Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save kumrzz/be27017a393a147b4561519764560569 to your computer and use it in GitHub Desktop.

Select an option

Save kumrzz/be27017a393a147b4561519764560569 to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "ef45c721",
"metadata": {},
"outputs": [],
"source": [
"# %pip install pandas matplotlib numpy\n",
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from datetime import datetime"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f06ff118",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>timestamp</th>\n",
" <th>open</th>\n",
" <th>high</th>\n",
" <th>low</th>\n",
" <th>close</th>\n",
" <th>Volume</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2022-11-05 00:00:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2022-11-05 00:01:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2022-11-05 00:02:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2022-11-05 00:03:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2022-11-05 00:04:00+00:00</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>3766.331</td>\n",
" <td>0.00</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578235</th>\n",
" <td>2025-11-04 23:55:00+00:00</td>\n",
" <td>6766.648</td>\n",
" <td>6766.648</td>\n",
" <td>6765.942</td>\n",
" <td>6766.145</td>\n",
" <td>0.02</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578236</th>\n",
" <td>2025-11-04 23:56:00+00:00</td>\n",
" <td>6765.942</td>\n",
" <td>6766.445</td>\n",
" <td>6765.654</td>\n",
" <td>6765.951</td>\n",
" <td>0.03</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578237</th>\n",
" <td>2025-11-04 23:57:00+00:00</td>\n",
" <td>6765.639</td>\n",
" <td>6766.499</td>\n",
" <td>6765.639</td>\n",
" <td>6766.345</td>\n",
" <td>0.02</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578238</th>\n",
" <td>2025-11-04 23:58:00+00:00</td>\n",
" <td>6766.445</td>\n",
" <td>6766.654</td>\n",
" <td>6766.142</td>\n",
" <td>6766.445</td>\n",
" <td>0.02</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1578239</th>\n",
" <td>2025-11-04 23:59:00+00:00</td>\n",
" <td>6766.339</td>\n",
" <td>6766.339</td>\n",
" <td>6765.136</td>\n",
" <td>6765.499</td>\n",
" <td>0.02</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>1578240 rows × 6 columns</p>\n",
"</div>"
],
"text/plain": [
" timestamp open high low close \\\n",
"0 2022-11-05 00:00:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"1 2022-11-05 00:01:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"2 2022-11-05 00:02:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"3 2022-11-05 00:03:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"4 2022-11-05 00:04:00+00:00 3766.331 3766.331 3766.331 3766.331 \n",
"... ... ... ... ... ... \n",
"1578235 2025-11-04 23:55:00+00:00 6766.648 6766.648 6765.942 6766.145 \n",
"1578236 2025-11-04 23:56:00+00:00 6765.942 6766.445 6765.654 6765.951 \n",
"1578237 2025-11-04 23:57:00+00:00 6765.639 6766.499 6765.639 6766.345 \n",
"1578238 2025-11-04 23:58:00+00:00 6766.445 6766.654 6766.142 6766.445 \n",
"1578239 2025-11-04 23:59:00+00:00 6766.339 6766.339 6765.136 6765.499 \n",
"\n",
" Volume \n",
"0 0.00 \n",
"1 0.00 \n",
"2 0.00 \n",
"3 0.00 \n",
"4 0.00 \n",
"... ... \n",
"1578235 0.02 \n",
"1578236 0.03 \n",
"1578237 0.02 \n",
"1578238 0.02 \n",
"1578239 0.02 \n",
"\n",
"[1578240 rows x 6 columns]"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 1. LOAD 1-MINUTE DATA (CSV format)\n",
"# Expected columns: ['Local time', 'Open', 'High', 'Low', 'Close']\n",
"# Example: \"2025-06-01 00:00:00,5890.1,5890.5,5889.8,5890.0\"\n",
"df = pd.read_csv(\"/Users/kumar.ghosh/kgtest/lemaske/USA500.IDXUSD_Candlestick_1_M_BID_05.11.2022-04.11.2025.csv\", parse_dates=['Local time'])\n",
"df.rename(columns={'Local time':'timestamp','Open':'open','High':'high','Low':'low','Close':'close'}, inplace=True)\n",
"# 1-minute timestamps for one month\n",
"df['timestamp'] = pd.to_datetime(df['timestamp'], dayfirst=True, utc=True)\n",
"df = df.sort_values('timestamp').reset_index(drop=True)\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "85a6165f",
"metadata": {},
"outputs": [],
"source": [
"# 2. STRATEGY PARAMETERS\n",
"initial_capital = 100_000\n",
"contract_size = 20\n",
"contract_value = 50 # $50 per point\n",
"risk_per_trade = None # Fixed size, not risk-based\n",
"\n",
"ema_fast = 50\n",
"ema_slow = 100\n",
"bb_period = 20\n",
"bb_mult = 2.0\n",
"rsi_period = 14\n",
"rsi_oversold = 35\n",
"atr_period = 14\n",
"atr_mult = 3\n",
"cooldown_bars = 10 # 10 minutes"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "11d0b57a",
"metadata": {},
"outputs": [],
"source": [
"# 3. INDICATOR CALCULATIONS\n",
"df['ema_fast'] = df['close'].ewm(span=ema_fast, adjust=False).mean()\n",
"df['ema_slow'] = df['close'].ewm(span=ema_slow, adjust=False).mean()\n",
"df['basis'] = df['close'].rolling(bb_period).mean()\n",
"df['dev'] = df['close'].rolling(bb_period).std()\n",
"df['upper'] = df['basis'] + bb_mult * df['dev']\n",
"df['lower'] = df['basis'] - bb_mult * df['dev']\n",
"\n",
"# RSI\n",
"delta = df['close'].diff()\n",
"gain = delta.where(delta > 0, 0)\n",
"loss = -delta.where(delta < 0, 0)\n",
"avg_gain = gain.rolling(rsi_period).mean()\n",
"avg_loss = loss.rolling(rsi_period).mean()\n",
"rs = avg_gain / avg_loss\n",
"df['rsi'] = 100 - (100 / (1 + rs))\n",
"\n",
"# ATR\n",
"high_low = df['high'] - df['low']\n",
"high_close = np.abs(df['high'] - df['close'].shift())\n",
"low_close = np.abs(df['low'] - df['close'].shift())\n",
"tr = pd.concat([high_low, high_close, low_close], axis=1).max(axis=1)\n",
"df['atr'] = tr.rolling(atr_period).mean()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "6a98f0cd",
"metadata": {},
"outputs": [],
"source": [
"# Drop NaN\n",
"df = df.dropna().reset_index(drop=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "3e5fdc18",
"metadata": {},
"outputs": [],
"source": [
"# 4. BACKTEST ENGINE\n",
"equity = initial_capital\n",
"peak_equity = initial_capital\n",
"trades = []\n",
"in_position = False\n",
"entry_price = 0\n",
"stop_price = 0\n",
"target_price = 0\n",
"cooldown_until = -1 # bar index\n",
"current_bar = 0\n",
"\n",
"for i, row in df.iterrows():\n",
" close = row['close']\n",
" upper = row['upper']\n",
" lower = row['lower']\n",
" rsi = row['rsi']\n",
" atr = row['atr']\n",
" timestamp = row['timestamp']\n",
"\n",
" # Update cooldown\n",
" if cooldown_until >= i:\n",
" can_trade = False\n",
" else:\n",
" can_trade = True\n",
"\n",
" # Exit conditions\n",
" if in_position:\n",
" # Hit stop?\n",
" if row['low'] <= stop_price:\n",
" exit_price = stop_price\n",
" pnl_points = exit_price - entry_price\n",
" pnl_dollar = pnl_points * contract_value * contract_size\n",
" equity += pnl_dollar\n",
" trades.append({\n",
" 'entry_time': entry_time,\n",
" 'exit_time': timestamp,\n",
" 'entry': entry_price,\n",
" 'exit': exit_price,\n",
" 'pnl_points': pnl_points,\n",
" 'pnl_dollar': pnl_dollar,\n",
" 'type': 'STOP'\n",
" })\n",
" in_position = False\n",
" cooldown_until = i + cooldown_bars\n",
" continue\n",
"\n",
" # Hit target (upper band)?\n",
" if row['high'] >= target_price:\n",
" exit_price = target_price\n",
" pnl_points = exit_price - entry_price\n",
" pnl_dollar = pnl_points * contract_value * contract_size\n",
" equity += pnl_dollar\n",
" trades.append({\n",
" 'entry_time': entry_time,\n",
" 'exit_time': timestamp,\n",
" 'entry': entry_price,\n",
" 'exit': exit_price,\n",
" 'pnl_points': pnl_points,\n",
" 'pnl_dollar': pnl_dollar,\n",
" 'type': 'TARGET'\n",
" })\n",
" in_position = False\n",
" cooldown_until = i + cooldown_bars\n",
" continue\n",
"\n",
" # Close at upper band (if touched)\n",
" if close >= upper:\n",
" exit_price = close\n",
" pnl_points = exit_price - entry_price\n",
" pnl_dollar = pnl_points * contract_value * contract_size\n",
" equity += pnl_dollar\n",
" trades.append({\n",
" 'entry_time': entry_time,\n",
" 'exit_time': timestamp,\n",
" 'entry': entry_price,\n",
" 'exit': exit_price,\n",
" 'pnl_points': pnl_points,\n",
" 'pnl_dollar': pnl_dollar,\n",
" 'type': 'BAND_EXIT'\n",
" })\n",
" in_position = False\n",
" cooldown_until = i + cooldown_bars\n",
" continue\n",
"\n",
" # Entry condition (long only)\n",
" if not in_position and can_trade:\n",
" trend_up = row['ema_fast'] > row['ema_slow']\n",
" buy_signal = (close < lower) and (rsi < rsi_oversold) and trend_up\n",
"\n",
" if buy_signal:\n",
" entry_price = close\n",
" stop_price = entry_price - atr_mult * atr\n",
" target_price = upper\n",
" entry_time = timestamp\n",
" in_position = True\n",
"\n",
" # Track equity\n",
" df.at[i, 'equity'] = equity\n",
" if equity > peak_equity:\n",
" peak_equity = equity"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "5d7b9f06",
"metadata": {},
"outputs": [],
"source": [
"# 5. PERFORMANCE METRICS\n",
"trades_df = pd.DataFrame(trades)\n",
"total_trades = len(trades_df)\n",
"win_trades = len(trades_df[trades_df['pnl_dollar'] > 0])\n",
"win_rate = win_trades / total_trades * 100 if total_trades > 0 else 0\n",
"avg_win = trades_df[trades_df['pnl_dollar'] > 0]['pnl_dollar'].mean() if win_trades > 0 else 0\n",
"avg_loss = trades_df[trades_df['pnl_dollar'] < 0]['pnl_dollar'].mean() if (total_trades - win_trades) > 0 else 0\n",
"profit_factor = abs(avg_win * win_trades / (avg_loss * (total_trades - win_trades))) if avg_loss != 0 else float('inf')\n",
"\n",
"final_equity = equity\n",
"net_profit = final_equity - initial_capital\n",
"return_pct = net_profit / initial_capital * 100\n",
"\n",
"# Drawdown\n",
"df['peak'] = df['equity'].cummax()\n",
"df['drawdown'] = df['equity'] - df['peak']\n",
"max_dd = df['drawdown'].min()\n",
"\n",
"# Sharpe (daily returns)\n",
"df['daily_return'] = df['equity'].pct_change(fill_method=None)\n",
"daily_vol = df['daily_return'].std()\n",
"sharpe = (df['daily_return'].mean() / daily_vol) * np.sqrt(252 * 390) if daily_vol > 0 else 0 # 390 min/day"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "29ec5ff3",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"============================================================\n",
" LONG-ONLY + 10-MIN COOLDOWN BACKTEST\n",
"============================================================\n",
"Initial Capital: $100,000\n",
"Final Equity: $1,506,886\n",
"Net Profit: $1,406,886 (1,406.9%)\n",
"Total Trades: 6898\n",
"Win Rate: 48.7%\n",
"Avg Win: $3,934\n",
"Avg Loss: $-3,341\n",
"Profit Factor: 1.12\n",
"Max Drawdown: $237,908\n",
"Sharpe Ratio: 0.00\n",
"============================================================\n"
]
}
],
"source": [
"# 6. PRINT SUMMARY\n",
"print(\"=\"*60)\n",
"print(\" LONG-ONLY + 10-MIN COOLDOWN BACKTEST\")\n",
"print(\"=\"*60)\n",
"print(f\"Initial Capital: ${initial_capital:,.0f}\")\n",
"print(f\"Final Equity: ${final_equity:,.0f}\")\n",
"print(f\"Net Profit: ${net_profit:,.0f} ({return_pct:,.1f}%)\")\n",
"print(f\"Total Trades: {total_trades}\")\n",
"print(f\"Win Rate: {win_rate:.1f}%\")\n",
"print(f\"Avg Win: ${avg_win:,.0f}\")\n",
"print(f\"Avg Loss: ${avg_loss:,.0f}\")\n",
"print(f\"Profit Factor: {profit_factor:.2f}\")\n",
"print(f\"Max Drawdown: ${-max_dd:,.0f}\")\n",
"print(f\"Sharpe Ratio: {sharpe:.2f}\")\n",
"print(\"=\"*60)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "39278772",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABW0AAAMWCAYAAACKoqSLAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QWYVHUXx/HfdrFLd4cISBsIKgKCigp2YQt2dyt2KzYm2B3oK4qCYoGKAgoqSnfHAtsx73PuZWpntmCT/X6eZ5jb9z/33hl2zpx7/hEej8cjAAAAAAAAAECVEFnZDQAAAAAAAAAA+BG0BQAAAAAAAIAqhKAtAAAAAAAAAFQhBG0BAAAAAAAAoAohaAsAAAAAAAAAVQhBWwAAAAAAAACoQgjaAgAAAAAAAEAVQtAWAAAAAAAAAKoQgrYAAAAAAAAAUIUQtAUAYDcUERGh0aNHV3YzUIONHz/euQ6XLFlS2U2pluy42fGz41jTPpdsGVu2unnooYfUqVMn5efnV3ZTUEqnnHKKTjrpJI4bAKBKIWgLAEA5BqwKe/z8888VetynTZvmBEK2bNlSLtv/+OOPNXToUDVo0ECxsbFq1qyZ8wX4m2++UU0517/99puqo5ycHD355JPad999lZycrFq1ajnDNs3m7Y5Wr16tG2+8UQMHDnRes52/qVOnFvn+OfDAA5WYmKgmTZro8ssv1/bt20u0L28AMjIyUsuXLw+Zv3XrViUkJDjLXHrppaoINfn9Wl7sPD744IO64YYbnHNtNm7cqIcfflj9+/dXw4YNVadOHe2///569913w24jKyvLWd/Oh10Tffr00ddff12qdth1fNxxxznXqZ3bRo0aadiwYfroo49UniZOnFjpPxTed999+uSTT3ZqXTvuH374of74448ybxcAADuLoC0AAOXorrvu0uuvvx7y6NChQ7ke94yMDN16661BQac777yzzIO2Ho9H55xzjhMkWLt2ra6++mqNHTtWl1xyiRYtWqRDDjnE2TeqprS0NA0ZMkRXXHGFE+R54IEHnCCTBY1sms2zZXY3//77rxNgW7lypbp161bksrNnz3au4/T0dD322GMaNWqUXnjhBZ144oml2mdcXJzefvvtkOmFBdNat27tvI/POOMMlRXer+XnlVdeUW5urk499VTftOnTp+uWW25RvXr1nM/je++91wn8W1bnHXfcEbKNs88+27nGTjvtND3xxBOKiorSEUccoR9//LFEbbBt2g8Rc+fO1QUXXOB8Fl933XXODwzHH3+83nrrLZVn0Nb+j6muQdtevXppn3320aOPPlrm7QIAYKd5AABAmRs3bpzH/pudMWNGlTi6Dz/8sNOexYsXl8t2r7zySk9+fn7I/Ndee83zyy+/7PJ+bNvp6emeqqiqnevSOP/88522P/XUUyHznn76aWfehRdeuEvHpayvuUC2fdtPaW3dutWzceNGZ/j99993tvPtt9+GXXbo0KGepk2belJTU33TXnzxRWedSZMmFbuvO+64w1n2uOOO8/Ts2TNk/pAhQzzHH3+8s8wll1ziKU8V9X4tjO3bjkdJj1l10r17d8/pp58eNG3RokWeJUuWBE2z4z5o0CBPXFycZ/v27b7pdtztNds58srIyPC0b9/e07dv32L3772OTzjhBE92dnbI/C+//NLz2WefecqLXbslPWc5OTmerKysMm9DUlKS56yzztrp9R955BFnG9u2bSvTdgEAsLPItAUAoJJZ9qtlWNWuXdu5ffass85ysvsK1rMcMGCA8yjI1m3Tpk2htSPt2bKtTNu2bX0lGqxm5sEHH6wePXqEbdeee+6pww47rNB2Wxbg/fff79RwfOSRR8LWoLQswf3228/XjnDLhKt9aq/nqKOO0qRJk5zsJ7tV+Pnnn1fXrl2dTLKCrIZk8+bNdcIJJwRNGzNmjPbaay/Fx8ercePGTvbZ5s2bVRlmzZrl3JKekpLilCCw7M2CZTK8x+Knn35yspbtluqkpCQde+yxWr9+fdCy9vrsmFpWrGXv2XH5+++/nWNn10RxVqxYoZdfflmDBg0Ke1u+ZUvbNl966SVnWS/vbfyW0WbnwzJI7Rh/+eWXRe7Prmu7HT9cyYVDDz3Uud4qipVEsOzHktzybrenn3766c558zrzzDOdc/jee++VeJ8jRoxw3tfz5s3zTVuzZo1TksDmlaSmrZ1X269lCB9zzDHOsF0j1157rfLy8orcf2nfr8ay5S2j2I6VXWN2a//nn38est66des0cuRI5z1m7zX7THn11VdLdFwsi9TKcdh67du3d97n4VgW69133+0sY9ecXec333yzU1LAy94z9evXdzKKvS677DLntVq5Dy+7K8CmPffcc76SAjZu59OyYVu0aOG0x96jCxYsKPY1LF68WH/++acGDx4cNN0+by1jOpDtx86dtduOr9cHH3zgZNaef/75vmnWBjuulrEbrrRGoNtuu805T5bxGxMTEzLfPsvtM7U058x7Ddr1Ytnl3mNv52vGjBlB1+Uzzzzje33eR8Ft2Oexdxv2WZWdna3bb79de++9t/P/n33WHXTQQfr2229D2m+fd5Z9bJnx1l677g8//HBfWRrbh90VYK/Bu3/v5+C2bdt05ZVXOteM7dtKRthdBDNnzgzah/fOgtKWpAAAoLwQtAUAoBylpqZqw4YNQQ+rc+hlwYWjjz7aKZlggaF77rnHCZBZgKusWOkC7y27jz/+uK9Eg33ptSCNBRvsdtpA9oX8v//+c9pUVLBl06ZNTsDJgg3lcQu7tdu+SNuX9Z49e+rkk0/W999/7wS7CrZl1apVzm3HXhagtWD1AQcc4KxvZRzefPNNJ3hR0bVa//rrLycYYfUSr7/+eifAYoEeC8L/8ssvIctboMmWtdudL7roIn322WchgdWbbrrJuR3ZgtpW0mCPPfZwXltJyxl88cUXTqDPApCFsXkWLCsYkLXjffHFFzvH2zpfyszMdG6/Dry2C7JrzeZbID6QN3BZ1LVWWebMmeO8fjvGgaxWqF2PFogvKatrasHAwFvUrbapBV6PPPLIEm/HzpmdZwtOWiDMfnixW7otqFaU0r5fLbDZr18/53zZubZgpp3n4cOHOzVxA4PBdh3bZ4rd1m/XogXgLGBm77vijq8F7C2AaD9A2HvUrvnA7XtZWQoL8PXu3dv5HLPXbUHowPe8vcfsNdr7zeuHH35waszac+A07zkJZOVBbN8WBLf3l/2oYq+pON4SMNa2kvB+ftmPGF52LXXs2DHoxwHjDaJbwL8w8+fPd34MsGCw/SBRnNKeM7tmbRn7TLX/oywQa/+veD9Hbbp9TpvAMkCBxo0bp6eeesoJStv1agFm+1HEfhSytli5ErsG7Mcpu74Lvl4LMFvgtWXLls6yVpPagrfeH75sfxaQtWvAu39rl7nwwgudAL19Rj377LPO+bUfAv/555+gfXTp0sWZbj+aAQBQJex0ji4AACj21vBwD7st1uuTTz5xpj300EO+abm5uZ6DDjoo5Nbvgw8+2HkUZLeDtm7dusjbkAsrj7BlyxZPfHy854Ybbgiafvnllzu3iQbevlvQE0884Wzz448/LtGVUNgtz+Fuo7fXY9Pslt5A//77b9jb+S+++GJPrVq1fCUUfvjhB2e5N998M2g521646eVdHuGYY47xxMbGehYuXOibtmrVKk9ycrKnf//+IdsaPHhw0O3rV111lScqKso5X2bNmjWe6OhoZ7uBRo8e7axfkluE7RZ5W3bWrFmFLjNz5kxnmauvvto3zcbttSxYsMA37Y8//gg5LwXPa15enqdFixaek08+OWgfjz32mCciIsK5lbyiyiMEKqo8gnfe999/HzLvxBNP9DRp0qTE1/369es91157radDhw6+efvuu6/nnHPO8b2WwPIIdtwKvj47rzbtrrvuCtpHr169PHvvvXeR7Sjt+9V7fdh7yctuG2/btq2nTZs2zvk0Y8aMcZZ74403fMvZ7fl2S7+9J60URWGfS3b92ufP0qVLfdP+/vtv51oP/KyYPXu2Mz5q1KigNtrxtOnffPONM75u3Tpn/Nlnn3XG7f0SGRnpnKvGjRsHfb7Vq1fP9x6zc2/rde7cOei2fe8xmzNnTpHH6tZbb3WWK8lt9VaWo1GjRs5nfKC99trLKZtQ0F9//eVse+zYsYVuc8KECc4yjz/+uKckSnrOvNdg/fr1PZs2bQrZX2C5hcLKI3i3kZKS4pyfQPZ/XcEyCZs3b3bO1bnnnuubZufXtmHnraDAz8nCyiPUrl27xKVHOnbs6JREAQCgKiDTFgCAcmS3jNqtloEPy3AM7LwlOjrayab0siw4y7SsCJZdZZm+1kGS95Ziy+SzDEDL2rLbVQtjWVKmJJldO8NuLS5YnsEy0SzDMbD3dWuv3VpsPaRblpR5//33nddm2V+BWc52G65lNoa7/ba8WPu++uor53i2a9fON71p06ZO1qNlQHqPpZdlowXevm7ZY7adpUuXOuNTpkxxMkAtAzJQaa4bu2W4uPPnnVewfXYbuN3m7NW9e3cnQzDwdu+CLNvRsvo+/fRT376NZT9bRqed76JYR2AFs9aNdbIUOK0sy19YRqKxDL6CLMvPO7+k7Hzb7faWye59DlcaoTiWORjIro+ijv3OvF/ts8myPA888EDfNHvv2LVpmZZ2e7t3OevELrADLrs9//LLL3fOzXfffRd2+3Y9WxavvS9atWrlm965c+eQ973tw1v+INA111zjPHtLNtjdA1b+wbLxjWVM2uepZdxb5rBlpHozbe11FSwRYZm+lkUdeFxNccfWMsjtc9yOT1HsFn97D1hJHMs6DWTXUmHXmXd+WZ7b0pwzu8Ohbt26pT4ugSzL1c5PIDs33uNtx8aypL2Z7YGlCz788EPnXIXrvC1cmY+CrOyQ3dFgd2MUx16n97MFAIDKVqODtvYHnX3Bs1pw9h/+zvQ2al9w7dY0+xJpf2hZPT27fQwAAGNBDwtwBT4Ca7JaEM6CdwW/7FdkfU+7BX7ZsmW+W4YnT57sBDiK67XeextvYACuLBUWxLMAggVjrK6ntx6l3V5t070sOGOlKax2oQUKAh8WlLDlC2PBEbt9OfCxK+x2Xws4hjunFqCyYEXBepWBQSzjDZh4A5Le4G2HDh2ClrNbjgODKxYYK/harI5kYICnqPNXWGC3YPu8bSwuYGrXmh1f7+3vVgLj999/L/ZaM1aGoeC59AaqA6dZL/BlxfsjQGDdVC8rFeCdb8e04HEOV2PW2mZBRbvd3ILVFjizmsKl4a3nWdpjX9r3q11jhV2z3vneZyvNYUH5opYL976wa8HWLajgfm0btv2C17sdPwvIBe7DAorezzJ7tgCgPey9YeMW4LTSI97AY2ned7vKrlUrNWIlAQrWErdrqbDrzDu/LM9tac5ZWRyXwj7PrQat/ehj17WV/LBr24Lw9vnttXDhQuf7WknqUBf22WElgKy0gv2fbGUYCgs423e7kgSCAQCoCDU6aGs13+wPJm/h/J1xxRVXOH94WeDWaklZ9khgBw4AAJSVwr5IFtcBUXEsq806o3njjTeccXu2YEjBTnUKsuCTty5lebS/sCCFBWfti7Vl0xrrPMiyaq1TGi8LhFrAtmCWs/dx1113FdpOy+K1QHrgo6IVVnM0sIOlkrBgcMHX4q2/6Q3QWE3jwnjnWa3HsmifbceynQOvNcu0O+mkk4p9LRbwLXgejWVRBk6zYGhZ8Z771atXh8yzaRZIMnZMCx7nwjqOssxau8YscGvXcsHAWXF2tn50ad+vVVFJgmmWQWs/6FhQzoK0Fpy19Wy6jdu5ss+HcEHbnb2uLdhoGaJFBU2t/rTVU7W6ueF+pLBrprDrzHivtco4t2XxeRTu89ze/1ZH17L2rVNEC2jbe9h+yLBzVFbs88WuB8tutuNo9Xmt88TAu168LBAdWGsYAIDKFK0azHpwtkdh7NfuW265xbll1G5jsh6SrfC9t+duK15vRe3tl1tvRkBxt/YBABDIeha3W90t+zMw29YyEAuy7KZw2UGFZbKVNNhhX8gtkGS91Nv/c3bnyXnnnVdscMiCINYm+3/SenEvbnlvdpb9n2rZcaVpfyD7v9Z+ILXAl3XO9dFHHzm3WAfeWmxBAMsYtk7IispQKyyIXZa9h1vmWGJiYthzaj/4WtDOMsBKw9sjvd1iH/i3h92mHZj9ZsH3gq/Fm+FnfwPZObMOewrrjOy1115zbvsODIjvKtuX3eZuwSgLXFonXIHZwYWx0hKB5SUCA8HF/cCws+xvP3v91kN9YGDZMmutoyTvNDumBY+zHftw7L1mHWrZ6y/YWVN5Ku371a6xwq5Z73zvswX3LcgWGIAuuFy494W9N70lCwIV3K9tw7Zvy3p/bDB2R4B9ngTuwxuMtfNh5Seswypvp2P2d7sF7azsi/14UFa8QVPrXNCyRguyBBHL7rSOtG644Yaw27CyL1a2xTKBAzsj83ZUaPMLY3f82XeRCRMmOB2JFVemYWfPWVF2JjvVytrYe9o+wwPXL1gGwT7PrZSGlU8oKtu2qDZYUNzKydjD7rSwTuPs7sjA74IWeLcfW6yzPQAAqoIanWlbHPsiOH36dL3zzjvOHzYnnnii86XF+8el9eRsf2j873//c74wtWnTxunZ1v6gAACgJI444gjni6IFEwIzTwvWO/R+cbUv1XZbsZfd5luSnq69tWktwBGOZX5ZsM9627YA8umnn17sNi0QaQEI+xHTnsNlXVkm1a+//uprv/HWm/Te9WK3x5aWZShar+GvvPKKU38wsDSCsWCaHce77747ZF073oUdB++X+4IlLXaFBccOPfRQJ6BitUADA04WtLRgWsEe44tzyCGHOMHEwOvGPP3000HjdstxwdfiDZBaoNhqeFpwu+B2zNixY/XNN984vba3aNFCZcXqaFpwxe5Wsh8hSnKtVRbL4LZjZtdxYBalBVvtfWJ/Gxo7pgWPs7cWaUH2PhgzZozuv//+Cr07q7TvV/tssmH7Wzjw/frCCy84f/N6s69tOSsHEVhn2t5j9hlmwcODDz640PeF/UBiPxJZeRYva58F6ALZPowdt0CPPfaY82yBfy/7m9zKlT3++OPKyclxfrjxBnPtNnsLFO6///7O+6es9O3b13m24H5BdlysVqzVsvW2N5wTTjjB+cyy4xuYQDJu3Dj16dOn2B92LJPXfrSx7yJ2/Auyutr2nWVXztmu/B8TjveHg8Br0YLUgdectx6uLWOvsaDAda0NBfdvxzSw1IKxuzAseF+wHIXVabZyFFZjGwCAqqBGZ9oWxf54tD+S7Nl7O9K1117r3LZj0++77z7ni4ZlB9ntmZaJYn8UXHXVVc4fXfYlBwAAu/3Sm70UyL4U2g9/VlvdggqWDWYBPQuEWNZRwS+Z5txzz3W+9FugwwJpli1kgTW7zbNgR1EFebPK7A6SU045xel0xvbt/aJttTYtq9D+T7NMNstCKgm7Nf2vv/7So48+6mSJ2f+BlmFoAQELxljQx3s7vgUurTaitd3Wsy/sFnS1jLvAoE1JWFDW/l+2h2VeFQysWtDBAtAWGLOMSNu3vWb74dVeo2WjWVvLkr0W+zuhIAtO3nPPPU7mnwVoLdPLAkbPP/+8EzSweoulZeUsbLt23C0rzH5UtgC+XW92a29Js94ssGXXp7XJ2u7NqLWgmQWZ7TjaPsqSnW/bj50Hy7gODLhVJDsnxq5fbyDWOoUzt956q285y8az96sdC+uEa8WKFc4xsWtqZzOQ7dxVhtK8X+0zybJyLRPRgo72PrMfWCyb1DqG8mZo2jGxa9luc7f6xBbQtcCo/ZhkQdaiOseyIJxddxZQtWvQGzi0z7TAsh2WyXzWWWc5AU0Lytm5sLZaeyzLPrBOuLHtWdJFt27dfD9S2Geafd79999/O9X5W1Hss9w+P+0HEPuc9rI2Wma5lU+wH1oKlu7w/j9gLDBrPwLcdNNNzme71e+112f/L1jpgOLYD1dWHsGu11mzZjk/jljGrAVy7RjbHR32I9GunrPi/o+xa8X+j7LPd/u/pihHHXWU8//dscce63wO2LVl/6fZ/4P2o4iXnV/7YfHJJ590PsPtfWdZwlbuwuZZoo23DXYO7P9J+/5mAXzLQLYfnexat+vIgtK2jGVhF/xss89o+3HDOrAEAKBK8MBhh+Ljjz/2HY3//e9/zrSkpKSgR3R0tOekk05yljnvvPOcZf7991/fer///rszbd68eRxZAKjBxo0b5/x/UNjD5ntt3LjRc8YZZ3hSUlI8tWvXdoZnzZoVspx54403PO3atfPExsZ6evbs6Zk0aZLnrLPO8rRu3TpoOVv3jjvuCJp29913e5o3b+6JjIx05i9evDho/kMPPeRMv++++0r9ej/44APPoYce6qlXr57zf2XTpk09J598smfq1KlBy9n/k3369HHa36pVK89jjz3mO1aB7bHXc+SRRxa5zwMOOMBZb9SoUYUu88ILL3j23ntvT0JCgic5OdnTrVs3z/XXX+9ZtWqVp6LO9fLly53lZs6c6TnssMM8tWrV8iQmJnoGDhzomTZtWthtzZgxI2j6t99+60y3Z6/c3FzPbbfd5mnSpInz+gYNGuT5559/PPXr1/dceOGFJW5/VlaW5/HHH3eOk/2tY23r3bu3Z8yYMZ7s7OyQ5a0dl1xySch0O2d2LRZ8LQWvM/Pee+85884//3zPrgj3HinNuoU9Cvrhhx88/fr188THx3saNmzovP6tW7eWaD/2PrRtrl+/vtj2BB5XO24FX58dXztHhe2jrN+vCxcu9JxwwgmeOnXqOK99v/32c/5GLmjt2rWec845x9OgQQPnvW3vs3DnJdzn0nfffedce7aefbaNHTs27OvJycnx3HnnnZ62bdt6YmJiPC1btvTcdNNNnszMzJD9PPPMM876F110UdD0wYMHO9OnTJkS9v31/vvvB00Pdw4KY59l9t5OT0/fqf8HTEZGhufaa6913tNxcXGefffd1/Pll196SsNe29FHH+1p1KiRc27teh02bJhnwoQJpT5n3tf/8MMPF3su7fPosssuc/YXERHhO39FbSM/P9/5/8Y+O+z19urVy7m+wv2fZtu3bXTq1Mlpr+1n6NChzv8pXvb9q3///s7noe3TtmOfb9ddd52nR48ezv8B9v6x4WeffTakPfZ/0+mnn16q4w0AQHmKsH8qO3BcFVhGivVkbL/WG7tdyG5jsmyEgjW/7Bday0qwekuWcWu3XnlZL7j2C63dgsSvtACAnWXZVZYlZHd3WDZURbDsU7tjxPZdsLdwVA+WhWiZhZZFalnVVZVl8drfXFYqI1yHUEB1Y3dHWNasZc7b3QSoXuyODMvGnjlzZpH1gwEAqEjUtC2E3SZq5Q68tycFPrwdS9jtrHYbl9XH8rJbrna2gD8AAJXFfsO1W3DttmMCttWD/VBckLfmp7fT1KrqxRdfdAJcVi4C2B1Y/ePrr79eDz/8sHPrPqqXBx54wCmhQMAWAFCV1OiatlYryXpd9rI6SvYrq9Xssl5YLdPW6lBZvSML4lrHL1YPynqFtbpLVj/PfpG12lX2Jcn+QLvkkkucDFtbHwCAqs46Fvr000+d+pZWD9EyIFE92F1B48ePdzoVsruArB6r1SC1WqvezpeqGm/nrp9//rmT2b0zPc4DVZV18GYPVD/22QQAQFVTo4O21sNrYMcFV199tfNsHR3YlyC7JdVuL7zmmmu0cuVKp2MP623WiuYb64Dhs88+02WXXab+/fs7nRtYZw1l3WEHAADlxX6QtE55rEOom2++2enUCtWD/YhsHZrZ7djWEZ23czJvB1tVkXWOZAFmu33cOp4CAAAAEB41bQEAAAAAAACgCqGmLQAAAAAAAABUIQRtAQAAAAAAAKAKqXE1ba2zsFWrVik5OZnOLwAAAAAAAABUGI/Ho23btqlZs2ZOf1mFqXFBWwvYtmzZsrKbAQAAAAAAAKCGWr58uVq0aFHo/BoXtLUMW++BSUlJqezmoBzk5OToq6++0qGHHqqYmBiOcQ3GtQCuDfCZAf4PAX9fgL87wXcQVAV8P4XX1q1bnYRSb4yyMDUuaBsREeE8W8CWoO3u+0GYmJjonF+CtjUb1wK4NsBnBvg/BPx9Af7uBN9BUBXw/RSFxSgLQ0dkAAAAAAAAAFCFELQFAAAAAAAAgCqEoC0AAAAAAAAAVCE1rqZtSeXl5Tn1RlD92HmLjo5WZmamcx7Lg9XKjYqKKpdtAwAAAAAAoGYjaFuAx+PRmjVrtGXLlso5IyiTc9ikSRMtX7682KLOu6JOnTrOfspzHwAAAAAAAKh5CNoW4A3YNmrUSImJiQTkqqH8/Hxt375dtWrVUmRkZLkEhdPT07Vu3TpnvGnTpmW+DwAAAAAAANRcBG0D2K303oBt/fr1K++sYJeDttnZ2YqPjy+XoK1JSEhwni1wa9cLpRIAAAAAAABQVuiILIC3hq1l2ALF8V4n1D4GAAAAAABAWSJoGwY1SlESXCcAAAAAAADY7YK233//vYYNG6ZmzZo5AbBPPvmk2HWysrJ0yy23qHXr1oqLi1ObNm30yiuvVEh7AQAAAAAAAGC3DtqmpaWpR48eeuaZZ0q8zkknnaQpU6bo5Zdf1r///qu3335be+65Z7m2E37jx49XnTp1OCQAAAAAAADA7hi0HTp0qO655x4de+yxJVr+yy+/1HfffaeJEydq8ODBTpZt3759dcABB6imO/vss51s5YKPww8/vEz3c/LJJ+u///7zjY8ePVo9e/Ysk217PB698MIL6tOnj2rVquUEh/fZZx+NGTNG6enpZbIPAAAAAAAAoKqLVjXy6aefOkG8hx56SK+//rqSkpI0fPhw3X333UpISCi0nII9vLZu3errPKpgB1I2boHD/Px851GdWLsPO+ywkFIRVkKiLF+LbS9wm7ZfUxb7OOOMM/Txxx875S+efPJJNWzYUH/88Ycz3KpVKx1zzDEl2o63Td5zmZ2drdjYWJU127btw66bqKioMt8+dp33PU5nceDaAJ8Z4P8QlBX+vgDXBfiMAP9/YFeUNEYR4fFGuCqZZYVawK6owJxljU6dOtXJsr399tu1YcMGXXzxxRo4cKDGjRsXdh3LBL3zzjtDpr/11ltKTEwMmhYdHa0mTZqoZcuW5RLkK092HFJTU/Xmm28WuszChQt12WWXaebMmU6W8v3336/jjjtOb7zxho488kj9+OOPTo3hJUuWqHbt2s46c+bMUf/+/Z3gqQVO7bjddNNNWrp0qTN8ySWXBO3DSl1MmzZN69ev17vvvht0QXbp0sU5bxacLcjO/bnnnuu0/4gjjgiaZ5eoBdutTUcddZS6devmtN3rtNNOc+Y9++yzznj37t2dfdjrtaxsW2fBggVOVnbgtWDXT+fOnZ1aypatbcF9y/z+8MMPnWNp8+z6OfDAA8MeTwsGL1++XGvWrFFubm4JzhIAAAAAAABqsvT0dI0YMcKJPaWkpOwembaW2WjBXQvseYOKjz32mE444QQnYBcu29YCjFdffbVv3IJ/FpQ99NBDQw5MZmamE4SzW/Pj4+OdaRbSrqw78y2mHBFRsmVjYmKcoHNhJ9uOnZVQaNy4saZPn+5cGN7jYsfN1vMGsZOTk33bsWxmY8fEptlxsXNgw2eddZYTGJ00aZK++uorZzk7LxY0HTBggFOzuGnTpr6gbEZGhrOObasgm2+1iU855ZSw7feeb3uNFlAPfJ02zV6/d1pkZKSeeuop3XbbbU4WtrE2Pvzww871Yu03lq1tneDZjwE27fzzz9c///zj1Em26RbMtWvLAtZ77LFHSJvserFjZ0Ft7/WCqsV+LPj66681ZMgQ5xoBuDbAZwb4PwT8fQH+7gTfQVAZ+H6KglUAilOtgrYWAGzevLkvgGcsG9IyMVesWBE2sOa9nb8gC+AUDOLk5eU5wTsL+tnDpKVJRQS9y9X27RY0Ldmy1u7PP/88JGh78803O4/Jkydr3rx5TvDSApLmvvvuc+oKe1+v9zUXHA6cFjhuAV0L8FrQ1LtNY5mpFoC14Pr111/vTHv11Vd14oknFhpUtkxYW8e7/eJea+By3vq9gdMskHrNNdf4pll93KuuusrJAj7ooIOcaRacPfXUU53SBsuWLXM6WbNn72u57rrrnONlbbdjVZBt2/Yb7lpC1cI5AtcG+MwA/4eAvy/A353gOwiqAr6fIqaEMaRqFbS1W9jff/99bd++3ZetaZ1iWfCsRYsWqumsTMRzzz0XNK1evXrOs2WQWoZxYHDVygWUl1GjRjmdilnQdu3atfriiy/0zTffFLp8WVfpKNg5mtXHtexqCyRb0Hbx4sVOxvHzzz/vKwNhQfuOHTsGrWclE+rXr1+mbQMAAAAAAACqbNDWgq+WYellgbTZs2c7gUarn2qlDVauXKnXXnvNmW/1Hux293POOcepTWo1SS0b0mqhFtYR2a6yigGW8VoZCpTcLZZlvnbo0GGn9+fNSg0MoO5sB05nnnmmbrzxRicwatmtbdu29WW4hmPBUssELkkbCwZ4w7XRW9YhkNW+vfzyy53SCVaP12rj2sN7LVrG7e+//x7SqVi4cg4AAAAAAABAeSn+XvRy9Ntvv6lXr17Ow1iNVRu2zqrM6tWrndvVA4NnVp9yy5Yt2meffZwgnHWc9eSTT5ZbG638qcX/KuNR0nq2JWFlJKxerx1Tr59//jkkG9UELmNB9KJYfVnLUC3IslOtUznrIM7KDligvSgWkLes6QkTJoTMsyCt1eD1tjGwfbbvuXPnqiSOPvpopw7tl19+6QRt7frxsuvOtrVu3Ton8B34sM7pAAAAAAAAgBqRaWudVRV1W7wF+wrq1KmTE7hFKLuVf82aNUHTrN5sgwYNNHjwYCeb1ToCsw65rOjxLbfcErSsBSithMLo0aN17733OkHURx99tMhD3aZNG1+GtJWosBq33hrCViLhqKOOcoKhtt+inHTSSU5nZFZj9tZbb3VKGViA1soWPP7447rsssucIPCgQYOc4L7V723fvr3TsZgF8UvCsm9tG9ZBmZWLsH152bGxIK5lCNtrtiDu+vXrNWXKFKdjtSOPPLJE+wAAAAAAAACqdaYtypZlkFpnbYEP6xTMW1bAgqIZGRnab7/9nICqBWYLFkK2zrmsTIEFKh988EHdc889Re7z+OOP1+GHH+7U07Ugq63vZYFia8Nhhx0WVEs3HOvQy7JfLQj7ySef6OCDD3baYAFky5C1bRgrhWEBYAuu2jLt2rVz9l1SFpj9448/nFINVoIjkGUF23atAzPrFM0CvDNmzAhZDgAAAAAAAChP1aojMqjIrORwmcmBLJv0hx9+KLaztz///DNoWmA29Nlnn+08vCyr9oMPPgi7rbS0NG3evFkjR44s0amzwPKFF17oPApjgeVnn33WeRRm0aJFTiZxOEOHDi00u9u2bbWS7QEAAAAAAABUFoK2KHP5+flOJ3FWZqBOnToaPnw4RxkAAAAAAAAoIYK2KHPWeVzbtm2dGreW/Wt1dQEAAAAAAACUDNG0Gq6ojuB2lnVOVh7bBQAAAAAAAGoCOiIDAAAAAAAAgCqEoC0AAAAAAAAAVCEEbQEAAAAAAACgCqGmLQAAAAAAAIByc+ml0vIluTrr+DQdd2SWFBfnzti0yXq0l7p2lerX5wwEIGgLAAAAAAAAoNw884wbhvz089ry1G8gnXqq1LCh9Npr0oYN0pAh0tixBG4DUB4BAAAAAAAAQLnIzy8wYfNmaeNGKTtbWrtW2r5dWrpUSkvjDAQg07akMjLci6mixMZKCQnaXUydOlUDBw7U5s2bVadOncpuDgAAAAAAACpAXl6YiTExbuwLhSJoW9KA7YQJ7i8BFaVuXenoo0scuD377LP16quvOsPR0dGqV6+eunfvrlNPPdWZFxlJUjUAAAAAAAAq1oIFHPGdQdC2JCzD1gK2FkCNj1e5y8x092f7LUW27eGHH65x48YpLy9Pa9eu1ZdffqkrrrhCH3zwgT799FMnmFtQTk6OYuzXDQAAAAAAAKCMdenCId0ZpF+WhgVsk5LK/7GTgeG4uDg1adJEzZs3V+/evXXzzTdrwoQJ+uKLLzR+/HhnmYiICD333HMaPny4kpKSdO+99zpB3pEjR6pt27ZKSEjQnnvuqSeeeMK33blz5zqZuuvXr3fGN23a5IyfcsopvmXuueceHXjggb7xiRMnqmPHjs72rCzCkiVLQtr74Ycfaq+99nLa3aZNGz366KO+eU8//bS6Ws+BO3zyySdO28daUeodBg8erFtvvdUZHj16tHr27KnXX39d7dq1U6tWrZws423btu3UsQQAAAAAAMDOs1BQ27bB01pFLOOQlhBB293coEGD1KNHD3300Ue+aRbgPPbYYzVnzhyde+65ys/PV4sWLfT+++/r77//1u233+4EfN977z1neQus1q9fX999950z/sMPPwSNGxseMGCAM7x8+XIdd9xxGjZsmGbPnq1Ro0bpxhtvDGrX77//rpNOOskJ/Fo7rE233XabL7h88MEHO23xBopt+w0aNHBq43ozhKdPn+7bp1m4cKET3LWs4nfeeUfff/+9HnjggXI8ugAAAAAAAAhn5kw3cBtojacxB6uECNrWAJ06dQrKdB0xYoTOOeccX0aqlUe48847tc8++zjZtqeddpoz3xu0tQzX/v37+wKm9mzzs7KyNG/ePCeAOm3aNCfQaiyTt3379k7mrGXt2vasrm6gxx57TIcccogTqLWMXJt/6aWX6uGHH3bmW5at1eX1BoZtn9dcc41v/Ndff3X2269fP982LfhsQV9b16affvrpmjJlSrkfXwAAAAAAAAQLV42zU/QCbVUKh6oECNrWAB6Pxwm8ellwtqBnnnlGe++9txo2bKhatWrphRde0LJl/pR1C8h6g7YWOLUMXm8gd8aMGU4A9YADDnDm//PPP+rTp0/Q9vv27Rs0bst4l/ey8fnz5zvlGgIDxVu2bHGybi+++GJfoNjasO+++yoxMdG3vpVYSE5O9o03bdpU69at24UjBwAAAAAAgJ2xIy8vyJ+5eylTFdBf1G6AoG0NYAFSy6D1slq2gayUwLXXXuvUtf3qq6+ckgaWSZttHaHtYGUILHBqQVV7tvq1Ns2CqhZAtUBwYAC1LHi3b+UYevXqpZSUFF8g1/bpzez1KtihmgV+LfsWAAAAAAAAFeuHH8JPn62enIoSIGi7m/vmm2+cmrHHH398ocv89NNPTjkBy2S14GiHDh2c+rCBunXrprp16zodjlmHX5aNa0FVC55aEDWwtmznzp2d8gWBfv7556BxW8b2W7AdViohKioqqK6t1dr1bt+eJ0+e7CwbuE8AAAAAAABUfRs89Su7CdUCQdvdiJUOWLNmjVauXKmZM2fqvvvu09FHH62jjjpKZ555ZqHr7bHHHvrtt980adIk/ffff06dWSt5EMhbruDNN9/0BUu7d+/u7NPqxgZmvV544YVORu51112nf//9V2+99ZavgzEvq09r6919993OPl999VU9/fTTTsavl23fAsW2fmDQ1jobs/0WLK8AAAAAAACAymP5ec2bSwf2ywuafv5xG3TJaVuc4Vc9hceo4EfQtjQyM6W0tPJ/2H52wpdffunUcbXarocffri+/fZbPfnkk5owYYIvezWcCy64QMcdd5xOPvlkpxbtxo0bnazbgiwwa/VmvQHUyMhIJ5BrAd3AAKp1bvbhhx86wdUePXpo7NixTgA5UO/evZ2Ozqw0g3Ucdvvtt+uuu+4K6rDMtnvQQQc5z1aOwRvItTIJVo6hYJkHAAAAAAAAVA6PR7LwzapV0k/T/XGox+7cpuc/bKCXP3A7IPtKh0pFxKngit7xjKLExkp160qbN0sZGRVzrGx/tt8SskzWgtmshXVKVlBcXJzGjRvnPALdf//9QeNXXnml8whkgdlwLLvXHoGsTm4gK9lQVNmGcNu3QPGmTZtClhs9erTzCHTFFVfoqquuKnL7AAAAAAAA2HXp6eGn9x/khh8zs/y5o57YOEVw0ItE0LYkEhKko4+WAjrmKncWsLX9AgAAAAAAAJVoyhTp66+lPfeUzjlxu2Sd0UcG38C/enXwOg/fsF5KSVHzDqHxrbzYBIKSxSBoW1IWQCWICgAAAAAAgBpYq/bBB93h7G9n64IrE6X27d0JWVnOU+ZKK3ngdjLWr+N6XXtTrFQ7zreNIw/L0eeTYpzhDbl11KTCX0X1QtAWAAAAAAAAQKGWLvUPX/j6gbpg4QHS8OFueu0770g5OVqcMVjSu27AMcf6awou++kN2JpZW9pqaJPFHPEi0BEZAAAAAAAAgELNnl1gwsKFTqBWW7ZIa9dKmzbpfxmDfLNrxedaJ0pBq/TbP883nBlF5/LFIWgLAAAAAAAAoFDJyQUmREW5Qdlo/038K9XcN/z5Q39J8fFBq3wxKUpRUR5nuG49uiErDkHbMPLz84s9cADXCQAAAAAAqAkKJM2GdEJmztE453nvmD+lWrVC5qekSG2a5yhC+Vq1PaXc2rq7oKZtgNjYWEVGRmrVqlVq2LChMx4RQeS/OgZTs7OzlZmZ6ZzPsubxeJztr1+/3tm+XScAAAAAAADlYd48aeRIKTk6XV++uEKqUyc0mrqjM7AQgfPXrXMzZOvXD56/Y91NmyP0xLMxiovI1hXXxylpRwWDnO1Z+uqrRsHbte0UsI9+05eRR6hho2gp7qawzYmNjZBHkfpjVUONaF2ao1DzELQNYAG4tm3bavXq1U7gFtWTBVUzMjKUkJBQrkH3xMREtWrVqlwCwwAAAAAAoOaaO9etI9u6tfTEE9K0aTY1Uerf3w2Yrl/vliY49VSpWTNp/HhpxQq3JIEFYi3BzGoanHyytG2b9OqrUnq6O82CtBb4bd9e6tdP+u47adkyfbz1BN2V9qSz/+FfnqCup3TVw1N66fofjw5q2zWJz4XNtH1PJ+n6/Id14pbP9V4hr6t/vxy1jVisVg0z9Pof3ZSWc65O9byu2uVxEKs5grYFWNakBeJyc3OVl+cvkIzqIycnR99//7369++vmBh/z4RlKSoqStHR0WRiAwAAAACAMnfBBd5AbbDX1x2mM6LeknJz3Y7A1qyR6tZ1OwMzmZk6LfMleRSh0an3q+P27dLGjW7g1mzZoo91jB7JuE77bvtbYzr/Ki1d6qw/yuMGbM1/S+PUdft2rdoUXJfWPJtxtq7LG6fGBabXVqraaaEax26RYpuEfV233pCrda//oSVZTXX868dKOlY36w5t0uG7crh2SwRtw7DsTAv2lVfAD+XLAqoWdI+Pj+ccAgAAAACAaidcwNac6XlVbT1LdaC+cydYtm2Bso1v6TTn+QDPDHWMiQzqLMzMVVdNUz/9ld5VI1JTpezl6uQJ3uHxmW9qeeYDGvP3YSFtyPAk6L+89iFB2/P1os6PHie16SbFvRa2/WOei9OjT58YNG2z6ilixq9as36FGrcq5IDUQNzXDQAAAAAAAFQTB+VN1e/qHXbejzrAN3xnTvi6sq/oXOc5NT9Ffd67Rn02faHj9UHIctvydxS1DSMlKi1k2hc6XJfljdEbm44odL3adSLUol6aUuJDa/DmxhW+v5qIoC0AAAAAAABQRWzaVPwyG9Qg7PQt8ndStl4FOg+zQK5u1xK1DZk+WUNCpmVGFR5EnZXVJWTaDO2rpz2XaHLGASHZv1633R2r5cuk1DWZIfMa7FG30P3VRARtAQAAAAAAgCpi5kz/8J4d8+XxuH2HtQ2ItXbR32HX3VczfMOJSgvpMGy07nSe+0VM0+yj7yiyHU/P2K/QeTkKLSl6kH7QrZH3aXiz39wO0QqTlCTVDu16zPpPgx9BWwAAAAAAAKCKeP99//B337uhO0tcnThR2muPLO0Vt0DNtCrsuo21TifpXWe4YeRGKaC/psP1hW94mqef1uTUL7IdaXnBgdcFLQfqoC4bnOEbN1wTsvxATdXdUaN1XOOfSvQ6//c/qUeXHPVss1n33xGaeVvT0REZAAAAAAAAUEU0bOgfbhzQ21enTtLcyWulE0ZIM/ILXX/tji7Clua3CgraTtLhQcsdPvFydeyQp/8WRAVNv27Qb8pOy9Wo4ev0zb/NtX5bgjP9q8z+Sm7mLhMbkbNrL9Lq4qZIJ5+QpzZpi3TqVR0kFZGdWwORaQsAAAAAAABUEVOn7tr6p+zItG0WtbboMgWS7r4tNPj6wAVLNOasWeraLl2PnznbNz1NSXr33oXaPOlXzdvrhF1rpKQpU6Sb74rXy5Nb7fK2dkdk2gIAAAAAAADlKD9fWrCgjn7/PUL77CNFFxGRmz9/1/blLZ2wKq9xkTu6/vRV2ufAHamzAZ6Z1U+Z/y6VEhI0drJlwLqW5TVXdm6kPv6unqK2DNTZBdbLU6TyPdGK9EQqOHc3vN69pZFn56pzIw8FbcMgaAsAAAAAAACUo1GjovTGGwc7w/Mmr9Ce3WJDe+Cy3sYkvfJYrD77Kk59D7Ab5EveO9ezukiX6FnfeL2o1ALlEQ7VYfrKN37J9Ulq1U5OR2fLlkmtW7vTn36/kf5bGBrMfWrTaRq1ca5G3d9ecRE36Ww9GTR/tEbrntzbdOE//9NzJWjv8OH2sNBkoxK/xpqEoC0AAAAAAABQjt54w1+h9M0Rn+uu7Bul7Gy3gO2IEdK2bbaQE7g9UtKRCQlS0/OktNukpCTfuukZEfpuS19J9TVUX/qmb/PUCgrYml/3uViKtmVdh+preRo3kSZPlrp2lVTbN69VKzd4a+6+LV8Lv1so5eTo1Z87BW0zpUmihvXfopi//vAFhJ/WJfpJB+hPdXcXio0jc7YMELQFAAAAAAAAKkjOlu1S9hZ3ZPVqaft2aeNGaYs77T2dqEkZh2vAN2k646bcoHW//iFex8x/whnOULyv666r8h4J2U/7xNU71b7b7o6V0ppIubk65n9pOvZ0N2h8/J5z1KZDbX36zArp+gel6CN09vfn6FUd4Fv3r5geanNwfyl+v53aN/zoiAwAAAAAAAAoQytXShER7uOphzKC5j2QfY0yA8seWMZqQO3ZGdpXr+hcTdvSJaQm7THnNfQNZ/pCttIkz5CQNpz77w3aku6WYfhLXTRd+2t9fv2SvQDL7q1dW8eclqQ77nAnJdeNCcqgzcqJ1Kvz/QFbs1wtlRgT2rkZSo9MWwAAAAAAAKAMtWjhH3796VRJCUHzE5TpDmRLHl0TNG+ovlD9iE3qdVCvoNIIBc1TJ+2/Y/j+qNt0Rt74oPnjVh2mrjOmadzkoZqrls60q9PG6sZNUfKHfot3yilSzz3S1Gr9Oim+qX7+I0FZG7vqp296hSx7eM7/tCrtejUtxfYRHkFbAAAAAAAAoIycemrw+IzlTYpeIaCzMDNTvfWtZ6AapBV9g3ysRXx3OCziK72pEdpSp632uv90DbioszP9mg/6Ba3zWPqF6vD1Kl3Uv4QvRtKsWdLYZ+PUq34L9T5HOvm6llq2+qFClx89c7ieL/nmUQjKIwAAAAAAAABl5J13SrlCvXpBo3PVVV/pUP23MbSUwT//SDecslSPJd6qNlrim/5k/qU6TW9pes7eOvjAvCJ3l5QcUarmLV8ufT8tWn+sbeKUR+jQOkedai0vdPkX/j4wpKwDSo+gLQAAAAAAAFAG2rQJnfbK/WuVvWGjHnrou/ArJSYGjZ6vF/R61Nk6pc/ikEU7dZLe/KaJrk6/R39pL9/0e/Jvdp7fSDtOio3VuWfl6uxhG0PWf7TevTrzlNLVnB0+XHrvPemOBxO1KT1e3/ycpHnb3XIL4RzRf3uRZR1QMgRtAQAAAAAAgDKwdGnotNzEZCklRR07btGjjwZnwX7d/sKQ5ftpuk6PfEu9W4cGXU3zRrlqGbVSMXKDr6mZAZ2amdq19fL4aI37tL7WrQuetcETnNVbEhYoPvFEacAAKT3dP/2APrnOc8sGGXr4Nqvb6xp9d1Sp94FQ5CoDAAAAAAAA5WTFSn/O5P77e4LmDa49Q1LXUm1vy/ZoLc9rrjWyWrkeffBvgfVr1fINNizQ49j9my/SJWtWqnkr7ZTataWRI3e0fXC02n2Wp5bJ6br25iRde0OaO4Ms2zJB0BYAAAAAAAAoAyefLL37rn+8VnyOOnXxB203Fkye3Ynar/8ucTNrL9RYLV74ua7+6/jgBYoJmt76aF2NC2hjaSQnSy+95B8/5RTLqg2tvYtdR3kEAAAAAAAAYBd5PMEBW/O/cRt06lmxvvFct6KAT8SvvyjisksV8fpraqeFOknvaqC+0dT8/srODR+2279XlvO8Vk109V870l53ePfm2SHLT50aPJ7SwN8eVF1k2gIAAAAAAAC7KCMjdFrTvYJryA4cGFweIdBitXMeZmreQF383l965qLQ5X6eVaCGbYCjzmkUMq1rV+mIw/O0dnmO7rkvUv0HE7StDsi0BQAAAAAAAMrQjz9KixZJbTvFFVm54KJB/xa6jdkrCxSkDeOQNguDxhM7NAtZpn596fMvovTb3HgdPjxWiYnFtx+Vj0xbAAAAAAAAYFeDbNHSTz+5w336SFFW7jWMe+6R5s7O1fKleWrbKk9RUR7l5UWELPfgpSskhWbOBlqU1kjTpklr1kidOnEKdycEbQEAAAAAAIBdtHmzdMAB7vD27YX3B3bLLVb/NlqRkdH6aUYXPflghi6/ISFkuQMPrxV2/UsukZ55xh3u2z1dffsmc+52Q5RHAAAAAAAAAHaRZdZ26OA+IkITZ0OcdXqezjomVcccW8jC8fFhJ++7r3/4gRu37GxzUcWRaQsAAAAAAADsovR0acMGN2BbXN1YW2b861Y/obYvM7dWwcTaQlJ1FwaUsd2YnayWnLndEkFbAAAAAAAAYBdMmSINHrzz61t89tYbc/XPzAy1ahetk0/e0YNYGPvt5x+uv0e9nd8pqjSCtgAAAAAAAMAuCAzYThjwuLRwuNS+fam2cff9FqYrvj7tUUdZTVzvWPgSCqj+qGkLAAAAAAAAlJGTv7tIWreO44ldQtAWAAAAAAAAKCOZHrJfsesI2gIAAAAAAAC7YOjQAhOiqUiKXcMVBAAAAAAAAJTSr79Kzzzj9hf2xRcFZjZqxPHELiFoCwAAAAAAAJTSI49I779fyMzGjTme2CUEbQEAAAAAAIBS2nNP/3CvdqlaurGWjjo6Sr16SYqnri12DUFbAAAAAAAAoJTuvtt9KDNTypIUlyPFR3EcUSYI2gIAAAAAAAA7y7JqyaxFGSNoCwAAAAAAAJTSxo3S5s1SQoLUvDmHD2Ursoy3BwAAAAAAAOz2xoyR9thDOvfcym4JdkcEbQEAAAAAAIBSiouTkpOlxEQOHcoe5REAAAAAAACAEpo9W5o/XzrqKOnWWzlsKB8EbQEAAAAAAIASeuwx6fXX3eHsFesUUydJSkri+KFMUR4BAAAAAAAACJCb6z48ntDD8scf/uF/Oh0r3XKLlJbG8UOZImgLAAAAAAAA7LBxoxQT4z4+eDlVWrdOSk11H+vW6dwTt/mO1RPbz3VrJViEF9hdgrbff/+9hg0bpmbNmikiIkKffPJJidf96aefFB0drZ49e5ZrGwEAAAAAAFBzBCbNnnRebbd47bPPSnffLfXsqYV3v+Wb/4pG6s+tbSqnoditVWrQNi0tTT169NAzzzxTqvW2bNmiM888U4cccki5tQ0AAAAAAAA1T+3aBSYsWybl5Ulbt0pr1mhGdveg2S+vOLRC24eaoVI7Ihs6dKjzKK0LL7xQI0aMUFRUVKmycwEAAAAAAICibN4cPD4l+yAdEhfn1kuQlKTg+rVPLjlaT0RT0xa7UdB2Z4wbN06LFi3SG2+8oXvuuafY5bOyspyH11b7VURSTk6O88Dux3teOb/gWgCfE+D/D/D3BPhbE3wHQUXiO0j1s2mTlJ4upaS4DzN5ckRQyGzw5veVmveELph8jt7xhL9bPCc21i6AQvfDtQGvksarqlXQdv78+brxxhv1ww8/OPVsS+L+++/XnXfeGTL9q6++UmJiYjm0ElXF119/XdlNQBXBtQCuDfCZAf4PAX9fgL87wXcQBDrmmKODxo87br7OPPNvZ/ijj6z8Qdug+e/U66J3/tun0IM4ceJEvp+iRNLtV4ISiPB4PB5VAdYR2ccff6xjjjkm7Py8vDztv//+GjlypFMewYwePdopjzB79uxSZdq2bNlSGzZsUIr3JxTsdr9YWJBuyJAhitlx6wJqJq4FcG2Azwzwfwj4+wL83Qm+gyCc2NiyixeMe3SdTrusbpHL8P0UgbHJBg0aKDU1tcjYZLXJtN22bZt+++03zZo1S5deeqkzLT8/XxZztqxby5wdNGhQyHpxcXHOoyAL5hHQ271xjsG1AD4nwP8f4O8J8Lcm+A6CysD30ZrjqH3X6OyRCb56t8Xh2kBMCa+VahO0tcjznDlzgqY9++yz+uabb/TBBx+obdvgtHUAAAAAAACgXCXVkuKqTXgN1UhkZe58+/btTmkDb3mDxYsXO8PLli1zxm+66SadeeaZbkMjI9W1a9egR6NGjRQfH+8MJyUlVeZLAQAAAAAAQDWQmys1axY87eXblxa6/N/TtihvU6rzaNsq1zd99FVb9NFXtaT4+PJsLmqoSg3aWrmDXr16OQ9z9dVXO8O33367M7569WpfABcAAAAAAAAoC6tWFZhQv7525A06usbN14OXrdCDD0otu9VRZN3azmPUOfm+Zfr3jyhpVQSg1Co1f3vAgAFOTdrCjB8/vsj1rSMyewAAAAAAAAAlERUlTZ8uZWZKLeqlq3aKR3Wa19Lsa/zLvNj+Ae1//lVS1xZB6948OlY3X5fmjiTV5oCj3FB0AwAAAAAAADVGRIS0//7esUTf9Isvlp56yh0+8r/HtFHLw2+AEp3Y3csjAAAAAAAAAFVB8+b+4U25taXY2MpsDmo4grYAAAAAAACo8ZKT/YdgZMfv6WAMlYqgLQAAAAAAABBgTUYdjgcqFUFbAAAAAAAA1Bjp6VLLlu5jy5bgeUcclus8t663TYqmKyhUHq4+AAAAAAAA1Bgej7RihX840EmnRqvHHtu0f6KHDsdQqQjaAgAAAAAAoMaIj5d+/z20jq056yxJx+RL32+ulLYBXpRHAAAAAAAAQI0RFSX17u0+ClZAGD9eGnhUkh76sH1lNQ9wELQFAAAAAAAAJC1ZIk39MVrztjWX4uI4Jqg0BG0BAAAAAABQI/zzj3TSSVJEhHTggaHzTzxRevdd6cIbart1FIBKQk1bAAAAAAAAVFu33y7l5Ejdu0s//uBR5/bZuvSaHVmy+flSVpaUkKB166QuXfzr/fSTlLs9U9G1/MHZvfZyH0BlI2gLAAAAAACAauvuuwPHIiTF6dJTVkoxMdLs2W7Ng8MP1+Z1da3rsaB1s5etUXSXNhXdZKBYBG0BAAAAAABQLW3aFH76Z3vdqGExX7ojtWpJn32mqIZ9Jd0ctFxklAV5gaqHoC0AAAAAAACqpe3bw08fnvq6titJSVFZbu2EFSvUIHlF0DJXD5yl+BYdK6ahQCnRERkAAAAAAACqpdRU//C2FQEjkp7WpUHjaZ5EDY36yjd+xo3NpaSk8m8ksBMI2gIAAAAAAKBa+vtv/3Ct5rWD5t2oB4PG12TU1hd5h/rGm3VKKf8GAjuJoC0AAAAAAACqpbS04PGlS4PHN6iBf9mcWDWMWK/6ERv193PfqV6z+ApqJVB6BG0BAAAAAABQLY0cGTzeqlXweMO8NZqS298ZPnjiDVrvaaiNnvrq3D5b0fT0hCqMoC0AAAAAAAB2G9dekR00/mDWlaELxcZWXIOAnUDQFgAAAAAAANVOdnBs1ufhMcEB2a9zB2lrXoEOx5o0KceWAbuOoC0AAAAAAACqnaws/3DbtkUv+9HWwb7hmKg8grao8gjaAgAAAAAAoNrJz1dwIDbAYw/mBI3PzurkGz62x2JR0BZVHSWXAQAAAAAAUO3MnesfPu4oC9JG+cavuj5GUfHSFVe440+sOUU3DfxZiorUJQ+0kpIKlEsAqhgybQEAAAAAAFDtvP66f/ikY4Mza83ll0ttWvnTce//dn/dP3k/rdlOwBZVH0FbAAAAAAAAVDsxMf7hvdqmh11m4MH+sglX9JuhKw6bp0ZN/Bm5QFVFeQQAAAAAAIAqYPNm97lWreCAJMJ7+mn/cGzD2mGXeeW1GL3ywCppyhTp4IOl+vWlpEQOKao8grYAAAAAAABVQIMGbudanz8wR0cctM2dWLu21LBh6MJxce7z0qXSTz9JLVtKCQlSTo4b8bXh2Fg3Elyvnju/4LpZWeEbEm5+Xp40Z44UFeVuOyJCat++ZOtu3y4tWya1bu22pbD9etcvOH/JEmnbNv9+W7TQsvUJdsT8y6xcGbY9H34o3XNnY3WuO1BvDU+mli2qDYK2AAAAAAAAVYJHUoT00EPSokQpPl6aNUuaN0/KzXWDsRbQbNxYOvlkKT1deu01KTtbio52H7ZM585Sp07S339Lv/7qBnJt/chIN/A5YoTk8bhFYW1dY8vY/EaNpDPOcKPHb7/trmfbtXELnPbuLfXqJc2Y4QZxbR1vu2yb1i6b9uab7vTERDfga+nDBx0k7bmn9PXXbi9iGRnuMhZcTkuTmjWTjjhC+vFHacECd3v2sDa0auVu24LUX3yhjVstQDvNf+hSU8Me0Y0bpdlzohTZpYG0I54MVAcEbQEAAAAAAKqAu65O1fzXpilzY5YUkeQGPC1IuX598IIWYLWA7dat0qZNbvapN8BpQdAuXaQ6daRVq9xAayAL0tr2bFkLlAaywKzN27LFHV+zxp1m2bXGgq8WnLXM39Wr3QzagmwdC/JaQNYe1kZrny1rGbOW8WtZtxs2hK5r2bLr1rmvuWAQ1l6n7Xf2bGeZldo3eH7dumGPqcWAJ02SkpPjpfjwxx2oigjaAgAAAAAAVAG3PlLHwox6VUfo7pkTdOshPxe+sGWn7mzhWwuqWtC2qG0XNb+4bXuDvIVtu7j1S2CsLvQNn3XQIqlps7DLtWjhPoDqJrKyGwAAAAAAAFBTWeLru+9Kb70VPP3leQdWVpOqvO1K0uc6yjc+/qVct5QEsBsh0xYAAAAAAKCSWDWBU04Jnb5kW30lPTJayrtNc9RV7bS4MppXJU1Tv+AJVi8X2M2QaQsAAAAAAFBJCpacDZSeG6d0T6I2qn5FNqnKyyxYnLZevcpqClBuCNoCAAAAAABUksaN/cP76lff8IO3+qO5y9WyoptVpcUpyzd8y1krKI2A3RJBWwAAAAAAgErSoIF/eIb2U7RydEbfBRp0eKxiY/LDZ5bWcPHK9A2fP2J7pbYFKC8EbQEAAAAAACrJ2rXSYQdn+MZzFaOnr1+mfQ6IU6+uOe4yCkjHrWH+VUf9qW5KzU92xv/e1tLJtF2vhvL0O0CtOiVWdhOBckFHZAAAAAAAAJVk5Upp0ncJQdPyo2Od502pUc7zMrVSTdVJ/zrPx237nz7UEu317dO+eRM23aDhldg2oDyRaQsAAAAAAFBJwvWhFV/LzbHbbx+3PMIKtVBN91H2UXr8mx5B046e92CltQcobwRtAQAAAAAAKkmbNqHTIuPdTNsWLaS96qxUSy1XTZGRG6ODt0zQwZqqZQU6YLv644NCV4jmJnLsnriyAQAAAAAAKsnPP4dOi6lby3k+5PBYLfsuTdt+T1FNke+J0Pe5/Zzh1lq2c6nKwG6ATFsAAAAAAIBKsn596LSIhHjn+auvpLd/76iXNErjdLZqgow8N8u4oGVjJyo72z1e3rIR992VI8W7xwrY3RC0BQAAAAAAqMRM286dC0xMSnKeunTxT7pU/g64dmfpeXFhpy+LbqeYGKlBA+mXGZHyeKSbboup8PYBFYXyCAAAAAAAAJVgyhTpvvv84998nqFIS6+rX98Z79/fPy9dbiB3dxcTkRt2eu3OzSq8LUBlImgLAAAAAABQCdasCR4f2CfdF7CtqeVat+UmhEy769zFatO9baW0B6gslEcAAAAAAACoBB06FJiQlRU0WreuqqWVGfX0s/povgq+wOJtzwktj3Dj+ZtUy+2bDagxCNoCAAAAAABUgk8+8Q/v23HLbpNa+/qyg9VXP+sO3VnqdVNzEkOmLdzszz4GagqCtgAAAAAAAJXg7bf9w489nC/Fx1fb8zBNfTVRQ7Uqs55u+vsMZ9rbGqFValqq7SRGZalTzILgiaTZogaipi0AAAAAAEAlWLrUP9y19TarYhuyzEsvSaNGucP5ilCkPKqKrtUjmq5+enzlS0HTX484U/080xSTH6H9C1l3sdposgarUW6qjm64SP+0OlwP51ypj3SshvVZr0699qiQ1wBUJWTaAgAAAAAAVLLcjJyw0/fZxz+8RXVUVVnA1tw8z82y9Zqmfuqv7zU8633fNI9H2qD6ulc3K0IetdNina8XdX/utb5lrmv1rqa/v1I3j9tDSkqqwFcCVA1k2gIAAAAAAFSylObJYafHxvqH05WketqsqiwjL7gjsUjlO8/r1Uib81JkfatleOLVUAtD1v0lfz8pOiBUlZhIwBY1Fpm2AAAAAAAAlejhY6cpNiV8Pds2bfzD2RHBAdHq4BPPMb7hfrOeVl5+hCakDyl0+WfnD1HEwgXq+NtbFdRCoGoiaAsAAAAAAFCJXv1lz0LnBfZNNls9y60Ns9RTp+otXZP/sG/a857zdavu1m+evYtdf2/9Vuwy89Jb65LPh2rEujGFLnPJj6c6z/MzWwanGQM1DEFbAAAAAACAStSsflZwWYAAERH+4eM9H5RbG1arqd7RqZroOdzXllc9Z+he3ao/PN2LXX+7ajnP1/X/ucjlnv8toEhvcWq52wRqIoK2AAAAAAAAlWDkSOmk43L15Kt1Sly7NVdR5dKW3+Vm085TZynK3cexEZ+og+brJx2gmZ5eRa7fUOvVVKs0tNcap6OxKy4O37FaqdSrt+vbAKopgrYAAAAAAAAVzAKbL78svfdRtDakJ5Z4vW6aUy7tmaWAoGxUlDZmJul6z0NaoD00znO2XvGcXeT6P6i/VsW21cC91jvjRxwdE7LMl+9sKXIb307Kdo6L9xFUGwKoYQjaAgAAAAAAVKIdia2FOvn4XN+wkwlbDobpM/9IQoKmr2kbNH+eOhW67kbVU4Q8isjO0g/zmzjTevcOXqZH+2067OQ6atkyePqT96cpI8MN0g44lBq2gBdBWwAAAAAAgErQt6/7aN266OVGXhBdeKHbMnKOxlvYVZ7kFCeKPGziRUHzG0duKHTdpfK/gKx8N8O2QYPgZT4dv8l5/vpr6Z57pBtukJYvly67MYmEWiCM8FWuAQAAAAAAUObee0/66y9p4EBp2rSSrdOsmco9aLtCzTVI3yguLUeTt38ZMr9e5BYpzx3+aWkLXbxyopppib7QEfpe/X3L7dc13Tf84ovS88/kqmPTrWq1T2Nn2p57SrfcUubNB3Y7ZNoCAAAAAABUkA8+kO66S/ru6+wSr7PXXtK777rDPSNmhwRt/5d/hF7OP0cLPO13ul236y7NV0fNzd9LD/x0UMj8N3NOUpbc8gXbsmP1Z05nfamhWqeGukpjfMulNIzzDY8aJc2YFa03J9ajPi1QSgRtAQAAAAAAKsiMX9x01R/eXSlt3Fji9Y49Vkp94V39kHBYyLwH8q/XKM+L+kV9drpdG+SvZzBm2n4h8zerrm+ZfZqt9k1vrHXBCyYl7XQbAPhRHgEAAAAAAKCCJMZ7nOcpC9tKacuk+vVLtF5MjBSTmCtFpDk5eNNWtNKLM3qoRX4z7R0xU7W0Xc21cqfbdY0e1WcaHjK9Y7sc/bfIrVPbQis1L+NE3T9pcOEbauyWQQCwawjaAgAAAAAAVIBLL5X+/s8NxSTGZEtx/lICpXX4u2drW3a8dWfmm3ZBxAs7vb3/1DFk2gn7LdW5NzbWEce5QVvzaerBWhWTXPiG2rbd6TYA8CNoCwAAAAAAUAGeecY//MDBX0rxB5d43V9/la6681DVz3xXnyaeqrQct75soOM8H2qLp5Fql7Jd2YrROzrFGe6YuFwPPxkvJSaqVZtG6rG/BYb91nsaqG5CRtjtTPtwtRTftJR7BxAONW0BAAAAAAAq2H0/9S/V8qtWSdPmN9RneUfqpewz1an++rDLWWdkufklD/d8o4Hqq+n6Roc447d3fFfDT0nU8FOT1LNvgtPnmZVm8IqPl2Kj8sNuK7pRvVK9JgCFI2gLAAAAAABQztKsFG2ANRl1pOiS3wDdrp1/+Lysp/X3hvC1Y/fJma5315Y8g9cybGdqb9/4fwk9QjoTu+oq//Dd80/RfUO+DdnOnM+WqOveO1/uAUAwgrYAAAAAAADlbOvWMBMLBEeL0rKlNLD7Bt9436aLC132/bUly+LdqmS9qPODpmVEhrbpvPP8w61rbdSrs3uELNO1b7ISEkq0WwAlQNAWAAAAAACgnK0vUM3grWe3lHr9talufdkb6r6gKS8sKnTZJZlNSrTNbIXWxb140LyQaR06SBsWb9Pqu1/S349M1MQFewTNnzh2mVS/fon2CaBkCNoCAAAAAACUs+3b/cN/zczSqRfVKdX6W7ZIfy+t5QxfUe91JdRP1DHD8tSwbo6ioz1By0ZFBo+Xxgf/dAk7feWqCH23tI0++6udpi9pFjRv6Cml7foMQHFKXjwFAAAAAAAARVq9OkkNGrjhltTUHcVs09IUnZOsyMh4p4RAl16lr/1q5RG8mi38QSvW/66PP42yEK0++ED67JM8vfamjUtX7vV1ibYZp6yQaQu3NAi77Dsfxer+lwaHTK+dnCfFUcsWKGsEbQEAAAAAAMpIfr7Vr41wR1aulMaPl157TWnZByg//xXVyV4r/b1R6hI+o7UwBasPZHn8pQ1OOMEeUcrPTNcbHybqh3WddIZWFbvNWgpI/93h3FPSwy7brlOsBvbLkjxuFm92XqTOvyRWRx4ZJcW7wWIAZYegLQAAAAAAQBlp1Chdf01ZrpgPP5A2D5GWLZNWrFCd/HkaqG/UQFuldXVKHbSNLVB+tnFrt75tkIgdVTCjo6UoN5CaoXjNUydFKU/dNce36IasZK1WV12qp/S0LvNN37dP+Eqao0bZg4xaoKIQtAUAAAAAACgjGRnROvGixorYPEI/nb5R3mqvvaL+1Dc6RKrTUIqbsEv76Fp3pZLqhQZQX381X68f/LScGgzr3CjvizpPV+hJZ9ijHRnAkt5YcqCu0ouhG6fUAVAlELQFAAAAAADYBb/8Iv3vf1L79hGKiIjQ3/9ZwLSx8qL95Qc+yT1Kl+oR9Uj9R5/v5H56ds/T7D+jtHBbQyl6Q8j82X9EaOaMblJMjLSpsbT5WF2he33z8xWhSLnlDa6afVb4ndSrt5OtA1CWCNoCAAAAAADsgt9+k+65RzriMI9OOlW6ZtRGxW1cp+R6Sb5lrsp+QCvVQiuzW0ixv+/Uftq0i9LsP6WM3Fgpyb9tr88nRevW1w4OmHJU0PyPdJz+VHdpzl4h6z5z03KNvLaeVK9A8VwAlYKgLQAAAAAAwC7o1k26dMQmdf5tvNas2UePvmSBz/q6cMQvarljmc2eOv4VUlJ2aj+nnSZt35qnlKj0sGUMOnSO0ZGD3c7CPp8SWvP2PZ2k93WS9Ffoti++0CMFBJkBVK7w1aUryPfff69hw4apWbNmzu0Dn3zySZHLf/TRRxoyZIgaNmyolJQU9e3bV5MmTaqw9gIAAAAAABTUv7/01Nm/67ztjyo2Ns83PWNrjm/4lOgP3WWTZ+500PaEE6Svp0Tpw6+SpfjQoOzJJ0v/+zpO/5scrz3a5YbMdwK2haGWLVClVGrQNi0tTT169NAzzzxT4iCvBW0nTpyo33//XQMHDnSCvrNmzSr3tgIAAAAAAIQzZ44UcegQxa5aqeXLU/R6zJl6u+Hlatg8VldPP1GnZI3X87kjnWVvbvtO2IBrWevQ3q1dG6iVljrPw/b8L3SFCmgTgGpSHmHo0KHOo6TGjBkTNH7fffdpwoQJ+uyzz9SrV69yaCEAAAAAANid3XGH9O670hknZOiWk+ZLzZpJ+fnB2adZWe5zWpq0davUurWUne2bP2NKhNU8cIZffbWLHoz+QDG1muiX5efp8Tn7Be3v/Q0DdFgFvK4vvo4JmXaVHlfbyKX6rslt0r/+6deesVaKq10BrQJQI2ra5ufna9u2bapXRM+GWVlZzsNrq324SsrJyXEe2P14zyvnF1wL4HMC/P8B/p4Af2uC7yAozl13ucHN5x7YoutfGCw1by5t2OAGZocNk6KjpcmTpb//lrZtk3Jzpbp13cDu8cdLtWvr66f6SDrC2c6mTQn6oNaJap2foRNu3DNkfxExUcqxbZRzTOK88yL14otRQdOu0hgpXxqZPdc3be5PG9Rx33pyWkOcpNzw/RReJY1XVeug7SOPPKLt27frpJMKr8ly//3368477wyZ/tVXXykxMbGcW4jK9PXXX3MCwLUAPifA/x/g7wnwtyb4DoIgqamx2rAhwRlu1y5VrVoN1LJlKerYP0cTr3gx/NHq0KHIo7i1bydpon98xPZXpe2FLDykqSb++GO5n5V//+0t+bpB86tTJ1MN+qfriv1mOuP/rFqpBRN3ZBaj3BGrQHp6eokOQoTH4wktclIJrCOyjz/+WMccc0yJln/rrbd03nnnOeURBg8eXKpM25YtW2rDhg1OZ2bYPX+xsA9Bq38cExN6OwhqDq4FcG2Azwzwfwj4+wL83YmCXnwxUpdc4magZm1OVVxdf1mA7IREyRK8LKjSqJF02WVurdexY6WFC4M3FBnp9vzVrJkmPfWfhqW+G7KvEcNS9dZnwWUH7tvnPV375SE73RlZSd10U6QefTQ409Zr3ROvqc5Fp5br/hGM76cIjE02aNBAqampRcYmq2Wm7TvvvKNRo0bp/fffLzJga+Li4pxHQRbMI6C3e+Mcg2sBfE6A/z/A3xPgb03wHQQFWYykReNsafNmxZx0pqRJ/u8OGRmWVSbZc2amWwLBct0sGcymFQzaWpmDvDz1yf1VQyIn6+v84BjFrddk6a3PgldbnNZUMVZyoZyTjK6/XurSJl2xi+bpjMct69bvv7UNdABJTpWCWAViSvjei6xuh+rtt9/WOeec4zwfeeSRld0cAAAAAABQjZx+urR87EQtT+ykiLlzdnl7PyxvozdyTtb+kTNC5nXuGaenngqe1qfdBlWEP/6QRl6WqBte7aynHgoOOGdHueUhAFRdlZppa/VoFyxY4BtfvHixZs+e7XQs1qpVK910001auXKlXnvtNV9JhLPOOktPPPGE+vTpozVr1jjTExISVLs2vRwCAAAAAIDS2b/zFv38T52dPmznTTxW/2Y3DD8zLk7nnedWWfDat23FBG2joqRatTxKSo5S/wHBlTE7tvaXkQRQNVVqpu1vv/2mXr16OQ9z9dVXO8O33367M7569WotW7bMt/wLL7yg3NxcXXLJJWratKnvccUVV1TaawAAAAAAANXXbactdp7jVaD8QQl1rB8+CHv1oNlOPdyCFRufm7GPKsKgQdK2bRH6b0msuu8b3IjmLavdjddAjVOpmbYDBgxQUf2gjR8/Pmh86tSpFdAqAAAAAABQU/TtvEWv3jZfEU88obytkQrfdVewmeql7Z4U7ZmRovdO/kgJ99wSskxCkj8w+u670oP3ZGv1ogy1bZEjWU3bytS0aeXuH0Cx+GkFAAAAAADUWGs2x+msu/fQmVufVo5K1kHQKL2kgz1TNXn1XoqKDJ+M1qKlf/ikk6Tff8jQqnFf6fonW0hJSapoUVEB7WzUqML3D6B0KvmnHQAAAAAAgIrz/vvSn+931u/b39MBub/riOxI9e2+XZo3TxHZhd8NHKiNlihdiUqJy1RMVH7YZRo295ck2LxZ2rwsQrUyU9SoEgK2xso0pKdLQ/daKsXvfA1fABWDoC0AAAAAAKgxRoyQcnP3lLSnvtg+RMfH/qTrz90o3f+S8taWpDiClKxt+k8dNXxKJ2mKOy0uOlf99s/Ttz+6wdp9B/iDs888I912W4pOO3gvvTFclaJ5M4/mL4hQl9ZpUnSDymkEgBIjaAsAAAAAAGqMTh3zNfdvt1rkqKS3FBPfTseOai1prJ5VhIblT1YLLShyGx5FyFOg4uQR+2/Wu9/U0cSJE3RERIRi9jrYNy8mxioieBTXoJab8loJPvo4UllbMtS4URspKbFS2gCg5KhpCwAAAAAAaoz3xqXpzUEv6bu4Q/Vi49vUpGmE+vbKcOZdrOc0Nb9/sdt4UpdrdUwr/XzlO75prdpEFLr8DTdI27dH6OUP6kjx8aoMXbtKex+YoBYdCdgC1QFBWwAAAAAAUGN03jNfIzrMUP+on5zxpIR8TftkvU6pN0n76leNzz1dbbVI1227vdBtjNTL6pEzQ3M2NlOLprnOtEMGejRrlnTJJYO0/9XFB34BoCiURwAAAAAAADXKY38O1uLsnjou40cN3DHt7Q63S7/+qoh8tzOyR9Iv1sN6OOz6H+l45/m9mblasdoNrfzxX4IO3iNCK1cma1utPCkup4JeDYDdEZm2AAAAAACgRvlwSW89nXuR/sju5JuWmpukaeqrdhGLnPHesXOLLWVwfN/V6rOPm2nbsEmUunTx6N57f9Bnn3sqrQwCgN0DmbYAAAAAAKDGuOjqeE1b094Z3i9hrqTBuuquOnp7zvtaq/qq7dkiT2SUtFcPKelSKT09ZBueiEipdm3pyHFK69BDfTpvVtfuiUpJkfbaa5P69nWzdQFgZxG0BQAAAAAANcY7H8U6zxHKV4eYpc7wc28kKyvH7UgsVXX0j6eTOpdwe1ffECOprjOck0NJBABlg/IIAAAAAACgxujY0Q3OehSpMannOMM3X50VtEw+4RIAlYygLQAAAAAAqBEsEbZXL//4Dxl7KzdXuv2GLKWfdLbmRXfVvKYD1UELitzOHZ7RujT9IS1cnVj+jQZQI1EeAQAAAAAA1Ah//SU9/7x//MeMfbRl+wylZEsbspJ1Vt7L+mV1H8UoW8MW/SA91UbKy9NH8y91lv9Ix2qqBuhJXSFlS6dsmya3Oi4AlC2CtgAAAAAAoMbK9MTpnfGxumzCU75pOYrVR6mHSLMLLKt4J2hrukb/o5bN8iq6uQBqCMojAAAAAACAGqFnT2naV9uDptVukqBb7okPWfaOPd/Rc/duUtOG/s7Fftb+ukN36sWoC/Rp3bPVunFmhbQbQM1D0BYAAAAAANQYA4cluc+N/9bbA55XfO04bd3qdk4W6NR2v+jCS6K0en2Mb9oitdMKtdBcz176NSegOC4AlDGCtgAAAAAAoMZo19bjPH+7touaJKQqxh+TDfLI/OEh09aqsa7Qk3oi/3KdsmWsFE3VSQDlg6AtAAAAAACoMf7+xx8K+d+Kns7z0KGhy2301HeCsvvv569bO0P7BS8UH1pWAQDKAkFbAAAAAABQo3Tr4gZip6zq7Dy//LJ03NHBnYp12jdZSkpS1+5RhW+oVq3ybSiAGougLQAAAAAAqFHOOydXB3ZYo0FtFjrZtE2bSh9+EqWZM/3L7NEj0XneZ5/gdd/Qac5zw/ityk6oXaHtBlBzUHwFAAAAAADUKJddG6fLRuRLP62XkvwditWpI408ebsi//tHQwc3daadcIK0Zo00erQUqyzNlltSYX1mimbPz9F+HSrtZQDYjRG0BQAAAAAANU9SUkhN2lmzpJffraVGSZ31QqNNzrT69aVzzpHar/lJkS+M1UX5T/tXoDwCgHJCeQQAAAAAAABJTZq4h2FdWi0982Yd3zFp2VI67YAlOjXiHXkU4Uyb885f2u+gOI4bgHJB0BYAAAAAAEBSv37SkUPdDsnWbHVr2pqVK6XIM05TZF6OXtIofdDkUrVs5QZvAaA8UB4BAAAAAADUKBkZ0tZ1EdLmWDXyaEfurOvue6N0xVVS27bhQyZHa4LikltLyRdWWHsB1DwEbQEAAAAAQI3ywQfSmWemSDpMeZtSg4K2vfz9kvk0bSqtf3WidP75is3KrsimAqihCNoCAAAAAIAaJyLC4w7EFV+XNipKSk7I1Vt5RyhdMRqR94vqln8TAdRgBG0BAAAAAECNcsYZ9vDm18YXu/z27VK3Sw/RktzhzviliySP5pZzKwHUZHREBgAAAAAAUIT8fGnJuqTgiSXI0AWAnUXQFgAAAAAAoAiJidKX983UxITjtUW1tX2/QfLEErQFUH4I2gIAAAAAABQhOlo6bJ+NWpDfTnWUqlq/fqOFS6k4CaD8ELQFAAAAAAAogXuzr/WP1KrFMQNQbgjaAgAAAAAAlMBaT2PnOSYyV217pHDMAJQbgrYAAAAAAADFyMmNULK2OsO3DJyuqCgOGYDyQwEWAAAAAACqsIwM6Y8/3OH993eHb7pJatowRy8/vNmdkZsrpaVJCQnueEyMFBERurG4HZ1nZWWF35nNL2qe2bJF2rZNatSo5Oua2Fhp40a3V6+CEU9bd+tWac0aKTlZqlev8G3n5Ejp6e4ymzb5X7O9XnvdXqmpUna21KKF/zWvW+cu36SJlJSkksrMlBKOGOwbP6Hbv5IOKvH6AFBaBG0BAAAAAKjCxo+XLr7YHZ770ERt2hSlL744TO2jVkofd3eDlRZEtSDkySdLdetKX30lLV/uBnItcGlBUpt+xhnusm+8IeXn+4OpDRpIrVpJnTtLn33mBji3b3e3bb1w2fxTT3XXff11f+DU9lm7thssHTZM+vtvae5cd13bvtV9tfnNm0v77ivNmOG2af58dxsWQLWo9IknupHRb79192nTPB53fQvyHnusG62ePt1dx9pn083xx7tBWJtny+TlufPtuWVL9zVv2CC99pobcG7cWDr8cGn0aLddJeA9VF61UrhxGUD5ImgLAAAAAEAV5g3YmtEPJ+rJwyZqfNuflbz4DzeI6mWBUgvQ2rTFi4PnWQDTslLtsXmzGyD1snUsgGqRyTp13GzXglFKW8a2b5mylsHqZQFY25YFhW09CxRbNquXzbNlbPt77CEtW+Zux7JqjQVnzerVboDW2mxZw/bwviYL0tp+V61yt2UPY8vafi24Gxnpbrtg29evd59tf95he7bAsh2HEgZtLa590bFr9NzHTTQqapxat8gr0XoAsLP4aQgAAAAAgGrig/UD1LRZhM5q8LmO08ehC1iWariyCF6WEVtUMdai5tm6lnVbmKLmedcvat2d3XZxrzk+3rfvJWqtMbmX6sW1w4tua5jdd22X7gy/lHdOqdYFgJ1B0BYAAAAAgGoiITJTM9c0U8xv09RAOzJHUWLz1ElX5T2i0StGlfqoXfJou5IFoAGgDFAeAQAAAACAKsqqGQR6seuTmrm+vXI90dqoBpXVrGqrqVZrROQ7qts4QYrtvPMb8nZ+BgDlhKAtAAAAAABV1LnnBo/HNG2g2VuaFLnOoq0NtDj3YNXTCvXS7PJtYDXTQ3/qzdhzpH2HSvFjdn5DVn8XAMoR5REAAAAAAKiiJkwIHn9gzpHalhPnG89XaC3X1//ro8EZn+kGPVgRTayZCNoCKGcEbQEAAAAAqILGjg2dNmtVYz3/2z6+8RyF1lZdnZ7iPH+tQ3W6Xi/fRtZQuZGxld0EALs5grYAAAAAAFRBF10UOq1Fk5xi10vN9tdbfVOnl3WzYJKTOQ4AyhVBWwAAAAAAqqCIApUPGtfP0fLVMerXJ88Z3y/qN8UpO2S9icu6Bo2/odPKt6E1UFSThpXdBAC7OYK2AAAAAABUQdddJw0Y4A7XScnTSy94nOEfp0cpf9LX+rnWkLDrDW3zT9D4GXpDx+ojPeMJk7qLnRKRTEdkAMoXQVsAAAAAAKqg336Tpk6VnnpK2pwapaOOc+uopqdLQ27srSFpH2u+OoSsN6jF/JBpn+hYXep5ukLavbt66bkcXXXaOk18Z6uUlFTZzQGwm4uu7AYAAAAAAIBQ3bpJeXlS69bB023alFn1JQ3QNoXWVh0YJmjrk5gobdzI4d4JIy+MkS5sxLEDUCHItAUAAAAAoIpm2n73nZSWFjw9IUEaOWytEiIy9KGOD1mvXe0igrJkiAJAtUDQFgAAAACAKqhlS6ljRym5QDJtTIw07vNGyvAk6D7dErJeVKRb+zasuLhyaCkAoKwRtAUAAAAAoAoaMkS64AI3cFtQfn5EkeseVWtq+Bm1a5dR6wAA5YmgLQAAAAAAVdB990nXXCPNnVv6dT9rc5k806Y76wfKiYovs/YBAMoPHZEBAAAAAFAFHX20tG6dWyahMB00X9mKUaxyws7v0iV4PD+xVhm3EgBQHgjaAgAAAABQBT36aPHLLNAe6qvp+l37hJ0/bJh/+OhuC/Xfxvo6dfIYJepG/ao+ZdhaAEBZImgLAAAAAEA1NlN7a7WaqKnWOOMTF3fWzHXt1fe3FB3SV9q6VUpJkSbMaa8JN7TfsVYrLVNLtdLySm07ACA8atoCAAAAAFDNPPNM8HgzrdZm1XGGP1vcVbetu0yTfnHHC5OnqPJsIgBgFxC0BQAAAACgCho6VOreXfrjj9B5F18cOm2bkp3ncX/v5zxn57s319aqJaWmSqmr0oKWn6TDyqXdAIBdR9AWAAAAAIAqaN48ac4cKT29ZMunaKvz3DIl1Xk+sG++8xwR4ZZHSGmapDff9C8/WYPLodUAgLJA0BYAAAAAgCpmwwapQwfpwAPd55KIVbbzvGp7ivP8y9ykkGVGjPAPf6gTyqi1AICyRtAWAAAAAIBKsHGjtHChtG5d6Lzp06XJk6Uff5T++iv8+ueeGzyeqXjned/mq5zn5Np85QeA6opPcAAAAAAAKsFDD7lZtDdfn+NGbr2P1FQ9cr+bNWvWLgquRev18stu4PfGkxc74/W1Sf9b0UNPD/9aP13wms45yy2PUJR0JZThKwIAlBWCtgAAAAAAlINVq6QHHpCefjr8/Lg49/nlV2P0ZNP7pbZtpT59pLvv1vfTY33LNU/ZVug+6tWTNm6N8Y0vTW+kfZ49R/1fPF3LV4b/yj9tmn/4bZ2qXEWV/sUBAMoVQVsAAAAAAMrB8uXSTTdJ99+Xr/w165S7yn1YJq097rp0nb46/wNn2dH5t7k9jlmk19JnA9RvmVjkfl78ooVveE12XeXlRygvP1KK8QdzA+2xh394lF7WHHXbtRcKAChz0WW/SQAAAAAA8Mcf7jFYtTpS17d9X49mXuKMey69TKpTR3rzTcWstAjqCdqsekpVimorU4oO/qresL3bsVhJNK+TrmW3vyx17676B+wfdpkGDYLHJ+ho9dI/nDAAqELItAUAAAAAoIx99pl0wQX+cW/A1rFli6bMa67YxfM0MHuSb/If6uEbbhizWYlK02/3fx0SZC3K9T8cpb6Pn6i+F/XU5s0lW+dOjVZNsUW19Wd+V83f3rSymwIARSLTFgAAAACAMpaRUcTMlBT9s7aZcuSvW2u+1OHqr1+c4QfavqDs1RvUutnAUu13W06CtqUmSKlSXl7J1mmtJaopvtYQnZT9vnrPWKjfK7sxAFAEgrYAAAAAAFQgT0pt5XsiQqbP0L7O8/S17TTyvxuc4b4bv1EpEm3161sLpA4dnOGiMnQ//1w68kh3uJ8CeibbzcUpS421RvUTM6W4WpXdHAAoFEFbAAAAAADK2KefFj4vLaaOWqakhkyfrCHqnP2H5n3WyTdte258qfa776BkqXHxyx1xhHTYgExNmhqvBeqgbMUWyPvdPQ3XZxqe0E4acYkUf2tlNwcACkVNWwAAAAAAyliTJoXPS42sq5z8qLDz5skfsDWtuyQVu6/zzs5xnq84bJ5Uq+TZoxawNTO0n6bkl64MQ3V1nl5Q68x5Gjs7fCdtAFBVELQFAAAAAKCM/ftv4fPyImM0d30J0mElNd67RbHLjH05RrmpaXrs/ZZSUvFB3nDeyj9ZNcF6NdQyTyttzU2s7KYAQJEojwAAAAAAKHcjR0qvvCId0DdPP76+RIqMdAOMcXFSVlbhK4abn58vZWdLiTsCbx6P+yhsXe/ydepImZlFbztwngmcn5vrrm/ZrNb+iAgpNtbdvklP9y2fvrVe2K/ccZHZWrK1nro0WKfiDD0kSzFN6he7nDVFKaUP1vbvL33/vTucV4rwwPc6SPfpZnXSPI3RVapOHtZ1uiXpCbXocbhTzRcAqiqCtgAAAACAcmcBW/PT9Cipd2+pbl23w6yDDpJ+/VWaPl3Ky5O2b5eio91gaKdOUp8+0iefSJs2ufOTk91l7Pm006SGDaWJE6V//nF3YEFVC6I2by6deKK0eLG77c2b3WCrrWfb2WMPac89pQ8+cLdtkU8L7MbHS23bSiec4AZh33hDysiQ2rSRVq92A7cDB0p9+0pr10qffSbVry9dfbXbXlu2SRNd0PwqfaMLQo5DVn6sDn50eKHHaU7d/kq871bpwANVp1n5ZoM++KD7Mszw2C9LvN5aNdYkHa5U1VZ1s4cWSFHrpOQDK7spAFAkgrYAAAAAgIq1dasbWI2Kknr2lFatcoOqXhY8tceyZVLr1m5w1IKlZuNG9zknxw2Q2raWLAle31iA1YKxtu66dW4GrAV7t21zg7aWSWvBVptv4162jO3X9p+W5t+3BZJte2bRIrcnr19+cYe9bUpNdduUm6un1x1QokNxbPs/NGl1d6WnRzjjR6a+paXt/5G6lv/t+/vtJz1320r9OXa6am8P7RitMPtqhl7VmWqgDeXaPgCoyahpCwAAAACoUBHy6KLMx7Upr7abUVsUC5YWJiam6PVtflEsaFwY225h69t6FvS18giF+GFzV9/w569t1MIXpmjL0lRtW5OmN15I9807qsO/WjR7m298WX6L4ttdRiy5+Jtfaum59Sfo57x9S7xeC61QQ63XbPXUDyJjFQDKA5m2AAAAAIAKNzZ3lMYuHSXdb2P3qb42aIMa7pZnou2esUr/NUqNo6WkxkmKTvHPW5LWUBMmFvhqbiUcKkhalrvvu7Jv1AnZ36j7xx/55nkUPig9UUfoaH3qDA/UN/pGh6q6+EDHa1VWOw1a10j+sDoAVD2Vmmn7/fffa9iwYWrWrJkiIiL0idUpKsbUqVPVu3dvxcXFqUOHDho/fnyFtBUAAAAAUDIzZ7odXK1fX/IjtlENlKvQzNeId99RRG6O4pVRbQ//wUcmqdtlAzTrT/f1NWjgn9epxTbFFkysDVygnE38zt+BWb+1/oCtNyM6nH/U2Tf8rQapOjlPL+qKrIf05Iz9K7spAFB1g7ZpaWnq0aOHnnnmmRItv3jxYh155JEaOHCgZs+erSuvvFKjRo3SpEmTyr2tAAAAAICSGTVKOvhg6dZrMrTyn636/L20Eq33p7o7z7000wkYpqxf4JuXpfgqf/in5e2vfvpJ/TIm+6aNODrNicE2rJermEQ3Omt9mnmd9s5wnXhMTvCG6tRRZdjuqVWi5ZYo4AWYIspEVDVbVNd5fnFWyctBAECNK48wdOhQ51FSY8eOVdu2bfXoo4864507d9aPP/6oxx9/XIcddlg5thQAAAAAUFKtm2Zr1qxYvfB6gtb/+K8+Xtyz0GX36ZGt3/5w69LmyA1qzlYv53mbp+LKBJSFD/OO03T1k/L9084ZFak3j7J8qUjfV/D27f3z6yVlKiImuuR1fMvYlRdlacxzcSVa1uORVqXX1VhdpOrqdt2pT6OP0977RErRBYLPAFCFVKuattOnT9fgwYODplmw1jJuC5OVleU8vLZaz6JOR6M5zgO7H+955fyCawF8ToD/P8DfE+BvzcrxyUR/52BFBWzPP369DjgiWWeNdMf/idlLvaPn6Lace3R37q3qEL9cCzJb+pbPSUgI7kXLOgSz5/h4KXCesXGbbx2K2bAt552el+d2JGbBUe94INued/s2Pzc3eB/ezs92rJ9j8yTVjd0qbxWHD26ZIXXpon0Pig373SQ7W1K62yHZ9vxE3/SfJm5UTmyKfaFRRejUucBrL8B3zGNjtSaztlp9eHvQ/NraopzERDfb1o6HHddw58KOkbcDNzueBZexzte858Pm2yNw/cK2bdv0Xgfe+fkBUXPbr7UtKkpjY67Ql7lDFRuTr5vujlOOnccyPs58BwHXBopT0nhVhMdjv5VVPqtp+/HHH+uYY44pdJmOHTvqnHPO0U033eSbNnHiRKdkQnp6uhIKfnhLGj16tO68886Q6W+99ZYS7T8WAAAAAECZOuaYo4td5rnnJqtp0zStXx+v887z3zl54on/auXKWpo2rXnQ8rVrZ+nVV7+s0mfqvvv206+/NnWGP/lkQonXy8uL0J9/unVs99xzsxITAwKWFWDevLr67ruWSknJUqtW2/Tww6GlA/bee42GD1+oO+44IGTexx9PqBYVEl5/vbM+/LCjM/zMM5PVvHnJynYAQFmyGOaIESOUmpqqlJSAnimrc6btzrAA79VXXx2UaduyZUsdeuihRR4YVO9fLL7++msNGTJEMfZrLWosrgVwbYDPDPB/CPj7ouLtSB71SU7K07Y0twMuy3BctjzPKdkaGXmwM237dum88/zLv//+nmoVscw3fnS3+VqwupaezhqpA06d6l/QMitHjnTrv77xhrR6dfCOLanntNMsIinNmGG3YbrTk5LczNrWraVevWyHoZm29l3x0kul1FTp+efdrM+GDaXNm935PXtKF19sWUTS558rJyVFX48Zo/zfV0lyg7ZHNGvmLldCw4ap0hxxhBTwtVn775+r448PDhf8/nsTPbiHdR4eGrQ98MxLVTtym/siZs+WFi4MPRdW2HfIEGnyZOvgRtq4MXgZm2fn5ssvw2fannSS9Msv7vkMZFm255wj2fG2c/nvv8GZtrbfa65x2tTmf3dqRGx7qUMHDex/gWrtGfzDQFngOwi4NlAcbxWA4lSroG2TJk20du3aoGk2bsHXcFm2Ji4uznkUZME8Anq7N84xuBbA5wT4/wP8PQH+1qx4p5ziH779xmxdfGWsE4ezTMzTT49UpLdMwQ513X6hgrT0LFOMsnXKPgt1z/96KnfyVI0/p40W5IzQ6XpD8cpyg7YWbLUAXWamlOHWJfhMR2m6+uqAvN90pM23OgQ2zxu09a5n4xYYtHkFg7Z227xt16bbfFsuYB9ubQP514+N1YgRRyg9z00aaRqzXjG1a7u3/FdDffuGn7401c0GLigmM1MxETuOkx1X73EKZMcvL097L35fM7O7KUL5ypcbzHfY7cLe41kwaGsK27YFbb3XgXd+YNDW9ms3GOflqUfWLPXQLCm5j5RyUbmeH76PgmsDhSlpPLJaBW379u3rlEMIZBmVNh0AAAAAUPksQOsVl7ZRjRs31VlnFb1OrVpuxq3XTzrQefbUWqftSY01e2lTnZfzrDOtlZbpUH0ddjtTNEjD9Zk7ki15dIkqSnq6/0v4oEZzpdpdVF1ZUnE49/86KGj8mVN+kD76SNGekpdzmJvtlifwOB2zAQAKU6mfktu3b9fs2bOdh1m8eLEzvGzZMl9pgzPPPNO3/IUXXqhFixbp+uuv17x58/Tss8/qvffe01VXXVVprwEAAAAAEN6i+UV3cuX1wgvhp69JS9bUqdJBt/T3TTtMX4Vd9nsdpMGaEjzR22FYBTu5/e9uB1jVlCWvjhkTOn3Bxnq+4X++W6dL3jlIl2Q/rqNyPy7xtrMVeicsAKCKBW1/++039erVy3kYqz1rw7ff7vZGuXr1al8A17Rt21aff/65k13bo0cPPfroo3rppZd02GH+ovUAAAAAgMoxoUDfWwMPKdlXzqFDw09vXDuzxPs+R+NCJ1ZQPyaTsgb6hk+KeE/DWsxSdWalLI4/PnR609ppatcgVcN6rVD77km+6VM9A1SVTNRQna1xGqsLQuY10HpF//KjPv4yfIlFAKgqKrU8woABA+Sx2jKFGD9+fNh1Zs2q3v8BAgAAAMDu6M8/g8f7DK1fovWsL7ED++Xrx2nBQd6s/Bj17h26fJoSJU+kEj1SxI5pi9Q+ZDlPZJRvfnn6NtvfOdd7npP0rgpEr6uhFi2Cx08csE7vfbIjSza6rttpWBU1V131qs5WjmJ0YaR1nibd89vhelj3aatqO+Oe6OpZbxhAzUERGQAAAABAmRjoTzjV0t/Wq8NeJb8V/oefInXckcGZtWcMWun0G1ZQLaWplmebNmUlBWVQFpQTUTHlEdLygwOYq7LDd9hV3axY4R8+/+IYyTpXs0eYgG2D7JXFbu+Dhe5dtmbPiH9VXhKUoWRtVbT8tXaXbKvnBGyba4VWDR2poUdURDgfAHYeQVsAAAAAQIgff5SefFL6KlwJ2fx891HAFVf4hzeuLXnnVF7HHxO8zT161VKTJoUvP2nFXkrLjtG92y7XBoX2nhV3x42K+G6qIrIy3ezcXfBx1lC9lX+K1noahcxrHrU6aPznbXtpd9C8udSpo1uXeP3WogPwG9VAYSPsASav7Owb/tezp8rLGF2pbUrRa/L3gJfncdu2v35R06StSqA6AoAqrlLLIwAAAAAAKsdFF0lbN+Xqvuu3qHWHHbeKb9jgPkdG6qCD2vqW9WxJlbKy/Ct/+aUUEyMdcog7HhfnzN+8yTJMdwTuatUqdZsOHZSrPvX+0y+bOjrjSR2aOs8nHJunDz6OCll+xpYOOu0hf+fVRVmo9uquOYXOz1Sc/lAPZ3hfz38hGU7Hpbrl+/pquqYpuDPsrtH/BI0nlf6lV+0Ctya6BOGD6GhtyUtWnuopWdsUq5yg2Z4o/zZ6Rc6WQuP+ZSKoVMaOQHLr5M1qpLXaU/8WG1wGgKqAoC0AAAAA1DArV0pjx9pQtP74YL1mn/OEohvUkcaNk7KztTKmjSR/XyKnH7hEb851A5oei0jm5bmdfOXkSN26uXURvvlGUzZt1bTY3krp01ndO51b6nYdfnyift8RsHXExztP738UpdRUt/ZtoDG/9AvZRrMG2Xrs6VgpM1OnnO2ub2KVXeS+V6iFk4VpMtRY3jUtu/Ym3eNbbrr6hqy7b0xwvyutmxS9r+rkp2mRzulOTg4tNfHII9K11/rHJ6/pqiGLXnWGP9cROkJfaKoO1kkZ70krIrV+mVs24qA9Vuv7dQOk1PJp80H6Xj+ovzuyI0A7+sDJGv3Hse61G31y+ewYAMoQQVsAAAAAqKLuuUe67TZ3eOPirapX1xOc8RpoR7arU7Zg6VKpfn03sFpwvqSZEy3F0a078Fd+Z/34T30N6L3VzbTNz9c8BXcg5g3YmjFpo5SvSA3O/U6dc/9UzLJlUlqatHy52m5dorb6Q9rSTcq0wFjJOiLz+n22/ytqVESe2+YdrJRqs6YerVrtr0XatX265i4MLnvw67RcNd/DAozxOmiIe4u/WadG6mRZloWw+qdttDgoudRsVy0tU+si2904aoMGDlymb79t5YzPT7V97R7q1St83jXXBAdth3x1nW94q9xrL1uxWq9GQVm127PLt9ZwcwXU1w08mTYcOA4AVRhBWwAAAACogiyz1BuwNXmvvSlt+ld6+20ni1S5uZLH45YpaN1aGjJE+uUXyYKoa9a4821ecrLUs6fUvbv0ySfKX7VGs/NulHS7b9s/be+uATFulqlpGKZTL6+rNMYdyJVO0xt6Q7e5+ykDZ5whvf66QjJtvVauitDcudKSeZlq2cKjHvsnBsXgVv+0SE32aOcbb9bMP+9bDdQ++i2osm1ufqTeyz9FC9TOKXvQVKsVpTxtVH15Vz024hP11m8amfiW/kzfQ80jVkpRbqmGvPwIyRPpnIYrrpjlC9pOXtROw1QzjB7tPkxKbIa2ZrvFYg/RFOfZjuuc+H2ltm2136K3lZEVpTMPWSV9WH5tOlOvaZPqqWHUZoK0AKotgrYAAAAAUAVNnx48vmFzlBpu2SKtWxc8IyPDDdRu2uRm2K5f75YtMNnZ0saN7vSWLaXVqzU56yDdHhCwNb9s62L/6iHPtbpNd2movtCn0cdpeO5HRbbxTZ3uBm3LSMOAvsR6Nl4tRdcNWaZrV3v4g7kTJkjvvJGrXj3y1aSfP2Bb0GjdqThl6UY97Zu2NrO2TvM8EbLs+nx/0LZhxAY1jFir/ZP/coK2Kz3NfbfcHzB5tH7JfFPvxI/ylVMwXy8svB27m8MP9wdtmzTM09YdSa5r1VgNtUHJ2q6ukX9LtSJ049lrtXhdknp33F6ubRqqL52HEpOliNBrCACqA4K2AAAAAFAFPe2PLbqSk7V+XR19rVOdbNCT9V7w/B3Zn4XaMf8wfRUy67PF3RTx+GO+8Qk6Rj/n7l+yhpbh7eb9+kmP7WjGM3dulJJaFLvO8OH2KNlX25v0QFDQ9u8tAam4ARpGbfINz/XspZ88+2t5VmPftI2eejsKP7ivPccTrZg8qVHDfK1bH6mWjTKl6NqqCey3Aq//Vvp7YOumuXpRo9Rdfyotr7665uTp9ks3SV2bSV+Xb9D2Cx2u13WG2mWt1F2eZ0I6lQOA6oCgLQAAAABUQWvXBo8PevJorUk91Td+gH5Si8DancXYkpWgNfkdS77/HTVvT+j+r9alJ+v7BeEDnDOzu6q3ykYPf+lcbY11O63aVVYL10pNeF2V9YAej3Zrr/6x2S1n4HWXblPjiPVqFuU/+FM9B+syPSFt8S83ZuUJulvSpEMf1VnvH6kzUsfqhLf/0xtv5mvRPznqtlddKcktE7C7a9JE2qdHjupmrVHtNnX0wZfJvnnn6SV3IEv6aPv1OnZH8vcf/6ZoQfbx6qpftaf+Vax2ZIaXkZF6WastVzpbukNjCdoCqJb4wQkAAAAAquht54HWpAZ3uDVfexS7jSs0RrW1RbdvvEIfLtlbnbP/CJr/+QsrNW9muk44uvCg2fvvevTdb0mFzp+R40Za8zyRel8nOI/M/J3raKppU//wTY+VTdDWKkMEGpN7qW+4e93lQfNu1926wDNW7TfP0KQF7Z1p7bRIx+ojRUfk+pa7Z8kZ2poerVcXHqAJuUf5pg8Y4NEFl8ep3yE1I2BrevWSZnyXrq8emq2/F/o7jitoZY5b+8Kqd+x3WR+NyHhZ3TVHUzVAs9VDs7e2U+cvH1NEZoaa5C7XmXpVr+rMnWrTvprhG46I9GeCf5w3XNfkPaQJK/beqe0CQEUiaAsAAAAAFSwtTdq+XcrKKnyZ9HT/8LixoQt+omOK3c+TukJbVVt3b75Ud80K7Rqra89o7dkrUe9/EqPrryikMSkpbrpqIV7eeqLznKtonaT3nUefhW9qZwRWeOjWTWXCmj5+fPC05R637MLAJv9ofnzojhblt1VaXrxmrGmpRWqnkRHjdF/Xt4OWWby5jq749XRn+MF69+rEE/9VTWRllk8dmaBTH+6tvfbMK3S5BVmtwlbxuFn3qZdmq9dPT2vetha+LO/XdaYe11U7VX5jQsSx8kTHyNO2naKjPL7p33oO1mOeq/Tdxq5SNDceA6jaCNoCAAAAQAWrVcspUat4673KOhbzPuw+/h3D6Rv9UduzL4jTnDmhAdkz9Jru0I5eoIqxLM2twurVv9Na1W3jD8Y+9EQhWZL16jlP3lqzBa3LczNiI+QPjv2Zuad2RlyctHKl+3ju5cKzNkvrrLOCx2/Kvct5jonMU9OINSHLD43/VgM6rtKXSzrpsvwnNMrzgrqkrNCF52apT9fteubYyVqe6i8DkO5JVFxcvmoi++HhnQ9j9c4PzXXOqMLrKqd6kp1AqZVTWDHhd+0TM1v7aIaTFdtUq8Ku84d67nzDLNhbIOA7OPJb3RD1sAYdmC0lFZ49DgBVAUFbAAAAAKhMFsWytNIzz5Qeesipi/BnyyM19tWAcggrV6pr19BV39AZ+kJDQ4JTdru53dJflO8+3qzkhhY1LtzCv7N2RJalI44IWPdzf0dS9WK2Oc+xETmhEdhSspfRrJn72LHbMjNpkn94pcdfnzcpIiCleYcvMgcqJS5LHy90s3DXqKmeXXSYnn00U0cemKqNW2N01YtdfMtnqowbW43Yjw9PPOE+DhwUq+eeC7/cad3mSInuNZ2WEamjEqboOH2k53SxVqm55p5sVYLLxmjPHYrIyVbUov/0S6a/UPLwqM/1QMztOmrv1WW2LwAoL9wPAAAAAACV6ErPYxqz4Rpp2TKpY0enCOtv2UeH1lMo4Bo9oqZarSZaExK0PVHva0FxNW8tWBygd29p5kx3+Phj8rRnlyi1aO8PvFq87ZCBeVJmpuo0jNHJR2fqw89idHLDb5z5Hn+irTomrZTia6kqOfRQqVPHPM37L0pT8w/WuC3Har8t+Zqbe7xOr/Wx3thu3WT53fZ1f81a596ubyau7i1Fp+n2sc0l2cPvwc0X6YPcT1UT2XVx+eX+8cGDwy/39PzD5J01f3m8Rm+9RrW0TZ9pmGapl+5dHRBV3+HyiCd3qjzCnbrDec5XlFO2wzz3Rz+NybpQQyO/0phSbxEAKh5BWwAAAACoRE/oSp3peUO9le6rsxlSr7a+W9pg1izpt9+khO++VIc33leOYlRHW0K2WVzA9p9/JNWpEzTtww+lJUukRo2kLl1Cb3Nv2VKa/I1Nd28rv+aK7RoSMVmtFsyXFK/5uW19yzZK3C5FB2+/Kuizb74TtDXnrr5X+mzHjOzQZRekuh1nBUlK0gXn5UnZOXpvQqw2b/HfvLp8ub9cQk1mtZrDWZrZWIpzj1frJm795O1K1hx1U6YSFBNQe9aMqv2eBm/7Rqs9TdRUm3eqLafV+0K9EuZJ6qf7fj1EKzx19V9eR41Of1VV7+oEgGCURwAAAACACrZngZKvH3n8WZ7Xpt+pzzQ8bNC2Z09pzRrp9DcO1/76RQfpR3XTXKV5AkopFGNgvyx16hQ6vU0bacAAC9iWbDunn5+gUZ8cpSP/etAZn5q5v29eZnztKlkz9J/5MYXOm/7afD18b5aOPyJDtw39TQO7bwxZxpI+x74QpbHj4zXlm+Cv0x99VExmcw2xowRyiLMPnO+redG1fYbqRm7xBW5N89rB0d6XUk/S8PxP1MMzq9Rt+Dmyn86OeVMzMzrpknVu1m1mnv/cDxlzZKm3CQAVjaAtAAAAAFSweZb8F+Be3eKUF5i1rrkezbw0aN43b68tdntPZZ1f5PwN/6zXnGnb9NPkDL31Ydl08LV4qft1MscT42QI/5C5r2/eJUMs+7Zq1l8tzP7DGuram+N0/HEe5eVHaPSHwUWEr74oI2i8Vy/pr7/8440ahdbGrYlatJBuvTZTTRJTtXeUP+Dat8MG3/D9rzXT5vzgXNfE+HydcGxeyPbWq1Gp2xCvTG3x1NY/GW01PdvKWkTr4t6/+OZHxxXeYRoAVBUEbQEAAACggv33n3TZ+e4t4l4Lctvo/f/8nSZ5DRwYPH7llVLthOB1b8q4vdB9vfHUZtXv1FBd+yar3yEJBUvZ7rSDD8z3DUfcfZfeSPNnC599WNXs6OnJJ4uYuaNcxEefxei+SXtr/VZ/52Kpsxfr0WcTwmYn//ST9N13uTr11AKR+Bpq2zbpnkfitSa9tn7P66UBjf5WQlSWvlvkrw9889jWvuHFaqMF6qD+7Vbo/Y+idIebGLvTsj0x6pk/U5/kHqUrmn+gR1o9JcXEaO+mK33LTHyiav6oAACBqGkLAAAAABWsWzcpOzs447XLgk99nSYFqRXcodeECVJqRphs2Rj/7d8eRahnxB/6w9Nd+TFlk1lb0EmnRmnyt4XMLFAvt6qw0g+ffSYNGxY8/efJdmu+e5yPODxfzTPn2Qlyxps3zlVKhwL1LAI64erXT8rJ8WjixOCarHD1a7RAU9d10cczW+u6MAflJY1Sb81Skx2Hzzo1GzZwm264LF1T5jR2ruOSWpNTX3d7LvaNH17vVx0U85ty8jrrs/mdfdNzovwBeQCoqgjaAgAAAEAFyrN+rHZ0fDWyxSS9vOIwZzhcwLZ2YnZIbdis4CTbsEHb+tqgTR63Dq5iyudr36mnSocfLik9Xa06Faip27Spqqq2baUrL8mRFi5wT0RsrPbo2Mo3/5wL46QzWkq5ue4E6xyuCtbnrapq15a++UYaNMgdv2+uW5/58IPSpbjaIcvfq1ud54VpT6idpGXLpG++j9b+nVPVID5NObOWalF+G2decTbm1dGz8gdth855yHl+rN00fb2kQ6E/hABAVUTQFgAAAECN9+WX0tixUu+u2br9ugx/ZDQz042yNmokpaVJUTtqYa5f794HboFSm5ee7gb2vMG9VavcZRISgrNO4+IUXccfuPIGbAuzZOpSScEdXJ1yijRyZJiFd3TyZDbJDdg+ePY/GnGWP8OwLFncy419JeqQAXmaMjWgTqgdkypqr72kx5+OkdJauYHZcEFZgrS7xN4aBd3+QGLQNVpQbIybavvzz9L1tydoQLd6mjqngaR2auBZr+f1c7H7rR+1RddFPCJFRerh3Kv9M6KjdVb32brrB7fWyNzFSRrk7zcPAKokgrYAAAAAaqy335bGj5e++sodnzAhVrfn3eEWKp092w3eWupgRoYUGSmdeaY0eLB0yCHS8uVSp05ucNaCf3vvLT3+uLRokXTaadLWrVJ+vhbltNAHUaeoTq0cnX9GpnUbVuL21ekYGvwsGPeKiszXkhG3uMFHSY/nXuablxUR74szl6cxT0U5JR987JhVdQRmy00rf+KyXxEBW7MxsqGs6u2ee0pnnZ6nulGRmjrHnfdC3sgSBW2bxGzUQ5E3anrkgZqTuI/q7tNOQ1vM1SlDUxWz6F9N+qW2fsnurVWbKI8AoOojaAsAAACgxrL4qjdg62NZshaQ9aYLWlDWa+NG93ntWjfzdvVqac0ad9qcOdK6ddLffwet84Su0JN5V0ip0gVPh29HRIRHi37dqDZ7xGjilDgdeXy86tfJdTJzC7LY8RFHSBMnuuN3nDpfLWptUVZuAx2/YZw+zxvsW7Z7zwhVhJyc0gXosHvbbiWCdzip619q1SpCim4d1BFfx47B62xNbu7reG/gwCh99VU9jXm19Pt+O/9kjch7U8qWvhr6u4bUXixF13XmWcDWRMT6S4kAQFUVWdkNAAAAAIDKYgGisFHRwuxE2mqeil/nk4u+Upt9GjgZqvv1j9fkydJHE6ILDX4GTr79zT3VaPxDyvdE6PNMf8DW7DOoYjJeA6sh3HrRjsA2aqwWljK7w/iX8vTwe62DMpv32MNNRg/UsY8bWC20L7ui3pc7pObV0gjPm2HrPAeq35j8NQBVH0FbAAAAADWWZfyFKOMs0dayurRFW5bqD642aOBWX+jfv/DlCwa88iOidO4XJ4QsV699cCCsvFjpXq+W7chirOmsOkazxrlqlrxVWyLrhS1FcdttweP1mgdcRJL2288/HKUdtYeLkJcfodHr/J2QmX598oLGP2h0sT647Q/13C+2FK8GACoHQVsAAAAANZa3v7EghWTn7azmWukbHjk4fAB3373SS7XN5GRpjw756r5npi4+O12n7LdQ7/zVPWiZsZfMCQqmlqd69aTjjs7ToP3T1GO/0JIOqFnsLbRqbbRWbUtRWl74H0Hq15fi4/Kd4UOb/qmY5NDlxoxxn7vFzCv2fZmTF6kxm84MmpZYP/gNcHytSTr+oHVq0qS0rwgAKh73BAAAAACosRITw0wsJqOvNKZrf52mt5zhde32V+2HXtYbfT3KygquNdtnQOmiq0OGSP/Nj9Q//8SrSxebEtgLmKv/PqULBO+qDz+xMhChGZWoeWJjpQdGZ0iLF6t+U7dWbUGWUZ6T674PvlrdXYpbG3Y7Zl1+g2LLI0QUKN98TN81iqhXMZnmAFAeyLQFAAAAsMuWLJEuvFC64gopL/iO5LLn8fgfu2j+fJWrlzXSN3zoylecJnsDtvHxAe1v1myntm91P88/J0fnDwx9IQu31N+pbQK7yoKtTRt71CA5W+s3FB52GNw3zXner/UaqVatkPl167qd9LWNXelk2l66+hadrHc0T3uGLBsXHfzB88YrOXSIB6BaI9MWAAAAwC675x7p5Zfd4eef9yhz2XopLs6tP2CRykmT3LqWBx3kX8k7f8MG6ZVXpG7dpKFD/fPC1S/45RdpzRp3vmXEWuHLlJTgZWw/9khLcx8FxcUpP1+69OoYfTHF9hNVbuURXtYo3/DsrC6Kjpqr995zx/PyInT5ZflqnLQ9TK9LJdO0qfT8KzFSWjPNPihbv87y1+psu1e4NGKgYlx2Q4K2bu2pcZ3T1XHv8MsMOzRbrbb+oqMvaha27m3LlvbxEaGfMvZWas7/9MzmEc70M/S6OunfkOVvbjpO49cO1SGt/lNSSoeyf1EAUIEI2gL/Z+8+wKMqujCOv+kVAgQCofcqvQkCFpqiCAh2FLHrZ+8dexd7rygq2BUBAZEi0kURlN5bIBBSSC/7PXMv2c1mN5CENML/9zzXnTszt+wmJsvJ2TMAAAA4Jrff7grYGlYm6WmnSUOGSH/+Ka1cKSUl2cHVhAR7laI+faTGjaVvvpGysuzArilyed99dtD0ootkRVYnTpTi4+222cyxLVva4zt32hdet05KS5MSE+1jR42SLr5YeuABZew9qIMH7eBv7eAEKSrKGhv56Qj9sKu7x3M5M3KZ5JcviFuC/EKDdP75dnvSJFlZiDWCTCbiMaYnh4Vpxm/S+29m6J6HAhVZLUvt+tYokXsGiuPMgTlKOZCq+o0LXvTrpkfM92hPfXZbjlKv9xxfs8bVzvZznWe9lWk71WP+SeFblbXPX/9lNPcIAn+0opOWxjbXoAVROm8gX1MAFR9BWwAAAADHJHexoFyd9Le0Y4edQbt9u+yoqaS4OPvR7O/ZYwdVTNasCcaarNnMTDtAawKv5tHYm6/Opek3gV+zEpcJ1K5fb88xgV/DnOPff+1A7vr1Cko+5Dw0JSVEIbt3S4cOeQRs/zv7brWd+oJ+OdBd+5Jn6tdD5ypMWzVMPxX7dVmnlt5X7MqTJTvkzGzVr5olBXlfrKkoTLLu3Q8G6u4Hc/+pxz/3UH4mf2P++OFZ8sCbpk28lzrp3Flq1yJd4XHbFRruKrNwp17SHRrvMT8tJ1D7smsqJCNZCvJzy9SfvbWpvkg6SRHrt+u8Yj0jAChb/BYHAAAAcExat5bWrnXt/61O2ptTS7WPtqDXkcZNUcwi1qz9QhfrL3XWgIRtGixpd477EvF7FK2msmtj5rcvraouGBgnrV2n2Tta6tL9VuRTGQpQgA4HhIvoG41y2796xAE7m/iwU081mwlsFa80AnC8M3/HMX97CQvznt3epYs06c046YNJ+njlyW5j2fKVn3Lc+obXmK/ufisU8NhDUnBnt6DtqI4b1Xrf7+rdu18pPRsAKFkEbQEAAAAck7wB21w/ZA/VBekOLUw5TYFqqoH6tdRf5ak6W1/oUoWkfKADf9bXH5n3uI0vUU81cPwkE7I9p9YS/Rzb0zn20toh2lMtWD5p0brk+17O/iz5Fzto21Db3faffDC1WOcBKiuz0NiRxMZK7QdFS3rYY2ySLrL+H+vtWOKsSl3dP0nVQ/ZKjdKs/dffDdSCyQPtkiepKfJLC9bD3RJL46kAQIkjaAsAAACgxF2f/qpCtn+oMTFXWfs58pFPKb/O5+hn1dMunVJll878zLUAWK5L9KVqOM6xsnBvbDLdLWg7ZVdXmSRcqbHbMf7FDNgaI/WtLtdnzv3a0a6PdwM4OlNFpSCj9bn1GKeaMrHfAykhenjzXVaplPHpPjIFR5asCNBXK1wLkvn7tNIX/n/x0gM4LhC0BQAAAFBsCxYUPDZmvh2wNWJVS1GKLdVX+mJNsrbE8NMLnLNXta3HLhGbCnXOKkrSJ7pCF2lyke9nrVo728Pbb5TCahX5HMCJnok7akS2lJSob371npZ7neNtfaW5SkoP1Nt77Wq1z/n+ZQVtL7/SXz27pdt1s2Ni5Pvbr1KIK5MeACoygrYAAAAAimXXLqlv34rz4m1RY8WojrJTWxQ4Z0zWh7pcd+rWf69x6z/z9HRN/y1ISk6WT7hr1fl0BStBEcW6nwXq42xHVClafV4AUsOG0tffmeIH1fXll9Li3zP12tvuNam/dZwn+S9QteA0PdrwI8nfT4Hh3ayxQYPMFmRPXJ0s7TJlWgjaAjg+8PkcAAAAAEVy443SaadJ9eu79w87K6PAYxylXhxBGq871FuL9OSuK5x9f0f216BQ93Tg9Cw/hfhlKkhp6lBrtz74QHpvwuHATliYJkxwP+/1erdY99NarmK/sY5IKejwNQAU2cUXS6++5bmI4AifH62atdVC0jWu0Sca13SiggI9/0iyJ9Zf25MjlZJa+j+LAKAkELQFAAAAUCQrVkjz5nn2v/xogiYXUEVghgbrAk3W//RGqb3aNbVfzbRR1QOSnX2dDszWzBRXxquxP6eGfHykFtqge0+ep6uukho0cA8O3XhejNsxq3RSke9nkGZpj289LTvnMb3yRoAUbD6wDeBYNGvmvt/Ed2uhjjv7f43UaOpbmvZ7Fb4AAI4LBG0BAAAAFMmWLfbjFa6EVr08ermatAvV+edL2dlSdmKysuMS9OHda6zxMfpUX+sCvaX/ldqr/YvOVHUd1PUdF8nPr+ByBP6REdqSWlur1V4H0j0DOAEB0lvf1XHr66BV8pFD760/o0j3VMdnr7rV3KoWzXKKdBwA7+bPd98/oEhl5/hobWykWi7/XB0Xv+P1uMBAKcgvU76BVIkEcHwgaAsAAACgSPbtsx/79ZMcDslxKFm3vdPGKi1gMlh9fSXfKmHyrR6h68a3KrNXd7F6abm6a/q+rvrywxS3Mceq1XKsWSvH1deodsMg7Uu369SGBBUtmBqXSZYeUJ6io6WJE6VaNe3/dz/OHqOVsXWVke2rDakNtDG1nh2hzWfxT7FKu/9xnXduVjncNQAUXZH+xLRmzRpNmjRJv//+u7Zt26aUlBTVqlVLnTt31uDBgzVy5EgFUacJAAAAOCFERh5uhLkW7sovK9szT2S++qmf3IOqJem5VUOUNTTBvTMsTL1G1lXWzgd1X8Am/Zdo10OYv72xri7CuWuEmPsu3MJkE3WppucM0TmbE3VxUZ4AgAKZPwxdeqn07ps5it1v/3yZvLmbHmmxVAs63yzfetFS8Gi3Y9LTpaVLg6TtjdQh0aeYSwsCQAXMtF2xYoUGDBhgBWcXLFignj176rbbbtMTTzyh0aNHy+Fw6MEHH1TdunX13HPPKd38RAQAAABQqVUpZtLpT46hKm37EvIt+hUdrT9XB2p5bGON+6mLs9vH36xMX3gTN/dRZqaPYnMiFauaynEUvKjRCnXRF45L9PfBRkV/AgCOKDXN1fYNC1VYYKZOqfavekVt8ph74IDU7/za6vfp1Vq5xjMLFwCO20xbk0F7991365tvvlG1atUKnLdo0SK9+uqreumll/TAAw+U5H0CAAAAqCD8/aWsLPtjysWxVY1L+pb0rc5ztheOm6E1WwY790cMSbMWAevSMUurVzn0767qzrEm0XkiP3nMnSuddppnf7cm+7V2bQ2dn7DB2t+a3UONtMfrOYbpRzX03aVuTUx93N7H8vQA5HPOWTla/pfdfnZ2d2uTHpDf3Gxljdvl8TOrVfMsKSlJIVWoaQvg+FCon1br169XgKnGfxS9evWytszMzJK4NwAAAAAV0A032LVsneURiuhsn2klfUvaoibOdsM6GYqtIZ05KFtKTdVLL9n/lgkO9lFyuvs/gZq1C/Z6PlOvt1GDHG3b4f7hxCUxTbTs4VrO/ecP3ag3dZXXc5yq+TrVd6EU7X0cQPGNeypQSxana/pv7ln12Q4/O0qbR1SUtHZ5sjR/gdSrHy87gMpTHqEwAdtjmQ8AAADg+PH669Ibb0iFydV47z37sU7NTA3rf8hqX+n4UJMODCzRe5ol1/lCqweqUydp+gw/TZ8friat7aDOrXf46Y2X0tWvt2shouZnNCywbmZ6pmfpg2VbXAFb462UKxSWk6izcqbqrL0fa9bSCM3fVFe/aLCe1b06M/tnPfOXK+sXQMn5/JsgxcTI2qpUcVh9TWolHbHONgAcL475cwG//vqrtTBZt27dNHRo6demAgAAAFC+GthreMmvEOVgr7nG3qQA+fi4kjviHKZEwY4Su6d9inK2q9fxnj07YoT5b5D+d4f0wQd2X9ueBRfmnTnTR127ugenq4WkKz7VPbMvRWH6RWdKqdKFB7dq7OvnSzpf9bVDOx0NVD1+hUfmH4BjV91V6URJSfYfWbbEmv+n8y1ECACVNdM214033qiHH37Yuf/tt9/qzDPP1NSpU3XhhRdq/PjxpXGPAAAAACqQ7dvtrXbt4p9jziFTf7LknK2pznZO2NFXSLv6anuLOMIy8u3bS8uXSw8+KL39tuQ4lKztG+xs4fye8X1AExo8qDYts519hxSuTwOu1I0XHyTzDyhlzzwjhYc7NOTUQ1JQvoUIAaCyB23nzJmjfqa402EmSPv0009r+fLlmjhxot56663SuEcAAAAAlUDjhjnOdmCAQ9/u6KEzc6bpCT10zOf+XJc62/uzCl48uag6dJCefFK6/npZgdfgqKoKC8vwmHd/ztMas+MpxR50ZdR203Jd5j9JfTslldj9APDuvvvsbNupc8OthQcB4HhXqM/oPPbYY9bj9u3b9eOPP2rRokVyOBxatmyZOnbsqMcff1xpaWnWuGkbjzzySOneOQAAAIAyd+edJnnDbqekSCEhhT9263ZXzsjYUzdr4Jc3We0ZGqyH9ewx3Vc/zdfW3MXIwsNVmt5991c50k/TZVeFeox9McO1OttYfVyq9wEAAE7woO0VV1xhPb7zzjsaOHCgOnXqZNWxrVOnju677z4rgJucnKzXXnvNmmv2AQAAAFQuY8ZIn37q2j+0K0EhzY9QXyCfju2ztXKVXQh34JdXeq78dQw+0RV6z+d6afhwBdZ/R6UpPDxTQy4I0PTZ0hdfuI/Va+yq2ztMP5bqfQAAgBO8PEKjRo2s7eSTT9YLL7yghQsX6vXXX9eIESPUsGFDa8wEbZs0aeLcBwAAAFC55A3Y5pY4KIrZc/x01612aQE/X1ephJLwga7WcMf3+nDrGcca/y20G2903w/wz9Gll0r33Zig52qPV4hZmQxAhfDBpwF6/ttm2rK1jH5AAEBZ1rR9+eWX5ePjo2uvvVY1atTQuHHjnGPvvvuuhg4deqz3AwAAAKAc/fGH9Oqr0uTJ7v2mFEJeH30kRTQqWu3YyEjphVcCZT6YlxxbsgHNdWqlX3Sm/ktuLPkX6gOFx+yUU6R166Q3norXB9cv076NSerUM0iN6mVrXXpjfa8RZXIfAI7upTeCdO+Etlq/yc72B4CKrkjvZho3bmyVRfDmgw8+KKl7AgAAAFBO+vRxtQf0SFRkDYeUnq6kfSY7rZZzbOzYY7tOUI0w945jTI8dqW/VymeD2vXvay0YVlZatpRa/s9Hmh8jVWtp9c1ZEqqv4s9TlNZppKaX2b0AKNiIYQ7t2Zigug1ZpAxAJcy0BQAAAHDieP6C5dK4cdrUdqhu7zLP2T/+gf0lfq2djnrHdPwTeljXOt7Vwl1lW6otOVkadXmoRj3bVWvW2f+8CgqxH1PkuVAZgPLx9PP++vi7CLXvFsSXAEDlCdo+++yzSk0t3MeXlixZoqlTpx7rfQEAAAAoZ88vP0Pbd/qq94Gf9GXmKKvPRzm6/ZwNJXL+C0dlO9uJPoVf0OyI/Mr2o8+ZmdK3PwXo24V1dSAp0OqrWcvOGt6r2lqT00r74u1+AACAEi2P8N9//1kLjJ1//vlW3dpu3bqpVi37o1FZWVnW+IIFCzRx4kTt3r1bn+ZfoQAAAAA4gbzxhnTzzXb76w8SNMqOd1plBrwKCpLS0qSdO6XataXYWDsaaPj6SqGhUk6OFBVV8PFHOnfutffuNW/gpXr1jnCs6xqBflnalBKtfart7HOYvI/AkglCvvG2n+L3JClmxW4lZB9b0PZrna+sgFAFD3hWUm+VlZAQ6a237HaztvZrPXBIgN58K1OTcy7S5PSLdNcPG/TCFWV2SwAA4EQJ2pog7MqVK/XGG2/okksuUWJiovz8/BQUFKSUwysSdO7cWVdffbWuuOIKBQdTIwYAAAAVw19/SXN+zVaThtkaMSxHCgg4ejZmtisDtEAmiGo2L4te5QZsjfOvjtDfv7+sjnX2ShMm2AFZU3O1ShU5gkPsIOr558snPU366SepenVp61b73CZw26WL1K2bNH++tGmTff9xcfZ1IyKk3r2lVq2k775zBWVNfdgqVexzXHSRfSMTJ0qJiXafCQJXrWo/msWEV6yQ/vnncKA42XnvE6+aqzPeu7vgQPAxqllTmvFHFUmt1Ftz1SX7b43WBN2uN4t8rjClSD5ZUkCOypJ5KW64wb2vSRMpIyfAuT/nvwKC7QAAAMe6EFnHjh31/vvv691339U///yjbdu2WSUTatasqU6dOlmPAAAAQEXzx4Ic3XmPn87usEsjDs2yA6ann+594avcrFNT7qtGDTvAmhuUzZuxaixebAdJhwyxA6luGavuQbpbZpyt+TFmkSqTBSo5En2sYqhR2THar5r6bc1LOj16rX2+gwft4GoukyQRHm5n4ebtNwHWAwekPXvs7Nzdu6W8Jc1M22TpmjlGfLz7Oc1m0kTNc9yxQ0pIsIY+0FV6VbepZf1kbU+O9P6imsByKViR3Ukr1Em3+xxOXc1jpgYqTcE6xbFIBdxVhXHGGe77p/ZIk1RC5R8AAMAJodBB21y+vr5WkNZsAAAAQEXXqoVDo3ttUqdau+zA5i+/SNde68q4zQ20mve3Zvv2WykpyXzcTGrd2s66NWUJLr7YDnSajFUTADXHm6DoPfdIDRpIAwdK8+ZJGzboTL9v9Ev2QOc92AFbdzkOHytga8yNbadm1eMU5qihSB0q+pM093KkMYej4PF8mcKZCtAqtdeqndK3nxdwTN7yCseoa1fpzz+PPGeBTtFgzbTa1R1xilMfVWSH499OtaNZ/xkAABQN7x4AAABQqfXvL31y9QLdPmyzZMp4mcCtCcqaEgMmy9Rkr5pt+3Zp/3472zW3nqwpNWACteaYQ4fsYK3JXDWBXFOD1oyZPnOsOd+2bda5FmSffMR7mqFBbvuPLz1TjSY+pZrpu3R72tPapKYqLzfoHWf7tBa73MZevmePW7JvSXjwwaPPOShXZu9B1fA653ndrRuyXteiTeVfimDKFPf9k08p28XRAADA8Y+gLQAAACq1a6/3kf9VY3TxO6dq2pomuvXAI/pEY7xPPlKtW5Ox6qV+rbdjD8nUaZVqVklT10b71STSPdJ5pmbIR96zX1/J+J/66neVhzH6xNm+/tQ1mjInXLWj7BqxVww9oNseq26Vyi1JgwdLQQFHriF8oBAFEb7TeXon51qt3+89qFue5RH6nU7QFgAAlHJ5BAAAAOB4MmOmXbv2q2VNrM02VldoQqlds4NWardPPU0at1P9r29hZexOm5mssy8Ic87xzcnSTyEXWtm/L0S/pN//c60RsUd19Yd66xQtLPF7S1GIMhQoX+WoqrLcxj7NE8yu3TBI4fUiFLM3t6d0Ksn+/LOUnnnkoGZcAdm1eV2j9zUkYJY6Ne2iCudIwX4AAAAvyLQFAABApXbP3d77M1RwHVhTAtZUQMh2FO/t8kp1UmzdTurfO9Ve+CwiQmeOdAVsc52bOlnnHpygN2/d4DH2tc5XaThbU1Vd8YrWniPOq96kmsojnhnik+qxSFxPLXG2W/qs95oRfZU+0iMBz6pjozwLrpUjsz5dlSoOPft4hv09AAAAUARFfhf68ccfK8XU7gIAAACOA3+vtAOAZ5/tXo7gP7Ut8JhFOSdr5Mhhap62rsTuw6xZttBL4myPoL/VsG6WVT43r1d1m0rDXJ1uPaboyIHEU4eUTaCxSROpejW7BEPbxslqH7jeY45ZGC1XH/8lHkHdimjqVFPe2Ef3PhxY3rcCAABOhKDtfffdpzp16uiqq67SQm/vOgEAAIAKxKwfZpxyio9brdGCasoae1XbetylekW+Xif9ZZ3bZ9dObdvjHrDr1Ut69FH3+dMbXKeqNfyt5NHc9c/KQjUdVJbDz+vrcd+wNerUM6hM7sNkNB+Mt/9ZsnLyOi1pedkRF0f7MPxWOwIOAABQiRX53c6uXbs0YcIE7d+/X6eddppat26t5557TjExMaVzhwAAAMAxuOkm6bPPpKFDpccfd/XX184Cj1mS093ZPlCIeqr5SyM4j83wXLXrnnvc9yM3LlF6ho+zVEBEhMpEvKrr2ay7vI7171p2JQbatpX++kv64QcpoGcX+az6R9OzBynH4cqmjdZu1wFeArZLHd11hT7W/RmPldVtAwAAVKygrb+/v0aMGKEff/xRO3bs0DXXXKPPP/9cDRs21Lnnnmv15+TYH28CAAAAylu9elLnzlJ0tBSQp4ztIvUq8JjxWXc429k68iJZR1K3s52xm1dIiLRpU77OQFdGboMGKjMPZ43TgbQw/ZHW1a0/tHFUmd1DaKjUqZO95RqS9ZPSs13FbgdqlnyUo5uiv/VaGmGbo6Em6Ap9n32u+xcZAADgOHVMnyuqXbu2+vTpo169esnX11erVq3SmDFj1KxZM82dO7fk7hIAAAAopksvlU46SfryS6lmTVd/kNILdXx1HfTan6YguwyCHDor+Wtn/7V6V6f5zNVLFy5VnVbe02bzB2aDqriCtsOGufqf1IMexzbTRtXTTq1XCxXVWZrm0Vfzq7fUJ+Yb92v0K3pZiGNVv7407ZN9Xlcoi1EdOeSrcP9Uj+NMiYcLciZZ7XWOlm4BcAAAgBMqaLt37169+OKLateunVUiITExUT///LO2bNlilU+44IILrOAtAAAAUJ5uvFFavNiV4RoVJdWNypS/MgudQRugfCuEHS6ZcI+ed+7/kjXQ2Z6ki7TC0Vnn995V6Pv0qVHdre5trof1pFtmqak6u1nNtFv1NE+nKsURUuhrJCtUv+iso857/6rFqt0oWGXN1PSdu9h13aAQX/2yva0m6UItVG+r79kdo9Xh4Fyl5NjzHA4V6TUAAACotEHboUOHqkGDBvrkk0+s0ggmSPvll19qwIAB1nhYWJjuvPNOq3QCAAAAUF7M29G337bb17WZp6suSlZ4uLR7nwnDBuhc/eT1uP2OSGe7qhI0Q4Oc+yZIeI3eU00d0Ou6xeNYU4c1URHWlu1b8Mf0TRLp0LOzrXazJtl2DYfDgvKv/5WnhuufcpUxuFbva7IuVGG10rpCzdsS7wogl7Xn36nqbC/Z21j3Lz5XF2uSDslVG3hVdjvr62B8sqanInavcT8J5REAAMCJGLSNiorSvHnztHr1at12222qUcNzYYZatWpZWbcAAABAefkpT0z23TWnauc2O0iaK1PeP0a/wHGKs22Cr2dqhnN/+s72+kDXeD3uoCNCNyc/69wPDHV9vD8/kzz7089+VvBx42b3jN/DuRDukw/rpUXuQ1bubeHsUn2PvuYN0rTr71i3vuyQMFUIVavq7/2eBX5/jbpEwQH21/K5Fa4M51xfLG5aJrcHAABQoYK2p556qrp06eLRn5GRoU8//dRq+/j4qFGjRiVzhwAAAEARbdgg3XSTe9+KlZ7lEJaqu0dfuA6plc9ar4HTd9f283q9i2rNVo2PXtJbaVc6+wLC86fMFq2sQ66DcmW+mgzhvEzZAJPdWxjVFeds//72aitgvGF7sKo2q+U2r1v3Y1r2osT41PZcDO26nn+rV/BfzmD1OY1Xe8yJz6wgQWcAAIBjUOR3ZGPHjlVCQoJHf1JSkjUGAAAAlLcvvvDsq1Xb863vznzZp6sP1tN2NdQTAY+69afJrqH60/bOXq83Kba/R1/N1nlWPSuif/91tb+LP6PAee/rGm1Od5VWSFWwNquJtqmhx9yDcn1Crk931yJsptZvXuddXPxg87EygWSrXITJKn7EM4v23SWdFLZ9jWIy7RIWd3b+TS9Vf9I57ueTreHneNYgBgAAqPRBW4fDYWXS5rdz505FRHhfHRcAAAAoS++/774/7bMD6nWGHZ385ZeCywt8u727rsp5XxdkTHLr/yTncu1MKtp7XZ96dVVc7dq52vduvd56zK3jmt+M5D7O9lL1UDNtVk8tcZuz7ZCrTq+lalW3BcByBQQ45FMz39yy5uXfGh4O1/mNDktU3+Blzu5sh58yfMov6AwAAFBSCi60lU/nzp2tYK3Z+vfvL3+zesJh2dnZVg3bM888s8RuDAAAACiuhg2lXbvsdnR4ks4a6u+1Zux43aER+sG5vzYx2uv5bsh8TSHbvzziNS8dnqzPf7A/ml8tIkeKLH7w89lnpbfestt+PjnanVRFoxO+9Tq3fvVkZ9tP2QpXksLk6jMaf/+y+0H51qUwmb05OVJ0tHm/r3K1/E9f5SQlm39k6K57fPXx1+HOsY5NElR130YlO0KVnumr4Dde9zh+Z2yQGpfxPQMAAJRb0Hb48OHW499//63Bgwcr3Cy9e1hgYKAaN26skSNHFusm3nzzTb3wwguKiYlRx44d9frrr6tHjx4Fzn/llVf09ttva/v27apZs6ZGjRqlZ555RsHB9sfWAAAAcGJ78kmp/+GKBXsOVZGU4DWzdIH66iudr1Vqr14pm3V+m2WatLWX13NeMeNit/1rL0/Te5/a7z87tk7TxC/9NNH5dvTY6sJWMbd8WI78lJAerDmZfa39+n671b5LoKLr+ljB5G4hppZCbWtsmbrrkKpYW7Z85ec1kdXhEVBu21YVRrVq5j928LtBswy3sX+3V1FWdlcl5XivW3vbkPWq24q1NQAAwAkUtB03bpz1aIKzF154YYkFSCdPnqw77rhD77zzjnr27GkFZE1QeN26dYqK8lx84IsvvtB9992njz76SL1799b69et1xRVXWBnA48ePL5F7AgAAQMVyzTXSBx9ID92VpitHZ+i6ax2atTRCl56XqolvJ0mbN1uZmVaBVl9fndGxgerWjtDuvf46r/t2yb/grNcPdZVmarBuS/tQ5wbuK9T9rJ/8l1pc0FnvTsjtKb3kgf0ZVdX+PdeqauF+qfrilXilBEQo/flUJWaEyBQ7yHb46g65MmpzrKBtjsf5mtRJlRSq40G/AYHSs3Y7OixBe5LtEhVr05uos3+OTo7epsV77CBtVf9kvWyefkvKIwAAgONfkVMAxowZU6IZrSbQes0111iLmLVt29YK3oaGhlpBWW8WLlyoU045RZdccokVQB40aJAuvvhiLV26tMTuCQAAABVMVqb1kPb3WjXtVNUK2BqffxciNW8unXqqdN110o8/Sp98okM9+2tFTmfFX3azvv1GUph7ZuZN19nnMwJktxMdVfTF1t7O/htu+LvA22l8VhuVtmFD7PvqHLndqtWaa21GM2X7Ber8G2qq6TfP69Ntp1r96xwt3Y7fezj79rZll7j1v/9amo4Xj+ZZD+6rkV+pfh37NTElHMz2+xUfOsebVY2V+OQdAAA4kTJta9SoYWW0mlIE1atX97oQWa64uLhCXzwjI0N//vmn7r//fmefr6+vBgwYoEWLFnk9xmTXTpw40QrSmhIKmzdv1rRp03TZZZd5nZ+enm5tuRITE63HzMxMa0Plk/t15esLvhfAzwnw+6PyGH1+irpk/K2YFNcCWrkys7LsmgfmPV/9+tK2bbpo2zOamnWWzv1lgb55LNu8MXA7Zvzr0ta/9ihr5X+am36a1Tcvs7c2bajvnDN48Db98EMH7dnjq5G9durtiaGq1iC3boFfqb/XGDjYoR+nSX8daOgxFlLdT8EhDoUFpMs3UMr081OmCVi63vbqWt8PtF+RWramu7PvixvnqO+wPsfN+6QWLfy0YIGdZ5IYUkMO2f8O+Tq+v0b5bLL+NTOk/kpN29lRmX7ByvTz/FqXNN5fgO8L8DMC/P7AsSjs+7BCBW1ffvllVTlcWMu0jxS0LYr9+/dbi5jVrm1nAeQy+2vXrvV6jMmwNcf16dNHDodDWVlZuv766/XAAw94nW9q3T722GMe/TNnzrQyelF5zZo1q7xvARUE3wvgewP8zDj+DR8+TJKdUZrfj59OVkCAqwzAyIkfKTvbDvT9FdxB0/6ZI/3zj8dxM/46R5mZroXHNqW5Ara5Xnppur7/vrn8/Bya9vsqVavmXmO1NK1Z31DBwe2tdlqa+9v2X1av0i135T6nWpqm/vol8yrpHbsnKChLmxv30Lp17guOvbailUKnTdPxol+/IE2Z0k/794fq7t9PVWTUQe2KqaW9LZppWo2D1oJqZ0QcVPSaVYqKStG05TFldm+8vwDfF+BnBPj9geJISUkp1Dwfh4l8lpPdu3erXr16VsmDXr1cCz7cc889mjdvnpYsWeJxzNy5c3XRRRfpySeftGrgbty4UbfeeqtVYuHhhx8uVKZtgwYNrMBv1aqemRqoHH+xMG+iBw4cqICAgPK+HZQjvhfA9wb4mVF5BAYe+Xf6TX5vanyTV8wbSQVee42z/8vT39TIry+SvLzvm/j4Ft38VD0lO7wvavXDDz+qd++Bioqy/9C/4vd4ndTT+9yyfg2SNuzQtfdH6bsf/PS/FjP07IAZCnz9Ned4RuMmCty6xWqP6faPJizvYLW7d0zTH8u8LU9WcT3xSLamTk5Wt6YHdONT0Ur8+XfV2LBYLYe31Zin2ujL1R2tec+cM193ftLO69e6JPH+AnxfgJ8R4PcHjoWJTZpqBgkJCUeMTRZ6IbJc27dvP+J4w4aeH98qiLlBPz8/7d27163f7NepU8frMSYwa0ohXH311dZ++/btlZycrGuvvVYPPvigVV4hr6CgIGvLzwTzCOhVbnyNwfcC+DkBfn9UHvPnSzs2pqljm0yd1Cu3RIHLG9n/0+vpz0kOh8L805ScZa/BkJgVoQB/f/PGwOOYsCC5BWzPb79WX69qbbWv67/eegwJCdA1V2ZJSYcUFR1cru8fv/pKevu1TFXxS1ZQ7VrKzvFTepa/cnz83QK2xqMH7nC2OzVK1HfrHEpK8tHdd/sed++BH38mQI8/lC2pnrbGhuntRS2kHcHSnmh9udpVW/jZ2T11X3CW1691aeC9Jvi+AD8jwO8PFEdh34sVOWhrFv86UnkEU+6gsAIDA9W1a1fNnj1bw4cPt/pycnKs/Ztucq2Qmz+FOH9g1gR+jXJMGgYAAEAp6tvX/McEYoN1yy3Sa+4xSpsJzkrOgK2xIaVegee88GH3hbtObbNPX/3TWkpOVmZWbU2bu0bmb//vfWjOW03l7fzzzRbgvJd7HpBGDIiT35IsvfKf+9ynk252tru2TFTiN7nv3wN1XDq8kFzsf9K7s1uYareSHVd3uuLyHI8F5wAAAI5XRQ7a/vXXXx4fDzJ948eP11NPPVXkG7jjjjs0ZswYdevWzVpY7JVXXrEyZ8eOHWuNX3755VYJBVOb1hg6dKh1rc6dOzvLI5jsW9OfG7wFAABA5TJzprRjh1mUVrruOikhQZowId8kf3+TaOumRkThEgoe9H1G/xtQ01RRtQN/x8FCXd9+a9ZvMDVrzz7ivMSgKFUWy5a52o/dZS8wXCdli659urEUEVF+NwYAAFDeQduOHe2aUXmZgGvdunX1wgsv6LzzzivS+S688ELFxsbqkUceUUxMjDp16qRffvnFuTiZKceQN7P2oYcesjJ9zeOuXbtUq1YtK2BbnIAxAAAAjg8ms3bqVOmtt6QbbpA++cS8B5VudiWUalV6S52U77jTOsQV6vyv5NysszfNlmuVhYovMlJq3ixHaQdTtTOu4AzToOYNVFnkBuUb1c3UI08EmgUspPmmfFvj8r41AACAEuVeZ+AYtGrVSsvy/um7CEwphG3btlkLhpnFx0wGbd6Fxz4x78oP8/f317hx46wM29TUVCuo++abb6patfL/yBoAAABKR48e5hNXUqNGrr5rr3WfszarudIy/TSq+d/Wfv0q8ZqzOc8B+Qwd5FqsNlnhWh1jMm2PH3feKW3Y6Ksd26VZPxyy+urXydS/K1zPq2fz/ep1uqtcxPFu0CDpyy+l198JkIIrz/MCAAA45kxbs8JZXqaO7J49e/Too4+qRQtTXwoAAAAoWY884j3r8t/FSWp3sr0w2QW7X1F89sf6ZmMna39nUjXtSqnurHWb3xWjszRlpmvB2k5tXMHO40pYmNr1kCZOlEJDAxSYZ522JRtrKiU1UZWl0qv55wb/5AAAACeCIgdtTUZr/oXITOC2QYMGmjRpUkneGwAAAFCgn3+WRo3KE6GUNG9LI3WstUu74sP0/qO71WpwYyks1OvxIy93D2V26FLkt8YVRnS0dOmldtvkWLz/vnTLLQ6dNyBJwVWP08XHjmLWLOmss6pKjrMVtzVJVSlpCwAAKpEivzOdM2eO276pN2vqyjZv3twqXQAAAACUl2GvnmE9Bvpm6txzcuTbwXvA1pu1CdHyXL3h+FO1qnT11WYziRZVVVmZTOvsbPMcfaQgV8Y0AABAZVDkKOupp55aOncCAACACunvv6XffrMXAsvIkPr0zNAzD6fai0AZycn2gFkZKzZWCgmx+8PDpZwczxPmBthSU6WEBPs4My8szN5yz2k2Izvbntewofn8v/M0Zv3buDjppusy9MXXgWrZKE3rt9l1TjNyApSV7aMj5Zj+9JN07rmu/dW7qleKoO2Jol8/adcuux1ek/q2AADgBA/a/mTe3RbSuXnfBQMAAOC4NGGC9Morrv0FCwL1TORL0qJF0u+/28HVunWl3BJaw4dLAQHmI1rS9u1SSork52cHa02AdtQoO8j72WdSfLxdc9bXVzKL0b75pr3A1F13SfPm2QHbQ4d0etp0rfatrVef2K9L7mtoXcZcbt8+WQFbY/6sDA0aFax//rFvw6dK+BGfV5cuUof2Ofpnlb0278adBP6OJ+bbxHzbAQAAVEZFDtoOHz7cqmlr6tjmlb/P7GebN9kAAAA4ruUN2DqZQOzu3XbQ1TAZtpmZdnDWZMOa/Q0b7AzZ/MeZzWTpmohrVpZrbPVqu69KFenff6WYGPsz8JLmqp+UI307JU2X3Oc6xCTmnjMkW0pJVWB4oJ56ShoxwqGoGlkKqF/7iM+rXj1p5T++GjQgW/+tzlGnHpWz9isAAACOP3ZaQRHMnDlTnTp10vTp0xUfH29tpt2lSxfNmDFDOTk51kbAFgAA4PiwaZOdtWq2VXMPWJmza9ZIt94qvfDo4RIF+ZlM2uIKDCzS8XlTBZrUzxPklVS/vjRlqp+mzAlX9ehgnXOOiR37aNfeADsVsxBm/uqnnTEBGnY+QVsAAAAcp5m2t912m9555x316dPH2Td48GCFhobq2muv1RrzDh8AAADHDZMwm6vD6ZFytGyltuvXHe45XGM2vzJcgDYnT55Bp5Pcg7YAAABAZVTkd9ubNm1StWrVPPojIiK0devWkrovAAAAlBFTdjavGzbeecT53/Z/y8qUTcsJ1EHVUYAyVVOppXZ/2fJztrt0PVw3FwAAAKjEilweoXv37rrjjju0d+9eZ59p33333erRo0dJ3x8AAABK2ejR7vvv5Fyrbo1jvc49qXmq/ohtabWfjhmrutqjWtpfavf2uS5RkDKc+3Xql12GLwAAAHDcBG0/+ugj7dmzRw0bNlTz5s2tzbR37dqlDz/8sHTuEgAAACXCrA9myiEkHy5Ve+CA93kf/+9Pj77ereO0emOI3lnTzyqP8MSea0rlqxKX4KfYrOpKdwRqtD53G8v0DSqVawIAAAAVSZFTFUyQ9p9//tGsWbO0du1aq69NmzYaMGCAfMzqFQAAAKiw2rSxA7UvPpqkO2/LUfwmUyM20mNeu86ei3J1aJ2h/kPTFLDmH4+FxBzyUUm9E4zs00bSPD2phzzGqtStUkJXAQAAACquYn2+zARnBw0aZG0AAAA4Pvz1lyuzdsEnG3Wn40f5//i3pB885m7yb6Vu3aTly119F56XqZjMHOlAgib92cJtvsPHt8SCtrke0pMefYFVg0v4KgAAAMBxXB5hyJAhSkhIcO4/++yzio+Pd+4fOHBAbdu2Lfk7BAAAQIno0sXVDsk+JB06pFvWXO/sG9IlxjWhZk29+KL78dUbR+jiq0J18UcDdfEng90HfYtcdatI3r5kvnbssKoyAAAAAJVeod9dz5gxQ+np6c79p59+WnFxcc79rKwsrVu3ruTvEAAAACUuITNUCgzUT+lnOvumvLBW5m/yZmvSOkinnirNmSO9+qr0449S7RZVdXq/bJ3e1hXcraEDcvj5y9fHUeC15quvfKwCCg4lO0Ldxj7TaNXRHgUpTfckPFjgOerX91H9+sf8tAEAAIDKFbR1OBxH3AcAAEDFr2eb65Sa6z3GfRs1UESErM3Pz+477TTpllukc8+V6tSRfpvnp9+WuurKxilSz+bco705tQq87qma72z/ldPRbexyfaa9qqMMBemFQzdIQUFWGYf8lsU0KOrTBQAAAI5bpfs5NgAAAFQYJuiaKzYjQh+t7Oo+oVmzwp0oLEx33unavd/xtOoc2qj8f9Pfl1NTj+tht76+qTOVnXOE6rdVqqhTJ+mhfGuQdejmuTAaAAAAUFn5F2XxMbPl7wMAAEDZMaULXn/dbpvApvPtWHa2lJMjBQQUeGz16q72q+vPVO3dycW+j86dPft8szL0vc8FGn54f5+jlsbpcY95v+1pozHfDtWerPGeJ6la1Xro18+9u2ufkGLfKwAAAFBpg7amHMIVV1yhoKAgaz8tLU3XX3+9wsLCrP289W4BAABQskw8dto0aehQV99DNyfolbcDdfsDITq7yz69dsliNb1uoJSSYk8w79vyvEfbvc1Ebe2grkO+ijnkKnPwwNX7JEUV+n4KWnfskayHNVyTrPa8rFO8zhn06eiCTxwebj2YbFtTSzcuJkPDh2arcec8EWcAAACgkit00HbMmDFu+6NHe77Zvvzyy0vmrgAAAOAmK8s9YGscuvcJ3f7ei1Z76opoDVj3p257bIw92azaZQrRmgKx//5rBW+rJ5pg6mBr/qD2uzVzVV3nue67O7tIr3i9et77VznaS4eDtslyX3SsRtVMxSUWnAk8++dUq/SCUauWXUtXoiwCAAAATjyFDtp+/PHHpXsnAAAAKFCyl0oG8QnupaqikjdLSrJ3du2S9u+XduyQ9u61uuapj/X4QKdpemzuqQqo5jq2SsOiZbJGRxc8ticlQj/+10YPpl3o1r9idrxqNQrV3Q/4660P7E9v5Tq0P01hkZRAAAAAAAwWIgMAAKjAUlOlTZvsZNn8Gk5+wW1/pL5VgqrqH7XXupwWkr/73+e76k/rsWX1WPlHhFnnPnhQOnRIUnBwkYO2UTW9Z+feNneYbvhjtLIOl2LIFRJVRaG1wvTym0H64AP3Y8Iii3Z9AAAAoDIjaAsAAFCBLV0qNW8u9e179LnR2qPRmqiO+kfD0ycpPdtfq9NbaLXaWeOrZEoXSMk5dkaridNWq+asSFDkGrt33ZLh3F82JcbZ/urvVh7z07btVa0GdmA2MFC68krX2OvPHa7BCwAAAKBo5REAAABQPkHbwjqoGvpZduHbtY7WOnXavVqyr4m131LrFC+7BMJ/CQUUpC2CuDjpnkdc5QxCq/rrqrHZ2rk5U+s3+2vLDve3mUERwVKeag4+PmahW+fRx3w/AAAAQGVCpi0AAEAFY7JYc7cX3CsgWP6esFILF9qBU1fg01NuwNZYL1f2a1xm+DHfo8nOvfgCV3mEmPhgffCRn36ZG6y/VvmrW7djvgQAAABwwiJoCwAAUMHcd5/k5yddMTpTsbHuYx0D16hjuyz16iVVL9raYU5d6+875nusVUv6YrKfata0o8ZZvoHOsYgI6cUX88ytkupRXxcAAABAwXj3DAAAUFHt2CGpqVvXgCpLpCD3NNYWzXO0YWPh/xbfvY1ZeaxkvPiij9LSpDYdXUFbo0cPaeNGSSkpqhvtKF7hXAAAAOAERdAWAACgghk0SEpLSFfQ5kSPsZcOXKEXtdqtb81aX49EVseGjVY67A/TgzTiYnsBsFw9+gaV2L2OGeO9PyREatbMtKhXCwAAABQVQVsAAIAKwCzMleuUHhn6Y6kJrHbyPjnUPRBqSimYzNbcRcs6N4qz6xdERKhpW8/DAxvULtF7BwAAAFCyCNoCAACUs3//dd8/sGyzRgWuV2R0oDYFtdGv6xs5x3q2OCDVretxjg8+kD78UFq2JEejB2dKQXZgt2VLz+v5RtUshWcBAAAAoKQQtAUAAChD8+dLn38utW+ZrpsuS5CCgnTSSRFuc9Y6Wismo7YO9rxeeuEFvfR5uu56wC5pMGdmlhTsXu7AaN9eeuUV0zK1bV2ZtGaqqS3bvHmeydWqld4TBAAAAHDMCr9iBQAAQCVz4IC0b5+Unm7vx8SEatEiH23dWnrXXLNGeu896aWH4rTj1NHSE094nRev6pp/sL1V4mDoSFcN2sCqngHbozG1ZRs2yLHaY/ttkkcBXAAAAAAVCu/YAQDACatvXzuIOv2bZPU/LU1TpjTT9df76+7hG/T8W+F2sVgjKMgV2fUmdzwmRtq8WRowwC5Sm5xsjxmHj68dFGhSXbU1LVp3b7pOk/ZPKfC0oxfdqO2SwsOlkcOzpZQU1/mK6L81vspJSlZAQB0pLKxY5wAAAABQNgjaAgCAE5YJ2BofP71HV14VrT0Jkdb+Cz+00Lhf6yisWoAUHS2dfrq0fLl9gMMh5dhZq8rOlnr1ktq0kaZNkw4elDIyJF9fux0YKF1yiZSZKU2caM1/3LFcUhfr8MmZIzUp5NcC72/HoRqSEqwStt98bwLIVYr9XK04LcFaAAAA4LhA0BYAAJyQBg92tb9akbfgq236oT4alf6TnSEbHy/t2GFn0homcGuYbNpdu+zA7vbt9lwTtM1lgrV799qPWVlW137lWwQsIMDZfGP0Yv0+L0eTd/S29v93xhrJv2FJPm0AAAAAxwFq2gIAgBOylu3Mma79ID87oJrXrXrVtXO0GrB5Aq8ezLG5ZRZMSQb97j6eJ/v1l/8aOgO2Tw2erzd+akh2LAAAAHACImgLAABOKCY5tma+ZNf1XyxX8p4DuvvuZc6+3aqn+7Of1Lupl5fo9dvqP7f99IBwBfrY2bk/r6jr7I/LjiBgCwAAAJygCNoCAIBKa+hQKTjYoU/eSpESErRueZLXefF12yogsqpOOWW3rr4629n/bM49mpg2qsTuZ5sa6ixN14e60tkX/MSDynCYxcnc9ezqmf0LAAAA4MRATVsAAFBpLVqYo/R0X/377RrJZ6la33iDx5y7ro5XnZbVTAFaa//ccx364AN7rKG26YLQn49eHuEo/H7+QTlylUgoyElNk7V6s10u4b/E+sd0TQAAAADHLzJtAQBApXUgzn6r8+JvXTVndyuP8ZDgHD33bjVFRbn6tmzxcba3q5GaBe10q0lbHAUFbJ958JDb/rKpsWpUP1uhgZk6uZ9n9i0AAACAEwNBWwAAcEI448kz3PYjq2UpMTZDvvneDc2c6QraGlfHPedsD3ZM12mO3/Sv2h7xWt9opHzkUD3tPOK8+54M1+TJrv3gxnVUv75D6Vl+2rAjuBDPCgAAAEBlRNAWAABUWpddbJc8iI5IVuPIRGf/+HHx2n/QX/7hnoHRiy/OcdvvEbxK/8bXk8+G9ZqpwZqn05Soqke+rj5zLma2Ja3OEeeefba0ZIm9KThY2Tm+1ubwo4oVAAAAcKLiXwMAAKBSGjlS+u67AKv96GM+unK0Q1OmJ1ulDs4aYWrYenfBBQ6NHu3a/zF5gH78eIDbnN5apH/UXu31r9dzpCnE2W467U2vc1o1SJYUprAwqUcPV/+Uqb7KzJSqVrXvHQAAAMCJh0xbAABQKX33nas9+aMU+UdGaMToMI24ONgktB7Rffcd/fxzdPox3d9b49O99tesKUVHywrmAgAAADgxEbQFAACVXlTgwSLNHzv26HPu0fPa56hVrPtZMeuAzhhVo1jHAgAAAKj8CNoCAIBK74whrnIFhdGypfTpp9LA0zL07C27NOCMbI856QrWIvXyenyIUtz2A/3dj+/cnQpVAAAAAApG0BYAAFRKdWq7FhQb9r/6RT7+ssukmXMCde+r9dS5q5/XOcP1g7IcnmOheYK2UyceVPr+Q879Qe12Sf4EbQEAAAAUjH8xAACASmlgf4eWLMzQrbf5KCrq2Bb1GjNGSjuUpRq+8XrszZpuY9szo9U0z36GAlRHMTqgmrqs10Y1795cipAcDknJZvGxahSsBQAAAHBEBG0BAEClVKWan07q4qc+x7ZemKVdO+m1t8zbpprqO0IaMMA1djAgynqcnjVQQzK+dTvuo+uXyr9lc1cHq4sBAAAAKATKIwAAgEpn2zbprbek776T/v23ZM/dv7/UuqWrRm1WSBXr8ZAjzGNuqiO4ZC8OAAAA4IRA0BYAAFQ6O3e62htXp5b4+evUcbWvXX2LPll7spZmd/W8j8SqJX5tAAAAAJUf5REAAEClYmrH9unj2m/W2LUgWUmZM89PPj52e21yfY397TKv8wKCvS9gBgAAAABHQqYtAACoVHzzvbs5e0B6qV4vI6fgRc6atzgc2QUAAACAIiBoCwAAKo28ZQtyRVR1qNxUsevdAgAAAEBRELQFAACVxt697vsXnJkgRUaWyrXeeUe65RZp5k9HqJlL0BYAAABAMVDTFgAAVAo5+UrX+vrk6I1PI0rtetddl9sK0XffSY89kqXA7FQtW5Mnuzai9K4PAAAAoPIi0xYAAFQKO3a47y+YuE21apXNtUeMkP5e5a/Fq/OVQyBoCwAAAKAYyLQFAACVwoQJrvbW/1LUqE2Tcl8ETcHBZX4PAAAAAI5/BG0BAEClMG6cq12/ZWi53ceyZVJsrNSk7GPGAAAAACoJgrYAAKDS8fMrv2t361Z+1wYAAABQORC0BQAAx639+6Xx48v7LgAAAACgZBG0BQAAx62DB6VnnnHve/zx8robAAAAACgZBG0BAMBxXQbhkkskHx+pVi2776KLyvuuAAAAAODYELQFAADHre7dpbg4u+1wlPfdAAAAAEDJ8C2h8wAAAJS53IAtAAAAAFQmBG0BAMBxKSurvO8AAAAAAEoHQVsAAHBcWr3a1X7llfK8EwAAAAAoWQRtAQDAcZllO3y4a5/FxwAAAABUJgRtAQBAhZSTI3XsKHVsn62d61NcA8nJ+v2ng9q2zdUVmJNWLvcIAAAAAKXBv1TOCgAAUEinnSbNmyeNGpapm65J18KFUq3IHEVkx+mffxpL8tO8Ic/p0olnSRkZ0pgxWrLrMkmPO89R3WFWJKvLaw4AAACgUiBoCwAAypUJ2Brf/BhgbS5Vna3Rmx7TeWsmKSQrSdq+XeE5Jkibh59fGd0tAAAAAJQ+grYAAKDcmMTZwur1+JlaubWapGs8B4ODS/S+AAAAAKA8UdMWAACUm6AgV3vQaelHnGsHbAEAAACg8iNoCwAASkVCgrR5sxQT4328Rw/3/fpBsXrxxWJezJ8PDwEAAACoPCpE0PbNN99U48aNFRwcrJ49e2rp0qVHnB8fH6///e9/io6OVlBQkFq2bKlp06aV2f0CAICj+/RTqVkzKTpaunnoFv3y+FLtnvy7fHxkbcuWuc/v3nCfbrtNeuMN7+d79K5DbvtdtVzTez2ug//tkcLC+JIAAAAAqDTKPS1l8uTJuuOOO/TOO+9YAdtXXnlFgwcP1rp16xQVFeUxPyMjQwMHDrTGvvnmG9WrV0/btm1TtWp8ZBIAgIrklltc7Td+bmJt1/X8q8D5198VLvlJW7d6Hx82KkCz/sjRH4vsvzn/qW46a1E3OeomlPi9AwAAAMAJHbQdP368rrnmGo0dO9baN8HbqVOn6qOPPtJ9993nMd/0x8XFaeHChQoIsFeYNlm6AACg4nt3SeeCByMirIdDeRJq7718t3yjamrUxYFq1SZICxbaWboAAAAAUJmVa3kEkzX7559/asCAAa4b8vW19hctWuT1mJ9++km9evWyyiPUrl1bJ510kp5++mllZ2eX4Z0DAICSNOmmBVJ4uNVu2dLV/+zzfnr6hUB16SKFhHge17LWQerZAgAAAKh0yjXTdv/+/Vaw1QRf8zL7a9eu9XrM5s2b9dtvv+nSSy+16thu3LhRN954ozIzMzVu3DiP+enp6daWKzEx0Xo0882Gyif368rXF3wvgJ8T5eOff6QpU8zfhf3c+pPjDmnoqFD99pv734wzpk2XevdWZmCg+eGt9u191KC+r2pWTVemqVXr8fva/qSNsfD3NGUGhnuZU3T8zADfD+BnBfgdAt5PoLTwXhO5Chuv8nE4HA6Vk927d1s1aU2pA5M9m+uee+7RvHnztGTJEo9jzKJjaWlp2rJli/z8/JwlFl544QXt2bPHY/6jjz6qxx57zKP/iy++UGhoaIk/JwAATnTDhw9z2w8KytLkyVOtdlqan3bvDtcdd5zmHP/hhx+LdP558+pp794wtWt3wNoAAAAA4HiRkpKiSy65RAkJCapatWrFzLStWbOmFXjdu3evW7/Zr1OnjtdjoqOjrVq2uQFbo02bNoqJibHKLQSaLJ087r//fmuhs7yZtg0aNNCgQYOO+MLg+P6LxaxZs6wF63LrHuPExPcC+N6oGNLT/TWkTx8pz+/dm27KNO9W7J3QIUU63xDn9OYleJf8zADfD+BnBfgdAt5PoPTw71PkrwJwNOUatDUB1q5du2r27NkaPny41ZeTk2Pt33TTTV6POeWUU6wsWTPP1L811q9fbwVz8wdsjaCgIGvLzwTzCOhVbnyNwfcC+DlRMYzosFEBwdHmB7PXhccqGn5/gO8H8LMC/A4B7yfAe02UlsLGI8t1ITLDZMG+//77mjBhgtasWaMbbrhBycnJGjt2rDV++eWXW9myucx4XFycbr31VitYO3XqVGshMrMwGQAAKH233SaZCkP33ZkhJSe7bYd2JbjNHdF5qyZNrSqZ2rQAAAAAgIqfaWtceOGFio2N1SOPPGKVOOjUqZN++eUX5+Jk27dvd2bUGqa0wYwZM3T77berQ4cOVk1cE8C99957y/FZAABw4nj1VfvxufGBevaz+pIpj28+4hMZqX1DzCdlHrDGe7Q7pJc/j1JgfWrIAwAAAMBxFbQ1TCmEgsohzJ0716PPLFq2ePHiMrgzAABOTCYOm5Zmt4ODJR+fAibGxloPP2mo4mNq6PGvrnIOhQRmq1Gb8LK4XQAAAACoVCpE0BYAAFQsMTFS3bp2O2PTDs2cF6QNfyZK1qdfmjrnTdDlGqNP9ZCe1CpHBynJdY4Lz8sqhzsHAAAAgOMfQVsAAKAVK6Tnn5fqRGbq9utT1bhDVeerkt53gD6JeUbf5Jzn8UpdoQlW0HaVOjj7aoanqmfzOJ1/WTVeWQAAAAAoBoK2AABAU6ZIkyebFyJAH3+U45F12yhns7pquaJaVNP0Dc3dxteotbP9xDmL9dDENpJ/NRYfAwAAAIBicq3wBQAATkiHDkmPPuraT0wLchtPcYRohbroT3XTOR13aM8e9+PNWK4+3TOkiAgCtgAAAABwDAjaAgBQST3zjL2A2KD+2dr3b6y0b5+9JSRIcXHS8uXSX3/ptTu3HfE8MT7RmqMzrPbCbfVUp440YYJrfLVOcrbrN3MP+AIAAAAAio7yCAAAVNKA7QMP2O1Zv/np2V4/anyVcVLt2tLw4dLOnXY9hIAABSZfL+nJAs/1u/qqt/7QQp2ioV13S2qpBg1c48/qfmc7pEZIqT4vAAAAADgRkGkLAEAlNGeO+/7LSVfbxWm3bZMyMqQDB6TEROtxTNq7ukIfq7nvJr1z9hRNnpCmh+/NcB77ZM4DukFv6y3/W3Ry6/gCr1nLL071mgWX5tMCAAAAgBMCQVsAAI5DsbF26QOzDeidIm3dKi1ZIu3da5U/uOHy5IIPDgyU/F0ftpmki/SJxqpJwC5dd0eYLrg8WI8/G+h2yGWaqBuzXlONsHRrv0ULL/eUXUMKJmgLAAAAAMeK8ggAAByHdu1ytWcvCpW6dZNycqTmzaVzz9W5O0wZg7fcjpmhwRqsJR7nClSGqipBof7pUkSNI173p5WNdKmkqlULmBBETVsAAAAAOFYEbQEAJ4Rbb5Vee81uv/lssuq1PpyuGhYmpdvZowUGIPOPm6zWrCwpJETy85MiIuwoqlngywROTz5Zys62jy/quQszHhama68Nc+vadiBMjbRd2rhRSkvT1m0+ClWyUuSad3fOsxqs0z1ON1RT1FH/KDK6uhT0vLPfvDy1auW7dKR9XwUGbc1rAQAAAAA4JgRtAQCVjomXfvaZ3R42TKpe3RWwNRxPPSV91ke67DLpjDOkf/6Rli+X4uPtIKyRliZddJG9P2mS/bH/Q4fsYK3RuLF0zjn2xb75RkpJsbdq1aQqVeztlFOk33+3SxaY85nzOxxSeLg0erRdpuDLL+1zmvObAK3pM8HgCy+UDh60r236TEA4N5A7YICWLfvW7Tk31jZdpC91S9Yn6hUYqFn7O7sFbI1V6uD19fpSF+suvaQL903XpDz9NWt6zh1yboCzfeed0ksvucbqVEuVglmIDAAAAACOFUFbAEClY+KoY8fa7X/+SFL1djkmBdQ5flPSCzr91e3qtT1R1ZMzlL47UdqdqJC0ePnJzD3MBFsDAuxgqykeawKuueLipKgo6e+/pT17XMHc3DETmG3Vys7KNQt+mZvKlZTkyvLdt8/uM8FhM8dcJzdAbOaYa+fKzbpdvdrr856kizUiZ5Z6SYoOOah+mqfoqBxN3pcnu9bXs5z9Wpm0Y+nvjDZSoGsBMm8C67lSb4cPdw/aPv+IqaNL0BYAAAAAjhULkQEAKh0T9xwyOEtDOu5SwIyfFRHlvqiWMWdOQz154CY9NH+QqiyYrippsfJXnsCqYRbryrNgV5HlZu16c7Rzm2BxEa/9nO5VJ387oDus3p+a53uGbmjxq+eLk0997bQee1Rdd8SFxDrVj7WD0YdFRpoyCa5A9vDzXVm4AAAAAIDiI9MWAFDhvfeedN11JobpUObmne6LXXmp/ep7IF6/zW2utPR6mrby4gLP+3r8GOmPI1/7QHq4VqufAhxZ6q2FqshW6SSFZkqJu6JVJfGgtjkG6kBavoXFvGTanqTVukiTdHLUQSmok9tYTIy0dU2qqgWmqFXHUDs7+LA2bUyisY+aNj3cwSJkAAAAAFAiCNoCACq877+3H7OyfKRevaTMTCk11a4be+mldiBy4kS7LEFGhhL9ayktfU+JXHvh/pY6Vx+olvZpn2qronhv3C5d+1g9t76JukwTU6QnNs7R1i3N9KHjZZ23e5HbnEyHv/Lnw9ZSrHr6LFXrqEiPTNvatc0WUmDZg0aN7C+FERRUcJYuAAAAAKDwCNoCACq8Vatc7YzYBAVmHLJ3TLTQ1Hw1GZ6m/uzhurI+2YejiMVgPuyft4DA4/+OtB5jFaXZOkP99ZvK2tcapa1qrKpKtPYbJueoV8cUvfiiFB0tDe20QzNHvadRa56wxmdtbqb5Wxta7UZVDmhUtzR9M8UOqO53RCo63/l/1DCNd9ypG3bM0hlFvDcTLz9CRQUAAAAAQDEQtAUAVHi7drnap2bO0iJrqa3DAgPt+q95VFOCHAGBVibu99dM03nP9XSORddxaE+MKyzrSE3Twj8cOmWAnUmapmCFKM05vvxgM2d7jk4vl6DtB7paMzXY1bFLcrRYrZNG2Ls+Pg0k2QFb42C6Kyu2TVtfXfVksOb/kWktgOalOoK6aIUu8flC3eukS/69S/fJAAAAAACOioXIAADHlcWOk484/onGaJh+0OPZD1r7XZvFO8cuOi9DX33to4YNcqz9F59Nt9JEazV0BTmzjvD3zCkaqvIwULM0Rp+4d5rSEAVYtaeWs33tD0PUrp2096892nv2Vartf8Bj/qX6Qp/7X6GxFyS71awFAAAAAJQPMm0BAEViKhD895/dPukkr+talatJukgzdKZ+yhmmcXHj5Kj1g5Yvl2JjpVatAtWkibRxU7amTZuiIUOGWMdERbmOT1A1VdHh8gv5/KOOKg936SXdrefdO2vWLNI5fBqZcgnfa2jwTP2kxW5j32u4lmT31qnrm+mskrhhAAAAAMAxIWgLACiS+fOl/v3t9j03Jeu5h5PtHVNXNj3d8wCTuZmbvZmcbG/5mWMPHZKWLJHCw6VOndyPV+GzP5tpk9t+VlCYunY98jF+fq72JjVTgDKsMgnh6eEecwdolk7WYj2p11VWztWPmqJz3TvzZMT27i0tXGi3v3v0H/W9rLFqNatq7VevZrKKXZH1KWmDTL6y26ku1pdKzwnWjB/266zXSvWpAAAAAAAKgaAtAKBIcgO2xoS3kvXcpy3sIOvpp0uzZkkrV9rpuA6zpJek0FDp7belxo2lG2+UEhPt9NyDByV/f7se7bBh0r//2ltwsG7Z+6C+Th+q20Pf0z0950mH68jWjUzT70EDpN0F3189U/A1r/r1j/qcTJw41x5F60k9qF81UA9s/NZj7mwN0C7V05M+b6iwdjrqqbnWWe0DilSYUqz2zJ1t9YteUnct08X62vO4lBpKVBvPgG0+P/3kSrzdmN5AI5pW1d23Z2nyZIduvsn0+hYcpZaULnslsfRs3hYAAAAAQEVQwT7UCgCoSExZgapVpaZNcqSEBGntWrfx03Nm20HY7dvtDNqdO+1Hk3GbkWFv8fHS339LmzZJ69dLu3fb2/79UkyMtHev/WiOjYuzgrkJ6UGKUbTuTRmnHr+/JMfMWdqzR2rbNE3Ndi/Qu7pWhwrIvn1QT7vt+zZrUqTnbLJOTcDWeHrdSK9z1qqNR9+v6q/JukCfZV2sj7LHaHGmK713uuNMKzBqtvnq5+xfEttUL+sOzci7yFgeDaa8pXY6XIsij78+/6/A8rZ1W9ivy/Pj/bVtV4Duut9epG3sWM8s3RjVlo8crmNrZni9DwAAAABA2SKlBgDglYm3du9ut5OSfKUJE3TuM70KLkVgMmaL/dvI/dfRk3pIHbVSd2q8DjiqSwEJSkuTfl1WzRq/Xu9qkGYqXDuPeNoD25PlG1o2C2sN1K92I/NwR6Lk0OVWc7fqOuclyRVhPaX2Rt2nZ9RFKyQfn0Jfq2UP+3XIFRgorVkj5eRIDRoEej1mwADp44+lyMAkKcReeO153eM2JzbRzrgFAAAAAJQvMm0BAF6ZSgV5vfFra02JORzFPcwEVovjyvS3rAxPX2Xry+wLPMYbaKeu1XtapfaaXudKq+at+fj/FcMOWuPNtFFB8lI/N4/29Q+qRoNjD9h2aRDrfaAwK7D5+Wlu5il61DHO2XWj3tJ6tbDabart0TD9qCba4vXwz055x6Ovfr0cBTZ2BYFztW4ttW3rnnWb16hRUtw/O7Tx0nFy+Afoky2nWlm+efXukHT05wQAAAAAKHUEbQEAXq2zS7A63TzFLGDl7gcNL9Krl+YI0o/Z5+jjLDsD1YRtL8n+zKPGanctVRUdUnut0oK0bs66s5/8WN1qb1Jz/a6+R7zW1UOOUPjWiylTPPu+vfQ7/bkqUI5DyVYma17pfqH66d9m8vnic/lk5abX5hMcrESHexT1gGpqn6Ksdt0vX1IvLVZ3LXeOz3f01a/ZpysxPUh/xNrB3VyTr5+jHTt98ycmF4opL3HetbU0YsZ1ik8J1NhlN3rMufS8tKKfGAAAAABQ4gjaAgC82rr16C/MF7pUb+h/ynYU7tdJSMoBDc/4ynMgKMjZnJ11qpbLldF71YHnvZ4rW+6BXmO3op3ts/sVLWv0nHO8dJpF1CIirBqwf/3lPhS8c6OGTTjviOeMyYzUsOQvPPqrmtoJ+XytUdbjhZqkgRlT9e+BOlp5sKHbnJO6eC99UBgpKdLcxcGau7uVYlO9ZyD3GphnRTYAAAAAQLkhaAsA8DBnjnT//a7983ts0zkneY/i3qw39FD8nUd9FV+a1rrgwTyf6R+Q6iXl1RRtzedSfaFGWRs1aYNrwa/1aulsN23iWmCrsH74wX2/VVNXBm0RSs46JWR5D476K8t6/GXwy86+6Y6zrEezAJtx5/xztShfpm3LM+qruOrVkyZ/nKLJV81Uq3tHeIxf2We9/CII2gIAAABARUDQFgBOYJ062cHIahE5yohNkBISpH37tG2VKxM0OuiAvvogUVMWVJcjPkFL5qbq9NPdz/Nsguuj9j20RCdplTaouduc9+a4ByDzSvU9Su1ZU9DWi+1qpM83uLJyf9MZznaOf9GzUvv1c99fltzW2R48WPr9d/fx9q0zjng+h5/3OgZ/yg4096/rqrnwY/bZbnMW7W7stj+23yb51/H+OhSGWaTsf3cF63+TPctKXD1ouz78pZ6VUQwAAAAAKH8EbQHgBLby8DpiCYm++u2qz6VnnpE6d9bqOz9yztmTHillZNhlAiIi1OPUEP32m1Q3OsftXHsOVVGTXQu0TD30r07SQvV2G1+/p2qB9zFyyhj5bFhfcG3Yw0Hbm27yHIpJjXC2ayjO45iiqF5dSk117Tfo3cBtrFcv9/n/LM+UwyHndtddrrG/b/lIbT662+t1Ig/fp79vjs73+cZqD/L7rcD7Gttngz6aVueYgqrm/vYf8NX+QyEeY7+uPrZzAwAAAABKFkFbADhBvf+++/5H//bQNytbaOyep/RS1m0F1pzNtXuP+6+Q0z+/WluzXUHOJLlKHmyJtxcQy/Xf8hS9/Fy6c3/6RldZg/zmfbnbGVC8+GLP8d4NdzrbjbVVp2quLq/3q/wiq6k4goPtwK3ZTh/snq1r1ktLSpIO7kxWSmyyR6DzjDMkf3+7LEOn164s8BrpPsFak1BXPh9+oK8do3R3/S/0TOgT1licXy3tb9BZy99Y7JzfpVfgMQdVq1aVVq+WVi9N0epF7vV+O3U+plMDAAAAAEpYMdafBgAcq/h4aflyOxba1/PT6m7i4uyP5ZtgovmIfkm5LV9c9uvN3azNK3/PXxcffyyNHWu3R9Wap29iT/WodTtZF2q/aqrm1GC3sTZdQ3XIPVHXw6RXYxTYoI66n1nX2XfSSbJKM5iau7kGttyuHze1U0LOaH2uizRPp6lT0iYdC/NaFyTclH0N9x5APessc28+Xr+mW+dvV48RdbXvgL9y5Ktvd/Z0jk3Yd5aeD/2f0hWoZtnrpF2++qe+6zkkOFzZxMVlAs7t2plWqLX/ytPJuu0B+3lcfUPxFzgDAAAAAJQ8grYAUA7695dWrLDbmbv2ucdETSQ33ZWF+tCtAXp7kp2pum9jomrVdLiNu8l3rP78U4v/DNCqkB5q0TZAp50VIiUnS/v3KyWlUeFv2NQGyOeKK+yqCdddJ+3zq+P1sAU6HL10JcOqaQNTBzZQbdtKP/0k+aSn6e+/pYefckVK53+3X31H1PGaLTplyuHA6WFDJ154uHWVs+/vxGaSf7LKw8kn24F28zoPuyBIvy+yv7jRHaN065WH9OAL1TTK8bW0ynXMvozqubFUHVQNKcfU5A1wjsckeJY0OFbrN7vO3759iZ8eAAAAAHAMCNoCQDnIDdga6Z16yj8rwQ64muiZSSf95RfpwAFrezs7yzl33j1TNartf9L330sHD9oLh4WG2oHYWrWkUaPsz8AvWKCEzFClOwL1ic8TejdjgMY0/0M/dW2i7MXL9HAdUxvh50Lda/tmyXY9Wy/27bMf58e0OuI5osIOaV+yHWl99hm7z3zaf+hQ0wpWq44maOuaX7OeZzmGXOa4b7+VRo48yo2XU41WE4C3YtzVwzR/Yd6RYP0yz/sx4QFp+jDjMiXJV/185qt1jVhF122lBx6Q9u6Vrrmp4NejuAYPDVREtQzJz19Vq1ItCQAAAAAqEoK2AFDO/oxtoH7aKvn6Stu3S/XqSTt2SIcOecxdsL2hRjX5055niq5mZdkBW2PPHjvQu3u39iaH6SxN11/q4jx2wsZTpI2mNUyvbRvmdt7lv8ardRsfRTSsquxsH2f/5aNSNOHrgoOfrVsX7jne0Psf3f51b2sxrLAwz4/im6fcsH6Otu+0g4ff/xygNj0KPt+pp0r332/SlDNUrUq27h1X8pmopaFrp2z9vtRufzf6O32bcY4+/ypQhzKDdXXma/aAQ5p/QHol+189lSeQXdLOPddslEUAAAAAgIqIoC0AlLP56qd++t29+GgejbRV29TYavfulCIF2oG2eEeEVqqd9qq2OusvtdB2Z+3Zp/SgW8D2SKZ8m6Gu/e1Fu64ek6l3P7I/Nm8WrGrV+fBn9gvQtKl0w9WZ0pYtdq2EwED975n6OqmH+3E3Dt6kiIjeBZ7HJAuHhNgLeBkNmxw58zMyUnr6adMKtGLX947TceGV91wB8NcWd9ecDYEacJarNnBemcFVdHyEogEAAAAAJY2gLQCUs4f1pB5SwSmVuQHbtzu8rQt6BVnZsrOzTtWA7Clu89Id4crNm5yr0wp9/Z59XdmWw88PUFStDDVr6lC77kcO2BpdukhvvR8gJdezs35N0DjM87gajaoc9Vynn+ZQy/qH9L/bA62P7hdWiJfIZo2IbBP9VkU2f1N967F5c+/jgdGRZXtDAAAAAIAKg6AtAJSRwYMlR1a2Pn4jWZm70hRQL8o59o/aq4P+9XpcdcVZi1ONW3ex2q3/Q7UOJmhAqnvA1shQoDNou0odPMYXfLFdM9Y01BNP2PtZew9YKaumKkOuM880WzE+Mn+U+rH+dV3PtSBvv2d+JeVZYawIIms4dCDOVdZh1X8VM2A7aJA0c6bd/uyNBEnVtGuX57x9Py5ScGSvMr8/AAAAAEDFwMojAFBGTLBu1m9+mnjPP+rf5aDb2PO6RwcddomC/O7Vc9bjvvRq+ntXLU1Y1dnrvDOyZliPp23+0Ov4KWcE6fHHZdWVNZtfVKRVicHHFessPTVrlurpH37ERwEBDp3VeY8c8QmqW1cV0owZrtf/khvtr3e3bl4mRh09yA0AAAAAqLzItAWAMnbfz308+j7XaH3uGK2dmf1UL0+/j1mVKo9bJha8OtcyR3fJ9wPNS+7uMVav2iEpvHhZrMURFyfVqJGvCG0p2r1bysz0kcOnYmbYHkmzZtLnn0uXXmrvDz1ps2o2LruvFQAAAACg4iHTFgDKQEpK4ea9cnDMMV3H4ef5t7i+PdL0+Zd+Ry1hUJKqV5e2bZPW/52iPZtSSj1oa2rrXnZJtvr3lxQUpOPNJZdI06ZJdaNz9FdMtHxCgsv7lgAAAAAA5YhMWwAoA0lJrvb7r6Xoxyl+8g30009T3X8Mv3jwKr2gRV7PsfLbjdqSFq3hlxYcfE31cS0CVkcxWvnmAkXdOErloWFD85+jL2ZWEi680Gwmy/b4LSuQlibt3uMrX99gKagsalYAAAAAACoqgrYAUAZM8qcJLBqjLgvV1Tfb7fz1ZAfVWC6zMliSI1xX6UOF6ZCy5ac6EWkKb9NAgxrbdWmNa66RWrZ0KCnJdZLZMe2c7RjVUVREehk8O5SE00+XVqwwLR8pmExbAAAAADiREbQFgDKQlWXH4UyQtlqe9cbMx+FNdmWuc1uvkwICtNsRra91gbN/ywsTpTbXWO2HH3Ydn5joo2HnZDkzds/97gq36y7ZWls9S/F5oeSY74vO3teYAwAAAACcYKhpCwBlIDlZmjDB3vLasdNXaQeSdd+dGdb+33GN9N2mjrom7XW3eftSqxR47htvLvjvb58sc2XeAgAAAACA4wOZtgBQRvVKAwKkwED3fl9fKahGmFq0lU7pkaGaAQ6NnHGtx/FJ4dEFVmsdOFB65x1J6em6/lb3RbgadsiT1gsAAAAAAI4LBG0BoAykp0uZmZJ/AT91Y2KkP5YG6g/19Tq+JbuhmhVwbhP4ve460wrSNTfZab1ff+enLP9gDRoUUmLPAQAAAAAAlA2CtgBQBiIjpZtvtrNtvTH1bqtVc0gZGYpPcc+WNRatra4BhbiOCeCqSpguHHPs9wwAAAAAAMoHNW0BoAzUqye99pr00kvex++4Qzp40EcH92Vp2JBMj/H2PUNL/yYBAAAAAECFQKYtABSDyZjNypJGDEnTd+O3ST4+JlXWHgwKkg4dklJSpNBQaft2bfBrrZm/+SuqXoDOvyy44BOHhemt96VWr0rPP293rViUrqZtPLNvAQAAAABA5UTQFgAKaetW6Ycf7LYJ2BrfTwuWfu9ulTWQn59d5+CSS+w6Bf/9ZwVss+IS1XL/Hud5HF3/k9q2LfA6devambdVqtgLl3U+mYAtAAAAAAAnEoK2AFBIa9dKt9/u2f9D0hn6XiPUWws1NuUTBR44INWsKe3ebW2nHPrV/YD4+KNeq3Zt6aGH+NIAAAAAAHAiImgLAIUUHW0n0RpffOHqHyE7/fZTjbHaUaZ2gkmRNaUNsjtqqXp6FrgFAAAAAAAoAAuRAUARjBwp3Xqr9N133sczfNxLGYxO+8BzksnCBQAAAAAAKACZtgBQSJ06udrr1nmf84nG6CFtt9rDd7ymNY7WbuN1o7KsxcYAAAAAAAAKQtAWAAph5Ur3/SXz0yV5LhD2uONhVVnzlbQjXD8m9fcY37WXH7sAAAAAAODIiB4AQCE8/HDh1hLLVKBuWzba61hwUA5VaQAAAAAAwFFR0xYACiE21tVu0ypHWX6eWbZH8/7bWbzWAAAAAADgqAjaAkABMjKkX36Rpk+XHnpIatlSOuUUadZsX1WrVvDLdlL0frf9Hu0OaefGNI28KJDXGgAAAAAAHBXlEQCgAGvXSmedZbdHj0rThJdTVLtRsOrVC1Xv3lKbNlJwsLRiheTj4zquf5d4vftATasdFSU1bx7OawwAAAAAAAqNoC0AHPbnn9KePSbIKrVuLXXs6HppJn4TbG03dF2qt+a1U6tWYfrvP+8vXd8+DiuoCwAAAAAAUByURwCAw7p1k4YOtTNoP71ntdfXJTJ7n9f+b75xtRODo3hNAQAAAABAsRG0BQAvxrxwktfXpW3HACkszKN/5EgpPNxhtes2C+E1BQAAAAAAxUZ5BAAnvP37pWXLCvcyXDJhsC7+xPvYihU+cjikevVYcAwAAAAAABQfmbYATnjvvisNGeJ6GQ7uTNYjj3h/WVo3SSvw9WrRQmrZ0msiLgAAAAAAQKERtAVwwvvjD/eXICwzXvfcI82fL/3+u9Swod3fvmG81vyVfsK/XgAAAAAAoHQRtAVwQktKkqZPd+8LyEyxsmX79pX69JEuusju79fHIQUFlct9AgAAAACAEwc1bQGc0BYs8NJZo4bb7r33SjfcIFWpUl0KLrNbAwAAAAAAJyiCtgBOKDk59qOPj7Rrl3Teee7jjavHS5GRHjHcfHFcAAAAAACAUkN5BAAVyrJl0qRJ0sqVpXP+xo0lPz/p8/dT1KCBlJZvXbGtB6uVzoUBAAAAAAAKiUxbABVKjx6udvLuBIWGSkpPlzZskLZvlwYNktauldaskT0oqXNnj+xYi4nOGrGxkr+/tHixduw41+p6/CGzoNjh4wEAAAAAACoQgrYAKqxVD3ypnpEbpS+/tAO3VarYBWbj4qSQEOnqq+0aB3fdJWVl2f0mUFutmtS8uXTKKfZ28slSTMzh2ghZ1rk3xFYv76cHAAAAAADgFUFbABXWvsRgKSDRDrg6HFJqql3PwARfzWNGhpSQIO3Z4zooO9uVWdumjd23f7+UmVmoa376nDlXdCk9IwAAAAAAgKOjpi2ACsUkxuZq1sJXCggo/slM4LaIepweVvzrAQAAAAAAlAAybQFUKCZRNpeP/+GatCVgt6K1XQ3lpyzlyFfPDFusmv07KSHZT6cPDtJJJ+XGh6uW2DUBAAAAAACKg6AtgApl8WJXe+H2elqwo7fkyNKFjkmqergebXHU025n2xEWLp3/rnRp72O9XQAAAAAAgMpZHuHNN99U48aNFRwcrJ49e2rp0qWFOm7SpEny8fHR8OHDS/0eAZSuKVOk779373v05266du6lutbxrpaoZ4ldK1FV7TXJAAAAAAAAKqByD9pOnjxZd9xxh8aNG6cVK1aoY8eOGjx4sPbt23fE47Zu3aq77rpLffv2LbN7BVB6Ro+WzjvPvW/nwXBn+w/lKXZ7jCKSd2vrfte5AQAAAAAAKpJyD9qOHz9e11xzjcaOHau2bdvqnXfeUWhoqD766KMCj8nOztall16qxx57TE2bNi3T+wVQ8tLSpMTEI8/5Sudbjx86rlQ97dS1OW9b+3f/e4X+pzesmrVHMlGXuu1nKPBYbxsAAAAAAKDyBW0zMjL0559/asCAAa4b8vW19hctWlTgcY8//riioqJ01VVXldGdAihNmZmefd3r7daXH6Y49xtrm1Idwbra8b52q57ed1wj+fvrxU0j9Jb+Z9WsTVVwgddoro1u+1E1qY8AAAAAAAAqpnJdiGz//v1W1mzt2rXd+s3+2rVrvR6zYMECffjhh/r7778LdY309HRry5V4OJ0vMzPT2lD55H5d+foeP3x8zH8D3PrGX7JYPS8bqud2Jmv2+1tUMyZOoakH3OZkVqnitr8qqLM6+/5tnzA4WJn+9o+4zJAQRebES64fBXIE+fE9cgLj5wT4vgA/J8DvEPDeArzPBP8GQXkobLyqXIO2RZWUlKTLLrtM77//vmrWrFmoY5555hmrjEJ+M2fOtMowoPKaNWtWed8CCik+PkjSmW59fzespgPTpmnu4g6aufMkSWZzN619e7f9T658S3sGb/OYNyu33EqeNQsXBKVL06bxNTrB8XMCfF+AnxPgdwh4bwHeZ4J/g6AspaS4PlVcYYO2JvDq5+envXv3uvWb/Tp16njM37Rpk7UA2dChQ519OYeXgPf399e6devUrFkzt2Puv/9+a6GzvJm2DRo00KBBg1S1atVSeFaoCH+xMIGYgQMHKiDAPXsT5fH1kBYtslJp1aePQ75eirLExHj2tdvvUJ/rhmj48IK/hn3+2+m23+aDTzTkk/fsTNs6dZR51lmaNXCgTrrifj2fdLvb3CHmZ0WrVsV+Xji+8XMCfF+AnxPgdwh4bwHeZ4J/g6A85FYBqNBB28DAQHXt2lWzZ8/W8OHDnUFYs3/TTTd5zG/durVWrVrl1vfQQw9ZGbivvvqqFYzNLygoyNryM8E8AnqVG1/jiiEuTsotW71v9T7VWjPfqkWrrCw7uOrjo+yDEWrTop/WbHAFaOt2qmt9DTt0kP75x/u5H5h6mrPtq2z1yZyngMxU+7xmdTNzDUkrU9rpvexr3I4NaN7cfJOUynPG8YOfE+D7AvycAL9DwHsL8D4T/BsEZamw8chyL49gsmDHjBmjbt26qUePHnrllVeUnJyssWPHWuOXX3656tWrZ5U5CA4O1kknuX9Eulq1atZj/n4AFcO6da72hz3ekbKy1S1olQb4zZEuvFBq315NbjrP47jM2vXtYz6Uunf3fu73/mjnbOfIT130l/rrV93reF4D9a9zbJujobOd8syrCrnvVukIi5YBAAAAAACUp3IP2l544YWKjY3VI488opiYGHXq1Em//PKLc3Gy7du3y9fb56kBHBe25Skxe3/KI9bjdRnvaoDPD1JyslS3rtv84MBsK1M2MDzQ2u/WTVqyRHrisWw1iEjUFTeEqmc/O3u+Tq0sxcS6/xibrQE6UzPcgrbLcro52xuTasu9Ei4AAAAAAEDFUu5BW8OUQvBWDsGYO3fuEY/95JNPSumuABRX/frSrl0Fj7+r61TVkajn9Y8Skt1/DKVujpHq1TPFTZx9PXpIU6b6Saqu//6T2rbJsYrlzpnt0PQ5/rriCvfzf6bRuktfOPf3O1wLF25PiyJoCwAAAAAAKjRSWAGUqISEIwdsc72gu63HzGzXj6EXr15zOGBbsLZtpX//89W/G4IU1TBYY8Z4zklRqPW4ISFKa9dWV6TPAefYnkxXABcAAAAAAKAiqhCZtgAqj8WL3ffHjd2uxz521ZR14+urWSujnLvXXVS4FRTz+/NPqWtX1/5GtdD6rKZqN+lxaZL73GYt+FsVAAAAAACo2IheAChRwfnW97p4tClr4N1L687RwrU1nPuBNcKLdc0uXTz7Wu373evc0wfbtXIBAAAAAAAqKoK2AEpUaqq1jphT7baR+vhj73PvWnK+3pjezLkfUKNKsa8bWcNRyImRxb4GAAAAAABAWSBoC6BEpaVJjsPx0+efl0KqB1sLhQ0ffvRjfSKqFvu6s3710cfvpLv19WrvpdwCQVsAAAAAAFDBUdMWQIk6/XTpr7+kkBCpVStX/5tvSj/8YLdrRuaoTVtfPfmkVK2aNHu2/Wj/p3g6dzZbkMZe7+p7/PYDGnhl8QPBAAAAAAAA5YGgLYASFREhderk2V+9ujRqRLaUkqJHnw5Uuy5BzrEOHUru+oMGSTNn2u2ajULdxurXTDNVd0vuYgAAAAAAAKWAoC2AErVkifT221Lz5tJDD7n6Tebt19+ZRcmKX7e2MJ5+Who+OFX1D65SYHgLt7GFP+yT1LBUrw8AAAAAAHCsqGkLoERt2SJNmCBNn14+L6wpwXDjnSF655dGqhnpvjiZo1ZU+dwUAAAAAABAEZBpC6BE5QZrFy4snxe2cWOpX58cndTaX1VrBuqppxYoM7OX6tb1U836lEYAAAAAAAAVH0FbACXq00/L9wW96iqzmQ8RRCozM1Pt2h3QkCE5CggwpRkAAAAAAAAqPoK2AI7ZmjXS4sVSXFy+gbQ0KZjsVgAAAAAAgKIgaAvgmM2eLd18My8kAAAAAABASWAhMgAlUkc2v5M7ppJlCwAAAAAAUAwEbQEcM2+Ljp3TJ55XFgAAAAAAoBgI2gI4Zs8959l3060s/AUAAAAAAFAcBG0BHLOOHd33m9RJUUSDqryyAAAAAAAAxUDQFsAx++svV3to+63a/HcS9WwBAAAAAACKyb+4BwKAN0t31JGC03lxAAAAAAAAiolMWwDHzMfH1a5TR1JQEK8qAAAAAABAMZFpC+CYTJggORx2+/nnpREjgqVgXlQAAAAAAIDiImgLoFiuvlqaNElKTnb1DeiZpObNq/CKAgAAAAAAHAPKIwAolvR094CtERZ6OOUWAAAAAAAAxUamLYBieekl6fHHpcxMKTHRLmPbsn1VXk0AAAAAAIBjRNAWQLF8+aW0dKl06aXSkCG8iAAAAAAAACWF8ggAimXBAumLL6S1a3kBAQAAAAAAShKZtgCKZcwYqXdvqV8/XkAAAAAAAICSRKYtgGL56CPpkUekFSt4AQEAAAAAAEoSQVsAxZKaKh06ZC9EBgAAAAAAgJJDeQQAxc60NYHbyEheQAAAAAAAgJJE0BZAsURH88IBAAAAAACUBsojAAAAAAAAAEAFQtAWQLHcdJM0bJg0Zw4vIAAAAAAAQEkiaAugWH77TfrpJ2nHDl5AAAAAAACAkkRNWwDF8vjjUny81KsXLyAAAAAAAEBJImgLoFhGjeKFAwAAAAAAKA0EbQEUuzxCWprUs6cUGcmLCAAAAAAAUFKoaQugWMaMkc4+W1q9mhcQAAAAAACgJJFpC6BYOnSQ6v+KZMMAADJ+SURBVNSRqlThBQQAAAAAAChJBG0BFMvUqbxwAAAAAAAApYHyCAAAAAAAAABQgRC0BQAAAAAAAIAKhKAtAAAAAAAAAFQgBG0BHNXatdLQodLYyzKlffusLWPnPmUcTFZODi8gAAAAAABASSJoC+CoDh6Ufv5Z+vWbeKlNG6lRIzVskKOgGmH6++1FvIIAAAAAAAAliKAtgKNq2lT64P5NeiH0USkuTkpLcw3u2MErCAAAAAAAUIII2gI4qsxMae22EK3MbOPsW6+WiveLVMcmibyCAAAAAAAAJYigLYCjmjxZevGLuno26SZnX1UlKcInUX6+Dl5BAAAAAACAEkTQFsBRRUS42ikK4RUDAAAAAAAoRQRtARzVoEGu9rn6iVcMAAAAAACgFBG0BXBUAQGu9mwN0GY1UZqCeOUAAAAAAABKAUFbAG6Sk6V77rG3mM0pVkd0lUNuc5pps0KUpupZ+7Q5tgqvIAAAAAAAQAnyL8mTAai40tOl/fslX1+penUpONj7vCeekF54wW6P8v1FdZodkPbtk/Sgx9x4VVdKNhm3AAAAAAAAJYlMW+AE8fzzUv36Ut26UkiI9MjYHdL8+VJ8vJSQIP3xh7U995zrmBpfvSPFxUlbt+rWplPczhelvXrR/z41rJNR9k8GAAAAAACgEiPTFjgBZGZKb7/t3vfEJw00atqVqlXToeizu9gB3E2bFKYtSla4NafZ/iVSeh99va2HftjZ1e34faqtidkX6c7Qf8vyqQAAAAAAAFR6ZNoCJ4D166U9ezz7O+6bpWb//STFxtrZtvv36yE96Rz/NmuY9XggLUzbMup6HP+3o5NScgqoswAAAAAAAIBiIWgLVFD//iu1bCl175pt15Q1QVWzbdqk+N9X6bRTMtWjY7q2TvvPLlZrxsy8zZulFSuk//5T0uZYxf4Xq6VzUwq8TqpCpSC7Lu3Delxr1MY5dnHqh9ZjXHqYLoqc6fX4nSk1Svy5AwAAAAAAnMgojwBU4IXDNmyQqgemSr16SSNHSuHh0jffaPyOazQvvr01r9+watp+xwtSWJg0ebK0bZtUpYo1987d4/R+yuijX+zwqmQ/6xz9rc7O7ka+O7QtsboeXGpn3D5x3U49/G59t0MDa1Yt2ScOAAAAAABwgiNoC1RQZsGwu8fG6oWPa+mxbVcoZ3YnLY1vpSa76uuj9Euc83Zk1bVrH9SuLe3YISUnS2lp1gJja9IauZ2zRni64g7ZWbVuDmfattI6t6DtppymavzSzc79/AFbo3H7KiX1lAEAAAAAAEDQFqi4TLUDE7A1Hs1+WFqRO9LSc7KfnxQQ4NG9TXbQ9skhC/XgF+0kf3/1OD1Iy5a55vQMXWUfL2myLvI4R0hgllIz7L/v1K6Vrb2x9lynyMhiP0cAAAAAAAB4oqYtUEEFBhZhsr9n0vwhR5hClKrqilN4hJ8UEWGVUJg40X1eo0AvK5TlETdjubM9Z2aW29jq6TsI2gIAAAAAAJQwgrZABdWhg/v+/Ie8LwRm8fHxPD5jmdarlQ6qhkb12uXsN4ubORzS229LDWpnyD/Ax2uWbq45/9XWCy9Izz0nRTd2lVYY3WuT2vVlETIAAAAAAICSRk1boAJ68UXp0CH3vgYNpH//ldq185yf5FdNiUlV5cipq9rapAA5tMXRxDk+a019XZHvGHOeHXsD9a3vqfrcb1GB9+ITVUt3jXLtm4CvVTdXdezFzwAAAAAAAFCiCNoCFdDdd3v2hUUGq3FbKSZG2rsxST+8tUvjvmhtjVV95/nDs+6z/rvUcbLbsTWig7yuPdYgOlNBSQec5RVaap2VnTv25DUadl8bq2/wueFeboZgLQAAAAAAQGkhaAtUMDt2eO+v1c1eVKx2bemyi4M1a44dsPWmR85it/3Tz6vuOaeHtH3xHumZZ6SAplbfDL+zdci3qmqNukO1h9lBWwAAAAAAAJQtgrbAcRC0bds83Y7WHuYX4Ct/f4eysjxr2XoT1CCqUPMa+2yTfP2kqqmFv2EAAAAAAACUKBYiAyqYPLFZy2M3xOj1d4Ok4GBn3/QZfsrM9LHqy+Zu3qzveL4cq1YrsKrrWAAAAAAAAFRsBG2BCiY0VOrWzW6f1n6/HnkmRGeccfTj5s717Ps+sX+B8/ftkwZcEqUBU27Vku3R+vnQaZrv6HMstw4AAAAAAIASQHkEoIIZOVJavtxuJ2SHS55riHmVne3Zd++W63V75moFeJmfni7N/sNk4LbW/u9qaOXu0Va/w5+sXAAAAAAAgPJEpi1QxjIypMcekx57OFOpsYc8xhctcrXvvsfXrSzCkQQEFFAjN8b7QI0a0ufvp+jzsb9q5W5Xzdu9ylefAQAAAAAAAGWKoC1QDkHbRx+VHn0yQKlPjZfWrbNrFSQkWFvn9pnWvMGd9+ni4YVfEKx7d+nff6VRo6TGjV39OaHhXueHhUmXnJ+pS7pvcOv/19G2uE8NAAAAAAAAJYDyCEAZa93a1Q767ktp0VRp1y7pggu0T1H6a9V91tjazQWkzhbAJOS2bSt9/bW0dq3Upo3d37Bz5FGPPb/LRn29ornVTlCEMrJ8FVikqwMAAAAAAKCkkGkLlGJGrY+PvbVtlaVvP0qQDhyw4rO5wuJ36bqVN2jg7k/01Ypmqv2yHbA1tiVUL/a169eXHnjA3nxDj15e4av/zdeBmx+12udlTNL6vRHFvjYAAAAAAACODZm2QCmJj3e116z316irIrR7xVOSHnT2Z+f46L30K6z2r/MGeJ4kqJCrkOUTHi49ZS51FPtifeRIDJECA9XwrYec/T7+fsW6LgAAAAAAAI4dQVuglLzyimff2lj3UgVxqlHg8U1rJUrBVVWamnepoqQkO2icV9sWdl1dAAAAAAAAnKDlEd588001btxYwcHB6tmzp5YuXVrg3Pfff199+/ZV9erVrW3AgAFHnI+yNX26NGKE9NhjeWoEpKZKmXmCgCkpUnKyveXkFHyy7GwpLc1um3nmuPzMec280mSukff+DYfDvrfc+zP7uc/p8PP64QfPU/kGu1eKjUre4mx3brDfbax9Uy/Pt4yk6eglFQAAAAAAAFBJM20nT56sO+64Q++8844VsH3llVc0ePBgrVu3TlFRUR7z586dq4svvli9e/e2grzPPfecBg0apH///Vf16tUrl+cAl7Fjpb17ZQUsH7VKpNpBytl3TNUZ93a3F9wyQXZfX7vYa4cOUuPG3ssC/P67fbLBg+2VtTZtkvr1kyIj7XETKP3mGykiQjr1VNexfoc/2p+Y6D2ga45NTy/4y5Z/3ESiTdD23HNd5Qr++89+HmFhUp8+UmystGqVFHB48bA2bXTNRR11x7gqbqc+7dMrC7zsoSz3QOnIEaUcjLZeIh87yJyVpXOG+WnqvHCrP8mnqkJK/eoAAAAAAACokEHb8ePH65prrtFYE+2TrODt1KlT9dFHH+m++1yLMuX6/PPP3fY/+OADffvtt5o9e7Yuv/zyMrtveNetmzR1qmd///FnyzGxth1ENYHN666Tdu6Unn/eChhaGbkJCXYgNzraTtddtEjasEG6/37p4EGpWjUpNFRq1UoaONCe//HH9vEmCGwCrc2bSyNHSq1bm28u6cMPpX37pKpVJfNHgOBgadAgO+C6erV9c+Z4f39XENkEgJcvt69t7tEEh6tUsYvEnn++Hbj97DP7nkyA2Dwnc+2aNaWbb5bi4qQff9TtCxfqDsUd9VvlreoPKjE7TAMfOkNP/nqyvv/e7h9+pXsphVJjAs+Sps5zdQVGVSubawMAAAAAAKBiBW0zMjL0559/6n4TlDvM19fXKnmwyATsCiElJUWZmZmqUaPg2qAoO2eeaQdte9XepEV7m7mNhezbqj2KVjX/BCkpyS53sGOHPWgCn7klCEzbBD7NZjJYTVDV2L/fDq6GhNhBWlN2wfSZ+bkZtdu3u9omg9Rk6homwGv6TZDVHGOua4Ku+ZnjzXFm3GQF55ZkMEFls7KY2UwA2Jw3tzRCrgMH7OBtYKC0bZt1/lO0QH+ojzU8qusWffNnE49L3lBlol3+oUV3fXdj3pHyK1FQrW5ouV0bAAAAAADgRFeuQdv9+/crOztbtWvXdus3+2vNx+EL4d5771XdunWtQK836enp1pYr0Xxk3ipTmmltKDkmIfXmm+3yAPkDtkaaQrQmqL26Ba60g6e5AVjDBFTNvmH6TEasyWg17dygrWHmmH4zbsbMljdoGxysTDNmvsa5c3LlBnvznju/3HPnjufW3DX3a7bca5rNZObmZY4z5zfb4ePn+AzWzi7nKu72J1StZZSGr8zS6NGu/+1G1v1DsQG1VM0nwX4By/V70v7adYjcqUyTDV0J/v/I/X+c/9fB9wb4mQF+h4D3F+B9J/g3CMoT/z5FrsLGKHwcDhMpKh+7d++26tAuXLhQvXr1cvbfc889mjdvnpYsWXLE45999lk9//zzVp3bDuZj7V48+uijesy5KpbLF198oVDzUXuUmHXrquvee/s590NDM5WScrjG62Gvv/6bGjRIOiFe9W3bqmj37nDVqpWq5s3jnX3z59dXaGiWPvusrdU3fvxcNW2aUM53K5133rnKyfFRcHCWJk3yUuMCAAAAAAAAx8RUDbjkkkuUkJCgqubT3BUxaGvKI5jA6TfffKPhw4c7+8eMGaP4+Hj9+OOPBR774osv6sknn9Svv/6qbqaQagG8Zdo2aNDAyvI90guDojvtND8tXOhrtVs2ydDqZUl69tUwPfKEnfl6c9A7ulBfqkfgX9L110sxMdLPP3uWRzDB9EsukRYulNav98y0bdJEuvZaac8e6Y033DNto6KUecstmtWsmQYuWqSA115zHRsebmfBmu+1uXPtUgj5mUXRTE3cGTOkLVvsUgl5M23HjLHLI7z5pmd5BJNpe8cd9vOYOlUPrLxIL2bdpUvrzNLHC5tL9es7p5qn1LKJQzv32gu1GYteX6yu13Utt2+9Bx7w1Ysv+unsvvH6ftrhjOZK8NerWbNmaeDAgQrIXSQO4HsD/MwAv0PA+wvwvhP8GwRljH+fIm9ssmbNmkcN2pZreYTAwEB17drVWkQsN2ibk5Nj7d90000FHmeya5966inNmDHjiAFbIygoyNryMwEcgjgly6z9ZeKsRpt2fgqIjNS6za7x19Ov1ySdp33Z9ewgq4lcmrq0+YO2puxA7uJeZjx/0Nb0m781mDlmPG/Q1gRSD/8dIiA7WwG5588beDXnyz13fqY/77Vz5+Qem3st058/aGuua8opmC09Xc2yNqqPflfriBgFhHawF2A7zDRvuGifHnw1ytnnExRart+TZm03E9M+6aRqCghXpcL/7+B7A/zMAL9DwPsL8L4T/BsEFQH/PkVAIWM/5Rq0Ne644w4rs9YEX3v06KFXXnlFycnJGjt2rDV++eWXWyUUnnnmGWv/ueee0yOPPGKVN2jcuLFiTLamlUQZbm0oPx9+aAf+zPpd3bv7ORcm+/xz15xYuYKUld31elfX+74vdb1ICj7XYzxvwNYIql6+5ToGDbI3AAAAAAAAlK9yD9peeOGFio2NtQKxJgDbqVMn/fLLL87FybZv3y5fk/532Ntvv22VVRg1apTbecaNG2fVr0X5uugi9/0zzvCck6Zg2QUTTmwRVR1KSHQtZhZY5fgvRwAAAAAAAIBKELQ1TCmEgsohmEXG8tq6dWsZ3RWKk2n7+ut2tu0LL9h9devagdxJk1zzMhRI0FZSfIKPpk2TPv8oXdX9EtW6by2+6QAAAAAAAFAxgraoHPbtk1aulFq0cO8/91z3oO1BVRdLwNmGDDGbybAlYAsAAAAAAAAbQVuUmGHDpKZNpQYN3PtNtm3/07M1e45d5zbLp/wW2wIAAAAAAAAqOlexWOAYmWxaUwrho4/c+089Vfplpp9euXWLXokYp0ifOKt/2u5O8klLtbY0B/VcAQAAAAAAAIK2KDP+/lJkRJaq+iQp63CC97hVI53jj+c8VOm+GtN1pt53XK11idHlfSsAAAAAAAA4jlAeASVaHqFnT6lRI+/jN77YREkp47UsYLFqSloe18w5tkonVbqvxPn6WsmOcF21Zo4+KO+bAQAAAAAAwHGD8ggoMU8+KZ1zjvTuu97HB/VK0pCQOYpQgsfYPf4vl9tXIkUhSlK4MuSqtbs9o47uz3hUj+mRYp0zPSdAyQq32h9uOr3E7hUAAAAAAACVH0FblBizCFnnzlL9+t7HV6wN04zUvtqhfCuVSWrss61cM2KrKkkf6Upn3y9Jp+jZzLtkwrbF8W3iQM/6EAAAAAAAAEAhEElCiXnppSOP7471V7Z89UzW3eqcNsdt7PmsO/S6bqwwX42vEgYd0/GX7nzO2Y6uniaFhZXAXQEAAAAAAOBEQNAWJWblSikuTmrVSqpb13M8PcNO7P7V0V813urvNlbNx7NkQln5XiOUI1/5K0tSI01c3UmzD53sHE9QVUUoudjnb9jAUUJ3CgAAAAAAgBMB5RFQYu67TzrjDOnnn4t23M43ftDtoe8qUVXK5asRqExN11k6RX+o565vddmUC9zGUxRa5HPeUeszZ7v/ma5auQAAAAAAAMDRELRFidi+XZo7125XKUTs9ZaLY7VokbR4sTRtY0tFJm7R2Zpabl+NWNXSUvXU0vROHmNxqnHEYxfoFH2iMVqZ097Z91KDV7Q9uKVWjftGt9xBQjsAAAAAAAAKj2gSSsQ770hpaXY7Otr7nGXLpO7d7fZzb1VRcDW7ffLJba3HBeqre/WsamYm6m7Fl9lX5medrdd1s9U+t9p8ZZ7UWdMXuCLPK9VR7bSuwOP7aoHdyJAcetzZ38B3lxrUOyjVLs27BwAAAAAAQGVDpi2OyYcfSj4+0jPPuPrWr/c+t317acMGewuKCLb6EhPd5zyve/V+1hVl+lW5UJO1WnaW7Iq0Npr2TYrGP5vuHL9UXxR47HY1cO/w8yu9GwUAAAAAAMAJgaAtjsnVV3v2dWvuPUs2KEhq3tzeTKDXeO89z3kbHC2kgLKrA1tT+107vr5ScLBuvzfIfVLuDR9FnF8t+Tz5hHxW/CmflGQdTA4s4bsFAAAAAABAZUfQFiUqzDdFXdq5slSP5p9/PPu6+v0tBZZdsHOMJjjbh7JDvE8ywVwvUhWifprn3N+f417/dsXOqJK6TQAAAAAAAJwgCNqi2FJTPfuSc0KtTNXCGjNGuuoq6eK+O/RYwJNWX5hvquRfduWWn9AjznZ8eqiz3b1rtrOd7eP9fnpoqebrVOf+qphabuPrMpuW8N0CAAAAAACgsmMhMhTavHlScrJUu7ZUrZp06JDnnJubTpX8Tyv0Ofv3tzf98Kdqjbje6luS2VkK+KVcvjKXdF4j+Te02j9O8VPdunZ/pgLkpyy3uXGqrkRFuPWNet0VwDU6n334BAAAAAAAAEAhEbQ9Afz0k7317pKqK4futyOuJk02LMzeTCQ2d0tJkapUkSIj7THjwAEpIUGnnXbkrNEgpal3+yTXcUW0XzWtx3QFa+ehaqqvsjFet+sOvWy1H3+9uvP+TVndU7qkSmvXyCdHksP9uDi5l0IwGkRnKjPTRzH7/fXrr1L7nlXK5kkAAAAAAACg0iBoewIYNsx+/PDDEF15Z0u7XmxoqJ3iettt0rhxsiKMfn52WYKqVaWICOmtt+wFuC691A7oKs7tvFWCMyUfKSk1wBlsXbCnmS4q4v0tXiz1GjHcrS/Hr+wWIrtdr+j28A+kzz6TTnHdR82a0oLvY6UR10hrMqy+QxmB+mBpbykrU8P1tdt5HPEJ9usGAAAAAAAAHAOCtieYiWkjNTrtc7u2wapV0s6dWv1Xpi7K+FPVFK8F6iulp9vZtevX2wft3q30HM9vlcStcVatBBPXzfXDutZ6o4j3tHu3Z19QmL/eOnChfHP26Hq9pfKQnS39vSpASmmt2ZlnaldOtBZ+f46W728s6RzdrhfK5b4AAAAAAABQuRG0PcGkyXORsDRHkP7VSYrUfjuz1outMoHKfMLDPbr2Hip6aYQOHdz3z2r0n778p51u39PX2r9Bb2qe+ulkLVZg/hoFpchUiuh2TrSkz12d+49wQFBQWdwWAAAAAAAAKjnf8r4BlL7HHnO1v9IFHuMtA7Zots7Q9xrh9fhpjrPUWuuc+7Ff/irHoWSvtWvfvH1Tke+vcb548HPn/K7bv7MDtrlO1XztLIUqt/PVVw/pCb2feYUc+eLB3uLXnRp4j9q+/HymFOwZEAcAAAAAAACKiqDtCcAsQpZrtvp7jFf1PaQzNEd9tcDr8S85bnfbj6gX7hawvSBPHPjaB2sV+f5MGd26dV37fT+6wuu8FeqikmaCwU/pIV2b/rq27A09WiKxrh643et5bru77GrwAgAAAAAAoHIjaHsCGDnS1X5Bd+tavauaOXv1xv6jLxn23C8d9Vu+QG9AqHuAcvJkWVmqVqZqtWrFusddu+zjg4MdSkj1XmYgRqZUQelZvNMzk/edd1zt1n7r1aN1ok7vl12q9wEAAAAAAIATG0HbE8B990nBQTlWu4eWKklVdEA1lXq4vu3WrPrqrT+s7W9HR+dxyen+uu+7Hp4n9FIWoaQsXeqjlYtT9Nm7KRpzaabb2EGfGtriaKyEbC8psMV0lqY52xuTPYPCp50m3XzhPt1c80tNrHKDureIV9/T/KyxM31nKv6K25S+L6HE7gcAAAAAAAAgaHsC6NFDSku3v9Tv6jqlKsRqb8moZz0uTu+sReptbYmq6jxu6qqGHuc6velWqXr1UrvX9u2lDj1DNfraUH0y0T2j9xHHY2qavUEfJowqsev9pHM1Qt+rT73N6nG6ZzC6VSspMTVAPyf20+bsxsrJkRIT7bGtjkby9fdVYGCJ3Q4AAAAAAABA0PZEM1GX6UcNt9pTEk+V/Pz0efIw53hb/edsz1tfx+P42MzqZbrg1vMPJ3n0fXdoYImd/zx9Zy3A1qtVnM4813v0dWdskBXgviDpQ335e301a2b3r3W00pj/t3cn4FFW9x7Hf0nISkJYhIQlEFBB1gAi0bggiIi1SryU4grygIpgCSJ6KypLuQq4hE0ttghScQNvC20VnyoQb1kU2Y0FRESpNGwqWyAhy3ufczCThCQQJZm8M/P9PM9LZt5tzkz+zHnnPyf/s3JwlbUFAAAAAAAAMBhpGwBmzCh//TVxX6gwLEJ/P9nbs26yntRVeSs0NX+sDh0vnZytVctRs8QQKbz8mrPVoXdvaejVO/Rg/DuedZtz2573ebMLI3VctZX1Y53c7PyKn9P0iSXKH4SEKLTEAOC/7e7g1dcDAAAAAAAA/q9WTTcA1e+++8pf37PpF9r/w0Wl1s3SKMmRVudfqYVJK7Ro/elhpQMu261FKxtJtauunmxl3P9QpD7d2MYUKvCsqx18Ugo+v+8bOv/nXX2plp77bZv8WPOgHM/MqaOYWif0cPTLGtCro+5eULwtvzBEijhd4xYAAAAAAACoCoy0DQDxZascWPvz6mvr7pgKj7sx+QcdPiwd3pv9Y8K2+iYgq0hiYlCZdW92fa7KSzRkHas4Gb3wL7V1LD9KEw8/pLBQR99+W7ytTWJulbYDAAAAAAAAIGnr5w4dkq67TurWrey2l3f0UERYYYXHfp7XWrGxUmyT2jWSsDUW/W+Ifn3rqVLrusbtPe/zfplfPMrWyFblnt/e47F68cXTt8NCC7XuE+e82wIAAAAAAACURNLWz2VlSY8/Lq1fX3ZbtxYHVSe27EjWIos/TpAbbNhSuorHgqyqm4isSNgFdSrc1qdP8e3suk3VubPkOFLuqWDVaeS9SdkAAAAAAAAQGEja+rlJk8pfH13rpP5n6G4FhVZc1rhdB3eEx8FDpduRcfRSMyua3tvVRs8XjNYnTvdznmO/GumVvEF69dQd5W4f/t+xFR775pvFt7NOVLwfAAAAAAAAUBXckZVDtVm1quy6fiF/0/H8SN3z+2Q1bXhKs5s/o9/XHltmv+i67pin7pprSt9PbJanjC+b6abF92hswTRdXrjmnOf4UhdpWO6LGnHyOXt/c2KqZ9tTI/eqVdvwCo+tX1+qU+d0GYSY+qE//4kAAAAAAAAAlUDS1s9lZxffHj/sP/bn0oKb7c+QqAgt33KBpmYN1od5PTRtUKZCQ4trtOYWuiNB+cc/SpmZ0pgxp+/PWJGknpN7/aRzROqkQnVKwSrUyaAoNa2137Pto00Vl0Yo8u23QTp6VErqXnFyFwAAAAAAAKgKJG39XIsWxbebNCv+dS8btUxrN0dqz8FI7c2L07K86/Tor7/RqVNB2rFD2rZN6n+bO5K28fFS+/bS5ZdL7S4pVLumh9Wu8fel9tmjBM1Qml46cY/2/BBj183b2l1BcuxyqTYqT2HKVrT258Qq5ZvimgdXXV5wzjbExJxeQkKq4QkCAAAAAAAAJbjj799RbcyEWUZ0tPSXFcX1WGf9X5KuL5D+e3q8vX/CiZLCwuzt1q3d+QsZMMAswVJ2qJSfrwtaFeq7708noltoz+mdjkmvff13xVxWoPX7yp9Ibevh5tqZl2hvfzYkXR3GD/XekwAAAAAAAADOgZG2fq5LFykuTho5UvrucPGvu3HLCOXlnbFzvXryCbVrS7GxenJ8+eHbMPaU/XlF06/L3d7v7/d6bkdGBVVTIwEAAAAAAICfh5G2fm7hwuLbTV8t/tv+J6fUVtCZ+cpGjeRL0tKk0aPLrr/1j7fImSfl5Jw7vDOPJKjBYalu8SBkAAAAAAAAoEYx0jaA3HlXsG7slaPfjCxQYptwhYdLvxl+erjtgNabpVr+kcM/mVerUglbI3Xhr/SPle6o3QsAAAAAAAAYJG0DyDPPBeu95RGa9ULxiNvb7g5VwwYF+iq/+emyAz6svr7T3LsytO3TH/Too+vK3Sc4qFD7dmVrxbsnFRbmqHHDfEVE+0eyGgAAAAAAAP6BbFWAy8+XDn4XoqjwGCm8QL4sNuio2l+UowuTotVqw5Fy9/nVjScU1ypaca2k3Fyzhv8CAAAAAAAAcBdG2ga4rl2lzZul9z4IlSIi5Gvmzi2+vdtpqf8cjbG34+NPlLv/A2lh3moaAAAAAAAA8LOQtA1w0dFSUpLUrp180tChkvPNHs/92tFnzq4mdWmfqy++kF2SryZpCwAAAAAAAHcjaQu/0OuCLbo0dIuaNMr3rPuv1NO3b7gxRBdfLLtERtZgIwEAAAAAAIBKoKAnfFpenvTePyK14lBzez88arVnW/8BUsck6aqrCHMAAAAAAAD4DrJZ8GnHjkmp9zb03M9TqOf2gAGOQovvAgAAAAAAAD6B8gjwacFnRHDixWRpAQAAAAAA4NtI2sKn1a1b+n5E/BkrAAAAAAAAAB9D0hY+Lz1dCgtzdFFCjkKaNa7p5gAAAAAAAADnhaQtfN5DD0m5uUHauSdCioio6eYAAAAAAAAA54WkLQAAAAAAAAC4CElbAAAAAAAAAHARkrYAAAAAAAAA4CIkbQEAAAAAAADARUjaAgAAAAAAAICLkLQFAAAAAAAAABchaQsAAAAAAAAALkLSFgAAAAAAAABchKQtAAAAAAAAALgISVsAAAAAAAAAcBGStgAAAAAAAADgIiRtAQAAAAAAAMBFSNoCAAAAAAAAgIuQtAUAAAAAAAAAFyFpCwAAAAAAAAAuQtIWAAAAAAAAAFyEpC0AAAAAAAAAuAhJWwAAAAAAAABwEZK2AAAAAAAAAOAiJG0BAAAAAAAAwEVI2gIAAAAAAACAi5C0BQAAAAAAAAAXIWkLAAAAAAAAAC5C0hYAAAAAAAAAXMQVSdsXX3xRiYmJioiIUHJystatW3fW/RcvXqxLLrnE7t+xY0e99957XmsrAAAAAAAAAPh10vbtt9/WmDFjNGHCBG3cuFFJSUm64YYbdODAgXL3X7NmjW6//XYNHTpUmzZtUmpqql0yMzO93nYAAAAAAAAA8LukbXp6uu69914NGTJE7dq105w5cxQVFaV58+aVu//MmTPVt29fPfLII2rbtq0mT56srl276oUXXvB62wEAAAAAAADAr5K2p06d0oYNG9S7d+/iBgUH2/tr164t9xizvuT+hhmZW9H+AAAAAAAAAOBLatXkgx86dEgFBQWKi4srtd7c3759e7nH7Nu3r9z9zfry5Obm2qXI0aNH7c+8vDy7wP8U/V75/YJYAO8ToP8A1xPgWhN8BoE38RkExAbOpbL5qhpN2nrDlClTNGnSpDLrlyxZYsswwH8tXbq0ppsAlyAWQGyA9wzQh4DrC3DdCT6DwA34fIoTJ07YF8FxHPcmbS+44AKFhIRo//79pdab+/Hx8eUeY9b/lP0fe+wxO9FZkb1799raucOGDauS5wAAAAAAAAAAP8WxY8cUGxvrzqRtWFiYLr30Ui1fvlypqal2XWFhob3/4IMPlnvMFVdcYbePHj3as+6DDz6w68sTHh5ulyLR0dH697//rZiYGAUFBVX5c0LNMyUwEhIS7O+5Tp06Nd0c1CBiAcQGeM8AfQi4vgDXneAzCNyAz6coYkbYmoRtkyZN5OryCGYU7ODBg9WtWzd1795dM2bMUHZ2toYMGWK3Dxo0SE2bNrVlDoy0tDT16NFDzz//vG666Sa99dZbWr9+vf7whz9U6vHMRGfNmjWr1ucEdzAJW5K2IBbA+wToP8D1BLjWBJ9B4G18HgWxgbM52whb1yRtBw4cqIMHD2r8+PF2MrHOnTvr/fff90w2tmfPHptoLZKSkqI33nhDTzzxhMaNG6eLL77Y1qft0KFDDT4LAAAAAAAAAKgaNZ60NUwphIrKIWRkZJRZN2DAALsAAAAAAAAAgL8pHsIK+AlTw3jChAmlahkjMBELIDbAewboQ8D1BbjuBJ9B4AZ8PsVPFeSY6rcAAAAAAAAAAFdgpC0AAAAAAAAAuAhJWwAAAAAAAABwEZK2AAAAAAAAAOAiJG3hFVOmTNFll12mmJgYNWrUSKmpqdqxY0epfXJycjRy5Eg1aNBA0dHR6t+/v/bv3+/ZvmXLFt1+++1KSEhQZGSk2rZtq5kzZ5Y6x6pVq3TllVfac5h9LrnkEk2fPv2c7TOlncePH6/GjRvb43r37q2dO3eW2uepp55SSkqKoqKiVLdu3fN+TQKVP8RCYmKigoKCSi1Tp04979cm0PlDbGzcuFHXX3+9fY8w57/vvvt0/Pjx835tApm34qKk1atXq1atWurcufM520f/4V3+EA/0IdXDH2KDPsR34yIjI6PMtaFZ9u3bd9b20Yd4jz/EAv1H9fCH2KD/8GNmIjKgut1www3O/PnznczMTGfz5s3OL37xC6d58+bO8ePHPfsMHz7cSUhIcJYvX+6sX7/eufzyy52UlBTP9ldeecUZNWqUk5GR4ezatct57bXXnMjISGf27NmefTZu3Oi88cYb9nF2795t94mKinJefvnls7Zv6tSpTmxsrLNkyRJny5Ytzi233OK0bNnSOXnypGef8ePHO+np6c6YMWPsvgjcWGjRooXzu9/9zsnKyvIsJduPwIyNvXv3OvXq1bNt3L59u7Nu3Trbtv79+xMSPhAXRX744QenVatWTp8+fZykpKRzto/+w7v8IR7oQ6qHr8cGfYhvx8XKlSvN5N7Ojh07Sl0fFhQUnLV99CHe4w+xQP9RPXw9Nug//BtJW9SIAwcO2Desjz76yN4/fPiwExoa6ixevNizz7Zt2+w+a9eurfA8I0aMcHr27HnWx7r11ludu+66q8LthYWFTnx8vPPss8961pn2hIeHO2+++WaZ/c0bOknbwI4Fc8E0ffr0Sj9HBEZsmKRvo0aNSl14bd261bZv586dlXzWqOm4GDhwoPPEE084EyZMOGcihv6j5vliPNCHeIevxQZ9iG/HRVEyxiTzK4s+pGb5YizQf3iHr8UG/Yd/ozwCasSRI0fsz/r169ufGzZsUF5enh3qX8T8yXLz5s21du3as56n6Bzl2bRpk9asWaMePXpUuM/u3bvtnySUfOzY2FglJyef9bER2LFgyiGYP4/p0qWLnn32WeXn51fyGcNfYyM3N1dhYWEKDi7uWs2fMBWVZID742L+/Pn66quvNGHChEq1hf6j5vlqPNCHVD9fiw36EP+4tjClMsyfMJtSSaZ8xtnQh9QsX40F+o/q52uxQf/h32rVdAMQeAoLCzV69GhbU7JDhw52nXkjMsmOM2vFxsXFVVjjxSRZ3n77bb377rtltjVr1kwHDx60ibSJEydq2LBhFban6PzmsSr72AjsWBg1apS6du1qO2Hz2I899piysrKUnp7+E18B+FNs9OrVS2PGjLFJ/LS0NGVnZ+u3v/2t3WbiA+6OC1MbzPy+/vnPf9oalZVB/1GzfDUe6EOqny/GBn2Ib8eFScDMmTNH3bp1swmUuXPn6tprr9Unn3xirxnLQx9Sc3w1Fug/qp8vxgb9h38jaQuvMwW8MzMzz2vkmTm+X79+doRDnz59ymw3F9Jm8p+PP/7YXlhfdNFFtjD466+/rvvvv9+z37JlyxQSEvKz24HAjAWTmCvSqVMn24mbc5ki9uHh4T/7ucC3Y6N9+/ZasGCBjQ+TyDfHmItrc1FVcvQt3BcXBQUFuuOOOzRp0iS1bt263OPoP9zHV+OBPqT6+WJs0If49rVFmzZt7FLETF68a9cuO9Hpa6+9Rh/iMr4aC/Qf1c8XY4P+w8/VdH0GBJaRI0c6zZo1c7766qtS601B7/Lqu5gC4Gbyr5I+//xzWzdy3LhxlXrMyZMnO61bt7a3jx49amtLFi0nTpywhcLNY2/atKnUcddcc40tJn4matpWDX+IhSKmaL05zkw+hfPnD7Gxb98+59ixY3YCg+DgYGfRokWVfv7wflyYY805QkJCPEtQUJBnnXkM+g938Yd4KEIfUrX8ITboQ/zj2mLs2LF2siKDPsQ9/CEWitB/VC1/iA36D/9D0hZeYQpomzfBJk2aOF988UWZ7UXFvd955x3POpMAO7O4t+mYzJvgI488UunHnjRpki3afq7i3s8995xn3ZEjR5iIrJr4UywUWbhwoU3Mff/995VuCwIjNsxMslFRUT9pwgF4Py7M5HGfffZZqeWBBx5w2rRpY2+XnD34zLbRf3iXP8VDEfqQquGPsUEf4tvXFr1797YTnZ6tbfQh3uNPsVCE/qNq+GNs0H/4D5K28ApzQRsbG+tkZGQ4WVlZnsV8e1Rk+PDh9tuqFStWOOvXr3euuOIKuxQxF8MNGza0M7yXPIeZ3bHICy+84Pz1r3+1b7ZmmTt3rhMTE+M8/vjjZ23f1KlTnbp16zpLly61s73369fPadmypXPy5EnPPt988439hsskd6Kjo+1ts5jRdAicWFizZo0zffp0Z/PmzfabT3OxZNoyaNAgwiDAY8OYPXu2s2HDBmfHjh32cSIjI52ZM2cSGz4QF2eqzIzwlY0L+o+q4+vxQB9SfXw9Ngz6EN+NC3NtuGTJEjs6zuyflpZmv9D/8MMPz9o++hDv8fVYoP+oPr4eGwb9h/8iaQvvBJpU7mJKDRQxbzojRoxw6tWrZ0emmW+czBtdyYvi8s5RcnTcrFmznPbt29vj69Sp43Tp0sV56aWX7MiIszHfYD355JNOXFyc/dbquuuus0mXkgYPHlzu469cubJKXyt/5+uxYBJyycnJtmOPiIhw2rZt6zz99NNOTk5Olb9WgcbXY8O4++67nfr16zthYWFOp06dnD/96U9V+hoFIm/Fxc9NxNB/eJevxwN9SPXx9dgw6EN8Ny6mTZvmXHjhhfba0FwHXHvttTa5cy70Id7j67FA/1F9fD02DPoP/xVk/qnpuroAAAAAAAAAgNOYzhoAAAAAAAAAXISkLQAAAAAAAAC4CElbAAAAAAAAAHARkrYAAAAAAAAA4CIkbQEAAAAAAADARUjaAgAAAAAAAICLkLQFAAAAAAAAABchaQsAAAAAAAAALkLSFgAAAAAAAABchKQtAAAAAs4999yjoKAgu4SGhiouLk7XX3+95s2bp8LCwkqf59VXX1XdunWrta0AAAAIPCRtAQAAEJD69u2rrKwsff3111q2bJl69uyptLQ0/fKXv1R+fn5NNw8AAAABjKQtAAAAAlJ4eLji4+PVtGlTde3aVePGjdPSpUttAteMoDXS09PVsWNH1a5dWwkJCRoxYoSOHz9ut2VkZGjIkCE6cuSIZ9TuxIkT7bbc3FyNHTvWntscm5ycbPcHAAAAKoOkLQAAAPCjXr16KSkpSX/+859PXywHB2vWrFn6/PPPtWDBAq1YsUKPPvqo3ZaSkqIZM2aoTp06dsSuWUyi1njwwQe1du1avfXWW9q6dasGDBhgR/bu3LmT1xoAAADnFOQ4jnPu3QAAAAD/qml7+PBhLVmypMy22267zSZa//Wvf5XZ9s4772j48OE6dOiQvW9G5I4ePdqeq8iePXvUqlUr+7NJkyae9b1791b37t319NNPV9vzAgAAgH+oVdMNAAAAANzEjGkwpQ6MDz/8UFOmTNH27dt19OhRW+s2JydHJ06cUFRUVLnHf/bZZyooKFDr1q1LrTclExo0aOCV5wAAAADfRtIWAAAAKGHbtm1q2bKlnaDMTEr2wAMP6KmnnlL9+vW1atUqDR06VKdOnaowaWtq3oaEhGjDhg32Z0nR0dG81gAAADgnkrYAAADAj0zNWjNS9qGHHrJJ18LCQj3//PO2tq2xaNGiUq9VWFiYHVVbUpcuXey6AwcO6Oqrr+a1BQAAwE9G0hYAAAAByZQr2Ldvn02w7t+/X++//74thWBG1w4aNEiZmZnKy8vT7NmzdfPNN2v16tWaM2dOqXMkJibakbXLly+3E5iZ0bemLMKdd95pz2ESviaJe/DgQbtPp06ddNNNN9XYcwYAAIBvOD1kAAAAAAgwJknbuHFjm3jt27evVq5cqVmzZmnp0qW2rIFJwqanp2vatGnq0KGDXn/9dZvULSklJcVOTDZw4EA1bNhQzzzzjF0/f/58m7R9+OGH1aZNG6WmpurTTz9V8+bNa+jZAgAAwJcEOWamBQAAAAAAAACAKzDSFgAAAAAAAABchKQtAAAAAAAAALgISVsAAAAAAAAAcBGStgAAAAAAAADgIiRtAQAAAAAAAMBFSNoCAAAAAAAAgIuQtAUAAAAAAAAAFyFpCwAAAAAAAAAuQtIWAAAAAAAAAFyEpC0AAAAAAAAAuAhJWwAAAAAAAABwEZK2AAAAAAAAACD3+H/zcRilep7FdwAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 1400x800 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# 8. PLOT EQUITY CURVE\n",
"plt.figure(figsize=(14, 8))\n",
"plt.plot(df['timestamp'], df['equity'], label='Equity Curve', color='blue')\n",
"plt.fill_between(df['timestamp'], df['equity'], df['peak'], where=df['drawdown'] < 0, color='red', alpha=0.3, label='Drawdown')\n",
"plt.title('Equity Curve - Long-Only + 10-Min Cooldown (20 Contracts)')\n",
"plt.ylabel('Equity ($)')\n",
"plt.xlabel('Date')\n",
"plt.legend()\n",
"plt.grid(True)\n",
"plt.tight_layout()\n",
"# plt.savefig('/Users/kumar.ghosh/kgtest/lemaske/backtest_es_long_only_cooldown_equity_curve05nov2025.png', dpi=150)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "db4d7527",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.14.0"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment