Skip to content

Instantly share code, notes, and snippets.

@mxl00474
Created April 18, 2020 14:55
Show Gist options
  • Select an option

  • Save mxl00474/1d30406f8a520dadda94850c0943663d to your computer and use it in GitHub Desktop.

Select an option

Save mxl00474/1d30406f8a520dadda94850c0943663d to your computer and use it in GitHub Desktop.
Jupyter and VSCode sample
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Import"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"\n",
"# add current to path\n",
"sys.path.insert(0, os.path.abspath('.'))\n",
"\n",
"from sample import sample"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Call the simple function in \"sample.py\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7fb6e0f7c550>]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3Xl4VOXd//H3N/sGgSxsWUgCYQmCLGFTcUMElwdcUEGtUqlUqz7V2kWftpafXbS11dpqq4hLtSiCKyoWQVRQ2cJOWEIIkA1IICFA9mTu3x8z2DEmZICZOTOT7+u6uJicOZn5cBI+OTnn3PcRYwxKKaUCS5DVAZRSSrmflrtSSgUgLXellApAWu5KKRWAtNyVUioAabkrpVQA0nJXSqkApOWulFIBSMtdKaUCUIhVb5yQkGDS0tKsenullPJL69evP2yMSWxvPcvKPS0tjZycHKveXiml/JKI7HdlPT0so5RSAUjLXSmlApCWu1JKBSAtd6WUCkBa7kopFYDaLXcReUlEykRkWxvPi4j8TUTyRWSLiAx3f0yllFKnw5U991eASad4/gog0/FnFvDPs4+llFLqbLRb7saYFUDFKVaZArxq7FYDXUSkp7sCtrS56CiPf7wTvT2gUsrf2GyG33+0ne2lxzz+Xu445p4EFDl9XOxY9h0iMktEckQkp7y8/IzebEvxUZ77Yg9biqvO6POVUsoqqwqO8MLKvew65B/l7jJjzBxjTLYxJjsxsd3Rs62aMiyJyNBgXl9T6OZ0SinlWa+vKaRLVChXnOOxgxvfcEe5lwApTh8nO5Z5ROeIUKYM7cWizaVU1TZ66m2UUsqtyo7XsST3IFOHJxMRGuzx93NHuS8CbnNcNTMGqDLGHHDD67bpltG9qW1s5r2NHvsZopRSbrUwp5gmm2H66FSvvJ8rl0K+AawC+otIsYjMFJG7ROQuxyqLgQIgH3gB+JHH0joMTo5lSHIs89bs1xOrSimf12wzvL6mkPP6xNMnMcYr79nurJDGmOntPG+Ae9yWyEU3j0rloXe2sn5/Jdlpcd5+e6WUctmK3eWUHK3l4SsHeO09/XaE6v+c24tO4SHM0xOrSikfN291IQkxYVye1cNr7+m35R4dHsK1w5P4aOsBKqsbrI6jlFKtKj1ay/Kdh7gxO4WwEO9Vrt+WO8DNo1NpaLLx9oZiq6MopVSr3lxXhAGmj/LOidST/LrcB/TozIjeXZm3plBPrCqlfE5Ts4356wq5MDORlLgor763X5c7wC2jU9l7uJpVe45YHUUppb7l051lHDpWzy1euvzRmd+X+5WDe9IlKlRPrCqlfM68NYX06BzBpQO6ef29/b7cI0KDuX54MktyD1J+vN7qOEopBUDhkRpW7i7nppEphAR7v2r9vtzBfmK1yWZYkFPU/spKKeUFb6wrRIBpo1LaXdcTAqLc+yTGMDYjnjfWFmKz6YlVpZS1GppsLMwpYvzA7vSMjbQkQ0CUO9j33osra1mx+8ymElZKKXf5ZPtBDp9o4GYLTqSeFDDlPnFQD+Kjw/TEqlLKcvNWF5LcNZILM89sanN3CJhyDwsJ4saRKXy64xAHqmqtjqOU6qDyy06wquAI00elEhwkluUImHIHmD4yFQPMX6snVpVS1nhjbSEhQcKN2dacSD0poMo9NT6KcZmJvLmuiKZmm9VxlFIdTF1jM29vKGbioB4kdgq3NEtAlTvYR6wePFbH8p1lVkdRSnUwi7ce4GhNoyUjUlsKuHIfP6Ab3TuH64lVpZTXzVtTSEZCNGP7xFsdJfDKPSQ4iGkjU1mxu5yiihqr4yilOoidB4+xfn8lN49ORcS6E6knBVy5g31EmGA/saGUUt7w+ppCwkKCuH54stVRgAAt956xkVw6oDsLcopoaNITq0opz6qub+KdDSVcNbgnXaPDrI4DBGi5A9wyJpXDJxr4ZPtBq6MopQLcB5tLOVHf5BMnUk8K2HK/MDORpC6RvK4nVpVSHvb62kL6dY9hRO+uVkf5RsCWe3CQcPPoVL7ec4Q95SesjqOUClBbio+ypbiKW0b39okTqScFbLkD3JCdTEiQ8IbuvSulPOT1NYVEhgZz7fAkq6N8S0CXe7dOEUwc1IO3NhRT19hsdRylVIA5VtfIos2lTD63F50jQq2O8y0BXe5gnwr4aE0jH287YHUUpVSAeX9jCTUNzZZO7duWgC/3sRnxpCdEM2+1HppRSrmPMYZ5awo5J6kzQ5JjrY7zHQFf7kFBws2jUsnZX8mug8etjqOUChAbCivZefC4z51IPSngyx3g+hHJhAUH8fqa/VZHUUoFiHlrCokJD2Hyub2sjtKqDlHucdFhXDm4B+9sKKGmocnqOEopP3e0poEPtxzgmmG9iA4PsTpOqzpEuQPcMqY3x+ub+GBzqdVRlFJ+7q31xTQ02bh5VG+ro7TJpXIXkUkisktE8kXkoVaeTxWRz0Rko4hsEZEr3R/17GT37kq/7jE6FbBS6qwYY3h9bSHDU7uQ1auz1XHa1G65i0gw8CxwBZAFTBeRrBar/QpYYIwZBkwD/uHuoGdLxH5idUtxFVuKj1odRynlp1btOUJBeTU3j/bdvXZwbc99FJBvjCkwxjQA84EpLdYxwMkfYbGATx77uG5EMjHhIcxdudfqKEopPzX3y73ER4dx9ZCeVkc5JVfKPQlwvuN0sWOZs9nArSJSDCwG7nNLOjfrHBHK9FEpfLT1AMWVeiMPpdTp2X3oOMt3lnHb2DQiQoOtjnNK7jqhOh14xRiTDFwJvCYi33ltEZklIjkiklNeXu6mtz493z8/HQFe/mqfJe+vlPJfc1fuJTwkiO+N9e1DMuBauZcAKU4fJzuWOZsJLAAwxqwCIoCEli9kjJljjMk2xmQnJiaeWeKz1KtLJFcP6cn8tYVU1TZakkEp5X/Kjtfx7sYSbshOJs5HbshxKq6U+zogU0TSRSQM+wnTRS3WKQTGA4jIQOzlbs2uuQt+MC6D6oZmvQ2fUsplr369n0abjZkXZFgdxSXtlrsxpgm4F1gC7MB+VUyuiDwqIpMdqz0I3Ckim4E3gBnGGOOp0GfrnKRYzu8bz8tf7dXb8Cml2lXT0MRrq/dzeVZ30hOirY7jEpeGVhljFmM/Ueq87BGnx9uB890bzbPuHJfBjJfX8cHmUq4f4Rs3tFVK+aaFOcVU1TYy60L/2GuHDjRCtaWL+iXSv3snXlhZgA//kqGUslizzTD3ywKGp3ZhRO84q+O4rMOWu4jwg3Hp7Dx4nJW7D1sdRynlo5bkHqSootav9tqhA5c7wOShvejWKZwXVhZYHUUp5YOMMTy/ooDe8VFMyOphdZzT0qHLPTwkmBnnp7Fy92G2lx6zOo5Sysfk7K9kc9FRfnBBOsFBvjdn+6l06HIHuGVUb6LCgpn7pe69K6W+7YUVBXSNCmXqiJT2V/YxHb7cY6NCuWlkCos2lXKgqtbqOEopH1FQfoKlOw7xvTG9iQzz7akGWtPhyx3gjvPTsRnDK1/vszqKUspHvPjlXkKDg/je2DSro5wRLXcgJS6KKwf35PXVhRyv0ykJlOrojpyo5631xVw/PInETuFWxzkjWu4Osy7M4Hh9E2+uK2p/ZaVUQHtt9X7qm/xnqoHWaLk7DEnuwqj0OF7+ah+NzTolgVIdVV1jM6+u2s/4Ad3o2y3G6jhnTMvdyaxxGZQcrWXx1gNWR1FKWeTtDcVUVDdwp58NWmpJy93JpQO6kZEYrVMSKNVB2WyGuSv3MiQ5ltHp/jPVQGu03J0EBQl3jstgW8kxVhUcsTqOUsrLlu04xN7D1dw5LgMR/xq01JKWewvXDksiISaMF1booCalOpoXVhaQ1CWSK87xr6kGWqPl3kJEaDC3jU3js13l5B06bnUcpZSXbCisZN2+SmZekE5IsP9Xo///Czzg1jG9iQgNYq5OKKZUhzF3ZQGdI0K4caT/TTXQGi33VsRFh3HDiBTe21hK2bE6q+MopTxs/5Fq/rPtILeM6U1MuEv3MPJ5Wu5tmHlBOo02G/9atc/qKEopD3vpy70EBwkzzkuzOorbaLm3IS0hmolZPfj36kKq65usjqOU8pDK6gYW5BQzZWgS3TtHWB3HbbTcT+HOCzOoqm1kYY5OSaBUoJq3Zj+1jc3cOc6/By21pOV+CiN6d2VE7668+NVemnRKAqUCTl1jM698vd9+T+UenayO41Za7u24c1wGRRW1LMk9ZHUUpZSbvb+phMMn6v3u/qiu0HJvx4Ss7qTFRzFnxR6dkkCpAGKzGV5YuZesnp05r0+81XHcTsu9HcFBwsxxGWwurmLdvkqr4yil3OTzvDLyy04w60L/n2qgNVruLpg6PJmuUaHM0SkJlAoYc1YU0DM2gquG9LQ6ikdoubsgMiyY741N49Odh9hTfsLqOEqps7S1uIrVBRXccX46oQEw1UBrAvNf5QG3je1NWHAQ//hsj9VRlFJn6dnP8ukUHsJNowJjqoHWaLm7KCEmnFvH9ObdjcW6966UH9tWUsV/cg9yxwXpdI4ItTqOx2i5n4a7L+5DeEgwTy/bbXUUpdQZenJpHrGRocwcl251FI/Scj8NCTHhzDg/jQ+2lLLroE4HrJS/2VBYyfKdZcy6MCOg99pBy/20zRqXQXRYCE8tzbM6ilLqND35SR7x0WEBNUFYW1wqdxGZJCK7RCRfRB5qY50bRWS7iOSKyOvujek7ukaHMfOCdP6Te5BtJVVWx1FKuWhNwRG+zD/M3Rf3ITpApvU9lXbLXUSCgWeBK4AsYLqIZLVYJxN4GDjfGDMIuN8DWX3GzHHpxEaG6t67Un7CGMNfPsmjWyf7hREdgSt77qOAfGNMgTGmAZgPTGmxzp3As8aYSgBjTJl7Y/qWzhGhzLowg093lrGhUEetKuXrvsw/zNp9FdxzSV8iQoOtjuMVrpR7EuA8522xY5mzfkA/EflKRFaLyKTWXkhEZolIjojklJeXn1liHzHjvDTiosN0710pH3dyr71XbATTAvi69pbcdUI1BMgELgamAy+ISJeWKxlj5hhjso0x2YmJiW56a2tEh4dw90V9WLn7MGsKjlgdRynVhuU7y9hUdJT7xmcSHtIx9trBtXIvAZx/3CU7ljkrBhYZYxqNMXuBPOxlH9BuHdObbp3C+cvSPJ0xUikfZIzhyaV5pMZFMXVEstVxvMqVcl8HZIpIuoiEAdOARS3WeQ/7XjsikoD9ME3Az7IVGRbMPZf0Ze3eCr7K1713pXzNktyD5JYe48fjMwN2Dpm2tPuvNcY0AfcCS4AdwAJjTK6IPCoikx2rLQGOiMh24DPgZ8aYDtF200al0Cs2gj9/skv33pXyIc02+157RmI01wxreZow8Ln0o8wYs9gY088Y08cY83vHskeMMYscj40x5ifGmCxjzGBjzHxPhvYl4SHB3Dc+k01FR/lsV0BfJKSUX/lwSyl5h07wwGX9CA4KvPna29Oxfk/xkKkjkkmNi+Ivn+ixd6V8QVOzjb8u282AHp24anBgztfeHi13NwgNDuJ/x2eSW3qMJbkHrY6jVIf37sYS9h6u5v7L+hHUAffaQcvdba4Z2ouMxGieXJpHs0333pWySkOTjb8t3805SZ2ZOKi71XEso+XuJiHBQdx/WT/yDp3gwy2lVsdRqsNauL6IoopaHpzQPyDvjeoqLXc3unpwT/p378TTy3bT1GyzOo5SHU5dYzPPLM9neGoXLu7v3wMlz5aWuxsFBQkPTOhHweFq3tuke+9Kedv8tYUcqKrjwcs79l47aLm73cRB3TknqTNPf5pHo+69K+U1tQ3NPPPZHkanx3Fen3ir41hOy93NRIQHJ/SnqKKWhTnFVsdRqsN4bfU+Dp+o1712By13D7i4fyLDUrvw9+W7qWtstjqOUgHvRH0T//x8D+MyExiVHmd1HJ+g5e4BJ/feD1TVMX9todVxlAp4r3y1l8qaRh68vL/VUXyGlruHnN83ntHpcTz7+R5qG3TvXSlPqaptZM6KAi4b2I2hKd+ZabzD0nL3EBHhwcv7U368ntdW77M6jlIB68WVBRyra+KBCf2sjuJTtNw9aFR6HOMyE3juiwJO1DdZHUepgFNZ3cBLX+3jinN6MKhXrNVxfIqWu4f9ZEI/Kqob+NfX+6yOolTAeX5FAdUNutfeGi13DxuW2pXxA7rx/Bd7qKpttDqOUgGj/Hg9//p6H5PP7UW/7p2sjuNztNy94IEJ/ThW18TclQF/cyqlvOYfn+fT0Gzjx+MD/o6eZ0TL3QvOSYrl6iE9mbOigOLKGqvjKOX38suO89qq/dwwIpmMxBir4/gkLXcvefjKgYjA7z/aYXUUpfyaMYbZi7YTGRbMTyfqde1t0XL3kqQukdx7SV8+3naQlbvLrY6jlN9aknuQL/MP8+CEfiTEhFsdx2dpuXvRD8Zl0Ds+itmLcmlo0knFlDpdtQ3N/PbDHQzo0Ylbx/S2Oo5P03L3oojQYB65Oos95dV6aaRSZ+CfX+yh5GgtsycPIiRY6+tUdOt42fiB3bl0QDf+uiyPsmN1VsdRym8UHqnhuS/2MPncXozJ0Cl926PlboFHrs6isdnw+Mc7rY6ilN/47UfbCQkS/u/KgVZH8Qta7hZIS4jmzgvTeWdjCev2VVgdRymf99muMpZuP8R9l2bSIzbC6jh+QcvdIvdc0peesRH85v1cmm3G6jhK+az6pmYe/WA7GQnR3HFBmtVx/IaWu0WiwkL45VUD2X7gGK/rnO9KtemlL/ex93A1j/xPFuEhwVbH8Rta7ha6anBPxmbE8+clu6iobrA6jlI+52BVHX9fvpsJWd25uH83q+P4FS13C4kI/2/KIE7UN/HnT3ZZHUcpn/OHxTtoshkeuTrL6ih+R8vdYv26d+L2sWm8sbaQrcVVVsdRymesLjjCos2l3HVRH1LioqyO43e03H3A/RMyiY8O45FF27DpyVWlaGq2MXtRLkldIrn7oj5Wx/FLLpW7iEwSkV0iki8iD51ivetFxIhItvsiBr7OEaH8YtIANhYe5Z2NJVbHUcpy/169n50Hj/PrqwcSGaYnUc9Eu+UuIsHAs8AVQBYwXUS+cwBMRDoBPwbWuDtkR3D98GSGpXbh8Y93cKxOb+qhOq7DJ+r5y9I8xmUmMHFQD6vj+C1X9txHAfnGmAJjTAMwH5jSynq/Bf4I6Jj6MxAUJDw6+RyOVDfw9LLdVsdRyjJP/GcXtQ3N/OZ/BiEiVsfxW66UexJQ5PRxsWPZN0RkOJBijPnIjdk6nMHJsUwbmcorX+8j79Bxq+Mo5XWbio7yZk4Rd1yQTt9uehOOs3HWJ1RFJAh4EnjQhXVniUiOiOSUl+uc5q352cT+xISH8Jv3czFGT66qjsNmM/zm/W106xTOfZf2tTqO33Ol3EuAFKePkx3LTuoEnAN8LiL7gDHAotZOqhpj5hhjso0x2YmJiWeeOoDFRYfx04n9WVVwhMVbD1odRymvWbi+iM3FVfzflQPpFBFqdRy/50q5rwMyRSRdRMKAacCik08aY6qMMQnGmDRjTBqwGphsjMnxSOIO4OZRqWT17MzvPtpOTUOT1XGU8riqmkb++J9djEzrypShvayOExDaLXdjTBNwL7AE2AEsMMbkisijIjLZ0wE7ouAg4dEpgzhQVcc/PttjdRylPO6pZXkcrWlg9mQ9ieouIa6sZIxZDCxuseyRNta9+Oxjqey0OK4dlsScFQVMHZFMWkK01ZGU8ogdB47x6qp93DK6N4N6xVodJ2DoCFUf9vAVAwgNFh79cLvVUZTyCGMMv3k/l9jIUB68vJ/VcQKKlrsP69Y5gvsv68fynWV8uuOQ1XGUcrtFm0tZu6+Cn08aQJeoMKvjBBQtdx93+3lp9EmMZvYHuVTX68lVFTiO1jTw+492MDgplhuzU9r/BHVatNx9XFhIEI9dN4Tiylp+95EenlGBwRjDL9/bRkV1A49dN5jgID2J6m5a7n5gVHocP7ywD2+sLWLpdj08o/zfe5tK+GjLAR6Y0I9zkvQkqidoufuJn0zoR1bPzjz09hbKj9dbHUepM1ZcWcMj7+WS3bsrd+l0vh6j5e4nwkKC+Ou0oRyvb+IXb2/RqQmUX2q2GR5csBmbMTx101A9HONBWu5+pF/3Tjx8xQCW7yzTm2orvzR3ZQFr9lYwe/IgvbuSh2m5+5nbx6YxLjOB3324g4LyE1bHUcpl20uP8edPdjFpUA+mjki2Ok7A03L3M0FBwhNTzyUsJIgHFmymsdlmdSSl2lXX2Mz9b26kS1QYf7husE4x4AVa7n6oR2wEf7h2MJuLjvLM8nyr4yjVrieW7CLv0AmemDqEuGgdrOQNWu5+6qohPbluWBLPfJbPhsJKq+Mo1aYvdx/mxS/3ctvY3lzcv5vVcToMLXc/NnvKIHp0juCBNzfp6FXlk47WNPDThZvpkxjNw1cMtDpOh6Ll7sc6R4Ty5I3nUlhRo6NXlc8xxvCr97Zx+EQ9f71pGJFhwVZH6lC03P3c6Ix4Hb2qfNL7m0r50DEKdXCyjkL1Ni33AKCjV5WvKTlay6/f36ajUC2k5R4AnEevPqSjV5XFbDbDgws2YbPpKFQrabkHiH7dO/HQpAF8urOMN9YWWR1HdWBzvyxgdUEFv9FRqJbScg8gM85L44K+Cfz2w+06elVZYnvpMZ5YsouJg7pzg45CtZSWewAJChL+fIOOXlXWcB6F+th1Q3QUqsW03ANMj9gIfn/tOTp6VXndyVGof9JRqD5Byz0AXT2k1zejVzfq6FXlBV/l/3cU6iU6CtUnaLkHKB29qrylqqaRBxfoKFRfo+UeoE6OXt1fUcPvPtphdRwVoOz3Qt2qo1B9kJZ7ABudEc+sCzN4Y20hC3P08kjlfv/6eh8fbjnA/Zdl6ihUH6PlHuB+enl/LuibwP+9u5VVe45YHUcFkOU7D/Hoh9uZkNWduy/ua3Uc1YKWe4ALDQ7i2VuGkxYfzV3/Xs8evf5duUFuaRX3vr6RQb1ieXqajkL1RVruHUBsZCgvzRhJSJBwxyvrqKhusDqS8mMHq+qY+UoOsZGhzL09m6iwEKsjqVZouXcQKXFRvHB7Nger6pj1ag51jc1WR1J+qLq+iZn/WsfxukZemjGS7p0jrI6k2qDl3oEMT+3KkzcOJWd/Jb/QCcbUaWq2GX48fyM7DhzjmZuHM7BnZ6sjqVPQcu9grhrSk59N7M/7m0p5atluq+MoP/L7j3awbEcZsycP4pIBOlDJ17lU7iIySUR2iUi+iDzUyvM/EZHtIrJFRD4Vkd7uj6rc5UcX9+HG7GT+9ulu3tlQbHUc5QdeW7WPl77ay/fPT+O2sWlWx1EuaLfcRSQYeBa4AsgCpotIVovVNgLZxpghwFvAn9wdVLmPiPC7awYzNiOeX7y9hTUFeomkattnu8r4zaJcLhvYjV9d1fK/vvJVruy5jwLyjTEFxpgGYD4wxXkFY8xnxpgax4erAZ3r08eFhQTx3K0jSI2L4of/Xs/ew9VWR1I+aMeBY9w7bwMDe3bm6WnD9JJHP+JKuScBzsMbix3L2jIT+Li1J0RklojkiEhOeXm56ymVR8RGhfLyjFEEifD9l9dSqZdIKidlx+qY+co6OkWE8uLtI4kO10se/YlbT6iKyK1ANvBEa88bY+YYY7KNMdmJiYnufGt1hlLjo3jhthGUVtXxw9fWU9+kl0gqqGloYua/cjha28iLM7LpEauXPPobV8q9BEhx+jjZsexbROQy4JfAZGOM3qXZj4zoHccTU4ewdl8FD729VS+R7OCabYb7528it7SKv08fxqBeOmeMP3Ll96x1QKaIpGMv9WnAzc4riMgw4HlgkjGmzO0plcdNGZrE/iM1PLk0j7T4aH58WabVkZRFHv94B59sP8QjV2cxfmB3q+OoM9RuuRtjmkTkXmAJEAy8ZIzJFZFHgRxjzCLsh2FigIWOW2sVGmMmezC38oD7Lu3LviPVPLUsj7SEKKYMPdWpFRWI5q3Zzwsr7Tfd+P75aVbHUWfBpTMkxpjFwOIWyx5xenyZm3MpC4gIj103mOLKWn62cAu9ukQyMi3O6ljKS77IK+eR93O5uH8ij1ydpfdA9XM6QlV9S3hIMM/fOoKkrpHMejWHfXqJZIew6+Bx7pm3gcxuMTxz83BCgrUa/J1+BdV3dI0O46UZIzGgs0h2AGXH6rjjlXVEhQXz0oyRxOgljwFBy121Kj0hmjnfy6b4aC03Pr+K0qO1VkdSHrDvcDVTn1tFZU0DL94+kl5dIq2OpNxEy121aVR6HK/eMYpDVXVc/8+v2X3ouNWRlBttK6li6nNfc7yukdfvHKO3yQswWu7qlMZkxPPmD8fSZDNMfW4V6/dXWh1JucHX+YeZNmc14SHBvHX3eQxN6WJ1JOVmWu6qXVm9OvPO3efRNSqUW+auZvnOQ1ZHUmdh8dYDzHh5HUldInn77vPokxhjdSTlAVruyiUpcVG8dfd5ZHbrxJ2vruft9TpVsD96bfV+7nl9A0OSY1nww7E6rUAA03JXLkuICeeNWWMYkxHHgws3M2fFHqsjKRcZY3hqaR6/fm8b4wd0498/GE1sVKjVsZQHabmr0xITHsJLM0Zy1ZCe/GHxTv6weAc2m85F48uabYZfvbeNpz/dzY3ZyTx36wgiQoOtjqU8TC9oVactPCSYv08bRkJ0GHNWFHD4RD1/vH4IoTrwxefUNTbzwJub+HjbQX50cR9+NrG/jjztILTc1RkJChJmTx5EQkw4f1maR2V1A8/eMpyoMP2W8hXH6hqZ9WoOqwsqeOTqLO64IN3qSMqLdFdLnTER4b7xmTx23WC+yCvnlrlr9IYfPqLseB3Tnl9Nzr5Knp42VIu9A9JyV2dt+qhU/nHLCHJLj3GDjma13P4j1Uz95yr2HanmxRkjdXbPDkrLXbnFpHN66GhWH7CtpIrr//nfUacX9dM7nnVUWu7KbZxHs97wvI5m9bav9+ioU/VfWu7KrU6OZu0SaR/N+sHmUqsjBTxjDAtzipjxko46Vf+l5a7c7uRo1gE9OnPfGxu567X1lB2rszpWQCo5Wsv3X1nHz97awrDULjrqVH1DrLoZcnZ2tsmXTi+2AAALvklEQVTJybHkvZV3NDXbmPvlXp5amkd4SBC/ujqLG0Yk63XWbmCzGeat2c/jH+/EAD+f2J/bxqYRFKTbNtCJyHpjTHa762m5K08rKD/BQ29vZe2+Ci7om8Bj1w0mJS7K6lh+y3l7jstM4A/X6vbsSLTclU+x2Qzz1hby+OId2Az8fJJ9TzNY9zRd1tRs44WVe3lqWR4RIUH8+uospupvQh2OlrvySSVHa/nlu1v5fFc5w1O78KepQ+jbrZPVsXxebmkVv3h7C9tKjjFpUA8evWYQ3TrpsfWOSMtd+SxjDO9tKuHRD7ZTXd/M/47vyw8v6qNz07SirrGZvy/fzXNfFNA1KozfThnEFYN7Wh1LWcjVcteJQJTXiQjXDktmXGYisxfl8udP8vhwywGemHqu3urNyfr9Ffz8rS3sKa9m6ohkfnXVQLpEhVkdS/kJ3VVSlkmICeeZm4cz53sjqKhu4Jp/fMXjH++krrHZ6miWqq5vYvaiXKY+t4q6Rhuv3jGKP99wrha7Oi26564sd/mgHozOiOexxTt47os9LMk9yOPXDWZ0RrzV0bxuRV45D7+zldKqWm4fm8bPJvYnOlz/m6rTp8fclU/5Kv8wD72zhaKKWq4dlsStY1IZnto1oK8IMcawZm8Fr63ez0dbDpCRGM2frh9Cdlqc1dGUD9ITqspv1TQ08ddlu5m3ej/VDc307RbDTdkpXDc8ifiYcKvjuU3ZsTre2lDMgnVF7DtSQ6eIEGacl8Y9l/TVOyWpNmm5K79XXd/ER1sOMH9dIRsKjxIaLEzI6s6N2SmMy0z0y2vkm5ptfL6rnDdzili+s4xmm2F0ehzTRqUwaVBPIsO01NWpabmrgLL70HHeXFfEOxtLqKhuoFdsBDdkp3BDdjLJXX1/dOb+I9UsyCliYU4xZcfrSYgJZ+qIZG7MTiZDJ/lSp0HLXQWk+qZmlm0v482cIlbuLgfggr4JTBuZymVZ3QgP8Z0937rGZpbkHmT+2iJWFRwhSOCS/t24aWQKlwzoptf1qzPi1nIXkUnA00AwMNcY83iL58OBV4ERwBHgJmPMvlO9ppa7OlvFlTUszClmYU4RpVV1xEWHcd2wJG4amUJmd+tGvW4vPcaCnCLe3VhCVW0jqXFR3DQyheuHJ+uMjeqsua3cRSQYyAMmAMXAOmC6MWa70zo/AoYYY+4SkWnAtcaYm071ulruyl2abYYv8w/z5rpClm4/RGOzYUCPTvTpFkNK1yhS46JIiYskpWsUvbpEEhZy9nvMDU02So7WUlhRQ1FFDUWVNRRX1LK77Dh5h04QFhLEpEE9mDYyhTEZ8Tpbo3Ibd45QHQXkG2MKHC88H5gCbHdaZwow2/H4LeAZERFj1TEf1aEEBwkX9Uvkon6JHDlRzzsbSlixu5zckiqWbDtIk+2/34ZBAj1jI0nuGklK3LeLPyUuisSYcIKCBJvNUHa8/lvlXVRR+83jg8fqcP7uDgsOIsnxmjePSuWaYUk66EhZypVyTwKKnD4uBka3tY4xpklEqoB44LA7QirlqviYcO68MIM7L8wA7Hv1B4/VUVRRQ2FFDcUVNRRV2kt6RV45Zcfrv/X54SFBJMSEU36inoYm2zfLRaB7pwhS46IY2yf+mx8GJ384dO8UoXvnyqd4deibiMwCZgGkpqZ6861VBxUcJCR1iSSpSyRjWhnxWtfYTHFlreOwiv0HQPnxerp3jiD5ZHl3jSSpa6RPnaxVqj2ulHsJkOL0cbJjWWvrFItICBCL/cTqtxhj5gBzwH7M/UwCK+VOEaHB9O0WQ99uejmiCiyunFlaB2SKSLqIhAHTgEUt1lkE3O54PBVYrsfblVLKOu3uuTuOod8LLMF+KeRLxphcEXkUyDHGLAJeBF4TkXygAvsPAKWUUhZx6Zi7MWYxsLjFskecHtcBN7g3mlJKqTOlQ+SUUioAabkrpVQA0nJXSqkApOWulFIBSMtdKaUCkGVT/opIObD/DD89Ad+c2kBznR7Ndfp8NZvmOj1nk6u3MSaxvZUsK/ezISI5rsyK5m2a6/RortPnq9k01+nxRi49LKOUUgFIy10ppQKQv5b7HKsDtEFznR7Ndfp8NZvmOj0ez+WXx9yVUkqdmr/uuSullDoFny13EblBRHJFxCYibZ5VFpFJIrJLRPJF5CGn5ekissax/E3HdMXuyBUnIktFZLfj766trHOJiGxy+lMnItc4nntFRPY6PTfUW7kc6zU7vfcip+VWbq+hIrLK8fXeIiI3OT3n1u3V1veL0/Phjn9/vmN7pDk997Bj+S4RmXg2Oc4g109EZLtj+3wqIr2dnmv1a+qlXDNEpNzp/X/g9Nztjq/7bhG5veXnejjXU06Z8kTkqNNzntxeL4lImYhsa+N5EZG/OXJvEZHhTs+5d3sZY3zyDzAQ6A98DmS3sU4wsAfIAMKAzUCW47kFwDTH4+eAu92U60/AQ47HDwF/bGf9OOzTIEc5Pn4FmOqB7eVSLuBEG8st215APyDT8bgXcADo4u7tdarvF6d1fgQ853g8DXjT8TjLsX44kO54nWAv5rrE6Xvo7pO5TvU19VKuGcAzrXxuHFDg+Lur43FXb+Vqsf592Kcq9+j2crz2hcBwYFsbz18JfAwIMAZY46nt5bN77saYHcaYXe2s9s3Nu40xDcB8YIqICHAp9pt1A/wLuMZN0aY4Xs/V150KfGyMqXHT+7fldHN9w+rtZYzJM8bsdjwuBcqAdgdpnIFWv19OkfctYLxj+0wB5htj6o0xe4F8x+t5JZcx5jOn76HV2O+I5mmubK+2TASWGmMqjDGVwFJgkkW5pgNvuOm9T8kYswL7zlxbpgCvGrvVQBcR6YkHtpfPlruLWrt5dxL2m3MfNcY0tVjuDt2NMQccjw8C3dtZfxrf/cb6veNXsqdEJNzLuSJEJEdEVp88VIQPbS8RGYV9b2yP02J3ba+2vl9aXcexPU7e7N2Vz/VkLmczse/9ndTa19Sbua53fH3eEpGTt+T0ie3lOHyVDix3Wuyp7eWKtrK7fXt59QbZLYnIMqBHK0/90hjzvrfznHSqXM4fGGOMiLR5uZHjJ/Jg7HexOulh7CUXhv1yqF8Aj3oxV29jTImIZADLRWQr9gI7Y27eXq8BtxtjbI7FZ7y9ApGI3ApkAxc5Lf7O19QYs6f1V3C7D4A3jDH1IvJD7L/1XOql93bFNOAtY0yz0zIrt5fXWFruxpjLzvIl2rp59xHsv+6EOPa+Wrup9xnlEpFDItLTGHPAUUZlp3ipG4F3jTGNTq99ci+2XkReBn7qzVzGmBLH3wUi8jkwDHgbi7eXiHQGPsL+g32102uf8fZqxdnc7N2Vz/VkLkTkMuw/MC8yxtSfXN7G19QdZdVuLmPMEacP52I/x3Lycy9u8bmfuyGTS7mcTAPucV7gwe3lirayu317+fthmVZv3m3sZyg+w368G+w373bXbwLONwNv73W/c6zPUXAnj3NfA7R6Vt0TuUSk68nDGiKSAJwPbLd6ezm+du9iPxb5Vovn3Lm9zuZm74uAaWK/miYdyATWnkWW08olIsOA54HJxpgyp+Wtfk29mKun04eTgR2Ox0uAyx35ugKX8+3fYD2ay5FtAPaTk6uclnlye7liEXCb46qZMUCVYwfG/dvL3WeL3fUHuBb7cad64BCwxLG8F7DYab0rgTzsP3l/6bQ8A/t/vnxgIRDuplzxwKfAbmAZEOdYng3MdVovDftP46AWn78c2Iq9pP4NxHgrF3Ce4703O/6e6QvbC7gVaAQ2Of0Z6ont1dr3C/bDPJMdjyMc//58x/bIcPrcXzo+bxdwhZu/39vLtczx/+Dk9lnU3tfUS7keA3Id7/8ZMMDpc+9wbMd84PvezOX4eDbweIvP8/T2egP71V6N2PtrJnAXcJfjeQGedeTeitOVgO7eXjpCVSmlApC/H5ZRSinVCi13pZQKQFruSikVgLTclVIqAGm5K6VUANJyV0qpAKTlrpRSAUjLXSmlAtD/BxsRntjcqIhUAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"x=np.arange(-1,1.1, 0.1)\n",
"y=sample(x)\n",
"plt.plot(x, y)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python3 Debug",
"language": "python",
"name": "ptvsd"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment