Created
October 22, 2014 09:43
-
-
Save kislayabhi/aa645616e74ef3e780f4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "metadata": { | |
| "name": "", | |
| "signature": "sha256:b4558e4f2a2396c44954d542f1551ee54f3c96a7a164564bf092972e8d5776ab" | |
| }, | |
| "nbformat": 3, | |
| "nbformat_minor": 0, | |
| "worksheets": [ | |
| { | |
| "cells": [ | |
| { | |
| "cell_type": "heading", | |
| "level": 1, | |
| "metadata": {}, | |
| "source": [ | |
| "RANSAC" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "%matplotlib inline\n", | |
| "import numpy\n", | |
| "import scipy" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 1 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "The RANSAC algorithm is composed of two steps that are repeated in an iterative fashion.\n", | |
| "\n", | |
| "* Hypothesize :\n", | |
| "First minimal sample sets(MSS's) are randomly selected from the input dataset and the model parameters are computed using only the elements of the MSS.\n", | |
| "\n", | |
| "\n", | |
| "* Test-framework :\n", | |
| "In the second step RANSAC checks which elements of the entire dataset are consistent with the model instantiated with the parameters estimated in the first step. The set of such elements is called the Consensus Set(CS).\n", | |
| "\n", | |
| "RANSAC terminates when the probability of finding a better ranked CS drops below a certain threshold." | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "n_samples=500\n", | |
| "n_inputs=1\n", | |
| "n_outputs=1\n", | |
| "A_exact = 20*numpy.random.random((n_samples,n_inputs) )\n", | |
| "perfect_fit = 60*numpy.random.normal(size=(n_inputs,n_outputs) ) \n", | |
| "B_exact = scipy.dot(A_exact,perfect_fit)" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 2 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "# add a little gaussian noise (linear least squares alone should handle this well)\n", | |
| "A_noisy = A_exact + numpy.random.normal(size=A_exact.shape )\n", | |
| "B_noisy = B_exact + numpy.random.normal(size=B_exact.shape )" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 3 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "# add some outliers\n", | |
| "n_outliers=100\n", | |
| "all_idxs=numpy.arange(A_noisy.shape[0])\n", | |
| "numpy.random.shuffle(all_idxs)\n", | |
| "outlier_idxs = all_idxs[:n_outliers]\n", | |
| "non_outlier_idxs = all_idxs[n_outliers:]\n", | |
| "A_noisy[outlier_idxs] = 20*numpy.random.random((n_outliers,n_inputs) )\n", | |
| "B_noisy[outlier_idxs] = 50*numpy.random.normal(size=(n_outliers,n_outputs) )" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 4 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "# setup model\n", | |
| "\n", | |
| "all_data=numpy.hstack((A_noisy, B_noisy))\n", | |
| "input_columns=range(n_inputs) # the first columns of the array\n", | |
| "output_columns = [n_inputs+i for i in range(n_outputs)] # the last columns of the array\n", | |
| "debug=False" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 5 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "class LinearLeastSquaresModel:\n", | |
| " \"\"\"linear system solved using linear least squares\n", | |
| " \n", | |
| " This class serves as an example that fulfills the model interface\n", | |
| " needed by the ransac() function.\n", | |
| " \n", | |
| " \"\"\"\n", | |
| " def __init__(self,input_columns,output_columns,debug=False):\n", | |
| " self.input_columns = input_columns\n", | |
| " self.output_columns = output_columns\n", | |
| " self.debug = debug\n", | |
| " \n", | |
| " def fit(self, data):\n", | |
| " A = numpy.vstack([data[:,i] for i in self.input_columns]).T\n", | |
| " B = numpy.vstack([data[:,i] for i in self.output_columns]).T\n", | |
| " x,_,_,_ = numpy.linalg.lstsq(A,B)\n", | |
| " return x\n", | |
| " \n", | |
| " def get_error( self, data, model):\n", | |
| " A = numpy.vstack([data[:,i] for i in self.input_columns]).T\n", | |
| " B = numpy.vstack([data[:,i] for i in self.output_columns]).T\n", | |
| " B_fit = scipy.dot(A,model)\n", | |
| " err_per_point = numpy.sum((B-B_fit)**2,axis=1) # sum squared error per row\n", | |
| " return err_per_point" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 6 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "model=LinearLeastSquaresModel(input_columns, output_columns, debug=debug)\n", | |
| "linear_fit,_,_,_=numpy.linalg.lstsq(all_data[:,input_columns], all_data[:,output_columns])" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 7 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "# takes out n number of data values randomly from n_data\n", | |
| "def random_partition(n,n_data):\n", | |
| " \"\"\"return n random rows of data (and also the other len(data)-n rows)\"\"\"\n", | |
| " all_idxs = numpy.arange( n_data )\n", | |
| " numpy.random.shuffle(all_idxs)\n", | |
| " idxs1 = all_idxs[:n]\n", | |
| " idxs2 = all_idxs[n:]\n", | |
| " return idxs1, idxs2" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 8 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "all_data.shape" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "pyout", | |
| "prompt_number": 9, | |
| "text": [ | |
| "(500, 2)" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 9 | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "** Hypothesize**\n", | |
| "\n", | |
| "\n", | |
| "* Take 50 random elements from the input noisy dataset of 500.\n", | |
| "* Calculate the model parameters using only the elements of the selected MSS.\n", | |
| "\n", | |
| "\n", | |
| "** Test Framework**\n", | |
| "\n", | |
| "\n", | |
| "* **RANSAC** checks which elements in the dataset **D** are consistent with the model instantiated with the estimated parameters.\n", | |
| "* If the number of inliers are found to be greater than 300, we want the **RANSAC** to consider this as a good model.\n", | |
| "* If it is found as a good model, **RANSAC** updates the current best **Consensus Set**. The model is re-estimated taking into account the more than 300 datapoints that approve of the current model. " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "iterations=0\n", | |
| "bestfit=None\n", | |
| "besterr=numpy.inf\n", | |
| "best_inlier_idxs=None\n", | |
| "\n", | |
| "k=1000\n", | |
| "# number of times you want to iterate\n", | |
| "while iterations<k:\n", | |
| " \n", | |
| " # select 50 random points from all the data\n", | |
| " maybe_idxs, test_idxs=random_partition(50, all_data.shape[0])\n", | |
| " \n", | |
| " # call the 50 choosen points as maybeinliers\n", | |
| " maybeinliers=all_data[maybe_idxs,:]\n", | |
| " # call the other 450 points as test_points\n", | |
| " test_points=all_data[test_idxs]\n", | |
| " \n", | |
| " # find the best fit according to the maybeinliers. Call it maybemodel.\n", | |
| " maybemodel=model.fit(maybeinliers)\n", | |
| " \n", | |
| " #for every point in test_points {\n", | |
| " # if point fits maybemodel with an error smaller than 7e3\n", | |
| " # add point to alsoinliers\n", | |
| " test_err = model.get_error( test_points, maybemodel)\n", | |
| " also_idxs=test_idxs[test_err<7e3] #select indices of rows with accepted points\n", | |
| " alsoinliers=all_data[also_idxs,:]\n", | |
| " \n", | |
| " if len(alsoinliers)>300:\n", | |
| " #This means that we may have found a good model. \n", | |
| " #Now we test how good it is. \n", | |
| " \n", | |
| " #Take all the points from maybeinliers and alsoinliers and fit the model.\n", | |
| " #call it bettermodel and find its error. Call it thiserr.\n", | |
| " #This one is a great fit if the value of thiserr is lesser than the besterr.\n", | |
| " \n", | |
| " betterdata=numpy.concatenate((maybeinliers, alsoinliers))\n", | |
| " bettermodel=model.fit(betterdata)\n", | |
| " better_errs=model.get_error(betterdata, bettermodel)\n", | |
| " thiserr=numpy.mean(better_errs)\n", | |
| " if thiserr<besterr:\n", | |
| " bestfit=bettermodel\n", | |
| " besterr=thiserr\n", | |
| " best_inlier_idxs=numpy.concatenate((maybe_idxs, also_idxs))\n", | |
| " print best_inlier_idxs.shape\n", | |
| " iterations+=1\n", | |
| "ransac_fit=bestfit\n", | |
| "ransac_data=all_data[best_inlier_idxs]" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "(402,)\n", | |
| "(393,)\n", | |
| "(411,)\n", | |
| "(407,)" | |
| ] | |
| }, | |
| { | |
| "output_type": "stream", | |
| "stream": "stdout", | |
| "text": [ | |
| "\n" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 10 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "#print best_inlier_idxs.shape" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 11 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "import pylab" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 12 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [ | |
| "pylab.rcParams['figure.figsize'] = 10, 10 \n", | |
| "sort_idxs=numpy.argsort(A_exact[:,0])\n", | |
| "A_col0_sorted=A_exact[sort_idxs] #maintain as rank-2 array\n", | |
| "pylab.plot(A_noisy[:,0], B_noisy[:,0], 'k.', label='data')\n", | |
| "pylab.plot(A_noisy[best_inlier_idxs,0],\n", | |
| " B_noisy[best_inlier_idxs,0],'bx', label='RANSAC data')\n", | |
| "pylab.plot( A_col0_sorted[:,0],numpy.dot(A_col0_sorted,linear_fit)[:,0],label='linear fit' )\n", | |
| "pylab.plot( A_col0_sorted[:,0],\n", | |
| " numpy.dot(A_col0_sorted,perfect_fit)[:,0],label='exact system' )\n", | |
| "pylab.plot( A_col0_sorted[:,0],\n", | |
| " numpy.dot(A_col0_sorted,ransac_fit)[:,0], label='RANSAC fit' )\n", | |
| "\n", | |
| "\n", | |
| "_=pylab.legend()" | |
| ], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "metadata": {}, | |
| "output_type": "display_data", | |
| "png": "iVBORw0KGgoAAAANSUhEUgAAAl8AAAJPCAYAAABCabGGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYlPX6P/D3IG4IzICAG5uiZuYuiYopZppghkujlmvH\notzSTG0xl3L5dtTqtJxTapqikpJpKoqmFopWuPwSwzUXcE1RZ1jUROX+/THMMMMmyzDMMO/Xdc0F\n86yf55mBuef+bAAREREREREREREREREREREREREREREREREREREREREREVGx+AD4BcAxAEkA3shZ\n7g5gJ4DTAH4CoDLa510AfwE4CaCXxUpKREREVAnUBdAm53dnAKcAPA5gAYBpOcvfBvBRzu/NARwB\nUBWAP4AzABwsVFYiIiKiSudHAM9Al9Wqk7Osbs5zQJf1etto++0AOlqsdEREREQVzJxZJ38AbQEk\nQBd4XctZfg25gVh9AJeM9rkEoIEZy0BERERk1cwVfDkD+AHARAAZedZJzqMwRa0jIiIiqlQczXCM\nqtAFXqugq3YEdNmuugD+BlAPwPWc5Zeha6Sv552zzERAQICcPXvWDEUjIiIiKndnATQu7sZlzXwp\nACwDcBzAf4yWbwYwMuf3kcgNyjYDGAKgGoCGAJoAOJD3oGfPnoWI8GHBx6xZsyq8DPb24D3nPbeH\nB+8577k9PAAElCR4KmvmKxjAMABHAfyRs+xd6Ho3RgMYDSAZwKCcdcdzlh8H8ADAWLDakYiIiOxI\nWYOvfSg8e/ZMIcvn5zyIiIiI7A7H2CIAQEhISEUXwe7wnlse77nl8Z5bHu+59VNUdAEKITl1qERE\nRERWTaFQACWIqczR25GIiMhuubu7Q6PRVHQxyALc3Nxw69atMh+HmS8iIqIyUCgU4GeWfSjstS5p\n5ottvoiIiIgsiMEXERERkQUx+CIiIiKyIAZfREREdmLUqFGYMWNGRRfD7jH4IiIishMKhULfOLxI\nISEhWLZsmQVKZJ8YfBEREdmR4vTMLE6ARqXH4IuIiKiS+uOPP9CuXTu4urpiyJAh+OeffwAAWq0W\nzz33HLy8vODu7o6+ffvi8uXLAIDp06cjPj4e48ePh4uLC9544w0AwMSJE+Hr6wulUonAwEDs27ev\nwq7L1jH4IiIiKicREREICQlBWFgYtFqtRY+RlZWFfv36YeTIkdBoNFCr1fjhhx+gUCiQnZ2N0aNH\n48KFC7hw4QJq1qyJ8ePHAwDmzZuHp556Cv/973+RkZGBzz//HADQoUMHJCYmQqPR4KWXXoJarUZW\nVlaprsneMfgiIiIqJ6dPn8aePXsQGxuLiIgIix7j999/x4MHDzBx4kRUqVIFAwcOxJNPPglANyp/\n//79UaNGDTg7O+O9997Dnj17TPbPWz05dOhQuLm5wcHBAZMnT8a9e/dw6tSpUl2TvWPwRUREVE6c\nnJwAAIGBgViyZIlFj3HlyhU0aNDAZJmfnx8A4O7du3jttdfg7+8PpVKJbt26IS0tzSTgytvua9Gi\nRWjevDlUKhXc3NyQlpaGGzdulOqa7B2DLyIionISFRUFtVqNnTt3QqVSWfQY9erVM7Tj0ktJSYGI\nYNGiRTh9+jQOHDiAtLQ07NmzByJiCL7yBl7x8fFYuHAhvv/+e2i1Wmg0GiiVSk6rVEoMvoiIiMqJ\nSqVCdHR0qQOvshyjc+fOcHR0xOeff4779+9jw4YNOHjwIAAgMzMTNWvWhFKpxK1bt/DBBx+Y7Fun\nTh2cPXvW8DwjIwOOjo7w8PBAVlYWPvzwQ6Snp5f6muwdgy8iIqJKqGrVqtiwYQNWrFiB2rVrIzo6\nGgMHDoRCocCkSZNw9+5deHh4oHPnzggNDTXJdk2cOBHr16+Hu7s7Jk2ahN69e6N3795o2rQp/P39\nUbNmTfj6+lbg1dk2ax3IQ5jKJCIiW6BQKFj9ZicKe61zAtdix1TMfBERERFZEIMvIiIiIgti8EVE\nRERkQQy+iIiIiCyIwRcRERGRBTH4IiIiIrIgBl9EREREFsTgi4iIiMiCGHwRERGRzQoJCcGyZcsq\nuhglwuCLiIiokvL394eTkxNcXFxQt25dDB8+PN+cjJmZmXB2dkZYWFiB+9epUwd37twxLPvmm2/Q\nvXt3w/NNmzahTZs2UCqV8PT0RI8ePZCcnGxynPPnz8PBwQFjx47Nd4709HRMmjQJfn5+cHFxQePG\njfHmm2/i5s2bxbpGhUKRbyLwwvj7++Pnn38u1rblicEXERGRmW3dCmi1psu0Wt1ySx5DoVAgJiYG\nGRkZSExMxJ9//om5c+eabPPDDz/A19cXcXFxuHbtWr5jZGdn47PPPivw+GfOnMHIkSPx6aefIi0t\nDefPn8e4ceNQpUoVk+0iIyPRokULrFu3DllZWYblWVlZ6NGjB06cOIEdO3YgIyMDv/32Gzw8PHDg\nwIHiX2gxWctUUAy+iIiIzCw4GJg+PTd40mp1z4ODLXsMY3Xq1EGvXr1w7Ngxk+UrV67EK6+8guDg\nYKxevdpknUKhwJQpU7Bo0SKkpaXlO+aRI0fQsGFDQybM2dkZAwYMgI+Pj2EbEcGqVaswe/Zs1K5d\nG1u2bDGsi4yMxMWLF7Fx40Y0a9YMAODp6Ynp06cjNDS0wOvYuXMnmjVrBpVKhQkTJkBEDAHV2bNn\n8fTTT8PDwwOenp4YNmyYodzDhw/HhQsX0LdvX7i4uGDRokUAALVajXr16kGlUqFbt244fvx4ie5r\naTD4IiIiMjOVCpg3TxcsJSfrfs6bp1tuyWMAMAQmly5dwvbt2xEUFGRYl5KSgr1792LQoEEYNGgQ\nIiMj8+0fGBiIkJAQQ7BirF27djh58iQmT56MuLg4ZGZm5ttm3759uHbtGsLCwqBWq7Fy5UrDul27\ndiE0NBROTk7FupYbN25g4MCBmD9/Pm7evImAgADs37/fpNpx+vTpuHr1Kk6cOIGLFy9i9uzZAIBV\nq1bB19fXkAmcMmUKAKBPnz44c+YMUlNT0a5dOwwdOrRYZamMhIiIyBYU9Zl1/rwIoPtZWmU5hp+f\nnzg7O4uLi4soFArp16+fPHz40LB+zpw50qlTJxERuXHjhjg6Osoff/xhWO/v7y+7d++WpKQkUSqV\nkpqaKkuXLpWQkBDDNr///rsMGjRIPD09pUaNGjJq1CjJzMw0rB89erS8+OKLIiLyxx9/SNWqVSU1\nNVVERHr27Cnvvvtusa9n5cqVhvLqeXt7y7JlywrcfuPGjdK2bdt811MYjUYjCoVC0tPTC1xf2GsN\noER1mcx8ERERlQOtFli4EDh/Xvczb/stSxxDoVBg06ZNSE9PR1xcHH7++WccOnTIsD4yMhJqtRoA\nULt2bYSEhJhkpvSeeOIJPPfcc/joo4/yNW4PCgrCunXrcP36dcTHx2Pv3r2YN28eAODu3btYv369\n4Rxt2rSBv78/1qxZYzjnlStXin09V65cgbe3t8ky4yrOa9euYciQIfD29oZSqcTw4cOLbLifnZ2N\nd955B40bN4ZSqUTDhg2hUChw48aNYpepNBh8ERERmZm+fda8eYC/f271YUmCJ3Mcw1jXrl0xYcIE\nvP322wCAX3/9FWfOnMHcuXNRr1491KtXD7/99huioqKQnZ2db/8PPvgAS5cuxeXLlws9R2BgIPr3\n74+kpCQAwMaNG5Geno7XXnvNcI6LFy8aArxnnnkGO3bsMOlNWZT69evj4sWLhuciYvL8vffeQ5Uq\nVZCUlIS0tDSsWrXK5FryBo5r1qzB5s2bsXv3bkOHATFqQ1ZeGHwRERGZ2f79pu2z9O239u+37DHy\nmjRpEg4cOICEhASsXLkSvXr1wokTJ5CYmIjExEQkJSXh7t272LZtW759AwICMHjwYHz22WeGIGbf\nvn345ptvkJqaCgA4efIktmzZgk6dOgHQNeYfPXo0kpKSDOfYv3+/4VzDhw+Hj48PBg4ciFOnTiE7\nOxs3b97E/PnzERsbm68Mffr0wbFjx7Bx40Y8ePAAn3/+Of7++2/D+szMTNSqVQuurq64fPkyFi5c\naLJ/nTp1cPbsWZPtq1evDnd3d9y+fRvvvfde6W9uJVBknS8REZG1sObPrILaOI0ZM0Z69+4t7u7u\nEhMTk2+fsWPHilqtLnD/ixcvSo0aNaR79+4iIpKUlCR9+/aVOnXqiLOzs/j7+8s777wjDx48kEuX\nLomjo6MkJSXlO0dYWJhMnTpVRETS0tJk0qRJ4uPjI87OzhIQECBvvfWW3Lp1q8Br2r59uzRt2lSU\nSqWMHz9eQkJCDG2+jh07Ju3btxdnZ2dp27atfPzxx+Lj42PYd9OmTeLr6ysqlUo+/vhjyczMlPDw\ncHFxcRF/f3+JjIwUBwcHOXv2bIHnLuy1RgnbfBVvVDLLy7kWIiIi62YtY0dR+Svstc7JBBY7pmK1\nIxEREZEFMfgiIiIisiAGX0REREQWxOCLiIiIyIIYfBERUYWKiIhASEgIwsLCoC3tIFZENoTBFxER\nVajTp09jz549iI2NRUREREUXh6jcMfgiIqIKpZ9UOTAwEEuWLKng0hCVP47zRUREFUqr1SIiIgJL\nliyBSj+cuw3hOF/2w1zjfDH4IiIiKgNrDr78/f2xfPlyPP3005g/fz7Onz+PpUuXVnSxcO3aNajV\nahw5cgQRERGoXbs2zp07ZxVlK4q5gi9HM5aJiIiIrIjxRNLWNG/hkiVL4OXlhfT09HzrkpOT0ahR\nIzx48AAODpWzdVTlvCoiIiKyCtnZ2fmWpaSk4PHHHy9yP2vNJpoDgy8iIiI7MHv2bAwfPhyALrvk\n4OCAyMhI+Pn5wdPTE/PnzzdsKyL46KOP0LhxY3h4eGDw4MHQaDSG9Wq1GvXq1YNKpUK3bt1w/Phx\nw7pRo0ZhzJgxCAsLg7OzM+Li4kzKMWrUKERGRmLBggVwdXXF7t27TcrWtWtXAIBKpYKLiwsSEhLK\n65ZUGAZfZBEcx4cshe81ooIZV0Hq7d+/H6dPn8bu3bvx4Ycf4tSpUwCAzz//HJs3b8bevXtx9epV\nuLm5Ydy4cYb9+vTpgzNnziA1NRXt2rXD0KFDTY773XffYcaMGcjMzERwcLDJuhUrVmDo0KF4++23\nkZ6ejh49epiULT4+HgCQlpaGjIwMBAUFme0eWAsGX2QRHMeHLIXvNbI2CoV5HmVVUDXerFmzUL16\ndbRq1QqtW7dGYmIiAODrr7/G3LlzUb9+fVStWhWzZs3C+vXrDVWIo0aNQq1atQzrEhMTkZGRYThu\nv3790KlTJwBA9erVH1mewn6vrNjgniyC4/iQpfC9RtbGmmOJunXrGn53cnJCZmYmAF2brP79+5s0\neHd0dMS1a9fg5eWF6dOnY/369UhNTTVsc+PGDbi4uEChUMDb29uyF2JjmPkii4iKioJarcbOnTtt\nchwfsh18rxGVna+vL7Zv3w6NRmN43LlzB/Xq1UNUVBQ2b96M3bt3Iy0tDefPnwdQtoyVcbVjQdWj\nlY05gq/lAK4B+NNomTuAnQBOA/gJgPF/wHcB/AXgJIBeZjg/2QCVSoXo6Gh+GFK543uNqOxef/11\nvPfee7hw4QIAIDU1FZs3bwYAZGZmonr16nB3d8ft27fzDWFRnCAs7zbGzz09PeHg4ICzZ8+W9TKs\nljmCr28B9M6z7B3ogq+mAHbnPAeA5gAG5/zsDeB/ZioDEZFZseE+VTYKhaLYGaaJEyfi+eefR69e\nveDq6opOnTrhwIEDAIARI0bAz88PDRo0QIsWLdCpU6d8x31U9qqgsuifOzk5Yfr06QgODoabm5vh\nvJWJuXJ7/gC2AGiZ8/wkgG7QZcTqAogD0Ay6rFc2gH/nbLcdwGwAv+c5Hke4J6IKFRISgj179gDQ\ndauPjo6u4BKRtbLmEe7JvMw1wn15ZZ3qQBd4IednnZzf6wO4ZLTdJQANyqkMRESlxob7RFReLFHl\nJzmPotYTEVkVNtyvnFidTNagvIaa0Fc3/g2gHoDrOcsvA/Ax2s47Z1k+s2fPNvweEhKCkJCQcigm\nEQG6D6TTp0/DyckJUVFRDDaQ23CfKhf9OHCA7n3P15hKIy4uLt/I/SVRXm2+FgC4CV3brneg6+34\nDnQN7aMAdICuunEXgMbIn/1imy8iC2L7JrIXYWFhiI2NRWBgoNmymmzzZT+sqc3XdwB+BfAYgIsA\nXgbwEYCe0A018XTOcwA4DiA652csgLFgtSNRhWP7JrIXrE4ma2CtI5kx80XlitVsprRaLSIiIrBk\nyRK7vxdEJcXMl/0wV+aLwRfZJVazEZG5MPiyH9ZU7Uhkc1jNRkREFYWZL7JLrGYjInNh5st+sNqR\niIjICjD4yjVq1Cj4+Phgzpw5FjlfcnIyGjVqhAcPHsDBofwr81jtSERERITiTeZtTRh8EdkAjspN\nRKVx5coVDBw4EF5eXmjUqBG++OILAMCtW7fg4+ODmJgYAEBmZiYaN26M1atXAwC2bt2Ktm3bQqlU\nwtfXFx988IHJcfft24fOnTvDzc0Nvr6+WLlyJZYuXYqoqCgsWLAALi4uCA8PL7BMb775JurUqQOl\nUolWrVrh2LFjOHjwIOrWrWsSRG3YsAFt2rQBABw4cACBgYFQKpWoW7cupkyZAgDo2rUrAN2gyC4u\nLkhISAAALF++HM2bN4e7uzt69+6NCxcuGI7r4OCAr776Ck2aNIGrqytmzpyJs2fPolOnTlCpVBgy\nZAju379f5ntvi4SIcnXr1k0/TZeo1eqKLg4RGbHWz6yHDx9Ku3btZM6cOXL//n05d+6cNGrUSHbs\n2CEiIj/99JPUrVtXrl+/Lq+88orJ/5a4uDhJSkoSEZGjR49KnTp15McffxQRkeTkZHFxcZG1a9fK\ngwcP5ObNm3LkyBERERk1apTMmDGj0DJt375d2rdvL2lpaSIicvLkSbl69aqIiDRv3lxiY2MN2/br\n108++eQTERHp2LGjrF69WkREbt++Lb///ruhLAqFQh4+fGjY78cff5TGjRvLyZMn5eHDhzJ37lzp\n3LmzYb1CoZB+/fpJRkaGHDt2TKpVqybdu3eX8+fPS1pamjRv3lxWrlxZYPkLe61RwjFLy2t6ISIy\nI/bOND+O9UaWovjAPM2rZVbJqtYOHjyIGzdu4P333wcANGzYEK+88grWrl2LXr16oWfPnlCr1Xj6\n6aeh1Wpx9OhRw77dunUz/N6yZUsMGTIEe/bsQXh4OKKiotCzZ08MHjwYAODu7g53d/fcchZRBVit\nWjVkZGTgxIkTePLJJ/HYY48Z1o0YMQKrV69G7969cevWLfz000/4+uuvDfv99ddfuHHjBjw8PBAU\nFFToub7++mu8++67hmO/++67mD9/Pi5evAgfH90Mh9OmTYOzszOaN2+Oli1bIjQ0FP7+/gCA0NBQ\n/PHHHxgxYkTxb3YJMfgisgFRUVHsnWlmnOPPNtli0FzSoMlcUlJScOXKFbi5uRmWPXz40FBVBwCv\nvvoqvvzyS0yfPt1ku4SEBLzzzjs4duwYsrKycO/ePQwaNAgAcPHiRTRq1KhUZerevTvGjx+PcePG\nISUlBQMGDMCiRYvg4uKCoUOH4oknnsCdO3cQHR2Nrl27ok6dOgCAZcuWYebMmXj88cfRsGFDzJo1\nC3369Cn0uidOnIi33nrLZPnly5cNwZf+uABQs2bNfM///vvvUl1fcbHNF5EN0E/ybAsfNLaC2UTb\npA+aY2NjERERUdHFsWq+vr5o2LAhNBqN4ZGenm5o5/Xw4UNERERgxIgR+O9//4uzZ88a9n3ppZfQ\nr18/XLp0CVqtFq+//rohy+Tr62uyrbGcXn9FmjBhAg4dOoTjx4/j9OnTWLhwIQDA29sbHTt2xIYN\nG7B69WoMHz7csE/jxo0RFRWF1NRUvP3223jhhRdw9+7dAs/n6+uLJUuWmFz37du30bFjx+LfvHLG\n4IuI7BLn+LMOJe1MwqC5+Dp06AAXFxcsWLAAd+/excOHD5GUlIRDhw4BAObPn48qVarg22+/xdSp\nUzFixAhkZ2cD0DXAd3NzQ7Vq1XDgwAFERUUZjvvSSy9h165d+P777/HgwQPcvHkTiYmJAHQZpXPn\nzhVapkOHDiEhIQH379+Hk5MTatSogSpVqhjWjxgxAv/+97+RlJSEAQMGGJavXr0aqampAAClUgmF\nQgEHBwd4enrCwcHBJBh8/fXXMX/+fBw/fhwAkJaWhu+//77Ie2VcfVlUtWllV2hjPSIiqjxK2plE\no9GIWq0WjUZjgdIVjzV/Zl25ckVefPFFqVu3rri5uUmnTp1k9+7dcujQIXFzc5OzZ8+KiK5xfnBw\nsMyfP19ERNavXy9+fn7i4uIizz33nEyYMEGGDx9uOG58fLwEBQWJq6ur+Pj4SGRkpIiI/PXXX9Km\nTRtRqVTSv3//fOXZvXu3tGrVSpydncXDw0OGDRsmt2/fNqy/c+eOuLq6yqhRo0z2GzZsmHh5eYmz\ns7O0aNFCNm3aZFg3c+ZM8fT0FJVKJQkJCSIismrVKmnZsqWhfKNHjzZs7+DgYLhuEZEuXbqYNLB/\n//335dVXXy3wfhb2WqOEDe45yCoRFZsttrch6xYWFobY2FgEBgbabBaSg6yaV5MmTbB48WI8/fTT\nFV2UfDjIKhFZHNvbkLmx+peMbdiwAQqFwioDL3Nib0ciKja2tyFz03cmIQoJCcHJkyexatWqii5K\nuWO1IxEVGyckJ8qP1Y72gxNrExERWQEGX/aDbb6IiOwE5/YkqlwYfBERWTl2dCCqXBh8EVGpMSNj\nGezoQFS5MPgiolJjRsYyOBwDUeXC4IuISo0ZGcvg3J5Eufbv348mTZrA1dUVmzZtQlhYGCIjIyu6\nWCXC4IuISo0ZGSLr5u/vDycnJ7i4uKBu3boYPnw40tPTTbbJzMyEs7MzwsLCCty/Tp06uHPnjmHZ\nN998g+7duxueb9q0CW3atIFSqYSnpyd69OiB5ORkk+OcP38eDg4OGDt2bL5zpKenY9KkSfDz84OL\niwsaN26MN998Ezdv3izwmmbOnIk33ngD6enpCA8Px7Zt2zBixAgAwIoVK/DUU08V+/5UFAZfRFRq\nzMgQWTeFQoGYmBhkZGQgMTERf/75J+bOnWuyzQ8//ABfX1/ExcXh2rVr+Y6RnZ2Nzz77rMDjnzlz\nBiNHjsSnn36KtLQ0nD9/HuPGjTOZLBsAIiMj0aJFC6xbtw5ZWVmG5VlZWejRowdOnDiBHTt2ICMj\nA7/99hs8PDxw4MCBAs954cIFNG/evKS3wqow+CIiIrIDderUQa9evXDs2DGT5StXrsQrr7yC4OBg\nrF692mSdQqHAlClTsGjRIqSlpeU75pEjR9CwYUNDJszZ2RkDBgyAj4+PYRsRwapVqzB79mzUrl0b\nW7ZsMayLjIzExYsXsXHjRjRr1gwA4OnpienTpyM0NDTf+QICAnDu3Dn07dsXrq6uyMrKQkhICJYt\nW4aTJ0/i9ddfx2+//QYXFxe4u7uX/maVMwZfRERElZh+UNBLly5h+/btCAoKMqxLSUnB3r17MWjQ\nIAwaNKjAtlOBgYEICQnBokWL8q1r164dTp48icmTJyMuLg6ZmZn5ttm3bx+uXbuGsLAwqNVqrFy5\n0rBu165dCA0NNbQffZSzZ8/C19cXMTExSE9PR7Vq1aBQKKBQKNCsWTMsXrwYnTp1QkZGBm7dulWs\nY1YEBl9ERETlSaEwz6MURAT9+vWDq6srfH19ERAQgPfff9+wftWqVejQoQO8vb0xYMAAHD9+HEeO\nHMlTfAU+/PBDfPHFF7hx44bJukaNGiEuLg6XL1/GoEGD4OnpiZdffhm3b982bLNy5Ur07dsXNWrU\ngFqtxvbt2w3HuXXrFurVq1eqayvsem0Bgy8iIiKU47h1IuZ5lIJCocCmTZuQnp6OuLg4/Pzzzzh0\n6JBhfWRkJNRqNQCgdu3aCAkJMclM6T3xxBN47rnn8NFHH+mn0jEICgrCunXrcP36dcTHx2Pv3r2Y\nN28eAODu3btYv3694Rxt2rSBv78/1qxZYzjnlStXSnVttozBF1E54iCkRLajso9b17VrV0yYMAFv\nv/02AODXX3/FmTNnMHfuXNSrVw/16tXDb7/9hqioKGRnZ+fb/4MPPsDSpUtx+fLlQs8RGBiI/v37\nIykpCQCwceNGpKen47XXXjOc4+LFi4YA75lnnsGOHTtMelOWRd7A0Fox+CIqR5X9nzlRWVjbl5NH\njVtnbeUtjUmTJuHAgQNISEjAypUr0atXL5w4cQKJiYlITExEUlIS7t69i23btuXbNyAgAIMHD8Zn\nn31mCHL27duHb775BqmpqQCAkydPYsuWLejUqRMAXZXj6NGjkZSUZDjH/v37DecaPnw4fHx8MHDg\nQJw6dQrZ2dm4efMm5s+fj9jY2BJfX506dXDp0iXcv3+/DHep/DH4onKzdSuQ9/+TVqtbbi/y/jOv\nDP+8iczF2r6cPGrcOmsrb2l4eHhg5MiRmD17NtavX48JEybAy8vL8PD398fw4cMLHbR05syZJlkq\nNzc3bN68GS1btoSLiwtCQ0MxYMAATJs2DZcvX8bPP/+MSZMmmZyjXbt26N27NyIjI1GtWjXs2rUL\nzZo1Q8+ePaFUKhEUFIRbt26hY8eOJb6+Hj164IknnkDdunXh5eVV6vtkr4Rsn0YjMnas7mdBz+2B\nRqMRtVotmpyL7tatmwAQAKJWqyu4dEQVKzQ0VABIYGCg4W/EmhVWXn5m2Y/CXuuc/+vFZq2VoznX\nQrZo61YgOBhQqXSZruDgX1Cz5ipcuPA6Dh58DH5+yoouYoUJCwtDbGwsAgMDOSo82T2tVouIiAgs\nWbLEJv4WCiuvQqGwmV52VDaFvdY51bDFjqkYfJHZabXA9OnAvHm6ACww8F84fHg5gFZQq5shOjq6\nootYYWztw4aIHo3Bl/1g8EVWzTjjdeTIVDx8OBienjNw8GAvu858EVH5i4iIwOnTp+Hk5ISoqKhy\n/6LD4Mt+mCv4YoN7KhcqFVCz5iocPrwcDx8Ohre3BgcP9sKCBcp8jfCJSoodF6golaFhPFVuDL6o\nXGi1wIXSs9pTAAAgAElEQVQLrwNoBU/PGdi3Lwl+fkrMmwfs31/RpaOKVtbgiR+uVJRHDRlBVNEY\nfJHZ6dt8HTz4GNTqZiYZL5UK6NOnoktYPpiNKb6yBk8V9eHK19g2PGrICCIqmAU6jFJ5iYnJP5yE\nRqNbXplxGIniK+sQA3mH8LAUvsZUEDc3N8P7go/K/XBzcyvwPZCzvtjY4J7ITDiMRPHZaq9PvsZE\nVBD2dqRKz9I9mYrLVgMKKj6+xhXLWv/2iRh8UaUXEhKCPXv2AADUarVdjxtGOvxQtg/82ydrxaEm\nqNKrbD2Z2Ii77ErTgJ/33fZUtr99sl8MvsjmVLaeTJYcNsEaAw5zlKk0H8ocrsL2VLa/fbJfDL7I\n5qhUKkRHR1eaf76W/DZvjQGHOcpUmg9l4/tes2ZNqwtKKb/K9rdP9ovBF1EFs+S3eWustjFHmUrz\noWx831NSUqwuKCUqjDVmsKlk2OCeyI5YY289aygTh5AgW8KOB9aHvR2JzMgeetHZwzU+ijUEgNao\nsr03rPl6SlI2flmwPiUNvqyVRUYlJnoUexjR3B6ukUrHnO+NV199Vbp16yahoaEWn5lAz5rf6yUp\nW0XN8ECFQwlHuHc0a8hEVMlYYxspc7OHa7QW1px5KYg53xv6jhWA7j5URFWZNb/XCytbQe8ZfRtH\nInOr6CCWSEQq9humpTIFleFbtDVkVYrDmjMvBTHne6Os83magzW/1wsrm629Z+wVOLcjUeXARrXF\nZyv3yp7b6pijXZ2tZQ7NwZ7fM7aEI9wTVRLWXEVibWzlXtnzIKHmGKPLGsepK2/2/J6pzCoq89Ub\nwH8AVAHwDYB/51nPzBfZPfbAKz7eK/tgriyQPWbQqHzZwlATVQCcAvAMgMsADgJ4EcAJo20YfBER\nkQlzBdm2Uk1NtsMWqh07ADgDIBnAfQBrAYRXQDnIyNatQN6BkrVa3XKqXDg6Ntkqc00vZCvV1FR5\nVUTw1QDARaPnl3KWUQUKDgamT88NwLRa3fPg4IotF5mfPbabITLm6ekJT09PVjdShamI4Iv1iRWk\nqOzWtYs3MW8eEBz8Czp2HILWrWMwbVoa+L+p8uG3fssrKtvITKTlpaSkIDU1Fbt27bLaLyB8X1Ru\nFTHI6mUAPkbPfaDLfpmYPXu24feQkBCEhISUd7kqPX12a948QKXKzW69Oe46HDo3wLIhX8HZeRcS\nEtYC8MfUqR3YFqISioqKYuN0CytqgFFrGHzU3tjCFxC+L6xbXFwc4uLiKroYJeII4CwAfwDVABwB\n8HiebSpyrLRKTaMRad78ZwkKGiy+vlskOVkrIiI7Pp4lfzs5yJN1lgrQRDw9ow3riKhsihpg1BoG\nH7U31jzYqh7fF7YFNlKrFwpdj8czAN4tYH1F38dKISZGF2wZ/67RiDRt+pEAIkBL6dJlvojols8K\nHSuXnatI+wYr5fDhNBk7Nnf/iiy7nkajW05kKyPa6xX1YW8LgQBZHt8XtgUc4Z709NWK8+bpnk+Z\nAty7B8TFbcelS9NQo8YGJCR4olUrJbZu1VVLJvyfGs2WbMKg2ofxn1UtcesW0KePecqjP4dxTZdW\nC+zfn/8cxmU3riLVP7clHFOoeEpynzhUABFZk5IONWGtKjqIrTSMqxnr198pSuUladNmhDg5LZf4\n+AsFZrdiXukmf3nVkKZ1zsu2beYti/H58j4vquzGVaSFsdZsGedmK56S3CdWydg+W8teEhUFNlLt\n+CgVfR8rlaCgwTnVjKNEpeqa87tfTko7f3CSnZ0tMQNbynEfVwmomyqffiqSnW2espQ0oMotu98j\nP5BLGtxZCgOF4inJfWKVjO2zly8lDDLtAxh8kTGNRsTXd4sAflK79kapX3+rAH6PbFB//0GWbHvG\nT44285J2zTMlIkIkK8s8ZSpuQGVc9uJ2AChpcGcJDBSKp7T3iR9utslevpTYS5Bp78Dgi/T0mZ/k\nZK2Eh4+U4cP/kWHD/pHw8JGSnKx9ZFbozt0M2dnBUxID/aVv6D3p3l3k5s2yl6k4AZVx2dVqdbHK\nq1eSbBnZPlv/cLPX4NGWv5SU5DWzlyDT3oHBF+kV1ttRX81YnPZQmvTrsreFiyQ+00qmTH4oTZqI\nnDpV9LkM++Y5fkkCqtK23ypNtswS7PUD1hJs/cPN1oNHe1SS18yWg0wqPjD4InO7eu2sJATUkD/V\n3eSbpdni5SWya5fpNhqNSJ8+IsnJuc91gVZuwFTeDeLLki0rb/yALT+W/nAzdyBtzcEjvzQUzJpf\nM6oYYPBF5eHc+T8ksYGjHH9toPzyi4iXl8hXX5luk5ws4uZ2Udq3f1l8fbdIYmLxgx9zBGbW2ttR\nhP+sKxNzB9LWnBnhl4aCWfNrRhUDDL6ovBz9c7ec9qwip957Xf76S6RZM5E33hC5fz93m/btX85p\nbxUsTk7L81X7FRYgrV1rnT0VSyvvdWo0GgkPHylr12aU6njMQFgPewqk7elaicoCDL6oPP22P1pS\n3Bzk3MczRKMR6dlT5NlnRdat02W+dO2tgnMCsM6GEfT1ihoOwhp7KpaWuYe9sMUMRGUNGO0p62FP\n12oJlfVvghh8kQX8tO1LuerqIJeXfyb374uMGyfSuLFI06Yi8fFaqV79JwF6SZUqGomP1wVQeRv6\nFxZkVaaeiuYMJm0xA2GLASNVTtYS9PBvovICgy+yhI3fzZJUZwdJ3bBGRERef12kdm0RZ+dr0qLF\na+LoeFyioy9JWJguI5Y361NQkGWtPRXLwlzBpC1mIGwxYKSKVx6BkrUEPfybqLzA4IssZdV/X5cb\nzlUk7edYERH58EMRR8c0w6TdLi6R0r79y+LpmWASSBUUZD2qp6I1N6YvTGHBpLV8Cy9vthgwUsUr\nj0DJWoIe/k1UXmDwZR+sIRjJzs6WxXP7y02XqnLn0O+i0YjUq/eLAOelZs0T0qrViAKzWwUFWWvX\nFn091jp1UGGKCiat5Vt4YewlOCTrpA+UnJ2d5ZlnnjHLe5BBD5U3MPiyD5YORgoL9jZveShfvvWU\npKqqy4yXjsmyZRkSGjpWAgPvS5UqtwXoILVrb5TlyzOLPE5xgkZbapBf1HVay7fwwlh7cGhrGMyW\njEajEU9PT74HyaaAwZf9sGQwUlSwl/UgS+YOainXPGvJrT9TZPRokVGjRPr3vydOTtdlwIB/ZPTo\nwgPDkgRklaFBvrV/C7f24LAo1hjoMJgtOVt+D5J9AoMv+2KJYCQmRlctmJycG+x5e8fKF19kGgKk\n21m35b8v+MlVH3f5YfF1eeyxvdKhw2BRqZKkTp2H8tNPhWe3ipvFq4wN8q2RtQeHRbHGQIeBRMkZ\nvwetMaAmygsMvuyHuYKRojJPMTG6oGv0aN0jdxDVOPH332Wy3607t2RpLw+50qyBdG8/wBAUBgf/\nn3h4iKxZU/S1FJXFK6gNlfF0RnnLTfbJONAZMWKEVXxo23Iwaw2sMaAmygsMvuzDo3oHluZYhQ18\nqp+jsXHjXwU4LcAZAU5KfPyFfMe6nHZJVnV2kb1uDaQGfAxB4dGjIv7+IjNmiDx8WHA5mjb9qMAG\n+vogMO+1JSeLhIXZTiN8Kn/GgQ4/tK1TSTNZBWUOmQ0jawMGX/bB3L0djTNPnp4JkphoOjRE48a/\nioPDbznBkW4oiYCA7QWWYei4E7KhdQ2J93GTb5doDO29rl0T6dRJJDxcZP36/Pt5e8cKsFJq195o\nMvxEUf9bbakRPlkWq/usU0mD4oIyhwysydqAwReVVm77sdzASl/t6Op6JGfdegG+E2fnfZKYqM0X\n7OmDwsMpv8tPzarJxed6yiv/eihr1+rWX72qGwm/bVuRy5d1y4yzeOHhI6Vx4zjx8tou3t6xxQqm\nKkMjfDI/VvdZJ3MExQysydqAwReVRt72Y4mJWmne/Gdp3/5lcXK6IDVrXhQgSqpW/U7q198pgwcX\n3YNRRCTu2Db5tWFVuTR0kDR/fLchO3X+vFbmzRPx9hY5dCg3YNP/zA2mRkl4+Mgis3lshE9kW8wR\nFDOwJmsDBl9UUoW1H8ttXH9Uqlb9VVSqrlK//lYZPvwfSUwUmTbt0dWcmxIiJbGBoyz2a5wvO7V+\nvYiHR24VpEaja9Tv4XFIgJbi4bFRhg37RzQaXW9LffZMT9/mq6B2b9YwCC0REdkHMPiikiqsMbun\nZ4IAo8TNLUZq195pqJIMCxsjffrkNsh/VECzePPHcsKtirxZzTVfdurwYV0GbO5ckVu3dMFXw4bx\nUr36Oqlbd4cMH/6PSW9L48b1RfV2tLUR8YnKGxupE5UfMPiiohQnI5Q3E5aYqJVatVIEWC8KxSmp\nW/enEjWIHztWZO6yNyTFVSEX5i3It8/lyyKBgSIhIbo2YbnVjitFpepqmBuypI3r2RifKBcbqROV\nHzD4oqIUJyNkHKDp1ycmasXZeUJOUHRClMqnihXQ6I+VnZ0tc5eOkFRlNbm5bHW+bNnt2yJqtciT\nT4o0aLBDAD9xdFxjyLbpPyyM24MV5wOEjfGJdNhInaj8oITBl6J8Yqcyy7kWKg9aLRAc/AtcXBbj\n6tVh2Lv3Kfj5KU222boVCA4G9u/X/QSAli2349KldahSpQ8ePnwBgD/U6g6Ijo4u1nmzJRszPn4O\nU+fshvPajXAMDTNZf+sW8OyzwNWr2WjSZCZOn+6MK1fSUKNGEBISasPXV5lThuvw8HDFoUPd85U7\n73W2bh2DCxfGw9NzIQ4e7FXk9kSVmVarRUREBJYsWQKVSlXRxSGqVBQKBWC9MVWxVXQQW+k9KiOU\nd6DV0aNFhg37R8LCxkj9+ltNxuPKq6iqzawHWfLWjCDROFeXtNh9JvssW6ZrVL90qUjNmiKffZYp\nQUGfyBdfZIhSeUk8PXdL/fpbJSzspUcOKmvOQWip8mI7KCIyB7DakR6luMMz6NtMNW36kXh7x0pi\notZkPK7lyzMLnYOxqKrNzHuZ8sb4x+SGk5OkxSeKiK7hfIsWup8xMSIbN4rUqiUyZ45IdrZI48af\nFjr6fUHY25GKg+2giMgcwOCLilLSjJBxhqxLl/nFDmge1dj95p2b8uaoBnKlhpO80DpMfH23GMYW\n0++zf3+atG4tMmyYiI9PDMfyIrNjOygiMgcw+KKilCQjVJYBTGNijMcJ0w2WanwejUZkxYaL8vqz\n1eRcNQ+pjwaiVqvzVYdevKibEzIo6L48//zLsmxZRr7BXZnRotLiYJ1EZA4oYfDlUE7BE1mpPn2A\nvG1tVSrdcmNaLTB9OrB371NQqzvg4MFeWLBACa22eOdp0QI4dWomgFaoXTscNWosxpQpusb7Wi0w\nbBjQNsAb686txldBt7C7xj+YPOIjnDs3GUArKJWrsHDhUiQmAocPA926OeLYseV44glnAMCOHabl\n1HcKICoJlUqF6OhoNkAnIouy1pb5OYEkVRR9b0fjzyStVtf7MW+glpc+IHrttTR06bIZAQG78Ndf\nH8LL6yK8vL7E1avDsGbNUxgzRomvvkrDkMmRmFzzbYQc9MXNVTsx5u3j2LChIxYvVmLevNwyrFgB\nTJsGfP01MGNG0b01iYiILKWkvR0ZfJHZGQduHTsOQULCWgCt4OwcgszMzwH4o0uX17B69bsIC/sF\nNWuuwv/T9MD/lCPxxKmm8Pt/P8P3sboFBnvx8YBaDdSo8S1SUl5GSYe7sEYRERE4ffo0nJycEBUV\nxSwMEZGNYfBFVsN4nC0Pj/+gWrVquHJlrMmYW7nBWRc4PD4Bq7NfRMNMT3Q8fwmoWrXA4x45AnTo\nkIH79zfCw8MJhw71tOnMV0hICPbs2QMAUKvVNh1IEhHZo5IGX2zzReXCuM1YeHgIevcORY8ePRAe\nHmJoP/btt8Dly6MAtIKDw2Jkn5iHMV6jkVErA3dHvAhkZxd43KVLgcOHs1G3bks0axaOOXOK3xbN\nGjk5OQEAAgMDsWTJknI/X0REBEJCQhAWFgatLd84IiIbxcwXlQvjqkf970BuNWJKCtCvH9Cw4T38\n8cc+rFrVFMOHn0bbtl1w2mUOVu7/D1o88xKqf7UYUCgKPO6DB8CUKcC2bcDUqcCrr1bQxZaRpUce\nZ6aN7Bmr+ak8MPNFFrN1K/JlnLRa3XLjXpX63417VSYlAT/+CGRmVoejoxOmTJmKrCyBVqtAzAdz\nsGDsS0iJ/Q4P3n/P5FzGx83MBHr2BN56C5gxA4iLs8x1m5ule9yZI9NW1GtPZM1Onz6NPXv2IDY2\nFhERERVdHCKrUnGDdVCxFWeS7uIco0aN6JyxvXZJz56viIjIw+yHErGsn1ysW0v+HL3A5NgxMbqR\n8I3PtWmTiEqlm5qIimaOsa3M8dqTbaksUzFxYF0qD+Agq2RJjxrJvjj7V636XU7w9Z34+v5k+AC/\nduOeBI19SlI9akn2N98YztW+/cvi7HxeEhO1hmOMHSty8KBIkyYib74p8uCBua+U8irra0+2pbJM\nxcSBdak8gMEXWdqjJunOSz/Kvn7Cbt1E3S3FxWW/DB78jzz22F7DB/qxvy7JwDktJc3dWeT7743O\n1VJcXCLzffDfvCny9NMiYWEiaWnlfeVU0teebBczRkSFA0e4J0vSaoGrV4cB8Ien50IsXLj0kfsE\nB+t6Qm7cqHseGxuMgICF2LfvCTg7V0d6+k0kJKzFhQvjMfu9N/H15J8xYrQH0l9+GY3PNc851ww0\narTTsN3UqbrW9u7uwBtvAF5eQKtWwNGjueXUt1OqyHZJlamtlPFrX7Xqe7h+PYu9J8vA2nuhRkVF\nQa1WY+fOnWykTlRJVXQQS8VQ0km68+7r45Mo7du/bJK5Sk4WqV37kAArpXbtjZKcrBWNRmRwRIo8\nM8JLbiud5b2nn5bERK04O58XoGW+eSc1GpExY0RmzRJxchJZv15XzmXLpMLnhawsbaWMX3tPT08B\nlAJ8KeHhIyu6aIWy9jZLFVGtZ+33hMhWgNWOZCklmaS7IMZVVl26zDc0ok9O1kp4+Ehp1ChelMrD\n4u0dK8uXZ8rvZ4/Li6NVctddJXMHJUpiojZnv/xBn749UuPGnwhwX3x8vhJv71gZNuwfw3Zr11ZM\nMFYZ2koZv/b66qg2bUJk7dqMii1YEay9zVJFVOtZ+z0hshVg8EXlqawBl/E+vr5bBPATT89oSUzU\nSliYLvOlX+/ltT0nOBtl+GD4/eLvMmqwi9z18hD5668iy5Ab3A3L+fmlPP/8KEPg4+0dK8OH/1Mh\nWajK1FbKVhowW3ubpYq4j9Z+T4hsBRh8UXky1/ASBVVXJieLSWCka4jvl69acceZHTL5BRdJ86wv\n2mOX8h1bHyDqgruW4uCQJEBXcXS8Ls8+myWBgSMMQV1Y2BiTLFRiotYimS/jwNMWM1+2yFaCREvi\nPSEyDzD4ovJW1mqzorJnuRmhlRIW9lKhbcmijkbJnD6ucsmtsWjPpBqOoQ/ixo4VSUzUSkDAdomP\nvyABAdvl4EGtNGkiUrVqmgBBUrv2RunePUtatx5r6EEZELBdkpOLl8krTRawLO3kiIjIOoHBF1mC\nOavNjIee0GWERombW4wsX55p2KagoOaLhC/kfz1UctQpQLq3H2AIBPXHMw6ONBpdG69//UtErb4n\nNWvekE2bMmTQIBGFQiPAs+LgkCTbtl0sUaeBkmYBzVVtS0RE1gMlDL44tyOVmFYLtG4dgwsXxsPT\ncyEOHuwFPz9lmY43ZYru9xkz0jBx4kS4ui5GtWrVsWhR7nRCBZn180x4v/lvNP4zCGGSjL7qjiZz\nFRY2x+THHwNffaUbjuLs2S9x4cJ4AL3h6PgpDh+uj1atinc9Wi0QHPwLXFwW4+rVYdi796ky3Qsi\nIrI9JZ3b0VpVdBBLhSivarO1a8VkcFX9EBOPygjdupUtrureEuXvILHV20ryX6kFlreg7NTnn4s0\naCCiVJ4UIDgnk9dZunSZX6KyV6bG80REVHJg5ovKk3EmSU+rBfbvz500u7Q6dhyChIS1APyhVncw\nyWAVRKvVDdb61pRbeOY/rbDul/vIvtcTj/0WCZW7g8l2ebNTSUlKtGgBzJ4NHD78AMePX8DDh6NR\nteoaHDpUq0SZL3NmAYmIyPaUNPPFEe6pRPr0yV8NqFKVPfAqzUj5+/cD8+YBjRq648THZzF7QnOo\nquyGdsQEXSLKqHwuLotNRsMPDgbGjQPefBPo1MkRvXp5o3r1jYiOdsZ77ynzjUJfWJmnTwf27n0K\nanUHHDzYCwsWFG9fIiKyX8x8UYXTBzHTpqVh6tRXsXDhUixYoMS8eUW398or414G+n7dFVFfXkX9\nIa8Cc+YYjl9QdkqrBVq1Ogovr//g+vUBUKufwfr1NbB6NZCebhpQFpTxW7dO93PwYNNrMUcWkIiI\nbAczX2Rz9BksPz8loqOj4eenC7z273/0vsZzJbpUd8H3r/yE/iNr4e+li4FPPikyO6VSAfXrz8fh\nw8tx8eJ4XLw4AgsXAgMGAPfvm55HPx+l/lxaLbB3L/Dss6bbmSMLSERElVtZMl9qALMBNAPwJID/\nZ7TuXQD/AvAQwBsAfspZ3h7ACgA1AGwDMLGQYzPzRcWiD670WTKtFnhjRgpOKDsibvl9nFEvwMnO\n/8Kzz+ZmrbRaYMcO3e/TpuXPiB08CPTvD0yYAEybBigUufuxZyMREeVlyczXnwD6A9ibZ3lzAINz\nfvYG8D+jAn0FYDSAJjmP3mU4PxFUKl3gFRz8Czp2HILWrWMwZ4oKK97YhWeGCx5bOxXP3fvBJGsF\nADt36h6zZoUgPDzEJCPWpInumOvWAS+/DNy7l3uuvG3HiIiISqoswddJAKcLWB4O4DsA9wEkAzgD\nIAhAPQAuAA7kbBcJoF8Zzk8EoOCg6AmvJ/DJ+BiEvZgNxYRXMLPTTpMArU2b2+jZExgwwBkNGqyA\nUqmr6tyxQ5dJCw8H4uOBjAygRw8gNbV0nQKIzMW4il1Pq9UtJyLbUh5tvuoDuGT0/BKABgUsv5yz\nnKhMCguKOvl0wtRxURg8VIGarw5Gh4cf5wRo7+E//9lnqIrUZ8569x6CadNiMG1aGlQqoFYt4Pvv\ngW7dgCefBMaMKV3PRn5okjkU1O5w+vTcgYOJyHY8KvjaCV31Yt5H33IuF1GxPGq4h9AmoRjy+hcY\n85IDPjq9Hy3RFg4O32HFiuaGNmBFVSc6OOiCsxdeAHbtAo4fL3mnAH5okjkUVMWu/6JARLbF8RHr\ne5bimJcB+Bg994Yu43U553fj5ZcLO8js2bMNv4eEhCAkJKQURaHKTt9TUqVSYuTIaCiVMARFffro\n2m3duz0UKW438FbYu4jd9je6ZQ/HoEFLcfy4j6GRvmnmrFe+8yxapOsF+cILukb4EycW3rMx77AU\nKpVun1atjqJ+/fmGxvoqFRvrU8kYf1EA/DF16qMHIyYi84uLi0NcXFyFluEX6Hox6jUHcARANQAN\nAZxFboP7BOjafymg6+1YWIP7ipwlgGxUQVMJjR4t0rOnSGKiiGt/tbzyVFU5r6gvCRuOGya5Lsl0\nScnJIi1aiEREiGRlFb8cY8eKtG//MqchojLJnXzeTzw9oyU5WVvRRSIisez0Qv0BfA7AA0AagD8A\nhOasew+6oSYeQDecRE7HfsNQEzWhC77eKOTYOddCVDIFDQcBKNG27SX4+L6LY40u4JOHKVDH14TT\nwXjsO+lR4umSMjKAF18E7twB1q8H3N0fXY4tW55C377xnIaISs1cgxETkflxYm2ye3knuo6JEQkI\n+FS3TOErDSY3kB/6PiY3GgXK9ui0Up3jwQORt94SadJE5NSpR5WjpQQEbDf7ZORkX/SZWmPFmXye\niMofOLE22autW4EWLYCuXXMHTt21qxdOnFBiypTtuHTpOjw8XLHv90549ZchGP/ldfR38ULVn7YB\nNWuW6pzLlgHvvQdERemGpNAzntJIqVyFvXtbmUzWzWmIiIgqD04vRHZp61bAxwd47jlgyxZdz8cN\nG3rhueeUiIkB9u3rhKCgm3Bx8UDXzkdwdv54zH25Co47pOJayOD88wkV0+jRukb9Q4cCX3+tW5a3\nB2ZiYissXmw6LAWnISIisl/MfJHNMu5VqNXqAqB33wVeekk3WfapUzMxc6YnfH1rYfBg3TaPPbYD\n168/C+BlPDvwDg43PYzff66OgCbtgJUrdWNLlMKZM0DfvkCvXroMWNeuJWtHRkREtqukmS8GX2Sz\n8s7rmJICtG17CffuTcSdOz8AaAW1upmhK75WC7Rsqat+dHR0hJeXCut2NMComFD8+r0SXp16AF98\nkTuZYynKM2iQLn5btw5Qsj09EZFdYLUj2Y28g0527RqDBg3m5QReXVC16kK8/75utHt9oLZ1ayc4\nOx/Cgwcv4cqVG1j0/qfY+PIOdO53A+m/7ABmzSpTebZtAxo3Bjp1As6dM9OFEhFRpcLgi2ya6ej0\n/4eTJ98A0ArVq4/Cpk1PYOhQJVJSdFV+06YBn3+uhEoVBsAfHh6ueP75L9GyTkusGLkRQS/cwt01\nK4FPPy11eRwdgS+/BMaNAzp3BvbmnXaeiIjsHoMvsmm5o9O3QtWq32PzZheo1c1w6pQaMTHeWLMG\neOqpo5gzZwi6dNmOrKx72LevE9TqDjh0qDsOH3aGVgt08e2ChUNXosuQO7j/yUJg+fIylWvcOCAy\nUjci/rffmudaiYiocmDwRTbLuFdhly4v4tChWvjyS28sXJg79+KGDYC7uy4zdunSOqSnvwalUjcV\nkfH8jFu3Al28nsPEQR+j53Dg4fR3cTvyhzJNft2rly7zNW+eLuv28KH5rp2IiGwXG9yTzco7hyKg\na3Q/bhywerVu+dGjQGBgOu7fD4Wn5yTs2tULixfnHxXcuPH+8hOfYO/GLxD5ZSYc1kTBuX9ppjjN\ndfMmMHCgrgH+mjWAs3OZDkdERFaGvR3J7mm1ukmsa9degjNnpiA62hGDB/8CP7/9OHPmAyQk1DAZ\n8O7ZhhAAACAASURBVNR4P/2UQCcaPMAAvyQsX3UDis1bdC3oyyArSxcUHjgAbNkC+Pqari8okOTw\nFEREtoG9Hclqbd0Kk4FGAd3zslTtFUSlAry8/oMjR75EZuZQfPvtZDRt+guSkr7GP/8MwLhx/yt0\nP33j/fQNBxGXfQ/vj/KF9OuHr8YcRUqK6fYpKcDs2cUrU7VqwJIlwMiRQMeOwO+/m64PDtZl3vT3\nR5+JCw4u2bUTEZH1Y/BFFmOpAEOrBVJTBwBohSpVvsGJE+44cmQqgHGoXXsqVq8ea7KtPvjLbbzv\nD0/PRdg18RCOtffF50MbY8TaULzW44whAEtJAUJD82ewiqJQAJMn64Kw55/XTUmkl3fYjNatYzBt\nWhonTCYiIoupqLkxqZxpNCLNm/8sQUGDxdd3iyQna8127JgYkeRkkbFjxTCJ9eOPT8qZ3Lqz1K/f\nXIYP/0dGj9aVQ6MRwwTXa9eKjB4tJpNfjx4tEhl1R7p+21Uix4TItVr+4ucYL7VqPSsODielf//0\nUk+OffSoiL+/yIwZIg8f5i7POyk4ERFZP5RwYm3HcgqeiApkXLUH+GPq1A6GEejLKjgYGDYM+O9/\nAT8/JRYujEazZtcAPAtX14/w66+toFRWR8eO8QgK+hX//PME9u59CipVbvsvpVKJ6OhoQ3aumkNN\nbB6yGd3+6QbPwU2wbfmL6PrgD9zGHvz2Wz+oVCeKLFNhbbkuXAASEoD+/YETJ3QzG2VlGWfeFmLh\nwl5muS9ERETFUdFBLJUTjUbE13eLAH7i6Rlt1syX/vjNm/8s7du/LM7O5yU+/oIhk6XPchWWXSoq\nK3c146r4fRwg/1c3WA4gUFxwUEJCRharPPrzFvT87l2RYcNE2rQRGTHCNPNmvB0REVkvlDDzZa0q\n+j5SOdAHHuUdYOQGVy3zBVdr1xYc/MXE5A/MwsNHSkyMbt/kZJGAwDPi8Ja7fOVWQ/ZWaSEtG2dI\ncnLxrts4qFu2LMPkmrOzRQYPFnF3Fzl0yHS/mJjcsuU9pr5sRERUsVDC4IsN7sli9u/XNSr389NV\n7RkPcmoupo3mZ2DhwqUm6/fu1Q3KqlZ3wMGDvbBggTJniAlgyhTg8uVRAPzh6vodqldfbOgM8L//\nAe0bBWBmk62YPCYbPiEqrLj7Er7+4n6+MuTt1alSATVrrsqZAmk8Nm8eb9LxIC0NqF0b+M9/gN69\ngR9+yN2vTx/2hCQiIsuo6CCWbNCjMmtFZZA0Gl2D+8aNfxF393ZSt+4Oadr0gSGzpW+Qr9GI7Ene\nIx6zPeTvzp3lYvdhhhbzxscyPm9ysoiz83kBWhqybYVlww4fFvH2Fpk7V+TWrdzsVnl2VCCi0nn1\n1VelW7duEhoaKhq2EbBrYLUj2auyVM8VVO0YFjZGfHwSCwx41hz6UWq/U0fSnwwUGT9eNLey87Xt\nKqjt2bJlGYYgzrh6NCjoE8P+ly+LtG0r0qSJyNWruWVkT0gi69KtWzf9hy7/Ju0cGHwRlU5BnQHy\nBjzGAd6X+5ZL7Tc85XgtlSxy+le+bFRBbc80GpFevUS++EJ/rpZSo8ZfEh+vlbVrc7Nb3t5bpU+f\ne9Kpk8jff5d/RwUiKrnQ0FABIIGBgcx82Tkw+CIqPn0wZVxlGR4+0pCh8vaONQl48lYpNhgUKJ6j\nmspJRTVZ0bq14biFBUsxMSLx8SLVq2dIixaviZPTcomOviR+frrqSeNg74UXBsnMmSI+PiKDBrEn\nJJG10Wg0olarGXgRgy+iktAHU2vX5g3CdG28li3LyBfwGFcpOlQ5JujlIQ1faihZ9RuILFuWr+2Z\ncVWjRiPSp4/I449PzwmynhVHx+OGzFdBAdvUqSIeHiKbN5uWm70diYisA0oYfHFibbJ7xhNqX706\nDHv3PoWkJGWRE10HBv4Lhw8vB9AKDbxvoeP/dcXN+EvY9eNfODL6SwRMG2jYV6vV9aTs2RMYPBg4\nehRo00YDkUkAVgIIRnh4EzRosALTpqVh6tRXsXDhUixYoOsNqlLpBmQdMEA3PdHkybqpioiIyDqU\ndGJta/0XzuCLLKpjxyE5o+6/jPBwwY8/rjCsMw669M+bNj2A1NRX4Ok5AwcP9kJ9byf0XTMAPkkP\nsWTFISjWrNFFW0bHCA7+BTVrrsKpUzNRv/4nOH36cwC94eDwCT77zBfDhjkXGuwBulHxn38eaN8e\n+Oor3WTdRERU8UoafHGcL7J7xmODeXiEw8VlcaFjaumfHzz4GNTqZoaxwm5nVMWGF9fh5OMZ+GJa\nN8hLLwG//WY4h35apcOHlyMz8zWcOzcGQCtUr/4CYmJcERvrnK9c+nG+9Hx9gX37gJs3dXHdjRvl\nd0+IiKj8MPgiu6YPpvQDrx461B3Vq+vmf+zYcQhat47BtGlphoxUUQPFOlV1wuYhm/FNrVOInhoG\n9Ounq2OEcYDXClWrfovNm12gVjfDqVNqxMR44/+zd+dRVZbbA8e/OOEMCJgDguWYF7VfltAFFXMe\nEtMILS21zFIbLCXNSq0sEystG9SuUw6IpZWgkpqKUmFqkVaOBYqVWp6DmaEo+/fHy4HDfA7zsD9r\nuYSXc973Ody1utv97Gfv997Ludls1oatdevC0qXg7g6+vsZcSKWUUqoolG7lnKo0cusN1rr1nAL3\n1Dpz8YzcOP9G2f7qWJEmTSTpwPH0Anx//1clLs6crSdYbsXzec2GXLZMxN1dJCrKvs+slFKqaKEF\n90oVjtkMHTtGcOrURNzdQ/n22954eTnZdY/Fnxxnxq/diPxnEG3fjyLly71Ik6bpNVzr1hmvCw7O\n/FzrGi/r61kPBFjWs2cPBAXB88/DxImF+dRKKaUKSmu+lCqErNuQ1vMf7XFvj1Z0OR1Jn1ob+P3B\nXtQd0otXn/4zvXasTx9jzqQt8xot9WLGbMjnmDJlbPrP2rc3tkHffx8mTICU7KMmlVJKlTGa+VLK\nSmQkebaYsIfZDLcMfosz/53Gm//z45FGJhz37oZ69dJ/nltGK+t9jEzcc9SsuYHYWHc6dHBKD9hm\nzzZaTwwbBteuQXg4uLgU5reglFLKHpr5UqoQBgzIHHgBmfp1WTObjWAtN87O0Cg5lmufruGJEbvY\nfvlPCAyE5OT0n2dktCZmymhZP2P6dJgxI4DAwFuJjXUnIOBvbrttDO3bb6VTp0s4O4OTE2zaBN7e\ncMcdcPx4YX4LSimlipMGX0rZwM/PCIIsAVdCQvYWFFkDsfQTjj8/Td0DDzPhEQf+dalnFHqlpGRq\nceHuHkpo6BIg8wlHy+nKHj3qkpKyHE9PJ2666UUOHFhKYuI5Pv88o9CrWjV46y2YNAm6dIFdu4r/\n96KUUsp+GnwpZQNnZyMI8vPbyYwZY/D2jmfcOKMFxbp1Rgd763qthAQYMSKjduzwirk0Ovcovl1O\nkJJ8masjxvD8c6k51pZZB3qWrc65c+G998DXdw/ff/8gsJYGDeqyYMECIHPwN24crFljxHgffliy\nvyellFL505ovpeyQ0Qm/A/XqTaFdu0jOnBlFQEB33nnHEWdnIxC6/34jWPLyynivySSMDnuav/mG\nsIVVqe/3fzguejt9VpB1bVlO9WBOTk60aRPFuXN9gJX06rWHGjWW8OqrsGgR6aOILPdp1QoGDjT+\nhIZC1aql8itTSqkKT2u+lCommbcJX+Cmm7YRGxtGYuKj/P33OPz8dqY3Zn3vvaRMgReAi4sDGx59\ngyaNWjJhUh1q7N8LM2ak/9y6o31O9WCvvQbVqlUFmuPqWp9ffx1BQsIUbrvNlJ6Fsz412bq1MRMy\nLs4YS3TxYvbPlLWJq+Vz5lXLppRSqnA0+FLKBpZs1qZNxjbh9u29OXnyJcCP+vU/YsGCBfkWzwNU\ncajC0kFLuVSrKo8/0QpZt84o1Mrhedb1YM8/v4S//oIePboQGBjAgQPdMZuvcfhwKCkpA/H3/zzH\njvwuLrB1KzRrZgRk8fGZn2O9xWl5bm4tL5RSSlVspdmoVqlsIiJE4uMlrVO98feePWZp3Hi/xMWZ\n5aGHRDw8tgh4ibt7uMTHm/O836Url6Rt6B3ywv/GSqqnp8j//iciRuf6sDBJ74gfFBQk8fFmGTDA\neK7JJNKu3ZfSqdNoqVLliMBj4u4eLh07jsyzI39qqsiCBSKNGons3Zv5Z5Z7+vgEi6fnpnzXrpRS\nKjPs7HBfVpX271EpEck+fshkEmna9JC0bPlWeqBiMok89JDI0qWX0oMl65FAud33+6N/SYPn/yPv\nLJ0s0qiRnHv/YxkwwAi+rN9rCfwsI4g6dRqdFmiNFw8PD4mLM0vdur8KtM838Nu82RhJtHJl5us+\nPsEFHqeklFKVHRp8KVUwOc15jI8XGTAg82zFhg23ZgpUcpsPmdu8Russ2jc/Jkr1KTdI3263yVlc\n5eQHG7O93nqeo8kk4ua2X2CNuLltTJ8TGRdnzI20JfA7fFjkpptEpk0TuX7deK2n5yabs3a2GDt2\nrHTr1k369esnprwWo5RSFQAafClVMLkNsY6Pz9iW8/DYIk2aRBYqULG+b7NmceLYZJDwTCPx92wm\nSTVqyMWor7IFbiaTSJs20eLkdEAaNYqS/v3vS9+OjIvLHOjlFfhZnDsn4u8vMnCgyNixmbc48wve\nbNGtWzfLf4w0k6aUqvDQ4Eupgsut/iljW26F9O9/X6EDFctzatUaYdy3SXdhSj354tWZklSroSTt\nicv2ntat56SvITDwQRExArj+/Qu2huRkkZ49Rdq3Fzl9OvPa8gve8tOvXz8B5LbbbtPMl1KqwkOD\nL6UKJ2v9U8a23Chxc9uYKdtVmEClY8fxac8ZIvCDeHbrJw4hrvLVjBkiTZqIHD+e6TmWrUE3t43S\nsuXOIimQT00VmTtXpGlTkX37CnybbEwmU9rvTgMvpVTFhwZfShVc1vonS01VbttyM2YY2Sdr8fHG\n9aysa8Pi40Vq1vxDoLdUqbJfWrd+3AjE2rWWGlPrS8LsV+SfG5qLJCZabVNmrCFr3VlBWK/n009F\n3NxEli4tfNZLKaUqGzT4Uip/eRXXWwc5/ftnD66ss13x8SLe3hmvyfp91vdZar369zdaVbRosVU2\nbzZL9epJAr3FySlapn/6ptR/4SY5N226SLt2ErXmz2wnLo22FqMKVSCftcYtOlqkbl2RqVONjJhS\nSinboMGXUvnLqbg+v0ArN/HxIjVqHJU6dfpI1ao/yZ49p/J8brNmcdKp02jx9NyUnlnbs8cstWrt\nkI4dR0rdur/K+HXPScf3O8q/zzwpcvvtIhcvZlp3URXIZ61x27cvSXx8RIYNE7l8uWD3VEqpygY7\ngy+d7agqrZzmJ3p5ORXoXnXr9uWff7YC/nh4JHD69OlcX5sxH7I5/v7j2LRpGs7OmedG+vkP49bn\n/iDuj+/Z8XVrqp34BTZvJnJHTfz8SO9gb/kclpmQBWG9nqCgzqxYEc5DD8HJk/Dpp9C4ccHuq5RS\nlYXOdlTKRjnNTyyIhARITn4L8MfBYRFPPPEd69ZlnploNsO6dcYf67FBq1aNT5/JaD03cvWqCczv\nO5+m9T0ICjhHqrs7BAczoHdKpsDL8jkKGnhlHWMUGrqEWrVg9WpjILePD3z3XcHurZRSKmcafKlK\nK6fAw14JCUaQsmtXXTw8EoiOrs+yZW5s2ACTJxvPMJuNryMiYNs2iI425kN++21v5s51IiHBmKeY\n9frFpCosH7ycf1OvMi6oJpKSAmPGELkptUiGYVvmOGZ9rtkMDg7wwgswbx707m1kwJRSSlVspb19\nqyq4oqqdyu20Y0iI0RS1Zs1wqVFjrTRosE/eeedStsL5sDDjHnl1yL905ZL4LPGR5zc9LeLvL8lj\nJ8r4x1KzNYO1d+22dubft89oRTFnjhbiK6VUTtCaL6XyFxlJkddOZZVRSwXQgRYtQtm/v0/6NuP0\n6TB7Ntm2EXPy1+W/6LKsC+Nb3sfEqZ+Q3OsuOkV2L5J6NVskJsKgQdChAyxaBI6OxfYopZQqd+yt\n+dLgS6liYDZD+/ZbSUw8B0CDBvXYufNOhg8/WOCA6XTSafyX+TO3w2SCH1vI/OTaTDr1HZZC+fDw\n8GL6NIZ//oEHHoCzZ2HjRnB3L9bHKaVUuaHBl1KlzFLjdfXqFf76awwADRosxdHRke+/H8OBA0sp\naMD0wcdHmPFrAEvavcqtgVN58Xoqn7t+SGhoL0aPrmPzfQqa+UtNNWrB1q6Fzz8Hb2+7lq+UUhWS\nnnZUqpTFxECvXvD2246MH7+a1atX8847jvz3v3Dq1KNAB+rX/6hABf7DerbF99fPCY6dyuG1rzLP\n8TIv/ieZmJg62Yrw8+LnZ2x7Wt5j2Qb188v7fVWqGFulL70Ed94Jmzfb/RGUUqrSK0zwFQr8DMQB\nGwDr/ZNpwHHgCNDb6non4FDazxYU4tlKlVkDBkBwsJFVsgQ5SUnwySewYUMbWrQIZc+eDuknHW09\npWh53X3dOuMWPZW7vptIkOdTjP3uceYP2EZMjO1rdHY2gig/v534+g6jY8cIQkKSbKo/AxgxwjgB\n+fDDMH++MehIKaWUbQqz7dgL2AGkAnPSrk0F2gFrgNuBpsB2oBXGSYB9wMS0vzcDbwNbc7i3bjuq\nCsNshg4dfqBBg0WcPDmFmBgXOnQwAq8JE2DVKtuK7q2L9Pv2HUbspbuhz2M8dbA9bx3+ydgHvOMO\nu9aWtcGqvdugllYb//0vLFwI1avb9XallKoQSnLbcRtG4AUQC3ikfR0IrAVSgHjgBOADNAbqYQRe\nACuBwYV4vlLlgrMzNGnyKnFx73Lp0iD8/T/H13cYXbtG8O67tmebLNkqX989fPfdYPjxCrUPDuXT\nuxIxfTAfBg+GQ4dsXldR9Dnz8oKvvjIasfboARcuZL6/vb3HlFKqMiiqmq8xGJksgCZAotXPEjEy\nYFmvn0m7rlSFlrV7fYsW2wvVVd9kuszVq8OAFwmofRm3P0YScPYNvn5gDql9+sKJE5menVMAlFeD\nVXvVqwdbtsDFi9C5Mxw9mncNWWQkRdIkVimlyqv8gq9tGDVaWf/cZfWa6cBVjK1GpZSVrEHO9u29\nOXFiFtChQNmmqCioUUOwZKvee+89vpg2g2bcQUjblaxp/RzXe/aGM2fyDIBiYowsmpeXE+Hh4Xh5\nOTF7NnbVjVlzdYVdu+Dy5SN4e5tp0+abXGvIClrsr5RSFUVhW02MAsYCPYDktGtT0/621IFtBWYA\nCcBO4Oa068OBbsCjOdxXZsyYkf5NQEAAAQEBhVyqUiXPuqWDJcgYNy6JCRPeY9Wq8cyd62Rzo1XL\n+0NCkpgyZSyhoUvS31+v/nXu23Afl5NTCHimAXf/vZ67G7zP5zEDirX5alYZNWTnufXWTzlwIOfM\nXlEONVdKqZK2a9cudu3alf79rFmzoITad/UFfgTcslxvB3wP1ABuBE5aLSgWo/7LAWObsm8u9y69\nGQFKFRNbx/kU9P3JKcnSc2VPcR9zk7xGiMRSQ0YOHlz4hdvIZBLx9Nwk4CUNGkRKixbX5IknRFJS\ncn69j0+wGOckvSQoKKjE1qmUUkUNO8cLFabm6x2gLsbW5HfAe2nXfwLC0/7eAoy3WtR44EOMVhMn\nyPmko1IV0oAB2TNczs62jzPK7/2O1RxZ2mcDSbWqMq37+xyp2ZXFZ/+C5OTsN6Noa6+ybq8ePOhH\nQEBVDh82TkMmJWV/fWGL/ZVSqrwqTPDVCvAC/i/tz3irn70KtATaAlFW1w8A7dN+9kQhnq2UysJs\nhjmz6vH141uo5wsnwwM4fL4JZ/yDMZ9PyfbaS5eKrvYqpxqyefPgySehZUujA8bJk5mfUxTF/kop\nVR7peCGlKgjr+rJTSafwX+rPC7e9xIAnwkm87Errr1fg3KBKpn5hUDK1V+++Cy+/DOHh8PffxT/U\nXCmlSpLOdlRKAfDT+Z/ovqI7K3q/T89xb7HuqBvvtKrB73+MzBRkFbbRqq22bYP774fXX4fRo4vl\nEUopVSo0+FJKpfv69NcMChtEZL/VOPkEs+7y48xgZXqQZTZDx44RnDo1EXf3UL79tnexnjo8csSo\nARsyBF57DapWLbZHKaVUidHB2kqpdHc0u4OP7v6IgZtHMrT5swTzGs/X6UZo6JJSqb1q2xZiY2Hf\nPiMAu3Sp+J6llFJllWa+lKrgzGYIemkNPzYOoXdMaz7cf5yw1rOoPm4MffoYtVeWejHIqL0qzjqs\nq1eNuZb79sGmTeDpWfTPUEqpkqKZL6UqqdxaR8yfD+tfvI+pXUP4uucZLm4K576fptPyhw3pRe+W\nrvOQEXgVZ9f5GjVg8WIYNQp8feGbb4rnOUopVRZp5kupCsL6FKN1R33rDvrPf/k8W09sZXfH+dS5\nawisWQM9e6a/vzS6zkdGGgX48+fDffcV++OUUqrIacG9UpVYfgGUiPBoxKPEHj/Jl62m0WDMMGPf\nz9cXsxl8fF7n2LFnKe6Tj1kdOgSDBsHIkTBzJlTRnLxSqhzRbUelKiHLlqOzM9Srt4jY2DBOnXqO\nESPey/Q6BwcH3hvwHl43ONP5qw+4uHApBAZyMeYQkyfD5csdKY2u8+3bG4X4O3ZAcDBcvlxij1ZK\nqRKnwZdSZZC9o38sNVsJCZaxPR2oUWMrr702Pts9tm6pSnjwapq2vEDzyCU8X/8mLnftjvOfP7F3\n7x2l1nW+YUMj+KpZE7p2hTNnSu7ZSilVkjT4UqoM8vMzGpImJBjfW+q3vL1zDsCcnSEkBP7v/xJx\ncQmndu1JfPppKo895pTtHn5+xhzITSM2csVtL7M9ejMjtTWTt/ngVe1S+nig2bON044lqWZNWLkS\nhg41CvEPHCjZ5yulVEnQmi+lyqiEBCOYuummFzl/fgibNnVh0SKnTAX0FpGRRs+s0NAxHDiwFGhO\nYGAAgwYtZ+bMH2jS5NVsNWBmM3j7rOJMn9HU/XEkp27zxCViPURHg6trtvVYjy+yKM52FBs2wLhx\n8MEHRjCmlFJlldZ8KVVBeHnBTTe9yIEDSzl1ag533LGBkJCkbIEXGEHRtm1w9uy9QHNcXedTv/4i\nhgyBJk1eTasBm8iUKWOBjCxYzBd30f+v3tTtG0VwShuSew6Efv2MAYw5PKOoBnHbYsgQiIqCp54y\nTmzqv8eUUhWFBl9KlVFmM5w/PwTwB/Zy+fJb6cFTbmrWrIWLSwMcHWsgAklJlhqwzEX0MTFGQOPl\n5UTk6ki2PRjF942e4mHn7lxp938QGAjJyenriIw0Ml6zZxunKX19h9GxY0SuwWBRufVWoxD/00+N\nk5BpS1JKqXJNgy+lyiBLVmnTpi7Urv0Q0IGaNTfw/PM5n0CMiYF588DV9X1MpoP89ttULlyYxPjx\nxvigwMAAXn+9f3oR/YABmbcPvRt6s3HYBrbWGcnIeg9y1bkhBAdjPp+SKbuV+TTlxHyDwaLQpAns\n3g0pKXDnnXD2bLE/UimlipUGX0qVQTExRgH9okVO/PTTEIKC2hIb685zz+V8AtFSc2U56Viz5gb6\n9ZvL6tXg5ORE06bLufvuOtmK6K1PVfp5+rFi8HJ2egyh5dGhfLX7W75s3puQyab0QM1szjmTVpwi\nI41xRGvXQu/e4OMDe/fmfvJTKaVUwYhSlV1EhIjJlPmayWRcz8pkEhk/XiQ+3ixBQUESF2cWF5fT\n0qnTaPH03CTx8eYcn2F5n+U5JpNIj6dXSvVn60it+kckGkfZ3LKlSGpqtmfEx5szvbe4ZF3jhx+K\n1KolsmZN8T5XKaVsBdhVlaqnHZWqAHI6iXjbbRknH/PqVp+1K/6mTV3oNvUZzDetoOm6lRx3fY1a\nwXcT2XlWiQ7fzmuNCxYEMGFCXZ5+Gp5+GhzK6n/JlFKVgp52VKoSylrDlVGsn//2YNau+EOGfMP3\n779BW1ri8sIb9Kr6GSmrwhhwfD5Athqw4g68sq9xImvWjOGbb+Ddd+GBB4xtSYu8mtEqpVRZoMGX\nUhWMpVg/OrqLTd3qreu4nJzeZcMGX7y8nPjpnZ/waX4LVZ56FP8rb/L7s9N5pcVTxX7CMb81WoLJ\nZs2MlmQxMdC9O/z5Z/G3v1BKqaKgwZdSFYx1G4n8utVnDdTi4jqwaJERqDk4OPDBwA9wrV+bEwMe\nI+Dqfp65sJD1w/uV6OfJK5j08ID9++Ho0QQ8PP6gXbtdpRIcKqWUPcpqpYTWfClVAmzpWv/Hn8k0\nf/52rpxO4M6vnuOLqm9QNWwt9OxZZtbo6zuM2Ngw4E+6dFlEdPT0ElmbUkqB1nwppeyQtVYMMuq4\nIiONEUcvz6jJt89E4ty+Km0WXWRaq09IHTYcvvnG5ufYOyjc1jVa7mPZknR2/oEjR6axcKHNS1NK\nqRKnwZdSKl2mvl9+cM89MHw4nDrmSezjR1h9KJwaz/7I2j4rjC74hw7ZdN/iGk2UdUvy++870bt3\nFd59FyZMMBqzKqVUWaPbjkpVEEUx+NoSzFiGd//wA3TufImbb57KhQt9eT+sGfdu6c87A99i9C+p\n8MwzRvv5li1turd1uwjrId8F/ZyWryFz+4svvoBly+DaNQgPBxcXux+jlFI2s3fbsawqzV5pSpVL\nOTVMLUgTVJNJpF27L8XHJ1g8PTeJt/c4McZa+0nt2ktly8G94j7XXbad3CbywQciN94okpho0719\nfILT7uUlQUFBdn7CjPXZ8jlTUkSeekqkTRuRY8cK9CillLIJ2mRVqcqrqLJLGQXsHahdexKXL/8P\n2At0ICioLY+HPs6Q8CFsvm8zt3+0Az76yOj74Oqa59o6dozg1KmJuLuH8u23vQuc+fL2hv79MzeG\nPX3aKccM36JFMGOGMZ6oe3e7H6eUUvnSzJdSlVxhs0thYSIeHlsE2kvNmsdl8+bTUqvWKoHHpGbN\n4xIXZ4wq+uzIZ+Iyu5HEnvxZJCRE5PbbRS5ezHEEUm6jicLCbB+hlPVenTqNTvuc7aVFi615w16B\nIAAAIABJREFUZvh27BBp2FBk8WK7fx1KKZUvNPOlVOVV2OyS2QyTJ8OVK1c4fvw95s0bwyOPONG+\n/RWuXBnHSy8tYNo0J1avNmqu3vtqOVO3zuTrh/fwn9mvkPLzcSbfvJn/3lmTPn0y6s8s2arDhzNO\nUnp7Gwcmo6ONGjOAqKiM7/Pq1ZWQAC1bHuHatYepUmURu3fXx9+/WZ6f7dgxuOsu4/mhoVC1qs2/\nFqWUypNmvpSqpPIbfG3LoG7Layx1X61bz5EmTbbJ0qWXcn3PrO1zxXGSl9zmFyif1e4i//TsJ6Zz\nV/Osy7L+3mQSadMmWho23CoeHltyHQKe9XPecssDNme+LC5cELnzTpH+/UWSkvJ/vVJK2QLNfClV\nOeV12hGMTNPcuRlZpYQEGD+e9CxWVhl1X3kP5gZo8uDN/F7dmeorkvjGzcStvXphnr8c3//GIPIV\nycn/yVZ/Zl2fdvDgYFJShtn0LEvWrGvXjAzf9u29c635yiolBR5/3Pi9bNoEzZvn/x6llMqLZr6U\nUtlkZMWMjFanTqOlbt1f0+u3cnq9p+cmAS9xdw/PMxtlMok08/xcCHSRKiO7yoGvEkT8/SX5kcel\nofuWPOvPMurTVtj0rMyfJecMny1SU0UWLBBp1Ehk717b36eUUjnBzsxXWVXav0elKhzLVmKdOn3S\nt+tyCojsCW6sXzs0aKh0+6Cv1Bg2WLp2HC6Hqt8kb9QdnmtQZTJZCvtXSIMGG6R///tsCqRs2T61\n1ZYtIu7uIitX2v9epZSyQLcdlVK5ue22MRw4sBTwx9FxFEePBmUryLenWWvW1/6b8i8Nn7mRS8eD\ncd/akoN1prO95U10/2w3c+c6pW95Wpq5dup0ic8/n8iCBQvSfw72NYYtrJ9+Mgrxg4PhlVegis79\nUErZyd5tRw2+lKokEhLA2zueS5cG4ej4BC+9FMixY+7Mm5cRPNnbET8rsxna3x5GYs/x1P61H0df\nnIbH8AEwcybmu0en37souvEXpfPnYcgQcHc3WpbVqVPya1BKlV86WFsplY3ZbMw6jIlxISioLUeP\nBnHsmDtXrxrtHSyvKci8Rcs8SMv7927vR5/zPanT5WtGfPIVF9dHwXPP4fzlhvTAKr9h2SXN3R22\nbwcnJ/D3h8TE0lmHUqpy0MyXUpVAbpmmqCh46aXCdcS3BF1du0KfPsa16dPhoSknGPBxV0Y3eodX\n290IffvCmjXQs2eRrL04smQiMG8eLFgAGzZA585Fe3+lVMWk245KKbvY01IiN7mNNfru9+/os6oP\nYfeEcefpajB0qNHfwdfXrntbD/vO+n1x+OwzePhhWLjQqAVTSqm8aPCllLJZUc1bhNyDuF3xu7h3\n/b1suX8Lnb4/C6NHG3t87dvbtc6imFlpj7g4GDQIxoyBF18Eh7L6X0ulVKnTmi+llE0sGaTo6C4E\nBXXm2297M3euE2az7feIjIR164xi/t9/HwE0x81tPt26LSMy0nhNQPMAFg1cxMC1Aznu08rY0+vb\nF06csPk5zs5Qr94iYmPDOHVqIlOmjLXvwxZAx44QGwtbtsB998G//xb7I5VSlURZ/becZr6UKmZF\nUUtlNhvd4g8cgLCwJF588Ulq1lzEDz84smULeHllvPbDgx8ye89sYsbE0GTNJnj9ddizB5o2tek5\neWXoirMuLDnZyH6dPAmffgqNGxfufkqpikczX0opmxTFiUNnZxg4EFJSvsLH5ws2b+7Lnj07CAtL\n4vDhzK99+NaHGddpHH1W9cH0wL3wyCPQuzf89Veez7AlQ+fnZ7zGcq2gJzdzUrOmMYJp4EDw8YHv\nviv8PZVSlZtmvpRShZZR7wV5Fe6LCM988Qz7zuzji5FfUPv5WbBzJ+zYAfXqZXt9ZCRcumScorTu\nRRYVBXXrZg4US6IubP16Yx7mkiUweHCR3lopVY5pwb1SqkSZzdC+/VYSE88B0KBBPQ4evDPXwCdV\nUhn16Sgu/HuBjfduoPqEx+H4cdi82UgzZbm3PScdi+LkZn727zcCr8cfh5AQLcRXSmnwpZQqQWaz\n0YrBxeUKf/89BgBX16WIODJwYO5tGlKupzB43WBca7my/K7/UWXESKO46uOPoVq1bM+wJaNVlCc3\n83PmjHESsn17WLQIHB2L5TFKqXJCa76UUiUmJsYIsOrWdWT16tVERq7m5ZcdOXs27/dVr1qd9UHr\nOWk6yZQdU5EVK+DKFaOyPTU102ttOem4bh1Mnpy5Luzll51Yt64oP22Gpk0hOhr+/ht69DDGEyml\nlK00+FJKFdiAAUa8NG+ekZ3y9R1G164RLFmSlG9z0trVaxMxPIJP4r5g1p758Mkn8Msv8NRTmE2S\n3qrCbM5oY+HuHkpo6JJc7+nk5ER4eDhOTsXbAwyM+Y/r10O3bkYhftYDBkopVd6IUqp88fEJFmNA\nj5cEBQXZ/L4fTydKvReay9t7PhQxmSSl/S0SeduLYjKJmEwi48eLxMebJSgoSOLjzTJ+vHE9K5NJ\npF27L8XHJ1g8PTdJfLy5CD9d3j76SMTdXSQyssQeqZQqQwC7aqW05kspVWj21Fvl1JNr5w/H6LnK\nnxZHWlPv4Di+qTGL6k9MJLLVU3b17yqJgvvcfP21MT0pJASefFIL8ZWqTLTmSylVouztlJ9TT66P\nF7Wm9QFfjrc9xsFqU3iiXVt46y0GnFtmcy8ye7Yni8MddxgB2NKl8OijkJJSoo9XSpUjZfXfZpr5\nUqqcKEh3+awnGDdt6sJdd+3hVNWHcAhKZlPwJgbUbgjdu8O778KQIXmuwRIAhoQkMWXKWEJDlzB3\nrlOxDt/Ozd9/G+OI/vnHOLzZoEHJPl8pVfK01YRSqlzI2CLsQIsWoezY4cuUKWO5c8JAntkxlT1j\norn1wkVjDuSaNdCzZ673sqcZa0m4fh2efRY+/xw2bYI2bUr2+UqpkqXbjkqpMs96i9DJ6V02bPDF\ny8s4qfhotwd4pdcMBoT14fdWjY300fDh8M03ud5vwAAj8LLezgSjHURRjBiyV9WqxgnQZ5+Frl1h\n+/aSX4NSquwqTPD1MhAHfA/sAJpZ/WwacBw4AvS2ut4JOJT2swWFeLZSqpzKWiMWF9eBRYsy14hN\n6jKOnq6j6bWyL+bOHWDFCggM5GLMofQWFFk5Oxud7y0tLzp2jCAkJKnEtx2tPfQQhIfDiBHwwQel\ntw6lVNlSmG3HesDfaV8/DnQEHgbaAWuA24GmwHagFcYxzH3AxLS/NwNvA1tzuLduOypVQdlaI2Yy\nCd3mPEXdlt+xY1QUqSs/I+XJZ6gSvZv6t7bM9f6leeIxNydOwF13GXPE33gjWxN/pVQ5V5Lbjn9b\nfV0X+DPt60BgLZACxAMnAB+gMUbAti/tdSsBHU2rVCUzYED2IvicTjC6uDiwa+pb/Ph1DZo82ZKb\nX67FT0Ofpc6Q3sZ8nzRmMwVqyFqSWrY0TkIeOQIDB0JSUmmvSClVmgpb8zUbOAWMAl5Lu9YESLR6\nTSJGBizr9TNp15VSKkcNXKrQ5mcXzBc7cPqW+3k96QCbGj/C9Z69+WLtXyQkGFuYfn5G4DV5MsyY\nEWBTy4uS5uxsBIktWxptKU6eLO0VKaVKS37B1zaMGq2sf+5K+/l0wBNYBswvpjUqpSopsxnO/vYg\nhP9ItcZNaDzShYAtU1l8pjNNHmqH738OM26cUde1YQOcOgVDhtQlPDwcLy+j1URMTO73j4wkW3Bm\nnUkratWqwcKFMGGCETBGRxfPc5RSZVt+lQe9bLzPGowaLjAyWtbF9x4YGa8zaV9bXz9DLmbOnJn+\ndUBAAAEBATYuRSlVEVgX5k+Z4stzT73OnasG0NR5Hp+1gqoHA1mNHz383sSrTQxHj75ITIwLzs4Z\nnfVza8hqYWn4aukHZnnm7NnF+9kmTIDWreGee+D112H06OJ9nlKqaO3atYtdu3YV+P2FKbhvhXFq\nEYyC+87ASDIK7juTUXDfEqPgPhZ4AqPuKxItuFdK5SKnwvwfTycSsNKf1C8HY/5yB2sdPKjlEMfd\nqae4zq0EBbW1u8A+a8PX6OguuY5Gsne9+TWbPXLEKMQfPBjmzDFaVCilyp+SLLh/DWML8nsgAHgm\n7fpPQHja31uA8WQMnBwPfIgRtJ0g58BLKaVyLMxvWs+DXme3UqX3Wu4Y7cRrN3tQLbUjS/GiZo2J\nBSqwd3aGevUWERsbxqlTE5kyZWyB1pvT2CRLPVpu2rY12pft32808b90qUCPVkqVM9rhXilVbliy\nS8f+2Uf/VQO5vGwhHH2TbQ5/c+OQzsxuuJTZrzrY1dvLnqHgua3Huqu+r+8eRL4iOfk/NmfRrl41\ntiL37TM64nt62r5+pVTp0w73SqkyrTBF7pZsWOs6nWkRt5paoybiP6I+zb7fzPXd3zO7+sw8C+yz\nsncoeFZZs10AJtNljh171q4sWo0asHgxjBoFvr55NvNXSlUAmvlSSpUo66L2rEXutmasLBmnL86E\n83TU00SPjsb1fB2qdu9C3Snj4amn7LqPPXVaOX0eS83YmTOjSE1N5bffxtudRbNe0+jRMH++MaBb\nKVX26WBtpVSZV1RF7gDvf/s+b3z9BjFjYrjhwhXo0gVmzizRI4QZXfVX0r9/FHXqpBAauoS5c53s\nCiotDh2CQYOMsUSzZkEV3aNQqkzT4EspVS7kNAaooJmoWbtm8enRT9n14C6c4n+H7t3h3XeNKvZi\nllEz9gluboHs3989PZC0N4tm7dw5uPtuaNLEGG1Zu3YRL1wpVWS05kspVeblNgbo0iWjS731icHJ\nk/M/Bfhitxfxa+ZHYFggyS2bG3t3jz4K27cXeq151ahlrhn7h/37u2eqGcuvz1heGjaEHTugVi3o\n2jXTRCWlVDmnwZdSqkStW2cEVNZF7i+/7MS6ddCnj/EaX989+PoOo337rVy9eiX9em4cHBx4u9/b\nNKrbiOGfDOfaLR3g449h+PBCV6/n1UIiJsaoVfPycrK5q749atY0sl5DhxqF+AcOFM19lVKlS4Mv\npVSpcHIyAhYnp8wd6efNg4SEP4iNDSMx8Rx//TXGppqpKg5VWHn3Sv65+g+PRTyGdOliRC6BgUYR\nlQ0iI43gMGum67bboEOHH/D1HUbHjhGEhCSlZ7VsGRJeGA4OMG0aLFgAffsaMaVSqnzT4EspVaKC\ng40Ay89vZ3ow88ILSQQHZ7wmNfV6ge5do2oNNgRv4IdzPzD9y+nQvz/fPTif1D59M02yzq21hZ8f\nbNuWsfVp2faMiYGGDednasRa0nMhhwyBqCh4+mkj26ZlsUqVXxp8KaVKXG5d5S3BjptbfaA5DRrU\no0GDpTb33QLYva0uawZEsuHnDbz19Vvc+NxwVt/4Apf+2wt++y3PzvOWzNvevXto3Hg9DRuGsWXL\nZp54Ionz54dgXaNWkI72hXXrrcYu6qefwsiRkJxcfM9SShUfDb6UUiUut4L7qCjj51995UdQUGcO\nHrwTR0fH9Ou28PODN19xY/2gL3jrm7cI+/kjdt/8KItTe/FLy5vp5r0mfdswJ87O4Oz8LsnJQaSk\nDOO336YyZMg32RqxgpGBss7g5XXfotKkCezeDSkpcOedcPZs8T5PKVV5iFKqYjKZRMaPF4mPN0tQ\nUJDEx5tl/HjjekSE8XfW10dE2P+Mdu2+lPY9+kqVEGdZumed+HS+V15nisRSQ0YOHpznez08tgis\nEFgh9erFSFycOdc1+fgEi7EJ6CVBQUH2LbQQUlNFZswQ8fISiYsrsccqpXJAxgxrm2ifL6VUiSqK\nrvK2SO8j5tGYGg+acIl6mbP7F7KiZivu/b+r1PzyC+M4oRWz2ahJc3a+wqVLYwBwdV2KiCMDB5Kp\nLs3y+oLOhSwqYWHwxBPwv//BXXeV6KOVUmm0z5dSqkwriROC1tuabsnv439+PdfvCaX3iLZ0+zGc\nH881JmXoMLh2LdP7YmKMAKtePUdWr15NZORqXn7ZMcetvcLOhSwqw4YZw7gffdSoV9N/typV9mnm\nSylVoViCopCQJKZMGUvfvkv56qu6+I5dy6yvQtgzeg/OV5twtX8gDdu5w/Ll2eb32DL+qKQyeLY6\nfdrIfHXqBO+/bwzrVkqVDB0vpJSq1PIKin5xe4d39r3D3jF7aehQF3r3No4QLlhgNNSyktP4I3uf\nV9JB2KVLxjxIkwk++QTc3Er2+UpVVrrtqJSq1PLa1nzc53GGeQ+j3+p+XKx6DSIiYM8eYxC3ldxO\nY+akNFpO5KZuXdiwAe64w+iI//PPJb8GpVT+NPhSSlUKlqaoswJmcXuT27l73d2cvVaLbc9shbVr\nYf58wP5aLmfn0mk5kZsqVWDOHHj+eejWDbvadCilSoZuOyqlKgVLUDV7NtSrf52ha4dx6LCwb8o6\nXC+dgS5dYOZMIhuOLtA2oq3blCVp714ICjI+98SJpb0apSourflSSqlcWBfS/3Y2mGbT5tO+yc28\nP+B9HI4ehe7d4b334O677b5vabecyM0vvxiF+AEBRnKvevXSXpFSFY/WfCmlVC6sxxqdjp9Ewy8b\nsP+3/czYNQPatjX2JseNg+3bbb5nWWk5kZubboKvv4Zff4X+/Y1ifKVU6dLMl1Kq0sgpQ1Xb7Sr+\ny/yZcPsEnvB5AqKjYehQo3mWr2++9yxLpx3zcu0aTJkCW7YYH61Vq9JekVIVh2a+lFIqB7llqKqn\nuBM1IorQr0JZc2gNdO1q9P4KDIRDh/K9b0k0jS0K1arBW2/BpElGedvOnaW9IqUqL818KaUqjLyy\nUJB3hurwucP0WNmDFYNX0LdlX+ME5OTJRiasRQu7n1fWgi9rX34Jw4fDK6/A2LGlvRqlyj/NfCml\nKq28em7ll6HybujNxuCNjNw4km8SvzGikxdegF694Lff7H5eWXbnnUZ7s3nz4Omn4fr10l6RUpWL\nZr6UUhWKLaOBsrLOYG0+vpn7w8ewfuCXXElsx4AfXoNVq0jaFM3en12zZbQK8ryywmQyWlE4OhqJ\nvvr1S3tFSpVPmvlSSlVq1icaT52ayJQp+e+rWWew+rfqz4w75tF/TV9cmp+CqVNJ7jEA0x398Ovw\nd5E8r6xwcTEK8D09jd9BfHxpr0ipykEzX0qpCqWgPbcsGaxr1/Zx+XJHhi/4jgUx7+O9rxPnfn2E\n7S3CaVM1ATZvhpo1C/28skQEFi6EV1+Fjz8u+9umSpU1mvlSSlVahem5ZclgHTv2LImJ5zi28ihu\n5+ty8OYzJJ4/zTTn6+DuDsOGGX0bCvm8ssTBAR5/HJYtM/rLfvRRaa9IqYpNM19KqQqjMKcPrTNY\nbm7zqVfPjdOJp7nWdxHV3M38OP0LWns4Gy0o3N1h+XIit1QpkdOOJXmq8qefjI74wcHGacgq+k90\npfKl44WUUspGlqAGjAxWSEgSTz75JD17LiQk5AL//usJVby4YWIq9Wr78c2U1bjWvAK9e8Ott8KC\nBUbaqJhZz6V0ds7+fVH7808YMgTc3IwsWJ06Rf8MpSoS3XZUSlVIkZFk284zm43rBWUptI+KMgIZ\nJycnmjZdTp06dXFxOQaMxt11Hruf2E+jlmd5MOwJpFYtiIgwejXMmlUin8nZ2Vifn99OfH2H0bFj\nBCEhScUSeIERdG3bBk5O4O8PiYnF8xylKisNvpRS5UJx9NSyBDUvvbSTvn2NoGbcuCT274evvrqd\noKB/+Pbb3rz95g2sHvgZv1X9mpd2v2S8cetWWLPGyH7lIGtgFRkJCQmZAytvb7j/fts+U0mfqnR0\nhKVL4b77jClL+/YV6+OUUmWAKKVUViaTSLt2X4qPT7B4em6S+HhzkdzXxydYjDN/XuLv/6qYTNmf\nGxEh8sfff0jLt1vKu/veNX4QHy/SrJnIsmU5rnX8eEm/V3y8iLe38bf1z+PjbftMJpOIp+cmAS9x\ndw8vss9ui88+E3FzEwkLK7FHKlWuABWiVqq0f49KqTLKOlAKCgoq9P3sDWpOXjgpTd9oKusOrzMu\n/PyzSKNGIhs25Hhv68AqLs6cY6CV32fKCNTMEhQUJPHx5kyBXUn4/nsRT0+RmTNFUlNL7rlKlQdo\n8KWUqqiKOvtT0KAm7o84aRjaUL448YVxYf9+EXd3kW3bsr02a2CV9XtbPlNERPY1WbJxJen330V8\nfESCg0UuXy7ZZytVlqHBl1KqIiqO7E9eQU1+AU90fLS4z3WXfYn7jAu7dxt7c19/nen17u6xAu3F\n3T1c4uLMaYFWe3Fyipa4OHOpZ7Ts9e+/IsOHi3TuLPLbb6W9GqXKBjT4UkpVNBERRr2RdVBiMhnX\niiv7k7VmK+v3IiKfH/lcGs1rJD+f/zljoQ0bivzwQ/rr4+LM0qLFVtmzxyze3iJ79hjfx8WZZcCA\njBow6+eWdEbLXqmpIi+/bJS7HTxY2qtRqvShwZdSqqKxJRASKfrtOVsK/Jd/t1w83/KU00mnjQtr\n1og0aSJfLjmRab3NmsVJx47jxd09Nv0+5SHQykt4uJHs27ixtFeiVOlCgy+lVEVkSyBka5BmD1sK\n/ENjQuXmhTfLn//8aVx4/32RG28UOXPGrvuUR99+K9K0qcicOVqIryov7Ay+tMO9Uqrc8PUdRmxs\nGNCcoKDOhIeHZ3uNZUB2vXqL+P33EURHdynwoGt7hmY/u+1ZdifsZscDO6hTow689hqsWgXR0Zir\nuto9fLskRwoV1pkzMGiQ0bds8WKjR5hSlYl2uFdKVUhmM/z++wigOe7uoYSGLsnxdUXVjNTeodlz\nes6hnXs7hoYP5er1qzB1KgwYwLXe/Xhpyt/p95kzpx8vv5z5Pjl1tS+OprLFpWlTiI6GS5egRw84\nf760V6RU2abBl1KqzLMnELI1SMtPTIzR/d7Ly4nw8HC8vJyYPdu4bmHdxd7BwYHFdy2mijjS+71R\npCLw+uv85n4Lrx8NxOsGR8LDw6lTpy5XrhgjjSzrnTzZCFyslfRIocKqUwfWr4eAAPDxgcOHS3tF\nSil7lfb2rVKqDLG1kL6km5HmVGP2yPjLcsfiLvL45sclNTVV5No1kXvvFQkMFElJEZNJ5KGHRNq0\niRYfn2Dx8NgiI0cm57rG8lgr9tFHRtuzyMjSXolSJQOt+VJKVValUSeVU42Z0w1CwPIA7ml3D893\nfR6uXoXAQGjYEJYtw3yxCo0bryc5OQhYSf/+UURGrs7x3kat2Ce4ugZy4ED39Fqxslr/ZfH11zB0\nKISEwJNPgkNZ/X8bpYqA1nwppSqtAQPIti3n7Fy8AUpONWbONZ3ZOmIry75fxqL9i6BGDfjkEzh5\nEiZNAhFSU6+n3aF6pvtZ6r+st1oDA4X+/TNqxWyp/8o62Nv63iXhjjuMAGzpUhg3DlJSSua5SpUH\nZfXfIpr5UkqVC3mdiDx54SRdlnXh7X5vc0+7e8Bs5nqXACKrD+axs5357bepODpuJDDQg0WLjCOC\n06eTXltmncUzm8HXdw8iX5Gc/J98T3FaArTZs417ZP2+pPz9N9x3H/zzD3z8MTRoUHLPVqqk2Jv5\nKqtKd/NWKVXulcQ8RFtqzL77/Ttxn+suO37ZISIiGz/4Q36v30r+evE1CQoKkrg4szg7n5EWLd7K\ntX+Zhb31X7b0RisJ166JTJ4s0qqVyJEjpbIEpYoV2mRVKaWKp+FqVrYGeLt+3SXuc91l/5n9EhEh\n8vk78XK9aTORZctERKRTp9FpQdWoXIOqgg4VL0sF+x9+aExfymH+uFLlGhp8KaWUobgyP/Zk1Syv\n3fjzRmk0r5Ec/fOoxMeLjOv2s1y/oZFc+miDeHhsEVghbm4b8+zcb+8pzoIGbMVp1y6RG24whgAo\nVVGgwZdSSmUojsyPPVk165/97+D/xPPN5vLAxESJjxcZ4rVEzjs4SbDrK9K//325BlUF2UIt6bYb\n9jhxQqRtW5HHHxdJSSnt1ShVeGirCaWUMtgzHqgg97Z1jJH1a4+61aRhr318/che7rhlCTccu4NP\n6M78OwOYvWNHni0kIiONZqx9+mQuxI+Kgrp1M7+nrI8nMpshONhoQbFuHTgVzf8sSpUKbTWhlFLY\nPx7IXvaMMbJ+rTlyJ5y4Tr+P7uJySgv28ABP1g/hpR8OwaFDebbG8PODbduMjviWlhOTJxvXsrad\nKI22G/ZwdjYCxFatjLYUJ0+W9oqUKjma+VJKVUjFnfmxJ6uW9bVfbOvJsLVP0aTVHzSIqscbof9j\nx9jNjDo8mSp7oqFFizyf6+u7h19+ATiPu3tNvvrKDy8vpzKV2bLHe+/BSy9BeDh07Vraq1HKfqWR\n+XoGSAWsu7dMA44DR4DeVtc7AYfSfragCJ6tlFI5Ks7Mj72zJrO+dvpzLkSM+5DatapTa3gtmnnW\nY0j4cH68+wXo1Qt++y3XZzs7g7Pzu6SkdCElZQi//TaVKVPGlunB2/kZPx4++giCgmDZstJejVLF\nr7CZr2bAEqANRmB1AWgHrAFuB5oC24FWGMVo+4CJaX9vBt4GtuZwX818KaXKLHuyanm9tnvvy/T+\nqDedm3bmjd5v4ODgwJEHX6PVvlVU3RsNrq7Z7m02Q/v2W0lMPAfUwMHhFjp0eBWT6d58G6+WdUeO\nwF13weDBMGcOVK1a2itSyjb2Zr4KG3ytB14GPiMj+JqGkQl7Pe01W4GZQALwJXBz2vVhQADwaA73\n1eBLKVUpmP410XV5V+5vfz9T/adiNgnf3vks3avuptrO7Ziv10vvTA9GjdeVK1e4cGEMALGxo/nr\nr55AB4KC2hIeHl56H6YI/PUX3HMP1K8Pq1cbBwmUKutKctsxEEgEfshyvUnadYtEjAxY1utn0q4r\npVSl5VLLhagRUSw+sJgPD36Is4sDt3/5Op+edONbj5Z07rCBkJAknJ2N7FevXvDOO45ERq5m9erV\n1Kp1DZhA/frvEhq6pLQ/TqG5uhqnNxs2NDKGp06V9oqUKnr5BV/bMGq0sv4ZhJHhmmEJ468dAAAg\nAElEQVT12rJavK+UUmVak3pNiBoRxYs7X2TjzxtxdnHgzdZ1+PViN14/PYJnn3kIMLYdg4Mzz2rc\nu/cOgoLO88MPHYr0NGdpqlEDFi+GUaPA1xe++aa0V6RU0aqWz8975XLdG7gRiEv73gM4APhgZLSa\nWb3WAyPjdSbta+vrZ3J78MyZM9O/DggIICAgIJ+lKqVU0bKu17J8DZnrr4rqdGEr11ZE3BdB31V9\nqX7dhTN/PMAIJrC1ems+lOqQmgpVMv69HBNjGZLtlL7VaBnIXd5OO+bEwQEmTYLWrWHQIJg/3xjQ\nrVRZsGvXLnbt2lXg9xdVtupXshfcdyaj4L4lRsF9LPAERsF9JFpwr5QqwyzZJet6K4B584y/LT/L\neqqyMDYd2knwx8GsD/yYFXMWMm/WfFLuvBePwE44vj/fiEoqmcOHjUL8ESNg1qxMMahSZUJJF9xb\n/ALchhF8ATwHjAGuAU8CUWnXOwHLgVoYpx2fyOV+GnwppcoE6+70Z86MombNmri6fpBvV/uCioyE\nCzds4NndE4keHU3LBi1JSjBD9wCcHhgMVrsCBb1/We58n5tz5+Duu6FJE1ixAmrXLu0VKZWhtIKv\noqbBl1KqzPD1HUZsbBjQHBeXBphMB4HmBAV1LrbThUsOLOG1va8RMyaGxvUaw9mz0KULTJgATz5Z\n4PtaZ/Osa8dyy+CVpWAtORkeeQR++gk++wya6pEtVUboeCGllCpCZjP8/vsIoDlubvOpVesVoDnu\n7qFFfrowMpL0gvmxncby8K0P02tlX9Z9ZoYbbjDmCL3xBixfXuBnODsbgZaf3058fYfRsWNE+mnK\nnPj5GcGZZV2l2cy1Zk0j6zV0qFGIf+BAya9BqaKgwZdSSuXCujt9YGAAffv2o0ePHgQGBhT5rEjI\nHug85j2Nqqe6M//cXfyb8i8zl3lxZtkXMG0abNwIQEKC/TuR9s6lzClYi4kh22c3m40Asjg5OBgf\nf8EC6NsXPv64eJ+nVGUiSilV2iIiREymzF+bTMbXIpm/Liomk0i7dl+Kj0+weHpukl9+vSD3f3K/\n3LXmLjnxS4p4e4v8tmm/iLu7/LFqm3h7i8TH2/8MT89NAl7i7h4u8fHmfN/j4xMsIAJeEhQUJCaT\nyPjxGb+frN+XhIMHRZo1E3nlFZHU1JJ7rlJZYRwqtJnWfCmlVBljXWMWFNSZ1WtXExgWyFVTQ97o\nsozOnY8TUGUEq5JPcOLN5VxoPcjm+qt164zdyxdeSGLKlLGEhi7h5Zed6NXL6CGWk9yGiFsfRiiu\nAwj5+f13CAw0WlJ8+KGxNalUSdOaL6WUKsesa8wsdWXVq1ZnfdB6LlY/yqjVz1Kt2jS+SN7HKG6k\nxdMj6eJ8yO7nODkZ/cGcnPIOlvIaIm7P9mVxadwYdu+GlBTo3t04l6CUKpjSziAqpVSJs2zdxceb\nJSgoSOLjzZm28v66/Jfc9EY74b8zBIYKJMmucW+INGkicuJE+j3y2wrNurWZ17aj9dar9fst1+3d\nviwuqakiM2aIeHmJxMWV2jJUJYWd245lVWn/HpVSqsTlFeiIGLVdbW4/LdWn1BVuWSrQW6pXvyin\np78ncuONYv7pjM11V1lruOyVX6BYWtauFXF3F/n889Jdh6pc0JovpZSqmGbOhCFDoO/9H/B7n4nU\nj36GsFnP8cADF3ipZiB3nk2i9r5dNLvlxjzvk1sNlz3KUv+vrGJjjd/TpEnwzDOVciiAKmFa86WU\nUhXUU0/BokXwdcRwepwLoPrQpSyOisPL62XGJ8bxeYqZ5B63wd9/53oP6xouf/9xbN+euWWGre0i\nBgzI3pTV2bn0Ay8AHx9jGPeqVfDww3D1ammvSKnMyuq/BzTzpZRSWWTNNm3/ZTvD1t9H6vI3MR15\nHne3uZzsGUm9c4nGi3M4+md9D0sgFhJizE+09Bkr6nmVpeXSJRg5Ei5cgE8+ATe30l6Rqqh0vJBS\nSlUSZjMEv7SeuMZPcuv3t/D+q2sJnVOXN/8YTg1SYP16qFYt33uUdruI4pSaCs89ZzRj3bQJbr65\ntFekKiLddlRKqQrGeuyQhdkM8+fDGJ8gpvi8wDGfYzi6/ssrr1Xls3tWce7Uv/DQQ0b0kYey0C6i\nOFWpAnPmwAsvQLduEBVV2itSSoMvpZQqk6wDLst2YEJCxvXp040asD594Jd1j3Fvmwfot7ofSVeS\nWLG2BsmrPoGTJ/l18CTMJslUy5X166x9xSqiBx+EDRtg1ChYuLC0V6NU2VSaJ0aVUqrUZR3XEx8v\n4uJyWjp1Gp2tN5fJJHJzux1yw6iW4jjOW/Yd/EPGjxcxx5vkmndH+ez/ZshDD2WMR7Lc12QS6d9f\nJC4uc7uI+PiiH5tUUPm137DXL7+I/Oc/xu/g6tXCr08pEW01oZRSFUbWeiwXl3Di4lYCzfH3H8em\nTdPSC+N9fYcRu28NDGlJE68rxE1PoFuXPXjVXMDCH/azxnkwES3+zFTXFRkJ3t4wd25GkX1CAkyY\nYJwULAtF95Ysn2V9Wb8viIsXYdgwoyt+eDi4uBTtmlXlowX3SilVgWTMeexA7dqTuHx5Fu7uoWzf\n3ptFi5yYPdt4Xfv2W0lMPIdrw1q0e+UDal29kT+XXefggWV44kFMlXM8n7qYFZgIDIzj00+Xpz8j\nIQG6dPmBJk1etbvoviT6fRXHoYBr12DKFNiyxSjEb9WqaNaqKictuFdKqQoiox6rAzVrbiAqqmf6\nfMVFi5wICQFf3z20aRNFamoq/ftHcWBfb9rGfcZR8yHiXOsBflx2W8jwBu/xGpMY5nidixeXZOrr\nNXcuNGw4v0BF95Z6NOv7TZ9utHnI6ZCALT3EsiqOQwHVqsFbbxmNWLt0gZ07C31Lpcq90t28VUqp\nUhQRYdRdWcb3+Pu/Knv2mGXAgIz6J0vdU+vWc7KNCYqPF+nW77zUndpGqvhNExeXnVK7doL0cVsi\nZkd3ea3HNmna9HB6/VhcnDltRmN7qV8/2u4ZjTnNisxas5b1e3vvX5wzJHfsEGnYUGTx4iK9rapE\n0NmOSilVvlkK4ePjM74fP15k6VKRsLDMr/Pw2CIwKlNQYilS/yEhQZh0g9BxhcBnUr36l/J7WIRc\nd3WTIU2fSgva/istWmyVuDhz+t8FCZJymhVpzwDvvH4XJTFD8uhRkdatRSZNErl2rWjvrSo+NPhS\nSqnyL79skskk8tBDIiNHJouPz5vZgiaTyQjUqjWaJ0y+QWgVIdBegoKC5O+1m+RcFWf5D62kSpUE\n8fZ+NFNwZO9pwrwyU9ZBmb//q3afXCzq0455uXBBpEcPI/BNSir6+6uKCw2+lFKqYsiaTZoxQyQu\nzgjKWreeIx4eW2TPHrM8+6xkahERFiYycqTIiBEijRpFCU1fFKbUl6o3fip79hhB2rkFS+TPWrWk\nf9vBac9on56xspZf8JNXZiprUJZTgFgcWazCuHpV5NFHRby9RX79tbRXo8oLNPhSSqnyL6dsUny8\nERTccsuE9C3D+vUTJD4+c6bMw2OL+PtflXvvNTJjvXo9LO6+r4rj9IbStusP6duZ/8x7T+KrNZLG\ntM211iu/2q3cgrOwsJyDsvj4wm9FFrfUVJG33xZp1Ehk797SXo0qD9DgSymlyre8sklxcSLwl8BQ\ngT8lPPzn9PdZZ8p8fd+Qpk0PZWrKuuSbNdLglabyv09+TX/GhSkvSEL9+nLqu19yzUIVpHYrr4xZ\nTvVhZdGWLSLu7iIrV5b2SlRZhwZfSilVvuWXTapV6+604KWP1KmzPMctvvh4c45Bzjux70irt1vJ\nqo1njWekpopMnizSubOYTl3MtZbKnoApr8CruE8uWhs7dqx069ZN+vXrJ6YC7m3++KPITTeJTJsm\ncv16ES9QVRho8KWUUhVTRISR+apa9ScBP3FwOCybN5+WZ581iu+tM2UjR4q4uu7PMch58csX5dZF\nt0pSclpVeWqqyMMPi9x5p8i//2Z7rr0BU25bldbtM4rz5KJFt27dLP+nWKgM2/nzIl26iNx9t8il\nS0W4QFVhYGfwpU1WlVKqnPD2hvvvh1276uLq2oLISCdCQjzw8LC8wokHHwwHnNi/H2bObJvelHXu\nXKf0pqczA2bSuUlnBocNJvlaMjg4wAcfgKsrDB9utH9PY2maGh3dJcd75cTZ2Rj/4+e3E1/fYXTs\nGEFISBKHDxvXvbycCA8Px8vL6NAfE1M8v6/atWsDcNttt7F48eIC38fNDbZtAycn8PeHxMSiWqFS\nZUtpB7FKKVXmzJiRvfdXXFzGdcvgbXf3WImLy5ydytqe4dr1a3JP+D0yZN0QuXY9rbHVlSsiffqI\nPPBA+h5bYVo9lHZtl8lkkqCgoAJvOWaVmioyd65I06YisbFFcktVQaCDtZVSqnLIOvOwQYP1fP/9\nCqA5QUGdCQ8Pz/P9V65dYcCaAbRwacEHAz8w5tP98w/06QOdOsH8+UZWrIBr69gxglOnJuLuHsq3\n3/Yu9DzGsuLzz+Ghh2DhQggOLu3VqLJAZzsqpVQlkXnm4XMcOxYANMfdPZR+/ZblO1vRsZojG4M3\ncvCPg7y480XjYp06EBEBu3fDrFkFWldBtiojI4tuFmRxGzQItm+HkBDjV6S5AmUvDb6UUqqcymvw\ndkxMHSZPzjzwesQIo27M2vV/6zHJfTPhP4XzduzbxkVnZ4iKgjVrYMECu9cVE2N/bdf/t3fncVGW\n6x/HP2ip5cK4kOWGbVqGWmmKoUkbKpSYylFTf7bosaOWdVLKtDTLSrDFU2pqR1uskBY9Cilppih1\nSK0osz0BUTuaMhouoXL//ngYZoYdYRiE7/v14sXMMzPPc8800dV9X/d1FdWgOyiozJevFJ07Q3Iy\nrF1rpckdP+7tEYmUn7eXb0VEqjTXWmA9ez5TZHsh1/pcxVWYT81MNa1eaGWWpSxzXiQ11ZjWrY1Z\nurRS2vxURC/Iynb8uDF33mlMt27G7N3r7dGIt6BSEyIi1V9pg6H8Se/FBTg7/rfDNI9ubj766SPn\nCXbuNKZ5c5O1bIVHWwM53o/reMPDR3mkh2NFy8kx5qmnrDj1yy+9PRrxBhR8iYiIMUXX5ypuF+Jn\n6Z+ZZlHNzGfpnxljrKDoyKfbjPHzM3+uXG86dNiQt6OyvJXu8x+7915jWrVaY8DfNGu2wowYcaJK\n9X0sSWysMc2aGbNihbdHIpUN1fkSEZGikt7T0hx5YlZifnT0YrfX9WjdgzcHvMkdy+/gu/3fERQE\nj77XhT+XvkeD0UPpmvMC27cv4cCB0UyePKbEcRSWyzV8eMHcs8OHYfduqFevHo0bN6FOnTpnutHS\nayIiYM0auP9+mD1bifhy9vF2ECsiclYrbMYpNdWY0FBnhfl///tPc++97s9zzEotS1lmWr/Q2qRm\npuYtVU689BbzO03NVVxeptZA+Zc6C8s9s8Z1di475peRYcy111rl0k6c8PZopDKgZUcRESlM/oDM\nsdQXE+O87wiK4uKMeXbDS6bdy+3M/qz9pkuXuw0YM4xbzN7atU1G4tdlyvkqLPesdesUt8bfmZmO\nZce7PN730dOysowZNMiYoCBj9u/39mjE01CRVRERKa38hVoTE3vh7++bt2xZL2wqn6Z9TNpTz3No\n3x6aNTuPHyb+RtOl8zgct5ktv7UgLKzkaxRWcLVr13vYvn0J0Inw8Gtp1ux1srP/4siRscydO5eo\nKKtEhc1WKR9FhcvJgSeesCp2rFpVcKlVqo+yFllV8CUiUsMFBg4lOTmG/JXx7XboHphIeqfnyPHd\nx4372rNw3kKionyZ0+QZzlvxjlWMtWnTIs+9fLnVF/Hxxw8zefIYoqMX89RTvgQFwYwZcaSnP0bt\n2stp02YNJ092YMuWHnmV8O12qzZYScFdVbdsGfzzn/D66xAa6u3RiCeowr2IiJSas1BrwQR8mw0w\nn3Pi/dVkH/mJ79ol0ap1A2bNgg3dp0C/flY08eefJV7H19cquOrr60t2NsTEODYDXEHHjs+xa9c/\nyciIdEvit9nO/sALrOK2//kPjB5tdWzS3IIo+BIROQt4ov2Oo+r96tUFd0Q6rnfixFVgLqVZ4iJa\nt7+Y+9fcj6+vIew2H4iKgk6dYMAAOHGi0GsMGQJz5lhLm4GBQ+ncOY7g4CyWL7cq4C9aFMuhQxFA\nJ3x95xXYfVld9OgBn38OS5bA2LFw8qS3RyTepOBLROQs4In2O0lJMG8eLFxoBUH+/r5ERsK4cVZ+\nkmupim3/vY2rvo0jKe2/PLkpt+ejjw+8+qq17DhsGJw6Veh13HtQTmDt2nuw2fKXw7iClJROJfaA\nPJv5+1uf+b59Vu/yQ4e8PSLxFuV8iYicJYpKjvfEeXfssPKyXJPd7XaI2/g/ntzdkwe7P8j4buOt\nB7KzrW7TzZvD0qVQq1aB8+dPuN+xw5esLCsIcVzDbodnn4Vrr7VmzFxfXx1yvxxOn4ZHH4WVK60e\n5u3be3tEUl5lzfmqqry5Y1REpMoqrjp9ZZ33t0O/mZbPtzTvfvuu82BWljHXX2/MAw9Y/XZyufag\njIiIMKmp9tz7ptB2RUUdP5sq3ZfWa68Zc8EFxqxb5+2RSHmhOl8iItVTUe2CKuO8+WuEffP7N8Zv\n9gVm5tsJzoOHDhnTqZMxM2YUeJ3r6x33rb7dKQX6TJ6NDbbP1MaNxjRvbsyCBd4eiZQHai8kIlL9\nFNUuqLz5UaU9b/6cs9Z1O9Jz7wf8K2MEX+z5wjrYuDHrJn/M6TeXwdy5gHOpMCvL+XqbzTpfVBRc\ncMFLeblgjp2O+XPEStPG6GzVu7e1pDp3LjzwQJFpcyKVwttBrIhIlVLaBtWePG9hM1Krf1xtmkc3\nNzv378x7zrSRqeZ0y9bGvP563rJhTIw10+X6+s2b7cbPL7nAjJunZviqssxMY0JCjOnTxxh79X+7\n1Q5adhQREU8pLDfsja/fMG1ebGPS7el5y4m3XbrUHDi3nhnd7DGTkmI3MTFWEOZoUwTXm0aN0kxK\nSuG5YPlzxKpjzld+J08aM2GCMVdeacwvv3h7NFIWqL2QiIh4QlFtggBe+PwFXvvyNeIGbub5p5uS\nnHwPZvt41tCdhy96mpd3Psrhw3DZZT9w6tRofHzeJj6+Nv36tXI7/0svwYMPFtxlWZ12O5Zk/nyY\nORNiY+GGG7w9GikNtRcSEZEK58gNi4x0tgnK33vx0fWPsjF1I0uC19P5ygxOnRpNsM9oPm70MCfe\n/4hHV3Tns89G8fXXbwCduPTSaLZt63PW9m70pHXrrAK4zz0Hd9/t7dFISRR8iYhIhYuPp9C6X64z\nUsYY/u/90Wz6ag+2NU359uu3gU6MvnAwLx+fx6HYT+gxJpX09A9o2jScDRtuZPduX8LCat7sVmn8\n8APcfrvVQOC556B2bW+PSIqi4EtERLxmVdwpXtk/mMRPjvPXu3vxa/YE69eHcHRxPO2XRPLJE2t4\n+/PnadRoIXXq1GXOHOt1U6fiNosmloMHYfBgaNTIatDdsKG3RySFUfAlIiJeY7fDI1OPs/3KW/g5\nqRmJj77BokU2unaFc19bwLC9c6idtBn7+S0IDNyMMZ9x4sRVFVatvzrKzobx4+GLL2DVKqtNkVQt\nCr5ERMRrHMuTPvUO0/PfvfnfxmtpswvS0+9j69b2+L89D955BzZtIjBsPMnJMUBbIiK6ERsb6+3h\nV1nGWJsRoqPhww8hMNDbIxJXZQ2+ylNkdQaQAXyV+9PP5bEpwM/AD0CIy/EuwLe5j80tx7VFRKSC\nxcdToLiq3W4dL62wMGvp0LeeL+tGreXIxe+x3acbBw78zSqWOmUK9OvHqT6hHNkzEGiLn1800dGL\nK/S9VDc+PvDQQ7B4sdVG8513vD0iKY/yBF8GeAG4JvdnTe7xDsCQ3N99gfk4o8EFwL3A5bk/fctx\nfRERqUD5q9jb7TB8OAQEuD+vtAFZvVMX0uSjF+CGCTQKHGQFWD4+2B+L4pP9HUluMY87B3bJq6qf\nlla2QM9VRQSOZ4OwMNiwwfrn9PjjkJPj7RHJmShve6HCptjCgXeBk0Aq8AvQHbgIaAjk9qHgTWBA\nOa8vIiIVxGazkt6Dgj4lMHAonTvH8eyzh4mKcgY2y5fDpElWoOZQWJDjKE3xefzfuHX/TdQZ8BYP\nvLjN2tX4mQ9XbFzIzwcvYOlfOfi3rE9kJIwb537esigscJw69czPV5UFBEByshWEDRkCx455e0RS\nVuUNvu4HUoB/A449Ki2wliMdMoCWhRzfk3tcRESqiPx9FZ9+eoxbQDZp0lr++uuvvOcXFeQkJVmB\nnL+/Lx+/9TEfDH2fz1oM4/WPtxEWBv6X1OaSpGVs3ZhB/EWX07vXKubPP3zGux0LCxwjI8/8fFXd\nBRdYwdd551mFWPfs8faIpCxKCr7WYeVo5f/pj7WEeDFwNbAPeN5zwxQRkcpgt8O+fSNwzcVyDcgy\nMu7jzz/HlhjkOHK/HG7wv4HX+i9m9u7b+engTwDYmtdl6pX+2P5owYO7RzB50uhyjb24htzVcVmy\nbl144w2rFEVgIGzf7u0RSWmdU8Ljt5byPK8Bq3Nv7wFauzzWCmvGa0/ubdfjRcbqM2bMyLsdHBxM\ncHBwKYciIiJnwjGLlZjYi8mTuxEdbeViRUa6B2Rz54YwZMjYvJ2KkyeXbqdi+BXhHDp+iJC3Qki6\nJ4n6OS3Ztf8ubuMfbKndhLtaXVbu8bsHjs79Xo5lSUctMcd7nTWr4HlKU1C2qvDxgUcfhfbtoW9f\nWLDACsbEszZu3MjGjRu9cu2LXG4/BDj2XnQAvgbqYM2M/YozNywZK//LB/iIohPuvdIYU0SkJouL\nK9jAOjXVmLAw90bX995rTKtWawz4Gz+/WJOaai/TdWZvmW2uePkqc8/4g3nnTd/6k/mf72Xm6LMv\nndHYMzNLbsidmWlMhw4bTPfuQ0ybNquLHLfjXI7X5r9fVX35pTGDBhlz6pS3R1LzUImNtd/EWnI0\nwC5gLPC/3MceA+4BTgETgYTc412A14HzsIKvB4o4d+57ERERb4qPh6ws6NPHOWM0aRJcffVRli//\nF8uWjSvQ47EkxhgGLZxMRq3P+PSuddSvUx+Aw9+kQa9enPPcU9T/x6i855dm1qm0s1WBgUNLVVvM\nbrfyxxo2XMi+fSNUBFaKpSKrIiJSoVyX6JKSrN12UVHuS3hlXZLLMTnc85972H90P/8Z+h/OrX0u\nAEeSv8fcdBPnLFpA/eED3K5d3uR5ux06d44jPX0Cfn7RbN0aUmxAVdpATUTBl4iIVDhPzASdPH2S\ngbEDsdWz8caAN6jlY+0B+3PjdrJvuYXpl1/N6mMPV8i1HEFcZORhJk8eQ3T04mJn7MoaqEnNVpkV\n7kVEpIYobifhmTq39rksH7ycVHsqDyc8jON/uhsGd2Fau2uY/sMOLkx/lYkTJwLOHYuuuxRLu2PR\ntfRFbGws/v6+eTN5+bluPIiI6JZXBDb/bkmRM6WZLxERKZEnZ4Iyj2dy7cu9GXnNMGbeOiXvWh3T\nJ7DE5wgvhq3nkbeuBax8M4A5c6zfFbUk6eps2u0oVYOWHUVEpEKVdcmuMPkT9x3nTUiABg3gks57\nCVzUk8d6PUb6ytGMHXuYgQP/y4bRu2nw1Az+1vx5si5YwZ49d1Gv3nk0bbpAifBSZSj4EhGRClUR\nM0GOXZLgnLVyvW+zwfZdP9NtQRBtdwZw6tt/5gVWx55fwB9TphF48lv2cT1NmjTl0KHtKBFeqgoF\nXyIiUiXZ7RAYuJm0tN/JyTlNs2aN+OyzILeZq44hfdhx9VfwXgMirutKbGwsdjss8h9F6JFV3NF4\nLsfOa8beveNKvfypZUTxNCXci4iIx5SnTY/NBjbbPE6ciCA7eyh7945zS9y32+HIj/fDew0g4jCD\nJozPmzH79vaF/HSxP2trvUK/Xt0JDw8udSJ8TWq6LWcHBV8iIlJq5Qlk7HbYs+curBrdb9KkyYtE\nRy92O09iYi8iruvK8ze+xLDVf6PzTVNJSFjL07P+ou6/vqJVaCcW/D6EsaNeLXbHooMjKHRtut2x\n41q6dj3qNhNWHXs/StWlZUcRESmTM6n55ZjBys7+i4MH7wGgSZMl1K1blzlzrAAq/9Kg/8Ag0tvs\ngyXZRPS93srtOn0ahg6FU6fgvffgnOJbFLsWae3b11E09U3CwzewcuXrhT4vf+/HitxJKdWTcr5E\nRMTjylr9vaTdjvlzr/JKW7QZSe2rG/Hl/Yl0audvPfjXX9C/P1x0ESxZArWKX8Rx5Jrt2rWH7Oxs\nmjRpyJdf3lQgYFRLITlTCr5ERMSjPF393bW0xaTJo2kU4cdHX3/D9gc/poXf+daTjh6FkBC47jp4\n8UXwKfo/Z3Y7tG+fwP79fYC2hIYG0bbt24XOaqmlkJwJJdyLiIjHVEb1d9dq9O/Fvsfiwa9wQ6eL\nGfD2EE6ePmk9qX59iIuDTz+FmTOLPV9CAtSpY4C2+PlFM3/+/EJzxex22LdvRN7zHPloIhVNwZeI\niJRaWdr0nKmwMPcZqVo+tVg2eAnN/E4zZvUYckyO9UDjxvDxx7BsGcydW+i57HZITIQtW3q4BYuO\n67g+Ty2FpLJo2VFERLyqtHW4jmYf5da3biWodRDRIdHOB9LSoFcveOopGDXK7dwzZsDdd4O/v/vT\nly61HivrGEQKo2VHERE5qxRVviIry738Q/069Xk7LI7Yr9YQlRTlfMDf31pbfPRRWLnS7dwPPghR\nUe7njoqyjrvKP9sG1n0FXuIJmvkSERGvK2ynoa+vb6HlH8ZP2UPo+0E80fsJ7rnmHudJtm+Hfv3g\n3Xfh5puLPbd2MUpF0m5HERE5KxW207CowOmngz/R+/XeLLxtIf3b93eeZNMmGDzYSsbv3r3Yc4tU\nFC07iojIWaeonYY2GzRsuJDk5BjS0ycwYsR87HZo17Qdq4etZvSq0cR/l+isRKHDseoAAB56SURB\nVN+7t5XQ1b8/7NhR7LlFvEXBl4iIeFxx7XuK22mYP3CaN29cXn7Y/77qyks93yUiNoJG7VKc5/S5\nDV54Afr25cjXv3lsF6NaEkl1Y0REpPrIzDRm3Djrd/77cXHO467Pj4mxnpOaajcREREmNdWee9+Y\nDh02mC5d7jYNGuwycz56w7R4voX5ctcvbtcw8+aZrAsvMfadewqcOy7Os+9JahagTLlSyvkSEZFK\nUdbE9+LKPzz1lCOHqxMNG06maZ+5ZLTZw2ejN3Hdle2cL5g1C2Ji+HjqJrr1bVLhpSSUzC+gnC8R\nEami8udvTZ48ptjnF1X+ISjIdSnycS65ZB2p72/j1Lbj3PpGNw6fOOx8wWOPQZ8+3PR8KDMjswqU\nswgKqtz3JAIKvkREpJJUROJ7/vyw9etD+PXXmUAnmn2/iDuuHUL/mP4cP3nceoGPD0RHc07nAGb/\nNIAbeyQQGDiUzp3jiIw8XCC488Z7kppHwZeIiFS4/MnodjtMmgQzZtxYrsR31/ZGixbFsnChL0lJ\njenQYRqfrO/DeZsW4Fe3JcM+GMYfh05Zye8+PrBwIX+caswLv/+dbcnL8mapypMgr5ZEcqaU8yUi\nIhXOEZg4CqQuXw7r1sGcOc6lxPLmXLnmhDmuFxkJX32TzSsH+7Pnh5Z89shrNG5s/acu7ae/+LnD\nrWSc/pZHmr3Kuk/6snChb94Yy3N91/etlkQ1j4qsiohIlVBRyeilDXJcr7fnwGCa/XM2fdrfzHO3\nPJcXnN03ci9Hg4L5tck53Hc8nqTPmtCpkxLkpXyUcC8iIlVCRSWjF9X7MX+yvOv1Mn6bRJstLVj1\n4yqe/+z5vOXKjoEtePyaAAL+OJd/Hg1k/Pj55XyXImV3jrcHICIi1VPBZPSQMzqPzWYFTvln0Ww2\n9xkrux1+++2fQCf8/KL513Mh1LId4fp/9ySiqR9htv/DboefDtxDCP/g89q1mHhTVV0AkupMM18i\nIlLhKjoZvaRZNMf11q9vz6WXRrN+vXW9HHtreqUm8Pb+SGK+jMsbU++IHtTZ9DG8MJ+jC96ogHcs\nUnpVNeRXzpeIyFmsopPR7XZo1+4LDhwYjZ/f42zdGoK/v2/eOcG6XlISBARAaOinnHfeW6Sn38f6\n9e1Z//2PzPzlNt4d8CH9ruqZd94jyd9Tp++N1Fv6KgwYUM53LTWVEu5FRKRaccxqjR17mIED/8uH\nHwaycKEvkZEQFYXbbkXHc5OT72H79iVAJy69NJpt2/qw9eA6RqwYwfqR6+nYvKPzAtu2Qb9+EBMD\nN9/slfcoZzcFXyIiUq3kLykRFOSc1dq6tX2BHZRpaXDZZT9w6tRoatVayKZNjejZszUAy3cs5+GP\nH2bz3Zu5uPHFzhdt3AgRERAXB927V+K7k+pAux1FRKRacW0z5Mj92r59CQcO/K3Q3K+oKAgIeBbY\nQk7OMO66a2dertmQgCFM6TmFkGUh7D+63/nC4GBYsgTCw2HHjkp5X1JzKfgSERGvyV8JHyi26nxJ\n7XySkqxCq4cOReDo/fjhh4F5eWEA47uNZ3jH4fRd1pcjfx1xPnD77fD889C3L/z2W7nHKlIUBV8i\nIuI1hdXwGj7cSpp3ZbdbVfJL2kGZmAjTprk/Jzral8RE9+Bpeu/p9GjVg9uWDWDF6hPOEwwfbjXj\nvvVW2LevxLFWRHNuqXmU8yUiIl6VvxL+6tW93Nr+OIKcG26wnt+nj3uCfUICNGhgLU8uWWK1MFqz\nBvz9rfyvfv2svpIDB7q3PDp46DTdo++kw1WnWHFnLLVr1XYOatYsKwF/0yZo0qTIsZ5p1X6pXsqa\n81VVGRERqTm6dx9iwBjwNxERESYz05gOHTaY7t2HmDZtVpvUVLsxxpjMTGPGjbN+F3bfGGNSU42p\nU+dHU79+H1O79k6zeXN63mP5z/vjr/8zt7x5ixmzaozJyclxniQnx5iHHzame3dj/vyz2LGKANVi\nxsjbn6OIiFSSzExj2rRZbcDf+PnF5gVaRQU5RQVmrurX75P72iDTqlUrt8fyn/fIiSPmukXXmamf\nTHU/SU6OMffea8zNNxtz/HixY5WajTIGX8r5EhERrymqEn5aWtGJ9SVVu09LgxMnXgR64uOzkHff\n/cztevnP27BuQ+LvjOf9ne8z979znSfy8SG+/0KyGzSGYcOw/3GKqVNh9epe9Ow5ttxV+0WqGm8H\nsSIi4kFxcdYskuO3Mc77qanGhIUZk5pqNxERESY11V5gqbGo2afUVGMCAozZvDndtGrVymzenG4C\nAqzjjiXKos6bZk8zrV9obZalLMs7X2amMQ+MPWGybwox6TePMqm/nS4wlri48n8Orsp7Tql8aNlR\nRESquuJyt4oKSKZPt4Io1wAqJcVuQkOdz3c8x1VqqnW8NIHOd/u/M82jm5uPfvoo71hMjDFXX55g\nUho0Na817G9Sd2VWWIBUmhw2qfooY/BVVTPzc9+LiIhUV2XdOWi3w4gRMG+etZPRsWQZGWnVRT2T\nnpGF+Xz35/SP6c+qoavo0boHdju0b59A9v5ubKQ5O9t3YMvNX+ftmixvH0vtoDz7qcK9iIicFUrK\n3Srs+cuWWU2zAwOH0rlzHJGRh/H3r7jAC6BH6x68dcdbDFg+gO/2fwdAnToGO6sJqz2XwF8O8FSz\n5/KCLdf6X/HxVs6Za/2vkgqxlvVzEPEUb88gioiIh53pzsHKKvXw9jdvmxZzWpmRE1JNaqrdNG58\njQFj/JljDtQ735jXX897rmMHZpcud5sGDXaZlJTCS2MURjsoz35ot6OIiFR1Re1yLGnnYEnthSrS\nnR3v5LbGk/n8shBOnptNw4YzgbZkNb2UxGmJ8MgjsHIl4N5zMiurPz17rnKbnXNdksz/for6HNTO\nSCqbt4NYERHxoDPZ5VfSbkVPeTh+qvGb2tXs+Hm323WPbNhqjJ+fMZ98UmD26uqr/69Us3P5PwfH\nbk/Hcev9ut9XMn7VgxLuRUSkOjrTxPbyJsTHxRne/+s+Mo7+Svyd8dQ9p67z9fU3kjM4gjnB8Qx5\nvj2TJ49h2rTFBAVlkpXVHz+/x9m6NYQdO3xLNQbHTJgjmT8tDa65JoNLLnmCAwcGKhm/ilJ7IRER\nERcVUc7h1OlTZtDyQWZw7GBz6vQpt8e+eHyVOX1Bc2O+/Tbv3CkpdtOz5zN5s2SOEhmlGUP+Cv6d\nO49UO6MqDs18iYiIuCupnENJs2Px8dC1+1/c+VEo7Zq0Y37YfA4f9nHOXL39NjzyCBueTOTaQZcU\nep6goNKXlAgMHEpycgzQifPPf4hjx57Ezy+arVtDNPNVBanUhIiI1DglJaeXVM7BtVyE47Wu5SKC\ngmDm9Los7bOCL/Z+waNrZ7g9zvDh8Nhj3PTMrdiO73M7t81mBWilLSnh3FTQiXr1PiQh4ZYybUoQ\nOVPenkEUEZGzSElLi6Up51BSw27H49f2CjfnPNTCPLkmquBAnn7a6m908GCh5y/NGBybCnr2fMak\npBRsraTWQ1UPai8kIiI1UVHBU1l2SZZUQyzvcVtLc97U88w737zj/oScHGMeftiY7t2N+fNPt7GV\nZgzq9Xh2QjlfIiJSUzlzpdoSEdGN2NjYUu92tNuhc+c40tMnFJpflf/xZR+3YuT6Abw54E36XNbH\neSJjYMwY/tiWyjlr40jaXo+sLOiT+xRH/ldCAjRoULHV+cU7Kjvn637ge2AHMNvl+BTgZ+AHIMTl\neBfg29zH5pbz2iIiUs39/e9/Jzg4mNDQUOwlJDsVVYDVkW/lypGH5fraqVNhxowbCQ8Pdsuvstth\n+fKCxVD/s7gHb4R+yMgVI0nOSHaezMcHFi6kUdvGpF4/jIArTvHWW5Cebp0jIMD6HRgIW7eqkKqU\nzY3AOuDc3Pt+ub87AF/nHm8L/IIzGvwC6JZ7+yOgbxHn9vYMooiIVAG9e/d2LOkUW2ahvAVYHct9\nrrlimZnGxMRY92Niil4OjPsxzjSPbm527t/p/oQTJ0z2TSFmhW8fc3Wnfxgfn0MmIGCsadNmdV4u\nV1lKUEjVRSUuO8YCrwIb8h2fAuTgnAlbC8wA0nKfe2Xu8aFAMHBfIefOfS8iIlKThYaGsmbNGrp2\n7cq6deuwFdGnp7yFVF2VVJaiMG+lvMW0T6ex5e4ttPZt7Xzg6FG+udCfDVkjeIjvgQSgJ+effy87\ndw7E39/3jK4nVUtlLjteDtwA/BfYCHTNPd4CyHB5XgbQspDje3KPi4iIFOqdd94hIiKi2MALSre0\nWFruJSE+YOLEiW6PF7YsOLLzSB7s/iAhy0L449gfzueerM9w2yvcyEKe8Lkca8FnC8eOvZhXasJm\ng1OnvihQgkLLj9VXScHXOqwcrfw//YFzgMZAIDAZayZMRESkwthsNmJjY4sNvCqaM3fsbpo0GUzD\nhgvz8rLS0qySXnn1vVw81OMhBrQfQNg7YWRlZ+Xlkb0d34+x/kuIvCieB2tdCwRRr96HTJu2OO96\nx451Bj6hceN5REcvznttQIACsOronBIev7WYx/4BfJh7eyvWUmMzrBktlzlXWmHNeO3Jve16fE9R\nJ58xY0be7eDgYIKDg0sYqoiISPk4gp7ExF5MnPg+jRrdgjF1CQzcTIMGS/nxxydISmqMzVb4suAz\nNz/DmNVjGBQ7iH/4rmbWrDokJfmyfNMwnpvWg9nretK0UQ/6v+/HlCm+zJ8PUVGwZUsPxo2bQlLS\nVLp23Ua9eieJj+9BVJQvN9xgjasillSlYmzcuJGNGzd65dpjgSdzb7cD0nNvOxLu6wAXA7/iXAdN\nBrrn3lfCvYiIVLjy1MrK/9rMTGPat080detOy63/1bHE/oonT580A2IGmKHvDzWnc067n3fnTmOa\nNzdm5UqTmWnM9Onu1+vS5e7c6zxszj9/iUlNtZeqN6Xqg3kXlVhk9VzgLaxlyO1YyfMOj2HtcvwB\ncCl+kldq4hfgX8Wc29ufo4iInKUqopG2K2dAFGTq1l1caGX6/I6fPG56L+1tJsRPMDk5Oe4Pbt1q\njJ+fMZ98UmDcVgX8oAKBXmmq72vXpPegIqsiIlLTVdQOwrQ0CAhIJSurP3XrPsD69X14993WzJpV\nMME/v8MnDhP8RjADrxjI470fd39w40aIiLASurp1y1vuHDv2MD16fMixYy9Sr96HJCf70amTNe7C\nCsh64j1L2ZV1t2NV5e0gVkREznIltQoqSWamMWFhxqSkuNcOS00teTnPsQz4+5+/m0vnXmrmfzG/\n4DLgqlXWEuS335q4OGfNryVLskx4+CiTkmI3oaHWeVJTjfHzSy62L2RFvGc5M6i3o4iI1HSlaWJd\nkvLkUbku+/166FdzUXQLE/JQbMFlwGXLjGnZ0phffy2y0Ou//2316s4fBBY2tvK+ZzkzKPgSEZGa\nrLzV7ityHI48rQs7/8s0e87PrPt1XcEnzptnzCWXGLN3b6Gv9fNLNikpBXO8XIPAqvKeayqU8yUi\nIjVZRVa7L6/27Wfz00+PAG0JHnUx3131HTG3x3P81+vcxzJrFsTEwKZN0KQJUHKOl6uq9J5rorLm\nfCn4EhER8QC7HTp2XEtGxn6aNWvEtm03knRwE2NWjmXj3Ru57uL2zicbA5MmWdHS+vXYTzWgc+c4\n0tMn4OcXzdatIUqer8Iqs72QiIiIFMKxe3HLlh6Eh2/AZrPRrdt/eSS8Dk/e8DgR/+lDxhGXjns+\nPjBnDlx1FSdvG8D0R06QmNiLiIhubN0aQlSUb16V/fzi4ynwmFoTVW0KvkRERIpwpoFNUpK1kujv\n78vKla/TtOmr7N/fh4yM5XyxaCPjrxtPn2V9OHT8kPNFPj6waBF/nLQRvWcY/i3rExsbi7+/L7Nm\nWecsTFCQFeg5xukI/BwtkBScVT0KvkRERIpQUmBTFNdG385ekW3x8wslOnoxk4MmE3Z5GGHvhHE0\n+6jzhbVrc9GGt6lz8hiMGQM5OUDxTcJtNivQCwr6lMDAoXTuHEdk5OG865/pexDPUfAlIiJShJIC\nm6I4Zptce0WGhwcze3Zo3hLi7Ftmc0WzKxj83mBOnj7pfN3xuvDhh/Djj/Dww9gzTYmzVDYbNGy4\nkOTkGNLTH2Py5DFuj99wQ9nfg3iOgi8REZFiuAc2EwoENoUt6wUEwIgRkJBgBW++vr60bPk6d9xR\nP28J0cfHh8W3L+bcWudy93/uJsfkOGepTtaH+HhOr9vAlj5PlThL5Zxd60S9eh8ybdrivONTp0Kf\nPsW/BxFQnS8REakiSipeWlRfxdTU4vsxOhzLPmZ6LulpJq6ZaHJyctxqfHVp+abJbnuJMXPnFnhd\n/qKsqal2Ex4+yrzySpZp3Hi36dLl7rzrqgCrZ6EiqyIiIhWjtMVL8ze+XrIky2Rmurf7CQ8fVWR1\n/MzjmabTgk5mVuIsExfn2szb34wLDTWnW7QyXz30RqFji4kpWBnf9fXh4aNUgNXDUJFVERGRilGW\n4qWuRVHDw4Np1ux1EhLWkpFxH82avUTfvv14+eW6ReZavbViH0+k9WTsVY8ya+CtZGX1p1mzmUyf\nfguHknYzbcON1Fq0EMLD3cbSqdM3XHDBSxw4MJDExF74+vrm1hdbjp9fKLNnh3LHHfVVgNWDVOdL\nRESkgrjuWnQobOeh+47GaGbOnAtAvXr1aNy4CXXq1MGnhP80337jRVz3QwJPbZ7Ok7GbadDgMXJy\nGvDoowcZMKUFteLjrB2QGza4jeWCC15i+/YlpKc/xsSJE5k0CYKDbyQ83LB1awjbttUvcK3idk+C\nM4/NNZ/N9b7KVJSPgi8REZFycN3R6CiKOmWKL48/Dk2bvkpm5pfs3TuOI0fGFlmrC6yAaNCNl+G3\n7ike2TyGExd9x6FDt3D06O0MG5aA/bKuEBsLQ4bAF19gt8Py5XDgwECgE7VrL+ebbzqRkLCWp58+\nwcqVr5dYI6woQUEwfDi0bm29t7Q063fr1tZGApWpqJ68vXwrIiJSKo7Ed1eZmVYu1pkkuXfvPsTQ\n9lPD5IaGiy40fn6xJiXFJU9r1Spz2u8C8/gd35p773Xmcl199f/l5nl1NBEREeV+X6mpxtSrZzdX\nXjnVnHPO9yYgYKxp0GCX+egju5k+vdynr1ZQzpeIiIh3OWbDIiMPM3nyGKKjFxMVZc1CFVdfy9kP\n8lzO7/IJp/u8yNqhSbz36rWMHQu33fYNLVo8Q+AvLZmVE8PpDZtpdPUl2O3k9oJ8DF/feaSkdKqQ\nXpAdO05ix445wH3Aq0AfGjVazDfftMHfv9ynrzaU8yUiIuJlru2FCmsRVFhtsLQ0a0lv5sxehIZ+\nwKAO07ku62VGrR/EqAl7mTLFyu9KTo5h7sEPiGnbnEaDbuXwD/tclj2vICWlU7G9IEvLbocjR4KB\nkViB18PAO7z22jEFXuWkmS8REZFK4Lpz0m63Aq1nnoHdu505Vs8+a90PC7OeExi4mYNXPsPhNt+z\nYeQmhg/6lvT0Cfj5RbN1awgnpr1M803L8dm0Cd+LmwDW6xISoEGDM9/N6Ji5GzbsMDfeuJdTp/4F\nLABGUr/+LWRkjFKFfBea+RIREamCXHss2mxW4NWtWxZTp46nc+c4nn32MAsXOpPZbTaw2ebxx8qP\nOPljFrcuDSVhQ5e8pP6oKF/qPTWV7U1CqP+3UMjKcqtoX54yEklJEBkJzz7ry6pVLYDxwCBgPkuX\n3lLmBH5xp5kvERERD3PMeoHVY7Fhw4Xs2XMXtWv/SlraeKAn559/Lzt3DszL1XLmcU2gke8b3PDC\nAky9LFYMWcG5tc/Nq9UVdL3hk0vCaJPzJXf6LmD95psqJN8rPt7a3Th8OCxYsJthw65n0aLP+cc/\nWrFpE1p6dKGZLxERkSrGMesFzh6LGRl29u+3AT2BLRw79mJez8X85Su+SbmaltvfIvukYfTq0eSY\nnLxaXbbGPjzfrgFpR3oye/dwIieNrpAxh4VZ/b3j4qBnz9bs3r2bfv2swGvp0gq5RI2lmS8REZFK\n4Mjh2rVrD9nZULduN1asqMPgwes4duxF6tX7kORkPzp18i2ysv4nicd44Y9bCWwZyJyQOXz0kQ8B\nAXDDDXH8nj6euxsOYNzmJ9mdYSuw7FiWav1SNpr5EhERqaIyM4+RnT0USKBHj5eIjGzF558PJCLi\nCpKT/ZgyxdqlWFRl/UH9zyduWBwf//YxUUlRBATAbbfB6tW9CI/ozrgtMxk+wkZAQMFru+acgXN2\nTQVTK9853h6AiIhITZCQAHXqGBwtiEaO7MfNN8OOHVY5CoC33y55JqrxeY1ZO3wtPZf2ZO8vzYiL\nu5fQ0C9p2LAWt9++mdWre7Fjh2+BnCybzSp/4cg527dvBImJvbDZyp8fJmWjmS8REREPs9shMRG2\nbOmRt1tx+/YG+Pq6B1pJSQVnogrrpdiyUUsSRiTw3sHH+er4yrw8svT0CTz99JgigzebDbfnOnLM\npHIp+BIREfGw/EVXd+zwJTLSveei3Q5ZWaVfGmzXtB2rh61mzKq/s8t0xjGjFh29uNAiro5ekK4N\nwKOjF3vqLUsxFHyJiIh4WP4crqAgiIpyBlWu9bkcS4OBgUPp3DmOyMjDRRY0vfT8Lly/N4bTA1/g\n1pHt8up/BQQUDOImTYJ169wbgFdEJXwpO+12FBER8QK7vWD+laM+V2DgUJKTY4C2RER0y8sJy8+x\ng/GTvR/wwNoHSLwrkaa1Ls1bvnQ9//TpwQwc2EC7HT2grLsdFXyJiIh4SWFBlmtxVUcbodIUTV24\nbSGvbH2Fr8d+Te1atYs8v1Q8lZoQERE5C9jtBfOv8hdXLcvS4NiuY1k7fG1e4FXY+aVqUPAlIiJS\nyYoKshIS3BPz/f19mTWLUvdSbNmoZbHnV35X1aBlRxERkUrm6WrzqmZfuZTzJSIiIlKJlPMlIiIi\nUoUp+BIRERGpRAq+RERERCqRgi8RERGRSqTgS0RERKQSKfgSERERqUQKvkREREQqkYIvERERkUqk\n4EtERESkEin4EhEREalECr5EREREKpGCLxEREZFKpOBLREREpBIp+BIRERGpRAq+RERERCqRgi8R\nERGRSqTgS0RERKQSKfgSERERqUQKvkREREQqUXmCrxjgq9yfXbm/HaYAPwM/ACEux7sA3+Y+Nrcc\n1xYRERE5K5Un+BoKXJP780HuD0AHYEju777AfMAn97EFwL3A5bk/fctxfalAGzdu9PYQahx95pVP\nn3nl02de+fSZV30VsezoA/wNeDf3fnju7ZNAKvAL0B24CGgIfJH7vDeBARVwfakA+pe18ukzr3z6\nzCufPvPKp8+86quI4KsX8D/g19z7LYAMl8czgJaFHN+Te1xERESkxjinhMfXARcWcvwxYHXu7WHA\nOxU5KBEREZHqyqfkpxTrHKzZrGuBvbnHHs39/Vzu77XAdCAN+BS4Mvf4MKA3cF8h5/0FuLScYxMR\nERGpDL8Cl1XWxfpiBVSuOgBfA3WAi3MH5AjykrHyv3yAj1DCvYiIiEiZLAX+Xsjxx7Bmr34A+rgc\nd5Sa+AX4l8dHJyIiIiIiIiIiUtXMwMolcxRx1fKk5/TFmqH8GXjEy2OpKVKBb7C+218U/1Q5Q0uw\ndmF/63KsCdYmop+AjwGbF8ZVnRX2mc9Af8s9qTVW6s93wA7ggdzj+q57TlGf+QyqwXd9OvBPbw+i\nBqiNtQTcFjgXK1fvyuJeIBViF9YfR/GcXlgFoF0DgSggMvf2Izg3BUnFKOwz199yz7oQuDr3dgPg\nR6y/4fque05Rn3mZvutVubdjeXdiSsm6YQVfqVhFcWOwiuSK5+n77Vmbgcx8x/oDb+TefgMVea5o\nhX3moO+6J/2O9T/NAFnA91j1M/Vd95yiPnMow3e9Kgdf9wMpwL/RlKmntAR2u9x3FMQVzzLAemAb\nMMbLY6lJmmMti5H7u7kXx1KT6G955WiLNfOYjL7rlaUt1mf+39z7pf6uezP4Woc1PZ3/pz9WD8iL\nsab29gHPe2mM1Z3x9gBqqCCsf2H7AeOxlmukchn0/a8M+lteORpg9VeeCPyZ7zF91z2jAfA+1mee\nRTX8rrfFPYdAKk4gVhFchyko6b6yTQce9vYgqqm2uP/t+AFnx46Lcu9LxWpL0X+vi3tMzty5QALw\noMsxfdc9q7DP3FVbSviuV9Vlx4tcbt+B/oX1lG3A5VhflDrAEGCVNwdUA5yP1WAeoD4Qgr7flWUV\nMCr39ihgpRfHUlPob7ln+WAtce0EXnI5ru+65xT1mVeL7/qbWFvxU7C+NFqv9px+WLs1fsGa+RLP\nuhgrWfNrrG3K+sw9412slmfZWHmNd2PtMF2Ptt97Sv7P/B70t9zTegI5WH9PXEsc6LvuOYV95v3Q\nd11ERERERERERERERERERERERERERERERERERERERERERERERERERERERGqS/wejmKrOIVSy5gAA\nAABJRU5ErkJggg==\n", | |
| "text": [ | |
| "<matplotlib.figure.Figure at 0x3a44c90>" | |
| ] | |
| } | |
| ], | |
| "prompt_number": 13 | |
| }, | |
| { | |
| "cell_type": "code", | |
| "collapsed": false, | |
| "input": [], | |
| "language": "python", | |
| "metadata": {}, | |
| "outputs": [], | |
| "prompt_number": 13 | |
| } | |
| ], | |
| "metadata": {} | |
| } | |
| ] | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment