Skip to content

Instantly share code, notes, and snippets.

@javipus
Last active July 31, 2023 07:11
Show Gist options
  • Select an option

  • Save javipus/eeef7b961f068627e21b142ae4ba97cf to your computer and use it in GitHub Desktop.

Select an option

Save javipus/eeef7b961f068627e21b142ae4ba97cf to your computer and use it in GitHub Desktop.
Price oracle manipulation strategies
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
},
"orig_nbformat": 2,
"kernelspec": {
"name": "python3",
"display_name": "Python 3.9.2 64-bit ('w3': conda)",
"metadata": {
"interpreter": {
"hash": "075c0b208ffdee870ea823e15dc88fe45432badc47b9567494661e3817502e18"
}
}
}
},
"nbformat": 4,
"nbformat_minor": 2,
"cells": [
{
"source": [
"This notebook explores how easy it is for traders to manipulate different crypto price feeds. We will look at\n",
"\n",
"1. Uniswap\n",
"2. Chainlink\n",
"3. Compound's Open Price Feed\n",
"\n",
"See [this GitHub issue](https://github.com/ConsenSys/defi-score/issues/49) for background and motivation."
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"## Uniswap"
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"Uniswap has two main actors:\n",
"\n",
"1. Traders\n",
"2. Liquidity providers\n",
"\n",
"Each role gives rise to a price-manipulation strategy. We explore them in turn."
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"### Traders"
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"A trader wishing to exchange `X` tokens for `Y` tokens may go to a Uniswap pool labeled `X/Y`. Assume the current state of the pool is `x*y = k`, i.e. there are `x` tokens of type `X` and `y` tokens of type `Y` in the pool. Therefore, the marginal price of an `X` token is `y/x`.\n",
"\n",
"Let's say the trader wants to increase or decrease that marginal price by a fixed percentage and is willing to trade as many tokens as needed. Assume without loss of generality that they care about the price of `X` relative to `Y`. This means that\n",
"\n",
"If they want it to increase, they need to add `Y` tokens to the pool. The amount of tokens `dy` needed to reach their target price `p_target` satisfies:\n",
"\n",
"`(y+dy)*(y-(1+f)*dy) = k*p_target`\n",
"\n",
"where `f` is the pool fee awarded to liquidity providers. If they want to decrease it, they need to add `X` tokens to the pool. The amount of tokens `dx` needed to reach their target price `p_target` satisfies:\n",
"\n",
"`(x+dx)*(x-(1+f)*dx) = k/p_target`"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import requests\n",
"\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams['figure.figsize'] = 16, 9\n",
"import seaborn as sns\n",
"import plotly.graph_objects as go\n",
"from ipywidgets import (\n",
" interact,\n",
" interact_manual,\n",
" widgets\n",
")\n",
"\n",
"from utils import (\n",
" tokens, \n",
" get_reserves\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"class EmptyPoolException(Exception):\n",
" pass\n",
"\n",
"class Pool:\n",
"\n",
" def __init__(self, fee=0, **kwds):\n",
" self._kwds = kwds or {'x': 0, 'y': 0}\n",
" assert len(self._kwds) == 2, f\"Pools must contain exactly 2 tokens, but {len(self._kwds)} were provided.\"\n",
" self.balance = self._kwds\n",
" self._ids = list(self.balance.keys())\n",
" # self._qs = list(self._kwds.values())\n",
" self.x_id, self.y_id = self._ids\n",
" self.fee = fee\n",
"\n",
" def trade(self, _id, d):\n",
" \"\"\"Trade `d` tokens of type `_id`.\"\"\"\n",
" if _id == self.x_id:\n",
" dy = (1 - self.fee) * self.y * d / (self.x + d)\n",
" self.x += d\n",
" self.y -= dy\n",
" return dy\n",
" if _id == self.y_id:\n",
" dx = (1 - self.fee) * self.x * d / (self.y + d)\n",
" self.y += d\n",
" self.x -= dx\n",
" return dx\n",
" raise ValueError(f\"({self.x_id},{self.y_id})-pool has no token {_id}\")\n",
"\n",
" def sell(self, _id, d):\n",
" return self.trade(_id, d)\n",
"\n",
" def buy(self, _id, d):\n",
" return self.trade(self.opp(_id), self.price(_id, d))\n",
"\n",
" def provide(self, **kwds):\n",
" \"\"\"Provide liquidity to the pool.\"\"\"\n",
" k0 = self.k\n",
" for k, v in kwds.items():\n",
" self.balance[k] += v\n",
" return (self.k - k0)\n",
"\n",
" def marginal_price(self, _id):\n",
" \"\"\"Marginal price is the hypothetical price of an infinitesimally small trade. It's always equal to the ratio of tokens of each type held in the pool.\"\"\"\n",
" if self.x == self.y == 0:\n",
" raise EmptyPoolException(\"The pool is empty, so marginal prices are ill-defined!\")\n",
" if _id == self.x_id:\n",
" return self.y / self.x if self.x > 0 else inf\n",
" if _id == self.y_id:\n",
" return self.x / self.y if self.y > 0 else inf\n",
" raise ValueError(f\"({self.x_id},{self.y_id})-pool has no token {_id}\")\n",
"\n",
" def price(self, _id, d):\n",
" \"\"\"Actual price paid by trader spending `d` tokens of type `_id` in the pool.\"\"\"\n",
" if d == 0: return 0\n",
" # Create new pool so state in the current one doesn't change\n",
" _pool = self.__class__(fee=self.fee, **self.balance)\n",
" return d / _pool.trade(_id, d) if _pool.trade(_id, d) > 0 else inf\n",
"\n",
" @property\n",
" def x(self):\n",
" return self.balance[self.x_id]\n",
"\n",
" @property\n",
" def y(self):\n",
" return self.balance[self.y_id]\n",
"\n",
" @property\n",
" def k(self):\n",
" return self.x * self.y\n",
"\n",
" def opp(self, _id):\n",
" \"\"\"Returns the name of the opposite token.\"\"\"\n",
" return self.x_id if _id == self.y_id else self.y_id\n",
"\n",
" def __repr__(self):\n",
" return f\"Pool({self.x_id}={self.x:.2f}, {self.y_id}={self.y:.2f}, f={100*self.fee:.2f}%)\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"sqrt = np.sqrt\n",
"inf = np.inf\n",
"\n",
"def check_trading_manipulation(pool, target_marginal_price, _id):\n",
" \"\"\"Checks the trading manipulation works as intended. Final price should be equal to target price.\"\"\"\n",
" current_marginal_price = pool.marginal_price(_id)\n",
" print(f\"Initial price: {current_marginal_price:.3f}\")\n",
"\n",
" spend_id, dz = cost_trading_manipulation(pool, target_marginal_price, _id)\n",
" du = pool.provide(spend_id, dz)\n",
"\n",
" print(f\"Target price: {target_marginal_price:.3f}\")\n",
" print(f\"Final price: {pool.marginal_price(_id):.3f}\")\n",
" print(f\"Cost: {dz:.3f} {spend_id}\")\n",
" print(f\"Received: {du:.3f} {pool.opp(spend_id)}\")\n",
"\n",
"def cost_trading_manipulation(pool, target_marginal_price, _id):\n",
" \"\"\"\n",
" Calculate the cost of bringing a Uniswap liquidity pool to the desired `target_marginal_price` by trading a large amount of tokens.\n",
" @param pool : Pool object.\n",
" @param target_marginal_price : Desired token ratio at the end of the trade.\n",
" @param _id : Token id the price refers to, e.g. if _id is 'x' and the other token in the pool is 'y', the marginal price is y/x.\n",
" @return tuple(id of token added to the pool, amount of said token added to the pool)\n",
" \"\"\"\n",
" f = pool.fee\n",
"\n",
" if target_marginal_price <= pool.marginal_price(_id):\n",
" spend_id = _id\n",
" p = 1/target_marginal_price\n",
" else:\n",
" spend_id = pool.opp(_id)\n",
" p = target_marginal_price\n",
"\n",
" z = pool.balance[spend_id]\n",
" u = pool.balance[pool.opp(spend_id)]\n",
"\n",
" # I hardcoded this formula, but it can be reproduced with the following snippet\n",
" # ```\n",
" # from sympy import symbols, solve\n",
" # z, dz, u, du, f, p = symbols('z dz u du f p')\n",
" # du = solve((z+dz)*(u-du)-u*z, du)[0]\n",
" # print(solve((z+dz)-p*(u-(1-f)*du), dz))\n",
" # ```\n",
" cost = f*p*u/2 - z + sqrt(p*u*(f**2*p*u - 4*f*z + 4*z))/2\n",
"\n",
" return spend_id, cost"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def check_lp_manipulation(pool, target_marginal_price, _id):\n",
" \"\"\"Checks LP manipulation works as intended. Final price should be equal to target price.\"\"\"\n",
" current_marginal_price = pool.marginal_price(_id)\n",
" print(f\"Initial price: {current_marginal_price:.3f}\")\n",
"\n",
" spend_id, dz = cost_lp_manipulation(pool, target_marginal_price, _id)\n",
" dk = pool.provide(**{spend_id: dz})\n",
"\n",
" print(f\"Target price: {target_marginal_price:.3f}\")\n",
" print(f\"Final price: {pool.marginal_price(_id):.3f}\")\n",
" print(f\"Cost: {dz:.3f} {spend_id}\")\n",
" print(f\"Received: {dk:.3f} {pool.x_id}/{pool.y_id}\")\n",
"\n",
"def cost_lp_manipulation(pool, target_marginal_price, _id):\n",
" \"\"\"\n",
" Calculate the cost of bringing a Uniswap liquidity pool to the desired `target_marginal_price` by providing liquidity.\n",
" @param pool : Pool object.\n",
" @param target_marginal_price : Desired token ratio at the end of the trade.\n",
" @param _id : Token id the price refers to, e.g. if _id is 'x' and the other token in the pool is 'y', the marginal price is y/x.\n",
" @return tuple(id of token added to the pool, amount of said token added to the pool)\n",
" \"\"\"\n",
" if target_marginal_price <= pool.marginal_price(_id):\n",
" spend_id = _id\n",
" p = 1/target_marginal_price\n",
" else:\n",
" spend_id = pool.opp(_id)\n",
" p = target_marginal_price\n",
"\n",
" z = pool.balance[spend_id]\n",
" u = pool.balance[pool.opp(spend_id)]\n",
" \n",
" return spend_id, p*u-z"
]
},
{
"source": [
"### Using real data"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"def get_pool(token0, token1, fee=.3/100):\n",
" \"\"\"Get pool reserves on Uniswap and create a Pool object.\"\"\"\n",
" try:\n",
" with open('reserves.json', 'r') as f:\n",
" reserves = json.load(f)\n",
" if f'{token0}/{token1}' in reserves:\n",
" reserve = reserves[f'{token0}/{token1}']\n",
" elif f'{token1}/{token0}' in reserves:\n",
" reserve = reserves[f'{token1}/{token0}']\n",
" else:\n",
" raise KeyError(\"Pool not in file\")\n",
" except:\n",
" reserve = get_reserves(token0, token1)\n",
" \n",
" pool = Pool(**reserve, fee=fee)\n",
" return pool\n",
"\n",
"def get_parametric_manipulation(token0, token1, manipulation, fee=.3/100, dps=np.logspace(-1, 1, 101)):\n",
" \"\"\"Calculate cost of manipulation for different % changes in price.\"\"\"\n",
" pool = get_pool(token0, token1, fee)\n",
" p0 = pool.marginal_price(token0)\n",
" manipulation_fn = {'trading': cost_trading_manipulation, 'lp': cost_lp_manipulation}[manipulation]\n",
" costs = np.array([manipulation_fn(pool, dp*p0, token0) for dp in dps])\n",
" d = pd.DataFrame([100*(dps-1), costs[:,0], costs[:,1]]).T\n",
" # cols = f'{token0}/{token1} [% change]', 'Spend token', 'Cost'\n",
" cols = f'Price change [%]', 'Spend token', 'Cost'\n",
" d.columns = cols\n",
" d[f'Cost / {token1}'] = d.apply(lambda row: row['Cost'].astype(float) * (1 if row['Spend token']==token1 else p0), axis=1)\n",
" d['Manipulation'] = manipulation\n",
" d['Pool'] = f'{token0}/{token1}'\n",
" return d\n",
"\n",
"def plot_manipulation(token0, token1, manipulation, fee=.3/100, dps=np.logspace(-1, 1, 101), ax=None):\n",
" d = get_parametric_manipulation(token0, token1, manipulation, fee, dps)\n",
" cols = d.columns\n",
" ax = sns.lineplot(data=d, x=cols[0], y=cols[-1], ax=ax)\n",
" return ax\n",
"\n",
"def compare_pools(token0s, token1, ax=None, manipulations=['Trading', 'LP']):\n",
" \"\"\"Compare the cost of manipulating different pools with the same token.\"\"\"\n",
" data = pd.DataFrame([], columns=['Price change [%]', f'Cost / {token1}', 'Pool', 'Manipulation'])\n",
" if ax is None:\n",
" fig, ax = plt.subplots()\n",
" for token0 in token0s:\n",
" for manipulation in manipulations:\n",
" d = get_parametric_manipulation(token0, token1, manipulation.lower())\n",
" data = pd.concat([data, d])\n",
" ax = sns.lineplot(data=data, x='Price change [%]', y=f'Cost / {token1}', hue='Pool', style='Manipulation', ax=ax)\n",
" return ax, data"
]
},
{
"source": [
"Example: If we have a lot of DAI lying around, which of the following pools would be cheaper to manipulate by some fixed % amount?\n",
"\n",
"- WETH/DAI\n",
"- WBTC/DAI\n",
"- USDC/DAI"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"<ipython-input-6-11e0e6afcf54>:6: UserWarning: Matplotlib is currently using module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot show the figure.\n ax.get_figure().show()\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": "<Figure size 1152x648 with 1 Axes>",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"533.99625pt\" version=\"1.1\" viewBox=\"0 0 945.478125 533.99625\" width=\"945.478125pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-04-03T13:50:41.379123</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 533.99625 \nL 945.478125 533.99625 \nL 945.478125 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 45.478125 496.44 \nL 938.278125 496.44 \nL 938.278125 7.2 \nL 45.478125 7.2 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"mf5d8dc1f84\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"159.845067\" xlink:href=\"#mf5d8dc1f84\" y=\"496.44\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0 -->\n <g transform=\"translate(156.663817 511.038437)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"323.812009\" xlink:href=\"#mf5d8dc1f84\" y=\"496.44\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 200 -->\n <g transform=\"translate(314.268259 511.038437)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_3\">\n <g id=\"line2d_3\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"487.778951\" xlink:href=\"#mf5d8dc1f84\" y=\"496.44\"/>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- 400 -->\n <g transform=\"translate(478.235201 511.038437)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_4\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"651.745894\" xlink:href=\"#mf5d8dc1f84\" y=\"496.44\"/>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 600 -->\n <g transform=\"translate(642.202144 511.038437)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 33.015625 40.375 \nQ 26.375 40.375 22.484375 35.828125 \nQ 18.609375 31.296875 18.609375 23.390625 \nQ 18.609375 15.53125 22.484375 10.953125 \nQ 26.375 6.390625 33.015625 6.390625 \nQ 39.65625 6.390625 43.53125 10.953125 \nQ 47.40625 15.53125 47.40625 23.390625 \nQ 47.40625 31.296875 43.53125 35.828125 \nQ 39.65625 40.375 33.015625 40.375 \nz\nM 52.59375 71.296875 \nL 52.59375 62.3125 \nQ 48.875 64.0625 45.09375 64.984375 \nQ 41.3125 65.921875 37.59375 65.921875 \nQ 27.828125 65.921875 22.671875 59.328125 \nQ 17.53125 52.734375 16.796875 39.40625 \nQ 19.671875 43.65625 24.015625 45.921875 \nQ 28.375 48.1875 33.59375 48.1875 \nQ 44.578125 48.1875 50.953125 41.515625 \nQ 57.328125 34.859375 57.328125 23.390625 \nQ 57.328125 12.15625 50.6875 5.359375 \nQ 44.046875 -1.421875 33.015625 -1.421875 \nQ 20.359375 -1.421875 13.671875 8.265625 \nQ 6.984375 17.96875 6.984375 36.375 \nQ 6.984375 53.65625 15.1875 63.9375 \nQ 23.390625 74.21875 37.203125 74.21875 \nQ 40.921875 74.21875 44.703125 73.484375 \nQ 48.484375 72.75 52.59375 71.296875 \nz\n\" id=\"DejaVuSans-54\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-54\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_5\">\n <g id=\"line2d_5\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"815.712836\" xlink:href=\"#mf5d8dc1f84\" y=\"496.44\"/>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 800 -->\n <g transform=\"translate(806.169086 511.038437)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 34.625 \nQ 24.75 34.625 20.71875 30.859375 \nQ 16.703125 27.09375 16.703125 20.515625 \nQ 16.703125 13.921875 20.71875 10.15625 \nQ 24.75 6.390625 31.78125 6.390625 \nQ 38.8125 6.390625 42.859375 10.171875 \nQ 46.921875 13.96875 46.921875 20.515625 \nQ 46.921875 27.09375 42.890625 30.859375 \nQ 38.875 34.625 31.78125 34.625 \nz\nM 21.921875 38.8125 \nQ 15.578125 40.375 12.03125 44.71875 \nQ 8.5 49.078125 8.5 55.328125 \nQ 8.5 64.0625 14.71875 69.140625 \nQ 20.953125 74.21875 31.78125 74.21875 \nQ 42.671875 74.21875 48.875 69.140625 \nQ 55.078125 64.0625 55.078125 55.328125 \nQ 55.078125 49.078125 51.53125 44.71875 \nQ 48 40.375 41.703125 38.8125 \nQ 48.828125 37.15625 52.796875 32.3125 \nQ 56.78125 27.484375 56.78125 20.515625 \nQ 56.78125 9.90625 50.3125 4.234375 \nQ 43.84375 -1.421875 31.78125 -1.421875 \nQ 19.734375 -1.421875 13.25 4.234375 \nQ 6.78125 9.90625 6.78125 20.515625 \nQ 6.78125 27.484375 10.78125 32.3125 \nQ 14.796875 37.15625 21.921875 38.8125 \nz\nM 18.3125 54.390625 \nQ 18.3125 48.734375 21.84375 45.5625 \nQ 25.390625 42.390625 31.78125 42.390625 \nQ 38.140625 42.390625 41.71875 45.5625 \nQ 45.3125 48.734375 45.3125 54.390625 \nQ 45.3125 60.0625 41.71875 63.234375 \nQ 38.140625 66.40625 31.78125 66.40625 \nQ 25.390625 66.40625 21.84375 63.234375 \nQ 18.3125 60.0625 18.3125 54.390625 \nz\n\" id=\"DejaVuSans-56\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-56\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"127.246094\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- Price change [%] -->\n <g transform=\"translate(449.448437 524.716562)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.671875 64.796875 \nL 19.671875 37.40625 \nL 32.078125 37.40625 \nQ 38.96875 37.40625 42.71875 40.96875 \nQ 46.484375 44.53125 46.484375 51.125 \nQ 46.484375 57.671875 42.71875 61.234375 \nQ 38.96875 64.796875 32.078125 64.796875 \nz\nM 9.8125 72.90625 \nL 32.078125 72.90625 \nQ 44.34375 72.90625 50.609375 67.359375 \nQ 56.890625 61.8125 56.890625 51.125 \nQ 56.890625 40.328125 50.609375 34.8125 \nQ 44.34375 29.296875 32.078125 29.296875 \nL 19.671875 29.296875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-80\"/>\n <path d=\"M 41.109375 46.296875 \nQ 39.59375 47.171875 37.8125 47.578125 \nQ 36.03125 48 33.890625 48 \nQ 26.265625 48 22.1875 43.046875 \nQ 18.109375 38.09375 18.109375 28.8125 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 20.953125 51.171875 25.484375 53.578125 \nQ 30.03125 56 36.53125 56 \nQ 37.453125 56 38.578125 55.875 \nQ 39.703125 55.765625 41.0625 55.515625 \nz\n\" id=\"DejaVuSans-114\"/>\n <path d=\"M 9.421875 54.6875 \nL 18.40625 54.6875 \nL 18.40625 0 \nL 9.421875 0 \nz\nM 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 64.59375 \nL 9.421875 64.59375 \nz\n\" id=\"DejaVuSans-105\"/>\n <path d=\"M 48.78125 52.59375 \nL 48.78125 44.1875 \nQ 44.96875 46.296875 41.140625 47.34375 \nQ 37.3125 48.390625 33.40625 48.390625 \nQ 24.65625 48.390625 19.8125 42.84375 \nQ 14.984375 37.3125 14.984375 27.296875 \nQ 14.984375 17.28125 19.8125 11.734375 \nQ 24.65625 6.203125 33.40625 6.203125 \nQ 37.3125 6.203125 41.140625 7.25 \nQ 44.96875 8.296875 48.78125 10.40625 \nL 48.78125 2.09375 \nQ 45.015625 0.34375 40.984375 -0.53125 \nQ 36.96875 -1.421875 32.421875 -1.421875 \nQ 20.0625 -1.421875 12.78125 6.34375 \nQ 5.515625 14.109375 5.515625 27.296875 \nQ 5.515625 40.671875 12.859375 48.328125 \nQ 20.21875 56 33.015625 56 \nQ 37.15625 56 41.109375 55.140625 \nQ 45.0625 54.296875 48.78125 52.59375 \nz\n\" id=\"DejaVuSans-99\"/>\n <path d=\"M 56.203125 29.59375 \nL 56.203125 25.203125 \nL 14.890625 25.203125 \nQ 15.484375 15.921875 20.484375 11.0625 \nQ 25.484375 6.203125 34.421875 6.203125 \nQ 39.59375 6.203125 44.453125 7.46875 \nQ 49.3125 8.734375 54.109375 11.28125 \nL 54.109375 2.78125 \nQ 49.265625 0.734375 44.1875 -0.34375 \nQ 39.109375 -1.421875 33.890625 -1.421875 \nQ 20.796875 -1.421875 13.15625 6.1875 \nQ 5.515625 13.8125 5.515625 26.8125 \nQ 5.515625 40.234375 12.765625 48.109375 \nQ 20.015625 56 32.328125 56 \nQ 43.359375 56 49.78125 48.890625 \nQ 56.203125 41.796875 56.203125 29.59375 \nz\nM 47.21875 32.234375 \nQ 47.125 39.59375 43.09375 43.984375 \nQ 39.0625 48.390625 32.421875 48.390625 \nQ 24.90625 48.390625 20.390625 44.140625 \nQ 15.875 39.890625 15.1875 32.171875 \nz\n\" id=\"DejaVuSans-101\"/>\n <path id=\"DejaVuSans-32\"/>\n <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 75.984375 \nL 18.109375 75.984375 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-104\"/>\n <path d=\"M 34.28125 27.484375 \nQ 23.390625 27.484375 19.1875 25 \nQ 14.984375 22.515625 14.984375 16.5 \nQ 14.984375 11.71875 18.140625 8.90625 \nQ 21.296875 6.109375 26.703125 6.109375 \nQ 34.1875 6.109375 38.703125 11.40625 \nQ 43.21875 16.703125 43.21875 25.484375 \nL 43.21875 27.484375 \nz\nM 52.203125 31.203125 \nL 52.203125 0 \nL 43.21875 0 \nL 43.21875 8.296875 \nQ 40.140625 3.328125 35.546875 0.953125 \nQ 30.953125 -1.421875 24.3125 -1.421875 \nQ 15.921875 -1.421875 10.953125 3.296875 \nQ 6 8.015625 6 15.921875 \nQ 6 25.140625 12.171875 29.828125 \nQ 18.359375 34.515625 30.609375 34.515625 \nL 43.21875 34.515625 \nL 43.21875 35.40625 \nQ 43.21875 41.609375 39.140625 45 \nQ 35.0625 48.390625 27.6875 48.390625 \nQ 23 48.390625 18.546875 47.265625 \nQ 14.109375 46.140625 10.015625 43.890625 \nL 10.015625 52.203125 \nQ 14.9375 54.109375 19.578125 55.046875 \nQ 24.21875 56 28.609375 56 \nQ 40.484375 56 46.34375 49.84375 \nQ 52.203125 43.703125 52.203125 31.203125 \nz\n\" id=\"DejaVuSans-97\"/>\n <path d=\"M 54.890625 33.015625 \nL 54.890625 0 \nL 45.90625 0 \nL 45.90625 32.71875 \nQ 45.90625 40.484375 42.875 44.328125 \nQ 39.84375 48.1875 33.796875 48.1875 \nQ 26.515625 48.1875 22.3125 43.546875 \nQ 18.109375 38.921875 18.109375 30.90625 \nL 18.109375 0 \nL 9.078125 0 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.1875 \nQ 21.34375 51.125 25.703125 53.5625 \nQ 30.078125 56 35.796875 56 \nQ 45.21875 56 50.046875 50.171875 \nQ 54.890625 44.34375 54.890625 33.015625 \nz\n\" id=\"DejaVuSans-110\"/>\n <path d=\"M 45.40625 27.984375 \nQ 45.40625 37.75 41.375 43.109375 \nQ 37.359375 48.484375 30.078125 48.484375 \nQ 22.859375 48.484375 18.828125 43.109375 \nQ 14.796875 37.75 14.796875 27.984375 \nQ 14.796875 18.265625 18.828125 12.890625 \nQ 22.859375 7.515625 30.078125 7.515625 \nQ 37.359375 7.515625 41.375 12.890625 \nQ 45.40625 18.265625 45.40625 27.984375 \nz\nM 54.390625 6.78125 \nQ 54.390625 -7.171875 48.1875 -13.984375 \nQ 42 -20.796875 29.203125 -20.796875 \nQ 24.46875 -20.796875 20.265625 -20.09375 \nQ 16.0625 -19.390625 12.109375 -17.921875 \nL 12.109375 -9.1875 \nQ 16.0625 -11.328125 19.921875 -12.34375 \nQ 23.78125 -13.375 27.78125 -13.375 \nQ 36.625 -13.375 41.015625 -8.765625 \nQ 45.40625 -4.15625 45.40625 5.171875 \nL 45.40625 9.625 \nQ 42.625 4.78125 38.28125 2.390625 \nQ 33.9375 0 27.875 0 \nQ 17.828125 0 11.671875 7.65625 \nQ 5.515625 15.328125 5.515625 27.984375 \nQ 5.515625 40.671875 11.671875 48.328125 \nQ 17.828125 56 27.875 56 \nQ 33.9375 56 38.28125 53.609375 \nQ 42.625 51.21875 45.40625 46.390625 \nL 45.40625 54.6875 \nL 54.390625 54.6875 \nz\n\" id=\"DejaVuSans-103\"/>\n <path d=\"M 8.59375 75.984375 \nL 29.296875 75.984375 \nL 29.296875 69 \nL 17.578125 69 \nL 17.578125 -6.203125 \nL 29.296875 -6.203125 \nL 29.296875 -13.1875 \nL 8.59375 -13.1875 \nz\n\" id=\"DejaVuSans-91\"/>\n <path d=\"M 72.703125 32.078125 \nQ 68.453125 32.078125 66.03125 28.46875 \nQ 63.625 24.859375 63.625 18.40625 \nQ 63.625 12.0625 66.03125 8.421875 \nQ 68.453125 4.78125 72.703125 4.78125 \nQ 76.859375 4.78125 79.265625 8.421875 \nQ 81.6875 12.0625 81.6875 18.40625 \nQ 81.6875 24.8125 79.265625 28.4375 \nQ 76.859375 32.078125 72.703125 32.078125 \nz\nM 72.703125 38.28125 \nQ 80.421875 38.28125 84.953125 32.90625 \nQ 89.5 27.546875 89.5 18.40625 \nQ 89.5 9.28125 84.9375 3.921875 \nQ 80.375 -1.421875 72.703125 -1.421875 \nQ 64.890625 -1.421875 60.34375 3.921875 \nQ 55.8125 9.28125 55.8125 18.40625 \nQ 55.8125 27.59375 60.375 32.9375 \nQ 64.9375 38.28125 72.703125 38.28125 \nz\nM 22.3125 68.015625 \nQ 18.109375 68.015625 15.6875 64.375 \nQ 13.28125 60.75 13.28125 54.390625 \nQ 13.28125 47.953125 15.671875 44.328125 \nQ 18.0625 40.71875 22.3125 40.71875 \nQ 26.5625 40.71875 28.96875 44.328125 \nQ 31.390625 47.953125 31.390625 54.390625 \nQ 31.390625 60.6875 28.953125 64.34375 \nQ 26.515625 68.015625 22.3125 68.015625 \nz\nM 66.40625 74.21875 \nL 74.21875 74.21875 \nL 28.609375 -1.421875 \nL 20.796875 -1.421875 \nz\nM 22.3125 74.21875 \nQ 30.03125 74.21875 34.609375 68.875 \nQ 39.203125 63.53125 39.203125 54.390625 \nQ 39.203125 45.171875 34.640625 39.84375 \nQ 30.078125 34.515625 22.3125 34.515625 \nQ 14.546875 34.515625 10.03125 39.859375 \nQ 5.515625 45.21875 5.515625 54.390625 \nQ 5.515625 63.484375 10.046875 68.84375 \nQ 14.59375 74.21875 22.3125 74.21875 \nz\n\" id=\"DejaVuSans-37\"/>\n <path d=\"M 30.421875 75.984375 \nL 30.421875 -13.1875 \nL 9.71875 -13.1875 \nL 9.71875 -6.203125 \nL 21.390625 -6.203125 \nL 21.390625 69 \nL 9.71875 69 \nL 9.71875 75.984375 \nz\n\" id=\"DejaVuSans-93\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-80\"/>\n <use x=\"58.552734\" xlink:href=\"#DejaVuSans-114\"/>\n <use x=\"99.666016\" xlink:href=\"#DejaVuSans-105\"/>\n <use x=\"127.449219\" xlink:href=\"#DejaVuSans-99\"/>\n <use x=\"182.429688\" xlink:href=\"#DejaVuSans-101\"/>\n <use x=\"243.953125\" xlink:href=\"#DejaVuSans-32\"/>\n <use x=\"275.740234\" xlink:href=\"#DejaVuSans-99\"/>\n <use x=\"330.720703\" xlink:href=\"#DejaVuSans-104\"/>\n <use x=\"394.099609\" xlink:href=\"#DejaVuSans-97\"/>\n <use x=\"455.378906\" xlink:href=\"#DejaVuSans-110\"/>\n <use x=\"518.757812\" xlink:href=\"#DejaVuSans-103\"/>\n <use x=\"582.234375\" xlink:href=\"#DejaVuSans-101\"/>\n <use x=\"643.757812\" xlink:href=\"#DejaVuSans-32\"/>\n <use x=\"675.544922\" xlink:href=\"#DejaVuSans-91\"/>\n <use x=\"714.558594\" xlink:href=\"#DejaVuSans-37\"/>\n <use x=\"809.578125\" xlink:href=\"#DejaVuSans-93\"/>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_6\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"mae60b9636d\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"45.478125\" xlink:href=\"#mae60b9636d\" y=\"418.086286\"/>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- $\\mathdefault{10^{4}}$ -->\n <g transform=\"translate(20.878125 421.885505)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n </defs>\n <use transform=\"translate(0 0.684375)\" xlink:href=\"#DejaVuSans-49\"/>\n <use transform=\"translate(63.623047 0.684375)\" xlink:href=\"#DejaVuSans-48\"/>\n <use transform=\"translate(128.203125 38.965625)scale(0.7)\" xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_7\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"45.478125\" xlink:href=\"#mae60b9636d\" y=\"335.034899\"/>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- $\\mathdefault{10^{5}}$ -->\n <g transform=\"translate(20.878125 338.834118)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n </defs>\n <use transform=\"translate(0 0.684375)\" xlink:href=\"#DejaVuSans-49\"/>\n <use transform=\"translate(63.623047 0.684375)\" xlink:href=\"#DejaVuSans-48\"/>\n <use transform=\"translate(128.203125 38.965625)scale(0.7)\" xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_8\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"45.478125\" xlink:href=\"#mae60b9636d\" y=\"251.983512\"/>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- $\\mathdefault{10^{6}}$ -->\n <g transform=\"translate(20.878125 255.782731)scale(0.1 -0.1)\">\n <use transform=\"translate(0 0.765625)\" xlink:href=\"#DejaVuSans-49\"/>\n <use transform=\"translate(63.623047 0.765625)\" xlink:href=\"#DejaVuSans-48\"/>\n <use transform=\"translate(128.203125 39.046875)scale(0.7)\" xlink:href=\"#DejaVuSans-54\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_4\">\n <g id=\"line2d_9\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"45.478125\" xlink:href=\"#mae60b9636d\" y=\"168.932125\"/>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- $\\mathdefault{10^{7}}$ -->\n <g transform=\"translate(20.878125 172.731344)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 8.203125 72.90625 \nL 55.078125 72.90625 \nL 55.078125 68.703125 \nL 28.609375 0 \nL 18.3125 0 \nL 43.21875 64.59375 \nL 8.203125 64.59375 \nz\n\" id=\"DejaVuSans-55\"/>\n </defs>\n <use transform=\"translate(0 0.684375)\" xlink:href=\"#DejaVuSans-49\"/>\n <use transform=\"translate(63.623047 0.684375)\" xlink:href=\"#DejaVuSans-48\"/>\n <use transform=\"translate(128.203125 38.965625)scale(0.7)\" xlink:href=\"#DejaVuSans-55\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_10\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"45.478125\" xlink:href=\"#mae60b9636d\" y=\"85.880738\"/>\n </g>\n </g>\n <g id=\"text_11\">\n <!-- $\\mathdefault{10^{8}}$ -->\n <g transform=\"translate(20.878125 89.679957)scale(0.1 -0.1)\">\n <use transform=\"translate(0 0.765625)\" xlink:href=\"#DejaVuSans-49\"/>\n <use transform=\"translate(63.623047 0.765625)\" xlink:href=\"#DejaVuSans-48\"/>\n <use transform=\"translate(128.203125 39.046875)scale(0.7)\" xlink:href=\"#DejaVuSans-56\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_6\">\n <g id=\"line2d_11\">\n <defs>\n <path d=\"M 0 0 \nL -2 0 \n\" id=\"m6d13158cb4\" style=\"stroke:#000000;stroke-width:0.6;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"476.136714\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_7\">\n <g id=\"line2d_12\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"461.512091\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_8\">\n <g id=\"line2d_13\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"451.135756\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_9\">\n <g id=\"line2d_14\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"443.087245\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_10\">\n <g id=\"line2d_15\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"436.511132\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_11\">\n <g id=\"line2d_16\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"430.951109\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_12\">\n <g id=\"line2d_17\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"426.134797\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_13\">\n <g id=\"line2d_18\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"421.886509\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_14\">\n <g id=\"line2d_19\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"393.085327\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_15\">\n <g id=\"line2d_20\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"378.460704\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_16\">\n <g id=\"line2d_21\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"368.084369\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_17\">\n <g id=\"line2d_22\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"360.035858\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_18\">\n <g id=\"line2d_23\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"353.459745\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_19\">\n <g id=\"line2d_24\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"347.899722\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_20\">\n <g id=\"line2d_25\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"343.08341\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_21\">\n <g id=\"line2d_26\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"338.835122\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_22\">\n <g id=\"line2d_27\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"310.03394\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_23\">\n <g id=\"line2d_28\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"295.409317\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_24\">\n <g id=\"line2d_29\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"285.032982\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_25\">\n <g id=\"line2d_30\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"276.984471\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_26\">\n <g id=\"line2d_31\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"270.408358\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_27\">\n <g id=\"line2d_32\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"264.848335\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_28\">\n <g id=\"line2d_33\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"260.032023\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_29\">\n <g id=\"line2d_34\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"255.783735\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_30\">\n <g id=\"line2d_35\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"226.982553\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_31\">\n <g id=\"line2d_36\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"212.35793\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_32\">\n <g id=\"line2d_37\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"201.981595\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_33\">\n <g id=\"line2d_38\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"193.933084\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_34\">\n <g id=\"line2d_39\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"187.356971\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_35\">\n <g id=\"line2d_40\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"181.796948\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_36\">\n <g id=\"line2d_41\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"176.980636\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_37\">\n <g id=\"line2d_42\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"172.732348\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_38\">\n <g id=\"line2d_43\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"143.931166\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_39\">\n <g id=\"line2d_44\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"129.306543\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_40\">\n <g id=\"line2d_45\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"118.930208\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_41\">\n <g id=\"line2d_46\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"110.881697\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_42\">\n <g id=\"line2d_47\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"104.305585\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_43\">\n <g id=\"line2d_48\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"98.745561\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_44\">\n <g id=\"line2d_49\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"93.929249\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_45\">\n <g id=\"line2d_50\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"89.680961\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_46\">\n <g id=\"line2d_51\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"60.87978\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_47\">\n <g id=\"line2d_52\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"46.255156\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_48\">\n <g id=\"line2d_53\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"35.878821\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_49\">\n <g id=\"line2d_54\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"27.83031\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_50\">\n <g id=\"line2d_55\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"21.254198\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_51\">\n <g id=\"line2d_56\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"15.694174\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_52\">\n <g id=\"line2d_57\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.6;\" x=\"45.478125\" xlink:href=\"#m6d13158cb4\" y=\"10.877862\"/>\n </g>\n </g>\n </g>\n <g id=\"text_12\">\n <!-- Cost / DAI -->\n <g transform=\"translate(14.798438 276.455937)rotate(-90)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 64.40625 67.28125 \nL 64.40625 56.890625 \nQ 59.421875 61.53125 53.78125 63.8125 \nQ 48.140625 66.109375 41.796875 66.109375 \nQ 29.296875 66.109375 22.65625 58.46875 \nQ 16.015625 50.828125 16.015625 36.375 \nQ 16.015625 21.96875 22.65625 14.328125 \nQ 29.296875 6.6875 41.796875 6.6875 \nQ 48.140625 6.6875 53.78125 8.984375 \nQ 59.421875 11.28125 64.40625 15.921875 \nL 64.40625 5.609375 \nQ 59.234375 2.09375 53.4375 0.328125 \nQ 47.65625 -1.421875 41.21875 -1.421875 \nQ 24.65625 -1.421875 15.125 8.703125 \nQ 5.609375 18.84375 5.609375 36.375 \nQ 5.609375 53.953125 15.125 64.078125 \nQ 24.65625 74.21875 41.21875 74.21875 \nQ 47.75 74.21875 53.53125 72.484375 \nQ 59.328125 70.75 64.40625 67.28125 \nz\n\" id=\"DejaVuSans-67\"/>\n <path d=\"M 30.609375 48.390625 \nQ 23.390625 48.390625 19.1875 42.75 \nQ 14.984375 37.109375 14.984375 27.296875 \nQ 14.984375 17.484375 19.15625 11.84375 \nQ 23.34375 6.203125 30.609375 6.203125 \nQ 37.796875 6.203125 41.984375 11.859375 \nQ 46.1875 17.53125 46.1875 27.296875 \nQ 46.1875 37.015625 41.984375 42.703125 \nQ 37.796875 48.390625 30.609375 48.390625 \nz\nM 30.609375 56 \nQ 42.328125 56 49.015625 48.375 \nQ 55.71875 40.765625 55.71875 27.296875 \nQ 55.71875 13.875 49.015625 6.21875 \nQ 42.328125 -1.421875 30.609375 -1.421875 \nQ 18.84375 -1.421875 12.171875 6.21875 \nQ 5.515625 13.875 5.515625 27.296875 \nQ 5.515625 40.765625 12.171875 48.375 \nQ 18.84375 56 30.609375 56 \nz\n\" id=\"DejaVuSans-111\"/>\n <path d=\"M 44.28125 53.078125 \nL 44.28125 44.578125 \nQ 40.484375 46.53125 36.375 47.5 \nQ 32.28125 48.484375 27.875 48.484375 \nQ 21.1875 48.484375 17.84375 46.4375 \nQ 14.5 44.390625 14.5 40.28125 \nQ 14.5 37.15625 16.890625 35.375 \nQ 19.28125 33.59375 26.515625 31.984375 \nL 29.59375 31.296875 \nQ 39.15625 29.25 43.1875 25.515625 \nQ 47.21875 21.78125 47.21875 15.09375 \nQ 47.21875 7.46875 41.1875 3.015625 \nQ 35.15625 -1.421875 24.609375 -1.421875 \nQ 20.21875 -1.421875 15.453125 -0.5625 \nQ 10.6875 0.296875 5.421875 2 \nL 5.421875 11.28125 \nQ 10.40625 8.6875 15.234375 7.390625 \nQ 20.0625 6.109375 24.8125 6.109375 \nQ 31.15625 6.109375 34.5625 8.28125 \nQ 37.984375 10.453125 37.984375 14.40625 \nQ 37.984375 18.0625 35.515625 20.015625 \nQ 33.0625 21.96875 24.703125 23.78125 \nL 21.578125 24.515625 \nQ 13.234375 26.265625 9.515625 29.90625 \nQ 5.8125 33.546875 5.8125 39.890625 \nQ 5.8125 47.609375 11.28125 51.796875 \nQ 16.75 56 26.8125 56 \nQ 31.78125 56 36.171875 55.265625 \nQ 40.578125 54.546875 44.28125 53.078125 \nz\n\" id=\"DejaVuSans-115\"/>\n <path d=\"M 18.3125 70.21875 \nL 18.3125 54.6875 \nL 36.8125 54.6875 \nL 36.8125 47.703125 \nL 18.3125 47.703125 \nL 18.3125 18.015625 \nQ 18.3125 11.328125 20.140625 9.421875 \nQ 21.96875 7.515625 27.59375 7.515625 \nL 36.8125 7.515625 \nL 36.8125 0 \nL 27.59375 0 \nQ 17.1875 0 13.234375 3.875 \nQ 9.28125 7.765625 9.28125 18.015625 \nL 9.28125 47.703125 \nL 2.6875 47.703125 \nL 2.6875 54.6875 \nL 9.28125 54.6875 \nL 9.28125 70.21875 \nz\n\" id=\"DejaVuSans-116\"/>\n <path d=\"M 25.390625 72.90625 \nL 33.6875 72.90625 \nL 8.296875 -9.28125 \nL 0 -9.28125 \nz\n\" id=\"DejaVuSans-47\"/>\n <path d=\"M 19.671875 64.796875 \nL 19.671875 8.109375 \nL 31.59375 8.109375 \nQ 46.6875 8.109375 53.6875 14.9375 \nQ 60.6875 21.78125 60.6875 36.53125 \nQ 60.6875 51.171875 53.6875 57.984375 \nQ 46.6875 64.796875 31.59375 64.796875 \nz\nM 9.8125 72.90625 \nL 30.078125 72.90625 \nQ 51.265625 72.90625 61.171875 64.09375 \nQ 71.09375 55.28125 71.09375 36.53125 \nQ 71.09375 17.671875 61.125 8.828125 \nQ 51.171875 0 30.078125 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-68\"/>\n <path d=\"M 34.1875 63.1875 \nL 20.796875 26.90625 \nL 47.609375 26.90625 \nz\nM 28.609375 72.90625 \nL 39.796875 72.90625 \nL 67.578125 0 \nL 57.328125 0 \nL 50.6875 18.703125 \nL 17.828125 18.703125 \nL 11.1875 0 \nL 0.78125 0 \nz\n\" id=\"DejaVuSans-65\"/>\n <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-73\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-67\"/>\n <use x=\"69.824219\" xlink:href=\"#DejaVuSans-111\"/>\n <use x=\"131.005859\" xlink:href=\"#DejaVuSans-115\"/>\n <use x=\"183.105469\" xlink:href=\"#DejaVuSans-116\"/>\n <use x=\"222.314453\" xlink:href=\"#DejaVuSans-32\"/>\n <use x=\"254.101562\" xlink:href=\"#DejaVuSans-47\"/>\n <use x=\"287.792969\" xlink:href=\"#DejaVuSans-32\"/>\n <use x=\"319.580078\" xlink:href=\"#DejaVuSans-68\"/>\n <use x=\"394.832031\" xlink:href=\"#DejaVuSans-65\"/>\n <use x=\"463.240234\" xlink:href=\"#DejaVuSans-73\"/>\n </g>\n </g>\n </g>\n <g id=\"line2d_58\">\n <path clip-path=\"url(#p492b83d5ab)\" d=\"M 86.059943 310.66694 \nL 86.446319 311.892007 \nL 86.850905 313.130515 \nL 87.274558 314.383093 \nL 87.718177 315.650413 \nL 88.182704 316.933193 \nL 88.669122 318.232196 \nL 89.178465 319.54824 \nL 89.711813 320.882202 \nL 90.270297 322.235018 \nL 90.855101 323.6077 \nL 91.467466 325.00133 \nL 92.10869 326.417081 \nL 92.780135 327.856216 \nL 93.483224 329.320102 \nL 94.219449 330.810224 \nL 94.990371 332.328194 \nL 95.797625 333.87577 \nL 96.642924 335.454873 \nL 97.528061 337.067604 \nL 98.454913 338.716276 \nL 99.425446 340.403433 \nL 100.441719 342.131888 \nL 101.505887 343.904763 \nL 102.620209 345.725533 \nL 103.787046 347.59808 \nL 105.008875 349.526765 \nL 106.288287 351.516504 \nL 107.627995 353.572871 \nL 109.030842 355.702216 \nL 110.499804 357.91182 \nL 112.037995 360.210088 \nL 113.648679 362.606784 \nL 115.335272 365.113352 \nL 117.101352 367.743318 \nL 118.950665 370.51283 \nL 120.887133 373.441379 \nL 122.914864 376.552799 \nL 125.03816 379.876652 \nL 127.261522 383.450231 \nL 129.589669 387.321512 \nL 132.027538 391.553671 \nL 134.5803 396.232269 \nL 137.253371 401.477266 \nL 140.052419 407.464349 \nL 142.983382 414.465896 \nL 146.052477 422.938216 \nL 149.266214 433.736737 \nL 152.63141 448.781922 \nL 156.155203 474.201818 \nL 156.157895 534.99625 \nM 163.70601 534.99625 \nL 163.708829 474.201818 \nL 167.754685 448.781922 \nL 171.991215 433.736737 \nL 176.427408 422.938216 \nL 181.072671 414.465896 \nL 185.936859 407.464349 \nL 191.03029 401.477266 \nL 196.363766 396.232269 \nL 201.948601 391.553671 \nL 207.796641 387.321512 \nL 213.920291 383.450231 \nL 220.33254 379.876652 \nL 227.046989 376.552799 \nL 234.07788 373.441379 \nL 241.440126 370.51283 \nL 249.149345 367.743318 \nL 257.221888 365.113352 \nL 265.674878 362.606784 \nL 274.526245 360.210088 \nL 283.794765 357.91182 \nL 293.500096 355.702216 \nL 303.662825 353.572871 \nL 314.304509 351.516504 \nL 325.447721 349.526765 \nL 337.116095 347.59808 \nL 349.334383 345.725533 \nL 362.128502 343.904763 \nL 375.525588 342.131888 \nL 389.55406 340.403433 \nL 404.243673 338.716276 \nL 419.625586 337.067604 \nL 435.732427 335.454873 \nL 452.59836 333.87577 \nL 470.259159 332.328194 \nL 488.752287 330.810224 \nL 508.116968 329.320102 \nL 528.394279 327.856216 \nL 549.627231 326.417081 \nL 571.86086 325.00133 \nL 595.142328 323.6077 \nL 619.521018 322.235018 \nL 645.04864 320.882202 \nL 671.779342 319.54824 \nL 699.769823 318.232196 \nL 729.079455 316.933193 \nL 759.770407 315.650413 \nL 791.907779 314.383093 \nL 825.559739 313.130515 \nL 860.797667 311.892007 \nL 897.696307 310.66694 \n\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_59\">\n <path clip-path=\"url(#p492b83d5ab)\" d=\"M 86.059943 259.401854 \nL 86.446319 261.252253 \nL 86.850905 263.112647 \nL 87.274558 264.983625 \nL 87.718177 266.865816 \nL 88.182704 268.759892 \nL 88.669122 270.666577 \nL 89.178465 272.586644 \nL 89.711813 274.520929 \nL 90.270297 276.470329 \nL 90.855101 278.43581 \nL 91.467466 280.418419 \nL 92.10869 282.419285 \nL 92.780135 284.439632 \nL 93.483224 286.48079 \nL 94.219449 288.544204 \nL 94.990371 290.63145 \nL 95.797625 292.744247 \nL 96.642924 294.88448 \nL 97.528061 297.054216 \nL 98.454913 299.255731 \nL 99.425446 301.491534 \nL 100.441719 303.764408 \nL 101.505887 306.077439 \nL 102.620209 308.434071 \nL 103.787046 310.838157 \nL 105.008875 313.294026 \nL 106.288287 315.806565 \nL 107.627995 318.38132 \nL 109.030842 321.024614 \nL 110.499804 323.743702 \nL 112.037995 326.546963 \nL 113.648679 329.444138 \nL 115.335272 332.446647 \nL 117.101352 335.567995 \nL 118.950665 338.824307 \nL 120.887133 342.235057 \nL 122.914864 345.824058 \nL 125.03816 349.620856 \nL 127.261522 353.662727 \nL 129.589669 357.997632 \nL 132.027538 362.688734 \nL 134.5803 367.82158 \nL 137.253371 373.516118 \nL 140.052419 379.948028 \nL 142.983382 387.389675 \nL 146.052477 396.297364 \nL 149.266214 407.526514 \nL 152.63141 422.997584 \nL 156.155203 448.838617 \nL 156.159017 534.99625 \nM 163.704835 534.99625 \nL 163.708829 448.838617 \nL 167.754685 422.997584 \nL 171.991215 407.526514 \nL 176.427408 396.297364 \nL 181.072671 387.389675 \nL 185.936859 379.948028 \nL 191.03029 373.516118 \nL 196.363766 367.82158 \nL 201.948601 362.688734 \nL 207.796641 357.997632 \nL 213.920291 353.662727 \nL 220.33254 349.620856 \nL 227.046989 345.824058 \nL 234.07788 342.235057 \nL 241.440126 338.824307 \nL 249.149345 335.567995 \nL 257.221888 332.446647 \nL 265.674878 329.444138 \nL 274.526245 326.546963 \nL 283.794765 323.743702 \nL 293.500096 321.024614 \nL 303.662825 318.38132 \nL 314.304509 315.806565 \nL 325.447721 313.294026 \nL 337.116095 310.838157 \nL 349.334383 308.434071 \nL 362.128502 306.077439 \nL 375.525588 303.764408 \nL 389.55406 301.491534 \nL 404.243673 299.255731 \nL 419.625586 297.054216 \nL 435.732427 294.88448 \nL 452.59836 292.744247 \nL 470.259159 290.63145 \nL 488.752287 288.544204 \nL 508.116968 286.48079 \nL 528.394279 284.439632 \nL 549.627231 282.419285 \nL 571.86086 280.418419 \nL 595.142328 278.43581 \nL 619.521018 276.470329 \nL 645.04864 274.520929 \nL 671.779342 272.586644 \nL 699.769823 270.666577 \nL 729.079455 268.759892 \nL 759.770407 266.865816 \nL 791.907779 264.983625 \nL 825.559739 263.112647 \nL 860.797667 261.252253 \nL 897.696307 259.401854 \n\" style=\"fill:none;stroke:#1f77b4;stroke-dasharray:6,2.25;stroke-dashoffset:0;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_60\">\n <path clip-path=\"url(#p492b83d5ab)\" d=\"M 86.059943 80.703267 \nL 86.446319 81.928335 \nL 86.850905 83.166842 \nL 87.274558 84.41942 \nL 87.718177 85.686741 \nL 88.182704 86.96952 \nL 88.669122 88.268523 \nL 89.178465 89.584568 \nL 89.711813 90.918529 \nL 90.270297 92.271346 \nL 90.855101 93.644027 \nL 91.467466 95.037658 \nL 92.10869 96.453409 \nL 92.780135 97.892543 \nL 93.483224 99.356429 \nL 94.219449 100.846551 \nL 94.990371 102.364521 \nL 95.797625 103.912097 \nL 96.642924 105.4912 \nL 97.528061 107.103932 \nL 98.454913 108.752603 \nL 99.425446 110.43976 \nL 100.441719 112.168215 \nL 101.505887 113.941091 \nL 102.620209 115.76186 \nL 103.787046 117.634407 \nL 105.008875 119.563092 \nL 106.288287 121.552832 \nL 107.627995 123.609198 \nL 109.030842 125.738543 \nL 110.499804 127.948148 \nL 112.037995 130.246415 \nL 113.648679 132.643111 \nL 115.335272 135.14968 \nL 117.101352 137.779646 \nL 118.950665 140.549157 \nL 120.887133 143.477707 \nL 122.914864 146.589126 \nL 125.03816 149.91298 \nL 127.261522 153.486559 \nL 129.589669 157.35784 \nL 132.027538 161.589999 \nL 134.5803 166.268597 \nL 137.253371 171.513593 \nL 140.052419 177.500676 \nL 142.983382 184.502223 \nL 146.052477 192.974544 \nL 149.266214 203.773064 \nL 152.63141 218.818249 \nL 156.155203 244.238146 \nL 156.168043 534.99625 \nM 163.695384 534.99625 \nL 163.708829 244.238146 \nL 167.754685 218.818249 \nL 171.991215 203.773064 \nL 176.427408 192.974544 \nL 181.072671 184.502223 \nL 185.936859 177.500676 \nL 191.03029 171.513593 \nL 196.363766 166.268597 \nL 201.948601 161.589999 \nL 207.796641 157.35784 \nL 213.920291 153.486559 \nL 220.33254 149.91298 \nL 227.046989 146.589126 \nL 234.07788 143.477707 \nL 241.440126 140.549157 \nL 249.149345 137.779646 \nL 257.221888 135.14968 \nL 265.674878 132.643111 \nL 274.526245 130.246415 \nL 283.794765 127.948148 \nL 293.500096 125.738543 \nL 303.662825 123.609198 \nL 314.304509 121.552832 \nL 325.447721 119.563092 \nL 337.116095 117.634407 \nL 349.334383 115.76186 \nL 362.128502 113.941091 \nL 375.525588 112.168215 \nL 389.55406 110.43976 \nL 404.243673 108.752603 \nL 419.625586 107.103932 \nL 435.732427 105.4912 \nL 452.59836 103.912097 \nL 470.259159 102.364521 \nL 488.752287 100.846551 \nL 508.116968 99.356429 \nL 528.394279 97.892543 \nL 549.627231 96.453409 \nL 571.86086 95.037658 \nL 595.142328 93.644027 \nL 619.521018 92.271346 \nL 645.04864 90.918529 \nL 671.779342 89.584568 \nL 699.769823 88.268523 \nL 729.079455 86.96952 \nL 759.770407 85.686741 \nL 791.907779 84.41942 \nL 825.559739 83.166842 \nL 860.797667 81.928335 \nL 897.696307 80.703267 \n\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_61\">\n <path clip-path=\"url(#p492b83d5ab)\" d=\"M 86.059943 29.438182 \nL 86.446319 31.28858 \nL 86.850905 33.148974 \nL 87.274558 35.019953 \nL 87.718177 36.902143 \nL 88.182704 38.79622 \nL 88.669122 40.702904 \nL 89.178465 42.622972 \nL 89.711813 44.557257 \nL 90.270297 46.506656 \nL 90.855101 48.472138 \nL 91.467466 50.454746 \nL 92.10869 52.455612 \nL 92.780135 54.475959 \nL 93.483224 56.517118 \nL 94.219449 58.580532 \nL 94.990371 60.667777 \nL 95.797625 62.780575 \nL 96.642924 64.920808 \nL 97.528061 67.090544 \nL 98.454913 69.292058 \nL 99.425446 71.527862 \nL 100.441719 73.800735 \nL 101.505887 76.113767 \nL 102.620209 78.470399 \nL 103.787046 80.874484 \nL 105.008875 83.330353 \nL 106.288287 85.842892 \nL 107.627995 88.417647 \nL 109.030842 91.060941 \nL 110.499804 93.78003 \nL 112.037995 96.58329 \nL 113.648679 99.480465 \nL 115.335272 102.482975 \nL 117.101352 105.604322 \nL 118.950665 108.860634 \nL 120.887133 112.271384 \nL 122.914864 115.860385 \nL 125.03816 119.657183 \nL 127.261522 123.699055 \nL 129.589669 128.03396 \nL 132.027538 132.725061 \nL 134.5803 137.857907 \nL 137.253371 143.552446 \nL 140.052419 149.984355 \nL 142.983382 157.426003 \nL 146.052477 166.333692 \nL 149.266214 177.562842 \nL 152.63141 193.033911 \nL 156.155203 218.874945 \nL 156.169159 534.99625 \nM 163.694216 534.99625 \nL 163.708829 218.874945 \nL 167.754685 193.033911 \nL 171.991215 177.562842 \nL 176.427408 166.333692 \nL 181.072671 157.426003 \nL 185.936859 149.984355 \nL 191.03029 143.552446 \nL 196.363766 137.857907 \nL 201.948601 132.725061 \nL 207.796641 128.03396 \nL 213.920291 123.699055 \nL 220.33254 119.657183 \nL 227.046989 115.860385 \nL 234.07788 112.271384 \nL 241.440126 108.860634 \nL 249.149345 105.604322 \nL 257.221888 102.482975 \nL 265.674878 99.480465 \nL 274.526245 96.58329 \nL 283.794765 93.78003 \nL 293.500096 91.060941 \nL 303.662825 88.417647 \nL 314.304509 85.842892 \nL 325.447721 83.330353 \nL 337.116095 80.874484 \nL 349.334383 78.470399 \nL 362.128502 76.113767 \nL 375.525588 73.800735 \nL 389.55406 71.527862 \nL 404.243673 69.292058 \nL 419.625586 67.090544 \nL 435.732427 64.920808 \nL 452.59836 62.780575 \nL 470.259159 60.667777 \nL 488.752287 58.580532 \nL 508.116968 56.517118 \nL 528.394279 54.475959 \nL 549.627231 52.455612 \nL 571.86086 50.454746 \nL 595.142328 48.472138 \nL 619.521018 46.506656 \nL 645.04864 44.557257 \nL 671.779342 42.622972 \nL 699.769823 40.702904 \nL 729.079455 38.79622 \nL 759.770407 36.902143 \nL 791.907779 35.019953 \nL 825.559739 33.148974 \nL 860.797667 31.28858 \nL 897.696307 29.438182 \n\" style=\"fill:none;stroke:#ff7f0e;stroke-dasharray:6,2.25;stroke-dashoffset:0;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_62\">\n <path clip-path=\"url(#p492b83d5ab)\" d=\"M 86.059943 133.511886 \nL 86.446319 134.736953 \nL 86.850905 135.975461 \nL 87.274558 137.228039 \nL 87.718177 138.495359 \nL 88.182704 139.778139 \nL 88.669122 141.077142 \nL 89.178465 142.393186 \nL 89.711813 143.727148 \nL 90.270297 145.079964 \nL 90.855101 146.452646 \nL 91.467466 147.846277 \nL 92.10869 149.262027 \nL 92.780135 150.701162 \nL 93.483224 152.165048 \nL 94.219449 153.65517 \nL 94.990371 155.17314 \nL 95.797625 156.720716 \nL 96.642924 158.299819 \nL 97.528061 159.91255 \nL 98.454913 161.561222 \nL 99.425446 163.248379 \nL 100.441719 164.976834 \nL 101.505887 166.749709 \nL 102.620209 168.570479 \nL 103.787046 170.443026 \nL 105.008875 172.371711 \nL 106.288287 174.36145 \nL 107.627995 176.417817 \nL 109.030842 178.547162 \nL 110.499804 180.756767 \nL 112.037995 183.055034 \nL 113.648679 185.45173 \nL 115.335272 187.958298 \nL 117.101352 190.588264 \nL 118.950665 193.357776 \nL 120.887133 196.286325 \nL 122.914864 199.397745 \nL 125.03816 202.721598 \nL 127.261522 206.295177 \nL 129.589669 210.166458 \nL 132.027538 214.398617 \nL 134.5803 219.077215 \nL 137.253371 224.322212 \nL 140.052419 230.309295 \nL 142.983382 237.310842 \nL 146.052477 245.783162 \nL 149.266214 256.581683 \nL 152.63141 271.626868 \nL 156.155203 297.046764 \nL 156.165718 534.99625 \nM 163.697819 534.99625 \nL 163.708829 297.046764 \nL 167.754685 271.626868 \nL 171.991215 256.581683 \nL 176.427408 245.783162 \nL 181.072671 237.310842 \nL 185.936859 230.309295 \nL 191.03029 224.322212 \nL 196.363766 219.077215 \nL 201.948601 214.398617 \nL 207.796641 210.166458 \nL 213.920291 206.295177 \nL 220.33254 202.721598 \nL 227.046989 199.397745 \nL 234.07788 196.286325 \nL 241.440126 193.357776 \nL 249.149345 190.588264 \nL 257.221888 187.958298 \nL 265.674878 185.45173 \nL 274.526245 183.055034 \nL 283.794765 180.756767 \nL 293.500096 178.547162 \nL 303.662825 176.417817 \nL 314.304509 174.36145 \nL 325.447721 172.371711 \nL 337.116095 170.443026 \nL 349.334383 168.570479 \nL 362.128502 166.749709 \nL 375.525588 164.976834 \nL 389.55406 163.248379 \nL 404.243673 161.561222 \nL 419.625586 159.91255 \nL 435.732427 158.299819 \nL 452.59836 156.720716 \nL 470.259159 155.17314 \nL 488.752287 153.65517 \nL 508.116968 152.165048 \nL 528.394279 150.701162 \nL 549.627231 149.262027 \nL 571.86086 147.846277 \nL 595.142328 146.452646 \nL 619.521018 145.079964 \nL 645.04864 143.727148 \nL 671.779342 142.393186 \nL 699.769823 141.077142 \nL 729.079455 139.778139 \nL 759.770407 138.495359 \nL 791.907779 137.228039 \nL 825.559739 135.975461 \nL 860.797667 134.736953 \nL 897.696307 133.511886 \n\" style=\"fill:none;stroke:#2ca02c;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_63\">\n <path clip-path=\"url(#p492b83d5ab)\" d=\"M 86.059943 82.2468 \nL 86.446319 84.097199 \nL 86.850905 85.957593 \nL 87.274558 87.828571 \nL 87.718177 89.710762 \nL 88.182704 91.604838 \nL 88.669122 93.511523 \nL 89.178465 95.431591 \nL 89.711813 97.365875 \nL 90.270297 99.315275 \nL 90.855101 101.280756 \nL 91.467466 103.263365 \nL 92.10869 105.264231 \nL 92.780135 107.284578 \nL 93.483224 109.325736 \nL 94.219449 111.38915 \nL 94.990371 113.476396 \nL 95.797625 115.589194 \nL 96.642924 117.729427 \nL 97.528061 119.899162 \nL 98.454913 122.100677 \nL 99.425446 124.33648 \nL 100.441719 126.609354 \nL 101.505887 128.922385 \nL 102.620209 131.279017 \nL 103.787046 133.683103 \nL 105.008875 136.138972 \nL 106.288287 138.651511 \nL 107.627995 141.226266 \nL 109.030842 143.86956 \nL 110.499804 146.588648 \nL 112.037995 149.391909 \nL 113.648679 152.289084 \nL 115.335272 155.291593 \nL 117.101352 158.412941 \nL 118.950665 161.669253 \nL 120.887133 165.080003 \nL 122.914864 168.669004 \nL 125.03816 172.465802 \nL 127.261522 176.507673 \nL 129.589669 180.842579 \nL 132.027538 185.53368 \nL 134.5803 190.666526 \nL 137.253371 196.361064 \nL 140.052419 202.792974 \nL 142.983382 210.234621 \nL 146.052477 219.14231 \nL 149.266214 230.37146 \nL 152.63141 245.84253 \nL 156.155203 271.683563 \nL 156.166835 534.99625 \nM 163.696649 534.99625 \nL 163.708829 271.683563 \nL 167.754685 245.84253 \nL 171.991215 230.37146 \nL 176.427408 219.14231 \nL 181.072671 210.234621 \nL 185.936859 202.792974 \nL 191.03029 196.361064 \nL 196.363766 190.666526 \nL 201.948601 185.53368 \nL 207.796641 180.842579 \nL 213.920291 176.507673 \nL 220.33254 172.465802 \nL 227.046989 168.669004 \nL 234.07788 165.080003 \nL 241.440126 161.669253 \nL 249.149345 158.412941 \nL 257.221888 155.291593 \nL 265.674878 152.289084 \nL 274.526245 149.391909 \nL 283.794765 146.588648 \nL 293.500096 143.86956 \nL 303.662825 141.226266 \nL 314.304509 138.651511 \nL 325.447721 136.138972 \nL 337.116095 133.683103 \nL 349.334383 131.279017 \nL 362.128502 128.922385 \nL 375.525588 126.609354 \nL 389.55406 124.33648 \nL 404.243673 122.100677 \nL 419.625586 119.899162 \nL 435.732427 117.729427 \nL 452.59836 115.589194 \nL 470.259159 113.476396 \nL 488.752287 111.38915 \nL 508.116968 109.325736 \nL 528.394279 107.284578 \nL 549.627231 105.264231 \nL 571.86086 103.263365 \nL 595.142328 101.280756 \nL 619.521018 99.315275 \nL 645.04864 97.365875 \nL 671.779342 95.431591 \nL 699.769823 93.511523 \nL 729.079455 91.604838 \nL 759.770407 89.710762 \nL 791.907779 87.828571 \nL 825.559739 85.957593 \nL 860.797667 84.097199 \nL 897.696307 82.2468 \n\" style=\"fill:none;stroke:#2ca02c;stroke-dasharray:6,2.25;stroke-dashoffset:0;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_64\"/>\n <g id=\"line2d_65\"/>\n <g id=\"line2d_66\"/>\n <g id=\"line2d_67\"/>\n <g id=\"line2d_68\"/>\n <g id=\"patch_3\">\n <path d=\"M 45.478125 496.44 \nL 45.478125 7.2 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 938.278125 496.44 \nL 938.278125 7.2 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 45.478125 496.44 \nL 938.278125 496.44 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 45.478125 7.2 \nL 938.278125 7.2 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"legend_1\">\n <g id=\"patch_7\">\n <path d=\"M 848.759375 491.44 \nL 931.278125 491.44 \nQ 933.278125 491.44 933.278125 489.44 \nL 933.278125 387.693125 \nQ 933.278125 385.693125 931.278125 385.693125 \nL 848.759375 385.693125 \nQ 846.759375 385.693125 846.759375 387.693125 \nL 846.759375 489.44 \nQ 846.759375 491.44 848.759375 491.44 \nz\n\" style=\"fill:#ffffff;opacity:0.8;stroke:#cccccc;stroke-linejoin:miter;\"/>\n </g>\n <g id=\"text_13\">\n <!-- Pool -->\n <g transform=\"translate(858.759375 397.291562)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 9.421875 75.984375 \nL 18.40625 75.984375 \nL 18.40625 0 \nL 9.421875 0 \nz\n\" id=\"DejaVuSans-108\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-80\"/>\n <use x=\"56.677734\" xlink:href=\"#DejaVuSans-111\"/>\n <use x=\"117.859375\" xlink:href=\"#DejaVuSans-111\"/>\n <use x=\"179.041016\" xlink:href=\"#DejaVuSans-108\"/>\n </g>\n </g>\n <g id=\"line2d_69\">\n <path d=\"M 850.759375 408.469687 \nL 870.759375 408.469687 \n\" style=\"fill:none;stroke:#1f77b4;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_70\"/>\n <g id=\"text_14\">\n <!-- WBTC/DAI -->\n <g transform=\"translate(878.759375 411.969687)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 3.328125 72.90625 \nL 13.28125 72.90625 \nL 28.609375 11.28125 \nL 43.890625 72.90625 \nL 54.984375 72.90625 \nL 70.3125 11.28125 \nL 85.59375 72.90625 \nL 95.609375 72.90625 \nL 77.296875 0 \nL 64.890625 0 \nL 49.515625 63.28125 \nL 33.984375 0 \nL 21.578125 0 \nz\n\" id=\"DejaVuSans-87\"/>\n <path d=\"M 19.671875 34.8125 \nL 19.671875 8.109375 \nL 35.5 8.109375 \nQ 43.453125 8.109375 47.28125 11.40625 \nQ 51.125 14.703125 51.125 21.484375 \nQ 51.125 28.328125 47.28125 31.5625 \nQ 43.453125 34.8125 35.5 34.8125 \nz\nM 19.671875 64.796875 \nL 19.671875 42.828125 \nL 34.28125 42.828125 \nQ 41.5 42.828125 45.03125 45.53125 \nQ 48.578125 48.25 48.578125 53.8125 \nQ 48.578125 59.328125 45.03125 62.0625 \nQ 41.5 64.796875 34.28125 64.796875 \nz\nM 9.8125 72.90625 \nL 35.015625 72.90625 \nQ 46.296875 72.90625 52.390625 68.21875 \nQ 58.5 63.53125 58.5 54.890625 \nQ 58.5 48.1875 55.375 44.234375 \nQ 52.25 40.28125 46.1875 39.3125 \nQ 53.46875 37.75 57.5 32.78125 \nQ 61.53125 27.828125 61.53125 20.40625 \nQ 61.53125 10.640625 54.890625 5.3125 \nQ 48.25 0 35.984375 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-66\"/>\n <path d=\"M -0.296875 72.90625 \nL 61.375 72.90625 \nL 61.375 64.59375 \nL 35.5 64.59375 \nL 35.5 0 \nL 25.59375 0 \nL 25.59375 64.59375 \nL -0.296875 64.59375 \nz\n\" id=\"DejaVuSans-84\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-87\"/>\n <use x=\"98.876953\" xlink:href=\"#DejaVuSans-66\"/>\n <use x=\"167.480469\" xlink:href=\"#DejaVuSans-84\"/>\n <use x=\"222.689453\" xlink:href=\"#DejaVuSans-67\"/>\n <use x=\"292.513672\" xlink:href=\"#DejaVuSans-47\"/>\n <use x=\"326.205078\" xlink:href=\"#DejaVuSans-68\"/>\n <use x=\"401.457031\" xlink:href=\"#DejaVuSans-65\"/>\n <use x=\"469.865234\" xlink:href=\"#DejaVuSans-73\"/>\n </g>\n </g>\n <g id=\"line2d_71\">\n <path d=\"M 850.759375 423.147812 \nL 870.759375 423.147812 \n\" style=\"fill:none;stroke:#ff7f0e;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_72\"/>\n <g id=\"text_15\">\n <!-- WETH/DAI -->\n <g transform=\"translate(878.759375 426.647812)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 9.8125 72.90625 \nL 55.90625 72.90625 \nL 55.90625 64.59375 \nL 19.671875 64.59375 \nL 19.671875 43.015625 \nL 54.390625 43.015625 \nL 54.390625 34.71875 \nL 19.671875 34.71875 \nL 19.671875 8.296875 \nL 56.78125 8.296875 \nL 56.78125 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-69\"/>\n <path d=\"M 9.8125 72.90625 \nL 19.671875 72.90625 \nL 19.671875 43.015625 \nL 55.515625 43.015625 \nL 55.515625 72.90625 \nL 65.375 72.90625 \nL 65.375 0 \nL 55.515625 0 \nL 55.515625 34.71875 \nL 19.671875 34.71875 \nL 19.671875 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-72\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-87\"/>\n <use x=\"98.876953\" xlink:href=\"#DejaVuSans-69\"/>\n <use x=\"162.060547\" xlink:href=\"#DejaVuSans-84\"/>\n <use x=\"223.144531\" xlink:href=\"#DejaVuSans-72\"/>\n <use x=\"298.339844\" xlink:href=\"#DejaVuSans-47\"/>\n <use x=\"332.03125\" xlink:href=\"#DejaVuSans-68\"/>\n <use x=\"407.283203\" xlink:href=\"#DejaVuSans-65\"/>\n <use x=\"475.691406\" xlink:href=\"#DejaVuSans-73\"/>\n </g>\n </g>\n <g id=\"line2d_73\">\n <path d=\"M 850.759375 437.825937 \nL 870.759375 437.825937 \n\" style=\"fill:none;stroke:#2ca02c;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_74\"/>\n <g id=\"text_16\">\n <!-- USDC/DAI -->\n <g transform=\"translate(878.759375 441.325937)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 8.6875 72.90625 \nL 18.609375 72.90625 \nL 18.609375 28.609375 \nQ 18.609375 16.890625 22.84375 11.734375 \nQ 27.09375 6.59375 36.625 6.59375 \nQ 46.09375 6.59375 50.34375 11.734375 \nQ 54.59375 16.890625 54.59375 28.609375 \nL 54.59375 72.90625 \nL 64.5 72.90625 \nL 64.5 27.390625 \nQ 64.5 13.140625 57.4375 5.859375 \nQ 50.390625 -1.421875 36.625 -1.421875 \nQ 22.796875 -1.421875 15.734375 5.859375 \nQ 8.6875 13.140625 8.6875 27.390625 \nz\n\" id=\"DejaVuSans-85\"/>\n <path d=\"M 53.515625 70.515625 \nL 53.515625 60.890625 \nQ 47.90625 63.578125 42.921875 64.890625 \nQ 37.9375 66.21875 33.296875 66.21875 \nQ 25.25 66.21875 20.875 63.09375 \nQ 16.5 59.96875 16.5 54.203125 \nQ 16.5 49.359375 19.40625 46.890625 \nQ 22.3125 44.4375 30.421875 42.921875 \nL 36.375 41.703125 \nQ 47.40625 39.59375 52.65625 34.296875 \nQ 57.90625 29 57.90625 20.125 \nQ 57.90625 9.515625 50.796875 4.046875 \nQ 43.703125 -1.421875 29.984375 -1.421875 \nQ 24.8125 -1.421875 18.96875 -0.25 \nQ 13.140625 0.921875 6.890625 3.21875 \nL 6.890625 13.375 \nQ 12.890625 10.015625 18.65625 8.296875 \nQ 24.421875 6.59375 29.984375 6.59375 \nQ 38.421875 6.59375 43.015625 9.90625 \nQ 47.609375 13.234375 47.609375 19.390625 \nQ 47.609375 24.75 44.3125 27.78125 \nQ 41.015625 30.8125 33.5 32.328125 \nL 27.484375 33.5 \nQ 16.453125 35.6875 11.515625 40.375 \nQ 6.59375 45.0625 6.59375 53.421875 \nQ 6.59375 63.09375 13.40625 68.65625 \nQ 20.21875 74.21875 32.171875 74.21875 \nQ 37.3125 74.21875 42.625 73.28125 \nQ 47.953125 72.359375 53.515625 70.515625 \nz\n\" id=\"DejaVuSans-83\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-85\"/>\n <use x=\"73.193359\" xlink:href=\"#DejaVuSans-83\"/>\n <use x=\"136.669922\" xlink:href=\"#DejaVuSans-68\"/>\n <use x=\"213.671875\" xlink:href=\"#DejaVuSans-67\"/>\n <use x=\"283.496094\" xlink:href=\"#DejaVuSans-47\"/>\n <use x=\"317.1875\" xlink:href=\"#DejaVuSans-68\"/>\n <use x=\"392.439453\" xlink:href=\"#DejaVuSans-65\"/>\n <use x=\"460.847656\" xlink:href=\"#DejaVuSans-73\"/>\n </g>\n </g>\n <g id=\"text_17\">\n <!-- Manipulation -->\n <g transform=\"translate(858.759375 456.004062)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 9.8125 72.90625 \nL 24.515625 72.90625 \nL 43.109375 23.296875 \nL 61.8125 72.90625 \nL 76.515625 72.90625 \nL 76.515625 0 \nL 66.890625 0 \nL 66.890625 64.015625 \nL 48.09375 14.015625 \nL 38.1875 14.015625 \nL 19.390625 64.015625 \nL 19.390625 0 \nL 9.8125 0 \nz\n\" id=\"DejaVuSans-77\"/>\n <path d=\"M 18.109375 8.203125 \nL 18.109375 -20.796875 \nL 9.078125 -20.796875 \nL 9.078125 54.6875 \nL 18.109375 54.6875 \nL 18.109375 46.390625 \nQ 20.953125 51.265625 25.265625 53.625 \nQ 29.59375 56 35.59375 56 \nQ 45.5625 56 51.78125 48.09375 \nQ 58.015625 40.1875 58.015625 27.296875 \nQ 58.015625 14.40625 51.78125 6.484375 \nQ 45.5625 -1.421875 35.59375 -1.421875 \nQ 29.59375 -1.421875 25.265625 0.953125 \nQ 20.953125 3.328125 18.109375 8.203125 \nz\nM 48.6875 27.296875 \nQ 48.6875 37.203125 44.609375 42.84375 \nQ 40.53125 48.484375 33.40625 48.484375 \nQ 26.265625 48.484375 22.1875 42.84375 \nQ 18.109375 37.203125 18.109375 27.296875 \nQ 18.109375 17.390625 22.1875 11.75 \nQ 26.265625 6.109375 33.40625 6.109375 \nQ 40.53125 6.109375 44.609375 11.75 \nQ 48.6875 17.390625 48.6875 27.296875 \nz\n\" id=\"DejaVuSans-112\"/>\n <path d=\"M 8.5 21.578125 \nL 8.5 54.6875 \nL 17.484375 54.6875 \nL 17.484375 21.921875 \nQ 17.484375 14.15625 20.5 10.265625 \nQ 23.53125 6.390625 29.59375 6.390625 \nQ 36.859375 6.390625 41.078125 11.03125 \nQ 45.3125 15.671875 45.3125 23.6875 \nL 45.3125 54.6875 \nL 54.296875 54.6875 \nL 54.296875 0 \nL 45.3125 0 \nL 45.3125 8.40625 \nQ 42.046875 3.421875 37.71875 1 \nQ 33.40625 -1.421875 27.6875 -1.421875 \nQ 18.265625 -1.421875 13.375 4.4375 \nQ 8.5 10.296875 8.5 21.578125 \nz\nM 31.109375 56 \nz\n\" id=\"DejaVuSans-117\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-77\"/>\n <use x=\"86.279297\" xlink:href=\"#DejaVuSans-97\"/>\n <use x=\"147.558594\" xlink:href=\"#DejaVuSans-110\"/>\n <use x=\"210.9375\" xlink:href=\"#DejaVuSans-105\"/>\n <use x=\"238.720703\" xlink:href=\"#DejaVuSans-112\"/>\n <use x=\"302.197266\" xlink:href=\"#DejaVuSans-117\"/>\n <use x=\"365.576172\" xlink:href=\"#DejaVuSans-108\"/>\n <use x=\"393.359375\" xlink:href=\"#DejaVuSans-97\"/>\n <use x=\"454.638672\" xlink:href=\"#DejaVuSans-116\"/>\n <use x=\"493.847656\" xlink:href=\"#DejaVuSans-105\"/>\n <use x=\"521.630859\" xlink:href=\"#DejaVuSans-111\"/>\n <use x=\"582.8125\" xlink:href=\"#DejaVuSans-110\"/>\n </g>\n </g>\n <g id=\"line2d_75\">\n <path d=\"M 850.759375 467.182187 \nL 870.759375 467.182187 \n\" style=\"fill:none;stroke:#333333;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_76\"/>\n <g id=\"text_18\">\n <!-- trading -->\n <g transform=\"translate(878.759375 470.682187)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 45.40625 46.390625 \nL 45.40625 75.984375 \nL 54.390625 75.984375 \nL 54.390625 0 \nL 45.40625 0 \nL 45.40625 8.203125 \nQ 42.578125 3.328125 38.25 0.953125 \nQ 33.9375 -1.421875 27.875 -1.421875 \nQ 17.96875 -1.421875 11.734375 6.484375 \nQ 5.515625 14.40625 5.515625 27.296875 \nQ 5.515625 40.1875 11.734375 48.09375 \nQ 17.96875 56 27.875 56 \nQ 33.9375 56 38.25 53.625 \nQ 42.578125 51.265625 45.40625 46.390625 \nz\nM 14.796875 27.296875 \nQ 14.796875 17.390625 18.875 11.75 \nQ 22.953125 6.109375 30.078125 6.109375 \nQ 37.203125 6.109375 41.296875 11.75 \nQ 45.40625 17.390625 45.40625 27.296875 \nQ 45.40625 37.203125 41.296875 42.84375 \nQ 37.203125 48.484375 30.078125 48.484375 \nQ 22.953125 48.484375 18.875 42.84375 \nQ 14.796875 37.203125 14.796875 27.296875 \nz\n\" id=\"DejaVuSans-100\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-116\"/>\n <use x=\"39.208984\" xlink:href=\"#DejaVuSans-114\"/>\n <use x=\"80.322266\" xlink:href=\"#DejaVuSans-97\"/>\n <use x=\"141.601562\" xlink:href=\"#DejaVuSans-100\"/>\n <use x=\"205.078125\" xlink:href=\"#DejaVuSans-105\"/>\n <use x=\"232.861328\" xlink:href=\"#DejaVuSans-110\"/>\n <use x=\"296.240234\" xlink:href=\"#DejaVuSans-103\"/>\n </g>\n </g>\n <g id=\"line2d_77\">\n <path d=\"M 850.759375 481.860312 \nL 870.759375 481.860312 \n\" style=\"fill:none;stroke:#333333;stroke-dasharray:6,2.25;stroke-dashoffset:0;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_78\"/>\n <g id=\"text_19\">\n <!-- lp -->\n <g transform=\"translate(878.759375 485.360312)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-108\"/>\n <use x=\"27.783203\" xlink:href=\"#DejaVuSans-112\"/>\n </g>\n </g>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"p492b83d5ab\">\n <rect height=\"489.24\" width=\"892.8\" x=\"45.478125\" y=\"7.2\"/>\n </clipPath>\n </defs>\n</svg>\n",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA7MAAAIWCAYAAACFuNqGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3RU1d7G8e9JZpJJMsmkF1JIQugdQhEQpCPFgorY28Xua7/2ay/X3rui14aKiKIiogiIoHTpnQAB0nufct4/dirpjUnC77PWWWfmlH32BMQ8s5um6zpCCCGEEEIIIUR74uLsCgghhBBCCCGEEI0lYVYIIYQQQgghRLsjYVYIIYQQQgghRLsjYVYIIYQQQgghRLsjYVYIIYQQQgghRLsjYVYIIYQQQgghRLtjcHYFmiMwMFCPjo52djWEEEIIIYQQQrSCDRs2pOm6HlTTuXYdZqOjo1m/fr2zqyGEEEIIIYQQohVomnaotnPSzVgIIYQQQgghRLvTLsOspmkzNE17Nzs729lVEUIIIYQQQgjhBO0yzOq6vkjX9WstFouzqyKEEEIIIYQQwgnaZZgVQgghhBBCCHFqkzArhBBCCCGEEKLdkTArhBBCCCGEEKLdaZdhViaAEkIIIYQQQohTW7sMszIBlBBCCCGEEEKc2tplmBVCCCGEEEIIcWqTMCuEEEIIIYQQot2RMCuEEEIIIYQQot2RMCuEEEIIIYQQot1pl2FWZjMWQgghhBBCiFNbuwyzMpuxEEIIIYQQQpza2mWYFUIIIYQQQghxapMwK4QQQgghhBCi3ZEwK4QQQgghhBCi3ZEwK4QQQgghhBCi3WmXYVZmMxZCCCGEEEKIU5vB2RVoCl3XFwGL4uPj5zi7LrVyOCB1J7h5gV+0s2sjhBBCCCGE6ChsxZCXAiV5UJIPxbnqtWcAdB6hjv3xQum5PCjJVXtXI1z8pSrj/Ykw8VF1fTvVLsNsu+CwwbtnwLDrYdLjzq6NEEIIIYQQwhkcdhU2rQXg00kdS1wPuUkqgBbnqtBZkgfx14BPGGz6FLZ/WxpE8yvC6Bn3wtA5sHcpfHlJ9Wd1m6LCqe6AVS+Bmze4m1UDm5sZvIIqru1+pgq/7ZiE2dZicIPQvnB0o7NrIoQQQgghhGgMh6NS0Czdm0PANxKyE2HnD6UBszRkFudCYFcY82+wFsLboyrOWfNVma7u8FCKer34Hji6vuozNRfoOlmF2aIcKMhQQdQzoCKQBnZV14b1hxmvlh73VufczeAZqM67meE/GaBptX/G0+9o2Z+ZE0iYbU3h8epbFYcdXFydXRshhBBCCCE6Nl2HvOTSIJlTui8NlQMuUtesex9SdlaE0OIcFVinvwSdBsLy/8Lyp6qXfcZ9qmU04wD8fI865uoG7t4qPLoa1TGDCUL7qXDp7qPOuZe2kOq6CpgzXgHdXnHOzQxGj4rwedqNaquNbyQMvqL283WF2A5EwmxrihgCa9+BlB2qlVYIIYQQQghRla6rzcUF8tMg89AJQTQXQvtA9ChI26eCZnGuar0sOx/cAy75WpX3Yi8VFE/UZyYY3GHPL5C4tjREequ9Z4BqGQWIGg5j7q0IoGXXlbWKRg6Duw+ocwb36s/RNLhgbt2fObRP039eopyE2dYUOUTtj/wtYVYIIYQQQnQ8tmLVrdbDV71PWAWFmZWCZo7axv1HDcNb9iQcXFkpqGar/UXzoNtk2Pw5LH2o+nOG36TCrL0Ejv9TGjS9wStGtX6WBc2yVk+jR0WLZ9m1LqUtp5d8Vfdnih2jttoY3GsOseKkkzDbmnw7Q/dp7X5gtRBCCCGE6ICsRSpounmpLeswHNtUGkRzKlo/wwdB3/NV99r510BRtjpflAP2YgjuBTeuUWV+eakKs5UZPGDk7WAIUJOkGtxKQ6h3xebbWV3bYxoEdgOTT6Xzpa8BQnrBLRvq/lyDLmvZn5Nos9plmNU0bQYwIy4uztlVqZumwUWfO7sWQgghhBCio3HYVai0FVXMkLvnF8hPUceLsitaRyc/AR5+8OujsGNhRVi1l6j7Zr4H/WbB/mWw6Naqz3Ezq33f89VYUE9/teykyUeFTJMP+IRXXH/x16rV0t0bTBa1LxtLCjDh4bo/V0AXtQnRAJqu686uQ5PFx8fr69evr/9CZypbb9YnvKL7hRBCCCGEOLXZSlSgNJjU2Mvso5C4rlIQLW39DOkNg69Uy7h8cq4KokXZaiZdAJ8IuGO7ev1Kf8hMqHiGm7cKm1ctBr/O8Pc7avhbWQh191GBM/YM1U03Pw1yj1c9L5OYCifTNG2DruvxNZ1rly2z7UrKdjU197nvQv8LnV0bIYQQQgjREhx2NQOuyaLeH/5bBcGiLCjMUvuibBj9b7XUyqqXYPMXFUHVVqjum/q8Wjc0cS18fWVF+ZqLCpO9z4XBgNET/GPB5KuCpsmitsrrhl4yX82uW9YiemIQHXad2mrjFag2IdoJCbOtLbi3+kcn4Q8Js0IIIYQQbUnZMilF2ZC6uzSEZpcG0SzVs27AxVCSD59fWBpUS88X56iWz/sTVVk/3QVJWyrK1lxVr7z4q1WY9fBXM+6WtYaafNW+8wh1fewZcMPqipDqZq66vIrJB2Z/VvfnKZsESYhThITZ1ubiomZeO7jS2TURQgghhOiYCjKgIF1NPFSYVTqbbhb0nKHGk26dD1u/rtpiWpgFo+9SW+J6+HRm9XLjJqgwazCpiYt8IlRDhYevCpwefhWB+Jy31L4sqLp5VQ2jg6+oe11QDz+1CSEaTMLsyRAzGnb9oMYw+EU7uzZCCCGEEG2LrquJispCaGGmWkYleqQ69+vDpUG1LKxmqUB662bVlfary1UvuBMFxKkwW5QFOcdUCA3sqsKmhy9ElA7D6zQQLvmmIqSWdeUtW37FxRWu/rnuzyDrhgpx0kmYPRliz1D7A8vVAH4hhBBCiI5I11X328JMtTShuzck76hYe7QwQ7WiFmaqNUWHzoGjG+H9CaDbq5YV1h+uW6laNzd/XtFt18MPfCPB1FfNxuviASNvhUFXVJz38KsIrABD/qW22nj6Q9cJrfMzEUK0GgmzJ0NgN+g+tWKCACGEEEKI9iJpGxSkVYTQwgzVMnrGfWoW3l8fgZ0/VLScloXSCz5Skxcd+hMW362OufuooOnpD3arOmaJgFG3nRBC/cAcXFGHu/fVXceuE1v0Iwsh2gcJsyeDpsFFXzi7FkIIIYQ4FTkcUJxdOq40Q4VRD3+IHKKWYvntsYoW07Jxpx5+cNPf6v7PZ0HO0aplGr3UrLjuZtUCG9JbBVQPP1W2hx90GqSu7T8bep2jWkkrrzdaxhwM4//Tmj8BIUQHJWH2ZNF1SN2luttYIpxdGyGEEEK0Rw6HGv/p7q2C4fF/SltO00uDaGkoHXS56sa7/VuYf031Lry9zoHIj9Xr3YtVIPX0V2NMPQOq/q5yzlvgYqhoUfXwqxhLCjDilrrr7O6tNiGEaGESZk+Woix4awSMugPGP+Ts2gghhBCiLbAWqtbRgnTVlTc/HUpyK8Z3/nwfHNtUcU1RFugONZY0rD/8Mw/+elNd62KsCKVFOepYYHfVhdczQLWYegaozSdMnfcKhLv31l3H2DGt8cmFEKLZ2mWY1TRtBjAjLi7O2VVpOA8/iBwOe5dImBVCCCE6orJWU81FdanNTYY9P1eMNy0LpAFd4Mz/gq0YngytXo7mAoOvVsv7FeWoVtGQ3hVB1NMfzKX3jbxVdff18Fetn5WXggEI6QUh0oVXCNExtcswq+v6ImBRfHz8HGfXpVG6TVZTy2cnSldjIYQQoq0rWy4mP1WF0PxUtXUZB75RsH0hrP+wNKSmqb1uh9PvVGNAMxNg0f+psoye4BkIXgEqzILqqjvxMTXhkWeAaiX1DFRhtSyUnvNG3XX0riEMCyHEKaJdhtl2q/uZKszuXqymohdCCCHEyWW3VkxCtO83yEuuCKn5pYF11sfg5gVfXqrWiT/RrP+pMGsvAVsR+Meo9UrLwmjEEHVdWH+4bZsKqm6eNddn5K2t8zmFEOIUIGH2ZArsBv5dYPdPEmaFEEKIlqDrUJIHeSkqiLqZIbSPaiX9/cmK42V7cwj830Z173c3Q+4x9dpgAq8gFUhL8lWY7Xs+RA4rPV56zisQvEqXjOk3S221MZrUeqhCCCFahYTZk0nTYNj1amIHIYQQQtSuOA9ykyA/pWogjZsAUcNgzy/w052Qlwq2wor7es+EC+aq19sXqmVfvIIgfJAKob5RFdde8rUKrV6BKgSfON6097mt/jGFEEI0nYTZk23Ytc6ugRBCCOEclbv4HlwJ6ftVN9+8ZBVUc5PgnDchqDssewL+fuuEAjTVZTdqmBp7Gjm8Iqyag1VY9Y9Rl3oFwj0H665PaJ8W/4hCCCFOHgmzzpBxAI5thj4znV0TIYQQonl0Xc3gm5eiwmpoH3DY1RwRZQE1LwXyklRr64Mpapbe5c/AoT9VGZ4BqvuvORgcNnWs7/nQaSCYg1RINQer61xc1fnwwXDee075yEIIIdoGCbPOsPY9WPc+xI0Hk8XZtRFCCCGqKwupuUmQe1zt/aKh8whI3V063jRJtarai9U9nQbCtctV4Nz8hZr0yByqZu/tPEIFVocNXNzg7DfA1U21qhrcqj8/Il5tQgghRC0kzDpD75lqgfNdP8GAi5xdGyGEEKeaohzIOaZCal5yRVjtOwsiBsOmT+GHOypCaplBV6hQavQEo0dpQA1Wy8OYQ6qOR717X/UxqJWVdQcWQgghmkjCrDNExIMlCrbNlzArhBCi5R3bBJmHVEgtC605x+C898GnE/x8L2z+rOo97j6q627EYAjqqeZ48A5TQbVsby5d09Q3Eq74vu461BVkhRBCiBYgYdYZNA36ngd/vqpmYTQHObtGQggh2jpbieqOaytRX4aWh9TjanmZkgK4ea269rtbIHmreu3qDj5h4N1JXQMw8DLoMq5SSA0Bd3PFsyJKQ60QQgjRhkmYdZZ+F8Kql2DbNzD8emfXRgghhDMV56qxpB5+kHVEdfPNSYTsoxWhtdMAuGIRaC7w3U2gO9T13p1UWA3pAw6HmlzprFfVrMHencDTv3oraefTnPIxhRBCiJYkYdZZgnvCpCfUenlCCCE6LmuhCqVeASp8HloNW74sDapH1b44G067GSY/CYUZsOK/qrXUpxMEdoXYMyqWkXE1wP9tUjP8unnW/MzwQSft4wkhhBDOImHWmUbc4uwaCCGEaA5dV8vOZCeqsGlwhw0fwZ4lkH1EBdXCDHXtue9C/wvV8mw7fwBLOPjFQOeR6nXkcHVdSB+1fE1NM/yW8Ytu7U8mhBBCtHntMsxqmjYDmBEXF+fsqjTf2vdUV7Fh1zm7JkIIIU5kK1atp3mpEDVMHVv6sJpgqSysls34e+NfqtdN5iHITABLBITHq6DqEwFRpWF1wCUw8NLan+niWrGWqhBCCCFqpem67uw6NFl8fLy+fv16Z1ejeb64GBLXwR071PgmIYQQJ4+1SIVSWxGE9lXh9dvr1LjV7ES1bA26Wg/1gWQ1HvXLy9QYVkukCqy+UWrfeSSYfJz9iYQQQogORdO0Dbqu17jweLtsme1QBl4Ku39UXdJ6Tnd2bYQQomOxlaiJlFwMKnRmHITfn1Stp1mHIS9JXddpEFz7uwqtafvA00/NaeBbGlgtkUDpl78XfuK0jyOEEEKIChJmna3rJLU0wsaPJcwKIURj6TrkJoHRAzx84fDfsGFuRVjNPaaGcgy6Qs3wq2lwZK0Ktl0ngG9ntQWUDlvRNLhhlVM/khBCCCEaRsKss7ka1Hp/K59Tv3j5Rjm7RkII0bZYC8HFqP693Pcb7F2qxqRmHlSh1VYI016AIf+C/FQ4+If6tzTmdLX37ay6EIOaOOm2Lc78NEIIIYRoIRJm24JBl8Mfz8OO72HEzc6ujRBCOM/epXBsc2lQTVDdgnOPwTVLIXIoHF4DG/8H/jGqNTVuggqo0aPV/T2nSy8XIYQQ4hQhYbYt8I2EG1ZDUA9n10QIIVrX0Y2Qvh8y9pfuD6jgevt21VV43fuw52c1/MIvWq2v6hcN5mB1/+h/w9gHVHdgIYQQQpzSJMy2FcE91d5aqH6hE0KI9qgwqzSoHlD7jANgt8IFc9X5eZeollY0NbGSfyz0PKvi376zXgM3M7h51lx+XWuvCiGEEOKUImG2LfnuZkjdDf9a6uyaCCFE7exWNVY1fS+k7QWTBQZfAflp8FyXqtf6RKgv63Rdtaae/yF4+KnWVqOpetllLbBCCCGEEPWQMNuWhPSBTZ/A0Q0QPtjZtRFCnMp0HQrSK8JqSC84/g/Mv0Z1C3bYKq6NPUOFWc8AmPxU6ezAXUoD6wk9TTqfdjI/hRBCCCE6MAmzbcmAi2HZE/DXW3De+86ujRDiVOBwqGBqcIPE9WpZm9Q9kLYHirLUNWXL2ngGQnAP6DkDArtCQFcIjFMtraBaXk+7yWkfRQghhBCnFgmzbYnJBwZdBmvfhQmPgiXc2TUSQnQk2YlwbJMazpC6G9J2q5bXSU/AkGsg9zjsWaImo+szszSsdoXgXup+Szhc+KlzP4MQQgghRCkJs23NsOvg77dh7Tsw8TFn10YI0d7YbWrSpZQdkLITUneqGYBD+8CGj9Sa1gCWSAjsBoNHqSEOAD2mq1ZXIYQQQoh2QMJsW+MXDYOvUt35hBCiNroO2UdUYI09Awzu8ONdsPFjsJeUXqSpf1PyU9XbgZdC96kqxLqbq5cpy90IIYQQoh2RMNsWTX/R2TUQQrRFmz6FI2tVgE3ZCSW56vj1f6qW17D+MOx61S04uKcKrZWXuPGLVpsQQgghRAcgYbatKsiAjf+D4TeoFhchRMfnsKsuwklbIXkbJG1Ty9/ctA5cDbDlS3UuuDcMuEgF1uBeauZgUGPuhRBCCCFOERJm26pjm+DXh8HTHwZd7uzaCCFaWnEuJG+HvGTodbbqNvxSbzUJE4DmCkHdITxetcB6+MFF88DoKd2BhRBCCCGQMNt2dRmnugyuehkGXAIurs6ukRCiOayFanK34/+oLeOAOm70gh4zwMUFRt6mxrKG9FEzChtNVctw8zrp1RZCCCGEaKskzLZVmgan3wlfXQ7bv4W+5zu7RkKIhshLheOb1XZsMxhMcP4H4OoOK58HzwD1RVX/iyG0rxrrWtbSOvx6J1ZcCCGEEKJ9kTDbWrIOw+J7YdRtEDm0aWX0mAGB3dUvwL1nqpYbIUTbkZ8OhZkQGKfWcH1/IuQeqzjv3wWiR6rXLi5w5+6aZxEWQgghhKiProOtSG3WoorXzXpfDBd90W6HMEmYbS0mX9i3FPxjmh5mXVxg9F2wYA4cXlPxS7EQ4uSzFqmx7Ec3wLGNap+ZADFj4IrvwRwKsWNUF+FOA1Srq8lStQwJskIIIUTH4LCrIUS2osbvmxo+7cXNq7OrGxg8sBvcKTCayDe64+dqwt1uBYNby/xcTjIJs63EavRgcfRAovd8T79JTzT9244+50FgV+g0sGUrKISond0GqbtUYPUMgJ7T1azCc6eo85ZI9d/k4Ksgarg65mqAc992Xp2FEEKIU5ndBtaC0uBXoMKftaA0QBZWhMOmBlBrUdVyHNam19XVXc2LYai0VX5v8q3y3uHqTr7BQL6LKwUuLhS4uJCvgcnoRX9LF+yubvwvZQ35up18h5VC3Ua+o4Ri3c6ro54Bg4k7/nyQDSkbKLQVUmgrLK1IMf878z0GttMgC20ozGqaFgW8CmQAe3Rdf8bJVWoWF82Fp0hnBrn0O7YJwgc1sSBX9UuzrkNBOngFtmxFhRBK5iHY9Akc+RsSN4A1Xx3vPk2F2aCeMPsLCB8M3iHOrasQQgjRHpS1XpYHysKqQbMsLFa7ppb3NV5TWpbD1rQ6aq5g9CgNlB6VgqWH2pcHS48G73WDO0UurniYLGAwcaAolTRrngqb9hIK7IUUWAuYFD2JTuZOLDu8jMUHF5NvzSffmk+hrZB8azqzus/iit5XsCFpHVcvubpa1QcFD+LjkXfjouu8vO4BdF3H0+iJl8ELT6MnnkZP7CYLri6u9Arsha/JFy+jF54Gdc7L6EWEOaJ5f8ZO1qphVtO0D4HpQIqu630qHZ8CvAK4Au+XBte+wHxd1z/VNO3L1qzXyeDq4kqvgF5sK1yrJnBqapgt8+31kLQFrv9Txs4K0RwOh2plPfK32joNhCH/UmNf/3hRdQ8eeAlEDFHB1T9W3edqgB5TnVt3IYQQoiXoOthLKlouy0JmSUGlYyecq/FYQd3X2UuaVr+ylkujZ2m49Kx47xmoQmfZZih7XXZN5WMnhtQa9q7G0h+JTpG9qDxQeho8CfIMIqsoi1XHVlFgLSDPmld+PsDkz5x+cwC4YvEV5JTkkG/NJ8+aR4G1ALtuZ8OlG3BzdeO/S59l9bHV1T5mrG8sncydSC1IZWfGTjwNKmAGewbjafQk1CsUgCjvKO6Kv6s8qHoZVVgNMAUAoGkaay5ag8lgwkWrOSf8q++/mvZn0cZpuq63XuGaNhrIA/5XFmY1TXMF9gATgURgHXARkAzMB3TgE13X59ZXfnx8vL5+/fpWqn3zvbzhZT7e9gF/pTtwv21r80Lo1vnwzTVw/oeq67EQonESN8DypyFxLRRlq2MefjBkDox7QH17bCuS5W+EEEI4n8OhWiBLClRPoZKykJhfKXAWVJy3FkJJfkWILMk/IXDWEER1R+PrVTk4unlWCpGV9x4VIdTNqyI0Vguftb03NWpJSpvDVh4wc0tyywPlaZ1Ow+hiZOmhpezO2F1+TVnYvK7/dQwMHshXu7/i5Y0vlwfQMpf2vJR7ht7DzvSdzPphVvlxDQ0voxd9Avvw3qT3ALjt99vKj1feLu11Ke6u7mxL20aBtaA8hJad9zB41Bo+RQVN0zbouh5f07lWbZnVdX2lpmnRJxweCuzTdf1AaeXmAWcDVuDh0nvmAzWGWU3TrgWuBYiKimqtqreIfkH9sAE7i1MYcHg1RI9qemG9z1WzGv/+NPQ8W7USCSGqK85TgfXQarV1naRmFXc1QPYR6HWOmpQtchgExFWMZ3dxlSArhBCi4ezWigBZkl/768qhs1oorSWglo9pbASjZ8VWHjS9KrVkejY8iJbdW/m9wdTivQOLbEWkF6WTV5JHfl5qectnmFcYA4IHkFaYxvtb3yevJI88q9ryS/IJ9AjktfGvATD2q7FkFWdVK3v5rOUEeASwJGEJvyT8UiVkmo1mSkpbjWMsMUyPnY7ZaMbT6InZaMbL6EWcbxygWk+/P+f78uMeBg+0E+bCeXnsy3V+zj6Bfeo8L5rOGYkoHDhS6X0iMAx4G3hE07SLgYTabtZ1/V3gXVAts61XzebrF9QPgM1ePgzY/EXzwqyLK4y9H766DLZ8qbpBCiFUVylNg4Q/4ZcH4fg/oNvVGJiw/uDhq64L6w83/e3UqgohhDjJdL2ipbIkr/7g2ZjXje1Ca/AoDZGlIbHstWcg+Ja+rhxC3U4MpzW99qpo3XTCMLRDOYfIKs6qCJul+/O6nofZzcxXu79izbE15FpzyS/JLw+k9wy9hynRU/jhwA88uubRauWeE3cOA4IHUGwv5vt93+PlpgKo2WjGYrKUd78FuL7/9ei6rkKqmwqc3kZvfNx8AHhq1FM8O/rZWltAh4QOYUjokFo/o7urOzGWmGb+pERraTPNe7qubwPOd3Y9WlKgRyA39r+RAfv/hB0L4cz/Nm9pjp4zIGwALH8G+p4PBveWqqoQ7UdxLhxaAwdXqK3XOWoJK3ez+h/66XdA5xEQMVSWwhFCiPbE4ShtpcyvCJ/1vS7Oq+O60vc0ou3D1a00JJorQqObGczBVY+7eVUEzoa8dlLYPJGu6zh0B64urmQXZ3Mw+2CVEJpXkkekdyTjO48nsyiTh1c/TG5JLnnWvPK92Wjm5/N+BuD6pdeTmJdY7TljIsZgdjNzLO8YCTkJ5SE03Dscs9FMqKcKo4NDBvPYiMfKQ2hZYPUz+QEQbg5n9cXVx5pWdknPuht43Fzb70y9on7OCLNHgchK7yNKj3VINwy4AfwGwNZFKtAOvLTphWkaTHoCkrcD7XNhYyGa7NAa+PVhtVyOw6Ymh4gcCn7R6nxYf7jqJ6dWUQghTil2qwqLZYGyOA9KcquGzOLcioBZdr5KAM2r2trZUJqr+sLSzaxCo5uXeu3Tqer7yq/LWjLLtsrvy16XTgbUVtkcNgwu6tf3vZl7SS9KJ7ckt8o2u8dsAj0CmbdrHj8n/FweVMvGk9479F5m95jNmuNruHvF3dWeMSFqAuM7j8fVxZWjeUcxG82EeIbQxbcLZqOZAI+A8msfGP4ADt2Bt5s3ZqO5fO9lVMN2bht8G7cNvq3WzxNjiZFWT9Eszgiz64CumqbFoELsbODixhSgadoMYEZcXFwrVK9l5ZbkstyaypCgroRu+Kh5YRYg5nS1CdFRORxwfDMcWA4HV0LcBBhxs/pm22GHkbdCzGg15tXo4ezaCiFE+6HrKjAWlwbK4pyKwFl5qyt8lp0vzgN7ccOeq7mAm3dp+CwNlu5mtY73iYGzoa8N7hVzHrQjuq6jaRp5JXkczD5IbkkuOdYc8kpU2AzyDGJ67HQKrAXcteKu8tbQnJIccktycdVcWXPxGgAeWPUAOzN2VilfQ2Ns5FgCPQKxlS5VE+YVhtnNXB42ewb0BGBw8GDeHP9meQA1u6nzngZPAHzcfPjmrG/q/DyjwpsxhE6IFtDasxl/AZwBBKJmK35Y1/UPNE2bCryMWprnQ13Xn2xK+W19NmOAwzmHmfbtNB4KPp1Zf38G169SS380h8Ohxgaag2DU7S1TUSGcLXk7rHoZ9v+m1lQGCO4NQ65WS+cIIcSpSNfBVqyCZ02hszinNJjmVg+mVd6XBtOGzGBbpdXTXPHa3btqGHUrfV/feaNHuwyedUnOTy5vFc0pySGnWIXNKTFTCPUK5ccDP7LowCJyi9X5spbR6/pdx5x+c1h9dDXX/XpdtXKHhQ3j/UnvY3fYufini/F288bb6K32pdt1/a5D0zQ2p2zG5rBVOedl9JLZcUWH48zZjC+q5fhPwCnRHzDSO5Jgz2DWuhuYZTDBuvdhxivNK9TFRc3KuvFjGHCpCrVCtCd2KxxZC/t+haDu0H+2+mVt/zLVEhs3AWLPUGOUhBCivbJboSinNHBWCqO1HisLntlVjzms9T9LcykNk95q714aLn06VT/mZgZ3n4r3Jx4zmDpc+KzM5rCRVZxV3tpZFkQ9DB6MjRqLrus8uuZRsouzK8Jq6bUrLlyBwcXAfavuY13Sumpld/PrRqhXKPnWfLKLsjG7mQn1CsXbTU1IVDY5aM+Anrwx/o1qYdXDoHocubq48uX0L+v8HAOCB7T4z0aI9qZVW2ZbW3tomQW4/4/7+fPYnyx374O2fQHcsUOtb9kcaXvhjWEw5BqY+lzLVFSI1lSYCTsXwZ4lcGCFaiHQXGHoHDU5mq6rrQ1MkCGEENhKVNgsyq7Yl4XQaq/LrikLpKV7W1H9z3ExqBBp8ikNlpaKgFl+7MS9ueJ9WYtoB2z9rIvdYS8PmtnF2eSU5NDdvzuBHoFsTN7Ib4d/q3IuuzibabHT+Ffff7EldQuX/FR90qCe/j35asZXAMz4dgaumqsKoe4++Lip7Y74O3B3dWft8bXkWfPKQ6qPmw8+7j54GjyrLdsihGgep7XMtpb2NGYWYGjYUBYdWMTeQVPptvlT2Pg/Ne6vOQK7wuArYP2HMOx6COjSMpUVoqXoOqTsAGsRRAyG9APw/S3gEwF9z1OtrzGjwWRR12vaKfWLmBCiFZWNDS3KhsKsisBZHjyz6wmnOQ1b59PNrP4NKwujXkHgH1s9mNYUSsuOdfBW0Lrouk6hrZCckhyK7cV09ukMwKL9i0gvTCe7JJuc4pzy/QtnvIC3mzf3rLyHnw5W7+D3/JjnmRw9mT2Ze/h6z9f4uPlgcbfg4+ZDZ5/OBHuq3j6R3pHcP+x+fNx8KsKouw++7r7lZS06d1GddR8aNrTlfhBCiCaTltmTICk/iYnzJ3JX/F1cse5ryDgAt/7T/BnzcpPh1YHQdQLM+l/LVFaI5rCVwKFVsHsx7P4Zsg9D9Olw5Q9qrHfKdgjpc8r+4iaEaARbSaUAmlW6nRhOK70+MbTW1zXXYKoaRCu/dvcBk2+l15aaX7u4tvZPod0om9gooyiDfZn7yC7JJqs4i+zibLKLs+nm140ZXWZwPO84N/52Y/k5a+mfU4Q5gsXnLQZg4vyJJOUn4aq5lodRH3cfXhn7CoEegfx44EcO5RyqElYt7hZiLDFY3C3ldRFCdAwdrmW2vQn1CuX6/tfTP6g/jAiDzy+AbQug/4XNK9g7RLXwpu8Fuw1c5Y9TOIGuq3CathfeHau6Dxs81JjX0XdBt8nqOheX5k9+JoRoX+w2FTgLs0r3mQ17XZRd/zItrm6lgdMCHr7g6Q/+MRXHyjaPyu99K0KrQdaerInVblVBtCirPJDmFOcwofMEvN28WbhvISsTV5JdXDWs3jv0Xs7rdh6rj63mvj/uq1Kmu6s7M7rMYEaXGXgaPYn2iVYhtLQ11MfNh0CPwPLrP5/6OZ5Gz1q77E6LnVbnZ5AgK8SpQ1pmTzaHA94aoSZquOHP5rdQlQUJIU6m4lw19nXHd2pmzNmfqb/bS+6H2DEQM0YtpSOE6BishVCQURo6S/fl7zNrCKSlW0lu3eW6mVXA9PBVc0mUh0/fin3lcFo5mMrSXPUqtheTVZSFjk6oVygl9hK+3fstmcWZZBdnk1mcSVZxFnaHnfcmvQfAud+dy76sfdXK+mr6V/QM6Mmbm99kScISFUJLw6jFzcLE6In0D+pPWmEaB7IOYHG3YHG34Ovui8lgOtkfXQjRgdTVMith9iQpthfzS8IvdPXrSo/Dm2Dh9XDRl9B9SvML13XY/q36prnrhOaXJ0RNbCWwfYEKsPt+U+sLmkOg90yY8rR8qSJEe2ArqSGM1vQ+q+r7uiYycnVXQbQ8kPo27LXJIq2jjZRdnM3x/ONkFlUNo4ODBzM0bChbUrfwxF9PlJ8rLB33O7LTSN6e+DZWu5VBnw4CwGw0Y3G34Ofuh7+HP6+Pex1N0/h+//cUWgvLw2hZIA3yDMLo0szhUUII0QQdrptxe5sACiif5v28rudxX/xdsPwpWPmc6oLZ7NZZB6x8Hqz5cNNatZC4EC2hpACO/wOdT1O9CX6+T7WGxF8Nvc6GyKEyZkwIZ7EVq8BZkK4CZ0F66ZZZ8brK8Qy17mhtXIyqq66HH3j4g180hA+seO/hV/V82XtpIW00XdfJKckhqziLzKJM+gf1R9M0Fu1fxK6MXWQVZ5FRlEFmkQqrT416ikEhg/h85+e8+c+b1cq7of8NDA0bislgItAjkDjfOHxNvvi5+2FxtxDlEwWA0dXI77N+x+JmwVjLvB1ndTmrVT+7EEK0JGmZPYlu+u0m9mftZ/HMxWgb5sIPt8OlCyBufPML3/cbfDoTJj0JI25ufnni1GW3wcEVsPVrtZSOvQTu2qtaVDITwBIly+cI0dIcDtU9Nz8NCtIq7dMrhdHK4bSeYOruUxo2A0o3f7X38AfPWsKpm5f0sGiGEnsJB7MPlgfUjKIMMosz8TR4clWfqwC46IeLSCpIIqsoC5tuK793zUVrMLuZuWXZLfx9/G983X3xM/nh5+6Hn8mPK3tfSXf/7uzL3EdCTgK+7r5qM/licbdIi6kQokPrcC2z7dWYiDGsTFzJ/qz9xA24FFa+AMufgS7jmv8LRNx4tdTJymdhwMXqFxQhGmvZE7DhY8hPUUtK9D4H+s5Sy0eAaqkRQtTPYVehs0o4reN9QQbo9prLcvOuCKOegRDYrYaAWim0evhL991mcugOcopzyCjKwN/kj6/Jl10Zu1h2eBkZRRlVtnGR47ht8G0cyT3C+YvOr1ZW74De5WG2q19Xuvt3rxJU/Ux+uLmqP68Xz3ixzmAa5xdHnF/76ZUmhBCtTcLsSTQmYgyP8zjLE5cT1/dfaqbXH26Dfb9C14nNf8CkJ9TkUsufganPNr880fHlJsOWeTD0WtVVMD8VooapANt1Ehhl0g4hypUUqC968tMgL0X991J5yys9l5+qgiq19Hwy+YJXoAqmAV1Ud/2y916BKpR6BVW8lqEjLaLAWkBaYVq1MHph9wuxuFt4f+v7/HTwJzIKM9SkSKVfLjw24jHO7XouezP38tY/b+Hr7ou/yR9/kz9dfbuWr40a5hXG82Oex9/kXx5ULe4WDC4Vv2o9NvKxOusoLaxCCNE40s34JLvoh4vQNI3Pp32uJuJ4PV5NgnHtipbpuvnD7XD4L1WefDMvamK3wd5fYNMnakZi3Q6XzFdfqMjs2OJUU5wHeckqiFbeVwuqqWpegpq4eYM5qDSAnrgFVAqpgarltLlrjAtAjTstcZTg7upOib2E34/8TnphOulF6WQUZZBemI7NYePNCWqM6dkLz+ZA9oFq5cyfMZ/u/t35bOdn/H387/KgGuARgL/Jn35B/Qg3h2O1W9E0rUo4FUII0fpkNuM2ZGXiSnRdZ0zkGHXgn3nw7XVw/lzoM7P5DyjOVQvByy9Loib/fAlLH1K/rJtDoP9FMPAyCJRua6IDsZWUBtAaQuqJx2oKqJpLaQANqjmkmoNVOPUq3csESC1G13VyrbmkFaaRXphOsGcwnX06cyDrAB/v+FiF1dLAml6YzpCwIbw94W2K7cXEf6p+z9HQ8DP5EeARQLBnMG+NfwtN0/jpwE9YHVYVVj38CTAF4Gfyw91VWr6FEKIt63BjZtvjbMZlRkeMrnqg7wXw5yvw22PQc0bzQ2jZ2Mb0/VCcA50GNq880b7ZrbDze/CNhojBahKn8MEqwHadKF96iPbFVgy5SSqI5h5Xr8u2vEqvCzNqvt/kq77EMQer/w7KXlfZh6jWU5mlu0VZ7VbSi9JJLUglrTCN1MJU0gvTmRY7jSifKL7e8zXvb3mftMI0Shwl5ffN6TuH/xv0f+RZ8/gj8Q8CPAIIMAUQ6xtLgCmArn5dAXB3deebs74p7+LrWsOf39TYqSft8wohhDg5pGXWCdYcW8PGlI3cNOAmdWDPL/D5BTD1eRg6p/kPcDjgjaEqqFz3B7i2y+8sRHPkJsOGj2D9h+qX/EFXwFmvOrtWQtTMblN/T3OOVwqpx6uH1ppCqosBzKHgHQLeYSqMeoeWtp5WDqrBMva0Fa1LWkdKQQpphWnlYTWtMI1Xx76Kp9GTm367iZWJK6vd98rYVxgXNY7lR5bzS8IvBHoEEugRqEKrRwDRPtGEeoWe/A8khBCizehwLbPt3ebUzbzzzztc0O0Cgj2DVQtZ9Omw/GnoN0uNoW0OFxcY/xB8dTls+p9aE1ScGnKOwy8Pwo7vwGGFuIkw9DU107UQzlCSXxpSj0FO6ZZ7vOJ1zjE1qZLuqHqfi6EimPrHQtRpKqx6h1Zs5lA1QZIsFdWidF0nz5pX3iU3pySH+Xvmk1qQWh5YUwpSMLuZ+XrG1wDc+8e9pBSkAODm4kaQZxABHgEU2ArwNHoyq9ssxkaOJdAjkCCPoPIW1rK1Ts+IPIMzIs9w1kcWQgjRTkmYdYLJ0ZN5c/Ob/JLwC5f2ulRNuDPpCXj3DFj5PEx6vPkP6XkWdB6pllrpc17zA7Jou2wlkLwNwgepbuZH1qoW/iH/UjOlCtFaSgog5yhkJ1bssxMrBdajUJRd/T6TBbw7gU8YhPQqfV26eYeq9xJSW0W+NZ+UghRSC1LpZO5EhHcE29K28fH2j9Xx0hbVQlshU6Kn8NyY57A5bLy04SW8jF4EeQQR5BlEv6B+RHpHlpf76thX8TB6EOQRhNloRjthIrnyeSKEEEKIFiRh1gliLbH08O/B4oOLVZgF6DRArQ/799sQf5VqiWgOTYPJT7VsQBZtS3GuWhP2rzdVYLh9uxoTe+tmGe8nms9uqwikZSH1xNBaU7dfr2CwhINfjPpCzScMfMJVq6pPuHrv5nXyP08H59AdZBRlkFyQTEp+CikFKYzvPJ5Aj0C+2PUFX+z6gpSCFPIrTXh126DbuKbvNeRb89mZsZMgjyD6BPQhyDOIYM9guvl1A8DP3Y+/Lv4LL2Ptf269A3u3+mcUQgghTiRh1kmmxkzlxQ0vcjjnMFE+Uerg+P+o7qFLHoSLPm/+Q8oC8oaPYcy/KyaHEu1bXgr89Ras+wCKs1UX9ZG3VbS+S5AVDWErVoE067Daso+Uvi7d5x6r3vXX3QKWCBVWI+JVOLVEqM0nXLWsyrjUFldsLyalQAXU5Pxk9bowhbvi78JFc+GO5Xfw+5HfsTlsVe6L8I4gMDwQs9FMnG8cIzqNINgzWG0ewcT6qi9Nh4UN44dzf6j1+Zqm1RlkhRBCCGdplxNAVZrNeM7evXudXZ0mScpPYtL8Sdw44Eau7399xYk/XoTfHoVLF0Dc+OY/KC9F/dLqG1n/taJ9+PpK2L5QzX498jY1S7EQJ7IVq1CaeQiyD1cNqtlHVKtrZZoL+ESofyt8oyqF1IiKACtfiLU4u8NOUkESSflVN5PBxJ3xd6LrOsM/H06BraDKfZ4GT5actwRfky/zds0juSC5PKiGeIYQ7BlMgCmgxll9hRBCiPZE1plto9YcW8PA4IGYDKaKg7ZieHM4aK5ww2owuLXMw6xFamZQv84tU544eTIOwIpnofe50G0ypO1Tx2Vt2FObrqsvqzIT1JZ1qOJ1ZoIat0qlf99dDCqU+kaBJUrty4Krb5Qapyozn7e43JJc9mftJ6kgieT85PKw2iewD9f0vYbDOYeZ9u20Kvd4u3nTK6AX7096H4B5u+bh7upOiFcIIZ5qM7uZnfFxhBBCiJNOZjNuo07rdFr1gwZ3OPNZ+Ox8WPM6nH5Hyzzs05lQkgdzlsukKu1F1mEVYjd/rpZZ6jRIHZcQe+qwW1XLasYBtVUOq5kJYCuser13J/CLhpgx6osrv2jw7VwaVkOlC3orSMpPYm/mXo7nH+d4/nGO5R3jeP5xZnefzdTYqaw+tpq7VtxVfr2nwZNQr1BiLDEAhHqF8uiIRwn1DCXUS22eRs8qz5jdY/ZJ/UxCCCFEeyFh1sme+vspNDTuG3ZfxcGuE6H7NFj5HPQ9X/0i2lyDr4QFc2DLPDWOVrRdhVmqq/nGT9REXkPnwKjbVRgRHY+tRLWqlgXW9P2lr/erbsG6veJaN7MKqAFd1DCEsrDqF63+nTCaanmIaKo9mXtIyE6oElaT8pN4ZMQj9AroxZe7v+T9raoF1aAZCPEKIcwrrLx77+CQwbwx/o3yoOpt9K4y06+bqxszu850ymcTQggh2jsJs05WZCtiScISbh10a9Vv4898Bt4YBovvbZnJoPqcr2ZK/u0x6HW2zCbaFtlKVLdyowfs/x0GXQ6n36nGKor2zeGAnERI2wvp+9Q+Y78KrtlHqk605O6jZjMPHwx9LwD/Luq9fyx4BaovOESL2ZK6haN5Ryu23KMczz/O/LPm4+7qzksbXmLV0VWAalXtZO5EmFdY+f3nxp3L6IjRhHmFEeQRVG2MaqBHIKMjRp/UzySEEEKcKmTMrJNtTtnMZYsv49ERj1b/dn7Vy/DrwzD7c+gxrcb7G+Xw3/DhJBhzL4y9r/7rxclhK4a178Lq12HOb2pco61YZoVtj4pzS8PqPkjbA+l71ev0fVW7BLv7qNbVykE1oPS1Z4AE1hZitVvZk7mHxLxEjuUdKw+srporr49/HYCxX40lrTANUEvQhJvDCTOH8Z/h/8HX5MvujN3o6IR5heHj5lNt/VQhhBBCtC4ZM9uG9Q/qTxdLF+bvmV89zJ52E2z5Cn76N8SMbv5MolHDoNc5sPpV1XXVK7B55Ynm0XXYuQiW/gcyD0LcRChbWkOCbNuWnw6pu6puaXurzhCsuaguwIFd1X+/gXEQ2A0CuoI5WAJrC7DarRzJO0JibiJHctU+MTeROL84bh10K9kl2cz+sWK8qY+bD+Hm8PIlaQBeGPMC3m7ehJvDq41VBeju3/2kfBYhhBBCNJ6EWSfTNI3zu53Pf9f9l10Zu+jh36PipKsRZrwMH0yC35+CKU83/4ETH1VjZj0Dml+WaLrUPfDD7XBoFQT1hEu/gbgJzq6VqEzXIT/thNC6G1J2QkFaxXVu3hDUDWLHqsAa0FUFWP9Y+VKimXRdJ7M4szyolu1HRYxiSvQU/k76mxt+vaH8eg+DBxHeEeVhNcAUwCtjXyHcHE4ncye83ap/ITgoZNBJ+zxCCCGEaFntMsxWWmfW2VVpETO6zOCtf95iZ/rOqmEWIHIoDLlGjXftc37z1xT1i1YbgLVQjc8UJ4+uqxY5zUWNmZz2Igy6QpZEcbaSfBVSk7dXbCk7oDCj4hp3HwjqDt3PhKAeagvuAT7h0sraDA7dQXJ+ModyD3E45zBHco8wPXY63f2789H2j3hxw4tVrg/2CCbOV/3b3yugF0+f/jQR5ggivSPxN/lX6QasaRrjosad1M8jhBBCiJNHxsy2EUW2oqrrzVY5mQ1vDAcPP7huhWqxba6FN6p1KC9f2PyyRP10HbZ8CZs+hUsXqIme7NaW+bMUDedwqC7d5aF1mwqtGQcpX5PVzQzBPdUW1FMF2OCe4B0mobWJygLr4dzDHMo5xLTYaXgZvXh23bN8tfsriu3F5de6ubjxxKgnODPmTHam72RD8gYivFVY7WTuhIdBvoATQgghTiUyZrYdMBlMWO1WjuYdJdoSfcJJC0x7AeZdpCaFGnN38x8Y0gc2fwb7fpXura0t44DqUnxgOUQMgYJ08AmTINvarEUqqCZtgeP/wPEt6r21QJ3XXFRX4NC+0P8iCO4FIb3VOFdZi7nRdF0ntTCVY3nHGBA8AIAn/3qS9cnrOZJ7pEpg7RXQiz6Bfejp35PZ3WcT5RNFZ5/ORHlHEeIVgoumfv49A3rSM6CnMz6OEEIIIdoBaZltQ27+7WYSchL4/pzvy3+Zq+LrK2HXj3DdH6p7Y3PYiuH1IaoV6vo/4ITlJEQLsFvVZFsrngUXI0x4GOKvlp91ayjOhaRtKrSWhdfUXRUTarlbIKyf+hInpLfagnqAW/UJf0TdrA4rRhcjDt3BO1veISE7gYScBA7lHCLfmo+GxrpL1+Hu6s4Tfz1BckEynb07E+UTpUKrd+cqgVUIIYQQoi7SMttOTI2Zyj1/3MOqo6tqXpfwzOdU6973N8PVS5oXigzuKlzNvxr++QIGXtr0skTN9ixR6/r2nAFnPgs+nZxdo47BWqhaWY9ugGMb4dgmtV5rWTdhr2AI6w/dJqt9aD81Tly6CDdKka2IDckbSMhJ4GD2QRJyEkjITsDH3YcFZy3ARXNh/p75GDQD0ZZoBnQZQLQlms4+ncuD6oPDH3TypxBCCCFERyYts22I1WFlyvwpxPrG8t6k92q+aMtXsGAOTH5KLd3THLoO742DvGS4ZYNMBtUSHA44uAK6jFU/38NroPMIZ9eq/bLbVAtrWXA9ugGSd4BuV+d9wqHTQAgboFpew/qDd6hTq9yeWB1WjuQe4UDWAQ5kqy3KO4obB9xIWmEaY78aC4DZaCbaJ5poSzTd/LpxVZ+ryu83ukh3eSGEEEK0HmmZbSeMLkYu6nkRr2x8hT2Ze+jm1636RX0vgG3fwG+PQ7cpENCl6Q/UNJj0OBxYoYKXaJ7sRPj2ekj4A+Ysg/DBEmQbKy8FjvyttsT1qrtw2RhXk0X9TEfdrvbhgyS4NlCxvZiE7AQOZB+gk7kT/YP6sy5pHdcuvRZbWVdsIMwrDF93X0AtazN38lyiLdEEmAKqzBJcRoKsEEIIIZxJWmbbmOzibCbOn8ikzpN4YtQTNV+UcxzeHAbBveHKH2WymrZg2wL44TbVknjmf1W3benWWjeHXS2Hc+RvOLJW7TMPqnOubqqVNTxehdbwwWqyJvmZ1slqt2LX7ZgMJv4+/jef7vyU/Vn7OZp3FIfuAOD8bufz8GkPk1qQymc7P6OLbxdiLbHEWGLwNMoYYiGEEEK0LdIy245Y3C3cOuhWIswRtV/kEwZTnoGFN8Dad2D4Dc17qK7DqpdU183RLTBT8qmkOBd+uluNOw6Ph5nvNq+1vCOzFkLiOji0uqLltThHnfMKgshhaoKsqOEqyBrcnVvfNi45P5nt6dvZm7mXfVn72Je1j4TsBO4ffj8XdLuAAmsBR3KO0MO/B9NjpxNriSXWN5bOPp0BCPIM4rbBtzn3QwghhBBCNIOE2Tbokp6X1H9R/4tg+7fw66PQdVLzuxun7ISdi2DgZdJ1szFsJWpc7Oh/w5h/y3I7lZUUQOJaSFgFCX/C0fVgLwE0NZtw3/NVgI0cJhM01SGjKIPdGbvZk7mHvZl7uarPVXTx7cKXu7/kva1qbH24OZyuvl05I/IMevn3AmBs1FjGRo11ZtWFEEIIIVqVdDNuow5kHeDtf97mwdMexMfNp+aLco7BG8NVMGhud+P0/WqpnvirYdrzTS/nVLHvNzVLrjlIrWdqNDm7Rs5Xkq9aXMvD6wZwWNV6rmEDIHokRJ+uwquHr7Nr2+bYHXYO5RwiyicKg4uB1za9xsK9C0kpTCm/JtAjkCdGPsHI8JEcyT1CVlEWXXy7SPdgIYQQQnRYHa6bsaZpM4AZcXFxzq5KqylxlLA4YTFd/boyp9+cmi/y6QRTnobvboS/34bTbmz6AwO6wKDLYMNHMOIW8Ovc9LI6Ml2HVS+qCbgGXwkzXj51g6zDAcc3w4HfYf/vKsjaS0BzVTMMn3ZjRXg11fKFzClsS+oWtqVtY0/mHnZl7GJf1j6K7cV8c9Y3dPPrhp+7H8PChtHdvzvd/LrR3b87/ib/8vsjvSOJ9I504icQQgghhHAuaZltw2749QZ2pO9g8czFtbe86Dp8MVvNSHz9KghsRsDPPgqvDlQzJp/zRtPL6aiK89QXBzu+gz7nwVmvg9sp1iKWdVgF1wO/q79zhRnqeEhf6HIGxJwBUcPA3duJlWxbsouz2Zmxk53pO9mTuYcnRj6Bq4srVy+5mnVJ6/B196W7X3e6+Xeju193xkSMwdfk6+xqCyGEEEK0CR2uZba90HUdHR0XrWndf6/tdy2XL76cb/Z+w2W9Lqv5Ik2D6S/Dm8PVhFBX/wwurk2rsCUchlwDaXvVTLNNLacjyjoCn89Sa55OfFy1Xp8KYzxtJXDoT9izBPYthfR96rg5VC0N1WUsxJ4B5mCnVrOtyCvJw+xmBuDBVQ+yPnk9R/OOlp/v5NWJtMI0QrxCeHDYg3gZvQj2DK5x2RshhBBCCFE3CbOt5GD2Qa5fej33D7ufMZFjmlTGwOCBDAkdwtxtc5nVfRburrXM7uoTBlOfgwVzYM0bMPL/ml7xiY+Dq/y1qOafearl+pL5EDfe2bVpXXkpsHcp7PlZtcKW5IKrO8ScrsZUdxkHQT1OjTBfh5ySHLanbWdb2ja2pm1lZ8ZO8kry+POiP3HRXLDpNvoE9uGCbhfQM6Anvfx7VWlxjfWNdV7lhRBCCNFm6bqO1WGl2F5csdmKq74v3YpsRZTYSyiyn7Bv4PFiezG/nP9LkxvfnE1SSyuJMEeQU5LDb4d/a3KYBbiu33Xc+vut7MrYRf+g/rVf2PcC1f112RPQbTIEdW/aA10NquvywRXgG6XW9jyVFeWo8Z6n3wn9ZnXMscS6DsnbYPfPKsAe3QDo4B0Gfc9TLbAxo8HNy9k1dZpiezG7M3aTWpDK+M7jsTvsTPh6AoW2QgCifaIZFDyIXgG9sDqsuLu688zpzzi51kIIIYRoLl3XKXGoEFgWKovsRdWCZNn7yiGz2F56baV7agulxbZiih0V53WaPhTUoBlwN7jj7lrDZnDHYrQQ4hqCm6sbJlcTdt3ebsOsjJltRfesvIfVx1bz+6zfMbg07XsDXdfJs+bh7daAMYh5KfDGMPCPgat/aXoLa0EGvNgLep0NM99pWhkdwb7fYP7VcOGnqlWyI9F1OLoRdiyEnd9DZgKgQfhg9WVIt8lqtuZTtPW12F7Mzwd/ZmvaVralbWN35m5sDhvebt6smr0KF82FhfsWEuIZQu/A3rXPOC6EEEKIFqXrOjaHjSJ7EUW2ovJ9sb2YQltheZAsP1/6uqYgWjls1hU8mxosXTVX3F3dMRlM5WHSZDCVh8gqe4MJNxe3us/XcrxyWHVzdWty7mirZMysk0zqPImfDv7EuqR1nNbptCaVoWka3m7e5FvzSchJoHdA79ovNgfDtBdg/lWw+lU4/Y6mVdzTX42d/etNtXZqc9awba+2LYAF16rutIHdnF2bluFwqBmHd34PO76HnERwMUDMGBh1B3Q/85Qc+1pgLWBb2jY2p27G5rBx44AbcdFceGzNYxhdjfQO6M3lvS6nb2Bf+gT2QUMF/HPiznFuxYUQQog2xO6wlwfKE4NkTaGzPEzWck1d99h1e5Pq6ObihrvBHZOrqVrI9HbzJtA1UJ0rbdUse13t+hqO1XSf0cXYwj9lcSIJs61oZPhIPA2eLElY0uQwW+beP+5lR9oOfpz5IyZDHUvB9JmpWtuWP626h4b0atoDR94K6z6Alc/BuW83rYz2av2H8MMdEHUaXPRF+14TVdchcR1s+UqF2LxkNf61yzgY9yB0nwIefs6u5UmXXZzN65te55/Uf9iTuaf8f4oDgwdy44AbMboY+e6c7wjzCsNVJkITQgjRjpW1ZBbaC8sD5omBs+xcWWCsfKzG96X3FtgKyo+VOEqaVL/KgdDD4FH+3uRqItAtsMbjNV1f2zWVQ2Z77UoraifdjFvZfX/cx4rEFSyftRw3V7cml7MuaR1XL7mafw/5d+0zG5fJT1PdjS0R8K9fwbWJ3wr9fL9av/b/NnXMsaI12fy5mhW662SY9TEYPZxdo6ZJ2wdbv4ItX6ouxAYTdJ2kuo53m3zKLJ1jd9jZm7WXDckb2JC8AS+jF4+PfByr3cqE+RPo6teVAUED6B/Un35B/bC4W5xdZSGEEKeYssl+Cm2FVbaycFnTduK5Ku/thRRaVVgtO9eUlszKwdDD4FElJJaFRw+DR9Vjrh7lr8vuK2vFrHK/BEzRCNLN2ImmxU7jhwM/8EfiH4zv3PRZcIeEDmFY6DDe3/o+53U9r/Z1ZwG8AlV346+vgD9fgdF3Ne2hp90Ea99V2+Qnm1ZGe2MOge7T4IK5YKhl9ui2Ki8Vti9QAfboBkCD2DEw5h7oMV1NZHWKSClI4dE1j7IpeRO51lwAws3hjI4YDYDR1cjvs36X/4EKIYRokLJJgAqsBeWhscprW/3HawqeZa8bGzYNLobyMFl5M7uZCXQNxMPoUR4mTwyiJx4rf105gLq6S88k0S5ImG1lw8OGE+gRyPf7v29WmAW4ZdAtXPrTpXy28zPm9JtT98W9z4Ed58LyZ6D71KZ1N7aEwyVfQeSwJtW3XUnbCwFxatmd9rT0jt2m1n/d8JFaTke3Q2hfmPQE9DlfLdvUgRXZitiSuqW85dXP5MdzY57D192X5PxkJsdMZnDIYAYHDybMXPVnIUFWCCE6Hl3XK0KkVe0LbAUUWAvKg2VTA6lDdzS4Hq6aK54GTxUcjRUtmF4GLwJNgVVC5YlbbefKjpsMJhmLKUQpCbOtzOBiYHrsdD7d8SlphWkEegQ2uaz+Qf0ZEzGGudvncknPS+punQWY+gIc/EN1m/3Xb02b3bjLOLW3W5veXbmtO7IW/ncOnH47jL7b2bVpmKzDsPET2PQJ5B5XLcojboF+FzZ9nHQ7kpSfxAOrHmBzymZKHCVoaHT3707/YLV8lZurG/PPmu/kWgohhKiL3WEvD4tlYbN8XzmMnniujn2hrbBRM8+aXE14Gj3LA2NZALWYLVXeexg8yq/zNHjiYaw4V9M1Rhcj2im6IoAQJ5OE2ZPg3Lhz+Wj7R/yw/weu7HNls8q6Y/AdZBRl1B9kAbwCYNrz8PWVzZvdePMXsOxxuPGvjtdVNWkbfHY+eIfAwMudXZu62a2wZ4lqhd33qzoWNwGmPq/GwXbALxscuoO9mXv56/hfrE1ai8XNwlOnP4WfyY9CWyGze8xmWNgwBgQPkOVxhBCildkddgpsBeRb8ymwlu5L35cfs9V+7sT3RfaiBj/bVXPF0+iJp8ETT6MnXgYvPI2ehHqGlgfLyuer7EtfnxhETQaT9NIRop2TMHsSxPrGMjB4IN/s/YYrel/RrG/qYn1jiSW2fLKAeieV6n2uWmZm+dPQYxoEdW/8Q4O6Qc5RFaJG/l+T6t0mZR2GT84Foxdc/p0KtG1Rfjps+BDWvg95SeAdplqQB10GvlHOrl2rSClI4b9r/8u6pHVkFmcC0NmnM+OiVE8Bd1d3Pp/2uTOrKIQQ7YLVbiXPmlceIvOt+eRZ8yiwFlQ5fuKx5oRPDa1K4PQ0euJl9CoPnl5Gr/JzXkav8hbNmgJo2V5aOoUQNWmXYVbTtBnAjLi4OGdXpcEu6HYB96+6n7VJaxkW1rwxqA7dwQ2/3kC4OZz/nPaf+m+Y9gIk/AHf3QxX/wyNHdAfPhiiT4e/34HhNzatu3JbYy2ELy8DWxFcs7RthsLUPWqt33++UPXsMg6mv6RmJe4Ifwaliu3FbEjawJ/H/kRD464hd2Fxt7A7czenR5zO0NChDAsbRqhXqLOrKoQQJ4VDd5QHy7ySPLUv3QqsBeSV1B5CTwytVoe1Qc/0NHhiNprLA2ZZ+Kz8vrxVtPR9WRCt/F5aPIUQJ1O7/I1Y1/VFwKL4+Ph6ZkFqOyZFT+LZdc8yb9e8ZodZF82FaJ9ovtz9JZf1uowYS0zdN5iDYcp/4dtr1czEw29o/EOHXQ9fXgK7flCTS7V3xbkq1J/7DgT3cHZtKug6HPgd1rypJnZydYf+F6ovEYJ7Ort2LabAWsCCvQv489ifrE9aT5G9CDcXN8ZEjgFUy+sP5/7g5FoKIUTjlE0+VBY880vyybXmqmBZOZSWhtEqYbV0XxZEGzLusyxIloVQs9FMmDkMs9FcHi4rn6scOisf9zR6SvgUQrRLss7sSfTyhpeZu30ui2cuppO5U7PKyijKYOqCqQwPG87LY1+u/wZdh88ugEN/wo1rwC+6cQ902OHVgeDTSbXutmcOB7i4VOzbAocddiyElS9AynbwCoIhcyD+ajAHObt2zVZiL2F90nqSC5I5t+u5FNmKGDVvFGFeYYwMH8nITiOJD43Hw9BO1/UVQnQIxfZicktyyS3JJa8kT7221v86z6r2+db8Bi2x4mHwKA+X3m7eVfZmoxmzm1ntjWa83LzwNlY9V9b91uDSLtskhBCiUWSd2TZido/ZfLT9I77Y9QV3xt/ZrLL8Tf5c2ftK3tj8BptTNjMgeEDdN2gazHgZ3hgGP9wOly5QxxrKxVWtO3voT7AWgdHUnOo7z+G/1eef/Sn4xzq7NirEblsAK5+DtN0Q2B3OfhP6nt/+1rk9QWZRJn8c/YPlR5bz59E/KbAVEOQRxNlxZ2MymFhy3hICPAKcXU0hRAdR1iqaW5JLTklOeSjNKcmp8r4sfOaU5JS3hpYdr69LroaG2c2Mt9G7PHCGeYWVvz4xmNYUUL2MXhJChRCihUjL7El294q7WXV0FUvPX4rZzdyssgqsBUz/djqdzJ345MxPGjYxwtr34Ke7VPfa/rOb9fx2JzcJ3hkNRk+49nfw8HNeXew22PaNCrHpeyGoJ4z5N/Q6u/FjmtsIXddJL0on0COQEnsJo+aNotBWSLBHMKMjRzM2cixDQ4diMrTTL0KEEK3O6rCSU5xTZyCtcrw4h1xrxTU2h63O8j0MHni7eZeH0Wqv3bzLQ2nZa7ObGR83H+mOK4QQTiIts23Ilb2v5OeEn8tnNm4OT6Mnd8TfQWpBKnbdjkFrwB9n/DWw5Sv4+T61rItXI9e9ddhh908QMbTtzv5bE1sJfHWFGit72bfOC7IOB2z9Glb8FzL2Q3BvuOBj6HlW2+ny3Ai6rrMrYxdLDy1l6aGlZBRlsOLCFbi5uvHQ8IeItcTSM6Cn/PInxCnE7rCrls9iFUCzi7PLw2iNr4tzyC7JJqc4hwJbQZ1lG12M+Lj54O3mjY+7DxaThUjvSHzcfcoDaNl5bzdvLG6WimDqZsbo0vGWMBNCiFOZtMw6wdVLruZQziF+nvkzRmesDZqyE94+XXVlPfftxt2bvh9eGwRjH1Atie3F70/DimfgvA/U53aGg3/ALw/A8X8gpC+ccQ90n9YuQyzAqxtfZfHBxSTmJeKquRIfGs/4qPHM7DoTd9f23UVaCAE2h42ckhyyirPIKVb77OLs8n12cTbZJdnlobRsn1eSV+fkRSZXEz5uPvi4+1TZW9wt6n3lc6VbWSCVnh1CCHHqkZbZNuaaPtdw/a/Xs+jAImZ2ndns8mwOG69vep0wrzAu7HFh/TcE94SRt8Ifz8OAiyFmdMMfFtAFYsbApk/g9LvaRxDLTIA/XoC+FzgnyKbugaX/gT2LwRIJM9+HPue1j59dKYfuYEvqFlYkruDmATfj6uLKnsw9dLZ0Zk6/OYyNHIufyYndtoUQtdJ1nVxrLtlF2WQWZ1YLo1lFWeWhtCyslnXfrY2L5oLFzaICqLsPAaYAYiwxWNwsNYbT8tfuPvJllxBCiBYjLbNOoOs6s3+cTW5JLt+f832zJ4LQdZ3rll7Hjowd/Hjuj1jcLfXfZC2EN09T4zNvWN24yYa2zodvrlGTSMWNb3rFTxZdVzMFR48Gr5M44VB+Gix/BtZ/qMbpnn6HWhbJ2H5m7N2dsZsfD/7I4oOLScpPwuhiZN70eXTz64ZDd0j3YSFOsrJgmlWURVax2jKLMqu8zi4uDa2l12QXZ2PTax5LqqHh7eaNr7svFndL+ebr7lseVsvfVzpvNprlv38hhBAnRV0tsxJmnWTZ4WXc+vutPDnqSc7qclazy9udsZsLFl3AZb0u4+4hdzfspn2/wacz4Yz7VZfXhrIVwws9IOZ0mPW/plX4ZMk6Ar6RJ/eZDrsKsL89BiX5EH8VjLm33S2x89CfD7Fw30JcNVdGdBrBmTFnMjZybLMnLhNCVLDarWQWZ5JZlElGUQaZRZlkFld6Xfo+qyiLzOJMcopzag2mBs2Axd2Cn8kPX3dftZl88XP3q3K8clj1dvPGtZ1OOieEEOLUIN2M26CxkWPp6d+Tt/95m6kxU5vdOtvdvzszu87k812fc2H3C4nyiar/prjx0HsmrHoR+s0C/5iGPczgDv0vgrXvQl5q2w1pafvg7ZEw6QkYOufkPDN5Oyy6FRLXQexYOPO/ENT95Dy7GbKLs1mSsIQfD/zIXfF30TeoL+Mix9EroBeToyfjb/J3dhWFaBesdisZRRmkF6WXB9JaQ2pRZq1deV00F3zdVRD1NfkSY4lhoGlgtWDq5+5XHlrNRnPDZrUXQgghOggJs06iaRo3DriRW5bdwvf7v2+RsbM3D7yZnw7+xEsbXuKlsS817KbJT8KeJfDzvXDxlw1/2JBroNMAcPduUl1bncMB39+sgnfPGa3/PGshrHgWVr8KJgvMfE+N0W3Dv1g6dAd/HfuLBfsWsOzwMqwOKzGWGHJL1C/XY6PGOrmGQjifruvkW/PLw2l6YcW+2rGi9PL/fk5k0AyqldTkh7+7P70CeuFn8it/X/7apF5b3CzSYiqEEELUQ8KsE42JGEPfwL689c9bTIud1uxJMQI9AvlX33+xK2MXVru1YTMl+3SCM+6FpQ/B7sXQ/cyGPSygi9raqvUfwOE1cPab4B3aus86sBwW3QaZB2HAJaol2LPttmTquo6maczbNY+n1z6Nxd3CrO6zOKvLWfT07yktO6LD03WdAlsBaYVpVbb0wvTy1+Wtq4UZlDhKaizH4m7B3+SPv8mfbn7d8Df5E+ARoPamAPw9/PFzVyHVx81H/tsSQgghWpiMmXWyv47/xZxf5nB3/N1c3vvyZpdXFlQaxW6Ft0ep1sWb1oKxgUsf5KXA0odh8JUQNazRdW01uUnw6iCIGg6XftN6raPWQljygArO/rEw/WWIHdM6z2qmEnsJyw4vY8HeBfQN6sstA28hvTCddUnrGBs1VmYXFR2C1W4lvSi9Wkg9MaimF6VTaCusdr+r5kqAKUAFUg8VSANMKpyWvS8LrH7ufs5ZWk0IIYQ4xciY2TZseNhwTgs7jfe2vse5Xc/F26153XY1TUPXdZYdWQY6jO/cgNmGXY1w5rPwv7Pgrzfg9Dsb9jA3LzVLsNHUtsLs6tfAXgzTnm+9IJu8A+ZfDak74bSbYdyDbXKW4mN5x/hy95cs2LuArOIswrzCGBOpAneARwBTYqY4uYZC1M/qsJJemE5KQQqpBamkFqaq14XqdWpBanlrak0s7hYCTYEEegTSL6gfgR6B5VuAR0D5a193X5mhVwghhGhHJMy2AbcPvp1ZP8zig60fcNvg21qkzA+3fsjx/OOc1uk0PI2e9d8QOwZ6TIeVL0D/i8EnrP573LxUt+Qd36kw3FZaKcbcA9Gnq9bSlqbrsO591SJrsqiW37gJLf+cFpCcn8zUBVPR0RkbOZZZ3WYxLGyYjMMTbYZDd5BRlEFKQQopBSkk5yeTUqgCa0phCmkFaaQWptYYUstaUYM8g+hk7kT/oP4EeQYR5KG2spDqb/LHzdXNCZ9OCCGEEK1Nuhm3Eff9cR9LDy1l0TmLCDM3IEjW45/Uf7j0p0u5tt+13DLwlobdlHEA3hgGfc6Hc99q2D27foR5F7edUGctbL0W0oIM+O4m2P0TxE2Ec95qUzM551vz+W7fd6xNWstLZ7yEpml8s+cbRnQa0SJ/p4RoDKvdSkphRUhNLlDbicHV5qi6zIyL5kKgKbAimHoGlb8O9gwuP+bn7idfzAghhBCnAOlm3A7cOuhWlh5ayksbX+LZ0c82u7z+Qf05M+ZMPt7+Med3Pb9hYcY/FobfCH++DEP/BeGD678nbgK4W2BrGwizqbvhg0lwwVzoMq5ly05cD19eBvmpMPlpGHY9uLSN7ojH8o7xyY5P+Hbft+Rb8+kT0IfM4kz8Tf6c1+08Z1dPdEA2h420wjSS8pM4nn+cpPykKq+TC5JrbE01uZoI8Qoh2DOYQSGDCPYMJsQzRG2lxwNMARJShRBCCNEgEmbbiFCvUK7ofQXvbnmXi3tczIDgAc0u8/ZBt7Ps8LLGBeTRd8Hmz+CX/8CVP9Q/5rRs6Zs9P4PdBq5O/Cv1+5PgsEFo/5Ytd+t8WHijmhV5zm8Q1sLlN8MrG19h7ra5aGhMiZnCxT0upm9QX2dXS7Rjuq6TXZzNsfxj5SG1SlgtSCK1IBW7bq9yn9loJtQrlBCvEHoF9KoSUEM81V5m9BVCCCFES5Iw24Zc0+caFu5dyDNrn+HzaZ83eyKSMHMYV/S+gsUHF5NvzcfL6FX/Te7easzpT3ep9We7N2CCoLH3w+QnnBtkj21WY3fH3ANeAS1TpsMBK56BFf+FqBFw4actV3YT6brO+uT1RJgjCDOHEe0TzcU9L+byXpcT6tXKSxCJDkHXddKL0jmed5yj+UfVPu8ox/OPcyzvGMfyjlFgK6hyj9HFSKhXKGFeYQwNHUqIZwhh5jBCPUMJ9VJbcyevE0IIIYRoLBkz28b8cOAH7vvjPh4d8Sgzu85sdnlFtiJcNJfGTYBit6qxs65GuP7PhodUXW+92YPr8+n5kLgObtuiJmZqrpICWHiDmq15wKUw/SUwOG8SGYfuYNnhZXyw9QO2pW/jil5XcNeQu5xWH9F26bpOVnEWibmJJOYlcjTvaHlIPZZ/jON5xymyF1W5x8fNh07mTnTy6qT25k6EeYUR5hVGiFcI/iZ/meVXCCGEEE4hY2bbkWkx0/hq91e8vOFlxkeNx+LevGBmMqg1Y4/mHSUpP4nBIQ0YB+tqhAkPw1eXwz+fw6AGrH+7dT789ijc+Jea5fhkOrQG9i2FCY+2TJDNOQ7zLlKtvZOeUEvvOCmkly2z9ObmN9mTuYdI70geGv4QZ3U5yyn1EW1Dib2Eo3lHywNrYm5ilff51vwq1/u5+xFmDiPON47R4aMJM4cRbg4nzCuMTuZO0qoqhBBCiHapzYRZTdNOBy5B1amXrusjnFwlp9A0jQeGPcCsH2bx2qbXeHD4gy1S7j0r7yG5IJlF5ywqD7h16nkWRAyB35+CvhfUP0OwdxhkHVZjZ/uc5EmHPHxVHYde2/yyMg7Ax2dBYSZc9IVaesiJjuUf487ldxLhHcHTpz/NmdFnyuQ4p4i8kjwO5x7mcM7h8n1ZcE0pSEGnoleNu6s7EeYIIrwjiA+NJ8IcQbg5nAhvtW/Q8lxCCCGEEO1Mq3Yz1jTtQ2A6kKLrep9Kx6cArwCuwPu6rj9T6dw5QIiu6+/UV35H7GZc5um/n+aLXV/wxbQv6B3Yu9nlrUtax9VLruaWgbdwbb8Ghr6DK+HjGTDlGRh+Q93XOuzwXBx0mwznvt3s+jpF+n71ea2FcPlCp0z0pOs6a46vYeHehTx1+lMYXAxsStlE38C+GFzazHdPooXkluRWBNZKofVw7uFqswEHewQT4R1RsZkjiPSOJNwcTqBHoEysJIQQQogOqa5uxq0dZkcDecD/ysKspmmuwB5gIpAIrAMu0nV9R+n5r4BrdF3Pra/8jhxmc0tyOWvhWQR7BvP51M9bpDXu1mW3sub4Gn4890eCPBu4PupH09WSN7f+A271tO7MvwYOLIe79p68ZWs2f6G6FveY2rxy0vaqIGsvgcu/h9A+9d/TwrambuX59c+zMWUjoV6hvDfxPaIt0Se9HqJlWe1WjuQd4WD2QRKyE0jISSAhO4FDOYfILM6scm2wZzCdfToT5R1FlE9U+T7CHCGtq0IIIYQ4JTltzKyu6ys1TYs+4fBQYJ+u6wdKKzcPOBvYoWlaFJBdV5DVNO1a4FqAqKioVql3W+Dt5s2/h/ybf6/8N/N2z+OSnpc0u8w74+/k7O/O5o3Nb/DIiEcadtPY+2HumbDufRj5f3Vf23UibJsPxzdD+KDmVrd+diss/Q9ExDcvzKbsgv+dBboDrvgBQnq1XB0bICk/iZc3vsyPB34kwBTA/cPu57yu5zVu0i7hVLquk1GUUR5UE3ISVHjNSSAxN7HKMjaBHoFE+0QzLmpceXCN9Ikk0jsSD0M93fmFEEIIIUQ5Z/RbDAeOVHqfCAwrfX0NMLeum3Vdfxd4F1TLbGtUsK2YEj2FhfsW8tqm1xgfNb7ZS69E+UQxu/ts5u+Zz/8N+j/8Tf7139R5BMSOhT9fhvir1NI9tekyHlyMkLz95ITZPT9DfgoMuqLpZSTvUEFWc4Erf4Sg7i1XvwbalLKJpQlLmdN3Dtf0vaZhSygJp9B1ndTCVPZl7eNA1gH2Z+9nf5backpyyq9zc3EjyieKbn7dmNR5EjGWGKJ9oom2RMtkS0IIIYQQLaTVl+YpbZn9oVI34/OBKbqu/6v0/WXAMF3Xb25s2R25m3GZI7lHmPndTEaGj+TlsS83u7zs4mxySnKI9I5sRCXWwQcTYPx/4PQ76762OLfuwNuSPj1PhdHbtjZtjdv0/fDBRBXAr/wBAru2fB1r4NAdfLfvO/Zl7ePuIXej6zopBSmEeIWclOeL+um6TnJBcnlQLQutB7IOkGut6DhicbfQxdKFLr5diLXEEm2JJtonmjCvMJmoSwghhBCiBbS1pXmOApWTVETpMVGDSO9IbhhwAy9teIlfD/3KhM4TmlWexd2Cxd2C1W4luSCZCO+IBlRiiGp1/estGH5j3TMbu3ur9WYd9qYFzIbKOgz7foMx/27acwoy4LML1Osrf4TAuJatXy12pO/g0TWPsiN9B/2D+lNiL8HN1U2CrBPlleSxL2sfezL3sCdzD3sz97Incw951rzya/xN/sRaYpkaO5Uuvl3oYulCrG8sAaYAmXhJCCGEEMJJnBFm1wFdNU2LQYXY2cDFjSlA07QZwIy4uJMTQJztsl6X8fPBn3nq76cYGjYUHzefZpd587KbSSlIYf6M+Q1rQRp1O3w8HTZ/BkP+Vft1mYfgg0kw+Unoe36z61mrf+ap/cBLG3+vrQS+vBSyj8AVi05KkC2wFvD65tf5bOdn+Jv8eeb0Z5gaM1WC0Elkd9g5lHuoPKyWBdejeRXfpZmNZrr6dWVa7DTifONUcPXt0rAu+UIIIYQQ4qRq7dmMvwDOAAKBZOBhXdc/0DRtKvAyammeD3Vdf7Ip5Z8K3YzL7EjfwcU/XszZcWfz6IhHm13ekoQl3LXiLh4b8Rjndj23/ht0Hd6fAAVpcPOG2ltDy5bo6ToJZta7ulLTWYvgyN8QO6Zx9+k6LLwR/vkcZr4P/S5onfqd4NWNr/Le1ve4oNsF3Db4thb5QkLUrsRewt6svexM38mujF3sTN/Jnsw9FNmLAHDVXIn2iaarX1e6+XWjm183uvp1JcwrTL5gEEIIIYRoQ5y2NE9rO5XCLMCLG15k7ra5vDfpPYaHDW9WWbquc+lPl5KUn8Sicxc1bNmPnYtUi+Z5H9Td6vrNHNi/rPWW6NF1aGrg+OMF+O0xOOM+OOPelq3XCVILUtmfvZ/hYcPJLcllf9Z+BgQPaNVnnoryrfnsztjNzoyd5eF1f9Z+bLoNAG+jNz0CetDDvwfd/brTza8bsb6xuLu6O7nmQgghhBCiPhJmO4giWxHnLzofm8PGgrMWNHvdyY3JG7ni5yu4ecDNXNf/uvpvcDjgjaFgNMF1f9QeKLd8BQvmwJxlED64WXWs0fyrwTtMdWVujO3fwtdXQt8LYOZ7TQ/EDfDDgR946q+ncDe4s+S8JbLMTgspsZewJ3MPW9O2si1tG9vStnEw+yA66t8xf5M/PQN60su/Fz38e9AzoCcR5ghpbRVCCCGEaKfa2gRQzXaqjZktYzKYeHTEo1z181W8svEV7ht2X7PKGxQyiLGRY5m7fS6ze8zG4m6p+wYXFxh1G3x3k2p5jRtf83VdxgMa7P215cNsbjJsXwgjbmncfce3wLfXQ+RwOOv1VguyOSU5PPHXEyw+uJgBQQN4fOTjEmSbyKE7SMhOYGvaVrambWV72nZ2Ze7C5lAtrgGmAPoG9mVKzBR6B/Smh38PgjyCJLgKIYQQQpwi2mWY1XV9EbAoPj5+jrPrcrINDhnMRT0u4vNdnzMpehKDQ5oXFm8bfBsHsw42fAxn31nw66Ow9t3aw6xXAHQaoNaAbWn7loJuV62rDWUtggXXgskXZn+mWpZbwT+p/3D3irtJKUjh5gE3c03fazC4tMv/xJwipySHLalb2Jyymc2pm9mWto18az4AXkYvegf05vJel9MnsA99A/sS4hkiwVUIIYQQ4hQmv2m3Q7cOupUViSv4z5//Yf5Z8/Ew1LFUTj1iLbHEWmIBsDls9YcvgxsMvgJWPg+ZCeAXXfN1//oNWmOdzf3LwBwCIb0bfs+yxyF1J1zyDXgFtnydShldjHgaPPnkzE/oG9S31Z7TEei6zpHcI2xK2cTm1M1sTtnM/qz96Oi4aC509+vO9Njp9A3sS5/APkT7RMu6rUIIIYQQogoJs+2Qp9GTx0Y8xjW/XMOrG1/lnqH3NKs8Xdd5YNUDaJrGk6MaMA518FXwx4uw/kOY+FjN17i4qomadEfLhVqHA/b/Dt0mN7yb8IEVsOZ1tZxQ1+at0VuTwzmH+Xj7x9w37D56BfRiwdkLcNFaYdKrds7usLMrcxfrk9azIXkD/6T+Q0ZRBqAmaOoX3I/J0ZMZEDyAfoH9mj0eXAghhBBCdHwSZtupoWFDubD7hXy28zMmdJ7QrO7GmqYR6BHIR9s/4qreVxHnV89YZEs49JgKG/+nZgU21tAynHMc3j0Dxj/UtLVga5J5EKwFpWNyG6AwSy3DExBXe+huhlVHV/Hvlf9GQ+PinhfTxbeLBNlSNoeNXRm7WJe0jvXJ69mYvJE8ax4Akd6RjAofxYDgAQwIGiA/NyGEEEII0STtcjbjShNAzdm7d6+zq+M0BdYCZn4/E1fNla9nfN2s1qysoiymLJjCaWGn8dLYl+q/4eBK+HgGnP0mDLyk+nmHA/4bDX3OhRmvNLle1VgLAa1h414XXAtb58M1SyGi5Sai0nWdD7Z9wKsbX6WrX1deGfsKEd4RLVZ+e2R32NmZsZO1SWtZl7SOTSmbyse7RvtEEx8aT3yI2kK8QpxcWyGEEEII0V50uNmMT+UJoCrzNHry+MjHuXrJ1by26bVmdTf2Nflyea/Leeuft9ievp3eAfWMSY0+HYJ6wLr3ag6zLi4qQCZuaHKdqtH1mluBa7L9W9jypWo5bsEgW2Qr4oFVD/DLoV+YEj2FR0c8esp2iT2ad5Q1x9aw5tga/k76m+zibECNw54WM608wAZ5Bjm5pkIIIYQQoiNql2FWVBgSOoSLelzEpzs/ZVzUOIaEDmlyWZf3upzPd33Oa5te4+0Jb9d9saapcag/3QVHN9S8BE/EEFj5HBTngbu5yfUCoDgXXh0Ik56A/rPrvjY/DX64XdXp9Dub99wTGF2MFNoKuWPwHVzZ+8pTajbdvJI81iatZfWx1fx1/C8O5RwCINgjmDMizuC0TqcxLGwYgR6tN8mWEEIIIYQQZSTMdgC3DbqNVUdX8dCfD7HgrAVNbik0u5m5of8NJBckY3fY6589tt+F8MuDsPmLmsNseLyaAOr4Zoge1aQ6lUv4E/JTwTus/mtXPAtFOaoLtKuxec8ttTF5I+6u7vQO7M3r418/JcZ46rrOweyDrEhcwYrEFWxO2Yxdt+Nh8CA+JJ7Z3WdzWqfTiLXEnlKhXgghhBBCtA0SZjuAsu7GV/18FS9ueJEHhz/Y5LIu6VlDl+HamHyg+1TY9g1Mfkot21NZRDy4GCDjQPPD7P5lYPCAqOF1X5e+H9Z/AIMuh+AezXtmqRVHVnDnijvpHdCbj6Z81KGDbIm9hPXJ61mZuJIVR1aQmJcIQHe/7lzV5ypGdBpB/6D+uLm61VOSEEIIIYQQrUvCbAcxOGQwl/a6lE92fMKEzhMYHlZP6KtDka2IebvmMTBkIP2D+td9cb8LYfsC2PermuG4Mk9/uC+x4eNc67J/mQrEBve6r/vtUXB1V2NlW8D3+7/nP3/+hx7+PXhp7EsdsgUyqyiL5YnLWXFkBauPrabAVoC7qzvDwoZxVZ+rGB0xmlCvUGdXUwghhBBCiCraZZitNJuxs6vSpvzfwP/jj8Q/+M+f/2HBWQswuzVtnKpDdzB3+1xWH1vNu5PerfviuPHgGagmWzoxzELLBNmsw5C+F+Kvrvu6I+tgx3cw5l7wbv6MuZ/s+IRn1z3LsNBhvDLuFbyMXs0us61IK0xj2eFlLD20lHVJ67DrdkI8Q5geO50xkWMYEjoED0ML/NkJIYQQQgjRStplf0ld1xfpun6txWJxdlXaFJPBxOMjHye5IJkXNrzQ5HI8jZ5c1fsq1hxfw+aUzXVf7GqEPufB7sVqXdcT7V0KL/RUgbSpUnaq1tYu42q/Rtdh6UPgFQwjbmn6s0rtydzDc+ueY2Lnibw54c0OEWST85P5bOdnXPXzVYz/ejyP//U4x/OPc2XvK5k3fR5Lz1/KQ6c9xOiI0RJkhRBCCCFEm9cuW2ZF7QYED+CKXlcwd/tcJkRNYGT4yCaVM6v7LOZun8tb/7zFOxPfqfvifhfC2ndUq+jgK6qe8wyA3GOQuB58o5pUF7pNhnsS6m7l3fUjHF4D019q/szJQDe/bnww+QMGBQ+qfyKsNiyzKJMlCUv48cCPbE7dDECcbxzX9ruWiZ0n0tW3a4fsOi2EEEIIITo+CbMd0E0Db2JF4goeXv0w3579Ld5u3o0uw9PoyRW9r+ClDS/Vv+5s+CAIiIMtX1UPsyF9wGBSYbbPzEbXA4cD0MGtjhma7Vb49WEI7AYDL2/8M0rpus5LG17C1+TL1X2ubtYyR85UZCtieeJyftz/I6uOrsKm24jzjeOWgbcwofMEYi2xzq6iEEIIIYQQzdYuuxmLurm7uvPEyCdILUzlhfVN7248q9ssvI3e/Hbot7ov1DToNxsOrarendjgBmED4Oj6plXi2EZ4NhYO/1X7NRv/B+n7YMKj4Nr072fe3/o+c7fPJSk/CV3Xm1yOM9gddv4+/jcP/fkQZ3x1BnevuJsdGTu4rNdlzJ8xn2/P/pZr+10rQVYIIYQQQnQY0jLbQfUN6suVva/kw20fMrHzxCZ1Nza7mfnmrG8aNpNtvwvg9ydg+0IY+X9Vz4UPgvUfqlZWl0Z+f3JoNRRlqZbfmjjssOpliBwO3c9sXNmVfLHrC17d9CozYmdw79B7203X26T8JL7d9y0L9i4gKT8Js9HMxM4TmR47nfiQ+HbdRVoIIYQQQoi6tMswK7MZN8yNA25k+ZHlPLLmEb4969smzW4cZg4D4FjeMTqZO9V+oV80BPeGvb9UD7MBXcBWBPkp4N3IJV7SdqtJnbwCaz6/dylkH4ZJj6sW4iZYtH8RT/39FGMjx/LYyMfa/DqyNoeNVUdXMX/PfP44+gcO3cGITiO4M/5Ozog4A5PB5OwqCiGEEEII0era9m/ttZDZjBvG3dWdx0Y+RkpBCi9ueLHJ5fxv+/+Y/u10kvOT676w22TVknrirMb9L4L7jzc+yAKk7VVjYWuz7n0wh0KPaY0vGyi2F/P6ptcZFjqM58Y8h8Gl7X6/czzvOG9sfoPJ30zmlmW3sD19O9f0uYafZv7EOxPfYUr0FAmyQgghhBDilNEuw6xouP5B/bm81+V8vedr/jpex7jTOoyLGodDd/DZzs/qvrD7maDbYf8JY2zdvOqewKk2ug6puyGwa83nMxNg369q0ilXY+PLRwX+uVPm8sq4V3B3dW9SGa1J13U2pWzijuV3MGXBFN755x26+nXl5TNe5pfzf+H/Bv0fkd6Rzq6mEEIIIYQQJ52E2VPATQNuorNPZx5Z/QgF1oJG3x/hHcH4qPHM3zu/7vvDB6uleHb/XPW4rsO8S+Dvepb4OVFRFpTk194yu34uaC4w6Iqaz9chrTCNB1c9SHZxNp3MndrcOrJWh5XFBxdzyU+XcPniy/nr+F9c2ftKFp+3mLcnvM34zuMxujQtwAshhBBCCNERSJg9BZgMJh457RGO5h3ltU2vNamMy3pdRm5JLov2L6r9IhdX6DoJ9i0Fu63iuKZB0lY48nfjHurhBw8ch/irqp+zFcOmT1RrsCW8UcVaHVbuWnEXSxKWkJSf1Lg6tbKckhzmbpvLmd+cyb9X/puckhweGPYAv57/K7cPvp1wc+M+qxBCCCGEEB2VhNlTRHxoPBd2v5DPdn7GP6n/NPr+/kH96R3Qm093fopDd9R+YbfJUJgJieuqHvePgYyDjX4urkYwelQ/vuN7KEiH+KsbXeSL619kQ/IGHhnxCN39uze+Tq0goyiDlza8xMSvJ/Lihhfp7NOZ18a9xvfnfM/sHrPxNDahm7YQQgghhBAdWNud7Ua0uNsH365mN179CF9N/wpjI8aZaprGtf2uZX/WfmwOG26ubjVf2GUcuBhgz8/Q+bSK434xsGNh4yq88nk4ugEu+qL6uXXvqzJjxzaqyEX7F/Hpzk+5tOelTItt2qRRLSm9MJ2Ptn/El7u/pMhWxJToKVzd92p6+PdwdtWEEEIIIYRo06Rl9hTiZfTioeEPsS9rHx9u+7DR94+LGsecfnNqD7IAJgt0Hgl7llQ97h+jWmxPnOm4Lkf+huwj1Y8nb4cjf6lW2UasW3sg6wCPrXmM+JB47oi/o+H1aAVphWk8t+45pnwzhf/t+B/josax8JyFPDvmWQmyQgghhBBCNEC7bJmVdWabbkzkGKZET+GdLe8wMXoisZbYRt2fXZzNJzs+YWrs1Nrv7TYFltynZhv2i1bH/GLUPjMBPAY07GFpe9SkUida9wG4usPASxtV90ifSK7qcxWzus9y2uRJ2cXZvLvlXb7c/SVWh5XpsdOZ03cO0ZZop9RHCCGEEEKI9qpdtszKOrPNc8/QezAZTDy+5nF0XW/UvXbdzgfbPuDr3V/XflG3yWpfuXU2ehRcs7TuNWMrsxZB5qHq1xfnwpYvoc9M8PRvcL3TCtMwuhi5ccCNBHoENvi+llJiL+Hj7R9z5oIz+XTnp0yOnsyicxbx5KgnJcgKIYQQQgjRBO0yzIrmCfQI5PbBt7M+eT3f7/++Uff6m/wZHzWeRQcWUWwvrvmigC6qRfbgyopjnv4QObTh682m7wP06mvM7vsNSvIa1Sq76ugqpnwzhfVJ6xt8T0vRdZ1fEn7h7IVn8/z65+kX2I+vZ3zNk6OeJMon6qTXRwghhBBCiI5Cwuwp6ryu5zEgaAAvrH+BrKKsRt+bXZzNb4d+q/2iyOFwZK1aY7bM6tdgw8cNe0jaHrU/sWV236/gblHlN0BeSR6PrnmUcHM4fYP6NuzZLWRL6hau+PkK7lxxJyaDibcnvM3bE9+mm18DW6eFEEIIIYQQtZIwe4py0Vx46LSHyC3J5aWNLzXq3mFhwwg3h/PN3m9qvyhyCOSnQNahimM7voOtdXRPrqz7VLh+FQRWWjpH11XLbOwYcG3YcO+XN75Mcn4yj454FHdX94Y9u5myi7N5ePXDXPLTJRzJPcIjpz3C/BnzGRk+8qQ8XwghhBBCiFOBhNlTWDe/blza61IW7F3QqLVnXTQXzut6HmuT1pKUn1TzRRFD1f7I2opjfjFqAqiGMJogtC8YKs2cnLITco9B14kNKmJd0jq+3P0ll/a6lAHBAxr23GbQdZ3FBxdz1sKz+G7fd1zV5yp+PPdHzut2Hq4urq3+fCGEEEIIIU4lEmZPcdf3v55gj2Ce/OtJ7A57g+87v9v5LDx7IaFeoTVfENwL3MxVw6x/DGQngq2WsbaVLb4XNn1a9di+X9W+y/h6b9d1nf+u/S8R5ghuGXhL/c9rpqN5R7nhtxv498p/08mrE19O/5I7Bt+Bp7GBY4SFEEIIIYQQjSJh9hTnZfTi7qF3szNjJ1/vaWAXYMDP5EcX3y7oul7zjMiuBggfBIkntMyiQ1YNa8dW5nDAxo/VerKV7ftVhWRLeL310zSNl854iefGPIeHwaP+D9RENoeNj7d/zLnfncvG5I3cO/RePp36Kd39u9d/sxBCCCGEEKLJJMwKJneezLCwYby66VUyizIbfN/xvOOcv+h8fj/ye80XRAyFpG1Qkq/e+5etNXuw7oJzjoK1oOpMxsV5cHgNxNXfKptRlIHVbiXSJ5I+gX0a8Ema5ljeMa5ecjXPr3+eoaFD+e7s77ik5yXSpVgIIYQQQoiTQMKsQNM07h1yLwXWAt7Y/EaD7wv0DCS1IJXFBxfXfEHkMNDtcHSjeh/UA6Y+D0H1tFrWNJNxwiqwl0DchHrr9diax7j4p4tx6I4GfIqmWZKwhPO/P589mXt4atRTvDbuNcLMYa32PCGEEEIIIURVEmYFAHF+cczqPouv93zNnsw9DbrH6GJkUvQkViSuoMBaUP2CiHi1L+tq7OELQ+eAbz3rq9YUZvf9CkZPiDqtzlu3pW3jt8O/MS5qHC5ay//1LrAW8MjqR7hrxV1EW6L5esbXzOgyA03TWvxZQgghhBBCiNq1yzCradoMTdPezc7OdnZVOpSbBtyEt5s3z659tuZxsDWYEj2FQlshKxJXVD/p6Q8BXeHIuopjB1fCzkV1F5q2B0wW8AqqOLbvV4gZDYa6l9d5bdNr+Ln7cXmvyxtU/8bYlbGL2T/OZsHeBfyr77/4+MyPifSObPHnCCGEEEIIIerXLsOsruuLdF2/1mKxOLsqHYrF3cKN/W/k76S/ax8He4JBIYMI9gjmp4M/1XxB5FDVMlsWjv9+B5Y9UXehQ+bAOW9DWWtn+n41zraeLsbrktax+thqrul7DV5GrwbVv6EW7lvIxT9eTF5JHu9Neo9bB92K0cXYos8QQgghhBBCNFy7DLOi9czqPosYSwwvb3wZm8NW7/UumguTYyZzNO9ozddHDoWCdMg4oN77Rau1Zh11jGcN6QU9pla83/eb2tcRZnVd59WNrxLsEcyF3S+st94N5dAdvLjhRR768yEGhQzim7O+YVjYsBYrXwghhBBCCNE0EmZFFQYXA7cOupWD2Qf5dt+3Dbrn1kG38s2MbzC4GKqfjBiq9mXrzfrHgK0I8pJqLqwoB35/GlJ2VRzb9yv4d6mYDbkWV/a5knuG3oPJYGpQvetTYC3gtt9vY+62uVzY/ULemvAWfia/FilbCCGEEEII0TwSZkU14yLHMTB4IG9ufrPmiZ1O4O7qjqZppBemVz8Z1APcfSomgfIrDaQZtSzPk7YHVjxT0ZJrLYKEP+rtYqxpGuOjxjMpelK99W2I43nHuXzx5axIXMF9Q+/jweEPSrdiIYQQQggh2hAJs6IaTdO4Y/AdpBWm8fGOjxt0z7xd85jw9YTqgdbFRc1qXLllFmpfa/bEmYwPr1FrztYRZn9J+IXbf7+d7OKWmRBsS+oWLvrxIo7mHeXN8W9ycc+LW6RcIYQQQgghRMuRMCtqNCB4ABOiJvDRto/ILMqs9/qBwQOx6TaWHVlW/WSngZCyE+xW8ImAodeBT6eaC8o9rvaWcLU/shbQoPOIGi/XdZ13t7zLweyDmI3mBnyyuq1LWse/fvkXHgYPPpv6GSPDRza7TCGEEEIIIUTLkzAranXTgJsotBXy0faP6r22m183wrzCWJW4qvpJ/1jQ7ZB9BAxuMPVZ6DKu7gLL1ohN2w2+keBec1DdlraN3Zm7ubjnxbi6uNZbz7qsObaGG3+9kXBzOJ9M/YRY39hmlSeEEEIIIYRoPRJmRa3i/OKYEjOFL3Z9QVphWp3XaprGqPBR/HX8L6x2a9WT/qWhMOOAmsU4aRvkpTasEml7ILB7rae/2fsNHgYPpsZMrfWahvjz6J/csuwWIn0i+WDyBwR6BDarPCGEEEIIIUTrkjAr6nRD/xsothczd9vceq8dFT6KAlsBG1M2Vj1RedInhxXeHgmb/ldzIVGnwZh7QXNVwTdtHwTVHGbzrfn8dPAnJkdPxuzW9C7GKxNX8n/L/o8YSwwfTPoAf5N/k8sSQgghhBBCnBwSZkWdYiwxTI+dzpe7vySlIKXOa4eHDSfWEkueNa/qCe9QMHjUPoNxZZ1HwNj7wNUA2YfBVlgxGdQJdmXsQkPjvK7nNfTjVLP8yHJu+/02uvh24f1J78vSO0IIIYQQQrQTEmZFva7vdz02h63e1llPoyffnfMd46PGVz2haWoW49pmMK4s6zAc/EO1yqaeMLPxCQaHDOb3Wb/TP6h/Qz5GNX8f/5vbl99Od7/uvDfpPSzuliaVI4QQQgghhDj5JMyKekX6RDItdhrf7P2mQTMbpxWmkVuSW/Wgf2zF2rF12fo1fDxddUcuW6anhm7GGUUZFFgL8DR6omlaQz5GFQeyD3D78tvp7N2Zdya9I0FWCCGEEEKIdkbCrGiQq3pfRaGtkC92fVHndUdyjzD2q7EsPri46gm/aMhMUC2uDZW2GzwDwbP6GNa3Nr/FmQvOpMRe0vDySmUWZXLzbzdjdDHyxoQ38HHzaXQZQgghhBBCCOdql2FW07QZmqa9m52d7eyqnDLi/OI4I+IMPt/1OQXWglqvizBH0MmrE6uOnrBEj38s2IogLwmCe6uQWp/UPTV2MS60FfLjgR85rdNpuLm6NepzlNhLuO3320jOT+bVca8Sbg5v1P1CCCGEEEKItqFdhlld1xfpun6txSJdQ0+ma/peQ3ZxNgv2Lqj1Gk3TOD3idP46/lfVVlP/0hmNc47Cjath8BV1P0zXVctsUPUw+0vCL+Racxs98ZOu6zy8+mE2pmzkyVFPNnmsrRBCCCGEEML5ag2zmqb517WdzEqKtmFA8AAGBQ/i4x0fY3VYa71uVPgoCm2FVZfoqbzWbEMUpENhZo1rzH6z9xuifaKJD4lvTPV5Z8s7/HDgB24ecDNTYqY06l4hhBBCCCFE21JXy+wGYH3p/sRtfetXTbRF1/S9hqT8JH4++HOt1wwNHYrRxcifR/+sOOgTAS4GSNsLz3SGNW/UfLMlEjqPUtdBtZbZQzmH2JSyiZldZzZq4qcVR1bwxuY3mBE7g2v7Xdvg+4QQQgghhBBtk6G2E7qux5zMioj2YVT4KKJ9opm3ex4zusyo8RpPoydnxpxZdc1WVwP4dlZrzRZlqfGzNek3S23rP1TvTxgza3PYODPmTCZHT25wnTOKMvjP6v/Qza8bj4x4pEmzHwshhBBCCCHalkaNmdU0rYumaQ9pmra9tSok2jYXzYXZPWazJXUL29Nr/2vw5KgnubrP1VUP+sdAVkLDHpS6B4yeqkW3ki6+XXh29LN0MndqUDG6rvPo6kfJLcnl6dOfbvSEUUIIIYQQQoi2qd4wq2laJ03Tbtc0bR2wvfSe2a1eM9FmndXlLDwMHszbNa/O69IK08gurjTjtH8sZCTUXfjK5+ERC6TugsCu4FLxV7TEXsLKxJV1zqZ8ooX7FrLsyDJuHXQr3fyqTyYlhBBCCCGEaJ/qmgDqWk3TfgeWAwHANcBxXdcf1XV960mqn2iDvN28mR47ncUHF5NVlFXjNcn5yYz9aiw/Hvix4qBfDJTkNuwhaXurTf60OWUzN/12E2uT1jaoiMTcRJ5Z+wxDQodwWa/LGvZcIYQQQgghRLtQV8vs66XnL9Z1/UFd17cA+smplmjrZveYTbG9mIX7FtZ4PtgzmCCPILamVfreo2xG44bISaw2Xnb1sdUYNANDQofUe7vdYeeBVQ/gornwxMgncNHa5SpUQgghhBBCiFrU9Rt+GPAF8IKmabs1TXscMJ6caom2rptfNwYFD2Le7nnYHfZq5zVNo19QP7akbqk4WLbW7PSXYfiN9T8kqHqY7R/cHy+jV723frT9IzambOT+Yfc3eHytEEIIIYQQov2oNczqup6u6/rbuq6PASYAWUCypmk7NU176mRVULRdF/W4iKN5R1lzfE2N5/sG9uVw7uGKrsi+nQEN8pLB6FH/Ayp1M84oymBnxk5GdBpR720J2Qm8vvl1JnaeyPTY6Q34JEIIIYQQQoj2pkF9L3VdP6Lr+gu6rscDZwO1rKsiTiXjo8Zjcbfw/f7vazzfL6gfAFvSSltnjSbw7gQbP4Ed39VTukuVbsl/HfsLoEFh9pWNr2B0MXL/sPtlGR4hhBBCCCE6qFrXmQXQNK07cC3Qo/TQTuBdXdcfa+2KibbP6GpkcufJfL//e/Kt+dW6//YO6E2cbxxWu7XioH80HPoT0vfVXOjou+D4ZkjZCYaKZXRCvEI4u8vZ9PTvWWedNqds5tfDv3LjgBsJ9Ahs4icTQgghhBBCtHV1zWZ8Gmom41zgXeA9IB9Yrmna8JNSO9HmzegygyJ7Eb8e+rXaOU+jJ9+e/S3jO4+vOOgXXX+hqXuqzWQ8OGQwT4x6AlcX11pv03Wd59c/T6BHIFf0uqKhH0EIIYQQQgjRDtXVzfg/wEW6rj+i6/p3uq4v1HX9YeAi4OGTUz3R1vUP6k+EOYJFBxbVek16YToO3aHelE0CZSup+eJNn0HaHgjoUn4oKT+JPxL/oNheXGddfjv8G/+k/sNNA27C0+jZqM8hhBBCCCGEaF/qCrNddF1ffuJBXddXAI1YY0V0ZJqmMb3LdNYeX0tSflK18z8f/JkzvjqDhOwEdcA3Wu0LM2ouMHkboENg1/JDSxKWcONvN5JZlFlrPawOKy9vfJlYSyznxJ3TpM8ihBBCCCGEaD/qCrO5dZzLb+mKiPZreux0dHQWH1xc7Vw3P7W8zj+p/6gD/tFqX1hLMM1PU/uAimV51hxbQ6wlllCv0FrrMH/PfA7lHOKOwXdgcKlzKLgQQgghhBCiA6jrt/5ITdNereG4BoS3Un1EO9TZpzP9gvqx6MAirupzVZVz0ZZovI3ebE3byrldzwX/0u7D3mE1F1bWYhugGv+L7cWsT17PBd0uqPX5eSV5vP3P28SHxDM6YnSzP48QQgghhBCi7asrzN5dx7n1LV0R0b7NiJ3Bk38/ye6M3XT3r5i8yUVzoW9QX7akli7P41Y647GHb80FOexqXzrmdWPyRortxZzW6bRanz13+1wyijJ4Y/wbshSPEEIIIYQQp4haw6yu6x+fzIqI9m1y9GSeXvs0Sw8trRJmAXoF9GLutrnYHDYMDps6mHOsQeWWheD4kPgazxfaCpm3ax4ToibQJ7BP0z+AEEIIIYQQol2pa8ysEA3mZ/JjQNAAViaurHYu1hJLpHckWcVZFS2vGQdqLiikNJCWjnvtGdCTK3tfWevsxD8f/Jmckhwu7nlxcz+CEEIIIYQQoh2RMCtazOiI0ezM2ElyfnKV4zO6zGDRuYsI9Aisv5Cy7seaS3mZd8bfWevlX+3+ilhLbK0tt0IIIYQQQoiOqdYwq2naRZqmBZysimia5qJp2pOapr2madoVJ+u5ouWMiRgDwMqj1VtnAXRdr7+QrMNq77Cj6zqrj66udUme7enb2Za+jVndZ8lYWSGEEEIIIU4xdbXMRgFfa5r2h6Zpj2iaNkxrZGLQNO1DTdNSNE3bdsLxKZqm7dY0bZ+mafeWHj4biACsQGJjniPahi6+XQg3h7PySNUwq+s6UxdM5aWNL9VfSFmY1e0kFyRz3a/XsfTQ0hov/Wr3V3gYPDiry1nNrboQQgghhBCinak1zOq6/l9d18cBU4F/gKuBjZqmfa5p2uWapoU0oPyPgCmVD2ia5gq8AZwJ9AIu0jStF9AdWK3r+h3ADU35MMK5NE1jTMQY/jr+F0W2oirHDS4GDuccblR5B7LVuNoYS0y1czklOfx04CemxkzF2827eRUXQgghhBBCtDv1jpnVdT1X1/VvdV2/Ttf1gcATQBDwvwbcuxLIOOHwUGCfrusHdF0vAeahWmUTgbL+pPbaytQ07VpN09ZrmrY+NTW1viqIk2xMxBiK7EWsTVpb5XikdyRHco+Ai6s6UNs6s5UczD4I1Bxmv9/3PUX2ImZ1n9X8SgshhBBCCCHanUZPAKXr+g5d11/QdX1yE58ZDhyp9D6x9NgCYLKmaa8BNQ+6VM9/V9f1eF3X44OCgppYBdFa4kPj8TB4sOLIiirHI70jScxNRNdKw2xAl3rLOph9EG+jNwGmqkO3dV3nqz1f0TewL70CerVY3YUQQgghhBDtR5uZzVjX9QJd16/Rdf0WXdffcHZ9RNO4uboxotMIViSuqDLhU6R3JAW2AjKK0tWBkvx6y0rITiDGN6ba5E7rktZxMPugtMoKIYQQQghxCnNGmD0KRFZ6H1F6THQQYyLGkFyQzJ7MPeXHIr3VH/nxnNK5vY5tqvlm3yi111yJ84tjVKdR1S75cveX+Lj5MCV6SrVzQgghhBBCiFNDvWFW07RPGnKsEdYBXTVNi9E0zQ2YDXzfmAI0TZuhadq72dnZzaiGaC2nR5wOwIrEiq7Gw8OGs/aStfQJ6Fn3zWVh1sWVe4feyw0Dqs4FllaYxrLDyzgn7hxMBlOL1lsIIYQQQgjRfjSkZbZ35TelsxEPbkjhmqZ9AawBumualqhp2jW6rtuAm4ElwE7gK13Xtzem0rquL9J1/VqLxdKY28RJEugRSDe/bqxPWl9+zM3VDQ+DR/03F2YBkF+SW+P6sn8k/oFNt8lyPEIIIYQQQpziag2zmqbdp2laLtBP07Sc0i0XSAG+a0jhuq5fpOt6mK7rRl3XI3Rd/6D0+E+6rnfTdb2LrutPtsgnEW3KgKABbE3bikN3lB97ePXDvLrlnbpvTFZLEi87vIzRX44un9G4zJ/H/iTII4hufv/f3n2H113X7x9/vs9MTvZumiZNukfapntDyyyjbNlTAUFQRMT1VQHnTwVBREUEQVQKCCgUBJmFli5auhdd6UhHmjR7nvH5/XFO0qRN0pXkJOn9uK5e55zPOq+TniTnznsNaveaRURERESk+3C0tsOyrF8CvzTG/NKyrO93Yk09gj9gsXp3KfEeFznJUeEup9ONSh3Fy1+8zNbSrQxMGAjAzvKdbPPVHdP528rzcRgHfWL6NG7zBXws2rOIM7LOOGJSKBERERGRU0Gdz09ptZfKOh9Vdb7QrZ+kaBdjshIor/Xy9PztVDXZX13vJ9Jl5w/XjgHgoicWsHl/JX+9eTyT+ycd5Rm7rlbDbBNvGmOiLMuqMsZcD4wBfmdZ1o4Orq1VxpjZwOwBAwaEq4SjClgWVz21mJunZPOD848yTrQHGpUyCoBVB1Y1htnMmEw+aRhH6/S0ef72ih1kxmbitDkbt60tWkt5fTlTM6Z2TNEiIiIiIu3IsixqvH5q6v0kRbsBWLmrlOLKusYQ2hA4b5zcl6RoN3OW7uT99fuD++uDx1TW+fjOuYP50rhM3lm7j3teXHnEc10wIp0x1yVQ5w3w+Aeb8bjsRLkdRLsdRLnt9Io9NORv5uBUJmQnkhrr7qwvRYc4ljD7J2CUMWYUcB/wNPA8cHpHFtYWy7LmAnPHjRt3W7hqOBqn3cbw3rGs3Fka7lLCIismiwR3AisLV3LFoCuAYJgtrj1ItTF4Msa0ef728h3kxPVrtm1BwQJsxsbk9MkdVreIiIiInNoaAmhlnY/K2mCYTI11kxYbwe6Saj7adCC0PRhCK+t8DEqL5vbT+lNW4+WKPy2kqs5HRahlNGBBXKSTVQ+cA8D3Xl3Nxn0VRzzvOcPTSIp2c7Cqnn3ltUS5HaTGRBCV7CDabadPQrAxKC8znp9dkhsKqcGgGu12kBwKy8nRLrb94nxsttZ7Mt57ds8YsncsYdZnWZZljLkYeMKyrGeMMV/p6MJ6grzMeF5cugufP4DD3mWW9O0UxhhGpYxi1YFVjdsalufZ7XDQ1rePF9hZuZuZWWc22/5pwaeMTB5JnFsTf4mIiIhIc5ZlUVLtpaLWS0WtrzGM1nj9zB7VG4C/L97BtgOVwTBa72s87teXj2RgWgy/+d9G/jRvKwGr+bW/d94Q7ji9P5v3V/Kj/wTneLEZiHI7iHE7cNqDwTHCaWNAanRj0IyJCN7GRR7qbfibK0YRsKxmraYelwN7KHzeNXMAd81svQdq36Qo+ia1PozRGMOpMiLvWMJshTHm+8ANwHRjjA1wHuUcAUZnJfDsp/ls3FdBbsapF8BGpY5i3u55lNaWEh8R3xhmdzkdDNq5uOWTImIptdvIjM5gQMKhb+KDtQdZV7yOr+V9rTNKFxEREZFOYlkWxhgOVtWzt6wmGDBDIbOi1svwjDjGZCWweX8Ff5y3NRRAvaH9PnIz4vjDtWPw+i3G/PS9I65vM3DhyHSMMby5ag/r95YT3Rgkg4GzIbyOy07kazNMMGhGBFtEo91OBqfFADC5fxJLf3Am0REOIp32I+ZxcTvs/On6thd+GdHn1MsFHeVYwuxVwLXAly3L2meMyQJ+07Fl9QxjsuIB+HxnyakZZkPjZlcXrea0PqfRP74/fz/zzwx85nwI+Fo+qddIUta/zhuzXwOHq3Hzoj2LsLCYljGtM0oXERERkaPwByzqfH48rmCk+Cz/IOU1wVbRilAQraz18e1zBmOzGX7zv40s31HS2GLaEEafvXk8UwYk8/dFO3j0/S+OeJ67ZvZnTFYC1fV+Pss/SEyEk5hQF9x+yQ6GpscC4HLY+MnFw/G4ggE1JhRWoyMORZ4Xb5/U5kSiMwenMnNwaqv7I5x2Ipz2E/2SSTs7apgNBdh/AuONMRcCSy3Ler7jS2tdd5gACiAjPpLZo3qTFhsR7lLCYnjScOzGzsrClZzW5zQiHBHkJeeCZbV5XoAj14z6tOBTEtwJDEsa1mH1ioiIiJwq/AGLylofbqeNCKed3SXVbNxbQUVdKIzW+iiv9TI2K4FzhvdiS2EF3311TWMX3obuuaP6xPH63cHGhhueWUKtN9Dseew2w9dmDiDa7aCqzk8gQGMIjYkIBs20uOBn5fNH9GJIegwxja2iDmIinMRGBiPLqMx4Fnz3jDZf142Ts9vcrxUxepajhlljzJUEW2LnAQb4vTHmfsuyXung2lrVHSaAguA3y++vGR3uMsLG4/QwKGEQqw+sbtz2ytY3KIuLodVB1/kLeDA5kS/evp4XZ78MQMAK8OmeT5ncezI2c2qNPRYRERE5XEsz5H7yxQFKquspr/FSXutrvP3RhUPxuBz88u0NfLihMBREvVTV+wF48vqxzMrtxXvr9/PQ3PXNnsdlt8E0OGd4L1x2O26HjeTkqGDLaEQwaGYmHJoh97lbJhDhtDe2isZEOIlw2hoD5IMXDW/zdQ1Mi2FgqDuvyLE4lm7G/weMtyyrEMAYkwK8D4QtzHYnPn+AdXvKyUr0kBDlOvoJPcyolFG8vvV1fAEfDpuDJfuXsS4muvUwC2xzOvE4Dv1g3HhwIwdrD6qLsYiIiPQIgYBFVb0Ppz3YKrq3rIa1BeWhLrqHwmhuRhyXjM5gd0k1d/7jc8prvY3deH0Bi34pUXx43wwAvv2vVRRW1DU+h8thIzbCyb1nDcTjchAf6aJ/SnRjCA3eOhjcKxgeLxiRzpishGb7m3anzUry8MJtk9p8XZP6dd/1SqV7OpYwa2sIsiHFHNkLVFqxubCSi//wKQ9/aRRXjO0T7nI6XV5qHi9uepEtpVsYkjiEzOgM3nc48FlWi28+y7LY7nQwK7Zv47ZPCz4FYHJvLckjIiIi4WdZFnW+QGPYW7mrlKKKOspqvJTXeimrCf77xhkDSYhy8cSHm3lrzb5gUK3xUlHnw7LgN1eM5EvjMvl0SzHf/teqZs/hcdm5YmwfLhmdQaTTTkqMm34pUcSGut3GRDhJa7JG6N++PAG3w0ZsZDCIuh3Nx3XeOaN/m68pNTaC1FN0aJx0X8cSZt8xxvwPmBN6fBXwdseV1LMMToshweNk8bbiUzLMNkwCtapwVTDMxvbFZwx704eT2cLxB/FTbreTE3MozC4oWMDQxKEkRyZ3UtUiIiJyqqio9bKjuJryUABtCKMZ8R4uGJlOWbWXb7y4Irivyf64SBfLfngWAPe9vJKtB6qaXTfa7eC6iVkkRLnwuBxkxEcQGxFDbKST2AgHsZFORvaJB2Dm4BTeuHtqKKgGw6izybKOSdFu/nrz+DZfR8MkSCKnkmOZAOp+Y8xlQEMfz6csy/p3x5bVc9hshok5SSzaWtw47fipJCM6g6SIJFYdWMVVQ66iT0wGALsCtS2G2e14AegXmw1ARX0Fqw6s4su5X+6kikVERKQ7qarzUVJdT2l1MGyW1ngprfZy7vA0kqLdvL6ygHfW7mtsLS2v9VJW7eXeswdxy9QcFm0t5va/Lz/iumcMSeWCkem4HDZKq+uJjXSSkRBJbISTuEgnSU2Gjz1yZR4GiIsM7ouJcOBoEka/PC2HL0/LafU1JEW7G8e+isixazXMGmMGAGmWZX1qWdZrwGuh7dOMMf0ty9raWUW2UFu3mM24wdQBSbyzbh87D1a3ucBxT2SMIS81j5UHVgKQGdkLgN0lR067DrCX4JI9OaFuxkv2LsFv+TVeVkREpAer9wVCYbOeshovDpuNUZnx+PwBHv9wC2XVwe2loUBaU+/nnW+eBsB1Ty9h5a7SI645MC2apGg3+8pq2VJYSVykk16xEQxKiyEu8tC6oXlZ8Tx1w1hiQ0G04TbKFeymG+myN87W25q8zPh2/XqIyLFpq2X2MeD7LWwvC+2b3QH1HJPuMptxg6kDgt1jF2wpOuXCLMCQxCF8sPMDan21pEQm8ZMDxQxLbbnL9eyc8zjzo58RGRNst11XvA6HcTAieURnliwiIiInoM7np6zaS0yEk0iXnc37K1ixs5SS6npKqoNhtaTKy9nD0rh8bB+W7yjhhmeWUB2aWbfBuL4JvHLnFOw2w5PzthLpshMX6STeEwyaGfGR+PwBHHYbXz2tHxW1PmKb7I/3OEkOtXR+9fT+fPX01seLpsZEcM7wXh36dRGRjtFWmE2zLGvN4Rsty1pjjMnuuJJ6npzkKC4cmd74Q/VUkxkKpgWVBfSPTOXSyipIa/1r4bEsCHXH3l62nczYTJx2Z6fUKiIiIodsO1DZ2IW3pNpLaej+N84ciMth41fvbOTjTQcoq/FSUl3fGEqfuWkcZw5N46NNhfzivxsBcNoN8R4X8ZFOJtQkAtArLoJrJ2Q1htA4j4u4yEMTGxlj2PjTWdhsrQ/TOm9Eegd/FUSkq2orzMa3sS+yjX1yGGMMT1w7JtxlhE1WTBYAO8t3ku1O4s3oKIZadQxq4dg3d8/j1V6pPFVfjdPhYlvZNvrF9evcgkVERHqQOp8/FEbrOVhVT4LHxdD0WAoranly3rZQq2k9JVX1HKyuJzUmglfvnALA5X9aSEm1t9n1bAZumpJNSowbl91GelwEQ9Njifc4SfAEA+mgUBfeK8dlcv6IdOI9LqJc9iPmDsmIj+SHFw5rs/62gqyInNraCrPLjDG3WZb1l6YbjTG3AkeOkpc2BQIWawrKSIxykZnoCXc5naqhZXZXxS78ySP5YUoS91DdYpjd561gWWQEFgG8AS+7yndxVtZZnVuwiIhIF1Xr9eO027DbDBv3lbOlsJKSqmAX3oNV9ZRW13Pl+Eym9E/m9ZUF/OC1NVQd1oX38jF9eOTKUXj9Fi8v20W8x0lilIt4j4vs5KhmQ6J+fcUonHZDgsdFvMdJvMdFjNvRGDDvPbul3+aHxHuC1xUR6QhthdlvAv82xlzHofA6DnABl3ZwXT1OZb2Py/60kK+e1o/vzBoS7nI6VZw7jhhXDDsrdh7XebvKd+GzfOTEtT77n4iISHcVCFiU1Xg5GGoxPVhVT63Xz8V5wZn/f/7Wer7YX9m472BVPTVePx/cdzr9U6L5+6Id/HPJod+tMW4HCVEuzhyaBgSHOV01PovEqGAIDQZWJ5kJwT+qZ8RHsvahc9us8exhaR306kVETl6rYdayrP3AFGPMTCA3tPkty7I+7JTK2tDdZjMGiI1wMj47gQ83Fp5yYdYYQ2ZMJrsrdoMt9JaLSj3qedvLtgOom7GIiHQLdT4/gUBw9tvCiloWbS0Odt0Ndd89WFXPgJRovnXOYMprveQ99C4Bq/k1Ip32xjC7o7ia0up6kqJdDEyLJtHjIiHKRWxEcB6JO07vz01TshtbTZuuSwowsk984zqmIiI90bGsM/sR8FEn1HLMuttsxg3OHJLGz/+7gd0l1fRJOLW6GmfFZLGueB2Y0C9a59Ff/7aybQBqmRURkbDw+QOUVHsprqrjYGU9RVX1TO6XREqMm7fX7OXfKwoorqqnuLKO4sp6Kup83Hf2IL5+5kA276/knhdXAsE5DRNCLaMNk0HGuB3cNXNA4/am/xrWpX/qxnFt1neqDVsSETncUcOstJ8zh6by8/9u4P31+7l56qkV0DJjMnl/x/t4fXXBDXXlRz1nW9k2ekX1wnMMwVdERORoGkIiwGf5BymqqKOoqp6DlfUUVwUD6e+uzgsu9/L3Zby7fj/WYS2nz948nplDUimuqmfnwWqSol2M7BNPYpSLpCgXk/snAcF1R9//1mmhVlMX9sMmMTLGcN85gzvldYuI9FQKs52oX0o0/VOieG/DqRlmfZaPwqq9XFRRyQBT2eJx56eMZdTqf+BwRLCtbBs5safW10lERI5PIGBxsLqeoso6Ip12+iZFUVhRyzMLtlNUEdze8C8tNoI37p4GwK1/W0ZZzaFZeuM9TpKiXFTW+Yj3uDhzSBqDe8WSHO0iKcpNUrSL5GhXY8+q6yf15fpJfVutK8rtYEBqTMe+eBGRU5zCbCe7dXo/qup84S6j0zXMaLy3ej8/LzoIcVEtHtc7uje9a+uwjJ3tZdu5bOBlnVmmiIh0AT5/IBhQQ2H0QEUwjE4bmMzw3nF8sGE/D7/7BUWVdRRX1jWOO71ibB8e/tIo6rwB/rpgO8nRbpKj3aTGuBmWHktOyqHfPU/fNI4ol4Pk6OA41MPHm145PrMzX7KIiJwAhdlOds2ErHCXEBZZscHXvaNiF9kOOzGWn5b+Xr38wGqWxMdxcfluanw1mvxJRKQHWrGzhN0lNRyoqKOwoi50W8svLxtBnwQPP3p9HXOWHjkD/kPO4QzvHUeU20FGfASj+sSRHO0mJSYYWvunBsNqn4RIvvjZeUesadrU+OzEDnt9IiLSORRmw2BLYQWrd5dx2Zg+4S6l06REphBhj2BHxS7OzczgHsq5tYXjPq/cwZ8S4sgt2wJo8icRka7O5w9QVFlPvS9AVpKHel+AP3+8lQOVdRSW13Eg1LJaXe9n2Q+D64Y/8MY6Vu8uA8BpN6SEAmlNaD3U2SPTGZYeE2xZDQXV5GgX0e7gx5ZJ/ZKY1C+p1ZraCrEiItJzKMyGwUuf7eK5hfmcOSSNOI8z3OV0CmMMfWL6sLtqzzEdv718B6AwKyISLg0hdX95LYUVdaTHRZCbEccX+yv4xX83UFgebE0trqrHsmBCdiIv3zEZh83w+Ieb8bgcpMQEu/iOzoonJdqNP2Bhtxn+32UjcYRCbFykE9thkyNNGZDMlAHJYXrlIiLSXXTLMNsd15lt6sKRvfnL/O38b/0+rhx36ozJyYzJZGdZfvCBK7bNY7dX7iTWFUtSROt/eRcRkePn8wcorqqnsLyuMajuL6/lgpHpDEqL4eVlu/jN/zZRVFnXbCbfm6dkk5sRh80YiivrSY+LYFRmfGNgzU4KdvG12QxrHzoXt8Peag3Derf9O0BERORYdMsw213XmW0wsk8cfZM8zF2155QLswsLPg0+8LQ9Vml7WT794vqpq5iIyHHKL6piT2kN+8pr2VtWy/7yWvaV1fLrK0YS73HxzZdW8ubqvc3OMQb6pUQxKC2GPvGRnDkkldTYCNJi3aTFRJAa626cxXdAajRzvz6tzRraCrIiIiLtpVuG2e7OGMNFo3rzh4+2UFhRS2pMRLhL6hRZMVnUBeqDD/z1bR67vXwHM7JmdkJVIiLdR53Pz/wvithXHgypDWHV57eYc/skAG557jO2F1U1nhMb4SA9LpLymuCSM5eP6cPEfkmkxrhJCwXW5Gh342y+6uIrIiLdhcJsmFycl8HvP9zCGyv3cOv0U2PG3obleZJ8fqIq9rV4zJjovtyyO59n49FMxiJySrAsC6/fwuWwsbeshnfX7WdPWQ17S2vZW1bD3rJacnvH8eQNY/EHLG59fhkANgOpMRGkxUXQJz4Sy7IwxvCTi4djtxnS4yJJi3XjcTX/VT9zSGo4XqaIiEi7U5gNkwGp0fz0klxmDEoJdymdJjM2GGbvKSnl0rRBLR4zNmUk9i/e5tn4WPrFK8yKSPdmWRblNT7cThsRTjuf7yzhgw372VtaGwysZcHW1a+e1o/7zhlMQUkND7yxDpfdRq+4CNLjIhjXN4G8zHgAPC4Hr981lbTYCJKjXTgOWxsVYPrAU+f3ioiInNoUZsPohkl9w11Cp0qPSsdh7Oxytv6221O5hw88kQDkxGomYxHp2up9AfaX19I7PhK7zfD6ygIWbilmT1kNBaU17Curpbrez5PXj2FWbjprdpfx5Mfb6BUbDKoj+8Qza3gEE3OCk92N6BPHZ/93FklRriNm+G0wKhRsRURETnUKs2H29PxtWBbcdlrPb4V02Byke3rxD7+XVKuMq1s45q0Dy3kuPg6ncdI7unen1ygi0lRlnY+iijqyk4Mz9f7hoy1s3FfBntIaCkpq2F9Ri2XB/O/MJDPRw+JtxXywsZCM+AgGp8UwY1AqveMjGNwrOHvv1RMyuX5SX+ytBFW3w05KjCZPEhERORYKs2G2fEcJS7cf5KYp2bgcR3YX62n6RPdmV1UBlQTaPC47Ngu7TR/oRKRjldV4qarz0Ts+kpp6P796ZyO7S6opKK2loKSa8lofMW4Hax46F4APNuynqLKejPhIpg5IJiMhkj7xkcRGBNcM//klI/jlZa3Pwq5ZfkVERNqPwmyYXTkuk7fX7uP9Dfs5f0R6uMvpcH2iM2D/Z1g2Z5vH5cSeWl2wRaRjVNX58PoDxHtc7DpYzXML89l1sJrdJTXsKqmmotbHxJxEXvrqZFwOG2+s2kNqjJuM+EjGZyfQOz6SjPhIAgELm83w6p1T2lwyrLWuwSIiItL+FGbD7LRBKfSOi2DO0p2nRpgNzWhcG5PW4n4fFgDZ0VmdVpOIdF9ef4CAZeF22Fm9u5S3Vu9lV0korB6spqTay5en5vDj2cOorvfzwpKd9EmIJDPRw7jsBPokRDIoLQYAu83w+Y/ObvP5tPa1iIhI16EwG2Z2m+HK8Zn87oPN7CyuJivJE+6SOlTD8jyl/roW95fgByAnTi2zIhLUsOTM8h0HWbq9hJ0Hq9l5sIqdB6vZU1rLry4fyRVj+7ClsJJnP82nT0IkfRI95GbE0SchkvHZiQAMSotm/U/OVSAVERHpIbplmDXGzAZmDxgwINyltIurx2fx+w+38P6G/Xx5Ws+ewTczMri+YVnlnhb3W3YX+CEnNrsTqxKRrmDFzhK+2F/BzoPV7CiuZtfBanYcrGbObZMYmh7L22v28fSC7SRFuchM9DAmK4FL8jwM6RVsWZ09qjeX5GW02tVXIVZERKRn6ZZh1rKsucDccePG3RbuWtpDr7gIPrzvdPomRYW7lA6XGdMHgByr5UlQ0mKzoKSInISBnVmWiHQwy7IorKhje1EV+UVVbC+uYkdRNbtKqnn9rqk47DZ+879NLNxajMNmyEiIJCvRwwUj0ol0Bn9e3H3GAO45ayAxES2PuXe2sOaqiIiI9FzdMsz2RA1BtqLW2+oHtZ7AaQu+5dym5Q+dVmjMrNPorSnS3ViWxYGGwFpcRX5xNYGAxffPHwrA2b/9mPJaHwBOuyEz0UNOUhRVdX7iPDZ+cvFw3A476XEROFoIpvEeV6e+HhEREenalBi6kG+9vJKthZX8566pPbY7nDcQ/CC7zapvcf9nJRuDx3mrcLp7fku1SHdUU+9nW1El2w5U4XHZOXNoGoXltZzxyMdU1vkaj3PaDcN6xwHBLr6/uGwEsRFOcpKj6B0fecRaqwNSYzr1dYiIiEj3pjDbhYzOjOe1zwv4fGcpY/smhLucDmFZwfVli0MTPYlI1xQIWOwpq8FuM6THRbJ+Tzm/fHsDWwsr2VNW23jchJxEzhyaRlK0myvG9iE7yUNOSjQ5SVH0jm/ewnrhyN7heCkiIiLSQynMdiGXjenDr/+3ib9+ur3HhlkR6Zo27avgf+v2saWwks2FlWwvqqTWG+CWqdk8MHs4LoeN8hovE/sl0S85ipyUKPolR5OTHOxBYbcZHrxoeJhfhYiIiJxKFGa7kCi3g2smZPHMgu3sLqmmT0IPXKbHFhoPHBEX3jpETjE19X62Hqhk64FKNu+vDIXWCr5x5kAuzstg/d4yfvveF2TERzIwLZop/ZPolxLF6MzgH9YGpEbz+t3TwvwqRERERA5RmO1ibpqSzTMLtvPcp/n88MJh4S6n/TWOBdasoyIdodbrZ0thJZv2VfDF/gqun9SXzEQPD7+7iWcWbAeCrah9kzwMSIlunFRp1vB0zv1JLzwu/VoQERGR7kGfWrqYjPhIbp6STWZiD2yVBfB7g7feyvDWIdLN+fwB8our6Zcchc1m+O17X/Dmqj3kF1cRCE4KjstuY8qAZDITPVw6OoMxWQkMTIsmOykKl6P5H5QiXS0vlyUiIiLSVSnMdkE/6oktsiF2W/ADdHYr8z+NTxjCopIVOJ2ayVikqfmbD7C2oJwv9lewcV8FWwsrqfcH+OT+mWQleXDaDIPSYrhwVG8Gp8UwuFcwtDZMwJSbEUduhrr3i4iISM+hMNtFFVXW8Y/FO7jj9P5EOHtOi4ndBF9LitaRFTlCvS/A5sIKNuytYMPecnYUV/GXG8dhjOGRd79g5a5S0uMiGNwrhtMGJjMoLYa4yOA49K+fOTDM1YuIiIh0LiWKLuqLfRU89v5mkqPdXD+pb7jLaTd+K9gkW2T5Wty/sWwbAF5vjdaZlR6tuLKOvWW15GbEYVkWl/zhU9btKccX6iMc4bQxOC2G8lofcZFOfnd1HvEeV2N4FRERETnVKcx2UZP7JzEqM54/f7KVq8dnNlursTvzB4JhdjveFvdXBOpD9wKdVJFIx6v3Bfj4iwOsLShj3Z4y1haUs6+8lqQoF8t+eBbGGPIy45kyIJlh6bEMTY8lJzkKu800XqNvkv64IyIiItKUwmwXZYzh7pkDuO35Zbyxag+XjekT7pJE5Cgsy2J3SQ3r9pSxpqAMh83GvWcPImBZ3PmP5QQsi/4p0Uzun8Sw9FiG9Y5tPPehi3PDWLmIiIhI99Mtw6wxZjYwe8CAAeEupVW7Dlbzg3+v4etnDGRCTuIJXePMIakM6RXDEx9t4eK8jGatNN2WLfSWc0WHtw6Rk2RZFrXeAJEuO3vLarj/X6tZu6eM0upgrwO7zTClfxIAEU47/7lrKv1SorT0jYiIiBy3QMCi3h+g1uunztfKrTdAra/t27ojHgf4+1cmYEz3zBnd8lOVZVlzgbnjxo27Ldy1tCYxysWS7QcZsHbvCYdZm81w9xkDuPuFFSzfUXLC1+lSTKi7tE3j/qR7Kavxsnp3Kat2lbJyVxmrdpcyOjOep24cR3yki7IaL7OG92qcNXhIr5hmk7dpJmEREZGewecPUBsKkMF/wZBY6w1Q5/VTG7rfsK+2yba6tsJoG7f1vpMbgud22HA7bEQ47bidNiIch259AQunXWFWmohyOzhtYDLvrtvPjy8cdsJ/7Tg/N513741hUFpMO1cYJqExs/hrw1uHSBvqfH7W7ynHYbMxok8cK3eVcskfPm3c3y8liukDkpk6IBkIrtE69+vTwlWuiIjIKc3nD1DTNDh6/Y2PaxoD56EWyWYhs8m2usOCZ0thtdbrb5ys8UREOG24HfYWbyOddhI8TtyhoNnaccdz63bacNlt2HpCD88WKMx2oFm56by/oZCVu0oZnZVwQtewhdaODAQsDlTWkRYb0c5Vdi5D8Js/yVvf4v7BngwWVW/Bbnd3Zllyiiur9rJwaxHLd5Tw+c4S1haUU+8PcF5uL/50/VgGpUVz/7mDycuMJzcjTjMKi4iIHIU/YDUGyZp6P3U+PzX1weBYU38ocNY1CZwtB1I/Nc2CZZPj6oP3TzRcOmyGCGfzABh8HLwfH+k81JLptBPR7JhD29xNz3M0v0bTY9wOW7ftzttVKcx2oLOHpeGy23hr9d4TDrMNvvnSStbvLed/3zytW4+ddYbGzPYzrhb3x7pjoBpsNr01pWN4/QE27q1g+Y6D9E2KYuaQVNbvLefOf36Oy2FjVJ84bpmazeis+MbvW4/LwV0zu+4YfRERkWNlWRZefzBo1oTCYMNtbdNtocfV9c3DZ7NjQ4+rD9tf6w1Q7z+xbrEuh40Ih41IVzAQRjrtuJ12Ip02kqJch2071KIZ4bQT4bI3nhvZJFAGg+phYdVh6zGrhZzKlBg6UFykk9MGpTB39R6+f/7Qkwqhs3J78caqPbyxqoBLR3ffmY0tK/iXszqr5R9wBVX7APD76rXOrLSb7UVVvLJ8F8t3lLBqVxk13mB396vGZTJzSCqjs+L5z11TGZYei8uhX2wiIhI+DRMMVtf7GkNidZPAGLzva2W7nxqv74iQGrwfaAyc/hNoyXQ3CYmRTnvj/Si3g6Rod7PtDcHR03j/UDBtFj4bjg9d2+2wd+tGG+l8CrMd7OK83ry/YT9LthUzJTS+7kTMGt6LoemxPPb+Zi4c2RtnN/1LkjcQnOl1NXUt7t9TXwJAwPJ1Wk3Ss5RU1fNZ/kGWbj9IXlY8F47szd6yGp78eBvD0mO5anwmY/smMKZvAr3jgt32I5x28jLjw1u4iIh0G/6A1Rg2G8JlY5is91FV56fa66e6ztes9fLQ/da2+xv/4Ho83I5gcPS4HKEQ6SDSaSfe4yK9ScAMhk1b6LhDjyOdTfcfeRvhsPfYMZfSvSnMdrCzh6UR43bwyue7TyrM2myG+84exK3PL+OV5bu5ZkJWO1Yp0r1t3FfOPxfvZOn2g2zaXwEEuyl5XHYYCeOzE1n9wDlEufUjT0TkVGFZwaVMquv8VDUNnnXB+1X1vsYA2VIwrWlyTFX9oRBaVe8/7pllG1o1PQ0h0WXH43QEw2acHU/DtsYA6Why337YfUez7RFOtWbKqUuf7DpYhNPOhaPS+c+KPTx0kZeYiBOfOObMocHukI9/sJlLR2c0W/aj22hYmkcTPMkJKqmqZ9G2Yj7dUsSEnEQuzsvgYGU9r32+m7HZiVyU15sJOYmM7BOH2xH8HnHabd22N4OIyKmgoWttVb2vSfgMtXA2vQ2F0apQsKysa3gcCqh1zW+PZ2Igh800tm56XHY87kOBMyPBTqSz+fbG+65D+6Lchx0XCp4KmyIdQ2G2E1wxNpM5S3fx5uq9J9WiaozhB+cPZUthJY7u+kOxYWInpye8dUi3sqWwkpc+28mnW4rZsK8cy4Iol530UDfhCTmJrHrgHE3kICLSSQIBi6pQyKys84WCZfBxVZ2vybbg46pQAG3Yd3jorKr3YR1j7rQZiHI58Ljtjbcel4OkKBeZiR6iQoE0KrQ9ymXH4w6FTZeDyCa3TbdpzgSR7kdhthOMyYpnUFo0Ly7dedLdg8dnJzI+O7GdKguDhomfrOMfDyKnBq8/wIqdpSzYfIBhveOYlduL/eW1/G3hDsb0jedbZw1iyoAkRvaJb2xtVYgVETm6Op+fytpgmKys81FZG2zRrKhtCKXe0H5/k3AaCqj1vlAQDQbQ4xnXGeUKThIU/BcMj71iI/C4HUQfFjiPCKKN+w+F1winljcRkSCF2U5gjOHaCVk8OHc9awvKyM2IO6nrBQIWP35jLSnREdxz1sB2qrKTBIITO7nqKlrc3duVAPV7sRm9NU8lRZV1vLtuPx9/UcjCLcVU1PmwGbjttH7Myu3V2PIa6eqGXetFRE6Czx+gqs5Pea23MVxWNATRuubBtLLJ46q6YEhtuF9Z58PrP7amz4bwGe0+FCB7xUYcCqRN9jcNqIe2HQqvHqcmDhKRjqPE0EkuHdOHX72ziecX5fPrK0ad1LVsNkNZjY9Xl2/lmgmZpMZGtFOVHc9lD64vO8q0XHNGVC+o34vd0fI6tNIz1Hr9LNl+kGi3nbF9E9m4t4If/HsNveMiuHBUOqcPSmFy/2TiIoNjzINjXsNctIjIcWjohtsQKCtqvU3uB8NnRa23MZg27gsd27DtWFtAPS470aEwGR0RbMnMTPQQEwqV0RGOxv0NoTP6sO3REQqfItK9KMx2krhIJ5eMzuC1z3fz/fOGkhB1cmHt2+cM4p21e3nsg8384tIR7VRl+JWHWmwDAS3N09PsLqnmgw2FfLCxkCXbiqnzBTh/RC/G9k1kfE4C73/rNPqnRKvrmIiEXUMQLa89FELLa4K3FbVeymt9lLewvVlYrTv67zFjINrlICbiUKiMj3TSJyGS2MaQ6WzcH9MQVN3N70e5HJpgSEROSQqzneiWqdnMWbqTF5bu5K6ZA07qWn2TorhuYl/+vngHX56aw4DU6HaqsmM1rDO7yqptcf+m6t0A+P31nVaTdIxAwKKi1kecx8mSbcVc9dRiAPolR3HtxCxOH5TCxJwkANwOOwNSY8JZroj0IF5/oDFoltV4Ka/1Ul7jC92GQmhtk3Ba0ySchrrzHm0yIpfDRmyEg9iIYNiMiXCSFhtBtDt4PzrCcSiQhvZHu0PbQtujXA61goqInASF2U40KC2G6QOT+dvCfG6b3u+kZ837+hkDeHX5bn71zkb+cuO4dqqyc9Rx7FPlS/dRXe9jweaixhbY8dkJ/On6seRlxfPDC4ZyxpBU+qV0jz+8iEj4BAIWFXXBMFpeGwqkTcJocHvL+8tqvFTXt90112YgNjIUQt1OYiNDXXJD4TQ2FD5jI4O3MYeF1pgIR/dcHk9EpIdRmO1kt03vx41/XcrrKwv40rjMk7pWUrSbu84YwLYDlfj8gW4yo2voL9BGHwJ6kr1lNfzoP+uYv/kAdb4AMW4Hpw1O4YIR6UCw5fXW6f3CXKWIdCbLsqiq91NW46W0uj4UOL2UVgcDZ1mNl9KGltMm20ur66k4SsuoMRDjdhAb6SQ2wklcpJPsZE8wiEYGH8dGOA7dDx0XGxkMpR6XXUMaRER6AIXZTjZ9YDJD02P58yfbuHxMn5PuXnTH6f3bqbJOYgtO6IM7Nrx1yEkpqarnvfX7Ka2p5/bT+pPgcZFfXMU1E7I4a2gaE3IStV6fSA/hD1hU1HopqQ4GzdJqL6U19ZRUhcJoKKg2BNOyJmHVF2g9kdpthvgmYTMp2kW/lCjiQtviGgPooRDacGy0W2NERUREYbbTGWO44/R+3PPiSt7bsJ9zh/c66WsGAhavrSggLtLJ2cPS2qFKkSM1LJ/z9tq9LNxajD9gMaRXDLdN70eE08773zo93CWKSBssK9h1t7QqFEabhtNqLyWhUFrSuK2+MaC21kra0EIa73ERF+kk3uOkd3xk8H6TUBrvOdRi2nBslFpHRUTkJCnMhsEFI9L57Xtf8MSHWzhnWFq7/DL/64LtlNV4mT4wuWuP4wlNAEVtaYu7Y2xuCNSCrQu/hlOI1x/AabdR6/Vz2q8/orreT3aSh6+e1o/zR6QzvHesPoyKhEFDMC2pqudgVTB8Hqyqp6Q6+O9glZeSwx6XVte32VIa43YQH+UkPtJFvMdJZqKHBE8wlMZ7gtsSPC7iQrfxoVZStZCKiEi4KMyGgcNu464ZA/jOq6v5aFMhZww5udZUm83wwwuHcu1flvDsp/ncOaPrdj12mOBbbhQtL000JK4f75aswOnoPmvn9jR1Pj/zNh3g9ZUFfL6jlE++M5MIp51fXjaCQWkxDOkVowAr0s7qfH4OVtVTXBkMpwer6imuqudgVV1jMD1YXU/pMQRTu82Q4HGR4HGSEOWiX3I0Y/s6Q9sOhdJ4z6GQGhfpxNkt5l0QERE5RGE2TC4dk8HjH27msfc3M3Nw6kmHgyn9kzlraCp/+GgLXxrXh+RodztV2r4aXqcbfWjqapZuP8i/V+zmv2v2UVbjJSnKxYUj06mp9+Ny2Lg4LyPcJYp0GzX1fooq644IpsVV9RysbLot+K+1NUmDwTQURA8LpolRrtD2Q4/jPS5iIxz6g5OIiJwSukyYNcbMAH4KrANetCxrXjjr6WhOu41vnDGQ77y6mvc3FLbLWNfvnz+Ucx/9hEff+4KfXzqiHapsf75A8APbNlpeR/azkg0AeOurcbo8nVbXqWp3STW94yKx2Qx/nLeFpdsPcu7wXlyc15tpA5K7yQzZIh0vELAoq/FSVFlHUWU9RZV1FFcGw2nzbfUUV9ZR1crSMC67jcSoYPBMinbRN8kTvB/lIjHK3bi9YVtshFPrkIqIiLSiQ8OsMeavwIVAoWVZuU22zwJ+B9iBpy3L+n+ABVQCEcDujqyrq7hsTAZ/+ngrj7y7iTOHpJ70B5b+KdFcP6kvn+UfpN4X6JKzyVqh9WWLaHsNQOk4tV4/767fz8uf7eLTrUX84ysTmTogmZ9dkktilAuPq8v8jUukQwUCFiXV9RyorONARfN/TUNqcaiFtaVuvTYDiVFukqNdJEe76ZvlISnaTVK0i+RQOE2MbgirLqLdajUVERFpLx39qfU54Ang+YYNxhg78AfgbIKh9TNjzBvAfMuyPjbGpAG/Ba7r4NrCzmG3ce/Zg/jGnBW8sWoPl4w++W6c3501BJfDpgk55AhbCiv4x+Kd/HtFAWU1XjLiI7nnzIEMSI0GoE+CWsKl+2tY27R5OK1tHlhD94sq6/G3EFAjnDaSo90kRbvJiI9gZEYcyTEukqLcJMe4SY5ykRzjJinUzVctpyIiIuHRoWHWsqxPjDHZh22eAGyxLGsbgDHmReBiy7LWh/aXAK0O+DTG3A7cDpCVldXuNXe2C0ek8+ePt/Lwu5s4b0Qv3I6Tm8U30hU8f9O+CqrqfYzJSmiPMtuPaVhnNi68dZwiar1+ar1+4j0ulmw/yAtLdnJubi+uGpfJlP5J+hAu3YZlWZTX+jhQUcv+8joKG27L69hfUUtheS2FFcHHNd4je37YbYbkaBcpMW5Sot0MS49tvJ8SExG8H/qnJWNERES6h3D0J8wAdjV5vBuYaIy5DDgXiCfYmtsiy7KeAp4CGDduXOtrDHQTNpvhe+cN4YZnlvL3RTu4dXq/k75mIGBx1wufY1kW73zztK41Q2XDB0TThWrqgXaXVPOPxTt56bOdzB7Vm59cnMulozM4PzedhKiWZ5IWCZfqeh/7ymrZV1bL/lBI3d8YToO3+8trqfUGjjg3ymUnLTYYRkf1iSc1xk1qbDCUJke7GwOrWlBFRER6ni4zOM6yrNeA18JdRzhMH5jC9IHJ/P7DLVwxtg/xnpMLGzab4buzhnDb88t4YclObpqS3T6FtoeGdWbrK8NbRw9kWRafbinmb4vy+WDDfgDOGdaLC0akA+BxOTjJt5bIcbEsi5JqbzColtewr6yOfeW17CurYV95XfC2rJby2iNn8m0IqamxwZCaFusmNSb4OC02IhRaI4h2d5lfYyIiItLJwvEpoADIbPK4T2jbKe3/LhjK+b+bz+8+2MwDs4ef9PXOGprK1AFJPPr+F1yc1/ukA3J7sYVaZnOObGABYHzCUBaVrNBMxsfBsiyMMRRW1HHTs0uJi3Ryx+n9uW5SXzLiI8NdnvRQlhWc3begtIa9pbXsLauhIHS7N9TKuq+8lnpf8292YyAl2k16XATZSVFM7pdEWlwE6XERpMUe+qeQKiIiIkcTjk8LnwEDjTE5BEPs1cC1x3MBY8xsYPaAAQM6oLzwGNIrlqvGZ/L3RTu4bmLfxkl5TpQxhh9eMIwLHm+/gNwe7CY4pjel63QK6LZKq+v5+6IdfLCxkFfumExabAR//8oExmQlEOE8ubHXIjX1fvaUBYPqntIa9pTVsKc0GFT3lNawp7T2iLGpTruhV1wE6XGR5GXGNwbU9LiIxsCaEu3Wkk8iIiLSLjp6aZ45wAwg2RizG3jAsqxnjDF3A/8juDTPXy3LWnc817Usay4wd9y4cbe1d83hdN85g3lz1V5+9tZ6nrtlwklfb2h6MCC/9nkB950zuEu0dPit4IffAxzZrRBgY9k2ALy+WrXOtqKgtIZn5m/nxc92Ul3vZ+bgFEprvCRHu5nSPznc5Uk3UV7rpaCkht0lNRSUVAdvS2sabw9WNV8LurFFNT6Swb1imDE4ld7xkfSOiyA9PpLe8REkR7k1LlVEREQ6TUfPZnxNK9v/C/y3I5+7O0qOdvONMwfy8/9u4MON+zljSNpJX/P+c4dw79mDukSQBQhYwS6H2/G2uL8iUBc6sJV+yKe433+wmd99sBmAi0b15vbT+zGkV2yYq5KuqLzWy87ianaHgmqzsFpSfcQ4VbfDRp+ESDISPIzoE0dGKKD2joukd3wkabERXXLtahERETl1dY2EI41umpLNi5/t5KG565nSP/mku4smhmaura73sb+8jpzkqPYoUzrRF/sriHDYyUryMDAthhsm9+XW6f00HvYU5/MH2FtWy86D1c3+7QrdllY3/4NRlMtOnwQPGQmRjM9OICM+svFxn4RIkqJcWo5GREREupVuGWZ74pjZBi6HjYcuyuX6Z5bw54+3cc9ZA9vlujc+s5TKOh9vfWM69nB2AzSht5xTofpoth6o5PEPNvPGqj1cmpfBb6/KY1ZuL2bl9gp3adJJqut97CiuJr+oivzi5mG1oLQGf+DQ6mROu6FPgoc+CZFcMCKdrEQPWYkeMhOD2+IinQqrIiIi0qN0yzDbU8fMNpg2MJkLRqTzx3lbuHR0BllJJz929Oap2dz9wgr+tWwXV0/IaocqT1DD+rL2rjG7cle0o7iKxz/Ywr9X7MbtsHPH6f25vR3WH5auqarOR35xFTuKq9leVMWO4mBwzS+qorCirtmxSVEuMhM95GXGc9Go3o1hNSvJQ6/YiPD+oUpERESkk3XLMHsq+NGFw5i3qZAH3ljLX28ef9ItKheMSOe5vvk8/O4XXDAynZgIZztVepwCodlP/bXhef4urqrOx4WPL6DeH+DLU3O4Y0Z/kqPd4S5LTpLXH2BHcTXbDlSyraiKbQcqyS+qZntxFQcOC6wpMW6ykzycPiiF7OQospOi6JvkoW+SJ3zftyIiIiJdkMJsF9UrLoJvnTOYn765nrfX7uP8EekndT1jDD+8cBiX/OFTnvx4K/efO6SdKj3OOghO7JTsrW9x/2BPBouqt2J3nDott7VeP/9YvIPrJ/Ulyu3g4StHkZcZT1psRLhLk+NgWRYHq+obw+rWA8HbbQeq2HmwGl+TLsHJ0W76JUcxc3AKfZOCgTU72UPfpKguM1mbiIiISFenT01d2E2T+/La57t58I11TBuYTOxJtsrkZcZzcV5vnp6/nS9PzSEpDC1+DlvwLdePlsNqrDsWqsFm6/lvzUDA4o1Ve/j1OxvZU1ZL7/hIzh+RzrnDNSa2K7Msi71ltWwurGTz/go2769kc2EFWw9UUVZzaNIll91GTnIUg3vFcN6IXvRLjqZ/ajQ5yVHERaqFVURERORkdcvE0JMngGrKYbfxy8tGcMkfPuU372zip5fknvQ1vzNrCFeNywxLkIVgEACoo+Wldwqq9gLg99X36HVml+84yE/e3MCqXaXkZsTy6FV5TOyXFO6ypIlAwGJPWc1hobWSLYWVVNYdWtYmKcrFgNRoLhyZTr+UaPqlRNE/OZqMhEiNYRURERHpQN0yzPb0CaCaGtknnpun5PDswu1cMro3Y/smntT1MuIjG5d0qazzdXqXRp8VDAGrqGtx/576UgACAV+L+3uCtQVlXP6nRaTFunn4S6O4bHQGNoWesCqpqmfjvgo27itn074KNuyrYPP+Cqrr/Y3HpMS4GZgazeVjMhiYFsPA1GgGpEaH7Q9DIiIiIqe6bhlmTzX3nTOI/63bx3dfXcNb35iG23Fya88C3PPiCvaV1fLi7ZO0XEcnCAQsFm4tZtrAZIb3juU3V4zkgpHpeFz6FuxM9b4A24oq2bi3gg37ytm4t4JN+yrYV35oQrLEKBdDesVw5bhMBqXFMDAtmoGp0cR7Tp1x3CIiIiLdgT5JdwNRbgc/vzSXm5/9jD98uIVvnTP4pK85tm8CP359HR9uLOTMoWntUOWxalia59Rpzdq8v4If/HsNn+WX8ModkxmXnciXxmWGu6wer7LOx/o95azbU8baguDtlsLKxomYXHYbA1KjmTIgiSG9YhjSK5Yh6TGkRLv1Bx4RERGRbkBhtpuYMTiVS0dn8Md5WzlvRDpD02NP6nrXTMji2U/z+eXbGzl9UAoOu62dKj2KhomdnD13PGyDWq+fP360hT99vJUot4NfXzGSsX0Twl1Wj1RcWce6PeWhf2Ws21PO9qKqxv3J0W5yM2KZOSSVoemxDOkVQ05yFM7Oet+LiIiISLtTmO1GfnzhMD754gDfeWU1//7alJMKoE67je/OGswd//icl5ft5tqJWe1YaRus0MRPVs8dEwuwpbCS259fxraiKi7J680PLxym9WLbSXmtlzW7y1i5q5RVu0pZW1DGnrJD3YT7JESS2zuOy0ZnkJsRx/DesaRqmSMRERGRHqdbhtlTZTbjwyVEufjJxbnc9cLn/GX+du6c0f+krnfu8F6M7ZvAY+9/waWjM4h0nfxY3KMKhVh3XWWLu3u74qF+X7dfmqdXXAS94iJ46OLhTB+YEu5yuq1ar5/1e8tZvauUVbvLWLW7lG0HDrW45iRHMS47kRGh0Dqsd6zGtoqIiIicIrplYjiVZjM+3PkjejFreC8eff8Lzh6WyoDUmBO+ljGGH5w/hMXbDtJZQwSdtuD6mqNouaUsIyod6vdhd3S/QLKzuJoH567j55fmkh4XyQu3TQp3Sd2KZVnsLqlh+Y4Slu8oYcWuEjburWgc45oS4yYvM57LRmcwKjOekRnxxHm0XquIiIjIqapbhtlTmTGGn16Sy+JHP+b+V1bzyh1TTmoty7F9E096uZ/2VF5XDnSvpXksy+LVzwt48I11GANbC6tIj4sMd1ldXr0vwLo9ZY3hdfmOEgorgks2RbnsjOwTz22n9WNUn3hGZcbRKzZCEzOJiIiISCOF2W4oJcbNQxcN554XV/L0/G189fST625sWRaPvb8Zy7LaZabktngDXgBWUdvi/k3VBQD4ffUdWkd7Kavx8oPX1vDWmr1MyEnkt1eOok9Cz5/c6kRU1HpZll/Cku0H+XxHCat2l1LnC46h7pMQyZT+SYztm8CYvgkMTovpvEnJRERERKRbUpjtpi4a1Zu3Vu/lkfe+4MyhaQxIjT7haxljKCit4Y1Ve7hmYlantCrWYXX4c3S0Op+fy/74KTuKq/nOrMF89bT+J9VK3tOU1XhZln+QxduKWbL9IGsLyghY4LQbcjPiuGFS38bwmqYJmkRERETkOCnMdlPGGH52aS7nPPoJ97+y6qS7G99z5kBeX1nA7z/cwi8uHdGOlR4uVKPphMmmOpjbYefL03IYlBbD+Oyu01U7XMpqvCzd3hBei1m3pxzLCq7nOjornrvPGMikfomMyUogwtn9//9FREREJLy6ZZg9VWczPlxqTERjd+O/zN/GHSfR3Tgz0cM1E7J4YclOvnpaP/omRbVjpU2EJoDCfXLr5IZLIGDx2PtfEOGy87UZA7huYt9wlxQ2Xn+AFTtLWbD5APO3FLFqVykBC1wOG2Oy4rnnzIFMzElidFa8wquIiIiItLtuGWZP5dmMD3fRqN68vWYfv333C84cksrAtBOf3fjumQN4edkuHnt/M49eldd+RfYQ5bVe7n1xJR9sLOTq8ZlYlnVKTUhkWRbbiqqY/8UBFmwpYvG2g1TW+bAZGJUZz90zBzBlQDJ5mQqvIiIiItLxumWYlUOadje+71+reO3OKSc8cU5qbAQ3Tckmv6gKf8DqmPGfoQmgqC1tcXeMzQ2BWrB1rcl/dhRXcctzn7GzuJqfXDycGyb1PSWCbE29n0+3FPHBxkI++eIABaU1APRN8nBxXm+mD0xmcv9k4iK1RI6IiIiIdC6F2R4gOdrNTy/O5a4XPufPn2zjrpkn3v36u+cOwdaBkxg5TPAtN4qWw8/guBzeLVmJ09F1JgTauK+c659eij8Q4J+3TmRiv6Rwl9ShCkpr+HBjIR9u2M/CrcXU+QJEux1MG5DM12b2Z/qAFLKSNGOziIiIiISXwmwPccHIdP67Np3H3v+CM4emMqTXiY1JtdkMlmXx4cZCcpKj6Jdy4rMkt6ShNdPNUVpeu1CjZ0yEk6zESH59xUgGpJ54N+6uKhCwWLm7lA827OeDDYVs3FcBBFtfr5vYlzOHpjI+OxGXo2u1louIiIjIqU1htgf56cW5LNlWzH0vr+I/d03FeYLdjctqvHx9zgrOGprG49eMbtcafQEfANtoeR3Zz0o2AuCtr8HpDG/r36dbihjRJ46M+EhevXNKj+pW7A9YfJZ/kLfX7OWddfvYX16H3WYYn53A/50/lDOGptIvOapHvWYRERER6VkUZnuQxCgXP7tkBHf8Yzl//Ggr95w18ISuE+9xcePkbP78yVa+ceaAdm2NtELryxbhb/vAMIeoV5bv5ruvruaGSX158KLhPSLUef0BFm8r5u21+3h33T6KKutxO2ycPiiF80ekM3NwKnEejX0VERERke5BYbaHmZXbi0vyevP7Dzdz1rBUhveOO6Hr3DY9h+cX5fP4B1vavXW2q3tmwXZ++uZ6pg1I5tvnDg53OSfFH7BYsq2Y/6ws4N31+ymt9uJx2Zk5JJXzc9OZMTiFKLd+DIiIiIhI99MtP8Vqndm2PXjRcD7dGuxu/Mbd005orGNStJsbJvflL59s41tnDyI7uZ3WnQ1NAIU7vn2u187+uWQHP31zPbOG9+J31+ThdnTPJWY27C3nPysKeH3lHvaV1xLtdnD2sDTOy+3FaYNStHSOiIiIiHR73XJGF8uy5lqWdXtc3Im1OvZ08R4Xv7x0BBv3VfCHj7ac8HW+MjUHh93GPxbvaL/iGrrrmq731lu8rZgf/mctZwxJ5ffXju52QXZPaQ1PfryVWY99wnm/m88zC7aTmxHLE9eOZtkPz+LRq/I4Z3gvBVkRERER6RG6ZcusHN1Zw9K4dHQGf/hoC2cPSyM34/iDf2psBP+8dSIj+7TjHw1CE0BRX9l+12wn4/om8N1ZQ7h5SvYJT57V2ep8ft5bv585S3eycGsxlgVjsuL56cXDuWBkbxKjXOEuUURERESkQyjM9mAPzB7Ggi1F3P/Kat64+8RmNx6fnQhArdffLi16tlDLbE7Aavn5EoawuGQlTmfnrTO7ZFsxLoeN0VkJ3HF6/0573pOx7UAlL362i1eW7+ZgVT0Z8ZHcc+ZALh2dQd+kduoSLiIiIiLShSnM9mDxHhc/vySX2/9+crMbv/zZLn79v418+O0ZxEac3Gy3dhMMxCld5K23encpX/nbMvqnRPGfu6Z26VmLa71+/rduH3OW7mTxtoM4bIazhqZxzcQspg9IxmbrurWLiIiIiLS3rpEopMOcM7wXF43qzRMfbebc3DSG9Io97msM6x1LUWU9/1i8g6/NOLlJt/xWcEmeA/ha3L+xbDsAPl9dh68zu6O4ipv+upR4j5M/3zCuywbZwvJanl+0g38u2UFJtZesRA/fmTWYK8b2ITWm81qwRURERES6EoXZU8CDFw3n0y1FfOeV1bx25xQcx9ndODcjjmkDknl+4Q5um97vpMaTBqwAANvxtri/IlAHgGW13A25vVTX+/jq35cTsODvX5lIr7iuFwrX7SnjmQXbmbtqD76AxdlD07hxcjZT+iepFVZERERETnndY5YbOSmJUS4evGg4q3cHw9GJ+PK0bPaV1/L22n3tXF14/OC1NWzaX8Hvrs4jp72WHWoHgYDF++v3c/VTi7jg8QW8s3Yf103sy7xvz+CpG8cxbaC6E4uIiIiIgFpmTxkXjkznjVV7+O17X3DO8F7HHeBmDEolJzmKZz/dzkWjep94IaExszijT/wa7WBWbi9yM+KYMTg1rHU08PkD/HtFAX+at5VtRVX0jovgB+cP4arxWcRFntw4ZRERERGRnkhh9hRhjOFnl+Ry1m8/5gevreGF2yYe1xhRm81w6/Qclu8oObmZjRvWl7WHZ8mY/eW1pMa4mZWbHpbnP5zXH+DfnxfwxEdb2HmwmuG9Y3n8mtGcl9ur2ywPJCIiIiISDgqzp5C02Ah+cP5Qvv/aGv61bDdXjs88rvOvm9iX6yb2PbkiAsEJoPDXntx1TsCe0hpm/34BN07OPuGZndtLvS/Aq5/v5g8fbWF3SQ0jMuJ4+sZxnDk0tctORCUiIiIi0pV0yzBrjJkNzB4w4ORm1j0VXTUuk3+vKOBnb61nxpCU454Nt94X4O21e5nUL4m02OOfNMkQnNgp2VvX4v7BngwWV2/Fbm/frrV1Pj93/mM5db4AF4wMX6uszx/gX8t388SHWygorWFUnzh+cvFwZg5WiBUREREROR7dsh+jZVlzLcu6PS4uLtyldDs2m+GXl42g1hfgp29uOO7z95fX8s2XVvLPJTtP6PkdtuDfT/rRcjfjWHdMqM4T7Mbcisc/2Myq3WU8/KVRDEjt/PG6lmXx0cZCzvvdfL7/2hpSYtw8d8t4/nPXVM4YkqYgKyIiIiJynLplmJWT0z8lmq/N6M/cVXv45IsDx3VuZqKHaQOSeWXZLvyB418+p2HJnTpaPregKjhbst/X8tI9J2JtQRlPfryNK8b2YVZur3a77rFav6ecG55Zyi3PfYbXH+DJ68fw769NYYZaY0VERERETpjC7Cnqzhn96ZccxQ//s5Zar/+4zr1mQhZ7ymqPOwgD+CwfAKtoeczsnvpSAALW8dXUlic+3EJilIsfXTCs3a55LPaX13L/v1Zxwe/ns3ZPGT++cBjv3ns6s3LTFWJFRERERE5StxwzKyfP7bDzs0tzufYvS3jiwy18+9zBx3zuWUPTSIpyMWfpTmYO6RpL27Tl0avy2F5URZync5a48fkDPLNgO4+9vxl/wOLWaTncPXNgpz2/iIiIiMipQGH2FDalfzKXjs7gqU+2cdmYDPqlHNtYUpfDxhVj+/D0gu0UVtQe5yRSDUvzHP/kUcdre1EVDpshM9HDsN6xHf58AKt2lfL919awfm85Zw1N5ccXDicrydMpzy0iIiIiHc/r9bJ7925qazt/dY6eLCIigj59+uB0HnsDkMLsKe775w/h/fX7eeCNdTz/5QnH3P31+kl9GZ2VQILnONeLbZjYydmxAc8fsLj3pZUcqKjj4/tn4OjgNVsr63w88u4m/rYwn+RoN09eP4Zzh/dSd2IRERGRHmb37t3ExMSQnZ2tz3rtxLIsiouL2b17Nzk5Ocd8nsbMnuJSYyL41jmDmL+5iP+t23fM52UmepiV2wvn8YbE0ARQhMbOdpRnP93Oyl2lfGfW4A4Psu+v3885v/2YZz/N59qJWbx/n8bFioiIiPRUtbW1JCUl6bNeOzLGkJSUdNyt3Qqzwg2T+jKkVww/mbuemvpjn3ipsLyWu174nCXbio/9yUIh1l1X0eLu3q54AGzmxJfm2VtWw8PvbuLMIalcNKr3CV/naCrrfNz38ipufX4ZUW4Hr9wxmZ9dMoLYCI2NFREREenJFGTb34l8TRVmBYfdxkMXDWdPWS1//mTrMZ8XG+lk3sZC/rOy4JjPcdqCQW8ULY+ZzYgKLp1jd5x4IHz8gy34AxYPXjS8w37QrN5dyoWPz+ffK3bz9TMG8NY3pjMuO7FDnktEREREuje73U5eXh65ubl86Utforq6+riv8dxzz3H33Xd3QHXdl8KsADCxXxIXjEjnyY+3sqe05pjOiXDaOXtYGm+v3Ue9L9AudZSHWmwDgRNbmqe0up5/r9jNdRP7kpnY/uNyAwGLP3+8lcv/tJA6X4A5t03ivnMG43LoW0lEREREWhYZGcnKlStZu3YtLpeLJ598Mtwl9Qj6BC6NvnfeECwLfvXOxmM+Z/ao3pRWe1mw5djWnPUGvEDr68xuqg628vr93mOuoal4j4t3v3k6Xz9jwAmd35bCilpuenYpv3x7I2cOSePte6YzsV9Suz+PiIiIiPRc06dPZ8uWLRw8eJBLLrmEkSNHMmnSJFavXg3Q6nY5ksKsNMpM9HD7af14feUelu84eEznTB+YQlykk7mr9h7Xc9VhnUiJbSqurMPrD5CV5CEp2t2u116yrZjzHpvPZ/kH+fmlufzp+jHEH+9MziIiIiJySvP5fLz99tuMGDGCBx54gNGjR7N69Wp+8YtfcOONNwK0ul2OpDArzdw5oz+pMW5+8d+NWNbRA6fLYeO83F7M31yEz38cXY1N+68K9b3X1nDZHxceU93H4+XPdnH9M0uI8ziZe/c0rpvYV4P+RUREROSY1dTUkJeXx7hx48jKyuIrX/kKCxYs4IYbbgDgjDPOoLi4mPLy8la3y5G65TqzxpjZwOwBA9q/K+mpzuNycO/Zg/j+a2v437r9zMrtddRzvnXOIH504bBjWwInNAEU7tiTrLS5lbtKeW/9fu47e1C7BU1/wOJX72zkqU+2MX1gMk9cO4a4SM1ULCIiIiLHp2HMrLSvbtkya1nWXMuybo+Liwt3KT3Sl8b2oX9KFL9+ZyPeY2htTY2JIMrtwB9o/67Dx+rh/20iMcrFLdOOfZHltlTW+fjq35fx1CfbuHFyX569ebyCrIiIiIi0m+nTp/PPf/4TgHnz5pGcnExsbGyr2+VI3TLMSsdy2G1877yhbCuq4qXPdh3TOf9esZtJv/yAyjpf2weGJoCitrTF3TG24FjX42ldXbi1iAVbivjajP5Eu0++s8Hukmqu+NNCPtp0gJ9cPJyfXJx7bK3OIiIiIiLH6MEHH2T58uWMHDmS733ve/ztb39rc7scqVt2M5aOd9bQVCZkJ/LY+5u5fEwfIl32No/PTPBwoKKODzbs5+K8jFaPc4TGyo6i5VbOIXE5vFeyEofj2CdwevyDzfSKjeD6SX2P+ZzWbCms5Nq/LKbG6+e5W8YzfWDKSV9TRERERE5tlZWVR2xLTEzkP//5zzFvv/nmm7n55pvbv7huTM1N0iJjDN8+dzBFlXX8fXH+UY8fk5VAYpSLjzYWHvW6AK52eutZlsV1E/vywwuHEuFsO3Afzeb9FVz91GIClsUrd0xRkBURERER6cIUZqVVE3ISmT4wmSc/3kbVUboP22yG0wel8MnmIgJtjJ31B/wAbKe+xf2flQTXuPV6W16H9nDGGGaP6s2FI3sf0/Gt2bQvGGSNgRdvn8TgXjEndT0REREREelYCrPSpnvPHsTBqnqeW5h/1GNnDE7hYFU9qwvKWj3GCq0vW4S/7Ysdw5jZel+A//v3GjbuO7mpytfvKefqpxbhsBtevH0SA1IVZEVEREREujqFWWnTmKwEZg5O4alPtlFR623z2NMGphDhtLG18MgxAR3hvfX7+eeSnewrO7ZW3JasLSjj2qcXE+G089Ltk+mfEt2OFYqIiIiISEdRmJWjuvfsQZTVeHn20/w2j0uIcrHyx+dw+dg+rR8UmgAKd/xJ1zVn6U4y4iNPeGzr5v0VXPuXxUS5HLx0+2Syk6NOuiYREREREekcCrNyVCP7xHPGkFSe/XQ71fVtj52NcNrxByzqfa2sT9vQffg4lt5pyc7iahZsKeLKcZnYbcd/raLKOm557jPcTjsv3j6JrCTPSdUjIiIiIiKdS2FWjsmdM/pTUu3l5aOsO7vrYDVjf/Yeb63Z0/IBgVAYrq86qXpeWrYTm4Erx7fRCtyKWq+f259fRlFlHU/fOI7MRAVZEREREek+7r33Xh577LHGx+eeey633npr4+P77ruP3/72t0RGRpKXl8eoUaOYMmUKmzZt4n//+x95eXnk5eURHR3N4MGDycvL48Ybb6SyspKvfvWr9O/fn7FjxzJjxgyWLFnSeN077riDTz/9lJtvvpmcnBxGjRrFoEGDuPHGG9m9e3ezGv/zn/9gjGHjxo2N2/Lz88nNzW23r4PCrByT8dmJjOubwF/mb8frb6XVFciIj8RhM8zbdKDF/bZQi2x2KzMej08YAoCzjXVmLcti7qq9zBicSnpc5LG+hMZz739lNZ/vLOWxq/IYlRl/XOeLiIiIiITb1KlTWbhwIQCBQICioiLWrVvXuH/hwoVMmTKF/v37s3LlSlatWsVNN93EL37xC84991xWrlzJypUrGTduHP/85z9ZuXIlzz//PLfeeiuJiYls3ryZ5cuX8+yzz1JUVNR43cWLFzNp0iQAfvOb37Bq1So2bdrE6NGjOeOMM6ivP7RiyZw5c5g2bRpz5szpsK+Dwqwcsztn9KegtIY3V7fS6kpwiZ7TBqbwyRcH8LcQWO0muBZsCo4TrsMYw9y7p/HA7GHHfe6j729m7qo9fHfWEGblpp9wDSIiIiIi4TJlyhQWLVoEwLp168jNzSUmJoaSkhLq6urYsGEDiYmJzc4pLy8nISGh1Wtu3bqVJUuW8LOf/QybLRgTc3JyuOCCCwDYsGEDgwYNwm63NzvPGMO9995Lr169ePvttwGorKxkwYIFPPPMM7z44ovt9roPd+KJQk45MwenMigtmifnbeOSvAxMK+NeTx+cwmsrCli1u5QxWc2/YfxWcEmeIloee7uxbDsAPl89TmfL3X99/gBxHidxHudx1f/vFbt5/IPNXDmuD3ec3u+4zhUREREROdxDc9exfs/JLRN5uGG9Y3lg9vA2j+nduzcOh4OdO3eycOFCJk+eTEFBAYsWLSIuLo4RI0bgcrnYunUreXl5VFRUUF1d3azL8OHWrVtHXl7eEWG1wdtvv82sWbNaPX/MmDFs3LiRiy++mNdff51Zs2YxaNAgkpKSWL58OWPHjj22L8BxUMusHDObzXDH6f3ZtL+i1W7EEFyix2Zo8ZiAFeyivJ2Wl/mpCNQBh9ajPdy+slom/fIDPtpUeFy1r9pVyndfWcPkfkn87JIRrQZxEREREZHuYMqUKSxcuLAxzE6ePLnx8dSpUwEauxlv3bqVxx57jNtvv/2En+9///tfm2HWsg59fp8zZw5XX301AFdffXWHdTVWy6wcl9mjevOrdzby3MJ8Zg5JbfGYhCgXY7ISqKxte+bjEzFvUyFFlfVkxB/7WNmaej/3vrSSpGgXf7p+DC6H/oYjIiIiIifvaC2oHalh3OyaNWvIzc0lMzOTRx55hNjYWG655ZYjjr/ooota3N5g+PDhrFq1Cr/ff0TrbHV1NaWlpfTu3bvV81esWMGZZ57JwYMH+fDDD1mzZg3GGPx+P8YYfvOb35z4i22FPtXLcXHabVwzIYuPvzhAflHrMxL/647J/LilMa2hMbM4o0/o+edvLqJXbAQDU4/9/F++vYFtRVU88qVRxHtcJ/S8IiIiIiJdyZQpU3jzzTdJTEzEbreTmJhIaWkpixYtYsqUKUccv2DBAvr379/q9fr378+4ceN44IEHGltZ8/Pzeeutt/joo4+YOXNmi+dZlsXjjz/O3r17mTVrFq+88go33HADO3bsID8/n127dpGTk8P8+fPb54U3oTArx+3aCVk4bIZ/LN7R6jHGGAIB68iZj03oLWc/vvGuAP6AxYItRUwfmHzM3YQ//uIAzy/awVem5TBlQPJxP6eIiIiISFc0YsQIioqKGmcXbtgWFxdHcnLwc2/DmNlRo0bxgx/8gKeffrrNaz799NPs37+fAQMGkJuby80330xqamqL42Xvv//+xqV5PvvsMz766CNcLhdz5szh0ksvbXbs5Zdf3iFdjdXNWI5bamwE5+b24uVlu7jvnMFEuo4cJL6/vJZzHv2EH5w/hKvGZx3aEQhOAIWv7rifd01BGWU1XqYPSjmm40uq6rn/X6sYmBrN/ecOPu7nExERERHpqux2O+XlzSefeu655xrvZ2dnU1NT0+Y15s2b1+xxbGwsf/nLX4447qtf/SqPPvpoi89zuI8++uiIbd/4xjca769du7bNmo6HWmblhNw0OZvyWh+vryxocX9qTHCd2BU7S5ttN6GJnZJaCbODPRkA2G1H/p3li/0VOO2GacfQwmpZFj/8z1pKqut59Ko8Ipwtz8omIiIiIiJt+/zzz3E6j79nZUdTmJUTMj47gSG9Ynh+0Y5mM5c1MMaQlxnPyl2lzbY7Qt2L+9Hy2NVYVwwAthbC7JXjMln1wDkkRh193OvrK/fw1pq9fPOsQeRmxB31eBERERER6V4UZuWEGGO4YXJf1u8t5/PDWl8bjM6KZ9P+CirrDs1q3BB861pZeqegeh8Afn/zpXv8AQvLsvC4jt4zvrCilh+9vpaxfRO44/TWB7mLiIiIiEj31aXCrDEmyhizzBhzYbhrkaO7OC+DSKedVz/f3eL+vMx4LAtW7y5t3OazgmNmV1Pb4jl76oPHNqxH2+DDjYVM+MUHbCmsPGpdv3t/MzX1fn5zxUjsNq0nKyIiIiLSE3VomDXG/NUYU2iMWXvY9lnGmE3GmC3GmO812fVd4OWOrEnaT7TbwTnD03hr9V7qfP4j9udlxuN22CgoaXvg+bGYv/kAVXU+shI9bR63pbCSFz/bxXUTs+iXcmLL/4iIiIiISNfX0S2zzwHN5nA2xtiBPwDnAcOAa4wxw4wxZwPrgcIOrkna0aWjMyir8fLRxgNH7Iv3uFj70Ll8aVzmoY2NS/O4j+t5PvniAJP7JeFytP2W/dU7G4l02vn6mQOP6/oiIiIiItK9dGiYtSzrE+DgYZsnAFssy9pmWVY98CJwMTADmARcC9xmjGmxNmPM7aGuyMsOHDgyQEnnmjYgmeRoN/9e0XJXY6fdhmVZhyaJsoVmFXa23cLa1M7iavKLq5k+sO1ZjJduP8h76/dzx+n9SI4+vrAsIiIiItJd3HvvvTz22GONj88991xuvfXWxsf33Xcfv/3tb4mMjCQvL6/x3/PPP8/EiRPJy8sjKyuLlJSUxn35+flkZ2dTVFTUeJ158+Zx4YWHRoB6vV7GjBkDBJcGysvLY/jw4YwaNYpHHnmEQKD5UMFLLrmk2Tq4AA8++CAPP/xwu3wdwrHObAawq8nj3cBEy7LuBjDG3AwUWdZhgyZDLMt6CngKYNy4cS3PIiSdxmG3cdGo3vxj8Q5Kq+uJ9zSfafiDDfu571+rmHv3NDITPdAQai1fC1dr2fwtwT9atLW+rGVZ/OK/G0iLdfOVaf2O/4WIiIiIiHQTU6dO5eWXX+ab3/wmgUCAoqKiZmvOLly4kEcffZT+/fuzcuXKZufeeOONQHCt2GXLlvHEE08c8/MuWLCAqVOnAhAZGdl47cLCQq699lrKy8t56KGHACgtLWX58uVER0ezbds2+vVr/8/oXWoCKADLsp6zLOvNcNchx+6yMRnU+wO8tWbvEfvSYiMorfayomGJnkAwxLrqWp7IqbcrHgBbk4b5gpIashI99EuOarWG/67Zx8pdpdx39mAiXVpTVkRERER6rilTprBo0SIA1q1bR25uLjExMZSUlFBXV8eGDRtITExs9+d95513OO+8847YnpqaylNPPcUTTzzR2CPztddeY/bs2Vx99dW8+OKL7V4LhKdltgBoMoiSPqFt0k0N7x3LwNRo/v15AddN7Nts35BeMUQ4bazYWcJFo3rjDK0fO4qIFq+V4ekF9fuw2w8tyvydWUP45lmDMKblmYnrfQF+/b+NDE6L4fKxfdrpVYmIiIiIHMXb34N9a9r3mr1GwHn/r81DevfujcPhYOfOnSxcuJDJkydTUFDAokWLiIuLY8SIEbhcLrZu3UpeXl7jeb///e+ZPn16m9eeOXMmdnuwcaiyspIhQ4Y07vvoo4944IEHWjyvX79++P1+CgsLSUtLY86cOfz4xz8mLS2Nyy+/nB/84AfH+AU4duEIs58BA40xOQRD7NUEx8keM2PMbGD2gAEDOqA8OV7GGC4dk8Gv39nEzuJqspIOjYd12G2MzIhnZUPL7FGU11cAEAgEZ0eu9fpxO2xtTvz0wpId7Ciu5tlbxmspHhERERE5JUyZMoWFCxeycOFCvvWtb1FQUMDChQuJi4tr7ArcUjfjo/noo49ITg7OVTNv3rzG8a0FBQUkJibi8Rx97pv9+/ezefNmpk2bhjEGp9PJ2rVryc3NPb4XeRQdGmaNMXMITuyUbIzZDTxgWdYzxpi7gf8BduCvlmWtO57rWpY1F5g7bty429q7ZjkxF+cFw+xba/Zy54z+zfaN7BPH84t3EAhYeEPdjFe1ss7spupgI70/dNxzC/N59tPtfHz/TCKcR3Yf9vkD/PmTbUzMSWRGG2NqRURERETa3VFaUDvS1KlTWbhwIWvWrCE3N5fMzEweeeQRYmNjueWWW9r9+d555x3OPffcVvdv27YNu91OamoqTzzxBCUlJeTk5ABQXl7OnDlz+PnPf96uNXX0bMbXWJaVblmW07KsPpZlPRPa/l/LsgZZltXfsqz2fUUSFhnxkQxLj+WjjUeurJSdHIU/YFFUWde4rZ5jm7tra2EllkWLQRbgg42F7C2r5cvTclrthiwiIiIi0tNMmTKFN998k8TEROx2O4mJiZSWlrJo0SKmTJnS7s/X2nhZgAMHDnDHHXdw9913Y4xhzpw5vPPOO+Tn55Ofn8/y5cs7ZNxsOLoZSw915tBU/vDRliNmNb5ibB+uHp+Jw26juqoquNEc2yRNWw9U0j8lutX9/1i8g/S4CM4cknpStYuIiIiIdCcjRoygqKiIa6+9ttm2yspKkpOTqaysPGLM7Je//GW+8Y1vHPdz+f1+tmzZ0mz8bE1NDXl5eXi9XhwOBzfccAPf+ta3yM/PZ8eOHc2W5MnJySEuLo4lS5ac2IttRbcMsxoz2zWdOTSN33+4hY+/OMDFeRmN25u1qjZM7OSOPer1LMti64EqZo9Kb3H/9qIq5m8u4ltnD8Jh73ITc4uIiIiIdBi73d5sOR4ILrfTIDs7m5qamlbPv/nmm7n55pubbcvPz2/2eMaMGcyYMYMFCxYwceLEZvv8fn+L183Ozqag4Mj5fT///HOAI65zMrplArAsa65lWbfHxcWFuxRpYmRGHMnRLt7f0LyrsWVZ3PTXpTw9f9txXa+4qp6yGm+rLbMvLNmBw2a4enxmi/tFREREROTkTZs2jSeffDLcZRyhW4ZZ6ZpsNsPMwal8vKkQrz/QuN0YQ35xVXBGY783uLG2tMVrxNjcwXMw7DpYjd1mWgyztV4//1q+m3OGp5Ea2/IyPyIiIiIi0nMpzEq7OnNoKuW1PpbvKGm2PSvRw86D1ThCY2VH4mrpdIbEBmc8czhcjM5KYMNPZjG5f9IRx721ei+l1V6uP2xdWxEREREROTUozEq7mjYwBafd8OFhsxr3TfKwo7i6ccZhdytvvcPnOHY5bDhbGA/798U76JcS1WLQFRERERGRnq9bhlljzGxjzFNlZWXhLkUOE+12MKlfEh9s2N9se9/EKMpqvBysCq4vu436Fs9fVroRAJ+vjvv/tYoHXl97xDFrC8pYuauU6yb21XI8IiIiIiKnqG4ZZjUBVNd2xpBUth6oIr+oqnFbVpIHgB2llQAU0/LsZ00t2lZMSbX3iO3/XLKDCKeNK8b0aaeKRURERESku+mWYVa6tjOHpAHwQZOuxpP6JfHWN6YxMCXmmK5R6/VTUFpzxORPFbVe/rNiDxeN6k2cx9l+RYuIiIiIdBP5+fnk5uY22/bggw/y8MMPs3jxYiZOnEheXh5Dhw7lwQcfBILL9qSkpDB69GgGDhzIueeey8KFC5td4+GHH2bIkCHk5eUxfvx4nn/++cZ9L774Ij//+c+P6TpFRUU4nc4jZkDOzs6mqKio3b4OCrPS7rKSPOQkR7Foa3HjtrhIJ8N7x+F2BWcrxt12q3p+UTWWBf1To5pt//iLA9R4/XxpnJbjERERERE53E033cRTTz3FypUrWbt2LVdeeWXjvquuuooVK1awefNmvve973HZZZexYcMGAJ588knee+89li5dysqVK/nggw+wrEMz2rz99tvMmjXrqNcB+Ne//sWkSZOYM2dOh75WhVnpEGOyElixs6TZN8ATH27mxWU7gg9M22+9/OJgd+QBqc1bZj/edIC4SCejM+PbtV4RERERkZ6gsLCQ9PR0AOx2O8OGDWvxuJkzZ3L77bfz1FNPAfCLX/yCP/3pT8TGxgIQGxvLTTfdBIBlWaxcuZIxY8Yc9ToAc+bM4ZFHHqGgoIDdu3e36+trytFhV5ZT2pi+8bz6+W52Hqymb1KwdfXDjYVE2CohEqivavP87cWVGAPZSYdaZi3L4uMvDjBtYDKOFmY4FhERERHpTL9a+is2HtzYrtcckjiE70747gmff++99zJ48GBmzJjBrFmzuOmmm4iIiGjx2DFjxvDnP/+Z8vJyKioq6NevX4vHrVixglGjRrU6+WrDdQB27drF3r17mTBhAldeeSUvvfQS99133wm/nrZ0y0Sg2Yy7vjFZCQDN1pvtmxTF7uJqALIDhy/CEzQufggAX5k+lP9+YzoRTnvjvo37KiisqOP0QSkdVbaIiIiISJfXWqg0xvDjH/+YZcuWcc455/DCCy80dg1uSdNelG155513OO+8847pOi+99FJj1+arr766Q7sad8uWWcuy5gJzx40bd1u4a5GWDUqLIdrt4POdJVwWmnU4K9HDO5X1OICUo7z1olwOhqY3/wvSx18cAFCYFREREZEu4WRaUE9GUlISJSUlzbYdPHiQnJwcAPr378+dd97JbbfdRkpKCsXFxS1dhhUrVjB06FBiY2OJjo5m27ZtLbbOvvvuu7z66qut1tNwHQh2Md63bx///Oc/AdizZw+bN29m4MCBJ/Ra29ItW2al67PbDHmZ8Xy+o7RxW98kT+NfbYrwtXjexvLtANzzwlI+3Nh8rdqPNx1gaHosabEtd5MQERERETkVREdHk56ezocffggEg+w777zDtGnTeOuttxo/c2/evBm73U58fPwR1/j444956qmnuO22YPvg97//fe666y7Ky8sBqKys5Pnnn6esrAyfz0dSUlKLtTS9zhdffEFlZSUFBQXk5+eTn5/P97///Q5rne2WLbPSPYzJiueJj7ZQWecj2u2gb5IHCACwnSPXjwWoDNQB8N6GvUwbmn1oe52PZTsO8pVpLffjFxERERE5lTz//PPcddddfOtb3wLggQceoH///vzf//0f9957Lx6PB4fDwT//+U/s9uDQvZdeeokFCxZQXV1NTk4Or776amOL6p133kllZSXjx4/H6XTidDq57777eO+99zjrrLOaPXdr13nooYe49NJLmx17+eWXc9VVV/HjH/+43b8G5lj7SXdF48aNs5YtWxbuMqQV8zYVcvOzn/HCrROZMiCZ8lovb36+jl9uvoHJRPDUTZ8dcc5tfxvPYmqp2/BD/vHVs5mQkwjAu+v2cfvflzPntklM7t/yX4VERERERDrahg0bGgPgqeDWW2/l1ltvZdKkSR3+XC19bY0xyy3LGtfS8epmLB1mdGZwEqjPdwb788dGOLlkdHZwpzOqlbMO6Z9y6JiPvzhAlMvO2L4J7V6niIiIiIi07Omnn+6UIHsiumWY1WzG3UOcx8mA1Gg+31nauG3+lqLgHburzXNjI5wkRgWPaViSZ8qAZFyObvmWFRERERGRdtYtk4FlWXMty7o9Li4u3KXIUYzJiufznSWNg9Bf/XxncIevrs3zclKiG6cc31ZUxe6SGs1iLCIiIiIijbplmJXuY2zfBEqrvWwrqgKgb5wHgMRWwuwgTwYA95x1qK/8x5u0JI+IiIiIiDSnMCsdakxWaNzsjuC42ayk4DjYvgFni8fHumIAmNTvUHD9+IsD9EuJIjPR05GlioiIiIhIN6IwKx2qf0o0sRGOxnGzmQnBNWKr/IEWj8+vKABgb1kFALVeP4u3FatVVkREREREmlGYlQ5lsxlGZyU0tsymxwXD7BpqWzy+oC44qVd1bXAd2iXbD1LnCyjMioiIiEi3ZYzh+uuvb3zs8/lISUnhwgsvPOFrnn/++ZSWlp7Quc899xx33313m8fMmzePhQsXNj5+8sknef7550/o+TqKI9wFSM83IiOO+ZsPUO8LNIZZm820eGwgtOxxWpwbgBU7SzAGJuZobVkRERER6Z6ioqJYu3YtNTU1REZG8t5775GRkXFS1/zvf//bTtW1bN68eURHRzNlyhQA7rjjjg59vhOhllnpcNnJUQQsKCitweEI/v3E6Ypo85zQRMZsKawkM8FDpMve0WWKiIiIiHSY888/n7feeguAOXPmcM011zTuW7p0KZMnT2b06NFMmTKFTZs2AcEW1Msuu4xZs2YxcOBAvvOd7zSek52dTVFREfn5+QwZMoTrrruOoUOHcsUVV1BdXd3sGIBly5YxY8aMI+qaO3cuEydOZPTo0Zx11lns37+f/Px8nnzySR599FHy8vKYP38+Dz74IA8//DAAK1euZNKkSYwcOZJLL72UkpJgL8wZM2bw3e9+lwkTJjBo0CDmz5/f/l/IJrplmNU6s91L36TgxE07iquwQm85nz3ymM7dUljJgNToDqtNRERERKQzXH311bz44ovU1tayevVqJk6c2LhvyJAhzJ8/nxUrVvCTn/yEH/zgB437Vq5cyUsvvcSaNWt46aWX2LVr1xHX3rRpE1/72tfYsGEDsbGx/PGPfzzmuqZNm8bixYtZsWIFV199Nb/+9a/Jzs7mjjvu4N5772XlypVMnz692Tk33ngjv/rVr1i9ejUjRozgoYceatzn8/lYunQpjz32WLPtHaFbhlmtM9u9HAqz1Xj9fgCqa9teZxbAH7DYVlRF/5SoDq1PRERERKSjjRw5kvz8fObMmcP555/fbF9ZWRlf+tKXyM3N5d5772XdunWN+84880zi4uKIiIhg2LBh7Nix44hrZ2ZmMnXqVACuv/56FixYcMx17d69m3PPPZcRI0bwm9/8ptlzt6SsrIzS0lJOP/10AG666SY++eSTxv2XXXYZAGPHjiU/P/+Y6zgR3TLMSveSEu3G47Kzo7garGCYjfJVtXhsb2fwDxROu5OCkhrqfQG1zIqIiIhIj3DRRRfx7W9/u1kXY4Af/ehHzJw5k7Vr1zJ37lxqaw9Nlup2uxvv2+12fD7fEdc1xrT42OFwEAgEVxFpes2mvv71r3P33XezZs0a/vznP7d63LFqqLe1WtuTwqx0OGMMWYkedhRX4bAFx8wO9btaPLZ/fHAgvMvhYsuB4PI8CrMiIiIi0hN8+ctf5oEHHmDEiBHNtpeVlTVOCPXcc88d93V37tzJokWLAHjhhReYNm0aEBwzu3z5cgBeffXVFs9t+tx/+9vfGrfHxMRQUVFxxPFxcXEkJCQ0jof9+9//3thK29kUZqVT9E3ysONg9VGPK6opBcDv97OlsBIIrlUrIiIiItLd9enTh2984xtHbP/Od77D97//fUaPHn1CrZmDBw/mD3/4A0OHDqWkpIQ777wTgAceeIB77rmHcePGYbe3PKHqgw8+yJe+9CXGjh1LcnJy4/bZs2fz73//u3ECqKb+9re/cf/99zNy5EhWrlzJj3/84+OuuT0Yy7LC8sTtYdy4cdayZcvCXYYcg1/+dwPPLsxn8f1jOf0/ZzKh3sUzty0/4rjrnx7LKmc9n17+MT97Zxcfbixk2Q/PDkPFIiIiIiJH2rBhA0OHDg13GY3y8/O58MILWbt2bbhLOWktfW2NMcstyxrX0vFqmZVOkZXkod4XoLAiOPGT7xjeeVsPVKlVVkREREREWqQwK52ib2JwRuJ9ZTUAuJ3ONo+3LEvL8oiIiIiIHEV2dnaPaJU9EQqz0ikalufZVVYf3OCObfP4kiovZTVetcyKiIiIiEiLFGalU/SOj8RpN2w/EGyZLav1tnn81qLg0j1qmRURERERkZYozEqnsNsMmQkeCkqD03u7vEdO8w0QbYJL9uwsDoZehVkREREREWlJtwyzxpjZxpinysrKwl2KHIesJA8FB4OLMA/1OVo8ZnTyAAB2lNTjcdlJj4votPpERERERKT76JZh1rKsuZZl3R4XFxfuUuQ4ZCdFUVASbHF1Ydo8dltRcCZjY9o+TkRERETkVFNaWsof//jHk7rGc889x9133w3Ak08+yfPPP98epXWqbhlmpXvKSvRQXR8cK7vL1vJi0PMPrAdg275idTEWEREREWlBa2HW52v5M/bR3HHHHdx4440nW1anU5iVTpOd7AEsAEpsgTaPLaysV5gVEREREWnB9773PbZu3UpeXh7jx49n+vTpXHTRRQwbNgyASy65hLFjxzJ8+HCeeuqpxvOeffZZBg0axIQJE/j0008btz/44IM8/PDDAMyYMYPvfve7TJgwgUGDBjF//nwAqqurufLKKxk2bBiXXnopEydOZNmyZZ34qo/U8sBFkQ6QFVprFsDtOPrfUfqnRB31GBERERGRcHnkkUfYtGlTu15z8ODB3HfffW0e8//+3/9j7dq1rFy5knnz5nHBBRewdu1acnJyAPjrX/9KYmIiNTU1jB8/nssvv5z6+noeeOABli9fTlxcHDNnzmT06NEtXt/n87F06VL++9//8tBDD/H+++/zxz/+kYSEBNavX8/atWvJy8tr19d9ItQyK50mMzGSgAm+5UzE0cc7q2VWREREROToJkyY0BhkAR5//HFGjRrFpEmT2LVrF5s3b2bJkiXMmDGDlJQUXC4XV111VavXu+yyywAYO3Ys+fn5ACxYsICrr74agNzcXEaOHNlxL+gYqWVWOo3bYSc1JpJyoMrbdjdju4G+SWqZFREREZGu62gtqJ0lKurQ5+Z58+bx/vvvs2jRIjweDzNmzKC2tva4rud2uwGw2+0nPA63M6hlVjpVVmLwG4P6qjaPy0iIxGnX21NERERE5HAxMTFUVFS0uK+srIyEhAQ8Hg8bN25k8eLFAEycOJGPP/6Y4uJivF4v//rXv47rOadOncrLL78MwPr161mzZs3JvYh2oJZZ6VRZ8VGsrYO+PqvF/dNThrGqdCX905I6uTIRERERke4hKSmJqVOnkpubS2RkJGlpaY37Zs2axZNPPsnQoUMZPHgwkyZNAiA9PZ0HH3yQyZMnEx8ff9xjXr/2ta9x0003MWzYMIYMGcLw4cMJ91KpCrPSqTITo2AvJATsLe63rGDI7afJn0REREREWvXCCy+0uN3tdvP222+3uO+WW27hlltuOWL7gw8+2Hh/3rx5jfeTk5Mbx8xGRETwj3/8g4iICLZu3cpZZ51F3759T7j+9qAwK52qd5wL9kIR/hb3f160BZzQN8HZyZWJiIiIiEhrqqurmTlzJl6vF8uy+OMf/4jL5QprTQqz0qkyEiIB2G1veSB5ZaAegKwkT6fVJCIiIiIibYuJiQn7urKH0ww70qn6hkKqMabF/Q3djLMTIzutJhERERER6X4UZqVTRbiC3Yf99pbDasO0UC5Hy2NqRUREREREoJuGWWPMbGPMU2VlZeEuRY5TwyTGderhLiIiIiIiJ6FbhlnLsuZalnV7uKeCluMXCAQAML7jW7hZRERERESkqW4ZZqUbs4JhNtXvbXF3b1sqAG6Hu9NKEhERERHpTqKjo8NdQpegMCudymELdi/O8LU8JtbjDH5j2jVmVkRERERE2qAwK52qYbbi+sapnpo7WH8AAK+v5ZZbEREREREJmjdvHqeddhoXXHABgwcP5o477mgc1ncq0Cw80qn8lh+ALa6W15ktsSoA8Ppa3i8iIiIi0pXcfvvtLW5/6qmnAHjkkUfYtGnTEfvvu+8+Bg8ezNy5c5k7d+4R5x2rpUuXsn79evr27cusWbN47bXXuOKKK47rGt2VWmalU9lCy8u2ts6siIiIiIgcuwkTJtCvXz/sdjvXXHMNCxYsCHdJnUYts9KpHLbgWFjLrgmeRERERKT7O1pL6n333dfm/tmzZzN79uwTfv7DG4lOpUYjtcxKpwqE3nL1NoVZEREREZGTtXTpUrZv304gEOCll15i2rRp4S6p0yjMSqfyhQak+zQmVkRERETkpI0fP567776boUOHkpOTw6WXXhrukjqNuhlL5wpNABXrr25xd4KJAUpwOvTWFBERERFpSWVlZeP92NhY3nzzzTBWEz5qmZVO1bDO7CBvy2E10ZUCgNPh7LSaRERERESk+1Hzl3Qp1d5KcIHf5w93KSIiIiIiXdqMGTOYMWNGuMsIG7XMSqfyBYJjZTc7Wx4zuzdQCECdr77TahIRERERke5HYVbCwqt3noiIiIh0U5ZlhbuEHudEvqaKFNKpXPbgW84WWm9WRERERKQ7iYiIoLi4WIG2HVmWRXFxMREREcd1nsbMSucKTQBV74gOcyEiIiIiIsevT58+7N69mwMHDoS7lB4lIiKCPn36HNc5CrPSqer9wXVm67ya4ElEREREuh+n00lOTk64yxDUzVg6W2gCKE+gssXdESa4JI/NZjqtJBERERER6X4UZqVT2U1wrOzA+pbHzGa4MgGIcB1ff3kRERERETm1KMxKpzIm2OLqRC2vIiIiIiJy4kx3noXLGHMA2BHuOuSkJQNF4S5CJETvR+lK9H6UrkTvR+lK9H48dfS1LCulpR3dOsxKz2CMWWZZ1rhw1yECej9K16L3o3Qlej9KV6L3o4C6GYuIiIiIiEg3pDArIiIiIiIi3Y7CrHQFT4W7AJEm9H6UrkTvR+lK9H6UrkTvR9GYWREREREREel+1DIrIiIiIiIi3Y7CrISVMWaWMWaTMWaLMeZ74a5Hej5jTKYx5iNjzHpjzDpjzD2h7YnGmPeMMZtDtwmh7cYY83joPbraGDMmvK9AehpjjN0Ys8IY82bocY4xZknoPfeSMcYV2u4OPd4S2p8d1sKlRzLGxBtjXjHGbDTGbDDGTNbPRwkXY8y9od/Va40xc4wxEfoZKU0pzErYGGPswB+A84BhwDXGmGHhrUpOAT7gPsuyhgGTgLtC77vvAR9YljUQ+CD0GILvz4Ghf7cDf+r8kqWHuwfY0OTxr4BHLcsaAJQAXwlt/wpQEtr+aOg4kfb2O+Ady7KGAKMIvjf181E6nTEmA/gGMM6yrFzADlyNfkZKEwqzEk4TgC2WZW2zLKseeBG4OMw1SQ9nWdZey7I+D92vIPhBLYPge+9vocP+BlwSun8x8LwVtBiIN8akd27V0lMZY/oAFwBPhx4b4AzgldAhh78XG96jrwBnho4XaRfGmDjgNOAZAMuy6i3LKkU/HyV8HECkMcYBeIC96GekNKEwK+GUAexq8nh3aJtIpwh1QRoNLAHSLMvaG9q1D0gL3df7VDrSY8B3gEDocRJQalmWL/S46fut8b0Y2l8WOl6kveQAB4BnQ13fnzbGRKGfjxIGlmUVAA8DOwmG2DJgOfoZKU0ozIrIKckYEw28CnzTsqzypvus4DTvmupdOpQx5kKg0LKs5eGuRSTEAYwB/mRZ1migikNdigH9fJTOExqbfTHBP7L0BqKAWWEtSrochVkJpwIgs8njPqFtIh3KGOMkGGT/aVnWa6HN+xu6x4VuC0Pb9T6VjjIVuMgYk09wmMUZBMcrxoe61EHz91vjezG0Pw4o7syCpcfbDey2LGtJ6PErBMOtfj5KOJwFbLcs64BlWV7gNYI/N/UzUhopzEo4fQYMDM1K5yI4qP+NMNckPVxo/MwzwAbLsn7bZNcbwE2h+zcBrzfZfmNo1s5JQFmT7nYiJ8yyrO9bltXHsqxsgj//PrQs6zrgI+CK0GGHvxcb3qNXhI5XC5m0G8uy9gG7jDGDQ5vOBNajn48SHjuBScYYT+h3d8P7UT8jpZHR/7GEkzHmfIJjxuzAXy3L+nl4K5KezhgzDZgPrOHQOMUfEBw3+zKQBewArrQs62DoF+gTBLs2VQO3WJa1rNMLlx7NGDMD+LZlWRcaY/oRbKlNBFYA11uWVWeMiQD+TnCc90HgasuytoWpZOmhjDF5BCckcwHbgFsINn7o56N0OmPMQ8BVBFciWAHcSnBsrH5GCqAwKyIiIiIiIt2QuhmLiIiIiIhIt6MwKyIiIiIiIt2OwqyIiIiIiIh0OwqzIiIiIiIi0u0ozIqIiIiIiEi3ozArIiICGGP8xpiVxpi1xph/GWM8rRy3sANrqOyoax8PY8yDxpgCY8xPQo8vN8asM8bMN8Ykhbb1N8a81OScyNDXr94Ykxyu2kVE5NShMCsiIhJUY1lWnmVZuUA9cEfTncYYB4BlWVPCUVwYPGpZ1o9D978OjAf+DFwb2vYz4IcNB1uWVWNZVh6wpzOLFBGRU5fCrIiIyJHmAwOMMTNCrZFvAOuheeupMea7xpg1xphVxpj/F9rW3xjzjjFmeejcIYdf3BgTbYx5NnTuamPM5U32/Tx0vcXGmLTQttnGmCXGmBXGmPebbH/QGPNXY8w8Y8w2Y8w3mlznR8aYTcaYBcaYOcaYbx9rfS0IAG7AA3iNMdOBfZZlbT7ur6yIiEg7cYS7ABERka4k1AJ7HvBOaNMYINeyrO2HHXcecDEwDdXMJAAAAqpJREFU0bKsamNMYmjXU8AdlmVtNsZMBP4InHHY0/wIKLMsa0ToWgmh7VHAYsuy/s8Y82vgNoItoAuASZZlWcaYW4HvAPeFzhkCzARigE3GmD8BecDlwCjACXwOLD+O+g73S+B9gq2u1wP/Aq4+yjkiIiIdSmFWREQkKNIYszJ0fz7wDDAFWHp4kA05C3jWsqxqAMuyDhpjokPn/MsY03Ccu5VzG8OgZVklobv1wJuh+8uBs0P3+wAvGWPSARfQtJ63LMuqA+qMMYVAGjAVeN2yrFqg1hgzF4ItwsdYXzOWZb0HvBe6xo3Af4FBodbeEuCehq+DiIhIZ1GYFRERCWoY89koFPiqjuMaNqD08OscB69lWVbovp9Dv6d/D/zWsqw3jDEzgAebnFPX5H7Tc9q9vtCkWDcD5xIM3ZcBVwDXAX85kWuKiIicKI2ZFREROTHvAbc0zHpsjEm0LKsc2G6M+VJomzHGjGrl3LsaHjTpZtyaOKAgdP+mY6jtU2C2MSYi1Bp7IcBx1Nea+4HHLcvyApGARXA8bYszP4uIiHQkhVkREZETYFnWO8AbwLJQ9+Rvh3ZdB3zFGLMKWEdwXO3hfgYkhJYBWkVwzGtbHiTYNXg5UHQMtX0Wqm018DawBig7jvqOYIzpDUywLOs/oU2/Bz4jOOvzC8dyDRERkfZkDvVmEhERkZ7CGBNtWVZlqOX4E+B2y7I+P8ZzHwQqLct6+ASeNx8YZ1nWUUO3iIjIydCYWRERkZ7pKWPMMCAC+NuxBtmQSuB2Y0xsk7Vm22SMiQQWEZw9OXDc1YqIiBwntcyKiIiIiIhIt6MxsyIiIiIiItLtKMyKiIiIiIhIt6MwKyIiIiIiIt2OwqyIiIiIiIh0OwqzIiIiIiIi0u0ozIqIiIiIiEi38/8BYN5zacJVBWQAAAAASUVORK5CYII=\n"
},
"metadata": {
"needs_background": "light"
}
}
],
"source": [
"# TODO check that the trading curve corresponds to the following equation on page 22 of https://arxiv.org/pdf/1911.03380.pdf for the case with no fees:\n",
"# C(eps) = y * (sqrt(1+eps) + 1 / sqrt(1+eps) - 2)\n",
"# with p_target = (1+eps)*p_marginal\n",
"\n",
"ax, _ = compare_pools(('WBTC', 'WETH', 'USDC'), 'DAI')\n",
"ax.get_figure().show()\n",
"ax.set_yscale('log')"
]
},
{
"source": [
"Answer: USDC/DAI since it's the one with the least liquidity. Driving the price of USDC wrt DAI 90% down by trading DAI against the pool would cost ~200k DAI. A similar price change for WETH or WBTC requires ~10M-100M DAI.\n",
"\n",
"Also note that adding liquidity is more capital intensive, so it's a less attractive strategy from this point of view, although this doesn't take into account the returns from fees -- if the pool has high trade volume, this strategy becomes more attractive."
],
"cell_type": "markdown",
"metadata": {}
},
{
"source": [
"### Interactive viz"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": "interactive(children=(Combobox(value='', description='token0', options=('WETH', 'WBTC', 'DAI', 'USDC'), placeh…",
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "da954f227aaa4fd98d7409227922507f"
}
},
"metadata": {}
}
],
"source": [
"# TODO use plotly express - it is ~ seaborn, high-level\n",
"token_choices = lambda n: widgets.Combobox(\n",
" placeholder=f'Token {n}',\n",
" options=tokens,\n",
" description='',\n",
" ensure_option=False,\n",
" disabled=False,\n",
")\n",
"\n",
"# TODO checkboxes should appear grouped - strategy in one col, x/y-log scale in other\n",
"# TODO after plotting a pair, keep it as a checked checkbox to allow comparison across pairs\n",
"@interact_manual(token0=token_choices(1), token1=token_choices(2), trading=True, lp=False, xlog=False, ylog=False)\n",
"def interactive_compare_pools(token0, token1, trading=True, lp=False, xlog=False, ylog=False):\n",
" # Read manipulations to plot from checkboxes\n",
" manipulations = []\n",
" if trading: manipulations.append('Trading')\n",
" if lp: manipulations.append('LP')\n",
" \n",
" # Create figure\n",
" fig = go.FigureWidget()\n",
" fig.update_xaxes(title_text='Price change [%]')\n",
" fig.update_yaxes(title_text='Cost / DAI')\n",
" \n",
" if not (token0 and token1): # don't do anything if no data\n",
" return fig\n",
"\n",
" # Main calculation\n",
" # TODO cache\n",
" d = pd.concat([get_parametric_manipulation(token0, token1, manipulation.lower()) for manipulation in manipulations])\n",
" \n",
" # Update plot\n",
" with fig.batch_update():\n",
" fig.update_xaxes(type=\"log\" if xlog else \"linear\")\n",
" fig.update_yaxes(type=\"log\" if ylog else \"linear\")\n",
" k = 0\n",
" # TODO legend\n",
" for m, g in d.groupby('Manipulation'):\n",
" fig.add_scatter()\n",
" scatt = fig.data[k]\n",
" # TODO user should be able to set cost unit\n",
" scatt.x, scatt.y = g['Price change [%]'], g['Cost / DAI']\n",
" k += 1\n",
" return fig\n",
"\n",
"fig = interactive_compare_pools(token0='WETH', token1='DAI')"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"# TODO TWAPs\n",
"# - they work by accumulation, see https://uniswap.org/docs/v2/core-concepts/oracles/\n",
"# - this means the TWAP over a period (t0, t1) is (acc[t1] - acc[t0]) / (t1 - t0)\n",
"# - motivating example (why are TWAPs needed) https://samczsun.com/taking-undercollateralized-loans-for-fun-and-for-profit/\n",
"# TODO front-running & arbitrage ?"
]
},
{
"source": [
"## ChainLink"
],
"cell_type": "markdown",
"metadata": {}
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"# TODO\n",
"# There are only 21 oracles for the ETH/USD price (!!!) - source: https://docs.chain.link/docs/architecture-decentralized-model\n",
"# See also: https://docs.chain.link/docs/get-the-latest-price\n",
"# whitepaper: https://uploads-ssl.webflow.com/5f6b7190899f41fb70882d08/603651a1101106649eef6a53_chainlink-ocr-protocol-paper-02-24-20.pdf"
]
}
]
}
from collections import OrderedDict
import json
import requests
from web3 import Web3
from gql import gql, Client
from gql.transport.requests import RequestsHTTPTransport
from keys import API_KEYS
## CONSTANTS ##
tokens = (
"WETH", # calling ETH directly gives error, probably because it's not ERC20 compliant
"WBTC",
"DAI",
"USDC",
)
# Unit conversion
wei = 18
# WBTC & USDC not expressed in weis; i calculated these factors empirically, don't know where they come from
units = {
'WBTC': 8,
'USDC': 6,
}
# see on etherscan https://etherscan.io/address/0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f
uniswap_factory_address = "0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f"
## h/t https://towardsdatascience.com/exploring-decentraland-marketplace-sales-with-thegraph-and-graphql-2f5e8e7199b5
# Select your transport with a defined url endpoint
transport = RequestsHTTPTransport(
url="https://api.thegraph.com/subgraphs/name/uniswap/uniswap-v2")
# Create a GraphQL client using the defined transport
client = Client(transport=transport, fetch_schema_from_transport=True)
# Use infura to fetch and call smart contracts via HTTP
web3 = Web3(Web3.HTTPProvider(f'https://mainnet.infura.io/v3/{API_KEYS["infura"]}'))
def get_reserves(token0, token1, cache='reserves.json'):
_token0, _token1, pool = get_uniswap_pool(token0, token1)
reserve0, reserve1, blockTimeStampLast = pool.functions.getReserves().call()
decimals0, decimals1 = map(get_decimals, (_token0, _token1))
ret = OrderedDict({
_token0: reserve0 / 10**decimals0,
_token1: reserve1 / 10**decimals1,
})
# TODO switch to csv cache so you don't have to parse the whole file every time you want to append
if cache:
with open(cache, 'r') as f:
data = json.load(f)
data[f'{_token0}/{_token1}'] = ret
with open(cache, 'w') as f:
json.dump(data, f)
return ret
def get_marginal_price(token0, token1):
"""Marginal price of `token0` in units of `token1`"""
_token0, _token1, pool = get_uniswap_pool(token0, token1)
reserve0, reserve1, blockTimeStampLast = pool.functions.getReserves().call()
decimals0, decimals1 = map(get_decimals, (_token0, _token1))
reserve0 /= 10**decimals0
reserve1 /= 10**decimals1
return reserve0 / reserve1, f"{_token0}/{_token1}"
def get_uniswap_pool(token0, token1):
"""
Get contract object representing the Uniswap pool between `token0` and `token1`.
@param token0, token1: String e.g. "DAI" or "WETH". Token symbols are searched on Uniswap's subgraph. The contract with that symbol and highest number of transactions is returned.
@return (tokenA, tokenB, pool): `(tokenA, tokenB)` are the pool tokens _in the order they are defined by the contract_. `pool` is the contract object.
"""
address0, address1 = map(get_token_address, (token0, token1))
uniswap_factory = get_contract_from_address(uniswap_factory_address)
pool_address = uniswap_factory.functions.getPair(address0, address1).call()
pool = get_contract_from_address(pool_address)
_address0, _address1 = pool.functions.token0().call(), pool.functions.token1().call()
if _address0 == address0 and \
_address1 == address1:
return (token0, token1, pool)
elif _address0 == address1 and \
_address1 == address0:
print(f"WARNING: You requested {token0}/{token1} but this pool is {token1}/{token0}")
return (token1, token0, pool)
else:
raise Exception("Pool symbols don't match")
def get_decimals(token, graphql_client=client, web3_provider=web3):
contract = get_contract_from_address(get_token_address(token, graphql_client=graphql_client), web3_provider=web3_provider)
try:
return contract.functions.decimals().call()
except ABIFunctionNotFound:
print(f"{token} ERC20 contract has no `decimals` function. Defaulting to {units.get(token, wei)}.")
return units.get(token, wei)
def get_token_address(token, graphql_client=client):
# graphQL magic
# TODO use graphene, it's safer
query = gql(f"""
{{
tokens(where: {{symbol:"{token}"}}, orderBy:txCount, orderDirection: desc, first: 1){{
id,
txCount,
symbol,
}}
}}""")
result = client.execute(query)
assert len(result['tokens']) == 1, f"Found more than one token with name {token}"
# TODO addresses are not checksum
# I don't know if this is TheGraph's or Uniswap's fault
# I'm fixing it myself but this is a hack and it's not safe
return Web3.toChecksumAddress(result['tokens'][0]['id'])
def get_contract_from_address(address, web3_provider=web3):
"""Get web3 contract object from address. Calls etherscan's API to retrieve ABI."""
abi = get_abi(address)
contract = web3.eth.contract(address=address, abi=abi)
return contract
def get_abi(address):
# TODO work around API limit of 5 calls / sec
response = requests.get(
f'https://api.etherscan.io/api?module=contract&action=getabi&apikey={API_KEYS["etherscan"]}&address={address}')
rjson = response.json()
if rjson['status']=='1' and rjson['message']=='OK':
return rjson['result']
print(rjson)
raise Exception(rjson['message'])
def get_twap(pool, t0, t1):
"""
Get time-weighted average price of a token pair between times `t0` and `t1`.
@param t0
@param t1
"""
# TODO see https://uniswap.org/docs/v2/smart-contract-integration/building-an-oracle/
pass
if __name__=='__main__':
reserves = {}
for i, t0 in enumerate(tokens):
for j, t1 in enumerate(tokens):
if j<=i: continue
reserves[f'{t0}/{t1}'] = get_reserves(t0, t1)
with open('reserves.json', 'w') as f:
json.dump(reserves, f)
@jclancy93
Copy link

This looks like a great start!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment