Created
February 25, 2018 08:57
-
-
Save navin-mohan/0b113b519e2657adab119d4dd96181bd to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 41, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "(1, 3)\n", | |
| "(1, 3)\n", | |
| "8\n", | |
| "W:[[1]\n", | |
| " [2]\n", | |
| " [3]\n", | |
| " [4]]\n", | |
| "X: [[2]\n", | |
| " [2]\n", | |
| " [2]\n", | |
| " [2]]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "import numpy as np\n", | |
| "\n", | |
| "y = [[1,2,3],]\n", | |
| "y_hat = [[3,2,1],]\n", | |
| "y = np.array(y)\n", | |
| "y_hat = np.array(y_hat)\n", | |
| "print(y.shape)\n", | |
| "print(y_hat.shape)\n", | |
| "\n", | |
| "#MSE\n", | |
| "print(np.sum(np.power(y_hat-y,2)))\n", | |
| "\n", | |
| "\n", | |
| "\n", | |
| "W = np.array([[1,2,3,4],]).T\n", | |
| "X = np.array([[2,2,2,2],]).T\n", | |
| "print(\"W:{0}\\nX: {1}\".format(W,X))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "from sklearn.datasets import load_boston\n", | |
| "from sklearn.linear_model import LinearRegression\n", | |
| "\n", | |
| "\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ -1.07170557e-01, 4.63952195e-02, 2.08602395e-02,\n", | |
| " 2.68856140e+00, -1.77957587e+01, 3.80475246e+00,\n", | |
| " 7.51061703e-04, -1.47575880e+00, 3.05655038e-01,\n", | |
| " -1.23293463e-02, -9.53463555e-01, 9.39251272e-03,\n", | |
| " -5.25466633e-01])" | |
| ] | |
| }, | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "lr = LinearRegression(normalize=False)\n", | |
| "df = load_boston()\n", | |
| "X = df.data\n", | |
| "Y = df.target\n", | |
| "\n", | |
| "\n", | |
| "lr.fit(X,Y)\n", | |
| "X.shape\n", | |
| "# df.keys()\n", | |
| "lr.coef_" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 42, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "ename": "ValueError", | |
| "evalue": "shapes (4,1) and (13,) not aligned: 1 (dim 1) != 13 (dim 0)", | |
| "output_type": "error", | |
| "traceback": [ | |
| "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m<ipython-input-42-2b2876dfb61d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mY\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mY\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
| "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/base.py\u001b[0m in \u001b[0;36mpredict\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 254\u001b[0m \u001b[0mReturns\u001b[0m \u001b[0mpredicted\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \"\"\"\n\u001b[0;32m--> 256\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_decision_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 257\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 258\u001b[0m \u001b[0m_preprocess_data\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstaticmethod\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_preprocess_data\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/sklearn/linear_model/base.py\u001b[0m in \u001b[0;36m_decision_function\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 239\u001b[0m \u001b[0mX\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcheck_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maccept_sparse\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'csr'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'csc'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'coo'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 240\u001b[0m return safe_sparse_dot(X, self.coef_.T,\n\u001b[0;32m--> 241\u001b[0;31m dense_output=True) + self.intercept_\n\u001b[0m\u001b[1;32m 242\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 243\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/sklearn/utils/extmath.py\u001b[0m in \u001b[0;36msafe_sparse_dot\u001b[0;34m(a, b, dense_output)\u001b[0m\n\u001b[1;32m 138\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mret\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 139\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 140\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 141\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 142\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;31mValueError\u001b[0m: shapes (4,1) and (13,) not aligned: 1 (dim 1) != 13 (dim 0)" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "np.sum((lr.predict(X) - Y)**2)/Y.shape" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 69, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "val = 0\n", | |
| "l = np.array(range(10000))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 74, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "14.1 µs ± 123 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%%timeit\n", | |
| "val = 0\n", | |
| "np.sum(l)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 75, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "1.35 ms ± 7.73 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "%%timeit\n", | |
| "val = 0\n", | |
| "for i in l:\n", | |
| " val += i" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 76, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 0, 1, 2, ..., 9997, 9998, 9999])" | |
| ] | |
| }, | |
| "execution_count": 76, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "l" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.3" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment