr2zVqpV++eWXMuWbAIAbC3nQ9c2DvvvuO0thWY8ePbR06dIyz1ke78eUxOzZs9W2bVv5+vpq0KBB2rFjh9Xj8fHx+uuvvwrMWXx9fcu0tiT17NlT/v7+ateunZ577jn9+eefVo/nvRf2z/VbtWolo9GYb/1mzZrJ2dmZz/mAQnCUIYAKa9SoURo9erQGDBggX19f+fv7KzAwUAEBAXJ0dMzX/8SJE/ryyy91yy23SJICAgLUv39/ffHFF3rkkUckSd27d1efPn2sxt11110aOnSoNm3apAEDBlg95ujoqCVLlljWq1+/vt58801988036tmzpy5fvqzXXntNQ4YM0bRp0yzj7r//fvXp00fz5s2zai+uuLg4ubu750v2JKlt27YKDg5Ww4YNdeHCBa1YsULPPfecUlJSLJXriYmJyszMlKenZ77xeW0XLlwocP6iODs7a+DAgQoICJCbm5sOHz6sJUuWKCQkROvWrVO9evUkSQkJCVZr/XP9gr510ahRI/36668ligcAgMqE3KZq5TbF0ahRIwUEBKh58+ZKS0vTpk2b9MEHH+jUqVN69913Lf0SEhKuee//nFe6utPXXXfdVarYAAC4FnKb0uc25aW4OUNeblOnTp0C++7du7dU63t6euqxxx5Ty5YtZTab9X//939asWKFfv75Zy1btsyy82hCQoJq164tg8FQZJwlVV55ZaNGjZSbm6u4uDirXbYAAFUXedD1y4OaN28uf39/NWnSRImJiVq3bp1mzJihCxcu6N///nep5iyv92OKw2g0qkuXLrr77rvl5eWl06dPa8mSJRo9erQ++OADde/e3WruwtbPy2mcnJxKtL7JZNIjjzwiPz8/OTk5ac+ePVqxYoUOHTqkTz75xPK8JiQkqFq1avl2gHNycpKHh0e+e3dwcFDdunX5nA8oBIVZACqsoKAgrVq1SvPnz9eOHTu0f/9+LVy4ULVq1dL06dPVs2dPq/6dO3e2JLWSdPvtt8vNzU2nT5+2tDk7O1v+OysrS6mpqbrllltkMpn0008/5Utshw4dapVEP/jgg3rnnXe0bds29ezZU7GxsUpOTla/fv108eJFSz+j0ag77rhDu3fvtrQ1bNhQx44dK9a9JyYmWp3N/Hf/PLN60KBBGjRokN555x0NHDhQzs7Oli1iC0rIqlevLkml2ka2b9++6tu3r+X67rvvVpcuXfTII4/ogw8+0Kuvvirp6ja1Ra1f0DcM854DAABuVOQ2VSu3KY4ZM2ZYXQ8YMEAvv/yyVq9erREjRsjPz8+yflH3nhdfnryf9d+/eQsAgK2R25Q+tykvxc0ZrpXb/DO3KK5nn33W6rpfv35q3Lix3nnnHW3atEn9+vUrUZwlVV55Zd4xVeRWAIA85EHXLw+aO3duvjkfe+wxLVmyRMOGDVPdunVLPGd5vR9THPXr11d0dLRVW//+/dWvXz9FRERYCrOKk7MUFl9RQkNDra7zjs587rnntGLFCj3++OOWuQsqMsxbv6B7d3d3J18CCsFRhgAqNF9fX82ePVvff/+9Pv74Y4WFheny5ct65pln8lVd5+1o8Hfu7u5KTk62XGdkZOi9995Tt27d1KZNG3Xq1EmBgYFKTk5WSkpKvvG33nqr1bWrq6s8PT119uxZSbIccxMaGqrAwECr/+3YsUN//fVXqe+9sHOd/8nJyUkPP/ywkpOTdfjwYUn/S8oKOps6L5nL61NW7du31x133KFdu3ZZ2vKS68LWLyj5NpvN+b4pCQDAjYbc5tpulNymtEaOHClJio2NtVq/qHv/5/p5P2tyKwBAeSO3ubaCcpvyUtyc4XrmNiNGjJDRaCxTblNatsori/tcAwCqFvKgayuPPMhgMGjEiBHKzs62Ki4rK1u8H1NaHh4eGjhwoE6ePKnz589LKl7OYqv177vvPnl6eua7938e7fj39fmcDygZdswCUCk4OTnJ19dXvr6+aty4sSZNmqSYmBiNHTvW0qdatWoFjv17gjht2jStXbtWoaGh8vPzU82aNWUwGBQeHl6qN1nyxkRGRha4nWhhMV2Lh4eHVUJ+LXlJfVJSkmW8k5OTZWv6vytqu/rSqlu3rk6ePGm5zvtZJCQk5Ps/HAkJCQVu+56cnKybbrrJZjEBAFCRkdsU7UbIbUrrn/eet358fHy+voXde95YcisAwPVCblO0gv59Lw/FzRmKOn4nISHBpnmVs7OzPDw88uU2u3fvzvfhXXnkdbbIK/Oea3IrAEBByIOKVh550PWas6Tvx5RF3s5fiYmJqlu3rmXuwnKWvJzGluv/895zcnL0119/WR1nmJmZqcTExALvPTk5OV/BIICrKMwCUOm0bt1aUunObs47h3vixImWtitXrhT4bQNJ+u2339SpUyfL9eXLl5WQkKCuXbtKunoOtSTVrl1bnTt3LnE8hfH29tZnn32mlJQU1axZ85r987a7rVWrlqSrW9E2b968wG8gHDx4UI0aNSrw/O/SOn36tNWbUy1atJAkHTp0yOqDyvj4eJ0/f14PPPBAvjnOnDmj22+/3WYxAQBQWZDb5Hcj5DZlWVv6371LV4842L17t1JTU63u88CBA1bx5Tlz5owkqWnTpjaLCwCA4iK3ya+gf9/LQ3FzhubNm8vBwUGHDx+2OtY5MzNTR48eVXBwsM1iSk1N1aVLl6zuvUWLFvr444914sQJNWvWrNA4bcEWeeWZM2dkNBrVpEkTm8UFALgxkQflVx550PWas6Tvx5RF3ns5eet7eXmpVq1aheYstvw8zWw26+zZs2rZsqWlLe/eDh8+rG7dulnaDx8+rNzc3HzrZ2dn648//lCPHj1sFhdwI+EoQwAV1nfffVfgtwC2bdsm6WryV1IFfQNg2bJlysnJKbD/Rx99ZLVV58qVK5WdnW1JbO+88065ublp3rx5BW7p+fdzu7OysnTixIliJeR+fn4ym835Eq6/z5cnNTVVS5cu1U033aRWrVpZ2nv37q1Dhw7p0KFDlra4uDh999136tOnzzVjKEhB62/btk1HjhzRnXfeaWm77bbb5O3trdWrV1v9bFeuXCmDwZBv/ZSUFP3+++9q27ZtqeICAKAyILepOrlNcaSmpubbjt5sNuuDDz6QJHXp0sXS3qdPH+Xk5Oijjz6ytGVmZmrt2rW644478u3ideTIERkMBvn5+ZU4LgAAiovcpmy5TXkobs5Qs2ZNBQYG6tNPP1Vqaqql74YNG5SWllaq3ObKlStWc+V5//33ZTabrXKrnj17ytHRUStWrLC0mc1mrVq1Sl5eXqV6f6g888ojR46oWbNmxfrwGQBQNZAHXZ88KDExMd/9Z2Vlaf78+XJ0dFRAQECJ5yzP92OKo6CfU3x8vD755BP5+PhY7UR1zz336Ntvv9Uff/xhadu1a5dOnTpl0/fCVqxYoYsXL1rla506dZKHh4dWrlxp1XflypWqUaOGunfvbtX+66+/6sqVK3zOBxSCHbMAVFjTp09Xenq6evXqJW9vb2VlZWnfvn3auHGjGjRooIEDB5Z4zu7du2vDhg1yc3NTs2bN9OOPPyo2NlYeHh4F9s/KytKIESMUHByskydPasWKFfL391fPnj0lSW5ubpoyZYqef/55DRw4UH379lWtWrV07tw5bdu2Te3atdPkyZMlXU2s+vbtq/vvv18RERFFxunv7y8PDw/t2rVLgYGBlvbly5dry5Ytuuuuu1S/fn1duHBBa9eu1blz5xQZGWm1belDDz1kOdd81KhRcnBw0JIlS1S7dm2NGjXKar1hw4bp+++/17Fjx4qMKyQkRC1atFDr1q1Vs2ZN/fTTT/rkk09Ur149PfHEE1Z9n3/+eT355JMaNWqU+vXrp+PHj2v58uUaMmRIvt0bYmNjZTabLT9XAABuROQ2VSO3OXPmjHr27HnNn8uRI0f07LPPql+/frrlllt05coVbd68Wfv27dPQoUOt3rC844471KdPH82cOVN//fWXbr31Vq1bt05nz57Va6+9lm/u2NhYtWvXjuN2AADlitymbLnN7t27NXz4cI0dO1bjxo0rcr0ffvhBP/zwg6SrH6alpaXp/ffflyR16NBBHTp0kFSynCE8PFwhISEaNmyYHnjgAZ0/f16LFy9Wly5dLB/o5vHx8VHHjh21bNmyQmNMSEjQ/fffr379+lk+jN6xY4e2bdumO++80+o9n7p162r48OGKjo5Wdna22rRpoy1btmjPnj166623rD6YXrt2rSZNmqTXX3+9yNdUeeWVWVlZ+uGHH/Tggw8WujYAoOohD7o+edA333yjDz74QL1791bDhg2VlJSkzz//XMePH9eECROsjmi09/sxUVFRmj17tj788MMiC8befPNN/f777woMDFSdOnV09uxZrVq1SmlpafrPf/5j1feJJ55QTEyMhg8fruHDhystLU3R0dFq3ry5Bg0aZNU3b6eqb775ptC1Jemuu+5S37591bx5czk5OWnfvn364osv1KJFCw0dOtTSz9nZWU8//bReffVVPf3007rzzju1Z88effrppwoPD8/3uoyNjVWNGjVsujsbcCOhMAtAhfX8888rJiZG27Zts1T+169fXw899JCefPJJmUymEs/5n//8R0ajUZ999pmuXLmidu3aafHixXrssccK7D958mR99tlnmjVrlrKystSvXz+99NJLMhgMlj733Xef6tSpo/nz5ys6OlqZmZny8vJS+/btS5V8S1fPJL/vvvsUExOjCRMmWNrbtWun/fv3a82aNUpMTFSNGjXk6+ur1157zSoBlq4m3cuWLdOMGTP0wQcfKDc3VwEBAZo0aVK+7V0vX75c4Bnj/xQcHKxt27Zp586dysjIkKenp4YMGaKxY8fq5ptvtup71113afbs2Zo9e7amTZumWrVqKSwsTGPGjMk3b0xMjPz9/XXLLbeU5McEAEClQm5TNXKbtLQ0Sbrm+vXr15e/v782b96sP//8U0ajUd7e3po6darVG2F5IiMj9e677+rTTz9VUlKSfHx8NHfuXMsHsXlSUlK0Y8cOvfLKK9e8fwAAyoLcpmy5TXFzBunqrhyzZ8+2anvvvfckSWPHjrXKB4qbM7Rq1UqLFy/WW2+9pddff12urq4aPHiw1f1IV/Oq4sRpMpnUvXt3xcbGav369crJydGtt96qCRMmaNSoUTIarQ/veO655+Tu7q6PPvpIa9euVePGjfXmm2/qvvvus+pX3J9TeeWVu3btUmJiou6///4i1wcAVC3kQdcnD2revLmaNm2qTz/9VBcvXpSjo6NatGihd999N9/Ry/Z+PyYtLU0GgyHf+0n/FBQUpNOnT2v58uVKTk5WzZo11aFDBz355JP5dhWrV6+e/vvf/yoiIkJvv/22HB0d1a1bN02cONGq0C1v/VtvvbXItaWrr4n9+/dr06ZNyszMVP369fXYY4/piSeeUI0aNaz6Pvzww3J0dNSiRYv0zTffqF69epo0aZJCQ0PzzRsTE6NevXrlOxIawFUGc0H7LAJAFZf3bbw1a9aoTZs2donh9OnTCg4O1oIFC/IlrbaUmpqqgIAAvfjii3r44YfLbZ3CJCQkqGfPnpo5c6buvvvu674+AABVAbnN9bN8+XK99dZb2rx58zXfjCsPS5Ys0cKFC7VlyxY5Oztf9/UBALgeboTcJjIyUl988YU2b96c74O1imTbtm0KCwvThg0b5OPjc93Xf+aZZ3T27FmtWbPmuq8tSU899ZQMBoPmzJljl/UBAPgn8qCC2fv9mMGDB6t+/fqaNWvWdV/7119/Vb9+/TRv3rx8RwxeD0ePHtX999+vdevWqUWLFtd9faAyMF67CwDAHho1aqRBgwZp/vz55brOnj175OXlpSFDhpTrOoVZunSpmjdvTlEWAAA3uKqS2+zevVvDhg2zy5uAWVlZWrJkiZ588kmKsgAAKGdlzW12796tp556qkIXZUlXd+vq16+fXYqyzGazvv/+e40fP/66ry1JJ06c0LfffqtnnnnGLusDAFBRVcQ8yJ7vx6Smpurnn3+2W86we/dutW3b1i5FWZI0f/589e7dm6IsoAjsmAUABagI3zgAAACwFXIbAABwIyG3AQAAVRV5EABUPuyYBQAAAAAAAAAAAAAAAAA2xo5ZAAAAAAAAAAAAAAAAAGBj7JgFAAAAAAAAAAAAAAAAADZGYVYFcuzYMR07dszeYQAAAFQI5EYAAAD/Q24EAADwP+RGAACgsnCwdwD4n8zMTHuHAAAAUGGQGwEAAPwPuREAAMD/kBsBAIDKgh2zAAAAAAAAAAAAAAAAAMDGKMwCAAAAAAAAAAAAAAAAABujMAsAAAAAAAAAAAAAAAAAbIzCLAAAAAAAAAAAAAAAAACwMQqzAAAAAAAAAAAAAAAAAMDGKMwCAAAAAAAAAAAAAAAAABujMAsAAAAAAAAAAAAAAAAAbIzCLAAAgCrixIkTGjlypPz8/BQUFKTIyEhlZmZec9zy5csVFhamTp06ycfHRzExMYX2/fbbbxUSEiI/Pz916NBBw4YN0/nz5215GwAAAAAAAAAAAEClQGEWAABAFZCUlKTQ0FBlZWUpKipK4eHhWr16tSIiIq45dsOGDbp06ZK6det2zX5jx45Vx44dNXfuXEVERKh169a6cuWKrW4DAAAAAAAAAAAAqDQc7B0AAAAAyt+qVat0+fJlzZ49Wx4eHpKknJwcTZ06VWFhYfLy8ipyrNFo1JkzZ7R+/foC+yQmJurVV1/Viy++qIceesjS3rNnT1veBgAAAAAAAAAAAFBpsGMWAABAFbB9+3YFBgZairIkKTg4WLm5udq5c2eRY43Ga6eMGzduVG5urgYPHlzWUAEAAAAAAAAAAIAbAjtmAQAAVAFxcXEaNGiQVZvJZJKnp6fi4uLKPP+BAwfUpEkTrV+/Xh988IHi4+N12223acKECdc8ArEoZrNZaWlpZY4PAABUfi4uLvYOAQAAAAAAACgRCrMAAACqgOTkZJlMpnzt7u7uSkpKKvP8CQkJOnnypN577z39+9//lqenp5YvX66nnnpK69ev12233VaqebOysnT06NEyxwcAACo/f39/e4cAAAAAAAAAlAiFWQAAACizvJ2t3nrrLfXs2VOS1LFjR/Xu3VsLFixQZGRkqeZ1dHRUs2bNbBkqAAAAAAAAAAAAcF1QmAUAAFAFmEwmpaSk5GtPSkqSu7u7TeaXpE6dOlnaHB0d1aFDB/3yyy+lntdgMHBsEQAAAAAAAAAAAColo70DAAAAQPnz9vZWXFycVVtKSooSEhLk7e1d5vmL2tXqypUrZZ4fAAAAAAAAAAAAqGwozAIAAKgCunbtqtjYWCUnJ1vaYmJiZDQaFRQUVOb577rrLknSrl27LG2ZmZn64Ycf1KpVqzLPDwAAAAAAAAAAAFQ2HGUIAABQBYSEhGjZsmUaM2aMwsLCFB8fr8jISIWEhMjLy8vSLzQ0VOfOndPmzZstbYcOHdLZs2d18eJFSdKBAwckSbVq1VLHjh0lSa1atVLv3r318ssvKzExUZ6enlqxYoX+/PNPPfroo9fxTgEAAAAAAAAAAICKgcIsAACAKsDd3V1Lly7VtGnTNGbMGLm6umrw4MEKDw+36pebm6ucnByrtuXLl2vdunWW60WLFkmSOnbsqGXLllnaIyIiNHPmTL399ttKTU1Vq1attHjxYvn4+JTjnQEAAAAAAAAAAAAVk8FsNpvtHQSuOnTokCSpTZs2do4EAADA/siNAAAA/ofcCAAA4H/IjQAAQGVhtHcAAAAAAAAAAAAAAAAAAHCjoTALAAAAAAAAAAAAAAAAAGyMwiwAAFAmc+bMUa9evTRnzhx7hwIAAGB35EYAAAD/Q24EAADwP+RGVROFWbjh8ccNAMpPRkaG1q9fr9zcXK1fv14ZGRn2DgkAAMBuyI0AAAD+h9wIAADgf8iNqi4Ks3BD448bAJSv7Oxs5ebmSpJyc3OVnZ1t54gAAADsh9wIAADgf8iNAAAA/ofcqOqiMAs3NP64AQAAAAAAAAAAAAAAwB4ozAIAAAAAAAAAAAAAAAAAG6MwCwAAAAAAAAAAAAAAAABsjMIsAAAAAABQarm5ZnuHgEqA1wkAAAAAAACqIgd7BwAAAAAAACovo9GgOSt36uyFJHuHYnfZWRlW16/O/UoOjs52iqbiaFDHXWMeDLJ3GAAAAAAAAMB1R2EWAAAAAAAok7MXknTq7CV7h2F3udlXrK5/P5coo0N1O0UDAAAAAAAAwN44yhAAAAAAAAAAAAAAAAAAbIzCLAAAAAAAAAAAAAAAAACwMQqzAAAAAAAAAAAAAAAAAMDGKMwCAAAAAAAAAAAAAAAAABujMAsAAAAAAMAGDMZqkgx5V///GgAAAAAAAEBVRWEWAAAAAACADRiMDnKp00KSQS51WshgdLB3SAAAAAAAAADsiHcIAQAAAAAAbKRmo06q2aiTvcMAAAAAAAAAUAFQmAUAAAAAAAAU4sSJE5o+fbr2798vV1dX9e/fX+PHj5eTk9M1x8bHx2vmzJnatm2b0tLS1KBBAz355JP617/+dR0iBwAAsK2NGzfq008/1ZEjR5ScnKxbb71Vw4YN06BBg2QwGAod16NHD509ezZf+8GDB1W9evXyDBkAAMDuKMwCAAAAAAAACpCUlKTQ0FA1btxYUVFRio+PV0REhDIyMjR58uQix164cEFDhw5VkyZNNG3aNLm5uemXX35RZmbmdYoeAADAtpYsWaIGDRpo4sSJuummmxQbG6uXX35Z58+f19ixY4sc27t3b40aNcqqrTiF7gAAAJUdhVkAAAAAAABAAVatWqXLly9r9uzZ8vDwkCTl5ORo6tSpCgsLk5eXV6Fj33zzTdWtW1cLFy5UtWrVJEmBgYHXI2wAAIBy8cEHH6hWrVqW68DAQCUmJmrx4sV66qmnZDQaCx178803y8/P7zpECQAAULEUniEBAAAAAAAAVdj27dsVGBhoKcqSpODgYOXm5mrnzp2FjktNTdXGjRv10EMPWYqyAAAAKru/F2XladGihVJTU5WWlmaHiAAAACo+dswCAAAAAAAAChAXF6dBgwZZtZlMJnl6eiouLq7QcUeOHFFWVpYcHBz0yCOPaP/+/fLw8NCAAQM0fvx4OTo6lioes9nMh54AgErjn/9mpaWlFbmjEkrGxcXF3iFIkvbu3SsvLy+5ubkV2e+zzz7T6tWr5ejoqPbt2+u5556Tj49PmdYmNwIAVCbkRuWrouRGBaEwCwAAAAAAAChAcnKyTCZTvnZ3d3clJSUVOu7PP/+UJL300kt64IEHNHbsWB08eFCzZs2S0WjUs88+W6p4srKydPTo0VKNBQDgektPT7e6Pn78uGrUqGGnaG48/v7+9g5Be/bs0ZdffqkXXnihyH49evSQr6+v6tevr9OnT2vu3Ll66KGHtH79ejVq1KjU65MbAQAqE3Kj8lURcqPCUJgFAAAAAAAA2FBubq4kqXPnzpo4caIkqVOnTrp8+bIWLVqkMWPGyNnZucTzOjo6qlmzZjaNFQCA8pKammp13bx582vuqoTK4/z58woPD1dAQICGDx9eZN+XXnrJ8t/t27dXUFCQgoODFR0drSlTppQ6BnIjAEBlQm5UdVGYBQAAAAAAABTAZDIpJSUlX3tSUpLc3d2LHCddLcb6u8DAQM2dO1e//fZbqY7uMRgMFXprfgAA/i6vUDmPi4sL/47dIJKTkzV69Gh5eHgoKiqqxMcw1alTR/7+/jpy5EiZ4iA3AgBUJuRGVReFWQAAAAAAAEABvL29FRcXZ9WWkpKihIQEeXt7FzruWjs3XLlyxSbxAQAAXG8ZGRkKCwtTSkqKPvroI9WsWdPeIQEAAFRoJSthBwAAys012zsEVAK8TgAAACq/rl27KjY2VsnJyZa2mJgYGY1GBQUFFTquQYMGat68uWJjY63aY2Nj5ezszJE7AACgUsrOztb48eMVFxenhQsXysvLq1TzxMfHa+/evWrTpo2NIwQAAKh42DELAIASMhoNmrNyp85eSLJ3KHaXnZVhdf3q3K/k4Ohsp2gqjgZ13DXmwcI/qAMAAEDlEBISomXLlmnMmDEKCwtTfHy8IiMjFRISYvVBZGhoqM6dO6fNmzdb2sLDw/XUU0/ptddeU/fu3XXo0CEtWrRIjz76KEcVAACASmnq1KnaunWrJk6cqNTUVP3444+Wx1q2bCknJ6d8edHnn3+urVu3qlu3bqpTp45Onz6t+fPnq1q1aho5cqSd7gQAAOD6oTALAIBSOHshSafOXrJ3GHaXm219BMvv5xJldKhup2gAAAAA23J3d9fSpUs1bdo0jRkzRq6urho8eLDCw8Ot+uXm5ionJ8eqrUePHpo5c6bef/99rVy5UnXq1NG4ceP0+OOPX89bAAAAsJmdO3dKkiIiIvI99vXXX6thw4b58qKGDRvqwoULmjFjhlJSUlSzZk116tRJTz/9tBo1anTdYgcAALAXCrMAAAAAAACAQjRt2lRLliwpss+yZcsKbO/bt6/69u1bDlEBAABcf9988801+/wzL/Lz8ys0VwIAAKgKjPYOAAAAAAAAAAAAAAAAAABuNBRmAQAAAAAAAAAAAAAAAICNUZgFAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2BiFWQAAAAAAAAAAAAAAAABgYxRmAQAAAAAAAAAAAAAAAICNUZgFAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2BiFWQAAoNQMxmqSDHlX//8aAAAAAAAAAAAAAEBhFgAAKDWD0UEudVpIMsilTgsZjA72DgkAAAAAAAAAAAAAKgQ+PQUAAGVSs1En1WzUyd5hAAAAAAAAAAAAAECFwo5ZAAAAAAAAAAAAAAAAAGBjFa4w68SJExo5cqT8/PwUFBSkyMhIZWZmXnOc2WzW/Pnz1b17d/n6+mro0KH68ccf8/WLj4/XuHHj1LZtW3Xs2FH/+c9/lJqaatVn4cKFGjBggNq3by8/Pz/dd999+u9//yuz2VyqNQEAAAAAAAAAAAAAAABULRWqMCspKUmhoaHKyspSVFSUwsPDtXr1akVERFxz7IIFCzRr1iyNGDFC8+bNk6enp0aNGqXTp09b+mRlZemxxx7TqVOn9Pbbb2vKlCnasWOHnn32Wau5UlJS1LdvX7355pt6//331b17d02fPl3z5s0r8ZoAAAAAAAAAAAAAAAAAqh4Hewfwd6tWrdLly5c1e/ZseXh4SJJycnI0depUhYWFycvLq8BxV65c0bx58zRq1CiNGDFCkuTv768+ffooOjpaU6ZMkSRt2rRJv/zyi7788kt5e3tLkkwmkx599FEdPHhQvr6+kqTw8HCr+Tt37qxz585p3bp1euKJJ0q0JgAAAAAAAAAAqBpyc80yGg32DgMVHK8TAACAqqNCFWZt375dgYGBlqIsSQoODtYrr7yinTt3auDAgQWO27dvn1JTUxUcHGxpc3JyUq9evbR582ar+X18fCxFWZIUFBQkDw8Pbdu2zVKYVZCbbrpJWVlZJV4TAAAAAAAAAABUDUajQXNW7tTZC0n2DsXusrMyrK5fnfuVHByd7RRNxdGgjrvGPBhk7zAAAABwnVSowqy4uDgNGjTIqs1kMsnT01NxcXFFjpNkVXAlSU2bNtXSpUuVkZEhZ2dnxcXF5etjMBjUpEmTAufPzs5WRkaG9uzZo/Xr12vs2LElXrOkzGaz0tLSSjwOBfvnzzItLU1GY4U6wRNAJWMwGFSjRg17h4FKIj09XWazudTjXVxcbBiNdOLECU2fPl379++Xq6ur+vfvr/Hjx8vJyanIccuXL9f27dt14MABXbp0Se+995769OlTaP/c3FwNHjxYR44cuWZfAAAAAABuNGcvJOnU2Uv2DsPucrOvWF3/fi5RRofqdooGAAAAsI8KVZiVnJwsk8mUr93d3V1JSYV/uyQ5OVlOTk6qXt06oTeZTDKbzUpKSpKzs7OSk5NVs2bNYs3/22+/6Z577rFcP/nkk5YjC0uyZkllZWXp6NGjJR6HgqWnp1tdHz9+nIIKAGVSo0YNtWzZ0t5hoJI4efJkvn+LSsLf399msSQlJSk0NFSNGzdWVFSU4uPjFRERoYyMDE2ePLnIsRs2bJAkdevWTevXr7/mWqtWrVJ8fLwtwgYAAAAAAAAAAAAqrQpVmFWR1KtXT2vWrFFaWpr27NmjBQsWyGg06umnny7XdR0dHdWsWbNyXaMqSU1Ntbpu3ry53Nzc7BQNgBuBwWCwdwioRJo0aVKmHbNsadWqVbp8+bJmz55tOTY6JydHU6dOVVhYmLy8vIocazQadebMmWsWZl28eFHvvfeenn/+eb344os2vAMAAAAAAAAAAACgcqlQhVkmk0kpKSn52pOSkuTu7l7kuMzMTF25csVqB6vk5GQZDAbLWJPJlK9QJ2/+evXqWbU5OTmpTZs2kqSAgAC5ubnpjTfe0IMPPihPT89ir1lSBoPB5scWVWW5ublW1y4uLvx8AQDXTUXapXH79u0KDAy0FGVJUnBwsF555RXt3LlTAwcOLHRsSY4BnjlzpgICAhQQEFCWcAEAAAAAAAAAAIBKr0IVZnl7eysuLs6qLSUlRQkJCfL29i5ynHT1uKDbb7/d0h4XF6f69etbjhT09vbW8ePHrcaazWadPHlSQUFBRcbWqlUr5eTk6OzZs/L09Cz2mgAAABVBXFycBg0aZNVmMpnk6emZL/8qrYMHD+rzzz/X559/bpP5pKu5Wlpams3mAwDYlsFgqFCFyKjY0tPTy7SbKF+0AgAAAAAAQGVToQqzunbtqrlz5yo5OVkmk0mSFBMTI6PRWGThVLt27eTm5qaNGzdaiqSysrL01VdfqWvXrlbzf/rppzp16pQaN24sSdq1a5cSExPVrVu3ImPbt2+fDAaDGjZsWKI1AQAAKoK/51d/5+7urqSkpDLPn5ubq6lTp2rkyJFq2LChzpw5U+Y5pav51dGjR20yFwDA9mrUqKGWLVvaOwxUEidPnlR6enqpx/v7+9swGgAAAAAAAKD8VajCrJCQEC1btkxjxoxRWFiY4uPjFRkZqZCQEHl5eVn6hYaG6ty5c9q8ebMkqXr16goLC1NUVJRq1aql5s2ba+XKlUpMTNSjjz5qGde7d2/NmzdP48aN04QJE5Senq7IyEh1795dvr6+kq7u0DV69Gj961//0q233qrs7Gzt3r1bH374oYYOHaqbb765RGsCAABUBR9//LH+/PNPPf744zad19HRUc2aNbPpnAAA2zEYDPYOAZVIkyZNyrRjFgAAAAAAAFDZVKjCLHd3dy1dulTTpk3TmDFj5OrqqsGDBys8PNyqX25urnJycqzaRo8eLbPZrEWLFunixYtq0aKFoqOj1ahRI0sfR0dHLVy4UNOnT9eECRPk4OCgXr166cUXX7T0qV69upo0aaIlS5YoPj5ezs7OuuWWWzR16lQNGDCgxGsCAABUBCaTSSkpKfnak5KS5O7uXqa5L1++rJkzZyo8PFxZWVnKyspSamqqJCkjI0Opqalyc3Mr1dwGg4FjiwAAuEFw7CUAAAAAAACqmgpVmCVJTZs21ZIlS4rss2zZsnxtBoNBYWFhCgsLK3Ksl5eXoqKiCn3cyclJr7/+erFiLe6aAAAA9ubt7a24uDirtpSUFCUkJMjb27tMc1+6dEmJiYl65ZVX9Morr1g99sILL+jmm2/Wzp07y7QGAAAAAAAAAAAAUNlUuMIsAAAA2F7Xrl01d+5cJScny2QySZJiYmJkNBoVFBRUprk9PT314YcfWrX9+eefmjBhgsaNG6fOnTuXaX4AAAAAAAAAAACgMqIwCwAAoAoICQnRsmXLNGbMGIWFhSk+Pl6RkZEKCQmRl5eXpV9oaKjOnTunzZs3W9oOHTqks2fP6uLFi5KkAwcOSJJq1aqljh07qnr16goICLBa78yZM5KkZs2aqV27duV9ewAAAAAAAAAAAECFQ2EWAABAFeDu7q6lS5dq2rRpGjNmjFxdXTV48GCFh4db9cvNzVVOTo5V2/Lly7Vu3TrL9aJFiyRJHTt2LPCIaQAAAAAAAAAAAAAUZgEAAFQZTZs21ZIlS4rsU1ChVUREhCIiIkq0VsOGDXXs2LESjQEAAAAAAAAAAABuJEZ7BwAAAAAAAAAAAAAAAAAANxoKswAAAAAAAABUSXPmzFGvXr00Z84ce4cCAAAAAABuQBRmAQAAAAAAAKhyMjIytH79euXm5mr9+vXKyMiwd0gAAAAAAOAGQ2EWAAAAAAAAgConOztbubm5kqTc3FxlZ2fbOSIAAAAAAHCjoTALAAAAAAAAAAAAAAAAAGyMwiwAAAAAAAAAAAAAAAAAsDEKswAAAAAAAAAAAAAAAADAxijMAgAAAAAAAAAAAAAAAAAbozALAAAAAAAAAAAAAAAAAGyMwiwAAAAAAAAAAAAAAAAAsDEKswAAAAAAAAAAAAAAAADAxijMAgAAAAAAAAAAAAAAgE3l5prtHQIqgRv9deJg7wAAAAAAAAAAAAAAAABwYzEaDZqzcqfOXkiydyh2l52VYXX96tyv5ODobKdoKo4Gddw15sEge4dRrijMAgAAAAAAAAAAAAAAgM2dvZCkU2cv2TsMu8vNvmJ1/fu5RBkdqtspGlxPHGUIAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2BiFWQAAAAAAAAAAAAAAAABgYxRmAQAAAAAAAAAAAAAAAICNUZgFAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2BiFWQAAAAAAAAAAAAAAAABgYxRmAQAAAAAAAAAAAAAAAICNUZgFAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2BiFWQAAAAAAAAAAAAAAAABgYxRmAQAAAAAAAAAAAAAAAICNUZgFAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2BiFWQAAAAAAAAAAAAAAAABgYxRmAQAAAAAAAAAAAAAAAICNUZgFAAAAAAAAAAAAAAAAADZGYRYAAAAAAAAAAAAAAAAA2JiDvQMAAAAAAAAAKqoTJ05o+vTp2r9/v1xdXdW/f3+NHz9eTk5ORY7r0aOHzp49m6/94MGDql69enmFCwAAAAAAgAqEwiwAAAAAAACgAElJSQoNDVXjxo0VFRWl+Ph4RUREKCMjQ5MnT77m+N69e2vUqFFWbdcq6AIAAAAAAMCNg8IsAAAAAAAAoACrVq3S5cuXNXv2bHl4eEiScnJyNHXqVIWFhcnLy6vI8TfffLP8/PzKP1AAAAAAAABUSEZ7BwDby8012zsEVAK8TgAAAAAAKNr27dsVGBhoKcqSpODgYOXm5mrnzp32CwwAAAAAAACVAjtm3YCMRoPmrNypsxeS7B2K3WVnZVhdvzr3Kzk4OtspmoqjQR13jXkwyN5hAAAAAABQocXFxWnQoEFWbSaTSZ6enoqLi7vm+M8++0yrV6+Wo6Oj2rdvr+eee04+Pj6ljsdsNistLa3U42Htnz/LtLQ0GY18jxVA6RkMBtWoUcPeYaCSSE9Pl9lc+i9Qu7i42DAaAAAAlBcKs25QZy8k6dTZS/YOw+5ys69YXf9+LlFGh+p2igYAAAAAAFQmycnJMplM+drd3d2VlFT0F+J69OghX19f1a9fX6dPn9bcuXP10EMPaf369WrUqFGp4snKytLRo0dLNRb5paenW10fP36cggoAZVKjRg21bNnS3mGgkjh58mS+f4tKwt/f34bRAAAAoLxQmAUAAAAAAADY2EsvvWT57/bt2ysoKEjBwcGKjo7WlClTSjWno6OjmjVrZqMIkZqaanXdvHlzubm52SkaADcCg8Fg7xBQiTRp0qRMO2YBAACgcqAwCwAAAAAAACiAyWRSSkpKvvakpCS5u7uXaK46derI399fR44cKXU8BoOBY4tsKDc31+raxcWFny8A4Lphl0YAAICqwWjvAAAAAAAAAICKyNvbW3FxcVZtKSkpSkhIkLe3t52iAgAAAAAAQGVBYRYAAAAAAABQgK5duyo2NlbJycmWtpiYGBmNRgUFBZVorvj4eO3du1dt2rSxdZgAAAAAAACooDjKEAAAAAAAAChASEiIli1bpjFjxigsLEzx8fGKjIxUSEiIvLy8LP1CQ0N17tw5bd68WZL0+eefa+vWrerWrZvq1Kmj06dPa/78+apWrZpGjhxpr9sBAAAAAADAdUZhFgAAAAAAAFAAd3d3LV26VNOmTdOYMWPk6uqqwYMHKzw83Kpfbm6ucnJyLNcNGzbUhQsXNGPGDKWkpKhmzZrq1KmTnn76aTVq1Oh63wYAAAAAAADshMIsAAAAAAAAoBBNmzbVkiVLiuyzbNkyq2s/P798bQAAAAAAAKh6jPYOAAAAAAAAAAAAAAAAAABuNBRmAQAAVBEnTpzQyJEj5efnp6CgIEVGRiozM/Oa45YvX66wsDB16tRJPj4+iomJydcnNjZW4eHh6tGjh+644w717dtXCxcuVFZWVnncCgAAAAAAAAAAAFDhUZgFAABQBSQlJSk0NFRZWVmKiopSeHi4Vq9erYiIiGuO3bBhgy5duqRu3boV2mfVqlW6fPmynn76ac2fP18DBgxQVFSUJk+ebMvbAAAAQBnl5prtHQIqCV4rAIB/2rhxo5588kl17dpVfn5+6t+/v9asWSOzueh/M8xms+bPn6/u3bvL19dXQ4cO1Y8//nh9ggYAALAzB3sHAAAAgPKXVzg1e/ZseXh4SJJycnI0depUhYWFycvLq8ixRqNRZ86c0fr16wvsM2XKFNWqVctyHRAQoNzcXL377rv697//bfUYAAAA7MdoNGjOyp06eyHJ3qHYXXZWhtX1q3O/koOjs52iqVga1HHXmAeD7B0GAKCCWbJkiRo0aKCJEyfqpptuUmxsrF5++WWdP39eY8eOLXTcggULNGvWLD333HPy8fHR8uXLNWrUKG3YsEGNGjW6jncAAABw/VGYBQAAUAVs375dgYGBlqIsSQoODtYrr7yinTt3auDAgYWONRqvvclqQYVXLVq0kNlsVkJCAoVZAAAAFcjZC0k6dfaSvcOwu9zsK1bXv59LlNGhup2iAQCg4vvggw+s3uMJDAxUYmKiFi9erKeeeqrA95CuXLmiefPmadSoURoxYoQkyd/fX3369FF0dLSmTJlynaIHAACwDwqzAAAAqoC4uDgNGjTIqs1kMsnT01NxcXHlsua+ffvk5OSkhg0blnoOs9mstLQ0G0YFALAlg8GgGjVq2DsMVBLp6enXPOamKC4uLjaMBgAAACVV2BfzVq9erbS0NLm5ueV7fN++fUpNTVVwcLClzcnJSb169dLmzZvLNV4AAICKgMIsAACAKiA5OVkmkylfu7u7u5KSbH+MzalTp/Thhx8qJCRErq6upZ4nKytLR48etWFkAABbqlGjhlq2bGnvMFBJnDx5Uunp6aUe7+/vb8NoAAAAYAt79+6Vl5dXgUVZkixfCPT29rZqb9q0qZYuXaqMjAw5O5fuKGG+0AcAFRtf6ENJ3Mhf6KMwCwAAADaVmpqqcePGqWHDhgoPDy/TXI6OjmrWrJmNIgMA2JrBYLB3CKhEmjRpUqY32AAAAFCx7NmzR19++aVeeOGFQvskJyfLyclJ1atbHxdsMplkNpuVlJRU6sIsvtAHABUbX+hDSdzIX+ircIVZJ06c0PTp07V//365urqqf//+Gj9+vJycnIocZzabtWDBAq1YsUIXL15UixYtNGnSJPn5+Vn1i4+P1/Tp07Vjxw45OjqqV69emjRpkqWSPycnR4sWLdK3336rX3/9VWazWT4+PnrmmWfUvn17q7l8fHzyxXHzzTdr586dZfshAAAA2JjJZFJKSkq+9qSkJLm7u9tsnczMTI0ZM0ZJSUn66KOPyvwNBYPBUKG/5QAAAIqPb8kCAADcOM6fP6/w8HAFBARo+PDhdomBL/QBQMXGF/pQEjfyF/oqVGFWUlKSQkND1bhxY0VFRSk+Pl4RERHKyMjQ5MmTixy7YMECzZo1S88995x8fHy0fPlyjRo1Shs2bFCjRo0kXa2cf+yxxyRJb7/9tjIyMvTGG2/o2Wef1bx58yRJGRkZmj9/vu6//36NHj1aRqNRq1ev1vDhwxUdHa3AwECrdYcNG6Z7773Xcu3o6GjLHwkAAIBNeHt7W7aOz5OSkqKEhIR8W8mXVm5urp577jkdOXJEy5cvV7169WwyLwAAAAAAACqO5ORkjR49Wh4eHoqKipLRaCy0r8lkUmZmpq5cuWK1a1ZycrIMBkOZvjDIF/oAALhx3Mhf6KtQhVmrVq3S5cuXNXv2bHl4eEi6uoPV1KlTFRYWJi8vrwLHXblyRfPmzdOoUaM0YsQISVe3KevTp4+io6M1ZcoUSdKmTZv0yy+/6Msvv7R8AGkymfToo4/q4MGD8vX1lbOzs7Zs2WKVCAYFBenee+/V0qVL8xVm1atXL9+uXAAAABVN165dNXfuXCUnJ8tkMkmSYmJiZDQaFRQUZJM1pk6dqq1btyo6OrrAnUUBAAAAAABQuWVkZCgsLEwpKSn66KOPVLNmzSL7530ed/LkSd1+++2W9ri4ONWvX7/UxxgCAABUFoWXsNvB9u3bFRgYaCnKkqTg4GDl5uYWeTzgvn37lJqaquDgYEubk5OTevXqpe3bt1vN7+PjY7UrRFBQkDw8PLRt2zZJUrVq1fJV51erVk0+Pj66cOFCWW8RAADALkJCQuTq6qoxY8Zox44d+uSTTxQZGamQkBCr4vfQ0FD16tXLauyhQ4cUExNjyasOHDigmJgYff/995Y+c+fO1apVqzRs2DA5OTnpxx9/tPwvNTX1+twkAAAAAAAAyk12drbGjx+vuLg4LVy4sNANFf6uXbt2cnNz08aNGy1tWVlZ+uqrr9S1a9fyDBcAAKBCqFA7ZsXFxWnQoEFWbSaTSZ6envmO3vnnOEn5juFp2rSpli5dqoyMDDk7OysuLi5fH4PBoCZNmhQ5f3Z2tg4cOCB/f/98j82fP18zZ85UjRo11KVLFz3//POqX7/+Ne+1MGazWWlpaaUebzAYbugt3mBb6enpN+w5rUB54e8sSqKsf2dtuRW7u7u7li5dqmnTpmnMmDFydXXV4MGDFR4ebtUvNzdXOTk5Vm3Lly/XunXrLNeLFi2SJHXs2FHLli2TJEsRfXR0tKKjo63Gf/jhhwoICLDZvQAAAAAAAOD6y9stfeLEiUpNTdWPP/5oeaxly5ZycnJSaGiozp07p82bN0uSqlevrrCwMEVFRalWrVpq3ry5Vq5cqcTERD366KN2uhMAAIDrp0IVZv39aJ2/c3d3V1JSUpHjnJycrM6mlq4WdZnNZiUlJcnZ2VnJyckFbql6rfkXLlyo+Ph4yzGJeQYMGKDu3bvr5ptv1vHjx/XBBx/ooYce0oYNG0p9JnZWVpaOHj1aqrHS1XM3W7ZsWerxqFpOnjyp9PR0e4cBVCr8nUVJlPXvbEFF4WXRtGlTLVmypMg+eYVWfxcREaGIiIgSjwMAAAAAAMCNI++LeQW9T/T111+rYcOGBX7pb/To0TKbzVq0aJEuXryoFi1aKDo6Wo0aNboucQMAANhThSrMqoh27typqKgoPfXUU2rdurXVY2+88Yblvzt06CB/f38NHDhQq1ev1ujRo0u1nqOjo5o1a1bqeA0GQ6nHoupp0qQJO2YBJcTfWZQEf2cBAAAAAABwo/jmm2+u2aegL+8ZDAaFhYUpLCysPMICAACo0CpUYZbJZFJKSkq+9qSkpCJ3oDKZTMrMzNSVK1esds1KTk6WwWCwjDWZTEpNTS1w/nr16uVrP3LkiMaNG6d7771XY8eOvWb8t99+u5o0aaIjR45cs29hDAaDTY8tAorCcWwAUL74OwsAAAAAAAAAAABUXUZ7B/B33t7eiouLs2pLSUlRQkKCvL29ixwnXT0u6O/i4uJUv359OTs7Fzq/2WzWyZMn883/22+/afTo0Wrbtq2mT59e6nsCAAAAAAAAAAAAAAAAUPVUqMKsrl27KjY2VsnJyZa2mJgYGY1GBQUFFTquXbt2cnNz08aNGy1tWVlZ+uqrr9S1a1er+X/++WedOnXK0rZr1y4lJiaqW7dulrYLFy5o1KhRqlevnmbNmiVHR8dixX/06FGdPHlSbdq0KVZ/AAAAAAAAAAAAAAAAADemCnWUYUhIiJYtW6YxY8YoLCxM8fHxioyMVEhIiLy8vCz9QkNDde7cOW3evFmSVL16dYWFhSkqKkq1atVS8+bNtXLlSiUmJurRRx+1jOvdu7fmzZuncePGacKECUpPT1dkZKS6d+8uX19fSVJGRoZGjx6tS5cu6T//+Y9++eUXy3gnJye1bNlSkhQdHa3ff/9dAQEBqlWrln755RfNnTtXdevW1ZAhQ67HjwsAAAAAAAAAAAAAAABABVWhCrPc3d21dOlSTZs2TWPGjJGrq6sGDx6s8PBwq365ubnKycmxahs9erTMZrMWLVqkixcvqkWLFoqOjlajRo0sfRwdHbVw4UJNnz5dEyZMkIODg3r16qUXX3zR0ufPP//Uzz//LEl68sknrdZo0KCBvvnmG0lSkyZN9NVXX2njxo26fPmybrrpJnXr1k3jx4+XyWSy6c8FAAAAAAAAAAAAAAAAQOVSoQqzJKlp06ZasmRJkX2WLVuWr81gMCgsLExhYWFFjvXy8lJUVFShjzds2FDHjh27Zpw9evRQjx49rtkPAAAAAAAAAAAAAAAAQNVjtHcAAAAAAAAAAAAAAAAAAHCjoTALAAAAAAAAAAAAAAAAAGyMwiwAAAAAAAAAAADYlMFYTZIh7+r/XwMAAABVC4VZAAAAAAAAAAAAsCmD0UEudVpIMsilTgsZjA72DgkAAAC47siCAQAAAAAAAAAAYHM1G3VSzUad7B0GAAAAYDfsmAUAAAAAAAAAAAAAAAAANkZhFgAAAAAAAAAAAAAAAADYGIVZAAAAAAAAAAAAAAAAAGBjFGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAAAANkZhFgBUMHPmzFGvXr00Z84ce4cCAAAAAAAAAAAAAABKicIsAKhAMjIytH79euXm5mr9+vXKyMiwd0gAAAAAAAAAAAAAAKAUKMwCgAokOztbubm5kqTc3FxlZ2fbOSIAAAAAAAAAAAAAAFAaFGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAAAANkZhFgAAAAAAAAAAAAAAAADYGIVZAAAAAAAAAAAAAAAAAGBjFGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAAAANkZhFgAAAAAAAAAAAAAAAADYGIVZAAAAAAAAAAAAAAAAAGBjFGYBAAAAAAAAAAAAAAAAgI1RmAUAAAAAAAAAAAAAAACUE4OxmiRD3tX/v0ZVQGEWAAAAAAAAAAAAAAAAUE4MRge51GkhySCXOi1kMDrYOyRcJyV+ps+cOaOvv/5a+/bt04kTJ3Tp0iUZDAbddNNN8vb2Vrt27dSjRw81atSoPOIFAAAAAAAAAAAAAAAAKpWajTqpZqNO9g4D11mxC7O2bt2qRYsWae/evTKbzbrlllvUsGFDNW/eXGazWcnJyfr555/11VdfKSIiQv7+/nr00Ud11113lWf8AAAAAAAAAAAAAAAAAFDhFKsw64EHHtDPP/+snj176t1331Xnzp3l5uZWYN/U1FTt3LlTmzZt0vjx43X77bfro48+smnQAAAAAAAAAAAAAAAAAFCRFaswKyAgQO+//75uvvnma/Z1c3NT79691bt3byUkJOjDDz8sc5AAAAAAAAAAAAAAAAAAUJkUqzDr2WefLdXknp6epR4LAAAAAAAAAAAAAAAAAJWV0d4BAAAAAAAAAAAAAAAAAMCNplSFWbt27dLChQut2tasWaPu3burc+fOmjFjhnJycmwSIAAAAAAAAAAAAAAAAABUNqUqzIqKitLPP/9suT527JheeeUV1apVSx07dtSyZcsUHR1tsyABAAAAAAAAAAAAAAAAoDIpVWHWiRMn1Lp1a8v1hg0b5ObmpuXLl+vdd9/VkCFDtGHDBpsFCQAAAAAAAAAAAAAAAACVSakKs9LT0+Xm5ma5/r//+z916dJFNWrUkCS1adNG586ds02EAAAAAAAAAAAAAAAAAFDJlKowq169ejp06JAk6bffftMvv/yiLl26WB5PSkqSk5OTbSIEAAAAAAAAAAAAAAAAgErGoTSD7rvvPs2ZM0fx8fH69ddf5e7urp49e1oeP3LkiBo3bmyrGAEAAAAAAAAAAAAAAACgUilVYdYTTzyhrKwsbdu2TfXq1VNERIRMJpMkKTExUd9//72GDx9u00ABAAAAAAAAAAAAAAAAoLIoVWGWg4ODwsPDFR4enu8xDw8P7dy5s8yBAQAAAAAAAAAAAAAAAEBlZbR3AAAAAAAAAAAAAAAAAABwoylWYdbkyZN1+vTpEk/++++/a/LkySUeBwAAAAAAAAAAAAAAAACVWbEKs/744w8FBwfrscce09q1a/XHH38U2vfMmTP6+OOPNWrUKAUHB+v8+fM2CxYAAACld+LECY0cOVJ+fn4KCgpSZGSkMjMzrzlu+fLlCgsLU6dOneTj46OYmJgC+8XHx2vcuHFq27atOnbsqP/85z9KTU219W0AAAAAAAAAAAAAlYJDcTotWLBAe/fu1aJFizR58mTl5OTIw8NDDRo0kLu7u8xms5KSknTmzBklJyerWrVq6tq1q5YuXar27duX9z0AAADgGpKSkhQaGqrGjRsrKipK8fHxioiIUEZGxjV3ON2wYYMkqVu3blq/fn2BfbKysvTYY49Jkt5++21lZGTojTfe0LPPPqt58+bZ9F4AAACupxMnTmj69Onav3+/XF1d1b9/f40fP15OTk7FnmPJkiV6/fXX1b17d3IjAAAAAACAKqRYhVmS5O/vL39/f128eFFbt27Vjz/+qLi4OMuOWB4eHrrnnnvk5+en7t27q3bt2uUWNIAbS26uWUajwd5hoILjdQKUzapVq3T58mXNnj1bHh4ekqScnBxNnTpVYWFh8vLyKnKs0WjUmTNnCi3M2rRpk3755Rd9+eWX8vb2liSZTCY9+uijOnjwoHx9fW19SwAAAOWuLMXteRISEjRnzhzeKwMAAAAAAKiCil2YladWrVoaNGiQBg0aVB7xAKiCjEaD5qzcqbMXkuwdit1lZ2VYXb869ys5ODrbKZqKo0Edd415MMjeYQCV2vbt2xUYGGgpypKk4OBgvfLKK9q5c6cGDhxY6Fij8dqnX2/fvl0+Pj6WoixJCgoKkoeHh7Zt20ZhFgAAqJTKUtye580331SPHj107ty5co4WAAAAAAAAFU2JC7MAoDycvZCkU2cv2TsMu8vNvmJ1/fu5RBkdqtspGgA3kri4uHyF9SaTSZ6enoqLi7PJ/H8vypIkg8GgJk2alGl+s9mstLS0soYHACgnBoNBNWrUsHcYqCTS09NlNptLPd7FxcWG0RRPWYrbJWnPnj3asmWLYmJi9Oyzz5ZztAAAAAAAAKhoKMwCAACoApKTk2UymfK1u7u7Kymp7DsWJicnq2bNmjafPysrS0ePHi1LaACAclSjRg21bNnS3mGgkjh58qTS09NLPd7f39+G0RRPWYrbc3JyNG3aND3xxBOqU6eOTeIpa9E6xZQoqbIWVAJVDX9nURKVsWgdAAAAJUdhFgAAACosR0dHNWvWzN5hAAAKYTAY7B0CKpEmTZpUugKPshS3r1ixQunp6RoxYoTN4ilr0TrFlCipshZUAlUNf2dREpWxaB0AAAAlR2EWAABAFWAymZSSkpKvPSkpSe7u7jaZPzU1tcD569WrV+p5DQYD3wAFAOAGUZV2EPnrr780a9YsvfHGG3JycrLZvGUtWqeYEiVVGQsqAXvi7yxKgr+xAAAAVQOFWQAAAFWAt7d3vuN2UlJSlJCQIG9vb5vMf/z4cas2s9mskydPKigoqMzzAwAA2ENpi9vfe+89+fj4qH379kpOTpYkZWdnKzs7W8nJyXJxcZGDQ8nflqNoHddbVSqoBIDrjb+xAAAAVYPR3gEAAACg/HXt2lWxsbGWDwYlKSYmRkaj0SaFU127dtXPP/+sU6dOWdp27dqlxMREdevWrczzAwAA2ENpi9tPnjypH374QR06dLD8b9++fdqxY4c6dOig2NjY8g4dAAAAAAAAFUCZdsz68ccftXv3bv3111966KGH1LhxY6WnpysuLk6NGzeWq6urreIEAABAGYSEhGjZsmUaM2aMwsLCFB8fr8jISIWEhMjLy8vSLzQ0VOfOndPmzZstbYcOHdLZs2d18eJFSdKBAwckSbVq1VLHjh0lSb1799a8efM0btw4TZgwQenp6YqMjFT37t3l6+t7He8UAADAdrp27aq5c+cqOTlZJpNJUvGK21988UWrgnhJmjFjhpydnTVhwgT5+PiUa9wAAAAAAACoGEpVmJWZmakJEybo66+/ltlslsFg0F133aXGjRvLaDRq1KhRGjFihJ588klbxwsAAIBScHd319KlSzVt2jSNGTNGrq6uGjx4sMLDw6365ebmKicnx6pt+fLlWrduneV60aJFkqSOHTtq2bJlkiRHR0ctXLhQ06dP14QJE+Tg4KBevXrpxRdfLOc7AwAAKD+lLW5v0aJFvrlMJpNcXFwUEBBw3eIHAAAAAACAfZWqMOu9997Tt99+qylTpiggIEB9+vSxPFa9enX16dNHX3/9NYVZAAAAFUjTpk21ZMmSIvvkFVr9XUREhCIiIq45v5eXl6KiokobHgAAQIVTluJ2AAAAAAAAoFSFWV988YVCQkI0dOhQXbp0Kd/jTZs2VUxMTJmDAwAAAAAAAOyptMXtpekDAAAAAACAG4uxNIP++usv+fj4FPp4tWrVlJGRUeqgAAAAAAAAAAAAAADXz5w5c9SrVy/NmTPH3qEAAHDDKFVhVr169RQXF1fo4/v27dMtt9xS6qAAAAAAAAAAAAAAANdHRkaG1q9fr9zcXK1fv55NOAAAsJFSFWbde++9WrVqlfbv329pMxgMkqTVq1dr48aNGjBggE0CBAAAAAAAAAAAAACUn+zsbOXm5kqScnNzlZ2dbeeIAAC4MTiUZtATTzyhAwcO6JFHHpG3t7cMBoNef/11JSUl6fz58+rWrZtGjBhRqoBOnDih6dOna//+/XJ1dVX//v01fvx4OTk5FTnObDZrwYIFWrFihS5evKgWLVpo0qRJ8vPzs+oXHx+v6dOna8eOHXJ0dFSvXr00adIkubm5SZJycnK0aNEiffvtt/r1119lNpvl4+OjZ555Ru3bt7eaKzMzU++8844+/fRTXb58WW3bttXLL78sb2/vUt07AAAAAAAAAAAAAAAAgBtDqXbMcnJy0sKFCzVjxgw1atRI3t7eyszMlI+PjyIiIjR37lxVq1atxPMmJSUpNDRUWVlZioqKUnh4uFavXq2IiIhrjl2wYIFmzZqlESNGaN68efL09NSoUaN0+vRpS5+srCw99thjOnXqlN5++21NmTJFO3bs0LPPPmvpk5GRofnz56tVq1Z644039NZbb8nd3V3Dhw/Xrl27rNacPn26Pv74Y4WHhysqKkqZmZkaMWKEUlJSSnzvAAAAAAAAAAAAAAAAAG4cpdoxS7p6dGH//v3Vv39/mwWzatUqXb58WbNnz5aHh4ekqztYTZ06VWFhYfLy8ipw3JUrVzRv3jyNGjXKslOXv7+/+vTpo+joaE2ZMkWStGnTJv3yyy/68ssvLbtamUwmPfroozp48KB8fX3l7OysLVu2yN3d3TJ/UFCQ7r33Xi1dulSBgYGSpPPnz2vNmjV65ZVXNHjwYElSmzZtdNddd2nVqlUaPXq0zX4uKD2DsZokgySzJMP/vwYAAAAAAAAAAAAAAADKV6l2zCov27dvV2BgoKUoS5KCg4OVm5urnTt3Fjpu3759Sk1NVXBwsKXNyclJvXr10vbt263m9/HxsTpqMCgoSB4eHtq2bZskqVq1alZFWXltPj4+unDhgqVtx44dys3NVZ8+fSxtHh4eCgoKsloT9mUwOsilTgtJBrnUaSGDsdS1iAAAAAAAAAAAAAAAAECxlbpKZc+ePfrkk0905swZJSUlyWw2Wz1uMBj06aeflmjOuLg4DRo0yKrNZDLJ09NTcXFxRY6TZFVwJUlNmzbV0qVLlZGRIWdnZ8XFxeXrYzAY1KRJkyLnz87O1oEDB+Tv72+1Zu3atfMVcTVt2lRr1qwp+kaLYDablZaWVurxBoNBNWrUKPX4G1HNRp1Us1Ene4dRIaWnp+f73b3eeM2iJHjNorIp62vWxcXFhtEAAAAAAAAAAAAAuJ5KVZi1ePFiRUZGqnr16mrSpEm+4qTSSk5Olslkytfu7u6upKSkIsc5OTmpevXqVu0mk0lms1lJSUlydnZWcnKyatasWeL5Fy5cqPj4eMsxiXlrFjSXyWQqcq5rycrK0tGjR0s9vkaNGmrZsmWpx6NqOXnypNLT0+0aA69ZlASvWVQ2ZX3N/r0oHAAAAIBtGYzVJBkkmSUZ/v81AAAAAACA7ZSqMCs6Olrt2rXT3LlzCyxOupHs3LlTUVFReuqpp9S6detyX8/R0VHNmjUr9XiDwWDDaHCja9KkSYXYfQgoLl6zqGwqwmsWAAAAQMEMRge51GmhtAtH5VKnhQzGUh8uAAAAAAAAUKBSvduQnp6u++67z+ZFWSaTSSkpKfnak5KSityVy2QyKTMzU1euXLHaNSs5OVkGg8Ey1mQyKTU1tcD569Wrl6/9yJEjGjdunO69916NHTs235oFzZWcnFymHcQMBgPHFuG64Tg2VDa8ZlHZ8JoFAAAAKraajTqpZqNO9g4DAAAAAADcoIylGRTw/9i797go6/z//88ZBUF0IFJJ0lbABU8ZSR4IA9P8Kh3WUiqqNUyzqcgSc0vLLU3blE1LsRINk/iYZCcrN007iVrZbpq2rZnr4CHdUFMHUBBi5vdHPycnFGUYmBl43G83bznveb/e87rmdnn5Cl/X++rbVz/88IO7c1FkZKQsFovTWElJiQ4dOqTIyMga46RfHxd0OovFovDwcAUEBJx1fbvdrsLCwmrr79mzR2PHjtXll1+uGTNmnPEzDx8+XO2xhRaLpcZcAQAAAAAAAAAAAAAAADR+LjVm/fWvf9UXX3yhnJwcHTt2zG3JJCYm6vPPP1dxcbFjbPXq1TIajUpISDhrXK9evdSqVSutWrXKMVZZWak1a9YoMTHRaf3vv/9eu3fvdox98cUXOnbsmJKSkhxjBw8e1OjRo9W+fXvNmzdPfn5+1T6zf//+MhqNWrNmjWPMarVqw4YNTp8JAAAAAAAAAAAAAAAAoOlx6VGG7du316233qrMzEw9++yzatGihYxG5x4vg8Ggr7/+ulbrpqamKi8vT+np6TKbzSoqKlJmZqZSU1MVFhbmmJeWlqYDBw5o7dq1kqQWLVrIbDYrKytLoaGhio6O1rJly3Ts2DGNGTPGETdkyBBlZ2dr3LhxmjBhgsrKypSZmakBAwaoZ8+ekqTy8nKNHTtWR48e1eOPP66dO3c64v39/dWtWzdJ0kUXXaSUlBRlZmbKaDQqLCxM2dnZat26tVJTU2v3hQIAAAAAAAAAAAAAAABoVFxqzJo7d64WLFigsLAw9ejRQ61bt3ZLMsHBwcrNzdX06dOVnp6uoKAgpaSkKCMjw2mezWZTVVWV09jYsWNlt9u1ePFiHTlyRF27dlVOTo46duzomOPn56eXX35ZM2bM0IQJE9S8eXMNHjxYjz32mGPO4cOH9f3330uS7rvvPqfPuPjii/XJJ584Xk+ZMkVBQUGaPXu2jh8/rl69eumVV15x2/cBAAAAAAAAAAAAAAAAwDe51JiVn5+vpKQkvfjii9V2yqqrqKgoLVmypMY5eXl51cYMBoPMZrPMZnONsWFhYcrKyjrr+x06dNCOHTvOK1d/f389+uijevTRR89rPgCci8HYTJJBkl2S4f9/DQAAAAAAAAAAAAAAfI1LjVmVlZUaMGCA25uyAKCpMxibq2W7rjpxcLtatusqg9GlyzQAAAAAAAAAAG61Z88e5eTkaOvWrdq5c6ciIyO1cuXKc8YNHDhQ+/fvrza+bds2tWjRoj5SBQAA8Bou/Yv/gAED9K9//UupqanuzgcAmrzWHfupdcd+nk4DAAAAAAAAAACHnTt3at26dbrssstks9lkt9vPO3bIkCEaPXq005i/v7+7UwQAAPA6LjVmPfDAA8rIyNDUqVOVkpKi8PDwM+6eFRISUtf8AAAAAAAAAAAAAHjYwIEDdc0110iSJk2apH//+9/nHdumTRvFxsbWU2aus9nsMhoNnk4DPoBzBQDgKpcas4YOHSpJ2r59u15//fWzztu+fbtrWQEAAAAAAAAAAADwGmfapMHXGY0GvbBso/YftHo6FY/7pbLc6fVTC9aouV+Ah7LxLhe3C1b6bQmeTgMA4KNcasxKT0+XwUBHMAAAAAAAAAAAAICavf/++1q+fLn8/Px0xRVXaOLEiYqJianTmna7XSdOnHA53mAwKDAwUPsPWrV7/9E65dIY2H456fR674FjMjZv4aFsvFNZWVmtHuEJNHWnrrPA+ajrNbZly5ZuzMa9XGrMGjdunLvzAAAAAAAAAAAAANDIDBw4UD179lR4eLj27dunBQsW6Pbbb9eKFSvUsWNHl9etrKys09N7AgMD1a1bN5fj0fQUFhaqrKzM02kAPoPrLGqjrtfYuLg4N2bjXi41ZgEAAAAAAAAAAADAuUyZMsXx+yuuuEIJCQlKTk5WTk6Opk6d6vK6fn5+6ty5s8vxPB0ItRUREcGOWUAtcJ1FbTTma+x5NWbNnz9fBoNB9913n4xGo+bPn3/OGIPBoPT09DonCAAAAAAAAAAAAKBxaNeuneLi4vTdd9/VaR2DweDVjy1C48Mj2QCg/jTma2ytGrPGjh0rf39/GrMAAAAAAAAAAAAAAAAAoAbn1Zj1/fff1/gaAAAAAAAAAAAAAM6lqKhIX3/9tYYNG+bpVAAAAOrdeTVmSdKgQYP02GOPadCgQfWZDwAAAAAAAAAAAAAvU1ZWpnXr1kmS9u/fr9LSUq1evVqS1KdPH4WGhiotLU0HDhzQ2rVrJUkrV67Up59+qqSkJLVr10779u3TwoUL1axZM911110eOxYAAICGct6NWfv379eJEyfqMxcAAAAAAAAAAAAAXujnn3/WQw895DR26vWrr76qvn37ymazqaqqyvF+hw4ddPDgQf3tb39TSUmJWrdurX79+unBBx9Ux44dGzR/AAAATzjvxiwAAAAAAAAAAAAATVOHDh20Y8eOGufk5eU5vY6Nja02BgAA0JQYPZ0AAAAAAAAAAAAAAAAAADQ2tdoxa/ny5fr888/Pa67BYNDf/vY3l5ICAAAAAAAAAAAAAAAAAF9Wq8asrVu36t///vd5zaUxCwAAAAAAAAAAAAAAAEBTVavGrKefflo33HBDfeUCAAAAAAAAAAAAAAAAAI2C0dMJAAAAAAAAAAAAAAAAAEBjQ2MWAAAAAAAAAAAAAAAAALgZjVkAAAAAAAAAAAAA0IQZjM0kGU69+v9fAwCAujrvxqxnnnlGl19+eX3mAgAAAAAAAAAAAABoYAZjc7Vs11WSQS3bdZXB2NzTKQEA0Cic99+oN910U33mAQAAAAAAAAAAAADwkNYd+6l1x36eTgMAgEaFRxkCAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJs1dyXIbrfr9ddf15tvvql9+/apuLi42hyDwaD//Oc/dU4QAAAAAAAAAAAAAAAAAHyNS41ZmZmZWrJkibp27ao//elPCg4OdndeAAAAAAAAAAAAAAAAAOCzXGrMWrFihf7f//t/mjt3rrvzAQAAAAAAAAAAAAAAAACfZ3QlqLy8XFdeeaW7cwEAAEA92rVrl+666y7FxsYqISFBmZmZqqioOGec3W7XwoULNWDAAPXs2VO33nqrvvnmm2rz/vWvf2nkyJHq3bu3+vbtq7vvvlvbt2+vhyMBAAAAAAAAAAAAvJ9LjVnx8fH69ttv3Z0LAAAA6onValVaWpoqKyuVlZWljIwMLV++XDNnzjxn7KJFizRv3jyNGjVK2dnZatu2rUaPHq19+/Y55lgsFo0ZM0YtW7bU7Nmz9fTTT8tqtWrUqFE6dOhQfR4aAAAAAAAAAAAA4JVcasx68skntXXrVi1YsEBHjx51d04AAABws/z8fB0/flzz58/XVVddpZSUFP3lL39Rfn6+ioqKzhp38uRJZWdna/To0Ro1apTi4+M1Z84chYSEKCcnxzHvo48+kt1u19y5c5WYmKhrrrlGc+bM0bFjx7Rx48aGOEQAAAAAAAAAAADAq7jUmDV06FDt27dPc+fO1ZVXXqnY2Fj16tXL6VdcXJy7cwUAAICLCgoKFB8fr5CQEMdYcnKybDZbjY1TmzdvVmlpqZKTkx1j/v7+Gjx4sAoKChxjlZWV8vf3V4sWLRxjrVu3du9BAAAAAAAAAAAAAD6kuStBQ4YMkcFgcHcuAAAAqCcWi0UjRoxwGjOZTGrbtq0sFkuNcZIUGRnpNB4VFaXc3FyVl5crICBA1113nV5++WU9//zzGjVqlCoqKjRnzhy1b99egwYNcjlvu92uEydOuBwPAKhfBoNBgYGBnk4DPqKsrEx2u93l+JYtW7oxGwAAAAAAAKD+udSYNXPmTHfnAQAAgHpUXFwsk8lUbTw4OFhWq7XGuN/vhCX92tRlt9tltVoVEBCgTp06acmSJbr//vu1YMECSdLFF1+sV155pU47Z1VWVmr79u0uxwMA6ldgYKC6devm6TTgIwoLC1VWVuZyPLuzAwAAAAAAwNe41JgFAAAAnK6wsFDjxo1TQkKCbrzxRp08eVKLFy/W2LFjlZ+frzZt2ri0rp+fnzp37uzmbAEA7sJu2qiNiIiIOu2YBQAAAAAAAPgalxuzSktLtWTJEn322Wc6cOCAJCk8PFwDBgzQqFGj1KpVK7clCQAAgLoxmUwqKSmpNm61WhUcHFxjXEVFhU6ePOm0a1ZxcbEMBoMj9rnnnlObNm2UmZnpmNOnTx9dffXVevXVVzVhwgSX8jYYDDy2CACARoLHXgIAAAAAAKCpMboSVFRUpBtvvFHz58/XiRMn1KtXL/Xq1UtlZWWaP3++brrpJh08eNDduQIAAMBFkZGRslgsTmMlJSU6dOiQIiMja4yTft0R63QWi0Xh4eEKCAiQJP33v/9Vly5dnOYEBQXpkksu0d69e91xCAAAAAAAAAAAAIBPcWnHrGeffVaHDx9Wdna2kpKSnN5bt26dxo8fr9mzZ2vWrFluSRIAAAB1k5iYqAULFqi4uFgmk0mStHr1ahmNRiUkJJw1rlevXmrVqpVWrVrlaLyqrKzUmjVrlJiY6JgXHh6u7du3y263Ox5rVVpaqj179qhv3771eGQAAAAAAAAAAACAd3Jpx6z169crLS2tWlOWJCUlJWnkyJFat25dnZMDAACAe6SmpiooKEjp6enasGGD3nrrLWVmZio1NVVhYWGOeWlpaRo8eLDjdYsWLWQ2m7V48WLl5ubqiy++0MMPP6xjx45pzJgxTuv/5z//0cSJE1VQUKCPPvpI99xzjyoqKnTzzTc36LECAAAAAAAAAAAA3sClHbPKysp04YUXnvX9Nm3aqKyszOWkAAAA4F7BwcHKzc3V9OnTlZ6erqCgIKWkpCgjI8Npns1mU1VVldPY2LFjZbfbtXjxYh05ckRdu3ZVTk6OOnbs6JhzzTXX6Pnnn1dOTo4yMjLk5+enbt266dVXX1WnTp0a4hABAAAAAAAAAAAAr+JSY1ZUVJT+8Y9/KDU1Vf7+/k7vVVZW6h//+IeioqLckiAAAADcIyoqSkuWLKlxTl5eXrUxg8Egs9kss9lcY2xycrKSk5PrkiIAAAAAAAAAAADQaLjUmDV27FhlZGTo5ptv1u233+7YBaGwsFD5+fnasWOHnnvuOXfmCQAAAAAAAAAAAAAAAAA+w6XGrOTkZJWVlWn27Nl68sknZTAYJEl2u10XXnih/va3v2no0KFuTRQAAAAAAAAAAAAAAAAAfIVLjVmSNHz4cP3pT3/Sv//9bx04cECSFB4erh49eqh5c5eXBQAAAAAAALzGrl27NGPGDG3ZskVBQUEaNmyYxo8fL39//xrjJk6cqG3btungwYPy8/NTdHS07rvvPvXv37+BMgcAAAAAAICn1amDqnnz5oqNjVVsbKyb0gEAAAAAAAC8g9VqVVpamjp16qSsrCwVFRVp5syZKi8v1xNPPFFjbGVlpUaNGqVOnTrp5MmTevPNN3XPPffo1Vdf1RVXXNFARwAAAAAAAABPOq/GrH/+85+SpN69ezu9PpdT8wEAAAAAAABfk5+fr+PHj2v+/PkKCQmRJFVVVWnatGkym80KCws7a+zcuXOdXicmJmrQoEF69913acwCAAAAAABoIs6rMWvkyJEyGAzaunWr/P39Ha/Pxm63y2AwaPv27W5LFAAAAAAAAGhIBQUFio+PdzRlSVJycrKefPJJbdy4UcOHDz/vtZo1a6bWrVursrKyHjIFAAAAAACANzqvxqxXX31VkuTv7+/0GgAAAAAAAGisLBaLRowY4TRmMpnUtm1bWSyWc8bb7XZVVVWppKREb7/9tvbs2aOnnnrK5XzsdrtOnDjhcrzBYFBgYKDL8Wh6ysrKZLfbPZ0G4DO4zqI26nqNbdmypRuzAQAAQH05r8asPn361PgaAAAAAAAAaGyKi4tlMpmqjQcHB8tqtZ4z/s0339SUKVMk/fqPp88995wuv/xyl/OprKys0w71gYGB6tatm8vxaHoKCwtVVlbm6TQAn8F1FrVR12tsXFycG7MBAABAfTmvxqzfu/POO3XfffcpPj7+jO9/+eWXevHFF9lZCwAAAAAAAE3WoEGD1KVLFx09elSrV6/W+PHjNX/+fCUlJbm0np+fnzp37uxyPgaDweVYNE0RERHsmAXUAtdZ1AbXWAAAgKbBpcasr776SjfffPNZ3z9y5Ij++c9/upwUAAAAAAAA4Gkmk0klJSXVxq1Wq4KDg88ZHxoaqtDQUElSYmKirFar/v73v7vcmGUwGHhsERoUj2QDgPrDNRYAAKBpMLoaWNOdH3v27FFQUJCrSwMAAAAAAAAeFxkZKYvF4jRWUlKiQ4cOKTIystbrde/eXXv27HFXegAAAAAAAPBy571j1jvvvKN33nnH8fqll17S8uXLq80rKSnRjh07lJiY6J4MAQAAAAAAAA9ITEzUggULVFxcLJPJJElavXq1jEajEhISar3e119/rY4dO7o7TQAAAAAAAHip827MKisr09GjRx2vjx8/LqOx+oZbLVu2VGpqqtLT092TIQAAAAAAAOABqampysvLU3p6usxms4qKipSZmanU1FSFhYU55qWlpenAgQNau3atJOmzzz7TihUrNGDAALVv315Wq1UrV67Uhg0bNGfOHE8dDgAAAAAAABrYeTdm3X777br99tslSQMHDtTjjz+uQYMG1VtiAAAAAAAAgCcFBwcrNzdX06dPV3p6uoKCgpSSkqKMjAyneTabTVVVVY7XHTt2VEVFhWbPnq2jR4/qggsuUExMjPLy8tSnT5+GPgwAAAAAAAB4yHk3Zp3uk08+cXceDrt27dKMGTO0ZcsWBQUFadiwYRo/frz8/f1rjLPb7Vq0aJFee+01HTlyRF27dtXkyZMVGxvrNK+oqEgzZszQhg0b5Ofnp8GDB2vy5Mlq1aqVY87GjRv19ttva+vWrdq3b5/uuOMOPfHEE9U+MyYmptpYmzZttHHjRtcOHgAAAAAAAF4lKipKS5YsqXFOXl5etZgXX3yxHrMCAAAAAACAL3CpMevAgQPnNS88PLxW61qtVqWlpalTp07KyspSUVGRZs6cqfLy8jM2Rp1u0aJFmjdvniZOnKiYmBgtXbpUo0eP1rvvvquOHTtKkiorK3X33XdLkmbPnq3y8nLNmjVLDz/8sLKzsx1rrV+/Xt9//7169+4tq9Va4+eOHDlS119/veO1n59frY4ZAAAAAAAAAAAAAAAAQOPjUmPWwIEDZTAYzjlv+/bttVo3Pz9fx48f1/z58xUSEiJJqqqq0rRp02Q2mxUWFnbGuJMnTyo7O1ujR4/WqFGjJElxcXEaOnSocnJyNHXqVEnShx9+qJ07d+qDDz5QZGSkJMlkMmnMmDHatm2bevbsKUl65JFHNGnSJEnSpk2basy5ffv21XblAgAAAAAAAAAAAAAAANC0udSY9be//a1aY1ZVVZX279+vd999V6GhobrjjjtqvW5BQYHi4+MdTVmSlJycrCeffFIbN27U8OHDzxi3efNmlZaWKjk52THm7++vwYMHa+3atU7rx8TEOJqyJCkhIUEhISFat26dozHLaDTWOncAAAAAAAAAAAAAAAAAOMWlxqyzNUhJ0tixY3XLLbeopKSk1utaLBaNGDHCacxkMqlt27ayWCw1xklyariSpKioKOXm5qq8vFwBAQGyWCzV5hgMBkVERNS4fk0WLlyoOXPmKDAwUP3799cjjzxS60c4ns5ut+vEiRMuxxsMBgUGBrocj6alrKxMdrvdozlwzqI2OGfha+p6zrZs2dKN2QAAAAAAAAAAAABoSC41ZtWkZcuWGj58uJYsWaI777yzVrHFxcUymUzVxoODg2W1WmuM8/f3V4sWLZzGTSaT7Ha7rFarAgICVFxcrNatW9d6/bO58cYbNWDAALVp00Y//PCDXnrpJd1+++169913FRwcXOv1JKmysrLWj4A8XWBgoLp16+ZyPJqWwsJClZWVeTQHzlnUBucsfE1dz9m4uDg3ZgMAAAAAAAAAAACgIbm9MUuSbDabDh8+XB9Le5VZs2Y5ft+7d2/FxcVp+PDhWr58ucaOHevSmn5+furcubPLOf3+EZNATSIiIrxi9yHgfHHOwtd4wzkLAAAAAAAAAAAAwDPc2phVWlqqf/7zn8rJyXFpNxGTyXTGRyBardYad6AymUyqqKjQyZMnnXbNKi4ulsFgcMSaTCaVlpaecf327dvXOt/f69KliyIiIvTdd9+5vIbBYOCxRWgwPI4NvoZzFr6GcxYAAAAAAAAAAABoulxqzOrSpctZdwyx2+0KDw/Xk08+Wet1IyMjZbFYnMZKSkp06NAhRUZG1hgn/fq4oC5dujjGLRaLwsPDFRAQ4Jj3ww8/VMu3sLBQCQkJtc4XAAAAAAAAAAAAAAAAAM7Epcas9PT0MzZmBQcH65JLLlFCQoKaN6/90omJiVqwYIGKi4tlMpkkSatXr5bRaKyxcapXr15q1aqVVq1a5WjMqqys1Jo1a5SYmOi0/nvvvafdu3erU6dOkqQvvvhCx44dU1JSUq3z/b3t27ersLBQw4cPr/NaAAAAAAAAAAAAAAAAAHyXS41Z48aNc3cekqTU1FTl5eUpPT1dZrNZRUVFyszMVGpqqsLCwhzz0tLSdODAAa1du1aS1KJFC5nNZmVlZSk0NFTR0dFatmyZjh07pjFjxjjihgwZouzsbI0bN04TJkxQWVmZMjMzNWDAAPXs2dMxb//+/fr2228lSWVlZdq7d69Wr14tSRo6dKgkKScnR3v37lXfvn0VGhqqnTt3asGCBbrooot0880318v3AwAAAAAAAAAAAAAAAMA3uNSY9csvv6i8vFytWrU64/ulpaUKCAio9a5ZwcHBys3N1fTp05Wenq6goCClpKQoIyPDaZ7NZlNVVZXT2NixY2W327V48WIdOXJEXbt2VU5Ojjp27OiY4+fnp5dfflkzZszQhAkT1Lx5cw0ePFiPPfaY01qbNm3S5MmTHa/Xr1+v9evXS5J27NghSYqIiNCaNWu0atUqHT9+XBdccIGSkpI0fvx4x25fAAAAAAAAAAAAAAAAAJomlxqzZsyYoX/9619auXLlGd+/7bbb1LdvX02ZMqXWa0dFRWnJkiU1zsnLy6s2ZjAYZDabZTaba4wNCwtTVlZWjXOGDx9+zscRDhw4UAMHDqxxDgAAAAAAAAAAAAAAAICmyehK0Pr16zVkyJCzvj9kyBAVFBS4nBQAAAAAAAAAAAAAAAAA+DKXGrMOHjyosLCws77frl07FRUVuZwUAAAAAAAAAAAAAAAAAPgylxqzQkJCVFhYeNb3d+3apVatWrmcFAAAAAAAAAAAAAAAAAD4Mpcas6666irl5+frP//5T7X3vvvuOy1fvlyJiYl1Tg4AAAAAAAAAAAAAAAAAfFFzV4IeeughrV+/XjfffLMGDhyozp07S5J27typTz/9VKGhoXrooYfcmigAAAAAAAAAAAAAAAAA+AqXGrPCwsL01ltvafbs2fr444+1du1aSVKrVq10ww03KCMjQ2FhYW5NFAAAAAAAAAAAAAAAAAB8hUuNWZLUrl07zZo1S3a7XUeOHJEkhYaGymAwuC05AAAAAAAAAAAAAAAAAPBFLjdmnWIwGOTv76+WLVvSlAUAAAAAAAAAAAAAAAAAkoyuBn777bcaM2aMLrvsMvXt21dfffWVJOnIkSO67777tGnTJrclCQAAAAAAAAAAAAAAAAC+xKXGrM2bN+v222/Xnj179Kc//Uk2m83xXmhoqEpLS/X666+7LUkAAAAAAAAAAAAAAAAA8CUuNWY999xzioqK0gcffKCMjIxq7/ft21dbt26tc3IAAAAAAAAAAAAAAAAA4Itcasz69ttvNXz4cPn7+8tgMFR7PywsTIcPH65zcgAAAAAAAAAAAAAAAADgi1xqzGrevLnT4wt/r6ioSC1btnQ5KQAAAAAAAAAAAAAAAADwZS41Zl122WX68MMPz/jeiRMn9Pbbb6t37951SgwAAAAAAAAAAAAAAAAAfJVLjVkPPvig/v3vf+uee+5RQUGBJGnHjh164403NHz4cB05ckT333+/WxMFAAAAAAAAAAAAAAAAAF/h8o5ZCxcu1J49e/Too49KkmbOnKm//vWvstlsWrhwobp06eLWRAEAAAAAAAAAAAAAAADAVzR3NTA+Pl4ffvihtm/frt27d8tut6tjx47q0aOHDAaDO3MEAAAAAAAAAAAAAAAAAJ/iUmPWjh07FBMTI0nq2rWrunbtWm3O6tWrNXTo0LplBwAAAAAAAAAAAAAAAAA+yKVHGY4YMULZ2dmy2WzV3jt27JjGjx+vjIyMOicHAAAAAAAAAAAAAAAAAL7Ipcasm266Sc8995xSU1NlsVgc4x999JGuv/56rVu3To899pjbkgQAAEDd7dq1S3fddZdiY2OVkJCgzMxMVVRUnDPObrdr4cKFGjBggHr27Klbb71V33zzzRnnfvbZZ0pNTVVsbKx69+6tkSNH6qeffnLzkQAAAAAAAAAAAADez6XGrOnTp2vRokX66aefdNNNN2nhwoWaOHGiHnjgAXXs2FErVqzQyJEj3Z0rAAAAXGS1WpWWlqbKykplZWUpIyNDy5cv18yZM88Zu2jRIs2bN0+jRo1Sdna22rZtq9GjR2vfvn1O895991098MAD6tOnjxYsWKCZM2eqR48eOnnyZH0dFgAAAAAAABrInj179MQTT2jYsGHq1q2brr/++vOKq81NfwAAAI1Nc1cDr7rqKv3jH//QmDFj9Nxzz0mS7r33Xj300EMyGAxuSxAAAAB1l5+fr+PHj2v+/PkKCQmRJFVVVWnatGkym80KCws7Y9zJkyeVnZ2t0aNHa9SoUZKkuLg4DR06VDk5OZo6daqkXx9n/dRTT+mxxx7T7bff7ogfNGhQfR4WAAAAAAAAGsjOnTu1bt06XXbZZbLZbLLb7ecVd+qmv4kTJyomJkZLly7V6NGj9e6776pjx471nDUAAIBnubRjliSdOHFCf//737Vt2zbFxMQoICBAb731lgoKCtyZHwAAANygoKBA8fHxjqYsSUpOTpbNZtPGjRvPGrd582aVlpYqOTnZMebv76/Bgwc71X2rVq2SzWZTSkpKveQPAAAAAAAAzxo4cKDWrVunefPmqXv37ucV8/ub/uLj4zVnzhyFhIQoJyennjMGAADwPJd2zPryyy/1+OOP6+DBg5owYYLuvvtu7d27V5MmTdK9996r4cOHa/LkyWrVqpW78wUAAIALLBaLRowY4TRmMpnUtm1bWSyWGuMkKTIy0mk8KipKubm5Ki8vV0BAgLZu3aqIiAitWLFCL730koqKivTHP/5REyZMUFJSkst52+12nThxwuV4AED9MhgMCgwM9HQa8BFlZWXnvavCmbRs2dKN2QAAAKC2jMba7/dQ001/a9eudWd6AAAAXsmlxqy77rpLXbt21YIFC/THP/5RktSpUyctW7ZMixcv1rx58/TFF1/ok08+cWuyAAAAcE1xcbFMJlO18eDgYFmt1hrj/P391aJFC6dxk8kku90uq9WqgIAAHTp0SIWFhZo7d67+8pe/qG3btlq6dKnuv/9+rVixwlEz1lZlZaW2b9/uUiwAoP4FBgaqW7dunk4DPqKwsFBlZWUux8fFxbkxGwAAADSE873pzxV1vaGPG01QW3W92QRoarjOojYa8w19LjVm3X///brvvvvUvLlzuMFg0JgxYzRgwABNmjTJLQkCAADA+536Qdizzz6rQYMGSZL69OmjIUOGaNGiRcrMzHRpXT8/P3Xu3NmdqQIA3MhgMHg6BfiQiIgI/hEDAACgiTnfm/5cUdcb+rjRBLVV15tNgKaG6yxqozHf0OdSY9a4ceNqfD8qKkqvv/66SwkBAADA/Uwmk0pKSqqNW61WBQcH1xhXUVGhkydPOv0Arbi4WAaDwRF7ajeufv36Oeb4+fmpd+/e2rlzp8t5GwwGr77LAQAAnD/ukgUAAIA71fWGPm40QW1xswlQO1xnURuN+Rp73o1Z27Zt0yWXXKKQkJBzzt23b5++/vpr3XjjjXVIDQAAAO4SGRnp2Dr+lJKSEh06dKjaVvK/j5N+vVOhS5cujnGLxaLw8HDHHY01/RDs5MmTdUkdAAAAAAAAPup8b/pzBTf0oaFxswkA1J/GfI01nu/EW2+9VevXr3e8PnbsmC677DJ99dVX1eZu2bJFkydPdk+GAAAAqLPExER9/vnnKi4udoytXr1aRqNRCQkJZ43r1auXWrVqpVWrVjnGKisrtWbNGiUmJjrGrr76aknSF1984RirqKjQP//5T3Xv3t2dhwIAAAAAAAAfcfpNf6f7/U1/AAAAjdV575j1+y3D7Ha7Tp48qaqqKrcnBQAAAPdKTU1VXl6e0tPTZTabVVRUpMzMTKWmpiosLMwxLy0tTQcOHNDatWslSS1atJDZbFZWVpZCQ0MVHR2tZcuW6dixYxozZowjrnv37hoyZIj++te/6tixY2rbtq1ee+01HT582GkeAAAAAAAAmo7Tb/o7tRv7mW76AwAAaKzOuzELAAAAvis4OFi5ubmaPn260tPTFRQUpJSUFGVkZDjNs9ls1Rrvx44dK7vdrsWLF+vIkSPq2rWrcnJy1LFjR6d5M2fO1Jw5czR79myVlpaqe/fueuWVVxQTE1PvxwcAAAAAAID6VVZWpnXr1kmS9u/fr9LSUq1evVqS1KdPH4WGhrp80x8AAEBjRWMWAABAExEVFaUlS5bUOCcvL6/amMFgkNlsltlsrjG2ZcuWmjJliqZMmVKXNAEAAAAAAOCFfv75Zz300ENOY6dev/rqq+rbt2+dbvoDAABojGjMAgAAAAAAAAAAAFCjDh06aMeOHTXOqctNfwAAAI1RrRqz9u/fr++++06SVFJSIknas2ePTCaT07wff/zRTekBAAAAAAAAAAAAAAAAgO+pVWPW3LlzNXfuXKexadOmVZtnt9tlMBjqlhkAAAAAAAAAAAAAAAAA+Kjzbsx65pln6jMPAAAAAAAAAAAAAAAAAGg0zrsx66abbqrPPAAAAAAAAAAAAAAAAACg0TB6OgEAAAAAAAAAAAAAAAAAaGxozAIAAAAAAAAAAAAAAAAAN6MxCwAAAAAAAAAAAAAAAADcjMYsAAAAAAAAAAAAAAAAAHAzGrMAAAAAAAAAAAAAAAAAwM1ozAIAAAAAAAAAAAAAAAAAN6MxCwAAAAAAAAAAAAAAAADcjMYsAAAAAAAAAAAAAAAAAHAzGrMAAAAAAAAAAAAAAAAAwM1ozAIAAAAAAAAAAAAAAAAAN6MxCwAAAAAAAAAAAAAAAADcjMYsAAAAAAAAAAAAAAAAAHAzGrMAAAAAAAAAAAAAAAAAwM2aezoBAAAAAAAAwFvt2rVLM2bM0JYtWxQUFKRhw4Zp/Pjx8vf3P2vMwYMHtWTJEm3cuFF79+5V69at1bt3b02YMEEXX3xxA2YPAAAAAAAAT6IxCwAAAAAAADgDq9WqtLQ0derUSVlZWSoqKtLMmTNVXl6uJ5544qxx3333ndauXasRI0bosssu09GjR/XSSy/p5ptv1sqVKxUaGtqARwEAAAAAAABPoTELAAAAAAAAOIP8/HwdP35c8+fPV0hIiCSpqqpK06ZNk9lsVlhY2Bnj4uLitGrVKjVv/tuP3nr16qUBAwZoxYoVGj16dEOkDwAAAAAAAA8zejoBAAAAAAAAwBsVFBQoPj7e0ZQlScnJybLZbNq4ceNZ40wmk1NTliRddNFFCg0N1cGDB+srXQAAAAAAAHgZdswCAAAAAAAAzsBisWjEiBFOYyaTSW3btpXFYqnVWoWFhfr5558VFRXlcj52u10nTpxwOd5gMCgwMNDleDQ9ZWVlstvtnk4D8BlcZ1Ebdb3GtmzZ0o3ZAAAAoL7QmAUAAAAAAACcQXFxsUwmU7Xx4OBgWa3W817HbrdrxowZateuna677jqX86msrNT27dtdjg8MDFS3bt1cjkfTU1hYqLKyMk+nAfgMrrOojbpeY+Pi4tyYDQAAAOoLjVkAAAAAAABAPcrKytKXX36pl19+uU67W/j5+alz584uxxsMBpdj0TRFRESwYxZQC1xnURtcYwEAAJoGGrMAAAAAAACAMzCZTCopKak2brVaFRwcfF5rLF++XC+88IKefvppxcfH1ykfg8HAY4vQoHgkGwDUH66xAAAATYPR0wn83q5du3TXXXcpNjZWCQkJyszMVEVFxTnj7Ha7Fi5cqAEDBqhnz5669dZb9c0331SbV1RUpHHjxunyyy9Xnz599Pjjj6u0tNRpzsaNG/Xwww/rmmuuUUxMjJ566qkzfmZFRYVmzZqlhIQExcbG6q677pLFYnHpuAEAAAAAAOBdIiMjq/2sp6SkRIcOHVJkZOQ549euXaupU6fqwQcfVEpKSn2lCQAAAAAAAC/lVY1ZVqtVaWlpqqysVFZWljIyMrR8+XLNnDnznLGLFi3SvHnzNGrUKGVnZ6tt27YaPXq09u3b55hTWVmpu+++W7t379bs2bM1depUbdiwQQ8//LDTWuvXr9f333+v3r17y2QynfUzZ8yYoTfeeEMZGRnKyspSRUWFRo0adcY7KQEAAAAAAOBbEhMT9fnnn6u4uNgxtnr1ahmNRiUkJNQYu2nTJk2YMEE333yz0tPT6ztVAAAAAAAAeCGvepRhfn6+jh8/rvnz5yskJESSVFVVpWnTpslsNissLOyMcSdPnlR2drZGjx6tUaNGSZLi4uI0dOhQ5eTkaOrUqZKkDz/8UDt37tQHH3zguKvRZDJpzJgx2rZtm3r27ClJeuSRRzRp0iRJv/4Q7Ux++uknvfnmm3ryyScddzxeeumluvrqq5Wfn6+xY8e64ysBAAAAAACAh6SmpiovL0/p6ekym80qKipSZmamUlNTnX5OlZaWpgMHDmjt2rWSft0RPj09XZ06ddKwYcOcdnUPDQ3VJZdc0tCHAgAAAAAAAA/wqh2zCgoKFB8f72jKkqTk5GTZbDZt3LjxrHGbN29WaWmpkpOTHWP+/v4aPHiwCgoKnNaPiYlx2mo+ISFBISEhWrdunWPMaDz317JhwwbZbDYNHTrUMRYSEqKEhASnzwQAAAAAAIBvCg4OVm5urpo1a6b09HTNnj1bKSkpjhv6TrHZbKqqqnK83rp1q0pKSvTDDz/otttu06233ur49eKLLzb0YQAAAAAAAMBDvGrHLIvFohEjRjiNmUwmtW3bVhaLpcY4SU4NV5IUFRWl3NxclZeXKyAgQBaLpdocg8GgiIiIGtc/22deeOGFCg4OrvaZb775Zq3WOp3dbteJEydcjjcYDAoMDHQ5Hk1LWVmZ7Ha7R3PgnEVtcM7C19T1nG3ZsqUbswEAAIAroqKitGTJkhrn5OXlOb0ePny4hg8fXo9ZAQAAAAAAwBd4VWNWcXGxTCZTtfHg4GBZrdYa4/z9/dWiRQuncZPJJLvdLqvVqoCAABUXF6t169a1Xv9sn3mmtUwmU63XOl1lZaW2b9/ucnxgYKC6devmcjyalsLCQpWVlXk0B85Z1AbnLHxNXc/ZuLg4N2YDAAAAAAAAAAAAoCF5VWMWJD8/P3Xu3NnleIPB4MZs0NhFRER4xe5DwPninIWv8YZzFgAAAAAAAAAAAIBneFVjlslkUklJSbVxq9Va7ZGBv4+rqKjQyZMnnXbNKi4ulsFgcMSaTCaVlpaecf327dvXOtczrVVcXFxjrudiMBh4bBEaDI9jg6/hnIWv4ZwFAAAAAAAAAAAAmi6jpxM4XWRkpCwWi9NYSUmJDh06pMjIyBrjpF8fF3Q6i8Wi8PBwBQQEnHV9u92uwsLCGtc/22cePny42mMLLRZLrdcCAAAAAAAAAAAAAAAA0Lh4VWNWYmKiPv/8cxUXFzvGVq9eLaPRqISEhLPG9erVS61atdKqVascY5WVlVqzZo0SExOd1v/++++1e/dux9gXX3yhY8eOKSkpqVa59u/fX0ajUWvWrHGMWa1WbdiwwekzAQAAAAAAAAAAAAAAADQ9XvUow9TUVOXl5Sk9PV1ms1lFRUXKzMxUamqqwsLCHPPS0tJ04MABrV27VpLUokULmc1mZWVlKTQ0VNHR0Vq2bJmOHTumMWPGOOKGDBmi7OxsjRs3ThMmTFBZWZkyMzM1YMAA9ezZ0zFv//79+vbbbyVJZWVl2rt3r1avXi1JGjp0qCTpoosuUkpKijIzM2U0GhUWFqbs7Gy1bt1aqamp9f5dAQAAAAAAAAAAAAAAAPBeXtWYFRwcrNzcXE2fPl3p6ekKCgpSSkqKMjIynObZbDZVVVU5jY0dO1Z2u12LFy/WkSNH1LVrV+Xk5Khjx46OOX5+fnr55Zc1Y8YMTZgwQc2bN9fgwYP12GOPOa21adMmTZ482fF6/fr1Wr9+vSRpx44djvEpU6YoKChIs2fP1vHjx9WrVy+98sorat26tdu+EwAAAAAAAAAAAAAAAAC+x6sasyQpKipKS5YsqXFOXl5etTGDwSCz2Syz2VxjbFhYmLKysmqcM3z4cA0fPvycufr7++vRRx/Vo48+es65AAAAAAAAAAAAAAAAAJoOo6cTAAAAAAAAAAAAAAAAAIDGhsYsAAAAAAAAAAAAAAAAAHAzGrMAAAAAAAAAAAAAAAAAwM1ozAIAAAAAAAAAAAAAAAAAN6MxCwAAAAAAAAAAAAAAAADcjMYsAAAAoAl54YUXNHjwYL3wwgueTgUAAAAAAAAAAKBRozELAAAAaCLKy8u1YsUK2Ww2rVixQuXl5Z5OCQAAAAAAAAAAoNGiMQsAAABoIn755RfZbDZJks1m0y+//OLhjAAAAAAAAAAAABovGrMAAACaiF27dumuu+5SbGysEhISlJmZqYqKinPG2e12LVy4UAMGDFDPnj1166236ptvvjnrfJvNpuHDhysmJkarV6924xEAAAAAAAAAAAAAvoPGLAAAgCbAarUqLS1NlZWVysrKUkZGhpYvX66ZM2eeM3bRokWaN2+eRo0apezsbLVt21ajR4/Wvn37zjg/Pz9fRUVF7j4EAAAAAAAAAAAAwKfQmAUAANAE5Ofn6/jx45o/f76uuuoqpaSk6C9/+cs5m6hOnjyp7OxsjR49WqNGjVJ8fLzmzJmjkJAQ5eTkVJt/5MgRzZ07VxMmTKjPwwEAAAAAAAAAAAC8Ho1ZAAAATUBBQYHi4+MVEhLiGEtOTpbNZtPGjRvPGrd582aVlpYqOTnZMebv76/BgweroKCg2vw5c+aob9++6tu3r1vzBwAAAAAAAAAAAHxNc08nAAAAgPpnsVg0YsQIpzGTyaS2bdvKYrHUGCdJkZGRTuNRUVHKzc1VeXm5AgICJEnbtm3TypUrtXLlSrflbbfbdeLECbet19T9/rs8ceKEjEbu1QDgOoPBoMDAQE+nAR9RVlYmu93ucnzLli3dmA0AAAAAAABQ/2jMAgAAaAKKi4tlMpmqjQcHB8tqtdYY5+/vrxYtWjiNm0wm2e12Wa1WBQQEyGazadq0abrrrrvUoUMH/fjjj27Ju7KyUtu3b3fLWvj1H8RP98MPP9BQAaBOAgMD1a1bN0+nAR9RWFhY7e+i2oiLi3NjNgAAAAAAAED9ozELAAAAdfbGG2/o8OHDuueee9y6rp+fnzp37uzWNZuy0tJSp9fR0dFq1aqVh7IB0BgYDAZPpwAfEhERUacdswAAAAAAAABfQ2MWAABAE2AymVRSUlJt3Gq1Kjg4uMa4iooKnTx50mnXrOLiYhkMBgUHB+v48eOaM2eOMjIyVFlZqcrKSkcDUHl5uUpLS11u/jEYDDy2yI1sNpvT65YtW/L9AgAaDLs0AgAAAAAAoKkxejoBAAAA1L/IyEhZLBansZKSEh06dEiRkZE1xkm/PnrodBaLReHh4QoICNDRo0d17NgxPfnkk+rdu7d69+6tYcOGSZIeffRRDRkyxM1HAwAAAAAAAAAAAHg/dswCAABoAhITE7VgwQIVFxfLZDJJklavXi2j0aiEhISzxvXq1UutWrXSqlWr1KVLF0lSZWWl1qxZo8TERElS27Zt9eqrrzrFHT58WBMmTNC4ceN05ZVX1tNRnR+bzS6jkUdtoWacJwAAAAAAAAAAwN1ozAIAAGgCUlNTlZeXp/T0dJnNZhUVFSkzM1OpqakKCwtzzEtLS9OBAwe0du1aSVKLFi1kNpuVlZWl0NBQRUdHa9myZTp27JjGjBnjmNO3b1+nz/vxxx8lSZ07d1avXr0a6CjPzGg06IVlG7X/oNWjeXiDXyrLnV4/tWCNmvsFeCgb73Fxu2Cl33b2BkUAAAAAAAAAAABX0JgFAADQBAQHBys3N1fTp09Xenq6goKClJKSooyMDKd5NptNVVVVTmNjx46V3W7X4sWLdeTIEXXt2lU5OTnq2LFjQx5Cnew/aNXu/Uc9nYbH2X456fR674FjMjZv4aFsAAAAAAAAAAAAGjcaswAAAJqIqKgoLVmypMY5eXl51cYMBoPMZrPMZvN5f1aHDh20Y8eO2qYIAAAAAAAAAAAANBpGTycAAAAAAAAAAAAAAAAAAI0NjVkAAAAAAAAAAAAAAAAA4GY0ZgEAAAAAAAAAAAAAAACAm9GYBQAAAAAAAAAAAAAAAABuRmMWAAAAAAAAAAAAAAAAALgZjVkAAAAAAAAAAAAAAAAA4GY0ZgEAAAAAAAAAAAAAAACAm9GYBQAAAAAAAAAAAAAAAABuRmMWAAAAAAAAAAAAAAAAALgZjVkAAAAAAAAAAAAAAAAA4GY0ZgEAAAAAAAAAAAAAAACAm9GYBQAAAAAAAAAAAAAAAABuRmMWAAAAAAAAAAAAAAAAALgZjVkAAABAE2EwNpNkOPXq/38NAAAAAAAAAACA+kBjFgAAANBEGIzN1bJdV0kGtWzXVQZjc0+nBAAAAAAAAAAA0GjxLzEAAABAE9K6Yz+17tjP02kAAAAAAAAAAAA0euyYBQAAAAAAAAAAAAAAAABuxo5ZAAAAAAAAAAAAAM5p165dmjFjhrZs2aKgoCANGzZM48ePl7+/f41xAwcO1P79+6uNb9u2TS1atKivdAEAADyOxiwAAAAAAAAAAAAANbJarUpLS1OnTp2UlZWloqIizZw5U+Xl5XriiSfOGT9kyBCNHj3aaexcDV0AAAC+jsYsAAAAAAAAAAAAADXKz8/X8ePHNX/+fIWEhEiSqqqqNG3aNJnNZoWFhdUY36ZNG8XGxtZ/ogAAAF7E6OkEAAAAAAAAAAAAAHi3goICxcfHO5qyJCk5OVk2m00bN270XGIAAABejB2zAAAAAAAAAAAAANTIYrFoxIgRTmMmk0lt27aVxWI5Z/z777+v5cuXy8/PT1dccYUmTpyomJgYl/Ox2+06ceKEy/EGg0GBgYEux6PpKSsrk91u93QagM/gOovaqOs1tmXLlm7Mxr1ozAIAAAAAAAAAAABQo+LiYplMpmrjwcHBslqtNcYOHDhQPXv2VHh4uPbt26cFCxbo9ttv14oVK9SxY0eX8qmsrNT27dtdipWkwMBAdevWzeV4ND2FhYUqKyvzdBqAz+A6i9qo6zU2Li7Ojdm4F41ZAAAAAAAAAAAAAOrNlClTHL+/4oorlJCQoOTkZOXk5Gjq1Kkurenn56fOnTu7nJPBYHA5Fk1TREQEO2YBtcB1FrXRmK+xNGYBAAAAAAAAAAAAqJHJZFJJSUm1cavVquDg4Fqt1a5dO8XFxem7775zOR+DweDVjy1C48Mj2QCg/jTma6zR0wkAAAAAAAAAAAAA8G6RkZGyWCxOYyUlJTp06JAiIyM9lBUAAIB3ozELAAAAAAAAAAAAQI0SExP1+eefq7i42DG2evVqGY1GJSQk1GqtoqIiff3117r00kvdnSYAAIBX4VGGAAAAAAAAAAAAAGqUmpqqvLw8paeny2w2q6ioSJmZmUpNTVVYWJhjXlpamg4cOKC1a9dKklauXKlPP/1USUlJateunfbt26eFCxeqWbNmuuuuuzx1OAAAAA2CxiwAAAAAAAAAAAAANQoODlZubq6mT5+u9PR0BQUFKSUlRRkZGU7zbDabqqqqHK87dOiggwcP6m9/+5tKSkrUunVr9evXTw8++KA6duzY0IcBAADQoGjMAgAAAAAAAAAAAHBOUVFRWrJkSY1z8vLynF7HxsZWGwMAAGgqjJ5OAAAAAAAAAAAAAAAAAAAaGxqzAAAAAAAAAAAAAAAAAMDNaMwCAAAAAAAAzmLXrl266667FBsbq4SEBGVmZqqiouKccUuXLpXZbFa/fv0UExOj1atXN0C2AAAAAAAA8CY0ZgEAAAAAAABnYLValZaWpsrKSmVlZSkjI0PLly/XzJkzzxn77rvv6ujRo0pKSmqATAEAAAAAAOCNmns6AQAAAAAAAMAb5efn6/jx45o/f75CQkIkSVVVVZo2bZrMZrPCwsJqjDUajfrxxx+1YsWKhkkYAAAAAAAAXoUdswAAAAAAAIAzKCgoUHx8vKMpS5KSk5Nls9m0cePGGmONRn7sBgAAAAAA0NR53Y5Zu3bt0owZM7RlyxYFBQVp2LBhGj9+vPz9/WuMs9vtWrRokV577TUdOXJEXbt21eTJkxUbG+s0r6ioSDNmzNCGDRvk5+enwYMHa/LkyWrVqpXTvE8++UTPP/+8CgsLFR4ernvuuUcjRoxwmhMTE1MtjzZt2pzzB3MAAAAAAADwfhaLpdrPg0wmk9q2bSuLxdLg+djtdp04ccLleIPBoMDAQDdmhMaurKxMdrvd02kAPoPrLGqjrtfYli1bujEbAAAA1BevasyyWq1KS0tTp06dlJWVpaKiIs2cOVPl5eV64oknaoxdtGiR5s2bp4kTJyomJkZLly7V6NGj9e6776pjx46SpMrKSt19992SpNmzZ6u8vFyzZs3Sww8/rOzsbMda//rXv/TAAw8oJSVFjz32mL788ks9/vjjCgoK0tChQ50+d+TIkbr++usdr/38/Nz1dQAAAAAAAMCDiouLZTKZqo0HBwfLarU2eD6VlZXavn27y/GBgYHq1q2bGzNCY1dYWKiysjJPpwH4DK6zqI26XmPj4uLcmA0AAADqi1c1ZuXn5+v48eOaP3++Y4v4qqoqTZs2TWazWWFhYWeMO3nypLKzszV69GiNGjVK0q8F6dChQ5WTk6OpU6dKkj788EPt3LlTH3zwgSIjIyX9epfjmDFjtG3bNvXs2VOS9NJLL6lnz5566qmnJEn9+vXTvn37NG/evGqNWe3bt6+2KxcAAAAAAADgbn5+furcubPL8QaDwY3ZoCmIiIhgxyygFrjOoja4xgIAADQNXtWYVVBQoPj4eEdTliQlJyfrySef1MaNGzV8+PAzxm3evFmlpaVKTk52jPn7+2vw4MFau3at0/oxMTGOpixJSkhIUEhIiNatW6eePXuqoqJCmzZt0sSJE50+49prr9XKlSv1448/qkOHDm46YgAAAAAAAHgrk8mkkpKSauNWq1XBwcENno/BYOCxRWhQPJINAOoP11gAAICmwasasywWi0aMGOE0ZjKZ1LZtW1kslhrjJDk1XElSVFSUcnNzVV5eroCAAFkslmpzDAaDIiIiHGvs3btXlZWVZ1zr1Ged3pi1cOFCzZkzR4GBgerfv78eeeQRhYeH1/LIf2O323XixAmX43mGPWqjrs+wdwfOWdQG5yx8TV3PWf7RDQAAwLMiIyOr/UyqpKREhw4dqvazIwAAAAAAAOD3vKoxq7i4WCaTqdp4cHCwrFZrjXH+/v5q0aKF07jJZJLdbpfValVAQICKi4vVunXrGtc/9d/f53Hq9el53HjjjRowYIDatGmjH374QS+99JJuv/12vfvuuy7fNVlZWant27e7FCvxDHvUTl2fYe8OnLOoDc5Z+Jq6nrNxcXFuzAYAAAC1lZiYqAULFjj9zGr16tUyGo1KSEjwcHYAAAAAAADwdl7VmOVrZs2a5fh97969FRcXp+HDh2v58uUaO3asS2v6+fmpc+fOLufEM+xRG97wDHvOWdQG5yx8jTecswAAAHBdamqq8vLylJ6eLrPZrKKiImVmZio1NVVhYWGOeWlpaTpw4IDWrl3rGPv222+1f/9+HTlyRJK0detWSVJoaKj69OnTsAcCAAAAAAAAj/CqxiyTyaSSkpJq41artcYdqEwmkyoqKnTy5EmnXbOKi4tlMBgcsSaTSaWlpWdcv3379pLkmPv7PIqLi53eP5MuXbooIiJC33333VnnnIvBYOCxRWgwPI4NvoZzFr6GcxYAAMC3BQcHKzc3V9OnT1d6erqCgoKUkpKijIwMp3k2m01VVVVOY0uXLtU777zjeL148WJJUp8+fZSXl1f/yQMAAAAAAMDjvKoxKzIyUhaLxWmspKREhw4dUmRkZI1x0q+PC+rSpYtj3GKxKDw8XAEBAY55P/zwg1Os3W5XYWGhY/v5Sy65RH5+frJYLLrqqquc1jr9swAAAAAAAND4RUVFacmSJTXOOVOj1cyZMzVz5sx6ygoAAAAAAAC+wOjpBE6XmJiozz//3LE7lSStXr1aRqPR0Th1Jr169VKrVq20atUqx1hlZaXWrFmjxMREp/W///577d692zH2xRdf6NixY0pKSpIk+fv7q2/fvvrwww+dPuODDz5QVFSUOnTocNY8tm/frsLCQl166aXnfcwAAAAAAAAAAAAAAAAAGh+v2jErNTVVeXl5Sk9Pl9lsVlFRkTIzM5WamqqwsDDHvLS0NB04cEBr166VJLVo0UJms1lZWVkKDQ1VdHS0li1bpmPHjmnMmDGOuCFDhig7O1vjxo3ThAkTVFZWpszMTA0YMEA9e/Z0zLvvvvt05513aurUqUpOTtamTZu0cuVKPffcc445OTk52rt3r/r27avQ0FDt3LlTCxYs0EUXXaSbb765Ab4tAAAAAAAAAAAAAAAAAN7KqxqzgoODlZubq+nTpys9PV1BQUFKSUlRRkaG0zybzaaqqiqnsbFjx8put2vx4sU6cuSIunbtqpycHHXs2NExx8/PTy+//LJmzJihCRMmqHnz5ho8eLAee+wxp7WuuOIKZWVl6fnnn9ebb76p8PBwzZgxQ8nJyY45ERERWrNmjVatWqXjx4/rggsuUFJSksaPHy+TyVQP3w4AAEDd7Nq1SzNmzNCWLVsUFBSkYcOGafz48fL3968xzm63a9GiRXrttdccddbkyZMVGxvrmPP555/rjTfe0NatW/Xzzz/r4osv1vDhw5WWliY/P796PjIAAAAAAAAAAADA+3hVY5YkRUVFacmSJTXOycvLqzZmMBhkNptlNptrjA0LC1NWVtY58xg0aJAGDRp01vcHDhyogQMHnnMdAAAAb2C1WpWWlqZOnTopKytLRUVFmjlzpsrLy/XEE0/UGLto0SLNmzdPEydOVExMjJYuXarRo0fr3XffdTTB5+fnq7y8XA8++KDat2+vrVu3KisrS7t27dIzzzzTEIcIAAAAAAAAAAAAeBWva8wCAACA++Xn5+v48eOaP3++QkJCJElVVVWaNm2azGaz02OjT3fy5EllZ2dr9OjRGjVqlCQpLi5OQ4cOVU5OjqZOnSpJmjp1qkJDQx1xffv2lc1m0/PPP6+//OUvTu8BAAAAAAAAAAAATYHR0wkAAACg/hUUFCg+Pt7RlCVJycnJstls2rhx41njNm/erNLSUqdHOvv7+2vw4MEqKChwjJ2p8apr166y2+06dOiQew4CAAAAAAAAAAAA8CHsmAUAANAEWCwWjRgxwmnMZDKpbdu2slgsNcZJUmRkpNN4VFSUcnNzVV5eroCAgDPGbt68Wf7+/urQoYPLedvtdp04ccLleIPBoMDAQJfj0bSUlZXJbrd7Og3Ap3CdRW3U9TrbsmVLN2YDAAAAAAAA1D8aswAAAJqA4uJimUymauPBwcGyWq01xvn7+6tFixZO4yaTSXa7XVar9YyNWbt379arr76q1NRUBQUFuZx3ZWWltm/f7nJ8YGCgunXr5nI8mpbCwkKVlZV5Og3Ap3CdRW3U9TobFxfnxmwAAAAAAACA+kdjFgAAANyqtLRU48aNU4cOHZSRkVGntfz8/NS5c2eX4w0GQ50+H01LREQEO2YBtcR1FrXBdRYAAAAAAABNDY1ZAAAATYDJZFJJSUm1cavVquDg4BrjKioqdPLkSadds4qLi2UwGKrFVlRUKD09XVarVa+//nqdHzlkMBh4bBEaDI9jA4D6xXUWAAAAAAAATY3R0wkAAACg/kVGRspisTiNlZSU6NChQ4qMjKwxTvr10UOns1gsCg8Pd3qMoc1m08SJE/Xdd99p0aJFat++vRuPAAAAAAAAAAAAAPAtNGYBAAA0AYmJifr8889VXFzsGFu9erWMRqMSEhLOGterVy+1atVKq1atcoxVVlZqzZo1SkxMdJo7bdo0ffrpp3rxxRcVExPj/oMAAAAAAAAAAAAAfAiPMgQAAGgCUlNTlZeXp/T0dJnNZhUVFSkzM1OpqakKCwtzzEtLS9OBAwe0du1aSVKLFi1kNpuVlZWl0NBQRUdHa9myZTp27JjGjBnjiFuwYIHy8/M1ZswY+fv765tvvnG817lzZ7Vq1arBjhUAAAAAAAAAAADwBjRmAQAANAHBwcHKzc3V9OnTlZ6erqCgIKWkpCgjI8Npns1mU1VVldPY2LFjZbfbtXjxYh05ckRdu3ZVTk6OOnbs6JizceNGSVJOTo5ycnKc4l999VX17du3no4MAAAAAAAAAAAA8E40ZgEAADQRUVFRWrJkSY1z8vLyqo0ZDAaZzWaZzeZaxQEAAAAAAAAAAABNmdHTCQAAAAAAAAAAAAAAAABAY0NjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAAAAAAAAAAAAAAC4GY1ZAAAAAAAAAAAAAAAAAOBmNGYBAAAAAAAAAAAAAAAAgJvRmAUAAAAAAAAAAAAAAAAAbkZjFgAAAADAa73wwgsaPHiwXnjhBU+nAgAAAAAAAABArdCYBQAAAADwSuXl5VqxYoVsNptWrFih8vJyT6cEAADgUTStAwAAAIBvoTELAAAAALyIzWb3dApe45dffpHNZpMk2Ww2/fLLLx7OyHtwngAA0PTQtA4AAAAAvqe5pxMAAAAAAPzGaDTohWUbtf+g1dOpeFzVL5WSDJLsksGg6dkfq1lzP0+n5XEXtwtW+m0Jnk4DAIAGYbPZZTQaPJ0GvBznCQAATdMLL7ygFStW6MYbb1R6erqn0wGAM6IxCwAAAAC8zP6DVu3ef9TTaXiFlu266sTB7WrZtqv2FZV6Oh0AANDAaFp31q5TrH4q3KJ2nWL1VPYnnk7HK9C0DgBoSmhG/s3vdxMdM2aMAgICPJ2WV+A8AbwLjVkAAAAAAK/VumM/te7Yz9NpAAAAD6Jp/TQXxCrsgljZJb4TAACaIJrWf1P1S6VsNrskyWa368kXPmSnddG0DngjGrMAAAAAAAAAAAAAAPABNK3/hp3WAfgCGrMAAAAAAAAAAAAAAIBPYad1AL7A6OkEAAAAAAAAAAAAAAAAAKCx8brGrF27dumuu+5SbGysEhISlJmZqYqKinPG2e12LVy4UAMGDFDPnj1166236ptvvqk2r6ioSOPGjdPll1+uPn366PHHH1dpafVtDT/55BP96U9/0qWXXqohQ4borbfeqjanoqJCs2bNUkJCgmJjY3XXXXfJYrG4dNwAAAD1zVvqLAAAAF9S3zUUAACAL6E2AgAAqB2vasyyWq1KS0tTZWWlsrKylJGRoeXLl2vmzJnnjF20aJHmzZunUaNGKTs7W23bttXo0aO1b98+x5zKykrdfffd2r17t2bPnq2pU6dqw4YNevjhh53W+te//qUHHnhAsbGxWrRokZKTk/X4449r9erVTvNmzJihN954QxkZGcrKylJFRYVGjRqlkpIS93whAAAAbuItdRYAAIAvqe8aCgAAwJdQGwEAANRec08ncLr8/HwdP35c8+fPV0hIiCSpqqpK06ZNk9lsVlhY2BnjTp48qezsbI0ePVqjRo2SJMXFxWno0KHKycnR1KlTJUkffvihdu7cqQ8++ECRkZGSJJPJpDFjxmjbtm3q2bOnJOmll15Sz5499dRTT0mS+vXrp3379mnevHkaOnSoJOmnn37Sm2++qSeffFIpKSmSpEsvvVRXX3218vPzNXbs2Pr4igAAAFziLXUWAACAL6nvGgoAAMCXUBsBAADUnlftmFVQUKD4+HhHMSdJycnJstls2rhx41njNm/erNLSUiUnJzvG/P39NXjwYBUUFDitHxMT4/jHQklKSEhQSEiI1q1bJ+nXxxNu2rTJ0YB1yrXXXqtdu3bpxx9/lCRt2LBBNpvNaV5ISIgSEhKcPhMAAMAbeEOdBQAA4Gvqu4YCAADwJdRGAAAAtedVO2ZZLBaNGDHCacxkMqlt27ayWCw1xkly+odASYqKilJubq7Ky8sVEBAgi8VSbY7BYFBERIRjjb1796qysvKMa536rA4dOshisejCCy9UcHBwtXlvvvlmLY76N5WVlbLb7dq2bZtL8acYDAZd16etqmwX1mkdNF7NjEZ9++23stvtnk5FEucszo1zFr7GXedsixYtFBMT45acvKHOqi1qIzQU/p6Br+Gcha/xxtrofNV3DVUb1EZoSN70dw3nLM7Fm85XiXMW50Zt9BtqI/gKb/q7hnMW5+JN56vEOYtz8+Xa6Hx5VWNWcXGxTCZTtfHg4GBZrdYa4/z9/dWiRQuncZPJJLvdLqvVqoCAABUXF6t169Y1rn/qv7/P49TrU++fbS2TyVRjrjUxGAxO/60LU6vaFbBomtxxrrkL5yzOB+csfI03nbPeUGfVFrURGpo3/ZnlnMX54JyFr/Gmc/Z81XcNVRvURvAEb/lzyzmL8+Et56vEOYvz403n7PmiNkJT5y1/bjlncT685XyVOGdxfrzpnHU3r2rMauouv/xyT6cAAADgNaiNAAAAfkNtBAAA8BtqIwAA4CuMnk7gdCaTSSUlJdXGrVZrtUcG/j6uoqJCJ0+edBovLi6WwWBwxJpMJpWWlta4/qn//j6P4uJip/fPtlZxcXGNuQIAAHiCN9RZAAAAvqa+aygAAABfQm0EAABQe17VmBUZGVntGdQlJSU6dOhQtedO/z5OkgoLC53GLRaLwsPDHdufnml9u92uwsJCxxqXXHKJ/Pz8qs37/fOvIyMjdfjw4Wpbs1oslhpzBQAA8ARvqLMAAAB8TX3XUAAAAL6E2ggAAKD2vKoxKzExUZ9//rljdypJWr16tYxGoxISEs4a16tXL7Vq1UqrVq1yjFVWVmrNmjVKTEx0Wv/777/X7t27HWNffPGFjh07pqSkJEmSv7+/+vbtqw8//NDpMz744ANFRUWpQ4cOkqT+/fvLaDRqzZo1jjlWq1UbNmxw+kwAAABv4A11FgAAgK+p7xoKAADAl1AbAQAA1F5zTydwutTUVOXl5Sk9PV1ms1lFRUXKzMxUamqqwsLCHPPS0tJ04MABrV27VpLUokULmc1mZWVlKTQ0VNHR0Vq2bJmOHTumMWPGOOKGDBmi7OxsjRs3ThMmTFBZWZkyMzM1YMAA9ezZ0zHvvvvu05133qmpU6cqOTlZmzZt0sqVK/Xcc8855lx00UVKSUlRZmamjEajwsLClJ2drdatWys1NbUBvi0AAIDz5y11FgAAgC+p7xoKAADAl1AbAQAA1J7BbrfbPZ3E6Xbt2qXp06dry5YtCgoK0rBhw5SRkSF/f3/HnJEjR2r//v365JNPHGN2u10LFy7Ua6+9piNHjqhr166aPHmyLr/8cqf1i4qKNGPGDG3YsEHNmzfX4MGD9dhjj6lVq1ZO8z7++GM9//zzKiwsVHh4uO655x6lpKQ4zamoqNBzzz2nd999V8ePH1evXr00ZcoURUVF1cM3AwAAUDfeUmcBAAD4kvquoQAAAHwJtREAAEDteF1jFgAAAAAAAAAAAAAAAAD4OqOnEwAAAAAAAAAAAAAAAACAxobGLAAAAAAAAAAAAAAAAABwMxqzAAAAAAAAAAAAAAAAAMDNaMwCAAAAAAAAAAAAAAAAADejMQsAAAAAAAAAAAAAAAAA3IzGLAAAAAAAAAAAAAAAAABwMxqz4LXee+89paSkKC4uTr169VJycrIef/xx/fzzzw2Ww6RJk3T99dc7Xr/99tuKiYnRkSNHGiwH+J6srCxdfvnlNc55+umnNXDgQI99PhqnrKwsxcTEOH717dtXt912m9atW1cvnzdy5EiZzWanz6/Nuffjjz8qKytLRUVFTuObNm1STEyMvv32W7flCjQG1EbwVdRG8BRqI6BxozaCr6I2gqdQGwGNG7URfBW1ETyF2ggNqbmnEwDOZNGiRZo9e7ZGjRqlBx98UHa7XTt37tT777+vgwcP6sILL/R0igDglQICApSbmytJOnjwoBYsWKB7771XS5cuVa9ever1s2+++WYlJSWd9/z9+/dr/vz5GjBggMLCwhzj3bt31+uvv66oqKj6SBPwSdRGAOAaaiOgcaI2AgDXUBsBjRO1EQC4htoIDYXGLHilvLw83XTTTZo0aZJjLCkpSXfffbdsNpsHMwMA72Y0GhUbG+t4fdlllykpKUkrVqyo9yLyoosu0kUXXVTndVq1auV0DACojQDAVdRGQONEbQQArqE2AhonaiMAcA21ERoKjzKEVyouLla7du3O+J7R+NtpO3DgQD311FNasmSJkpKSdPnll2vSpEmqqKjQ9u3blZqaqtjYWKWkpGjHjh1O6yxevFgjRoxQXFyc4uPjZTabVVhYWK/HhaapqKhI9957ry677DJdddVVWrRo0Rnn/fTTT5o4caL69u2rnj176o477tC///1vpzkrVqzQbbfdpj59+qh3794aOXKktm3b1hCHAR8VFham0NBQHThwwDG2ZcsW3XnnnYqNjVVcXJwefvjhaltaP/vss7rhhht0+eWX66qrrtKECRN08ODBGj/r99uuVlZWatasWRowYIB69Oih/v37695771VJSYk2bdqkO++8U5KUkpLi2CpWOvO2qzabTa+88oqSk5PVo0cPJSQk6MEHH1RJSUmdvyPAF1AboTGhNoInURsBjQO1ERoTaiN4ErUR0DhQG6ExoTaCJ1Ebob6wYxa8Uvfu3ZWfn68OHTpowIABatu27Vnnfvzxx/rjH/+op556Svv27dPMmTPl5+enb775RqNGjVKbNm307LPP6qGHHtIHH3zgKEJ/+ukn/fnPf1Z4eLhKS0uVn5+v1NRUffjhhwoJCWmgI0VTcP/996uoqEhTp05V69attWjRIv3vf/9T8+a/XYKtVqtuv/12tWzZUn/961/VunVr5eXlKS0tTWvWrHFsNfzjjz/qxhtv1CWXXKKKigr94x//0B133KH33ntPERERnjpEeLHjx4/LarWqQ4cOkn4tIEeOHKmkpCQ999xzKisr0/PPP6/7779fr7/+uiPu559/ltlsVrt27XTkyBG98sorGjlypP7xj384nbs1yc7OVn5+viZOnKg//vGPOnr0qDZu3KiKigp1795dTzzxhJ566ik988wzioyMrHGt6dOn6/XXX1daWpoSEhJ0/PhxffbZZzpx4oRat27t+hcE+AhqIzQm1EbwJGojoHGgNkJjQm0ET6I2AhoHaiM0JtRG8CRqI9QXGrPglZ588kk98MADmjJliiSpQ4cOuvrqqzVq1CjHhfB0L774ovz9/SVJX331lZYvX65FixYpMTFR0q9doffee69++OEHdenSRZL02GOPOeKrqqqUkJCg+Ph4ffjhh7r11lvr+xDRRBQUFOjf//63lixZovj4eElS3759lZSU5PQ/K7m5uSouLtYbb7zhKBjj4+M1ZMgQ5eTk6JFHHpEkPfDAA44Ym82mhIQEbdu2Te+8844mTJjQcAcGr/bLL79I+vV52H//+98VFBTk6KSfPXu2evToofnz58tgMEiSoqOjdf3112vdunWO51k/88wzjvWqqqp0+eWXKzExUV9++aX69+9/Xnl8++236t+/v+644w7H2JAhQxy/79y5syTpj3/8oy699NKzrlNYWKhly5YpIyNDZrP5jGsBjR21ERoLaiN4ArUR0PhQG6GxoDaCJ1AbAY0PtREaC2ojeAK1ERoCjVnwStHR0Vq5cqW++OILbdiwQf/85z+Vl5ent99+W0uXLlXXrl0dc3v37u0oICWpU6dOMhqN6tevn9OYJP3vf/9zFJHffPON5s6dq//85z86duyYY+7u3bvr9djQtGzbtk2tW7d2FJCS1Lp1a1155ZX6z3/+4xjbuHGj+vbtq+DgYEcBYDQa1bt3b6etJ3ft2qU5c+Zoy5YtTttkct7ilBMnTqh79+6O182aNdOLL76oyMhIlZWVafPmzXrkkUdUVVXlmNOpUye1b99e3377raOIXLdunV566SXt3LlTpaWljrm7d+8+7yKyW7duysnJUVZWlpKSktSjRw+nrbPP15dffim73a6UlJRaxwKNBbURGgtqIzQ0aiOgcaI2QmNBbYSGRm0ENE7URmgsqI3Q0KiN0FBozILX8vf3V1JSkuOCtn79epnNZr3wwguaP3++Y57JZHKK8/PzU0BAgFNh6efnJ0k6efKkJOnAgQMaPXq0evTooWnTpqldu3by8/OT2Wx2zAHc4eDBgwoNDa02fqqD/5SjR4/qm2++cfrL/5RLLrlEklRaWqrRo0crNDRUkyZNUnh4uFq0aKEpU6Zw3sIhICBA//d//ye73a7du3dr9uzZevTRR/X+++/LbrerqqpKzzzzjFP3/in/+9//JP36Pz/333+/Bg0apLFjx+rCCy+UwWDQLbfcUqtz7b777pPRaNQ777yj+fPnKzQ0VHfccYfS09Mddxacj2PHjql58+bV/twATQ21ERoDaiM0NGojoPGiNkJjQG2EhkZtBDRe1EZoDKiN0NCojdBQaMyCz7jqqqvUpUsX7dq1q85rrV+/XidOnND8+fMdRegvv/wiq9Va57WB0516lvDvnd6ZL0nBwcG66qqr9NBDD1Wbe+p/iL755hv99NNPys7OdtylIkklJSW66KKL3Jw5fJXRaHRsYdqzZ09FRETolltu0QsvvKBHH31UBoNBZrNZ11xzTbXYCy64QJL00UcfqVWrVnr++ecd3fj79++vdS7+/v4aN26cxo0bpz179uitt95SVlaWOnTooBtvvPG81wkJCdEvv/yin3/+mUISOA21EXwRtREaGrUR0HRQG8EXURuhoVEbAU0HtRF8EbURGhq1ERpK7fc+AxrA4cOHq42Vl5frf//7n9q0aVPn9cvLy2UwGNS8+W+9iatWrXJsdwm4y6WXXqqSkhJ98cUXjrGSkhJ9/vnnTvOuvPJK7dq1S1FRUbr00kudfsXExEj69byVfrtbRZI2b97s0l/uaDouvfRSXXfddXr77bd1/PhxxcbGymKxVDvPLr30UnXo0EHSr+ean5+fUwf++++/X6c8/vCHP2jChAkKCQmRxWKRVP3Oq7Pp16+fDAaD3nrrrTrlAPgyaiM0FtRG8DRqI6BxoDZCY0FtBE+jNgIaB2ojNBbURvA0aiPUF3bMgle64YYbdPXVV6t///5q166dioqK9H//9386evSo0tLS6rz+qWdlT548Wampqdq5c6deeeWValu4AnWVmJio7t276y9/+YsmTpyo1q1ba+HChWrVqpXTvFGjRun999/Xn//8Z915550KDw/XkSNHtHXrVoWFhWnUqFGKjY1Vy5YtNW3aNN1zzz0qKipSVlaWwsLCPHR08BX333+/PvjgA+Xm5uqRRx5RWlqaxo8fr+uuu04mk0k//fSTPv/8cw0fPlx9+/ZVQkKCcnNzNX36dA0ePFhbtmzRu+++69Lndu/eXd26dVNgYKA+/fRTWa1WxzW4U6dOatasmd566y01b95czZo1c9yZcLqIiAilpqZq7ty5slqtio+PV3l5uT777DONGzeOPwNoEqiN0FhQG8EbUBsBvo/aCI0FtRG8AbUR4PuojdBYUBvBG1AboT7QmAWv9MADD+jTTz/VzJkzdeTIEV1wwQWKiYnRkiVLHBefuoiJidEzzzyj+fPny2w2q2vXrpo7d67Gjx9f9+SB0xgMBr344ot68skn9cQTT8hkMmnkyJE6fPiwPv74Y8e8Cy64QK+//rqef/55Pfvsszp27JguvPBCXXbZZRo8eLAkqU2bNpo7d64yMzN1//33q1OnTpo2bZpefvllTx0efERkZKSuvfZaLVu2TGazWa+99pqysrI0efJkVVZW6qKLLlK/fv30hz/8QZKUlJSkiRMn6v/+7//09ttvq1evXsrOztaQIUNq9bm9evXSqlWr9Morr6iqqkoRERF69tlndeWVV0qSQkND9cQTT+jll1/We++9p19++UU7duw441pPPPGEOnTooDfeeEO5ubkKCQlR7969FRQUVLcvB/AR1EZoLKiN4A2ojQDfR22ExoLaCN6A2gjwfdRGaCyojeANqI1QHwx2u93u6SQAAAAAAAAAAAAAAAAAoDExejoBAAAAAAAAAAAAAAAAAGhsaMwCAAAAAAAAAAAAAAAAADejMQsAAAAAAAAAAAAAAAAA3IzGLAAAAAAAAAAAAAAAAABwMxqzAAAAAAAAAAAAAAAAAMDNaMwCAAAAAAAAAAAAAAAAADejMQsAAAAAAAAAAAAAAAAA3IzGLAAAAAAAAAAAAAAAAABwMxqzAHilmJgYPfXUUx757KysLMXExOjIkSM1zps0aZIGDhzYQFkBAICmjNoIAADgN9RGAAAAv6E2AgDv1tzTCQBoWvbu3auXX35ZGzdu1MGDB+Xn56fo6GglJyfr1ltvVUBAgKdT9Ak2m03vvfeeli5dqj179qiyslLt2rXTZZddpttvv12xsbGSpP/+979atWqVbrrpJnXo0MHteSxdulSBgYEaPny429cGAKApoDZyD2ojAAAaB2oj96A2AgCgcaA2cg9qIwCeRmMWgAbz2Wef6aGHHpK/v7+GDRum6OhoVVZW6uuvv9bf//53/fe//9X06dM9neZ5mz59uux2u0c+e8aMGVq6dKkGDRqkG264Qc2aNVNhYaHWr1+vjh07OhWR8+fPV58+feqliFy2bJkuuOACikgAAFxAbeQ+1EYAAPg+aiP3oTYCAMD3URu5D7URAE+jMQtAg9i3b58yMjIUHh6u3NxctWvXzvHeHXfcoT179uizzz7zXIIu8PPz88jnHj58WK+99ppuueWWakW33W4/53axZ2O323Xy5EnusAAAoAFQG7kPtREAAL6P2sh9qI0AAPB91EbuQ20EwBsYPZ0AgKbh5Zdf1okTJ/T00087FZCn/OEPf1BaWlq18Y8++kjXX3+9evTooeuuu04FBQVO75/tmdSnnml9ulPP2D7Xmmeyf/9+DR48WNdff70OHz58xs/+8ccfFRMTo5ycHL3++uu65ppr1KNHD40YMULbtm2rtuaqVat07bXX6tJLL9X111+vtWvXntcztn/88UfZ7Xb16tWr2nsGg0EXXnihJOntt9/WQw89JEm68847FRMTo5iYGG3atEmSNHDgQJnNZq1fv17Dhw9Xz549lZ+fL0l66623dOeddyo+Pl49evTQtddeq9dee83pswYOHKidO3fqq6++cqw9cuRIx/vFxcV6+umnlZSUpB49emjw4MFauHChbDab0zpHjx7VX/7yF/Xq1UtXXHGFHn30UX3//feKiYnR22+/7cgnJiZG//nPf6od84IFC9S1a1cVFRXV+L0BAOBNqI2ojaiNAAD4DbURtRG1EQAAv6E2ojaiNgIaF3bMAtAgPv30U3Xs2PGMhc/ZfP3111qzZo1uv/12BQUFKS8vTw8++KA+/fRTXXDBBS7l4cqae/fuVVpamoKDg7V48WKFhobW+BkrV67U8ePHdeutt8pgMOjll1/WuHHj9NFHHznuCPjss8+UkZGh6OhoPfzww7JarXr88ccVFhZ2zmMIDw+XJK1evVpDhw5VYGDgGef17t1bI0eOVF5enu69915FRkZKkqKiohxzCgsL9fDDD+vWW2/VLbfcooiICEm/bqf6xz/+UQMHDlTz5s316aefatq0abLb7brjjjskSY899pimT5+uli1b6t5775UktWnTRpJUVlamP//5zyoqKlJqaqrat2+vLVu2aM6cOTp06JAef/xxSb8+1/u+++7Ttm3bdNtttykyMlIff/yxHn30UadjGTJkiJ566im9//776tatm9N777//vvr06XNe3x0AAN6C2ojaiNoIAIDfUBtRG1EbAQDwG2ojaiNqI6CRsQNAPSspKbFHR0fb77vvvvOOiY6Otnfv3t2+Z88ex9j27dvt0dHR9ry8PMfYo48+ar/66qurxc+bN88eHR3t0pqnYn/++Wf7f//7X3v//v3tI0aMsB87dsxpvd9/9r59++zR0dH2Pn36OM396KOP7NHR0fZPPvnEMXb99dfbExMT7aWlpY6xTZs22aOjo894PL/3yCOP2KOjo+29e/e2p6en23Nycuz//e9/q81btWqVPTo62v7ll19We+/qq6+2R0dH2wsKCqq9V1ZWVm1s9OjR9kGDBjmNXXfddfY///nP1ea+8MIL9tjYWHthYaHT+LPPPmvv2rWr/cCBA3a73W7/8MMP7dHR0fYlS5Y45lRVVdnvvPNOe3R0tP2tt95yjE+YMMHev39/e1VVlWPsu+++qzYPAABvR21EbXQKtREAANRG1Ea/oTYCAIDaiNroN9RGQOPBowwB1LvS0lJJUlBQUK3irrzySl1yySWO1126dFGrVq20b98+l3OpzZo7d+7UyJEjdfHFF2vJkiUKDg4+r8+49tprneZeccUVkuT4jKKiIv3www+68cYbnb6TPn36KDo6+rw+45lnntETTzyhDh06aO3atZo1a5auvfZapaWl1Wr70Q4dOuiqq66qNn76M7FLSkp05MgR9enTR/v27VNJSck51129erXi4uJkMpl05MgRx68rr7xSVVVV+uc//ylJWr9+vfz8/HTLLbc4Yo1Go+MOgtMNGzZMBw8edGwbK/3a2R8QEKD/9//+33kfMwAAnkZtRG1EbQQAwG+ojaiNqI0AAPgNtRG1EbUR0PjwKEMA9a5Vq1aSpOPHj9cqrn379tXGgoODVVxc7HIutVnz3nvvVZs2bZSTk1OrAvj3n3GqoDz1GQcOHJAkp2L2lD/84Q9nfObz750qtO644w4dPXpUmzdvVn5+vgoKCpSRkVHt2dVn06FDhzOOf/3118rKytI333yjsrIyp/dKSkrUunXrGtfds2ePduzYofj4+DO+f+TIEUm/fhdt27attnXsmb6bhIQEtW3bVu+9957i4+Nls9m0cuVKDRo0yHGOAQDgC6iNqI1+j9oIANCUURtRG/0etREAoCmjNqI2+j1qI8D30ZgFoN61atVK7dq1086dO2sV16xZszOO2+12x+8NBsMZ51RVVbm85ilDhgzRO++8o/fff1+pqannStelz3CHCy64QIMGDdKgQYM0cuRIffXVV9q/f78uvvjic8ae3sV/yt69ezVq1ChFRkZq0qRJat++vfz8/LRu3TotWbJENpvtnOvabDYlJCTo7rvvPuP7nTp1Oucav9esWTPdcMMNWr58uaZOnarNmzfr4MGD+tOf/lTrtQAA8CRqo7N/hjtQG1EbAQB8C7XR2T/DHaiNqI0AAL6F2ujsn+EO1EbURoAn0JgFoEFcffXVev3117VlyxZdfvnlblvXZDKdsTP/VAd9XTzyyCNq1qyZpk2bpqCgIN1www11XlOSwsPDJf1arP3enj176rR2jx499NVXX+nQoUO6+OKLz1pk1+STTz5RRUWFXnrpJUeukpy2Oz3lbOtfcsklOnHihK688soaPys8PFybNm1SWVmZU4f/mb4b6detVxcvXqxPPvlEBQUFCg0NVf/+/c/nsAAA8CrURr+hNvoNtREAoKmiNvoNtdFvqI0AAE0VtdFvqI1+Q20E+C6jpxMA0DTcfffdatmypaZMmaLDhw9Xe3/v3r3Kzc2t9bqXXHKJSkpK9P333zvGDh48qLVr19Yp31OmT5+uIUOGaNKkSfr444/dsmZYWJiio6O1YsUKp61ov/rqK/3www/njD906JD++9//VhuvqKjQF198IaPR6Ni29FRhdj7PsD7l1N0Jp9+NUFJSorfeeqva3MDAwDMW8cnJydqyZYvWr19f7b3i4mL98ssvkqT+/fursrJSy5cvd7xvs9m0dOnSM+bWpUsXxcTE6M0339SaNWt03XXXqXlzeowBAL6H2ug31EbURgAAUBv9htqI2ggAAGqj31AbURsBjQF/8gA0iEsuuUTPPvusMjIydO2112rYsGGKjo5WRUWFtmzZotWrV2v48OG1Xvfaa6/Vs88+qwceeEAjR45UeXm5li1bpoiICH333Xd1zttoNOrvf/+70tPTNX78eC1cuPCsz3iujYyMDN1///267bbbNHz4cBUXF2vp0qWKjo4+53PDf/rpJ918883q16+f4uPj1aZNG/3888/6xz/+oe+//15paWkKDQ2VJHXt2lXNmjXTokWLVFJSIn9/f/Xr108XXnjhWddPSEiQn5+f7r33XqWmpur48eN64403dOGFF+rQoUNOc7t3765ly5bpxRdf1B/+8AeFhoYqPj5eY8aM0SeffKJ7771XN910k7p3766ysjL98MMP+vDDD/Xxxx8rNDRU11xzjXr27KlZs2Zp7969ioyM1CeffCKr1SrpzHcP3HjjjZo1a5YkseUqAMBnURs5ozaiNgIANG3URs6ojaiNAABNG7WRM2ojaiPA17FjFoAGM2jQIL333nsaMmSIPv74Y02bNk2zZ8/W/v37NWnSJE2ZMqXWa15wwQWaP3++AgMD9fe//13vvPOOJkyYoKuvvtptefv5+WnevHmKjY3V/fffr61bt9Z5zYEDB2rOnDmqrKzU7NmztXbtWj3zzDOKiIhQixYtaoyNiIjQY489pmbNmum1117Tk08+qQULFigwMFAzZszQ5MmTHXPbtm2radOm6eeff9bjjz+uCRMmnPHOgNNFRkZq3rx5MhgMmjVrlvLz83XLLbfozjvvrDY3PT1dSUlJevnllzVhwgS9+OKLkn7t+s/Ly9OYMWP01Vdf6emnn9bChQu1e/dujRs3Tq1bt5b0650E2dnZSk5O1jvvvKPnnntO7dq10xNPPCFJZ/wubrjhBjVr1kydOnVSz549a/6i8f+1d4curcVxGIdfLzeICKKgSfAPWBqCWMRidtVgsbom1iX/B7EtCCIY7GKwiWnVot2yPJWxGy56lFuP+znv87SxE974CV/OAeAb00YVbaSNAEAbVbSRNgIAbVTRRtoIJt3U6ON79QAoqtVqZWFhId1ut/SUoq6vr9Nut3N2dpbV1dVP//X7/WxsbGR/fz/tdrvQQgBgHLTRX9oIAEi00RttBAAk2uiNNoLvzxuzAAp4fX19/yb0m7u7u9zf32dtba3QqjIGg8Gn38PhMKenp5mdnU2j0fjn+cvLywyHw7RarXFNBAC+mDaqaCMAQBtVtBEAoI0q2ggm0+/SAwD+R09PT9nb28v29naWlpby+PiY8/PzLC4uZmdnp/S8sTo6OspgMEiz2czLy0uurq7S6/VycHCQ6enp9+dub2/z8PCQk5OTbG1tZXl5ueBqAKBO2qiijQAAbVTRRgCANqpoI5hMDrMACpibm0uj0cjFxUX6/X5mZmayubmZw8PDzM/Pl543Vuvr6+l2u7m5ucnz83NWVlbS6XSyu7v76bnj4+P0er00m810Op1CawGAr6CNKtoIANBGFW0EAGijijaCyTQ1Go1GpUcAAAAAAAAAAAD8JL9KDwAAAAAAAAAAAPhpHGYBAAAAAAAAAADUzGEWAAAAAAAAAABAzRxmAQAAAAAAAAAA1MxhFgAAAAAAAAAAQM0cZgEAAAAAAAAAANTMYRYAAAAAAAAAAEDNHGYBAAAAAAAAAADU7A9pC8RWvBH9TQAAAABJRU5ErkJggg==", | |
| "text/plain": [ | |
| "<Figure size 2412.22x600 with 4 Axes>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "plot_dask_results(df_results)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "id": "ed15c192-cb30-4a10-ac9f-dd39f552e511", | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3 (ipykernel)", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.12.3" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 5 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment