Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Select an option

  • Save miguel-data-sc/a54b93c47feb0dae48b77838ed43f0cb to your computer and use it in GitHub Desktop.

Select an option

Save miguel-data-sc/a54b93c47feb0dae48b77838ed43f0cb to your computer and use it in GitHub Desktop.
UCR_Time_Series_Classification_Univariate_Datasets.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {},
"cell_type": "markdown",
"source": "# UEA & UCR Time Series Classification Multivariate Datasets*: LSST\n\n*A. Bagnall, J. Lines, W. Vickers and E. Keogh, The UEA & UCR Time Series Classification Repository,\nwww.timeseriesclassification.com"
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Import libraries"
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2018-11-28T11:43:51.534347Z",
"end_time": "2018-11-28T11:43:52.273256Z"
},
"trusted": true
},
"cell_type": "code",
"source": "%reload_ext autoreload\n%autoreload 2\n%matplotlib inline",
"execution_count": 1,
"outputs": []
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2018-11-28T11:43:53.072660Z",
"end_time": "2018-11-28T11:43:56.540531Z"
},
"trusted": true
},
"cell_type": "code",
"source": "from fastai import *\nfrom fastai.vision import *\nimport fastai\nfastai.__version__",
"execution_count": 2,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 2,
"data": {
"text/plain": "'1.0.28'"
},
"metadata": {}
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2018-11-28T11:43:56.543538Z",
"end_time": "2018-11-28T11:43:56.565324Z"
},
"trusted": true
},
"cell_type": "code",
"source": "import warnings\nwarnings.filterwarnings(\"ignore\")",
"execution_count": 3,
"outputs": []
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2018-11-28T11:43:56.567566Z",
"end_time": "2018-11-28T11:43:56.685719Z"
},
"trusted": true
},
"cell_type": "code",
"source": "from tslearn.datasets import extract_from_zip_url",
"execution_count": 4,
"outputs": []
},
{
"metadata": {},
"cell_type": "markdown",
"source": "## Prepare time series data"
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2018-11-28T11:43:56.688851Z",
"end_time": "2018-11-28T11:43:56.712070Z"
},
"trusted": true
},
"cell_type": "code",
"source": "source_dir = 'http://www.timeseriesclassification.com/Downloads/'\ntarget_dir='my_data/Downloads'\nSEL_DATASET = 'LSST'",
"execution_count": 5,
"outputs": []
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2018-11-28T11:43:56.813050Z",
"end_time": "2018-11-28T11:44:00.025449Z"
},
"trusted": true
},
"cell_type": "code",
"source": "extract_from_zip_url(\n source_dir + SEL_DATASET + '.zip',\n target_dir=target_dir + SEL_DATASET,\n verbose=True)",
"execution_count": 6,
"outputs": [
{
"output_type": "stream",
"text": "Successfully extracted file /tmp/tmp5awyosy8/LSST.zip to path my_data/DownloadsLSST\n",
"name": "stdout"
},
{
"output_type": "execute_result",
"execution_count": 6,
"data": {
"text/plain": "'my_data/DownloadsLSST'"
},
"metadata": {}
}
]
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2018-11-28T11:44:35.863131Z",
"end_time": "2018-11-28T11:44:35.885674Z"
}
},
"cell_type": "markdown",
"source": "There are 6 dimensions"
},
{
"metadata": {
"ExecuteTime": {
"start_time": "2018-11-28T11:46:47.664929Z",
"end_time": "2018-11-28T11:46:47.737398Z"
},
"trusted": true
},
"cell_type": "code",
"source": "from scipy.io import arff\ntrain1 = pd.DataFrame(arff.loadarff('my_data/Downloads/LSST/LSSTDimension1_TRAIN.arff')[0])",
"execution_count": 9,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"_draft": {
"nbviewer_url": "https://gist.github.com/26020067f499d48dc52e5bcb8f5f1c57"
},
"gist": {
"id": "26020067f499d48dc52e5bcb8f5f1c57",
"data": {
"description": "UCR_Time_Series_Classification_Univariate_Datasets.ipynb",
"public": true
}
},
"kernelspec": {
"name": "fastai-v1",
"display_name": "fastai-v1",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.7.0",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"notify_time": "30",
"toc": {
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"base_numbering": 1,
"title_cell": "Table of Contents",
"title_sidebar": "Contents",
"toc_cell": false,
"toc_position": {},
"toc_section_display": true,
"toc_window_display": false
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment