Skip to content

Instantly share code, notes, and snippets.

@highsmallxu
Created July 10, 2022 14:07
Show Gist options
  • Select an option

  • Save highsmallxu/6e745b476f1f835aa68e6ed6786a9758 to your computer and use it in GitHub Desktop.

Select an option

Save highsmallxu/6e745b476f1f835aa68e6ed6786a9758 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Fontconfig warning: ignoring UTF-8: not a valid region tag\n"
]
}
],
"source": [
"import pandas as pd\n",
"import dask.dataframe as dd\n",
"import datatable as dt\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 53.5 ms, sys: 15 ms, total: 68.5 ms\n",
"Wall time: 67.1 ms\n"
]
},
{
"data": {
"text/plain": [
"pandas.core.frame.DataFrame"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"df = pd.read_csv(\"data.csv\")\n",
"type(df)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 8.53 ms, sys: 4.39 ms, total: 12.9 ms\n",
"Wall time: 11.3 ms\n"
]
},
{
"data": {
"text/plain": [
"dask.dataframe.core.DataFrame"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"df = dd.read_csv(\"data.csv\")\n",
"type(df)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 289 ms, sys: 26 ms, total: 315 ms\n",
"Wall time: 39.7 ms\n"
]
},
{
"data": {
"text/plain": [
"datatable.Frame"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%%time\n",
"df = dt.fread(\"data.csv\")\n",
"type(df)"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAFPCAYAAACVnh2uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAclUlEQVR4nO3deZxlZX3n8c+XxaCAsrU9LEq7IAaNYqY1Go0LKC6oEKMMhpg2ISFmXEcdJcY1MRkcY1zGaAY3WuMCIgQERyEobjGNjSAKDbIHCA2lsrqDv/njPJUuyqru6qZPPUX35/163Vfds//uubfu9z7POffcVBWSJGl+bdG7AEmSNkcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAuktJcmaSP9nAZf88yXVJbk2y88aubR3bfmKSq6cMn5/kifNcw61J7r8R1vPCJF/bGDVtbEn2TnJukluSvCzJPyZ5Q5t2h+dgA9b91CT/vNGKHUGSdyT58951aG4MYM1Jkscl+dckNyX5YZKvJ3lk77rmKsnWwN8DB1TVdlX1g571VNVDqurMed7mdlV12Xxus4PXAF+qqu2r6j1V9aKq+uuNtO6/AY6aPjLJE5JUkrfOtmD7wHXrlNttST7bpi1py58zbZldkvw8yRVTxl2R5CdtHTckOTXJfaYs9nfA65Lc7c4+WI3PANY6JbkncArwf4CdgN2BtwA/61nXeloMbAOcP5eZk2w1bjkayZ7M8TleH+3D5r2q6t+mjd8aeDewYm3Ltw9c21XVdsD2wFXAp6fNdo8kD50y/PvA5TOs7lltPbsC1zH8X05u51rgQuDZc3pg6soA1lw8CKCqPllVt1fVT6rqtKo6D/6zS/LrSd7bWsgXJtl/cuEk90ryoSTXJrkmyVuTbDll+h8nWdU+0X8hyZ5Tpj2lre+mJO8FMluRSX4tybuS/Ee7vauNexBwUZvtxiRfnGHZyVbI4Un+HfjiHGp7d5Krktyc5OwkvzNl2t2THNOWuwB45LTtXZHkye3+m5Mcl+Sjrev0/CRLp8z7m0nOadM+neTY2VpbSR6Y5Mttf30/ybFTplWSB7b7xyT5h9aCuiXJiiQPmDLvAUkuaut5X1vnjF3/SR6c5PTWM3JRkkPW8hztlOQj7fm5Ia1Lt7X2TklyY1vPV5NskeS1SY6fto53J3nPDOv+IvAk4L2thfig9jhn21e7JflMkokklyd52Wx1A08HvjzD+FcBpzGE3lw9HtgF+My08R8Dlk0Z/kPgo7OtpKp+ChwP7DNt0pnAgetRjzoxgDUX3wNuT7I8ydOT7DjDPL8FXMrwxvIm4IQkO7VpxwC3AQ8EHgEcAPwJQJKDgNcBzwEWAV8FPtmm7QKcALy+rfdS4LFrqfMvgUcD+wIPBx4FvL6qvgc8pM2zQ1Xtt5Z1PAH4deCpa6ut+Wbb1k7AJ4BPJ9mmTXsT8IB2eyp3fGOdybOBTwE7ACcD7wXI0JV4IsM+3Klt/3fXsp6/ZgiEHYE9mNI6msGhDD0ZOwKXMHSxTu7344G/AHZm+PDy2zOtIMm2wOkMj//ebZ3vSzI9FCZ9DLgHw/Nxb+CdbfyrgKsZ9vNihv1eDPvkGUm2b9vbEjikbe8O2vP6VeAlrbX5vdkeeJItgM8C32bo0dkfeEWSp86yyG+w5kPc5Dr2BP4Y+KvZtjOLZcBnqupH08b/E3Boki3b/tuOtbSsk9wD+G/Av02btIrh9a8FzgDWOlXVzcDjGN4QPwBMJDk5yeIps10PvKuqflFVxzK8WR3Y5nkG8Iqq+lFVXc/wpntoW+5FwP+qqlVVdRvwt8C+7c3tGcD5VXV8Vf0CeBewei2lHgb8VVVdX1UTDOHygvV8uG9udf5kHbVRVf9UVT+oqtuq6h3ArwF7t/UcAvxNVf2wqq4CfqXFNs3XqupzVXU7Q0hNvoE+GtgKeE/btycAZ61lPb9g6Ibdrap+WlVrO1nqxKo6qz22jzN8mIA1+/2ENu09zL7fnwlcUVUfafvhHIaW3fOmz5hkV4aW5Iuq6ob2eCZblb9g6FLds43/ag2uBL7Fmg8d+wE/nt4VvAEeCSyqqr+qqp+3Y+MfYM3rcrodgFumjXsP8IaqunWuG22h+VyGD1TTXc3wf/Nkhtbvx2ZZzT8nuRG4CXgK8PZp029p9WqBM4A1Jy2EXlhVewAPBXZjCMRJ19Qdf9njyjbPnsDWwLWte/FG4P8ytH5o0989ZdoPGbqZd2/LXzWlhpo6PIPd2nan17A+pq5/bbWR5NWte/qmNv1eDC31yVqmrmtqXTOZGnA/BrbJcBx6N351365tH7ym1XhW68r+4/XY5nYz1d62PdvZw3sCvzW5j9p+OAz4LzPMex/gh1V1wwzT3s7QCj8tyWVJjpwy7RPA89v932eG1u8G2BPYbVrdr2Nofc/kBoZjtwAkeRawffuwuT6ew/A6mqk7G4Yu5xcyPN7ZAvjgqtqB4ZyGlwBfTjJ1f28P3LiedakDA1jrraouZPgEP/WEkd2TTD0+e1/gPxjeyH8G7FJVO7TbPatqskv4KuDPpkzboaruXlX/ClzL8KYNQFv/1DM+p/sPhjfW6TWs18Obcn/W2jIc730NQ0t3x/aGeBNrjlHfofZWy4a4ll/dt7Pug6paXVV/WlW7AX/G0B38wA3Y5h6TA23be8wy71XAl6fto+2qaqavwlwF7JRkhxnqvqWqXlVV92fojn9l1pxH8GngiUn2YGgJb4wAvgq4fFrd21fVM2aZ/zzauRDN/sDSJKuTrGboCn5FkpPWsd1lwEenfaCa6jMMx28vq6p/X9uK2vkYJwC3M/RQTfp1hq51LXAGsNapnWTzqvYGSIavPTyfOx57ujfwsiRbJ3kew5vA59pZmacB70hyz3ZizQOSPKEt94/AXyR5SFv3vdryAKcCD0nynNYafBkzt6wmfRJ4fZJF7TjmGxmOq22otdW2PcNx7QlgqyRvBO45Zdnj2rI7tv320g2s4RsMb7AvSbJVOy79qNlmTvK8yeeJodVWwC/Xc5unAr+R5OC231/M7Pv9FOBBSV7Qnvutkzwyya9Pn7G9Fv4fw4eCHdu8j291PzPDCWRh+CBz+2Td7XDCmcBHGEJz1Xo+npmcBdyS4SSvu7fjrg/N7F+t+xzD+QGT3sAQyPu228kMXdh/NNsG2/PyJGD5bPO048L70c6RWJsMDmI4hj91nzyBYT9rgTOANRe3MJxktSLJjxiC97sMJ85MWgHsBXyf4WSe59aa79r+IXA34AKGUDie4XgfVXUi8DbgU0lubut9epv2fYZjiUcBP2jr//pa6nwrsJKhtfIdhmOHs343c13WVhvwBeDzDCeoXQn8lDt2Db+ljb+c4QPIbN2J66rh5wzdloczdCv+AUPozfYVsEcyPE+3MoTCy2s9v/s7Zb//b4b9vg/Dfv2VbVbVLQwn1R3K0NuwmmGf/dosq38Bw/HeCxnOG3hFG78X8C/ArQwfOt5XVV+astwnGI6NbozWL+1Y+zMZwvNyhtftBxkOI8w0/7eAm5L8Vhu+pfU2rK6q1cBPgB9V1Q8BkhyWZPrXoV4AfKOqLl1HbSvXMc9n2/N7M8P/2rKqOr9td1eG5+uf17YNLQyZvSdEmpskLwT+pKoet655declWQH8Y1V9ZJ62twXDMeDDpoXiZiXJAcB/r6qDe9cymyTvAC6tqvf1rkXr5sUGpAWudddfxNBKOwx4GEPre8xtPpWhV+MnwP9kOLZ9Z888vkurqtMYejMWrKp61brn0kJhAEsL394Mx5S3BS5j6N6/duRtPoahu3fy0MHBNXw1S9JGYhe0JEkdjHYSVtb8Ksnk7eYkr8hwKbrTk1zc/s50VSVJkjZp89ICznD5uGsYzqR9McOX8Y9qX7bfsapeO3oRkiQtIPMVwAcAb6qqxya5CHhiVV3bTpk/s6r2Xtvyu+yySy1ZsmT0OiVJ2pjOPvvs71fVopmmzddJWIey5iL2i6ecQLKa2S/99p+WLFnCypUrx6pNkqRRJJn1MrSjX4gjw6+5PJtf/e3LyWvMztgET3JEkpVJVk5MTIxcpSRJ82s+roT1dOBbVXVdG76udT1PXrXl+pkWqqqjq2ppVS1dtGjG1rskSXdZ8xHAz+eOv6F6Mmt+G3UZsK6Ll0uStMkZNYAz/Fj3Uxh+VH3SUcBTklzMcG3Xo8asQZKkhWjUk7DaL3vsPG3cDxh+ykuSpM2Wv4YkSVIHBrAkSR0YwJIkdWAAS5LUgQEsSVIHBrAkSR0YwJIkdTBfP8awYCw58tTeJehOuuKoA3uXIEl3mi1gSZI6MIAlSerAAJYkqQMDWJKkDgxgSZI6MIAlSerAAJYkqQMDWJKkDgxgSZI6MIAlSerAAJYkqQMDWJKkDgxgSZI6MIAlSerAAJYkqQMDWJKkDgxgSZI6MIAlSerAAJYkqQMDWJKkDgxgSZI6MIAlSerAAJYkqQMDWJKkDkYN4CQ7JDk+yYVJViV5TJKdkpye5OL2d8cxa5AkaSEauwX8buDzVfVg4OHAKuBI4Iyq2gs4ow1LkrRZGS2Ak9wLeDzwIYCq+nlV3QgcBCxvsy0HDh6rBkmSFqoxW8D3AyaAjyQ5J8kHk2wLLK6qa9s8q4HFI9YgSdKCNGYAbwX8JvD+qnoE8COmdTdXVQE108JJjkiyMsnKiYmJEcuUJGn+jRnAVwNXV9WKNnw8QyBfl2RXgPb3+pkWrqqjq2ppVS1dtGjRiGVKkjT/RgvgqloNXJVk7zZqf+AC4GRgWRu3DDhprBokSVqothp5/S8FPp7kbsBlwB8xhP5xSQ4HrgQOGbkGSZIWnFEDuKrOBZbOMGn/MbcrSdJC55WwJEnqwACWJKkDA1iSpA4MYEmSOjCAJUnqwACWJKkDA1iSpA4MYEmSOjCAJUnqwACWJKkDA1iSpA4MYEmSOjCAJUnqwACWJKkDA1iSpA4MYEmSOjCAJUnqwACWJKkDA1iSpA4MYEmSOjCAJUnqwACWJKkDA1iSpA4MYEmSOjCAJUnqwACWJKkDA1iSpA4MYEmSOjCAJUnqwACWJKkDA1iSpA4MYEmSOthqzJUnuQK4BbgduK2qlibZCTgWWAJcARxSVTeMWYckSQvNfLSAn1RV+1bV0jZ8JHBGVe0FnNGGJUnarPTogj4IWN7uLwcO7lCDJEldjR3ABZyW5OwkR7Rxi6vq2nZ/NbB4pgWTHJFkZZKVExMTI5cpSdL8GvUYMPC4qromyb2B05NcOHViVVWSmmnBqjoaOBpg6dKlM84jSdJd1agt4Kq6pv29HjgReBRwXZJdAdrf68esQZKkhWi0AE6ybZLtJ+8DBwDfBU4GlrXZlgEnjVWDJEkL1Zhd0IuBE5NMbucTVfX5JN8EjktyOHAlcMiINUiStCCNFsBVdRnw8BnG/wDYf6ztSpJ0V+CVsCRJ6sAAliSpAwNYkqQODGBJkjowgCVJ6sAAliSpAwNYkqQODGBJkjowgCVJ6sAAliSpAwNYkqQODGBJkjowgCVJ6sAAliSpAwNYkqQODGBJkjowgCVJ6sAAliSpAwNYkqQODGBJkjowgCVJ6sAAliSpAwNYkqQODGBJkjowgCVJ6sAAliSpAwNYkqQODGBJkjowgCVJ6sAAliSpAwNYkqQODGBJkjoYPYCTbJnknCSntOH7JVmR5JIkxya529g1SJK00MxHC/jlwKopw28D3llVDwRuAA6fhxokSVpQRg3gJHsABwIfbMMB9gOOb7MsBw4eswZJkhaisVvA7wJeA/yyDe8M3FhVt7Xhq4HdZ1owyRFJViZZOTExMXKZkiTNr9ECOMkzgeur6uwNWb6qjq6qpVW1dNGiRRu5OkmS+tpqxHU/Fnh2kmcA2wD3BN4N7JBkq9YK3gO4ZsQaJGleLTny1N4l6E644qgD521bo7WAq+ovqmqPqloCHAp8saoOA74EPLfNtgw4aawaJElaqHp8D/i1wCuTXMJwTPhDHWqQJKmrMbug/1NVnQmc2e5fBjxqPrYrSdJC5ZWwJEnqwACWJKkDA1iSpA4MYEmSOjCAJUnqwACWJKkDA1iSpA4MYEmSOjCAJUnqYE4BnGTbJFu0+w9K8uwkW49bmiRJm665toC/AmyTZHfgNOAFwDFjFSVJ0qZurgGcqvox8BzgfVX1POAh45UlSdKmbc4BnOQxwGHA5I9dbjlOSZIkbfrmGsAvB44ETqiq85PcD/jieGVJkrRpm+vPEf4Y+CXw/CR/AASo0aqSJGkTN9cA/jjwauC7DEEsSZLuhLkG8ERVfXbUSiRJ2ozMNYDflOSDwBnAzyZHVtUJo1QlSdImbq4B/EfAg4GtWdMFXYABLEnSBphrAD+yqvYetRJJkjYjc/0a0r8m2WfUSiRJ2ozMtQX8aODcJJczHAMOUFX1sNEqkyRpEzbXAH7aqFVIkrSZmVMAV9WVYxciSdLmxN8DliSpAwNYkqQODGBJkjowgCVJ6sAAliSpAwNYkqQODGBJkjowgCVJ6mC0AE6yTZKzknw7yflJ3tLG3y/JiiSXJDk2yd3GqkGSpIVqzBbwz4D9qurhwL7A05I8Gngb8M6qeiBwA3D4iDVIkrQgjRbANbi1DW7dbgXsBxzfxi8HDh6rBkmSFqpRjwEn2TLJucD1wOnApcCNVXVbm+VqYPdZlj0iycokKycmJsYsU5KkeTdqAFfV7VW1L7AH8Cjgweux7NFVtbSqli5atGisEiVJ6mJezoKuqhuBLwGPAXZIMvkrTHsA18xHDZIkLSRjngW9KMkO7f7dgacAqxiC+LlttmXASWPVIEnSQjWn3wPeQLsCy5NsyRD0x1XVKUkuAD6V5K3AOcCHRqxBkqQFabQArqrzgEfMMP4yhuPBkiRttrwSliRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktTBaAGc5D5JvpTkgiTnJ3l5G79TktOTXNz+7jhWDZIkLVRjtoBvA15VVfsAjwZenGQf4EjgjKraCzijDUuStFkZLYCr6tqq+la7fwuwCtgdOAhY3mZbDhw8Vg2SJC1U83IMOMkS4BHACmBxVV3bJq0GFs9HDZIkLSSjB3CS7YDPAK+oqpunTquqAmqW5Y5IsjLJyomJibHLlCRpXo0awEm2Zgjfj1fVCW30dUl2bdN3Ba6fadmqOrqqllbV0kWLFo1ZpiRJ827Ms6ADfAhYVVV/P2XSycCydn8ZcNJYNUiStFBtNeK6Hwu8APhOknPbuNcBRwHHJTkcuBI4ZMQaJElakEYL4Kr6GpBZJu8/1nYlSbor8EpYkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgdb9S5AWuiWHHlq7xJ0J1xx1IG9S5BmNFoLOMmHk1yf5LtTxu2U5PQkF7e/O461fUmSFrIxu6CPAZ42bdyRwBlVtRdwRhuWJGmzM1oAV9VXgB9OG30QsLzdXw4cPNb2JUlayOb7JKzFVXVtu78aWDzP25ckaUHodhZ0VRVQs01PckSSlUlWTkxMzGNlkiSNb74D+LokuwK0v9fPNmNVHV1VS6tq6aJFi+atQEmS5sN8B/DJwLJ2fxlw0jxvX5KkBWHMryF9EvgGsHeSq5McDhwFPCXJxcCT27AkSZud0S7EUVXPn2XS/mNtU5KkuwovRSlJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktSBASxJUgcGsCRJHRjAkiR1YABLktRBlwBO8rQkFyW5JMmRPWqQJKmneQ/gJFsC/wA8HdgHeH6Sfea7DkmSeurRAn4UcElVXVZVPwc+BRzUoQ5JkrrpEcC7A1dNGb66jZMkabOxVe8CZpPkCOCINnhrkot61nMXswvw/d5FjCVv613BJsfXi9aHr5f1s+dsE3oE8DXAfaYM79HG3UFVHQ0cPV9FbUqSrKyqpb3r0F2DrxetD18vG0+PLuhvAnsluV+SuwGHAid3qEOSpG7mvQVcVbcleQnwBWBL4MNVdf581yFJUk9djgFX1eeAz/XY9mbCrnutD18vWh++XjaSVFXvGiRJ2ux4KUpJkjowgDcDSc5M4lmLm7Ekb07y6vVc5oVJ3jtWTZo/63r+kxw8lysSrsd8xyR57gzjn5jklHVXvHkwgCVJBzNcGnhjzac5MIAXkCRLklyY5ONJViU5Psk9krwxyTeTfDfJ0UnS5j8zyduSnJXke0l+p42/e5JPtXWcCNx9yjben2RlkvOTvGXK+KOSXJDkvCR/N+8PXhtdkr9sr4uvAXu3cX/aXkvfTvKZJPdo45/XXl/fTvKVGdZ1YJJvJNllnh+GNtBcn/8kvw08G3h7knOTPODOzDelhCe395rvJXnmDPVtm+TD7f3rnCSb3yWJq8rbArkBS4ACHtuGPwy8GthpyjwfA57V7p8JvKPdfwbwL+3+Kxm+3gXwMOA2YGkb3qn93bIt/zBgZ+Ai1pyUt0PvfeHtTr+W/ivwHeAewD2BS9praecp87wVeGm7/x1g96nPP/BC4L3A7wJfBXbs/bi8jfb8HwM8d8q0jTHf5xkaeXsxXHJ4G+CJwCltnr8F/mDyNQd8D9i2976bz5st4IXnqqr6erv/T8DjgCclWZHkO8B+wEOmzH9C+3s2Q4ADPL4tS1WdB5w3Zf5DknwLOKetZx/gJuCnwIeSPAf48cZ+UJp3vwOcWFU/rqqbWXOxm4cm+Wp7LR3GmtfS14Fjkvwpw4ezSfsBrwUOrKob5ql23Xnr+/xPtzHmO66qfllVFwOXAQ+etuwBwJFJzmVoDGwD3He9HuVdnAG88Ez/XlgB72P41PkbwAcYXqiTftb+3s46vted5H4Mn4L3r6qHAacC21TVbQy/UnU88EyGT67aNB0DvKS9lt5Cey1V1YuA1zNcJvbsJDu3+S8FtgceNP+lagTHMMPzP9J8M72XTRXg96pq33a7b1WtmusD2RQYwAvPfZM8pt3/feBr7f73k2wH/MqZhTP4SluWJA9l6GaGoSvqR8BNSRYz/CYzbb33quECKf8DePjGeCDq6ivAwe18gO2BZ7Xx2wPXJtmaocUCQJIHVNWKqnojMMGa67VfCfwe8NEks7WCtPCs1/MP3NKmsZHmA3heki2SPAC4P8Nhrqm+ALx0yjktj1jfB3lXt2B/DWkzdhHw4iQfBi4A3g/sCHwXWM1wLe11eT/wkSSrgFUM3dNU1beTnANcyPCTkJNd3dsDJyXZhuFT6Ss33sNRD1X1rSTHAt8GrmfN6+YNwAqGkF3BmjfTtyfZi+H5P6Mtt29b14VJDgM+neRZVXXpvD0QbZANeP4/BXwgycsYPuTf2fkA/h04i+GD/4uq6qctayf9NfAu4LwkWwCXM/TAbTa8EtYCkmQJwwkKD+1diyRpXHZBS5LUgS1gSZI6sAUsSVIHBrAkSR0YwJIkdWAAS5LUgQEsSVIHBrAkSR38f+gzt3enJcUdAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.add_axes([0,0,1,1])\n",
"ax.set_ylabel('ms')\n",
"ax.set_title('Speed of reading single csv file (4.7MB)')\n",
"lib = ['pandas', 'dask', 'datatable']\n",
"perf = [67.1,11.3,39.7]\n",
"ax.bar(lib,perf)\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.0 64-bit ('3.9.0')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.0"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "285b4027c56aef32f9cffa7b798ac9ff266d7923f973d093da0977b0f49ab1ea"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment