Skip to content

Instantly share code, notes, and snippets.

@groundrace
Last active January 27, 2018 11:21
Show Gist options
  • Select an option

  • Save groundrace/526a3a69e1217f35ad80d77a601f3764 to your computer and use it in GitHub Desktop.

Select an option

Save groundrace/526a3a69e1217f35ad80d77a601f3764 to your computer and use it in GitHub Desktop.
Univariate histogram and kernel density estimation
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAEkZJREFUeJzt23+wXGd93/H3R7qyiQkY+ReWJQvh2oHKzrTAjm1Kf3hi\nbKQWEENox6Y/1JaM2pnQhqSd1oRp7DjpDHTSmmRC01GNGw8FDHFI0SQ1rjFhQju26yvDDFIcI1Vg\n62IZy5bq4NAgyfr2j7sS+6z23rvSru5a0vs1c2fPj+ec53uec8793N1zN1WFJElHLJl0AZKklxeD\nQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSQ2DQZLUMBgkSY2pSRdwIi644IJas2bNpMuQpFPK1q1b\nn6uqCxdqd0oGw5o1a5ienp50GZJ0Skny5DDt/ChJktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNB\nktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQwGCRJDYNBktQw\nGCRJDYNBktQwGCRJDYNBktQwGCRJjbEEQ5J1SZ5IsjPJLQPWn53kc931jyRZ07d+dZIXk/zLcdQj\nSTpxIwdDkqXAJ4D1wFrg5iRr+5p9ANhfVZcDdwAf61t/B3DfqLVIkkY3jncMVwM7q2pXVR0A7gE2\n9LXZANzdnb4XuD5JAJK8B9gFbB9DLZKkEY0jGFYCu3vmZ7rLBrapqkPAC8D5SV4J/Gvgl8dQhyRp\nDMYRDBmwrIZs88vAHVX14oKdJJuSTCeZ3rt37wmUKUkaxtQY9jEDXNozvwp4eo42M0mmgHOBfcA1\nwPuS/DvgNcDhJH9eVb/Z30lVbQY2A3Q6nf7gkSSNyTiC4VHgiiSvB74L3AS8v6/NFmAj8BDwPuAr\nVVXAXzvSIMltwIuDQkGStHhGDoaqOpTkg8D9wFLgrqranuR2YLqqtgCfBD6VZCez7xRuGrVfSdLJ\nkdk/3E8tnU6npqenJ12GJJ1Skmytqs5C7fzmsySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySp\nYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBI\nkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpYTBIkhoGgySpMZZgSLIu\nyRNJdia5ZcD6s5N8rrv+kSRrustvSLI1yTe7rz81jnokSSdu5GBIshT4BLAeWAvcnGRtX7MPAPur\n6nLgDuBj3eXPAe+qqp8ENgKfGrUeSdJoxvGO4WpgZ1XtqqoDwD3Ahr42G4C7u9P3AtcnSVV9vaqe\n7i7fDrwiydljqEmSdILGEQwrgd098zPdZQPbVNUh4AXg/L42Pw18vap+OIaaJEknaGoM+8iAZXU8\nbZJcyezHSzfO2UmyCdgEsHr16uOvUpI0lHG8Y5gBLu2ZXwU8PVebJFPAucC+7vwq4PeAf1BV/2eu\nTqpqc1V1qqpz4YUXjqFsSdIg4wiGR4Erkrw+yVnATcCWvjZbmH24DPA+4CtVVUleA/wB8OGq+l9j\nqEWSNKKRg6H7zOCDwP3A48Dnq2p7ktuTvLvb7JPA+Ul2Ar8AHPmX1g8ClwP/Jsk3uj8XjVqTJOnE\npar/ccDLX6fTqenp6UmXIUmnlCRbq6qzUDu/+SxJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJ\nahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgM\nkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqSGwSBJahgMkqTGWIIhybokTyTZ\nmeSWAevPTvK57vpHkqzpWffh7vInkrxjHPVIkk7cyMGQZCnwCWA9sBa4OcnavmYfAPZX1eXAHcDH\nutuuBW4CrgTWAf+xuz9J0oRMjWEfVwM7q2oXQJJ7gA3AH/e02QDc1p2+F/jNJOkuv6eqfgh8O8nO\n7v4eGkNdx9j65H6+8NgMBfz0m1fxltctZ+uT+3l41/Nce9n5vOV1y09Gt8f0MUyfJ9Jm65P7+d3H\nZgjw3jevAmjWf+aRp7hv2x7WX7WCN1z8qjn3P2ichq2vt4YrLzmXbU+/0NQz7H6Xn3PW0W1fdfYU\n2/f8KeuvWsH7r1ndHMf7r1l9TM2v7ms/X+29YwQ043c818eRdt//fwebvgdtP1//w1yf/cf/mUee\n4q7/uQsS3v7Gi3jVjy1j+Tlnsf8HB07ouh72eu09Vyfa1zD9D1p/ZJyuuuTcY/qe6/qYa8wHTQ+6\nJ4a5H+e7vocdr95r6aFdz/PaV7+Cf/I3/gJPPPP9Y47rZBlHMKwEdvfMzwDXzNWmqg4leQE4v7v8\n4b5tV46hpmNsfXI/N//nhzlw6DAA907v5rZ3X8Xtv7+dA4cOc9bUEj79M9eOPRy2Prmfv3vnw0f7\n+KV3Xrlgn/3bDNPml955Jbdt2caBlwqAz0/vJsChw8VZU0v4h29dw3/6o10AfG3Hc0wtgcPFMfsf\nNE6f3fTWY34hDKpv65P7uXnzQ0dr6PW5bj0Hu+sW2u/hY3fB13Y8x//+9vP8t288fXQe4A0Xv6qp\nubc90NxEvX1MLV0CVRw6XEwtCYeBQ936fmfrDLe9a+Fz1bvPPz/4o/6/tuM5nnr+z/jth77TbA/M\n2X/1jc+g6/OJZ77PL/7eNweOB8DOZ188Or0kx57fhQx7vfafqwBnLxv9Hlro2u+/PvuPs398YPb6\nGDjmc0wPuieGuR/nu2+GHa8j7X548DA/ugVe4MuPf+/oPTHouh63cTxjyIBl/bf1XG2G2XZ2B8mm\nJNNJpvfu3XucJc7+JXCw52I6+FJx37Y9R0/UwUOHeXjX88e932H67e1jmD77txmmzX3b9hz9pXLk\n+A6+VEfXf2n7M832hw4zcP+Dxqm//7nqe3jX800NTX/deobd71y++q323N+3bc8xNfevn6/2o2P0\nUh0NBRj+XPXus9+Xtj9zzPbz9d8/PoP67z+e/vHodSLX9bDXa/+5KsZzDy107Q861/ONz5HrY+CY\nzzPdf08Mcz/Od98MO15H2vXfAv33RP9xjts4gmEGuLRnfhXw9FxtkkwB5wL7htwWgKraXFWdqupc\neOGFx13ktZedz7KpHx3usqVh/VUrOGtqCUsDy6aWHH07OU7XXnZ+08cwffZvM0yb9VetYNnSH+Xs\nsqVh2dIcXb/uyoub7aeWMHD/g8apv/+56rv2svObGpr+uvUMs98lg3cBwHU/0Z779VetOKbm/vXz\n1X50jJaGqd76hjxXvfvsL3vdlRcfs/18/fePz6D++4+nfzx6LTmB63rY67X/XC1hPPfQQtf+oHO9\nZJ7xOXJ9DBzzeab774lh7sf57pthx2uua6n/nug/znFL1Tx/ng2zg9lf9N8Crge+CzwKvL+qtve0\n+VngJ6vqnya5CXhvVf2dJFcCn2H2ucIlwIPAFVX10nx9djqdmp6ePu5afcbgM4b+2nvHCHzG0F+f\nzxiGq6m/rpfrM4YkW6uqs2C7UYOh29nfBD4OLAXuqqp/m+R2YLqqtiR5BfAp4E3MvlO4qedh9UeA\nfwwcAj5UVfct1N+JBoMknckWNRgWm8EgScdv2GDwm8+SpIbBIElqGAySpIbBIElqGAySpIbBIElq\nGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAyS\npIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpMZI\nwZDkvCQPJNnRfV0+R7uN3TY7kmzsLjsnyR8k+ZMk25N8dJRaJEnjMeo7hluAB6vqCuDB7nwjyXnA\nrcA1wNXArT0B8mtV9UbgTcDbkqwfsR5J0ohGDYYNwN3d6buB9wxo8w7ggaraV1X7gQeAdVX1g6r6\nQ4CqOgA8BqwasR5J0ohGDYbXVtUegO7rRQParAR298zPdJcdleQ1wLuYfdchSZqgqYUaJPkycPGA\nVR8Zso8MWFY9+58CPgv8RlXtmqeOTcAmgNWrVw/ZtSTpeC0YDFX19rnWJflekhVVtSfJCuDZAc1m\ngOt65lcBX+2Z3wzsqKqPL1DH5m5bOp1OzddWknTiRv0oaQuwsTu9EfjigDb3AzcmWd596HxjdxlJ\nfhU4F/jQiHVIksZk1GD4KHBDkh3ADd15knSS3AlQVfuAXwEe7f7cXlX7kqxi9uOotcBjSb6R5GdG\nrEeSNKJUnXqfynQ6nZqenp50GZJ0Skmytao6C7Xzm8+SpIbBIElqGAySpIbBIElqGAySpIbBIElq\nGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAyS\npIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqGAySpIbBIElqjBQMSc5L\n8kCSHd3X5XO029htsyPJxgHrtyTZNkotkqTxGPUdwy3Ag1V1BfBgd76R5DzgVuAa4Grg1t4ASfJe\n4MUR65AkjcmowbABuLs7fTfwngFt3gE8UFX7qmo/8ACwDiDJjwO/APzqiHVIksZk1GB4bVXtAei+\nXjSgzUpgd8/8THcZwK8A/x74wYh1SJLGZGqhBkm+DFw8YNVHhuwjA5ZVkr8MXF5VP59kzRB1bAI2\nAaxevXrIriVJx2vBYKiqt8+1Lsn3kqyoqj1JVgDPDmg2A1zXM78K+CrwVuAtSb7TreOiJF+tqusY\noKo2A5sBOp1OLVS3JOnEjPpR0hbgyH8ZbQS+OKDN/cCNSZZ3HzrfCNxfVb9VVZdU1RrgrwLfmisU\nJEmLZ9Rg+ChwQ5IdwA3deZJ0ktwJUFX7mH2W8Gj35/buMknSy1CqTr1PZTqdTk1PT0+6DEk6pSTZ\nWlWdhdr5zWdJUsNgkCQ1DAZJUsNgkCQ1DAZJUsNgkCQ1DAZJUsNgkCQ1DAZJUsNgkCQ1DAZJUsNg\nkCQ1DAZJUsNgkCQ1DAZJUsNgkCQ1DAZJUsNgkCQ1DAZJUsNgkCQ1DAZJUsNgkCQ1DAZJUsNgkCQ1\nDAZJUiNVNekajluSvcCTx7HJBcBzJ6mclzOP+8zicZ85TvSYX1dVFy7U6JQMhuOVZLqqOpOuY7F5\n3GcWj/vMcbKP2Y+SJEkNg0GS1DhTgmHzpAuYEI/7zOJxnzlO6jGfEc8YJEnDO1PeMUiShnTaB0OS\ndUmeSLIzyS2TrmcxJLk0yR8meTzJ9iQ/N+maFkuSpUm+nuT3J13LYknymiT3JvmT7jl/66RrWgxJ\nfr57fW9L8tkkr5h0TSdDkruSPJtkW8+y85I8kGRH93X5OPs8rYMhyVLgE8B6YC1wc5K1k61qURwC\n/kVV/UXgWuBnz5DjBvg54PFJF7HIfh34UlW9EfhLnAHHn2Ql8M+BTlVdBSwFbppsVSfNbwPr+pbd\nAjxYVVcAD3bnx+a0DgbgamBnVe2qqgPAPcCGCdd00lXVnqp6rDv9fWZ/UaycbFUnX5JVwN8C7px0\nLYslyauBvw58EqCqDlTV/51sVYtmCvixJFPAOcDTE67npKiqPwL29S3eANzdnb4beM84+zzdg2El\nsLtnfoYz4BdkryRrgDcBj0y2kkXxceBfAYcnXcgiugzYC/yX7kdodyZ55aSLOtmq6rvArwFPAXuA\nF6rqf0y2qkX12qraA7N/CAIXjXPnp3swZMCyM+bfsJL8OPC7wIeq6k8nXc/JlOSdwLNVtXXStSyy\nKeDNwG9V1ZuAP2PMHyu8HHU/U98AvB64BHhlkr832apOH6d7MMwAl/bMr+I0fbvZL8kyZkPh01X1\nhUnXswjeBrw7yXeY/cjwp5L818mWtChmgJmqOvKO8F5mg+J093bg21W1t6oOAl8A/sqEa1pM30uy\nAqD7+uw4d366B8OjwBVJXp/kLGYfTm2ZcE0nXZIw+5nz41X1HyZdz2Koqg9X1aqqWsPsef5KVZ32\nf0FW1TPA7iRv6C66HvjjCZa0WJ4Crk1yTvd6v54z4KF7jy3Axu70RuCL49z51Dh39nJTVYeSfBC4\nn9n/WrirqrZPuKzF8Dbg7wPfTPKN7rJfrKr/PsGadPL8M+DT3T9+dgH/aML1nHRV9UiSe4HHmP0v\nvK9zmn4DOslngeuAC5LMALcCHwU+n+QDzIbk3x5rn37zWZLU63T/KEmSdJwMBklSw2CQJDUMBklS\nw2CQJDUMBklSw2CQJDUMBklS4/8Diq609XoFElYAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f0a9a727780>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as pp\n",
"val = 0 #flatten on y=0\n",
"ar = np.random.uniform(low=0, high=10, size=(80,))\n",
"pp.plot(ar, np.zeros_like(ar) + val, '.')\n",
"pp.show()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADYhJREFUeJzt3WGMZXV9h/HnW0aiixoxO1hlmQ40SGuJDWZsUFJLWWm2\nhbC+aBNIMFtLMknTIhobutQXvN22xGrSxmYDKySSNQaxErEWglrShG47u2BZWCgGtzC4ukNI1dqk\nSPj1xVya7Ti7M/eeM3Nn//N8EjL3nnvmnt9hloezZ+65N1WFJOn093PjHkCS1A+DLkmNMOiS1AiD\nLkmNMOiS1AiDLkmNMOiS1AiDLkmNMOiS1IiJ9dzY1q1ba3p6ej03KUmnvYMHD75YVZMrrbeuQZ+e\nnmZubm49NylJp70k/7Ga9TzlIkmNMOiS1AiDLkmNMOiS1AiDLkmNWDHoSfYlOZ7k8JLlNyZ5OskT\nSf5i7UaUJK3Gao7Q7wR2nLggyW8CO4F3V9WvALf1P5okaRgrBr2qHgZeWrL4D4E9VfU/g3WOr8Fs\nkqQhjHoO/Z3Aryc5kOQfk7y3z6EkScMb9UrRCeBs4FLgvcAXk1xQy3zidJJZYBZgampq1DmlNTW9\n+/5xj7Cso3uuGvcIOo2MeoQ+D9xbi/4FeBXYutyKVbW3qmaqamZycsW3IpAkjWjUoP8dcAVAkncC\nZwIv9jWUJGl4K55ySbIfuBzYmmQeuBXYB+wbvJTxZWDXcqdbJEnrZ8WgV9V1J3no+p5nkSR14JWi\nktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktQI\ngy5JjTDoktQIgy5JjTDoktSIFYOeZF+S44OPm1v62J8kqSTLfkC0JGn9rOYI/U5gx9KFSc4DrgSe\n63kmSdIIVgx6VT0MvLTMQ38F3Az44dCStAGMdA49yTXAC1X17Z7nkSSNaGLYb0iyBfgk8FurXH8W\nmAWYmpoadnMa0fTu+8c9wrKO7rlq3CNIzRrlCP0XgfOBbyc5CmwDDiX5+eVWrqq9VTVTVTOTk5Oj\nTypJOqWhj9Cr6nHgnNfuD6I+U1Uv9jiXJGlIq3nZ4n7gEeCiJPNJblj7sSRJw1rxCL2qrlvh8ene\nppEkjcwrRSWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEQZd\nkhph0CWpEQZdkhph0CWpEQZdkhph0CWpEav5CLp9SY4nOXzCsr9M8lSSf0vy5SRvWdsxJUkrWc0R\n+p3AjiXLHgQurqp3A/8O3NLzXJKkIa0Y9Kp6GHhpybIHquqVwd1/BratwWySpCH0cQ79D4C/P9mD\nSWaTzCWZW1hY6GFzkqTldAp6kk8CrwB3n2ydqtpbVTNVNTM5Odllc5KkU5gY9RuT7AKuBrZXVfU3\nkiRpFCMFPckO4E+B36iq/+53JEnSKFbzssX9wCPARUnmk9wA/DXwJuDBJI8l+ds1nlOStIIVj9Cr\n6rplFt+xBrNIkjrwSlFJaoRBl6RGGHRJaoRBl6RGGHRJaoRBl6RGGHRJasTIl/5L0kYzvfv+cY9w\nUkf3XLXm2/AIXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIaYdAlqREGXZIasZqPoNuX5HiS\nwycse2uSB5M8M/h69tqOKUlayWqO0O8EdixZtht4qKouBB4a3JckjdGKQa+qh4GXlizeCdw1uH0X\n8KGe55IkDWnUN+d6W1UdA6iqY0nOOdmKSWaBWYCpqakRN7dxbeQ3A9qI/PfVBn+OG9Oa/1K0qvZW\n1UxVzUxOTq715iRp0xo16D9I8naAwdfj/Y0kSRrFqEG/D9g1uL0L+Eo/40iSRrWaly3uBx4BLkoy\nn+QGYA9wZZJngCsH9yVJY7TiL0Wr6rqTPLS951kkSR14pagkNcKgS1IjDLokNcKgS1IjDLokNcKg\nS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNaJT0JN8\nPMkTSQ4n2Z/k9X0NJkkazshBT3Iu8FFgpqouBs4Aru1rMEnScLqecpkA3pBkAtgCfK/7SJKkUYwc\n9Kp6AbgNeA44Bvywqh5Yul6S2SRzSeYWFhZGn1SSdEpdTrmcDewEzgfeAZyV5Pql61XV3qqaqaqZ\nycnJ0SeVJJ1Sl1MuHwS+W1ULVfVT4F7g/f2MJUkaVpegPwdcmmRLkgDbgSP9jCVJGlaXc+gHgHuA\nQ8Djg+fa29NckqQhTXT55qq6Fbi1p1kkSR14pagkNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLok\nNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjDLokNcKgS1IjOgU9yVuS3JPkqSRHkryv\nr8EkScPp9IlFwGeAr1fV7yY5E9jSw0ySpBGMHPQkbwY+APw+QFW9DLzcz1iSpGF1OeVyAbAAfC7J\no0luT3JWT3NJkobUJegTwHuAz1bVJcBPgN1LV0oym2QuydzCwkKHzUmSTqVL0OeB+ao6MLh/D4uB\n/3+qam9VzVTVzOTkZIfNSZJOZeSgV9X3geeTXDRYtB14spepJElD6/oqlxuBuwevcHkW+Ej3kSRJ\no+gU9Kp6DJjpaRZJUgdeKSpJjTDoktQIgy5JjTDoktQIgy5JjTDoktQIgy5JjTDoktSIrleKrpvp\n3fePewRJ2tA8QpekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWpE56AnOSPJo0m+2sdA\nkqTR9HGEfhNwpIfnkSR10CnoSbYBVwG39zOOJGlUXY/QPw3cDLzawyySpA5GfnOuJFcDx6vqYJLL\nT7HeLDALMDU1NermpE3JN6XTMLocoV8GXJPkKPAF4Iokn1+6UlXtraqZqpqZnJzssDlJ0qmMHPSq\nuqWqtlXVNHAt8I2qur63ySRJQ/F16JLUiF4+4KKqvgV8q4/nkiSNxiN0SWqEQZekRhh0SWqEQZek\nRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0SWqEQZekRhh0\nSWrEyEFPcl6SbyY5kuSJJDf1OZgkaThdPoLuFeATVXUoyZuAg0kerKone5pNkjSEkY/Qq+pYVR0a\n3P4xcAQ4t6/BJEnD6eUcepJp4BLgQB/PJ0kaXuegJ3kj8CXgY1X1o2Uen00yl2RuYWGh6+YkSSfR\nKehJXsdizO+uqnuXW6eq9lbVTFXNTE5OdtmcJOkUurzKJcAdwJGq+lR/I0mSRtHlCP0y4MPAFUke\nG/zzOz3NJUka0sgvW6yqfwLS4yySpA68UlSSGmHQJakRBl2SGmHQJakRBl2SGmHQJakRBl2SGmHQ\nJakRBl2SGmHQJakRBl2SGmHQJakRBl2SGmHQJakRBl2SGmHQJakRBl2SGtH1Q6J3JHk6yXeS7O5r\nKEnS8Lp8SPQZwN8Avw28C7guybv6GkySNJwuR+i/Bnynqp6tqpeBLwA7+xlLkjSsLkE/F3j+hPvz\ng2WSpDGY6PC9WWZZ/cxKySwwO7j7X0meHnI7W4EXh/yeFmzG/d6M+wzu96aQP/+/m6Ps9y+sZqUu\nQZ8Hzjvh/jbge0tXqqq9wN5RN5JkrqpmRv3+09Vm3O/NuM/gfo97jvW2lvvd5ZTLvwIXJjk/yZnA\ntcB9/YwlSRrWyEfoVfVKkj8G/gE4A9hXVU/0NpkkaShdTrlQVV8DvtbTLCcz8uma09xm3O/NuM/g\nfm82a7bfqfqZ32NKkk5DXvovSY3YsEHfjG8rkOS8JN9MciTJE0luGvdM6ynJGUkeTfLVcc+yXpK8\nJck9SZ4a/NzfN+6Z1lqSjw/+fB9Osj/J68c901pIsi/J8SSHT1j21iQPJnlm8PXsPre5IYO+id9W\n4BXgE1X1y8ClwB9tkv1+zU3AkXEPsc4+A3y9qn4J+FUa3/8k5wIfBWaq6mIWX1Bx7XinWjN3AjuW\nLNsNPFRVFwIPDe73ZkMGnU36tgJVdayqDg1u/5jF/7g3xdW3SbYBVwG3j3uW9ZLkzcAHgDsAqurl\nqvrP8U61LiaANySZALawzPUrLaiqh4GXlizeCdw1uH0X8KE+t7lRg77p31YgyTRwCXBgvJOsm08D\nNwOvjnuQdXQBsAB8bnCq6fYkZ417qLVUVS8AtwHPAceAH1bVA+Odal29raqOweIBHHBOn0++UYO+\nqrcVaFWSNwJfAj5WVT8a9zxrLcnVwPGqOjjuWdbZBPAe4LNVdQnwE3r+K/hGMzhnvBM4H3gHcFaS\n68c7VTs2atBX9bYCLUryOhZjfndV3TvuedbJZcA1SY6yeHrtiiSfH+9I62IemK+q1/4Wdg+LgW/Z\nB4HvVtVCVf0UuBd4/5hnWk8/SPJ2gMHX430++UYN+qZ8W4EkYfF86pGq+tS451kvVXVLVW2rqmkW\nf9bfqKrmj9qq6vvA80kuGizaDjw5xpHWw3PApUm2DP68b6fxXwQvcR+wa3B7F/CVPp+805Wia2UT\nv63AZcCHgceTPDZY9meDK3LVphuBuwcHLs8CHxnzPGuqqg4kuQc4xOKruh6l0StGk+wHLge2JpkH\nbgX2AF9McgOL/3P7vV636ZWiktSGjXrKRZI0JIMuSY0w6JLUCIMuSY0w6JLUCIMuSY0w6JLUCIMu\nSY34X4g7EuvG1jCuAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f0aa2bbdda0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"pp.hist(ar, bins=8)\n",
"pp.show()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD8CAYAAACb4nSYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VOXd//H3N5MdkgDZF5IACftOWERBFLWiFtRCC264\nlW5W29qn1efXxdrWqrW1tlqrFdxQEcEKKoILbrhAEtaELSEs2RNCCFnIfv/+SPRJY5CBzMyZ5fu6\nLi8nZ87M+YzCZ07Ouc99xBiDUkop3+BndQCllFKuo6WvlFI+REtfKaV8iJa+Ukr5EC19pZTyIVr6\nSinlQ7T0lVLKh2jpK6WUD9HSV0opH+JvdYDuoqKiTGpqqtUxlFLKo2RnZx81xkSfbj23K/3U1FSy\nsrKsjqGUUh5FRA7bs54e3lFKKR+ipa+UUj5ES18ppXyIlr5SSvkQLX2llPIhWvpKKeVD7Cp9EblU\nRPaJSL6I3NXD8zNFZKuItIrI/B6eDxeRYhF51BGhlVJKnZ3TjtMXERvwGHAxUARkishaY8zuLqsd\nAW4Efn6Kt/k98GHvoipvU3OyhS0Hj5FfUUdzazvhIf6MTYpgbFI/Amz6S6hSzmDPxVlTgHxjTAGA\niKwA5gFflr4x5lDnc+3dXywik4BYYD2Q0fvIytMdqKzjkXfzWJ9bRnPrV/7IENU3iIWTB/LdmYOJ\nCAmwIKFS3sue0k8ECrv8XARMtefNRcQP+AtwPTD7jNMpr9LS1s7D7+zniY8KCAmwcc2UZC4bE8+I\n+DBCA/2pqmsi+3A1q7cW89gH+by45Qi/unwEV09Msjq6Ul7DntKXHpYZO9//h8A6Y0yhSE9v07kB\nkSXAEoDk5GQ731p5kqN1TSx5LoutR46zYFISv5wznKi+Qf+1Tkx4MHPGxDNnTDw5xTX8dm0uP1u5\ng0/yq/jjVaMJDrBZlF4p72FP6RcBA7v8nASU2Pn+5wAzROSHQF8gUETqjDH/dTLYGPMk8CRARkaG\nvV8oykMUHmvghmVbKK05yd8XTWDuuITTvmZ0YgQvL5nG39/L4+8b8yk81sC/b8ggIlQP9yjVG/ac\nLcsE0kVkkIgEAguBtfa8uTHmWmNMsjEmlY6TvM91L3zl3cpqGln078+pqmvihVun2lX4X/C3+fGz\nS4bx90UT2FZYzaJ/f87xhmYnplXK+5229I0xrcBtwAZgD7DSGJMrIveKyFwAEZksIkXAAuAJEcl1\nZmjlGWpOtnDDss1U1zfz/C1TmZQy4KzeZ+64BJ5aPJn8ijpuWLaF2sYWBydVyneIMe51NCUjI8Po\n1Mqer63dcPMzmXySf5Tnbp7C9LSoXr/ne3vKWfJ8NjPTo3hq8WRsfqc+T6SUrxGRbGPMaUdI6mBo\n5RQPvb2PD/dXcu+80Q4pfIDZI2L53dxRvL+vkj++ucch76mUr3G7m6goz/fh/koe/+AAi6YM5Jqp\njh2Ndd20FA5U1rHsk4MMienDtVNTHPr+Snk73dNXDnW0rok7V25nWGwYv/3mKKds41eXj2TWsGh+\nsyaXzwuqnLINpbyVlr5yqHvW5nLiZCt/XzTBaePqbX7CPxZNIGVAKHes2EZVXZNTtqOUN9LSVw7z\ndm4Zb+ws5ccXpjEsLsyp2woLDuAf10yguqGFn67cQXu7ew1IUMpdaekrh6g52cKv1+QwPC6M788a\n4pJtjkqI4NdXjOSj/ZU88VGBS7aplKfT0lcOcf9be6isbeLP88e5dIbM66Ymc/mYeB56ex9Zh465\nbLtKeSotfdVrmwuqeGlLId+dOZgxSREu3baI8KdvjSGxXwg/fmkb1fV6xa5SX0dLX/VKW7vhntd3\nk9gvhJ/MHmpJhvDgAB67ZiJH65r4+Ss7cLcLDpVyJ1r6qldezixkT+kJ7r5sOCGB1s2COSYpgv+9\nbATv7a3gqY8PWpZDKXenpa/OWk1DCw+9vY8pgwZw+Zh4q+Nw4/RUvjEqlgfW72XrkWqr4yjllrT0\n1Vl75L08jjc089tvjuTr7pfgKiLCg/PHERcRzI9f3KYzcirVAy19dVbyK+p47rNDLJySzKgE1568\n/ToRIQE8es1EKmob+fkrO/X4vlLdaOmrs/Lg+r0EB9i482JrTt5+nfED+3HXnBG8u6ecpZv0+L5S\nXWnpqzOWfbiat3eX872Zg4nsdstDd3HzualcPDKW+9/aS/ZhPb6v1Be09NUZMcbwwPq9RPUN4pYZ\ng6yOc0oiwkPzxxHfL5jvPZ9N8fGTVkdSyi1o6asz8sG+SrYcPMYds9MIDXTvmbkjQgNYtngyTS1t\n3PJMJnVNrVZHUspyWvrKbu3tHXv5KZGhLJzi2HnynSU9NozHrp1IXkUdt7+0jTadmE35OC19Zbc1\nO4rZW1bLnZcMc+n8Or01c2g098wdxca9FfzqtRwd0aN8mnv/fq7cRlNrG395ez+jEsK5wg0uxDpT\n109LoeT4SR7/4ABB/n5Ov7agqq6Jzwqq2FVcQ3lNIw3NbUSEBDA0Noxz06IYER/mFtc2KN+jpa/s\n8uLmIxRVn+RPV4/Bz0NvSP6LbwyjubWdpZsOUt/Uyp+uHoO/A39jaWlrZ0NuGc9/dpgth45hDATa\n/IiLCCYkwEZ1QzOvZBcBHcNKf3JROrOGxThs+0rZQ0tfnVZ9UyuPbszn3LRIZqRHWx3nrIkIv7p8\nBH2D/HnkvTxKaxp5ZOH4Xg87raxt4qUtR3hh82HKTzSRPCCU2y9M54LhMYyMDyfQ//++WMpqGtmQ\nW8bSTQe58elMrp6YyL3zRtM3SP8qKtcQdzu+mZGRYbKysqyOobr45wf5PLh+H//54XQmJPe3Oo5D\nrMws5FdrcojsE8h9V4/hgjPc4zbGsLOohmc/PcQbO0tpbmtnRnoUN52byqyhMaf9baiptY1HN+bz\n2Pv5jEwIZ9mNk4kJC+7NR1I+TkSyjTEZp11PS199ndrGFmY8+D4Tk/uz7MbJVsdxqF1FNfx05Xby\nK+q4aEQst89OY2xSv699TXV9M69tL+blzEL2ltXSJ9DG/ElJ3DA9lSHRfc84w8a95fzohW3ERwSz\n6gfTGdAn8Gw/jvJxWvrKIf7+Xh5/fWc/r992nstvkOIKTa1tPPXxQZ748AAnGlsZFhvWcVgmIZzI\nzgKuqm8mr7yWLQePkX24mtZ2w9ikCBZkDOTK8QmEBQf0KkPmoWNc99RmRsSH89J3p1k6RbXyXFr6\nqtdqTrZw3gMbOWdwJE/ecNo/Sx7tRGML/9lazBs7S9heeJyWtv/+e2HzE4bHhTEjPZp54xMYER/u\n0O2/nVvG95ZnM39iEn9eMM6h7618g72lb9fZIxG5FHgEsAFPGWPu7/b8TOBvwFhgoTFmVefy8cDj\nQDjQBvzRGPPymXwQZZ2lHxdQ29jKTy5yv0nVHC08OIDF01NZPD2VptY2Dh6t53hDCwD9QwNJiQwl\nOMB5e+CXjIrjxxek8feN+UxPi+SqCUlO25bybactfRGxAY8BFwNFQKaIrDXG7O6y2hHgRuDn3V7e\nANxgjMkTkQQgW0Q2GGOOOyS9cprq+maWfXKIy8bEMTLBsXu17i7I38bwONd/5ttnp/N5wTF+81ou\n04dEERuuJ3aV49kzSHkKkG+MKTDGNAMrgHldVzDGHDLG7ATauy3fb4zJ63xcAlQAnjvmz4c8+XEB\n9c2+sZfvLvxtfjw4fyzNbe3cszbX6jjKS9lT+olAYZefizqXnRERmQIEAgfO9LXKtY7WNfHsp4f4\n5tgEhsaGWR3Hp6RG9eH22em8lVPGxr3lVsdRXsie0u9pwPEZnf0VkXjgeeAmY0x7D88vEZEsEcmq\nrKw8k7dWTvDEhwdobGnjjovSrY7ik747YzCDo/pw37q9tLZ95a+LUr1iT+kXAQO7/JwElNi7AREJ\nB94EfmWM+byndYwxTxpjMowxGdHRevTHShUnGnnus8NcOSHxrMadq94L9PfjF5cOJ7+ijpVZRVbH\nUV7GntLPBNJFZJCIBAILgbX2vHnn+v8BnjPGvHL2MZWr/PODA7S2G+6YrXv5VvrGqFgyUvrz8Lv7\naWxpszqO8iKnLX1jTCtwG7AB2AOsNMbkisi9IjIXQEQmi0gRsAB4QkS+OAv1bWAmcKOIbO/8Z7xT\nPonqtdKak7y45QjzJyaREtnH6jg+TUS485JhVNY2sWLLEavjKC9i1zh9Y8w6YF23Zb/p8jiTjsM+\n3V+3HFjey4zKRR57Px9jDLddmGZ1FAVMGzyAKakD+NeHBSyamkyQv16pq3rPc+6EoZyqqLqBlzML\n+XbGQAYOCLU6jqJjb//22emUnWhkdXax1XGUl9DSVwA8ujEfQXQv382cmxbJmMQIlm4qoF1v9agc\nQEtfcbiqnleyi7hmajLxESFWx1FdiAi3nDeIA5X1fLhfhzOr3tPSV/xjYz7+fsIPZw2xOorqwWVj\n4okLD+apTQVWR1FeQEvfxxVU1vHq1iKun5ZCjM714pYC/f24/pwUPsmvoqCyzuo4ysNp6fu4v7+X\nR5C/je/rXr5bW5CRhL+f8HJm4elXVupraOn7sLzyWtbsKGHx9FSienmfWOVcMWHBzB4Rw6rsIppb\ndWoGdfa09H3YI+/lERpgY8nMwVZHUXZYOCWZqvpm3tmtE7Gps6el76Pyymt5c1cpi6en6n1ZPcTM\n9GgS+4WwIlOv0FVnT0vfR/1jYz4hATZunaF7+Z7C5icsyEji47yjFB5rsDqO8lBa+j4ov6KO13eW\ncMM5upfvab6dMRA/QU/oqrOmpe+DHt2YR7C/je/OGGR1FHWGEvqFcP7QaFZmFepc++qsaOn7mILK\nOtbuKOGGc1KI1BE7HunbGQOpqG3is4Iqq6MoD6Sl72Me3ZhPkL+N7+qIHY91wfAYwoL8WbPd7nsZ\nKfUlLX0fcvBoPa9tL+a6ack6Lt+DBQfYuHR0HOtzyvQGK+qMaen7kEc35hNg89O9fC8wb3widU2t\nbNxbYXUU5WG09H3E4aqOvfxrp6YQE6Zz7Hi6c4ZEEh0WxJrtOs++OjNa+j7i0c6ZNL9/vu7lewOb\nn/DNsQm8v7eSmpMtVsdRHkRL3wccqWrg1W3FLJqSrDNpepErJyTQ3NbO+pxSq6MoD6Kl7wP++UE+\nNj/hBzqTplcZkxjBoKg+OopHnREtfS9XVtPI6q1FfCdjILG6l+9VRIS54xL4rKCKihONVsdRHkJL\n38st3VRAu0Fn0vRSV4yNxxjYkFtmdRTlIbT0vdjxhmZe2HyEb46NZ+CAUKvjKCdIjw0jLaYvb+Vo\n6Sv7aOl7sec+O0xDc5veFcvLzRkdx+cFVVTVNVkdRXkALX0v1dDcytOfHGT28BiGx4VbHUc50ZzR\n8bQbeFtvrqLsoKXvpVZmFlLd0KIjdnzAiPgwUiJDWbdLh26q07Or9EXkUhHZJyL5InJXD8/PFJGt\nItIqIvO7PbdYRPI6/1nsqODq1Fra2vn3xweZnNqfjNQBVsdRTiYizBkdz2cHqjje0Gx1HOXmTlv6\nImIDHgPmACOBRSIysttqR4AbgRe7vXYA8FtgKjAF+K2I9O99bPV11m4vofj4SX44K83qKMpFLhsT\nR2u70fvnqtOyZ09/CpBvjCkwxjQDK4B5XVcwxhwyxuwEut/V4RvAO8aYY8aYauAd4FIH5Fan0N5u\n+NeHBxgeF8asYdFWx1EuMiYxgsR+ITqKR52WPaWfCHS9N1tR5zJ72PVaEVkiIlkiklVZWWnnW6ue\nbNxbQV5FHT+YNQQRsTqOcpGOQzxxfJxXyYlGnYtHnZo9pd9Tcxg739+u1xpjnjTGZBhjMqKjde+0\nN5Z9cpCEiGAuHxNvdRTlYnPGxNHSZti4R6dbVqdmT+kXAQO7/JwE2DvZR29eq87Q7pITfHqgisXT\nU/G36cAsXzNhYH9iw4N0FI/6WvY0QyaQLiKDRCQQWAistfP9NwCXiEj/zhO4l3QuU07w9CcHCQmw\nsXBystVRlAX8/DpG8Xy4v5L6plar4yg3ddrSN8a0ArfRUdZ7gJXGmFwRuVdE5gKIyGQRKQIWAE+I\nSG7na48Bv6fjiyMTuLdzmXKwo3VNrNlewvxJSUSEBlgdR1nk0tFxNLW28/4+PcSjeuZvz0rGmHXA\num7LftPlcSYdh256eu0yYFkvMio7vPD5EZrb2rnx3FSroygLTU4dQFTfQN7aVcYVYxOsjqPckB74\n9QJNrW08//lhLhgWzZDovlbHURay+QmXjIrj/X0VetN01SMtfS/wxo5SjtY1cfN5g6yOotzAnNFx\nNDS38eF+Hf6svkpL38MZY1i66SDpMX05Ly3K6jjKDUwbHElESADr9UIt1QMtfQ+3+eAxdpee4Obz\nBunFWAqAAJsfF42I5d095TS3dr9IXvk6LX0Pt2zTQfqHBnDVBHsvkla+YM7oOGobW/n0wFGroyg3\no6XvwYqPn+TdPeUsmpJMcIDN6jjKjZyXHkWfQJse4lFfoaXvwV7ecgQDLJqiF2Op/xYcYOPCEbG8\nvbuc1jY9xKP+j13j9JX7aWlrZ0VmIbOGRuv9b1WP5oyO4/UdJWw5dIzpQ3zzJH9pzUl2FtVw8Gg9\nNSdbONncRmNLG8EBNqL6BjKgTxCpkaGMTAinX2ig1XFdQkvfQ723p5yK2ib+NC3F6ijKTc0aFk1w\ngB/rc8p8qvTzK+pYlV3E+pxSDlU1fLk8wCYEB9gICbBxsrmN2m5TVST2C2FSSn9mj4jh/KHRXvsl\noKXvoV7YfISEiGBmDYuxOopyU6GB/pw/NJoNuWXc881R+Pl59+iu3JIa/vL2fjburcDfT5ieFsUN\n56QyIbkfQ2L6Eh7839OTNLW2UVXXzIHKOnJLTpBTXMMn+UdZu6MEP4Fz06K4dmoKF42I8aoJDLX0\nPdCho/V8nHeUOy8eis3L/yKr3pkzOp4NueVsKzzOpBTvvGldXVMr963bw0tbjhAREsDPLh7KNVOT\nieob9LWvC/K3kdAvhIR+IcxI75jSvb3dsKPoOO/tqeDVrUV8f3k28RHBLJ6eyuJzUgkJ9PwBE1r6\nHuilLUew+QnfmTzw9Csrn3bhiBgCbML6nFKvLP0dhcf54QtbKa05yc3nDuL22elEhJz9hIN+fsKE\n5P5MSO7PTy5KZ+PeCp777DD3v7WXpZsOcvec4Vw1IdGjr4nxnt9ZfERjSxsrswq5ZGQsMeHBVsdR\nbi48OIBz06J4K6cMY+y995FnWJ1dxIInPgPgle+fw6+vGNmrwu/O3+bHJaPiWH7rVF75/jkk9gvh\nZyt3cP3SLZTVNDpsO66mpe9h1ueUUd3QwrVT9QSuss+c0XEUVZ8kp/iE1VEc5okPD3DnKzvISOnP\n6z8+j0kpA5y6vcmpA3j1B9P5/ZWjyT5czaWPfMRHHjq3kZa+h3lh82FSI0OZPiTS6ijKQ1wyMg5/\nP+GNXd5x07pHN+bxp7f2csXYeJ65aQoD+rhmlI2fn3D9tBTeuP084sKDuemZTJ7//LBLtu1IWvoe\nZF9ZLZmHqrlmarLXj8RQjtO/TyAz0qN4Y0epxx/iWbbpIA+9vZ+rJiTyyMIJBPq7vsKGRPdl1Q+m\nM2toNL9+LYfHPzjg8gy9oaXvQVZkHiHQ5sf8SXoCV52ZK8YmUHz8JNsKj1sd5ay9t6ec37+5m0tH\nxfHn+WMtHbnWN8ifJ66fxNxxCTywfi9PfuQ5xa+l7yGaW9tZs72Ei0fGuuzXWeU9Lh4VS6C/H6/v\n8MxDPHnltdyxYjujEsJ5+Dvj3WLcvL/Nj4e/M54rxsZz37q9/GdbkdWR7GL9fzlll/f3VXCsvplv\nTdLZNNWZCw8O4IJh0by5s5S2ds86xFNd38ytz2URHGDjyesz3GqsvM1P+Mu3x3HO4Eh+sWon245U\nWx3ptLT0PcSq7CKi+gYxs/MiEqXO1DfHJVBR28SWg8esjmK39nbD7Su2UXq8kSdvmERCvxCrI31F\nkL+Nx6+bSFxEMD9YvpWjdU1WR/paWvoeoKquiff3VnD1xES3+LVWeaYLh8cQEmDj9Z2ec4hn6aaD\nfJx3lHvmjmJisvteXNYvNJB/XTeJ6oZm/ueVHW59wlwbxAOs2V5Ca7vhWxOTrI6iPFhooD8XjYxl\nfU4ZLR4w3fLukhP8ecM+LhkZy6Ip7j94YVRCBHfNGc77+yp5aUuh1XFOSUvfA6zKLmJsUgTD4sKs\njqI83DfHxnOsvplN+e59R63GljbuWLGNfqEB3P+tsR4z7cHic1I5Ny2SP7y5m5LjJ62O0yMtfTeX\nW1LD7tITupevHOL8YdH0Cw1gVbZ7jzS5/6295FXU8dCCcR41Ws3PT7j/6rG0G8PvXs+1Ok6PtPTd\n3OrsYgJswtxxCVZHUV4gyN/GleMTeSe3nJqGFqvj9Cjz0DGe+fQQN05PZeZQzxu4MHBAKLfPTmdD\nbjnv7Sm3Os5X2FX6InKpiOwTkXwRuauH54NE5OXO5zeLSGrn8gAReVZEdonIHhG527HxvVtLWztr\nthdz0YhY+nvQ3o5yb/MnJdHc1s7aHcVWR/mKptY27lq9k8R+IfzPN4ZZHees3XreYIZE9+GPb+5x\nu/Mnpy19EbEBjwFzgJHAIhEZ2W21W4BqY0wa8DDwQOfyBUCQMWYMMAn43hdfCOr0PthXSVV9M/Mn\n6aEd5TijEyMYER/OK254iOef7x/gQGU9f7xqNH2CPHfm90B/P+6aM4KCo/Ws2HLE6jj/xZ49/SlA\nvjGmwBjTDKwA5nVbZx7wbOfjVcBs6TjzYoA+IuIPhADNgPdM9edkq7ILO8bme+CvuMq9zZ+UxM6i\nGvaV1Vod5Uv5FbX884N85o1P8Io7wl00IoYpgwbwt3fzqO92a0Yr2VP6iUDX8UdFnct6XMcY0wrU\nAJF0fAHUA6XAEeAhY4znXBlioaq6Jt7bU8GV4xMI0LH5ysGuHJ+Av5/wSpZ7DC1sbzfctXoXfYL8\n+fUV3Q8keCYR4a45w6mqb3ar2TjtaZOexkp1v/LgVOtMAdqABGAQcKeIDP7KBkSWiEiWiGRVVnrm\nHNWOtnZH59h8PbSjnCCybxCzR8Tw2vZitzjm/OKWI2Qdrub/XTbitLc59CQTk/szIz2Kf39UQEOz\ne+zt21P6RUDXKyOSgO6X9H25TuehnAjgGHANsN4Y02KMqQA+ATK6b8AY86QxJsMYkxEdrYcyAFZv\nLWJ0Yjgj4sOtjqK81IJJAzla18zGvRWW5iiraeSBt/YyfUikV56/+slF6VTVN7PcTfb27Sn9TCBd\nRAaJSCCwEFjbbZ21wOLOx/OBjabjOuQjwIXSoQ8wDdjrmOjea0/pCXKKTzBfx+YrJ5o1LJr4iGDL\ny+ietbk0t7Vz31VjPOYirDMxKWUA04dEsmzTIZpbrf+t6rSl33mM/jZgA7AHWGmMyRWRe0Vkbudq\nS4FIEckHfgZ8MazzMaAvkEPHl8fTxpidDv4MXmd1dlHH2PzxOqOmch5/mx/XTk3m47yjHKissyTD\nO7vLWZ9bxu2z00mN6mNJBldYMnMwZScaecMN5j2y6wyhMWadMWaoMWaIMeaPnct+Y4xZ2/m40Riz\nwBiTZoyZYowp6Fxe17l8lDFmpDHmz877KN6hpa2d17YXc+HwGI+6ElF5pu9MTibAJjz/mev39uub\nWvntmhyGxYaxZOZXTvV5lfOHRjMsNownPyqwfDI2HRbiZj7cV8nRuma9O5ZyieiwIC4fE8+q7CJO\nNLr2Ct2/vL2f0hON3Hf1GK8foSYi3DJjEHvLavm8wNoBjN79X9oDrd5aRGSfQGYN0xPayjVunTGY\nuqZWXtzsuouIdhXV8MynB7l2ajKTUtx3ymRHmjsugfBgf16y+GItLX03Ul3fzLt7yrlyQqLX7/ko\n9zE6MYLz0qJYtukgTa1tTt9ea1s7d726k6i+Qfzi0uFO3567CA6wcfXEJNbnlHGsvtmyHNosbmTt\njhJa2oxXDltT7m3JzMFU1Dbx6lbnz8fzzKeHyC05wT1zRxEeHOD07bmTa6Ym09zWzmoLp8DQ0ncj\nq7KLGBmvY/OV681Ij2JcUgSPbsx36rDCw1X1/PWd/cweHsOc0XFO2467GhobRkZKf17acsSyE7pa\n+m5iX1ktu4prdC9fWUJE+Nklwyg+fpKXnTQ1Q1u74Wcrd2DzE35/5WivHJNvj2umJlNwtN6yE7pa\n+m5i9dYi/P2EeeN13nxljZnpUWSk9OfRjXlOmTLgXx8eIPtwNX+4crRb3uDcVS4bE09ESAAvWnRC\nV0vfDbS2tfPq1o6x+ZFeNO+I8ixfTBBWfqKJxz844ND3zimu4eF39nPF2HifvyFQxwndRNbnlFJV\n1+Ty7Wvpu4GP8io5Wtekh3aU5TJSBzBvfAJPfFRA4bEGh7znyeY2fvrydiL7BvIHHz6s09V3Jg+k\npc2wblepy7etpe8GVmUXMaBPoFfMIa48311zhuPvJ/zvf3b1+mSjMYa7X91JfmXH/W77hepV5gDD\n48IZFhvGmu2un5ZBS99ixxuaeXd3BfPGJxDor/87lPXiI0K4+7IRfJx3lBd6ecHWsk8O8dr2En52\n0VBmpOsFh13NHZ9A1uFqiqod8xuVvbRlLPb6jhKa29r10I5yK9dNTWZGehR/fHMPu0vO7mZ363NK\n+cObu7lkZCw/uiDNwQk93xfnNl7f4dpDPFr6FluVXcSI+HBGJURYHUWpL4kIf1kwjoiQAL77XBaV\ntWd2wvHD/ZXcvmI7Ewb245GFE/Dz0+P43Q0cEMrE5H6s2e7aG9Rr6Vtof3ktO4p0bL5yTzHhwfz7\nhgyq6pu4fulmu4t/3a5Sbn02k7TovixdPJmQQJuTk3queeMT2VtW69J7FWvpW2h1to7NV+5tTFIE\nT90wmcNVDSz416fkFNecct3GljbuW7eHH76wlTGJEby0ZBr9dXrwr3XZmHj8BNbucN3evpa+RVra\n2lm9tZhZw2K86p6gyvuclx7F8luncLKljSsf+4R71uaSV1775cieqromln9+mNl/+ZAnPyrg+mkp\nvLRkGhEhvjWvztmIDgvi3LQo1u4ocdm0DP4u2Yr6io5585v4doYe2lHub1LKAN7+yfn8cd1uXth8\nmGc+PURje7LJAAANK0lEQVSfQBv+Nj9qTnbMwz86MZw/zx/L9LQoi9N6lnnjE/n5KzvYVnicicnO\nn2ZaS98ir2QXEtU3kAuG69h85RkiQgN4cP44fv6NYbyzu5y88jrajSE2PJhZw6IZGR+uF16dhYtH\nxhJgE9bnlGnpe6ujdU28t6eCm88bpPPmK48TExbMtVNTrI7hNSJCApg+JIq3ckq5e85wp39xauNY\n4LVtxbS2GxboqB2lFDBndByFx06yu/Tsrok4E1r6LmaM4eXMQiYk9yM9NszqOEopN3DxyFj8BNbn\nlDl9W1r6LrajqIa8ijq+naE3PldKdYjsG8TUQZFsyHV+6esxfRdbmVVIcIAfV4yNtzqKUsqN3DN3\nFP1DnT/MVUvfhU42t/H69hIuGxNPmI/dG1Qp9fWGxbnmcK8e3nGh9bml1Da16qEdpZRltPRdaGVm\nESmRoUwdNMDqKEopH2VX6YvIpSKyT0TyReSuHp4PEpGXO5/fLCKpXZ4bKyKfiUiuiOwSkWDHxfcc\nR6oa+KygigWTkvQCFqWUZU5b+iJiAx4D5gAjgUUiMrLbarcA1caYNOBh4IHO1/oDy4HvG2NGAbOA\nFoel9yArMo/gJ3D1RB2br5Syjj17+lOAfGNMgTGmGVgBzOu2zjzg2c7Hq4DZ0rE7ewmw0xizA8AY\nU2WMaXNMdM/R3NrOyqxCLhweS0K/EKvjKKV8mD2lnwgUdvm5qHNZj+sYY1qBGiASGAoYEdkgIltF\n5Bc9bUBElohIlohkVVZWnulncHsbcss4WtfMddOSrY6ilPJx9pR+Twegu88Beqp1/IHzgGs7/32V\niMz+yorGPGmMyTDGZERHe999NJd/fpiBA0KYqfcIVUpZzJ7SLwK6jjFMArrfwv3LdTqP40cAxzqX\nf2iMOWqMaQDWARN7G9qT5FfUsvngMa6ZkqK3jFNKWc6e0s8E0kVkkIgEAguBtd3WWQss7nw8H9ho\nOu4IsAEYKyKhnV8G5wO7HRPdMyz//AgBNmGBzpuvlHIDp70i1xjTKiK30VHgNmCZMSZXRO4Fsowx\na4GlwPMikk/HHv7CztdWi8hf6fjiMMA6Y8ybTvosbqehuZXVW4uYMzpe746llHILdk3DYIxZR8eh\nma7LftPlcSOw4BSvXU7HsE2fs3Z7CbWNrVw7VU/gKqXcg16R6yTGGJZ9cpDhcWFM0StwlVJuQkvf\nSTblH2V/eR23nDdIr8BVSrkNLX0nWbbpIFF9g5g7PsHqKEop9SUtfSfIr6jj/X2VXD8thSB/m9Vx\nlFLqS1r6TvD0JwcJ9PfjWr0CVynlZrT0Hex4QzOrtxZx5fgEHaaplHI7WvoOtvzzwzS2tHPzeYOs\njqKUUl+hpe9ADc2tLN10kAuHxzA8LtzqOEop9RVa+g704uYjVDe08KML0qyOopRSPdLSd5DGljae\n+KiAc9MimZTS3+o4SinVIy19B1mZVUhlbRO3XZBudRSllDolLX0HaG5t518fHCAjpT/TBuuUC0op\n96Wl7wCvbi2ipKaR2y5M0ykXlFJuTUu/l042t/G3d/MYP7Af5w/VO2Mppdybln4vPf3pQcpONHL3\nnOG6l6+Ucnta+r1QXd/M4x8cYPbwGKYOjrQ6jlJKnZaWfi889n4+9U2t/HLOcKujKKWUXbT0z1Lh\nsQae++ww8yclMTQ2zOo4SillFy39s3T/+r2IwE8vHmp1FKWUspuW/ln4aH8lb+4s5UcXpBEfEWJ1\nHKWUspuW/hlqbGnj12tyGBzVh++dP9jqOEopdUb8rQ7gaf75wQEOVzXwwq1T9a5YSimPo3v6Z6Cg\nso5/fXCAeeMTODctyuo4Sil1xrT07dTWbrhr9S6C/P34f5ePsDqOUkqdFS19O/374wK2HDrGb+eO\nIiYs2Oo4Sil1VuwqfRG5VET2iUi+iNzVw/NBIvJy5/ObRSS12/PJIlInIj93TGzXyi2p4S9v72PO\n6Di+NTHR6jhKKXXWTlv6ImIDHgPmACOBRSIysttqtwDVxpg04GHggW7PPwy81fu4rtfY0sZPX95O\n/9BA7rtqjM6vo5TyaPbs6U8B8o0xBcaYZmAFMK/bOvOAZzsfrwJmS2c7isiVQAGQ65jIrnX/W3vZ\nX17Hg/PH0r9PoNVxlFKqV+wp/USgsMvPRZ3LelzHGNMK1ACRItIH+CXwu95Hdb0124t55tND3HRu\nKrOGxVgdRymles2e0u/peIaxc53fAQ8bY+q+dgMiS0QkS0SyKisr7YjkfHtKT/DL1TuZkjqA/71M\nR+sopbyDPRdnFQEDu/ycBJScYp0iEfEHIoBjwFRgvog8CPQD2kWk0RjzaNcXG2OeBJ4EyMjI6P6F\n4nI1DS187/lsIkICePTaCQTYdJCTUso72FP6mUC6iAwCioGFwDXd1lkLLAY+A+YDG40xBpjxxQoi\ncg9Q173w3U1LWzs/XrGN0pqTrFhyjg7PVEp5ldOWvjGmVURuAzYANmCZMSZXRO4Fsowxa4GlwPMi\nkk/HHv5CZ4Z2FmMMv34th4/2V3L/1WOYlNLf6khKKeVQds29Y4xZB6zrtuw3XR43AgtO8x73nEU+\nl/rnBwdYkVnIbReksXBKstVxlFLK4fRgdafXthXz5w37uHJ8AndeonPkK6W8k5Y+8O7ucn7+yg6m\nDR7AA/PH6gVYSimv5fOl/2n+UX744lZGJoTz7xsydLpkpZRX8+nS33qkmlufyyI1MpRnb5pCWHCA\n1ZGUUsqpfLb0d5ec4MZlW4gJC2L5LVN1igWllE/wydI/UFnH9Us30yfIn+W3TiUmXMfiK6V8g8+V\nfuGxBq57ajMi8MKtU0nqH2p1JKWUchmfKv2K2kauW7qZ+qZWnr9lKoOj+1odSSmlXMpnbox+vKGZ\n65/aQmVtE8tvncqI+HCrIymllMv5ROnXNbWy+OlMDlbV88yNk5mYrNMrKKV8k9cf3mlsaWPJc1nk\nFNfw6KIJTE+LsjqSUkpZxqtLv6Wtndte3ManB6p4aMFYLhkVZ3UkpZSylNeWvjGGu1/dxbt7yvn9\nvFFcNSHJ6khKKWU5ry39f2zMZ1V2EXfMTuf6c1KtjqOUUm7BK0v/1a1F/PWd/Vw9MZGfXJRudRyl\nlHIbXlf6nx44yi9X72T6kEjuv1pnzFRKqa68qvTzymv53vPZpEb24fHrJhHo71UfTymles1rWrGi\ntpEbn84kOMDG0zdNJiJEZ8xUSqnuvObirCCbjRHxYdwxe6jOp6OUUqfgNaUfERrAU4snWx1DKaXc\nmtcc3lFKKXV6WvpKKeVDtPSVUsqHaOkrpZQP0dJXSikfoqWvlFI+REtfKaV8iJa+Ukr5EDHGWJ3h\nv4hIJXC4F28RBRx1UBxP4Wuf2dc+L+hn9hW9+cwpxpjo063kdqXfWyKSZYzJsDqHK/naZ/a1zwv6\nmX2FKz6zHt5RSikfoqWvlFI+xBtL/0mrA1jA1z6zr31e0M/sK5z+mb3umL5SSqlT88Y9faWUUqfg\nNaUvIpeKyD4RyReRu6zO42wiMlBE3heRPSKSKyJ3WJ3JVUTEJiLbROQNq7O4goj0E5FVIrK38//3\nOVZncjYR+Wnnn+scEXlJRIKtzuRoIrJMRCpEJKfLsgEi8o6I5HX+u7+jt+sVpS8iNuAxYA4wElgk\nIiOtTeV0rcCdxpgRwDTgRz7wmb9wB7DH6hAu9Aiw3hgzHBiHl392EUkEbgcyjDGjARuw0NpUTvEM\ncGm3ZXcB7xlj0oH3On92KK8ofWAKkG+MKTDGNAMrgHkWZ3IqY0ypMWZr5+NaOoog0dpUziciScDl\nwFNWZ3EFEQkHZgJLAYwxzcaY49amcgl/IERE/IFQoMTiPA5njPkIONZt8Tzg2c7HzwJXOnq73lL6\niUBhl5+L8IEC/IKIpAITgM3WJnGJvwG/ANqtDuIig4FK4OnOQ1pPiUgfq0M5kzGmGHgIOAKUAjXG\nmLetTeUyscaYUujYsQNiHL0Bbyl96WGZTwxLEpG+wGrgJ8aYE1bncSYRuQKoMMZkW53FhfyBicDj\nxpgJQD1O+JXfnXQex54HDAISgD4icp21qbyHt5R+ETCwy89JeOGvg92JSAAdhf+CMeZVq/O4wLnA\nXBE5RMchvAtFZLm1kZyuCCgyxnzxW9wqOr4EvNlFwEFjTKUxpgV4FZhucSZXKReReIDOf1c4egPe\nUvqZQLqIDBKRQDpO+qy1OJNTiYjQcZx3jzHmr1bncQVjzN3GmCRjTCod/483GmO8eg/QGFMGFIrI\nsM5Fs4HdFkZyhSPANBEJ7fxzPhsvP3ndxVpgcefjxcAaR2/A39FvaAVjTKuI3AZsoONM/zJjTK7F\nsZztXOB6YJeIbO9c9r/GmHUWZlLO8WPghc4dmgLgJovzOJUxZrOIrAK20jFKbRteeHWuiLwEzAKi\nRKQI+C1wP7BSRG6h48tvgcO3q1fkKqWU7/CWwztKKaXsoKWvlFI+REtfKaV8iJa+Ukr5EC19pZTy\nIVr6SinlQ7T0lVLKh2jpK6WUD/n/x9+suzfkB9sAAAAASUVORK5CYII=\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f0a9a6b0ba8>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from scipy.stats import gaussian_kde\n",
"density = gaussian_kde(ar)\n",
"xs = np.linspace(0,10,200)\n",
"density.covariance_factor = lambda : .25\n",
"density._compute_covariance()\n",
"pp.plot(xs,density(xs))\n",
"pp.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment