Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save kumrzz/970de9e544f803c43748fb9501207934 to your computer and use it in GitHub Desktop.

Select an option

Save kumrzz/970de9e544f803c43748fb9501207934 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"id": "ef45c721",
"metadata": {},
"outputs": [],
"source": [
"# %pip install pandas matplotlib numpy\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from datetime import datetime"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f06ff118",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>timestamp</th>\n",
" <th>open</th>\n",
" <th>high</th>\n",
" <th>low</th>\n",
" <th>close</th>\n",
" <th>Volume</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2022-11-05 00:00:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2022-11-05 00:01:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2022-11-05 00:02:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2022-11-05 00:03:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2022-11-05 00:04:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578235</th>\n",
" <td>2025-11-04 23:55:00+00:00</td>\n",
" <td>6766.648</td>\n",
" <td>6766.648</td>\n",
" <td>6765.942</td>\n",
" <td>6766.145</td>\n",
" <td>0.02</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578236</th>\n",
" <td>2025-11-04 23:56:00+00:00</td>\n",
" <td>6765.942</td>\n",
" <td>6766.445</td>\n",
" <td>6765.654</td>\n",
" <td>6765.951</td>\n",
" <td>0.03</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578237</th>\n",
" <td>2025-11-04 23:57:00+00:00</td>\n",
" <td>6765.639</td>\n",
" <td>6766.499</td>\n",
" <td>6765.639</td>\n",
" <td>6766.345</td>\n",
" <td>0.02</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578238</th>\n",
" <td>2025-11-04 23:58:00+00:00</td>\n",
" <td>6766.445</td>\n",
" <td>6766.654</td>\n",
" <td>6766.142</td>\n",
" <td>6766.445</td>\n",
" <td>0.02</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578239</th>\n",
" <td>2025-11-04 23:59:00+00:00</td>\n",
" <td>6766.339</td>\n",
" <td>6766.339</td>\n",
" <td>6765.136</td>\n",
" <td>6765.499</td>\n",
" <td>0.02</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1578240 rows × 6 columns</p>\n",
"</div>"
],
"text/plain": [
" timestamp open high low close \\\n",
"0 2022-11-05 00:00:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"1 2022-11-05 00:01:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"2 2022-11-05 00:02:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"3 2022-11-05 00:03:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"4 2022-11-05 00:04:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"... ... ... ... ... ... \n",
"1578235 2025-11-04 23:55:00+00:00 6766.648 6766.648 6765.942 6766.145 \n",
"1578236 2025-11-04 23:56:00+00:00 6765.942 6766.445 6765.654 6765.951 \n",
"1578237 2025-11-04 23:57:00+00:00 6765.639 6766.499 6765.639 6766.345 \n",
"1578238 2025-11-04 23:58:00+00:00 6766.445 6766.654 6766.142 6766.445 \n",
"1578239 2025-11-04 23:59:00+00:00 6766.339 6766.339 6765.136 6765.499 \n",
"\n",
" Volume \n",
"0 0.00 \n",
"1 0.00 \n",
"2 0.00 \n",
"3 0.00 \n",
"4 0.00 \n",
"... ... \n",
"1578235 0.02 \n",
"1578236 0.03 \n",
"1578237 0.02 \n",
"1578238 0.02 \n",
"1578239 0.02 \n",
"\n",
"[1578240 rows x 6 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 1. LOAD 1-MINUTE DATA (CSV format)\n",
"# Expected columns: ['Local time', 'Open', 'High', 'Low', 'Close']\n",
"# Example: \"2025-06-01 00:00:00,5890.1,5890.5,5889.8,5890.0\"\n",
"df = pd.read_csv(\"/Users/kumar.ghosh/kgtest/lemaske/USA500.IDXUSD_Candlestick_1_M_BID_05.11.2022-04.11.2025.csv\", parse_dates=['Local time'])\n",
"df.rename(columns={'Local time':'timestamp','Open':'open','High':'high','Low':'low','Close':'close'}, inplace=True)\n",
"# 1-minute timestamps for one month\n",
"df['timestamp'] = pd.to_datetime(df['timestamp'], dayfirst=True, utc=True)\n",
"df = df.sort_values('timestamp').reset_index(drop=True)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "85a6165f",
"metadata": {},
"outputs": [],
"source": [
"# 2. STRATEGY PARAMETERS\n",
"initial_capital = 100_000\n",
"contract_size = 20\n",
"contract_value = 50 # $50 per point\n",
"risk_per_trade = None # Fixed size, not risk-based\n",
"\n",
"ema_fast = 50\n",
"ema_slow = 100\n",
"bb_period = 20\n",
"bb_mult = 2.0\n",
"rsi_period = 14\n",
"rsi_oversold = 35\n",
"atr_period = 14\n",
"atr_mult = 3\n",
"cooldown_bars = 10 # 10 minutes\n",
"ema_timeframe = '30min'"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "11d0b57a",
"metadata": {},
"outputs": [],
"source": [
"# 3. INDICATOR CALCULATIONS\n",
"# 1-minute EMAs (short-term trend)\n",
"df['ema_fast_1m'] = df['close'].ewm(span=ema_fast, adjust=False).mean()\n",
"df['ema_slow_1m'] = df['close'].ewm(span=ema_slow, adjust=False).mean()\n",
"\n",
"# 30-minute EMAs (long-term trend)\n",
"df_30m = df.set_index('timestamp').resample(ema_timeframe).agg({'close': 'last'}).dropna()\n",
"df_30m['ema_fast_30m'] = df_30m['close'].ewm(span=ema_fast, adjust=False).mean()\n",
"df_30m['ema_slow_30m'] = df_30m['close'].ewm(span=ema_slow, adjust=False).mean()\n",
"\n",
"# Map the 30-minute EMAs back to the 1-minute dataframe\n",
"df = df.set_index('timestamp')\n",
"df['ema_fast_30m'] = df_30m['ema_fast_30m'].reindex(df.index, method='ffill')\n",
"df['ema_slow_30m'] = df_30m['ema_slow_30m'].reindex(df.index, method='ffill')\n",
"df = df.reset_index()\n",
"\n",
"\n",
"# --- Original 1-minute indicators ---\n",
"df['basis'] = df['close'].rolling(bb_period).mean()\n",
"df['dev'] = df['close'].rolling(bb_period).std()\n",
"df['upper'] = df['basis'] + bb_mult * df['dev']\n",
"df['lower'] = df['basis'] - bb_mult * df['dev']\n",
"\n",
"# RSI\n",
"delta = df['close'].diff()\n",
"gain = delta.where(delta > 0, 0)\n",
"loss = -delta.where(delta < 0, 0)\n",
"avg_gain = gain.rolling(rsi_period).mean()\n",
"avg_loss = loss.rolling(rsi_period).mean()\n",
"rs = avg_gain / avg_loss\n",
"df['rsi'] = 100 - (100 / (1 + rs))\n",
"\n",
"# ATR\n",
"high_low = df['high'] - df['low']\n",
"high_close = np.abs(df['high'] - df['close'].shift())\n",
"low_close = np.abs(df['low'] - df['close'].shift())\n",
"tr = pd.concat([high_low, high_close, low_close], axis=1).max(axis=1)\n",
"df['atr'] = tr.rolling(atr_period).mean()"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "6a98f0cd",
"metadata": {},
"outputs": [],
"source": [
"# Drop NaN\n",
"df = df.dropna().reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "3e5fdc18",
"metadata": {},
"outputs": [],
"source": [
"# 4. BACKTEST ENGINE\n",
"equity = initial_capital\n",
"peak_equity = initial_capital\n",
"trades = []\n",
"in_position = False\n",
"entry_price = 0\n",
"stop_price = 0\n",
"target_price = 0\n",
"cooldown_until = -1 # bar index\n",
"current_bar = 0\n",
"\n",
"for i, row in df.iterrows():\n",
" close = row['close']\n",
" upper = row['upper']\n",
" lower = row['lower']\n",
" rsi = row['rsi']\n",
" atr = row['atr']\n",
" timestamp = row['timestamp']\n",
"\n",
" # Update cooldown\n",
" if cooldown_until >= i:\n",
" can_trade = False\n",
" else:\n",
" can_trade = True\n",
"\n",
" # Exit conditions\n",
" if in_position:\n",
" # Hit stop?\n",
" if row['low'] <= stop_price:\n",
" exit_price = stop_price\n",
" pnl_points = exit_price - entry_price\n",
" pnl_dollar = pnl_points * contract_value * contract_size\n",
" equity += pnl_dollar\n",
" trades.append({\n",
" 'entry_time': entry_time,\n",
" 'exit_time': timestamp,\n",
" 'entry': entry_price,\n",
" 'exit': exit_price,\n",
" 'pnl_points': pnl_points,\n",
" 'pnl_dollar': pnl_dollar,\n",
" 'type': 'STOP'\n",
" })\n",
" in_position = False\n",
" cooldown_until = i + cooldown_bars\n",
" continue\n",
"\n",
" # Hit target (upper band)?\n",
" if row['high'] >= target_price:\n",
" exit_price = target_price\n",
" pnl_points = exit_price - entry_price\n",
" pnl_dollar = pnl_points * contract_value * contract_size\n",
" equity += pnl_dollar\n",
" trades.append({\n",
" 'entry_time': entry_time,\n",
" 'exit_time': timestamp,\n",
" 'entry': entry_price,\n",
" 'exit': exit_price,\n",
" 'pnl_points': pnl_points,\n",
" 'pnl_dollar': pnl_dollar,\n",
" 'type': 'TARGET'\n",
" })\n",
" in_position = False\n",
" cooldown_until = i + cooldown_bars\n",
" continue\n",
"\n",
" # Close at upper band (if touched)\n",
" if close >= upper:\n",
" exit_price = close\n",
" pnl_points = exit_price - entry_price\n",
" pnl_dollar = pnl_points * contract_value * contract_size\n",
" equity += pnl_dollar\n",
" trades.append({\n",
" 'entry_time': entry_time,\n",
" 'exit_time': timestamp,\n",
" 'entry': entry_price,\n",
" 'exit': exit_price,\n",
" 'pnl_points': pnl_points,\n",
" 'pnl_dollar': pnl_dollar,\n",
" 'type': 'BAND_EXIT'\n",
" })\n",
" in_position = False\n",
" cooldown_until = i + cooldown_bars\n",
" continue\n",
"\n",
" # Entry condition (long only)\n",
" if not in_position and can_trade:\n",
" # Dual timeframe trend check\n",
" trend_up_1m = row['ema_fast_1m'] > row['ema_slow_1m']\n",
" trend_up_30m = row['ema_fast_30m'] > row['ema_slow_30m']\n",
" trend_up = trend_up_1m and trend_up_30m\n",
"\n",
" buy_signal = (close < lower) and (rsi < rsi_oversold) and trend_up\n",
"\n",
" if buy_signal:\n",
" entry_price = close\n",
" stop_price = entry_price - atr_mult * atr\n",
" target_price = upper\n",
" entry_time = timestamp\n",
" in_position = True\n",
"\n",
" # Track equity\n",
" df.at[i, 'equity'] = equity\n",
" if equity > peak_equity:\n",
" peak_equity = equity"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "5d7b9f06",
"metadata": {},
"outputs": [],
"source": [
"# 5. PERFORMANCE METRICS\n",
"trades_df = pd.DataFrame(trades)\n",
"total_trades = len(trades_df)\n",
"win_trades = len(trades_df[trades_df['pnl_dollar'] > 0])\n",
"win_rate = win_trades / total_trades * 100 if total_trades > 0 else 0\n",
"avg_win = trades_df[trades_df['pnl_dollar'] > 0]['pnl_dollar'].mean() if win_trades > 0 else 0\n",
"avg_loss = trades_df[trades_df['pnl_dollar'] < 0]['pnl_dollar'].mean() if (total_trades - win_trades) > 0 else 0\n",
"profit_factor = abs(avg_win * win_trades / (avg_loss * (total_trades - win_trades))) if avg_loss != 0 else float('inf')\n",
"\n",
"final_equity = equity\n",
"net_profit = final_equity - initial_capital\n",
"return_pct = net_profit / initial_capital * 100\n",
"\n",
"# Drawdown\n",
"df['peak'] = df['equity'].cummax()\n",
"df['drawdown'] = df['equity'] - df['peak']\n",
"max_dd = df['drawdown'].min()\n",
"\n",
"# Sharpe (daily returns)\n",
"df['daily_return'] = df['equity'].pct_change(fill_method=None)\n",
"daily_vol = df['daily_return'].std()\n",
"sharpe = (df['daily_return'].mean() / daily_vol) * np.sqrt(252 * 390) if daily_vol > 0 else 0 # 390 min/day"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "29ec5ff3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"============================================================\n",
" LONG-ONLY + 10-MIN COOLDOWN BACKTEST\n",
"============================================================\n",
"Initial Capital: $100,000\n",
"Final Equity: $1,569,689\n",
"Net Profit: $1,469,689 (1,469.7%)\n",
"Total Trades: 4107\n",
"Win Rate: 48.9%\n",
"Avg Win: $3,900\n",
"Avg Loss: $-3,034\n",
"Profit Factor: 1.23\n",
"Max Drawdown: $306,828\n",
"Sharpe Ratio: 2.84\n",
"============================================================\n"
]
}
],
"source": [
"# 6. PRINT SUMMARY\n",
"print(\"=\"*60)\n",
"print(\" LONG-ONLY + 10-MIN COOLDOWN BACKTEST\")\n",
"print(\"=\"*60)\n",
"print(f\"Initial Capital: ${initial_capital:,.0f}\")\n",
"print(f\"Final Equity: ${final_equity:,.0f}\")\n",
"print(f\"Net Profit: ${net_profit:,.0f} ({return_pct:,.1f}%)\")\n",
"print(f\"Total Trades: {total_trades}\")\n",
"print(f\"Win Rate: {win_rate:.1f}%\")\n",
"print(f\"Avg Win: ${avg_win:,.0f}\")\n",
"print(f\"Avg Loss: ${avg_loss:,.0f}\")\n",
"print(f\"Profit Factor: {profit_factor:.2f}\")\n",
"print(f\"Max Drawdown: ${-max_dd:,.0f}\")\n",
"print(f\"Sharpe Ratio: {sharpe:.2f}\")\n",
"print(\"=\"*60)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "39278772",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAMWCAYAAACKoqSLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA5jJJREFUeJzs3Qd4U2UbxvGnezBa9t4bRaYyRECZoiiIgvqpgKKioiBuxYEDBzIcKC5AHCA4QIYMkaUiAgqiLNl7Q5mdyXc9p6bNbJM0q+3/d11pkpOTc96cnKTJnfc8b5jZbDYLAAAAAAAAACAkhAe7AQAAAAAAAACAbIS2AAAAAAAAABBCCG0BAAAAAAAAIIQQ2gIAAAAAAABACCG0BQAAAAAAAIAQQmgLAAAAAAAAACGE0BYAAAAAAAAAQgihLQAAAAAAAACEEEJbAAAAAAAAAAghhLYAABRAYWFh8sILLwS7GSjEJk+ebOyHu3btCnZT8iXdbrr9dDsWtvclnUfnzW/eeOMNqV+/vphMpmA3BR66+eabpU+fPmw3AEBIIbQFAMCPgZWr02+//RbQ7f7rr78aQcipU6f8svzvvvtOrr76aildurRER0dLxYoVjS/AP/30kxSW53rNmjWSH6Wlpcnbb78tl156qRQrVkyKFi1qXNZpeltBdPDgQXnyySflyiuvNB6zPn9Lly7N8fXTtm1biY+Pl/Lly8tDDz0kZ8+edWtdlgAyPDxc9u7d63D76dOnJS4uzphn8ODBEgiF+fXqL/o8vv766/LEE08Yz7U6fvy4jBo1Stq1aydlypSRxMREadWqlXz11VdOl5GSkmLcX58P3SdatmwpixYt8qgduh/fcMMNxn6qz23ZsmWlR48e8u2334o/zZs3L+g/FI4cOVJmzpzp1X11u3/zzTeyfv16n7cLAABvEdoCAOBHL774onz22WcOp9q1a/t1u1+4cEGGDx9uEzqNGDHC56Gt2WyWAQMGGCHB4cOHZdiwYTJhwgR54IEHZMeOHdKxY0dj3QhN586dk86dO8uQIUOMkOe1114zQiYNjXSa3qbzFDRbtmwxArb9+/dLo0aNcpx33bp1xn58/vx5GTNmjAwcOFA+/PBDuemmmzxaZ0xMjEydOtVhuqswrVq1asbr+Pbbbxdf4fXqPxMnTpT09HS55ZZbsqatXLlSnnnmGSlZsqTxfvzKK68Ywb/26nz++ecdltG/f39jH/vf//4nb731lkREREj37t3l559/dqsNukz9IeLvv/+We++913gvfuyxx4wfGHr37i1ffvml+DO01f8x+TW0bdq0qbRo0UJGjx7t83YBAOA1MwAA8LlJkyaZ9d/s6tWrQ2Lrjho1ymjPzp07/bLcoUOHmk0mk8PtU6ZMMa9atSrP69Flnz9/3hyKQu259sQ999xjtP2dd95xuO3dd981bhs0aFCetouv9zlrunxdj6dOnz5tPn78uHF5xowZxnKWLFnidN6rr77aXKFCBXNSUlLWtI8++si4z4IFC3Jd1/PPP2/Me8MNN5ibNGnicHvnzp3NvXv3NuZ54IEHzP4UqNerK7pu3R7ubrP85JJLLjHfdtttNtN27Nhh3rVrl8003e5XXXWVOSYmxnz27Nms6brd9THrc2Rx4cIFc61atcytW7fOdf2W/fjGG280p6amOtw+f/588+zZs83+ovuuu89ZWlqaOSUlxedtKFKkiLlfv35e3//NN980lnHmzBmftgsAAG/R0xYAgCDT3q/awyohIcE4fLZfv35G7z77epYdOnQwTvb0vtWrV3dZO1LPtbeVqlGjRlaJBq2Z2b59e2ncuLHTdtWrV0+6du3qst3aC/DVV181aji++eabTmtQai/Byy67LKsdzuZxVvtUH8+1114rCxYsMHo/6aHCH3zwgVx88cVGTzJ7WkOyUqVKcuONN9pMGzdunFx00UUSGxsr5cqVM3qfnTx5UoLhzz//NA5JL168uFGCQHtv2pfJsGyLX375xei1rIdUFylSRHr16iVHjx61mVcfn25T7RWrvfd0u2zcuNHYdrpP5Gbfvn3yySefyFVXXeX0sHztLa3L/Pjjj415LSyH8WuPNn0+tAepbuP58+fnuD7dr/VwfGclF7p06WLsb4GiJRG096M7h7zr4em33Xab8bxZ3HHHHcZzOH36dLfXeeuttxqv682bN2dNO3TokFGSQG9zp6atPq+6Xu0h3LNnT+Oy7iOPPvqoZGRk5Lh+T1+vSnvLa49i3Va6j+mh/XPnznW435EjR+Suu+4yXmP6WtP3lE8//dSt7aK9SLUch96vVq1axuvcGe3F+tJLLxnz6D6n+/nTTz9tlBSw0NdMqVKljB7FFg8++KDxWLXch4UeFaDT3n///aySAnpdn0/tDVu5cmWjPfoa3bZtW66PYefOnfLXX39Jp06dbKbr+632mLam69HnTtut29fi66+/NnrW3nPPPVnTtA26XbXHrrPSGtaeffZZ43nSHr9RUVEOt+t7ub6nevKcWfZB3V+0d7ll2+vztXr1apv9cvz48VmPz3KyX4a+H1uWoe9Vqamp8txzz0nz5s2N/3/6XnfFFVfIkiVLHNqv73fa+1h7xmt7db/v1q1bVlkaXYceFaCPwbJ+y/vgmTNnZOjQocY+o+vWkhF6FMEff/xhsw7LkQWelqQAAMBfCG0BAPCjpKQkOXbsmM1J6xxaaLhw/fXXGyUTNBh6+eWXjYBMAy5f0dIFlkN2x44dm1WiQb/0akijYYMeTmtNv5Bv3brVaFNOYcuJEyeMwEnDBn8cwq7t1i/S+mW9SZMm0rdvX1m+fLkRdtm35cCBA8ZhxxYa0GpYffnllxv31zIOX3zxhRFeBLpW6z///GOEEVov8fHHHzcCFg16NIRftWqVw/waNOm8erjzfffdJ7Nnz3YIVp966injcGQNtbWkQZ06dYzH5m45gx9++MEI+jSAdEVv07DMPpDV7X3//fcb21sHX0pOTjYOv7bet+3pvqa3axBvzRJc5rSvBcuGDRuMx6/b2JrWCtX9UYN4d2ldUw0DrQ9R19qmGrxec801bi9HnzN9njWc1CBMf3jRQ7o1VMuJp69XDTbbtGljPF/6XGuYqc/zddddZ9TEtQ6DdT/W9xQ9rF/3RQ3gNDDT111u21cDew0Q9QcIfY3qPm+9fAstS6EBX7NmzYz3MX3cGkJbv+b1NaaPUV9vFitWrDBqzOq59TTLc2JNy4PoujUE19eX/qiijyk3lhIw2jZ3WN6/9EcMC92X6tata/PjgLKE6Br4u/Lvv/8aPwZoGKw/SOTG0+dM91mdR99T9X+UBrH6f8XyPqrT9X1aWZcBsjZp0iR55513jFBa91cNmPVHEf1RSNui5Up0H9Afp3T/tn+8GjBr8FqlShVjXq1JreGt5YcvXZ8GsroPWNav7VKDBg0yAnp9j3rvvfeM51d/CNy0aZPNOho2bGhM1x/NAAAICV730QUAALkeGu7spIfFWsycOdOY9sYbb2RNS09PN19xxRUOh363b9/eONnTw0GrVauW42HIrsojnDp1yhwbG2t+4oknbKY/9NBDxmGi1ofv2nvrrbeMZX733Xdu7QmuDnl2dhi9Ph6dpof0WtuyZYvTw/nvv/9+c9GiRbNKKKxYscKY74svvrCZT5fnbLq/yyP07NnTHB0dbd6+fXvWtAMHDpiLFStmbteuncOyOnXqZHP4+sMPP2yOiIgwni916NAhc2RkpLFcay+88IJxf3cOEdZD5HXeP//80+U8f/zxhzHPsGHDsqbpdX0s27Zty5q2fv16h+fF/nnNyMgwV65c2dy3b1+bdYwZM8YcFhZmHEoeqPII1nIqj2C5bfny5Q633XTTTeby5cu7vd8fPXrU/Oijj5pr166dddull15qHjBgQNZjsS6PoNvN/vHp86rTXnzxRZt1NG3a1Ny8efMc2+Hp69Wyf+hryUIPG69Ro4a5evXqxvOpxo0bZ8z3+eefZ82nh+frIf36mtRSFK7el3T/1fef3bt3Z03buHGjsa9bv1esW7fOuD5w4ECbNur21Ok//fSTcf3IkSPG9ffee8+4rq+X8PBw47kqV66czftbyZIls15j+tzr/Ro0aGBz2L5lm23YsCHHbTV8+HBjPncOq9eyHGXLljXe461ddNFFRtkEe//884+x7AkTJrhc5qxZs4x5xo4da3aHu8+ZZR8sVaqU+cSJEw7rsy634Ko8gmUZxYsXN54fa/q/zr5MwsmTJ43n6s4778yaps+vLkOfN3vW75OuyiMkJCS4XXqkbt26RkkUAABCAT1tAQDwIz1kVA+1tD5pD0frwVsiIyON3pQW2gtOe1oGgvau0p6+OkCS5ZBi7cmnPQC115YeruqK9pJS7vTs8oYeWmxfnkF7omkPR+vR17W9emixjpCuvaTUjBkzjMemvb+seznrYbjas9HZ4bf+ou1buHChsT1r1qyZNb1ChQpGr0ftAWnZlhbaG8368HXtPabL2b17t3F98eLFRg9Q7QFpzZP9Rg8Zzu35s9xm3z49DFwPc7a45JJLjB6C1od729Pejtqr7/vvv89at9Lez9qjU5/vnOhAYPa91pUOsmQ9zZflL7RHotIefPa0l5/ldnfp862H22tPdsu5s9IIudGeg9Z0/8hp23vzetX3Ju3l2bZt26xp+trRfVN7Wurh7Zb5dBA76wG49PD8hx56yHhuli1b5nT5uj9rL159XVStWjVreoMGDRxe97oOS/kDa4888ohxbinZoEcPaPkH7Y2vtMekvp9qj3vtOaw9Ui09bfVx2ZeI0J6+2ovaeruq3Lat9iDX93HdPjnRQ/z1NaAlcbTXqTXdl1ztZ5bbffncevKc6REOJUqU8Hi7WNNervr8WNPnxrK9ddtoL2lLz3br0gXffPON8Vw5G7zNWZkPe1p2SI9o0KMxcqOP0/LeAgBAsBXq0FY/0OkXPK0Fp//wvRltVL/g6qFp+iVSP2hpPT09fAwAAKWhhwZc1ifrmqwawml4Z/9lP5D1PfUQ+D179mQdMvzjjz8aAUduo9ZbDuO1DuB8yVWIpwGChjFa19NSj1IPr9bpFhrOaGkKrV2oQYH1SUMJnd8VDUf08GXrU17o4b4aODp7TjWg0rDCvl6ldYilLIGJJZC0hLe1a9e2mU8PObYOVzQYs38sWkfSOuDJ6flzFezat8/SxtwCU93XdPtaDn/XEhhr167NdV9TWobB/rm0BNXW03QUeF+x/AhgXTfVQksFWG7XbWq/nZ3VmNW2aaioh5trWK3BmdYU9oSlnqen297T16vuY672WcvtlnMtzaGhfE7zOXtd6L6g97Vnv15dhi7ffn/X7aeBnPU6NFC0vJfpuQaAetLXhl7XgFNLj1iCR09ed3ml+6qWGtGSAPa1xHVfcrWfWW735XPryXPmi+3i6v1ca9Dqjz66X2vJD923NYTX92+L7du3G9/X3KlD7eq9Q0sAaWkF/Z+sZRhcBc763c6dIBgAgEAo1KGt1nzTD0yWwvneGDJkiPHBS4NbrSWlvUesB3AAAMBXXH2RzG0AotxorzYdjObzzz83ruu5hiH2g+rY0/DJUpfSH+13FVJoOKtfrLU3rdLBg7RXrQ5KY6FBqAa29r2cLacXX3zRZTu1F68G6danQHNVc9R6gCV3aBhs/1gs9TctAY3WNHbFcpvWevRF+3Q52tvZel/TnnZ9+vTJ9bFo4Gv/PCrtRWk9TcNQX7E89wcPHnS4TadpkKR0m9pvZ1cDR2nPWt3HNLjVfdk+OMuNt/WjPX29hiJ3wjTtQas/6GgopyGthrN6P52u1/W50vcHZ6Gtt/u1ho3aQzSn0FTrT2s9Va2b6+xHCt1nXO1nyrKvBeO59cX7kbP3c339ax1d7bWvgyJqoK2vYf0hQ58jX9H3F90ftHezbketz6uDJ1of9WKhQbR1rWEAAIIpUgoxHcFZT67or93PPPOMccioHsakIyRr4XvLyN1avF6L2usvt5YeAbkd2gcAgDUdWVwPddfen9a9bbUHoj3t3eSsd5Crnmzuhh36hVyDJB2lXv/P6ZEnd999d67hkIYg2ib9P6mjuOc2v6V3lv5P1d5xnrTfmv6v1R9INfjSwbm+/fZb4xBr60OLNQTQHsM6CFlOPdRchdi+HD1ce47Fx8c7fU71B18N7bQHmCcsI9LrIfbWnz30MG3r3m8avts/FksPP/0MpM+ZDtjjajCyKVOmGId9WwfieaXr0sPcNYzS4FIH4bLuHeyKlpawLi9hHQTn9gODt/Sznz5+HaHeOljWnrU6UJJlmm5T++2s294Zfa3pgFr6+O0Ha/InT1+vuo+52mctt1vONdzXkM06gLafz9nrQl+blpIF1uzXq8vQ5eu8lh8blB4RoO8n1uuwhLH6fGj5CR2wyjLomH5u19BOy77ojwe+YglNdXBB7TVqTzuIaO9OHUjriSeecLoMLfuiZVu0J7D1YGSWgQr1dlf0iD/9LjJr1ixjILHcyjR4+5zlxJveqVrWRl/T+h5ufX/7Mgj6fq6lNLR8Qk69bXNqg4biWk5GT3qkhQ4ap0dHWn8X1OBdf2zRwfYAAAgFhbqnbW70i+DKlStl2rRpxgebm266yfjSYvlwqSM56weNOXPmGF+Yqlevboxsqx8oAABwR/fu3Y0vihomWPc8ta93aPniql+q9bBiCz3M152Rri21aTXgcEZ7fmnYp6Nta4B822235bpMDSI1gNAfMfXcWa8r7Un1+++/Z7VfWepNWo560cNjPaU9FHXU8IkTJxr1B61LIygN03Q7vvTSSw731e3tajtYvtzbl7TICw3HunTpYgQqWgvUOnDS0FLDNPsR43PTsWNHI0y03m/Uu+++a3NdDzm2fyyWgFSDYq3hqeG2/XLUhAkT5KeffjJGba9cubL4itbR1HBFj1bSHyHc2deCRXtw6zbT/di6F6WGrfo60c+GSrep/Xa21CK1p6+DcePGyauvvhrQo7M8fb3qe5Ne1s/C1q/XDz/80PjMa+l9rfNpOQjrOtP6GtP3MA0P27dv7/J1oT+Q6I9EWp7FQtunAZ01XYfS7WZtzJgxxrkG/xb6mVzLlY0dO1bS0tKMH24sYa4eZq9BYatWrYzXj6+0bt3aONdw355uF60Vq7VsLe115sYbbzTes3T7WncgmTRpkrRs2TLXH3a0J6/+aKPfRXT729O62vqdJS/PWV7+xzhj+eHAel/UkNp6n7PUw9V59DHas76vtsF+/bpNrUstKD0KQ8N7+3IUWqdZy1FojW0AAEJBoe5pmxP98KgfkvTccjjSo48+ahy2o9NHjhxpfNHQ3kF6eKb2RNEPBQ8//LDxoUu/5AAAoIdfWnovWdMvhfrDn9ZW11BBe4NpoKdBiPY6sv+Sqe68807jS78GHRqkaW8hDdb0ME/7gaLsWXqV6REkN998szHojK7b8kVba21qr0L9n6Y92bQXkjv00PR//vlHRo8ebfQS0/+B2sNQAwENYzT0sRyOr8Gl1kbUtuv99Au7hq7a4846tHGHhrL6f1lP2vPKPljV0EEDaA3GtEekrlsfs/7wqo9Re6NpW31JH4t+TrCn4eTLL79s9PzTgFZ7emlg9MEHHxihgdZb9JSWs9Dl6nbXXmH6o7IG+Lq/6aG97vZ602BL909tk7bd0qNWQzMNmXU76jp8SZ9vXY8+D9rj2jpwCyR9TpTuv5YgVgeFU8OHD8+aT3vj6etVt4UOwrVv3z5jm+g+5W0PZH3ugsGT16u+J2mvXO2JqKGjvs70BxbtTaoDQ1l6aOo20X1ZD3PX+sQa6Gowqj8macia0+BYGsLpfqeBqu6DluBQ39Osy3ZoT+Z+/foZgaaGcvpcaFu1PdrL3rpOuNLlaaeLRo0aZf1Ioe9p+n63detWrwZ/y4m+l+v7p/4Aou/TFtpG7Vmu5RP0hxb70h2W/wNKg1n9EeCpp54y3tu1fq8+Pv2/oKUDcqM/XGl5BN1f//zzT+PHEe0xq0GubmM9okN/JMrrc5bb/xjdV/R/lL6/6/+anFx77bXG/7tevXoZ7wO6b+n/NP0/qD+KWOjzqz8svv3228Z7uL7utJewlrvQ27SjjaUN+hzo/0n9/qYBvvZA1h+ddF/X/UhDaZ1He2Hbv7fpe7T+uKEDWAIAEBLMMOim+O6777K2xpw5c4xpRYoUsTlFRkaa+/TpY8xz9913G/Ns2bIl635r1641pm3evJktCwCF2KRJk4z/B65OervF8ePHzbfffru5ePHi5oSEBOPyn3/+6TCf+vzzz801a9Y0R0dHm5s0aWJesGCBuV+/fuZq1arZzKf3ff75522mvfTSS+ZKlSqZw8PDjdt37txpc/sbb7xhTB85cqTHj/frr782d+nSxVyyZEnjf2WFChXMffv2NS9dutRmPv0/2bJlS6P9VatWNY8ZMyZrW1m3Rx/PNddck+M6L7/8cuN+AwcOdDnPhx9+aG7evLk5Li7OXKxYMXOjRo3Mjz/+uPnAgQPmQD3Xe/fuNeb7448/zF27djUXLVrUHB8fb77yyivNv/76q9NlrV692mb6kiVLjOl6bpGenm5+9tlnzeXLlzce31VXXWXetGmTuVSpUuZBgwa53f6UlBTz2LFjje2kn3W0bc2aNTOPGzfOnJqa6jC/tuOBBx5wmK7Pme6L9o/Ffj9T06dPN2675557zHnh7DXiyX1dneytWLHC3KZNG3NsbKy5TJkyxuM/ffq0W+vR16Eu8+jRo7m2x3q76nazf3y6ffU5crUOX79et2/fbr7xxhvNiYmJxmO/7LLLjM/I9g4fPmweMGCAuXTp0sZrW19nzp4XZ+9Ly5YtM/Y9vZ++t02YMMHp40lLSzOPGDHCXKNGDXNUVJS5SpUq5qeeesqcnJzssJ7x48cb97/vvvtspnfq1MmYvnjxYqevrxkzZthMd/YcuKLvZfraPn/+vFf/B9SFCxfMjz76qPGajomJMV966aXm+fPnmz2hj+366683ly1b1nhudX/t0aOHedasWR4/Z5bHP2rUqFyfS30/evDBB431hYWFZT1/OS3DZDIZ/2/0vUMfb9OmTY39y9n/NF2+LqN+/fpGe3U9V199tfE/xUK/f7Vr1854P9R16nL0/e2xxx4zN27c2PgfoK8fvfzee+85tEf/N912220ebW8AAPwpTP8EOzgOBdojRUcy1l/rlR4upIcxaW8E+5pf+gut9krQekva41YPvbLQUXD1F1o9BIlfaQEA3tLeVdpLSI/u0N5QgaC9T/WIEV23/WjhyB+0F6L2LNRepNqrOlRpL179zKWlMpwNCAXkN3p0hPaa1Z7zejQB8hc9IkN7Y//xxx851g8GACCQqGnrgh4mquUOLIcnWZ8sA0vo4ax6GJfWx7LQQ668LeAPAECw6G+4egiuHnZMYJs/6A/F9iw1Py2Dpoaqjz76yAi4tFwEUBBo/ePHH39cRo0aZRy6j/zltddeM0ooENgCAEJJoa5pq7WSdNRlC62jpL+yas0uHYVVe9pqHSqtd6Qhrg78ovWgdFRYrbuk9fP0F1mtXaVfkvQD2gMPPGD0sNX7AwAQ6nRgoe+//96ob6n1ELUHJPIHPSpo8uTJxqBCehSQ1mPVGqRaa9Uy+FKosQzuOnfuXKNntzcjzgOhSgd40xPyH31vAgAg1BTq0FZHeLUeuGDYsGHGuQ50oF+C9JBUPbzwkUcekf379xsDe+hos1o0X+kADLNnz5YHH3xQ2rVrZwxuoIM1+HrADgAA/EV/kNRBeXRAqKefftoY1Ar5g/6IrAOa6eHYOhCdZXAyywBboUgHR9KAWQ8f14GnAAAAADhHTVsAAAAAAAAACCHUtAUAAAAAAACAEEJoCwAAAAAAAAAhpNDVtNXBwg4cOCDFihVj8AsAAAAAAAAAAWM2m+XMmTNSsWJFY7wsVwpdaKuBbZUqVYLdDAAAAAAAAACF1N69e6Vy5couby90oa32sLVsmOLFiwe7OfCDtLQ0WbhwoXTp0kWioqLYxoUY+wLYN8B7BvgfAj5fgM+d4DsIQgHfT2Fx+vRpo0OpJaN0pdCFtmFhYca5BraEtgX3jTA+Pt54fgltCzf2BbBvgPcM8D8EfL4AnzvBdxCEAr6fwlVG6QoDkQEAAAAAAABACCG0BQAAAAAAAIAQQmgLAAAAAAAAACGk0NW0dVdGRoZRbwT5jz5vkZGRkpycbDyP/qC1ciMiIvyybAAAAAAAABRuhLZ2zGazHDp0SE6dOhWcZwQ+eQ7Lly8ve/fuzbWoc14kJiYa6/HnOgAAAAAAAFD4ENrasQS2ZcuWlfj4eAK5fMhkMsnZs2elaNGiEh4e7pdQ+Pz583LkyBHjeoUKFXy+DgAAAAAAABRehLZW9FB6S2BbqlSp4D0ryHNom5qaKrGxsX4JbVVcXJxxrsGt7i+USgAAAAAAAICvMBCZFUsNW+1hC+TGsp9Q+xgAAAAAAAC+RGjrBDVK4Q72EwAAAAAAAPgDoS0AAAAAAAAAhBBCW3hk8uTJkpiYyFYDAAAAAAAA/ITQtoDo37+/cbi+/albt24+XU/fvn1l69atWddfeOEFadKkiU+WbTab5cMPP5SWLVtK0aJFjXC4RYsWMm7cODl//rxP1gEAAAAAAACEushgNwC+owHtpEmTbKbFxMT4dBPHxcUZJ3+4/fbb5dtvv5Xhw4fLu+++K2XKlJH169cboW316tWlZ8+eXi03NTVVoqOjfd5eAAAAAAAAwB/oaVuAaEBbvnx5m1OJEiWybv/333+lXbt2EhsbKw0bNpRFixYZvXFnzpxp3L506VLj+qlTp7Lus27dOmParl27HMoj6OURI0YYwaqlZ69Ou/POO+Xaa6+1aVtaWpqULVtWPvnkE6dtnz59unzxxRcydepUefrpp+XSSy81gtrrr79efvrpJ7nyyiuN+Tp06CBDhw61ua+GudrT2KJmzZoyatQo6devnxQvXlzuueceadOmjTzxxBM29zt69KhERUXJ8uXLjespKSny6KOPSqVKlaRIkSJGj1/dJgAAAAAAAEAg0dM2F2azSLCOzI+PFwkL882yTCaT3HDDDVKuXDlZtWqVJCUlOYSf3pRK+Pvvv2X+/Pny448/GtMSEhKkbt26Rjh88OBBqVChgjF9zpw5RokDvY8zGtjWq1fPCGntaRisy/XEO++8I88995xRvkFpG9944w157bXXjOWpr776SipWrChXXHGFcX3w4MGyceNGmTZtmjH9u+++M3ovb9iwQerUqePh1gEAAAAAAAC8Q0/bXGhgW7RocE6ehsUajGotWOvTyJEjjds0VN28ebNMmTJFGjdubISqltu8pWUSdB2RkZFZPXt1mvZq1QD2s88+y5pXyzbcdNNNxvzOaC9gvY+v6OMbNmyY1KpVyzj16dNHDhw4ID///HPWPF9++aXccsstRoi7Z88eo40zZswwQly9j/a6bdu2rUPJCQAAAAAAAMCf6GlbgGgJgffff99mWsmSJY3zTZs2SZUqVYwepBatW7f2W1sGDhxoDCr2+OOPy+HDh+WHH34wyhzkNAiZL9kPjqb1cbt06WL06NVQdufOnbJy5Ur54IMPjNu1N21GRobRS9ialkwoVaqUT9sGAAAAAAAA5ITQ1o0SBWfPStDW7Qmtw1q7dm2v1xceHu4QoGotWm/ccccd8uSTTxrB6K+//io1atTIKkPgjIal2hPYnTbaB7zO2qjbwt7//vc/eeihh4zSCdrLtlGjRsZJnT17ViIiImTt2rXGuTVXvYMBAAAAAAAAfyC0zYWWP3WS/+U7DRo0kL1799rUmf3tt98ceqMqnccygJkORJaT6Ohoo4eqPe2dqgOEaWkBDW4HDBiQ43JuvfVWufnmm2XWrFkOdW01pD19+rRR11bbqO2z0HVrXV3LQGU50eXqoGRa31ZDWw2WLZo2bWos68iRIzmGywAAAAAAAIC/UdO2ANFD+Q8dOmRzOnbsmHFbp06djN6s/fr1k/Xr18uKFSvkmWeesbm/9tLVEgo6eJfWmJ07d66MHj06x3VWr17dKDWg4a6uS9tgXSLh008/NUoz6HpzojVndZAyrTGrtXbXrFkju3fvNur0atuXLFlizHfVVVcZ7dKT9sy977775NSpU25tH+19q0Hys88+a7RJ12Wh20Z74mqQ++233xqP6ffff5dXX33VWBcAAAAAAAAQKIS2BYj2INVetNYnHUjLUlbgu+++kwsXLshll11mBKqvvPKKzf2joqJk6tSpRhh6ySWXyOuvvy4vv/xyjuvs3bu3dOvWzejpqr1g9f4WGrZqG7p27WpTS9cZHQxMe7+OGTNGZs6cKe3btzfaoAGy9pDVZag777zTCIA1XNV5atas6VYvWwsNZjW01t60VatWtblNewXrch955BFjUDQNeFevXu0wHwAAAAAAAOBPlEcoICZPnmyccqK9SbWHbU4uv/xy+euvv2ymWdeQ7d+/v3GyiImJka+//trpss6dOycnT56Uu+66y63HoMHyoEGDjJMrGiy/9957xsmVHTt2GOUUnLn66qtdDnqmyx4xYoRxAgAAAAAAAIKF0BY+ZzKZjFIJWlohMTFRrrvuOrYyAAAAAAAA4CZCW/jcnj17pEaNGlK5cmWj929kJLsZAAAAAAAA4C7StELOVamAvNDByfyxXAAAAAAAAKAwYCAyAAAAAAAAAAghhLYAAAAAAAAAEEKCGtouX75cevToIRUrVpSwsDCZOXNmrvdJSUmRZ555RqpVqyYxMTHGofgTJ04MSHsBAAAAAAAAoEDXtD137pw0btxY7rzzTrnhhhvcuk+fPn3k8OHD8sknn0jt2rXl4MGDYjKZ/N5WAAAAAAAAAJ7bv1/khaeSpf8NZ+TyS1MdZ0hMFClShE0bKqHt1VdfbZzcNX/+fFm2bJns2LFDSpYsaUzTnrYAAAAAAAAAQtPw4WaZ/FmszJmZIQdf/MJxhhYtRNq2DUbTQla+qmn7/fffS4sWLeSNN96QSpUqSd26deXRRx+VCxcuBLtpAAAAAAAAAJxYuTLz/NCZItoD0/akR9BnZLDdQqmnrae0h+3PP/8ssbGx8t1338mxY8fk/vvvl+PHj8ukSZNc1sDVk8Xp06eN87S0NONkTa+bzWaj3IJDyQUNhlOddN/2l+hokbg4KSiWLl0qHTt2NJ6rRO3y7kf6HFrO/Vk6Q5et69D9JiIiwm/rgfcsr3H71zrAvgHeM8D/EPD5Ar7EZwuwL4D3iZwdPZodQaZpQBsVlX2jZiqa5RSS7+5pbj7OMLMl4QoyHYhMg9iePXu6nKdLly6yYsUKOXTokCQkJBjTvv32W7nxxhuN+rhxTkLOF154QUaMGOEw/csvv5T4+HibaZGRkVK+fHmpUqWKRGtoanHhgkTNmydhSUkSKOaEBEnr3t3t4FbD66lTp2Y9jhIlSshFF10kvXv3lltvvVXCw4PbqVrDdh10bteuXVnPXX6Xmpoqe/fuNfbH9PT0YDcHAAAAAAAgJPXseX3W5ZkzZ0lhdv78eSOrS0pKkuLFixeMnrYVKlQwyiJYh34NGjQwejvu27dP6tSp43Cfp556SoYNG2bT01ZDWQ2A7TdMcnKyEcIVLVrU6M2bRXNt7a2rPUStp/tLcrJxitN15fDkWYuKipKuXbvKxIkTJSMjwxisbcGCBcbjnzt3rsyaNcsIc52l+3pff7ME5MWKFctxh/QF3R/OnDljrEt/DPAX3V/0h4J27drZ7i8IGbp/L1q0SDp37hyQ/Rz5B/sG2C/A+wT4HwI+W4DPmeA7SHB016PgrTv07dwp0rixyOWXF4qd8vR/VQByk69C28svv1xmzJghZ8+eNYJVtXXrVqMXaeXKlZ3eJyYmxjjZ0wDHPsTRsFNDPl2eTc9UvazhnwaPgRjJTtenIbGeu9lDVtutwWHFihWN6xpMa/3f1q1bG2UJpkyZIgMHDjTme++99+SHH36QxYsXy2OPPSbPPvus3HPPPfLTTz8ZvUarVq1q9NwdMmSIsay///5bLrnkEiMILlOmjJw4cUJKly4tffr0kWnTphnzvPzyy8ZAcdqjVs2bN0+GDh1qhOCtWrWSfv36/ffQsrftN998I88995xs27bNCOQffPBBeeSRR4zb3n33XZkwYYKxbjVz5kzp1auXvP/++zJo0CBjWqdOnYxl67q1R7XOo/fXx6Nt1EHuPv74YyO89Qd9HLo9ne1LCC08R2DfAO8Z4H8I+HwBPneC7yAIBXw/FYnS8gDWney0s6ReLyTZSpSbjzOox8xr+Lpu3TrjpHbu3Glc3rNnj3Fde4necccdWfNr1+FSpUrJgAEDZOPGjbJ8+XIjdLzzzjudlkaAyFVXXSWNGzc2ykhYaMCpAeiGDRuMbae1WTX01kBct6sGqU8//bRMnz7dmF/LLOh2X7ZsmXFdS1RYX1d6uUOHDsZlDWpvuOEGoxyCPp8aFj/55JM2T8fatWuN0Pfmm2822qFt0rB18uTJxu3t27c32nL06NGs5WtQrLVxLb3kVq5cmbVOtX37diO41QHrNEzW/eO1115jNwAAAAAAAAgRoVGoNfQFNbRds2aNNG3a1DgpLWOglzU0VAcPHswKcJX2rtVDnU+dOmX0Iv3f//5nBINvv/120B5DflC/fn2jlqx1+K3Bd82aNY1etZrwa91f3aY1atQwtqvebglttTeplgCwBKZ6rrfrAG+bN282AtRff/3VCFqV9oatVauWjB49WurVq2csr3///jZtGjNmjNEDWIPaunXrGrcPHjxYRo0aZdx+8cUXS8mSJbOCYV2n9qK1XP/999+N9bZp0yZrmRo+a+ir99Xpt912m9GbGAAAAAAAAMFx7Jjt9cOn6XgZ8uURtJdkTuOgWXpd2geQGtzCfbqNrWu7ajhrb/z48UY9XA3JL1y4YAyy1aRJk6zbNZD98MMPjcsanI4cOdIoTaFhqpYi0ABVy1eoTZs2ScuWLW2Wr2UarOk811+fXYRa6f3HjRtnlKmIiIjICoq1DIL2utWSDW+88YYRFGsbLr30UpvB5KpXr26UQtDwVmnJhSNHjrCrAAAAAAAABEmZMrbXdxwtJuVr0902pHvaIjA0INUetBZF7OryaimBRx99VO666y5ZuHChUdJAe9JqcGsdsGtw+u+//xrnbdu2NaZpqKoBqgbB1gGqL1iWr+UYtAe2DmBmCXJ1nZaeva5qgmhQbQlwAQAAAAAAEHyz11cJdhPyBULbAk4HF9Oasb1793Y5zy+//GKUE9CerBqO1q5d26gPa61Ro0ZSokQJY9Av7YGrpSo0VNXwVENU69qyDRo0MMoXWPvtt99srus8ul77dmipBO1la13XVmvtWpav5z/++KMxr/U6AQAAAAAAEDq0H901XbI7BFqEW41BBtcIbQsQrTF76NAh2b9/v/zxxx9GCQMtQXDttdfaDOhmr06dOkZ94QULFhglD7TO7OrVq23msdS1/eKLL7LC0ksuucRYp9aNte71OmjQIKNHrg4St2XLFvnyyy8dSl1ofVq930svvWSs89NPP5V3333X6PFrocvXoFjvbx3a6mBjul5LOQYAAAAAAACElo0bReYtinaYHiaURnAHoa0nkpNFzp3z/0nX44X58+cbdVy1tmu3bt1kyZIlxiBts2bNyuq96sy9994rN9xwg/Tt29eoRXv8+HGj1609DWa13qwlQA0PDzeCXA10rQNUHdzsm2++McLVxo0by4QJE4wA2VqzZs2Mgc60NIMOHKaDz7344os2A5bpcq+44grjXMsxWIJcLZOg5RjsyzwAAAAAAAAgNKSlOZ9uNewSQnUgsnwjOlqkRAmRkydFLlwIzDp1fbpeN2lPVmcDt9lzNvBbTEyMTJo0yThZe/XVV22uDx061DhZ02DWGe3dqydrWifXmpZsyKlsg7Pla1CsA5/Ze+GFF4yTtSFDhsjDDz+c4/IBAAAAAADge04iKENYGD1t3UFo6464OJHrrxexGpjL7zSw1fUCAAAAAAAA+cw3X2s469it9q1FDaVUaauD/4/Hi2yvJHc1FylaNLBtDGWEtu7SAJUQFQAAAAAAAHDp/PnMCG3kq87rIJxOjpGhkxo7TL/xSUJba4S2AAAAAAAAAPJszx6RatVEerQ+KiJlXM53Sy+78qNRURIXR0xpja0BAAAAAAAAIM8swyXNXuk6sK1bM02+/JaSoLmxKiABAAAAAAAAAN6pUyf3ecKcV02AHUJbJ0wmk7PJAPsJAAAAAACAC2XKuBFGEtq6hfIIVqKjoyU8PFwOHDggZcqUMa6HEf/ny9A9NTVVkpOTjefT18xms7H8o0ePGsvX/QQAAAAAAKCwM5szzxuXOyjrD1dwOk8Yqa1bCG2taABXo0YNOXjwoBHcIn/SUPXChQsSFxfn19A9Pj5eqlat6pdgGAAAAAAAIL+xHLx+IS3K5TzhkXS1dQehrR3tNalBXHp6umRkZLi1ERFa0tLSZPny5dKuXTuJinL9JpEXEREREhkZSU9sAAAAAACA/0yblnm+9URpl9uEnrbuIbR1Qntnatjnr8AP/qWBqobusbGxPIcAAAAAAABWzpwRGfNaitzQ7YI0aphh9I7tc3u01K2SLB1bn5fISJH2l13wapt9+mn9XOcJ44hltxDaAgAAAAAAACFs+TKzVKmYITVq5H1Zb74eJi+OjJH338mQjcO/lL8PlpRvFtwgIsXk1Y8z59nx1EdSo9RpL5aee2hLZuseQlsAAAAAAAAgRK1fL9K+g9aBjZQr6x+UxY8vkLwM4fPlRxrQFpfDZ+Kl1BMDnc6z9NylUqP1XvEHPw4/VKAwghIAAAAAAAAQwqGtxZLNFST8zv5yLsX7fpjbjhTPdZ6HP75I/IXQ1j30tAUAAAAAAABCVNGijtNWHKwt3Zof9ds6k877b5wnyiO4h562AAAAAAAAQIjavNlxWlqGd5HeIxPquD1vWrpndQzMZvfmq17do8UWWoS2AAAAAAAAQIh65hnHaSaTd8saMy/3gcIs1u/MvYyCOnwyWj7/qaKcS45wOc/ED9Jy7DkMR4S2AAAAAAAAQAjZtCmz9uv0cQd8tswdh+I9mn/t9kS35mvxcFu5fVxzKda3u830d0ackDq1MiQlRWTAPf4rt1BQEdoCAAAAAAAAIaRhw8zzvg9X9Nkyh31Yz6P5w8Oy6x2cOR8hT31cS/74t5hDCYV9J4o4vf/gIRGydVuEREd72eBCjtAWAAAAAAAAKOBmransdWg7akZ1ee37htL8kQ5yNCk7hZ20KIdlxsR411AYIjPPAAAAAAAAAOQHqem2/TBPnImSD+ZWkt5tj0jdyud9so5HJjaUf7bHGpfH/pBdC/eONy6SH17507h87/tNXC8gNvO+8A49bQEAAAAAAIAQcfJk7vP0eaOFzfXnptSWp79sJLe9cYnP2pF0PtoIa60DWzV/g2c9du1prV7kjtAWAAAAAAAACBFPPunefObs6gUyfkFt43z1rjK+bcvDKcapVg2Tw20mx0lZZn2b4TDtxeGpUqFsuowY4dMmFliURwAAAAAAAABCxLZt7s137HS0lElIdRrm+qI3a8+eIq+OyaxLe8mlIrfeanv74vWlXd73ul4RDtOefSlahr9IT1t30dMWAAAAAAAACBHWPWhzsvdYnNPpUxZX8kk7rIPfhQudh8bOjH0j1a1lImeEtgAAAAAAAEAArVyZGWA+NvCkyK5dNifT+WSPwt11O4rbTO//djOftNE6YL3iitwHQ7MY+pjzMBeeoTwCAAAAAAAAEEBt2mSev/lJCRnVYKLNbctWPeLRst6eXd1h2hXDLs26HBudISMHuFlzwYVrr7W9XnfgFfLvkcQ8LRM5I7QFAAAAAAAAgqVuXa/u1vaJNnJRhZOydo/j4GM/bytvc/3HxyrlqadtWprtbQS2/kd5BAAAAAAAACCfSU6LdBrYqq+/zjz5SqlSttdXrBC56CLfLR+OCG0BAAAAAACAADl71nHa0STXdWD735bu8Tp698485YV1T9vYWNvb2rYltPU3QlsAAAAAAADAx3bvFlm+JEMk47+TysiQDyeYbOZ769sqUvb2rvLaNMfatM8PTZJJn0XKRx/Y3ieYunbKfCym0GlSgURoCwAAAAAAAPhY9eoi7a+KkFUv/CAybVrmxGnT5MCPG23mGzq5iXH+1JeNxGx2DG3VwHvCZfly/z9FHS5PzbpctKjtbZ9MSJN6NVLl1dcz40RLDg3/ILQFAAAAAAAAfGjHjuzL3/1Rzea2pZttBwmz9tCEBjbXw2Jjsi5fcYX43ZKfs8s0xMXZ3nbnvVGyeUe0NG2WWTeBnrb+RWgLAAAAAAAA+FCtWtmX/zlcWqRkycwrJUvK2t2lXd7v3R9q205ISPDr89K9u+vbcgtlCW39i9AWAAAAAAAA8JMt+4p4f2f7EcB8aNgwkdGjs6//+qvt7falGuwR2vpXpJ+XDwAAAAAAABRacVFpXt2vX0+tZ+u/nravvJKZCR8/ntmhNyLC9nZ62gYXoS0AAAAAAADgJ3/tKyVxva4V7biaWQ3WPcWL5lKfIA+2b8/uxGup3GDRqH6abNgcJbfdlvMy6GnrX5RHAAAAAAAAAPwowxQuJlO4ce6udz4v4bf21Kzp+rbV66Jk2zaR9u1zXkZGhs+bBSuEtgAAAAAAAIAf7dqVJhMnLjDOQ11MjO1Aaq7Q09a/CG0BAAAAAAAAP6pYUcsQJBvn/hYTk8sIYj5CaOtfhLYAAAAAAACAj6SkBHdTrl3rSeVc7xHa+hehLQAAAAAAAOAjjRr4rwTCH2tz70V70UU5316kiG964l58sU8WAxcIbQEAAAAAAAAf+XdnlE+W07Ch47SmzTzrRdunj2NA+8ADvumJ+9xzjtNatzL5ZNkgtAUAAAAAAAB8IsxJHlq/nnc9W3PrMeuOKVMcGxQRIT5RrpzItm0ihw6JDH881Zg2ZkxgSjMUBvS0BQAAAAAAAPykRAnvQttwH6R2MTHiV7VqZYa3L70ebdTybdWa0NZXCG0BAAAAAAAAP3njDe+CTG96xF5/vQRNdHTw1l0QEdoCAAAAAAAAfrBkiUjbKwIX2n7xheO0H3+0vX7LLV41BwFGaAsAAAAAAAD4QfXq3t/Xm9C2SBHHae3biyQmZA4QtnyZWRo18r5NCJzIAK4LAAAAAAAAKJDS07Mv33FzivS6KUqqV3fsL1m1Urrs2R8ZsFIHkZEiJ05mtiPM2UhpCEn0tAUAAAAAAADyKCMj+/I9d4v0vMF57Pbrqkh5e2z2zEWKOB+orGfP3NdZoYLImtVmefiBFDl50vV8mtWS1+YvhLYAAAAAAACAD3vaNr4sxuV8lSqJPPBQdu2DefM86/06YkT25QceEGneIkzGvBsjiYkeNhghjfIIAAAAAAAAgA9D29zq0YaHi/S/JUVOJYlccYXrgNeZuLjsy927e9pK5BeEtgAAAAAAAEAepKSITU9XrSObm0lfZoe1JlNmkOsO6zIHpUt71EzkI5RHAAAAAAAAAPIgPt62Lm1uPW2dBbHvjE6Vzu1TZMJ7Jlm/znmdW/tat1WqeNxU5BP0tAUAAAAAAADsmM05D96VmioycKDIjh3aU9Z2Rnd7zVobPCxaBg/Lfb7atUUOHRIpUYKnrCAjtAUAAAAAAACslC5lkuMnwuXM8j+laLzJ6bb5fV0R+eyz+kHZbuXKBWW1CCBCWwAAAAAAAOA/J06IEdiqYu2ayk/3TJMr6x1w2D4XtlQVkfpSrVyy7D4cy/aDTxHaAgAAAAAAAP85fdp2U1z14c1i/n62w/ZJPVXGOC8Td0Z2C6EtfIuByAAAAAAAAAAPpaZlxmrRkc7LJwB5QU9bAAAAAAAAwGoAMnu7j8TJqi2JImEiURGZM/yyOXMksKgIk9x+4wX57Os4tiF8htAWAAAAAAAA+M8XXzhuihp3dxSzOczpNopLiJEpn4XJxKki745Ll9aXaw9cDm5H3hDaAgAAAAAAACLy778izz7ruCmsA9s2zZOzLkdFijz8fIJIbIQRsg19lKgNvsGeBAAAAAAAAIjI33/nvhl+WcOgY/A/+moDAAAAAACgQNi/XyQtzbf1bIFgoKctAAAAAAAA8q0ZU9Nl79YLkljcJHcNSzCmtW94RJa+tsrjZZl/Ly8il/qhlYBnCG0BAAAAAACQb/W5VeOtYjbTlm0sK7+tSJNWNQ673cO24+jusmRHNT+1EvAMoS0AAAAAAAAKnNajbpAezffL98//4fT29TuLy5/bi8vabQlyc7sDBLYIKYS2AAAAAAAAyJdOnsz59tlrK8myv3dL+4uP20z/a2cxaTKkfdb1d+fV9FcTAa8wEBkAAAAAAADypQsXcp/npWl1HKY1HtLBPw0CCkJou3z5cunRo4dUrFhRwsLCZObMmW7f95dffpHIyEhp0qSJX9sIAAAAAACA0KS1aHOz+K8yNtcHjmngvwYBBSG0PXfunDRu3FjGjx/v0f1OnTold9xxh3Ts2NFvbQMAAAAAAED+D22t/fx3onyytLa/mgMUjJq2V199tXHy1KBBg+TWW2+ViIgIj3rnAgAAAAAAoPCFthfde7lxvvFgSf82CCisNW0nTZokO3bskOeffz7YTQEAAAAAAEAQdbzK5NZ8GtYS2CI/CWpPW0/9+++/8uSTT8qKFSuMerbuSElJMU4Wp0+fNs7T0tKMEwoey/PK8wv2BfA+Af5/gM8T4LMm+A6CQOI7SOD9uy3KrfkWLkw3zrt0yXsU5k3ewL4BT/effBPaZmRkGCURRowYIXXr1nX7fq+++qpxH3sLFy6U+Ph4H7cSoWTRokXBbgJCBPsC2DfAewb4HwI+X4DPneA7SMFz9qwGtt3dmvf8+bn/Xbo+z+udN2+e1/fl+ynOnz/v1kYIM5s9LdnsH2FhYfLdd99Jz549XQ4+VqJECaOOrYXJZBJtvk7TEPaqq65yq6dtlSpV5NixY1K8eHE/PRoE+xcLfRPs3LmzREW594sbCib2BbBvgPcM8D8EfL4AnzvBd5CCKylJpEwZ9773p6Zm9m6Mjs57TmBZlif4fgrrbLJ06dKSlJSUYzaZb3ra6oPYsGGDzbT33ntPfvrpJ/n666+lRo0aTu8XExNjnOxpmEegV7DxHIN9AbxPgP8f4PME+KwJvoMgGPg+GhjR0e7Pm9cMqGtnkyxYFC4NaqVIVJRjzuRJO8ijCrcoN/fFoIa2Z8+elW3btmVd37lzp6xbt05KliwpVatWlaeeekr2798vU6ZMkfDwcLn44ott7l+2bFmJjY11mA4AAAAAAICCLT2zTK1P9O8vMnmy89sG35smo9+Oku+/F7nySu8DW8ATQQ1t16xZI1deeWXW9WHDhhnn/fr1k8mTJ8vBgwdlz549QWwhAAAAAAAAQtHMmb5blrMDuKOjTBIfZ5a33ouS8HCRG2/03fqAkA5tO3ToYNSkdUWD25y88MILxgkAAAAAAACFy9mzeV/G7bdmSFx0ujz6aIzMnmWSNX+EZ92WdDrcCGv1BARavqlpCwAAAAAAAFj8tlI7AoblaYNM+UIHvM8c9P7Dj8OlWbPs22Jj2dYIHn4rAAAAAAAAQL4zdVreAlt7NWv6dHFAnhDaAgAAAAAAIGi0cuYvv4icOOH+fUwm37cjIcH3ywS8RXkEAAAAAAAABM1334n07i1SIfG8HHjra7fuYzZpL9vb/d42IFgIbQEAAAAAABA0M2dmnh88FS+Snu7WfU6fi/Zvo4AgI7QFAAAAAABA0NiUOihTRs6cj5C+Iy+Rnq0Oyz3XHnB6n+//qhyw9gHBQGgLAAAAAAAAn9HatO+NS5HbbrggVSubZMCgGLlwziRfvXNEwuzGDjtxKly++KJG1vVq/TrInpPFjMs//FXZZWg7f20Zvzxj4eFmMRmlF4DgIrQFAAAAAACAz5QqpX9j5NmXYuTvZ6bKlG9uMabXufcfeaX7L1nzHT0bJ2VfuN/mvpbANieHT0bLtJ8r+21QNCAUhAe7AQAAAAAAAMjfli7OkGH3npPknQdtpr+2rHXW5ZE/tZJ/YppJwrMPyojVV8uErVc5LGf1krM21z//qaJc9vDlkpyaHWG9/0N18Zc6Na1rNQDBQ2gLAAAAAACAPLmyU4SM/bCIvHbfbpvpn/9sG7Be/OCVcvpCtLzwVUPZeTjeYTktmmbYXL99XHNZvb2kVB7Qybj+8Af1ZcS0en57tmbPi5AbrkmWNavpcovgojwCAAAAAAAAfGLBzrpuzztpcVW35z1+JkZue6ORfGEXAvta3boi38yJ9es6AHfQ0xYAAAAAAAA+8dvWkn7bkv4ObIFQQmgLAAAAAACAQqdEIvVrEboIbQEAAAAAABDyWmePaebU/becyHUZHa/MDmp/XUkshtDF3gkAAAAAAICQZ85lbLDxY9NyXcY9g7KjsPr1fdEqwD8IbQEAAAAAAJDvQ1tJSJCEhJxnuuginzYJ8JtI/y0aAAAAAAAACJDYWDl2TCQqKufQdv4PZqlYKYynBSGN0BYAAAAAAAD+6wEbQJFuJF1duxHYIvRRHgEAAAAAAABey8gIrY23bIlJunZICXYzgDyhpy0AAAAAAAC8tnVraG28dh3CpfXlMRIdHeyWAN6jpy0AAAAAAAC89vHHwS/D8NojR22u51TXFsgPCG0BAAAAAADgtbFjgx/aFisdE5hGAAFCaAsAAAAAAIB8rWqNCIdpS5eYpWRCukz9PMSK7gJuoKYtAAAAAAAAQl5OPW2vuc4xtG3fIUyOnYyUsDD/tgvwB3raAgAAAAAAwCvp6aGx4cLiYp1PJ7BFPkVoCwAAAAAAECI9SXPqTRpqzp8P7IBfBLAoTCiPAAAAAAAAEAKu6ZQih/any+rJGyXC8Wj/kFPpqiYiErjUNj8F2kBeEdoCAAAAAACEgB9+ihGRGPlr+mZpWumIhLpTZy8N6PoIbVGYENoCAAAAAACEkPTK1UTqJAa7GTLm6yry0cJqsuT11VK+RIrNbXNXlwlau4DCgJq2AAAAAAAAIeSyR9rJXzuLBXSd97x9sYycVtNm2iNTmsjmQyVk+Gd1Hea/9qVWEmiuetouXpgR6KYAfkdPWwAAAAAAgCBas9osEeZ0m/qw97x7iax885eADL61dluCfPRjDePyZz9VlMT4VJvbD52MlbMXQrfI7lWdQ7dtgLcIbQEAAAAAAILk3DmRSy8LcxjQa9W/JaX8bR1lYMdd8sqd2/3ahsOntJZuJu1Za2/u2vJSrG93v7YBgC3KIwAAAAAAAATJn3+6vu3ImXgZObOh39tgsio78NFHIrNmSb5Rr64p2E0A/ILQFgAAAAAAIEgOHsx9nn3HYv3ahhtGtsi6fM01ItddZ3t7rZpmOX9esk5Ll0rIWPEz0RYKJvZsAAAAAACAIIl0o3DlP3v8NyjZsdPRkpYRkeNgXzt2isTFZZ80uA0GZ20rUyYYLQH8j9AWAAAAAAAgSCLcGEPrx/Wl/bb+Rz9pkGswajbbjoZ29qwEhbO2AQUVoS0AAAAAAEAIW7m5pN+WveNwvM11kxslYglPAf8jtAUAAAAAAAhhv2zyX2i7YmPpfBPaEhajMCG0BQAAAAAAkNAKIq/v4UZ6GqRgNFjhaZs2wVkvEAyEtgAAAAAAAEFSqZLz6ZdfHpxkNFRD26u7Zsjrr4uUL5sdZje5JCPwDQEChNAWAAAAAAAgSOLinE+3H/xrzdbiPl93eobtOkK5PMLI1yKkWDGRg4fDZedOkVdGpMlPS90YxQ3IpwhtAQAAAAAAguDQIZGLL3Z+mznMNrK59NH2Pl9/Slp4vgltI6zy2erVRZ5+LkpKlAh8O4BAIbQFAAAAAAAIghdfdH1beLjIzX0CX9c2VMsjuAq3gYKK0BYAAAAAACAIUlNd39axo0jp0v5df1p6WMiHtt99l7m+MMemAgUaoS0AAAAAAEAQnDnjfPrSpSLNmokMHebf2GbcrBohWR7h5Mnsy4S1KKwIbQEAAAAAAIJg+nTn06tUyTyvVct/6z6aFC0jvqofkj1tExOzL5cr5991AaEqMtgNAAAAAAAAQDZPyyKs2JAos1eWlhf775DYaPfq4A5+/yKn00Ohp636dnq6bN9mllatovy/MiAEEdoCAAAAAACEkOLFnU93VttVp7V75grj8px1lWTje8vcWseG3c5XEgo9bVWvm4isULhRHgEAAAAAACBE3No72eb6vNkZWZfPXohwCE/bP3Zp1vVN+4o7zOPKpv0hGtrGxPhx4UD+QWgLAAAAAAAQZPO+TzfC0C++jrWZ3u2a7BB23/E4h/ut2Fre5vrOw/F5akcgyyP07etkYqzt4wcKK0JbAAAAAACAILu6h/NyANblENZssxqhy4Wvf84euWvX4Ti5680G8s+uIsb1E2eiZPH60pKR3Xk3qD1tBwzwzXKAgogCIQAAAAAAAPnAHWObSt2KZ7OuH0lyLCXw4vQGMuK2bcblvq81kd+3l5aJy2uL+fvZ0vulxrJ0cwUZf/c6v4W2l9Y+Kau3lch9IQByRGgLAAAAAAAQRHPmuD9vq8cyBx3Lyctf1DDONbC1SE4NNwJbNWJ6fb+VR3jwut1yxYMlpF07s+zdazdqmpNKCA3qZcimLe7V4QUKE8ojAAAAAAAABFGZMu7PW6NyatbJlWe/utg4WXtwfHZQeyQp1m+hbetGZ6V6dZEnnnAMbN9607bNV1whcv/92fP9tNifI5wB+QuhLQAAAAAAQIBZB5+lszvEOnX/wBTj/IvPTLJjb3TWyZW7b082TtY+XlLL43blZZ6777a9PmOGyEOPREvTptl3Dg8XuX9wuKxcKXLunMiVV+XcMxcoTAhtAQAAAAAAAuzXX7MvxziWprXxzgcxsnevyK23uRfjfDgl1jh5w1kgu2lT7vNYlCyZeR5tlynfeGPm+fz5YdK5XYpM/zI9K7ht1UokPt6r5gIFFqEtAAAAAABAgGjgefy4yMcfZ5dGqFQp5/tosFm5ckCa57Q8Qv36HoS2leKyLn80ITOYff7ptKxpZcuKLFwWIzfdwjBLQE54hQAAAAAAAATIIw+mytjx2d1QZ84MrU2f5/IIxYplXRx4b6T07iNSokSUbxoHFCL0tAUAAAAAAPChnEJN68C2QQOR1q1Ds+1jRpu9C20TEmyulijhq5YBhQs9bQEAAAAAAHwkLS1MmjYyS9Oax+Xzl3Y6maNF1qWBA0XCQmzsLUt5hAcfCpMKFczS9oqwPIW2ALxDaAsAAAAAAOAjf/9dWjZujZaNW0vJ550m29y271RRm9D29ttDb7NbAtnISJGbb3GeKOcY2sZ6NwAaAFuEtgAAAAAAAD4SHm6VaNatm3Xxpc+qy3MzGtnMq4OQhRpnA5HZK6rZsxMbNvi8OUChRU1bAAAAAAAAHzhwQOTVV1tmXU9Ny+6pah/Yhip3BiJzVQGhUiWfNwcotAhtAQAAAAAAfKB69ShJTs4+qDnpfJRDeFsQQtuePR2nrVnDoGOALxHaAgAAAAAA5NH+/c6nPzS+rsTf1D3fbF93yiNERDhOa97cL80BCi1CWwAAAAAAgDw6ftxx2unzkfLOgnqSYXKMX2Ji3OjSGqI9bVV0dPblpCS/NQcotAhtAQAAAAAA8uCvv0QaN3ac3vu1Fi7v0+OavIe2r7+UKpUq2HaNfXPEuYCEtnffnX25ePE8rRKAE4S2AAAAAAAAeXDvPc6TzvU7nY/YFR5ulgcG573O7ePDo2XfgXDZvFmk7/XJRnj8yHNF8rRMdwcTu+uuzPPLL03N0/oAOJddHRsAAAAAAAB+652qnntO5KGHwqRUKd9t6Hr1RKbNjPXJsi6+2L35mjYVOXxYpFQpqzoJAHyG0BYAAAAAACBAwsM16CwYm7ts2WC3ACi4KI8AAAAAAAAQoJ62qVQTAOAGQlsAAAAAAIA8iIx0P7VNTg7dTb1tW7BbAMCC0BYAAAAAACAPalR3P7QNy/v4Y34LbGvVCnYrAIREaLt8+XLp0aOHVKxYUcLCwmTmzJk5zv/tt99K586dpUyZMlK8eHFp3bq1LFiwIGDtBQAAAAAAsJeSEqJJrAcIbIHQEtTQ9ty5c9K4cWMZP3682yGvhrbz5s2TtWvXypVXXmmEvn/++aff2woAAAAAAODMyZNsFwC+FSlBdPXVVxsnd40bN87m+siRI2XWrFkye/Zsadq0qR9aCAAAAAAAkDOT2T+DluVVkXiznDuf/3sBA4VRUEPbvDKZTHLmzBkpWbJksJsCAAAAAIDfvD/eJBvWpMi7r52VcEan8al5CyJk2DOxMmXkfrms0QWvlpFxuoaIFJNQ89QTGTL8+Zyjn1v6Zsgzw3WnItwFQkm+Dm3ffPNNOXv2rPTp08flPCkpKcbJ4vTp08Z5WlqacULBY3leeX7BvgDeJ8D/D/B5AnzWREH4DnLggMj9g6NEJE4qHFsnT3Zd65f1FFbXPDjYOG95Wx1JHT3Gq2WkH+/jdmh7/fXpkpYWmO62jz4hMvx5x+k33WSSGTPCpURChnz6mUm7xQkRiX/x/RQW7v6vyLeh7ZdffikjRowwyiOULVvW5XyvvvqqMZ+9hQsXSnx8vJ9biWBatGgRTwDYF8D7BPj/AT5PgM+ayPffQZYsqSIizYzLz81pLZcMPOKX9RQWGRkiGzeWktq1kyQuLt3mtnlejsZ1PNb9fGH79sVy8mSyBM71DlM6dlwsnTqZJSEhVebNywhgW0BWgfPnzxfc0HbatGkycOBAmTFjhnTq1CnHeZ966ikZNmyYTU/bKlWqSJcuXaR48eIBaC2C8YuFvgnqoHVRUfprNAor9gWwb4D3DPA/BHy+QEH43PnOOxE217uHcRh7Xrw1p4Y8O6mRNK9xTFaO+zXP23bd9mKyZYvzso3Tp6dLnz620UuvXldJkSISMOvWpUmTJrb7ZceOHaRatcC1AXw/hThUAShwoe3UqVPlzjvvNILba665Jtf5Y2JijJM9/UdKoFew8RyDfQG8T4D/H+DzBPisiYLwHWTZMrv1ENrmyWc/ac9lkbU7SztsS2+27d3jmri87aabHGOXxMTAdi5q3FikdGmzHDuW/dgiI3VfDWgz8B+yCkS5+eILavlyrUe7bt0646R27txpXN6zZ09WL9k77rjDpiSCXh89erS0bNlSDh06ZJySkpKC9hgAAAAAAPCndNsj+BFi1u8pkePtJ09mX+7TOzilCD7+2DaMLl8+KM0A4IGghrZr1qyRpk2bGielZQz08nPPPWdcP3jwYFaAqz788ENJT0+XBx54QCpUqJB1GjJkSNAeAwAAAAAAgfTG9Gry5ZIKYjKJnDhDd0lP+aK4hG77I6ei3Zo3MTH78uAhtqUuAqVHD9vrsbFBaQYADwS1PEKHDh3EbHY9YuLkyZNtri9dujQArQIAAAAAIDSs+s3sEDM+8fklxvn/xmZe/+j+P2Vgt33BaF6+l0MkkaMH3q4nHyypI7+N+lluumy3zPjdsUDsO+9kX256cars2B0hLVoEJ7SlogaQ/+S7mrYAAAAAABQGGii2ap17v9C732sqt111QGKjTQFpV0FyIdW7EHXCT3WN85aPXuFynkGDsi+vWR9tlLmIdq9zrl9D22GDU3QEoOA0BIDbCG0BAAAAAAhBD92fpsMWuTVv3I3XiPn72X5vU0EQFpbdvTbpnP9ikUirRYeHBy+wtf4R4Px5kfh4AlsgPwhqTVsAAAAAAODcuxM8q1e79yiFSt2xblf2wGGnz/s2tK1Qwct6CwESHx/sFgBwF6EtAAAAAAAFwNlkDqb1VNJ53w3kdkkjk7z0UobPlgegcCO0BQAAAACgAEhLz73+LWzZ97Q9l+z9QGENG3o/sBkA2CO0BQAAAACgADh22nnR1LwEkYUttE3PyFvwnUFHWwA+QmgLAAAAAEABsPOwY8HShX+WkaJ9uku/URcHpU2hzn4gMk97yhYpkn2H9HS97quWASjsCG0BAAAAAAiigwdFkpPzvpyB7zaRCym2X/O7Pt/KOJ+yokbeV1AAbdxtm7KaxbOetmPHZs9/7HiY9O5tljZt9suY133whAIo1AhtAQAAAADwA5NJZPiT6TLuxdMihw45PW35+ahUrCjS/pITInPmZJ1M38/xap3as9aVU2cZqMzem9/Xtbk+dEI9mbuqdK7buUXVI8Z5pUoid/RNMS6/+26YREaKPP74Ghn8MCUpAOQN79gAAAAAAPjBX3+JvPK6fu0uLv2ivpQS8ZnhnrUbX/+fcf77vyVF9uzJmj5vQzWv1rn4r9JyfavDxuX5a20D3HvH1pevnv3bq+UWFlOW1zBO5u9nu5znaFK0rNlT1rgcHi4yeWqMvD9RJD5eJC0tgI0FUKAR2gIAAAAA4AcbN2ZfTi1XRSTRMbT9+2B2r86kkjUkoUi6cbnHA9fkef1Xj8gsjWAxfXUN+UoIbfOq7r0dsi6HhWWeNLAFAF8itAUAAAAAwA+mT8++XOu+zlKu+IUc599/PFYSipzN0zq/XFZZWtU7JWcu8HXfX06dj8m6rD1tAcAfeBcHAAAAAMAPzObsy+dSo2XHsegc53/i0wYy+9nVeVrn8TPR8r/RzfK0DLhPe9kCgD8Q2gIAAAAA4Gejnjsjba8u5jC9devsy3NWl/fJujpenixJZ8JkzV/ZPULhH/S0BeAvhLYAAAAAAPjBnDnZlxvXvSCtWjmGtr5WvLjIjz/HyuHDIuV9kwEjB4S2APyF6isAAAAAAPjYzp0iJpPVhLQ0t++bkcHTkV9QHgGAvxDaAgAAAADgx0HIVFhaqlv306B3/Nzqfns+UtKIAXyJnrYA/IXyCAAAAAAA+Ji3vWVbPdxKVu8s47ceoJMWVZaYKJOULp4qnZock7gY6+7A8NV2BoC8IrQFAAAAAMDHTp/2LtzLa2BrWY+r9d03obHN9TLFk+XI54vytM7CrE6dYLcAQEHFcREAAAAAAPiY2RycTZpbONy6eYrN9aOnY+VccoR/G1WAlSsX7BYAKKgIbQEAAAAAKCCH0ee2nomfxzhMe3RiQ/81CADgFUJbAAAAAAAKSE9bb0LdCfOry68bE4LRHACAC4S2AAAAAAAUsAGrPF1f26eu8FdTCpzKiWeM82XLgt0SAAUZoS0AAAAAAAWspq2r0NbVdLM5TJb9XUqqDugoYdf1kBYPt/VfI/M5kzlzIxYrFuyWACjICG0BAAAAACgkcuqB2+HpNrL3eLxxee32EjJ+TjWPl//V0nLyzc/lCkVoG06iAsCPeIsBAAAAAMDHUlODWx7BFU/aMfjDS4xet/1GN3Jr/uOno+TmMZfJjW9cJqfPR3rdxnHfVpEnP6oVsnWBTSZCWwD+5/27KAAAAAAAcGr8+NAsj+CNKcuqy21XHZS4GFOO8+09Gpt1+UJKuBTP7LTrtu0H4uTzxRXkhRkXGde7tz4p7S4+IaHk8MloOXouzrhMT1sA/kRoCwAAAACAj2Vk2F4Pk8B2G/W0pm1uujzf2qP5l2woLTe3O5DrfMv/SpRnp9SWlLRwWbXTtqzCK9NrS7uLf5dQoUF0+X5ds64T2gLwJ0JbAAAAAAAKCW9D29gYk1StkJ7jPDv2RUl6euYKfttSwq3Q9oO5lWT51gpOb1u4LjC1cStVNMn+A7lXjzxwIrsnsSK0BeBPhLYAAAAAAPhZoGra5rYeb9sxc1a4dO0aneM8K1aItGvn2XIz/qsPW6WKWfbuDU7h33r1RPbnni87bLtQqVMMoGAitAUAAAAAAD711uyacvJE7iUhvlpVwzivXzd4oW2x4u6t177ERXTOGTYA5AmhLQAAAAAAfhboXpm+rmnrzf2m/FLL7XkXLc69PIG/FHc3tLWbrXp1/7QHABShLQAAAAAABYQlWPR1aOuNUSPTcp3nsaejcrx9x6F4qVn+vPhT8eLuzUc5BACBRGgLAAAAAICfhUrgF6ietsWKiTz6VM6BrHrs6Zxvr3VPRzF/P1v86eKL89dzCKBwCN7xBwAAAAAAIF8MRObrdoSSDh3cm+/0efq9AQgc3nEAAAAAAMjFmTOZh9EnFkuXf2bvlIpl07NvzMjIPN+yRSQi4r+JDUKyPEKg2+FL55Ij5MSZKKlSJjnXeU0mkXA3u6nVrevefI9NrJ91uUVTff6JVAD4D+8wAAAAAADk4oMPMs9PnYmUSh3qSNc627NuM0uYHC3aSt47e04iwkxyf5v1DqFtsEPUQJdH8MfjrXdve9l/sohsef8nqVvpnMv5nvy4loyZW09mD/9dWtRJ8tn6V28rkXV5zFvEKQD8i3cZAAAAAABysV5zWCsL/q3lct7DyQkhuz3zc3kEDWzVjF8qyjN9/nU53+vfNzTOu41o7dP1Hz8Tk3XZ3V68AOAtQlsAAAAAAHJhNttenzLZlHU5PSND1v/1lxQv1lheejlSTpzLDvcswsLsFhCk0DRQPW196fDJaClXIjXr+vDP6+cY2gaCll8AAH8itAUAAAAAhLTkZJHYWAkpt/fL7mqZlpYhJeftkxo1LpGXXhZJuhAdtHYVxJq2Vw1vLf+MX+bVfdOtSg9bRPogCalXL+/LAICcENoCAAAAAELWwgVmufZas4watEOG3Lg/1/l3HoyV8iVTJS7Gt10hzYd1EKpyOc6T8F9VhNPJjqFtiJS0zZc1bTfuLS4nz0Z5dd+sceF8rGxZ/ywXACwIbQEAAAAAIefQIZFy5US6dtP0L0yGvltbhtSak+N9ZqyrI30+bW9cHnvtYhnacYPvGnSinNuhbYYpeAVPcwtL82tN2+e/qGtz/dDJGClfIsVhPsoWACgoCG0BAAAAACFl2lSz3HJrmAy+dpeIVM++oUoVkWjnpQc27ComfT7tkHX94TkdZeg9533WJnPRornOEx+vPTvNkpER5rcQMy7WJBeSwwtVT1v1ztyaNtcnzKsqL/zPf3VtS93cyW/LBgB3MN4hAAAAACCkPPV05vm7c6wCW73+fRVjQLCRX1aXiT9UsLntkoeyA1uLU2cjpc1jbWTe6jJ5btORJMfBxZwFlcWLZIg//fFneFAGIvOUv9cz4qv6kprmv5WcOB/ncAKAQKKnLQAAAAAgpBRz0an1wSmXyYNTsq9fd/kCKV081eVyStx6tXF+zUul5NyMeRIf412gevBEjCxe717wm1DMJCdP+yfEnDtXpH59kdkzM2TGtHSZMi0mYAORBbunrTOL/yojVzc/4vPlLl2aWZrDXoMGPl8VALhET1sAAAAAQEi5tJl74eoni6rInN9KS49nm+Q67/aD8V61ZcXfJaTSgM5uz59QzCz+8Okkk1ydmUHLtddHyKdTc+/5W5B72qpVWxK9ul+D2q6DftWiRWY4bn8CgEAitAUAAAAAhJT5iyLcmu/JTxtKj5GtZc76KrnOu+eod4e3/7O7qJjN7ieQCcXNfgkx7+gf7pMgNL/WtHVmxLR6Xt1v1R/RcnU31+F6VFQeGgUAPkJ5BAAAAABASDlw0PeJ38xV5eXiamekWtkL4k8JCf7paetpWOpivLYC1dNWrdtR3OZ6hin3FRcrJvLNt2Hy5shUadQ4XMLDbaMRV9vumWdEXnklb+0FAHcR2gIAAAAA/O7cOZHFi0zS6SqTxMf75qtqvXoiW7a4t/6PF1YzTl8//rv0bntY/CUhwfdpZenSGgR7ttxIH3/bD8Wetqrp0PZe3S8uTuTZl7LT2chIs6Sn59zoRo28WhUAeIXQFgAAAADgd88+lS5j34mUx67+R97oszaXufu7tcwiRTxvxz/bY6R3W/Gb4rYdP30SYt55p/t3tl7PyJcz5OnhEQW6p22FMmk21w8e9a62wZefm6XPzWFy9VXJIhIb1McEAIqatgAAAAAAv9PAVo36wXfdFb0J0Z7/prGcS3avZq4hPd2j5Sck+j7Zi4jwbps8/mREQGvaWs8TqIDzwJEom5O3buwTLqtWiXw103lgqwhtAQQSoS0AAAAAILBKlXJ6Si1eWg5IRb+v/s63Grs1396jsXLfJy08WnZCCedfs8PCvK91621YqGHv0KG+WZan8lvAqe297LLMereBKjkBADkhtAUAAAAABJ3JJNJwUDupNKCL34PB6b9Ucmu+W0c18XjZrkLbYHnuucD1tPXFekJZ584idWukys29tIQCAPhXaP03AQAAAAAUeGO/qSqHTsbYTEs6HyXbj7ooCOvHYPDgiRgZNqGu/LWjqMNtP28u4/HyXPa0leAoUUJkbW4lhP2gIIa2RYuKbN4eLVO/dV1CAQB8hc79AAAAAAC/WrPG9vqwTxvLsE9FPrzvz6xpOw57MapYHsxfW0YqlEyRJkPaG9fHzqsn1Uudzro9Jd2DQrJ+rmmb17C0Zs3syzExvltuYcR2ABAohLYAAAAAAL+69FLn0+95v2nQArSrR7RymLbruGc9fZ1JSPB9Wz25r7N5ExNFvv4qw6jJGhvrXRjtKcJNAMgbQlsAAAAAgM9t2CCybGGKDLwjVUScj+50fdcLWZdnLYgLeDAYHm4Wkyl7Ib/9ln3bqVMi3bp5vsziec99/RKA9u6Tt7CWmrYAEFiEtgAAAAAAn7vkEv0bI6eWrxeRy5zOM3N+dlBbqpTIiROBCzPbt0mTyV9ESY0a2dNatsy+fPJk6PS0NZsl36GnLQDkDQORAQAAAAB8avny7MvPfu88sPUFfwah3i7bVWjrD7+tDFyaS09bAAgsQlsAAAAAgE+1zxzby+9CsfdqsWLaLt8uvGJF59NbtgqTM2c83yYvvCB+R09bAMgbQlsAAAAAQNAFugSAv3rahoeLFCti8tny1OWXu76taFHP1zNsmOdtoKctAAQWoS0AAAAAIF/Ka09bf/UGTSjqGNrmRUyM+/M2bOheb2B/o6ctAOQNoS0AAAAAIF/2tA3FmraqeDEnPW2jvR8HvH59/wS8nqCnLQAEFqEtAAAAAKBQyimIzEtom1DcSSJc1LvurXPmSL5ET1sAyBtCWwAAAABAvqT1Y73lzxK6zkLbsJhoyc+DwNHTFgACi9AWAAAAAOAzycmB25ihWh4hIcFxWmKZKK+WFelhVYX773dvvr/+Er+ipy0A5A2hLQAAAADAZ9q2Ts8XWzO3gcjyFto63rlq3VivltWpk/vzhoeb3Q55GzUS+ftv95dNT1sACCxCWwAAAACAz6xdF1kgBiLLi4TEPDTMTkRE7vMMvjfVOB8zynEAtGChpy0A5A2hLQAAAADAJ0wBzgzzGtr6radtCffvPOIFx41Wp7ZnG/Lt96Nlxw6RIcPcSHgDFFwDAPKG0BYAAAAA4BOjRwd2Q4ZqTdviie6Hp0897fi1fMPf4TJpksihQ+4tQ9tao4b4FeURACCwvDtuBQAAAACQry1fapIdG5Ol/62Zh9b7wuOPJ0p+4dfyCCXc7x8VFZVZAiEjI3taTIxI//7idzVr+i/YpTwCAOQNoS0AAAAAFELtr9RgMV7q75ovrWoc9tFS7/P6noGvaZvznfNUHsGupu2nn+Y8f+nSIod99RR4ID7e/XnpaQsAgUVoCwAAAACFzIkT2Zcn/9FIWjVP88lyw8NMYjIHrgpfyNa0TbC9fvvtubeloKGnLQDkDaEtAAAAABQiGhB+9VX29Q8W15Gnbtkt0ZEmOX0+UupVPuf1shOLpMmJszEBC/n8GdrmhX1om9t6dP4jRySk0dMWAArRQGTLly+XHj16SMWKFSUsLExmzpyZ632WLl0qzZo1k5iYGKldu7ZMnjw5IG0FAAAAgIKgQnmT3H+/7bTqAztJxf5dpP79V8nfu4t5vWyzhOWj8gj+W7Z1aHvTTbnPP3KkFDj0tAWAfBzanjt3Tho3bizjx493a/6dO3fKNddcI1deeaWsW7dOhg4dKgMHDpQFCxb4va0AAAAAkN+dOydy+EjOXwNfmlbb6+UH+jD/PIW2EpjQ9t13c5+/TRsJefS0BYBCVB7h6quvNk7umjBhgtSoUUNGjx5tXG/QoIH8/PPPMnbsWOnatasfWwoAAAAAgXfhgsid/TOk5cXnZei9F/K8vJlfa+kCu2P37azdnhiQ0HbMGO/v6wv+XJ+GtmVKpktqWpgkJkZ4dN9lyySgypTKkKPHs9s49QuT3PK/vPfvoqctABSimrYrV66UTp062UzTsFZ73LqSkpJinCxOnz5tnKelpRknFDyW55XnF+wL4H0C/P8AnyeQnz9r6mBh5ctHiUiETJteTG6LnSoJcaleL+98aqTc9sigXOfbfqioPPZxZm/b8DCz3NThsDSuecZmHpNJJDzcu/IITz6eJsePmOTee8PFdjPq11NPu7eavD6A1GQyS3q6NkC3sTg8r5kXs2+zZzuv437xy28iGRlmCQsz2T1OR8WLZ6+rRQv9rioB89NSkUaNskPb3jdliDgJbXVb5dau9PQwq5hBH3eGGy1wvY3d4fhatF1eoL8X8h0E7BvIjbvvS/kqtD106JCUK1fOZppe1yD2woULEhcX53CfV199VUaMGOEwfeHChRIfH+/X9iK4Fi1axFMA9gXwPgH+f4DPE8i3nzV//rmiiFyadX1u2SqSmOh9aLt8eSW3533z+wZZl2dvLSevvvpz1vXPP28gCxZUk9Gjl0nZsra9f9Pc6L3aqPFCKVIkXew3YXp6d48DvKNHj+q3QvHGmfMX5KeffhWRblnT5s2bl3U5I0MDyOtc3t963pz2iy1b3GvP5MnaC9osixZ5/xx767vvRH75paI0bXpE5s1LlxYtWsqaNeVt5tGjXA8cyOwE5cqmTSVF5ArjclLSKZk3b4Uba78+T213fB6uz/V5CgS+j4J9A66cP39eClxo642nnnpKhg0blnVdA94qVapIly5dpHjmz5kogL9Y6D/Izp07S1RU3n61Rf7GvgD2DfCeAf6HID9/vti82ba3Y8ewcCmXh2POn/m6jtvzDhl0QXbvDZeZc2Mk8oxI97AwGfx2A0k6Fylf/1bDmOeNF9rIq/022tzvwgXHbbJuXZo0aZI5fevWNKlevYvTdUZEOP96elnzNPl9rfNtXbZsGfFWkdg46dixo8207t01OM6UkUsnUet5C8Lnzmuuyb5ctmyYQ53dK65oK40b57yMxMTs/bNEiUSbbeQvua0jEG2wVhD2BfgH+wbsqwAUqNC2fPnycvjwYZtpel3DV2e9bFVMTIxxsqdvnryBFmw8x2BfAO8T4P8H+DyB/PxZ034Aq2HvNZBKJc9Lvy6HpEkt23IFOdVt3XcsVqqUSZZ/9uRcy9bauPfj5McfRWbOFQnLyJBFq8vIh4ttQ99tB4rKTa9eluNyJkwQadw4SnbsEClTRqRoUdfbzGUeHea6JmxERF5qr4ZJVJTtV2Lr59RZ+QdX8xa075lNm4qLx5bz/SKtNmd4eLhERfl/7PPctnewno+Csi/A99g3EOXme0O+Cm1bt27tcGiD/oKl0wEAAACgIDl1yvb6jFVVjfNxP9QX8/ez3VrGkPfryTvz68oLfW17xHrir4Nl5ZqXyzq9rU3zZJvrv66Ntbke8V/eWiOzc26OXnxR5OGHHaebw8L9MthVbgORFeaBtJz0e/J4exTm7QcAvuD/n71ycPbsWVm3bp1xUjt37jQu79mzJ6u0wR133JE1/6BBg2THjh3y+OOPy+bNm+W9996T6dOny8PO/rMDAAAAQD6Wnu76tpUb3es1q4GteuGrhh6v/+TJnG+//Xaz/LIm1uZkzxLauqNlS8dp992X2UPXHzS0zSlYLMyhoz72NWvyvgwAQD4NbdesWSNNmzY1Tkprz+rl5557zrh+8ODBrABX1ahRQ+bOnWv0rm3cuLGMHj1aPv74Y+natWvQHgMAAAAA+ENysuvej22ebCcmk3+3+6FDOd+e6sZ4WTff7P76WrVynNahg8iTT4rfetoSLLrWvHnetjXbFgDyJqjlETp06CDmHI5JmTx5stP7/Pnnn35uGQAAAACElpQU2+vrdiZIs1pJTufVQbRGzaiep/XlFgrnFtp2uCJD4uIi8hTydeum45h4dh9fIXTM3AcstX1LlfLftgYA5POatgAAAABQGKxenfs86RmuE8unp9SXN76zHTjM16GtfYhsb8lyD2ojuFC8eObJH8xmjt93J7heMC9Dzp4TqVjRs+eT0BsA8obQFgAAAAACTEsP6KlJE+e3//137sto+egVUrN0kkRFmGTE/7ZK3w5Hsm7La2Br6a3rSfmGYIiO9t9AZMjU5WrvwndCWwDIG0JbAAAAAAiwtq3SZfvuSNn4+mxpUOm0zW2fragmd37Q1q3l7DiWOSDZJ/Mr24S2vpDXnra+dOGCyPz5Ir162U4vW9Zx3sREs8RGZUhsjMiufa6/8lLT1r8IbQEgHw9EBgAAAACFkQa26td/EjITSavTHW4GtuqF5zO7i5pNvu82mltoG8ietrGxIj17Ok5v3Nhx2r59YbJnf6T8uzNSZn3n+kHoFiNY9J9Klfy4cAAoBAhtAQAAACBIHv+2lXQd1022ptUQKVdOlh1t6NH961iqIKT4PkENRk/bMmVyDp9/+9UkzZpmNqx+PZPcdZft7evWiRQpIhIVJRIZKXJdT9dfeSmP4F9Dh/p5BQBQwBHaAgAAAEAAPTAoPevyibPRsvCfynL9yy2M6y9MrRsyg2rlFmr6I7TtcW3OK23ZOlzW/hFuBMqbNodLRITI3XeZskpOOOt56wqhre81b559OS7ODysAgEKE0BYAAAAAAui9DxzrrG4+kFmbdumG0nle/sETMeILuQ1E5g+j3sz+itqmtesA17qswYcfh8u+fSLLf/VsyBZCW/+UsQAA+AahLQAAAAAEyO+/u75t6tLyHi/PEjwu21PdOO/7SiOp2L+L+EK3bpnncbEm+XGhY62EDz/0fe/ekiWzL8fEmD2qn+qqPu2ynzLksSGpTrddjG/ybThRowabBQDygtAWAAAAAPwoPV3krdHpsvqnM3J9D9eFYm8dc6nHy168+L91mCJk+YYSMn1VZnjrro8mpEv3Tqly/fWOt112WWaN2H37w6VjZ8evjh06SL7Q7soIeWNctNPQtlgxka6dMstVbNoUhMYVQKdOiRw9mllbGADgPc+OHwEAAAAAeGT6dJGhj+pXr2Jeb7kmdc5KTMmismqV7fR/t2Vfbv9MW4+Wee8tp2XgvcVl4L2ZAWa4ky49ntSI9ZVO7VLlx+XR8sADvu/J68z8RXwt9qWEzEofIeH224PdAgDwHj1tAQAAAMCPFi7M+zL+/PGEfPml81683nrr/ezep65KC1hbuiS7XEG3/3qn+sO8H6Nl61aR3jf6N7TNS03bMa87lluAd6pUzNyXKlXKwxPiQlSUzxcJAAHDT4oAAAAA4Efr1/tgITExUrOqyN69IlWqWCaZJSkpD4tM8GzUqPYdwoyQeM0akWbN/PdVUoO2OnV8v9xZ35nk+l7heQptTf9VtwgLcyy3AO/8vjZSFvxgksSS4dKzJ1sRACwIbQEAAADAj7Zv990x55UrZ0+6++4wWbTI970TcxIRIdKypeRL1/W0PdDUm9DWnR7J8Ez58iL9BoTnqeezKzxfAPIzyiMAAAAAgJ/M+jZDzpzxwYJis3vFLvwhQ/rdkiIvvyySkeHd4jZudJy2ZYtI/Trp8tPiwAbBweKPkBChFbCWLev7ZQJAoNDTFgAAAAD8pGfviDwv48Ybba937hZhnLytaTtsmEiDBo7T69YV2bTVN18R4+M1EQ3tbqldOpPaFnT33x/sFgCA9+hpCwAAAAAhbPx417e529P21CmRJT9myL0DUuSFF8Rv2rfJHKBr6tTQDmzVO+95FlBPmfxfQVv4TdNLfDvAXUyMTxcHAAFFT1sAAAAACGE5HeLtTmh7ww2ZJXE7dIwwTv60aGm07N4tUru2hKStWzN7FDdvnCbFikXlOv+//4rM/i5det4YKTVq0OfJ35b9HCnFi/t9NQCQL/BfBwAAAAD8YOdO/29Wd8oj1KkjARMVFbqBrWVbXLggsvrP3ANbpY/l4cc0sPV70yAixYqJnDsn8vSjmT22AaAwo6ctAAAAgEJt9e9meXRwsrz5+BG5tFFyzjNburZqF8yInHutduxYXQ/QzlPbpk1zrzk5ueKKPDWhwLEa0w0hKD5e5JVR0fLH3yLz5+dtWaVL+6pVABB4hLYAAAAACq2kJJHLWmr91Ti57KZqYn5zdO5D3NeqlZkmmXMeyGrn/kfy3L6+fXO+PSMj59qxgweLdO+e52YAAaeD5eU1tNWXKwDkV4S2AAAAAAqt0fYZrRY8zYkGtXrS4+b9kAhd1NAk/2x0v4pdbj1tr72W4AoAgPyImrYAAAAACqW0NJH335eQcfKkyPq/wqVfP/FZaHvllXluFgAACAJCWwAAAACFUkJxsxw7ZjvtyY+DM4rWwIEiiYmZZXI//ljktZfS5PffTHkObaOjfddGIJAefpjtDaBwI7QFAAAAUOhs3y5yIdmxvMG0Xyob50dORcuZ8zkPNOZLlSplX46MFHlieJRc2jL3r2ta/gAoiKpUCXYLACC4CG0BAAAAFDrt2zuffuR0nBw+GS1VBnSShve1E1PunV09Mv5t511jH3vMu+Xdcovz6bVrmiQlxbtlAqHi1pt9/AIEgHyE0BYAAABAobN/v/PpGeYw+WdPMUnNiJB9J4vKjkPxPl3v/+5w3nu3SBHvlhfvonm/rwmnNALyv3DPI4unn8j8YeSmnql+aBAABA6hLQAAAAD8JzU9Qjo+2yZre9QZ1FEOHI/x2fbxdY3Zrl1Fbr4hRV5/yTagKlHCt+sBgiHMsYJJrl4aGSFr1oh8/hUFnQHkb5GezLxp0yaZNm2arFixQnbv3i3nz5+XMmXKSNOmTaVr167Su3dviYnx3QcaAAAAAPnDwYMiFStmXj77619SJC60Dmse8U5JWbyqqCyauFdios0i0sTt+1Ya0EXM38/2STvi4kS+/y5DMkwiH0+MkLlz894Rceo3md/BflmVId/PiZD6dbSnYeDq8QKhRF8TzZsHuxUAEKDQ9o8//pDHH39cfv75Z7n88sulZcuW0qtXL4mLi5MTJ07I33//Lc8884w8+OCDxnxDhw4lvAUAAAAKidWrTHJZq+yD+Eq3ayAXXntbQsXB00XkhYmDjMvl28fJyZff8yi0VcVu6ioNKybJ9y+tESmat8Oue/TMDFRn5zGwtfftzAj57TeRZs0IbFEwVK8e7BYAQIiHttqD9rHHHpOvv/5aEhMTXc63cuVKeeutt2T06NHy9NNP+7KdAAAAAEKUdWCrktOjROrWlVDw7Gd15eUZ9bKun0qOk1XmyzxeztmUaPl9ZxlZubmkhLU45JO2vfqqyPZNKTLwnghPD4J0KiJC5PLLfdI0ICQ89ZTIkX0p0rtPpHS7hh8jABQubn0y2Lp1q0RFReU6X+vWrY1TWlqaL9oGAAAAAG47djpafvqrlFzf8rDERGWWZ7AObC1aPXaF11vVZPK+8MDwp2zLFpQtK7L0V8rLAa7oAH0fTuY1AqBwcmsgMncC27zMDwAAAKBg0XBTHToZIylpgRn/uP3jLaXvGy3k2Sl15PjpKHl7dg2fr2PXkXi3572smm2P3BEv01MQAAC4J8+fnn788Ud5/vnnZfZs3xTmBwAAAJD/Lf+nlGw/GC8V+nWROne3D8g6Nx7ILOU2/ZdKUvq2bjLko4t9vo6nJjd0a74TZ6Lk993lHQZIAgAAcIdHHxvuv/9+efbZZ7Ouf/PNN9KtWzeZO3eu9O3bV8aMGePJ4gAAAADkc+npzqe/OK2u1L63o3F574miAW2Tyey/ZaemZ/aWTU0Lkwsprr9O9XmD4esBX9q0ie0JoHDxKLRdsmSJtGvXLuu6hrQjR46UNWvWyOeffy7vvaejsAIAAAAoLFxVRluyobQEy4GTcR7f55dfRCIjTFK7Wu7jcxw8GC9Fb+wh8Tdd47L0w96jnrcBgGv164skJ7OFABQebg1ENmLECON8z549MmvWLFm5cqWYzWZZvXq1NG7cWF588UVJTk42btfL6rnnnvNvywEAAAAExcyZIt/NSJO2LTXgdL/Ga6BkmDyrQ7Bzp0j16iI7doZL8eLhcviwSD3H8cuy3Hdf56zLXyytJHd23uswT1iYbXffe+9MFZFoj9oFwFYMY5IBKETcCm379+9vnE+YMEE6d+4sTZo0kRUrVkj58uXlySefNALcc+fOydtvv23Mq9cBAAAAFEy9eunfKJnypfsDEG/YVUwaVT8joUgDW1WlSuZ5QoL7973rnSbOQ1u76+9/TGAL+MLy5SJWBwADQIHl1k/Q1apVM06tWrWSUaNGya+//irvvPOO9OrVS6pWrWrcpqFtjRo1sq4DAAAAgMUlD3WQgyeC103uq2nOO5aULOmf9Z1Nzqx9axFmn+IC8Erbtmw4AIWDWz1tLcaOHSu333673HPPPdK2bVt5/vnns2774IMPpEePHv5oIwAAAIACYM7qcnJ31z1BWXefvmHS92bH6d265X3ZT31Sy2HavuOhVzYCKAj0B5Bdu0RGjdJSjsFuDQCESGhbvXp1oyyCMx9//LGv2gQAAACgALpnfOOghbauRNh2iHVq9GiRRx7JvNyunUmWL7c9YPG1WQ391DoAzujBve++y7YBULB5FNoCAAAAQEFy6625zxMZmXPI+/D9jkPaj30vNq9NAwAAhZhboe1rr70mQ4YMkbi4uFznXbVqlRw7dkyuueYaX7QPAAAAAHK1aW9Rr7ZS5crOp5tMIuH/dahNTMyebplmbcx4x4B27HteNQcAAMD9gcg2btxoDDB2//33yw8//CBHjx7Nui09PV3++usvee+996RNmzbSt29fKVasmDuLBQAAAFCAxMaYgrbue8c3ynWexg3TjPPatXMOYe0HDnN1GQAAIKih7ZQpU+THH3+UtLQ0ufXWW6V8+fISHR1thLMxMTHStGlTmThxotxxxx2yefNmadeund8aDAAAACA0XXO1OWjrXrGxdK7z/LY2SjZuFNmwIXta9equ5+93c4rUrJomvXuLtGqeakwbMCB4wTQAACg83K5p27hxY/noo4/kgw8+MHrW7t69Wy5cuCClS5eWJk2aGOcAAAAACq9Q7YX62eQMrUYrsbEiDRpkTjt1So8aFImPd32/yVNjxGzOfFxLf4mW3bt1ACSz/O9/AWs6AAAopDweiCw8PNwIafUEAAAAAGrKG4ckvWRZ+fq70NoelStmyG39HEcPS0jwLIiOiRGpW1ckLU2kZs1TsmOHVaFbAACAYJRHAAAAAABXBnbYJrffX0z6DQiXzz4Lre20Z59jYJtXY8Ysk2HDtPcuAABAiPS0BQAAAFB4vfuO1q3N7H56+UUn5fXRUdKqdQWRIkWMHiG9eokUjc+Qs+edh6VLN5RymBYdaZLL6p6SyAjf1cRNKJYh/+uTJmFhseIPL71kkkYXhUn7K+kHAwAAfI/QFgAAAIBb/vhD5MGHsgvXdmpzQS7vWsJmniJFRDZtiZBNmzKvd+liu4wrn2njdNlDum2Rcfdv9dkzceq0hsa+72VrERUl0v9OAlsAAOAfhLYAAAAA3NK8ue31xKLpTuerXDnz5EzD2ik2108mhcvBo1GyfV8MzwIAAMB/PP5peNKkSXL+/HlP7wYAAAAgH9j4j1kaN0yV1TP3i+zcaXuy0/PKJI+WnZEh8s+/MTanV17OvM2UbBvmAgAAFGYeh7ZPPvmklC9fXu666y759ddf/dMqAAAAAEFx0cVh8temaLmsVyWRb7/NOm2ZsMRh3qjEIh4tOzzc9bQME6UGAAAALDz+ZLR//3759NNP5dixY9KhQwepX7++vP7663Lo0CFPFwUAAAAghC1NaS1St65xOlOutsPtYbG5lzQ4ckSkbOkMGfWK8560JlPm+YIddfLeYAAAgMIa2kZGRkqvXr1k1qxZsnfvXrn77rvliy++kKpVq8p1111nTDdZPnkBAAAAhdSuXSKbN0u+9sxn9bMum53cHuZ0qq0yZUQOH42QR592HvBOm+F6sLC/dxWVSQsqijn31QAAABQoeRqIrFy5ctK2bVvZunWrcdqwYYP069dPSpQoYdS+1Z64AAAAQGEzdoxJhj2S2T/i39HfS+3yZyX/uDXr0q+bS0pqWpjsPx4rd4xu4lVP29ycPuP6tkYPXWmcx8aKXFwlSR79uL68fd8mqVeFMTYAAEDB5lVoe/jwYfnss8+MYHbHjh3Ss2dPmTNnjnTq1EnOnTsnL774ohHe7t692/ctBgAAAEKcJbBVdR65Ts68PUmKxqbL+r0lpUGFUxIdmX+OTIvpfa3L23wR2q5bH5Z1WQPi6CjHbrXvzKkhK7eUNC7Xf6CimL+fneMy+/WTkNKnT7BbAAAACnxo26NHD1mwYIHUrVvXKI1wxx13SMmSmR+gVJEiReSRRx6RUaNG+bqtAAAAQL40fFF7eWt2zazruYWO+UVYdt7qteTk7IVM/7mixEQ5BtoXUjxb0f33S0gp4tl4bQAAAJ6HtmXLlpVly5ZJ69atXc5TpkwZ2blzJ5sXAAAAELEJbHOitVt1eIgI12VeC1xoa+32sc2cTl+3q0S+DkmHDw92CwAAQIEfiKx9+/bSrJnjh6nU1FSZMmWKcTksLEyqVavmmxYCAAAABczabQlOp//vtUZS4Y5OknQuT0NPeC0jI7ihbbOLU6R9y2TjVKNKmtfL0cHPQklN9zJ7AAAA70PbAQMGSFJSksP0M2fOGLcBAAAAyFmLYe0cph05FS1TV1aXo2fi5PVvagdlE970iuNgYzlJLOXbLsE/LI6Rpb/FGqfJn0d5dN9KCdmDvZUtKyGjRGL+qV8MAADycWhrNpuNnrT29u3bJwkJznsMAAAAALAVdl0Pm+u3vJEdmL76dR2/ba7tB+Nl8Dv1ZPW/jp/dv1tTxe3lrP/sL4lMyHsdgrZtsy+XKpV9WctEOHPTxZucTr+1xVbjfPDNxyQULFtikpZNUuTHxR5/5QIAAHC/pm3Tpk2NsFZPHTt2lMjI7LtmZGQYNWy7devGJgUAAADclJoWJtFRZuPy79uyB/f1p8Hv1pP5GyrL+EV1cx0QLSE+VZLORzu97ZKrK/mkPTffLPLzz5mXrWv5an1fZ4oUzbkmQ0y0izsGWLsO4fLbnzHBbgYAACjooW3Pnj2N83Xr1knXrl2laNGiWbdFR0dL9erVpXfv3v5pJQAAAJBPuAobnbnymdbyyxu/el1/1psBy5ZuLu/2vNc0Oyhf/uxirArrbrF5UNtFJQhXPW3NVp1HbKb7pDUAAAD5LLR9/vnnjXMNZ/v27SuxsbH+bBcAAACQLw2+T0fzci9N/XVzKY/DXp3v0qFt5M9dJWTDO8ukYdXsWq7uSE5zf5CzyiUvOJ3+zjviM126iLw1Ol0aNwmz2W4uQ1tzWEAHRwMAAAgGj4el7devn39aAgAAABQA733g28G57E1fUUHW7swMe9+ZU13ev/9vt+/7wZyKNtdr33OlDLlmm3F5y/5iDvOnZjh/LA88ID6jIetDwxy/lrgKsaf8Uku2Ds0+6s/itx3lfNcoAACA/BDalixZUrZu3SqlS5eWEiVKOB2IzOLEiRO+bB8AAAAQsiZ9YpKpU9Jk5uRTEh9vmepdeGgW97qI3vxmi6zL2w96NhDYoA+b21zffqioPPRJ9gBo9lIzwoPWm9VVT9tcA9oiWU8EAABAwQ5tx44dK8WKFcu6nFNoCwAAABQGGireOVBDzRgZdtsRmdB3yX+3POTRco6fjpJSxdO8asOi9WXdnvfk2SiHaVe1TZEypTLT0QOHImTFKttBxyYsqCHBklNoO3Om7fVhD6bJjr2Zjy/MRc1bAACA/CTS05II/fv392d7AAAAgJD2778idevaTvvg10Yy4ZF/JT3D884N51MipJR4F9pa7h8fo3V0Xdu6v4jUu+8qm2kLF4p07hxjM82+b4bJ7LynbTBD21IlMuT6623LNrz4TA4JLwAAQD7k8c/Qe/bsyfH2qlWr5qU9AAAAgF8lJ4t0apciHZokycsPHna4/eDRSLn81qpyeec60r3SepFw2+CybvNmzhccFSUZYjvvByOPy/ptRSQlReTQkXDpdk2E7D8YLq+97hjuujMQWYNB7RymzV1dVm5qezDH+9kHtuoqx0nyx1qzrFubIc0vDZcxr6XIvgPhsniFbbAbKK62x9o/c64ZzEGBAACgUIa21atXz7E8QkZGzr/yAwAAAME0darIL6tj5JfVZeXlep853P7C151k5+EisvPzhjKx6Rib9HDR1moi4jy0PXwyWsr362ozrX6DMLnnqViHHqSvve55yKi9eDcfSHCYfvq87Uf6tdsSpHTxVKlW9oLLZWkbnK23abMwadosc3mTp8UZ5wvnmyQhQeTfzRnyxmsmmfylllAIC0pP2+PHdbwNx+knTwevRzAAAEBIhLZ//vmnzfW0tDRj2pgxY+SVV17xZdsAAAAAn/v5Z6sr9nUORGRfevnsK7Vr26Sb732dPQiYPfvAVpmjbGvEKu24e+aMyH9DRkixuPRc25yWHiY17+rg9LbU9OzA8t8DRaTFsMzeuObvZ/ukN2qXbpnLb9k6XG4bIAHjLLR1Ftiqnf/Vs1XRjpscAACg4Ie2jRs3dpjWokULqVixoowaNUpuuOEGX7UNAAAA8DkNTC32HYyQyhWyjxSbsaK8zFtTzmb+lLRwOXMh0ui9OvO3Cj6py2odLF58/xWSEJcqF1JdfzT/c0eC7DtZ1Oltx89kL2z6zxWzLm/cXUS+WlpODicFp7xBXl1xhXf3639v/ny8AAAA1nw2tGq9evVk9erVvlocAAAA4PdaqbN+KysP9MquB3v3+MYOg3wl9rnGuLx34qI8rctaZKRIpXJpsv9wlBHG7jvpOM+VjzXPurx0S3YYa2/6zxVkeN9/jct/7/6v+66IDBjTSH7fWUbyq9Kl3Z93/Lg0mfqlWWYviJbERH+2CgAAIDA8Lv50+vRpm1NSUpJs3rxZhg8fLnXq1PGqEePHjzdq5cbGxkrLli3l999/z3H+cePGGSFxXFycVKlSRR5++GFJ1hElAAAAAA+C1MGTWsiZ8xHyw9qykpoWJknnbY+tb3Bv9mhdz35Rz+Nt27yl8z4SWiJh3d9RsnixZJ1Gj7adR4NayyknG3Zn1rnVoSWmraiUNX3viXin8z/0kOQbRYu46Kps5/4hUbJiFYEtAAAoxD1tExMTHQYiM5vNRng6bdo0jxvw1VdfybBhw2TChAlGYKuBbNeuXWXLli1StmxZh/m//PJLefLJJ2XixInSpk0b2bp1q/Tv399ok9bVBQAAQMF3/rzI19PSpXunVI96ZCpzerTNx+DrX2wmSzaWl8d7bnGY9+DJzMG41OTFVT1uZ0I520HIrGm7r8rOhI3LffuKDByQIZe1CpeGF2V/5r75Ztv7btok0qCB7bStB2zLJxxMKuJ0vS+9JPmGJ7V3AQAACnVou2TJEpvr4eHhUqZMGaldu7ZE6nFeHtKg9e6775YBAzJHNdDwdu7cuUYoq+GsvV9//VUuv/xyufXWW43r2kP3lltukVWrVnm8bgAAAOTPnrIN6mXInn2R0qTSSfnzhVme3X9PJ/0UmXVdA1v19txaPm3nypWe36dSJZEfFkY4TLcPbXV8NGeDlbmjeHHJNy5tbpKflmUeHFi+nMmbAwUBAADyJY9T1vbt2/ts5ampqbJ27Vp56qmnbELgTp06yUoXn3K1d+3nn39ulFC47LLLZMeOHTJv3jy5/fbbnc6fkpJinCy0pINKS0szTih4LM8rzy/YF8D7BPj/UTDNnh1mBLZq3f4ykhbrujerMxlam8CJ5DSfDfdgMJnSJS3NRVFbj0XZXDOb02ympWSY5Yc/c+9y3L27SdLSsgdeC3WTpohUq5Z52WwKjc93fL4A+wV4jwD/P5AX7n6e8fiT6ffff+/2vNddd12Otx87dkwyMjKkXDnbEXr1utbJdUZ72Or92rZta5RlSE9Pl0GDBsnTTz/tdP5XX31VRowY4TB94cKFEh/vvM4XCoZFizwfLAQFE/sC2DfAe0bBMnBgV5uPsfOKZQ++5Y5DEbYBqL/8/vsKOXo0s8NAXr31VjEZMiS7loJ2WhC5Put6bK+cP3dbnDx5SObNy2+DB2c+zrgiZ2TevKUSKvh8AfYL8B4B/n/AG+e1zpcbwsyafHpAe8Jq/Vj7u9lP0+sayObkwIEDUqlSJaPkQevWrbOmP/7447Js2TKnJQ+WLl0qN998s7z88stGDdxt27bJkCFDjBILzz77rFs9bbX+rga/xfPTsWHw6BcL/RDduXNniYoKzJcyhCb2BbBvgPeMgik62vb/+4wnV8n1rQ+7ff8bXrlU5vxeQfwtJSXNpzVZrR93amqaw3Zw5aabTDJjRmbv4tdfz5CHH3ZvcK9Q8dOPZhk5wiTjP46Qep6PBedzfL4A+wV4jwD/P5AXmk2WLl1akpKScswmPe5pqz1Un3jiCRk5cmRW0KqlDIYPH25M06DMXdrAiIgIOXzY9kO2Xi9fPrO2mD0NZrUUwsCBA43rjRo1knPnzsk999wjzzzzjBEqW4uJiTFO9jTMI9Ar2HiOwb4A3ifA/4/C4abXWor5+9luzx8mgRndyt1Q1V0nT4oMeyhNHnsy0qPPsd27h0vDehmy6EeRRx6JMD5/5yddr848hRo+a4L9ArxHgP8f8Ia7n+M8Dm2HDh1qDBam5QksunbtapQa0OB0kw5l66bo6Ghp3ry5LF68WHr27GlMM5lMxvXBgwe77EJsH8xaPnh62GkYAAAAhVB+/ciYmCgycYrnQXCnTiKV+0fICy/5pVkAAADwA49D2+3bt0uifmK0k5CQILt27fK4AcOGDZN+/fpJixYtjIHFxo0bZ/ScHTBggHH7HXfcYZRQ0Nq0qkePHjJmzBhp2rRpVnkE7X2r0/NbrwEAAAAEnskcmJ62/lamVIYcPR4hkZE6zoPrx+TLEg0AAAAIDOdD5+bg0ksvNYJW65IGevmxxx4zQldP9e3bV95880157rnnpEmTJrJu3TqZP39+1uBke/bskYMHD2bNr2UYHnnkEeO8YcOGctdddxk9fT/44AOP1w0AAIDCx189bS9rnCw9u16Q3bv16DHxu0WLI6Rrh2RZ9Zv2ps1+UJ2tLiu7g9QAAABQEHvaTpw4UXr16iVVq1Y1BvRSe/fulTp16sjMmTO9aoSWQnBVDkEHHrNpcGSkPP/888YJAAAAUOdTIiQ+JudBcC3Mfuppu2pdbECfjMaNReYvyVznyy+L/PijSIWy6fLoY5FG/VoLetoCAAAUgtC2du3a8tdff8miRYtk8+bNxrQGDRpIp06dJIxPhAAAAAiCIjd1l8+GrJHbOmYfoRXInra9uieLSGBDW2stW4ro0BKVKkXK+fO2txUtGqxWAQAAIGChrdJwtkuXLsYJAAAACAW3v9VCbus4O9f5/FEd4Zs5wQtsLerXzzwvVkxk506R1atMUqKEhrbURwAAAMhv3P4E1717d0lKSsq6/tprr8mpU6eyrh8/ftyoMQsAAACEMn+URwi1A86qVxe5qW+4dOpCYAsAAFCge9ouWLBAUlJSsq6PHDlS+vTpI4mJicb19PR02bJli39aCQAAgKBbstgkD9yTJhOG75N2zc8FsSWXhORAZAAAAEDAQ1uz3adb++sAAAAouI4eFbmqk/bajJH2d9YS85uj829o67N2AAAAACFU0xYAAAAFn+U3ej30/6WX7G6sW1fyK1/1Pfjw/Qx55WWzLFwcoVvJNwsFAAAAPKlpq4OP6cl+GgAAAAqe06dFwsMzT9u/XS+rl5wNanvS0sNCrqbt3YMiZNe+SKlbj8/EAAAACGJ5hP79+0tMTIxxPTk5WQYNGiRFihQxrlvXuwUAAED+pD1qx4wRsRpvVmr3bhzQNqz4K0FmrSwrz92+U4rHp0vYdT2M6Z8O+UMuqpb38NgXHW3btzN50v8BAAAA8E9o269fP5vrt912m8M8d9xxh2drBwAAQEiUCzh3TmTiJyZ57jn3g8jk1HAZNqGuXNf6qHS79LjP2tNueDvjfPTc+jbT+73VLGTKIwwZSmALAACAEAhtJ02a5MdmAAAAIFh6dU+RWfP1aKrsIPLrr0VuvDHn+732dW15/8c6xsn8/Wz/N1REKpdPk32HooJeHuG66/K8CAAAAMAluggAAAAUIjt3inwzLU3MF5K13pWcO578X2Brq169nJfz0PsNZMS0XGZy07nkCPn8p4py5FR0jvNVKG+WvQfzFth60tO2TJnzTqc/NixDInTsMQAAACDYPW0BAACQ/9WsqX+j5OHOW2RM31Wya3+iiPR2mK9oUcf7ViqfLvsPZX58fOeH2j5r0ytTa8qr39WXDvUPykVVz7icr0N7rSMbIU2amGXdOu97y7pbHeGjjxZJ27bdpXTpzKB47VqRZkaFBhJbAAAA+Bc9bQEAAApRL1uLsYsuFomOlrBo5z1Xq1YVmfO9hqSZevYUmTrd+9/7x8+qLB/MqeT0ttdn1jXOl26uIOMXZl62tvQnk9zcK0XGjIuwCp4DUx4hLO+VFAAAAACP0dMWAACgkLAPO8PuuN3m+t9/i8yckSYVK4qEh0fJNT3CpXuXdJm3MFKmThU5edL5cotEp+a43r92FpPBnzQ1Lt/W6ZAUic2wud1kzu5HUK9mqmzZkV0mYe5ckfZXhkv7K7NLOFx9dZh8+60EdSAyAAAAwJ8IbQEAAGC46CI92fa8nbsg++NihQoi69aJJCSI1KiRPU9qRs7lAto91Sbrcpnbusj5r3/Iur79YLzNvOs3Rhs9ghs0yLzevbvj8gYMEKlYwSw7d4XJ4MGeP3meZLZaJuKaTily+EiYXHxxzjV3AQAAAF8htAUAAIDbGjfOPL/icpOs+CWzh2xaRoSs2pwgLesnOb1P0vnssPNCaqQcTYqWD+dW0u68MvzLhjbzxsSI1K8vkpYmEunik6oOAtb9mjCZMcN/PW2/mJKSVR5hziLHgdoAAAAAf6KmLQAAAKR4cc9qBnzzXbj0uja7LEKrx9tJWrptAdjUtDBp9mB2L1uLsrd3leHTLnYIbK25Cmx9wZRLTduq5VPkppv5mAwAAIDgoactAABAPnL4sEiblulyxSVJMnnEHqPX6NGTkVK2ZLob986sK+tM1y6etaNMGZEvpkdLvFV1g+gbrpW1Y5ZJs9qnjes/ri8jf+4uJf4S7iRXPXIq9xIGuw7blmSw9uWXIpdfrj1r0/LaPAAAAMBrhLYAAAD5xJMPp8jr4zRQjJQdu0vJ5PaT5b6vrpQPVjcybjeNGm0czu9K5+pFZNGuusblR4dlyJtjsmvRvjk6596nrsoU2Ju2rHxWaLvrUKxHy9u717P1t28v0rFtsiz+OXs95e7oKnlxyy2Z51qeAQAAAAgWQlsAAIB84MwZ+S+wtVK3rnywulnW1X0lL5EqZZJdLiM60mScv/PGBRn8WJy8OSb7tqpVPW+TsxIGb8+rLaWLZdaDfeLzS2xum/mtSY4dNcuJpAh5/HHP68zaK11a5McVsbJvn0irFmmy/7DtIGoAAABAfkVoCwAAkA846/mZkeFZrVaTObOeQNHEzI+ASUkikz5Kl959I31WniAlLcIhrLXo3DXcKKegjyU+JkMGD8nsqtujh+RJ5coi+w65H9hqyFulSt7WCQAAAPgToS0AAEAI04BzyKBkaVr3vIiUtLktspdt2qmlEc6cj5B732oofdsfkuvbHLVdlikzZQ2PygxLixcXGfKIbz4OvvaayJG9yXLieOb1A4fCZeHS7PqyP8wzS3x8ZqgcFSXywEMRsmtbinw5PUI++SSwH0k15AUAAABCGaEtAABACJs0SeT9iVqzNff6sDsPx8tbq2rI1JXVjVPGzNlS+n9d5LZ2e+Tt+zbLjztrG/PtP+D7dh4/LjL63ew2vvOOyMKl2bd3u9qxF/Cot2Pkjbcyw+ZQEBamNRpCpDEAAAAo1Jwc1AYAAIBQoYfyu+uBCRfLmFm1sq53fb6VnDwXI+/8UMdmvm+/830wWb68Yw1edwQrsP10YkbItAUAAACwR2gLAAAQYnbuFBl673nZtfqovPSS+/f7Z09xm+s/ri+TdTk5Nftjn9ay9bWKFW2vN2qUffnlF9Il1NwxILNEhDWTidQWAAAAoYHyCAAAACGmc0eTbN8ZL/NnJvtsmYvXl866XK6c78LJiR+kyfJlZrnxxuz6teraa0WmTDZJQmKY9Lguf3zkjM29AgUAAAAQEPnjEzQAAEAhsn1nZq/YLUdsBx7Li/vHN8y6fMMNPlusDLgnSgbcI05LDdzeL38d1BXJJ2MAAACEiPz1SRoAAKCAOnVK5H83JsuyGUf8svw9J4plXR461C+ryPciHCsmAAAAAEFBfwIAAIAQUKKE/o2VL7/xzzH6s2aJhIeLXHEFA265Qk9bAAAAhAp62gIAAARQRobIj4vMknTSpCNfGafpX6T5fD0HD4q8+orJuPzaK+ly3XWZdWYTEny+qgKD0BYAAAChgtAWAAAggMaMNknnLmFyZZOTIlOmGKe+t0X5fD3ly4s8+XS4mM0iTzzNwVXuoDwCAAAAQgWhLQAAQABNmRJmnP+5p5R8vaqyGKkqQkKU77NzAAAAwCuEtgAAAAFkndHeNKGTSOnSPl/HwAHpPl9mYXDVVcFuAQAAAJCJY+UAAEChtO5Ps9w7MF3iI1Jk4Qe7RCIy67/Kpk2ZI3b5yaljdUUk2ufLnTMns9las7ZNGz7ieWPIEJ8/LQAAAIBX+EQPAAAK5WBgTZtpmQI9Hj5Kvh+3Q65rvE2kVi2RH3/0a8mCM0m1fbasqVNFOncWiYkRKVrUZ4stNCZPFunfP/PyoUMi5coFu0UAAABAJkJbAABQqAwemCzjP4m1mZZappKIZqka1tauLRKWWXfWH0w+qk716otp0rdvlD+bWuD16JF5HhZmlnLl2JAAAAAIHdS0BQAABda0z9OlVeMLsufHrSIbN4r5n40Oga0yS+ACu7MptqURXvjcu563Tz5LYJtXJUtm9rBNSiKwBQAAQGihpy0AACiwbrldP+pEyuAh4fL9nT/INR/1dDqfH6shGMZ+U1W++rmiHDkd53DbiOkNPF7e/k2nRaS4j1pXuFESAQAAAKGI0BYAABR4pyRRpG5d+WFLraCEtsM+bezT5VWs7vuBzAAAAACEDsojAACAAm/FxtI53u5ueYR3ZlaWJz6uk+t8JpPI299VkTVb/dQbNtaxxAMAAACAgoOetgAAoNBzp6ftP3uKykMTmxqXb+t0SBpVP+Ny3s+XVJIhk5oYl02zZhf67QsAAADAM/S0BQAAhZ47oe3Fg6/MutxxeCvJyHA9b7+3mmVdHj+3eqHfvgAAAAA8Q2gLAAAKPU9L2h49HSvf/17erXkf/LBRod++AAAAADxDaAsAAAo9s9m9mrbWpv9csdBvNwAAAAD+QWgLAACksJdAcKc8gr1pKyrJhl3F8tQmAAAAAHCG0BYAABQKvg5t1SUPdfC6PQAAAADgCqEtAAAoFHIMbcXz8ggAAAAA4C+EtgAAoFDIKZj1tqctAAAAAPgDoS0AACgU/FEeQW3aW9T7OwMAAACAE4S2AACgUPBXeYQV/5SUFRsSZfzsKn7psXvpJck2148c8f06AAAAAISWyGA3AAAAwNfuvydN/vw9TUTi/V4e4d73GmddXr6xjHz1xB/iS7+vj5WZM0V69cq8XqaMTxcPAAAAIAQR2gIAgAIjJUUkNlYvRf138n95BGvTf6kkX2b4NrRVNWr4fJEAAAAAQhihLQAAKDASEjR9DfOiPILvzF5dXnytcWORTz5Il+o19LFF+Hz5AAAAAEILNW0BAECBkZKSQwmEHMsjeF/T1t7ZC3kLVYcPdz79znsi5arOBLYAAABAYUBoCwAACoVAlEfwhdtvD3YLAAAAAAQboS0AACgQTpzI+fZAlUfIq2LFsi+/P94UzKYAAAAACBJq2gIAgAJh2lTX9Wxz72nru/IIeVGnjlkqVAiTpKTMELp6dX5fB/D/9u4DzIlybeP4nWxlgaWz9CIKIkiRpiBioSjHgqKiqCAqdkERC6ggoIgNUPQ7iIoVBTt2RYoKIig2UEEUEeVQVfr2zHfNhC1hs7tJNmWS/H/XFZNMJpM3s2Mm3Pvs8wIAgHhEaAsAAGLCddeXHbyW3dNWtvDSS+4xpqe7LwAAAADiE+UbAAAg7tkltG3UKNIjAAAAAGAHVNoCAIColZsr9ewpdWybKympAj1t7dEewWGPYQAAAACIMEJbAAAQtT76SFqxwryUHdiW39NWtkBoCwAAAMBEewQAABC1/vjD93XtUk0LAAAAAOWh0hYAAESt66/3fd2yqmlvnt1Gtz93pAyHQ44Ilt1SaQsAAADARKUtAACIC+Vlsbn5CcrLc1rX3i6h8PzTZi/eIoS2AAAAAEyEtgAAIC6U1R7hww+l33/P1dNPf2Rd//WXSlyWLg3ueOrXM3TJZZ69eGvWDO5rAAAAAIhOtEcAAABRaf364FXaNmzovtSqlWVdJ3mZ18xcXqmSoczM4PTGrd/AvZ0bbpBmzHAvc/LrdAAAAACEtgAAIBq5XFLLlsELbVu18m0bGzY41PpIl3btrni6+t//uq8ffFD69cdsnXKyOcDUCm8XAAAAQPSj0hYAAETUxo3SgnezNeTCXKWk+Pacl+Ym+h1wlhbaFizP9Wwv61W9etK/u5wV7j37++9Ss2bu2+Z7fn+hj28cAAAAQFwgtAUAABHVvLn53xTNfWynFq1raC0zZj5hXfeZ/h99sraR1ox7RW0a/Fv4nP8+cJYZoUZqyDr3jGy99k7gQWtBYAsAAAAA3hDaAgAAWygIbE19HztDOVkuffprI+t+24nn649H3tIzi5pqx4E0fbHB/8B2zab0Estefz2wsc57K0Xt2+Zrzc8Jfj+3Tet8Sf4/DwAAAED8ILQFAAARs3q19+UL1jQosaz92P7atT854NfqfddxJZadc05g2zInDJswQTrvAkMul2evhPEvtVRqYq6y8opmM2vRJEennZ6g335z6JXXCGwBAAAAlI3QFgAARMQnH7vUp5/vE3pVJLA11UjP07973F990tIMLVlkNrMNfEKxc85L0N99pMxMacCZLq382r2tDduqeKz3yivSeedVbOwAAAAA4guhLQAACIlffpGGXZil0ZfuVEatPHVrl6mEYkWmffq1DtueX78mW4e3SdH337urZI8+2qyOreBsYpKqV3dflq9w6rFHXVq3OqdwkrIPFyXp2E65Ov10/yZMAwAAAABbhLaPP/64HnzwQW3dulXt27fXjBkz1LVr11LX37Vrl+644w698cYb+ueff9S0aVNNnz5d/fv3D+u4AQBA6QZf6NKqb1J1zjfuvrQT+3yuu/qt1OL1jbTglyZh23VOp6Fqdd2ThrVvH6rXkEbcaFbaHhrQ0goBAAAAQBSGtvPmzdOoUaM0c+ZMdevWzQpf+/Xrp3Xr1qlu3bol1s/JyVGfPn2sx1577TU1bNhQf/zxh6qbZS4AAMA2Vn3j2Xpg3IKeuuuGXTp59BlhG8OwIXm6cLBTdepUvKoWAAAAAOImtJ06daqGDx+uYcOGWffN8Pa9997T7Nmzdfvtt5dY31xuVtd+8cUXSkpyT/DRrFmzsI8bAADY2wsvSBdfHPGvOgAAAADgt4j+S8asml21apXGjBlTuMzpdKp3795avny51+e8/fbbOu6443Tddddp/vz5qlOnjgYPHqzbbrtNCcUb5R2UnZ1tXQrs2bPHus7NzbUuiD0FP1d+vuBYAJ8TkeM+3bp/uVpcrmFO/hV60279S4MGZcifUz2fGeB4AJ8VCBTnEHAsgM8J+MrXvCqioe3OnTuVn5+vjIwMj+Xm/bVr13p9zoYNG7Ro0SJddNFFev/99/Xrr7/q2muvtd7w+PHjS6x/3333acKECSWWf/zxx0pLSwviu4HdLFiwINJDgE1wLIBjI7yeeaaN5s8/3Otj74cptG3efZXefz+w5/KZAY4H8FmBQHEOAccC+JxAeQ4cOCBfRN3fDLpcLquf7axZs6zK2k6dOmnz5s3WRGbeQluzitfsmVu80rZx48bq27ev0tPTwzx6hIMZ4JtflszexwUtNBCfOBbAsREZAwaU/tnb3xGe3rL9O3eWvPTGLwufGeB4AJ8VCBTnEHAsgM8J+KqgC4CtQ9vatWtbweu2bds8lpv369Wr5/U59evXt4K44q0QWrdura1bt1rtFpKTkz3WT0lJsS6HMrdBoBfb+BmDYwF8TthPUphC26RatcwTQWDP5TsCOB7AZwUCPf9wDgHHAvicQDl8zSM9p3UOMzNgNStlFy5c6FFJa943+9Z606NHD6slgrlegV9++cUKcw8NbAEAQPD9/JOhCwcc0K+f/U/atKnkxQ5SUyM9AgAAAAAIWMTbI5itC4YOHarOnTura9eumj59uvbv369hw4ZZjw8ZMkQNGza0etOarrnmGj322GMaOXKkbrjhBq1fv16TJ0/WiBEjIvxOAACID0e1Matl0zR3fpqMh6d6PLZtr9kv/mpF0jvP/yupRkTHAAAAAABRHdoOGjRIO3bs0Lhx46wWBx06dNCHH35YODnZpk2b5HQWFQSb/Wg/+ugj3XTTTWrXrp0V6JoB7m233RbBdwEAQOwx5wwrt5vB4Z4Tju34o6oipVOT7WpeL1O9+9eO2BgAAAAAICZCW9P1119vXbxZsmRJiWVm64Qvv/wyDCMDACA+5edLXTvkqGnt/Xrjwd8OebRz4a1NO9PUpE5m4X1HBBsvff1DipRYWapcOXKDAAAAAIBYCW0BAEBkZWVJd96SrdNP3Kdex+UosWF9s/u8vlGy9Omnhest31jfI7Q98poTdeC1DzT5pWZ67+sMPXLN2gi9A0nVqkXutQEAAAAgiAhtAQCA7r1XevixFOsy+qSvJZnh7EEtWxbeXPVLM4+9lZmTqOxcp+6Ye7R1/5mF+9mbAAAAAFBBEfwjRgAAYBf33FN0+6HFRZW0vnhtWVHAm5MXma8Wi17aGpHXBQAAAIBQILQFACDOvfde2Y/v2J1c5uPFg1pneROXhcgxJ1ePzAsDAAAAQAgQ2gIAEOcGDiz78cWra5X5+J87UwtvJzgNRUJyetEYAAAAACDaEdoCABDlE4hVlKOc6thBD3TWgeyEUh8f/9KRhbedjsiEtpUqReRlAQAAACAkmIgMAIAoddWwHM16NllfzVylzkfuC3g7DuN4s0a2zHUqn9dfO178qNxtOSNUaQsAAAAAsYTQFgAQN/7+W6patfzK0mhhBramLld3kjFteuAbcnUvN7Q1vbq0aMKx0kSqpy0AAAAAxBJCWwBAXPjqK6lrV/ftnPc/cd/45JMoT3BPLbxlHNYi8Lfi4xNvefYoTRnyczA2BQAAAAAoA6EtACAuFAS2ppwf10tHNJU2bJCM2Phz/mNHHacV05YH9Fxfg9b9WeV/bahoT9uUFEPZ2SS/AAAAAOIboS0AIObl5Xner3LLCF144c/qc65TiYnS97+nq3XjfUpJcilarfytdsDPdSh4wXVCBXra9j/N0JtvOZSSErThAAAAAEBUIrQFAMS8Dm1zJSV5LHv55dZqnO1UrSp5uu35Ntay125dqYHHb1O8CWZLg/ImIvt7j+fPobiRI6XkZHfxc3KyodxcKm4BAAAAxCdnpAcAAECo/bjOe1D4wButCgNb07kPFOuhcFBevkP/905j/fhHFdmdyxX5StvyJiKrfXFRH95D9e1X9OSxY3x/zfPOjd4KaQAAAADwhkpbAADKMOujJrruyXbWbePtd2y9r8yAOTmA9gR7s5LDVmlbmkNbCx/X3fcq23mv8DtoAAAAALGFf+UAAKJGJOYMu25mu4i+vundL2tr4MT2ZbYWsIuyKm1zc0v2FzZNeyi/xLLDD5cSEjx3eNOmRsjbOwAAAACAHVBpCwCICvfdk6+xdyXo+Qm/65L//FPmuvn5ZuBXfEmnoIxhwXd11LfjDoXbGZOPs65rPmfoyRt+kJ05HEapPxNnKb8qvvFmjx+WpUUL6c8/HXpylkvj73Y/cfZsh045JbjjBQAAAAA7IrQFAEQFM7A1DRnfXJdUfqPU9V799nBdPPc/mnvRuzq73W9BDW0fe69ZRELbApv/SVW0VtoWD2y3bpXq1St/W/XrSyNGOjX+bvf9GjWCNEgAAAAAsDlCWwCA32bPypMzJ0uXDs4J496rWXSzZctS1zp/9BnW9TnPDwh6D9p3VtazWiRE6s/xP1iVIceZZ2j7Cx+pTrVw7nu3pESX/txZqcx1nKVU2haXkeFuNbF3r1SlnPndqlWTenTJ1s6/nWrd2v7tIQAAAAAgGAhtAQB+2bRJuvwq8/RRRSf9+7ya1twbpj14neygwSUn6/r+G3TH4I0RG0Ovsd310+NLwv66uXlOPfDG4WWu4y3QfvQRl9c2+lWrlv+a5vY+X5FSeHvZZ/nqcULJdgoAAAAAEEsIbQEAZVqy2FDzJvlq2tR9v3t3MzBzJ3NPLm+rey79Na724NY9lXXn3KPDEtqu3lhVFz3UocTyn//0Ie300c9/llPqWkx6lXzt2Zfgd2h7w4iKzXtafJvde3q+/pP/l2vWAFdo+wAAAABgN4S2AIBSLV8unXSymZglynjmWW3ZVUmbNw8qfPz3LSlSpbL/XB6BazfixJDuvv1ZCTrqupN8WnfooCw9O9fdU/fFZ/M080mnln1RMox1yLM9wurvvVfZVkSdmnna8U+iLr4gT1dcQ2ALAAAAIPYQ2gIAStW9u+f9lred7XH/pe/aaI42sAej1KyPDpZPlyEvz91/NjGxaBK0iy9NVLce3lsLH1pp27ZdcANb05tvOvTsk1m6e4r9J2YDAAAAgEAQ2gIAvPr+e8/7X/1zmPblJLO3gmhfZoI+WFVXp3XariqV8sO+b0c93abcdRISSp9MzJuxL7QuvH3WWQoJs6ctfW0BAAAAxLLgl78AAGLCs8963u968wkV3mZOrkPjnmuhL36qplDIy/fSUDVEdu+v+O89hzzUTuc/0FmXPny07OiE40sPktPTy3/+zJnBHQ8AAAAAxAtCWwCAVxt87Hqw7KcaPu/BlIGna9LrR6nH7aUHwG8srasLJx9tVaH6a9f+8PU3bXrZyRXexptfNbKuX1/ZWHZitkRYs0Za8pn/P4PXXpO++Ubas0eqVy8kwwMAAACAmEdoCwAo4dVXDL39tm875ur/tvO4/+OmKlr6U80S69378mE+bW/gA90098tmmvL64X7/ZGZ92EThsjszJSTbPWZEDznOPENr/6qiSJh4/XarJUKbNiX70x7q4YdLLuvUSerYUapaNWRDBAAAAICYR09bAEAJ06b5vlPW/JGu7FynUpJc2rUvUW2vP8lavunpBWpcJ6twvTtfLr9/anHbdvkfirqM8LVHCJVvN7oD79bXuvdjuI252/f9fuKJJZc1CV9uDgAAAAAxi0pbAIhThiFlZgZnW3MW1VdWjlM1Bp9WuOyHjT40PQ3Be0LFJPrx69xjjpFG3uDZ99bJNwsAAAAAqDD+aQUAcWpA/xylpUmb5n4hLV7scflpdZ5f27r88WO0cXuax7Li9//YXsnv8cV6ABtIz96wSPGvwnnoMJu+DwAAAACIYrRHAIAI2LdPOuHYHJ1z0j+688odZa67Z59Txw5qqgG9/tXkUTsDer3cXCnpkDm63v6wo3U9YPTh+uaWlwuXX/7SydodwIReu/d7nlKuf+JoXXrKn9q0o5J++jP0DU6/25CucS8dKbt7aXF9XftEO7162yrZUmqqX6tnZIRsJAAAAAAQtwhtASAC3JM0JevbH+vpzmZzyly33pgRysxN0s8vVtGEo19TUoLLr9d64atWGjLvdL12yXydePhfyspLVMNq+yS5Q9tvN9eVDiuaJGz2yqMVLFXO729dDzzuf34/1/CzP23HG3spGlw0rbN13Xf8cYoFtWsX3R4/PpIjAQAAAIDYQWgLAJHWsmWZD5uBbYEvXV3Vs/U/Pm120Xc1Nf2NJnrnu8bW/XNfOEv1q+3Xlt2VtfmZjxVsZbUzeH15g6C/Xix6d2VdRRuzgvvwpjn6/c9EXXABXZcAAAAAIBgIbQEgwjKznaqU4lv17Aer6qpnG99C21PG9SixzAxsTQ2H9fVzlAiG8vr0PvRmi6jb0Q6H9MPPydq7V6obfZkzAAAAANgSJTEAEGEvf9bQ53X3Z8fPpE+xOBHZ/BX1ynzc6YjON12pEoEtAAAAAAQToS0AhMnCBS69+8oBWSWJxVw+o4Pf27r5iZa6f16zUh/ftS/8f0hhyL8etPFo0Q+1yq1aBQAAAACA9ggAEAYul9S7r/l7sjRte+A5SUNLVJX6GtitWFddU99rZd2+9fyNXp/X8cYTgjJuhJcjSittAQAAAADBRaUtAIT5T/1PfuTMEo+Pef5IbdxWqcTyd7+s7XF/yz+pOvaWnoX3533ufYKvjdvdvWujWSzGl4ZRdjLv9KPS9obHyp7ADgAAAAAQvQhtASDMftxco8Sy+18/Qs2H91ZWjufH8hmTj/O4/+oyz5D2+9/TQzRKRKJPrz+Vto997K62BgAAAADEHtojAEAY/Puvb+stWV1Lp3baoWgUixOHhZuvlbZjR+co4eCcdJPuTw7pmAAAAAAA4UdoCwBh8Ouvvq1301NtdGqnJdbtt76oq3hWXiuBaFReru1Lpe3VV+br3geLgtpJ9wdhYAAAAAAAW6E9AgDYyNrNVa3rvQcSdPaUbpEeDmzW07ZHD+m/TxwssQUAAAAAxCwqbQEgDBx+FI1u35Wsa/+vraIN7RFCf5yMHFly2bJl7jDXNG9pQyU6XRV4fbPSN/YqnAEAAAAg2hDaAoDNZAzpF+kh2EIshsAVfU+1a5dc1rZYvj9kWscKbf/WWwlsAQAAAMAOCG0BIAxiMYBE8JXX09ZbJW56ujThjmx9tsT/g2zhslSP+6NH+70JAAAAAEAIENoCAGCXicjKebxePe/Lx92TEuiQtGeP9MrL+epybILXSl4AAAAAQPgR2gIAbCkei5PL62nbqlXwX9Os1L3iKiY3AwAAAAA7IbQFgADMnZOvm24y9O07m1WvTn656+dtMishG7Kv45xhOILeHgEAAAAAEHsIbQHARy6X9PTTUo8e0oUXuysT6x/bVMZDD5f73KnPnsF+Rrm9jcvKZF+flyspib0IAAAAAHGA0BYAfPTcc9KVV3p5oGXLcp/75pry14l2RrkdWYNblRqLilfSJiUZys11L5g4wdA55xPYAgAAAEC8cEZ6AAAQLVau9P85O/ck683lpcwehbhT7kRkxdojrFpVlOBWqRLCQQEAAAAAbIdKWwDw0YED/u+qY0cdp9+2p4dsHxtx3EogFhWvLW7UqOh2aqX4qzoGAAAAgHhGpS0A+Oj5570vv+T+tl6XP/Rq05AGtnYTjyFr0Hvaks0CAAAAAAhtAaDiYduLy5p7XX7LC+3YvTjkOCo9la07+BS9+kVDry0RKldmRwIAAABAPKE9AgD4OAmZPwHvrbOPDMt+jeXJuuKtcHfHvrTC21cNy1FSUrIm3pGtZcsMDRyYGtGxAQAAAADCi9AWAHwwbFj560x4vrnmfN5Yd1ywQQ/NP4L9Cr+sXu2+TkqSWrZMtm7fdU8KexEAAAAA4hChLQCU4e0385XmzDL/QL3c/XT3a+7etpc+0jEu9yk9bSu2j9p6b40MAAAAAIhDhLYAUIr166WzzknwKbCNlFgOSmPxvcXgWwIAAAAAhIAzFBsFgGi0f7/0wjN5+mdzppSZqTZtiNgAAAAAAED4UWkLAAdVqVLwsZgo48mnlJt7BfsGAAAAAACEHZW2AODF37npUbFfYrkW2DAcipf3NOKa3LCPBQAAAABgX4S2AGCGtH977obM1BrsF4SlT29KiqEJk5PY2wAAAACAQrRHAABJn33GbkCkQtzYqygGAAAAAFQMlbYA4t7y5dJLc6Kz0YCdWggYQQ4fo/MnEn/vCQAAAAAQfFTaAohrWVlS9+7mLc/A0WGfLBQxxE4hOwAAAADAvqi0BRDXvvwy0iNAvEpKou4WAAAAAOAdoS2AuPXFUpdOOkkxN7FVrIzFTu8tFK65hqpbAAAAAIB3tEcAYCvbt0tznsnWJedlq3atCqZ2eXnu6z17pMSSH3c9elYr9akOuo8iBIoH0U5+bQoAAAAAKAWhLQBbOalXvn5am6IxdyYo69EnK7YxszFt/frSq6+WKNt0ucz/XlOx7QN+Kn4U0jcZAAAAAFAaQlsAtvLT2gTrOjsvUapRIzgbrV698GZWjlPfbqyhz9bWUSyI5Q4C0TBpV9rAU/1aPzM3KWRjAQAAAADEDkJbAPZVuXLFnm9W15qXtLTCssaz7+ukD39oUO5TqYIMbHfHm4qEsLVqBXUoAAAAAIAYQmgLwNYhYLDDU18CW9hDNITAGzf6t/7+/VKbNu7bV10VkiEBAAAAAGIAoS0A21r1azV1Onx3VFS+RipgDFYLgVAE5LFu2zapbl3/n7fiS0NJSVLt2uxwAAAAAIB3hLYAbCszJ0HOs86wbhtvvxPp4SAGKmODKZDA1tS1G2EtAAAAAKBsTtnA448/rmbNmik1NVXdunXTypUrfXre3Llz5XA4NGDAgJCPEUBoDRucpe7t93kse/Sd5oW3t/2bHNYfAVWnkRepDPjKaUd6XAAAAAAAiLtK23nz5mnUqFGaOXOmFdhOnz5d/fr107p161S3jDKmjRs3avTo0erZs2dYxwsgNJ59ObXEste+KOo/+/Wv1fWfLtttu/sj1x4heNupaFAdK0H3k4uPiPQQAAAAAABxLuKh7dSpUzV8+HANGzbMum+Gt++9955mz56t22+/3etz8vPzddFFF2nChAn6/PPPtWvXrjCPGkAwHThQ/jqzPmpq69AWsdEeoUXzfF16cX6J5XdNCm+lNwAAAAAgvkU0tM3JydGqVas0ZsyYwmVOp1O9e/fW8uXLS33exIkTrSrcyy+/3Apty5KdnW1dCuzZs8e6zs3NtS6IPQU/V36+0ePPP83/JpW5zrtfZyjXz1SwYH1/n2fK8/OP8wN5jWBwyQjKa5vbcFZwM3kBvGZZ8o3S1/H1PfuzbyqnufTzOpdZM1zisbsmedk255CYw/kDHA/gswKcQ8D3CfBdE6Hm678lIxra7ty506qazcjI8Fhu3l+7dq3X5yxdulRPP/20vvvuO59e47777rMqcg/18ccfKy0tLcCRIxosWLAg0kOAj7ZsMf9f7FPmOi6XQy1H9tJRR/2tYcN+VFKSGa75xjoS/Aw2F/q5/nuuyIS2vxvS+0EIbc3xJ1SwvcEKP8dR3ri3lvHefH3Pvqx39dXf6403Dtddd32p99/37Ktc4Nhju+jLL4vadVx00U96//31Po0B0YfzBzgewGcFOIeA7xPguyZC5YAvf24c6dDWX3v37tUll1yiJ598UrVr1/bpOWYVr9kzt3ilbePGjdW3b1+lp6eHcLSI5G8szH9w9+nTR0lJZVdvwh5+/dW39TZurGZdutbI1tjz1/tUZbngYByc5GfD1VP8XL9/hBq6NpMjKK9tbqOioW23IO+zeo7S1/H1PZe33n2TDujm247So4+a904odb3evaWRN+TpsBZS586GTjzpCDkc9L6NNZw/wPEAPivAOQR8nwDfNRFqBV0AbB3amsFrQkKCtm3b5rHcvF+vXr0S6//222/WBGRnnHFG4TKXy11tl5iYaE1e1qJFC4/npKSkWJdDmWEegV5s42dsH1lZ7kmqvPyvaPE3W1/9axXfQ1jDsNb1N7RN9jPA9Hf7weJ0BOe1k4IQ2iZ4aStQ3muWxWGU/nPz9T2Xtd7ZZ6/Xzbc18+lcYK7y1GyfXhIxgPMHOB7AZwU4h4DvE+C7JkLF1zwyoqFtcnKyOnXqpIULF2rAgAGFIax5//rrry+x/pFHHqnVq1d7LLvzzjutCtxHHnnEqqAFYC95eVKlSu7b+R99Iqez5DqvzGkiqaWimeFnYBm0142Byb8i4ZLzM9X3DLNau1mkhwIAAAAAgP3aI5itC4YOHarOnTura9eumj59uvbv369hw4ZZjw8ZMkQNGza0etOmpqaqbdu2Hs+vXr26dX3ocgD28PbbRbdvmVRVD5+3osQ6dzzb269tGkZkAtJY5g6d4yMBPndArp5+MVHvv89klAAAAAAAe4p4aDto0CDt2LFD48aN09atW9WhQwd9+OGHhZOTbdq0SU5vpXkAbOvnn6WjjpJ69chTw/r5ZqMSa/nUpd3UrHWaru2/UQkJsrUIdTuIasGu+o2PCBkAAAAAABuGtiazFYK3dgimJUuWlPncZ599NkSjAhAoM7A1fbosscTHzIgnj7ZaJFz3n41hCQezshKkSu7e17HYpoCq4wA4zd8YmL9MAAAAAADAnihhBRBUW7aUv84n39cO2V5/bH5jTXvd7JEr3fXsEbrggtP1wVd1QvZ6sSKeeuPWCt3hBwAAAABAUBDaAgiqF18sf50V62pozDNH6EB2glxBLIL9Z2+Sbni6g0Y9116framh+99sbS0/657j/N4W7REiL1RVxK3dhwUAAAAAALZli/YIAOLLln9TNeXNI7UvK0kLv3FPJuiP0opCZ7zbvPB2r7HHKx7YqULWTmMpy7DLzN9X0h4BAAAAAGBfhLYAIuaxD1oEdXs79yQrUqIlsIym8QdjTD//WcXjfkKCofR0h3JzK75tAAAAAABChdAWQMwoK+Tb+m+K6tXIDudwYANHXXeSx/07xpgHSWjaLgAAAAAAECz0tAUQF71O6w/t69f6jlKbMNhLdIwycmpVz7Mu1armq2G9fI25g9MeAAAAAMD+qLQFEFT79sVngGlQvRmCfVpxO//lNAcAAAAAiD6UHAEIqokTIxfmBVKBi4J9yr4DAAAAAMAuCG0BwAsHGSYAAAAAAIgQQlsAcTERWay+tp2qi4NdrVvRffrMM8EaCQAAAAAA4UWzPwAVtn+/9MysXB3fJVtSlZgOZ2NVLO7TNm0iPQIAAAAAAAJDaAugwkaPcmnmrCRJ5iVygpk70h4h+nXqFOkRAAAAAAAQGNojAKiwjz522KIlQCRbBUSuPYJsI9hjqejPk+AdAAAAABCtCG0BVNjvG+3RV9VOASYAAAAAAECgCG0BxIxgVlY6gtpswf5iMfCm0hYAAAAAEK0IbQFEHcOGwaOhyFQb2ylrDXp7hOBuDgAAAACAqMFEZABiBiFf/HhtWf1IDwEAAAAAgJAhtAUQM4JZ6Rlvf1ofqUrhQJ13f+cyH3c6zYMhut4TAAAAAAAFCG0BxEw4axjxF9LF8nt+/+sMdbr+WK+P9eySVWLZ51+lhmFUAAAAAACEHqEtgArZu5cdGKsTeYW6WnfD1rRy1/lmU50Syzq1y9VnK0sGtNu2SfXquW8PvtCvoQAAAAAAYCuEtgAq5Mcfw78DY7m6NJpD58opeX6t3+LKU8p8/NprpTPOKLr/wJR8Lf40QW++li8pqcT6GRnSlMkuvfSSof/OTPBrLAAAAAAA2AmhLYCYEY89be1U4Vutsn+hbeVKZvjqXaP6+Ro/Pll16xYtO/XUgiC29DYIt41x6rYxfg0DAAAAAADbIbQFEDPhZiTzSzuFp5GycVsln9dt2jhfGzeVVQ1LpSwAAAAAIH45Iz0AANEtEqFtafkobRPC7/VXiqplB0zu6vPzfl5HKAsAAAAAQGkIbQHETKVtPDIiXCl8fK8EHdNynzJq5RZezuyfW+7zKvlelAsAAAAAQNyhPQKACiG0je/2CGbP2VXrqpRYznEBAAAAAEDgqLQFEDMBabwGp5Fy+WWugJ43enTQhwIAAAAAQEwhtAVQIXaqqIzHzDZYQXUg28moV/op5N6JeR73T+6Vp5o13CHv2LH+vxYAAAAAAPGE0BZA9E1EZtgoKT7IkP3GFGoXXVT6Y2PvStSmTdLgQfnq2S1bj/83QTv/dio7W6pRI5yjBAAAAAAg+tDTFkDsVNraMMyNZUcdVfbjjRtLc+YmSDIvbsnJoR8XAAAAAADRjkpbADEU2iruBCuo9rdSuPdJnu0PAAAAAABA8FBpCyDq2DGbjfXA+MQu+5VaOUF79zs0+vYkDTiH0wcAAAAAAKHCv7oBxEylLUJn0cd5clSvzC4GAAAAACAMaI8AIGZC2xgvdo1oha8jNSU8LwQAAAAAAAhtAURfaFtaUBnrLQpCqdx9l5oappEAAAAAAAAqbQHETqVtkCblCuy1I/bSAAAAAAAgxhDaAog6kQxn7YasGAAAAACA2MNEZABiptIWgVv4fW1VqZTPLgQAAAAAwAYIbQHETGgbyapTQzbaEQEYOKVLpIcAAAAAAAAOIrQFEH0TkZW2PA57BTy7sIleWNyowtvp0Drb4/7/diTq/Q8T9NnifJ1/YUKFtw8AAAAAAHxHaAvAJxs3SrVrS1Wq2LjSNk573ea7fG9P/uYbhs4+x6Fex2bp0y9TrWWXDM7X83NSvK7fqROBLQAAAAAA4UZoC8CrXbukxYul/Hxp/Xpp7FipWlqOdj33tueKm6tK6hf3ezESVb4TJ7h0xXDvge2JvQz9st4zxF65UurSxaFNm6SMjFStWO7S2p9cuuJqTgUAAAAAANgJ/1IHUEJurlS3rqHcXM/Qb/eBZOnvvz2WOXblhX0PxmMbhAKPPJynkTcnqknDfI29I0EJpRTC9ukj/bK+6H7bNi516eIOeBs3di/r2ctpXQAAAAAAgL3wr3UgjuzfL61YIblcZa83c6YZ3JbSaqBBA4+LI6Ou7MIV42HuBRdII0YlWqH1H3+VHtia7p3s+fN77HE+7gEAAAAAiBZU2gJxwgxqGzY0tHu3Q0c3/lfDTtjgdT2nw9CNL3YuvH/TTdK0aTabiKyU3rWR7GkbjurfFO9tZ72qVs39M//uO2nfPun440M5MgAAAAAAEEyEtkCcuHeSS7t3u6stV/9ZQ6PmdPLpeVn78zw+Kpb9WF0//VFZw/tvtu47VHZaOf+5XTpraHWFg8MR26W2w4f7t74ZqHfsGKrRAAAAAACAUCG0BeLEpHs9q1AHn5NZYp0lXyTrf1sP+Zt7cyayYh8Vx4/paV0f3ihLJ7Xz7G/rzYkDwhPYRrrSNhwyMiI9AgAAAAAAEA6EtkCcOLRH7ZzXK5VYZ8oUacwY37b365bKVmhbXnuEpCQFnWHDCcoMxXZgDAAAAAAAwoeZaYA4sH69b+uVN0GZN76Etr/9prCI7eYIAAAAAAAgXhDaAjFs40Zp9Ghp5Mjgh7YFYW15PW0TEqTDDpN27FDIRUt7hLNP3h3Q82rVCvpQAAAAAACADRHaAja2bl3Fws6HH3ZfPvjAt/Wt9rVBrrQteLxGDd+2d8YJ5QeakWyDEAwz7tun2U/5V9Z8xhm+70MAAAAAABDd6GkL2LhK9sgj3beNl14OaBuzZp5v1rr6vL4/lbbPLGikK/puKnOdBfP+kVSzsOI2M1P68Ufpq5WG/trk0viJCUpO9nzO229LjvDNXRY0/gTJDZsmalhXpy67wvfnHHVUQMMCAAAAAABRiNAWsKmVK4vd2bcvoG3k5HkPbM8eYCaMjgpV2n6xrpaW/lRTjWtnlrpO7zPTPO6npkqdOpkX87XdYzOD3Een5um2OxJ1fKcDUkpKwG0QoqYC19wRAAAAAAAApSC0BWzKI0CtVy+o2753svfQMzfXv+3k5jlKbY9w+03ZPoWT5iq3jk3UyJul5OQ0K0uuUytfO/72vUK4gCtaQlsfgukgPAUAAAAAAEQpetoCNmW2EaiI0qpO7xi5V61bK6DQ9tDgsGqlvFKrc+s18u93Qua2CwLgiwflKdomIvOryvdgmF2vju/vs1q1AAYFAAAAAACiEpW2QBSEtmeNa+/383Pyvf9O5p4pSaU+J6+cDPGEE6QFC4rud7n5hFLXHXqZ/5WyBaZMS1H/s6XsbOn000s+Hi0FteV5/XWHepS+Cz1Uj8I+vwAAAAAAIDCEtoBNvfVW0e23v2tSoW0NGSLt/H2PTjszSUqtVOp63ipt69YuikibN/f9NSsSMpqTk/XuXfrj23enaPuuQ2Ywk7Rrf+mBdLDdecNu3TOjYuWv3XsmKKN2nrbtLPuj+NSTsnT++fTBBQAAAAAgXhDaAlHg8RkuK8j0xycLpXmvuKtte/WSLnsuvdznJHnJPG8Zka0J97sDw8suk2bNKnrs77/d17Mez9WYcaEJTF98wdDFl3i2PfhlS7oyhvRTJNWs5/kDufmJlgFt5513nep6bNnrfLCIwBYAAAAAgHhCaAvY0KH9UYdf5fQaqJYlIckMbd23Tz7Zt+dceaU0Y4bnssqVi24X74V7x1hDNWu6w9Tb70rS2edLRx7pfmzJJ3lB+3i56GKH9ux26fHHpb59XJr2aOQ/tm4b/rcSUz1D8BeX+VGGXEyXbk65XJLzYDeLpo3y9MdfkX+PAAAAAAAgcpiIDLCZr78uCvAKJAaQ4RVM6mXKyfHtOU2belmYkqJ//pG2bJHS06XPP3Xpv4/la9I9ntWvrVq5w2bz0uuU4IaO11zn1JqfnJr6SGLha3i7ZGZ6Pm/lynJmVgvQlFm15EzxTNEn3VW0kydM8P9nVfAeNv6ZqD//DNZIAQAAAABANCK0BWymS5eyA9hAq3V9UbWqOzRevLjYwtRU1agh1avnvnv8CU5dfV1CQGMKtdRU6crhRW+8WTPPx0++tVNIXvf9d/J158Rkj5/h22/mB7y9Ro3cAfQNV2brhad9TNwBAAAAAEDM4G9wAZubcf8BSWl+P6/4pGJHHOH78zodzDXz8qSEBEWdyfc5tHdnli69ItGaDO3kkzdp0SL3RG6L1zYI2uscf7z7ukWTHJ12enJheLv6e5f69UuS05mg776TOnQIPIB+9ImUoI0XAAAAAABED0JbwObOHeJ/YGvq3r3odiBVsdEY2Jpq1ZJeesM9cVdubq5GjPhWEyY00ObN7o+7IUMM5eRUvEy4fXtp2TKpceOiCtvTTk+wLgXSAvvRAQAAAACAOEdoC9hc8YnA/NG2rfTtt1L9+sEeUfTp1s0onMgtyZGvq66WsrIdVpg9/o487d9naPxkd9BbICvHe/eYb78x2y84SgTj3tSuXXLZb78F+i4AAAAAAEC8oKctEAF790rPPZ2nf/46IB045OKlz2ygzD/Nz8io2FhjzTnnJ2rHP4nauz9Be/Yl6OYxKUqvUfL3VxlD+nl9foeOvlfpmr2Ahw7OVZtWufrf/9x9hg87rELDBwAAAAAAcYBKWyCE9u2T3no9X7Vr5OvEE1xWn1LTdVcm6IW5ZulnoownnzrkWVfwMwk3Z+h+f/XsnIMlvgAAAAAAAD6i0hYIoXsn5uuSSxN02lnJqlvfKc2ZY13cga1bprOye9apgksxd92Sxc8nAj5+fqv27JF1cbmkL5a61K1DlpYvc/HzAAAAAAAAIUelLRBCUx4smpRqb1aylFw0aVWBd9YdoaqV8q3bC7+r5fHYxAc8Q1yER58zUqVibSmO6+HUl9/yswAAAAAAAOFBaAuE0Q0vdtVh9T2rZwc90JmfQYT1PKGoT21mpqTU6hEdDwAAAAAAiG+EtkCI5LuLZz089nErr+u2aJKr6un5WrWGas5I6NTZYfUfNrtTJBQVRwMAAAAAAEQEoS3i3qqvXHrhyUyNv2mvalQ3rP1hGNK4e5PVuqVLg8/NCWgfLfw0RVJtn9b9ZnWS0tOT5Cgq+ESYVa7MLgcAAAAAAPZAaIu417mrOR9fZe3+fqOeuXCBtT/eXdNc9zx9lnV7sDE9oH1045RLfF7X6WVKwCpVzACZFBcAAAAAACDeENoi6Fwu7yGkafEiQ87cbPXq6Qrdns/LK2pOmpvrwxPSrP+u+bu+1LSpdfvMm9yBraVZs4CGsT+/ks/revuT/McfJ7AFAAAAAACIR7YIbR9//HE9+OCD2rp1q9q3b68ZM2aoa9euXtd98skn9fzzz2vNmjXW/U6dOmny5Mmlro/wmjfX0AUXOnTZf7Zp1OCtevvTdN06dLsVSmZlO3TyKebPKVW7pj+ramm+BKoBMHsM1KkjvfKKu89BuYYXPFFKTNSXaw+ZhCrAJqcTLlyrYTOO8WldbyF3v34BvSwAAAAAAACiXCn1kOEzb948jRo1SuPHj9c333xjhbb9+vXT9u3bva6/ZMkSXXjhhVq8eLGWL1+uxo0bq2/fvtq8eXPYx46SzMDWNPu9DLW9qL3Gzmqu3hfXk5Yt07+Lvi1cb/HG5lJaWmgulQ5WuJrXvqx/0Ne/1dDgyW113K09Pd7TiwvrB/SjrpzieyhdENpOn1pUgZyREdDLAgAAAAAAIMpFvNJ26tSpGj58uIYNG2bdnzlzpt577z3Nnj1bt99+e4n158yZ43H/qaee0uuvv66FCxdqyJAhYRs3fLfk96Y68oFhWretRuGyjXtraaeydPMTLXVmt60aeMLO4O1Ss7rWvFSt6q669cPLXzYvseySRzrr4lPe8XsYObmevxPpfEy+vv4moczQdsSNTvXoKbVt6/fLAQAAAAAAIEZENLTNycnRqlWrNGbMmMJlTqdTvXv3tqpofXHgwAHl5uaqZs2aXh/Pzs62LgX27NljXZvPMS8ItiSvS4sHtqabnm5rXUzPf95c2ce/7W++Wqrcgy0RCq6DuU1/ZOUVvaG778zWVdc5tXevS+vWOTRurEvfrk4ufDw/P9fqBWxq3/7ga3J4VvzndnAn8v86ODbAZwY4hyBY+H4BjgvwGQHOH6gIXzOKiIa2O3fuVH5+vjIO+Ttw8/7atWt92sZtt92mBg0aWEGvN/fdd58mTJhQYvnHH3+stGJ/Go+Ky883/1s0gVdycp5ychI1fPgPatZst9544witWlXP63NHfNBUp522Mag/hgXmf/wMW7t336wvvmhYYvn7AYS2q1zu/726dt2iDp1XasWKosduuiVZQ4acVnj/gw/e93v78N2CBdbRAHBsgM8M+I1zCDg2wGcGAsH5AxwbKKsANSraI1TElClTNHfuXKvPbWpqqtd1zCpes2du8Urbgj646enpYRxt7PvlF8/7roOVpmPGtFajRua+d2rVKvdjnTq5dOKJhh5+2N0u4Ikn2mtG/z+CVhVrRnR9zLpfP8t36yd6/1+ifwBlwLNW1rWu163NUP/+/T0eM6tqi3fzOPRxBO+3V+aXpT59+igpyXsVOOITxwY4LsDnBDiHgO8W4Hsm+DcIIqGgC4CtQ9vatWsrISFB27Zt81hu3q9Xz3tFZoGHHnrICm0/+eQTtWvXrtT1UlJSrMuhzACHECe4HnzQ836eK0EOh6EaNcx9bVbeFt//TlWufMjPJFj9EUyGYW3P321mZnqfmy+Qsb2/qoF1vXuP03q/ZeFYDC3+fwfHBvjMAOcQ8P0C4cD3TnAsgM8JlMfXDKjsJCnEkpOT1alTJ2sSsQIul8u6f9xxx5X6vAceeECTJk3Shx9+qM6dO4dptPCtPUKRiwZm6vHpeape3XOyLZOZgZZS1BpR739Vx+vyz9bUtC6frqmlnrccq/vmlpywrMBby+rovElHh3CUAAAAAAAAiGURj83M1gVDhw61wteuXbtq+vTp2r9/v4YNG2Y9PmTIEDVs2NDqTWu6//77NW7cOL300ktq1qyZtm7dai2vUqWKdUHkFEykVeDF1yp53C8e2nq7b2e9xvbwuL90XR2NGviHUpJcys516q+dqWpR392TZNRTR+n3v8tvvVGjWr7+3Z2gQeeYDaj5030AAAAAAADYJLQdNGiQduzYYQWxZgDboUMHq4K2YHKyTZs2yVks3fvvf/+rnJwcnXvuuR7bGT9+vO6+++6wjx9Ftm8vuv38Q+Ydd0/XAgnu9rWFlbaHdhx4cF5j3TLoT1vu0sOb5igxwdDaDUWtNvZlJlihberA/1j3O7f4V19NW6rsPN/S6L/+l6Bdu6QGDQhsAQAAAAAAYKPQ1nT99ddbF2/MScaK27hxY5hGBX998knR7QsHZJZ4vHg7BMMo+fxb53SwbWj75apk1aolvfGGNHCge9maTenq1fbvwnW+/q2G1SLif7t9q/hOS3NfAAAAAAAAgOKi6A/UYXdt2xbdTqhZrcTjh/a0Dea8Y+FSfMynT+yiXfs8f+/x507PlhAAAAAAAACAvwhtETQFFahnnSU5alQvN7SNpp62BWFt8dB2X1aS/t3n2dqg+fDeYR4ZAAAAAAAAYk0UxWaIlonIGjXy/njxnramaKq0LW2s23cX9bgFAAAAAAAAgoHQFkEPbUsLOA8Nba++Onp2fmnvaeK8lh73P/ggPOMBAAAAAABA7CK0RdDce6/7+qMPXd4PtkPaI6SnR//Oz8z2TKKbNYvYUAAAAAAAABAjCG0RdH/+4ZL27y+30jaalFZpu3h1bY/7+fnhGQ8AAAAAAABiV2KkB4DY0aFdvr77IUF3nv2jpMMDCm0No2RAagahyef8Ry7DqXEDzW0XaVA7R5efulmJCUZAY359aYZP6/naf5fQFgAAAAAAABVFaIug2LVLVmBrqn/ikVLllDKDz9JC0JZXnagre//useyB+S2twNY08fU2JZ6z+d80Tbz4l4DGfe4DXRVM3kLbVkeY7SIoagcAAAAAAIBvCG3hsw/fy9fa77J01dAsbd3uGULeO7WSpFT3naQkr88vHtQOGeL9NX7dWlW3vtiu1DFccE62alZ3V9X+32z36016pVXAoa2vfK20zcsruWzSpKAPBwAAAAAAADGM0BY+O+10s5K2sm66s3KZ6+Vl5koqu9L28stLf/7QQVke95+bdzAMlnTPAylq0cJ9+/9mK2wCaY9wzz3SZZdJ9etTZQsAAAAAAADfEdoiYJUrFSWU+zOLGtYmJ3ifjevMM93Xx3fNkcOR7HWdxo0NPTu3KKQ1PTev/PDUWy/cQK1eLR19dGDPLR7amuOpXz84YwIAAAAAAED8oAQQAdt3IKHw0rmT2bfVbeB53g+r2rWlAwekT5d7D2x9mcjLWcoRu2Frmt5cVlfT32iivHx3ert0TQ21vKKnZr3bQP5o21Za/UNgE5sxERkAAAAAAAAqikpb+MSsZC1LWlrR7ap1PCtli6tktr4tg6so+/WqtGra40Z314697o0f0fSA1HG7xj7bWuu3V9dVszrpot7bVDm1nES4mLZHOyrcHgEAAAAAAAAIBJW2CEoYOWiQ+/qI5l5m4irDRYPM/rcVD20LAlvT4tW19dtv1fTl+tqFy6oOOk3hDrfPPz8sLwkAAAAAAIAYQ6UtLLfd4tLD0xxav2yHmjf1TE5373Go55nVvU4uVuCqq51q2Urq1Mm/Q2rW7CT9uE767ruKhbbFPfzGEZJ5KcYwfCuVvffeotuffir16iW/mBXHN1+fraxshw4/vPQ2EAAAAAAAAEBpCG2h33+XHnjIXXR92LF1ZUx/xGOvvLq8jVav613mnkpIkHqXvUqpIedZZ/ke2pbW0/ZQ1apla/fu0kPm0U8coQU/1C2x/Oabi243aeJ/e4QqVaSHZpT+ugAAAAAAAEB5CG3jwNq10u0jD+iua/9Rp6NzSjyeuT5JUuPC+9e8d7oG99pceH/Swk5ha71QXu9cX8LT7t1dOuWUbzRp0nGlrvPwe0eWWDZkiKGUFIfPYznUpRfnqm1bc18CAAAAAAAAgSO0jQNt2xrKz0/T/I/TZDz0cInH87eYvV+HFt6fuaCFdQmX4tW1wWiPYK6Tm+t/u+YOHXwspy3FMy8Q2AIAAAAAAKDiCG3jQH5+URj5TUIXHdNit8fjrqT0Es9p1byoInfd76HtzXrVVdLkyb5NeOZraOuth21evkOJCUaFWy8AAAAAAAAAoURMFWdmvNvMuj6QnVBmdevaDcmFF2/++CN4Y/Knd6zvoW3J5bc/7Tk5WXmhbeXKRbcTD/56o29f789t2yq3/IEBAAAAAAAAPiC0jQNJxf5q3wxr73mpuSqf11/vraxjLct3+dcWwAxEiwetwfTZZ2WPxZdq2NLWefjdVlq1vmRVcWmBcN260uOP5OrpmblKTi6aOM2br7+nNQIAAAAAAACCg/YIceD446XFi923X1naUK+ooXX7qv9rp187LFaXm0+I7AAlZWdLOTlSlSqha49g6nFbD21/cYHXx7xV5147ovwwtmtXzwnMAAAAAAAAgIogtI0Dqanel5ttET7/sabswKxkLahmDVV7BFN2XqImz/M+yVpBC4RgVwcDAAAAAAAA/qA9Qhwo3rO2RuWiCcYMl6E8V3QdAhWttDXd/2ZLr8s7dw5sTCkpgT0PAAAAAAAA8Ca6EjsEJD+/6Pa/+4vKWbPyEj0mJCtN5TQvM5VFSEUrbcvSpUtAQwIAAAAAAACCitA2zkLb4to03qPcvPJT0E8/LVonKSmANDSIfJ2IzN/Q1umM7PsCAAAAAAAAChDaxll7hOKWraujnLzyD4FOnR3WRGFPzXJp/XpHVFTaSv6Nc8qUwN7XtdcQ9gIAAAAAACC4mIgsjittTb6EtiZzkrDLh0c+4/c1tC0tqC5N9eqBjWfwRUxCBgAAAAAAgOCKfAqHiIa29WpkRdVPIFSVtr5st8CKFUW3e/Tw62UAAAAAAACAchHaxricHGn58tIfz6ierWgSqp62iX7UnHftKv31l5SZ6d9rAAAAAAAAAL6gPUKMmz+/7Md//rOqYi20Nfkb2l5wgX/rN2zo3/oAAAAAAACAr6i0jXH3TCo7vRw6vWOJZeecmSe7Sk31rdWBYfje76BzZ9+2CwAAAAAAAIQDoW2M+2G17+Hl2rXSmNE5mjXbXgXYa9a4r1983rfZxdyhre/bb9UqwIEBAAAAAAAAIWCvdA4h1b3jAX3xbZp1OznZUE6Oo0R4OfnBZNv9FNq0KQhhnUGfVMyUkRHQsAAAAAAAAICQoNI2juzaXfTjfmByvrq2j65JyA7VpFF+GROROUIyCRkAAAAAAAAQaoS2ceSnDUWNW1MrOXT5VdGdVt51l/dgNjnZv/YIvk5uBgAAAAAAAIQDcVWcOue8BF00JEHR7LIrig7fadMCr7QltAUAAAAAAICdENrGuBVLMnVMs7+1eOwC3XrtPlVKdWndOqlOHalyZUW14mHrmWcW3e7Rwyi10vbMU7Mr3AMXAAAAAAAACCVC2xjXtVclrVqTqhPHdtf9j1fR7j1OtWxZ9PhttymqbdggrVghHXaYtP4XQ7Ofcmn4cJfXIHbmjFzN/yBF//wjndyrqB/uueeGd8wAAAAAAABAWQht44FZUnuwrDYpyfOhHj0U1Zo3l7p2dd8+/AiHhl3uVEKC1KvXnx7rPfJQjq663v3ma9SQFi5JUGam9McfUocOkRg5AAAAAAAA4B2hbZw7/XTp+Wdd+uF7P2buigKVKhVV0ppG3JxcYp3UVKlJkzAOCgAAAAAAAPBBoi8rIXaZbQQuGRrb2X3t2mYgTeNaAAAAAAAARIfYTusASSeeEFtVxAAAAAAAAIhthLaIWYs+ydHF52Xr8f9ymAMAAAAAACB60B4BMev4Exw66ZSSvWwBAAAAAAAAO6MEEQAAAAAAAABshNAWAAAAAAAAAGyE0BYAAAAAAAAAbITQFgAAAAAAAABshNAWAAAAAAAAAGyE0BYAAAAAAAAAbITQFgAAAAAAAABshNAWAAAAAAAAAGyE0BYAAAAAAAAAbITQFgAAAAAAAABshNAWAAAAAAAAAGyE0BYAAAAAAAAAbITQFgAAAAAAAABshNAWAAAAAAAAAGyE0BYAAAAAAAAAbITQFgAAAAAAAABshNAWAAAAAAAAAGyE0BYAAAAAAAAAbITQFgAAAAAAAABshNAWAAAAAAAAAGyE0BYAAAAAAAAAbITQFgAAAAAAAABshNAWAAAAAAAAAGyE0BYAAAAAAAAAbITQFgAAAAAAAABshNAWAAAAAAAAAGyE0BYAAAAAAAAAbITQFgAAAAAAAABshNAWAAAAAAAAAGwkUXHGMAzres+ePZEeCkIkNzdXBw4csH7GSUlJ7Oc4xrEAjg3wmQHOIeD7BfjeCf4NAjvg36coUJBJFmSUpYm70Hbv3r3WdePGjSM9FAAAAAAAAABxaO/evapWrVqpjzuM8mLdGONyufS///1PVatWlcPhiPRwEKLfWJih/J9//qn09HT2cRzjWADHBvjMAOcQ8P0CfO8E/waBHfDvUxQwo1gzsG3QoIGcztI718Zdpa25Mxo1ahTpYSAMzMCW0BYcC+BzApw/wPcJ8F0T4cK/QcCxAD4n4IuyKmwLMBEZAAAAAAAAANgIoS0AAAAAAAAA2AihLWJOSkqKxo8fb10jvnEsgGMDfGaAcwj4fgG+d4J/g8AO+Pcp/BV3E5EBAAAAAAAAgJ1RaQsAAAAAAAAANkJoCwAAAAAAAAA2QmgLAAAAAAAAADZCaIuwuO+++9SlSxdVrVpVdevW1YABA7Ru3TqPdbKysnTdddepVq1aqlKligYOHKht27YVPv7999/rwgsvVOPGjVWpUiW1bt1ajzzyiMc2li5dqh49eljbMNc58sgjNW3atHLHZ7Z2HjdunOrXr289r3fv3lq/fr3HOvfee6+6d++utLQ0Va9evcL7JF7FwrHQrFkzORwOj8uUKVMqvG/iXSwcG99884369OljfUaY27/yyiu1b9++Cu+beBau46K4ZcuWKTExUR06dCh3fJw/wisWjgfOIaERC8cG55DoPS6WLFlS4ruhedm6dWuZ4+McEj6xcCxw/giNWDg2OH/EMHMiMiDU+vXrZzzzzDPGmjVrjO+++87o37+/0aRJE2Pfvn2F61x99dVG48aNjYULFxpff/21ceyxxxrdu3cvfPzpp582RowYYSxZssT47bffjBdeeMGoVKmSMWPGjMJ1vvnmG+Oll16yXuf333+31klLSzOeeOKJMsc3ZcoUo1q1asZbb71lfP/998aZZ55pNG/e3MjMzCxcZ9y4ccbUqVONUaNGWesifo+Fpk2bGhMnTjS2bNlSeCk+fsTnsbF582ajRo0a1hjXrl1rrFy50hrbwIEDOSSi4Lgo8O+//xqHHXaY0bdvX6N9+/bljo/zR3jFwvHAOSQ0ov3Y4BwS3cfF4sWLzcm9jXXr1nl8P8zPzy9zfJxDwicWjgXOH6ER7ccG54/YRmiLiNi+fbv1gfXpp59a93ft2mUkJSUZr776auE6P//8s7XO8uXLS93Otddea5x00kllvtbZZ59tXHzxxaU+7nK5jHr16hkPPvhg4TJzPCkpKcbLL79cYn3zA53QNr6PBfML07Rp03x+j4iPY8MMfevWrevxxeuHH36wxrd+/Xof3zUifVwMGjTIuPPOO43x48eXG8Rw/oi8aDweOIeER7QdG5xDovu4KAhjzDDfV5xDIisajwXOH+ERbccG54/YRnsERMTu3but65o1a1rXq1atUm5urlXqX8D8k+UmTZpo+fLlZW6nYBvefPvtt/riiy/Uq1evUtf5/fffrT9JKP7a1apVU7du3cp8bcT3sWC2QzD/PKZjx4568MEHlZeX5+M7RqweG9nZ2UpOTpbTWXRqNf+EqaAlA+x/XDzzzDPasGGDxo8f79NYOH9EXrQeD5xDQi/ajg3OIbHx3cJslWH+CbPZKslsn1EWziGRFa3HAueP0Iu2Y4PzR2xLjPQAEH9cLpduvPFGq6dk27ZtrWXmB5EZdhzaKzYjI6PUHi9myDJv3jy99957JR5r1KiRduzYYQVpd999t6644opSx1OwffO1fH1txPexMGLECB1zzDHWSdh87TFjxmjLli2aOnWqn3sAsXRsnHzyyRo1apQV4o8cOVL79+/X7bffbj1mHh+w93Fh9gYzf16ff/651aPSF5w/IitajwfOIaEXjccG55DoPi7MAGbmzJnq3LmzFaA89dRTOvHEE7VixQrrO6M3nEMiJ1qPBc4foReNxwbnj9hGaIuwMxt4r1mzpkKVZ+bzzzrrLKvCoW/fviUeN79Im5P/fPnll9YX68MPP9xqDD5nzhxdddVVhet98MEHSkhICHgciM9jwQzmCrRr1846iZvbMpvYp6SkBPxeEN3HRps2bfTcc89Zx4cZ5JvPMb9cm1+qilffwn7HRX5+vgYPHqwJEyaoZcuWXp/H+cN+ovV44BwSetF4bHAOie7vFq1atbIuBczJi3/77TdrotMXXniBc4jNROuxwPkj9KLx2OD8EeMi3Z8B8eW6664zGjVqZGzYsMFjudnQ21t/F7MBuDn5V3E//vij1Tdy7NixPr3mpEmTjJYtW1q39+zZY/WWLLgcOHDAahRuvva3337r8bwTTjjBaiZ+KHraBkcsHAsFzKb15vPMyadQcbFwbGzdutXYu3evNYGB0+k0XnnlFZ/fP8J/XJjPNbeRkJBQeHE4HIXLzNfg/GEvsXA8FOAcElyxcGxwDomN7xajR4+2JisycQ6xj1g4Fgpw/giuWDg2OH/EHkJbhIXZQNv8EGzQoIHxyy+/lHi8oLn3a6+9VrjMDMAObe5tnpjMD8FbbrnF59eeMGGC1bS9vObeDz30UOGy3bt3MxFZiMTSsVDgxRdftIK5f/75x+exID6ODXMm2bS0NL8mHED4jwtz8rjVq1d7XK655hqjVatW1u3iswcfOjbOH+EVS8dDAc4hwRGLxwbnkOj+btG7d29rotOyxsY5JHxi6VgowPkjOGLx2OD8ETsIbREW5hfaatWqGUuWLDG2bNlSeDF/e1Tg6quvtn5btWjRIuPrr782jjvuOOtSwPwyXKdOHWuG9+LbMGd3LPDYY48Zb7/9tvVha16eeuopo2rVqsYdd9xR5vimTJliVK9e3Zg/f7412/tZZ51lNG/e3MjMzCxc548//rB+w2WGO1WqVLFumxezmg7xcyx88cUXxrRp04zvvvvO+s2n+WXJHMuQIUM4DOL82DDNmDHDWLVqlbFu3TrrdSpVqmQ88sgjHBtRcFwcypcZ4X09Ljh/BE+0Hw+cQ0In2o8NE+eQ6D0uzO+Gb731llUdZ64/cuRI6xf6n3zySZnj4xwSPtF+LHD+CJ1oPzZMnD9iF6EtwnOgSV4vZquBAuaHzrXXXmvUqFHDqkwzf+NkftAV/1LsbRvFq+MeffRRo02bNtbz09PTjY4dOxr/93//Z1VGlMX8DdZdd91lZGRkWL+1OuWUU6zQpbihQ4d6ff3FixcHdV/Fumg/FsxArlu3btaJPTU11WjdurUxefJkIysrK+j7Kt5E+7FhuuSSS4yaNWsaycnJRrt27Yznn38+qPsoHoXruAg0iOH8EV7RfjxwDgmdaD82TJxDove4uP/++40WLVpY3w3N7wEnnniiFe6Uh3NI+ET7scD5I3Si/dgwcf6IXQ7zP5HuqwsAAAAAAAAAcGM6awAAAAAAAACwEUJbAAAAAAAAALARQlsAAAAAAAAAsBFCWwAAAAAAAACwEUJbAAAAAAAAALARQlsAAAAAAAAAsBFCWwAAAAAAAACwEUJbAAAAAAAAALARQlsAAAAAAAAAsBFCWwAAAMSdSy+9VA6Hw7okJSUpIyNDffr00ezZs+VyuXzezrPPPqvq1auHdKwAAACIP4S2AAAAiEunnnqqtmzZoo0bN+qDDz7QSSedpJEjR+r0009XXl5epIcHAACAOEZoCwAAgLiUkpKievXqqWHDhjrmmGM0duxYzZ8/3wpwzQpa09SpU3X00UercuXKaty4sa699lrt27fPemzJkiUaNmyYdu/eXVi1e/fdd1uPZWdna/To0da2zed269bNWh8AAADwBaEtAAAAcNDJJ5+s9u3b64033nB/WXY69eijj+rHH3/Uc889p0WLFunWW2+1HuvevbumT5+u9PR0q2LXvJhBren666/X8uXLNXfuXP3www8677zzrMre9evXs68BAABQLodhGEb5qwEAAACx1dN2165deuutt0o8dsEFF1hB608//VTisddee01XX321du7cad03K3JvvPFGa1sFNm3apMMOO8y6btCgQeHy3r17q2vXrpo8eXLI3hcAAABiQ2KkBwAAAADYiVnTYLY6MH3yySe67777tHbtWu3Zs8fqdZuVlaUDBw4oLS3N6/NXr16t/Px8tWzZ0mO52TKhVq1aYXkPAAAAiG6EtgAAAEAxP//8s5o3b25NUGZOSnbNNdfo3nvvVc2aNbV06VJdfvnlysnJKTW0NXveJiQkaNWqVdZ1cVWqVGFfAwAAoFyEtgAAAMBBZs9as1L2pptuskJXl8ulhx9+2Opta3rllVc89lVycrJVVVtcx44drWXbt29Xz5492bcAAADwG6EtAAAA4pLZrmDr1q1WwLpt2zZ9+OGHVisEs7p2yJAhWrNmjXJzczVjxgydccYZWrZsmWbOnOmxjWbNmlmVtQsXLrQmMDOrb822CBdddJG1DTPwNUPcHTt2WOu0a9dO//nPfyL2ngEAABAd3CUDAAAAQJwxQ9r69etbweupp56qxYsX69FHH9X8+fOttgZmCDt16lTdf//9atu2rebMmWOFusV1797dmphs0KBBqlOnjh544AFr+TPPPGOFtjfffLNatWqlAQMG6KuvvlKTJk0i9G4BAAAQTRyGOdMCAAAAAAAAAMAWqLQFAAAAAAAAABshtAUAAAAAAAAAGyG0BQAAAAAAAAAbIbQFAAAAAAAAABshtAUAAAAAAAAAGyG0BQAAAAAAAAAbIbQFAAAAAAAAABshtAUAAAAAAAAAGyG0BQAAAAAAAAAbIbQFAAAAAAAAABshtAUAAAAAAAAAGyG0BQAAAAAAAADZx/8DlvRcDoh6rqkAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1400x800 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 8. PLOT EQUITY CURVE\n",
"plt.figure(figsize=(14, 8))\n",
"plt.plot(df['timestamp'], df['equity'], label='Equity Curve', color='blue')\n",
"plt.fill_between(df['timestamp'], df['equity'], df['peak'], where=df['drawdown'] < 0, color='red', alpha=0.3, label='Drawdown')\n",
"plt.title('Equity Curve - Long-Only + 10-Min Cooldown (20 Contracts)')\n",
"plt.ylabel('Equity ($)')\n",
"plt.xlabel('Date')\n",
"plt.legend()\n",
"plt.grid(True)\n",
"plt.tight_layout()\n",
"# plt.savefig('/Users/kumar.ghosh/kgtest/lemaske/backtest_es_long_only_cooldown_equity_curve05nov2025.png', dpi=150)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "db4d7527",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "pyvenv_lemaske",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.7"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment