Skip to content

Instantly share code, notes, and snippets.

@jbanerje
Last active May 14, 2020 08:51
Show Gist options
  • Select an option

  • Save jbanerje/df7cbe392bb52bd85674ae5dc7c34d9c to your computer and use it in GitHub Desktop.

Select an option

Save jbanerje/df7cbe392bb52bd85674ae5dc7c34d9c to your computer and use it in GitHub Desktop.
TELCO CUSTOMER CHURN
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# TELCO CUSTOMER CHURN\n",
"### Focused customer retention programs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Who is Telco ?\n",
"Telco Systems is market-leading solutions enable service providers to create and operate high quality, service assured, carrier-grade, intelligent networks. They bring over 40 years of experience to the design and development of advanced, high-performance telecom network communications solutions. \n",
"\n",
"Telco provide the capabilities for service differentiation that enable new forms of revenue production, maximizing network profitability. Service providers, large and small, depend on our consistent delivery of advanced solutions, enabling them to stay ahead of the capacity crunch while keeping total cost of ownership to a minimum.\n",
"\n",
"(Refrence - http://www.telco.com/index.php?page=company-profile)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Business Objective\n",
"\n",
"Every retailer is concerned about high customer churn rate. Churn rate the number of customers who drop out of the buying cycle. It could be non renewal of a loyalty program, or unhappy customers going in search of a better service. One of the key things for the busines to run is loyal customeers , meaning minimize the churn rate.\n",
"\n",
"#### Business objective of this exercise :\n",
"1. Analyze customer data to understand reason for churn and who could be the next potential customer to leave the company\n",
"2. What contributes to the higher churn rate of customer and what could be some of the probable solution to address the same.\n",
"\n",
"#### What type of problem is it ?\n",
"Supervised Machine Learning - Classfication problem\n",
"\n",
"#### How should performance be measured ?\n",
"Model performance of at least 70% is expected\n",
"\n",
"#### Assumptions made :\n",
"1. The sample data is correct represetation of the entire population and is randomly selected\n",
"2. The columns in the dataset are exhaustive list of features that determine churn rate"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Customer churn rate in the United States in 2017, by industry\n",
"Credit : https://www.statista.com/statistics/816735/customer-churn-rate-by-industry-us/\n",
"\n",
"Looks like cable industry has highest churn rate.\n",
"<img src=\"files/customer_churn_rate.png\">"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Content of the dataset\n",
"Each row represents a customer, each column contains customer’s attributes described on the column Metadata.\n",
"\n",
"The data set includes information about:\n",
"\n",
"1. Customers who left within the last month – the column is called Churn\n",
"2. Services that each customer has signed up for – phone, multiple lines, internet, online security, online backup, device protection, tech support, and streaming TV and movies\n",
"3. Customer account information – how long they’ve been a customer, contract, payment method, paperless billing, monthly charges, and total charges\n",
"4. Demographic info about customers – gender, age range, and if they have partners and dependents"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import Libraries"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"#importing the libraries\n",
"\n",
"#Data Processing Libraries\n",
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"#Data Vizuaization Libraries\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"\n",
"# Pretty display for notebooks\n",
"%matplotlib inline\n",
"\n",
"# Machine Learning Library\n",
"from sklearn.preprocessing import LabelEncoder # Encode Categorical Variable to Numerical Variable\n",
"from sklearn.preprocessing import Imputer # Imputer Class to replace missing values\n",
"from sklearn.metrics import confusion_matrix # Library for model evaluation\n",
"from sklearn.metrics import accuracy_score # Library for model evaluation\n",
"from sklearn.model_selection import train_test_split # Library to split datset into test and train\n",
"\n",
"from sklearn.linear_model import LogisticRegression # Logistic Regression Classifier\n",
"from sklearn.linear_model import SGDClassifier # Stochastic Gradient Descent Classifier\n",
"from sklearn.tree import DecisionTreeClassifier # Decision Tree Classifier\n",
"from sklearn.ensemble import RandomForestClassifier # Random Forest Classifier\n",
"from sklearn.neighbors import KNeighborsClassifier # K Nearest neighbors Classifier\n",
"from sklearn.naive_bayes import GaussianNB #Naive Bayes Classifier\n",
"from sklearn.svm import SVC #Support vector Machine Classifier\n",
"from sklearn.ensemble import AdaBoostClassifier # Ada Boost Classifier\n",
"from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix\n",
"from sklearn.model_selection import cross_val_score\n",
"from sklearn.metrics import precision_recall_curve\n",
"from sklearn.metrics import average_precision_score\n",
"\n",
"#Ignoring the warnings\n",
"import warnings\n",
"warnings.filterwarnings('ignore')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Get Data\n",
"\n",
"1. Source of data - https://www.kaggle.com/blastchar/telco-customer-churn\n",
"2. Space - 955 KB\n",
"3. Legal Obligations - Free Dataset"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Read .csv file from location and load into pandas DataFrame\n",
"datset_churn = pd.read_csv('https://github.com/jbanerje/Data-Science-and-Machine-Learning/tree/master/data/WA_Fn-UseC_-Telco-Customer-Churn.csv')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"datset_churn_copy = datset_churn.copy() # Keeping a backup of original datset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Basic Overview of dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Find out total rows and columns or shapes of the dataset"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(7043, 21)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datset_churn.shape # output = (rows, columns)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"There are 7043 rows and 21 columns including the target/output variable."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Let's get the column names/information"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['customerID' 'gender' 'SeniorCitizen' 'Partner' 'Dependents' 'tenure'\n",
" 'PhoneService' 'MultipleLines' 'InternetService' 'OnlineSecurity'\n",
" 'OnlineBackup' 'DeviceProtection' 'TechSupport' 'StreamingTV'\n",
" 'StreamingMovies' 'Contract' 'PaperlessBilling' 'PaymentMethod'\n",
" 'MonthlyCharges' 'TotalCharges' 'Churn']\n"
]
}
],
"source": [
"# Getting the column names\n",
"print(datset_churn.columns.values)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Observation - Notice 'customerID' , 'gender' and 'tenure' in lowercase. We will rename to convert the first letter to uppercase"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['CustomerID' 'Gender' 'SeniorCitizen' 'Partner' 'Dependents' 'Tenure'\n",
" 'PhoneService' 'MultipleLines' 'InternetService' 'OnlineSecurity'\n",
" 'OnlineBackup' 'DeviceProtection' 'TechSupport' 'StreamingTV'\n",
" 'StreamingMovies' 'Contract' 'PaperlessBilling' 'PaymentMethod'\n",
" 'MonthlyCharges' 'TotalCharges' 'Churn']\n"
]
}
],
"source": [
"# Renaming the 3 columns.\n",
"datset_churn = datset_churn.rename(columns={'customerID' : 'CustomerID' , 'gender': 'Gender', 'tenure':'Tenure'})\n",
"print(datset_churn.columns.values)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Target Variable or The variable we want to predict is 'Churn'\n",
"\n",
"Feature Variable - All Other columns (First 20 columnns)\n",
"\n",
"1. Customers who left within the last month – 'Churn'\n",
"2. Customer Services – 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup' 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies'\n",
"3. Customer Account information – 'Tenure', 'Contract', 'PaperlessBilling', 'PaymentMethod', 'MonthlyCharges', 'TotalCharges'\n",
"4. Customer Personal Information – 'Gender', 'SeniorCitizen', 'Partner', 'Dependents'"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 7043 entries, 0 to 7042\n",
"Data columns (total 21 columns):\n",
"CustomerID 7043 non-null object\n",
"Gender 7043 non-null object\n",
"SeniorCitizen 7043 non-null int64\n",
"Partner 7043 non-null object\n",
"Dependents 7043 non-null object\n",
"Tenure 7043 non-null int64\n",
"PhoneService 7043 non-null object\n",
"MultipleLines 7043 non-null object\n",
"InternetService 7043 non-null object\n",
"OnlineSecurity 7043 non-null object\n",
"OnlineBackup 7043 non-null object\n",
"DeviceProtection 7043 non-null object\n",
"TechSupport 7043 non-null object\n",
"StreamingTV 7043 non-null object\n",
"StreamingMovies 7043 non-null object\n",
"Contract 7043 non-null object\n",
"PaperlessBilling 7043 non-null object\n",
"PaymentMethod 7043 non-null object\n",
"MonthlyCharges 7043 non-null float64\n",
"TotalCharges 7032 non-null float64\n",
"Churn 7043 non-null object\n",
"dtypes: float64(2), int64(2), object(17)\n",
"memory usage: 1.1+ MB\n",
"None\n"
]
}
],
"source": [
"print(datset_churn.info())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Which features are numerical?\n",
"SeniorCitizen, Tenure, MonthlyCharges, TotalCharges\n",
"\n",
"Continous - Tenure, MonthlyCharges, TotalCharges\n",
"Discrete - SeniorCitizen\n",
"\n",
"#### Which features are categorical?\n",
"PhoneService, MultipleLines, InternetService, OnlineSecurity, OnlineBackup DeviceProtection, TechSupport, StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, gender, Partner, Dependents\n",
"\n",
"#### Which features are Nominal or Ordinal ?\n",
"Ordinal data (variables with a meaningful order) - No.\n",
"\n",
"Nominal data (categories that have no meaningful order) - All Columns.\n",
"\n",
"#### Which features are mixed data types?\n",
"None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Taking first look into data"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CustomerID</th>\n",
" <th>Gender</th>\n",
" <th>SeniorCitizen</th>\n",
" <th>Partner</th>\n",
" <th>Dependents</th>\n",
" <th>Tenure</th>\n",
" <th>PhoneService</th>\n",
" <th>MultipleLines</th>\n",
" <th>InternetService</th>\n",
" <th>OnlineSecurity</th>\n",
" <th>...</th>\n",
" <th>DeviceProtection</th>\n",
" <th>TechSupport</th>\n",
" <th>StreamingTV</th>\n",
" <th>StreamingMovies</th>\n",
" <th>Contract</th>\n",
" <th>PaperlessBilling</th>\n",
" <th>PaymentMethod</th>\n",
" <th>MonthlyCharges</th>\n",
" <th>TotalCharges</th>\n",
" <th>Churn</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>7590-VHVEG</td>\n",
" <td>Female</td>\n",
" <td>0</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>1</td>\n",
" <td>No</td>\n",
" <td>No phone service</td>\n",
" <td>DSL</td>\n",
" <td>No</td>\n",
" <td>...</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Month-to-month</td>\n",
" <td>Yes</td>\n",
" <td>Electronic check</td>\n",
" <td>29.85</td>\n",
" <td>29.85</td>\n",
" <td>No</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>5575-GNVDE</td>\n",
" <td>Male</td>\n",
" <td>0</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>34</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>DSL</td>\n",
" <td>Yes</td>\n",
" <td>...</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>One year</td>\n",
" <td>No</td>\n",
" <td>Mailed check</td>\n",
" <td>56.95</td>\n",
" <td>1889.50</td>\n",
" <td>No</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3668-QPYBK</td>\n",
" <td>Male</td>\n",
" <td>0</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>DSL</td>\n",
" <td>Yes</td>\n",
" <td>...</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Month-to-month</td>\n",
" <td>Yes</td>\n",
" <td>Mailed check</td>\n",
" <td>53.85</td>\n",
" <td>108.15</td>\n",
" <td>Yes</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>7795-CFOCW</td>\n",
" <td>Male</td>\n",
" <td>0</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>45</td>\n",
" <td>No</td>\n",
" <td>No phone service</td>\n",
" <td>DSL</td>\n",
" <td>Yes</td>\n",
" <td>...</td>\n",
" <td>Yes</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>One year</td>\n",
" <td>No</td>\n",
" <td>Bank transfer (automatic)</td>\n",
" <td>42.30</td>\n",
" <td>1840.75</td>\n",
" <td>No</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>9237-HQITU</td>\n",
" <td>Female</td>\n",
" <td>0</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>2</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Fiber optic</td>\n",
" <td>No</td>\n",
" <td>...</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Month-to-month</td>\n",
" <td>Yes</td>\n",
" <td>Electronic check</td>\n",
" <td>70.70</td>\n",
" <td>151.65</td>\n",
" <td>Yes</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>5 rows × 21 columns</p>\n",
"</div>"
],
"text/plain": [
" CustomerID Gender SeniorCitizen Partner Dependents Tenure PhoneService \\\n",
"0 7590-VHVEG Female 0 Yes No 1 No \n",
"1 5575-GNVDE Male 0 No No 34 Yes \n",
"2 3668-QPYBK Male 0 No No 2 Yes \n",
"3 7795-CFOCW Male 0 No No 45 No \n",
"4 9237-HQITU Female 0 No No 2 Yes \n",
"\n",
" MultipleLines InternetService OnlineSecurity ... DeviceProtection \\\n",
"0 No phone service DSL No ... No \n",
"1 No DSL Yes ... Yes \n",
"2 No DSL Yes ... No \n",
"3 No phone service DSL Yes ... Yes \n",
"4 No Fiber optic No ... No \n",
"\n",
" TechSupport StreamingTV StreamingMovies Contract PaperlessBilling \\\n",
"0 No No No Month-to-month Yes \n",
"1 No No No One year No \n",
"2 No No No Month-to-month Yes \n",
"3 Yes No No One year No \n",
"4 No No No Month-to-month Yes \n",
"\n",
" PaymentMethod MonthlyCharges TotalCharges Churn \n",
"0 Electronic check 29.85 29.85 No \n",
"1 Mailed check 56.95 1889.50 No \n",
"2 Mailed check 53.85 108.15 Yes \n",
"3 Bank transfer (automatic) 42.30 1840.75 No \n",
"4 Electronic check 70.70 151.65 Yes \n",
"\n",
"[5 rows x 21 columns]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datset_churn.head() # This will print first 5 rows in pandas dataset."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Understanding the summary statistics , central tendency and dispersion of dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Summary Statistics of Object/Categorical variable. "
]
},
{
"cell_type": "code",
"execution_count": 447,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CustomerID</th>\n",
" <th>Gender</th>\n",
" <th>Partner</th>\n",
" <th>Dependents</th>\n",
" <th>PhoneService</th>\n",
" <th>MultipleLines</th>\n",
" <th>InternetService</th>\n",
" <th>OnlineSecurity</th>\n",
" <th>OnlineBackup</th>\n",
" <th>DeviceProtection</th>\n",
" <th>TechSupport</th>\n",
" <th>StreamingTV</th>\n",
" <th>StreamingMovies</th>\n",
" <th>Contract</th>\n",
" <th>PaperlessBilling</th>\n",
" <th>PaymentMethod</th>\n",
" <th>Churn</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" <td>7043</td>\n",
" </tr>\n",
" <tr>\n",
" <th>unique</th>\n",
" <td>7043</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>3</td>\n",
" <td>2</td>\n",
" <td>4</td>\n",
" <td>2</td>\n",
" </tr>\n",
" <tr>\n",
" <th>top</th>\n",
" <td>3090-QFUVD</td>\n",
" <td>Male</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Yes</td>\n",
" <td>No</td>\n",
" <td>Fiber optic</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>No</td>\n",
" <td>Month-to-month</td>\n",
" <td>Yes</td>\n",
" <td>Electronic check</td>\n",
" <td>No</td>\n",
" </tr>\n",
" <tr>\n",
" <th>freq</th>\n",
" <td>1</td>\n",
" <td>3555</td>\n",
" <td>3641</td>\n",
" <td>4933</td>\n",
" <td>6361</td>\n",
" <td>3390</td>\n",
" <td>3096</td>\n",
" <td>3498</td>\n",
" <td>3088</td>\n",
" <td>3095</td>\n",
" <td>3473</td>\n",
" <td>2810</td>\n",
" <td>2785</td>\n",
" <td>3875</td>\n",
" <td>4171</td>\n",
" <td>2365</td>\n",
" <td>5174</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" CustomerID Gender Partner Dependents PhoneService MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection TechSupport StreamingTV StreamingMovies Contract PaperlessBilling PaymentMethod Churn\n",
"count 7043 7043 7043 7043 7043 7043 7043 7043 7043 7043 7043 7043 7043 7043 7043 7043 7043\n",
"unique 7043 2 2 2 2 3 3 3 3 3 3 3 3 3 2 4 2 \n",
"top 3090-QFUVD Male No No Yes No Fiber optic No No No No No No Month-to-month Yes Electronic check No \n",
"freq 1 3555 3641 4933 6361 3390 3096 3498 3088 3095 3473 2810 2785 3875 4171 2365 5174"
]
},
"execution_count": 447,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datset_churn.describe(include=['O'])"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gender - ['Female' 'Male']\n",
"Partner - ['Yes' 'No']\n",
"Dependents - ['No' 'Yes']\n",
"PhoneService - ['No' 'Yes']\n",
"MultipleLines - ['No phone service' 'No' 'Yes']\n",
"InternetService - ['DSL' 'Fiber optic' 'No']\n",
"OnlineSecurity - ['No' 'Yes' 'No internet service']\n",
"OnlineBackup - ['Yes' 'No' 'No internet service']\n",
"DeviceProtection - ['No' 'Yes' 'No internet service']\n",
"TechSupport - ['No' 'Yes' 'No internet service']\n",
"StreamingTV - ['No' 'Yes' 'No internet service']\n",
"StreamingMovies - ['No' 'Yes' 'No internet service']\n",
"Contract - ['Month-to-month' 'One year' 'Two year']\n",
"PaperlessBilling - ['Yes' 'No']\n",
"PaymentMethod - ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'\n",
" 'Credit card (automatic)']\n",
"Churn - ['No' 'Yes']\n"
]
}
],
"source": [
"#Creating the list of columns\n",
"datset_churn_column = list(datset_churn.columns)\n",
"\n",
"#Removing numerical columns\n",
"datset_churn_column.remove('CustomerID')\n",
"datset_churn_column.remove('SeniorCitizen')\n",
"datset_churn_column.remove('Tenure')\n",
"datset_churn_column.remove('MonthlyCharges')\n",
"datset_churn_column.remove('TotalCharges')\n",
"\n",
"# Printing Unique values in each categorical column\n",
"for col in datset_churn_column:\n",
" print(col, \"-\", datset_churn[col].unique())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observations :\n",
"1. Gender, Partner, Dependents, PhoneService, PaperlessBilling and Churn - They have 2 unique categories - Yes/No and for gender Male/Female\n",
"2. MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport, StreamingTV, StreamingMovies, Contract - They have 3 unique categories\n",
"3. Payment Method - 4 unique categories or 4 methods by which customer pays for their service"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Summary Statistics of Numeric variable."
]
},
{
"cell_type": "code",
"execution_count": 448,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>SeniorCitizen</th>\n",
" <th>Tenure</th>\n",
" <th>MonthlyCharges</th>\n",
" <th>TotalCharges</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>count</th>\n",
" <td>7043.000000</td>\n",
" <td>7043.000000</td>\n",
" <td>7043.000000</td>\n",
" <td>7032.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>mean</th>\n",
" <td>0.162147</td>\n",
" <td>32.371149</td>\n",
" <td>64.761692</td>\n",
" <td>2283.300441</td>\n",
" </tr>\n",
" <tr>\n",
" <th>std</th>\n",
" <td>0.368612</td>\n",
" <td>24.559481</td>\n",
" <td>30.090047</td>\n",
" <td>2266.771362</td>\n",
" </tr>\n",
" <tr>\n",
" <th>min</th>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>18.250000</td>\n",
" <td>18.800000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>25%</th>\n",
" <td>0.000000</td>\n",
" <td>9.000000</td>\n",
" <td>35.500000</td>\n",
" <td>401.450000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>50%</th>\n",
" <td>0.000000</td>\n",
" <td>29.000000</td>\n",
" <td>70.350000</td>\n",
" <td>1397.475000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>75%</th>\n",
" <td>0.000000</td>\n",
" <td>55.000000</td>\n",
" <td>89.850000</td>\n",
" <td>3794.737500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>max</th>\n",
" <td>1.000000</td>\n",
" <td>72.000000</td>\n",
" <td>118.750000</td>\n",
" <td>8684.800000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" SeniorCitizen Tenure MonthlyCharges TotalCharges\n",
"count 7043.000000 7043.000000 7043.000000 7032.000000 \n",
"mean 0.162147 32.371149 64.761692 2283.300441 \n",
"std 0.368612 24.559481 30.090047 2266.771362 \n",
"min 0.000000 0.000000 18.250000 18.800000 \n",
"25% 0.000000 9.000000 35.500000 401.450000 \n",
"50% 0.000000 29.000000 70.350000 1397.475000 \n",
"75% 0.000000 55.000000 89.850000 3794.737500 \n",
"max 1.000000 72.000000 118.750000 8684.800000 "
]
},
"execution_count": 448,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datset_churn.describe()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observations:\n",
"1. We have 4 numeric variables\n",
"2. Tenure can vary from 0 months to 72 months. This is how long customer is with Telco\n",
"3. Total Charges = Monthly Charges * Tenure\n",
"4. Looking at the count column, all columns have count as 7043 . TotalCharges have count of 7032, a differece of 11 records. These are missing records"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Assess missing values in dataset"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Assess missing values in dataset\n",
" Total Percent\n",
"TotalCharges 11 0.001562\n",
"Churn 0 0.000000\n",
"OnlineSecurity 0 0.000000\n",
"Gender 0 0.000000\n",
"SeniorCitizen 0 0.000000\n",
"Partner 0 0.000000\n",
"Dependents 0 0.000000\n",
"Tenure 0 0.000000\n",
"PhoneService 0 0.000000\n",
"MultipleLines 0 0.000000\n",
"InternetService 0 0.000000\n",
"OnlineBackup 0 0.000000\n",
"DeviceProtection 0 0.000000\n",
"TechSupport 0 0.000000\n",
"StreamingTV 0 0.000000\n",
"StreamingMovies 0 0.000000\n",
"Contract 0 0.000000\n",
"PaperlessBilling 0 0.000000\n",
"PaymentMethod 0 0.000000\n",
"MonthlyCharges 0 0.000000\n",
"CustomerID 0 0.000000\n"
]
}
],
"source": [
"print(\"Assess missing values in dataset\")\n",
"total = datset_churn.isnull().sum().sort_values(ascending=False)\n",
"percent = (datset_churn.isnull().sum()/datset_churn.isnull().count()).sort_values(ascending=False)\n",
"missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])\n",
"print(missing_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Observation - TotalCharges have 11 missing values. We will replace them with multiplying Tenure * MonthlyCharges value"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Replacing missing value"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Missing Value Rows--> [488, 753, 936, 1082, 1340, 3331, 3826, 4380, 5218, 6670, 6754] \n",
"Missing data in rows--> 11\n",
"Assess missing values in dataset\n",
" Total Percent\n",
"Churn 0 0.0\n",
"OnlineSecurity 0 0.0\n",
"Gender 0 0.0\n",
"SeniorCitizen 0 0.0\n",
"Partner 0 0.0\n",
"Dependents 0 0.0\n",
"Tenure 0 0.0\n",
"PhoneService 0 0.0\n",
"MultipleLines 0 0.0\n",
"InternetService 0 0.0\n",
"OnlineBackup 0 0.0\n",
"TotalCharges 0 0.0\n",
"DeviceProtection 0 0.0\n",
"TechSupport 0 0.0\n",
"StreamingTV 0 0.0\n",
"StreamingMovies 0 0.0\n",
"Contract 0 0.0\n",
"PaperlessBilling 0 0.0\n",
"PaymentMethod 0 0.0\n",
"MonthlyCharges 0 0.0\n",
"CustomerID 0 0.0\n"
]
}
],
"source": [
"#Identifying the rows containing missing data\n",
"missing_value_row = list(datset_churn[datset_churn['TotalCharges'].isnull()].index)\n",
"print('Missing Value Rows-->', missing_value_row , '\\nMissing data in rows-->', len(missing_value_row))\n",
"\n",
"#Replacing missing data with Tenure X MonthlyCharges\n",
"for missing_row in missing_value_row :\n",
" datset_churn['TotalCharges'][missing_row] = datset_churn['Tenure'][missing_row] * datset_churn['MonthlyCharges'][missing_row]\n",
"\n",
"# Displaying Missing Value statistics\n",
"print(\"Assess missing values in dataset\")\n",
"total = datset_churn.isnull().sum().sort_values(ascending=False)\n",
"percent = (datset_churn.isnull().sum()/datset_churn.isnull().count()).sort_values(ascending=False)\n",
"missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])\n",
"print(missing_data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Missing values in MonthlyCharges are gone!!!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Univariate Analysis"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Vizualizing the Categorical variables with bar chart"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"# Getting the list of all columns\n",
"columns_hist = list(datset_churn.columns)\n",
"\n",
"#Removing the Numerical Variables\n",
"columns_hist.remove('CustomerID')\n",
"columns_hist.remove('SeniorCitizen')\n",
"columns_hist.remove('Tenure')\n",
"columns_hist.remove('MonthlyCharges')\n",
"columns_hist.remove('TotalCharges')\n",
"\n",
"#Creating Column into 4X4 matrix to display 16 bar charts in 4X4 form:\n",
"columns_hist_nparray = np.array(columns_hist)\n",
"columns_hist_nparray = np.reshape(columns_hist_nparray, (4,4)) # reshaping the columns into 4X4 matrix"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Univariate Analysis of each categorical Variables\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJ8AAARwCAYAAABEn/UmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3X285XVd7/3XmxvFTAVk4CAwDdlYoinYDijO6UJQ7ipBC8VKRw9XUx28O1aKZQcV6bIbJS2zRhkdvEwgb3IyEiaUvLwKYSDkVmNCkgkOMzmImoqBn/PH77thMbP2nj0z+7fX2nu/no/Hfuz1+/y+v9/6LvbmM2t99vcmVYUkSZIkSZLUh91G3QFJkiRJkiQtXBafJEmSJEmS1BuLT5IkSZIkSeqNxSdJkiRJkiT1xuKTJEmSJEmSemPxSZIkSZIkSb2x+CRJkiRJkqTeWHySJEmSJElSbyw+SZIkSZIkqTcWnyRJkiRJktSbPUbdgT7st99+tWzZslF3Q9Iuuvbaa/+9qpaMuh+7wnwkzX/mIknjwFwkaRzsbC5akMWnZcuWsX79+lF3Q9IuSvKvo+7DrjIfSfOfuUjSODAXSRoHO5uLnHYnSZIkSZKk3lh8kiRJkiRJUm8sPkmSJM2BJHckuTHJ9UnWt9i+SdYlua1936fFk+RdSTYkuSHJswbus6K1vy3JilG9HkmSpJmy+CRJkjR3nl1Vh1fVRDs+G7iiqpYDV7RjgJOB5e1rJfAe6IpVwDnAUcCRwDmTBStJkqRxZfFJkiRpdE4F1rTHa4DTBuIXVucqYO8kBwInAuuqaktV3QusA06a605LkiTtCItPkiRJc6OAy5Ncm2Rlix1QVXcDtO/7t/hBwJ0D125ssanikiRJY2uPUXdAkiRpkTimqu5Ksj+wLskXp2mbIbGaJr7tDboC10qApUuX7mhfJUmSZo0jnyRJkuZAVd3Vvm8CPk63ZtM9bTod7fum1nwjcMjA5QcDd00TH/Z8q6pqoqomlixZMpsvRZIkaYf0VnxKsleSq5N8IcnNSd7c4h9I8uW208v1SQ5vcXd1kSRJC1KSxyZ53ORj4ATgJmAtMPneZgXwifZ4LfDS9v7oaOC+Ni3vMuCEJPu0hcZPaDFJkqSx1ee0u/uB46rqm0n2BD6X5G/bud+sqo9s1X5wV5ej6HZ1OWpgV5cJumHl1yZZ2xbZlGbspN+5eNRdWPQ+de6LRt0FaeTMRaM3olx0APDxJNC9//qLqvpUkmuAS5KcCXwFOL21vxQ4BdgAfAt4OUBVbUlyLnBNa/eWqtoy251dP3HkbN9SO2hi/dWj7oIk9c73RaM3V++Leis+VVUB32yHe7avoWsSNA/t6gJclWRyV5djabu6ACSZ3NXlw331XZIkaTZV1e3AM4fEvwocPyRewFlT3Gs1sHq2+yhJktSXXtd8SrJ7kuvp1i9YV1Wfb6fOa1Przk/y6BZzVxdJkiRJkqQFptfiU1U9WFWH0y2GeWSSpwNvAH4E+HFgX+D1rfku7eqSZGWS9UnWb968eVb6L0mSJEmSpF3T55pPD6mqryW5Ejipqv6whe9P8n7gN9rxdLu6HLtV/Mohz7EKWAUwMTEx3fS+oVzbYPRc20CSJEmSpIWnz93uliTZuz1+DPAc4IsD2wkHOI1upxdwVxdJPXDnTUmSJEkarT5HPh0IrEmyO12R65Kq+mSSTydZQjed7nrgV1v7ke7qImnBcudNSZIkSRqhPne7uwE4Ykj8uCnau6uLpFnnzpuSJEmSNFq9LjguSePAnTclSZIkaXQsPkla8OZy501w901JkjS+2qjujyT5YpJbk/xEkn2TrGvrWq5ra+26FqakWWPxSdKiUVVfo9st86Squrs69wPvBya3vJxu581h8WHPs6qqJqpqYsmSJbP8KiRJknbJO4FPVdWPAM8EbgXOBq6oquXAFe0YHrkW5kq6tTAZWAvzKLr3UOdMFqwkaRiLT5IWNHfelCRJ6iR5PPBTwAUAVfXd9se5U4E1rdkauvdGMLAWZlVdBUyuhXkibS3MtvnK5FqYkjRUn7vdSdI4cOdNSZKkzg8Cm4H3J3kmcC3wauCA9sc2quruJPu39q6FKWlWWHyStKC586YkSdJD9gCeBbyyqj6f5J08PMVumFlZC5Nuyh5Lly7dsd5KWjCcdidJkiRJi8NGYOPAzr8foStG3TOwJMGBdDsET7Z3LUxJu8yRT5I0RtZPHLn9RurVxPqrR90FSZJ6UVX/O8mdSX64qr4EHA/c0r5WAG9r3z/RLlkLvCLJRXSLi9/XpuVdBvzuwCLjJ9DtJCxJQ1l8kiRJkqTF45XAh5I8Cridbn3L3YBLkpwJfAU4vbV1LUxJs8LikyRJkiQtElV1PTAx5NTxQ9q6FqakWeGaT5IkSZIkSeqNxSdJkiRJkiT1xuKTJEmSJEmSemPxSZIkSZIkSb2x+CRJkiRJkqTeWHySJEmSJElSbyw+SZIkSZIkqTcWnyRJkiRJktQbi0+SJEmSJEnqjcUnSZIkSZIk9cbikyRJkiRJknpj8UmSJEmSJEm9sfgkSZIkSZKk3vRWfEqyV5Krk3whyc1J3tzihyb5fJLbklyc5FEt/uh2vKGdXzZwrze0+JeSnNhXnyVJkiRJkjS7+hz5dD9wXFU9EzgcOCnJ0cDvAedX1XLgXuDM1v5M4N6q+iHg/NaOJIcBZwBPA04C/jTJ7j32W5IkSZIkSbOkt+JTdb7ZDvdsXwUcB3ykxdcAp7XHp7Zj2vnjk6TFL6qq+6vqy8AG4Mi++i1JkiRJkqTZ0+uaT0l2T3I9sAlYB/wL8LWqeqA12Qgc1B4fBNwJ0M7fBzxxMD7kGkmSJEmSJI2xXotPVfVgVR0OHEw3Wumpw5q175ni3FTxR0iyMsn6JOs3b968s12WJEmSJEnSLJqT3e6q6mvAlcDRwN5J9minDgbuao83AocAtPNPALYMxodcM/gcq6pqoqomlixZ0sfLkDQPufmBJEmSJI1Wn7vdLUmyd3v8GOA5wK3AZ4Cfb81WAJ9oj9e2Y9r5T1dVtfgZ7QPhocBy4Oq++i1pwXHzA0mSJEkaoT5HPh0IfCbJDcA1wLqq+iTweuC1STbQrel0QWt/AfDEFn8tcDZAVd0MXALcAnwKOKuqHuyx35IWEDc/kCRJkqTR2mP7TXZOVd0AHDEkfjtDPrBV1XeA06e413nAebPdR0mLQxuhdC3wQ8C72YHND5IMbn5w1cBtp9z8IMlKYCXA0qVLZ/W1SJrfWj5aD/xbVf1MG9V9EbAvcB3wkqr6bpJHAxcCPwZ8FXhRVd3R7vEGulGaDwKvqqrL5v6VSJIkzdycrPkkSaM0l5sftOdzDTpJU3k13TIEk5wCLEmSFjyLT5IWjbnY/ECSppLkYOCngfe14+AUYEmStAhYfJK0oLn5gaQx8kfA64DvteMnMsMpwMDgFOA7B+457RTgJOuTrN+8efNsvg5JkqQdYvFJ0kLn5geSRi7JzwCbqurawfCQpk4BliRJC05vC45L0jhw8wNJY+IY4HlJTgH2Ah5PNxJq7yR7tNFNw6YAb3QKsKTZluQO4Bt0Gxc8UFUTSfYFLgaWAXcAL6yqe9uU33cCpwDfAl5WVde1+6wA3thu+9aqWoMkDeHIJ0mSpJ5V1Ruq6uCqWka3YPinq+oXcQqwpNF5dlUdXlUT7fhs4Iq2AcIV7RjgZLpcs5xuN9/3ALRi1TnAUXR/0DsnyT5z2H9J84jFJ0mSpNFxCrCkcTG40cHWGyBcWJ2r6EZsHgicSLecwZaquhdYR7cLpyRtw2l3kiRJc6iqrqTbedMpwJJGpYDLkxTw51W1Cjigqu4GqKq7k+zf2k610cGMN0CQJItPkiRJkrS4HFNVd7UC07okX5ym7S5tgJBkJd10PZYuXbozfZW0ADjtTpIkSZIWkaq6q33fBHycbgTmPW06He37ptZ8qo0OZrQBgjtvSgKLT5IkSZK0aCR5bJLHTT4GTgBu4pEbHWy9AcJL0zkauK9Nz7sMOCHJPm2h8RNaTJK24bQ7SZIkSVo8DgA+ngS6z4N/UVWfSnINcEmSM4Gv8PC6c5cCpwAbgG8BLweoqi1JzgWuae3eUlVb5u5lSJpPLD5JkiRJ0iLRNjp45pD4V4Hjh8QLOGuKe60GVs92HyUtPE67kyRJkiRJUm8sPkmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6o3FJ0mSJEmSJPXG4pMkSZIkSZJ6Y/FJkiRJkiRJvbH4JEmSJEmSpN5YfJIkSZIkSVJvLD5JkiRJkiSpN70Vn5IckuQzSW5NcnOSV7f4m5L8W5Lr29cpA9e8IcmGJF9KcuJA/KQW25Dk7L76LEmSJEmSpNm1R4/3fgD49aq6LsnjgGuTrGvnzq+qPxxsnOQw4AzgacCTgL9L8pR2+t3Ac4GNwDVJ1lbVLT32XZIkSZIkSbOgt+JTVd0N3N0efyPJrcBB01xyKnBRVd0PfDnJBuDIdm5DVd0OkOSi1tbikyRJkiRJ0pibkzWfkiwDjgA+30KvSHJDktVJ9mmxg4A7By7b2GJTxSVpu5wCLEmSJEmj1XvxKcn3Ax8FXlNVXwfeAzwZOJxuZNTbJ5sOubymiW/9PCuTrE+yfvPmzbPSd0kLwuQU4KcCRwNntWm+0E0BPrx9XQrbTAE+CfjTJLsn2Z1uCvDJwGHAiwfuI0mSJEmaQq/FpyR70hWePlRVHwOoqnuq6sGq+h7wXh6eWrcROGTg8oOBu6aJP0JVraqqiaqaWLJkyey/GEnzUlXdXVXXtcffAGY8BbiqvgxMTgE+kjYFuKq+C0xOAZYkSZIkTaPP3e4CXADcWlXvGIgfONDs+cBN7fFa4Iwkj05yKLAcuBq4Blie5NAkj6IbkbC2r35LWricAixJkiRJc6/PkU/HAC8BjttqTZXfT3JjkhuAZwP/E6CqbgYuoVtI/FPAWW2E1APAK4DL6EYsXNLaStKMzdUU4PZcTgOWJEmSpKbP3e4+x/APa5dOc815wHlD4pdOd50kTWeqKcAD598LfLIdTjfVd7tTgNu9VwGrACYmJoYWqCRJkiRpsZiT3e4kaVScAixJkiRJo9XbyCdJGhOTU4BvTHJ9i/0W3W51h9NNnbsD+BXopgAnmZwC/ABtCjBAkskpwLsDq50CLEmSJEnbZ/FJ0oLmFGBJkiRJGi2n3UmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6o3FJ0mSJEmSJPXG4pMkSZIkSZJ6Y/FJkiRJkhaRJLsn+ackn2zHhyb5fJLbklyc5FEt/uh2vKGdXzZwjze0+JeSnDiaVyJpvrD4JEmSJEmLy6uBWweOfw84v6qWA/cCZ7b4mcC9VfVDwPmtHUkOA84AngacBPxpkt3nqO+S5iGLT5IkSZK0SCQ5GPhp4H3tOMBxwEdakzXAae3xqe2Ydv741v5U4KKqur+qvgxsAI6cm1cgaT6y+CRJkiRJi8cfAa8DvteOnwh8raoeaMcbgYPa44OAOwHa+fta+4fiQ655hCQrk6xPsn7z5s2z+TokzSMWnyRJknqWZK8kVyf5QpKbk7y5xV1nRdKcSfIzwKaqunYwPKRpbefcdNc8Mli1qqomqmpiyZIlO9RfSQuHxSdJkqT+3Q8cV1XPBA4HTkpyNK6zImluHQM8L8kdwEV00+3+CNg7yR6tzcHAXe3xRuAQgHb+CcCWwfiQayRpGxafJEmSeladb7bDPdtX4TorkuZQVb2hqg6uqmV0hexPV9UvAp8Bfr41WwF8oj1e245p5z9dVdXiZ7RRmocCy4Gr5+hlSJqHLD5JkiTNgba1+fXAJmAd8C/0uM6KJO2A1wOvTbKBLtdc0OIXAE9s8dcCZwNU1c3AJcAtwKeAs6rqwTnvtaR5Y4/tN5EkSdKuah/MDk+yN/Bx4KnDmrXvu7zOSpKVwEqApUuX7nB/JS1sVXUlcGV7fDtDRlFW1XeA06e4/jzgvP56KGkhceSTJEnSHKqqr9F94DuaHtdZcZFfSZI0Liw+SZIk9SzJkjbiiSSPAZ4D3IrrrEiSpEXAaXeSJEn9OxBY03am2w24pKo+meQW4KIkbwX+iUeus/LBts7KFrqFgamqm5NMrrPyAK6zIkmS5gGLT5IkST2rqhuAI4bEXWdFkiQteE67kyRJkiRJUm96Kz4lOSTJZ5LcmuTmJK9u8X2TrEtyW/u+T4snybuSbEhyQ5JnDdxrRWt/W5IVUz2nJEmSJEmSxsuMik9JrphJbCsPAL9eVU+l283lrCSHAWcDV1TVcuCKdgxwMt2imcvptgV+T3uefYFzgKPohqWfM1mwkrS47GQukqRZZS6SNA7MRZLmk2nXfEqyF/B9wH6t4JN26vHAk6a7tqruBu5uj7+R5FbgIOBU4NjWbA3dVsOvb/EL204uVyXZO8mBre26qtrS+rQOOAn48I68UEnz167kIkmaLeYiSePAXCRpPtreguO/AryGLoldy8OJ7evAu2f6JEmW0S2y+XnggFaYoqruTrJ/a3YQcOfAZRtbbKq4pMVjp3NRkkOAC4H/AnwPWFVV72yjKi8GlgF3AC+sqnuTBHgncArwLeBlVXVdu9cK4I3t1m+tqjWz9QIlzQuz8r5IknaRuUjSvDNt8amq3gm8M8krq+qPd+YJknw/8FHgNVX19e5z3fCmw7owTXzr51lJN12PpUuX7kxXJY2pXcxFk1OAr0vyOODaNoLyZXRTgN+W5Gy6KcCv55FTgI+imwJ81MAU4Am6HHRtkrVVde8svERJ88BsvC+SpF1lLpI0H21v5BMAVfXHSX6SboTAHgPxC6e7LsmedIWnD1XVx1r4niQHtlFPBwKbWnwjcMjA5QcDd7X4sVvFrxzSx1XAKoCJiYltilOS5r+dyUVOAZY023b2fZEkzSZzkaT5ZEbFpyQfBJ4MXA882MJFN5VlqmsCXADcWlXvGDi1FlgBvK19/8RA/BVJLqIbbXBfK1BdBvzuwCLjJwBvmEm/JS0sO5OLtrp+GU4BlrSLdjUXSdJsMBdJmk9mVHyim2ZyWBsJMFPHAC8BbkxyfYv9Fl3R6ZIkZwJfAU5v5y6lW2NlA906Ky8HqKotSc4Frmnt3jI58kDSorMzuQiYuynA7bmcBiwtbDudiyRpFpmLJM0bMy0+3US3WO/dM71xVX2O4R/WAI4f0r6As6a412pg9UyfW9KCtcO5COZ2CjA4DVhaBHYqF0nSLDMXSZo3Zlp82g+4JcnVwP2Twap6Xi+9kqThdjgXOQVYUg98XyRpHJiLJM0bMy0+vanPTkjSDL1pJ65xCrCk2famUXdAkjAXSZpHZrrb3d/33RFJ2p6dyUVOAZY023xfJGkcmIskzScz3e3uGzy8sO6jgD2B/6iqx/fVMUnamrlI0jgwF0kaB+YiSfPJTEc+PW7wOMlpwJG99EiSpmAukjQOzEWSxoG5SNJ8stvOXFRVfwUcN8t9kaQdYi6SNA7MRZLGgblI0jib6bS7Fwwc7gZM8PAQT0maE+YiSePAXCRpHJiLJM0nM93t7mcHHj8A3AGcOuu9kaTpmYskjQNzkaRxYC6SNG/MdM2nl/fdEUnaHnORpHFgLpI0DsxFkuaTGa35lOTgJB9PsinJPUk+muTgvjsnSYPMRZLGgblI0jgwF0maT2a64Pj7gbXAk4CDgL9uMUmaS+YiSePAXCRpHJiLJM0bMy0+Lamq91fVA+3rA8CSHvslScOYiySNA3ORpHFgLpI0b8y0+PTvSX4pye7t65eAr/bZMUkawlwkaRyYiySNg53KRUn2SnJ1ki8kuTnJm1v80CSfT3JbkouTPKrFH92ON7Tzywbu9YYW/1KSE3t6nZIWgJkWn/478ELgfwN3Az8PuMCdpLlmLpI0DsxFksbBzuai+4HjquqZwOHASUmOBn4POL+qlgP3Ame29mcC91bVDwHnt3YkOQw4A3gacBLwp0l2n6XXJmmBmWnx6VxgRVUtqar96RLdm3rrlSQNZy6SNA7MRZLGwU7loup8sx3u2b4KOA74SIuvAU5rj09tx7TzxydJi19UVfdX1ZeBDcCRu/yqJC1IMy0+PaOq7p08qKotwBH9dEmSpmQukjQOzEWSxsFO56I2Te96YBOwDvgX4GtV9UBrspFuEXPa9zvbczwA3Ac8cTA+5BpJeoSZFp92S7LP5EGSfYE9+umSJE3JXCRpHJiLJI2Dnc5FVfVgVR0OHEw3Wumpw5pN3nqKc1PFHyHJyiTrk6zfvHnzTLonaQGa6RultwP/kOQjdAnlhcB5vfVKkoYzF0kaB+YiSeNgl3NRVX0tyZXA0cDeSfZoo5sOBu5qzTYChwAbk+wBPAHYMhCfNHjN4HOsAlYBTExMbFOckrQ4zGjkU1VdCPwccA+wGXhBVX2wz45J0tbMRZLGgblI0jjY2VyUZEmSvdvjxwDPAW4FPkO3aDnACuAT7fHadkw7/+mqqhY/o+2GdyiwHLh6Nl6bpIVnxkPEq+oW4JYe+yJJ22UukjQOzEWSxsFO5qIDgTVtZ7rdgEuq6pNJbgEuSvJW4J+AC1r7C4APJtlAN+LpjPbcNye5pD3/A8BZVfXgLr8oSQuS6xNIkiRJ0iJRVTcwZGHyqrqdIbvVVdV3gNOnuNd5OO1Y0gzMdMFxSZIkSZIkaYdZfJIkSZIkSVJveis+JVmdZFOSmwZib0ryb0mub1+nDJx7Q5INSb6U5MSB+EkttiHJ2X31V5IkSZIkSbOvz5FPHwBOGhI/v6oOb1+XAiQ5jG7huqe1a/40ye5tEbx3AycDhwEvbm0lSZIkSZI0D/RWfKqqz9LthjATpwIXVdX9VfVlYAPdYndHAhuq6vaq+i5wUWsrSTPiKExJkiRJGq1R7Hb3iiQvBdYDv15V9wIHAVcNtNnYYgB3bhU/ak56KWmh+ADwJ8CFW8XPr6o/HAxsNQrzScDfJXlKO/1u4Ll0eeiaJGvb9saSJM07J/3OxaPuwqL3qXNfNOouSNKcmesFx98DPBk4HLgbeHuLZ0jbmia+jSQrk6xPsn7z5s2z0VdJC4CjMCWNgySHJPlMkluT3Jzk1S2+b5J1SW5r3/dp8SR5VxtteUOSZw3ca0Vrf1uSFaN6TZIkSTM1p8Wnqrqnqh6squ8B76X7QAfdSIJDBpoeDNw1TXzYvVdV1URVTSxZsmT2Oy9poXlF+0C3evLDHt2Iy61HWx40TVySZuoBuhHfTwWOBs5qoy3PBq6oquXAFe0YuvUul7evlXR/wCPJvsA5dCPBjwTOGchhkiRJY2lOi09JDhw4fD4wuQbLWuCMJI9OcijdG62rgWuA5UkOTfIouukwa+eyz5IWpN5GYYIjMSVtq6rurqrr2uNvALfSFbFPBda0ZmuA09rjU4ELq3MVsHd7H3UisK6qtrSlC9YxfIMXSZKksdHbmk9JPgwcC+yXZCPdX+mOTXI43Ye2O4BfAaiqm5NcAtxC95fBs6rqwXafVwCXAbsDq6vq5r76LGlxqKp7Jh8neS/wyXY43WjLGY3CbPdfBawCmJiYmLJIJWlxSrIMOAL4PHBAVd0NXYEqyf6tmSMxJUnSgtFb8amqXjwkfME07c8DzhsSvxS4dBa7JmmRS3Lg5Ic9th2F+RdJ3kG34PjkKMzQRmEC/0Y3CvMX5rbXkhaCJN8PfBR4TVV9PRk2sLJrOiS2w+th0k3ZY+nSpTveWUmSpFkyit3uJGnOOApT0rhIsidd4elDVfWxFr5nsiDeptVtavHp1sM8dqv4lcOez1GYkiRpXFh8krSgOQpT0jhIN8TpAuDWqnrHwKm1wArgbe37Jwbir0hyEd3i4ve1AtVlwO8OLDJ+AvCGuXgNkiRJO8vikyRJUv+OAV4C3Jjk+hb7Lbqi0yVJzgS+Apzezl0KnAJsAL4FvBygqrYkOZduUxaAt1TVlrl5CZIkSTvH4pMkSVLPqupzDF+vCeD4Ie0LOGuKe60GVs9e7yRJkvq126g7IEmSJEmSpIXL4pMkSZIkSZJ6Y/FJkiRJkiRJvbH4JEmSJEmSpN5YfJIkSZIkSVJvLD5JkiRJkiSpNxafJEmSJEmS1BuLT5IkSZIkSeqNxSdJkiRJkiT1xuKTJEmSJEmSemPxSZIkSZIkSb2x+CRJkiRJi0CSQ5J8JsmtSW5O8uoW3zfJuiS3te/7tHiSvCvJhiQ3JHnWwL1WtPa3JVkxqtckaX6w+CRJkiRJi8MDwK9X1VOBo4GzkhwGnA1cUVXLgSvaMcDJwPL2tRJ4D3TFKuAc4CjgSOCcyYKVJA1j8UmSJEmSFoGquruqrmuPvwHcChwEnAqsac3WAKe1x6cCF1bnKmDvJAcCJwLrqmpLVd0LrANOmsOXImmesfgkSZIkSYtMkmXAEcDngQOq6m7oClTA/q3ZQcCdA5dtbLGp4pI0lMUnSZIkSVpEknw/8FHgNVX19emaDonVNPFhz7Uyyfok6zdv3rzjnZW0IFh8kiRJkqRFIsmedIWnD1XVx1r4njadjvZ9U4tvBA4ZuPxg4K5p4tuoqlVVNVFVE0uWLJm9FyJpXrH4JEmSJEmLQJIAFwC3VtU7Bk6tBSZ3rFsBfGIg/tK2693RwH1tWt5lwAlJ9mkLjZ/QYpI01B6j7oAkSZIkaU4cA7wEuDHJ9S32W8DbgEuSnAl8BTi9nbsUOAXYAHwLeDlAVW1Jci5wTWv3lqraMjcvQdJ81FvxKclq4GeATVX19BbbF7gYWAbcAbywqu5tFfh30iW2bwEvm9yFIckK4I3ttm+tqjVIkiRJknZIVX2O4es1ARw/pH0BZ01xr9XA6tnrnaSFrM9pdx9g2+02zwauqKrlwBXtGOBkYHn7Wgm8Bx4qVp0DHAUcCZzThnVK0owlWZ1kU5KbBmL7JlmX5Lb2fZ8WT5J3JdmQ5IYkzxq4ZkVrf1srjEuSJEmStqO34lNVfRbYeujlqcDkyKU1wGkD8QurcxWwd1vo7kRgXVVtqap7gXVsW9CSpO35ABbDJUmSJGkk5nrB8QPaAnW07/u3+EHAnQPtNrbYVHFJmjGL4ZIkSZI0OuOy292wecc1TXzbGyQrk6xPsn7z5s2z2jlJC5LFcEmSJEmaA3NdfLoZdER1AAAgAElEQVSnjSCgfd/U4huBQwbaHQzcNU18G1W1qqomqmpiyZIls95xSYuGxXBJkiRJmkVzXXxaC0wu0rsC+MRA/KVtod+jgfvaSITLgBOS7NPWVjmhxSRpV1kMlyRJkqQ50FvxKcmHgX8EfjjJxiRnAm8DnpvkNuC57RjgUuB2YAPwXuB/AFTVFuBc4Jr29ZYWk6RdZTFckiRJkubAHn3duKpePMWp44e0LeCsKe6zGlg9i12TtMi0YvixwH5JNtLtWvc24JJWGP8KcHprfilwCl0x/FvAy6ErhieZLIaDxXBJkiRJmpHeik+SNC4shkuSJEnS6IzLbneSJEmSJElagCw+SZIkSZIkqTcWnyRJkiRJktQbi0+SJEmSJEnqjcUnSZIkSZIk9cbikyRJkiRJknpj8UmSJEmSJEm9sfgkSZI0B5KsTrIpyU0DsX2TrEtyW/u+T4snybuSbEhyQ5JnDVyzorW/LcmKUbwWSZKkHWHxSZIkaW58ADhpq9jZwBVVtRy4oh0DnAwsb18rgfdAV6wCzgGOAo4EzpksWEmSJI0ri0+SJElzoKo+C2zZKnwqsKY9XgOcNhC/sDpXAXsnORA4EVhXVVuq6l5gHdsWtCRJksaKxSdJkqTROaCq7gZo3/dv8YOAOwfabWyxqeKSJEljy+KTJEnS+MmQWE0T3/YGycok65Os37x586x2TpIkaUdYfJIkSRqde9p0Otr3TS2+EThkoN3BwF3TxLdRVauqaqKqJpYsWTLrHZckSZopi0+SJEmjsxaY3LFuBfCJgfhL2653RwP3tWl5lwEnJNmnLTR+QotJkiSNrT1G3QFJkqTFIMmHgWOB/ZJspNu17m3AJUnOBL4CnN6aXwqcAmwAvgW8HKCqtiQ5F7imtXtLVW29iLkkSdJYsfgkSZI0B6rqxVOcOn5I2wLOmuI+q4HVs9g1SZKkXjntTpIkSZIkSb2x+CRJkiRJkqTeWHySJEmSpEUiyeokm5LcNBDbN8m6JLe17/u0eJK8K8mGJDckedbANSta+9uSrBj2XJI0yeKTJEmSJC0eHwBO2ip2NnBFVS0HrmjHACcDy9vXSuA90BWr6DZNOAo4EjhnsmAlScNYfJIkSZKkRaKqPgtsvUvmqcCa9ngNcNpA/MLqXAXsneRA4ERgXVVtqap7gXVsW9CSpIeMpPiU5I4kNya5Psn6FtvhoZ6SJEmSpF12QFXdDdC+79/iBwF3DrTb2GJTxSVpqFGOfHp2VR1eVRPteIeGekrSbLAYLkmSNKUMidU08W1vkKxMsj7J+s2bN89q5yTNH+M07W5Hh3pK0myxGC5JkhazeyY/Y7Xvm1p8I3DIQLuDgbumiW+jqlZV1URVTSxZsmTWOy5pfhhV8amAy5Ncm2Rli+3oUE9J6ovFcEmStJisBSZ3rFsBfGIg/tI2+vto4L72We0y4IQk+7QR4ie0mCQNtceInveYqroryf7AuiRfnKbtjIZ0tiLWSoClS5fOTi8lLQaTxfAC/ryqVrFVMbzlKpi6GH73XHZYkiRpZyX5MHAssF+SjXS71r0NuCTJmcBXgNNb80uBU4ANwLeAlwNU1ZYk5wLXtHZvqaqtFzGXpIeMpPhUVXe175uSfJxue857khzYPujNZKjn1vdcBawCmJiYGDrfWJKGsBguSZIWjap68RSnjh/StoCzprjPamD1LHZN0gI259Pukjw2yeMmH9MN0byJHR/qKUm7bLAYDjyiGA4zXvdg63u6toEkSZIkNaNY8+kA4HNJvgBcDfxNVX2Kbqjnc5PcBjy3HUM31PN2uqGe7wX+x9x3WdJCZDFckiRJkvo359Puqup24JlD4l9lB4d6StIuOgD4eBLo8uFfVNWnklzDDqx7IEmSJEma2qgWHJekkbMYLkmSJEn9G8W0O0mSJEmSJC0SFp8kSZIkSZLUG6fdSZIkSZLGzvqJI0fdhUVvYv3Vo+6CFghHPkmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6o3FJ0mSJEmSJPXG4pMkSZIkSZJ6Y/FJkiRJkiRJvbH4JEmSJEmSpN5YfJIkSZIkSVJvLD5JkiRJkiSpNxafJEmSJEmS1BuLT5IkSZIkSeqNxSdJkiRJkiT1xuKTJEmSJEmSemPxSZIkSZIkSb2x+CRJkiRJkqTeWHySJEmSJElSbyw+SZIkSZIkqTcWnyRJkiRJktQbi0+SJEmSJEnqzbwpPiU5KcmXkmxIcvao+yNpcTIXSRoH5iJJ48BcJGmm5kXxKcnuwLuBk4HDgBcnOWy0vZK02JiLJI0Dc5GkcWAukrQj5kXxCTgS2FBVt1fVd4GLgFNH3CdJi4+5SNI4MBdJGgfmIkkzNl+KTwcBdw4cb2wxSZpL5iJJ48BcJGkcmIskzdgeo+7ADGVIrB7RIFkJrGyH30zypd57NV72A/591J3YJRn2Y9aAef8zzlvP2NFLfqCPfuyC7eYiWPT5aN7/npqLZmRe/5zNRYvCvP4dBcxFMzOvf87mokVhXv+OAuaimZnXP+e5ykXzpfi0EThk4Phg4K7BBlW1Clg1l50aJ0nWV9XEqPuh/vgzHgvbzUWwuPORv6eLgz/nkTMXbYe/o4uDP+eRMxdth7+ji4M/55mZL9PurgGWJzk0yaOAM4C1I+6TpMXHXCRpHJiLJI0Dc5GkGZsXI5+q6oEkrwAuA3YHVlfVzSPulqRFxlwkaRyYiySNA3ORpB0xL4pPAFV1KXDpqPsxxhblUNZFxp/xGDAXbZe/p4uDP+cRMxdtl7+ji4M/5xEzF22Xv6OLgz/nGUjVNmvCSZIkSZIkSbNivqz5JEmSJEmSpHnI4tMYSPJgkusHvpb1+FwvS/Infd1fOy5JJfngwPEeSTYn+eR2rjt2e22k2ZTO55KcPBB7YZJPjbJf6k/LT28fOP6NJG8aYZekbfh7ujD5b47mG3PRwmQumj0Wn8bDt6vq8IGvO0bdIc2p/wCenuQx7fi5wL+NsD/SUNXN0/5V4B1J9kryWOA84KzR9kw9uh94QZL9Rt0RaRr+ni5A/pujechctACZi2aPxacxlWT3JH+Q5JokNyT5lRY/NsnfJ7kkyT8neVuSX0xydZIbkzy5tfvZJJ9P8k9J/i7JAUOeY0mSj7bnuCbJMXP9OvWQvwV+uj1+MfDhyRNJjkzyD+1n+Q9Jfnjri5M8Nsnq9nP8pySnzlG/tchU1U3AXwOvB84BLqyqf0myouWh65P8aZLd2ii+D7bcdFOSV42299oJD9Atovk/tz6R5AeSXNH+jboiydK5754E+Hu6YPlvjuYZc9ECZS6aHRafxsNj8vCUu4+32JnAfVX148CPA7+c5NB27pnAq4EfBV4CPKWqjgTeB7yytfkccHRVHQFcBLxuyPO+Ezi/PcfPtes1GhcBZyTZC3gG8PmBc18Efqr9LP8X8LtDrv9t4NPtZ/ls4A9aVV7qw5uBXwBOBn4/ydOB5wM/WVWH0+2kegbwY8B+VfWjVfV04MJRdVi75N3ALyZ5wlbxP6F78/UM4EPAu+a8Z9LD/D1duPw3R/OJuWjhMhftoj1G3QEBbdrdVrETgGck+fl2/ARgOfBd4Jqquhsgyb8Al7c2N9IVHgAOBi5OciDwKODLQ573OcBhSSaPH5/kcVX1jVl4TdoBVXVDurW+Xsy229U+AViTZDlQwJ5DbnEC8Lwkv9GO9wKWArf20mEtalX1H0kuBr5ZVfcneQ5dkXx9yyePAe4ELgN+OMk76X6vL5/qnhpfVfX1JBcCrwK+PXDqJ4AXtMcfBH5/rvsmTfL3dOHy3xzNJ+aihctctOssPo2vAK+sqsseEUyOpZtPPOl7A8ff4+Gf6R8D76iqte2aNw15jt2An6iqbw85p7m3FvhD4FjgiQPxc4HPVNXzW4HqyiHXBvi5qvpSv12UHvK99gXd79/qqvqdrRsleQbdX4heRTfCcuWc9VCz6Y+A64D3T9Om5qgv0lT8PV24/DdH84m5aOEyF+0Cp92Nr8uAX0uyJ0CSp+zgNKon8PCi1SumaHM58IrJgyRbj77S3FoNvKWqbtwqPvizfNkU114GvDKt7J7kiF56KA33d8AL0xbYTPLEJEuTLAFSVX9JNz/+WaPspHZeVW0BLqGbEj7pH+iGlwP8It10b2lk/D1dNPw3R2PNXLRomIt2kCOfxtf7gGXAda2gsBk4bQeufxPwl0n+DbgKOHRIm1cB705yA93vwmfpVvLXCFTVRrp1uLb2+3TT7l4LfHqKy8+l+yvLDe335Q7gZ/rop7S1qroxyZuBv0uyG/CfdLnkQeCC9jtZdIs0av56OwN/sKD7N2R1kt+k+zfq5SPplfRI/p4ucP6bo3nCXLTAmYt2XLqdAyVJkiRJkqTZ57Q7SZIkSZIk9cbikyRJkiRJknpj8UmSJEmSJEm9sfgkSZIkSZKk3lh8kiRJkiRJUm8sPmkkkhyQ5C+S3J7k2iT/mOT5s3DfY5N8cjb6KGnhS/JgkuuT3JTkL5N83w5e/5odvUbSwjeQW25O8oUkr21bcY+qP3ck2W8nrz0tyWGz3SdJs2/Y+5oky5Lc1PPz7pbkXe15b0xyTZJDZ+ne7zMHLQwWnzTnkgT4K+CzVfWDVfVjwBnAwSPoyx5z/ZySxsq3q+rwqno68F3gV2d6YZLdgdcAs1J8Mh9JC8pkbnka8FzgFOCcEfdpZ50G+MFPmh92+n3NLnoR8CTgGVX1o8Dzga/N9OL2nmqoqvq/q+qWXe+iRs3ik0bhOOC7VfVnk4Gq+teq+uMkuyf5g1YtvyHJr8BDI5quTPKRJF9M8qFWxCLJSS32OeAFk/dM8tgkq9u9/inJqS3+svaXgL8GLp/TVy5pnP1/wA8BJPmrNirz5iQrJxsk+WaStyT5PPDbdG+0PpPkMwPnz2sjHa5KckCLL0ny0ZaPrklyTIu/KcmqJJcDF87x65U0B6pqE7ASeEU6073X+WySjye5JcmfTY6WSnJCGyV+XXsP8/0tfkeSN7f4jUl+pMWfmOTy9v7nz4FM9ifJLyW5uo2O+PPJD33D8leSnwSeB/xBa//kJK9q/bshyUVz+h9T0o546H0NsHuS97b3NZcneQxAksPb/+83tNyzT4tfmeT3Wq745yT/rcWH5i/gQODuqvoeQFVtrKp72zXT5a//1T7DvS7J1ZMdTzda64aBvky0xye1+3whyRUtNvQzn8aPxSeNwtOA66Y4dyZwX1X9OPDjwC/n4SGbR9CNMjgM+EHgmCR7Ae8Ffhb4b8B/GbjXbwOfbvd6Nt0bp8e2cz8BrKiq42bvZUmar9KNOjoZuLGF/nsblTkBvCrJE1v8scBNVXVUVb0FuAt4dlU9e+D8VVX1TOCzwC+3+DuB81s++jngfQNP/2PAqVX1Cz29PEkjVlW3073v3p/p3+scCfw68KPAk4EXpJsu90bgOVX1LGA98NqB2/97i78H+I0WOwf4XFUdAawFlgIkeSrdCIVjqupw4EHgF9s12+SvqvqHdv1vttEU/wKcDRxRVc9g7kZVSNoBQ97XLAfe3UZjfo3uvQh0f/h6ffv/+UYeOUJzj6o6ku7z12R8qvx1CfCzrUj99iRHtH5sL399p6r+a1X9P8Cjkvxgi7+o3XPwNS2h+9z3cy1Pnd5OTfeZT2PEIf4auSTvBv4r3dDQfwWekeTn2+kn0CXL7wJXV9XGds31wDLgm8CXq+q2Fv9/6f66CHAC8Lwkk2/E9qK9+QLWVdWWPl+XpHnhMS2fQPcXwgva41fl4XXoDqHLQ1+l+6D20Wnu911gct25a+mm2wA8BzgseWjwweOTPK49XltV396lVyFpPphMACcw/Xud2wGSfJju/dF36P7w9v+3HPIo4B8H7vux9v1aHh4B/lOTj6vqb5Lc2+LH0xW8r2n3egywqZ2bKn9t7QbgQ0n+im4ZBUnjY9j7mifRfV6ajF8LLEvyBGDvqvr7Fl8D/OXAvQZzy7L2eGj+qqrLk/ww3QyX44ArkpxOl2Omy18XDzy+BHgh8Da64tOLtnptR9Mt2/JlgIHPclN95rt16H8hjYzFJ43CzTxcbaeqzmpV8fXAV4BXVtVlgxckORa4fyD0IA///tYUzxO6yviXtrrXUcB/7MoLkLRgfLv99f8hLd88B/iJqvpWkivp3shA9xe6B6e5339W1WROGsxTu7X7PaLI1N6ImY+kBa79Nf9BukJPmPq9ztbvaaq1X1dVL57i9pPvjwZzzuS123QFWFNVbxhybqr8tbWfpituPQ/4nSRPq6oHpmgraW4Ne18D236OeswM7jUstwzNXwBVdT/wt8DfJrmHbr24y5k+fw2+B7oY+MskH+tu1w0uGHwpTJ3XtvnMp/HjtDuNwqeBvZL82kBscsHey4BfS7InQJKnbGfY5BeBQ5M8uR0PJrbLgFcmD60NdcSs9F7SQvcE4N5WePoRur+0TeUbwOOmOT/pcuAVkwdJDp+mraQFpE0V+TPgT1pxZ7r3OkcmOTTdWk8vAj4HXEW31MDkmnTfl+Qp23naz9Km0yU5Gdinxa8Afj7J/u3cvkl+YDv3eijPtX4dUlWfAV4H7A18/0z+O0gaL1V1H3Dv5HpOwEuAv5/mEpgifyV5VpIntdhuwDPoZrTMOH+1ab0PAr/DI0dETfpH4P+anKacZN+BPvmZbx5w5JPmXFVVktOA85O8DthMV/V+Pd1Qz2XAdS2BbKarmk91r++kWwz4b5L8O92btKe30+cCfwTc0O51B/AzvbwoSQvJp4BfbQtdfonujdNUVtH9he/ugXWfhnkV8O52zz3oPhi6Voq0cE1OfdkTeAD4IPCOdu59TP1e5x/pppz8KF2e+HhVfS/Jy4APJ3l0a/dG4J+nef43t/bX0X2Y/ApAVd2S5I3A5e0D4n8CZ9F9SJzKRcB7k7yKbnfiC9p0ndCtZTfjHa0kjZ0VwJ8l+T7gduDl22k/Vf7any5PTOaoq+kK7t/Zwfx1MfAHwKFbn6iqze1z38da/tpENz3Yz3zzRB4eXStJkiRpFNq0u9+oKj80SZIWHKfdSZIkSZIkqTeOfJIkSZIkSVJvHPkkSZIkSZKk3lh8kiRJkiRJUm8sPkmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6o3FJ0mSJEmSJPXG4pMkSZIkSZJ6Y/FJkiRJkiRJvbH4JEmSJEmSpN5YfJIkSZIkSVJvLD5JkiRJkiSpNxafJEmSJEmS1BuLT9L/Ye/uwyyryjvvf382r1EjIK2DDaSJaRPRMY1pkcTJhCACOplgEoxoosTwpM0IMUZjhEwi+MKMGY2MJoqDocPLozYENXYcIkHEOCQK3ZC2oUFCBxhpYaQdXhSjJOA9f+xVcqiuqq7uql3nVNX3c13nOvusvfbea59Tddeq+6y9tiRJkiRJ6o3JJ0mSJEmSJPXG5JMkSZIkSZJ6s1tfO06yF/AFYM92nEur6owk5wM/AzzQqv5aVW1MEuB9wEuAf27l17d9nQT8Qav/zqq6YKpj77///rV8+fJZPiNJc+266677RlUtHXY7ZsJ4JM1/xiJJo8BYJGkU7Gos6i35BDwEHFVVDybZHbg6yV+3dW+uqkvH1X8xsKI9ng+cAzw/yX7AGcAqoIDrkqyrqvsmO/Dy5cvZsGHDLJ+OpLmW5H8Puw0zZTyS5j9jkaRRYCySNAp2NRb1dtlddR5sL3dvj5pik+OBC9t2XwL2SXIAcCxwRVXd2xJOVwDH9dVuSZIkSZIkzZ5e53xKsiTJRuAeugTSNW3VWUk2JTk7yZ6tbBlw58DmW1vZZOWSJEmSJEkacb0mn6rqkapaCRwIHJ7k2cDpwI8BzwP2A97SqmeiXUxR/hhJVifZkGTDtm3bZqX9kiRJkiRJmpk5udtdVd0PfB44rqrubpfWPQT8OXB4q7YVOGhgswOBu6YoH3+Mc6tqVVWtWrp0Xs/DJ0mSJEmStGD0lnxKsjTJPm15b+Bo4CttHifa3e1eCtzYNlkHvDqdI4AHqupu4HLgmCT7JtkXOKaVSZIkSZIkacT1OfLpAOCqJJuA9XRzPn0a+EiSG4AbgP2Bd7b6lwG3AVuADwOvA6iqe4F3tH2sB97eyiRJkuaFJHsluTbJl5NsTvK2Vn5+ktuTbGyPla08Sd6fZEubJ/O5A/s6Kcmt7XHSsM5JkiRpunbra8dVtQk4bILyoyapX8Apk6xbA6yZ1QZKkiTNnYeAo6rqwSS7A1cn+eu27s1Vdem4+i8GVrTH84FzgOcn2Q84A1hFNwfmdUnWtTsCS5IkjaQ5mfNJkiRpMWvzXT7YXu7eHtvdQGXA8cCFbbsvAfu0qQuOpRtNfm9LOF0BHNdn2yVJkmbK5JMkSdIcSLIkyUbgHroE0jVt1Vnt0rqzk+zZypYBdw5svrWVTVYuSZI0snq77E4L23F/ePGwmzB0n3nHy4fdBEkYj4xF80dVPQKsbDdk+WSSZwOnA/8H2AM4F3gL8HYgE+1iivLtJFkNrAY4+OCDp2zbhlWHT7l+oVu14dphN0GSZoX9IvtFo8qRT5IkSXOoqu4HPg8cV1V3t0vrHgL+HBjLAm0FDhrY7EDgrinKJzrOuVW1qqpWLV26dJbPQpIkafpMPkmSJPUsydI24okkewNHA19p8ziRJMBLgRvbJuuAV7e73h0BPFBVdwOXA8ck2TfJvsAxrUySJGlkmXySJEnq3wHAVUk2Aevp5nz6NPCRJDcANwD7A+9s9S8DbgO2AB8GXgdQVfcC72j7WA+8vZVJ0rQk2SvJtUm+nGRzkre18kOSXJPk1iQXJ9mjle/ZXm9p65cP7Ov0Vn5LkmOHc0aS5gPnfJK0oCXZC/gCsCddzLu0qs5IcgiwFtgPuB54VVX9S5vs90LgJ4D/C7y8qu5o+zodOBl4BHh9VTnaQNK0VNUm4LAJyo+apH4Bp0yybg2wZlYbKGkxeQg4qqoeTLI7cHWSvwbeCJxdVWuTfIiuz3NOe76vqn4kyYnAHwEvT3IocCLwLOBpwGeTPKPNbydJj+HIJ0kL3VgH68eBlcBx7RKWP6LrYK0A7qPrWMFABws4u9VjXAfrOOCDSZbM6ZlIkiTNUJtn7sH2cvf2KOAo4NJWfgHdpcAAx7fXtPUvbJcKHw+sraqHqup2upGai/vuBZImZfJJ0oJmB0uSJOmxkixJshG4B7gC+Cfg/qp6uFXZCixry8uAOwHa+geAJw+WT7CNJD2GySdJC95cd7CSrE6yIcmGbdu2zfbpSJIkzUhVPVJVK+numHk48MyJqrXnTLJusvLHsF8kCUw+SVoE5rKD1Y7n7c0lSdLIq6r7gc8DRwD7JBmbE/hA4K62vBU4CKCtfxJw72D5BNsMHsN+kSSTT5IWj7noYEmSJI2yJEuT7NOW9waOBm4GrgJOaNVOAj7Vlte117T1n2s3RVgHnNjuhncIsAK4dm7OQtJ8Y/JJ0oJmB0uSJOkxDgCuSrIJWA9cUVWfBt4CvDHJFropB85r9c8DntzK3wicBlBVm4FLgJuAzwCneKc7SZPZbcdVJGleOwC4oN2Z7nHAJVX16SQ3AWuTvBP4Bx7bwbqodbDupbvDHVW1OclYB+th7GBJkqR5qKo2AYdNUH4bE9xMpaq+C7xskn2dBZw1222UtPCYfJK0oNnBkiRJkqTh8rI7SZIkSZIk9cbkkyRJkiRJknpj8kmSJEmSJEm9MfkkSZIkSZKk3ph8kiRJkiRJUm9MPkmSJEmSJKk3Jp8kSZIkSZLUG5NPkiRJkiRJ6o3JJ0mSJEmSJPWmt+RTkr2SXJvky0k2J3lbKz8kyTVJbk1ycZI9Wvme7fWWtn75wL5Ob+W3JDm2rzZLkiRJkiRpdvU58ukh4Kiq+nFgJXBckiOAPwLOrqoVwH3Aya3+ycB9VfUjwNmtHkkOBU4EngUcB3wwyZIe2y1JkiRJkqRZ0lvyqToPtpe7t0cBRwGXtvILgJe25ePba9r6FyZJK19bVQ9V1e3AFuDwvtotSZIkSZKk2dPrnE9JliTZCNwDXAH8E3B/VT3cqmwFlrXlZcCdAG39A8CTB8sn2EaSJEmSJEkjrNfkU1U9UlUrgQPpRis9c6Jq7TmTrJus/DGSrE6yIcmGbdu27WqTJUmSJEmSNIvm5G53VXU/8HngCGCfJLu1VQcCd7XlrcBBAG39k4B7B8sn2GbwGOdW1aqqWrV06dI+TkOSJEmSJEk7abcdV9k1SZYC/1pV9yfZGziabhLxq4ATgLXAScCn2ibr2usvtvWfq6pKsg74aJL3Ak8DVgDX9tVuaa688qITh92Eofvoq9YOuwmSJEmSpJ71OfLpAOCqJJuA9cAVVfVp4C3AG5NsoZvT6bxW/zzgya38jcBpAFW1GbgEuAn4DHBKVT3SY7slSZJmVZK9klyb5MtJNid5Wys/JMk1SW5NcnGSPVr5nu31lrZ++cC+Tm/ltyQ5djhnJEmSNH29jXyqqk3AYROU38YEd6urqu8CL5tkX2cBZ812GyVJkubIQ8BRVfVgkt2Bq5P8Nd0XbmdX1dokHwJOBs5pz/dV1Y8kOZFu9PjLkxwKnAg8i25E+GeTPMMv5iRJ0iibkzmfJEmSFrPqPNhe7t4eBRwFXNrKLwBe2paPb69p61+YJK18bVU9VFW3A1uY4Es9SZKkUWLySZIkaQ4kWZJkI3APcAXwT8D9VfVwq7IVWNaWlwF3ArT1D9BNV/D98gm2kSRJGkkmnyRJkuZAVT1SVSvp7tx7OPDMiaq150yybrLy7SRZnWRDkg3btm3blSZLkiTNCpNPkiRJc6iq7gc+DxwB7JNkbA7OA4G72vJW4CCAtv5JwL2D5RNsM/4451bVqqpatXTp0tk+DUmSpGkz+SRJktSzJEuT7NOW9waOBm4GrgJOaNVOAj7Vlte117T1n6uqauUntrvhHQKsAK6dm7OQJEnaNb3d7U6SJEnfdwBwQZIldASjTGkAACAASURBVF/+XVJVn05yE7A2yTuBfwDOa/XPAy5KsoVuxNOJAFW1OcklwE3Aw8Ap3ulOkiSNOpNPkiRJPauqTcBhE5TfxgR3q6uq7wIvm2RfZwFnzXYbJUmS+uJld5IkSZIkSeqNySdJkiRJWgSSHJTkqiQ3J9mc5Ldb+ZlJvpZkY3u8ZGCb05NsSXJLkmMHyo9rZVuSnDaM85E0f5h8krSg2cmSJEn6voeBN1XVM+nuuHlKkkPburOramV7XAbQ1p0IPAs4DvhgkiVt/roPAC8GDgVeMbAfSdqOcz5JWujGOlnXJ3kicF2SK9q6s6vqPYOVx3WyngZ8Nskz2uoPAC+iu9X5+iTrquqmOTkLSZKkGaqqu4G72/K3ktwMLJtik+OBtVX1EHB7uwnC2Dx1W9q8dSRZ2+raL5I0IUc+SVrQquruqrq+LX+L7tbm0+pkVdXtwFgn63BaJ6uq/gUY62RJkiTNO0mW090I4ZpWdGqSTUnWJNm3lS0D7hzYbGsrm6xckiZk8knSomEnS5IkCZI8Afg48Iaq+iZwDvB0YCXdyKg/Hqs6weY1RflEx1qdZEOSDdu2bZtx2yXNTyafJC0KdrIkSZIgye50faKPVNUnAKrq61X1SFV9D/gwj15atxU4aGDzA4G7pijfTlWdW1WrqmrV0qVLZ/dkJM0bJp8kLXh2siRJkiBJgPOAm6vqvQPlBwxU+wXgxra8DjgxyZ5JDgFWANcC64EVSQ5JsgfdfJnr5uIcJM1PTjguaUGbqpPVJt2E7TtZH03yXroJx8c6WaF1soCv0XWyXjk3ZyFJkjQrXgC8CrghycZW9vt0d6tbSTeq+w7gtQBVtTnJJXQTiT8MnFJVjwAkORW4HFgCrKmqzXN5IpLmF5NPkhY6O1mSJElAVV3NxFMJXDbFNmcBZ01QftlU20nSIJNPkhY0O1mSJEmSNFwmnyRJkiRJQ7dh1eE7rrTArdpw7bCbIPXC5JMkDdFi72TZwZIkSZIWPu92J0mSJEmSpN6YfJIkSZIkSVJvTD5JkiRJkiSpNyafJEmSJEmS1BuTT5IkSZIkSepNb8mnJAcluSrJzUk2J/ntVn5mkq8l2dgeLxnY5vQkW5LckuTYgfLjWtmWJKf11WZJkiRJkiTNrt163PfDwJuq6vokTwSuS3JFW3d2Vb1nsHKSQ4ETgWcBTwM+m+QZbfUHgBcBW4H1SdZV1U09tl2SJEmSJEmzoLfkU1XdDdzdlr+V5GZg2RSbHA+sraqHgNuTbAEOb+u2VNVtAEnWtromnyRJkiRJkkbcnMz5lGQ5cBhwTSs6NcmmJGuS7NvKlgF3Dmy2tZVNVi5JkiRJkqQR13vyKckTgI8Db6iqbwLnAE8HVtKNjPrjsaoTbF5TlI8/zuokG5Js2LZt26y0XZIkSZIkSTPTa/Ipye50iaePVNUnAKrq61X1SFV9D/gwj15atxU4aGDzA4G7pih/jKo6t6pWVdWqpUuXzv7JSJIk7SJvxCJJkhaz3uZ8ShLgPODmqnrvQPkBbT4ogF8AbmzL64CPJnkv3YTjK4Br6UY+rUhyCPA1uknJX9lXuyVJknrgjVgkSdKi1efd7l4AvAq4IcnGVvb7wCuSrKS7dO4O4LUAVbU5ySV0E4k/DJxSVY8AJDkVuBxYAqypqs09tluSJGlWeSMWSZK0mPV5t7urmXi+psum2OYs4KwJyi+bajtJkqT5YtyNWF5AdyOWVwMb6EZH3UeXmPrSwGaDN1wZfyOW5/fcZEmSpBmZk7vdSZIkae5uxNKO5c1YJEnSSDD5JEmSNAfm8kYsbd/ejEWSJI0Ek0+SJEk9m+pGLAPVxt+I5cQke7abrozdiGU97UYsSfagm5R83VycgyRJ0q7qc8JxSZIkdbwRiyRJWrRMPkmSJPXMG7FIkqTFzMvuJEmSJEmS1BuTT5IkSZIkSeqNySdJkiRJkiT1xuSTJEmSJEmSemPySZIkSZIkSb0x+SRJkiRJkqTemHyStKAlOSjJVUluTrI5yW+38v2SXJHk1va8bytPkvcn2ZJkU5LnDuzrpFb/1iQnDeucJEmSdoX9IknDYvJJ0kL3MPCmqnomcARwSpJDgdOAK6tqBXBlew3wYmBFe6wGzoGuUwacATwfOBw4Y6xjJkmSNE/YL5I0FCafJC1oVXV3VV3flr8F3AwsA44HLmjVLgBe2paPBy6szpeAfZIcABwLXFFV91bVfcAVwHFzeCqSJEkzYr9I0rCYfJK0aCRZDhwGXAM8taruhq4jBjylVVsG3Dmw2dZWNlm5JEnSvGO/SNJcMvkkaVFI8gTg48AbquqbU1WdoKymKJ/oWKuTbEiyYdu2bTvfWEmSpB7ZL5I010w+SVrwkuxO18H6SFV9ohV/vQ0bpz3f08q3AgcNbH4gcNcU5dupqnOralVVrVq6dOnsnYgkSdIM2S+SNAwmnyQtaEkCnAfcXFXvHVi1Dhi7M8tJwKcGyl/d7u5yBPBAG35+OXBMkn3bhJrHtDJJkqR5wX6RpGHZbdgNkKSevQB4FXBDko2t7PeBdwGXJDkZ+CrwsrbuMuAlwBbgn4HXAFTVvUneAaxv9d5eVffOzSlIkiTNCvtFkobC5JOkBa2qrmbieQkAXjhB/QJOmWRfa4A1s9c6SZKkuWO/SNKweNmdJEmSJEmSemPySZIkSZIkSb0x+SRJkiRJkqTemHySJEmSJElSb3pLPiU5KMlVSW5OsjnJb7fy/ZJckeTW9rxvK0+S9yfZkmRTkucO7OukVv/WJCdNdkxJkiRJkiSNlj5HPj0MvKmqngkcAZyS5FDgNODKqloBXNleA7wYWNEeq4FzoEtWAWcAzwcOB84YS1hJkiRJkiRptPWWfKqqu6vq+rb8LeBmYBlwPHBBq3YB8NK2fDxwYXW+BOyT5ADgWOCKqrq3qu4DrgCO66vdkiRJkiRJmj1zMudTkuXAYcA1wFOr6m7oElTAU1q1ZcCdA5ttbWWTlUuSJEmSJGnE9Z58SvIE4OPAG6rqm1NVnaCspigff5zVSTYk2bBt27Zda6wkSVIPnAtTkiQtZr0mn5LsTpd4+khVfaIVf71dTkd7vqeVbwUOGtj8QOCuKcofo6rOrapVVbVq6dKls3sikiRJM+NcmJIkadHq8253Ac4Dbq6q9w6sWgeMfUt3EvCpgfJXt2/6jgAeaJflXQ4ck2Tf1rk6ppVJkiTNC86FKUmSFrPdplMpyZVV9cIdlY3zAuBVwA1JNray3wfeBVyS5GTgq8DL2rrLgJcAW4B/Bl4DUFX3JnkHsL7Ve3tV3TuddktaWHYxFknSrJppLJpqLswkzoU5Tx33hxcPuwlD9Zl3vHzYTVh07BdJmk+mTD4l2Qv4AWD/NupobP6lHwSeNtW2VXU1E8/XBLBdQKyqAk6ZZF9rgDVTHU/SwjWTWCRJs2U2YtH4uTC7geITV52gbNpzYbZjraa7ZI+DDz54Os2TNA/YL5I0H+1o5NNrgTfQBbHreDSwfRP4QI/tkqRBxiJJo2BGsWiquTDbqKfpzoV55Ljyz090vKo6FzgXYNWqVRMmqCTNS/aLJM07Uyafqup9wPuS/FZV/ckctUmSHsNYJGkUzCQWTWMuzHex/VyYpyZZSze5+AMtQXU58F8GJhk/Bjh9l09K0rxjv0jSfDStOZ+q6k+S/BSwfHCbqrqwp3ZJ0naMRZJGwS7GIufClDSr7BdJmk+mO+H4RcDTgY3AI624AAObpDljLJI0CnYlFjkXpqTZZr9I0nwyreQTsAo4tHWEJGlYjEWSRoGxSNIoMBZJmjceN816NwL/ps+GSNI0GIskjQJjkaRRYCySNG9Md+TT/sBNSa4FHhorrKqf76VVkjQxY5GkUWAskjQKjEWS5o3pJp/O7LMRkjRNZw67AZKEsUjSaDhz2A2QpOma7t3u/rbvhkjSjhiLJI0CY5GkUWAskjSfTPdud9+iu3MCwB7A7sC3q+oH+2qYJI1nLJI0CoxFkkaBsUjSfDLdkU9PHHyd5KXA4b20SJImYSySNAqMRZJGgbFI0nwy3bvdPUZV/SVw1Cy3RZJ2irFI0igwFkkaBcYiSaNsupfd/eLAy8cBq3h0iKckzQljkaRRYCySNAqMRZLmk+ne7e4/Diw/DNwBHD/rrZGkqRmLJI0CY5GkUWAskjRvTHfOp9f03RBJ2hFjkaRRYCySNAp2NRYlWQP8HHBPVT27lZ0J/AawrVX7/aq6rK07HTgZeAR4fVVd3sqPA94HLAH+rKretetnI2mhm9acT0kOTPLJJPck+XqSjyc5sO/GSdKgXYlFSda0+jcOlJ2Z5GtJNrbHSwbWnZ5kS5Jbkhw7UH5cK9uS5LR+zlDSfGC/SNIomEEsOh84boLys6tqZXuMJZ4OBU4EntW2+WCSJUmWAB8AXgwcCryi1ZWkCU33srs/Bz4KvKy9/tVW9qI+GiVJk9iVWHQ+8KfAhePKz66q9wwWjOtgPQ34bJJntNUfaMfZCqxPsq6qbtr1U5E0j9kvkjQKdikWVdUXkiyf5jGOB9ZW1UPA7Um28Ogd9bZU1W0ASda2uvaNNO+98qITh92Eofroq9b2st/pJp+WVtWfD7w+P8kb+miQJE1hp2ORHSxpaou9gwW71MmyXyRpFMx2LDo1yauBDcCbquo+YBnwpYE6W1sZwJ3jyp8/g2NLWuCmddkd8I0kvzo2xDLJrwL/t8+GSdIEZjMWnZpkU7ssb99WtoztO1LLpiiXtDjZL5I0CmYzFp0DPB1YCdwN/HErzwR1a4ry7SRZnWRDkg3btm2bqIqkRWC6yadfB34Z+D90wegEwMk2Jc212YpFvXWwwE6WtAjYL5I0CmYtFlXV16vqkar6HvBhHh35vRU4aKDqgcBdU5RPtO9zq2pVVa1aunTprjRP0gIw3eTTO4CTqmppVT2FLtCd2VurJGlisxKL+uxgtf3byZIWNvtFkkbBrMWiJAcMvPwFYOxGLeuAE5PsmeQQYAVwLbAeWJHkkCR70M2ZuW7XTkPSYjDdOZ+e0675BaCq7k1yWE9tkqTJzEosSnJAVd3dXo7vYH00yXvpJhwf62CF1sECvkbXwXrlrp+GpHnOfpGkUbBLsSjJx4Ajgf2TbAXOAI5MspJuZPcdwGvbPjcnuYRunsuHgVOq6pG2n1OBy4ElwJqq2jyL5yZpgZlu8ulxSfYdC25J9tuJbSVptux0LLKDJakH9oskjYJdikVV9YoJis+bov5ZwFkTlF8GXDb95kpazKbbUfpj4O+TXEr3z9ovM0EAkqSe7XQssoMlqQf2iySNAmORpHljWnM+VdWFwC8BXwe2Ab9YVRdNtU27g9Q9SW4cKDszydeSbGyPlwysOz3JliS3JDl2oPy4VrYlyWk7e4KSFo5diUWSNNuMRZJGgbFI0nwy7SHiVXUT3aUo03U+8KfAhePKz66q9wwWJDmUbg6VZ9HNs/LZJM9oqz8AvIhuwt/1Sda1tkhahHYhFknSrDMWSRoFxiJJ80Vv8xNU1ReSLJ9m9eOBtVX1EHB7ki08evepLVV1G0CSta2uAVaSJEmSJGkemNZld7Ps1CSb2mV5+7ayZcCdA3W2trLJyiVJkuYVpySQJEmL1Vwnn84Bng6sBO6mmyQPutuYj1dTlG8nyeokG5Js2LZt22y0VZIkaTadDxw3QfnZVbWyPS6D7aYkOA74YJIlSZbQTUnwYuBQ4BWtriRJ0sia09sCV9XXx5aTfBj4dHu5FThooOqBwF1tebLy8fs+FzgXYNWqVRMmqCRJkobFKQmkqb3yohOH3YSh+uir1g67CZLUmzkd+ZTkgIGXvwCMDTtfB5yYZM8khwArgGuB9cCKJIck2YPuG8B1c9lmSZKknjklgSRJWtB6Sz4l+RjwReBHk2xNcjLw35LckGQT8LPA7wBU1WbgErpv7T4DnFJVj1TVw8CpwOXAzcAlra4kSdJC4JQEkiRpwevzbnevmKD4vCnqnwWcNUH5ZcBls9g0SZKkkeCUBJIkaTEYxt3uJEmShFMSSJKkxWFOJxyXJElarNqUBEcC+yfZCpwBHJlkJd2lc3cAr4VuSoIkY1MSPEybkqDtZ2xKgiXAGqckkCRJo87kkyRJ0hxwSgJJkrRYedmdJEmSJEmSemPySZIkSZIkSb0x+SRJkiRJkqTemHySJEmSJElSb0w+SZIkSZIkqTcmnyRJkiRJktQbk0+SJEmSJEnqjcknSZIkSZIk9cbkkyRJkiRJknpj8kmSJEmSJEm9MfkkSZIkSZKk3ph8kiRJkiRJUm9MPkmSJEmSJKk3Jp8kSZIkSZLUG5NPkiRJkiRJ6o3JJ0kLXpI1Se5JcuNA2X5Jrkhya3vet5UnyfuTbEmyKclzB7Y5qdW/NclJwzgXSZKkmbBfJGkYTD5JWgzOB44bV3YacGVVrQCubK8BXgysaI/VwDnQdcqAM4DnA4cDZ4x1zCRJkuaR87FfJGmOmXyStOBV1ReAe8cVHw9c0JYvAF46UH5hdb4E7JPkAOBY4Iqqureq7gOuYPuOmyRJ0kizXyRpGEw+SVqsnlpVdwO056e08mXAnQP1trayycolSZLmO/tFknpl8kmSHisTlNUU5dvvIFmdZEOSDdu2bZvVxkmSJM0h+0WSZoXJJ0mL1dfbsHHa8z2tfCtw0EC9A4G7pijfTlWdW1WrqmrV0qVLZ73hkiRJs8x+kaRe9ZZ88i4KkkbcOmAsppwEfGqg/NUtLh0BPNCGn18OHJNk3xa7jmllkiRJ8539Ikm96nPk0/l4FwVJIyDJx4AvAj+aZGuSk4F3AS9KcivwovYa4DLgNmAL8GHgdQBVdS/wDmB9e7y9lUmSJM0b9oskDcNufe24qr6QZPm44uOBI9vyBcDngbcwcBcF4EtJxu6icCTtLgoAScbuovCxvtotaeGpqldMsuqFE9Qt4JRJ9rMGWDOLTZO0iCRZA/wccE9VPbuV7QdcDCwH7gB+uaruSxLgfcBLgH8Gfq2qrm/bnAT8QdvtO6vqAiRpmuwXSRqGuZ7zybsoSJKkxep8HBUuSZIWoVGZcNy7KEiSpAWtqr4AjL8s5Xi60eC055cOlF9YnS8BY6PCj6WNCq+q+4CxUeGSJEkja66TT95FQZIk6VGOCpckSQveXCefvIuCJEnSjjkqXJIkLRi9JZ+8i4IkSdIOOSpckiQteH3e7c67KEiSJE1tbFT4u9h+VPipSdbSTS7+QFXdneRy4L8MTDJ+DHD6HLdZkiRpp/SWfJIkSdKj2qjwI4H9k2ylu2vdu4BL2gjxrwIva9UvA15CNyr8n4HXQDcqPMnYqHBwVLgkSZoHTD5JkiTNAUeFS5KkxWquJxyXJEmSJEnSImLySZIkSZIkSb0x+SRJkiRJkqTemHySJEmSJElSb0w+SZIkSZIkqTcmnyRJkiRJktQbk0+SJEmSJEnqjcknSZIkSZIk9cbkkyRJkiRJknpj8kmSJEmSJEm9MfkkSZIkSZKk3ph8kiRJkiRJUm9MPkmSJEmSJKk3Jp8kSZIkSZLUm92G3YBh2bDq8GE3YahWbbh22E2QJEmSJEmLgCOfJEmSJEmS1BuTT5IkSZIkSeqNySdJkiRJkiT1xuSTJEmSJEmSemPySdKiluSOJDck2ZhkQyvbL8kVSW5tz/u28iR5f5ItSTYlee5wWy9JkjR77BdJ6ovJJ0mCn62qlVW1qr0+DbiyqlYAV7bXAC8GVrTHauCcOW+pJElSv+wXSZp1Jp8kaXvHAxe05QuAlw6UX1idLwH7JDlgGA2UJEmaI/aLJM3YUJJPDueUNEIK+Jsk1yVZ3cqeWlV3A7Tnp7TyZcCdA9tubWWSJEkLgf0iSb0Y5sgnh3NKGgUvqKrn0sWaU5L8+ynqZoKy2q5SsjrJhiQbtm3bNlvtlLSA+cWcpBFhv0hSL0bpsjuHc0qac1V1V3u+B/gkcDjw9bE4057vadW3AgcNbH4gcNcE+zy3qlZV1aqlS5f22XxJC4tfzEkaKvtFkvoyrOSTwzklDV2Sxyd54tgycAxwI7AOOKlVOwn4VFteB7y6jTo4AnhgLG5JUg/8Yk7SnLFfJKlPuw3puC+oqruSPAW4IslXpqg77eGcdN/+cfDBB89OKyUtdE8FPpkEunj40ar6TJL1wCVJTga+Crys1b8MeAmwBfhn4DVz32RJC9TYF3MF/I+qOpdxX8y1fhNM/sWc//RJmgn7RZJ6M5Tk0+BwziSPGc7ZOle7NJwTOBdg1apV2yWnJGm8qroN+PEJyv8v8MIJygs4ZQ6aJmnx8Ys5SUNlv0hSn+b8sjuHc0qSJD2W86xIkqSFbBhzPj0VuDrJl4Frgf9ZVZ8B3gW8KMmtwIvaa+iGc95GN5zzw8Dr5r7JkiRJ/fCLOUmStNDN+WV3DueUJEl6DOdZkSRJC9qwJhyXJEkSfjEnSZIWvmFcdidJkiRJkqRFwuSTJEmSJEmSemPySZIkSZIkSb0x+SRJkiRJkqTemHySJEmSJElSb0w+SZIkSZIkqTcmnyRJkiRJktQbk0+SJEmSJEnqjcknSZIkSZIk9cbkkyRJkiRJknpj8kmSJEmSJEm9MfkkSZIkSZKk3ph8kiRJkiRJUm9MPkmSJEmSJKk3Jp8kSZIkSZLUG5NPkiRJkiRJ6o3JJ0mSJEmSJPXG5JMkSZIkSZJ6Y/JJkiRJkiRJvTH5JEmSJEmSpN6YfJIkSZIkSVJvTD5JkiRJkiSpNyafJEmSJEmS1BuTT5IkSZIkSerNvEk+JTkuyS1JtiQ5bdjtkbQ4GYskjQJjkaRRYCySNF3zIvmUZAnwAeDFwKHAK5IcOtxWSVpsjEWSRoGxSNIoMBZJ2hnzIvkEHA5sqarbqupfgLXA8UNuk6TFx1gkaRQYiySNAmORpGmbL8mnZcCdA6+3tjJJmkvGIkmjwFgkaRQYiyRN227DbsA0ZYKyekyFZDWwur18MMktvbdqZvYHvjG0o2eit3TeGep7mHeeOKxDz6ahvocfe/XFO6ryQ3PRjp2ww1gE8y4eGYtmzlg0c8ainWMsmm3GohkzFs2csWgkDDcWwUKIR8aimVuQsWi+JJ+2AgcNvD4QuGuwQlWdC5w7l42aiSQbqmrVsNsxn/kezpzv4U7bYSyC+RWP/BmYOd/DmfM93GnGIm3H93DmfA93mrFI2/E9nLmF+h7Ol8vu1gMrkhySZA/gRGDdkNskafExFkkaBcYiSaPAWCRp2ubFyKeqejjJqcDlwBJgTVVtHnKzJC0yxiJJo8BYJGkUGIsk7Yx5kXwCqKrLgMuG3Y5ZNC+Gno4438OZ8z3cScYiTcD3cOZ8D3eSsUgT8D2cOd/DnWQs0gR8D2duQb6HqdpuTjhJkiRJkiRpVsyXOZ8kSZIkSZI0Dy245FOSSvLHA69/N8mZs7DfI5N8eqb7GbYkf5bk0GG3Y2f09ZkudOlcneTFA2W/nOQzw2yX5k6SR5JsTLI5yZeTvDHJ49q6H0jykSQ3JLmx/aw8oa17cLgtnz0D78HYY3mSVUne39afmeR3h9i+lw7G5CRvT3L0sNrTN+O5/BnYNfPpb/pMP+MkP5/ktB3UWZ7klTNo5rSNj9NzcLynJbl0ro632Myn36VRN+rx3Fg04+PNeixacMkn4CHgF5PsP+yGDEuSJZOtq6r/r6pumsv2zIJF/5nuiuquqf1N4L1J9kryeOAs4JThtkxz6DtVtbKqngW8CHgJcEZb99vA16vq31bVs4GTgX8dUjv7NPYejD3uqKoNVfX6me64dWBn+nf0pcD3OxJV9daq+uwM9znKjOfyZ2AXzLO/6TP6jKtqXVW9awfVlgM79Q/fVP3jHXhMnJ4NO+ir31VVJ8zm8fSoefa7NOpGPZ4bi2bQlj5i0UJMPj1MN0HX74xfkeSHklyZZFN7PniCOmcmuSjJ55LcmuQ3BlY/IcmlSb7SRgykbfPCJP/QRhCsSbJnK78jyduSXN/W/Vgrf3yrt75td/wE7TggyRfaN/U3JvnpVn5Mki+2ff5FHh2pcEeStya5Gvi9JNcO7Gt5kk1t+fNJVrXl49p+vpzkyum2bQhm9JkuZlV1I/BXwFvokg4XVtU/JTkpybXt5+uDSR6XZLf2sz82EmbG/5xrdFTVPcBq4NQWuw4Avjaw/paqemhY7ZtL2X4k649PFPOTvLnFwk1J3tbKlie5OckHgeuBg8bte6q/B3/Ufu+uTfIjSX4K+Hng3e138elJzk9yQtvmeUn+vsXoa5M8see3Zi4Yz+XPwC6aR3/TZ9oX/7Ukf9qWz0/y/hYLbxuLj8C7gJ9u5/w7SZYkefdAzH5t2/7IJFcl+Shww0AM/3C6UcF/k2TvVvfpST6T5Lok/yvJj00Up8e19WXt/f1yki+0sum25Y+SvG5gX2cmeVNr440D+3pP+xw3JfmtVv4TSf62tfXyJAfM5ANbbObR79KoG/V4biwatVhUVQvqATwI/CBwB/Ak4HeBM9u6vwJOasu/DvzlBNufCXwZ2BvYH7gTeBpwJPAAcCBd0u6LwL8D9mp1ntG2vxB4Q1u+A/ittvw64M/a8n8BfrUt7wP8I/D4ce14E/Cf2/IS4ImtPV8Yq0sXMN86cKzfG9h+I/DDA/X+oC1/HlgFLG3tPqSV7zfdts23z3SxP4DHA7cANwB7As8G/hLYra0/ly5j/3zgrwe222fYbfcx48/+wQnK7gOeCqwE7mmx7J3Aiqm2m68P4JEWDzcCn2xlRwKfbsuTxfxj2u9GWsz/NPDv6b7h+h5wxATH2tHfg7GY/uqB458PnDCwj/OBE4A9gNuA57XyHxz7nZ3PD+O5D38GZvz+jfzf9Jl+xsCvAX/als8H/qLF4UOBLa38+3G8vV7No33dPYENwCGt3rd5tL+7nO4f0pXt9SU82u+9kva3sL1/nxtowwmTnOsNwLLB93gn2nIY8LcD+7oJOLi18cZW9p+Ajw987vBIyAAAIABJREFUvvsBuwN/DyxtZS8H1gz7Z3O+PebD79KoP2b6uz7q7TMWzX4s2o0FqKq+meRC4PXAdwZW/STwi235IuC/TbKLT1XVd4DvJLkKOBy4H7i2qrYCJNlI94F8C7i9qv6xbXsB3bDN/95ef6I9Xzdw7GOAn8+j84zsRfcB3zzQhvXAmiS70/0ybEzyM3Q/7H+XbtDVHnT/OI65eGD5EuCX6bKxL2+PQUcAX6iq2wGq6t6daNucm4XPdNGqqm8nuZguofBQuvlkngdsaD9He9P9w3w58KNJ3kd3y9y/GVab1asAtJjyw3S/80cD65P8ZFUN9Xe9B9+pqpU7qDNRzP93dO/NP7Q6TwBWAF8F/ndVfWmC/fwoU/89+NjA89k7aNOPAndX1XroYuAO6s8bxnP5M7Dr5svf9Fn+jP+yqr4H3JTkqZPUOQZ4zsBohCfRxex/oeu/3z5Q9/aq2tiWrwOWp7uS4KeAv2jvI3T/rO3I3wHnJ7mER/v802pLVf1DkqckeRrdl8L3VdVXkywf2P/RwIeq6uG2zb1Jnk2XKLmitXUJcPc02qoB8+V3adSNejw3Fo1WLFqQyafmv9NdEvHnU9SpaZaPvR68JOURuvcvTG1sm7H6tG1+qapumbRhVV9I8u+B/wBclOTddCMWrqiqV0yy2bcHli+m+6H9RLe7unVc3TDx+e+wbUM0k890sftee0D3Ga+pqj8cXynJc4AX0wXoX6LLmGuBaMmmR+hGPFFVD9L9gfpEku/RzQm10JJP0zFRzA/wX6vqfwyuaH+Iv83EdvT3oCZZnmxfCzmeGc/lz8Cumy9/02frMx7sf08WZ0N3tcHljylMjmT7mD2+P7833WiG+6fxZcVjVNVvJnk+XX99Y5KVO9mWS+lGu/4bYO0Eh5job0GAzVX1kzvTVk1ovvwujbpRj+fGoh23ZU5i0UKc8wn4/kieS+gm0R3z98CJbflXgKsn2fz4dBPQPZluWNr6KQ71Fbos5Y+0168C/nYHzbsc+K3k+3NGHTa+QpIfAu6pqg8D5wHPBb4EvGDsWOnuVvWMiQ5QVf9E90P8hzx2RNSYLwI/k+SQtq/9ptu2YZnhZ6pHfRb45bTJ95I8OcnBSZYCqaq/oLv+/bnDbKRmV/t8P0Q3fLiSvCDJvm3dHnSjKv/3MNs4RBPF/MuBX8+j8+otS/KUHexnR38PXj7wPDZq9Vt0l1VPtK+nJXleO/4TkyyYL4yM5/JnYNaM7N/0nj/j8bHzcuA/tSsGSPKMdBNJT7et3wRuT/Kytn2S/Pgkx/q+JE+vqmuq6q3AN+jmAdyZtqylez9OoPvnb7y/AX5zLP63/votwNIkP9nKdk/yrOmeqyY1sr9Lo27U47mxaHRi0YLpyE7ij4FTB16/nu5StjcD24DXTLLdtcD/pLvc7B1VddcUSZ7vJnkN3Sij3ej+afnQDtr1DroM7KaW5LkD+LlxdY4E3pzkX+muV311VW1L8mvAx9ImsQX+gG5epolcDLyb7trO8e3elmQ13YiHx9GNhHjRNNs2TLv6maqpqhvSTZ782fbZ/yvdXT8eAc5rn3vRzRWm+W3vdJcI7053XflFwHvbuqcD57TP+3F0Me/jbd0PJNk6sJ/3VtV7Wbi2i/nAXUmeCXyx5eIfBH6V7vdkQtP4e7Bnkmvo3u+xEaxrgQ+nm8D0hIF9/UuSlwN/km4Cyu/QDXl+cDZOeEQYz+XPwAzNg7/pfX3Gm4CHk3yZbh6U99FNh3F9O+dtdHeG2hm/Qvd38Q/o/m6upZsT8DFxun3BO+bdSVbQjQC4stXfNN22VNXmdDeT+FpVTXS5yp8Bz6Drl/8r8OGq+tN0l9G8P8mT6P6f++/A5p08Xw2YB79Lo27U47mxaARiUdrkUGqSnEl37e97ht0WSdLCkOQOYFVVfWPYbZEkSZLm2oK97E6SJEmSJEnD58gnSZIkSZIk9caRT5IkSZIkSeqNySdJkiRJkiT1xuSTJEmSJEmSemPySbssSSW5aOD1bkm2Jfn0NLZ9sD0vT/LKgfJVSd6/g22XJ7lxV+okeXuSo3fUPkmjaSx27KDOG5L8wBy0ZXz8+oEkH0lyQ5Ibk1yd5AmzdKzLkuwzG/uSNHuSHJjkU0luTfJPSd6XZI8dbHNHkv3b8t/P4NhHJLkmycYkN7c7NvdmsI+W5MgkP9Xn8STtvCHHpPOT3N5i0leSnLGL+zlyOv9Pav4x+aSZ+Dbw7CR7t9cvAr62k/tYDnz/n7eq2lBVr5+d5m2vqt5aVZ/ta/+SRsIbgJ1KPiVZsgvHWc5A/AJ+G/h6Vf3bqno2cDLwr7PRhqp6SVXdvwttlNSTJAE+AfxlVa0AngE8AThruvuoqpkkcC4AVlfVSuDZwCUz2NeUkuw2ro92JGDySRohIxCTAN7cYtJK4KQkh8xwf1pATD5ppv4a+A9t+RXAx8ZWJDkzye8OvL4xyfJx278L+OmWIf+dwUx32/6iJJ9r2fvfGH/wJEuSvDvJ+iSbkrx2qsa2jPwJbfmOJG9Lcn0bqfBjrfzxSda0ff5DkuNb+bOSXNvauinJip18ryTNkhYrPp/k0vbt2kfSeT3wNOCqJFe1usck+WL7Xf+LsdFILQa8NcnVwMva/v6o/Z7/Y5KfbvUmizOPiV/AAQwk4Kvqlqp6qO3jVwfix/8YSzQleTDdiMxrgN9P8v1/Hts5/tVAW8e+lXx1a8eX00afJlma5OOtjeuTvKC/d19ScxTw3ar6c4CqegT4HeDXk7wuySeSfKb1Yf7bRDvIoyPBJ4xpbd1PJPnbJNcluTzJAW3zpwB3jx27qm5q9SfrxyxJ8p7W59mU5Lda+WB8WZXk8235zCTnJvkb4MKxPlrry/0m8Dstpv10utEOu7ftfrDtc/dZfbcl7ciwY9Kgvdrzt9s2b20x6cYWV8b29SNJPtv6NNcnefq49jyvxbEfziT/W7bHV5Jc0GLbpZmDEfDaeSafNFNrgROT7AU8B7hmJ7c/DfhfVbWyqs6eYP1z6JJbPwm8NcnTxq0/GXigqp4HPA/4jexchv0bVfVc4BxgLJj9Z+BzbZ8/C7w7yePpOlrva9n8VcDWnTiOpNl3GN0op0OBHwZeUFXvB+4Cfraqfrb9Q/UHwNHtd30D8MaBfXy3qv5dVa1tr3erqsPbfseGi08WZ8bHrzXAW9Ilut6ZlqBO8kzg5a19K4FHgF9p+348cGNVPR/4r8ARLd7Qtrl48ISTPIsuRh1VVT9ON9oK4H3A2a2NvwT82S68n5J2zrOA6wYLquqbwFeB3ei++X858G+Blyc5aAf72y6mtQTOnwAnVNVP0MWZsVEMZwO3JPlkkte2vhhM3o9ZDRwCHFZVzwE+Mo1z/Ang+KoaHKV+B/Ahupizsqr+F/B5Hv0y8kTg41U17ZGfkmbFsGMSdPFmI93/SWur6p5W/qdV9bw2Mnxv4Oda+UeAD7Q+zU/REuoA6S7t/RBdDLptB239UeDcFtu+CbxuB/U1BLsNuwGa36pqU/sG7BXAZT0c4lNV9R3gO+lGMRwObBxYfwzwnLTRTMCTgBXAP05z/59oz9cBvziwz58fyKzvBRwMfBH4z0kOBD5RVbfuyglJmjXXVtVWgNbRWQ5cPa7OEXSdpr9rX7LtQfe7PObicfUHY8LytjxZnPmXwQ2ramOSH271jwbWJ/lJ4IV0/8Ctb23YGxjrjD0CfLxt/3CSzwD/McmldP/I/d649h0FXFpV32jb3NvKjwYObfsH+MEkT6yqbyGpLwFqivIrq+oBgCQ3AT8E3DnF/iaKaffTXVJ3Rfv9XsKjo53enuQjdDHnlXR9sSOZvB9zNPChqnq4bT8WP6ayrvXDduTP6OLVXwKvAbYbrS6pd0ONSc2bq+rSdKPMr0zyU1X198DPJvk9umkR9gM2t1GWy6rqkwBV9d12LIBnAucCx1TVXdM49zur6u/a8v8PvB54zzS20xwy+aTZsI7ul/tI4MkD5Q/z2NF1e7HzxgfQ8a8D/FZVXf6Ywu0v75vMQ+35kf/H3v3H21XXd75/vRsQneoIlGCRHxPGxlZ0OsEeAev0MdQf/Gqn0VY02GK03MZ2oFZr5xa97YWKdHCm6mirzISaAl41UrWaelNjpFprW4VAYyBwvaTISCQDscEfjFO84Of+sb5HNsk+h5Nzzjpnn3Nez8djP/ben/Vda3/XPuTDWp/9Xd/FI/8eAvxCVX15v7a3p7s05meALUn+t6r6yyl+jqTZ9+DA68F/w4MCbK2q8ybYxv+cYJv754Rheeb0/TdWVQ/QFbA+muR7wDl0RaprquqNQz7/n9qw+HEfAi4E9gE3DikeTXRg+QPAc6d4kihpduykG2n4fUn+OXA8XQ6ZSo4aNKx9gJ1V9dxhK1TVPwBXJrkK2Jvkh5jgOKZd5jIsfwwer+1/rLZ/jhyqqv6mXfryb4FlVTXpjWEk9WLec9K4qnqgFZf+TZKbgfcAY1V1d7qbIzy+bWsie1qbk+lGtMPk55aPdc6oEeBld5oNG4A3V9Ut+8XvAp4NkOTZdEO99/dt4EmTbHt1kse3g6nTgRv3W74F+LWBeQaePnDJynRtAX594Frkk9vzvwTubJf1bKK7JFDS6BnMK1+gGyb+I/D9O9I9/SC3N1GeeVT+SvK8JEe014+jG3H134HrgZcmObotOzLJv5jgsz5Llzd/hQNHZdG29bKWE0lyZIt/CrhooC+rDnIfJR2864F/luSV8P2bBrwNuBr4zix9xpeB5W0UJUkObZffkuRnxo9V6EZjPkw3KmHocQxdnvjVJIe0+Hj+uItudCbsd+I6iWHHb9fSzf35J1PeO0mzaV5z0qCWZ04F/oFHikRfbyOiXgrfvyRwd5IXt3UOG5ir6Rt0P/j//sCPfXcx8bnlCeN9ohsFuv9IeI0Ai0+asaraXVXvHLLoI8CRbZjmrzH8UrgdwEPpJpl7/ZDlNwD/N90J5GVDhl3+MXAbcHOSW4H/xiNV/B9Nsnvgce4Ud+ky4FBgR9vmZS3+cuDWtj8/RneQJWn0rAf+Islnqmov8Crgg0l20OWSHzvI7U2UZ/bPX08D/irJLcDf080v9ZE2CfDvAJ9qfdhKNzn5AdooqE8AZ7fn/ZfvpJtb4a+SfAl4e1v0WmAs3USbt9HNUSepR1VVwEvoblhwB91xzj8Bb5rFz/gu3YnaW9u/+e08cpe58+nmfNoOvA/4xZZDJjqO+WO6uV92tG2Nz+P0e8A7k/w1XQFrKv4ceEnahOMt9n7gCAZuPiNp7oxAToJH5nzaAdxCN1XJN4Cr2vuP8ejBBOcDr23HR38L/PDAZ90L/Dvg3UlOZfJzy9vp7q63g+6yvitna581e9L9NyqNnjYk84Gq8npdSZKkEdbmxVtdVefPd18kLR1tupVPtMnMNcKc80mSJEnStCX5Q7oRm+fMd18kSaPJkU+SJEmSJEnqjXM+SZIkSZIkqTcWnyRJkiRJktQbi0+SJEmSJEnqjcUnSZIkSZIk9cbikyRJkiRJknpj8UmSJEmSJEm9sfgkSZIkSZKk3lh8kiRJkiRJUm8sPkmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6o3FJ0mSJEmSJPXG4pMkSZIkSZJ6Y/FJkiRJkiRJvbH4JEmSJEmSpN4cMt8d6MNRRx1VK1asmO9uSJqhm2666etVtXy++zET5iNp4TMXSRoF5iJJo2C6uWhRFp9WrFjBtm3b5rsbkmYoyX+f7z7MlPlIWvjMRZJGgblI0iiYbi7ysjtJkiRJkiT1xuKTJEmSJEmSemPxSZIkSZIkSb2x+CRpUUvy+CQ3JPlSkp1Jfq/Fr07ylSTb22NViyfJu5LsSrIjybMHtrU2yR3tsXa+9kmSJEmSFpJFOeG4JA14EHh+VT2Q5FDg80n+oi37D1X14f3anw2sbI9TgSuBU5McCVwCjAEF3JRkU1XdPyd7IUmSJEkLlCOfJC1q1XmgvT20PWqSVVYD17b1vgAcnuQY4Exga1XtawWnrcBZffZdkiRJkhYDi0+SFr0ky5JsB+6jKyB9sS26vF1a944kh7XYscDdA6vvbrGJ4pIkSZKkSVh8krToVdXDVbUKOA44JcmzgDcCPwY8BzgS+O3WPMM2MUn8AEnWJdmWZNvevXtn3H9JkiRJWsgsPklaMqrqG8BngbOqak+7tO5B4E+AU1qz3cDxA6sdB9wzSXzY56yvqrGqGlu+fPks74UkSZIkLSxLdsLxbWOnPHajRWxs2w3z3QVpTiRZDvx/VfWNJE8AXgi8NckxVbUnSYAXA7e2VTYBFyXZSDfh+Ddbuy3A7yc5orU7g2701IyYi8xF0igwF5mLpFGw1HMRmI+0eC3Z4pOkJeMY4Joky+hGe15XVZ9I8petMBVgO/Crrf1m4BxgF/Ad4NUAVbUvyWXAja3dm6tq3xzuhyRJkiQtSBafJC1qVbUDOHlI/PkTtC/gwgmWbQA2zGoHJUmSJGmR623OpySPT3JDki8l2Znk91r8xCRfTHJHkg8leVyLH9be72rLVwxs640t/uUkZ/bVZ0mSJEmSJM2uPkc+PQg8v6oeSHIo8PkkfwH8JvCOqtqY5L8CFwBXtuf7q+pHkqwB3gq8PMlJwBrgmcBTgU8neXpVPdxj3yVJkiRJWlDO+t0PzXcX5tUnL3v5fHdBE+ht5FO7i9QD7e2h7VHA84EPt/g1dBP9Aqxu72nLX9AmAl4NbKyqB6vqK3TzsDgTnSRJkiRJ0gLQW/EJIMmyJNuB+4CtwD8A36iqh1qT3cCx7fWxwN0Abfk3gR8ajA9ZR5IkSZIkSSOs1+JTVT1cVauA4+hGKz1jWLP2nAmWTRR/lCTrkmxLsm3v3r3T7bIkSZIkSZJm0Zzc7a6qvpHks8BpwOFJDmmjm44D7mnNdgPHA7uTHAI8Gdg3EB83uM7gZ6wH1gOMjY0dUJySJEmS+uI8K86zIkmaWJ93u1ue5PD2+gnAC4Hbgc8AL23N1gIfb683tfe05X/Zbnm+CVjT7oZ3IrASuKGvfkuSJEmSJGn29Dny6RjgmiTL6Ipc11XVJ5LcBmxM8hbg74H3tvbvBd6XZBfdiKc1AFW1M8l1wG3AQ8CF3ulOkiRJkiRpYeit+FRVO4CTh8TvZMjd6qrqn4BzJ9jW5cDls91HSZIkSZIk9avXCcclSZIkSZK0tFl8kiRJkiRJUm8sPkmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6o3FJ0mSJEmSJPXG4pMkSZIkSZJ6Y/FJkiRJkpaAJMcn+UyS25PsTPIbLX5pkq8l2d4e5wys88Yku5J8OcmZA/GzWmxXkovnY38kLRyHzHcHJEmSJElz4iHgDVV1c5InATcl2dqWvaOq/mCwcZKTgDXAM4GnAp9O8vS2+N3Ai4DdwI1JNlXVbXOyF5IWHEc+SZIk9czRBpJGQVXtqaqb2+tvA7cDx06yympgY1U9WFVfAXYBp7THrqq6s6q+C2xsbSVpKItPkiRJ/RsfbfAM4DTgwjaiALrRBqvaYzMcMNrgLOA9SZYlWUY32uBs4CTgvIHtSNKUJVkBnAx8sYUuSrIjyYYkR7TYscDdA6vtbrGJ4pI0lMUnSZKknjnaQNIoSfJE4CPA66rqW8CVwNOAVcAe4G3jTYesXpPEh33WuiTbkmzbu3fvjPsuaWGy+CRJkjSHHG0gaT4lOZSu8PT+qvooQFXdW1UPV9X3gKvoCt3Q5ZjjB1Y/DrhnkvgBqmp9VY1V1djy5ctnd2ckLRgWnyRJkuaIow0kzackAd4L3F5Vbx+IHzPQ7CXAre31JmBNksOSnAisBG4AbgRWJjkxyePoLhPeNBf7IGlh8m53kiRJc2Ci0QYDy68CPtHeTjaqYMqjDYD1AGNjY0MLVJKWnOcB5wO3JNneYm+imz9uFV0x+y7gNQBVtTPJdcBtdHPXXVhVDwMkuQjYAiwDNlTVzrncEUkLi8UnSYtakscDnwMOo8t5H66qS9qvdxuBI4GbgfOr6rtJDgOuBX4C+Efg5VV1V9vWG4ELgIeB11bVlrneH0kL02SjDapqT3u7/2iDDyR5O93tzcdHG4Q22gD4Gt1og1fMzV5IWuiq6vMMH0G5eZJ1LgcuHxLfPNl6kjTI4pOkxe5B4PlV9UAbdfD5JH8B/CbdHaY2JvmvdEWlK9vz/VX1I0nWAG8FXr7fnaeeCnw6ydPHf/2TpMfgaANJkrRkWXyStKhVVQEPtLeHtkcBz+eR0QLXAJfSFZ9Wt9cAHwb+qI1Y+P6dp4CvJBm/89Tf9b8XkhY6RxtIkqSlzAnHJS16SZa1kQb3AVuBfwC+UVUPtSaDd4v6/p2k2vJvAj+Ed5iSJEmSpGmx+CRp0Wu3Dl5FNzHvKcAzhjVrz95hSpIkSZJmkcUnSUtGVX0D+CxwGnB4kvFLjwfvFvX9O0y15U8G9jH5naf2/5z1VTVWVWPLly+f7d2QJEmSpAXF4pOkRS3J8iSHt9dPAF4I3A58Bnhpa7YW+Hh7vam9py3/yzZv1CZgTZLD2l2mxu88JUmSJEmahBOOS1rsjgGuSbKMruB+XVV9IsltwMYkbwH+nu4W6LTn97UJxffR3eFu0jtPSZIkSZImZvFJ0qJWVTuAk4fE76Sb/2n/+D8B506wraF3npIkSZIkTczL7iRJkiRJktQbi0+SJEmSJEnqjcUnSZIkSZIk9aa34lOS45N8JsntSXYm+Y0WvzTJ15Jsb49zBtZ5Y5JdSb6c5MyB+FkttivJxX31WZIkSZIkSbOrzwnHHwLeUFU3J3kScFOSrW3ZO6rqDwYbJzmJ7q5SzwSeCnw6ydPb4ncDLwJ2Azcm2VRVt/XYd0mSJEmSJM2C3opPVbUH2NNefzvJ7cCxk6yyGthYVQ8CX2m3OR+/E9WudmcqkmxsbS0+SZIkSZIkjbg5mfMpyQq6W51/sYUuSrIjyYYkR7TYscDdA6vtbrGJ4pIkSZIkSRpxvRefkjwR+Ajwuqr6FnAl8DRgFd3IqLeNNx2yek0S3/9z1iXZlmTb3r17Z6XvkiRJkiRJmplei09JDqUrPL2/qj4KUFX3VtXDVfU94CoeubRuN3D8wOrHAfdMEn+UqlpfVWNVNbZ8+fLZ3xlJkiRJkiQdtD7vdhfgvcDtVfX2gfgxA81eAtzaXm8C1iQ5LMmJwErgBuBGYGWSE5M8jm5S8k199VuSJEmSJEmzp8+73T0POB+4Jcn2FnsTcF6SVXSXzt0FvAagqnYmuY5uIvGHgAur6mGAJBcBW4BlwIaq2tljvyVJkiRJkjRL+rzb3ecZPl/T5knWuRy4fEh882TrSZIkSZIkaTTNyd3uJEmSJEmStDT1edmdFrGzfvdD892FeffJy14+312QJEmSJGnkOfJJkiRJkiRJvbH4JEmSJEmSpN5YfJIkSZIkSVJvLD5JkiRJkiSpNxafJEmSJEmS1BuLT5IkSZIkSeqNxSdJkiRJkiT1xuKTJEmSJEmSemPxSZIkSZIkSb2x+CRpUUtyfJLPJLk9yc4kv9Hilyb5WpLt7XHOwDpvTLIryZeTnDkQP6vFdiW5eD72R5IkSZIWGotPkha7h4A3VNUzgNOAC5Oc1Ja9o6pWtcdmgLZsDfBM4CzgPUmWJVkGvBs4GzgJOG9gO5IkSSNvkh/ljkyyNckd7fmIFk+Sd7Uf3nYkefbAtta29nckWTtf+yRpYbD4JGlRq6o9VXVze/1t4Hbg2ElWWQ1srKoHq+orwC7glPbYVVV3VtV3gY2trSQ9Jk/4JI2IiX6Uuxi4vqpWAte399D96LayPdYBV0KXu4BLgFPpjpEuGc9fkjSMxSdJS0aSFcDJwBdb6KJ2Urdh4IDpWODugdV2t9hEcUmaCk/4JM27SX6UWw1c05pdA7y4vV4NXFudLwCHJzkGOBPYWlX7qup+YCvdiHFJGsrik6QlIckTgY8Ar6uqb9GdyD0NWAXsAd423nTI6jVJfNhnrUuyLcm2vXv3zrjvkhY+T/gkjZr9fpR7SlXtgS5fAUe3Zv4oJ2lWWHyStOglOZSu8PT+qvooQFXdW1UPV9X3gKvoRhBAd/B0/MDqxwH3TBI/QFWtr6qxqhpbvnz57O6MpAXPEz5J823Ij3ITNh0S80c5SQfN4pOkRS1JgPcCt1fV2wfixww0ewlwa3u9CViT5LAkJ9Jd8nIDcCOwMsmJSR5HNyn5prnYB0mLhyd8kubbsB/lgHvHj43a830t7o9ykmaFxSdJi93zgPOB5yfZ3h7nAP8pyS1JdgA/DbweoKp2AtcBtwGfBC5sI6QeAi4CttBdLnNdaytJU+IJn6T5NtGPcnQ/qI3fwGAt8PGB+CvbTRBOA77ZRmluAc5IckSbd+6MFpOkoQ6Z7w5IUp+q6vMMHymweZJ1LgcuHxLfPNl6kjSRKZzwXcGBJ3wXJdlIN7n4N6tqT5ItwO8PTDJ+BvDGudgHSYvC+I9ytyTZ3mJvostB1yW5APgqcG5bthk4h+7uv98BXg1QVfuSXEY3MhzgzVW1b252QdJCZPFJkiSpf57wSZp3k/woB/CCIe0LuHCCbW0ANsxe7yQtZhafJEmSeuYJnyRJWsqc80mSJEmSJEm9sfgkSZIkSZKk3lh8kiRJkiRJUm8sPkmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6k1vxackxyf5TJLbk+xM8hstfmSSrUnuaM9HtHiSvCvJriQ7kjx7YFtrW/s7kqztq8+SJEmSJEmaXX2OfHoIeENVPQM4DbgwyUnAxcD1VbUSuL69BzgbWNke64AroStWAZcApwKnAJeMF6wkSZIkSZI02norPlXVnqq6ub3+NnA7cCywGrimNbsGeHF7vRq4tjpfAA5PcgxwJrC1qvZV1f3AVuCsvvotSZIkSZKk2TMncz4lWQGcDHwReEpV7YGuQAUc3ZodC9w9sNruFpsoLknEwpUdAAAgAElEQVSSJEmSpBHXe/EpyROBjwCvq6pvTdZ0SKwmie//OeuSbEuybe/evdPrrCRJkiRJkmZVr8WnJIfSFZ7eX1UfbeF72+V0tOf7Wnw3cPzA6scB90wSf5SqWl9VY1U1tnz58tndEUmSJEmSJE1Ln3e7C/Be4PaqevvAok3A+B3r1gIfH4i/st317jTgm+2yvC3AGUmOaBONn9FikiRJkiRJGnGH9Ljt5wHnA7ck2d5ibwKuAK5LcgHwVeDctmwzcA6wC/gO8GqAqtqX5DLgxtbuzVW1r8d+S5IkSZIkaZb0Vnyqqs8zfL4mgBcMaV/AhRNsawOwYfZ6J0mSJEmSpLkwJ3e7kyRJkiRJ0tJk8UmSJEmSJEm9sfgkSZIkSZKk3lh8kiRJkiRJUm8sPkmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6o3FJ0mLWpLjk3wmye1Jdib5jRY/MsnWJHe05yNaPEnelWRXkh1Jnj2wrbWt/R1J1s7XPkmSJEnSQnLIfHdAknr2EPCGqro5yZOAm5JsBV4FXF9VVyS5GLgY+G3gbGBle5wKXAmcmuRI4BJgDKi2nU1Vdf+c75Ee5azf/dB8d2FeffKyl893FyRJkqRJOfJJ0qJWVXuq6ub2+tvA7cCxwGrgmtbsGuDF7fVq4NrqfAE4PMkxwJnA1qra1wpOW4Gz5nBXJEmSJGlBmlLxKcn1U4lJUp9mmouSrABOBr4IPKWq9kBXoAKObs2OBe4eWG13i00Ul7TEeFwkaRSYiyQtJJNedpfk8cA/A45q86GkLfrnwFN77pskAbOTi5I8EfgI8Lqq+laSCZsOidUk8WGftQ5YB3DCCSdMpXuSFgCPiySNAnORpIXoseZ8eg3wOrokdhOPJLZvAe/usV+SNGhGuSjJoXSFp/dX1Udb+N4kx1TVnnZZ3X0tvhs4fmD144B7Wvz0/eKfHfZ5VbUeWA8wNjY2tEAlaUHyuEjSKDAXSVpwJi0+VdU7gXcm+fWq+sM56pMkPcpMclG6IU7vBW6vqrcPLNoErAWuaM8fH4hflGQj3YTj32wFqi3A74/fFQ84A3jjtHdK0oLjcZGkUWAukrQQTelud1X1h0l+ElgxuE5VXdtTvyTpANPMRc8DzgduSbK9xd5EV3S6LskFwFeBc9uyzcA5wC7gO8Cr22fsS3IZcGNr9+aq2jcb+yVpYfG4SNIoMBdJWkimVHxK8j7gacB24OEWLsDEJmnOTCcXVdXnGT5fE8ALhrQv4MIJtrUB2HAQXZa0CHlcJGkUTDcXJdkA/CxwX1U9q8UuBX4F2NuavamqNrdlbwQuaJ/x2qra0uJnAe8ElgF/XFVXzNrOSVp0plR8AsaAk9pJmSTNF3ORpFEwrVzkCZ+kWTbd46KrgT/iwCLVO6rqDwYDSU4C1gDPpJtj6tNJnt4Wvxt4Ed28mDcm2VRVtx1kXyQtEVMtPt0K/DCwp8e+SNJjMRdJGgXTzUVX4wmfpNkzrVxUVZ9LsmKKzVcDG6vqQeArSXYBp7Rlu6rqToA2V+ZqwFykBe8V71sz312YVx84f2Mv251q8eko4LYkNwAPjger6ud66ZUkDWcukjQKppWLPOGTJucJ30Gf8M32cdFFSV4JbAPeUFX3A8cCXxhos7vFAO7eL37qND9X0hIw1eLTpX12QpKm6NL57oAkMfu5yBM+SdNx6Sxu60rgMro5oy4D3gb8MsPnzSzgByaIHyDJOmAdwAknnDAbfZW0AE31bnd/1XdHJOmxmIskjYJZzkWe8EmaltnMRVV17/jrJFcBn2hvdwPHDzQ9DrinvZ4ovv+21wPrAcbGxpy3U1qihh3AHCDJt5N8qz3+KcnDSb7Vd+ckaZC5SNIomM1cVFX3VtXDVfU94CoeubRuohO+yU4E99/2+qoaq6qx5cuXT6d7kkbYbOaiJMcMvH0J3XxSAJuANUkOS3IisBK4AbgRWJnkxCSPo5ujbtP090bSYjfVkU9PGnyf5MU8cnAkSXPCXCRpFMxmLkpyTFWNTxa8/wnfB5K8nW7C8fETvtBO+ICv0Z3wvWI6ny1pYZtuLkryQeB04Kgku4FLgNOTrKIbSXkX8Jr2GTuTXEc3r9xDwIVV9XDbzkXAFro7b26oqp2zs2eSFqOpzvn0KFX1sSQXz3ZnJOlgmIskjYKp5iJP+CT1aaq5qKrOGxJ+7yTtLwcuHxLfDGw+qE5KWrKmVHxK8vMDb38AGGOC+QUkqS/mIkmjYLq5yBM+SbPJ4yJJC8lURz79u4HXD9H9Mrd61nsjSZMzF0kaBeYiSaPAXCRpwZjqnE+v7rsjkvRYzEWSRoG5SNIoMBdJWkimere745L8WZL7ktyb5CNJjnuMdTa09rcOxC5N8rUk29vjnIFlb0yyK8mXk5w5ED+rxXY5t4u0tE0nF0nSbDMXSRoF5iJJC8mUik/An9DddeWpwLHAn7fYZK4GzhoSf0dVrWqPzQBJTqK7W8sz2zrvSbIsyTLg3cDZwEnAea2tpKVpOrlIkmabuUjSKDAXSVowpjrn0/KqGkxkVyd53WQrVNXnkqyY4vZXAxur6kHgK0l28chtQndV1Z0ASTa2trdNcbvSyHrF+9bMdxfm3QfO33iwqxx0LpKkHpiLJI0Cc5GkBWOqI5++nuSXxkcjJfkl4B+n+ZkXJdnRLss7osWOBe4eaLO7xSaKS1qaZjMXSdJ0mYskjQJzkaQFY6rFp18GXgb8D2AP8FJgOhPcXQk8DVjVtvO2Fs+QtjVJ/ABJ1iXZlmTb3r17p9E1SQvAbOUiSZoJc5GkUWAukrRgTPWyu8uAtVV1P0CSI4E/oEt4U1ZV946/TnIV8In2djdw/EDT44B72uuJ4vtvez2wHmBsbGxogUrSgjcruUiSZshcJGkUmIskLRhTHfn04+NJDaCq9gEnH+yHJTlm4O1LgPE74W0C1iQ5LMmJwErgBuBGYGWSE5M8jm5S8k0H+7mSFo1ZyUWSNEPmIkmjwFwkacGY6sinH0hyxH5V9UnXTfJB4HTgqCS7gUuA05Osort07i7gNQBVtTPJdXQTiT8EXFhVD7ftXARsAZYBG6pq50HtoaTF5KBzkST1wFwkaRSYiyQtGFNNTm8D/jbJh+kKRy8DLp9shao6b0j4vZO0v3zYNqtqM7B5iv2UtLgddC6SpB6YiySNAnORpAVjSsWnqro2yTbg+XSTgP98Vd3Wa88kaT/mIkmjwFwkaRSYiyQtJFMeltkSmclM0rwyF0kaBeYiSaPAXCRpoZjqhOOSJEmSJEnSQbP4JGlRS7IhyX1Jbh2IXZrka0m2t8c5A8vemGRXki8nOXMgflaL7Upy8VzvhyRJkiQtVBafJC12VwNnDYm/o6pWtcdmgCQnAWuAZ7Z13pNkWZJlwLuBs4GTgPNaW0mSJEnSY/BWnJIWtar6XJIVU2y+GthYVQ8CX0myCzilLdtVVXcCJNnY2jrHgha8V7xvzXx3Yd594PyN890FSZKkRc2RT5KWqouS7GiX5R3RYscCdw+02d1iE8UlSZIkSY/B4pOkpehK4GnAKmAP8LYWz5C2NUl8qCTrkmxLsm3v3r0z7askSZIkLWgWnyQtOVV1b1U9XFXfA67ikUvrdgPHDzQ9DrhnkvhE219fVWNVNbZ8+fLZ7bwkSZIkLTAWnyQtOUmOGXj7EmD8TnibgDVJDktyIrASuAG4EViZ5MQkj6OblHzTXPZZkiRJkhYqJxyXtKgl+SBwOnBUkt3AJcDpSVbRXTp3F/AagKrameQ6uonEHwIurKqH23YuArYAy4ANVbVzjndFkiRJkhYki0+SFrWqOm9I+L2TtL8cuHxIfDOweRa7JkmSJElLgpfdSZIkSZIkqTcWnyRJkiRJktQbi0+SJEmSJEnqjcUnSZIkSZIk9cbikyRJkiRJknpj8UmSJEmSJEm9sfgkSZIkSZKk3lh8kiRJkqQlIsmGJPcluXUgdmSSrUnuaM9HtHiSvCvJriQ7kjx7YJ21rf0dSdbOx75IWjgsPkmSJM0BT/gkjYirgbP2i10MXF9VK4Hr23uAs4GV7bEOuBK63AVcApwKnAJcMp6/JGkYi0+SJElz42o84ZM0z6rqc8C+/cKrgWva62uAFw/Er63OF4DDkxwDnAlsrap9VXU/sJUD85skfZ/FJ0mSpDngCZ+kEfaUqtoD0J6PbvFjgbsH2u1usYnikjSUxSdJkqT54wmfpFGWIbGaJH7gBpJ1SbYl2bZ3795Z7ZykhcPikyRJ0ujxhE/SXLq3ja6kPd/X4ruB4wfaHQfcM0n8AFW1vqrGqmps+fLls95xSQuDxSdJkqT54wmfpFGwCRi/gcFa4OMD8Ve2myCcBnyzjdLcApyR5Ig279wZLSZJQ1l8kiRJmj+e8EmaU0k+CPwd8KNJdie5ALgCeFGSO4AXtfcAm4E7gV3AVcC/B6iqfcBlwI3t8eYWk6ShDpnvDkiSJC0F7YTvdOCoJLvp7lp3BXBdO/n7KnBua74ZOIfuhO87wKuhO+FLMn7CB57wSTpIVXXeBIteMKRtARdOsJ0NwIZZ7JqkRay34lOSDcDPAvdV1bNa7EjgQ8AK4C7gZVV1f5IA76Q7yPoO8Kqqurmtsxb4nbbZt1TVNUiSJC0wnvBJkqSlqs/L7q7mwFv/XgxcX1Urgevbe4CzgZXtsQ64Er5frLoEOBU4BbikDTGXJEmSJEnSAtBb8amqPgfsPwx8NTA+cuka4MUD8Wur8wXg8Dbp5pnA1qraV1X3A1s5sKAlSZIkSZKkETXXE44/pU2WSXs+usWPBe4eaLe7xSaKH8DbCUuSJEmSJI2eUbnbXYbEapL4gUFvJyxJkiRJkjRy5rr4dG+7nI72fF+L7waOH2h3HHDPJHFJkiRJkiQtAHNdfNoErG2v1wIfH4i/Mp3TgG+2y/K2AGckOaJNNH5Gi0mSJEmSJGkB6K34lOSDwN8BP5pkd5ILgCuAFyW5A3hRew+wGbgT2AVcBfx7gKraB1wG3Ngeb24xSZqyJBuS3Jfk1oHYkUm2JrmjPR/R4knyriS7kuxI8uyBdda29nckWTvssyRJkiRJj3ZIXxuuqvMmWPSCIW0LuHCC7WwANsxi1yQtPVcDfwRcOxC7GLi+qq5IcnF7/9vA2cDK9jgVuBI4NcmRwCXAGN3cczcl2dTuxClJkiRJmsCoTDguSb2pqs8B+4+aXA1c015fA7x4IH5tdb4AHN7mqDsT2FpV+1rBaStwVv+9lyRJkqSFzeKTpKXqKW1uOdrz0S1+LHD3QLvdLTZRXJIkSZI0CYtPkvRoGRKrSeIHbiBZl2Rbkm179+6d1c5JkiRJ0kJj8UnSUnVvu5yO9nxfi+8Gjh9odxxwzyTxA1TV+qoaq6qx5cuXz3rHJUmSJGkhsfgkaanaBIzfsW4t8PGB+CvbXe9OA77ZLsvbApyR5Ih2Z7wzWkySJEmSNIne7nYnSaMiyQeB04Gjkuymu2vdFcB1SS4Avgqc25pvBs4BdgHfAV4NUFX7klwG3Njavbmq9p/EXJIkSZK0H4tPkha9qjpvgkUvGNK2gAsn2M4GYMMsdk2SJEmSFj0vu5MkSZIkSVJvLD5JkiRJkiSpNxafJEmSJEmS1BuLT5IkSZIkSeqNxSdJkiRJkiT1xuKTJEmSJEmSemPxSZIkSZIkSb2x+CRJkiRJkqTeWHySJEmSJElSbyw+SZIkSZIkqTcWnyRJkiRJktQbi0+SJEmSJEnqjcUnSZIkSZIk9cbikyRJkiRJknpj8UmSJEmSJEm9sfgkSZIkSZKk3lh8kiRJmmdJ7kpyS5LtSba12JFJtia5oz0f0eJJ8q4ku5LsSPLs+e29pMXCXCSpLxafJEmSRsNPV9Wqqhpr7y8Grq+qlcD17T3A2cDK9lgHXDnnPZW0mJmLJM06i0+SJEmjaTVwTXt9DfDigfi11fkCcHiSY+ajg5KWBHORpBmz+CRJkjT/CvhUkpuSrGuxp1TVHoD2fHSLHwvcPbDu7haTpJkyF0nqxSHz8aFJ7gK+DTwMPFRVY0mOBD4ErADuAl5WVfcnCfBO4BzgO8Crqurm+ei3JElST55XVfckORrYmuT/maRthsTqgEbdieM6gBNOOGF2eilpsTMXSerFfI588lpiSZIkoKruac/3AX8GnALcO34JS3u+rzXfDRw/sPpxwD1Dtrm+qsaqamz58uV9dl/SImEuktSXUbrszmuJJUnSkpPkB5M8afw1cAZwK7AJWNuarQU+3l5vAl7Z7jR1GvDN8UtiJGm6zEWS+jQvl93xyLXEBfy3qlrPftcSt6GeMPG1xCY2SZK0GDwF+LNupgEOAT5QVZ9MciNwXZILgK8C57b2m+mmI9hFNyXBq+e+y5IWIXORpN7MV/HJa4kljQTnoJM036rqTuBfD4n/I/CCIfECLpyDrklaQsxFkvo0L5fdeS2xpBHjHHSSJEmS1JM5Lz55LbGkBcA56CRJkiRplszHZXdeSyxplDgHnSRJkiT1aM6LT15LLGnEOAedJEmSJPVoXuZ8kqRR4Rx0kiRJktQvi0+SliznoJMkSZKk/s3HnE+SNCqcg06SJEmSembxSdKS5Rx0kiRJktQ/L7uTJEmSJElSbyw+SZIkSZIkqTcWnyRJkiRJktQbi0+SJEmSJEnqjcUnSZIkSZIk9cbikyRJkiRJknpj8UmSJEmSJEm9sfgkSZIkSZKk3lh8kiRJkiRJUm8sPkmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6o3FJ0mSJEmSJPXG4pMkSZIkSZJ6Y/FJkiRJkiRJvbH4JEmSJEmSpN5YfJIkSZIkSVJvLD5JkiRJkiSpNxafJEmSJEmS1BuLT5IkSZIkSeqNxSdJkiRJkiT1xuKTJEmSJEmSemPxSZIkSZIkSb1ZMMWnJGcl+XKSXUkunu/+SFqazEWSRoG5SNIoMBdJmqoFUXxKsgx4N3A2cBJwXpKT5rdXkpYac5GkUWAukjQKzEWSDsaCKD4BpwC7qurOqvousBFYPc99krT0mIskjQJzkaRRYC6SNGULpfh0LHD3wPvdLSZJc8lcJGkUmIskjQJzkaQpO2S+OzBFGRKrRzVI1gHr2tsHkny5917NzFHA1+ft0zPsK11w5vU7zFvWzNdHz6Z5/Q4/+MoPPVaTfzEX/TgIj5mLYMHlI3PRzJmLZs5cdHDMRbPNXDRj5qKZMxeNhPnNRbAY8pG5aOYWZS5aKMWn3cDxA++PA+4ZbFBV64H1c9mpmUiyrarG5rsfC5nf4cz5HR60x8xFsLDykf8NzJzf4cz5HR40c5EO4Hc4c36HB81cpAP4Hc7cYv0OF8pldzcCK5OcmORxwBpg0zz3SdLSYy6SNArMRZJGgblI0pQtiJFPVfVQkouALcAyYENV7ZznbklaYsxFkkaBuUjSKDAXSToYC6L4BFBVm4HN892PWbQghp6OOL/DmfM7PEjmIg3hdzhzfocHyVykIfwOZ87v8CCZizSE3+HMLcrvMFUHzAknSZIkSZIkzYqFMueTJEmSJEmSFiCLTz1LUkneNvD+t5JcOo9dWhDS+XySswdiL0vyyfns1zAz/Rsn+bkkFz9GmxVJXjGDbk5ZkhcnOWkuPqt93lOTfHiuPm+pMhdNj7nogDbmIs2IuWh6zEUHtDEXacbMRwfPXHRAG3PRQbD41L8HgZ9PctR8d2Qhqe560F8F3p7k8Ul+ELgcuHB+ezbUjP7GVbWpqq54jGYrgINKbEmWTac/wIuBWU1sk/Wlqu6pqpfO5udpKHPRNJiLDrACc5Fmxlw0DeaiA6zAXKSZMx8dJHPRAVZgLpoyi0/9e4huwrDX778gyb9Icn2SHe35hLnv3uiqqluBPwd+G7gEuLaq/iHJ2iQ3JNme5D1JfiDJIUnel+SWJLcmee0cdnVGf+Mkr0ryR+311UneleRvk9yZZPwf/BXAT7V9fn2SZUn+c5Ib27Zf09Y/PclnknwAuKVV429PclWSnUk+leQJre3TknwyyU1J/jrJjyX5SeDngP/cPutp+/X13Pb9finJ51psqn15a5J/P7CtS5O8ofXx1oFt/UH7O+5I8ust/hNJ/qr1dUuSY2byB1uizEXTZC4yF5mLZpW5aJrMReYic9GsMx9Ng7nIXDTtXFRVPnp8AA8A/xy4C3gy8FvApW3ZnwNr2+tfBj423/0dtQfwg8CXgVuAw4BnAR8DDmnL19NVm08F/mJgvcMXyt8YeBXwR+311cCf0hWGTwJ2tfjpwCcG1lkH/E57fRiwDTixtfufwIlt2Qq6xLuqvb8O+KX2+npgZXt9KvCXA3146QT7egtw7OB3fBB9ORn4q4Ft3Qac0Pp4a4v9GvCRgb/vkcChwN8Cy1vs5XS38p33/z4X0sNcNOPvz1xU5iJz0fz/d7rUH+Yic5G5aHT+W13KD3ORuWg6uegQ1Luq+laSa4HXAv9rYNFzgZ9vr98H/Ke57tuoq6r/meRDwANV9WCSFwLPAbYlAXgCcDewBfjRJO+ku93rp+a4n7P5N/5YVX0PuC3JUyZocwbw4wNV9ycDK4HvAjdU1VcG2n6lqra31zcBK5I8EfhJ4E/b9whdUnosfwNcneQ64KMH05eq+vskRyd5KrAcuL+qvppkxcD2Xwj816p6qK2zL8mz6P6HtrX1dRmwZwp91X7MRdNnLjIXmYtmj7lo+sxF5iJz0ewyH02PuchcNJ1cZPFp7vwX4GbgTyZpU3PUl4Xme+0BELqK6u/u3yjJjwNn0yWXX6Cr9s6l2fobPzjwOhO0CfDrVbXlUcHkdLpK9kTbe5jufwY/AHyjqlZNoT/fV1W/muRU4GeA7UlWHWRfPgy8FPhhYOOQjwgHfkcBdlbVcw+mr5qQuWj6zEUHMhdpusxF02cuOpC5SDNhPpoec9GBzEWTcM6nOVJV++iG010wEP5bYE17/YvA5+e6XwvQp4GXpU0cl+SHkpyQZDmQqvpTumuPnz3XHev5b/xt4EkD77cAv5bkUIAkT0834d9U+/ot4CtJzm3rJ8m/nuCzvi/J06rqi1X1fwJfB44/yL5spPs+XkqX5Pb3KeBXkxzStnUk3ZDe5Ume22KHJnnmVPdVj2YumjXmoo65SNNiLpo15qKOuUjTZj6aFeaijrloEhaf5tbbgMHZ9l8LvDrJDuB84DfmpVcLSFXdAvwe8On2vX0KeArdP7DPJdkOXAW8aZ662NffeAfwULpJ5F4P/DHd9bg3p5sI7r9x8CMZfxG4IMmXgJ3A6hbfCPyHJH+f/Sazo5vk7pb2mZ8DvnQwfamqnXRJ82tVNWxY5h8DXwV2tH69oqq+S5cI39pi2+mGo2r6zEUzZC4yF2Eumg3mohkyF5mLMBfNFvPRDJiLzEVMIRelTQ4lSZIkSZIkzTpHPkmSJEmSJKk3Fp8kSZIkSZLUG4tPkiRJkiRJ6o3FJ0mSJEmSJPXG4pMkSZIkSZJ6Y/FJB0jycJLtSXa220b+ZpJp/beSZCzJu6a57meTfLn14W+S/OhBrv+qJE+d5mevSPKKgffT3g9J/UryQy1nbU/yP5J8beD94w5iO29J8roJlv2fLSfuaLe4fc7s7cHBaTn58fP1+ZImluT/GMgV25OcmuR1Sf7ZPPRlc5LDp7HemQM59IF2LLY9yZ8m+cckT96v/ceSvGz2ei5pIoshx7R1T09SSS4YiJ3cYr81zW3+cZKTprOu5kaqar77oBGT5IGqemJ7fTTwAeBvquqSOe7HZ4HfqqptSdYBP1tVP7dfm2VV9fBjrT+Nzz69rfuzB91xSfMmyaXAA1X1B9NY9y3A16vqv+wX/yngPwLPr6rvJlkOHFJVe2ajzwfZx2XAfweeVVXfmOvPlzSxJM8F3g6cXlUPJjkKeBzwt8BYVX19yDoTHseMgv2PpZJ8EPhkVV3T3j8Z+AfghKr6zrx1VFoCFlOOaeda7wL+R1Wd0WJvBc4E/q/pHMdp9DnySZOqqvuAdcBF6SxL8p+T3Ngq7q8BSPKhJOeMr5fk6iS/0Kran2ixJyb5kyS3tHV/ocXPSPJ3SW5uv6o9cUhXPgf8SGt/VxuF8Hng3CSrknyhbfPPkhyR5KXAGPD+9qvAE5L8RJK/SnJTki1Jjmnb+5Ekn043wurmJE8DrgB+qq37+v3248j2K9+O9rk/3uKXJtmQbsTWnUle28sfRdKUJVmb5Ib2b/k9aaM4k/xM+/f+pSSfGljlX7U8cWeSC1vsGGBvVX0XoKr2jheekuwe/9UvyWlJPt1evyXJNUk+k+SOJL/c4i9ssY8luS3Ju5OkLfullh9vTfL7LXZIkm+07d0A/O/A0cBfj3+WpJFxDF0B+0GAdiL4UuCpwGeSfAa6H/mSvDnJF4HnTnJ88ivteOtLST6SNrKhHWNd2XLJnUn+bTv+uD3J1eOdacdLR6UbzX17kqvSjZj4VJIntDbPacczf5fu+O7Wx9jHDwJrBt6/hK4YZeFJ6t9iyzFfBR6f5CntWOgs4C8Gtj/sHO8Z7XhovM2KJDva688mGWuvh55fJrmiHX/tSGKBa45ZfNJjqqo76f5bORq4APhmVT0HeA7wK0lOBDYCLwdId5nLC4DN+23qd9u6/6qqfhz4y3QV+98BXlhVzwa2Ab85pBv/Drhl4P0/VdW/qaqNwLXAb7dt3gJcUlUfbtv6xapaBTwE/CHw0qr6CWADcHnb1vuBd1fVvwZ+EtgDXAz8dVWtqqp37NeX3wP+vn3em9rnj/sxuor9KcAlSQ6d4GuV1LMkz6I7MfrJlgcOAdYk+WHgSuAl7d/94InU04EXAacBb0430uiTwNPSXXry7nQjoabiXwFnA89r23pKi58KvK4tfwawOslxwFuAnwZOBp6XZHzk5ZOBm6vqlKr6j8B9wE9V1QsP9juR1KtPAccn+X/TFbv/bVW9C7gH+Omq+unW7geBW6vqVOCLTHx88p1g2X4AACAASURBVNGqek7LU7fTHYONOwJ4PvB64M+BdwDPpCugrxrSt5V0xzrPBL4B/EKL/wnwq1X1XGAqoyM+CfxEkh9q79fQFaQk9W8x5pgPA+fSnYPdDDw4sGzYOd7twOOS/MvW5uXAdYMbnOj8MsmRdMeFz2zbfMuQ/qhHh8x3B7RgpD2fAfx4upFF0J0UraSrUr8ryWF0VevPVdX/6orY3/dCBk7yqur+dnJ1EvD/s3f30X5V9b3v3x8BH1o8BmRrkcAJQ2Mr2hrtLnDLOR0UFAL1FtqrFttqtIymD6HVXnsqOE4LPnAuvadKta30RIkEhhqoDyXHUmmKUofnFCEoIg/1kiKVSEpSg6i1Yonf+8eaG3/s/PbO3sle+/H9GuM3fmt911zrN9fOzty/9V1zzfm/WtknAn8/sM8HkvwbcB/wWwPxq+Gx7t7LqurvWnwj8BdD6v/DwAuALe1zDgJ2JHkqcFRVfazV6TvtuJP9LP4TrUGtqk+mG29mbPyDv2p3Ix5JshN4JrB9soNJ6s1L6JLkW9v/6acA9wP/Bnyqqv4JoKp2D+zz8dbDaWeS3cBIVf1zkhcD/5kuOfThJL9bVVft4/P/srUp30ny6VaX7wA3VdV9AEk20bUpBwGfHOsyn+SDwE/RXeh9F/jYgf0oJPWtqr6V5Mf5fltxdZLzhxTdA3ykLQ/9ftK2vSDd48DLgEOB6weO8T+rqpJ8EXiwqr4IkOROYAVw27jP/HJVjcVuBVak67X51Kr63y3+QWDS4Qbao8ebgZcn+Qiwiu6CWFLPFmkbcw3ddd2P0CWyf7J9zmTXeNcAr6R7UuUX2mvQiQy/vvwG3few9yX5K+DjaFaZfNI+tczyHrq77QF+q6quH1LuRrpeP7/A8LtgAcYPMhZgS1W9aoKP/6UJxmz616nV/nGfc2fLun8/mPyHaR5n7FjjjZ3XYLZ+D/4fk+ZSgA1V9fuPCyY/z95t0Zih/4er6lHgU3Td2u+ia+euoutVOdaLePwg4OM/oyaJT5bx/rdygEZpQWhjq9wI3Ngu2tYMKfadgTFYhn4/aa4Azq6qLyR5LXDywLaxtup7PL7d+h7Dv3uMb9uewuTtzmQ+RNerIMC1VfXv+3kcSdO02NqYdoPv3+l6nb+elnzah6uBv0jy0e4Qdc+47RNeXyY5nu4JnXOA8+h6d2mW+NidJpVuYN0/B/60XfxcD/zG2ONkSZ6b5Adb8U3A6+iy8Xslp+jujJ03cOzDgJvoHi8ZG8/pB5I8d6r1q6qHgYcGHoN5NTCWIf8m8NS2/CVgJN1AfSQ5JMnzq+obwPYkZ7f4k9I97zy473ifBn6plT+Z7tnrb0y1zpJmzd8Cr2zdr8dmxTsG+F/AKUn+Y4sfPtlB2vgCzxkIvZBu0G/oemX+eFv+v3i8s1ubcgRduziWSD8xyTHtkb5XAp+hawt/utXxYLovRX/HcJO1T5LmSJIfTrJyILSKrq2Y7P/s0O8nbdtT6XppH0L73jGTquoh4JtJTmyhcyYrP+BTdL3e1+Ejd9KsWcRtzB/QPV732GN5k13jVdU/0iW4fp/2NMw4Q68v04379LSquo5u+INhjw+qR/bK0DBPSXIbcAjdXf2r6GZWAHgfXVfLz6Xrx7gLOLtt+xu6Z3M3jw3MO87bgT9LN9DcHuAtVfXRlmn/UHtkD7q7af/fNOq7BvjzljS6ly4BBl02/8/bY3v/B92AfO9u3TgPBv4YuJOuMfsfSd4K/Dvdc8e3A48m+UI7zucHPu8i4P3pBrf7NsPvOEiaY1X1xSRvAf423UDj/0437sAtSX4DuLa1Yw/Qjc00kUP5ftuxh+6L3Nq27SLgvUn+Gbh53H630D2SfDTdOAUPJvlRullp3kE3dsKNdG1mJfmDth667u5/1RJR461v53S/4z5J88qhwJ+0R00eBbbRtRWvAv46yY6BMVmAxx5jm+j7ye/TjdfyT3TjnfSRdD6Xrg37V7r25+F97VBV32uP3L2C7oacpNmxKNuYgcfyxpvoGg+6pNN/B44dcrxdE1xffpPuu9+T6b5r/c7+nJD2X+zJL0nSzGpjKPxLVf3xuPhLgPOq6uzhe0rS7ElyaFV9qy2fDxxZVa+f42pJWiRsYzTInk+SJEnS0vQzSS6guyb4J+C1c1sdSYuMbYweY88nSZIkSZIk9cYBxyVJkiRJktQbk0+SJEmSJEnqjcknSZIkSZIk9cbkkyRJkiRJknpj8kmSJEmSJEm9MfkkSZIkSZKk3ph8kiRJkiRJUm9MPkmSJEmSJKk3Jp8kSZIkSZLUG5NPkiRJkiRJ6o3JJ0mSJEmSJPXG5JMkSZIkSZJ6Y/JJkiRJkiRJvTH5JEmSJEmSpN6YfJIkSZIkSVJvDp7rCvThiCOOqBUrVsx1NSQdoFtvvfVfqmpkrutxIGyPpIXPtkjSfGBbJGk+2N+2qPfkU5KDgK3AV6vqZUmOBTYBhwOfA15dVd9N8iTgSuDHga8Bv1BV97VjXACcC+wBfruqrp/sM1esWMHWrVv7OiVJsyTJP811HQ6U7ZG08NkWSZoPbIskzQf72xbNxmN3rwfuHlj/Q+DSqloJPESXVKK9P1RVzwEubeVIchxwDvB8YDXwnpbQkiRJkiRJ0jzXa/IpyXLgZ4D3tfUApwAfbkU2Ame35bPaOm37qa38WcCmqnqkqr4MbAOO77PekiRJkiRJmhl993z6Y+D3gO+19acDX6+qR9v6duCotnwUcD9A2/5wK/9YfMg+j0myNsnWJFt37do10+chSZIkSZKk/dBb8inJy4CdVXXrYHhI0drHtsn2+X6gan1VjVbV6MjIgh6HT5IkSZIkadHoc8Dxk4CfTXIm8GTgP9D1hFqW5ODWu2k58EArvx04Gtie5GDgacDugfiYwX0kSZIkSZI0j/XW86mqLqiq5VW1gm7A8E9W1S8BnwJe3oqtAa5ty5vbOm37J6uqWvycJE9qM+WtBG7uq96SJEmSJEmaOX32fJrIm4BNSd4OfB64vMUvB65Kso2ux9M5AFV1Z5JrgLuAR4F1VbVn9qstSZIkSZKk6ZqV5FNV3Qjc2JbvZchsdVX1HeAVE+x/MXBxfzWUJEmSJElSH/qe7U6SJEmSJElLmMknSZIkSZIk9WYuxnyaF7aO7vXk35IyutUx26X5aKm3TfOB7aOWkoXe5vj/VVrcFnobtRjYzmqm2PNJkiRJkiRJvTH5JEmSJEmSpN6YfJIkSZKkJSTJfUm+mOS2JFtb7PAkW5Lc094Pa/EkeXeSbUluT/LigeOsaeXvSbJmrs5H0vxn8kmSJEmSlp6frqpVVTXa1s8HbqiqlcANbR3gDGBle60FLoMuWQVcCJwAHA9cOJawkqTxTD5JWhKSHJTk80k+3taPTfLZdqfu6iRPbPEntfVtbfuKgWNc0OJfSnL63JyJJElSL84CNrbljcDZA/Erq3MTsCzJkcDpwJaq2l1VDwFbgNWzXWlJC4PJJ0lLxeuBuwfW/xC4tN3dewg4t8XPBR6qqucAl7ZyJDkOOAd4Pt0Xq/ckOWiW6i5JkjSTCvibJLcmWdtiz6yqHQDt/RktfhRw/8C+21tsorgk7cXkk6RFL8ly4GeA97X1AKcAH25Fxt/dG7vr92Hg1Fb+LGBTVT1SVV8GttF1MZckSVpoTqqqF9M9UrcuyU9NUjZDYjVJ/PE7J2uTbE2yddeuXftXW0kLnsknSUvBHwO/B3yvrT8d+HpVPdrWB+/UPXYXr21/uJX37p4kSVoUquqB9r4T+BjdDbUH2+N0tPedrfh24OiB3ZcDD0wSH/9Z66tqtKpGR0ZGZvpUJC0QJp8kLWpJXgbsrKpbB8NDitY+tk3p7l77TO/wSZKkeSnJDyZ56tgycBpwB7AZGJuxbg1wbVveDLymzXp3IvBweyzveuC0JIe1gcZPazFJ2svBc10BSerZScDPJjkTeDLwH+h6Qi1LcnDr3TR4p27sLt72JAcDTwN2M8W7e9Dd4QPWA4yOjg5NUEmSJM2RZwIf60YV4GDgg1X1iSS3ANckORf4CvCKVv464Ey6IQe+DbwOoKp2J3kbcEsr99aq2j17pyFpITH5JGlRq6oLgAsAkpwM/G5V/VKSvwBeDmxi77t7a4C/b9s/WVWVZDPwwSTvBJ5FN93wzbN5LpIkSQeqqu4FXjgk/jXg1CHxAtZNcKwNwIaZrqOkxcfkk6Sl6k3ApiRvBz4PXN7ilwNXJdlG1+PpHICqujPJNcBdwKPAuqraM/vVliRJkqSFxeSTpCWjqm4EbmzL9zJktrqq+g7f72Y+ftvFwMX91VCSJEmSFh8HHJckSZIkSVJvTD5JkiRJkiSpNyafJEmSJEmS1BuTT5IkSZIkSepNb8mnJE9OcnOSLyS5M8lbWvyKJF9Oclt7rWrxJHl3km1Jbk/y4oFjrUlyT3ut6avOkiRJkiRJmll9znb3CHBKVX0rySHAZ5L8ddv2X6rqw+PKnwGsbK8TgMuAE5IcDlwIjAIF3Jpkc1U91GPdJUmSJEmSNAN66/lUnW+11UPaqybZ5SzgyrbfTcCyJEcCpwNbqmp3SzhtAVb3VW9JkiRJkiTNnF7HfEpyUJLbgJ10CaTPtk0Xt0frLk3ypBY7Crh/YPftLTZRfPxnrU2yNcnWXbt2zfi5SJIkSZIkafp6TT5V1Z6qWgUsB45P8gLgAuBHgJ8ADgfe1Ipn2CEmiY//rPVVNVpVoyMjIzNSf0mSJEmSJB2YWZntrqq+DtwIrK6qHe3RukeA9wPHt2LbgaMHdlsOPDBJXJIkSZIkSfNcn7PdjSRZ1pafArwE+Ic2jhNJApwN3NF22Qy8ps16dyLwcFXtAK4HTktyWJLDgNNaTJIkSZIkSfNcn7PdHQlsTHIQXZLrmqr6eJJPJhmhe5zuNuDXW/nrgDOBbcC3gdcBVNXuJG8Dbmnl3lpVu3ustyRJkiRJkmZIb8mnqrodeNGQ+CkTlC9g3QTbNgAbZrSCkiRJkiRJ6t2sjPkkSZIkSZKkpcnkkyRJkiRJknpj8kmSJEmSJEm9MfkkSZIkSZKk3ph8kiRJ6lmSo5N8KsndSe5M8voWPzzJliT3tPfDWjxJ3p1kW5Lbk7x44FhrWvl7kqyZq3OSJEmaKpNPkha1JE9OcnOSL7QLvre0+BVJvpzktvZa1eJe8Enqw6PAG6vqecCJwLokxwHnAzdU1UrghrYOcAawsr3WApdBl6wCLgROAI4HLhxLWEmSJM1XB891BSSpZ48Ap1TVt5IcAnwmyV+3bf+lqj48rvzgBd8JdBd8Jwxc8I0CBdyaZHNVPTQrZyFpQauqHcCOtvzNJHcDRwFnASe3YhuBG4E3tfiVVVXATUmWJTmyld1SVbsBkmwBVgMfmrWTkSRJmiZ7Pkla1KrzrbZ6SHvVJLs8dsFXVTcBYxd8p9Mu+FrCaeyCT5KmJckK4EXAZ4FntsTUWILqGa3YUcD9A7ttb7GJ4sM+Z22SrUm27tq1ayZPQZIkaVpMPkla9JIclOQ2YCddAumzbdPF7dG6S5M8qcUO+IJPkiaS5FDgI8AbquobkxUdEqtJ4nsHq9ZX1WhVjY6MjEy/spIkSTPE5JOkRa+q9lTVKmA5cHySFwAXAD8C/ARwON1jLjADF3z2NpA0THv09yPAB6rqoy38YOtdSXvf2eLbgaMHdl8OPDBJXJIkad4y+SRpyaiqr9ONp7K6qna0R+seAd5PN3AvzMAFn70NJI2XJMDlwN1V9c6BTZuBsQkM1gDXDsRf0yZBOBF4uD2Wdz1wWpLD2kDjp7WYJEnSvGXySdKilmQkybK2/BTgJcA/DPQ0CHA2cEfbxQs+SX04CXg1cMrALJtnApcAL01yD/DStg5wHXAvsA14L/CbAG2g8bcBt7TXW8cGH5ckSZqvnO1O0mJ3JLAxyUF0CfdrqurjST6ZZITucbrbgF9v5a8DzqS74Ps28DroLviSjF3wgRd8kqahqj7D8Md3AU4dUr6AdRMcawOwYeZqJ0mS1C+TT5IWtaq6nW5WqfHxUyYo7wWfJEmSJM0gH7uTJEmSJElSb0w+SZIkSZIkqTcmnyRJkiRJktQbk0+SJEmSJEnqjcknSZIkSZIk9cbkkyRJkiRJknrTW/IpyZOT3JzkC0nuTPKWFj82yWeT3JPk6iRPbPEntfVtbfuKgWNd0OJfSnJ6X3WWJEmSpMUuyUFJPp/k423dazRJveqz59MjwClV9UJgFbA6yYnAHwKXVtVK4CHg3Fb+XOChqnoOcGkrR5LjgHOA5wOrgfckOajHekuSJEnSYvZ64O6Bda/RJPWqt+RTdb7VVg9prwJOAT7c4huBs9vyWW2dtv3UJGnxTVX1SFV9GdgGHN9XvSVJkiRpsUqyHPgZ4H1tPXiNJqlnvY751Lpz3gbsBLYA/wh8vaoebUW2A0e15aOA+wHa9oeBpw/Gh+wjSZIkSZq6PwZ+D/heW386XqNJ6lmvyaeq2lNVq4DldJnw5w0r1t4zwbaJ4o+TZG2SrUm27tq1a3+rLEmSJEmLUpKXATur6tbB8JCiM3KN1j7T6zRJszPbXVV9HbgROBFYluTgtmk58EBb3g4cDdC2Pw3YPRgfss/gZ6yvqtGqGh0ZGenjNCRJkiRpITsJ+Nkk9wGb6B63+2N6ukYDr9Mkdfqc7W4kybK2/BTgJXSD2n0KeHkrtga4ti1vbuu07Z+sqmrxc9pMC8cCK4Gb+6q3JEmSJC1GVXVBVS2vqhV0A4Z/sqp+Ca/RJPXs4H0X2W9HAhvbrAdPAK6pqo8nuQvYlOTtwOeBy1v5y4Grkmyjy6afA1BVdya5BrgLeBRYV1V7eqy3JEmSJC0lb8JrNEk96i35VFW3Ay8aEr+XITMhVNV3gFdMcKyLgYtnuo6SJEmStBRV1Y10Q6N4jSapd7My5pMkSZIkSZKWJpNPkiRJkiRJ6o3JJ0mSJEmSJPXG5JOkRS3Jk5PcnOQLSe5M8pYWPzbJZ5Pck+TqJE9s8Se19W1t+4qBY13Q4l9KcvrcnJEkSZIkLSwmnyQtdo8Ap1TVC4FVwOokJwJ/CFxaVSuBh4BzW/lzgYeq6jnApa0cSY6jm+Hl+cBq4D1tNk9JkiRJ0iRMPkla1KrzrbZ6SHsVcArw4RbfCJzdls9q67TtpyZJi2+qqkeq6svANobMCiNJkiRJejyTT5IWvSQHJbkN2AlsAf4R+HpVPdqKbAeOastHAfcDtO0PA08fjA/ZR5IkSZI0AZNPkha9qtpTVauA5XS9lZ43rFh7zwTbJorvJcnaJFuTbN21a9f+VFmSJEmSFg2TT5KWjKr6OnAjcCKwLMnBbdNy4IG2vB04GqBtfxqwezA+ZJ/xn7O+qkaranRkZGSmT0OSJEmSFhSTT5IWtSQjSZa15acALwHuBj4FvLwVWwNc25Y3t3Xa9k9WVbX4OW02vGOBlcDNs3MWkiRJkrRwHbzvIpK0oB0JbGwz0z0BuKaqPp7kLmBTkrcDnwcub+UvB65Kso2ux9M5AFV1Z5JrgLuAR4F1VbVnls9FkiRJkhYck0+SFrWquh140ZD4vQyZra6qvgO8YoJjXQxcPNN1lCRJkqTFzMfuJEmSJEmS1BuTT5IkSZIkSeqNj91JkjSLVv/+1XNdhSXvE2/7hbmugiRJ0pJi8kmSJElLwmJI/po8lSQtRD52J0mSJEmSpN6YfJIkSZIkSVJvTD5JkiRJkiSpNyafJEmSJEmS1Jvekk9Jjk7yqSR3J7kzyetb/KIkX01yW3udObDPBUm2JflSktMH4qtbbFuS8/uqsyRJkiRJkmZWn7PdPQq8sao+l+SpwK1JtrRtl1bVHw0WTnIccA7wfOBZwN8meW7b/GfAS4HtwC1JNlfVXT3WXZIkSZIkSTOgt+RTVe0AdrTlbya5Gzhqkl3OAjZV1SPAl5NsA45v27ZV1b0ASTa1siafJEnSgpFkA/AyYGdVvaDFLgJ+FdjVir25qq5r2y4AzgX2AL9dVde3+GrgXcBBwPuq6pLZPA8tLL941TlzXYUD9sFXb5rrKkiSDtCsjPmUZAXwIuCzLXRektuTbEhyWIsdBdw/sNv2FpsoLkmStJBcAaweEr+0qla111jiabBH+GrgPUkOSnIQXY/wM4DjgFe1spIkSfNWn4/dAZDkUOAjwBuq6htJLgPeBlR7fwfwK0CG7F4MT5DVkM9ZC6wFOOaYY2am8pIkSTOkqj7dbshNhT3Cpf30rl/8H3NdhQPy+g/+2lxXQZJmXK89n5IcQpd4+kBVfRSgqh6sqj1V9T3gvXz/i9R24OiB3ZcDD0wSf5yqWl9Vo1U1OjIyMvMnI0mS1A97hEuSpEWtz9nuAlwO3F1V7xyIHzlQ7OeAO9ryZuCcJE9KciywErgZuAVYmeTYJE+k64K+ua96S5IkzaLLgGcDq+jGynxHi0/UI3yi+F6SrE2yNcnWXbt2DSsiSZI0K/p87O4k4NXAF5Pc1mJvphubYBXdF6X7gF8DqKo7k1xD1238UWBdVe0BSHIecD3dwJobqurOHustSZI0K6rqwbHlJO8FPt5WJ+v5vc8e4e3Y64H1AKOjo0MTVJIkSbOhz9nuPsPwu3PXTbLPxcDFQ+LXTbafJEnSQpTkyDZDMOzdI/yDSd4JPIvv9wgPrUc48FW6HuG/OLu1liRJmp7eBxyXJEkSJPkQcDJwRJLtwIXAyfYIlyRJi53JJ0mLWpKjgSuBHwK+B6yvqncluQj4VWBsIJQ3D0xxfgFwLrAH+O2qur7FVwPvorvge19VXTKb5yJpYauqVw0JXz5JeXuES5KkRcHkk6TF7lHgjVX1uSRPBW5NsqVtu7Sq/miwcJLj6B5jeT7doy5/m+S5bfOfAS+lG4vlliSbq8rpzSVJkiRpEiafJC1qbSyVHW35m0nuZvJpyc8CNlXVI8CXk2wDjm/btlXVvQBJNrWyJp8kSZIkaRJPmOsKSNJsSbICeBHw2RY6L8ntSTYkOazFjgLuH9hte4tNFJckSZIkTcLkk6QlIcmhwEeAN1TVN4DLgGcDq+h6Rr1jrOiQ3WuS+LDPWptka5Ktu3btGlZEkiRpTiR5cpKbk3whyZ1J3tLixyb5bJJ7klyd5Ikt/qS2vq1tXzFwrAta/EtJTp+bM5K0EJh8krToJTmELvH0gar6KEBVPVhVe6rqe8B7+f6jdduBowd2Xw48MEl8L1W1vqpGq2p0ZGRkZk9GkiTpwDwCnFJVL6S7Cbc6yYnAH9KNh7kSeIhu8hXa+0NV9Rzg0lZu/DiZq4H3JDloVs9E0oJh8knSopYkdLNJ3V1V7xyIHzlQ7OeAO9ryZuCcdpfvWGAlcDNwC7Cy3RV8It2Xrc2zcQ6SJEkzpTrfaquHtFcBpwAfbvGNwNlt+ay2Ttt+avt+9dg4mVX1ZWBwnExJehwHHJe02J0EvBr4YpLbWuzNwKuSrKL7snUf8GsAVXVnkmvoBhJ/FFhXVXsAkpwHXA8cBGyoqjtn80QkSZJmQuuhdCvwHLrZfP8R+HpVPdqKDI5t+di4l1X1aJKHgae3+E0Dh3U8TEkTMvkkaVGrqs8wfLym6ybZ52Lg4iHx6ybbT5IkaSFoN9ZWJVkGfAx43rBi7f2AxsNMshZYC3DMMcfsV30lLXxTeuwuyQ1TiUlSn2yLJM0HtkWS5oOZaIuq6uvAjcCJwLIkY50TBse2fGzcy7b9acBupjgepmNhSoJ9JJ/aTAiHA0ckOSzJ4e21AnjWbFRQkmyLJM0HtkWS5oMDbYuSjLQeTyR5CvAS4G7gU8DLW7E1wLVteXNbp23/ZFUVE4+TKUl72ddjd78GvIGuEbuV73et/Abds8GSNBtsiyTNB7ZFkuaDA22LjgQ2tnGfngBcU1UfT3IXsCnJ24HP003YQnu/Ksk2uh5P58Dk42RK0niTJp+q6l3Au5L8VlX9ySzVSZIex7ZI0nxgWyRpPjjQtqiqbgdeNCR+L0Nmq6uq7wCvmOBYQ8fJlKTxpjTgeFX9SZKfBFYM7lNVV/ZUL0nai22RpPnAtkjSfGBbJGkhmVLyKclVwLOB24CxrpQF2LBJmjW2RZLmA9siSfOBbZGkhWRKySdgFDiuDSwnSXPFtkjSfGBbJGk+sC2StGBMOtvdgDuAH+qzIpI0BbZFkuYD2yJJ84FtkaQFY6o9n44A7kpyM/DIWLCqfraXWknScLZFkuYD2yJJ84FtkaQFY6rJp4v6rIQkTdFFc10BScK2SNL8cNFcV0CSpmqqs9393XQPnORousHufgj4HrC+qt6V5HDgarpZGe4DXllVDyUJ8C7gTODbwGur6nPtWGuA/9oO/faq2jjd+kha+PanLZKkmWZbJGk+sC2StJBMacynJN9M8o32+k6SPUm+sY/dHgXeWFXPA04E1iU5DjgfuKGqVgI3tHWAM4CV7bUWuKx99uHAhcAJwPHAhUkOm9ZZSloU9rMtkqQZZVskaT6wLZK0kEy159NTB9eTnE2XCJpsnx3Ajrb8zSR3A0cBZwEnt2IbgRuBN7X4lW22hpuSLEtyZCu7pap2t8/eAqwGPjSVuktaPPanLZKkmWZbJGk+sC2StJBMdba7x6mqvwROmWr5JCuAFwGfBZ7ZElNjCapntGJHAfcP7La9xSaKS1riptsWSVIfbIskzQe2RZLmsyn1fEry8wOrTwBGgZrivocCHwHeUFXf6IZ2Gl50SKwmiY//nLV0j+txzDHHTKVqkhaYA2mLJGmm2BZJmg9siyQtJFOd7e7/HFh+lG6g8LP2tVOSQ+gSTx+oqo+28INJjqyqHe2xup0tvh04emD35cADLX7yuPiN4z+rqtYD6wFGR0dtdKXFab/aIkmaYbZFkuYD2yJJC8ZUx3x63XQP3Gavuxy4u6reObBpM7AGuKS9XzsQPy/JJrrBxR9uCarrgf82MMj4acAF062PpIVvf9oiSZpptkWS5gPbIkkLyVRnu1ueNkgGuQAAIABJREFU5GNJdiZ5MMlHkizfx24nAa8GTklyW3udSZd0emmSe4CXtnWA64B7gW3Ae4HfBGgDjb8NuKW93jo2+LikpWU/2yJJmlG2RZLmA9siSQvJVAccfz9dz6Rn0Q32/T9bbEJV9ZmqSlX9WFWtaq/rquprVXVqVa1s77tb+aqqdVX17Kr60araOnCsDVX1nPaa9HMlLWrTbouSHJ3kU0nuTnJnkte3+OFJtiS5p70f1uJJ8u4k25LcnuTFA8da08rfk2RNb2cpab6bdlskST2wLZK0YEw1+TRSVe+vqkfb6wpgpMd6SdIw+9MWPQq8saqeB5wIrEtyHHA+cENVrQRuaOsAZwAr22stcBl0ySrgQrrHgo8HLhx4HFjS0uL3IknzgW2RpAVjqsmnf0nyy0kOaq9fBr7WZ8UkaYhpt0VVtaOqPteWvwncTXd38CxgYyu2ETi7LZ8FXNl6Y94ELGuTI5wObKmq3VX1ELAFWD3TJyhpQfB7kaT5wLZI0oIx1eTTrwCvBP4Z2AG8HHCAO0mz7YDaoiQrgBcBnwWeWVU7oEtQAc9oxY4C7h/YbXuLTRSXtPT4vUjSfGBbJGnBmNJsd3QDfq9pd/vHHj/5I7oGT5Jmy363RUkOBT4CvKGqvtFNyDm86JBYTRIf9llr6R7Z45hjjtlX1SQtPH4vkjQf2BZJWjCm2vPpx8YaNXhsBroX9VMlSZrQfrVFSQ6hSzx9oKo+2sIPtsfpaO87W3w7cPTA7suBByaJ76Wq1lfVaFWNjow49IK0CPm9SNJ8YFskacGYavLpCYMD67as+lR7TUnSTJl2W5Sui9PlwN1V9c6BTZuBsRnr1gDXDsRf02a9OxF4uD2Wdz1wWpLDWh1OazFJS4/fiyTNB7ZFkhaMqTZO7wD+d5IP0z1m8krg4t5qJUnD7U9bdBLwauCLSW5rsTcDlwDXJDkX+ArwirbtOuBMYBvwbdrYCVW1O8nbgFtaube2O4ySlh6/F0maD2yLJC0YU0o+VdWVSbYCp9CNe/LzVXVXrzWTpHH2py2qqs8wfLwmgFOHlC9g3QTH2gBsmFalJS06fi+SNB/YFklaSKbcLbM1ZDZmkuaUbZGk+cC2SNJ8YFskaaGY6phPkiRJkiRJ0rSZfJIkSZIkSVJvTD5JkiRJkiSpN07FKc2RX7zqnLmuwpz74Ks3zXUVJGnWJNkAvAzYWVUvaLHDgauBFcB9wCur6qEkAd5FN/vmt4HXVtXn2j5rgP/aDvv2qto4m+chSZI0XfZ8kiRJmh1XAKvHxc4HbqiqlcANbR3gDGBle60FLoPHklUXAicAxwMXJjms95pLkiQdAJNPkiRJs6CqPg3sHhc+CxjrubQROHsgfmV1bgKWJTkSOB3YUlW7q+ohYAt7J7QkSZLmFZNPkiRJc+eZVbUDoL0/o8WPAu4fKLe9xSaKS5IkzVsmnyRJkuafDInVJPG9D5CsTbI1ydZdu3bNaOUkSZKmw+STJEnS3HmwPU5He9/Z4tuBowfKLQcemCS+l6paX1WjVTU6MjIy4xWXJEmaKpNPkiRJc2czsKYtrwGuHYi/Jp0TgYfbY3nXA6clOawNNH5ai0mSJM1bB891BSRJkpaCJB8CTgaOSLKdbta6S4BrkpwLfAV4RSt+HXAmsA34NvA6gKraneRtwC2t3Furavwg5pIkSfNKbz2fkmxIsjPJHQOxi5J8Nclt7XXmwLYLkmxL8qUkpw/EV7fYtiTnj/8cSZKkhaCqXlVVR1bVIVW1vKour6qvVdWpVbWyve9uZauq1lXVs6vqR6tq68BxNlTVc9rr/XN3RpIWmiRHJ/lUkruT3Jnk9S1+eJItSe5p74e1eJK8u12L3Z7kxQPHWtPK35NkzUSfKUnQ72N3VzB86t9Lq2pVe10HkOQ44Bzg+W2f9yQ5KMlBwJ8BZwDHAa9qZSVJkiRJ0/Mo8Maqeh5wIrCuXV+dD9xQVSuBG9o6dNdhK9trLXAZdMkqut6bJwDHAxeOJawkaZjekk9V9Wlgqt3AzwI2VdUjVfVlui7mx7fXtqq6t6q+C2xqZSVJkiRJ01BVO6rqc235m8DdwFF011gbW7GNwNlt+SzgytYb8yZgWZsc4XRgS1XtrqqHgC0M73ggScDcDDh+XuuyuWEgO34UcP9Ame0tNlFckiRJkrSfkqwAXgR8Fnhmm9SA9v6MVszrNEkzYraTT5cBzwZWATuAd7R4hpStSeJ7SbI2ydYkW3ft2jUTdZUkSZKkRSfJocBHgDdU1TcmKzok5nWapGmb1dnuqurBseUk7wU+3la3A0cPFF0OPNCWJ4qPP/Z6YD3A6Ojo0IZPM2f1718911WYc5942y/MdRUkSZKkaUlyCF3i6QNV9dEWfjDJkVW1oz1Wt7PFJ7pO2043e+dg/MZhn+d1miSY5Z5PrSEb83PA2Ex4m4FzkjwpybF0A9rdTDeN8MokxyZ5It2g5Jtns86SFjZn3pQkSeokCXA5cHdVvXNg02ZgbMa6NcC1A/HXtFnvTgQebo/lXQ+cluSwNpTKaS0mSUP11vMpyYfosuFHJNlONxvCyUlW0XXJvA/4NYCqujPJNcBddDMwrKuqPe0459E1ZAcBG6rqzr7qLGlRugL4U+DKcfFLq+qPBgPjZt58FvC3SZ7bNv8Z8FK6O323JNlcVXf1WXFJkqQZdhLwauCLSW5rsTcDlwDXJDkX+ArwirbtOuBMugmhvg28DqCqdid5G11nAYC3VtVUJ5uStAT1lnyqqlcNCV8+SfmLgYuHxK+ja/Qkadqq6tNtQM2peGzmTeDLScZm3oQ28yZAkrGZN00+SZKkBaOqPsPw8ZoATh1SvoB1ExxrA7Bh5monaTGb1TGfJGkeOS/Ja4CtwBvbNMFHATcNlBmcuWX8jC4nzEotJUmSpEXKsYTn3myNZTzbs91J0nzQ28yb4KwukiRJkjTI5JOkJaeqHqyqPVX1PeC9fP/RuslmdJnSzJvt+OurarSqRkdGRma28pIkSZK0wJh8krTkOPOmJEmSJM0ex3yStKg586YkSZIkzS2TT5IWNWfelCRJkqS55WN3kiRJkiRJ6o3JJ0mSJEmSJPXG5JMkSZIkSZJ6Y/JJkiRJkiRJvTH5JEmSJEmSpN6YfJIkSZIkSVJvTD5JkiRJkiSpNyafJEmSJEmS1BuTT5IkSZIkSeqNySdJkiRJkiT1xuSTJEmSJEmSemPySZIkSZIkSb0x+SRJkiRJkqTemHySJEmSJElSb3pLPiXZkGRnkjsGYocn2ZLknvZ+WIsnybuTbEtye5IXD+yzppW/J8mavuorSZIkSZKkmddnz6crgNXjYucDN1TVSuCGtg5wBrCyvdYCl0GXrAIuBE4AjgcuHEtYSZIkSZIkaf7rLflUVZ8Gdo8LnwVsbMsbgbMH4ldW5yZgWZIjgdOBLVW1u6oeArawd0JLkiRJkiRJ89Rsj/n0zKraAdDen9HiRwH3D5Tb3mITxSVJkiRJkrQAzJcBxzMkVpPE9z5AsjbJ1iRbd+3aNaOVk7SwOQadJEmSJM2d2U4+Pdgep6O972zx7cDRA+WWAw9MEt9LVa2vqtGqGh0ZGZnxikta0K7AMegkSZIkaU7MdvJpMzDWW2ANcO1A/DWtx8GJwMPtsbzrgdOSHNYu8k5rMUmaMsegkyRJkqS5c3BfB07yIeBk4Igk2+l6DFwCXJPkXOArwCta8euAM4FtwLeB1wFU1e4kbwNuaeXeWlXjLyAlaX88bgy6JI5BJ0mSJEk96C35VFWvmmDTqUPKFrBuguNsADbMYNUkaTIzMgYd3SN7HHPMMTNXM0mSJElagObLgOOSNNscg06SJEmSZoHJJ0lLlWPQSZo3ktyX5ItJbkuytcWmPSunJEnSfGTySdKi18ag+3vgh5Nsb+POXQK8NMk9wEvbOnRj0N1LNwbde4HfhG4MOmBsDLpbcAw6STPvp6tqVVWNtvVpzcopSZI0X/U25pMkzReOQSdpgTqLbvIW6GblvBF4EwOzcgI3JVmW5MixSRQkSZLmG3s+SZIkzb0C/ibJrW3SAhg3Kyewr1k5JUmS5iWTT5IkSXPvpKp6Md0jdeuS/NQkZac0+2aStUm2Jtm6a9eumaqnpAUuyYYkO5PcMRCb9hhzSda08vckWTPssyRpjMknSZKkOVZVD7T3ncDHgOOZ/qyc44/pzJuShrkCWD0uNq0x5pIcDlwInEDXXl04lrCSpGFMPkmSJM2hJD+Y5Kljy3Szad7B9GfllKR9qqpPA+MnTTmLbmw52vvZA/Erq3MTsKwlw08HtlTV7qp6CNjC3gktSXqMA45LkiTNrWcCH0sC3XezD1bVJ5LcAlzTZuj8CvCKVv464Ey6WTm/Dbxu9qssaZF53BhzSfY1xpxjz0maFpNPkiRJc6iq7gVeOCT+NaY5K6ckzbCJxpib0thz0I0/R/fIHsccc8zM1UzSguJjd5IkSZK0tE13jLkpjT0Hjj8nqWPySZIkSZKWtumOMXc9cFqSw9pA46e1mCQN5WN3kiRJkrREJPkQcDJwRJLtdLPWXcI0xpirqt1J3gbc0sq9tarGD2IuSY8x+SRJkiRJS0RVvWqCTdMaY66qNgAbZrBqkhYxH7uTJEmSJElSb0w+SZIkSZIkqTcmnyRJkiRJktQbk0+SJEmSJEnqjcknSZIkSZIk9cbkkyRJkiRJknozJ8mnJPcl+WKS25JsbbHDk2xJck97P6zFk+TdSbYluT3Ji+eizpIkSZIkSZq+uez59NNVtaqqRtv6+cANVbUSuKGtA5wBrGyvtcBls15TSZIkSZIk7Zf59NjdWcDGtrwROHsgfmV1bgKWJTlyLiooafGxJ6YkSZIk9Wuukk8F/E2SW5OsbbFnVtUOgPb+jBY/Crh/YN/tLSZJM8WemJIkSZLUk4Pn6HNPqqoHkjwD2JLkHyYpmyGx2qtQl8RaC3DMMcfMTC0lLVVnASe35Y3AjcCbGOiJCdyUZFmSI8cS55IkSZKkvc1Jz6eqeqC97wQ+BhwPPDj2OF1739mKbweOHth9OfDAkGOur6rRqhodGRnps/qSFhd7YkqSJElSj2Y9+ZTkB5M8dWwZOA24A9gMrGnF1gDXtuXNwGvaWCsnAg/by0DSDDqpql5M90jduiQ/NUnZKffETLI1ydZdu3bNVD0lSZIkaUGai8fungl8LMnY53+wqj6R5BbgmiTnAl8BXtHKXwecCWwDvg28bvarLGmxGuyJmeRxPTGrasf+9sQE1gOMjo7ulZySJEmSpKVk1pNPVXUv8MIh8a8Bpw6JF7BuFqomaYlpvS+fUFXfHOiJ+Va+3xPzEvbuiXlekk3ACdgTU5IkSZL2aa4GHJek+cCemJIkSZLUM5NPkpYse2JKkiRJUv/mZLY7SZIkSZIkLQ0mnyRJkiRJktQbk0+SJEmSJEnqjcknSZIkSZIk9cbkkyRJkiRJknpj8kmSJEmSJEm9MfkkSZIkSZKk3ph8kiRJkiRJUm9MPkmSJEmSJKk3Jp8kSZIkSZLUG5NPkiRJkiRJ6o3JJ0mSJEmSJPXG5JMkSZIkSZJ6Y/JJkiRJkiRJvTH5JEmSJEmSpN6YfJIkSZIkSVJvTD5JkiRJkiSpNyafJEmSJEmS1JsFk3xKsjrJl5JsS3L+XNdH0tJkWyRpPrAtkjQf2BZJmqoFkXxKchDwZ8AZwHHAq5IcN7e1krTU2BZJmg9siyTNB7ZFkqZjQSSfgOOBbVV1b1V9F9gEnDXHdZK09NgWSZoPbIskzQe2RZKmbKEkn44C7h9Y395ikjSbbIskzQe2RZLmA9siSVN28FxXYIoyJFaPK5CsBda21W8l+VLvtTowRwD/MmefnmE/0gVnTn+Gefs5c/XRM2lOf4Yfes3V+yryH2ejHtOwz7YIFmR7NJPmtm2bCYujfezbgv533o/227Zo//X7uzI//7/2es7z8PtH7+3BFL4vzLZez/kNH/r1iTbZFi08C/rvJTBf29n5ZkH/O8/W96KFknzaDhw9sL4ceGCwQFWtB9bPZqUORJKtVTU61/VYyPwZHjh/htO2z7YIFl57NJP8nVoa/HeecwumLVqKvytL7ZyX2vnC0jznCSyYtmiu+LuyNPjvPDUL5bG7W4CVSY5N8kTgHGDzHNdJ0tJjWyRpPrAtkjQf2BZJmrIF0fOpqh5Nch5wPXAQsKGq7pzjaklaYmyLJM0HtkWS5gPbIknTsSCSTwBVdR1w3VzXYwYtya6nM8yf4YHzZzhNi7Atmmn+Ti0N/jvPsQXUFi3F35Wlds5L7XxhaZ7zUAuoLZor/q4sDf47T0Gq9hoTTpIkSZIkSZoRC2XMJ0mSJEmSJC1Aizr5lKSSXDWwfnCSXUk+vp/HW5bkNwfWT57KsZKsSPKL+/OZfUjy2iTPGli/L8kRPX7e8iTXJrknyT8meVcblFBTkOTpSW5rr39O8tWBdX+OmjXpfCbJGQOxVyb5xFzWS/1pf0ffMbD+u0kumsMqaZwkewb+JtyW5PwWvzHJtGfeSbIqyZkzXMfrkiw7wGN8axplJ/z+N9lxkowmeXdbfm2SP53GZ+5J8t0kdyT5XJKf3Ef5i5L87gTb9vlvl+QNSX5gsuPMhCS/neTuJB+Yxj4/lGRT+853V5JPJLk5yUH7WYf3JdnQln89yWva8uO+zx6IId/xn5XkwwOfs9fvQjvH30jyBzPxmX1p1ys/ObD+2M9wgvIj/l3fP/7NXJz8/jtzFnXyCfhX4AVJntLWXwp89QCOtwzYnz8SK4B5k3wCXgvMyB/rfUkS4KPAX1bVSuC5wKHAxbPx+fsjybwaC62qvlZVq6pqFfDnwKVj61X13bmu3zDz7WeomVHdc9q/DrwzyZOT/CDd/+V1c1sz9egR4Of7vEGhA/ZvA38TVlXVJQd4vFXA0OTT/rbtVXVmVX39gGo1Pfv1/a+qtlbVb+/nZ/4b3RTzJwMXAP/Pfh5nqt4A/MCwDfub5JnAbwJnVtUvTaVw+x35GHBjVT27qo4DPgf8fVXt2c86/ifgBwGq6s+r6soWfy0z9312GfCb7SLzCVX1QFW9fB/7XAZcBLznQD5zP/edjpOBx5JP436Ge6mqXcCOJCfNQt0WG/9mLkJ+/505iz35BPDXwM+05VcBHxrbkOTwJH+Z5PYkNyX5sRa/KMmGdufp3iRjX0QuAZ7d7iz+9xY7NMmHk/xDkg+0ZMt4lwD/ue33O+2X9v1Jvpjk80l+eljF2+dfmuTT7a7TTyT5aLoeRG8fKPd/tzttdyR5Q4utaPu8N8mdSf4myVOSvBwYBT7Q6jP2xey32p26Lyb5kf36SQ93CvCdqno/QPvi8TvAr7Q7dq9t5/SJdl7/78B5nZbk71u9/iLJoeN+Ps9O8rmB9ZVJbm3LP57k75LcmuT6JEe2+K8muSXJF5J8JMkPtPgVSd6Z5FPAH87g+fcmyZvH7pgl+ZMkf9OWT09yRVv+5fZvekeS/zbkGKcn+YuB9TOSXDOwPPbzv7o1tCR5S/sZ3pHkz8d+59PdEbg4yaeB8/o+f/3/7Z15vF7Tuce/v0QkEXMo2iKGkouaQ1NBotp7uWbaFFfRVm97eynqqg+qMbQfQ82uq+GiXDPhBlUkMhEiIsNJjNdUMVaMiQiS5/7xPDtn5837nvOeOENyPN/P5/28e6+9pr322ms961nPWrtjMLPpwN3Ab4DfAdeZ2QuSDpfPbE+RdLmkLnJrg+tLdXBJB3VJx/E5vonmcZUXJK0vaWT0oSMlrdf+2UvqoVZ/GnLF+OgTH5e0CnAGMDje5cEhEw2NPua6WjJMM/35QgtrST+KOjNVJeukkt8VS/FPk3Rg6drvI9xjktYKtzWjP58Yv2LAPAK4V1IDcCPQUIpnh7jfOXLLnE3DvapFe6005JbJD0iaDHQHChlwZeC90v1MlvSxpLmSpoafVYFTJb0ut5h6Ro0y2VrAtfEMnpX0+4jrn+IZvgasB4wCDo9rsyXdLel9YFdJp5X66qGlvnq0pHPi/p+TtHO4b15qw6fJZaorgA2B4XL5tZdcPp4Y97Rv6dnfJuluYCLwmZldUSrCgcCFUb5jJb0JzI5nfEGk+5SkdxVKKbncMUvSDGAj4HuRt7PkssdLwM7AyKgTPaOe/SHqeoOkCZI+lDRP0qnxLEaH29zwv6+kPsBUoC+uuPwvucXKPEljcOXXTqU6eXTc15vxrN+PPO8daU6WNKJURxexTotn0oeKcYWc8+J6g6TBpXo5RtKt8czOlnRolFuDpI1qpR/p/Bw4LtLZuZwfSRuH36lRtzaKbN4F1KVwTBYh+8xOSsq/rYSZddofMBvYErgd6AFMwTvAe+L6pcDv4ng3YEocDwHG44LEGsAsoBtuwTS9FP9A4APg67gi71FgQJV8LEwzzn8NXBPHfYG/AT2qhBsNnBPHv8Jn1NaJfM0EegPb4QJVL9yiaAawTeT1c2DrCH8r8C+leLcvpfMycHQc/xtwVSs+g2NwS51K98nxbI4AXgRWiWf0CrBulPtYoFf4/w1wWpV4RpXu8Q/A0fGsxgNrhvtg/NOvAL1LYc8q3fe1wD1A146ut82U5xDghDgeANwUx48Aj+NfsDwT+EnUy5ejLLsBY4C9KuLrAjxblEvUkz2Ar4T/FcL9FODkOF49/oUrc/eI84eBSzu6jPLXLvWwV9SbhmiPtsAF1eXi+lDc2nNH4L5SuFU7Ou/5a/Gzno0Prl6OdvoEYEhcuxs4PI5/jFu4dniev2w/YD4u3xS/weE+Gp9sqtqfAstH/9sv3FeOPuQI4LJS/EOASUDPOK8qw1CjPw9/RV+0ebQda4T76lXu5xzgotL5avFvwN5xfC5wahzfSMheuELm6ai3VwPP0yj/7YX387NxZcYE3CJqd+COCD+QRhlxYTlUSyOOLyFkk3gOFml+AGwX7mvjMtsGUQYv4v3nReG/X7jPwxVJ/wC8A+yE97GPAT8C1gReBTaIeP8W4Ybg76UBTwDdK8sWuL5UdqOB8+N4T2BEHF8KHBrHy5ee98ul5/UHGmXJVYHn8P7giLjH1amQ+yKuN0vlOwf4Zpz3j/NCxp4V97oOrrw7N8J/ANwSYc7ClT2bxL3cCxxbyusv4viNOF8Jl4fexuv3anhdL57F/0XaC4AXIuw6uKXc05H+C+FvuXLZAkfi9bx41qvR+DGnn5bKeQghu8X59EizD4uOKw4EHgS64grIv0VeBsY9F2OA14DTI8yviPelBekvPMffg/3juAeNct/XgIaObt+WtR/ZZ3bqHyn/fuFfp18aY2bTQut/MIt/BnQA3tBjZg/JZ7BWiWv3mtk8YJ6kt/FOoBqPm9lMAElT8I7k4WayNQDv5DGzZyS9gnei06r4HR7/DcAMM3sj0noRV9IMAO40sznhPgyfCRoOvGRmUyL8pMhbLYaV/B3QTP5bgnCBqCn3kWb2AYCkp4D1caFmM+CRmKxbHlfuVXIVcKSk43El0w7Apnhj8GCE7YoLIeBm+GdF/CsC95fius1KJuHLABOBfvJ9NGbjgtE2+PO/Hm/4HjKzdwAk3QjsggvfAJjZgnA/RL6fw3b4u7I3Xv7jS+Vf1OvvSPoPXEhZA68z98W1m9vsbpOlBjObI+kWYLaZzZO0Oz6AeiLqS098kHQ/sKmki/H294GOynOy5JjZh5KuwweVc0uX+tPYX1yPDxST9meu+bLsWnyL6v3ppsAbZjYR/DkDqKoBN8PNrHj2tWQYqN6fv1qKZzfg9qJfMrN3q6S1O/DD4sTM3ovDT2nsvybhiqPC/2alfK8c/1sBn9Ao/xV7PXXDFRZvAxfiski3ajddkadF0pC0Et6nFu/A3Mhjf+AbuJXYFnj5zwH+F1dwrEOjTDmrKH9JH+DKuZXiNwJXOHyIWx99CxhrZi9F2AWl/B0W97FTyK4AgySdiC/NWx2fnLw7rpVlvj5x/ChwiqSvA8PM7Pkq5fA9YJ+SFU8PXBkH8KCZvVul/qwR91EwEfhXSbtEvlbAJyS74HLZhrj88gLwsZl9GnJ4QW/gXTN7LtK6B68LF8X14fFsuuOKxI+AjyR9gst+ZwA/wAeR3XGl35q4Qqeo4zviSr9NI/2PgFfM7HNYpN6uA7yLL/2bhCu5bpFb2y8PFM+qXopJxfnAW2F11Q+vAxNLY4AXaOxPG4BiBUWL0o9y+pqZ3Rn39Unp8tu00xYdnY3sMzsvKf9+cTq98ikYDvwRnznoXXKvJmEVCpF5Jbf51C6rxfxJ2hH4U7idhncaZapKdpKuwZUHr5tZsd9CEf+CirQWRJ6qxlUjbz1reSz5bepel4QZhIKvQNLKuOLsBVzZUa2shQsyBzcT/x246eNDwCQzmyXffHKGmfWv4v9aYD8zmyrpCLxOFMyp856WCqLRex2fJXwEn4H8DrBeCGVb1hnV1Xg5gs8szpe3oH81s8PKHuXLFC8DtjWz10KR16PkZZkqw+QLsYDGwY9w68LfVnqKergHLoQdCPys3XKYtCYX4fu2XNOEn2oTDUnHU7U/jXez3mdWbttbIndUyhO1JqTq8fOZxRRyRdxdgP4l5VixObmAkSwu/30eYT8xsy1ignJ0M3laLI1Ih2p5NbNH5csM14y0uwNbmNlnkl6msd/8rBRsPq4wEL6c6y+4EmsvM/tE0j7V0gqm45NuXwVektQD34doezN7Vb7hcbmvXkzmM7MbJU3At6q4X9JPzeyhinQEHGhmz1aUw4401pEZQHmvpLkVaa8a5bIdvhzsTNwq7XPgATMbImk/fOKwGk3Vv+LeVDouWIArNbfDZcZDcSu15fDn83FFPOWyrlUn50bYol5cClxgZsMlDcQtjMDvrbzVSbk8ytT7bpXHBMV4oKn0a9FUej1YVHGStIzsMzsvKf9+Ab4Mez6BD67PMLOGCvexxHrmaKTfKWb+avARPhvVJGY2wRo3/hxeJVw53U3wWaNpRd84AAAN1ElEQVRnzezICNOSr8yMBfaT75/UC9gfGNdMmLruo5UYCaygxi+TdAXOB641s8qOvsxj+Pr6jSPcClFWixCzNPfjmz4WDfyzwJqS+kfYbpI2j2sr4ZsodqNzrGUfi5v0jsWf+y/x2TfwMhwUFn3L4ULXmMoIzOxV3MT/JFw5B75scVdJGwLI93n4Bq7AXAC8EzNmB1bGl3wpGQH8QI17uvSWtJ6kNfElALfhSuJtOzKTyZITM/234kt6C8bTaKFyKM1b/SYdQ63+9Bngq5L6hftK0Vc0JyNUlWHqzMtIvK3oHeFXr+LnAUr7BkparZk4K/1vXXJfkUb5r9g30nBrkZXlXwY8oo5810pjYVngypLV4nrfOJ+FW5D0Br4u3x9r/WbSGokrZ4bhCqi7oi9+FO+XNwh/H9P4nCbjyojhMQFXKDfeke/v1dzG2UQaL5rZJfikbbUJrPvxPUKL/aO2qeLnIaC7pKNgoeVaT0mFpdpywNtm9hle11bBy+ctYC1JW8X9bBbhuuEWUsXXfd8BVov6/BGwLxWyTcjy7+FLHZFU7Me1cpTTW7iV0fr48jJw2aYozwm4pVnXSH8F3HJ+uYivqLdP49ZPM+J8FRo3tj+8lKWXif5P0rZFvqg+PhgsqWv0n7vgWyrUS630q77TUU4zQ9mHpO4xyQhuzTi9BWknJbLP/NKQ8m8L+VIon8xsppldXOXSEGB7SdPwTf8Or+KnHM8s3Gx9uho3HK+HacDn8s38jsNno7rKN8G8BTiiZCbdIszsSVxh8DjeWV5lZpObCXYtcIUW3XC8TYhZyv2B70t6HrfO+QQ4uZlwf8cFwpvi+TyG7y1RjRtwYfKBCPspLmidI9/YcwqNX/n4LV5OD+KC97LOONx8f4KZvYbPoo4Dr/e45d1ovAweM7N7a8RzI75M87kI+xbeYd4SZTge2CTegT/jAsmdeFkmX3JiYHc6MCLe1wfwerkuMFa+JPlKmnnvk6We8/ElNAXH4Muep+HLfn7VIblKekZ/XvwW+dpdrf40+srBwKXRzj+IKy1G4UvMpig2PK5giWUYM5uBfyFoTKR5QRVvZ+HKhenhp+pHWUocQ8hy8qV+Py/F0w04KuIpK0rOxRUav8GX6zdHrTROB3aRf/ykO94Hj8LL5fBYPjUU3w9pBr4HaZMWwmb2FL5c6jL8uW2Jf+l2Fj5zPizupwu+5L2QXRfgk1H34gqeK3El2134UrfmGAxMj/a6L1Dta2hn4mU6TdL0OK/MfyH3fVfSC/INw+fRuITrNbwsn8AVQK/hS5Am4WVzD76lwkR836IRuOJtYOQNvHxvi7Lpj3/EplKeHQpsFXV+PK4MvB2fRDsSVwy8j1vhg1uBPRL3dTxuubJhpH8frsCZFmVffMH6Gfy5vxnnQ4DbJI3DlWQFdwCrR/5/gcvC1cYVd+Jjhqm4Eu9EM3uT+qmV/t3A/vFO71wR5jDgmFI5rR3ug/C6lCw52Wd2clL+bTnFpnRJsswi33tglWomj0l9yL9o86iZ/bmj85IkSZIkSechLKSOr1zKv6wTE8p74h8HGtHR+WlN5F8u3re051qSJMkX5suy51PSSZF0J/7Vmt06Oi/LKqGVfw+fkUmSJEmSJGk1zGyypFGSui5jH3Zpjvdxy7PtOzojrUksGbogFU9JkrQ2afmUJEmSJEmSJEmSJEmStBlfij2fkiRJkiRJkiRJkiRJko4hlU9JkiRJkiRJkiRJkiRJm5HKpyRJkiRJkiRJkiRJkqTNSOVT0m5IWlvSzfHp3ack/UXSJksQz7GSVmilPPWRdEjzPpMk6UgkzY/PRE+XdFtrtQFNpHeEpMtaMb6XJTXEPTRI2rd0bXz894nPfCNpoKR74ngfSSe1Vl6SJFky2rsdaimSTq44N0nXl86Xk/T3om1pIp6tJe1ZOh8SXxZe0nx9ofBJknQcNcZvP2uuHUmSaqTyKWkXJAm4ExhtZhuZ2WbAycBaSxDdsUBVgU9S1xbG1QdI5VOSLP3MNbOtzWwL4FPg522VkKS2+hLsIDPbGjgIuKRwNLNvNxXIzIab2dltlKckSeqn3dqhJeTkivM5wBaSesb5d4HX6ohna2DPZn0lSdKpaeXxWznetpKzkqWcVD4l7cUg4DMzu6JwMLMpwMOSzotZxAZJg2HhrP9oSbdLekbSDXKOAb4KjJI0KvzOlnSGpAlAf0mnSZoYcQ6NhhNJG0saIWmqpCclbQScDewcM5nHtXOZJEmyZIwDNgaQdJekSZJmSPpZ4SHahfPjXR8Zn45G0kaS/hphxknqG+7XSrog2pVzyolJWlPSHdGuTJS0U7jvGm3HFEmTJa0kaR1JY0vWETtXyf/KwHul+Gc3dbNlK6zI5yWSxkt6UdJB4d5F0uVRDvfEzORBLS/aJEnqpMl2SNJPJF1YeJZ0VLQxfUKuuSraiBsk7S7pEUnPS9oh/PeSdHW0OZMV1pLRHgyLdux5SeeG+9lAz2h7bijl8z7gn+P4YOCmUp4WS0PS8sAZwOCIa3B43yzkshdDFiviOD7uY7qkY0vup0h6VtIIYNPWKfIkSdqZWuO3ccCKleM0WGjpvUYcby9pdBwPiXHZA8B1tdqypHOTyqekvdgCmFTF/QB8hm0rYHfgPEnrxLVtcCunzYANgZ3M7BLgddyCYFD46wVMN7Mdzexh4DIz6xczkz2BvcLfDcB/mtlWwLeBN4CTgHExk7lQSEySZOlEPlu2B9AQTj82s+2A7YFjJPUO917Ak2a2LTAG+F24DwWOjjAnAJeXot8E2N3Mfl2R7MXAhWbWDzgQuCrcTwB+GdZMOwNzcUvK+8NtK2BKKZ5R8mV1Y4BTl7QMgHWAAXjbVlhEHYBbcn4T+CnQ/wvEnyRJE9TZDt0M7COpW/g5ErgmjjfG25Utgb54uzEAb1MK66VTgIei3RmEy0e94trWwGD8fR8saV0zO4lGy6xDS9m9GfihpB6R3oTStcXSALoBpwG3RFy3hN++wD8COwC/k9RN0nZxXzsC3wKOkrRNuP8Ql+MOAPrVXbhJkixN1Bq/QZVxWh3xbQfsa2bFqpPF2rIvlt1kaSdN3pKOZgBwk5nNB96SNAYXUj4EHjezmQCSpuADq4erxDEfuKN0PkjSifjSvNWBGaF1/5qZ3QlgZp9EvG1xT0mStD49ox0An3H77zg+RtL+cbwu8A1gFrAAKAZN/wMMk7Qirni+rfTudy+lcVu0RZXsjs/6F+crS1oJeAS4IKwMhpnZTEkTgatjwHlXzBAWDDKzd+RWlyMljTazJq2eanCXmS0AnpJUmL4PiPwvAN4MC64kSVqXutshM3tM0kPAXpKeBrqZWYOkPsBLZtYAIGkGMNLMTFIDLusAfA9XXhV7JfUA1ovjkWb2QYR/ClgfeLVahs1sWqR5MPCXistNpVHJvWY2D5gn6W182c0A4E4zmxN5GYYr4ruE+8fhPrxGnEmSLLvUO04rM9zM5pbO627Lks5BKp+S9mIGvs9JJU1pf+aVjudTu75+UgwYY2bvcmB7M3tV0hBcmEotU5Is28wNa6KFSBqIK4b6m9nHoWTuUSO84QOi9yvjKTGnhnuXSGNuhfvZku7F90Z5TNLuZjZW0i74MpfrJZ1nZtctkhGzFyS9hc8WPl4jzaYot42q+E+SpO1oaTt0FW7J9AyNVk+w6Du8oHS+gEZZR8CBZvZsRXo7Ur98VDAc+CMwEOhdcm8qjUqqpdlUu2PN5ClJkqWfWuM3qN0OfU7j6qpKmaxSzmppW5Ys4+Syu6S9eAjoLumowkFSP3zfk8GSusr3ZNmF5gdjHwEr1bhWNHLvhJXDQQBm9iEwU9J+kXZ3+VdqmoorSZKlm1WA92LA1xdf9lHQhUaB6RDg4WgHXpL0ffCNNCVtVUc6DwD/XpxI2jr+NzKzBjM7B3gC6CtpfeBtM7sSt4rYtjIySV8BNgBeadntNsnDwIHyvZ/WwgeZSZK0PTXbITObgFtCHUJpr6U6uR84urSPyjZ1hPmstMyvzNXAGYW1VR1p1CsbjQX2k7RCLAncH7cIGwvsL6lnWInuXUdcSZIsfdQav+3aRJiX8eV14FsVJMlCUvmUtAtmZrhQ8l35pzpnAEOAG4FpwFS8gTvRzN5sJrqhwH3VlpWY2fvAlfg+DHcBE0uXD8NN46cB44G1I+3P5ZuQ54bjSbJs8VdguXinzwQeK12bA2wuaRKwG76BLsChwE8kTcVn9PatI51jgO0lTQuz8OILV8fKN9mdiu/3dB+u9JkiaTIudF1cimdUmKaPAk4ys7dafMe1uQOYCUwH/oTv6/JBK8afJEl1mmqHAG4FHjGz9xYL2TRn4vsvTYu94s6sI8zQ8F/ecBwzm2lmF1fxXyuNUfhS4/KG44thZk8C1+KThhOAq8xscrjfgu95dweukEqSZBmjifHb600EOx24WNI43JopSRYir1NJkiRJ0nmQNNvMVuzofLQnklY0s9mx2fHj+EcamlPmJ0nShki6B/9gwciOzkuSJEmSdCS5rjJJkiRJOgf3SFoVWB44MxVPSdJxxLv4ODA1FU9JkiRJkpZPSZIkSZIkSZIkSZIkSRuSez4lSZIkSZIkSZIkSZIkbUYqn5IkSZIkSZIkSZIkSZI2I5VPSZIkSZIkSZIkSZIkSZuRyqckSZIkSZIkSZIkSZKkzUjlU5IkSZIkSZIkSZIkSdJmpPIpSZIkSZIkSZIkSZIkaTP+H18sTACjSEWaAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 1440x1440 with 16 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plotting the bar chart\n",
"rows = 4 ; columns = 4\n",
"f, axes = plt.subplots(rows, columns, figsize=(20, 20))\n",
"print('Univariate Analysis of each categorical Variables')\n",
"for row in range(rows):\n",
" for column in range(columns):\n",
" sns.countplot(datset_churn[columns_hist_nparray[row][column]], palette = \"Set1\", ax = axes[row, column])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observations :\n",
"1. We have almost equal genders in our dataset\n",
"2. Almost 50% have partners\n",
"3. Around 30% have dependants\n",
"4. 85% of the customers have phone service\n",
"5. Around 40% customers have multiple lines\n",
"6. People prefer Fiber Optics over DSL for Internet\n",
"7. Around 30% have taken online security.Majority of Customer don't have Online security or backup\n",
"8. Close 35% prefer device protection\n",
"9. Majority of Customer don't have Tech Support\n",
"10. Around 37% have registered for Streaming TV & MOvie\n",
"11. Contract - Majority of customers are subscribed for Month to Month contract (55%)\n",
"12. Majority of customers have opted Paperless billing\n",
"13. Majority of customers pay eletronic check. 43 % prefer Automatic payment (Bank Transfer and Credit Card)\n",
"14. Target Variable - \"Churn\" - We have unbalanced distribution (Yes - Approx 1800 ; No - Approx 5000). So Churn positive is 25% (Approx)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Vizualizing the Numeric variables\n",
"#### Histogram to see data distribution of Quantitative Variables(SeniorCitizen, tenure, MonthlyCharges, TotalCharges)\n"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x23a7e04fa90>"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABJUAAAJcCAYAAABAA5WYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3X24XHV97/33B6IiKISHQDEBg5XLh9qquKsoPR4LaoGKqEd8qLdGDm1O7wtbLW0VrUfsOfW+sUdFbC0tihWsVRFRgofaUpT22LsiAalPaImIJCZCkCeVKqLf+4/12zJJdpI9O3v2zOx5v65rrpn1W2tmvmtm7/Wd+c7v91upKiRJkiRJkqR+7DbsACRJkiRJkjR+LCpJkiRJkiSpbxaVJEmSJEmS1DeLSpIkSZIkSeqbRSVJkiRJkiT1zaKSJEmSJEmS+mZRSZIkaTuSVJJHbmfdK5N8dp6e581J/mY+HkuSNHxJ9mg5ZMUstz82ybpBxyXNN4tKmkhJvt9z+WmS/+hZftmw45MkbSvJTUnuTXLAVu3XtQ/uK3fx8a9M8pu78hg7efzfSLK25ZpNSf4uya8M6vkkSVvale8A81H0SfK0JP+Q5K4k303yOb97aNxZVNJEqqqHTF+Am4ETeto+uFBxJFmyUM8lSYvEN4GXTi8k+UXgwcMLZ3aSnAa8E/h/gIOAQ4G/AE4cwHOZWyRpBsP8DpDkGcA/AJ8CDgMOAH4X+PUBPJd5QAvGopI0gyS7J/nvSW5McluSDyZZ2tY9Osl9SU5OsiHJ5iR/2HPfDyd5Y8/yFr9qJPlOkj9I8hXg7tZ2SJJL2nPdmOS3F3B3JWmcfAB4Rc/yKuCC6YUk+yS5oB2bv5XkjUl2a+temeSzSd6W5I4k30xyXFv3FuA/AX/efrH+857neGaSG9p93p0kWwfV2t++VdulSV6TZB/gfwCnVtXFVfWDqvpxVV1aVX/Yc5cHtti/l+QrSaZ6Huv0JN9o676a5Pk9616Z5F+SnJXkduDNLY+9veWVbyZ5VevNtaTndTqv9Zj6dpI/SbJ7W/fIJP/Ufkm/LclH+nuLJGk8JXlwO55vap/z/1eSByTZH/g48Iienk37JzkqyVXteLmxHYe3V9B5G/BXVfWOqrq9Op+vqt/YKoY3tBz27d5eTEmen+Tfktzd8tsbetZNfz/5rSTrgcta+28mubk93mvb95Bfaet29H1nr/ad5vYkd7Z93HdeX2wtGhaVpJn9IfBs4FeAFcCPgbN61u8OTAGPBI4H3pLkEX08/ouBZwH7tw/xlwH/H/Aw4FjgDUn+867uhCQtQp8D9k7ymHb8fDHQOxfRnwH7AI8A/jNdAerknvVPAb5O9wvxnwLnJUlV/RHwf4BXtV+sX9Vzn+cAvww8HngR8GszxHU+8NKeAtYBwDHAh4CnAnvQfSHZkecCHwaWAmuA3sLWN+iKXvsAfwz8TZKDt9qvG4EDgbcAvwUcBzwBOAJ43gzx3keXx55Il/Omh/79T7pf0/ely4F/tpO4JWmx+GPgl4BfBJ4EPAN4bVV9F3g+cGNPz6bv0n1HeBWwH90x+gTuP5b+TCvWPAm4aCfP/3AgdN8JXgX8ZZKHtHV3A79BlyOeD/xBkmN77rs7XS54FHBikicA76DLWyvapXf4+I6+7/wmsARY3u7zKuDencSuCWVRSZrZfwNOr6qNVfVDugTz4q1+nT6jqn5YVVcDX6NLQLN1Vnvs/6A7kO9RVW+tqnur6t+BvwZeMk/7IkmLzXRvpWfRHX+/3dqni0yvr6rvVdVNwNuBl/fc91tV9Z6q+gldYeVguuFoO3JmVd1ZVTcDn6Er1Gyhqj4P3EVXSILuGH5lVd0C7A/cVlX37eR5PltVl7XYPkBXxJp+/I+2vPHTqvoIcAPw5J77bqyqP6uq+1pueRFwdlVtqKo7gDOnN0xyEF3B6TWt19StdF8kpvPOj+m+2Dys5bl5mYxcksbAy+g+49/Wjt9/wpY5ZAutp9HVVfWTqvoG8F66HzS2tn+73rST578H+H9bb9aPA0VX/Keqrqiqr7Q8cC1w4QzP9aaquqcnD3ysqj5XVT8C3siW3/939H3nx8Ay4OdbXrm6qn6wk9g1oRxrKW2lHUgPAS5LUj2rduP+hPCTqrqtZ909wEOYvfU9tx8OrExyZ0/b7sA/9vF4kjRJPgD8M92cFBf0tB8APBD4Vk/bt+h+aZ32nekbVXVP+61gZ8fv7/Tc3tHx/nzg/wIub9dnt/bvAgckWbKTwtLWz7PH9H2SvAI4DVjZ1j+ELX9x7s0r0P3KvX476x8OPADY1PNbyW4927yWrrfS55PcAby9qt63g7glaey17wA/x45zyNb3eSzdjxdH0M3vtwT4lxk2/W67Phi4aQdhbK6qn/Ys/yznJDmKbl6+x9LlugfR5cNpP62qjT3LD6ObNwqAqro7yV3tsXb2fec8utfiotZT6gLgv7cfPaQt2FNJ2kpVFd2v3kdX1dKeyx5bFZK25wfAnj3LPzfT0/TcXg98bavnemhVPX+G+0nSxKuqb9FN2H08cHHPqtu4v5fNtEO5vyfTTh96F0P7G7ohB48HHgN8orX/K/BDth2CNitJHg68h274wf5VtRT4Mt0QiWlbx76JbjjDtEN6bq8HfgQc0JN39q6qXwCoqu9U1W9V1cPofsn+iySPnEvskjQu2neA77D9HDJTjngPcC1dj5696ebP22bevaq6E7gG+C+7EOKFwEeAQ6pqH+D99JEHkuxNN4R6p993qupHVfWmqno08HTgJBxFoe2wqCTN7C+BM5McApDkwCQnzPK+1wHPSbI0yXLgd3ay/Wfbc7wmyR5JliT5pSRHzDl6SVr8TqH7MNzbHf8ndB+635Lkoa0Ycxpbzrm0I7fQzcU0J1W1Abia7pfjj7XhB1TVXcCbgHcneV6SPdvEr8cl+dNZPPRedF8WNgMkORl43E7ucyHw6iTL21wer+uJcxPdnElvT7J3kt2S/Pz0XH5JTkoy/UXkjvbc/jotaRJ8CDijTcJ9IPBH3J9DbgEO7JnjCOChwF1V9f0kv0A3n932/AHw2+0z/37pPCnJTnNU61n0EOC7VfXDJE+jK/TsyIXAf0nyy0keSFfw6u0Ftd3vO0memeSxbZ7Au+nm4DMPaEYWlaSZ/Snd8LNPJ/ke3STasy3yvA9YR9fd9JN0yWm7qurHdL+2P42ui+1m4Bz6G04nSROlqr5RVWtnWPU7dD1Gb6Qr2v8t3XF5Ns4GXpjuLG/vmmNo59NN8No7JIGqegddgeuNdMf59XQ9jz6x9QNsraq+Sje84l/pvtT8IjMPr+j1HrrC0ReBL9CdEKL3S8Er6IZPfJWucHQR3bAM6CYlvyrJ9+kmDH91VX1zZ3FK0iLwJrrj4lfofij+F7rvBQD/RndM/FY7I9p+wO8Bv9mOl++m60k0o6q6km5i7OPphsDdRndChv+9s6Baz6LfBt7Wvpu8FvjoTu7zBbrJuD9O1ytpE93cfz9qm+zo+85y4BLge3Q9Yy+jK1JJ20j39ylJkqRdleTpdL9qr9xqXoyhSnIc8JdV9fCdbixJWnSS7AvcTncShp1NGC7Nmj2VJEmS5kGSBwCvBt477IJSkgcnOb4NqV4OnEH3a7UkaUIkeW7LBw8B3gFcZUFJ882ikiRJ0i5K8hjgTrohZO8ccjjQTd76x3RD274AXE83rEOSNDlOopt8fAPdkLaXDTccLUYOf5MkSZIkSVLf7KkkSZIkSZKkvi0ZdgC74oADDqiVK1cOOwxJGjnXXHPNbVW1bNhxDJt5QpJmZp7omCckaWazzRNjXVRauXIla9fOdDZhSZpsSb417BhGgXlCkmZmnuiYJyRpZrPNEw5/kyRJkiRJUt8sKkmSJEmSJKlvFpUkSZIkSZLUN4tKkiRJkiRJ6ptFJUmSJEmSJPXNopIkSZIkSZL6ZlFJkiRJkiRJfbOoJEmSJEmSpL5ZVJIkSZIkSVLfLCpJkiRJkiSpb0uGHcCwnHDCxTO2X3rpCxY4EknSKDJPSJJ2xDwhSfZUkiRJkiRJ0hxYVJIkSZIkSVLfLCpJkiRJkiSpbxaVJEmSJEmS1DeLSpIkSZIkSerbQItKSZYmuSjJ15Jcn+SpSfZLcnmSG9r1vm3bJHlXknVJvpjkiEHGJkmSJEmSpLkbdE+ls4FPVdWjgccD1wOnA1dU1eHAFW0Z4Djg8HZZDZwz4NgkSZIkSZI0RwMrKiXZG3g6cB5AVd1bVXcCJwLnt83OB57Xbp8IXFCdzwFLkxw8qPgkSZIkSZI0d4PsqfQIYDPw10m+kOS9SfYCDqqqTQDt+sC2/XJgfc/9N7S2LSRZnWRtkrWbN28eYPiSJEmSJEnankEWlZYARwDnVNUTgR9w/1C3mWSGttqmoercqpqqqqlly5bNT6SSJEmSJEnqyyCLShuADVV1VVu+iK7IdMv0sLZ2fWvP9of03H8FsHGA8UmSJEmSJGmOBlZUqqrvAOuTPKo1HQN8FVgDrGptq4BL2u01wCvaWeCOBO6aHiYnSZIkSZKk0bJkwI//O8AHkzwQuBE4ma6QdWGSU4CbgZPatpcBxwPrgHvatpIkSZIkSRpBAy0qVdV1wNQMq46ZYdsCTh1kPJIkSZIkSZofg5xTSZKkHUrye0m+kuTLST6UZI8khyW5KskNST7SeruS5EFteV1bv3K40UuSJEmTzaKSJGkokiwHfheYqqrHAbsDLwHeCpxVVYcDdwCntLucAtxRVY8EzmrbSZIkSRoSi0qSpGFaAjw4yRJgT2ATcDTdGUMBzgee126f2JZp649JkgWMVZIkSVIPi0qSpKGoqm8Db6M7acMm4C7gGuDOqrqvbbYBWN5uLwfWt/ve17bff+vHTbI6ydokazdv3jzYnZAkSZImmEUlSdJQJNmXrvfRYcDDgL2A42bYtKbvsoN19zdUnVtVU1U1tWzZsvkKV5I0IEnel+TWJF/uadsvyeVtfr3LW84gnXe1+fW+mOSInvusatvfkGTVMPZFkiaNRSVJ0rA8E/hmVW2uqh8DFwNPA5a24XAAK4CN7fYG4BCAtn4f4PaFDVmSNADvB47dqu104Io2v94VbRm6Hx8Ob5fVwDnQFaGAM4CnAE8GzpguREmSBseikiRpWG4GjkyyZ5sb6Rjgq8BngBe2bVYBl7Tba9oybf2nq2qbnkqSpPFSVf/Mtj8S9M6jt/X8ehdU53N0P0QcDPwacHlV3V5VdwCXs22hSpI0zywqSZKGoqquoptw+1rgS3Q56VzgdcBpSdbRzZl0XrvLecD+rf007v/VWpK0+BxUVZsA2vWBrf1n8+s103Pvba99G869J0nzZ8nON5EkaTCq6gy64Qq9bqQburD1tj8ETlqIuCRJI2t78+vNat496Obeo/sRg6mpKXu8StIusKeSJEmSpFFzSxvWRru+tbX/bH69Znruve21S5IGyKKSJEmSpFHTO4/e1vPrvaKdBe5I4K42PO7vgWcn2bdN0P3s1iZJGiCHv0mSJEkamiQfAp4BHJBkA92w6DOBC5OcQndih+nhz5cBxwPrgHuAkwGq6vYk/xO4um33P6rKM4RK0oBZVJIkSZI0NFX10u2sOmaGbQs4dTuP8z7gffMYmiRpJxz+JkmSJEmSpL5ZVJIkSZIkSVLfLCpJkiRJkiSpbxaVJEmSJEmS1DeLSpIkSZIkSeqbRSVJkiRJkiT1zaKSJEmSJEmS+rZk2AFI0qQ74YSLZ2y/9NIXLHAkkiRJkjR79lSSJEmSJElS3ywqSZIkSZIkqW8WlSRJkiRJktQ3i0qSJEmSJEnqm0UlSZIkSZIk9c2ikiRJkiRJkvpmUUmSJEmSJEl9s6gkSZIkSZKkvg20qJTkpiRfSnJdkrWtbb8klye5oV3v29qT5F1J1iX5YpIjBhmbJEmSJEmS5m4heir9alU9oaqm2vLpwBVVdThwRVsGOA44vF1WA+csQGySJEmSJEmag2EMfzsROL/dPh94Xk/7BdX5HLA0ycFDiE+SJEmSJEk7MeiiUgH/kOSaJKtb20FVtQmgXR/Y2pcD63vuu6G1bSHJ6iRrk6zdvHnzAEOXJEmSJEnS9iwZ8OMfVVUbkxwIXJ7kazvYNjO01TYNVecC5wJMTU1ts16SJEmSJEmDN9CeSlW1sV3fCnwceDJwy/SwtnZ9a9t8A3BIz91XABsHGZ8kSZIkSZLmZmBFpSR7JXno9G3g2cCXgTXAqrbZKuCSdnsN8Ip2Frgjgbumh8lJkiRJkiRptAxy+NtBwMeTTD/P31bVp5JcDVyY5BTgZuCktv1lwPHAOuAe4OQBxiZJkiRJkqRdMLCiUlXdCDx+hvbvAsfM0F7AqYOKR5IkSZIkSfNn0Gd/kyRJkiRJ0iJkUUmSJEmSJEl9s6gkSZIkSZKkvllUkiRJkiRJUt8sKkmSJEmSJKlvFpUkSZIkSZLUN4tKkiRJkiRJ6ptFJUmSJEmSJPXNopIkSZKkkZTk95J8JcmXk3woyR5JDktyVZIbknwkyQPbtg9qy+va+pXDjV6SFj+LSpIkSZJGTpLlwO8CU1X1OGB34CXAW4Gzqupw4A7glHaXU4A7quqRwFltO0nSAFlUkiRJkjSqlgAPTrIE2BPYBBwNXNTWnw88r90+sS3T1h+TJAsYqyRNHItKkiRJkkZOVX0beBtwM10x6S7gGuDOqrqvbbYBWN5uLwfWt/ve17bff+vHTbI6ydokazdv3jzYnZCkRc6ikiRJkqSRk2Rfut5HhwEPA/YCjpth05q+yw7W3d9QdW5VTVXV1LJly+YrXEmaSBaVJEmSJI2iZwLfrKrNVfVj4GLgacDSNhwOYAWwsd3eABwC0NbvA9y+sCFL0mSxqCRJkiRpFN0MHJlkzzY30jHAV4HPAC9s26wCLmm317Rl2vpPV9U2PZUkSfPHopIkSZKkkVNVV9FNuH0t8CW67y7nAq8DTkuyjm7OpPPaXc4D9m/tpwGnL3jQkjRhlux8E0mSJElaeFV1BnDGVs03Ak+eYdsfAictRFySpI49lSRJQ5NkaZKLknwtyfVJnppkvySXJ7mhXe/btk2SdyVZl+SLSY4YdvySJEnSJLOoJEkaprOBT1XVo4HHA9fTDVe4oqoOB67g/uELxwGHt8tq4JyFD1eSJEnSNItKkqShSLI38HTaXBhVdW9V3Ul3+ujz22bnA89rt08ELqjO5+jO/nPwAoctSZIkqbGoJEkalkcAm4G/TvKFJO9NshdwUFVtAmjXB7btlwPre+6/obVtIcnqJGuTrN28efNg90CSJEmaYBaVJEnDsgQ4Ajinqp4I/IAdn6knM7Rtc6roqjq3qqaqamrZsmXzE6kkSZKkbVhUkiQNywZgQztlNHSnjT4CuGV6WFu7vrVn+0N67r8C2LhAsUqSJEnaikUlSdJQVNV3gPVJHtWajgG+CqwBVrW2VcAl7fYa4BXtLHBHAndND5OTJEmStPCWDDsASdJE+x3gg0keCNwInEz3g8eFSU4BbgZOatteBhwPrAPuadtKkiRJGhKLSpKkoamq64CpGVYdM8O2BZw68KAkSZIkzYrD3yRJkiRJktQ3i0qSJEmSJEnq28CLSkl2T/KFJJ9sy4cluSrJDUk+0ubRIMmD2vK6tn7loGOTJEmSJEnS3CxET6VXA9f3LL8VOKuqDgfuAE5p7acAd1TVI4Gz2naSJEmSJEkaQQMtKiVZAfw68N62HOBo4KK2yfnA89rtE9sybf0xbXtJkiRJkiSNmEH3VHon8Frgp215f+DOqrqvLW8Alrfby4H1AG39XW37LSRZnWRtkrWbN28eZOySJEmSJEnajoEVlZI8B7i1qq7pbZ5h05rFuvsbqs6tqqmqmlq2bNk8RCpJkiRJkqR+LRngYx8FPDfJ8cAewN50PZeWJlnSeiOtADa27TcAhwAbkiwB9gFuH2B8kiRJkiRJmqOB9VSqqtdX1YqqWgm8BPh0Vb0M+AzwwrbZKuCSdntNW6at/3RVbdNTSZIkSZIkScM3q6JSksfN43O+DjgtyTq6OZPOa+3nAfu39tOA0+fxOSVJAzTPeUKSNKbMB5I0WWY7/O0vkzwQeD/wt1V1Zz9PUlVXAle22zcCT55hmx8CJ/XzuJKkkbFLeUKStGiYDyRpgsyqp1JV/QrwMro5j9Ym+dskzxpoZJKksWGekCSB+UCSJs2s51SqqhuAN9INX/vPwLuSfC3JCwYVnCRpfJgnJElgPpCkSTLbOZV+KclZwPXA0cAJVfWYdvusAcYnSRoD5glJEpgPJGnSzHZOpT8H3gO8oar+Y7qxqjYmeeNAIhsxJ5xw8Yztl17qDy6ShHlCktQxH0jSBJltUel44D+q6icASXYD9qiqe6rqAwOLTpI0LswTkiQwH0jSRJntnEr/CDy4Z3nP1iZJEpgnJEkd84EkTZDZFpX2qKrvTy+023sOJiRJ0hgyT0iSwHwgSRNltkWlHyQ5YnohyZOA/9jB9pKkyWKekCSB+UCSJsps51R6DfDRJBvb8sHAiwcTkiRpDJknJElgPpCkiTKrolJVXZ3k0cCjgABfq6ofDzQySdLYME9IksB8IEmTZrY9lQB+GVjZ7vPEJFTVBQOJSpI0jswTkiQwH0jSxJhVUSnJB4CfB64DftKaCzA5SJLME5IkwHwgSZNmtj2VpoDHVlUNMhhJ0tgyT0iSwHwgSRNltmd/+zLwc4MMRJI01swTkiQwH0jSRJltT6UDgK8m+Tzwo+nGqnruQKKSJI0b84QkCeY5HyRZCrwXeBzdMLr/Cnwd+AjdvE03AS+qqjuSBDgbOB64B3hlVV075z2RJO3UbItKbx5kEJKksffmYQcgSRoJb57nxzsb+FRVvTDJA4E9gTcAV1TVmUlOB04HXgccBxzeLk8BzmnXkqQBmVVRqar+KcnDgcOr6h+T7AnsPtjQJEnjwjwhSYL5zQdJ9gaeDryyPfa9wL1JTgSe0TY7H7iSrqh0InBBm8/pc0mWJjm4qjbtwi5JknZgVnMqJfkt4CLgr1rTcuATgwpKkjRezBOSJJj3fPAIYDPw10m+kOS9SfYCDpouFLXrA3uea33P/Te0tq1jXJ1kbZK1mzdvnmNokiSY/UTdpwJHAXcDVNUN3H/wliTJPCFJgvnNB0uAI4BzquqJwA/ohrptT2Zo2+YsdFV1blVNVdXUsmXL5hiaJAlmX1T6UetuCkCSJcxwgJYkTSzzhCQJ5jcfbAA2VNVVbfkiuiLTLUkObo9/MHBrz/aH9Nx/BbBxjs8tSZqF2RaV/inJG4AHJ3kW8FHg0sGFJUkaM+YJSRLMYz6oqu8A65M8qjUdA3wVWAOsam2rgEva7TXAK9I5ErjL+ZQkabBme/a304FTgC8B/w24jO7UnpIkgXlCktSZ73zwO8AH25nfbgROpvth/MIkpwA3Aye1bS8DjgfWAfe0bSVJAzTbs7/9FHhPu0iStAXzhCQJ5j8fVNV1wNQMq46ZYduim9NJkrRAZlVUSvJNZp7k7hHzHpEkaeyYJyRJYD6QpEkz2+Fvvb8O7EHXxXS/+Q9HkjSmzBOSJDAfSNJEmdVE3VX13Z7Lt6vqncDRA45NkjQmzBOSJDAfSNKkme3wtyN6Fnej+wXioQOJSJI0dswTkiQwH0jSpJnt8Le399y+D7gJeNG8RyNJGlfmCUkSmA8kaaLM9uxvvzroQCRJ48s8IUkC8wHACSdcPGP7pZe+YIEjkaTBm+3wt9N2tL6q3jHDffYA/hl4UHuei6rqjCSHAR+mm7DvWuDlVXVvkgcBFwBPAr4LvLiqbupjXyRJQzKXPCFJWnzMB5I0WWY1UTfdWOj/G1jeLr8NPJZufPT2xkj/CDi6qh4PPAE4NsmRwFuBs6rqcOAO4JS2/SnAHVX1SOCstp0kaTzMJU9IkhYf84EkTZDZzql0AHBEVX0PIMmbgY9W1W9u7w5VVcD32+ID2qXozv7wG639fODNwDnAie02wEXAnydJexxJ0mjrO09IkhYl84EkTZDZ9lQ6FLi3Z/leYOXO7pRk9yTXAbcClwPfAO6sqvvaJhvofsGgXa8HaOvvAvaf4TFXJ1mbZO3mzZtnGb4kacDmlCckSYuO+UCSJshseyp9APh8ko/T9TZ6Pt38RztUVT8BnpBkKfBx4DEzbdaus4N1vY95LnAuwNTUlL2YJGk0zClPSJIWHfOBJE2Q2Z797S1J/g74T63p5Kr6wmyfpKruTHIlcCSwNMmS1htpBbCxbbYBOATYkGQJsA9w+2yfQ5I0PLuSJ5LsDqwFvl1Vz/GEDpI0vnb1e4MkabzMdvgbwJ7A3VV1Nl3h57AdbZxkWeuhRJIHA88Ergc+A7ywbbYKuKTdXtOWaes/7XxKkjRW+soTPV5Nlx+meUIHSRpvc80HkqQxM6uiUpIzgNcBr29NDwD+Zid3Oxj4TJIvAlcDl1fVJ9vjnJZkHd2cSee17c8D9m/tpwGn97MjkqThmWOeIMkK4NeB97bl0J3Q4aK2yfnA89rtE9sybf0xbXtJ0oiYaz6QJI2n2c6p9HzgiXTDEKiqjUl2eErQqvpiu8/W7TcCT56h/YfASbOMR5I0WvrOE807gddy/2mm92eWJ3RIMn1Ch9t6HzDJamA1wKGHHjrX/ZEkzc1c84EkaQzNdvjbvW0oWgEk2WtwIUmSxlDfeSLJc4Bbq+qa3uYZNu37hA5VNVVVU8uWLdt55JKk+eT3BkmaILMtKl2Y5K/oJtn+LeAfgfcMLixJ0piZS544CnhukpvoJuY+mq7n0tJ2wgaY+YQOeEIHSRpZfm+QpAky27O/vS3Js4C7gUcBb6qqywcamSRpbMwlT1TV62lzbiR5BvAHVfWyJB+lO2HDh5n5hA7/iid0kKSR5PcGSZosOy0qtVM9/31VPRMwIUiStjCAPPE64MNJ/gT4Alue0OED7YQOtwMvmYfnkiTNE783SNLk2WlRqap+kuSeJPtU1V0LEZQkaXzMR56oqiuBK9ttT+ggSWPI7w2SNHlme/a3HwJfSnI58IPpxqr63YFEJUkaN+YJSRKYDyRposy2qPS/20WSpJmYJyRJYD6QpImyw6JSkkOr6uaqOn+hApIkjQ/zhCQKLmvuAAAgAElEQVQJzAeSNKl228n6T0zfSPKxAcciSRo/5glJEpgPJGki7ayolJ7bjxhkIJKksWSekCSB+UCSJtLOikq1nduSJIF5QpLUMR9I0gTa2UTdj09yN90vDw9ut2nLVVV7DzQ6SdKoM09IksB8IEkTaYdFparafaECkSSNH/OEJAnMB5I0qXY2/E2SJEmSJEnaxs6Gv0mSpF1wwgkXz9h+6aUvWOBIJEmSpPllTyVJkiRJkiT1zZ5KA+Iv05IkSZIkaTGzp5IkSZIkSZL6Zk+lrWyvh5EkSZIkSZLuZ1FpRDhcTpIkSdpWkt2BtcC3q+o5SQ4DPgzsB1wLvLyq7k3yIOAC4EnAd4EXV9VNQwpbkiaCw98kSZIkjbJXA9f3LL8VOKuqDgfuAE5p7acAd1TVI4Gz2naSpAGyp5IkSZKkkZRkBfDrwFuA05IEOBr4jbbJ+cCbgXOAE9ttgIuAP0+SqqqFjHl7HJkgaTGyqCRJUh/8UiBJC+qdwGuBh7bl/YE7q+q+trwBWN5uLwfWA1TVfUnuatvf1vuASVYDqwEOPfTQgQYvSYudw98kSZIkjZwkzwFurapreptn2LRmse7+hqpzq2qqqqaWLVs2D5FK0uSyp5IkSdIiZu86jbGjgOcmOR7YA9ibrufS0iRLWm+lFcDGtv0G4BBgQ5IlwD7A7QsftiRNDnsqSZIkSRo5VfX6qlpRVSuBlwCfrqqXAZ8BXtg2WwVc0m6vacu09Z8elfmUJGmxsqgkSZIkaZy8jm7S7nV0cyad19rPA/Zv7acBpw8pPkmaGA5/kyRJkjTSqupK4Mp2+0bgyTNs80PgpAUNTJImnD2VJEmSJEmS1LeBFZWSHJLkM0muT/KVJK9u7fsluTzJDe1639aeJO9Ksi7JF5McMajYJEmSJEmStGsG2VPpPuD3q+oxwJHAqUkeSze2+YqqOhy4gvvHOh8HHN4uq4FzBhibJEmSJEmSdsHAikpVtamqrm23vwdcDywHTgTOb5udDzyv3T4RuKA6n6M7VejBg4pPkiRJkiRJc7cgE3UnWQk8EbgKOKiqNkFXeEpyYNtsObC+524bWtumrR5rNV1PJg499NCBxi1JkjRfTjjh4hnbL730BQsciSRJ0vwY+ETdSR4CfAx4TVXdvaNNZ2irbRqqzq2qqaqaWrZs2XyFKUmSJEmSpD4MtKdSkgfQFZQ+WFXTP8/dkuTg1kvpYODW1r4BOKTn7iuAjYOMT5IGwd4IkuSxUJKkSTCwolKSAOcB11fVO3pWrQFWAWe260t62l+V5MPAU4C7pofJSZIkqWOxRlpc/J+WNM4G2VPpKODlwJeSXNfa3kBXTLowySnAzcBJbd1lwPHAOuAe4OQBxiZJkiRJkqRdMLCiUlV9lpnnSQI4ZobtCzh1UPFIkiRp7uxNIUmStrYgZ3/TwvEDnyRJkiRJWggDP/ubJEmSJEmSFh+LSpIkSZIkSeqbw980UDMNx3MoniRJkrRjTmshaRzYU0mSJEmSJEl9s6eSJEmSFg17d0iStHAsKk04P3hJkiRJkqS5sKgkSbNgAVaSJEmStuScSpIkSZIkSeqbRSVJkiRJkiT1zaKSJEmSJEmS+uacSpIkSZI05pz/UdIwWFTSyDNBSotTkkOAC4CfA34KnFtVZyfZD/gIsBK4CXhRVd2RJMDZwPHAPcArq+raYcQuaeH4OUDa0vb+J/rd3v8hSfPBopKkeeUHF/XhPuD3q+raJA8FrklyOfBK4IqqOjPJ6cDpwOuA44DD2+UpwDntWpIkSdIQWFSSJA1FVW0CNrXb30tyPbAcOBF4RtvsfOBKuqLSicAFVVXA55IsTXJwexxNMIvZkiRJw2FRSX0Zhw/u4xCj7uf7JYAkK4EnAlcBB00XiqpqU5ID22bLgfU9d9vQ2rYoKiVZDawGOPTQQwcatyRJkjTJLCpJmkgWs0ZHkocAHwNeU1V3d1MnzbzpDG21TUPVucC5AFNTU9uslyRJkjQ/LCpJkoYmyQPoCkofrKrpSt8t08PakhwM3NraNwCH9Nx9BbBx4aLVzlislSRJmiwWlaRFyi93GnXtbG7nAddX1Tt6Vq0BVgFntutLetpfleTDdBN03+V8SuPN45QkSdJ4s6i0i/o9padGj19qdszXRwN0FPBy4EtJrmttb6ArJl2Y5BTgZuCktu4y4HhgHXAPcPLChitJ0uIx02c8P99J6pdFJWlMWNzRYlNVn2XmeZIAjplh+wJOHWhQkiRJkmbNopKksWJxTZI0aOYaSZJmZ7dhByBJkiRJkqTxY0+lBeYcTJIkSZIkaTGwqCQNiV3rJ49FZUn98JihSZfkEOAC4OeAnwLnVtXZSfYDPgKsBG4CXlRVd7Szip5Nd1KHe4BXVtW1w4hdkiaFRaUx5QdNSZK0mPjZRjO4D/j9qro2yUOBa5JcDrwSuKKqzkxyOnA68DrgOODwdnkKcE67liQNiEUlaZ7Y80iSJGn+VNUmYFO7/b0k1wPLgROBZ7TNzgeupCsqnQhc0M4W+rkkS5Mc3B5HkjQAFpUkSZImkD+GaJwkWQk8EbgKOGi6UFRVm5Ic2DZbDqzvuduG1rZFUSnJamA1wKGHHjrQuCVpsfPsb5IkSZJGVpKHAB8DXlNVd+9o0xnaapuGqnOraqqqppYtWzZfYUrSRBpYT6Uk7wOeA9xaVY9rbU6qJ0mShsoeOjs2aXMbTdr+jpskD6ArKH2wqqbfrFumh7UlORi4tbVvAA7pufsKYOPCRbt4edyUtD2D7Kn0fuDYrdpOp5tU73DgirYMW06qt5puUj1JkiRJE6r98HwecH1VvaNn1RpgVbu9Crikp/0V6RwJ3OV8SpI0WAPrqVRV/9zGPvdyUj1JkiRJs3EU8HLgS0mua21vAM4ELkxyCnAzcFJbdxndyId1dKMfTl7YcMefPfck9WuhJ+repUn1YPIm1puvA7sJQhoM/7ckSRqMqvosM8+TBHDMDNsXcOpAg5IkbWFUzv42q0n1oJtYDzgXYGpqasZttOv8oixJkiRJknZkoYtKTqonJ/qTJGmC+cOVJEmLx0IXlaYn1TuTbSfVe1WSDwNPwUn1JEnSiPNHEkmSNOkGVlRK8iG6SbkPSLIBOAMn1dMi4C+skiRJkiQN9uxvL93OKifVkyRJkiRJGnOjMlG3JEnSRLIH7MIY5OvsUEhJ0qSyqKSR4YdqjQL/DiVJkiRpdiwqSZKkkWKvD0kaDx6vJVlUkrQo2MNIkiRJkhbWbsMOQJIkSZIkSePHnkrSiLHHjSTNzOOjJI2Hfo/XDpeTxpdFJWnCzNfY934/LPhlUJI0n8wr0uLh3EzS+LKopIlhEWTHRm1/Ry0eSZIkjTaLU9LCs6ikeWEBQJI07vwyIkmS1B+LStKAWXCTJC1mk5TnJmlfpVFgsX9ufN20kCwqaWz5wU6SJEnSzvRbZJmv7bfH4o4WE4tKkiQtQv5KKUlarPxxebj8jKFeFpWkMWdSlSRJkvrn52hp11lUkiRpHvjBdPEal/d2XOKUJPXH47tGmUUlSZJkV3ZJknZivoo7k1Yk8jPG4mZRSZKkEeIHL0mSNAr6LX5NWrFMHYtKkiSpL35olGbHIrGkcTBqed1j53ixqCRJkiSNAL9ISZLGjUUlSZKkeTRqv/hq9Pg3ImkYRu3YM1/D6yy8D5dFJUmSJEmSNJbmo1hmYWruLCpJkqRFadR+kZUkSVpsdht2AJIkSZIkSRo/9lSSJEmSJEkTa756N0/iMDqLSpIkabscQiZJkrRrFvMk4xaVJEmSJEmSdtEk/hhnUUmSpDEwiR9SJEmSFrPF0IPJopIkSRooC2KSJEmzN07FJotKkiRJ0ggbpy8XkqTBGcV8MFJFpSTHAmcDuwPvraozhxySJGmELKY8Ye8dSZp/iylPSNI4GJmiUpLdgXcDzwI2AFcnWVNVXx1uZJKkUWCemB8WsyQtVuYJSVp4I1NUAp4MrKuqGwGSfBg4ETAJSJLAPCFJ2jHzhKSJNMxhcaNUVFoOrO9Z3gA8ZeuNkqwGVrfF7yf5+hyf7wDgtjned6GMQ4wwHnGOQ4wwHnGOQ4wwHnHuMMZklx774bt079G00HliJuPwdzVfJmlfYbL2d5L2FRbx/s6QJ/rZV/NEZ7F/n1hIvh7b8jXZlq/Jtgb2mizE94lRKirNtLu1TUPVucC5u/xkydqqmtrVxxmkcYgRxiPOcYgRxiPOcYgRxiPOcYhxxCxonpgxgAl6zyZpX2Gy9neS9hUma38naV+3w+8TQ+TrsS1fk235mmxr3F+T3YYdQI8NwCE9yyuAjUOKRZI0eswTkqQdMU9I0gIbpaLS1cDhSQ5L8kDgJcCaIcckSRod5glJ0o6YJyRpgY3M8Lequi/Jq4C/pzsF6Puq6isDfMqBDI2YZ+MQI4xHnOMQI4xHnOMQI4xHnOMQ48gYQp6YySS9Z5O0rzBZ+ztJ+wqTtb+TtK/b8PvE0Pl6bMvXZFu+Jtsa69ckVdsMM5YkSZIkSZJ2aJSGv0mSJEmSJGlMWFSSJEmSJElS3yauqJTk2CRfT7IuyenDjmdakvcluTXJl3va9ktyeZIb2vW+Q47xkCSfSXJ9kq8kefWIxrlHks8n+bcW5x+39sOSXNXi/EibwHGokuye5AtJPjnCMd6U5EtJrkuytrWN2nu+NMlFSb7W/j6fOoIxPqq9htOXu5O8ZtTi1P3G5Zg3n8bhmDQfxuGYMZ+S/F77G/5ykg+1PLko3tt+Pj+l8672GfCLSY4YXuRzs539/V/tb/mLST6eZGnPute3/f16kl8bTtSLT0b0+8Qg9JsLd/R/lmRV2/6GJKuGtU/zYbb5MsmD2vK6tn5lz2Msmv/PfvLqBP2NzDr3jvvfyUQVlZLsDrwbOA54LPDSJI8dblQ/837g2K3aTgeuqKrDgSva8jDdB/x+VT0GOBI4tb1+oxbnj4Cjq+rxwBOAY5McCbwVOKvFeQdwyhBjnPZq4Pqe5VGMEeBXq+oJVTXVlkftPT8b+FRVPRp4PN1rOlIxVtXX22v4BOBJwD3AxxmxOLWFcTnmzadxOSbtqpE/ZsyXJMuB3wWmqupxdJMXv4TF896+n9l/fjoOOLxdVgPnLFCM8+n9bLu/lwOPq6pfAv4deD1AO169BPiFdp+/aJ+FtQtG/PvEIPSbC2f8P0uyH3AG8BTgycAZGe/i/Wzz5SnAHVX1SOCstt1i/P/sJ68u+r+ROeTe8f47qaqJuQBPBf6+Z/n1wOuHHVdPPCuBL/csfx04uN0+GPj6sGPcKt5LgGeNcpzAnsC1dAen24AlM/0tDCm2FXQH2KOBTwIZtRhbHDcBB2zVNjLvObA38E3aiQdGMcYZYn428C+jHqeXbd63kT/m7eL+jcUxaR72c+yOGbu4v8uB9cB+dGf9/STwa4vpvZ3t5yfgr4CXzrTdOF223t+t1j0f+GC7vcXnXLozoj112PGP+2Xr/5etX+fFftlZLtze/xnwUuCvetq32G6cLv3ky97/u3YMvq1tv2j+P/vNqxPyN9JX7h33v5OJ6qnE/W/utA2tbVQdVFWbANr1gUOO52dal7wnAlcxgnG2LqnXAbfS/YL3DeDOqrqvbTIK7/07gdcCP23L+zN6MQIU8A9JrkmyurWN0nv+CGAz8NetG/J7k+w1YjFu7SXAh9rtUY5Tzagf8+bJuByTdtU4HjPmrKq+DbwNuBnYBNwFXMPifG+nbe+9HLfPgXPxX4G/a7cnYX+HYWJf11nmwu29PovpdesnX/5sv9v6u9r2i+n16DevLvq/kTnk3rH+O5m0olJmaKsFj2LMJXkI8DHgNVV197DjmUlV/aS6YUYr6LpPPmamzRY2qvsleQ5wa1Vd09s8w6aj8Pd5VFUdQddV9dQkTx92QFtZAhwBnFNVTwR+wAgPW2ljp58LfHTYsWh2xuGYt6vG7Ji0q8bqmLGr2tCBE4HDgIcBe9Edz7e2GN7bnVmsf9MAJPkjuqFKH5xummGzRbO/QzSRr2sfuXB7r8+ieN3mkC8X9evR9JtXF/1rMofcO9avyaQVlTYAh/QsrwA2DimW2bglycEA7frWIcdDkgfQJZQPVtXFrXnk4pxWVXcCV9KNAV+aZElbNez3/ijguUluAj5M1332nYxWjABU1cZ2fSvdHEBPZrTe8w3Ahqq6qi1fRJfYRinGXscB11bVLW15VOMU43fM2wVjc0yaB+N2zNhVzwS+WVWbq+rHwMXA01ic7+207b2X4/Y5cNbahLbPAV5WbYwEi3h/h2ziXtc+c+H2Xp/F8rr1my9/tt9t/T7A7Sye1wP6z6uL/W8E+s+9Y/13MmlFpauBw9us6w+kG4KyZsgx7cgaYHrW+1V0Y5iHJkmA84Drq+odPatGLc5laWc+SfJgun/q64HPAC9smw01zqp6fVWtqKqVdH+Hn66qlzFCMQIk2SvJQ6dv080F9GVG6D2vqu8A65M8qjUdA3yVEYpxKy/l/qFvMLpxTrxxOebNh3E5Js2HMTxm7KqbgSOT7Nn+pqf3d9G9tz22916uAV6RzpHAXdNDM8ZZkmOB1wHPrap7elatAV7Szip0GN2kuJ8fRoyLzLh9n9glc8iF2/s/+3vg2Un2bb04nt3axsoc8mXv6/TCtn2xiP4/55BXF/XfSNNv7h3vv5NhT+q00BfgeLozY3wD+KNhx9MT14foxlv+mK4ieQrdOMorgBva9X5DjvFX6LrbfRG4rl2OH8E4fwn4Qovzy8CbWvsj6P4J19ENPXrQsN/3FtczgE+OYowtnn9rl69M/8+M4Hv+BGBte88/Aew7ajG2OPcEvgvs09M2cnF6+dl7MxbHvAHs98gek+ZxH8fimDGP+/vHwNdaTvwA8KDF8t728/mJbhjBu+k+A36J7qw8Q9+HedjfdXRzbkwfp/6yZ/s/avv7deC4Yce/WC6M6PeJAe1rX7lwR/9ndHN+rWuXk4e9b/Pw2uw0XwJ7tOV1bf0jeu6/aP4/+8mrk/I30k/uHfe/k7RAJUmSJEmSpFmbtOFvkiRJkiRJmgcWlSRJkiRJktQ3i0qSJEmSJEnqm0UlSZIkSZIk9c2ikiRJkiRJkvpmUUmSJEmSJEl9s6gkSZIkSZKkvllUkiRJkiRJUt8sKkmSJEmSJKlvFpUkSZIkSZLUN4tKkiRJkiRJ6ptFJUmSJEmSJPXNopIkSZIkSZL6ZlFJkiRJkiRJfbOoJEmSJEmSpL5ZVJIkSZIkSVLfLCpJkiRJkiSpbxaVJEmSJEmS1DeLSpIkSZIkSeqbRSVJkiRJkiT1zaKSJEmSJEmS+mZRSZIkSZIkSX2zqCRJkiRJkqS+WVSSJEmSJElS3ywqSZIkSZIkqW8WlSRJkiRJktQ3i0qSJEmSJEnqm0UlSZIkSZIk9c2ikiRJkiRJkvpmUUmSJEmSJEl9s6gkSZIkSZKkvllUkiRJkiRJUt8sKkmSJEkaiCTHJvl6knVJTp9h/YOSfKStvyrJyp51r2/tX0/yazt7zCT/J8l17bIxyScGvX+SNOlSVcOOYc4OOOCAWrly5bDDkKSRc80119xWVcuGHcewmSckaWYLkSeS7A78O/AsYANwNfDSqvr/2bv3+Liq897/n0czusuSZUm+Sb5iGWODY0DYuRCShtJAQmKSQGNICU3pz7lx0jbtaaFtOCkn/E7p79fQJtA0JCQFEmooaRofQkLaQ0hDCsYyCGzj2BHGYFmWLUuybN010nP+mC0yiJGsGc1oRtL3/XrNS3vWXnvtZ78wHuuZtZ71UkyfzwDr3f1TZrYF+JC7f9TM1gL/DGwEFgP/AawOLht3zGDc7wE/cPf7x4tRnxMiIvFN9HMiPBXBpMvy5cupr6/PdBgiIlnHzF7NdAzZQJ8TIiLxTdHnxEag0d0PBvfcBmwGYhNAm4EvBsePAHeZmQXt29y9H3jFzBqD8TjTmGY2B3gP8IkzBajPCRGR+Cb6OaHlbyIiIiIikg7VwOGY901BW9w+7h4BOoGKca6dyJgfAv6Pu5+KF5SZbTWzejOrb21tTeiBRETkjZJKKk1mbXRwfqmZdZnZn0x0TBERERERmVYsTtvo2htj9Um0Pda1RJfOxeXu97h7nbvXVVXN+pXiIiKTknBSKVgbfTdwBbAWuDZY8xzrRqDD3VcBdwJ3jDp/J/CjBMcUEREREZHpowlYEvO+Bmgeq4+ZhYEyoH2ca8cd08wqiC6T+2FKnkBERMaVzEyl19dGu/sAMLKOOdZm4L7g+BHg0mBtNGZ2FXAQ2JvgmCIiIiIiMn3sBGrNbIWZ5QFbgO2j+mwHbgiOrwae8OhOQtuBLcEKiBVALfDsBMa8BnjU3fvS9lQiIvK6ZJJKSa+NNrNi4M+Av0piTEBroEVEREREpoPg94CbgMeBfcDD7r7XzG4zsw8G3e4l+ntCI/B54Obg2r3Aw0QLcP8Y+Ky7D401ZsxttzDO0jcREUmtZHZ/m8za6L8C7nT3rmDiUiJjRhvd7wHuAairq4vbR0REREREMs/dHwMeG9V2a8xxH9HZRfGuvR24fSJjxpx79yTCFRGRBCWTVEpkbXTTqLXRm4CrzexvgLnAsJn1AbsmMKaIiIiIiIiIiGSJZJJKr69jBo4QnWJ63ag+I2ujn+aNa6PfOdLBzL4IdLn7XUHi6UxjioiIiIiIiIhIlkg4qeTuETMbWcccAr41sjYaqHf37UTXRj8QrI1uJ5okSnjMRGMTEREREREREZGpkcxMpUmtjY7p88UzjTmbNZxIbsOKDZUFKY5ERESywa5d9yR8zYUXbk1DJCIikjVOTuCzYa4+C0QkfZLZ/U1ERGRcZna5me03s0YzuznO+Xwzeyg4v8PMlgftG82sIXi9YGYfmuiYIiIiIiIytZRUEhGRlDKzEHA3cAWwFrjWzNaO6nYj0OHuq4A7gTuC9j1AnbtvAC4Hvm5m4QmOKSIiIiIiU0hJJRERSbWNQKO7H3T3AWAbsHlUn83AfcHxI8ClZmbu3uPukaC9APAExhQRERERkSmkpJKIiKRaNXA45n1T0Ba3T5BE6gQqAMxsk5ntBXYDnwrOT2RMguu3mlm9mdW3tram4HFERERERCQeJZVERCTVLE6bT7SPu+9w93XARcAtZlYwwTEJrr/H3evcva6qqiqBsEVEREREJBFKKomISKo1AUti3tcAzWP1MbMwUAa0x3Zw931AN3DuBMcUEREREZEppKSSiIik2k6g1sxWmFkesAXYPqrPduCG4Phq4Al39+CaMICZLQPOBg5NcEwREREREZlC4UwHICIiM4u7R8zsJuBxIAR8y933mtltQL27bwfuBR4ws0aiM5S2BJdfDNxsZoPAMPAZdz8BEG/MKX0wERERERF5AyWVREQk5dz9MeCxUW23xhz3AdfEue4B4IGJjikiIiIiIpmj5W8iIiIiIiIiIpIwJZVERERERERERCRhSiqJiIiIiIiIiEjClFQSEREREREREZGEKakkIiIiIiIiIiIJU1JJREREREREREQSpqSSiIiIiIiIiIgkTEklERERERERERFJmJJKIiIiIiIiIiKSMCWVREREREREREQkYUoqiYiIiIiIiIhIwpRUEhERERERERGRhCWVVDKzy81sv5k1mtnNcc7nm9lDwfkdZrY8aN9oZg3B6wUz+1DMNYfMbHdwrj7ZBxIRERERERERkfRLOKlkZiHgbuAKYC1wrZmtHdXtRqDD3VcBdwJ3BO17gDp33wBcDnzdzMIx1/2Gu29w97pE4xIRERERkeyS7JfRwblbgvb9ZvbeM41pUbeb2QEz22dmn0v384mIzHbJzFTaCDS6+0F3HwC2AZtH9dkM3BccPwJcambm7j3uHgnaCwBPJmgREREREcluk/kyOui3BVhH9MvofzCz0BnG/F1gCbDG3c8h+nuKiIikUTJJpWrgcMz7pqAtbp8gidQJVACY2SYz2wvsBj4Vk2Ry4CdmtsvMto51czPbamb1Zlbf2tqaRPgiIiIiIjIFkv4yOmjf5u797v4K0BiMN96YnwZuc/dhAHc/nsZnExERkksqWZy20TOOxuzj7jvcfR1wEXCLmRUE59/h7hcQ/dbhs2Z2Sbybu/s97l7n7nVVVVVJhC8iIiIiIlNgMl9Gj3XteGOeBXw0+AL6R2ZWGy8ofUktIpI6ySSVmohOKx1RAzSP1SeomVQGtMd2cPd9QDdwbvC+Ofh5HPg+0W8hRERERERkeprMl9GJtgPkA31BfdZvAN+KF5S+pBYRSZ1kkko7gVozW2FmeUTXOm8f1Wc7cENwfDXwhLt7cE0YwMyWAWcDh8ys2MzmBO3FwG8RLeotIiIiIiLT02S+jB7r2vHGbAK+Fxx/H1g/6ScQEZFxJZxUCqal3gQ8DuwDHnb3vWZ2m5l9MOh2L1BhZo3A54GRXRkuBl4wswaif9F/xt1PAAuAp8zsBeBZ4Ifu/uPJPJiIiIiIiGRU0l9GB+1bgt3hVgC1RH9PGG/MfwPeExy/CziQpucSEZFAOJmL3P0x4LFRbbfGHPcB18S57gHggTjtB4G3JBOLiIiIiIhkH3ePmNnIl9Eh4FsjX0YD9e6+neiX0Q8EX0a3E00SEfR7GHgJiACfdfchgHhjBrf8a+C7ZvZHQBfw+1P1rCIis1VSSSUREREREZEzSfbL6ODc7cDtExkzaD8JvH+SIYuISAKSqakkIiIiIiIiIiKznJJKIiIiIiIiIiKSMCWVREREREREREQkYUoqiYiIiIiIiIhIwpRUEhERERERERGRhCmpJCIiIiIiIiIiCVNSSUREREREREREEqakkoiIiIiIiIiIJExJJRERSTkzu9zM9ptZo5ndHOd8vpk9FJzfYWbLg/bLzGyXme0Ofr4n5pongzEbgtf8qXsiEREREREZLZzpAEREZGYxsxBwN3AZ0ATsNLPt7v5STLcbgQ53X2VmW4A7gI8CJ4APuP3Mce8AACAASURBVHuzmZ0LPA5Ux1z3MXevn5IHERERERGRcWmmkoiIpNpGoNHdD7r7ALAN2Dyqz2bgvuD4EeBSMzN3f97dm4P2vUCBmeVPSdQiIiIiIpIQJZVERCTVqoHDMe+beONsozf0cfcI0AlUjOrzEeB5d++Paft2sPTtC2Zm8W5uZlvNrN7M6ltbWyfzHCIiIiIiMg4llUREJNXiJXs8kT5mto7okrhPxpz/mLufB7wzeF0f7+bufo+717l7XVVVVUKBi4iIiIjIxCmpJCIiqdYELIl5XwM0j9XHzMJAGdAevK8Bvg983N1fHrnA3Y8EP08DDxJdZiciIiIiIhmipJKIiKTaTqDWzFaYWR6wBdg+qs924Ibg+GrgCXd3M5sL/BC4xd1/MdLZzMJmVhkc5wJXAnvS/BwiIiIiIjIOJZVERCSlghpJNxHduW0f8LC77zWz28zsg0G3e4EKM2sEPg/cHLTfBKwCvhDUTmows/lAPvC4mb0INABHgG9M3VOJiIiIiMho4UwHICIiM4+7PwY8Nqrt1pjjPuCaONd9CfjSGMNemMoYRURERERkcjRTSUREREREREREEqakkoiIiIiIiIiIJExJJRERERERERERSVhSSSUzu9zM9ptZo5ndHOd8vpk9FJzfYWbLg/aNMYVXXzCzD010TBERERERERERyR4JJ5XMLATcDVwBrAWuNbO1o7rdCHS4+yrgTuCOoH0PUOfuG4DLga8H20RPZEwREREREREREckSycxU2gg0uvtBdx8AtgGbR/XZDNwXHD8CXGpm5u49wVbTAAWAJzCmiIiIiIiIiIhkiWSSStXA4Zj3TUFb3D5BEqkTqAAws01mthfYDXwqOD+RMQmu32pm9WZW39ramkT4IiIiIiIiIiIyWckklSxOm0+0j7vvcPd1wEXALWZWMMExCa6/x93r3L2uqqoqgbBFRERERERERCRVkkkqNQFLYt7XAM1j9TGzMFAGtMd2cPd9QDdw7gTHFBERERERERGRLJFMUmknUGtmK8wsD9gCbB/VZztwQ3B8NfCEu3twTRjAzJYBZwOHJjimiIiIiIhMI8nuGh2cuyVo329m7z3TmGb2T2b2Ssxu0xvS/XwiIrNdONEL3D1iZjcBjwMh4FvuvtfMbgPq3X07cC/wgJk1Ep2htCW4/GLgZjMbBIaBz7j7CYB4Y07y2UREREREJENidni+jOjKhJ1mtt3dX4rp9vqu0Wa2heiu0R8NdoLeAqwDFgP/YWarg2vGG/O/u/sjaX84EREBkkgqAbj7Y8Bjo9pujTnuA66Jc90DwAMTHVNERERERKat13d4BjCzkR2eY5NKm4EvBsePAHeZmQXt29y9H3gl+LJ6Y9DvTGOKiMgUSWb5m4iIiIiIyJlMZtfosa4905i3m9mLZnanmeXHC0q7SYuIpI6SSiIiIiIikg6T2TU60XaAW4A1RHeZngf8WbygtJu0iEjqKKkkIiIiIiLpMJldo8e6dswx3f2oR/UD3+bXy+VERCRNlFQSEREREZF0SHrX6KB9S7A73AqgFnh2vDHNbFHw04CrgD1pfToREUmuULeIiIiIiMh4JrNrdNDvYaIFuCPAZ919CMbdNfq7ZlZFdIlcA/CpqXpWEZHZSkklERERERFJi2R3jQ7O3Q7cPpExg/b3TDZeERFJjJa/iYiIiIiIiIhIwpRUEhERERERERGRhCmpJCIiIiIiIiIiCVNSSUREREREREREEqakkoiIiIiIiIiIJExJJRERERERERERSZiSSiIiIiIiIiIikjAllUREREREREREJGHhTAcgIpIKDSf6Er5mQ2VBGiIRERERERGZHTRTSUREREREREREEqakkoiIiIiIiIiIJExJJRERERERERERSZiSSiIiknJmdrmZ7TezRjO7Oc75fDN7KDi/w8yWB+2XmdkuM9sd/HxPzDUXBu2NZvYVM7OpeyIRERERERlNSSUREUkpMwsBdwNXAGuBa81s7ahuNwId7r4KuBO4I2g/AXzA3c8DbgAeiLnma8BWoDZ4XZ62hxARERERkTNSUklERFJtI9Do7gfdfQDYBmwe1WczcF9w/AhwqZmZuz/v7s1B+16gIJjVtAgodfen3d2B+4Gr0v8oIiIiIiIylqSSSmla1vBkMGZD8Jqf7EOJiEhGVQOHY943BW1x+7h7BOgEKkb1+QjwvLv3B/2bzjAmAGa21czqzay+tbU16YcQEREREZHxJZxUSuOyBoCPufuG4HU80dhERCQrxKt15In0MbN1RD87PpnAmNFG93vcvc7d66qqqiYQroiIiIiIJCOZmUopX9aQTOAiIpK1moAlMe9rgOax+phZGCgD2oP3NcD3gY+7+8sx/WvOMKaIiIiIiEyhZJJK6VjWMOLbwdK3L4y1q4+WNYiIZL2dQK2ZrTCzPGALsH1Un+1EZ6wCXA084e5uZnOBHwK3uPsvRjq7+1HgtJm9Nfh8+Djwg3Q/iIiIiIiIjC2ZpFI6ljVAdOnbecA7g9f18W6uZQ0iItkt+DLhJuBxYB/wsLvvNbPbzOyDQbd7gQozawQ+D4zU57sJWAV8IU6NvU8D3wQagZeBH03NE4mIiIiISDzhJK5JZFlD0wSXNeDuR4Kfp83sQaLL7O5PIj4REckwd38MeGxU260xx33ANXGu+xLwpTHGrAfOTW2kIiIiIiKSrGRmKqV8WYOZhc2sMjjOBa4E9iQRm4iIiIiIiIiITIGEk0ppWtaQDzxuZi8CDcAR4BuTeTAREREREREREUmfZJa/pWVZA3BhMrGIiIiIiIiIiMjUS2b5m4iIiIiIiIiIzHJKKomIiIiIiIiISMKUVBIRERERkbQws8vNbL+ZNZrZzXHO55vZQ8H5HWa2PObcLUH7fjN7bwJjftXMutL1TCIi8mtKKomIiIiISMqZWQi4G7gCWAtca2ZrR3W7Eehw91XAncAdwbVrie4yvQ64HPgHMwudaUwzqwPmpvXBRETkdUoqiYiIiIhIOmwEGt39oLsPANuAzaP6bAbuC44fAS41Mwvat7l7v7u/AjQG4405ZpBw+v+AP03zc4mISEBJJRERERERSYdq4HDM+6agLW4fd48AnUDFONeON+ZNwHZ3PzpeUGa21czqzay+tbU1oQcSEZE3UlJJRERERETSweK0+QT7JNRuZouBa4Cvnikod7/H3evcva6qqupM3UVEZBxKKomIiIiISDo0AUti3tcAzWP1MbMwUAa0j3PtWO3nA6uARjM7BBSZWWOqHkREROJTUklERERERNJhJ1BrZivMLI9o4e3to/psB24Ijq8GnnB3D9q3BLvDrQBqgWfHGtPdf+juC919ubsvB3qC4t8iIpJG4UwHICIiIiIiM4+7R8zsJuBxIAR8y933mtltQL27bwfuBR4IZhW1E00SEfR7GHgJiACfdfchgHhjTvWziYhIlJJKIiIiIiKSFu7+GPDYqLZbY477iNZCinft7cDtExkzTp+SZOIVEZHEaPmbiIiIiIiIiIgkTEklERERERERERFJmJJKIiIiIiIiIiKSMNVUmgH6IsMMDDsG9A8Nkx9SrlBERERERERE0ktJpWnM3Tl0epD9nQOvtz3f1scVS0uoLcvPYGQiIiIiIiIiMtMpqTRNDQ07ezr6OdoTYUFhiEVFuQy709Ib4XsHT7OhYpDfWlJMjlmmQxURERERERGRGUhJpWnqQOcAR3si1JblsXJOLhYkj35rSQn/ebSHZ4/3kpsDl9ZoN1URERERERERST0llaah0wNDvNY1yJLiMGeV5r3hXDjHeE91MUPu7GztY0FRmHPnFWQoUhERERERERGZqVTReZpxd/adHCCcw7h1k95TXcySkjA/fq2Llp7IFEYoIiIiIiIiIrOBkkrTTEtvhPb+IWrL8skLjV0vKWTGVctLKQjl8KPXTjPsPoVRioiIiIiIiMhMl1RSycwuN7P9ZtZoZjfHOZ9vZg8F53eY2fKg/TIz22Vmu4Of74m55sKgvdHMvmKmCtOjuTu/6hxgTm4OS4rPvHKxODeHS2uKOdY7xHMn+qYgQhERERERERGZLRJOKplZCLgbuAJYC1xrZmtHdbsR6HD3VcCdwB1B+wngA+5+HnAD8EDMNV8DtgK1wevyRGOb6ToGhumJOMtKfl2Y+0zWzM1jxZxcft7cQ9fgcJojFBEREREREZHZIpmZShuBRnc/6O4DwDZg86g+m4H7guNHgEvNzNz9eXdvDtr3AgXBrKZFQKm7P+3uDtwPXJVEbDPaka5BQgYLiyZeX93M+K0lJUTceeJIdxqjExGRqdbff4ojR3bS0fEKg4M9mQ5HRERERGaZZHZ/qwYOx7xvAjaN1cfdI2bWCVQQnak04iPA8+7eb2bVwTixY1bHu7mZbSU6o4mlS5cmEf70FBl2WnojLCoKE85JbGVgeX6ITQsK+a+WXi6aX8Ciotw0RSkiIlMlEunj6af/lq6uFgBycsLU1X2G+fPXZTgyEREREZktkpmpFC+jMboK9Lh9zGwd0SVxn0xgzGij+z3uXufudVVVVRMId2Y42hNhyKGmOLmE0Kb5hRSGjSeP9OAq2i0iMu3t2bONrq5jnH/+jVx00WcoKqpk9+7vEImohp6IiIiITI1kkkpNwJKY9zVA81h9zCwMlAHtwfsa4PvAx9395Zj+NWcYc1Zr6h6kJJxDWV5yG/blh3J4+4IiXu0a5NDpwRRHJyLyRpPY0KHCzH5qZl1mdteoa54MxmwIXvOn5mmyz+HDT9PU9DS1te+junojCxa8hfXrr6e3t539+3+Q6fBEREREZJZIJkOxE6g1sxVmlgdsAbaP6rOdaCFugKuBJ9zdzWwu8EPgFnf/xUhndz8KnDaztwa7vn0c0L+KA92Dw3QODFNdEp5wge54zq8soCwvhyebuzVbSUTSZpIbOvQBXwD+ZIzhP+buG4LX8dRHn/2GhgbYu/ch5s2rZfXqK19vnzdvFcuWvYtXXvkpHR2vZDBCERHJGgMvw+n/DR7JdCQiMkMlnFRy9whwE/A4sA942N33mtltZvbBoNu9QIWZNQKfB0a+pb4JWAV8Ic43zZ8Gvgk0Ai8DP0r2oWaa1r7oh8CCwmRKYP1aOMd456IijvUO8cuTA6kITUQknsls6NDt7k8RTS5JHMeOvUAk0svq1Vdi9saP8TVrPkR+/hwOHHg0Q9GJiEhWGOqEk9+E9r+BIx+Eg7XQ/lVw7QYtIqmVVJbC3R8DHhvVdmvMcR9wTZzrvgR8aYwx64Fzk4lnpmvtHaIknENROLmlb7HWlufzzLFefn60h7Pn5pEziZlPIiJjSNWGDvF828yGgO8BX/I40y5n+oYOTU07KCiYS0XF6jedy80tpKbm7Rw8+BP6+09lIDoREcm4oVNw4q/A+6H4Spj7e9D+ZTj+ORg+DZV/nukIRWQGmXyWQtIqMuy09w9RWRhKyXg5Fp2t1N4/xN72/pSMKSIyyqQ3dBjDx9z9POCdwev6eJ1m8oYO/f2naW3dS3X1xjfNUhpRU7MJ92Gam+unODoREckKXdvBe6HiZpjzAZjzIVj6n1B6LZz4S+j+SaYjFJEZREmlLNfWN4QDVQWpSSoBrC7LY0FhiKdaehhSbSURSb1JbegwFnc/Evw8DTxIdJndrNLcXI/7MNXVbx2zz5w5iyktXUJT044pjExERLLCYDP0PgVF74bcmI9iM1j4DchfB83XweCrGQtRRGYWJZWyXGtfhLBBeX7qkkpmxiWLiukcGGZ3m2YriUjKJb2hw1gDmlnYzCqD41zgSmBPyiPPckeO7KC0tIbS0upx+9XUbKKz8xAnTuyfoshERCQrnP4eWAGUvP/N53KKofpfo8vijv3h1McmIjOSkkpZzN1p7R2isiCc8tpHK0tzqS4O84uWHiLDmq0kIqkzyQ0dMLNDwJeB3zWzpmDnuHzgcTN7EWgAjgDfmKpnygZdXcc4efIVqqtHl6d6s8WLLwKM3bu/m/7AREQkO/Tvh4E9UPI+yCmJ3yevFub9GXT9G/T819TGJyIz0uS2E5O0OjU4TP+wU5WiekqxLKittK3xFA0n+qibX5jye4jI7JXshg7BueVjDHthquKbjlpb9wKwaNEFZ+xbUDCXyso17N79Xd797r/CtCnDrLFr1z0JX3PhhVvTEImITLne/wIrgqLfGL/fvD+Cjruh9c+itZb0GSEik6CZSlnsRN8QAJUprKcUa/mcPJaW5PL0sR4GhjRbSUQkm7W1HaCwsIKiosoJ9V+06AI6Og7S1nYgzZGJiEjG+SD0vwAFbwHLHb9vTjFUfjFae6nr0SkJT0RmLs1UymLt/UOU5OaQH0pf7u+SRUV851edPHeil7cuKErbfUREJHnuw7S1HWDBgvUTvqay8hwAXn75J1RWnp2u0CTNkpl5JCKzUP++6I5vBROc1Dv396Djy3Diz6HkSs1WEpGkaaZSlhp252T/EPNSWKA7npqSXFaW5vLMsV76hobTei8REUnO8eN7GRzspqJi4smh4uIqystXcvDgv6cxMhGR8ZnZ5Wa238wazezmOOfzzeyh4PwOM1sec+6WoH2/mb33TGOa2b1m9oKZvWhmj5jZGIWFZqC+XdGlb3nnTKy/5ULFX0D/Huh+PL2xiciMpplKWerUwDBDDuX56c/7LSgMc/DUII8e6mJVWd6Er9tQWZDGqEREZMShQz8FoKKiNqHrVq68jN27H2RoaJBQ6AzLIUREUszMQsDdwGVAE7DTzLa7+0sx3W4EOtx9lZltAe4APhps0rAFWAcsBv7DzFYH14w15h+5+6ng3l8mumnEX6f9QTPNB6G/AQrOB0vg17vSLdB6C7T/LZRcnr74RGRGU1IpS3X0R+sppXumEkBZXogFhSEOnR5gaUkueSFNfxURySaHDj2ZUD2lEStXXsauXV/nyJEdLF16cZqiExEZ00ag0d0PApjZNmAzEJtU2gx8MTh+BLjLorsLbAa2uXs/8EqwW+jGoF/cMWMSSgYUArOjaGj/PvA+KKiLf/7kOMtoCzZB1/ehL6jHJCKSICWVslR7/xBFYUtrPaVYq0rzONbbyyunBzh7bv6U3FNERM7MfZhXX/1ZQkvfRqxY8R7Mcnj55X9XUknGlGjdJu0WJwmoBg7HvG8CNo3Vx90jZtYJVATtz4y6tjo4HnNMM/s28D6iias/jheUmW0FtgIsXbo0oQfKSq8vfVuT+LVF74Tux6D9y7D4vtTHJiIznmoqZSF3p2MK6inFmpMXYlFRmNe6BulXbSURkaxx/Pgeenvbk0oqFRaWs3hxneoqiUimxJv+Pnr20Fh9Em2PHrh/guhyuX3AR+MF5e73uHudu9dVVVXF6zJ9uMPAS5C/LrGlbyNyiqHw7XDqn2GwOfXxiciMp6RSFjreO0TEoXwKk0oQna007PCrzoEpva+IiIzt0KEngcTrKY1YufIyjhzZQV/fyRRGJdloeHiInp4TtLUdoKWlgaNHn6elpYH29ka6u48zPBzJdIgy+zQBS2Le1wCjMxev9zGzMFAGtI9z7RnHdPch4CHgI5N+gmw3dByGT0He6jP3HUvRpcAQdHw1ZWGJyOyh5W9Z6HD3IDA19ZRiFefmsLQkl1e7BllWMsScvKm9v4iIvNlrrz1FWdnShOspjVi58jJ+/vPbOXToSdasuSrF0UmmnT7dTHPzLtraDnDy5MFxE0dmORQXL6C0tIaKitVUVJxNcfF8TFuJS/rsBGrNbAVwhGjh7etG9dkO3AA8DVwNPOHubmbbgQeDgtuLgVrgWaIzld40ZlBH6Sx3bwyOPwD8Mu1PmGkDv4r+nExSKVwFcz4MJ/8RKv8CcmbPpnkiMnlKKmWhw12DFISMwvDUTyQ7qzSP5p5BfnlygLqqAv1DU0Qkw1paGli8eIziqxNQU7OJUCiP1157SkmlGcJ9mObmXRw69AQdHQcBo6xsCcuWvYs5cxZTWDiPvLwSwHAfZmDgNP39p+juPsbp00dpa9tPc/NOAAoK5lJRsZqqqnUsWLCe3NyijD6bzCxBjaSbgMeBEPAtd99rZrcB9e6+HbgXeCAoxN1ONElE0O9horWRIsBngxlIjDFmDnCfmZUSTTy9AHx6Kp83IwYOQE4phBZMbpx5fwynH4GT34J5n0tNbCIyKyiplGXcnSNdkSlf+jYiL2ScVZrHL08OcKJviKpC/REREcmU/v7TtLc3sn799UmPEQ4XsHjxRRw+/IsURiaZcuLEfvbte4TOztcoKVnIOedcTU3NJvLzSyc8hrvT3X2MtrYDtLXtp7V1H0eOPItZDpWVa1i48HwWLtyQ0JgiY3H3x4DHRrXdGnPcB1wzxrW3A7dPcMxh4B0pCHn6cI8mlfJqYbJfBBe+NVpbqePvoPyzYFqxICITo4xBljk1OExXZJglJZn7T7O0JJfDXYPsO9nPvIIQIc1WEhHJiOPHdwPOwoUb6Oo6mvQ4S5dezNNPf5nBwV5ycwtTF6BMmaGhAV566RFeffVnFBbOY8OGT1BdvZHo5IzEmBklJQspKVnIsmWX4D7MyZOv0tLyHEePNrB793fZvftBKivPprr6rSxadD7hcEEankpEJmXwEAx3QG5yNffeZN4fw5GPwOnvQ+nVqRlTRGY8JZWyzNHuaC2EuRmaqQSQY8Y55fnUt/bxyqlBVpXlZSwWEZHZrKWlAYCFCzfQ2Di5pNIvfnEHzc07WbbsklSFJ1Pk9Omj7Nr1dbq6jrJy5W9y9tlXEQrlpmx8sxzKy1dQXr6CNWs+zOnTzRw9uosjR3bwwgv/xJ49D7JgwQZqajZRWXlOyu4rIpPU87Poz8nUU4pVshlyz4L2v1VSSUQmTEmlLNPcEyFkMCc3sxvzVRaEWVgU5uCpARYVhSnOcDwiIrNRS0sDhYXzKC2tmdQ4S5a8HYgW/VZSaXppb29k5867MQuxadMfUFW1Nq33MzNKS6spLa1m9eoP0NFxkCNHnqG5uZ7m5mfJzy+lvf1XXHDB76c9FhE5g96fgRVDeFFqxrMQzPtDOPbfoPdpKHxbasYVkRlNSaUs09w9yMKiMDlZsORszdw8TvRGeKmjX0W7RUQyoKWlgYULN0z679/CwnlUVa3ltdeeSlFkkoxdu+5JqH9LSwPPPfcNCgsr2LTpc0nvAJgsM2PevLOYN+8s1q79bY4f38ORI8/w7LN38cwzd7Js2SXU1X2ac875MKGQZjWLTLme/wzqKaXwy9+yT0DrrdHZStWPpG5cEZmxlFTKIkPutPREOL8y+boFDSf6UhZPQSiH2rI89p0c4Eh3hJqS1E21FxGR8Q0PRzh+fDd1dZ9JyXhLllzM3r0P4T6cVB0emVrHju1m166vU1a2jI0bbwp2c8ucUCiXRYvOZ9Gi81mz5kM0NHyb+vp/5Hvfu5bi4vmcf/7vs2nT5ygpmeQOVCIyMYPNMHgQ5sStcZ68nGKY+0lo/xsYOAh5K1M7vojMOEn9q9LMLjez/WbWaGY3xzmfb2YPBed3mNnyoL3CzH5qZl1mdteoa54MxmwIXvOTiW06a+0dIuKwuDh7kjdLS3KZlx/ilyf76Y0MZzocEZFZo63tAJFIHwsXbkjJeEuXvoP+/k6OH9+bkvEkfdraDrBr19cpLa1h06Y/yHhCabTi4ire8Y4/5XOfa+RjH/sRNTVv5amn/hd/93fL+OEPP0NHxyuZDlFk5uvbGf2ZuyL1Y5f/NyAEHX+f+rFFZMZJOKlkZiHgbuAKYC1wrZmNXlR/I9Dh7quAO4E7gvY+4AvAn4wx/MfcfUPwOp5obNNdc/cgAIuLs2cCmZlx7rx8HNjb0Y+7ZzokEZFZIbZIdyosXXoxAIcP/yIl40l6nD7dzM6dd1NUVMmmTX+Q1bv1meWwatXlbNnyA266aT/r11/Pc899k69+tZbvf/96Wlv3ZTpEkZmrbycQgtwlqR87dzGUXgsn74WhttSPLyIzSjLZi41Ao7sfBDCzbcBm4KWYPpuBLwbHjwB3mZm5ezfwlJmtSj7kmau5J0Jx2CjNsqLYReEczi7L56WT/bzWNciyOaqbICKSbi0tDYRCeVRWrknJeHPnrqCkZBGvvfYUdXWfSsmYkloDA93s3PkPhEJ5WTlDacRYtaGqqy9i3rxVHDz47+zd+zAvvvhdlix5O6tXf4CLL/6zKY5SZIbrq4f8c8HS9O/yij+FU/dD+1eh6ovpuYeIzAjJZC+qgcMx75uCtrh93D0CdAIVExj728HSty/YGFVJzWyrmdWbWX1ra2vi0Wex5u4Ii4pzs7Ig9pKSMFUFIX55coBTA0OZDkdEZMZraWlg/vxzU7Z1vJmxZMnbaWp6OiXjSWoNDw/x3HPfoK+vg7q6T1FYWJ7pkJJSWFjOunW/zaWX/i9WrHgPTU3P8NOffoGf//z/JRLpz3R4IjODO/TuhIK69N0jfx2UXAUdX4Gh0+m7j4hMe8kkleJlPEaviZpIn9E+5u7nAe8MXtfH6+Tu97h7nbvXVVVVnTHY6aIvMkx7/xDVRdmz9C2WmXHevALyQkZDWx+RYS2DExFJF3enpaWBBQtSs/RtRE3NW+noOEh396xbYZ719u/fzokT+zj33OsoLz8r0+FMWl5eCevW/TbvfvdfMX/+Op544i/4x39cz6FDP8t0aCLT3+AhGG5Pb1IJoOIWGO6Ak4ntXCkis0sySaUmIHbxbg3QPFYfMwsDZUD7eIO6+5Hg52ngQaLL7GaNlp4IAIuyNKkEkBcy3jKvgJ6Is0f1lURE0qar6yg9Pa0pq6c0oqbmbQAcPqzZStnkxIl9vPzy4yxZ8g6WLn1HpsNJqeLiKurqPs111z3G8HCE++57Nz/+8R8yONiT6dBEpq+++ujPwovSe5/CjVB0KXT8LQynbodpEZlZkkkq7QRqzWyFmeUBW4Dto/psB24Ijq8GnvBxMhBmFjazyuA4F7gS2JNE9cTYMgAAIABJREFUbNPW0SCptDCLk0oA8wpCrC7Lo6Unwo7jvZkOR0RkRkp1ke4RixdfSE5OrpbAZZH+/tM8//y3KSlZwLp1H810OGlTW3sFn/rUi1x00WfZsePvueeeOlpbXzrzhSLyZn07o7WU8s9L/70q/hwiR6Hzm+m/l4hMSwknlYIaSTcBjwP7gIfdfa+Z3WZmHwy63QtUmFkj8Hng5pHrzewQ8GXgd82sKdg5Lh943MxeBBqAI8A3kn+s6edoT4Ty/BwKwtlVpDueFXNyWVgY5snmHho7BzIdjojIjDOSVFqwYH1Kxw2HC1i06HwllbKEu/Pii/czONjNBRf8PuFwfqZDSqu8vGLe9767+J3f+Qm9vW184xsXsXv3g5kOS2T66auH/Lekr0h3rKLfgMJL4MTtMKwZhiLyZkllMNz9MXdf7e5nufvtQdut7r49OO5z92vcfZW7bxzZKS44t9zd57l7ibvXuPtL7t7t7he6+3p3X+fuf+Dus6oadEtPhIWF2T1LaUS0vlI+CwpDbD90mmPBLCsREUmNlpYGystXUlBQlvKxa2rexpEjOxkaGkz52JKYI0d2cOzYi6xZcxWlpWnYFjxLnXXWZWzd+hyLFl3Av/7rx3jiib/UknqRifJh6NuV/npKI8yg6n/CUAt0fG1q7iki08r0yGLMcN2Dw5waHKauODU7/EyFUI7xkZWlfOdAJw+/3Mn1q+cyNz+U6bBklhoYclp6IrT2RsAgP8eYmx+iqiCUlbspipxJS0tDype+jaipeRs7dvw9x469yOLFF6blHnJmfX2d7N37EOXlK1mx4tJMh5N2u3a9udDvuedehzv8/Oe3c/Dgv7N+/cdf3+3wwgu3TnWIItPDwK9g+BQUpLmeUqyiS6DoMmj/ayj/JOSUTN29RSTrZf9aq1mgZZrUUxqtNC/Eb68qZcjhoZc76R4cznRIMstEhp3/PNrNV3a30dDWx/G+CCd6h3jl9CDPneijvrWPLv25lGmmv/807e2NKd/5bcSSJdFi3VoClznuzp49DzI0NMBb3nIDZrPzn2M5OSHWr/8dzj57M0eOPEt9/dc0g07kTPp2Rn9O1UylEVX/E4ZOQPvfT+19RSTrTa8sxgzV0htNKi0onH4zfSoLwlxzVinbGjt5sLGTa1eVUZI7O/9xLFPraPcgP3ytixN9Q5wzN4+S3Bzm5UdnJg27c7hrkMZTA/yipYcLKguomibLS0WOH98NeEpmKsWbHeLu5OfP5YUXHiAUemM9Ds0OmRpHj9bT0tLAmjUfpqRkYabDySgzo7b2feTlzWH37u9QX/816uo+nemwRLJX3/NgBZB/TmrHPfnmz4s3yX8LtN8Bc/8fCM9P7f1FZNrSb/9Z4GhPhIqCEPmh6fmfo7o4l2tWlnFqYIh//lWnZoZI2v3yZD/f+VUn/UPONStL2byilIqC8OtL3XLMWDYnj3cuLKYkN4eGtj46B2ZVmTaZxtK189sIM6O8fCUnTx48c2dJuf7+0+zZs42ysuWsXPmbmQ4nayxb9k7Wr7+e1ta91Nf/o2YsiYyl/wXIPxcsA1+WzflwtFj3iS9O/b1FJGtNzyzGDDOdinSPZemcXK45q4xTg0N858BJOvr1C7ykx87jvfzbK6dZWBTmE2vmclbZ2Duf5IWMC6sKyM0xdrX20RNRwlOyX0tLA4WF8ygtrUnbPcrLV9LTc4L+/lNpu4fEt3fvNiKRPjZsuIGcnOk3Qzmdli69mPPO+xitrXt49NFPqni3yGju0N8QnTGUCeGFMPdT0VlN/fsyE4OIZB0llTLs9OAQXYPDLJpm9ZTiWVqSy5ZVZfQPOfcfOElzt75llNR65lgP/+dIN2fPzWPLqjKKwmf+K6wglENdVSHD7uxt79cvKVPEzC43s/1m1mhmN8c5n29mDwXnd5jZ8qC9wsx+amZdZnbXqGsuNLPdwTVfsRlahX2kSHc6H6+8fCUAHR2arTSVjh59nubmempr38+cOYszHU5WWrbsEmpr309Dw7f52c9uy3Q4Itkl0gxDbVCQnpmsE1L5PyCnGI7/98zFICJZRUmlDJuuRbrHUl2cy/Wr55KXYzz4q072tPdlOiSZZhpO9MV9/dsrp3iyuYdFRWGWl+Syt73/DefHU5KbQ21ZHm39Qxzr1Sy6dDOzEHA3cAWwFrjWzNaO6nYj0OHuq4A7gTuC9j7gC8CfxBn6a8BWoDZ4XZ766DNreDjC8eO701ake0RZ2VLMQnR0vJzW+8iv9fS0sWfPg5SWLuGss96b6XCy2urVH2DDhk/ws599kT17Hsp0OCLZo/+F6M9MzVQCCFdBxV9C9w+h69HMxSEiWUNJpQxr6YlgwIIZklQCmFcQ4uOr57KoOMyjr3bx701dDA1rdogk73DXIL88OcCCwhDnzctPagbH0pJcSnNz2Heyn4j+PKbbRqDR3Q+6+wCwDdg8qs9m4L7g+BHgUjMzd+9296eIJpdeZ2aLgFJ3f9qj083uB65K61NkQFvbASKRvrTVUxoRCuVSVrZEM5Wm0I9//AcMDHRp2dsEmBlXXvl1lix5B9u338jx43szHZJIduiL1twjf33mYjh5T3SmUmgRHP1d6Lgr2hb7EpFZRUmlDDvaE6GyIERuzsxaxVGcm8OWVWVcVFXArtY+7j9wkhN9kUyHJdPQke5B9nb0U1UQ4i0VBeQkuSTIzDinPJ/+IeflUwMpjlJGqQYOx7xvCtri9nH3CNAJVJxhzKYzjAmAmW01s3ozq29tbU0w9MxKd5HuWNFi3a8yPKzZe+m2f/92du/+LrW176O0dEmmw5kWQqFcrrnmYfLySnj44Q+r/pcIRGcq5S6HUFlm47AwlF4bXYrX9aPMxiIiGTdzpsdMQ+5OS0+Es0rHLjQ8nYXMuLSmhJqSXH58uIt/+uVJ3rmoiIvmFyadGJDZ5WjPILvb+6nID7GhMvmE0ojy/BCLi8K82jXIijkz8/+7LBHvP9To6WET6ZNUf3e/B7gHoK6ublpNS2tpaSAUyqOyck3a71VevpJXXnmCU6eamDt3WdrvN1v19nbw6KOfYsGC9axadUWmw5k2du2KznZYv/53eOaZO7n//t/kggt+f9xrLrxw61SEJpI5/S9AfgbrKcXKPxsKNkH3T6BwU7SIt4jMSkoqZdCpwWF6Ij4jinSP5+y5+VQX5/Lj17r4aXMPO1v7WFeeT3n+xKf/b6gsSGOEko2O9UR4sa2f8vwczq8sIJSiROTK0jyaeyK82jXAxgWFKRlT3qQJiJ2OUQM0j9GnyczCQBnQfoYxY7dDizfmtNfS0sD8+ecSCuWm/V7l5WcB0WLdSiqlz+OP/xHd3ce57rpHaW6uz3Q4005FxWpqa6/kwIHtLFiwnurqjZkOSSQzhrth4ADM2ZLpSH5tzkeg/0U4tQ3K/wD0pbHIrKTlbxl0NCjSPdOTShAtlPyRlXP40Io5RIadHcd7ee5EL12D2uJd3qy1N0JDWx+leTlcWFlIOIXLQ0tyc6gqCPFa1yCDqq2ULjuBWjNbYWZ5wBZg+6g+24EbguOrgSd8nK353P0ocNrM3hrs+vZx4AepDz1z3J2Wloa0F+keUVBQTn7+XNVVSqMDB37ICy/cx8UX38KiRRdkOpxpa9Wqy5k7dwV79vwzvb0dmQ5HJDP69wAOBRks0j1aqAxKNsPAPuhT0lxktlJSKYNaeiLkGFQVzvykEkRr2pw9N5+LFxZRW5pHW98QT7X00HCij84B1fSQqNbeCM+39TEnN4e6qtQmlEasKM1jcBhebNPuhOkQ1Ei6CXgc2Ac87O57zew2M/tg0O1eoMLMGoHPAzePXG9mh4AvA79rZk0xO8d9Gvgm0Ai8DMyoQg5dXUfp6WmdknpKEP07OVpXSUmldIgue/skVVXruOSSv8x0ONNaTk6IDRs+wfBwhBdeuI9x8s+ShczscjPbb2aNZnZznPP5ZvZQcH6HmS2POXdL0L7fzN57pjHN7LtB+x4z+5aZpX/a51R5fee3LFn+NqLoXRBeCqf/BYZ7Mx2NiGSAkkoZ1NIToaoglJZfmrNZOMc4qyyPdy0qZsWcXE70RXj6WC/PHu+luXuQIf1jcdb6VWc/z53oozgcTSilq4B9eV4OZXk57Dzey7D+vKWFuz/m7qvd/Sx3vz1ou9XdtwfHfe5+jbuvcveN7n4w5trl7j7P3UvcvcbdXwra69393GDMm8ab2TQdTWWR7hHl5Svp6TmhIsgp5u5s334j3d3HuOqqfyIczs90SNNeSckCzjnnw5w4sY8jR3ZkOhyZIDMLAXcDVwBrgWtjvigYcSPQ4e6rgDuBO4Jr1xKd6boOuBz4BzMLnWHM7wJrgPOAQmD8QlzTSV8D5JRGC3VnE8uB0utg+BR0zagJxCIyQUoqZYi7c7QnwqKimfMFSqLyQtGZS+9aXMzqsjx6I8O82N7Pk83dvNTRzynNXppV9nX08/2DpynNy2Hj/ELyQulLtpoZK+bkcXJgWDvBSdYYSSotWDB1W0WXl68EoL395Sm752ywc+fd/PKX3+fSS/+axYvrMh3OjLFs2buYO3cFL730LwwMdGU6HJmYjUCjux909wFgG7B5VJ/NwH3B8SPApcEy583ANnfvd/dXiM5S3TjemMEXGh586fAsb6zFN731vwD567OzblHeiuiMpZ4nYaAx09GIyBRTUilDTg4M0z8084t0T0RujrGyNI9LFhVxUVUBlQVhmroG+a9jvfyipYeDpwa0PG4Gc3eeOdbDDw6dZnFxOK0zlGLNLwxRFDZebOtP+71EJqKlpYHy8pUUFEzdVtFlZUvJyQnT0aFfAlKluXkXP/nJH7N69ZW87W2fz3Q4M4pZDuvXX8/gYA8vvfRIpsORiakGDse8bwra4vYJlk93AhXjXHvGMYNlb9cDP44XlJltNbN6M6tvbW1N8JEywIejBbGzbelbrJIPQc486Lxfy+BEZhkllTJkpEj3QiWVXmdmVBSEeUtFAe9eXMw5c/PIMTjQOcDX9nbwnQMnea61l56IinvPFJFh5/HD3TzZ3MM5c/PYsqpsShJKADlmnDuvgJc7B+hWwXjJAi0tDVO69A0gFMpl7twVtLUpqZQKp041sW3bZoqLF7B58z9h2TijYJorLa1m5crfoqnpadraDmQ6HDmzeP8TjF66PFafRNtj/QPwn+7+83hBufs97l7n7nVVVVXxumSXwVdguCu7inSPllMAZdfD0DE48cVMRyMiU0hJpQxp6YkQMqgsDGU6lKyUFzKWzcnjbQuKuGRR9NU35PykqZu7drfzLy93sre9j4GhGVVSZVY52T/Edw500tDWx1sXFPLB5XOmvL7Y+nn5DAN7OzRbSTKrv/807e2NLFx4/pTfu6KillOnXiMSUeH6yejvP8WDD76f/v5TXHfdoxQVVWQ6pBlr9er3U1BQzt69D+OuLwWyXBOwJOZ9DdA8Vh8zCwNlQPs41447ppn9D6CK6CYQM0NfdHk0+VmcVALIPwcKL4b2/x96d2Y6GhGZIkoqZcjRnkEWFIYJ6VvMMyoK5/D2hUXcuGYuv7dmLhvnF9LaO8T/frWLr+xu4wevnOJXnf0MaXv4acHdebGtj2/vP0nHwBAfXjGHd/9f9u47PI7yWvz492xf9eJuy5Z7AdxtbJrpECCYJBAgjVBCbkhPbhK4SQjh3gRSfilcEgg3lFACIUCIkxgwHUzADfcuF2RZkmXL6m3b+/tjRvYiS7IkS5rd1fk8zz67Ozs7e2ZHO6/27Pued0S6I7/oDwp6GJHmYUNls84mpBxVUbERMP3eUwkgL28ixsSoqtJZ4HoqHG7k6ac/QUXFZj75yWf6tS7WQOR2+5g69RPU1u5j375/Ox2O6twqYKKIjBURH1bh7SVt1lkCXGffvhJ4za6JtAS4xp4dbiwwEatOUofbFJGbgIuAa00qZRxb1gMu8J/sdCTHl3kleIZD2fUQ0x/tlBoIdOyVA2LGcKAxysl5OhtMd4gIQ4Iehoz0sGhEGvsbImypamFrdQtbq0ME3MLkHB/Tcv0UZHhxacKu16w71P0eDDMHBY5ZVtkcYdm+Bj6oDzMq3cNlYzLJ8TvbW296foAX99VT1hhhRPrALZyvnOXEzG+tcnPHIeLi8OGd/f7aqaCpqYonn7yMffveZfHihxk//kKnQxoQRoyYy969r7Nt2/MMHz4HrzfodEiqHcaYiIh8BXgJcAMPGWM2i8idwGp7RtAHgcdEpAirh9I19nM3i8jTwBYgAnzZGBMFaG+b9kveD3wAvGv/WPWcMebOftrdvtOyHnyTwZUEf+euIAz7A5RcBpU/gcHJ//YrpTqnSSUHHG6JEoolf5HuniQaeouIMCrDy6gML+eNSmdvbdhKMFWFWF/ZQobXxdQcHyflBRgadGtdC4fVhKK8U97IxsoWfC7hooJ0ZuYHEuK4TMn18UoJbDzcokkl5Zjy8nUEg/lkZratX9v3PJ4AWVmjqaxMnaTSmjUPEArV09BwgIaGg0SjLbhcHtzuABkZQ0lPH4Lb7fvQc+bMubnbr3P4cBF/+cvHqazczlVXPc20aVf21i6o4xARTjrpapYvv4uioqVMnfoJp0NSHTDGLAWWtll2e9ztZuCqDp77E+AnXdmmvTy5/7nuSPM6CJ7mdBRdl3EpZH0WKu+CzI9DIIELjCulTlhqnngTXFmDFunurq4ksAoyvIxI81DRHKGsMcLqg82sOthMukcYnuZlRLqHNE/XRny218tGdY8xhuL6MO8famZHdQiXwNzBARYMTSPdmzgjbwNuFxOyfWyvbuGCUenaw005orVIt1OJ1vz8iezd+zqRSDMeT/Ke/xoaDrJ+/aOsXn2fPZyvo2GtQlbWSHJzJ5CfP4G8vIndeh1jYqxYcQ+vvvpfuN0+PvWpfzFu3PknHL/qnpycMYwcOZ89e15n7NjznA5Hqb4RrYJIMQS+5HQk3TP0N9CwDMpugMIVIPrDnVKpqkdZDRG5GPgtVpfTPxpj7m7zuB94FJgDVAJXG2P2ikg+8AwwD3jEGPOVuOfMAR4Bgli/PHzdpGiRk/KmCF4X5Ae0SHdvc7usBNLwNC/hmKG8MUJpY5ii2hBFtSFyfC6Gp3kYnubF507e5EFPe4n1dbIsEjNUtUQ52BxleXkj9eEYAbcwf0iQOYMDZPkS829+Sq6fbdUhiuvCFGb5jv8EpXpRLBahomIj8+Z92bEY8vImsHv3y+zfv4oxY850LI6OrFnzQKePh8ON7N79Mrt3v0o02kJWVgGTJn2U7OzRpKcPxuMJEouFCYebaGgop66ujKqq3ZSUvMsHH7xhv8YfGD36DEaPPpPRo88kP3/SMUm+xsZDrF//GGvW3E9l5Q4mTbqMSy+9n6ys/u9hpiyTJn2U0tJV7Ny5lNNP/67T4SjV+1o2WNf+JOvt486DYffB/o9D5c9h0Pedjkgp1Ue6nVQSETfwO+ACrNkXVonIEmPMlrjVbgSqjDETROQa4GfA1UAz8EPgZPsS7z7gZuA9rKTSxcAL3Y0vGZQ3Rhga9GiPiD7mdQkFGV4KMrw0RWKUNUYobYywtTrEtuoQ+QE3Q4MehgTd+N2J03MmGRhjaI4a6sOxI5c6+2IAl8CELB+Tc3xMyvHj7edZ3bprfJYPn0vYWt2iSSXV7yordxCJNDtST6lVXt4EAIqL307IpFJnDh7cwrp1D9PSUsvw4XOYNOkyMjNHdLh+dvbRSaNisSi1tfs4fLiIWCzCzp0vsH79owCkpQ1myJCT8HgCxGJRDh3aRm3tPgAKCk7jnHP+h2nTrkyIYbwDWXr6YEaPPoPi4repqtpNbu44p0NSqne1zvwWSPCZ39qT+THI/CRU3gmZV4D/JKcjUkr1gZ70VJoPFBljdgOIyFPAYqwieq0WA3fYt58B7hURMcY0AMtFZEL8BkVkOJBljHnXvv8ocAUpmFSKGsOBxgizdHhVvwp6XIzL8jEuy0ddKEppY4Tyxgibm1vYXAW5PhdDgh4GBz2kewbuFwRjDE0RQ11rsihiXe+tDdESM7REj17iuxH6XUKG18XYTC95ATc5PjdzhyRBMUmb1yX2ELgQFxYYnZVR9Ssni3S38vkyyMwcwd69b3Dmmf/lWBzdEYtF2bbtOXbvfoWMjOHMm/cVcnLGdGsbLpebnJxCcnIKmTPnZowxVFbuoLj47SNJiqamwxhjGDPmLIYMOZmJEy/R2d0SzIQJl7Bv37u8+eaPueKKPzkdjlK9q2U9uAeDe5jTkfTM0Huh8TUo+zyM+bcOg1MqBfUkqTQS2Bd3vwQ4taN17FkfaoB84FAn2yxps812+5KLyM1YPZoYPXp0d2N33KGmKBGj9ZSclOlzM9nnZlK2j/pwjANNUQ40RdheE2J7jTWLXGljhLGZPsZkehOq/k9vaIrEONQcpSYUpSYUo/bItXU70s6gU68L/G4XfpeQ7nfhdwtBj4sMr4sMjyuphxK2mprrY0tVC3trw4zP1t5Kqv+Ul6/D7faTnz/Z0TgGDZpKcfHbhMNNCT+TVjQaYs2aB6io2MiYMYuYNu3KYwpv94SIMGjQZAYNmszs2Tf1QqSqPwSDuRQWns369Y9x2mnfZcgQ7Q2hUkjzevDPgGT9wcszGIbeD6VXwqGfwOA7nI5IKdXLepLZaO+M1vZraFfW6dH6xpgHgAcA5s6dm3Q1l8qbrCLdw9M0S+80ESHT5ybT52ZCto/GSIzK5iiHmiPsrAmx8XALAPl+NyMzPIxK9zIq3Uuu35UUwx1C8cPT7B5Hb5U10Ngma5TmEbJ9bgYHrfchy+siw+ci0+si3U4cbbLfi1Q2NtOH320NgdOkkupP5eXrGDLkZNxuZ9uFwYOnsWfPqxQXL2f8+AscjaUzoVADq1bdS1XVHk455VOMGbPI6ZBUApgw4WJKSt7jjTdu55OffNbpcJTqHSYMoU2Q+zWnI+me6nbq4AUWQOV/g2kB31jI6f6Mm0qpxNSTpFIJUBB3fxRQ2sE6JSLiAbKBw8fZ5qjjbDMllDdG8LuFXH9q9X5JBWkeF2kZLgoyvEzP93OgMcLeujAlDWG2V4fYUGklVoJuYViah6FBD0PTPAxL85DjcybRZIwhFPtwbaP6SIyGsLW8lVsgw+tiQpaPQUEP+X43uX43mT5Xwtc76i8elzAx28fOmhDRmMGt74vqB8YYysvXMXny5U6HQl7eRNxuH7t2LUvYpFIk0syKFfdQV1fCnDk3M3z4bKdDUgnC58tg4cJv8+abd7B//ypGjpzndEhKnbjQdjAhq6dSssu6BkI7oOYhyP+B09EopXpRT5JKq4CJIjIW2A9cA3yqzTpLgOuAd4Ergdc6m8nNGFMmInUisgBYAXwO+N8exJbwyhoiDAt6kqKny0DmEmF4upfh6VbPAWMMlc1RShoilDaEOdAUYeXBJlrzNl4X5Pnd5Ac89rWb7NbePl7XCRVlN8bQGDFHhqvVhKIU1YRosBNI4djRdT128mhI0G0NTbOHp/ndgoj0+exvyW5yjo9Nh1v4oD7MOC3YrfpBfX0ZjY0HHa2n1Mrj8TN69Bns3r0M+IXT4RwjGg2zatXvqa0tZu7c/2Do0BT4kqV61cKF32Tlyv/l9dd/wGc+85LT4Sh14prXWteBWc7G0RtcQcj+PFT9CuqfhbyvOh2RUqqXdDupZNdI+grwEuAGHjLGbBaRO4HVxpglwIPAYyJShNVD6ZrW54vIXiAL8InIFcCF9sxxXwIeAYJYBbpTrkh3JGaoaI4wb3Bi16pQxxIRBgU9DAp6jiRmIjHDoeYoBxojHGy2ejXtqQ2xJXps/tTvFvwuweMSPC5wi+ARK3mVH3ATM2AwxAyEYlax7KZIjOaooTESo+0mvS4reTQs6CG9NXnktWoeacKy58Zm+vC6YEd1SJNKql8kQpHueOPGXcirr95KXV0ZmZnDnQ7nCGNirF37IJWV25k583pNKKl2+f1ZnHHGbbz88n/ywQdvMWbMWU6HpNSJaX4fJAA+Z2vu9Rr/ZEg7HxpfgfoXIeNipyNSSvWCHlWLNsYsBZa2WXZ73O1m4KoOnlvYwfLVwMk9iSdZHGyKEDMwXIt0J7x1h5q7tf6ggIdBAeu4RmOGBjsh1Bw1tERj9rUhEjM0RSASsxJFMWM40BTBJeBCEAGfWwi6hRy/m6BdEDvL5yLb57avXWytCvXLfg00HpcwPsvHjpoWLjTpJ9TDTKmuaE0qJcpsYuPHW0ml3btfZsaMzzkdzhE7dvyD8vK1TJt2FaNGLXA6HJXA5s27hX//+xe8+eadfO5zrzgdjlInpnkt+KeDpNB3h8wrILQFym+AsRvBne90REqpE5RCZ6jEt7/BKtI9Il3f9lTmdglZPjdZXVw/VYekJWsCa3KOn23VIfY3RCjI0IL6qm+Vl68jN3c8fn9Xzxh9a9iwGaSnD2HXrmUJk1TavPlpdu5cSkHB6Ywde57T4agE5/UGOf3077Js2bcpLn6H0aNPdzokpXrGGGhZB1nXOh1J7xIvZN8AlT+Dshtg5PPJO7OdUgoArRbdj/Y3hMn0usjyuZ0ORSnVgXFZXtwCO6pTf8Y75bzy8nUJM/QNQMTFuHEXsHv3yxgTO/4T+tiBAxt5/vnPk5s7npNPvlaH96oumTPni6SlDeatt+50OhSlei68B2I1qVFPqS1vAQz5OdQvgaqULKOr1ICiXWb60f7GCCO1l5JSCc3vdlGY6WV7TYhzRxr9Eqv6TEtLHYcPFzF9+medDuVDJky4mI0bn2D//pV9MtRszZp2pppuRyTSwvLld+F2e5kz54u43X3bc7CrccWbM0enxE5EPl86p532n7zyyvcoKXlPh0yq5NRapNufgkklgNyvQ+NrcPA7kHYGBHQ2T6WSlfZU6if14Ri1oRgj0nU4jVKJbnKOn9pQjANNUadDUSmsrOx9wDBixFynQ/mQSZNfWEGkAAAgAElEQVQuw+XysmXLs47GsXnzX6ivL2fmzBsIBLIdjUUln3nzbiEYzOett/7b6VCU6pmW9wE3+E9xOpK+IQLDHwb3ENh/FUSrnI5IKdVDmlTqJ/sbwgDaU0mpJDAh24egQ+BU3yotXQ2QcEmlQCCH8eMvYOvWZzDm2Nks+8P+/SvZt+8dJky4mMGDpzoSg0puPl8GCxd+i507lx75rCmVVJrXgn8quFKz9iZgFeke+TSE90HpZyABhl0rpbpPk0r9ZH9DBLfA0KAmlZRKdGkeFwUZ1hA4pfpKWdlqsrPHkJ4+2OlQjjF16pVUV++1e1P1r4aGCjZufILc3PFMmvTRfn99lTrmz/8KgUCO9lZSyal5beoOfYsXXAhDfwsNS+GQ1kFTKhlphqOf7G8IMyzNg8el9VnUhyXrLGmpbnKOj5dLGqhsjpAf0FOl6n2lpasTrpdSq8mTL0fEzdatzzJixJx+e91oNMz77/8fIi5mz74Jl0sntlA95/dnsWDBN3njjR9RVraW4cMHwBd0lRoi5RAtHzh1hnL+A5pXQuWPwX8yZF3pdERKqW7Qnkr9IBozlDdGGKn1lJRKGhOzfQDsqNbeSqr3NTVVcfhwUcImldLS8hk79ly2bPlrvw6B27btb9TUFDNjxnUEg3n99roqdZ166tfw+7N5++3/cToUpbqutUh3Ks781qr6gaOXmv+DwFzwjofST0HFbdZypVRS0J/f+8GBpghRAyO0npJSSSPL52ZEmoftNSEWDktzOhyVYlqHlSVqUglg2rQr+ec/v0hFxUaGDp3e56934MBG9ux5lcLCsxk2bGafv55KPR3N4Dd69Bls3focr7/+I7KyRh5ZrrP3qYTVbA899g+gc6F4IfdLUHk3VP8e8r7ndERKqS7SLEc/2N8QAbRIt1LJZlKOjzdKG6kJRcn26TAc1XtKS1cBMHx4/w0t664pU65g6dIvs379o1x44S/79LWam6tZv/4RsrJGMXVq8gx76CiJoRLL2LHnsWfPq+zc+S9NJKnk0LwSfJPAPcBmvnRlQu5XoPLnUPVbyLkBPMOcjkopdRw6/K0flDSEyfa5yPTql1KlksmkbD+gQ+BU7ystXU1u7niCwVynQ+lQevoQpky5gnXrHiYcbuqz1zEmxtq1DxGNhpg9+wu43TpUXPUuny+dwsJzKCt7n7q6UqfDUapzxkDTCgic6nQkzvAMtxJLsRrYdwFEDzsdkVLqODSp1MeMMRTXhxmdof8kK5Vs8gJuBgfc7KhpcToUlWISuUh3vLlzb6Gp6TCbNz/dZ6+xa9dLVFZu56STriYjQ3+RVn1j3Ljzcbt97Ny51OlQlOpcZB9ED0BwgCaVAHzjIedLENoBxRdA5JDTESmlOqFJpT52qDlKU8RoUkmpJDUpx8e++ggN4ZjToSQVEblYRLaLSJGI3NrO434R+Yv9+AoRKYx77DZ7+XYRuShu+V4R2Sgi60Rkdf/sSe9raDhITc0HSZFUKiw8m0GDprB69e/7ZPtVVbvZvn0JI0bMpaDg9D55DaUAfL4MCgsXUVq6mvr6cqfDUapjTSus68B8Z+Nwmn8qjHwOQpuheBGEtZehUolKk0p9rLg+DECBJpWUSkqtQ+CKanQIXFeJiBv4HfARYBpwrYhMa7PajUCVMWYC8GvgZ/ZzpwHXACcBFwO/t7fX6hxjzExjTOJnZDpQVrYGSOwi3a1EhLlzb2H//pWUlvZuHi8cbuL99/9IIJDLKad8BhHp1e0r1da4cRfgcnnYufMFp0NRqmPNK0D8EJjhdCTOy7gURr0AkWIoPhNatjkdkVKqHZpU6mPF9VY9pRy/1lNSKhkNCbrJ8bnYrkPgumM+UGSM2W2MCQFPAYvbrLMY+JN9+xngPLGyCouBp4wxLcaYPUCRvb2UsW/fu4i4ErpId7wZMz6H15vGypX39to2jYmxfv2faG6uYvbsm/B6g722baU64vdnUVi4iP37V9DQUOF0OEq1r2kF+GeB+JyOJDGknwMFr0CsDj5YAPUvOh2RUqoNTSr1Ia2npFTyExEm5fjZWxemOapD4LpoJLAv7n6JvazddYwxEaAGyD/Ocw2wTETWiEiHUziJyM0islpEVh88ePCEdqQvFBe/zbBhM/H7M50OpUsCgWxmzbqJDRse4+DBLb2yzaKiFygvX8vUqR8nN3dcr2xTqa4YN+5CXC4PRUXaW0klIBOB5jUDu55Se4KnQuEq8BZCyaVw6Kdgok5HpZSyaVKpD2k9JaVSw+QcHzEDu3QIXFe1N47JdHGdzp57ujFmNtawui+LyFntvbgx5gFjzFxjzNzBgwd3NeZ+EY2GKSl5j4KCM5wOpVsWLfohPl8mL7/8nRPe1oED69m+fQkjR57K2LHn90J0SnVdIJDNmDFnUlLyHlVVe5wOZ0Dooxp77W5TRL5iLzMiMqiv963XtWwC06RJpfZ4x8CY5ZB5FRz6PhSfB+Fip6NSSqFJpT6l9ZSUSg0j0jxkeFzs0KRSV5UABXH3RwFtK2weWUdEPEA2cLiz5xpjWq8rgL+RhMPiysvXEok0MXp0ciWV0tIGcdZZP2DnzqXs2vVyj7dTWrqa999/kOzs0UyfrnWUlDPGj78IERfLl9/ldCgpry9q7B1nm+8A5wMf9OmO9RUt0t05VwaMeBKGPwIta2DPyXD4t1YPL6WUYzSp1Ie0npJSqcEaAudjV02IULRthxvVjlXARBEZKyI+rC8FS9qsswS4zr59JfCaMcbYy6+xf7keC0wEVopIuohkAohIOnAhsKkf9qVXFRcvB0i6pBLA/PlfJSdnLMuWfZtoNNzt5x88uJXHH78Yny+DuXNvwe3WeiHKGYFADgUFZ7Bu3SNUVydn7iGJ9EWNvQ63aYxZa4zZ29c71WeaV4B7EHh1WHCHRCD7OihcD8HToeIbsHceNCwDo/+jKeUETSr1kZgxFNdpPSWlUsWUXD8Ro7PAdYVdI+krwEvAVuBpY8xmEblTRC63V3sQyBeRIuBbwK32czcDTwNbgBeBLxtjosBQYLmIrAdWAv8yxiRdtc7i4uXk5o4nM3O406F0m8fj56KLfkVFxUZeeOGrmG78815ZuZPHHrNm3lqw4BsEg7l9GKlSxzdhgjWS6p13fuZwJCmvL2rsdWWbnUrY2ntNK6xeStqL01L9QMeXxlcg4wrIuRmih2HfRVB8DjS8psklpfqZJpX6SFljhKaoYVyW/hKrVCooSPeQ6XWxpUpngesKY8xSY8wkY8x4Y8xP7GW3G2OW2LebjTFXGWMmGGPmG2N2xz33J/bzJhtjXrCX7TbGzLAvJ7VuM5kYYyguXp6UvZRaTZlyBaef/j3WrPkDK1bc06XnfPDBWzz44AIikWY+85mXSE8f0sdRKnV8wWAes2bdwNq1D1JbW+J0OKmsL2rsdWWbnUrI2nuRCghtgbQznY4keYhAYA6M2wFD7oHQNth3HuydBdUPQaze6QiVGhB6lFTqo4J7e0Vko4isE5HVPYkrkeyqDSHA2EztqaRUKhARpub62V0Xoimis8Cp7qus3EFj48GkTioBnHfeT5ky5QqWLfsWa9Y80GGPpVgswooV9/Doo+eTljaYm25awbBhM/o5WqU6dsYZt2JMjHfe+bnToaSyvqix15VtJp/GN63rtHOcjSMZufyQ91UYvxeG/dGqsVR+I+wcBqWfh7olEGt0OkqlUla3k0p9UXAv7nnnGGNmGmPmdntPEsyumhAj0z0EPNoZTKlUMTXXmgVuR7UOgVPdl8z1lOKJuPjYxx6nsPBs/vnPL/L44xdx4MBGYjFreufm5hq2bn2O+++fwYsvfp1x487jxhvfJS9vvMORK/VhOTmFzJhxHWvWPEBNzb7jP0H1RK/X2OviNpNP4+tWIerAbKcjST6tQ+JqHwWikPtVyPsOBGZB3V9g/2LYmQ/7LoOq+3XWOKV6macHzzlSHA9ARFqL422JW2cxcId9+xng3rYF94A9di2N+cC7PQs/MdWHYxxoirJoeJrToSiletGwoIdcvzUEbsaggNPhqCRTXPw2aWmDyM+f7HQoJ8znS+ezn32Z1av/wCuvfJf775+O15tGRsZwqqp2A4bc3PFcffXfmDx5sc7yphLWWWf9kA0bHuONN+5g8eIHnQ4n5RhjIiLSWmPPDTzUWmMPWG0PiX4QeMz+XnAYK0mEvV5rjb0IR2vs0d427eVfA74LDAM2iMhSY8xN/bjLPdf4BgTPBNFRDidMBHwTrEvWtRDaCcSg/h9w4F9wAPAUQPA0q9h32ungP0Xfe6V6qCdJpfaK453a0Tp2YxJfcO+9Ns9tLaxngGUiYoA/GGMeaO/FReRm4GaA0aNH9yD8vre71urFoPWUlEotrUPg/l3eRH04RoZXeyKqrjHGsHv3K4wZsyhlEiwiLubN+xKTJ1/Orl3LOHBgPbW1+5gx43OMGrWQwsJFOsObSng5OWOYO/cWVq68h9NO+zaDB7ftfK9OlDFmKbC0zbLb4243A1d18NyfAMfU0Gtvm/bye4CuFXxLJJFyCG2F7OudjiT1iAf8U63bvmkQLYOWbRDeZc0YV/cXe0WPlVgKzAT/DPsyBdxDtXC6UsfRk6RSXxTcAzjdGFMqIkOAl0VkmzHmrWNWtpJNDwDMnTs3IUv776oNkel1MSToPv7KSqmkcpKdVNp8uJlTh2pvRNU1FRWbqKvbz4QJH3E6lF6XlTWSWbP0i5BKXmee+V+sXfsgr732fa6++m9Oh6MGoiP1lM52NIyUJwKeEdaFc61l0cMQ2gURe0hc/b+g5uGjz3Flgnci+CaCb5J9PRG8Y8A9BKSD73vV7faP+LCcm09od5RKFD1JKnWn4F5JFwvuYYxpva4Qkb9hDYs7JqmU6KLGsLc2zJRcX8r8Gq2UOio/4GFkuof1lS3MHxLUz7nqkqKiFwCYMOFihyNRSrWVnj6Y0077T95440fs2/cuBQULnQ5JDTSNr4Mry6oBpPqXOw+CecC8o0meSDk0r4fQDgjvtIbPNa+Cur8C8ZO1eKwElXcUeEaCZ5R9ezi0bAd3tnVcJai9nVRK60lS6UhxPGA/1rjnT7VZp7Xg3rvEFdwTkSXAn0XkV8AI7IJ7IpIOuIwxdfbtC4E7e7RHDttXH6YlZnTom1IpbHp+gBeK69nfEGFUho6/V8dXVPQCQ4dOJytr5PFXTjJr1nTh11ilEtzChd9i9er7eOmlb3Ljje/qDwaqfx2pp9STr2aq17TtXeTyg/9k6wLWrHLRQ+CfBZES6xK2r1vWW72cTHuzzHnBnWUlmFx2osmdbT3kHgaeYVYiyjMURL9DquTT7TNXXxTcE5GhwN/sBtwD/NkY82Iv7F+/21rVgs8lmlRSKoVNzfHzakkD6yubNamkjqulpZbi4uUsXPhtp0NRSnXA58vg3HN/ypIlN7Bp05Occkrb30uV6iORMghth+wvOB2JOh7xWAmgaJk17M07xrq0MsZKKsVqIVpjXcdqPnw/WgGhIjD1VuHwtlx5doJp2NGLu819z3Bw5WrvJ5UwepQO7+2Ce/ZMcjN6EksiicQM26pDTMz24XXph1ypVOVzC1NzfWypauH8Uen43VqwW3Vs9+5XicUiKVlPSalUMnPmdaxadS+vvPI9pky5Aq9X6+apflD/L+s6/QJn41AnTgQkHVzpVuKnMyYCGZdbQ+2i5VZyMVJ+9BItg6Z/W8tNczsbcB/t8eTKhuCpVvLJOypuGN4o6zFNPqk+pn0se9GeuhAtUcO0XL/ToSil+tj0/ADrK1vYVhVixqCA0+GoBFZU9AJ+fxYFBac5HYpSqhMiLi666Dc88shZvPPOzzn77DucDkkNBHV/A+84a+YxNXCIx0r8eEd1vp4xUHVPmx5PrbftnlDRSqh7HqIHOWb+LEkHr13vyTPKuu3KB3cuuHPAldPmOhtqHjx+/FpkXMXRpFIv2nK4haBbKMzS4TBKpboRaR4GB9ysOdTE9Hy/1t9Q7TLGUFT0AuPGnY/brW2DUoluzJgzOemkq1m+/G6mT/8MeXkTnA5JpbJoHTS+Ajlf0d4kA1FXZogDcAWtC8M6X89E7SRTlXWJVUG02roOf2ANu4uUYlWh6YQErd5WkmZdu9Ks5JQ7B9z5VnHzcLFVpFzrgCk0qdRrQlHDzpoQp+QHcGujoFTKExHmDg7ywr56iuvDjMnUOmrqWGVla6itLeHss3/sdChKqTY6KjI/fPhstm//O089tZj587/2oR8N5szRX+dVL2p4EUwIMq9wOhKVCsRtJXzcee0/nnMzmBjE6iFWfTThFK2279vJqKa3IdZg14dqhPBh+3bd0W0d/n+AF/yTwWcXM/efAv7pVp0p/T48oGhSqZfsrGkhYtChb0oNICfl+XmzrIGVFU2aVFLtWr/+MdxuP1OnftzpULpEZ3JTCgKBHCZPvoLNm5+irGw1I0bMczoklarq/wbuQRDU4dGqHxyvZ5Qrzbp4r2n/cROG6GFruF200hpuFymFxpeh7qm47WSCtxAyr4TAfAjOs3o4qZSlSaVesr6yhSyvi1Hp+pYqNVB4XMLsQUGWlzdyqDnCoIB+/tVR0WiYTZueZPLkjxII5DgdjlKqGwoLF1FS8i6bNz/NoEHT8PnSnQ5JpRoTsop0Z15p9TBRKtGJFzxDrUtbsWYrwRTZB+G91uXQHRyp8eQdD8H5VpIpMB8Cs8GlNUlThX4D6gUVTRGK68OcPSJN66ooNcDMHhTgvQONrK5o5uLRGU6HoxLI7t0v09h4kOnTP+t0KEqpbhJxMX36Z1i+/C42bXqS2bNvcjoklWoa37CKLWfo0DeVAlwB8I2zLiyylsWarVpOrUmm+heh9kn7CW7wFkDGYggutHrreQuciV2dME0q9YLVFU14BGbka7ZVqYEmzevi5LwAGw83c9qwIFk+/bVRWTZseIxgMI8JEy52OhSlVA9kZ49m4sTL2LFjCcOGzWLEiDlOh6RSSe1TVvHj9POdjkSpvuEKWDWX/JOPLovWQHgPhHdDaLc1JK/qt9ZjnpF2gsm++GeDS0vLJANNKp2gxnCMzVUtnJIXIOhxOR2OUsoBC4YG2Xi4meXljVwyOtPpcFQCaGmpZdu255k583rcbq23pVSymjDhYioqNrBx4xM6E5zqPdEqK6mU/Vl7Vi+lBgh3NrhnQmCmdT/7emjZAE3vQtO/reu6Z6zHxGclluITTd5RzsWuOqRZkBO0trKZqIG5g7WXklIDVY7fzaxBATZWtnCo+TjTtKoBYfPmp4lEmnXom1JJzuVyM3Pm9USjIdaufZBYTM/xqhfU/AlME+R8yelIlHJWzcPQvMZKIKWdDfm3weCfQ85/WPejh6DqXij9JOwqgKLRsP9qOPwbaFph1SZTjtOeSicgFDW8f7CJsZleBgX1rVRqIDttWBobKlt4s7SRT4zLcjoc5aBYLMq///0Lhg2byahRC5wORyl1gjIyhjF9+qdZt+4RXnvth5x//l1Oh6SSmTFQfR8EFhztraGUOsqdDe5ZEJhl3TcRiJRAaJc1bK7hFah72l7ZA94x4B0HOV+0ezONcCz0gUozISdgZUUTDRHDacPSnA5FKeWwNI+LU4cGebuskX31YQoyvE6HpByydeuzVFbu4Kqr/qqTNyiVIkaNWsjhw7t45527KShYyOTJlzsdkkpWja9BaAcM/5PTkSiVHMQD3kLrwnnWsmj10bpM4d3Q+Do0vmw95hnz4SFzgZnWzHWqz2hSqYfqwlFWVDQyOcenXx6VUgDMGxxkfWUzLxTXc/2UHLwuTSgMNMYY3n77p+TnT2bKlI85HY5SqheddNLVRCJNPPfcp/n8599k+PDZToekklH1feDKg8xPOh2JUsnLnQPu2RCwz8MmDOF9VoIpvBsaXoK6p+yVveAbC96JkPctCC4Al3YK6U1aU6mH3iptJGbgnBHpToeilEoQPrdwyegMDrdEebus0elwlAN27vwXBw6s54wzbsPl0pkAlUolbreXa675O8FgHn/+86VUV+91OiSVbJrXQt1zkHOzNTOWUqp3iBd846zZFHNuhiF3w+C7rdtpZ0GsGRqWwr7zYEcOfHAGHPw+1L8EMf2f/URpT6UeKG0Is/FwC6cOCZLj1y8NSqmjCjN9zMwPsLKiick5Pkama0/GgSIWi/D667eTnT2GU075lNPhKKX6QGbmCD796Rd56KHTefzxi/n8598gI2OY02GpZGAMVHwL3PmQ/z2no1Eq9blzwT0HAnOs+7EmCBdZw09DO6HybuCngAd8E8F/EvhPBvcwyP2ik5EnHe2p1E3NkRh/31tHltfFwqE6BahS6ljnjEwjy+fi73vqqA/HnA5H9ZN33vkF5eVrufDCX+J2azJRqVQ1ePBUrr12CbW1JTzyyCJqavY5HZJKBvVLoPENGPRja+iOUqp/uYLgPwUyPwH5t8KQX0Pu161Z5mLVUPcMHLrD6sF04BvQuByM/h/fFZpU6gZjDEuL66kLxVg8NpOAR98+pdSx/G4XHx+bRVM0xrO7awnHjNMhqT5WUbGZN9+8g2nTrmLatCudDkcp1cdGjz6Dz352GfX15Tz88JlUVu50OiSVyEwIKv4TfFOt4ThKKee5AuCfBllXwaA7YPBdkPVp8I6E6vuh+EwoGgnlt0DDa9YsdKpdmhXphhUVTeyoCXH2yHQd0qKU6tSwNA8fHZNJWWOEf+ytI2o0sZSqotEQf//79fj9WVxyyb1Oh6OU6icFBadx3XWvEwrV88c/zmfnzqVOh6QS1YFvWMNuhvzKmslKKZV43HlW/aXcL8Pgn0P2TeAZATUP2rWYcuGDM63Pc9V9TkebUDSp1EXvHWjkjdJGpuT4mDdYC+sppY5vUo6f80ams6MmxDO7ammJahfaVBOLRXj22WspLV3FpZfeR3r6EKdDUkr1o+HDZ/OFL6wiJ6eQP//5Ml5//Xai0ZDTYalEUnWfNeNb3vcg42Kno1FKdYUrAMF5Vm2lIf8Pcr5o9WpqXg1Vv4WK70DZF6BhmTXz3ACnSaXjMMbwdlkDb5Q2MjXHx0cLMxHRacKVUl0zb0iQj4zOYG9dmCd21lDdEnU6JNVLYrEozz//ebZufY6LLvqNDntTaoDKzR3LDTe8w4wZn+Ott/6bP/xhNiUl7zkdlkoEDcvgwNcg/VIY/BOno1FK9YT4IDAbcm6EIb+EnC9ZRb3rnoJ9F0HRcCi7GRpeHrBD5DSp1Inqlih/LqrhnfImTsnz89HCTNyaUFJKddOM/ABXjc+iuiXGg9uqWFXRREyHwyW1uroynnzyo2zc+ATnnvsTFiz4utMhKaUc5PWmccUVj3DNNUtoaanhwQdP45lnrqaiYrPToSknGAOH/xf2XQr+KTDiCRCdMVqppCdeCMy0EkwTDsLI5yH9Iqh7EvZdeDTBVL8UYg1OR9tvdFBvO+pCUdYcbGbNoSZcCJeMzuCUPL/2UFJK9di4LB83Ts1h2b56Xt3fwPrKZuYNCXJSrh+PS88tySIWi7Bx45O89NI3CYcb+MhH7mX+/C87HZZSKkFMnvxRCgsXsXz5z1i58h42b/4rEyd+hFmzbmTSpMtwu31Oh6j6WvgDOHgb1D4JGZfD8EfBne10VEqp3lb7qHWdtgiCC6FlCzSvsZbX/B/ggbQzIf1CSL8A/DNStqZaj/ZKRC4Gfgu4gT8aY+5u87gfeBSYA1QCVxtj9tqP3QbcCESBrxljXurKNvuSMYaaUIy9dWF21YbYVRPCAJNzfJw7Mp0sn/6yoJQ6cdk+N1eOy2J7dYh3yht5obieN/Y3MD7bx/gsHyPTPWR6XSmRwE6ldsIYQ2XlDrZte55Vq35Hbe0+RoyYy8c+9hiDBk3pjxCUUknE78/ivPN+wsKF32TFintYu/ZBnn76EwQCOYwbdwETJlzMqFELyM+fjMuV+v9j9md7ICJjgaeAPOB94LPGmL4vcmWi0PSe9WWy+mFr2aAfQ/4PQHRgiFIpT3xWD6bATKvGUqgIQlsgcsBKMh+8DSQIgVkQmGtfZoF3HLjSnI7+hHU7qSQibuB3wAVACbBKRJYYY7bErXYjUGWMmSAi1wA/A64WkWnANcBJwAjgFRGZZD/neNvsNSsrmjjYFKEpamgIx6hsjhKyp/zO9LqYPTjA3MFBcvyp39ArpfqXiDAl18/kHB8f1IfZUNlCUU2ITYdbAAi4hTy/mzSvi3SPcObwdDK8yfUPaSq0Exs3PsnBg5s5dGgrpaWrqakpBqCw8GwuueReJk68dEB8GVRK9Vxa2iDOOedOFi26nV27lrFly7MUFb3Ali1/BcDnyyAvbyLZ2aPtyxiyskYRCGTj82UcuXg8H54gxhhDNBoiHG4kHG5k1KhTndi9LnGgPfgZ8GtjzFMicr+97d6fpsmEoPYZCG2Glk3Q9A5EK60vljk3Qf6t4B3d6y+rlEoC4gX/VOuSczNEyqHhNWheZRX6rv4jmHuOru8eBr5xVoLJMxLc+dZMdK3XrnQQP0jAvo6/LdZwW2L2xYBpvW6CWL2V5PJP7dNd7klPpflAkTFmN4CIPAUsBuIbh8XAHfbtZ4B7xfrpfTHwlDGmBdgjIkX29ujCNnvNB3UhDjZF8buFdK+Lk/P8DAq4KcjwMijgToleAkqpxCYiFGb6KMz0ETOGssYIBxojVDRFqQ5FqWmJUtYQ4/RhSfnrRdK3E6+//kOqq/eSlzeBkSNP5Ywz/ovx4y8gN3dcX7ycUiqFuVweJk68hIkTL8EYw6FDW9m/fxWlpauprt5NVdUu9ux5jVCorkfb/8EPWhJ5WF2/tQcishU4F/iUvc6f7O32wdzfLii/weqh5JsI6ZdAxqVWbRV3Tu+/nFIqeXmGQfanrAtY543QNmheD+E9EN5tXTe+BZEyoJdnk3MPg4llvbvNNnqSVBoJ7Iu7XwK0/YnkyDrGmIiI1AD59vL32iZuCjYAABFhSURBVDx3pH37eNsEQERuBm6279aLyPYe7EMyGAQccjqIfjbQ9nmg7S8MvH0+4f39Ws+fOuZEXvcEJWM70cGx2m5f/tqFTfS7ZPw8acz9Q2PuM1+Mv5MQMd9xh7+rq7aNtz/aif5sD/KBamOOTL8Uv/6H9O73ia325bGeb+LEJMTfYS9LxX2C1NyvVNwn6LX9+uLxV+lz5cCRTjPd3a8utRM9SSq1142n7TRGHa3T0fL2xna0OzWSMeYB4IHOAkwFIrLaGDPX6Tj600Db54G2vzDw9nmg7W+cpGsnkvFYacz9Q2PuHxpz33Mo3v5sD7ryWtbCFPo+kWx/h12RivsEqblfqbhPoPvVXT0p1FECFMTdHwWUdrSOiHiAbOBwJ8/tyjaVUkolB20nlFJKQf+2B4eAHHsbHb2WUkqpXtaTpNIqYKKIjBURH1YBvSVt1lkCXGffvhJ4zRhj7OXXiIjfnp1hIrCyi9tUSimVHLSdUEopBf3YHtjPed3eBvY2/96H+6aUUooeDH+zxzp/BXgJaxrPh4wxm0XkTmC1MWYJ8CDwmF1Q7zDWyR57vaexivNFgC8bY6IA7W3zxHcvqaVEl9xuGmj7PND2FwbePg+0/QWStp1IxmOlMfcPjbl/aMx9r9/jdaA9+B7wlIj8D7DW3naqS7a/w65IxX2C1NyvVNwn0P3qFrGS+koppZRSSimllFJKdV1Phr8ppZRSSimllFJKqQFOk0pKKaWUUkoppZRSqts0qZSARORiEdkuIkUicqvT8fQ2ESkQkddFZKuIbBaRr9vL80TkZRHZaV/nOh1rbxIRt4isFZF/2vfHisgKe3//YhebTBkikiMiz4jINvtYLxwAx/ib9t/0JhF5UkQCqX6cU0EynHOT9byZbOe9ZDxvJcN5R0QeEpEKEdkUt6zd91Us99ifxw0iMjuBYv6F/bexQUT+JiI5cY/dZse8XUQuSpSY4x77TxExIjLIvp8Q77PquWRou1p1tw3r7O9TRK6z198pItd19Jr9qattnVhF5/9i79cKESmM24bj55B43WkPk+V4dae9TORj1VttakfHRkTmiMhG+zn3iIgcLyZNKiUYEXEDvwM+AkwDrhWRac5G1esiwLeNMVOBBcCX7X28FXjVGDMReNW+n0q+DmyNu/8z4Nf2/lYBNzoSVd/5LfCiMWYKMANr31P2GIvISOBrwFxjzMlYxUOvIfWPc1JLonNusp43k+28l1TnrSQ67zwCXNxmWUfv60ewZvmaCNwM3NdPMbb1CMfG/DJwsjFmOrADuA3A/ixeA5xkP+f39rmlvz3CsTEjIgXABUBx3OJEeZ9VDyRR29Wqu21Yu3+fIpIH/Ag4FZgP/EgSI9Hf1bbuRqDKGDMB+LW9XiKdQ+J1pz1M+OPVg/YykY/VI5xgm3qcY3OfvW7r845pV9rSpFLimQ8UGWN2G2NCwFPAYodj6lXGmDJjzPv27Tqsk9RIrP38k73an4ArnImw94nIKOBS4I/2fQHOBZ6xV0m1/c0CzsKedcUYEzLGVJPCx9jmAYIi4gHSgDJS+DiniKQ45ybjeTPZzntJfN5K+POOMeYtrFm94nX0vi4GHjWW94AcERneP5Ee1V7MxphlxpiIffc9YJR9ezHwlDGmxRizByjCOrf0qw7eZ7C+EH0XiJ+dJyHeZ9VjSdF2tepBG9bR3+dFwMvGmMPGmCqsRO9xv/D2pW62dfH7+wxwnr1+QpxDWvWgPUyW49Wd9jJhj1UvtantHhv7sSxjzLvGmtHtUbrwP4QmlRLPSGBf3P0Se1lKsrsSzgJWAEONMWVgNT7AEOci63W/wfqHLmbfzweq4/45TbXjPA44CDwsVnfgP4pIOil8jI0x+4FfYv0SXAbUAGtI7eOcCpLunJtE581kO+8l3Xkryc87Hb2vyfKZvAF4wb6dsDGLyOXAfmPM+jYPJWzMqkuS9vh1sQ3raP8Scb+709Ydid9+vMZeP9H2q7vtYcIfrx60l8lyrFr11rEZad9uu7xTmlRKPO2NWTTtLEt6IpIBPAt8wxhT63Q8fUVELgMqjDFr4he3s2oqHWcPMBu4zxgzC2gggYaM9AW7y+hiYCwwAkjH6nLaViod51SQVJ/FZDlvJul5L+nOWyl63kn0vxNE5PtYw3meaF3UzmqOxywiacD3gdvbe7idZY7HrLosKY9fN9qwjvYvofa7B21dUuwX3W8PE36/etBeJvw+dVF396NH+6dJpcRTAhTE3R8FlDoUS58RES9Wo/KEMeY5e/GB1q7X9nWFU/H1stOBy0VkL1b35HOxftXIsbtfQuod5xKgxBizwr7/DFbjlKrHGOB8YI8x5qAxJgw8B5xGah/nVJA059wkO28m43kvGc9byXze6eh9TejPpF3M9DLg0/bQAEjcmMdjfYFab38WRwHvi8gwEjdm1TVJd/y62YZ1tH+Jtt/dbeuOxG8/no01jCnR9qu77WEyHK/utpfJcqxa9daxKeHo0O745Z3SpFLiWQVMFKsSvQ+rENgSh2PqVfZ41AeBrcaYX8U9tARorTx/HfD3/o6tLxhjbjPGjDLGFGIdz9eMMZ8GXgeutFdLmf0FMMaUA/tEZLK96DxgCyl6jG3FwAIRSbP/xlv3OWWPc4pIinNusp03k/G8l6TnrWQ+73T0vi4BPieWBUBNa5d+p4nIxcD3gMuNMY1xDy0BrhFrtqCxWIVNVzoRYzxjzEZjzBBjTKH9WSwBZtt/6wn7PqsuSYq2q1UP2rCO/j5fAi4UkVy758mF9jJH9KCti9/fK+31DQl2DulBe5gMx6u77WVSHKs4vXJs7MfqRGSB/T59jq78D2GM0UuCXYBLsGYV2QV83+l4+mD/zsDqRrcBWGdfLsEap/oqsNO+znM61j7Y97OBf9q3x2GdhIqAvwJ+p+Pr5X2dCay2j/PzQG6qH2Pgx8A2YBPwGOBP9eOcCpdkOOcm83kzmc57yXjeSobzDvAkVg2LMFZi48aO3lesrve/sz+PG7Fm6kmUmIuwalC0fgbvj1v/+3bM24GPJErMbR7fCwxKpPdZLyd0vBO+7YqLtVttWGd/n1j1zIrsy/VO71tcXMdt64CAfb/Ifnxc3PMdP4e02Z8ut4fJcrzoRnuZyMeqg/ap144NMNd+j3YB9wJyvJjEfqJSSimllFJKKaWUUl2mw9+UUkoppZRSSimlVLdpUkkppZRSSimllFJKdZsmlZRSSimllFJKKaVUt2lSSSmllFJKKaWUUkp1myaVlFJKKaWUUkoppVS3aVJJKUBE8kVknX0pF5H9cfd9TsenlFLq+ETEiMhjcfc9InJQRP7Zw+3liMgtcffP7mhbIvKGiMw9zvaGichTIrJLRLaIyFIRmdTZdpVSSvWP7n4fEJE8EfmPLmzXIyLVcfeniMgLIrJTRLba7cIQEblJRH7T2/ulVF/zOB2AUonAGFMJzAQQkTuAemPML/vq9UTEY4yJ9NX2lVJqgGoAThaRoDGmCbgA2H8C28sBbgF+f6KBiYgAfwP+ZIy5xl42ExjaC9vWNkUppU5QD74P5AH/Adzf1dcQkSDwT+Brxpil9rLzgPwehh2/bW0LlCO0p5JSxyEi14nISvtXit+LiKv1FwcRuVtE1ovIuyIyxF7/cRG5Iu759fb1+SLyiog8BaztaNuO7KRSSqWOF4BL7dvXAk+2PmD/qvy8iGwQkfdEZLq9/A4RecjubbRbRL5mP+VuYLx9jv6FvSxDRJ4RkW0i8oSdLCLuNW4UkV/H3f+CiPwKOAcIG2OOfPkwxqwzxrzd2XZF5HYRWSUim0Tkgbjlb4jIT0XkTeDrIjLe3qdVInJna9tjr/sde/kGEfmxvSxdRP5lt2GbROTqE3vblVIqdYnId+1z5SYR+aq9+G5gst1G3C0iWSLymoi8b59vL2tnU58F3mpNKAEYY141xmy1744SkZfsXkx3xb3+AyKyWkQ2i8jtcctLROSHIvIO8DERWWC/9r9F5Bciss5ezyMiv7K/d2wQkZvs5SNFZLm9D5tE5LTefefUQKBfYJXqhIicDHwMOM0YMxOrd9819sPZwJvGmBnAu8ANXdjkAuC7xphTjrNtpZRSPfMUcI2IBIDpwIq4x34MrDXGTAf+C3g07rEpwEXAfOBHIuIFbgV2GWNmGmO+Y683C/gGMA0YB5zezutfbj8f4HrgYeBkYE0ncXe03XuNMfOMMScDQSD+S0qOMWaRMeb/Ab8FfmuMmQeUtq4gIhcCE+39mgnMEZGzgIuBUmPMDHvbL3YSm1JKDVgiMh/4NNZ5dCFwi/2jxK3AdruNuBVoAhYbY2YD5wO/bmdzx2sLZgBXYrVfnxGREfbyW40xc+3HLxCRaXHPaTDGnG6M+StWe3OTMeY0IP5Hj5uBCmPMfGAe8GURGQ18BviH/V1kBrChi2+LUkdoUkmpzp2PdeJdbWf6FwHj7ceajDEv2LfXAIVd2N67xpjiLmxbKaVUDxhjNmCdj68FlrZ5+AzgMXu914B8Ecm2H/uXMabFGHMIqKDjYWkrjTElxpgYsI42535jTAPwGnCZiEwBvMaYjV0IvaPtniMiK0RkI3AucFLcc/4Sd3sh8Ff79p/jll9oX9YC72MlzyYCG4HzReRnInKmMaamCzEqpdRAdCbwrDGm0RhTBzyP1Z60JcDPRGQDsAwoEJFB3XytV4wxdfYQ7m3AaHv5tSLyPtZ5fCrWDxCt/gJgv5bPGLPSXt62Lbje/s6xAmt490RgFXCTiPwIONkYU49S3aQ1lZTqnAAPGWN++KGFIh4gFLcoytHPUwQ7YSsibj78OWs43raVUkqdsCXAL4Gz+XCdCmlnXWNft8Qtiz+nt9WV9f6I1RNqG9avxgCbsX597sgx27V7W/0emGuM2SdWjY9A3HrxbUpHBLjLGPOHYx4QmQNcAtwlIsuMMXd2YXtKKTXQtNd2tOdzWCMZZhtjIiJSwofP2WC1Bad2so322oKJwNeB+caYahF5nPbbgs7iFOAWY8yrxzwgcjbWsPEnROQuY8wTnWxHqWNoTyWlOvcK8MnWXxnEmhVi9HGesxeYY9/+GODuxW0rpZQ6voeAO9vpIfQW1hCG1n+iDxljajvZTh2Q2d0XN8asAAqAT3G0ptNrgF9EvtC6nojME5FFnWyq9UvDIRHJoPOk1HvAJ+zb8UOpXwJusJ/fWj9jiD2kotEY8zhWAm521/ZOKaUGnLew6hUF7XPpYuBtjm0jsrGGmEVE5AJgZDvbegxYJCIXty4QkUvaDGdrK8t+rVoRGY41VPsYxpiDQFiOzkTati24xf5hHBGZbO/PGKDcGPMA8AjWUGylukV7KinVCWPMRruo6StiFdEOY83yUNrJ0/4A/N1uTJbx4V8curLt4vbWV0op1TXGmBKsGkNt3QE8bA9NaASuO852KkXkHRHZhFUA/F/dCONpYKYxpsrelhGRjwG/EZFbgWasHyG+QftfPLB/kf4/rKFqe7GGKXTkG8DjIvJtO84aexvLRGQq8K5YNb7rsWpoTAB+ISIxrPbnS93YN6WUGjCMMStF5EmOnoPva/3Rwi6evRHrvPsr4B8ishprmNrOdrbVKCIfBX4tIv+Ldf5dh9UTqSPvA1uATcBu4J1O1r0Bq52rw0qGtQ5t/gPWULp1dltQgZUcOw/4loiEOdo+KNUtYow5/lpKKaWUUqrLRP5/e3dv02AQBAF0JkUEiFboA1LI6MESiYtwQilUQUYHlEAHR/DZGYFPwj+y32tgN725vb1+JNn89dTgQPVusuz6G22fk7yMMZ6OURuA89D2drcXqe06yf0YY3XitrhwJpUAAP5J27skn0m+jhUobT0kee9yBf2T/X4kBeCyPLZ9y3LO/07yetJuuAomlQAAAACYZlE3AAAAANOESgAAAABMEyoBAAAAME2oBAAAAMA0oRIAAAAA034BmPn6zRx9v60AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1440x720 with 6 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f, axes = plt.subplots(2, 3, figsize=(20,10))\n",
"#Charting the histogram\n",
"datset_churn[\"Tenure\"].plot.hist(color='DarkBlue', alpha=0.7, bins=50, title='Tenure',ax=axes[0, 0])\n",
"datset_churn[\"MonthlyCharges\"].plot.hist(color='DarkBlue', alpha=0.7, bins=50, title='MonthlyCharges',ax=axes[0, 1])\n",
"datset_churn[\"TotalCharges\"].plot.hist(color='DarkBlue', alpha=0.7, bins=50, title='TotalCharges',ax=axes[0, 2])\n",
"\n",
"#Charting the density plot\n",
"sns.distplot( datset_churn[\"Tenure\"] , kde=True, rug=False, color=\"skyblue\", ax=axes[1, 0])\n",
"sns.distplot( datset_churn[\"MonthlyCharges\"] , kde=True, rug=False, color=\"olive\", ax=axes[1, 1])\n",
"sns.distplot( datset_churn[\"TotalCharges\"] , kde=True, rug=False, color=\"gold\", ax=axes[1, 2])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observations:\n",
"1. Tenure:\n",
"\n",
" 1.1. Not a normal distribution. Bi-Modal distribution (having 2 peaks) which means data is concentrated across two different groups\n",
" \n",
" 1.2 We have major chunk of customers in 0-1 month period. Lot of them might be cutomers who tried the service and left or liked the service and continued\n",
" \n",
" 1.3. Between 10 months to 65 months, we can see flat distribution of data.\n",
" \n",
" 1.4. We have lot customers in 69-72 months range. They are the loyal customers\n",
" \n",
" \n",
" 2. Monthly Charges - \n",
" \n",
" 2.1. Not a normal distribution.Close to Bi-Modal distribution\n",
" \n",
" 2.2. Majority of customers are paying $18 to $20 dollars. Must be the service charge for basic service. Majority of customers are subscribed to basic package.\n",
" \n",
" 2.3. Between $70-$100 dollars, we have quite a number of customers. They might be the ones subscribed for multiple services.\n",
" \n",
" \n",
" 3. Total Charges - \n",
" \n",
" 3.1. Data is positively skewed.\n",
" \n",
" 3.2. Majority of the population have spent close to $1,100 dollars\n",
" \n",
" 3.3. Cutomers have spent upto $9,000 dollars \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Barchart for the Gender (0 is No , 1 is Yes)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x23a7d8fb630>"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAEKCAYAAAAFJbKyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAE4VJREFUeJzt3X+wX3V95/HnCwK6rSJBLkgTbGjN2GKnIt4JWLtdK50QWGsYFTfWLimb2ewfrFNntu1id9pYkBmdceuKVmaykhqcVmRpLanDSDNR1u5UflwWikJ0k6IrmVAITcAfbOlA3/vH93PlS7j35vuJ+d6beJ+PmTvfc97nc873fWeS+5rPOed7vqkqJEka1XEL3YAk6dhicEiSuhgckqQuBockqYvBIUnqYnBIkroYHJKkLgaHJKmLwSFJ6rJkoRsYh1NPPbVWrFix0G1I0jHlnnvuebyqJg417kcyOFasWMHU1NRCtyFJx5Qk/3eUcZ6qkiR1MTgkSV3GGhxJTk5yc5KvJ9mZ5A1JTkmyPcmu9rq0jU2Sa5PsTnJ/knOHjrO+jd+VZP04e5YkzW3cM46PAl+oqp8BXgvsBK4EdlTVSmBHWwe4CFjZfjYC1wEkOQXYBJwHrAI2TYeNJGn+jS04kpwE/BJwPUBV/VNVPQGsBba2YVuBS9ryWuCGGrgDODnJGcCFwPaq2l9VB4DtwJpx9S1Jmts4Zxw/BewD/jjJvUk+meTHgdOr6hGA9npaG78MeHho/z2tNlv9eZJsTDKVZGrfvn1H/reRJAHjDY4lwLnAdVX1OuD7PHdaaiaZoVZz1J9fqNpcVZNVNTkxccjbkCVJh2mcwbEH2FNVd7b1mxkEyaPtFBTt9bGh8WcO7b8c2DtHXZK0AMYWHFX198DDSV7dShcADwLbgOk7o9YDt7TlbcBl7e6q84En26ms24DVSZa2i+KrW02StADG/cnx9wB/kuRE4CHgcgZhdVOSDcC3gUvb2FuBi4HdwFNtLFW1P8nVwN1t3FVVtX/MfTM1uWrcb6Fj0OTUXQvdgrTgxhocVXUfMDnDpgtmGFvAFbMcZwuw5ch2J0k6HH5yXJLUxeCQJHUxOCRJXQwOSVIXg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5JUheDQ5LUxeCQJHUxOCRJXQwOSVIXg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5JUheDQ5LUxeCQJHUZa3Ak+VaSrya5L8lUq52SZHuSXe11aasnybVJdie5P8m5Q8dZ38bvSrJ+nD1LkuY2HzOOX66qc6pqsq1fCeyoqpXAjrYOcBGwsv1sBK6DQdAAm4DzgFXApumwkSTNv4U4VbUW2NqWtwKXDNVvqIE7gJOTnAFcCGyvqv1VdQDYDqyZ76YlSQPjDo4C/irJPUk2ttrpVfUIQHs9rdWXAQ8P7bun1WarP0+SjUmmkkzt27fvCP8akqRpS8Z8/DdW1d4kpwHbk3x9jrGZoVZz1J9fqNoMbAaYnJx8wXZJ0pEx1hlHVe1tr48Bn2NwjeLRdgqK9vpYG74HOHNo9+XA3jnqkqQFMLbgSPLjSV46vQysBr4GbAOm74xaD9zSlrcBl7W7q84Hnmynsm4DVidZ2i6Kr241SdICGOepqtOBzyWZfp8/raovJLkbuCnJBuDbwKVt/K3AxcBu4CngcoCq2p/kauDuNu6qqto/xr4lSXMYW3BU1UPAa2eo/wNwwQz1Aq6Y5VhbgC1HukdJUj8/OS5J6mJwSJK6GBySpC4GhySpi8EhSepicEiSuhgckqQuBockqYvBIUnqYnBIkroYHJKkLgaHJKmLwSFJ6mJwSJK6GBySpC4GhySpi8EhSepicEiSuhgckqQuBockqYvBIUnqYnBIkroYHJKkLgaHJKmLwSFJ6mJwSJK6jD04khyf5N4kn2/rZyW5M8muJJ9NcmKrv6it727bVwwd432t/o0kF467Z0nS7OZjxvGbwM6h9Q8BH6mqlcABYEOrbwAOVNWrgI+0cSQ5G1gHvAZYA3wiyfHz0LckaQZjDY4ky4F/DXyyrQd4M3BzG7IVuKQtr23rtO0XtPFrgRur6umq+iawG1g1zr4lSbMb94zjvwG/A/xzW3858ERVPdPW9wDL2vIy4GGAtv3JNv4H9Rn2+YEkG5NMJZnat2/fkf49JEnN2IIjyVuAx6rqnuHyDEPrENvm2ue5QtXmqpqsqsmJiYnufiVJo1kyxmO/EXhrkouBFwMnMZiBnJxkSZtVLAf2tvF7gDOBPUmWAC8D9g/Vpw3vI0maZ2ObcVTV+6pqeVWtYHBx+4tV9W7gS8A72rD1wC1teVtbp23/YlVVq69rd12dBawE7hpX35KkuY1zxjGb/wzcmOQDwL3A9a1+PfDpJLsZzDTWAVTVA0luAh4EngGuqKpn579tSRLMU3BU1e3A7W35IWa4K6qq/hG4dJb9rwGuGV+HkqRR+clxSVIXg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5JUheDQ5LUxeCQJHUxOCRJXQwOSVIXg0OS1GWk4EiyY5SaJOlH35zfx5HkxcCPAacmWcpz3/99EvATY+5NknQUOtQXOf0H4L0MQuIenguO7wB/NMa+JElHqTmDo6o+Cnw0yXuq6mPz1JMk6Sg20lfHVtXHkvwCsGJ4n6q6YUx9SZKOUiMFR5JPAz8N3Ac828oFGByStMiMFBzAJHB2VdU4m5EkHf1G/RzH14BXjLMRSdKxYdQZx6nAg0nuAp6eLlbVW8fSlSTpqDVqcLx/nE1Iko4do95V9T/H3Ygk6dgw6l1V32VwFxXAicAJwPer6qRxNSZJOjqNdHG8ql5aVSe1nxcDbwc+Ptc+SV6c5K4kf5vkgSR/0OpnJbkzya4kn01yYqu/qK3vbttXDB3rfa3+jSQXHu4vK0n64R3W03Gr6i+ANx9i2NPAm6vqtcA5wJok5wMfAj5SVSuBA8CGNn4DcKCqXgV8pI0jydnAOuA1wBrgE0mOP5y+JUk/vFFPVb1taPU4Bp/rmPMzHe0zH99rqye0n2IQOL/W6lsZXHi/DljLcxfhbwY+niStfmNVPQ18M8luYBXwlVF6lyQdWaPeVfWrQ8vPAN9i8Ad9Tm1mcA/wKgYPRfw74ImqeqYN2QMsa8vLgIcBquqZJE8CL2/1O4YOO7yPJGmejXpX1eWHc/CqehY4J8nJwOeAn51pWHvNLNtmqz9Pko3ARoBXvvKVh9OuJGkEo36R0/Ikn0vyWJJHk/xZkuWjvklVPQHcDpwPnJxkOrCWA3vb8h7gzPZ+S4CXAfuH6zPsM/wem6tqsqomJyYmRm1NktRp1IvjfwxsY/C9HMuAv2y1WSWZaDMNkvwL4FeAncCXgHe0YeuBW9rytrZO2/7Fdp1kG7Cu3XV1FrASuGvEviVJR9io1zgmqmo4KD6V5L2H2OcMYGu7znEccFNVfT7Jg8CNST4A3Atc38ZfD3y6Xfzez+BOKqrqgSQ3AQ8yuL5yRTsFJklaAKMGx+NJfh34TFt/F/APc+1QVfcDr5uh/hCDu6IOrv8jcOksx7oGuGbEXiVJYzTqqap/B7wT+HvgEQankg7rgrkk6dg26ozjamB9VR0ASHIK8GEGgSJJWkRGnXH8/HRoAFTVfmY4DSVJ+tE3anAcl2Tp9EqbcYw6W5Ek/QgZ9Y//fwX+JsnNDD589068WC1Ji9Konxy/IckUg+dMBXhbVT041s4kSUelkU83taAwLCRpkTusx6pLkhYvg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5JUheDQ5LUxeCQJHUxOCRJXQwOSVIXg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdRlbcCQ5M8mXkuxM8kCS32z1U5JsT7KrvS5t9SS5NsnuJPcnOXfoWOvb+F1J1o+rZ0nSoY1zxvEM8J+q6meB84ErkpwNXAnsqKqVwI62DnARsLL9bASug0HQAJuA84BVwKbpsJEkzb+xBUdVPVJV/7stfxfYCSwD1gJb27CtwCVteS1wQw3cAZyc5AzgQmB7Ve2vqgPAdmDNuPqWJM1tXq5xJFkBvA64Ezi9qh6BQbgAp7Vhy4CHh3bb02qz1SVJC2DswZHkJcCfAe+tqu/MNXSGWs1RP/h9NiaZSjK1b9++w2tWknRIYw2OJCcwCI0/qao/b+VH2yko2utjrb4HOHNo9+XA3jnqz1NVm6tqsqomJyYmjuwvIkn6gXHeVRXgemBnVf3h0KZtwPSdUeuBW4bql7W7q84Hnmynsm4DVidZ2i6Kr241SdICWDLGY78R+LfAV5Pc12q/C3wQuCnJBuDbwKVt263AxcBu4CngcoCq2p/kauDuNu6qqto/xr4lSXMYW3BU1f9i5usTABfMML6AK2Y51hZgy5HrTpJ0uPzkuCSpi8EhSepicEiSuhgckqQuBockqYvBIUnqYnBIkroYHJKkLgaHJKmLwSFJ6mJwSJK6GBySpC4GhySpi8EhSepicEiSuhgckqQuBockqYvBIUnqYnBIkroYHJKkLgaHJKmLwSFJ6mJwSJK6GBySpC4GhySpy5KFbkBSnzW/99mFbkFHoS9c/W/m7b3GNuNIsiXJY0m+NlQ7Jcn2JLva69JWT5Jrk+xOcn+Sc4f2Wd/G70qyflz9SpJGM85TVZ8C1hxUuxLYUVUrgR1tHeAiYGX72QhcB4OgATYB5wGrgE3TYSNJWhhjC46q+jKw/6DyWmBrW94KXDJUv6EG7gBOTnIGcCGwvar2V9UBYDsvDCNJ0jya74vjp1fVIwDt9bRWXwY8PDRuT6vNVpckLZCj5a6qzFCrOeovPECyMclUkql9+/Yd0eYkSc+Z7+B4tJ2Cor0+1up7gDOHxi0H9s5Rf4Gq2lxVk1U1OTExccQblyQNzHdwbAOm74xaD9wyVL+s3V11PvBkO5V1G7A6ydJ2UXx1q0mSFsjYPseR5DPAm4BTk+xhcHfUB4GbkmwAvg1c2obfClwM7AaeAi4HqKr9Sa4G7m7jrqqqgy+4S5Lm0diCo6reNcumC2YYW8AVsxxnC7DlCLYmSfohHC0XxyVJxwiDQ5LUxeCQJHUxOCRJXQwOSVIXg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5JUheDQ5LUxeCQJHUxOCRJXQwOSVIXg0OS1MXgkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4JEldDA5JUheDQ5LU5ZgJjiRrknwjye4kVy50P5K0WB0TwZHkeOCPgIuAs4F3JTl7YbuSpMXpmAgOYBWwu6oeqqp/Am4E1i5wT5K0KB0rwbEMeHhofU+rSZLm2ZKFbmBEmaFWzxuQbAQ2ttXvJfnG2LtaPE4FHl/oJo4KmemfohaQ/zabfGDdkTjMT44y6FgJjj3AmUPry4G9wwOqajOweT6bWiySTFXV5EL3IR3Mf5sL41g5VXU3sDLJWUlOBNYB2xa4J0lalI6JGUdVPZPkPwK3AccDW6rqgQVuS5IWpWMiOACq6lbg1oXuY5HyFKCOVv7bXACpqkOPkiSpOVaucUiSjhIGh+bko150NEqyJcljSb620L0sRgaHZuWjXnQU+xSwZqGbWKwMDs3FR73oqFRVXwb2L3Qfi5XBobn4qBdJL2BwaC6HfNSLpMXH4NBcDvmoF0mLj8GhufioF0kvYHBoVlX1DDD9qJedwE0+6kVHgySfAb4CvDrJniQbFrqnxcRPjkuSujjjkCR1MTgkSV0MDklSF4NDktTF4JAkdTE4tOgk+S9JHkhyf5L7kpx3GMeYTHLtYey3KsmX2xOHv57kk0l+LMlbp58+nOSS4YdJJrkqya/0vpc0Lt6Oq0UlyRuAPwTeVFVPJzkVOLGqxvqJ+CRLgJcDdwHrquorSQK8Hfjrqnp0aOyngM9X1c3j7Ek6XAaHFpUkbwMur6pfPaj+egaB8hLgceA3quqRJLcDdwK/DJwMbKiqv07yJuC3quotSU4BtgA/BTwFbKyq+5O8H/gJYEU75m6Aqvr9Gfr6DWAS+FPg88CT7eftwO+12reAT7Zdjgd+rqqS5KcZPP5+or3/v6+qr7cA+k477iuA3zGMdCR4qkqLzV8BZyb5P0k+keRfJTkB+Bjwjqp6PYMQuGZonyVVtQp4L7BphmP+AXBvVf088LvADUPbXg+srapfA34OuGeu5qrqbxg81uW3q+qcqvq7oW1TrXYO8AXgw23TZuA9rfffAj4xdMgzgF8E3gJ8cK73lka1ZKEbkOZTVX2vzS7+JYNZxGeBDzD4o759cPaI44FHhnb78/Z6D4PZw8F+kcHMgKr6YpKXJ3lZ27atqv7fkfwdkrwTOBdYneQlwC8A/6P1DvCioeF/UVX/DDyY5PQj2YcWL4NDi05VPQvcDtye5KvAFcADVfWGWXZ5ur0+y8z/Z+Z6/Pz3h2oPMJiB3NLb8w/eKHkNgxnOL1XVs0mOA55os5CZPD20PFOfUjdPVWlRSfLqJCuHSucweIDjRLtwTpIT2h/oUX0ZeHfb903A41X1nRnGfRxYP3wXV5JfT/KKg8Z9F3jpDL2/jMG3MF5WVfsA2vt8M8mlbUySvLajd6mbwaHF5iXA1iQPJrmfwXep/z7wDuBDSf4WuI/B6Z9RvR+YbMf7ILB+pkHtzql1wIfb7bg7GZwyOzhkbgR+O8m97cL3tEuAnwT+e7uN+L5WfzewofX+AH69r8bMu6okSV2ccUiSuhgckqQuBockqYvBIUnqYnBIkroYHJKkLgaHJKmLwSFJ6vL/AbFrQpgWpX5aAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(datset_churn['SeniorCitizen'], palette = \"Set1\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"16% of customers are senior citizens"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Let's Check for Outliers using Box Plot for Tenure, MonthlyCharges, TotalCharges"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x23a7e316400>"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAElCAYAAAC24UBOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X20XXV97/v3RyKgyKNsMCZAoE2J1OMD3ZdS9HpURPGhBjli8do0QxmkPYeiHntPNdJTbq1UbVVET+tpEGykKlLEC1WrRYT2YgdoeCgCgZIGgYSUbOQhFOQh9Hv/WHPLJuyd7GTvtefaa71fY6wx5/zNh/VZIyNz7O+cv/mbqSokSZIkSbPfs9oOIEmSJEmaHhZ4kiRJktQnLPAkSZIkqU9Y4EmSJElSn7DAkyRJkqQ+YYEnSZIkSX3CAk+SJEmS+oQFniRJkiT1CQs8SZIkSeoTs6LAS/KdtjNIml7+v5YkSZp+c9oOMBl77LHHG4aHh6vtHJKm1aa2A0zVvvvuWwsWLGg7hqRpdM0119xbVUNt55gqz09S/5ns+WlWFHgLFy5k1apVbceQNI2S3NZ2hqlasGCB5yapzyS5o+0M08Hzk9R/Jnt+mhVdNCVJkiRJ22aBJ0mSJEl9wgJPkiRJkvqEBZ6kvpTk3CQbk9w4pu3PktyS5IYk30iy15h1y5OsSXJrkje0k1qSJGlqLPAk9au/Ao7dou1S4MVV9RLgX4DlAEkOA04EfrnZ5y+S7DRzUSVJkqaHBZ6kvlRV/wjct0Xb31fV5mbxKmB+M78YOL+qHquq24E1wBEzFlaSJGmaWOBJGlTvAf6umZ8H3DVm3bqmTZIkaVaxwJM0cJKcBmwGvjzaNM5mNcG+y5KsSrJqZGSkWxElSZJ2iAWepIGSZCnwFuBdVTVaxK0DDhiz2Xzg7vH2r6oVVTVcVcNDQ0PdDStJkrSd5rQdQNPjjDPO4JZbbmk7xpTccccdABx00EEtJ5maRYsWcdppp7UdQ+NIcizwQeA/V9UjY1ZdAnwlyaeBFwILgR+2ELHvnH322axdu7btGFOyYcMGAObOndtykqk75JBDOPnkk9uOIfWEiy66iPXr17cdY0ruvfdeAPbdd9+Wk0zNvHnzOP7449uO0Tcs8NQzHnnkkW1vJE1Skq8Crwb2TbIOOJ3OqJm7AJcmAbiqqn6nqm5KcgFwM52um6dU1ZPtJFev+dnPftZ2BEka12OPPdZ2BPWgPNVDqXcNDw/XqlWr2o6hLluyZAkA5513XstJNBOSXFNVw23nmArPTYNh+fLlAHzsYx9rOYlmQj+cm8Dz06D43Oc+B8Cpp57achLNhMmen3wGT5IkSZL6RNcKvCSHJrl+zGdTkvcn2SfJpUlua6Z7dyuDJEmSJA2SrhV4VXVrVb2sql4G/ArwCPAN4EPAZVW1ELisWZYkSZIkTdFMddE8GvjXqroDWAysbNpXAsfNUAZJkiRJ6mszVeCdCHy1md+/qjYANNP9ZiiDJEmSJPW1rhd4SXYG3gr8zXbutyzJqiSrRkZGuhNOkiRJkvrITNzBeyNwbVXd0yzfk2QuQDPdON5OVbWiqoaranhoaGgGYkqSJEnS7DYTBd47eap7JsAlwNJmfilw8QxkkCRJkqS+19UCL8lzgWOAi8Y0fxw4JsltzbqPdzODJEmSJA2KOd08eFU9Ajx/i7af0hlVU5IkSZI0jWZqFE1JkiRJUpdZ4EmSJElSn7DAkyRJkqQ+YYEnSZIkSX3CAk+SJKkLkvz3JDcluTHJV5PsmuTgJFcnuS3J15Ls3Gy7S7O8plm/YMxxljfttyZ5Q1u/R9LsYIEnSZI0zZLMA94LDFfVi4GdgBOBTwBnVtVC4H7gpGaXk4D7q+oXgTOb7UhyWLPfLwPHAn+RZKeZ/C2SZhcLPEmSpO6YAzwnyRzgucAG4LXAhc36lcBxzfziZplm/dFJ0rSfX1WPVdXtwBrgiBnKL2kWssCTJEmaZlW1HvgkcCedwu5B4Brggara3Gy2DpjXzM8D7mr23dxs//yx7ePs8zRJliVZlWTVyMjI9P4gSbOGBZ4kSdI0S7I3nbtvBwMvBHYD3jjOpjW6ywTrJmp/ZmPViqoarqrhoaGh7Q8tqS9Y4EmSJE2/1wG3V9VIVT0BXAQcBezVdNkEmA/c3cyvAw4AaNbvCdw3tn2cfSTpGSzwJEmSpt+dwJFJnts8S3c0cDNwOfD2ZpulwMXN/CXNMs3671dVNe0nNqNsHgwsBH44Q79B0iw0Z9ubSJIkaXtU1dVJLgSuBTYD1wErgG8B5yf5aNN2TrPLOcB5SdbQuXN3YnOcm5JcQKc43AycUlVPzuiPkTSrWOBJkiR1QVWdDpy+RfNaxhkFs6oeBU6Y4DhnAGdMe0BJfckumpIkSZLUJyzwJEmSJKlPWOBJkiRJUp+wwJMkSZKkPmGBJ0mSJEl9wgJPkiRJkvqEBZ4kSZIk9QkLPEmSJEnqExZ4kiRJktQnLPAkSZIkqU9Y4EmSJElSn7DAkyRJkqQ+0dUCL8leSS5MckuS1Ul+Lck+SS5Nclsz3bubGSRJkiRpUHT7Dt5ZwHeqahHwUmA18CHgsqpaCFzWLEuSJEmSpqhrBV6SPYBXAecAVNXjVfUAsBhY2Wy2EjiuWxkkSZIkaZB08w7eIcAI8MUk1yX5QpLdgP2ragNAM92vixkkSZIkaWB0s8CbAxwOfL6qXg48zHZ0x0yyLMmqJKtGRka6lVGSJEmS+kY3C7x1wLqqurpZvpBOwXdPkrkAzXTjeDtX1YqqGq6q4aGhoS7GlNSPkpybZGOSG8e0jTvIUzo+m2RNkhuSHN5eckmSpB3XtQKvqv4NuCvJoU3T0cDNwCXA0qZtKXBxtzJIGmh/BRy7RdtEgzy9EVjYfJYBn5+hjJIkSdNqTpePfyrw5SQ7A2uBd9MpKi9IchJwJ3BClzNIGkBV9Y9JFmzRvBh4dTO/ErgC+GDT/qWqKuCq5hUvc0efF5YkSZotulrgVdX1wPA4q47u5vdK0gSeNshTktFBnuYBd43Zbl3TZoEnSZJmlW6/B0+SZoOM01bjbugAUJIkqYdZ4EkaJBMN8rQOOGDMdvOBu8c7gANASZKkXmaBJ2mQTDTI0yXAbzWjaR4JPOjzd5IkaTbq9iArktSKJF+lM6DKvknWAacDH2f8QZ6+DbwJWAM8QmdAKEmSpFnHAk9SX6qqd06w6hmDPDWjZ57S3USSJEndZxdNSZIkSeoTFniSJEmS1Ccs8CRJkiSpT1jgSZIkSVKfsMCTJEmSpD5hgSdJkiRJfWLgX5NwxhlncMstt7QdQ8Dq1asBWLJkSctJtGjRIk477bS2Y0iSJGk7DXyBd8stt3DttVexxx6b244y8B5/fCcA1qy5suUkg23TpoE/LUiSJM1a/iUH7LHHZo488oG2Y0g94aqr9mo7giRJknaQz+BJkiRJUp+wwJMkSZKkPmGBJ0mSJEl9wgJPkiRJkvqEBZ4kSZIk9QkLPEmSJEnqExZ4kiRJktQnLPAkSZIkqU9Y4EmSJElSn7DAkyRJkqQ+MaftAJKk8Z199tmsXbu27RgDb/TfYPny5S0nEcAhhxzCySef3HYMSepZFniS1KPWrl3Lv972z8zb79G2owy0Zz9rZwAeffDqlpNo/cZd244gST2vqwVekp8ADwFPApurajjJPsDXgAXAT4B3VNX93cwhSbPVvP0e5X0n3t52DKknnHX+wW1HkKSeNxPP4L2mql5WVcPN8oeAy6pqIXBZsyxJktRXkuyV5MIktyRZneTXkuyT5NIktzXTvZttk+SzSdYkuSHJ4WOOs7TZ/rYkS9v7RZJmgzYGWVkMrGzmVwLHtZBBkiSp284CvlNVi4CXAquZ+EL3G4GFzWcZ8HmApufT6cCvAkcAp48WhZI0nm4XeAX8fZJrkixr2vavqg0AzXS/8XZMsizJqiSrRkZGuhxTkiRp+iTZA3gVcA5AVT1eVQ8w8YXuxcCXquMqYK8kc4E3AJdW1X3NIy2XAsfO4E+RNMt0u8B7RVUdTueq1ClJXjXZHatqRVUNV9Xw0NBQ9xJKkiRNv0OAEeCLSa5L8oUkuzHxhe55wF1j9l/XtE3U/gxeHJcEXS7wquruZroR+AadrgX3NFekaKYbu5lBkiSpBXOAw4HPV9XLgYfZ+rgDGaetttL+zEYvjkuiiwVekt2S7D46D7weuBG4BBh9QHgpcHG3MkiSJLVkHbCuqkbfr3EhnYJvogvd64ADxuw/H7h7K+2SNK5u3sHbH7gyyT8DPwS+VVXfAT4OHJPkNuCYZlmSJKlvVNW/AXclObRpOhq4mYkvdF8C/FYzmuaRwINNF87vAq9PsnczuMrrmzZJGlfX3oNXVWvpjBi1ZftP6ZzkJEmS+tmpwJeT7AysBd5N5+L6BUlOAu4ETmi2/TbwJmAN8EizLVV1X5I/Bn7UbPeRqrpv5n6CpNmmqy86lyRJGlRVdT0wPM6qZ1zorqoCTpngOOcC505vOkn9qo334EmSJEmSusACT5IkSZL6hAWeJEmSJPUJCzxJPS/JCWNeu/IHSS5KcnjbuSRJknqNBZ6k2eB/VtVDSV4JvAFYCXy+5UySJEk9xwJP0mzwZDN9M/D5qroY2LnFPJIkST3JAk/SbLA+yV8C7wC+nWQXPH9JkiQ9g38gSZoN3gF8Fzi2qh4A9gH+R7uRJEmSeo8FnqSeV1WPABuBVzZNm4Hb2kskSZLUmyzwJPW8JKcDHwSWN03PBv56Csf770luSnJjkq8m2TXJwUmuTnJbkq8l8Rk/SZI061jgSZoN3ga8FXgYoKruBnbfkQMlmQe8FxiuqhcDOwEnAp8AzqyqhcD9wEnTkFvSLJfkyCTPbebfmeRPkxzQdi5JmogFnqTZ4PGqKqAAkuw2xePNAZ6TZA7wXGAD8Frgwmb9SuC4KX6HpP6wAvhZkpcAHwbuYQo9CCSp2yzwJM0GFzSjaO6V5GTge8DZO3KgqloPfBK4k05h9yBwDfBAVW1uNlsHzJtyakn9YHNzgWkxcFZVfYod7EEgSTNhTtsBJGlbquqTSY4BNgGHAn9YVZfuyLGS7E3nD7WDgQeAvwHeON7XTrD/MmAZwIEHHrgjESTNLg8n+R/AEuA/J3kWneeAJaknWeBJmhWagm6HirotvA64vapGAJJcBBxF5+7gnOYu3nzg7glyrKDTZYvh4eFxi0BJfeU3gN8EfruqNiQ5EPh0y5kkaUJ20ZTU85I8lGTTFp+7knwjySHbebg7gSOTPDdJgKOBm4HLgbc32ywFLp6+XyBptmoGdfrKmKaNwAUtxZGkbfIOnqTZ4NN07qh9BQidUS9fANwKnAu8erIHqqqrk1wIXEvnfXrX0bkj9y3g/CQfbdrOmcb8kmapJO8BfhfYE/gF4EDgL+j0BpCknmOBJ2k2OLaqfnXM8ookV1XVR5J8eHsPVlWnA6dv0bwWOGIqISX1pffSOTdcDVBV/5Jk/3YjSdLE7KIpaTb4jyTvSPKs5vOOMet8Dk5SNz1aVY+PLiTZqc0wkrQtFniSZoN30RnBbiOdd1AtAX4zyXPodJ2SpG75QZLfB3ZN8hrga8A3W84kSROyi6akntZcLV9cVb8+wSZXzmQeSQPn9+m8GuUW4H3Ad4G/bDWRJG2FBZ6knlZVTyZZDJzZdhZJg6eqngQ+33wkqedZ4EmaDX6Q5H/R6Rr18GhjVV3bXiRJgyDJdTzzWd8HgVXAx6rqvplPJUkTs8CTNBsc1Uw/MqatgNe2kEXSYLmUzutZRt+FdyLwJPDvwF8Bb20nliSNr+sFXvP8zCpgfVW9JcnBwPnAPnTeQ7Vk7OhUkrSlqnpN2xkkDayjquqVY5avS3JlVb0yyY9bSyVJE5iJO3jvA1YDezTLnwDOrKrzk/xv4CTs1y5pG5K8GfhlYNfRtqr6yMR7SNK02D3Jr1TVNQBJDuepv2k2txdLksbX1dckJJkPvBn4QrMcOl2qLmw2WQkc180Mkma/5mLQbwCn0ukqdQJwUKuhJA2KZcB5SW5Lsgb4a2BZkt2AP203miQ906Tu4CV5JbCwqr6YZAh4XlXdPoldP0NneOHdm+XnAw9U1egVr3XAvO3MLGnwHFVVL0lyQ1X9UZJPARe1HUpSf2seM5lfVYcleT6Qqrp3zCZfbSmaJE1om3fwkpwOfBBY3jQ9m87Vq23t9xZg42iXhtHmcTbdcmSq0f2XJVmVZNXIyMi2vk5Sf/tZM30kyQuBJ4CDW8wjaQA0r0h4fzP/0y2KO0nqSZPpovk2OiNEPQxQVXfz1B25rXkF8NYkP6EzqMpr6dzR2yvJ6J3D+cDd4+1cVSuqariqhoeGhibxdZL62DeT7AX8GZ3BmX5C57wiSd323STvTzI3yR6jn7ZDSdJEJtNF8/GqqiQF0PQ536aqWk5z1y/Jq4H/u6releRvgLfT+eNsKXDxjgSXNDiq6o+b2a8n+Sawa1U92GYmSQPjt5vp741pK+DAFrJI0jZNpsC7IMlf0rnzdjLwHuDsKXznB4Hzk3wUuA44ZwrHkjQgkhwFLKA5byWhqr7UaihJfa+qDmg7gyRtj20WeFX1ySTHAJuAQ4E/rKpLt+dLquoK4Ipmfi1wxHYnlTSwkpwH/AJwPZ0XDEPnCroFnqSuS7IIOIynv6blKxPvIUnt2WqB14we9d2qeh2wXUWdJE2jYeCwqhp3UCZJ6pYkfwC8HlgEfBd4A3AlYIEnqSdtdZCVZvSoR5LsOUN5JGk8NwIvaDuEpIH0G8BrgA1VtQR4KZN8zZQktWEyJ6hHgR8nuZRmJE2Aqnpv11JJEpDkb+l0xdwduDnJD4HHRtdX1VvbyiZpYPysqp5MsjnJ7sC/AYe0HUqSJjKZAu9bzUeSZton2w7Qpg0bNvDwv+/KWef7yj8JYN3GXdntkQ0z/bXXNa9pORdYRWdMgmtnOoQkTdZkBllZORNBJGkc64H9q+oHYxuTvKpZJ0ldVVWjr0n48yTfBfaoKgs8ST1rmwVektvpdJF6mqqye4KkbvsM8OFx2h9p1v36zMaZWXPnzuXRB+/kfSfe3nYUqSecdf7B7Lrn3Bn/3iQvoPPeu9HXtBxVVf8040EkaRIm00VzeMz8rsAJwD7diSNJT7Ogqm7YsrGqViVZMPNxJA2aJH8C/CZwC09/TcubWgslSVsxmS6aP92i6TNJrgT+sDuRJOnndt3KuufMWApJg+y/AL9UVY+2HUSSJmMyXTQPH7P4LDp39HbvWiJJesqPkpxcVWePbUxyEnBNS5kkDZbb2cZrpSSpl0ymi+anxsxvBn4CvKMraSTp6d4PfCPJu3iqoBsGdgbe1loqSX0vyZl0umI+RGckze/x9Ne0fKCtbJK0NZPpovmamQgiSVuqqnuAo5K8Bnhx0/ytqvp+i7EkDYYbm+lNwHfaDCJJ22MyXTR3odP/fMHY7avqI92LJUlP82bgi1V1U9tBJA2Mi4HnV9WtYxuTvAjY2E4kSdq2yfQpvxhYTKd75sNjPpI0U24BViS5OsnvJNmz7UCS+t5ngReO074AOGtmo0jS5E3mGbz5VXVs15NI0gSq6gvAF5IcCrwbuCHJD4Czq+rydtNJ6lMvHe/8UlV/l+TP2ggkSZMxmTt4/5TkP3U9iSRtRZKdgEXN517gn4EPJDm/1WCS+tXWLoI/e8ZSSNJ2mkyB90rgmiS3JrkhyY+TPOPFw5LULUk+DdxK58XCf1JVv1JVn6iqXwde3m46SX3qX5O8YcvGJK+n8+qESUmyU5LrknyzWT646W5+W5KvJdm5ad+lWV7TrF8w5hjLm/Zbx8skSWNNpovmG7ueQpK27kbgD6rqkXHWHTHTYSQNhA8Af5vkH3j6a1peBfz6dhznfcBqYI9m+RPAmVV1fpL/DZwEfL6Z3l9Vv5jkxGa730hyGHAi8Mt0ngn8XpJfqqonp/bzJPWrbd7Bq6o7gAOA1zbzj0xmP0maqiSHJzkcuB5YNLo8pp2qerDdlJL6UVXdAvwn4Gqe6h5+NfCSZt02JZlPZxTgLzTLAV4LXNhsshI4rplf3CzTrD+62X4xcH5VPVZVtwNr8MKWpK2YzGsSTqdzxepQ4It0+p3/NfCK7kaTJD61lXVF5w8lSeqKqnoUOHsKh/gM8PvA7s3y84EHqmpzs7wOmNfMzwPuar53c5IHm+3nAVeNOebYfZ4myTJgGcCBBx44hdiSZrPJdNF8G51nXK4FqKq7k+y+9V0kaeqq6jVtZ5A0mJLcT+dC0jNWAVVV+2xj/7cAG6vqmiSvHrPvlmob67a2z9Mbq1YAKwCGh4fH3UZS/5tMgfd4VVWSAkiyW5czSdIzJDmKzvunfn7eqqovtRZIUr/bd4r7vwJ4a5I3AbvSeQbvM8BeSeY0d/HmA3c326+j80jMuiRzgD2B+8a0jxq7jyQ9w2SepbsgyV/SOSGdDHyPqXVXkKTtkuQ84JN0RvX9P5rPcKuhJPW1qnpy7IdOwbX/mM+29l9eVfOragGdQVK+X1XvAi4H3t5sthS4uJm/pFmmWf/9qqqm/cRmlM2DgYXAD6flR0rqS5O5gzdE52HfTXSew/tD4HXdDCVJWxgGDmv+2JGkGZPkzcCZdO6c/ZTO82//QmfQlR3xQeD8JB8FrgPOadrPAc5LsobOnbsTAarqpiQXADcDm4FTHEFT0tZMpsA7pqo+CFw62pDkU3ROUJI0E24EXgBsaDuIpIFzBp3uln9fVS9PcgzwX7bnAFV1BXBFM7+WcUbBbAZ0OWGC/c9ocvSEiy66iPXr17cdQ/Dzf4fPfe5zLSfRvHnzOP7449uOAWylwEvyX4H/BhyyxYvNdwd+0O1gkpTkb+kMJrA7cHOSHwKPja6vqre2lU3SwNhcVSNJnpUkVXVpkp4pttqwfv16br/zLnbZe6jtKAPviewEwN0PPdpyksH22P0jbUd4mq3dwfsK8HfAx4APjWl/qKru29aBk+wK/COwS/M9F1bV6U3/8fOBfeiMzLmkqh7fwfyS+tsnu3HQJHvReS/Vi+kUkO8BbgW+Rmcgl58A76iq+7vx/ZJmlQebAeauBL6UZCPwHy1nat0uew8x/3Vv3/aG0gBY970Lt73RDJpwkJWqerCqflJV76yqO8Z8tlncNR6j83L0lwIvA45NciTwCeDMqloI3A+cNNUfIak/VdU/VNU/AG8anR/bNoVDnwV8p6oWAS8FVtO5kHVZc266jKdf2JI0uI4DHgXeT6eb5XrgLW0GkqStmcwomjukOv69WXx28xl9MfFombuSzolTkrbmmHHa3rgjB0qyB/AqmoENqurxqnoAWEznnASemyQ9ZXkzkuYTVXVOVX0a+EDboSRpIl0r8ACS7JTkemAjnUFa/hV4oHn3C3Te7TKvmxkkzV5J/muSHwOHJrlhzOd24Mc7eNhDgBHgi0muS/KFpvvV/lW1AaCZ7jctP0LSbHfsOG1vnvEUkjRJkxlFc4c1w/i+rHne5RvAi8bbbLx9kywDlgEceOCBXcsoqadN6VngCcwBDgdOraqrk5zFdnTH9NwkDYYkvw38DvBLSa4ds2p3YFU7qSRp27p6B29U0/3pCuBIOi9MHy0s5wN3T7DPiqoarqrhoSFHaZIG0dhngenc8X+CzkWh5yXZ0epqHbCuqq5uli+kU/Ddk2QuQDPdOEEmz03SYLiAzmsLvt1MRz+vaM5JktSTunYHL8kQ8ERVPZDkOXRejv4J4HLg7XRG0lwKXNytDJNxxx13sGnTHK66aq82Y0g9Y9OmOdxxxx1tx3iaJL8L/D/APTw1el0BL9neY1XVvyW5K8mhVXUrcDSdFwjfTOec9HF64NwkqV3NKLr3AyckeTHwymbV/8cEF4AkqRd0s4vmXGBlkp3o3Cm8oKq+meRm4PwkHwWuoxnoQJK24v3AoVX102k63qnAl5PsDKwF3k1znkpyEnAnE7xwWNJgSXIKcArw/zZNFyT586r6ixZjSdKEulbgVdUNwMvHaV8LHNGt791eBx10EE88cRdHHvlA21GknnDVVXtx0EEHtR1jS3cBD07XwarqemB4nFVHT9d3SOobvw0cMToyeJI/Af4JsMCT1JO6OsiKJE2TtcAVSb5F5x2bADTDlUtSN4XO87+jnmjaJKknWeBJmg3ubD47Nx9J6qokc5rXOp0HXJXk682qt/HUOzMlqedY4EnqeVX1RwBJdu8sdrpKSVIX/RA4vKr+NMnlwP9J587d71TVj9qNJkkTs8CT1POaEezOA/Zplu8Ffquqbmo1mKR+9vNumE1BZ1EnaVawwJM0G6wAPlBVlwMkeTVwNnBUm6Ek9bWhJB+YaKXPAEvqVRZ4kmaD3UaLO4CquiLJbm0GktT3dgKehwOqSJplLPAkzQZrk/xPOt00AX4TuL3FPJL634aq+kjbISRpez2r7QCSNAnvAYaAi4BvNPPvbjWRpH7nnTtJs5J38CT1vKq6H3hv2zkkDZSj2w4gSTvCAk9Sz0pyydbWV9VbZyqLpMFSVfe1nUGSdoQFnqRe9mvAXcBXgauxy5QkSdJWWeBJ6mUvAI4B3gn8X8C3gK/6/jtJkqTxOciKpJ5VVU9W1XeqailwJLAGuCLJqS1HkyRJ6knewZPU05LsAryZzl28BcBn6YymKUmSpC1Y4EnqWUlWAi8G/g74o6q6seVIkiRJPc0CT1IvWwI8DPwS8N7k52OsBKiq2qOtYJIkSb3IAk9Sz6oqnxOWJEnaDv7xJEmSJEl9wgJPkiRJkvqEBZ4kSZIk9QkLPEmSJEnqExZ4kiRJktQnLPAkSZIkqU9Y4EmSJElSn7DAkyRJkqQ+YYEnSZIkSX2iawVekgOSXJ5kdZKbkryvad8nyaVJbmume3crgyRJkiQNkm7ewdsM/F5VvQg4EjglyWHAh4DLqmohcFmzLEmSJEmaoq4VeFW1oaqubeYfAlYD84DFwMpms5XAcd3KIEmSJEmDZEaewUuyAHg5cDWwf1VtgE4RCOw3wT7LkqxKsmpkZGQmYkqSJEnSrNb1Ai/J84CvA++vqk2T3a+qVlTVcFUNDw0NdS+gJEmSJPWJrhZ4SZ5Np7j7clVd1DTfk2Rus34usLGbGSRJkiRpUHQRhEOIAAAJVUlEQVRzFM0A5wCrq+rTY1ZdAixt5pcCF3crgyRJkiQNkjldPPYrgCXAj5Nc37R9GPg4cEGSk4A7gRO6mEGSJEmSBkbXCryquhLIBKuP7tb3SpIkSdKgmpFRNCVJkiRJ3WeBJ0mSJEl9wgJPkiRJkvqEBZ4kSdI0S3JAksuTrE5yU5L3Ne37JLk0yW3NdO+mPUk+m2RNkhuSHD7mWEub7W9LsnSi75QksMCTJEnqhs3A71XVi4AjgVOSHAZ8CLisqhYClzXLAG8EFjafZcDnoVMQAqcDvwocAZw+WhRK0ngs8CRJkqZZVW2oqmub+YeA1cA8YDGwstlsJXBcM78Y+FJ1XAXslWQu8Abg0qq6r6ruBy4Fjp3BnyJplrHAkzSQkuyU5Lok32yWD05yddMF6mtJdm47o6T+kGQB8HLgamD/qtoAnSIQ2K/ZbB5w15jd1jVtE7WP9z3LkqxKsmpkZGQ6f4KkWcQCT9Kgeh+dK+qjPgGc2XSbuh84qZVUkvpKkucBXwfeX1WbtrbpOG21lfZnNlatqKrhqhoeGhra/rCS+oIFnqSBk2Q+8GbgC81ygNcCFzabjO02JUk7JMmz6RR3X66qi5rme5qulzTTjU37OuCAMbvPB+7eSrskjcsCT9Ig+gzw+8B/NMvPBx6oqs3Nsl2gJE1Jc+HoHGB1VX16zKpLgNGRMJcCF49p/61mNM0jgQebLpzfBV6fZO9mcJXXN22SNC4LPEkDJclbgI1Vdc3Y5nE2tQuUpKl4BbAEeG2S65vPm4CPA8ckuQ04plkG+DawFlgDnA38N4Cqug/4Y+BHzecjTZskjWtO2wEkaYa9Anhr84fWrsAedO7o7ZVkTnMXzy5Qkqakqq5k/ItHAEePs30Bp0xwrHOBc6cvnaR+5h08SQOlqpZX1fyqWgCcCHy/qt4FXA68vdlsbLcpSZKkWcMCT5I6Pgh8IMkaOs/kndNyHkmSpO1mF01JA6uqrgCuaObXAke0mUeSJGmqvIMnSZIkSX3CAk+SJEmS+oQFniRJkiT1CQs8SZIkSeoTFniSJEmS1CccRVOSetj6jbty1vkHtx1joI3cvzMAQ3s/3nISrd+4K7+wZ9spJKm3WeBJUo865JBD2o4g4ImfrgVg1z3992jbL+zp/wtJ2hYLPEnqUSeffHLbEQQsX74cgI997GMtJ5Ekadss8CRJkjRp9957L4898jPWfe/CtqNIPeGx+0e497HntB3j5xxkRZIkSZL6RNfu4CU5F3gLsLGqXty07QN8DVgA/AR4R1Xd360MkiRJml777rsvjz/0KPNf9/a2o0g9Yd33LmTf3XdtO8bPdfMO3l8Bx27R9iHgsqpaCFzWLEuSJEmSpkHXCryq+kfgvi2aFwMrm/mVwHHd+n5JkiRJGjQz/Qze/lW1AaCZ7jfD3y9JkiRJfatnB1lJsizJqiSrRkZG2o4jSZIkST1vpgu8e5LMBWimGyfasKpWVNVwVQ0PDQ3NWEBJkiRJmq1m+j14lwBLgY8304tn+PvHtWnTHK66aq+2Ywy8hx/eCYDddnuy5SSDbdMmX48pSZI0W3XzNQlfBV4N7JtkHXA6ncLugiQnAXcCJ3Tr+ydr0aJFbUdQY/Xq1QD84i++qOUk8v+FJEnS7NS1Aq+q3jnBqqO79Z074rTTTms7ghpLliwB4Lzzzms5iSRJkjQ79ewgK5IkSZKk7WOBJ0mSJEl9wgJPkiRJkvqEBZ4kSZIk9QkLPEmSJEnqExZ4kiRJktQnLPAkSZIkqU9Y4EmSJElSn7DAkyRJkqQ+YYEnSZIkSX3CAk+SJEmS+oQFniRJkiT1CQs8SZIkSeoTFniSJEmS1Ccs8CRJkiSpT1jgSZIkSVKfsMCTJEmSpD4xp+0AkiRJml0eu3+Edd+7sO0YA+/xhx4AYOfd92o5yWB77P4R2P2AtmP8nAWeJEmSJm3evHltR1Bj/aYnAXjh7ru2nGTA7X5AT/2/sMCTJEnSpB1//PFtR1Djc5/7HACnnnpqy0nUS3wGT5IkSZL6hAWepIGS5IAklydZneSmJO9r2vdJcmmS25rp3m1nlSRJ2l4WeJIGzWbg96rqRcCRwClJDgM+BFxWVQuBy5plSZKkWcUCT9JAqaoNVXVtM/8QsBqYBywGVjabrQSOayehJEnSjrPAkzSwkiwAXg5cDexfVRugUwQC+7WXTJIkace0UuAlOTbJrUnWJLEblKQZl+R5wNeB91fVpu3Yb1mSVUlWjYyMdC+gJEnSDpjxAi/JTsCfA28EDgPe2Tz/IkkzIsmz6RR3X66qi5rme5LMbdbPBTaOt29Vraiq4aoaHhoampnAkgaeF8clTVYbd/COANZU1dqqehw4n86zL5LUdUkCnAOsrqpPj1l1CbC0mV8KXDzT2SRpPF4cl7Q92njR+TzgrjHL64BfbSFHXznjjDO45ZZb2o4xJatXrwZgyZIlLSeZmkWLFnHaaae1HUMTewWwBPhxkuubtg8DHwcuSHIScCdwQkv5+srZZ5/N2rVr244xJaP5ly9f3nKSqTvkkEM4+eST246h7ffzi+MASUYvjt/caqpZ7qKLLmL9+vVtx5iS0fyjLzyfrebNm8fxxx/fdoy+0UaBl3Ha6hkbJcuAZQAHHnhgtzOpBzz3uc9tO4IGQFVdyfjnIYCjZzKLZofnPOc5bUeQJnVx3L+dBs8uu+zSdgT1oDYKvHXAAWOW5wN3b7lRVa0AVgAMDw8/owDU03nHSFIv8m6RNC0mdXHcv522j3eM1K/aeAbvR8DCJAcn2Rk4kc6zL5IkSXqmSV0clyRoocCrqs3A7wLfpfOC4Quq6qaZziFJkjRLeHFc0qS10UWTqvo28O02vluSJGk2qarNSUYvju8EnOvFcUkTaaXAkyRJ0uR5cVzSZLXxDJ4kSZIkqQss8CRJkiSpT1jgSZIkSVKfsMCTJEmSpD5hgSdJkiRJfcICT5IkSZL6RKqq7QzblGQEuKPtHJoR+wL3th1CM+KgqhpqO8RUeG4aKJ6bBsesPzeB56cB4/lpcEzq/DQrCjwNjiSrqmq47RySNJbnJkm9yvOTtmQXTUmSJEnqExZ4kiRJktQnLPDUa1a0HUCSxuG5SVKv8vykp/EZPEmSJEnqE97BkyRJkqQ+YYEnSZIkSX3CAk+SJEmS+oQFniRJkiT1CQs8SZIkSeoT/z8a4cXPGYfRMgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1080x360 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"f, axes = plt.subplots(1, 3, figsize=(15,5))\n",
"sns.boxplot(x=datset_churn_copy[\"tenure\"], orient=\"v\", color=\"olive\",ax=axes[0])\n",
"sns.boxplot(x=datset_churn_copy[\"MonthlyCharges\"], orient=\"v\", color=\"gold\",ax=axes[1])\n",
"sns.boxplot(x=datset_churn_copy[\"TotalCharges\"] , orient=\"v\", color=\"skyblue\",ax=axes[2])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Observation - Seems like we dont have outliers !"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Bivariate Analysis\n",
"Correlating the features with Target column (Churn)\n",
"Let us start by understanding correlations between numerical features and our solution goal (Churn).\n",
"\n",
"A histogram chart is useful for analyzing continous numerical variables like tenure , Monthly Charges and Total Charges where banding or ranges will help identify useful patterns. The histogram can indicate distribution of samples using automatically defined bins or equally ranged bands. This helps us answer questions relating to specific bands."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"# Converting the categorical variable to numerical variable\n",
"datset_churn['Churn_Num'] = datset_churn['Churn'].map( {'Yes': 1, 'No': 0} ).astype(int)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Churn</th>\n",
" <th>Churn_Num</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>No</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>No</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Yes</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>No</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Yes</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Churn Churn_Num\n",
"0 No 0\n",
"1 No 0\n",
"2 Yes 1\n",
"3 No 0\n",
"4 Yes 1"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Validating the mappaing\n",
"datset_churn[['Churn','Churn_Num']].head()"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<seaborn.axisgrid.FacetGrid at 0x23a7d68dba8>"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAADQCAYAAABStPXYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEAlJREFUeJzt3X+sZGV9x/H3R1aw0Vp+42aXdrFutWoj4IpYbGsBEwQjmEJja3S1pJu02mK00cWmif4HrRGxaWkJaLElEQu2EPyJ/GjU6OIiFLosK6tu3RtQlpTFilZd+PaPOZud3b27dy537swzc9+vZDLnPHPmnO+c3ed+5jlz5kyqCkmSWvOMcRcgSdJsDChJUpMMKElSkwwoSVKTDChJUpMMKElSkwwoSVKTDKhFkOR5ST6Z5NtJ7k/y2SS/luQ1SW4ecS3bktzQN39+kn8aZQ2zSXJCkg1JHkxyXZJDx12TFp99Y25J3plka5JKcvS46xknA2rIkgT4N+COqvrVqnox8H7guCGse9nTfOqaJC9Z6PaH7FLgsqpaDTwGXDjmerTI7BsD+ypwJvDf4y5k3Ayo4ftd4OdV9Q+7G6rqnqr6cjf7nCTXJ3kgybVdp939bu7obnpNkju66Q8kuTLJF4FPJHlbkk8n+Xw3+vjrAWr6EL0/BHvp1v0XffP/lWRVd3sgyVVd27VJzkzy1W6bpzzdndNtJ8DpwPVd0zXAeQtZpyaCfWMAVXV3VW1b6HqmwdN916EDeylw10EePwl4CfAQvXdKpwFfmWOdLwdeXVU/SfI24MRuPT8FtiT526rafpDnfwr40yQvGOwlAPAC4AJgHfAN4A+BVwNvoNeh9wqUJC8ErjvAul5TVTv75o8CdlbVrm5+Blgxj9o0mewb+9u3b6iPATV6d1bVDECSe4BVzN0Jb6qqn/TN31pVj3fruB/4FeBgnfBJ4G+Ai4HPDVjnd6vqvm4bm7ptVpL7upr3UlVb6P1xGERmafOikLJvaC8G1PBtAs4/yOM/7Zt+kj3/BrvYc8j1Wfs854kB13Ew/0yvE27qa+vf5r7b7d/GU33zT822vXm+S3wUODzJsm4UtZLeu2ZNN/vG/hxBHYSfQQ3fbcBhSf54d0OSVyT5nTmet43e4QqA3xt2UVX1c+Ay4F37bPNkgCQnAycsYP1bqurEA9x27rNsAbez54/VWuDGp7ttTQz7xhx9Q3szoIas++P7RuC13am0m4APMPcI4YPA5Um+TO+d32K4mr3f4d0AHNkdTvkT4FuLtN3ZvA94d5Kt9D6TunqE29YY2DcGk+TPk8zQO7Jwb5KrRrXt1sTfg5IktcgRlCSpSZ4kMSWSbAAO26f5LbvPNpKWKvvG5PIQnySpSU0c4jvrrLOK3vdgvHmbptuC2Te8TeltIE0E1KOPPjruEqQm2Te0lDURUJIk7cuAkiQ1yYCSJDXJgJIkNcmAkiQ1yYCSJDXJK0lIs1i1/jMHfXzbJeeMqBJp6XIEJUlqkgElSWqSASVJapIBJUlqkgElSWqSZ/FJU8IzDzVtHEFJkppkQEmSmmRASZKaZEBJkppkQEmSmmRASZKaZEBJkppkQEmSmmRASZKaZEBJkppkQEmSmmRASZKaNFBAJTk8yfVJHkiyOcmrkhyZ5JYkD3b3R3TLJslHk2xNcm+Skxf3JUiSptGgI6jLgc9X1YuAlwGbgfXArVW1Gri1mwd4HbC6u60DrhhqxZKkJWHOgEryXOC3gasBqupnVbUTOBe4plvsGuC8bvpc4BPV83Xg8CTLh165JGmqDTKCej6wA/h4kruTXJXk2cBxVfUwQHd/bLf8CmB73/Nnura9JFmXZGOSjTt27FjQi5CmiX1D6hkkoJYBJwNXVNVJwBPsOZw3m8zSVvs1VF1ZVWuqas0xxxwzULHSUmDfkHoGCagZYKaqNnTz19MLrB/sPnTX3T/St/zxfc9fCTw0nHIlSUvFnAFVVd8Htid5Ydd0BnA/cBOwtmtbC9zYTd8EvLU7m+9U4PHdhwIlSRrUsgGX+zPg2iSHAt8B3k4v3D6V5ELge8AF3bKfBc4GtgI/7paVJGleBgqoqroHWDPLQ2fMsmwB71hgXZKkJc4rSUiSmmRASZKaZEBJkppkQEmSmmRASZKaZEBJkppkQEmSmmRASZKaZEBJkppkQEmSmmRASZKaZEBJkppkQEmSmmRASZKaZEBJkppkQEmSmmRASZKaZEBJkppkQEmSmmRASZKaZEBJkpq0bNwFDGLV+s/Mucy2S84ZQSWSpFFxBCVJapIBJUlqkgElSWqSASVJapIBJUlqkgElSWqSASVJapIBJUlqkgElSWrSwAGV5JAkdye5uZs/IcmGJA8muS7JoV37Yd381u7xVYtTuiRpms1nBHURsLlv/lLgsqpaDTwGXNi1Xwg8VlUvAC7rlpMkaV4GCqgkK4FzgKu6+QCnA9d3i1wDnNdNn9vN0z1+Rre8JEkDG3QE9RHgvcBT3fxRwM6q2tXNzwAruukVwHaA7vHHu+X3kmRdko1JNu7YseNpli9NH/uG1DNnQCV5PfBIVd3V3zzLojXAY3saqq6sqjVVteaYY44ZqFhpKbBvSD2D/NzGacAbkpwNPAt4Lr0R1eFJlnWjpJXAQ93yM8DxwEySZcAvAf8z9MolSVNtzhFUVV1cVSurahXwJuC2qnozcDtwfrfYWuDGbvqmbp7u8duqar8RlCRJB7OQ70G9D3h3kq30PmO6umu/Gjiqa383sH5hJUqSlqJ5/aJuVd0B3NFNfwc4ZZZl/g+4YAi1SZKWMK8kIUlqkgElSWqSASVJapIBJUlqkgElSWqSASVJapIBJUlqkgElSWqSASVJapIBJUlq0rwudSRNi1XrPzPuEiTNwRGUJKlJUzOCmusd8bZLzhlRJZKkYXAEJUlqkgElSWqSASVJapIBJUlqkgElSWqSASVJapIBJUlq0tR8D2qh/B6VJLXFEZQkqUmOoEbIUZokDc4RlCSpSQaUJKlJHuLTxBnkpzI8XCpNPkdQkqQmOYJSc/wxQUngCEqS1KglM4Iaxbty3/lL0vAsmYDS6Ph9L0nDMOchviTHJ7k9yeYkm5Jc1LUfmeSWJA9290d07Uny0SRbk9yb5OTFfhGSpOkzyAhqF/Ceqvpmkl8E7kpyC/A24NaquiTJemA98D7gdcDq7vZK4IruXgs0itOrp2X04+FWafLNOYKqqoer6pvd9P8Cm4EVwLnANd1i1wDnddPnAp+onq8DhydZPvTKJUlTbV5n8SVZBZwEbACOq6qHoRdiwLHdYiuA7X1Pm+na9l3XuiQbk2zcsWPH/CuXppR9Q+oZ+CSJJM8BbgDeVVU/THLARWdpq/0aqq4ErgRYs2bNfo9LS9Vi9Y1pOXyrpWOggEryTHrhdG1Vfbpr/kGS5VX1cHcI75GufQY4vu/pK4GHhlWwJp+fD0kaxCBn8QW4GthcVR/ue+gmYG03vRa4sa/9rd3ZfKcCj+8+FChJ0qAGGUGdBrwFuC/JPV3b+4FLgE8luRD4HnBB99hngbOBrcCPgbcPtWItiKMXSZNizoCqqq8w++dKAGfMsnwB71hgXc2ZlD/sk1KnJM3FK0k0xHCRpD28WKwkqUmOoDQvjvIkjYojKElSkwwoSVKTDChJUpMMKElSkzxJQtJARvFzL1I/R1CSpCYZUJKkJnmITxLgd9zUHkdQkqQmGVCSpCYZUJKkJhlQkqQmGVCSpCYZUJKkJhlQkqQm+T0oSUOz0O9Seakk9XMEJUlqkgElSWqSASVJapKfQUlqxlyfYfkZ1dJiQEmaGIsdYP7mVVsMKElTwyuyTxcDSpLmYdyjuKU0gjOgJGmIpiFgWnkNBpQkjdBiH4ZsJVyGwYCSpAnSwudsowpBvwclSWqSASVJatKiHOJLchZwOXAIcFVVXbIY25EkzU8LhwgHNfQRVJJDgL8DXge8GPiDJC8e9nYkSdNtMQ7xnQJsrarvVNXPgE8C5y7CdiRJU2wxDvGtALb3zc8Ar9x3oSTrgHXd7I+SbDnIOo8GHh1ahaNj3aM1srpz6UCLfb6qzpr3uufXN8B/r1GaxJphxHUP0D8G6huLEVCZpa32a6i6ErhyoBUmG6tqzUILGzXrHq1JrXtf8+kbMLmvexLrnsSaYXLrXoxDfDPA8X3zK4GHFmE7kqQpthgB9Q1gdZITkhwKvAm4aRG2I0maYkM/xFdVu5K8E/gCvdPMP1ZVmxa42oEPdzTGukdrUuteqEl93ZNY9yTWDBNad6r2+3hIkqSx80oSkqQmGVCSpCY1H1BJzkqyJcnWJOvHXc+BJDk+ye1JNifZlOSirv3IJLckebC7P2Lcte4rySFJ7k5yczd/QpINXc3XdSe7NCXJ4UmuT/JAt89fNQn7epjsG6Nh/xifpgNqwi6btAt4T1X9OnAq8I6u1vXArVW1Gri1m2/NRcDmvvlLgcu6mh8DLhxLVQd3Ob0v+70IeBm9+idhXw+FfWOk7B/jUlXN3oBXAV/om78YuHjcdQ1Y+43Aa4EtwPKubTmwZdy17VPnSnr/WU8Hbqb3RetHgWWz/Ru0cAOeC3yX7iSfvvam9/WQ94F9YzS12j/GeGt6BMXsl01aMaZaBpZkFXASsAE4rqoeBujujx1fZbP6CPBe4Klu/ihgZ1Xt6uZb3OfPB3YAH+8OvVyV5Nm0v6+Hyb4xGvaPMWo9oAa6bFJLkjwHuAF4V1X9cNz1HEyS1wOPVNVd/c2zLNraPl8GnAxcUVUnAU8wCYcrhmsS/p32Mkl9A+wfLWg9oCbqsklJnkmvA15bVZ/umn+QZHn3+HLgkXHVN4vTgDck2UbvqvOn03vHeHiS3V/ibnGfzwAzVbWhm7+eXodseV8Pm31j8dk/xqz1gJqYyyYlCXA1sLmqPtz30E3A2m56Lb3j702oqouramVVraK3b2+rqjcDtwPnd4s1VTNAVX0f2J7khV3TGcD9NLyvF4F9Y5HZPxow7g/BBvjA72zgW8C3gb8cdz0HqfPV9Ib69wL3dLez6R2zvhV4sLs/cty1HqD+1wA3d9PPB+4EtgL/Chw27vpmqfdEYGO3v/8dOGJS9vUQ94F9Y3Svwf4xhpuXOpIkNan1Q3ySpCXKgJIkNcmAkiQ1yYCSJDXJgJIkNWnov6irxZFk9ymiAM8DnqR3OROAU6rqZ2MpTGqA/WM6eZr5BEryAeBHVfWhRdzGstpzvTFpYtg/poeH+KZAkrVJ7kxyT5K/T/KMJMuS7ExySZL/TPK1JMd2y/9LkvP6nv+j7v7MJF9K8kng7gOteywvUnqa7B+Ty5054ZK8FHgj8JtVdSK9w7Zv6h7+JeA/quplwNeAPxpglacC762q35hj3VLz7B+Tzc+gJt+ZwCuAjb1LnvEL7PkZhp9U1ee66buA3xpgfV+rqu8NsG5pEtg/JpgBNfkCfKyq/mqvxt7Vlvs/GH6SPf/eu+hGz90vs/b/P3hirnVLE8T+McE8xDf5vgT8fpKjoXc2U5JfnuM524CXd9NvBA4Z4rqlltg/JpgBNeGq6j7gg8CXktwLfBE4bo6n/SPw2iR30rvq8U+HuG6pGfaPyeZp5pKkJjmCkiQ1yYCSJDXJgJIkNcmAkiQ1yYCSJDXJgJIkNcmAkiQ16f8B8h8JTXRFya4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x216 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plotting Tenure Column with Churn\n",
"# Churn_num indicates customer who left the company. 0 indicates customer who stayed.\n",
"fighist = sns.FacetGrid(datset_churn, col='Churn_Num')\n",
"fighist.map(plt.hist, 'Tenure', bins=20) "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observations:\n",
"\n",
"1. Customer who left the Telco are mostly customers within 1st month (600+) and churn steady declines with time.\n",
"2. If customer can be retained between 10-20 months, there are high chances, customer will stay very long. Churn decreases over time\n",
"3. Customer at 72 month tenure, mostly stayed (Churn=0).\n",
"\n",
"#### Decisions:\n",
"\n",
"1. We should definitely use 'Tenure' column in our model training.\n",
"2. We should band 'Tenure'"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<seaborn.axisgrid.FacetGrid at 0x23a7e874550>"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAADQCAYAAABStPXYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFQNJREFUeJzt3X/UZVV93/H3R0chonH4MSAZWB2iRKs2VZygqdagGAuYOrgCKSSNo5nlrEaNUtMWYtcqxHYlEK0E08R0BMxAqEBRyywgKgukGhOQ4Yf8toyGwAiFIfxQQK3It3+c/TiXmecXz33mPue5z/u11ln3nH322Xs/Z2bf7937nHtuqgpJkvrmWQvdAEmSJmOAkiT1kgFKktRLBihJUi8ZoCRJvWSAkiT1kgFKktRLBqgRSfKiJOcn+VaS25JcluTnkhyW5JIRt+WuJJ8d2D4myV+Msg2TSXJQkmuS3JnkgiTPXeg2adewP8wsyfuTbElSSfZZ6PYsBAPUCCQJ8Hngqqp6cVW9HPgwsN88lL1sjoeuTvKKYeufZ6cBp1fVwcDDwLoFbo92AfvDrH0NeAvw9wvdkIVigBqNNwE/qqo/n0ioqhur6qtt8/lJLkpyR5LzWgee+GS3T1tfneSqtn5Kkg1JvgSck+RdST6X5Att9PFHs2jTx+jeFJ6mlf3vBrZvSbKqLXckObOlnZfkLUm+1uo8dK4np9UT4M3ARS1pI3D0MGWqt+wPs1BVN1TVXcOWs5jN9dOGnplXAtdNs//VwCuAe+k+Nb0e+OsZynwN8Iaq+n6SdwGvauX8EPhmkj+pqnumOf5C4L1JXjK7PwGAlwDHAuuBa4FfB94AvJ2ucz8toCR5KXDBFGUdVlWPDGzvDTxSVU+27a3AymfQNi0e9oed7dgfhAGqL75eVVsBktwIrGLmDrmpqr4/sH1FVT3ayrgN+EfAdB3yx8BHgd8D/mqW7fy7qrq51XFrq7OS3Nza/DRV9U26N4rZyCRpPihyabI/CDBAjcqtwDHT7P/hwPqP2f7v8iTbp2F33+GYx2dZxnTOpeuQtw6kDda5Y72DdTw1sP3UZPU9w0+MDwLLkyxro6gD6D5Ba/zYH3bmCGoSXoMajSuB3ZK8ZyIhyS8k+aUZjruLbuoC4Ffnu1FV9SPgdOCEHeo8BCDJIcBBQ5T/zap61RTLIzvkLeDLbH/jWgtcPNe61Wv2hxn6gzoGqBFob77vAH653VZ7K3AKM48Qfh84I8lX6T4F7gpn8fRPe58F9mpTK78N/J9dVO9kTgQ+lGQL3TWps0ZYt0bE/jA7ST6QZCvdbMJNSc4cVd19EX8PSpLUR46gJEm95E0SYyzJNcBuOyT/5sSdR9JSYn9YfJzikyT1Uq+n+I444oii+y6Mi8tiX+aFfcJlTJZZ6XWAevDBBxe6CVKv2Ce0lPQ6QEmSli4DlCSplwxQkqReMkBJknrJACVJ6iUDlCSplxb1kyRWnXTpjHnuOvVtI2iJJGm+OYKSJPWSAUqS1EsGKElSLxmgJEm9ZICSJPWSAUqS1EszBqgkZyd5IMktA2l7Jbk8yZ3tdc+WniSfSLIlyU1JDhk4Zm3Lf2eStbvmz5EkjYvZjKD+Ajhih7STgCuq6mDgirYNcCRwcFvWA5+ELqABJwOvBQ4FTp4IapIkTWbGAFVVXwEe2iF5DbCxrW8Ejh5IP6c6VwPLk+wP/Avg8qp6qKoeBi5n56AnSdJPzPUa1H5VdR9Ae923pa8E7hnIt7WlTZW+kyTrk2xOsnnbtm1zbJ40PuwTWqrm+yaJTJJW06TvnFi1oapWV9XqFStWzGvjpMXIPqGlaq4B6v42dUd7faClbwUOHMh3AHDvNOmSJE1qrgFqEzBxJ95a4OKB9He2u/leBzzapgC/CLw1yZ7t5oi3tjRJkiY149PMk3wGOAzYJ8lWurvxTgUuTLIOuBs4tmW/DDgK2AI8AbwboKoeSvKfgWtbvo9U1Y43XkiS9BMzBqiqOn6KXYdPkreA901RztnA2c+odZKkJcsnSUiSeskAJUnqJQOUJKmXDFCSpF4yQEmSeskAJUnqJQOUJKmXDFCSpF4yQEmSeskAJUnqJQOUJKmXDFCSpF4yQEmSeskAJUnqJQOUJKmXDFCSpF4yQEmSemmoAJXk3ya5NcktST6TZPckByW5JsmdSS5I8tyWd7e2vaXtXzUff4AkaTzNOUAlWQl8AFhdVa8Eng0cB5wGnF5VBwMPA+vaIeuAh6vqJcDpLZ8kSZMadopvGfBTSZYBzwPuA94MXNT2bwSObutr2jZt/+FJMmT9kqQxNecAVVXfAT4G3E0XmB4FrgMeqaonW7atwMq2vhK4px37ZMu/91zrlySNt2Gm+PakGxUdBPwMsAdw5CRZa+KQafYNlrs+yeYkm7dt2zbX5kljwz6hpWqYKb63AH9XVduq6kfA54B/BixvU34ABwD3tvWtwIEAbf8LgYd2LLSqNlTV6qpavWLFiiGaJ40H+4SWqmEC1N3A65I8r11LOhy4DfgycEzLsxa4uK1vatu0/VdW1U4jKEmSYLhrUNfQ3exwPXBzK2sDcCLwoSRb6K4xndUOOQvYu6V/CDhpiHZLksbcspmzTK2qTgZO3iH528Chk+T9AXDsMPVJkpYOnyQhSeolA5QkqZcMUJKkXjJASZJ6yQAlSeolA5QkqZcMUJKkXjJASZJ6yQAlSeolA5QkqZcMUJKkXjJASZJ6yQAlSeolA5QkqZcMUJKkXjJASZJ6yQAlSeolA5QkqZeGClBJlie5KMkdSW5P8otJ9kpyeZI72+ueLW+SfCLJliQ3JTlkfv4ESdI4GnYEdQbwhap6GfBPgduBk4Arqupg4Iq2DXAkcHBb1gOfHLJuSdIYm3OASvLTwBuBswCq6v9V1SPAGmBjy7YROLqtrwHOqc7VwPIk+8+55ZKksTbMCOpngW3Ap5PckOTMJHsA+1XVfQDtdd+WfyVwz8DxW1va0yRZn2Rzks3btm0bonnSeLBPaKkaJkAtAw4BPllVrwYeZ/t03mQySVrtlFC1oapWV9XqFStWDNE8aTzYJ7RUDROgtgJbq+qatn0RXcC6f2Lqrr0+MJD/wIHjDwDuHaJ+SdIYm3OAqqr/C9yT5KUt6XDgNmATsLalrQUubuubgHe2u/leBzw6MRUoSdKOlg15/O8A5yV5LvBt4N10Qe/CJOuAu4FjW97LgKOALcATLa8kSZMaKkBV1Y3A6kl2HT5J3gLeN0x9kqSlwydJSJJ6yQAlSeolA5QkqZcMUJKkXjJASZJ6yQAlSeolA5QkqZcMUJKkXjJASZJ6yQAlSeolA5QkqZcMUJKkXjJASZJ6yQAlSeolA5QkqZcMUJKkXjJASZJ6aegAleTZSW5IcknbPijJNUnuTHJB+zl4kuzWtre0/auGrVuSNL7mYwT1QeD2ge3TgNOr6mDgYWBdS18HPFxVLwFOb/kkSZrUUAEqyQHA24Az23aANwMXtSwbgaPb+pq2Tdt/eMsvSdJOhh1B/THwH4Cn2vbewCNV9WTb3gqsbOsrgXsA2v5HW/6nSbI+yeYkm7dt2zZk86TFzz6hpWrOASrJrwAPVNV1g8mTZK1Z7NueULWhqlZX1eoVK1bMtXnS2LBPaKlaNsSxrwfenuQoYHfgp+lGVMuTLGujpAOAe1v+rcCBwNYky4AXAg8NUb8kaYzNeQRVVb9XVQdU1SrgOODKqvoN4MvAMS3bWuDitr6pbdP2X1lVO42gJEmC4UZQUzkROD/JfwFuAM5q6WcB5ybZQjdyOm4X1L2TVSddOu3+u0592yiaIUl6huYlQFXVVcBVbf3bwKGT5PkBcOx81CdJGn8+SUKS1EsGKElSLxmgJEm9ZICSJPXSrriLT0uMd0pK2hUcQUmSeskAJUnqJaf4tOCcIpQ0GUdQkqReMkBJknrJACVJ6iWvQWnGa0B9L1/SeHIEJUnqJUdQPecdbpKWKgOUxp5BXlqcDFDqPQOMtDQZoLToeROGNJ7mHKCSHAicA7wIeArYUFVnJNkLuABYBdwF/FpVPZwkwBnAUcATwLuq6vrhmr/4+eYqSZMbZgT1JPC7VXV9khcA1yW5HHgXcEVVnZrkJOAk4ETgSODgtrwW+GR71RCc/pI0ruZ8m3lV3TcxAqqq7wG3AyuBNcDGlm0jcHRbXwOcU52rgeVJ9p9zyyVJY21erkElWQW8GrgG2K+q7oMuiCXZt2VbCdwzcNjWlnbffLRBk3MKUdJiNfQXdZM8H/gscEJVfXe6rJOk1STlrU+yOcnmbdu2Dds8adGzT2ipGipAJXkOXXA6r6o+15Lvn5i6a68PtPStwIEDhx8A3LtjmVW1oapWV9XqFStWDNM8aSzYJ7RUDXMXX4CzgNur6uMDuzYBa4FT2+vFA+nvT3I+3c0Rj05MBUrSYrGrp829sWm7Ya5BvR74TeDmJDe2tA/TBaYLk6wD7gaObfsuo7vFfAvdbebvHqLuRcNrQJLm01K6c3fOAaqq/prJrysBHD5J/gLeN9f6pF1lNh8ixqnTa3qL/UPlOAUwn2YuSeolA5QkqZcMUJKkXvJhsZLUI4v9Gth8cgQlSeolA5QkqZec4pOkJWQx3YZugJLGzGJ6A5Km4xSfJKmXHEFJs+CoZP54LjVbBihJvWIA0wQD1Az8ToIkLQwDlKRFxRHW0rHkA5QjJEnqJ+/ikyT10pIfQUlLjVNkWiwMUJKkn+jTBxgDlKSnWezXZfv0BqvhjDxAJTkCOAN4NnBmVZ066jZIWroWewBeSkZ6k0SSZwN/ChwJvBw4PsnLR9kGSdLiMOoR1KHAlqr6NkCS84E1wG0jbockaQ5GOYU66gC1ErhnYHsr8NrBDEnWA+vb5mNJvjlPde8DPDhPZe0qfW+j7ZtCTpsxyxeq6og5lb10+4TtG97I2ziLvgCz7A+jDlCZJK2etlG1Adgw7xUnm6tq9XyXO5/63kbbtzCWap+wfcNbDG2czqi/qLsVOHBg+wDg3hG3QZK0CIw6QF0LHJzkoCTPBY4DNo24DZKkRWCkU3xV9WSS9wNfpLvN/OyqunVE1c/7FMku0Pc22r7x0vfzZfuGtxjaOKVU1cy5JEkaMR8WK0nqJQOUJKmXxjJAJTkwyZeT3J7k1iQfbOmnJPlOkhvbctQCtvGuJDe3dmxuaXsluTzJne11zwVs30sHztONSb6b5ISFPIdJzk7yQJJbBtImPWfpfCLJliQ3JTlkVO3sG/vDvLTP/rAAxvIaVJL9gf2r6vokLwCuA44Gfg14rKo+tqANpOuQwOqqenAg7Y+Ah6rq1CQnAXtW1YkL1caBdj0b+A7dl6rfzQKdwyRvBB4DzqmqV7a0Sc9Ze6P4HeCo1u4zquq1U5U9zuwP88v+MDpjOYKqqvuq6vq2/j3gdrqnWPTdGmBjW99I9ybSB4cD36qqv1/IRlTVV4CHdkie6pytoeu4VVVXA8vbG/WSY3+Yd/aHERnLADUoySrg1cA1Len9bYh79kJOGdA9QeNLSa5L9ygbgP2q6j7o3lSAfResdU93HPCZge2+nEOY+pxN9litxfCmvEvZH+aF/WFExjpAJXk+8FnghKr6LvBJ4MXAq4D7gP+6gM17fVUdQvdk9/e14XrvpPtC9duB/9mS+nQOpzPjY7WWGvvD8OwPozW2ASrJc+g643lV9TmAqrq/qn5cVU8Bn6J7uvqCqKp72+sDwOdbW+6fGHa31wcWqn0DjgSur6r7oV/nsJnqnPlYrQH2h3ljfxihsQxQSQKcBdxeVR8fSB+cc30HcMuOx45Ckj3axWqS7AG8tbVlE7C2ZVsLXLwQ7dvB8QxMZ/TlHA6Y6pxtAt7Z7l56HfDoxNTHUmN/mFf2h1GqqrFbgDfQDV9vAm5sy1HAucDNLX0T3Z1NC9G+nwW+0ZZbgf/Y0vcGrgDubK97LfB5fB7wD8ALB9IW7BzSvTHcB/yI7hPhuqnOGd2Uxp8C32rtXb3Q/y8X8N/R/jA/7bQ/jHgZy9vMJUmL31hO8UmSFj8DlCSplwxQkqReMkBJknrJACVJ6iUD1AgkqSTnDmwvS7ItySVzLG95kvcObB82VVlJrkqyeobyXpTk/CTfSnJbksuS/Nx05UpzZX/QbBmgRuNx4JVJfqpt/zLd05Dnajnw3hlzzUL7Eufngauq6sVV9XLgw8B+81D2smHL0FiyP2hWDFCj81fA29r6jt9G3yvJ/2oPnLw6yc+39FPaAyivSvLtJB9oh5wKvDjd7898tKU9P8lFSe5Icl7raAzUsS7J6QPb70nyceBNwI+q6s8n9lXVjVX11enKTfKfklyb5JYkGwbSr0ryB0n+N/DBJC9uf9O1ST6S5LGBNvz7ln5Tkt9vaXskuTTJN1rZ/2q4066esj/YH2a20N8UXgoL3W+2/DxwEbA73Tf5DwMuafv/BDi5rb8ZuLGtnwL8DbAbsA/dt9ifA6wCbhko/zDgUbrnaz0L+FvgDW3fVcBqYA+6b5E/p6X/DfBPgA8Ap0/R7unK3Wsg37nAvxyo788G9l0CHN/W/w3db+dA9zibDXTfcH9Wy/dG4FeBTw0c/8LZnGOXxbPYH+wPs10cQY1IVd1E15GOBy7bYfcb6P5TU1VXAnsneWHbd2lV/bC6H3J7gKmnGr5eVVure2jlja2uwfofB64EfiXJy+g65s2zaPpU5b4pyTVJbqZ7E3nFwDEXDKz/Ituf/Pw/BtLf2pYbgOuBlwEH0z2G5S1JTkvyz6vq0Vm0UYuM/QGwP8zIOdHR2gR8jO6T2N4D6dM9Cv+HA2k/Zup/s9nkO5NuPv0O4NMt7VbgmGnavFO5SXYH/ozueV73JDmF7pPwhMenKW9CgD+sqv++047kNXTPivvDJF+qqo/MojwtPvaH7ewPk3AENVpnAx+Z5JPaV4DfgO4OJODB6n6vZyrfA17wTCuvqmvoHrn/62yf878S2C3JeybyJfmFJL80TVETne/BdL8xNF2HvppumgK6H3qb8EXgt9rxJFmZZN8kPwM8UVV/Sffmdcjs/jotQvaH7ewPk3AENUJVtRU4Y5JdpwCfTnIT8ATbH5c/VTn/kORrSW6hu9h86TNoxoXAq6rq4VZWJXkH8MdJTgJ+ANwFnMAUv7hZVY8k+RTd9MNdwLXT1HcC8JdJfre189FWxpeS/GPgb9v15MeAfw28BPhokqfontL828/gb9MiYn+wP8zEp5kvMem+x3F6VV0xovqeB3y/dfzj6C4QrxlF3dJM7A/95ghqiUiyHPg68I1RdcbmNcB/a7fdPgL81gjrliZlf1gcHEFJknrJmyQkSb1kgJIk9ZIBSpLUSwYoSVIvGaAkSb30/wHqUAHMfmGFCwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x216 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plotting MonthlyCharges Column with Churn\n",
"# Churn_num indicates customer who left the company. 0 indicates customer who stayed.\n",
"fighist = sns.FacetGrid(datset_churn, col='Churn_Num')\n",
"fighist.map(plt.hist, 'MonthlyCharges', bins=20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observation :\n",
"1. Majority of customers are in 18 to 20 range and they didn't leave\n",
"2. Customer Leaving are mostly in the bannd of 75-100 who have opted for multiple services.\n",
"\n",
"#### Decisions :\n",
"1. We will use 'MonthlyCharges' column in our model training.\n",
"2. We should band 'MonthlyCharges'"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<seaborn.axisgrid.FacetGrid at 0x23a7e5565f8>"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAADQCAYAAABStPXYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFblJREFUeJzt3XuQZnWd3/H3J4xc1EUYGFx2BncgEBK0KkomeMFkiXjhYhy2IinMRgcWM7XrfdmUjlqJbvLHglripVLoFLgOhhVYIIHFCxLUeEk5MCDhKjIigRaUIVxEcQ0j3/xxfi3PzPT09PTzdPfp7ver6qnnnN/5Ped8+8z8+vv8fuf076SqkCSpb/7eXAcgSdJETFCSpF4yQUmSeskEJUnqJROUJKmXTFCSpF4yQUmSeskENUuS/G6Si5P8KMkdSb6c5B8kOS7J1bMcy71JLh9Yf2OSz89mDBNJcmiSjUnuTnJJkj3nOibNDNvDriV5R5LNSSrJgXMdz1wwQc2CJAH+G/DNqvr7VXUU8AHg+SPY95JpfnRVkhcOe/wROwc4t6qOAB4FzpzjeDQDbA9T9l3g1cD/metA5ooJanb8C+CpqvrMeEFV3VxV326rz01yWZIfJLmoNeDxb3YHtuVVSb7Zlj+cZH2SrwEXJjk9yRVJvtp6Hx+ZQkwfo/ulsI22738/sH5bkpXt9YMk57eyi5K8Osl32zGPme7JaccJ8Crgsla0AThlmH2qt2wPU1BV36+qe4fdz3w23W8b2j0vAm6cZPtLgBcCD9B9azoW+M4u9vlPgFdW1a+SnA68uO3n18BdST5dVfdP8vlLgbclOXxqPwIAhwOnAmuBG4B/A7wSeANd494moSQ5ErhkJ/s6rqoeG1g/AHisqra29TFg+W7EpvnD9rCj7duDMEH1xfVVNQaQ5GZgJbtukFdV1a8G1q+rqsfbPu4Afh+YrEH+Bvgo8H7gK1OM88dVdWs7xu3tmJXk1hbzNqrqLrpfFFORCcqcKHJxsj0IMEHNltuBN06y/dcDy7/hmX+XrTwzDLv3dp/55RT3MZkv0DXI2wfKBo+5/XEHj/H0wPrTEx1vN78xPgzsl2RJ60WtoPsGrYXH9rAje1AT8BrU7Pg6sFeSfzdekOSfJvmDXXzuXrqhC4B/Neqgquop4FzgPdsd82iAJEcDhw6x/7uq6sU7eT22Xd0CvsEzv7jWAFdO99jqNdvDLtqDOiaoWdB++f4h8Jp2W+3twIfZdQ/hL4BPJvk23bfAmXAB237buxxY2oZW/hT44QwddyLvA85KspnumtQFs3hszRLbw9QkeVeSMbrRhFuSnD9bx+6L+DwoSVIf2YOSJPWSN0ksYEk2AnttV/zm8TuPpMXE9jD/OMQnSeqlXg/xnXDCCUX3tzC+fM3310jYJnwtkNeU9DpBPfzww3MdgtQrtgktJr1OUJKkxcsEJUnqJROUJKmXTFCSpF4yQUmSeskEJUnqpXk9k8TKdV/aZZ17zz55FiKRJI2aPShJUi+ZoCRJvWSCkiT1kglKktRLu0xQST6X5KEktw2ULU1ybZK72/v+rTxJPpVkc5Jb2iOSxz+zptW/O8mamflxJEkLxVR6UJ8HTtiubB1wXVUdAVzX1gFOBI5or7XAedAlNOBDwEuBY4APjSc1SZImsssEVVXfAh7Zrng1sKEtbwBOGSi/sDrfA/ZLcjDwOuDaqnqkqh4FrmXHpCdJ0m9N9xrU86vqQYD2flArXw7cP1BvrJXtrHwHSdYm2ZRk05YtW6YZnrRw2Ca0WI36JolMUFaTlO9YWLW+qlZV1aply5aNNDhpPrJNaLGaboL6WRu6o70/1MrHgEMG6q0AHpikXJKkCU03QV0FjN+Jtwa4cqD8Le1uvpcBj7chwGuA1ybZv90c8dpWJknShHY5F1+SLwLHAQcmGaO7G+9s4NIkZwL3Aae26l8GTgI2A08CZwBU1SNJ/jNwQ6v3n6pq+xsvJEn6rV0mqKp60042HT9B3QLevpP9fA743G5FJ0latJxJQpLUSyYoSVIvmaAkSb1kgpIk9ZIJSpLUSyYoSVIvmaAkSb1kgpIk9ZIJSpLUSyYoSVIvmaAkSb1kgpIk9ZIJSpLUSyYoSVIvmaAkSb1kgpIk9ZIJSpLUSyYoSVIvDZWgkvxZktuT3Jbki0n2TnJoko1J7k5ySZI9W9292vrmtn3lKH4ASdLCNO0ElWQ58C5gVVW9CNgDOA04Bzi3qo4AHgXObB85E3i0qg4Hzm31JEma0LBDfEuAfZIsAZ4NPAi8Crisbd8AnNKWV7d12vbjk2TI40uSFqgl0/1gVf0kyceA+4BfAV8DbgQeq6qtrdoYsLwtLwfub5/dmuRx4ADg4cH9JlkLrAV4wQteMN3wpAVjd9rEynVfmnT7vWefPLK4pJk2zBDf/nS9okOB3wOeA5w4QdUa/8gk254pqFpfVauqatWyZcumG560YNgmtFgNM8T3auDHVbWlqp4CrgBeAezXhvwAVgAPtOUx4BCAtv15wCNDHF+StIANk6DuA16W5NntWtLxwB3AN4A3tjprgCvb8lVtnbb961W1Qw9KkiQYIkFV1Ua6mx1uAm5t+1oPvA84K8lmumtMF7SPXAAc0MrPAtYNEbckaYGb9k0SAFX1IeBD2xXfAxwzQd2/A04d5niSpMXDmSQkSb1kgpIk9ZIJSpLUSyYoSVIvmaAkSb1kgpIk9ZIJSpLUSyYoSVIvmaAkSb1kgpIk9ZIJSpLUSyYoSVIvmaAkSb1kgpIk9ZIJSpLUSyYoSVIvmaAkSb00VIJKsl+Sy5L8IMmdSV6eZGmSa5Pc3d73b3WT5FNJNie5JcnRo/kRJEkL0VCPfAc+CXy1qt6YZE/g2cAHgOuq6uwk64B1wPuAE4Ej2uulwHntfUatXPelSbffe/bJMx2CJGkapt2DSrIv8M+BCwCq6v9V1WPAamBDq7YBOKUtrwYurM73gP2SHDztyCVJC9owQ3yHAVuAv0ry/STnJ3kO8PyqehCgvR/U6i8H7h/4/FgrkyRpB8MkqCXA0cB5VfUS4Jd0w3k7kwnKaodKydokm5Js2rJlyxDhSQuDbUKL1TAJagwYq6qNbf0yuoT1s/Ghu/b+0ED9QwY+vwJ4YPudVtX6qlpVVauWLVs2RHjSwmCb0GI17QRVVT8F7k9yZCs6HrgDuApY08rWAFe25auAt7S7+V4GPD4+FChJ0vaGvYvvncBF7Q6+e4Az6JLepUnOBO4DTm11vwycBGwGnmx1JUma0FAJqqpuBlZNsOn4CeoW8PZhjidJWjycSUKS1EsmKElSL5mgJEm9ZIKSJPWSCUqS1EsmKElSLw37d1DznrOdS1I/2YOSJPWSCUqS1EsmKElSL5mgJEm9ZIKSJPWSCUqS1EsmKElSL5mgJEm9ZIKSJPXSop9JYlecaUKS5oY9KElSLw2doJLskeT7Sa5u64cm2Zjk7iSXJNmzle/V1je37SuHPbYkaeEaRQ/q3cCdA+vnAOdW1RHAo8CZrfxM4NGqOhw4t9WTJGlCQyWoJCuAk4Hz23qAVwGXtSobgFPa8uq2Ttt+fKsvSdIOhu1BfQJ4L/B0Wz8AeKyqtrb1MWB5W14O3A/Qtj/e6m8jydokm5Js2rJly5DhSfOfbUKL1bQTVJLXAw9V1Y2DxRNUrSlse6agan1VraqqVcuWLZtueNKCYZvQYjXMbebHAm9IchKwN7AvXY9qvyRLWi9pBfBAqz8GHAKMJVkCPA94ZIjjS5IWsGn3oKrq/VW1oqpWAqcBX6+qPwK+AbyxVVsDXNmWr2rrtO1fr6odelCSJMHM/B3U+4Czkmymu8Z0QSu/ADiglZ8FrJuBY0uSFoiRzCRRVd8EvtmW7wGOmaDO3wGnjuJ4kqSFz5kkJEm9ZIKSJPWSCUqS1EsmKElSL5mgJEm9ZIKSJPWSCUqS1EsmKElSL/nI9yH5SHhJmhn2oCRJvWSCkiT1kglKktRLJihJUi+ZoCRJvWSCkiT1kglKktRLJihJUi+ZoCRJvTTtmSSSHAJcCPwu8DSwvqo+mWQpcAmwErgX+NdV9WiSAJ8ETgKeBE6vqpuGC1/S7nDmE80nw0x1tBX486q6KcnvADcmuRY4Hbiuqs5Osg5YB7wPOBE4or1eCpzX3hc0fyFI0vRMe4ivqh4c7wFV1RPAncByYDWwoVXbAJzSllcDF1bne8B+SQ6eduSSpAVtJNegkqwEXgJsBJ5fVQ9Cl8SAg1q15cD9Ax8ba2Xb72ttkk1JNm3ZsmUU4Unzmm1Ci9XQs5kneS5wOfCeqvp5d6lp4qoTlNUOBVXrgfUAq1at2mH7QrOrIcCZ5hBj/y22NiGNG6oHleRZdMnpoqq6ohX/bHzorr0/1MrHgEMGPr4CeGCY40uSFq5h7uILcAFwZ1V9fGDTVcAa4Oz2fuVA+TuSXEx3c8Tj40OBWti8UUTSdAwzxHcs8Gbg1iQ3t7IP0CWmS5OcCdwHnNq2fZnuFvPNdLeZnzHEsTUioxhiNMEsHH6ZUJ9MO0FV1XeY+LoSwPET1C/g7dM9niRpcfGR7xraXN/oIWlhcqojSVIv2YPSnPO6h6SJ2IOSJPWSPSj1nj0saXGyByVJ6iV7UJr37GFJC5MJStKU+WVAs8khPklSL9mDkjSr7IVpqkxQWvD8hSjNTyYoLXomsNEZxbRX/ntonNegJEm9ZIKSJPWSQ3yS5hWHABcPE5S0C/5ClOaGCUrSgjLTzyfb1RcSv9CMjglKknbDTCfAqex/sSS5WU9QSU4APgnsAZxfVWfPdgySNFe8FX/qZjVBJdkD+C/Aa4Ax4IYkV1XVHbMZhyQtZMMmwb4kuNnuQR0DbK6qewCSXAysBkxQktQTfemhzXaCWg7cP7A+Brx0sEKStcDatvqLJHdNsr8DgYdHGuFo9DGuPsYE/Yxrt2LKOVOq9tWqOmE6wSyANmFMU9fHuHaIaYr/5yczpfYw2wkqE5TVNitV64H1U9pZsqmqVo0isFHqY1x9jAn6GVffYprvbcKYpq6Pcc1lTLM9k8QYcMjA+grggVmOQZI0D8x2groBOCLJoUn2BE4DrprlGCRJ88CsDvFV1dYk7wCuobvN/HNVdfsQu5zSsMcc6GNcfYwJ+hlXH2Oaqj7GbkxT18e45iymVNWua0mSNMuczVyS1EsmKElSL83bBJXkhCR3JdmcZN0MH+uQJN9IcmeS25O8u5UvTXJtkrvb+/6tPEk+1WK7JcnRA/ta0+rfnWTNCGLbI8n3k1zd1g9NsrHt/5J2MwpJ9mrrm9v2lQP7eH8rvyvJ60YQ035JLkvyg3bOXj7X5yrJn7V/u9uSfDHJ3n04V6Nie/jt/mwPU4tpfrSHqpp3L7obLH4EHAbsCfxv4KgZPN7BwNFt+XeAHwJHAR8B1rXydcA5bfkk4Ct0f/f1MmBjK18K3NPe92/L+w8Z21nAXwNXt/VLgdPa8meAP23LbwM+05ZPAy5py0e187cXcGg7r3sMGdMG4K1teU9gv7k8V3R/IP5jYJ+Bc3R6H86V7cH2YHuYJNbZakQjbiAvB64ZWH8/8P5ZPP6VdPMJ3gUc3MoOBu5qy58F3jRQ/662/U3AZwfKt6k3jThWANcBrwKubv+pHwaWbH+e6O6cfHlbXtLqZftzN1hvmjHt2/7zZ7vyOTtXPDODydL2s18NvG6uz5XtwfZge5j8NV+H+CaaMmn5bBy4dW9fAmwEnl9VDwK094N2Ed+o4/4E8F7g6bZ+APBYVW2dYP+/PXbb/nirP+qYDgO2AH/VhlrOT/Ic5vBcVdVPgI8B9wEP0v3sNzL352pUbA8d28MUzKf2MF8T1C6nTJqRgybPBS4H3lNVP5+s6gRlNUn5dGJ5PfBQVd04hePOSkzNEuBo4LyqegnwS7ohjJ2ZjXO1P92kxIcCvwc8Bzhxkv3P1rkaFduD7WHK5lN7mK8JatanTEryLLrGeFFVXdGKf5bk4Lb9YOChXcQ3yriPBd6Q5F7gYrphjU8A+yUZ/wPswf3/9tht+/OAR0Yc0/hxxqpqY1u/jK6BzuW5ejXw46raUlVPAVcAr2Duz9Wo2B5sD7tj/rSHUY4XztaL7lvJPXTfAMYvCr9wBo8X4ELgE9uVf5RtL3R+pC2fzLYXOq9v5UvpxqP3b68fA0tHEN9xPHNR+G/Y9kLn29ry29n2QuelbfmFbHuh8x6Gvyj8beDItvzhdp7m7FzRzZh/O/DsdpwNwDv7cK5sD7YH28Mksc5045nBRnIS3d1DPwI+OMPHeiVd1/UW4Ob2OoluHPY64O72vrTVD92DGX8E3AqsGtjXHwOb2+uMEcU32CAPA65v+/8bYK9Wvndb39y2Hzbw+Q+2WO8CThxBPC8GNrXz9d9bg5rTcwX8BfAD4DbgC61Rzfm5sj3YHmwPO3851ZEkqZfm6zUoSdICZ4KSJPWSCUqS1EsmKElSL5mgJEm9ZIKaQ0kOSHJze/00yU8G1vecoP7SJH8yhf0uSfLYwPo/TPKVNkvxnUkuTnJQkrcm+cSofy5pumwTGjSrj3zXtqrq/9L9jQRJPgz8oqo+NslHlgJ/QvdHdFOSZB+6ySDfVVVfbmXH0/0dxlCSLKln5u6Shmab0CB7UD2V5L3tWS23JXlnKz4bOLJ9mzw7yb5Jvp7kpvbsmNdPsKs3A98ab4gAVXVdVd3ZVlckuaZ9k/zLgeOvT7KpPTPmPw6UjyX5D0m+C/xhkpe1Y/+vJB9NcnOrtyTJx5Nc37a/tZUvT/Kd9jPcluQVoz1zWqhsE4uPPageSnIM8EfAMXTP+rk+yf+kmxLl8Koa/4b5LGB1VT2R5CDgu3TfDAe9iG6m4p35x3Rzg20Ffpjk01X1AN00LI+0ube+keSyqrqjfeaXVXVsi+FOYE1VXZ9k8JvuWrrJO49JshfwvSRfo3tswN9W1TlJ9gD2mdZJ0qJim1ic7EH10z8DLq+qJ6vqCbrpUV45Qb0A5yS5BfgacEiSA3fzWP+jqp6oql/RTX3yglb+piQ3ATcB/4ju4WTjLgFox9qzqq5v5X89UOe1wBnt2+NGuoe0HQHcALw1yYeAF1XVL3YzXi1OtolFyB5UP000jf1E3kI3s/DRVbU1yRjdvFmDbqebHHJnfj2w/BtgSZIjgHcDx1TVY0n+63b7/eUU4gzdZJPX7bAhOY5uUsyLkvxlVV00yX4ksE0sSvag+ulbdGPZ+6R75s5quhmRn6B7xPa459ENGWxN8homfljYF4A/SHLCeEGSk5IcNUHdcfu2Y/083aMAXjdRparaAjyVZFUrOm1g8zXA29pwCEmObD/P7wM/rar1wOfpHnYn7YptYhGyB9VDbez6i3Rdf+gednYrQLtIeyvwJeDjwN8m2UQ37HD3BPt6Msm/BM5N8mngKbrZp989SQg3AXfQzXR8D904/s78Md3TQp+g+yXyeCv/LN3QyM1JoHvezWrgeOCsJE8BvwD+7WTnQgLbxGLlbOYaSpLnjo+ZJ/kg3WMD/nyOw5LmjG1idOxBaVhvSPJeuv9L9wKnz2k00tyzTYyIPShJUi95k4QkqZdMUJKkXjJBSZJ6yQQlSeolE5QkqZf+Pzd3gttpXGqhAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x216 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Plotting TotalCharges Column with Churn\n",
"# Churn_num indicates customer who left the company. 0 indicates customer who stayed.\n",
"fighist = sns.FacetGrid(datset_churn, col='Churn_Num')\n",
"fighist.map(plt.hist, 'TotalCharges', bins=20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observation:\n",
"It's difficult to conclude anything using this column. Total charges are Tenure * MonthlyCharges . Tenur might me high and Monthly charges may be low and vice-versa. Data is positively skewed.\n",
"\n",
"#### Decision\n",
"We will not use this column\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Now we will use the Categorical variables and their relationships with Churn\n",
"\n",
"#### We will use Seaborn Categorical Plot"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFhJJREFUeJzt3X2QZXV95/H3Rx4kq0YgjAR5WFgyugvRAI5IFmuDTziQioAPKcgGRsNmXBeM1ibZoFslLBRZN6gUsi4JykRwUSQiYeKSIKJGwRVmUAoYHsIEEMaZhSEocdXFgN/945527vR099yeX9/uvt3vV9Wte8/3nodvd8+vP33OPXNOqgpJkrTjnjPXDUiSNOoMU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw3SEJfnFJFcl+fsk9yS5PslLkhyT5Auz3MvDSa7pm35rkk/OZg8TSXJQkluTPJDks0l2neueNP84lrYvyZlJ1iepJHvNdT/zjWE6opIEuBb4alUdXFWHAO8H9p6Bde+8g4suS3Jo6/Zn2H8DLqyqpcD3gNPnuB/NM46lgd0CvB74zlw3Mh8ZpqPrNcA/VdWfjhWq6o6q+no3+fwkn0tyX5Iru18YY3/17tW9Xpbkq93rc5JcmuSLwBVJ3p7k80n+ptur+5MBevoQvV9CW+nW/Qd903cnObB73JfkE13tyiSvT3JLt80jd/Sb020nwGuBz3Wly4ETW9apBcmxNICq+nZVPdy6noVqR/9q0tz7ZeD2Kd4/HDgU2EjvL8qjgZu3s85XAK+uqh8neTtwWLeep4H7k1xcVY9OsfzVwH9I8kuDfQkA/BLwNmAlsAb4LeDVwJvo/TLZKvySvBT47CTrOqaqvt83/QvA96vqmW56A7DvNHrT4uBY2tb4saTtMEwXrtuqagNAkjuAA9n+L4DVVfXjvumbquqpbh33AP8cmOoXwLPABcD7gL8esM+Hququbhvrum1Wkru6nrdSVffT+8U0iExQ82LUmi7HkrbLMB1d64C3TvH+032vn2XLz/oZthze323cMj8ccB1T+RS9XwDr+mr92xy/3f5t/LRv+qcTbW+af00/AeyeZOdu73Q/ensXUj/H0rbcM50mPzMdXV8Gnpvkd8cKSV6Z5Ne2s9zD9A5BAbxlppuqqn8CLgTeO26bRwAkOQI4qGH991fVYZM8vj9u3gK+wpZflCuA63Z021qwHEvbGUvaPsN0RHVBcRLwhu50/nXAOWx/z+u/ABcl+Tq9v5CH4TK2/kv4GmDP7hDZu4C/G9J2J/JHwH9Msp7eZ6iXzeK2NQIcS4NJ8ntJNtA7wnNnkk/M1rZHQbyfqSRJbdwzlSSpkScgaVqS3Ao8d1z51LGzCCUNxrG0sHiYV5KkRgvyMO/y5cuL3v8n9OFjsT5mhGPJh4/BLMgwfeKJJ+a6BWlBcCxJg1mQYSpJ0mwyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNfJC95pTj5z7srluYeQc8AGvgy7NN+6ZSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNFvXZvK/4wyvmuoWRc/sFp811C5I07wxtzzTJ/km+kuTeJOuSvKern5Pku0nu6B7H9y3zviTrk9yf5I199eVdbX2Ss4bVsyRJO2KYe6bPAL9fVd9K8gLg9iQ3du9dWFUf6p85ySHAycChwIuBLyV5Sff2x4A3ABuANUlWV9U9Q+xdkqSBDS1Mq2oTsKl7/YMk9wL7TrHICcBVVfU08FCS9cCR3Xvrq+pBgCRXdfMappKkeWFWTkBKciBwOHBrVzozyZ1JViXZo6vtCzzat9iGrjZZffw2ViZZm2Tt5s2bZ/grkBYPx5I0fUMP0yTPB64B3ltV/whcAhwMHEZvz/XDY7NOsHhNUd+6UHVpVS2rqmVLliyZkd6lxcixJE3fUM/mTbILvSC9sqo+D1BVj/W9/3HgC93kBmD/vsX3AzZ2ryerS5I054Z5Nm+Ay4B7q+ojffV9+mY7Cbi7e70aODnJc5McBCwFbgPWAEuTHJRkV3onKa0eVt+SJE3XMPdMjwZOBe5KckdXez9wSpLD6B2qfRh4J0BVrUtyNb0Ti54BzqiqZwGSnAncAOwErKqqdUPsW5KkaRnm2bw3M/HnnddPscz5wPkT1K+fajlJkuaSlxOUJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqNLQwTbJ/kq8kuTfJuiTv6ep7JrkxyQPd8x5dPUk+mmR9kjuTHNG3rhXd/A8kWTGsniVJ2hHD3DN9Bvj9qvpXwFHAGUkOAc4CbqqqpcBN3TTAccDS7rESuAR64QucDbwKOBI4eyyAJUmaD4YWplW1qaq+1b3+AXAvsC9wAnB5N9vlwInd6xOAK6rnm8DuSfYB3gjcWFVPVtX3gBuB5cPqW5Kk6ZqVz0yTHAgcDtwK7F1Vm6AXuMCLutn2BR7tW2xDV5usPn4bK5OsTbJ28+bNM/0lSIuGY0mavqGHaZLnA9cA762qf5xq1glqNUV960LVpVW1rKqWLVmyZMealeRYknbAUMM0yS70gvTKqvp8V36sO3xL9/x4V98A7N+3+H7AxinqkiTNC8M8mzfAZcC9VfWRvrdWA2Nn5K4Aruurn9ad1XsU8FR3GPgG4Ngke3QnHh3b1SRJmhd2HuK6jwZOBe5KckdXez/wQeDqJKcDjwBv6967HjgeWA/8CHgHQFU9meQ8YE0337lV9eQQ+5YkaVqGFqZVdTMTf94J8LoJ5i/gjEnWtQpYNXPdSZI0c7wCkiRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUqOhhWmSVUkeT3J3X+2cJN9Nckf3OL7vvfclWZ/k/iRv7Ksv72rrk5w1rH4lSdpRw9wz/SSwfIL6hVV1WPe4HiDJIcDJwKHdMv8jyU5JdgI+BhwHHAKc0s0rSdK8MVCYJrlpkFq/qvoa8OSAfZwAXFVVT1fVQ8B64Mjusb6qHqyqnwBXdfNKkjRvTBmmSXZLsiewV5I9kuzZPQ4EXryD2zwzyZ3dYeA9utq+wKN982zoapPVJ+p1ZZK1SdZu3rx5B1uT5FiSpm97e6bvBG4H/mX3PPa4jt7h1+m6BDgYOAzYBHy4q2eCeWuK+rbFqkurallVLVuyZMkOtCYJHEvSjth5qjer6iLgoiTvrqqLWzdWVY+NvU7yceAL3eQGYP++WfcDNnavJ6tLkjQvTBmmY6rq4iT/Gjiwf5mqumI6G0uyT1Vt6iZPAsbO9F0NfDrJR+gdPl4K3EZvz3RpkoOA79I7Sem3prNNSZKGbaAwTfIpeodn7wCe7coFTBqmST4DHEPv89YNwNnAMUkO65Z9mN5hZKpqXZKrgXuAZ4AzqurZbj1nAjcAOwGrqmrd9L5ESZKGa6AwBZYBh1TVhJ9XTqSqTpmgfNkU858PnD9B/Xrg+kG3K0nSbBv0/5neDfziMBuRJGlUDbpnuhdwT5LbgKfHilX1pqF0JUnSCBk0TM8ZZhOSJI2yQc/m/dthNyJJ0qga9GzeH7DlYgm7ArsAP6yqnx9WY5IkjYpB90xf0D+d5ER6182VJGnR26G7xlTVXwKvneFeJEkaSYMe5n1z3+Rz6P2/04H/z6kkSQvZoGfz/kbf62foXb3IW6FJksTgn5m+Y9iNSJI0qga9Ofh+Sa5N8niSx5Jck2S/YTcnSdIoGPQEpD+nd2eXF9O7OfdfdTVJkha9QcN0SVX9eVU90z0+CXjXYEmSGDxMn0jy20l26h6/DfzDMBuTJGlUDBqmvwP8JvB/gE3AWwFPSpIkicH/a8x5wIqq+h5Akj2BD9ELWUmSFrVB90xfPhakAFX1JHD4cFqSJGm0DBqmz0myx9hEt2c66F6tJEkL2qCB+GHgG0k+R+8ygr8JnD+0riRJGiGDXgHpiiRr6V3cPsCbq+qeoXYmSdKIGPhQbReeBqgkSePs0C3YJEnSFoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY2GFqZJViV5PMndfbU9k9yY5IHueY+uniQfTbI+yZ1JjuhbZkU3/wNJVgyrX0mSdtQw90w/CSwfVzsLuKmqlgI3ddMAxwFLu8dK4BL42a3ezgZeBRwJnN1/KzhJkuaDoYVpVX0NeHJc+QTg8u715cCJffUrquebwO5J9gHeCNxYVU92Nye/kW0DWpKkOTXbn5nuXVWbALrnF3X1fYFH++bb0NUmq28jycoka5Os3bx584w3Li0WjiVp+ubLCUiZoFZT1LctVl1aVcuqatmSJUtmtDlpMXEsSdM322H6WHf4lu758a6+Adi/b779gI1T1CVJmjdmO0xXA2Nn5K4Aruurn9ad1XsU8FR3GPgG4Ngke3QnHh3b1SRJmjd2HtaKk3wGOAbYK8kGemflfhC4OsnpwCPA27rZrweOB9YDPwLeAVBVTyY5D1jTzXduVY0/qUmSpDk1tDCtqlMmeet1E8xbwBmTrGcVsGoGW5M0w17xh1fMdQsj5/YLTpvrFjSDhhamkqTZ8ci5L5vrFkbOAR+4a0bXN1/O5pUkaWQZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSozkJ0yQPJ7kryR1J1na1PZPcmOSB7nmPrp4kH02yPsmdSY6Yi54lSZrMXO6ZvqaqDquqZd30WcBNVbUUuKmbBjgOWNo9VgKXzHqnkiRNYT4d5j0BuLx7fTlwYl/9iur5JrB7kn3mokFJkiYyV2FawBeT3J5kZVfbu6o2AXTPL+rq+wKP9i27oatJkjQv7DxH2z26qjYmeRFwY5L7ppg3E9Rqm5l6obwS4IADDpiZLqVFyLEkTd+c7JlW1cbu+XHgWuBI4LGxw7fd8+Pd7BuA/fsW3w/YOME6L62qZVW1bMmSJcNsX1rQHEvS9M16mCZ5XpIXjL0GjgXuBlYDK7rZVgDXda9XA6d1Z/UeBTw1djhYkqT5YC4O8+4NXJtkbPufrqq/SbIGuDrJ6cAjwNu6+a8HjgfWAz8C3jH7LUuSNLlZD9OqehD4lQnq/wC8boJ6AWfMQmuSJO2Q+fRfYyRJGkmGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUqORCdMky5Pcn2R9krPmuh9JksaMRJgm2Qn4GHAccAhwSpJD5rYrSZJ6RiJMgSOB9VX1YFX9BLgKOGGOe5IkCYBU1Vz3sF1J3gosr6p/102fCryqqs7sm2clsLKbfClw/6w3OrP2Ap6Y6yYWsVH//j9RVct3ZMEFNpZG/ee4EIz6z2CgsbTzbHQyAzJBbau/AqrqUuDS2Wln+JKsraplc93HYrWYv/8LaSwt5p/jfLFYfgajcph3A7B/3/R+wMY56kWSpK2MSpiuAZYmOSjJrsDJwOo57kmSJGBEDvNW1TNJzgRuAHYCVlXVujlua9gWxGG2Eeb3f2Hw5zj3FsXPYCROQJIkaT4blcO8kiTNW4apJEmNDNMZluTZJHf0PQ4c4rbenuS/D2v9C02SSvKpvumdk2xO8oXtLHfM9ubRzHMszV+OpW2NxAlII+bHVXXYXDehCf0Q+OUkP1dVPwbeAHx3jnvS5BxL85djaRz3TGdBkp2SXJBkTZI7k7yzqx+T5G+TXJ3k75J8MMm/TXJbkruSHNzN9xtJbk3y7SRfSrL3BNtYkuSabhtrkhw921/niPhr4Ne716cAnxl7I8mRSb7RfZ+/keSl4xdO8rwkq7rv8beTeFnLWeRYmlccS30M05n3c32Hpa7taqcDT1XVK4FXAr+b5KDuvV8B3gO8DDgVeElVHQl8Anh3N8/NwFFVdTi96xL/pwm2exFwYbeNt3TLa1tXAScn2Q14OXBr33v3Af+m+z5/APjjCZb/z8CXu+/za4ALkjxvyD0vVo6l+c2x1MfDvDNvokNTxwIv764xDPBCYCnwE2BNVW0CSPL3wBe7ee6i9w8Meld8+mySfYBdgYcm2O7rgUOSn1158eeTvKCqfjADX9OCUVV3dp+9nQJcP+7tFwKXJ1lK73KVu0ywimOBNyX5g256N+AA4N6hNLy4OZbmMcfS1gzT2RHg3VV1w1bF5Bjg6b7ST/umf8qWn8/FwEeqanW3zDkTbOM5wK92n19oaquBDwHHAL/QVz8P+EpVndT9kvjqBMsGeEtVjfLF30eZY2l+cSx1PMw7O24A3pVkF4AkL5nm4YwXsuXD/RWTzPNFoP8uOp64MblVwLlVdde4ev/3+e2TLHsD8O50uy1JDh9Kh5qMY2l+cSx1DNPZ8QngHuBbSe4G/ozpHRU4B/iLJF9n8lsZ/R6wrDsp4x7g3zf0u6BV1YaqumiCt/4E+K9JbqF32cqJnEfvkNWd3c/yvCG1qYk5luYRx9IWXk5QkqRG7plKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU20jyd5JPp3kwSS3J/nfSU6agfUu2DtGSBNxLC0ehqm20v0H6r8EvlZV/6KqXgGcTO8ybLPdi1fo0shyLC0uhqnGey3wk6r607FCVX2nqi7ezh07vprkc0nuS3Jl31VNlne1m4E3j61zsjtGpHdfyb9I8ldsubaqNIocS4uIf61ovEOBb03y3s/u2JHkucAtScYG6eHdshuBW4Cjk6wFPk7vl8p64LN96xq7Y8TvJNkduC3Jl7r3fhV4eVU9OZNfmDTLHEuLiGGqKSX5GPBqenfl+A6T37Hjtqra0C1zB3Ag8H+Bh6rqga7+P4GV3bKT3TEC4EYHvxYax9LCZphqvHX07uEIQFWdkWQvYC3wCIPdseNZtvzbmux6lRPeMSLJq4AftnwB0jzhWFpE/MxU430Z2C3Ju/pq/6x7nu4dO+4DDkpycDd9St97C+qOEdIEHEuLiGGqrVTvzgcnAr+W5KEktwGXA3/ENO/YUVX/j96hqP/VnTTxnb63F9QdI6TxHEuLi3eNkSSpkXumkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjf4/JYsyJ46I2HkAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFY9JREFUeJzt3X2wZHV95/H3B/ApEReQkSAPgdXRXdRkxAmSYO2SqDhQlQBGKc1GJoTdSbJQhF21gu5uQCyqsiq6Glm2JmGUsTRIRMPEIgKyuJGkeBjcWZiBsIzKwggLg+BDlEUHv/tHnys9lzt3+s7v9u3bt9+vqlN9zrfPOf29c+fXn3tOn+5OVSFJkvbcXqNuQJKkcWeYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZpmMsyc8luSLJ15PcleSaJC9LcnySLy5wL/cluapv+S1JPrmQPcwkyZFJbklyb5LPJnn2qHvS4uNY2r0kZyfZmqSSHDjqfhYbw3RMJQnwBeArVfWSqjoKeC9w0Dzse5893HRlkle0Pv48+8/AR6pqOfA4cOaI+9Ei41ga2N8BbwD+z6gbWYwM0/H1q8CPq+q/TRWqalNVfbVbfH6SzyX5hySf7p4wpv7qPbCbX5nkK938BUnWJrkOWJ/kd5J8PsmXuqO6DwzQ04foPQntpNv3u/qWNyc5opv+Icmfd7VPJ3lDkr/rHvOYPf3H6R4nwK8Bn+tKlwOntOxTS5JjaQBV9T+r6r7W/SxVe/pXk0bvlcDts9z/auAVwIP0/qI8DrhpN/t8DfC6qnoiye8AK7r9PAnck+RPq+qBWba/Evi3SV462I8AwEuBtwJrgNuA3wJeB/wGvSeTncIvycuBz+5iX8dX1Xf6ll8IfKeqdnTL24BD5tCbJoNj6ZmmjyXthmG6dN1aVdsAkmwCjmD3TwAbquqJvuUbquq73T7uAn4emO0J4Cngg8B7gL8ZsM9vVtWd3WNs6R6zktzZ9byTqrqH3hPTIDJDzQ+j1lw5lrRbhun42gK8ZZb7n+ybf4qnf9c7ePr0/nOnbfODAfcxm0/RewLY0lfrf8zpj9v/GD/pW/7JTI83x7+mHwX2S7JPd3R6KL2jC6mfY+mZPDKdI18zHV//HXhOkn8zVUjyS0n+5W62u4/eKSiA35zvpqrqx8BHgHOnPebRAEmOBo5s2P89VbViF9N3pq1bwI08/US5Grh6Tx9bS5ZjaTdjSbtnmI6pLihOBd7YXc6/BbiA3R95vQ/4aJKv0vsLeRguY+e/hK8CDuhOkf0B8L+H9Lgz+SPg3yfZSu811MsW8LE1BhxLg0lyTpJt9M7w3JHkzxfqscdB/D5TSZLaeGQqSVIjL0DSnCS5BXjOtPI7pq4ilDQYx9LS4mleSZIaLcnTvKtWrSp67yd0cprUaV44lpycBrMkw/TRRx8ddQvSkuBYkgazJMNUkqSFZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWo00R90/5p3rx91C2Pn9g+ePuoWJGnR8chUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUaGhhmuSwJDcmuTvJliR/2NUvSPKtJJu66aS+bd6TZGuSe5K8qa++qqttTXLesHqWJGlPDPP7THcA76yqryXZF7g9yfXdfR+pqg/1r5zkKOBtwCuAFwNfTvKy7u5LgDcC24DbkmyoqruG2LskSQMbWphW1UPAQ93895PcDRwyyyYnA1dU1ZPAN5NsBY7p7ttaVd8ASHJFt65hKklaFBbkNdMkRwCvBm7pSmcnuSPJuiT7d7VDgAf6NtvW1XZVn/4Ya5JsTLJx+/bt8/wTSJPDsSTN3dDDNMnzgauAc6vqe8ClwEuAFfSOXC+eWnWGzWuW+s6FqrVVtbKqVi5btmxeepcmkWNJmrthvmZKkmfRC9JPV9XnAarq4b77/wz4Yre4DTisb/NDgQe7+V3VJUkauWFezRvgMuDuqvpwX/3gvtVOBTZ38xuAtyV5TpIjgeXArcBtwPIkRyZ5Nr2LlDYMq29JkuZqmEemxwHvAO5MsqmrvRd4e5IV9E7V3gf8HkBVbUlyJb0Li3YAZ1XVUwBJzgauBfYG1lXVliH2rQV0/4WvGnULY+fwP75z1C1ImmaYV/PexMyvd14zyzYXARfNUL9mtu0kSRolPwFJkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWo0tDBNcliSG5PcnWRLkj/s6gckuT7Jvd3t/l09ST6WZGuSO5Ic3bev1d369yZZPayeJUnaE8M8Mt0BvLOq/jlwLHBWkqOA84Abqmo5cEO3DHAisLyb1gCXQi98gfOB1wLHAOdPBbAkSYvB0MK0qh6qqq91898H7gYOAU4GLu9Wuxw4pZs/GVhfPTcD+yU5GHgTcH1VPVZVjwPXA6uG1bckSXO1IK+ZJjkCeDVwC3BQVT0EvcAFXtStdgjwQN9m27rarurTH2NNko1JNm7fvn2+fwRpYjiWpLkbepgmeT5wFXBuVX1vtlVnqNUs9Z0LVWuramVVrVy2bNmeNSvJsSTtgaGGaZJn0QvST1fV57vyw93pW7rbR7r6NuCwvs0PBR6cpS5J0qIwzKt5A1wG3F1VH+67awMwdUXuauDqvvrp3VW9xwLf7U4DXwuckGT/7sKjE7qaJEmLwj5D3PdxwDuAO5Ns6mrvBf4EuDLJmcD9wFu7+64BTgK2Aj8EzgCoqseSvB+4rVvvwqp6bIh9S5I0J0ML06q6iZlf7wR4/QzrF3DWLva1Dlg3f91JkjR//AQkSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJajRQmCa5YZCaJEmTaJ/Z7kzyXOBngAOT7A+ku+sFwIuH3JskSWNh1jAFfg84l15w3s7TYfo94JIh9iVJ0tiY9TRvVX20qo4E3lVV/7SqjuymX6yqj8+2bZJ1SR5JsrmvdkGSbyXZ1E0n9d33niRbk9yT5E199VVdbWuS8xp+VkmShmJ3R6YAVNWfJvkV4Ij+bapq/SybfRL4ODB9nY9U1Yf6C0mOAt4GvILeUfCXk7ysu/sS4I3ANuC2JBuq6q5B+pYkaSEMFKZJPgW8BNgEPNWVi2cG5U9V1d8mOWLAPk4GrqiqJ4FvJtkKHNPdt7WqvtH1cUW3rmEqSVo0BgpTYCVwVFXVPDzm2UlOBzYC76yqx4FDgJv71tnW1QAemFZ/7Uw7TbIGWANw+OGHz0Ob0mRyLElzN+j7TDcDPzcPj3cpvSPcFcBDwMVdPTOsW7PUn1msWltVK6tq5bJly+ahVWkyOZakuRv0yPRA4K4ktwJPThWr6jfm8mBV9fDUfJI/A77YLW4DDutb9VDgwW5+V3VJkhaFQcP0gvl4sCQHV9VD3eKp9I54ATYAn0nyYXoXIC0HbqV3ZLo8yZHAt+hdpPRb89GLJEnzZdCref/HXHec5C+A4+l94MM24Hzg+CQr6J2qvY/e+1ipqi1JrqR3YdEO4Kyqeqrbz9nAtcDewLqq2jLXXiRJGqZBr+b9Pk+/Vvls4FnAD6rqBbvapqrePkP5slnWvwi4aIb6NcA1g/QpSdIoDHpkum//cpJTePqtK5IkTbQ9+taYqvor4NfmuRdJksbSoKd539y3uBe9953Ox3tOJUkae4NezfvrffM76F08dPK8dyNJ0hga9DXTM4bdiCRJ42rQLwc/NMkXum+BeTjJVUkOHXZzkiSNg0EvQPoEvQ9WeDG9z8z9664mSdLEGzRMl1XVJ6pqRzd9EvBDOyVJYvAwfTTJbyfZu5t+G/j2MBuTJGlcDBqmvwucBvxfet/28hbAi5IkSWLwt8a8H1jdffcoSQ4APkQvZCVJmmiDHpn+wlSQAlTVY8Crh9OSJEnjZdAw3SvJ/lML3ZHpoEe1kiQtaYMG4sXA3yf5HL2PETyNGb7hRZKkSTToJyCtT7KR3ofbB3hzVd011M4kSRoTA5+q7cLTAJUkaZo9+go2SZL0NC8ikqQxd/+Frxp1C2Pn8D++c17355GpJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1GlqYJlmX5JEkm/tqByS5Psm93e3+XT1JPpZka5I7khzdt83qbv17k6weVr+SJO2pYR6ZfhJYNa12HnBDVS0HbuiWAU4ElnfTGuBS6IUvcD7wWuAY4PypAJYkabEYWphW1d8Cj00rnwxc3s1fDpzSV19fPTcD+yU5GHgTcH1VPVZVjwPX88yAliRppBb6NdODquohgO72RV39EOCBvvW2dbVd1SVJWjQWywVImaFWs9SfuYNkTZKNSTZu3759XpuTJoljSZq7hQ7Th7vTt3S3j3T1bcBhfesdCjw4S/0ZqmptVa2sqpXLli2b98alSeFYkuZuocN0AzB1Re5q4Oq++undVb3HAt/tTgNfC5yQZP/uwqMTupokSYvGPsPacZK/AI4HDkyyjd5VuX8CXJnkTOB+4K3d6tcAJwFbgR8CZwBU1WNJ3g/c1q13YVVNv6hJkqSRGlqYVtXbd3HX62dYt4CzdrGfdcC6eWxNkqR5tVguQJIkaWwZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUaJ9RNyBp/L3m3etH3cLYuf2Dp4+6Bc0jj0wlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJajSSME1yX5I7k2xKsrGrHZDk+iT3drf7d/Uk+ViSrUnuSHL0KHqWJGlXRnlk+qtVtaKqVnbL5wE3VNVy4IZuGeBEYHk3rQEuXfBOJUmaxWI6zXsycHk3fzlwSl99ffXcDOyX5OBRNChJ0kxGFaYFXJfk9iRrutpBVfUQQHf7oq5+CPBA37bbutpOkqxJsjHJxu3btw+xdWlpcyxJczeqMD2uqo6mdwr3rCT/YpZ1M0OtnlGoWltVK6tq5bJly+arT2niOJakuRtJmFbVg93tI8AXgGOAh6dO33a3j3SrbwMO69v8UODBhetWkqTZLXiYJvnZJPtOzQMnAJuBDcDqbrXVwNXd/Abg9O6q3mOB706dDpYkaTEYxZeDHwR8IcnU43+mqr6U5DbgyiRnAvcDb+3WvwY4CdgK/BA4Y+FbliRp1xY8TKvqG8AvzlD/NvD6GeoFnLUArUmStEcW01tjJEkaS4apJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktRobMI0yaok9yTZmuS8UfcjSdKUsQjTJHsDlwAnAkcBb09y1Gi7kiSpZyzCFDgG2FpV36iqHwFXACePuCdJkgBIVY26h91K8hZgVVX96275HcBrq+rsvnXWAGu6xZcD9yx4o/PrQODRUTcxwcb93//Rqlq1JxsusbE07r/HpWDcfwcDjaV9FqKTeZAZajv9FVBVa4G1C9PO8CXZWFUrR93HpJrkf/+lNJYm+fe4WEzK72BcTvNuAw7rWz4UeHBEvUiStJNxCdPbgOVJjkzybOBtwIYR9yRJEjAmp3mrakeSs4Frgb2BdVW1ZcRtDduSOM02xvz3Xxr8PY7eRPwOxuICJEmSFrNxOc0rSdKiZZhKktTIMB2B9NyU5MS+2mlJvjTKviZRkkpycd/yu5JcMMKWNAeOpcVj0seSYToC1Xuh+veBDyd5bpKfBS4CzhptZxPpSeDNSQ4cdSOaO8fSojLRY8kwHZGq2gz8NfBHwPnA+qr6epLVSW5NsinJf02yV5J9knwqyZ1JNic5Z7TdLyk76F1t+O+m35Hk55PckOSO7vbwhW9Pu+NYWjQmeiyNxVtjlrD3AV8DfgSsTPJK4FTgV7q3A62l957arwMHVtWrAJLsN6qGl6hLgDuSfGBa/eP0npgvT/K7wMeAUxa8Ow3CsbQ4TOxYMkxHqKp+kOSzwD9W1ZNJ3gD8ErAxCcDzgAfovb/25Uk+ClwDXDeqnpeiqvpekvXAOcATfXf9MvDmbv5TwPQnCC0SjqXFYZLHkmE6ej/pJuh9BvG6qvpP01dK8gv0voLuHOA3efqDyDU//gu9I5tPzLKOb8pe3BxLi8NEjiVfM11cvgycNvUCfpIXJjk8yTJ6H7Dxl/ReEzp6lE0uRVX1GHAlcGZf+e/pnRoE+FfATQvdl/aYY2lEJnUseWS6iFTVnUneB3w5yV7Aj+ldqfgUcFl656uK3oUWmn8XA2f3LZ8DrEvybmA7cMZIutKcOZZGbuLGkh8nKElSI0/zSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFPtJMlT3WeZbk7yl0l+Zo7bnzvXbaSlyLE0WQxTTfdEVa2oqlfS+5zT3x90wyR7A+cC8/IEkMT3QWucOZYmiGGq2XwVeClAkr9KcnuSLUl++vFrSf4xyYVJbgH+A/Bi4MYkN/bdf1GS/5Xk5iQHdfVlSa5Kcls3HdfVL0iyNsl1wPoF/nmlYXEsLXVV5eT004neB4VD79Oxrgb+oFs+oLt9HrAZeGG3XMBpfdvfR+9bOei7/9e7+Q8A/7Gb/wzwum7+cODubv4C4HbgeaP+t3ByapkcS5M1eeiv6Z6XZFM3/1Xgsm7+nCSndvOHAcuBb9P7eLarZtnfj4AvdvO3A2/s5t8AHNV9owfAC5Ls281vqKr+b5yQxpFjaYIYppruiapa0V9Icjy9AfvLVfXDJF8Bntvd/f+q6qlZ9vfj6v5MpvdkMfV/bq9ufzsN9O4J4QdNP4G0ODiWJoivmWoQ/wR4vBv8/ww4dpZ1vw/sO8v9U66j74Owk6yYZV1pqXAsLVGGqQbxJWCfJHcA7wdunmXdtcDfTF00MYtzgJVJ7khyF3O40lEaY46lJcpvjZEkqZFHppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY3+P47dcuStsneqAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGdtJREFUeJzt3XuUZWV95vHvw1WjRkBKQgCFaGsENYgtMurKEFRoyETQoIMzSkuYaZOAxEl0RJcJF8NaxhsjXjAoLeByRKKiHYcRW9QYNFwabBsaJLRIoAMDTRrwGrTxN3+ct1Yfiqrqqt516lR1fT9r7VV7//btrep+z3P2PvvsnapCkiRtve2G3QBJkuY7w1SSpI4MU0mSOjJMJUnqyDCVJKkjw1SSpI4MU0mSOjJM57Ekv5Hk4iQ/SHJTksuSPCPJoUm+PMttuT3J5/umj01ywWy2YTxJ9ktydZJbk3w2yU7DbpPmHvvSliU5Ocm6JJVk92G3Z64xTOepJAEuBb5ZVU+rqv2BdwB7zMC2d9jKVRcnOaDr/mfY3wBnV9Ui4H7gxCG3R3OMfWnKvg28DPiXYTdkLjJM56/fA35ZVR8bLVTV6qr6xzb5+CSfS/L9JJ9uLxij73p3b+OLk3yzjZ+e5LwkXwUuSvKGJF9I8pV2VPeeKbTpffRehB6hbfstfdM3Jtm3Dd9P8olW+3SSlyX5dtvnwVv7x2n7CXAY8LlWuhA4pss2tU2yL01BVX23qm7vup1t1da+a9LwPRu4bpL5zwMOAO6i947yxcCVW9jm84GXVNXPk7wBOLBt5yHgliQfqqo7J1n/EuBPkzx9ar8CAE8HXg0sA64F/gvwEuAV9F5MHhF+SZ4JfHaCbR1aVQ/0TT8JeKCqNrXp9cBe02ibFgb70qON7UvaAsN023VNVa0HSLIa2JctvwCsqKqf901fUVUPtm3cBDwVmOwF4GHgvcDbgf87xXb+sKpuaPtY2/ZZSW5obX6EqrqF3gvTVGScmjej1nTZl7RFhun8tRY4dpL5D/WNP8zmf+tNbD69/5gx6/x0ituYzKfovQCs7av173Psfvv38au+6V+Nt79pvpu+D9glyQ7t6HRvekcXUj/70qN5ZDpNfmY6f30d2DnJfx8tJHlBkv+4hfVup3cKCuAPZ7pRVfVL4GzgzWP2eRBAkoOA/Tps/5aqOnCC4YExyxbwDTa/UC4FvrS1+9Y2y760hb6kLTNM56kWFK8EXt4u518LnM6Wj7zOAD6Y5B/pvUMehPN55DvhzwO7tVNkfwL884D2O563AX+eZB29z1DPn8V9ax6wL01NklOSrKd3hmdNkk/M1r7ng/g8U0mSuvHIVJKkjrwASdOS5Gpg5zHl149eRShpauxL2xZP80qS1NE2eZp3yZIlRe/7hA4OC3WYEfYlB4epGViYJnlMkmuSfC/J2iRntPoFSX6YZHUbDmz1JDknvRspr2mXfY9ua2m7JdatSZZuad/33XffoH4taUGxL0lTM8jPTB8CDquqnyTZEbgyyeidPN5aVZ8bs/yRwKI2vBA4F3hhkt2A04DF9N4lXJdkRVXdP8C2S5I0ZQM7Mq2en7TJHdsw2SHz0cBFbb2r6N25Zk/gCGBlVW1sAboSWDKodkuSNF0D/cw0yfbty8X30gvEq9uss9qp3LOTjF7NthePvFfl6E3JJ6qP3deyJKuSrNqwYcOM/y7SQmFfkqZvoGFaVQ9X1YH07phxcJJn07vX5G8DLwB2o3eHGpj4puRTull5VZ1XVYuravHIyMiMtF9aiOxL0vTNytW87T6P3wSWVNXd7VTuQ8AngdHn7K0H9ulbbfSm5BPVJUmaEwZ5Ne9Ikl3a+GPpPaH9++1z0NEHNx8D3NhWWQEc367qPQR4sKruBi4HDk+ya5JdgcNbTZKkOWGQV/PuCVyYZHt6oX1JVX05ydeTjNA7fbsa+OO2/GXAUcA64GfACQBVtTHJu+g97BbgzKraOMB2S5I0LQML06paQ+/J8mPrh02wfAEnTTBvObB8RhsoSdIM2SbvgCRJ0mxa0De6f/5bLxp2E+ad6957/LCbIElzjkemkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHQ0sTJM8Jsk1Sb6XZG2SM1p9vyRXJ7k1yWeT7NTqO7fpdW3+vn3benur35LkiEG1WZKkrTHII9OHgMOq6neAA4ElSQ4B/gY4u6oWAfcDJ7blTwTur6qnA2e35UiyP3AccACwBPhoku0H2G5JkqZlYGFaPT9pkzu2oYDDgM+1+oXAMW386DZNm//SJGn1i6vqoar6IbAOOHhQ7ZYkaboG+plpku2TrAbuBVYCPwAeqKpNbZH1wF5tfC/gToA2/0HgSf31cdbp39eyJKuSrNqwYcMgfh1pQbAvSdM30DCtqoer6kBgb3pHk88ab7H2MxPMm6g+dl/nVdXiqlo8MjKytU2WFjz7kjR9s3I1b1U9AHwTOATYJckObdbewF1tfD2wD0Cb/0RgY399nHUkSRq6QV7NO5Jklzb+WOBlwM3AN4Bj22JLgS+18RVtmjb/61VVrX5cu9p3P2ARcM2g2i1J0nTtsOVFttqewIXtytvtgEuq6stJbgIuTvLXwHeB89vy5wOfSrKO3hHpcQBVtTbJJcBNwCbgpKp6eIDtliRpWgYWplW1BnjeOPXbGOdq3Kr6d+DVE2zrLOCsmW6jJEkzwTsgSZLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHAwvTJPsk+UaSm5OsTfJnrX56kn9NsroNR/Wt8/Yk65LckuSIvvqSVluX5NRBtVmSpK2xwwC3vQn4i6q6PskTgOuSrGzzzq6q9/UvnGR/4DjgAOA3ga8leUab/RHg5cB64NokK6rqpgG2XZKkKRtYmFbV3cDdbfzHSW4G9ppklaOBi6vqIeCHSdYBB7d566rqNoAkF7dlDVNJ0pwwK5+ZJtkXeB5wdSudnGRNkuVJdm21vYA7+1Zb32oT1cfuY1mSVUlWbdiwYYZ/A2nhsC9J0zfwME3yeODzwJur6kfAucDTgAPpHbm+f3TRcVavSeqPLFSdV1WLq2rxyMjIjLRdWojsS9L0DfIzU5LsSC9IP11VXwCoqnv65n8c+HKbXA/s07f63sBdbXyiuiRJQzfIq3kDnA/cXFUf6Kvv2bfYK4Eb2/gK4LgkOyfZD1gEXANcCyxKsl+SnehdpLRiUO2WJGm6Bnlk+mLg9cANSVa32juA1yY5kN6p2tuBNwJU1dokl9C7sGgTcFJVPQyQ5GTgcmB7YHlVrR1guyVJmpZBXs17JeN/3nnZJOucBZw1Tv2yydaTJGmYvAOSJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHU0sDBNsk+SbyS5OcnaJH/W6rslWZnk1vZz11ZPknOSrEuyJslBfdta2pa/NcnSQbVZkqStMcgj003AX1TVs4BDgJOS7A+cClxRVYuAK9o0wJHAojYsA86FXvgCpwEvBA4GThsNYEmS5oKBhWlV3V1V17fxHwM3A3sBRwMXtsUuBI5p40cDF1XPVcAuSfYEjgBWVtXGqrofWAksGVS7JUmarln5zDTJvsDzgKuBParqbugFLvDktthewJ19q61vtYnqY/exLMmqJKs2bNgw07+CtGDYl6TpG3iYJnk88HngzVX1o8kWHadWk9QfWag6r6oWV9XikZGRrWusJPuStBUGGqZJdqQXpJ+uqi+08j3t9C3t572tvh7Yp2/1vYG7JqlLkjQnTClMk1wxldqY+QHOB26uqg/0zVoBjF6RuxT4Ul/9+HZV7yHAg+008OXA4Ul2bRceHd5qkiTNCTtMNjPJY4BfA3ZvQTZ6yvXXgd/cwrZfDLweuCHJ6lZ7B/Bu4JIkJwJ3AK9u8y4DjgLWAT8DTgCoqo1J3gVc25Y7s6o2Tu3XkyRp8CYNU+CNwJvpBed1bA7THwEfmWzFqrqS8T/vBHjpOMsXcNIE21oOLN9CWyVJGopJw7SqPgh8MMmbqupDs9QmSZLmlS0dmQJQVR9K8iJg3/51quqiAbVLkqR5Y0phmuRTwNOA1cDDrVyAYSpJWvCmFKbAYmD/9rmmJEnqM9Xvmd4I/MYgGyJJ0nw11SPT3YGbklwDPDRarKpXDKRVkiTNI1MN09MH2QhJkuazqV7N+w+DbogkSfPVVK/m/TGbby6/E7Aj8NOq+vVBNUwLwx1nPmfYTZh3nvJXNwy7CZLGmOqR6RP6p5McQ+9B3ZIkLXhb9dSYqvoicNgMt0WSpHlpqqd5X9U3uR297536nVNJkpj61bx/0De+CbgdOHrGWyNJ0jw01c9MTxh0QyRJmq+m+nDwvZNcmuTeJPck+XySvQfdOEmS5oOpXoD0SWAFveea7gX8fatJkrTgTTVMR6rqk1W1qQ0XACMDbJckSfPGVMP0viSvS7J9G14H/NsgGyZJ0nwx1TD9I+A1wP8D7gaOBbwoSZIkpv7VmHcBS6vqfoAkuwHvoxeykiQtaFM9Mn3uaJACVNVG4HmDaZIkSfPLVMN0uyS7jk60I9OpHtVKkrRNm2qYvh/4TpJ3JTkT+A7wnslWSLK8fS/1xr7a6Un+NcnqNhzVN+/tSdYluSXJEX31Ja22Lsmp0/v1JEkavKneAemiJKvo3dw+wKuq6qYtrHYB8GHgojH1s6vqff2FJPsDxwEH0Psu69eSPKPN/gjwcmA9cG2SFVPYt6RZ9Py3ju3m2pLr3nv8sJugGTTlU7UtwKYcYlX1rST7TnHxo4GLq+oh4IdJ1rH5EW/rquo2gCQXt2UNU0nSnLFVj2Dr6OQka9pp4NHPYfcC7uxbZn2rTVSXJGnOmO0wPRd4GnAgve+rvr/VM86yNUn9UZIsS7IqyaoNGzbMRFulBcm+JE3frIZpVd1TVQ9X1a+Aj7P5VO56YJ++RfcG7pqkPt62z6uqxVW1eGTEOx1KW8u+JE3frIZpkj37Jl8JjF7puwI4LsnOSfYDFgHXANcCi5Lsl2QnehcprZjNNkuStCUD+65oks8AhwK7J1kPnAYcmuRAeqdqbwfeCFBVa5NcQu/Cok3ASVX1cNvOycDlwPbA8qpaO6g2S5K0NQYWplX12nHK50+y/FnAWePULwMum8GmSZI0o4ZxNa8kSdsUw1SSpI4MU0mSOjJMJUnqyDCVJKkjw1SSpI4MU0mSOjJMJUnqyDCVJKkjw1SSpI4MU0mSOjJMJUnqyDCVJKkjw1SSpI4MU0mSOjJMJUnqyDCVJKkjw1SSpI4MU0mSOjJMJUnqyDCVJKkjw1SSpI4GFqZJlie5N8mNfbXdkqxMcmv7uWurJ8k5SdYlWZPkoL51lrblb02ydFDtlSRpaw3yyPQCYMmY2qnAFVW1CLiiTQMcCSxqwzLgXOiFL3Aa8ELgYOC00QCWJGmuGFiYVtW3gI1jykcDF7bxC4Fj+uoXVc9VwC5J9gSOAFZW1caquh9YyaMDWpKkoZrtz0z3qKq7AdrPJ7f6XsCdfcutb7WJ6pIkzRlz5QKkjFOrSeqP3kCyLMmqJKs2bNgwo42TFhL7kjR9sx2m97TTt7Sf97b6emCfvuX2Bu6apP4oVXVeVS2uqsUjIyMz3nBpobAvSdM322G6Ahi9Incp8KW++vHtqt5DgAfbaeDLgcOT7NouPDq81SRJmjN2GNSGk3wGOBTYPcl6elflvhu4JMmJwB3Aq9vilwFHAeuAnwEnAFTVxiTvAq5ty51ZVWMvapIkaagGFqZV9doJZr10nGULOGmC7SwHls9g0yRJmlFz5QIkSZLmLcNUkqSODFNJkjoyTCVJ6sgwlSSpI8NUkqSODFNJkjoyTCVJ6sgwlSSpI8NUkqSODFNJkjoyTCVJ6sgwlSSpI8NUkqSODFNJkjoyTCVJ6sgwlSSpI8NUkqSODFNJkjoyTCVJ6sgwlSSpI8NUkqSODFNJkjoaSpgmuT3JDUlWJ1nVarslWZnk1vZz11ZPknOSrEuyJslBw2izJEkTGeaR6e9V1YFVtbhNnwpcUVWLgCvaNMCRwKI2LAPOnfWWSpI0ibl0mvdo4MI2fiFwTF/9ouq5CtglyZ7DaKAkSeMZVpgW8NUk1yVZ1mp7VNXdAO3nk1t9L+DOvnXXt9ojJFmWZFWSVRs2bBhg06Vtm31Jmr5hhemLq+ogeqdwT0ryu5Msm3Fq9ahC1XlVtbiqFo+MjMxUO6UFx74kTd9QwrSq7mo/7wUuBQ4G7hk9fdt+3tsWXw/s07f63sBds9daSZImN+thmuRxSZ4wOg4cDtwIrACWtsWWAl9q4yuA49tVvYcAD46eDpYkaS7YYQj73AO4NMno/v93VX0lybXAJUlOBO4AXt2Wvww4ClgH/Aw4YfabLEnSxGY9TKvqNuB3xqn/G/DSceoFnDQLTZMkaavMpa/GSJI0LxmmkiR1ZJhKktSRYSpJUkeGqSRJHQ3jqzGSpBl0x5nPGXYT5p2n/NUNM7o9j0wlSerIMJUkqSPDVJKkjgxTSZI6MkwlSerIMJUkqSPDVJKkjgxTSZI6MkwlSerIMJUkqSPDVJKkjgxTSZI6MkwlSerIMJUkqSPDVJKkjgxTSZI6mjdhmmRJkluSrEty6rDbI0nSqHkRpkm2Bz4CHAnsD7w2yf7DbZUkST3zIkyBg4F1VXVbVf0CuBg4eshtkiQJgFTVsNuwRUmOBZZU1X9r068HXlhVJ/ctswxY1iafCdwy6w2dWbsD9w27EQvYfP/731dVS7ZmxW2sL833f8dtwXz/N5hSX9phNloyAzJO7RHvAqrqPOC82WnO4CVZVVWLh92OhWoh//23pb60kP8d54qF8m8wX07zrgf26ZveG7hrSG2RJOkR5kuYXgssSrJfkp2A44AVQ26TJEnAPDnNW1WbkpwMXA5sDyyvqrVDbtagbROn2eYx//7bBv8dh29B/BvMiwuQJEmay+bLaV5JkuYsw1SSpI4M0yFLUkne3zf9liSnD7FJ27z0XJnkyL7aa5J8ZZjtUjf2pdlnX9rMMB2+h4BXJdl92A1ZKKp3ocAfAx9I8pgkjwPOAk4absvUkX1pltmXNjNMh28Tvavd/sfYGUmemuSKJGvaz6fMfvO2TVV1I/D3wNuA04CLquoHSZYmuSbJ6iQfTbJdkh2SfCrJDUluTHLKcFuvCdiXhsC+1DMvvhqzAHwEWJPkPWPqH6b3H/PCJH8EnAMcM+ut23adAVwP/AJYnOTZwCuBF7WvY51H7zvNPwB2r6rnACTZZVgN1hbZl4Zjwfclw3QOqKofJbkIOAX4ed+s/wC8qo1/Chj7AqEOquqnST4L/KSqHkryMuAFwKokAI8F7qT3/eZnJvkgcBnw1WG1WZOzLw2HfckwnUv+F713dp+cZBm/FDzzftUG6N0DenlV/eXYhZI8l94jAE8B/pDNN4LX3GNfGo4F3Zf8zHSOqKqNwCXAiX3l79A7NQLwX4ErZ7tdC8zXgNeMXsCS5ElJnpJkhN4NTv6O3mdCBw2zkZqcfWlOWHB9ySPTueX9wMl906cAy5O8FdgAnDCUVi0QVXVDkjOAryXZDvglvSsVHwbOT+98VdG70EJzm31piBZiX/J2gpIkdeRpXkmSOjJMJUnqyDCVJKkjw1SSpI4MU0mSOjJMF4AkD7f7Y65N8r0kf94uVx9We27f2puRJzkmyf4z3SZpS+xHmoxhujD8vKoOrKoDgJcDR9H7wvR8dAzgi4CGwX6kCRmmC0xV3Uvv9l0nt2cRbp/kvUmubU/UeCNAkkOTfCvJpUluSvKx0XfhSQ5P8k9Jrk/yd0ke3+q3Jzmj1W9I8tut/qQkX03y3SR/S+9WY7R5r+t7ssTfJtm+1X+S5Kx2BHBVkj2SvAh4BfDetvzTkpzS2rcmycWz+sfUgmU/0qNUlcM2PtC7+fTY2v3AHvReEN7ZajsDq4D9gEOBfwd+C9geWAkcC+wOfAt4XFvnbcBftfHbgTe18T8FPtHGz+lb5vfp3flkd+BZ9B7dtGOb91Hg+DZewB+08ff0tfEC4Ni+3+MuYOc2vsuw/9YO2+5gP3KYbPB2ggvX6Lvaw4HnJjm2TT8RWETvUUrXVNVtAEk+A7yE3gvD/sC3e3cEYyfgn/q2+4X28zo2P6Xjd0fHq+r/JLm/1V8KPB+4NpufLHFvm/cL4Mt923r5BL/HGuDTSb4IfHGKv7s0U+xHArw374KU5Lfo3SPzXnovBm+qqsvHLHMoj36yRrXlV1bVayfY/EPt58M88v/XePetDHBhVb19nHm/rPY2eZxt9ft9ei8yrwD+MskBVbVpgmWlGWM/Uj8/M11g0ntqw8eAD7dOdjnwJ0l2bPOfkeRxbfGDk+zXPuP5z/SetHEV8OIkT2/L/1qSZ2xht9+i96QOkhwJ7NrqVwDHJnlym7dbkqduYVs/Bp7Qlt8O2KeqvgH8T2AX4PFT+TtIXdiPNJZHpgvDY5OsBnYENtF7OPIH2rxPAPsC16d3jmgDvSv9oHfa6d3Ac+h15Eur6ldJ3gB8JsnObbl3Av88yf7PaMtfD/wDcAdAVd2U5J3AV7P5yRInAf8yybYuBj6e5BR6j9Q6P8kT6b07P7uqHpjC30PaGvYjTcinxmhc7fTUW6rqPw27LdJ8ZT9aODzNK0lSRx6ZSpLUkUemkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR19P8BSrL3h65TdrsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFfpJREFUeJzt3X+wZGV95/H3B0ZA4yogo1EGAhtGKxAJkhHZ6FYMGhzdRIgC4iY6GhKyWZS4WRM1m4g/Qq2GGKJGk0JAgbICiLgQSyMExahRYFTCzyCjEpmClWH5YWKUCHz3j34uNMOdmb7z3L59+973q6rrnvOc0+d879x5+tPn9NPnpKqQJEnbb4dJFyBJ0rQzTCVJ6mSYSpLUyTCVJKmTYSpJUifDVJKkToapJEmdDNMpluTHk5yb5JtJbkjyqSRPT/L8JJ9c4FpuSfLxofmjknxkIWuYTZJ9k1yR5OYk5yXZadI1afGxL21bktcl2ZCkkuwx6XoWG8N0SiUJ8Ang8qr6yaraH/gD4CnzsO0V2/nUNUkO6N3/PHs3cGpVrQbuBo6bcD1aZOxLI/sS8ELgnyddyGJkmE6vXwB+VFV/NdNQVVdX1Rfa7OOTXJDkn5J8tL1gzLzr3aNNr0lyeZt+W5LTklwCnJ3kNUkuTPK37ajuT0ao6U8ZvAg9Qtv2G4fmr0uyT3v8U5LTW9tHk7wwyZfaPg/Z3n+ctp8AhwEXtKazgCN7tqklyb40gqr6elXd0rudpWp73zVp8n4a+OpWlj8LOAC4jcE7yucCX9zGNn8WeF5V/SDJa4CD2nbuA25K8v6qunUrzz8f+O9J9hvtVwBgP+Bo4HjgKuC/As8DXsrgxeQR4ZfkGcB5W9jW86vqnqH5JwH3VNX9bX4jsOccatPyYF96tM37krbBMF26rqyqjQBJrgb2YdsvABdX1Q+G5i+rqnvbNm4AfgLY2gvAA8ApwFuAT49Y57er6tq2j+vbPivJta3mR6iqmxi8MI0is7R5MWrNlX1J22SYTq/rgaO2svy+oekHePhvfT8Pn97fZbPnfH/EbWzNOQxeAK4fahve5+b7Hd7Hg0PzD862vzm+m74T2DXJinZ0uorB0YU0zL70aB6ZzpGfmU6vzwI7J/nNmYYkz07y89t43i0MTkEBvHy+i6qqHwGnAm/YbJ8HAyQ5GNi3Y/s3VdVBW3jcs9m6BXyOh18o1wEXbe++tWTZl7bRl7RthumUakHxK8AvtuH81wNvY9tHXm8H3pvkCwzeIY/DGTzynfDHgd3bKbLfBr4xpv3O5k3A7ybZwOAz1DMWcN+aAval0SQ5MclGBmd4rkly+kLtexrE+5lKktTHI1NJkjo5AElzkuQKYOfNml81M4pQ0mjsS0uLp3klSeq0JE/zrl27thh8n9CHj+X6mBf2JR8+RrMkw/TOO++cdAnSkmBfkkazJMNUkqSFZJhKktTJMJUkqZNhKklSJ8NUkqROhqkkSZ0MU0mSOhmmkiR1MkwlSerkhe41Md95xzMnXcJU2vutXgddWmw8MpUkqZNhKklSJ8NUkqROhqkkSZ0MU0mSOhmmkiR1MkwlSepkmEqS1MkwlSSpk2EqSVInw1SSpE6GqSRJnQxTSZI6GaaSJHUyTCVJ6mSYSpLUyTCVJKmTYSpJUifDVJKkToapJEmdDFNJkjoZppIkdTJMJUnqZJhKktTJMJUkqZNhKklSp7GHaZIdk3w9ySfb/L5Jrkhyc5LzkuzU2ndu8xva8n2GtvGW1n5TkheNu2ZJkuZiIY5Mfwe4cWj+3cCpVbUauBs4rrUfB9xdVfsBp7b1SLI/cCxwALAW+GCSHRegbkmSRjLWME2yCvgvwOltPsBhwAVtlbOAI9v0EW2etvwFbf0jgHOr6r6q+jawAThknHVLkjQX4z4y/XPg94EH2/yTgHuq6v42vxHYs03vCdwK0Jbf29Z/qH2W5zwkyfFJ1idZv2nTpvn+PaRlw74kzd3YwjTJLwF3VNVXh5tnWbW2sWxrz3m4oeq0qlpTVWtWrlw553olDdiXpLlbMcZtPxd4aZKXALsAT2BwpLprkhXt6HMVcFtbfyOwF7AxyQrgicBdQ+0zhp8jSdLEje3ItKreUlWrqmofBgOIPltVvwp8DjiqrbYOuKhNX9zmacs/W1XV2o9to333BVYDV46rbkmS5mqcR6Zb8ibg3CR/DHwdOKO1nwGck2QDgyPSYwGq6vok5wM3APcDJ1TVAwtftiRJs1uQMK2qy4HL2/S3mGU0blX9EDh6C88/GTh5fBVKkrT9vAKSJEmdDFNJkjoZppIkdTJMJUnqZJhKktTJMJUkqZNhKklSJ8NUkqROhqkkSZ0MU0mSOhmmkiR1MkwlSepkmEqS1MkwlSSpk2EqSVInw1SSpE6GqSRJnQxTSZI6GaaSJHUyTCVJ6mSYSpLUyTCVJKmTYSpJUifDVJKkToapJEmdDFNJkjoZppIkdTJMJUnqZJhKktTJMJUkqZNhKklSJ8NUkqROhqkkSZ0MU0mSOhmmkiR1MkwlSeo0tjBNskuSK5P8Y5Lrk7y9te+b5IokNyc5L8lOrX3nNr+hLd9naFtvae03JXnRuGqWJGl7jPPI9D7gsKr6GeAgYG2SQ4F3A6dW1WrgbuC4tv5xwN1VtR9waluPJPsDxwIHAGuBDybZcYx1S5I0J2ML0xr41zb7mPYo4DDggtZ+FnBkmz6izdOWvyBJWvu5VXVfVX0b2AAcMq66JUmaq7F+ZppkxyRXA3cAlwLfBO6pqvvbKhuBPdv0nsCtAG35vcCThttnec7wvo5Psj7J+k2bNo3j15GWBfuSNHdjDdOqeqCqDgJWMTia/KnZVms/s4VlW2rffF+nVdWaqlqzcuXK7S1ZWvbsS9LcLcho3qq6B7gcOBTYNcmKtmgVcFub3gjsBdCWPxG4a7h9ludIkjRx4xzNuzLJrm36scALgRuBzwFHtdXWARe16YvbPG35Z6uqWvuxbbTvvsBq4Mpx1S1J0lyt2PYq2+2pwFlt5O0OwPlV9ckkNwDnJvlj4OvAGW39M4BzkmxgcER6LEBVXZ/kfOAG4H7ghKp6YIx1S5I0J2ML06q6BnjWLO3fYpbRuFX1Q+DoLWzrZODk+a5RkqT54BWQJEnqZJhKktTJMJUkqZNhKklSJ8NUkqROhqkkSZ0MU0mSOhmmkiR1GilMk1w2SpskScvRVq+AlGQX4HHAHkl24+E7uDwBeNqYa5MkaSps63KCvwW8gUFwfpWHw/R7wAfGWJckSVNjq2FaVe8F3pvk9VX1/gWqSZKkqTLShe6r6v1Jfg7YZ/g5VXX2mOqSJGlqjBSmSc4BfhK4Gpi5/VkBhqkkadkb9RZsa4D92826JUnSkFG/Z3od8OPjLESSpGk16pHpHsANSa4E7ptprKqXjqUqSZKmyKhh+rZxFiFJ0jQbdTTv58ddiCRJ02rU0bz/wmD0LsBOwGOA71fVE8ZVmCRJ02LUI9P/MDyf5EjgkLFUJEnSlNmuu8ZU1f8BDpvnWiRJmkqjnuZ92dDsDgy+d+p3TiVJYvTRvL88NH0/cAtwxLxXI0nSFBr1M9PXjrsQSZKm1ag3B1+V5BNJ7kjy3SQfT7Jq3MVJkjQNRh2A9GHgYgb3Nd0T+JvWJknSsjdqmK6sqg9X1f3t8RFg5RjrkiRpaowapncm+bUkO7bHrwH/b5yFSZI0LUYN018HjgH+L3A7cBTgoCRJkhj9qzHvBNZV1d0ASXYH/pRByEqStKyNemR64EyQAlTVXcCzxlOSJEnTZdQw3SHJbjMz7ch01KNaSZKWtFED8T3APyS5gMFlBI8BTh5bVZIkTZFRr4B0dpL1DC5uH+BlVXXDWCuTJGlKjHyqtoWnASpJ0ma26xZso0iyV5LPJbkxyfVJfqe1757k0iQ3t5+7tfYkeV+SDUmuSXLw0LbWtfVvTrJuXDVLkrQ9xhamDO4u8z+r6qeAQ4ETkuwPvBm4rKpWA5e1eYAXA6vb43jgL+GhwU4nAc9hcEPyk4YHQ0mSNGljC9Oqur2qvtam/wW4kcF1fY8AzmqrnQUc2aaPAM6uga8AuyZ5KvAi4NKquqt9PedSYO246pYkaa7GeWT6kCT7MPhe6hXAU6rqdhgELvDkttqewK1DT9vY2rbUvvk+jk+yPsn6TZs2zfevIC0b9iVp7sYepkkeD3wceENVfW9rq87SVltpf2RD1WlVtaaq1qxc6TX4pe1lX5LmbqxhmuQxDIL0o1V1YWv+bjt9S/t5R2vfCOw19PRVwG1baZckaVEY52jeAGcAN1bVnw0tuhiYGZG7DrhoqP3VbVTvocC97TTwZ4DDk+zWBh4d3tokSVoUxnlJwOcCrwKuTXJ1a/sD4F3A+UmOA74DHN2WfQp4CbAB+DfaXWmq6q4k7wSuauu9o10bWJKkRWFsYVpVX2T2zzsBXjDL+gWcsIVtnQmcOX/VSZI0fxZkNK8kSUuZYSpJUifDVJKkToapJEmdDFNJkjoZppIkdTJMJUnqZJhKktRpnFdAkiQtgO+845mTLmHq7P3Wa+d1ex6ZSpLUyTCVJKmTYSpJUifDVJKkToapJEmdDFNJkjoZppIkdTJMJUnqZJhKktTJMJUkqZNhKklSJ8NUkqROhqkkSZ0MU0mSOhmmkiR1MkwlSepkmEqS1MkwlSSpk2EqSVInw1SSpE6GqSRJnQxTSZI6GaaSJHUyTCVJ6mSYSpLUyTCVJKmTYSpJUqexhWmSM5PckeS6obbdk1ya5Ob2c7fWniTvS7IhyTVJDh56zrq2/s1J1o2rXkmSttc4j0w/AqzdrO3NwGVVtRq4rM0DvBhY3R7HA38Jg/AFTgKeAxwCnDQTwJIkLRZjC9Oq+nvgrs2ajwDOatNnAUcOtZ9dA18Bdk3yVOBFwKVVdVdV3Q1cyqMDWpKkiVroz0yfUlW3A7SfT27tewK3Dq23sbVtqV2SpEVjsQxAyixttZX2R28gOT7J+iTrN23aNK/FScuJfUmau4UO0++207e0n3e09o3AXkPrrQJu20r7o1TVaVW1pqrWrFy5ct4Ll5YL+5I0dwsdphcDMyNy1wEXDbW/uo3qPRS4t50G/gxweJLd2sCjw1ubJEmLxopxbTjJXwPPB/ZIspHBqNx3AecnOQ74DnB0W/1TwEuADcC/Aa8FqKq7krwTuKqt946q2nxQkyRJEzW2MK2qV25h0QtmWbeAE7awnTOBM+exNEmS5tViGYAkSdLUMkwlSepkmEqS1MkwlSSpk2EqSVInw1SSpE6GqSRJnQxTSZI6GaaSJHUyTCVJ6mSYSpLUyTCVJKmTYSpJUifDVJKkToapJEmdDFNJkjoZppIkdVox6QIm6Wd/7+xJlzB1vnrKqyddgiQtOh6ZSpLUyTCVJKmTYSpJUifDVJKkToapJEmdDFNJkjoZppIkdTJMJUnqZJhKktTJMJUkqZNhKklSJ8NUkqROhqkkSZ0MU0mSOi3rW7BJmh/eznDuvJ3h0uKRqSRJnQxTSZI6GaaSJHUyTCVJ6jQ1YZpkbZKbkmxI8uZJ1yNJ0oypCNMkOwIfAF4M7A+8Msn+k61KkqSBqQhT4BBgQ1V9q6r+HTgXOGLCNUmSBECqatI1bFOSo4C1VfUbbf5VwHOq6nVD6xwPHN9mnwHctOCFzq89gDsnXcQyNu3//ndW1drteeIS60vT/ndcCqb9bzBSX5qWizZklrZHvAuoqtOA0xamnPFLsr6q1ky6juVqOf/7L6W+tJz/jovFcvkbTMtp3o3AXkPzq4DbJlSLJEmPMC1hehWwOsm+SXYCjgUunnBNkiQBU3Kat6ruT/I64DPAjsCZVXX9hMsatyVxmm2K+e+/NPh3nLxl8TeYigFIkiQtZtNymleSpEXLMJUkqZNhOmFJKsl7hubfmORtEyxpycvAF5O8eKjtmCR/O8m6tP3sR5NhX3qYYTp59wEvS7LHpAtZLmowUOC/AX+WZJckPwacDJww2crUwX40Afalhxmmk3c/g9Fu/2PzBUl+IsllSa5pP/de+PKWpqq6Dvgb4E3AScDZVfXNJOuSXJnk6iQfTLJDkhVJzklybZLrkpw42eo1C/vRhNiXBqbiqzHLwAeAa5L8yWbtf8HgP+ZZSX4deB9w5IJXt3S9Hfga8O/AmiQ/DfwK8HPt61inMfhO8zeBParqmQBJdp1Uwdoq+9HkLPu+ZJguAlX1vSRnAycCPxha9J+Al7Xpc4DNXyTUoaq+n+Q84F+r6r4kLwSeDaxPAvBY4FYG329+RpL3Ap8CLplUzdoy+9Hk2JcM08Xkzxm8s/vwVtbxS8Hz78H2gME1oM+sqj/afKUkBzK4BeCJwMt5+ELwWlzsR5OzrPuSn5kuElV1F3A+cNxQ8z8wODUC8KvAFxe6rmXm74BjZgaxJHlSkr2TrGRwgZOPMfhM6OBJFqktsx8tGsuuL3lkuri8B3jd0PyJwJlJfg/YBLx2IlUtE1V1bZK3A3+XZAfgRwxGKj4AnJHB+apiMNBCi5f9aMKWY1/ycoKSJHXyNK8kSZ0MU0mSOhmmkiR1MkwlSepkmEqS1MkwXYKSPNCuh3ldko8leVySfZJcN+b97pDkfW2/1ya5Ksm+87Tt05PsPx/bkkZlX9Ko/J7p0vSDqjoIIMlHGXy/68IF2O8rgKcBB1bVg0lWAd8f9clJdqyqB2ZbVlW/MU81SnNhX9JIPDJd+r4A7Nemd0zyoSTXJ7kkyWMBkhyU5CvtrhqfSLJba788ybvbnR++keQ/t/Ydk5zS3i1fk+S32vafCtxeVQ8CVNXGqrq7PefwJF9O8rX2Dv/xrf2WJG9N8kXg95NcOVN4OwK4ZqiWNW16bdvOPya5rLX9WJIzW01fT3LEWP9VtRzZl7RFhukSlmQFg2tgXtuaVgMfqKoDgHsYXBcT4GzgTVV1YFv3pKHNrKiqQ4A3DLUfB9xbVc9mcDHr32ynoM4HfrmdFntPkme1OvYA/hB4YVUdDKwHfndoHz+squdV1f8GdkryH1v7K9o2h3+nlcCHgJdX1c8AR7dF/wv4bKvpF4BTMri3otTNvmRf2hZP8y5Nj01ydZv+AnAGg1NG366qmfavAvskeSKwa1V9vrWfBXxsaFsXDq/fpg8HDkxyVJt/IrC6qi5J8gzgsPa4LMnRDO4YsT/wpQzuILET8OWhfZw3NH0+cAzwLgYvAK/Y7Hc7FPj7qvo2PHQt1pmaXprkjW1+F2Bv4MZZ/4Wk0diX7EsjMUyXpoc+55nROt59Q00PMOiY2zLznAd4+P9LgNdX1Wc2X7mq7gM+DXw6yXcZ3DfyEuDSqnrlFvYx/FnQecDHklw42FzdvNm6M9f03FwYvMO+aYTfSRqVfUkj8TTvMldV9wJ3z3yGA7wK+PxWngKDexL+dpLHACR5evuc5eAkT2ttOwAHAv8MfAV4bpL92rLHJXn6Fur5JoMXmz/ike+yZ3wZ+Pl2Kowkuw/V9Pq0V7qZ02LSQrEvLW8emQpgHfBXSR4HfItt31XjdAanqb7WOtwmBu+anwx8KMnObb0rgb+oqh8meQ3w10PL/hD4xha2fx5wCvCorwJU1aYkxwMXtheZO4BfBN7J4F6W17SabgF+aRu/hzTf7EvLlHeNkSSpk6d5JUnqZJhKktTJMJUkqZNhKklSJ8NUkqROhqkkSZ0MU0mSOv1/oqkuMcPLYk4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGPlJREFUeJzt3Xu0ZGV95vHvIygkXgaQFhHQJtrq4GUQWzSDUYyKjbMmeA84SktQjAGNjiYimQDiYpYzeBl0GTIIrcBSEQW1dVBE1CBEgUaxuYm0ykgHBpqgeB0m4G/+qPeE4vS51Ol96tSpPt/PWrVq73ffftXV73lq79q1d6oKSZK05R4w6gIkSRp3hqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYjqEkj0xydpIfJbkuyflJHp9k/yRfWuBabkpybt/4K5J8fCFrmEqSPZNcluTGJJ9O8qBR16TFz741uyRHJdmQpJLsPOp6FgvDdMwkCfA54JtV9diq2gs4BthlHta97RYuujLJk7puf579N+CDVbUC+Blw+Ijr0SJn3xrYpcALgP896kIWE8N0/DwP+Jeq+vuJhqq6qqq+1UYfkuSzSX6Q5BPtD8TEp9yd2/DKJN9sw8cnOTXJV4Ezk7wuyXlJvtL26v77ADW9j94fnftp635H3/g1SZa3xw+SnNbaPpHkBUkubdvcd0v/cdp2Avwx8NnWdAbwki7r1JJg3xpAVX2vqm7qup6tzZZ+WtLoPBm4cobpTwOeBNxC7xPkfsAls6zz6cCzq+q3SV4H7N3WczdwQ5IPV9XNMyx/DvAXSR432EsA4HHAK4EjgCuAVwPPBv6E3h+P+4VfkicAn55mXftX1c/7xh8O/Lyq7mnjG4Hd5lCblib71uYm9y1NwzDd+lxeVRsBklwFLGf2Dr+2qn7bN35RVd3V1nEd8Bhgpg5/L3AS8C7gywPW+ZOqurpt49q2zUpydav5fqrqBnp/iAaRKdq8CLW6sm9pWobp+LkWeMUM0+/uG76X+97je7jvsP72k5b59YDrmMlZ9Dr8tX1t/ducvN3+bfyub/x3U21vjp+e7wB2SLJt2zvdnd7ehDQT+9bm3DMdkN+Zjp+vA9slecNEQ5JnJHnuLMvdRO+QE8DL57uoqvoX4IPAWydtcx+AJPsAe3ZY/w1Vtfc0j59PmreAb3DfH8bVwBe2dNtaMuxbs/QtTc8wHTMtKF4KvLCdvn8tcDyz73m9Gzg5ybfofSIehtO5/yffc4Gd2iGxNwE/HNJ2p/JO4D8n2UDvO9TTF3DbGkP2rcEkeUuSjfSO+KxPctpCbXsxi/czlSSpG/dMJUnqyBOQNJAklwHbTWp+7cRZg5K2jH1r6+BhXkmSOtoqD/OuWrWq6P2u0IePpfJYEPYtH0vwMZCtMkzvuOOOUZcgbZXsW9LUtsowlSRpIRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHQ3tQvdJ9gDOBB5J7w7vp1bVyUmOB94AbGqzHlNV57dl3gUcTu+egG+pqgta+yrgZGAb4LSqeu+w6t6a/fSEp4y6hHnx6GO9/rekxWWYd425B3h7VX03yUOBK5Nc2KZ9sKre1z9zkr2Ag4EnAY8Cvpbk8W3yR4AXAhuBK5Ksrarrhli7JEkDG1qYVtWtwK1t+JdJrgd2m2GRg4Czq+pu4CdJNgD7tmkbqurHAEnObvMappKkRWFBvjNNshx4GnBZazoqyfoka5Ls2Np2A27uW2xja5uuffI2jkiyLsm6TZs2TZ4saQvZt6TZDT1MkzwEOBd4a1X9AjgFeCywN7091/dPzDrF4jVD+/0bqk6tqpVVtXLZsmXzUrsk+5Y0iGF+Z0qSB9IL0k9U1XkAVXVb3/SPAl9qoxuBPfoW3x24pQ1P1y5J0sgNbc80SYDTgeur6gN97bv2zfZS4Jo2vBY4OMl2SfYEVgCXA1cAK5LsmeRB9E5SWjusuiVJmqth7pnuB7wWuDrJVa3tGOCQJHvTO1R7E/BGgKq6Nsk59E4sugc4sqruBUhyFHABvZ/GrKmqa4dYtyRJczLMs3kvYervO8+fYZkTgROnaD9/puUkSRolr4AkSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR0ZppIkdWSYSpLUkWEqSVJHhqkkSR1tO+oCpIWw34f3G3UJ8+LSN1866hIkTcE9U0mSOjJMJUnqyDCVJKkjw1SSpI4MU0mSOjJMJUnqaGhhmmSPJN9Icn2Sa5P8ZWvfKcmFSW5szzu29iT5UJINSdYn2advXavb/DcmWT2smiVJ2hLD3DO9B3h7Vf1b4FnAkUn2Ao4GLqqqFcBFbRzgQGBFexwBnAK98AWOA54J7AscNxHAkiQtBkML06q6taq+24Z/CVwP7AYcBJzRZjsDeEkbPgg4s3q+A+yQZFfgRcCFVXVnVf0MuBBYNay6JUmaqwX5zjTJcuBpwGXALlV1K/QCF3hEm2034Oa+xTa2tunaJ2/jiCTrkqzbtGnTfL8Eacmyb0mzG3qYJnkIcC7w1qr6xUyzTtFWM7Tfv6Hq1KpaWVUrly1btmXFStqMfUua3VDDNMkD6QXpJ6rqvNZ8Wzt8S3u+vbVvBPboW3x34JYZ2iVJWhSGeTZvgNOB66vqA32T1gITZ+SuBr7Q135oO6v3WcBd7TDwBcABSXZsJx4d0NokSVoUhnnXmP2A1wJXJ7mqtR0DvBc4J8nhwE+BV7Zp5wMvBjYAvwEOA6iqO5O8B7iizXdCVd05xLolSZqToYVpVV3C1N93Ajx/ivkLOHKada0B1sxfdZIkzR+vgCRJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktTR0MI0yZoktye5pq/t+CT/lOSq9nhx37R3JdmQ5IYkL+prX9XaNiQ5elj1SpK0pYa5Z/pxYNUU7R+sqr3b43yAJHsBBwNPasv8XZJtkmwDfAQ4ENgLOKTNK0nSorHtsFZcVRcnWT7g7AcBZ1fV3cBPkmwA9m3TNlTVjwGSnN3mvW6ey5UkaYuN4jvTo5Ksb4eBd2xtuwE3982zsbVN176ZJEckWZdk3aZNm4ZRt7Qk2bek2S10mJ4CPBbYG7gVeH9rzxTz1gztmzdWnVpVK6tq5bJly+ajVknYt6RBDO0w71Sq6raJ4SQfBb7URjcCe/TNujtwSxuerl2SpEVhoD3TJBcN0jbAenbtG30pMHGm71rg4CTbJdkTWAFcDlwBrEiyZ5IH0TtJae1ctytJ0jDNuGeaZHvg94Gd2/ebE4ddHwY8apZlPwXs35bdCBwH7J9kb3qHam8C3ghQVdcmOYfeiUX3AEdW1b1tPUcBFwDbAGuq6tq5v0xJkoZntsO8bwTeSi84r+S+MP0FvZ+sTKuqDpmi+fQZ5j8ROHGK9vOB82epU5KkkZkxTKvqZODkJG+uqg8vUE2SJI2VgU5AqqoPJ/n3wPL+ZarqzCHVJUnS2BgoTJOcRe8nLVcB97bmAgxTSdKSN+hPY1YCe1XVlL/xlCRpKRv0og3XAI8cZiGSJI2rQfdMdwauS3I5cPdEY1X9yVCqkiRpjAwapscPswhJksbZoGfz/sOwC5EkaVwNejbvL7nvAvMPAh4I/LqqHjaswiRJGheD7pk+tH88yUu4736jkiQtaVt0C7aq+jzwx/NciyRJY2nQw7wv6xt9AL3fnfqbU0mSGPxs3v/YN3wPvTu+HDTv1UiSNIYG/c70sGEXIknSuBr05uC7J/lcktuT3Jbk3CS7D7s4SZLGwaAnIH0MWEvvvqa7AV9sbZIkLXmDhumyqvpYVd3THh8Hlg2xLkmSxsagYXpHktck2aY9XgP88zALkyRpXAwapn8GvAr4P8CtwCsAT0qSJInBfxrzHmB1Vf0MIMlOwPvohawkSUvaoHumT50IUoCquhN42nBKkiRpvAwapg9IsuPESNszHXSvVpKkrdqggfh+4B+TfJbeZQRfBZw4tKokSRojg14B6cwk6+hd3D7Ay6rquqFWJknSmBj4UG0LTwNUkqRJtugWbJIk6T6GqSRJHRmmkiR1ZJhKktSRYSpJUkeGqSRJHRmmkiR1ZJhKktTR0MI0yZoktye5pq9tpyQXJrmxPe/Y2pPkQ0k2JFmfZJ++ZVa3+W9MsnpY9UqStKWGuWf6cWDVpLajgYuqagVwURsHOBBY0R5HAKfAv15Q/zjgmcC+wHH9F9yXJGkxGFqYVtXFwJ2Tmg8CzmjDZwAv6Ws/s3q+A+yQZFfgRcCFVXVnuwXchWwe0JIkjdRCf2e6S1XdCtCeH9HadwNu7ptvY2ubrn0zSY5Isi7Juk2bNs174dJSZd+SZrdYTkDKFG01Q/vmjVWnVtXKqlq5bNmyeS1OWsrsW9LsFjpMb2uHb2nPt7f2jcAeffPtDtwyQ7skSYvGQofpWmDijNzVwBf62g9tZ/U+C7irHQa+ADggyY7txKMDWpskSYvGwPcznasknwL2B3ZOspHeWbnvBc5JcjjwU+CVbfbzgRcDG4DfAIcBVNWdSd4DXNHmO6GqJp/UJEnSSA0tTKvqkGkmPX+KeQs4cpr1rAHWzGNpkiTNq8VyApIkSWPLMJUkqSPDVJKkjgxTSZI6MkwlSerIMJUkqaOh/TRGkpaCn57wlFGXMG8efezVc5p/vw/vN6RKFt6lb7600/LumUqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1NFIwjTJTUmuTnJVknWtbackFya5sT3v2NqT5ENJNiRZn2SfUdQsSdJ0Rrln+ryq2ruqVrbxo4GLqmoFcFEbBzgQWNEeRwCnLHilkiTNYNtRF9DnIGD/NnwG8E3gna39zKoq4DtJdkiya1XduiUbefpfnTkPpY7elScdOuoSJEnNqPZMC/hqkiuTHNHadpkIyPb8iNa+G3Bz37IbW9v9JDkiybok6zZt2jTE0qWlxb4lzW5UYbpfVe1D7xDukUmeM8O8maKtNmuoOrWqVlbVymXLls1XndKSZ9+SZjeSMK2qW9rz7cDngH2B25LsCtCeb2+zbwT26Ft8d+CWhatWkqSZLXiYJnlwkodODAMHANcAa4HVbbbVwBfa8Frg0HZW77OAu7b0+1JJkoZhFCcg7QJ8LsnE9j9ZVV9JcgVwTpLDgZ8Cr2zznw+8GNgA/AY4bOFLliRpegseplX1Y+DfTdH+z8Dzp2gv4MgFKE2SpC3iFZAkSerIMJUkqSPDVJKkjgxTSZI6MkwlSerIMJUkqSPDVJKkjgxTSZI6MkwlSerIMJUkqSPDVJKkjgxTSZI6MkwlSerIMJUkqSPDVJKkjgxTSZI6MkwlSerIMJUkqSPDVJKkjgxTSZI6MkwlSerIMJUkqaNtR12ApPH39L86c9QlzJsrTzp01CVoDLlnKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdGaaSJHVkmEqS1JFhKklSR4apJEkdjU2YJlmV5IYkG5IcPep6JEmaMBZhmmQb4CPAgcBewCFJ9hptVZIk9YxFmAL7Ahuq6sdV9f+As4GDRlyTJEkApKpGXcOskrwCWFVVr2/jrwWeWVVH9c1zBHBEG30CcMOCF3qfnYE7Rrj9UfK1j8YdVbVqGCu2by0aS/W1j/p1D9S3xuUWbJmi7X6fAqrqVODUhSlnZknWVdXKUdcxCr72re+127cWh6X62sfldY/LYd6NwB5947sDt4yoFkmS7mdcwvQKYEWSPZM8CDgYWDvimiRJAsbkMG9V3ZPkKOACYBtgTVVdO+KyZrIoDomNiK9dw7SU/42X6msfi9c9FicgSZK0mI3LYV5JkhYtw1SSpI7GKkyTVJL3942/I8nx87De/ZN8qet6Ri3JaQt1ZahhvReLVXouSXJgX9urknxllHXNB/vVzBayX7Xt2bfGsG+NVZgCdwMvS7LzqAsZlXZpxSlV1eur6roFKmVJvRfVO7ngz4EPJNk+yYOBE4EjR1vZvFhS7+VUFlG/giX2fmwtfWvcwvQeemd2vW3yhCSPSXJRkvXt+dFTzHN8krOSfD3JjUne0Df5IUk+m+QHST6RJG2Z5yf5XpKrk6xJsl1rvynJu5N8t017Ymt/cJvvirbcZpc9TLJrkouTXJXkmiR/1NoPSPLtts7PJHlI37aOTXIJ8NdJLu9b1/Ik69vwN5OsbMOr2nq+n+SiQWubg07vxTiqqmuALwLvBI4DzqyqHyVZneTy9n7+XZIHJNm2/V+7ur3Hbxlt9TOyXy2efgX2rfHsW1U1Ng/gV8DDgJuAfwO8Azi+TfsisLoN/xnw+SmWPx74PvB79C5RdTPwKGB/4C56F4N4APBt4NnA9m2ex7flzwTe2oZvAt7chv8COK0N/1fgNW14B+CHwIMn1fF24G/a8DbAQ1s9F0/MS+8/1bF92/rrvuWvAv6gb77/0oa/CawElrW692ztOw1a20K9F+P6AB5M73J6VwPbAU8GPg9s26afCrwaeCbw5b7ldhh17cN6L+1X89ev5uP9GNfHuPetcdszpap+Qa/zTf408ofAJ9vwWfQ67VS+UFW/rao7gG/Qu4g+wOVVtbGqfkevUy2ndx3Sn1TVD9s8ZwDP6VvXee35yjY/wAHA0UmuotcJtwcmf3q8Ajgsve9BnlJVvwSeRe+OOJe2ZVcDj+lb5tN9w+cAr2rDfzppGm1dF1fVTwCq6s451DaweXgvxk5V/Zrev/dZVXU38ALgGcC69u/6XOCxwAbgCUlOTvIieqGyaNmvgEXSr9q67Vtj1rfG4qINU/gfwHeBj80wz3Q/oJ3cPjF+d1/bvfT+baa6JnC/iWUm5qct8/KqmvZi4FV1cZLnAP8BOCvJScDPgAur6pBpFvt13/Cngc8kOa+3urpx0rxh6tc/a21boMt7Ma5+1x7Q+zddU1V/O3mmJE+ld9vAtwAv576LxS9W9qvF06/AvjVWfWvs9kzhXz8RngMc3tf8j/QuMwjwn4BLpln8oPS+5H44vcNQV8ywqR8Ay5M8ro2/FviHWcq7AHhz33dDT5s8Q5LHALdX1UeB04F9gO8A+01sK8nvJ3n8VBuoqh/R+0Pzt2z+6Rl6h9Oem2TPtq6dBq1trjq+F1uDrwGvSjtZJMnDkzw6yTJ6F0X5DL3vgPYZZZGDsF8tnn7V6rFvjVHfGsswbd5P7/uQCW+hd4hnPb3O+ZfTLHc58L/odbL3VNW0F8yvqv8LHEbv0+rV9D4x/f0sdb0HeCCwPsk1bXyy/YGrknyP3qeqk6tqE/A64FPtNXwHeOIM2/k08Bp6nW1y3ZvofVI7L8n3ue8PwyC1bYktfS/GXlVdDbwb+Fp7vV8FdqF3Y4aL2+GpjwLHjK7KObFfLZ5+BfatselbS+pygu27lF9V1ftGXYu0tbBfSeO9ZypJ0qKwpPZMJUkaBvdMJUnqyDCVJKkjw1SSpI4M061MenecOKtvfNskmzLA3TuS/Ko9L0/y6r72lUk+NMuyy9vPAuY8T5ITkrxgtvqkUbJvaSbjegUkTe/XwJOT/F5V/RZ4IfBPc1zHcnrXwPwkQFWtA9bNZ5H9qurYYa1bmkf2LU3LPdOt05fpXVIN4BDgUxMT0rvDxzv6xq9JsnzS8u8F/ii9OzW8LX33pczMdwiZWOc2SU5K7y4a65O8caZik3w8ySva8JzuGpLkSbnvrhLrk6yY47+VNBf2LU3JMN06nQ0cnGR74KnAZXNc/mjgW1W1d1V9cIrpT6X3B+UPgWOTPGrS9MOBu6rqGfQuVP2GtEuwDeiOqtoHOIXeHTMA/gb4elvn84CT0rvv4Z/Tu9LN3vTu7LFxDtuR5sq+pSkZpluhqlpP73DSIcD5Q9jEdHcImXAAcGi73NdlwMOBuXyqnctdQ74NHJPkncBj2uE3aSjsW5qO35luvdYC76N3vdKH97Xfw/0/RG2/Beue7g4hE0LvnpQX3K9x80Ne05nLXUOuT3IZvU/zFyR5fVV9fcDtSFvCvqXNuGe69VoDnNAuFt3vJtpdFpLsA0x1iOiX9G6sPJ3Z7hByAfCmJA9s23l8O2zUxZR35kjyB8CPq+pD9P7IPbXjdqTZ2Le0GcN0K9VuyHzyFJPOBXZqh3TeBPxwinnWA/ck+X6St00xfbY7hJwGXAd8t52u/z+571PwE5Js7Hu8csCXNN2dOf4UuKa9nifSu6GyNDT2LU3Fa/NqTuIdQqShsG+NN/dMJUnqyD1TSZI6cs9UkqSODFNJkjoyTCVJ6sgwlSSpI8NUkqSO/j/anIeh1yT2bgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHQZJREFUeJzt3X2UXXV97/H3BxDUKhVKtECgQQzcorVRUopFvbQoRu6toPUBWgWtt1ELKrW1PtwuoVpWHxBtUYuNmgIuBCnIlXqxSKkPFUESMALhQQJGjeRCKFWwUmzC9/6x95iTycxkZvacOXOS92utvebs7376npP8zvfsffb5/VJVSJKk6dtp0AlIkjTsLKaSJHVkMZUkqSOLqSRJHVlMJUnqyGIqSVJHFlNJkjqymA6xJD+f5KIkdyW5NckVSQ5KcmSSz81yLmuTXNoz//Ik585mDmNJckCSrye5M8mnk+w66Jw099iWti3JKUnWJKkkew06n7nGYjqkkgS4DPhSVR1YVYcA7waeMgP73mWamy5O8vSux59hfwl8sKoWAv8OvH7A+WiOsS1N2jXAC4DvDDqRuchiOrx+HfivqvroSKCqVlXVv7azT0hySZLbk1zQvmGMfOrdq328OMmX2senJ1mW5AvA+Ulem+QzSf6pPav7q0nk9H6aN6EttPv+o575W5IsaKfbk3y8jV2Q5AVJrmmPedh0X5z2OAF+A7ikDZ0HHNdln9ou2ZYmoaq+UVVru+5nezXdT00avGcAN0yw/FnA04F7aD5RHgF8dRv7PBR4blU9nOS1wKJ2P48AdyT5UFV9b4LtLwZ+P8nTJvcUAHga8ApgKbAC+G3gucBLaN5Mtih+SQ4GPj3Ovo6sqh/0zP8c8IOq2tjOrwP2nUJu2jHYlrY2ui1pGyym26/rq2odQJJVwAK2/QZweVU93DN/dVX9sN3HrcAvABO9AWwCzgTeBXx+knl+u6pubo+xuj1mJbm5zXkLVXUHzRvTZGSMmJ1Ra6psS9omi+nwWg28fILlj/Q83sTmf+uNbL68/9hR2/zHJPcxkU/SvAGs7on1HnP0cXuP8WjP/KNjHW+Kn6bvB56UZJf27HQ+zdmF1Mu2tDXPTKfI70yH178AuyX5vZFAkl9J8t+3sd1amktQAL8100lV1X8BHwROHXXMZwMkeTZwQIf931FVi8aZfjBq3QK+yOY3ypOAz0732Npu2Za20Za0bRbTIdUWipcCL2xv518NnM62z7z+FPibJP9K8wm5Hz7Blp+ELwX2bC+RvQn4Vp+OO5Z3AG9LsobmO9RPzOKxNQRsS5OT5C1J1tFc4bkpycdn69jDII5nKklSN56ZSpLUkTcgaUqSfB3YbVT4NSN3EUqaHNvS9sXLvJIkdbTdXuZdsmRJ0fym0MlpR5xmhO3IyWlytttiev/99w86BWno2Y6kydlui6kkSbPFYipJUkd9K6ZJ9kvyxSS3JVmd5K1tfM8kV7UjGVyVZI82niRnpxkv76a2d4+RfZ3Urn9nkpP6lbMkSdPRzzPTjcAfVtUvAocDJyc5BHgnTQfMC4Gr23mAFwML22kpcA40xRc4DfhV4DDgtJECLEnSXNC3YlpV66vqxvbxQ8BtNMNfHUszriRsOb7kscD51biOpoPyvYEXAVdV1QNV9e/AVcCSfuUtSdJUzcp3pkkW0Izl93XgKVW1HpqCCzy5XW1fthySaGTsyfHiYx1naZKVSVZu2LBhJp+CtMOwHUlT1/dimuQJNJ0zn1pVD0606hixmiC+dbBqWVUtrqrF8+bNm3qykmxH0jT0tZgmeQxNIb2gqj7Thu9tL9/S/r2vja8D9uvZfGTsyfHikiTNCf28mzc0wwfdVlUf6Fl0Oc24krDl+JKXAye2d/UeDvywvQx8JXB0kj3aG4+ObmOSJM0J/ezo/gjgNcDN7dh7AO8G/gK4OMnrge8Cr2iXXQEcA6wBfgy8DqCqHkjyPmBFu957q+qB6SZ16NvPn+6mc84NZ5446BQkSfSxmFbVVxn7+06Ao8ZYv4CTx9nXcmD5zGUnSdLMsQckSZI6sphKktSRxVSSpI4sppIkdWQxlSSpI4upJEkdWUwlSerIYipJUkcWU0mSOrKYSpLUkcVUkqSOLKaSJHVkMZUkqSOLqSRJHVlMJUnqqJ+Dg2sO+u57f2nQKcyo/d9z86BTkCTPTCVJ6spiKklSR30rpkmWJ7kvyS09sU8nWdVOa5OsauMLkjzcs+yjPdscmuTmJGuSnJ0k/cpZkqTp6Od3pucCHwbOHwlU1atGHic5C/hhz/p3VdWiMfZzDrAUuA64AlgCfL4P+UqSNC19OzOtqq8AD4y1rD27fCVw4UT7SLI3sHtVXVtVRVOYj5vpXCVJ6mJQ35k+D7i3qu7siR2Q5BtJvpzkeW1sX2Bdzzrr2tiYkixNsjLJyg0bNsx81tIOwHYkTd2giukJbHlWuh7Yv6qeBbwN+FSS3YGxvh+t8XZaVcuqanFVLZ43b96MJiztKGxH0tTN+u9Mk+wCvAw4dCRWVY8Aj7SPb0hyF3AQzZno/J7N5wP3zF62kiRt2yDOTF8A3F5VP718m2Rekp3bx08FFgJ3V9V64KEkh7ffs54IfHYAOUuSNK5+/jTmQuBa4OAk65K8vl10PFvfePR84KYk3wQuAd5YVSM3L70J+DiwBrgL7+SVJM0xfbvMW1UnjBN/7RixS4FLx1l/JfCMGU1OkqQZZA9IkiR1ZDGVJKkji6kkSR1ZTCVJ6shiKklSRxZTSZI6sphKktSRxVSSpI4sppIkdWQxlSSpI4upJEkdWUwlSerIYipJUkcWU0mSOrKYSpLUkcVUkqSOLKaSJHXUt2KaZHmS+5Lc0hM7Pcn3k6xqp2N6lr0ryZokdyR5UU98SRtbk+Sd/cpXkqTp6ueZ6bnAkjHiH6yqRe10BUCSQ4Djgae32/xtkp2T7Ax8BHgxcAhwQruuJElzxi792nFVfSXJgkmufixwUVU9Anw7yRrgsHbZmqq6GyDJRe26t85wupIkTdsgvjM9JclN7WXgPdrYvsD3etZZ18bGi0uSNGfMdjE9BzgQWASsB85q4xlj3ZogPqYkS5OsTLJyw4YNXXOVdki2I2nqZrWYVtW9VbWpqh4FPsbmS7nrgP16Vp0P3DNBfLz9L6uqxVW1eN68eTObvLSDsB1JUzerxTTJ3j2zLwVG7vS9HDg+yW5JDgAWAtcDK4CFSQ5IsivNTUqXz2bOkiRtS99uQEpyIXAksFeSdcBpwJFJFtFcql0LvAGgqlYnuZjmxqKNwMlVtandzynAlcDOwPKqWt2vnCVJmo5+3s17whjhT0yw/hnAGWPErwCumMHUJEmaUfaAJElSRxZTSZI6sphKktSRxVSSpI76dgOSNFcd8aEjBp3CjLnmzdcMOgVJeGYqSVJnFlNJkjqymEqS1JHFVJKkjiymkiR1ZDGVJKkji6kkSR1ZTCVJ6shiKklSRxZTSZI6sphKktSRffNK0jR8972/NOgUZsz+77l50CkMPc9MJUnqqG/FNMnyJPcluaUndmaS25PclOSyJE9q4wuSPJxkVTt9tGebQ5PcnGRNkrOTpF85S5I0Hf08Mz0XWDIqdhXwjKp6JvAt4F09y+6qqkXt9Mae+DnAUmBhO43epyRJA9W3YlpVXwEeGBX7QlVtbGevA+ZPtI8kewO7V9W1VVXA+cBx/chXkqTpGuR3pr8LfL5n/oAk30jy5STPa2P7Aut61lnXxsaUZGmSlUlWbtiwYeYzlnYAtiNp6gZSTJP8b2AjcEEbWg/sX1XPAt4GfCrJ7sBY34/WePutqmVVtbiqFs+bN2+m05Z2CLYjaepm/acxSU4C/idwVHvplqp6BHikfXxDkruAg2jORHsvBc8H7pndjCVJmtisnpkmWQK8A3hJVf24Jz4vyc7t46fS3Gh0d1WtBx5Kcnh7F++JwGdnM2dJkralb2emSS4EjgT2SrIOOI3m7t3dgKvaX7hc1965+3zgvUk2ApuAN1bVyM1Lb6K5M/hxNN+x9n7PKknSwPWtmFbVCWOEPzHOupcCl46zbCXwjBlMTZKkGWUPSJIkdWQxlSSpI4upJEkdWUwlSerIYipJUkcWU0mSOrKYSpLU0aSKaZKrJxOTJGlHNGGnDUkeCzyephejPdjc8fzuwD59zk2SpKGwrR6Q3gCcSlM4b2BzMX0Q+Egf85IkaWhMWEyr6m+Av0ny5qr60CzlJEnSUJlU37xV9aEkvwYs6N2mqs7vU16SJA2NSRXTJJ8EDgRW0YzqAs0g3RZTSdIOb7KjxiwGDhkZzFuSJG022d+Z3gL8fD8TkSRpWE32zHQv4NYk1wOPjASr6iV9yUqSpCEy2WJ6ej+TkCRpmE32bt4v9zsRSZKG1WS7E3woyYPt9J9JNiV5cBLbLU9yX5JbemJ7JrkqyZ3t3z3aeJKcnWRNkpuSPLtnm5Pa9e9MctJ0nqgkSf0yqWJaVU+sqt3b6bHAbwEfnsSm5wJLRsXeCVxdVQuBq9t5gBcDC9tpKXAONMUXOA34VeAw4LSRAixJ0lwwrVFjqur/AL8xifW+AjwwKnwscF77+DzguJ74+dW4DnhSkr2BFwFXVdUDVfXvwFVsXaAlSRqYyXba8LKe2Z1ofnc63d+cPqWq1gNU1fokT27j+wLf61lvXRsbLz5WnktpzmrZf//9p5metGOzHUlTN9m7eX+z5/FGYC3NmeRMyhixmiC+dbBqGbAMYPHixXYwIU2D7Uiausnezfu6GTzmvUn2bs9K9wbua+PrgP161psP3NPGjxwV/9IM5iNJUieTvZt3fpLL2jtz701yaZL50zzm5cDIHbknAZ/tiZ/Y3tV7OPDD9nLwlcDRSfZobzw6uo1JkjQnTPYGpL+nKXb70Hxf+Y9tbEJJLgSuBQ5Osi7J64G/AF6Y5E7ghe08wBXA3cAa4GPA7wNU1QPA+4AV7fTeNiZJ0pww2e9M51VVb/E8N8mp29qoqk4YZ9FRY6xbwMnj7Gc5sHwyiUqSNNsme2Z6f5JXJ9m5nV4N/Fs/E5MkaVhMtpj+LvBK4P8B64GXAzN5U5IkSUNrspd53wec1HaaMNIr0ftpiqwkSTu0yZ6ZPnOkkMJPbwp6Vn9SkiRpuEy2mO7U2x9ue2Y62bNaSZK2a5MtiGcBX0tyCU3vQ68EzuhbVpIkDZHJ9oB0fpKVNJ3bB3hZVd3a18wkSRoSk75U2xZPC6gkSaNMawg2SZK0mcVUkqSOLKaSJHVkMZUkqSOLqSRJHVlMJUnqyGIqSVJHFlNJkjqymEqS1JHFVJKkjma9mCY5OMmqnunBJKcmOT3J93vix/Rs864ka5LckeRFs52zJEkTmfVh1KrqDmARQJKdge8DlwGvAz5YVe/vXT/JIcDxwNOBfYB/TnJQVW2a1cQlSRrHoC/zHgXcVVXfmWCdY4GLquqRqvo2sAY4bFaykyRpEgZdTI8HLuyZPyXJTUmW9wxGvi/wvZ511rWxrSRZmmRlkpUbNmzoT8bSds52JE3dwIppkl2BlwD/0IbOAQ6kuQS8nmZAcmjGTx2txtpnVS2rqsVVtXjevHkznLG0Y7AdSVM3yDPTFwM3VtW9AFV1b1VtqqpHgY+x+VLuOmC/nu3mA/fMaqaSJE1gkMX0BHou8SbZu2fZS4Fb2seXA8cn2S3JAcBC4PpZy1KSpG2Y9bt5AZI8Hngh8Iae8F8lWURzCXftyLKqWp3kYuBWYCNwsnfySpLmkoEU06r6MfBzo2KvmWD9M4Az+p2XJEnTMei7eSVJGnoWU0mSOrKYSpLUkcVUkqSOLKaSJHVkMZUkqSOLqSRJHVlMJUnqyGIqSVJHFlNJkjqymEqS1JHFVJKkjiymkiR1ZDGVJKkji6kkSR1ZTCVJ6shiKklSRxZTSZI6GlgxTbI2yc1JViVZ2cb2THJVkjvbv3u08SQ5O8maJDclefag8pYkabRBn5n+elUtqqrF7fw7gauraiFwdTsP8GJgYTstBc6Z9UwlSRrHoIvpaMcC57WPzwOO64mfX43rgCcl2XsQCUqSNNogi2kBX0hyQ5KlbewpVbUeoP375Da+L/C9nm3XtbEtJFmaZGWSlRs2bOhj6tL2y3YkTd0gi+kRVfVsmku4Jyd5/gTrZoxYbRWoWlZVi6tq8bx582YqT2mHYjuSpm5gxbSq7mn/3gdcBhwG3Dty+bb9e1+7+jpgv57N5wP3zF62kiSNbyDFNMnPJHniyGPgaOAW4HLgpHa1k4DPto8vB05s7+o9HPjhyOVgSZIGbZcBHfcpwGVJRnL4VFX9U5IVwMVJXg98F3hFu/4VwDHAGuDHwOtmP2VJvQ59+/mDTmHG3HDmiYNOQUNuIMW0qu4GfnmM+L8BR40RL+DkWUhNkqQpm2s/jZEkaehYTCVJ6shiKklSRxZTSZI6sphKktSRxVSSpI4sppIkdWQxlSSpI4upJEkdWUwlSerIYipJUkcWU0mSOrKYSpLUkcVUkqSOLKaSJHVkMZUkqSOLqSRJHVlMJUnqaNaLaZL9knwxyW1JVid5axs/Pcn3k6xqp2N6tnlXkjVJ7kjyotnOWZKkiewygGNuBP6wqm5M8kTghiRXtcs+WFXv7105ySHA8cDTgX2Af05yUFVtmtWsJUkax6yfmVbV+qq6sX38EHAbsO8EmxwLXFRVj1TVt4E1wGH9z1SSpMkZ6HemSRYAzwK+3oZOSXJTkuVJ9mhj+wLf69lsHeMU3yRLk6xMsnLDhg19ylravtmOpKkbWDFN8gTgUuDUqnoQOAc4EFgErAfOGll1jM1rrH1W1bKqWlxVi+fNm9eHrKXtn+1ImrqBFNMkj6EppBdU1WcAqureqtpUVY8CH2Pzpdx1wH49m88H7pnNfCVJmsgg7uYN8Angtqr6QE98757VXgrc0j6+HDg+yW5JDgAWAtfPVr6SJG3LIO7mPQJ4DXBzklVt7N3ACUkW0VzCXQu8AaCqVie5GLiV5k7gk72TV5I0l8x6Ma2qrzL296BXTLDNGcAZfUtKkqQO7AFJkqSOLKaSJHVkMZUkqSOLqSRJHVlMJUnqyGIqSVJHFlNJkjqymEqS1JHFVJKkjgbRnaAkacgd8aEjBp3CjLnmzdd03odnppIkdWQxlSSpI4upJEkdWUwlSerIYipJUkcWU0mSOrKYSpLUkcVUkqSOhqaYJlmS5I4ka5K8c9D5SJI0YiiKaZKdgY8ALwYOAU5Icshgs5IkqTEUxRQ4DFhTVXdX1U+Ai4BjB5yTJEkApKoGncM2JXk5sKSq/lc7/xrgV6vqlFHrLQWWtrMHA3fMaqJb2gu4f4DHHzSf/2Cf//1VtWQ6G9qO5pwd/TUY9POfVFsalo7uM0Zsq08BVbUMWNb/dLYtycqqWjzoPAbF5z+8z992NLfs6K/BsDz/YbnMuw7Yr2d+PnDPgHKRJGkLw1JMVwALkxyQZFfgeODyAeckSRIwJJd5q2pjklOAK4GdgeVVtXrAaW3LnLhMNkA+f80EX0dfg6F4/kNxA5IkSXPZsFzmlSRpzrKYSpLUkcV0GpJsSrIqyeok30zytiQ7tcsen+SCJDcnuSXJV5M8oV32o8Fm3ujJf2RakGRxkrPb5acn+aMB5ndcbw9XSd6b5AWDymciSSrJWT3zf5Tk9AGmNFSGuS3ZjmbWsLelobgBaQ56uKoWASR5MvAp4GeB04C3AvdW1S+1yw8G/mtQiY7jp/n3WAus7LrjJKH5Lv7RDrs5DvgccCtAVb2na1599AjwsiR/XlU78g/rp2uY25LtaGYNdVvyzLSjqrqPpreYU9oGsDfw/Z7ld1TVI4PKb7KSHJnkcz2hX07yL0nuTPJ7Peu9PcmKJDcl+dM2tiDJbUn+FriRLX8TTJKjknyjPcNYnmS3Nr42yV8mub6dnpbk14CXAGe2n/YPTHJu2wsWSX4lydfas5jrkzyxzy/NtmykudvwD0YvSPILSa5uX6urk+w/++kNj+2hLdmOOhnqtmQxnQFVdTfNa/lkYDnwjiTXJvmzJAsHm92YHtdzaeqycdZ5JvA/gOcA70myT5KjgYU0fSUvAg5N8vx2/YOB86vqWVX1nZGdJHkscC7wqvYMYxfgTT3HebCqDgM+DPx1VX2N5jfEb6+qRVV1V8++dgU+Dby1qn4ZeAHwcLeXYkZ8BPidJD87Kv5hmtfkmcAFwNmzntmQGbK2ZDuaeUPbliymMycAVbUKeCpwJrAnsCLJLw4ysTE83DawRVX10nHW+WxVPdxebvkiTcM/up2+QfPJ+b/RvCkAfKeqrhtjPwcD366qb7Xz5wHP71l+Yc/f52wj74OB9VW1AqCqHqyqjdvYpu+q6kHgfOAtoxY9h+ayJcAngefOZl5DbFjaku1ohg1zW/I70xmQ5KnAJuA+gKr6EfAZ4DNJHgWOAW4bXIbTMvoHyEXzJvfnVfV3vQuSLAD+Y5z9jNWv8njH2daPnjOJdQblr2neGP9+gnXmau5zxnbYlmxHUzeUbckz046SzAM+Cny4qirJEUn2aJftSjP+6ncm2sccdWySxyb5OeBImi4drwR+N5vvqNy3vWlkIrcDC5I8rZ1/DfDlnuWv6vl7bfv4IWCs73BuB/ZJ8ivt8Z+YZE58IKyqB4CLgdf3hL9G0/UlwO8AX53tvIbJdtqWbEdTNKxtac68gEPmcUlWAY+h+dL8k8AH2mUHAue0N1DsBPxf4NJ22eOTrOvZzweq6gPMTdfT5L4/8L6quge4p73Mdm3z9PgR8GqaM4kxVdV/Jnkd8A9tg11B84Y5YrckX6d5rU5oYxcBH0vyFuDlPfv6SZJXAR9K8jia73le0OYxF5wF9A4L+BZgeZK3AxuA1w0kq7lte29LtqPpGbq2ZHeCGpgka4HFw3gbvDRX2I7mBi/zSpLUkWemkiR15JmpJEkdWUwlSerIYipJUkcW0+1AJjGCRpJTkzx+FnJZkOS3e+bHHfljBo51RZInzcS+JNuRurCY7jhOBab0JpBk52kcZwHw2z3zPx35o6qeQfND7EmP/DFRDlV1TFX9YBo5StNlO9KYLKbbkTQjVnwpySVJbm8/yab90fY+wBeTfLFd9+i2A/Ebk/xDT28sa5O8J8lXgVe0+xsZkeJbSZ7XrrdzkjOzeeSLN7Rp/AXwvDSdf/8BE4z8keTV7X5XJfm7kQaf5Edpxl78OvDuJBePeo7/2JPrXu3jE9s8vpnkk21sXpJL2xxXJDmif6++the2I9vRtFSV05BPwI/av0cCPwTm03xQuhZ4brtsLbBX+3gv4CvAz7Tz7wDe07PeH/fs+0vAWe3jY4B/bh8vBf6kfbwbzRiOB7Q5fK5n+0U0/axeC/wZsLCN/yLwj8Bj2vm/BU5sHxfwyvbxLsB3e3I9B3h173MCng7c0fP89mz/fqrn+e8P3DbofyunuTvZjmxHXSa7E9z+XF9V6wDSdNO2gK37sTycpp/Ta9J0Z7Yrm/vzhGZ4pl6faf/e0O4PmlEvnpl2fESaAZ0XAj/p3bCqVqXpvPxomi7LViR5DnAUcGg7D/A42s7NabpVu7TdfmOSfwJ+M8klNMNZ/fGo/H4DuKTaHmCq6duT9niHtPsH2D3JE6vqIaSJ2Y5sR1NiMd3+9A6evImx/40DXFVVJ4yxDLYeuWJkn737C/Dmqrpyix0nR47eWY098sdPgPOq6l1jHP8/q6q3n9JPAycDDwArxmjE442CsRPwnKqaK2M1anjYjjazHU2C35nuOHpHkLgOOCLtCBRp7hQ8aIr7uxJ4U5LHtPs4KMnPjDoOGX/kj6uBl6cdLSPJnkl+YZxjfQl4NvB7bP1pn3Zfr0wzMgdJ9mzjX6Cns+wki6b4HKXRbEe2ozF5ZrrjWAZ8Psn6qvr1JK8FLkyyW7v8T4Bvjbv11j5Oc6nqxjTXfzYAxwE3ARuTfBM4F/g3xhj5o6oqyZ8AX0iyE82diSczxhBbVbUpyeeA1wInjbF8dZIzgC8n2UQz6PJraUaa+EiSm2j+r38FeOMUnqM0mu3IdjQm++aVJKkjL/NKktSRxVSSpI4sppIkdWQxlSSpI4upJEkdWUwlSerIYipJUkf/H8+GusVq80l+AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAEYCAYAAAAKz2ydAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHadJREFUeJzt3X20XHV97/H3R0BsVQrIkSKBhtLgvUBtkBRoqS2tVoHeK2jBgi0gcm/Eglb7sETbW6ku1rJVagVbvKgR4qIggg+xCwWkKooVCBrzAFKCUIhwIYgPVCltwvf+sfcxQ3LOyeScPWfOyXm/1pp19nxnP3xnkt98Z+/5ze+XqkKSJE3d04adgCRJ2wuLqiRJHbGoSpLUEYuqJEkdsahKktQRi6okSR2xqEqS1BGL6iyQ5GeTXJHk7iS3J7kmyQFJjkryT9Ocy71Jru65f0KSS6Yzh7Ek2S/JzUnuSvKxJE8fdk6aeWxLW5fk7CRrk1SSPYadz2xjUZ3hkgT4JPDFqtq/qg4E3gbs2cG+d5zkpouSHDTV43fsr4H3VtUC4HvAGUPORzOMbalvNwEvAf5t2InMRhbVme83gf+qqg+MBqpqRVV9ub37rCRXJflWksvaN47RT8F7tMuLknyxXT43ycVJrgOWJnlNkk8k+Vx7lvc3feT0Hpo3o6do9/2nPfdXJ5nf3r6V5ENt7LIkL0lyU3vMwyb74rTHCfBbwFVt6FLg+KnsU9sl21IfquobVXXvVPczV03205Wmz8HAbRM8fghwEPAAzSfMI4GvbGWfhwK/VlWPJ3kNsLDdzxPAnUkurKr7J9j+SuAPk/xCf08BgF8ATgQWA7cCrwZ+DXg5zZvKU4pgkucDHxtnX0dV1fd77j8H+H5VbWjvrwP23obcNDfYlra0eVvSFFlUZ79bqmodQJIVwHy2/kawrKoe77l/Q1X9oN3H7cDPARO9EWwE3g28Ffhsn3neU1Wr2mOsaY9ZSVa1OT9FVd1J8wbVj4wRc1BrbSvbkqbMojrzrQFOmODxJ3qWN7Lp33QDmy7vP2OzbX7U5z4m8lGaN4I1PbHeY25+3N5jPNlz/8mxjreNn64fAXZNsmN7tjqP5mxD6mVb2pJnqh3zO9WZ75+BnZP879FAkl9O8htb2e5emktTAL/bdVJV9V/Ae4E3bXbMFwIkeSGw3xT2f2dVLRzn9v3N1i3gC2x6wzwN+PRkj63tlm1pK21JU2dRneHagvEK4LfbnwGsAc5l62difwW8L8mXaT4xD8KHeeon46uB3dtLZ68H/nVAxx3LW4A/TrKW5jvWD0/jsTUL2Jb6k+SNSdbRXPFZmeRD03Xs7UGcT1WSpG54pipJUkfsqKQxJbkZ2Hmz8CmjvQ4l9ce2NLd4+VeSpI5st5d/jz766KL5raI3b9vDbShsR962w9tAbbdF9ZFHHhl2CtKsZzuSts12W1QlSZpuFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSNzbkD9Q/9s6bBTmJLb3n3qsFOQJI1jYGeqSfZJ8oUkdyRZk+SP2vjuSa5Pclf7d7c2niQXJFmbZGU72/3ovk5r178ryWmDylmSpKkY5OXfDcCfVNV/B44AzkpyIHAOcENVLQBuaO8DHAMsaG+LgYugKcLA24HDgcOAt48WYkmSZpKBFdWqerCqvt4uPwbcAewNHAdc2q52KXB8u3wcsLQaXwN2TbIX8DLg+qp6tKq+B1wPHD2ovCVJmqxp6aiUZD5wCHAzsGdVPQhN4QWe2662N3B/z2br2th48bGOszjJ8iTL169f3+VTkOYM25E0eQMvqkmeBVwNvKmqfjjRqmPEaoL4lsGqi6tqUVUtGhkZ2fZkJdmOpCkYaFFNshNNQb2sqj7Rhh9qL+vS/n24ja8D9unZfB7wwARxSZJmlEH2/g3wYeCOqvrbnoeWAaM9eE8DPt0TP7XtBXwE8IP28vC1wEuT7NZ2UHppG5MkaUYZ5O9UjwROAVYlWdHG3ga8C7gyyRnAfcCJ7WPXAMcCa4EfA6cDVNWjSd4J3Nqu946qenSAeUuSNCkDK6pV9RXG/j4U4MVjrF/AWePsawmwpLvsJEnqnsMUSpLUEYuqJEkdsahKktQRi6okSR2xqEqS1BGLqiRJHbGoSpLUEYuqJEkdsahKktQRi6okSR2xqEqS1BGLqiRJHbGoSpLUEYuqJEkdsahKktQRi6okSR0ZWFFNsiTJw0lW98Q+lmRFe7s3yYo2Pj/J4z2PfaBnm0OTrEqyNskFScab+FySpKHacYD7vgR4P7B0NFBVvze6nOR84Ac9699dVQvH2M9FwGLga8A1wNHAZweQryRJUzKwM9WquhF4dKzH2rPNVwGXT7SPJHsBu1TVv1RV0RTo47vOVZKkLgzrO9UXAQ9V1V09sf2SfCPJl5K8qI3tDazrWWddG5MkacYZ5OXfiZzMU89SHwT2rarvJjkU+FSSg4Cxvj+t8XaaZDHNpWL23XffDtOV5g7bkTR5036mmmRH4JXAx0ZjVfVEVX23Xb4NuBs4gObMdF7P5vOAB8bbd1VdXFWLqmrRyMjIINKXtnu2I2nyhnGm+hLgW1X1k8u6SUaAR6tqY5KfBxYA366qR5M8luQI4GbgVODCIeQ8a933jl8cdgpTsu9frhp2CpLUt0H+pOZy4F+A5ydZl+SM9qGT2LKD0q8DK5N8E7gKOLOqRjs5vR74ELCW5gzWnr+SpBlpYGeqVXXyOPHXjBG7Grh6nPWXAwd3mpwkSQPgiEqSJHXEoipJUkcsqpIkdcSiKklSRyyqkiR1xKIqSVJHLKqSJHXEoipJUkcsqpIkdcSiKklSRyyqkiR1xKIqSVJHLKqSJHXEoipJUkcsqpIkdcSiKklSRyyqkiR1ZGBFNcmSJA8nWd0TOzfJd5KsaG/H9jz21iRrk9yZ5GU98aPb2Nok5wwqX0mSpmqQZ6qXAEePEX9vVS1sb9cAJDkQOAk4qN3mH5LskGQH4O+BY4ADgZPbdSVJmnF2HNSOq+rGJPP7XP044IqqegK4J8la4LD2sbVV9W2AJFe0697ecbqSJE3ZML5TPTvJyvby8G5tbG/g/p511rWx8eKSJM04011ULwL2BxYCDwLnt/GMsW5NEB9TksVJlidZvn79+qnmKs1JtiNp8qa1qFbVQ1W1saqeBD7Ipku864B9eladBzwwQXy8/V9cVYuqatHIyEi3yUtzhO1ImrxpLapJ9uq5+wpgtGfwMuCkJDsn2Q9YANwC3AosSLJfkqfTdGZaNp05S5LUr4F1VEpyOXAUsEeSdcDbgaOSLKS5hHsv8DqAqlqT5EqaDkgbgLOqamO7n7OBa4EdgCVVtWZQOUuSNBWD7P178hjhD0+w/nnAeWPErwGu6TA1SVN06J8tHXYKU3Lbu08ddgraTjmikiRJHbGoSpLUEYuqJEkdsahKktSRgXVUkobhyAuPHHYKU3LTG24adgqSpsAzVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMDK6pJliR5OMnqnti7k3wrycokn0yyaxufn+TxJCva2wd6tjk0yaoka5NckCSDylmSpKkY5JnqJcDRm8WuBw6uqhcA/wq8teexu6tqYXs7syd+EbAYWNDeNt+nJEkzwsCKalXdCDy6Wey6qtrQ3v0aMG+ifSTZC9ilqv6lqgpYChw/iHwlSZqqYX6n+lrgsz3390vyjSRfSvKiNrY3sK5nnXVtbExJFidZnmT5+vXru89YmgNsR9LkDaWoJvlzYANwWRt6ENi3qg4B/hj4xyS7AGN9f1rj7beqLq6qRVW1aGRkpOu0pTnBdiRN3o7TfcAkpwH/A3hxe0mXqnoCeKJdvi3J3cABNGemvZeI5wEPTG/GkiT1Z1rPVJMcDbwFeHlV/bgnPpJkh3b552k6JH27qh4EHktyRNvr91Tg09OZsyRJ/RrYmWqSy4GjgD2SrAPeTtPbd2fg+vaXMV9re/r+OvCOJBuAjcCZVTXayen1ND2Jf4rmO9je72ElSZoxBlZUq+rkMcIfHmfdq4Grx3lsOXBwh6lJkjQQjqgkSVJHLKqSJHWkr6Ka5IZ+YpIkzWUTfqea5BnAT9N0NtqNTb8b3QV43oBzkyRpVtlaR6XXAW+iKaC3samo/hD4+wHmJUnSrDNhUa2q9wHvS/KGqrpwmnKSJGlW6usnNVV1YZJfBeb3blNVSweUlyRJs05fRTXJR4H9gRU0gzNAMwavRVWSpFa/gz8sAg4cHatXkiRtqd/fqa4GfnaQiUiSNNv1e6a6B3B7kltoZ5MBqKqXDyQrSZJmoX6L6rmDTEKSpO1Bv71/vzToRCRJmu367f37GE1vX4CnAzsBP6qqXQaVmCRJs02/Z6rP7r2f5HjgsIFkJEnSLDWpWWqq6lPAb3WciyRJs1q/l39f2XP3aTS/W/U3q5Ik9ej3TPV/9txeBjwGHLe1jZIsSfJwktU9sd2TXJ/krvbvbm08SS5IsjbJyiQv7NnmtHb9u5Kcti1PUJKk6dLvd6qnT3L/lwDv56nDGZ4D3FBV70pyTnv/LcAxwIL2djhwEXB4kt2Bt7Pp7Pi2JMuq6nuTzEmSpIHod5LyeUk+2Z51PpTk6iTztrZdVd0IPLpZ+Djg0nb5UuD4nvjSanwN2DXJXjRnxtdX1aNtIb0eOLqfvCVJmk79Xv79CLCMZl7VvYHPtLHJ2LOqHgRo/z63je8N3N+z3ro2Nl58C0kWJ1meZPn69esnmZ40t9mOpMnrt6iOVNVHqmpDe7sEGOk4l4wRqwniWwarLq6qRVW1aGSk6/SkucF2JE1ev0X1kSR/kGSH9vYHwHcnecyH2su6tH8fbuPrgH161psHPDBBXJKkGaXfovpa4FXA/wMeBE4AJtt5aRkw2oP3NODTPfFT217ARwA/aC8PXwu8NMlubU/hl7YxSZJmlH4H1H8ncNpoj9u2R+57aIrtuJJcDhwF7JFkHU0v3ncBVyY5A7gPOLFd/RrgWGAt8GPaol1VjyZ5J3Bru947qmrzzk+SJA1dv0X1Bb0/YWkL3SFb26iqTh7noRePsW4BZ42znyXAkj5zlSRpKPq9/Pu00UEa4Cdnqv0WZEmS5oR+C+P5wFeTXEXT8/ZVwHkDy0qSpFmo3xGVliZZTjOIfoBXVtXtA81MkqRZpu9LuG0RtZBKkjSOSU39JkmStmRRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOjLtRTXJ85Os6Ln9MMmbkpyb5Ds98WN7tnlrkrVJ7kzysunOWZKkfvQ99VtXqupOYCFAkh2A7wCfBE4H3ltV7+ldP8mBwEnAQcDzgM8nOaCqNk5r4pIkbcWwL/++GLi7qv5tgnWOA66oqieq6h5gLXDYtGQnSdI2GHZRPQm4vOf+2UlWJlmSZLc2tjdwf88669rYFpIsTrI8yfL169cPJmNpO2c7kiZvaEU1ydOBlwMfb0MXAfvTXBp+EDh/dNUxNq+x9llVF1fVoqpaNDIy0nHG0txgO5Imb5hnqscAX6+qhwCq6qGq2lhVTwIfZNMl3nXAPj3bzQMemNZMJUnqwzCL6sn0XPpNslfPY68AVrfLy4CTkuycZD9gAXDLtGUpSVKfpr33L0CSnwZ+G3hdT/hvkiykubR77+hjVbUmyZXA7cAG4Cx7/kqSZqKhFNWq+jHwnM1ip0yw/nnAeYPOS5KkqRh2719JkrYbFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpI0MrqknuTbIqyYoky9vY7kmuT3JX+3e3Np4kFyRZm2RlkhcOK29JksYz7DPV36yqhVW1qL1/DnBDVS0AbmjvAxwDLGhvi4GLpj1TSZK2YthFdXPHAZe2y5cCx/fEl1bja8CuSfYaRoKSJI1nmEW1gOuS3JZkcRvbs6oeBGj/PreN7w3c37Ptujb2FEkWJ1meZPn69esHmLq0/bIdSZM3zKJ6ZFW9kObS7llJfn2CdTNGrLYIVF1cVYuqatHIyEhXeUpziu1ImryhFdWqeqD9+zDwSeAw4KHRy7rt34fb1dcB+/RsPg94YPqylSRp64ZSVJM8M8mzR5eBlwKrgWXAae1qpwGfbpeXAae2vYCPAH4weplYkqSZYschHXdP4JNJRnP4x6r6XJJbgSuTnAHcB5zYrn8NcCywFvgxcPr0pyxJ0sSGUlSr6tvAL40R/y7w4jHiBZw1DalJkjRpM+0nNZIkzVoWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpI8OapFySZo373vGLw05hSvb9y1XDTmHO8ExVkqSOTHtRTbJPki8kuSPJmiR/1MbPTfKdJCva27E927w1ydokdyZ52XTnLElSP4Zx+XcD8CdV9fUkzwZuS3J9+9h7q+o9vSsnORA4CTgIeB7w+SQHVNXGac1akqStmPYz1ap6sKq+3i4/BtwB7D3BJscBV1TVE1V1D7AWOGzwmUqStG2G+p1qkvnAIcDNbejsJCuTLEmyWxvbG7i/Z7N1jFOEkyxOsjzJ8vXr1w8oa2n7ZjuSJm9oRTXJs4CrgTdV1Q+Bi4D9gYXAg8D5o6uOsXmNtc+quriqFlXVopGRkQFkLW3/bEfS5A2lqCbZiaagXlZVnwCoqoeqamNVPQl8kE2XeNcB+/RsPg94YDrzlSSpH8Po/Rvgw8AdVfW3PfG9elZ7BbC6XV4GnJRk5yT7AQuAW6YrX0mS+jWM3r9HAqcAq5KsaGNvA05OspDm0u69wOsAqmpNkiuB22l6Dp9lz19J0kw07UW1qr7C2N+TXjPBNucB5w0sKUmSOuCISpIkdcSiKklSRyyqkiR1xKIqSVJHLKqSJHXEoipJUkcsqpIkdcSiKklSR4YxopIkaQY78sIjh53ClN30hpuGclzPVCVJ6ohFVZKkjlhUJUnqiEVVkqSOWFQlSeqIRVWSpI5YVCVJ6ohFVZKkjsyaoprk6CR3Jlmb5Jxh5yNJ0uZmRVFNsgPw98AxwIHAyUkOHG5WkiQ91awoqsBhwNqq+nZV/SdwBXDckHOSJOkpUlXDzmGrkpwAHF1V/6u9fwpweFWdvdl6i4HF7d3nA3dOa6KNPYBHhnDcYfH5To9Hquro6TiQ7WgofL7TZ6BtabYMqJ8xYlt8Gqiqi4GLB5/O+JIsr6pFw8xhOvl8tz+2o+nn891+zJbLv+uAfXruzwMeGFIukiSNabYU1VuBBUn2S/J04CRg2ZBzkiTpKWbF5d+q2pDkbOBaYAdgSVWtGXJa4xnqZbMh8PlqEOba6+zz3U7Mio5KkiTNBrPl8q8kSTOeRVWSpI5YVCcpSSU5v+f+nyY5d4gpdS6NryQ5pif2qiSfm+J+p/TaJXn51oaqTDI/yaunkGbfkhw/nSN8JXlekqum63iDNBfaEdiWtiGfWd+WLKqT9wTwyiR7DDuRQanmC/czgb9N8owkzwTOA86a4q6n9NpV1bKqetdWVpsPbNMbQTsc5mQcTzN8ZmcmyqWqHqiqE7o83hBt9+0IbEvbYNa3JYvq5G2g6cH25s0fSPJzSW5IsrL9u+/0p9eNqloNfAZ4C/B2YGlV3Z3ktCS3JFmR5B+SPC3Jjkk+mmRVktVJ3jjObqf02iV5TZL3t8uXJLkgyVeTfLsdfQvgXcCL2vzenGSHJO9Ocmu779e12x+V5AtJ/hFY1X4qvyPJB5OsSXJdkp9q190/yeeS3Jbky0n+W5JfBV4OvLs91v6b5Xpi+1p8M8mNbazfXP46yR/27OvcJH/S5ri6Z1/vaV/zlUne0MYPTfKlNtdrk+zVxz/3MMyJdgS2pTnTlqrK2yRuwL8DuwD3Aj8D/ClwbvvYZ4DT2uXXAp8adr5TfK7PpBmqbhWwM3Aw8Clgx/bxi2k+yR4OfLZnu10H8doBrwHe3y5fAnyc5gPigTRjRAMcBfxTzzaLgb9ol3cGlgP7tev9CNivfWw+zRvVwvb+lcAftMs3AAva5cOBf+7J4YRxnusqYO/e12MbcjkE+FLPvm4H9m1zXN3GXg9c3fNvsTuwE/BVYKSN/R7Nz9CG/n9pLrcj29LcaEuz4neqM1VV/TDJUuCNwOM9D/0K8Mp2+aPA30x3bl2qqh8l+Rjw71X1RJKXAL8MLE8C8FPA/TS/I35+kvcB1wDXTbDPLl+7T1XVk8DtSfYcZ52XAi/o+fT9M8AC4D+BW6rqnp5176mqFe3ybcD8JM8CfhX4ePucoWnEW3MTcEmSK4FPbEsuVfWNJM9N8jxgBPheVd2XZH7P/l8CfKCqNrTbPJrkYJo36+vbXHcAHuwj16GYK+0IbEvMgbZkUZ26vwO+DnxkgnW2hx8DP9neoBmLeUlV/Z/NV0ryApop+t4I/C6bBmYfS1ev3RO9KYyzToA3VNW1TwkmR9F8oh1vfxtp3uieBny/qhb2kc9PVNWZSQ4HfgdYkWThNuZyFXAC8LM0szNtLmz5GgVYU1W/si25DtlcaUdgW9qu25LfqU5RVT1Kc1njjJ7wV2mGUgT4feAr053XgH0eeFXazhFJnpNk3yQjNAOKfJzmO6MXTrSTAb92jwHP7rl/LfD6JDu1OR+QprNIX6rqh8A9SU5st0+SXxrnWD+RZP+qurmq/pJmVo59tjGXK2hejxNo3hQ2dx1wZpId233tTnN5cSTJr7SxnZIc1O9zHYY52o7AtrTdtSWLajfOp5nKaNQbgdOTrAROAf5oKFkNSFWtAv4K+Hz7HK8D9qT5T35jkhXAB4G39bG7Qb12K4ENbaeGNwMfovke5ettx4T/y7Zfqfl94Iwk3wTWsGlO3yuAP0vyjWzWuYKm08Wq9pg3At/cllyqGY7z2cB3qmqsy04fAu4DVrZ5vbqaOYdPAP66ja2gudw2082pdgS2pe2xLTlMoSRJHfFMVZKkjlhUJUnqiEVVkqSOWFQlSeqIRVWSpI5YVGehJPOSfDrJXUnuTvK+JE/fyjb39vwW7qtTOPYRSW5OMzbnHRnwjCJJFiW5oF0+Ks34oNKU2Y40CBbVWSbNWFmfoBlObAFwAPAsmhkv+lJVU2lQlwKL29FQDqb5wflAJNmxqpZX1ehg4kcxO35vqRnOdmQ7GhSL6uzzW8B/VNVHAKpqI80MFa9N8odJPpFm9oe7kow51meSf2//HpXki0muSvKtJJe1bzYTzczwXNqxL6tqY1Xd3q7/zCRL0swW8Y0kx7Xx8WZ+6P3EvyjJF9vlc5NcnOQ6YGmb4z+lGaPzTODN7af7FyW5p2cklV3afe7U6aut7ZXtyHY0EI79O/scRDMw9U+0A2rfR/PvuZBmRoYngDuTXFhV90+wv0PafT5AM2D1kUluBi4Ejquq9Ul+j+YT/GuB97b7/SLwOeDSqvoP4M9pZpp4bZJdgVuSfB44lWbWiEOqakOaob+25lDg16rq8TRjeFJV9yb5AM1A5O8BaHP4HZpZPk4Crq6q/+pj/5LtyHY0EJ6pzj5jDfrcG7+hqn7QNtDbgZ/byv5uqap17cwUK2imQno+m2ZmWAH8BTAPoKreASyiGU7t1TRvCNDMFnFOu/4XgWfQTK20xcwPfTzHZVX1+NZX40PA6e3y6Uw8mLjUy3a0ie2oQ56pzj5raGas+Ikku9CMFbqRLWeF2Nq/8VjrTzgzQ1XdDVyU5IPA+iTPabf53aq6c7Pcxnvz2sCmD3XP2OyxzWeXGFNV3ZRmkuHfAHaoZhJoqR+2o0152I465Jnq7HMD8NNJToXmuxaagbQvAX7c0THGnZkhye+Mfl9EM2/hRuD7NLNFvKHnu6RD2nXGmvkBmkmVD22Xn/LmNoGxZrBYClyOn661bWxHT2U76ohFdZapZgaEVwAnJrkL+FfgP+hvFot+jzHRzAyn0HwXtIJm4uPfbzt5vBPYiWaGh9XtfRhj5oc2/lfA+5J8meYNpR+fAV4x2sGijV0G7EbzhiD1xXZkOxoUZ6nRrJbkBJqOIKcMOxdptrIddcfvVDVrJbkQOAY4dti5SLOV7ahbnqlKktQRv1OVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpI/8fw+DIIa9F8t4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAEYCAYAAAAKz2ydAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHY5JREFUeJzt3X+UXWV97/H3R1CoFSqUEZGQBmngXqA2QhRbtKXV2shtBS1aaAuo3Bt/gNa2usTeXqV20UWL1uuv4o0aES8FkR+aulBEqlKxCgFjfoCU8KMQyYVYVFSUNvF7/9h74CTMTE5m9pkzk3m/1trr7POcZ+/9PZk853v2Ps9+nlQVkiRp6h437AAkSdpZmFQlSeqISVWSpI6YVCVJ6ohJVZKkjphUJUnqiElVkqSOmFRngSRPTXJxktuT3JzkyiQHJzkmyWemOZa7klzW8/yEJOdPZwxjSXJgkq8nuS3JJ5I8YdgxaeaxLW1fkjOSrE9SSfYZdjyzjUl1hksS4ArgS1V1UFUdCvw5sG8H+951kpsuTnLYVI/fsb8B3l1VC4HvAqcNOR7NMLalvl0HvAD4t2EHMhuZVGe+3wD+s6o+OFpQVauq6p/bp09KcmmSbyW5sP3gGP0WvE+7vjjJl9r1s5IsS/J54IIkr0hyeZLPtWd5f9tHTO+k+TDaSrvvN/U8X5tkQbt8K8mH27ILk7wgyXXtMZ892X+c9jgBfhO4tC36GHD8VPapnZJtqQ9V9Y2qumuq+5mrJvvtStPncODGCV5/JnAYcC/NN8yjga9sZ59HAs+tqh8neQWwqN3Pw8CtSd5XVfdMsP0lwOuS/GJ/bwGAXwReBiwFbgD+AHgu8GKaD5WtkmCSQ4BPjLOvY6rqez3Pfx74XlVtbp9vAPbfgdg0N9iWHmvbtqQpMqnOftdX1QaAJKuABWz/g2BFVf245/k1VfX9dh83A78ATPRBsAU4F3gr8Nk+47yzqta0x1jXHrOSrGlj3kpV3UrzAdWPjFHmoNbaUbYlTZlJdeZbB5wwwesP96xv4dG/6WYevby/+zbb/KjPfUzk4zQfBOt6ynqPue1xe4/x057nPx3reDv47fo7wJOT7Nqerc6jOduQetmWHssz1Y75m+rM90/Abkn+x2hBkmcl+fXtbHcXzaUpgN/rOqiq+k/g3cAbtznmEQBJjgAOnML+b62qReMs39umbgFf5NEPzFOBT0/22Npp2Za205Y0dSbVGa5NGC8Bfqu9DWAdcBbbPxP7S+A9Sf6Z5hvzIHyErb8ZXwbs3V46ey3wrwM67ljeAvxpkvU0v7F+ZBqPrVnAttSfJG9IsoHmis/qJB+ermPvDOJ8qpIkdWNgZ6pJDkjyxSS3JFmX5I/b8r2TXN12/746yV5teZK8t73peHV7yWN0X6e29W9LcuqgYpYkaSoGdqaaZD9gv6q6KckeNF3ZjwdeATxQVeckORPYq6rekuRY4PXAscBRwHuq6qgkewMrgcU0PTpvBI6squ8OJHABkOTrwG7bFJ882utQUn9sS3PLwHr/VtVGYGO7/oMkt9DcO3gccExb7WPAl2h+DzsOuKD93eNrSZ7cJuZjgKur6gGAJFcDS4CLBhW7oKqOGnYM0s7AtjS3TEtHpSQLaG6I/jqwb5twRxPvU9pq+7P1/VyjN/CPVz6hJUuWFM2ZrYvLzrAMhe3IZSdcBmrg96kmeRJNT7Y3VtWD7chfY1Ydo6wmKB/rWEtpRhlh/vz5Ox6sJNuRNAUDPVNN8niahHphVV3eFt/XXtYd/d31/rZ8A3BAz+ajN/CPV/4YVbWsqhZX1eKRkZHu3og0h9iOpMkbZO/f0Nx7dUtV/V3PSytobs6HrW/SXwGc0vYCfg7w/fby8FXAC5Ps1fYUfmFbJknSjDLIy79HAycDa9obmKEZ7Pkc4JIkpwF30wwMDXAlTc/f9cBDwCsBquqBJH9FM3A0wDtGOy1JkjSTDLL371cY+/dQgOePUb+A08fZ13JgeXfRSZLUPYcplCSpIyZVSZI6YlKVJKkjJlVJkjpiUpUkqSMDH1FppjnyzRcMO4QpufHcU4YdgiRpHJ6pSpLUEZOqJEkdMalKktQRk6okSR0xqUqS1JE51/t3rrn7Hb807BCmZP7b1gw7BEnqm2eqkiR1xKQqSVJHTKqSJHXEpCpJUkdMqpIkdcSkKklSR0yqkiR1ZGBJNcnyJPcnWdtT9okkq9rlriSr2vIFSX7c89oHe7Y5MsmaJOuTvDdJBhWzJElTMcjBH84H3g88MtdaVf3+6HqSdwHf76l/e1UtGmM/5wFLga8BVwJLgM8OIF5JkqZkYGeqVXUt8MBYr7Vnmy8HLppoH0n2A/asqn+pqqJJ0Md3HaskSV0Y1m+qzwPuq6rbesoOTPKNJF9O8ry2bH9gQ0+dDW3ZmJIsTbIyycpNmzZ1H7U0B9iOpMkbVlI9ia3PUjcC86vqmcCfAv+QZE9grN9Pa7ydVtWyqlpcVYtHRkY6DViaK2xH0uRN+4D6SXYFXgocOVpWVQ8DD7frNya5HTiY5sx0Xs/m84B7py9aSZL6N4wz1RcA36qqRy7rJhlJsku7/nRgIXBHVW0EfpDkOe3vsKcAnx5CzJIkbdcgb6m5CPgX4JAkG5Kc1r50Io/toPRrwOok3wQuBV5TVaOdnF4LfBhYD9yOPX8lSTPUwC7/VtVJ45S/Yoyyy4DLxqm/Eji80+AkSRoAR1SSJKkjJlVJkjpiUpUkqSMmVUmSOmJSlSSpIyZVSZI6YlKVJKkjJlVJkjpiUpUkqSMmVUmSOmJSlSSpIyZVSZI6YlKVJKkjJlVJkjpiUpUkqSMmVUmSOmJSlSSpIyZVSZI6YlKVJKkjA0uqSZYnuT/J2p6ys5J8O8mqdjm257W3Jlmf5NYkv91TvqQtW5/kzEHFK0nSVA3yTPV8YMkY5e+uqkXtciVAkkOBE4HD2m3+PskuSXYBPgC8CDgUOKmtK0nSjLProHZcVdcmWdBn9eOAi6vqYeDOJOuBZ7evra+qOwCSXNzWvbnjcCVJmrJh/KZ6RpLV7eXhvdqy/YF7eupsaMvGKx9TkqVJViZZuWnTpq7jluYE25E0edOdVM8DDgIWARuBd7XlGaNuTVA+pqpaVlWLq2rxyMjIVGOV5iTbkTR5A7v8O5aqum90PcmHgM+0TzcAB/RUnQfc266PVy5J0owyrWeqSfbrefoSYLRn8ArgxCS7JTkQWAhcD9wALExyYJIn0HRmWjGdMUuS1K+BnakmuQg4BtgnyQbg7cAxSRbRXMK9C3g1QFWtS3IJTQekzcDpVbWl3c8ZwFXALsDyqlo3qJglSZqKQfb+PWmM4o9MUP9s4Owxyq8EruwwNEmSBsIRlSRJ6ohJVZKkjphUJUnqyLTeUiMN2tHvO3rYIUzJda+/btghSJoCz1QlSeqISVWSpI6YVCVJ6ohJVZKkjphUJUnqiElVkqSOmFQlSeqISVWSpI6YVCVJ6ohJVZKkjphUJUnqiElVkqSOmFQlSeqISVWSpI4MLKkmWZ7k/iRre8rOTfKtJKuTXJHkyW35giQ/TrKqXT7Ys82RSdYkWZ/kvUkyqJglSZqKQZ6png8s2absauDwqnoG8K/AW3teu72qFrXLa3rKzwOWAgvbZdt9SpI0IwwsqVbVtcAD25R9vqo2t0+/BsybaB9J9gP2rKp/qaoCLgCOH0S8kiRN1TB/U30V8Nme5wcm+UaSLyd5Xlu2P7Chp86GtkySpBln12EcNMn/BDYDF7ZFG4H5VfXvSY4EPpXkMGCs309rgv0upblUzPz587sNWpojbEfS5E17Uk1yKvA7wPPbS7pU1cPAw+36jUluBw6mOTPtvUQ8D7h3vH1X1TJgGcDixYvHTb6Sxmc7eqy73/FLww5hSua/bc2wQ5gzpvXyb5IlwFuAF1fVQz3lI0l2adefTtMh6Y6q2gj8IMlz2l6/pwCfns6YJUnq18DOVJNcBBwD7JNkA/B2mt6+uwFXt3fGfK3t6ftrwDuSbAa2AK+pqtFOTq+l6Un8MzS/wfb+DitJ0owxsKRaVSeNUfyRcepeBlw2zmsrgcM7DE2SpIFwRCVJkjpiUpUkqSMmVUmSOmJSlSSpIyZVSZI6YlKVJKkjJlVJkjpiUpUkqSMmVUmSOmJSlSSpIyZVSZI60ldSTXJNP2WSJM1lEw6on2R34Ik0M83sxaOThu8JPG3AsUmSNKtsb5aaVwNvpEmgN/JoUn0Q+MAA45IkadaZMKlW1XuA9yR5fVW9b5pikiRpVuprPtWqel+SXwUW9G5TVRcMKC5JkmadvpJqko8DBwGrgC1tcQEmVUmSWn0lVWAxcGhV1SCDkSRpNuv3PtW1wFMHGYgkSbNdv0l1H+DmJFclWTG6bG+jJMuT3J9kbU/Z3kmuTnJb+7hXW54k702yPsnqJEf0bHNqW/+2JKfu6JuUJGk69Hv596xJ7v984P1s/dvrmcA1VXVOkjPb528BXgQsbJejgPOAo5LsDbyd5hJ0ATcmWVFV351kTJIkDUS/vX+/PJmdV9W1SRZsU3wccEy7/jHgSzRJ9TjggvZ3268leXKS/dq6V1fVAwBJrgaWABdNJiZJkgal32EKf5DkwXb5SZItSR6c5DH3raqNAO3jU9ry/YF7euptaMvGKx8rzqVJViZZuWnTpkmGJ81ttiNp8vpKqlW1R1Xt2S67A79Hc1m3SxmjrCYof2xh1bKqWlxVi0dGRjoNTporbEfS5E1qlpqq+hTwm5M85n3tZV3ax/vb8g3AAT315gH3TlAuSdKM0u/gDy/tefo4Hu00NBkrgFOBc9rHT/eUn5HkYpqOSt+vqo1JrgL+erSXMPBC4K2TPLYkSQPTb+/f3+1Z3wzcRdOxaEJJLqLpaLRPkg00vXjPAS5JchpwN/CytvqVwLHAeuAh4JUAVfVAkr8CbmjrvWO005IkSTNJv71/XzmZnVfVSeO89Pwx6hZw+jj7WQ4sn0wMkiRNl357/85LckU7kMN9SS5LMm/QwUmSNJv021HpozS/eT6N5naWf2zLJElSq9+kOlJVH62qze1yPmBfe0mSevSbVL+T5I+S7NIufwT8+yADkyRptuk3qb4KeDnw/4CNwAm0vXMlSVKj31tq/go4dXQQ+3aQ+3fSJFtJkkT/Z6rP6J0Vpr1P9JmDCUmSpNmp36T6uJ4RjUbPVPs9y5UkaU7oNzG+C/hqkktphid8OXD2wKKSJGkW6ndEpQuSrKQZRD/AS6vq5oFGJknSLNP3Jdw2iZpIJUkax6SmfpMkSY9lUpUkqSMmVUmSOmJSlSSpIyZVSZI6YlKVJKkjJlVJkjpiUpUkqSPTnlSTHJJkVc/yYJI3Jjkrybd7yo/t2eatSdYnuTXJb093zJIk9WPaB8WvqluBRQBJdgG+DVxBMz/ru6vqnb31kxwKnAgcBjwN+EKSg6tqy7QGLknSdgz78u/zgdur6t8mqHMccHFVPVxVdwLrgWdPS3SSJO2AYSfVE4GLep6fkWR1kuU9U83tD9zTU2dDW/YYSZYmWZlk5aZNmwYTsbSTsx1Jkze0pJrkCcCLgU+2RecBB9FcGt5IM90cNLPibKvG2mdVLauqxVW1eGRkpOOIpbnBdiRN3jDPVF8E3FRV9wFU1X1VtaWqfgp8iEcv8W4ADujZbh5w77RGKklSH4aZVE+i59Jvkv16XnsJsLZdXwGcmGS3JAcCC4Hrpy1KSZL6NO29fwGSPBH4LeDVPcV/m2QRzaXdu0Zfq6p1SS6hmct1M3C6PX8lSTPRUJJqVT0E/Pw2ZSdPUP9s4OxBxyVJ0lQMu/evJEk7DZOqJEkdMalKktQRk6okSR0xqUqS1BGTqiRJHTGpSpLUEZOqJEkdMalKktQRk6okSR0xqUqS1BGTqiRJHTGpSpLUEZOqJEkdMalKktQRk6okSR0xqUqS1BGTqiRJHRlaUk1yV5I1SVYlWdmW7Z3k6iS3tY97teVJ8t4k65OsTnLEsOKWJGk8uw75+L9RVd/peX4mcE1VnZPkzPb5W4AXAQvb5SjgvPZR0hAc+eYLhh3ClNx47inDDkE7qZl2+fc44GPt+seA43vKL6jG14AnJ9lvGAFKkjSeYSbVAj6f5MYkS9uyfatqI0D7+JS2fH/gnp5tN7RlW0myNMnKJCs3bdo0wNClnZftSJq8YSbVo6vqCJpLu6cn+bUJ6maMsnpMQdWyqlpcVYtHRka6ilOaU2xH0uQNLalW1b3t4/3AFcCzgftGL+u2j/e31TcAB/RsPg+4d/qilSRp+4aSVJP8bJI9RteBFwJrgRXAqW21U4FPt+srgFPaXsDPAb4/eplYkqSZYli9f/cFrkgyGsM/VNXnktwAXJLkNOBu4GVt/SuBY4H1wEPAK6c/ZEmSJjaUpFpVdwC/PEb5vwPPH6O8gNOnITRJkiZtpt1SI0nSrGVSlSSpIyZVSZI6YlKVJKkjJlVJkjpiUpUkqSMmVUmSOmJSlSSpIyZVSZI6YlKVJKkjJlVJkjpiUpUkqSMmVUmSOmJSlSSpIyZVSZI6YlKVJKkjJlVJkjpiUpUkqSMmVUmSOjLtSTXJAUm+mOSWJOuS/HFbflaSbydZ1S7H9mzz1iTrk9ya5LenO2ZJkvqx6xCOuRn4s6q6KckewI1Jrm5fe3dVvbO3cpJDgROBw4CnAV9IcnBVbZnWqCVJ2o5pP1Otqo1VdVO7/gPgFmD/CTY5Dri4qh6uqjuB9cCzBx+pJEk7Zqi/qSZZADwT+HpbdEaS1UmWJ9mrLdsfuKdnsw2Mk4STLE2yMsnKTZs2DShqaedmO5Imb2hJNcmTgMuAN1bVg8B5wEHAImAj8K7RqmNsXmPts6qWVdXiqlo8MjIygKilnZ/tSJq8oSTVJI+nSagXVtXlAFV1X1VtqaqfAh/i0Uu8G4ADejafB9w7nfFKktSPYfT+DfAR4Jaq+rue8v16qr0EWNuurwBOTLJbkgOBhcD10xWvJEn9Gkbv36OBk4E1SVa1ZX8OnJRkEc2l3buAVwNU1boklwA30/QcPt2ev5KkmWjak2pVfYWxfye9coJtzgbOHlhQkiR1wBGVJEnqiElVkqSOmFQlSeqISVWSpI6YVCVJ6ohJVZKkjphUJUnqiElVkqSOmFQlSerIMIYplCTNYEe/7+hhhzBl173+uqEc1zNVSZI6YlKVJKkjJlVJkjpiUpUkqSMmVUmSOmJSlSSpIyZVSZI6YlKVJKkjJlVJkjoya5JqkiVJbk2yPsmZw45HkqRtzYqkmmQX4APAi4BDgZOSHDrcqCRJ2tqsSKrAs4H1VXVHVf0HcDFw3JBjkiRpK6mqYcewXUlOAJZU1X9vn58MHFVVZ2xTbymwtH16CHDrtAba2Af4zhCOOyy+3+nxnapaMh0Hsh0Nhe93+gy0Lc2WWWoyRtljvg1U1TJg2eDDGV+SlVW1eJgxTCff787HdjT9fL87j9ly+XcDcEDP83nAvUOKRZKkMc2WpHoDsDDJgUmeAJwIrBhyTJIkbWVWXP6tqs1JzgCuAnYBllfVuiGHNZ6hXjYbAt+vBmGu/Tv7fncSs6KjkiRJs8FsufwrSdKMZ1KVJKkjJtUdkMZXkryop+zlST43zLimQ5JK8q6e529KctYw9pXkxdsbqjLJgiR/MJn4dlSS46dzhK8kT0ty6XQdr2tzuR2BbWk7x5r1bcmkugOq+QH6NcDfJdk9yc8CZwOnDzeyafEw8NIk+wx7X1W1oqrO2U61BcAOfRC0w2FOxvE0w2d2ZqJYqureqjqhy+NNpznejsC2NJFZ35ZMqjuoqtYC/wi8BXg7cEFV3Z7k1CTXJ1mV5O+TPC7Jrkk+nmRNkrVJ3jDc6KdkM02PvT/Z9oUkv5DkmiSr28f5g9xXklckeX+7fn6S9yb5apI72tG3AM4Bntf+Pf4kyS5Jzk1yQ7vvV7fbH5Pki0n+AVjTfiu/JcmHkqxL8vkkP9PWPSjJ55LcmOSfk/yXJL8KvBg4tz3WQdvE+rL2b//NJNe2Zf3G8jdJXtezr7OS/Fkb49qefb2z/T+2Osnr2/Ijk3y5jfWqJPtt528yreZwOwLb0s7dlqrKZQcX4Gdphm5bA+wGHA58Cti1fX0ZzTe7o4DP9mz35GHHPoX3/ENgT+Au4OeANwFnta/9I3Bqu/4q4FOD3BfwCuD97fr5wCdpviAeSjNGNMAxwGd6tlkK/EW7vhuwEjiwrfcj4MD2tQU0H1SL2ueXAH/Url8DLGzXjwL+qSeGE8Z5r2uA/Xv//jsQyzOBL/fs62Zgfhvj2rbstcBlPf/39gYeD3wVGGnLfp/mNrSh/z+a6+3ItrTzt6VZcZ/qTFNVP0ryCeCHVfVwkhcAzwJWJgH4GeAemvtqD0nyHuBK4PPDirkLVfVgkguANwA/7nnpV4CXtusfB/52OvdF82HxU+DmJPuOU+eFwDN6vn3/HLAQ+A/g+qq6s6funVW1ql2/EViQ5EnArwKfbP/G0DTi7bkOOD/JJcDlOxJLVX0jyVOSPA0YAb5bVXcnWdCz/xcAH6yqze02DyQ5nCZBXd3GuguwsY9Yp9VcbUdgW2Inbksm1cn7abtAMzbx8qr6X9tWSvIMminr3gD8Ho8OVD5b/W/gJuCjE9Tp9+bnrvb1cM/6WONEj5a/vqqu2qowOYbmG+14+9tC8+H+OOB7VbWoj3geUVWvSXIU8N+AVUkW7WAslwInAE+lmZ1pW+Gx/0YB1lXVr+xIrEMyV9sR2JZ2yrbkb6rd+ALw8rSdBZL8fJL5SUZoBtj4JM3vRkcMM8guVNUDNJdxTusp/irN0JEAfwh8Zbr3NYYfAHv0PL8KeG2SxwMkOThNB5m+VNWDwJ1JXtZunyS/PM6xHpHkoKr6elW9jWZWjgN2MJaLaf49TqD5UNjW54HXJNm13dfeNJdUR5L8Slv2+CSH9fteh2jOtCOwLe2sbcmk2oGqWgP8JfCFJKtp/jj70vzRr02yCvgQ8OfDi7JT76KZumnUG4BXtu/9ZOCPh7SvXquBzW2nhj8BPkzzO8pNbceE/8OOX6n5Q+C0JN8E1vHonL4XA29O8o1s07mCptPFmvaY1wLf3JFYqhmOcw/g21U11mWnDwN3A6vbuP6gmjmHTwD+pi1bRXO5bUabg+0IbEs7XVtymEJJkjrimaokSR0xqUqS1BGTqiRJHTGpSpLUEZOqJEkdManOYknmJfl0ktuS3J7kPUmesJ1t7uq5D/CrUzj2+UnuTDNG57eSvH2S+zkmyWcmG4c0VbYjdcmkOkulGTPrcpphxRYCBwNPopntoy9VNdV7F9/cjoqyCDg1yYFT3J80rWxH6ppJdfb6TeAnVfVRgKraQjNTxauSvC7J5WlmgbgtyZhjfib5Yft4TJIvJbm0/bZ8Yfth0+8MDbu3jz9qt3lbmlkj1iZZ1rOvX0zyhfYm8pu2vbk7ybPam76fnmYWiTf1vLY2zYwSC9oYP5ZmJolLkzxxSv+SmstsR7ajTplUZ6/DaAaofkQ7/NfdNCOKLKKZUeGXgN9PcsB29vdM4I00s1M8HTg6zdBf76OZNeJIYDlbf4M/N80oNxuAi6vq/rb8/VX1rKo6nGasz99pyy8EPlBVv0wzKskjo5qkmfbpg8BxVXXHdmI9BFhWVc8AHgRet5360nhsR7ajTplUZ6+xBn/uLb+mqr5fVT+hGcbrF7azv+urakM7Q8UqmimRDuHRGRpWAX8BzOvZZvSy1VOB57cNGuA3knw9yRqaM4HDkuxBM23TFQBV9ZOqeqit/19ppvn63aq6u4/3fk9VXdeu/1/guX1sI43FdtSwHXXEWWpmr3U0s3U8IsmeNOOkbuGxs0Ns7289Vv2+Zmioqh8m+RLw3CQ3AX8PLK6qe5KcRXNZa7wZL6D5pr07zbf8e9uyzWz9pW/3nvVtPwQda1OTZTsa/7kmwTPV2esa4IlJToFm1nqaAbXPBx6aYLsd0dcMDWlmdTgKuJ1HG+130sybeAI8ckltQ5Lj22126/kN53s00zn9dZopm6CZdPmItu4RNBMPj5o/GhNwEpOffUOyHTVsRx0xqc5S1cyE8BLgZUluA/4V+AkdzuDRxwwNo78FrQbWAJdX1fdoZhJZA3wKuKGn/snAG9LMmvFVmstdo8e6D/hd4ANp5ky8DNi73f9r2/c36haaXpKrgb2B87p6z5pbbEe2o645S41mlSQLgM+0nTckTYLtaHA8U5UkqSOeqUqS1BHPVCVJ6ohJVZKkjphUJUnqiElVkqSOmFQlSerI/wfM5m+RBNIIbQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAEYCAYAAAAKz2ydAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHFFJREFUeJzt3X2UZHV95/H3R1B8RDF0DPIQCA7kgDGjTNCEaEg0imxWUdFADIJxd9SAxpi4anZXiQnnaNAY0QQXFQGP8qAEJS4KSKJEFHXAcZhBicNDdISFIT5gIplk8Lt/3F9L0XT31HTf6uqefr/OqdO3fnUfvlUzv/rUvXXr/lJVSJKk+XvAuAuQJGlHYahKktQTQ1WSpJ4YqpIk9cRQlSSpJ4aqJEk9MVQlSeqJoboEJPmZJOcluTHJ9UkuSXJAksOTfHKBa7klyYUD949OctZC1jCdJPsl+VKSbyY5P8mDxl2TFh/70rYlOSnJxiSVZPdx17PUGKqLXJIAFwGfrar9q+og4E+Ax/Sw7p3nuOiqJAfPd/s9exvwzqpaAXwPeNmY69EiY18a2lXAM4B/HnchS5Ghuvj9OvCfVfXeyYaqWltV/9juPjzJx5J8I8mH2xvH5Kfg3dv0qiSfbdMnJzkjyWXAOUlOSPK3ST7d9vL+Yoia3k73ZnQfbd1/PHB/fZJ92+0bSd7f2j6c5BlJrmrbPHSuL07bToDfAD7Wms4GjprPOrVDsi8Noaq+WlW3zHc9y9VcP11p4TweuGaWx58IHAzcSvcJ8zDg89tY5yHAr1bV3UlOAFa29WwBbkjy7qr69izLXwD8fpLHDfcUAHgc8EJgNfAV4HeAXwWeQ/emcp8QTHIgcP4M6zq8qr4/cP+ngO9X1dZ2fxOw53bUpuXBvnR/U/uS5slQXfq+XFWbAJKsBfZl228EF1fV3QP3r6iqH7R1XA/8LDDbG8E9wKnAG4FPDVnnzVV1XdvGhrbNSnJdq/k+quoGujeoYWSaNi9qre1lX9K8GaqL3wbg6Fke3zIwfQ/3/ptu5d7D+w+essy/DbmO2XyI7o1gw0Db4DanbndwGz8euP/j6ba3nZ+u7wQelWTntre6F93ehjTIvnR/7qn2zO9UF7+/B3ZJ8t8nG5L8UpJf28Zyt9AdmgJ4Qd9FVdV/Au8EXjNlm08CSPIkYL95rP+Gqlo5w+37U+Yt4B+49w3zeOATc922dlj2pW30Jc2fobrItcB4HvCb7WcAG4CT2fae2J8C70ryj3SfmEfhA9z3k/GFwKPbobNXAv80ou1O5/XAa5NspPuO9QMLuG0tAfal4SR5dZJNdEd81iV5/0Jte0cQx1OVJKkf7qlKktQTT1TStJJ8CdhlSvNxk2cdShqOfWl58fCvJEk92WEP/x5xxBFF91tFb952hNtY2I+87YC3kdphQ/XOO+8cdwnSkmc/krbPDhuqkiQtNENVkqSeGKqSJPXEUJUkqSeGqiRJPTFUJUnqiaEqSVJPDFVJknpiqEqS1JNld0H9Q153zrhLmJdrTn3JuEuQJM1g2YXqcvOtt/zCuEuYl33e5EAekpYOD/9KktQTQ1WSpJ4YqpIk9cRQlSSpJ4aqJEk9MVQlSeqJoSpJUk8MVUmSemKoSpLUE0NVkqSejCxUk5yZ5I4k6wfazk+ytt1uSbK2te+b5O6Bx947sMwhSa5LsjHJaUkyqpolSZqPUV779yzgPcBPrmBfVb89OZ3kHcAPBua/sapWTrOe04HVwNXAJcARwKdGUK8kSfMysj3VqroS+O50j7W9zRcB5862jiR7ALtW1RerqugC+qi+a5UkqQ/j+k71qcDtVfXNgbb9knw1yeeSPLW17QlsGphnU2ubVpLVSdYkWbN58+b+q5aWAfuRNHfjCtVjue9e6m3APlX1ROC1wEeS7ApM9/1pzbTSqjqjqlZV1aqJiYleC5aWC/uRNHcLPp5qkp2B5wOHTLZV1RZgS5u+JsmNwAF0e6Z7DSy+F3DrwlUrSdLwxrGn+gzgG1X1k8O6SSaS7NSmfw5YAdxUVbcBP0zylPY97EuAT4yhZkmStmmUP6k5F/gicGCSTUle1h46hvufoPQ0YF2SrwEfA15RVZMnOb0SeD+wEbgRz/yVJC1SIzv8W1XHztB+wjRtFwIXzjD/GuDxvRYnSdIIeEUlSZJ6YqhKktQTQ1WSpJ4YqpIk9cRQlSSpJ4aqJEk9MVQlSeqJoSpJUk8MVUmSemKoSpLUE0NVkqSeGKqSJPXEUJUkqSeGqiRJPTFUJUnqiaEqSVJPDFVJknpiqEqS1BNDVZKknowsVJOcmeSOJOsH2k5O8p0ka9vtyIHH3phkY5IbkjxroP2I1rYxyRtGVa8kSfM1yj3Vs4Ajpml/Z1WtbLdLAJIcBBwDHNyW+ZskOyXZCfhr4NnAQcCxbV5JkhadnUe14qq6Msm+Q87+XOC8qtoC3JxkI3Boe2xjVd0EkOS8Nu/1PZcrSdK8jeM71ZOSrGuHh3drbXsC3x6YZ1Nrm6l9WklWJ1mTZM3mzZv7rltaFuxH0twtdKieDuwPrARuA97R2jPNvDVL+7Sq6oyqWlVVqyYmJuZbq7Qs2Y+kuRvZ4d/pVNXtk9NJ3gd8st3dBOw9MOtewK1teqZ2SZIWlQXdU02yx8Dd5wGTZwZfDByTZJck+wErgC8DXwFWJNkvyYPoTma6eCFrliRpWCPbU01yLnA4sHuSTcCbgcOTrKQ7hHsL8HKAqtqQ5AK6E5C2AidW1T1tPScBlwI7AWdW1YZR1SxJ0nyM8uzfY6dp/sAs858CnDJN+yXAJT2WJknSSHhFJUmSemKoSpLUE0NVkqSeGKqSJPVkQX+nKo3aYe8+bNwlzMtVr7pq3CVImgf3VCVJ6omhKklSTwxVSZJ6YqhKktQTQ1WSpJ4YqpIk9cRQlSSpJ4aqJEk9MVQlSeqJoSpJUk8MVUmSemKoSpLUE0NVkqSeGKqSJPVkZKGa5MwkdyRZP9B2apJvJFmX5KIkj2rt+ya5O8nadnvvwDKHJLkuycYkpyXJqGqWJGk+RrmnehZwxJS2y4HHV9UTgH8C3jjw2I1VtbLdXjHQfjqwGljRblPXKUnSojCyUK2qK4HvTmm7rKq2trtXA3vNto4kewC7VtUXq6qAc4CjRlGvJEnzNc7vVH8P+NTA/f2SfDXJ55I8tbXtCWwamGdTa5tWktVJ1iRZs3nz5v4rlpYB+5E0d2MJ1ST/E9gKfLg13QbsU1VPBF4LfCTJrsB035/WTOutqjOqalVVrZqYmOi7bGlZsB9Jc7fzQm8wyfHAbwFPb4d0qaotwJY2fU2SG4ED6PZMBw8R7wXcurAVS5I0nAXdU01yBPB64DlV9aOB9okkO7Xpn6M7IemmqroN+GGSp7Szfl8CfGIha5YkaVgj21NNci5wOLB7kk3Am+nO9t0FuLz9Mubqdqbv04C3JNkK3AO8oqomT3J6Jd2ZxA+h+w528HtYSWNwyOvOGXcJ83LNqS8ZdwnaQY0sVKvq2GmaPzDDvBcCF87w2Brg8T2WJknSSHhFJUmSemKoSpLUE0NVkqSeGKqSJPXEUJUkqSeGqiRJPTFUJUnqiaEqSVJPDFVJknpiqEqS1BNDVZKknhiqkiT1ZKhQTXLFMG2SJC1ns45Sk+TBwEPphm/bDUh7aFfgsSOuTZKkJWVbQ7+9HHgNXYBew72hehfw1yOsS5KkJWfWUK2qdwHvSvKqqnr3AtUkSdKSNNQg5VX17iS/Auw7uExVnTOiuiRJWnKGCtUkHwL2B9YC97TmAgxVSZKaoUIVWAUcVFU1ymIkSVrKhv2d6nrgZ7Z35UnOTHJHkvUDbY9OcnmSb7a/u7X2JDktycYk65I8aWCZ49v830xy/PbWIUnSQhg2VHcHrk9yaZKLJ29DLHcWcMSUtjcAV1TVCuCKdh/g2cCKdlsNnA5dCANvBp4MHAq8eTKIJUlaTIY9/HvyXFZeVVcm2XdK83OBw9v02cBngde39nPaIearkzwqyR5t3sur6rsASS6nC+pz51KTJEmjMuzZv5/rcZuPqarb2npvS/LTrX1P4NsD821qbTO130+S1XR7ueyzzz49liwtH/Yjae6GvUzhD5Pc1W7/nuSeJHf1XEumaatZ2u/fWHVGVa2qqlUTExO9FictF/Yjae6GCtWqekRV7dpuDwZeALxnjtu8vR3Wpf29o7VvAvYemG8v4NZZ2iVJWlTmNEpNVX0c+I05bvNiYPIM3uOBTwy0v6SdBfwU4AftMPGlwDOT7NZOUHpma5MkaVEZ9uIPzx+4+wC6361u8zerSc6lO9Fo9ySb6M7ifStwQZKXAd8CXthmvwQ4EtgI/Ah4KUBVfTfJnwFfafO9ZfKkJUmSFpNhz/79rwPTW4Fb6M7WnVVVHTvDQ0+fZt4CTpxhPWcCZ26zSkmSxmjYs39fOupCJEla6oY9+3evJBe1qyPdnuTCJHuNujhJkpaSYU9U+iDdiUSPpfuN6N+1NkmS1AwbqhNV9cGq2tpuZwH+gE2SpAHDhuqdSX43yU7t9rvAv4yyMEmSlpphQ/X3gBcB/w+4DTia9pMXSZLUGfYnNX8GHF9V34OfjBzzdrqwlSRJDL+n+oTJQIXuggzAE0dTkiRJS9OwofqAwTFM257qsHu5kiQtC8MG4zuALyT5GN3lCV8EnDKyqiRJWoKGvaLSOUnW0F1EP8Dzq+r6kVYmSdISM/Qh3BaiBqkkSTOY09BvkiTp/gxVSZJ6YqhKktQTQ1WSpJ4YqpIk9cRQlSSpJ4aqJEk9WfBQTXJgkrUDt7uSvCbJyUm+M9B+5MAyb0yyMckNSZ610DVLkjSMBb9+b1XdAKwESLIT8B3gIrqh5N5ZVW8fnD/JQcAxwMHAY4HPJDmgqu5Z0MIlSdqGcR/+fTpwY1X98yzzPBc4r6q2VNXNwEbg0AWpTpKk7TDuUD0GOHfg/klJ1iU5c2BUnD2Bbw/Ms6m13U+S1UnWJFmzefPm0VQs7eDsR9LcjS1UkzwIeA7w0dZ0OrA/3aHh2+hGxoHuAv5T1XTrrKozqmpVVa2amJjouWJpebAfSXM3zj3VZwPXVtXtAFV1e1XdU1U/Bt7HvYd4NwF7Dyy3F3DrglYqSdIQxhmqxzJw6DfJHgOPPQ9Y36YvBo5JskuS/YAVwJcXrEpJkoa04Gf/AiR5KPCbwMsHmv8iyUq6Q7u3TD5WVRuSXEA37NxW4ETP/JUkLUZjCdWq+hHwU1Pajptl/lOAU0ZdlyRJ8zHus38lSdphGKqSJPXEUJUkqSeGqiRJPTFUJUnqiaEqSVJPDFVJknpiqEqS1BNDVZKknhiqkiT1xFCVJKknhqokST0xVCVJ6omhKklSTwxVSZJ6YqhKktQTQ1WSpJ7sPO4CJGmx+9ZbfmHcJczLPm+6btwlLBvuqUqS1JOxhWqSW5Jcl2RtkjWt7dFJLk/yzfZ3t9aeJKcl2ZhkXZInjatuSZJmMu491V+vqpVVtardfwNwRVWtAK5o9wGeDaxot9XA6QteqSRJ2zDuUJ3qucDZbfps4KiB9nOqczXwqCR7jKNASZJmMs5QLeCyJNckWd3aHlNVtwG0vz/d2vcEvj2w7KbWdh9JVidZk2TN5s2bR1i6tOOyH0lzN85QPayqnkR3aPfEJE+bZd5M01b3a6g6o6pWVdWqiYmJvuqUlhX7kTR3YwvVqrq1/b0DuAg4FLh98rBu+3tHm30TsPfA4nsBty5ctZIkbdtYQjXJw5I8YnIaeCawHrgYOL7NdjzwiTZ9MfCSdhbwU4AfTB4mliRpsRjXxR8eA1yUZLKGj1TVp5N8BbggycuAbwEvbPNfAhwJbAR+BLx04UuWJGl2YwnVqroJ+MVp2v8FePo07QWcuAClSZI0Z4vtJzWSJC1ZhqokST0xVCVJ6omhKklSTwxVSZJ6YqhKktQTQ1WSpJ4YqpIk9cRQlSSpJ4aqJEk9MVQlSeqJoSpJUk8MVUmSemKoSpLUE0NVkqSeGKqSJPXEUJUkqSeGqiRJPTFUJUnqyYKHapK9k/xDkq8n2ZDkD1r7yUm+k2Rtux05sMwbk2xMckOSZy10zZIkDWPnMWxzK/BHVXVtkkcA1yS5vD32zqp6++DMSQ4CjgEOBh4LfCbJAVV1z4JWLUnSNiz4nmpV3VZV17bpHwJfB/acZZHnAudV1ZaquhnYCBw6+kolSdo+Y/1ONcm+wBOBL7Wmk5KsS3Jmkt1a257AtwcW28QMIZxkdZI1SdZs3rx5RFVLOzb7kTR3YwvVJA8HLgReU1V3AacD+wMrgduAd0zOOs3iNd06q+qMqlpVVasmJiZGULW047MfSXM3llBN8kC6QP1wVf0tQFXdXlX3VNWPgfdx7yHeTcDeA4vvBdy6kPVKkjSMcZz9G+ADwNer6i8H2vcYmO15wPo2fTFwTJJdkuwHrAC+vFD1SpI0rHGc/XsYcBxwXZK1re1PgGOTrKQ7tHsL8HKAqtqQ5ALgerozh0/0zF9J0mK04KFaVZ9n+u9JL5llmVOAU0ZWlCRJPfCKSpIk9cRQlSSpJ4aqJEk9MVQlSeqJoSpJUk8MVUmSemKoSpLUE0NVkqSeGKqSJPVkHJcplCQtYoe9+7BxlzBvV73qqrFs1z1VSZJ6YqhKktQTQ1WSpJ4YqpIk9cRQlSSpJ4aqJEk9MVQlSeqJoSpJUk8MVUmSerJkQjXJEUluSLIxyRvGXY8kSVMtiVBNshPw18CzgYOAY5McNN6qJEm6ryURqsChwMaquqmq/gM4D3jumGuSJOk+UlXjrmGbkhwNHFFV/63dPw54clWdNGW+1cDqdvdA4IYFLbSzO3DnGLY7Lj7fhXFnVR2xEBuyH42Fz3fhjLQvLZVRajJN2/0+DVTVGcAZoy9nZknWVNWqcdawkHy+Ox770cLz+e44lsrh303A3gP39wJuHVMtkiRNa6mE6leAFUn2S/Ig4Bjg4jHXJEnSfSyJw79VtTXJScClwE7AmVW1YcxlzWSsh83GwOerUVhur7PPdwexJE5UkiRpKVgqh38lSVr0DFVJknpiqM5RkkryjoH7f5zk5DGW1Lt0Pp/k2QNtL0ry6Xmud16vXZLnbOtSlUn2TfI78yhzaEmOWsgrfCV5bJKPLdT2Rmk59COwL21HPUu+Lxmqc7cFeH6S3cddyKhU94X7K4C/TPLgJA8DTgFOnOeq5/XaVdXFVfXWbcy2L7BdbwTtcphzcRTd5TN7M1stVXVrVR3d5/bGaIfvR2Bf2g5Lvi8ZqnO3le4Mtj+c+kCSn01yRZJ17e8+C19eP6pqPfB3wOuBNwPnVNWNSY5P8uUka5P8TZIHJNk5yYeSXJdkfZJXz7Daeb12SU5I8p42fVaS05J8IclN7epbAG8Fntrq+8MkOyU5NclX2rpf3pY/PMk/JPkIcF37VP71JO9LsiHJZUke0ubdP8mnk1yT5B+T/HySXwGeA5zatrX/lFpf2F6LryW5srUNW8vbkvz+wLpOTvJHrcb1A+t6e3vN1yV5VWs/JMnnWq2XJtljiH/ucVgW/QjsS8umL1WVtzncgH8FdgVuAR4J/DFwcnvs74Dj2/TvAR8fd73zfK4Po7tU3XXALsDjgY8DO7fHz6D7JPtk4FMDyz1qFK8dcALwnjZ9FvBRug+IB9FdIxrgcOCTA8usBv5Xm94FWAPs1+b7N2C/9ti+dG9UK9v9C4DfbdNXACva9JOBvx+o4egZnut1wJ6Dr8d21PJE4HMD67oe2KfVuL61vRK4cODf4tHAA4EvABOt7bfpfoY29v9Ly7kf2ZeWR19aEr9TXayq6q4k5wCvBu4eeOiXgee36Q8Bf7HQtfWpqv4tyfnAv1bVliTPAH4JWJME4CHAt+l+R3xgkncBlwCXzbLOPl+7j1fVj4HrkzxmhnmeCTxh4NP3I4EVwH8AX66qmwfmvbmq1rbpa4B9kzwc+BXgo+05Q9eJt+Uq4KwkFwB/uz21VNVXk/x0kscCE8D3qupbSfYdWP8zgPdW1da2zHeTPJ7uzfryVutOwG1D1DoWy6UfgX2JZdCXDNX5+yvgWuCDs8yzI/wY+MftBt21mM+sqv89daYkT6Abou/VwAu498Ls0+nrtdsyWMIM8wR4VVVdep/G5HC6T7Qzre8euje6BwDfr6qVQ9TzE1X1iiRPBv4LsDbJyu2s5WPA0cDP0I3ONFW4/2sUYENV/fL21Dpmy6UfgX1ph+5Lfqc6T1X1XbrDGi8baP4C3aUUAV4MfH6h6xqxzwAvSjs5IslPJdknyQTdBUU+Sved0ZNmW8mIX7sfAo8YuH8p8MokD2w1H5DuZJGhVNVdwM1JXtiWT5JfnGFbP5Fk/6r6UlW9iW5Ujr23s5bz6F6Po+neFKa6DHhFkp3buh5Nd3hxIskvt7YHJjl42Oc6Dsu0H4F9aYfrS4ZqP95BN5TRpFcDL02yDjgO+IOxVDUiVXUd8KfAZ9pzvAx4DN1/8iuTrAXeB/zJEKsb1Wu3DtjaTmr4Q+D9dN+jXNtOTPg/bP+RmhcDL0vyNWAD947pex7wuiRfzZSTK+hOuriubfNK4GvbU0t1l+N8BPCdqprusNP7gW8B61pdv1PdmMNHA29rbWvpDrctdsuqH4F9aUfsS16mUJKknrinKklSTwxVSZJ6YqhKktQTQ1WSpJ4YqpIk9cRQXaSS3JPu+pcb2qnsr00yp3+vJKuSnDbHZT+b5IZWw1VJDtzO5U9oVzGZy7bvMzrGfJ6Hli/7kn1pIRmqi9fdVbWyqg4GfhM4ku5H4NutqtZU1UwX5B7Gi6vqF4GzgVOnPpjZR6Q4AZjTGwFTRsfo4XloebIv2ZcWjKG6BFTVHXSXKDupXX1kppEZzk9y5ORy6UadeEG6ERs+2doenuSDuXckhhe09mcm+WKSa5N8NN31Oae6Enhcm/+WJG9K8nnghUlWJrm6rfOiJLulux7nKuDDbU/hIZlhxIckj0vymfYp/tr2w++po2MMPo9HJ/l4297V6S7pNjn6xJltr+CmzDy6h5Yh+5J9aeRmu9q+t7GOZvGv07R9j+5qKzONzPA84OzW/iC6C3M/hIFRJoC3AX81sM7d6K7CciXwsNb2euBNbfqzwKo2/Trg/DZ9C/A/BtazDvi1Nv2WyW1MWX7GER+ALwHPa9MPBh7K/UfHGHwe7wbe3KZ/A1jbpk9u29ilPa9/AR447n9Pb+O72ZfsSwt584L6S8vkBa5nGpnhU8BpSXYBjgCurKq7k/tcF/sZ3Hs9UKrqe0l+i26op6vavA8CvjiwzIeT3E3X+V810H4+QJJH0g3F9LnWfjbdEFJTHcg0Iz4keQTdkE4XtZr+va13ttfiV+kuMk5V/X26a6Y+sj32f6tqC7AlyR10b56bZluZlh370r3sSz0yVJeIJD9HN8rDHcwwMkOb77PAs+g+uZ473aqYfiSGy6vq2Bk2/+KqWjNN+9RRILZl2hEfkuy6neuZXNdUk89r6sgY/j/XT9iXpl3XVPalOfI71SUg3YgV76UbTLiYfWSG84CXAk9t8011GXDSwLp3A64GDksy+R3PQ5McMGx9VfUD4HtJntqajgMmP2kPjjox7YgP1Y1asSnJUa19lyQPZZYRK+gOsb24zX84cGdbjzQj+9K07Es9MlQXr4e0kwo20A0PdRndaBYw+8gMlwFPAz5T3QgLU/05sFuS9elGXfj1qtpMd2bhuelGtLga+PntrPd4ulEk1gEr6b4LAjgLeG+60TZ2YuYRH44DXt2W/wLdmIdTR8cYdDKwqs3/1rZ9aTr2JfvSgnGUGkmSeuKeqiRJPTFUJUnqiaEqSVJPDFVJknpiqEqS1BNDVZKknhiqkiT15P8D8pD1WF0WxfYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAEYCAYAAAAKz2ydAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHW9JREFUeJzt3X2YZGV55/HvTxBMogQILSIDDiGjG1AzwAgkBBcjUTBZQYIEEgWV3REDGmPM+rJZIUb2MlFifAvuqBPAS0UEgdFFAYkBxSAMOM4AShxehJERBvGFKCEZvPePc1qKprunpvtU13T393Nd5+pz7jovd9XMU3edU0+dJ1WFJEmavscNOwFJkuYKi6okSR2xqEqS1BGLqiRJHbGoSpLUEYuqJEkdsahKktQRi+oskOQpSc5NcmuSm5NckuTpSQ5J8rkZzuWOJBf0LB+d5KyZzGE8SfZI8rUk307yqSTbDDsnbXlsS5uW5JQka5NUkp2Gnc9sY1HdwiUJcCHwz1W1Z1XtBbwV2LmDfW89xU2XJNl7usfv2N8A76mqRcAPgBOHnI+2MLalvl0NHAp8Z9iJzEYW1S3f84D/rKoPjQaqalVVfbldfGKS85N8K8nH2zeO0U/BO7XzS5L8czt/WpJlSS4DzknyiiSfSfKF9izvb/vI6d00b0aP0u77jT3LNyZZ2E7fSvKRNvbxJIcmubo95v5TfXHa4wT4HeD8NnQ2cOR09qk5ybbUh6r6elXdMd39zFdT/XSlmfNM4PpJHt8H2Bu4m+YT5kHAVzaxz/2A366qB5O8Aljc7uch4JYk76+quybZ/jzgT5L8Wn9PAYBfA14KLAWuA/4I+G3gxTRvKo8qgkmeAXxqgn0dUlU/7Fn+FeCHVbWxXV4H7LoZuWl+sC091ti2pGmyqM5+11bVOoAkq4CFbPqNYEVVPdizfEVV/ajdx83A04DJ3ggeBt4FvAX4fJ953l5Va9pj3NQes5KsaXN+lKq6heYNqh8ZJ+ZNrbW5bEuaNovqlu8m4OhJHn+oZ/5hHvk33cgjl/efMGabn/S5j8l8jOaN4KaeWO8xxx639xg/61n+2XjH28xP1/cB2yfZuj1bXUBztiH1si09lmeqHfM71S3fPwHbJvkfo4Ekz0nyXzex3R00l6YA/qDrpKrqP4H3AK8fc8x9AZLsC+wxjf3fUlWLJ5h+OGbdAr7EI2+YJwAXT/XYmrNsS5toS5o+i+oWri0YLwF+t/0ZwE3AaWz6TOyvgPcm+TLNJ+ZB+CiP/mR8AbBje+nsNcC/Dui443kT8IYka2m+Y/3oDB5bs4BtqT9JXpdkHc0Vn9VJPjJTx54L4niqkiR1wzNVSZI6YkcljSvJ14Btx4RfPtrrUFJ/bEvzi5d/JUnqyJy9/HvYYYcVzW8VnZzmwjQUtiOnOTgN1Jwtqvfdd9+wU5BmPduRtHnmbFGVJGmmWVQlSeqIRVWSpI5YVCVJ6ohFVZKkjlhUJUnqiEVVkqSOWFQlSeqIRVWSpI4M7Ib6SXYDzgGeQjMi/bKqem+SHWlGoV9IMxDvMVX1gyQB3gu8CPgp8IqquqHd1wnAX7a7fkdVnT3VvPb7i3OmuukW4fp3HT/sFCRJExjkmepG4M+r6teBA4GTk+wFvBm4oqoWAVe0ywCHA4vaaSlwJkBbhE8FDgD2B05NssMA85YkaUoGVlSrav3omWZVPQB8E9gVOAIYPdM8GziynT8COKca1wDbJ9kFeCFweVXdX1U/AC4HDhtU3pIkTdWMfKeaZCGwD/A1YOeqWg9N4QWe3K62K3BXz2br2thE8fGOszTJyiQrN2zY0OVTkOYN25E0dQMvqkmeCFwAvL6qfjzZquPEapL4Y4NVy6pqSVUtGRkZ2fxkJdmOpGkYaFFN8niagvrxqvpMG76nvaxL+/feNr4O2K1n8wXA3ZPEJUnaogysqLa9eT8KfLOq/q7noRXACe38CcDFPfHj0zgQ+FF7efhS4AVJdmg7KL2gjUmStEUZ2E9qgIOAlwNrkqxqY28F3gmcl+RE4E7gpe1jl9D8nGYtzU9qXglQVfcn+Wvguna9t1fV/QPMW5KkKRlYUa2qrzD+96EAzx9n/QJOnmBfy4Hl3WUnSVL3vKOSJEkdsahKktQRi6okSR2xqEqS1BGLqiRJHbGoSpLUEYuqJEkdsahKktQRi6okSR2xqEqS1BGLqiRJHbGoSpLUEYuqJEkdsahKktQRi6okSR2xqEqS1BGLqiRJHRlYUU2yPMm9SW7siX0qyap2uiPJqja+MMmDPY99qGeb/ZKsSbI2yfuSZFA5S5I0HVsPcN9nAR8AzhkNVNUfjs4nOQP4Uc/6t1bV4nH2cyawFLgGuAQ4DPj8APKVJGlaBnamWlVXAfeP91h7tnkM8MnJ9pFkF2C7qvqXqiqaAn1k17lKktSFYX2nejBwT1V9uye2R5KvJ7kyycFtbFdgXc8669rYuJIsTbIyycoNGzZ0n7U0D9iOpKkb5OXfyRzHo89S1wO7V9X3k+wHXJRkb2C8709rop1W1TJgGcCSJUsmXG8+ufPtzxp2CtOy+9vWDDuFecd2JE3djBfVJFsDRwH7jcaq6iHgoXb++iS3Ak+nOTNd0LP5AuDumctWkqT+DePy76HAt6rq55d1k4wk2aqd/1VgEXBbVa0HHkhyYPs97PHAxUPIWZKkTRrkT2o+CfwL8Iwk65Kc2D50LI/toPRcYHWSbwDnAydV1Wgnp9cAHwHWArdiz19J0hZqYJd/q+q4CeKvGCd2AXDBBOuvBJ7ZaXKSJA2Ad1SSJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpIwMrqkmWJ7k3yY09sdOSfDfJqnZ6Uc9jb0myNsktSV7YEz+sja1N8uZB5StJ0nQN8kz1LOCwceLvqarF7XQJQJK9gGOBvdtt/iHJVkm2Aj4IHA7sBRzXritJ0hZn60HtuKquSrKwz9WPAM6tqoeA25OsBfZvH1tbVbcBJDm3XffmjtOVJGnahvGd6ilJVreXh3doY7sCd/Wss66NTRQfV5KlSVYmWblhw4au85bmBduRNHUzXVTPBPYEFgPrgTPaeMZZtyaJj6uqllXVkqpaMjIyMt1cpXnJdiRN3cAu/46nqu4ZnU/yYeBz7eI6YLeeVRcAd7fzE8UlSdqizOiZapJdehZfAoz2DF4BHJtk2yR7AIuAa4HrgEVJ9kiyDU1nphUzmbMkSf0a2Jlqkk8ChwA7JVkHnAockmQxzSXcO4BXA1TVTUnOo+mAtBE4uaoebvdzCnApsBWwvKpuGlTOkiRNxyB7/x43Tvijk6x/OnD6OPFLgEs6TE3SNO33F+cMO4Vpuf5dxw87Bc1R3lFJkqSOWFQlSeqIRVWSpI7M6E9qpEE76P0HDTuFabn6tVcPOwVJ0+CZqiRJHbGoSpLUEYuqJEkdsahKktQRi6okSR2xqEqS1BGLqiRJHbGoSpLUEYuqJEkdsahKktQRi6okSR2xqEqS1BGLqiRJHRlYUU2yPMm9SW7sib0rybeSrE5yYZLt2/jCJA8mWdVOH+rZZr8ka5KsTfK+JBlUzpIkTccgz1TPAg4bE7sceGZVPRv4V+AtPY/dWlWL2+mknviZwFJgUTuN3ackSVuEgRXVqroKuH9M7LKq2tguXgMsmGwfSXYBtquqf6mqAs4BjhxEvpIkTdcwv1N9FfD5nuU9knw9yZVJDm5juwLretZZ18bGlWRpkpVJVm7YsKH7jKV5wHYkTd1QimqS/wVsBD7ehtYDu1fVPsAbgE8k2Q4Y7/vTmmi/VbWsqpZU1ZKRkZGu05bmBduRNHVbz/QBk5wA/D7w/PaSLlX1EPBQO399kluBp9OcmfZeIl4A3D2zGUuS1J8ZPVNNchjwJuDFVfXTnvhIkq3a+V+l6ZB0W1WtBx5IcmDb6/d44OKZzFmSpH4N7Ew1ySeBQ4CdkqwDTqXp7bstcHn7y5hr2p6+zwXenmQj8DBwUlWNdnJ6DU1P4l+g+Q6293tYSZK2GAMrqlV13Djhj06w7gXABRM8thJ4ZoepSZI0EN5RSZKkjlhUJUnqSF9FNckV/cQkSZrPJv1ONckTgF+k6Wy0A4/8bnQ74KkDzk2SpFllUx2VXg28nqaAXs8jRfXHwAcHmJckSbPOpEW1qt4LvDfJa6vq/TOUkyRJs1JfP6mpqvcn+S1gYe82VXXOgPKSJGnW6auoJvkYsCewiubmDNDcg9eiKklSq9+bPywB9hq9V68kSXqsfn+neiPwlEEmIknSbNfvmepOwM1JrqUdTQagql48kKwkSZqF+i2qpw0yCUmS5oJ+e/9eOehEJEma7frt/fsATW9fgG2AxwM/qartBpWYJEmzTb9nqk/qXU5yJLD/QDKSJGmWmtIoNVV1EfA7HeciSdKs1u/l36N6Fh9H87tVf7MqSVKPfs9U/1vP9ELgAeCITW2UZHmSe5Pc2BPbMcnlSb7d/t2hjSfJ+5KsTbI6yb4925zQrv/tJCdszhOUJGmm9Pud6iunuP+zgA/w6NsZvhm4oqremeTN7fKbgMOBRe10AHAmcECSHYFTeeTs+PokK6rqB1PMSZKkgeh3kPIFSS5szzrvSXJBkgWb2q6qrgLuHxM+Aji7nT8bOLInfk41rgG2T7ILzZnx5VV1f1tILwcO6ydvSZJmUr+Xf/8RWEEzruquwGfb2FTsXFXrAdq/T27juwJ39ay3ro1NFH+MJEuTrEyycsOGDVNMT5rfbEfS1PVbVEeq6h+ramM7nQWMdJxLxonVJPHHBquWVdWSqloyMtJ1etL8YDuSpq7fonpfkpcl2aqdXgZ8f4rHvKe9rEv79942vg7YrWe9BcDdk8QlSdqi9FtUXwUcA3wPWA8cDUy189IKYLQH7wnAxT3x49tewAcCP2ovD18KvCDJDm1P4Re0MUmStij93lD/r4ETRnvctj1y301TbCeU5JPAIcBOSdbR9OJ9J3BekhOBO4GXtqtfArwIWAv8lLZoV9X9Sf4auK5d7+1VNbbzkyRJQ9dvUX12709Y2kK3z6Y2qqrjJnjo+eOsW8DJE+xnObC8z1wlSRqKfi//Pm70Jg3w8zPVfguyJEnzQr+F8Qzgq0nOp+l5ewxw+sCykiRpFur3jkrnJFlJcxP9AEdV1c0DzUySpFmm70u4bRG1kEqSNIEpDf0mSZIey6IqSVJHLKqSJHXEoipJUkcsqpIkdcSiKklSRyyqkiR1xKIqSVJHLKqSJHXEoipJUkcsqpIkdcSiKklSRyyqkiR1ZMaLapJnJFnVM/04yeuTnJbkuz3xF/Vs85Yka5PckuSFM52zJEn96Hvot65U1S3AYoAkWwHfBS4EXgm8p6re3bt+kr2AY4G9gacCX0zy9Kp6eEYTlyRpE4Z9+ff5wK1V9Z1J1jkCOLeqHqqq24G1wP4zkp0kSZth2EX1WOCTPcunJFmdZHmSHdrYrsBdPeusa2OPkWRpkpVJVm7YsGEwGUtznO1ImrqhFdUk2wAvBj7dhs4E9qS5NLweOGN01XE2r/H2WVXLqmpJVS0ZGRnpOGNpfrAdSVM3zDPVw4EbquoegKq6p6oerqqfAR/mkUu864DderZbANw9o5lKktSHYRbV4+i59Jtkl57HXgLc2M6vAI5Nsm2SPYBFwLUzlqUkSX2a8d6/AEl+Efhd4NU94b9Nspjm0u4do49V1U1JzgNuBjYCJ9vzV5K0JRpKUa2qnwK/Mib28knWPx04fdB5SZI0HcPu/StJ0pxhUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6YlGVJKkjFlVJkjpiUZUkqSMWVUmSOmJRlSSpIxZVSZI6MrSimuSOJGuSrEqyso3tmOTyJN9u/+7QxpPkfUnWJlmdZN9h5S1J0kSGfab6vKpaXFVL2uU3A1dU1SLginYZ4HBgUTstBc6c8UwlSdqEYRfVsY4Azm7nzwaO7ImfU41rgO2T7DKMBCVJmsgwi2oBlyW5PsnSNrZzVa0HaP8+uY3vCtzVs+26NvYoSZYmWZlk5YYNGwaYujR32Y6kqRtmUT2oqvalubR7cpLnTrJuxonVYwJVy6pqSVUtGRkZ6SpPaV6xHUlTN7SiWlV3t3/vBS4E9gfuGb2s2/69t119HbBbz+YLgLtnLltJkjZtKEU1yS8ledLoPPAC4EZgBXBCu9oJwMXt/Arg+LYX8IHAj0YvE0uStKXYekjH3Rm4MMloDp+oqi8kuQ44L8mJwJ3AS9v1LwFeBKwFfgq8cuZTliRpckMpqlV1G/Ab48S/Dzx/nHgBJ89AapIkTdmW9pMaSZJmLYuqJEkdsahKktQRi6okSR2xqEqS1BGLqiRJHbGoSpLUEYuqJEkdsahKktQRi6okSR2xqEqS1BGLqiRJHbGoSpLUEYuqJEkdGdZ4qpI0a9z59mcNO4Vp2f1ta4adwrzhmaokSR2xqEqS1JEZL6pJdkvypSTfTHJTkj9t46cl+W6SVe30op5t3pJkbZJbkrxwpnOWJKkfw/hOdSPw51V1Q5InAdcnubx97D1V9e7elZPsBRwL7A08FfhikqdX1cMzmrUkSZsw42eqVbW+qm5o5x8AvgnsOskmRwDnVtVDVXU7sBbYf/CZSpK0eYb6nWqShcA+wNfa0ClJVidZnmSHNrYrcFfPZuuYoAgnWZpkZZKVGzZsGFDW0txmO5KmbmhFNckTgQuA11fVj4EzgT2BxcB64IzRVcfZvMbbZ1Utq6olVbVkZGRkAFlLc5/tSJq6oRTVJI+nKagfr6rPAFTVPVX1cFX9DPgwj1ziXQfs1rP5AuDumcxXkqR+DKP3b4CPAt+sqr/rie/Ss9pLgBvb+RXAsUm2TbIHsAi4dqbylSSpX8Po/XsQ8HJgTZJVbeytwHFJFtNc2r0DeDVAVd2U5DzgZpqewyfb81eStCWa8aJaVV9h/O9JL5lkm9OB0weWlCRJHfCOSpIkdcSiKklSRyyqkiR1xKIqSVJHLKqSJHXEoipJUkcsqpIkdcSiKklSR4ZxRyVJ0hbsoPcfNOwUpu3q1149lON6pipJUkcsqpIkdcSiKklSRyyqkiR1xKIqSVJHLKqSJHXEoipJUkcsqpIkdWTWFNUkhyW5JcnaJG8edj6SJI01K4pqkq2ADwKHA3sBxyXZa7hZSZL0aLOiqAL7A2ur6raq+g/gXOCIIeckSdKjpKqGncMmJTkaOKyq/nu7/HLggKo6Zcx6S4Gl7eIzgFtmNNHGTsB9QzjusPh8Z8Z9VXXYTBzIdjQUPt+ZM9C2NFtuqJ9xYo/5NFBVy4Blg09nYklWVtWSYeYwk3y+c4/taOb5fOeO2XL5dx2wW8/yAuDuIeUiSdK4ZktRvQ5YlGSPJNsAxwIrhpyTJEmPMisu/1bVxiSnAJcCWwHLq+qmIac1kaFeNhsCn68GYb69zj7fOWJWdFSSJGk2mC2XfyVJ2uJZVCVJ6ohFdYqSVJIzepbfmOS0IabUuTS+kuTwntgxSb4wzf1O67VL8uJN3aoyycIkfzSNNPuW5MiZvMNXkqcmOX+mjjdI86EdgW1pM/KZ9W3Jojp1DwFHJdlp2IkMSjVfuJ8E/F2SJyT5JeB04ORp7npar11Vraiqd25itYXAZr0RtLfDnIojaW6f2ZnJcqmqu6vq6C6PN0Rzvh2BbWkzzPq2ZFGduo00Pdj+bOwDSZ6W5Iokq9u/u898et2oqhuBzwJvAk4FzqmqW5OckOTaJKuS/EOSxyXZOsnHkqxJcmOS102w22m9dklekeQD7fxZSd6X5KtJbmvvvgXwTuDgNr8/S7JVknclua7d96vb7Q9J8qUknwDWtJ/Kv5nkw0luSnJZkl9o190zyReSXJ/ky0n+S5LfAl4MvKs91p5jcn1p+1p8I8lVbazfXP4myZ/07Ou0JH/e5nhjz77e3b7mq5O8to3vl+TKNtdLk+zSxz/3MMyLdgS2pXnTlqrKaQoT8G/AdsAdwC8DbwROax/7LHBCO/8q4KJh5zvN5/pLNLeqWwNsCzwTuAjYun18Gc0n2QOAz/dst/0gXjvgFcAH2vmzgE/TfEDci+Ye0QCHAJ/r2WYp8Jft/LbASmCPdr2fAHu0jy2keaNa3C6fB7ysnb8CWNTOHwD8U08OR0/wXNcAu/a+HpuRyz7AlT37uhnYvc3xxjb2GuCCnn+LHYHHA18FRtrYH9L8DG3o/5fmczuyLc2PtjQrfqe6paqqHyc5B3gd8GDPQ78JHNXOfwz425nOrUtV9ZMknwL+raoeSnIo8BxgZRKAXwDuovkd8TOSvBe4BLhskn12+dpdVFU/A25OsvME67wAeHbPp+9fBhYB/wFcW1W396x7e1WtauevBxYmeSLwW8Cn2+cMTSPelKuBs5KcB3xmc3Kpqq8neXKSpwIjwA+q6s4kC3v2fyjwoara2G5zf5Jn0rxZX97muhWwvo9ch2K+tCOwLTEP2pJFdfr+HrgB+MdJ1pkLPwb+WTtBcy/m5VX1v8eulOTZNEP0vQ74Ax65Mft4unrtHupNYYJ1Ary2qi59VDA5hOYT7UT7e5jmje5xwA+ranEf+fxcVZ2U5ADg94BVSRZvZi7nA0cDT6EZnWms8NjXKMBNVfWbm5PrkM2XdgS2pTndlvxOdZqq6n6ayxon9oS/SnMrRYA/Br4y03kN2BeBY9J2jkjyK0l2TzJCc0ORT9N8Z7TvZDsZ8Gv3APCknuVLgdckeXyb89PTdBbpS1X9GLg9yUvb7ZPkNyY41s8l2bOqvlZVb6MZlWO3zczlXJrX42iaN4WxLgNOSrJ1u68daS4vjiT5zTb2+CR79/tch2GetiOwLc25tmRR7cYZNEMZjXod8Mokq4GXA386lKwGpKrWAH8FfLF9jpcBO9P8J78qySrgw8Bb+9jdoF671cDGtlPDnwEfofke5Ya2Y8L/ZfOv1PwxcGKSbwA38ciYvucCf5Hk6xnTuYKm08Wa9phXAd/YnFyquR3nk4DvVtV4l50+AtwJrG7z+qNqxhw+GvibNraK5nLblm5etSOwLc3FtuRtCiVJ6ohnqpIkdcSiKklSRyyqkiR1xKIqSVJHLKqSJHXEojrLtb9rW9VO30vy3Z7lbTZjP+9I8voJHntbmnt3rm67uj+nu2eweZK8IckThnV8zV22JXXBOyrNclX1fWAxNDeJprn92bu72n+Sg2luBbZPVf1H+6P0ofy/STPaxBuA5cC/DyMHzV22JXXBM9U5LOOMftHGfy/JDe2PuXvvKfqsNKMx3JZkdEiqXYAN7Y+gqaoNoz+cTrIuyfbt/IFJvtjOvyPJ2WlGifh2kle18UPb2EVJbk7ywaS5oWaSl+WRETn+TxvbOskP2/1dC/xP4MnAl0ePJc0E25L6tjkjLDht2RNwGvDGdn6i0S+eQnPXkKe18R3bv+8AvgxsQ9PYvk9z8+jtaO6ocgvwQeDgnuOt45HRIg4EvtizrxuAJ7T7Wkdzl5hDgZ/SjAyxFfBPNOMnLqAZZWMnmlEhrgR+n+ZTfAFHjXdMJ6dBTbYlp6lOXv6duyYa/eJB4EtV9R34+T1DR32umk/R9ya5n2a4o+8l2Rc4GHgecH6SN1bVxzZx/Iuq6t+Bf08z9uFzaC4zXVNVdwAkORf4bdo3haq6r41/Angu8AWa0SYunN5LIU2LbUl9s6jOXeOOfpHkKCYerWLsiBJbA1QzFNKXgC8luZlmTMGP0YyVOPoVwtgOD2OPUZPEJxoNA+DBaj9WS0NiW1Lf/E517hp39AuaMQl/J8nT2viOk+0kya8n+bWe0G8A32nn7wD2a+f/YMymRybZtj3+wTSDBwMcmGYUjq2AY2hGzrgGeF6b49Y0I0lcOUFKE45iIQ2IbUl980x1jqqqNUlGR794HPCfwElVdV2S1wAXtx0b7qYZs3EiTwTel+SXaT5x38Ij4zqeBnw4yfeAa8dsdx3weZrRNk6tqnuSPItmOKozgL2BfwZWVFUleVu7HOCzVfX/2jeFsZa1z+muqjp0M14SaUpsS9ocjlKjziV5B3BfVf39mPihwClVdeRwMpNmF9vS7OPlX0mSOuKZqiRJHfFMVZKkjlhUJUnqiEVVkqSOWFQlSeqIRVWSpI78fycbtvJuLV5/AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAEYCAYAAAAKz2ydAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAG8BJREFUeJzt3Xm0HHWd9/H3R1BcAFG5KhAyYZjIcwCdKBEXRocZHUV9HkFFBlwA5ZmoA24zelxmRhlnOEfF5XHFJyoiHgVRXNCDAjIgimvQmAVFA0SI5IHgBi6DJnyfP6quNOHem8691bfv8n6dU+dW/bqWb3fy609XdXVVqgpJkjR1dxt2AZIkzRWGqiRJHTFUJUnqiKEqSVJHDFVJkjpiqEqS1BFDVZKkjhiqs0CSByc5O8nVSa5Mcn6ShyQ5NMkXp7mW9UnO7Zk+MskZ01nDWJLsk+TbSX6S5JNJ7jHsmjTz2Je2LclJSdYlqSS7D7ue2cZQneGSBPgscGlV7VtV+wOvBx7Uwbp3nOSiS5McMNXtd+wtwDurajHwS+CEIdejGca+1LfLgScCPx12IbORoTrz/Q3wx6r6wGhDVa2sqq+1kzsn+XSSHyX5ePvGMfopePd2fGmSS9vxk5MsT3IhcGaS45N8JsmX2728t/ZR09to3ozupF33q3qm1yRZ1A4/SvKhtu3jSZ6Y5PJ2mwdP9sVptxPgb4FPt00fBY6Yyjo1J9mX+lBV36+q9VNdz3w12U9Xmj4HAldM8PjDgQOAG2g+YR4CfH0b6zwI+Kuq+n2S44El7XpuA65K8p6qun6C5c8B/jHJX/T3FAD4C+DZwDLgu8BzgL8Cnk7zpnKnEEyyH/DJcdZ1aFX9qmf6AcCvqmpzO70B2Gs7atP8YF+6q637kqbIUJ39vlNVGwCSrAQWse03gvOq6vc90xdX1a/bdVwJ/Bkw0RvBFuBU4HXAl/qs89qqWt1uY227zUqyuq35TqrqKpo3qH5kjDYvaq3tZV/SlBmqM99a4MgJHr+tZ3wLd/ybbuaOw/v33GqZ3/a5jol8jOaNYG1PW+82t95u7zZu75m+faztbeen65uB3ZLs2O6tLqDZ25B62Zfuyj3Vjvmd6sz3X8BOSf5htCHJI5P89TaWW09zaArgWV0XVVV/BN4JvGKrbT4CIMkjgH2msP6rqmrJOMOvtpq3gEu44w3zOODzk9225iz70jb6kqbOUJ3h2sB4BvB37c8A1gIns+09sX8H3pXkazSfmAfhw9z5k/G5wP3bQ2cvAX48oO2O5TXAPyVZR/Md64encduaBexL/UnysiQbaI74rEryoena9lwQ76cqSVI33FOVJKkjnqikMSX5NrDTVs3PHz3rUFJ/7Evzi4d/JUnqyJw9/HvYYYcVzW8VHRzmwjAU9iOHOTgM1JwN1ZtvvnnYJUiznv1I2j5zNlQlSZpuhqokSR0xVCVJ6oihKklSRwxVSZI6YqhKktQRQ1WSpI4YqpIkdcRQlSSpI15Qf4677k0PHXYJU7LwDV5zXNLs4Z6qJEkdMVQlSerIvDv8e9Crzxx2CVNyxanHDrsESdI43FOVJKkjhqokSR0xVCVJ6oihKklSRwxVSZI6YqhKktQRQ1WSpI4YqpIkdcRQlSSpIwML1SSnJ7kpyZqetk8mWdkO65OsbNsXJfl9z2Mf6FnmoCSrk6xL8u4kGVTNkiRNxSAvU3gG8F7gT9cFrKq/Hx1P8nbg1z3zX11VS8ZYz2nAMuBbwPnAYcCXBlCvJElTMrA91aq6DPjFWI+1e5tHAWdNtI4kewC7VtU3q6poAvqIrmuVJKkLw/pO9XHAjVX1k562fZJ8P8lXkzyubdsL2NAzz4a2bUxJliVZkWTFpk2buq9amgfsR9LkDStUj+HOe6kbgYVV9XDgn4BPJNkVGOv70xpvpVW1vKqWVtXSkZGRTguW5gv7kTR5037rtyQ7As8EDhptq6rbgNva8SuSXA08hGbPdEHP4guAG6avWkmS+jeMPdUnAj+qqj8d1k0ykmSHdvzPgcXANVW1Ebg1yaPb72GPBT4/hJolSdqmQf6k5izgm8B+STYkOaF96GjueoLS44FVSX4AfBp4cVWNnuT0EuBDwDrgajzzV5I0Qw3s8G9VHTNO+/FjtJ0LnDvO/CuAAzstTpKkAfCKSpIkdcRQlSSpI4aqJEkdMVQlSeqIoSpJUkcMVUmSOmKoSpLUEUNVkqSOGKqSJHXEUJUkqSOGqiRJHTFUJUnqiKEqSVJHDFVJkjpiqEqS1BFDVZKkjhiqkiR1xFCVJKkjhqokSR0ZWKgmOT3JTUnW9LSdnORnSVa2w1N7HntdknVJrkry5J72w9q2dUleO6h6JUmaqkHuqZ4BHDZG+zurakk7nA+QZH/gaOCAdpn3J9khyQ7A+4CnAPsDx7TzSpI04+w4qBVX1WVJFvU5++HA2VV1G3BtknXAwe1j66rqGoAkZ7fzXtlxuZIkTdkwvlM9Kcmq9vDw/dq2vYDre+bZ0LaN1z6mJMuSrEiyYtOmTV3XLc0L9iNp8qY7VE8D9gWWABuBt7ftGWPemqB9TFW1vKqWVtXSkZGRqdYqzUv2I2nyBnb4dyxVdePoeJIPAl9sJzcAe/fMugC4oR0fr12SpBllWvdUk+zRM/kMYPTM4POAo5PslGQfYDHwHeC7wOIk+yS5B83JTOdNZ82SJPVrYHuqSc4CDgV2T7IBeCNwaJIlNIdw1wMvAqiqtUnOoTkBaTNwYlVtaddzEnABsANwelWtHVTNkiRNxSDP/j1mjOYPTzD/KcApY7SfD5zfYWmSJA2EV1SSJKkjhqokSR0xVCVJ6si0/qRGGrRD3nPIsEuYkstfevmwS5A0Be6pSpLUEUNVkqSOGKqSJHXEUJUkqSOGqiRJHTFUJUnqiKEqSVJHDFVJkjpiqEqS1BFDVZKkjhiqkiR1xFCVJKkjhqokSR0xVCVJ6sjAQjXJ6UluSrKmp+3UJD9KsirJZ5Ps1rYvSvL7JCvb4QM9yxyUZHWSdUnenSSDqlmSpKkY5J7qGcBhW7VdBBxYVQ8Dfgy8ruexq6tqSTu8uKf9NGAZsLgdtl6nJEkzwsBCtaouA36xVduFVbW5nfwWsGCidSTZA9i1qr5ZVQWcCRwxiHolSZqqYX6n+kLgSz3T+yT5fpKvJnlc27YXsKFnng1tmyRJM86Ow9hokn8BNgMfb5s2Agur6udJDgI+l+QAYKzvT2uC9S6jOVTMwoULuy1amifsR9LkTfueapLjgP8JPLc9pEtV3VZVP2/HrwCuBh5Cs2fae4h4AXDDeOuuquVVtbSqlo6MjAzqKUhzmv1ImrxpDdUkhwGvAZ5eVb/raR9JskM7/uc0JyRdU1UbgVuTPLo96/dY4PPTWbMkSf0a2OHfJGcBhwK7J9kAvJHmbN+dgIvaX8Z8qz3T9/HAm5JsBrYAL66q0ZOcXkJzJvG9aL6D7f0eVpKkGWNgoVpVx4zR/OFx5j0XOHecx1YAB3ZYmiRJA+EVlSRJ6oihKklSRwxVSZI6YqhKktQRQ1WSpI4YqpIkdcRQlSSpI4aqJEkdMVQlSeqIoSpJUkcMVUmSOmKoSpLUkb5CNcnF/bRJkjSfTXiXmiT3BO5Nc/u2+wFpH9oV2HPAtUmSNKts69ZvLwJeQROgV3BHqN4CvG+AdUmSNOtMGKpV9S7gXUleWlXvmaaaJEmalfq6SXlVvSfJY4FFvctU1ZkDqkuSpFmnr1BN8jFgX2AlsKVtLsBQlSSp1VeoAkuB/auqBlmMJEmzWb+/U10DPHh7V57k9CQ3JVnT03b/JBcl+Un7935te5K8O8m6JKuSPKJnmePa+X+S5LjtrUOSpOnQb6juDlyZ5IIk540OfSx3BnDYVm2vBS6uqsXAxe00wFOAxe2wDDgNmhAG3gg8CjgYeONoEEuSNJP0e/j35MmsvKouS7Joq+bDgUPb8Y8ClwKvadvPbA8xfyvJbkn2aOe9qKp+AZDkIpqgPmsyNUmSNCj9nv371Q63+aCq2tiud2OSB7btewHX98y3oW0br/0ukiyj2ctl4cKFHZYszR/2I2ny+r1M4a1JbmmH/06yJcktHdeSMdpqgva7NlYtr6qlVbV0ZGSk0+Kk+cJ+JE1eX6FaVbtU1a7tcE/gWcB7J7nNG9vDurR/b2rbNwB798y3ALhhgnZJkmaUSd2lpqo+B/ztJLd5HjB6Bu9xwOd72o9tzwJ+NPDr9jDxBcCTktyvPUHpSW2bJEkzSr8Xf3hmz+TdaH63us3frCY5i+ZEo92TbKA5i/fNwDlJTgCuA57dzn4+8FRgHfA74AUAVfWLJP8BfLed702jJy1JkjST9Hv27//qGd8MrKc5W3dCVXXMOA89YYx5CzhxnPWcDpy+zSolSRqifs/+fcGgC5Ekabbr9/DvAuA9wCE0h32/Dry8qjYMsDZJM9RBr57dl/2+4tRjh12C5qh+T1T6CM2JRHvS/Eb0C22bJElq9RuqI1X1kara3A5nAP6ATZKkHv2G6s1Jnpdkh3Z4HvDzQRYmSdJs02+ovhA4Cvh/wEbgSNqfvEiSpEa/P6n5D+C4qvol/OnOMW+jCVtJkkT/e6oPGw1UaC7IADx8MCVJkjQ79Ruqd+u9h2m7p9rvXq4kSfNCv8H4duAbST5N8zvVo4BTBlaVJEmzUL9XVDozyQqai+gHeGZVXTnQyiRJmmX6PoTbhqhBKknSOCZ16zdJknRXhqokSR0xVCVJ6og/i5GkbbjuTQ8ddglTsvANq4ddwrzhnqokSR0xVCVJ6oihKklSR6Y9VJPsl2Rlz3BLklckOTnJz3ran9qzzOuSrEtyVZInT3fNkiT1Y9pPVKqqq4AlAEl2AH4GfJbmVnLvrKq39c6fZH/gaOAAYE/gK0keUlVbprVwSZK2YdiHf58AXF1VP51gnsOBs6vqtqq6FlgHHDwt1UmStB2GHapHA2f1TJ+UZFWS03vuirMXcH3PPBvatrtIsizJiiQrNm3aNJiKpTnOfiRN3tBCNck9gKcDn2qbTgP2pTk0vJHmzjjQXMB/azXWOqtqeVUtraqlIyMjHVcszQ/2I2nyhrmn+hTge1V1I0BV3VhVW6rqduCD3HGIdwOwd89yC4AbprVSSZL6MMxQPYaeQ79J9uh57BnAmnb8PODoJDsl2QdYDHxn2qqUJKlPQ7lMYZJ7A38HvKin+a1JltAc2l0/+lhVrU1yDs1t5zYDJ3rmryRpJhpKqFbV74AHbNX2/AnmPwU4ZdB1SZI0FcM++1eSpDnDUJUkqSOGqiRJHTFUJUnqiKEqSVJHDFVJkjpiqEqS1BFDVZKkjhiqkiR1xFCVJKkjhqokSR0xVCVJ6oihKklSRwxVSZI6YqhKktQRQ1WSpI4YqpIkdcRQlSSpI4aqJEkdGVqoJlmfZHWSlUlWtG33T3JRkp+0f+/XtifJu5OsS7IqySOGVbckSeMZ9p7q31TVkqpa2k6/Fri4qhYDF7fTAE8BFrfDMuC0aa9UkqRtGHaobu1w4KPt+EeBI3raz6zGt4DdkuwxjAIlSRrPMEO1gAuTXJFkWdv2oKraCND+fWDbvhdwfc+yG9q2O0myLMmKJCs2bdo0wNKluct+JE3eMEP1kKp6BM2h3ROTPH6CeTNGW92loWp5VS2tqqUjIyNd1SnNK/YjafKGFqpVdUP79ybgs8DBwI2jh3Xbvze1s28A9u5ZfAFww/RVK0nStg0lVJPcJ8kuo+PAk4A1wHnAce1sxwGfb8fPA45tzwJ+NPDr0cPEkiTNFDsOabsPAj6bZLSGT1TVl5N8FzgnyQnAdcCz2/nPB54KrAN+B7xg+kuWJGliQwnVqroG+Msx2n8OPGGM9gJOnIbSJEmatJn2kxpJkmYtQ1WSpI4YqpIkdcRQlSSpI4aqJEkdMVQlSeqIoSpJUkcMVUmSOmKoSpLUEUNVkqSOGKqSJHXEUJUkqSOGqiRJHTFUJUnqiKEqSVJHDFVJkjpiqEqS1BFDVZKkjhiqkiR1ZNpDNcneSS5J8sMka5O8vG0/OcnPkqxsh6f2LPO6JOuSXJXkydNdsyRJ/dhxCNvcDPxzVX0vyS7AFUkuah97Z1W9rXfmJPsDRwMHAHsCX0nykKraMq1VS5K0DdO+p1pVG6vqe+34rcAPgb0mWORw4Oyquq2qrgXWAQcPvlJJkrbPUL9TTbIIeDjw7bbppCSrkpye5H5t217A9T2LbWCcEE6yLMmKJCs2bdo0oKqluc1+JE3e0EI1yc7AucArquoW4DRgX2AJsBF4++isYyxeY62zqpZX1dKqWjoyMjKAqqW5z34kTd5QQjXJ3WkC9eNV9RmAqrqxqrZU1e3AB7njEO8GYO+exRcAN0xnvZIk9WMYZ/8G+DDww6p6R0/7Hj2zPQNY046fBxydZKck+wCLge9MV72SJPVrGGf/HgI8H1idZGXb9nrgmCRLaA7trgdeBFBVa5OcA1xJc+bwiZ75K0maiaY9VKvq64z9Pen5EyxzCnDKwIqSJKkDXlFJkqSOGKqSJHXEUJUkqSOGqiRJHTFUJUnqiKEqSVJHDFVJkjpiqEqS1BFDVZKkjgzjMoWSpBnskPccMuwSpuzyl14+lO26pypJUkcMVUmSOmKoSpLUEUNVkqSOGKqSJHXEUJUkqSOGqiRJHTFUJUnqiKEqSVJHZk2oJjksyVVJ1iV57bDrkSRpa7MiVJPsALwPeAqwP3BMkv2HW5UkSXc2K0IVOBhYV1XXVNUfgLOBw4dckyRJd5KqGnYN25TkSOCwqvrf7fTzgUdV1UlbzbcMWNZO7gdcNa2FNnYHbh7CdofF5zs9bq6qw6ZjQ/ajofD5Tp+B9qXZcpeajNF2l08DVbUcWD74csaXZEVVLR1mDdPJ5zv32I+mn8937pgth383AHv3TC8AbhhSLZIkjWm2hOp3gcVJ9klyD+Bo4Lwh1yRJ0p3MisO/VbU5yUnABcAOwOlVtXbIZY1nqIfNhsDnq0GYb6+zz3eOmBUnKkmSNBvMlsO/kiTNeIaqJEkdMVQnKUkleXvP9KuSnDzEkjqXxteTPKWn7agkX57ieqf02iV5+rYuVZlkUZLnTKHMviU5Yjqv8JVkzySfnq7tDdJ86EdgX9qOemZ9XzJUJ+824JlJdh92IYNSzRfuLwbekeSeSe4DnAKcOMVVT+m1q6rzqurN25htEbBdbwTt5TAn4wiay2d2ZqJaquqGqjqyy+0N0ZzvR2Bf2g6zvi8ZqpO3meYMtldu/UCSP0tycZJV7d+F019eN6pqDfAF4DXAG4Ezq+rqJMcl+U6SlUnen+RuSXZM8rEkq5OsSfKycVY7pdcuyfFJ3tuOn5Hk3Um+keSa9upbAG8GHtfW98okOyQ5Ncl323W/qF3+0CSXJPkEsLr9VP7DJB9MsjbJhUnu1c67b5IvJ7kiydeS/I8kjwWeDpzabmvfrWp9dvta/CDJZW1bv7W8Jck/9qzr5CT/3Na4pmddb2tf81VJXtq2H5Tkq22tFyTZo49/7mGYF/0I7Evzpi9VlcMkBuA3wK7AeuC+wKuAk9vHvgAc146/EPjcsOud4nO9D82l6lYDOwEHAp8DdmwfX07zSfZRwJd6ltttEK8dcDzw3nb8DOBTNB8Q96e5RjTAocAXe5ZZBvxrO74TsALYp53vt8A+7WOLaN6olrTT5wDPa8cvBha3448C/qunhiPHea6rgb16X4/tqOXhwFd71nUlsLCtcU3b9hLg3J5/i/sDdwe+AYy0bX9P8zO0of9fms/9yL40P/rSrPid6kxVVbckORN4GfD7noceAzyzHf8Y8Nbprq1LVfXbJJ8EflNVtyV5IvBIYEUSgHsB19P8jni/JO8CzgcunGCdXb52n6uq24ErkzxonHmeBDys59P3fYHFwB+A71TVtT3zXltVK9vxK4BFSXYGHgt8qn3O0HTibbkcOCPJOcBntqeWqvp+kgcm2RMYAX5ZVdclWdSz/icCH6iqze0yv0hyIM2b9UVtrTsAG/uodSjmSz8C+xLzoC8ZqlP3f4DvAR+ZYJ658GPg29sBmmsxn15V/7b1TEkeRnOLvpcBz+KOC7OPpavX7rbeEsaZJ8BLq+qCOzUmh9J8oh1vfVto3ujuBvyqqpb0Uc+fVNWLkzwKeBqwMsmS7azl08CRwINp7s60tXDX1yjA2qp6zPbUOmTzpR+BfWlO9yW/U52iqvoFzWGNE3qav0FzKUWA5wJfn+66BuwrwFFpT45I8oAkC5OM0FxQ5FM03xk9YqKVDPi1uxXYpWf6AuAlSe7e1vyQNCeL9KWqbgGuTfLsdvkk+ctxtvUnSfatqm9X1Rto7sqx93bWcjbN63EkzZvC1i4EXpxkx3Zd96c5vDiS5DFt292THNDvcx2GedqPwL405/qSodqNt9PcymjUy4AXJFkFPB94+VCqGpCqWg38O/CV9jleCDyI5j/5ZUlWAh8EXt/H6gb12q0CNrcnNbwS+BDN9yjfa09M+L9s/5Ga5wInJPkBsJY77ul7NvDqJN/PVidX0Jx0sbrd5mXAD7anlmoux7kL8LOqGuuw04eA64BVbV3Pqeaew0cCb2nbVtIcbpvp5lU/AvvSXOxLXqZQkqSOuKcqSVJHDFVJkjpiqEqS1BFDVZKkjhiqkiR1xFCdA5L8S5pra65Kc83MRyV5RZJ7D6GW85PsNonlntzWvjLJb5Jc1Y5/KsnPk9x3q/k/l+So7iqX7EuaOn9SM8u1P0p+B3Boe9mz3YF70Pzwe2lV3TzGMjtU1ZZpLrVvSS4FXlVVK9rps4AvV9VH2+n7AlcDC6vqd0MrVHOKfcm+1AX3VGe/PYCbq+o2gLbjHwnsCVyS5BKA9hPrm5J8G3hMxrnzQpJ/SHPHhx8kOXf0E3qaO1iclubOD9ck+eskp6e5C8UZo8UkWZ9k90x8h4pHtnsC30xzh4k123iOZ3HHlWEAnkHzxuCbgLpkX9LUTXS1fYeZPwA701zl48fA+4G/btvXA7v3zFfAUe34uHdeAB7Qs8x/0lxXE5q7R5xNcy3Mw4FbgIfSfDC7gjvuRLGe5qouixj/DhVrgMe242+mvUtEz3YvpdkzGJ2+B3DTaG3Al4GnDfu1d5hbg33JoYvBPdVZrqp+AxxEc7HtTcAnkxw/xqxbaG5rBLAfd9x5YSXwr8CC9rED09zfcDXNpcR6r3P5hWp64mrgxqpaXc0dLdbSdPytXVt3vUPFbsAuVfWNtv0TfTzHPwDnAUe2h+SWMMFdO6TJsC+pC96lZg6o5judS4FL2w583Biz/Xfd8d3PRHdeOAM4oqp+0L6hHNrz2OgdJ27nznefuJ2x/y+NdYeK8e58sS1n0bxhBfh8Vf1xkuuRxmVf0lS5pzrLJdkvyeKepiXAT5ngbg9MfOeFXYCNae768Nyu662qXwK3Jnl023T0RPP3uITmPokn0rwpSJ2yL6kLhurstzPw0SRXprkbxf7AycBy4EujJ1f0qonvvPBvwLeBi4AfDajmE4DlSb5J82n519taoD00di7wAJo7VEhdsy9pyvxJjaZdkp3b769I8lpgj6qac7f1kgbNvjTz+J2qhuFpSV5H8//vp8Dxwy1HmrXsSzOMe6qSJHXE71QlSeqIoSpJUkcMVUmSOmKoSpLUEUNVkqSO/H/PACWNA4e8/QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdUAAAEYCAYAAAAKz2ydAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHn5JREFUeJzt3X+UXWV97/H3R1CsAgJlpEigoTRyL1AbIIKWarH+QtoraFGhVYOljVjQorVL6A+l9nIXLVqvoMWLmCIu5YcgGrtQQKpQUcCAMSEgJfwQIinEooI/Shv43j/2HnISZiaTmX3mzGTer7X2mn2e8+y9v+ckz/mevfdznidVhSRJmrynDDoASZK2FCZVSZI6YlKVJKkjJlVJkjpiUpUkqSMmVUmSOmJSlSSpIybVGSDJLyW5MMmdSW5NcnmS5yY5NMk/T3Es9yS5tOfxUUnOm8oYRpJkzyQ3JLkjyUVJnjbomDT92JY2LcmJSVYlqSQ7DzqemcakOs0lCXAZ8LWq2quq9gH+Atilg31vPcFNFyTZd7LH79jfAR+qqnnAD4HjBhyPphnb0rhdB7wM+N6gA5mJTKrT30uA/66qjw0XVNWyqvrX9uG2SS5J8t0kn24/OIa/Be/cri9I8rV2/dQk5yS5Ejg/ybFJPpfky+1Z3t+PI6YP0HwYbaDd97t7Ht+SZG67fDfJuW3Zp5O8LMl17TEPmuib0x4nwG8Dl7RFnwSOnMw+tUWyLY1DVX27qu6Z7H5mq4l+u9LU2Q+4aYzn9wf2Be6n+YZ5CPD1TezzQOA3q+rnSY4F5rf7eRS4PclZVXXfGNtfDPxJkl8d30sA4FeB1wGLgG8Bvw/8JvBqmg+VDZJgkr2Bi0bZ16FV9aOex78I/Kiq1rWPVwO7bUZsmh1sS0+2cVvSJJlUZ74bq2o1QJJlwFw2/UGwpKp+3vP46qr6cbuPW4FfBsb6IHgMOAM4BfjSOOO8u6pWtMdY2R6zkqxoY95AVd1O8wE1HhmhzEGttblsS5o0k+r0txI4aoznH+1Zf4z1/6brWH95/+kbbfPTce5jLJ+i+SBY2VPWe8yNj9t7jMd7Hj8+0vE289v1D4Adkmzdnq3OoTnbkHrZlp7MM9WOeU91+vsXYJskfzxckOT5SX5rE9vdQ3NpCuD3ug6qqv4b+BBw0kbHPAAgyQHAnpPY/+1VNX+U5Ucb1S3gq6z/wFwIfGGix9YWy7a0ibakyTOpTnNtwngN8PL2ZwArgVPZ9JnY3wAfTvKvNN+Y++ETbPjN+FJgp/bS2duAf+vTcUfyHuBdSVbR3GP9xBQeWzOAbWl8krwjyWqaKz7Lk5w7VcfeEsT5VCVJ6oZnqpIkdaRvSTXJ7km+muS2JCuT/GlbvlOSq9rfVF2VZMe2PEnObEfyWN7eRxje18K2/h1JFvYrZq2XZnSiZRstvzbouKSZxrY0u/Tt8m+SXYFdq+rmJNvR/D7sSOBY4KGqOj3JycCOVfWeJIcDbwcOBw4GPlxVByfZCVgKLKD5mcRNwIFV9cO+BC5J0gT17Uy1qtZU1c3t+iPAbTQ/yD+CZsQb2HDkmyOA86txPc1PJHYFXglcVVUPtYn0KuCwTR3/sMMOK5ok7OKyJSwDYTty2QKXvpqS36kmmUszysgNwC5VtQagqtYkeXZbbTc2/JH08Kg4o5WPdJxFNKOMsMcee3T3AqRZxHYkTVzfOyol2Zame/hJVfXwWFVHKKsxyp9cWHVOVS2oqgVDQ0ObH6wk25E0CX1NqkmeSpNQP11Vn2uLH2gv6w7fd32wLV8N7N6z+fCoOKOVS5I0rfSz929oftB8W1X9Q89TS2hGvIENR75ZAry57QX8AuDH7WXiK4BXJNmx7Sn8irZMkqRppZ/3VA8B3gSsaEcFgWYGhdOBi5McB9xLM9sCwOU0PX9XAT8D3gJQVQ8l+Vua2RgA3l9VD/UxbkmSJqRvSbWqvs7I90MBXjpC/QJOGGVfi4HF3UUnSVL3HFFJkqSOmFQlSeqISVWSpI6YVCVJ6siUjKikwbn3/TN73O493rti0CFI0rh5pipJUkdMqpIkdcSkKklSR0yqkiR1xKQqSVJHTKqSJHVk1v2k5sA/P3/QIUzKTWe8edAhSJJG4ZmqJEkdMalKktQRk6okSR0xqUqS1BGTqiRJHTGpSpLUEZOqJEkd6VtSTbI4yYNJbukpuyjJsna5J8mytnxukp/3PPexnm0OTLIiyaokZyZJv2KWJGky+jn4w3nAR4AnRluoqjcMryf5IPDjnvp3VtX8EfZzNrAIuB64HDgM+FIf4pUkaVL6dqZaVdcCD430XHu2+XrggrH2kWRXYPuq+mZVFU2CPrLrWCVJ6sKg7qm+CHigqu7oKdszybeTXJPkRW3ZbsDqnjqr27IRJVmUZGmSpWvXru0+amkWsB1JEzeopHoMG56lrgH2qKr9gXcBn0myPTDS/dMabadVdU5VLaiqBUNDQ50GLM0WtiNp4qZ8QP0kWwOvBQ4cLquqR4FH2/WbktwJPJfmzHROz+ZzgPunLlpJksZvEGeqLwO+W1VPXNZNMpRkq3b9V4B5wF1VtQZ4JMkL2vuwbwa+MICYJUnapH7+pOYC4JvA3klWJzmufepontxB6cXA8iTfAS4Bjq+q4U5ObwPOBVYBd2LPX0nSNNW3y79Vdcwo5ceOUHYpcOko9ZcC+3UanCRJfeCISpIkdcSkKklSR0yqkiR1xKQqSVJHTKqSJHXEpCpJUkdMqpIkdcSkKklSR0yqkiR1xKQqSVJHTKqSJHXEpCpJUkdMqpIkdcSkKklSR0yqkiR1xKQqSVJHTKqSJHXEpCpJUkf6llSTLE7yYJJbespOTfL9JMva5fCe505JsirJ7Ule2VN+WFu2KsnJ/YpXkqTJ6ueZ6nnAYSOUf6iq5rfL5QBJ9gGOBvZtt/nHJFsl2Qr4KPAqYB/gmLauJEnTztb92nFVXZtk7jirHwFcWFWPAncnWQUc1D63qqruAkhyYVv31o7DlSRp0gZxT/XEJMvby8M7tmW7Aff11Fndlo1WLknStDPVSfVsYC9gPrAG+GBbnhHq1hjlI0qyKMnSJEvXrl072VilWcl2JE3clCbVqnqgqh6rqseBj7P+Eu9qYPeeqnOA+8coH23/51TVgqpaMDQ01G3w0ixhO5ImbkqTapJdex6+BhjuGbwEODrJNkn2BOYBNwLfAuYl2TPJ02g6My2ZypglSRqvvnVUSnIBcCiwc5LVwPuAQ5PMp7mEew/wVoCqWpnkYpoOSOuAE6rqsXY/JwJXAFsBi6tqZb9iliRpMvrZ+/eYEYo/MUb904DTRii/HLi8w9AkSeoLR1SSJKkjJlVJkjpiUpUkqSMmVUmSOtK3jkrSIBxy1iGDDmFSrnv7dYMOQdIkeKYqSVJHTKqSJHXEpCpJUkdMqpIkdcSkKklSR0yqkiR1xKQqSVJHTKqSJHXEpCpJUkdMqpIkdcSkKklSR0yqkiR1xKQqSVJHTKqSJHWkb0k1yeIkDya5pafsjCTfTbI8yWVJdmjL5yb5eZJl7fKxnm0OTLIiyaokZyZJv2KWJGky+nmmeh5w2EZlVwH7VdXzgH8DTul57s6qmt8ux/eUnw0sAua1y8b7lCRpWuhbUq2qa4GHNiq7sqrWtQ+vB+aMtY8kuwLbV9U3q6qA84Ej+xGvJEmTNch7qn8IfKnn8Z5Jvp3kmiQvast2A1b31Fndlo0oyaIkS5MsXbt2bfcRS7OA7UiauIEk1SR/CawDPt0WrQH2qKr9gXcBn0myPTDS/dMabb9VdU5VLaiqBUNDQ12HLc0KtiNp4rae6gMmWQj8LvDS9pIuVfUo8Gi7flOSO4Hn0pyZ9l4ingPcP7URS5I0PlN6pprkMOA9wKur6mc95UNJtmrXf4WmQ9JdVbUGeCTJC9pev28GvjCVMUuSNF59O1NNcgFwKLBzktXA+2h6+24DXNX+Mub6tqfvi4H3J1kHPAYcX1XDnZzeRtOT+Bdo7sH23oeVJGna6FtSrapjRij+xCh1LwUuHeW5pcB+HYYmSVJfOKKSJEkdMalKktQRk6okSR0xqUqS1BGTqiRJHTGpSpLUEZOqJEkdMalKktQRk6okSR0xqUqS1JFxJdUkV4+nTJKk2WzMsX+TPB14Bs2g+Duyfn7T7YHn9Dk2SZJmlE0NqP9W4CSaBHoT65Pqw8BH+xiXJEkzzphJtao+DHw4ydur6qwpikmSpBlpXFO/VdVZSX4DmNu7TVWd36e4JEmaccaVVJN8CtgLWEYziThAASZVSZJa452kfAGwT1VVP4ORJGkmG+/vVG8BfqmfgUiSNNONN6nuDNya5IokS4aXTW2UZHGSB5Pc0lO2U5KrktzR/t2xLU+SM5OsSrI8yQE92yxs69+RZOHmvkhJkqbCeC//njrB/Z8HfIQN772eDFxdVacnObl9/B7gVcC8djkYOBs4OMlOwPtoLkEXcFOSJVX1wwnGJElSX4y39+81E9l5VV2bZO5GxUcAh7brnwS+RpNUjwDOb+/bXp9khyS7tnWvqqqHAJJcBRwGXDCRmCRJ6pfx9v59hOYsEeBpwFOBn1bV9hM45i5VtQagqtYkeXZbvhtwX0+91W3ZaOWSJE0r4z1T3a73cZIjgYM6jiUjlNUY5U/eQbIIWASwxx57dBeZNIvYjqSJm9AsNVX1eeC3J3jMB9rLurR/H2zLVwO799SbA9w/RvlIcZ1TVQuqasHQ0NAEw5NmN9uRNHHjvfz72p6HT2F9p6GJWAIsBE5v/36hp/zEJBfSdFT6cXt5+Arg/wz3EgZeAZwywWNLktQ34+39+7961tcB99B0LBpTkgtoOhrtnGQ1TS/e04GLkxwH3Au8rq1+OXA4sAr4GfAWgKp6KMnfAt9q671/uNOSJEnTyXjvqb5lIjuvqmNGeeqlI9Qt4IRR9rMYWDyRGCRJmirjnaR8TpLL2oEcHkhyaZI5/Q5OkqSZZLyXf/8J+AzrL9W+sS17eT+CkjS9HfjnM3sujZvOePOgQ9AWary9f4eq6p+qal27nAfYLVCSpB7jTao/SPLGJFu1yxuB/+hnYJIkzTTjTap/CLwe+HdgDXAUbe9cSZLUGO891b8FFg4PYt8Ocv8BmmQrSZIY/5nq83pnhWl/J7p/f0KSJGlmGm9SfUrPiEbDZ6rjPcuVJGlWGG9i/CDwjSSX0AxP+HrgtL5FJUnSDDTeEZXOT7KUZhD9AK+tqlv7GpkkSTPMuC/htknURCpJ0igmNPWbJEl6MpOqJEkdMalKktQRk6okSR3xt6aStAn3vv/XBh3CpOzx3hWDDmHW8ExVkqSOmFQlSeqISVWSpI5MeVJNsneSZT3Lw0lOSnJqku/3lB/es80pSVYluT3JK6c6ZkmSxmPKOypV1e3AfIAkWwHfBy6jmZ/1Q1X1gd76SfYBjgb2BZ4DfCXJc6vqsSkNXJKkTRj05d+XAndW1ffGqHMEcGFVPVpVdwOrgIOmJDpJkjbDoJPq0cAFPY9PTLI8yeKeqeZ2A+7rqbO6LXuSJIuSLE2ydO3atf2JWNrC2Y6kiRtYUk3yNODVwGfborOBvWguDa+hmW4OmllxNlYj7bOqzqmqBVW1YGhoqOOIpdnBdiRN3CDPVF8F3FxVDwBU1QNV9VhVPQ58nPWXeFcDu/dsNwe4f0ojlSRpHAaZVI+h59Jvkl17nnsNcEu7vgQ4Osk2SfYE5gE3TlmUkiSN00CGKUzyDODlwFt7iv8+yXyaS7v3DD9XVSuTXEwzl+s64AR7/kqSpqOBJNWq+hnwixuVvWmM+qcBp/U7LkmSJmPQvX8lSdpimFQlSeqISVWSpI6YVCVJ6ohJVZKkjphUJUnqiElVkqSOmFQlSeqISVWSpI6YVCVJ6ohJVZKkjphUJUnqiElVkqSOmFQlSeqISVWSpI6YVCVJ6ohJVZKkjphUJUnqiElVkqSODCypJrknyYoky5Isbct2SnJVkjvavzu25UlyZpJVSZYnOWBQcUuSNJpBn6m+pKrmV9WC9vHJwNVVNQ+4un0M8CpgXrssAs6e8kglSdqEQSfVjR0BfLJd/yRwZE/5+dW4Htghya6DCFCSpNEMMqkWcGWSm5Isast2qao1AO3fZ7fluwH39Wy7ui3bQJJFSZYmWbp27do+hi5tuWxH0sQNMqkeUlUH0FzaPSHJi8eomxHK6kkFVedU1YKqWjA0NNRVnNKsYjuSJm5gSbWq7m//PghcBhwEPDB8Wbf9+2BbfTWwe8/mc4D7py5aSZI2bSBJNckzk2w3vA68ArgFWAIsbKstBL7Qri8B3tz2An4B8OPhy8SSJE0XWw/ouLsAlyUZjuEzVfXlJN8CLk5yHHAv8Lq2/uXA4cAq4GfAW6Y+ZEmSxjaQpFpVdwG/PkL5fwAvHaG8gBOmIDRJkiZsuv2kRpKkGcukKklSR0yqkiR1xKQqSVJHTKqSJHXEpCpJUkdMqpIkdcSkKklSR0yqkiR1xKQqSVJHTKqSJHXEpCpJUkdMqpIkdcSkKklSR0yqkiR1xKQqSVJHTKqSJHXEpCpJUkemPKkm2T3JV5PclmRlkj9ty09N8v0ky9rl8J5tTkmyKsntSV451TFLkjQeWw/gmOuAP6uqm5NsB9yU5Kr2uQ9V1Qd6KyfZBzga2Bd4DvCVJM+tqsemNGpJkjZhys9Uq2pNVd3crj8C3AbsNsYmRwAXVtWjVXU3sAo4qP+RSpK0eQZ6TzXJXGB/4Ia26MQky5MsTrJjW7YbcF/PZqsZJQknWZRkaZKla9eu7VPU0pbNdiRN3MCSapJtgUuBk6rqYeBsYC9gPrAG+OBw1RE2r5H2WVXnVNWCqlowNDTUh6ilLZ/tSJq4gSTVJE+lSaifrqrPAVTVA1X1WFU9Dnyc9Zd4VwO792w+B7h/KuOVJGk8BtH7N8AngNuq6h96ynftqfYa4JZ2fQlwdJJtkuwJzANunKp4JUkar0H0/j0EeBOwIsmytuwvgGOSzKe5tHsP8FaAqlqZ5GLgVpqewyfY81eSNB1NeVKtqq8z8n3Sy8fY5jTgtL4FJUlSBxxRSZKkjphUJUnqiElVkqSOmFQlSeqISVWSpI6YVCVJ6ohJVZKkjphUJUnqiElVkqSODGKYQknSNHbIWYcMOoRJu+7t1w3kuJ6pSpLUEZOqJEkdMalKktQRk6okSR0xqUqS1BGTqiRJHTGpSpLUEZOqJEkdMalKktSRGZNUkxyW5PYkq5KcPOh4JEna2IxIqkm2Aj4KvArYBzgmyT6DjUqSpA3NiKQKHASsqqq7quq/gAuBIwYckyRJG0hVDTqGTUpyFHBYVf1R+/hNwMFVdeJG9RYBi9qHewO3T2mgjZ2BHwzguIPi650aP6iqw6biQLajgfD1Tp2+tqWZMktNRih70reBqjoHOKf/4YwuydKqWjDIGKaSr3fLYzuaer7eLcdMufy7Gti95/Ec4P4BxSJJ0ohmSlL9FjAvyZ5JngYcDSwZcEySJG1gRlz+rap1SU4ErgC2AhZX1coBhzWagV42GwBfr/phtr3Pvt4txIzoqCRJ0kwwUy7/SpI07ZlUJUnqiEl1gpJUkg/2PH53klMHGFLn0vh6klf1lL0+yZcnud9JvXdJXr2poSqTzE3y+5MIc9ySHDmVI3wleU6SS6bqeP00G9oR2JY2I54Z35ZMqhP3KPDaJDsPOpB+qeaG+/HAPyR5epJnAqcBJ0xy15N676pqSVWdvolqc4HN+iBoh8OciCNphs/szFixVNX9VXVUl8cboC2+HYFtaTPM+LZkUp24dTQ92N658RNJfjnJ1UmWt3/3mPrwulFVtwBfBN4DvA84v6ruTLIwyY1JliX5xyRPSbJ1kk8lWZHkliTvGGW3k3rvkhyb5CPt+nlJzkzyjSR3taNvAZwOvKiN751JtkpyRpJvtft+a7v9oUm+muQzwIr2W/ltST6eZGWSK5P8Qlt3ryRfTnJTkn9N8j+S/AbwauCM9lh7bRTr69r34jtJrm3LxhvL3yX5k559nZrkz9oYb+nZ1wfa93x5kre35QcmuaaN9Yoku47jn3sQZkU7AtvSrGlLVeUygQX4CbA9cA/wLODdwKntc18EFrbrfwh8ftDxTvK1PpNmqLoVwDbAfsDnga3b58+h+SZ7MPClnu126Md7BxwLfKRdPw/4LM0XxH1oxogGOBT4555tFgF/1a5vAywF9mzr/RTYs31uLs0H1fz28cXAG9v1q4F57frBwL/0xHDUKK91BbBb7/uxGbHsD1zTs69bgT3aGG9py94GXNrzb7ET8FTgG8BQW/YGmp+hDfz/0mxuR7al2dGWZsTvVKerqno4yfnAO4Cf9zz1QuC17fqngL+f6ti6VFU/TXIR8JOqejTJy4DnA0uTAPwCcB/N74j3TvJh4HLgyjH22eV79/mqehy4Nckuo9R5BfC8nm/fzwLmAf8F3FhVd/fUvbuqlrXrNwFzk2wL/Abw2fY1Q9OIN+U64LwkFwOf25xYqurbSZ6d5DnAEPDDqro3ydye/b8M+FhVrWu3eSjJfjQf1le1sW4FrBlHrAMxW9oR2JaYBW3JpDp5/xe4GfinMepsCT8GfrxdoBmLeXFV/fXGlZI8j2aKvncAv8f6gdlH0tV792hvCKPUCfD2qrpig8LkUJpvtKPt7zGaD7qnAD+qqvnjiOcJVXV8koOB3wGWJZm/mbFcAhwF/BLN7EwbC09+jwKsrKoXbk6sAzZb2hHYlrbotuQ91UmqqodoLmsc11P8DZqhFAH+APj6VMfVZ18BXp+2c0SSX0yyR5IhmgFFPktzz+iAsXbS5/fuEWC7nsdXAG9L8tQ25uem6SwyLlX1MHB3kte12yfJr49yrCck2auqbqiq99LMyrH7ZsZyIc37cRTNh8LGrgSOT7J1u6+daC4vDiV5YVv21CT7jve1DsIsbUdgW9ri2pJJtRsfpJnKaNg7gLckWQ68CfjTgUTVJ1W1Avgb4Cvta7wS2IXmP/m1SZYBHwf+Yhy769d7txxY13ZqeCdwLs19lJvbjgn/j82/UvMHwHFJvgOsZP2cvhcCf57k29mocwVNp4sV7TGvBb6zObFUMxzndsD3q2qky07nAvcCy9u4fr+aOYePAv6uLVtGc7ltuptV7QhsS1tiW3KYQkmSOuKZqiRJHTGpSpLUEZOqJEkdMalKktQRk6okSR0xqU5TSf4yzXiZy9OMg3lwkpOSPGMAsVyeZIcJbntompk0jusp278te/cE93lupnAmC81stqUx92lb6phJdRpqf2j8u8ABVfU8muGz7gNOAkb8IMjEZ4XYpKo6vKp+NIldrKAZM3PY0TS/MZtoPH9UVbdOIh7NEralTcZjW+qYSXV62hX4QVU9ClBVP6D5AfJzgK8m+SpAkp8keX+SG4AXZpTZFJL8cZpZHL6T5NLhb+hpZqU4O81sDncl+a0ki9PMLHHecDBJ7kmyc8aedeL57ZnAN9PMGnFLz+u5F3h6kl2SBDgM+FLP/ucnub7d/rIkOyb5n0lu7Kkzt/0RO0m+lmRBu/6K9pg3J/lsmnFFSXJ6klvbfX6g238ezSC2JdvSlDKpTk9XArsn+bc0U0H9VlWdCdwPvKSqXtLWeybNDAsHAzcAZ9HM8HAgsJhmvkaAz1XV86vq14Hb2HAosx2B36aZOuqLwIeAfYFfSzO25sbmAR+tqn2BH9GMSQrNmKPHt2NkPjbCdpcAr6MZjeRmNhwT9HzgPe2ZxArgfVV1G/C0JL/S1nkDzTBsT0gztNtfAS+rqgNoZqh4V5rhxV4D7Nvu83+PEI9mB9uSbWlKmVSnoar6CXAgzQDaa4GLkhw7QtXHaKYqAtib9bMpLKNpIHPa5/ZLM2fhCprhwXrHrvxiNcNqrQAeqKoV7SwVK2mmRdrYSLNO7ABsV1XfaMs/M8J2F9N8EBwDXDBcmORZNNM4XdMWfRJ4cc82r2/X3wBctNE+X0AzRdV17WteCPwy8DDwn8C5SV4L/GyEeDQL2JZsS1PNWWqmqap6DPga8LW2AS8codp/tvVg7NkUzgOOrKrvtB8oh/Y8N/wt93E2/Mb7OCP//xhp1onRZrN4QlX9e5L/Bl5OMwbpeMaivYhmeqjPNbuoOzZ6PsBVVXXMxhsmOQh4Kc09pxNpziA0C9mWANvSlPFMdRpKsneSeT1F84HvMcYMDow9m8J2wJo0Mzn8QdfxVtUPgUeSvKAtOnqUqu+luTT1xCWtqvox8MMkL2qL3gRc0z53J82HzV/z5G/WANcDhyT5VYAkz0gzS8W2wLOq6nKaDimbNcWUthy2JdvSVPNMdXraFjirvRS0DlhFc/nqGOBLSdb03AsCoKr+K81EvWe2l4G2ppljcSVNQ7qB5sNkBaN/mEzGccDHk/yU5qzgxxtX6LmktbGFwMfaTh93AW/pee4i4AxgzxH2t7Y9W7ggyfAkx39F84H5hSRPp/kG/s6JvCBtEWxL69mWpoCz1KgTSbZt71+R5GRg16ra4qbqkvrNtjSzeaaqrvxOklNo/k99Dzh2sOFIM5ZtaQbzTFWSpI7YUUmSpI6YVCVJ6ohJVZKkjphUJUnqiElVkqSO/H+huB4EnmQ3dAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGXJJREFUeJzt3Xm4ZHV95/H3R1ARN7YWlSUYbJPBZRDbFY2oUcGZBIwaxShgHMkzokYTMzHORAjGPK7xUcbooLI+KKCAMgYVBkUQZFWkaRRplWALsoi7kQh+54/zu1J9+y7VfW7dutX3/Xqeeu45vzrL91T3rz51Tp06J1WFJEnadPcYdwGSJE06w1SSpJ4MU0mSejJMJUnqyTCVJKknw1SSpJ4MU0mSejJMJ1SSByc5Ocm3k1yT5Kwkj0iyT5LPLHIt1yc5bWD8hUmOW8waZpLkYUkuSXJdklOS3GvcNWnpsk/NL8lrkqxNUkl2GHc9S4lhOoGSBDgDOK+qdq+qPYA3AzsuwLK33MRZVyV5ZN/1L7B3AO+tqpXAj4BXjrkeLVH2qaFdCPwh8G/jLmSpMUwn0zOAX1fVh6YaqurKqrqgjd4vySeTfDPJSe2NYurT7g5teFWS89rwEUmOTnI2cEKSQ5KcnuRzba/unUPU9G66N5/1tGW/cWD86iS7tcc3k3yktZ2U5A+TXNjW+YRNfXHaegI8E/hkazoeOKDPMrVZs08Noaq+VlXX913O5mhTPzFpvB4FXDHH848FHgncSPdJcm/gy/Ms83HAU6vq35McAuzZlnMHcG2So6rqe3PMfyrw6iQPH24TAHg48CLgUOAy4KXAU4E/pnsTWS/8kvwecMosy9qnqn48ML498OOqurONrwN22ojatLzYpzY0vU9pDobp5unSqloHkORKYDfm7/hnVtW/D4yfW1U/acu4BvgdYK6OfxfwLuDvgM8OWed3q2p1W8eats5KsrrVvJ6qupbuDWkYmaHNC1FrU9mnNCfDdDKtAV44x/N3DAzfxd3/zndy96H9rabN84shlzGXE+k6/pqBtsF1Tl/v4Dp+MzD+m5nWt5Gfom8DtkmyZds73Zlur0KaiX1qQ+6ZbgS/M51MXwDuneRVUw1JHp/k6fPMdz3doSeAFyx0UVX1a+C9wOunrXMvgCR7AQ/rsfxrq2rPWR4/njZtAV/k7jfIg4FPb+q6tdmzT83TpzQ3w3QCtaB4PvDsdhr/GuAI5t/z+gfgfUkuoPtkPAofZf1PwKcB27VDY/8d+NaI1juTvwX+Kslauu9QP7qI69YEsU8NJ8nrkqyjO9JzVZKPLNa6l7p4P1NJkvpxz1SSpJ48AUlDS3IJcO9pzS+fOntQ0saxT20+PMwrSVJPm+Vh3n333bfoflPow8dye4yM/crHMn0MZbMM09tuu23cJUibHfuVNLvNMkwlSVpMhqkkST0ZppIk9WSYSpLUk2EqSVJPhqkkST0ZppIk9WSYSpLUk2EqSVJPy+5C94/7mxPGXcKCueJdB427BEkS7plKktSbYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktTTyMI0yS5JvpjkG0nWJPnL1r5dknOSXNf+btvak+T9SdYmuSrJXgPLOrhNf12Sg0dVsyRJm2KUe6Z3An9dVf8JeBJwWJI9gDcB51bVSuDcNg6wH7CyPQ4FPghd+AKHA08EngAcPhXAkiQtBSML06q6qaq+2oZ/BnwD2AnYHzi+TXY8cEAb3h84oToXA9skeQjwXOCcqrq9qn4EnAPsO6q6JUnaWIvynWmS3YDHApcAO1bVTdAFLvCgNtlOwPcGZlvX2mZrn76OQ5NcnuTyW2+9daE3QVqW7FfScEYepknuB5wGvL6qfjrXpDO01Rzt6zdUHV1Vq6pq1YoVKzatWEnrsV9JwxlpmCa5J12QnlRVp7fmm9vhW9rfW1r7OmCXgdl3Bm6co12SpCVhlGfzBvgo8I2q+ueBp84Eps7IPRj49ED7Qe2s3icBP2mHgT8PPCfJtu3Eo+e0NkmSloQtR7jsvYGXA6uTXNna3gy8HTg1ySuBG4AXtefOAp4HrAV+CbwCoKpuT/JW4LI23ZFVdfsI65YkaaOMLEyr6svM/H0nwLNmmL6Aw2ZZ1jHAMQtXnSRJC8crIEmS1JNhKklST4apJEk9GaaSJPVkmEqS1JNhKklST4apJEk9GaaSJPVkmEqS1JNhKklST4apJEk9GaaSJPVkmEqS1JNhKklST4apJEk9GaaSJPVkmEqS1JNhKklST4apJEk9GaaSJPVkmEqS1JNhKklST4apJEk9GaaSJPVkmEqS1JNhKklST4apJEk9bTnuAqTFsvdRe4+7hAVx4WsvHHcJ63nc35ww7hIWzBXvOmjcJWhCuWcqSVJPhqkkST0ZppIk9WSYSpLUk2EqSVJPhqkkST0ZppIk9WSYSpLUk2EqSVJPhqkkST2NLEyTHJPkliRXD7QdkeT7Sa5sj+cNPPd3SdYmuTbJcwfa921ta5O8aVT1SpK0qUa5Z3ocsO8M7e+tqj3b4yyAJHsALwEe2eb5lyRbJNkC+ACwH7AHcGCbVpKkJWNkF7qvqvOT7Dbk5PsDJ1fVHcB3k6wFntCeW1tV3wFIcnKb9poFLleSpE02ju9MX5PkqnYYeNvWthPwvYFp1rW22do3kOTQJJcnufzWW28dRd3SsmO/koaz2GH6QWB3YE/gJuA9rT0zTFtztG/YWHV0Va2qqlUrVqxYiFqlZc9+JQ1nUe9nWlU3Tw0n+TDwmTa6DthlYNKdgRvb8GztkiQtCYu6Z5rkIQOjzwemzvQ9E3hJknsneRiwErgUuAxYmeRhSe5Fd5LSmYtZsyRJ8xnZnmmSjwP7ADskWQccDuyTZE+6Q7XXA38BUFVrkpxKd2LRncBhVXVXW85rgM8DWwDHVNWaUdUsSdKmGOXZvAfO0PzROaZ/G/C2GdrPAs5awNIkSVpQXgFJkqSeDFNJknoyTCVJ6skwlSSpJ8NUkqSeDFNJknoyTCVJ6skwlSSpJ8NUkqSeDFNJknoyTCVJ6skwlSSpJ8NUkqSeFvXm4BqvG4589LhLWDC7vmX1uEuQpN9yz1SSpJ6GCtMk5w7TJknScjTnYd4kWwFbAzsk2RZIe+oBwENHXJskSRNhvu9M/wJ4PV1wXsHdYfpT4AMjrEuSpIkxZ5hW1fuA9yV5bVUdtUg1SZI0UYY6m7eqjkryFGC3wXmq6oQR1SVJ0sQYKkyTnAjsDlwJ3NWaCzBMJUnL3rC/M10F7FFVNcpiJEmaRMP+zvRq4MGjLESSpEk17J7pDsA1SS4F7phqrKo/HklVkiRNkGHD9IhRFiFJ0iQb9mzeL426EEmSJtWwZ/P+jO7sXYB7AfcEflFVDxhVYZIkTYph90zvPzie5ADgCSOpSJKkCbNJd42pqk8Bz1zgWiRJmkjDHub9k4HRe9D97tTfnEqSxPBn8/7RwPCdwPXA/gtejSRJE2jY70xfMepCJEmaVMPeHHznJGckuSXJzUlOS7LzqIuTJGkSDHsC0rHAmXT3Nd0J+L+tTZKkZW/YMF1RVcdW1Z3tcRywYoR1SZI0MYYN09uSvCzJFu3xMuCHoyxMkqRJMWyY/jnwp8APgJuAFwKelCRJEsP/NOatwMFV9SOAJNsB76YLWUmSlrVh90wfMxWkAFV1O/DY0ZQkSdJkGTZM75Fk26mRtmc6515tkmPaT2muHpwvyTlJrmt/t23tSfL+JGuTXJVkr4F5Dm7TX5fk4I3bPEmSRm/YMH0PcFGStyY5ErgIeOc88xwH7Dut7U3AuVW1Eji3jQPsB6xsj0OBD8JvQ/tw4Il0F9Y/fDDUJUlaCoYK06o6AXgBcDNwK/AnVXXiPPOcD9w+rXl/4Pg2fDxwwED7CdW5GNgmyUOA5wLnVNXt7TDzOWwY0JIkjdWwJyBRVdcA1/Rc345VdVNb3k1JHtTadwK+NzDdutY2W/sGkhxKt1fLrrvu2rNMSWC/koa1SbdgG4HM0FZztG/YWHV0Va2qqlUrVng9CWkh2K+k4Sx2mN7cDt/S/t7S2tcBuwxMtzNw4xztkiQtGYsdpmcCU2fkHgx8eqD9oHZW75OAn7TDwZ8HnpNk23bi0XNamyRJS8bQ35lurCQfB/YBdkiyju6s3LcDpyZ5JXAD8KI2+VnA84C1wC9pV1eqqtuTvBW4rE13ZPuNqyRJS8bIwrSqDpzlqWfNMG0Bh82ynGOAYxawNEmSFtRSOQFJkqSJZZhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktTTWMI0yfVJVie5MsnlrW27JOckua793ba1J8n7k6xNclWSvcZRsyRJsxnnnukzqmrPqlrVxt8EnFtVK4Fz2zjAfsDK9jgU+OCiVypJ0hyW0mHe/YHj2/DxwAED7SdU52JgmyQPGUeBkiTNZFxhWsDZSa5Icmhr27GqbgJofx/U2ncCvjcw77rWtp4khya5PMnlt9566whLl5YP+5U0nHGF6d5VtRfdIdzDkvzBHNNmhrbaoKHq6KpaVVWrVqxYsVB1Ssua/UoazljCtKpubH9vAc4AngDcPHX4tv29pU2+DthlYPadgRsXr1pJkua26GGa5L5J7j81DDwHuBo4Ezi4TXYw8Ok2fCZwUDur90nAT6YOB0uStBRsOYZ17gickWRq/R+rqs8luQw4NckrgRuAF7XpzwKeB6wFfgm8YvFLliRpdoseplX1HeA/z9D+Q+BZM7QXcNgilCZJ0iZZSj+NkSRpIhmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPRmmkiT1tOW4C5CkSXXDkY8edwkLZte3rB53CRPNPVNJknoyTCVJ6skwlSSpJ8NUkqSeDFNJknoyTCVJ6skwlSSpJ8NUkqSeDFNJknoyTCVJ6snLCUqSNsneR+097hIWzIWvvbDX/O6ZSpLU08SEaZJ9k1ybZG2SN427HkmSpkxEmCbZAvgAsB+wB3Bgkj3GW5UkSZ2JCFPgCcDaqvpOVf0HcDKw/5hrkiQJgFTVuGuYV5IXAvtW1X9r4y8HnlhVrxmY5lDg0Db6e8C1i17o3XYAbhvj+sdtOW//uLf9tqrad6EWtoT61bhf13Fbzts/7m0fqk9Nytm8maFtvU8BVXU0cPTilDO3JJdX1apx1zEuy3n7N7dtXyr9anN7XTfWct7+Sdn2STnMuw7YZWB8Z+DGMdUiSdJ6JiVMLwNWJnlYknsBLwHOHHNNkiQBE3KYt6ruTPIa4PPAFsAxVbVmzGXNZeyHxcZsOW//ct72UVrur+ty3v6J2PaJOAFJkqSlbFIO80qStGQZppIk9TSxYZqkkpw4ML5lkluTfGYTl7dNklcPjO8zzLKS7JbkpZuyzlFIckiShw6MX59kh1mm3TnJp5Ncl+TbSd7XTvDarCXZPsmV7fGDJN8fGN/st3829qmZ2afmZ5+a4DAFfgE8Ksl92vizge/3WN42wKvnnWpDuwFLpuMDhwAPnW+iJAFOBz5VVSuBRwD3A9420up6SLIgJ8xV1Q+ras+q2hP4EPDeqfF2ha0lZ6G2fR72qZkdgn1qTvapyQ5TgM8C/6UNHwh8fOqJJNsl+VSSq5JcnOQxrf2IJMckOS/Jd5K8rs3ydmD39knqXa3tfkk+meSbSU5qnWW6twNPa/O9IclWSY5NsjrJ15I8Y6bC2/rfm+T8JN9I8vgkp7dPtP84MN1fJbm6PV7f2nZr83w4yZokZye5T7tS1CrgpFbP1Jvia5N8tdX0+63tmcCvqupYgKq6C3gD8OdJtm6fxk9P8rlW0zsHanpOkq+0ZX4iyf2mbdvuSb46ML4yyRVt+HFJvpTkiiSfT/KQ1v6qJJcl+XqS05Js3dqPS/LPSb4IvGOm13KhJHnz1J5UkqOSnN2Gn5vkuDb8svY6Xp3kn2ZYxnOTfGJgfL8kpw4MT71upyS5b2v/h7btVyf50NT/syRfTvK2JOcDr5m+rhGxT9mnFsyy6lNVNZEP4OfAY4BPAlsBVwL7AJ9pzx8FHN6Gnwlc2YaPAC4C7k13maofAvek+zR89cDy9wF+QneBiHsAXwGeOkMdv11nG/9r4Ng2/PvADcBWM8x3HvCONvyXdBeheEirax2wPfA4YDVwX7pPuGuAx7Za7wT2bPOfCrxsYLmrBtZzPfDaNvxq4CNt+HV0nx6n1/W19roeAnwHeGB7ff+N7sIZOwDnA/dt0/8t8JYZlvPFgfr+CXhte50vAla09hfT/cwJYPuBef9xoObjgM8AW4zo/9ERwBvb8FOBj7fhC4FL6X4+9lbgle3/wvXtNbgn8CXgv05b3j3oLrm3/cC/zX7Ag9r0W7f2/wm8uQ1v1/6GLrz2a+NfBo6yT9mn7FNLv09N9J5pVV1F1wkOBM6a9vRTgRPbdF8Atk/ywPbcv1bVHVV1G3ALsOMsq7i0qtZV1W/o3lh2G6KswfV+k67DPGKWaacuPLEaWFNVN1XVHXQdbpe2rDOq6hdV9XO6Q0hPa/N8t6qubMNXzFPb6TNMF6ZdknGG9nOr6idV9SvgGuB3gCfR3bnnwiRXAge39uk+Arwi3R1/Xgx8jO7aro8Czmnz/i+6zgTd4cULkqwG/gx45MCyPlHdp/xRuwx4fJJt6ILlMro32qcBFwBPBL5QVbdV1a/bNv3B4ALa/5WPAS9Nsh3dm/fZwFPoXreL2rb/GXf/WzwryaXA14Gns/62nzyC7ZyVfco+tcCWTZ+aiIs2zONM4N10n2a3H2if63q+dwy03cXsr8MG0yV5IvB/WttbgJ9Om2em9ZLkWLr/RDdW1fOmLf8309b1m1bTjMuapbb7zDbhwLSD27oGeMG0Gh9A94bzbbr/sDO9TgHOqaoD51gfwGnA4cAXgCuq6ofpTuJYU1VPnmH644ADqurrSQ6h+/ec8ot51rUgquqOJDcCB9F9iv4W8Cxg16r6VtphzSEcQ7f9AKdU1V3tMNPnqurlgxO2Q2//G9irqr7fDkduNTDJomz7NPYp+9SCWE59aqL3TJtjgCOravW09vPpPqmQZB+6K/9P76SDfgbcf76VVdUldfcX62fOMN/geh8B7ApcW1WvaPM8b8Olzup84ID2fct9gefTfZqby1DbAZwLbJ3koFbrFsB7gOOq6pdzzHcxsHeSh7f5tm7buZ72yfvzwAeBY1vztcCKJE9u894zydQnxvsDNyW5J+31G5PzgTe2vxcAh9HtfUC37c9Id+bilnSXtfzS9AVU1ffo7nLxJro3NOgOxT09ye8CJLlvkpV0b9i/AW5Lcn+mvRmPiX1qE7YD+9RslkWfmvgwbYeM3jfDU0cAq5JcRXdCw8HzLOeHdIdZrs7dJ0sM4yrgzvYl/xuAfwG2aIdWTgEOaYeZNlpVfZXuP86lwCV03818bZ7ZjgM+lPVPlphp2UX3RvKiJNfRfWL8FfDmeWq6le67n4+31/Ziuu+xZnIS3Z7L2W3e/wBeCLwjydfpDvM9pU37920bzwG+Oc82jtIFdIcoL6mq7wO/bm1U1Tq6Pafz6Gq/uKr+dZblfIzusOG32rw3031HdErb9ouAR7T/d8cDVwNn0L0GY2Wf2sBx2Kf6WBZ9yssJamSSvBF4YFX9/bhrWWxJPgR8paqOH3ct2nzYp5ZunzJMNRJJzgB2B57ZTkpZNtrJED8CnltL9Dd2mjz2qaXdpwxTSZJ6mvjvTCVJGjfDVJKkngxTSZJ6MkxFkgcnOTndXS6uSXLWTL9zG2I5r28/mF6ImpbUnUOkjWGfWn4M02WuXUXkDOC8qtq9qvag+13cbJeDm8vrgRk7fvsB+8bYjaV15xBpKPap5ckw1TOAX1fVh6Ya2vVJv5zkXe0H96uTvBh+e0/K8zLtzh/p7hTyUOCL6e5GQZKfJzkyySXAk5O8JXffyeHo9qZDkocn+X/tR/pfTbI70+4cssividSHfWo5qkW6I4WPpflg9jtdvIDuyilb0H2ivoHuDhz7MMudP2h3fxhYRgF/OjC+3cDwicAfteFLgOe34a3oPonvw8CdQ3z4mJSHfWp5Ptwz1Wymbp10V3WX7foS8Pj23LB3/riLuy9ODd01OC9pl4V7JvDIdu3MnarqDOiuP1pzX8dUmlT2qc2YYao1dHezmG5j7q4x2x1CflXtNk9JtqK7xuoLq+rRwIfpPjHPtR5pEtmnliHDVF8A7p3kVVMNSR5Pd+muFyfZIskKunsMXjrPsua6u8bULZBuS3I/uotzU91dR9YlOaCt+97t7MVh79QhLTX2qWXIMF3mqvtS5fnAs9tp/Gvo7g7yMbq7d3yd7s3hf1TVD+ZZ3NHAZ6dOlpi2nh/TfXJeDXyK7ibBU14OvK7dMeMi4MFseOcQaSLYp5Ynr80rSVJP7plKktSTYSpJUk+GqSRJPRmmkiT1ZJhKktSTYSpJUk+GqSRJPf1/w5Y3JsqsmjsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAF0lJREFUeJzt3XuwpHV95/H3B/GSiAaUkSCgUDjqokbEEY2YBCMqkGxARVdNZLxkJ+5CiLtqBa1sQC2rNIouKGFrlBGGNUEULxOXiMjiBS2FwcwyMxDCqERGEAbBO0UEvvtHPyfTczhzps/5nT59+pz3q6qru7/9XL59Tv3608/TTz+dqkKSJM3ebqNuQJKkcWeYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZpmMsyW8muTDJd5Jcl+SSJE9McmSSz89zLzclubjv/glJzpvPHqaS5KAk30pyY5JPJHnIqHvSwuNY2rUkJyfZkqSS7D3qfhYaw3RMJQnwGeDLVXVwVR0CvB3YZw6WvfssZ12R5Cmt659j7wU+WFXLgbuAN4y4Hy0wjqWBfR04CvjXUTeyEBmm4+v5wK+q6n9NFKpqQ1V9rbu7R5JPJfnnJB/vXjAm3vXu3d1ekeTL3e3Tk6xO8kVgbZLXJvl0ki90W3V/M0BP76f3IrSDbtlv6bu/KcmB3eWfk3y0q308yVFJvt6t8/DZ/nG69QT4feBTXel84PiWZWpRciwNoKr+qapual3OYjXbd00avacC10zz+DOApwC30HtHeQRw5S6W+UzgeVV1d5LXAod2y7kHuCHJh6rq5mnmvwj4r0meMNhTAOAJwMuBVcDVwKuB5wF/RO/FZIfwS/Ik4BM7WdaRVfXjvvuPBn5cVfd297cC+82gNy0NjqUHmjyWtAuG6eJ1VVVtBUiyATiQXb8ArKuqu/vuX15VP+mWcR3weGC6F4D7gPcBbwP+ccA+v1dVG7t1bO7WWUk2dj3voKpuoPfCNIhMUfNk1Jopx5J2yTAdX5uBE6Z5/J6+2/ex/X99L9t37z9s0jy/GHAZ07mA3gvA5r5a/zonr7d/Hff33b9/qvXN8N30HcCeSXbvtk73p7d1IfVzLD2QW6Yz5Gem4+v/Ag9N8p8nCkmeleT3djHfTfR2QQG8bK6bqqpfAR8E3jRpnYcBJDkMOKhh+TdU1aE7ufx40rQFXMH2F8qVwOdmu24tWo6lXYwl7ZphOqa6oHgJ8MLucP7NwOnsesvrHcCZSb5G7x3yMJzLju+ELwYe1e0i+y/AvwxpvVP5S+C/J9lC7zPUc+dx3RoDjqXBJDklyVZ6e3iuTfLR+Vr3OIi/ZypJUhu3TCVJauQBSJqRJN8CHjqp/JqJowglDcaxtLi4m1eSpEaLcjfv0UcfXfS+T+jFy1K9zAnHkhcvg1mUYXrHHXeMugVpUXAsSYNZlGEqSdJ8MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDVa0ie6f+Zb1466hbFzzftOHHULkrTguGUqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqdHQwjTJAUmuSHJ9ks1J/qKrn57kB0k2dJdj++Z5W5ItSW5I8uK++tFdbUuSU4fVsyRJs7H7EJd9L/Dmqvp2kkcA1yS5rHvsg1X1/v6JkxwCvBJ4CvBY4EtJntg9fDbwQmArcHWSdVV13RB7lyRpYEML06q6Fbi1u/2zJNcD+00zy3HAhVV1D/C9JFuAw7vHtlTVdwGSXNhNa5hKkhaEefnMNMmBwDOAb3Wlk5Ncm2RNkr262n7AzX2zbe1qO6tLkrQgDD1Mk+wBXAy8qap+CpwDHAwcSm/L9YyJSaeYvaapT17PqiTrk6zftm3bnPQuLUWOJWnmhhqmSR5ML0g/XlWfBqiq26rqvqq6H/gI23flbgUO6Jt9f+CWaeo7qKrVVbWiqlYsW7Zs7p+MtEQ4lqSZG+bRvAHOBa6vqg/01fftm+wlwKbu9jrglUkemuQgYDlwFXA1sDzJQUkeQu8gpXXD6luSpJka5tG8RwCvATYm2dDV3g68Ksmh9HbV3gT8GUBVbU5yEb0Di+4FTqqq+wCSnAxcCjwIWFNVm4fYtyRJMzLMo3mvZOrPOy+ZZp53A++eon7JdPNJkjRKngFJkqRGhqkkSY2G+ZmptEvff+fTRt3C2HncX28cdQuSJnHLVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNhhamSQ5IckWS65NsTvIXXf1RSS5LcmN3vVdXT5KzkmxJcm2Sw/qWtbKb/sYkK4fVsyRJszHMLdN7gTdX1X8AngOclOQQ4FTg8qpaDlze3Qc4BljeXVYB50AvfIHTgGcDhwOnTQSwJEkLwdDCtKpurapvd7d/BlwP7AccB5zfTXY+cHx3+zhgbfV8E9gzyb7Ai4HLqurOqroLuAw4elh9S5I0U/PymWmSA4FnAN8C9qmqW6EXuMBjusn2A27um21rV9tZXZKkBWHoYZpkD+Bi4E1V9dPpJp2iVtPUJ69nVZL1SdZv27Ztds1KcixJszDUME3yYHpB+vGq+nRXvq3bfUt3fXtX3woc0Df7/sAt09R3UFWrq2pFVa1YtmzZ3D4RaQlxLEkzN8yjeQOcC1xfVR/oe2gdMHFE7krgc331E7ujep8D/KTbDXwp8KIke3UHHr2oq0mStCDsPsRlHwG8BtiYZENXezvwHuCiJG8Avg+8vHvsEuBYYAvwS+B1AFV1Z5J3AVd3072zqu4cYt+SJM3I0MK0qq5k6s87AV4wxfQFnLSTZa0B1sxdd5IkzR3PgCRJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUqOBwjTJ5YPUJElainaf7sEkDwN+Hdg7yV5AuoceCTx2yL1JkjQWpg1T4M+AN9ELzmvYHqY/Bc4eYl+SJI2NacO0qs4Ezkzy51X1oXnqSZKksTLQZ6ZV9aEkz03y6iQnTlymmyfJmiS3J9nUVzs9yQ+SbOgux/Y99rYkW5LckOTFffWju9qWJKfO5klKkjRMu9rNC0CSC4CDgQ3AfV25gLXTzHYe8OEppvlgVb1/0vIPAV4JPIXeLuUvJXli9/DZwAuBrcDVSdZV1XWD9C1J0nwYKEyBFcAhVVWDLriqvprkwAEnPw64sKruAb6XZAtwePfYlqr6LkCSC7tpDVNJ0oIx6PdMNwG/OUfrPDnJtd1u4L262n7AzX3TbO1qO6tLkrRgDBqmewPXJbk0ybqJyyzWdw693cWHArcCZ3T1TDFtTVN/gCSrkqxPsn7btm2zaE0SOJak2Rh0N+/pc7Gyqrpt4naSjwCf7+5uBQ7om3R/4Jbu9s7qk5e9GlgNsGLFioF3R0vakWNJmrmBwrSqvjIXK0uyb1Xd2t19Cb3dxwDrgL9L8gF6ByAtB66it2W6PMlBwA/oHaT06rnoRZKkuTLo0bw/Y/vu1YcADwZ+UVWPnGaevweOpHf2pK3AacCRSQ7tlnUTvZNCUFWbk1xE78Cie4GTquq+bjknA5cCDwLWVNXmGT5HSZKGatAt00f0309yPNuPtt3ZPK+aonzuNNO/G3j3FPVLgEsG6VOSpFGY1a/GVNVngd+f414kSRpLg+7mfWnf3d3ofe/UAxMkSWLwo3n/Y9/te+l93nncnHcjaSw9863TnQxNU7nmfdOekVVjZtDPTF837EYkSRpXg/44+P5JPtOduP62JBcn2X/YzUmSNA4GPQDpY/S+C/pYeqfz+4euJknSkjdomC6rqo9V1b3d5Txg2RD7kiRpbAwapnck+ZMkD+oufwL8aJiNSZI0LgYN09cDrwB+SO8E9ScAHpQkSRKDfzXmXcDKqroLIMmjgPfTC1lJkpa0QbdMf2siSAGq6k7gGcNpSZKk8TJomO7W90PeE1umg27VSpK0qA0aiGcA30jyKXqnEXwFU5yUXpKkpWjQMyCtTbKe3sntA7y0qq4bameSJI2JgXfVduFpgEqSNMmsfoJNkiRtZ5hKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaDS1Mk6xJcnuSTX21RyW5LMmN3fVeXT1JzkqyJcm1SQ7rm2dlN/2NSVYOq19JkmZrmFum5wFHT6qdClxeVcuBy7v7AMcAy7vLKuAc6IUvcBrwbOBw4LSJAJYkaaEYWphW1VeBOyeVjwPO726fDxzfV19bPd8E9kyyL/Bi4LKqurOq7gIu44EBLUnSSM33Z6b7VNWtAN31Y7r6fsDNfdNt7Wo7qz9AklVJ1idZv23btjlvXFoqHEvSzC2UA5AyRa2mqT+wWLW6qlZU1Yply5bNaXPSUuJYkmZuvsP0tm73Ld317V19K3BA33T7A7dMU5ckacGY7zBdB0wckbsS+Fxf/cTuqN7nAD/pdgNfCrwoyV7dgUcv6mqSJC0Yuw9rwUn+HjgS2DvJVnpH5b4HuCjJG4DvAy/vJr8EOBbYAvwSeB1AVd2Z5F3A1d1076yqyQc1SZI0UkML06p61U4eesEU0xZw0k6WswZYM4etSZI0pxbKAUiSJI0tw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUaSZgmuSnJxiQbkqzvao9KclmSG7vrvbp6kpyVZEuSa5McNoqeJUnamVFumT6/qg6tqhXd/VOBy6tqOXB5dx/gGGB5d1kFnDPvnUqSNI2FtJv3OOD87vb5wPF99bXV801gzyT7jqJBSZKmMqowLeCLSa5Jsqqr7VNVtwJ014/p6vsBN/fNu7Wr7SDJqiTrk6zftm3bEFuXFjfHkjRzowrTI6rqMHq7cE9K8rvTTJspavWAQtXqqlpRVSuWLVs2V31KS45jSZq53Uex0qq6pbu+PclngMOB25LsW1W3drtxb+8m3woc0Df7/sAt89qwJC1g33/n00bdwth53F9vnNPlzfuWaZKHJ3nExG3gRcAmYB2wsptsJfC57vY64MTuqN7nAD+Z2B0sSdJCMIot032AzySZWP/fVdUXklwNXJTkDcD3gZd3018CHAtsAX4JvG7+W5YkaefmPUyr6rvA06eo/wh4wRT1Ak6ah9YkSZqVhfTVGEmSxpJhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGo1NmCY5OskNSbYkOXXU/UiSNGEswjTJg4CzgWOAQ4BXJTlktF1JktQzFmEKHA5sqarvVtW/ARcCx424J0mSAEhVjbqHXUpyAnB0Vf1pd/81wLOr6uS+aVYBq7q7TwJumPdG59bewB2jbmIJG/e//x1VdfRsZlxkY2nc/4+Lwbj/DwYaS7vPRydzIFPUdngXUFWrgdXz087wJVlfVStG3cdStZT//otpLC3l/+NCsVT+B+Oym3crcEDf/f2BW0bUiyRJOxiXML0aWJ7koCQPAV4JrBtxT5IkAWOym7eq7k1yMnAp8CBgTVVtHnFbw7YodrONMf/+i4P/x9FbEv+DsTgASZKkhWxcdvNKkrRgGaaSJDUyTEcgPVcmOaav9ookXxhlX0tRkkpyRt/9tyQ5fYQtaQYcSwvHUh9LhukIVO+D6jcCH0jysCQPB94NnDTazpake4CXJtl71I1o5hxLC8qSHkuG6YhU1SbgH4C/BE4D1lbVd5KsTHJVkg1J/jbJbkl2T3JBko1JNiU5ZbTdLyr30jva8L9NfiDJ45NcnuTa7vpx89+edsWxtGAs6bE0Fl+NWcTeAXwb+DdgRZKnAi8Bntt9HWg1ve/UfgfYu6qeBpBkz1E1vEidDVyb5G8m1T9M74X5/CSvB84Cjp/37jQIx9LCsGTHkmE6QlX1iySfAH5eVfckOQp4FrA+CcCvATfT+37tk5KcCVwCfHFUPS9GVfXTJGuBU4C7+x76beCl3e0LgMkvEFogHEsLw1IeS4bp6N3fXaB3DuI1VfU/Jk+U5Lfo/QTdKcDL2H4ics2N/0lvy+Zj00zjl7IXNsfSwrAkx5KfmS4sXwJeMfEBfpJHJ3lckmX0TrDxSXqfCR02yiYXo6q6E7gIeENf+Rv0dg0C/DFw5Xz3pVlzLI3IUh1LbpkuIFW1Mck7gC8l2Q34Fb0jFe8Dzk1vf1XRO9BCc+8M4OS++6cAa5K8FdgGvG4kXWnGHEsjt+TGkqcTlCSpkbt5JUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhukYS3Jfd97RTUk+meTXh7y+1yb58Bwu76buHKkbuuvj+h77Rnd9YJJN3e0jk3y+u/1HSU6dq160tDmWHEutDNPxdndVHVpVT6V3TtI3DmtFSYb1neTnV9WhwAn0ztcJQFU9d7qZqmpdVb1nSD1p6XEsqYlhunh8DXgCQJLPJrkmyeYk/36qtCQ/T3JGkm93v9ywrKsfnOQL3TxfS/Lkrn5ekg8kuQJ4b//KkixLcnGSq7vLEV3997p3xxuS/FOSRyTZN8lX+975/84U/T8SuKu/1+mebP87+67Ps5J8I8l3k5zQ1XdL79dCNif5fJJLJh6TpuFYcizNmGG6CHTvdI8BNnal11fVM4EVwClJHt3VHw58u6oOA75C73Rq0PvZpD/v5nkL8Ld9i38icFRVvXnSas8EPlhVz6J3ftOPdvW3ACd175B/h97Jrl8NXNrVng5s6FvOFd2up68AfzXbvwGwL/A84A+BiXfZLwUOBJ4G/Cm9k21LO+VYAhxLs+LpBMfbryWZGExfA87tbp+S5CXd7QOA5cCP6J0E/BNd/X8Dn06yB/Bc4JPp/boGwEP71vHJqrpvinUfBRzSN88jkzwC+Dq9H2r+OPDpqtqa5Gp6pxJ7MPDZqup/AXh+Vd2R5GDg8iRfrqpp30nvxGer6n7guiT7dLXndf3fD/yw2yqQpuJY2s6xNAuG6Xi7u3uH+u+SHElvcP52Vf0yyZeBh+1k/qK3d+LHk5fT5xc7qe/WrePuSfX3JPk/wLHAN5McVVVfTfK7wB8AFyR5X1Wt3aGR3o853wYcAly1k3VO556+25l0Le2KY2k7x9IsuJt38fkN4K5u8D8ZeE7fY7vROzgBeruLrqyqnwLfS/JygPQ8fYD1fJG+E1knObS7PriqNlbVe4H1wJOTPB64vao+Qu8d/wN+qSPJY4CDgH+d2dOd1pXAy7rPe/YBjpzDZWvxcyxt51jaBbdMF58vAG9Mci1wA/DNvsd+ATwlyTXAT4D/1NX/GDgnyV8BDwYuBP7fLtZzCnB2t57dga/SOwLyTUmeT+/XOa4D/pHeTy+9NcmvgJ8DJ/Yt54ok93XrPbWqbpvd057SxcALgE3AvwDfove8pUE4lrZzLO2CvxqzhCT5eVXtMeo+5lOSParq592BI1cBR1TVD0fdl8abY8mxNJlbplrsPp9kT+AhwLsc/NKsOZam4ZapJEmNPABJkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWr0/wHiGdrUSRv5ZAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABIYAAAEYCAYAAAApu/2UAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XmYZVV57/HvT5rJAZlao4CBKOpFYxBbxWAUBQ1iIhgxShzAkHA1KjFer1PuowSj1ykSNVHDFRR8iBNOrSKCyGBQEBCkm0k6iNCBSKPgiCj43j/2Kvp0dQ2nqqvqVPf+fp7nPL332muv9dbe+5yz+t3DSVUhSZIkSZKk/rnHqAOQJEmSJEnSaJgYkiRJkiRJ6ikTQ5IkSZIkST1lYkiSJEmSJKmnTAxJkiRJkiT1lIkhSZIkSZKknjIxJEmSJEmS1FMmhiQtmCS/k+QTSf4zyRVJTk3y0CT7JvnSAsdyXZLPDMwfkuSjCxnDRJLsluSCJNck+WSSLUYdkyRJfeJ4ZXpJXpFkVZJKsuOo45G0YUwMSVoQSQJ8Dji7qh5cVXsAbwTuPwdtL5nlqsuSPGJD+59j7wCOrardgVuBI0YcjyRJveF4ZWjnAfsDPxh1IJI2nIkhSQvlKcBvqupDYwVVdWlVfaPN3jvJKUmuSnJyG5iNnSnbsU0vS3J2mz46yXFJTgdOSnJ4ks8mOa1dbfPOIWJ6N91gbx2t7dcMzK9Msmt7XZXkw63s5CT7Jzmv9fm42W6c1k+ApwKntKITgYM3pE1JkjQjjleGUFWXVNV1G9qOpMVhtllrSZqpRwIXT7H80cAjgBvpzkLtA/zHNG0+BnhiVd2e5HBgz9bOHcDVSd5fVTdMsf6ngL9J8pDh/gQAHgI8FzgSuBD4C+CJwLPoBm3rJHKSPAz45CRt7VtVtw3M7wDcVlV3tvnVwE4ziE2SJG0YxyvrGz9ekbSJMTEkabH4dlWtBkhyKbAr0w+0llfV7QPzZ1bVT1obVwC/C0w10LoLeBfwBuArQ8b5/apa0fq4vPVZSVa0mNdRVVfTDQCHkQnKash1JUnS/HO8ImmTY2JI0kK5HDhkiuV3DEzfxdrPpztZe9vrVuPW+cWQbUzlY3QDrcsHygb7HN/vYB+/HZj/7UT9zfAM3C3AtkmWtKuGdqY7IylJkhaG45X1ecWQtInzGUOSFsrXgS2T/PVYQZLHJnnyNOtdR3cJNsBz5jqoqvoNcCzwqnF97gWQZC9gtw1o/+qq2nOS123j6hZwFmsHpIcBX5ht35IkacYcr0wzXpG06TExJGlBtKTHs4GntZ9/vRw4mumviPkH4L1JvkF3Vm0+HM+6Z88+A2zfLhF/GfC9eep3Iq8DXp1kFd0zh45fwL4lSeo1xyvDSXJUktV0VzdfluTDC9W3pLmX7rNPkiRJkiRJfeMVQ5IkSZIkST3lw6clbdKSXABsOa74RWO/1CFJkjRqjlckjZK3kkmSJEmSJPXUJnnF0AEHHFCnnXbaqMOQJEmbrsxFI45ZJEnSPBpqvLJJPmPolltuGXUIkiRJ03LMIkmSRm2TTAxJkiRJkiRpeiaGJEmSJEmSesrEkCRJkiRJUk+ZGJIkSZIkSeopE0OSJEmSJEk9ZWJIkiRJkiSpp0wMSZIkSZIk9ZSJIUmSJEmSpJ4yMSRJkiRJktRTS0YdgLQxuP6Y3x91CBrSg960YtQhSJIkSdJGwyuGJEmSJEmSesorhgY85n+fNOoQNAMXv+vFow5BkiZ0zpOePOoQNKQnn3vOqEOQJEkaKRNDkjRL+7x/n1GHoBk475XnjToESZIkadHxVjJJkiRJkqSeMjEkSZIkSZLUUyaGJEmSJEmSesrEkCRJkiRJUk+ZGJIkSZIkSeopE0OSJEmSJEk9ZWJIkiRJkiSpp0wMSZIkSZIk9ZSJIUmSJEmSpJ4yMSRJkiRJktRT85YYSnJCkpuTrBwoe1eSq5JcluRzSbYdWPaGJKuSXJ3kjwfKD2hlq5K8fr7ilSRJkiRJ6pv5vGLoo8AB48rOAB5ZVY8Cvge8ASDJHsDzgUe0dT6QZLMkmwH/CjwD2AM4tNWVJEmSJEnSBpq3xFBVnQv8eFzZ6VV1Z5s9H9i5TR8EfKKq7qiq7wOrgMe116qquraqfg18otWVJEmSJEnSBhrlM4b+EvhKm94JuGFg2epWNln5epIcmeSiJBetWbNmHsKVJEnacI5ZJEnSYjKSxFCSvwfuBE4eK5qgWk1Rvn5h1XFVtayqli1dunRuApUkSZpjjlkkSdJismShO0xyGPAnwH5VNZbkWQ3sMlBtZ+DGNj1ZuSRJkiRJkjbAgl4xlOQA4HXAs6rqlwOLlgPPT7Jlkt2A3YFvAxcCuyfZLckWdA+oXr6QMUuSJEmSJG2q5u2KoSQfB/YFdkyyGngz3a+QbQmckQTg/Kp6aVVdnuRTwBV0t5i9vKruau28AvgqsBlwQlVdPl8xS5IkSZIk9cm8JYaq6tAJio+fov5bgbdOUH4qcOochiZJkiRJkiRG+6tkkiRJkiRJGiETQ5IkSZIkST1lYkiSJEmSJKmnTAxJkiRJkiT1lIkhSZIkSZKknjIxJEmSJEmS1FMmhiRJkiRJknrKxJAkSZIkSVJPmRiSJEmSJEnqKRNDkiRJkiRJPWViSJIkSZIkqadMDEmSJEmSJPWUiSFJkiRJkqSeMjEkSZIkSZLUUyaGJEmSJEmSemrJqAOQJEnS8B7zv08adQiagYvf9eJRhyBJ0pS8YkiSJEmSJKmnTAxJkiRJkiT1lIkhSZIkSZKknjIxJEmSJEmS1FMmhiRJkiRJknrKxJAkSZIkSVJPmRiSJEmSJEnqqXlLDCU5IcnNSVYOlG2f5Iwk17R/t2vlSfK+JKuSXJZkr4F1Dmv1r0ly2HzFK0mSJEmS1DfzecXQR4EDxpW9HjizqnYHzmzzAM8Adm+vI4EPQpdIAt4MPB54HPDmsWSSJEmSJEmSNsy8JYaq6lzgx+OKDwJObNMnAgcPlJ9UnfOBbZM8APhj4Iyq+nFV3QqcwfrJJkmSJEmSJM3CQj9j6P5VdRNA+/d+rXwn4IaBeqtb2WTl60lyZJKLkly0Zs2aOQ9ckiRpLjhmkSRJi8liefh0JiirKcrXL6w6rqqWVdWypUuXzmlwkiRJc8UxiyRJWkwWOjH0w3aLGO3fm1v5amCXgXo7AzdOUS5JkiRJkqQNtNCJoeXA2C+LHQZ8YaD8xe3XyfYGftJuNfsq8PQk27WHTj+9lUmSJEmSJGkDLZmvhpN8HNgX2DHJarpfF3s78KkkRwDXA89t1U8FDgRWAb8EXgJQVT9O8hbgwlbvmKoa/0BrSZIkSZIkzcK8JYaq6tBJFu03Qd0CXj5JOycAJ8xhaJIkSZIkSWLxPHxakiRJkiRJC8zEkCRJkiRJUk+ZGJIkSZIkSeopE0OSJEmSJEk9ZWJIkiRJkiSpp0wMSZIkSZIk9ZSJIUmSJEmSpJ4yMSRJkiRJktRTJoYkSZIkSZJ6ysSQJEmSJElST5kYkiRJkiRJ6ikTQ5IkSZIkST1lYkiSJEmSJKmnTAxJkiRJkiT1lIkhSZIkSZKknjIxJEmSJEmS1FMmhiRJkiRJknrKxJAkSZIkSVJPmRiSJEmSJEnqKRNDkiRJkiRJPWViSJIkSZIkqadMDEmSJEmSJPWUiSFJkiRJkqSeGkliKMnfJbk8ycokH0+yVZLdklyQ5Jokn0yyRau7ZZtf1ZbvOoqYJUmSJEmSNjULnhhKshNwFLCsqh4JbAY8H3gHcGxV7Q7cChzRVjkCuLWqHgIc2+pJkiRJkiRpA43qVrIlwNZJlgD3BG4Cngqc0pafCBzcpg9q87Tl+yXJAsYqSZIkSZK0SVrwxFBV/RfwbuB6uoTQT4CLgduq6s5WbTWwU5veCbihrXtnq7/D+HaTHJnkoiQXrVmzZn7/CEmSpFlyzCJJkhaTUdxKth3dVUC7AQ8E7gU8Y4KqNbbKFMvWFlQdV1XLqmrZ0qVL5ypcSZKkOeWYRZIkLSajuJVsf+D7VbWmqn4DfBb4Q2DbdmsZwM7AjW16NbALQFt+X+DHCxuyJEmSJEnSpmcUiaHrgb2T3LM9K2g/4ArgLOCQVucw4Attenmbpy3/elWtd8WQJEmSJEmSZmYUzxi6gO4h0t8BVrQYjgNeB7w6ySq6Zwgd31Y5Htihlb8aeP1CxyxJkiRJkrQpWjJ9lblXVW8G3jyu+FrgcRPU/RXw3IWIS5IkSZIkqU9G9XP1kiRJkiRJGjETQ5IkSZIkST01VGIoyZnDlEmSJEmSJGnjMeUzhpJsBdwT2DHJdkDaom2AB85zbJIkSZIkSZpH0z18+n8Cr6JLAl3M2sTQT4F/nce4JEmSJEmSNM+mTAxV1XuB9yZ5ZVW9f4FikiRJkiRJ0gIY6ufqq+r9Sf4Q2HVwnao6aZ7ikiRJkiRJ0jwbKjGU5GPAg4FLgbtacQEmhiRJkiRJkjZSQyWGgGXAHlVV8xmMJEmSJEmSFs5QP1cPrAR+Zz4DkSRJkiRJ0sIa9oqhHYErknwbuGOssKqeNS9RSZIkSZIkad4Nmxg6ej6DkCRJkiRJ0sIb9lfJzpnvQCRJkiRJkrSwhv1Vsp/R/QoZwBbA5sAvqmqb+QpMkiRJkiRJ82vYK4buMzif5GDgcfMSkSRJkiRJkhbEsL9Kto6q+jzw1DmORZIkSZIkSQto2FvJ/mxg9h7AMtbeWiZJkiRJkqSN0LC/SvanA9N3AtcBB815NJIkSZIkSVowwz5j6CXzHYgkSZIkSZIW1lDPGEqyc5LPJbk5yQ+TfCbJzvMdnCRJkiRJkubPsA+f/giwHHggsBPwxVYmSZIkSZKkjdSwiaGlVfWRqrqzvT4KLJ3HuCRJkiRJkjTPhk0M3ZLkhUk2a68XAj+az8AkSZIkSZI0v4ZNDP0l8OfAfwM3AYcAPpBakiRJkiRpIzZsYugtwGFVtbSq7keXKDp6tp0m2TbJKUmuSnJlkick2T7JGUmuaf9u1+omyfuSrEpyWZK9ZtuvJEmSJEmS1ho2MfSoqrp1bKaqfgw8egP6fS9wWlU9HPgD4Erg9cCZVbU7cGabB3gGsHt7HQl8cAP6lSRJkiRJUjNsYugeY1fwACTZHlgymw6TbAM8CTgeoKp+XVW3AQcBJ7ZqJwIHt+mDgJOqcz6wbZIHzKZvSZIkSZIkrTVscuefgG8mOQUouucNvXWWff4esAb4SJI/AC4G/ha4f1XdBFBVNyW5X6u/E3DDwPqrW9lNg40mOZLuiiIe9KAHzTI0SZKk+eWYRZIkLSZDXTFUVScBzwF+SJfU+bOq+tgs+1wC7AV8sKoeDfyCtbeNTSQThTRBjMdV1bKqWrZ06dJZhiZJkjS/HLNIkqTFZOjbwarqCuCKOehzNbC6qi5o86fQJYZ+mOQB7WqhBwA3D9TfZWD9nYEb5yAOSZIkSZKkXhv2GUNzpqr+G7ghycNa0X50CaflwGGt7DDgC216OfDi9utkewM/GbvlTJIkSZIkSbM3qwdIz4FXAicn2QK4FngJXZLqU0mOAK4HntvqngocCKwCftnqSpIkSZIkaQONJDFUVZcCyyZYtN8EdQt4+bwHJUmSJEmS1DMLfiuZJEmSJEmSFgcTQ5IkSZIkST1lYkiSJEmSJKmnTAxJkiRJkiT1lIkhSZIkSZKknjIxJEmSJEmS1FMmhiRJkiRJknrKxJAkSZIkSVJPmRiSJEmSJEnqKRNDkiRJkiRJPWViSJIkSZIkqadMDEmSJEmSJPWUiSFJkiRJkqSeMjEkSZIkSZLUUyaGJEmSJEmSesrEkCRJkiRJUk+ZGJIkSZIkSeopE0OSJEmSJEk9ZWJIkiRJkiSpp0wMSZIkSZIk9ZSJIUmSJEmSpJ4yMSRJkiRJktRTJoYkSZIkSZJ6amSJoSSbJbkkyZfa/G5JLkhyTZJPJtmilW/Z5le15buOKmZJkiRJkqRNySivGPpb4MqB+XcAx1bV7sCtwBGt/Ajg1qp6CHBsqydJkiRJkqQNNJLEUJKdgWcCH27zAZ4KnNKqnAgc3KYPavO05fu1+pIkSZIkSdoAo7pi6J+B1wK/bfM7ALdV1Z1tfjWwU5veCbgBoC3/Sau/jiRHJrkoyUVr1qyZz9glSZJmzTGLJElaTBY8MZTkT4Cbq+riweIJqtYQy9YWVB1XVcuqatnSpUvnIFJJkqS555hFkiQtJktG0Oc+wLOSHAhsBWxDdwXRtkmWtKuCdgZubPVXA7sAq5MsAe4L/Hjhw5YkSZIkSdq0LPgVQ1X1hqrauap2BZ4PfL2qXgCcBRzSqh0GfKFNL2/ztOVfr6r1rhiSJEmSJEnSzIzyV8nGex3w6iSr6J4hdHwrPx7YoZW/Gnj9iOKTJEmSJEnapIziVrK7VdXZwNlt+lrgcRPU+RXw3AUNTJIkSZIkqQcW0xVDkiRJkiRJWkAmhiRJkiRJknrKxJAkSZIkSVJPmRiSJEmSJEnqKRNDkiRJkiRJPWViSJIkSZIkqadMDEmSJEmSJPWUiSFJkiRJkqSeMjEkSZIkSZLUU0tGHYAkSZKkDXf9Mb8/6hA0pAe9acWoQ5Cku3nFkCRJkiRJUk+ZGJIkSZIkSeopE0OSJEmSJEk9ZWJIkiRJkiSpp0wMSZIkSZIk9ZSJIUmSJEmSpJ4yMSRJkiRJktRTS0YdgCRJkiRpfuzz/n1GHYJm4LxXnjfqENRDXjEkSZIkSZLUUyaGJEmSJEmSesrEkCRJkiRJUk/5jCFJkiRJknrmnCc9edQhaAaefO4589a2VwxJkiRJkiT11IInhpLskuSsJFcmuTzJ37by7ZOckeSa9u92rTxJ3pdkVZLLkuy10DFLkiRJkiRtikZxxdCdwP+qqv8B7A28PMkewOuBM6tqd+DMNg/wDGD39joS+ODChyxJkiRJkrTpWfDEUFXdVFXfadM/A64EdgIOAk5s1U4EDm7TBwEnVed8YNskD1jgsCVJkiRJkjY5I33GUJJdgUcDFwD3r6qboEseAfdr1XYCbhhYbXUrG9/WkUkuSnLRmjVr5jNsSZKkWXPMIkmSFpORJYaS3Bv4DPCqqvrpVFUnKKv1CqqOq6plVbVs6dKlcxWmJEnSnHLMIkmSFpORJIaSbE6XFDq5qj7bin84dotY+/fmVr4a2GVg9Z2BGxcqVkmSJEmSpE3VKH6VLMDxwJVV9Z6BRcuBw9r0YcAXBspf3H6dbG/gJ2O3nEmSJEmSJGn2loygz32AFwErklzayt4IvB34VJIjgOuB57ZlpwIHAquAXwIvWdhwJUmSJEmSNk0Lnhiqqv9g4ucGAew3Qf0CXj6vQUmSJEmSJPXQSH+VTJIkSZIkSaNjYkiSJEmSJKmnTAxJkiRJkiT1lIkhSZIkSZKknjIxJEmSJEmS1FMmhiRJkiRJknrKxJAkSZIkSVJPmRiSJEmSJEnqKRNDkiRJkiRJPWViSJIkSZIkqadMDEmSJEmSJPWUiSFJkiRJkqSeMjEkSZIkSZLUUyaGJEmSJEmSesrEkCRJkiRJUk+ZGJIkSZIkSeopE0OSJEmSJEk9ZWJIkiRJkiSpp0wMSZIkSZIk9ZSJIUmSJEmSpJ4yMSRJkiRJktRTJoYkSZIkSZJ6ysSQJEmSJElST5kYkiRJkiRJ6qmNJjGU5IAkVydZleT1o45HkiRJkiRpY7dRJIaSbAb8K/AMYA/g0CR7jDYqSZIkSZKkjdtGkRgCHgesqqprq+rXwCeAg0YckyRJkiRJ0kYtVTXqGKaV5BDggKr6qzb/IuDxVfWKgTpHAke22YcBVy94oIvXjsAtow5Ci47HhSbjsaHJeGysdUtVHTCbFR2zTMrjS5Px2NBEPC40GY+NtYYaryxZiEjmQCYoWyejVVXHAcctTDgblyQXVdWyUcehxcXjQpPx2NBkPDbmhmOWiXl8aTIeG5qIx4Um47ExcxvLrWSrgV0G5ncGbhxRLJIkSZIkSZuEjSUxdCGwe5LdkmwBPB9YPuKYJEmSJEmSNmobxa1kVXVnklcAXwU2A06oqstHHNbGxMvVNRGPC03GY0OT8djQfPL40mQ8NjQRjwtNxmNjhjaKh09LkiRJkiRp7m0st5JJkiRJkiRpjpkYkiRJkiRJ6ikTQ3MgyV1JLh14vb6Vn51kxj+Tl2TPJAfOcYynJtl2A9v4+RzFMiftbAqSVJKPDcwvSbImyZemWW9Zkve16cOT/MsM+70uyY5D1j06yWtm0v58trMQBt7T303ynSR/uAFtTfs5kORVSe452z5mEMtRSa5McvIGtLF1knOSbDbL9Q9P8sDZ9j9kH9sm+ZuB+QcmOWWadT6RZPcN6PN3Whv/meSK9pn70A1o7+73dZKXJnnxQPm8br/x/U+w7OAkb5plu+vsm/mSZN/B9+3gNpyk/tIkp813XKPmeGU07WwKHK8sXo5ZpmzDMcv66zpeGa7d3o1XTAzNjduras+B19s3sL09gQkHWklm9cDwqjqwqm7boKg0H34BPDLJ1m3+acB/TbdSVV1UVUfNa2T9Nvae/gPgDcD/nef+XgVMOMia7WBmEn8DHFhVLxim8iSfN38JfLaq7pplDIcD8z1Q2JbubwWgqm6sqkOmWeeDwGtn01mSAJ8Dzq6qB1fVHsAbgfuPqzerfVlVH6qqk9rs4czx9ktnJuOB1wIfmGV36+ybebQvcPdAa9w2XE9VrQFuSrLPAsQ2So5XNFuOVxYvxyw4ZhmG45UZ6d14xcTQAkny9CTfapn8Tye5dyt/bJJvtiz/t5PcFzgGeF7L/j+vnbk4LsnpwElJtkrykSQrklyS5CmtrcOTfDbJaUmuSfLOgf7vPuOS5MVJLmt9fmyCWO890P5lSZ4zsOytbb3zk9y/lS1N8pkkF7bXPtO105bv2LbJM+d8g29cvgKMbYNDgY+PLUjyuHZ8XNL+fVgr3zcTnKWbYl/skOT01s6/AZkokCQHtGP0u0nOHFi0R7qzSNcmOWqg/gvbcXtpkn8b+yKZop2x9f46yVcGBpiL2TbArXD3MX1m+9tWJDmole+a7qzW/0tyedvW6/xtSe6R5MQk/ziu/Ci6L86zkpzVyn6e5JgkFwBPSPKmtj9Xts+CtHpnJ3lH2wffS/JHrfwRA/vlsiS7J/kQ8HvA8iR/l+ReSU5o7V4y8Lccnu4z6ovA6RNsjxcAXxhie6wc+Btfk+5z7BBgGXByi23rJPu1/le0eLZs61yX5G3tM+KiJHsl+Wq6M1wvnap/4O3Ag1sf7xqMJ8lmSd498Ln0yrbON4D9M7v/zD4F+E1VfWisoKourapvtPfqWUn+HVjRYpjsffOSth/PAe7+wm/b7jUTbb/BIJI8JMnXsvas8YOHOGY/AHwH2GWy/sf18VDgjqq6pc3/aZIL2j78WtZ+L6xzxr0du7tOsG/S/l3Z4nteq79vurO8n2oxvT3JC9p2W5HkwZP13/p5KfB3rZ8/Goxnou3Uwvw83fHda3G84nhlco5XFj/HLOtyzLIuxyuOVyZXVb428AXcBVw68HpeKz+b7k2xI3AucK9W/jrgTcAWwLXAY1v5NsASugzrvwy0fzRwMbB1m/9fwEfa9MOB64Gt2nrXAvdt8z8Admn1rmtxPAK4GtixlW8/wd/zDuCfB+a3a/8W8Kdt+p3A/2nT/w48sU0/CLhymnZ+TpeZvgB42qj334iPnZ8DjwJOafvsUrrM8ZcGj4k2vT/wmTY9WOfu42WKffE+4E1t+pltX+44LpalwA3AboPHRjv+vgls2Y6hHwGbA/8D+CKweav3AeDF07TzGuAVwHJgy1Fv/yn2y9h7+irgJ8BjWvkSYJs2vSOwim7QuitwJ7BnW/Yp4IVt+mxgb7oB9N9P0t91g/uj7Z8/H5jffmD6YwPvw7OBf2rTBwJfa9PvB17Qprdg7WfH3f0AbxuIcVvge8C92vG0mok/G7YA/ntgfqrtsXKg3muAowdiXtamt2rHykPb/EnAqwZifVmbPha4DLhPO75unmH/d88DLwM+w9r31eC2PWNsX8/weDkKOHaSZfvSnWkfez9M9r55AN1n+dK2nc9j7fv6aOA147ffBH1dADx7YNvec5pt9Ftg77Zs0v7H9fES2jHX5reDu3/h9K9YezzeHXObX9n6HL9vntO2+2Z03wvXt1j2BW5r01vSXZnwD22dv6V9t8yg/8FtuN52atM7AStG/fkzny8crzhemf2x43hlkb5wzOKYZfhjxfFKOV6Z7DWry3y1nturas8plu8N7AGcly5pvgXwLeBhwE1VdSFAVf0UoNUZb3lV3d6mn0j3IUpVXZXkB8DYvaFnVtVPWjtXAL9L9yE25qnAKdWyp1X14wn62h94/thMVd3aJn8NjJ31uZjuMuKx+nsMxL1NkvtM0c7mwJnAy6vqnIn+2D6pqstaxvhQ4NRxi+8LnJjuPuKi23ZTmWxfPAn4s9bfl5PcOsG6ewPnVtX3W73BY+PLVXUHcEeSm+k+EPcDHgNc2PrbGrh5mnZeRPcFfnBV/Waav2WU7n5PJ3kC3ZnvR9J9Qb0tyZPovqR2Yu3lt9+vqkvb9MV0Xyhj/g34VFW9dcj+76IbCIx5SpLX0n1xbg9cTvdlDfDZCfr8FvD3SXamu4T6mgn6eDrwrIGzJFvRDc4Bzpjks2FHui+/MVNtj2E8jG67fa/Nnwi8HPjnNr+8/bsCuHdV/Qz4WZJfpXsGyS9m0f/+wIeq6k5Y7/i8me5M6MUz+BuG8e2x9wOTv28eT3dp9xqAJJ9k7ef6tNr7fKeq+hxAVf2qlW/O5NvoB1V1fpsetv8HAGsG5ncGPpnkAXTfbd+fYJ2pPBH4eHWX+f+wnf17LPBT4MKquqnF85+sPRu8gu6s54z7n2w7NWP7f1PmeMXxyqw5Xlm0HLM4Zpkrjlcmt8mPV0wMLYzQfWgduk5h8ii6L89h/GJce5O5Y2D6Ltbfxxmiz8nq/KZamnJc2/cAnjAwEOwa6T5FJmrnTroPsT8Gej/QapYD76bLOu8wUP4W4KyqenYbjJ09TTuT7QuY/X6HiY+rACdW1RvG9fWsKdpZSfdMip2Z+QfySFTVt9Ld1rCU7gzXUrozNL9Jch3d4ATW30aDl82n0iloAAAIrklEQVR+k26g9E/jPtgn86v2xUOSrejO0iyrqhuSHD3Q52C/d78nq+rf013S/Uzgq0n+qqq+Pq6PAM+pqqvXKUwez7qfN4NuH9f3C5h4e9zJurcqD64zPoapjP1tv2Xd7ftbur91sv6nMtVxvhXd3zhTlwNTPQ9g/Of3RO+bg6eIaxiTbcupttH4/TxM/7fT/QdwzPuB91TV8iT70p3pgrk5Bsbv88HjYez7Z7L+JzNVf7Pd/5sSxyvrcryyPscri5hjlnU4Zlmf4xXHK5PyGUML43xgnyQPAUhyz3T3PV4FPDDJY1v5fdLdK/ozussPJ3Mu7b7C1s6D6C63HsaZwJ8n2aGtv/0EdU6nu3yWVme7adocX3/PScrH2im6h8E9PO0XUcQJwDFVtWJc+X1Z+3DHw4doZ7J9MXjMPIPucsbxvgU8Oclurd5Ex8agM4FDktxvrH6S352mnUuA/0l3z/hGcWY+ycPpLhv9Ed3+uLl9YT2F7gz3MI6nO7v66Ux8P/hU7/mxL6hb0j3rY7oHEpLk94Brq+p9dIP4R01Q7avAK9t/iEjy6OnabWfRN2sDP5h8e/wQuF+6Z0VsCfzJQDODf+tVwK5jn410Z2hn8p+vyfqfanueDrx0bD+MOz4fSjdomqmvA1sm+euxgnTPY3nyBHUne99cAOzbttnmwHMn6WvCv61dwbG6DdhIsmW6X40Z9pgdtv8rgYcMzA9+Rh02UH4dsFeLZS9gt0niP5fuGTWbJVlKd7XAtyfpeyKT9T/T7QTd/l85fp2ecbyC45VpOF5ZxByzrOWYZUKOVzqOVyZgYmhubJ11f/51nV/5aJe6HQ58PMlldAOvh1fVr4HnAe9P8l26+xa3As6iu7z20rQHW43zAboPuhXAJ4HD22Wz06qqy4G3Aue0Pt8zQbV/BLZL93Ct77L2ErjJHAUsS/dQtCvoHqI1ZTvtzMLz6c5ILMQT3xe1qlpdVe+dYNE7gf+b5Dy6L/rpTLYv/gF4UpLv0F2Oe/0EMawBjgQ+2/bXJ6eJ+Qrg/wCnt+P6DOAB07VTVf9Bd//2lzPkT9COwN3vabr4D2vH7Ml02/ciuoHrVcM2WFXvoXto3sey/i8qHAd8Je1BjuPWuw34f3SXo34euHCI7p4HrGzxP5zuPvjx3kJ3qf9l6R5y+JYh/5TT6S6nhUm2R7vs/hi6L+8vse52+ijwoRZb6O4B/3T7PPst8CGGN1n/P6K7FWZlkneNW+fDdMf/Ze34/AuAdA8hvH3sUuCZaFcmPBt4WroHTV5OdyboxgnqTva+uamt8y3ga3THykQ+Stt+Wf9hqC8CjmrtfhP4HYY8ZmfQ/7nAo8cG522dTyf5BnDLQL3PANu3/fwyuudBTLRvPkf3LIbv0g1YX1tV/z1J3xOZrP8vAs9u2+mPxq0z0XaC7jvqyzPoe2PkeMXxygZxvLIoOWaZnGOWAY5XHK9MZewBSJIkTSvdWbpXV9WLRh3LXEryd8BPq+r4Ucey2CV5L/DFqvraqGOZS0nOBQ6qtc+XkSRtxByz9JvjlZnxiiFJ0tCq6hK6n6kd5ozwxuQ2ugdJanpvo3uo6CYj3WXh7zEpJEmbDscsved4ZSZte8WQJEmSJElSP3nFkCRJkiRJUk+ZGJIkSZIkSeopE0OSJEmSJEk9ZWJI0oJIclf7KcaVST6dZFE9DC7JG8fNV5KPDcwvSbImyZemaWfPJAcOzB+d5DUbENcGrS9JkobneGXWcTlekTZiJoYkLZTbq2rPqnok8GvgpaMOaJw3jpv/BfDIJFu3+acB/zVEO3sCB05bS5IkLUaOVyT1jokhSaPwDeAhAEk+n+TiJJcnObKVHZHk2LHKSf46yXuS7JrkqiQfbmfyTk6yf5LzklyT5HGt/r2SnJDkwiSXJDmolR+e5LNJTmv139nK3w5s3c4QnjwQ51eAZ7bpQ4GPD8S0Xh9JtgCOAZ7X2npeq75HkrOTXJvkqIE2Xt3+jpVJXjVQ/vdJrk7yNeBhc7PJJUnSDDlewfGK1AtV5cuXL1/z/gJ+3v5dAnwBeFmb3779uzWwEtgBuBfwn8Dmbdk3gd8HdgXubNP3AC4GTgACHAR8vtV/G/DCNr0t8L3W5uHAtcB9ga2AHwC7DMY3GC/wKOCUVvdSYF/gS0P08S8D7Rzd4t8S2BH4EbA58BhgRVvn3sDlwKMHyu8JbAOsAl4z6v3ny5cvX7589eHleMXxii9ffXwtQZIWxtZJLm3T3wCOb9NHJXl2m94F2L2qzk/ydeBPklxJN+BakWRX4PtVtQIgyeXAmVVVSVbQDcQAng48a+Be962AB7XpM6vqJ239K4DfBW6YKOCquqz1eShw6rjFU/Ux3per6g7gjiQ3A/cHngh8rqp+0WL5LPBHdAPIz1XVL1v58knalCRJc8/xiuMVqXdMDElaKLdX1Z6DBUn2BfYHnlBVv0xyNt2ABeDDdPfRXwV8ZGC1Owamfzsw/1vWfqYFeE5VXT2uv8ePW/8upv8cXA68m+7s2w6DzU3Rx3gT9Zkp+qxpYpIkSfPD8cq6fTpekXrAZwxJGqX7Are2QdbDgb3HFlTVBXRn5P6CgXvlh/RV4JVJApDk0UOs85skm09QfgJwzNhZvyH6+BlwnyH6Oxc4OMk9k9wLeDbdmclzgWcn2TrJfYA/HaItSZI0fxyvOF6RNmkmhiSN0mnAkiSXAW8Bzh+3/FPAeVV16wzbfQvdffGXJVnZ5qdzXKs/+DBHqmp1Vb13Bn2cRffwxsGHOa6nqr4DfBT4NnAB8OGquqSVf5LuGQGfoRt8SZKk0XG84nhF2qSlyisAJS1OSb4EHFtVZ446FkmSpIk4XpG0sfOKIUmLTpJtk3yP7j5/B1mSJGnRcbwiaVPhFUOSJEmSJEk95RVDkiRJkiRJPWViSJIkSZIkqadMDEmSJEmSJPWUiSFJkiRJkqSeMjEkSZIkSZLUU/8fpci8Q2EAqEoAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1152x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"col_list = columns_hist\n",
"col_list.remove('Churn')\n",
"for col in col_list:\n",
" if col == 'PaymentMethod':\n",
" aspect_ratio = 2.0\n",
" else:\n",
" aspect_ratio = 0.8\n",
" \n",
" plot_cat_data = sns.catplot(x=col, col='Churn_Num', data = datset_churn, kind='count', height=4, aspect=aspect_ratio)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observations (Churn_Num - 1 is \"Yes\" ; 0 is \"No\") :\n",
"1. 'Gender' : Difficult to determine Churn using this field. Counts are almost same in either category\n",
"2. 'Partner' : Customer with partner have lower chance of leaving\n",
"3. 'Dependents' :Customer with dependants have lower chance of leaving. We will merge Partner & Dependant Columns as 1 column\n",
"4. 'PhoneService' & 'MultipleLines' : We will merge these columns into PhoneLines - Single & Multiple and determine\n",
"5. 'InternetService' : Customer with Fiber Optic Interner Service have higher chances of leaving\n",
"6. 'OnlineSecurity' & 'OnlineBackup' : We will merge these columns for better visibility\n",
"7. 'DeviceProtection' : Customers without device protection have likely higher chances of leaving\n",
"8. 'TechSupport' - Customer not opting for TechSupport have higher chances of leaving \n",
"9. 'StreamingTV', 'StreamingMovies' - We will merge these columns into streaming and check again\n",
"10. 'Contract' - Month to Month customers have likely higher chances to leave\n",
"11. 'PaperlessBilling' - Customers with paperless billing have higher chances of leaving\n",
"12. 'PaymentMethod' - People paying with electronic check have higher chances of leaving"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Creating new feature from existing set of columns using the above observations"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Creating bands for numerical variables - Tenure & Monthly Charges"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Tenure</th>\n",
" <th>TenureRange</th>\n",
" <th>TenureCat</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>(-0.072, 14.4]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>34</td>\n",
" <td>(28.8, 43.2]</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>(-0.072, 14.4]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>45</td>\n",
" <td>(43.2, 57.6]</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2</td>\n",
" <td>(-0.072, 14.4]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>8</td>\n",
" <td>(-0.072, 14.4]</td>\n",
" <td>0.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>22</td>\n",
" <td>(14.4, 28.8]</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>10</td>\n",
" <td>(-0.072, 14.4]</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>28</td>\n",
" <td>(14.4, 28.8]</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>62</td>\n",
" <td>(57.6, 72.0]</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Tenure TenureRange TenureCat\n",
"0 1 (-0.072, 14.4] 0.0\n",
"1 34 (28.8, 43.2] 3.0\n",
"2 2 (-0.072, 14.4] 0.0\n",
"3 45 (43.2, 57.6] 3.0\n",
"4 2 (-0.072, 14.4] 0.0\n",
"5 8 (-0.072, 14.4] 0.0\n",
"6 22 (14.4, 28.8] 2.0\n",
"7 10 (-0.072, 14.4] 1.0\n",
"8 28 (14.4, 28.8] 2.0\n",
"9 62 (57.6, 72.0] 5.0"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Creating tenure band and co-relation with Churn\n",
"datset_churn['TenureRange'] = pd.cut(datset_churn['Tenure'], 5)\n",
"datset_churn[['TenureRange', 'Churn_Num']].groupby(['TenureRange'], as_index=False).mean().sort_values(by='TenureRange', ascending=True)\n",
"\n",
"# Replacing Age band with ordinals based on these bands\n",
"datset_churn.loc[ datset_churn['Tenure'] <= 8, 'TenureCat'] = 0\n",
"datset_churn.loc[(datset_churn['Tenure'] > 8) & (datset_churn['Tenure'] <= 15), 'TenureCat'] = 1\n",
"datset_churn.loc[(datset_churn['Tenure'] > 15) & (datset_churn['Tenure'] <= 30), 'TenureCat'] = 2\n",
"datset_churn.loc[(datset_churn['Tenure'] > 30) & (datset_churn['Tenure'] <= 45 ), 'TenureCat'] = 3\n",
"datset_churn.loc[(datset_churn['Tenure'] > 45) & (datset_churn['Tenure'] <= 60 ), 'TenureCat'] = 4\n",
"datset_churn.loc[ datset_churn['Tenure'] > 60, 'TenureCat'] = 5\n",
"\n",
"datset_churn[['Tenure','TenureRange','TenureCat']].head(10)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>MonthlyCharges</th>\n",
" <th>MonthlyChargesRange</th>\n",
" <th>MonthlyChargesCat</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>29.85</td>\n",
" <td>(18.15, 38.35]</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>56.95</td>\n",
" <td>(38.35, 58.45]</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>53.85</td>\n",
" <td>(38.35, 58.45]</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>42.30</td>\n",
" <td>(38.35, 58.45]</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>70.70</td>\n",
" <td>(58.45, 78.55]</td>\n",
" <td>3.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>99.65</td>\n",
" <td>(98.65, 118.75]</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>89.10</td>\n",
" <td>(78.55, 98.65]</td>\n",
" <td>4.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>29.75</td>\n",
" <td>(18.15, 38.35]</td>\n",
" <td>1.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>104.80</td>\n",
" <td>(98.65, 118.75]</td>\n",
" <td>5.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>56.15</td>\n",
" <td>(38.35, 58.45]</td>\n",
" <td>2.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" MonthlyCharges MonthlyChargesRange MonthlyChargesCat\n",
"0 29.85 (18.15, 38.35] 1.0\n",
"1 56.95 (38.35, 58.45] 2.0\n",
"2 53.85 (38.35, 58.45] 2.0\n",
"3 42.30 (38.35, 58.45] 2.0\n",
"4 70.70 (58.45, 78.55] 3.0\n",
"5 99.65 (98.65, 118.75] 4.0\n",
"6 89.10 (78.55, 98.65] 4.0\n",
"7 29.75 (18.15, 38.35] 1.0\n",
"8 104.80 (98.65, 118.75] 5.0\n",
"9 56.15 (38.35, 58.45] 2.0"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Creating MonthlyCharges Band and co-relation with Churn\n",
"datset_churn['MonthlyChargesRange'] = pd.cut(datset_churn['MonthlyCharges'], 5)\n",
"datset_churn[['MonthlyChargesRange', 'Churn_Num']].groupby(['MonthlyChargesRange'], as_index=False).mean().sort_values(by='MonthlyChargesRange', ascending=True)\n",
"\n",
"# Replacing Age band with ordinals based on these bands\n",
"datset_churn.loc[ datset_churn['MonthlyCharges'] <= 20, 'MonthlyChargesCat'] = 0\n",
"datset_churn.loc[(datset_churn['MonthlyCharges'] > 20) & (datset_churn['MonthlyCharges'] <= 40), 'MonthlyChargesCat'] = 1\n",
"datset_churn.loc[(datset_churn['MonthlyCharges'] > 40) & (datset_churn['MonthlyCharges'] <= 60), 'MonthlyChargesCat'] = 2\n",
"datset_churn.loc[(datset_churn['MonthlyCharges'] > 60) & (datset_churn['MonthlyCharges'] <= 80 ), 'MonthlyChargesCat'] = 3\n",
"datset_churn.loc[(datset_churn['MonthlyCharges'] > 80) & (datset_churn['MonthlyCharges'] <= 100 ), 'MonthlyChargesCat'] = 4\n",
"datset_churn.loc[ datset_churn['MonthlyCharges'] > 100, 'MonthlyChargesCat'] = 5\n",
"\n",
"#Checking the categories\n",
"datset_churn[['MonthlyCharges','MonthlyChargesRange','MonthlyChargesCat']].head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Creating new derived columns for Categorical variables"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAFvhJREFUeJzt3X2QZXV95/H3BxB0owkQWkIGDJQOlhAj4gRZTe3iAzBQtQENuJgoE8LumF2Imo1W0NoNqEuVRpH4SIrIIFBukIgsE4sVETWRuAqDsgwDIYzKSmcoGAKo8WHiwHf/uKeXy9DTc7t/ffv27X6/qm7de773PHx7en796XPu6XNSVUiSpLnbbdQNSJI07gxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDdIwl+aUkVyb5dpI7k1yX5NAkxyT53AL3cm+Sq/umT0nyyYXsYTpJDknyjST3JPl0kj1H3ZMWH8fSriU5O8nmJJVkv1H3s9gYpmMqSYBrgK9U1XOr6jDgncD+87DuPea46Kokh7duf569D7iwqlYCjwBnjrgfLTKOpYH9HfBq4P+OupHFyDAdX68AflZVfz5VqKrbquqr3eQzk3wmyd8n+VT3A2Pqt979uterknyle31ekouTfAG4PMnvJvlsks93e3V/OkBPH6D3Q+hJunW/rW/6jiQHd4+/T/KJrvapJK9O8nfdNo+a6z9Ot50ArwQ+05UuA05uWaeWJMfSAKrqW1V1b+t6lqq5/tak0ftV4NYZ3n8xcDiwhd5vlC8HbtrFOl8C/EZV/STJ7wJHdOvZBtyd5CNVdd8My18F/OckzxvsSwDgecCpwFrgFuC3gd8AfpPeD5MnhV+S5wOf3sm6jqmqR/umfxF4tKq2d9OTwIpZ9KblwbH0VDuOJe2CYbp03VxVkwBJbgMOZtc/ANZX1U/6pm+squ9367gT+BVgph8AjwHvB94B/K8B+/xuVW3strGp22Yl2dj1/CRVdTe9H0yDyDQ1L0at2XIsaZcM0/G1CThlhve39b1+jCe+19t54vD+03dY5kcDrmMmV9D7AbCpr9a/zR2327+Nx/umH59ue7P8bfohYO8ke3R7pwfS27uQ+jmWnso901nyM9Px9SVgryT/caqQ5NeT/NtdLHcvvUNQAL81301V1c+AC4G37rDNIwGSHAkc0rD+u6vqiJ08Ht1h3gK+zBM/KNcA185121qyHEu7GEvaNcN0THVB8Rrg2O50/k3Aeex6z+tdwIeSfJXeb8jDcAlP/k34amDf7hDZfwL+YUjbnc4fA/8lyWZ6n6FesoDb1hhwLA0myZuTTNI7wnN7kk8s1LbHQbyfqSRJbdwzlSSpkScgaVaSfAPYa4fyG6fOIpQ0GMfS0uJhXkmSGi3Jw7yrV68uen9P6MPHcn3MC8eSDx+DWZJh+tBDD426BWlJcCxJg1mSYSpJ0kIyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNhhamSZ6e5OYk/yfJpiTv6uqHJPlGknuSfDrJnl19r256c/f+wX3rekdXvzvJ8cPqWZKkuRjmnuk24JVV9SJ6d3NfneRo4H3AhVW1EngEOLOb/0zgkap6Hr17+L0PIMlhwGnA4cBq4ONJdh9i35IkzcrQLnTf3SPwn7vJp3WPAl4J/HZXv4zefQMvAk7qXgN8BvhoknT1K6tqG/Dd7r6URwH/u7XHl7z98tZVLDu3vv/0UbcgSYvOUD8zTbJ7dxPbB4EbgG8Dj1bV9m6WSWBF93oFcB9A9/736d3M+f/Xp1mmf1trk2xIsmHr1q3D+HKkZcGxJM3eUMO0qh6rqiPo3Zn9KOAF083WPWcn7+2svuO2Lq6qVVW1amJiYq4tS8ueY0mavQU5m7eqHgW+AhwN7J1k6vDygcCW7vUkcBBA9/4vAA/316dZRpKkkRvm2bwTSfbuXj8DeDVwF/Bl4JRutjXAtd3r9d003ftf6j53XQ+c1p3tewiwErh5WH1LkjRbQzsBCTgAuKw783Y34Kqq+lySO4Erk/x34FvAJd38lwBXdCcYPUzvDF6qalOSq4A7ge3AWVX12BD7liRpVoZ5Nu/twIunqX+H3uenO9Z/Cpy6k3WdD5w/3z1KkjQfvAKSJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoNLUyTHJTky0nuSrIpyVu6+nlJ/jHJbd3jxL5l3pFkc5K7kxzfV1/d1TYnOWdYPUuSNBd7DHHd24E/qqpvJnkWcGuSG7r3LqyqD/TPnOQw4DTgcOCXgS8mObR7+2PAscAkcEuS9VV15xB7lyRpYEML06q6H7i/e/3DJHcBK2ZY5CTgyqraBnw3yWbgqO69zVX1HYAkV3bzGqaSpEVhQT4zTXIw8GLgG13p7CS3J1mXZJ+utgK4r2+xya62s/qO21ibZEOSDVu3bp3nr0BaPhxL0uwNPUyTPBO4GnhrVf0AuAh4LnAEvT3XC6ZmnWbxmqH+5ELVxVW1qqpWTUxMzEvv0nLkWJJmb5ifmZLkafSC9FNV9VmAqnqg7/2/AD7XTU4CB/UtfiCwpXu9s7okSSM3zLN5A1wC3FVVH+yrH9A322uAO7rX64HTkuyV5BBgJXAzcAuwMskhSfakd5LS+mH1LUnSbA1zz/TlwBuBjUlu62rvBF6f5Ah6h2rvBd4EUFWbklxF78Si7cBZVfUYQJKzgeuB3YF1VbVpiH1LkjQrwzyb9yam/7zzuhmWOR84f5r6dTMtJ0nSKHkFJEmSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNdpj1A1oefveu1846hbGznP+ZOOoW5C0A/dMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGg0tTJMclOTLSe5KsinJW7r6vkluSHJP97xPV0+SDyfZnOT2JEf2rWtNN/89SdYMq2dJkuZimHum24E/qqoXAEcDZyU5DDgHuLGqVgI3dtMAJwAru8da4CLohS9wLvBS4Cjg3KkAliRpMRhamFbV/VX1ze71D4G7gBXAScBl3WyXASd3r08CLq+erwN7JzkAOB64oaoerqpHgBuA1cPqW5Kk2VqQz0yTHAy8GPgGsH9V3Q+9wAWe3c22Arivb7HJrraz+o7bWJtkQ5INW7dune8vQVo2HEvS7A09TJM8E7gaeGtV/WCmWaep1Qz1JxeqLq6qVVW1amJiYm7NSnIsSXMw1DBN8jR6QfqpqvpsV36gO3xL9/xgV58EDupb/EBgywx1SZIWhWGezRvgEuCuqvpg31vrgakzctcA1/bVT+/O6j0a+H53GPh64Lgk+3QnHh3X1SRJWhSGeQu2lwNvBDYmua2rvRN4L3BVkjOB7wGndu9dB5wIbAZ+DJwBUFUPJ3kPcEs337ur6uEh9i1J0qwMLUyr6iam/7wT4FXTzF/AWTtZ1zpg3fx1J0nS/PEKSJIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSp0UBhmuTGQWqSJC1HM941JsnTgX8F7NfdS3TqLjA/D/zykHuTJGks7OoWbG8C3kovOG/liTD9AfCxIfYlSdLYmDFMq+pDwIeS/EFVfWSBepIkaawMdHPwqvpIkpcBB/cvU1WXD6kvSZLGxkBhmuQK4LnAbcBjXbkAw1SStOwNFKbAKuCwqqphNiNJ0jga9O9M7wB+aZiNSJI0rgbdM90PuDPJzcC2qWJV/eZQupIkaYwMGqbnDbMJSZLG2aBn8/7NsBuRJGlcDXo27w/pnb0LsCfwNOBHVfXzw2pMkqRxMeie6bP6p5OcDBw1lI4kSRozc7prTFX9T+CV89yLJEljadC7xry273FKkvfyxGHfnS2zLsmDSe7oq52X5B+T3NY9Tux77x1JNie5O8nxffXVXW1zknPm8DVKkjRUg57N++/6Xm8H7gVO2sUynwQ+ylOvknRhVX2gv5DkMOA04HB6F9X/YpJDu7c/BhwLTAK3JFlfVXcO2LckSUM36GemZ8x2xVX1t0kOHnD2k4Arq2ob8N0km3niM9nNVfUdgCRXdvMappKkRWPQw7wHJrmmO2z7QJKrkxw4x22eneT27jDwPl1tBXBf3zyTXW1n9el6XJtkQ5INW7dunWNrkhxL0uwNegLSpcB6eodgVwB/3dVm6yJ6F8w/ArgfuKCrZ5p5a4b6U4tVF1fVqqpaNTExMYfWJIFjSZqLQcN0oqourart3eOTwKxHWVU9UFWPVdXjwF/wxKHcSeCgvlkPBLbMUJckadEYNEwfSvKGJLt3jzcA/zTbjSU5oG/yNfQuoA+9vd7TkuyV5BBgJXAzcAuwMskhSfakd5LS+tluV5KkYRr0bN7fo3dm7oX0DrN+DZjxpKQkfwkcA+yXZBI4FzgmyRHdOu4F3gRQVZuSXEXvxKLtwFlV9Vi3nrOB64HdgXVVtWkWX58kSUM3aJi+B1hTVY8AJNkX+AC9kJ1WVb1+mvIlM8x/PnD+NPXrgOsG7FOSpAU36GHeX5sKUoCqehh48XBakiRpvAwaprv1/RnL1J7poHu1kiQtaYMG4gXA15J8ht7nna9jmkOykiQtR4NeAenyJBvoXdw+wGu9pJ8kST0DH6rtwtMAlSRpB3O6BZskSXqCYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWo08P1MJUmL0/fe/cJRtzB2nvMnG+d1fe6ZSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNhhamSdYleTDJHX21fZPckOSe7nmfrp4kH06yOcntSY7sW2ZNN/89SdYMq19JkuZqmHumnwRW71A7B7ixqlYCN3bTACcAK7vHWuAi6IUvcC7wUuAo4NypAJYkabEYWphW1d8CD+9QPgm4rHt9GXByX/3y6vk6sHeSA4DjgRuq6uGqegS4gacGtCRJI7XQn5nuX1X3A3TPz+7qK4D7+uab7Go7qz9FkrVJNiTZsHXr1nlvXFouHEvS7C2WE5AyTa1mqD+1WHVxVa2qqlUTExPz2py0nDiWpNlb6DB9oDt8S/f8YFefBA7qm+9AYMsMdUmSFo2FDtP1wNQZuWuAa/vqp3dn9R4NfL87DHw9cFySfboTj47rapIkLRpDu9B9kr8EjgH2SzJJ76zc9wJXJTkT+B5wajf7dcCJwGbgx8AZAFX1cJL3ALd08727qnY8qUmSpJEaWphW1et38tarppm3gLN2sp51wLp5bE2SpHm1WE5AkiRpbBmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUaGgXupe0fLzk7ZePuoWxc+v7Tx91C5pH7plKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjUYSpknuTbIxyW1JNnS1fZPckOSe7nmfrp4kH06yOcntSY4cRc+SJO3MKPdMX1FVR1TVqm76HODGqloJ3NhNA5wArOwea4GLFrxTSZJmsJgO854EXNa9vgw4ua9+efV8Hdg7yQGjaFCSpOmMKkwL+EKSW5Os7Wr7V9X9AN3zs7v6CuC+vmUnu9qTJFmbZEOSDVu3bh1i69LS5liSZm9UYfryqjqS3iHcs5L8mxnmzTS1ekqh6uKqWlVVqyYmJuarT2nZcSxJszeSMK2qLd3zg8A1wFHAA1OHb7vnB7vZJ4GD+hY/ENiycN1KkjSzBQ/TJD+X5FlTr4HjgDuA9cCabrY1wLXd6/XA6d1ZvUcD3586HCxJ0mKwxwi2uT9wTZKp7f+Pqvp8kluAq5KcCXwPOLWb/zrgRGAz8GPgjIVvWZKknVvwMK2q7wAvmqb+T8CrpqkXcNYCtCZJ0pwspj+NkSRpLBmmkiQ1MkwlSWpkmEqS1MgwlSSpkWEqSVIjw1SSpEaGqSRJjQxTSZIaGaaSJDUyTCVJamSYSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmNDFNJkhoZppIkNTJMJUlqZJhKktTIMJUkqZFhKklSI8NUkqRGhqkkSY0MU0mSGhmmkiQ1GpswTbI6yd1JNic5Z9T9SJI0ZSzCNMnuwMeAE4DDgNcnOWy0XUmS1DMWYQocBWyuqu9U1b8AVwInjbgnSZIASFWNuoddSnIKsLqq/kM3/UbgpVV1dt88a4G13eTzgbsXvNH5tR/w0KibWMbG/d//oapaPZcFl9hYGvfv41Iw7t+DgcbSHgvRyTzINLUn/RZQVRcDFy9MO8OXZENVrRp1H8vVcv73X0pjaTl/HxeL5fI9GJfDvJPAQX3TBwJbRtSLJElPMi5heguwMskhSfYETgPWj7gnSZKAMTnMW1Xbk5wNXA/sDqyrqk0jbmvYlsRhtjHmv//S4Pdx9JbF92AsTkCSJGkxG5fDvJIkLVqGqSRJjQzTEUjPTUlO6Ku9LsnnR9nXcpSkklzQN/22JOeNsCXNgmNp8VjuY8kwHYHqfVD9+8AHkzw9yc8B5wNnjbazZWkb8Nok+426Ec2eY2lRWdZjyTAdkaq6A/hr4I+Bc4HLq+rbSdYkuTnJbUk+nmS3JHskuSLJxiR3JHnzaLtfUrbTO9vwD3d8I8mvJLkxye3d83MWvj3timNp0VjWY2ks/jRmCXsX8E3gX4BVSX4VeA3wsu7PgS6m9ze13wb2q6oXAiTZe1QNL1EfA25P8qc71D9K7wfzZUl+D/gwcPKCd6dBOJYWh2U7lgzTEaqqHyX5NPDPVbUtyauBXwc2JAF4BnAfvb+vfX6SDwHXAV8YVc9LUVX9IMnlwJuBn/S99a+B13avrwB2/AGhRcKxtDgs57FkmI7e490DetcgXldV/23HmZL8Gr1b0L0Z+C2euBC55sef0duzuXSGefyj7MXNsbQ4LMux5Gemi8sXgddNfYCf5BeTPCfJBL0LbPwVvc+Ejhxlk0tRVT0MXAWc2Vf+Gr1DgwC/A9y00H1pzhxLI7Jcx5J7potIVW1M8i7gi0l2A35G70zFx4BL0jteVfROtND8uwA4u2/6zcC6JG8HtgJnjKQrzZpjaeSW3VjycoKSJDXyMK8kSY0MU0mSGhmmkiQ1MkwlSWpkmEqS1Mgw1bSSPNZd03TqcfA8rPP3k5zevf5kklNa1yktdo6l5cG/M9XO/KSqjpjPFVbVn8/n+qQx4VhaBtwz1cCSHJzkq0m+2T1e1tWPSfI3Sa5K8g9J3pvkd7o7dmxM8txuvvOSvG2Hdb4qyTV908cm+ezCfmXSwnIsLT2GqXbmGX2HpaYG6IPAsVV1JPDv6d35YcqLgLcALwTeCBxaVUcBnwD+YIbtfAl4QXeZN+hdGWWma3pK48axtAx4mFc7M92hqacBH01yBL3Lsh3a994tVXU/QJJv88TdODYCr9jZRqqqklwBvCHJpfTuLnH6PH0N0mLgWFoGDFPNxh8CD9D7zXk34Kd9723re/143/Tj7Pr/2aX0bu78U+Cvqmr7vHQrLV6OpSXGMNVs/AIwWVWPJ1kD7D4fK62qLUm2AP8VOHY+1iktco6lJcbPTDUbHwfWJPk6vcNSP5rHdX8KuK+q7pzHdUqLlWNpifGuMVoUknwU+FZVXTLqXqRx5lgaDcNUI5fkVnq/mR9bVdt2Nb+k6TmWRscwlSSpkZ+ZSpLUyDCVJKmRYSpJUiPDVJKkRoapJEmN/h8VVDwCjmF7SAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAG+5JREFUeJzt3XuUZWV55/Hvz+ZmvAFSGtLdBlZszYBJGuwAiZkZggYakhFUMJBEWsMMZgIxziQO4Foz3sIsTTQoiSGLSHNbjkhQhw5DxBYlxhiBRtuGBjuUSKQCS5pwMd46aXzmj/OWHIrq6qrader6/ay1V+397Hfv/VTVes9z9t7v2SdVhSRJmr6nzXUCkiQtdBZTSZI6sphKktSRxVSSpI4sppIkdWQxlSSpI4upJEkdWUwXsCQ/muSqJF9LcmeS65O8KMnRSa6b5VzuTfKxvuWTk1w2mzmMJ8nBSW5OcneSjybZa65z0vxjX9q9JGcnGU5SSQ6Y63zmG4vpApUkwCeAm6rqJ6rqEOCtwPNnYN97THPTNUkO7Xr8GfYe4IKqWgU8Apwxx/lonrEvTdrfAa8A/nGuE5mPLKYL1y8C/1ZVfz4aqKrNVfW3bfGZSa5J8tUkH24vGKPveg9o82uS3NTm357k4iSfAq5I8vokH0/yyXZW94eTyOm99F6EnqTt+/f7lu9IclCbvprkQy324SSvSPJ37ZhHTPeP044T4Bjgmha6HDipyz61KNmXJqGqvlxV93bdz2I13XdNmnsvAW6bYP1hwKHA/fTeUb4M+Pxu9vlS4Beq6ntJXg+sbvvZAWxL8idVdd8E218N/HaSF07uVwDghcApwJnArcCvAb8AvJLei8mTil+SFwMf3cW+jq6qR/uWnws8WlU72/IIsHwKuWlpsC891di+pN2wmC5et1TVCECSzcBB7P4FYENVfa9v+caqeqzt407gx4GJXgAeB/4IOA/460nm+fWqur0dY2s7ZiW5veX8JFW1jd4L02RknJgPo9ZU2Ze0WxbThWsrcPIE63f0zT/OE//rnTxxeX+fMdt8Z5L7mMiV9F4AtvbF+o859rj9x/hB3/IPxjveFN9NPwTsm2SPdna6gt7ZhdTPvvRUnplOkfdMF67PAHsn+S+jgSQ/m+Q/7ma7e+ldggJ4zUwnVVX/BlwAvHnMMQ8HSHI4cHCH/W+rqtW7mB4d07aAz/LEC+U64NrpHluLln1pN31Ju2cxXaBaoXgV8EttOP9W4O3s/szrHcAHkvwtvXfIg3AJT34n/DFg/3aJ7L8C/zCg447nHOC/Jxmmdw/1klk8thYA+9LkJHlTkhF6V3i2JPnQbB17IYjfZypJUjeemUqS1JEDkDQlSW4G9h4Tft3oKEJJk2NfWly8zCtJUkeL8jLv2rVri97nCZ2cluo0I+xLTk6TsyiL6UMPPTTXKUiLgn1JmpxFWUwlSZpNFlNJkjqymEqS1JHFVJKkjiymkiR1ZDGVJKkji6kkSR1ZTCVJ6mjgxTTJsiRfTnJdWz44yc1J7k7y0SR7tfjebXm4rT+obx/ntfi2JMcNOmdJkqZiNh50/7vAXcCz2/J7gAuq6qokfw6cAVzUfj5SVS9Mcmpr96tJDgFOBQ4Ffgz4dJIXVVXn7w986Vuu6LqLJee2Pzp9rlOQpHlnoGemSVYAvwx8qC0HOAa4pjW5HDipzZ/YlmnrX97anwhcVVU7qurrwDBwxCDzliRpKgZ9mff9wP8AftCWnws8WlU72/IIsLzNLwfuA2jrH2vtfxgfZ5sfSnJmkk1JNm3fvn2mfw9pybAvSVM3sGKa5FeAB6vqtv7wOE1rN+sm2uaJQNXFVbWmqtYMDQ1NOV9JPfYlaeoGec/0ZcArk5wA7EPvnun7gX2T7NHOPlcA97f2I8BKYCTJHsBzgIf74qP6t5Ekac4N7My0qs6rqhVVdRC9AUSfqapfBz4LnNyarQOubfMb2jJt/Weq983lG4BT22jfg4FVwC2DyluSpKmajdG8Y50DXJXkD4AvA5e0+CXAlUmG6Z2RngpQVVuTXA3cCewEzpqJkbySJM2UWSmmVXUTcFObv4dxRuNW1feBU3ax/fnA+YPLUJKk6fMJSJIkdWQxlSSpI4upJEkdWUwlSerIYipJUkcWU0mSOrKYSpLUkcVUkqSOLKaSJHVkMZUkqSOLqSRJHVlMJUnqyGIqSVJHFlNJkjqymEqS1JHFVJKkjiymkiR1NLBimmSfJLck+UqSrUne0eKXJfl6ks1tWt3iSXJhkuEkW5Ic3revdUnubtO6QeUsSdJ07DHAfe8AjqmqbyfZE/h8kr9u695SVdeMaX88sKpNRwIXAUcm2R94G7AGKOC2JBuq6pEB5i5J0qQN7My0er7dFvdsU02wyYnAFW27LwL7JjkQOA7YWFUPtwK6EVg7qLwlSZqqgd4zTbIsyWbgQXoF8ea26vx2KfeCJHu32HLgvr7NR1psV/GxxzozyaYkm7Zv3z7jv4u0VNiXpKkbaDGtqserajWwAjgiyUuA84CfBH4W2B84pzXPeLuYID72WBdX1ZqqWjM0NDQj+UtLkX1JmrpZGc1bVY8CNwFrq+qBdil3B3ApcERrNgKs7NtsBXD/BHFJkuaFQY7mHUqyb5t/OvAK4KvtPihJApwE3NE22QCc3kb1HgU8VlUPADcAxybZL8l+wLEtJknSvDDI0bwHApcnWUavaF9dVdcl+UySIXqXbzcDv9XaXw+cAAwD3wXeAFBVDyd5F3Bra/fOqnp4gHlLkjQlAyumVbUFOGyc+DG7aF/AWbtYtx5YP6MJSpI0Q3wCkiRJHVlMJUnqyGIqSVJHFlNJkjqymEqS1JHFVJKkjiymkiR1ZDGVJKkji6kkSR1ZTCVJ6shiKklSRxZTSZI6sphKktSRxVSSpI4sppIkdWQxlSSpI4upJEkdDayYJtknyS1JvpJka5J3tPjBSW5OcneSjybZq8X3bsvDbf1Bffs6r8W3JTluUDlLkjQdgzwz3QEcU1U/A6wG1iY5CngPcEFVrQIeAc5o7c8AHqmqFwIXtHYkOQQ4FTgUWAv8WZJlA8xbkqQpGVgxrZ5vt8U921TAMcA1LX45cFKbP7Et09a/PEla/Kqq2lFVXweGgSMGlbckSVM10HumSZYl2Qw8CGwEvgY8WlU7W5MRYHmbXw7cB9DWPwY8tz8+zjb9xzozyaYkm7Zv3z6IX0daEuxL0tQNtJhW1eNVtRpYQe9s8t+N16z9zC7W7So+9lgXV9WaqlozNDQ03ZSlJc++JE3drIzmrapHgZuAo4B9k+zRVq0A7m/zI8BKgLb+OcDD/fFxtpEkac4NcjTvUJJ92/zTgVcAdwGfBU5uzdYB17b5DW2Ztv4zVVUtfmob7XswsAq4ZVB5S5I0VXvsvsm0HQhc3kbePg24uqquS3IncFWSPwC+DFzS2l8CXJlkmN4Z6akAVbU1ydXAncBO4KyqenyAeUuSNCUDK6ZVtQU4bJz4PYwzGreqvg+csot9nQ+cP9M5SpI0E3wCkiRJHVlMJUnqyGIqSVJHFlNJkjqymEqS1JHFVJKkjiymkiR1ZDGVJKkji6kkSR1ZTCVJ6shiKklSRxZTSZI6sphKktSRxVSSpI4sppIkdWQxlSSpI4upJEkdDayYJlmZ5LNJ7kqyNcnvtvjbk/xTks1tOqFvm/OSDCfZluS4vvjaFhtOcu6gcpYkaTr2GOC+dwK/V1VfSvIs4LYkG9u6C6rqvf2NkxwCnAocCvwY8OkkL2qrPwj8EjAC3JpkQ1XdOcDcJUmatIEV06p6AHigzf9LkruA5RNsciJwVVXtAL6eZBg4oq0brqp7AJJc1dpaTCVJ88Ks3DNNchBwGHBzC52dZEuS9Un2a7HlwH19m4202K7iY49xZpJNSTZt3759hn8DaemwL0lTN/BimuSZwMeAN1fVt4CLgJ8AVtM7c33faNNxNq8J4k8OVF1cVWuqas3Q0NCM5C4tRfYlaeoGec+UJHvSK6QfrqqPA1TVN/vW/wVwXVscAVb2bb4CuL/N7youSdKcG+Ro3gCXAHdV1R/3xQ/sa/Yq4I42vwE4NcneSQ4GVgG3ALcCq5IcnGQveoOUNgwqb0mSpmqQZ6YvA14H3J5kc4u9FTgtyWp6l2rvBd4IUFVbk1xNb2DRTuCsqnocIMnZwA3AMmB9VW0dYN6SJE3JIEfzfp7x73deP8E25wPnjxO/fqLtJEmaSz4BSZKkjiymkiR1ZDGVJKmjSRXTJDdOJiZJ0lI04QCkJPsAPwIc0J5UNDqg6Nn0np8rSdKSt7vRvG8E3kyvcN7GE8X0W/QePi9J0pI3YTGtqg8AH0jyO1X1J7OUkyRJC8qkPmdaVX+S5OeBg/q3qaorBpSXJEkLxqSKaZIr6T2cfjPweAsXYDGVJC15k30C0hrgkKp6yre1SJK01E32c6Z3AD86yEQkSVqoJntmegBwZ5JbgB2jwap65UCykiRpAZlsMX37IJOQJGkhm+xo3r8ZdCKSJC1Ukx3N+y/0Ru8C7AXsCXynqp49qMQkSVooJntm+qz+5SQnAUcMJCNJkhaYaX1rTFX9X+CYGc5FkqQFabLfGvPqvunkJO/micu+u9pmZZLPJrkrydYkv9vi+yfZmOTu9nO/Fk+SC5MMJ9mS5PC+fa1r7e9Osq7D7ytJ0oyb7Gje/9Q3vxO4FzhxN9vsBH6vqr6U5FnAbUk2Aq8Hbqyqdyc5FzgXOAc4HljVpiOBi4Ajk+wPvI3egyOq7WdDVT0yydwlSRqoyd4zfcNUd1xVDwAPtPl/SXIXsJxeET66NbscuIleMT0RuKI9ZemLSfZNcmBru7GqHgZoBXkt8JGp5iRJ0iBM9jLviiSfSPJgkm8m+ViSFZM9SJKDgMOAm4Hnt0I7WnCf15otB+7r22ykxXYVH3uMM5NsSrJp+/btk01N0hj2JWnqJjsA6VJgA73vNV0O/FWL7VaSZwIfA95cVd+aqOk4sZog/uRA1cVVtaaq1gwNDU0mNUnjsC9JUzfZYjpUVZdW1c42XQbstpcl2ZNeIf1wVX28hb/ZLt/Sfj7Y4iPAyr7NVwD3TxCXJGlemGwxfSjJbyRZ1qbfAP55og2SBLgEuKuq/rhv1QZgdETuOuDavvjpbVTvUcBj7TLwDcCxSfZrI3+PbTFJkuaFyY7m/U3gT4EL6F1i/QKwu0FJLwNeB9yeZHOLvRV4N3B1kjOAbwCntHXXAycAw8B3R/dfVQ8neRdwa2v3ztHBSJIkzQeTLabvAtaNfhylfVzlvfSK7Liq6vOMf78T4OXjtC/grF3saz2wfpK5SpI0qyZ7mfen+z/X2c4MDxtMSpIkLSyTLaZPG31SEfzwzHSyZ7WSJC1qky2I7wO+kOQaevdMXwucP7CsJElaQCb7BKQrkmyi93D7AK+uqjsHmpkkSQvEpC/VtuJpAZUkaYxpfQWbJEl6gsVUkqSOLKaSJHVkMZUkqSOLqSRJHVlMJUnqyGIqSVJHFlNJkjqymEqS1JHFVJKkjiymkiR1ZDGVJKmjgRXTJOuTPJjkjr7Y25P8U5LNbTqhb915SYaTbEtyXF98bYsNJzl3UPlKkjRdgzwzvQxYO078gqpa3abrAZIcApwKHNq2+bMky5IsAz4IHA8cApzW2kqSNG9M+ivYpqqqPpfkoEk2PxG4qqp2AF9PMgwc0dYNV9U9AEmuam39KjhJ0rwxF/dMz06ypV0G3q/FlgP39bUZabFdxZ8iyZlJNiXZtH379kHkLS0J9iVp6ma7mF4E/ASwGngAeF+LZ5y2NUH8qcGqi6tqTVWtGRoamolcpSXJviRN3cAu846nqr45Op/kL4Dr2uIIsLKv6Qrg/ja/q7gkSfPCrJ6ZJjmwb/FVwOhI3w3AqUn2TnIwsAq4BbgVWJXk4CR70RuktGE2c5YkaXcGdmaa5CPA0cABSUaAtwFHJ1lN71LtvcAbAapqa5Kr6Q0s2gmcVVWPt/2cDdwALAPWV9XWQeUsSdJ0DHI072njhC+ZoP35wPnjxK8Hrp/B1CRJmlE+AUmSpI4sppIkdWQxlSSpI4upJEkdWUwlSerIYipJUkcWU0mSOrKYSpLUkcVUkqSOLKaSJHVkMZUkqSOLqSRJHVlMJUnqaFa/HFwa6xvv/Km5TmHBecH/un2uU5A0hmemkiR1ZDGVJKkji6kkSR0NrJgmWZ/kwSR39MX2T7Ixyd3t534tniQXJhlOsiXJ4X3brGvt706yblD5SpI0XYMcgHQZ8KfAFX2xc4Ebq+rdSc5ty+cAxwOr2nQkcBFwZJL9gbcBa4ACbkuyoaoeGWDekrSgOJBv6mZ6IN/Azkyr6nPAw2PCJwKXt/nLgZP64ldUzxeBfZMcCBwHbKyqh1sB3QisHVTOkiRNx2zfM31+VT0A0H4+r8WXA/f1tRtpsV3FJUmaN+bLAKSME6sJ4k/dQXJmkk1JNm3fvn1Gk5OWEvuSNHWzXUy/2S7f0n4+2OIjwMq+diuA+yeIP0VVXVxVa6pqzdDQ0IwnLi0V9iVp6ma7mG4ARkfkrgOu7Yuf3kb1HgU81i4D3wAcm2S/NvL32BaTJGneGNho3iQfAY4GDkgyQm9U7ruBq5OcAXwDOKU1vx44ARgGvgu8AaCqHk7yLuDW1u6dVTV2UJMkSXNqYMW0qk7bxaqXj9O2gLN2sZ/1wPoZTE2SpBk1XwYgSZK0YFlMJUnqyGIqSVJHFlNJkjryy8EldfbSt1yx+0Z6ktv+6PS5TkEzyDNTSZI6sphKktSRxVSSpI4sppIkdWQxlSSpI4upJEkdWUwlSerIYipJUkcWU0mSOrKYSpLUkcVUkqSOLKaSJHU0J8U0yb1Jbk+yOcmmFts/ycYkd7ef+7V4klyYZDjJliSHz0XOkiTtylyemf5iVa2uqjVt+VzgxqpaBdzYlgGOB1a16UzgolnPVJKkCcyny7wnApe3+cuBk/riV1TPF4F9kxw4FwlKkjSeuSqmBXwqyW1Jzmyx51fVAwDt5/NafDlwX9+2Iy0mSdK8MFdfDv6yqro/yfOAjUm+OkHbjBOrpzTqFeUzAV7wghfMTJbSEmRfkqZuTs5Mq+r+9vNB4BPAEcA3Ry/ftp8PtuYjwMq+zVcA94+zz4urak1VrRkaGhpk+tKiZl+Spm7Wi2mSZyR51ug8cCxwB7ABWNearQOubfMbgNPbqN6jgMdGLwdLkjQfzMVl3ucDn0gyevz/U1WfTHIrcHWSM4BvAKe09tcDJwDDwHeBN8x+ypIk7dqsF9Oqugf4mXHi/wy8fJx4AWfNQmqSJE3LfPpojCRJC5LFVJKkjiymkiR1ZDGVJKkji6kkSR1ZTCVJ6shiKklSRxZTSZI6sphKktSRxVSSpI4sppIkdWQxlSSpI4upJEkdWUwlSerIYipJUkcWU0mSOrKYSpLUkcVUkqSOFkwxTbI2ybYkw0nOnet8JEkatSCKaZJlwAeB44FDgNOSHDK3WUmS1LMgiilwBDBcVfdU1b8CVwEnznFOkiQBkKqa6xx2K8nJwNqq+s9t+XXAkVV1dl+bM4Ez2+KLgW2znujMOgB4aK6TWMIW+t//oapaO50NF1lfWuj/x8Vgof8PJtWX9piNTGZAxok96V1AVV0MXDw76Qxekk1VtWau81iqlvLffzH1paX8f5wvlsr/YKFc5h0BVvYtrwDun6NcJEl6koVSTG8FViU5OMlewKnAhjnOSZIkYIFc5q2qnUnOBm4AlgHrq2rrHKc1aIviMtsC5t9/cfD/OPeWxP9gQQxAkiRpPlsol3klSZq3LKaSJHVkMZ0D6fl8kuP7Yq9N8sm5zGspSlJJ3te3/PtJ3j6HKWkK7Evzx1LvSxbTOVC9G9W/Bfxxkn2SPAM4HzhrbjNbknYAr05ywFwnoqmzL80rS7ovWUznSFXdAfwVcA7wNuCKqvpaknVJbkmyOcmfJXlakj2SXJnk9iR3JHnT3Ga/qOykN9rwv41dkeTHk9yYZEv7+YLZT0+7Y1+aN5Z0X1oQH41ZxN4BfAn4V2BNkpcArwJ+vn0c6GJ6n6n9GnBAVf0UQJJ95yrhReqDwJYkfzgm/qf0XpgvT/KbwIXASbOenSbDvjQ/LNm+ZDGdQ1X1nSQfBb5dVTuSvAL4WWBTEoCnA/fR+3zti5N8ALge+NRc5bwYVdW3klwBvAn4Xt+qnwNe3eavBMa+QGiesC/ND0u5L1lM594P2gS9ZxCvr6r/ObZRkp+m9xV0bwJewxMPItfMeD+9M5tLJ2jjh7LnN/vS/LAk+5L3TOeXTwOvHb2Bn+S5SV6QZIjeAzb+kt49ocPnMsnFqKoeBq4GzugLf4HepUGAXwc+P9t5adrsS3NkqfYlz0znkaq6Pck7gE8neRrwb/RGKj4OXJLe9aqiN9BCM+99wNl9y28C1id5C7AdeMOcZKUpsy/NuSXXl3ycoCRJHXmZV5KkjiymkiR1ZDGVJKkji6kkSR1ZTCVJ6shiukgkWZHk2iR3J/lakg8k2Ws329zb9zm8L3Q49lFJbm7PQL1rpr4pIsmaJBfOxL6kybIvaTr8aMwi0D4zdzNwUVVdmmQZvQdOP1xVb5lgu3uBNVX1UMfjbwNeW1Vfacd+cVXdOclt96iqnV2OL80U+5KmyzPTxeEY4PtVdSlAVT1O75sbfjPJbyf5eJJPtnfa4z4TM8m328+jk9yU5JokX03y4fYCQ5KXJvmbJLcluSHJgW3z5wEPjB57tPMneUaS9UluTfLlJCe2+OuT/GWSvwI+leSjSU7oy+WyJK9puVzXYs9Mcml63/axJclrWvzYJH+f5Ettn89s8XcnubO1fe/M/rm1iNmX7EvTU1VOC3yi93SRC8aJf7mtuwd4DrAP8I/Ayrb+XnrfoAG9B4QDHA08Bqyg92br74FfAPak90iwodbuV+k9+xTgfwGPAJ8A3gjs0+L/G/iNNr8v8A/AM4DXAyPA/m3dq4DL2/xe9B5I/vSWy3Ut/h7g/X2/237AAcDngGe02Dktl/2BbTxx5WXfuf4fOS2Myb5kX5ru5OMEF4fRR6PtKn5jVT0GkORO4MfpdbJduaWqRlr7zcBBwKPAS4CN7c31Mp54B/3OJB8GjgV+DTiNXuc9Fnhlkt9v+90HGP0ew43Ve4YnwF8DFybZG1gLfK6qvteOM+oVPPFsT6rqkSS/AhwC/F1ruxe9F6xvAd8HPpTk/wHXTfC7Sv3sS/alabGYLg5b6X37xQ8leTawkt6zSHf0rXqc3f/fx2sfYGtV/dx4G1TV14CLkvwFsD3Jc9s2r6mqbWNyOxL4Tt+2309yE3AcvXfpHxnnEOO9yIXeC8lpT2mcHAG8nN6Lxtn0Lt9Ju2NfGrvCvjQp3jNdHG4EfiTJ6QDpDVx4H3AZ8N0ZOsY2YCjJz7Vj7Jnk0Db/y3nire8qei8aj9L77sjf6btPdNgE+7+K3sOv/33bbqxP0ffg7CT7AV8EXpbkhS32I0le1O71PKeqrgfeDKye5u+spce+hH1pOiymi0D1bma8Cjglyd307qd8H3jrDB7jX4GTgfck+QqwGfj5tvp1wLZ2GetK4NerN3DjXfTuD21Jckdb3pVPAf8B+HQ71lh/AOyX5I52/F+squ307hl9JMkWei8IPwk8C7iuxf6G3gASabfsS/al6fKjMZIkdeSZqSRJHVlMJUnqyGIqSVJHFlNJkjqymEqS1JHFVJKkjiymkiR19P8BBpHVORMFxGUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdMAAAEYCAYAAAAH0RzaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHLpJREFUeJzt3X2UJXV95/H3hwfRRBJAWoM8BKITE9BkxBEwZFdEAgN5AA26uFEGw2aSXYi6SYzgJvGRczRGibrKLoaRh2MCLJh1NCgSlCQkERh0BAYkjkJkAitDQISoJIzf/aN+HS5Nd0/3VN++3dPv1zl1uupbv6r63un59fdW3bq/SlUhSZK23Q6jTkCSpMXOYipJUk8WU0mSerKYSpLUk8VUkqSeLKaSJPVkMZUkqSeL6SKW5EeSXJzka0luTXJFkh9PckSST81zLncmuXxg+cQk589nDpNJckCS65J8NcklSZ406py08NiXti7J6Uk2Jqkke446n4XGYrpIJQnw58A1VfWsqjoQeDPwjDnY907buOmKJAf1Pf4cezdwdlUtAx4ATh1xPlpg7Esz9rfAUcA/jjqRhchiuni9BPi3qvpf44GqWl9Vf9MWn5rksiRfSfKx9gdj/F3vnm1+RZJr2vxbk5yb5LPAhUlOSfLxJJ9pZ3V/OIOc/ojuj9DjtH3/zsDyLUn2b9NXkvxJi30syVFJ/rYd85Bt/cdpxwlwJHBZC10AnNBnn9ou2ZdmoKq+VFV39t3P9mpb3zVp9J4L3DjN+ucDBwF3072jPBy4div7fAHws1X13SSnAMvbfh4Bbk/ywaq6a5rtLwX+W5Jnz+wlAPBs4BXAauAG4D8DPwv8Et0fk8cVvyTPAS6ZYl9HVNW3BpafBnyrqh5ty5uAvWeRm5YG+9ITTexL2gqL6fbr+qraBJBkPbA/W/8DsLaqvjuwfHVVPdj2cSvwo8B0fwC2AO8BzgQ+PcM876iqm9sxNrRjVpKbW86PU1W30/1hmolMEnMwas2WfUlbZTFdvDYAJ06z/pGB+S089rt+lMcu7z95wjb/MsN9TOciuj8AGwZig8eceNzBY3x/YPn7kx1vlu+m7wN2S7JTOzvdh+7sQhpkX3oiz0xnyc9MF6/PAbsk+bXxQJIXJnnxVra7k+4SFMAvz3VSVfVvwNnAGyYc82CAJAcDB/TY/+1VtXyK6VsT2hbweR77Q7kK+MS2HlvbLfvSVvqSts5iuki1QvEy4Ofa7fwbgLey9TOvtwHvT/I3dO+Qh+E8Hv9O+HJgj3aJ7L8C/zCk407mTcBvJdlI9xnqefN4bC0C9qWZSfK6JJvorvDclORP5uvYi0F8nqkkSf14ZipJUk/egKRZSXIdsMuE8GvG7yKUNDP2pe2Ll3klSepp6Jd5k+yY5Evj41tmirFSk+zSlje29fsP7OPMFr89yTFbO+bKlSuL7vuETk5LdZoT9iUnp5mZj89MXw/cNrA81VippwIPVNWz6W4HfzdAkgOBk+hGIFkJfDjJjtMd8L777pvTFyAtVfYlaWaGWkyT7AP8PPAnbXm6sVKPb8u09S9t7Y8HLq6qR6rqDmAj0HucSUmS5sqwz0z/GPhduhE4YPqxUvemDa/V1j/Y2v97fJJt/l2S1UnWJVm3efPmuX4d0pJhX5Jmb2jFNMkvAPdW1eAA0tONlTrVuhmNr1pV51bViqpaMTY2Nut8JXXsS9LsDfOrMYcDv5TkOLrxI3+I7kx1qrFSNwH7ApvSPQPwh4H7B+LjHF9VkrSgDO3MtKrOrKp9qmp/uhuIPldVv8LUY6Wubcu09Z9rw3ytBU5qd/seACwDrh9W3pIkzdYoBm14E3BxkncCX+KxsVLPAy5qY6jeT1eAqaoNSS4FbqV7YsJpVTWscTAlSZq1eSmmVXUNcE2b/zqT3I1bVd+je7DtZNufBZw1vAwlSdp2js0rSVJPFlNJknpyoHuN1Dfe/rxRp7Do7PcHjoMuLTSemUqS1JPFVJKkniymkiT1ZDGVJKkni6kkST1ZTCVJ6sliKklSTxZTSZJ6sphKktSTxVSSpJ4sppIk9WQxlSSpJ4upJEk9WUwlSerJYipJUk9DK6ZJnpzk+iRfTrIhydta/PwkdyRZ36blLZ4kH0iyMclNSQ4e2NeqJF9t06ph5SxJ0rYY5sPBHwGOrKqHk+wMXJvk023dG6vqsgntjwWWtelQ4Bzg0CR7AG8BVgAF3JhkbVU9MMTcJUmasaGdmVbn4ba4c5tqmk2OBy5s230B2C3JXsAxwFVVdX8roFcBK4eVtyRJszXUz0yT7JhkPXAvXUG8rq06q13KPTvJLi22N3DXwOabWmyq+MRjrU6yLsm6zZs3z/lrkZYK+5I0e0MtplW1paqWA/sAhyR5LnAm8BPAC4E9gDe15plsF9PEJx7r3KpaUVUrxsbG5iR/aSmyL0mzNy9381bVt4BrgJVVdU+7lPsI8FHgkNZsE7DvwGb7AHdPE5ckaUEY5t28Y0l2a/NPAY4CvtI+ByVJgBOAW9oma4GT2129hwEPVtU9wJXA0Ul2T7I7cHSLSZK0IAzzbt69gAuS7EhXtC+tqk8l+VySMbrLt+uB32jtrwCOAzYC3wFeC1BV9yd5B3BDa/f2qrp/iHlLkjQrQyumVXUT8PxJ4kdO0b6A06ZYtwZYM6cJSpI0RxwBSZKkniymkiT1ZDGVJKkni6kkST1ZTCVJ6sliKklSTxZTSZJ6sphKktSTxVSSpJ4sppIk9WQxlSSpJ4upJEk9WUwlSerJYipJUk8WU0mSerKYSpLUk8VUkqSeLKaSJPU0tGKa5MlJrk/y5SQbkrytxQ9Icl2Srya5JMmTWnyXtryxrd9/YF9ntvjtSY4ZVs6SJG2LYZ6ZPgIcWVU/DSwHViY5DHg3cHZVLQMeAE5t7U8FHqiqZwNnt3YkORA4CTgIWAl8OMmOQ8xbkqRZGVoxrc7DbXHnNhVwJHBZi18AnNDmj2/LtPUvTZIWv7iqHqmqO4CNwCHDyluSpNka6memSXZMsh64F7gK+Brwrap6tDXZBOzd5vcG7gJo6x8EnjYYn2QbSZJGbqjFtKq2VNVyYB+6s8mfnKxZ+5kp1k0Vf5wkq5OsS7Ju8+bN25qytOTZl6TZm5e7eavqW8A1wGHAbkl2aqv2Ae5u85uAfQHa+h8G7h+MT7LN4DHOraoVVbVibGxsGC9DWhLsS9LsDfNu3rEku7X5pwBHAbcBnwdObM1WAZ9o82vbMm3956qqWvykdrfvAcAy4Pph5S1J0mzttPUm22wv4IJ25+0OwKVV9akktwIXJ3kn8CXgvNb+POCiJBvpzkhPAqiqDUkuBW4FHgVOq6otQ8xbkqRZGVoxraqbgOdPEv86k9yNW1XfA14xxb7OAs6a6xwlSZoLjoAkSVJPFlNJknqymEqS1JPFVJKkniymkiT1ZDGVJKkni6kkST1ZTCVJ6sliKklSTxZTSZJ6sphKktSTxVSSpJ4sppIk9WQxlSSpJ4upJEk9WUwlSerJYipJUk8WU0mSerKYSpLU09CKaZJ9k3w+yW1JNiR5fYu/Nck/JVnfpuMGtjkzycYktyc5ZiC+ssU2JjljWDlLkrQtdhrivh8FfruqvphkV+DGJFe1dWdX1R8NNk5yIHAScBDwTOAvk/x4W/0h4OeATcANSdZW1a1DzF2SpBkbWjGtqnuAe9r8Q0luA/aeZpPjgYur6hHgjiQbgUPauo1V9XWAJBe3thZTSdKCMC+fmSbZH3g+cF0LnZ7kpiRrkuzeYnsDdw1stqnFpopPPMbqJOuSrNu8efMcvwJp6bAvSbM39GKa5KnA5cAbqurbwDnAs4DldGeu7x1vOsnmNU388YGqc6tqRVWtGBsbm5PcpaXIviTN3jA/MyXJznSF9GNV9XGAqvrmwPqPAJ9qi5uAfQc23we4u81PFZckaeSGeTdvgPOA26rqfQPxvQaavQy4pc2vBU5KskuSA4BlwPXADcCyJAckeRLdTUprh5W3JEmzNcwz08OB1wA3J1nfYm8GXpVkOd2l2juBXweoqg1JLqW7sehR4LSq2gKQ5HTgSmBHYE1VbRhi3pIkzcow7+a9lsk/77ximm3OAs6aJH7FdNtJkjRKjoAkSVJPFlNJknqymEqS1JPFVJKkniymkiT1ZDGVJKkni6kkST1ZTCVJ6sliKklSTzMqpkmunklMkqSlaNrhBJM8GfgBYM/23NHx4QF/CHjmkHOTJGlR2NrYvL8OvIGucN7IY8X028CHhpiXJEmLxrTFtKreD7w/yW9W1QfnKSdJkhaVGT01pqo+mORngP0Ht6mqC4eUlyRJi8aMimmSi4BnAeuBLS1cgMVUkrTkzfR5piuAA6uqhpmMJEmL0Uy/Z3oL8CPDTESSpMVqpmemewK3JrkeeGQ8WFW/NJSsJElaRGZaTN862x0n2ZfuM9UfAb4PnFtV70+yB3AJ3c1MdwKvrKoHkgR4P3Ac8B3glKr6YtvXKuD32q7fWVUXzDYfSZKGZaZ38/7VNuz7UeC3q+qLSXYFbkxyFXAKcHVVvSvJGcAZwJuAY4FlbToUOAc4tBXft9B9blttP2ur6oFtyEmSpDk30+EEH0ry7TZ9L8mWJN+ebpuqumf8zLKqHgJuA/YGjgfGzywvAE5o88cDF1bnC8BuSfYCjgGuqqr7WwG9Clg5y9cpSdLQzPTMdNfB5SQnAIfM9CBJ9geeD1wHPKOq7mn7vSfJ01uzvYG7Bjbb1GJTxSceYzWwGmC//fabaWqSJrAvSbO3TU+Nqar/Cxw5k7ZJngpcDryhqqY7m80ksZomPjGnc6tqRVWtGBsbm0lqkiZhX5Jmb6aDNrx8YHEHHvv8cmvb7UxXSD9WVR9v4W8m2audle4F3Nvim4B9BzbfB7i7xY+YEL9mJnlLkjQfZnpm+osD0zHAQ3SfcU6p3Z17HnBbVb1vYNVaYFWbXwV8YiB+cjqHAQ+2y8FXAkcn2b09ueboFpMkaUGY6Wemr92GfR8OvAa4Ocn6Fnsz8C7g0iSnAt8AXtHWXUH3tZiNdF+NeW079v1J3gHc0Nq9varu34Z8JEkaiple5t0H+CBdgSzgWuD1VbVpqm2q6lom/7wT4KWTtC/gtCn2tQZYM5NcJUmabzO9zPtRusuwz6S7k/aTLSZJ0pI302I6VlUfrapH23Q+4G1+kiQx82J6X5JXJ9mxTa8G/nmYiUmStFjMtJj+KvBK4P8B9wAn0m4QkiRpqZvpQPfvAFaNj4fbxsv9I7oiK0nSkjbTM9OfGhxYvn015fnDSUmSpMVlpsV0hzZgAvDvZ6YzPauVJGm7NtOC+F7g75JcRvc901cCZw0tK0mSFpGZjoB0YZJ1dIPbB3h5Vd061MwkSVokZnypthVPC6gkSRNs0yPYJEnSYyymkiT1ZDGVJKkni6kkST1ZTCVJ6sliKklSTxZTSZJ6sphKktTT0IppkjVJ7k1yy0DsrUn+Kcn6Nh03sO7MJBuT3J7kmIH4yhbbmOSMYeUrSdK2GuaZ6fnAykniZ1fV8jZdAZDkQOAk4KC2zYfHH0QOfAg4FjgQeFVrK0nSgjG0J79U1V8n2X+GzY8HLq6qR4A7kmwEDmnrNlbV1wGSXNzaOqyhJGnBGMVnpqcnualdBh5/rNvewF0DbTa12FRxSZIWjPkupucAzwKWA/fQPdoNuifRTFTTxJ8gyeok65Ks27x581zkKi1J9iVp9ua1mFbVN6tqS1V9H/gIj13K3QTsO9B0H+DuaeKT7fvcqlpRVSvGxsbmPnlpibAvSbM3r8U0yV4Diy8Dxu/0XQuclGSXJAcAy4DrgRuAZUkOSPIkupuU1s5nzpIkbc3QbkBK8mfAEcCeSTYBbwGOSLKc7lLtncCvA1TVhiSX0t1Y9ChwWlVtafs5HbgS2BFYU1UbhpWzJEnbYph3875qkvB507Q/CzhrkvgVwBVzmJokSXPKEZAkSerJYipJUk8WU0mSerKYSpLU09BuQFoMXvDGC0edwqJz43tOHnUKkrTgeGYqSVJPFlNJknqymEqS1JPFVJKkniymkiT1ZDGVJKkni6kkST1ZTCVJ6mlJD9ogSduDb7z9eaNOYdHZ7w9untP9eWYqSVJPFlNJknqymEqS1JPFVJKkniymkiT1NLRimmRNknuT3DIQ2yPJVUm+2n7u3uJJ8oEkG5PclOTggW1WtfZfTbJqWPlKkrSthnlmej6wckLsDODqqloGXN2WAY4FlrVpNXAOdMUXeAtwKHAI8JbxAixJ0kIxtGJaVX8N3D8hfDxwQZu/ADhhIH5hdb4A7JZkL+AY4Kqqur+qHgCu4okFWpKkkZrvz0yfUVX3ALSfT2/xvYG7BtptarGp4k+QZHWSdUnWbd68ec4Tl5YK+5I0ewvlBqRMEqtp4k8MVp1bVSuqasXY2NicJictJfYlafbmu5h+s12+pf28t8U3AfsOtNsHuHuauCRJC8Z8F9O1wPgduauATwzET2539R4GPNguA18JHJ1k93bj0dEtJknSgjG0ge6T/BlwBLBnkk10d+W+C7g0yanAN4BXtOZXAMcBG4HvAK8FqKr7k7wDuKG1e3tVTbypSZKkkRpaMa2qV02x6qWTtC3gtCn2swZYM4epSZI0pxbKDUiSJC1aFlNJknqymEqS1JPFVJKkniymkiT1ZDGVJKkni6kkST1ZTCVJ6sliKklSTxZTSZJ6sphKktTT0MbmlbR0vOCNF446hUXnxvecPOoUNIc8M5UkqSeLqSRJPVlMJUnqyWIqSVJPFlNJknqymEqS1NNIimmSO5PcnGR9knUttkeSq5J8tf3cvcWT5ANJNia5KcnBo8hZkqSpjPLM9CVVtbyqVrTlM4Crq2oZcHVbBjgWWNam1cA5856pJEnTWEiXeY8HLmjzFwAnDMQvrM4XgN2S7DWKBCVJmsyoimkBn01yY5LVLfaMqroHoP18eovvDdw1sO2mFnucJKuTrEuybvPmzUNMXdq+2Zek2RtVMT28qg6mu4R7WpL/OE3bTBKrJwSqzq2qFVW1YmxsbK7ylJYc+5I0eyMpplV1d/t5L/DnwCHAN8cv37af97bmm4B9BzbfB7h7/rKVJGl6815Mk/xgkl3H54GjgVuAtcCq1mwV8Ik2vxY4ud3Vexjw4PjlYEmSFoJRPDXmGcCfJxk//p9W1WeS3ABcmuRU4BvAK1r7K4DjgI3Ad4DXzn/KkiRNbd6LaVV9HfjpSeL/DLx0kngBp81DapIkbZOF9NUYSZIWJYupJEk9WUwlSerJYipJUk8WU0mSerKYSpLUk8VUkqSeLKaSJPVkMZUkqSeLqSRJPVlMJUnqyWIqSVJPFlNJknqymEqS1JPFVJKkniymkiT1ZDGVJKkni6kkST1ZTCVJ6mnRFNMkK5PcnmRjkjNGnY8kSeMWRTFNsiPwIeBY4EDgVUkOHG1WkiR1FkUxBQ4BNlbV16vqX4GLgeNHnJMkSQCkqkadw1YlORFYWVX/pS2/Bji0qk4faLMaWN0WnwPcPu+Jzq09gftGncQSttj//e+rqpXbsuF21pcW++9xe7DYfwcz6ks7zUcmcyCTxB73LqCqzgXOnZ90hi/JuqpaMeo8lqql/O+/PfWlpfx7XCiWyu9gsVzm3QTsO7C8D3D3iHKRJOlxFksxvQFYluSAJE8CTgLWjjgnSZKARXKZt6oeTXI6cCWwI7CmqjaMOK1h2y4usy1i/vtvH/w9jt6S+B0sihuQJElayBbLZV5JkhYsi6kkST1ZTEcsSSV578Dy7yR56whT2u6lc22SYwdir0zymVHmpX7sS/PPvvQYi+noPQK8PMmeo05kqajuRoHfAN6X5MlJfhA4CzhttJmpJ/vSPLMvPcZiOnqP0t3t9t8nrkjyo0muTnJT+7nf/Ke3faqqW4BPAm8C3gJcWFVfS7IqyfVJ1if5cJIdkuyU5KIkNye5JcnrRpu9pmBfGgH7UmdRfDVmCfgQcFOSP5wQ/590/zEvSPKrwAeAE+Y9u+3X24AvAv8KrEjyXOBlwM+0r2OdS/ed5q8Be1bV8wCS7DaqhLVV9qXRWPJ9yWK6AFTVt5NcCLwO+O7AqhcBL2/zFwET/0Coh6r6lySXAA9X1SNJjgJeCKxLAvAU4C667zc/J8n7gSuAz44qZ03PvjQa9iWL6ULyx3Tv7D46TRu/FDz3vt8m6MaAXlNVvz+xUZKfonsE4OuAX+axgeC18NiXRmNJ9yU/M10gqup+4FLg1IHw39FdGgH4FeDa+c5riflL4JXjN7AkeVqS/ZKM0Q1w8n/oPhM6eJRJanr2pQVhyfUlz0wXlvcCpw8svw5Yk+SNwGbgtSPJaomoqpuTvA34yyQ7AP9Gd6fiFuC8dNeriu5GCy1s9qURWop9yeEEJUnqycu8kiT1ZDGVJKkni6kkST1ZTCVJ6sliKklSTxbTRSDJ/0iyoY0ruj7JoUnekOQHRpDLFds6BFiSH0jysYFxOa9N8tRR56WlwX403LyWOr8as8AleRHwPuCINkzXnsCT6L6EvqKq7ptkmx2rass8p7pVSc4Exqrqt9ryc4A7q+qRGW6/IF+XFj770eO2X5Cva7HzzHTh2wu4b7yjtE5/IvBM4PNJPg+Q5OEkb09yHfCiJC9I8ldJbkxyZZK9WrtfS3JDki8nuXz8XXmS85Ock+TzSb6e5MVJ1iS5Lcn548kkuTPJnkn2b+s+0t7tfzbJU1qbF7Z3/3+f5D1Jbhl4Lf80vq+qun38dSV5dR57wsT/TrLjJK/rzUkuHcjliCSfHMyrzZ/cjv/lJBe12Fh7vTe06fAWf3E75vokX0qy65z+9rRQ2I/sR8NVVU4LeAKeCqwH/gH4MPDiFr+T7ukL4+0KeGWb35nuHfdYW/5PdONkAjxtYJt3Ar/Z5s8HLqYbU/N44NvA8+jecN0ILB88LrA/3SOvxuOXAq9u87fQPS0C4F3ALW1+OXAv8Pft2Mta/CfpHuG0c1v+MHDyJK9rJ+AbwA+25XMGjjme10HA7eP/NsAe7eefAj/b5vcDbmvznwQOH/i33mnUv3Mn+1Gbtx8tosnhBBe4qno4yQuA/wC8BLgkyRmTNN0CXN7mnwM8F7gq3RMbdgTuaeuem+SdwG50/+mvHNjHJ6uqktwMfLOqbgZIsoGu06+fcMw7qmo8diOwf7rPW3atqr9r8T8FfqG9lvVJfgw4GjgKuCHd5beXAi9oy9A9YeLeia+rukc5fQb4xSSXAT8P/O6EnI4ELqt22a66cVppxzuw7R/gh9q757+le7Dxx4CPV9WmJ/zLatGzH9mPhs1iughU9/nGNcA1rYOumqTZ9+qxz0ECbKiqF03S7nzghKr6cpJTgCMG1o1/5vL9gfnx5cn+rwy22ULXeTNJu8HX8jDwceDjSb4PHEf3DMQLqurMSTYZfF0AlwCnAfcDN1TVQxPaj4/5OdEOwIuq6rsT4u9K8hctjy8kOaqqvjLda9DiZD+yHw2Tn5kucEmek2TZQGg58I/AQ8BUn0vcDoy1d6sk2TnJQW3drsA9SXame3rGnKqqB4CHkhzWQuNP6iDJ4Ul2b/NPAg5sr+Vq4MQkT2/r9kjyo1Mc4hq6J038Gt0fhImupntaxdPG99Xin2Vg4PMky9vPZ1XVzVX1bmAd8BOzftFa8OxHT3AN9qM55ZnpwvdU4IPtss+jwEa65/+9Cvh0knuq6iWDG1TVvyY5EfhAkh+m+z3/MbAB+H3gOrrOdzNT/yHp41TgI0n+ha7TPtjizwLOSXeNaAfgL4DL2yWx3wM+m8eeMHFay/FxqmpLkk8BpzDJmUVVbUhyFvBXSbYAX2ptXwd8KMlNdP8ef033FIs3JHkJ3RnBrcCn5+RfQAuN/ejxr81+NMf8aozmXJKntstQtM+l9qqq1484LWlRsR8tLp6Zahh+Pt134Xaie1d8ymjTkRYl+9Ei4pmpJEk9eQOSJEk9WUwlSerJYipJUk8WU0mSerKYSpLU0/8HQP1XNLBHHA4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 460.8x288 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Creating a new column for family. If a customer has dependant or Partner, I am considering it as family .\n",
"list_family = []\n",
"for rows in range(len(datset_churn['Partner'])):\n",
" if ((datset_churn['Partner'][rows] == 'No') and (datset_churn['Dependents'][rows] == 'No')):\n",
" list_family.append('No')\n",
" else:\n",
" list_family.append('Yes')\n",
"datset_churn['Family'] = list_family\n",
"#print(datset_churn[['Partner', 'Dependents', 'Family' ]].head(10))\n",
"\n",
"#Creating a new column for Online Services (Online Security & Online Backup) . If a customer has Online Security or Online Backup services\n",
"#then , I am considering it as \"Yes\" else \"No\"\n",
"list_online_services = []\n",
"for rows_os in range(len(datset_churn['OnlineSecurity'])):\n",
" if ((datset_churn['OnlineSecurity'][rows_os] == 'No') and (datset_churn['OnlineBackup'][rows_os] == 'No')):\n",
" list_online_services.append('No')\n",
" else:\n",
" list_online_services.append('Yes')\n",
"datset_churn['OnlineServices'] = list_online_services\n",
"\n",
"#print(datset_churn[['OnlineSecurity', 'OnlineBackup', 'OnlineServices' ]].head(10))\n",
" \n",
"#Creating a new column for Streaming Services (StreamingTV & StreamingMovies) . If a customer has StreamingTV or StreamingMovies\n",
"#then , I am considering it as \"Yes\" else \"No\"\n",
"list_streaming_services = []\n",
"for rows_stv in range(len(datset_churn['StreamingTV'])):\n",
" if ((datset_churn['StreamingTV'][rows_stv] == 'No') and (datset_churn['StreamingMovies'][rows_stv] == 'No')):\n",
" list_streaming_services.append('No')\n",
" else:\n",
" list_streaming_services.append('Yes')\n",
"datset_churn['StreamingServices'] = list_streaming_services\n",
"\n",
"#print(datset_churn[['StreamingTV', 'StreamingMovies', 'StreamingServices' ]].head(10))\n",
"\n",
"plot_cat_data = sns.catplot(x='Family', col='Churn_Num', data = datset_churn, kind='count', height=4, aspect=0.8)\n",
"plot_cat_data = sns.catplot(x='OnlineServices', col='Churn_Num', data = datset_churn, kind='count', height=4, aspect=0.8)\n",
"plot_cat_data = sns.catplot(x='StreamingServices', col='Churn_Num', data = datset_churn, kind='count', height=4, aspect=0.8)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observation\n",
" - Customers with family are less likely to Churn\n",
" - Customers not opted for online services (online backup or security) have slightly higher chances of churn\n",
" - Customer opted for Streaming Services seems to have slightly higher chances of churn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Preparing Columns for Classification"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Converting the Object/Categorical Variable to Numerical Variable"
]
},
{
"cell_type": "code",
"execution_count": 464,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 7043 entries, 0 to 7042\n",
"Data columns (total 29 columns):\n",
"CustomerID 7043 non-null object\n",
"Gender 7043 non-null object\n",
"SeniorCitizen 7043 non-null int64\n",
"Partner 7043 non-null object\n",
"Dependents 7043 non-null object\n",
"Tenure 7043 non-null int64\n",
"PhoneService 7043 non-null object\n",
"MultipleLines 7043 non-null object\n",
"InternetService 7043 non-null object\n",
"OnlineSecurity 7043 non-null object\n",
"OnlineBackup 7043 non-null object\n",
"DeviceProtection 7043 non-null object\n",
"TechSupport 7043 non-null object\n",
"StreamingTV 7043 non-null object\n",
"StreamingMovies 7043 non-null object\n",
"Contract 7043 non-null object\n",
"PaperlessBilling 7043 non-null object\n",
"PaymentMethod 7043 non-null object\n",
"MonthlyCharges 7043 non-null float64\n",
"TotalCharges 7043 non-null float64\n",
"Churn 7043 non-null object\n",
"Churn_Num 7043 non-null int32\n",
"TenureRange 7043 non-null category\n",
"TenureCat 7043 non-null float64\n",
"MonthlyChargesRange 7043 non-null category\n",
"MonthlyChargesCat 7043 non-null float64\n",
"Family 7043 non-null object\n",
"OnlineServices 7043 non-null object\n",
"StreamingServices 7043 non-null object\n",
"dtypes: category(2), float64(4), int32(1), int64(2), object(20)\n",
"memory usage: 1.4+ MB\n"
]
}
],
"source": [
"datset_churn.info()"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Gender</th>\n",
" <th>Gender_Num</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Female</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Male</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Gender Gender_Num\n",
"0 Female 1\n",
"1 Male 0"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Converting Gender column to numeric value\n",
"#datset_churn['Gender'].unique() # Print unique values in the column\n",
"datset_churn['Gender_Num'] = datset_churn['Gender'].map( {'Female': 1, 'Male': 0} ).astype(int) #Map Categorical to Numerical Values\n",
"datset_churn[['Gender','Gender_Num']].head(2) # Test the mapping"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Family</th>\n",
" <th>Family_Num</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Yes</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>No</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Family Family_Num\n",
"0 Yes 1\n",
"1 No 0"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# For Partner & Dependant , we created Family Column . Converting Family column to numeric value\n",
"#datset_churn['Family'].unique() # Print unique values in the column\n",
"datset_churn['Family_Num'] = datset_churn['Family'].map( {'Yes': 1, 'No': 0} ).astype(int) #Map Categorical to Numerical Values\n",
"datset_churn[['Family','Family_Num']].head(2) # Test the mapping"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"datset_churn['PhoneService_Num'] = datset_churn['PhoneService'].map( {'Yes': 1, 'No': 0} ).astype(int)\n",
"datset_churn['MultipleLines_Num'] = datset_churn['MultipleLines'].map( {'No': 0, 'Yes': 1, 'No phone service':2} ).astype(int)\n",
"datset_churn['InternetService_Num'] = datset_churn['InternetService'].map( {'DSL': 0, 'Fiber optic': 1, 'No':2} ).astype(int)\n",
"datset_churn['OnlineServices_Num'] = datset_churn['OnlineServices'].map( {'Yes': 1, 'No': 0} ).astype(int)\n",
"\n",
"datset_churn['DeviceProtection_Num'] = datset_churn['DeviceProtection'].map( {'No': 0, 'Yes': 1, 'No internet service':2} ).astype(int)\n",
"datset_churn['StreamingServices_Num'] = datset_churn['StreamingServices'].map( {'Yes': 1, 'No': 0} ).astype(int)\n",
"datset_churn['TechSupport_Num'] = datset_churn['TechSupport'].map( {'No': 0, 'Yes': 1, 'No internet service':2} ).astype(int)\n",
"datset_churn['Contract_Num'] = datset_churn['Contract'].map( {'Month-to-month': 0, 'One year': 1, 'Two year': 2} ).astype(int)\n",
"datset_churn['PaperlessBilling_Num'] = datset_churn['PaperlessBilling'].map( {'Yes': 1, 'No': 0} ).astype(int)\n",
"datset_churn['PaymentMethod_Num'] = datset_churn['PaymentMethod'].map( {'Electronic check': 0, 'Mailed check': 1, 'Bank transfer (automatic)': 2 , 'Credit card (automatic)' : 3} ).astype(int)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 7043 entries, 0 to 7042\n",
"Data columns (total 41 columns):\n",
"CustomerID 7043 non-null object\n",
"Gender 7043 non-null object\n",
"SeniorCitizen 7043 non-null int64\n",
"Partner 7043 non-null object\n",
"Dependents 7043 non-null object\n",
"Tenure 7043 non-null int64\n",
"PhoneService 7043 non-null object\n",
"MultipleLines 7043 non-null object\n",
"InternetService 7043 non-null object\n",
"OnlineSecurity 7043 non-null object\n",
"OnlineBackup 7043 non-null object\n",
"DeviceProtection 7043 non-null object\n",
"TechSupport 7043 non-null object\n",
"StreamingTV 7043 non-null object\n",
"StreamingMovies 7043 non-null object\n",
"Contract 7043 non-null object\n",
"PaperlessBilling 7043 non-null object\n",
"PaymentMethod 7043 non-null object\n",
"MonthlyCharges 7043 non-null float64\n",
"TotalCharges 7043 non-null float64\n",
"Churn 7043 non-null object\n",
"Churn_Num 7043 non-null int32\n",
"TenureRange 7043 non-null category\n",
"TenureCat 7043 non-null float64\n",
"MonthlyChargesRange 7043 non-null category\n",
"MonthlyChargesCat 7043 non-null float64\n",
"Family 7043 non-null object\n",
"OnlineServices 7043 non-null object\n",
"StreamingServices 7043 non-null object\n",
"Gender_Num 7043 non-null int32\n",
"Family_Num 7043 non-null int32\n",
"PhoneService_Num 7043 non-null int32\n",
"MultipleLines_Num 7043 non-null int32\n",
"InternetService_Num 7043 non-null int32\n",
"OnlineServices_Num 7043 non-null int32\n",
"DeviceProtection_Num 7043 non-null int32\n",
"StreamingServices_Num 7043 non-null int32\n",
"TechSupport_Num 7043 non-null int32\n",
"Contract_Num 7043 non-null int32\n",
"PaperlessBilling_Num 7043 non-null int32\n",
"PaymentMethod_Num 7043 non-null int32\n",
"dtypes: category(2), float64(4), int32(13), int64(2), object(20)\n",
"memory usage: 1.8+ MB\n"
]
}
],
"source": [
"datset_churn.info()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Now we will delete the non-required rows and prepare the dataset for classification"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"# Take a copy of dataset\n",
"datset_churn_copy = datset_churn.copy()"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 7043 entries, 0 to 7042\n",
"Data columns (total 17 columns):\n",
"CustomerID 7043 non-null object\n",
"Gender 7043 non-null int32\n",
"SeniorCitizen 7043 non-null int64\n",
"Family 7043 non-null int32\n",
"TenureCat 7043 non-null float64\n",
"PhoneService 7043 non-null int32\n",
"MultipleLines 7043 non-null int32\n",
"InternetService 7043 non-null int32\n",
"OnlineServices 7043 non-null int32\n",
"DeviceProtection 7043 non-null int32\n",
"TechSupport 7043 non-null int32\n",
"StreamingServices 7043 non-null int32\n",
"Contract 7043 non-null int32\n",
"PaperlessBilling 7043 non-null int32\n",
"PaymentMethod 7043 non-null int32\n",
"MonthlyChargesCat 7043 non-null float64\n",
"Churn 7043 non-null int32\n",
"dtypes: float64(2), int32(13), int64(1), object(1)\n",
"memory usage: 577.8+ KB\n"
]
}
],
"source": [
"#Dropping the Categorical columns and keeping their equivalent numeric column\n",
"columns_to_drop = ['Gender', 'Partner', 'Dependents', 'Tenure', 'PhoneService', 'MultipleLines', 'InternetService', 'OnlineSecurity', 'OnlineBackup', 'DeviceProtection', 'TechSupport', 'StreamingTV', 'StreamingMovies', 'Contract', 'PaperlessBilling', 'PaymentMethod', 'TotalCharges', 'Churn', 'Family', 'OnlineServices', 'StreamingServices']\n",
"datset_churn = datset_churn.drop(columns_to_drop, axis=1)\n",
"\n",
"#Re-arranging the columns as per origial dataset\n",
"datset_churn = datset_churn[['CustomerID', 'Gender_Num', 'SeniorCitizen', 'Family_Num', 'TenureCat', 'PhoneService_Num', 'MultipleLines_Num', 'InternetService_Num', 'OnlineServices_Num', 'DeviceProtection_Num', 'TechSupport_Num', 'StreamingServices_Num', 'Contract_Num', 'PaperlessBilling_Num', 'PaymentMethod_Num', 'MonthlyChargesCat', 'Churn_Num']]\n",
"datset_churn = datset_churn.rename(columns={'Gender_Num' : 'Gender', \n",
" 'Family_Num' : 'Family',\n",
" 'PhoneService_Num' : 'PhoneService',\n",
" 'MultipleLines_Num': 'MultipleLines', \n",
" 'InternetService_Num' : 'InternetService', \n",
" 'OnlineServices_Num' : 'OnlineServices', \n",
" 'DeviceProtection_Num' : 'DeviceProtection',\n",
" 'TechSupport_Num' : 'TechSupport', \n",
" 'StreamingServices_Num' : 'StreamingServices', \n",
" 'Contract_Num' : 'Contract', \n",
" 'PaperlessBilling_Num' : 'PaperlessBilling', \n",
" 'PaymentMethod_Num' : 'PaymentMethod', \n",
" 'MonthlyCharges' : 'MonthlyCharges', \n",
" 'Churn_Num' : 'Churn' })\n",
"datset_churn.info()"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>CustomerID</th>\n",
" <th>Gender</th>\n",
" <th>SeniorCitizen</th>\n",
" <th>Family</th>\n",
" <th>TenureCat</th>\n",
" <th>PhoneService</th>\n",
" <th>MultipleLines</th>\n",
" <th>InternetService</th>\n",
" <th>OnlineServices</th>\n",
" <th>DeviceProtection</th>\n",
" <th>TechSupport</th>\n",
" <th>StreamingServices</th>\n",
" <th>Contract</th>\n",
" <th>PaperlessBilling</th>\n",
" <th>PaymentMethod</th>\n",
" <th>MonthlyChargesCat</th>\n",
" <th>Churn</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>7590-VHVEG</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>5575-GNVDE</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>3668-QPYBK</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>2.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>7795-CFOCW</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>2.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>9237-HQITU</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>3.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>9305-CDSKC</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>4.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>1452-KIOVK</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2.0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>4.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>6713-OKOMC</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1.0</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>7892-POOKP</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>2.0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>5.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>6388-TABGU</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>5.0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>2</td>\n",
" <td>2.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" CustomerID Gender SeniorCitizen Family TenureCat PhoneService \\\n",
"0 7590-VHVEG 1 0 1 0.0 0 \n",
"1 5575-GNVDE 0 0 0 3.0 1 \n",
"2 3668-QPYBK 0 0 0 0.0 1 \n",
"3 7795-CFOCW 0 0 0 3.0 0 \n",
"4 9237-HQITU 1 0 0 0.0 1 \n",
"5 9305-CDSKC 1 0 0 0.0 1 \n",
"6 1452-KIOVK 0 0 1 2.0 1 \n",
"7 6713-OKOMC 1 0 0 1.0 0 \n",
"8 7892-POOKP 1 0 1 2.0 1 \n",
"9 6388-TABGU 0 0 1 5.0 1 \n",
"\n",
" MultipleLines InternetService OnlineServices DeviceProtection \\\n",
"0 2 0 1 0 \n",
"1 0 0 1 1 \n",
"2 0 0 1 0 \n",
"3 2 0 1 1 \n",
"4 0 1 0 0 \n",
"5 1 1 0 1 \n",
"6 1 1 1 0 \n",
"7 2 0 1 0 \n",
"8 1 1 0 1 \n",
"9 0 0 1 0 \n",
"\n",
" TechSupport StreamingServices Contract PaperlessBilling PaymentMethod \\\n",
"0 0 0 0 1 0 \n",
"1 0 0 1 0 1 \n",
"2 0 0 0 1 1 \n",
"3 1 0 1 0 2 \n",
"4 0 0 0 1 0 \n",
"5 0 1 0 1 0 \n",
"6 0 1 0 1 3 \n",
"7 0 0 0 0 1 \n",
"8 1 1 0 1 0 \n",
"9 0 0 1 0 2 \n",
"\n",
" MonthlyChargesCat Churn \n",
"0 1.0 0 \n",
"1 2.0 0 \n",
"2 2.0 1 \n",
"3 2.0 0 \n",
"4 3.0 1 \n",
"5 4.0 1 \n",
"6 4.0 0 \n",
"7 1.0 0 \n",
"8 5.0 1 \n",
"9 2.0 0 "
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"datset_churn.head(10) # Taking a quick look into the new data"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 5634 samples in the training set and 1409 samples in the test set\n"
]
}
],
"source": [
"X = datset_churn.iloc[:,1:16].values # Feature Variable\n",
"y = datset_churn.iloc[:,16].values # Target Variable\n",
"\n",
"#Dividing data into test & train splitting 70% data for training anf 30% for test\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20)\n",
"print('There are {} samples in the training set and {} samples in the test set'.format(X_train.shape[0], X_test.shape[0]))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Classification\n",
"### We will run all classifiers to have an initial look at the performance"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Defining function for Confusion Matrix , Precision, Recall and F1 Score"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"#Creating function for Confusion Matrix , Precsion, Recall and F1 Score\n",
"def plot_confusion_matrix(classifier, y_test, y_pred_test):\n",
" cm = confusion_matrix(y_test, y_pred_test)\n",
" \n",
" print(\"\\n\",classifier,\"\\n\")\n",
" plt.clf()\n",
" plt.imshow(cm, interpolation='nearest', cmap='RdBu')\n",
" classNames = ['Churn-No','Churn-Yes']\n",
" plt.ylabel('True label')\n",
" plt.xlabel('Predicted label')\n",
" tick_marks = np.arange(len(classNames))\n",
" plt.xticks(tick_marks, classNames, rotation=45)\n",
" plt.yticks(tick_marks, classNames)\n",
" s = [['TN','FP'], ['FN', 'TP']]\n",
" \n",
" for i in range(2):\n",
" for j in range(2):\n",
" plt.text(j,i, str(s[i][j])+\" = \"+str(cm[i][j]), \n",
" horizontalalignment='center', color='White')\n",
" \n",
" plt.show()\n",
" \n",
" tn, fp, fn, tp = cm.ravel()\n",
"\n",
" recall = tp / (tp + fn)\n",
" precision = tp / (tp + fp)\n",
" F1 = 2*recall*precision/(recall+precision)\n",
"\n",
" print('Recall={0:0.3f}'.format(recall),'\\nPrecision={0:0.3f}'.format(precision))\n",
" print('F1={0:0.3f}'.format(F1))\n",
" return;"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Defining function for Precision Recall Curve"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.metrics import average_precision_score, precision_recall_curve\n",
"def plot_prec_rec_curve(classifier, y_test, y_pred_score):\n",
" precision, recall, _ = precision_recall_curve(y_test, y_pred_score)\n",
" average_precision = average_precision_score(y_test, y_pred_score)\n",
"\n",
" print('Average precision-recall score: {0:0.3f}'.format(\n",
" average_precision))\n",
"\n",
" plt.plot(recall, precision, label='area = %0.3f' % average_precision, color=\"green\")\n",
" plt.xlim([0.0, 1.0])\n",
" plt.ylim([0.0, 1.05])\n",
" plt.xlabel('Recall')\n",
" plt.ylabel('Precision')\n",
" plt.title('Precision Recall Curve')\n",
" plt.legend(loc=\"best\")\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Master Classification Engine"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" LogisticRegression \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAH3hJREFUeJzt3Xl4FfXZxvHvQ8IWQEA2CyIgIi6gyKZF646tFnHfN9SKoFbUuhWwotal1rpQK6B1r3Wr4m4Rqy8CIrKLqICggILITlgCJHneP2YCIYQkJ8nJSX7cn+vKRc7MnJnn5JA7v3nOLObuiIhUddVSXYCISHlQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQUhPdQFVmaXXcqtRN9VlSAIabcxMdQmSoOVsXu7uTYpbTmFWBlajLunte6e6DEnAGdM/SnUJkqARLFhQkuW0mykiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBSE91AVI6u9evw6gRNwHQrFF9cnJzWb4qE4CD2+/FQ8+P4pYHXwbg+ot+Td2MWtw14s0ybfOsE7px6+W9SEurxvtjv+CPj7wKwIALT+Cy044kOzuHZasy6XvH0yxcsgKAe649kxN/dVD0/RNv8+oHk8pUQ2gey57HjzNnb308/NS+NGq9J/3ffJxl8xdRvVZNJr/0Nu/e+UiZttPioP25YPjd1KybwYrvf+CpC64jK3MdjVrtye1ff8jS2fMB+O6zafy7/6AybStVFGZV1Mo16+l27hAAbrvyFNZtyOKh50cBsPazEZx6bGfuf+pdVqxeVy7b271+He697mwOu+BOlq/K5Mk7L+eY7vvz8edfM/2bhRx2wZ1szNpM37OO5t4BZ3HBrcM58YiD6LR/K7qeO4Sa1dP535O38t/xM8lcn1UuNYVg88Ys7j7kpO2mNWq9J3PHTuKxky+nRkZtBk9/j5nv/I+FU78s9XYu+ud9vHbjPcz9ZCI9Lj2Lnjf15e0/PQjAsnkLdqihKtJuZoCyc3J48vUxDLjghHJbZ5sWTZi7cOnW0d9HE7/itOO6ADBm8jdszNoMwOdfzKdFs4YA7L93c8ZOmU1OTi4bsjbzxZxF/LpHx3KraVewecNGFkz5kiZtW5VpPc3a783cTyYC8PXocXQ+48TyKK9S0cgsUMNe/ogpr9zJA8++v9Nljuq6Hw/ceO4O0zdkbeaoPvdsN23eop9p33oPWv2iET/8vIrexxxCjfQd//v0OfVXjBo/E4Av5ixi8JW9efhfH5BRqwZHdd2Pr+cvLuMrC0uN2rUYNO09AFZ8t4jhp1+53fw6uzdg78MO4b27hm43vWbdOtw49tVC1/nU+dey5Otvt5u2+Ms5HNy7JzPeGk3ns06iYctfbJ3XuE1LBk59l6y163hr8AN8O65qtgIqNMzMbA/gYaAbsAn4HngD6O3uvSpg+0cDH8fbezue9g7wgLv/X7K3X5Ey12fxwjufcs15x28dNRU0ZvI3W3dVi7M6cwO/v+d5XvhLf3I9lwkz5rF3iybbLXP+SYfR5YDWHPe7vwDw4Wez6HpgGz55ZiDLVmUy8Ytvyc7OKdPrCk1hu5kA7X7VjYFT38Vzc/nvfcNY8tXc7eZvWrc+oV3D5y67mXOG3s5Jf7qWL976kOzNWwBYs+RnBu7Vg/UrV7NX5w70e+Nx7jzwBLIyy6c9UZEqLMzMzICRwLPufm48rRNwchnXm+7u2Qk85QdgEPB2WbZbFQx9YTQTX7yd594cV+j8REZmAO9+MoN3P5kBwOWnH0VuTu7WecceegC3Xt6L4373FzZv2fZ23PfkO9z35DsAPHdPX75dtLRMr2lXkdcz25lER2ZLZ89j6K8vBqBpuzZ0/O0xAGRv3kz2yuiP3cKpX7J83kKa7tuGhVNmlsfLqFAVOTI7Btji7sPzJrj7dDNrABxnZv8BOgBTgAvd3c3se6Cruy83s65EI6ijzWwI0BxoDSw3sw+A3kAG0BYY6e4376SOGUB1M+vp7qPzzzCz44AHiH4uk4D+7r6pnF5/hVu1dj2vfTCJPqf+imcLCbRERmYATRrWY9mqTBrUy6Df2cdw/s3DAOjUfi/+MehiTr7mQZbFPTWAatWMBvUyWLlmPR3b7UnHdnsyesKsMr8uSXxkVq9JIzKXrcDMOGnwNXwy/AUA6jbenfUrV+O5uTRu05Km7VqzfP7CZJWdVBUZZnlBVZhDgAOBxcB44HCg8OHENl2AI9x9o5n1ATrF69kEzDazv7v7op0898/x19YwM7NawDPAce4+x8yeA/oT7RZXWQ89P4r+5xxbLut68ObzOWjflgDc/fhbzF0YjbLuvf5s6mbU5MX7rwJg0U8rOP26v1M9PY2Pn/ojAGvXbaTPoCfIyTeak4rT7bzeHHX1RQBMe30Unz4djeraHdmdk++8gdzsHHJzcnih3yA2rFqTylJLzdy9YjZkdi3Qxt2vLzD9aGCQu/eMHw8Dxrv7v4oZmbm73xE/pw9wuLtfET9+H7jb3ccVsq0b3b2XmY0BBgO3EI3GVgF/d/cj42WPA65299MLrKMv0BeA6nW6VD/w7PL48UgFuWz6R6kuQRI0ggVT3L1rcctV5KEZs4hGU4XJvyuXw7YRYzbbaqxV4Dnri1uHmZ1mZtPjr4I/jLuJemd5rKji87j74+7e1d27WnrBkkQkVSoyzD4CaprZFXkTzKwbcFQRz/mebQF4RqIbdPeR7t4p/ppcYN4HQEPg4HjSN0BrM9snfnwRMCbRbYpIalRYmHm0P3sa0NPM5pnZLGAIUZ9sZ+4AHjGzsUSjrfJ2N7BnXF8WcCnwqpnNBHKB4UU8V0QqkQrrmYWoWkZjT2/fO9VlSALUM6t6KmPPTEQkaRRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIENJ3NsPMdivqie6+tvzLEREpnZ2GGTALcMDyTct77MBeSaxLRCQhOw0zd29ZkYWIiJRFiXpmZnaumQ2Mv9/TzLoktywRkcQUG2Zm9ihwDHBRPGkDMDyZRYmIJKqonlmeHu7e2cymAbj7SjOrkeS6REQSUpLdzC1mVo2o6Y+ZNQJyk1qViEiCShJm/wBeA5qY2R3AOOAvSa1KRCRBxe5muvtzZjYFOD6edJa7f5ncskREElOSnhlAGrCFaFdTZw2ISKVTkk8zBwEvAs2BPYF/m9kfk12YiEgiSjIyuxDo4u4bAMzsbmAKcG8yCxMRSURJdhkXsH3opQPzk1OOiEjpFHWi+UNEPbINwCwzGxU/PoHoE00RkUqjqN3MvE8sZwHv5pv+WfLKEREpnaJONH+yIgsRESmLYj8AMLO2wN3AAUCtvOnuvm8S6xIRSUhJPgB4Bnia6DpmJwKvAC8lsSYRkYSVJMwy3H0UgLvPc/fBRFfREBGpNEpynNkmMzNgnpn1A34Emia3LBGRxJQkzK4H6gLXEvXO6gOXJbMoEZFEleRE84nxt5lsu0CjiEilUtRBsyOJr2FWGHc/PSkViYiUQlEjs0crrAoRkTIy950OvqQY7WrU9gcbt011GZKAjMa1U12CJOj4mZOnuHvX4pbTtclEJAgKMxEJQonDzMxqJrMQEZGyKMmVZrub2Uxgbvz4YDP7e9IrExFJQElGZkOBXsAKAHefgU5nEpFKpiRhVs3dFxSYlpOMYkRESqskpzMtMrPugJtZGvB7YE5yyxIRSUxJRmb9gRuAvYClwGHxNBGRSqMk52b+DJxbAbWIiJRaSa40+wSFnKPp7n2TUpGISCmUpGf2Yb7vawGnAYuSU46ISOmUZDfz5fyPzex5YHTSKhIRKYXSnM7UBmhV3oWIiJRFSXpmq9jWM6sGrARuTWZRIiKJKjLM4mv/H0x03X+AXNc1g0SkEipyNzMOrpHunhN/KchEpFIqSc/sczPrnPRKRETKoKh7AKS7ezZwBHCFmc0D1hPdDNjdXQEnIpVGUT2zz4HOwKkVVIuISKkVFWYG0V3MK6gWEZFSKyrMmpjZDTub6e4PJqEeEZFSKSrM0ojuZG4VVIuISKkVFWZL3P3OCqtERKQMijo0QyMyEakyigqz4yqsChGRMtppmLn7yoosRESkLHQTYBEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCEXdN1MquV6LZrD2m7lbH0+69FoyWragx2tP8/klV7N09BgAuj/7D+YNf4YVEyaVaXuHvjCchp0PYuXn0/j8kqu3Tm98xKEccNsfoFo1ctZvYNp1g9jw/SKq1ahOp6H30qDjAWxetZop/W5k4w+Ly1RDVZZevz6dn3gMgBqNG+E5OWxZtRqAevvtS+Y3c7D0NNbP/46vBg8hN2tTqbfV7KTf0OqyiwHI2bCR2X++j3Vzov8rux/+S/a95Q9YtWosfv1NFjz1LAD733U7DbseQnbmegC+uu0O1s2eU+oaKprCrArLydrEJz3P3G5aRssWbFz8E+2u7bs1zMrLvGFPk1a7Fq0uPHu76R3vvY1Jl17Lum/n0+qSc9h3wJVMv34wLc87nS2r1/LR4SfR/JQT2X/wDUztd2O51lSVZK9Zw+dnXwBAm/5XkLNhIwuf/RcAR302Zuu8A++9ixZnncGi5/9d6m1l/biYqZdeSXZmJo2O6MF+tw9k8gWXQrVqtB94M9P6XsOmpUvp9uKzLP+/T1g//zsAvn1wKD+P/qiMrzQ1tJsZoLWzZrMlcx2Nj/xlua53+biJZK/bUMgcJ71eHQCq16tH1tJlAOzx62P54dU3AVjyzgc0OeLQcq0nVKunTiNjr5ZlWseaGV+QnZkZfz+Tmk2bArBbhwPZuHARWT/+iGdns/S/o2l8zFFlrrky0MisCkurVZMjR/8HgA0Lf2Ty5QO2zpv78Aj2u+X3LP9kwk6f37b/pbQ4/bc7TF/x2RRm3XZvieuY8YfbOfT5YeRkZZG9bj3jep0PQK09mrJx8U8A0S7V2nXU2L0Bm1euLvG6dzWWlkajI3qwYvyO71uH++8ho3WrHaYvfP4Ffnr7vZ2us/npp7Bi/KcA1GrWhKylS7fO27R0Kbt17LD18d6/v4rWV/6OVRMn8e3Dj+JbtpTl5VSopIaZme0BPAx0AzYB3wNvAL3dvVcFbHsCcKi7/xxPexyY4+4PJHPbFaWw3cw8Kz+fCsDu3Tvv9Pnzhj3NvGFPl7mOvftezMSL+rN62kza9r+UA4bczBc33o6Z7bCsu5d5eyFKq1mT7q+8AEQjs8Wvv7nDMl/ePDDh9Tbs1oXmp/Vm8iVXxFN2fE+I35N5jzzK5uUrsOrV2f/2gbS+7BK+G/HPhLeZKkkLM4v+J48EnnX3c+NpnYCTy7jedHfPLm45d//JzP4G3A/0MbNuQHfgqrJsvyqZO/QJ2g3oi2fnFDq/PEZmNXZvyG4HtGf1tJkALH7rfQ59YQQAG5cspXbzPchashRLS6P6bnXZsmpNKV9N2HI2bdraM9uZREdmddvtw35DBjP9qgFkr4l+7llLf6ZWs2Zbl6nZrBmbli0HYPPyFQD4li0sfuNtWl1yYalfTyokc2R2DLDF3YfnTXD36WbWADjOzP4DdACmABe6u5vZ90BXd19uZl2BB9z9aDMbAjQHWgPLzewDoDeQAbQFRrr7zYXU8BjwmZkdRRRqV7t7tplVB/4K9ABqAg+7+9Nm1hJ4CagDpAG/c/eJ5fxzqTDLxnxK+5uuodYeTQudXx4jsy1r1lJ9t7rU2bsV6+cvoPGRPVg3dz4ASz/4mD3POoVVU2bwi14nsHxclf1RVgqJjMxq7tGMjg/dz1cDb2fjgoVbp2fO+oqMVntRq0VzNi39mWa/6cmsW28Dok9Y8wKtybFHs+7b+eVaf7IlM8zygqowhwAHAouB8cDhwLhi1tcFOMLdN5pZH6BTvJ5NwGwz+7u7L8r/BHfPNbP+wIfAa+4+Pp7VH/jB3bubWS1gYhyQFwOvu/vfzCwNqF2wCDPrC/QFaJJWvZiSU2/u0Mfp/syj5bKuHiOfpe4+bUjPyOD4yR8y4w9/YtmYT5lx4xC6PvEQnutsWbOWGTdEvxwLX3ydQ4bey7Hj32Pz6jVM7X9TudQhxWvT73dUb1Cf9oNuAcBzspl03iV4Tg6z77mfQ4YNhbQ0lrzxFuvnRaF14H13UaNhQzAj85s5zL6r5H3TysCS1cMws2uBNu5+fYHpRwOD3L1n/HgYMN7d/1XMyMzd/Y74OX2Aw939ivjx+8Dd7l5oIJrZp8A17j41fvwOsA+QFS9SH+gD1CAazT0PvOHuXxT1GtvVqO0PNm5b8h+KpFxG4x3+Pkkld/zMyVPcvWtxyyXz0IxZRKOpwuQ/GjCHbSPE7Hw11SrwnPXFrcPMTjOz6fFX/hefG3/lMeBKd+8Uf7Vx9zHuPppo93gp8JKZnVPUCxSRyiOZYfYRUNPM8j5GIW7CF3VQy/dsC8AzEt2gu4/MF1CTi1h0FHCVmaXHde1vZrXMrDWwxN1HAM8R7caKSBWQtDDzaP/1NKCnmc0zs1nAEKI+2c7cATxiZmOJRlvJ8hiwEJhmZl8CjxI1/HsCM8xsGnAi8I8k1iAi5ShpPbNdgXpmVY96ZlVPZeiZiYhUGIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBHP3VNdQZZnZMmBBqutIksbA8lQXISUW8vvVyt2bFLeQwkwKZWaT3b1rquuQktH7pd1MEQmEwkxEgqAwk515PNUFSEJ2+fdLPTMRCYJGZiISBIWZiARBYSYiQVCYSZmYmaW6BklciO+bwkxKzczM40+QzOxwM+tkZu3zz09ddbIzBd63c8ysm5mlpbquskpPdQFSdeX7hbgBOBtYDGw0swnu/qjro/JKKd/7djVwJXCKu+ektqqyU5hJwsysHrDB3XPMbC/gTOA4IA3oAFxnZt+6+39TWafsnJkdAFwOnOTuP5jZiUBtYKq7f5/S4kpJYSYJMbN9gUHAo2Y2NZ5ci+iYxbVmNhOYB7RMVY2yo/y7lrFFwP+Av5nZamBvYBnQCHgiBSWWmXpmkhB3nwOsI9o96ejuC4EJROGW4e6ZwEagHahvVhmYWbV8u5ZHmFneKHoMMAl4yN17AjOB9jtfU+WmMwCkRMysCbDF3VfHj+8G2gD3A2uBa4DjgVeAi4De7j47ReVKIczsOuAMYA6wH9DP3WfG8y4ErgcudPevU1dl6WlkJsUys07Aj8B7ZtbPzDq4+yDgW6K+y+7ufgPwV6JflJMVZKlnZh3N7Kj4+87A0e7+K+ALYAMwK57Xiajn2aeqBhloZCYlYGbNgT8DhwFzgYVAa+BloB/wJTDc3aenqkbZnpnVAB4Fprj7CDPbA7gM2BNoC/Ry9y1mdjrwDpDu7htSV3HZaWQmxXL3xURh9jRRP2wI8CzQAKgP9AUeiX+BJIXyepTuvhkYDXSOZ2UABwH7A+fFQXYxcDvQsKoHGWhkJgkws7ZEI7FGwI3uvtLMWhL1zha7+7cpLVDyDrmYDVQnaubfRzQKyzGzE4j6YnOJjmQ4gijYZqWq3vKkMJNiFThifG/gCqAFcIu7L0lpcbKVmdUmOtxiIdEfnGeBO4Ez3H1avEwXoDnQFPjY3eenqNxypzCT7RQ8HsnMqgG4e278V786kEn0F74m0SdiuSkpVnYQB1oN4KT431uAF4Bh7r4ylbUlm8JMtiowAjsAWB33yzCz7sDbRIdcTDSzVsBGd/85dRVLfoUcGEvc+H8KmAw84u4rUlJcBVCYyQ7MbADQh6hpfAfwEXAK8L27j0phaVIC8UGyuWaWFvfKWhAd//cecE+o58zqdCbZjpmdBBwLdAF+Q3SkfzXgrbz+WGEjAKl4xbQEOgLVzOxLd//RzM4Aqof8vunQjF1c/tONzOxAol5LY3fPdff3iG6UcRZwqpnVh21XXZDUKdgSMLPm8XuWG7cEPgDqxCOzau7+k7svSm3VyaUw28Xl+4W4DOgPjAKWmtnNZpbu7u8S9VyOTl2VUlC+920AUYP/YzM7P+6RHUJ0NP+n8bK7xAc02s0UzKwHcCpwprtvjkdrPYHrzewhd3/TzD509/WprVTyU0tgexqZ7eLiv+T9iC7Z0zye/AHwX+AAohPIITqXT1JILYGiKcx2YfER4euAB4nOrzzdzPZ09yyigy9fir92qV+KykotgaLp0IxdlJllEIVYU6JL9hwEXEB0JYzX4+uUSSUTtwRuZVtLoDdRS2Ah0XXJss2szq7YEtDIbBcVn1h8JzAfeBKYQdRI7gT0CuEGF6FRS6BoGpntYuKL8DV19wfjx82ILoNdF7ga6AgsdPefUlelFBS3BD4F9gH+AEwDXomv318LOAqYsSu/bxqZBS7vQMp85hPdcOQqAHdfStR7OZRoN+XzXfkXojKKWwKnA88RXfHiMaJr9p9pZnu5e5a7j9rV3zeFWcDij+Vz4+8PM7O942OPfksUaFfHi2YArwF3pahUKYJaAiWj3cxAxSeKX+nuA+JPv24iulb/S8Bwor/szxD9pe8BnBDfrEQqCbUEEqMwC5CZdSW6wug5wHdAHeBC4JfA+cACoksq1wD2ANaFfqpLVZB3gni+xz2I/vjc5+6PxdN+S3QTmbHu3i81lVZO2s0MjJn1AkYA2cAwYDPQwd1z3H0c0S9Ha+BGoL67f60gSz21BMpOpzMFJL4Tz8PARe4+IZ72JdDKzB5x9wHu/omZVQd6Ee12SorltQSA7VoCZpbXEjgNeMbMDmdbS+DHlBVcSWk3MyBmdgOQ4+6PmFmN+KDKNKJrwV9HdLHFm+Nla7v7xlTWK2oJlCftZgYg3zl7bYAm8fdb4l2XHOBrYCzQxczui+dnVXCZUoBaAuVLu5kByHfe5EhgoJl1cfcpZlYtbirnmNkviG4V92GB50gKqCVQ/rSbGRAzq0PUb8kAXnb3KfH084BrgXN0zmXloJZA+dNuZkDik4ufIL4Shpk9YGZ/JrrRa18FWeqpJZA8GpkFyKLbjXUBjgeWEN0fUQfEViJmdiwwkOjeo1Pi084sbgncDCwGPtQBsSWnMBNJAbUEyp/CTCRF4lvAXQ4cB0wi2p08EzjL3WemsraqSGEmkkJqCZQfhZmIBEGfZopIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZpJUZpZjZtPN7EszezW+OUdp13W0mb0Tf9/bzG4tYtkGeTdtSXAbQ8zsxpJOL7DMM2Z2ZgLbah2fXC7lQGEmybbR3Tu5eweiS9xsd6lniyT8/9Dd33L3+4pYpAGQcJhJ1aUwk4o0FtgnHpF8bWaPAVOBlmZ2gplNMLOp8QiuLoCZ/cbMvjGzcUS3WyOe3sfMHo2/b2ZmI81sRvzVA7gPaBuPCv8aL3eTmU0ysy/M7I586xpkZrPN7EOiq1YUycyuiNczw8xeKzDaPN7MxprZnPh6ZZhZmpn9Nd+2ryzrD1J2pDCTCmFm6cCJQN5pOu2B59z9EGA9MBg43t07A5OBGyy6ue0TwMnAr4iutFqYocAYdz+Y6Kqts4BbgXnxqPAmi26i2w7oTnSLti5mdqSZdQHOBQ4hCstuJXg5r7t7t3h7XxOdkpSnNdENeX8LDI9fw+XAGnfvFq//CjNrU4LtSAJ0cUZJttpmNj3+fizRfR+bAwvc/bN4+mHAAcD4+Ao5NYAJwH7Ad+4+F8DM/gX0LWQbxwIXA8SX0VljZg0LLHNC/DUtflyXKNzqASPje1NiZm+V4DV1iC+t1CBez6h8816Jb0wy18zmx6/hBOCgfP20+vG2ddpSOVKYSbJtdPdO+SfEgbU+/yRgtLufV2C5TkB5nW9nwL3uPqLANq4rxTaeAU519xlm1gc4Ot+8guvyeNu/d/f8oYeZtU5wu1IE7WZKZfAZcLiZ7QNgZhlmti/wDdDGzNrGy523k+f/D+gfPzfNzHYDMolGXXlGAZfl68W1MLOmwCfAaWZW28zqEe3SFqcesCS+pPUFBeadFV+uvC3RjZZnx9vuHy+Pme0bXwJIypFGZpJy7r4sHuG8aGY148mD3X2OmfUF3jWz5cA4oEMhqxgAPG5mlwM5QH93n2Bm4+NDH96P+2b7AxPikeE64EJ3n2pmLwPTie6ENLYEJd8GTIyXn8n2oTkbGAM0A/q5e5aZ/ZOolzY1vtLsMuDUkv10pKR01QwRCYJ2M0UkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORIPw/O3cQWShZ3H4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.532 \n",
"Precision=0.683\n",
"F1=0.599\n",
"Average precision-recall score: 0.663\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8VFX6x/HPk4QQQgIBEiAQIEjvKCggKmChiIqrrhRdRV17wdV1V3921LW7dhEsoC6CuiuisKKLNBFUQgfpRQIooSS0hLTz+2OGECBMhpDJJMP3/XrNy1vOPfe5lzjPnHPvPdecc4iIiBxLWLADEBGR8k2JQkREfFKiEBERn5QoRETEJyUKERHxSYlCRER8UqKQCsXMlplZz2LKNDSzvWYWXkZhBZSZDTWz7wvNOzNrGsyY5OSiRCGlwsw2mFmm9wv6dzN738xiSns/zrk2zrnpxZT51TkX45zLK+39e7+k93mPc7OZvVTeEpKZ9TGzmWa2x8zSzGyGmV0S7Lik4lKikNJ0sXMuBjgNOB146MgC5lHR/+46eI+zBzAQuD7I8RQwsyuAT4EPgCSgDvAIcHEJ6gqFfyspBfojkFLnnNsM/BdoC2Bm083sKTObDewHTjGz6mb2rplt9f4yf7LwL3Mzu9HMfvH+Kl5uZqd5l28ws/O902eY2Twz2+1txbzkXZ7s/eUf4Z2vZ2YTzWynma0xsxsL7ecxM/vEzD7w7muZmXX28zjXALOBjoXqK+lx3W9mawst/8PxnnczM+Al4Ann3DvOuQznXL5zboZz7sZCx/tRoW2OPFdH/lv9n5nNO2I/fzGzid7pymb2gpn96v03GGFmVY43dinflCik1JlZA+BCYEGhxX8CbgJigY3AGCAXaAqcCvQG/uzd/o/AY8A1QDXgEmBHEbt6BXjFOVcNaAJ8coyQPgZSgXrAFcA/zOy8QusvAcYBccBE4HU/j7MlcDawptDikh7XWm9d1YHHgY/MLNGfOAppATQAPjvO7Y5U+N/qNaCFmTUrtH4IMNY7/SzQHE+ybArUx9OCkVDinNNHnxP+ABuAvUA6nkTwJlDFu246MLxQ2TrAgYPrvcsGA9O801OAYT72c753eiaeL9X4I8okAw6IwPPFmQfEFlr/NDDaO/0Y8L9C61oDmT6O0wG7gX3e6Y+Byid6XEXsZyEwwDs9FPj+iBiaFrFNd++6KB/1PgZ8VNS5KurfyrvsI+AR73QzYA8QDZj3PDQpVLYbsD7Yf4/6lO5HLQopTZc65+Kcc42cc7c55zILrdtUaLoRUAnYambpZpYOvA3U9q5vgOcXdnFuwPNrdoWZ/WxmFxVRph6w0zm3p9CyjXh++R70W6Hp/UDUwa6YYzgNiMFzfaILUPVEj8vMrjGzhYW2awvE+4ihKAdbJ8fbEjnSpiPmx+JJeOBpTUxwzu0HEvAkjJRCcX/tXS4hRIlCykrhYYo34fnlHe9NLHHOuWrOuTaF1jcptkLnVjvnBuP5In4W+MzMqh5RbAtQ08xiCy1rCGwu6YF49+2cc58AczjU1VKi4zKzRsAo4A6glnMuDliK5xf78Vjp3cflPsrsw/PlflDdIsocOaT0N0C8mXXEkzAOdjttBzKBNoWOt7rzXOiXEKJEIWXOObcVz5fPi2ZWzczCzKyJmfXwFnkH+KuZdfLeedPU+2V6GDO72swSnHP5eLq8wNPNVHhfm4AfgKfNLMrM2uNpifyrlA7nGeAmM6t7AsdVFc+Xc5r3uK7DeyPA8XDOOeAe4GEzu65QDGeZ2UhvsYXAOeZ51qQ68IAf9ebiue7xPFAT+Na7PB9PgvunmdX2xl7fzPocb+xSvilRSLBcA0QCy4FdeL6IEgGcc58CT+H55boHmIDnC+pIfYFlZrYXz4XtQc65rCLKDcbTF78F+Bx41Dn3bWkchHNuCTADuK+kx+WcWw68iKd18jvQDs/dVCWJ5zMO3bK7xVvfk8AX3vXfAuOBxUAK8JWfVY8Fzgc+9SaOg/6O52L+XDPbDfwPz0V1CSHm+REiIiJSNLUoRETEJyUKERHxSYlCRER8UqIQERGffD1UVC7Fx8e75OTkYIchIlKhpKSkbHfOlehhyAqXKJKTk5k3b17xBUVEpICZbSzptup6EhERn5QoRETEJyUKERHxqcJdoxCR8iMnJ4fU1FSysooaOUWCISoqiqSkJCpVqlRqdSpRiEiJpaamEhsbS3JyMp4X7EkwOefYsWMHqampNG7cuNTqVdeTiJRYVlYWtWrVUpIoJ8yMWrVqlXoLL2CJwszeM7NtZrb0GOvNzF71vsN48cF3B4tIxaIkUb4E4t8jkC2K0XiGgT6Wfnheq9gMz/t53/Kn0nyXT2ZO5mGf3Pzc4jcUEZESCViicM7NBHb6KDIA+MD7prC5QJw/L5NfsHUB0f+IPuzT8J8Nyc7LLq3QRUROSEpKCu3ataNp06bcddddHOt1DtOnT6djx460adOGHj16FCxPT0/niiuuoGXLlrRq1Yo5c+YA8PDDD9O+fXs6duxI79692bJlS5kcTzCvUdTn8HfzpnL4e4wLmNlNZjbPzObFhcfxzHnPFHyGtBvC1r1b2Zhe4ocORSTE5eXlFV+oFN16662MHDmS1atXs3r1ar7++uujyqSnp3PbbbcxceJEli1bxqefflqwbtiwYfTt25cVK1awaNEiWrVqBcB9993H4sWLWbhwIRdddBHDhw8vk+MJZqIoqiOtyLTrnBvpnOvsnOvcpE4T/n7W3ws+t3S6BYAN6RsCGKqIlFeXXnopnTp1ok2bNowcObJgeUxMDI888ghdunRhzpw5pKSk0KNHDzp16kSfPn3YunUrAKNGjeL000+nQ4cOXH755ezfv/+E4tm6dSu7d++mW7dumBnXXHMNEyZMOKrc2LFjueyyy2jYsCEAtWvXBmD37t3MnDmTG264AYDIyEji4uIAqFatWsH2+/btK7PrQ8G8PTYVaFBoPgnPqxuPS3JcMgDr09eXSlAiUjJ3f303C39bWKp1dqzbkZf7vuyzzHvvvUfNmjXJzMzk9NNP5/LLL6dWrVrs27ePtm3bMnz4cHJycujRowdffPEFCQkJjB8/ngcffJD33nuPyy67jBtvvBGAhx56iHfffZc777zzsH1MmzaNv/zlL0ftOzo6mh9++OGwZZs3byYpKalgPikpic2bNx+17apVq8jJyaFnz57s2bOHYcOGcc0117Bu3ToSEhK47rrrWLRoEZ06deKVV16hatWqADz44IN88MEHVK9enWnTpvl3Ik9QMBPFROAOMxsHdAEyvC+nPy71YusRERahFoXISerVV1/l888/B2DTpk2sXr2aWrVqER4ezuWXXw7AypUrWbp0KRdccAHg6YpKTPRcEl26dCkPPfQQ6enp7N27lz59+hy1j169erFwoX9JsKjrEUX98s/NzSUlJYWpU6eSmZlJt27d6Nq1K7m5ucyfP5/XXnuNLl26MGzYMJ555hmeeOIJAJ566imeeuopnn76aV5//XUef/xxv+I6EQFLFGb2MdATiDezVOBRoBKAc24EMBm4EM+L2fcD15VkP+Fh4TSs3lCJQiTIivvlHwjTp0/nf//7H3PmzCE6OpqePXsWPEMQFRVFeHg44PnybtOmTcFF4cKGDh3KhAkT6NChA6NHj2b69OlHlTmeFkVSUhKpqakF86mpqdSrV++obZOSkoiPj6dq1apUrVqVc845h0WLFnH22WeTlJREly5dALjiiit45plnjtp+yJAh9O/fv2InCufc4GLWO+D20thX47jGShQiJ6GMjAxq1KhBdHQ0K1asYO7cuUWWa9GiBWlpacyZM4du3bqRk5PDqlWraNOmDXv27CExMZGcnBz+9a9/Ub/+0ffUHE+LIjExkdjYWObOnUuXLl344IMPjurKAhgwYAB33HEHubm5ZGdn8+OPP/KXv/yFunXr0qBBA1auXEmLFi2YOnUqrVu3BmD16tU0a9YMgIkTJ9KyZUt/T9UJCYkhPJLjkpm0elKwwxCRMta3b19GjBhB+/btadGiBV27di2yXGRkJJ999hl33XUXGRkZ5Obmcvfdd9OmTRueeOIJunTpQqNGjWjXrh179uw54bjeeusthg4dSmZmJv369aNfv34AjBgxAoBbbrmFVq1a0bdvX9q3b09YWBh//vOfadu2LQCvvfYaV111FdnZ2Zxyyim8//77ANx///2sXLmSsLAwGjVqVFBfoNmx7u8trzp37uyOfHHRkzOf5OFpD7P///ZTpVKVIEUmcvL55ZdfCm7dlPKjqH8XM0txznUuSX0hMdbTwTuffs34NbiBiIiEoJBKFLpOISJS+kIiUTSO8wynq2cpRMpeReu+DnWB+PcIiUSRGJtIpbBKalGIlLGoqCh27NihZFFOHHwfRVRUVKnWGxJ3PYVZGI3iGh2VKHLycvh93+8kVUsqekMROSEHnxlIS0sLdijidfANd6UpJBIFeK5TFE4Uefl5XPbJZczcOJOM+zOCF5hICKtUqVKpvklNyqeQ6HoCz3WKwtcoHvruIb5a9RW7D+wOYlQiIhVfyCSK5Lhktu3bxv6c/UxaNYlnZj9DtcrVit9QRER8CqlEAbB021Ju/upm2tZuy22dbwtuUCIiISDkEsVtk25j857NjLp4FJUjKgc3KBGREBByiSJlawqD2g6ia1LRY76IiMjxCZlEUTembsH0I+c8EsRIRERCS8jcHhtmYcRHxxMfHU+rBA1SJiJSWkImUQCsH7aeSmGVgh2GiEhICalEERMZE+wQRERCTshcoxARkcBQohAREZ9COlGEm+fF6lm5WYct10iXIiL+C+lEcWriqQDM2TSnYNmUNVNI+mcSszbOClZYIiIVSkgnirMbnk2YhTFtwzQAdmbu5LovrmPLni1c/fnVpGelBzlCEZHyL6QTRfWo6nRK7FSQKIZ9PYy0/WmM6D+Czbs3c+ukW/lh0w8s27YsyJGKiJRfIXV7bFHObXwuL815icmrJ/PR4o945JxHuLnzzWzfv52Hpj3EuKXjaFS9ERvu3hDsUEVEyqWQblEA9EruRU5+Dlf95yoaVm/I/WfdD8D9Z91Pr+ReAPya8SvOOdbvWs+9U+4lOy87aPE659iZuTNo+xcROVLIJ4ruDbsTERZBelY6/zj3H1SpVAWA8LBwvvnTNzx7/rM4HKt2rKL/2P68NPclVm5fWeZxOueYtGoSXd/tSvxz8azdubbMYxARKUrIdz3FRMbQK7kXe7L3MLjd4MPWRYRFcHq90wHo81EfNmZsPKF9Zedlk5OXQ9XIqn5v45zjv2v+y6PTH2XelnlUrVQVhyNtfxpNajY5oXhEREpDyLcoAL4Y9AXfXfMdYXb04bar0w6AjRkb6du0LwBLti3h818+P659LNi6gDZvtuHCsRf6vc2i3xZxwYcX0H9sf3bs38E7F7/Dx5d/XLA+Jy+Hj5d8zIKtC44rFhGR0hTyLQqgoLupKPHR8ZzV8CzOanAWnet15us1X3PthGupVaUWf2j1h2Lrds7xdsrb3P313RzIO0Dl8KNflvRL2i/c9NVNOOf47MrPyHf5PPzdw7y/8H1qVKnBK31f4ZbOtxAZHsnXa74GYOySsQz6bBAbMzYyoMUAJgyaUPITICJyAk6KRFGcWdd5Hr779/J/A5Cbn0u+yy92u5y8HG6ffDuj5o+ib9O+ZOVmkbYvrWB9bn4uL/zwAo9Nf4yqkVXJys2i88jOpGelk5Ofwz3d7uHBsx+kRpUaR9X92k+vcUb9M9i8ZzNfrPyCcUvHMajtoFI6YhER/50UXU/+So5LJjEmkc71OpObn8tV/7mKt+e9XWTZjKwM+o/tz6j5o3jw7AeZNGQStavWZu2utdw5+U4mrZpEt3e78cDUB7io+UUsv205M4fOJCIsgvNOOY9fbv+FF3q/cFSS6JrUlZtOu4mvr/qauTfM5Zr21wDw2PTH2Je9L+DnQETkSFbRxj3q3LmzmzdvXsDqd85x++TbeWveWwAMajvosOsGABvSN9B/bH9W7VjFqItHMbTjUACW/L6Ep2Y9xYQVEziQd4BaVWrxVv+3+GObPx5Wv5kdV0z2uKf8Cxe8QG5+LhszNvLGhW8cdz0icvIysxTnXOeSbBvQricz6wu8AoQD7zjnnjlifUNgDBDnLXO/c25yIGMqTnFfvut3reec0eewN3svU66ewrmNzy1Y165OO8ZdMY5dmbuYun4q3Rt0JzE28bjqL8p7l7zH9ROv56/f/rVg2dXtr+bMBmced10iIscrYC0KMwsHVgEXAKnAz8Bg59zyQmVGAgucc2+ZWWtgsnMu2Ve9gW5RgGcQwdmbZjMyZSSd6nUqaFGk7k7lnPfPIT0rnWnXTqND3Q4BjeOg7Lxs2r/VniY1m1C7am1GLxxNRFgE/7rsX6zbtY5wCyc8LJzEmMSjbgEWEYHy26I4A1jjnFsHYGbjgAHA8kJlHFDNO10d2BLAePzWrUE3ujXoxqj5owqW/bb3N8774Dx2ZO5g6jVTyyxJAESGR7LijhUAbN2zldELR5Obn8vAzwYeVfashmfRoHqDMotNREJfIC9m1wc2FZpP9S4r7DHgajNLBSYDdxZVkZndZGbzzGxeWlpaUUUCavv+7Zz/wfmk7k5l8pDJdK5XoqRcKhJjExl3+TjObXwunw/8nH3/t489D+xhRP8RAOTk55So3lU7VvHotEeZsWFGaYYrIiEgkImiqM74I/u5BgOjnXNJwIXAh2ZHPxXnnBvpnOvsnOuckJAQgFCPbc+BPfT5qA9rd63ly8Ff0r1h9zLdf1EGth3I1GumcmnLS4muFE1MZMxRz4rM2jiLaydcy4+pPx6znvSsdMYuGUuvMb1o8XoLhs8cTs8xPZmyZkqgD0FEKpBAdj2lAoX7QJI4umvpBqAvgHNujplFAfHAtgDGdVwmrZ5EuIUzcfDEwy5clzfRlaIBeGf+O8zcOJPZm2YDnmTwxaAvAMjMyWT2ptlMXTeVqeunkrI1hXyXT+O4xvzj3H8wetFoVu1YxYBxA/jxzz+WafeaiJRfgUwUPwPNzKwxsBkYBAw5osyvwHnAaDNrBUQBZd+3VIx/9vknFzbzf2iOYLi4+cWcUf8Mnv7+aRpVb8Tr/V5nWdoy3pn/DsNnDGfahmn8sOkHsvOyiQiLoEv9Ljx09kOcf8r5dG/YnTAL494z72X1jtW0fastP23+ibioON5f+D51Y+pyS+dbgn2IIhIkAX2OwswuBF7Gc+vre865p8xsODDPOTfRe6fTKCAGT7fU35xz3/iqsyzuejrohi9uoGaVmjx3wXMV4pmF7fu3M2fTHPo27Uul8EqkbEmh8yjP9ZSOdTtyXuPzOK/xeZzV8CxiK8cWWcfm3ZtJ+mcSDas3ZFPGJhyOqIgoMh/MLMtDEZFSdiJ3PemBuxC38LeFJFVLIj463q/yGVkZ1H2xLvHR8Vzf8Xo279nMuwve5dW+r9KvWT8aVm9IZHhkQfnc/FzmbJpDm9ptqFmlZqAOQ0ROkBKFlKqdmTupXrk64WHh5Obn0vy15qxPXw9Ap8ROzBg6g18zfmX0wtF8uPhDtu7dCkDzWs2ZOGgiLeJbBDN8ESlCeX2OQiqowi2DiLAIhrQbwqTVk1j420JStqYQ83QMAOEWTv/m/Zm4ciLgucX27ZS32bxnM7n5ubzS9xWSqiUF5RhEpPSoRSF++2btN/T5qA91Y+rytzP/xpB2Q6gTU4eMrAyWpS2j+3ueW4fjo+PJyMogJz+HRbcson2d9kGOXETU9SRlJicvh4iwiKMu7ufl5/Hs7GfpUKcDvZv05urPr+aTZZ9wZZsrGX/F+CBFKyIHKVFIubNj/w7in/dcQB9/xXiubHMla3auYeySsdSqUovmtZrTtnbbgkETc/JyyHN5REVEHfe+nHMsT1tOw+oNyXf5rN21llPrngp4BmHcm72X6Rums+i3RdzV5a5j3vElEsp0jULKnVrRtfh797/z7OxneXnuy7w450V+2vzTYWVu7nQzf2z9R8YvG18wrtYbF75B47jGTNswjX5N+7HgtwWMWzqOZWnLGNJ2CKMXjaZDnQ40imvEpS0u5ftfv+er1V+xZU/Rw4Sd2/hcZm2cVTC0ydK0paTtS6N+tfqMuXRMYE+CSIhQi0ICKu6ZODIOZNChTgeuancVtaJr8dPmnxi3dBwZBzIAiImMYW/23mLrio2MZU/2nqOW9Wnah8+Wf0azms04LfE0xi871NXVrnY7+jTpQ+uE1lw/8XoAqkRUITM3k5f7vMywrsNK8WhFyi91PUm59fPmn4muFE2b2m0OW37vlHvZtHsTA9sM5MJmFxIRFsGOzB2s3L6yoKuoTkwd/tDyD8RFxbF021K6JnVlQ/oGIsIi+HLVl7RJaEOP5B6HPddxUL7LJyMr47A3CP6w6QcaxzVm0upJ3PjljbSr3Y7Fty4O+DkQKQ+UKESOU+8Pe/Ptum8BqBFVgzMbnElWbhaXtLiEmMgYYiNj+d+6/7Ho90W8e8m7RyU6kYpG1yhEjtMtnW8pSBS7snYxafUkAKaun1pQJioiiqzcLBb+tlCJQk5qalHISSvf5ZOXn8f69PVUrVSVHzb9gJmxdudaeiT3oHrl6rR+szXJcclsSN/AU+c+xW2n30aYhTFvyzza1m5L7aq1ycvPY+FvC/n+1+9pFNeI3k16F4zmK1JeqOtJJAB2Ze6i6WtN2Zm587Dl4RZOnssDoFH1RmQcyCA9K/2wMheccgF3nHEHc1Pn0jiuMTd2urHM4hYpihKFSIAc/P/j5y0/c8PEG4gIi6B/s/4kxyVz45c3UiOqBpe1uoxeyb3Ic3ls3r2Z//vu/46qZ+u9W6kbU7eswxcpoEQhEgS5+blEhB19mW/bvm2MXzqelvEt+XDxh3y4+MOCdQtuXkDHuh3LMkwRQBezRYKiqCQBULtqbe7s4nn9e8v4luzN3svnKz4H4JrPr+HHP/941KtrRcqzQL4zW+Sk16B6A/4z8D/kPpwLwJJtSwrusBKpKJQoRMpAeFg4nw/0tCoenvYw57x/Dtl52UGOSsQ/6noSKSM9GvUgLiqOLXu2sGL7CnZm7iQiLILYyFgqR1QOdngix6QWhUgZqVGlBjv/tpNnz38WgO7vdSfh+QRu/upmADJzMtmYvjGYIYoUSS0KkTJkZrSMb0ndmLq0qNWCHft3MGbRGMYsGkNkeCTZedlsGLaBRnGNgh2qSAG1KETKWM/knmy9dyuTr5rMy31fBqBDnQ6c2/hcgKMe3hMJNiUKkSAa2nEo7lHHwlsWctNpNwEweuFoxi4ZG+TIRA5R15NIOXHw2YqXf/S0MurH1qdHco+C9Vm5WWTnZVOtcjWcc6TuTqVebD3Cw8KDEq+cPJQoRMqJ8085nylXT+GLFV/w5rw3uX3y7bza71VmbJjBjI2ez0EJ0Qmk7U/jjQvf4LbTbwti1HIyUNeTSDkRERZB7ya9ebnvy3Ss25Flacs474PzeHLWk+zN3svZDc8GID46nj5N+wCed5OLBJrGehIph75Z+w3frf+OsxuezVkNz6J6VPXD1ufl5xHxRARNajQhMjySzvU68/6A99UNJcekQQFFTjLOOZq91oyc/By27NlCbn4um+/ZTL3YesEOTcqpE0kU6noSqYDMjNV3rmbj3Rt5vd/rANR/qT53TL6Dx6c/ztJtS4McoYQSXcwWqaDMDIA+TftwSo1TWLdrHW/8/AYAOzJ38Gq/V4MZnoQQJQqRCi45Lpm1d63l972/s2L7CnqO6clrP71GQnQC9avVp2aVmtSIqnHYrbYix0OJQiRE1ImpQ52YOpxa91QW/LaAR6Y/ctj69cPWUzemLmt2rqFlfMtjvk9D5Eh+/6WYWX2gUeFtnHMzAxGUiJRcyk0pbN27ld/3/s6MjTP4bv13fLnqSxq/0rhgPKmPL/+YQW0HBTtUqSD8ShRm9iwwEFgO5HkXO8BnojCzvsArQDjwjnPumSLKXAk85q1vkXNuiL/Bi8jRzIx6sfWoF1uPUxNPZViXYTww9QFmbJxBu9rtGDV/FBlZGcEOUyoQf1sUlwItnHMH/K3YzMKBN4ALgFTgZzOb6JxbXqhMM+ABoLtzbpeZ1fY/dBHxh5nxzPme32hb92xl1PxRQY5IKhp/b49dB1Q6zrrPANY459Y557KBccCAI8rcCLzhnNsF4Jzbdpz7EJESmJM6h4r2DJUEj78tiv3AQjObChS0Kpxzd/nYpj6wqdB8KtDliDLNAcxsNp7uqcecc1/7GZOIHKfI8EgAxiwaw1XtrgKgVnQtTks8LZhhSTnnb6KY6P0cDyti2ZE/YSKAZkBPIAmYZWZtnXOHDchvZjcBNwE0bNjwOMMQkYNqRdfi4XMe5omZT9D7o94Fywe2GcidZ9xJ94bdgxidlFd+JQrn3Bgzi8TbAgBWOudyitksFWhQaD4J2FJEmbneutab2Uo8iePnI/Y/EhgJniE8/IlZRIp235n3sSF9A8lxyfy4+UemrpvK+GXjGb9sPABLb11Km9ptghyllCd+jfVkZj2BMcAGPC2FBsC1vm6PNbMIYBVwHrAZz5f/EOfcskJl+gKDnXPXmlk8sADo6Jw75pCYGutJpPQNnzGcR6c/WjB/WuJpzL1hLpXCj/fSpJRXZTHW04tAb+dcD+fcOUAf4J++NnDO5QJ3AFOAX4BPnHPLzGy4mV3iLTYF2GFmy4FpwH2+koSIBMYjPR4h/5F87jvzPgDmb53PtA3TePPnN7n+i+v5/tfvgxyhBJO/LYrFzrn2xS0rC2pRiATWyJSR3PzVzYcta1u7LS3jW/JK31c0Qm0FVRYtinlm9q6Z9fR+RgEpJdmhiJRv/Zv15+/d/86Hf/iQdXeto2V8S5ZuW8pnyz+j/kv1mb5herBDlDLmb4uiMnA7cBaeaxQzgTeP5wG80qIWhUjZ2p+zn33Z+0h8MZE85xmY4d9X/pvLWl0W5MjkeOjFRSIScDl5OQz8bCCfr/gcgKvbX83ANgNZnrac6zpeR0LVhCBHKL4ELFGY2SfOuSvNbAlHPwOBrlGInFzy8vN4Z/473DLpliLX39P1HuZunssTvZ7g3MZxm9PmAAASiElEQVTnlnF04ksgE0Wic26rmTUqar1zbmNJdnoilChEgm/OpjnM+nUWZ9Q/gzGLxvDVqq/Yvn/7YWW6JXVjTuocAGIjYxnWZRhLti3h23Xf0jqhNU/2epJt+7axN3svtavWpm3tttSLrUdmbiYJ0QkFL2aS0hHwriczqwpkOufyzaw50BL4rx8P3ZU6JQqR8icvP4/Fvy+mSc0mXDvhWiasmEDHuh1Z+NvCw8o1r9WcVTtWFVvf6fVOZ8ylY2iV0CpQIZ90yiJRpABnAzWAucA8YL9z7qqS7PREKFGIlG/OOXLycwrGlQJPItmfs5/YyrH8vvd3xi0dR/1q9WlXux2/bP+FmRtnMn/rfBJjExm3dNxh9V3S4hJ6NupJy/iW1KxSkzoxdUiOSyYzJ5NK4ZX0AiY/lUWimO+cO83M7gSqOOeeM7MFzrlTS7LTE6FEIRLaUnenMmLeCJ6a9dQxy0SERZCbnwtAs5rNaFqzKR9d9hE1q9QsqzArnLJIFAuA2/A8jX2D9wnrJc65diXZ6YlQohA5OTjn2Jm5kxXbV7Ajcwcb0zcyZe0UJq2exPmnnM+sjbMwM7Jyswq2ebzn4zx8zsMAusZxhLJIFD2Ae4HZzrlnzewU4O5ihhkPCCUKESns972/88TMJ3jj5zcOW55yU4qGTy9Ez1GIyEnvx9Qfue/b+5j166yCZf2b9eeNC9+gUVyRN26eVAI2hIeZvez975dmNvHIT0l2KCISCF2SujDzuplkPpjJ5a0uB2DS6km8nfJ2kCOr+Ip7jqKTcy7F2/V0FOfcjIBFdgxqUYiIP/Zl7yPm6RgAfrj+B7o16BbkiILrRFoUPu8rc84dHPhvHt7nKLw7DAcql2SHIiJloWpkVQa2Gcj4ZeM5870zAejeoDvNajXj7YvePuz2XfHN39FjpwLRhearAP8r/XBERErPuCvG8fwFzxfMz940m9ELR1P5ycrY40bt52szN3VuECOsGPxNFFHOub0HZ7zT0T7Ki4iUC38986+4Rx3uUcfy25YXjEHVKbETafvTWLNzTZAjLP/8faRxn5md5pybD55rF0Bm4MISESl9rRJaMfWaqQCs2bmGZq81467/3sXsX2fTtnZbbj/j9iBHWD75myjuBj41sy3e+URgYGBCEhEJvJpVahJdKZpdWbsYkTICgEenP0r/5v1pWasl93S7h8oRuhQLx/EchZlVAlrgeXHRimAMCAi660lESk92XjaVwioxZe0U+v2r32HrLjjlAiYMmkB2XjZREVFERUQFKcrSURZPZkcD9wCNnHM3mlkzoIVz7quS7PREKFGISCDku3z2Zu8lJjKG52c/z/1T7z9s/ddXfU2fpn2CFN2JK4t3Zr8PZAMHb0ROBZ4syQ5FRMqjMAujWuVqhFkYw7oO47qO1zG47eCC9X3/1Zff9v4WxAiDx99E0cQ59xyQA+Ccy8TTBSUiEnKiIqJ4b8B7jL18LO5Rx8XNLwYg8cVE7HFj0W+Lghxh2fI3UWSbWRW8r0M1sybAgYBFJSJSjrzV/y1uP/3QHVF/+vxPfL3m6yBGVLb8vUZxAfAQ0Br4BugODHXOTQ9odEXQNQoRCZb0rHRqPFujYL5mlZqk3ZdGmPn7mzt4AnqNwjyDuq8ALgOGAh8DnYORJEREgikuKo75N83nzQvfBGBn5k6Gzxge5KgCr9hE4TxNjgnOuR3OuUnOua+cc9uL205EJBSdmngqt55+K5OHTAbg9Z9eBzx3Te3YvyOYoQWMvw/czTWz051zPwc0GhGRCqJfs37c0ukWRqSMIOH5BLbv9/x+vrzV5QxoMYCoiCjSs9KZv3U+u7N388IFL5AYmxjkqEvG30TRC7jFzDYA+/Dc8eScc+0DFZiISHn3cI+HaRnfkqXblnIg7wAfLv6Qf//yb/79y7+PKpsYk8jzFzxfIV/R6u/F7CJfD+Wc21jqERVDF7NFpLzal72P9Kx0snKzyMrNIrpSNLGVY0l4PqGgTK/kXuzK2sXfzvwb9avVZ96WeSREJ9C7SW/qxNQJWGwBezLbzKKAW4CmwBLgXedcbomiLCVKFCJS0Xy85GNunXQrGQcyfJb7/a+/U7tq7YDEELAXFwFj8DxkNwvoh+f22GEl2ZGIyMlqcLvBDG536CnvlC0pzNw4k9YJrcnOy+aur+9iQ/oGMrIyApYoTkRxiaK1c64dgJm9C/wU+JBEREJbp3qd6FSvU8H87gO7ufrzq4MYkW/F3R5bMEJssLucRERC3fCZw9mfsz/YYRyluETRwcx2ez97gPYHp81sd3GVm1lfM1tpZmvM7H4f5a4wM2dmJeo/ExGpyBrFee4X+mjxR1T9R1V+zfg1yBEdzmeicM6FO+eqeT+xzrmIQtPVfG1rZuHAGxy6tjHYzFoXUS4WuAv4seSHISJScZ3V8CxS/5JKpbBKAHR9pyt7s/cWs1XZCeQAJWcAa5xz65xz2cA4YEAR5Z4AngOyAhiLiEi5Vr9afXY/sJu6MXXZuncrsU/H8vGSj8nLzwt2aAFNFPWBTYXmU73LCpjZqUCD4l6AZGY3mdk8M5uXlpZW+pGKiJQDURFRzBg6o6BlMeQ/Q6jxbA0W/76YtH1p5OYH51JxIBNFUY8fFjy0YWZhwD+Be4uryDk30jnX2TnXOSEhobjiIiIVVvNazcl+OJsvB38JwJ7sPXQY0YHaL9Tmgg8vCEpMgUwUqUCDQvNJwJZC87FAW2C6d2iQrsBEXdAWEYGLml9E9kPZvNj7Ra5scyUA0zdMxx43eo7uybZ928oslkAmip+BZmbW2MwigUHAxIMrnXMZzrl451yycy4ZmAtc4pzTY9ciIkCl8Erc0+0exl8xnh+u/4GG1RsCMGPjDD5e8nGZxRGwROF97uIOYArwC/CJc26ZmQ03s0sCtV8RkVDUrUE3Nt69ka33bgXgqVlPsefAnjLZt1+DApYnGutJRE5m2XnZVH6ycsH83V3uZt7WeZxW9zTuP+v+Yw5lHrBBAcsjJQoROdltTN9I8ivJRy1vX6c9P9/4M5HhkUetC+irUEVEpHxpFNeI3IdzyXowi/xH8tn2V8+F7cW/L+aKT64gJy+nmBqOjxKFiEgFFB4WTuWIypgZCVUTWHnHSgC+XPUlnyz7pFT3pUQhIhICmtdqzqQhkwDPsxelSYlCRCREnJZ4WkDqVaIQERGflChERMQnJQoRkRAzbcM08l1+qdWnRCEiEiKiIqIA+GTZJzw3+7lSq1eJQkQkRMRFxTHm0jEAPDD1ATZlbCpmC/8oUYiIhJA/tf8Td51xFwCZuZmlUqcShYhICDEzuiR1AeCbtd+USp1KFCIiIaZGVA0A7vzvnaXyKlUlChGRENO3aV+u63gdAI4TH/hViUJEJMSYGafUOAWAcUvHnXB9ESdcg4iIlDsHE8WfPv8T9WLrnVBdalGIiISgIe2G8ESvJwAYMG7ACdWlRCEiEqIeOuchejfpzd7svSdUjxKFiEgIG3nRSL4Y9MUJ1aFrFCIiIaxRXCMaxTU6oTrUohAREZ+UKERExCclChER8UmJQkREfFKiEBERn5QoRETEJyUKERHxSYlCRER8UqIQERGflChERMQnJQoREfFJiUJERHwKaKIws75mttLM1pjZ/UWsv8fMlpvZYjObamYnNnKViIiUuoAlCjMLB94A+gGtgcFm1vqIYguAzs659sBnwHOBikdEREomkC2KM4A1zrl1zrlsYBxw2GuWnHPTnHP7vbNzgaQAxiMiIiUQyERRH9hUaD7Vu+xYbgD+W9QKM7vJzOaZ2by0tLRSDFFERIoTyERhRSxzRRY0uxroDDxf1Hrn3EjnXGfnXOeEhIRSDFFERIoTyDfcpQINCs0nAVuOLGRm5wMPAj2ccwcCGI+IiJRAIFsUPwPNzKyxmUUCg4CJhQuY2anA28AlzrltAYxFRERKKGCJwjmXC9wBTAF+AT5xzi0zs+Fmdom32PNADPCpmS00s4nHqE5ERIIkkF1POOcmA5OPWPZIoenzA7l/ERE5cXoyW0REfFKiEBERn5QoRETEJyUKERHxSYlCRER8UqIQERGflChERMQnJQoREfFJiUJERHxSohAREZ+UKERExCclChER8UmJQkREfFKiEBERn5QoRETEJyUKERHxSYlCRER8UqIQERGflChERMQnJQoREfFJiUJERHxSohAREZ+UKERExCclChER8UmJQkREfFKiEBERn5QoRETEJyUKERHxSYlCRER8UqIQERGflChERMQnJQoREfFJiUJERHwKaKIws75mttLM1pjZ/UWsr2xm473rfzSz5EDGIyIixy9gicLMwoE3gH5Aa2CwmbU+otgNwC7nXFPgn8CzgYpHRERKJpAtijOANc65dc65bGAcMOCIMgOAMd7pz4DzzMwCGJOIiByniADWXR/YVGg+FehyrDLOuVwzywBqAdsLFzKzm4CbvLMHzGxpQCKueOI54lydxHQuDtG5OETn4pAWJd0wkImiqJaBK0EZnHMjgZEAZjbPOdf5xMOr+HQuDtG5OETn4hCdi0PMbF5Jtw1k11Mq0KDQfBKw5VhlzCwCqA7sDGBMIiJynAKZKH4GmplZYzOLBAYBE48oMxG41jt9BfCdc+6oFoWIiARPwLqevNcc7gCmAOHAe865ZWY2HJjnnJsIvAt8aGZr8LQkBvlR9chAxVwB6VwconNxiM7FIToXh5T4XJh+wIuIiC96MltERHxSohAREZ/KbaLQ8B+H+HEu7jGz5Wa22MymmlmjYMRZFoo7F4XKXWFmzsxC9tZIf86FmV3p/dtYZmZjyzrGsuLH/yMNzWyamS3w/n9yYTDiDDQze8/Mth3rWTPzeNV7nhab2Wl+VeycK3cfPBe/1wKnAJHAIqD1EWVuA0Z4pwcB44MddxDPRS8g2jt968l8LrzlYoGZwFygc7DjDuLfRTNgAVDDO1872HEH8VyMBG71TrcGNgQ77gCdi3OA04Clx1h/IfBfPM+wdQV+9Kfe8tqi0PAfhxR7Lpxz05xz+72zc/E8sxKK/Pm7AHgCeA7IKsvgypg/5+JG4A3n3C4A59y2Mo6xrPhzLhxQzTtdnaOf6QoJzrmZ+H4WbQDwgfOYC8SZWWJx9ZbXRFHU8B/1j1XGOZcLHBz+I9T4cy4KuwHPL4ZQVOy5MLNTgQbOua/KMrAg8OfvojnQ3Mxmm9lcM+tbZtGVLX/OxWPA1WaWCkwG7iyb0Mqd4/0+AQI7hMeJKLXhP0KA38dpZlcDnYEeAY0oeHyeCzMLwzMK8dCyCiiI/Pm7iMDT/dQTTytzlpm1dc6lBzi2subPuRgMjHbOvWhm3fA8v9XWOZcf+PDKlRJ9b5bXFoWG/zjEn3OBmZ0PPAhc4pw7UEaxlbXizkUs0BaYbmYb8PTBTgzRC9r+/j/yhXMuxzm3HliJJ3GEGn/OxQ3AJwDOuTlAFJ4BA082fn2fHKm8JgoN/3FIsefC293yNp4kEar90FDMuXDOZTjn4p1zyc65ZDzXay5xzpV4MLRyzJ//RybgudEBM4vH0xW1rkyjLBv+nItfgfMAzKwVnkSRVqZRlg8TgWu8dz91BTKcc1uL26hcdj25wA3/UeH4eS6eB2KAT73X8391zl0StKADxM9zcVLw81xMAXqb2XIgD7jPObcjeFEHhp/n4l5glJn9BU9Xy9BQ/GFpZh/j6WqM916PeRSoBOCcG4Hn+syFwBpgP3CdX/WG4LkSEZFSVF67nkREpJxQohAREZ+UKERExCclChER8UmJQkREfFKiEDmCmeWZ2UIzW2pmX5pZXCnXP9TMXvdOP2Zmfy3N+kVKmxKFyNEynXMdnXNt8Tyjc3uwAxIJJiUKEd/mUGjQNDO7z8x+9o7l/3ih5dd4ly0ysw+9yy72vitlgZn9z8zqBCF+kRNWLp/MFikPzCwcz7AP73rne+MZK+kMPIOrTTSzc4AdeMbZ6u6c225mNb1VfA90dc45M/sz8Dc8TwiLVChKFCJHq2JmC4FkIAX41ru8t/ezwDsfgydxdAA+c85tB3DOHRycMgkY7x3vPxJYXybRi5QydT2JHC3TOdcRaITnC/7gNQoDnvZev+jonGvqnHvXu7yosXBeA153zrUDbsYzEJ1IhaNEIXIMzrkM4C7gr2ZWCc+gc9ebWQyAmdU3s9rAVOBKM6vlXX6w66k6sNk7fS0iFZS6nkR8cM4tMLNFwCDn3IfeIarneEfp3Qtc7R2p9Clghpnl4emaGornrWqfmtlmPEOeNw7GMYicKI0eKyIiPqnrSUREfFKiEBERn5QoRETEJyUKERHxSYlCRER8UqIQERGflChERMSn/wf1pxRatnVHJQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" KNeighborsClassifier \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHrJJREFUeJzt3Xd8VfX9x/HXhwRkVrYWkemoghVZWnAr4kBERZxtESuCtgrUVbG/Kkq11apUK+Cou25R6yhotQiIyC5QQQUZAjIEZIWR5PP745yEEJKQm+TmJl/ez8cjD3LPOfecz80l73zP555h7o6ISGVXJdUFiIiUBYWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhKE9FQXUJlZenW3arVTXYYkoEHGplSXIAlay4617t5ob8spzErBqtUm/fCeqS5DEnDhrI9SXYIkaDRLlhRnOe1mikgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBDSU12AlEz9/WsxdvRNABzQYH+ysrNZu34TAEcf3owHnxvLLQ+8DMDgn3ends3q3DX6rVJt8+Izj+WWfufg7qxYs4G+tz/O9xs288K9AzisxYEA7F+nJj9s2kqnS+4A4OZ+Z9P3vBPIznYG//kFPpg8r1Q1hODRzIUsn7Mg9/GoXv1p0KIpA996jDWLllG1+n5Me+mfvDtsRKm207732fS4YxAHHnEI93Y+j6XT5wDQoHlT/vDFh6xasAiAbz6byT8GDt3tuQPfepyGrZpx11HdS1VDeVKYVVLrftiSGxi/v+Y8Nm/dxoPPjQVg42ej6XVqe/7893f5fsPmMtleWloV/nLTpRx94e18v2Ez99xwEddefBp3jX6Ly28dlbvcn4ZczMbNWwE4olUT+nQ/lna9f0+TRnV5f9SNtOn1O7KzvUxqqqx2ZGxj+DFn7zatQYumfDVhKo+eexXVatbg9lnvMeedf7N0xtwSb2fF3AWMvmAAl4/+4x7z1ixcskcNOdqd353t8XtYmWg3M0CZWVk8+cZ4brj8jDJbp5lhZtSqsR8AdWpXZ8WaDXss17tbJ17+1xQAzj25Ha+MncKOnZksXrGWhctW06ltqzKrKVQ7tmawZPpcGrVuXqr1fDd/Iau+XJTQc/arVZPTh/yK9+9+uFTbTgWNzAI18uWPmP7KMO5/5v1Clzmp40+4/8ZL9pi+ddsOTuq7+1/zzMwsfvPHZ5nxyjC2ZGzn62WruP6e53db5vj2h7F63Ua+XroagCaN6vH5nIW585evXs9BjeuW5mUFoVqN6gyd+R4A33+zjFEXXLPb/Fr169LquGN4766/7jZ9v9q1uHHCqwWu8++XXc/KL74udg0NWx7MbTPeZdvGzbx9+/18PXEqAD3v+i0f/uUJdmzdlshLqhDKNczM7EDgIaATsB1YDLwJ9HT3HuWw/ZOBj+Pt/TOe9g5wv7v/J9nbL0+btmzjhXc+5deXnk7Gth0FLjN+2vzcXdW9SU9Po3/vU+h86R0s+nYND91yObf0O4d7nngnd5mLzzw2d1QG0WguP9+39zCBgnczAQ49oRO3zXgXz87mX/eOZOX/vtpt/vbNWwrdNUzEDytXc1uzLmxZt4Fm7dsy4M3HGNbmDBq2akajQ5rz6pC7aNC8aam3U97KLcws+p89BnjG3S+Jp7UDzi3letPdPTOBp3wLDAX+WZrtVgZ/feEDprz4B559a2KB8xMZmR192MEALPp2DQCvfTCVm67c9YuVllaFXqe257jLhuVOW756HU0PrJ/7+KDG9QrcNZVITs+sMGU1MsvcsYPMddEfuKUz5rJ24VIaH9aSFp2OplmHoxj+zUSqpKdRp3EDhnz8Eg+csuf/kYqoPEdmpwA73T23W+zus8ysLnCamb0GtAWmA1e4u5vZYqCju681s45EI6iTzewOoAnQAlhrZuOAnkBNoDUwxt1vLqSO2UBVM+vm7h/knWFmpwH3E/1cpgID3X17Gb3+crd+4xZeHzeVvr1O4JkCAi2RkdmKNRs4olUTGtarw9r1mzj9uDbM/2Zl7vzTjj2SBYu/Y/nq9bnT3vnPLJ695xoeem4cTRrV5ZBmBzB1bmI9HNmlrEZmtRvWZ8u6DXh2Ng1bHkzjQ1uwdtFSlk6fwyejotZBg+ZNufadJytNkEH5hllOUBXkGKANsAKYBHQFCh5O7NIBON7dM8ysL9AuXs92YIGZPezuywp57t3xV26YmVl14GngNHf/0syeBQYS7RZXWg8+N5aBF59a6vWsXLOBux97m4+euIWdmVksXfk9V/3hydz5fbp33m0XE+B/i1bw2ripzH79brKysrnh3uf3+U8yy1O7Xt25+OE7qN2oPr9+9+8sm/UFD5/5Cw49sTPnDhtCdmYW2VlZvDBgKFvX/5DqckvNvJyaGGZ2PdDS3Qfnm34yMNTdu8WPRwKT3P35vYzM3N3vjJ/TF+jq7lfHj98Hhrv7xAK2daO79zCz8cDtwC1Eo7H1wMPufmK87GnAde5+Qb519Af6A1C1VoeqbfqUxY9Hykm/WR+lugRJ0GiWTHf3jntbrjwPzZhHNJoqSN5duSx2jRgz2VVj9XzP2bK3dZjZ+WY2K/7K/8MYTtQ7y7Fnt7oA7v6Yu3d0946Wnr8kEUmV8gyzj4D9zOzqnAlm1gk4qYjnLGZXAF6Y6AbdfYy7t4u/puWbNw6oBxwdT5oPtDCzQ+LHPwfGJ7pNEUmNcgszj/Znzwe6mdlCM5sH3EHUJyvMncAIM5tANNoqa8OBpnF924ArgVfNbA6QDYwq4rkiUoGUW88sRFVqNvT0w3umugxJgHpmlU9F7JmJiCSNwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQlCemEzzOxHRT3R3TeWfTkiIiVTaJgB8wAHLM+0nMcONEtiXSIiCSk0zNz94PIsRESkNIrVMzOzS8zstvj7pmbWIblliYgkZq9hZmaPAKcAP48nbQVGJbMoEZFEFdUzy9HF3dub2UwAd19nZtWSXJeISEKKs5u508yqEDX9MbMGQHZSqxIRSVBxwuxvwOtAIzO7E5gI/CmpVYmIJGivu5nu/qyZTQdOjydd5O5zk1uWiEhiitMzA0gDdhLtauqsARGpcIrzaeZQ4EWgCdAU+IeZ/S7ZhYmIJKI4I7MrgA7uvhXAzIYD04F7klmYiEgiirPLuITdQy8dWJScckRESqaoE80fJOqRbQXmmdnY+PEZRJ9oiohUGEXtZuZ8YjkPeDfP9M+SV46ISMkUdaL5k+VZiIhIaez1AwAzaw0MB44EqudMd/fDkliXiEhCivMBwNPAU0TXMTsLeAV4KYk1iYgkrDhhVtPdxwK4+0J3v53oKhoiIhVGcY4z225mBiw0swHAcqBxcssSEUlMccJsMFAbuJ6od7Y/0C+ZRYmIJKo4J5pPib/dxK4LNIqIVChFHTQ7hvgaZgVx9wuSUpGISAkUNTJ7pNyqEBEppaIOmv13eRZSGR20fTODv9aZXZVJWh1d8b3S2VS8xXRtMhEJgsJMRIJQ7DAzs/2SWYiISGkU50qznc1sDvBV/PhoM3s46ZWJiCSgOCOzvwI9gO8B3H02Op1JRCqY4oRZFXdfkm9aVjKKEREpqeKczrTMzDoDbmZpwG+AL5NblohIYoozMhsIDAGaAauA4+JpIiIVRnHOzVwNXFIOtYiIlFhxrjT7OAWco+nu/ZNSkYhICRSnZ/Zhnu+rA+cDy5JTjohIyRRnN/PlvI/N7Dngg6RVJCJSAiU5nakl0LysCxERKY3i9MzWs6tnVgVYB9yazKJERBJVZJjF1/4/mui6/wDZ7l7oBRtFRFKlyN3MOLjGuHtW/KUgE5EKqTg9s8/NrH3SKxERKYWi7gGQ7u6ZwPHA1Wa2ENhCdDNgd3cFnIhUGEX1zD4H2gO9yqkWEZESKyrMDKK7mJdTLSIiJVZUmDUysyGFzXT3B5JQj4hIiRQVZmlEdzK3cqpFRKTEigqzle4+rNwqEREphaIOzdCITEQqjaLC7LRyq0JEpJQKDTN3X1eehYiIlIZuAiwiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBKGo+2ZKBTdowxesnfdl7uO3L72WHzU7iD7vP8+bfa5h0fsfA9Dr1dFMG/Ek3078vFTbu+CNJziwUztWfDadNy+6Jnf6wScex4nDbyGtWlVWzZrHuGtvw7OyqHdYK7qPvIfGR7dh0rAHmP7Xv5dq+5Vd9fp1ueDtZwCoeUBDPCubjLXRfYMa/fQI1vz3Cyw9jfULFjJuwC1kZmwr8bbqHdqKbiPvodHRbZg87AFmPLzrZ99u4C9o88s+mBlzn3mFWY8+s9tz2/+mHycMv5XRLY5l27r1Ja6hvCnMKrHMjG083/W83ab9qNlBbPp2JcfeNDA3zMrK1BFPUrVmdX7a75JdE804c/SfePXcX7Lh68V0GXo9bS4/n7nPvsa2dRv4+Ka7OaTH6WVaR2W1bd0G/nF89H4d+7vfsHPzltyQGbhiZu687k/cz1H9LmXm354q+bbWb2D8zXfT6pzdf/YNjjiUNr/sw8un9CZrx056vfEki8f+hw0LlwBQ+6ADaXZqVzYuXV7ibaeKdjMDtGbufLb/sIlmp3Qp0/UuGz+ZHZu27DatRoO6ZG3fwYavFwOw5ONPObRndwAy1q5j1Yw5ZO/MLNM6Qrfi02nUbd2sVOvI/dln7v6zr3d4a76bOpvMjG14VhbLJ31O6x7dcuefeM9tTPz9feBequ2ngkZmlVh6jepcMektADYu+Za3L7sud96U+0bS9feDWPrxp4U+v+MNV/GTPj33mL580lQ+vvnuYtWQsXY9Vaqmc8AxbVk1cy6HntedOk0PTPCVSA5LS6N5txNZ8uGEPead9dRD1Du05R7TZ/ztKea/+Gax1v/9/76iy/8Npnr9umRmbKPFGSexauZcAFqedSqbV65i7dz5pXsRKZLUMDOzA4GHgE7AdmAx8CbQ0917lMO2JwPHuvvqeNpjwJfufn8yt11eCtrNzLH802kAHNSlY6HPnzbiSaaNeLLUdbx75WBOuvc20qtVY/FHE8nOzCr1Ovc16TWqc9nE6A/T8snTmPfsa3ss8/6Vg0q9nfVfLmT6g49z/ptPsXPLVtbOmY9nZpJeozqdbxrImF5XlnobqZK0MDMzA8YAz7j7JfG0dsC5pVxvurvvdb/F3b8zs78Afwb6mlknoDNwbWm2X5lMuW8kx944gOysgsOlLEZmACs/n8Ur3S8DoPmpXal3SIsS1bsvy8zYltszK0xZjMwA5j33GvOei8Kyy/8NYfOK79i/ZTN+1Lwpl096G4h6Z5dNGMNLp/Rm6+q1CbyS1EnmyOwUYKe7j8qZ4O6zzKwucJqZvQa0BaYDV7i7m9lioKO7rzWzjsD97n6ymd0BNAFaAGvNbBzQE6gJtAbGuPvNBdTwKPCZmZ1EFGrXuXummVUF7gO6APsBD7n7U2Z2MPASUAtIA37l7lPK+OdSbpZ8NIkutw+i9o8bFzi/rEZmNRrWJ2PtOtKqVaXT4P5MuW9kqdcpeyqLkRnser/qNP0xrXuewSun92H7ho083vpnuctcOecjXjzpQn2aGcsJqoIcA7QBVgCTgK7AxL2srwNwvLtnmFlfoF28nu3AAjN72N2X5X2Cu2eb2UDgQ+B1d58UzxoIfOvunc2sOjAlDshfAG+4+1/MLA2okb8IM+sP9AeoZxW/5Tjl/pH0ennU3hcshj5j/0H9w1pRrVZNrp7/CeOuu40l/55Ip0G/ouWZp2BVjNlPvMiyTz4DoGbjhlz+yRtUq1Mbz86m/bV9eabTWXt8iCBlr2bjhlwyPvrZk51Nu2v78nzn6Gd/zvOPUL1+XbJ3ZvKf397J9g0bU11umTBP0qcWZnY90NLdB+ebfjIw1N27xY9HApPc/fm9jMzc3e+Mn9MX6OruV8eP3weGu3uBgWhmnwK/dvcZ8eN3gEOAnAN59gf6AtWIRnPPAW+6+3+Leo0Hp1X3wTVL96mTlK80S3UFkqhBm76a7u6FN39jyTw0Yx7RaKog2/N8n8WuEWJmnpqq53tO/j/ne6zDzM43s1nxV94Xnx1/5TDgGndvF3+1dPfx7v4B0e7xKuAlM7u4qBcoIhVHMsPsI2A/M7s6Z0LchD+piOcsZlcAXpjoBt19TJ6AmlbEomOBa82i/UQzO8LMqptZC2Clu48GniXajRWRSiBpYebR/uv5QDczW2hm84A7iPpkhbkTGGFmE4hGW8nyKLAUmGlmc4FHiBr+3YDZZjYTOAv4WxJrEJEylLSe2b5APbPKRz2zyqci9MxERMqNwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCuXuqa6i0zGwNsCTVdSRJQ2BtqouQYgv5/Wru7o32tpDCTApkZtPcvWOq65Di0ful3UwRCYTCTESCoDCTwjyW6gIkIfv8+6WemYgEQSMzEQmCwkxEgqAwE5EgKMykVMzMUl2DJC7E901hJiVmZubxJ0hm1tXM2pnZ4Xnnp646KUy+9+1iM+tkZmmprqu00lNdgFReeX4hhgB9gBVAhplNdvdHXB+VV0h53rfrgGuA89w9K7VVlZ7CTBJmZnWAre6eZWbNgN7AaUAa0BYYZGZfu/u/UlmnFM7MjgSuAs5292/N7CygBjDD3RentLgSUphJQszsMGAo8IiZzYgnVyc6ZnGjmc0BFgIHp6pG2VPeXcvYMuDfwF/MbAPQClgDNAAeT0GJpaaemSTE3b8ENhPtnhzl7kuByUThVtPdNwEZwKGgvllFYGZV8uxaHm9mOaPo8cBU4EF37wbMAQ4vfE0Vm84AkGIxs0bATnffED8eDrQE/gxsBH4NnA68Avwc6OnuC1JUrhTAzAYBFwJfAj8BBrj7nHjeFcBg4Ap3/yJ1VZacRmayV2bWDlgOvGdmA8ysrbsPBb4m6rvUd/chwH1EvyjnKshSz8yOMrOT4u/bAye7+wnAf4GtwLx4XjuinmffyhpkoJGZFIOZNQHuBo4DvgKWAi2Al4EBwFxglLvPSlWNsjszqwY8Akx399FmdiDQD2gKtAZ6uPtOM7sAeAdId/etqau49DQyk71y9xVEYfYUUT/sDuAZoC6wP9AfGBH/AkkK5fQo3X0H8AHQPp5VE/gpcARwaRxkvwD+ANSr7EEGGplJAsysNdFIrAFwo7uvM7ODiXpnK9z965QWKDmHXCwAqhI18+8lGoVlmdkZRH2xr4iOZDieKNjmparesqQwk73Kd8R4K+Bq4CDgFndfmdLiJJeZ1SA63GIp0R+cZ4BhwIXuPjNepgPQBGgMfOzui1JUbplTmMlu8h+PZGZVANw9O/6rXxXYRPQXfj+iT8SyU1Ks7CEOtGrA2fG/twAvACPdfV0qa0s2hZnkyjcCOxLYEPfLMLPOwD+JDrmYYmbNgQx3X526iiWvAg6MJW78/x2YBoxw9+9TUlw5UJjJHszsBqAvUdP4TuAj4DxgsbuPTWFpUgzxQbLZZpYW98oOIjr+7z3gj6GeM6vTmWQ3ZnY2cCrQATiT6Ej/KsDbOf2xgkYAUv720hI4CqhiZnPdfbmZXQhUDfl906EZ+7i8pxuZWRuiXktDd8929/eIbpRxEdDLzPaHXVddkNTJ3xIwsybxe5YdtwTGAbXikVkVd//O3ZelturkUpjt4/L8QvQDBgJjgVVmdrOZpbv7u0Q9l5NTV6Xkl+d9u4Gowf+xmV0W98iOITqa/9N42X3iAxrtZgpm1gXoBfR29x3xaK0bMNjMHnT3t8zsQ3ffktpKJS+1BHankdk+Lv5LPoDokj1N4snjgH8BRxKdQA7RuXySQmoJFE1htg+LjwjfDDxAdH7lBWbW1N23ER18+VL8tU/9UlRUagkUTYdm7KPMrCZRiDUmumTPT4HLia6E8UZ8nTKpYOKWwK3sagn0JGoJLCW6LlmmmdXaF1sCGpnto+ITi4cBi4AngdlEjeR2QI8QbnARGrUEiqaR2T4mvghfY3d/IH58ANFlsGsD1wFHAUvd/bvUVSn5xS2BT4FDgN8CM4FX4uv3VwdOAmbvy++bRmaByzmQMo9FRDccuRbA3VcR9V6OJdpN+Xxf/oWoiOKWwAXAs0RXvHiU6Jr9vc2smbtvc/ex+/r7pjALWPyxfHb8/XFm1io+9ugcokC7Ll60JvA6cFeKSpUiqCVQPNrNDFR8ovg17n5D/OnXTUTX6n8JGEX0l/1por/0XYAz4puVSAWhlkBiFGYBMrOORFcYvRj4BqgFXAH8DLgMWEJ0SeVqwIHA5tBPdakMck4Qz/O4C9Efn3vd/dF42jlEN5GZ4O4DUlNpxaTdzMCYWQ9gNJAJjAR2AG3dPcvdJxL9crQAbgT2d/cvFGSpp5ZA6el0poDEd+J5CPi5u0+Op80FmpvZCHe/wd0/MbOqQA+i3U5JsZyWALBbS8DMcloC5wNPm1lXdrUElqes4ApKu5kBMbMhQJa7jzCzavFBlWlE14IfRHSxxZvjZWu4e0Yq6xW1BMqSdjMDkOecvZZAo/j7nfGuSxbwBTAB6GBm98bzt5VzmZKPWgJlS7uZAchz3uQY4DYz6+Du082sStxUzjKzHxPdKu7DfM+RFFBLoOxpNzMgZlaLqN9SE3jZ3afH0y8Frgcu1jmXFYNaAmVPu5kBiU8ufpz4Shhmdr+Z3U10o9f+CrLUU0sgeTQyC5BFtxvrAJwOrCS6P6IOiK1AzOxU4Daie49Oj087s7glcDOwAvhQB8QWn8JMJAXUEih7CjORFIlvAXcVcBowlWh3sjdwkbvPSWVtlZHCTCSF1BIoOwozEQmCPs0UkSAozEQkCAozEQmCwkxEgqAwE5EgKMwkqcwsy8xmmdlcM3s1vjlHSdd1spm9E3/f08xuLWLZujk3bUlwG3eY2Y3FnZ5vmafNrHcC22oRn1wuZUBhJsmW4e7t3L0t0SVudrvUs0US/n/o7m+7+71FLFIXSDjMpPJSmEl5mgAcEo9IvjCzR4EZwMFmdoaZTTazGfEIrjaAmZ1pZvPNbCLR7daIp/c1s0fi7w8wszFmNjv+6gLcC7SOR4X3xcvdZGZTzey/ZnZnnnUNNbMFZvYh0VUrimRmV8frmW1mr+cbbZ5uZhPM7Mv4emWYWZqZ3Zdn29eU9gcpe1KYSbkws3TgLCDnNJ3DgWfd/RhgC3A7cLq7twemAUMsurnt48C5wAlEV1otyF+B8e5+NNFVW+cBtwIL41HhTRbdRPdQoDPRLdo6mNmJZtYBuAQ4higsOxXj5bzh7p3i7X1BdEpSjhZEN+Q9BxgVv4argB/cvVO8/qvNrGUxtiMJ0MUZJdlqmNms+PsJRPd9bAIscffP4unHAUcCk+Ir5FQDJgM/Ab5x968AzOx5oH8B2zgV+AVAfBmdH8ysXr5lzoi/ZsaPaxOFWx1gTHxvSszs7WK8prbxpZXqxusZm2feK/GNSb4ys0XxazgD+Gmeftr+8bZ12lIZUphJsmW4e7u8E+LA2pJ3EvCBu1+ab7l2QFmdb2fAPe4+Ot82BpVgG08Dvdx9tpn1BU7OMy//ujze9m/cPW/oYWYtEtyuFEG7mVIRfAZ0NbNDAMysppkdBswHWppZ63i5Swt5/r+BgfFz08zsR8AmolFXjrFAvzy9uIPMrDHwCXC+mdUwszpEu7R7UwdYGV/S+vJ88y6KL1femuhGywvibQ+Ml8fMDosvASRlSCMzSTl3XxOPcF40s/3iybe7+5dm1h9418zWAhOBtgWs4gbgMTO7CsgCBrr7ZDObFB/68H7cNzsCmByPDDcDV7j7DDN7GZhFdCekCcUo+ffAlHj5OewemguA8cABwAB332ZmTxD10mbEV5pdA/Qq3k9HiktXzRCRIGg3U0SCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJwv8DuNS29DXoOi4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.504 \n",
"Precision=0.557\n",
"F1=0.529\n",
"Average precision-recall score: 0.516\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8FeXZ//HPRSAECJuEPUAQESRhD5sgIGhVnhZw+SnYVnGtWqTaRemjIotPba221l0sFLVWUZ+quNT2KbIqIIkgBpRF1gCWRdl3cv3+OCchJOEkJDmZJHzfr1denDNnzsw1k3C+Z+575h5zd0RERE6lStAFiIhI+aagEBGRiBQUIiISkYJCREQiUlCIiEhECgoREYlIQSEVipktN7OBhczT0sz2mVlMGZUVVWY2yszm53ruZnZOkDXJmUVBIaXCzNab2cHwB/R/zOwvZhZf2utx92R3n13IPBvdPd7dj5f2+sMf0vvD27nZzP5Q3gLJzC4xs7lmttfMtpvZHDMbGnRdUnEpKKQ0/cDd44FuQA/g/rwzWEhF/7vrHN7OAcA1wI0B15PDzK4C3gBeAhKBxsA44AfFWFZl+F1JKdAfgZQ6d98M/ANIATCz2Wb2P2b2MXAAONvM6prZFDPbGv5m/lDub+ZmdouZfRn+VrzCzLqFp683s4vCj3uaWZqZ7QkfxfwhPD0p/M2/avh5MzObYWbfmtkaM7sl13rGm9nrZvZSeF3LzSy1iNu5BvgY6JJrecXdrrFm9nWu6Zef7n43MwP+AExy9z+7+253z3L3Oe5+S67t/Wuu9+TdV3l/V/9tZml51nO3mc0IP65uZo+a2cbw7+A5M6txurVL+aagkFJnZi2AIcCSXJN/DNwK1AY2AC8Cx4BzgK7A94Cbw+//f8B44DqgDjAU2FnAqv4E/Mnd6wBtgNdPUdKrQCbQDLgK+I2ZDc71+lDgNaAeMAN4qojb2R64AFiTa3Jxt+vr8LLqAhOAv5pZ06LUkUs7oAXw5mm+L6/cv6sngXZm1jbX69cCfws//h1wLqGwPAdoTugIRioTd9ePfkr8A6wH9gG7CAXBM0CN8GuzgYm55m0MHM5+PTxtJDAr/PifwM8irOei8OO5hD5UE/LMkwQ4UJXQB+dxoHau1x8GpoUfjwf+neu1DsDBCNvpwB5gf/jxq0D1km5XAetZCgwLPx4FzM9TwzkFvKdv+LW4CMsdD/y1oH1V0O8qPO2vwLjw47bAXqAmYOH90CbXvH2AdUH/PeqndH90RCGlabi713P3Vu5+h7sfzPXaplyPWwHVgK1mtsvMdgHPA43Cr7cg9A27MDcR+jb7lZktNrPvFzBPM+Bbd9+ba9oGQt98s32T6/EBIC67KeYUugHxhPonegG1SrpdZnadmS3N9b4UICFCDQXJPjo53SORvDblef43QoEHoaOJt939ANCQUGCk56r7w/B0qUQUFFJWcg9TvInQN++EcLDUc/c67p6c6/U2hS7QfbW7jyT0Qfw74E0zq5Vnti3AWWZWO9e0lsDm4m5IeN3u7q8DCzjR1FKs7TKzVsALwGiggbvXAzIIfWM/HSvD67gywjz7CX24Z2tSwDx5h5T+F5BgZl0IBUZ2s9MO4CCQnGt763qoo18qEQWFlDl330row+cxM6tjZlXMrI2ZDQjP8mfgl2bWPXzmzTnhD9OTmNmPzKyhu2cRavKCUDNT7nVtAj4BHjazODPrROhI5JVS2pzfAreaWZMSbFctQh/O28PbdQPhEwFOh7s78HPgATO7IVcN/cxscni2pUB/C11rUhf4dRGWe4xQv8fvgbOA/wtPzyIUcH80s0bh2pub2SWnW7uUbwoKCcp1QCywAviO0AdRUwB3fwP4H0LfXPcCbxP6gMrrUmC5me0j1LE9wt0PFTDfSEJt8VuAt4AH3f3/SmMj3P0LYA7wq+Jul7uvAB4jdHTyH6AjobOpilPPm5w4ZXdLeHkPAe+EX/8/YDqwDEgH3iviov8GXAS8EQ6ObPcS6sxfaGZ7gH8T6lSXSsRCX0JEREQKpiMKERGJSEEhIiIRKShERCQiBYWIiEQU6aKicikhIcGTkpKCLkNEpEJJT0/f4e7FuhiywgVFUlISaWlphc8oIiI5zGxDcd+rpicREYlIQSEiIhEpKEREJKIK10chIuXH0aNHyczM5NChgkZOkSDExcWRmJhItWrVSm2ZCgoRKbbMzExq165NUlISoRvsSZDcnZ07d5KZmUnr1q1LbblqehKRYjt06BANGjRQSJQTZkaDBg1K/QgvakFhZlPNbJuZZZzidTOzJ8L3MF6Wfe9gEalYFBLlSzR+H9E8ophGaBjoU7mM0G0V2xK6P++zRVno0ayjJS5MRESKLmpB4e5zgW8jzDIMeCl8p7CFQL2i3Ex+9c7VaGh0ESnP0tPT6dixI+eccw5jxowp8DNr9uzZ1K1bly5dutClSxcmTpyY89qNN95Io0aNSEnJf/+qJ598knbt2pGcnMw999wT1e3IFmQfRXNOvjdvJiffxziHmd1qZmlmlnbw6EHe+uqtMilQRCqH48ePFz5TKbr99tuZPHkyq1evZvXq1Xz44YcFznfBBRewdOlSli5dyrhx43Kmjxo1qsD3zJo1i3feeYdly5axfPlyfvnLX0ZtG3ILMigKakgr8FDB3Se7e6q7p8ZVjWPcrHEczyrbX7yIlE/Dhw+ne/fuJCcnM3ny5Jzp8fHxjBs3jl69erFgwQLS09MZMGAA3bt355JLLmHr1q0AvPDCC/To0YPOnTtz5ZVXcuDAgRLVs3XrVvbs2UOfPn0wM6677jrefvvt01pG//79Oeus/Dd1fPbZZxk7dizVq1cHoFGjRiWqtaiCPD02E2iR63kioVs3RtSsdjOWb1/O9OXTubbjtVErTkROz10f3sXSb5aW6jK7NOnC45c+HnGeqVOnctZZZ3Hw4EF69OjBlVdeSYMGDdi/fz8pKSlMnDiRo0ePMmDAAN555x0aNmzI9OnTue+++5g6dSpXXHEFt9xyCwD3338/U6ZM4c477zxpHbNmzeLuu+/Ot+6aNWvyySefnDRt8+bNJCYm5jxPTExk8+bNBda+YMECOnfuTLNmzXj00UdJTk6OuK2rVq1i3rx53HfffcTFxfHoo4/So0ePiO8pDUEGxQxgtJm9BvQCdodvTh9R/Rr16dS4E+Nnj+fq5KupWkWXgoicyZ544gneeivUHL1p0yZWr15NgwYNiImJ4corrwRg5cqVZGRkcPHFFwOhpqimTUNdohkZGdx///3s2rWLffv2cckll+Rbx4UXXsjSpUULwYL6Iwo6E6lbt25s2LCB+Ph4PvjgA4YPH87q1asjLvvYsWN89913LFy4kMWLF3P11Vezdu3aqJ95FrVPWTN7FRgIJJhZJvAgUA3A3Z8DPgCGELox+wHghqIue+LAiQyfPpyXP3+ZG7oW+W0iEkWFffOPhtmzZ/Pvf/+bBQsWULNmTQYOHJhzDUFcXBwxMTFA6MM7OTmZBQsW5FvGqFGjePvtt+ncuTPTpk1j9uzZ+eY5nSOKxMREMjMzc55nZmbSrFmzfO+tU6dOzuMhQ4Zwxx13sGPHDhISEk65vYmJiVxxxRWYGT179qRKlSrs2LGDhg2LNXp4kUUtKNx9ZCGvO/DT4ix7aLuhpDZLZcKcCfyw0w+JjYktVo0iUrHt3r2b+vXrU7NmTb766isWLlxY4Hzt2rVj+/btLFiwgD59+nD06FFWrVpFcnIye/fupWnTphw9epRXXnmF5s3zn1NzOkcUTZs2pXbt2ixcuJBevXrx0ksv5WvKAvjmm29o3LgxZsann35KVlYWDRo0iLjs4cOH89FHHzFw4EBWrVrFkSNHIgZLaamQV2abGZMunMSG3RuYumRq0OWISEAuvfRSjh07RqdOnXjggQfo3bt3gfPFxsby5ptvcu+999K5c2e6dOmScyQwadIkevXqxcUXX0z79u1Lpa5nn32Wm2++mXPOOYc2bdpw2WWXAfDcc8/x3HPPAfDmm2+SkpJC586dGTNmDK+99lpOE9LIkSPp06cPK1euJDExkSlTpgCh02bXrl1LSkoKI0aM4MUXXyyTCx6tol2TkJqa6mlpabg7F/zlAtbtWseaO9dQo1qNoEsTOeN8+eWXnHfeeUGXIXkU9Hsxs3R3Ty3O8irkEQWEjioeGvQQW/Zu4fn054MuR0Sk0qqwQQEwMGkgg1oP4uH5D7P/yP6gyxERqZQqdFAATLpwEtv2b+OpT58KuhSRM1JFa76u7KLx+6jwQXF+i/MZ0nYIj3zyCHsO7wm6HJEzSlxcHDt37lRYlBPZ96OIi4sr1eVWiqvVJg6cSOoLqTy+8HHGDRhX+BtEpFRkXzOwffv2oEuRsOw73JWmShEU3Zt15/L2l/PYgscY3XM0Z9XIP0aKiJS+atWqleqd1KR8qvBNT9kmDJzA3sN7efSTR4MuRUSkUqk0QdGxcUeuSbmGJxY9wbb924IuR0Sk0qg0QQEwfsB4Dh47yO/m/y7oUkREKo1KFRTtEtpxXefreCbtGTbvKXhYXxEROT2VKigAxvUfx7GsY/xm3m+CLkVEpFKodEHRun5rbup6Ey989gIbdm0IuhwRkQqv0gUFwP3976eKVWHS3ElBlyIiUuFVyqBIrJPIbam3MW3pNNZ8uybockREKrRKGRQAY/uNJTYmlglzJgRdiohIhVZpg6JJfBPu7Hknryx7hRXbVwRdjohIhVVpgwLgnr73EB8bz4OzHwy6FBGRCqtSB0WDmg24q/ddvLniTZZ+U7T73YqIyMkqdVAA/LzPz6kXV49xszSqrIhIcVT6oKgXV49fnf8r3l31LosyFwVdjohIhVPpgwJgTK8xJNRMYNxsHVWIiJyuMyIo4mPjGdt3LP/6+l/M3TA36HJERCqUMyIoAG7vcTtN45vywKwHdNtGEZHTcMYERc1qNfnvC/6buRvmMnPdzKDLERGpMM6YoAC4pdsttKjTgvs/ul9HFSIiRXRGBUX1qtUZN2AcizYv4v3V7wddjohIhXBGBQXA9Z2v5+z6ZzNu1jiyPCvockREyr0zLiiqxVRj/IDxLPlmCW99+VbQ5YiIlHtnXFAAXNvxWtontGfc7HEczzoedDkiIuXaGRkUMVVimDBwAiu2r2D68ulBlyMiUq5FNSjM7FIzW2lma8xsbAGvtzSzWWa2xMyWmdmQaNaT21UdrqJT4048OPtBjmUdK6vViohUOFELCjOLAZ4GLgM6ACPNrEOe2e4HXnf3rsAI4Jlo1ZNXFavCpAsnsebbNbz0+UtltVoRkQonmkcUPYE17r7W3Y8ArwHD8szjQJ3w47rAlijWk88Pzv0BPZr1YOKciRw5fqQsVy0iUmFEMyiaA5tyPc8MT8ttPPAjM8sEPgDuLGhBZnarmaWZWdr27dtLrUAzY9KFk9iwewNTPptSassVEalMohkUVsC0vJdDjwSmuXsiMAR42czy1eTuk9091d1TGzZsWKpFfq/N9+jXsh8PzXuIg0cPluqyRUQqg2gGRSbQItfzRPI3Ld0EvA7g7guAOCAhijXlk31UsWXvFp5Pf74sVy0iUiFEMygWA23NrLWZxRLqrJ6RZ56NwGAAMzuPUFCUXttSEQ1MGsjg1oN5eP7D7Duyr6xXLyJSrkUtKNz9GDAa+CfwJaGzm5ab2UQzGxqe7RfALWb2OfAqMMoDGq1v0oWT2LZ/G099+lQQqxcRKbesoo2impqa6mlpaVFZ9vf/9n0+2fQJ6362jrpxdaOyDhGRIJhZurunFue9Z+SV2acy8cKJfHfoOx5f+HjQpYiIlBsKily6Ne3GFeddwR8W/oGdB3YGXY6ISLmgoMhjwsAJ7D28l0c/eTToUkREygUFRR4pjVIYkTKCJz59gm37twVdjohI4BQUBRg/cDyHjh3it/N/G3QpIiKBU1AU4NwG53J95+t5ZvEzbN6zOehyREQCpaA4hQf6P8BxP85v5v0m6FJERAKloDiF1vVbc3PXm3nhsxdYv2t90OWIiARGQRHBff3vC923Ys6koEsREQmMgiKCxDqJ3JZ6Gy9+/iKrd64OuhwRkUAoKAoxtt9YqletzoQ5E4IuRUQkEFWDLqC8axLfhDt73skjHz/CviP76N60O92bdad70+40jm8cdHkiIlGnoCiCX/f7NTsO7GD+xvnMWDkDD99/KbFOYig4FB4iUokpKIqgblxd/jz0zwDsObyHpd8sJW1LGulb00nfkn5SeDSv3ZzUZqkKDxGpNDTMeCnYe3gvS75ZQvqWdNK3ppO2JY1VO1edFB7ZoZEdIgoPESlLJRlmXEERJXnDI31rOit3rCwwPLKPPprENwm4ahGprBQUFYTCQ0SCoqCowPYe3ntyn0ee8GhWu9mJPg+Fh4gUk4KikskOj+zgSNuSli88soMjtVmqwkNECqWgOAPkDY/0Lel8teOrAsMju/mqae2mAVctIuWFguIMVVh4NI1vmu9UXYWHyJlJQSE59h3Zl+86j7zh0b1Zd1Kbpio8RM4gJQkKXXBXycTHxtOvZT/6teyXMy07PHJf5/H+qvfzhUd209X5Lc6nQc0GQW2CiJQzCoozQFHCI31rek54GEaXJl0Y3Howg1oP4oJWFxAfGx/gFohIkNT0JDn2HdnHkq1LmL1+Nh+t/4hPNn3CkeNHqFqlKr0TezMoaRCDzx5M78TexMbEBl2uiJwG9VFIVBw4eoCPN37MR+s+Yua6maRvTSfLs6hZrSb9WvbLOeLo2qQrMVVigi5XRCJQUEiZ2HVoF3PWz2HmupnMXDeTFdtXAFA/rj4DkwYyqPUgBrceTPuE9phZwNWKSG4KCgnEN/u+CR1trA0Fx4bdG4BQ53h2aAw+ezAt67YMuFIRUVBIubD2u7XMXDuTj9Z/xEfrPmLb/m0AtKnfJic0Lky6kIa1GgZcqciZR0Eh5Y67k7EtI6d/Y86GOew5vAeATo075fRv9G/VnzrV6wRcrUjlp6CQcu9Y1jHSt6Qzc91MPlr3EfM3zufw8cPEWAw9m/fMaarq06IPcVXjgi5XpNIpk6Aws+ZAK3Jde+Huc4uz0pJQUFQOh44d4pNNn+QccSzevJjjfpy4qnH0bdE3p6mqW9NuVK2iy31ESirqQWFmvwOuAVYAx8OT3d2HFvK+S4E/ATHAn939twXMczUwHnDgc3e/NtIyFRSV057De5i7YW5Ox/gX274AoE71OgxMGpjTVJXcMFlnVIkUQ1kExUqgk7sfPo2iYoBVwMVAJrAYGOnuK3LN0xZ4HRjk7t+ZWSN33xZpuQqKM8O2/duYtW5WTlPV1999DUDjWo0Z1HpQTlNV6/qtA65UpGIoi7Ge1gLVgCIHBdATWOPuawHM7DVgGKGjkmy3AE+7+3cAhYWEnDka1WrENSnXcE3KNQBs2LUhJzRmrpvJqxmvAtC6Xuuc0BjUepDuRS4SBUUNigPAUjObSa6wcPcxEd7THNiU63km0CvPPOcCmNnHhJqnxrv7h0WsSc4greq14sauN3Jj1xtxd77c8WVOaPzvl//LlCVTAEhumJwTGgOSBlAvrl7AlYtUfEUNihnhn9NRUENy3nauqkBbYCCQCMwzsxR333XSgsxuBW4FaNlSF2+d6cyMDg070KFhB0b3HM3xrOMs+WZJTv/GC5+9wBOfPkEVq0Jqs9ScMar6tuhLjWo1gi5fpMI5nbOeYgkfAQAr3f1oIfP3IXSEcEn4+a8B3P3hXPM8Byx092nh5zOBse6++FTLVR+FFObwscMszFyY01S1aPMijmUdIzYmlvNbnB86o6r1YFKbpVItplrQ5YqUibLozB4IvAisJ3Sk0AK4PtLpsWZWlVBn9mBgM6HO7GvdfXmueS4l1MF9vZklAEuALu6+81TLVVDI6dp7eC/zNs7Laapa+s1SAGrH1qZ/q/45TVUdG3ekilUJuFqR6CiLzuzHgO+5+8rwCs8FXgW6n+oN7n7MzEYD/yTU/zDV3Zeb2UQgzd1nhF/7nplln3b7q0ghIVIctavXZkjbIQxpOwSAHQd2MHv97JymqvdXvw9AQs2E0BlV4aaqNvXb6FRcEYp+RLHM3TsVNq0s6IhCStum3ZtyjjZmrpvJlr1bAGhZt+VJZ1Q1q90s4EpFiq8smp6mEuqIfjk86YdAVXe/oTgrLQkFhUSTu7Nq56qc/o1Z62fx7cFvAWif0D6nf2NA0gDOqnFWwNWKFF1ZBEV14KdAP0J9FHOBZ07nArzSoqCQspTlWSz9ZmnOEcfcDXM5cPQAhtGtabecI45+LftRK7ZW0OWKnJIGBRQpI0eOH+HTzZ/m9G8szFzI0ayjVKtSjd6JvRncejA9m/ekY+OONK/dXH0cUm5ELSjM7HV3v9rMviD/NRCoj0LOdPuP7Gf+xvk5TVWfbf0MD/9XqRdXj5RGKaQ0TKFj446hx41S1GQlgYhmUDR1961m1qqg1919Q3FWWhIKCinPdh3axbL/LCNjWwZf/OcLMraH/t19eHfOPM1qNyOlUQodG3XM+fe8hudRs1rNACuXyq4s+ihqAQfdPSt8amx74B+FXXQXDQoKqWjcnc17N+cLjxXbV3D4eKibzzDanNXmpPBIaZRC2wZtNcy6lIqyCIp04AKgPrAQSAMOuPsPi7PSklBQSGVxPOs4a75dQ8a2jFCIbPuCjG0ZrP52NVmeBUBsTCznJZx38hFI4460qNNC/R9yWsoiKD5z925mdidQw90fMbMl7t61OCstCQWFVHYHjx7kqx1f5QRHdohk7snMmadO9ToF9n8k1EwIsHIpz8riymwLj930Q+Cm03yviJyGGtVq0LVpV7o2Pfl72K5Du04ER7gJ640VbzD5s8k58zSJb5Kv/6NDww46dVdKpKgf9ncBvwbeCg/DcTYwK3pliUhe9eLq0a9lP/q17Jczzd3Zum9rvv6P59Ke4+Cxg0Co/6N1/db5+j/ObXCuBkWUItF1FCKV0PGs46z9bm2+/o9VO1dx3EN3M65WpRrtE9qHmq4apuT0f7Ss21KDI1ZC0Tw99nF3v8vM3qXg6ygi3jM7GhQUIsV36NghVu5Yma//Y+PujTnzxMfGF9j/0ahWowArl5KKZlB0d/d0MxtQ0OvuPqc4Ky0JBYVI6dt9aDfLty/P14S18+CJwZwb1WpUYP9H7eq1A6xciqpMr6MIP48Bqrv7geKstCQUFCJlw935z/7/nAiP8NHH8u3LOXD0xH/9pHpJ+fo/2iW0IzYmNsDqJa+yOOtpJnARsC/8vAbwL+D84qxURMo/M6NJfBOaxDfhorMvypme5Vms37X+pPDI2JbBP9b8g2NZxwCoWqUq7Rq0y3f9R1K9JPV/VEBFDYo4d88OCdx9n5lpvAGRM1AVq8LZ9c/m7PpnM6z9sJzpR44fYeWOlSeFx6LNi5i+fHrOPLWq1SK5UXK+/o/GtRrrAsJyrKhBsd/Murn7ZxDquwAORq8sEaloYmNi6di4Ix0bd2QkI3Om7z28N6f/IztE3lv9HlOXTs2ZJ6FmwklHH50bd6ZH8x46+ignitpH0QN4DdgSntQUuMbd06NYW4HURyFSOWzbv+2k/o+M7aEg2Xck1HiR3DCZe/vey4iUEbreoxSUyf0ozKwa0I7QjYu+CmJAQFBQiFRmWZ7Fxt0bmb1+No8teIyMbRm0rNuSX/T5BTd1vUlXmJdASYKiSMd14f6Ie4GfufsXQJKZfb84KxQROZUqVoWkekmM6jKKZbct472R79Gybkt+9uHPaPV4KybMnsDOAzsLX5CUqqI2AP4FOAL0CT/PBB6KSkUiIoTOuvqvc/+LeTfMY/4N8zm/xfmMnzOelo+35K4P7zrpIkGJrqIGRRt3fwQ4CuDuBwk1QYmIRF3fln2ZMXIGGbdncFWHq3h68dO0eaINo94exYrtK4Iur9IralAcMbMahIfxMLM2wOGoVSUiUoDkRsm8OPxFvh7zNT/t8VPeWPEGyc8kM+y1YXyy6ZOgy6u0ihoUDwIfAi3M7BVCF+DdE7WqREQiaFm3JY9f+jgb79rI+AHjmb9xPn2n9qX/X/rz/qr3qWiDnZZ3hZ71ZKGrYBKBA0BvQk1OC919R/TLy09nPYlIXvuP7GfKkik8+smjbNqziY6NOnJP33u4JvkanVobFtWznjyUJG+7+053f9/d3wsqJEREClIrthZjeo3h6zFf8+LwF8nyLH781o9p+2Rbnlz05EljU8npK2rT08LwRXciIuVWtZhqXNf5Opbdvox3R75LYp1Exnw4hlaPt2LSnEl8e/DboEuskIp6ZfYKQhfbrQf2E2p+cnfvFNXqCqCmJxE5HfM3zud3H/+O91a9R61qtbi1+63c3ftuWtRtEXRpZaoshhlvVdB0d99QnJWWhIJCRIojY1sGj3z8CH/74m+YGT/q9CPuOf8ezmt4XtCllYlo3rgoDrgNOAf4Apji7seKVWUpUVCISEls2LWBPyz4Ay989gIHjx1kWLth3Nv3Xvq06FP4myuwaHZmvwikEgqJy4DHirMSEZHyolW9Vvzpsj+x8e6NPDjgQeZtnMf5U89nwLQBfLD6A51aW4DCjii+cPeO4cdVgU/dvVtZFVcQHVGISGnad2QfUz6bwmMLHmPTnk10atyJe/vey9XJV1O1SlHvxFD+RfOIImeE2KCbnEREoiE+Np6f9f4Za8asYdqwaRzLOsYP//5D2j7Zlqc/fVqn1lJ4UHQ2sz3hn71Ap+zHZransIWb2aVmttLM1pjZ2AjzXWVmbmbFSjsRkZKKjYnl+i7X88XtX/DOiHdoVrsZo/8xmlaPt+KhuQ/x3cHvgi4xMBGDwt1j3L1O+Ke2u1fN9bhOpPeaWQzwNKG+jQ7ASDPrUMB8tYExwKLib4aISOmoYlUY2m4oH9/4MfNumEev5r14YNYDtPhjC37xz1+QuScz6BLLXDTvM9gTWOPua939CKE75A0rYL5JwCPAoSjWIiJy2vq17Md7177HstuWcfl5l/OnRX/i7D+dzY3v3MiX278MurwyE82gaA5syvU8Mzwth5l1BVq4+3uRFmRmt5pZmpmlbd++vfQrFRGJoGPjjrx8+cusGbOG21Jv47WM1+jGcBEtAAAMOElEQVTwTAcun345CzMXBl1e1EUzKAq6X0XOKVZmVgX4I/CLwhbk7pPdPdXdUxs2bFiKJYqIFF1SvSSeuOwJNty1gXH9xzFn/Rz6TOnDwGkD+XDNh5X21NpoBkUmkPsa+URgS67ntYEUYLaZrSc0Mu0MdWiLSHnXsFZDJlw4gY13b+SPl/yRr7/7msteuYyuz3fl1S9e5VhW5TpJNJpBsRhoa2atzSwWGAHMyH7R3Xe7e4K7J7l7ErAQGOruukhCRCqE+Nh47up9F1+P+Zppw6Zx5PgRrv37tbR7qh3vrnw36PJKTdSCInzdxWjgn8CXwOvuvtzMJprZ0GitV0SkrGWfWptxRwZvX/M2NarWYOhrQxn+2nA27CrzIfFKXZEGBSxPdGW2iJR3R48f5Y8L/8iEORMAGNd/HHf3uZvYmNjAaorqjYtEROT0VIupxj197+HLn37JJW0uYezMsXR9vitz1s8JurRiUVCIiERJy7ot+fs1f+fdke9y4OgBBr44kOvfvp5t+7cFXdppUVCIiETZ98/9PsvvWM59F9zHq1+8Srun2vFc2nMczzoedGlFoqAQESkDNavV5KFBD7Hs9mV0bdKV29+/nfOnns9nWz8LurRCKShERMpQ+4T2zLxuJq9c8Qobdm2gxws9uPODO9l9aHfQpZ2SgkJEpIyZGdd2vJavRn/FHal38PTip2n/dHte/eLVcnl1t4JCRCQg9eLq8eSQJ1l8y2IS6yRy7d+v5eKXL2bljpVBl3YSBYWISMC6N+vOwpsW8syQZ0jbkkan5zrxwEcPcPDowaBLAxQUIiLlQkyVGG7vcTsrR6/kmuRreGjeQyQ/k8z7q94PujQFhYhIedI4vjEvXf4Ss66fRVzVOL7/6ve5YvoVbNq9qfA3R4mCQkSkHBqYNJClty3l4cEP8+GaDznv6fP4/ce/5+jxo2Vei4JCRKScio2JZWy/saz46QoGnz2Ye/59D12f78q8DfPKtA4FhYhIOZdUL4l3RrzDOyPeYe+RvfSf1p8b3rmB7fvL5o6fCgoRkQpiaLuhrLhjBWP7juWvy/5Ku6faMTl9MlmeFdX1KihERCqQWrG1ePiih/n8ts/p1LgTP3nvJ5w/5XyWbF0StXUqKEREKqAODTsw6/pZvDT8JdbtWkfqC6nc9eFd7Dm8p9TXpaAQEamgzIwfd/4xX/30K37S/Sc8segJ2j/VnukZ00t1KBAFhYhIBVe/Rn2e+a9nWHTzIprVbsaI/x3BJX+9hFU7V5XK8hUUIiKVRI/mPVh08yKevOxJFm1eRMdnOzJu1rgSDwWioBARqURiqsQwuudoVo5eyVUdrmLS3El0fLZjiZapoBARqYSaxDfhlSteYeZ1M6lapWqJlqWgEBGpxAa1HsTnt31eomUoKEREKrnqVauX6P0KChERiUhBISIiESkoREQkIgWFiIhEpKAQEZGIFBQiIhKRgkJERCJSUIiISEQKChERiSiqQWFml5rZSjNbY2ZjC3j952a2wsyWmdlMM2sVzXpEROT0RS0ozCwGeBq4DOgAjDSzDnlmWwKkunsn4E3gkWjVIyIixRPNI4qewBp3X+vuR4DXgGG5Z3D3We5+IPx0IZAYxXpERKQYohkUzYFNuZ5nhqedyk3APwp6wcxuNbM0M0vbvn17KZYoIiKFiWZQWAHTCryJq5n9CEgFfl/Q6+4+2d1T3T21YcOGpViiiIgUpmR3s4gsE2iR63kisCXvTGZ2EXAfMMDdD0exHhERKYZoHlEsBtqaWWsziwVGADNyz2BmXYHngaHuvi2KtYiISDFFLSjc/RgwGvgn8CXwursvN7OJZjY0PNvvgXjgDTNbamYzTrE4EREJSDSbnnD3D4AP8kwbl+vxRdFcv4iIlJyuzBYRkYgUFCIiEpGCQkREIlJQiIhIRAoKERGJSEEhIiIRKShERCQiBYWIiESkoBARkYgUFCIiEpGCQkREIlJQiIhIRAoKERGJSEEhIiIRKShERCQiBYWIiESkoBARkYgUFCIiEpGCQkREIlJQiIhIRAoKERGJSEEhIiIRKShERCQiBYWIiESkoBARkYgUFCIiEpGCQkREIlJQiIhIRAoKERGJSEEhIiIRKShERCQiBYWIiESkoBARkYiiGhRmdqmZrTSzNWY2toDXq5vZ9PDri8wsKZr1iIjI6YtaUJhZDPA0cBnQARhpZh3yzHYT8J27nwP8EfhdtOoREZHiieYRRU9gjbuvdfcjwGvAsDzzDANeDD9+ExhsZhbFmkRE5DRVjeKymwObcj3PBHqdah53P2Zmu4EGwI7cM5nZrcCt4aeHzSwjKhVXPAnk2VdnMO2LE7QvTtC+OKFdcd8YzaAo6MjAizEP7j4ZmAxgZmnunlry8io+7YsTtC9O0L44QfviBDNLK+57o9n0lAm0yPU8EdhyqnnMrCpQF/g2ijWJiMhpimZQLAbamllrM4sFRgAz8swzA7g+/Pgq4CN3z3dEISIiwYla01O4z2E08E8gBpjq7svNbCKQ5u4zgCnAy2a2htCRxIgiLHpytGqugLQvTtC+OEH74gTtixOKvS9MX+BFRCQSXZktIiIRKShERCSichsUGv7jhCLsi5+b2QozW2ZmM82sVRB1loXC9kWu+a4yMzezSntqZFH2hZldHf7bWG5mfyvrGstKEf6PtDSzWWa2JPz/ZEgQdUabmU01s22nutbMQp4I76dlZtatSAt293L3Q6jz+2vgbCAW+BzokGeeO4Dnwo9HANODrjvAfXEhUDP8+PYzeV+E56sNzAUWAqlB1x3g30VbYAlQP/y8UdB1B7gvJgO3hx93ANYHXXeU9kV/oBuQcYrXhwD/IHQNW29gUVGWW16PKDT8xwmF7gt3n+XuB8JPFxK6ZqUyKsrfBcAk4BHgUFkWV8aKsi9uAZ529+8A3H1bGddYVoqyLxyoE35cl/zXdFUK7j6XyNeiDQNe8pCFQD0za1rYcstrUBQ0/EfzU83j7seA7OE/Kpui7IvcbiL0jaEyKnRfmFlXoIW7v1eWhQWgKH8X5wLnmtnHZrbQzC4ts+rKVlH2xXjgR2aWCXwA3Fk2pZU7p/t5AkR3CI+SKLXhPyqBIm+nmf0ISAUGRLWi4ETcF2ZWhdAoxKPKqqAAFeXvoiqh5qeBhI4y55lZirvvinJtZa0o+2IkMM3dHzOzPoSu30px96zol1euFOtzs7weUWj4jxOKsi8ws4uA+4Ch7n64jGora4Xti9pACjDbzNYTaoOdUUk7tIv6f+Qddz/q7uuAlYSCo7Ipyr64CXgdwN0XAHGEBgw80xTp8ySv8hoUGv7jhEL3Rbi55XlCIVFZ26GhkH3h7rvdPcHdk9w9iVB/zVB3L/ZgaOVYUf6PvE3oRAfMLIFQU9TaMq2ybBRlX2wEBgOY2XmEgmJ7mVZZPswArguf/dQb2O3uWwt7U7lsevLoDf9R4RRxX/weiAfeCPfnb3T3oYEVHSVF3BdnhCLui38C3zOzFcBx4FfuvjO4qqOjiPviF8ALZnY3oaaWUZXxi6WZvUqoqTEh3B/zIFANwN2fI9Q/MwRYAxwAbijScivhvhIRkVJUXpueRESknFBQiIhIRAoKERGJSEEhIiIRKShERCQiBYVIHmZ23MyWmlmGmb1rZvVKefmjzOyp8OPxZvbL0ly+SGlTUIjkd9Ddu7h7CqFrdH4adEEiQVJQiES2gFyDppnZr8xscXgs/wm5pl8Xnva5mb0cnvaD8L1SlpjZv82scQD1i5RYubwyW6Q8MLMYQsM+TAk//x6hsZJ6EhpcbYaZ9Qd2Ehpnq6+77zCzs8KLmA/0dnc3s5uBewhdISxSoSgoRPKrYWZLgSQgHfi/8PTvhX+WhJ/HEwqOzsCb7r4DwN2zB6dMBKaHx/uPBdaVSfUipUxNTyL5HXT3LkArQh/w2X0UBjwc7r/o4u7nuPuU8PSCxsJ5EnjK3TsCPyE0EJ1IhaOgEDkFd98NjAF+aWbVCA06d6OZxQOYWXMzawTMBK42swbh6dlNT3WBzeHH1yNSQanpSSQCd19iZp8DI9z95fAQ1QvCo/TuA34UHqn0f4A5ZnacUNPUKEJ3VXvDzDYTGvK8dRDbIFJSGj1WREQiUtOTiIhEpKAQEZGIFBQiIhKRgkJERCJSUIiISEQKChERiUhBISIiEf1/7n7noAPssuEAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" GaussianNB \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHk9JREFUeJzt3XeYlOXZ9/HvOVtYYAUUQQVFbNhQqRpLgthixZqoifry6iOKmliCxiemaCJ5fCPRGI2xxhafWKIkxqgIMSIootIERLFQlUhT6rJl5nz/uO9dlm3M7O7s7F78PscxhzPX3c5h3N9c9zV3MXdHRKStS+S6ABGR5qAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCkJ/rAtoyyy9yKyzOdRmSgf67dcp1CZKh6fMXrHT3blubT2HWBFZYTP6+w3JdhmTgrTuPyXUJkqGioRcuSmc+7WaKSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEPJzXYA0zg6dOzLu/usB2KlrZ5KpFCu/WgfAIfv24s4nxvHjO54G4NoLv01xhyJ+df/fG7294g5F/PtPN1a97tl9e/73pbcZNeYvHDWgD78ddT4H7bMrF/z3fTw/YVrVfCXvPcScT5YCsOQ/qzjrmrsbXUMoCod8D9/wddXr8jkTsaJiCvoOwUvWQyKP1PKFJBfNbtJ28nofQmLHXQGHsk2UfzgFykqiaXsPIq9rTzxZQcWHU/D1q6P2PfuT6NoTgOTC2aRWLGpSDS1JYdZGrV6zgcHn3QzAzy47nfUbN3HnE+MAWPv2/ZxxzAB+86d/surr9c2yvfUbN1VtD+DtJ3/O316LQmvJslX81y8e5tqLTqy1XElp2RbLCZBKUv7eS1u2FRWTWrOcitmvQyKPgkGnkFr1eVXINEZyyQckF84CIK/nvuT3PoiK+e+Q2KEHifbbUTb171inHcnvcyjl018hsUNPEsU7UP7eP8ESFPQ/gdTqLyBZ3oQ323K0mxmgimSSh5+fyNXfPyEr69+7V3e67dCJydPnA7Bo2Spmf7yUVCqVle1tc1JJfP1qrH1x09ZTPYTy8sGjp4kddyP55QIAfO1KyC+EwvZYx86k1nwJ7nENX5HYYZem1dCC1DML1B+ffo1pz/ySMY+9XO88Qwbtx5hR59Vq37ipjCHDf13vcueeeBjPvvpOWnUUFRYw5cmfU1GR5PZHXuKF12ektVzQEnkUDDoZAC9ZT8XcN7acnl9IotOOJBfW2M3My6egf91fUBUfvIlvXFOrPW+PQ8jbaU88WU75zPFRY7v2eOmGzTOVbsDatSe1/ivyex9Ecsk8yMsn0WUnfEPtdbZWLRpmZrYz8DtgMFAKLAT+Bgxz91NbYPtHA/+Ot/ePuO1FYIy7v57t7bekdRs28eSLb3HV+cdRsqmsznkmvvdho3YBv/vtwxj+0wfTmnevk69n2Yqv2aNnN8Y9cD1zPlnKZ0tXZLzNoNS1mwkkOnenYODJgFOxeG7tcEpW1LlcQ5ILZpFcMIu8XgeS13NfkgvfB6z2jA7+1TJS23WlYMC3oayU1NqV4G2nt91iYWZmBowFHnP38+K2fsBpTVxvvrtXZLDIUuAm4B9N2W5b8PsnxzP1L7/g8b9PrnN6Y3pmB/fZjfy8BDPmpTcwvGxFNNC94PMVvPHeh/Tbr5fCrB5VY2b1aUTPrFLyy4UUHDw0CrPSjVi7jjjx59CuIx7/MJBcPIfk4jkA5O9/JF6yrlHvJRdasmc2FCh39/sqG9x9ppl1AY41s78CfYFpwAXu7ma2EBjk7ivNbBBRD+poM7sZ6AH0Blaa2avAMKADsBcw1t1vqKeOWUCBmR3v7uOrTzCzY4ExRP8u7wIj3b20md5/i/tq7Qaee/Vdhp/xTR6rI9Aa0zM798TDePqVqWnN22W7DmzcVEZZeQVduxRzeL99+O1jr2S0Pakmw56Ztd+uKowSO+5aFXaplUvJ69mH1PKFWKcdoaIs/pXTIL8AKsqwjl2w4u1JffhWNt5JVrRkmFUGVV36AwcCXwBvAkcCdXcnNhsIHOXuJWY2HOgXr6cU+MjM7nb3JfUse2v8qAozMysCHgWOdff5ZvY4MJJot7jNuvOJcYw895hmW9/Zxw/m9B/cuUXbwAN68+wdV7F9p46c8q1+/PzyM+h3zs/Yb89duPem/0PKnYQZtz/yEvM++6LZapGG5e3ZH+vQCdzxTRuomB99CaVWf06iaw8KDzs9OjTjoynRAgnb3PNLllMx783ox4A2orX8APCOuy8FMLOZRD2urYXZC+5eUu31v9x9TbyOD4DdgTrDzN0nmRlm9s1qzfsCC9x9fvz6MeBKaoSZmY0ARgBQ0HHr76wF1Dx+bIcjr6h6vnz1WrocMbLZtrXfaT+u1Tbtg4XseeKoWu1vz/qUAd/9ebNtOxRlk56u1eZff0nF118263Zq/bBQfdrH79ZuTKUof/fFZq2hJbXkoRlziXpTdam+K5dkc8hWsLnGohrLbKjxutY6zOxMM5sZPwbVmH800dhZpTpGRWtz9wfcfZC7D7L8miWJSK60ZJi9BrQzs0srG8xsMDCkgWUWsjkAz850g+4+1t37xY/3akx7FdgeOCRu+hDobWZ7x68vBCZmuk0RyY0WCzN3d+BM4Hgz+9TM5gI3E42T1ecW4C4zm0TU22puo4Fd4/o2Af8XeNbMZgMp4L4GlhWRVsS8DQ3wtTaJDjt6/r7Dcl2GZGDdnc33Y4i0jKKhF05z95rDRLXodCYRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCUJ+fRPMrFNDC7r72uYvR0SkceoNM2Au4IBVa6t87UCvLNYlIpKResPM3XdryUJERJoirTEzMzvPzH4SP9/VzAZmtywRkcxsNczM7B5gKHBh3LQRuC+bRYmIZKqhMbNKR7j7ADObAeDuq82sMMt1iYhkJJ3dzHIzSxAN+mNmXYFUVqsSEclQOmH2B+A5oJuZ3QJMBv5fVqsSEcnQVncz3f1xM5sGHBc3fcfd52S3LBGRzKQzZgaQB5QT7WrqrAERaXXS+TXzJuAvQA9gV+B/zey/s12YiEgm0umZXQAMdPeNAGY2GpgG/E82CxMRyUQ6u4yL2DL08oHPslOOiEjjNHSi+Z1EY2QbgblmNi5+fQLRL5oiIq1GQ7uZlb9YzgX+Wa397eyVIyLSOA2daP5wSxYiItIUW/0BwMz2AkYDBwBFle3u3ieLdYmIZCSdHwAeBR4huo7ZScAzwFNZrElEJGPphFkHdx8H4O6fuvtPia6iISLSaqRznFmpmRnwqZldDnwOdM9uWSIimUknzK4FioEfEo2ddQYuzmZRIiKZSudE86nx03VsvkCjiEir0tBBs2OJr2FWF3c/KysViYg0QkM9s3tarAoRkSZq6KDZf7VkIW1R15J1nD3ztVyXIRlIrRuQ6xIkS3RtMhEJgsJMRIKQdpiZWbtsFiIi0hTpXGn2UDObDXwcvz7EzO7OemUiIhlIp2f2e+BUYBWAu89CpzOJSCuTTpgl3H1RjbZkNooREWmsdE5nWmJmhwJuZnnAD4D52S1LRCQz6fTMRgLXAb2AL4FvxG0iIq1GOudmLgfOa4FaREQaLZ0rzT5IHedouvuIrFQkItII6YyZTaj2vAg4E1iSnXJERBonnd3Mp6u/NrMngPFZq0hEpBEaczrTHsDuzV2IiEhTpDNm9hWbx8wSwGrgxmwWJSKSqQbDLL72/yFE1/0HSLl7vRdsFBHJlQZ3M+PgGuvuyfihIBORVimdMbN3zExXtBORVq2hewDku3sFcBRwqZl9Cmwguhmwu7sCTkRajYbGzN4BBgBntFAtIiKN1lCYGUR3MW+hWkREGq2hMOtmZtfVN9Hd78hCPSIijdJQmOUR3cncWqgWEZFGayjMlrn7L1usEhGRJmjo0Az1yESkzWgozI5tsSpERJqo3jBz99UtWYiISFPoJsAiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAaum+mtCH3VnzK57M/qnp93xkj6Np7V657/Sn+cNolzH7xXwBc8Y+HmTDmQeZPfLtJ2zvzthvpe8pQAF761d1Me+ZFAI6+8iKOueZiuu/dmx/t2J8Nq75q0naCUlBEu8NPB8DadQB3vKwEgETnbqTWrABL4Ou/omzmBEhWNHpTeT37kL/3AAC8opzy2a/ja1dF0/Y4mPxeB4JBxaIPSC6YtcWy+Xv2p+DAIykZ9xCUbWp0DS1NYRaIspJNjO5/8hZtXXvvyuolX3DSTVdVhVlz6HvyUHoNOJDR/U4mv10hP5r4NHNffp1N69bz6ZvTmP3ia1z3+lPNtr1glG+i9I2nAcjvcyhUlFPx2QwAik4aUTWtoP/x5O/el4rPZjZ6U75xLaVvjYXyUhLde1F48FBKJ/8V224H8nsdSOnkZyGVpPCwYaSWL8Q3rAHAiopJdNuN1Ma1TXyzLU+7mYFbOmseJWvWsf9xRzXbOnc5YB/mT5xKKpmkbGMJS2fN48AThwCwZOZcVi1a2mzb2halVn+BdezctHV89R8oL42ff4kVFQNgxdtH05IV4E5q1efk7bxn1XIFBx5F+bw3m7TtXFHPLBCF7Yu4acZLAKxasIT7zrqsatrLt97NsFtHMW/C5HqXP37UCA79/hm12j9+YyrPXH3LFm1LZ83j1F9czYQ7HqKwQ3v6DD2cZR983EzvZBtnRl733UkuX1xrUsGAb5Mo7lKrveKzmSSXflSrvVL+bgeQXL4IAF+3msR+h0NBEaQqyOvem9Sa5QAkduqNb9pQtTva1mQ1zMxsZ+B3wGCgFFgI/A0Y5u6ntsC2pwCHufvyuO0BYL67j8nmtnOhrt3MSp9MfheAvY8aXO/y48c8wPgxD6S1rXnjJ9F78MHc8NbzrF+xigVTppOqSGZetGyWl0+7b50LQGr1MpKLP6g1S/n0cRmvNtG1J3m99qf0zecB8PVfUfHJNNodPgyvKCe1diV4CvLyKdhnEKVvv9C095FDWQszMzNgLPCYu58Xt/UDTmvievPdfasjo+7+HzP7LfAbYLiZDQYOBa5oyvbbqpdH38NJN11FsqLuf7pMemYAL//6D7z86z8AcPGTd7H84wXNW/C2JllRNWZWn0x7ZrZdVwoOOYayqf+A8s0D+ckl80gumQdA/n7fwEvWYx06Yx060W7IedGyRcW0+9a5lE56Fko3NuWdtZhs9syGAuXufl9lg7vPNLMuwLFm9legLzANuMDd3cwWAoPcfaWZDQLGuPvRZnYz0APoDaw0s1eBYUAHYC9grLvfUEcN9wJvm9kQolC70t0rzKwAuB04AmgH/M7dHzGz3YCngI5AHvBf7j61mf9dcmLe+EkM+9WP6Nyje53TM+mZWSJBhy6d2LD6a3oetB89D96PD16d1JzlSh0y6ZlZ+2IKB59E+Yzx+Iavt5xY2B7KSrD2xeTtshelk/8K5aVsevVPVbO0O/YiSic9o18zY5VBVZf+wIHAF8CbwJFA/QM6kYHAUe5eYmbDgX7xekqBj8zsbndfUn0Bd0+Z2UhgAvCcu1eObI4Elrr7oWZWBEyNA/Ii4Hl3/62Z5QHtaxZhZiOAEQDF5G2l5Nbl5dH3cMULDzV5PXkFBYya9CwAJWvX88gF15JKRruZQ38wnBNuuIxOO3fjZ++/wpyX/s2fL72xyduUzOTvMxgrKKLgoOiHGdyjcAIKB52EFRZBKkX57IlVPxS0debu2Vmx2Q+BPdz92hrtRwM3ufvx8es/Am+6+5+30jNzd78lXmY4cKS7Xxq/fhkY7e51BqKZvQVc5e7T49cvAnsDlV87nYHhQCFRb+4J4G/u/n5D77GbtfOz2SX9fxTJuTtfGJXrEiRDHYb9YJq7D9rafNk8NGMuUW+qLtW/CpJs7iFWVKupqMYyG7a2DjM708xmxo/qbz4VPyoZcJm794sfe7j7RHcfT7R7/CXwlJmd29AbFJHWI5th9hrQzswurWyIB+GHNLDMQjYH4NmZbtDdx1YLqPcamHUccIWZ5cd17W9mRWbWG1jm7vcDjxPtxopIG5C1MPNo//VM4Hgz+9TM5gI3E42T1ecW4C4zm0TU28qWe4HFwAwzmwPcQzTgfzwwy8xmACcBf8hiDSLSjLI2ZrYt0JhZ26Mxs7anNYyZiYi0GIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBHP3XNfQZpnZCmBRruvIkh2BlbkuQtIW8ue1u7t329pMCjOpk5m95+6Dcl2HpEefl3YzRSQQCjMRCYLCTOrzQK4LkIxs85+XxsxEJAjqmYlIEBRmIhIEhZmIBEFhJk1iZpbrGiRzIX5uCjNpNDMzj39BMrMjzayfme1bfXruqpP61PjczjWzwWaWl+u6mio/1wVI21XtD+I64LvAF0CJmU1x93tcP5W3StU+tyuBy4DT3T2Z26qaTmEmGTOz7YCN7p40s17AOcCxQB7QF7jGzD5x91dyWafUz8wOAC4BTnb3pWZ2EtAemO7uC3NaXCMpzCQjZtYHuAm4x8ymx81FRMcsrjWz2cCnwG65qlFqq75rGVsC/Av4rZl9DewJrAC6Ag/moMQm05iZZMTd5wPriXZPDnL3xcAUonDr4O7rgBJgH9C4WWtgZolqu5ZHmVllL3oi8C5wp7sfD8wG9q1/Ta2bzgCQtJhZN6Dc3b+OX48G9gB+A6wFrgKOA54BLgSGuftHOSpX6mBm1wBnA/OB/YDL3X12PO0C4FrgAnefl7sqG089M9kqM+sHfA68ZGaXm1lfd78J+IRo3GUHd78OuJ3oD+U0BVnumdlBZjYkfj4AONrdvwm8D2wE5sbT+hGNeQ5vq0EG6plJGsysB3Ar8A3gY2Ax0Bt4GrgcmAPc5+4zc1WjbMnMCoF7gGnufr+Z7QxcDOwK7AWc6u7lZnYW8CKQ7+4bc1dx06lnJlvl7l8QhdkjRONhNwOPAV2AzsAI4K74D0hyqHKM0t3LgPHAgHhSB+BgYH/g/DjILgJ+AWzf1oMM1DOTDJjZXkQ9sa7AKHdfbWa7EY2dfeHun+S0QKk85OIjoIBoMP82ol5Y0sxOIBoX+5joSIajiIJtbq7qbU4KM9mqGkeM7wlcCvQEfuzuy3JanFQxs/ZEh1ssJvrCeQz4JXC2u8+I5xkI9AC6A/92989yVG6zU5jJFmoej2RmCQB3T8Xf+gXAOqJv+HZEv4ilclKs1BIHWiFwcvzfHwNPAn9099W5rC3bFGZSpUYP7ADg63i8DDM7FPgH0SEXU81sd6DE3ZfnrmKpro4DY4kH/v8EvAfc5e6rclJcC1CYSS1mdjUwnGjQ+BbgNeB0YKG7j8thaZKG+CDZlJnlxWNlPYmO/3sJ+HWo58zqdCbZgpmdDBwDDAROJDrSPwG8UDk+VlcPQFreVoYEDgISZjbH3T83s7OBgpA/Nx2asY2rfrqRmR1INNayo7un3P0lohtlfAc4w8w6w+arLkju1BwSMLMe8WeWiocEXgU6xj2zhLv/x92X5Lbq7FKYbeOq/UFcDIwExgFfmtkNZpbv7v8kGnM5OndVSk3VPreriQb4/21m34vHyPoTHc3/VjzvNvEDjXYzBTM7AjgDOMfdy+Le2vHAtWZ2p7v/3cwmuPuG3FYq1WlIYEvqmW3j4m/yy4ku2dMjbn4VeAU4gOgEcojO5ZMc0pBAwxRm27D4iPD1wB1E51eeZWa7uvsmooMvn4of29QfRWulIYGG6dCMbZSZdSAKse5El+w5GPg+0ZUwno+vUyatTDwkcCObhwSGEQ0JLCa6LlmFmXXcFocE1DPbRsUnFv8S+Ax4GJhFNJDcDzg1hBtchEZDAg1Tz2wbE1+Er7u73xG/3onoMtjFwJXAQcBid/9P7qqUmuIhgbeAvYEfATOAZ+Lr9xcBQ4BZ2/Lnpp5Z4CoPpKzmM6IbjlwB4O5fEo29HEa0m/LOtvwH0RrFQwJnAY8TXfHiXqJr9p9jZr3cfZO7j9vWPzeFWcDin+VT8fNvmNme8bFHpxAF2pXxrB2A54Bf5ahUaYCGBNKj3cxAxSeKX+buV8e/fl1PdK3+p4D7iL7ZHyX6pj8COCG+WYm0EhoSyIzCLEBmNojoCqPnAguAjsAFwOHA94BFRJdULgR2BtaHfqpLW1B5gni110cQffnc5u73xm2nEN1EZpK7X56bSlsn7WYGxsxOBe4HKoA/AmVAX3dPuvtkoj+O3sAooLO7z1OQ5Z6GBJpOpzMFJL4Tz++AC919Stw2B9jdzO5y96vd/Q0zKwBOJdrtlByrHBIAthgSMLPKIYEzgUfN7Eg2Dwl8nrOCWyntZgbEzK4Dku5+l5kVxgdV5hFdC/4aoost3hDP297dS3JZr2hIoDlpNzMA1c7Z2wPoFj8vj3ddksA8YBIw0Mxui6dvauEypQYNCTQv7WYGoNp5k2OBn5jZQHefZmaJeFA5aWa7EN0qbkKNZSQHNCTQ/LSbGRAz60g03tIBeNrdp8Xt5wM/BM7VOZetg4YEmp92MwMSn1z8IPGVMMxsjJndSnSj1xEKstzTkED2qGcWIItuNzYQOA5YRnR/RB0Q24qY2THAT4juPTotPu3M4iGBG4AvgAk6IDZ9CjORHNCQQPNTmInkSHwLuEuAY4F3iXYnzwG+4+6zc1lbW6QwE8khDQk0H4WZiARBv2aKSBAUZiISBIWZiARBYSYiQVCYiUgQFGaSVWaWNLOZZjbHzJ6Nb87R2HUdbWYvxs+HmdmNDczbpfKmLRlu42YzG5Vue415HjWzczLYVu/45HJpBgozybYSd+/n7n2JLnGzxaWeLZLx/4fu/oK739bALF2AjMNM2i6FmbSkScDecY9knpndC0wHdjOzE8xsiplNj3twxQBmdqKZfWhmk4lut0bcPtzM7omf72RmY81sVvw4ArgN2CvuFd4ez3e9mb1rZu+b2S3V1nWTmX1kZhOIrlrRIDO7NF7PLDN7rkZv8zgzm2Rm8+PrlWFmeWZ2e7VtX9bUf0ipTWEmLcLM8oGTgMrTdPYFHnf3/sAG4KfAce4+AHgPuM6im9s+CJwGfJPoSqt1+T0w0d0PIbpq61zgRuDTuFd4vUU30d0HOJToFm0DzexbZjYQOA/oTxSWg9N4O8+7++B4e/OITkmq1JvohrynAPfF7+ESYI27D47Xf6mZ7ZHGdiQDujijZFt7M5sZP59EdN/HHsAid387bv8GcADwZnyFnEJgCrAfsMDdPwYwsz8DI+rYxjHARQDxZXTWmNn2NeY5IX7MiF8XE4XbdsDY+N6UmNkLabynvvGllbrE6xlXbdoz8Y1JPjazz+L3cAJwcLXxtM7xtnXaUjNSmEm2lbh7v+oNcWBtqN4EjHf382vM1w9orvPtDPgfd7+/xjauacQ2HgXOcPdZZjYcOLratJrr8njbP3D36qGHmfXOcLvSAO1mSmvwNnCkme0NYGYdzKwP8CGwh5ntFc93fj3L/wsYGS+bZ2adgHVEva5K44CLq43F9TSz7sAbwJlm1t7MtiPapd2a7YBl8SWtv19j2nfiy5XvRXSj5Y/ibY+M58fM+sSXAJJmpJ6Z5Jy7r4h7OH8xs3Zx80/dfb6ZjQD+aWYrgclA3zpWcTXwgJldAiSBke4+xczejA99eDkeN9sfmBL3DNcDF7j7dDN7GphJdCekSWmU/DNgajz/bLYMzY+AicBOwOXuvsnMHiIaS5seX2l2BXBGev86ki5dNUNEgqDdTBEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCP8fwIahq9It/VsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.764 \n",
"Precision=0.488\n",
"F1=0.595\n",
"Average precision-recall score: 0.647\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8VfX9x/HXJyEQwoYAYsKSJRskMqwi1gXWguKoWgdWpQ7c+qv9ufXXWq1aaasCIqXiQLBVERFUZDgAAQVkRqaEDcoIELM+vz/uJYQQbga5uRnv5+ORB/eMe87nnIT7vud7zvkec3dERESOJSrSBYiISNmmoBARkZAUFCIiEpKCQkREQlJQiIhISAoKEREJSUEh5YqZLTOzfgXM08zMUs0supTKCiszG2JmX+QadjNrHcmapHJRUEiJMLP1ZnYw+AG9zcz+ZWY1S3o97t7R3WcWMM8P7l7T3bNKev3BD+n9we3cZGbPl7VAMrPzzWy2me0zsx1mNsvMBka6Lim/FBRSkn7t7jWBU4BTgYfyzmAB5f3vrmtwO88EfgP8LsL15DCzS4GJwGtAItAYeAT4dTGWVRF+V1IC9EcgJc7dNwEfAZ0AzGymmf3JzL4EDgAnmVkdM3vVzLYEv5n/X+5v5mZ2k5mtCH4rXm5mpwTHrzezc4Kve5rZAjPbGzyKeT44vkXwm3+V4PCJZjbJzH40s9VmdlOu9TxmZhPM7LXgupaZWVIht3M18CXQLdfyirtdD5jZmlzjLy7qfjczA54HnnT30e6+x92z3X2Wu9+Ua3tfz/WevPsq7+/qf81sQZ713G1mk4Kvq5nZs2b2Q/B3MMLMqhe1dinbFBRS4sysKXAB8G2u0dcAQ4FawAbg30Am0BroDpwH3Bh8/2XAY8C1QG1gILArn1UNB4a7e22gFTDhGCW9BaQAJwKXAn82s7NzTR8IjAfqApOAfxZyO08GzgBW5xpd3O1aE1xWHeBx4HUza1KYOnJpBzQF3ini+/LK/bv6B9DOzNrkmn4V8Gbw9dNAWwJh2RpIIHAEIxWJu+tHP8f9A6wHUoHdBILgJaB6cNpM4Ilc8zYGfj40PTjuSmBG8PU04M4Q6zkn+Ho2gQ/V+DzztAAcqELggzMLqJVr+lPA2ODrx4BPc03rABwMsZ0O7AX2B1+/BVQ73u3KZz2LgEHB10OAL/LU0Dqf9/wiOC02xHIfA17Pb1/l97sKjnsdeCT4ug2wD4gDLLgfWuWatw+wLtJ/j/op2R8dUUhJusjd67p7c3e/1d0P5pq2Mdfr5kAMsMXMdpvZbmAk0Cg4vSmBb9gFuYHAt9mVZjbfzC7MZ54TgR/dfV+ucRsIfPM9ZGuu1weA2ENNMcdwClCTwPmJXkCN490uM7vWzBblel8nID5EDfk5dHRS1CORvDbmGX6TQOBB4GjiPXc/ADQkEBgLc9U9NTheKhAFhZSW3N0UbyTwzTs+GCx13b22u3fMNb1VgQt0/97dryTwQfw08I6Z1cgz22agvpnVyjWuGbCpuBsSXLe7+wRgDoebWoq1XWbWHHgFGAY0cPe6wFIC39iLYlVwHZeEmGc/gQ/3Q07IZ568XUp/DMSbWTcCgXGo2WkncBDomGt763jgRL9UIAoKKXXuvoXAh89zZlbbzKLMrJWZnRmcZTRwn5n1CF550zr4YXoEM7vazBq6ezaBJi8INDPlXtdG4CvgKTOLNbMuBI5E3iihzfkLMNTMTjiO7apB4MN5R3C7rid4IUBRuLsD9wAPm9n1uWo43cxGBWdbBPS1wL0mdYA/FmK5mQTOe/wVqA98EhyfTSDg/mZmjYK1J5jZ+UWtXco2BYVEyrVAVWA58BOBD6ImAO4+EfgTgW+u+4D3CHxA5dUfWGZmqQRObF/h7mn5zHclgbb4zcC7wKPu/klJbIS7fwfMAu4v7na5+3LgOQJHJ9uAzgSupipOPe9w+JLdzcHl/R/wfnD6J8DbwBJgITC5kIt+EzgHmBgMjkP+QOBk/lwz2wt8SuCkulQgFvgSIiIikj8dUYiISEgKChERCUlBISIiISkoREQkpFA3FZVJ8fHx3qJFi0iXISJSrixcuHCnuxfrZshyFxQtWrRgwYIFBc8oIiI5zGxDcd+rpicREQlJQSEiIiEpKEREJKRyd45CRMqOjIwMUlJSSEvLr+cUiYTY2FgSExOJiYkpsWUqKESk2FJSUqhVqxYtWrQg8IA9iSR3Z9euXaSkpNCyZcsSW66ankSk2NLS0mjQoIFCoowwMxo0aFDiR3hhCwozG2Nm281s6TGmm5n9PfgM4yWHnh0sIuWLQqJsCcfvI5xNT2MJPHv4tWNMH0DgsYptCDwl7OXgvyFlezYHMw4WNNtRYqvE6g9aRKQYwhYU7j7bzFqEmGUQ8FrwYStzzayumTUJPvzlmL7d8i1xf44LNUu+hnQbwr8G/avI7xMRKaqFCxcyZMgQDh48yAUXXMDw4cPz/aI6c+ZM7rrrLjIyMoiPj2fWrFk507KyskhKSiIhIYHJkwOPDTnjjDPYty/wVN/t27fTs2dP3nvvvbBvTyRPZidw5LN5U4LjjgoKMxsKDAWom1iXB85+oEgremfFO8xYN6P4lYpIuZaVlUV0dHSpre+WW25h1KhR9O7dmwsuuICpU6cyYMCAI+bZvXs3t956K1OnTqVZs2Zs3779iOnDhw+nffv27N27N2fc559/nvP6kksuYdCgQeHdkKBIBkV+7UD5PkXJ3UcBowCSkpL8D6f/oUgr+jnrZx6d+Sj70/dTo2reRyqLSHl20UUXsXHjRtLS0rjzzjsZOnQoADVr1uSee+5h2rRpPPfcc1SvXp177rmH1NRU4uPjGTt2LE2aNOGVV15h1KhRpKen07p1a8aNG0dcXNFbLQ7ZsmULe/fupU+fPgBce+21vPfee0cFxZtvvsngwYNp1qwZAI0aNcqZlpKSwocffsiDDz7I888/f9Q69u3bx2effca//lU6rSSRDIoUoGmu4UQCj24sce3j2wOQvCuZ7k26h2MVIpXeXVPvYtHWRSW6zG4ndOOF/i+EnGfMmDHUr1+fgwcPcuqpp3LJJZfQoEED9u/fT6dOnXjiiSfIyMjgzDPP5P3336dhw4a8/fbbPPjgg4wZM4bBgwdz0003AfDQQw/x6quvcvvttx+xjhkzZnD33Xcfte64uDi++uqrI8Zt2rSJxMTEnOHExEQ2bdp01HuTk5PJyMigX79+7Nu3jzvvvJNrr70WgLvuuotnnnkmp5kpr3fffZezzz6b2rVrh9w3JSWSQTEJGGZm4wmcxN5T0PmJ4mrfMBAUK3auUFCIVDB///vfeffddwHYuHEj33//PQ0aNCA6OppLLrkEgFWrVrF06VLOPfdcINAU1aRJEwCWLl3KQw89xO7du0lNTeX8888/ah1nnXUWixYVLgTze7x0fucnMjMzWbhwIdOnT+fgwYP06dOH3r17k5ycTKNGjejRowczZ87Mdx1vvfUWN954Y6HqKQlhCwozewvoB8SbWQrwKBAD4O4jgCnABQQezH4AuD5ctbSp34Yoi2LFjhXhWoVIpVfQN/9wmDlzJp9++ilz5swhLi6Ofv365dxDEBsbm3Newt3p2LEjc+bMOWoZQ4YM4b333qNr166MHTs23w/nohxRJCYmkpKSkjOckpLCiSeeeNR7ExMTiY+Pp0aNGtSoUYO+ffuyePFivvnmGyZNmsSUKVNIS0tj7969XH311bz++usA7Nq1i6+//jonHEtDOK96urKA6Q7cFq7151atSjVa1WvFip0KCpGKZM+ePdSrV4+4uDhWrlzJ3Llz852vXbt27Nixgzlz5tCnTx8yMjJITk6mY8eO7Nu3jyZNmpCRkcEbb7xBQkLCUe8vyhFFkyZNqFWrFnPnzqVXr1689tprRzVlAQwaNIhhw4aRmZlJeno68+bN4+677+ayyy7jqaeeAgJB+Oyzz+aEBMDEiRO58MILiY2NLVQ9JaHSdOHRvmF7BYVIBdO/f39GjBhBly5daNeuHb179853vqpVq/LOO+9wxx13sGfPHjIzM7nrrrvo2LEjTz75JL169aJ58+Z07tz5mOcFiuLll1/OuTx2wIABOSeyR4wYAcDNN99M+/bt6d+/P126dCEqKoobb7yRTp06Fbjs8ePH88ADRbvy83hZfu1pZVlSUpIX58FFD3z6AM/PeZ4DDx6gSlSlyUeRsFqxYgXt27ePdBmSR36/FzNb6O5JxVlepenrqX18ezKyM1j709pIlyIiUq5UnqA4dOWTTmiLiBRJpQmKk+NPBmDZjmURrkSkYilvzdcVXTh+H5UmKGpXq03bBm35etPXkS5FpMKIjY1l165dCosy4tDzKEr6iqhKdVa3d2Jvpq2ehrurJ1mREnDonoEdO3ZEuhQJOvSEu5JUqYKiT2IfXlv8Gut3r6dlvSOf/vTFD18wcuFInj/veRrWaBihCkXKl5iYmBJ9kpqUTZWm6QkCRxQAc1MO35SzO203N0++mTP+dQavL3mdOSlH37kpIlKZVaqg6NSoE3ExcTlBMWfjHDq/3JlXvnmFQe1Kp7teEZHyplIFRZWoKpx64qnM3TSXkQtG0ndsX2KiYph7w1weOfORSJcnIlImVaqggEDz0/xN87n5w5s596RzWTh0IacmnBrpskREyqxKFxT9WvTDca7vdj3vX/E+9arXi3RJIiJlWqW66gmgf+v+LLt1Ge3j2+sSWRGRQqh0QQHQoWGHSJcgIlJuVLqmJxERKRoFhYiIhKSgKIKtqVv5fMPnkS5DRKRUKSjyeGn+S/Qa3Yus7Kwjxk9OnkyT55rQd2zfCFUmIhIZlfJkdijT1kwDIC0zjRpVa5Dt2fz58z/zyAzdkCcilZOOKILqxtYFILH24V4XU9NTuWziZTw842Gu7Hwl9592PwDzUuYxf9P8iNQpIlLaFBRBJ9U7iW33beP2nrcDsPantfR5tQ/vrXyPZ899ltcvfp24mDgA+rzah96v9uapz58i27OZmzKX4XOHq09+EamQ1PSUS6MajTACN+Gd9e+zyPZspv52Kue2OheAatHVALiu23WkZabxv5/9L28ve5vvtn9HtmdzVeeritRF+bLty3jqi6doVKMRz5//fMlvkIhICVBQHEPV6KpMv3Z6zrO2AW459RbOaH4Gpzc7HXfnzOZnct/H99G6fmuSdyXjhD6iyMrOYsXOFcxLmceU1VP474r/AtCibgvu7n039arXo2bVmmHdLhGRorLy1lySlJTkCxYsCNvyP17zMQ999hBvDH6DNg3aFDh/tmczYsEIbptyG1vv3Urjmo1zpm3Zt4V5m+YxL2Ue8zbNY/7m+aSmpwJQv3p9bkm6hSXblvDh9x+S7dnc1+c+/nreX8O2bSJSeZnZQndPKs57dUSRx3mtzuO8VucVev4oiyK2SuD5tJ1f7szpzU7nlCanMG7JOJJ3JQOB7s27ndCNa7tcS6/EXvRK6EWbBm2Isige/uxhZm2YRVpmGj+l/RSWbRIROR4KihJwVeerAJi9YTazN8zm3ZXv0j6+PX87/2/0SuhF9ybdc8Ikryd/+SSPn/U4zf7WrDRLFhEpNDU9hcGO/TuoV70eVaIKn8OJzyeSdGISJ9U7iYnLJ9InsQ+XdriUzOxM2se3p3uT7mGsWEQqOjU9lTFFufIpt/dXvU+URXF+q/OZvWE2E5dPBODck87l42s+LskSRUQKTUFRRgxsN5C9P+/l4b4P0y6+HVnZWXy18Sv6ju1L1eiqkS5PRCoxBUUZ8dKvXjpiODoqmjOan8EpTU4hMzuTycmTaRjXkO5Nuis4RKRUKSjKgWlrpuX0QVW9SnUuaHMBEy6bQJTpxnoRCb+wftKYWX8zW2Vmq83sgXymNzOzGWb2rZktMbMLwllPeZTUJIleCb34z+X/YeJlEzmt6Wn8Z8V/OJBxINKliUglEbYjCjOLBl4EzgVSgPlmNsndl+ea7SFggru/bGYdgClAi3DVVB6N/PXII4bX717P9HXTI1SNiFRG4Tyi6Amsdve17p4OjAcG5ZnHgdrB13WAzWGsp0I4dDnzuMXjAFi1cxWPzHiEralbI1mWiFRg4TxHkQBszDWcAvTKM89jwMdmdjtQAzgnvwWZ2VBgKECzZpX7xrTa1QK5euuUW/li4xe89d1bOM5XG78iLiaONwa/Qa1qtSJcpYhUJOE8orB8xuW9u+9KYKy7JwIXAOPMjj5D6+6j3D3J3ZMaNizePQoVxbVdr6VXQiBv31/5PkN7DAVg+rrpfJD8AZOTJ0eyPBGpgMJ5RJECNM01nMjRTUs3AP0B3H2OmcUC8cD2MNZVrlWPqc6IC0fw8ZqP+V333xEfF0+fxD50bNSRgW8N5IV5LzBi4Qj6Ne/H42c9HulyRaQCCGdQzAfamFlLYBNwBXBVnnl+AM4GxppZeyAW2BHGmiqEbid0o9sJ3XKGr+t2HQCD2w/mxfkvAhBt0RGpTUQqnrA1Pbl7JjAMmAasIHB10zIze8LMBgZnuxe4ycwWA28BQ7y8dT5Vhjx51pNMuWoKF598MV9v+pqBbw3kq41fRbosESnn1ClgBbRp7yaSXklia+pWnjzrSR7q+1CkSxKRCDueTgF1a28FlFA7geRhgWdhWL7XFIiIFJ6CooI61vMvRESKSkFRCai7DxE5HgqKCu6hGQ9R4881+DD5w0iXIiLllIKigoqyKOpUq5MzfOFbF/LPr/9JRlYGk1ZNYvO+oveW4u5s2L2BbM8+rtqysrMobxdRiFRmCooKKjoqmhW3rWDbfdu4s9ed9Ensw+0f3U67f7Zj0PhBPD/nedIy01i2fdkR78vvA/xAxgFGfzOabiO70WJ4Cz5Z8wl70vbw8vyXmbRqUsg60jLTcHeyPZuZ62dy06SbqPJkFaKeiGLp9qUs3b6UrOysEt12ESlZeh5FBdakVhMAXuj/Ao/PfJw5KXOIj4tn877NfLzmY56b8xwAd/e+m/tOu4+RC0by8oKXGdBmAKMuHMWW1C28NP8lRn8zmp/SfqJF3RZAoDlr+Y7lHMg4QIeGHagRU4NXvnmF6eumc36r89nz8x5a1m3J2p/WMnX1VDo37syuA7vYuHcjNavWzKmv88udAahfvT6jLhxFelY6PRN6Eh8XT53YOohI2aD7KCqJPWl7+P7H7+nRpAcnPHcC2/fn30tK78TezE2ZCwSarwzj4vYXc0fPO2hZryVN/9aUuJg4rup0Fd9t/455m+YBUC+2HkknJjF93XTaNmhLyt4UalerzaB2g/hk7Se0a9COq7tczcB2A0lNT+X3k3/P3p/38tm6z46q4bedf8sjZz5Cy7otiYmOCd9OEalEjuc+CgVFJTRj3Qxiq8RyasKpzFg3g62pW/l609fc1vM2GtdoTP1n6gPwx9P/yC1Jt9C0zuEuuxZsXkCb+m2oE1uHUQtH8d8V/+WaLtcwuP1gqsdUJys7i+io6JwmLLPQ93Hs+3kff/niL/RO7A3AwPEDj5hes2pNkocls273OhrVaETr+q1LcleIVBoKCilRybuSSaydSFxMXKmv+8lZT/JVyldMXT31qGl9m/dl1pBZpV6TSEWgoJAKyd0Zt2Qcs9bP4ouNX7A/fT/dm3RncvJk+rXox9uXvk2jGo0iXaZIuaCgkArv0gmX8p8V/6FGTA32Z+zPGb/z/p00iGsQwcpEygf19SQV3vD+w5l34zz2/nEva+9YS/3qgfMou9N2s3HPRralbotwhSIVl4JCyoWE2gn0TOhJlEXRsl5LXjj/BQB+9eavaPZCMxKeT2DkgpFkZGUAsC11G68sfIVB4wcx+pvRkSxdpNzTfRRSLiXUTgCgTmwdnj7naf7w6R+4+cObufnDm4FAr7kefPLu9v3bibIoOjXqxJc/fMnibYt5qO9DuoJKpJB0jkLKrfSsdKpGVwVg8dbF/OXLvzB+6Xha1m3JkG5DuOjki7hh0g0s2Hz030vDuIZsv19P3JXKQyezRYLc/Yh7Nz5e8zGrdq5i8bbFdGnchV80/QVn/fssDmQcIPORzAhWKlK6jico1PQkFUreG/zOa3Ue57U674hx13S5hvHLxh8VKiKSPwWFVDqO8+PBH+n8cmd+3+P3zNowiy6Nu/D7Hr+nbmxdvvjhC5rXba5zGCJBanqSSufzDZ/Td2zfAuc7q8VZPHrmo5zZ4sxSqEokvHQfhUgRnNH8DLIfyWbxzYtJHpZM2oNpDGw3kJioGIaeMjTnMbIz1s9g6uqpR3XFLlLZ6IhCJI+DGQdJTU+l0bOHuwf57NrP+GHPD5xY60ROb3Y6q3atokPDDjlXXYmUdTqZLVKCqsdUJ7ZKLHf0vIPvf/yej1Z/xC9f++VR843+9WhuOOWGCFQoUroUFCL5MDOGDxjOzgM7ueXDW+jauCvN6jTjhz0/sO/nfTzz1TPs/XkvGVkZfLnxS6pXqU6vxF6RLlskLNT0JFJEe9L2UPfpurSu35rt+7ez9+e9nFjrRDbdsynSpYkck5qeREpR9ZjqxMfFk5aZxhUdryD5x2S+2/YdW1O3Mm31NCYsn0Cb+m3oldCLlTtXUje2Lj1O7EFCrQQWbV3Er9r+ih8P/khGVgbN6zaP9OaIFEhBIVJEVaOrsuXeLURbNGbGsCnDmLl+Jk2ea1Kk5TSu0Zit920NU5UiJUdBIVIMVaIO/9c5r9V5JO9K5qwWZ9G/dX+qRFXho9Uf0T6+PfvS97F462JW7lpJ74TePDn7SXol9uJgxkHmbZrH2EVjGdhuYE636SJlkc5RiETA/83+Px6e8TAAV3a6kjcveTPCFUlFpxvuRMqZu3vfzRuD3wDgp7SfIlyNSGgKCpEIqFG1Bld1voqkE5OYunoqXUd0ZcPuDUCgB9zVP65m5IKRDH57MPa4YY8bv3v/d2RlZ0W4cqmMCn2OwswSgOa53+Pus8NRlEhl8cAvHuDSiZeyZNsSWgxvAUDNqjVJTU8FID4uPmfefy36F7Wq1qJdfDu6n9CdPk37RKJkqYQKdY7CzJ4GfgMsBw59pXF3H1jA+/oDw4FoYLS7/yWfeS4HHgMcWOzuV4Vaps5RSEWzP30/7V9sz8a9GwEY2G4g/Vv15+yTzqZN/TaYGf9d8V8umXBJznt+2fKXTL92eqRKlnIo7A8uMrNVQBd3/7kIRUUDycC5QAowH7jS3ZfnmqcNMAH4pbv/ZGaN3D3kY8cUFFIZZWZn8smaT9iSuoXn5zzPsh3L6JXQi8HtB3PjKTeSnpVOw7iGREdFk5WdRXRUdKRLljKmNG64WwvEAIUOCqAnsNrd1wKY2XhgEIGjkkNuAl50958ACgoJkcqqSlQVBrQZAMAXP3zBsh3LmLdpHvM2zeMPn/7hiHmrRlflqbOf4p4+90SiVKmACnsy+wCwyMxGmtnfD/0U8J4EYGOu4ZTguNzaAm3N7EszmxtsqhKREMYMGsPuP+xm9pDZ9G3el8s7Xp5zH0aXxl1Iz0rn3o/vpdXfW1HjzzW4a+pdlLfL4KVsKWzT03X5jXf3f4d4z2XA+e5+Y3D4GqCnu9+ea57JQAZwOZAIfA50cvfdeZY1FBgK0KxZsx4bNmwosGaRyuqRGY/w5Ownjxr/6JmP8li/x8jMzmTx1sXsPLCT81ufH4EKJRLCfo4iuJKqBI4AAFa5e0YB8/cBHnP384PDfwRw96dyzTMCmOvuY4PD04EH3H3+sZarcxQiBdv38z5iq8SybMcy+rzah7TMtJxpua+q6tyoM+9c/g5tG7Q91qKkggj7DXdm1g/4HngReAlINrOCniU5H2hjZi2DIXMFMCnPPO8BZwXXEU8giNYWunoRyVetarWIiY6h2wndOPjgQWZeN5P4uHjaNmjLNV2u4Y6edwDw3fbvaPfPdjz82cO89d1bZGSF/P4nlVRhm54WAle5+6rgcFvgLXfvUcD7LgBeIHB57Bh3/5OZPQEscPdJZmbAc0B/Apfd/sndx4dapo4oRErG7rTddB3RlR/2/JAz7h8D/sGwnsMiWJWES2lcHrvE3bsUNK40KChESs6uA7tYsXMFuw7s4qK3L6JxjcZUq1KNr373FQm18157IuVZafT1tMDMXjWzfsGfV4CFxVmhiJQdDeIacHqz0xnYbiCnNzuduJg4ftjzA1O+nxLp0qQMKWxQ3AIsA+4A7iRwL8TN4SpKREqXmfH59Z8zZtAYAIZOHsrutN0FvEsqi0IFhbv/7O7Pu/tgd7/Y3f9WlLu0RaR8OL3Z6fRr0Q+Azfs2M3/TfLbv132wlV3IoDCzCcF/vzOzJXl/SqdEESktVaKqcFWnQHdrHV/qSM/RPbn9o9sLeJdUdCFPZptZE3ffYmb5PtjX3Uv9zjedzBYJr+37t3P3tLupEVODSasmsW3/NgCmXDWFXom9qBFTg2pVqkW4Simq0rjqqQZw0N2zg5fGngx8VNBNd+GgoBApPWMXjeX6968/avyff/lnFmxZQNfGXbm3z71s2reJ2tVqU796fWKiYghc+S5lSWkExULgDKAeMBdYABxw998WZ6XHQ0EhUvrGLhrLuCXj+GzdZwXOaxi/7fJbxgwcw4GMA2xJ3cLJ8SeXQpUSSmkExTfufoqZ3Q5Ud/dnzOxbd+9enJUeDwWFSOTsT9/PnJQ5dG7UmfW71zPso2H0SexD8zrNGbMoEAzrd68/6n1Lb1lKx0YdS79gyVEaQfEtcCvwN+AGd19mZt+5e+firPR4KChEyrZP137KYzMfIzU9lfYN2zN+aaCzhXEXj6Ntg7b0TOgZ4Qorp9IIijOBe4Ev3f1pMzsJuMvd7yjOSo+HgkKk/Ni+fzuNn218xLgZ183IuQRXSk+p9B5bVigoRMqXvT/vZdKqSYz+ZjSzNswiyqLYdt+2I54HLuEXti48zOyF4L8fmNmkvD/FWaGIVC61q9Xm6i5XM+O6GfRO7E22Z9Pl5S68t/I9MrMzI12eFEJB91H0cPeFwaano7j7rLBVdgw6ohApv9bvXk/L4S1zhscOGst13fJ9LpqUsLA9M9vdD3X8t4DgfRTBFUYDuuNGRIqkRd0WLLt1Ga8sfIUX5r3AkPeHMCdlDpv3bWbB5gW8c/k7nNb0tEiXKXnjyjPqAAAQbUlEQVQUtlPA6UBcruHqwKclX46IVHQdGnbgufOf45L2lwAwcuFIPkj+gC2pW3hh7gsRrk7yE/KIIpdYd089NODuqWYWF+oNIiLHEmVRTLhsAou3LqZlvZbUqVaHZi80Y+LyiXR8qSNxMXEs2baEDg078M3Qb3Snd4QV9ohiv5mdcmjAzHoAB8NTkohUBlEWRfcm3akbWxcz46J2FwGwfMdyalWtRXpWOou2LiLqiSiq/6k6rf7eig9WfUC2Z7Ny50q+3/U9AD8e/JG1P63lkzWfsGDzAl795lUmJ0+O5KZVOIW9j+JUYDywOTiqCfCbXOcwSo1OZotUXJnZmURZFFEWxbyUefR+tTcAJ9U7ibU/reWEmieQmp5KanpqAUuCKztdyewNs9m0bxO3JN3C/oz97Enbw78v+jd1YuuEe1PKnFK5j8LMYoB2gAErI9EhICgoRCojd+eccedwIOMAPZr0IDM7kwnLJnBeq/PIzM7k7JZns3LnSk5rehpT10xl7KKxNKvT7IjngR/StXFXFt28KAJbEVmlcWd2HHAP0NzdbzKzNkA7dy/14zsFhYiE4u7sS99H7Wq1AVj942pqVq1JfFw83UZ0Y+eBnYy9aCydGnUiPi6e2CqxEa64dITt8thc/kXgGdl9gsMpwERADYEiUqaYWU5IALSu3zrn9WlNT+OVb15hwBsDjnjPNV2uoWXdljx+1uOlVmd5UtigaOXuvzGzKwHc/aDpMgQRKWfuP+1+ejTpwcqdK/kq5Su+3vQ1AOOWjAPg+u7X06JuiwhWWDYVNijSzaw64ABm1grQM7NFpFxp06ANbRq0OWJcanoqz331HI/NeoxLJ1zKgqFq2s6rsJfHPgpMBZqa2RsEbsD7n7BVJSJSSmpWrcmdve+kdrXaLNyykEdmPBLpksqcAk9mB5uYEoEDQG8CVz3Ndfed4S/vaDqZLSLhMOX7KfzqzV9RvUp1DmYepGbVmrSs25KLTr6Ix/s9zsHMg6z5cQ1tG7Qtl88ML5VHobp7j+KsoKQpKEQkXB6Z8Qgffv8h32z55qhpURZFtmcTZVE8e+6zDOs5jJjomAhUWTylERQvAmPdfX5xVlKSFBQiEm6Z2ZkYxnfbv2PQ+EF0bNiRngk9eXzW4auinj7nado2aMsvW/7yiKusyqrSCIrlBG62Ww/sJ9D85O7epTgrPR4KChGJlP3p+5m1YRa/evNXOeMSayey5o41VI2uGsHKClYaQdE8v/HuvqE4Kz0eCgoRiaRsz2bCsglkZWdx9btXA9CybksW3byoTB9ZhPMJd7FmdhdwP9Af2OTuGw79FGeFIiLlWZRFcUWnK/htl9+y4rYVAKzbvY6HP3s4wpWFT0GXx/4bSAK+AwYAz4W9IhGRcuLk+JP5/vZAL7YTlk9g9DejC9VhYXlTUFB0cPer3X0kcClwRinUJCJSbrSu35p2DdqxNXUrN31wEwPfGsjOAxG5eyBsCgqKnB5i3V1PQRcRyce7v3mX/1z+HwBmrJ9Bw782ZO/PeyNcVckpKCi6mtne4M8+oMuh12ZW4F4ws/5mtsrMVpvZAyHmu9TM3MyKdaJFRCSS2jdsz+D2g9l+33ZOqncSAEM/GBrhqkpOoZ9HUeQFm0UDycC5BHqbnQ9c6e7L88xXC/gQqAoMc/eQlzTpqicRKcu+3vQ1vUb3OmLcu795lzb125CZnUnXE7pGpK6wXfV0nHoCq919rbunE3hC3qB85nsSeAZIC2MtIiKlomdCTxb9fhFdGx8OhIvfvphOL3ei28hurPlxTQSrK57C9h5bHAnAxlzDKcARMWtm3YGm7j7ZzO471oLMbCgwFKBZs2ZhKFVEpOR0PeHwU/Q++v4jVu5cyYY9Gxg+bzit/9GaXf+zi1pVa7Fu9zq+3/U9Px78kYTaCTSp2YQ6sXU4sdaJEd6CI4UzKPJ7XkVOO5eZRQF/A4YUtCB3HwWMgkDTUwnVJyISdgPaDGBAmwHsPLCT4fOGA9DgmQYh35NYO5Heib1pW78t2/Zv44buN9CnaZ+Q7wmncAZFCtA013AisDnXcC2gEzAz+AykE4BJZjawoPMUIiLlTXxcPFvu3cKD0x9kzU9rOPXEU+nUqBNtG7QleVcyS7YtYdfBXew6uIva1WozadUk3kl/B4BXv30VgH8M+AddG3el6wldqVW1FqX1/LhwnsyuQuBk9tnAJgIns69y92XHmH8mcJ9OZouIQEZWBlEWxcItC486OQ4QExXouTbbs8nyLK7pcg2vXfzaMZdXGs/MLjJ3zzSzYcA0IBoY4+7LzOwJYIG7TwrXukVEyrtDXZj3TOhJ+kPprNy5kuU7lvPDnh8wM3Yd2AVAdFQ0by97mwWbF+DuYTnKCNsRRbjoiEJE5EgD3xrIB8kfcGevO3mh/wv5zlNWL48VEZFS8OAZDwIwfN5wRn8zusSXr6AQESnneiX2YsKlEwBI3pVc4stXUIiIVACXdbyM6lWqh2XZCgoREQlJQSEiUkEczDzIkm1LyMrOKtHlKihERCoIw5i2ZhoTlk0o0eUqKEREKohDz8S46r9Xse6ndSW2XAWFiEgFMejkQXRq1AmA5TuWk56VXiLLVVCIiFQQURbFqAtHAXDhWxfS4oUWZHv28S/3uJcgIiJlRrcTunHbqbfRJ7EPW1K3MObbMcf9WFYFhYhIBVI9pjr/vOCfXN3lagBu+uAm6j1d77iWqaAQEamAbk66mdlDZgMcd/OTgkJEpAKKsijOaH4Gex/Yy5KblxzfskqoJhERKYNqVatF58adj2sZCgoREQlJQSEiIiEpKEREJCQFhYiIhKSgEBGRkBQUIiISkoJCRERCUlCIiEhICgoREQlJQSEiIiEpKEREJCQFhYiIhKSgEBGRkBQUIiISkoJCRERCUlCIiEhICgoREQlJQSEiIiGFNSjMrL+ZrTKz1Wb2QD7T7zGz5Wa2xMymm1nzcNYjIiJFF7agMLNo4EVgANABuNLMOuSZ7Vsgyd27AO8Az4SrHhERKZ5wHlH0BFa7+1p3TwfGA4Nyz+DuM9z9QHBwLpAYxnpERKQYwhkUCcDGXMMpwXHHcgPwUX4TzGyomS0wswU7duwowRJFRKQg4QwKy2ec5zuj2dVAEvDX/Ka7+yh3T3L3pIYNG5ZgiSIiUpAqYVx2CtA013AisDnvTGZ2DvAgcKa7/xzGekREpBjCeUQxH2hjZi3NrCpwBTAp9wxm1h0YCQx09+1hrEVERIopbEHh7pnAMGAasAKY4O7LzOwJMxsYnO2vQE1gopktMrNJx1iciIhESDibnnD3KcCUPOMeyfX6nHCuX0REjp/uzBYRkZAUFCIiEpKCQkREQlJQiIhISAoKEREJSUEhIiIhKShERCQkBYWIiISkoBARkZAUFCIiEpKCQkREQlJQiIhISAoKEREJSUEhIiIhKShERCQkBYWIiISkoBARkZAUFCIiEpKCQkREQlJQiIhISAoKEREJSUEhIiIhKShERCQkBYWIiISkoBARkZAUFCIiEpKCQkREQlJQiIhISAoKEREJSUEhIiIhKShERCQkBYWIiISkoBARkZDCGhRm1t/MVpnZajN7IJ/p1czs7eD0eWbWIpz1iIhI0YUtKMwsGngRGAB0AK40sw55ZrsB+MndWwN/A54OVz0iIlI84Tyi6Amsdve17p4OjAcG5ZlnEPDv4Ot3gLPNzMJYk4iIFFGVMC47AdiYazgF6HWsedw908z2AA2AnblnMrOhwNDg4M9mtjQsFZc/8eTZV5WY9sVh2heHaV8c1q64bwxnUOR3ZODFmAd3HwWMAjCzBe6edPzllX/aF4dpXxymfXGY9sVhZraguO8NZ9NTCtA013AisPlY85hZFaAO8GMYaxIRkSIKZ1DMB9qYWUszqwpcAUzKM88k4Lrg60uBz9z9qCMKERGJnLA1PQXPOQwDpgHRwBh3X2ZmTwAL3H0S8CowzsxWEziSuKIQix4VrprLIe2Lw7QvDtO+OEz74rBi7wvTF3gREQlFd2aLiEhICgoREQmpzAaFuv84rBD74h4zW25mS8xsupk1j0SdpaGgfZFrvkvNzM2swl4aWZh9YWaXB/82lpnZm6VdY2kpxP+RZmY2w8y+Df4/uSASdYabmY0xs+3HutfMAv4e3E9LzOyUQi3Y3cvcD4GT32uAk4CqwGKgQ555bgVGBF9fAbwd6bojuC/OAuKCr2+pzPsiOF8tYDYwF0iKdN0R/LtoA3wL1AsON4p03RHcF6OAW4KvOwDrI113mPZFX+AUYOkxpl8AfETgHrbewLzCLLesHlGo+4/DCtwX7j7D3Q8EB+cSuGelIirM3wXAk8AzQFppFlfKCrMvbgJedPefANx9eynXWFoKsy8cqB18XYej7+mqENx9NqHvRRsEvOYBc4G6ZtakoOWW1aDIr/uPhGPN4+6ZwKHuPyqawuyL3G4g8I2hIipwX5hZd6Cpu08uzcIioDB/F22Btmb2pZnNNbP+pVZd6SrMvngMuNrMUoApwO2lU1qZU9TPEyC8XXgcjxLr/qMCKPR2mtnVQBJwZlgripyQ+8LMogj0QjyktAqKoML8XVQh0PzUj8BR5udm1sndd4e5ttJWmH1xJTDW3Z8zsz4E7t/q5O7Z4S+vTCnW52ZZPaJQ9x+HFWZfYGbnAA8CA93951KqrbQVtC9qAZ2AmWa2nkAb7KQKekK7sP9H3nf3DHdfB6wiEBwVTWH2xQ3ABAB3nwPEEugwsLIp1OdJXmU1KNT9x2EF7otgc8tIAiFRUduhoYB94e573D3e3Vu4ewsC52sGunuxO0Mrwwrzf+Q9Ahc6YGbxBJqi1pZqlaWjMPviB+BsADNrTyAodpRqlWXDJODa4NVPvYE97r6loDeVyaYnD1/3H+VOIffFX4GawMTg+fwf3H1gxIoOk0Lui0qhkPtiGnCemS0HsoD73X1X5KoOj0Lui3uBV8zsbgJNLUMq4hdLM3uLQFNjfPB8zKNADIC7jyBwfuYCYDVwALi+UMutgPtKRERKUFltehIRkTJCQSEiIiEpKEREJCQFhYiIhKSgEBGRkBQUInmYWZaZLTKzpWb2gZnVLeHlDzGzfwZfP2Zm95Xk8kVKmoJC5GgH3b2bu3cicI/ObZEuSCSSFBQioc0hV6dpZna/mc0P9uX/eK7x1wbHLTazccFxvw4+K+VbM/vUzBpHoH6R41Ym78wWKQvMLJpAtw+vBofPI9BXUk8CnatNMrO+wC4C/Wz9wt13mln94CK+AHq7u5vZjcD/ELhDWKRcUVCIHK26mS0CWgALgU+C488L/nwbHK5JIDi6Au+4+04Adz/UOWUi8Hawv/+qwLpSqV6khKnpSeRoB929G9CcwAf8oXMUBjwVPH/Rzd1bu/urwfH59YXzD+Cf7t4Z+D2BjuhEyh0FhcgxuPse4A7gPjOLIdDp3O/MrCaAmSWYWSNgOnC5mTUIjj/U9FQH2BR8fR0i5ZSankRCcPdvzWwxcIW7jwt2UT0n2EtvKnB1sKfSPwGzzCyLQNPUEAJPVZtoZpsIdHneMhLbIHK81HusiIiEpKYnEREJSUEhIiIhKShERCQkBYWIiISkoBARkZAUFCIiEpKCQkREQvp/KcUgfNKZY/4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" SVC \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHxVJREFUeJzt3Xd8VGXa//HPRQKEAIIgygJKU7BLtfuIouzqIio2rD/UFcGOD6uuuFYsu7D2RdC1omvZdVkLKhZ8XFRkKYI0KSrFLgJSQkty/f44JyGEkMwkmUxy832/XnmZOefMOdcwzjf3fc859zF3R0SkpquV7gJERCqDwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCUJmuguoySwzy61Og3SXIUloun5NukuQJC1n03J3b1bWdgqzCrA6Dcjs2CfdZUgSTpsxId0lSJJGs2RJItupmykiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJByEx3AVI+TRrVZ/zo3wOwW9NG5OXns3zlGgAO6rgH940Zz/X3vgjA4PN/TYPsLO4Y/UqFjnlGr+7ccHFvMjJq8ebEz/jDA//Yan3f47rywvDLOfTc25k+dzGZmRmMvrk/nfduTWZGLZ4d9zF/fuKNCtUQmpG5X/DNrPmFj0edMoCmbVox6JVH+enLZdTOqsvUF15j3O0PVOg4v3vhYXbr2A6A7MY7kbNqNXd2PhGAlgfszbmj7yJrpwZ4fj53dz+Z3I0bK3S8dFCY1VArfllH9363AvDHS09mbc4G7hszHoDVn4zmlGO78OcnxvHzqrWVcrwmjepz9zVncui5t7N85Roev/1ijjl4H97/7zwAGmRncfnZxzH5sy8Kn3P6cd2oWyeTLmfeTL2sOsx8eRgvvjmZJd/9XCk1hWDT+g2FoVKgaZtWLJw4hZEnXUyd7HrcNOMNZr3+Hkunzy73cf7W74rC308bMZT1v0R/+GplZHDhs/fx5PnX8s1n86jfpDF5mzeX+zjppG5mgHLz8nj8Xx9w9bm9Km2fbVs2Y+HSHwpbfxMmz+XUnl0L19962an85am32LBpywfBgfpZdcnIqEW9urXZvDmX1es2VFpNO4JNOetZMm02zdq3rrR9dj3zt0x9/lUA9u11FN989jnffBb9UVq3YhWen19px6pKapkF6pEXJzDtpdsZ8fSb293m6G57M2JIv22W52zYxNH979pq2RfLfqRjm+a0/lVTvv5xJX2O6UydzOh/n04d92D35jvzxsSZDL7g14XPefndqZzUoxNL37mP7Kw6DBnxAitXr6ukVxiGOvWyGPpp1PX++atljOp76Vbr6zdpTLtDO/PGHQ9utbxug/oMmbh1N7/AE+dcxXfzFpW4bs+jDmbND8v5cdFiAHbt0A5358q3nqFhsyZMfeE13h4+uoKvKj2qNMzMrDlwP9Ad2AgsBv4N9HH33lVw/B7A+/HxXouXvQ6McPf/S/Xxq9KadRt47vWPueLs41i/YVOJ23ww9fPCrmpZVq3J4cq7xvDcnwaR7/lMmvkF7Vo2w8wYPqQfv7v58W2e032/tuTl5dO617Xs3DCb95/4AxMmz+Wrb36qyEsLSkndTIC9jurOjdPH4fn5vHXPI3w3d+FW6zeuXVfi88rS/ew+TIlbZQAZmRnseWR37u7eh0056xn83t9ZMm0W8yd8nPyLSbMqCzMzM2As8LS794uXdQJOquB+M909N4mnfA0MBV6ryHFrggefe4fJz9/CM698WOL6ZFpmAOP+M5Nx/5kJwMV9jyY/L5+G9bPYr31L3vnb9QA0b9qIf91/FX2veZB+JxzK2x/PJjc3j59WruHjGQvpum8bhVkCCsbMtqc8LbNaGRl07vtr7uq65SO38uvvWfjBZNb9vBKA2W+8zx5d9leYleEYYLO7jypY4O4zzKwx0NPM/gnsD0wDznN3N7PFQDd3X25m3YhaUD3M7FagBdAGWG5mbwN9gGygPTDW3a/bTh0zgdpmdry7v1N0hZn1BEYQ/btMAQa5e837Wie2cvU6Xn57Cv1POYqnSwi0ZFpmAM12bshPK9fQuGE2A888hnOue4TVa9fT4tirC7d557HruP6+l5g+dzHHHrwPPbrvw3PjJpGdVYdDDmzPQ39/p5QjSKLK0zLb+7gj+f7zL1n1zfeFy+aO/4Be111K7XpZ5G3azF5HH8J7923byq4JqjLMCoKqJJ2B/YBvgY+AI4CSmxNbdAWOdPf1ZtYf6BTvZyMw38wecvdl23nusPin8JNlZlnAU0BPd19gZs8Ag4i6xTXWfWPGM+isYytlX/dedw4HdtgdgDsffZWFS38odftHXpzA3267iBn/vAMz4+lXPmTWwq8rpRZJXvd+J23VxQTIWbWad+/9G3+Y8iruzpw33mf2G++nqcKKMXevmgOZXQW0dffBxZb3AIa6+/Hx40eAj9z92TJaZu7ut8XP6Q8c4e6XxI/fBO509w9LONYQd+9tZh8ANwHXE7XGVgIPufv/xNv2BC53977F9jEAGABA7fpda+93ZmX880gVuWjGhHSXIEkazZJp7t6trO2q8tSMOUStqZIU7crlsaXFmMuWGrOKPaf412Lb7MPMTjWzGfFP8X+MO4nGzgpYacUXcPdH3b2bu3ezzOIliUi6VGWYTQDqmtklBQvMrDtwdCnPWcyWADwt2QO6+1h37xT/TC227m1gZ+CgeNHnQBsz2zN+fD7wQbLHFJH0qLIw86g/eypwvJl9YWZzgFuJxsm25zbgATObSNTaqmx3Aq3i+jYAFwL/MLNZQD4wqpTnikg1UmVjZiGqlb2LZ3bsk+4yJAkaM6t5quOYmYhIyijMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORIGRub4WZ7VTaE919deWXIyJSPtsNM2AO4IAVWVbw2IE9UliXiEhSthtm7r57VRYiIlIRCY2ZmVk/M7sx/r2VmXVNbVkiIskpM8zM7GHgGOD8eFEOMCqVRYmIJKu0MbMCh7t7FzP7FMDdV5hZnRTXJSKSlES6mZvNrBbRoD9m1hTIT2lVIiJJSiTM/gq8DDQzs9uAD4E/pbQqEZEkldnNdPdnzGwacFy86Ax3n53askREkpPImBlABrCZqKupqwZEpNpJ5NvMocDzQAugFfB3M/tDqgsTEUlGIi2z84Cu7p4DYGZ3AtOAu1NZmIhIMhLpMi5h69DLBL5MTTkiIuVT2oXm9xGNkeUAc8xsfPy4F9E3miIi1UZp3cyCbyznAOOKLP8kdeWIiJRPaReaP16VhYiIVESZXwCYWXvgTmBfIKtgubt3SGFdIiJJSeQLgKeAJ4nmMTsBeAl4IYU1iYgkLZEwy3b38QDu/oW730Q0i4aISLWRyHlmG83MgC/MbCDwDbBrassSEUlOImE2GGgAXEU0dtYIuCiVRYmIJCuRC80nx7+uYcsEjSIi1UppJ82OJZ7DrCTu3jclFYmIlENpLbOHq6wKEZEKMvftNr6kDB3q1feR7fZJdxmShMysRGe9kurimOmTp7l7t7K209xkIhIEhZmIBCHhMDOzuqksRESkIhKZafZgM5sFLIwfH2RmD6W8MhGRJCTSMnsQ6A38DODuM9HlTCJSzSQSZrXcfUmxZXmpKEZEpLwS+Z56mZkdDLiZZQBXAgtSW5aISHISaZkNAq4F9gB+AA6Nl4mIVBuJXJv5I9CvCmoRESm3RGaafYwSrtF09wEpqUhEpBwSGTN7t8jvWcCpwLLUlCMiUj6JdDNfLPrYzMYA76SsIhGRcijP5UxtgdaVXYiISEUkMma2ki1jZrWAFcANqSxKRCRZpYZZPPf/QUTz/gPku+YMEpFqqNRuZhxcY909L/5RkIlItZTImNl/zaxLyisREamA0u4BkOnuucCRwCVm9gWwjuhmwO7uCjgRqTZKGzP7L9AFOKWKahERKbfSwswguot5FdUiIlJupYVZMzO7dnsr3f3eFNQjIlIupYVZBtGdzK2KahERKbfSwuw7d7+9yioREamA0k7NUItMRGqM0sKsZ5VVISJSQdsNM3dfUZWFiIhUhG4CLCJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEobT7Zko11/OzyaxduKjw8cwrh1CvZQu6PjWaGZcPZvn/TQTgoL/ex9KnnmXllGkVOl6n0Q/S6MADWDV9BjMvH1y4fOdDurPXkKuxWkZeznrmDL2V9Uu/psP117LzwV0BqJWVRZ0mTfjgsGMqVENNltloJzo98jAAdZo2xfPz2LxyFQANOnZg7fwFWEYG6xYv5vNbbid/w8ZyHyu7TWs63nITDffuyFcjR7FszN8L17U8+0xanHIymPHd2Ff4+vkXoxo67EWHG6+nVp06eF4eC+4Zzpo5cyvwiquWwqwGy9u4kcmnnbvVsnotW7Dhu+9pO+CiwjCrLEueGENGvSxantF3q+V733wDM6/8X3K+XEyrfqfT9tKLmTv0Nhb86d7CbXY/5ywa7tOxUuupaXJ/Wc3Ucy4AoM2A35G3PqcwZI6aOKFw3T7DbqPFaX35+rnny32szb+sZtHwe9mlx9FbLa/fvh0tTjmZaf/vInxzLgc+dD8/f/gx65cto93VV7D40cdZ8fEkmhxxGO2vuoIZl15W7hqqmrqZAVozfyG5a9fS5LBDKnW/KydPIW9dzrYrHDLr1wcgs0EDNv740zab7HZiL75/Y3yl1hOqXz6dQb3dW1VoH5tXrmTN3Hl4bu5Wy7PbtmH17Dnkb9iI5+Wxavp0djkmDjx3Moq+j8u3fR+rM7XMarCMunU55OXnAFj/9bd8dvXvC9d9Nepx2l81iBWTJm/3+a0vPJ/mvX+zzfKVUz9lwd0jEq5j3s130GnUA+Rv2EjuunVMOfvCrdZn/ao59Vq1ZMXkKQnvc0dlGRk0OfwwVkz6ZJt1+949jOzWe2yzfNlzz/PDuDcT2v+6RV/S9rKBZDbaifyNG2lyxOGsmfs5AItG3M+Bf72f9tdcidUypl84oGIvpoqlNMzMrDlwP9Ad2AgsBv4N9HH33lVw7EnAIe7+Y7zsUWCBuyf+Sa3GSupmFlg1fQYAjbt02u7zlzw5hiVPjqlwHXtccA4zBl7N6llzaH3h+XS4bjDzbhlWuH63E3/Nj2+/B/n5FT5WqGrVrUu3vz8DwKpPZ/Ldv1/dZpu5f7ipwsfJWbyYpU+P4aCRD5GXk8O6BQvxvKj11uKMviz6ywMsn/A+zY7vyd43D2XmZVdW+JhVJWVhZmYGjAWedvd+8bJOwEkV3G+mu+eWtZ27f29mfwH+DPQ3s+7AwUDNGQSooK8efYI2l16E5+aVuL4yWma1d25Mg44dWD1rDgDfv/U2nUc/tNU2zU/oxefD/pRk9TuW/I0bC8fMtqcyWmYA37/yGt+/8hoAbS8fWDgs0Lz3iSwaHo1z/vTOe3S86caE91kdpLJldgyw2d1HFSxw9xlm1hjoaWb/BPYHpgHnubub2WKgm7svN7NuwAh372FmtwItgDbAcjN7G+gDZAPtgbHufl0JNYwEPjGzo4lC7XJ3zzWz2sBw4HCgLnC/uz9pZrsDLwD1gQzgd+6+/X5aNbfi48m0v3IQdZvtUuL6ymiZ5a5eQ2bDBmS33oOcJUtpetih5Hy5uHB9dpvWZO7UkF9mfFah40jltMwAau+8M5tXrqRu891odmwPpve/BICNPy2ncdcurJo2ncbdu7F+2bJKOV5VSWWYFQRVSToD+wHfAh8BRwAflrG/rsCR7r7ezPoDneL9bATmm9lD7r7Vv76755vZIOBd4GV3/yheNQj42t0PNrMsYHIckBcA/3L3v5hZBlCveBFmNgAYALBr7TpllJx+Xz36BJ0evrfsDRPQ9ZnHqN+2DRnZ9TjyvXHMvfkOVnz0CfNuGcaB9/8Z93xyf1nD3D/eXvic5if+mh/efLtSji+Jq9O0CV3HPBUN6Hs+rc7ux3/P6Efeuhz2G343tRs1wnNzWXDPCHLXrAFgwbC72XPIYCwjg/xNm5g/7O40v4rkmLunZsdmVwFt3X1wseU9gKHufnz8+BHgI3d/toyWmbv7bfFz+gNHuPsl8eM3gTvdvcRANLOPgSvcfXr8+HVgT2BDvEkjoD9Qh6g1Nwb4t7uX2pzoUK++j2y3T+L/KJJ2mVn6zqumOWb65Gnu3q2s7VJ5asYcotZUSYqeDZjHlhZibpGasoo9Z11Z+zCzU81sRvxT9MXnxz8FDLjU3TvFP23d/QN3f4eoe/wD8IKZnVXaCxSR6iOVYTYBqGtmlxQsiAfhj97+U1jMlgA8LdkDuvvYIgE1tZRNxwOXmVlmXNc+ZpZlZm2A79x9NPAMUTdWRGqAlIWZR/3XU4HjzewLM5sD3Eo0TrY9twEPmNlEotZWqowElgKfmtls4GGiAf/jgZlm9ilwAvDXFNYgIpUoZWNmOwKNmdU8GjOrearDmJmISJVRmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkEwd093DTWWmf0ELEl3HSmyC7A83UVIwkJ+v1q7e7OyNlKYSYnMbKq7d0t3HZIYvV/qZopIIBRmIhIEhZlsz6PpLkCSssO/XxozE5EgqGUmIkFQmIlIEBRmIhIEhZlUiJlZumuQ5IX4vinMpNzMzDz+BsnMjjCzTmbWsej69FUn21PsfTvLzLqbWUa666qozHQXIDVXkQ/EtcCZwLfAejOb5O4Pu74qr5aKvG+XA5cCJ7t7XnqrqjiFmSTNzBoCOe6eZ2Z7AKcDPYEMYH/gGjNb5O5vpbNO2T4z2xe4GDjR3b82sxOAesB0d1+c1uLKSWEmSTGzDsBQ4GEzmx4vziI6Z3G1mc0CvgB2T1eNsq2iXcvYMuA94C9mtgpoB/wENAUeS0OJFaYxM0mKuy8A1hJ1Tw5w96XAJKJwy3b3NcB6YC/QuFl1YGa1inQtjzSzglb0B8AU4D53Px6YBXTc/p6qN10BIAkxs2bAZndfFT++E2gL/BlYDVwBHAe8BJwP9HH3+WkqV0pgZtcApwELgL2Bge4+K153HjAYOM/d56WvyvJTy0zKZGadgG+AN8xsoJnt7+5DgUVE4y5N3P1aYDjRB+UkBVn6mdkBZnZ0/HsXoIe7HwV8BuQAc+J1nYjGPPvX1CADtcwkAWbWAhgGHAosBJYCbYAXgYHAbGCUu89IV42yNTOrAzwMTHP30WbWHLgIaAW0B3q7+2Yz6wu8DmS6e076Kq44tcykTO7+LVGYPUk0HnYr8DTQGGgEDAAeiD9AkkYFY5Tuvgl4B+gSr8oGDgT2Ac6Og+wC4BZg55oeZKCWmSTBzNoTtcSaAkPcfYWZ7U40dvatuy9Ka4FScMrFfKA20WD+PUStsDwz60U0LraQ6EyGI4mCbU666q1MCjMpU7EzxtsBlwAtgevd/bu0FieFzKwe0ekWS4n+4DwN3A6c5u6fxtt0BVoAuwLvu/uXaSq30inMZCvFz0cys1oA7p4f/9WvDawh+gtfl+gbsfy0FCvbiAOtDnBi/N/rgeeAR9x9RTprSzWFmRQq1gLbF1gVj5dhZgcDrxGdcjHZzFoD6939x/RVLEWVcGIs8cD/E8BU4AF3/zktxVUBhZlsw8yuBvoTDRrfBkwATgYWu/v4NJYmCYhPks03s4x4rKwl0fl/bwB3hXrNrC5nkq2Y2YnAsUBX4DdEZ/rXAl4tGB8rqQUgVa+MIYEDgFpmNtvdvzGz04DaIb9vOjVjB1f0ciMz249orGUXd8939zeIbpRxBnCKmTWCLbMuSPoUHxIwsxbxe5YfDwm8DdSPW2a13P17d1+W3qpTS2G2gyvygbgIGASMB34ws+vMLNPdxxGNufRIX5VSXJH37WqiAf73zeyceIysM9HZ/B/H2+4QX9ComymY2eHAKcDp7r4pbq0dDww2s/vc/RUze9fd16W3UilKQwJbU8tsBxf/JR9INGVPi3jx28BbwL5EF5BDdC2fpJGGBEqnMNuBxWeErwXuJbq+sq+ZtXL3DUQnX74Q/+xQH4rqSkMCpdOpGTsoM8smCrFdiabsORA4l2gmjH/F85RJNRMPCdzAliGBPkRDAkuJ5iXLNbP6O+KQgFpmO6j4wuLbgS+Bx4GZRAPJnYDeIdzgIjQaEiidWmY7mHgSvl3d/d748W5E02A3AC4HDgCWuvv36atSiouHBD4G9gT+F/gUeCmevz8LOBqYuSO/b2qZBa7gRMoiviS64chlAO7+A9HYyyFE3ZT/7sgfiOooHhLoCzxDNOPFSKI5+083sz3cfYO7j9/R3zeFWcDir+Xz498PNbN28blHvyUKtMvjTbOBl4E70lSqlEJDAolRNzNQ8YXil7r71fG3X78nmqv/BWAU0V/2p4j+0h8O9IpvViLVhIYEkqMwC5CZdSOaYfQs4CugPnAecBhwDrCEaErlOkBzYG3ol7rUBAUXiBd5fDjRH5973H1kvOy3RDeRmejuA9NTafWkbmZgzKw3MBrIBR4BNgH7u3ueu39I9OFoAwwBGrn7PAVZ+mlIoOJ0OVNA4jvx3A+c7+6T4mWzgdZm9oC7X+3u/zGz2kBvom6npFnBkACw1ZCAmRUMCZwKPGVmR7BlSOCbtBVcTambGRAzuxbIc/cHzKxOfFJlBtFc8NcQTbZ4XbxtPXdfn856RUMClUndzAAUuWavLdAs/n1z3HXJA+YBE4GuZnZPvH5DFZcpxWhIoHKpmxmAItdNjgVuNLOu7j7NzGrFg8p5ZvYrolvFvVvsOZIGGhKofOpmBsTM6hONt2QDL7r7tHj52cBVwFm65rJ60JBA5VM3MyDxxcWPEc+EYWYjzGwY0Y1eByjI0k9DAqmjllmALLrdWFfgOOA7ovsj6oTYasTMjgVuJLr36LT4sjOLhwSuA74F3tUJsYlTmImkgYYEKp/CTCRN4lvAXQz0BKYQdSdPB85w91nprK0mUpiJpJGGBCqPwkxEgqBvM0UkCAozEQmCwkxEgqAwE5EgKMxEJAgKM0kpM8szsxlmNtvM/hHfnKO8++phZq/Hv/cxsxtK2bZxwU1bkjzGrWY2JNHlxbZ5ysxOT+JYbeKLy6USKMwk1da7eyd3359oiputpnq2SNL/H7r7q+5+TymbNAaSDjOpuRRmUpUmAnvGLZJ5ZjYSmA7sbma9zGySmU2PW3ANAMzsN2b2uZl9SHS7NeLl/c3s4fj33cxsrJnNjH8OB+4B2setwuHxdr83sylm9pmZ3VZkX0PNbL6ZvUs0a0WpzOySeD8zzezlYq3N48xsopktiOcrw8wyzGx4kWNfWtF/SNmWwkyqhJllAicABZfpdASecffOwDrgJuA4d+8CTAWutejmto8BJwFHEc20WpIHgQ/c/SCiWVvnADcAX8Stwt9bdBPdvYCDiW7R1tXM/sfMugL9gM5EYdk9gZfzL3fvHh9vHtElSQXaEN2Q97fAqPg1XAz84u7d4/1fYmZtEziOJEGTM0qq1TOzGfHvE4nu+9gCWOLun8TLDwX2BT6KZ8ipA0wC9ga+cveFAGb2LDCghGMcC1wAEE+j84uZ7Vxsm17xz6fx4wZE4dYQGBvfmxIzezWB17R/PLVS43g/44useym+MclCM/syfg29gAOLjKc1io+ty5YqkcJMUm29u3cquiAOrHVFFwHvuPvZxbbrBFTW9XYG3O3uo4sd45pyHOMp4BR3n2lm/YEeRdYV35fHx77S3YuGHmbWJsnjSinUzZTq4BPgCDPbE8DMss2sA/A50NbM2sfbnb2d578HDIqfm2FmOwFriFpdBcYDFxUZi2tpZrsC/wFONbN6ZtaQqEtblobAd/GU1ucWW3dGPF15e6IbLc+Pjz0o3h4z6xBPASSVSC0zSTt3/ylu4TxvZnXjxTe5+wIzGwCMM7PlwIfA/iXs4mrgUTO7GMgDBrn7JDP7KD714c143GwfYFLcMlwLnOfu083sRWAG0Z2QJiZQ8h+ByfH2s9g6NOcDHwC7AQPdfYOZ/Y1oLG16PNPsT8Apif3rSKI0a4aIBEHdTBEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCP8f+kbQF8lSDGsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.514 \n",
"Precision=0.723\n",
"F1=0.601\n",
"Average precision-recall score: 0.651\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd8FVX6x/HPk5BQklAk9ARCRykBCW1VQFFARFFxsS6yK4J1UdxV92fDtrZV0RVRQJRFRQRdRBcQRUBAQIIUKdJb6NJDS0LO7497CQHCzU3IzU35vl+vvJhyZuaZSbjPPWdmzjHnHCIiIucSEuwARESkYFOiEBERn5QoRETEJyUKERHxSYlCRER8UqIQERGflCikUDGz5WbWMZsyNc0s2cxC8ymsgDKzPmY2O9O8M7N6wYxJihclCskTZrbRzI56P6B3mtmHZhaZ18dxzjV2zs3Ipsxm51ykc+5EXh/f+yF92HueW83sjYKWkMysi5n9aGaHzGy3mc00s+uCHZcUXkoUkpeudc5FAhcDrYAnzyxgHoX97y7ee54dgJuBvwQ5ngxmdhMwDvgPEANUAZ4Grs3FvorC70rygP4IJM8557YCk4EmAGY2w8xeNLM5wBGgjpmVM7MPzGy795v5C5m/mZvZ3Wa20vuteIWZXexdvtHMrvROtzazRDM76K3FvOFdHuf95l/CO1/dzCaa2V4zW2tmd2c6ziAz+9zM/uM91nIzS/DzPNcCc4DmmfaX2/N63MzWZVp+Q06vu5kZ8AbwvHNuhHPugHMu3Tk30zl3d6bz/TjTNmdeqzN/V/9nZolnHOdhM5vonS5pZv8ys83e38F7ZlY6p7FLwaZEIXnOzGKBbsCiTIv/BPQDooBNwCggDagHtAA6A3292/8RGAT0BsoC1wF7sjjUW8BbzrmyQF3g83OENAZIAqoDNwH/NLNOmdZfB3wGlAcmAu/4eZ6NgMuAtZkW5/a81nn3VQ54FvjYzKr5E0cmDYFYYHwOtztT5t/Vv4GGZlY/0/rbgE+9068ADfAky3pADTw1GClKnHP60c95/wAbgWRgP55E8C5Q2rtuBvBcprJVgOMn13uX3QpM905/CwzwcZwrvdM/4vlQjT6jTBzggBJ4PjhPAFGZ1r8EfOSdHgR8n2ndRcBRH+fpgIPAYe/0GKDk+Z5XFsdZDPTwTvcBZp8RQ70strnEu66Uj/0OAj7O6lpl9bvyLvsYeNo7XR84BJQBzHsd6mYq2w7YEOy/R/3k7Y9qFJKXrnfOlXfO1XLO3eecO5pp3ZZM07WAMGC7me03s/3A+0Bl7/pYPN+ws3MXnm+zv5nZAjPrnkWZ6sBe59yhTMs24fnme9KOTNNHgFInm2LO4WIgEs/9iTZAxPmel5n1NrPFmbZrAkT7iCErJ2snOa2JnGnLGfOf4kl44KlNTHDOHQEq4UkYCzPFPcW7XIoQJQrJL5m7Kd6C55t3tDexlHfOlXXONc60vm62O3RujXPuVjwfxK8A480s4oxi24ALzCwq07KawNbcnoj32M459zkwl1NNLbk6LzOrBQwHHgAqOufKA8vwfGPPiVXeY/T0UeYwng/3k6pmUebMLqWnAtFm1hxPwjjZ7PQ7cBRonOl8yznPjX4pQpQoJN8557bj+fB53czKmlmImdU1sw7eIiOAv5lZS++TN/W8H6anMbM7zKyScy4dT5MXeJqZMh9rC/AT8JKZlTKzZnhqIp/k0em8DPQzs6rncV4ReD6cd3vP6894HwTICeecAwYCT5nZnzPFcKmZDfMWWwy0N8+7JuWAf/ix3zQ89z1eAy4AvvMuT8eT4N40s8re2GuYWZecxi4FmxKFBEtvIBxYAezD80FUDcA5Nw54Ec8310PABDwfUGfqCiw3s2Q8N7Zvcc4dy6LcrXja4rcB/wWecc59lxcn4Zz7FZgJ/D235+WcWwG8jqd2shNoiudpqtzEM55Tj+xu8+7vBeAr7/rvgLHAUmAh8I2fu/4UuBIY500cJz2G52b+PDM7CHyP56a6FCHm+RIiIiKSNdUoRETEJyUKERHxSYlCRER8UqIQERGffL1UVCBFR0e7uLi4YIchIlKoLFy48HfnXK5ehix0iSIuLo7ExMTsC4qISAYz25TbbdX0JCIiPilRiIiIT0oUIiLiU6G7RyEiBUdqaipJSUkcO5ZVzykSDKVKlSImJoawsLA826cShYjkWlJSElFRUcTFxeEZYE+CyTnHnj17SEpKonbt2nm2XzU9iUiuHTt2jIoVKypJFBBmRsWKFfO8hhewRGFmI81sl5ktO8d6M7O3vWMYLz05drCIFC5KEgVLIH4fgaxRfISnG+hzuRrPsIr18YzPO9Sfnaa7dI6mHs3yRz3hiojkvYAlCufcj8BeH0V6AP/xjhQ2Dyjvz2Dyi7Yvosw/y2T5c+sXt2a3uYhIwC1cuJCmTZtSr149/vrXv57zS+yMGTNo3rw5jRs3pkOHDhnL4+LiaNq0Kc2bNychISFj+bhx42jcuDEhISH5+uJxMG9m1+D0sXmTvMu2n1nQzPrhqXVQPqY8j3d6/KydjV0+loXbFwYmUhEp1E6cOEFoaGi+He/ee+9l2LBhtG3blm7dujFlyhSuvvrq08rs37+f++67jylTplCzZk127dp12vrp06cTHX36sOlNmjThyy+/pH///gE/h8yCmSiyakjLMu0654YBwwASEhLcY5c+dlaZHck7GLFoRJ4GKCIF3/XXX8+WLVs4duwYAwYMoF+/fgBERkYycOBAvv32W15//XVKly7NwIEDSU5OJjo6mo8++ohq1aoxfPhwhg0bRkpKCvXq1WP06NGUKVMmm6Oe2/bt2zl48CDt2rUDoHfv3kyYMOGsRPHpp59y4403UrNmTQAqV66c7b4vvPDCXMd1PoKZKJKA2EzzMXiGbsyVKpFVSE5J5nDKYSLCI847OBHJmYemPMTiHYvzdJ/NqzZncNfBPsuMHDmSCy64gKNHj9KqVSt69uxJxYoVOXz4ME2aNOG5554jNTWVDh068NVXX1GpUiXGjh3LE088wciRI7nxxhu5++67AXjyySf54IMPePDBB087xvTp03n44YfPOnaZMmX46aefTlu2detWYmJiMuZjYmLYunXrWduuXr2a1NRUOnbsyKFDhxgwYAC9e/cGPDekO3fujJnRv3//jOQXLMFMFBOBB8zsM6ANcMA7OH2uVI2sCsDOwzupE14nbyIUkQLv7bff5r///S8AW7ZsYc2aNVSsWJHQ0FB69uwJwKpVq1i2bBlXXXUV4GmKqlbNc0t02bJlPPnkk+zfv5/k5GS6dOly1jEuv/xyFi/2LwlmdT8iqyeR0tLSWLhwIdOmTePo0aO0a9eOtm3b0qBBA+bMmUP16tXZtWsXV111FY0aNaJ9+/b+XZAACFiiMLMxQEcg2sySgGeAMADn3HvAJKAbnoHZjwB/Pp/jnUwUO5J3UKeCEoVIfsvum38gzJgxg++//565c+dSpkwZOnbsmPEOQalSpTLuSzjnaNy4MXPnzj1rH3369GHChAnEx8fz0UcfMWPGjLPK5KRGERMTQ1JSUsZ8UlIS1atXP2vbmJgYoqOjiYiIICIigvbt27NkyRIaNGiQUb5y5crccMMN/Pzzz0UzUTjnfD6C5Dxp9/68Ol6ViCoA7EzemVe7FJEC7sCBA1SoUIEyZcrw22+/MW/evCzLNWzYkN27dzN37lzatWtHamoqq1evpnHjxhw6dIhq1aqRmprKJ598Qo0aNc7aPic1imrVqhEVFcW8efNo06YN//nPf85qygLo0aMHDzzwAGlpaaSkpDB//nwefvhhDh8+THp6OlFRURw+fJipU6fy9NNP5+zC5LEi82Z25hqFiBQPXbt2JS0tjWbNmvHUU0/Rtm3bLMuFh4czfvx4HnvsMeLj42nevHlGTeD555+nTZs2GU08eWHo0KH07duXevXqUbdu3Ywb2e+99x7vvfce4Lkx3bVrV5o1a0br1q3p27cvTZo0YefOnVx66aXEx8fTunVrrrnmGrp29byS9t///peYmBjmzp3LNddck2UzWSBYYXtJLSEhwWX1/HBaehrhz4fzVPunePbyZ4MQmUjxs3LlyqA9iSPnltXvxcwWOucSzrGJT0WmRlEipATRZaLZeVhNTyIieanIJArwND+p6UlEJG8pUYjIeSlszddFXSB+H0UqUVSJrKKmJ5F8VKpUKfbs2aNkUUCcHI+iVKlSebrfIjVwUdUIT43COaeuj0Xywcl3Bnbv3h3sUMTr5Ah3ealoJYrIqhxLO8bB4wcpV6pcjradvXk27y98nzc6v0GliEoBilCkaAkLC8vTkdSkYCpyTU+Qs3cp9h/bT/+v+3PZh5fx8dKPmZt09pubIiLFWZFKFJn7e/LHnM1zaPJuE0YsGkGPhj0CGZqISKFVpBLFyW48OnzUgaU7l/os++XKL+n0n06UDivN/L7zebpDcF+RFxEpqIpUojhZowB4buZz5yz3fuL7/HHcH2lRrQXz7ppHQvVcvawoIlIsFKlEUbFMxYzpn7f+fNYje845np/5PPf87x661uvK93/6/rRtAOZumcsLP77AifQTWR5j+6HtbNq/Ke+DFxEpoIpUogixEH67/zeGdBvCloNbWLJzyWnr357/Nk/PeJre8b2ZcPOELAc4ennOyzw1/Sn+Oeufpy0/knqEp354ijpv1+G6z64L6HmIiBQkRSpRADSMbkjPC3tiGBNXTcxYPnnNZAZOHcgNjW7gwx4fEhYadtp25UuVB+DmxjfTq3EvBs0cxJzNcwCYuXEmzYY244VZL1AytCQHjx/MvxMSEQmyIpcowPOYbJuYNny9+msAkg4mcduXtxFfJZ7RN4wmxM4+7ToV6rD777sZ03MMw68dTlz5OG778jbu/9/9dBzVEYdj+p3T6dHI83TUkdQjjPhlBNsP5XpQPhGRQqFIJgqAaxtcS+K2RLYe3ErfiX1JOZHCuD+O8zmednSZaMyMsiXLMqbnGLYd2sbQxKEMaDOApfcspWNcRwD2HNnDRUMu4u6v72bUklH5dEYiIsFRpN7Mzuy6htfxxA9PcMPYG1iwbQFDug2h7gV1/d6+dY3WTLl9ClElo2hdo3XG8lAL5VDKIWLKel6RP9dNbxGRoqLIJorGlRpTrmQ5FmxbQIdaHbgn4Z4c76NTnU5nLRvYbiAd4zpy00U3EfHPc9dOjqQeoXSJ0upzSkQKvSLb9GRmXNPgGgDe6vpWlvclcqNJ5Sb0ju9NWEhYlut3Ju+k/9f9iXopinErxuXJMUVEgqnI1igA3u32Lg+3fZj4qvF5vu/QkFDKlizLxv0bAc9QrIPnDebZmc9yJPUI6S6dbYe25flxRUTyW5GtUQCUK1UuYG9dh1gInWp3Yur6qSzavojWw1vz9+/+Tse4jsy9y9Ox4Oilo/VUlIgUekU6UQRal7pd2HxgMwnDE9ievJ3xfxzPxFsm0ii6EQC/bP+FBu804KVZL3Es7ViQoxURyZ0i3fQUaN0bdCd6ejQ9Gvbgtateo0LpCgCULVmWT278hPKlyjNs4TD+74f/Y9qGaXzf+/sgRywiknNW2IYwTEhIcImJicEOI0funHAnk9dMZtffdwU7FBEppsxsoXMuV23xanrKBxFh536MVkSkoFOiEBERn5QoRETEJyUKERHxSYlCRER8UqLIJ7uP7Oa333/Ll2NtPbiVwymH8+VYIlL06T2KfHAk9QgAl4y8hO2PbCc8NDzP9n0i/QTLdi1jzpY5zN48mzlb5rD5wGZ6XtiT8b3G59lxRKT4CmiiMLOuwFtAKDDCOffyGetrAqOA8t4yjzvnJgUypmDo17Ifv+76lV+2/8LYZWP5U/yfzmt/q/es5vPlnzNnyxx+2vJTxoh71SKrcWnNS0l36ew9ujcvQhcRCVyiMLNQYAhwFZAELDCzic65FZmKPQl87pwbamYXAZOAuEDFFCx/iP0DiXcnEvNmDFPWTcl1oti4fyPPzXyOUUtGke7SaVypMbc2uZVLYi/h0pqXElc+DjOj/Yft8/gMRKQ4C2SNojWw1jm3HsDMPgN6AJkThQPKeqfLAUW2u1UzIzI8knSXnuNttx3axos/vsjwX4YTYiEMaDOARy95lKqRVc95rJQTKecbsogIENhEUQPYkmk+CWhzRplBwFQzexCIAK7Makdm1g/oB1CzZs08D7Qg+XXnrwxZMITklGTS0tM4lnaMb9d9S1p6Gne1uIsn2z+ZMbreubSs1pIhC4Zw8PhBdiTvYPC8wazZu4YxPcfwxYovaF61OW1iTv9VrNmzhrDQMOLKx+XJeazdu5bI8EiqRlblwLEDTF47mS9XfskJd4IBbQZQs1zNPDuWiARWIBNFVkO7ndmx1K3AR865182sHTDazJo4d/rXbufcMGAYePp6Cki0QbBp/yb6f9Of5JRk/nfb/3hx1ou8MfcNSoeVpkpEFUqElCA0JJRbmtzCU+2fok6FOn7t96aLbuLNeW9y2YeXsXTn0ozlsW/GZvRi+/lNn9O5bmcmrZnE+wvfZ+ammZQvVZ7Zf55N48qN/TpOuktn7pa51CxXk9hysaz6fRXjVoxj3IpxGcftXLcz0zdMJzU9NWO7L1d+CcBPf/mJdrHt/DqWiARPIBNFEhCbaT6Gs5uW7gK6Ajjn5ppZKSAaKLK95znncM7xwaIPGPjtQFJOpHD8xHFi34zlUMoh+rboy8tXvkzFMhVzfYy2MW2pW6Eu2w5t4+n2T1OnQh3un3Q/PS/qyfyk+azas4pe43tllK9dvjbPdnyW1+e+zqs/vcqo60eReiKVnYd3Zll7+XXnr3y89GM+XfYpSQeTAGhauSm/7voV8NyTOWnDvg081PYhrm90PZHhkXzwywe8m/guaelpjPhlhBKFSCEQsN5jzawEsBroBGwFFgC3OeeWZyozGRjrnPvIzC4EpgE1nI+gCmPvsSd1/7Q7/1vzPy6reRmzNs+iY1xHPuzxIQ9OfpCkg0m8c/U7XFLzkjw51qHjhwgPDadkiZKnLd+4fyNHUo+w/dB2vl//PZfXvpwr61xJiIXQ6J1GVI2sStuYtrwy5xUA7m91P00qN+HaBtfy6a+f8vGvH7N051JKhJSga72ufLP6GwAuib2EP170R3pe1JOYsjHsPbqX34/8Tv0L6p81bviJ9BOEvxBOukunf8v+1LugHve1uo+ftvzElLVTaF+rPeVKlmPRjkXc1eIulu5cSqkSpWhZvWWeXBuR4uh8eo8NaDfjZtYNGIzn0deRzrkXzew5INE5N9H7pNNwIBJPs9SjzrmpvvZZmBPFgq0LaD2iNeAZx/uB1g8QYiE45876MA2GRu80YtWeVYRaKCfcidPWhVgI6S6dtjFtuaPpHfRq3ItKEZXYe3Qvx9OOUy2qWo6O9fj3j2ckI3/ElI1hy8Nbsi8oIlkqsIkiEApzogD46revaFCxARdWujDYoZxl9JLRbDm4hTvj76RcqXKMXTaW5buXM3b5WO5qcRe943tT74J6eXa8Cb9NYPfh3fz753+TUD2B6xtdz9q9a1m5eyV/iP0Db81/i/iq8WzYt4FZm2fRqnorujfozh9i/0CNqBo0im5UIBKsSGGgRCFF2oTfJnDD2BvOWn5J7CXM7DOT0JDQIEQlUrho4CIp0q5vdD2rHljFV7d8xY5HdvDYJY8BMGfLHDbu3xjc4ESKAfX1JIVCg4oNaFCxAQAvX/kyF0ZfSJ+v+gQ3KJFiQjUKKZRCTH+6IvlFNQop9JxzLN6xmB83/chVda9i5e6VTF47mc0HNtOtfjeaVG5CeGg4raq3onRY6WCHK1LoKFFIofbY948xN2ku2w5l3U3Yd+u/y5h+ruNzPNn+ST0pJZJDShRSKJUrVQ6Aqeum0rluZ7o36M7MTTOpGlGVbvW7EVc+jtmbZ7Pt0DaSDiYxeP5gnp7xNE/PeJr4KvEk9kukREgJnHOs2buGqeumsur3VVxR+wp+2PADUSWjiC0bS7f63ahVvhYpJ1KYnzSf6RunM3ntZBpFN2Jwl8EZcYgUZXo8VgqlE+knWL57OY2iG/k1ENSzM55l0MxBlAkrw5HUI4SFhHFn/J1MXT+VzQc2+9w2LCSMEiElOJp2FMNwmbosu6L2FUy5fQphoWHnfU4igaT3KET8NGvTLNp/5Bmvo2zJsnSq3Ymr6lxFm5g2zN48m/gq8ZQJK8O6feuYtn4aIxaNoHb52lzb4Four3057Wu1Z8+RPfSe0Jt5SfMAGH3DaHYd3sWMjTP4evXXVImoQmK/RCpHVCblRAqR4ZHBPGURQIlCJEcOHT/Emr1raFalGSVCct/6+sWKL7hp3E0Z8/UuqMfavWvPKrfy/pU0im6U6+OI5AUlCpEg2H9sP6//9DoXVrqQDrU6UKNsDZJTkmk2tBnhoeGs2rPqtPLvXP0Of2nxFz15JUGhRCFSAO06vIspa6fw8uyXWfn7yozlP/f9mVY1WgUxMimO1IWHSAFUOaIyveN7s+y+ZfzY50eiwqMAuO3L2zh0/BDr961n9JLRLN+1PJs9iQSXahQi+eRE+gm6fNyFaRumnba8VfVWzPnLHD05JQGlGoVIIRAaEsqHPT6kZbWW/PGiP/Jut3epU6EOC7YtoObgmjw85WH2Ht0b7DBFzqIahUgQzdw4k46jOp62bN9j+yhfqnxwApIiSzUKkUKqQ1wHNgzYwOL+izOWbdq/KYgRiZxNiUIkyOLKxxFfNZ4ve30Z7FBEsqREIVLANH+/OVeMuoLnZz4f7FBEACUKkQIjvmp8xvSPm35k4uqJQYxG5BQlCpECok6FOrhnHKlPpXJlnStJ3JbIY989RsqJlGCHJsWcEoVIAVMipATdG3QH4NWfXuXNuW8GOSIp7pQoRAqgB1o/wIw7ZwCw79i+4AYjxZ4ShUgB1SGuAyVDSwY7DBElCpGC7PiJ47wy5xUW7zj1nsXO5J0cTjkcxKikuNFQqCIFWK1ytdh0YBMt3m8BQO3ytdmwfwM3XngjX/T6IsjRSXGhRCFSgG0YsIEnf3iSDxZ9QJd6XTiccpjU9FT2HNkT7NCkGFGiECnAzIwXO73Ii51ezFjW8aOOwQtIiiXdoxApZNJdOit2ryA5JTnYoUgxoRqFSCFTIqQEu4/sJuolz0BIlSMq80u/X1i1ZxU/bvqR6Run07RyU8qWLMvWQ1t5v/v7lCpRKshRS2GmbsZFCpnFOxbz6HePcjTtKLM3zz5tXYiFkO7ST1tWJaIKSQOTKBGi74XF2fl0M+73X46Z1QBqZd7GOfdjbg4qIrnXvGpzpv5pKgC7D++m/zf9aVCxAR1qdeAPsX/gt99/43DqYZpWbsolIy9hzd41TF03lW71uwU5cims/KpRmNkrwM3ACuCEd7Fzzl2XzXZdgbeAUGCEc+7lLMr0AgYBDljinLvN1z5VoxDx3/CFw+n3TT8AnrzsSa5vdD0tq7cMclQSDPlRo7geaOicO56DoEKBIcBVQBKwwMwmOudWZCpTH/gHcIlzbp+ZVfY/dBHJTu/43vyw8Qc+W/YZL8x6gbX71jKm55hghyWFjL+JYj0QBvidKIDWwFrn3HoAM/sM6IGnVnLS3cAQ59w+AOfcrhzsX0SyUbJEScb0HMPI60bSaEgjPlv2GbXL16ZRdCMW71hMeGg4L195VkVf5DT+JoojwGIzm0amZOGc+6uPbWoAWzLNJwFtzijTAMDM5uBpnhrknJviZ0wi4qfSYaWJLRvL5gObeWn2S6ete+7y5wgPDQ9SZFIY+JsoJnp/csKyWHbmDZESQH2gIxADzDKzJs65/aftyKwf0A+gZs2aOQxDRAAm3T6JX3f+ypKdS2hRtQWT107m+R+fp+QLJfnkxk+4tcmtbNi/gdmbZ3M45TD3tro32CFLAeH347FmFo63BgCscs6lZlO+HZ4aQhfv/D8AnHMvZSrzHjDPOfeRd34a8LhzbsG59qub2SJ5Y/We1cS/F8+xtGMAVI2syo7kHRnrv73jWzrX7Rys8CSPnc/NbL/ezDazjsAaPDen3wVWm1n7bDZbANQ3s9reJHMLZ9dKJgCXe48RjScRrfc7ehHJtQYVG3D0iaM80u4RqkVWo1PtTgy9ZijPX+4Zq7vLx114aMpD/LDhhyBHKsHm7+OxC4HbnHOrvPMNgDHOOZ/P2ZlZN2AwnvsPI51zL5rZc0Cic26imRnwOtAVz2O3LzrnPvO1T9UoRAJv0IxBPDvz2Yz5ciXL0S62HZ/f9DlRJaOCGJnk1vnUKPxNFEudc82yW5YflChE8ke6S6fvxL6MWTYmo3nq9qa3s+nAJga0GcBNF93EgWMHWLVnFc2rNtcN8QIuPxLFSDw3okd7F90OlHDO/Tk3Bz0fShQi+W/xjsUZY2Kc1LhSY1bsXoHD8cmNn3BbU5/vykqQBfweBXAvsBz4KzAAz7sQ9+TmgCJS+DSv2pxF/Rex/ZHtvHD5C0SGRxJbLpaH2z4MwO1f3s5rc147q+8pKRrUKaCI5NrR1KOU+WeZ05aNvWksvRr3ClJEci4Bq1GY2efef381s6Vn/uTmgCJSdJQOK0360+kk3p3I/136fwDcPP5m7Fmj/r/rs/3Q9iBHKHkhuxfuBnj/7R7oQESkcDIzWlZvScvqLakaWZURi0awdOdS1u5dy9vz3+aK2lcwa/MsOtTqQOmw0tSpUIeqkVWDHbbkgL83syOAo865dO+jsY2Aydm9dBcIanoSKfh2H95N5X+du4/PznU788RlT9C+VnavY0leyY+nnhYClwEVgHlAInDEOXd7bg56PpQoRAqHf/30L46lHePiahezcf9Gkg4mMXntZDbu38j+Y55eesb0HMMtTW4JcqTFQ34kil+ccxeb2YNAaefcq2a2yDnXItuN85gShUjhd8839/D+wvcBWHbvMhpXbhzkiIq+/Hg81rx9N90O/M+7TOMqikiuDL1mKDc0ugGAJkObcDwtJyMYSH7zN1E8hGeAof8655abWR1geuDCEpGizMwYdf0oKpWpBEDC8ASavNuEd35+h+2HtnMs7Ri7Dmt4moJC71GISNCs37eeR797lC9WfnHa8hIhJXDOsf2R7VSKqBR+eAywAAAQ/ElEQVSk6IqWgA2FamaDnXMPmdnXnD2WBNmNmS0i4kudCnUY32s8zjmSU5K59YtbOZJ6hLDQMKaum8qB4weUKAqA7O4znOzb6V+BDkREii8zI6pkFN/c9g0AHy/9mKnrplL/3/VpU6MNE26ZoHcvgshnonDOLfROJuJ9jwLAzEKBkgGOTUSKqVbVW1G+VHn2H9vP/K3zqfZ6NX7p9wstquX7g5aC/zezpwGZO3QpDXyf9+GIiEDD6Ibse2wfWwduJSIsAoCLh13MtPXTghxZ8eRvoijlnEs+OeOdLuOjvIjIeaseVZ2D/zjIPS09nVVfOfpKVu9ZHeSoih9/E8VhM7v45IyZtQSOBiYkEZFTQiyEd695l0bRjQBo+E5Dvlv3XZCjKl5y8h7FODObZWazgLHAA4ELS0TkFDMj8e5EosI9w7B2/rgz+47uC3JUxYdficI5twBPR4D3AvcBF2a60S0iEnAR4REc/MdBXrziRYCM4Vkl8PxKFGZWBngMGOCc+xWIMzN1PS4i+a5i6YrBDqHY8be/pg+BhUA773wSMA74JhBBiYhk56rRV1EpohIXlL6Av7X7G+1i22W/keSKv4mirnPuZjO7FcA5d9TMLIBxiYhkqVv9bvRt0ZddR3ax7+g+vlz5JQCf1/ic0JDQIEdXNPmbKFLMrDTebjzMrC6g7h5FJN/Flotl+HXDM+bv+999DE0cSvgL4aS7dMqVLMddLe4iMjySyhGVWbdvHQPbDSSmbEwQoy7c/E0UzwBTgFgz+wS4BOgTqKBERPw1uOtgqkVWY92+dYxaMooDxw/wxrw3TisTWzaWh9s9HKQIC79se4/1NjHFAEeAtoAB85xzvwc+vLOp91gRyc7G/RtZtmsZ1SKrkTDc02HqknuW0KxKsyBHFjwBHbjIeTLJBOfcHufc/5xz3wQrSYiI+COufBzdG3Tn4moX06txLwD6TuzLHV/eQWEbWqEg8PeFu3lm1iqgkYiI5DEz47WrXqN8qfL89vtvfPLrJyzfvZwT6SeCHVqh4m+iuBxPslhnZkvN7FczWxrIwERE8kLNcjXZ++heXr3qVQCaDm1Kn6/6BDeoQsbfm9lXBzQKEZEAMjP6t+xPu5h23PHfO9h8YHOwQypUshvhrhRwD1AP+BX4wDmXlh+BiYjkJTMjvmo80WWi1fSUQ9k1PY0CEvAkiauB1wMekYhIAKW7dGZtnoU9a0zfMD3Y4RQK2SWKi5xzdzjn3gduAi7Lh5hERALmb+3+Rqh53uC+4j9XYM8aT/3wlJ6G8iG7RJF6ckJNTiJSFFzb8FrSnk7jvoT7Mpa9MOsFdiTvCGJUBVt2iSLezA56fw4BzU5Om9nB7HZuZl3NbJWZrTWzx32Uu8nMnJnl6mUQEZGcGnLNENwzjn9f/W8AHKpRnIvPm9nOuVz3sGVmocAQ4Co8vc0uMLOJzrkVZ5SLAv4KzM/tsUREcis8NDzYIRR4/r5HkRutgbXOufXOuRTgM6BHFuWeB14FNAqJiASNBkI6t0AmihrAlkzzSd5lGcysBRDrnPM5roWZ9TOzRDNL3L17d95HKiLFVoh5Pgbrvl2XkYtGBjmagimQiSKr8SoyGgHNLAR4E3gkux0554Y55xKccwmVKlXKwxBFpLjr0bAHjSs1BuCuiXcxZe2UIEdU8AQyUSQBsZnmY4BtmeajgCbADDPbiKdn2om6oS0i+alSRCWW3beMZzo8A8Bb898KckQFTyATxQKgvpnVNrNw4BZg4smVzrkDzrlo51yccy4OmAdc55xTH+Iiku8GdRxEQvUELMvGkOLN376ecsw5l2ZmDwDfAqHASOfccjN7Dkh0zk30vQcRkfy3+cBmJq2ZxLJdy5i8djLd63fnkT9k20JepGU7cFFBo4GLRCRQWg9vzYJtC85afuDxA5QtWTYIEeWdgA5cJCJSXAzuOpih1wxl1p9nsffRvbxy5SsA3D/p/iBHFlyqUYiInMP8pPm0/aAtAGXCynBdw+voUrcLEWERHEs7xh3N7sAzWnTBdz41CiUKEREfpq6bSpePu2S5bv1f11O7Qu18jih3zidRBOxmtohIUdC5bmfcMw7nHFPWTmHv0b2s2buGZ2c+y9vz3+bNrm8GO8SA0z0KERE/mBlX17+a25vdTqfanQAYPH8wq35fFeTIAk+JQkQkhy6rdRmvXukZg7vRkEa8Nuc1bhl/C10+7sIDkx5g8Y7FQY4wb+kehYhILiSnJNN6eGtW/r4yy/Uz+8ykfa32+RzVuenxWBGRfBYZHsn8vvP5ue/P7H10LwcfP8jmhzbTq3EvADp81IH+X/cPcpR5Q4lCRCSXokpG0apGKyqUrkBUyShiy8XyyY2f8H739wGYvrFojMmtRCEikodKhJSgX8t+9Grci00HNhHzRgyjFo8q1GNyK1GIiATA9Q2vp32t9mw9tJU+X/Uh5LkQftn+S7DDyhUlChGRALi16a1896fveO+a94gIiwDgL1/9hflJhW/UZyUKEZEA6p/QnxX3rwBgyc4ltP2gLUdSjwQ5qpxRohARCbCa5WqyccBGOtftDMCDkx4MckQ5o0QhIpIPapWvxaAOgwAYvXR0cIPJISUKEZF80i62HQ+2fpDU9FTajGjDiF9GBDskv6hTQBGRfNSmRhu+Kf8NP2/9mZ+3/syrc15lzd41AHSo1YFejXuxZs8aHmzzINWjqlOqRKkgR6wuPEREguLBSQ/y3frvqB5VPdsX8ypHVCY5JZkjqUcY0GYANze+meSUZCLCIygZWpKW1VtmezyNRyEiUsgdTzvOkp1LiC4TzWfLPmNn8k7GLh9LyRIlSaiewNerviY1PfWc2w/rPozbm91OyokUDh4/SI2oGoSGhGasV6IQESkGthzYwvgV46kSWYUtB7YQFhrGP6b9g5QTKVmWL1eyHAeOH6BV9VYs6LdAiUJEpLj6du23fL36a3Yd3kWLqi2YtHYSe4/uZd3edRw/cdxTaBBKFCIikrV0l05oSKi6GRcRkayF2Pl91CtRiIiIT0oUIiLikxKFiIj4pEQhIiI+KVGIiIhPShQiIuKTEoWIiPikRCEiIj4pUYiIiE8BTRRm1tXMVpnZWjN7PIv1A81shZktNbNpZlYrkPGIiEjOBSxRmFkoMAS4GrgIuNXMLjqj2CIgwTnXDBgPvBqoeEREJHcCWaNoDax1zq13zqUAnwE9Mhdwzk13zh3xzs4DYgIYj4iI5EIgE0UNYEum+STvsnO5C5ic1Qoz62dmiWaWuHv37jwMUUREshPIRGFZLMuyT3MzuwNIAF7Lar1zbphzLsE5l1CpUqU8DFFERLJTIoD7TgJiM83HANvOLGRmVwJPAB2cc8cDGI+IiORCIGsUC4D6ZlbbzMKBW4CJmQuYWQvgfeA659yuAMYiIiK5FLBE4ZxLAx4AvgVWAp8755ab2XNmdp232GtAJDDOzBab2cRz7E5ERIIkkE1POOcmAZPOWPZ0pukrA3l8ERE5f3ozW0REfFKiEBERn5QoRETEJyUKERHxSYlCRER8UqIQERGflChERMQnJQoREfFJiUJERHxSohAREZ+UKERExCclChER8UmJQkREfFKiEBERn5QoRETEJyUKERHxSYlCRER8UqIQERGflChERMQnJQoREfFJiUJERHxSohAREZ+UKERExCclChER8UmJQkREfFKiEBERn5QoRETEJyUKERHxSYlCRER8UqIQERGflChERMQnJQoREfFJiUJERHwKaKIws65mtsrM1prZ41msL2lmY73r55tZXCDjERGRnAtYojCzUGAIcDVwEXCrmV10RrG7gH3OuXrAm8ArgYpHRERyJ5A1itbAWufceudcCvAZ0OOMMj2AUd7p8UAnM7MAxiQiIjlUIoD7rgFsyTSfBLQ5VxnnXJqZHQAqAr9nLmRm/YB+3tnjZrYsIBEXPtGcca2KMV2LU3QtTtG1OKVhbjcMZKLIqmbgclEG59wwYBiAmSU65xLOP7zCT9fiFF2LU3QtTtG1OMXMEnO7bSCbnpKA2EzzMcC2c5UxsxJAOWBvAGMSEZEcCmSiWADUN7PaZhYO3AJMPKPMROBO7/RNwA/OubNqFCIiEjwBa3ry3nN4APgWCAVGOueWm9lzQKJzbiLwATDazNbiqUnc4seuhwUq5kJI1+IUXYtTdC1O0bU4JdfXwvQFXkREfNGb2SIi4pMShYiI+FRgE4W6/zjFj2sx0MxWmNlSM5tmZrWCEWd+yO5aZCp3k5k5Myuyj0b6cy3MrJf3b2O5mX2a3zHmFz/+j9Q0s+lmtsj7/6RbMOIMNDMbaWa7zvWumXm87b1OS83sYr927JwrcD94bn6vA+oA4cAS4KIzytwHvOedvgUYG+y4g3gtLgfKeKfvLc7XwlsuCvgRmAckBDvuIP5d1AcWARW885WDHXcQr8Uw4F7v9EXAxmDHHaBr0R64GFh2jvXdgMl43mFrC8z3Z78FtUah7j9OyfZaOOemO+eOeGfn4XlnpSjy5+8C4HngVeBYfgaXz/y5FncDQ5xz+wCcc7vyOcb84s+1cEBZ73Q5zn6nq0hwzv2I73fRegD/cR7zgPJmVi27/RbURJFV9x81zlXGOZcGnOz+o6jx51pkdheebwxFUbbXwsxaALHOuW/yM7Ag8OfvogHQwMzmmNk8M+uab9HlL3+uxSDgDjNLAiYBD+ZPaAVOTj9PgMB24XE+8qz7jyLA7/M0szuABKBDQCMKHp/XwsxC8PRC3Ce/Agoif/4uSuBpfuqIp5Y5y8yaOOf2Bzi2/ObPtbgV+Mg597qZtcPz/lYT51x64MMrUHL1uVlQaxTq/uMUf64FZnYl8ARwnXPueD7Flt+yuxZRQBNghpltxNMGO7GI3tD29//IV865VOfcBmAVnsRR1PhzLe4CPgdwzs0FSuHpMLC48evz5EwFNVGo+49Tsr0W3uaW9/EkiaLaDg3ZXAvn3AHnXLRzLs45F4fnfs11zrlcd4ZWgPnzf2QCngcdMLNoPE1R6/M1yvzhz7XYDHQCMLML8SSK3fkaZcEwEejtffqpLXDAObc9u40KZNOTC1z3H4WOn9fiNSASGOe9n7/ZOXdd0IIOED+vRbHg57X4FuhsZiuAE8DfnXN7ghd1YPh5LR4BhpvZw3iaWvoUxS+WZjYGT1NjtPd+zDNAGIBz7j0892e6AWuBI8Cf/dpvEbxWIiKShwpq05OIiBQQShQiIuKTEoWIiPikRCEiIj4pUYiIiE9KFCJnMLMTZrbYzJaZ2ddmVj6P99/HzN7xTg8ys7/l5f5F8poShcjZjjrnmjvnmuB5R+f+YAckEkxKFCK+zSVTp2lm9nczW+Dty//ZTMt7e5ctMbPR3mXXesdKWWRm35tZlSDEL3LeCuSb2SIFgZmF4un24QPvfGc8fSW1xtO52kQzaw/swdPP1iXOud/N7ALvLmYDbZ1zzsz6Ao/ieUNYpFBRohA5W2kzWwzEAQuB77zLO3t/FnnnI/EkjnhgvHPudwDn3MnOKWOAsd7+/sOBDfkSvUgeU9OTyNmOOueaA7XwfMCfvEdhwEve+xfNnXP1nHMfeJdn1RfOv4F3nHNNgf54OqITKXSUKETOwTl3APgr8DczC8PT6dxfzCwSwMxqmFllYBrQy8wqepefbHoqB2z1Tt+JSCGlpicRH5xzi8xsCXCLc260t4vqud5eepOBO7w9lb4IzDSzE3iapvrgGVVtnJltxdPlee1gnIPI+VLvsSIi4pOankRExCclChER8UmJQkREfFKiEBERn5QoRETEJyUKERHxSYlCRER8+n9yugS3d6gdYQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" DecisionTreeClassifier \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAH5pJREFUeJzt3Xl4VPXZxvHvkwRI2EQRUUQBsW6o7NSKLShglSJuWNyLUFG0davbK7aCS6t1r4rijltFUayKiqKVgqLIpoAIgmwKIqDIGiDJ8/5xTiCEEGayTfLj/lxXLjPnnDnnGcbc8zvPnMXcHRGRqi4t1QWIiJQFhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEoSMVBdQlVlGplv12qkuQ5JQf8OaVJcgSVrBphXu3mBnyynMSsGq1ybj4J6pLkOScPq0D1JdgiRpKAsXJrKcdjNFJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCBmpLkBKZo/dajF66DUANKy/G7l5eaz4aQ0ALQ/en3ufHc119wwH4MrzfkvtmpncMvQ/pdpm7xN+yXV9f4e7s2T5Kvrc+BgrV63dMv/K837LHVf1Zp9jL2PlqrUc3HRvHhvcl9aHNOFvD77Kvc+OLtX2QzEkZx7fTZ+95fEjp/SnftPGDPjPoyz/ZjHVMmsw6cU3GHXz/aXaTpte3ekx6Ar2PvRAbu9wMosmTwcgLSOD8x6/g/3btCAtI4NPnnmV0bcPIaNGDa7+33AyatQgLSOdKSPe5s1B95aqhoqkMKuifvx5He3PHATAXy86mbXrs7eExepPhnLKcW3455Ojtgmb0khPT+Pua86i5ek3snLVWv5x+Rlc0rvLloBs3HB3uhzVgoVLV2xT45V3vMDJx7YpkxpCsWlDNre17r7NtPpNG/P1uM8YclI/qtfM4sZpbzH9zfdZNGVGibezZMZshp52MecM/fs209ue0Z2MGtW55cgTqJaVyaAvxzDp36+zcuG33Hvc2Wxct560jAyuGT+CmW9/yPxPp5a4hoqk3cwA5eTm8sSrY7n8nOPLbJ1mhplRK6sGAHVqZ7Jk+aot8++6+ixuuP9l3Lc+Z/lPa5j85QI25+SWWR27gk3rN7Bw8gwaNG9SqvV8/9U8ls35Zrvp7lCjVhZp6elUz8okZ9MmNqyORvUb160HIL1aBunVMvCCb2glp5FZoB4e/gGTX7qZu4a9vcNlOrU7hLuuPnO76euzN9Gpz7af5jk5ufz5788w5aWbWbdhI3MXL+OyfzwHQI9Orfjuh5/4Ys7isn0RgaqelcnAqW8BsHL+Yh457aJt5tfaox4HHNWat2751zbTa9SuxdXjXi5ynU+efRlLZ81NaPtTRrxFy5O7ccfSiVSvmcXLV97C+p9+BsDS0rhh8ps0OLAJYx96lgUTpyX78lKmQsPMzPYG7gPaAxuBBcBrQE9371EB2+8M/Dfe3hvxtDeBu9z9w/LefkVasy6b59/8mD+d1ZUN2ZuKXGbspK+27KruTEZGOv17HUuHswbxzbfLue+6c7iu7++477l3ub5fD7pfcncZVh+2onYzAX7x6/bcMGUUnpfHO7c/zNIvv95m/sa164p8XrKadWiJ5+ZyXaNfUmv33fjLuJf4asx4VsxfjOflcVvr7mTtVpeLRw6lUYuDWDJzTqm3WREqLMzMzICRwDB3PzOe1go4qZTrzXD3nCSe8i0wEHijNNutCv71/Ht8+u+beOY/44ucn8zIrOVB+wHwzbfLARjx3mdcc0F3mn84lab77smk4YMBaLzX7nz6wk10PO8Wlq1cXZYvJ3j5PbMdKauRWfuzT2bmO2PJy8lhzfKVzPtoMk3aHcmK+VtH1ht+Xs2cDz+hxQmdFGZFOBbY7O6P5E9w92lmVg/oYmYjgMOBycC57u5mtgBo5+4rzKwd0Qiqs5kNAhoBTYEVZvYu0BOoCTQHRrr7tTuo43Ogmpl1c/f3Cs4wsy7AXUT/Lp8BA9x9Yxm9/gr30+p1vPLuZ/Q55dcMKyLQkhmZLVm+ikMPaMSeu9dhxU9r6HpUC76av5QZc7+jcZcrtiw3Z9Q/+dU5N5fZFw+yVVmNzH5ctISDjzuaT58bSfWaWRxwVGs+uO9Jau+5B7mbc9jw82qqZdbgkK4defeOR3a+wkqiIsMsP6iK0hpoASwBPgI6AkUPJ7ZqCxzj7hvMrA/QKl7PRmC2mT3g7jtq4twa/2wJMzPLBJ4Gurj7HDN7BhhAtFtcZd377GgG9D6u1OtZunwVtz76Oh88fh2bc3JZtHQl/W56otjnNKxflwnP/426tbLIc+fP53Sj5ek3smZddqnrkZ1rdcpv6f3AIGo32IM/jXqSxdNm8cAJ5zP2oWc4/6k7+duMdzEzPn7qZb6b/hX7HnEIfxh2N2npaVhaGpNfGsX0UR+k+mUkzCrq2wozuwxo5u5XFpreGRjo7t3ixw8DH7n7czsZmbm7D46f0wfo6O4Xxo/fBm5z9/FFbOtqd+9hZmOBG4HriEZjPwEPuPtv4mW7AJe6+2mF1tEf6A9AtVptq7X4fVn880gF6Tut6vxxSmQoCye7e7udLVeRh2bMJBpNFaXgrlwuW0eMOWytMbPQc9btbB1mdqqZTYt/Cv9j3EbUO8tnxRWfz90fdfd27t7OMgqXJCKpUpFh9gFQw8wuzJ9gZu2BTsU8ZwFbA/D0ZDfo7iPdvVX8M6nQvHeB3YGW8aSvgKZmdmD8+DxgbLLbFJHUqLAw82h/9lSgm5nNM7OZwCCiPtmODAbuN7NxRKOtsnYb0DiuLxu4AHjZzKYDeUDV6X6K7OIqrGcWorSae3rGwT1TXYYkQT2zqqcy9sxERMqNwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQlCxo5mmFnd4p7o7qvLvhwRkZLZYZgBMwEHrMC0/McO7F+OdYmIJGWHYebu+1VkISIipZFQz8zMzjSzG+LfG5tZ2/ItS0QkOTsNMzN7EDgWOC+etB54pDyLEhFJVnE9s3xHu3sbM5sK4O4/mln1cq5LRCQpiexmbjazNKKmP2ZWH8gr16pERJKUSJg9BLwCNDCzwcB44I5yrUpEJEk73c1092fMbDLQNZ50hrvPKN+yRESSk0jPDCAd2Ey0q6mzBkSk0knk28yBwL+BRkBj4AUz+7/yLkxEJBmJjMzOBdq6+3oAM7sNmAz8ozwLExFJRiK7jAvZNvQygG/KpxwRkZIp7kTze4l6ZOuBmWY2On58PNE3miIilUZxu5n531jOBEYVmP5J+ZUjIlIyxZ1o/kRFFiIiUho7/QLAzJoDtwGHAZn50939oHKsS0QkKYl8AfA08BTRdcxOBF4CXizHmkREkpZImNV099EA7j7P3W8kuoqGiEilkchxZhvNzIB5ZnYx8B2wV/mWJSKSnETC7EqgNnAZUe9sN6BveRYlIpKsRE40/zT+dQ1bL9AoIlKpFHfQ7Ejia5gVxd1PK5eKRERKoLiR2YMVVoWISCkVd9Ds+xVZSFXUMHsN/b4cm+oyJAkrUl2AlBtdm0xEgqAwE5EgJBxmZlajPAsRESmNRK4028HMpgNfx49bmtkD5V6ZiEgSEhmZ/QvoAawEcPfP0elMIlLJJBJmae6+sNC03PIoRkSkpBI5nWmxmXUA3MzSgT8Dc8q3LBGR5CQyMhsAXAXsDywDjoqniYhUGomcm/kDcGYF1CIiUmKJXGn2MYo4R9Pd+5dLRSIiJZBIz2xMgd8zgVOBxeVTjohIySSymzm84GMzexZ4r9wqEhEpgZKcztQMaFLWhYiIlEYiPbOf2NozSwN+BK4vz6JERJJVbJjF1/5vSXTdf4A8d9/hBRtFRFKl2N3MOLhGuntu/KMgE5FKKZGe2UQza1PulYiIlEJx9wDIcPcc4BjgQjObB6wjuhmwu7sCTkQqjeJ6ZhOBNsApFVSLiEiJFRdmBtFdzCuoFhGREisuzBqY2VU7munu95RDPSIiJVJcmKUT3cncKqgWEZESKy7Mlrr7zRVWiYhIKRR3aIZGZCJSZRQXZl0qrAoRkVLaYZi5+48VWYiISGnoJsAiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBCKu2+mVHI3r5/Dshmztzx+/oyL2b1JY/q99wLPnnYhs0d9AMC5Ix/jo3sfZ/7/Pi3xtvY+8lB6PnAzNerWxnPz+PD2IcwYMQqA3Zs25vfP3k/WHvVYOnUmIy74C7mbN3P05X1pd8HvycvJZd2KHxnZ/zpWLVpSuhddxdXaox5XvP8CAHX3boDn5rJmeXTvoP1aHcbiaV+SlpHO97Pm8vQf/sLmDdkl3lbDg5vzh6fuZL82LXh94F28d/djW+Z1uaIfHf/YG3dnyfTZDLvgGnI2buS8x++gSbsjweCHOfMZ1udqNq5bX7oXXUHM3VNdQ5W1T1oN71etccq2/9eVX3BL/SO3mdbsN7+k15N3s3rJ9wz9TS+gbMKs/i+agsPKuQuos89eXDLhP9zf8niyf15D7+f/xZevvcv0l9+k54O38P0Xs5j46As063QU306cxuYN2XTofzbNfnMUw8+9rDQvudRWbMpN6fYL6nHTFWxcu25LyNy3ZiZX1GkBQN/n7mPh5Om8f+8TJV5/nQb12aPJvrQ65XjW//Tzlu3Ua9SQq8ePYPBhXdmcvZELhz/IjLc+ZMKwEWTWqU32mrUA9Lr7Rtb8sJLRdzxcyldaOkNZONnd2+1sOe1mBmjp9Flkr15D8y4dy2ydK79ewMq5CwBYs/QH1i5fSa0G9QE4oPOvmPnq2wBMffZVDu3ZDYD5Yz/ZMrJY/Ok06u67d5nVE7qvx33GXgc2LdU61ixfycJJX5C7OWe7eWkZ6VTLyiQtPZ1qNbNYtWQZwJYgA6iWlUlVGuxoN7MKq5aVyaUT3wDgpwXf8sLvB2yZ9+E/HqLroKuY9/5HO3z+MVddSMsze243fcH4zxh11c07fN6+7Y4kvXo1fpy3kJr1dyf75zXk5UYjntXffU/dRtuHVtsLzuDr0WMTfm27srT0dA4/sTMz39n+3+uPLz5Iw4MP2G76mHse59NnX01o/auWLGPMXY/x90Ufs3lDNrPeHces98ZtmX/+k3dyePfOLP1yLiP+cmvJX0gFK9cwM7O9gfuA9sBGYAHwGtDT3XtUwLYnAL909x/iaY8Cc9z9rvLcdkXZvCGbhzqcVOS8hR9NAqBJxx2Pzsff8xjj73lsh/OLUnvvBvR66m5e6XdN9Klttt0yhT/NW551Mvu2OYLHu56d1LZ2NdWzMhk49S0A5o6byEdPDN9umcfP/FOpt1OzXl2OPLkbNzb7NetXrab/y0PocM4pTHz+NQCe6XsNlpbGmQ8Mpl3vk5jw9Mul3mZFKLcwMzMDRgLD3P3MeForoOi/vsTXm+Hu24+bC3H3783sbuCfQB8zaw90AC4pzfarkrF3DKHT9ZeSl1P0P1eyI7MadWpz/muPM+ame/h24jQA1q/4kczd6pCWnk5ebi51992bNUuXbXlO8+OOptP1l/BE17PJ3bSpjF5ZmDZtyOa21t2LXaYsRmaHdD2GlfMXs3ZF9MXD1FffofnRbbeEGYDn5TFp+Jt0u6a/wgw4Ftjs7o/kT3D3aWZWD+hiZiOAw4HJwLnu7ma2AGjn7ivMrB1wl7t3NrNBQCOgKbDCzN4FegI1gebASHe/togahgCfmFknolC71N1zzKwacCdwNFADuM/dnzKz/YAXgVpAOvBHdy951zzF5o4ZT5ebrqTuPg2LnJ/MyCy9WjXOfvlhpj4/ckt/LN/8sZ/Q4rQTmf7ym7Q+7zRmvTEGgH1aHsbJD93KsJP6sm75ytK9GAHKZmT246IlNDuqNdWyMtm8IZtDunRk4aQvAGjQvAnL5y0E4MiTurDsq3ml3l5FKc8wyw+qorQGWgBLgI+AjsD4nayvLXCMu28wsz5Aq3g9G4HZZvaAuy8u+AR3zzOzAcAY4BV3z28gDQC+dfcOZpYJfBoH5PnAq+5+t5mlA1mFizCz/kB/gLpVoOU49o4hnPvKo6Vez+G9utP0mPbU3KMebc47HYBX/ngt338xi9ED/0nvZ++n6+CrWDptJpOfij7JT7j9eqrXqsWZLzwAwKrFS3j+9ItKXYskpm7DBvzfpNfJrFsbz3OOu6Ivgw/rxoKJ05gy4m0GThlFbk4Oi6fOZPyj/8bM6DPsbjLr1gYzvvt8Fi8MuDHVLyNh5XZohpldBjRz9ysLTe8MDHT3bvHjh4GP3P25nYzM3N0Hx8/pA3R09wvjx28Dt7l7kYFoZh8Df3L3KfHjN4EDgfyDeHYD+gDViUZzzwKvufsXxb3GVB+aIcmrTIdmSGIqw6EZM4lGU0XZWOD3XLaOEHMK1JRZ6DnrdrYOMzvVzKbFPwVffF78k8+Ai9y9VfzTzN3Huvt7RLvHy4AXzax3cS9QRCqP8gyzD4AaZnZh/oS4Cd+pmOcsYGsAnp7sBt19ZIGAmlTMoqOBS8wsI67rUDPLNLOmwFJ3Hwo8Q7QbKyJVQLmFmUf7r6cC3cxsnpnNBAYR9cl2ZDBwv5mNIxptlZchwCJgqpnNAB4kavh3Az43s6nAicBD5ViDiJQhnc5UCuqZVT3qmVU9laFnJiJSYRRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEMzdU11DlWVmy4GFqa6jnOwJrEh1EZKwkN+vJu7eYGcLKcykSGY2yd3bpboOSYzeL+1mikggFGYiEgSFmezIo6kuQJKyy79f6pmJSBA0MhORICjMRCQICjMRCYLCTErFzCzVNUjyQnzfFGZSYmZmHn+DZGYdzayVmR1ccH7qqpMdKfS+9Taz9maWnuq6Sisj1QVI1VXgD+Iq4PfAEmCDmU1w9wddX5VXSgXet0uBi4CT3T03tVWVnsJMkmZmdYD17p5rZvsDvYAuQDpwOHCFmc1193dSWafsmJkdBvQDurv7t2Z2IpAFTHH3BSktroQUZpIUMzsIGAg8aGZT4smZRMcsrjaz6cA8YL9U1SjbK7hrGVsMvA/cbWargAOA5UB94LEUlFhq6plJUtx9DrCWaPfkCHdfBEwgCrea7r4G2AD8AtQ3qwzMLK3AruUxZpY/ih4LfAbc6+7dgOnAwTteU+WmMwAkIWbWANjs7qvix7cBzYB/AquBPwFdgZeA84Ce7j47ReVKEczsCuB0YA5wCHCxu0+P550LXAmc6+6zUldlyWlkJjtlZq2A74C3zOxiMzvc3QcCc4n6Lnu4+1XAnUR/KCcpyFLPzI4ws07x722Azu7+a+ALYD0wM57Xiqjn2aeqBhloZCYJMLNGwK3AUcDXwCKgKTAcuBiYATzi7tNSVaNsy8yqAw8Ck919qJntDfQFGgPNgR7uvtnMTgPeBDLcfX3qKi49jcxkp9x9CVGYPUXUDxsEDAPqAbsB/YH74z8gSaH8HqW7bwLeA9rEs2oCRwKHAmfFQXY+cBOwe1UPMtDITJJgZs2JRmL1gavd/Ucz24+od7bE3eemtEDJP+RiNlCNqJl/O9EoLNfMjifqi31NdCTDMUTBNjNV9ZYlhZnsVKEjxg8ALgT2Ba5z96UpLU62MLMsosMtFhF94AwDbgZOd/ep8TJtgUbAXsB/3f2bFJVb5hRmso3CxyOZWRqAu+fFn/rVgDVEn/A1iL4Ry0tJsbKdONCqA93j/14HPA887O4/prK28qYwky0KjcAOA1bF/TLMrAPwBtEhF5+aWRNgg7v/kLqKpaAiDowlbvw/CUwC7nf3lSkprgIozGQ7ZnY50IeoaTwY+AA4GVjg7qNTWJokID5INs/M0uNe2b5Ex/+9Bfw91HNmdTqTbMPMugPHAW2BE4iO9E8DXs/vjxU1ApCKt5OWwBFAmpnNcPfvzOx0oFrI75sOzdjFFTzdyMxaEPVa9nT3PHd/i+hGGWcAp5jZbrD1qguSOoVbAmbWKH7P8uKWwLtArXhklubu37v74tRWXb4UZru4An8QfYEBwGhgmZlda2YZ7j6KqOfSOXVVSmEF3rfLiRr8/zWzs+MeWWuio/k/jpfdJb6g0W6mYGZHA6cAvdx9Uzxa6wZcaWb3uvt/zGyMu69LbaVSkFoC29LIbBcXf5JfTHTJnkbx5HeBd4DDiE4gh+hcPkkhtQSKpzDbhcVHhK8F7iE6v/I0M2vs7tlEB1++GP/sUn8UlZVaAsXToRm7KDOrSRRiexFdsudI4ByiK2G8Gl+nTCqZuCVwPVtbAj2JWgKLiK5LlmNmtXbFloBGZruo+MTim4FvgCeAz4kaya2AHiHc4CI0agkUTyOzXUx8Eb693P2e+HFDostg1wYuBY4AFrn796mrUgqLWwIfAwcCfwGmAi/F1+/PBDoBn+/K75tGZoHLP5CygG+IbjhyCYC7LyPqvfySaDdl4q78B1EZxS2B04BniK54MYTomv29zGx/d89299G7+vumMAtY/LV8Xvz7UWZ2QHzs0e+IAu3SeNGawCvALSkqVYqhlkBitJsZqPhE8Yvc/fL4269riK7V/yLwCNEn+9NEn/RHA8fHNyuRSkItgeQozAJkZu2IrjDaG5gP1ALOBX4FnA0sJLqkcnVgb2Bt6Ke6VAX5J4gXeHw00YfP7e4+JJ72O6KbyIxz94tTU2nlpN3MwJhZD2AokAM8DGwCDnf3XHcfT/TH0RS4GtjN3WcpyFJPLYHS0+lMAYnvxHMfcJ67T4inzQCamNn97n65u//PzKoBPYh2OyXF8lsCwDYtATPLbwmcCjxtZh3Z2hL4LmUFV1LazQyImV0F5Lr7/WZWPT6oMp3oWvBXEF1s8dp42Sx335DKekUtgbKk3cwAFDhnrxnQIP59c7zrkgvMAsYBbc3s9nh+dgWXKYWoJVC2tJsZgALnTY4EbjCztu4+2czS4qZyrpntQ3SruDGFniMpoJZA2dNuZkDMrBZRv6UmMNzdJ8fTzwIuA3rrnMvKQS2BsqfdzIDEJxc/RnwlDDO7y8xuJbrRa38FWeqpJVB+NDILkEW3G2sLdAWWEt0fUQfEViJmdhxwA9G9RyfHp51Z3BK4FlgCjNEBsYlTmImkgFoCZU9hJpIi8S3g+gFdgM+Idid7AWe4+/RU1lYVKcxEUkgtgbKjMBORIOjbTBEJgsJMRIKgMBORICjMRCQICjMRCYLCTMqVmeWa2TQzm2FmL8c35yjpujqb2Zvx7z3N7Ppilq2Xf9OWJLcxyMyuTnR6oWWeNrNeSWyraXxyuZQBhZmUtw3u3srdDye6xM02l3q2SNL/H7r76+5+ezGL1AOSDjOpuhRmUpHGAQfGI5JZZjYEmALsZ2bHm9kEM5sSj+BqA5jZCWb2lZmNJ7rdGvH0Pmb2YPx7QzMbaWafxz9HA7cDzeNR4Z3xcteY2Wdm9oWZDS6wroFmNtvMxhBdtaJYZnZhvJ7PzeyVQqPNrmY2zszmxNcrw8zSzezOAtu+qLT/kLI9hZlUCDPLAE4E8k/TORh4xt1bA+uAG4Gu7t4GmARcZdHNbR8DTgJ+TXSl1aL8Cxjr7i2Jrto6E7gemBePCq+x6Ca6vwA6EN2ira2Z/cbM2gJnAq2JwrJ9Ai/nVXdvH29vFtEpSfmaEt2Q93fAI/Fr6Af87O7t4/VfaGbNEtiOJEEXZ5TylmVm0+LfxxHd97ERsNDdP4mnHwUcBnwUXyGnOjABOASY7+5fA5jZc0D/IrZxHHA+QHwZnZ/NbPdCyxwf/0yNH9cmCrc6wMj43pSY2esJvKbD40sr1YvXM7rAvJfiG5N8bWbfxK/heODIAv203eJt67SlMqQwk/K2wd1bFZwQB9a6gpOA99z9rELLtQLK6nw7A/7h7kMLbeOKEmzjaeAUd//czPoAnQvMK7wuj7f9Z3cvGHqYWdMktyvF0G6mVAafAB3N7EAAM6tpZgcBXwHNzKx5vNxZO3j++8CA+LnpZlYXWEM06so3GuhboBe3r5ntBfwPONXMssysDtEu7c7UAZbGl7Q+p9C8M+LLlTcnutHy7HjbA+LlMbOD4ksASRnSyExSzt2XxyOcf5tZjXjyje4+x8z6A6PMbAUwHji8iFVcDjxqZv2AXGCAu08ws4/iQx/ejvtmhwIT4pHhWuBcd59iZsOBaUR3QhqXQMl/BT6Nl5/OtqE5GxgLNAQudvdsM3ucqJc2Jb7S7HLglMT+dSRRumqGiARBu5kiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBD+H4hzLj2G+FmeAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.475 \n",
"Precision=0.500\n",
"F1=0.487\n",
"Average precision-recall score: 0.382\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VPXZ9/HPlbAEwiZL2PcgKrIouCAVpChJVBbFDUHFtfUpblV76+1Sb32st7WtVetTq1VbRQQ3NpUEUUBFaIHiwiISECWIJIBsCUuA6/ljJiGEMISQyZkk3/frNa/MmTlzzjUnyXznd37n/I65OyIiIocTF3QBIiIS2xQUIiISkYJCREQiUlCIiEhECgoREYlIQSEiIhEpKKRSMbOlZnbOEeZpZ2Y7zCy+gsqKKjMbY2afFpl2M0sOsiapXhQUUi7MbI2Z7Qx/QG8ws5fNrF55r8fdu7n77CPM872713P3feW9/vCHdG74fa4zsz/FWiCZWYqZfWxm280sx8zmmNnQoOuSyktBIeVpiLvXA04FTgPuLz6DhVT2v7ue4fc5ALgcuC7gegqZ2SXAm8ArQBugOfAgMKQMy6oKvyspB/ojkHLn7uuA6cDJAGY228weNbO5QB7QycwamtmLZrY+/M38/xb9Zm5mN5rZ8vC34mVmdmr48TVmdm74/ulmttDMtoVbMX8KP94h/M2/Rni6lZlNNbPNZpZpZjcWWc9DZvaGmb0SXtdSM+tTyveZCcwFehVZXlnf1z1mtqrI4xcd7XY3MwP+BDzi7n93963uvt/d57j7jUXe77girym+rYr/rv7bzBYWW88dZjY1fL+2mf3BzL4P/w6eM7M6R1u7xDYFhZQ7M2sLnA8sLvLwVcBNQH3gO+CfwF4gGTgFGAzcEH79pcBDwNVAA2AosKmEVT0FPOXuDYDOwBuHKel1IAtoBVwC/M7MBhV5figwAWgETAX+Usr3eQJwNpBZ5OGyvq9V4WU1BP4HGGdmLUtTRxFdgbbAW0f5uuKK/q6eAbqaWZciz18JjA/ffxw4nlBYJgOtCbVgpCpxd910O+YbsAbYAWwhFAT/D6gTfm428HCReZsDuwueDz82EpgVvp8B3BZhPeeG739M6EO1abF5OgAO1CD0wbkPqF/k+ceAf4TvPwTMLPLcScDOCO/TgW1Abvj+60DtY31fJaznc2BY+P4Y4NNiNSSX8Jp+4ecSIiz3IWBcSduqpN9V+LFxwIPh+12A7UBdwMLboXORefsC3wb996hb+d7UopDyNNzdG7l7e3f/P+6+s8hza4vcbw/UBNab2RYz2wL8DUgKP9+W0DfsI7me0LfZr81sgZldWMI8rYDN7r69yGPfEfrmW+DHIvfzgISCXTGHcSpQj1D/xBlA4rG+LzO72sw+L/K6k4GmEWooSUHr5GhbIsWtLTY9nlDgQag1Mdnd84BmhAJjUZG608OPSxWioJCKUnSY4rWEvnk3DQdLI3dv4O7dijzf+YgLdF/p7iMJfRA/DrxlZonFZvsBaGxm9Ys81g5YV9Y3El63u/sbwDwO7Gop0/sys/bAC8BYoIm7NwKWEPrGfjRWhNcxIsI8uYQ+3Au0KGGe4kNKzwCamlkvQoFRsNtpI7AT6Fbk/Tb0UEe/VCEKCqlw7r6e0IfPH82sgZnFmVlnMxsQnuXvwF1m1jt85E1y+MP0IGY22syauft+Qru8ILSbqei61gKfAY+ZWYKZ9SDUEnmtnN7O/wI3mVmLY3hfiYQ+nHPC7+tawgcCHA13d+DXwANmdm2RGn5mZs+HZ/sc6G+hc00aAveWYrl7CfV7PAE0Bj4IP76fUMA9aWZJ4dpbm1nK0dYusU1BIUG5GqgFLAN+IvRB1BLA3d8EHiX0zXU7MJnQB1RxqcBSM9tBqGP7CnffVcJ8Iwnti/8BmAT81t0/KI834e5fAXOAu8v6vtx9GfBHQq2TDUB3QkdTlaWetzhwyO4P4eX9X2BK+PkPgInAl8Ai4N1SLno8cC7wZjg4CvwXoc78+Wa2DZhJqFNdqhALfQkREREpmVoUIiISkYJCREQiUlCIiEhECgoREYko0klFMalp06beoUOHoMsQEalUFi1atNHdy3QyZKULig4dOrBw4cIjzygiIoXM7Luyvla7nkREJCIFhYiIRKSgEBGRiCpdH4WIxI78/HyysrLYtaukkVMkCAkJCbRp04aaNWuW2zIVFCJSZllZWdSvX58OHToQusCeBMnd2bRpE1lZWXTs2LHclqtdTyJSZrt27aJJkyYKiRhhZjRp0qTcW3hRCwoze8nMss1syWGeNzN7OnwN4y8Lrh0sIpWLQiK2ROP3Ec0WxT8IDQN9OGmELqvYhdD1ef9amoXm788/5sJERKT0ohYU7v4xsDnCLMOAV8JXCpsPNCrNxeS/2fQNm3dGWqyISLAWLVpE9+7dSU5O5tZbb6WkyzlMmTKFHj160KtXL/r06cOnn35a+NxvfvMbunXrxoknnlj4+ry8PC644AJOOOEEunXrxj333FNh7yfIPorWHHxt3iwOvo5xITO7ycwWmtnCXfm7GPL6EPLy8yqkSBGp/Pbt23fkmcrRzTffzPPPP8/KlStZuXIl6enph8wzaNAgvvjiCz7//HNeeuklbrjhBgA+++wz5s6dy5dffsmSJUtYsGABc+bMAeCuu+7i66+/ZvHixcydO5fp06dXyPsJMihK2pFW4lWU3P15d+/j7n06Ne7EvLXzuOzNy8jfp91QItXd8OHD6d27N926deP5558vfLxevXo8+OCDnHHGGcybN49FixYxYMAAevfuTUpKCuvXrwfghRde4LTTTqNnz56MGDGCvLxj+xK6fv16tm3bRt++fTEzrr76aiZPnnzIfPXq1SvsT8jNzS28b2bs2rWLPXv2sHv3bvLz82nevDl169Zl4MCBANSqVYtTTz2VrKysY6q1tII8PDYLaFtkug2hSzdGdFzCcdx9wd3c/N7N3DDtBl4e9jJxpoO3RIJ2e/rtfP7j5+W6zF4tevHn1D9HnOell16icePG7Ny5k9NOO40RI0bQpEkTcnNzOfnkk3n44YfJz89nwIABTJkyhWbNmjFx4kTuu+8+XnrpJS6++GJuvPFGAO6//35efPFFbrnlloPWMWvWLO64445D1l23bl0+++yzgx5bt24dbdq0KZxu06YN69atK7H2SZMmce+995Kdnc17770HQN++fRk4cCAtW7bE3Rk7diwnnnjiQa/bsmUL06ZN47bbbou4bcpLkEExFRhrZhOAM4Ct4YvTH9Ev+/yS7Nxsfjv7tyTVTeKJwU9EtVARiV1PP/00kyZNAmDt2rWsXLmSJk2aEB8fz4gRIwBYsWIFS5Ys4bzzzgNCu6Jatgx1iS5ZsoT777+fLVu2sGPHDlJSUg5Zx8CBA/n889KFYEn9EYc7Eumiiy7ioosu4uOPP+aBBx5g5syZZGZmsnz58sLWwnnnncfHH39M//79Adi7dy8jR47k1ltvpVOnTqWq6VhFLSjM7HXgHKCpmWUBvwVqArj7c8D7wPmELsyeB1x7NMt/oP8DZOdm84d5fyApMYm7+9195BeJSNQc6Zt/NMyePZuZM2cyb9486tatyznnnFN4DkFCQgLx8fFA6MO7W7duzJs375BljBkzhsmTJ9OzZ0/+8Y9/MHv27EPmOZoWRZs2bQ7aJZSVlUWrVq0ivo/+/fuzatUqNm7cyKRJkzjzzDOpV68eAGlpacyfP78wKG666Sa6dOnC7bffHnGZ5SlqQeHuI4/wvAO/KuvyzYynUp8iJy+H38z8DUmJSVzT65qyLk5EKqGtW7dy3HHHUbduXb7++mvmz59f4nxdu3YlJyeHefPm0bdvX/Lz8/nmm2/o1q0b27dvp2XLluTn5/Paa6/RuvWhx9QcTYuiZcuW1K9fn/nz53PGGWfwyiuvHLIrCyAzM5POnTtjZvznP/9hz549NGnShHbt2vHCCy9w77334u7MmTOnMBTuv/9+tm7dyt///vej2ErHrlIP4REfF88rw19h887NXD/1eprUbcKFx18YdFkiUkFSU1N57rnn6NGjB127duXMM88scb5atWrx1ltvceutt7J161b27t3L7bffTrdu3XjkkUc444wzaN++Pd27d2f79u3HXNdf//pXxowZw86dO0lLSyMtLQ2A5557DoBf/vKXvP3227zyyivUrFmTOnXqMHHiRMyMSy65hI8++oju3btjZqSmpjJkyBCysrJ49NFHOeGEEzj11ND5yWPHji08WiqarKT9abGsT58+XvzCRdt3b+fnr/ycJdlLmHnVTPq16xdQdSLVy/Llyw/paJXglfR7MbNF7t6nLMurEocL1a9dn/evfJ92Ddtx4esXsiS7xFFDRESkDKpEUAA0S2xGxugM6tasS8q4FL7bUuar/omISBFVJigAOjTqQPqodPLy8xg8bjA5uTlBlyRS5VW23ddVXTR+H1UqKAC6N+/OtJHT+H7r95w//ny27z72jikRKVlCQgKbNm1SWMSIgutRJCQklOtyK/VRT4fzs3Y/441L3uCiiRdx8RsX8+7Id6ldo3bQZYlUOQXnDOTkqPUeKwqucFeeqmRQAAzpOoS/D/071065lmsmX8P4EeM11IdIOatZs2a5XklNYlOVDQqAMb3GkJ2bzX/N/C+a1W3G02lP6yIrIiJHqUoHBcDdZ91Ndm42f5z3R5ISk3hgwANBlyQiUqlU+aAwM35/3u/Jzs3mwdkPkpSYxC/6/CLoskREKo0qHxQAcRbHi0NfZNPOTdz83s00rduUESeNCLosEZFKodr07taMr8mbl77JmW3O5Mp3rmTWt7OCLklEpFKoNkEBULdmXd698l2SGyczbMIwFq9fHHRJIiIxr1oFBUDjOo3JGJ1Bo4RGpL6WSubmzKBLEhGJadUuKADaNGjDjKtmsG//PlLGpbB+e6kurCciUi1Vy6AAOKHpCbw/6n027NhA2mtpbN21NeiSRERiUrUNCoDTW5/OO5e/w7KcZQydMJRde3cFXZKISMyp1kEBMLjzYP45/J98/N3HjHx7JHv37w26JBGRmFLtgwJgZPeRPJX6FJO/nszN796skTBFRIqoFifclcatZ9xKdm42j37yKEmJSTw66NGgSxIRiQkKiiIeGfgI2bnZ/O7T35GUmMRtZ94WdEkiIoFTUBRhZvz1gr+yMW8jt2fcTrPEZlzZ/cqgyxIRCZT6KIqJj4tn/IjxDGg/gGsmX0N6ZnrQJYmIBEpBUYKEGglMuWIK3Zp1Y8QbI/hX1r+CLklEJDAKisNomNCQ9NHptKjXggvGX8DynOVBlyQiEggFRQQt6rVgxugZ1IirQcq4FNZuXRt0SSIiFU5BcQSdG3dm+qjpbN29lZRxKWzK2xR0SSIiFUpBUQqntDyFKVdMYfVPq7nw9QvJ3ZMbdEkiIhVGQVFK53Q4h/EjxvPvdf/m0jcvJX9fftAliYhUCAXFUbj4xIt57oLnmJ45neumXsd+3x90SSIiUacT7o7Sjb1vZEPuBh6Y9QDN6jbjj4P/iJkFXZaISNREtUVhZqlmtsLMMs3snhKeb2dms8xssZl9aWbnR7Oe8nLf2fdxy+m38OT8J/n93N8HXY6ISFRFrUVhZvHAs8B5QBawwMymuvuyIrPdD7zh7n81s5OA94EO0aqpvJgZf079Mzl5Odzz4T00S2zGdadcF3RZIiJREc1dT6cDme6+GsDMJgDDgKJB4UCD8P2GwA9RrKdcxVkc/xz+Tzbv3MyN026kad2mDO06NOiyRETKXTR3PbUGip6hlhV+rKiHgNFmlkWoNXFLSQsys5vMbKGZLczJyYlGrWVSK74Wb1/2Nr1b9ubyty7nk+8+CbokEZFyF82gKKmHt/gVgUYC/3D3NsD5wKtmdkhN7v68u/dx9z7NmjWLQqllV69WPd678j3aN2zPkNeH8OWGL4MuSUSkXEUzKLKAtkWm23DorqXrgTcA3H0ekAA0jWJNUdEssRkZozOoV6seqeNS+fanb4MuSUSk3EQzKBYAXcyso5nVAq4Aphab53tgEICZnUgoKGJn39JRaN+oPRmjM9i1dxeDxw0mOzc76JJERMpF1ILC3fcCY4EMYDmho5uWmtnDZlbQ63sncKOZfQG8DozxSnzB6m5J3Xj3yndZt20daa+lsW33tqBLEhE5ZlbZPpf79OnjCxcuDLqMiN775j2GTRjGgA4DeP/K96ldo3bQJYlINWdmi9y9T1leqyE8ouCC4y/gpWEv8dG3HzF60mj27d8XdEkiImWmoIiSq3tezR/O+wNvLXuLW6bfQmVruYmIFNBYT1F051l3siF3A0989gTNE5vz23N+G3RJIiJHTUERZY+f+zg5eTk8NOchkhKTuPm0m4MuSUTkqCgooszMeGHIC2zM28iv3v8VTes25dJulwZdlohIqamPogLUiKvBxEsmclbbsxj1zig+XP1h0CWJiJSagqKC1K1Zl2kjp9G1aVeGTxzOoh8WBV2SiEipKCgq0HF1jiN9VDpN6jQh7bU0Vm5aGXRJIiJHpKCoYK0btGbGVTNwnMHjBvPD9kozsrqIVFMKigAc3+R4po+azsa8jaSOS2XLri1BlyQiclgKioD0adWHSZdP4uuNXzPk9SHszN8ZdEkiIiVSUATo3E7nMu7iccz9fi5XvH0Fe/fvDbokEZFDKCgCdlm3y3gm7RmmrpjKL6b9QkN9iEjM0Ql3MeBXp/+KDbkbeOTjR0hKTOKxcx8LuiQRkUIKihjxP+f8D9m52fzv3P8lKTGJO/reEXRJIiKAgiJmmBnPnv8sG/M28usZv6ZZYjNG9xgddFkiIuqjiCXxcfGMu3gcAzsM5Nop1zJ95fSgSxIRUVDEmoQaCUy+YjLdk7oz4o0RzFs7L+iSRKSaU1DEoAa1GzB91HRa1W/FBeMvYFnOsqBLEpFqTEERo5rXa86Mq2ZQu0ZtUsal8P3W74MuSUSqKQVFDOt0XCfSR6Wzbfc2UsalsDFvY9AliUg1pKCIcT1b9GTayGl8+9O3XDj+Qnbs2RF0SSJSzSgoKoH+7fsz4ZIJLPhhAZe8cQl79u0JuiQRqUYUFJXE8BOG87cL/0bGqgyunXIt+31/0CWJSDWhE+4qkRtOvYGc3Bz++6P/plndZjyZ8iRmFnRZIlLFKSgqmXt+dg8bcjfw1L+eonlic+49+96gSxKRKk5BUcmYGX9K+RM5eeGWRWIzbjj1hqDLEpEqTEFRCcVZHC8Pe5lNeZv4xbu/oGndpgw/YXjQZYlIFaXO7EqqVnwt3r7sbU5rdRpXvHUFc9bMCbokEamiFBSVWGKtRN678j06HteRoROG8sWPXwRdkohUQQqKSq5J3SZkjM6gQe0GpIxLYfVPq4MuSUSqmFIHhZm1NrOzzKx/wS2ahUnptWvYjozRGeTvz2fwq4PZsGND0CWJSBVSqqAws8eBucD9wN3h212leF2qma0ws0wzu+cw81xmZsvMbKmZjT+K2qWIk5qdxLsj32X9jvWkvZbGtt3bgi5JRKqI0h71NBzo6u67S7tgM4sHngXOA7KABWY21d2XFZmnC3Av0M/dfzKzpNKXLsX1bduXty59i6EThjJ8wnDeH/U+CTUSgi5LRCq50u56Wg3UPMplnw5kuvtqd98DTACGFZvnRuBZd/8JwN2zj3IdUkxalzReHvYys9bMYtQ7o9i3f1/QJYlIJVfaFkUe8LmZfQgUtirc/dYIr2kNrC0ynQWcUWye4wHMbC4QDzzk7umlrEkOY3SP0eTk5vDrGb/mV+//ir9e8FcN9SEiZVbaoJgavh2Nkj6ZvIT1dwHOAdoAn5jZye6+5aAFmd0E3ATQrl27oyyjerqj7x1syN3A43MfJykxiYcHPhx0SSJSSZUqKNz9n2ZWi3ALAFjh7vlHeFkW0LbIdBvghxLmmR9e1rdmtoJQcCwotv7ngecB+vTpUzxs5DAeG/QYObk5PPLxIyQlJjH29LFBlyQilVBpj3o6B1hJqHP6/wHflOLw2AVAFzPrGA6ZKzi0VTIZGBheR1NCQaQTAcqJmfG3IX9jaNeh3Dr9ViYumRh0SSJSCZW2M/uPwGB3H+Du/YEU4MlIL3D3vcBYIANYDrzh7kvN7GEzGxqeLQPYZGbLgFnA3e6+qSxvREpWI64GE0ZMoF+7flw16So+WPVB0CWJSCVj7kfek2NmX7p7jyM9VhH69OnjCxcurOjVVnpbdm2h/8v9Wf3TamZdM4vTWp8WdEkiUoHMbJG79ynLa0vbolhoZi+a2Tnh2wvAorKsUILRKKER6aPTaZbYjPPHn8+KjSuCLklEKonSBsXNwFLgVuA2YBnwy2gVJdHRqn4rZoyegWEMHjeYddvWBV2SiFQCpQoKd9/t7n9y94vd/SJ3f/JoztKW2NGlSRemj5rO5p2bSRmXwuadm4MuSURiXMSgMLM3wj+/MrMvi98qpkQpb71b9Wby5ZNZuXklQ14fQl5+XtAliUgMO9J5FLeFf14Y7UKkYg3qNIhxF43j8rcu57I3L2PS5ZOoGX+0o7SISHUQsUXh7uvDdzcCa939O6A20JNDT56TSubSbpfy7PnP8t7K97hx2o2U5gg4Eal+SjuEx8fA2WZ2HPAhsBC4HBgVrcKkYtx82s1k52bz0JyHSEpM4vfn/T7okkQkxpQ2KMzd88zseuAZd/+9mS2OZmFScR4c8CDZudk88dkTJCUmcddZR7zUiIhUI6UOCjPrS6gFcf1RvlZinJnxdNrT5OTlcPcHd5OUmMTVPa8OuiwRiRGl/bC/ndAFhiaFh+HoRGjIDaki4uPiefWiV9m8czPXTbmOJnWacMHxFwRdlojEgFIN4RFLNIRHdG3fvZ2B/xzIspxlzLx6Jme1PSvokkSkHERtCA8z+3P45zQzm1r8VpYVSmyrX7s+7496nzYN2nDB+AtYkr0k6JJEJGBH2vX0avjnH6JdiMSOpMQkMkZn0O+lfqSMS+Gz6z6jfaP2QZclIgE50nkUBQP/LQQ+cfc57j4H+JRiFxeSqqXjcR1JH51O7p5cBo8bTE5uTtAliUhASjso4IdA3SLTdYCZ5V+OxJIezXswbeQ0vt/6PReMv4Ade3YEXVIgdu3dxbQV03hy3pOkZ6bzw/YfdHKiVCulPeopwd0LPyXcfYeZ1Y30Aqkazm5/NhMvmcjFEy/m4okX8+6V71IrvlbQZZW7rG1ZTF0xlTVb1pCWnEar+q34YsMXTFkxhWkrprF9z/aD5m9cpzHdk7qHbs1DP09OOpn6tesH9A5Eoqe0Fy6aC9zi7v8JT/cG/uLufaNc3yF01FMwXlr8EtdPvZ4rTr6C1y5+jTgrbWM0Nrk7y3KWMfnryUxZMYUFP4T2pMZbPPt8X+F8jes05qITLuLSky6lV4tefL3xa77K/oqvNnwV+pn91UEtrQ6NOtCjeY+DQuT4JsdTI06nHUmwjuWop6M5j+JNMysY36kloSE8pJq47pTryMnN4Z4P76FpnaY8nfY0ZhZ0WRHl7snlo28/YtLXk6gdX5vTWp9GmwZt+GDVB0xeMZnMzZkAnNH6DB4b9BjDTxhO2wZtyViVwfbd2+mW1I2ezXseNFhi83rNGdBhQOH0ft/Pd1u+OyQ83vvmvcLAqRVfixObnkj35t3pkdSjsAXSqn6rmN+GInAU51GYWU2gK2DA1+6eH83CDkctiuC4O3fOuJMn5z/JIwMf4f7+9wdd0iFWbV7F1BVTmZ45nTnfzWHPvj00SmjEft/Ptt3bAKgZV5NBnQYxvOtwhnQdQqv6rcq9jt17d7N84/KDwuOrDV+xbvuBi0Udl3Ac3Zt3p1ndZuzZt4e6Nevy2KDH6Hhcx3KvRyTqLYpwf8SvgfbufqOZdTGzru7+bllWKpWTmfGHwX8gJy+HB2Y9QFJiEjf1vinQmtydxT8uZtLySUxeMbnwvI8Tm57I2NPGktYljbPbnU3N+Jqs3LSSNVvW0LdtXxrUbhDVumrXqE2vFr3o1aLXQY9v3rn5QHiEfy7fuJxa8bX4ZtM3rNu+jvRR6STWSoxqfSJHo7R9FBMJXSP7anc/2czqAPPcvdcRXlru1KIIXv6+fIZNGEbGqgzevPRNLj7x4gpdv7uzJHsJby9/m/FfjWfl5pXEWRz92/dneNfhDO06tFJ+K3/li1e4ZvI1JNZMpGeLnvRs3pMezXvQs3lPdZTLMTuWFkVpg2Khu/cxs8Xufkr4sS/cvWdZVnosFBSxIXdPLue+ei7/Wf8f0kelM7DjwKiuz91Z+MNC3l7+Nu8sf4eVm1diGP3b9+eantcwpOsQmtZtGtUaKsLc7+cyYckEvtjwBV9u+JKtu7cWPtf5uM6kJafxzPnPBFihVFYV0Zm9J9yK8PAKOwO6ZnY1llgrkXdHvsvZL5/NsAnDmDNmDqe0PKVc17Hf9/PZ2s94e9nbvPP1O3y/9XviLZ6fd/w5d/a9k+EnDKd5veblus6g9WvXj37t+gGhcPx+6/eFofHgrAf5y4K/EB8XT7+2/WhStwlN6jShRb0WVW47SGwpbYviPOB+4CRgBtAPGOPus6NaXQnUoogta7eupd9L/di9bzdzr5tLcuPkY17m1xu/5tUvXuW1r17ju63fUTu+NoM7D+biEy9maNehNK7TuBwqr3yW5yznzhl38uG3H7Jn356Dnht+wnDG9BzDpp2bWLdtHe0btWdA+wHs3LuTrG1ZtKjXgpOTTg6ocokFUd31ZKHj99oAecCZhI56mu/uG8uywmOloIg9y3OW87OXf0ajhEbMvW4uLeq1OOplbMrbxLgvx/Hql6+yaP0i4iyOwZ0HM7r7aIZ2Har980Xs2LODNVvWsClvE5t2bmLx+sU88+9nDtpNVVybBm1Ye8faCqxSYk1F9FEscvfeZVlBeVNQxKZ/Zf2Ln7/yc7o07sKcMXNomNCwVK9bmr2Up/71FK9++Sq79u7ilBancFWPqxjZfWSZAqe62rJrC0uzl9Kqfita1m/J8pzlfLb2MxomNOTxuY+zJHsJt59xO6nJqQzoMICEGglBlywVrCKC4lngH+4e+ECACorYlZGZwYWvX0i/tv1IH51+2A+j/H35pGfe8dG/AAAPJElEQVSm88y/n+GD1R+QUCOBq3pcxdjTx9KjeY8KrrrqW7BuAQ/MeoDZa2aze99u6tSowzkdziE1OZW05DSSGyfrxL9qoCKCYhmhk+3WALmEdj+5u1f4f7WCIraN/2o8o94ZxfAThvPmpW8WDl3h7ny29jPGfzWeN5a9wca8jbSs15Kxp4/lpt43VYkjlmJdXn4ec9bMIT0znemZ01m5eSUAnY7rRGrnVNK6pDGww0Cdw1FFVURQlHgxAnf/riwrPRYKitj31PynuD3jdm445QbuPOtOXv3iVcYvGc+aLWtIqJHAsK7DGNV9FCnJKVVygMHKYtXmVWSsymB65nQ++vYj8vLzqBVfi7PbnU1achqpyamc1OwktTaqiKgFhZklAL8EkoGvgBfdfW+ZqiwnCorK4b4P7+N3n/4OgDiL49xO5zKq+yguOuEidUzHoN17d/Pp958yPXM66ZnpLM1ZCkDbBm1JTU4lNTmVQR0HlbrvSWJPNINiIpAPfAKkAd+5+21lqrKcKCgqB3fn0U8exd25sfeN6piuZNZuXUt6Zjrpq9KZuXom23Zvo0ZcDc5qexapnUPB0atFL7U2KpFoBsVX7t49fL8G8G93P7VsZZYPBYVIxcrfl8+8rHmh4MhMZ/GPiwFoUa8FKZ1TSE1OZXDnwdX2/JbKIppB8Z+iwVB8OggKCpFgrd++nhmrZpC+Kp0Zq2aweedm4iyO01ufXtgp3rtlb+Lj4oMuVYqIZlDsI3SUE4SOdKpD6MS7gqOeIg7BaWapwFNAPPB3d//fw8x3CfAmcJq7R0wBBYVI7Ni3fx8LflhQeCTVgnULcJwmdZowuPNg0pLTGNx5sIYYiQFRP+qpTAs2iwe+Ac4DsoAFwEh3X1ZsvvrAe0AtYKyCQqTy2pi3MdTayEwnY1UG2bnZAJza8tTCI6nObHOmrvgXgFgNir7AQ+6eEp6+F8DdHys235+BmcBdwF0KCpGqYb/vZ/H6xYWd4vPWzmOf76Nh7Yac1/m8wk7x1g1aB11qtVARo8eWRWug6OAyWcAZRWcws1OAtu7+rpnddbgFmdlNwE0A7dq1i0KpIlLe4iyO3q1607tVb+7rfx9bdm1h5uqZhZ3iby17C4DuSd0LzxLv166fzq2JQdFsUVwKpLj7DeHpq4DT3f2W8HQc8BGhUWjXmNls1KIQqRYKLj5V0Lfx6fefkr8/n3q16vHzjj8v3E3VoVGHoEutMmK1RZEFtC0y3Qb4och0feBkYHb4WOwWwFQzG3qksBCRys3M6N68O92bd+fufnezffd2Zq2ZxfSV05meOZ2pK6YC0LVJ18LQ6N++P3Vq1gm48uopmi2KGoQ6swcB6wh1Zl/p7ksPM/9s1KIQqfbcnW82fVN4lnhJgxmmJqfSpXEXnfB3FGKyReHue81sLJBB6PDYl9x9qZk9DCx096nRWreIVF5mRtemXenatCu3n3n7QYMZpq9K57b00OAQBYMZpianMrDjQOrVqhdw5VVX1FoU0aIWhUj1tvqn1YUd4h9+++FBgxkWdIprMMNDxeThsdGioBCRAgWDGRZ0ihcMZtimQZvCs8Q1mGGIgkJEhNBghgVDpxcMZhhv8ZzV9qzCTvGeLXoSZ3FBl1rhFBQiIsXk78tnftb8wk7xgsEMmyc2L+wQP6/TeTSp2yTgSiuGgkJE5Ah+3PEjGZkZhx3MMDU5lT6t+lTZwQwVFCIiR6HoYIbpmen8e92/q/xghgoKEZFjsDFvIx+s+oD0VaHgqIqDGSooRETKyX7fz+c/fl54JFVJgxmmJKfQpkGboEs9KgoKEZEo2bJrCx+u/rCwU3zd9nXAgcEMU5NT+Vm7n8X8YIYKChGRCuDuLM1ZyvSV00lflc4n331C/v58EmsmMqjToMJzN2JxMEMFhYhIAHbs2cFH335UuJtqzZY1QGgww4KzxGNlMEMFhYhIwAoGMywYk2r2mtns2ruLhBoJnNPhnMJO8aAGM1RQiIjEmJ35O5nz3ZzC1sY3m74BoGOjjoWhUZGDGSooRERi3OqfVpORGRpe5KNvPyI3P/egwQxTk1Pp1qxb1FobCgoRkUpk997dzF07t7BTfEn2EuDAYIapyamc2+ncch3MUEEhIlKJFQxmmJ6ZzgerPzhoMMOCTvFjHcxQQSEiUkUUDGZY0LdRdDDDlOQU0pLTyjSYoYJCRKSK+nHHj8xYNYPpmdMLBzM0jNNbn17YKV6awQwVFCIi1cC+/ftY+MPCwrPEiw9mmJqcSkrnlBIHM1RQiIhUQ5vyNjFj1YwSBzMsOEu8YDBDBYWISDVXdDDD9Mx0Plv7WeFghud2Ope3L3+7zEFRecfMFRGRQnEWx6ktT+XUlqfy32f/d+FghgWd4sdCLQoRkSrO3YmLiytzi6L6XWFcRKSaOdazvRUUIiISkYJCREQiUlCIiEhECgoREYlIQSEiIhEpKEREJCIFhYiIRKSgEBGRiBQUIiISUVSDwsxSzWyFmWWa2T0lPP9rM1tmZl+a2Ydm1j6a9YiIyNGLWlCYWTzwLJAGnASMNLOTis22GOjj7j2At4DfR6seEREpm2i2KE4HMt19tbvvASYAw4rO4O6z3D0vPDkfaBPFekREpAyiGRStgbVFprPCjx3O9UCJY+Ga2U1mttDMFubk5JRjiSIiciTRDIqShisscUxzMxsN9AGeKOl5d3/e3fu4e59mzZqVY4kiInIk0bxwURbQtsh0G+CH4jOZ2bnAfcAAd98dxXpERKQMotmiWAB0MbOOZlYLuAKYWnQGMzsF+Bsw1N2zo1iLiIiUUdSCwt33AmOBDGA58Ia7LzWzh81saHi2J4B6wJtm9rmZTT3M4kREJCBRvWa2u78PvF/ssQeL3D83musXEZFjpzOzRUQkIgWFiIhEpKAQEZGIFBQiIhKRgkJERCJSUIiISEQKChERiUhBISIiESkoREQkIgWFiIhEpKAQEZGIFBQiIhKRgkJERCJSUIiISEQKChERiUhBISIiESkoREQkIgWFiIhEpKAQEZGIFBQiIhKRgkJERCJSUIiISEQKChERiUhBISIiESkoREQkIgWFiIhEpKAQEZGIFBQiIhKRgkJERCJSUIiISEQKChERiUhBISIiESkoREQkoqgGhZmlmtkKM8s0s3tKeL62mU0MP/8vM+sQzXpEROToRS0ozCweeBZIA04CRprZScVmux74yd2TgSeBx6NVj4iIlE00WxSnA5nuvtrd9wATgGHF5hkG/DN8/y1gkJlZFGsSEZGjVCOKy24NrC0ynQWccbh53H2vmW0FmgAbi85kZjcBN4Und5vZkqhUXPk0pdi2qsa0LQ7QtjhA2+KArmV9YTSDoqSWgZdhHtz9eeB5ADNb6O59jr28yk/b4gBtiwO0LQ7QtjjAzBaW9bXR3PWUBbQtMt0G+OFw85hZDaAhsDmKNYmIyFGKZlAsALqYWUczqwVcAUwtNs9U4Jrw/UuAj9z9kBaFiIgEJ2q7nsJ9DmOBDCAeeMndl5rZw8BCd58KvAi8amaZhFoSV5Ri0c9Hq+ZKSNviAG2LA7QtDtC2OKDM28L0BV5ERCLRmdkiIhKRgkJERCKK2aDQ8B8HlGJb/NrMlpnZl2b2oZm1D6LOinCkbVFkvkvMzM2syh4aWZptYWaXhf82lprZ+IqusaKU4n+knZnNMrPF4f+T84OoM9rM7CUzyz7cuWYW8nR4O31pZqeWasHuHnM3Qp3fq4BOQC3gC+CkYvP8H+C58P0rgIlB1x3gthgI1A3fv7k6b4vwfPWBj4H5QJ+g6w7w76ILsBg4LjydFHTdAW6L54Gbw/dPAtYEXXeUtkV/4FRgyWGePx+YTugctjOBf5VmubHaotDwHwcccVu4+yx3zwtPzid0zkpVVJq/C4BHgN8DuyqyuApWmm1xI/Csu/8E4O7ZFVxjRSnNtnCgQfh+Qw49p6tKcPePiXwu2jDgFQ+ZDzQys5ZHWm6sBkVJw3+0Ptw87r4XKBj+o6opzbYo6npC3xiqoiNuCzM7BWjr7u9WZGEBKM3fxfHA8WY218zmm1lqhVVXsUqzLR4CRptZFvA+cEvFlBZzjvbzBIjuEB7HotyG/6gCSv0+zWw00AcYENWKghNxW5hZHKFRiMdUVEEBKs3fRQ1Cu5/OIdTK/MTMTnb3LVGuraKVZluMBP7h7n80s76Ezt862d33R7+8mFKmz81YbVFo+I8DSrMtMLNzgfuAoe6+u4Jqq2hH2hb1gZOB2Wa2htA+2KlVtEO7tP8jU9w9392/BVYQCo6qpjTb4nrgDQB3nwckEBowsLop1edJcbEaFBr+44Ajbovw7pa/EQqJqrofGo6wLdx9q7s3dfcO7t6BUH/NUHcv82BoMaw0/yOTCR3ogJk1JbQranWFVlkxSrMtvgcGAZjZiYSCIqdCq4wNU4Grw0c/nQlsdff1R3pRTO568ugN/1HplHJbPAHUA94M9+d/7+5DAys6Skq5LaqFUm6LDGCwmS0D9gF3u/um4KqOjlJuizuBF8zsDkK7WsZUxS+WZvY6oV2NTcP9Mb8FagK4+3OE+mfOBzKBPODaUi23Cm4rEREpR7G660lERGKEgkJERCJSUIiISEQKChERiUhBISIiESkoRIoxs31m9rmZLTGzaWbWqJyXP8bM/hK+/5CZ3VWeyxcpbwoKkUPtdPde7n4yoXN0fhV0QSJBUlCIRDaPIoOmmdndZrYgPJb//xR5/OrwY1+Y2avhx4aEr5Wy2MxmmlnzAOoXOWYxeWa2SCwws3hCwz68GJ4eTGispNMJDa421cz6A5sIjbPVz903mlnj8CI+Bc50dzezG4DfEDpDWKRSUVCIHKqOmX0OdAAWAR+EHx8cvi0OT9cjFBw9gbfcfSOAuxcMTtkGmBge778W8G2FVC9SzrTrSeRQO929F9Ce0Ad8QR+FAY+F+y96uXuyu78YfryksXCeAf7i7t2BXxAaiE6k0lFQiByGu28FbgXuMrOahAadu87M6gGYWWszSwI+BC4zsybhxwt2PTUE1oXvX4NIJaVdTyIRuPtiM/sCuMLdXw0PUT0vPErvDmB0eKTSR4E5ZraP0K6pMYSuqvamma0jNOR5xyDeg8ix0uixIiISkXY9iYhIRAoKERGJSEEhIiIRKShERCQiBYWIiESkoBARkYgUFCIiEtH/B39Fq/fg3hFoAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" RandomForestClassifier \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHo1JREFUeJzt3Xd4VVW6x/HvGwKEoihKuYhKE1RQQcp4xa44FsA+2GV0QLCiV3FGnDuoYxkriqMiowM6c8c6WEDFNiLYaQqIgCBFAaUKQkCSvPePvQMhpJyT5OQki9/nefKYs/c+e72H4/llrXV2MXdHRKS6y0h3ASIiFUFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEITPdBVRnlpnlVqt+usuQJOyRvT7dJUiSVvLLSndvVNp2CrNysFr1yWzXO91lSBLOmv5eukuQJI1g0aJEttMwU0SCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKQme4CpGwaNqjH+BE3AtBkjwbk5uWxcs16AA5ptw8PPjOemx54DoDrLvo19etmcfuIV8rVZp+TfsVNl56Ku7N0xVr63jKSVWt/5uC2e/PIkIuoXyeLRUtXcvGQJ1i/YRMNG9Tj2XuvoEv7ljz96ocM+ss/y/eiA/Fozny+nzFn6+PHT+/PHi2aM/CVJ1ixYAk1s2oz+dnXGHfbQ+Vq59CzT6Hn0EE0PaANd3c7jcVTZgDQoushXPDEXQCYGWOHDmP6y+PJrF2bGz54jszatcnIrMHUF99g7NAHy1VDZVKYVVOrf9pA13OHAvDHy0/j542bePCZ8QCs+2QEpx93KPc8NY5Va3+ukPZq1Mjg/hvP45CzbmHV2p+569pzuKLP8dw+4hUe/9++3PTgc0ycMpdLTjuC/7nkZIY+OoZNm7cw9NGXad9mL9q33qtC6gjBL9mbuKPTKdst26NFc+ZN/JxHe11Grbp1uGX668wY+y6Lp84scztLZ85hxJkDuGDEndst/37mHO7q0ou83Fx2bdqIW754gy9fe4eczZt58Ljz2bxhIxmZmdw46UVmvfE+3346rcw1VCYNMwOUk5vLk/+ewLUXnFhh+zQzzIx6dWoDsEv9LJauWAtA232bMnHKXADe/WQWZxzfGYCNm37ho+nz2LR5S4XVsTP4ZWM2i6bMpFHrfcu1n+Vfz+eHuQt2WL4lexN5ubkA1MyqDe5b123esBGAGjUzqVEzEy+wrqpTzyxQjz33HlOev437Rr9R7DZHd9mf+244d4flGzf9wtF9t/9rnpOTy9V3Ps3U529jQ/ZmvlnyA9fc9Q8AZs3/nl7HdOS196dzVo+uNG/SsGJfTGBq1cliyLTXAVj17RIeP/Py7dbXa7gbrQ7rxOu3P7zd8tr163HDxBeK3OdT51/DstnfJFxDi24dufipe2i4716Muuj6reFmGRncPGUsjdrsy4S/PsPCz6Yn89LSqlLDzMyaAsOArsBmYCHwMtDb3XtWQvvHAP+J23stXjYWuM/d3091+5Vp/YZN/HPsR1x13glkb/qlyG0mTP5661C1NJmZNeh/9rF0O28oC75bwbCbLuCmS0/lrr+Npf/Qp3hg8PkM6debsROm88uWnAp8JeEpapgJsN+RXbl56jg8L483736MZV/N22795p83FPm8slj42XRu63AiTfdvTd/R9zPzjffJ2bwZz8vjjk6nUKfBrgwYM4Jm7duydNbcCmkz1SotzMzMgDHAaHc/N17WEehVzv1munsyn57vgCHAa+Vptzp4+J9v8+m//sTTr0wqcn0yPbND2u4NwILvVgDw4tufc+Nvow/WnIXLOfWKBwDYb58mnHzkwRX2GnYm+XNmxanInlm+5V/PZ/OGbJp1aLv1CwKA7J/WMff9T2h/0tEKsyIcC2xx98fzF7j7dDPbDTjezF4EOgBTgAvd3c1sIdDF3VeaWReiHtQxZjYUaAa0AFaa2VtAb6Au0BoY4+6Di6njC6CmmfVw97cLrjCz44H7iP5dPgcGuvvmCnr9lW7Nug289Nbn9D39SEYXEWjJ9MyWrljLAa2asefuu7ByzXpOOKw9X3+7DIBGu+/CijXrMTP+0K8XT7z4fgW+CslXUT2zPVo0Z82SZeTl5tJwn71o0q4VqxZ+R/09G5K7JYfsn9ZRM6s2+5/Qnbf+8njpO6wiKjPM8oOqKJ2A9sBS4EOgO1B0d2KbzsAR7p5tZn2BjvF+NgNzzGy4uy8p5rl/jn+2hpmZZQGjgOPdfa6ZPQ0MJBoWV1sPPjOegX2OK/d+lq1Yy5+feJX3/nYTW3JyWbxsFZf96UkgOmQjv42X35u6XXDOHXcPu9bLolbNTHof24lTr3iA2QuWlrseKV3H039Nn+FDqd+oIVeNe4ol02cz/KSLaXNEV379+4HkbsnB8/L41xV/ZMOqNex10P5cMvp+MmpkYBkZTHl+HDPGvZful5Ewq6xvK8zsGqClu19XaPkxwBB37xE/fgz40N3/UUrPzN391vg5fYHu7t4vfvwGcIe7TyqirRvcvaeZTQBuAW4i6o2tAYa7+1HxtscDV7r7mYX20R/oD0DNep1rtv9NRfzzSCW5dHr1+XBKZASLprh7l9K2q8xDM2YR9aaKUnAol8u2HmMO22rMKvScDaXtw8zOMLPp8U/hf4w7iObO8llJxedz9yfcvYu7d7HMwiWJSLpUZpi9B9Q2s375C8ysK3B0Cc9ZyLYAPCvZBt19jLt3jH8mF1r3FrA7cEi86GughZm1iR9fBExItk0RSY9KCzOPxrNnAD3MbL6ZzQKGEs2TFedW4CEzm0jU26podwDN4/o2Ab8FXjCzGUAeUH1mP0V2cpU2ZxaijLp7ema73ukuQ5KgObPqpyrOmYmIpIzCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCUJmcSvMbNeSnuju6yq+HBGRsik2zIBZgANWYFn+Ywf2SWFdIiJJKTbM3H3vyixERKQ8EpozM7Nzzezm+PfmZtY5tWWJiCSn1DAzs0eAY4GL4kUbgcdTWZSISLJKmjPLd7i7H2pm0wDcfbWZ1UpxXSIiSUlkmLnFzDKIJv0xsz2AvJRWJSKSpETC7K/AS0AjM7sVmAT8JaVViYgkqdRhprs/bWZTgBPiRee4+8zUliUikpxE5swAagBbiIaaOmtARKqcRL7NHAL8C2gGNAf+z8z+kOrCRESSkUjP7EKgs7tvBDCzO4ApwF2pLExEJBmJDBkXsX3oZQILUlOOiEjZlHSi+YNEc2QbgVlmNj5+fCLRN5oiIlVGScPM/G8sZwHjCiz/JHXliIiUTUknmj9ZmYWIiJRHqV8AmFlr4A7gQCArf7m7t01hXSIiSUnkC4BRwN+JrmN2MvA88GwKaxIRSVoiYVbX3ccDuPt8d7+F6CoaIiJVRiLHmW02MwPmm9kA4HugcWrLEhFJTiJhdh1QH7iGaO6sAXBpKosSEUlWIieafxr/up5tF2gUEalSSjpodgzxNcyK4u5npqQiEZEyKKln9kilVSEiUk4lHTT7bmUWUh21ztnIsJWT012GJOGrejXTXYIka0Nim+naZCISBIWZiAQh4TAzs9qpLEREpDwSudJsNzObAcyLHx9iZsNTXpmISBIS6Zk9DPQEVgG4+xfodCYRqWISCbMMd19UaFluKooRESmrRE5nWmJm3QA3sxrA1cDc1JYlIpKcRHpmA4HrgX2AH4DD4mUiIlVGIudm/gicWwm1iIiUWSJXmh1JEedounv/lFQkIlIGicyZvVPg9yzgDGBJasoRESmbRIaZzxV8bGbPAG+nrCIRkTIoy+lMLYF9K7oQEZHySGTObA3b5swygNXA71NZlIhIskoMs/ja/4cQXfcfIM/di71go4hIupQ4zIyDa4y758Y/CjIRqZISmTP7zMwOTXklIiLlUNI9ADLdPQc4AuhnZvOJrvloRJ02BZyIVBklzZl9BhwKnF5JtYiIlFlJYWYQ3cW8kmoRESmzksKskZldX9xKd38gBfWIiJRJSWFWg+hO5lZJtYiIlFlJYbbM3W+rtEpERMqhpEMz1CMTkWqjpDA7vtKqEBEpp2LDzN1XV2YhIiLloZsAi0gQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBKOm+mVLFnbJwGuu+nrf18ZTfDaJO82b89wtP8flvr+bHdyYA0OXvw1kwYjSrP5lc5rZ2PbAdHe68hcz69fC8PL4ZPpJlr40HYN9LzqXl7y6kXot9eOvgo9iyZu12z21wSHu6v/IPpl4xmOWvv13mGqq7rIa70Wfs0wDUa7Inebm5ZK9cA0Djgw/gxy9nY5k1WD1nPq/3H0xO9qYyt9WwbStOfuxuGndsz6RbH+Dzh58EYPf9WtJ79ENbt2vQYm8+/PNDTHl0FG3POInuN1/DHu1a88zRZ/HDtJnleLWVT2FWjeVu2sykk36z3bI6zZuRvXQ5ba7utzXMKqSt7E1MHzSEjQsXU7tJI44Y9ywrJnxEzrr1rJk8nR/f/YDDnn9yxydmZLD/H65jxYSPKqyW6mrT6rWMPrw3AIfffDVbft64NWSuXT5967pTn7yfjpedx+RH/l72ttas5d0bb6dNrxO2W75m3rdb27GMDAbOm8S8194CYOVX83j5/Cs58eHby9xuOmmYGaB1X80hZ/169jzysArb54ZvF7Fx4WIANv+wgl9WraZWw92j9mZ9TfZ3S4t8Xovfns/yN95m8yrduTBR3300md1a71uufWxcsZrlU2eQtyWn2G32PeZw1i5YzLol0Xu3es581sz7tlztppN6ZtVYjazaHPHm8wBkL/meKf2u27pu3sMjaXfjVayc+Emxz291eV+anXHKDstXfzqFr/70l2Kf16BjBzJq1mTjoiUl1le7aWOannQcn/T5HQcf0qG0lyOA1ahByx5HsfCdiTus6zV6GA33a7XD8snDn2LWv15Ouq39zz6V2S+OLVOdVVFKw8zMmgLDgK7AZmAh8DLQ2917VkLbHwO/cvcf42VPAHPd/b5Utl1Zihpm5lvz2VQAdu92aLHPXzBiFAtGjEqqzdqN96TjsDv54rpbwL3Ebdv/aTBf3zkM8vKSamNnlFkni0s+ehWA7z76nC9Hv7DDNq9dMqjC2suoWZPWpx7HB0OD+CgAKQwzMzNgDDDa3c+Nl3UEepVzv5nuXnzfOebuy83sfuAeoK+ZdQW6AVeUp/3q5JvhI2lzdT88p+h/rmR7Zpn169F11F+Zc+9w1k77stT2Gxzcnk5/jfZTq+HuND72SDw3hx/G/yfJVxK+nOxNW+eyilORPbNWJx7Fj9O/YuOPq5J6XlWWyp7ZscAWd388f4G7Tzez3YDjzexFoAMwBbjQ3d3MFgJd3H2lmXUB7nP3Y8xsKNAMaAGsNLO3gN5AXaA1MMbdBxdRw6PAJ2Z2NFGoXenuOWZWE7gXOByoDQxz97+b2d7As0A9oAbwO3f/tIL/XSrNyg8+pu0NV5HVpFGR65PpmVnNTDqPHMZ3L73G8nGJfSP5n+4nb/394Adu58d3PlCQlUNF9sz2P6cns18IZ4gJqf0CID+oitIJGAQcCLQCuiewv87Aae5+fvy4I9AHOAjoEwfRdtw9DxhINLSd4e4fxqsGAt+5ezfgV8AgM9sLuBj4t7t3jPc/q/A+zay/mU02s8k/5ZXaQUy7b4aPpE6zpuXeT7Oev6bhrw6l+Tm9OeLN5znizefZ9cB2QDTJf9xnb5P1X0046u0XOeieoeVuT8qnXuM9GTBnIl2uupTDBl/BgDkTqbVLfSAa0rY4tjtzXx2/3XP269WDAXMm0qxbJ856aSRnv/xUOkovM/NS5j3KvGOza4CW7n5doeXHAEPcvUf8+DHgQ3f/Ryk9M3f3W+Pn9AW6u3u/+PEbwB3uPqmYWj4CrnL3qfHjsUAbIP9AngZAX6AWUW/uGeBldy9xLLVfrbo+rEmbxP9RJO2+WpOd7hIkSYM3fDPF3buUtl0qe2aziHpTRdlc4Pdctg13cwrUlFXoORtK24eZnWFm0+Ofgi8+L/7JZ8Dl7t4x/mnp7hPc/W2i4fEPwLNm1qekFygiVUcqw+w9oLaZ9ctfEE/CH13CcxayLQDPSrZBdx9TIKBKOtx9PHCFmWXGdR1gZllm1gJY5u4jgKeJhsMiUg2kLMw8Gr+eAfQws/lmNgsYChR9dGXkVuAhM5tI1NtKlUeBxcA0M5sJPEI04d8D+MLMpgEnA39NYQ0iUoFSNme2M9CcWfWjObPqpyrMmYmIVBqFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgRz93TXUG2Z2QpgUbrrSJE9gZXpLkISFvL7ta+7NyptI4WZFMnMJrt7l3TXIYnR+6VhpogEQmEmIkFQmElxnkh3AZKUnf790pyZiARBPTMRCYLCTESCoDATkSAozKRczMzSXYMkL8T3TWEmZWZm5vE3SGbW3cw6mlm7guvTV50Up9D71sfMuppZjXTXVV6Z6S5Aqq8CH4jrgd8AS4FsM/vY3R9xfVVeJRV4364ELgdOc/fc9FZVfgozSZqZ7QJsdPdcM9sHOBs4HqgBdAAGmdk37v5mOuuU4pnZgcBlwCnu/p2ZnQzUAaa6+8K0FldGCjNJipm1BYYAj5jZ1HhxFtExi+vMbAYwH9g7XTXKjgoOLWNLgHeB+81sLdAKWAHsAYxMQ4nlpjkzSYq7zwV+JhqeHOTui4GPicKtrruvB7KB/UDzZlWBmWUUGFoeYWb5vegJwOfAg+7eA5gBtCt+T1WbzgCQhJhZI2CLu6+NH98BtATuAdYBVwEnAM8DFwG93X1OmsqVIpjZIOAsYC6wPzDA3WfE6y4ErgMudPfZ6auy7NQzk1KZWUfge+B1MxtgZh3cfQjwDdG8S0N3vx64l+iD0ktBln5mdpCZHR3/fihwjLsfCXwJbARmxes6Es159q2uQQbqmUkCzKwZ8GfgMGAesBhoATwHDABmAo+7+/R01SjbM7NawCPAFHcfYWZNgUuB5kBroKe7bzGzM4GxQKa7b0xfxeWnnpmUyt2XEoXZ34nmw4YCo4HdgAZAf+Ch+AMkaZQ/R+nuvwBvA4fGq+oCBwMHAOfFQXYx8Cdg9+oeZKCemSTBzFoT9cT2AG5w99VmtjfR3NlSd/8mrQVK/iEXc4CaRJP5dxP1wnLN7ESiebF5REcyHEEUbLPSVW9FUphJqQodMd4K6AfsBdzk7svSWpxsZWZ1iA63WEz0B2c0cBtwlrtPi7fpDDQDGgP/cfcFaSq3winMZDuFj0cyswwAd8+L/+rXBNYT/YWvTfSNWF5aipUdxIFWCzgl/u9NwD+Bx9x9dTprSzWFmWxVqAd2ILA2ni/DzLoBrxEdcvGpme0LZLv7j+mrWAoq4sBY4on/p4DJwEPuviotxVUChZnswMyuBfoSTRrfCrwHnAYsdPfxaSxNEhAfJJtnZjXiubK9iI7/ex24M9RzZnU6k2zHzE4BjgM6AycRHemfAbyaPz9WVA9AKl8pUwIHARlmNtPdvzezs4CaIb9vOjRjJ1fwdCMza08017Knu+e5++tEN8o4BzjdzBrAtqsuSPoUnhIws2bxe5YXTwm8BdSLe2YZ7r7c3Zekt+rUUpjt5Ap8IC4FBgLjgR/MbLCZZbr7OKI5l2PSV6UUVuB9u5Zogv8/ZnZ+PEfWieho/o/ibXeKL2g0zBTM7HDgdOBsd/8l7q31AK4zswfd/RUze8fdN6S3UilIUwLbU89sJxf/JR9AdMmeZvHit4A3gQOJTiCH6Fw+SSNNCZRMYbYTi48I/xl4gOj8yjPNrLm7byI6+PLZ+Gen+lBUVZoSKJkOzdhJmVldohBrTHTJnoOBC4iuhPHv+DplUsXEUwK/Z9uUQG+iKYHFRNclyzGzejvjlIB6Zjup+MTi24AFwJPAF0QTyR2BniHc4CI0mhIomXpmO5n4InyN3f2B+HETostg1weuBA4CFrv78vRVKYXFUwIfAW2A/wGmAc/H1+/PAo4GvtiZ3zf1zAKXfyBlAQuIbjhyBYC7/0A09/IromHKZzvzB6IqiqcEzgSeJrrixaNE1+w/28z2cfdN7j5+Z3/fFGYBi7+Wz4t/P8zMWsXHHp1KFGhXxpvWBV4Cbk9TqVICTQkkRsPMQMUnil/u7tfG337dSHSt/meBx4n+so8i+kt/OHBifLMSqSI0JZAchVmAzKwL0RVG+wDfAvWAC4H/Bs4HFhFdUrkW0BT4OfRTXaqD/BPECzw+nOiPz93u/mi87FSim8hMdPcB6am0atIwMzBm1hMYAeQAjwG/AB3cPdfdJxF9OFoANwAN3H22giz9NCVQfjqdKSDxnXiGARe5+8fxspnAvmb2kLtf6+4fmFlNoCfRsFPSLH9KANhuSsDM8qcEzgBGmVl3tk0JfJ+2gqsoDTMDYmbXA7nu/pCZ1YoPqqxBdC34QUQXWxwcb1vH3bPTWa9oSqAiaZgZgALn7LUEGsW/b4mHLrnAbGAi0NnM7o7Xb6rkMqUQTQlULA0zA1DgvMkxwM1m1tndp5hZRjypnGtm/0V0q7h3Cj1H0kBTAhVPw8yAmFk9ovmWusBz7j4lXn4ecA3QR+dcVg2aEqh4GmYGJD65eCTxlTDM7D4z+zPRjV77K8jST1MCqaOeWYAsut1YZ+AEYBnR/RF1QGwVYmbHATcT3Xt0SnzamcVTAoOBpcA7OiA2cQozkTTQlEDFU5iJpEl8C7jLgOOBz4mGk2cD57j7jHTWVh0pzETSSFMCFUdhJiJB0LeZIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZpJSZ5ZrZdDObaWYvxDfnKOu+jjGzsfHvvc3s9yVsu1v+TVuSbGOomd2Q6PJC24wys7OTaKtFfHK5VACFmaRatrt3dPcORJe42e5SzxZJ+v9Dd3/V3e8uYZPdgKTDTKovhZlUpolAm7hHMtvMHgWmAnub2Ylm9rGZTY17cPUBzOwkM/vazCYR3W6NeHlfM3sk/r2JmY0xsy/in8OBu4HWca/w3ni7G83sczP70sxuLbCvIWY2x8zeIbpqRYnMrF+8ny/M7KVCvc0TzGyimc2Nr1eGmdUws3sLtH15ef8hZUcKM6kUZpYJnAzkn6bTDnja3TsBG4BbgBPc/VBgMnC9RTe3HQn0Ao4kutJqUR4GJrj7IURXbZ0F/B6YH/cKb7ToJrr7Ad2IbtHW2cyOMrPOwLlAJ6Kw7JrAy/m3u3eN25tNdEpSvhZEN+Q9FXg8fg2XAT+5e9d4//3MrGUC7UgSdHFGSbU6ZjY9/n0i0X0fmwGL3P2TePlhwIHAh/EVcmoBHwP7A9+6+zwAM/sH0L+INo4DLgaIL6Pzk5ntXmibE+OfafHj+kThtgswJr43JWb2agKvqUN8aaXd4v2ML7Du+fjGJPPMbEH8Gk4EDi4wn9YgblunLVUghZmkWra7dyy4IA6sDQUXAW+7+3mFtusIVNT5dgbc5e4jCrUxqAxtjAJOd/cvzKwvcEyBdYX35XHbV7t7wdDDzFok2a6UQMNMqQo+AbqbWRsAM6trZm2Br4GWZtY63u68Yp7/LjAwfm4NM9sVWE/U68o3Hri0wFzcXmbWGPgAOMPM6pjZLkRD2tLsAiyLL2l9QaF158SXK29NdKPlOXHbA+PtMbO28SWApAKpZyZp5+4r4h7Ov8ysdrz4Fnefa2b9gXFmthKYBHQoYhfXAk+Y2WVALjDQ3T82sw/jQx/eiOfNDgA+jnuGPwMXuvtUM3sOmE50J6SJCZT8R+DTePsZbB+ac4AJQBNggLtvMrO/Ec2lTY2vNLsCOD2xfx1JlK6aISJB0DBTRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQnC/wNDSJ/k+M/VLQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.444 \n",
"Precision=0.562\n",
"F1=0.496\n",
"Average precision-recall score: 0.526\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VNX9//HXJxthX5KwBgKyJuwQNhEQRUGqiICKSxFFaetSK3Vpq21dam2tVqnlq0VBxA1QEZCfGyoIQthBRJBFBAk7YQ0hkJDz+2OGEEIYss1Mlvfz8ciDmTtn7v3cmzDvuefee6455xARETmfkGAXICIiJZuCQkREfFJQiIiITwoKERHxSUEhIiI+KShERMQnBYWUKmb2vZldeoE2jcws1cxCA1SWX5nZSDP7JsdzZ2bNglmTlC8KCikWZrbVzI57P6D3mNnrZlaluJfjnGvtnJt3gTY/O+eqOOdOFffyvR/Sx7zrucPM/l3SAsnM+pvZfDM7amb7zOxrMxsU7Lqk9FJQSHG6xjlXBegEdAEey93APEr7311773r2AW4E7ghyPdnMbBjwHjAZiAXqAH8BrinEvMrC70qKgf4IpNg553YAnwBtAMxsnpk9bWYLgTTgIjOrbmYTzGyX95v533J+Mzezu8xsvfdb8Toz6+SdvtXM+nkfdzWz5WZ2xLsX82/v9Mbeb/5h3uf1zWyWmR0ws81mdleO5TxuZtPMbLJ3Wd+bWWI+13MzsBDokGN+hV2vP5jZjzmmX1fQ7W5mBvwbeMo595pz7rBzLss597Vz7q4c6/tWjvfk3la5f1d/MrPluZbzgJnN8j6uYGbPmdnP3t/BK2ZWsaC1S8mmoJBiZ2YNgYHAqhyTfwmMBqoC24A3gEygGdARuBK40/v+64HHgRFANWAQkJLHosYCY51z1YCmwLTzlPQukAzUB4YBfzezy3O8PgiYAtQAZgH/zed6tgJ6AZtzTC7sev3onVd14AngLTOrl586cmgJNATeL+D7csv5u3oJaGlmzXO8fjPwjvfxP4EWeMKyGdAAzx6MlCXOOf3op8g/wFYgFTiEJwj+D6jofW0e8GSOtnWAE6df9067CZjrffwZcL+P5fTzPp6P50M1OlebxoADwvB8cJ4CquZ4/Rlgkvfx48AXOV5LAI77WE8HHAGOeR+/C1Qo6nrlsZzVwLXexyOBb3LV0CyP9/T0vhbpY76PA2/lta3y+l15p70F/MX7uDlwFKgEmHc7NM3RtgfwU7D/HvVTvD/ao5DiNNg5V8M5F+ecu9s5dzzHa9tzPI4DwoFdZnbIzA4B/wNqe19viOcb9oWMwvNt9gczW2ZmV+fRpj5wwDl3NMe0bXi++Z62O8fjNCDydFfMeXQCquA5PtENqFzU9TKzEWa2Osf72gDRPmrIy+m9k4LuieS2Pdfzd/AEHnj2JmY459KAGDyBsSJH3Z96p0sZoqCQQMk5TPF2PN+8o73BUsM5V8051zrH600vOEPnNjnnbsLzQfxP4H0zq5yr2U6glplVzTGtEbCjsCviXbZzzk0DkjjT1VKo9TKzOOBV4F4gyjlXA1iL5xt7QWzwLmOojzbH8Hy4n1Y3jza5h5T+HIg2sw54AuN0t9N+4DjQOsf6VneeA/1ShigoJOCcc7vwfPg8b2bVzCzEzJqaWR9vk9eAB82ss/fMm2beD9OzmNmtZhbjnMvC0+UFnm6mnMvaDiwCnjGzSDNrh2dP5O1iWp1/AKPNrG4R1qsyng/nfd71uh3viQAF4ZxzwBjgz2Z2e44aLjGz8d5mq4He5rnWpDrwx3zMNxPPcY9/AbWAOd7pWXgC7gUzq+2tvYGZ9S9o7VKyKSgkWEYAEcA64CCeD6J6AM6594Cn8XxzPQrMwPMBldsA4HszS8VzYHu4cy49j3Y34emL3wl8CPzVOTenOFbCOfcd8DXwUGHXyzm3Dngez97JHqAtnrOpClPP+5w5ZXend35/A2Z6X58DTAXWACuA2fmc9TtAP+A9b3Cc9gieg/mLzewI8AWeg+pShpjnS4iIiEjetEchIiI+KShERMQnBYWIiPikoBAREZ98XVRUIkVHR7vGjRsHuwwRkVJlxYoV+51zhboYstQFRePGjVm+fPmFG4qISDYz21bY96rrSUREfFJQiIiITwoKERHxqdQdoxCRkiMjI4Pk5GTS0/MaOUWCITIyktjYWMLDw4ttngoKESm05ORkqlatSuPGjfHcYE+CyTlHSkoKycnJNGnSpNjmq64nESm09PR0oqKiFBIlhJkRFRVV7Ht4fgsKM5toZnvNbO15Xjcz+4/3HsZrTt87WERKF4VEyeKP34c/9ygm4RkG+nyuwnNbxeZ47s/7cn5mmpGVUeTCREQk//wWFM65+cABH02uBSZ77xS2GKiRn5vJbz6w+UJNRESCasWKFbRt25ZmzZrx29/+lrxu5zBv3jyqV69Ohw4d6NChA08++SQA27dvp2/fvsTHx9O6dWvGjh171vteeuklWrZsSevWrXn44YcDsj7BPJjdgLPvzZvsnbYrd0MzG41nrwPqwbZD24ircc4Nz0RE8nTq1ClCQ0MDtrzf/OY3jB8/nu7duzNw4EA+/fRTrrrqqnPa9erVi9mzz753VFhYGM8//zydOnXi6NGjdO7cmSuuuIKEhATmzp3LzJkzWbNmDRUqVGDv3r0BWZ9gHszOqyMtz7soOefGO+cSnXOJANPXT/drYSJSegwePJjOnTvTunVrxo8fnz29SpUq/OUvf6Fbt24kJSWxYsUK+vTpQ+fOnenfvz+7dnm+k7766qt06dKF9u3bM3ToUNLS0opUz65duzhy5Ag9evTAzBgxYgQzZszI9/vr1atHp06eQ7ZVq1YlPj6eHTs8t3h/+eWX+cMf/kCFChUAqF27dpFqza9g7lEkAw1zPI/Fc+tGnyqGV+SD9R/wQI8H/FaYiBTc7z79Hat3ry7WeXao24EXB7zos83EiROpVasWx48fp0uXLgwdOpSoqCiOHTtGmzZtePLJJ8nIyKBPnz7MnDmTmJgYpk6dyqOPPsrEiRMZMmQId911FwCPPfYYEyZM4L777jtrGXPnzuWBB879zKlUqRKLFi06a9qOHTuIjY3Nfh4bG5v9QZ9bUlIS7du3p379+jz33HO0bt36rNe3bt3KqlWr6NatGwAbN25kwYIFPProo0RGRvLcc8/RpUsXn9unOAQzKGYB95rZFKAbcNh7c3qfakbWZNH2Rew6uot6VS94SENEyrj//Oc/fPjhh4Cnf3/Tpk1ERUURGhrK0KFDAdiwYQNr167liiuuADxdUfXqeT4/1q5dy2OPPcahQ4dITU2lf//+5yyjb9++rF6dvxDM63hEXmciderUiW3btlGlShU+/vhjBg8ezKZNm7JfT01NZejQobz44otUq1YNgMzMTA4ePMjixYtZtmwZN9xwA1u2bPH7mWd+Cwozexe4FIg2s2Tgr0A4gHPuFeBjYCCeG7OnAbfnZ741KtZgJzv58IcPubvL3f4oXUQK4ULf/P1h3rx5fPHFFyQlJVGpUiUuvfTS7GsIIiMjs49LOOdo3bo1SUlJ58xj5MiRzJgxg/bt2zNp0iTmzZt3TpuC7FHExsaSnJyc/Tw5OZn69euf897TH/4AAwcO5O6772b//v1ER0eTkZHB0KFDueWWWxgyZMhZ8x4yZAhmRteuXQkJCWH//v3ExBRq9PB881tQOOduusDrDrinoPOtGFaRllEt+WD9BwoKkXLu8OHD1KxZk0qVKvHDDz+wePHiPNu1bNmSffv2kZSURI8ePcjIyGDjxo20bt2ao0ePUq9ePTIyMnj77bdp0KDBOe8vyB5FvXr1qFq1KosXL6Zbt25Mnjz5nK4sgN27d1OnTh3MjKVLl5KVlUVUVBTOOUaNGkV8fDxjxow56z2DBw/mq6++4tJLL2Xjxo2cPHmS6OjofNVVFKXyyuyh8UP5euvX7E/bH+xSRCSIBgwYQGZmJu3atePPf/4z3bt3z7NdREQE77//Po888gjt27enQ4cO2XsCTz31FN26deOKK66gVatWxVLXyy+/zJ133kmzZs1o2rRp9hlPr7zyCq+88goA77//Pm3atKF9+/b89re/ZcqUKZgZCxcu5M033+Srr77KPnX2448/BuCOO+5gy5YttGnThuHDh/PGG28E5IJHy6s/rSRLTEx04z8aT+fxnZkwaAJ3dLwj2CWJlFvr168nPj4+2GVILnn9XsxsxekzRwuqVO5RdKzbkcY1GvPB+g+CXYqISJlXKoPCzBjSaghzfpzD4fTDwS5HRKRMK5VBATA0YSgZWRnM3jj7wo1FxG9KW/d1WeeP30epDYrusd2pX7W+up9EgigyMpKUlBSFRQlx+n4UkZGRxTrfUnvjohAL4bpW1zFx1USOnTxG5YjKwS5JpNw5fc3Avn37gl2KeJ2+w11xKrVBAZ7TZMctG8enmz9laMLQYJcjUu6Eh4cX653UpGQqtV1PAL3iehFdKVrdTyIiflSqgyIsJIzBLQcze+NsTmSeCHY5IiJlUqkOCoAh8UM4evIoc7bMCXYpIiJlUqkPissvupzqFaqr+0lExE9KfVBEhEZwTctrmPnDTDJO6X7aIiLFrdQHBXjOfjqYfpB5W+cFuxQRkTKnTARF/6b9qRxeWbdIFRHxgzIRFBXDKzKw+UA+/OFDTmWdCnY5IiJlSpkICvB0P+05todF2xdduLGIiORbmQmKgc0HUiG0gs5+EhEpZmUmKKpWqMqVTa9k+vrpGqBMRKQYlZmgAE/30/Yj21m2c1mwSxERKTPKVFAMajmIsJAwPlin7icRkeJSpoKiZsWaXNbkMqb/oO4nEZHiUqaCAjzdT5sPbOa7vd8FuxQRkTKhzAXF4FaDMUzdTyIixaTMBUXtyrXpFddLp8mKiBSTMhcU4Ol++n7f92zYvyHYpYiIlHplMiiGxA8B0F6FiEgxKJNBEVstlm4NuikoRESKQZkMCvB0P63ctZKth7YGuxQRkVKt7AZFwlAADT0uIlJEZTYoLqp5ER3qdlD3k4hIEZXZoABP99Oi7YvYeXRnsEsRESm1/BoUZjbAzDaY2WYz+0Merzcys7lmtsrM1pjZwOJc/umznz5c/2FxzlZEpFzxW1CYWSgwDrgKSABuMrOEXM0eA6Y55zoCw4H/K84aEmISaBXdSt1PIiJF4M89iq7AZufcFufcSWAKcG2uNg6o5n1cHSj2PqKh8UP5etvX7Du2r7hnLSJSLvgzKBoA23M8T/ZOy+lx4FYzSwY+Bu7La0ZmNtrMlpvZ8n37CvaBPzR+KFkui1kbZhXofSIi4uHPoLA8puUe+/smYJJzLhYYCLxpZufU5Jwb75xLdM4lxsTEFKiIDnU70KRGE3U/iYgUkj+DIhlomON5LOd2LY0CpgE455KASCC6OIswM4bGD+WLLV9wKP1Qcc5aRKRc8GdQLAOam1kTM4vAc7A6d//Pz8DlAGYWjycoiv1gwtCEoWRkZTB74+zinrWISJnnt6BwzmUC9wKfAevxnN30vZk9aWaDvM1+D9xlZt8C7wIjnR9uTde1QVfqV62v7icRkUII8+fMnXMf4zlInXPaX3I8Xgf09GcNACEWwpBWQ3ht1WuknkylSkQVfy9SRKTMKNNXZuc0NGEo6ZnpfLLpk2CXIiJSqpSboOjVqBcxlWLU/SQiUkDlJihCQ0IZ3Gow/2/T/yM9Mz3Y5YiIlBrlJijAc/Fd6slU5vw4J9iliIiUGuUqKPo26UuNyBrqfhIRKYByFRQRoRFc0+IaZm2YRcapjGCXIyJSKpSroABP99PB9IPM3To32KWIiJQK5S4ormx6JZXDK/PBOnU/iYjkR7kLiorhFflFi18wY8MMTmWdCnY5IiIlXrkLCvB0P+09tpeF2xcGuxQRkRKvXAbFwOYDiQyLVPeTiEg+lMugqBJRhf5N+zP9h+lkuaxglyMiUqKVy6AAT/dT8pFklu1YFuxSRERKtHIbFFe3uJqwkLDzXnz3xLwneHze44EtSkSkBCq3QVGzYk0ub3I5H6z/gNy3wFi6YylPfP0E73z3TpCqExEpOcptUICn+2nLwS18u+fb7Gmnsk5xz8f34HBsP7L9nBApiTKzMlmSvESDHYqIX5TroBjcajAhFsL09dMB2JiykZun38zyncvpEduD9Mx0Dhw/EOQqfftuz3f0mNCD7hO602RsE/618F8cPXE02GWJSBlSroMipnIMveN6M+37adw5607ix8Xz0YaPeLTXo4zpMQaA5CPJQa4ybydPneSJeU/QeXxnth3axvNXPk/rmNY8/MXDxL0Yx1/n/pWUtJRglykiZUC5DgrwdD9tSNnAhFUT+HXnX/PT/T/xt8v+RsNqDQHYfmR7kCs818pdK0kcn8jjXz/O9a2vZ9096xjTYwxfjPiCJXcuoU/jPjw5/0niXozj95/9nh1HdgS7ZBEpxcp9UFzX6rrsxy8NfIk6VeoA0LC6JyiSjyST5bJYtH1RUK652LB/Q/ZezamsUzyz4Bm6vdaNlOMpzBo+i7eHvE10pejs9l0bdOXDGz9k7W/Wcl38dYxdMpaL/nMRoz8azeYDm/Ncxvp961m+c3lA1kdESp9yHxQNqjXgpateImlUEiF2ZnPUqVyHUAvl58M/c/8n99NzYk+++fmbgNXlnOO/S/9Lq3GtuP6963ll+Sv0er0Xf/rqTwyJH8J3v/mOa1pec973t67dmjeve5NN921iVMdRTP52Mi3/25KbP7iZNXvWAJ4QvGPmHbR5uQ3XTb3uvPMSkfLNSsNZPTklJia65csD8+238YuN2XZ4W/bzOb+cQ7+L+vl9uaknUxn90WjeXfvuWdMbVG3AP/r9g1va3oKZFWieu47u4oXFL/Dy8pdJPZlK77jeLN2xlCyXRd0qddl1dBft67Zn+c7ltKvTjq9GfEVUpajiXC0RCSIzW+GcSyzMe8OKu5iyZPw141mcvJhlO5cxe+NsjIJ9OJ/P5gObWbZjGZ3rd2bq2qmkZaRxccOLuablNWw9tJVrp1zL2r1refqyp+kd15tNKZvoHdebi2peVOCAOK1e1Xo8e8Wz/PGSP/Lfpf/l9dWvMyxhGE/1fYo5P87hia+foEZkDQDW7FnDjB9mMKrTKAC+3/s9zyc9T7+L+nFz25uLZRuISOmhPYp8WLBtAb0n9WZAswGMaDeC5lHNaVarWfYHa369teYtxi4Ze87xgFAL5ZQ7xS/b/ZJPNn9CxqkMpg6bSv9m/YtzNfJl5g8zGTx1MCPaj+DBHg/y92/+ztS1U3F4/k4qh1fmf1f/j1va3RLw2kSk8IqyR6GgyIf52+bTZ1Kfc6ZHV4qmWa1mNK/V/Ox/o5qfEyIvJL3AmM/H0L5OexLrJzJh1QQANt23ibjqcTw852FeXPIiLaNaMuumWbSIahGQdcstMyuTiydczLKdnjGwKodX5r6u93Fbh9u48f0bOXj8ILtSdzFr+Cyuan5VUGoUkYJTUPjZ0h1L6fZaN0Z2GMmDPR5k04FNbD6wmU0pm9h80PNv7tNooypG0TyqOW1rt6VR9Ub8ee6fuT7het4Z+g4nT53kXwv/xejOo6lXtV72e1btWkWzWs2oWqFqQNcvt11Hd9HvzX70a9KPx3o/RkzlmOzXjpw4wqWTLmVDyga+GvEV3WK7BbFSEckvBYWfOedYsmMJXRt0PevMqJyOZxxny8EtngA5HSQHNrFo+yLSM9O5rtV1TB02lfDQ8IDW7g97UvfQc2JPDqUf4ps7vqFVdKtglyQiF6CgKMFW7lrJJ5s+4aGeDxERGhHscorNjwd+pOfEnkSERrBo1CJiq8UGuyQR8aEoQVHur6Pwt071OvFo70fLVEgANK3VlE9u+YRD6YcY8NYADh4/GOySRMRPFBRSaB3rdWTm8JlsOrCJa969hrSMtGKdf3pmOu9+9y7//OafpWIUX5GyStdRSJH0bdKXt4e8zQ3v3cDw94cz/cbphIUU/s8q41QGc7fOZdr305i+fjoH0z17Ku3rtmdAswHFVbaIFEC+9yjMrIGZXWxmvU//+LMwKT2GJQzj75f/nY82fsRHGz4667XMrExW7FzBjB9mMHvj7DzHy8rMyuSLLV8w+qPR1Hu+Hv3f6s+076fxixa/4NNbPqV+1fo8t+i5QK2OiOSSr69+ZvZP4EZgHXDKO9kB8y/wvgHAWCAUeM0594882twAPO6d37fOOV36WwqN7jyaZxc+y5jPx9C5fmc+2/wZn/34GV/+9CWH0g9lt7uy6ZUkRCdwMP0gn//4OZUjKnMo/RD70/ZTJaIKg1oO4oaEG+jfrD+RYZEA3N/tfh754hFW7VpFx3odg7WKIuVWvs56MrMNQDvn3Il8z9gsFNgIXAEkA8uAm5xz63K0aQ5MAy5zzh00s9rOub2+5lvaznoqT95Y/QYjZ47Mfh5bLZb+TftzxUVX0DyqOc988wzvr3uf8JBwqlaomn1TqOFthnNDwg0MaDaAiuEVz5nvofRDNHyhIde2vJa3hrwVqNURKVMCMdbTFiAcyHdQAF2Bzc65LQBmNgW4Fs9eyWl3AeOccwcBLhQSUrK1r9ueyLBIBrUcxJ8u+RPt6rQ7a2yq5698nj5xfRiWMIy6Veqy99heqkRUoVJ4JZ/zrRFZg9GdRjN2yVieufyZ7CHgRSQw8hsUacBqM/uSHGHhnPutj/c0AHJerpwM5L6MtwWAmS3E0z31uHPu03zWJCVMh7odOP7o8fO+3qh6I+7tem/289qVa+d73vd3v5+xS8YydslYnrtSxytEAim/B7NnAU8Bi4AVOX58yWuY09z9XGFAc+BS4CbgNTM7Z6Q9MxttZsvNbPm+ffvyWbKUJY2qN+LGNjcyfsV4DqcfDnY5IuVKvoLCOfcG8C5nAuId7zRfkoGcfQSxwM482sx0zmU4534CNuAJjtzLH++cS3TOJcbExOR+WcqJ3/f4PUdPHuXVla9mT1u/bz2PfvkoH67/MIiViZRt+T3r6VLgDWArnj2FhmZ2m3PO11lPy4DmZtYE2AEMB3Kf0TQDz57EJDOLxtMVtaUgKyDlR6d6nbisyWW8uPhFqleozuurXycpOSn79SV3esbjEpHild+up+eBK51zfZxzvYH+wAu+3uCcywTuBT4D1gPTnHPfm9mTZjbI2+wzIMXM1gFzgYeccymFWREpHx7s8SA7ju5g9OzRHD5xmOeueC77roPdXutG6/9rTYN/N6DS05Xo8mqXIFcrUjbk9/TYNc65dheaFgg6PbZ8c84x+dvJxMfE06V+F8yM1JOpPPT5Q2xI2UDNijWpGVmTVbtXsXLXSq5PuJ5p1087Zz6H0w8TFhJG5YjKQVgLkcDz++ixZjYRz4HoN72TbgHCnHO3F2ahRaGgkPz4csuX9HvTs6fRq1Ev/tHvH6zbt45XV77K0h1LARjQbACf3PJJMMsUCZhABEUF4B7gEjzHKOYD/1eQC/CKi4JC8mvHkR10Ht+ZPcf2nLdNv4v60b1Bdx7o8QC1KtYKYHUigaX7UYicR0paCn/68k9UjqjMLW1voVO9TpgZKWkpXP3u1SxOXpzdNj46nosbXkzPhj25uOHFtIhqcdYFgyKlmd+CwsymOeduMLPvOPcaCHSMQkq7tIw0lu5YyqLti7J/To9YG1Ux6qzgSKyfmOcQIyKlgT+Dop5zbpeZxeX1unNuW2EWWhQKCvGnLJfFhv0bWLh9IYu2L2Lh9oVsTNkIQHhIOJ3qdTorPHLe81ykJAvEMYrKwHHnXJaZtQBaAZ845zIKs9CiUFBIoO1P23/WHseynctIz0wHoEmNJtnBkRCTQJOaTWhQtQGHTxxmy8EtHD1xlJ8O/cR7697j082f0juuN1OHTaVulbpBXispbwIRFCuAXkBNYDGwHEhzzt1SmIUWhYJCgu3kqZOs2rXqrL2O3am7CzSP6xOuZ8qwKYSYbjIpgRGIoFjpnOtkZvcBFZ1zz5rZKudcwG8OoKCQksY5x9ZDW5m0ehJPzn+SzvU6MyR+CNUqVONQ+iEGtRxE29ptSctI49op1/LlT18C8Nc+f+XOTneyatcq5myZQ/NazclyWdzX7T4FiBS7QATFKuBuPFdjj/JeYf2dc65tYRZaFAoKKe3W71vP8A+Gs2bPmjxfX3bXMhLrF+r/s8h5BeJ+FL8D/gh86A2Ji/AMuSEiBRQfE8+3v/6WKWun8O3ub+l3UT8OHD/ApgObePSrR+n7Rl9GdxrN77r/TvfekBJB11GIlCBr9qzh2YXPMmXtFMyMW9rewsM9HyYhJiHYpUkp58/TY190zv3OzD4i7+soBuXxNr9SUEh5sPXQVl5IeoHXVr1GWkYa17S4hod7PswljS4JdmlSSvkzKDo751aYWZ+8XnfOfV2YhRaFgkLKk/1p+xm3dBwvLX2JlOMpXNzwYh7p+QhXt7haB7ylQAJ6HYX3eShQwTmXVpiFFoWCQsqjYyeP8frq13k+6Xm2HtpKfHQ8D138ED0a9qBJjSYcPXmU6ErRwS5TSrBABMVioJ9zLtX7vArwuXPu4sIstCgUFFKeZWZlMu37aTy78Fm+3fNt9vTIsEj2PLiHahWqBbE6KckCcdZT5OmQAHDOpZpZpcIsUEQKLywkjJvb3sxNbW5i7ta5PPj5g0SGRZKUnMQjcx6hftX67Dy6k3X71zGm+xgaVW9E7cq1aVCtQbBLl1Isv0FxzMw6OedWgufYBXDcf2WJiC9mxmVNLmPlr1ayKWUTv/5/v+aVFa+c1Wb+tjN3Kh43cBx3d7k70GVKGVGQ6yjeM7Od3uf1gBv9U5KIFETzqOZ8OeJLko8ks+XgFjrW7ciaPWvYc2wP73z3Dh+s/4B7Pr6HqIpR3NhG/22l4PJ9HYWZhQMt8dy46IdgDAgIOkYhUhDOOXan7mbQlEEs37mcq5pdxcgOI7mo5kW0q9OOiNCIYJcoARKIg9mVgDFAnHPuLjNrDrR0zs0uzEKLQkEhUnBHTxylwb8bcPTk0expFUIr0Ll+Z7o16Eb32O50j+1Ow2oNdbOmMioQQTEVWAGMcM61MbOKQJJzrkNhFloUCgqRwlm3bx1bDm4htlosG1NeZKZvAAAQ5UlEQVQ2siR5CYt3LGblrpXZw6bXrVKX7rHds8MjsX4iVSKqBLlyKQ6BCIrlzrnEnCPGmtm3zrn2hVloUSgoRIrXyVMnWbNnTXZwLElewqYDmwAIsRDa1G6THRzdGnQjPiZeF/uVQoE4Pfakdy/CeRfYFDhRmAWKSMkSERpBYv1EEusncg/3AJ57jS/dsZTFyYtZsmMJ7617j1dXvgpAtQrV6FK/S3ZwdKzXkS0Ht5C0PYnIsEju735/MFdH/CC/QfFX4FOgoZm9DfQERvqrKBEJrqhKUVzV/Cquan4V4LlF7KaUTdnBsTh5Mf/45h+ccqfOee+Wg1sYe9XYQJcsfnTBrifzHNmKBdKA7njOelrsnNvv//LOpa4nkZIhLSONFTtXsHr3ahrXaExEaAQD3h5AqIWSPCb5nNu9nv6s0cHy4AjIrVCdc50Ls4DipqAQKbk2pWyi5X9b4nCM6T6GtIw0jmUcY8+xPcz9aS4ZWRmEh4QTGhJK05pNubntzTx08UOEh4YHu/QyLxBBMQ6Y5JxbVpiFFCcFhUjJNnjKYGZumEnl8MpUCq9E5YjK1IysSZbLokPdDsz4YQZhIWGkHE/Jfs/wNsO5s+Od9G3SVwfK/SQQQbEOz8V2W4FjeLqfnHOuXWEWWhQKCpGSLT0zndSTqRcczXbFzhW8uvJVQiyEKWuncDD9IE1qNOGOjncwssNIYqvFBqji8iEQQRGX13Tn3LbCLLQoFBQiZU96Zjofrv+QCasm8OVPXxJiIQxoNoA7O97J1S2uVtdUMfDnjYsigV8DzYDvgAnOucxCVVlMFBQiZduWg1uYuGoir69+nZ1Hd1K7cm1ua38bozqOomV0y2CXV2r5MyimAhnAAuAqYJtzLqgnSSsoRMqHzKxMPtv8Ga+teo3ZG2eTmZXJJY0u4c6OdzIsYRiVIyoHu8RSxZ9B8Z1zrq33cRiw1DnXqXBlFg8FhUj5szt1N5O/ncxrK19j04FNVI2oys1tb6Z9nfbsObaH4W2G0yq6VbDLLNH8GRQrcwZD7ufBoKAQKb+cc3zz8ze8tuo13vv+PY5nnrktTrNazZg1fBbxMfFBrLDk8mdQnMJzlhN4znSqiOfCu9NnPfm876KZDQDGAqHAa865f5yn3TDgPaCLc85nCigoRATgyIkjHDx+kDV71vD0gqdZsmMJlzW5jKY1mxIWEkZ4SDhhIWFEhEbQIqoFraJbERYSxpETR/hu73fUqliL3nG9iaseVy4uAvTbWE/OudDClQRmFgqMA64AkoFlZjbLObcuV7uqwG+BJYVdloiUP9UqVKNahWrE1YjjkkaXcNnky9iYspF1+9aRmZWZ/XMi8wQZWee/fU5stVh6x/Wmd6Pe9I7rTavoVuUiOAoiv2M9FUZXYLNzbguAmU0BrgXW5Wr3FPAs8KAfaxGRMqxmxZqs+tWqPF/LcllsPrCZBdsWkHI8hU71OtG2dlv2HtvL/G3zmf/zfL766Sve+e4dAGIqxdArrld2cLSr047QkEJ/Zy4T/BkUDYDtOZ4nA91yNjCzjkBD59xsMztvUJjZaGA0QKNGjfxQqoiUVSEWQouoFrSIanHW9DpV6tC2Tlvu6XoPzjk2H9icHRzzt81n+vrpgGfP5ZJGl2QHR+f6ncvdnQH9GRR57btlHxAxsxDgBfIxCq1zbjwwHjzHKIqpPhERwDNQYfOo5jSPas6oTqMA+PnwzyzYtiA7PD7e9DEAFcMq0qNhj+zg6BbbjUrhlYJZvt/l+57ZBZ6xWQ/gcedcf+/zPwI4557xPq8O/Aiket9SFzgADPJ1QFsHs0UkGPYe28uCbQtY8LMnPFbvXo3DER4STpcGXejVqBe943rTs2FPqkdWD3a55/D7EB6FmrHnuouNwOXADmAZcLNz7vvztJ8HPKiznkSkNDiUfohF2xd59ji2zWfZzmVkZmUSYiG0r9Pec4A8rje9GvUipnJMsMstmUEBYGYDgRfxnB470Tn3tJk9CSx3zs3K1XYeCgoRKaWOnTzGkh1LsoMjKTkp+17kHet2ZET7ERxOP0xEaAR/7PXHgNdXYoPCHxQUIlIanMg8wYpdK+g5sWeer9euXJssl0V8dDypJ1PpWLcjifUT+VXir/wy1LqCQkSkhDqecZzDJw4TGRZJWkYak7+dTEpaCh9v/piwkDDW7FlDfHQ8B9MPsjt1N9cnXM/k6yYTGRZZrHUoKEREyoAXkl5gzOdjuKTRJcwcPpNaFWsV27yLEhS6lZSISAnxQI8HmDpsKkt3LKXnxJ5sPbQ12CUBCgoRkRLlhtY3MOeXc9idupseE3qwalfeV5wHkoJCRKSE6R3Xm4V3LCQiNILek3rz+Y+fB7UeBYWISAmUEJNA0qgkmtZsyi/e+QWTVk8KWi0KChGREqp+1frMv30+fRv35faZt/PU108RjBOQFBQiIiVYtQrVmH3zbEa0H8Ff5v2FX83+FZlZmQGtwZ+DAoqISDGICI1g0rWTaFStEX9b8Dd2HN3B1GFTqRJRJSDL1x6FiEgpYGY8ddlTvPKLV/h086f0faMve1L3BGTZCgoRkVLkV4m/Yubwmazbt44eE3qwMWWj35epoBARKWWubnE1c2+bS+rJVC6ecDFJ25P8ujwFhYhIKdS1QVeSRiVRs2JNLpt8GTN+mOG3ZSkoRERKqaa1mrLojkW0r9OeIVOHMG7pOL8sR0EhIlKKxVSO4avbvuKaltdw7yf38sicR8hyWcW6DAWFiEgpVym8EtNvmM5vEn/Ds4ue5dbpt3Ii80SxzV/XUYiIlAGhIaGMGziOuOpx/OHLP7A7dTfTb5xOjcgaRZ639ihERMoIM+ORSx7hzeve5Jufv6HX673Yfnh7keeroBARKWNubXcrn9zyCT8f/pkeE3qwZs+aIs1PQSEiUgZdftHlLLh9AQC9Xu9VpHkpKEREyqh2ddqRNCqJhtUaFmk+CgoRkTKsYfWGLLxjYZHmoaAQESnjqkdWL9L7FRQiIuKTgkJERHxSUIiIiE8KChER8UlBISIiPikoRETEJwWFiIj4pKAQERGfFBQiIuKTX4PCzAaY2QYz22xmf8jj9TFmts7M1pjZl2YW5896RESk4PwWFGYWCowDrgISgJvMLCFXs1VAonOuHfA+8Ky/6hERkcLx5x5FV2Czc26Lc+4kMAW4NmcD59xc51ya9+liINaP9YiISCH4MygaADlvrZTsnXY+o4BP8nrBzEab2XIzW75v375iLFFERC7En0FheUxzeTY0uxVIBP6V1+vOufHOuUTnXGJMTEwxligiIhcS5sd5JwM575YRC+zM3cjM+gGPAn2ccyf8WI+IiBSCP/colgHNzayJmUUAw4FZORuYWUfgf8Ag59xeP9YiIiKF5LegcM5lAvcCnwHrgWnOue/N7EkzG+Rt9i+gCvCema02s1nnmZ2IiASJP7uecM59DHyca9pfcjzu58/li4hI0enKbBER8UlBISIiPikoRETEJwWFiIj4pKAQERGfFBQiIuKTgkJERHxSUIiIiE8KChER8UlBISIiPikoRETEJwWFiIj4pKAQERGfFBQiIuKTgkJERHxSUIiIiE8KChER8UlBISIiPikoRETEJwWFiIj4pKAQERGfFBQiIuKTgkJERHxSUIiIiE8KChER8UlBISIiPikoRETEJwWFiIj4pKAQERGfFBQiIuKTgkJERHxSUIiIiE8KChER8cmvQWFmA8xsg5ltNrM/5PF6BTOb6n19iZk19mc9IiJScH4LCjMLBcYBVwEJwE1mlpCr2SjgoHOuGfAC8E9/1SMiIoXjzz2KrsBm59wW59xJYApwba421wJveB+/D1xuZubHmkREpIDC/DjvBsD2HM+TgW7na+OcyzSzw0AUsD9nIzMbDYz2Pj1hZmv9UnHpE02ubVWOaVucoW1xhrbFGS0L+0Z/BkVeewauEG1wzo0HxgOY2XLnXGLRyyv9tC3O0LY4Q9viDG2LM8xseWHf68+up2SgYY7nscDO87UxszCgOnDAjzWJiEgB+TMolgHNzayJmUUAw4FZudrMAm7zPh4GfOWcO2ePQkREgsdvXU/eYw73Ap8BocBE59z3ZvYksNw5NwuYALxpZpvx7EkMz8esx/ur5lJI2+IMbYsztC3O0LY4o9DbwvQFXkREfNGV2SIi4pOCQkREfCqxQaHhP87Ix7YYY2brzGyNmX1pZnHBqDMQLrQtcrQbZmbOzMrsqZH52RZmdoP3b+N7M3sn0DUGSj7+jzQys7lmtsr7/2RgMOr0NzObaGZ7z3etmXn8x7ud1phZp3zN2DlX4n7wHPz+EbgIiAC+BRJytbkbeMX7eDgwNdh1B3Fb9AUqeR//pjxvC2+7qsB8YDGQGOy6g/h30RxYBdT0Pq8d7LqDuC3GA7/xPk4Atga7bj9ti95AJ2DteV4fCHyC5xq27sCS/My3pO5RaPiPMy64LZxzc51zad6ni/Fcs1IW5efvAuAp4FkgPZDFBVh+tsVdwDjn3EEA59zeANcYKPnZFg6o5n1cnXOv6SoTnHPz8X0t2rXAZOexGKhhZvUuNN+SGhR5Df/R4HxtnHOZwOnhP8qa/GyLnEbh+cZQFl1wW5hZR6Chc252IAsLgvz8XbQAWpjZQjNbbGYDAlZdYOVnWzwO3GpmycDHwH2BKa3EKejnCeDfITyKotiG/ygD8r2eZnYrkAj08WtFweNzW5hZCJ5RiEcGqqAgys/fRRie7qdL8exlLjCzNs65Q36uLdDysy1uAiY55543sx54rt9q45zL8n95JUqhPjdL6h6Fhv84Iz/bAjPrBzwKDHLOnQhQbYF2oW1RFWgDzDOzrXj6YGeV0QPa+f0/MtM5l+Gc+wnYgCc4ypr8bItRwDQA51wSEIlnwMDyJl+fJ7mV1KDQ8B9nXHBbeLtb/ocnJMpqPzRcYFs45w4756Kdc42dc43xHK8Z5Jwr9GBoJVh+/o/MwHOiA2YWjacraktAqwyM/GyLn4HLAcwsHk9Q7AtolSXDLGCE9+yn7sBh59yuC72pRHY9Of8N/1Hq5HNb/AuoArznPZ7/s3NuUNCK9pN8botyIZ/b4jPgSjNbB5wCHnLOpQSvav/I57b4PfCqmT2Ap6tlZFn8Ymlm7+Lpaoz2Ho/5KxAO4Jx7Bc/xmYHAZiANuD1f8y2D20pERIpRSe16EhGREkJBISIiPikoRETEJwWFiIj4pKAQERGfFBQiuZjZKTNbbWZrzewjM6tRzPMfaWb/9T5+3MweLM75ixQ3BYXIuY475zo459rguUbnnmAXJBJMCgoR35LIMWiamT1kZsu8Y/k/kWP6CO+0b83sTe+0a7z3SlllZl+YWZ0g1C9SZCXyymyRksDMQvEM+zDB+/xKPGMldcUzuNosM+sNpOAZZ6unc26/mdXyzuIboLtzzpnZncDDeK4QFilVFBQi56poZquBxsAKYI53+pXen1Xe51XwBEd74H3n3H4A59zpwSljgane8f4jgJ8CUr1IMVPXk8i5jjvnOgBxeD7gTx+jMOAZ7/GLDs65Zs65Cd7peY2F8xLwX+dcW+BXeAaiEyl1FBQi5+GcOwz8FnjQzMLxDDp3h5lVATCzBmZWG/gSuMHMorzTT3c9VQd2eB/fhkgppa4nER+cc6vM7FtguHPuTe8Q1UneUXpTgVu9I5U+DXxtZqfwdE2NxHNXtffMbAeeIc+bBGMdRIpKo8eKiIhP6noSERGfFBQiIuKTgkJERHxSUIiIiE8KChER8UlBISIiPikoRETEp/8PtJLCYuGMCAAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" SGDClassifier \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHwBJREFUeJzt3Xmc1XW9x/HXZ/ZhB9lFRZFU1ERZ9Colhth1TVzSzLxcSRStTDMr9eaS3LxppWVGmrlkppZiLhiKlaKhKALKIigIKiiLgIAzw8yc87l//H4zDMMs58zMmTPz5f18PM7Dc37r53Cc9/l+v+e3mLsjItLe5WS7ABGRlqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCkJftAtqzzt16eM/+A7JdhqRh5YrV2S5B0uSln6x3916NLacwa4ae/QdwwwNPZ7sMScOECddmuwRJU8W8e1amspy6mSISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhKEvGwXIE1TkJvD2MG9ACjOz8XdKatMAtCjQwGL1mxhzqpNAAzp3Zm8XOPNjza3yL5H79OTzoV5PLn4YwD27FbMIf260rUoj2lL1rChpKJ62W7F+RyxR3fyc3NwnGlvryHpLVJGu1X6+u9Z8O6H1a/PuOzX7NW/J4/+8tu8t2odRQX5PDJ9Njfe+USz93Xx2WO4+KwxVCYSPDPzTX50218AuPL8Exj/lS+QTDqX/exPPDdrIQDf+fpYzh/3RdydBe+u4pvX3s228spm19EaFGbtVHkiydNvrwHg8/26UJlwFq3dAsA5QwewZ7diFny8mW2JZIvud49uxVQmd9zmprIKXli+nsP37L7DdANGDezByys2sLG0goLcHHwXDzKA0m3ljDj7uh2m7dW/Jy/NfYdxl95Gh6ICXnv4ep6eOZ+5i1c2eT9HD9+fk0cfymFf/THlFZX06t4ZgAP26c9Xv3w4Q8/4H/r36sYzU67gwFN/RN/dunLJ147lkNOvoWxbBQ/+3yS++uXD+eOTLzfn7bYadTMDlHTnnfVbOaBP5xbdbl6OMaR3Z976eMcW3uaySjZv2/nbu1+XIjaWVrCxNGqplSeSKMsaV1JWztzFKxg0oHeztnPhmcdw8z3TKK+IPpt1G6Mvu5NHD+WR6a9SXlHJitXrWfbBWkYctA8Aebm5FBcWkJubQ3FRAR+t29S8N9OK1DIL1JJ1WznpgL4s/Lj+rmWfToUMH9Btp+mVSWf60rU7TR/aryuL1myhMsV+YpfCPHAYs29PCvNyWbGxhEVrtqT+JgJVXFjAaw9dB8CKVes583u37zC/R9eOjDx4EP9755M7TO/UoYh//uGHdW7zvKvuZPHy1TtMG7xXH0YdOpgbLjmNsvIKfvCLh5mzaAX9e3Vn9lvLqpdbtXYju/fuxqtvLuOX9/+dZc/cTOm2CmbMWsCMVxa2wDtuHa0aZmbWF7gVGAFsA1YAjwOnuPtJrbD/0cA/4/09GU97CrjF3f+V6f23poqks3zDZ+zfuzOJesJnzdZt1V3VxnQvzqdzUR6vr9pEx4LclNbJMaN3p0Kmvb2GyqQzdnAvNpSU8/GWbSm/jxDV1c0EGHXoYGb/+VqSSefme6axqFY4bS0pq3O9+uTl5tCtS0dGnXcjww/cmwd/Non9TvoBZrbTsu7QrXMHTh59KJ876Qds2lLCQz+bxDknHMGD015J9y1mRauFmUX/glOB+9z97HjaUODkZm43z93TGaH8ELgaeLKxBdu7xWu3cuL+fVj2yWd1zk+nZdarYwE9igsYd2A/zKAoL5exg3vx3Dvr6t1/SUUla7Zuqx63W7W5jB7FBbt8mNWnasysPum2zD5cs5HHn58DwOsL3yOZdHp278yqtRsY0LdH9XK79+7O6nWbGHP4EFasXs/6uDv6+D/e4IhD9lWY1eEYoMLdp1RNcPd5ZtYNGGNmfwUOAuYA57q7m9kKYLi7rzez4UQtqNFmdh3QHxgIrDezZ4FTgA7AIGCqu19ZTx3zgXwzG+vuz9WcYWZjgFuI/l1eAya5e7v9yytPJFm5qYR9e3bk3ToCLZ2W2dL1n7F0fbSNjgW5fGlQw0EGsHpzGUP6dCHXjKQ7fToVsnituplNlW7L7Il/zeWYkQfw4pwlDN6zDwX5eazfuIWn/jWP+396Ibf+8Vn69+rGvnv24bUFy0kO2ZvDD96H4qICSsvKOWbkAcxZtCJj76eltWaYVQVVXQ4FDgRWAy8DRwEvNbK9YcAody81s/HA0Hg724AlZvZrd/+gnnVvjB/VYWZmRcC9wBh3X2pm9wOTiLrF7daiNVvYr1enjO5jj67FjNijG0V5UchtLC3n+XfXU55wFq/dwgn79wFg1eZSVm0uy2gtst29j8/kruvOZ+5fbqC8IsGEH/8egEXLV/PXZ19j/qM3kkgkufSmB0gmndcWLOexGa8z+8FrqUwkmPf2+/z+0Rey/C5S11Z+AJjt7h8CmNk8ohZXY2H2hLuX1nj9vLt/Gm9jEbAXUGeYuftMM8PMvlBj8n7Ae+6+NH59H3AJtcLMzCYCEwF267t7Cm8t82ofP/bQ/FXVz8sqk/x53qraqzTLZ+WJ6mPMAD74tJQPPi2tc9n3NpTw3oaSFt1/e9fjqIt3mvbinCW8OGdJi+6nojLB+GvuqnPeTXc/xU13P7XT9Bum/I0bpvytRetoLa15aMZCotZUXWp25RJsD9lKttdYVGud2v2mnbZhZuPMbF78GF5r+clEY2dVdh4VrYO73+nuw919eOfuPRpfQURaRWuG2T+AQjO7oGqCmY0Ajm5gnRVsD8DT092hu09196Hx4/Va854FugOHxJPeBgaa2b7x628A7aeNLbKLa7Uwc3cHxgFjzWyZmS0EriMaJ6vP9cBtZjaTqLXV0iYDA+L6yoD/Bv5iZm8BSWBKA+uKSBtirvNLmmzvIZ/3Gx54OttlSBomTLg22yVImirm3TPH3WsPE+1EpzOJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBDy6pthZl0aWtHdN7d8OSIiTVNvmAELAQesxrSq1w7smcG6RETSUm+YufserVmIiEhzpDRmZmZnm9lV8fMBZjYss2WJiKSn0TAzs9uBY4BvxJNKgCmZLEpEJF0NjZlVOdLdDzOzuQDuvsHMCjJcl4hIWlLpZlaYWQ7RoD9mthuQzGhVIiJpSiXMfgM8CvQys+uBl4D/y2hVIiJparSb6e73m9kc4Nh40pnuviCzZYmIpCeVMTOAXKCCqKupswZEpM1J5dfMq4E/A/2BAcCDZvajTBcmIpKOVFpm5wLD3L0EwMwmA3OAn2ayMBGRdKTSZVzJjqGXByzPTDkiIk3T0InmvyQaIysBFprZ9Pj1cUS/aIqItBkNdTOrfrFcCDxdY/ormStHRKRpGjrR/O7WLEREpDka/QHAzAYBk4EhQFHVdHf/XAbrEhFJSyo/ANwL3EN0HbPjgUeAhzJYk4hI2lIJsw7uPh3A3Ze5+zVEV9EQEWkzUjnObJuZGbDMzC4CVgG9M1uWiEh6Ugmzy4BOwHeIxs66AudnsigRkXSlcqL5q/HTLWy/QKOISJvS0EGzU4mvYVYXdz8tIxWJiDRBQy2z21utChGRZjL3ehtf0oheVuin0y/bZUgaLvv4zWyXIGnav2/XOe4+vLHldG0yEQmCwkxEgpBymJlZYSYLERFpjlSuNDvSzN4C3olfH2Jmv854ZSIiaUilZfYr4CTgEwB3n49OZxKRNiaVMMtx95W1piUyUYyISFOlcjrTB2Y2EnAzywW+DSzNbFkiIulJpWU2Cbgc2BNYAxwRTxMRaTNSOTdzLXB2K9QiItJkqVxp9i7qOEfT3SdmpCIRkSZIZcxsRo3nRcA44IPMlCMi0jSpdDMfrvnazP4IPJexikREmqAppzPtDezV0oWIiDRHKmNmG9k+ZpYDbAB+mMmiRETS1WCYxdf+P4Touv8ASdc1g0SkDWqwmxkH11R3T8QPBZmItEmpjJnNNrPDMl6JiEgzNHQPgDx3rwRGAReY2TLgM6KbAbu7K+BEpM1oaMxsNnAYcGor1SIi0mQNhZlBdBfzVqpFRKTJGgqzXmZ2eX0z3f0XGahHRKRJGgqzXKI7mVsr1SIi0mQNhdlH7n5Dq1UiItIMDR2aoRaZiLQbDYXZmFarQkSkmeoNM3ff0JqFiIg0h24CLCJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEoaH7Zko7ckflMla9taT69ZRTJ7LbwAFc/q+H+M3JE3jrqecBuPjJu5lxy10sfeGVJu9rwCFDOOe3N1LUpRPJRIJnJv+GOY88BcD5D9zKnsMPJlFRyYrZ8/nThVeRrKxs3psLSI4Ze3TvAEBejuFAIukAFOXnUlaRwAzKK5N89Gkp3ox9dSrMo2fHwuptrN1SRmlFonrffbsUk5cb3VHyw40lVCadPl2KKMrLxYDyRJKPNpfizSmiFSnMAlFeWsbkQ0/YYdpuAwew4YPVHH/1t6rDrEX2VVLKveddztp3V9C1X2+umvMUi6a/SOmnm5n9p8f5w7nfBWDCg79i1DfP5sUpD7TYvtu7pDsrN3wGwG4dC0m6s7GkHIDBvTpXz+vXpZhuHQqq5zXFZ+WVbN0WfZEU5uXQr2sxKz6Jt9+1mE8+20ZJeRSeVYm3bksZcbbSq1Mh3YsL2NCMGlqTupmB+3D+Yko/3cIBx45qsW2ufec91r67AoBPP1rLlrWf0LlXDwAWPPOv6uVWzJ5P9wF9W2y/u5KSikryc5v351mzRWW2/Z7eBfF2S8oT1ctVLZqssU6Ota/7gKtlFoiC4iKunjsNgE/e+4App11YPe+ZG3/NKTdeweIZL9W7/tgrJjLy66fuNP2dF1/lkUuvr3e9gSMOIbcgn3XLVu4wPScvj8O/Ma7BdaV+HQvyKCnfuXver2txdRjVtLGknM1lFTtN71SYR89OheTl5PDhphIACvJySLrTv2sx+bk5lJRXsm7rtup1+nYpomNBHuWJJGu3lLXgu8qsjIaZmfUFbgVGANuAFcDjwCnuflIr7HsWcLi7r42n3QksdfdbMrnvbKirm1nl3ZdeA2DfUSPqXf+5W+7kuVvuTGufXfr2Yvwff8F9/3UFXmtg5Zw7fsI7L86u3rc0zgz26tERgNKKBJtKdw6njz4tTWubW7dFXc3i/Fx6diysDrTi/DxWbthKRSIKta5F+Xwah+HHm6MA6925iM5F+XWGZFuUsTCzqF07FbjP3c+Opw0FTm7mdvPcvdERZXf/2Mx+DvwMGG9mI4CRwMXN2X979czk2zn+6m+RqGcwPt2WWVHnTnzr6Xt44pqf896rc3eYd+KPL6VTr93404UX7rSe1M+d6jGz+qTbMqtSWpEgPy+HXDMqk862ygQViegLaOu2Soryc6HW+lvKKujRsUBhBhwDVLj7lKoJ7j7PzLoBY8zsr8BBwBzgXHd3M1sBDHf39WY2HLjF3Ueb2XVAf2AgsN7MngVOAToAg4Cp7n5lHTXcAbxiZkcThdol7l5pZvnAzcCRQCFwq7vfY2Z7AA8BHYFc4Jvu/moL/7tkxeLnZnLKT75H1/6965yfTsssNz+fi6b+jlfuf4w3/jpth3lHTTiLIV/+IreOOWen1po0Xzots/xcqw6swrwcDEi4k6hIkGNGrhkJdzoURL+i1l6nU2Ee5ZXJFn8PmZLJMKsKqrocChwIrAZeBo4C6h/QiQwDRrl7qZmNB4bG29kGLDGzX7v7BzVXcPekmU0CZgCPuvvL8axJwIfuPtLMioBX44A8D3jM3X9uZrlAce0izGwiMBGgE7mNlNy2PDP5di5+4vfN3s6wr57I4C+OpONu3fmP8WcAcN/4K/hw/iLOmTKZDStXceWsqQDMfezvTPvJr5q9T0lf58J8uhTnRwP87jsE4bqtZdWHiJRVbu/S9utSHA38G2yrSLJmS3rd2myyTH17mtl3gL3d/bJa00cDV7v72Pj1b4GX3f2BRlpm7u7Xx+uMB45y9wvi188Ak929zkA0s38D33L3N+LXTwH7AlWjm12B8UABUWvuj8Dj7v5mQ++xlxX66fRL/R9Fsu6yjxv8SKUN2r9v1znuPryx5TJ5aMZCotZUXbbVeJ5gewuxskZNRbXWqT2YsNM2zGycmc2LHzXffDJ+VDHgQncfGj/2dvcX3P05ou7xGuAhMzuroTcoIm1HJsPsH0ChmV1QNSEehD+6gXVWsD0AT093h+4+tUZAvd7AotOBi80sL67rADMrMrOBwEfu/jvgfqJurIi0AxkLM4/6r+OAsWa2zMwWAtcRjZPV53rgNjObSdTaypQ7gPeBuWa2ALidaMB/LDDfzOYCxwO/yWANItKCMjZmtivQmFn7ozGz9qctjJmJiLQahZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEc/ds19Bumdk6YGW268iQnsD6bBchKQv589rL3Xs1tpDCTOpkZq+7+/Bs1yGp0eelbqaIBEJhJiJBUJhJfe7MdgGSll3+89KYmYgEQS0zEQmCwkxEgqAwE5EgKMykWczMsl2DpC/Ez01hJk1mZubxL0hmdpSZDTWz/WrOz151Up9an9tZZjbCzHKzXVdz5WW7AGm/avxBXA58FVgNlJrZLHe/3fVTeZtU43O7BLgQ+Iq7J7JbVfMpzCRtZtYZKHH3hJntCZwBjAFygYOA75rZu+7+92zWKfUzsyHABOAEd//QzI4HioE33H1FVotrIoWZpMXMPgdcDdxuZm/Ek4uIjlncbGZvAcuAPbJVo+ysZtcy9gHwPPBzM9sE7AOsA3YD7spCic2mMTNJi7svBbYSdU8Odvf3gVlE4dbB3bcApcBg0LhZW2BmOTW6lqPMrKoV/QLwGvBLdx8LvAXsV/+W2jadASApMbNeQIW7b4pfTwb2Bn4GbAa+BRwLPAJ8AzjF3ZdkqVypg5l9FzgdWArsD1zk7m/F884FLgPOdffF2auy6dQyk0aZ2VBgFTDNzC4ys4Pc/WrgXaJxlx7ufjlwM9EfyskKsuwzs4PN7Oj4+WHAaHf/AvAmUAIsjOcNJRrzHN9egwzUMpMUmFl/4EbgCOAd4H1gIPAwcBGwAJji7vOyVaPsyMwKgNuBOe7+OzPrC5wPDAAGASe5e4WZnQY8BeS5e0n2Km4+tcykUe6+mijM7iEaD7sOuA/oBnQFJgK3xX9AkkVVY5TuXg48BxwWz+oAfB44APhaHGTnAdcC3dt7kIFaZpIGMxtE1BLbDbjC3TeY2R5EY2er3f3drBYoVYdcLAHyiQbzbyJqhSXM7DiicbF3iI5kGEUUbAuzVW9LUphJo2odMb4PcAGwO/ADd/8oq8VJNTMrJjrc4n2iL5z7gBuA0919brzMMKA/0Bv4p7svz1K5LU5hJjuofTySmeUAuHsy/tbPB7YQfcMXEv0ilsxKsbKTONAKgBPi//4A+BPwW3ffkM3aMk1hJtVqtcCGAJvi8TLMbCTwJNEhF6+a2V5AqbuvzV7FUlMdB8YSD/z/AXgduM3dP8lKca1AYSY7MbNLgfFEg8bXA/8AvgKscPfpWSxNUhAfJJs0s9x4rGx3ouP/pgH/G+o5szqdSXZgZicAXwKGAf9JdKR/DvBE1fhYXS0AaX2NDAkcDOSY2QJ3X2VmpwP5IX9uOjRjF1fzdCMzO5BorKWnuyfdfRrRjTLOBE41s66w/aoLkj21hwTMrH/8mSXjIYFngY5xyyzH3T929w+yW3VmKcx2cTX+IM4HJgHTgTVmdqWZ5bn700RjLqOzV6XUVuNzu5RogP+fZnZOPEZ2KNHR/P+Ol90lfqBRN1MwsyOBU4Ez3L08bq2NBS4zs1+6+9/MbIa7f5bdSqUmDQnsSC2zXVz8TX4R0SV7+seTnwX+DgwhOoEconP5JIs0JNAwhdkuLD4ifCvwC6LzK08zswHuXkZ08OVD8WOX+qNoqzQk0DAdmrGLMrMORCHWm+iSPZ8Hvk50JYzH4uuUSRsTDwn8kO1DAqcQDQm8T3Rdskoz67grDgmoZbaLik8svgFYDtwNzCcaSB4KnBTCDS5CoyGBhqlltouJL8LX291/Eb/uQ3QZ7E7AJcDBwPvu/nH2qpTa4iGBfwP7At8D5gKPxNfvLwKOBubvyp+bWmaBqzqQsoblRDccuRjA3dcQjb0cTtRNmb0r/0G0RfGQwGnA/URXvLiD6Jr9Z5jZnu5e5u7Td/XPTWEWsPhn+WT8/Agz2yc+9uhEokC7JF60A/Ao8JMslSoN0JBAatTNDFR8oviF7n5p/OvX94mu1f8QMIXom/1eom/6I4Hj4puVSBuhIYH0KMwCZGbDia4wehbwHtAROBf4D+AcYCXRJZULgL7A1tBPdWkPqk4Qr/H6SKIvn5vc/Y542olEN5GZ6e4XZafStkndzMCY2UnA74BK4LdAOXCQuyfc/SWiP46BwBVAV3dfrCDLPg0JNJ9OZwpIfCeeW4FvuPuseNoCYC8zu83dL3X3F80sHziJqNspWVY1JADsMCRgZlVDAuOAe83sKLYPCazKWsFtlLqZATGzy4GEu99mZgXxQZW5RNeC/y7RxRavjJctdvfSbNYrGhJoSepmBqDGOXt7A73i5xVx1yUBLAZmAsPM7KZ4flkrlym1aEigZambGYAa501OBa4ys2HuPsfMcuJB5YSZ9SO6VdyMWutIFmhIoOWpmxkQM+tINN7SAXjY3efE078GfAc4S+dctg0aEmh56mYGJD65+C7iK2GY2S1mdiPRjV4nKsiyT0MCmaOWWYAsut3YMOBY4COi+yPqgNg2xMy+BFxFdO/ROfFpZxYPCVwJrAZm6IDY1CnMRLJAQwItT2EmkiXxLeAmAGOA14i6k2cAZ7r7W9msrT1SmIlkkYYEWo7CTESCoF8zRSQICjMRCYLCTESCoDATkSAozEQkCAozySgzS5jZPDNbYGZ/iW/O0dRtjTazp+Lnp5jZDxtYtlvVTVvS3Md1ZnZFqtNrLXOvmZ2Rxr4GxieXSwtQmEmmlbr7UHc/iOgSNztc6tkiaf9/6O5PuPtNDSzSDUg7zKT9UphJa5oJ7Bu3SBab2R3AG8AeZnacmc0yszfiFlwnADP7TzN728xeIrrdGvH08WZ2e/y8j5lNNbP58eNI4CZgUNwqvDle7vtm9pqZvWlm19fY1tVmtsTMZhBdtaJBZnZBvJ35ZvZordbmsWY208yWxtcrw8xyzezmGvu+sLn/kLIzhZm0CjPLA44Hqk7T2Q+4390PBT4DrgGOdffDgNeByy26ue1dwMnAF4iutFqXXwEvuPshRFdtXQj8EFgWtwq/b9FNdAcDI4lu0TbMzL5oZsOAs4FDicJyRApv5zF3HxHvbzHRKUlVBhLdkPdEYEr8HiYAn7r7iHj7F5jZ3insR9KgizNKphWb2bz4+Uyi+z72B1a6+yvx9COAIcDL8RVyCoBZwP7Ae+7+DoCZPQBMrGMfXwLOA4gvo/OpmXWvtcxx8WNu/LoTUbh1BqbG96bEzJ5I4T0dFF9aqVu8nek15j0S35jkHTNbHr+H44DP1xhP6xrvW6cttSCFmWRaqbsPrTkhDqzPak4CnnP3r9VabijQUufbGfBTd/9drX18twn7uBc41d3nm9l4YHSNebW35fG+v+3uNUMPMxuY5n6lAepmSlvwCnCUme0LYGYdzOxzwNvA3mY2KF7ua/Ws/zwwKV4318y6AFuIWl1VpgPn1xiL293MegMvAuPMrNjMOhN1aRvTGfgovqT112vNOzO+XPkgohstL4n3PSleHjP7XHwJIGlBaplJ1rn7uriF82czK4wnX+PuS81sIvC0ma0HXgIOqmMTlwJ3mtkEIAFMcvdZZvZyfOjDM/G42QHArLhluBU4193fMLOHgXlEd0KamULJ/wO8Gi//FjuG5hLgBaAPcJG7l5nZ74nG0t6IrzS7Djg1tX8dSZWumiEiQVA3U0SCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJwv8Dal8OCb7C1rMAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.943 \n",
"Precision=0.374\n",
"F1=0.535\n",
"Average precision-recall score: 0.549\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xd4lfX9//HnmwQIYYQZ9pRRGbKCyLC4wYWKVsVaR1tx1P2z37qqfrX9uiulDkqVWkUBxaqIKC5wIChBEFmyR8JeYSSBjPfvj3MIIYSTQU5Ocng9rivXde77/tz3/T53kvM69/rc5u6IiIgcTZVIFyAiIhWbgkJEREJSUIiISEgKChERCUlBISIiISkoREQkJAWFVCpmtsjMTiuiTSsz22tmMeVUVliZ2XVm9k2+YTez9pGsSY4vCgopE2a2xswygh/Qm83s32ZWq6zX4+5d3H1GEW3WuXstd88p6/UHP6T3Bd9nqpn9raIFkpkNNrOvzGyPmW01sy/NbGik65LKS0EhZelCd68F9AL6AA8WbGABlf3vrnvwfQ4CrgB+G+F68pjZZcDbwGtAC6Ax8BBwYSmWFQ2/KykD+iOQMufuqcBHQFcAM5thZn81s5lAOtDOzBLM7BUz2xj8Zv6X/N/MzewGM1sS/Fa82Mx6BcevMbOzgq9PNrNkM9sd3Iv5W3B8m+A3/9jgcDMzm2xmO8xshZndkG89j5jZW2b2WnBdi8wsqZjvcwUwE+iRb3mlfV/3mtnKfOMvKel2NzMD/gY85u4vu3uau+e6+5fufkO+9zsu3zwFt1XB39X9ZpZcYD13mdnk4OvqZvaMma0L/g5Gm1mNktYuFZuCQsqcmbUEzgPm5Rv9G2AEUBtYC/wHyAbaAz2Bc4DfB+f/FfAIcA1QBxgKbC9kVX8H/u7udYATgLeOUtJ4IAVoBlwG/J+ZnZlv+lBgAlAXmAw8X8z3+QvgVGBFvtGlfV8rg8tKAP4XGGdmTYtTRz6dgJbApBLOV1D+39U/gE5m1iHf9KuAN4OvnwQ6EgjL9kBzAnswEk3cXT/6OeYfYA2wF9hFIAheBGoEp80AHs3XtjGw/+D04LjhwPTg62nAHSHWc1bw9VcEPlQbFmjTBnAglsAHZw5QO9/0x4FXg68fAT7LN60zkBHifTqwG9gXfD0eqH6s76uQ9cwHLgq+vg74pkAN7QuZZ0BwWlyI5T4CjCtsWxX2uwqOGwc8FHzdAdgDxAMW3A4n5GvbD1gd6b9H/ZTtj/YopCxd7O513b21u9/i7hn5pq3P97o1UBXYaGa7zGwX8E8gMTi9JYFv2EX5HYFvs0vNbI6ZXVBIm2bADnffk2/cWgLffA/alO91OhB38FDMUfQCahE4P9EXqHms78vMrjGz+fnm6wo0DFFDYQ7unZR0T6Sg9QWG3yQQeBDYm3jP3dOBRgQCY26+uj8OjpcooqCQ8pK/m+L1BL55NwwGS113r+PuXfJNP6HIBbovd/fhBD6InwQmmVnNAs02APXNrHa+ca2A1NK+keC63d3fAmZx6FBLqd6XmbUG/gXcCjRw97rAQgLf2Evi5+A6Lg3RZh+BD/eDmhTSpmCX0p8ADc2sB4HAOHjYaRuQAXTJ934TPHCiX6KIgkLKnbtvJPDh86yZ1TGzKmZ2gpkNCjZ5GbjHzHoHr7xpH/wwPYyZXW1mjdw9l8AhLwgcZsq/rvXAt8DjZhZnZicR2BN5o4zezhPACDNrcgzvqyaBD+etwfd1PcELAUrC3R24G/izmV2fr4aBZjYm2Gw+8EsL3GuSANxXjOVmEzjv8TRQH/g0OD6XQMA9Z2aJwdqbm9ngktYuFZuCQiLlGqAasBjYSeCDqCmAu78N/JXAN9c9wHsEPqAKGgIsMrO9BE5sX+numYW0G07gWPwG4F3gYXf/tCzehLv/BHwJ/LG078vdFwPPEtg72Qx0I3A1VWnqmcShS3Y3BJf3F+D94PRPgYnAAmAuMKWYi34TOAt4OxgcB/2JwMn82Wa2G/iMwEl1iSIW+BIiIiJSOO1RiIhISAoKEREJSUEhIiIhKShERCSkUDcVVUgNGzb0Nm3aRLoMEZFKZe7cudvcvVQ3Q1a6oGjTpg3JyclFNxQRkTxmtra08+rQk4iIhKSgEBGRkBQUIiISUqU7RyEiFUdWVhYpKSlkZhbWc4pEQlxcHC1atKBq1apltkwFhYiUWkpKCrVr16ZNmzYEHrAnkeTubN++nZSUFNq2bVtmy9WhJxEptczMTBo0aKCQqCDMjAYNGpT5Hl7YgsLMxprZFjNbeJTpZmajgs8wXnDw2cEiUrkoJCqWcPw+wrlH8SqBbqCP5lwCj1XsQOD5vC8VZ6G5nktGVgb7s/cfc4EiIlK0sAWFu38F7AjR5CLgteCTwmYDdYvzMPl5G+cR/3/x1PhrDd5f+n5ZlSsiUmbmzp1Lt27daN++PbfffjuFPc5hxowZJCQk0KNHD3r06MGjjz562PScnBx69uzJBRccesLvF198Qa9evejatSvXXnst2dnZBRcbFpE8R9Gcw5/Nm8LhzzHOY2YjzCzZzJLrxtTloV8+hOOs2bWmPOoUkUouJyen6EZl6Oabb2bMmDEsX76c5cuX8/HHHxfa7tRTT2X+/PnMnz+fhx566LBpf//73znxxBPzhnNzc7n22muZMGECCxcupHXr1vznP/8J6/s4KJJBUdiBtEKfouTuY9w9yd2TTmh8AneecmeYSxORyuLiiy+md+/edOnShTFjxuSNr1WrFg899BB9+/Zl1qxZzJ07l0GDBtG7d28GDx7Mxo0bAfjXv/5Fnz596N69O5deeinp6enHVM/GjRvZvXs3/fr1w8y45ppreO+990q0jJSUFD788EN+//vf543bvn071atXp2PHjgCcffbZvPPOO8dUa3FF8vLYFKBlvuEWBB7dKCKV0J0f38n8TfPLdJk9mvRg5JCRIduMHTuW+vXrk5GRQZ8+fbj00ktp0KAB+/bto2vXrjz66KNkZWUxaNAg3n//fRo1asTEiRN54IEHGDt2LMOGDeOGG24A4MEHH+SVV17htttuO2wd06dP56677jpi3fHx8Xz77beHjUtNTaVFixZ5wy1atCA1NbXQ2mfNmkX37t1p1qwZzzzzDF26dAHgzjvv5KmnnmLPnj15bRs2bEhWVhbJyckkJSUxadIk1q9fX+hyy1okg2IycKuZTQD6AmnBh9OLiBTbqFGjePfddwFYv349y5cvp0GDBsTExHDppZcC8PPPP7Nw4ULOPvtsIHAoqmnTwCnRhQsX8uCDD7Jr1y727t3L4MGDj1jH6aefzvz5xQvBws5HFHYlUq9evVi7di21atVi6tSpXHzxxSxfvpwpU6aQmJhI7969mTFjxmHLmDBhAnfddRf79+/nnHPOITa2fD7Cw7YWMxsPnAY0NLMU4GGgKoC7jwamAucReDB7OnB9uGoRkfAr6pt/OMyYMYPPPvuMWbNmER8fz2mnnZZ3D0FcXBwxMTFA4MO7S5cuzJo164hlXHfddbz33nt0796dV1999bAP54NKskfRokULUlJS8oZTUlJo1qzZEfPWqVMn7/V5553HLbfcwrZt25g5cyaTJ09m6tSpZGZmsnv3bq6++mrGjRtHv379+PrrrwH45JNPWLZsWTG20rELW1C4+/Aipjvwh3CtX0SiX1paGvXq1SM+Pp6lS5cye/bsQtt16tSJrVu3MmvWLPr160dWVhbLli2jS5cu7Nmzh6ZNm5KVlcUbb7xB8+ZHXlNTkj2Kpk2bUrt2bWbPnk3fvn157bXXjjiUBbBp0yYaN26MmfH999+Tm5tLgwYNePzxx3n88ceBQBA+88wzjBs3DoAtW7aQmJjI/v37efLJJ3nggQeKu6mOibrwEJFKa8iQIYwePZqTTjqJTp06ccoppxTarlq1akyaNInbb7+dtLQ0srOzufPOO+nSpQuPPfYYffv2pXXr1nTr1u2w8wKl9dJLL3HdddeRkZHBueeey7nnngvA6NGjAbjpppuYNGkSL730ErGxsdSoUYMJEyYUebPc008/zZQpU8jNzeXmm2/mjDPOOOZai8MKO55WkSUlJfmnX39K/afqM3LwSO445Y5IlyRy3FqyZMlhl3BKxVDY78XM5rp7UmmWp76eREQkJAWFiIiEpKAQkWNS2Q5fR7tw/D4UFCJSanFxcWzfvl1hUUEcfB5FXFxcmS5XVz2JSKkdvGdg69atkS5Fgg4+4a4sKShEpNSqVq1apk9Sk4pJh55ERCQkBYWIiISkoBARkZAUFCIiEpKCQkREQoqqoFi1cxVb9+kyPRGRshQ1QZGVk8UJo07g7NfPjnQpIiJRJWqC4sPlHwKBvQoRESk7URMUr/34GgCD2x/5GEMRESm9qAiKjKwMpq2cBkBsFd1sLiJSlqIiKL5Y/QXpWemRLkNEJCpFxdfvqcunUrNqTRrGN4x0KSIiUScq9ii+Xvc1A1sNpHps9UiXIiISdSp9UOzM2MnCLQsZ2GpgpEsREYlKlT4ovl3/LY4rKEREwqTSB8V3qd9RxapwcvOTI12KiEhUqvRB8dOWn+jYoCPxVePzxu3M2KlHM4qIlJHKHxSbf6JbYre84UVbFlH/qfq8Ov/VyBUlIhJFKnVQ7D2wl5U7Vx4WFD9t+QmAFTtWRKosEZGoUqmDYtHWRQB0a9ztiGlt6+k5viIiZaFSB8XSbUsB6NyoMwCb926OZDkiIlGpUgfFml1rMIzWCa0BSNufFuGKRESiT6UOip2ZO2lWu5nuyBYRCaNKHRQAbeq2yXvdoEYDmtRqErliRESiUFiDwsyGmNnPZrbCzO4tZHorM5tuZvPMbIGZnVfSdeQPis33bGbW72YdW9EiInKYsAWFmcUALwDnAp2B4WbWuUCzB4G33L0ncCXwYknXkz8oYqrElOnzKHI9lye+eYKfNv9UZssUEalswrlHcTKwwt1XufsBYAJwUYE2DtQJvk4ANpR0JW3rlt1lsKm7U/njJ3/kq7Vf4e488PkD3Pf5fYxfOL7M1iEiUtmE83kUzYH1+YZTgL4F2jwCfGJmtwE1gbMKW5CZjQBGALRq1eqwaS3qtCiTYnNyc7jqv1fx1dqveGbWM7Sr107P3xYRIbx7FFbIuIIdMA0HXnX3FsB5wOtmdkRN7j7G3ZPcPalRo0aHTUusmRiyiNU7V/NdyndFFvvCnBf4au1XvHT+S4wdOpbEmolc/IuLibGYIucVEYlm4dyjSAFa5htuwZGHln4HDAFw91lmFgc0BLYUdyVHC4ot+wKLaDeqHQD+8NE7CVyXto77P7+fc9ufy429b8TMuL7n9QBUe6xacUsREYlK4QyKOUAHM2sLpBI4WX1VgTbrgDOBV83sRCAO2FqSlRR8/GlizUS6JXbjgS8e4MfNPxY5v7vzh6l/wHFePP9FzArbERIROX6F7dCTu2cDtwLTgCUErm5aZGaPmtnQYLP/B9xgZj8C44HrvIT9gxe82a5aTDW++/13PHDqA/x3yX+LnP+dJe8wZdkUHj3t0cOuoBIRkYBw7lHg7lOBqQXGPZTv9WJgQFmvt0bVGvzljL9wVberGDB2AHXj6hbaLiMrgzs/vpOeTXpyxyl3lHUZIiJRodLfmR1K50adGdpp6FGn/+P7f5C6J5XnBj9XpvdfiIhEk6gOilB2ZOzg8W8e5/wO5zOozaBIlyMiUmEdt0Hx9MynSctM4/EzH490KSIiFVqlDIpczwWgVrVapZo/LTONF5Nf5FddflXoQ49EROSQShkUB88nXHPSNaWa/6Xkl9i9fzf3Djiin0IRESmgUp7BTYhLIOWulFJ1KZ6RlcHI2SMZfMJgejbtWax5Crtid+GWhSTWTCzyznARkcquUu5RADSv05yYKiXvXmP8wvFs3reZPw34U7HaZ+Vm8cTMJ/hw2Yd542anzKb3mN489uVjJV6/iEhlU2mDorRGJ4+mc6POnNbmtBLNd+/ngcNUG/ZsYNjEYRzIOcDzc55n9c7VYahSRKTiOK6C4oeNPzBnwxxu6n1TsbvqeGTQI1zW+TIWblnI3A1zGTZxGLv3786b/uKcEj9CQ0SkUjmuguKfyf+kRmwNftP9N8We5+HTHub2k28H4JKJl/Bd6ne8dslrXNQp8GiNhLiEsNQqIlJRHDdBse/APt746Q2u7HrlUbv0KMr63ev58y//zLATh/H2r94GIDs3my9Wf1HoCW8RkWhw3ATFB8s+YF/WPq7rcV2J5z1430ZC9QQeOe2Rw6aNnD2SM18786g91W7Ys6HQzgndnV2Zu0pci4hIeTtugmL8wvE0q92Mga0GlnjepGZJ3DfwPpbftpwqBZ6rlLY/DYCe/+zJgZwDh01bvXM1/V/pz6VvXXrYc7cP5Bzg2veupeFTDdmWvq0U70ZEpPwcF0GxM2MnHy3/iCu6XHHEB31x1KxWk/878/9oVPPQ0/WqWBUSqifQsUHHvHEjZ4/Me71ixwoGvTqItWlrAThp9EkA7MrcxZBxQ3h9wevkeE7eifHM7Eye+OYJlm9fXqr3KCISLsdFUKTtTyMrN4vhXYeX2TJjqsSw5s41JN+QTKP4QID86bM/MXHhRFbuWMmgVweRkZ3Bn3/557x51u5ay8CxA/lm3Tdc2PHCvPGpu1Pp/0p/7vv8Pjo+35H1aeuPWJ+ISKRUyjuzS6NdvXYkNUsq02UePCn+zuXv8Iepf8DMuOnDm0ionsD+7P1Mv3Y63Rp3Iyc3hydmPsHJL5/M/uz9TLt6Gut3r+eDZR8wO2U293xyDzszd+Ytt9XIVmz949Yjnt4nIhIJUb9HcfDQzrBfDAvbY05PbX0qC25ewDuXv0NWThY7M3cy7eppeR0O/mngnzix4YnEWAzf/PYbTm97et68v/7vr6lRtQZzbpjDU2c9lTd+xY4VYalVRKSkon6PYtqKaQAhH2BUVtrXb8/X139NfNV4OjXslDe+TvU6zLlhDrmeS81qNQEwAqHVuVFnvrruKxrEN6BrYld2ZOzgiZlPhL1WEZHiivo9inb12gHQr2W/cllfz6Y9DwuJg2pUrZEXEhAIrn9f9G/m3TiPBvEN8sbrIUoiUtFE/R7F59d8zq7MXRXuUacJcQmluqcDYO+Bvdz72b0k1kzkoUEPFT2DiMgxiPo9isa1Ghf6Db+y+i7lO3qM7sELc17gw+UfFj2DiMgxivqgiBbZudk8+uWjDBg7gOzcbDrU7xDpkkTkOKGgqODcnfVp6znt1dN4eMbDXNn1Sn686UdOqH9CpEsTkeNExTpwL3mdC/Z7pR/t6rUjdXcqtarV4kDOAcZdMo5fn/RrANKz0vk+9XumLJvCBR0viGTJIhLltEdRwdSpXgcIdBGyaucq9ufsp1ntZiSPSM4LifxGfTeqvEsUkeOM9igqmP4t+7Pq9lW0SmjFyz+8zM/bf+YvZ/yF+Krxh7V76fyX6PJil7xgEREJFwVFBWNmtK3XFoAbk248arvOjTpzfofzeWfJO7y96G1+1eVX5VWiiBxndOipEptw2QQA7v/i/sMezyoiUpYUFJVYrWq1gEC/UO8sfifC1YhItFJQVHI39g4cnsrOzY5wJSISrRQUlVz+512IiIRDsU9mm1lzoHX+edz9q3AUJaWz78A+NuzZQIcGumtbRMpOsYLCzJ4ErgAWAznB0Q6EDAozGwL8HYgBXnb3I/rPNrPLgUeCy/vR3a8qbvFyyIgpIxgxZQQAuQ/lhu3ZGyJy/CnuHsXFQCd331/cBZtZDPACcDaQAswxs8nuvjhfmw7AfcAAd99pZonFL10gcINe9ZjqtK/fnkVbFwGB3mVrV68d4cpEJFoU9xzFKqBqCZd9MrDC3Ve5+wFgAnBRgTY3AC+4+04Ad99SwnUc92pXr83u+3az8JaFjD5/NAB1nqjDqO9GsWz7sghXJyLRoLhBkQ7MN7N/mtmogz9FzNMcWJ9vOCU4Lr+OQEczm2lms4OHqqSEqsVUA2BE7xGc2/5cAO74+A6GTRxGzKMxDJs4jAM5B8jJDRw13Ja+jU9WfsJtU2+jx+ge7MrcFbHaRaTiK+6hp8nBn5Io7CC5F7L+DsBpQAvgazPr6u6HfXKZ2QhgBECrVq1KWMbxw8x4Y9gbLNq6iMveuizvUNS7S9+l3d/bEV81nt/2/C3/++X/kpmdmTff+rT11I2rG6myRaSCK1ZQuPt/zKwagT0AgJ/dPauI2VKAlvmGWwAbCmkzO7is1Wb2M4HgmFNg/WOAMQBJSUkFw0byqVejHgNbDeT+U+8HAiHwzKxnSN2TCsB9n9/HsBOHcdvJt7Fk6xJumXpLJMsVkUqguFc9nQb8B1hDYE+hpZldW8TlsXOADmbWFkgFrgQKXtH0HjAceNXMGhIIolUleQNSuNv73g4EbsTrktiF9Kx0xswdw2OnP8aFnS4EYHv69kiWKCKVRHEPPT0LnOPuPwOYWUdgPND7aDO4e7aZ3QpMI3B57Fh3X2RmjwLJ7j45OO0cMzt42e0f3V2fXmUotkps3rO5b+mjvQcRKbniBkXVgyEB4O7LzKzIq6DcfSowtcC4h/K9duDu4I9EgVzP5b2l7wEw7MRhEa5GRMpCcYMi2cxeAV4PDv8amBuekqSi2Ja+jbW71tK2XlumLp9KZnYmV3S54oh7NLbs28Jnqz5jV+YuXpjzAou3Bm6VuTnpZoa0H8LQTkMjUb6IlJHiBsXNwB+A2wmco/gKeDFcRUnkpGWmMW7BOFL3pPL4N48fMf3Wqbfy400/si5tHevS1jFh0QQ+W/VZ3vQujbrQu2lv5m6cy0vJL/FS8kuMPn80NybdiLvz6apPqR5TnUFtBpVZze6OmZGTm8OBnANkZmeSuieVroldizX//uz9TFs5jeQNydzT/x7W7lpLw/iGNK3dtMxqLK4VO1YwbcU0GsQ34MquV5b7+kUKYwef0VxZJCUleXJycqTLiArvL32fiydeTOOajTm/w/n0b9mfG6fcSI4H7rdoGN+QbenbaBjfkAs6XsCr8189Yhnt67fnii5XkLI7haGdhnLxLy6milVh456NPP3t0zw3+zluO/k2kpol8cy3z/DTlp9oFN+Iwe0Hc3nny7mw04Vs2LOBVTtX0bNJTzKyM3h/6fu88dMbnNfhPO7udzdV7MjbfZZvX874heOZsHACK3eupGqVquzL2ndYm3+c+w96N+1Nq4RWNKnVhJgqMaRnpTP558ks2LyAxjUb813qd0xdPpW0/WlHrOO5wc/RNbErv2z9Swxj/qb5/Lj5R+ZumMtbi9+iZ5OeNKnVhJeHvkxcbFyxtnl6VjpxsXFsT9/Oxys+ZnbKbNrWa8vqnauZtnIaK3euzGubencqzWo3K9ZyRYpiZnPdPalU84YKCjN7y90vN7OfOPIeCNz9pNKs9FgoKMpOelY6/0z+J3d/cugUUf+W/WlWuxk3J93MGW3POKz9oi2LeP/n91mweQFb07fyl9P/wiktTgnZr1T30d1ZsHkBAF0Tu1Itpho/bPwBgNPbnE6z2s1446c3jjr/p7/5lLPanQVA6u5UJi6ayPiF40nekIxhnNr6VPo060Ou51ItphqvzHuFjKyMI0KjR5MedE3syrtL3j1sWtNaTRncfjDDfjGMb9d/y5JtS6gWU423F7+d16ZuXF0MY2fmTgBiLCYvTAHuPuVuftHwFwzvNpwasTWIqRJDZnYm01dP54NlH/DmT2+Stj+NlnVasn53/ntQD6lZtSantz2dwScMZub6mUxYGHgo1b0D7uXxs47csxMpqXAGRVN332hmrQub7u5rS7PSY6GgKHub9m7irUVv0aJOCy75xSVl2qHgjowdvDTnJXo17cWQ9kNYtn0ZczbM4Y+f/pFNezdRq1otWtRpwdJtSwE4t/253DvwXjKzMxk8bjAAz5z9DB8s+4Cv1n6F4/Ru2pvhXYdzRdcraFGnxRHr3LN/Dy//8DIz189k8dbFLNm2BAh84F924mUMaT+E+Krx9GjS46iHl56b9RzLti9jzA9jaFqrKWe2O5MLOlxAr6a9aFuvLUu2LmF2ymx+/8Hvj5i3blxdDuQcID0rnfiq8aRnpQOBYJyzYQ61qtXilqRb6NO8D1v2baFFnRYMaDmA6rHVgcC9L7+d/Nu8Q3r9W/bnjr530KZuG05ufjJ79u9hVsosTmp8Ek1qNTnG35AcL8IWFPlWUBPIcPfc4KWxvwA+KsZNd2VOQREdxs4by+79u7m+x/UkxCXknWc4aMu+LTR+pnHecKcGnRjedTjDuw2nY4OOhS3yqPbs38PatLV0qN8h78O4LOzP3s87S96hc6POTF89nb/N/hspu1OoXa0213S/hgs6XsBpbU4jtkosB3IOEF81vkTL35GxgwZPNThsXLt67ViXti7vQVU6PCXFVR5BMRc4FagHzAaSgXR3/3VpVnosFBTHj30H9vHKvFc4tdWp9GjSo1J0nX7w/6msav1h4w9MXz2drNws7vv8Pro06sLQTkPzLjR48NQHeeyMx8pkXRLdyiMofnD3XmZ2G1DD3Z8ys3nu3rM0Kz0WCgo5XuV6bt6J/U17N9H02UOHzS7rfBnt6rbjybOfjFR5UsEdS1AUt/dYM7N+BO6f+DA4rthPxxORY5f/6q8mtZrw1zP+mjc8afEknvr2Kd5b+h7Lty+PRHkSxYobFHcSeMDQu8FuONoB08NXlogU5f5T78cfdvxh594B9wJwycRLuHjixWRkZUS4OokmxQoKd//S3Ye6+5PB4VXufnt4SxOR4rqh9w08e86zdGnUhcVbF9PgqQZMWDiBynaflFRMRV0eO9Ld7zSzDyj8Popy75tB5yhEjm7VzlV8vurzvOenH7w897LOl3Frn1sZ0GoAsVV01Ph4dCznKIr6iznYt9MzpVm4iJSvdvXa0a53O1J2p/DoV4/m3cMxafEkJi2exICWAxg5ZCQnNT6JfQf2kZmdiePUqV6HnRk7SayZyOZ9m3F36tWoR3pWOg3jGypcjnMlvo8iOBwDVHf39DDXdwTtUYgUT/4+sKYsm8LFEy8u1XKu7Holbw57s1JcnixHVx6Xx84GznL3vcHhWsAn7t6/NCs9FgoKkdL5dv23vP7j62wZ3Q4jAAARJ0lEQVRN38rW9K3Ui6vH3gN72b1/Nx0bdGTm+pmc2fZMMrIz6NeiH1+s/oJ3l74LQL24evRv2Z9zTjiHxJqJ6rCwEiqPoJjv7j2KGlceFBQi5WfKsilcOP7CI8bf0fcONu3dxH0D76N7k+5HTE/dncqCzQvo37I/CXEJ5VGqFKE8gmImcJu7/xAc7g087+79SrPSY6GgEClf7o7jrNyxktHJo/nb7L/lTYuvGs+nv/mUXM8leUMys1JmMWv9rMM6Pzyr3VlMvGwi9WvUj0T5ElQeQdEHmABsCI5qClzh7uX+8CIFhUjk5OTmkLonlUbxjej0fKcjesNtndCaU1qcwiktTuGuaXfljX/2nGc5kHOAn7f/TKs6rejRpAeJNRPp0aQHNavVLO+3cVwKe1AEV1IV6ETgwUVLI9EhICgoRCqKVTtXMXbeWDrU70BizUS6N+l+WAeFObk5fLn2S8587cyQy1HHhuWjPPYo4gk817q1u99gZh2ATu4+pTQrPRYKCpHK40DOAV754RXa1G1Dn+Z92LR3ExDo8PGiCRexed9m3v7V2/Ru2pu29dpGuNroVh5BMZHAM7KvcfeuZlYDmKWT2SJSWu8tfY9LJl6SN3xeh/NI3Z1K7eq1ufuUu2lfvz3dGneLYIXRJZw33B10grtfYWbDAdw9w3RRtYgcg9PbnM6Dpz7ImrQ1zNs4jw17NlCrWi2+WfcN36z7BoBb+9zKP877R4QrleLuUXwLnAnMDHY3fgIw3t1PDneBBWmPQiS6/XfJf/lyzZeM+n4UAHvu20OtarUiXFXlVx57FA8DHwMtzewNYABwXWlWKCISyrAThzHsxGEk1kzkwekPUvvx2owaMoql25ZyQccL2L1/N0u3LeWjFR9xe9/buarbVZEuOeoVuUcRPMTUAkgHTiFw1dNsd98W/vKOpD0KkePD+rT1tBrZKmSbtnXbsuqOVeVUUeUW1j0Kd3cze8/de3PooUUiImHVMqElKXelMGfDHNrWbcv8TfOJi43jxEYn0qF+B6557xomLZ7Et+u/pVF8IxrVbETduLqRLjsqFffQ02wz6+Puc8JajYhIPs3rNKd5neYAR3QV0qRmEwAGjB1w2PhODTrRNbErky6flDcu/2NkpeSKezJ7MYGb7dYA+wgcfnJ3Pyms1RVCh55EBAI39M3bNI8fNv7A1+u+ZtyCcdSqVovqMdXZnrEdgOox1akbV5fN+zZTxarQLbEb826cd1z2hFse91G0Lmy8u68tzUqPhYJCREIZ/9N4rvpv4AR3q4RWdG/cnZ2ZO/Muuc36cxb7DuyjTvU6x1VghC0ozCwOuAloD/wEvOLu2aWqsowoKESkNB778jEemvFQ3vD9A+/nr2f+NYIVla9jCYqiDtr9B0giEBLnAs+WZiUiIpF2WefLOL3N6dycdDN1qtdhw94NRc8kQNF7FD+5e7fg61jge3fvVV7FFUZ7FCJyrFqPbE3NqjXp37I/H634iC6NurBhzwZ6Ne3Fb076DWefcHakSyxz4bw8Nq+HWHfPPp6O54lI9OqW2I3pa6azZNsSADbs2UDVKlVZtHURry94nYTqCVzf43rOPuFs4mLjOKPtGRGuOLKK2qPIIXCVEwSudKpB4Ma7g1c91Qm5cLMhwN+BGOBld3/iKO0uA94G+rh7yN0F7VGISLj8z6f/w9PfPn3YuCpWhVW3r2LLvi10aNCh0t6rUS7Poyjxgs1igGXA2UAKMAcY7u6LC7SrTeBGvmrArQoKEYm0lTtWMnX5VBZsXsDL817OG39G2zOYdvU0YqsU9xa0iqM8+noqjZOBFe6+CsDMJgAXAYsLtHsMeAq4J4y1iIgU2wn1T+C2vrexdtda6teoT7Pazbhz2p18sfoL2o9qzx/6/IHOjTqzetdqWie0Ji42jtgqsfRt0Zf4qvGRLr/MhTMomgP5n5OYAvTN38DMegIt3X2KmR01KMxsBDACoFWr0H2/iIiUldZ1W/Pk2U8CkNQsic9Xf87DMx7mfz77n5Dzjeg1gsycTGItlifPfpKG8Q3Lo9ywCeehp18Bg93998Hh3wAnu/ttweEqwBfAde6+xsxmAPfo0JOIVGRLti7h89Wfc2LDE6kWU42NezeS67mMnD2SjXs3si5t3RHz3HXKXdzT/56IPvK1op6j6Ac84u6Dg8P3Abj748HhBGAlsDc4SxNgBzA0VFgoKESkItuWvo3a1WqzLX0brUe2JsdzDpt+Q68buPqkq6ldrTZr09ZSp3od2tZtS5u6bcJ6p3hFDYpYAiezzwRSCZzMvsrdFx2l/Qy0RyEiUSQrJ4tNezcx6rtRPDPrmSLbv3/l+wxsNZB6cfXKPDQqZFAAmNl5wEgCl8eOdfe/mtmjQLK7Ty7QdgYKChGJYgdyDrA+bT0z188EYGfGTlbsWMHzc54/ou09/e7hgV8+QEL1BLJys4itEntMPeBW2KAIBwWFiESbAzkHmLBwAtNWTuPNn948arvre1zPPf3voXOjziVeh4JCRCSKpOxO4fnvn6dqlarEVonl1R9fZc2uNXnTx10yjl+f9OsSLVNBISIS5XZl7uL575/nz9P/DMCnv/mUM9qeUezDUQoKEZHjRId/dGDFjhWHjfvimi84ve3pIecLZzfjIiJSgfww4gemXjX1sI4Kz3jtDGasmRG2dWqPQkSkksrJzeGGD27g3/P/DcDAVgPJzM7kv5f/l5YJLQ9rqz0KEZHjUEyVGF4Z+gq3nXwbNavW5Jt135C8IZkPl39YpuvRHoWISJTYtHcTTZ9tSmyVWLb+cethXaJrj0JERPKCITs3m+9Sviuz5SooRESiRFxsHN/+9tsyX66CQkQkCg15Ywi7MneVybIUFCIiUaRHkx40rtkYgC37tpTJMhUUIiJRpEbVGvxt8N8AeOH7F8pkmQoKEZEo0zqhNQCjvh/FF6u/OOblKShERKLMgFYDeOG8wN7ENe9ec8zLU1CIiEShm5Nu5pwTziF1Tyq79+8+pmUpKEREopCZ0b5eewASnkg4pmXFlkVBIiJS8Tw06KG81y/yYqmXoy48RESOA+rCQ0REwkZBISIiISkoREQkJAWFiIiEpKAQEZGQFBQiIhKSgkJEREJSUIiISEgKChERCUlBISIiISkoREQkJAWFiIiEpKAQEZGQFBQiIhJSWIPCzIaY2c9mtsLM7i1k+t1mttjMFpjZ52bWOpz1iIhIyYUtKMwsBngBOBfoDAw3s84Fms0Dktz9JGAS8FS46hERkdIJ5x7FycAKd1/l7geACcBF+Ru4+3R3Tw8OzgZahLEeEREphXAGRXNgfb7hlOC4o/kd8FFhE8xshJklm1ny1q1by7BEEREpSjiDwgoZV+hzV83saiAJeLqw6e4+xt2T3D2pUaNGZViiiIgUJTaMy04BWuYbbgFsKNjIzM4CHgAGufv+MNYjIiKlEM49ijlABzNra2bVgCuByfkbmFlP4J/AUHffEsZaRESklMIWFO6eDdwKTAOWAG+5+yIze9TMhgabPQ3UAt42s/lmNvkoixMRkQgJ56En3H0qMLXAuIfyvT4rnOsXEZFjpzuzRUQkJAWFiIiEpKAQEZGQFBQiIhKSgkJEREJSUIiISEgKChERCUlBISIiISkoREQkJAWFiIiEpKAQEZGQFBQiIhKSgkJEREJSUIiISEgKChERCUlBISIiISkoREQkJAWFiIiEpKAQEZGQFBQiIhKSgkJEREJSUIiISEgKChERCUlBISIiISkoREQkJAWFiIiEpKAQEZGQFBQiIhKSgkJEREJSUIiISEgKChERCUlBISIiISkoREQkpLAGhZkNMbOfzWyFmd1byPTqZjYxOP07M2sTznpERKTkwhYUZhYDvACcC3QGhptZ5wLNfgfsdPf2wHPAk+GqR0RESiecexQnAyvcfZW7HwAmABcVaHMR8J/g60nAmWZmYaxJRERKKDaMy24OrM83nAL0PVobd882szSgAbAtfyMzGwGMCA7uN7OFYam48mlIgW11HNO2OETb4hBti0M6lXbGcAZFYXsGXoo2uPsYYAyAmSW7e9Kxl1f5aVscom1xiLbFIdoWh5hZcmnnDeehpxSgZb7hFsCGo7Uxs1ggAdgRxppERKSEwhkUc4AOZtbWzKoBVwKTC7SZDFwbfH0Z8IW7H7FHISIikRO2Q0/Bcw63AtOAGGCsuy8ys0eBZHefDLwCvG5mKwjsSVxZjEWPCVfNlZC2xSHaFodoWxyibXFIqbeF6Qu8iIiEojuzRUQkJAWFiIiEVGGDQt1/HFKMbXG3mS02swVm9rmZtY5EneWhqG2Rr91lZuZmFrWXRhZnW5jZ5cG/jUVm9mZ511heivE/0srMppvZvOD/yXmRqDPczGysmW052r1mFjAquJ0WmFmvYi3Y3SvcD4GT3yuBdkA14Eegc4E2twCjg6+vBCZGuu4IbovTgfjg65uP520RbFcb+AqYDSRFuu4I/l10AOYB9YLDiZGuO4LbYgxwc/B1Z2BNpOsO07b4JdALWHiU6ecBHxG4h+0U4LviLLei7lGo+49DitwW7j7d3dODg7MJ3LMSjYrzdwHwGPAUkFmexZWz4myLG4AX3H0ngLtvKecay0txtoUDdYKvEzjynq6o4O5fEfpetIuA1zxgNlDXzJoWtdyKGhSFdf/R/Ght3D0bONj9R7QpzrbI73cEvjFEoyK3hZn1BFq6+5TyLCwCivN30RHoaGYzzWy2mQ0pt+rKV3G2xSPA1WaWAkwFbiuf0iqckn6eAOHtwuNYlFn3H1Gg2O/TzK4GkoBBYa0ockJuCzOrQqAX4uvKq6AIKs7fRSyBw0+nEdjL/NrMurr7rjDXVt6Ksy2GA6+6+7Nm1o/A/Vtd3T03/OVVKKX63KyoexTq/uOQ4mwLzOws4AFgqLvvL6fayltR26I20BWYYWZrCByDnRylJ7SL+z/yvrtnuftq4GcCwRFtirMtfge8BeDus4A4Ah0GHm+K9XlSUEUNCnX/cUiR2yJ4uOWfBEIiWo9DQxHbwt3T3L2hu7dx9zYEztcMdfdSd4ZWgRXnf+Q9Ahc6YGYNCRyKWlWuVZaP4myLdcCZAGZ2IoGg2FquVVYMk4Frglc/nQKkufvGomaqkIeePHzdf1Q6xdwWTwO1gLeD5/PXufvQiBUdJsXcFseFYm6LacA5ZrYYyAH+6O7bI1d1eBRzW/w/4F9mdheBQy3XReMXSzMbT+BQY8Pg+ZiHgaoA7j6awPmZ84AVQDpwfbGWG4XbSkREylBFPfQkIiIVhIJCRERCUlCIiEhICgoREQlJQSEiIiEpKEQKMLMcM5tvZgvN7AMzq1vGy7/OzJ4Pvn7EzO4py+WLlDUFhciRMty9h7t3JXCPzh8iXZBIJCkoREKbRb5O08zsj2Y2J9iX///mG39NcNyPZvZ6cNyFwWelzDOzz8yscQTqFzlmFfLObJGKwMxiCHT78Epw+BwCfSWdTKBztclm9ktgO4F+tga4+zYzqx9cxDfAKe7uZvZ74H8I3CEsUqkoKESOVMPM5gNtgLnAp8Hx5wR/5gWHaxEIju7AJHffBuDuBzunbAFMDPb3Xw1YXS7Vi5QxHXoSOVKGu/cAWhP4gD94jsKAx4PnL3q4e3t3fyU4vrC+cP4BPO/u3YAbCXREJ1LpKChEjsLd04DbgXvMrCqBTud+a2a1AMysuZklAp8Dl5tZg+D4g4eeEoDU4OtrEamkdOhJJAR3n2dmPwJXuvvrwS6qZwV76d0LXB3sqfSvwJdmlkPg0NR1BJ6q9raZpRLo8rxtJN6DyLFS77EiIhKSDj2JiEhICgoREQlJQSEiIiEpKEREJCQFhYiIhKSgEBGRkBQUIiIS0v8HaWtp11IJM8YAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" AdaBoostClassifier \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHoBJREFUeJzt3XecFdX5x/HPA0tHQVZQaYIiNlSkKFEMKEIiCsGuURQlImisPzuaIAZjjF0D2KJiTCxRYkGDLQooIF1ApClFQaQpve0+vz9mdlmWbXd3797dw/f9eu3Le8/MnXnuXvfLmXNnzpi7IyJS0VVKdQEiIqVBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBCEt1QVUZJZW3a1q7VSXIQlI37w+1SVIglaxbZW71y9sPYVZCVjV2qQd2jPVZUgCzp7+capLkAQ9yeLFRVlPh5kiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiIShLRUFyDFU69OLUY/eTMA+6XXISMzk1Vr1wNwzKFNefjF0dz60CsA3ND7V9SuWZ17nnyzRPs8t1t7but7BpUrV+K9sV9y+6OvAXDFOZ0ZcN4pZGRmsmHTVq760wvM+WYZ7Y5szrC7LgXAzLhn+Ju8+b+pJaohNEN3LOT7mXOznw/v1Y/0Zo0Z8OZTrPxmKVWqV2Pyy28zavCjJdpPo6MP56LhQ6hWuyarF33H3y+6ni3rN1CrXl36/XsYB7Y/mgnP/5uXr/ljSd9SyijMKqg1P2+k/QWDALjryt+wYdMWHn5xNADrJjxJr1PacP/fR7H6pw2lsr96dWrx5+vPo8NFg1m1dj3PDu7Lyccdzv++mMPL703g6X9/AsAZnVpz/43n0+P3DzN74fd0uGgwGRmZ7L9vHSa/cjfvjJlORkZmqdQUgm2btzDk2O67tKU3a8z8sZMY2qMvVWvW4M7p7zLznY9YMnVWsffT+5n7eP2me5k/ZiInXHYuXW/ux9t/eIjtW7by1l0P0rDVoTRq1bKkbyeldJgZoB0ZGTz7xqdcd1G3Uttm80b1mb9kRXbv7+OJX3Fml7YArN+4JXu9WjWq4fHjzVu2ZQdX9apVcHckMds2bWbxlFnUP/jAEm1nv0MPYv6YiQDM+WAcbc4+LXv7Cz+bzI4tW0tca6qpZxaoYa98zJRXB/PAC+/lu06ndofxwE0X7Na+acs2OvW5d5e2hUt/5NBm+3PgAel89+Naep58LFXTdv7v0/+8U7ju4m5UrZLGr668P7u9fauDeHrQZTQ9IJ3L7nxGvbJcqtaozsBp7wKw+tulDD/ryl2W16pXl4M6HMu79zy2S3u12rW4aexreW7z77+9luVzFuzStmzWPI7p2ZUZb31Am3O7s0+TA0rxXZQPZRpmZrY/8AjQHtgKLAL+A/R09zPKYP+dgf/F+3s7bnsHeMDdP0n2/svS+o1beOmdz/n9haeyecu2PNf5dPLX2Yeqhflp/SauufdFXvrLADI9k/EzFnJQo/rZy4e/+jHDX/2YC359PLf/rgd9//AsAJNmfUPrc+7isOYH8Ozgvvz3sy/Zum1Hid9fKPI6zAQ45KT23DF1FJ6ZyX/vG8byr+bvsnzrho15vi4/Iy6/hfMf+yPd/3AtX771ITu2bS9x7eVNmYWZmRkwEnjB3S+I21oDPUq43TR3T+Sv4ztgIPB2SfZbETz20gdM/NcfGfHmuDyXJ9IzAxg1ZgajxswAoO9ZncjMo5f1yugvePyO3ru1f/3tcjZu3sqRLRoz9atFCb6TPU/WmFl+Eu2ZrZi7kMd+dQkADQ5pzlGnn1x6xZYTZdkzOxnY7u7DsxrcfbqZ1QW6mNm/gVbAFOBid3czWwS0c/dVZtaOqAfV2cwGAQ2BZsAqM3sf6AnUBA4GRrr7LfnUMQOoYmZd3f2DnAvMrAvwANHvZRIwwN0r7GDC2nUbef39SfTpdRIv5BFoifTMAOrvsxcr166n7l416X/eyfz2lmEAtGjagAVLfgSg+0lHs2Bp9LhZw31ZumINGRmZND0gnZbNDmDxslUlf2OScM9sr/rprF+5GjOj+52/Z8zwl5JYXWqUZZhlBVVejgWOBJYBnwEnAnl3J3ZqC3R0981m1gdoHW9nKzDXzB5396X5vPZP8U92mJlZdeB5oIu7zzOzEcAAosPiCuvhF0cz4PxTSmVbD93yW45u2QSAIU+9xfwlKwAYcH4Xuhx/BNt3ZLB23Ub63vUMACceewg3X9ad7TsyyMx0rr33xVL7dlUS0/7CnnS6OuoxT3tjNJ8/t7NXN+TbcVTfuzaVq1bhmF7deKxb7916dhWBldU3TGZ2LdDc3W/I1d4ZGOjuXePnw4DP3P0fhfTM3N3vjl/TBzjR3a+In78HDHH3cXns6yZ3P8PMPgXuBG4l6o2tBR5391/G63YBrnb3s3Jtox/QD4AqtdpWOfK80vj1SBm5fPrHqS5BEvQki6e4e7vC1ivLUzNmE/Wm8pLzUC6DnT3GHeyssXqu12wsbBtmdqaZTY9/cv8yhhCNnWWxgorP4u5PuXs7d29nablLEpFUKcsw+xioZmZXZDWYWXugUwGvWcTOADw70R26+0h3bx3/TM617H1gH+CYuOlroJmZtYif9wY+TXSfIpIaZRZmHh3Pngl0NbOFZjYbGEQ0Tpafu4FHzWwsUW+rtA0BGsf1bQEuA14zs5lAJjC8gNeKSDlSZmNmIapUc19PO7RnqsuQBGjMrOIpj2NmIiJJozATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCkJbfAjPbu6AXuvu60i9HRKR48g0zYDbggOVoy3ruQNMk1iUikpB8w8zdm5RlISIiJVGkMTMzu8DM7ogfNzaztsktS0QkMYWGmZk9AZwM9I6bNgHDk1mUiEiiChozy3KCu7cxs2kA7r7GzKomuS4RkYQU5TBzu5lVIhr0x8zSgcykViUikqCihNnfgNeB+mZ2NzAO+EtSqxIRSVChh5nuPsLMpgCnxk3nuvus5JYlIpKYooyZAVQGthMdauqqAREpd4rybeZA4F9AQ6Ax8E8zuz3ZhYmIJKIoPbOLgbbuvgnAzIYAU4A/J7MwEZFEFOWQcTG7hl4a8E1yyhERKZ6CLjR/mGiMbBMw28xGx8+7EX2jKSJSbhR0mJn1jeVsYFSO9gnJK0dEpHgKutD82bIsRESkJAr9AsDMDgaGAEcA1bPa3b1lEusSEUlIUb4AeB54jmges9OAV4GXk1iTiEjCihJmNd19NIC7L3T3O4lm0RARKTeKcp7ZVjMzYKGZ9Qe+BxoktywRkcQUJcxuAGoD1xKNndUBLk9mUSIiiSrKheYT44fr2TlBo4hIuVLQSbMjiecwy4u7n5WUikREiqGgntkTZVaFiEgJmXu+nS8pRIsqNfzB9INSXYYkoG7TAm8HK+VQ50kTprh7u8LW09xkIhIEhZmIBKHIYWZm1ZJZiIhISRRlptnjzGwmMD9+foyZPZ70ykREElCUntljwBnAagB3n4EuZxKRcqYoYVbJ3RfnastIRjEiIsVVlMuZlprZcYCbWWXgGmBecssSEUlMUXpmA4AbgabACqBD3CYiUm4U5drMH4ELyqAWEZFiK8pMs0+TxzWa7t4vKRWJiBRDUcbMPszxuDpwJrA0OeWIiBRPUQ4zX8n53MxeBD5IWkUiIsVQnMuZmgMHlnYhIiIlUZQxs7XsHDOrBKwBbktmUSIiiSowzOK5/48hmvcfINM1Z5CIlEMFHmbGwTXS3TPiHwWZiJRLRRkz+8LM2iS9EhGREijoHgBp7r4D6AhcYWYLgY1ENwN2d1fAiUi5UdCY2RdAG6BXGdUiIlJsBYWZQXQX8zKqRUSk2AoKs/pmdmN+C939oSTUIyJSLAWFWWWiO5lbGdUiIlJsBYXZcncfXGaViIiUQEGnZqhHJiIVRkFh1qXMqhARKaF8w8zd15RlISIiJaGbAItIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQSjovplSzvX8/kvWzZmf/XziZddQs0kjOr7xPBN6X82KDz4B4PgX/8aCYc+z+vNJJdpfh38+Sb22R7P6i6lM7H11dnvH/4wgrXYtAKrtW4+102byxWXXkn5Ce45//nE2LfkegGXvfsi8h4aVqIaKLK3O3hzzt8cBqJqejmdksv2ntQDUbtmSDfPmYZUrs2nRYr4eNJjMrVuLva8Gv+pGk0t6A5CxeTPz/3I/G+cvAKDlnQNJ73gC29euZfKFF++sb++9OWLIPVQ74AC2Ll/OV3fcyY7164tdQ1lTmFVgGVu28smpZ+/SVrNJIzZ/v5yW1/fLDrPSsmDo36lcowbNLjl3l/ZxvS7Jftz+mUf4YfTH2c9XT5yyS/DtyXb8vI4pF18KwIFX9CVj02a+e+mfAHT85KPsZYcNHkTDs8/ku3++XOx9bVm2nBn9r2LH+vXU+0UHWt5+G9Mu/x0AK0aNYtlrr3HYoD/s8pqml/Zm7aTJLB3xIk0u6U2TS3vz7RNDi11DWdNhZoB+/mouO9ZtoP4vf1Gq2101biI7Nm7Md3larZrs2/E4lr/3Uanud0/z8/QZVG/cuETbWDdzZnavat2s2VRr0GDn9qdNZ/u6dbu9Jv2XJ7Fi1LsArBj1Lvt2+mWJaihr6plVYJWrV6Pzh68DsGnJd3xx+XXZy+Y+MpzDb7uWlWPG5/v6FlddRuOzztitffWEycy8888J13NA91OjwNuwM/DqtW1N54/eYMuKH5l9919ZP3dhwtvdo1SuTL1fdGDNhAm7LTp8yD3UPLDpbu3f/fNlVrz7Xr6b3L9nD9aMz///gyxV69Vj2+rVAGxbvZoq++yTQOGpl9QwM7P9gUeA9sBWYBHwH6Cnu+/+V1T6+x4PHO/uP8ZtTwHz3P2BZO67rOR1mJllzcSpANQ7vk2+r18w9DkWDH2u1OppdGZ3Fr/0evbzn7/8ivfbdSVj0yYadDmJ4557nI9O6F5q+wtJpWrVaPuPF4CoZ/bDm2/vts6cgXclvN26bduwf88eTO93ZYlrLO+SFmZmZsBI4AV3vyBuaw30KOF209x9R2HrufsPZvYgcD/Qx8zaA8cBV5Vk/xXJvEeeouV1V+IZef+6SrNnVmWfOuzT+ii+uOza7LacPbQfPxpLpfvuomq9umxb81NC294TZG7dmj1mlp9Ee2a1WhxMy4G3M/P6G9nx8+6HlbltW7OGqunpbFu9mqrp6Wxfu7bob6AcSGbP7GRgu7sPz2pw9+lmVhfoYmb/BloBU4CL3d3NbBHQzt1XmVk74AF372xmg4CGQDNglZm9D/QEagIHAyPd/ZY8ahgKTDCzTkShdrW77zCzKsBfgROAasAj7v6cmTUBXgZqAZWB37n7xFL+vZSZlZ9+zuG3XkP1/ernubw0e2aNevyKHz78lMyt27LbqtXfl60rVwFQ99ijwCopyEogkZ5Ztf3248i/3MfXfxzM5iVLi/Sa1WPGsd/p3Vk64kX2O707q8eMLW6pKZHMMMsKqrwcCxwJLAM+A04ExhWyvbZAR3ffbGZ9gNbxdrYCc83scXff5VNz90wzGwB8CLzu7p/FiwYA37n7cWZWHZgYB+QlwBvu/qCZVQZq5C7CzPoB/QDqV6pSSMmpN++Rpzh+xBOlsq2O/xlB7UOak1azJt2mfsS0G//Ayk+iX2mjXqcx//Fnd1m/YY9uNLv0fHxHBhlbtjC5/02lUocU7sDfXU5anb055Nbod+4ZGUy99HIADr/nbuq0bUOVunXp8PabLHr6GX54622WjBjBEfcOYf+ePdi6YgVf3T4wlW8hYebuydmw2bVAc3e/IVd7Z2Cgu3eNnw8DPnP3fxTSM3N3vzt+TR/gRHe/In7+HjDE3fMMRDP7HPi9u0+Nn78DtAC2xKvUAfoAVYl6cy8C/3H3Lwt6jy2q1PAH0w8q+i9FUq5u071TXYIkqPOkCVPcvV1h6yXz1IzZRL2pvOQ8GzCDnT3EHTlqqp7rNbnPCdhtG2Z2pplNj39yvvnM+CeLAVe6e+v4p7m7f+ruHxAdHq8AXjaz8wt6gyJSfiQzzD4GqpnZFVkN8SB8pwJes4idAZj313QFcPeROQJqcgGrjgauMrO0uK7Dzay6mTUDlrv7k8AIosNYEakAkhZmHh2/ngl0NbOFZjYbGEQ0Tpafu4FHzWwsUW8rWYYCS4BpZjYLeIJowL8rMMPMpgGnAX9LYg0iUoqSNma2J9CYWcWjMbOKpzyMmYmIlBmFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgRz91TXUGGZ2UpgcarrSJJ9gVWpLkKKLOTP60B3r1/YSgozyZOZTXb3dqmuQ4pGn5cOM0UkEAozEQmCwkzy81SqC5CE7PGfl8bMRCQI6pmJSBAUZiISBIWZiARBYSYlYmaW6hokcSF+bgozKTYzM4+/QTKzE82stZkdmnN56qqT/OT63M43s/ZmVjnVdZVUWqoLkIorxx/EjcB5wDJgs5mNd/cnXF+Vl0s5PrergSuB37h7RmqrKjmFmSTMzPYCNrl7hpk1Bc4BugCVgVbA9Wa2wN3/m8o6JX9mdgTQF+ju7t+Z2WlADWCquy9KaXHFpDCThJhZS2Ag8ISZTY2bqxOds7jOzGYCC4EmqapRdpfz0DK2FPgIeNDMfgIOAlYC6cDTKSixxDRmJglx93nABqLDk6PcfQkwnijcarr7emAzcAho3Kw8MLNKOQ4tO5pZVi/6U2AS8LC7dwVmAofmv6XyTVcASJGYWX1gu7v/FD8fAjQH7gfWAb8HTgVeBXoDPd19borKlTyY2fXA2cA84DCgv7vPjJddDNwAXOzuc1JXZfGpZyaFMrPWwPfAu2bW38xauftAYAHRuEs9d78R+CvRH0oPBVnqmdlRZtYpftwG6OzuJwFfApuA2fGy1kRjnn0qapCBemZSBGbWEPgT0AGYDywBmgGvAP2BWcBwd5+eqhplV2ZWFXgCmOLuT5rZ/sDlQGPgYOAMd99uZmcB7wBp7r4pdRWXnHpmUih3X0YUZs8RjYcNAl4A6gJ1gH7Ao/EfkKRQ1hilu28DPgDaxItqAkcDhwMXxkF2CfBHYJ+KHmSgnpkkwMwOJuqJpQM3ufsaM2tCNHa2zN0XpLRAyTrlYi5QhWgw/z6iXliGmXUjGhebT3QmQ0eiYJudqnpLk8JMCpXrjPGDgCuARsCt7r48pcVJNjOrQXS6xRKif3BeAAYDZ7v7tHidtkBDoAHwP3f/JkXlljqFmewi9/lIZlYJwN0z43/1qwDrif6Fr0b0jVhmSoqV3cSBVhXoHv/3VuAlYJi7r0llbcmmMJNsuXpgRwA/xeNlmNlxwNtEp1xMNLMDgc3u/mPqKpac8jgxlnjg/+/AZOBRd1+dkuLKgMJMdmNm1wF9iAaN7wY+Bn4DLHL30SksTYogPkk208wqx2NljYjO/3sXuDfUa2Z1OZPswsy6A6cAbYFfE53pXwl4K2t8LK8egJS9QoYEjgIqmdksd//ezM4GqoT8uenUjD1czsuNzOxIorGWfd09093fJbpRxrlALzOrAztnXZDUyT0kYGYN488sMx4SeB+oFffMKrn7D+6+NLVVJ5fCbA+X4w/icmAAMBpYYWa3mFmau48iGnPpnLoqJbccn9t1RAP8/zOz38ZjZMcSnc3/ebzuHvEFjQ4zBTM7AegFnOPu2+LeWlfgBjN72N3fNLMP3X1jaiuVnDQksCv1zPZw8b/k/Ymm7GkYN78P/Bc4gugCcoiu5ZMU0pBAwRRme7D4jPANwENE11eeZWaN3X0L0cmXL8c/e9QfRXmlIYGC6dSMPZSZ1SQKsQZEU/YcDVxENBPGG/E8ZVLOxEMCt7FzSKAn0ZDAEqJ5yXaYWa09cUhAPbM9VHxh8WDgG+BZYAbRQHJr4IwQbnARGg0JFEw9sz1MPAlfA3d/KH6+H9E02LWBq4GjgCXu/kPqqpTc4iGBz4EWwP8B04BX4/n7qwOdgBl78uemnlngsk6kzOEbohuOXAXg7iuIxl6OJzpM+WJP/oMoj+IhgbOAEUQzXgwlmrP/HDNr6u5b3H30nv65KcwCFn8tnxk/7mBmB8XnHp1OFGhXx6vWBF4H7klRqVIADQkUjQ4zAxVfKH6lu18Xf/t1M9Fc/S8Dw4n+ZX+e6F/6E4Bu8c1KpJzQkEBiFGYBMrN2RDOMng98C9QCLgZ+AfwWWEw0pXJVYH9gQ+iXulQEWReI53h+AtE/Pve5+9C47XSim8iMdff+qam0fNJhZmDM7AzgSWAHMAzYBrRy9wx3H0f0x9EMuAmo4+5zFGSppyGBktPlTAGJ78TzCNDb3cfHbbOAA83sUXe/zt3HmFkV4Ayiw05JsawhAWCXIQEzyxoSOBN43sxOZOeQwPcpK7ic0mFmQMzsRiDD3R81s6rxSZWVieaCv55ossVb4nVruPvmVNYrGhIoTTrMDECOa/aaA/Xjx9vjQ5cMYA4wFmhrZvfFy7eUcZmSi4YESpcOMwOQ47rJkcAdZtbW3aeYWaV4UDnDzA4gulXch7leIymgIYHSp8PMgJhZLaLxlprAK+4+JW6/ELgWOF/XXJYPGhIofTrMDEh8cfHTxDNhmNkDZvYnohu99lOQpZ6GBJJHPbMAWXS7sbbAqcByovsj6oTYcsTMTgHuILr36JT4sjOLhwRuAZYBH+qE2KJTmImkgIYESp/CTCRF4lvA9QW6AJOIDifPAc5195mprK0iUpiJpJCGBEqPwkxEgqBvM0UkCAozEQmCwkxEgqAwE5EgKMxEJAgKM0kqM8sws+lmNsvMXotvzlHcbXU2s3fixz3N7LYC1q2bddOWBPcxyMxuKmp7rnWeN7NzEthXs/jicikFCjNJts3u3trdWxFNcbPLVM8WSfj/Q3d/y93vK2CVukDCYSYVl8JMytJYoEXcI5ljZkOBqUATM+tmZuPNbGrcg6sNYGa/NrOvzWwc0e3WiNv7mNkT8eP9zGykmc2If04A7gMOjnuFf43Xu9nMJpnZl2Z2d45tDTSzuWb2IdGsFQUysyvi7cwws9dz9TZPNbOxZjYvnq8MM6tsZn/Nse8rS/qLlN0pzKRMmFkacBqQdZnOocAIdz8W2AjcCZzq7m2AycCNFt3c9mmgB3AS0UyreXkM+NTdjyGatXU2cBuwMO4V3mzRTXQPAY4jukVbWzP7pZm1BS4AjiUKy/ZFeDtvuHv7eH9ziC5JytKM6Ia8pwPD4/fQF/jZ3dvH27/CzJoXYT+SAE3OKMlWw8ymx4/HEt33sSGw2N0nxO0dgCOAz+IZcqoC44HDgG/dfT6Amf0D6JfHPk4BLgGIp9H52cz2ybVOt/hnWvy8NlG47QWMjO9NiZm9VYT31CqeWqluvJ3ROZa9Gt+YZL6ZfRO/h27A0TnG0+rE+9ZlS6VIYSbJttndW+dsiANrY84m4AN3vzDXeq2B0rrezoA/u/uTufZxfTH28TzQy91nmFkfoHOOZbm35fG+r3H3nKGHmTVLcL9SAB1mSnkwATjRzFoAmFlNM2sJfA00N7OD4/UuzOf1HwED4tdWNrO9gfVEva4so4HLc4zFNTKzBsAY4Ewzq2FmexEd0hZmL2B5PKX1RbmWnRtPV34w0Y2W58b7HhCvj5m1jKcAklKknpmknLuvjHs4/zKzanHzne4+z8z6AaPMbBUwDmiVxyauA54ys75ABjDA3ceb2WfxqQ/vxeNmhwPj457hBuBid59qZq8A04nuhDS2CCXfBUyM15/JrqE5F/gU2A/o7+5bzOwZorG0qfFMsyuBXkX77UhRadYMEQmCDjNFJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSD8P2kxmWmk79TrAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.545 \n",
"Precision=0.698\n",
"F1=0.612\n",
"Average precision-recall score: 0.674\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8FdX5x/HPkxAIIexhTYCwI7sQENACFlnrilrFWqsVcClqtfanVuq+tGqtSy0WFfcVWxFUXEBZZFMiqAiyb2GRHQJhScjz++NeQoB4CUlubhK+79frvrgzc2bmmbnhPvecmTnH3B0REZGfExXpAEREpGRTohARkZCUKEREJCQlChERCUmJQkREQlKiEBGRkJQopFQxsx/MrPdxyjQ0s91mFl1MYYWVmV1pZl/mmnYzaxbJmOTkokQhRcLMVpnZ3uAX9E9m9qKZxRf1fty9jbtPOU6ZNe4e7+4Hi3r/wS/pPcHjXGdmj5e0hGRm/c1smpmlm9lmM5tqZudGOi4pvZQopCid4+7xQCegCzDy6AIWUNr/7joEj7MXcAnw+wjHk8PMLgLGAq8ASUAd4C7gnAJsqyx8VlIE9EcgRc7d1wETgbYAZjbFzB40sxlABtDEzKqa2QtmtiH4y/yB3L/MzWyYmS0K/ipeaGadgvNXmdlZwfddzWyume0K1mIeD85PDv7yLxecrm9m481sm5ktM7NhufZzj5m9Y2avBPf1g5ml5PM4lwEzgI65tlfQ47rdzJbnmn/BiZ53MzPgceB+d3/e3Xe6e7a7T3X3YbmO97Vc6xx9ro7+rP5iZnOP2s/NZjY++L6CmT1mZmuCn8GzZlbxRGOXkk2JQoqcmTUABgHzcs3+LTAcqAysBl4GsoBmwKlAP2BocP2LgXuAK4AqwLnA1jx29STwpLtXAZoC7/xMSG8CaUB94CLgITPrk2v5ucBbQDVgPPCvfB5nK+AXwLJcswt6XMuD26oK3Au8Zmb18hNHLi2BBsC7J7je0XJ/Vk8DLc2sea7llwFvBN//HWhBIFk2AxIJ1GCkLHF3vfQq9AtYBewGdhBIBP8GKgaXTQHuy1W2DrD/0PLgvCHAF8H3nwA3hdjPWcH30wh8qSYcVSYZcKAcgS/Og0DlXMsfBl4Kvr8HmJRrWWtgb4jjdGAXsCf4/k2gQmGPK4/9zAfOC76/EvjyqBia5bHO6cFlsSG2ew/wWl7nKq/PKjjvNeCu4PvmQDoQB1jwPDTNVbY7sDLSf496Fe1LNQopSue7ezV3b+Tu17v73lzL1uZ63wiIATaY2Q4z2wH8B6gdXN6AwC/s47mawK/ZH83sazM7O48y9YFt7p6ea95qAr98D9mY630GEHuoKeZndALiCVyfOA2oVNjjMrMrzGx+rvXaAgkhYsjLodrJidZEjrb2qOk3CCQ8CNQmxrl7BlCLQMJIzRX3x8H5UoYoUUhxyd1N8VoCv7wTgomlmrtXcfc2uZY3Pe4G3Ze6+xACX8R/B941s0pHFVsP1DCzyrnmNQTWFfRAgvt2d38HmMXhppYCHZeZNQKeA0YANd29GrCAwC/2E7E4uI8LQ5TZQ+DL/ZC6eZQ5ukvpT4EEM+tIIGEcanbaAuwF2uQ63qoeuNAvZYgShRQ7d99A4MvnH2ZWxcyizKypmfUKFnkeuNXMOgfvvGkW/DI9gpldbma13D2bQJMXBJqZcu9rLTATeNjMYs2sPYGayOtFdDh/A4abWd1CHFclAl/Om4PHdRXBGwFOhLs7cAvwVzO7KlcMZ5jZ6GCx+UBPCzxrUhW4Ix/bzSJw3eNRoAbwWXB+NoEE908zqx2MPdHM+p9o7FKyKVFIpFwBlAcWAtsJfBHVA3D3scCDBH65pgPjCHxBHW0A8IOZ7SZwYftSd9+XR7khBNri1wPvAXe7+2dFcRDu/j0wFfhzQY/L3RcC/yBQO/kJaEfgbqqCxPMuh2/ZXR/c3gPA+8HlnwFvA98BqcAH+dz0G8BZwNhg4jjkNgIX82eb2S5gEoGL6lKGWOBHiIiISN5UoxARkZCUKEREJCQlChERCUmJQkREQgr1UFGJlJCQ4MnJyZEOQ0SkVElNTd3i7gV6GLLUJYrk5GTmzp17/IIiIpLDzFYXdF01PYmISEhKFCIiEpIShYiIhFTqrlGISMmRmZlJWloa+/bl1XOKREJsbCxJSUnExMQU2TaVKESkwNLS0qhcuTLJyckEBtiTSHJ3tm7dSlpaGo0bNy6y7arpSUQKbN++fdSsWVNJooQwM2rWrFnkNbywJQozG2Nmm8xswc8sNzN7KjiG8XeHxg4WkdJFSaJkCcfnEc4axUsEuoH+OQMJDKvYnMD4vKPys9Fsz2Zv5t5jXtmeXeiARUTkWGFLFO4+DdgWosh5wCvBkcJmA9XyM5j8vA3ziHso7phXl+e6FFXoIiKFkpqaSrt27WjWrBk33ngjPzecw5QpU+jYsSNt2rShV6/A+FaLFy+mY8eOOa8qVarwxBNPHLHeY489hpmxZcuWsB8LRPZidiJHjs2bFpy34eiCZjacQK2DaknVuL3P7Ucsn7NuDu/9+B6b9myidqXaR68uIie5gwcPEh0dXWz7u+666xg9ejTdunVj0KBBfPzxxwwcOPCIMjt27OD666/n448/pmHDhmzatAmAli1bMn/+/Jy4ExMTueCCC3LWW7t2LZ999hkNGzYstuOJ5MXsvBrS8ky77j7a3VPcPaVpnabcdsZtR7xuOu0mAFLXp4YzXhEpgc4//3w6d+5MmzZtGD16dM78+Ph47rrrLk477TRmzZpFamoqvXr1onPnzvTv358NGwK/SZ977jm6dOlChw4duPDCC8nIyChUPBs2bGDXrl10794dM+OKK65g3Lhxx5R74403GDx4cM4Xfu3ax/7InTx5Mk2bNqVRo8MjAd9888088sgjxXptKJI1ijSgQa7pJAJDN56wU+udCsDc9XMZ2HzgcUqLSDj88eM/Mn/j/CLdZse6HXliwBMhy4wZM4YaNWqwd+9eunTpwoUXXkjNmjXZs2cPbdu25b777iMzM5NevXrx/vvvU6tWLd5++23uvPNOxowZw+DBgxk2bBgAI0eO5IUXXuCGG244Yh9ffPEFN9988zH7jouLY+bMmUfMW7duHUlJSTnTSUlJrFu37ph1lyxZQmZmJr179yY9PZ2bbrqJK6644ogyb731FkOGDMmZHj9+PImJiXTo0CHkOSlqkUwU44ERZvYWcBqwMzg4/QmrUqEKLWu2ZO4GdRYocrJ56qmneO+994BAs8zSpUupWbMm0dHRXHjhhUCg3X/BggX07dsXCDTp1KsXuCS6YMECRo4cyY4dO9i9ezf9+/c/Zh9nnnlmTnPQ8eR1PSKvX/9ZWVmkpqYyefJk9u7dS/fu3enWrRstWrQA4MCBA4wfP56HH34YgIyMDB588EE+/fTTfMVRlMKWKMzsTaA3kGBmacDdQAyAuz8LfAQMIjAwewZwVWH2l1I/hSmrphRmEyJSCMf75R8OU6ZMYdKkScyaNYu4uDh69+6d8wxBbGxsznUJd6dNmzbMmjXrmG1ceeWVjBs3jg4dOvDSSy8xZcqUY8qcSI0iKSmJtLS0nOm0tDTq169/zLpJSUkkJCRQqVIlKlWqRM+ePfn2229zEsXEiRPp1KkTderUAWD58uWsXLkypzaRlpZGp06d+Oqrr6hbt25+TleBhS1RuPuQ4yx34A9Ftb/O9Trz+vevs3H3RurGh/ekiUjJsHPnTqpXr05cXBw//vgjs2fPzrNcy5Yt2bx5M7NmzaJ79+5kZmayZMkS2rRpQ3p6OvXq1SMzM5PXX3+dxMTEY9Y/kRpFvXr1qFy5MrNnz+a0007jlVdeOaYpC+C8885jxIgRZGVlceDAAebMmXNEMnrzzTePaHZq165dzgVvODzkQkJCQr7iKowy82R2Sv0UQBe0RU4mAwYMICsri/bt2/PXv/6Vbt265VmufPnyvPvuu9x222106NCBjh075tQE7r//fk477TT69u1Lq1atiiSuUaNGMXToUJo1a0bTpk1z7nh69tlnefbZZwE45ZRTGDBgAO3bt6dr164MHTqUtm3bAoFmps8++4zBgwcXSTyFZT93f29JlZKS4nkNXLT7wG6qPFyFu3vdzd29745AZCInn0WLFnHKKadEOgw5Sl6fi5mluntKQbZXZmoU8eXjaZXQitQNqlGIiBSlMpMoIND8NHe97nwSESlKZSpRdK7XmQ27N7A+vUCPY4hIAZS25uuyLhyfR5lKFLqgLVK8YmNj2bp1q5JFCXFoPIrY2Ngi3W6ZGrioY92ORFkUc9fP5ZyW50Q6HJEy79AzA5s3b450KBJ0aIS7olSmEkWl8pU4JeEUUjekku3ZrNy+kqY1mkY6LJEyKyYmpkhHUpOSqUw1PcHhC9oXvH0BzZ5upusVIiKFVCYTxU97fmL84vEApO1KO84aIiISSplLFJ3rdT5iektG3gN76OKbiEj+lLlEkVI/hWGdhvG/X/8PODZRuDv3TLmHan+vxl8m/4Xte7dHIkwRkVKjzCWKmOgYRp8zmjMbnwkcmSjcnTs/v5N7p95LcrVk/vbl32j8ZGPun3o/6fvTIxWyiEiJVuYSxSFVK1Ql2qKPSBQvzHuBh798mGs6X8O8a+bx7bXf0ju5N3dNuYvGTzbmgrcvoN4/6rFpz6YQWxYRObmU2URhZiTEJeQkiu9++o4bJt5A3yZ9eWbQM0RZFO3qtGPcpeP4auhXdK7fmXE/jmPj7o38tPunCEcvIlJylNlEAeQkit0HdvPrsb+memx1Xhv8GtFRRw6y3iWxC59c/glPD3w6QpGKiJRcZeqBu6MlxCWwOWMz1314HUu3LWXyFZOpXenYAcwPqRdfrxijExEpHcp8ovjvov/y5Zovuf/M++md3DvSIYmIlDpluunpUBNTz0Y9ueOMO45b3gk8W9FjTA/dBSUiElSmE0VCxcBYsk8NeOqY6xJ5iS0X6HFx94HdjE4dXaB9pu9PJyMzo0DrioiURGU6UTzU5yFSh6fSoW6HfJXv17QfU343hd7JvfnHrH+wP2t/vveVlZ3Fk7OfpP7j9bn8f5cXNGQRkRKnzIyZXZQmr5jMWa+exS3dbqF5zeZs2rOJTXs2sTljM5v2bKJ7Unce6vNQTvmv133NtR9eyzcbviEhLoGd+3ay7MZlTFs9jUvaXEJMdExY4xUROZ7CjJldpi9mF9QvG/+SbkndeHz24znzqsdWp3al2mzJ2MKqHat4qM9D7M/az1+/+CuPzXyMepXr8c5F75BYJZHTx5xOi6dbsP/gfmpWrMnA5gMjeDQiIoWjRJEHM2PibyayascqaleqTUJcAuWjywPwu3G/Y9rqaSzdupSLxl7Edz99x/BOw3m036NUqVCFbM+mbe227M/az9JtS8nMzozw0YiIFI4Sxc+oFluNjnU75rls055NpDyXQkxUDBOGTODsFmfnLIuyKL6/7nu+2fANnUcf2ZPt9r3bqRhTMeeieUFkezY79u1ga8ZW6sTXoUqFKgXelohIfihRFEBGZgZdE7sy9uKxNKzaMM8ytSvVJtqieXzW4/Rs1JNRX4/iwekP0rh6Yz69/FPqVT7y4T535/OVn7Ns2zK27t3K1oytgX9zv8/YyvZ928n2bADa1GrDvGvm6RqIiISVLmafoE+Xf8rMtTO544w7qFCuQsiyb37/Jr/532+oUK4C+7L2MaDZAKavng4EbsX9athXNK7WmM9WfMadn9/J3PWHjysuJo6aFWtSM67mkf8G3+/Yt4N7p94LwOuDX+eydpeF76BFpNTTxexi1K9pP/o17ZevskPaDSEzO5PRqaO5q9dd9Gvaj9lps+n+Qnf2ZO7h7QVv88nyT5i6eiqNqjZizLlj6Ne0HzXjah63ecrdWbtzLWPmj+H7n76HdkVxdCIix1KNIgKmr55Oz5d6AlCnUh1G9hzJsE7DjltDyUv5+8tza49bubz95Tzz1TNsytjEWxe+la8HDEXk5KEaRSnTtEZTWtRswcWtL+b2M24nvnx8obb37NxnefjLh4myKLI9m4/af8Q5Lc8pomhF5GRXpp/MLqnqV67P4hGLeeCXDxQ6SdSrXI/48vE83Odh0m5Oo37l+oyaO6qIIhURUY2i1FsyYgnRUdGUiwp8lENPHcr90+5n+bbl/LjlRz5Y8gF3976buvF1IxypiJRWYa1RmNkAM1tsZsvM7PY8ljc0sy/MbJ6ZfWdmg8IZT1lUoVyFnCQBMKzzsMDofaPacfabZ/Ns6rN8vvLzCEYoIqVd2BKFmUUDzwADgdbAEDNrfVSxkcA77n4qcCnw73DFc7JIqpLEDV1voFtSN/7W52/HLHd3pq2exk0Tb2LZtmURiFBESptwNj11BZa5+woAM3sLOA9YmKuMA4ceLa4KrA9jPCeNfw74JwBLti7h9sm3k+3Z7Nq/i9e+e41/f/1vftj8AwDPffMcG2/dqKe7RSSkcDY9JQJrc02nBefldg9wuZmlAR8BN+S1ITMbbmZzzWzu5s2bwxFrmVQ3vi7VYqvxl8l/IfHxRP7w0R+ILRfLs796FoC9WXuZsmpKZIMUkRIvnInC8ph39EMbQ4CX3D0JGAS8ambHxOTuo909xd1TatWqFYZQy6YqFarwxuA32Je1jwtPuZCvhn7F3OFzuSblGsZfOh6AH7f8CASapOakzWHj7o0ht5mRmcGctDm4O9mezbTV07hmwjUkP5HM5BWTw35MIlL8wtn0lAY0yDWdxLFNS1cDAwDcfZaZxQIJwKYwxnVSGdh8IJv+fOzpbFA18NHcNuk21qev5+NlH7N462Ku6ngVY84bQ1Z2FhOXTmT0N6NpVLURF7e+mFe+fYWxC8eSfiCdPo37sGjLItanH/5IR34xkplrZ+I4N552IzFRMVQqX6nYjlVEwiNsT2abWTlgCdAHWAd8DVzm7j/kKjMReNvdXzKzU4DJQKKHCKosPJldEmRlZ9Ht+W6kbkgFoHtSd37c8iMd6nagR1IPXpz/Iht2bzhinfjy8Vzc+mLiYuJ4/pvnGdBsAJe2vZSzW5zNyM9HMnbh2CMSx6Dmg/jwsg+L9bhEJG+FeTI7rF14BG93fQKIBsa4+4Nmdh8w193HB++Ceg6IJ9As9X/u/mmobSpRFJ3dB3Yz6utR9G/Wn/Z12tPqX61YvHUxURbFoOaDGHrqUDIyM3jrh7e4pM0lnN/qfOJi4oBAd+dRR7USujvjfhzHA9Mf4JsN31A+ujxTr5xK61qt+WHTD3RJ7MKeA3v4eNnHtExoSaOqjZixdgaNqjaida3W6nZEJIxKbKIIByWK8Hn121dZu2stv+vwOxKrHH3fwYlZtHkRv3rjV6xLX4dh7D+4n2Y1mrF6x+qcwZzKRZUjKzsrZ517e99L29ptGXzK4ELtW0SOpUQhJdLWjK3cMfkO4mLiSKqSxP8W/Y8eDXowc+1M1qWvY0jbIQxoNoBHZjzCxGUTc9br26QvL5//8jFjdohIwSlRSKmWvj+dD5d+yNqda5mZNpMJiyfwp+5/4u99/x7p0ETKDPUeK6Va5QqVubTtpTnTNf5egxU7VjBm3hiWbF3CA7984IhuSiAwrOzEZRP5YMkHVK1QlX//6t+Y5XVHtogUlhKFlDhnNTmLsQvH8u7CdwG4rN1ltKvdjiVblzBhyQQmLJnAjDUzOOgHqVKhCrv276Jj3Y5ck3JNhCMXKZvU9CQlTrZnM3HpROZtnMdfv/grfRr3YfXO1Tl9U7Wv055zWpzDOS3OIaV+Ch3/05Eoi+Li1hczd/1cHu//OE2qN4nwUYiULGp6kjIlyqL4VYtfERMdA8DklZMZ2GwgN3e7mbNbnE3Dqg2PKF+7Um0+X/k53/30HQDr09cz6+pZut1WpIioRiEl1sHsg8xZN4f2ddqHHOBp7vq5LNq8iH5N+3HrZ7fy2nevcW7Lczmr8VnccFqe3YeJnHR015NI0JaMLZz/1vnMWDsDAL878Pft7uzav4uqsVUjGZ5IxKjpSSQoIS6B6VdNZ8RHI/j33H/T44Ue1KpUi+mrp7N93/accm8MfoMh7YZEMFKR0kOJQsocM+MXjX7BR8s+omJMRZZvW06Lmi2Ys25OTpnL/ncZ2Z5NxZiKzFgzg871O7Ng0wIWbl5Iz0Y9iS8fz2/b/5aKMRUjeCQiJYOanuSkku3ZDB0/lBfnv5iv8lOvnErPRj2PmLdr/y7mb5xPl/pdlEik1NA1CpETsDdzL+vS17EhfQOOs3DzQurG16VDnQ6kbkile1J3/vDRH3h/8fsAzLtmHun705m0YhKTVk5i5tqZALSp1YZTap3C7affTuf6nSN5SCLHpUQhUsTcnbaj2rJw8+GRe6MsipT6KfRI6sETc544Zp2rOl5FnUp1+HDph3y/6XtqxdWiXuV6zPj9jJB3bYkUByUKkTDYl7WPIf8dQr34evRt0pfeyb2pXrE6AN/99B0Vy1Xk1e9e5f5p9+esUy6qHHXj65K2Ky1nXsVyFYmOiube3vdyS/dbiv04RECJQiTiVu1YxbJty+iW1C2n9uDufLnmS97+4W2e+foZEuIS2JKxhV80/AXntzqfuevn8uHSD9m1fxdXn3o1Q9oOIduz6du0b4SPRsoiJQqREm7g6wOZtnoaGZkZOfPqxdc7ZhRBgMUjFtOiZoviDE9OAnqOQqSEm/ibwHgbmQczibIoNu3ZRN34upgZq3asYveB3Tw5+0men/c8ezP3RjhakSMpUYgUo0P9V+UelCm5WjIQGGP8+XnP0/+1/vRp0oduid3oktiFL9d8yYQlE7ig1QUMaTuEOvF1IhG6nMTU9CRSQizavIjz3joPM2PJ1iU/W27sxWNZt2sdfZv2pXWt1sUYoZRmukYhUsZ8tPQjJq2YRI8GPTij4Rks27aMi8dezMbdG3PKXH3q1Tx/7vMRjFJKEyUKkZOAu7N462IOHDxAh2c7APD64Ne5rN1lEY5MSoPCJIqoog5GRMLDzGiV0Ir2ddrzzKBnAFi+bXmEo5KTgWoUIqXQweyDlLs/cC/KkhFLqF6xOl+u+ZK9mXvpmtiVJtWbaAxxOYJujxU5yURZFMnVklm1YxUt/nXsMxePnPUIfz79zxGITMoi1ShESqk9B/bwy1d+SfXY6vRO7k2tuFpkezbDPxgOwPfXfU/b2m0jHKWUFLqYLSI5er7Yk+lrpgOw7IZlNK3RNMIRSUmgi9kikmPaVdMY3ilQq/h42ccRjkbKAiUKkTJoRNcRgX8njmDNzjURjkZKOyUKkTKoTe02nNXkLAC2791+nNIioSlRiJRBURbF9SnXA9DxPx3p/VLvI8bIONqeA3sobdcrpfjo9liRMiqlfgrVYquxY98Opq6eSoN/NuCCVhcwYckEykWVI6V+CuWjy/PT7p/4YfMPAFQuX5mY6BiSqyUz4/cziC0XG+GjkJIg3zUKM0s0sx5m1vPQK5yBiUjhNKjagO23bWfDnzbQo0EPKkRXYObamWRlZ9G+TntiomI4cPAAjao1ylkn/UA6AN9s+EZNVpIjXzUKM/s7cAmwEDgYnO3AtOOsNwB4EogGnnf3v+VR5tfAPcHtfevu6rhGpAjVja/LjN/PCFnmULOTmfGfuf/h2g+vpf7j9QH4yxl/4fYzbqdyhcphj1VKpvw2PZ0PtHT3/fndsJlFA88AfYE04GszG+/uC3OVaQ7cAZzu7tvNrHb+QxeRopK7u48zGp5BhegK7D8Y+O/+0JcP8cnyT3junOeoUqEKB/2gRuA7yeQ3UawAYoB8JwqgK7DM3VcAmNlbwHkEaiWHDAOecfftAO6+6QS2LyJh0KZ2G/aN3AfAgk0LaDeqHakbUuk0uhMA0RZN+h3pVIypGMkwpRjl9xpFBjDfzP5jZk8deh1nnURgba7ptOC83FoALcxshpnNDjZViUgJ0bZ2W9LvSOfrYV/z31//l1MSTuGgH2TSikmRDk2KUX5rFOODrxORV9eVR99/Vw5oDvQGkoDpZtbW3XccsSGz4cBwgIYNG55gGCJSGPHl40mpn0JK/RS2793O0AlDueTdS8i4MyPSoUkxyVeNwt1fBt4EUoOvN4LzQkkDGuSaTgLW51HmfXfPdPeVwGICiePo/Y929xR3T6lVq1Z+QhaRMLiiwxWcmXwme7P28uTsJ1mwaQH7svZFOiwJs3wlCjPrDSwlcHH638CSfNwe+zXQ3Mwam1l54FKOrZWMA84M7iOBQFPUinxHLyLFKiY6htHnjCYmKoY/fvJH2o1qxz9n/TPSYUmY5fcaxT+Afu7ey917Av2BkH8d7p4FjAA+ARYB77j7D2Z2n5mdGyz2CbDVzBYCXwB/dvetBTkQESkezWo0Y8KQCdza/VaiLZqd+3dGOiQJs3x1M25m37l7++PNKw7qZlyk5LB7A5ciZ/5+Jt2SumlUvRKsOLoZn2tmL5hZ7+DrOQLXKkTkJFalQhUAeozpwdz1+gFXVuU3UVwH/ADcCNxE4FmIa8MVlIiUDutuWcewTsMA6Pp8Vwa+PhC713h5/vHudZHSRCPciUihbN+7nUZPNMrpJ+qQbkndeO2C12haoynuntMslb4/ncVbF9OudjsqlKsQiZBPSmEbCtXM3nH3X5vZ9xz7DAS6RiEih+zP2k+FchV4af5LXPX+VTnzY6JiyMzOBKBNrTY5PdU2qd6E1OGpVIutFpF4TzbhTBT13H2DmTXKa7m7ry7ITgtDiUKk5Fu3ax1TV09lzc41TFoxickrJ2MYA5oNoHO9zjww/YGcshe1voj+TfvTulZrejToEcGoy7awJYpcO6gE7HX3bDNrAbQCJrp7ZkF2WhhKFCKlX+bBTPq80ofpa6bnzGteozlfDfuKiuUqqkkqDIrjrqdpQKyZJQKTgauAlwqyQxGRmOgYpl01jQ1/2sD7l77P6Q1OZ+m2pVT/e3ViH4zlwyUfRjpEySW/icLcPQMYDDzt7hcArcMXloicDOrG1+XclufyeP/HOb/V+bRKaAVwxLCt+7P2a5jWCMtv09M84HoCT2NfHXzC+nt3bxfuAI+mpieRsmtD+oacAZMSKyeyJ3MPO/YF+ghdMmIJzWse0xWc5FNxND3Qi3mhAAARL0lEQVT9kcAAQ+8Fk0QTAl1uiIgUmRoVa+QMitSsRjMua3t4wMsW/2pBxQcr8uiMR8n27EiFeFLScxQiUqLtPrCbaz64hje+fyNn3pyhc+ia2DWCUZU+YatRmNkTwX8nmNn4o18F2aGIyImILx/P64NfJ/uubEb9ahQApz1/GlX/VpWHpj9EVnZWhCMs+473HEVnd081s155LXf3qWGL7GeoRiFy8tq8ZzPtRrXjpz0/5cy7suOVvHjeixGMqnQo1ucogtPRQIXgnVDFSolCRADmb5zPqf85FYB68fXYkrGFepXrsWbnGi5ufTHx5eNZuHkhI3uO5OwWZ0c42sgrjovZk4G4XNMVAQ2aKyIR07FuR65PuR6A9APpZGZnsmbnGgDGLhzLB0s+YM66OYxdOFa31xZSfmsU89294/HmFQfVKETk57g7m/ZswsyoFVeLqPsO/xb+8Q8/0jKhZQSji6ziqFHsMbNOuXbYGdhbkB2KiISLmVEnvg61K9XGzHj34ndzlrUb1Y6Rn49k1Y5VkQuwlMpvjaIL8BawPjirHnCJuxf74EWqUYjIiXB33lrwFi99+xKfLv8UgPZ12lM+ujwHDh5gffp63rnoHaIsio27N9IlsQtNqjeJcNRFL+wXs4M7iQFaAgb8GIkOAUGJQkQK7o5Jd/C3GX8DoEJ0BTKzM495eO/8Vufz3iXvRSK8sCqOu57igFuARu4+zMyaAy3d/YOC7LQwlChEpDCyPRsjMIhSZnYmL89/mYoxFakbX5cbJ97Ioi2LGNR8EC+e9yI1K9Zk6balxMXE0bBqwwhHXjjFkSjeJjBG9hXu3tbMKgKzdDFbRMqSp+c8zY0f35gzHVsuln1Z+2hQpQEvnPsC69LX0aZWGzrV60R0VHQEIz1xxZEo5rp7ipnNc/dTg/O+dfcOBdlpYShRiEg47di3g4GvD6RiuYqcWvdU5m2cxxerjuzarlxUOSb+ZiLZnk2X+l2oFlstZ6jXkqowiaJcPssdCNYiPLjDpsD+guxQRKQkqxZbjVlXz8qZXr5tOR8u/ZC4mDjSdqVx79R7ycrOou+rfXPKxJaLpX7l+tSvXJ9mNZrx1ICnqFyhciTCD4v81ij6AiMJjEHxKXA6cKW7TwlrdHlQjUJEIulg9kGe++Y5KsVUYm/WXvYc2MP69PWs372eRZsXMW/jPCYMmVDingYPa9OTBepTSUAG0I3AXU+z3X1LQXZYWEoUIlJSfb7yc/q80geAz377GWc1OSvCER0W1gfuPJBJxrn7Vnf/0N0/iFSSEBEpyU5vcDr39LqHaIum76t9afF0C26fdDuPz3qcPQf2RDq8Astv09MzwEvu/nX4QwpNNQoRKekmr5jMWa8eW5vo26Qv7/76XapUqFLsMRXHXU8LCTxstwrYQ6D5yd29fUF2WhhKFCJSGqTvT2fVjlVkZWfRaXSnI5ZVi63Go30f5RcNf1Fs/U8VR6JolNd8d19dkJ0WhhKFiJRG2/du58r3r2T84sNjvg1pO4Q3LnwjxFpFJ2y3x5pZLHAt0Az4HnjB3TWclIjICapesTrvX/o+2/ZuY+76uVz7wbWs2bmGl+e/zK79uxjeeTgVylWIdJh5Ot5zFC8DmcB0YCCB22NvCndQIiJlVY2KNejXtB8142oyY+0MZqydAUDrWq3p06RPhKPL2/ESRWt3bwdgZi8AX4U/JBGRsu/NC99k5faVbMnYwmX/u4y/fP4XxsSPoXWt1iXuKe/jJYqcHmLdPaukBS8iUlo1q9GMZjWasWL7CgC+WvcVbUe1BaBOpTrMHjqb5GrJEYzwsOM9R9HBzHYFX+lA+0PvzWzX8TZuZgPMbLGZLTOz20OUu8jM3MwKdKFFRKS0alK9Cdtv284/+v2D9nUCN5L+tOcnHpr+UIQjOyxkonD3aHevEnxVdvdyud6HvBHYzKKBZzh8bWOImbXOo1xl4EZgTsEPQ0Sk9KoWW41but/Ct9d+y67bA7/BDxw8EOGoDsvvUKgF0RVY5u4r3P0AgRHyzsuj3P3AI8C+MMYiIlIqVK5QmcTKiSzYtID3Fr3H0q1LIx1SWBNFIrA213RacF4OMzsVaHC8AZDMbLiZzTWzuZs3by76SEVESpCY6BhSN6Qy+J3BtPhXC1LXF/uo00cIZ6LI68p3ztN9ZhYF/BP40/E25O6j3T3F3VNq1apVhCGKiJQ8r13wGq8Pfp0+jQO3y6Y8l8L69PUs3rKY3Qd2F3s84UwUaUCDXNNJwPpc05WBtsAUM1tFoGfa8bqgLSInu9Mbns5l7S7jg8s+oHmN5gAkPp5Iq2daMXzC8GKPJ5yJ4muguZk1NrPywKVAzrPr7r7T3RPcPdndk4HZwLnurv45REQIDIg08+qZXNv5Wv7U/U80rNqQr9Z9xZ8//TOrdxRfD0phSxTBrj5GAJ8Ai4B33P0HM7vPzM4N135FRMqShLgERp09isf6PUanep1Yvn05j816jOQnk5m3YR4Hsw9yMPtgWGPIV6eAJYk6BRSRk9XB7IPsy9rHVe9fxdiFYwGoEF2B1rVa880134RctzjGzBYRkQiLjoqmUvlKvHDuC2zbu41K5SuxcvtK5m2cxy2f3MLj/R8Py36VKERESpnKFSoz6YpJAExdNZXeL/fm85Wfh21/4byYLSIiYdYruRe/av4rykWF73e/EoWISCnnOKkbUvnjx39k9Y7VFPW1ZyUKEZFSbmCzgQA8OedJkp9M5oFpDxRpslCiEBEp5UZ0HcGSEUsY0WUEAHdNuYs564qun1UlChGRMqB5zeY8Pehp7u51NwDdX+jOzn07i2TbShQiImXI/53+f1SLrQYExrUoCkoUIiJlSFxMHM8MeqZIt6lEISIiISlRiIiUUR8t/ahItqNEISJSxtSoWAOAmz+5uUg6DFSiEBEpY/o37c/QU4cCgYfxCkuJQkSkjDEzGlVrVGTbU6IQESnDLh57MWt3ri3UNpQoRETKoLNbnA3AuB/H0fCJhoXalroZFxEpgzrW7ciiPyxi/OLxVI+tzvB7Cj7WthKFiEgZ1SqhFa0SWgEwnIInCjU9iYhISEoUIiISkhKFiIiEpEQhIiIhKVGIiEhIShQiIhKSEoWIiISkRCEiIiEpUYiISEhKFCIiEpIShYiIhKREISIiISlRiIhISEoUIiISUlgThZkNMLPFZrbMzG7PY/ktZrbQzL4zs8lmVnRj94mISJEIW6Iws2jgGWAg0BoYYmatjyo2D0hx9/bAu8Aj4YpHREQKJpw1iq7AMndf4e4HgLeA83IXcPcv3D0jODkbSApjPCIiUgDhTBSJQO4RvdOC837O1cDEvBaY2XAzm2tmczdv3lyEIYqIyPGEM1FYHvM8z4JmlwMpwKN5LXf30e6e4u4ptWrVKsIQRUTkeMI5ZnYa0CDXdBKw/uhCZnYWcCfQy933hzEeEREpgHDWKL4GmptZYzMrD1wKjM9dwMxOBf4DnOvum8IYi4iIFFDYEoW7ZwEjgE+ARcA77v6Dmd1nZucGiz0KxANjzWy+mY3/mc2JiEiEhLPpCXf/CPjoqHl35Xp/Vjj3LyIihacns0VEJCQlChERCUmJQkREQlKiEBGRkJQoREQkJCUKEREJSYlCRERCUqIQEZGQlChERCQkJQoREQlJiUJEREJSohARkZCUKEREJCQlChERCUmJQkREQlKiEBGRkJQoREQkJCUKEREJSYlCRERCUqIQEZGQlChERCQkJQoREQlJiUJEREJSohARkZCUKEREJCQlChERCUmJQkREQlKiEBGRkJQoREQkJCUKEREJSYlCRERCUqIQEZGQlChERCSksCYKMxtgZovNbJmZ3Z7H8gpm9nZw+RwzSw5nPCIicuLClijMLBp4BhgItAaGmFnro4pdDWx392bAP4G/hyseEREpmHDWKLoCy9x9hbsfAN4CzjuqzHnAy8H37wJ9zMzCGJOIiJygcmHcdiKwNtd0GnDaz5Vx9ywz2wnUBLbkLmRmw4Hhwcn9ZrYgLBGXPgkcda5OYjoXh+lcHKZzcVjLgq4YzkSRV83AC1AGdx8NjAYws7nunlL48Eo/nYvDdC4O07k4TOfiMDObW9B1w9n0lAY0yDWdBKz/uTJmVg6oCmwLY0wiInKCwpkovgaam1ljMysPXAqMP6rMeOB3wfcXAZ+7+zE1ChERiZywNT0FrzmMAD4BooEx7v6Dmd0HzHX38cALwKtmtoxATeLSfGx6dLhiLoV0Lg7TuThM5+IwnYvDCnwuTD/gRUQkFD2ZLSIiISlRiIhISCU2Uaj7j8PycS5uMbOFZvadmU02s0aRiLM4HO9c5Cp3kZm5mZXZWyPzcy7M7NfBv40fzOyN4o6xuOTj/0hDM/vCzOYF/58MikSc4WZmY8xs0889a2YBTwXP03dm1ilfG3b3EvcicPF7OdAEKA98C7Q+qsz1wLPB95cCb0c67gieizOBuOD7607mcxEsVxmYBswGUiIddwT/LpoD84DqwenakY47gudiNHBd8H1rYFWk4w7TuegJdAIW/MzyQcBEAs+wdQPm5Ge7JbVGoe4/DjvuuXD3L9w9Izg5m8AzK2VRfv4uAO4HHgH2FWdwxSw/52IY8Iy7bwdw903FHGNxyc+5cKBK8H1Vjn2mq0xw92mEfhbtPOAVD5gNVDOzesfbbklNFHl1/5H4c2XcPQs41P1HWZOfc5Hb1QR+MZRFxz0XZnYq0MDdPyjOwCIgP38XLYAWZjbDzGab2YBii6545edc3ANcbmZpwEfADcUTWolzot8nQHi78CiMIuv+owzI93Ga2eVACtArrBFFTshzYWZRBHohvrK4Aoqg/PxdlCPQ/NSbQC1zupm1dfcdYY6tuOXnXAwBXnL3f5hZdwLPb7V19+zwh1eiFOh7s6TWKNT9x2H5OReY2VnAncC57r6/mGIrbsc7F5WBtsAUM1tFoA12fBm9oJ3f/yPvu3umu68EFhNIHGVNfs7F1cA7AO4+C4gl0GHgySZf3ydHK6mJQt1/HHbccxFsbvkPgSRRVtuh4Tjnwt13unuCuye7ezKB6zXnunuBO0MrwfLzf2QcgRsdMLMEAk1RK4o1yuKRn3OxBugDYGanEEgUm4s1ypJhPHBF8O6nbsBOd99wvJVKZNOTh6/7j1Inn+fiUSAeGBu8nr/G3c+NWNBhks9zcVLI57n4BOhnZguBg8Cf3X1r5KIOj3yeiz8Bz5nZzQSaWq4siz8szexNAk2NCcHrMXcDMQDu/iyB6zODgGVABnBVvrZbBs+ViIgUoZLa9CQiIiWEEoWIiISkRCEiIiEpUYiISEhKFCIiEpIShchRzOygmc03swVmNsHMqhXx9q80s38F399jZrcW5fZFipoShcix9rp7R3dvS+AZnT9EOiCRSFKiEAltFrk6TTOzP5vZ18G+/O/NNf+K4LxvzezV4LxzgmOlzDOzSWZWJwLxixRaiXwyW6QkMLNoAt0+vBCc7kegr6SuBDpXG29mPYGtBPrZOt3dt5hZjeAmvgS6ubub2VDg/wg8ISxSqihRiByropnNB5KBVOCz4Px+wde84HQ8gcTRAXjX3bcAuPuhzimTgLeD/f2XB1YWS/QiRUxNTyLH2uvuHYFGBL7gD12jMODh4PWLju7ezN1fCM7Pqy+cp4F/uXs74BoCHdGJlDpKFCI/w913AjcCt5pZDIFO535vZvEAZpZoZrWBycCvzaxmcP6hpqeqwLrg+98hUkqp6UkkBHefZ2bfApe6+6vBLqpnBXvp3Q1cHuyp9EFgqpkdJNA0dSWBUdXGmtk6Al2eN47EMYgUlnqPFRGRkNT0JCIiISlRiIhISEoUIiISkhKFiIiEpEQhIiIhKVGIiEhIShQiIhLS/wNxINBscuO/6wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Making a list of all classifiers\n",
"classifier_model = [LogisticRegression(),KNeighborsClassifier(),GaussianNB(),SVC(),DecisionTreeClassifier(),RandomForestClassifier(), SGDClassifier(), AdaBoostClassifier()]\n",
"\n",
"# Creating empty list to store the performance details\n",
"classifier_model_list= []\n",
"classifier_accuracy_test = []\n",
"classifier_accuracy_train = []\n",
"f1score = []\n",
"precisionscore = []\n",
"recallscore = []\n",
"avg_pre_rec_score = []\n",
"cv_score = []\n",
"\n",
"for classifier_list in classifier_model:\n",
" classifier = classifier_list\n",
" \n",
" # Fitting the training set into classification model\n",
" classifier.fit(X_train,y_train)\n",
" \n",
" # Predicting the output on test datset\n",
" y_pred_test = classifier.predict(X_test) \n",
" score_test = accuracy_score(y_test, y_pred_test)\n",
" \n",
" # Predicting the output on training datset\n",
" y_pred_train = classifier.predict(X_train) \n",
" score_train = accuracy_score(y_train, y_pred_train)\n",
" \n",
" # Cross Validation Score on training test\n",
" scores = cross_val_score(classifier, X_train,y_train, cv=10)\n",
" cv_score.append(scores.mean())\n",
" \n",
" #Keeping the model and accuracy score into a list\n",
" classifier_model_list.append(classifier_list.__class__.__name__)\n",
" classifier_accuracy_test.append(round(score_test,4))\n",
" classifier_accuracy_train.append(round(score_train,4))\n",
" \n",
" #Precision, Recall and F1 score\n",
" f1score.append(f1_score(y_test, y_pred_test))\n",
" precisionscore.append(precision_score(y_test, y_pred_test))\n",
" recallscore.append(recall_score(y_test, y_pred_test))\n",
" \n",
" #Calculating Average Precision Recall Score\n",
" try:\n",
" y_pred_score = classifier.decision_function(X_test)\n",
" except:\n",
" y_pred_score = classifier.predict_proba(X_test)[:,1]\n",
" \n",
" from sklearn.metrics import average_precision_score\n",
" average_precision = average_precision_score(y_test, y_pred_score)\n",
" avg_pre_rec_score.append(average_precision)\n",
" \n",
" \n",
" #Confusion Matrix\n",
" plot_confusion_matrix(classifier_list.__class__.__name__, y_test, y_pred_test)\n",
" plot_prec_rec_curve(classifier_list.__class__.__name__, y_test, y_pred_score)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### CLASSIFICATION MODEL PERFORMANCE EVALUATION"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"*------------------------------ CLASSIFICATION MODEL PERFORMANCE EVALUATION ---------------------*\n",
"\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Model</th>\n",
" <th>Cross Val Score</th>\n",
" <th>Test Accuracy</th>\n",
" <th>Average_Accuracy</th>\n",
" <th>Precision</th>\n",
" <th>Recall</th>\n",
" <th>Avg Precision Recall</th>\n",
" <th>F1 Score</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>RandomForestClassifier</td>\n",
" <td>0.764294</td>\n",
" <td>0.9290</td>\n",
" <td>0.846647</td>\n",
" <td>0.562500</td>\n",
" <td>0.444156</td>\n",
" <td>0.525998</td>\n",
" <td>0.496372</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>DecisionTreeClassifier</td>\n",
" <td>0.730566</td>\n",
" <td>0.9395</td>\n",
" <td>0.835033</td>\n",
" <td>0.500000</td>\n",
" <td>0.475325</td>\n",
" <td>0.382063</td>\n",
" <td>0.487350</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>SVC</td>\n",
" <td>0.798731</td>\n",
" <td>0.8076</td>\n",
" <td>0.803166</td>\n",
" <td>0.722628</td>\n",
" <td>0.514286</td>\n",
" <td>0.650592</td>\n",
" <td>0.600910</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>LogisticRegression</td>\n",
" <td>0.802106</td>\n",
" <td>0.8039</td>\n",
" <td>0.803003</td>\n",
" <td>0.683333</td>\n",
" <td>0.532468</td>\n",
" <td>0.663086</td>\n",
" <td>0.598540</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>AdaBoostClassifier</td>\n",
" <td>0.799797</td>\n",
" <td>0.8026</td>\n",
" <td>0.801198</td>\n",
" <td>0.697674</td>\n",
" <td>0.545455</td>\n",
" <td>0.674440</td>\n",
" <td>0.612245</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>KNeighborsClassifier</td>\n",
" <td>0.762881</td>\n",
" <td>0.8387</td>\n",
" <td>0.800790</td>\n",
" <td>0.557471</td>\n",
" <td>0.503896</td>\n",
" <td>0.516306</td>\n",
" <td>0.529332</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>GaussianNB</td>\n",
" <td>0.736608</td>\n",
" <td>0.7368</td>\n",
" <td>0.736704</td>\n",
" <td>0.487562</td>\n",
" <td>0.763636</td>\n",
" <td>0.647102</td>\n",
" <td>0.595142</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>SGDClassifier</td>\n",
" <td>0.766244</td>\n",
" <td>0.5424</td>\n",
" <td>0.654322</td>\n",
" <td>0.373841</td>\n",
" <td>0.942857</td>\n",
" <td>0.549295</td>\n",
" <td>0.535398</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Model Cross Val Score Test Accuracy Average_Accuracy \\\n",
"5 RandomForestClassifier 0.764294 0.9290 0.846647 \n",
"4 DecisionTreeClassifier 0.730566 0.9395 0.835033 \n",
"3 SVC 0.798731 0.8076 0.803166 \n",
"0 LogisticRegression 0.802106 0.8039 0.803003 \n",
"7 AdaBoostClassifier 0.799797 0.8026 0.801198 \n",
"1 KNeighborsClassifier 0.762881 0.8387 0.800790 \n",
"2 GaussianNB 0.736608 0.7368 0.736704 \n",
"6 SGDClassifier 0.766244 0.5424 0.654322 \n",
"\n",
" Precision Recall Avg Precision Recall F1 Score \n",
"5 0.562500 0.444156 0.525998 0.496372 \n",
"4 0.500000 0.475325 0.382063 0.487350 \n",
"3 0.722628 0.514286 0.650592 0.600910 \n",
"0 0.683333 0.532468 0.663086 0.598540 \n",
"7 0.697674 0.545455 0.674440 0.612245 \n",
"1 0.557471 0.503896 0.516306 0.529332 \n",
"2 0.487562 0.763636 0.647102 0.595142 \n",
"6 0.373841 0.942857 0.549295 0.535398 "
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#Creating pandas dataframe with Model and corresponding accuracy\n",
"#accuracy_df = pd.DataFrame({'Model':classifier_model_list , 'Test Accuracy':classifier_accuracy_test, 'Train Accuracy' :classifier_accuracy_train , 'Precision':precisionscore, 'Recall':recallscore ,'F1 Score':f1score},index=None)\n",
"accuracy_df = pd.DataFrame({'Model':classifier_model_list , 'Cross Val Score':cv_score, 'Test Accuracy' :classifier_accuracy_train , 'Precision':precisionscore, 'Recall':recallscore ,'Avg Precision Recall':avg_pre_rec_score ,'F1 Score':f1score})\n",
"\n",
"# Calculating Average Accuracy = (Test + Train)/2\n",
"accuracy_df['Average_Accuracy'] = (accuracy_df['Cross Val Score'] + accuracy_df['Test Accuracy'] )/ 2\n",
"\n",
"#Arranging the Columns\n",
"print(\"\\n*------------------------------ CLASSIFICATION MODEL PERFORMANCE EVALUATION ---------------------*\\n\")\n",
"accuracy_df = accuracy_df[['Model','Cross Val Score', 'Test Accuracy', 'Average_Accuracy','Precision', 'Recall','Avg Precision Recall','F1 Score']] # This will arrange the columns in the order we want\n",
"\n",
"#Sorting the Columns based on Average Accuracy\n",
"accuracy_df.sort_values('Average_Accuracy', axis=0, ascending=False, inplace=True) # Sorting the data with highest accuracy in the top\n",
"accuracy_df\n",
"#accuracy_df.transpose()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observations\n",
"\n",
"1. Since our dataset class is imbalanced. Churn \"Yes\" is almost 3 times as \"No', Accuracy is not the right measure and we have to consider Precision, Recall and F1 Score for further evaluation and improvement of model\n",
" \n",
" 1.1 Precision: A measure of a classifiers exactness.A low precision can also indicate a large number of False Positives.\n",
" \n",
" 1.2 Recall: A measure of a classifiers completeness.A low recall indicates many False Negatives.\n",
" \n",
" 1.3 F1 Score (or F-score): A weighted average or Harmonic Mean of precision and recall.\n",
"\n",
"2. Logistic Regression (AUC = 0.66) and Adaboost model (AUC = 0.67) looks promising. Let's try to improve the model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Improving our Model: Model Tuning\n",
"### Grid Search for Logistic Regression Classifier and running with optimized hyperparameters"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Unoptimized model\n",
"------\n",
"Accuracy score on testing data: 0.8048\n",
"F-score on testing data: 0.6467\n",
"\n",
"Optimized Model\n",
"------\n",
"Final accuracy score on the testing data: 0.8041\n",
"Final F-score on the testing data: 0.6451\n",
"LogisticRegression(C=2.7825594022071245, class_weight=None, dual=False,\n",
" fit_intercept=True, intercept_scaling=1, max_iter=100,\n",
" multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,\n",
" solver='liblinear', tol=0.0001, verbose=0, warm_start=False)\n"
]
}
],
"source": [
"from sklearn.grid_search import GridSearchCV\n",
"from sklearn.metrics import make_scorer\n",
"from sklearn.metrics import fbeta_score, accuracy_score\n",
"from sklearn.linear_model import LogisticRegression # Logistic Regression Classifier\n",
"\n",
"#Logistic Regression Classifier\n",
"clf = LogisticRegression()\n",
"\n",
"#Hyperparameters\n",
"parameters = {'C':np.logspace(0, 4, 10), \n",
" 'penalty' : ['l1', 'l2']\n",
" }\n",
"\n",
"# Make an fbeta_score scoring object\n",
"scorer = make_scorer(fbeta_score,beta=0.5)\n",
"\n",
"# Perform grid search on the classifier using 'scorer' as the scoring method\n",
"grid_obj = GridSearchCV(clf, parameters,scorer)\n",
"\n",
"# Fit the grid search object to the training data and find the optimal parameters\n",
"grid_fit = grid_obj.fit(X_train,y_train)\n",
"\n",
"# Get the estimator\n",
"best_clf = grid_fit.best_estimator_\n",
"\n",
"# View best hyperparameters\n",
"#print(grid_srchfit.best_params_)\n",
"\n",
"# Make predictions using the unoptimized and model\n",
"predictions = (clf.fit(X_train, y_train)).predict(X_test)\n",
"best_predictions = best_clf.predict(X_test)\n",
"\n",
"# Report the before-and-afterscores\n",
"print (\"Unoptimized model\\n------\")\n",
"print (\"Accuracy score on testing data: {:.4f}\".format(accuracy_score(y_test, predictions)))\n",
"print (\"F-score on testing data: {:.4f}\".format(fbeta_score(y_test, predictions, beta = 0.5)))\n",
"print (\"\\nOptimized Model\\n------\")\n",
"print (\"Final accuracy score on the testing data: {:.4f}\".format(accuracy_score(y_test, best_predictions)))\n",
"print (\"Final F-score on the testing data: {:.4f}\".format(fbeta_score(y_test, best_predictions, beta = 0.5)))\n",
"print (best_clf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Grid Search for Adaboost Classifier and running with optimized hyperparameters"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Unoptimized model\n",
"------\n",
"Accuracy score on testing data: 0.7388\n",
"F-score on testing data: 0.5185\n",
"\n",
"Optimized Model\n",
"------\n",
"Final accuracy score on the testing data: 0.8041\n",
"Final F-score on the testing data: 0.6452\n",
"AdaBoostClassifier(algorithm='SAMME.R',\n",
" base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=1,\n",
" max_features=None, max_leaf_nodes=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n",
" splitter='best'),\n",
" learning_rate=0.5, n_estimators=120, random_state=None)\n"
]
}
],
"source": [
"# TODO: Import 'GridSearchCV', 'make_scorer', and any other necessary libraries\n",
"from sklearn.grid_search import GridSearchCV\n",
"from sklearn.metrics import make_scorer\n",
"from sklearn.metrics import fbeta_score, accuracy_score\n",
"\n",
"# TODO: Initialize the classifier\n",
"clf = AdaBoostClassifier(base_estimator=DecisionTreeClassifier())\n",
"\n",
"# TODO: Create the parameters list you wish to tune\n",
"parameters = {'n_estimators':[50, 120], \n",
" 'learning_rate':[0.1, 0.5, 1.],\n",
" 'base_estimator__min_samples_split' : np.arange(2, 8, 2),\n",
" 'base_estimator__max_depth' : np.arange(1, 4, 1)\n",
" }\n",
"\n",
"# TODO: Make an fbeta_score scoring object\n",
"scorer = make_scorer(fbeta_score,beta=0.5)\n",
"\n",
"# TODO: Perform grid search on the classifier using 'scorer' as the scoring method\n",
"grid_obj = GridSearchCV(clf, parameters,scorer)\n",
"\n",
"# TODO: Fit the grid search object to the training data and find the optimal parameters\n",
"grid_fit = grid_obj.fit(X_train,y_train)\n",
"\n",
"# Get the estimator\n",
"best_clf = grid_fit.best_estimator_\n",
"\n",
"# Make predictions using the unoptimized and model\n",
"predictions = (clf.fit(X_train, y_train)).predict(X_test)\n",
"best_predictions = best_clf.predict(X_test)\n",
"\n",
"# Report the before-and-afterscores\n",
"print (\"Unoptimized model\\n------\")\n",
"print (\"Accuracy score on testing data: {:.4f}\".format(accuracy_score(y_test, predictions)))\n",
"print (\"F-score on testing data: {:.4f}\".format(fbeta_score(y_test, predictions, beta = 0.5)))\n",
"print (\"\\nOptimized Model\\n------\")\n",
"print (\"Final accuracy score on the testing data: {:.4f}\".format(accuracy_score(y_test, best_predictions)))\n",
"print (\"Final F-score on the testing data: {:.4f}\".format(fbeta_score(y_test, best_predictions, beta = 0.5)))\n",
"print (best_clf)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Observations:\n",
"Both Logistic Regression & Adaboost Classifier gives us final F score of 0.65 and accuracy of 0.80 post grid search."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Feature Importance\n",
"### In this section , we will run scikit learn feature importances to evaluate which columns are being give higher weights"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" Features Adaboost_Score\n",
"11 Contract 0.18\n",
"14 MonthlyChargesCat 0.18\n",
"3 TenureCat 0.14\n",
"13 PaymentMethod 0.12\n",
"6 InternetService 0.08\n",
"9 TechSupport 0.06\n",
"5 MultipleLines 0.04\n",
"8 DeviceProtection 0.04\n",
"10 StreamingServices 0.04\n",
"12 PaperlessBilling 0.04\n",
"1 SeniorCitizen 0.02\n",
"2 Family 0.02\n",
"4 PhoneService 0.02\n",
"7 OnlineServices 0.02\n",
"0 Gender 0.00\n"
]
}
],
"source": [
"# Feature Importance for Adaboost\n",
"from sklearn.feature_selection import RFE\n",
"features = list(datset_churn.columns[1:16])\n",
"\n",
"# Feature Importance for AdaBoostClassifier\n",
"adboost_cls = AdaBoostClassifier()\n",
"adboost_cls .fit(X_train, y_train)\n",
"feature_imp_adboost = np.round(adboost_cls.feature_importances_, 5)\n",
"\n",
"feature_imp_df = pd.DataFrame({'Features' :features, 'Adaboost_Score': feature_imp_adboost})\n",
"feature_imp_df.sort_values('Adaboost_Score', axis=0, ascending=False, inplace=True)\n",
"print(feature_imp_df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Observation:"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"1. Overall - Contract, Monthly Charges, Tenure and Payment Method and Internet Service are leading columns contributing to churn. They consitute 60% weight from Mean_Feature_Importance\n",
"\n",
"2. Gender has no impact on Churn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Now we will create the dataset with top 5 columns and run Adaboost classifier to see if there is any improvement in performance"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"There are 5634 samples in the training set and 1409 samples in the test set\n"
]
}
],
"source": [
"dataset_churn_new = datset_churn[['Contract', 'MonthlyChargesCat', 'TenureCat', 'PaymentMethod', 'Churn']]\n",
"X_new = dataset_churn_new.iloc[:,:-1].values # Feature Variable\n",
"y_new = dataset_churn_new.iloc[:,-1].values # Target Variable\n",
"\n",
"#Dividing data into test & train splitting 70% data for training anf 30% for test\n",
"X_train_new, X_test_new, y_train_new, y_test_new = train_test_split(X_new , y_new, test_size=0.20)\n",
"print('There are {} samples in the training set and {} samples in the test set'.format(X_train_new.shape[0], X_test_new.shape[0]))"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Adaboost Classifier \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHm9JREFUeJzt3Xl4VOXZx/HvTRIIO4pYRRQQRXEFWaSoBUStWqTigmixpVJQFNeiVdG3osVaxQW1CliruLx1qVJ3cX0VFJRFFikioiAVqiKL7JDkfv84JyEJSZhJMpnk4fe5rlzOnHPmnHsY88vzPHPOc8zdERGp6WqluwARkcqgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgpCZ7gJqMsvMdqvdIN1lSBKablqX7hIkSSvZutLdm+1sO4VZBVjtBmQe1CfdZUgSzpz9TrpLkCSNY+nSRLZTN1NEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCoDATkSAozEQkCAozEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCkJnuAqR8dm9cn0njrgbgJ00bk5uXx8rV6wA48qD9uPvxSfzhrqcBuPL8n9OgXja3jHuhQsc8+6TOXDuoNxkZtXht8lyuG/MsAHf8vj89Oh8MQL3s2jTbvRF7/mxYwesa1s9m7vOjeOGdWVzxlycrVENoHshZzDfzFhY8H3v6EJq2asHQF8bz/ZfLyMquw4ynXuKVm8dU6DgtjjyE88aOIiu7Dnk5Ofzj4htZMn0OJw4fQpdfnQ5ArcwM9m53AMObHcXG1WsrdLx0UJjVUKvWbqBz/5sAuPHCX7J+42bufnwSAD9OG8fpxx/F7X9/hR/WrK+U4+3euD5/vqIfXX91MytXr+PhmwfRs0s73v14AVff+VTBdhf370X7g/Yr8tqbLu7L5JkLi+9SgK2bNjOqw6lFljVt1YJFk6fzwGmDqF2vLjfMfpV5L7/N17M+Lfdxzrj9Wl4ZOYb5r/8fh53SgzNuv467evbnzdHjeXP0eAAO792LXlcOqpFBBupmBiknN5eHn3+Py391UqXts/U+zVj09bcFrb93Pvo3fXt13GG7c04+mqdf/6jgeYd2LflJ00a8OXV+pdWyK9m6cRNLZ35KszYtK7Qfd8hu1ACA7MaNWLP82x226XxuH2b848UKHSed1DIL1INPv8PMZ25m9ITXSt2me6eDGT28/w7LN27eSveBtxZZtnjZdxzUai9a7t2U/3y3mj49O1A7s+j/Pvvt3ZRWzffg3ekLADAzbr/qHH57w0P07HJIJbyr8NSum82IT14F4IevljH2jAuLrK+/exP279qBV2+5t8jyOg3qM3zysyXu8+/nXcaKBV8UWfbsFSO5bNJjnDn6emrVqsXt3c4ssj6rbjaHntydp4b9T0XfUtpUaZiZ2V7APUBnYAuwBPgX0Mfde1fB8XsA78bHeyle9jIw2t3/L9XHr0rrNmzmyZc/ZNi5J7Bp89YSt3lvxmcFXdWdWbNuI5fe+jhP/mUoeZ7H1DmL2X+fZkW26ffzLjz/9gzy8hyAi/r15PUpc/nPt6sr9F5CVlI3E+DA4zpz/axX8Lw8Xr/tQVb8e1GR9VvWbyjxdaX52dABPHvlLXzy/Ot0PPsXnP/wXxhz4oCC9UecdgKLP5hRY7uYUIVhZmYGTAQmuHv/eFl74LQK7jfT3XOSeMl/gBHASxU5bk1w75Nv8tE//shjL0wpcX0yLTOAV96fwyvvzwFg0BndycvNK7K+38+7cNltTxQ873pEG47p0JYL+x1Pg7p1qJ2VyYZNWxhx7z8r8rZ2CfljZqVJtmX209+cyTOXjwRg5rOvMOBvtxVZ37n/aUyvwV1MqNqWWU9gm7uPzV/g7rPNrAnQy8z+CRwGzAQGuLub2RKgk7uvNLNORC2oHmZ2E9AcaAWsNLM3gD5APaANMNHdrymljjlAlpmd6O5vFl5hZr2A0UT/LtOBoe6+pZLef5Vb/eMGnntjOgNPP44JJQRaMi0zgGa7NeT71eto0rAeF/XryXnXPFiwrm3LvWjSqD7T5iwuWPabEQ8VPD7/tGPoeEgrBVklSbZltmb5d7Tt3pXP35vGQcd347tFSwrWZTdqyIHdj+bvA65IQaVVpyrDLD+oStIBOBRYDnwAHAOU3JzYriNwrLtvMrOBQPt4P1uAhWZ2n7svK+W1f4p/CsLMzLKBR4Fe7v65mT0GDCXqFtdYdz8+iaHnHF8p+7rrmvM4ou2+AIwa/yKLvt4+iHzOyUfz7KSPK+U4UvmeGHwt/cb8kYzMTLZt3sKTQ64rWNeh78/59xuT2bpxUxorrDhz96o5kNllQGt3v7LY8h7ACHc/MX7+IPCBuz+xk5aZu/vI+DUDgWPcfXD8/DVglLtPKeFYw929t5m9B9wA/IGoNbYauM/dfxZv2wu4xN3PKLaPIcAQALLqd8w6tF9l/PNIFblg9jvpLkGSNI6lM9290862q8pTM+YTtaZKUrgrl8v2FmMO22vMLvaaDTvbh5n1NbPZ8U/xf4xRRGNn+ays4vO5+3h37+TunSyzeEkiki5VGWbvAHXMbHD+AjPrDHQv4zVL2B6AZ5axXYncfaK7t49/ZhRb9wawG3BkvOgzoJWZHRA/Px94L9ljikh6VFmYedSf7QucaGaLzWw+cBPROFlpRgJjzGwyUWurso0CWsT1bQZ+CzxrZvOAPGBsGa8VkWqkysbMQlSr3h6eeVCfdJchSdCYWc1THcfMRERSRmEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEIbO0FWbWqKwXuvuPlV+OiEj5lBpmwHzAASu0LP+5A/ulsC4RkaSUGmbuvm9VFiIiUhEJjZmZWX8zuz5+3MLMOqa2LBGR5Ow0zMzsfqAncH68aCMwNpVFiYgkq6wxs3zd3P0oM/sEwN1XmVntFNclIpKURLqZ28ysFtGgP2bWFMhLaVUiIklKJMz+CjwHNDOzkcAU4C8prUpEJEk77Wa6+2NmNhM4IV50trt/mtqyRESSk8iYGUAGsI2oq6mrBkSk2knk28wRwD+A5kAL4H/N7LpUFyYikoxEWmYDgI7uvhHAzEYBM4E/p7IwEZFkJNJlXErR0MsEvkxNOSIi5VPWheZ3E42RbQTmm9mk+PlJRN9oiohUG2V1M/O/sZwPvFJo+bTUlSMiUj5lXWj+cFUWIiJSETv9AsDM2gCjgEOA7Pzl7t42hXWJiCQlkS8AHgUeIZrH7BTgGeCpFNYkIpK0RMKsnrtPAnD3xe5+A9EsGiIi1UYi55ltMTMDFpvZRcA3wJ6pLUtEJDmJhNmVQAPgMqKxs8bABaksSkQkWYlcaP5R/HAd2ydoFBGpVso6aXYi8RxmJXH3M1JSkYhIOZTVMru/yqoQEamgsk6afbsqC6mJ2uRuZMzqmekuQ5KwumnddJcgSRr3Q2LbaW4yEQmCwkxEgpBwmJlZnVQWIiJSEYnMNNvFzOYBi+LnR5rZfSmvTEQkCYm0zO4FegM/ALj7HHQ5k4hUM4mEWS13X1psWW4qihERKa9ELmdaZmZdADezDOBS4PPUliUikpxEWmZDgauA/YBvga7xMhGRaiORazO/A/pXQS0iIuWWyEyzD1HCNZruPiQlFYmIlEMiY2ZvFXqcDfQFlqWmHBGR8kmkm/l04edm9jjwZsoqEhEph/JcztQaaFnZhYiIVEQiY2ar2T5mVgtYBVybyqJERJJVZpjFc/8fSTTvP0Ceu5c6YaOISLqU2c2Mg2uiu+fGPwoyEamWEhkz+9jMjkp5JSIiFVDWPQAy3T0HOBYYbGaLgQ1ENwN2d1fAiUi1UdaY2cfAUcDpVVSLiEi5lRVmBtFdzKuoFhGRcisrzJqZ2VWlrXT3u1JQj4hIuZQVZhlEdzK3KqpFRKTcygqzFe5+c5VVIiJSAWWdmqEWmYjUGGWFWa8qq0JEpIJKDTN3X1WVhYiIVIRuAiwiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBKGs+2ZKNXfK4lmsW7io4PnMIVdSt0Vzuj71MDMGXcZ3b78HQKeH7+PLhyawatqMCh2v84QHaNLhcFZPn82MQZcWLG/arQsHX38VVsvI2bCJucNvZOPSZbS7cThNf9oZgIzsutTeYzfePOK4CtVQk9XerQm9nv87AHX33APPy2Pzyui+Qbsf3o5V8xZQKzOTtZ8vZuqw68jdtLncx2p0QGu63ncrux9xCHNuvYcFf32kYF1Wo4Z0vecWGrc7ENyZdtkNrJwxm/36/JzDrxlG47b78/pJ/Vg1e37F3nAVU5jVYLmbtzDl1HOKLKvbojmblv+XNsN+VxBmleXLcY+SUbcu+513VpHlh/3pBmYMvpwNi79ivwH9OODSwcwd/j8suGV0wTYtf3MujQ49uFLrqWm2rl7Daz3PAODway4hZ8PGgpDpt2RGwbpuY2/nwIHn8NmDE8p9rC1r1jLj+lHse8qOd4zsdOv1LH9nCpMvuIJaWVlk1M0GYM2CRbw/8FKOvnNkuY+bTupmBmjdgs/JWbeePY7tWqn7/eHDj8nZsGGH5e5OZsMGAGQ1asDmb7/fYZvmfU5mxYuvVWo9ofp+2kwatm5ZoX1sWbmKVZ98Sl5OTpHlmQ3qs+dPO7H4iX8CkLdtG9t+XAfAj4u+ZN0XSyp03HRSy6wGy8iuw7GvPg3AxmXLmXXhlQXrvrhvPG2HD2PllGmlvr71kN+wz+mn7rB81Uez+PfIvyRcx7xrb6LzI/eTu3kLOevXM7Xv+UXWZ++zN3X33YeVH36c8D53VZaRwd69jmPFO1N2WHfs3+6iYZtWOyz/7MEJfPXMCwntv2Grfdn8wyq63ncrux16EKvm/psZ199K7sZNFS097VIaZma2F3AP0BnYAiwB/gX0cffeVXDsqcDR7v5dvGw88Lm7jy7zxTVESd3MfKunfwLAbp07lPr6r8ZP4Kvx5e/K5Gs96Hym/3YYa2fPo/WQ39DuhuHMu3Z7V6X5aSfz31ffgry8Ch8rVBl1sznl3eeBqGW2+Inndthmyu+uqvBxLDOD3Y84hBnXjuKHWXPpOOo6Dr1sMHNvu7fC+063lIWZmRkwEZjg7v3jZe2B0yq430x3z9nZdu7+XzO7E7gdGGhmnYEuwMUVOX5Nsvj+v3HAsMF4Tm6J6yujZVZ7991o2K4ta2fPA2DFy5PoPOGBItvsfdrJzL/x1iSr37XkbtpcMGZWmspomW1c/i0bl3/LD7PmAvD1S29w6OWDk663Okply6wnsM3dx+YvcPfZZtYE6GVm/wQOA2YCA9zdzWwJ0MndV5pZJ2C0u/cws5uA5kArYKWZvQH0AeoBbYCJ7n5NCTU8AEwzs+5EoXaJu+eYWRZwB9ANqAPc4+6PmNm+wFNAfSAD+J27f1TJ/y5VZuXkqbT9/SXU2bNZiesro2W2be2PZDVsQP3WLdnw1VL2OPanbPjiq4L19fdvSVbjhqyZNadCx5HKaZlt/m4lG79ZQcMDWrHuiyXs9bOurF34RSVUl36pDLP8oCpJB+BQYDnwAXAMsOMgQVEdgWPdfZOZDQTax/vZAiw0s/vcfVnhF7h7npkNBd4CnnP3D+JVQ4H/uHsXM8sGPooD8tfA8+5+p5llAHWLF2FmQ4AhAM0ysnZScvp9cf9DdPpb5XQhuj7zCPXbtCKzfj16Tn2DeX+4iZXvf8i8627mqAfvxD2PbWt/ZO7Vfyx4TfM+p7DipUmVcnxJXPaee3DKW8+S1bABnpfHwRf+mpe69SZn/QZmXDeKY8beQa2sLNYvXca0S0cA0OLUE+h82wjqNN2dHv87ltWffsa7/WpOq83cPTU7NrsMaO3uVxZb3gMY4e4nxs8fBD5w9yd20jJzdx8Zv2YgcIy7D46fvwaMcvcSA9HMPgSGufus+PnLwAFA/ok8jYGBQG2i1tzjwL/cfW5Z7/HAOvV8zN4HJv6PImm3ev3WdJcgSRrww2cz3b3TzrZL5akZ84laUyXZUuhxLttbiDmFasou9pri5wTssA8z62tms+Ofwm8+L/7JZ8CF7t4+/mnt7u+5+5tE3eNvgafMrOTRdRGpdlIZZu8AdcysoJ0aD8J3L+M1S9gegGcme0B3n1gooMo63X0ScLGZZcZ1tTOzbDNrBaxw93HAY0TdWBGpAVIWZh71X/sCJ5rZYjObD9xENE5WmpHAGDObTNTaSpUHgK+BT8zsU+B+ogH/E4E5ZvYJcArw1xTWICKVKGVjZrsCjZnVPBozq3mqw5iZiEiVUZiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBMHdPdw01lpl9DyxNdx0psgewMt1FSMJC/rxaunuznW2kMJMSmdkMd++U7jokMfq81M0UkUAozEQkCAozKc34dBcgSdnlPy+NmYlIENQyE5EgKMxEJAgKMxEJgsJMKsTMLN01SPJC/NwUZlJuZmYef4NkZseYWXszO6jw+vRVJ6Up9rmdY2adzSwj3XVVVGa6C5Caq9AvxFVAP2A5sMnMprr7/a6vyqulQp/bJcCFwC/dPTe9VVWcwkySZmYNgY3unmtm+wFnAb2ADOAw4Aoz+8LdX09nnVI6MzsEGASc6u7/MbNTgLrALHdfktbiyklhJkkxs7bACOB+M5sVL84mOmfxRzObBywG9k1XjbKjwl3L2DLgbeBOM1sD7A98DzQFHkpDiRWmMTNJirt/Dqwn6p4c7u5fA1OJwq2eu68DNgEHgsbNqgMzq1Woa3msmeW3ot8DpgN3u/uJwDzgoNL3VL3pCgBJiJk1A7a5+5r4+SigNXA78CMwDDgBeAY4H+jj7gvTVK6UwMyuAM4EPgcOBi5y93nxugHAlcAAd1+QvirLTy0z2Skzaw98A7xqZheZ2WHuPgL4gmjcZXd3vwq4g+gX5TQFWfqZ2eFm1j1+fBTQw92PA+YCG4H58br2RGOeA2tqkIFaZpIAM2sO/AnoCiwCvgZaAU8DFwGfAmPdfXa6apSizKw2cD8w093HmdlewAVAC6AN0Nvdt5nZGcDLQKa7b0xfxRWnlpnslLsvJwqzR4jGw24CJgBNgMbAEGBM/AskaZQ/RunuW4E3gaPiVfWAI4B2wLlxkP0a+COwW00PMlDLTJJgZm2IWmJNgeHuvsrM9iUaO1vu7l+ktUDJP+ViIZBFNJh/G1ErLNfMTiIaF1tEdCbDsUTBNj9d9VYmhZnsVLEzxvcHBgP7AH9w9xVpLU4KmFldotMtvib6gzMBuBk4090/ibfpCDQH9gTedfcv01RupVOYSRHFz0cys1oA7p4X/9XPAtYR/YWvQ/SNWF5aipUdxIFWGzg1/u8fgCeBB919VTprSzWFmRQo1gI7BFgTj5dhZl2Al4hOufjIzFoCm9z9u/RVLIWVcGIs8cD/34EZwBh3/yEtxVUBhZnswMwuBwYSDRqPBN4BfgkscfdJaSxNEhCfJJtnZhnxWNk+ROf/vQrcGuo1s7qcSYows1OB44GOwMlEZ/rXAl7MHx8rqQUgVW8nQwKHA7XM7FN3/8bMzgSyQv7cdGrGLq7w5UZmdijRWMse7p7n7q8S3SjjbOB0M2sM22ddkPQpPiRgZs3jzywvHhJ4A6gft8xquft/3X1ZeqtOLYXZLq7QL8QFwFBgEvCtmV1jZpnu/grRmEuP9FUpxRX63C4nGuB/18zOi8fIOhCdzf9hvO0u8QWNupmCmXUDTgfOcvetcWvtROBKM7vb3V8ws7fcfUN6K5XCNCRQlFpmu7j4L/lFRFP2NI8XvwG8DhxCdAE5RNfySRppSKBsCrNdWHxG+HrgLqLrK88wsxbuvpno5Mun4p9d6peiutKQQNl0asYuyszqEYXYnkRT9hwB/IpoJozn43nKpJqJhwSuZfuQQB+iIYGvieYlyzGz+rvikIBaZruo+MLim4EvgYeBOUQDye2B3iHc4CI0GhIom1pmu5h4Er493f2u+PlPiKbBbgBcAhwOfO3u/01flVJcPCTwIXAA8HvgE+CZeP7+bKA7MGdX/tzUMgtc/omUhXxJdMORiwHc/VuisZejibopH+/KvxDVUTwkcAbwGNGMFw8Qzdl/lpnt5+6b3X3Srv65KcwCFn8tnxc/7mpm+8fnHv2CKNAuiTetBzwH3JKmUqUMGhJIjLqZgYovFL/Q3S+Pv/26mmiu/qeAsUR/2R8l+kvfDTgpvlmJVBMaEkiOwixAZtaJaIbRc4CvgPrAAOCnwHnAUqIplWsDewHrQ7/UpSbIv0C80PNuRH98bnP3B+JlvyC6icxkd78oPZVWT+pmBsbMegPjgBzgQWArcJi757r7FKJfjlbAcKCxuy9QkKWfhgQqTpczBSS+E889wPnuPjVe9inQ0szGuPvl7v6+mWUBvYm6nZJm+UMCQJEhATPLHxLoCzxqZsewfUjgm7QVXE2pmxkQM7sKyHX3MWZWOz6pMoNoLvgriCZbvCbetq67b0pnvaIhgcqkbmYACl2z1xpoFj/eFnddcoEFwGSgo5ndFq/fXMVlSjEaEqhc6mYGoNB1kxOB682so7vPNLNa8aByrpntTXSruLeKvUbSQEMClU/dzICYWX2i8ZZ6wNPuPjNefi5wGXCOrrmsHjQkUPnUzQxIfHHxQ8QzYZjZaDP7E9GNXocoyNJPQwKpo5ZZgCy63VhH4ARgBdH9EXVCbDViZscD1xPde3RmfNmZxUMC1wDLgbd0QmziFGYiaaAhgcqnMBNJk/gWcIOAXsB0ou7kWcDZ7j4vnbXVRAozkTTSkEDlUZiJSBD0baaIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYpZWa5ZjbbzD41s2fjm3OUd189zOzl+HEfM7u2jG2b5N+0Jclj3GRmwxNdXmybR83srCSO1Sq+uFwqgcJMUm2Tu7d398OIprgpMtWzRZL+/9DdX3T328rYpAmQdJhJzaUwk6o0GTggbpEsMLMHgFnAvmZ2kplNNbNZcQuuAYCZnWxmn5nZFKLbrREvH2hm98ePf2JmE81sTvzTDbgNaBO3Cu+It7vazKab2VwzG1loXyPMbKGZvUU0a0WZzGxwvJ85ZvZcsdbmCWY22cw+j+crw8wyzOyOQse+sKL/kLIjhZlUCTPLBE4B8i/TOQh4zN07ABuAG4AT3P0oYAZwlUU3t30IOA04jmim1ZLcC7zn7kcSzdo6H7gWWBy3Cq+26Ca6BwJdiG7R1tHMfmZmHYH+QAeisOycwNt53t07x8dbQHRJUr5WRDfk/QUwNn4Pg4C17t453v9gM2udwHEkCZqcUVKtrpnNjh9PJrrvY3NgqbtPi5d3BQ4BPohnyKkNTAUOBr5y90UAZvYEMKSEYxwP/BognkZnrZntVmybk+KfT+LnDYjCrSEwMb43JWb2YgLv6bB4aqUm8X4mFVr3THxjkkVm9mX8Hk4Cjig0ntY4PrYuW6pECjNJtU3u3r7wgjiwNhReBLzp7ucW2649UFnX2xnwZ3cfV+wYV5TjGI8Cp7v7HDMbCPQotK74vjw+9qXuXjj0MLNWSR5XyqBuplQH04BjzOwAADOrZ2Ztgc+A1mbWJt7u3FJe/zYwNH5thpk1AtYRtbryTQIuKDQWt4+Z7Qm8D/Q1s7pm1pCoS7szDYEV8ZTWvyq27ux4uvI2RDdaXhgfe2i8PWbWNp4CSCqRWmaSdu7+fdzC+YeZ1YkX3+Dun5vZEOAVM1sJTAEOK2EXlwPjzWwQkAsMdfepZvZBfOrDa/G4WTtgatwyXA8McPdZZvY0MJvoTkiTEyj5RuCjePt5FA3NhcB7wE+Ai9x9s5n9jWgsbVY80+z3wOmJ/etIojRrhogEQd1MEQmCwkxEgqAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQI/w9CpGTUJYsbeQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.463 \n",
"Precision=0.649\n",
"F1=0.540\n",
"Average precision-recall score: 0.617\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VPW9//HXhyQQkrAm7GGRfd8VuFUEEUStImgrqFUUt1px6War1lqt99b6c73VIooLUEW0FdGrYkWQFsEKsu+oCGFfZE0gC5/fHzOEGMIkJJmZTHg/ecwjc875zvd85iTMe85u7o6IiMjJVIl2ASIiUrEpKEREJCQFhYiIhKSgEBGRkBQUIiISkoJCRERCUlBITDGzFWY2oJg2zczsoJnFRaissDKz0Wb27wLDbmato1mTnF4UFFIuzGyDmWUFP6C3m9nLZpZS3vNx907uPruYNhvdPcXd88p7/sEP6UPB97nZzJ6oaIFkZheY2RwzO2BmO83sUzO7NNp1SexSUEh5usTdU4CewJnA/YUbWECs/911C77Pc4ErgRuiXE8+M7sCeBOYCKQDDYAHgEtK0Vdl+F1JOdAfgZQ7d98MfAB0BjCz2Wb2iJnNBTKBlmZWy8wmmNnW4DfzPxb8Zm5mN5nZquC34pVm1jM4foOZnR98fpaZLTCz/cG1mCeC41sEv/nHB4cbm9l0M9tjZuvN7KYC83nQzKaa2cTgvFaYWe8Svs/1wFyge4H+Svu+fmNmXxUYP/xUl7uZGfAE8LC7v+ju+9z9qLt/6u43FXi/kwu8pvCyKvy7utfMFhSaz91mNj34vJqZ/T8z2xj8HYwzs+qnWrtUbAoKKXdm1hS4CFhUYPRPgJuBGsC3wKtALtAa6AEMAW4Mvv5HwIPAtUBN4FJgdxGzehp42t1rAq2AqScp6XUgA2gMXAH8t5kNKjD9UmAKUBuYDvylhO+zPXAOsL7A6NK+r6+CfdUC/gBMNrNGJamjgHZAU+CtU3xdYQV/V/8LtDOzNgWmXwW8Fnz+KNCWQFi2BpoQWIORysTd9dCjzA9gA3AQ2EsgCJ4DqgenzQYeKtC2AXDk2PTguFHArODzGcCdIeZzfvD5HAIfqmmF2rQAHIgn8MGZB9QoMP1/gFeCzx8EPi4wrSOQFeJ9OrAfOBR8/jpQrazvq4j5LAaGBZ+PBv5dqIbWRbzmB8FpiSH6fRCYXNSyKup3FRw3GXgg+LwNcABIAiy4HFoVaNsP+Cbaf496lO9DaxRSni5z99ru3tzdb3P3rALTNhV43hxIALaa2V4z2ws8D9QPTm9K4Bt2ccYQ+Da72sy+MLMfFtGmMbDH3Q8UGPctgW++x2wr8DwTSDy2KeYkegIpBPZP9AGSy/q+zOxaM1tc4HWdgbQQNRTl2NrJqa6JFLap0PBrBAIPAmsT09w9E6hHIDAWFqj7w+B4qUQUFBIpBS9TvInAN++0YLDUdvea7t6pwPRWxXbovs7dRxH4IH4UeMvMkgs12wLUNbMaBcY1AzaX9o0E5+3uPhWYx/FNLaV6X2bWHHgBuB1IdffawHIC39hPxZrgPC4P0eYQgQ/3YxoW0abwJaU/AtLMrDuBwDi22WkXkAV0KvB+a3lgR79UIgoKiTh330rgw+dxM6tpZlXMrJWZnRts8iLwSzPrFTzypnXww/R7zOwaM6vn7kcJbPKCwGamgvPaBHwG/I+ZJZpZVwJrIn8rp7fzJ+BmM2tYhveVTODDeWfwfV1P8ECAU+HuDvwc+J2ZXV+ghrPNbHyw2WKgvwXONakF/LYE/eYS2O/xGFAX+Gdw/FECAfekmdUP1t7EzC441dqlYlNQSLRcC1QFVgLfEfggagTg7m8CjxD45noAmEbgA6qwocAKMztIYMf2SHc/XES7UQS2xW8B3gZ+7+7/LI834e7LgE+BX5X2fbn7SuBxAmsn24EuBI6mKk09b3H8kN0twf7+CLwTnP5P4A1gKbAQeK+EXb8GnA+8GQyOY+4hsDN/vpntBz4msFNdKhELfAkREREpmtYoREQkJAWFiIiEpKAQEZGQFBQiIhJSqJOKKqS0tDRv0aJFtMsQEYkpCxcu3OXupToZMuaCokWLFixYsKD4hiIiks/Mvi3ta7XpSUREQlJQiIhISAoKEREJKeb2UYhIxZGTk0NGRgaHDxd15RSJhsTERNLT00lISCi3PhUUIlJqGRkZ1KhRgxYtWhC4wZ5Ek7uze/duMjIyOOOMM8qtX216EpFSO3z4MKmpqQqJCsLMSE1NLfc1vLAFhZm9ZGY7zGz5SaabmT0TvIfx0mP3DhaR2KKQqFjC8fsI5xrFKwQuA30yFxK4rWIbAvfn/WtJOj3qR8tcmIiIlFzYgsLd5wB7QjQZBkwM3ilsPlC7JDeTX71rdXmVKCISFgsXLqRLly60bt2aO+64g5PdzmH27Nl0796dTp06ce655+aPv+GGG6hfvz6dO3///lVXXnkl3bt3p3v37rRo0YLu3buH9X0cE819FE34/r15M/j+fYzzmdnNZrbAzBYcyT0SkeJEpPLIy8srvlE5+ulPf8r48eNZt24d69at48MPPzyhzd69e7ntttuYPn06K1as4M0338yfNnr06CJf88Ybb7B48WIWL17M5ZdfzogRI8L6Po6JZlAUtSGtyNh19/Hu3tvdex/lKHlHI/tLF5GK67LLLqNXr1506tSJ8ePH549PSUnhgQceoE+fPsybN4+FCxdy7rnn0qtXLy644AK2bt0KwAsvvMCZZ55Jt27duPzyy8nMzCxTPVu3bmX//v3069cPM+Paa69l2rRpJ7R77bXXGDFiBM2aNQOgfv36+dP69+9P3bpF3dQxwN2ZOnUqo0aNKlOtJRXNw2MzgKYFhtMJ3LoxNIfdWbupn1y/2KYiEjl3fXgXi7ctLtc+uzfszlNDnwrZ5qWXXqJu3bpkZWVx5plncvnll5OamsqhQ4fo3LkzDz30EDk5OZx77rm888471KtXjzfeeIP77ruPl156iREjRnDTTTcBcP/99zNhwgTGjh37vXnMmjWLu++++4R5JyUl8dlnn31v3ObNm0lPT88fTk9PZ/PmzSe8du3ateTk5DBgwAAOHDjAnXfeybXXXlui5fKvf/2LBg0a0KZNmxK1L6toBsV04HYzmwL0AfYFb05frG0HtykoRASAZ555hrfffhuATZs2sW7dOlJTU4mLi+Pyyy8HYM2aNSxfvpzBgwcDgU1RjRoFdokuX76c+++/n71793Lw4EEuuOCCE+YxcOBAFi8uWQgWtT+iqCORcnNzWbhwITNnziQrK4t+/frRt29f2rZtW+w8Xn/99YitTUAYg8LMXgcGAGlmlgH8HkgAcPdxwPvARQRuzJ4JXF/Svrcd3EbXBl3Lu2QRKYPivvmHw+zZs/n444+ZN28eSUlJDBgwIP8cgsTEROLi4oDAh3enTp2YN2/eCX2MHj2aadOm0a1bN1555RVmz559QptTWaNIT08nIyMjfzgjI4PGjRuf8Nr09HTS0tJITk4mOTmZ/v37s2TJkmKDIjc3l3/84x8sXLgwZLvyFLagcPeQceeB2P1ZafrednBbqWoSkcpl37591KlTh6SkJFavXs38+fOLbNeuXTt27tzJvHnz6NevHzk5Oaxdu5ZOnTpx4MABGjVqRE5ODn/7299o0uTEY2pOZY2iUaNG1KhRg/nz59OnTx8mTpx4wqYsgGHDhnH77beTm5tLdnY2n3/+eZFhVNjHH39M+/btv7d5K9xi8szs7Qe3R7sEEakAhg4dSm5uLl27duV3v/sdffv2LbJd1apVeeutt7jnnnvo1q0b3bt3z18TePjhh+nTpw+DBw+mffv25VLXX//6V2688UZat25Nq1atuPDCCwEYN24c48aNA6BDhw4MHTqUrl27ctZZZ3HjjTfmHw47atQo+vXrx5o1a0hPT2fChAn5fU+ZMiWim50A7GTH91ZUcU3i/K6X7uLxCx6Pdikip71Vq1bRoUOHaJchhRT1ezGzhe7euzT9xdwaRXxcPNsOadOTiEikxFxQJFRJ0D4KEZEIir2giEvQPgqRCiTWNl9XduH4fcReUGiNQqTCSExMZPfu3QqLCuLY/SgSExPLtd+Yu3FRQpUEtmRtITsvm6pxVaNdjshp7dg5Azt37ox2KRJ07A535SnmgiI+LlDyjkM7SK8ZueOIReRECQkJ5XonNamYYnLTE+hcChGRSInZoNB+ChGRyIi9oIhTUIiIRFLsBYXWKEREIirmgsLMqJ1Ym+2HtI9CRCQSYi4oABokN9AahYhIhMRkUDRMaaigEBGJEAWFiIiEpKAQEZGQYjIoGiQ34ED2ATJzMqNdiohIpReTQdEwpSHw/bOzM3MyOepHo1WSiEilFdNBcWzzU97RPDo824EzXziTdbvXRbM0EZFKp1IExaJti9i4byNLti2h5/ieTF46OZrliYhUKjEdFMdOupv59UwA5t84nx4Ne/CTt3/CddOu42D2wajVKCJSWcRkUNRLrodh+WsUn2z4hE71OtG7cW8+ue4THuj/AJOWTKLX+F4s2rooytWKiMS2mAyK+CrxpCWlse3gNtydeZvm0b95//xpfxj4Bz657hMOZh+k74S+PPP5M7oDl4hIKcVkUMDxcyky9mdwIPsAXep3+d70AS0GsOTWJQxpNYQ7P7yTYVOGsTtzd5SqFRGJXTEdFNsPbWfVrlUAdKzX8YQ2aUlpTB85nacueIoZX82g27huzPl2TqRLFRGJaTEbFA1SAhcGXLlzJQAd6nUosp2ZcWffO5k3Zh5JCUkMfHUgf5j9B/KO5kWyXBGRmBWzQdEwuWF+UKRWT6VeUr2Q7Xs26snCmxdydZerefDTBzlv4nlk7M+IULUiIrErdoMipSGHcw8zP2M+Hep1wMyKfU2NajWYOHwir172Kgu3LKTbuG5MXzM9AtWKiMSumA4KgGU7ltEx7cT9E6Fc2+1avrzlS5rXas6wKcO484M7OZJ7JBxliojEvJgPCih6R3Zx2qa2Zd6YedzZ506e+c8z9JvQj7W715ZniSIilULMBkWDlAb5z0+2I7s41eKr8dTQp5g+cjob922k5/M9mbhkYnmVKCJSKYQ1KMxsqJmtMbP1ZvabIqY3M7NZZrbIzJaa2UUl7busaxQFXdLuEhbfuphejXtx3bTr+MnbP+HAkQNl6lNEpLIIW1CYWRzwLHAh0BEYZWaFP9HvB6a6ew9gJPBcSfuvW70u8VXiqVG1Bk1qNClzvek10/nk2k948NwHeW3Za/Qc35Mvt35Z5n5FRGJdONcozgLWu/vX7p4NTAGGFWrjQM3g81rAlpJ2XsWq0CC5QYmPeCqJuCpx/H7A75l13SyycrLo+2Jfnpr/lC7/ISKntXAGRRNgU4HhjOC4gh4ErjGzDOB9YGxRHZnZzWa2wMwW7Ny5M3/8qM6juKbLNeVaNED/5v1ZcusSLmxzIXfPuJtLp1zKrsxd5T4fEZFYEM6gKOprfuGv5qOAV9w9HbgImGRmJ9Tk7uPdvbe7965X7/iJdY8NeYyxfYrMljJLTUpl2pXTeGboM3z01Ud0G9eN2Rtmh2VeIiIVWTiDIgNoWmA4nRM3LY0BpgK4+zwgEUgLY02nxMwY22csn9/4OSlVUzjv1fN4YNYD5B7NjXZpIiIRE86g+AJoY2ZnmFlVAjurC58GvREYBGBmHQgExU4qmO4Nu7Pw5oVc2+1aHp7zMANfHcimfZuKf6GISCUQtqBw91zgdmAGsIrA0U0rzOwhM7s02OwXwE1mtgR4HRjtFXTPcUrVFF657BUmDZ/E4m2L6TauG++sfifaZYmIhJ1V0M/lk+rdu7cvWLAgqjWs272OkX8fyZdbv+T2M2/nsSGPkRifGNWaRERCMbOF7t67NK+N2TOzo6lNahs+u+Ez7u57N3/54i/0fbEvq3etjnZZIiJhoaAopWrx1Xjigid4b9R7bD6wmV7je/HyopejXZaISLlTUJTRxW0vZsmtSziryVncMP0GFm1dFO2SRETKVXy0C6gMGtdozB8H/pGzXz47pk7MO5J7hN1Zu9mVuYvdmbvJ88Bd/5ISkuib3pcqJ57SIiKnIQVFJZF7NJc9WXvYlbmrxI8D2Se/8OFzFz1HYnwiS7cvZdmOZXyz9xvyjubhOO5e5M9mtZpxWbvLGN5hOO3T2kfw3YtIOCkoyklK1RQAVu5cyeBWg8vU11E/yr7D+0J/0Gcdf77z0E6+O/zdSftLTkgmLSkt/9E2tS1pSWnUS6qXP65u9bokxCWwfs96rn/nem57/zYAqsdXp1P9TvRN70tClQTMjPx/dvwnwJLtS7j3k3u595N7aZ/WnuHthzO8/XB6N+5dbtfjEpHI0+Gx5cTdOW/ieSzfsZz1Y9dTK7FW/rSD2QfZeWhniT70C28GKqxqXNXvfcAX90itnkr1hOolfh9H/SgTvpxA3ep16dqgKy3rtCSuSlyJX5+xP4Npq6fx9uq3+XTDp+R5Hk1rNuWy9pcxvP1wzml+DvFV9P1EJNLKcnisgqIcfbn1S3qP783P+/2c4e2H897a93h37bus2LmiyPZxFkdqUur3P9yrB37WSy46DJITkmPm2/nuzN28t/Y93l79NjO+msHh3MOkVk/lknaXMLz9cAa3HHxKISYipaegqECum3Zd/l3y4qvEc06zcxh0xiAa12h8wod+rcRap80O40PZh5jx1QzeXv027619j72H95KckMzQ1kO5ouMV/Kjjj05pzUVETo2CogLZcWgHj/77Ufqk92FIqyHUTqwd7ZIqnJy8HGZvmM3bq99m2uppbD24lYEtBjJx+ETSa6ZHuzyRSklBITHrqB/l1cWvMvaDsVSLr8aLl7zI8A7Do12WSKWjS3hIzKpiVbi+x/UsumURLeu0ZMTUEdzy7i0cyj4U7dJEJEhBIRVCm9Q2zL1hLvf84B5e+PIFuo7rymNzH2P7we3RLk3ktKegkAqjalxV/nT+n/j42o9pmNKQX3/8a9KfTOeyKZfx7pp3dcMokSjRPgqpsFbtXMXLi1/m1SWvsuPQDhqmNOS6btdxQ48baJvaNtrlicQU7cyWSi0nL4f3173PhEUTeH/d++R5Hmc3O5sxPcZwRccr8s+KF5GTU1DIaWPrga1MXDKRlxa/xNrda0mpmsKVna5kTI8x9E3vGzMnI4pEmoJCTjvuztxNc5mwaAJTV0wlMyeTDmkd6N+8P63rts5/tKzTkqSEpGiXKxJ1Cgo5rR04coA3VrzB5KWTWb5jObuzdn9vervUdvzfVf9Hq7qtolShSPQpKEQK+C7rO7767ivW71nP+j3reeRfj3Bdt+sY98Nx0S5NJGrKEhS6jKdUOnWq16F39d70bhz4P7Fh7wYmLpnII+c9QmpSapSrE4k9Oo9CKr07+9xJVm4WL3z5QrRLEYlJCgqp9Lo06MKgMwbxl//8hSO5R8jKyeKd1e8wetpozp94Ps998Ry7M3cX35HIaUr7KOS08NFXH3HB5Atom9qWjP0ZZOZkUiexDg1SGrB612riq8RzUZuL+EnXn/DDtj8kMT4x2iWLlCvtzBYpgclLJ/PEvCfol96P4R2Gc27zc0mIS2Dp9qVMWjKJ15a/xpYDW6hVrRY/6vgjLu94OWc3O1sn9EmloKAQKQd5R/OYtWEWk5ZO4u8r/86hnEPEV4nn8SGPc0efO6JdnkiZKChEyllmTiZzN87ld7N+x8Z9G9l09ybdgU9imu5HIVLOkhKSGNxqMHf3vZutB7fy743/jnZJIlGjoBAJ4Ydtf0hyQjIjpo7g6n9czcQlE9l2cFu0yxKJKJ1wJxJCctVkPrj6A15c9CIfrv+Q15a9BkCPhj24oNUFDGo5iGpx1cjMyaR6QnVqVK1BStUUalQL/ExKSKKK6fuYxDbtoxApoaN+lCXblvDh+g+Z8dUM5m6aW+zNlAwjuWpyIDwKhUj+cBHjayfWZkirIVSLrxahdyeVXUR2ZptZE6A5BdZC3H1OaWZaFgoKqSj2H9nP/Iz5VLEqJCUkkZWTxYHsAxzMPsiBI4GfB7MPHh9XaFrhYef7/xcv73A5b/7oTV06XcpF2K/1ZGaPAlcCK4G84GgHQgaFmQ0FngbigBfd/U9FtPkx8GCwvyXuflVJixeJpprVajKk1ZBy6cvdyczJzA+QiUsm8vCch3l9+etc1UX/JSS6SrRGYWZrgK7ufqTEHZvFAWuBwUAG8AUwyt1XFmjTBpgKnOfu35lZfXffEapfrVHI6SDvaB59J/Rl28FtPDb4MTbs3cDWA1tpVbcVP+39UxLiEqJdosSYSFw99msgAShxUABnAevd/WsAM5sCDCOwVnLMTcCz7v4dQHEhIXK6iKsSxxNDnqD/K/0Z9fdR35t2ZuMz6de0X5Qqk9NRSYMiE1hsZjMpEBbuHup01SbApgLDGUCfQm3aApjZXAKbpx509w9LWJNIpXZO83NYdMsi4qvE07xWc/6z+T+cP+l81u1Zx9aDW6lRtQZpSWmkJqWSlpSmO/lJ2JQ0KKYHH6eiqD1whbdzxQNtgAFAOvAvM+vs7nu/15HZzcDNAM2aNTvFMkRiV/eG3U8Yd92064psmxifGAiO6qmkJqXSpEYT2qa2pV1qO9qmtqVNahuFiZRKiYLC3V81s6oE1wCANe6eU8zLMoCmBYbTgS1FtJkf7Oub4L6QNgT2ZxSc/3hgPAT2UZSkZpHKpk96H+446w7ap7XnzCZnkpWTxe6s3ezK3MXuzODP4PCuzF35160qqGnNprRLa0fbum0DP4NB0qxWM12iRE6qpEc9DQBeBTYQWFNoambXFXN47BdAGzM7A9gMjAQKH74xDRgFvGJmaQSC6OtTeQMip4uUqik8feHTp/SaQ9mHWLdnHWt3r2XNrjWs3RP4OXnZZPYf2Z/frlpcNVrXbU37tPZc2u5ShrcfTo1qNcr7LUiMKulRTwuBq9x9TXC4LfC6u/cq5nUXAU8R2P/wkrs/YmYPAQvcfboFDhB/HBhK4LDbR9x9Sqg+ddSTSNm5OzsO7QgEyO41+T8XbV3Epv2bqB5fnWHth3FNl2sY0mqIjrKqBMJ+wp2ZLXX3rsWNiwQFhUj4uDufbfqMvy37G2+seIM9WXtIS0rjxx1/zDVdr6Fvel+dABijIhEULxHYEX1sg+fVQLy7X1+amZaFgkIkMrLzspmxfgaTl01m+prpHM49TMs6LRl71lju6ntXtMuTUxSJoKgG/Aw4m8A+ijnAc6dyAl55UVCIRN7+I/v5x6p/cP8n97P5wGZGdx/NmB5j+K+m/6WLHsYI3bhIRCIiMyeT+2bex/MLnycrN4tmtZrxi36/0B0AY0DYblxkZlODP5eZ2dLCj9LMUERiV1JCEk8OfZLtv9zOpOGTaFmnJXd+eCd/nPPHaJcmYRRyjcLMGrn7VjNrXtR0d/82bJWdhNYoRCqOvKN5XP/O9UxaOomL21xM+7T2dG3QlXOancMZdc6IdnlSQNiu9eTuW4NPdwFZ7n40eGhse+CD0sxQRCqPuCpxvDzsZeok1uHDrz7k468/5kheYNdlp3qduKTtJVzS7hL6NOmjE/pi2KmcR3EOUAeYDywAMt396vCWdyKtUYhUXLlHc1m7ey0fffUR7659lznfziH3aC5pSWm0T2tPo5RGNEppRMs6Lbm19626MVMEReKopy/dvaeZjQWqu/ufzWyRu/cozUzLQkEhEjv2Ht6bf0fAY5dKX7N7DQC1E2tz3hnn0apOq/xLiXRp0IXaibWjXHXlFInLjJuZ9SNw/sSYU3ytiJymaifWZmTnkYzsPDJ/3J6sPVzzj2vYlbmLlTtX8t7a98jOywYgzuI4eO9B9h/ZT3JCMslVk6NVuhRQ0g/7u4DfAm+7+wozawnMCl9ZIlJZ1a1el/evfj9/OO9oHhv3beSuGXcxfc10qj9SHYD2ae1Z9bNV0SpTCtB5FCJSIRzOPczUFVNZv2c9j859lOy8bOol1aNJzSY0qRF4XNz2Yi5td2m0S41JYdtHYWZPuftdZvYuJ95LAneP+G9MQSFS+W3Yu4FJSyax+cBmMvZnsPnAZr7d+y3fHf6O28+8nbv63sXOzJ20S21Hnep1ol1uTAhnUPRy94Vmdm5R093909LMtCwUFCKnp5y8HO75+B6enP9k/rjE+ESu7nI1l7W/jLOanEX95PpRrLBii8RRT8kEz6MIDscB1dw9szQzLQsFhcjp7dMNn/L1d18H9nWse59JSyeRlZsFQLvUdgw6YxCDWg5iQIsB1K1eN8rVVhyRCIr5wPnufjA4nAJ85O7/VZqZloWCQkQKOpR9iC+3fsn8jPnM2jCLOd/O4VDOIQyjZ6OeDDpjEOedcR5nNzv7tD6KKhJBsdjduxc3LhIUFCISSnZeNv/Z/B9mfj2Tmd/MZH7GfHKO5pBQJYHBrQbzzsh3iK9y+h3dH4mgmAuMdfcvg8O9gL+4e7/SzLQsFBQicioOZR/i3xv/ze9m/Y4vtnzBiA4jaF2nNc1rN+envX962tyIKRJBcSYwBdgSHNUIuNLdF5ZmpmWhoBCR0sjOy+bX//w1L3z5Apk5gd2rjWs05rwzzmNgi4EMbDGQ5rWbV9r7a0TkfhRmlgC0I3DjotXunlOaGZaVgkJEyurAkQO8tuw1Zm2YxSfffMLOzJ0AXNj6wu+dDFiZhO1+FAVmkATcA9zp7suAFmb2w9LMUEQk2mpUq8EtvW9hyhVT2P7L7cy4Zgat67bmg/Uf8PyC56NdXoVT0nWsl4Fs4Ng+iQxAdyoRkZhnZgxpNYTVP1tN5/qdmbJiSrRLqnBKGhSt3P3PQA6Au2cR2AQlIlIpxFWJo35yfeZunEv3cd15fdnr0S6pwihpUGSbWXWCl/Ews1bAkbBVJSISBQ8PfJjbzryNJduXcNU/ruK+mfcxY/0MsnKyol1aVJX0qKfBwP1AR+Aj4AfAaHefHdbqiqCd2SISbn/94q+M/3I8y7YvI8/zSIxPpHP9zrRLbZd/74wO9TrQpX6XmDm8NqxHPVlgKaQDmUBfApuc5rv7rtLMsKwUFCISKZk5mcz5dg4fffURy3csZ83uNWzctzF/eu/GvfnDgD9RbZiVAAAN6klEQVRwYesLK3xgROI8ioXu3qs0MyhvCgoRiabMnEzW71nPZ5s+49G5j7Jh7wb6NOnDwwMfZnCrwdEu76QiERTPAq+4+xelmUl5UlCISEWRnZfNq4tf5Rcf/YID2QdoVacVDVMaYma8NuI1mtZqGu0S80UiKFYSONluA3CIwOYnd/eupZlpWSgoRKSiWb1rNWOmj+GoH2V+xvz88Z3qdeL67tdzV9+7MLOonvUdiaBoXtR4d/+2NDMtCwWFiFR0S7cv5aOvPuJX//xV/rjkhGTe+vFbdKrXKSprGuG8cVEicCvQGlgGTHD33FJVWU4UFCISKxZuWci4BeN4cdGL+eOqx1dn8ojJjOgwIqK1hDMo3iBwkt2/gAuBb939zlJVWU4UFCISa7Lzslm2fRmZOZmMmDqChCoJrLhtRURv4xrOaz11dPdr3P154ArgnNLMRETkdFY1riq9GvfinObn8PTQp9l6cCt1/1yXFk+14I3lb3A493C0SwypuKDIv0JstDc5iYhUBld1uYp//uSfAHy771tG/n0k9868N8pVhVZcUHQzs/3BxwGg67HnZra/uM7NbKiZrTGz9Wb2mxDtrjAzN7NSrRaJiMSS81ueT94Deay9fS0AT85/kuqPVCf1z6lMWz0tytWdKOT9AN09rrQdm1kc8CwwmMDVZr8ws+nuvrJQuxrAHcDnpZ2XiEisqWJVaJPahvdGvcf8jPkcyTvCY589xhPznqB7w+60qN0i2iXmC+eNY88C1rv71wBmNgUYBqws1O5h4M/AL8NYi4hIhXRx24u5uO3FAOzJ2sPry1/nnJfP4Wdn/oxbet0S0R3eJxPOsz+aAJsKDGcEx+Uzsx5AU3d/L1RHZnazmS0wswU7d+4s/0pFRCqAFy99kc9u+Iw9WXv47czfMn3N9GiXBIQ3KIq6Qlb+sbhmVgV4EvhFcR25+3h37+3uvevVq1eOJYqIVCzdGnZj1c9WAZDneVGuJiCcQZEBFDz9MB3YUmC4BtAZmG1mGwhcmXa6dmiLiARk7M+gJFfPCLdwBsUXQBszO8PMqgIjgfz1KHff5+5p7t7C3VsA84FL3V1n04nIaa12Ym1qJ9bm97N/z4yvZkS7nPAFRfC8i9uBGcAqYKq7rzCzh8zs0nDNV0Qk1tWsVpNPR38KwIz1M8g7Gt1NUOE86gl3fx94v9C4B07SdkA4axERiSW1E2sD8NTnT7F0x1Le+tFbUTsCKnrXvBURkZNqVqsZ88bM40+D/sSsb2ZR77F6LN2+NCq1KChERCqovul9uefse3j2omfJ8zy6jevGN999E/E6FBQiIhXcrb1v5Tc/CFwFqdNznXh71dus3LmSDXs3cDD7YNjnH9Z9FCIiUnZmxh197uCLLV8w59s5jJh6/F4WifGJ/Oq/fsVDAx8K3/wrwjG6p0L3oxCR01lWThazN8xm/5H9ZOZk8tLil1iwZQFZ92WFfF1Z7kehNQoRkRhSPaE6F7a5MH949a7VLNgS3i/P2kchIhLDzIzDuYcZ9fdRYZuHgkJEJIZd3/16AD5Y90HY5qGgEBGJYe3S2jH2rLHkHM1h7e61YZmHgkJEJMZ1b9idI7lHuPi1i8PSv4JCRCTG3dDjBm7pdQtff/c1D31a/ofJKihERCqBBwc8SI+GPZi8dHK5962gEBGpBOol16Ntatuw9K2gEBGRkBQUIiKVyLo965j1zaxy7VNBISJSSTSv1RyAIZOH8HnG5+XWr4JCRKSS+O9B/83a29fSILkBv53523LrV0EhIlJJmBltUtvQqX4nVu1axaHsQ+XSr4JCRKSSSYxPZNvBbaT8Twr3zry3zP0pKEREKpmnhz7Nnwb9CYBlO5aVuT8FhYhIJdOidgvuOfseejbqWS79KShERCqpmtVqMm/TPBZuWVimfhQUIiKV1HMXPUee5/H4vMfL1I+CQkSkkupQrwONUhqRlRv6NqnFUVCIiFRiqUmpTFs9rUx9KChERCqxd0e9yzNDnylTHwoKEZFKrHZibcb2GVumPhQUIiISkoJCRERCUlCIiEhICgoREQlJQSEiIiGFNSjMbKiZrTGz9Wb2myKm/9zMVprZUjObaWbNw1mPiIicurAFhZnFAc8CFwIdgVFm1rFQs0VAb3fvCrwF/Dlc9YiISOmEc43iLGC9u3/t7tnAFGBYwQbuPsvdM4OD84H0MNYjIiKlEM6gaAJsKjCcERx3MmOAD4qaYGY3m9kCM1uwc+fOcixRRESKE86gsCLGeZENza4BegOPFTXd3ce7e293712vXr1yLFFERIoTH8a+M4CmBYbTgS2FG5nZ+cB9wLnufiSM9YiISCmEc43iC6CNmZ1hZlWBkcD0gg3MrAfwPHCpu+8IYy0iIlJKYQsKd88FbgdmAKuAqe6+wsweMrNLg80eA1KAN81ssZlNP0l3IiISJeHc9IS7vw+8X2jcAwWenx/O+YuISNnpzGwREQlJQSEiIiEpKEREJCQFhYiIhKSgEBGRkBQUIiISkoJCRERCUlCIiEhICgoREQlJQSEiIiEpKEREJCQFhYiIhKSgEBGRkBQUIiISkoJCRERCUlCIiEhICgoREQlJQSEiIiEpKEREJCQFhYiIhKSgEBGRkBQUIiISkoJCRERCUlCIiEhICgoREQlJQSEiIiEpKEREJCQFhYiIhKSgEBGRkBQUIiISkoJCRERCUlCIiEhICgoREQkprEFhZkPNbI2ZrTez3xQxvZqZvRGc/rmZtQhnPSIicurCFhRmFgc8C1wIdARGmVnHQs3GAN+5e2vgSeDRcNUjIiKlE841irOA9e7+tbtnA1OAYYXaDANeDT5/CxhkZhbGmkRE5BTFh7HvJsCmAsMZQJ+TtXH3XDPbB6QCuwo2MrObgZuDg0fMbHlYKo49aRRaVqcxLYvjtCyO07I4rl1pXxjOoChqzcBL0QZ3Hw+MBzCzBe7eu+zlxT4ti+O0LI7TsjhOy+I4M1tQ2teGc9NTBtC0wHA6sOVkbcwsHqgF7AljTSIicorCGRRfAG3M7AwzqwqMBKYXajMduC74/ArgE3c/YY1CRESiJ2ybnoL7HG4HZgBxwEvuvsLMHgIWuPt0YAIwyczWE1iTGFmCrseHq+YYpGVxnJbFcVoWx2lZHFfqZWH6Ai8iIqHozGwREQlJQSEiIiFV2KDQ5T+OK8Gy+LmZrTSzpWY208yaR6POSChuWRRod4WZuZlV2kMjS7IszOzHwb+NFWb2WqRrjJQS/B9pZmazzGxR8P/JRdGoM9zM7CUz23Gyc80s4JngclpqZj1L1LG7V7gHgZ3fXwEtgarAEqBjoTa3AeOCz0cCb0S77igui4FAUvD5T0/nZRFsVwOYA8wHeke77ij+XbQBFgF1gsP1o113FJfFeOCnwecdgQ3RrjtMy6I/0BNYfpLpFwEfEDiHrS/weUn6rahrFLr8x3HFLgt3n+XumcHB+QTOWamMSvJ3AfAw8GfgcCSLi7CSLIubgGfd/TsAd98R4RojpSTLwoGawee1OPGcrkrB3ecQ+ly0YcBED5gP1DazRsX1W1GDoqjLfzQ5WRt3zwWOXf6jsinJsihoDIFvDJVRscvCzHoATd39vUgWFgUl+btoC7Q1s7lmNt/MhkasusgqybJ4ELjGzDKA94GxkSmtwjnVzxMgvJfwKItyu/xHJVDi92lm1wC9gXPDWlH0hFwWZlaFwFWIR0eqoCgqyd9FPIHNTwMIrGX+y8w6u/veMNcWaSVZFqOAV9z9cTPrR+D8rc7ufjT85VUopfrcrKhrFLr8x3ElWRaY2fnAfcCl7n4kQrVFWnHLogbQGZhtZhsIbIOdXkl3aJf0/8g77p7j7t8AawgER2VTkmUxBpgK4O7zgEQCFww83ZTo86SwihoUuvzHccUui+DmlucJhERl3Q4NxSwLd9/n7mnu3sLdWxDYX3Opu5f6YmgVWEn+j0wjcKADZpZGYFPU1xGtMjJKsiw2AoMAzKwDgaDYGdEqK4bpwLXBo5/6AvvcfWtxL6qQm548fJf/iDklXBaPASnAm8H9+Rvd/dKoFR0mJVwWp4USLosZwBAzWwnkAb9y993Rqzo8SrgsfgG8YGZ3E9jUMroyfrE0s9cJbGpMC+6P+T2QAODu4wjsn7kIWA9kAteXqN9KuKxERKQcVdRNTyIiUkEoKEREJCQFhYiIhKSgEBGRkBQUIiISkoJCpBAzyzOzxWa23MzeNbPa5dz/aDP7S/D5g2b2y/LsX6S8KShETpTl7t3dvTOBc3R+Fu2CRKJJQSES2jwKXDTNzH5lZl8Er+X/hwLjrw2OW2Jmk4LjLgneK2WRmX1sZg2iUL9ImVXIM7NFKgIziyNw2YcJweEhBK6VdBaBi6tNN7P+wG4C19n6gbvvMrO6wS7+DfR1dzezG4FfEzhDWCSmKChETlTdzBYDLYCFwD+D44cEH4uCwykEgqMb8Ja77wJw92MXp0wH3ghe778q8E1EqhcpZ9r0JHKiLHfvDjQn8AF/bB+FAf8T3H/R3d1bu/uE4PiiroXzv8Bf3L0LcAuBC9GJxBwFhchJuPs+4A7gl2aWQOCiczeYWQqAmTUxs/rATODHZpYaHH9s01MtYHPw+XWIxChtehIJwd0XmdkSYKS7Twpeonpe8Cq9B4FrglcqfQT41MzyCGyaGk3grmpvmtlmApc8PyMa70GkrHT1WBERCUmbnkREJCQFhYiIhKSgEBGRkBQUIiISkoJCRERCUlCIiEhICgoREQnp/wOsOyPMuSpPdwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Adaboost Classifier , filled the hyperparameter from the Grid Search\n",
"classifier = AdaBoostClassifier(algorithm='SAMME.R',\n",
" base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=1,\n",
" max_features=None, max_leaf_nodes=None,\n",
" min_impurity_decrease=0.0, min_impurity_split=None,\n",
" min_samples_leaf=1, min_samples_split=2,\n",
" min_weight_fraction_leaf=0.0, presort=False, random_state=None,\n",
" splitter='best'),\n",
" learning_rate=0.5, n_estimators=120, random_state=None)\n",
" \n",
"# Fitting the training set into classification model\n",
"classifier.fit(X_train_new, y_train_new)\n",
" \n",
"# Predicting the output on test datset\n",
"y_pred_new = classifier.predict(X_test_new) \n",
"\n",
"try:\n",
" y_pred_new_score = classifier.decision_function(X_test_new)\n",
"except:\n",
" y_pred_new_score = classifier.predict_proba(X_test_new)[:,1]\n",
" \n",
"#Confusion Matrix and Precision Recall Curve\n",
"plot_confusion_matrix('Adaboost Classifier', y_test_new, y_pred_new)\n",
"plot_prec_rec_curve('Adaboost Classifier', y_test_new, y_pred_new_score)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
" Logistic Regression \n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATMAAAErCAYAAACy3WSoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAHktJREFUeJzt3Xd8leXdx/HPjwQIq6AIWJEluHChgOIqKqMVlQrugaX6iFLrfJS62qotaKsVVxXUivOp2ip1oYCCCIpU9hABQTZqWMqGJL/nj/sOhJB1kpyc5OL7fr3y4px7/s455Jvrus49zN0REanqqqW6ABGR8qAwE5EgKMxEJAgKMxEJgsJMRIKgMBORICjMRCQICjMRCYLCTESCkJ7qAqoyS89wq1E31WVIAhpu2ZDqEiRBq9m+2t0bFbecwqwMrEZd0g/tmeoyJAHnTR+T6hIkQUNZsqQky6mbKSJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFIT3UBUjr71q/DyKG3AdCkYX2yc3JYvW4DAMcc2pzBL43kdw+/BsDNfX5O3doZ/GnoW2Xa5wXdO3L7VWeTllaN98fP5I5H/7Vz3vndOvL7a3+JuzNz/jKuuPNpALZMfpbZXy8HYNm3a+h90+NlqiE0T2YtZMWseTufDzm3Hw1bHkj/t54mc9EyqmfUZPKr7/DefY+WaT9Njz6cy4YMpGbd2qxZvJznLruJrRs2RvOOOozLhg4i4yd18Zwc7u/4S7K2bSvT/lJBYVZFrf1hEx0vvgeA31/zSzZu3srgl0YC8OPnQzn3jOP463PvsWb9xnLZ377163D/TRfS6bL7WL1uA/+47ypOP/5wxv53Lm2aN2bAlT3o3HcQ6zdsptE+9Xaut2Xb9p11yp62b9nKwGN77DatYcsDWTD+C5485ypq1K7F3dNHMOvdj1g6dXap99Pn2Qd449ZBLPhkEif9+gK63daPd/7wMNXS0vj1y4MZ1ucWVsycS519G5C9Y0dZX1ZKqJsZoKzsbP7x5jhuvKx7uW2zVdNGLFj63c7W35hJX9KrS3sArurVmadeH8P6DZsByIyXkbLbvnkLS6bMplHrFmXaTpNDD2LBJ5MAmDt6AseddyYAbbufyoqZX7Fi5lwANq1dj+fklK3oFFHLLFBPvTaGKa/fx0MvvF/oMp07HMZDt168x/TNW7fTue+g3aYtXPY9h7bcnxY/bcjy79fR8/RjqZEe/fc5uEUTAD4edgdp1arxp6FvMeqzqBWRUaM6E1/5A1lZ2Tw4bARvfzytvF5iEGrUyuCuaSMAWPPNMob0vma3+XX2bcBBnY5lxJ8e2216zbp1uHX8vyjIc5fewKq5X+82beXs+RzTsxsz3h7NcRf0YJ9mPwWg8SEH4e5c/8GL1Gu0L5NffYdRDw4tr5dXoSo0zMxsf+ARoCOwDVgM/Afo6e5nV8D+TwPGxvt7J572LvCQu3+c7P1XpA2btvLKu5/x20u6smXr9gKXGTf5qxJ3Addv2Mz1g17ilb/0J8dzmDhjIQc1bQRAWloabZo3oevVf+XAxvsw5rnbOfb83/PDxi207nEbqzLX06ppI0Y+fRuzv17OouWZ5fUyq7yCupkAB5/akTunvofn5PDBA0+x6ssFu83ftnFTgesV5sUrB3DRY3+kxx9uYObbH5K1PepKpqWn0eaUjtzfsSfbN2/h5o/+jyVTZjFvzGdle2EpUGFhZmYGDAdecPeL42ntgHPKuN10d89KYJXlwF3AO2XZb1Xw2CujmfTPP/LiWxMKnJ9IywzgvU9m8N4nMwC4qndncrKj7siK79cyaeYisrKyWbxyNfMXf0ub5k2Y8uViVmWuB+CbFZl8Mvkr2h3WXGFWArljZoVJtGX23byFPPbzKwBofHArjjrrdADWLf+WBeMmsWnNOgBmjxhL8+OOVJgV43Rgh7sPyZ3g7tPNrAHQxcz+DRwJTAEud3c3s8VAB3dfbWYdiFpQp5nZPcABQEtgtZmNAnoCtYHWwHB3H1BIHTOA6mbWzd1H551hZl2Ah4jely+A/u5e9b7Wia37cRNvjPqCvueeygsFBFoiLTOARvvUI3PdBhrUq821F57OpQOeAuDtsdO46Bcn8NI7n9KwQV0ObrE/36zIpEG92mzeup3tO7Jo2KAuJ7Y7mL+98EF5vby9WqIts3qNGrIhcw1mRo+7f8snQ14B4MuR4+g+4Bqq18oge/sODu58Ah8N/keyyk6qigyz3KAqyLHAEcBK4FPgZKDg5sQu7YFT3H2LmfUF2sXb2QbMM7PH3X1ZIev+Of7ZGWZmlgE8D3Rx9/lm9iLQn6hbXGUNfmkk/S86o1y29fCASzn6kGYADHz6bRYs/Q6AUZ/NpuuJRzDjjT+TnZ3DHY+8ztofNtHpmNY8edevyHGnmhkPDhvB3EUry6UWSUzHS3rS+bo+AEx7cySfDYtadZvX/8iHDz/LHV+8jbszZ8RYZo8Ym8pSS83cvWJ2ZHYD0Mrdb843/TTgLnfvFj9/CvjU3V8upmXm7n5vvE5f4GR3vzp+/j4w0N0nFLCvW939bDMbB9wN/I6oNbYOeNzdfxYv2wW4zt1759tGP6AfANXrtK9+xIXl8fZIBbly+phUlyAJGsqSKe7eobjlKvLQjDlEramC5O3KZbOrxZjFrhoz8q2zqbhtmFkvM5se/+R/MwYSjZ3lsqKKz+XuT7t7B3fvYOn5SxKRVKnIMBsD1DSzq3MnmFlHoHMR6yxmVwCel+gO3X24u7eLfybnmzcK2Ac4Jp70FdDSzNrEz/sA4xLdp4ikRoWFmUf92V5ANzNbaGZzgHuIxskKcy/wqJmNJ2ptlbeBwIFxfVuBXwP/MrNZQA4wpIh1RaQSqbAxsxBVq72fpx/aM9VlSAI0Zlb1VMYxMxGRpFGYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQUgvbIaZ/aSoFd39x/IvR0SkdAoNM2AO4IDlmZb73IHmSaxLRCQhhYaZuzeryEJERMqiRGNmZnaxmd0ZPz7QzNontywRkcQUG2Zm9gRwOtAnnrQZGJLMokREElXUmFmuk9z9ODObBuDua82sRpLrEhFJSEm6mTvMrBrRoD9m1hDISWpVIiIJKkmY/R14A2hkZvcCE4C/JLUqEZEEFdvNdPcXzWwK0DWedIG7z05uWSIiiSnJmBlAGrCDqKupswZEpNIpybeZdwH/BA4ADgT+z8zuSHZhIiKJKEnL7HKgvbtvBjCzgcAU4P5kFiYikoiSdBmXsHvopQOLklOOiEjpFHWi+WCiMbLNwBwzGxk/7070jaaISKVRVDcz9xvLOcB7eaZ/nrxyRERKp6gTzf9RkYWIiJRFsV8AmFlrYCDQFsjIne7uhySxLhGRhJTkC4DngWFE1zE7E3gdeDWJNYmIJKwkYVbb3UcCuPtCd7+b6CoaIiKVRkmOM9tmZgYsNLNrgRVA4+SWJSKSmJKE2c1AXeAGorGz+sCVySxKRCRRJTnRfFL8cAO7LtAoIlKpFHXQ7HDia5gVxN17J6UiEZFSKKpl9kSFVSEiUkbmXmjjS4pxUPVaPqhBq1SXIQlIs+KXkcrlwsy5U9y9Q3HL6dpkIhIEhZmIBKHEYWZmNZNZiIhIWZTkSrPHm9ksYEH8/BgzezzplYmIJKAkLbPHgLOBNQDuPgOdziQilUxJwqyauy/JNy07GcWIiJRWSU5nWmZmxwNuZmnA9cD85JYlIpKYkrTM+gO3AM2B74BO8TQRkUqjJOdmfg9cXAG1iIiUWkmuNPsMBZyj6e79klKRiEgplGTM7MM8jzOAXsCy5JQjIlI6Jelmvpb3uZm9BIxOWkUiIqVQmtOZWgEtyrsQEZGyKMmY2Tp2jZlVA9YCtyezKBGRRBUZZvG1/48huu4/QI7rmkEiUgkV2c2Mg2u4u2fHPwoyEamUSjJm9l8zOy7plYiIlEFR9wBId/cs4BTgajNbCGwiuhmwu7sCTkQqjaLGzP4LHAecW0G1iIiUWlFhZhDdxbyCahERKbWiwqyRmd1S2Ex3fzgJ9YiIlEpRYZZGdCdz3c9GRCq9osJslbvfV2GViIiUQVGHZqhFJiJVRlFh1qXCqhARKaNCw8zd11ZkISIiZaGbAItIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQSjqvplSyV347Sx+mLtg5/MJV/yWOs2acsZbL/DJZb9h5aiPATj1lSeZ9/dhfP/ZF2XaX+fXhtKw/TFkTprK+Mt+s3N6l3deIr1uHQAy9tuXNVNnMeFX11OvTStOeGwg+xzdlpmDHmXek8PKtP+qrsY+9en8RvQeZDTeD8/OZtuadQA0OPIw1s/+CktL48cFi/ji+jvI3rK11Puq16YVHR8bSIOj2jL7/keZH7/3dVu35MRnHt65XJ0WBzLnL4+z4OmX6PT036jXphUA1X9Sjx0/bmD0Gb1LXUNFU5hVYdlbtzHy9N3/s9Vp1pTNK1bR9uZrdoZZefnqiWGk1cqg9a8u3G36R+f02fn45GGPsOL9MQBsX/8DU+8cRNMeumshwPZ1P+wMh7a3XUfWps07Q6bXN5N3zjv+qb9y0K8uYsGQF0q/r/U/MO3OQTQ9c/f3fuPCxbsCqlo1zpn5MStGfATA5/3+d+dyR987gB0/bij1/lNB3cwArZszjx0bNtCk84nlut3vxn9O1sZNhc5Pr1ObJqecwPL4l2Pb6rWsnT4b35FVrnWEbvXnU6jbqnmZtrFt9VrWTZ9NTlbh732Tn3Vi4+KlbF6+co95zXr+nGVvjihTDRVNLbMqLC2jJj8f+yYAm5YsZ0LfG3bO+/LhoRx1xw18N25ioesfdt2VtDj/7D2mZ06czNQ7ByVcz4FndS028KRolpbG/mecyrdjx+8xL283MK/5Q55nyetvJ7yvZuf2YGkBgbVfp/ZszVzDxm+WJLzNVEpqmJnZ/sAjQEdgG7AY+A/Q0933/C0q/31PBE5w9+/jaU8D8939oWTuu6IU1M3Mlfn5FAAadWpf6Ppf/f05vvr7c+VWT/PeZ7Ho5X+X2/b2JmkZNek2JvrDlPn5FL555c09lsnbDSwrq16dA35+OrMGDt5jXvPeZ7FseNVqlUESw8zMDBgOvODuF8fT2gHnlHG76e5ebL/F3b81s78BfwX6mllH4HjgN0WvGY4vBw+l7c39yMnKLnB+ebbMauxTn4bHHsWEX11fqlr3dtlbtxU72F6eLbOfdjmVdbO+ZFvmmt2mW1oaTc/qyoddL0hoe5VBMltmpwM73H1I7gR3n25mDYAuZvZv4EhgCnC5u7uZLQY6uPtqM+sAPOTup5nZPcABQEtgtZmNAnoCtYHWwHB3H1BADU8Cn5tZZ6JQu87ds8ysOvAgcBJQE3jE3YeZWTPgVaAOkAb8j7tPKuf3pcJ8+/FnHHX7DdTav1GB88uzZdas5y9YOfpjcrZtL5ftyZ7Ks2XWrFePAsfEGv/sRDYs+IYtq74rt31VlGSGWW5QFeRY4AhgJfApcDIwoZjttQdOcfctZtYXaBdvZxswz8wed/dleVdw9xwz6w98CLzh7p/Gs/oDy939eDPLACbFAXkF8Ka7/83M0oBa+Ysws35AP4D9qlX+Icc5g4fys5f/Xi7b6vLOS9Rr04r0OrXpOWMM/73p93w7NnpLW/Q6ky8fe3a35TMa70f30a9TvV5dPCeHQ6/pw4iTz9GYWgWo2Xg/uo7a9d4f3K8PI0+J3vu0Whk06XwSU269Z4/1mvc6k6VVsIsJYO6enA2b3QC0cveb800/DbjL3bvFz58CPnX3l4tpmbm73xuv0xc42d2vjp+/Dwx09wID0cw+A37r7lPj5+8CbYDcA3nqA32BGkStuZeA/7j7zKJe40HVa/mgBns2+6XySrNUVyCJujBz7hR371Dccsk8NGMOUWuqINvyPM5mVwsxK09NGfnWyf/nfI9tmFkvM5se/+R98TnxTy4DrnH3dvFPK3cf5+6jibrH3wGvmtlFRb1AEak8khlmY4CaZnZ17oR4EL5zEessZlcAnpfoDt19eJ6AmlzEoiOB35hZelzX4WaWYWYtgVXuPhR4kagbKyJVQNLCzKP+ay+gm5ktNLM5wD1E42SFuRd41MzGE7W2kuVJYCkwzcxmA08QDfh3A2aY2TTgTKB8BptEJOmSNma2N9CYWdWjMbOqpzKMmYmIVBiFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQFGYiEgRz91TXUGWZWSawJNV1JMl+wOpUFyElFvLn1cLdGxW3kMJMCmRmk929Q6rrkJLR56VupogEQmEmIkFQmElhnk51AZKQvf7z0piZiARBLTMRCYLCTESCoDATkSAozKRMzMxSXYMkLsTPTWEmpWZm5vE3SGZ2spm1M7ND885PXXVSmHyf20Vm1tHM0lJdV1mlp7oAqbry/ELcAlwIrAS2mNlEd3/C9VV5pZTnc7sOuAb4pbtnp7aqslOYScLMrB6w2d2zzaw5cD7QBUgDjgRuMrOv3f2DVNYphTOztsBVQA93X25mZwK1gKnuvjilxZWSwkwSYmaHAHcBT5jZ1HhyBtExiz+a2SxgIdAsVTXKnvJ2LWPLgI+Av5nZeuAgIBNoCDyTghLLTGNmkhB3nw9sJOqeHOXuS4GJROFW2903AFuAg0HjZpWBmVXL07U8xcxyW9HjgC+Awe7eDZgFHFr4lio3nQEgJWJmjYAd7r4+fj4QaAX8FfgR+C3QFXgd6AP0dPd5KSpXCmBmNwHnAfOBw4Br3X1WPO9y4Gbgcnefm7oqS08tMymWmbUDVgAjzOxaMzvS3e8CviYad9nX3W8BHiT6RTlHQZZ6ZnaUmXWOHx8HnObupwIzgc3AnHheO6Ixz75VNchALTMpATM7APgz0AlYACwFWgKvAdcCs4Eh7j49VTXK7sysBvAEMMXdh5rZ/sCVwIFAa+Bsd99hZr2Bd4F0d9+cuorLTi0zKZa7ryQKs2FE42H3AC8ADYD6QD/g0fgXSFIod4zS3bcDo4Hj4lm1gaOBw4FL4iC7AvgjsE9VDzJQy0wSYGatiVpiDYFb3X2tmTUjGjtb6e5fp7RAyT3kYh5QnWgw/wGiVli2mXUnGhdbQHQkwylEwTYnVfWWJ4WZFCvfEeMHAVcDTYHfufuqlBYnO5lZLaLDLZYS/cF5AbgPOM/dp8XLtAcOABoDY919UYrKLXcKM9lN/uORzKwagLvnxH/1qwMbiP7C1yT6RiwnJcXKHuJAqwH0iP/9HfAK8JS7r01lbcmmMJOd8rXA2gLr4/EyzOx44B2iQy4mmVkLYIu7f5+6iiWvAg6MJR74fw6YDDzq7mtSUlwFUJjJHszsRqAv0aDxvcAY4JfAYncfmcLSpATig2RzzCwtHitrSnT83whgUKjnzOp0JtmNmfUAzgDaA78gOtK/GvB27vhYQS0AqXjFDAkcBVQzs9nuvsLMzgOqh/y56dCMvVze043M7AiisZb93D3H3UcQ3SjjAuBcM6sPu666IKmTf0jAzA6IP7OceEhgFFAnbplVc/dv3X1ZaqtOLoXZXi7PL8SVQH9gJPCdmQ0ws3R3f49ozOW01FUp+eX53G4kGuAfa2aXxmNkxxIdzf9ZvOxe8QWNupmCmZ0EnAuc7+7b49ZaN+BmMxvs7m+Z2Yfuvim1lUpeGhLYnVpme7n4L/m1RJfsOSCePAr4AGhLdAI5ROfySQppSKBoCrO9WHxE+EbgYaLzK3ub2YHuvpXo4MtX45+96peistKQQNF0aMZeysxqE4VYY6JL9hwNXEZ0JYw34+uUSSUTDwnczq4hgZ5EQwJLia5LlmVmdfbGIQG1zPZS8YnF9wGLgH8AM4gGktsBZ4dwg4vQaEigaGqZ7WXii/A1dveH4+dNiC6DXRe4DjgKWOru36auSskvHhL4DGgD/C8wDXg9vn5/BtAZmLE3f25qmQUu90DKPBYR3XDkNwDu/h3R2MsJRN2U/+7NvxCVUTwk0Bt4keiKF08SXbP/fDNr7u5b3X3k3v65KcwCFn8tnxM/7mRmB8XHHp1FFGjXxYvWBt4A/pSiUqUIGhIoGXUzAxWfKH6Nu98Yf/t1G9G1+l8FhhD9ZX+e6C/9SUD3+GYlUkloSCAxCrMAmVkHoiuMXgR8A9QBLgdOBC4FlhBdUrkGsD+wMfRTXaqC3BPE8zw/ieiPzwPu/mQ87Syim8iMd/drU1Np5aRuZmDM7GxgKJAFPAVsB45092x3n0D0y9ESuBWo7+5zFWSppyGBstPpTAGJ78TzCNDH3SfG02YDLczsUXe/0d0/MbPqwNlE3U5JsdwhAWC3IQEzyx0S6AU8b2Yns2tIYEXKCq6k1M0MiJndAmS7+6NmViM+qDKN6FrwNxFdbHFAvGwtd9+SynpFQwLlSd3MAOQ5Z68V0Ch+vCPuumQDc4HxQHszeyCev7WCy5R8NCRQvtTNDECe8yaHA3eaWXt3n2Jm1eJB5Wwz+ynRreI+zLeOpICGBMqfupkBMbM6ROMttYHX3H1KPP0S4AbgIp1zWTloSKD8qZsZkPjk4meIr4RhZg+Z2Z+JbvTaT0GWehoSSB61zAJk0e3G2gNdgVVE90fUAbGViJmdAdxJdO/RKfFpZxYPCQwAVgIf6oDYklOYiaSAhgTKn8JMJEXiW8BdBXQBviDqTp4PXODus1JZW1WkMBNJIQ0JlB+FmYgEQd9mikgQFGYiEgSFmYgEQWEmIkFQmIlIEBRmklRmlm1m081stpn9K745R2m3dZqZvRs/7mlmtxexbIPcm7YkuI97zOzWkk7Pt8zzZnZ+AvtqGZ9cLuVAYSbJtsXd27n7kUSXuNntUs8WSfj/obu/7e4PFLFIAyDhMJOqS2EmFWk80CZukcw1syeBqUAzM+tuZhPNbGrcgqsLYGa/MLOvzGwC0e3WiKf3NbMn4sdNzGy4mc2If04CHgBax63CB+PlbjOzL8xsppndm2dbd5nZPDP7kOiqFUUys6vj7cwwszfytTa7mtl4M5sfX68MM0szswfz7Puasr6RsieFmVQIM0sHzgRyT9M5FHjR3Y8FNgF3A13d/ThgMnCLRTe3fQY4BziV6EqrBXkMGOfuxxBdtXUOcDuwMG4V3mbRTXQPBo4nukVbezP7mZm1By4GjiUKy44leDlvunvHeH9ziU5JytWS6Ia8ZwFD4tdwFfCDu3eMt3+1mbUqwX4kAbo4oyRbLTObHj8eT3TfxwOAJe7+eTy9E9AW+DS+Qk4NYCJwGPCNuy8AMLOXgX4F7OMM4AqA+DI6P5jZPvmW6R7/TIuf1yUKt3rA8PjelJjZ2yV4TUfGl1ZqEG9nZJ55r8c3JllgZovi19AdODrPeFr9eN86bakcKcwk2ba4e7u8E+LA2pR3EjDa3S/Jt1w7oLzOtzPgfncfmm8fN5ViH88D57r7DDPrC5yWZ17+bXm87+vdPW/oYWYtE9yvFEHdTKkMPgdONrM2AGZW28wOAb4CWplZ63i5SwpZ/yOgf7xumpn9BNhA1OrKNRK4Ms9YXFMzawx8AvQys1pmVo+oS1ucesCq+JLWl+Wbd0F8ufLWRDdanhfvu3+8PGZ2SHwJIClHaplJyrl7ZtzC+aeZ1Ywn3+3u882sH/Cema0GJgBHFrCJG4GnzewqIBvo7+4TzezT+NCH9+Nxs8OBiXHLcCNwubtPNbPXgOlEd0IaX4KSfw9Mipefxe6hOQ8YBzQBrnX3rWb2LNFY2tT4SrOZwLkle3ekpHTVDBEJgrqZIhIEhZmIBEFhJiJBUJiJSBAUZiISBIWZiARBYSYiQVCYiUgQ/h+q76AzbxbIAQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Recall=0.509 \n",
"Precision=0.648\n",
"F1=0.570\n",
"Average precision-recall score: 0.608\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xl8VPXZ///XlRAIgRCWsCdsssgeBUXqAnUDtYVW3FBBFLW2db/v9vZbrbVau3mjFjeqyK2iFJdfFVSqVSuuBAnIriwKmoTFAJKEnZDr98cMIUCYDElmJhPez8cjD+acOfM515yEec85n3M+x9wdERGRI0mIdQEiIlK7KShERCQkBYWIiISkoBARkZAUFCIiEpKCQkREQlJQSFwxs2VmNrSSZTqY2TYzS4xSWRFlZuPM7ONy025mXWNZkxxbFBRSI8xsrZntDH5AbzSz/zOzxjW9Hnfv7e6zK1nmW3dv7O77anr9wQ/p7cH3mW9mD9a2QDKzYWb2oZkVm1mBmX1gZiNiXZfELwWF1KQfu3tj4ETgJOCuQxewgHj/u+sffJ9DgEuBa2JcTxkzuwh4GXgOyABaA3cDP65CW3XhdyU1QH8EUuPcPR/4F9AHwMxmm9n9ZvYJsAPoYmZpZva0ma0PfjP/Q/lv5mZ2nZl9EfxWvNzMTgzOX2tmZwcfn2xmOWZWFNyLeTA4v1Pwm3+94HQ7M5tpZlvMbLWZXVduPfeY2Utm9lxwXcvMbGCY73M18AmQVa69qr6vO8zsq3Lzf3q0293MDHgQuM/dJ7t7obuXuvsH7n5duff7fLnXHLqtDv1d/cbMcg5Zz21mNjP4uIGZ/a+ZfRv8HUwys4ZHW7vUbgoKqXFmlgmcD3xebvYY4HogFfgGeBYoAboCJwDnAtcGX38xcA8wFmgCjAA2V7CqvwF/c/cmwHHAS0co6R9AHtAOuAj4o5mdVe75EcB0oCkwE3g0zPd5PHA6sLrc7Kq+r6+CbaUBvweeN7O24dRRTg8gE3jlKF93qPK/q0eAHmbWrdzzlwPTgo//AnQnEJZdgfYE9mCkLnF3/ein2j/AWmAbsJVAEDwONAw+Nxu4t9yyrYHd+58PzhsNvB98/DZwS4j1nB18/CGBD9X0Q5bpBDhQj8AH5z4gtdzzfwKeCT6+B3i33HO9gJ0h3qcDRcD24ON/AA2q+74qWM9CYGTw8Tjg40Nq6FrBa04NPpccot17gOcr2lYV/a6C854H7g4+7gYUAymABbfDceWWHQysifXfo35q9kd7FFKTfuLuTd29o7v/wt13lnsut9zjjkASsN7MtprZVuDvQKvg85kEvmFXZjyBb7Nfmtk8M/tRBcu0A7a4e3G5ed8Q+Oa734Zyj3cAyfsPxRzBiUBjAv0Tg4BG1X1fZjbWzBaWe10fID1EDRXZv3dytHsih8o9ZHoagcCDwN7Ea+6+A2hJIDDml6v7reB8qUMUFBIt5YcpziXwzTs9GCxN3b2Ju/cu9/xxlTbovsrdRxP4IP4L8IqZNTpksXVAczNLLTevA5Bf1TcSXLe7+0vAHA4caqnS+zKzjsBTwI1AC3dvCiwl8I39aKwIrmNUiGW2E/hw369NBcscOqT0v4F0M8siEBj7DzttAnYCvcu93zQPdPRLHaKgkKhz9/UEPnwmmFkTM0sws+PMbEhwkcnAf5vZgOCZN12DH6YHMbMrzaylu5cSOOQFgcNM5deVC3wK/MnMks2sH4E9kRdq6O38GbjezNpU4301IvDhXBB8X1cTPBHgaLi7A7cDvzWzq8vVcJqZPRlcbCFwhgWuNUkD/l8Y7ZYQ6Pd4AGgOvBOcX0og4B4ys1bB2tub2bCjrV1qNwWFxMpYoD6wHPiewAdRWwB3fxm4n8A312LgNQIfUIcaDiwzs20EOrYvc/ddFSw3msCx+HXAq8Dv3P2dmngT7r4E+AD4VVXfl7svByYQ2DvZCPQlcDZVVep5hQOn7K4LtvcHYEbw+XeAF4HFwHzgjTCbngacDbwcDI79/odAZ362mRUB7xLoVJc6xAJfQkRERCqmPQoREQlJQSEiIiEpKEREJCQFhYiIhBTqoqJaKT093Tt16hTrMkRE4sr8+fM3uXuVLoaMu6Do1KkTOTk5lS8oIiJlzOybqr5Wh55ERCQkBYWIiISkoBARkZDiro9CRGqPvXv3kpeXx65dFY2cIrGQnJxMRkYGSUlJNdamgkJEqiwvL4/U1FQ6depE4AZ7EkvuzubNm8nLy6Nz58411q4OPYlIle3atYsWLVooJGoJM6NFixY1vocXsaAwsylm9p2ZLT3C82ZmE4P3MF68/97BIhJfFBK1SyR+H5Hco3iGwDDQR3IegdsqdiNwf94nwmm01EurXZiIiIQvYkHh7h8CW0IsMhJ4LninsGygaTg3k/9y05c1VaKISETMnz+fvn370rVrV26++WaOdDuH2bNnk5WVRe/evRkyZEjZ/LfeeosePXrQtWtX/vznP5fNf++99zjxxBPJysritNNOY/Xq1RF/LwARvSE3gZvFLD3Cc28Ap5Wbfg8YeIRlrwdygJyEdgkuIrXD8uXLY11CWEpKSqK6vpNOOsk//fRTLy0t9eHDh/usWbMOW+b777/3nj17+jfffOPu7hs3biyrtUuXLv7VV1/57t27vV+/fr5s2TJ3d+/WrVvZNn/sscf8qquuqnD9Ff1egByv4md5LDuzKzqQVmHsuvuT7j7Q3QeWUsq+0n0VLSYix6Cf/OQnDBgwgN69e/Pkk0+WzW/cuDF33303gwYNYs6cOcyfP58hQ4YwYMAAhg0bxvr16wF46qmnOOmkk+jfvz+jRo1ix44d1apn/fr1FBUVMXjwYMyMsWPH8tprrx223LRp07jwwgvp0KEDAK1atQLgs88+o2vXrnTp0oX69etz2WWXMWPGDCDQ/1BUVARAYWEh7dq1q1at4Yrl6bF5QGa56QwCt24MzWHzzs20atQqUnWJSBXc+tatLNywsEbbzGqTxcPDHw65zJQpU2jevDk7d+7kpJNOYtSoUbRo0YLt27fTp08f7r33Xvbu3cuQIUOYMWMGLVu25MUXX+TOO+9kypQpXHjhhVx33XUA3HXXXTz99NPcdNNNB63j/fff57bbbjts3SkpKXz66acHzcvPzycjI6NsOiMjg/z8/MNeu3LlSvbu3cvQoUMpLi7mlltuYezYseTn55OZmXnQ6+fOnQvA5MmTOf/882nYsCFNmjQhOzu7ki1YM2IZFDOBG81sOjAIKPTAzekrtWHbBgWFiAAwceJEXn31VQByc3NZtWoVLVq0IDExkVGjRgGwYsUKli5dyjnnnAPAvn37aNs20CW6dOlS7rrrLrZu3cq2bdsYNmzYYev44Q9/yMKF4YWgV9AfUdGZSCUlJcyfP5/33nuPnTt3MnjwYE455ZSQr3/ooYeYNWsWgwYN4oEHHuD2229n8uTJYdVVHRELCjP7BzAUSDezPOB3QBKAu08CZgHnE7gx+w7g6nDb3rBtA/1a96vpkkWkGir75h8Js2fP5t1332XOnDmkpKQwdOjQsmsIkpOTSUxMBAIf3r1792bOnDmHtTFu3Dhee+01+vfvzzPPPMPs2bMPW+Zo9igyMjLIy8srm87Ly6vwEFFGRgbp6ek0atSIRo0accYZZ7Bo0SIyMjLIzc097PUFBQUsWrSIQYMGAXDppZcyfHioE0trTsSCwt1HV/K8A7+sStsbtm2oUk0iUrcUFhbSrFkzUlJS+PLLL494KKZHjx4UFBQwZ84cBg8ezN69e1m5ciW9e/emuLiYtm3bsnfvXl544QXat29/2OuPZo+ibdu2pKamkp2dzaBBg3juuecOO5QFMHLkSG688UZKSkrYs2cPc+fO5bbbbuP4449n1apVrFmzhvbt2zN9+nSmTZtGs2bNKCwsZOXKlXTv3p133nmHnj17Ht0Gq6K4HMJj47aNsS5BRGqB4cOHM2nSJPr160ePHj045ZRTKlyufv36vPLKK9x8880UFhZSUlLCrbfeSu/evbnvvvsYNGgQHTt2pG/fvhQXF1e7rieeeIJx48axc+dOzjvvPM477zwAJk2aBMANN9xAz549GT58OP369SMhIYFrr72WPn36APDoo48ybNgw9u3bxzXXXEPv3r2BQMf7qFGjSEhIoFmzZkyZMqXatYbDKjoeVpsltk/0W6fcyoRhE2Jdisgx74svvojat1oJX0W/FzOb7+4Dq9Je3I31VC+xHhu269CTiEi0xF1QJCUkqY9CRCSK4i8oEhUUIrVJvB2+rusi8fuIv6BISFJntkgtkZyczObNmxUWtYQH70eRnJxco+3G3VlPSQlJrNu5jj379lA/sX6syxE5pu2/ZqCgoCDWpUjQ/jvc1aS4C4p6iYGSv9v+HRlNanZjiMjRSUpKqtE7qUntFJeHnkAX3YmIRIuCQkREQoq/oEgMBIU6tEVEoiP+gkJ7FCIiURV3QWFmpDVIU1CIiERJ3AUFQJvGbTSMh4hIlMRtUKiPQkQkOuI2KHToSUQkOhQUIiISUlwGRetGrSneU8z2PdtjXYqISJ0Xl0HRpnEbADZuVz+FiEikxXdQqENbRCTi4joo1E8hIhJ5cRkUrRu3BhQUIiLREJdB0TKlJYYpKEREoiAugyIpMYn0lHQFhYhIFMRlUEDw6myd9SQiEnFxHRTaoxARiby4DYrWjVsrKEREoiBug6JNo8AehbvHuhQRkTotfoOicRt279tN0e6iWJciIlKnxXVQgK6lEBGJtLgNCl10JyISHXEbFNqjEBGJjogGhZkNN7MVZrbazO6o4PkOZva+mX1uZovN7Pxw21ZQiIhER8SCwswSgceA84BewGgz63XIYncBL7n7CcBlwOPhtt+8YXPqJdTTRXciIhEWyT2Kk4HV7v61u+8BpgMjD1nGgSbBx2nAunAbT7AEWjfStRQiIpEWyaBoD+SWm84LzivvHuBKM8sDZgE3VdSQmV1vZjlmllNQUFA2Py05TafHiohEWCSDwiqYd+jVcaOBZ9w9AzgfmGpmh9Xk7k+6+0B3H9iyZctyK6hoFSIiUpMiGRR5QGa56QwOP7Q0HngJwN3nAMlAegRrEhGRoxTJoJgHdDOzzmZWn0Bn9cxDlvkWOAvAzHoSCIoCRESk1ohYULh7CXAj8DbwBYGzm5aZ2b1mNiK42H8B15nZIuAfwDjX4E0iIrVKvUg27u6zCHRSl593d7nHy4FTI1mDiIhUT9xemS0iItGhoBARkZAUFCIiElKdCIp1xevYtmdbrMsQEamT6kRQnDblNH77n9/GugwRkTop7oNiV8ku1mxdw5ebv4x1KSIidVLcB0V+cT4AuYW5lSwZfe7OZ/mfMe61cVz00kVHdX/vgu0FlJSWRLA6EZHwRPQ6imjIK8o76N/aYMfeHUxfOp3H5z3O/PXzj7jcvtJ9bN65mYLtBXy3/TsWb1zMp3mfMid3DrlFuXRq2olbBt3C+BPGk9ogNYrvQETkgLgPik07NgFQuLuQ4t3FMf9AfXv121z+z8vZsnMLvVr24rHzH+OrLV/xYPaDXPzyxRTsKKBgewEFOwrYvGMzfsg4iR3SOvCDzB+Q1SaLWatmcdvbt/G72b/j+hOv5+ZBN5OZlnmENcc3dydnXQ5ff/81l/S+BDMN+ChSW8R9UJSXV5RHz5Y9o77eUi/lk28/YeriqTy36Dl6pPfgn5f8kzM6noGZ8eoXr/LCkhdYVrCMlikt6dWyFy1TWtKqUStaNgr+m9KS7i26077JgZHY7zjtDublz+PB7Ad5KPshHp77MJf0voTbT7mdAe0GRP19VpW7s2nHJr4t/JbcolxyC3P5tvBb1m1bR9HuIrbt2cbarWtZu3UtANv3bueaE66JbdEiUsbibWilgQMHek5ODgB9Hu/DsoJlZc+9feXbnHvcuVGrZeXmlUxdNJXnlzzP2q1raZTUiIt6XcSEcyfQIqVFja7rm63fMHHuRJ5a8BTFe4oZ0nEItw++nR91/xEJh4/MHlXFu4sPC4HcolxyiwKP84ry2FWy66DXNEhsQPsm7UlrkEbj+o1pkdKCH3f/Mc8teo7P8j/jD2f+gZsH3Uy9hDr1XUYkZsxsvrsPrNJr60JQpDVIo3B3IU+PeDri30Q37djE9KXTmbp4Kp/lf0aCJXB2l7MZ028MPzn+JzSu3zii6y/aXcTkBZP529y/8W3ht3Rv0Z3bTrmNsf3HkpKUUuPr212ym7yivCOGQG5hLoW7Cw96TYIl0C61HZlNMslMy6RDkw5kpmWS2SSTDmmBxy1TWlZ4eGnDtg2MnzmeWatm0b91f5644AkGZw6u8fclcqw55oPi7C5n8+7X73LPkHv43dDf1fg6d5Xs4o2VbzB18VRmrZpFSWkJ/Vr3Y0y/MVze93Lapbar8XVWpqS0hFeWv8KEORPIWZdDi4Yt+PnAn/PLk39Jm8ZtwmpjX+k+NmzbEDIEKroneXpKesgQaJfarlp7Au7Oq1++yi1v3UJeUR7Xn3g9fzr7TzRv2LzKbYoc6475oLj+xOuZsWIGP+7+Y54a8VSNrKd8v8NLy16icHchbRu35Yq+VzCm/xj6te5XI+upLnfn428/ZsKcCcxcMZOkxCSuPeFaHjj3AXbu3RkyBPKL8w87BbdRUqOyD/yKQiCjSUZE9lwqUry7mHtm38Pf5v6N5g2b87/n/i9j+o05aE9k7769zF47mzdXvUnj+o05oc0JZLXJonOzzjE/JCdSmxzzQXHfD+9jxooZtGjYgreufKta7R/a75CSlMKFPS9kbL+xnNn5TBITEmvibUTEys0reXDOgzw5/0kSLIF9vu+g55MSkshokhEIgbQOgb2CciGQ2SSTpslNa90ZR4s2LOKGN28gOy+brs27MqDtAPq17sdXW77itRWvsWXnFhrWa8iefXvK3nNq/VSy2mQd9NO7ZW8a1GsQ43cjEhvVCYo60VO4/wNv5eaVVXr9ph2beHHpi0xdPJW5+XNJsATO6nwW9w69l5/2/GnE+x1qSvcW3Zn0o0lc3Oti/rX6X7RPbX9QCLRu3Douv2X3b9OfT675hGcXPsuMFTPIzsvmxWUv0qRBE0b0GMGonqMYdtwwzIxl3y3j8w2fs3DDQhZuWMj/Lfy/snHA6iXUo1fLXmS1ySrb8+jfuj/NGjaL8TsUqd3qxB7Fu2PeZcaKGTy76FkK7yispIWA2tjvIOEr2l1Ecr1k6ifWD7lcqZfy1ZavWLhh4UEBsn7b+rJlOjXtFNjraJ3FCW0DAZLZJLPW7VmJVIf2KILfmIt2F1G0u4gmDZpUuNz+4/lTF0/l5eUvs3XXVto2bsstg25hTL8x9G/TP8qVS1Ud6Xd8qARLoFuLbnRr0Y2Le19cNn/jto1lobE/QGZ8OaPsAshmyc04vePpXNzrYkb2GBnzCzlFYqlOBEVGkwwymmQAgYvuerXsddDzqzavYuriqTy/+HnWbF1T1u8wpt8Yzup8Vq3ud5DIaN24NcO6DmNY12Fl87bv2c7ijYtZuGEhC9Yv4K2v3mLmipmk1k/lmhOu4aaTb+K45sfFsGqR2Ij7oGjesDkpSSllQ1vsD4pD+x0M46wuZ/H7ob+Pq34HiZ5G9RsxOHNw2XUbpV7KnNw5PJ7zOI/Ne4yJcydyQfcLuGXQLZzV+SwdmpJjRtz3USQmJLLohkWs3bqWzn/rzNVZV7Nl5xbeXPUmJaUl9G3Vt6zfofzwGCJHY13xOv6e83cmzZ/Ed9u/o1PTTlzR9wqu6HtFTIaNETlax+zpsVmTsuiQ1oGZo2eyd99eGt7fkH2+jzaN2wSud1C/g9Sw3SW7eWX5K0xdPJV3vn6HUi/lxLYnckXfK7isz2U6CUJqrWM2KD7N/ZSmyU3L+iRmrphJg8QGnNXlLI0RJBG3YdsGXlz6Is8veZ6cdTkkWAKDMwaT2iCV1o1a8/SIp9X/JbXGMRsUIrXFik0rmLZkGv/++t9s2LaBtVvXkntbbtlJFiKxVp2giL+rr0RqoR7pPfj9D3/PnPFzuPP0OwHYs29PjKsSqRk6PiNSwxrWawhAt0e60a15N/q17nfQT8e0jjpjSuKKgkKkhl3S+xIa1W/Ewg0LWbxxMQvWL+Dl5S+XPd+kQRP6tup7UHj0bdVXF/VJraU+CpEo2LZnG0u/W8rijYsP+il/L4/OTTtz/5n3M7rv6BhWKnWVOrNF4pC7k1uUWxYaryx/hRWbV7Dk50vo0qxLrMuTOkZBIVIH5BXl0fvx3gxoO4B3x74blyP9Su2ls55E6oCMJhlMOHcC7699nwc+eSDW5YiUCbsz28zaAx3Lv8bdP4xEUSLHqvEnjOedr9/hjvfuIL84nyEdh1AvoR5Nk5tyRsczdLaUxERYQWFmfwEuBZYD+2+b5kDIoDCz4cDfgERgsrv/uYJlLgHuCba3yN0vD7d4kbrGzHj+p8+T3jCdRz97lEc+e6Tsuft+eB93nXFXDKuTY1VYfRRmtgLo5+67w27YLBFYCZwD5AHzgNHuvrzcMt2Al4Az3f17M2vl7t+Fald9FHKsWFe8js07NlNSWsIfPvoDb6x8g89/9vlhw+iLhCMafRRfA0lH2fbJwGp3/9rd9wDTgZGHLHMd8Ji7fw9QWUiIHEvapbajb+u+nND2BJ644Aka12/M+Jnj2bl3Z6xLk2NMuEGxA1hoZn83s4n7fyp5TXsgt9x0XnBeed2B7mb2iZllBw9VicghWjVqxSPnPUJ2XjYdHu7Ab//zW9YXr6/8hSI1INygmAncB3wKzC/3E0pFvW6HHueqB3QDhgKjgclm1vSwhsyuN7McM8spKCgIs2SRuuXyvpfzwbgPODXzVO7/6H46PtyRq167ioUbFsa6NKnjwurMdvdnzaw+gT0AgBXuvreSl+UBmeWmM4B1FSyTHWxrTbAvpBuB/ozy638SeBICfRTh1CxSF53R8QzO6HgGq7esZuLciUz5fArPLXqOIR2HcNspt/Gj7j/S0OZS48LtzB4KPAusJbCnkAlcFer0WDOrR6Az+ywgn8CH/+XuvqzcMsMJdHBfZWbpwOdAlrtvPlK76swWOWDrrq1MXjCZRz57hG8Lv+W4Zscxus9o0lPSaZrclLTktMC/DdLKptMapClMjkERvzLbzOYT+JBfEZzuDvzD3QdU8rrzgYcJnB47xd3vN7N7gRx3n2mBk8InAMMJnHZ7v7tPD9WmgkLkcCWlJbz6xas8lP0Qc/LmVLp8SlIKU0ZM4dI+l0ahOqkNohEUi929X2XzokFBIRJaSWkJRbuL2LprK4W7CgP/7i48aPqeD+6haXJTHj3vUUb1GkVyveRYly0RFo2gmEKgI3pqcNYVQD13v7oqK60OBYVI9c3Ln8eYV8ewYvMKmiY35cq+VzL+xPFktcmKdWkSIdEIigbAL4HTCPRRfAg8fjQX4NUUBYVIzSj1Umavnc3kBZP55xf/ZPe+3WS1yeKkdifRtXlXujXvRlabLDo36xzrUqUGaPRYEamWLTu3MG3JNF5c9iIrNq2gYEfgNPRES+Tdse8ytNPQ2BYo1RaxoDCzl9z9EjNbwuHXQKA+CpG6qXBXIau3rObSVy5lb+le7hlyDz85/ic0a9gs1qVJFUUyKNq6+3oz61jR8+7+TVVWWh0KCpHoyc7L5vL/73LWbF1DvYR6nNPlHEb0GMGJbU+kX+t+6gSPI9Hoo2gE7HT30uCpsccD/wrjorsap6AQiS53J2ddDi8vf5mXl7/M2q1rAUitn8rLF7/Mucedq+HP40C0rqM4HWgGZAM5wA53v6IqK60OBYVI7Lg7a7au4e85f2fq4qms37aeoZ2G8ublb5KSlBLr8iSEaATFAnc/0cxuAhq6+1/N7HN3P6EqK60OBYVI7bBn3x4mL5jMjbNupHH9xjSo14AES8CwwL8W+NfdKdxdyEntTqJN4zas37aeAW0HcEG3Cxjaaaj2RqIkGkHxOfAL4CFgvLsvM7Ml7t63KiutDgWFSO3y+orXeWv1WziOu1PqpTiBf0u9lO17t/PSspcA6Ny0My0bteSz/M8AGNppKKP7jGZgu4H0adWH+on1Y/lW6rRoBMUQ4L+AT9z9L2bWBbjV3W+uykqrQ0EhEn927t1JvYR6JCUGbmvzzdZvuHrG1SzcsJDvd30PQOtGrVl761p1kEeIrqMQkbi0v8/jgU8eYNL8SVzS+xLO6XIOF3S7gLapbWNdXp1SnaAIOcy4mT3s7rea2etUfB3FiKqsVEQEAvcI79KsC3ecdgff7/qe2Wtnlx2mGtR+ECN7jGREjxH0atlLfRkxVNl1FAPcfX7w0NNh3P2DiFV2BNqjEKm73J0l3y1h5oqZzFgxg5x1gf/rxzU7jpE9RjLy+JGcmnmqhkmvgqheRxGcTgQauPuOqqy0OhQUIseO/KJ8Xl/5OjNWzOA/a/7Dnn17MIw7T7+T9k3ak9EkgzM7n6lTc8MQjaDIBs52923B6cbAv939B1VZaXUoKESOTcW7i7n29Wv56JuP2Lh9I6WB760MO24Yfzzrj+QX5bNm6xou7HkhGU0yYlxt7RONoFjo7lmVzYsGBYWIlJSWsHHbRh6c8yAPZj940HPpKemM7TeWIZ2G8IPMH5CSlIK7Uz+xftlZV8eiaATFJ8BN7r4gOD0AeNTdB1dlpdWhoBCR8j5Y+wFbdm6hXWo7khKTuOPdO/jwmw/Zve/wuyCM7T+WK/pewbnHnRuDSmMrGkFxEjAdWBec1Ra41N3nV2Wl1aGgEJHK7CrZxdy8ueSsy6GktIR1xetYsGEBH3/7MQAd0zpSP7E+J7c/mecvfD7G1UZHxE6P3c/d55nZ8UAPAjcu+jIWAwKKiIQjuV4yQzoNYUing0/YzC3MZeLcieQW5bJg/QLeWPlGjCqMLwnhLGRmKcD/ALe4+xKgk5n9KKKViYjUsMy0TB449wGmXzSd87udT6mXsuy7ZSz9bil79u2JdXm1Vlh7FMD/AfOB/X0SecDLgOJYROJSvYR6FO8pps8TfQA4Pv14Pv/Z5xpCpALhBsVx7n6pmY0GcPedpsskRSSO3XjyjWQ2yaR149bc+tatfLnpSxre35CRPUYypOMQruh3Ba0atYpjTZIyAAAOu0lEQVR1mbVCuEGxx8waEhzGw8yOAw4/pUBEJE50atqJW065BYAfZP6AR+Y+wsbtG8nOy2bGihk8s+gZ5oyfo4v5CP+sp3OAu4BewL+BU4Fx7j47otVVQGc9iUik3TTrJh6d9yjtU9vz+6G/56qsq6iXEO736topoqfHBg8xZQA7gFMInPWU7e6bqrLC6lJQiEg0fPTNR/z63V+TnZdNt+bdeHj4w2S1ySIlKYVGSY3i7uK9qNwK1d0HVGUFNU1BISLR4u68+uWrjHpp1GHPtU9tz2V9LqNnek/G9h9b64Mj4tdRANlmdpK7z6vKSkRE4pGZcWHPC8m5LocvNn3Bjr072LRjE3f+507yi/OZMGcCAN1bdOf0jqfHuNrICXePYjmBi+3WAtsJHH5yd+8X0eoqoD0KEakNSr2U99e8z9lTzwbggm4X0CGtAxPPm1gr+zOisUdxXlUaFxGpqxIsgVM7nMrlfS9n2pJpvLnqTQBuH3w7XZt3jXF1NauyGxclAzcAXYElwNPuXhKl2iqkPQoRqW3cnReWvMCYV8fw84E/p3/r/nRs2pFOTTvRMa0jDZMaxrrEiO5RPAvsBT4isFfRC7ilKisSEamrzIysNln0aNGDyQsms7f04KHw0lPSSUpIYkSPEUz60aQYVVl1lQVFL3fvC2BmTwOfRb4kEZH406dVH7688Uv2le5j/bb1fLP1G9ZuXcvarWvJK8pj0vxJvL/2/ViXWSWVBUVZLLp7iUbtEBEJLTEhkYwmGWQ0yeDUDqeWzd+yawuLNiyKYWVVV9nosf3NrCj4Uwz02//YzIoqa9zMhpvZCjNbbWZ3hFjuIjNzM6vS8TMRkdqufWp7VmxewZnPnsm0JdOYumgq32z9JtZlhSXkHoW7J1a1YTNLBB4DziEw2uw8M5vp7ssPWS4VuBmYW9V1iYjUdvefeT8ff/sx7699/6BDUE+PeJprTrgmhpVVLpIn+54MrHb3rwHMbDowElh+yHL3AX8F/juCtYiIxFTDpIZ8dPVHfPX9VyRaIi8seYH7PryP8TPH88zCZ0hLTqNpclPuOPUOerfqHetyDxLWjYuqqD2QW246LzivjJmdAGS6e8j7WpjZ9WaWY2Y5BQUFNV+piEgUNKjXgF4te9EjvQf3/vBeNvzXBn4x8BckWAL5Rfk8v/h5Xln+SqzLPEwk9ygq6vkuu2jDzBKAh4BxlTXk7k8CT0LgOooaqk9EJKZaN27NYxc8BgSuxUi4N4EXl73I5p2bSa2fSklpCb869Vekp6THtM5IBkUekFluOgNYV246FegDzA6eTdUGmGlmI9xdV9SJyDHFzLj/zPu58z938sWmL8rmv7/2fT4Y90FML9qL5KGneUA3M+tsZvWBy4CZ+59090J3T3f3Tu7eCcgGFBIicsz6zem/YeedO9n2/7ZRencpfz37r8xbN4+nFjzF0u+WkleUF5O6IhYUwaE+bgTeBr4AXnL3ZWZ2r5mNiNR6RUTiWXK9ZBrVb4SZMfL4kQDc8tYt9H2iL5kPZZL6p1QemvMQ4QzoWlPCGj22NtFYTyJyLPks/zM2btvIrpJdfPztx0z8bCIA+bfn0y61XdjtRGP0WBERiYGT259c9vji3hfTv01/xs8czx8/+iOPnPcI0RgxI5J9FCIiUsO6Ne8GwGPzHmPzzs1RWaeCQkQkjpze8XQePe9RgKj1UygoRETi1D7fF5X1KChEROJMggU+uttOaMurX7wa+fVFfA0iIlKjRvUaxWV9LqNZcjMufOlCcgtzK39RNSgoRETiTKtGrfjHqH/wm9N/A0CHhzuwavOqiK1PQSEiEqd+edIvubLflQCc+dyZEVuPrqMQEYlTDZMaMvWnU0lrkMa0JdMith7tUYiIxLn9ndsRaz+irYuISFSUlJawY++OiLStoBARiXPtU9tTvKeYRn9sxIUvXljj7SsoRETi3K9P/TXvjX0PgCXfLanx9hUUIiJxzsw4s/OZjO4zGqvw5qLVo6AQEZGQFBQiInXIqi2reH3F6zXapoJCRKSOOD79eABGTB/Bu1+/W2PtKihEROqIu4fczdb/2Urnpp35w4d/qLF2FRQiInVIWnIa3Vp0I784n/yi/BppU0EhIlLH9GnZh9VbVpPxUAZPzHui2u1prCcRkTpmwrAJdG/RnRvevIFfzPoFG7dvrFZ72qMQEamDfjbwZ7wz5h0Alhcsr1ZbCgoRkTrq7C5n0zO9JwvWL6hWOwoKEZE6rFnDZnz1/VfVakNBISJSh826fBZvX/l2tdpQUIiI1GFpyWmce9y51WpDQSEiIiEpKEREJCQFhYiIhKSgEBGRkBQUIiISkoJCRERCimhQmNlwM1thZqvN7I4Knr/dzJab2WIze8/MOkayHhEROXoRCwozSwQeA84DegGjzazXIYt9Dgx0937AK8BfI1WPiIhUTST3KE4GVrv71+6+B5gOjCy/gLu/7+47gpPZQEYE6xERkSqIZFC0B3LLTecF5x3JeOBfFT1hZtebWY6Z5RQUFNRgiSIiUplIBoVVMM8rXNDsSmAg8EBFz7v7k+4+0N0HtmzZsgZLFBGRykTyxkV5QGa56Qxg3aELmdnZwJ3AEHffHcF6RESkCiK5RzEP6GZmnc2sPnAZMLP8AmZ2AvB3YIS7fxfBWkREpIoiFhTuXgLcCLwNfAG85O7LzOxeMxsRXOwBoDHwspktNLOZR2hORERiJKL3zHb3WcCsQ+bdXe7x2ZFcv4iIVJ+uzBYRkZAUFCIiEpKCQkREQlJQiIhISAoKEREJSUEhIiIhKShERCQkBYWIiISkoBARkZAUFCIiEpKCQkREQlJQiIhISAoKEREJSUEhIiIhKShERCQkBYWIiISkoBARkZAUFCIiEpKCQkREQlJQiIhISAoKEREJSUEhIiIhKShERCQkBYWIiISkoBARkZAUFCIiEpKCQkREQlJQiIhISAoKEREJSUEhIiIhKShERCQkBYWIiISkoBARkZAiGhRmNtzMVpjZajO7o4LnG5jZi8Hn55pZp0jWIyIiRy9iQWFmicBjwHlAL2C0mfU6ZLHxwPfu3hV4CPhLpOoREZGqieQexcnAanf/2t33ANOBkYcsMxJ4Nvj4FeAsM7MI1iQiIkepXgTbbg/klpvOAwYdaRl3LzGzQqAFsKn8QmZ2PXB9cHK3mS2NSMXxJ51DttUxTNviAG2LA7QtDuhR1RdGMigq2jPwKiyDuz8JPAlgZjnuPrD65cU/bYsDtC0O0LY4QNviADPLqeprI3noKQ/ILDedAaw70jJmVg9IA7ZEsCYRETlKkQyKeUA3M+tsZvWBy4CZhywzE7gq+Pgi4D/uftgehYiIxE7EDj0F+xxuBN4GEoEp7r7MzO4Fctx9JvA0MNXMVhPYk7gsjKafjFTNcUjb4gBtiwO0LQ7QtjigytvC9AVeRERC0ZXZIiISkoJCRERCqrVBoeE/DghjW9xuZsvNbLGZvWdmHWNRZzRUti3KLXeRmbmZ1dlTI8PZFmZ2SfBvY5mZTYt2jdESxv+RDmb2vpl9Hvx/cn4s6ow0M5tiZt8d6VozC5gY3E6LzezEsBp291r3Q6Dz+yugC1AfWAT0OmSZXwCTgo8vA16Mdd0x3BY/BFKCj39+LG+L4HKpwIdANjAw1nXH8O+iG/A50Cw43SrWdcdwWzwJ/Dz4uBewNtZ1R2hbnAGcCCw9wvPnA/8icA3bKcDccNqtrXsUGv7jgEq3hbu/7+47gpPZBK5ZqYvC+bsAuA/4K7ArmsVFWTjb4jrgMXf/HsDdv4tyjdESzrZwoEnwcRqHX9NVJ7j7h4S+Fm0k8JwHZANNzaxtZe3W1qCoaPiP9kdaxt1LgP3Df9Q14WyL8sYT+MZQF1W6LczsBCDT3d+IZmExEM7fRXegu5l9YmbZZjY8atVFVzjb4h7gSjPLA2YBN0WntFrnaD9PgMgO4VEdNTb8Rx0Q9vs0syuBgcCQiFYUOyG3hZklEBiFeFy0CoqhcP4u6hE4/DSUwF7mR2bWx923Rri2aAtnW4wGnnH3CWY2mMD1W33cvTTy5dUqVfrcrK17FBr+44BwtgVmdjZwJzDC3XdHqbZoq2xbpAJ9gNlmtpbAMdiZdbRDO9z/IzPcfa+7rwFWEAiOuiacbTEeeAnA3ecAyQQGDDzWhPV5cqjaGhQa/uOASrdF8HDL3wmERF09Dg2VbAt3L3T3dHfv5O6dCPTXjHD3Kg+GVouF83/kNQInOmBm6QQORX0d1SqjI5xt8S1wFoCZ9SQQFAVRrbJ2mAmMDZ79dApQ6O7rK3tRrTz05JEb/iPuhLktHgAaAy8H+/O/dfcRMSs6QsLcFseEMLfF28C5ZrYc2Af8yt03x67qyAhzW/wX8JSZ3UbgUMu4uvjF0sz+QeBQY3qwP+Z3QBKAu08i0D9zPrAa2AFcHVa7dXBbiYhIDaqth55ERKSWUFCIiEhICgoREQlJQSEiIiEpKEREJCQFhcghzGyfmS00s6Vm9rqZNa3h9seZ2aPBx/eY2X/XZPsiNU1BIXK4ne6e5e59CFyj88tYFyQSSwoKkdDmUG7QNDP7lZnNC47l//ty88cG5y0ys6nBeT8O3ivlczN718xax6B+kWqrlVdmi9QGZpZIYNiHp4PT5xIYK+lkAoOrzTSzM4DNBMbZOtXdN5lZ82ATHwOnuLub2bXArwlcISwSVxQUIodraGYLgU7AfOCd4Pxzgz+fB6cbEwiO/sAr7r4JwN33D06ZAbwYHO+/PrAmKtWL1DAdehI53E53zwI6EviA399HYcCfgv0XWe7e1d2fDs6vaCycR4BH3b0v8DMCA9GJxB0FhcgRuHshcDPw32aWRGDQuWvMrDGAmbU3s1bAe8AlZtYiOH//oac0ID/4+CpE4pQOPYmE4O6fm9ki4DJ3nxoconpOcJTebcCVwZFK7wc+MLN9BA5NjSNwV7WXzSyfwJDnnWPxHkSqS6PHiohISDr0JCIiISkoREQkJAWFiIiEpKAQEZGQFBQiIhKSgkJEREJSUIiISEj/P6KO/+a/ehxWAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Logistic Regression , filled the hyperparameter from the Grid Search\n",
"classifier_logreg = LogisticRegression(C=2.7825594022071245, class_weight=None, dual=False,\n",
" fit_intercept=True, intercept_scaling=1, max_iter=100,\n",
" multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,\n",
" solver='liblinear', tol=0.0001, verbose=0, warm_start=False)\n",
" \n",
"# Fitting the training set into classification model\n",
"classifier_logreg.fit(X_train_new, y_train_new)\n",
" \n",
"# Predicting the output on test datset\n",
"y_pred_new = classifier_logreg.predict(X_test_new) \n",
"\n",
"try:\n",
" y_pred_new_score = classifier_logreg.decision_function(X_test_new)\n",
"except:\n",
" y_pred_new_score = classifier_logreg.predict_proba(X_test_new)[:,1]\n",
" \n",
"#Confusion Matrix and Precision Recall Curve\n",
"plot_confusion_matrix('Logistic Regression', y_test_new, y_pred_new)\n",
"plot_prec_rec_curve('Logistic Regression', y_test_new, y_pred_new_score)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conclusion\n",
"Adaboost classifier performed well with Precision Recall Curve - 0.62\n",
"Contract, Monthly Charges, Tenure and Payment Method and Internet Service are leading columns contributing to churn\n",
"\n",
"Model can be further improved using the strategies discussed in next paragragh.\n",
"\n",
"### Handling Imbalaced Dataset :\n",
"\n",
"1. Increasing the number of instances of the minority class (This case Churn = 'Yes') . We need more data with Churn Class as \"Yes\".\n",
"2. Decreasing the number of instances of majority class\n",
"3. Random Under-Sampling\n",
"4. Random Over-Sampling\n",
"5. Cluster-Based Over Sampling\n",
"6. Synthetic Minority Over-sampling Technique(SMOTE)\n",
"\n",
"Detailed explanation - https://www.analyticsvidhya.com/blog/2017/03/imbalanced-classification-problem/"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hope you enjoyed the kernel. Thank You!\n",
"Jagannath Banerjee | [email protected] | https://www.linkedin.com/in/jagannath-banerjee/ | Aug 2018"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment