Created
November 18, 2017 04:41
-
-
Save nicofarr/d73c8f611c0a77d4e989b11ae4a4033a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Decoding the IAPS dataset (neurovault collection id 503)\n", | |
| "--" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Reading server neurovault data.\n", | |
| "getting new batch: http://neurovault.org/api/collections/503\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=0\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1 image\n", | |
| "Already fetched 2 images\n", | |
| "Already fetched 3 images\n", | |
| "Already fetched 4 images\n", | |
| "Already fetched 5 images\n", | |
| "Already fetched 6 images\n", | |
| "Already fetched 7 images\n", | |
| "Already fetched 8 images\n", | |
| "Already fetched 9 images\n", | |
| "Already fetched 10 images\n", | |
| "Already fetched 11 images\n", | |
| "Already fetched 12 images\n", | |
| "Already fetched 13 images\n", | |
| "Already fetched 14 images\n", | |
| "Already fetched 15 images\n", | |
| "Already fetched 16 images\n", | |
| "Already fetched 17 images\n", | |
| "Already fetched 18 images\n", | |
| "Already fetched 19 images\n", | |
| "Already fetched 20 images\n", | |
| "Already fetched 21 images\n", | |
| "Already fetched 22 images\n", | |
| "Already fetched 23 images\n", | |
| "Already fetched 24 images\n", | |
| "Already fetched 25 images\n", | |
| "Already fetched 26 images\n", | |
| "Already fetched 27 images\n", | |
| "Already fetched 28 images\n", | |
| "Already fetched 29 images\n", | |
| "Already fetched 30 images\n", | |
| "Already fetched 31 images\n", | |
| "Already fetched 32 images\n", | |
| "Already fetched 33 images\n", | |
| "Already fetched 34 images\n", | |
| "Already fetched 35 images\n", | |
| "Already fetched 36 images\n", | |
| "Already fetched 37 images\n", | |
| "Already fetched 38 images\n", | |
| "Already fetched 39 images\n", | |
| "Already fetched 40 images\n", | |
| "Already fetched 41 images\n", | |
| "Already fetched 42 images\n", | |
| "Already fetched 43 images\n", | |
| "Already fetched 44 images\n", | |
| "Already fetched 45 images\n", | |
| "Already fetched 46 images\n", | |
| "Already fetched 47 images\n", | |
| "Already fetched 48 images\n", | |
| "Already fetched 49 images\n", | |
| "Already fetched 50 images\n", | |
| "Already fetched 51 images\n", | |
| "Already fetched 52 images\n", | |
| "Already fetched 53 images\n", | |
| "Already fetched 54 images\n", | |
| "Already fetched 55 images\n", | |
| "Already fetched 56 images\n", | |
| "Already fetched 57 images\n", | |
| "Already fetched 58 images\n", | |
| "Already fetched 59 images\n", | |
| "Already fetched 60 images\n", | |
| "Already fetched 61 images\n", | |
| "Already fetched 62 images\n", | |
| "Already fetched 63 images\n", | |
| "Already fetched 64 images\n", | |
| "Already fetched 65 images\n", | |
| "Already fetched 66 images\n", | |
| "Already fetched 67 images\n", | |
| "Already fetched 68 images\n", | |
| "Already fetched 69 images\n", | |
| "Already fetched 70 images\n", | |
| "Already fetched 71 images\n", | |
| "Already fetched 72 images\n", | |
| "Already fetched 73 images\n", | |
| "Already fetched 74 images\n", | |
| "Already fetched 75 images\n", | |
| "Already fetched 76 images\n", | |
| "Already fetched 77 images\n", | |
| "Already fetched 78 images\n", | |
| "Already fetched 79 images\n", | |
| "Already fetched 80 images\n", | |
| "Already fetched 81 images\n", | |
| "Already fetched 82 images\n", | |
| "Already fetched 83 images\n", | |
| "Already fetched 84 images\n", | |
| "Already fetched 85 images\n", | |
| "Already fetched 86 images\n", | |
| "Already fetched 87 images\n", | |
| "Already fetched 88 images\n", | |
| "Already fetched 89 images\n", | |
| "Already fetched 90 images\n", | |
| "Already fetched 91 images\n", | |
| "Already fetched 92 images\n", | |
| "Already fetched 93 images\n", | |
| "Already fetched 94 images\n", | |
| "Already fetched 95 images\n", | |
| "Already fetched 96 images\n", | |
| "Already fetched 97 images\n", | |
| "Already fetched 98 images\n", | |
| "Already fetched 99 images\n", | |
| "Already fetched 100 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=100\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 101 images\n", | |
| "Already fetched 102 images\n", | |
| "Already fetched 103 images\n", | |
| "Already fetched 104 images\n", | |
| "Already fetched 105 images\n", | |
| "Already fetched 106 images\n", | |
| "Already fetched 107 images\n", | |
| "Already fetched 108 images\n", | |
| "Already fetched 109 images\n", | |
| "Already fetched 110 images\n", | |
| "Already fetched 111 images\n", | |
| "Already fetched 112 images\n", | |
| "Already fetched 113 images\n", | |
| "Already fetched 114 images\n", | |
| "Already fetched 115 images\n", | |
| "Already fetched 116 images\n", | |
| "Already fetched 117 images\n", | |
| "Already fetched 118 images\n", | |
| "Already fetched 119 images\n", | |
| "Already fetched 120 images\n", | |
| "Already fetched 121 images\n", | |
| "Already fetched 122 images\n", | |
| "Already fetched 123 images\n", | |
| "Already fetched 124 images\n", | |
| "Already fetched 125 images\n", | |
| "Already fetched 126 images\n", | |
| "Already fetched 127 images\n", | |
| "Already fetched 128 images\n", | |
| "Already fetched 129 images\n", | |
| "Already fetched 130 images\n", | |
| "Already fetched 131 images\n", | |
| "Already fetched 132 images\n", | |
| "Already fetched 133 images\n", | |
| "Already fetched 134 images\n", | |
| "Already fetched 135 images\n", | |
| "Already fetched 136 images\n", | |
| "Already fetched 137 images\n", | |
| "Already fetched 138 images\n", | |
| "Already fetched 139 images\n", | |
| "Already fetched 140 images\n", | |
| "Already fetched 141 images\n", | |
| "Already fetched 142 images\n", | |
| "Already fetched 143 images\n", | |
| "Already fetched 144 images\n", | |
| "Already fetched 145 images\n", | |
| "Already fetched 146 images\n", | |
| "Already fetched 147 images\n", | |
| "Already fetched 148 images\n", | |
| "Already fetched 149 images\n", | |
| "Already fetched 150 images\n", | |
| "Already fetched 151 images\n", | |
| "Already fetched 152 images\n", | |
| "Already fetched 153 images\n", | |
| "Already fetched 154 images\n", | |
| "Already fetched 155 images\n", | |
| "Already fetched 156 images\n", | |
| "Already fetched 157 images\n", | |
| "Already fetched 158 images\n", | |
| "Already fetched 159 images\n", | |
| "Already fetched 160 images\n", | |
| "Already fetched 161 images\n", | |
| "Already fetched 162 images\n", | |
| "Already fetched 163 images\n", | |
| "Already fetched 164 images\n", | |
| "Already fetched 165 images\n", | |
| "Already fetched 166 images\n", | |
| "Already fetched 167 images\n", | |
| "Already fetched 168 images\n", | |
| "Already fetched 169 images\n", | |
| "Already fetched 170 images\n", | |
| "Already fetched 171 images\n", | |
| "Already fetched 172 images\n", | |
| "Already fetched 173 images\n", | |
| "Already fetched 174 images\n", | |
| "Already fetched 175 images\n", | |
| "Already fetched 176 images\n", | |
| "Already fetched 177 images\n", | |
| "Already fetched 178 images\n", | |
| "Already fetched 179 images\n", | |
| "Already fetched 180 images\n", | |
| "Already fetched 181 images\n", | |
| "Already fetched 182 images\n", | |
| "Already fetched 183 images\n", | |
| "Already fetched 184 images\n", | |
| "Already fetched 185 images\n", | |
| "Already fetched 186 images\n", | |
| "Already fetched 187 images\n", | |
| "Already fetched 188 images\n", | |
| "Already fetched 189 images\n", | |
| "Already fetched 190 images\n", | |
| "Already fetched 191 images\n", | |
| "Already fetched 192 images\n", | |
| "Already fetched 193 images\n", | |
| "Already fetched 194 images\n", | |
| "Already fetched 195 images\n", | |
| "Already fetched 196 images\n", | |
| "Already fetched 197 images\n", | |
| "Already fetched 198 images\n", | |
| "Already fetched 199 images\n", | |
| "Already fetched 200 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=200\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 201 images\n", | |
| "Already fetched 202 images\n", | |
| "Already fetched 203 images\n", | |
| "Already fetched 204 images\n", | |
| "Already fetched 205 images\n", | |
| "Already fetched 206 images\n", | |
| "Already fetched 207 images\n", | |
| "Already fetched 208 images\n", | |
| "Already fetched 209 images\n", | |
| "Already fetched 210 images\n", | |
| "Already fetched 211 images\n", | |
| "Already fetched 212 images\n", | |
| "Already fetched 213 images\n", | |
| "Already fetched 214 images\n", | |
| "Already fetched 215 images\n", | |
| "Already fetched 216 images\n", | |
| "Already fetched 217 images\n", | |
| "Already fetched 218 images\n", | |
| "Already fetched 219 images\n", | |
| "Already fetched 220 images\n", | |
| "Already fetched 221 images\n", | |
| "Already fetched 222 images\n", | |
| "Already fetched 223 images\n", | |
| "Already fetched 224 images\n", | |
| "Already fetched 225 images\n", | |
| "Already fetched 226 images\n", | |
| "Already fetched 227 images\n", | |
| "Already fetched 228 images\n", | |
| "Already fetched 229 images\n", | |
| "Already fetched 230 images\n", | |
| "Already fetched 231 images\n", | |
| "Already fetched 232 images\n", | |
| "Already fetched 233 images\n", | |
| "Already fetched 234 images\n", | |
| "Already fetched 235 images\n", | |
| "Already fetched 236 images\n", | |
| "Already fetched 237 images\n", | |
| "Already fetched 238 images\n", | |
| "Already fetched 239 images\n", | |
| "Already fetched 240 images\n", | |
| "Already fetched 241 images\n", | |
| "Already fetched 242 images\n", | |
| "Already fetched 243 images\n", | |
| "Already fetched 244 images\n", | |
| "Already fetched 245 images\n", | |
| "Already fetched 246 images\n", | |
| "Already fetched 247 images\n", | |
| "Already fetched 248 images\n", | |
| "Already fetched 249 images\n", | |
| "Already fetched 250 images\n", | |
| "Already fetched 251 images\n", | |
| "Already fetched 252 images\n", | |
| "Already fetched 253 images\n", | |
| "Already fetched 254 images\n", | |
| "Already fetched 255 images\n", | |
| "Already fetched 256 images\n", | |
| "Already fetched 257 images\n", | |
| "Already fetched 258 images\n", | |
| "Already fetched 259 images\n", | |
| "Already fetched 260 images\n", | |
| "Already fetched 261 images\n", | |
| "Already fetched 262 images\n", | |
| "Already fetched 263 images\n", | |
| "Already fetched 264 images\n", | |
| "Already fetched 265 images\n", | |
| "Already fetched 266 images\n", | |
| "Already fetched 267 images\n", | |
| "Already fetched 268 images\n", | |
| "Already fetched 269 images\n", | |
| "Already fetched 270 images\n", | |
| "Already fetched 271 images\n", | |
| "Already fetched 272 images\n", | |
| "Already fetched 273 images\n", | |
| "Already fetched 274 images\n", | |
| "Already fetched 275 images\n", | |
| "Already fetched 276 images\n", | |
| "Already fetched 277 images\n", | |
| "Already fetched 278 images\n", | |
| "Already fetched 279 images\n", | |
| "Already fetched 280 images\n", | |
| "Already fetched 281 images\n", | |
| "Already fetched 282 images\n", | |
| "Already fetched 283 images\n", | |
| "Already fetched 284 images\n", | |
| "Already fetched 285 images\n", | |
| "Already fetched 286 images\n", | |
| "Already fetched 287 images\n", | |
| "Already fetched 288 images\n", | |
| "Already fetched 289 images\n", | |
| "Already fetched 290 images\n", | |
| "Already fetched 291 images\n", | |
| "Already fetched 292 images\n", | |
| "Already fetched 293 images\n", | |
| "Already fetched 294 images\n", | |
| "Already fetched 295 images\n", | |
| "Already fetched 296 images\n", | |
| "Already fetched 297 images\n", | |
| "Already fetched 298 images\n", | |
| "Already fetched 299 images\n", | |
| "Already fetched 300 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=300\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 301 images\n", | |
| "Already fetched 302 images\n", | |
| "Already fetched 303 images\n", | |
| "Already fetched 304 images\n", | |
| "Already fetched 305 images\n", | |
| "Already fetched 306 images\n", | |
| "Already fetched 307 images\n", | |
| "Already fetched 308 images\n", | |
| "Already fetched 309 images\n", | |
| "Already fetched 310 images\n", | |
| "Already fetched 311 images\n", | |
| "Already fetched 312 images\n", | |
| "Already fetched 313 images\n", | |
| "Already fetched 314 images\n", | |
| "Already fetched 315 images\n", | |
| "Already fetched 316 images\n", | |
| "Already fetched 317 images\n", | |
| "Already fetched 318 images\n", | |
| "Already fetched 319 images\n", | |
| "Already fetched 320 images\n", | |
| "Already fetched 321 images\n", | |
| "Already fetched 322 images\n", | |
| "Already fetched 323 images\n", | |
| "Already fetched 324 images\n", | |
| "Already fetched 325 images\n", | |
| "Already fetched 326 images\n", | |
| "Already fetched 327 images\n", | |
| "Already fetched 328 images\n", | |
| "Already fetched 329 images\n", | |
| "Already fetched 330 images\n", | |
| "Already fetched 331 images\n", | |
| "Already fetched 332 images\n", | |
| "Already fetched 333 images\n", | |
| "Already fetched 334 images\n", | |
| "Already fetched 335 images\n", | |
| "Already fetched 336 images\n", | |
| "Already fetched 337 images\n", | |
| "Already fetched 338 images\n", | |
| "Already fetched 339 images\n", | |
| "Already fetched 340 images\n", | |
| "Already fetched 341 images\n", | |
| "Already fetched 342 images\n", | |
| "Already fetched 343 images\n", | |
| "Already fetched 344 images\n", | |
| "Already fetched 345 images\n", | |
| "Already fetched 346 images\n", | |
| "Already fetched 347 images\n", | |
| "Already fetched 348 images\n", | |
| "Already fetched 349 images\n", | |
| "Already fetched 350 images\n", | |
| "Already fetched 351 images\n", | |
| "Already fetched 352 images\n", | |
| "Already fetched 353 images\n", | |
| "Already fetched 354 images\n", | |
| "Already fetched 355 images\n", | |
| "Already fetched 356 images\n", | |
| "Already fetched 357 images\n", | |
| "Already fetched 358 images\n", | |
| "Already fetched 359 images\n", | |
| "Already fetched 360 images\n", | |
| "Already fetched 361 images\n", | |
| "Already fetched 362 images\n", | |
| "Already fetched 363 images\n", | |
| "Already fetched 364 images\n", | |
| "Already fetched 365 images\n", | |
| "Already fetched 366 images\n", | |
| "Already fetched 367 images\n", | |
| "Already fetched 368 images\n", | |
| "Already fetched 369 images\n", | |
| "Already fetched 370 images\n", | |
| "Already fetched 371 images\n", | |
| "Already fetched 372 images\n", | |
| "Already fetched 373 images\n", | |
| "Already fetched 374 images\n", | |
| "Already fetched 375 images\n", | |
| "Already fetched 376 images\n", | |
| "Already fetched 377 images\n", | |
| "Already fetched 378 images\n", | |
| "Already fetched 379 images\n", | |
| "Already fetched 380 images\n", | |
| "Already fetched 381 images\n", | |
| "Already fetched 382 images\n", | |
| "Already fetched 383 images\n", | |
| "Already fetched 384 images\n", | |
| "Already fetched 385 images\n", | |
| "Already fetched 386 images\n", | |
| "Already fetched 387 images\n", | |
| "Already fetched 388 images\n", | |
| "Already fetched 389 images\n", | |
| "Already fetched 390 images\n", | |
| "Already fetched 391 images\n", | |
| "Already fetched 392 images\n", | |
| "Already fetched 393 images\n", | |
| "Already fetched 394 images\n", | |
| "Already fetched 395 images\n", | |
| "Already fetched 396 images\n", | |
| "Already fetched 397 images\n", | |
| "Already fetched 398 images\n", | |
| "Already fetched 399 images\n", | |
| "Already fetched 400 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=400\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 401 images\n", | |
| "Already fetched 402 images\n", | |
| "Already fetched 403 images\n", | |
| "Already fetched 404 images\n", | |
| "Already fetched 405 images\n", | |
| "Already fetched 406 images\n", | |
| "Already fetched 407 images\n", | |
| "Already fetched 408 images\n", | |
| "Already fetched 409 images\n", | |
| "Already fetched 410 images\n", | |
| "Already fetched 411 images\n", | |
| "Already fetched 412 images\n", | |
| "Already fetched 413 images\n", | |
| "Already fetched 414 images\n", | |
| "Already fetched 415 images\n", | |
| "Already fetched 416 images\n", | |
| "Already fetched 417 images\n", | |
| "Already fetched 418 images\n", | |
| "Already fetched 419 images\n", | |
| "Already fetched 420 images\n", | |
| "Already fetched 421 images\n", | |
| "Already fetched 422 images\n", | |
| "Already fetched 423 images\n", | |
| "Already fetched 424 images\n", | |
| "Already fetched 425 images\n", | |
| "Already fetched 426 images\n", | |
| "Already fetched 427 images\n", | |
| "Already fetched 428 images\n", | |
| "Already fetched 429 images\n", | |
| "Already fetched 430 images\n", | |
| "Already fetched 431 images\n", | |
| "Already fetched 432 images\n", | |
| "Already fetched 433 images\n", | |
| "Already fetched 434 images\n", | |
| "Already fetched 435 images\n", | |
| "Already fetched 436 images\n", | |
| "Already fetched 437 images\n", | |
| "Already fetched 438 images\n", | |
| "Already fetched 439 images\n", | |
| "Already fetched 440 images\n", | |
| "Already fetched 441 images\n", | |
| "Already fetched 442 images\n", | |
| "Already fetched 443 images\n", | |
| "Already fetched 444 images\n", | |
| "Already fetched 445 images\n", | |
| "Already fetched 446 images\n", | |
| "Already fetched 447 images\n", | |
| "Already fetched 448 images\n", | |
| "Already fetched 449 images\n", | |
| "Already fetched 450 images\n", | |
| "Already fetched 451 images\n", | |
| "Already fetched 452 images\n", | |
| "Already fetched 453 images\n", | |
| "Already fetched 454 images\n", | |
| "Already fetched 455 images\n", | |
| "Already fetched 456 images\n", | |
| "Already fetched 457 images\n", | |
| "Already fetched 458 images\n", | |
| "Already fetched 459 images\n", | |
| "Already fetched 460 images\n", | |
| "Already fetched 461 images\n", | |
| "Already fetched 462 images\n", | |
| "Already fetched 463 images\n", | |
| "Already fetched 464 images\n", | |
| "Already fetched 465 images\n", | |
| "Already fetched 466 images\n", | |
| "Already fetched 467 images\n", | |
| "Already fetched 468 images\n", | |
| "Already fetched 469 images\n", | |
| "Already fetched 470 images\n", | |
| "Already fetched 471 images\n", | |
| "Already fetched 472 images\n", | |
| "Already fetched 473 images\n", | |
| "Already fetched 474 images\n", | |
| "Already fetched 475 images\n", | |
| "Already fetched 476 images\n", | |
| "Already fetched 477 images\n", | |
| "Already fetched 478 images\n", | |
| "Already fetched 479 images\n", | |
| "Already fetched 480 images\n", | |
| "Already fetched 481 images\n", | |
| "Already fetched 482 images\n", | |
| "Already fetched 483 images\n", | |
| "Already fetched 484 images\n", | |
| "Already fetched 485 images\n", | |
| "Already fetched 486 images\n", | |
| "Already fetched 487 images\n", | |
| "Already fetched 488 images\n", | |
| "Already fetched 489 images\n", | |
| "Already fetched 490 images\n", | |
| "Already fetched 491 images\n", | |
| "Already fetched 492 images\n", | |
| "Already fetched 493 images\n", | |
| "Already fetched 494 images\n", | |
| "Already fetched 495 images\n", | |
| "Already fetched 496 images\n", | |
| "Already fetched 497 images\n", | |
| "Already fetched 498 images\n", | |
| "Already fetched 499 images\n", | |
| "Already fetched 500 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=500\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 501 images\n", | |
| "Already fetched 502 images\n", | |
| "Already fetched 503 images\n", | |
| "Already fetched 504 images\n", | |
| "Already fetched 505 images\n", | |
| "Already fetched 506 images\n", | |
| "Already fetched 507 images\n", | |
| "Already fetched 508 images\n", | |
| "Already fetched 509 images\n", | |
| "Already fetched 510 images\n", | |
| "Already fetched 511 images\n", | |
| "Already fetched 512 images\n", | |
| "Already fetched 513 images\n", | |
| "Already fetched 514 images\n", | |
| "Already fetched 515 images\n", | |
| "Already fetched 516 images\n", | |
| "Already fetched 517 images\n", | |
| "Already fetched 518 images\n", | |
| "Already fetched 519 images\n", | |
| "Already fetched 520 images\n", | |
| "Already fetched 521 images\n", | |
| "Already fetched 522 images\n", | |
| "Already fetched 523 images\n", | |
| "Already fetched 524 images\n", | |
| "Already fetched 525 images\n", | |
| "Already fetched 526 images\n", | |
| "Already fetched 527 images\n", | |
| "Already fetched 528 images\n", | |
| "Already fetched 529 images\n", | |
| "Already fetched 530 images\n", | |
| "Already fetched 531 images\n", | |
| "Already fetched 532 images\n", | |
| "Already fetched 533 images\n", | |
| "Already fetched 534 images\n", | |
| "Already fetched 535 images\n", | |
| "Already fetched 536 images\n", | |
| "Already fetched 537 images\n", | |
| "Already fetched 538 images\n", | |
| "Already fetched 539 images\n", | |
| "Already fetched 540 images\n", | |
| "Already fetched 541 images\n", | |
| "Already fetched 542 images\n", | |
| "Already fetched 543 images\n", | |
| "Already fetched 544 images\n", | |
| "Already fetched 545 images\n", | |
| "Already fetched 546 images\n", | |
| "Already fetched 547 images\n", | |
| "Already fetched 548 images\n", | |
| "Already fetched 549 images\n", | |
| "Already fetched 550 images\n", | |
| "Already fetched 551 images\n", | |
| "Already fetched 552 images\n", | |
| "Already fetched 553 images\n", | |
| "Already fetched 554 images\n", | |
| "Already fetched 555 images\n", | |
| "Already fetched 556 images\n", | |
| "Already fetched 557 images\n", | |
| "Already fetched 558 images\n", | |
| "Already fetched 559 images\n", | |
| "Already fetched 560 images\n", | |
| "Already fetched 561 images\n", | |
| "Already fetched 562 images\n", | |
| "Already fetched 563 images\n", | |
| "Already fetched 564 images\n", | |
| "Already fetched 565 images\n", | |
| "Already fetched 566 images\n", | |
| "Already fetched 567 images\n", | |
| "Already fetched 568 images\n", | |
| "Already fetched 569 images\n", | |
| "Already fetched 570 images\n", | |
| "Already fetched 571 images\n", | |
| "Already fetched 572 images\n", | |
| "Already fetched 573 images\n", | |
| "Already fetched 574 images\n", | |
| "Already fetched 575 images\n", | |
| "Already fetched 576 images\n", | |
| "Already fetched 577 images\n", | |
| "Already fetched 578 images\n", | |
| "Already fetched 579 images\n", | |
| "Already fetched 580 images\n", | |
| "Already fetched 581 images\n", | |
| "Already fetched 582 images\n", | |
| "Already fetched 583 images\n", | |
| "Already fetched 584 images\n", | |
| "Already fetched 585 images\n", | |
| "Already fetched 586 images\n", | |
| "Already fetched 587 images\n", | |
| "Already fetched 588 images\n", | |
| "Already fetched 589 images\n", | |
| "Already fetched 590 images\n", | |
| "Already fetched 591 images\n", | |
| "Already fetched 592 images\n", | |
| "Already fetched 593 images\n", | |
| "Already fetched 594 images\n", | |
| "Already fetched 595 images\n", | |
| "Already fetched 596 images\n", | |
| "Already fetched 597 images\n", | |
| "Already fetched 598 images\n", | |
| "Already fetched 599 images\n", | |
| "Already fetched 600 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=600\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 601 images\n", | |
| "Already fetched 602 images\n", | |
| "Already fetched 603 images\n", | |
| "Already fetched 604 images\n", | |
| "Already fetched 605 images\n", | |
| "Already fetched 606 images\n", | |
| "Already fetched 607 images\n", | |
| "Already fetched 608 images\n", | |
| "Already fetched 609 images\n", | |
| "Already fetched 610 images\n", | |
| "Already fetched 611 images\n", | |
| "Already fetched 612 images\n", | |
| "Already fetched 613 images\n", | |
| "Already fetched 614 images\n", | |
| "Already fetched 615 images\n", | |
| "Already fetched 616 images\n", | |
| "Already fetched 617 images\n", | |
| "Already fetched 618 images\n", | |
| "Already fetched 619 images\n", | |
| "Already fetched 620 images\n", | |
| "Already fetched 621 images\n", | |
| "Already fetched 622 images\n", | |
| "Already fetched 623 images\n", | |
| "Already fetched 624 images\n", | |
| "Already fetched 625 images\n", | |
| "Already fetched 626 images\n", | |
| "Already fetched 627 images\n", | |
| "Already fetched 628 images\n", | |
| "Already fetched 629 images\n", | |
| "Already fetched 630 images\n", | |
| "Already fetched 631 images\n", | |
| "Already fetched 632 images\n", | |
| "Already fetched 633 images\n", | |
| "Already fetched 634 images\n", | |
| "Already fetched 635 images\n", | |
| "Already fetched 636 images\n", | |
| "Already fetched 637 images\n", | |
| "Already fetched 638 images\n", | |
| "Already fetched 639 images\n", | |
| "Already fetched 640 images\n", | |
| "Already fetched 641 images\n", | |
| "Already fetched 642 images\n", | |
| "Already fetched 643 images\n", | |
| "Already fetched 644 images\n", | |
| "Already fetched 645 images\n", | |
| "Already fetched 646 images\n", | |
| "Already fetched 647 images\n", | |
| "Already fetched 648 images\n", | |
| "Already fetched 649 images\n", | |
| "Already fetched 650 images\n", | |
| "Already fetched 651 images\n", | |
| "Already fetched 652 images\n", | |
| "Already fetched 653 images\n", | |
| "Already fetched 654 images\n", | |
| "Already fetched 655 images\n", | |
| "Already fetched 656 images\n", | |
| "Already fetched 657 images\n", | |
| "Already fetched 658 images\n", | |
| "Already fetched 659 images\n", | |
| "Already fetched 660 images\n", | |
| "Already fetched 661 images\n", | |
| "Already fetched 662 images\n", | |
| "Already fetched 663 images\n", | |
| "Already fetched 664 images\n", | |
| "Already fetched 665 images\n", | |
| "Already fetched 666 images\n", | |
| "Already fetched 667 images\n", | |
| "Already fetched 668 images\n", | |
| "Already fetched 669 images\n", | |
| "Already fetched 670 images\n", | |
| "Already fetched 671 images\n", | |
| "Already fetched 672 images\n", | |
| "Already fetched 673 images\n", | |
| "Already fetched 674 images\n", | |
| "Already fetched 675 images\n", | |
| "Already fetched 676 images\n", | |
| "Already fetched 677 images\n", | |
| "Already fetched 678 images\n", | |
| "Already fetched 679 images\n", | |
| "Already fetched 680 images\n", | |
| "Already fetched 681 images\n", | |
| "Already fetched 682 images\n", | |
| "Already fetched 683 images\n", | |
| "Already fetched 684 images\n", | |
| "Already fetched 685 images\n", | |
| "Already fetched 686 images\n", | |
| "Already fetched 687 images\n", | |
| "Already fetched 688 images\n", | |
| "Already fetched 689 images\n", | |
| "Already fetched 690 images\n", | |
| "Already fetched 691 images\n", | |
| "Already fetched 692 images\n", | |
| "Already fetched 693 images\n", | |
| "Already fetched 694 images\n", | |
| "Already fetched 695 images\n", | |
| "Already fetched 696 images\n", | |
| "Already fetched 697 images\n", | |
| "Already fetched 698 images\n", | |
| "Already fetched 699 images\n", | |
| "Already fetched 700 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=700\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 701 images\n", | |
| "Already fetched 702 images\n", | |
| "Already fetched 703 images\n", | |
| "Already fetched 704 images\n", | |
| "Already fetched 705 images\n", | |
| "Already fetched 706 images\n", | |
| "Already fetched 707 images\n", | |
| "Already fetched 708 images\n", | |
| "Already fetched 709 images\n", | |
| "Already fetched 710 images\n", | |
| "Already fetched 711 images\n", | |
| "Already fetched 712 images\n", | |
| "Already fetched 713 images\n", | |
| "Already fetched 714 images\n", | |
| "Already fetched 715 images\n", | |
| "Already fetched 716 images\n", | |
| "Already fetched 717 images\n", | |
| "Already fetched 718 images\n", | |
| "Already fetched 719 images\n", | |
| "Already fetched 720 images\n", | |
| "Already fetched 721 images\n", | |
| "Already fetched 722 images\n", | |
| "Already fetched 723 images\n", | |
| "Already fetched 724 images\n", | |
| "Already fetched 725 images\n", | |
| "Already fetched 726 images\n", | |
| "Already fetched 727 images\n", | |
| "Already fetched 728 images\n", | |
| "Already fetched 729 images\n", | |
| "Already fetched 730 images\n", | |
| "Already fetched 731 images\n", | |
| "Already fetched 732 images\n", | |
| "Already fetched 733 images\n", | |
| "Already fetched 734 images\n", | |
| "Already fetched 735 images\n", | |
| "Already fetched 736 images\n", | |
| "Already fetched 737 images\n", | |
| "Already fetched 738 images\n", | |
| "Already fetched 739 images\n", | |
| "Already fetched 740 images\n", | |
| "Already fetched 741 images\n", | |
| "Already fetched 742 images\n", | |
| "Already fetched 743 images\n", | |
| "Already fetched 744 images\n", | |
| "Already fetched 745 images\n", | |
| "Already fetched 746 images\n", | |
| "Already fetched 747 images\n", | |
| "Already fetched 748 images\n", | |
| "Already fetched 749 images\n", | |
| "Already fetched 750 images\n", | |
| "Already fetched 751 images\n", | |
| "Already fetched 752 images\n", | |
| "Already fetched 753 images\n", | |
| "Already fetched 754 images\n", | |
| "Already fetched 755 images\n", | |
| "Already fetched 756 images\n", | |
| "Already fetched 757 images\n", | |
| "Already fetched 758 images\n", | |
| "Already fetched 759 images\n", | |
| "Already fetched 760 images\n", | |
| "Already fetched 761 images\n", | |
| "Already fetched 762 images\n", | |
| "Already fetched 763 images\n", | |
| "Already fetched 764 images\n", | |
| "Already fetched 765 images\n", | |
| "Already fetched 766 images\n", | |
| "Already fetched 767 images\n", | |
| "Already fetched 768 images\n", | |
| "Already fetched 769 images\n", | |
| "Already fetched 770 images\n", | |
| "Already fetched 771 images\n", | |
| "Already fetched 772 images\n", | |
| "Already fetched 773 images\n", | |
| "Already fetched 774 images\n", | |
| "Already fetched 775 images\n", | |
| "Already fetched 776 images\n", | |
| "Already fetched 777 images\n", | |
| "Already fetched 778 images\n", | |
| "Already fetched 779 images\n", | |
| "Already fetched 780 images\n", | |
| "Already fetched 781 images\n", | |
| "Already fetched 782 images\n", | |
| "Already fetched 783 images\n", | |
| "Already fetched 784 images\n", | |
| "Already fetched 785 images\n", | |
| "Already fetched 786 images\n", | |
| "Already fetched 787 images\n", | |
| "Already fetched 788 images\n", | |
| "Already fetched 789 images\n", | |
| "Already fetched 790 images\n", | |
| "Already fetched 791 images\n", | |
| "Already fetched 792 images\n", | |
| "Already fetched 793 images\n", | |
| "Already fetched 794 images\n", | |
| "Already fetched 795 images\n", | |
| "Already fetched 796 images\n", | |
| "Already fetched 797 images\n", | |
| "Already fetched 798 images\n", | |
| "Already fetched 799 images\n", | |
| "Already fetched 800 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=800\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 801 images\n", | |
| "Already fetched 802 images\n", | |
| "Already fetched 803 images\n", | |
| "Already fetched 804 images\n", | |
| "Already fetched 805 images\n", | |
| "Already fetched 806 images\n", | |
| "Already fetched 807 images\n", | |
| "Already fetched 808 images\n", | |
| "Already fetched 809 images\n", | |
| "Already fetched 810 images\n", | |
| "Already fetched 811 images\n", | |
| "Already fetched 812 images\n", | |
| "Already fetched 813 images\n", | |
| "Already fetched 814 images\n", | |
| "Already fetched 815 images\n", | |
| "Already fetched 816 images\n", | |
| "Already fetched 817 images\n", | |
| "Already fetched 818 images\n", | |
| "Already fetched 819 images\n", | |
| "Already fetched 820 images\n", | |
| "Already fetched 821 images\n", | |
| "Already fetched 822 images\n", | |
| "Already fetched 823 images\n", | |
| "Already fetched 824 images\n", | |
| "Already fetched 825 images\n", | |
| "Already fetched 826 images\n", | |
| "Already fetched 827 images\n", | |
| "Already fetched 828 images\n", | |
| "Already fetched 829 images\n", | |
| "Already fetched 830 images\n", | |
| "Already fetched 831 images\n", | |
| "Already fetched 832 images\n", | |
| "Already fetched 833 images\n", | |
| "Already fetched 834 images\n", | |
| "Already fetched 835 images\n", | |
| "Already fetched 836 images\n", | |
| "Already fetched 837 images\n", | |
| "Already fetched 838 images\n", | |
| "Already fetched 839 images\n", | |
| "Already fetched 840 images\n", | |
| "Already fetched 841 images\n", | |
| "Already fetched 842 images\n", | |
| "Already fetched 843 images\n", | |
| "Already fetched 844 images\n", | |
| "Already fetched 845 images\n", | |
| "Already fetched 846 images\n", | |
| "Already fetched 847 images\n", | |
| "Already fetched 848 images\n", | |
| "Already fetched 849 images\n", | |
| "Already fetched 850 images\n", | |
| "Already fetched 851 images\n", | |
| "Already fetched 852 images\n", | |
| "Already fetched 853 images\n", | |
| "Already fetched 854 images\n", | |
| "Already fetched 855 images\n", | |
| "Already fetched 856 images\n", | |
| "Already fetched 857 images\n", | |
| "Already fetched 858 images\n", | |
| "Already fetched 859 images\n", | |
| "Already fetched 860 images\n", | |
| "Already fetched 861 images\n", | |
| "Already fetched 862 images\n", | |
| "Already fetched 863 images\n", | |
| "Already fetched 864 images\n", | |
| "Already fetched 865 images\n", | |
| "Already fetched 866 images\n", | |
| "Already fetched 867 images\n", | |
| "Already fetched 868 images\n", | |
| "Already fetched 869 images\n", | |
| "Already fetched 870 images\n", | |
| "Already fetched 871 images\n", | |
| "Already fetched 872 images\n", | |
| "Already fetched 873 images\n", | |
| "Already fetched 874 images\n", | |
| "Already fetched 875 images\n", | |
| "Already fetched 876 images\n", | |
| "Already fetched 877 images\n", | |
| "Already fetched 878 images\n", | |
| "Already fetched 879 images\n", | |
| "Already fetched 880 images\n", | |
| "Already fetched 881 images\n", | |
| "Already fetched 882 images\n", | |
| "Already fetched 883 images\n", | |
| "Already fetched 884 images\n", | |
| "Already fetched 885 images\n", | |
| "Already fetched 886 images\n", | |
| "Already fetched 887 images\n", | |
| "Already fetched 888 images\n", | |
| "Already fetched 889 images\n", | |
| "Already fetched 890 images\n", | |
| "Already fetched 891 images\n", | |
| "Already fetched 892 images\n", | |
| "Already fetched 893 images\n", | |
| "Already fetched 894 images\n", | |
| "Already fetched 895 images\n", | |
| "Already fetched 896 images\n", | |
| "Already fetched 897 images\n", | |
| "Already fetched 898 images\n", | |
| "Already fetched 899 images\n", | |
| "Already fetched 900 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=900\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 901 images\n", | |
| "Already fetched 902 images\n", | |
| "Already fetched 903 images\n", | |
| "Already fetched 904 images\n", | |
| "Already fetched 905 images\n", | |
| "Already fetched 906 images\n", | |
| "Already fetched 907 images\n", | |
| "Already fetched 908 images\n", | |
| "Already fetched 909 images\n", | |
| "Already fetched 910 images\n", | |
| "Already fetched 911 images\n", | |
| "Already fetched 912 images\n", | |
| "Already fetched 913 images\n", | |
| "Already fetched 914 images\n", | |
| "Already fetched 915 images\n", | |
| "Already fetched 916 images\n", | |
| "Already fetched 917 images\n", | |
| "Already fetched 918 images\n", | |
| "Already fetched 919 images\n", | |
| "Already fetched 920 images\n", | |
| "Already fetched 921 images\n", | |
| "Already fetched 922 images\n", | |
| "Already fetched 923 images\n", | |
| "Already fetched 924 images\n", | |
| "Already fetched 925 images\n", | |
| "Already fetched 926 images\n", | |
| "Already fetched 927 images\n", | |
| "Already fetched 928 images\n", | |
| "Already fetched 929 images\n", | |
| "Already fetched 930 images\n", | |
| "Already fetched 931 images\n", | |
| "Already fetched 932 images\n", | |
| "Already fetched 933 images\n", | |
| "Already fetched 934 images\n", | |
| "Already fetched 935 images\n", | |
| "Already fetched 936 images\n", | |
| "Already fetched 937 images\n", | |
| "Already fetched 938 images\n", | |
| "Already fetched 939 images\n", | |
| "Already fetched 940 images\n", | |
| "Already fetched 941 images\n", | |
| "Already fetched 942 images\n", | |
| "Already fetched 943 images\n", | |
| "Already fetched 944 images\n", | |
| "Already fetched 945 images\n", | |
| "Already fetched 946 images\n", | |
| "Already fetched 947 images\n", | |
| "Already fetched 948 images\n", | |
| "Already fetched 949 images\n", | |
| "Already fetched 950 images\n", | |
| "Already fetched 951 images\n", | |
| "Already fetched 952 images\n", | |
| "Already fetched 953 images\n", | |
| "Already fetched 954 images\n", | |
| "Already fetched 955 images\n", | |
| "Already fetched 956 images\n", | |
| "Already fetched 957 images\n", | |
| "Already fetched 958 images\n", | |
| "Already fetched 959 images\n", | |
| "Already fetched 960 images\n", | |
| "Already fetched 961 images\n", | |
| "Already fetched 962 images\n", | |
| "Already fetched 963 images\n", | |
| "Already fetched 964 images\n", | |
| "Already fetched 965 images\n", | |
| "Already fetched 966 images\n", | |
| "Already fetched 967 images\n", | |
| "Already fetched 968 images\n", | |
| "Already fetched 969 images\n", | |
| "Already fetched 970 images\n", | |
| "Already fetched 971 images\n", | |
| "Already fetched 972 images\n", | |
| "Already fetched 973 images\n", | |
| "Already fetched 974 images\n", | |
| "Already fetched 975 images\n", | |
| "Already fetched 976 images\n", | |
| "Already fetched 977 images\n", | |
| "Already fetched 978 images\n", | |
| "Already fetched 979 images\n", | |
| "Already fetched 980 images\n", | |
| "Already fetched 981 images\n", | |
| "Already fetched 982 images\n", | |
| "Already fetched 983 images\n", | |
| "Already fetched 984 images\n", | |
| "Already fetched 985 images\n", | |
| "Already fetched 986 images\n", | |
| "Already fetched 987 images\n", | |
| "Already fetched 988 images\n", | |
| "Already fetched 989 images\n", | |
| "Already fetched 990 images\n", | |
| "Already fetched 991 images\n", | |
| "Already fetched 992 images\n", | |
| "Already fetched 993 images\n", | |
| "Already fetched 994 images\n", | |
| "Already fetched 995 images\n", | |
| "Already fetched 996 images\n", | |
| "Already fetched 997 images\n", | |
| "Already fetched 998 images\n", | |
| "Already fetched 999 images\n", | |
| "Already fetched 1000 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1000\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1001 images\n", | |
| "Already fetched 1002 images\n", | |
| "Already fetched 1003 images\n", | |
| "Already fetched 1004 images\n", | |
| "Already fetched 1005 images\n", | |
| "Already fetched 1006 images\n", | |
| "Already fetched 1007 images\n", | |
| "Already fetched 1008 images\n", | |
| "Already fetched 1009 images\n", | |
| "Already fetched 1010 images\n", | |
| "Already fetched 1011 images\n", | |
| "Already fetched 1012 images\n", | |
| "Already fetched 1013 images\n", | |
| "Already fetched 1014 images\n", | |
| "Already fetched 1015 images\n", | |
| "Already fetched 1016 images\n", | |
| "Already fetched 1017 images\n", | |
| "Already fetched 1018 images\n", | |
| "Already fetched 1019 images\n", | |
| "Already fetched 1020 images\n", | |
| "Already fetched 1021 images\n", | |
| "Already fetched 1022 images\n", | |
| "Already fetched 1023 images\n", | |
| "Already fetched 1024 images\n", | |
| "Already fetched 1025 images\n", | |
| "Already fetched 1026 images\n", | |
| "Already fetched 1027 images\n", | |
| "Already fetched 1028 images\n", | |
| "Already fetched 1029 images\n", | |
| "Already fetched 1030 images\n", | |
| "Already fetched 1031 images\n", | |
| "Already fetched 1032 images\n", | |
| "Already fetched 1033 images\n", | |
| "Already fetched 1034 images\n", | |
| "Already fetched 1035 images\n", | |
| "Already fetched 1036 images\n", | |
| "Already fetched 1037 images\n", | |
| "Already fetched 1038 images\n", | |
| "Already fetched 1039 images\n", | |
| "Already fetched 1040 images\n", | |
| "Already fetched 1041 images\n", | |
| "Already fetched 1042 images\n", | |
| "Already fetched 1043 images\n", | |
| "Already fetched 1044 images\n", | |
| "Already fetched 1045 images\n", | |
| "Already fetched 1046 images\n", | |
| "Already fetched 1047 images\n", | |
| "Already fetched 1048 images\n", | |
| "Already fetched 1049 images\n", | |
| "Already fetched 1050 images\n", | |
| "Already fetched 1051 images\n", | |
| "Already fetched 1052 images\n", | |
| "Already fetched 1053 images\n", | |
| "Already fetched 1054 images\n", | |
| "Already fetched 1055 images\n", | |
| "Already fetched 1056 images\n", | |
| "Already fetched 1057 images\n", | |
| "Already fetched 1058 images\n", | |
| "Already fetched 1059 images\n", | |
| "Already fetched 1060 images\n", | |
| "Already fetched 1061 images\n", | |
| "Already fetched 1062 images\n", | |
| "Already fetched 1063 images\n", | |
| "Already fetched 1064 images\n", | |
| "Already fetched 1065 images\n", | |
| "Already fetched 1066 images\n", | |
| "Already fetched 1067 images\n", | |
| "Already fetched 1068 images\n", | |
| "Already fetched 1069 images\n", | |
| "Already fetched 1070 images\n", | |
| "Already fetched 1071 images\n", | |
| "Already fetched 1072 images\n", | |
| "Already fetched 1073 images\n", | |
| "Already fetched 1074 images\n", | |
| "Already fetched 1075 images\n", | |
| "Already fetched 1076 images\n", | |
| "Already fetched 1077 images\n", | |
| "Already fetched 1078 images\n", | |
| "Already fetched 1079 images\n", | |
| "Already fetched 1080 images\n", | |
| "Already fetched 1081 images\n", | |
| "Already fetched 1082 images\n", | |
| "Already fetched 1083 images\n", | |
| "Already fetched 1084 images\n", | |
| "Already fetched 1085 images\n", | |
| "Already fetched 1086 images\n", | |
| "Already fetched 1087 images\n", | |
| "Already fetched 1088 images\n", | |
| "Already fetched 1089 images\n", | |
| "Already fetched 1090 images\n", | |
| "Already fetched 1091 images\n", | |
| "Already fetched 1092 images\n", | |
| "Already fetched 1093 images\n", | |
| "Already fetched 1094 images\n", | |
| "Already fetched 1095 images\n", | |
| "Already fetched 1096 images\n", | |
| "Already fetched 1097 images\n", | |
| "Already fetched 1098 images\n", | |
| "Already fetched 1099 images\n", | |
| "Already fetched 1100 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1100\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1101 images\n", | |
| "Already fetched 1102 images\n", | |
| "Already fetched 1103 images\n", | |
| "Already fetched 1104 images\n", | |
| "Already fetched 1105 images\n", | |
| "Already fetched 1106 images\n", | |
| "Already fetched 1107 images\n", | |
| "Already fetched 1108 images\n", | |
| "Already fetched 1109 images\n", | |
| "Already fetched 1110 images\n", | |
| "Already fetched 1111 images\n", | |
| "Already fetched 1112 images\n", | |
| "Already fetched 1113 images\n", | |
| "Already fetched 1114 images\n", | |
| "Already fetched 1115 images\n", | |
| "Already fetched 1116 images\n", | |
| "Already fetched 1117 images\n", | |
| "Already fetched 1118 images\n", | |
| "Already fetched 1119 images\n", | |
| "Already fetched 1120 images\n", | |
| "Already fetched 1121 images\n", | |
| "Already fetched 1122 images\n", | |
| "Already fetched 1123 images\n", | |
| "Already fetched 1124 images\n", | |
| "Already fetched 1125 images\n", | |
| "Already fetched 1126 images\n", | |
| "Already fetched 1127 images\n", | |
| "Already fetched 1128 images\n", | |
| "Already fetched 1129 images\n", | |
| "Already fetched 1130 images\n", | |
| "Already fetched 1131 images\n", | |
| "Already fetched 1132 images\n", | |
| "Already fetched 1133 images\n", | |
| "Already fetched 1134 images\n", | |
| "Already fetched 1135 images\n", | |
| "Already fetched 1136 images\n", | |
| "Already fetched 1137 images\n", | |
| "Already fetched 1138 images\n", | |
| "Already fetched 1139 images\n", | |
| "Already fetched 1140 images\n", | |
| "Already fetched 1141 images\n", | |
| "Already fetched 1142 images\n", | |
| "Already fetched 1143 images\n", | |
| "Already fetched 1144 images\n", | |
| "Already fetched 1145 images\n", | |
| "Already fetched 1146 images\n", | |
| "Already fetched 1147 images\n", | |
| "Already fetched 1148 images\n", | |
| "Already fetched 1149 images\n", | |
| "Already fetched 1150 images\n", | |
| "Already fetched 1151 images\n", | |
| "Already fetched 1152 images\n", | |
| "Already fetched 1153 images\n", | |
| "Already fetched 1154 images\n", | |
| "Already fetched 1155 images\n", | |
| "Already fetched 1156 images\n", | |
| "Already fetched 1157 images\n", | |
| "Already fetched 1158 images\n", | |
| "Already fetched 1159 images\n", | |
| "Already fetched 1160 images\n", | |
| "Already fetched 1161 images\n", | |
| "Already fetched 1162 images\n", | |
| "Already fetched 1163 images\n", | |
| "Already fetched 1164 images\n", | |
| "Already fetched 1165 images\n", | |
| "Already fetched 1166 images\n", | |
| "Already fetched 1167 images\n", | |
| "Already fetched 1168 images\n", | |
| "Already fetched 1169 images\n", | |
| "Already fetched 1170 images\n", | |
| "Already fetched 1171 images\n", | |
| "Already fetched 1172 images\n", | |
| "Already fetched 1173 images\n", | |
| "Already fetched 1174 images\n", | |
| "Already fetched 1175 images\n", | |
| "Already fetched 1176 images\n", | |
| "Already fetched 1177 images\n", | |
| "Already fetched 1178 images\n", | |
| "Already fetched 1179 images\n", | |
| "Already fetched 1180 images\n", | |
| "Already fetched 1181 images\n", | |
| "Already fetched 1182 images\n", | |
| "Already fetched 1183 images\n", | |
| "Already fetched 1184 images\n", | |
| "Already fetched 1185 images\n", | |
| "Already fetched 1186 images\n", | |
| "Already fetched 1187 images\n", | |
| "Already fetched 1188 images\n", | |
| "Already fetched 1189 images\n", | |
| "Already fetched 1190 images\n", | |
| "Already fetched 1191 images\n", | |
| "Already fetched 1192 images\n", | |
| "Already fetched 1193 images\n", | |
| "Already fetched 1194 images\n", | |
| "Already fetched 1195 images\n", | |
| "Already fetched 1196 images\n", | |
| "Already fetched 1197 images\n", | |
| "Already fetched 1198 images\n", | |
| "Already fetched 1199 images\n", | |
| "Already fetched 1200 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1200\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1201 images\n", | |
| "Already fetched 1202 images\n", | |
| "Already fetched 1203 images\n", | |
| "Already fetched 1204 images\n", | |
| "Already fetched 1205 images\n", | |
| "Already fetched 1206 images\n", | |
| "Already fetched 1207 images\n", | |
| "Already fetched 1208 images\n", | |
| "Already fetched 1209 images\n", | |
| "Already fetched 1210 images\n", | |
| "Already fetched 1211 images\n", | |
| "Already fetched 1212 images\n", | |
| "Already fetched 1213 images\n", | |
| "Already fetched 1214 images\n", | |
| "Already fetched 1215 images\n", | |
| "Already fetched 1216 images\n", | |
| "Already fetched 1217 images\n", | |
| "Already fetched 1218 images\n", | |
| "Already fetched 1219 images\n", | |
| "Already fetched 1220 images\n", | |
| "Already fetched 1221 images\n", | |
| "Already fetched 1222 images\n", | |
| "Already fetched 1223 images\n", | |
| "Already fetched 1224 images\n", | |
| "Already fetched 1225 images\n", | |
| "Already fetched 1226 images\n", | |
| "Already fetched 1227 images\n", | |
| "Already fetched 1228 images\n", | |
| "Already fetched 1229 images\n", | |
| "Already fetched 1230 images\n", | |
| "Already fetched 1231 images\n", | |
| "Already fetched 1232 images\n", | |
| "Already fetched 1233 images\n", | |
| "Already fetched 1234 images\n", | |
| "Already fetched 1235 images\n", | |
| "Already fetched 1236 images\n", | |
| "Already fetched 1237 images\n", | |
| "Already fetched 1238 images\n", | |
| "Already fetched 1239 images\n", | |
| "Already fetched 1240 images\n", | |
| "Already fetched 1241 images\n", | |
| "Already fetched 1242 images\n", | |
| "Already fetched 1243 images\n", | |
| "Already fetched 1244 images\n", | |
| "Already fetched 1245 images\n", | |
| "Already fetched 1246 images\n", | |
| "Already fetched 1247 images\n", | |
| "Already fetched 1248 images\n", | |
| "Already fetched 1249 images\n", | |
| "Already fetched 1250 images\n", | |
| "Already fetched 1251 images\n", | |
| "Already fetched 1252 images\n", | |
| "Already fetched 1253 images\n", | |
| "Already fetched 1254 images\n", | |
| "Already fetched 1255 images\n", | |
| "Already fetched 1256 images\n", | |
| "Already fetched 1257 images\n", | |
| "Already fetched 1258 images\n", | |
| "Already fetched 1259 images\n", | |
| "Already fetched 1260 images\n", | |
| "Already fetched 1261 images\n", | |
| "Already fetched 1262 images\n", | |
| "Already fetched 1263 images\n", | |
| "Already fetched 1264 images\n", | |
| "Already fetched 1265 images\n", | |
| "Already fetched 1266 images\n", | |
| "Already fetched 1267 images\n", | |
| "Already fetched 1268 images\n", | |
| "Already fetched 1269 images\n", | |
| "Already fetched 1270 images\n", | |
| "Already fetched 1271 images\n", | |
| "Already fetched 1272 images\n", | |
| "Already fetched 1273 images\n", | |
| "Already fetched 1274 images\n", | |
| "Already fetched 1275 images\n", | |
| "Already fetched 1276 images\n", | |
| "Already fetched 1277 images\n", | |
| "Already fetched 1278 images\n", | |
| "Already fetched 1279 images\n", | |
| "Already fetched 1280 images\n", | |
| "Already fetched 1281 images\n", | |
| "Already fetched 1282 images\n", | |
| "Already fetched 1283 images\n", | |
| "Already fetched 1284 images\n", | |
| "Already fetched 1285 images\n", | |
| "Already fetched 1286 images\n", | |
| "Already fetched 1287 images\n", | |
| "Already fetched 1288 images\n", | |
| "Already fetched 1289 images\n", | |
| "Already fetched 1290 images\n", | |
| "Already fetched 1291 images\n", | |
| "Already fetched 1292 images\n", | |
| "Already fetched 1293 images\n", | |
| "Already fetched 1294 images\n", | |
| "Already fetched 1295 images\n", | |
| "Already fetched 1296 images\n", | |
| "Already fetched 1297 images\n", | |
| "Already fetched 1298 images\n", | |
| "Already fetched 1299 images\n", | |
| "Already fetched 1300 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1300\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1301 images\n", | |
| "Already fetched 1302 images\n", | |
| "Already fetched 1303 images\n", | |
| "Already fetched 1304 images\n", | |
| "Already fetched 1305 images\n", | |
| "Already fetched 1306 images\n", | |
| "Already fetched 1307 images\n", | |
| "Already fetched 1308 images\n", | |
| "Already fetched 1309 images\n", | |
| "Already fetched 1310 images\n", | |
| "Already fetched 1311 images\n", | |
| "Already fetched 1312 images\n", | |
| "Already fetched 1313 images\n", | |
| "Already fetched 1314 images\n", | |
| "Already fetched 1315 images\n", | |
| "Already fetched 1316 images\n", | |
| "Already fetched 1317 images\n", | |
| "Already fetched 1318 images\n", | |
| "Already fetched 1319 images\n", | |
| "Already fetched 1320 images\n", | |
| "Already fetched 1321 images\n", | |
| "Already fetched 1322 images\n", | |
| "Already fetched 1323 images\n", | |
| "Already fetched 1324 images\n", | |
| "Already fetched 1325 images\n", | |
| "Already fetched 1326 images\n", | |
| "Already fetched 1327 images\n", | |
| "Already fetched 1328 images\n", | |
| "Already fetched 1329 images\n", | |
| "Already fetched 1330 images\n", | |
| "Already fetched 1331 images\n", | |
| "Already fetched 1332 images\n", | |
| "Already fetched 1333 images\n", | |
| "Already fetched 1334 images\n", | |
| "Already fetched 1335 images\n", | |
| "Already fetched 1336 images\n", | |
| "Already fetched 1337 images\n", | |
| "Already fetched 1338 images\n", | |
| "Already fetched 1339 images\n", | |
| "Already fetched 1340 images\n", | |
| "Already fetched 1341 images\n", | |
| "Already fetched 1342 images\n", | |
| "Already fetched 1343 images\n", | |
| "Already fetched 1344 images\n", | |
| "Already fetched 1345 images\n", | |
| "Already fetched 1346 images\n", | |
| "Already fetched 1347 images\n", | |
| "Already fetched 1348 images\n", | |
| "Already fetched 1349 images\n", | |
| "Already fetched 1350 images\n", | |
| "Already fetched 1351 images\n", | |
| "Already fetched 1352 images\n", | |
| "Already fetched 1353 images\n", | |
| "Already fetched 1354 images\n", | |
| "Already fetched 1355 images\n", | |
| "Already fetched 1356 images\n", | |
| "Already fetched 1357 images\n", | |
| "Already fetched 1358 images\n", | |
| "Already fetched 1359 images\n", | |
| "Already fetched 1360 images\n", | |
| "Already fetched 1361 images\n", | |
| "Already fetched 1362 images\n", | |
| "Already fetched 1363 images\n", | |
| "Already fetched 1364 images\n", | |
| "Already fetched 1365 images\n", | |
| "Already fetched 1366 images\n", | |
| "Already fetched 1367 images\n", | |
| "Already fetched 1368 images\n", | |
| "Already fetched 1369 images\n", | |
| "Already fetched 1370 images\n", | |
| "Already fetched 1371 images\n", | |
| "Already fetched 1372 images\n", | |
| "Already fetched 1373 images\n", | |
| "Already fetched 1374 images\n", | |
| "Already fetched 1375 images\n", | |
| "Already fetched 1376 images\n", | |
| "Already fetched 1377 images\n", | |
| "Already fetched 1378 images\n", | |
| "Already fetched 1379 images\n", | |
| "Already fetched 1380 images\n", | |
| "Already fetched 1381 images\n", | |
| "Already fetched 1382 images\n", | |
| "Already fetched 1383 images\n", | |
| "Already fetched 1384 images\n", | |
| "Already fetched 1385 images\n", | |
| "Already fetched 1386 images\n", | |
| "Already fetched 1387 images\n", | |
| "Already fetched 1388 images\n", | |
| "Already fetched 1389 images\n", | |
| "Already fetched 1390 images\n", | |
| "Already fetched 1391 images\n", | |
| "Already fetched 1392 images\n", | |
| "Already fetched 1393 images\n", | |
| "Already fetched 1394 images\n", | |
| "Already fetched 1395 images\n", | |
| "Already fetched 1396 images\n", | |
| "Already fetched 1397 images\n", | |
| "Already fetched 1398 images\n", | |
| "Already fetched 1399 images\n", | |
| "Already fetched 1400 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1400\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1401 images\n", | |
| "Already fetched 1402 images\n", | |
| "Already fetched 1403 images\n", | |
| "Already fetched 1404 images\n", | |
| "Already fetched 1405 images\n", | |
| "Already fetched 1406 images\n", | |
| "Already fetched 1407 images\n", | |
| "Already fetched 1408 images\n", | |
| "Already fetched 1409 images\n", | |
| "Already fetched 1410 images\n", | |
| "Already fetched 1411 images\n", | |
| "Already fetched 1412 images\n", | |
| "Already fetched 1413 images\n", | |
| "Already fetched 1414 images\n", | |
| "Already fetched 1415 images\n", | |
| "Already fetched 1416 images\n", | |
| "Already fetched 1417 images\n", | |
| "Already fetched 1418 images\n", | |
| "Already fetched 1419 images\n", | |
| "Already fetched 1420 images\n", | |
| "Already fetched 1421 images\n", | |
| "Already fetched 1422 images\n", | |
| "Already fetched 1423 images\n", | |
| "Already fetched 1424 images\n", | |
| "Already fetched 1425 images\n", | |
| "Already fetched 1426 images\n", | |
| "Already fetched 1427 images\n", | |
| "Already fetched 1428 images\n", | |
| "Already fetched 1429 images\n", | |
| "Already fetched 1430 images\n", | |
| "Already fetched 1431 images\n", | |
| "Already fetched 1432 images\n", | |
| "Already fetched 1433 images\n", | |
| "Already fetched 1434 images\n", | |
| "Already fetched 1435 images\n", | |
| "Already fetched 1436 images\n", | |
| "Already fetched 1437 images\n", | |
| "Already fetched 1438 images\n", | |
| "Already fetched 1439 images\n", | |
| "Already fetched 1440 images\n", | |
| "Already fetched 1441 images\n", | |
| "Already fetched 1442 images\n", | |
| "Already fetched 1443 images\n", | |
| "Already fetched 1444 images\n", | |
| "Already fetched 1445 images\n", | |
| "Already fetched 1446 images\n", | |
| "Already fetched 1447 images\n", | |
| "Already fetched 1448 images\n", | |
| "Already fetched 1449 images\n", | |
| "Already fetched 1450 images\n", | |
| "Already fetched 1451 images\n", | |
| "Already fetched 1452 images\n", | |
| "Already fetched 1453 images\n", | |
| "Already fetched 1454 images\n", | |
| "Already fetched 1455 images\n", | |
| "Already fetched 1456 images\n", | |
| "Already fetched 1457 images\n", | |
| "Already fetched 1458 images\n", | |
| "Already fetched 1459 images\n", | |
| "Already fetched 1460 images\n", | |
| "Already fetched 1461 images\n", | |
| "Already fetched 1462 images\n", | |
| "Already fetched 1463 images\n", | |
| "Already fetched 1464 images\n", | |
| "Already fetched 1465 images\n", | |
| "Already fetched 1466 images\n", | |
| "Already fetched 1467 images\n", | |
| "Already fetched 1468 images\n", | |
| "Already fetched 1469 images\n", | |
| "Already fetched 1470 images\n", | |
| "Already fetched 1471 images\n", | |
| "Already fetched 1472 images\n", | |
| "Already fetched 1473 images\n", | |
| "Already fetched 1474 images\n", | |
| "Already fetched 1475 images\n", | |
| "Already fetched 1476 images\n", | |
| "Already fetched 1477 images\n", | |
| "Already fetched 1478 images\n", | |
| "Already fetched 1479 images\n", | |
| "Already fetched 1480 images\n", | |
| "Already fetched 1481 images\n", | |
| "Already fetched 1482 images\n", | |
| "Already fetched 1483 images\n", | |
| "Already fetched 1484 images\n", | |
| "Already fetched 1485 images\n", | |
| "Already fetched 1486 images\n", | |
| "Already fetched 1487 images\n", | |
| "Already fetched 1488 images\n", | |
| "Already fetched 1489 images\n", | |
| "Already fetched 1490 images\n", | |
| "Already fetched 1491 images\n", | |
| "Already fetched 1492 images\n", | |
| "Already fetched 1493 images\n", | |
| "Already fetched 1494 images\n", | |
| "Already fetched 1495 images\n", | |
| "Already fetched 1496 images\n", | |
| "Already fetched 1497 images\n", | |
| "Already fetched 1498 images\n", | |
| "Already fetched 1499 images\n", | |
| "Already fetched 1500 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1500\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1501 images\n", | |
| "Already fetched 1502 images\n", | |
| "Already fetched 1503 images\n", | |
| "Already fetched 1504 images\n", | |
| "Already fetched 1505 images\n", | |
| "Already fetched 1506 images\n", | |
| "Already fetched 1507 images\n", | |
| "Already fetched 1508 images\n", | |
| "Already fetched 1509 images\n", | |
| "Already fetched 1510 images\n", | |
| "Already fetched 1511 images\n", | |
| "Already fetched 1512 images\n", | |
| "Already fetched 1513 images\n", | |
| "Already fetched 1514 images\n", | |
| "Already fetched 1515 images\n", | |
| "Already fetched 1516 images\n", | |
| "Already fetched 1517 images\n", | |
| "Already fetched 1518 images\n", | |
| "Already fetched 1519 images\n", | |
| "Already fetched 1520 images\n", | |
| "Already fetched 1521 images\n", | |
| "Already fetched 1522 images\n", | |
| "Already fetched 1523 images\n", | |
| "Already fetched 1524 images\n", | |
| "Already fetched 1525 images\n", | |
| "Already fetched 1526 images\n", | |
| "Already fetched 1527 images\n", | |
| "Already fetched 1528 images\n", | |
| "Already fetched 1529 images\n", | |
| "Already fetched 1530 images\n", | |
| "Already fetched 1531 images\n", | |
| "Already fetched 1532 images\n", | |
| "Already fetched 1533 images\n", | |
| "Already fetched 1534 images\n", | |
| "Already fetched 1535 images\n", | |
| "Already fetched 1536 images\n", | |
| "Already fetched 1537 images\n", | |
| "Already fetched 1538 images\n", | |
| "Already fetched 1539 images\n", | |
| "Already fetched 1540 images\n", | |
| "Already fetched 1541 images\n", | |
| "Already fetched 1542 images\n", | |
| "Already fetched 1543 images\n", | |
| "Already fetched 1544 images\n", | |
| "Already fetched 1545 images\n", | |
| "Already fetched 1546 images\n", | |
| "Already fetched 1547 images\n", | |
| "Already fetched 1548 images\n", | |
| "Already fetched 1549 images\n", | |
| "Already fetched 1550 images\n", | |
| "Already fetched 1551 images\n", | |
| "Already fetched 1552 images\n", | |
| "Already fetched 1553 images\n", | |
| "Already fetched 1554 images\n", | |
| "Already fetched 1555 images\n", | |
| "Already fetched 1556 images\n", | |
| "Already fetched 1557 images\n", | |
| "Already fetched 1558 images\n", | |
| "Already fetched 1559 images\n", | |
| "Already fetched 1560 images\n", | |
| "Already fetched 1561 images\n", | |
| "Already fetched 1562 images\n", | |
| "Already fetched 1563 images\n", | |
| "Already fetched 1564 images\n", | |
| "Already fetched 1565 images\n", | |
| "Already fetched 1566 images\n", | |
| "Already fetched 1567 images\n", | |
| "Already fetched 1568 images\n", | |
| "Already fetched 1569 images\n", | |
| "Already fetched 1570 images\n", | |
| "Already fetched 1571 images\n", | |
| "Already fetched 1572 images\n", | |
| "Already fetched 1573 images\n", | |
| "Already fetched 1574 images\n", | |
| "Already fetched 1575 images\n", | |
| "Already fetched 1576 images\n", | |
| "Already fetched 1577 images\n", | |
| "Already fetched 1578 images\n", | |
| "Already fetched 1579 images\n", | |
| "Already fetched 1580 images\n", | |
| "Already fetched 1581 images\n", | |
| "Already fetched 1582 images\n", | |
| "Already fetched 1583 images\n", | |
| "Already fetched 1584 images\n", | |
| "Already fetched 1585 images\n", | |
| "Already fetched 1586 images\n", | |
| "Already fetched 1587 images\n", | |
| "Already fetched 1588 images\n", | |
| "Already fetched 1589 images\n", | |
| "Already fetched 1590 images\n", | |
| "Already fetched 1591 images\n", | |
| "Already fetched 1592 images\n", | |
| "Already fetched 1593 images\n", | |
| "Already fetched 1594 images\n", | |
| "Already fetched 1595 images\n", | |
| "Already fetched 1596 images\n", | |
| "Already fetched 1597 images\n", | |
| "Already fetched 1598 images\n", | |
| "Already fetched 1599 images\n", | |
| "Already fetched 1600 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1600\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1601 images\n", | |
| "Already fetched 1602 images\n", | |
| "Already fetched 1603 images\n", | |
| "Already fetched 1604 images\n", | |
| "Already fetched 1605 images\n", | |
| "Already fetched 1606 images\n", | |
| "Already fetched 1607 images\n", | |
| "Already fetched 1608 images\n", | |
| "Already fetched 1609 images\n", | |
| "Already fetched 1610 images\n", | |
| "Already fetched 1611 images\n", | |
| "Already fetched 1612 images\n", | |
| "Already fetched 1613 images\n", | |
| "Already fetched 1614 images\n", | |
| "Already fetched 1615 images\n", | |
| "Already fetched 1616 images\n", | |
| "Already fetched 1617 images\n", | |
| "Already fetched 1618 images\n", | |
| "Already fetched 1619 images\n", | |
| "Already fetched 1620 images\n", | |
| "Already fetched 1621 images\n", | |
| "Already fetched 1622 images\n", | |
| "Already fetched 1623 images\n", | |
| "Already fetched 1624 images\n", | |
| "Already fetched 1625 images\n", | |
| "Already fetched 1626 images\n", | |
| "Already fetched 1627 images\n", | |
| "Already fetched 1628 images\n", | |
| "Already fetched 1629 images\n", | |
| "Already fetched 1630 images\n", | |
| "Already fetched 1631 images\n", | |
| "Already fetched 1632 images\n", | |
| "Already fetched 1633 images\n", | |
| "Already fetched 1634 images\n", | |
| "Already fetched 1635 images\n", | |
| "Already fetched 1636 images\n", | |
| "Already fetched 1637 images\n", | |
| "Already fetched 1638 images\n", | |
| "Already fetched 1639 images\n", | |
| "Already fetched 1640 images\n", | |
| "Already fetched 1641 images\n", | |
| "Already fetched 1642 images\n", | |
| "Already fetched 1643 images\n", | |
| "Already fetched 1644 images\n", | |
| "Already fetched 1645 images\n", | |
| "Already fetched 1646 images\n", | |
| "Already fetched 1647 images\n", | |
| "Already fetched 1648 images\n", | |
| "Already fetched 1649 images\n", | |
| "Already fetched 1650 images\n", | |
| "Already fetched 1651 images\n", | |
| "Already fetched 1652 images\n", | |
| "Already fetched 1653 images\n", | |
| "Already fetched 1654 images\n", | |
| "Already fetched 1655 images\n", | |
| "Already fetched 1656 images\n", | |
| "Already fetched 1657 images\n", | |
| "Already fetched 1658 images\n", | |
| "Already fetched 1659 images\n", | |
| "Already fetched 1660 images\n", | |
| "Already fetched 1661 images\n", | |
| "Already fetched 1662 images\n", | |
| "Already fetched 1663 images\n", | |
| "Already fetched 1664 images\n", | |
| "Already fetched 1665 images\n", | |
| "Already fetched 1666 images\n", | |
| "Already fetched 1667 images\n", | |
| "Already fetched 1668 images\n", | |
| "Already fetched 1669 images\n", | |
| "Already fetched 1670 images\n", | |
| "Already fetched 1671 images\n", | |
| "Already fetched 1672 images\n", | |
| "Already fetched 1673 images\n", | |
| "Already fetched 1674 images\n", | |
| "Already fetched 1675 images\n", | |
| "Already fetched 1676 images\n", | |
| "Already fetched 1677 images\n", | |
| "Already fetched 1678 images\n", | |
| "Already fetched 1679 images\n", | |
| "Already fetched 1680 images\n", | |
| "Already fetched 1681 images\n", | |
| "Already fetched 1682 images\n", | |
| "Already fetched 1683 images\n", | |
| "Already fetched 1684 images\n", | |
| "Already fetched 1685 images\n", | |
| "Already fetched 1686 images\n", | |
| "Already fetched 1687 images\n", | |
| "Already fetched 1688 images\n", | |
| "Already fetched 1689 images\n", | |
| "Already fetched 1690 images\n", | |
| "Already fetched 1691 images\n", | |
| "Already fetched 1692 images\n", | |
| "Already fetched 1693 images\n", | |
| "Already fetched 1694 images\n", | |
| "Already fetched 1695 images\n", | |
| "Already fetched 1696 images\n", | |
| "Already fetched 1697 images\n", | |
| "Already fetched 1698 images\n", | |
| "Already fetched 1699 images\n", | |
| "Already fetched 1700 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1700\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1701 images\n", | |
| "Already fetched 1702 images\n", | |
| "Already fetched 1703 images\n", | |
| "Already fetched 1704 images\n", | |
| "Already fetched 1705 images\n", | |
| "Already fetched 1706 images\n", | |
| "Already fetched 1707 images\n", | |
| "Already fetched 1708 images\n", | |
| "Already fetched 1709 images\n", | |
| "Already fetched 1710 images\n", | |
| "Already fetched 1711 images\n", | |
| "Already fetched 1712 images\n", | |
| "Already fetched 1713 images\n", | |
| "Already fetched 1714 images\n", | |
| "Already fetched 1715 images\n", | |
| "Already fetched 1716 images\n", | |
| "Already fetched 1717 images\n", | |
| "Already fetched 1718 images\n", | |
| "Already fetched 1719 images\n", | |
| "Already fetched 1720 images\n", | |
| "Already fetched 1721 images\n", | |
| "Already fetched 1722 images\n", | |
| "Already fetched 1723 images\n", | |
| "Already fetched 1724 images\n", | |
| "Already fetched 1725 images\n", | |
| "Already fetched 1726 images\n", | |
| "Already fetched 1727 images\n", | |
| "Already fetched 1728 images\n", | |
| "Already fetched 1729 images\n", | |
| "Already fetched 1730 images\n", | |
| "Already fetched 1731 images\n", | |
| "Already fetched 1732 images\n", | |
| "Already fetched 1733 images\n", | |
| "Already fetched 1734 images\n", | |
| "Already fetched 1735 images\n", | |
| "Already fetched 1736 images\n", | |
| "Already fetched 1737 images\n", | |
| "Already fetched 1738 images\n", | |
| "Already fetched 1739 images\n", | |
| "Already fetched 1740 images\n", | |
| "Already fetched 1741 images\n", | |
| "Already fetched 1742 images\n", | |
| "Already fetched 1743 images\n", | |
| "Already fetched 1744 images\n", | |
| "Already fetched 1745 images\n", | |
| "Already fetched 1746 images\n", | |
| "Already fetched 1747 images\n", | |
| "Already fetched 1748 images\n", | |
| "Already fetched 1749 images\n", | |
| "Already fetched 1750 images\n", | |
| "Already fetched 1751 images\n", | |
| "Already fetched 1752 images\n", | |
| "Already fetched 1753 images\n", | |
| "Already fetched 1754 images\n", | |
| "Already fetched 1755 images\n", | |
| "Already fetched 1756 images\n", | |
| "Already fetched 1757 images\n", | |
| "Already fetched 1758 images\n", | |
| "Already fetched 1759 images\n", | |
| "Already fetched 1760 images\n", | |
| "Already fetched 1761 images\n", | |
| "Already fetched 1762 images\n", | |
| "Already fetched 1763 images\n", | |
| "Already fetched 1764 images\n", | |
| "Already fetched 1765 images\n", | |
| "Already fetched 1766 images\n", | |
| "Already fetched 1767 images\n", | |
| "Already fetched 1768 images\n", | |
| "Already fetched 1769 images\n", | |
| "Already fetched 1770 images\n", | |
| "Already fetched 1771 images\n", | |
| "Already fetched 1772 images\n", | |
| "Already fetched 1773 images\n", | |
| "Already fetched 1774 images\n", | |
| "Already fetched 1775 images\n", | |
| "Already fetched 1776 images\n", | |
| "Already fetched 1777 images\n", | |
| "Already fetched 1778 images\n", | |
| "Already fetched 1779 images\n", | |
| "Already fetched 1780 images\n", | |
| "Already fetched 1781 images\n", | |
| "Already fetched 1782 images\n", | |
| "Already fetched 1783 images\n", | |
| "Already fetched 1784 images\n", | |
| "Already fetched 1785 images\n", | |
| "Already fetched 1786 images\n", | |
| "Already fetched 1787 images\n", | |
| "Already fetched 1788 images\n", | |
| "Already fetched 1789 images\n", | |
| "Already fetched 1790 images\n", | |
| "Already fetched 1791 images\n", | |
| "Already fetched 1792 images\n", | |
| "Already fetched 1793 images\n", | |
| "Already fetched 1794 images\n", | |
| "Already fetched 1795 images\n", | |
| "Already fetched 1796 images\n", | |
| "Already fetched 1797 images\n", | |
| "Already fetched 1798 images\n", | |
| "Already fetched 1799 images\n", | |
| "Already fetched 1800 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1800\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1801 images\n", | |
| "Already fetched 1802 images\n", | |
| "Already fetched 1803 images\n", | |
| "Already fetched 1804 images\n", | |
| "Already fetched 1805 images\n", | |
| "Already fetched 1806 images\n", | |
| "Already fetched 1807 images\n", | |
| "Already fetched 1808 images\n", | |
| "Already fetched 1809 images\n", | |
| "Already fetched 1810 images\n", | |
| "Already fetched 1811 images\n", | |
| "Already fetched 1812 images\n", | |
| "Already fetched 1813 images\n", | |
| "Already fetched 1814 images\n", | |
| "Already fetched 1815 images\n", | |
| "Already fetched 1816 images\n", | |
| "Already fetched 1817 images\n", | |
| "Already fetched 1818 images\n", | |
| "Already fetched 1819 images\n", | |
| "Already fetched 1820 images\n", | |
| "Already fetched 1821 images\n", | |
| "Already fetched 1822 images\n", | |
| "Already fetched 1823 images\n", | |
| "Already fetched 1824 images\n", | |
| "Already fetched 1825 images\n", | |
| "Already fetched 1826 images\n", | |
| "Already fetched 1827 images\n", | |
| "Already fetched 1828 images\n", | |
| "Already fetched 1829 images\n", | |
| "Already fetched 1830 images\n", | |
| "Already fetched 1831 images\n", | |
| "Already fetched 1832 images\n", | |
| "Already fetched 1833 images\n", | |
| "Already fetched 1834 images\n", | |
| "Already fetched 1835 images\n", | |
| "Already fetched 1836 images\n", | |
| "Already fetched 1837 images\n", | |
| "Already fetched 1838 images\n", | |
| "Already fetched 1839 images\n", | |
| "Already fetched 1840 images\n", | |
| "Already fetched 1841 images\n", | |
| "Already fetched 1842 images\n", | |
| "Already fetched 1843 images\n", | |
| "Already fetched 1844 images\n", | |
| "Already fetched 1845 images\n", | |
| "Already fetched 1846 images\n", | |
| "Already fetched 1847 images\n", | |
| "Already fetched 1848 images\n", | |
| "Already fetched 1849 images\n", | |
| "Already fetched 1850 images\n", | |
| "Already fetched 1851 images\n", | |
| "Already fetched 1852 images\n", | |
| "Already fetched 1853 images\n", | |
| "Already fetched 1854 images\n", | |
| "Already fetched 1855 images\n", | |
| "Already fetched 1856 images\n", | |
| "Already fetched 1857 images\n", | |
| "Already fetched 1858 images\n", | |
| "Already fetched 1859 images\n", | |
| "Already fetched 1860 images\n", | |
| "Already fetched 1861 images\n", | |
| "Already fetched 1862 images\n", | |
| "Already fetched 1863 images\n", | |
| "Already fetched 1864 images\n", | |
| "Already fetched 1865 images\n", | |
| "Already fetched 1866 images\n", | |
| "Already fetched 1867 images\n", | |
| "Already fetched 1868 images\n", | |
| "Already fetched 1869 images\n", | |
| "Already fetched 1870 images\n", | |
| "Already fetched 1871 images\n", | |
| "Already fetched 1872 images\n", | |
| "Already fetched 1873 images\n", | |
| "Already fetched 1874 images\n", | |
| "Already fetched 1875 images\n", | |
| "Already fetched 1876 images\n", | |
| "Already fetched 1877 images\n", | |
| "Already fetched 1878 images\n", | |
| "Already fetched 1879 images\n", | |
| "Already fetched 1880 images\n", | |
| "Already fetched 1881 images\n", | |
| "Already fetched 1882 images\n", | |
| "Already fetched 1883 images\n", | |
| "Already fetched 1884 images\n", | |
| "Already fetched 1885 images\n", | |
| "Already fetched 1886 images\n", | |
| "Already fetched 1887 images\n", | |
| "Already fetched 1888 images\n", | |
| "Already fetched 1889 images\n", | |
| "Already fetched 1890 images\n", | |
| "Already fetched 1891 images\n", | |
| "Already fetched 1892 images\n", | |
| "Already fetched 1893 images\n", | |
| "Already fetched 1894 images\n", | |
| "Already fetched 1895 images\n", | |
| "Already fetched 1896 images\n", | |
| "Already fetched 1897 images\n", | |
| "Already fetched 1898 images\n", | |
| "Already fetched 1899 images\n", | |
| "Already fetched 1900 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=1900\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 1901 images\n", | |
| "Already fetched 1902 images\n", | |
| "Already fetched 1903 images\n", | |
| "Already fetched 1904 images\n", | |
| "Already fetched 1905 images\n", | |
| "Already fetched 1906 images\n", | |
| "Already fetched 1907 images\n", | |
| "Already fetched 1908 images\n", | |
| "Already fetched 1909 images\n", | |
| "Already fetched 1910 images\n", | |
| "Already fetched 1911 images\n", | |
| "Already fetched 1912 images\n", | |
| "Already fetched 1913 images\n", | |
| "Already fetched 1914 images\n", | |
| "Already fetched 1915 images\n", | |
| "Already fetched 1916 images\n", | |
| "Already fetched 1917 images\n", | |
| "Already fetched 1918 images\n", | |
| "Already fetched 1919 images\n", | |
| "Already fetched 1920 images\n", | |
| "Already fetched 1921 images\n", | |
| "Already fetched 1922 images\n", | |
| "Already fetched 1923 images\n", | |
| "Already fetched 1924 images\n", | |
| "Already fetched 1925 images\n", | |
| "Already fetched 1926 images\n", | |
| "Already fetched 1927 images\n", | |
| "Already fetched 1928 images\n", | |
| "Already fetched 1929 images\n", | |
| "Already fetched 1930 images\n", | |
| "Already fetched 1931 images\n", | |
| "Already fetched 1932 images\n", | |
| "Already fetched 1933 images\n", | |
| "Already fetched 1934 images\n", | |
| "Already fetched 1935 images\n", | |
| "Already fetched 1936 images\n", | |
| "Already fetched 1937 images\n", | |
| "Already fetched 1938 images\n", | |
| "Already fetched 1939 images\n", | |
| "Already fetched 1940 images\n", | |
| "Already fetched 1941 images\n", | |
| "Already fetched 1942 images\n", | |
| "Already fetched 1943 images\n", | |
| "Already fetched 1944 images\n", | |
| "Already fetched 1945 images\n", | |
| "Already fetched 1946 images\n", | |
| "Already fetched 1947 images\n", | |
| "Already fetched 1948 images\n", | |
| "Already fetched 1949 images\n", | |
| "Already fetched 1950 images\n", | |
| "Already fetched 1951 images\n", | |
| "Already fetched 1952 images\n", | |
| "Already fetched 1953 images\n", | |
| "Already fetched 1954 images\n", | |
| "Already fetched 1955 images\n", | |
| "Already fetched 1956 images\n", | |
| "Already fetched 1957 images\n", | |
| "Already fetched 1958 images\n", | |
| "Already fetched 1959 images\n", | |
| "Already fetched 1960 images\n", | |
| "Already fetched 1961 images\n", | |
| "Already fetched 1962 images\n", | |
| "Already fetched 1963 images\n", | |
| "Already fetched 1964 images\n", | |
| "Already fetched 1965 images\n", | |
| "Already fetched 1966 images\n", | |
| "Already fetched 1967 images\n", | |
| "Already fetched 1968 images\n", | |
| "Already fetched 1969 images\n", | |
| "Already fetched 1970 images\n", | |
| "Already fetched 1971 images\n", | |
| "Already fetched 1972 images\n", | |
| "Already fetched 1973 images\n", | |
| "Already fetched 1974 images\n", | |
| "Already fetched 1975 images\n", | |
| "Already fetched 1976 images\n", | |
| "Already fetched 1977 images\n", | |
| "Already fetched 1978 images\n", | |
| "Already fetched 1979 images\n", | |
| "Already fetched 1980 images\n", | |
| "Already fetched 1981 images\n", | |
| "Already fetched 1982 images\n", | |
| "Already fetched 1983 images\n", | |
| "Already fetched 1984 images\n", | |
| "Already fetched 1985 images\n", | |
| "Already fetched 1986 images\n", | |
| "Already fetched 1987 images\n", | |
| "Already fetched 1988 images\n", | |
| "Already fetched 1989 images\n", | |
| "Already fetched 1990 images\n", | |
| "Already fetched 1991 images\n", | |
| "Already fetched 1992 images\n", | |
| "Already fetched 1993 images\n", | |
| "Already fetched 1994 images\n", | |
| "Already fetched 1995 images\n", | |
| "Already fetched 1996 images\n", | |
| "Already fetched 1997 images\n", | |
| "Already fetched 1998 images\n", | |
| "Already fetched 1999 images\n", | |
| "Already fetched 2000 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2000\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2001 images\n", | |
| "Already fetched 2002 images\n", | |
| "Already fetched 2003 images\n", | |
| "Already fetched 2004 images\n", | |
| "Already fetched 2005 images\n", | |
| "Already fetched 2006 images\n", | |
| "Already fetched 2007 images\n", | |
| "Already fetched 2008 images\n", | |
| "Already fetched 2009 images\n", | |
| "Already fetched 2010 images\n", | |
| "Already fetched 2011 images\n", | |
| "Already fetched 2012 images\n", | |
| "Already fetched 2013 images\n", | |
| "Already fetched 2014 images\n", | |
| "Already fetched 2015 images\n", | |
| "Already fetched 2016 images\n", | |
| "Already fetched 2017 images\n", | |
| "Already fetched 2018 images\n", | |
| "Already fetched 2019 images\n", | |
| "Already fetched 2020 images\n", | |
| "Already fetched 2021 images\n", | |
| "Already fetched 2022 images\n", | |
| "Already fetched 2023 images\n", | |
| "Already fetched 2024 images\n", | |
| "Already fetched 2025 images\n", | |
| "Already fetched 2026 images\n", | |
| "Already fetched 2027 images\n", | |
| "Already fetched 2028 images\n", | |
| "Already fetched 2029 images\n", | |
| "Already fetched 2030 images\n", | |
| "Already fetched 2031 images\n", | |
| "Already fetched 2032 images\n", | |
| "Already fetched 2033 images\n", | |
| "Already fetched 2034 images\n", | |
| "Already fetched 2035 images\n", | |
| "Already fetched 2036 images\n", | |
| "Already fetched 2037 images\n", | |
| "Already fetched 2038 images\n", | |
| "Already fetched 2039 images\n", | |
| "Already fetched 2040 images\n", | |
| "Already fetched 2041 images\n", | |
| "Already fetched 2042 images\n", | |
| "Already fetched 2043 images\n", | |
| "Already fetched 2044 images\n", | |
| "Already fetched 2045 images\n", | |
| "Already fetched 2046 images\n", | |
| "Already fetched 2047 images\n", | |
| "Already fetched 2048 images\n", | |
| "Already fetched 2049 images\n", | |
| "Already fetched 2050 images\n", | |
| "Already fetched 2051 images\n", | |
| "Already fetched 2052 images\n", | |
| "Already fetched 2053 images\n", | |
| "Already fetched 2054 images\n", | |
| "Already fetched 2055 images\n", | |
| "Already fetched 2056 images\n", | |
| "Already fetched 2057 images\n", | |
| "Already fetched 2058 images\n", | |
| "Already fetched 2059 images\n", | |
| "Already fetched 2060 images\n", | |
| "Already fetched 2061 images\n", | |
| "Already fetched 2062 images\n", | |
| "Already fetched 2063 images\n", | |
| "Already fetched 2064 images\n", | |
| "Already fetched 2065 images\n", | |
| "Already fetched 2066 images\n", | |
| "Already fetched 2067 images\n", | |
| "Already fetched 2068 images\n", | |
| "Already fetched 2069 images\n", | |
| "Already fetched 2070 images\n", | |
| "Already fetched 2071 images\n", | |
| "Already fetched 2072 images\n", | |
| "Already fetched 2073 images\n", | |
| "Already fetched 2074 images\n", | |
| "Already fetched 2075 images\n", | |
| "Already fetched 2076 images\n", | |
| "Already fetched 2077 images\n", | |
| "Already fetched 2078 images\n", | |
| "Already fetched 2079 images\n", | |
| "Already fetched 2080 images\n", | |
| "Already fetched 2081 images\n", | |
| "Already fetched 2082 images\n", | |
| "Already fetched 2083 images\n", | |
| "Already fetched 2084 images\n", | |
| "Already fetched 2085 images\n", | |
| "Already fetched 2086 images\n", | |
| "Already fetched 2087 images\n", | |
| "Already fetched 2088 images\n", | |
| "Already fetched 2089 images\n", | |
| "Already fetched 2090 images\n", | |
| "Already fetched 2091 images\n", | |
| "Already fetched 2092 images\n", | |
| "Already fetched 2093 images\n", | |
| "Already fetched 2094 images\n", | |
| "Already fetched 2095 images\n", | |
| "Already fetched 2096 images\n", | |
| "Already fetched 2097 images\n", | |
| "Already fetched 2098 images\n", | |
| "Already fetched 2099 images\n", | |
| "Already fetched 2100 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2100\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2101 images\n", | |
| "Already fetched 2102 images\n", | |
| "Already fetched 2103 images\n", | |
| "Already fetched 2104 images\n", | |
| "Already fetched 2105 images\n", | |
| "Already fetched 2106 images\n", | |
| "Already fetched 2107 images\n", | |
| "Already fetched 2108 images\n", | |
| "Already fetched 2109 images\n", | |
| "Already fetched 2110 images\n", | |
| "Already fetched 2111 images\n", | |
| "Already fetched 2112 images\n", | |
| "Already fetched 2113 images\n", | |
| "Already fetched 2114 images\n", | |
| "Already fetched 2115 images\n", | |
| "Already fetched 2116 images\n", | |
| "Already fetched 2117 images\n", | |
| "Already fetched 2118 images\n", | |
| "Already fetched 2119 images\n", | |
| "Already fetched 2120 images\n", | |
| "Already fetched 2121 images\n", | |
| "Already fetched 2122 images\n", | |
| "Already fetched 2123 images\n", | |
| "Already fetched 2124 images\n", | |
| "Already fetched 2125 images\n", | |
| "Already fetched 2126 images\n", | |
| "Already fetched 2127 images\n", | |
| "Already fetched 2128 images\n", | |
| "Already fetched 2129 images\n", | |
| "Already fetched 2130 images\n", | |
| "Already fetched 2131 images\n", | |
| "Already fetched 2132 images\n", | |
| "Already fetched 2133 images\n", | |
| "Already fetched 2134 images\n", | |
| "Already fetched 2135 images\n", | |
| "Already fetched 2136 images\n", | |
| "Already fetched 2137 images\n", | |
| "Already fetched 2138 images\n", | |
| "Already fetched 2139 images\n", | |
| "Already fetched 2140 images\n", | |
| "Already fetched 2141 images\n", | |
| "Already fetched 2142 images\n", | |
| "Already fetched 2143 images\n", | |
| "Already fetched 2144 images\n", | |
| "Already fetched 2145 images\n", | |
| "Already fetched 2146 images\n", | |
| "Already fetched 2147 images\n", | |
| "Already fetched 2148 images\n", | |
| "Already fetched 2149 images\n", | |
| "Already fetched 2150 images\n", | |
| "Already fetched 2151 images\n", | |
| "Already fetched 2152 images\n", | |
| "Already fetched 2153 images\n", | |
| "Already fetched 2154 images\n", | |
| "Already fetched 2155 images\n", | |
| "Already fetched 2156 images\n", | |
| "Already fetched 2157 images\n", | |
| "Already fetched 2158 images\n", | |
| "Already fetched 2159 images\n", | |
| "Already fetched 2160 images\n", | |
| "Already fetched 2161 images\n", | |
| "Already fetched 2162 images\n", | |
| "Already fetched 2163 images\n", | |
| "Already fetched 2164 images\n", | |
| "Already fetched 2165 images\n", | |
| "Already fetched 2166 images\n", | |
| "Already fetched 2167 images\n", | |
| "Already fetched 2168 images\n", | |
| "Already fetched 2169 images\n", | |
| "Already fetched 2170 images\n", | |
| "Already fetched 2171 images\n", | |
| "Already fetched 2172 images\n", | |
| "Already fetched 2173 images\n", | |
| "Already fetched 2174 images\n", | |
| "Downloading file: https://neurovault.org/media/images/503/IAPS_Subject_214_Image_3120.nii.gz\n", | |
| "Download succeeded, downloaded to: local/neurovault/collection_503/tmp_34df05b0-cba9-11e7-b834-c82a144b3ddb.nii.gz\n", | |
| "Resampling...\n", | |
| "Already fetched 2175 images\n", | |
| "Already fetched 2176 images\n", | |
| "Already fetched 2177 images\n", | |
| "Already fetched 2178 images\n", | |
| "Already fetched 2179 images\n", | |
| "Already fetched 2180 images\n", | |
| "Already fetched 2181 images\n", | |
| "Already fetched 2182 images\n", | |
| "Already fetched 2183 images\n", | |
| "Already fetched 2184 images\n", | |
| "Already fetched 2185 images\n", | |
| "Already fetched 2186 images\n", | |
| "Already fetched 2187 images\n", | |
| "Already fetched 2188 images\n", | |
| "Already fetched 2189 images\n", | |
| "Already fetched 2190 images\n", | |
| "Already fetched 2191 images\n", | |
| "Already fetched 2192 images\n", | |
| "Already fetched 2193 images\n", | |
| "Already fetched 2194 images\n", | |
| "Already fetched 2195 images\n", | |
| "Already fetched 2196 images\n", | |
| "Already fetched 2197 images\n", | |
| "Already fetched 2198 images\n", | |
| "Already fetched 2199 images\n", | |
| "Already fetched 2200 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2200\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2201 images\n", | |
| "Already fetched 2202 images\n", | |
| "Already fetched 2203 images\n", | |
| "Already fetched 2204 images\n", | |
| "Already fetched 2205 images\n", | |
| "Already fetched 2206 images\n", | |
| "Already fetched 2207 images\n", | |
| "Already fetched 2208 images\n", | |
| "Already fetched 2209 images\n", | |
| "Already fetched 2210 images\n", | |
| "Already fetched 2211 images\n", | |
| "Already fetched 2212 images\n", | |
| "Already fetched 2213 images\n", | |
| "Already fetched 2214 images\n", | |
| "Already fetched 2215 images\n", | |
| "Already fetched 2216 images\n", | |
| "Already fetched 2217 images\n", | |
| "Already fetched 2218 images\n", | |
| "Already fetched 2219 images\n", | |
| "Already fetched 2220 images\n", | |
| "Already fetched 2221 images\n", | |
| "Already fetched 2222 images\n", | |
| "Already fetched 2223 images\n", | |
| "Already fetched 2224 images\n", | |
| "Already fetched 2225 images\n", | |
| "Already fetched 2226 images\n", | |
| "Already fetched 2227 images\n", | |
| "Already fetched 2228 images\n", | |
| "Already fetched 2229 images\n", | |
| "Already fetched 2230 images\n", | |
| "Already fetched 2231 images\n", | |
| "Already fetched 2232 images\n", | |
| "Already fetched 2233 images\n", | |
| "Already fetched 2234 images\n", | |
| "Already fetched 2235 images\n", | |
| "Already fetched 2236 images\n", | |
| "Already fetched 2237 images\n", | |
| "Already fetched 2238 images\n", | |
| "Already fetched 2239 images\n", | |
| "Already fetched 2240 images\n", | |
| "Already fetched 2241 images\n", | |
| "Already fetched 2242 images\n", | |
| "Already fetched 2243 images\n", | |
| "Already fetched 2244 images\n", | |
| "Already fetched 2245 images\n", | |
| "Already fetched 2246 images\n", | |
| "Already fetched 2247 images\n", | |
| "Already fetched 2248 images\n", | |
| "Already fetched 2249 images\n", | |
| "Already fetched 2250 images\n", | |
| "Already fetched 2251 images\n", | |
| "Already fetched 2252 images\n", | |
| "Already fetched 2253 images\n", | |
| "Already fetched 2254 images\n", | |
| "Already fetched 2255 images\n", | |
| "Already fetched 2256 images\n", | |
| "Already fetched 2257 images\n", | |
| "Already fetched 2258 images\n", | |
| "Already fetched 2259 images\n", | |
| "Already fetched 2260 images\n", | |
| "Already fetched 2261 images\n", | |
| "Already fetched 2262 images\n", | |
| "Already fetched 2263 images\n", | |
| "Already fetched 2264 images\n", | |
| "Already fetched 2265 images\n", | |
| "Already fetched 2266 images\n", | |
| "Already fetched 2267 images\n", | |
| "Already fetched 2268 images\n", | |
| "Already fetched 2269 images\n", | |
| "Already fetched 2270 images\n", | |
| "Already fetched 2271 images\n", | |
| "Already fetched 2272 images\n", | |
| "Already fetched 2273 images\n", | |
| "Already fetched 2274 images\n", | |
| "Already fetched 2275 images\n", | |
| "Already fetched 2276 images\n", | |
| "Already fetched 2277 images\n", | |
| "Already fetched 2278 images\n", | |
| "Already fetched 2279 images\n", | |
| "Already fetched 2280 images\n", | |
| "Already fetched 2281 images\n", | |
| "Already fetched 2282 images\n", | |
| "Already fetched 2283 images\n", | |
| "Already fetched 2284 images\n", | |
| "Already fetched 2285 images\n", | |
| "Already fetched 2286 images\n", | |
| "Already fetched 2287 images\n", | |
| "Already fetched 2288 images\n", | |
| "Already fetched 2289 images\n", | |
| "Already fetched 2290 images\n", | |
| "Already fetched 2291 images\n", | |
| "Already fetched 2292 images\n", | |
| "Already fetched 2293 images\n", | |
| "Already fetched 2294 images\n", | |
| "Already fetched 2295 images\n", | |
| "Already fetched 2296 images\n", | |
| "Already fetched 2297 images\n", | |
| "Already fetched 2298 images\n", | |
| "Already fetched 2299 images\n", | |
| "Already fetched 2300 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2300\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2301 images\n", | |
| "Already fetched 2302 images\n", | |
| "Already fetched 2303 images\n", | |
| "Already fetched 2304 images\n", | |
| "Already fetched 2305 images\n", | |
| "Already fetched 2306 images\n", | |
| "Already fetched 2307 images\n", | |
| "Already fetched 2308 images\n", | |
| "Already fetched 2309 images\n", | |
| "Already fetched 2310 images\n", | |
| "Already fetched 2311 images\n", | |
| "Already fetched 2312 images\n", | |
| "Already fetched 2313 images\n", | |
| "Already fetched 2314 images\n", | |
| "Already fetched 2315 images\n", | |
| "Already fetched 2316 images\n", | |
| "Already fetched 2317 images\n", | |
| "Already fetched 2318 images\n", | |
| "Already fetched 2319 images\n", | |
| "Already fetched 2320 images\n", | |
| "Already fetched 2321 images\n", | |
| "Already fetched 2322 images\n", | |
| "Already fetched 2323 images\n", | |
| "Already fetched 2324 images\n", | |
| "Already fetched 2325 images\n", | |
| "Already fetched 2326 images\n", | |
| "Already fetched 2327 images\n", | |
| "Already fetched 2328 images\n", | |
| "Already fetched 2329 images\n", | |
| "Already fetched 2330 images\n", | |
| "Already fetched 2331 images\n", | |
| "Already fetched 2332 images\n", | |
| "Already fetched 2333 images\n", | |
| "Already fetched 2334 images\n", | |
| "Already fetched 2335 images\n", | |
| "Already fetched 2336 images\n", | |
| "Already fetched 2337 images\n", | |
| "Already fetched 2338 images\n", | |
| "Already fetched 2339 images\n", | |
| "Already fetched 2340 images\n", | |
| "Already fetched 2341 images\n", | |
| "Already fetched 2342 images\n", | |
| "Already fetched 2343 images\n", | |
| "Already fetched 2344 images\n", | |
| "Already fetched 2345 images\n", | |
| "Already fetched 2346 images\n", | |
| "Already fetched 2347 images\n", | |
| "Already fetched 2348 images\n", | |
| "Already fetched 2349 images\n", | |
| "Already fetched 2350 images\n", | |
| "Already fetched 2351 images\n", | |
| "Already fetched 2352 images\n", | |
| "Already fetched 2353 images\n", | |
| "Already fetched 2354 images\n", | |
| "Already fetched 2355 images\n", | |
| "Already fetched 2356 images\n", | |
| "Already fetched 2357 images\n", | |
| "Already fetched 2358 images\n", | |
| "Already fetched 2359 images\n", | |
| "Already fetched 2360 images\n", | |
| "Already fetched 2361 images\n", | |
| "Already fetched 2362 images\n", | |
| "Already fetched 2363 images\n", | |
| "Already fetched 2364 images\n", | |
| "Already fetched 2365 images\n", | |
| "Already fetched 2366 images\n", | |
| "Already fetched 2367 images\n", | |
| "Already fetched 2368 images\n", | |
| "Already fetched 2369 images\n", | |
| "Already fetched 2370 images\n", | |
| "Already fetched 2371 images\n", | |
| "Already fetched 2372 images\n", | |
| "Already fetched 2373 images\n", | |
| "Already fetched 2374 images\n", | |
| "Already fetched 2375 images\n", | |
| "Already fetched 2376 images\n", | |
| "Already fetched 2377 images\n", | |
| "Already fetched 2378 images\n", | |
| "Already fetched 2379 images\n", | |
| "Already fetched 2380 images\n", | |
| "Already fetched 2381 images\n", | |
| "Already fetched 2382 images\n", | |
| "Already fetched 2383 images\n", | |
| "Already fetched 2384 images\n", | |
| "Already fetched 2385 images\n", | |
| "Already fetched 2386 images\n", | |
| "Already fetched 2387 images\n", | |
| "Already fetched 2388 images\n", | |
| "Already fetched 2389 images\n", | |
| "Already fetched 2390 images\n", | |
| "Already fetched 2391 images\n", | |
| "Already fetched 2392 images\n", | |
| "Already fetched 2393 images\n", | |
| "Already fetched 2394 images\n", | |
| "Already fetched 2395 images\n", | |
| "Already fetched 2396 images\n", | |
| "Already fetched 2397 images\n", | |
| "Already fetched 2398 images\n", | |
| "Already fetched 2399 images\n", | |
| "Already fetched 2400 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2400\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2401 images\n", | |
| "Already fetched 2402 images\n", | |
| "Already fetched 2403 images\n", | |
| "Already fetched 2404 images\n", | |
| "Already fetched 2405 images\n", | |
| "Already fetched 2406 images\n", | |
| "Already fetched 2407 images\n", | |
| "Already fetched 2408 images\n", | |
| "Already fetched 2409 images\n", | |
| "Already fetched 2410 images\n", | |
| "Already fetched 2411 images\n", | |
| "Already fetched 2412 images\n", | |
| "Already fetched 2413 images\n", | |
| "Already fetched 2414 images\n", | |
| "Already fetched 2415 images\n", | |
| "Already fetched 2416 images\n", | |
| "Already fetched 2417 images\n", | |
| "Already fetched 2418 images\n", | |
| "Already fetched 2419 images\n", | |
| "Already fetched 2420 images\n", | |
| "Already fetched 2421 images\n", | |
| "Already fetched 2422 images\n", | |
| "Already fetched 2423 images\n", | |
| "Already fetched 2424 images\n", | |
| "Already fetched 2425 images\n", | |
| "Already fetched 2426 images\n", | |
| "Already fetched 2427 images\n", | |
| "Already fetched 2428 images\n", | |
| "Already fetched 2429 images\n", | |
| "Already fetched 2430 images\n", | |
| "Already fetched 2431 images\n", | |
| "Already fetched 2432 images\n", | |
| "Already fetched 2433 images\n", | |
| "Already fetched 2434 images\n", | |
| "Already fetched 2435 images\n", | |
| "Already fetched 2436 images\n", | |
| "Already fetched 2437 images\n", | |
| "Already fetched 2438 images\n", | |
| "Already fetched 2439 images\n", | |
| "Already fetched 2440 images\n", | |
| "Already fetched 2441 images\n", | |
| "Already fetched 2442 images\n", | |
| "Already fetched 2443 images\n", | |
| "Already fetched 2444 images\n", | |
| "Already fetched 2445 images\n", | |
| "Already fetched 2446 images\n", | |
| "Already fetched 2447 images\n", | |
| "Already fetched 2448 images\n", | |
| "Already fetched 2449 images\n", | |
| "Already fetched 2450 images\n", | |
| "Already fetched 2451 images\n", | |
| "Already fetched 2452 images\n", | |
| "Already fetched 2453 images\n", | |
| "Already fetched 2454 images\n", | |
| "Already fetched 2455 images\n", | |
| "Already fetched 2456 images\n", | |
| "Already fetched 2457 images\n", | |
| "Already fetched 2458 images\n", | |
| "Already fetched 2459 images\n", | |
| "Already fetched 2460 images\n", | |
| "Already fetched 2461 images\n", | |
| "Already fetched 2462 images\n", | |
| "Already fetched 2463 images\n", | |
| "Already fetched 2464 images\n", | |
| "Already fetched 2465 images\n", | |
| "Already fetched 2466 images\n", | |
| "Already fetched 2467 images\n", | |
| "Already fetched 2468 images\n", | |
| "Already fetched 2469 images\n", | |
| "Already fetched 2470 images\n", | |
| "Already fetched 2471 images\n", | |
| "Already fetched 2472 images\n", | |
| "Already fetched 2473 images\n", | |
| "Already fetched 2474 images\n", | |
| "Already fetched 2475 images\n", | |
| "Already fetched 2476 images\n", | |
| "Already fetched 2477 images\n", | |
| "Already fetched 2478 images\n", | |
| "Already fetched 2479 images\n", | |
| "Already fetched 2480 images\n", | |
| "Already fetched 2481 images\n", | |
| "Already fetched 2482 images\n", | |
| "Already fetched 2483 images\n", | |
| "Already fetched 2484 images\n", | |
| "Already fetched 2485 images\n", | |
| "Already fetched 2486 images\n", | |
| "Already fetched 2487 images\n", | |
| "Already fetched 2488 images\n", | |
| "Already fetched 2489 images\n", | |
| "Already fetched 2490 images\n", | |
| "Already fetched 2491 images\n", | |
| "Already fetched 2492 images\n", | |
| "Already fetched 2493 images\n", | |
| "Already fetched 2494 images\n", | |
| "Already fetched 2495 images\n", | |
| "Already fetched 2496 images\n", | |
| "Already fetched 2497 images\n", | |
| "Already fetched 2498 images\n", | |
| "Already fetched 2499 images\n", | |
| "Already fetched 2500 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2500\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2501 images\n", | |
| "Already fetched 2502 images\n", | |
| "Already fetched 2503 images\n", | |
| "Already fetched 2504 images\n", | |
| "Already fetched 2505 images\n", | |
| "Already fetched 2506 images\n", | |
| "Already fetched 2507 images\n", | |
| "Already fetched 2508 images\n", | |
| "Already fetched 2509 images\n", | |
| "Already fetched 2510 images\n", | |
| "Already fetched 2511 images\n", | |
| "Already fetched 2512 images\n", | |
| "Already fetched 2513 images\n", | |
| "Already fetched 2514 images\n", | |
| "Already fetched 2515 images\n", | |
| "Already fetched 2516 images\n", | |
| "Already fetched 2517 images\n", | |
| "Already fetched 2518 images\n", | |
| "Already fetched 2519 images\n", | |
| "Already fetched 2520 images\n", | |
| "Already fetched 2521 images\n", | |
| "Already fetched 2522 images\n", | |
| "Already fetched 2523 images\n", | |
| "Already fetched 2524 images\n", | |
| "Already fetched 2525 images\n", | |
| "Already fetched 2526 images\n", | |
| "Already fetched 2527 images\n", | |
| "Already fetched 2528 images\n", | |
| "Already fetched 2529 images\n", | |
| "Already fetched 2530 images\n", | |
| "Already fetched 2531 images\n", | |
| "Already fetched 2532 images\n", | |
| "Already fetched 2533 images\n", | |
| "Already fetched 2534 images\n", | |
| "Already fetched 2535 images\n", | |
| "Already fetched 2536 images\n", | |
| "Already fetched 2537 images\n", | |
| "Already fetched 2538 images\n", | |
| "Already fetched 2539 images\n", | |
| "Already fetched 2540 images\n", | |
| "Already fetched 2541 images\n", | |
| "Already fetched 2542 images\n", | |
| "Already fetched 2543 images\n", | |
| "Already fetched 2544 images\n", | |
| "Already fetched 2545 images\n", | |
| "Already fetched 2546 images\n", | |
| "Already fetched 2547 images\n", | |
| "Already fetched 2548 images\n", | |
| "Already fetched 2549 images\n", | |
| "Already fetched 2550 images\n", | |
| "Already fetched 2551 images\n", | |
| "Already fetched 2552 images\n", | |
| "Already fetched 2553 images\n", | |
| "Already fetched 2554 images\n", | |
| "Already fetched 2555 images\n", | |
| "Already fetched 2556 images\n", | |
| "Already fetched 2557 images\n", | |
| "Already fetched 2558 images\n", | |
| "Already fetched 2559 images\n", | |
| "Already fetched 2560 images\n", | |
| "Already fetched 2561 images\n", | |
| "Already fetched 2562 images\n", | |
| "Already fetched 2563 images\n", | |
| "Already fetched 2564 images\n", | |
| "Already fetched 2565 images\n", | |
| "Already fetched 2566 images\n", | |
| "Already fetched 2567 images\n", | |
| "Already fetched 2568 images\n", | |
| "Already fetched 2569 images\n", | |
| "Already fetched 2570 images\n", | |
| "Already fetched 2571 images\n", | |
| "Already fetched 2572 images\n", | |
| "Already fetched 2573 images\n", | |
| "Already fetched 2574 images\n", | |
| "Already fetched 2575 images\n", | |
| "Already fetched 2576 images\n", | |
| "Already fetched 2577 images\n", | |
| "Already fetched 2578 images\n", | |
| "Already fetched 2579 images\n", | |
| "Already fetched 2580 images\n", | |
| "Already fetched 2581 images\n", | |
| "Already fetched 2582 images\n", | |
| "Already fetched 2583 images\n", | |
| "Already fetched 2584 images\n", | |
| "Already fetched 2585 images\n", | |
| "Already fetched 2586 images\n", | |
| "Already fetched 2587 images\n", | |
| "Already fetched 2588 images\n", | |
| "Already fetched 2589 images\n", | |
| "Already fetched 2590 images\n", | |
| "Already fetched 2591 images\n", | |
| "Already fetched 2592 images\n", | |
| "Already fetched 2593 images\n", | |
| "Already fetched 2594 images\n", | |
| "Already fetched 2595 images\n", | |
| "Already fetched 2596 images\n", | |
| "Already fetched 2597 images\n", | |
| "Already fetched 2598 images\n", | |
| "Already fetched 2599 images\n", | |
| "Already fetched 2600 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2600\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2601 images\n", | |
| "Already fetched 2602 images\n", | |
| "Already fetched 2603 images\n", | |
| "Already fetched 2604 images\n", | |
| "Already fetched 2605 images\n", | |
| "Already fetched 2606 images\n", | |
| "Already fetched 2607 images\n", | |
| "Already fetched 2608 images\n", | |
| "Already fetched 2609 images\n", | |
| "Already fetched 2610 images\n", | |
| "Already fetched 2611 images\n", | |
| "Already fetched 2612 images\n", | |
| "Already fetched 2613 images\n", | |
| "Already fetched 2614 images\n", | |
| "Already fetched 2615 images\n", | |
| "Already fetched 2616 images\n", | |
| "Already fetched 2617 images\n", | |
| "Already fetched 2618 images\n", | |
| "Already fetched 2619 images\n", | |
| "Already fetched 2620 images\n", | |
| "Already fetched 2621 images\n", | |
| "Already fetched 2622 images\n", | |
| "Already fetched 2623 images\n", | |
| "Already fetched 2624 images\n", | |
| "Already fetched 2625 images\n", | |
| "Already fetched 2626 images\n", | |
| "Already fetched 2627 images\n", | |
| "Already fetched 2628 images\n", | |
| "Already fetched 2629 images\n", | |
| "Already fetched 2630 images\n", | |
| "Already fetched 2631 images\n", | |
| "Already fetched 2632 images\n", | |
| "Already fetched 2633 images\n", | |
| "Already fetched 2634 images\n", | |
| "Already fetched 2635 images\n", | |
| "Already fetched 2636 images\n", | |
| "Already fetched 2637 images\n", | |
| "Already fetched 2638 images\n", | |
| "Already fetched 2639 images\n", | |
| "Already fetched 2640 images\n", | |
| "Already fetched 2641 images\n", | |
| "Already fetched 2642 images\n", | |
| "Already fetched 2643 images\n", | |
| "Already fetched 2644 images\n", | |
| "Already fetched 2645 images\n", | |
| "Already fetched 2646 images\n", | |
| "Already fetched 2647 images\n", | |
| "Already fetched 2648 images\n", | |
| "Already fetched 2649 images\n", | |
| "Already fetched 2650 images\n", | |
| "Already fetched 2651 images\n", | |
| "Already fetched 2652 images\n", | |
| "Already fetched 2653 images\n", | |
| "Already fetched 2654 images\n", | |
| "Already fetched 2655 images\n", | |
| "Already fetched 2656 images\n", | |
| "Already fetched 2657 images\n", | |
| "Already fetched 2658 images\n", | |
| "Already fetched 2659 images\n", | |
| "Already fetched 2660 images\n", | |
| "Already fetched 2661 images\n", | |
| "Already fetched 2662 images\n", | |
| "Already fetched 2663 images\n", | |
| "Already fetched 2664 images\n", | |
| "Already fetched 2665 images\n", | |
| "Already fetched 2666 images\n", | |
| "Already fetched 2667 images\n", | |
| "Already fetched 2668 images\n", | |
| "Already fetched 2669 images\n", | |
| "Already fetched 2670 images\n", | |
| "Already fetched 2671 images\n", | |
| "Already fetched 2672 images\n", | |
| "Already fetched 2673 images\n", | |
| "Already fetched 2674 images\n", | |
| "Already fetched 2675 images\n", | |
| "Already fetched 2676 images\n", | |
| "Already fetched 2677 images\n", | |
| "Already fetched 2678 images\n", | |
| "Already fetched 2679 images\n", | |
| "Already fetched 2680 images\n", | |
| "Already fetched 2681 images\n", | |
| "Already fetched 2682 images\n", | |
| "Already fetched 2683 images\n", | |
| "Already fetched 2684 images\n", | |
| "Already fetched 2685 images\n", | |
| "Already fetched 2686 images\n", | |
| "Already fetched 2687 images\n", | |
| "Already fetched 2688 images\n", | |
| "Already fetched 2689 images\n", | |
| "Already fetched 2690 images\n", | |
| "Already fetched 2691 images\n", | |
| "Already fetched 2692 images\n", | |
| "Already fetched 2693 images\n", | |
| "Already fetched 2694 images\n", | |
| "Already fetched 2695 images\n", | |
| "Already fetched 2696 images\n", | |
| "Already fetched 2697 images\n", | |
| "Already fetched 2698 images\n", | |
| "Already fetched 2699 images\n", | |
| "Already fetched 2700 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2700\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2701 images\n", | |
| "Already fetched 2702 images\n", | |
| "Already fetched 2703 images\n", | |
| "Already fetched 2704 images\n", | |
| "Already fetched 2705 images\n", | |
| "Already fetched 2706 images\n", | |
| "Already fetched 2707 images\n", | |
| "Already fetched 2708 images\n", | |
| "Already fetched 2709 images\n", | |
| "Already fetched 2710 images\n", | |
| "Already fetched 2711 images\n", | |
| "Already fetched 2712 images\n", | |
| "Already fetched 2713 images\n", | |
| "Already fetched 2714 images\n", | |
| "Already fetched 2715 images\n", | |
| "Already fetched 2716 images\n", | |
| "Already fetched 2717 images\n", | |
| "Already fetched 2718 images\n", | |
| "Already fetched 2719 images\n", | |
| "Already fetched 2720 images\n", | |
| "Already fetched 2721 images\n", | |
| "Already fetched 2722 images\n", | |
| "Already fetched 2723 images\n", | |
| "Already fetched 2724 images\n", | |
| "Already fetched 2725 images\n", | |
| "Already fetched 2726 images\n", | |
| "Already fetched 2727 images\n", | |
| "Already fetched 2728 images\n", | |
| "Already fetched 2729 images\n", | |
| "Already fetched 2730 images\n", | |
| "Already fetched 2731 images\n", | |
| "Already fetched 2732 images\n", | |
| "Already fetched 2733 images\n", | |
| "Already fetched 2734 images\n", | |
| "Already fetched 2735 images\n", | |
| "Already fetched 2736 images\n", | |
| "Already fetched 2737 images\n", | |
| "Already fetched 2738 images\n", | |
| "Already fetched 2739 images\n", | |
| "Already fetched 2740 images\n", | |
| "Already fetched 2741 images\n", | |
| "Already fetched 2742 images\n", | |
| "Already fetched 2743 images\n", | |
| "Already fetched 2744 images\n", | |
| "Already fetched 2745 images\n", | |
| "Already fetched 2746 images\n", | |
| "Already fetched 2747 images\n", | |
| "Already fetched 2748 images\n", | |
| "Already fetched 2749 images\n", | |
| "Already fetched 2750 images\n", | |
| "Already fetched 2751 images\n", | |
| "Already fetched 2752 images\n", | |
| "Already fetched 2753 images\n", | |
| "Already fetched 2754 images\n", | |
| "Already fetched 2755 images\n", | |
| "Already fetched 2756 images\n", | |
| "Already fetched 2757 images\n", | |
| "Already fetched 2758 images\n", | |
| "Already fetched 2759 images\n", | |
| "Already fetched 2760 images\n", | |
| "Already fetched 2761 images\n", | |
| "Already fetched 2762 images\n", | |
| "Already fetched 2763 images\n", | |
| "Already fetched 2764 images\n", | |
| "Already fetched 2765 images\n", | |
| "Already fetched 2766 images\n", | |
| "Already fetched 2767 images\n", | |
| "Already fetched 2768 images\n", | |
| "Already fetched 2769 images\n", | |
| "Already fetched 2770 images\n", | |
| "Already fetched 2771 images\n", | |
| "Already fetched 2772 images\n", | |
| "Already fetched 2773 images\n", | |
| "Already fetched 2774 images\n", | |
| "Already fetched 2775 images\n", | |
| "Already fetched 2776 images\n", | |
| "Already fetched 2777 images\n", | |
| "Already fetched 2778 images\n", | |
| "Already fetched 2779 images\n", | |
| "Already fetched 2780 images\n", | |
| "Already fetched 2781 images\n", | |
| "Already fetched 2782 images\n", | |
| "Already fetched 2783 images\n", | |
| "Already fetched 2784 images\n", | |
| "Already fetched 2785 images\n", | |
| "Already fetched 2786 images\n", | |
| "Already fetched 2787 images\n", | |
| "Already fetched 2788 images\n", | |
| "Already fetched 2789 images\n", | |
| "Already fetched 2790 images\n", | |
| "Already fetched 2791 images\n", | |
| "Already fetched 2792 images\n", | |
| "Already fetched 2793 images\n", | |
| "Already fetched 2794 images\n", | |
| "Already fetched 2795 images\n", | |
| "Already fetched 2796 images\n", | |
| "Already fetched 2797 images\n", | |
| "Already fetched 2798 images\n", | |
| "Already fetched 2799 images\n", | |
| "Already fetched 2800 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2800\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2801 images\n", | |
| "Already fetched 2802 images\n", | |
| "Already fetched 2803 images\n", | |
| "Already fetched 2804 images\n", | |
| "Already fetched 2805 images\n", | |
| "Already fetched 2806 images\n", | |
| "Already fetched 2807 images\n", | |
| "Already fetched 2808 images\n", | |
| "Already fetched 2809 images\n", | |
| "Already fetched 2810 images\n", | |
| "Already fetched 2811 images\n", | |
| "Already fetched 2812 images\n", | |
| "Already fetched 2813 images\n", | |
| "Already fetched 2814 images\n", | |
| "Already fetched 2815 images\n", | |
| "Already fetched 2816 images\n", | |
| "Already fetched 2817 images\n", | |
| "Already fetched 2818 images\n", | |
| "Already fetched 2819 images\n", | |
| "Already fetched 2820 images\n", | |
| "Already fetched 2821 images\n", | |
| "Already fetched 2822 images\n", | |
| "Already fetched 2823 images\n", | |
| "Already fetched 2824 images\n", | |
| "Already fetched 2825 images\n", | |
| "Already fetched 2826 images\n", | |
| "Already fetched 2827 images\n", | |
| "Already fetched 2828 images\n", | |
| "Already fetched 2829 images\n", | |
| "Already fetched 2830 images\n", | |
| "Already fetched 2831 images\n", | |
| "Already fetched 2832 images\n", | |
| "Already fetched 2833 images\n", | |
| "Already fetched 2834 images\n", | |
| "Already fetched 2835 images\n", | |
| "Already fetched 2836 images\n", | |
| "Already fetched 2837 images\n", | |
| "Already fetched 2838 images\n", | |
| "Already fetched 2839 images\n", | |
| "Already fetched 2840 images\n", | |
| "Already fetched 2841 images\n", | |
| "Already fetched 2842 images\n", | |
| "Already fetched 2843 images\n", | |
| "Already fetched 2844 images\n", | |
| "Already fetched 2845 images\n", | |
| "Already fetched 2846 images\n", | |
| "Already fetched 2847 images\n", | |
| "Already fetched 2848 images\n", | |
| "Already fetched 2849 images\n", | |
| "Already fetched 2850 images\n", | |
| "Already fetched 2851 images\n", | |
| "Already fetched 2852 images\n", | |
| "Already fetched 2853 images\n", | |
| "Already fetched 2854 images\n", | |
| "Already fetched 2855 images\n", | |
| "Already fetched 2856 images\n", | |
| "Already fetched 2857 images\n", | |
| "Already fetched 2858 images\n", | |
| "Already fetched 2859 images\n", | |
| "Already fetched 2860 images\n", | |
| "Already fetched 2861 images\n", | |
| "Already fetched 2862 images\n", | |
| "Already fetched 2863 images\n", | |
| "Already fetched 2864 images\n", | |
| "Already fetched 2865 images\n", | |
| "Already fetched 2866 images\n", | |
| "Already fetched 2867 images\n", | |
| "Already fetched 2868 images\n", | |
| "Already fetched 2869 images\n", | |
| "Already fetched 2870 images\n", | |
| "Already fetched 2871 images\n", | |
| "Already fetched 2872 images\n", | |
| "Already fetched 2873 images\n", | |
| "Already fetched 2874 images\n", | |
| "Already fetched 2875 images\n", | |
| "Already fetched 2876 images\n", | |
| "Already fetched 2877 images\n", | |
| "Already fetched 2878 images\n", | |
| "Already fetched 2879 images\n", | |
| "Already fetched 2880 images\n", | |
| "Already fetched 2881 images\n", | |
| "Already fetched 2882 images\n", | |
| "Already fetched 2883 images\n", | |
| "Already fetched 2884 images\n", | |
| "Already fetched 2885 images\n", | |
| "Already fetched 2886 images\n", | |
| "Already fetched 2887 images\n", | |
| "Already fetched 2888 images\n", | |
| "Already fetched 2889 images\n", | |
| "Already fetched 2890 images\n", | |
| "Already fetched 2891 images\n", | |
| "Already fetched 2892 images\n", | |
| "Already fetched 2893 images\n", | |
| "Already fetched 2894 images\n", | |
| "Already fetched 2895 images\n", | |
| "Already fetched 2896 images\n", | |
| "Already fetched 2897 images\n", | |
| "Already fetched 2898 images\n", | |
| "Already fetched 2899 images\n", | |
| "Already fetched 2900 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=2900\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 2901 images\n", | |
| "Already fetched 2902 images\n", | |
| "Already fetched 2903 images\n", | |
| "Already fetched 2904 images\n", | |
| "Already fetched 2905 images\n", | |
| "Already fetched 2906 images\n", | |
| "Already fetched 2907 images\n", | |
| "Already fetched 2908 images\n", | |
| "Already fetched 2909 images\n", | |
| "Already fetched 2910 images\n", | |
| "Already fetched 2911 images\n", | |
| "Already fetched 2912 images\n", | |
| "Already fetched 2913 images\n", | |
| "Already fetched 2914 images\n", | |
| "Already fetched 2915 images\n", | |
| "Already fetched 2916 images\n", | |
| "Already fetched 2917 images\n", | |
| "Already fetched 2918 images\n", | |
| "Already fetched 2919 images\n", | |
| "Already fetched 2920 images\n", | |
| "Already fetched 2921 images\n", | |
| "Already fetched 2922 images\n", | |
| "Already fetched 2923 images\n", | |
| "Already fetched 2924 images\n", | |
| "Already fetched 2925 images\n", | |
| "Already fetched 2926 images\n", | |
| "Already fetched 2927 images\n", | |
| "Already fetched 2928 images\n", | |
| "Already fetched 2929 images\n", | |
| "Already fetched 2930 images\n", | |
| "Already fetched 2931 images\n", | |
| "Already fetched 2932 images\n", | |
| "Already fetched 2933 images\n", | |
| "Already fetched 2934 images\n", | |
| "Already fetched 2935 images\n", | |
| "Already fetched 2936 images\n", | |
| "Already fetched 2937 images\n", | |
| "Already fetched 2938 images\n", | |
| "Already fetched 2939 images\n", | |
| "Already fetched 2940 images\n", | |
| "Already fetched 2941 images\n", | |
| "Already fetched 2942 images\n", | |
| "Already fetched 2943 images\n", | |
| "Already fetched 2944 images\n", | |
| "Already fetched 2945 images\n", | |
| "Already fetched 2946 images\n", | |
| "Already fetched 2947 images\n", | |
| "Already fetched 2948 images\n", | |
| "Already fetched 2949 images\n", | |
| "Already fetched 2950 images\n", | |
| "Already fetched 2951 images\n", | |
| "Already fetched 2952 images\n", | |
| "Already fetched 2953 images\n", | |
| "Already fetched 2954 images\n", | |
| "Already fetched 2955 images\n", | |
| "Already fetched 2956 images\n", | |
| "Already fetched 2957 images\n", | |
| "Already fetched 2958 images\n", | |
| "Already fetched 2959 images\n", | |
| "Already fetched 2960 images\n", | |
| "Already fetched 2961 images\n", | |
| "Already fetched 2962 images\n", | |
| "Already fetched 2963 images\n", | |
| "Already fetched 2964 images\n", | |
| "Already fetched 2965 images\n", | |
| "Already fetched 2966 images\n", | |
| "Already fetched 2967 images\n", | |
| "Already fetched 2968 images\n", | |
| "Already fetched 2969 images\n", | |
| "Already fetched 2970 images\n", | |
| "Already fetched 2971 images\n", | |
| "Already fetched 2972 images\n", | |
| "Already fetched 2973 images\n", | |
| "Already fetched 2974 images\n", | |
| "Already fetched 2975 images\n", | |
| "Already fetched 2976 images\n", | |
| "Already fetched 2977 images\n", | |
| "Already fetched 2978 images\n", | |
| "Already fetched 2979 images\n", | |
| "Already fetched 2980 images\n", | |
| "Already fetched 2981 images\n", | |
| "Already fetched 2982 images\n", | |
| "Already fetched 2983 images\n", | |
| "Already fetched 2984 images\n", | |
| "Already fetched 2985 images\n", | |
| "Already fetched 2986 images\n", | |
| "Already fetched 2987 images\n", | |
| "Already fetched 2988 images\n", | |
| "Already fetched 2989 images\n", | |
| "Already fetched 2990 images\n", | |
| "Already fetched 2991 images\n", | |
| "Already fetched 2992 images\n", | |
| "Already fetched 2993 images\n", | |
| "Already fetched 2994 images\n", | |
| "Already fetched 2995 images\n", | |
| "Already fetched 2996 images\n", | |
| "Already fetched 2997 images\n", | |
| "Already fetched 2998 images\n", | |
| "Already fetched 2999 images\n", | |
| "Already fetched 3000 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3000\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3001 images\n", | |
| "Already fetched 3002 images\n", | |
| "Already fetched 3003 images\n", | |
| "Already fetched 3004 images\n", | |
| "Already fetched 3005 images\n", | |
| "Already fetched 3006 images\n", | |
| "Already fetched 3007 images\n", | |
| "Already fetched 3008 images\n", | |
| "Already fetched 3009 images\n", | |
| "Already fetched 3010 images\n", | |
| "Already fetched 3011 images\n", | |
| "Already fetched 3012 images\n", | |
| "Already fetched 3013 images\n", | |
| "Already fetched 3014 images\n", | |
| "Already fetched 3015 images\n", | |
| "Already fetched 3016 images\n", | |
| "Already fetched 3017 images\n", | |
| "Already fetched 3018 images\n", | |
| "Already fetched 3019 images\n", | |
| "Already fetched 3020 images\n", | |
| "Already fetched 3021 images\n", | |
| "Already fetched 3022 images\n", | |
| "Already fetched 3023 images\n", | |
| "Already fetched 3024 images\n", | |
| "Already fetched 3025 images\n", | |
| "Already fetched 3026 images\n", | |
| "Already fetched 3027 images\n", | |
| "Already fetched 3028 images\n", | |
| "Already fetched 3029 images\n", | |
| "Already fetched 3030 images\n", | |
| "Already fetched 3031 images\n", | |
| "Already fetched 3032 images\n", | |
| "Already fetched 3033 images\n", | |
| "Already fetched 3034 images\n", | |
| "Already fetched 3035 images\n", | |
| "Already fetched 3036 images\n", | |
| "Already fetched 3037 images\n", | |
| "Already fetched 3038 images\n", | |
| "Already fetched 3039 images\n", | |
| "Already fetched 3040 images\n", | |
| "Already fetched 3041 images\n", | |
| "Already fetched 3042 images\n", | |
| "Already fetched 3043 images\n", | |
| "Already fetched 3044 images\n", | |
| "Already fetched 3045 images\n", | |
| "Already fetched 3046 images\n", | |
| "Already fetched 3047 images\n", | |
| "Already fetched 3048 images\n", | |
| "Already fetched 3049 images\n", | |
| "Already fetched 3050 images\n", | |
| "Already fetched 3051 images\n", | |
| "Already fetched 3052 images\n", | |
| "Already fetched 3053 images\n", | |
| "Already fetched 3054 images\n", | |
| "Already fetched 3055 images\n", | |
| "Already fetched 3056 images\n", | |
| "Already fetched 3057 images\n", | |
| "Already fetched 3058 images\n", | |
| "Already fetched 3059 images\n", | |
| "Already fetched 3060 images\n", | |
| "Already fetched 3061 images\n", | |
| "Already fetched 3062 images\n", | |
| "Already fetched 3063 images\n", | |
| "Already fetched 3064 images\n", | |
| "Already fetched 3065 images\n", | |
| "Already fetched 3066 images\n", | |
| "Already fetched 3067 images\n", | |
| "Already fetched 3068 images\n", | |
| "Already fetched 3069 images\n", | |
| "Already fetched 3070 images\n", | |
| "Already fetched 3071 images\n", | |
| "Already fetched 3072 images\n", | |
| "Already fetched 3073 images\n", | |
| "Already fetched 3074 images\n", | |
| "Already fetched 3075 images\n", | |
| "Already fetched 3076 images\n", | |
| "Already fetched 3077 images\n", | |
| "Already fetched 3078 images\n", | |
| "Already fetched 3079 images\n", | |
| "Already fetched 3080 images\n", | |
| "Already fetched 3081 images\n", | |
| "Already fetched 3082 images\n", | |
| "Already fetched 3083 images\n", | |
| "Already fetched 3084 images\n", | |
| "Already fetched 3085 images\n", | |
| "Already fetched 3086 images\n", | |
| "Already fetched 3087 images\n", | |
| "Already fetched 3088 images\n", | |
| "Already fetched 3089 images\n", | |
| "Already fetched 3090 images\n", | |
| "Already fetched 3091 images\n", | |
| "Already fetched 3092 images\n", | |
| "Already fetched 3093 images\n", | |
| "Already fetched 3094 images\n", | |
| "Already fetched 3095 images\n", | |
| "Already fetched 3096 images\n", | |
| "Already fetched 3097 images\n", | |
| "Already fetched 3098 images\n", | |
| "Already fetched 3099 images\n", | |
| "Already fetched 3100 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3100\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3101 images\n", | |
| "Already fetched 3102 images\n", | |
| "Already fetched 3103 images\n", | |
| "Already fetched 3104 images\n", | |
| "Already fetched 3105 images\n", | |
| "Already fetched 3106 images\n", | |
| "Already fetched 3107 images\n", | |
| "Already fetched 3108 images\n", | |
| "Already fetched 3109 images\n", | |
| "Already fetched 3110 images\n", | |
| "Already fetched 3111 images\n", | |
| "Already fetched 3112 images\n", | |
| "Already fetched 3113 images\n", | |
| "Already fetched 3114 images\n", | |
| "Already fetched 3115 images\n", | |
| "Already fetched 3116 images\n", | |
| "Already fetched 3117 images\n", | |
| "Already fetched 3118 images\n", | |
| "Already fetched 3119 images\n", | |
| "Already fetched 3120 images\n", | |
| "Already fetched 3121 images\n", | |
| "Already fetched 3122 images\n", | |
| "Already fetched 3123 images\n", | |
| "Already fetched 3124 images\n", | |
| "Already fetched 3125 images\n", | |
| "Already fetched 3126 images\n", | |
| "Already fetched 3127 images\n", | |
| "Already fetched 3128 images\n", | |
| "Already fetched 3129 images\n", | |
| "Already fetched 3130 images\n", | |
| "Already fetched 3131 images\n", | |
| "Already fetched 3132 images\n", | |
| "Already fetched 3133 images\n", | |
| "Already fetched 3134 images\n", | |
| "Already fetched 3135 images\n", | |
| "Already fetched 3136 images\n", | |
| "Already fetched 3137 images\n", | |
| "Already fetched 3138 images\n", | |
| "Already fetched 3139 images\n", | |
| "Already fetched 3140 images\n", | |
| "Already fetched 3141 images\n", | |
| "Already fetched 3142 images\n", | |
| "Already fetched 3143 images\n", | |
| "Already fetched 3144 images\n", | |
| "Already fetched 3145 images\n", | |
| "Already fetched 3146 images\n", | |
| "Already fetched 3147 images\n", | |
| "Already fetched 3148 images\n", | |
| "Already fetched 3149 images\n", | |
| "Already fetched 3150 images\n", | |
| "Already fetched 3151 images\n", | |
| "Already fetched 3152 images\n", | |
| "Already fetched 3153 images\n", | |
| "Already fetched 3154 images\n", | |
| "Already fetched 3155 images\n", | |
| "Already fetched 3156 images\n", | |
| "Already fetched 3157 images\n", | |
| "Already fetched 3158 images\n", | |
| "Already fetched 3159 images\n", | |
| "Already fetched 3160 images\n", | |
| "Already fetched 3161 images\n", | |
| "Already fetched 3162 images\n", | |
| "Already fetched 3163 images\n", | |
| "Already fetched 3164 images\n", | |
| "Already fetched 3165 images\n", | |
| "Already fetched 3166 images\n", | |
| "Already fetched 3167 images\n", | |
| "Already fetched 3168 images\n", | |
| "Already fetched 3169 images\n", | |
| "Already fetched 3170 images\n", | |
| "Already fetched 3171 images\n", | |
| "Already fetched 3172 images\n", | |
| "Already fetched 3173 images\n", | |
| "Already fetched 3174 images\n", | |
| "Already fetched 3175 images\n", | |
| "Already fetched 3176 images\n", | |
| "Already fetched 3177 images\n", | |
| "Already fetched 3178 images\n", | |
| "Already fetched 3179 images\n", | |
| "Already fetched 3180 images\n", | |
| "Already fetched 3181 images\n", | |
| "Already fetched 3182 images\n", | |
| "Already fetched 3183 images\n", | |
| "Already fetched 3184 images\n", | |
| "Already fetched 3185 images\n", | |
| "Already fetched 3186 images\n", | |
| "Already fetched 3187 images\n", | |
| "Already fetched 3188 images\n", | |
| "Already fetched 3189 images\n", | |
| "Already fetched 3190 images\n", | |
| "Already fetched 3191 images\n", | |
| "Already fetched 3192 images\n", | |
| "Already fetched 3193 images\n", | |
| "Already fetched 3194 images\n", | |
| "Already fetched 3195 images\n", | |
| "Already fetched 3196 images\n", | |
| "Already fetched 3197 images\n", | |
| "Already fetched 3198 images\n", | |
| "Already fetched 3199 images\n", | |
| "Already fetched 3200 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3200\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3201 images\n", | |
| "Already fetched 3202 images\n", | |
| "Already fetched 3203 images\n", | |
| "Already fetched 3204 images\n", | |
| "Already fetched 3205 images\n", | |
| "Already fetched 3206 images\n", | |
| "Already fetched 3207 images\n", | |
| "Already fetched 3208 images\n", | |
| "Already fetched 3209 images\n", | |
| "Already fetched 3210 images\n", | |
| "Already fetched 3211 images\n", | |
| "Already fetched 3212 images\n", | |
| "Already fetched 3213 images\n", | |
| "Already fetched 3214 images\n", | |
| "Already fetched 3215 images\n", | |
| "Already fetched 3216 images\n", | |
| "Already fetched 3217 images\n", | |
| "Already fetched 3218 images\n", | |
| "Already fetched 3219 images\n", | |
| "Already fetched 3220 images\n", | |
| "Already fetched 3221 images\n", | |
| "Already fetched 3222 images\n", | |
| "Already fetched 3223 images\n", | |
| "Already fetched 3224 images\n", | |
| "Already fetched 3225 images\n", | |
| "Already fetched 3226 images\n", | |
| "Already fetched 3227 images\n", | |
| "Already fetched 3228 images\n", | |
| "Already fetched 3229 images\n", | |
| "Already fetched 3230 images\n", | |
| "Already fetched 3231 images\n", | |
| "Already fetched 3232 images\n", | |
| "Already fetched 3233 images\n", | |
| "Already fetched 3234 images\n", | |
| "Already fetched 3235 images\n", | |
| "Already fetched 3236 images\n", | |
| "Already fetched 3237 images\n", | |
| "Already fetched 3238 images\n", | |
| "Already fetched 3239 images\n", | |
| "Already fetched 3240 images\n", | |
| "Already fetched 3241 images\n", | |
| "Already fetched 3242 images\n", | |
| "Already fetched 3243 images\n", | |
| "Already fetched 3244 images\n", | |
| "Already fetched 3245 images\n", | |
| "Already fetched 3246 images\n", | |
| "Already fetched 3247 images\n", | |
| "Already fetched 3248 images\n", | |
| "Already fetched 3249 images\n", | |
| "Already fetched 3250 images\n", | |
| "Already fetched 3251 images\n", | |
| "Already fetched 3252 images\n", | |
| "Already fetched 3253 images\n", | |
| "Already fetched 3254 images\n", | |
| "Already fetched 3255 images\n", | |
| "Already fetched 3256 images\n", | |
| "Already fetched 3257 images\n", | |
| "Already fetched 3258 images\n", | |
| "Already fetched 3259 images\n", | |
| "Already fetched 3260 images\n", | |
| "Already fetched 3261 images\n", | |
| "Already fetched 3262 images\n", | |
| "Already fetched 3263 images\n", | |
| "Already fetched 3264 images\n", | |
| "Already fetched 3265 images\n", | |
| "Already fetched 3266 images\n", | |
| "Already fetched 3267 images\n", | |
| "Already fetched 3268 images\n", | |
| "Already fetched 3269 images\n", | |
| "Already fetched 3270 images\n", | |
| "Already fetched 3271 images\n", | |
| "Already fetched 3272 images\n", | |
| "Already fetched 3273 images\n", | |
| "Already fetched 3274 images\n", | |
| "Already fetched 3275 images\n", | |
| "Already fetched 3276 images\n", | |
| "Already fetched 3277 images\n", | |
| "Already fetched 3278 images\n", | |
| "Already fetched 3279 images\n", | |
| "Already fetched 3280 images\n", | |
| "Already fetched 3281 images\n", | |
| "Already fetched 3282 images\n", | |
| "Already fetched 3283 images\n", | |
| "Already fetched 3284 images\n", | |
| "Already fetched 3285 images\n", | |
| "Already fetched 3286 images\n", | |
| "Already fetched 3287 images\n", | |
| "Already fetched 3288 images\n", | |
| "Already fetched 3289 images\n", | |
| "Already fetched 3290 images\n", | |
| "Already fetched 3291 images\n", | |
| "Already fetched 3292 images\n", | |
| "Already fetched 3293 images\n", | |
| "Already fetched 3294 images\n", | |
| "Already fetched 3295 images\n", | |
| "Already fetched 3296 images\n", | |
| "Already fetched 3297 images\n", | |
| "Already fetched 3298 images\n", | |
| "Already fetched 3299 images\n", | |
| "Already fetched 3300 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3300\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3301 images\n", | |
| "Already fetched 3302 images\n", | |
| "Already fetched 3303 images\n", | |
| "Already fetched 3304 images\n", | |
| "Already fetched 3305 images\n", | |
| "Already fetched 3306 images\n", | |
| "Already fetched 3307 images\n", | |
| "Already fetched 3308 images\n", | |
| "Already fetched 3309 images\n", | |
| "Already fetched 3310 images\n", | |
| "Already fetched 3311 images\n", | |
| "Already fetched 3312 images\n", | |
| "Already fetched 3313 images\n", | |
| "Already fetched 3314 images\n", | |
| "Already fetched 3315 images\n", | |
| "Already fetched 3316 images\n", | |
| "Already fetched 3317 images\n", | |
| "Already fetched 3318 images\n", | |
| "Already fetched 3319 images\n", | |
| "Already fetched 3320 images\n", | |
| "Already fetched 3321 images\n", | |
| "Already fetched 3322 images\n", | |
| "Already fetched 3323 images\n", | |
| "Already fetched 3324 images\n", | |
| "Already fetched 3325 images\n", | |
| "Already fetched 3326 images\n", | |
| "Already fetched 3327 images\n", | |
| "Already fetched 3328 images\n", | |
| "Already fetched 3329 images\n", | |
| "Already fetched 3330 images\n", | |
| "Already fetched 3331 images\n", | |
| "Already fetched 3332 images\n", | |
| "Already fetched 3333 images\n", | |
| "Already fetched 3334 images\n", | |
| "Already fetched 3335 images\n", | |
| "Already fetched 3336 images\n", | |
| "Already fetched 3337 images\n", | |
| "Already fetched 3338 images\n", | |
| "Already fetched 3339 images\n", | |
| "Already fetched 3340 images\n", | |
| "Already fetched 3341 images\n", | |
| "Already fetched 3342 images\n", | |
| "Already fetched 3343 images\n", | |
| "Already fetched 3344 images\n", | |
| "Already fetched 3345 images\n", | |
| "Already fetched 3346 images\n", | |
| "Already fetched 3347 images\n", | |
| "Already fetched 3348 images\n", | |
| "Already fetched 3349 images\n", | |
| "Already fetched 3350 images\n", | |
| "Already fetched 3351 images\n", | |
| "Already fetched 3352 images\n", | |
| "Already fetched 3353 images\n", | |
| "Already fetched 3354 images\n", | |
| "Already fetched 3355 images\n", | |
| "Already fetched 3356 images\n", | |
| "Already fetched 3357 images\n", | |
| "Already fetched 3358 images\n", | |
| "Already fetched 3359 images\n", | |
| "Already fetched 3360 images\n", | |
| "Already fetched 3361 images\n", | |
| "Already fetched 3362 images\n", | |
| "Already fetched 3363 images\n", | |
| "Already fetched 3364 images\n", | |
| "Already fetched 3365 images\n", | |
| "Already fetched 3366 images\n", | |
| "Already fetched 3367 images\n", | |
| "Already fetched 3368 images\n", | |
| "Already fetched 3369 images\n", | |
| "Already fetched 3370 images\n", | |
| "Already fetched 3371 images\n", | |
| "Already fetched 3372 images\n", | |
| "Already fetched 3373 images\n", | |
| "Already fetched 3374 images\n", | |
| "Already fetched 3375 images\n", | |
| "Already fetched 3376 images\n", | |
| "Already fetched 3377 images\n", | |
| "Already fetched 3378 images\n", | |
| "Already fetched 3379 images\n", | |
| "Already fetched 3380 images\n", | |
| "Already fetched 3381 images\n", | |
| "Already fetched 3382 images\n", | |
| "Already fetched 3383 images\n", | |
| "Already fetched 3384 images\n", | |
| "Already fetched 3385 images\n", | |
| "Already fetched 3386 images\n", | |
| "Already fetched 3387 images\n", | |
| "Already fetched 3388 images\n", | |
| "Already fetched 3389 images\n", | |
| "Already fetched 3390 images\n", | |
| "Already fetched 3391 images\n", | |
| "Already fetched 3392 images\n", | |
| "Already fetched 3393 images\n", | |
| "Already fetched 3394 images\n", | |
| "Already fetched 3395 images\n", | |
| "Already fetched 3396 images\n", | |
| "Already fetched 3397 images\n", | |
| "Already fetched 3398 images\n", | |
| "Already fetched 3399 images\n", | |
| "Already fetched 3400 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3400\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3401 images\n", | |
| "Already fetched 3402 images\n", | |
| "Already fetched 3403 images\n", | |
| "Already fetched 3404 images\n", | |
| "Already fetched 3405 images\n", | |
| "Already fetched 3406 images\n", | |
| "Already fetched 3407 images\n", | |
| "Already fetched 3408 images\n", | |
| "Already fetched 3409 images\n", | |
| "Already fetched 3410 images\n", | |
| "Already fetched 3411 images\n", | |
| "Already fetched 3412 images\n", | |
| "Already fetched 3413 images\n", | |
| "Already fetched 3414 images\n", | |
| "Already fetched 3415 images\n", | |
| "Already fetched 3416 images\n", | |
| "Already fetched 3417 images\n", | |
| "Already fetched 3418 images\n", | |
| "Already fetched 3419 images\n", | |
| "Already fetched 3420 images\n", | |
| "Already fetched 3421 images\n", | |
| "Already fetched 3422 images\n", | |
| "Already fetched 3423 images\n", | |
| "Already fetched 3424 images\n", | |
| "Already fetched 3425 images\n", | |
| "Already fetched 3426 images\n", | |
| "Already fetched 3427 images\n", | |
| "Already fetched 3428 images\n", | |
| "Already fetched 3429 images\n", | |
| "Already fetched 3430 images\n", | |
| "Already fetched 3431 images\n", | |
| "Already fetched 3432 images\n", | |
| "Already fetched 3433 images\n", | |
| "Already fetched 3434 images\n", | |
| "Already fetched 3435 images\n", | |
| "Already fetched 3436 images\n", | |
| "Already fetched 3437 images\n", | |
| "Already fetched 3438 images\n", | |
| "Already fetched 3439 images\n", | |
| "Already fetched 3440 images\n", | |
| "Already fetched 3441 images\n", | |
| "Already fetched 3442 images\n", | |
| "Already fetched 3443 images\n", | |
| "Already fetched 3444 images\n", | |
| "Already fetched 3445 images\n", | |
| "Already fetched 3446 images\n", | |
| "Already fetched 3447 images\n", | |
| "Already fetched 3448 images\n", | |
| "Already fetched 3449 images\n", | |
| "Already fetched 3450 images\n", | |
| "Already fetched 3451 images\n", | |
| "Already fetched 3452 images\n", | |
| "Already fetched 3453 images\n", | |
| "Already fetched 3454 images\n", | |
| "Already fetched 3455 images\n", | |
| "Already fetched 3456 images\n", | |
| "Already fetched 3457 images\n", | |
| "Already fetched 3458 images\n", | |
| "Already fetched 3459 images\n", | |
| "Already fetched 3460 images\n", | |
| "Already fetched 3461 images\n", | |
| "Already fetched 3462 images\n", | |
| "Already fetched 3463 images\n", | |
| "Already fetched 3464 images\n", | |
| "Already fetched 3465 images\n", | |
| "Already fetched 3466 images\n", | |
| "Already fetched 3467 images\n", | |
| "Already fetched 3468 images\n", | |
| "Already fetched 3469 images\n", | |
| "Already fetched 3470 images\n", | |
| "Already fetched 3471 images\n", | |
| "Already fetched 3472 images\n", | |
| "Already fetched 3473 images\n", | |
| "Already fetched 3474 images\n", | |
| "Already fetched 3475 images\n", | |
| "Already fetched 3476 images\n", | |
| "Already fetched 3477 images\n", | |
| "Already fetched 3478 images\n", | |
| "Already fetched 3479 images\n", | |
| "Already fetched 3480 images\n", | |
| "Already fetched 3481 images\n", | |
| "Already fetched 3482 images\n", | |
| "Already fetched 3483 images\n", | |
| "Already fetched 3484 images\n", | |
| "Already fetched 3485 images\n", | |
| "Already fetched 3486 images\n", | |
| "Already fetched 3487 images\n", | |
| "Already fetched 3488 images\n", | |
| "Already fetched 3489 images\n", | |
| "Already fetched 3490 images\n", | |
| "Already fetched 3491 images\n", | |
| "Already fetched 3492 images\n", | |
| "Already fetched 3493 images\n", | |
| "Already fetched 3494 images\n", | |
| "Already fetched 3495 images\n", | |
| "Already fetched 3496 images\n", | |
| "Already fetched 3497 images\n", | |
| "Already fetched 3498 images\n", | |
| "Already fetched 3499 images\n", | |
| "Already fetched 3500 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3500\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3501 images\n", | |
| "Already fetched 3502 images\n", | |
| "Already fetched 3503 images\n", | |
| "Already fetched 3504 images\n", | |
| "Already fetched 3505 images\n", | |
| "Already fetched 3506 images\n", | |
| "Already fetched 3507 images\n", | |
| "Already fetched 3508 images\n", | |
| "Already fetched 3509 images\n", | |
| "Already fetched 3510 images\n", | |
| "Already fetched 3511 images\n", | |
| "Already fetched 3512 images\n", | |
| "Already fetched 3513 images\n", | |
| "Already fetched 3514 images\n", | |
| "Already fetched 3515 images\n", | |
| "Already fetched 3516 images\n", | |
| "Already fetched 3517 images\n", | |
| "Already fetched 3518 images\n", | |
| "Already fetched 3519 images\n", | |
| "Already fetched 3520 images\n", | |
| "Already fetched 3521 images\n", | |
| "Already fetched 3522 images\n", | |
| "Already fetched 3523 images\n", | |
| "Already fetched 3524 images\n", | |
| "Already fetched 3525 images\n", | |
| "Already fetched 3526 images\n", | |
| "Already fetched 3527 images\n", | |
| "Already fetched 3528 images\n", | |
| "Already fetched 3529 images\n", | |
| "Already fetched 3530 images\n", | |
| "Already fetched 3531 images\n", | |
| "Already fetched 3532 images\n", | |
| "Already fetched 3533 images\n", | |
| "Already fetched 3534 images\n", | |
| "Already fetched 3535 images\n", | |
| "Already fetched 3536 images\n", | |
| "Already fetched 3537 images\n", | |
| "Already fetched 3538 images\n", | |
| "Already fetched 3539 images\n", | |
| "Already fetched 3540 images\n", | |
| "Already fetched 3541 images\n", | |
| "Already fetched 3542 images\n", | |
| "Already fetched 3543 images\n", | |
| "Already fetched 3544 images\n", | |
| "Already fetched 3545 images\n", | |
| "Already fetched 3546 images\n", | |
| "Already fetched 3547 images\n", | |
| "Already fetched 3548 images\n", | |
| "Already fetched 3549 images\n", | |
| "Already fetched 3550 images\n", | |
| "Already fetched 3551 images\n", | |
| "Already fetched 3552 images\n", | |
| "Already fetched 3553 images\n", | |
| "Already fetched 3554 images\n", | |
| "Already fetched 3555 images\n", | |
| "Already fetched 3556 images\n", | |
| "Already fetched 3557 images\n", | |
| "Already fetched 3558 images\n", | |
| "Already fetched 3559 images\n", | |
| "Already fetched 3560 images\n", | |
| "Already fetched 3561 images\n", | |
| "Already fetched 3562 images\n", | |
| "Already fetched 3563 images\n", | |
| "Already fetched 3564 images\n", | |
| "Already fetched 3565 images\n", | |
| "Already fetched 3566 images\n", | |
| "Already fetched 3567 images\n", | |
| "Already fetched 3568 images\n", | |
| "Already fetched 3569 images\n", | |
| "Already fetched 3570 images\n", | |
| "Already fetched 3571 images\n", | |
| "Already fetched 3572 images\n", | |
| "Already fetched 3573 images\n", | |
| "Already fetched 3574 images\n", | |
| "Already fetched 3575 images\n", | |
| "Already fetched 3576 images\n", | |
| "Already fetched 3577 images\n", | |
| "Already fetched 3578 images\n", | |
| "Already fetched 3579 images\n", | |
| "Already fetched 3580 images\n", | |
| "Already fetched 3581 images\n", | |
| "Already fetched 3582 images\n", | |
| "Already fetched 3583 images\n", | |
| "Already fetched 3584 images\n", | |
| "Already fetched 3585 images\n", | |
| "Already fetched 3586 images\n", | |
| "Already fetched 3587 images\n", | |
| "Already fetched 3588 images\n", | |
| "Already fetched 3589 images\n", | |
| "Already fetched 3590 images\n", | |
| "Already fetched 3591 images\n", | |
| "Already fetched 3592 images\n", | |
| "Already fetched 3593 images\n", | |
| "Already fetched 3594 images\n", | |
| "Already fetched 3595 images\n", | |
| "Already fetched 3596 images\n", | |
| "Already fetched 3597 images\n", | |
| "Already fetched 3598 images\n", | |
| "Already fetched 3599 images\n", | |
| "Already fetched 3600 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3600\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3601 images\n", | |
| "Already fetched 3602 images\n", | |
| "Already fetched 3603 images\n", | |
| "Already fetched 3604 images\n", | |
| "Already fetched 3605 images\n", | |
| "Already fetched 3606 images\n", | |
| "Already fetched 3607 images\n", | |
| "Already fetched 3608 images\n", | |
| "Already fetched 3609 images\n", | |
| "Already fetched 3610 images\n", | |
| "Already fetched 3611 images\n", | |
| "Already fetched 3612 images\n", | |
| "Already fetched 3613 images\n", | |
| "Already fetched 3614 images\n", | |
| "Already fetched 3615 images\n", | |
| "Already fetched 3616 images\n", | |
| "Already fetched 3617 images\n", | |
| "Already fetched 3618 images\n", | |
| "Already fetched 3619 images\n", | |
| "Already fetched 3620 images\n", | |
| "Already fetched 3621 images\n", | |
| "Already fetched 3622 images\n", | |
| "Already fetched 3623 images\n", | |
| "Already fetched 3624 images\n", | |
| "Already fetched 3625 images\n", | |
| "Already fetched 3626 images\n", | |
| "Already fetched 3627 images\n", | |
| "Already fetched 3628 images\n", | |
| "Already fetched 3629 images\n", | |
| "Already fetched 3630 images\n", | |
| "Already fetched 3631 images\n", | |
| "Already fetched 3632 images\n", | |
| "Already fetched 3633 images\n", | |
| "Already fetched 3634 images\n", | |
| "Already fetched 3635 images\n", | |
| "Already fetched 3636 images\n", | |
| "Already fetched 3637 images\n", | |
| "Already fetched 3638 images\n", | |
| "Already fetched 3639 images\n", | |
| "Already fetched 3640 images\n", | |
| "Already fetched 3641 images\n", | |
| "Already fetched 3642 images\n", | |
| "Already fetched 3643 images\n", | |
| "Already fetched 3644 images\n", | |
| "Already fetched 3645 images\n", | |
| "Already fetched 3646 images\n", | |
| "Already fetched 3647 images\n", | |
| "Already fetched 3648 images\n", | |
| "Already fetched 3649 images\n", | |
| "Already fetched 3650 images\n", | |
| "Already fetched 3651 images\n", | |
| "Already fetched 3652 images\n", | |
| "Already fetched 3653 images\n", | |
| "Already fetched 3654 images\n", | |
| "Already fetched 3655 images\n", | |
| "Already fetched 3656 images\n", | |
| "Already fetched 3657 images\n", | |
| "Already fetched 3658 images\n", | |
| "Already fetched 3659 images\n", | |
| "Already fetched 3660 images\n", | |
| "Already fetched 3661 images\n", | |
| "Already fetched 3662 images\n", | |
| "Already fetched 3663 images\n", | |
| "Already fetched 3664 images\n", | |
| "Already fetched 3665 images\n", | |
| "Already fetched 3666 images\n", | |
| "Already fetched 3667 images\n", | |
| "Already fetched 3668 images\n", | |
| "Already fetched 3669 images\n", | |
| "Already fetched 3670 images\n", | |
| "Already fetched 3671 images\n", | |
| "Already fetched 3672 images\n", | |
| "Already fetched 3673 images\n", | |
| "Already fetched 3674 images\n", | |
| "Already fetched 3675 images\n", | |
| "Already fetched 3676 images\n", | |
| "Already fetched 3677 images\n", | |
| "Already fetched 3678 images\n", | |
| "Already fetched 3679 images\n", | |
| "Already fetched 3680 images\n", | |
| "Already fetched 3681 images\n", | |
| "Already fetched 3682 images\n", | |
| "Already fetched 3683 images\n", | |
| "Already fetched 3684 images\n", | |
| "Already fetched 3685 images\n", | |
| "Already fetched 3686 images\n", | |
| "Already fetched 3687 images\n", | |
| "Already fetched 3688 images\n", | |
| "Already fetched 3689 images\n", | |
| "Already fetched 3690 images\n", | |
| "Already fetched 3691 images\n", | |
| "Already fetched 3692 images\n", | |
| "Already fetched 3693 images\n", | |
| "Already fetched 3694 images\n", | |
| "Already fetched 3695 images\n", | |
| "Already fetched 3696 images\n", | |
| "Already fetched 3697 images\n", | |
| "Already fetched 3698 images\n", | |
| "Already fetched 3699 images\n", | |
| "Already fetched 3700 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3700\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3701 images\n", | |
| "Already fetched 3702 images\n", | |
| "Already fetched 3703 images\n", | |
| "Already fetched 3704 images\n", | |
| "Already fetched 3705 images\n", | |
| "Already fetched 3706 images\n", | |
| "Already fetched 3707 images\n", | |
| "Already fetched 3708 images\n", | |
| "Already fetched 3709 images\n", | |
| "Already fetched 3710 images\n", | |
| "Already fetched 3711 images\n", | |
| "Already fetched 3712 images\n", | |
| "Already fetched 3713 images\n", | |
| "Already fetched 3714 images\n", | |
| "Already fetched 3715 images\n", | |
| "Already fetched 3716 images\n", | |
| "Already fetched 3717 images\n", | |
| "Already fetched 3718 images\n", | |
| "Already fetched 3719 images\n", | |
| "Already fetched 3720 images\n", | |
| "Already fetched 3721 images\n", | |
| "Already fetched 3722 images\n", | |
| "Already fetched 3723 images\n", | |
| "Already fetched 3724 images\n", | |
| "Already fetched 3725 images\n", | |
| "Already fetched 3726 images\n", | |
| "Already fetched 3727 images\n", | |
| "Already fetched 3728 images\n", | |
| "Already fetched 3729 images\n", | |
| "Already fetched 3730 images\n", | |
| "Already fetched 3731 images\n", | |
| "Already fetched 3732 images\n", | |
| "Already fetched 3733 images\n", | |
| "Already fetched 3734 images\n", | |
| "Already fetched 3735 images\n", | |
| "Already fetched 3736 images\n", | |
| "Already fetched 3737 images\n", | |
| "Already fetched 3738 images\n", | |
| "Already fetched 3739 images\n", | |
| "Already fetched 3740 images\n", | |
| "Already fetched 3741 images\n", | |
| "Already fetched 3742 images\n", | |
| "Already fetched 3743 images\n", | |
| "Already fetched 3744 images\n", | |
| "Already fetched 3745 images\n", | |
| "Already fetched 3746 images\n", | |
| "Already fetched 3747 images\n", | |
| "Already fetched 3748 images\n", | |
| "Already fetched 3749 images\n", | |
| "Already fetched 3750 images\n", | |
| "Already fetched 3751 images\n", | |
| "Already fetched 3752 images\n", | |
| "Already fetched 3753 images\n", | |
| "Already fetched 3754 images\n", | |
| "Already fetched 3755 images\n", | |
| "Already fetched 3756 images\n", | |
| "Already fetched 3757 images\n", | |
| "Already fetched 3758 images\n", | |
| "Already fetched 3759 images\n", | |
| "Already fetched 3760 images\n", | |
| "Already fetched 3761 images\n", | |
| "Already fetched 3762 images\n", | |
| "Already fetched 3763 images\n", | |
| "Already fetched 3764 images\n", | |
| "Already fetched 3765 images\n", | |
| "Already fetched 3766 images\n", | |
| "Already fetched 3767 images\n", | |
| "Already fetched 3768 images\n", | |
| "Already fetched 3769 images\n", | |
| "Already fetched 3770 images\n", | |
| "Already fetched 3771 images\n", | |
| "Already fetched 3772 images\n", | |
| "Already fetched 3773 images\n", | |
| "Already fetched 3774 images\n", | |
| "Already fetched 3775 images\n", | |
| "Already fetched 3776 images\n", | |
| "Already fetched 3777 images\n", | |
| "Already fetched 3778 images\n", | |
| "Already fetched 3779 images\n", | |
| "Already fetched 3780 images\n", | |
| "Already fetched 3781 images\n", | |
| "Already fetched 3782 images\n", | |
| "Already fetched 3783 images\n", | |
| "Already fetched 3784 images\n", | |
| "Already fetched 3785 images\n", | |
| "Already fetched 3786 images\n", | |
| "Already fetched 3787 images\n", | |
| "Already fetched 3788 images\n", | |
| "Already fetched 3789 images\n", | |
| "Already fetched 3790 images\n", | |
| "Already fetched 3791 images\n", | |
| "Already fetched 3792 images\n", | |
| "Already fetched 3793 images\n", | |
| "Already fetched 3794 images\n", | |
| "Already fetched 3795 images\n", | |
| "Already fetched 3796 images\n", | |
| "Already fetched 3797 images\n", | |
| "Already fetched 3798 images\n", | |
| "Already fetched 3799 images\n", | |
| "Already fetched 3800 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3800\n", | |
| "Could not download batch from http://neurovault.org/api/collections/503/images/?limit=100&offset=3800\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3800\n" | |
| ] | |
| }, | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "Traceback (most recent call last):\n", | |
| " File \"/Users/nicolasfarrugia/PycharmProjects/nilearn/nilearn/datasets/neurovault.py\", line 1014, in _get_batch\n", | |
| " resp = opener.open(request, timeout=timeout)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 532, in open\n", | |
| " response = meth(req, response)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 642, in http_response\n", | |
| " 'http', request, response, code, msg, hdrs)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 564, in error\n", | |
| " result = self._call_chain(*args)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 504, in _call_chain\n", | |
| " result = func(*args)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 756, in http_error_302\n", | |
| " return self.parent.open(new, timeout=req.timeout)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 526, in open\n", | |
| " response = self._open(req, data)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 544, in _open\n", | |
| " '_open', req)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 504, in _call_chain\n", | |
| " result = func(*args)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 1361, in https_open\n", | |
| " context=self._context, check_hostname=self._check_hostname)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/urllib/request.py\", line 1321, in do_open\n", | |
| " r = h.getresponse()\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/http/client.py\", line 1331, in getresponse\n", | |
| " response.begin()\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/http/client.py\", line 297, in begin\n", | |
| " version, status, reason = self._read_status()\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/http/client.py\", line 258, in _read_status\n", | |
| " line = str(self.fp.readline(_MAXLINE + 1), \"iso-8859-1\")\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/socket.py\", line 586, in readinto\n", | |
| " return self._sock.recv_into(b)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/ssl.py\", line 1002, in recv_into\n", | |
| " return self.read(nbytes, buffer)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/ssl.py\", line 865, in read\n", | |
| " return self._sslobj.read(len, buffer)\n", | |
| " File \"/Users/nicolasfarrugia/miniconda3/envs/devel_nilearn/lib/python3.6/ssl.py\", line 625, in read\n", | |
| " v = self._sslobj.read(len, buffer)\n", | |
| "socket.timeout: The read operation timed out\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3801 images\n", | |
| "Already fetched 3802 images\n", | |
| "Already fetched 3803 images\n", | |
| "Already fetched 3804 images\n", | |
| "Already fetched 3805 images\n", | |
| "Already fetched 3806 images\n", | |
| "Already fetched 3807 images\n", | |
| "Already fetched 3808 images\n", | |
| "Already fetched 3809 images\n", | |
| "Already fetched 3810 images\n", | |
| "Already fetched 3811 images\n", | |
| "Already fetched 3812 images\n", | |
| "Already fetched 3813 images\n", | |
| "Already fetched 3814 images\n", | |
| "Already fetched 3815 images\n", | |
| "Already fetched 3816 images\n", | |
| "Already fetched 3817 images\n", | |
| "Already fetched 3818 images\n", | |
| "Already fetched 3819 images\n", | |
| "Already fetched 3820 images\n", | |
| "Already fetched 3821 images\n", | |
| "Already fetched 3822 images\n", | |
| "Already fetched 3823 images\n", | |
| "Already fetched 3824 images\n", | |
| "Already fetched 3825 images\n", | |
| "Already fetched 3826 images\n", | |
| "Already fetched 3827 images\n", | |
| "Already fetched 3828 images\n", | |
| "Already fetched 3829 images\n", | |
| "Already fetched 3830 images\n", | |
| "Already fetched 3831 images\n", | |
| "Already fetched 3832 images\n", | |
| "Already fetched 3833 images\n", | |
| "Already fetched 3834 images\n", | |
| "Already fetched 3835 images\n", | |
| "Already fetched 3836 images\n", | |
| "Already fetched 3837 images\n", | |
| "Already fetched 3838 images\n", | |
| "Already fetched 3839 images\n", | |
| "Already fetched 3840 images\n", | |
| "Already fetched 3841 images\n", | |
| "Already fetched 3842 images\n", | |
| "Already fetched 3843 images\n", | |
| "Already fetched 3844 images\n", | |
| "Already fetched 3845 images\n", | |
| "Already fetched 3846 images\n", | |
| "Already fetched 3847 images\n", | |
| "Already fetched 3848 images\n", | |
| "Already fetched 3849 images\n", | |
| "Already fetched 3850 images\n", | |
| "Already fetched 3851 images\n", | |
| "Already fetched 3852 images\n", | |
| "Already fetched 3853 images\n", | |
| "Already fetched 3854 images\n", | |
| "Already fetched 3855 images\n", | |
| "Already fetched 3856 images\n", | |
| "Already fetched 3857 images\n", | |
| "Already fetched 3858 images\n", | |
| "Already fetched 3859 images\n", | |
| "Already fetched 3860 images\n", | |
| "Already fetched 3861 images\n", | |
| "Already fetched 3862 images\n", | |
| "Already fetched 3863 images\n", | |
| "Already fetched 3864 images\n", | |
| "Already fetched 3865 images\n", | |
| "Already fetched 3866 images\n", | |
| "Already fetched 3867 images\n", | |
| "Already fetched 3868 images\n", | |
| "Already fetched 3869 images\n", | |
| "Already fetched 3870 images\n", | |
| "Already fetched 3871 images\n", | |
| "Already fetched 3872 images\n", | |
| "Already fetched 3873 images\n", | |
| "Already fetched 3874 images\n", | |
| "Already fetched 3875 images\n", | |
| "Already fetched 3876 images\n", | |
| "Already fetched 3877 images\n", | |
| "Already fetched 3878 images\n", | |
| "Already fetched 3879 images\n", | |
| "Already fetched 3880 images\n", | |
| "Already fetched 3881 images\n", | |
| "Already fetched 3882 images\n", | |
| "Already fetched 3883 images\n", | |
| "Already fetched 3884 images\n", | |
| "Already fetched 3885 images\n", | |
| "Already fetched 3886 images\n", | |
| "Already fetched 3887 images\n", | |
| "Already fetched 3888 images\n", | |
| "Already fetched 3889 images\n", | |
| "Already fetched 3890 images\n", | |
| "Already fetched 3891 images\n", | |
| "Already fetched 3892 images\n", | |
| "Already fetched 3893 images\n", | |
| "Already fetched 3894 images\n", | |
| "Already fetched 3895 images\n", | |
| "Already fetched 3896 images\n", | |
| "Already fetched 3897 images\n", | |
| "Already fetched 3898 images\n", | |
| "Already fetched 3899 images\n", | |
| "Already fetched 3900 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=3900\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 3901 images\n", | |
| "Already fetched 3902 images\n", | |
| "Already fetched 3903 images\n", | |
| "Already fetched 3904 images\n", | |
| "Already fetched 3905 images\n", | |
| "Already fetched 3906 images\n", | |
| "Already fetched 3907 images\n", | |
| "Already fetched 3908 images\n", | |
| "Already fetched 3909 images\n", | |
| "Already fetched 3910 images\n", | |
| "Already fetched 3911 images\n", | |
| "Already fetched 3912 images\n", | |
| "Already fetched 3913 images\n", | |
| "Already fetched 3914 images\n", | |
| "Already fetched 3915 images\n", | |
| "Already fetched 3916 images\n", | |
| "Already fetched 3917 images\n", | |
| "Already fetched 3918 images\n", | |
| "Already fetched 3919 images\n", | |
| "Already fetched 3920 images\n", | |
| "Already fetched 3921 images\n", | |
| "Already fetched 3922 images\n", | |
| "Already fetched 3923 images\n", | |
| "Already fetched 3924 images\n", | |
| "Already fetched 3925 images\n", | |
| "Already fetched 3926 images\n", | |
| "Already fetched 3927 images\n", | |
| "Already fetched 3928 images\n", | |
| "Already fetched 3929 images\n", | |
| "Already fetched 3930 images\n", | |
| "Already fetched 3931 images\n", | |
| "Already fetched 3932 images\n", | |
| "Already fetched 3933 images\n", | |
| "Already fetched 3934 images\n", | |
| "Already fetched 3935 images\n", | |
| "Already fetched 3936 images\n", | |
| "Already fetched 3937 images\n", | |
| "Already fetched 3938 images\n", | |
| "Already fetched 3939 images\n", | |
| "Already fetched 3940 images\n", | |
| "Already fetched 3941 images\n", | |
| "Already fetched 3942 images\n", | |
| "Already fetched 3943 images\n", | |
| "Already fetched 3944 images\n", | |
| "Already fetched 3945 images\n", | |
| "Already fetched 3946 images\n", | |
| "Already fetched 3947 images\n", | |
| "Already fetched 3948 images\n", | |
| "Already fetched 3949 images\n", | |
| "Already fetched 3950 images\n", | |
| "Already fetched 3951 images\n", | |
| "Already fetched 3952 images\n", | |
| "Already fetched 3953 images\n", | |
| "Already fetched 3954 images\n", | |
| "Already fetched 3955 images\n", | |
| "Already fetched 3956 images\n", | |
| "Already fetched 3957 images\n", | |
| "Already fetched 3958 images\n", | |
| "Already fetched 3959 images\n", | |
| "Already fetched 3960 images\n", | |
| "Already fetched 3961 images\n", | |
| "Already fetched 3962 images\n", | |
| "Already fetched 3963 images\n", | |
| "Already fetched 3964 images\n", | |
| "Already fetched 3965 images\n", | |
| "Already fetched 3966 images\n", | |
| "Already fetched 3967 images\n", | |
| "Already fetched 3968 images\n", | |
| "Already fetched 3969 images\n", | |
| "Already fetched 3970 images\n", | |
| "Already fetched 3971 images\n", | |
| "Already fetched 3972 images\n", | |
| "Already fetched 3973 images\n", | |
| "Already fetched 3974 images\n", | |
| "Already fetched 3975 images\n", | |
| "Already fetched 3976 images\n", | |
| "Already fetched 3977 images\n", | |
| "Already fetched 3978 images\n", | |
| "Already fetched 3979 images\n", | |
| "Already fetched 3980 images\n", | |
| "Already fetched 3981 images\n", | |
| "Already fetched 3982 images\n", | |
| "Already fetched 3983 images\n", | |
| "Already fetched 3984 images\n", | |
| "Already fetched 3985 images\n", | |
| "Already fetched 3986 images\n", | |
| "Already fetched 3987 images\n", | |
| "Already fetched 3988 images\n", | |
| "Already fetched 3989 images\n", | |
| "Already fetched 3990 images\n", | |
| "Already fetched 3991 images\n", | |
| "Already fetched 3992 images\n", | |
| "Already fetched 3993 images\n", | |
| "Already fetched 3994 images\n", | |
| "Already fetched 3995 images\n", | |
| "Already fetched 3996 images\n", | |
| "Already fetched 3997 images\n", | |
| "Already fetched 3998 images\n", | |
| "Already fetched 3999 images\n", | |
| "Already fetched 4000 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4000\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4001 images\n", | |
| "Already fetched 4002 images\n", | |
| "Already fetched 4003 images\n", | |
| "Already fetched 4004 images\n", | |
| "Already fetched 4005 images\n", | |
| "Already fetched 4006 images\n", | |
| "Already fetched 4007 images\n", | |
| "Already fetched 4008 images\n", | |
| "Already fetched 4009 images\n", | |
| "Already fetched 4010 images\n", | |
| "Already fetched 4011 images\n", | |
| "Already fetched 4012 images\n", | |
| "Already fetched 4013 images\n", | |
| "Already fetched 4014 images\n", | |
| "Already fetched 4015 images\n", | |
| "Already fetched 4016 images\n", | |
| "Already fetched 4017 images\n", | |
| "Already fetched 4018 images\n", | |
| "Already fetched 4019 images\n", | |
| "Already fetched 4020 images\n", | |
| "Already fetched 4021 images\n", | |
| "Already fetched 4022 images\n", | |
| "Already fetched 4023 images\n", | |
| "Already fetched 4024 images\n", | |
| "Already fetched 4025 images\n", | |
| "Already fetched 4026 images\n", | |
| "Already fetched 4027 images\n", | |
| "Already fetched 4028 images\n", | |
| "Already fetched 4029 images\n", | |
| "Already fetched 4030 images\n", | |
| "Already fetched 4031 images\n", | |
| "Already fetched 4032 images\n", | |
| "Already fetched 4033 images\n", | |
| "Already fetched 4034 images\n", | |
| "Already fetched 4035 images\n", | |
| "Already fetched 4036 images\n", | |
| "Already fetched 4037 images\n", | |
| "Already fetched 4038 images\n", | |
| "Already fetched 4039 images\n", | |
| "Already fetched 4040 images\n", | |
| "Already fetched 4041 images\n", | |
| "Already fetched 4042 images\n", | |
| "Already fetched 4043 images\n", | |
| "Already fetched 4044 images\n", | |
| "Already fetched 4045 images\n", | |
| "Already fetched 4046 images\n", | |
| "Already fetched 4047 images\n", | |
| "Already fetched 4048 images\n", | |
| "Already fetched 4049 images\n", | |
| "Already fetched 4050 images\n", | |
| "Already fetched 4051 images\n", | |
| "Already fetched 4052 images\n", | |
| "Already fetched 4053 images\n", | |
| "Already fetched 4054 images\n", | |
| "Already fetched 4055 images\n", | |
| "Already fetched 4056 images\n", | |
| "Already fetched 4057 images\n", | |
| "Already fetched 4058 images\n", | |
| "Already fetched 4059 images\n", | |
| "Already fetched 4060 images\n", | |
| "Already fetched 4061 images\n", | |
| "Already fetched 4062 images\n", | |
| "Already fetched 4063 images\n", | |
| "Already fetched 4064 images\n", | |
| "Already fetched 4065 images\n", | |
| "Already fetched 4066 images\n", | |
| "Already fetched 4067 images\n", | |
| "Already fetched 4068 images\n", | |
| "Already fetched 4069 images\n", | |
| "Already fetched 4070 images\n", | |
| "Already fetched 4071 images\n", | |
| "Already fetched 4072 images\n", | |
| "Already fetched 4073 images\n", | |
| "Already fetched 4074 images\n", | |
| "Already fetched 4075 images\n", | |
| "Already fetched 4076 images\n", | |
| "Already fetched 4077 images\n", | |
| "Already fetched 4078 images\n", | |
| "Already fetched 4079 images\n", | |
| "Already fetched 4080 images\n", | |
| "Already fetched 4081 images\n", | |
| "Already fetched 4082 images\n", | |
| "Already fetched 4083 images\n", | |
| "Already fetched 4084 images\n", | |
| "Already fetched 4085 images\n", | |
| "Already fetched 4086 images\n", | |
| "Already fetched 4087 images\n", | |
| "Already fetched 4088 images\n", | |
| "Already fetched 4089 images\n", | |
| "Already fetched 4090 images\n", | |
| "Already fetched 4091 images\n", | |
| "Already fetched 4092 images\n", | |
| "Already fetched 4093 images\n", | |
| "Already fetched 4094 images\n", | |
| "Already fetched 4095 images\n", | |
| "Already fetched 4096 images\n", | |
| "Already fetched 4097 images\n", | |
| "Already fetched 4098 images\n", | |
| "Already fetched 4099 images\n", | |
| "Already fetched 4100 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4100\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4101 images\n", | |
| "Already fetched 4102 images\n", | |
| "Already fetched 4103 images\n", | |
| "Already fetched 4104 images\n", | |
| "Already fetched 4105 images\n", | |
| "Already fetched 4106 images\n", | |
| "Already fetched 4107 images\n", | |
| "Already fetched 4108 images\n", | |
| "Already fetched 4109 images\n", | |
| "Already fetched 4110 images\n", | |
| "Already fetched 4111 images\n", | |
| "Already fetched 4112 images\n", | |
| "Already fetched 4113 images\n", | |
| "Already fetched 4114 images\n", | |
| "Already fetched 4115 images\n", | |
| "Already fetched 4116 images\n", | |
| "Already fetched 4117 images\n", | |
| "Already fetched 4118 images\n", | |
| "Already fetched 4119 images\n", | |
| "Already fetched 4120 images\n", | |
| "Already fetched 4121 images\n", | |
| "Already fetched 4122 images\n", | |
| "Already fetched 4123 images\n", | |
| "Already fetched 4124 images\n", | |
| "Already fetched 4125 images\n", | |
| "Already fetched 4126 images\n", | |
| "Already fetched 4127 images\n", | |
| "Already fetched 4128 images\n", | |
| "Already fetched 4129 images\n", | |
| "Already fetched 4130 images\n", | |
| "Already fetched 4131 images\n", | |
| "Already fetched 4132 images\n", | |
| "Already fetched 4133 images\n", | |
| "Already fetched 4134 images\n", | |
| "Already fetched 4135 images\n", | |
| "Already fetched 4136 images\n", | |
| "Already fetched 4137 images\n", | |
| "Already fetched 4138 images\n", | |
| "Already fetched 4139 images\n", | |
| "Already fetched 4140 images\n", | |
| "Already fetched 4141 images\n", | |
| "Already fetched 4142 images\n", | |
| "Already fetched 4143 images\n", | |
| "Already fetched 4144 images\n", | |
| "Already fetched 4145 images\n", | |
| "Already fetched 4146 images\n", | |
| "Already fetched 4147 images\n", | |
| "Already fetched 4148 images\n", | |
| "Already fetched 4149 images\n", | |
| "Already fetched 4150 images\n", | |
| "Already fetched 4151 images\n", | |
| "Already fetched 4152 images\n", | |
| "Already fetched 4153 images\n", | |
| "Already fetched 4154 images\n", | |
| "Already fetched 4155 images\n", | |
| "Already fetched 4156 images\n", | |
| "Already fetched 4157 images\n", | |
| "Already fetched 4158 images\n", | |
| "Already fetched 4159 images\n", | |
| "Already fetched 4160 images\n", | |
| "Already fetched 4161 images\n", | |
| "Already fetched 4162 images\n", | |
| "Already fetched 4163 images\n", | |
| "Already fetched 4164 images\n", | |
| "Already fetched 4165 images\n", | |
| "Already fetched 4166 images\n", | |
| "Already fetched 4167 images\n", | |
| "Already fetched 4168 images\n", | |
| "Already fetched 4169 images\n", | |
| "Already fetched 4170 images\n", | |
| "Already fetched 4171 images\n", | |
| "Already fetched 4172 images\n", | |
| "Already fetched 4173 images\n", | |
| "Already fetched 4174 images\n", | |
| "Already fetched 4175 images\n", | |
| "Already fetched 4176 images\n", | |
| "Already fetched 4177 images\n", | |
| "Already fetched 4178 images\n", | |
| "Already fetched 4179 images\n", | |
| "Already fetched 4180 images\n", | |
| "Already fetched 4181 images\n", | |
| "Already fetched 4182 images\n", | |
| "Already fetched 4183 images\n", | |
| "Already fetched 4184 images\n", | |
| "Already fetched 4185 images\n", | |
| "Already fetched 4186 images\n", | |
| "Already fetched 4187 images\n", | |
| "Already fetched 4188 images\n", | |
| "Already fetched 4189 images\n", | |
| "Already fetched 4190 images\n", | |
| "Already fetched 4191 images\n", | |
| "Already fetched 4192 images\n", | |
| "Already fetched 4193 images\n", | |
| "Already fetched 4194 images\n", | |
| "Already fetched 4195 images\n", | |
| "Already fetched 4196 images\n", | |
| "Already fetched 4197 images\n", | |
| "Already fetched 4198 images\n", | |
| "Already fetched 4199 images\n", | |
| "Already fetched 4200 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4200\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4201 images\n", | |
| "Already fetched 4202 images\n", | |
| "Already fetched 4203 images\n", | |
| "Already fetched 4204 images\n", | |
| "Already fetched 4205 images\n", | |
| "Already fetched 4206 images\n", | |
| "Already fetched 4207 images\n", | |
| "Already fetched 4208 images\n", | |
| "Already fetched 4209 images\n", | |
| "Already fetched 4210 images\n", | |
| "Already fetched 4211 images\n", | |
| "Already fetched 4212 images\n", | |
| "Already fetched 4213 images\n", | |
| "Already fetched 4214 images\n", | |
| "Already fetched 4215 images\n", | |
| "Already fetched 4216 images\n", | |
| "Already fetched 4217 images\n", | |
| "Already fetched 4218 images\n", | |
| "Already fetched 4219 images\n", | |
| "Already fetched 4220 images\n", | |
| "Already fetched 4221 images\n", | |
| "Already fetched 4222 images\n", | |
| "Already fetched 4223 images\n", | |
| "Already fetched 4224 images\n", | |
| "Already fetched 4225 images\n", | |
| "Already fetched 4226 images\n", | |
| "Already fetched 4227 images\n", | |
| "Already fetched 4228 images\n", | |
| "Already fetched 4229 images\n", | |
| "Already fetched 4230 images\n", | |
| "Already fetched 4231 images\n", | |
| "Already fetched 4232 images\n", | |
| "Already fetched 4233 images\n", | |
| "Already fetched 4234 images\n", | |
| "Already fetched 4235 images\n", | |
| "Already fetched 4236 images\n", | |
| "Already fetched 4237 images\n", | |
| "Already fetched 4238 images\n", | |
| "Already fetched 4239 images\n", | |
| "Already fetched 4240 images\n", | |
| "Already fetched 4241 images\n", | |
| "Already fetched 4242 images\n", | |
| "Already fetched 4243 images\n", | |
| "Already fetched 4244 images\n", | |
| "Already fetched 4245 images\n", | |
| "Already fetched 4246 images\n", | |
| "Already fetched 4247 images\n", | |
| "Already fetched 4248 images\n", | |
| "Already fetched 4249 images\n", | |
| "Already fetched 4250 images\n", | |
| "Already fetched 4251 images\n", | |
| "Already fetched 4252 images\n", | |
| "Already fetched 4253 images\n", | |
| "Already fetched 4254 images\n", | |
| "Already fetched 4255 images\n", | |
| "Already fetched 4256 images\n", | |
| "Already fetched 4257 images\n", | |
| "Already fetched 4258 images\n", | |
| "Already fetched 4259 images\n", | |
| "Already fetched 4260 images\n", | |
| "Already fetched 4261 images\n", | |
| "Already fetched 4262 images\n", | |
| "Already fetched 4263 images\n", | |
| "Already fetched 4264 images\n", | |
| "Already fetched 4265 images\n", | |
| "Already fetched 4266 images\n", | |
| "Already fetched 4267 images\n", | |
| "Already fetched 4268 images\n", | |
| "Already fetched 4269 images\n", | |
| "Already fetched 4270 images\n", | |
| "Already fetched 4271 images\n", | |
| "Already fetched 4272 images\n", | |
| "Already fetched 4273 images\n", | |
| "Already fetched 4274 images\n", | |
| "Already fetched 4275 images\n", | |
| "Already fetched 4276 images\n", | |
| "Already fetched 4277 images\n", | |
| "Already fetched 4278 images\n", | |
| "Already fetched 4279 images\n", | |
| "Already fetched 4280 images\n", | |
| "Already fetched 4281 images\n", | |
| "Already fetched 4282 images\n", | |
| "Already fetched 4283 images\n", | |
| "Already fetched 4284 images\n", | |
| "Already fetched 4285 images\n", | |
| "Already fetched 4286 images\n", | |
| "Already fetched 4287 images\n", | |
| "Already fetched 4288 images\n", | |
| "Already fetched 4289 images\n", | |
| "Already fetched 4290 images\n", | |
| "Already fetched 4291 images\n", | |
| "Already fetched 4292 images\n", | |
| "Already fetched 4293 images\n", | |
| "Already fetched 4294 images\n", | |
| "Already fetched 4295 images\n", | |
| "Already fetched 4296 images\n", | |
| "Already fetched 4297 images\n", | |
| "Already fetched 4298 images\n", | |
| "Already fetched 4299 images\n", | |
| "Already fetched 4300 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4300\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4301 images\n", | |
| "Already fetched 4302 images\n", | |
| "Already fetched 4303 images\n", | |
| "Already fetched 4304 images\n", | |
| "Already fetched 4305 images\n", | |
| "Already fetched 4306 images\n", | |
| "Already fetched 4307 images\n", | |
| "Already fetched 4308 images\n", | |
| "Already fetched 4309 images\n", | |
| "Already fetched 4310 images\n", | |
| "Already fetched 4311 images\n", | |
| "Already fetched 4312 images\n", | |
| "Already fetched 4313 images\n", | |
| "Already fetched 4314 images\n", | |
| "Already fetched 4315 images\n", | |
| "Already fetched 4316 images\n", | |
| "Already fetched 4317 images\n", | |
| "Already fetched 4318 images\n", | |
| "Already fetched 4319 images\n", | |
| "Already fetched 4320 images\n", | |
| "Already fetched 4321 images\n", | |
| "Already fetched 4322 images\n", | |
| "Already fetched 4323 images\n", | |
| "Already fetched 4324 images\n", | |
| "Already fetched 4325 images\n", | |
| "Already fetched 4326 images\n", | |
| "Already fetched 4327 images\n", | |
| "Already fetched 4328 images\n", | |
| "Already fetched 4329 images\n", | |
| "Already fetched 4330 images\n", | |
| "Already fetched 4331 images\n", | |
| "Already fetched 4332 images\n", | |
| "Already fetched 4333 images\n", | |
| "Already fetched 4334 images\n", | |
| "Already fetched 4335 images\n", | |
| "Already fetched 4336 images\n", | |
| "Already fetched 4337 images\n", | |
| "Already fetched 4338 images\n", | |
| "Already fetched 4339 images\n", | |
| "Already fetched 4340 images\n", | |
| "Already fetched 4341 images\n", | |
| "Already fetched 4342 images\n", | |
| "Already fetched 4343 images\n", | |
| "Already fetched 4344 images\n", | |
| "Already fetched 4345 images\n", | |
| "Already fetched 4346 images\n", | |
| "Already fetched 4347 images\n", | |
| "Already fetched 4348 images\n", | |
| "Already fetched 4349 images\n", | |
| "Already fetched 4350 images\n", | |
| "Already fetched 4351 images\n", | |
| "Already fetched 4352 images\n", | |
| "Already fetched 4353 images\n", | |
| "Already fetched 4354 images\n", | |
| "Already fetched 4355 images\n", | |
| "Already fetched 4356 images\n", | |
| "Already fetched 4357 images\n", | |
| "Already fetched 4358 images\n", | |
| "Already fetched 4359 images\n", | |
| "Already fetched 4360 images\n", | |
| "Already fetched 4361 images\n", | |
| "Already fetched 4362 images\n", | |
| "Already fetched 4363 images\n", | |
| "Already fetched 4364 images\n", | |
| "Already fetched 4365 images\n", | |
| "Already fetched 4366 images\n", | |
| "Already fetched 4367 images\n", | |
| "Already fetched 4368 images\n", | |
| "Already fetched 4369 images\n", | |
| "Already fetched 4370 images\n", | |
| "Already fetched 4371 images\n", | |
| "Already fetched 4372 images\n", | |
| "Already fetched 4373 images\n", | |
| "Already fetched 4374 images\n", | |
| "Already fetched 4375 images\n", | |
| "Already fetched 4376 images\n", | |
| "Already fetched 4377 images\n", | |
| "Already fetched 4378 images\n", | |
| "Already fetched 4379 images\n", | |
| "Already fetched 4380 images\n", | |
| "Already fetched 4381 images\n", | |
| "Already fetched 4382 images\n", | |
| "Already fetched 4383 images\n", | |
| "Already fetched 4384 images\n", | |
| "Already fetched 4385 images\n", | |
| "Already fetched 4386 images\n", | |
| "Already fetched 4387 images\n", | |
| "Already fetched 4388 images\n", | |
| "Already fetched 4389 images\n", | |
| "Already fetched 4390 images\n", | |
| "Already fetched 4391 images\n", | |
| "Already fetched 4392 images\n", | |
| "Already fetched 4393 images\n", | |
| "Already fetched 4394 images\n", | |
| "Already fetched 4395 images\n", | |
| "Already fetched 4396 images\n", | |
| "Already fetched 4397 images\n", | |
| "Already fetched 4398 images\n", | |
| "Already fetched 4399 images\n", | |
| "Already fetched 4400 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4400\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4401 images\n", | |
| "Already fetched 4402 images\n", | |
| "Already fetched 4403 images\n", | |
| "Already fetched 4404 images\n", | |
| "Already fetched 4405 images\n", | |
| "Already fetched 4406 images\n", | |
| "Already fetched 4407 images\n", | |
| "Already fetched 4408 images\n", | |
| "Already fetched 4409 images\n", | |
| "Already fetched 4410 images\n", | |
| "Already fetched 4411 images\n", | |
| "Already fetched 4412 images\n", | |
| "Already fetched 4413 images\n", | |
| "Already fetched 4414 images\n", | |
| "Already fetched 4415 images\n", | |
| "Already fetched 4416 images\n", | |
| "Already fetched 4417 images\n", | |
| "Already fetched 4418 images\n", | |
| "Already fetched 4419 images\n", | |
| "Already fetched 4420 images\n", | |
| "Already fetched 4421 images\n", | |
| "Already fetched 4422 images\n", | |
| "Already fetched 4423 images\n", | |
| "Already fetched 4424 images\n", | |
| "Already fetched 4425 images\n", | |
| "Already fetched 4426 images\n", | |
| "Already fetched 4427 images\n", | |
| "Already fetched 4428 images\n", | |
| "Already fetched 4429 images\n", | |
| "Already fetched 4430 images\n", | |
| "Already fetched 4431 images\n", | |
| "Already fetched 4432 images\n", | |
| "Already fetched 4433 images\n", | |
| "Already fetched 4434 images\n", | |
| "Already fetched 4435 images\n", | |
| "Already fetched 4436 images\n", | |
| "Already fetched 4437 images\n", | |
| "Already fetched 4438 images\n", | |
| "Already fetched 4439 images\n", | |
| "Already fetched 4440 images\n", | |
| "Already fetched 4441 images\n", | |
| "Already fetched 4442 images\n", | |
| "Already fetched 4443 images\n", | |
| "Already fetched 4444 images\n", | |
| "Already fetched 4445 images\n", | |
| "Already fetched 4446 images\n", | |
| "Already fetched 4447 images\n", | |
| "Already fetched 4448 images\n", | |
| "Already fetched 4449 images\n", | |
| "Already fetched 4450 images\n", | |
| "Already fetched 4451 images\n", | |
| "Already fetched 4452 images\n", | |
| "Already fetched 4453 images\n", | |
| "Already fetched 4454 images\n", | |
| "Already fetched 4455 images\n", | |
| "Already fetched 4456 images\n", | |
| "Already fetched 4457 images\n", | |
| "Already fetched 4458 images\n", | |
| "Already fetched 4459 images\n", | |
| "Already fetched 4460 images\n", | |
| "Already fetched 4461 images\n", | |
| "Already fetched 4462 images\n", | |
| "Already fetched 4463 images\n", | |
| "Already fetched 4464 images\n", | |
| "Already fetched 4465 images\n", | |
| "Already fetched 4466 images\n", | |
| "Already fetched 4467 images\n", | |
| "Already fetched 4468 images\n", | |
| "Already fetched 4469 images\n", | |
| "Already fetched 4470 images\n", | |
| "Already fetched 4471 images\n", | |
| "Already fetched 4472 images\n", | |
| "Already fetched 4473 images\n", | |
| "Already fetched 4474 images\n", | |
| "Already fetched 4475 images\n", | |
| "Already fetched 4476 images\n", | |
| "Already fetched 4477 images\n", | |
| "Already fetched 4478 images\n", | |
| "Already fetched 4479 images\n", | |
| "Already fetched 4480 images\n", | |
| "Already fetched 4481 images\n", | |
| "Already fetched 4482 images\n", | |
| "Already fetched 4483 images\n", | |
| "Already fetched 4484 images\n", | |
| "Already fetched 4485 images\n", | |
| "Already fetched 4486 images\n", | |
| "Already fetched 4487 images\n", | |
| "Already fetched 4488 images\n", | |
| "Already fetched 4489 images\n", | |
| "Already fetched 4490 images\n", | |
| "Already fetched 4491 images\n", | |
| "Already fetched 4492 images\n", | |
| "Already fetched 4493 images\n", | |
| "Already fetched 4494 images\n", | |
| "Already fetched 4495 images\n", | |
| "Already fetched 4496 images\n", | |
| "Already fetched 4497 images\n", | |
| "Already fetched 4498 images\n", | |
| "Already fetched 4499 images\n", | |
| "Already fetched 4500 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4500\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4501 images\n", | |
| "Already fetched 4502 images\n", | |
| "Already fetched 4503 images\n", | |
| "Already fetched 4504 images\n", | |
| "Already fetched 4505 images\n", | |
| "Already fetched 4506 images\n", | |
| "Already fetched 4507 images\n", | |
| "Already fetched 4508 images\n", | |
| "Already fetched 4509 images\n", | |
| "Already fetched 4510 images\n", | |
| "Already fetched 4511 images\n", | |
| "Already fetched 4512 images\n", | |
| "Already fetched 4513 images\n", | |
| "Already fetched 4514 images\n", | |
| "Already fetched 4515 images\n", | |
| "Already fetched 4516 images\n", | |
| "Already fetched 4517 images\n", | |
| "Already fetched 4518 images\n", | |
| "Already fetched 4519 images\n", | |
| "Already fetched 4520 images\n", | |
| "Already fetched 4521 images\n", | |
| "Already fetched 4522 images\n", | |
| "Already fetched 4523 images\n", | |
| "Already fetched 4524 images\n", | |
| "Already fetched 4525 images\n", | |
| "Already fetched 4526 images\n", | |
| "Already fetched 4527 images\n", | |
| "Already fetched 4528 images\n", | |
| "Already fetched 4529 images\n", | |
| "Already fetched 4530 images\n", | |
| "Already fetched 4531 images\n", | |
| "Already fetched 4532 images\n", | |
| "Already fetched 4533 images\n", | |
| "Already fetched 4534 images\n", | |
| "Already fetched 4535 images\n", | |
| "Already fetched 4536 images\n", | |
| "Already fetched 4537 images\n", | |
| "Already fetched 4538 images\n", | |
| "Already fetched 4539 images\n", | |
| "Already fetched 4540 images\n", | |
| "Already fetched 4541 images\n", | |
| "Already fetched 4542 images\n", | |
| "Already fetched 4543 images\n", | |
| "Already fetched 4544 images\n", | |
| "Already fetched 4545 images\n", | |
| "Already fetched 4546 images\n", | |
| "Already fetched 4547 images\n", | |
| "Already fetched 4548 images\n", | |
| "Already fetched 4549 images\n", | |
| "Already fetched 4550 images\n", | |
| "Already fetched 4551 images\n", | |
| "Already fetched 4552 images\n", | |
| "Already fetched 4553 images\n", | |
| "Already fetched 4554 images\n", | |
| "Already fetched 4555 images\n", | |
| "Already fetched 4556 images\n", | |
| "Already fetched 4557 images\n", | |
| "Already fetched 4558 images\n", | |
| "Already fetched 4559 images\n", | |
| "Already fetched 4560 images\n", | |
| "Already fetched 4561 images\n", | |
| "Already fetched 4562 images\n", | |
| "Already fetched 4563 images\n", | |
| "Already fetched 4564 images\n", | |
| "Already fetched 4565 images\n", | |
| "Already fetched 4566 images\n", | |
| "Already fetched 4567 images\n", | |
| "Already fetched 4568 images\n", | |
| "Already fetched 4569 images\n", | |
| "Already fetched 4570 images\n", | |
| "Already fetched 4571 images\n", | |
| "Already fetched 4572 images\n", | |
| "Already fetched 4573 images\n", | |
| "Already fetched 4574 images\n", | |
| "Already fetched 4575 images\n", | |
| "Already fetched 4576 images\n", | |
| "Already fetched 4577 images\n", | |
| "Already fetched 4578 images\n", | |
| "Already fetched 4579 images\n", | |
| "Already fetched 4580 images\n", | |
| "Already fetched 4581 images\n", | |
| "Already fetched 4582 images\n", | |
| "Already fetched 4583 images\n", | |
| "Already fetched 4584 images\n", | |
| "Already fetched 4585 images\n", | |
| "Already fetched 4586 images\n", | |
| "Already fetched 4587 images\n", | |
| "Already fetched 4588 images\n", | |
| "Already fetched 4589 images\n", | |
| "Already fetched 4590 images\n", | |
| "Already fetched 4591 images\n", | |
| "Already fetched 4592 images\n", | |
| "Already fetched 4593 images\n", | |
| "Already fetched 4594 images\n", | |
| "Already fetched 4595 images\n", | |
| "Already fetched 4596 images\n", | |
| "Already fetched 4597 images\n", | |
| "Already fetched 4598 images\n", | |
| "Already fetched 4599 images\n", | |
| "Already fetched 4600 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4600\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4601 images\n", | |
| "Already fetched 4602 images\n", | |
| "Already fetched 4603 images\n", | |
| "Already fetched 4604 images\n", | |
| "Already fetched 4605 images\n", | |
| "Already fetched 4606 images\n", | |
| "Already fetched 4607 images\n", | |
| "Already fetched 4608 images\n", | |
| "Already fetched 4609 images\n", | |
| "Already fetched 4610 images\n", | |
| "Already fetched 4611 images\n", | |
| "Already fetched 4612 images\n", | |
| "Already fetched 4613 images\n", | |
| "Already fetched 4614 images\n", | |
| "Already fetched 4615 images\n", | |
| "Already fetched 4616 images\n", | |
| "Already fetched 4617 images\n", | |
| "Already fetched 4618 images\n", | |
| "Already fetched 4619 images\n", | |
| "Already fetched 4620 images\n", | |
| "Already fetched 4621 images\n", | |
| "Already fetched 4622 images\n", | |
| "Already fetched 4623 images\n", | |
| "Already fetched 4624 images\n", | |
| "Already fetched 4625 images\n", | |
| "Already fetched 4626 images\n", | |
| "Already fetched 4627 images\n", | |
| "Already fetched 4628 images\n", | |
| "Already fetched 4629 images\n", | |
| "Already fetched 4630 images\n", | |
| "Already fetched 4631 images\n", | |
| "Already fetched 4632 images\n", | |
| "Already fetched 4633 images\n", | |
| "Already fetched 4634 images\n", | |
| "Already fetched 4635 images\n", | |
| "Already fetched 4636 images\n", | |
| "Already fetched 4637 images\n", | |
| "Already fetched 4638 images\n", | |
| "Already fetched 4639 images\n", | |
| "Already fetched 4640 images\n", | |
| "Already fetched 4641 images\n", | |
| "Already fetched 4642 images\n", | |
| "Already fetched 4643 images\n", | |
| "Already fetched 4644 images\n", | |
| "Already fetched 4645 images\n", | |
| "Already fetched 4646 images\n", | |
| "Already fetched 4647 images\n", | |
| "Already fetched 4648 images\n", | |
| "Already fetched 4649 images\n", | |
| "Already fetched 4650 images\n", | |
| "Already fetched 4651 images\n", | |
| "Already fetched 4652 images\n", | |
| "Already fetched 4653 images\n", | |
| "Already fetched 4654 images\n", | |
| "Already fetched 4655 images\n", | |
| "Already fetched 4656 images\n", | |
| "Already fetched 4657 images\n", | |
| "Already fetched 4658 images\n", | |
| "Already fetched 4659 images\n", | |
| "Already fetched 4660 images\n", | |
| "Already fetched 4661 images\n", | |
| "Already fetched 4662 images\n", | |
| "Already fetched 4663 images\n", | |
| "Already fetched 4664 images\n", | |
| "Already fetched 4665 images\n", | |
| "Already fetched 4666 images\n", | |
| "Already fetched 4667 images\n", | |
| "Already fetched 4668 images\n", | |
| "Already fetched 4669 images\n", | |
| "Already fetched 4670 images\n", | |
| "Already fetched 4671 images\n", | |
| "Already fetched 4672 images\n", | |
| "Already fetched 4673 images\n", | |
| "Already fetched 4674 images\n", | |
| "Already fetched 4675 images\n", | |
| "Already fetched 4676 images\n", | |
| "Already fetched 4677 images\n", | |
| "Already fetched 4678 images\n", | |
| "Already fetched 4679 images\n", | |
| "Already fetched 4680 images\n", | |
| "Already fetched 4681 images\n", | |
| "Already fetched 4682 images\n", | |
| "Already fetched 4683 images\n", | |
| "Already fetched 4684 images\n", | |
| "Already fetched 4685 images\n", | |
| "Already fetched 4686 images\n", | |
| "Already fetched 4687 images\n", | |
| "Already fetched 4688 images\n", | |
| "Already fetched 4689 images\n", | |
| "Already fetched 4690 images\n", | |
| "Already fetched 4691 images\n", | |
| "Already fetched 4692 images\n", | |
| "Already fetched 4693 images\n", | |
| "Already fetched 4694 images\n", | |
| "Already fetched 4695 images\n", | |
| "Already fetched 4696 images\n", | |
| "Already fetched 4697 images\n", | |
| "Already fetched 4698 images\n", | |
| "Already fetched 4699 images\n", | |
| "Already fetched 4700 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4700\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4701 images\n", | |
| "Already fetched 4702 images\n", | |
| "Already fetched 4703 images\n", | |
| "Already fetched 4704 images\n", | |
| "Already fetched 4705 images\n", | |
| "Already fetched 4706 images\n", | |
| "Already fetched 4707 images\n", | |
| "Already fetched 4708 images\n", | |
| "Already fetched 4709 images\n", | |
| "Already fetched 4710 images\n", | |
| "Already fetched 4711 images\n", | |
| "Already fetched 4712 images\n", | |
| "Already fetched 4713 images\n", | |
| "Already fetched 4714 images\n", | |
| "Already fetched 4715 images\n", | |
| "Already fetched 4716 images\n", | |
| "Already fetched 4717 images\n", | |
| "Already fetched 4718 images\n", | |
| "Already fetched 4719 images\n", | |
| "Already fetched 4720 images\n", | |
| "Already fetched 4721 images\n", | |
| "Already fetched 4722 images\n", | |
| "Already fetched 4723 images\n", | |
| "Already fetched 4724 images\n", | |
| "Already fetched 4725 images\n", | |
| "Already fetched 4726 images\n", | |
| "Already fetched 4727 images\n", | |
| "Already fetched 4728 images\n", | |
| "Already fetched 4729 images\n", | |
| "Already fetched 4730 images\n", | |
| "Already fetched 4731 images\n", | |
| "Already fetched 4732 images\n", | |
| "Already fetched 4733 images\n", | |
| "Already fetched 4734 images\n", | |
| "Already fetched 4735 images\n", | |
| "Already fetched 4736 images\n", | |
| "Already fetched 4737 images\n", | |
| "Already fetched 4738 images\n", | |
| "Already fetched 4739 images\n", | |
| "Already fetched 4740 images\n", | |
| "Already fetched 4741 images\n", | |
| "Already fetched 4742 images\n", | |
| "Already fetched 4743 images\n", | |
| "Already fetched 4744 images\n", | |
| "Already fetched 4745 images\n", | |
| "Already fetched 4746 images\n", | |
| "Already fetched 4747 images\n", | |
| "Already fetched 4748 images\n", | |
| "Already fetched 4749 images\n", | |
| "Already fetched 4750 images\n", | |
| "Already fetched 4751 images\n", | |
| "Already fetched 4752 images\n", | |
| "Already fetched 4753 images\n", | |
| "Already fetched 4754 images\n", | |
| "Already fetched 4755 images\n", | |
| "Already fetched 4756 images\n", | |
| "Already fetched 4757 images\n", | |
| "Already fetched 4758 images\n", | |
| "Already fetched 4759 images\n", | |
| "Already fetched 4760 images\n", | |
| "Already fetched 4761 images\n", | |
| "Already fetched 4762 images\n", | |
| "Already fetched 4763 images\n", | |
| "Already fetched 4764 images\n", | |
| "Already fetched 4765 images\n", | |
| "Already fetched 4766 images\n", | |
| "Already fetched 4767 images\n", | |
| "Already fetched 4768 images\n", | |
| "Already fetched 4769 images\n", | |
| "Already fetched 4770 images\n", | |
| "Already fetched 4771 images\n", | |
| "Already fetched 4772 images\n", | |
| "Already fetched 4773 images\n", | |
| "Already fetched 4774 images\n", | |
| "Already fetched 4775 images\n", | |
| "Already fetched 4776 images\n", | |
| "Already fetched 4777 images\n", | |
| "Already fetched 4778 images\n", | |
| "Already fetched 4779 images\n", | |
| "Already fetched 4780 images\n", | |
| "Already fetched 4781 images\n", | |
| "Already fetched 4782 images\n", | |
| "Already fetched 4783 images\n", | |
| "Already fetched 4784 images\n", | |
| "Already fetched 4785 images\n", | |
| "Already fetched 4786 images\n", | |
| "Already fetched 4787 images\n", | |
| "Already fetched 4788 images\n", | |
| "Already fetched 4789 images\n", | |
| "Already fetched 4790 images\n", | |
| "Already fetched 4791 images\n", | |
| "Already fetched 4792 images\n", | |
| "Already fetched 4793 images\n", | |
| "Already fetched 4794 images\n", | |
| "Already fetched 4795 images\n", | |
| "Already fetched 4796 images\n", | |
| "Already fetched 4797 images\n", | |
| "Already fetched 4798 images\n", | |
| "Already fetched 4799 images\n", | |
| "Already fetched 4800 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4800\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4801 images\n", | |
| "Already fetched 4802 images\n", | |
| "Already fetched 4803 images\n", | |
| "Already fetched 4804 images\n", | |
| "Already fetched 4805 images\n", | |
| "Already fetched 4806 images\n", | |
| "Already fetched 4807 images\n", | |
| "Already fetched 4808 images\n", | |
| "Already fetched 4809 images\n", | |
| "Already fetched 4810 images\n", | |
| "Already fetched 4811 images\n", | |
| "Already fetched 4812 images\n", | |
| "Already fetched 4813 images\n", | |
| "Already fetched 4814 images\n", | |
| "Already fetched 4815 images\n", | |
| "Already fetched 4816 images\n", | |
| "Already fetched 4817 images\n", | |
| "Already fetched 4818 images\n", | |
| "Already fetched 4819 images\n", | |
| "Already fetched 4820 images\n", | |
| "Already fetched 4821 images\n", | |
| "Already fetched 4822 images\n", | |
| "Already fetched 4823 images\n", | |
| "Already fetched 4824 images\n", | |
| "Already fetched 4825 images\n", | |
| "Already fetched 4826 images\n", | |
| "Already fetched 4827 images\n", | |
| "Already fetched 4828 images\n", | |
| "Already fetched 4829 images\n", | |
| "Already fetched 4830 images\n", | |
| "Already fetched 4831 images\n", | |
| "Already fetched 4832 images\n", | |
| "Already fetched 4833 images\n", | |
| "Already fetched 4834 images\n", | |
| "Already fetched 4835 images\n", | |
| "Already fetched 4836 images\n", | |
| "Already fetched 4837 images\n", | |
| "Already fetched 4838 images\n", | |
| "Already fetched 4839 images\n", | |
| "Already fetched 4840 images\n", | |
| "Already fetched 4841 images\n", | |
| "Already fetched 4842 images\n", | |
| "Already fetched 4843 images\n", | |
| "Already fetched 4844 images\n", | |
| "Already fetched 4845 images\n", | |
| "Already fetched 4846 images\n", | |
| "Already fetched 4847 images\n", | |
| "Already fetched 4848 images\n", | |
| "Already fetched 4849 images\n", | |
| "Already fetched 4850 images\n", | |
| "Already fetched 4851 images\n", | |
| "Already fetched 4852 images\n", | |
| "Already fetched 4853 images\n", | |
| "Already fetched 4854 images\n", | |
| "Already fetched 4855 images\n", | |
| "Already fetched 4856 images\n", | |
| "Already fetched 4857 images\n", | |
| "Already fetched 4858 images\n", | |
| "Already fetched 4859 images\n", | |
| "Already fetched 4860 images\n", | |
| "Already fetched 4861 images\n", | |
| "Already fetched 4862 images\n", | |
| "Already fetched 4863 images\n", | |
| "Already fetched 4864 images\n", | |
| "Already fetched 4865 images\n", | |
| "Already fetched 4866 images\n", | |
| "Already fetched 4867 images\n", | |
| "Already fetched 4868 images\n", | |
| "Already fetched 4869 images\n", | |
| "Already fetched 4870 images\n", | |
| "Already fetched 4871 images\n", | |
| "Already fetched 4872 images\n", | |
| "Already fetched 4873 images\n", | |
| "Already fetched 4874 images\n", | |
| "Already fetched 4875 images\n", | |
| "Already fetched 4876 images\n", | |
| "Already fetched 4877 images\n", | |
| "Already fetched 4878 images\n", | |
| "Already fetched 4879 images\n", | |
| "Already fetched 4880 images\n", | |
| "Already fetched 4881 images\n", | |
| "Already fetched 4882 images\n", | |
| "Already fetched 4883 images\n", | |
| "Already fetched 4884 images\n", | |
| "Already fetched 4885 images\n", | |
| "Already fetched 4886 images\n", | |
| "Already fetched 4887 images\n", | |
| "Already fetched 4888 images\n", | |
| "Already fetched 4889 images\n", | |
| "Already fetched 4890 images\n", | |
| "Already fetched 4891 images\n", | |
| "Already fetched 4892 images\n", | |
| "Already fetched 4893 images\n", | |
| "Already fetched 4894 images\n", | |
| "Already fetched 4895 images\n", | |
| "Already fetched 4896 images\n", | |
| "Already fetched 4897 images\n", | |
| "Already fetched 4898 images\n", | |
| "Already fetched 4899 images\n", | |
| "Already fetched 4900 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=4900\n", | |
| "Scroll images from collection 503: batch size: 100\n", | |
| "Already fetched 4901 images\n", | |
| "Already fetched 4902 images\n", | |
| "Already fetched 4903 images\n", | |
| "Already fetched 4904 images\n", | |
| "Already fetched 4905 images\n", | |
| "Already fetched 4906 images\n", | |
| "Already fetched 4907 images\n", | |
| "Already fetched 4908 images\n", | |
| "Already fetched 4909 images\n", | |
| "Already fetched 4910 images\n", | |
| "Already fetched 4911 images\n", | |
| "Already fetched 4912 images\n", | |
| "Already fetched 4913 images\n", | |
| "Already fetched 4914 images\n", | |
| "Already fetched 4915 images\n", | |
| "Already fetched 4916 images\n", | |
| "Already fetched 4917 images\n", | |
| "Already fetched 4918 images\n", | |
| "Already fetched 4919 images\n", | |
| "Already fetched 4920 images\n", | |
| "Already fetched 4921 images\n", | |
| "Already fetched 4922 images\n", | |
| "Already fetched 4923 images\n", | |
| "Already fetched 4924 images\n", | |
| "Already fetched 4925 images\n", | |
| "Already fetched 4926 images\n", | |
| "Already fetched 4927 images\n", | |
| "Already fetched 4928 images\n", | |
| "Already fetched 4929 images\n", | |
| "Already fetched 4930 images\n", | |
| "Already fetched 4931 images\n", | |
| "Already fetched 4932 images\n", | |
| "Already fetched 4933 images\n", | |
| "Already fetched 4934 images\n", | |
| "Already fetched 4935 images\n", | |
| "Already fetched 4936 images\n", | |
| "Already fetched 4937 images\n", | |
| "Already fetched 4938 images\n", | |
| "Already fetched 4939 images\n", | |
| "Already fetched 4940 images\n", | |
| "Already fetched 4941 images\n", | |
| "Already fetched 4942 images\n", | |
| "Already fetched 4943 images\n", | |
| "Already fetched 4944 images\n", | |
| "Already fetched 4945 images\n", | |
| "Already fetched 4946 images\n", | |
| "Already fetched 4947 images\n", | |
| "Already fetched 4948 images\n", | |
| "Already fetched 4949 images\n", | |
| "Already fetched 4950 images\n", | |
| "Already fetched 4951 images\n", | |
| "Already fetched 4952 images\n", | |
| "Already fetched 4953 images\n", | |
| "Already fetched 4954 images\n", | |
| "Already fetched 4955 images\n", | |
| "Already fetched 4956 images\n", | |
| "Already fetched 4957 images\n", | |
| "Already fetched 4958 images\n", | |
| "Already fetched 4959 images\n", | |
| "Already fetched 4960 images\n", | |
| "Already fetched 4961 images\n", | |
| "Already fetched 4962 images\n", | |
| "Already fetched 4963 images\n", | |
| "Already fetched 4964 images\n", | |
| "Already fetched 4965 images\n", | |
| "Already fetched 4966 images\n", | |
| "Already fetched 4967 images\n", | |
| "Already fetched 4968 images\n", | |
| "Already fetched 4969 images\n", | |
| "Already fetched 4970 images\n", | |
| "Already fetched 4971 images\n", | |
| "Already fetched 4972 images\n", | |
| "Already fetched 4973 images\n", | |
| "Already fetched 4974 images\n", | |
| "Already fetched 4975 images\n", | |
| "Already fetched 4976 images\n", | |
| "Already fetched 4977 images\n", | |
| "Already fetched 4978 images\n", | |
| "Already fetched 4979 images\n", | |
| "Already fetched 4980 images\n", | |
| "Already fetched 4981 images\n", | |
| "Already fetched 4982 images\n", | |
| "Already fetched 4983 images\n", | |
| "Already fetched 4984 images\n", | |
| "Already fetched 4985 images\n", | |
| "Already fetched 4986 images\n", | |
| "Already fetched 4987 images\n", | |
| "Already fetched 4988 images\n", | |
| "Already fetched 4989 images\n", | |
| "Already fetched 4990 images\n", | |
| "Already fetched 4991 images\n", | |
| "Already fetched 4992 images\n", | |
| "Already fetched 4993 images\n", | |
| "Already fetched 4994 images\n", | |
| "Already fetched 4995 images\n", | |
| "Already fetched 4996 images\n", | |
| "Already fetched 4997 images\n", | |
| "Already fetched 4998 images\n", | |
| "Already fetched 4999 images\n", | |
| "Already fetched 5000 images\n", | |
| "Scroll images from collection 503: getting new batch: http://neurovault.org/api/collections/503/images/?limit=100&offset=5000\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Scroll images from collection 503: batch size: 67\n", | |
| "Already fetched 5001 images\n", | |
| "Already fetched 5002 images\n", | |
| "Already fetched 5003 images\n", | |
| "Already fetched 5004 images\n", | |
| "Already fetched 5005 images\n", | |
| "Already fetched 5006 images\n", | |
| "Already fetched 5007 images\n", | |
| "Already fetched 5008 images\n", | |
| "Already fetched 5009 images\n", | |
| "Already fetched 5010 images\n", | |
| "Already fetched 5011 images\n", | |
| "Already fetched 5012 images\n", | |
| "Already fetched 5013 images\n", | |
| "Already fetched 5014 images\n", | |
| "Already fetched 5015 images\n", | |
| "Already fetched 5016 images\n", | |
| "Already fetched 5017 images\n", | |
| "Already fetched 5018 images\n", | |
| "Already fetched 5019 images\n", | |
| "Already fetched 5020 images\n", | |
| "Already fetched 5021 images\n", | |
| "Already fetched 5022 images\n", | |
| "Already fetched 5023 images\n", | |
| "Already fetched 5024 images\n", | |
| "Already fetched 5025 images\n", | |
| "Already fetched 5026 images\n", | |
| "Already fetched 5027 images\n", | |
| "Already fetched 5028 images\n", | |
| "Already fetched 5029 images\n", | |
| "Already fetched 5030 images\n", | |
| "Already fetched 5031 images\n", | |
| "Already fetched 5032 images\n", | |
| "Already fetched 5033 images\n", | |
| "Already fetched 5034 images\n", | |
| "Already fetched 5035 images\n", | |
| "Already fetched 5036 images\n", | |
| "Already fetched 5037 images\n", | |
| "Already fetched 5038 images\n", | |
| "Already fetched 5039 images\n", | |
| "Already fetched 5040 images\n", | |
| "Already fetched 5041 images\n", | |
| "Already fetched 5042 images\n", | |
| "Already fetched 5043 images\n", | |
| "Already fetched 5044 images\n", | |
| "Already fetched 5045 images\n", | |
| "Already fetched 5046 images\n", | |
| "Already fetched 5047 images\n", | |
| "Already fetched 5048 images\n", | |
| "Already fetched 5049 images\n", | |
| "Already fetched 5050 images\n", | |
| "Already fetched 5051 images\n", | |
| "Already fetched 5052 images\n", | |
| "Already fetched 5053 images\n", | |
| "Already fetched 5054 images\n", | |
| "Already fetched 5055 images\n", | |
| "Already fetched 5056 images\n", | |
| "Already fetched 5057 images\n", | |
| "Already fetched 5058 images\n", | |
| "Already fetched 5059 images\n", | |
| "Already fetched 5060 images\n", | |
| "Already fetched 5061 images\n", | |
| "Already fetched 5062 images\n", | |
| "Already fetched 5063 images\n", | |
| "Already fetched 5064 images\n", | |
| "Already fetched 5065 images\n", | |
| "Already fetched 5066 images\n", | |
| "Already fetched 5067 images\n", | |
| "On neurovault.org: 5068 images matched query in collection 503\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "from nilearn.datasets import fetch_neurovault_ids\n", | |
| "\n", | |
| "### WARNING - This will download the whole collection (> 5000 images) , without resampling it will be more > 9 Go\n", | |
| "\n", | |
| "# \n", | |
| "IAPSdata = fetch_neurovault_ids(collection_ids=[503])\n", | |
| "\n", | |
| "\n", | |
| "#IAPSdata = fetch_neurovault_ids(collection_ids=[503],resample=True,data_dir='local', mode ='overwrite')\n", | |
| "# The 'resample = True' option is still WIP\n", | |
| "# The directory with all 5000+ resampled images is about 3 Go\n", | |
| "\n", | |
| "### TBD : provide here directly a list of images to download for the example ? \n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Checking whether all images are in MNI " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "False" | |
| ] | |
| }, | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "import numpy as np\n", | |
| "\n", | |
| "all_mni = [not(image_not_mni['not_mni']) for image_not_mni in IAPSdata.images_meta]\n", | |
| "np.alltrue(all_mni)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Testing visualization of a bunch of images " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAADeCAYAAADVab8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvXl4VdW9Pv6GUYhhiAQQAhxBBASL\nA6hwuWgtVkWrdSyoP3FA26t1tg63WrTW9lq9j7a1xV/r3KtWcawMzohVlEERi0gUwsEGJAbCcEgC\nhGR//9h77fWucz4rJ7EMCefzPk84i7XXXnvtNe2938+UFwRBAIVCoVAoFIocQqs93QCFQqFQKBSK\n3Q19AVIoFAqFQpFz0BcghUKhUCgUOQd9AVIoFAqFQpFz0BcghUKhUCgUOQd9AVIoFAqFQpFz0Bcg\nhUKhUCgUOYc2e7oB6ejZsyfKy8v3dDMUCkUaevTogbVr1+7pZigUCsVOQV5zc4SYl5e3p5ugUCg8\naGbbhUKhUHxrqAhMoVAoFApFzkFfgBQKhUKhUOQc9AVIoVAoFApFzqHFvABNmTIFFRUV3mNBEODO\nO+8Uj69cuRJBECAIAmzbtg2ff/45br31VrRt2zYus99+++EPf/gDVqxYgZqaGqxevRqvvvoqTjvt\ntAbb1aZNG1x77bX45z//iaqqKlRUVODDDz/ETTfd1OR7nD17NqZNm9ZgmX79+iEIApx88slNrr8h\njBw5ElOmTGlU2csuuwyvv/461q5di40bN+K9997D8ccfn1GO+938ff311xnlTjvtNCxevBhbt25F\naWkprr322qxtOOaYYxAEAYYOHdqoNjd3PProoxl9Zf4mTJgQlzvnnHPw/PPPY82aNQiCAJMmTRLr\n69WrF1544QVs3rwZFRUV+MMf/oAOHTpklJs8eTK++OIL1NTUYOHChTjuuON22T0qFApFc0KLeQFq\nCBMnTgQA50GRjieffBJHH300jj/+ePztb3/DlClT8Otf/xpA+BIze/ZsnHTSSbjrrrtw4okn4sYb\nb0R5eTm+973vNXjtBx54AL/85S/x5JNP4pRTTsFll12GOXPm4Ac/+MHOu0HC119/jaOPPhrvvffe\nTq33yCOPxO23396osj//+c+xcuVK/PjHP8ZZZ52F5cuX49VXXxXv2fS7+Rs/frxzfPTo0XjhhRcw\nf/58/OAHP8AjjzyCu+++G1dfffXOuK0WgzvvvNPpp6OPPhqPP/44amtr8cYbb8TlzjrrLCQSCUyf\nPt1bV5s2bfDaa6+hX79+mDBhAq6++mqcffbZ+POf/+yUmzBhAh588EE88cQTOOmkk/DZZ59h+vTp\ne81LpUKhUDSIoJkBgPg3ZcqUoKKiIiP/sMMOC4IgCN54440gCIJg5MiRGWVWrlwZ3HPPPU7eX/7y\nlyCVSgUAgnHjxgVBEAQjRozwXl/669ChQ7Bt27bghhtuaNJ5vr/Zs2cH06ZN2yl1NfXviiuuaLD/\n+W+//fbLyHv//feDt99+O2u/p/+9+uqrwbvvvuvk3XvvvcH69euDtm3bes875phjgiAIgqFDh+6R\n/todf0uWLAlmzpzp5OXl5QUAgvz8/CAIgmDSpEkZ502YMCHYsWNHkEgk4ryzzz47qKurCw488MA4\nb9myZcHDDz/s1P3pp58Gf/3rX71tUigUir0FLZ4BmjhxImpqanDhhReipqYmZoOy4aOPPsK+++6L\nbt26oUuXLgDQZB8n+fn5aNeuXdbzJk2ahCAIkJ+f7+SvXLkS99xzT0b5Sy+9FCtXrkR1dTWmT5+O\nXr16xcd8IrBLLrkES5YswdatW5FMJvGzn/0so97//M//xNtvv41UKoWNGzdi9uzZOPTQQzFp0iQ8\n8MADABCLXWbPnu29n/Xr12fkLVq0yGlnY3HooYc6DAcAvP766ygsLMSoUaOaVFcQBLjmmmtw7733\nYt26daioqMD1118PALjggguwYsUKbNiwAQ8//DDat28fn9ezZ088/PDDWLFiBaqrq1FSUoI777zT\nEZECQJ8+fTBz5kxUV1ejtLQUkyZNwrRp0zL6aujQoZg+fTo2b96MzZs349lnn0WPHj2adC+HHHII\nhg4diqeffjrjHrPhpJNOwoIFC5BMJuO8l156Cdu3b8eJJ54IADjggAMwaNAgPPvss07d06ZNw0kn\nndSktioUCkVLRLNzhNhU/OhHP8KsWbOwevVqzJw5E+eccw6uv/76rA+KRCKBbdu2obKyEp988gnq\n6urwyCOP4I477sCHH36Iurq6rNdet24dvvrqK9x+++2oqqrCG2+8gS1btvxb9zNq1CgMGjQI1113\nHfbZZx/cfffdeOmll3DkkUd6z7nhhhvw61//Gr/97W/xzjvv4IgjjsCdd96J6upq/PGPfwQQ6sy8\n8cYbmD17NiZNmoSqqir8x3/8B3r37o0ZM2bg3nvvxQ033ICjjz4aALB58+Ymt/uLL77IyL/kkktw\n1VVXoaamBm+88Qauv/56fPXVV/HxffbZB9u3b3fOMf8fMmQI3n333Sa14/rrr8eMGTMwceJEnHLK\nKbj33nvRvXt3jBw5EldddRX69u2L++67D1988QXuvvtuAEC3bt1QWVmJ6667Dhs2bMBBBx2E22+/\nHUVFRfjJT34S1/33v/8dXbp0wcUXX4ytW7fitttuQ1FREVasWBGXGTBgAN5//30sXLgQ559/Ptq0\naYM777wTr7zySoNjmI4JEyagpqYGL730UpPuHwAGDx6MpUuXOnm1tbVYsWIFBg8eHJcBgGXLljnl\nPv/8c+y3337o1q0b1q1b1+RrK1oO8vI6ifkFSMXpFAoyjven4/yJ0CX6LaI81trkGZlCf+HKdh8o\nQJmnDZ2zXHEjpVdRWmqpbV1/VIo11DptzuwLrreA6jBluS8ZXFcQ2L22U+QHb3Mz97f1r3/9Cxdc\ncAHKy8uRl5eHyy67TFRbeOedd3DNNdegtrYW3bp1w5w5c/ZAaxvAniOfZMBDvUsisDFjxgRBEARn\nn312ACA488wzgyAIgmOPPTZDFHPvvfcGrVu3Djp06BCcfPLJwcaNGx1x07XXXhts27YtCIIgqK6u\nDmbNmhWcddZZWcUU3/3ud4Py8vIgCIJgx44dwYIFC4Lrr7/eEd9MmjQpCIIgyM/Pb1BENHv27GD7\n9u1Bnz594rzRo0cHQRAEJ5xwQgAg6NevXxAEQXDyyScHAIKCgoIglUoFv/jFL5y677jjjuDrr78O\nWrVqFQAI5s6dGyxYsMB7H00RgaX/XXTRRWK/33///cGECROCMWPGBJdeemlQVlYWrFq1KujUqVNc\nZuHChcFzzz3nnHfjjTcGQRAEt9xyi/eakggsCAJHDJeXlxesWbMmqKysDAoKCuL8Z555Jvjwww+9\ndbdu3TqYOHFiUFNTE4/j+PHjgyBwxaS9evUKtm/fHsyePTvOe+KJJ4Jly5Y543/ggQcGO3bsCMaP\nH9/oPl2+fHlGv/BfQyKwL774Irjvvvsy8v/xj38ETz75ZAAgOPfcc4MgCILOnTs7Zb73ve8FQRAE\nAwcOVBHYXg6gQPwrAOI/6Xh/IP4bRH9HRX+n0N9R9OfW21/4K47//G0opr9h0d936e8w+iukvx70\nNyj6s8f5ngrpL1tfcB1S2YK0OqS6GOZ4c8eaNWuCjz76KAiCINi8eXMwcODA4LPPPnPKbNiwIRgy\nZEiwatWqIAiC+DnZnNCiGaCJEydiy5YtsULojBkzsHnzZkycOBHvvPOOU/b666+PxSEA8Morr+CK\nK66I/3/ffffhmWeewWmnnYZjjz0Wxx9/PE488UT85je/wX//93972zB79mwMGDAA48ePx7hx4zBu\n3Djce++9+OEPf4ixY8c22XPuxx9/jH/961/x/+fOnYvy8nIceeSReO211zLKjxo1Cvvuuy+mTZuG\n1q1bx/lvv/02fvGLX6C4uBjr1q3DUUcdtUsUiw8//HD84Q9/wP3335/R59dcc02cfu+99zB37lx8\n8sknuOiii/C73/0OAPDggw/iwQcfxOTJk/Hcc8/hyCOPxHXXXQcAqK+vb3J73nrrrTgdBEEsSkyl\n7JfY8uXLMXr0aOe8q6++GpdddhkOOOAAx1qqb9++WLFiBUaOHImvv/4aCxcujI+tWbMGH330kVPP\nuHHj8Pjjj6O+vj4ej5UrVyKZTGLEiBGYOXNm1ns48sgjMWDAgG9lSahQNBbMTjDjwMyQYSf6kIf+\nKqqDhfrJ6Hc15bXzXr2zUCoZ5zBfU0zt3OSwU+2E0nxF5m/6Udpd+wBQii/pf5so3ZHSa6JfmSNK\nYVicDoJ/ApD7ErBMTzpklqn5Yf/998f+++8PACgoKMCQIUOwevVqHHzwwXGZp556CmeccQb69u0L\nAOjevfseaWtDaLE6QK1bt8bZZ5+N119/He3atUPnzp3Rvn17vPbaazjzzDPRpo37bvfXv/4VI0aM\nwCGHHIKCggKceuqp+Oabb5wya9aswdSpU/GjH/0IxcXFmDVrFn72s5+hsLCwwbZs2bIFzz77LC67\n7DL0798fv/zlLzFmzJhvZQmW3iaTZyZbOrp16wYAWLp0KXbs2BH/mZeRPn36oGvXrmjVqpVogv7v\n4IADDsCMGTPw1ltvOS+XPnz22WcoKSnB4YcfHuc98sgjmDp1KqZOnYoNGzbghRdeiN0ZfJu4Uxs3\nbnT+v337djFvn332if9v9IZefPFFnHbaaRg5ciQuv/xyAIjL9ezZU3TDkJ7XrVs33Hzzzc5Y7Nix\nAwMGDECfPn0adQ8TJkzA5s2bMWPGjEaVT8eGDRvQuXPnjPyuXbtiw4YNcRkAGeW6du3qHFcoFIqG\nkEwmsWjRIhx11FFO/hdffIENGzbg2GOPxRFHHIEnnniiUfWdeOKJGDFihPfP6DHuDLRYBmjcuHEo\nKirCGWecgTPOOCPj+AknnOA8QMrLyzO+1htCdXU1/vSnP+Gkk07CgQceiPnz5zf63HvuuQe/+MUv\nMHjwYPz973/H1q1bAQDt2rVDVZX9fjIPG4b0lty9e3fvy0tlZSh3Pvnkk8UgsiUlJaivr0ddXZ33\nJerboKioCK+99hpWrVqFCRMmNJqtCSIla4P6+npceeWVuO2221BcXIyVK1fG+ikffvjhTmtvQzj7\n7LPx3HPP4dZbb43z+EsGCF/GioqK0k9FUVFRPL5AOB4vvvgiHnrooYyyjdGpycvLwznnnIOXXnrJ\nqbcpWLZsWdyHBm3btkX//v3x4IMPxmWAUBeIdbIGDx6M9evXq/6PQqHIii1btuDMM8/E/fffj06d\nXJ2yHTt24KOPPsJbb72FmpoajBo1CkcffTQOOuigButct64CCxe+7z0+YsSYndJ2oAW/AE2cOBHr\n16/HmWeemXHsmWeewcSJExv9Bd21a1ds2rQp4yE+cOBAAPBGp2/Tpg3y8/OxadMmJz/9vLKyUKFv\nyJAhmDt3LoBQzCF9pR9++OHo06dPLAYbPXo0evTo4X0B++CDD1BdXY1evXo1KF6ZN28eLrjggtja\nKx1G8bh9+/bYtm2btx4gtH4z1zrllFNQU1PTYHmDoUOHYvDgwRn+aICQuTFMzeWXX473338fJSUl\njar330WHDh0y7vm8885z/r9gwQLcfvvtGDlyJBYsWAAgdDZ4xBFH4P337WJ96623MHTo0Ca9bDPG\njh2L3r17Z1h/NQWzZs3Cueeei759+8YvN6eeeirat2+PV199FUAolispKYlZVCB8+Tr77LMxa9as\nb31tRfOEEbm4IpaCjOO+fBYEdaE0i8Oqo98UBlHuGkqzGGogpQ1DawVqldSGtiT2cu1MSwEAJU4r\nfBhJ6UnRL3/Q8N65mNIsGjO9YO+pB7WtnMRheXkh21tIx1kcxqPgU0Y34LFpTsrRtbW1OPPMM3He\neeeJJERxcTH2228/5OfnIz8/H2PHjsXixYuzvgABO+CKGXcdWuQLUPv27fHDH/4QTz31lKhV/swz\nz+Diiy9Ghw4dGvVwPu644/Cb3/wGjz76KBYsWID6+nqMHj0aN998M1555RWsWrVKPK9z58744osv\n8Pjjj2P27NnYtGkTBg0ahFtuuQVlZWV48cUXAQDz589HWVkZfv/73+O2225DYWEhbrzxxowXJyAU\nqcyYMQNTpkyJrcA++ugjUf8HADZt2oTbb78dv/vd79CvXz+8++67aNWqFQ466CB897vfjSfmzTff\njDfffBOzZs3Cn//8Z1RVVWHUqFFYuHAhZsyYETMCV199Nd5++21s3rxZtOoCgBdeeAHf+c53cOGF\nF2LAgAEYMGBAfGzevHkAgPHjx+P888/H9OnTsWbNGgwePBi33norvvrqKzz22GNx+aOOOgpjxozB\nJ598gk6dOmHixIk44YQTMGbMznvLz4Y33ngDV111FebNm4cVK1bgvPPOw4EHHuiUmTlzJj755BM8\n++yzuOWWW1BTU4MpU6agvLzceXG+/fbbMX/+fMyYMQOPPPII1q1bh969e+P444/HY489ltUKYsKE\nCaioqMhwDWAwZMgQHHzwwbFobsSIEdiyZQsqKipii7nnnnsOP//5z/HCCy/gtttuQ+fOnXHffffh\nqaeewvLly522/t///R+SySTef/99TJo0CQMHDsS55577rfpRoVDkBoIgwCWXXIIhQ4bEOpvpOO20\n0/DTn/4UO3bswPbt2zFv3rxGefkP7S2+HfvdZOxRFWwB8Fi9sBXYGWecEQRBEIwaNUosO3LkyCAI\nguCcc84JgOwO+YqLi4N77rknWLRoUbBhw4Zg8+bNwaeffhrcfPPNQYcOHbzntW3bNrjpppuCOXPm\nBGvXrg2qq6uDL7/8Mpg6dWrQu3dvp+yIESOC+fPnB1VVVcHHH38cjB49WrQCmzZtWvDjH/84WLVq\nVVBdXR3MnDkzKC4ujssYK7B0i6LzzjsvWLhwYVBdXR1UVlYGH374YXDttdc6ZcaOHRvMmTMnqKqq\nCjZs2BC8/fbbwfDhw+Pjd999d7B69eqgrq7OsWxK/2vM+B1yyCHBm2++GXzzzTfB9u3bg6+//jp4\n9NFHg/3339+p6/DDDw/mz58fpFKpYNOmTcH06dODYcOGea9t/nxWYFdccYVTTnIumW5RmJ+fHzzy\nyCPB+vXrg/Xr1wd/+ctfgpNPPjmj/r59+wazZs0KampqgmQyGVx66aXBa6+9Frz44otO/YMGDQqm\nTZsWrF+/Pp4TDz74YMacSP9r3bp18M033wRTp05tcB1ISB+v3r17By+++GKQSqWCdevWBQ888IA4\nlydPnhx8+eWXwdatW4OPPvooOO644xpso6JlQrIu8lkicT5bRJm/YfTHVmDWuuoc+ruI/u6hv2fp\n78/R3430x3UMiv/42mOAoBcQ7AsExdGfa/k1jP7up7/K6G8L/b1If9+nvx7Cn7VE4/s/jP6k/nP7\nqvFWYL6yexL/+Mc/4n1++PDhwfDhw4MZM2YEU6dODaZOnRqX++1vfxsMGTIkGDp0aHDfffc1qu4j\njjg4CIJPvH9HHHHETruPvCBoRpwaQhpe4cewYcPwz3/+E6NGjdptOjIKGZ06dUJpaSkeeOCBRocR\naeloZtuFogkoX7sWPXr2jP/vs1Di/ELBjw2LodjOqiQWfQ2nXLYTY726fpQ24o7llJektBVJDYMV\ni3cB8ClCrsBoTpaBDVa4pZMpfUH0yxZjzLhOFa9tYa3OBpG/IhYTLoqEXNx/LHAr8fgB8mHt2nLs\nv//ARpVt6RgxYggWLnysgeNXONa4/w5apAgsV3HooYfipz/9KaqqqvD555/v6ebkHH784x+jvr4e\nX375JYqKinDdddehffv2eOSRR/Z00xSKrOCXH0XLQs+eTfMk37JRB9UBUmTg4YcfRteuXXHppZeK\n+kOKXYutW7fipptuisORzJ8/H+PGjXOsqBSK5oBEIoGHHnoI48aNc/JZoZYVcXtSvvSoZaaHH03V\nTimjHs1+dpj1YUaG+RDDsvj2NOtqYhUxQBsRsj/b0Q5lMQeUoPPYPxArShs9PGaAmOmxOp/DYA1g\nzH2XoTjOYyZnkMOWhQYuldSGjuQpmn0bdcrLw+YgQCKRQHl5OVq3bo19990XJ554Ih544AHsu+++\nAPxepfc+1GN36QDpC1ALwhFHHLGnm5DTePzxx/H444/v6WYoFIq9FK+88grGjRuHtWvX4oQTTsBv\nfvMb3HXXXXu6WbsZygApFAqFQpGT6NmzJ0444QR88skne7opewD1ABp2xbKzoC9ACoVCkSNgPzIs\n9mJhEYu1jOiLfftUgsGiJaMGzJ6CWNTFV8kX8vmrf6lw3G1HKBD6CkB7WL9CfD32QbRQyOfrsfjN\n5ncRc7ntiTjlei0z7bBtKKMaCqi05NunrKwMs2bNwnHHHRfntZQwGf8+lAFSKBQKhSKn8MMf/hB5\neXnYsmULjjvuONxxxx17ukl7AAFyVgeoR48eXs/LCoViT6I98vJ+hO/jWQDAMXSE1UmTlGY/uuab\n3hdqkpmHbF+7vsCSzclTrkLRVLz00ksYN24c5syZg3PPPRfr1q1Dly5dsp+4VyGHPUF/mwCYOwPS\nJurzk8HUsSE62UqCw2NWoj/9z9LFPSLrggQdHUVpnvLslaIcRiHuBpvZkR4/1X+h0v8Tp06P3MZf\nQEcPpTQ7gn+Z0h9EvymyDQkCO0ZSH+kDycL0RbZo2/6yNj6Z+8pBrw69/iP8ZYMbfvNYxR6936R0\naA1TEL3QAEAKHNDwVEpL/lAUewrfdo3l5e0Xp9ljDgunKp0jxl+PGxvPgkVVRjTEYrEkpXtTmnfM\nL9N+ATemPCP9ZWANgDzYO2CxF98Vi8aqhbLW8quYLL+SVKIs3gM5jAevSb6eeQqwvyPr54jtuXrm\n5WFt2hgec8wxuPDCC3HDDTfgpZdeApBpBebbR1o+cpgB+jbo5HGeaL4ifeaD/JXJSz4vz0Qrt+EQ\n+Bo8pc22wAae/IX7XPTiEV7PPlzKowWZjyVxHgfc4G2l3HmJMqDNoppfufhM26oXowVZS33Bkcj4\n65vdkaVik0+76PPyrD8R7tv94nhDtje537i/+Tzpa5+Pt4SXKN99GmNjX6ylAc554fzIy/uTLTr2\nVzb9LgcIpFFaE8U54hfhVb4+4817VXRdjt2UGfA1hH1gmbnCJVkrwo3XZGHWBbNF2ynNbBCvWDMX\n+PHSyaO/Yh4KjVnzDFM+2/H0Ms35wVNbW+sE1G3TZq/Y7nMG11xzDRKJBBYvXozhw4dnP2GvQR38\nLhF2LlrtlqsoFAqFYrdi/Pjx6NChQ/yXK97K9xYUFRXhggsuwC9/+cs93ZTdDOMHyPe386CfBAqF\nQrGXIZlMivnPkU8ZZupY46LM4faMU0MWPS2gNH+pG5ZwqZAHuCInThvxKtfLYH4xnbfegZAxMPUx\nH5igNN9TMvq1zHkBMfVuOA0W/Zk6+BpJSnMfGT7T5/zR1lEeiQylMZs6dWpG3t4PtQJrEnwiEkOH\n83Gmzt34N4fQmYnoNynWy9PfTO/TKM8nyprnyMbDWniYWQLuDj8LB8yGI2nqAAWYHqdTjk/XUHA3\n3buZsGCCF6qhXnlxW42hFOmUFEcGsiPIUPY1T99LOjE+xdaWBimuEt8vi71KO9LcNV3Mw+KAxVc0\nHp2jsVu+gY6zzg7PJtbDMMJcrpchmwabx8YsuTWOiJhFq0argx+JCUonKc2ecs3M9ClMl9IDqzCa\ne5UeMVVT5qBCodgTUE/QigbxFkLfFyfv6YYo9nq8Ff12arCUYvfCp6uUHvCUUbF2rfNyyq+3y52S\nUrjTuXFOIWaL9duXTva5w6+7/AFoy/SIfOIkxFrdD8NKR1+tI4DWCB+YEviVma8dskXFpH/JSDm9\nxGE9jMba3+OcQmKOKnEYlTWfxAnKS4rtKUBZg+MGhMFQUyhwFJ8lPbe9QzE6GwPUYaddqUW9ADX0\n9fb1119mBIwzE2Dt2m+w//7fiXIL6LwTqDQrmZkFsijOGUlHeSmZr+E1Qh7gLsEetODKo69Wtrjo\nRcwJf1GzonQJNgL4BsA+MCpc/fGeeBcbyZphcZSuxBgqIdG7gGMf1nG8aZzF8pPoP5aiLcMTUXvt\npvADD5OTl7cfvv56KXr27CEuVDO+a9e6LhH2tIVZNmXn9DJmRrpzje5pImWbZ4z7NLK4uTv9h9Jm\nr3izq81bzhyJG7HJwjyceMby4+YThHMNCF+4Q5g5zQILjo/kPlp54himyfKitc4DxPbhMNrcD47L\nWvB6Y9d8pY74IoRvzCTF9GwGFWHJTIXo5qK0P3D//cV8Mwr9xKOKPQ0zbmZ8eK6XeF52915kY4By\n9AWoITQULbdnz+7eY4o9h8ZEOM6tKMgKhUKR68hmBda1gWNNw17zAgT4IyArmjeyRUFWKHIZ35b1\n5LJnRHXMpePljjhpBKVZHzD0FTWIQjf4WKQPYlcCzCYzuygrQZvS2z0lXb9EzI23RciCt4HskY3v\ng3XfQorV/4j16UMa7U+rpOdvm3RXLNapzigJWHVvlhyUkNZpEKyP0y1ZT7JhqB8gEY3x0eHD7ZHY\ngRU35zmLkxdOKJ++mnLOojRvIkYMMEfIA1zhA6ua1sbKmpbh4OXBIjdeVr1QhkUAUtiOjiT6svVa\nyDYHmbLwzKuQFm51tIkOpMU2nBi1hVNselVYRwkeouta8Z31qgR0SYso1NgoyHs6Ho7PB4xfPPuf\nUYp1CUiNnieTtCMfT+n/8jTK6Ds7zpxGCAUA18FcmF+IeXEOz9GOqIyFwIfRRm7mlStYY+V6nnlc\no5nV/ABhjW87e3nemNrYoIBXLs/ogmhesaGCC44r1fBcasxYt1w9C4WiuaIeqKvKXmwnoEW9ACn2\nfuR2FGSFQqHIcdTDJc52IfQFSNGsIEVBVihyGdk8pbPlDyvjc8gew625lkrjKc2CLctnm6jlkiMO\nwGWtrdd45t+YWWZ+2l5vSZzviyLP4LqrEFqBcT4zkWwS0jEjP+XUxWw4X5sZUyMa435jcG9UCHnc\nc/bakr0Tt3YYseV7r9iLUA+/3cZORot6AWrMovfBLC22e1pNVl7c3ya6C8fN6k6GTwkKp7QmWrvP\nUdlFJBcuoMnLy81uBYk4VUYMQugFAAAgAElEQVTHR5KlEMcI6wVgRZQ2WxkbnbKYgF+iy+PNiTcI\nX5C9VZnpWSTCaWvbjFrWSTA9Zy2JllBdR9H48RWAhqMgu2OdiV1lGSaZlPIc9FkX5eX1oVpMn/Dm\nTxPoc4olNCISLfLE41BDSUp/QOm5ab8A3JnAIjCuJBTW8ppgwVk+7FzjMuZOXHFZScZxAFjirCwz\n93y7m52b/Kgwj+MlGEa5PHeTcWpYtIp84TgqaD0ucvQ3wlbzGu3RiLE2+Y0J86LiMoWiEQjgbiK7\nEBoKQ9Es8NJLLyGVSuGdd97BsmXLsG7duj3dJIVCoVDsbtQjJPd8fzsRLYoBUuz9kKIgKxQKPyTP\n44D1NRbCCFWYy2MOj58slqEzDNYiRyiToDTzzKZuZueY7eM6JI4u3cLLoMKT3ojQWiiAdZ7F4iv2\nacX3bdrhux6DqVZT96meetkUxnDcLFrke7bnsTlIZcTc9iAJAHP2vqgGexV2IwPUbF+AJLFGY6wy\npAjIbdq0EYNasHRBkhxzniOopXlcFM1zFjjw5E6RbHmJs3iluDJ2QVbBdQBoMBChG6itkLeQUkfG\nz4IESavM522TZ59pX5IOZ3N0xzJye3/zHFGM68qOkR4FOVuIjF1lGSZZF/rmYB9q1yZHBGLukzdb\nj2lwl0gExlOCxVosN2RTw8+/iBIsDOXNWH6AGE+4PIIJSneBdTkmPSpdEZiMhSQaeyNKlzkhWmTr\nsVIqUxCvBe5D+SFr7Mz4Mchtc+0+7aMnXSSb3jJ39Oz4ro/2Jn7xyImHlEKxq2AYoN2AvU4EphGQ\nWz5yNwqyQqFQ5DgMA+T724lotgzQt4EvArKieUOjICsUfmRjIl2WyYYkKSSzisqYVvRxY1WefGP9\nweclKM10pWGUfcYVzDgz51aRXhAuQyyL0QoxD5sRBgUaGIVUWeTcB4ufmB01bLjPFSLfK9dh2l/t\nKcsyBdN+5hG5ba53t3S0JQkAj0ZPbyieEI3xidfsoVZg2dFUatkIBBKUxxYvnG+WNE/XfFqPG2jt\nGklECkdRaV40/MrKU7mLcNxexPFpR+nOCJfvdiqdcqxjWDAhRSjjvCSlE5TmhWzqkyKgpddnFjJv\nihRXzJGX+wJeZcI31tmsw75N/Sy+kB4yvOXw9fs36Yr5cvabUdytOeRospZEl93IQy07q43Hg8Ve\nPC7ppsMhTPyuufSg5O28F+yjgh9dkrYE57HLx4RQZiZt7mXO3JWRisVhPl7cXt2sR55pvr20rZDu\n6DnOq7SSXjKMxZ/PQtU3X0z5PRk3TKFolgigfoCaioai6a5bu3Y3t0bRGKxdm0LPng3r72zQsVMo\nGoTrefzwOF0pMhXMPDALw45H+QPHlOeXdn4d5ldG6cWeX0XlUBC2Dn7NTFCan4aZrE0bamUhvVxX\nOkrQ0ocm9wV/tLLPemZnzAs43wd/iSSENLeBX+CLPPmZnxe+nt9roQxQdnqPF/2AvDyMjqLp8nSV\nosLw9PIpOfYT8njmVYvZPldhPpjyEv3rLol0n8gbAWyB691Fbh33gLmO7QF3s/A5IZPo7ITnuLme\n3DKXneqM/ff/Q5Q2zMVCyJD9Khkl5H+XCWpMiJXNgrJrfzrOo+gycr3SfgF3FjJrE82mWkkJHcA6\nfpiwkzcz5o2xosnPSJdRnKQnKCzGKNsiZxs3o5g97Ir7+DOt4LrKnLnE90S+kuIzOZ4Th9CwfWv8\nTi0Bw66mQjqSbc3zSmJ3eJJDO/X3o1DsJNRhtylBN9sXIIVCoVAoFDkGNYNXKBQKBdCYUBj70REW\n5bCWo9HMYibSp4jMDJfhzpOUxywiM9/mqeXzqeMT9Zh0gvJ8XL71/1CJQQC+Qgo1MXecctwnWE//\nzESaVixx+soXwZ5h+EFu+xuUZobSlJH0MNPB+aFDFY+WoMNQsrsNySN5i4WKwFxISrB5eVbfh72K\nsD+eorRfwF1KLE9lKXMi+m3XjTJpT5Ak5K74hq/INfPVzZl2pNn1PkuWeTtajXAB70A7VMIoy9am\nlchsqREd8QKpdHrOt+FIUmef7NwIN3jRc3t4A+Qt6eq08wHXAY7t2xS1zc6Lf2/R+ywn3PAWoeir\nmMqyEIZHfJ7od4dH1KeIbvq6nZAHuKJF7ivzcKN4Ld5rMDJ3mRQGxemlKBGZaLM586PPJwCWbI5c\noSrPjxGetOmDBOXx/JHEfTwGtq9cp3P2BWBMNK4spGW4q4DFyGGNfE/70X5VmSVEhorLFIo0KAOk\nUCgUCoUi57AbHSHqC5BCoVA0Y2TzA9SfeK1SpxQ7JBgX/TInx64oOJ+ZRsN2+dx5SDZKPqV7Bpcx\nTzvfZ78cpiNkAdejDvsgFfsAX+ocNZBtrnz2Vb72G36QWX2uWfInzm1nbpT7MPM83/PfNbbIVLzf\nKzyPKwPks8AZQCVkg0Cmos0k4qnG05WFBDzNjSS3iOJx8tU4bepjiyB3E5JDXUhUPdPvvmjWQLiM\ntjuzhMVQXIttaSqyNnKdo3FvcA/wMjOCHi67yVPWbE7JOKcAs6kNLKA8jdKJ6Jf9D7GIx94Hi6D+\nFc2Lf3fRN8UKbDBdi1vL0v9+ZF33bNxXPEY8D3gzNaPODybf5s9lzFZ/jJAHAC9DhqlbFrj3hh1p\nScjqsznjUebZsVoo24P0NMq9zuHM3POtEGkl8/xhyHN+TWT9xqPkd9Vn78CIuGo9otG2lL/WMVfP\ntFz0+aNSKJojLr74YkyfPh3du3fHkiVLMo6//PLLuO2229CqVSu0adMG999/P8aMGZO9Yg2FoVAo\nFAqForniwgsvxKuvvuo9/r3vfQ+LFy/GJ598gkceeQSTJ09uXMUaCkOhUCgU6ZAU//1Oc5kli0RE\n/UjBvuIgm65mb2MSj84sG6clww7m+JKe9kicui/quy80RRFCA4kqWMMB2Qcbq9pbZo9pBr4PnwmS\nMczweYuSmF2ffzVuEfdFbUatfEcpJ9i1rdsyirvPCmzs2LENhp/ad99943RVVRXyGsvUqxWYbIHD\nE4jl3uw+jZHMOEuOag24hLmZuixEYLscyb6k1Jl4fGY2T6lyVHSfeGEjzKC1pvpY9MGR2PmuQpFJ\npXdmySIn2xs++xg+zwg/rA6B6wjPit9KMUuoyzeStjfKaKMy5r/c89nECGYusfVNgWBOCgApcsBo\nQh5YGyl3NNn+iu/52bj/SOTHIS3W8UibDdb3SPMJRk2f+OIO8QpgSGJkOx87w24Q3Eozunw2iwB5\na1/kjI5ZC2xFVUbHWfeEH0jmvnwPyCSlzRz0icA4NEsiTpVGfb6dRHJlNP7+uWmuI1twcs+zubqZ\nc52yxHZSKFoyXnzxRdxyyy345ptvMGPGjMadpKEwFAqFQpEOqw9p3YCUOS/GnKbX0o7Ra5kvAkM1\nf+BIL5e+WICSawvf55vPQ770Yejxhu4gCWArQr/4hsGyGljz6OOzgPTyLIsi+e0B/C5BktGvj53i\np7a5J/7g9Hnpz4wRWeu0lyMN2r5i/crNO0kfcmfj9NNPx+mnn453330Xt912G958883sJykD5MJ8\nrbN/jcZ4remS9gukKyhasOKmqYOn9mhPWfvNytSsjwGS4t/Y89YgU5EsvYalMFtOJ4TBCoCY3gbg\n3ywkaw7evHjxShS3r5czA6P2IHaO+ypFQSTddppFIUd99kew3hjVa9uWza9KNosaPt/9Og9nUQn5\nTnqTNikefVdhNmr7EOIFmISYSWO3SbKG8YUhlZTPubcZ/IBJUNoIA7hP7Z0sxZJ4hiSphLlKOb4b\n5y3yKvvz9UwZW1ul02YrnCjAe3E6FfcBt0IOIlyAEgDuOi9z5l16uFeDiqisT6TBzKo0/y2T5Zu5\nY2hdvCf4AWpuDy+FYmdh7NixKC0txbp169CtW7eGC9djt1mBqRK0QqFQKBSKnYrly5cjiJipjz/+\nGNu2bcN+++2X5SxYKzDf305Ei2CAFAqFQsH6kHIwWK+H7OrPwt+FXJbZLmZ9+SljWDlmHJkBk3QH\nfQ4iElmuJ+tDumAP8R8AqEYb1KFTxMBVOkrClkZIiWGwR1GeLxTGB5Q298f35OP7TN/6osEzK8tt\n6xi112cubvuI9Q6P3gOhMCZOnIh33nkH69atQ3FxMe644w7URoGcf/KTn+D555/HE088gbZt26JD\nhw545plnGqcIrX6A0mPdhPJuloT6BDmSjx4WXzGp7UZ4tjDTnyXWvOw4fveSOPJ3Ntf8gByd3eax\nInWpIBe21/lHlGc2Gt44uKVS7BneOO0G2J/EOYzSuG4pKjzgbgbhoi73Oj9jRVIeNbPJcFwd7k9u\nc6blRqEzV6x/FUkcZjYILlfgOd/dSoyI0M6medSWpXidrsEhRm4Jf1hKyfIydof09LHhr7P4+SHF\nm6k0l56mPO6zhCdfuoa9vzIMRDjXgA9gnWJZnQTWG+Gb4usxpAecXWXFJCLiGqoi0TCLiMsdBWUL\no7iectYP7wA+ZWbJ3xW/LHT05H8ZXc+K7zZ6QqtwL5s56/oDUiVoRcvB008/3eDxm266CTfddFPT\nK1ZP0AqFQqFQKHIO2RignfjWoi9ACoVC0UJgWM0+JEoocxgun6MPY2jADJfPmIFhWDv2i22ZyGJi\njstEyyfJo3d6vqmP28P8+0KhLDAIKXwFoAZtUIlMVyl+kZphs/OFPMB1x5CktLkvZgOZqeY6jHK/\nPZ9dPvDz3RVbmX7xGRLYMeURsXftM4JpQchmBZbpRP1bo9m+AKUcijucDBxiooIWXjZPO+kCJAOe\nKizpNROLhUmM6bHYC7D0umQuCbghC3ybTAg3WjTLpxOU7oJwQ9gCu1B5g2D0y8gp9Fir+KLb2Db7\nIrlLFlq8kfn0DOwVC6KR5faUe8N0ICOfS65vZHRtv/WNFRG5ggwj6mMRSj6V5QcPybsOPBYZjeSp\nwl1phvzd7CFBXJgx8onI8j35Zgx85rkDYeZWCqdQvplXZ1Ge70HAYy756LH9XUaiw02OGTCLFA18\nD1ZjbecLPSLdP2BfHPg+uO2Zzuoy8zOP+lZ8pWAFJoXHUChyDuoHSKFQKBQKRc5B/QApFAqFIh2G\nrXR9grf1pJl/Mkw0K8E3Jhp6yNYVkIdsZufLHNOUA6NfH+PG9TLfa9hVbk+S0hKLGNbQGumQQnMA\n7hPVtJPZPr6evUax4JutzGmnZPkFmHtlxp3HLEHpzsQ1L4/8WM3zhv+w1Mg8ki6Mieuw999ig+uq\nFVg6zKK2UyhFk9u1+LCLpVdEo/sktr5tw2wFiz3H3YVqaudFaifmMBLccR1rhDxXLsz1dRHSOyDH\n0PHJWsL6WFDD137P2dR87mIlSDF9rIijwAl1YOE6RQzhn/O8AWRu1HwfrBthtAikxe8LeeGis5BO\nUN4ISlMrulGMJWPllelzL/MSxtdePonkZvH1fA8QA+4nn36DZB3li3vO84DFXZGsbvhBclGWHVfz\n6JjNm8WIPCNtJa4I2LRf1gWR9R58ImmfY8lDhTzuCw7dklk3WyKWOzodsk5GYWTxxvNQbcAUCqgV\nmEKhUCgUihyEMkAKhUKhSIdhMw9xFPeZq2bmj1kyw/IxFcmMIYtvMhW+XUV0ZrWYUzd1swZr0tM2\nyU+Vz7hiZpwaRL6iDgXwNYB67IiDYy/xXqPIkzZgxt32hRuJ3fSBj2XPjJdWSexyR2o7l+RRkLx0\nwRNmho1mTH3MRK5vSWIvwm4kgJrzC5BERfPk5kUmW8eYXJ+PU94K2JB0gVCr6wYwSWkjUuBFYen7\nJR7xnK3RXqWAFohflr0d4RRpQ/kH0nFf5O8Q3KtJ5whbHnGbzebq8wTLMKI/u234hGkpJ10olOY0\ni2hsHw6KavFpMkheUc2mwWIx1/rGp30nmdTyuNBs4gYZdQIeTt7l1lHaTGln9fusuXhrNu1IUJ7P\nxk+yS+JZkR4frj5K08OpI4m+DBZQuvoT+g8/hI0Ii9s2ziaH/4dNTxSaN4vicb2ZpAKcNjOArS85\n3hiPL4vfTB2+eWdfMvrT7C2NPA9XOmI9HhvZDsys9EJa85UqBFModicB1JxfgBQKhULBOmo/ipgf\n1zGEHBiWXz6PinTxtpNO4iLnxdD3yDEvhD63AwxzbX7DpyDAXrYkEf3KQXn5JZJfWXtFtbeDzw8O\nM0q1QpqV1ZhFsx8MKZxO+eYqPp1ESWvU9lsZnbeJlMrl0fMpkssfn9JnWzav+M0VygDBdbAlxSP3\nKTBLy5g/TnmJJTzXNlOvDIPivEqxBIM3BWZTONYBK1ImM1qU8k50/oo0i2gr3C9UA59Pl/A67zlU\n9nBPmmGu7as3M44Nb4AcFqDSq2wsbSwJSlsK/Ps0EuYhkPS0rKHI7/uRCMFH7nOQj9XRdcuccB1c\nmsZ/FeWvivIXDLV5PD24wWY/XpekTE5Xe/KlWc8PN7sxF2B2RskUzXPJd1TG9aqjB+ti2a+TCylq\nPa9CekD6Ik+Yy3jdaPH9J6JfZmH4daHCk24r5MnbsHun+Wm/6e3h0tymEB2dtBxCQ6HIJSgDpFAo\nFAqFIuewG90A6QuQQqFQtBSYL2OXhfL5urdIRiIwFiEdRWwqB4bmh0+lqOPIYi1uidG7Yp1EXxBl\n/sY3ojqfaM22+ksKOtwZIQ9eDRb2sTYnt4MZUUMpsn4a64yxCE8K+MvML58nCbP4nmxd7Dn+PVFL\nVXLMAjBDyaLRqmgsmVFsrFf85oZ67DZH0M33Bai3kMdT2BWnSD5RgPJoQq4icdrf6Tgz7kx2W9EX\n+3nhicyL2lDfnT3HGSxeMFsOK0FzKAwumx4WonX0J4WeaDhshD8yNp/H26EZCUlckA7TTtseV3TI\nGwRvoqa/DhaPsy+hQ6lENi9ISxpQgmbwnfu2nbK4Lr4HnpE8XoK+wTp6rDxP86otWfPUvhMlWDfB\nJ26UHLBJDyNgEIm9WPpmRMOLnLZzD7eFdTXHbZoV1VsS55Q4gsSEp83SOqWH0Czql6XUL6s2RAn2\nA8Qrlh9SCeE4r2NuA4ukzEOIz5P1LcrEvYfHybazmOYbX83sFu2EPIUil6EMkEKhUCgUipyD6gAp\nFAqFAoBrKp+Mfhc5jNsIT9oyqia4cDkp8fcgZrXcqU8SRUle0QH3UWXO4+93yVADcJk46XufWT3r\nhbyE+NoSPI6QY85HWeSOwOX1fWy4YfuYk/O54GA2PCm0zeduwlyD+4fbxlICZklNf/l4bSkqALAp\nmiPsr6mlhsLIWSswNts7ivLN8PNUSzmTyedAqyIqK3v0KXEWCHe5mZDpRpcG7YSykjlPenskezWO\nKM7WOL77G4hQkLcPrA8VX8R5vp7ZtFjcwdfwxewx/dKwNUsIM0IJyuO0z8JGIv+3i0elwBs8LyQr\nMDfsRYFzDABKHVEZjxf3j7Hm8+k3+GwRjTjkZaHlAGp5bE3/+KKQc1nJ1wyL5Gy6hO5voxOywTw0\nbqDzeH4shxUa23laEIm+3LAyVsy8xHmgSf3C8zUpthmruA+NXyFeryzMk0TSsi6Mu3bZX5Fps8+a\ny7eOM8Xd7CeIX0ekFeaz9VQochXKACkUCoVCocg55CwDpFAoFAoXcuAFZqfZmGGkp5btab9AuSOe\n4m9uyRcUs3rMokniMrauYo7LJ2YSLJ+GdLfpLpT+ID2w76NR2jCCVWnHJZjr+Bw2SiIprptZQl8A\nYnN/zOtxv2Rjj31GNbKPKXOnKUeiwHKUloOcZYDYW+UAEltIdhb+aNeZcWzcye1z6CdFzPZFhub6\nDJhOZ4+g7AiRCXFTB4vL1gjH09th/J/ugO0DFk/xopcWDosffLr2vOjNouU2ZHOKSOENnDZwH0pT\nnMU6dhzZIeUcsjwyV+OZ4IpJQ9EPzysjDnOj0fs2NH6YHCjk+azhpE2T7z1Jae4fKdyGT/7P89zM\nIT6fz7Niu3KnHeZefNZ5vej/tmdNzZLgKb2s20emlE/wYx1eFpCnXDMiPOtKs1rH8TiyTSmLMFm/\nw4gqff3N+Q1bXfJqTFCae8WMGD8SXT0chSI3oVZgCoVCoVAocg4B1A+QQqFQKNIg2zU1JkSKYVe5\nLHNS+Z50lVDWJ57ZlPYLFFLssUr091zDgJi1dNdnMdKDGe1DacAfOoYrYeMGA2YRffHLTBnf45nF\nkpIPKV97JCMdZi25v5m1tHVY9pDL+kSAzRs5ywC51jpMB4cWJjxFCzCPyibpiG8iG7CMWDYptBOc\nJz9PbkkOa52fuRGe2RqFLVdMPovA2IqnlycNAJuj6xoCncVaPrGMETUkKc9H8Uv2KNXi8f50r6Zn\ny516WeTgM0s1sPfvjq+1YmKHez2ieeGzzzNwo71L8ci4vb6HiSnD98Bjy/OKz5OWMov6OFKdJG5k\nx5V8p6uEfN7wZM0ROVgmxzfjOdgR4VwDeI6Z7TpJJTnt7yPpwWPFxT1ozFnQaM7ia1RhepwuF+c8\nP1S4r96kND9MzJz2WX75tBJMHXbmldEcTZJ1nPSqUO68FKgrRIWiDqoErVAoFAr4HFQkKZd1DvkF\nV/Jr7jPhT1B6u5Dml1r+zJCYDnu++9Fq2SDXH7vRjaSPBf6mW/MN/ec5Sq9C+ILeDrY/uC98oa/N\ndXzKxb4PCfMq7gvF3VEoK0WhB9x+4zrWCHk8HvxxKkUP5mtwX7Qc5KwSNDtryss7JE6XxpPBLhBm\nHkYIkeMBeSq53I09r0xgFnjJlzobC1tdrInOse1xv/nneK5uGCVbbw/HR4tv4axCGAFnK+zXOi8K\nXiz8NS/V5fP9k+53CHDVNSVlXe4vvi7X66Pcw/f9QVgS53APr6J+mUdfyeURm1MhRIgHrK8fnldW\nCdqn+MvfHnzPhuFjJtCn7M33L/mw8cH06yjKYy7EZ7UyPvr1UfMcAIbHQw714F5ja5S2bEll5D9o\ntjeIiE/cYNisJOVZ/0jcmwlKS8HgubfLHVbHtENS5Ad4bApJod6g0vHFxf3Nq7pKyJfZ5Lm0xySo\nhNzzu2vbVyiaL3JWBHbsscfS/0opvSP6rY9z+BHM8abqKW0eBxRVCIGnLByxVQjX3R8HlltE6W0N\ntsE98g9KmweqL24W3+EsSrcF8E10FRPjaSsd5zusQyb4eJ5wHADWU9pMEZ6SNi2/CnFZLtGK0q0p\nHbbzK8rhvuC7C+/dIOxpfryZK3yHWsHzqlpIuW2U+gyw48+P4c8pzUuJ694S/fL9+sSU26LfzyiP\nX174GjWUNg9kn7fXdZTmb28z/lso7wtKt4Ltby5TS8eRJd2e0uZjgEfUjjQL4vahtFnH3AJ3lLi/\nzZrgGqS+cle0Bc9Cnmt8xXohn+fQjjjFNZjr7QsIUeoUCgWgStAKhUKhiFBK/lwKIz0pDhCccvTI\nEpTmF23Jh43Pu7UkAvKxU5LPH0k5N/0azK4JjhUcsddv4lQB7o/TKZyC8KOhDexLsC9YMb8kS36O\nfEy1FDLbx6JL7kGYLZT9LrFXenPlcq+oS9KjsxhDLHrDJZsvcpYBmjNnBf2PqWizoOwC2UoLbwhR\n2QmhXp+LeddDTeYCZ5q6BH3pf+zPJ6y91sOF8JdhIX2JW4sIuwnVesNfsHCgFsAfAGyADRiSFK9X\nTF/Xhs1KOUqXvk2Pr22sEfgadmPZ6vRSKJbpQexdF/py9o2D6QEWLvH2+AGl2X+P0Sng0ZDuaM6c\nj+M8sx3XUrs47Yu33jGaH2uITSh3+omFdnynkhhSch4XtiTESZR3LqW5dRxaw2ysPiVaFhFxRHWj\noM6K1nwf1QjnGhByagZmU+cR8/nP4T4yI8Xc6r1xagf+GKePoBJGk2GtM/b2BWCQw86Efe9Gp+9D\naXvtDo5OiuFk+OHo830FoYzsl2g7PfQ4MrzpQdaL8fGCCkUuIWd1gBQKhUKhUOQuNBSGQqFQKCJY\njYhK4jAtfOxzL6GMLzQFM3U+5Xbpepw27bSPrx6kBF4uuqBgMFtqGc4eJPbiVs5GFcLHZRtY9tMX\nyZ1hDAh8IS8Y3BeGBeTHM48D52eq7g9L0/I0WEIaYSnRmqsxYUhCnpTjDrRML0A5zQCx8ydJPi37\nl1lEZavxXpw205GnDHulkaLRAHaLcEU2PvFCUdqv7zhQSWI74yCMB9qN3eILIWHyedHbsgUkA84+\niXiD9NnKyb1hcWhGTrWH1q90VD/7UZklzpUAN7BIGYaJ7TSt9xmzphpQNeU75+uW0TltSWRhBEOu\nrY+dayWOLoTkM8pncSdZTHEeb+IsDHw8TvWI+q/cmT/jPOnxlJb8XfnAZUw7+OHns+EikdJJXcPf\nXl1t3uIH4mTlQhuV/kU8RHUko1+Oc2SvXUKWludEYzaQHrzTnQeIFZimxPAW3Pe+EDOSGbjPp5ad\naaVkllwQtY93lcbYCSoUezuUAVIoFAqFQpFzyGEGSKFQKBSu93KL/mkuBAFXbbuaxCzzHObLcE0+\n0RnnS77VmYnkei1/WhixWtweVzjnu7YRPzFzZi3bODezvnqEbg6M58Skp50MSczkY8ArhDQzg1Lg\nY1v2MFLWZ17YNY1g9lSKIp/0tMde77Bo3FlEmM3LV3NFNiswydv/t0UzewFiAZW0WHxu6q0VS0na\ndhAiSXnWh49v6loxCNPebLkihSHg6/rEYbYdRhzEzg/bUiiAyrTgAhYHw/rpMf1iW89inyKqO7tZ\noe+dO5sH2cx7TZEFX8o5j7cAu8kaa6pyMHzmunZjNKPDreFxNOal3Cdc1qDMEZWxFZQVcZnW+Fwf\nvkytf1LsK593Wcl6SvIMC/BDqJBEnXbTs/On3FlLt1A6QWnjeed/KS89VIyZa1YoeVg8r2wbFjnb\nrUcnZc5B4S8bufGO3Y/aNudXNr3O+CaSwni4WBqFyHBnM1+QLd74YfKlkOfTopDmps+zry/ETDhf\neDNvqTobCkVDePXVV3H11Vejrq4OkydPxs0339xg+Xo07AdoZ74AtcpeRKFQKBQKhaJpqKurwxVX\nXIFZs2Zh6dKlePrppwI5cCMAACAASURBVLF0qeQaxMIwQL6/nYlmxgApFAqFIgisn+rDKUi0xGAy\nZ8lfxxVkjFAahS9pXCgcvkooWnKjurM1l62jS0ZOumK3L7SIYc+YWV+acRRI985vrMA2wzLDjYm9\nZQJQS70JyA4k09MGSbF1/WNlfAu+2hKnD5kGNTwgj4fPa73tXTPuviBE7E1sd2L+/Pk48MAD0b9/\n6H9uwoQJePnll3HwwQd7z8lhHSCfTFoy4fTRzAlKmwlrzyvFd+k4T08pRhLnSeae3A6fDLlhOTRH\nsuYo8oM8UaRDIUcV3K3Ftm0Qib3kScR9yLJ+n1hLsmLyWeutFvJYNOi7hol3xe3h6y3w5Ifgnpe8\nnxZSn5iech1CsrjIPkIkgStH5jqU9vNa2pmfdMbGWF35HOyxZZfZvli8wyIbexG2qBse3R/f+5Pe\nWFh8V2GYjf4k6uNH1CL0gF1DNqRFl7RfAMgnXYckno3TZTz/q6P7fp77guZSr4RNO086U4dvf7D1\nLYkt4XiNui4tLaT5yGOXhAxpvnAf+x6aDdt5+ewsFYqWitWrV6NPH+uItLi4GPPmzWvgDLUCUygU\nipxGJ2J9+JWtWsjj10J+pXM/BkLdR5+3aTcsbObHINdb6VGYrohq8XkUqnDCd/AHiMHcODWIyrqu\nLfi8IoQvqa0hBZd271b6mPV5L+cXXIa5VynkhfuhZa7MrXEFP/wRkBTaaT22H0YfxlxfOelaSp9O\nu+slYmejHq2R8rqd2bloZi9A9quVwymYRVTqKKv6FKJ9TIwBf1FLjsIAO3V4OvGklyhSLstf38y4\n8HZgtgm7lVXSeW3pq9xVKR2NMKhqG1i2y/oX8XkPSsWUK7fd5xTN3bZC+PqbNwvz1S1vELLSKef7\nwknYjbGQ+iUR/fJWku0r2vR2yjnrGErbvuTZkelxCU5XutflR8BVwpm8FS6n9HPpzU0DM2/2GgvR\n8BeVP7BueD0ezXkONW/mmnu9NRE76QuEwQ/nMsd6yPjr4fbQmWt4HDjAiemXuZTnc0BnGBkekTmU\n5rAg2QwX+A59TKZZQz6fWrwW7Jw367EtPdxUCVqxt6F3797417/+Ff+/rKwMvXv3buAMIFRN3j1e\nsVQJWqFQKBQKxU7HyJEj8eWXX2LlypXYvn07/va3v+HUU0/NclYewo8I39/OQzNjgBQKhUJx+DGW\nDZszx+rAlWNHlKqP8z6P84B9qI56ShtuNo/yAkq3I/HNdseTuwkCzKihtNVVTKEDAOBjOs5tqHMe\nXpspbdg81tXko3xXzKh9Hv2/HtZlxVY6znfIAXMNmKn/itKfUpqZCPO45DZY9pFzTc0laE25fP8s\ndGQWOGxnB6qtjI7y3QEr41QqattTNBcMu8FhjHc32rRpgwceeAAnnHAC6urqcPHFF2Po0KFZzmqN\n3cUANasXIBZ7JSjfTJuNtEjdqCpWpFAgUMrlFEXaT1Wz0qShuA8W8tJhFq0VnRTTpsC6nCknwr1Z\n9HwNS8OXe0VOJwH4DOHiNmIC66NlO91/qSPOMO23ogEOm5FyxGGSIMlnUcF3aCZtLyEPcPt7MaWN\niIMjnFtl5GKaFywkMcJMHhkpoo/szUlWImcxBfv8McrPLJnevs6m+W5c8U3m5u6K/zjdSygrObMD\nWFz4XjRehc5jI7svqjHRenIdpnEPm7kGAJPj3JLojF7kU4uFRbydu0fsSpba44qyMn0hFWB2nMMz\nzPXhFcbK4hhUB9MjhGf2EmfmmHb6tGgSlOZxMCI1nkM843zzP0xXekKvKBR7C8aPH4/x48dnLxjD\nMEC7Hs3qBUihUCgUwDvvvBOn8/IOoSPm5dG+GPeijx7WVJLsaH0akvz5V0YfTsa7M7/GlYK9VLPe\n3proHMtu8Ot7KkO/zMC8fFpdrULHqSe/iPILehGApxHyIsa6lz+B+K4ka1yfJ2iG9BHMHy2sM5j5\nAlvqdYDqe0kOX+f70scp9zDf3Tx0p/+F9zeQ5kLLjS3XCg1rxNU0cKxp0BcghUKhaGZwQ2FInsUt\nQ1pKD/IqeghL3JMvbryLTOMRv0VRplf8cocB9bnMkBxW2BeLcoct55clrvtLhOKvbbAsoX1xcl+4\nJIV3brvsVsHvE8igMx21fV8eM3s+izK+XubD3tff3JoexGya17ud6SV5zyEPDd/JXvoCxO/o/O6e\njH4rnajgsgljiqxOUpHAo8Axv2RLEqbiJc10HgSJygfsIrJmi/zNwAKipfRlZK2Q+K59ppgccX0k\ngAKEk8D0gW3bIqc+XsjmXhbQUbtguziSZps2wsVKnE7HpSjagBS12+0rbg8verPcZSvAhOfKJp9r\n4rQNgZGiPLOxcrvsnDiPxDo3UIneozJPW/2uVAPgbm4zkQlJ7AXY8ffFXZL9UvWP+orn3XTH2ol7\nxdZhx5bXFX9hm7mWXsfAqAW2r7hlpZEYKoTEOWSKgkK4gsT08zikCX9tu2LPcIaUU78NF8yTQ/B8\nlERgPof8vC+Y8eP+tuNbkBbgJR27h+hXKFoSsjFAmxo41jQ0qxcghUKhUCgUuQzVAVIoFIqcRQGx\nVq5LuFDHo8wx7LBfy9WiGIbLMDvLNSfEdpTHTKNlJYsd0YvVOamMWWvmIplRdH2HWxgu0ici8/lr\nW4yQPa6O63AZYGZiuU2G7fP5o+FasjGYtmy5qEDPbCGz5T6F/zDNHAfzxWxgwIyoCaq9dzCKu88P\nULN9AWJa21L0Z1Eui6R8EVDCCZciar3AEUPxgpOU3XxKctICsJO/HW0KLMhyncxJFlN8Pb4/rqUt\nXGNWwN04RnjyzUK0tP4avB6nJYk8AFTGnlfZJsrX98m0X8AfviRBaWMhYOsqpw0i4bGqM7ZvfJeu\nqmM4NinRUabdVo4ihUOOm96bb9kEFKdb6E0Sm4HUsBI8QSeaBwCPIes0SH58fZHVP6E0mwyHG2GV\no4TJ4p0EpW0wj0qcFqV4PNMt2Mxc45AdmaIq3q4KabwqRetB2cFoofMw5YeJ6UO7tvPJISb3bKlg\nrbmJxtcfTHGj90j6teV1ZfN6UNt4pKVR5bzdFf9IoWjeUAZIoVAoFApFziFHGSD+rnLDXiSiX/6e\n4i89WaHVfmdZNoFJ35RDT0p+fnz+WCSK1BorriYFXr7eUfSFa20VmHvxfZ+mh06oRPiWbO6PJ4vv\nS9YwP/Zrv5KYgdedgKP8tWu+vmV/RS6Va9rDPI0vLIjUn9yv9noc6CFJ7EJR2i/gfkUbBdSUqJRr\n5wzfLfd0Eem1djfdw1OQcInzPzv+02G0pzkeM485X9G0nvuB2ZbtQlnAMGjlXjPb422yX8KmV20w\nCSrLjNNCWI9bdl0ZFpVHnlvjRgvPjMfEIhRuses/iBkss7a+zMgB0kOWmlbJfrvcXCluFM9LH5vK\nSuqmTbYVvuAvkj0Ri6mKicEroznbj+a8qbu/x7dRZqys9Ktz6XaespKvNHvPfJa7Y0kclmsGYiHZ\no/lCiPgU+r8EUI19sCN2BcD7ba3jN45H3iziBOUxu1rhSZs2MWPa25M2LfFZe/lCJFU4Z6e3wLVs\nsyiP8vPpGeNj9Zs/lAFSKBQKhUKRc8hmBbbzoC9ACoVC0YzBDIDhHnxcgt/TvSnFjAQzMsznZSod\ns88ZWQUYqBQDJzOzbIP99ie9rNJYoZsZFMv2FROrUeawuQAQOI9Ln1ORSnJTYvlDZnKSYjtdFyqH\nRSm+a5+eqLkX7lduHbM+mfWVeQNK+3RRK+jfEK4UpSWhFXaXR6Nm9QLEtF+hQ18a6j/pOZMVNFnB\n0kwc25lljoMt174i87wKIS8dvdJ+gUVEUx7q8dI6L67bR0knKb08LX8twrabDczXNhZtmMXiUyRn\nCpyvbUQ4CcrzCT/MQs5cmCEkcQ/gDzNiYPu2nNpcHo+13UwKSPxkrSSkyOH2fktJbPATOr8y3vAQ\nM/mHzbK+bxJUa5LSrignEuW1pdI8EZZLghHfI4bHiDdQIy70jct2OTuug8Vsc9PSa6O0bXQq8gmV\nctrJ7WHtcS4TevrtTcr3LFjlprlhKsx9JSHB1RbItNSZ5xEzySFQfL6SeW3ymJgH/HLxKINfVPYO\nh3UKxa6AMkAKhUKhUChyDqoDpFAoFDkMKwKRVNtdpXMWdTCry4xghZBnwYGRO1PaCHJ8HmzKnGtL\nbhwsC+1ew8KI1zgAdA9izl1+O0HpIgBzUY3tWBLfN/OvkgiQ28QiNxb72XzZl5Av2LPUtz6OkyH5\nt/e5seB7Yi/zIZuZarFiL0aOWoH55beSi3wu7YvEnIh+2WaERTLpFgUGZkImKI+XLBPYRrzAdZ0U\npx51xHNFQtq3YPmekpTeCGAHwsVk7oUXGS9Clnub6zXGGReH3hgtHPdFjpc2WXueK9bkMZVEOD4Z\nOOcnMs5zrSSkDceMnWzVV4mLKN+OI9qeDQBYVPtOnLXIuQff5hZtZLVJm7XcF0qERYRSvZym+uLz\nfOIyEoWuYa85ZpNhqya+JzPXAHfTH0jHDRI2OYQs3rjJy01r/xhnsUCWsYQCY9o5ZC2KWLOEt0rz\nkE3h+5R7apwq81i8DYssrXglLSb9jxKvPVfY94WQI7n7bH1MPjs89PsoUihyCcoAKRQKhUKhyDnk\nKAOkUCgUCiAINsfpo/Os53fDgSWd0ume4g34IZKIfllEZpEiNqyX43krhCv2Yl9DzDoav0l8XVsv\ni2cWiUy95cvKHfad2cfhaflfROcZ7o5lBz5fcaZNX3qOM3sqMf+bhDxAFqmxKIvbIzGcDDYkYEZe\nDh7cIzIs8HlSalnIUQaohOLbsPlhj4ieriXrkcoMc0gD3gykBSlHxpZFGEyI80SWXJ3xIp1sk8O7\n2zT7sfv8jSjxHGXyoB/sya9AuB21gV1Qvlg5ksmrT1zIZUn0I1qr+a5h+rm3WNbVVeD7G55R1hVy\n2A2HRQbWwSFvLEVUtiQqxxu26Uve0qUYPoAj1jGn1R7jKSs51QNs//Bmy07XeDM1feyzOOJrvIxM\nSH0KuGJW1hswm6xPfHcwbD/xGgo37/6YHeeU4rv2cLurbdr5kAvHhsVTc7zhWPhezYPR9v0HZK3H\n55nRTzn37PuatHNgYNov4M74Eho/1k9JRL8sRGRT7XaeaPBmhrj7WMt9ZCkUOw9qBaZQKBQKhSLn\noCIwhUKhyFl0IrEXc8+GIyoXAysDLvvIzKZhxhOestb/U4kQ+b1MDCcDuJxZF+E4i5OYnZc8ITGX\n52MzmV027WQ23BfegxlfKSivL4SQpLrOfB9fg9tmGAypfwD3Xr8UytB5HRM2Xc1ihExwa1uur6kc\nFYHxpE856VDW2Z/o5LaULndEHDwFpAXJdL9klQVY8jtJeSwLlkRqdP4IEnv9D2SMM9ZVbHXDi5Q3\nAF4sywF8jvCeTBmfiM/etxEH8V3wcmX7o5RTB4toDPoJeQw+n9vGfdxFKCOPEzuvc41OwzlQllV0\nIJmn8jm8VXgsrarNnOB74zqyOYeURDrpZTPjLrlts3NlmBAfqiSLl9gQbAVlkKA0x7/KRzjXAB7z\n/vgzAOBBKvl9vifpWeO0w8686fRgPYruyRV1mj44kPKsGK2E+qUgroMbYY8XkuhM0s7gUZJ6CnBf\nPsoFR6gscuRWyKS+z+mlbFWmUOz9aA1lgBQKhUKhUOQYcpYBkhxCAYaFqKAvRDdsBocvYJhOTAh5\ngMxChFcKwX50JIdYgG0zfTsuHmrTU6moQ6Ykhfb4dPi5nSMATAcQwH51+s7LpHXL6Ou1TAw3ALj3\nbe6LyzJDwfmmj/g72kfZctsMBcxMhR0P5kCYUDZ3PZK+lvnKJgRCEKyN8/LyegJI90nEs2mpJy0p\nA/cSjgMyy8h5fB6P12qhbK1w3IXtyQTl8rjYfi2gFWItf1jEwGtwIMK5BkhfZHOd//3VJp+n7Csp\n/a6J6s0WMPb+kpTrciFmHHjdjaR0gsqa3rAzoQDvxWmeP5KZgW+UNlK/VWIMHTktrQaAFdTb0t7E\nM96ySBzGpSRObw6COJ2Xt1+cLozbwT3Ec495K+a4jhHy+G75PGt1VBazdTz3fErzEpPLYi9e30nh\nPJ+DQeaque52CB+W7elcPo/XL19bKsvrsK1QFrBrivvbDXxjYfY92UDDv2ebNM0WR+xVJabLo72u\nLe1rLVcEpkrQCoVCoVAocg55yMlgqAqFQqEA8vI60f/YU3lhZmGHkWGeiTkuw4D4GFlmJJgRNfUl\nPNfznWcgec0HConNt/fk8zbP6XSl4nyEDJBhBH2KzVLwZUnvMx3cJsOeMevD12CWLBH9vkl5oyjt\nY4ZMfT5FOma1MvXHyiinoMXqkeUoA1SIJ+N0ZRRxOkS4cDjMQRFR0q4NhKWcy+OJw4qdCUr7lGeN\nrIonXtK5ioVZcLTAeK29ebycH1POvoXns0poi1D8xXJSKaI4X8NOpxTYjw1vJizQ4EVmRAk+2lui\njn1t50ktbXCyUrFM+lpymglyqZVsUSNHymHZJPsf8inPGxR5jksPCL53bjE/kMz9+3wK2f5xxSnG\nCIAfeAx7f26sINMmn/O4WoRzDeC5UorDAAC389y9yop9v/sdmz3b+ZAL+3YMrVG+U59nptrIMZ8r\nqmQRGIspzEPK9luK1m5HekRI6uw++yUuW+m01LSJ567dkcqcF5ZMcTeLvfaOOE4Kxb+LnNUBUigU\nCoVCkbPIywPaqAhMoVAochIcCoMZTMsS+RhH5qokURZ7IfcxmAzzJe5jy5mLlIJWM5tsmchK8vpv\n4fNMz2m+pyIAHRByh+Zcn+iMOUWpbT4wRyl5xedrSJwhi8XYuMQXZcCcxy8ArKAuM402bduwOfgn\nWiR2HwHUvF6A1nssH+yksL0i6fQD6dM8FJOVe60BZEsZO+l9MmReFGZC8uKlejdRTJeOeVTG1M2b\nhs+ygxdDWzq2mPIy28Yy4PJ44/T1nOw/SJ6Jvk0m22Ypb7IFkUjEF8mda5O2LL6j16I51CkvL75/\n16Im1K3gB4yrbyG33dTliil4Y2KfS2xpJYk1fGJP6dryTuD2pBGjJSnPZ4knydZXedK9YOca97yZ\njwmbRYdnf0VFHcO1RNTKRXGOzw5R0rzgUDgpr/WNeUDKVkQLSQQmzUafB6sEpcvEvcDnE8pn8RfO\nAZ6b/KKjUOQsdp8j6Ob1AqRQKBQKhSKHkasMkEKhUChcMIto/Fe1ddhdSRQCuGye4dpY4d/n+0by\njM6sVmM8oBsw2ylFVvfBx0gzs9kOwA6Eivrm2j6Gn9OZvqL8vn/4ngzjnvSUZcV8w1v6PMBzHSw6\nM5B9frn9vUY4bu+DmW1mvJs9cpUBckURFiYyPG8EnK6gzUC225HCOQD+BWAWJ08238IyZfh8dvRG\ncCQcRhafpDwpejuQORs2IFz0JrI3bya2ndxHVoTD98Emmr4NThJrsbjHmrOmnHhBUl1yGAlznluX\nbbvPFksSAEpiBGleueUy+ykdkijLDdcgz025bMPw1SuLNAHbl6xjwLC9JreD5wRvxksRzjUAeIPy\nTXnq+Te/sOn/7yCb/vwzOs+Y6rKo04oLeRwld35FTp61JJNccbrR2W1fSYbagCyU9AU9cR9kq4Q8\nLs0zlh1Shr3Pc1NtwBQKKAOkUCgUCoUiB5HNDVDQwLEmQl+AFAqFohmDWTtjPVXguLxjJXdmtSVL\nKmaq+CkjOyyUxVp8nK2ZDL9m2eseWBKnyyP/UZl1GCQonc5EGrCjw7kAvgFQD8u68/3LIVcsp+iL\nzs7+0fh6ps1SwO30NkuBqpOU3uRJSz7UWOGf28NBgDN5ZVawb1HI5gh62867VLN6Acomp/TJNFmc\nUSmIDJoifmD4RBEuYS6JiHxOBRlG5OSzmLKLqYA2kRSKEc6Aelj63WfCamHaz47XspUNy1d68zLz\nrQhLOs73Ko2JT9wjjSlgFziP/+5c9FOnhoHe8qLr19TUAABatWoFAOjevTsAID8/3ASDIEDHjuFD\nZ9999wUAtG/fHgDQpk24FLdu3QoA2L493Gw7dOgQn2uO1dbW4rTjjstoD/ffaacdhzFjwphVv/zZ\nz+L89xYvjuv7z0PDmE8ffvZZfA9jDrYPtMp4rgFuRPVyOm5ws02+y45HefPOnK8+UX+mvZRb1mck\nLT2ihtGckbQtOL8xLjz708tHKZ6LUrIVIJ+3VrD48lsjKhTNF8uWLcNFF12Ejz/+GHfddRduuOEG\nsdwll1yChQsXIggCHHTQQXjsscfivc+LbAzQTnwBarXzqlIoFAqFQrG3o7CwEL///e+9Lz4G9913\nHxYvXoxPP/0Uffv2xQMPPJC9cqMD5PvbiWhWDJDs8Iu/+gvEsgyJCvS5mM8WK6Up5/kZEp8CqlQ3\nf0WWimULUEaeh+x1JMhK0E1TtZTK+5gayzKlGjzemLZluwaQXeFZYhTNOY2pn/HvxtXxXc9XJjsa\nru/tl1/G2y+/nFHvmOE28rvJP3ro0Iy8sF471+qIk6mMx7mMzmMehsOJMGoz2uvztMUwbI7vo5Dr\nMAIQVnZONOI8yZsXs/BcHwcyOTi6F59gibliab76lPH9CHsp5YiT+Cq+yOFS63x3yKy1Kc/cGac5\n2rsZQcsWljsK7z5le9P7vhkgKZ0bbAKLwAoxOz5yFpXiu3469g93CuX6PFIxF2n6i9vO57HqveSP\nisWFfE8sAjPjxwYNtt96EIPPrTBXmefZH3c2M969e3d0794dM2bMaLBcp07G71qAmpqamGluEK2x\n26zAlAFSKBQKhUKxS3DRRRehZ8+eWLZsGa688srsJ+QqA6RQKBQKF8zKBcFaAEBe3iFxnsvEMT/F\n7EQ2L+0+jitbwFxWHk5Gvwnhuun1MoxiL7MirMDsCzeRQBgJfkec74tTz/mWlZI4FMDvu8f0hc8P\nEjM5hkVj1idBac6XQgJLkQnc+1jizIuQ7d5T+pAN4dFHH0VdXR2uvPJKPPPMM7jooosaPiFX/QA1\nlwHbXXjzzdAPT69e4SZSX1/vHG/dunWcrq2tjctMnjwZrVq1wmOPPZZBKZr/t2rVKlakXbo0XIzn\nnHPOLriLloVdOcf+9Kc/AbCKzG3bhltw3759AQBFRUVxnhnbHTt2OHWYMTPK0Uahuq6uLqOM+d2y\nZQsAoKIi3DQ3bQo34n79QmuXQYMGxeeaeWTmiVG+NtcZOvTouOz7n36Kiy++GABQstBS8nP/GcYY\nOuSQ0XGez4eTZKzgijotCul/kmIzC3d4f+RHlK1bFrMxJA89PiVpnxewzAhM7iNxEYmAgmB9nDZ9\nIYVpUSiaI/74xz/iL3/5CwBg5syZ8XOrMWjdujUmTJiA3/72t9lfgNQPUG5g2bJlAIB99tkHQKhY\nBtgXoUB4WOfF1iMB6uvr4weX+TUP1rq6OqxcuRKAvvjsLmzbFponmJcK8/9UKnwYd+3aNR4/80Jj\nxjh9rE05Mxfq6uric8yveXky1zH/b9euXXw9IJwb6ddrDEzZ9Jfs8vJMaz+FQrF344orrsAVV1zR\n6PJBEGDFihU48MADEQQB/v73v2Pw4MHZT8xmBbYToS9ACoVC0UJgmCNWl+ZnRcobesKIn3yf1j7h\nkfnKZ/EV18vnGREQc2DM1XHUcz4vVB4uxntxDnviYcx2lKoT0W+H+IwUvh8ffY6C57oSFYm54H5L\nUloSpDEXyeexUrnhBBOUx2IvBovUNqb9prsEGURlbdskdnVXYu3atRgxYgQ2b96MVq1a4f7778fS\npUvRqVMnjB8/Hg899BB69uyJSZMmYfPmzQiCAMOHD49dhzSIbH6AdiJaxAuQoYYbY60joTFWN9ms\nmXznNXR+Y/Ob3rZwwbAIQkJT7ikbfFGrm2Jplq0/v+04+a7xbcRdPhm6JJ5oig+X3/3uV+jcuXPM\nymTWFeDksWOb2lwAcv81ZQ76yg4fPgZmrnFPnz5uXEaeD26/NDxe/Ej0icmyQZpDPteA0qNNConR\n0Hkm7Vo7cXuspWZT+kKhaM7o2bMnysrKxGMzZ86M0++//37TK1cGSKFQKBQKRc5BdYAUir0LtbW1\nWLVqVaynY7yhpishKxTpkFhNZpN6OUFyfb52eqf9piNJ6S7CcZ+VGIdmMH5w2FcPi8N8/nNCNMZj\nTjExamWoQMjN5VEpKztxQ28wzLWTlCeJoQBXXCY9lX39bc6jO+lG/baOr/0JpYVAww5kH+iSV/wW\ni1y1AvMhW4iMvQ3GmqhTp05xGAXz4Kyvr8cdd9yB1q1b46677orzjeVPVg37nYC92VrPd2/Z5mBD\nx43306qqKpx++ukAbBgNM74dO3bEI9OmxQrx5sXI/LZu3TpWcDdKycaiq7IyfCh88803AIAuXcIN\nftiwYQBCazSj0JyuYJ9uSZZuJXbVVVehrq4ON954Y6xIfemllzbYF4pvh715XSkUjYYyQAqFQqFQ\nKHIOqgOU27j88ssbPG7Yg1NPPXV3NEfxb+KnP/0pADhxcP7rv/7LKfO///u/AGwA1W7dugFAht8g\nhmH/qqpCMYNhcwoKQgVbSayWbnZv6jfnfv755wBC5gcIfRcBiP0BKfYsJGV7n+K2K8pJRr9swcSi\nrASluYyxxzrUUy+LuCrSfl3fTpWOyKl3RrqEAuce7FGOL3OUx6sA1MGNncBiKBbbcS9J1mocqJnD\nEHEZ0wc+B4rc0mT0S2Fh1nG/Lab0B5QOfbb1gKxgnKKxKaQydl7sHiuwXYpWUCswhUKhUCgUOQZl\ngBSKvQ+GCZJw/fXXAwCeeeYZANYTNDM/6V6hDWtTXR1+vRoHiJ07h1++Rn8oLy8vPsfo9rBDTcA6\nazTMj6J5wuiaMRO03uuiQgrp4AveyZ53OMBpIvplNoXP25SRZtaHr1bptIeZk5CFZGVv5mtcT94j\nKH0ogM+j8w0r43ty8vVMmArJ37h7p8OJZXkvpiVOohJ8h8zqPB39Pkd5x1Pa53cobFM5iinP9nEQ\n/CtOS4Gf9wolz6iobgAADsBJREFUaNUBUigUCoVCkXNQKzCFIjeRHnaCYSy4jO5PuuWW0Rvq2DH8\nCm7ItN4wSyZumbEkUygUij0KZYAUCoVCAWT3eM6iEL8KrPmkTlKeT5mXxTpGVMPKwBs96UzxUz/n\nqI0ht8QRP4WlUiT2WUOip1JHHDSO0r2ja26l9nG93B6+135C3tI4xcJAvlqXSDl6OpV1PRZZMdow\nZMbLW4KZ9D++iuR3idtuFbTdsbZzYHeHwtilUAZIochNGEbGsDzsKNHo8dTU1ACw1l9G58dYbBld\nIMMA1dfXx+yRgTlm/EdNnjx5F9yNQqFQNBHKACkUCoVCocg5qBWYQpGbMIyM8RBtrLRat26d4fnZ\nsDqJRAJAZngNA2Z/jO6PqWvNmjVQNG9IQVJZ1MFeyF0rIF/0dQO24OJ5wCIZFn1JyIz8XpuRE8IV\nuFmds3nxEesbqNRpw3BPLRsB7IiuaER1bInls2wzYisOf2Hvn8mHsyhtPHfdjNlx3p+dfrNnLhFF\nUZKoC3Cf9qY+9ktk+8oXoHmvsgLbjSKwnAhANGPGDIwZMwZdunRBz549MXny5NjsFwBuvPFG9OnT\nB506dUK/fv3w61//eg+2VtGc8Oyzz2L06NHo2LEjjj322D3dHIVCodi7YURgvr+diJxggDZt2oRb\nb70VY8eOxbZt23DuuefiZz/7GR588EEAwCWXXIIpU6YgPz8fq1evxve//30MHjwYZ5xxxh5uuWJP\no7CwENdccw2WLVuGt99+e5df78orrwRgvUZ36hR+5bVv3x7btm0DYFkio/vTtWtXAJk+fgzzU19f\nH+v8mN+1a9cCAM4999xdeDcKhULRRLBj712MZvcCdM899+DDDz/E888/H+ddddVVyMvLw+9+97tv\nVSdv8h07dsSll16KKVOmxHmDBg1yyrdq1QrLly+HomVjxYoVGDlyJN58800cfvjhWLNmDYYPH45p\n06Y1ms0ZNy60A3nooYd2YUsVCj+yWYG5zg8LqMwSyj8vSvG+xiEv2DEfhW+In0QsppGsxABjYcZ2\nURyshwVurkDO1MFODvka/NnPIq5VADZEtS102pCZZvQS8qz7QxayHcRFIxnY/0+Poap1JXH6SRQK\n9fme5HxPmW4fC8gKjseUx1oSsu0tAXWFyD+7BM3uBej888/H7bffjo0bN6JLly7YsWMH/va3v2HW\nrFm4/PLL8dRTT4nn9e3bF59++mmjrvHuu+9i6NChTt7//M//4Fe/+hWqqqpwwAEH6JfxXoABAwbg\n7rvvxvnnn4+FCxfioosuwqRJk3DsscfutLm0q9CQ12gD4zXa6Pz8v/buNSSKd48D+He3i0l6ypPl\nv8vJsv5CcCrDqJDMovOiguxKpSVFuXYjCnrRRTjVG+mNFkUZ3czud7OCDAMzPZAYaVbQnz/SKSO6\nHCqP20nSds+LdXZ+4864a67u5nw/sDjOzM48o0s9Pr/n9/xaZ3rJESDlHGXV6FevXvmtrURE/tID\nxrOl/C3oOkCDBw/GtGnTcOXKFdhsNhQVFSEyMhLx8fGIj4/H4cOHO3T94uJi5Ofno6KiQrN/+/bt\n2LZtG6qrq3Hjxg13eCEYxcXFeT+JAAA2mw23bt3C5MmTYbFYcPPmTQDA4cOHO/xZCjQl3b2txRMB\n18RnpTP05o3rL8tVq1b5dA9+1oioK1kB9OmiewVdBwgAVq5cidzcXNhsNpw9exZpaWk+v7esrAyz\nZ7tqtURHR+P58+fuYw8fPkRqaiquXr2K2NhYj/daLBZMmDABd+/exa5du5CTk9Pxh+kE+/fvD3QT\nfik2mw3Jyck4evSou8YW+YaftcCTWV4KX7LAtBlDU1q2ZIDnT7FtlA2oFwKTYZ1/u7cyWhb/+6c4\nKt8la57LamJRLVlO7zVtkO2U2VpyEcKPAL7BFW5SAm8p4rgatg5Hnnu7ATFobZioAJ8gD8gHUNZ8\nHKHuivuPun1PZGu91x3DMHomtfS5Evoyyvb6r0Hdt+6kB7T12DpTUGaBzZ8/HzU1NXj27Blu376N\n5ctd8et169YhLCxM96WEtBITE2G322G32zWdn6qqKiQnJ+PkyZOYOXNmm/dvbm5GbW1t5z0gdRm7\n3Y4tW7ZgzZo12L17tzuF3JfPUrALCQlBSEgILBaLZhRI+V55Wa1W1NfXo76+HnPnzsXcuXMD2Goi\nImPKCJDRy5+CcgSoT58+WLx4MVJTUzFp0iQMHz4cAHDkyBF35lZ7PHv2DLNmzcLBgwc9/vF3OBw4\nduwYlixZgv79+6OyshKHDh3Cjh07/PIsFFibN2/GxIkTcfz4cWRkZGDdunW4fPmyz5+lHz9+oKmp\nCc3NzXA4HGhsbESPHj3Qq1cXLVVKpENvbSBAOzIkRw6UCu2fxOhHuBj10C+8YFRaQf3sTxWjHspa\n4kPlzGcxqNPvkbo9VJyS1PL1iVhf5w/IOWpyJrIcJfoK1zpAEVCLVqgTqWOwxb0tR6X+bHluWcRD\n3kGOb/1LzBkfmu36Wi2Oy/EoLeVnJEeC9KvPh6PKva38vI1KXkjdouyFDm9zgOrbONZeQTkCBLjC\nYE+fPm1X+MtIdnY2Pn78iDVr1uj+lV9QUIBRo0YhPDwcK1aswKZNm9zpyPTrKiwsRFFREXJzcwEA\nOTk5ePz4Mc6dO+fzNc6cOYPQ0FCsX78eZWVlCA0Nhc1m66wmt0vrESCr1aopgKrsb2pqQl1dHerq\n6gLYWiIi7yww+QgQ4MrECQ0NxaJFizp8rby8POTl5ekes1qtKCoq6vA9KPjMmzcP8+bNc38fFhbW\n7uUNVq1a5fOEYSIi6pieaHsEyLPMbMfuFXQcDgdycnKwbNky90JwRKSlpLYr5TJaL4So7P/8+TOW\nLFkSgBZSZzFa70WGS/Qm0jqd6tzGv4l5YzI4I4O7yvUaxBo3USLspVcL3XlT3SdXuJH3kIUplBCY\nDC3dE+G5y5qr6K3hY4e6PpBacX2rOENG5ZSwlQymyXBYqdi+KraVoh8yRCjfJ/frU8uGyDWa9H9P\nRuVNVHqT47sDC4CuSlUJug7Q169fERUVhejoaI7MEBERmYip1wHq27cv7HZ7oJtBFPSSkpK8nwTP\nlc6JiIKV6dcBIiKijtGGTsI99sksoigROpMZYW/c58i9aghMhoDutfra+rgMEck67QqZGSbDZTKs\n1+BRa74ernIYxQCAv4uMKhnKk9lavXWOy5wzuTqSLLzRgGHivnotlT8jJVSnrn6kfQ79bD3lHKPf\nkxmYegSIiIh+jj9qQX149w7xgwf7oTVE7deVI0BBmwZPREQ/p6SkBDNmzEC/fv0wYsQIzbHXr197\nLP5psViQne1a6GbQb78FoMVELspK0EYvf+IIEBFRN9O3b1+sXr0aKSkpyMrK0hwbPny4Zp7ly5cv\nMXr0aM2SI+pic8p/OWq5BqMsKCVXS4aQXhmcO0JsK8Gir2KfXKxCGwKSGWEA0ISeaMRfWkJfsm0y\ng0sGrZSCFDJ4VWlwhwZNhXf1nioZSFMDN07nXQC+lbHwlgVmNhwBIiIysUuXLmlGaEJCQjB9+nSf\n3z9p0iSkpaUhJsaz7lVrp0+fxrRp0zxGiogCQZkDZPTyJ3aAiIiCzNKlS901Dd++fYuYmBikpKRg\n79696N+/v+GrvZxOJ06fPo2VK1d2wlN0BSt6BLoJ5FdcCZqIiOBwOJCamorp06dj7dq1AIDt27f7\n7frl5eV4//49Fi9erHtcqU5ulIkkw0VK2ExWepchqU/iGv8TGVFKhlYvzblq6ClcZJ3JdigZU3Je\nyHexbVSnSwmHyUCWDL+91zxrk862fCq11X/FH+5tJZQlM7+02V4qvWw9M/O2ErQ/cQSIiChIZWZm\noqGhAQcOHOiU6+fn52PRokUICwvrlOtT93Tu3DmMGzcOY8eORUJCAp48eaJ7ntPpRGZmJmJjYzFm\nzBifPsccASIiMrmLFy/iwoULqKysRK9erpGGrKwsj0nNUnsWkf327RuuXLmCgoICj2Ot0+m9TdoF\n1NEOOZIjGVU1VzQZ7G8wGA1S2mFUKkKSbR7Qcv4ng9EWo/V6nM53Hvfzx7IDv6KRI0eitLQUERER\nuHPnDjIyMlBRUeFx3qlTp1BXV4cXL17AarXiw4cPXq+tZIF1BXaAiIiCTFVVFTZt2oTi4mIMHDjQ\nvX/nzp3YuXOn1/c7HA58//4dTU1NcDqdaGxshNVqRe/eajZXQUEBIiIiMGPGjE55Buq+EhIS3NtT\npkzBmzdvdM/Lzc3F+fPnYbW6gk2DBg3yem2uBE1EZGKFhYX4/Pkzpk6d6t6XmJiIO3fu+PT+Bw8e\naDo2oaGhSEpKwv3799378vPzkZaW5i6eS/QzTpw4gdmzZ+seq62txaVLl1BQUICBAwfiwIED+P13\nvXXAVVGRkfjHxImGxyMjIzvUXsnidJp0DI+IiHTJ0BZgHBbSC2sZTZg2CoHpne8tXOYLo3Yq+9vT\nHiPefi5GbeguobOSkhJs2LAB5eXlGDBggMfxsLAw7NmzB1u3bsX169exb98+lJWVBaCl+jgJmoiI\niNp06NAhxMXFIS4uDm/fvkVNTQ3S09NRWFio2/kBgGHDhmHhwoUAgAULFqCmpqYrm+wVO0BERETU\npo0bN6K6uhrV1dVobm7GwoULcebMGcTGxhq+Z/78+SgpKQEAlJaWtnluIDAERkRERD5LT0/HtWvX\nEB0dDQDo2bMnHj16BACYM2cOjh8/jiFDhuDLly9Yvny5u/7ckSNHMH78+EA2XYMdICIiIjIdhsCI\niIjIdNgBIiIiItNhB4iIiIhMhx0gIiIiMh12gIiIiMh02AEiIiIi02EHiIiIiEyHHSAiIiIyHXaA\niIiIyHTYASIiIiLTYQeIiIiITIcdICIiIjIddoCIiIjIdNgBIiIiItNhB4iIiIhMhx0gIiIiMh12\ngIiIiMh02AEiIiIi02EHiIiIiEyHHSAiIiIyHXaAiIiIyHTYASIiIiLTYQeIiIiITIcdICIiIjId\ndoCIiIjIdNgBIiIiItNhB4iIiIhMhx0gIiIiMp3/Aze5Cl9AWK2YAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x11aa72208>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAADeCAYAAADVab8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXt8FcX5/z8nV0hIiEDKLUqkUBVU\nrIp4KyCCIraKXBS8AYq0onjv5evlJd7q19JWLYhUUPSL9Ya1IlZUtEB/WktFUUEEwRAwBNLAIeGQ\nEHJI5vfH7rP77Nkn55yEQ67P+/UKe5idnZ2dnZmdeZ5nngkYYwwURVEURVHaEElNnQFFURRFUZTG\nRgdAiqIoiqK0OXQApCiKoihKm0MHQIqiKIqitDl0AKQoiqIoSptDB0CKoiiKorQ5dACkKIqiKEqb\nI6WpMxBJt27dUFJS0tTZUBSljdG1a1fs2rWrqbOhKEojEWhujhADgUBTZ0FRlDZKM+sOFUU5gqgK\nTFEURVGUNocOgBRFURRFaXPoAEhRFEVRlDZHixkA3X///SgtLRXDjTF46KGHxOu2bt0KYwyMMTh4\n8CC++eYb3HvvvUhNTXXidO7cGbNnz8Z3332HAwcOYMeOHXj33Xdx6aWXxp2/RKRBGGNw0003RY0z\nadIkGGOQmZlZ7/SjMX78eEyaNKne1917771Yvnw5ysvLYYxBr169fHFOO+00LFy4EBs3bkRNTQ0W\nLlxYZ3o/+clPsHLlSuzfvx979+7FypUrcfTRR8eVl169esEYg4svvrjez9Hcofce+ffzn//ciTNk\nyBAxjjEG7777rhNv3LhxWLJkCYqKihAKhbBmzRpMmDBBvO/UqVPx7bff4sCBA1izZg2GDRuWkOeR\n3tXWrVsxa9ashKSvKIpSF81uFVh9mThxIgBgwoQJuO+++8Q4f/nLXzB79mykp6fjvPPOw/3334+O\nHTvil7/8JVJSUrBixQpkZGTgkUcewXfffYe8vDxccMEFOP/887FkyZKYeUhEGvXl73//O84880xU\nVlYmNN3LL78cXbp0wQsvvFCv637+859jy5YtWLFiRZ2DvnPOOQfnnnsu/v3vfyMrK6vOtC688EK8\n9dZbmDdvHh588EG0b98e5557Ltq1a1evPLVmzjvvPBw4cMD5f0FBgfP7888/x5lnnumJf8wxx+C1\n117DsmXLnLA77rgDW7duxe23347du3dj1KhRePnll9GlSxfMmTPHiTdhwgTMmzcPM2fOxEcffYQp\nU6bg7bffxsCBA/H1118f1nPs3LkTZ555JjZu3OiEXXbZZdizZ89hpasoihIT08wAIP7df//9prS0\n1BP24x//2BhjzPLly40xxgwcONB33datW82sWbM8YfPnzzehUMgAMMOHDzfGGHP66afXee9Yf4lI\ng/8ZY8xNN92UkLTq+7d48WKzYsWKel8XCAQMAHPxxRcbY4zp1atXnXEAmE8//dQsXLjQFyclJcVs\n377dPPzwww1+hl69ehljjLn44oubpAyP5N+kSZOMMcZkZmbW67q77rrLHDp0yHTv3t0J69y5sy/e\nX/7yF1NQUOAJ27hxo3n22Wc97/Grr74yixYtavLySPSfoihthxajApOYOHEiDhw4gMmTJ+PAgQOO\nNCgWn332GTp06IAuXbogJycHAA7L/0e8aSxcuBCffvqpJ6wudU1aWhqeeOIJ7NmzB3v37sWf/vQn\nj9pOUoGlp6fjsccew/bt21FVVYUvvvgCF110kS8fU6dOxVdffYUDBw5g165dWLx4MbKzs7Fw4UKM\nGzcOQ4cOdVQm999/f1xlYOJYPhxPnBEjRuDoo4/GU089Fdd944XUKr/+9a9RXFyMsrIy/P73vwcA\nXHTRRVi/fj327duHv/3tb877BICMjAzMnj0bGzduREVFBQoKCjBnzhyfBCsnJwcvv/wy9u/fjx07\nduBXv/oVZs2aha1bt3riHX300Xj55ZexZ88eVFRU4N1338WPfvSjhD6rxMSJE7Fq1Srs3LnTCZOk\nLGvXrkWPHj2c/x977LE47rjj8NprrzlhxhgsXrxYrFucFStWYPHixZg4cSI2b96M8vJyvPPOO+jZ\ns6cTp6EqsLS0NMydOxd79+7F7t278bvf/Q633nqrp46tWLFCVANGU70qiSUQyEYgkI3sQMD3JyHF\nozT4X6x0pGvi/YuWrtK6aNEDoCuuuALLli3Djh078M477+Dyyy+Py49Qfn4+Dh48iGAwiC+++AI1\nNTV47rnncM455yA5Obne+UhEGpHceeedyMvLw1VXXYWHH34Y06ZNwyOPPBL1mtdffx2TJ0/Gb3/7\nW/zsZz/Dp59+irfeegsDBgxw4txzzz3485//jFWrVmH06NG48cYbUV5ejg4dOuChhx7CP/7xD0eF\ncuaZZ2LBggWH/Sz1YdCgQdi9ezfOPPNMfPvttwiHw1i3bh1++tOfHnbaEyZMwBlnnIEpU6bgd7/7\nHe6880788Y9/xEMPPYT77rsPv/jFLzBkyBA8+uijzjUZGRlITk7GPffcg4suugj33Xcfhg0bhsWL\nF3vSfv755zFixAjceuutmDZtGi644AJcccUVnjhHHXUUPvroIxx33HH4xS9+gcsvvxyZmZn44IMP\n6q3e++677xAOh7Fx40ZMmzYtaty+ffvi1FNPxcsvvxwz3bPOOgvffvut8//jjz8eADwqKgD45ptv\n0LlzZ3Tp0iVqeoMGDcLNN9+MO++8E9OmTcOpp56KZ555JmY+YvG73/0OkydPxgMPPICrrroKxxxz\nDO68805PnOnTpzv1+Mwzz8R1112H2tpaz/MpitIwqqqqcMYZZ2DAgAHo37+/OFnetm0bzj//fJx8\n8skYOnQoioqKmiCnUWgKsVM0UIdoOlIFdu655xpjjBk/frwBYMaOHWuMMWbo0KGe67Zu3Wp+//vf\nm+TkZNO+fXtz8cUXm7KyMrN48WInzu23324OHjxojDGmsrLSLFu2zIwbN65eovN40li4cKH59NNP\nPWGSusYYY7755huPyujuu+82FRUV5qijjhJVIcOGDTPGGDN48GBP+qtWrTKvvfaaAWA6duxoKioq\nzB/+8Ic6n6OhKjD6i6YC4391qcDmzZtnKisrTWlpqZk2bZo5//zzzauvvmrC4bA58cQT48qDVKZb\nt241mzdvNklJSU7Y6tWrTTgcNvn5+U7YY489Znbt2lVn2snJyebss882xhhz9NFHGwCmf//+xhjj\ned/t2rUzpaWlZuvWrU7Ygw8+aHbv3u28QwAmJyfHlJWVmenTp8f1bBdccIG55557zIgRI8zIkSPN\n888/b4wx5rbbbqvzmvvuu88cPHjQc1/pb9iwYaampsZMmjTJCbvyyiuNMcZ07NjRE/f88883xhjT\nt2/fOtNbsWKFKSsrMzk5OU7Yrbfeaowxpl27dlHfVaTamv916tTJVFZWmrvuussTvn79+jr7kOzs\nbLNp0ybz/vvve+pA5J+iKPFRW1trQqGQMcaY6upqc8YZZ5hPPvnEE2fcuHFOH/Xhhx+aq6++utHz\nGY0WKwGaOHEi9u/fj7fffhuAZRS8b98+UQ1255134tChQ6isrMTbb7+Nf/7zn55VVo8//jiOPfZY\nTJ8+HUuXLsWgQYOwePFi/Pa3v407P4lIg7NkyRKPOP+NN95ARkYGTjzxRDH+8OHDsXPnTnz88cdI\nTk52/j788EOcfvrpAKzZfUZGRrNWAQQCAbRv3x733nsvnnnmGXz44YeYOHEitm7dil/96leHlfbK\nlStRW1vr/H/Lli0oLCxEYWGhJyw3N9ejbrz66qvx+eefIxQK4dChQ/j4448BwFFdUfkuXbrUuaaq\nqgoffPCB5/7Dhw/H8uXLsW/fPuf9hEIhfPbZZ04asXj//ffxyCOPYPny5Xj33XcxefJkvPrqq7j3\n3nvrlH5OmDAB77//Pvbu3Vtnur169cJLL72EJUuW1NsAPhqffvopysrKnP9v2LABADxqsPpy0kkn\noX379njrrbc84bz8OYFAAC+99BLS09MxceJETx1QFKVhBAIBdOjQAQAQDocRDod9fdCGDRucFaPn\nnXfeEVkQdDi0yAFQcnIyxo8fj/fffx9paWno2LEj0tPT8d5772Hs2LFISfEublu0aBFOP/10nHTS\nScjKysIll1yC//73v544xcXFePrpp3HFFVcgLy8Py5Ytwy9/+Ut06tQp7nwlIg0iMn/0/+7du4vx\nu3Tpgu7du+PQoUOevwceeMBZPt65c2cA8NiBNDfoI71ixQonrLa2FqtWrUK/fv0OK23+IQaA6upq\nMSwpKQlpaWkAgNGjR2PRokX45JNPMH78eAwaNAijR48GAEdt1a1bN+zbtw8HDx70pBXptqFLly6Y\nMGGC7x0NGzYs7iX+Eq+//jo6d+6M/Px837mTTz4Z/fr1i6r+Ouqoo7Bs2TJs27YNV111leccvY+O\nHTv6ruHn60IqXwCHtaKvW7duAPzlK7nJAIAHH3wQw4YNw5gxY3R1maIkkJqaGpxyyin4wQ9+gBEj\nRmDQoEGe8wMGDMAbb7wBAPjb3/6GUCgUsw2OHDkSp59+ep1/I0eOTFj+W+Qy+OHDhyM3NxdjxozB\nmDFjfOcvvPBC/P3vf3f+X1JSgs8++yzu9CsrKzF37lxcdNFF6NOnD/7zn//UO49SGlVVVc6HlaAP\nSSQ/+MEPxP/XNXgJBoMoKipyPs4SVPG6d+/ebD8E33zzDQD/nnCBQKBJZu7jx4/Hv//9b4/EcPDg\nwZ44u3btQnZ2NtLT0z2DoNzcXE+8YDCIJUuWiD6rQqFQg/NIkkIjGJlPmDABlZWVdc682rdvj7ff\nfhtpaWn46U9/6llaD7i2P8cffzy2b9/uhB9//PHYs2cPdu/e3eB8NxRabJCbm+sZgEWWN2ANYO++\n+25cf/31+Pzzzxstj20RMhwOwV0gkIWQL6y+UBoc6R6JgtI2Zl9C022NJCcn44svvkBZWRkuu+wy\nrF+/3qOl+P3vf4+bb74Zzz//PAYPHoyePXvGtJHdvbsUa9Z8XOf5008/N2H5b5ESoIkTJ2LPnj0Y\nOnSo76+kpCTu1WCANQBJSvIXQ9++fQEgrp3p402jqKgI+fn5SE9Pd+JccMEFYpqXXnqpZxAwZswY\nVFZWYv369WL8Dz/8EN26dcP+/fvx2Wef+f4A4JNPPkFlZWVUR4fV1dVN6m/nvffeQzgc9jjaS0pK\nwpAhQ/Dll182en7at2/vk+xESknWrFkDALjkkkucsHbt2mHEiBGeeB9++CH69++Pr7/+2vd+Dscw\nd9y4cSgtLcW2bdt85yZMmIClS5eioqLCdy45ORmLFy9G3759MXLkSFGCsnXrVmzatAnjx493wgKB\nAMaPH+/xKdSYrFu3DgcOHPD5m/rZz37m+f8JJ5yAF154AfPmzcPzzz/fiDlUlLZFTk4OzjvvPI+j\nVQDo0aMH3njjDaxdu9ZZxMNX2cocAlAW5S9xtDgJUHp6OkaPHo2XXnoJq1at8p1/9dVXcd1116F9\n+/a+2azEsGHD8OijjzpL1Gtra3H22WfjN7/5DZYuXSp+VBqaxptvvokHH3wQCxYswPPPP48f//jH\nuO6668Q0s7KysHjxYsyfPx/9+/fHfffdh6eeeqpOlcPy5cvx3nvvYfny5Xjsscfw9ddfIzs7G6ec\ncgratWuHu+++G+Xl5XjooYfwyCOPIC0tDe+88w7S09Nx8cUX44EHHkBxcTE2btyISy+9FJdeeimK\niopQXFwcl8ps8ODByM3NxWmnnQbAWlpeWlqKDRs2OFKdLl26YMiQIQCsQWOvXr0wduxYAMBf//pX\nANbs/qmnnsL//u//IhAIYMuWLZg2bRry8vI8q7Mai+XLl2Pu3Lm4++67sXr1aowaNQrnn3++J87X\nX3+Nt956C08//TSysrKwa9cu3HHHHaisrPRIrf74xz/i6quvxj/+8Q/Mnj0bO3bsQNeuXTFkyBB8\n9NFHeOWVV2Lm5/XXX8d//vMffPXVV0hOTsYVV1yBCRMmYMaMGT4J0KBBg3Dsscfi9ttvF9OaO3cu\nLr74Ytxyyy3o3LmzoyIFrOXwpK6aOXMmXnzxRRQWFuLjjz/GpEmT0LdvX1x55ZVO/MGDB+PDDz/E\n+eefj3/+85+xC7YeXHPNNXjuuefwwx/+ENu3b0cwGMT8+fPxwAMPIBwO45tvvsGUKVOQnZ3tKe83\n33wT5eXleOWVVzyi+dLSUo/jSCUx7IvDzYXSeigtLUVqaipycnJw4MABLF++HL/+9a89cXbv3o1O\nnTohKSkJjz76aJ3fOy8GQNURybP/Vs0M1LE6g1aBjRkzxhhjzFlnnSXGGzhwoDHGmMsvvzyuFSV5\neXlm1qxZZu3atWbv3r1m37595quvvjK/+c1vTPv27eNamVOfNCZNmmS2bNliKioqzNKlS81ZZ51l\njPGvArv99tvN7NmzTTAYNGVlZWbOnDkmLS3Nk44xxmRkZDhhaWlpZubMmWbz5s3m4MGDZufOnWbZ\nsmVm1KhRnjxMmzbNfP3116aqqsrs3LnTvPrqqyYrK8sAlnO8N954w+zZs8cYY8z9998fVxmsWLFC\nfJ/8+iFDhsT13lNSUszDDz9siouLTVVVlfnkk098q9ui/cW7skhalRe5ui4pKcnMmjXLlJSUmPLy\ncvP666+bM844w5f+UUcdZV555RWzf/9+s2vXLnPfffeZZ555xqxdu9aTfvfu3c1zzz1ndu3aZaqq\nqszWrVvNokWLTL9+/eJ6tkceecRs3LjRVFRUmMrKSrNmzRpz9dVXi3Eff/xxs3fvXk+94X9bt26t\n831EruKbOnWq2bx5s6mqqjKfffaZGTZsmOc8vdshQ4Z46gRfbcnj9e/fP+53Re+E5yk9Pd3MnTvX\nlJWVmWAwaJ588klz//33m71798Zc0SWtPox1jdJ8uPXWW53VhErT8eWXX5pTTjnFnHTSSaZ///7m\ngQceMMYYc99995klS5YYY4xZvHix6dOnj+nbt6+5/vrrTVVVVcx0TzutnzHmizr/TjvttIQ9Q8CY\n5jVsj8ePjwLcfPPNmDVrFtq3b9/UWVEEkpOTsX79eqxevRqTJ09u6uy0CZYvX47U1FQMHTq0wWk0\ns+5QEaD3u3LlyibNh3JkOP30E7BmzfNRzt/kmB0cLi1OBdbWSUpKwuDBg3HNNdfUy7BbObKMGzcO\nPXr0wLp165CdnY0bbrgBffv2xbXXXtvUWWuVDB06FIMGDcLnn3+O1NRUXHHFFRg+fDjGjRvX1Flr\nFuTn52PBggUYPnx4o90zEMgG4DVKJoPiwzFU9htQVyIZNaLRtZ9U9jsc1/1iGV1HxuPnDsdwOj8/\nHyUlJUhOTkaHDh0wcuRIzJkzx1lq3naoQaJtfepCB0BxEM1q3RjTqKuTsrKy8N5772HdunWeHcCP\nJNGev7a2ttFnzc0tPwBQUVGBKVOmoE+fPkhOTsa6descb9zxEggERGN6oqamJhFZbRXs378fo0eP\nxv/8z/+gXbt22Lx5MyZNmuTYkilKS2Tp0qUYPnw4du3ahQsvvBCPPvpozB0AWh+1aCwbIB0AxcGh\nQ4fqPLdy5Uqcd955jZaX8vJyzyqyI82QIUOiippnzpyJBx54oM3mh1i2bNlhr4p67rnnoqrL8vPz\n4zLKbwusWbMGZ511VlNnQxHgxtAkpeFh0SRFQAZLKdOOV+CLdy7rByg9znF22n1Z2Gb7WMzCpCXv\n0fLcWEvju3XrhgsvvBBffPFFo9yveaESoGZFNC+9h+O/pSUQy0txcXFxneeOBM0tP4lk5syZmDNn\nTp3nW/KzKYoSP0VFRVi2bJnHHUjboRbAwZixEoEOgOKgLdvakF+h5kJzy08i2bZtm0p4FKUNM3r0\naAQCAezfvx/Dhg1rEml206MSIEVRFKUZEM3YmKux6Gwg4PqTIp/AY9jqXnIjuoGlU2ynU+JRgWXY\n9+WOR9MALMOqVZ8jEDjTDutjH11HnmE7vWp2Jbnf24TjWGg/O89Xs7DedphftZbNnkMy8I5XpVYX\nb775JoYPH45Vq1bhyiuvxO7du+NwHNjaMGgsG6AW6QlaURRFUVorQ4YMweTJk3HXXXc1dVaagDbs\nCbpr165xbT+hKIqSSLp27drUWUgo4XAYVVXuTDolJcW3UXR94FINko5IBs+XI+iE0fbFfDF6acQ5\nwJLrAECJZ6k6ST4yWVgqrHl7KgDa+40+iuW+e/D7yp9Ouh/fBsa6SloOLxlGS2VQ1zX14bbbbkN+\nfj6+/PJLDBgwoEFptEwaTwLU7AZAtNGhoiiK0nBGjRrl+f8999yDhx9+uIlyo9SX3NxcXHvttXjw\nwQfbmHuHGvDB7JGk2Q2AFEVRlMOjsLCwqbOg1BPpnT399NONn5EmR/0AKYqiKI2MbPCc5TnnhngN\nhXvbx0p2Jf32e/fx4s73uQoswx8RxbBMm6sB7Ii42lVyhWCpMzd5ckPpccVYhXBfK50eLISUcd1i\nlIEURjSWD6GWj64Ca7VIOmKJWHplIrob+Ogu6BPlwl1peqI5aotV5yQbhXhX/tC1/B7R0tMdwxVF\niY5KgBRFUZRGJtoybmkw3IkNhkmWsoOdl2QuBLfyoPm+d0l5OOIs/T5k/0XaiUh34ZA0KCyEVTgh\nXWEtwunFYqX5YgHr0cnOs2v0Ha38OI3tWbplEUsClLgNwHUA1Mg0ZAa8zxjcdtttAIAnnngi0VlS\nWgHROlKpzsWqT/Wtp7Hiq+RHUZT4iCUB0gFQm6Nt7gmjHCm0PimK0jyJtQrsqITdSQdAiqIobZBo\ndlmy3VhH9ttSI2UwlRUpltYyVdkW+7xkzsyRDKPdbUu5OqQUltqqBl7fPV71Gd0vl50nZVeBqF5x\n99mja9LYWVKuccPosK362gTuP8q6SzS1lxKLNuwH6HDIz8/HggULMHz48CN6n1ju0CPP8fOxjJbr\nxmpYkY0ompFzrPvFyrMUL9GqjPz8fJSUlCA5ORkdOnTAyJEjMWfOHHTo0CGh92lNSB1pvMbuLm59\nilY3460jh0O8dViqh7ws1J5CUVoDtUBNRexoCaBVDYCUlsnSpUsxfPhw7Nq1CxdeeCEeffRRPPLI\nI02dLUVp1UQb8Ho9Hh9t/+LyFEv6ws2J3d+uvCdk79MV8shT6OPGl6iX2fcPsjCvhAcAuiKIIIB2\nAPpF7PclLXjnu2hRamTkbF1TEpFjV9rD70734E9B1+Sx9IrsfcZCTKJEqGF0nNTCu4nbEUQHQA2g\nKQw6hw4dCgBYuXJlo9+7sejWrRsuvPBCtU+JQSI6yNZSn9r8x0JRWhu18I5mjyC6GarSbCgqKsKy\nZcvQp0+f2JEVRTniPPvss02dBaWtYWCJE+v6SyAqAVKanNGjRyMQCGD//v0YNmwYHnjggabOkqK0\nKqIZPMfyZOzaiPFpuaUoKrF94VhIiqc0T3zvbx6WY9+DX+tXleUA2AfvVqiEfztT/zaqkXeltUaS\nkTY3lY5mkeIVVtBVbu6yUABAth3lxLKFazPUInqBJxAdAMVA7gjiM272OvWq21g6HqiRReqOQ54O\niHCHyXn2/SRdeEmCjF6lMqiPauLNN9/E8OHDsWrVKlx55ZXYvXs3cnJyYl/YCpBsAaT6FYv6Grvz\n+hSvIX+8eapvXW9I/ZLyIp2neqjG0orSQiAJUCOgAyCl2TBkyBBMnjwZd911F958882mzo6itBri\nN3i2Bop5bGDpTkVcA+X1TnpcDkO/uYylLm/OkUiSImuY3pvlJRVAAF4hgSTZkZbB03kusfHvIubC\npUdpwnm6JugpWyotd8E85d6Y75ywWBOfNo1KgBpOOBxGVZXrQyAlJQUpKQ1/zFizRarIPB51IrH2\n86JGKg12g77GUAkgGSH8wP4/NW1+tSXb6cQ6qr72sZ9wjzWsY1lt30/Ks/RsR2oWfdtttyE/Px9f\nfvklBgwYcETu0ZyIZVAvqS6kdyB3qF3tYy/fOeAb+1wG6NMgfUBSWR2hOil93qTO2yudpKv864Zi\n1S+pHtYXlfooSguhESVArc4IetSoUWjfvr3zN3PmzCbNz5w5c/D88883aR5aErm5ubj22mvx4IMP\nNnVWFEVRlMaGVoHV9ZdAWpUEqLCwsKmzgNmzZzu/582bh+zsbHTp0qUJc9S8kd7Z008/3fgZUZQ2\nild66JfkkSrIqyYiGSH3jSyZHkdTd/FzljKKb65KckuuxtoGS0BQAWCDHZYfkaO6KI04AkCBYK9G\nT8HVXj0izvF8VbBr1zv+f3hurKu9Dkyt+/KylxRgbdI3kIH6AWpMqJLFMlqOFtaZVWQS/M+88UYn\njJzIxzLtpS6Bu5gvBzl/T4XbLKmTia4slTTwEvRMgUBnTyggN9JY3rCjee9Vou+wLZWj5P2Zh5Ez\n/hLbEZvFRfaR17plAIBk1ACw6lkIeQBc1/6AW7u4JJryxbt29yMhGVDzLQLqrvmuoz2Xbp76ZbWo\nhhiMR6ubnDb1gVGU5kwj+gHSAZCiKEorQpIaRBscem2wugEAMln8jpCgoTGfgNGwWfKhzOU4JCWR\nrMlc6Ao+dN4CMhFpjxIcY1+5CYBr78jvynNCd/Uu3bfuy+3VyIaSD/SlBf70m9+Dyq0MayPu4H3a\nTVFsLts8NVAj6MZEmv1FM2TmYT+0wyQvF5yciCPgNtJo+94SBwHUIAy3uVGT5LId/7B5s30sFNLk\nsd3ZOu+oyDeHe3UWigDIRrmxykpxibYBpVS2koieG8q7Lg14z7EBfqywZPt/HeH6dwmhtxOr2PZd\nwiGVhORSgSOvZqH6Km2J4KpMetv1i5u/k2TqbUHaE68BtdbD2CxYsKCps6Aougy+JTBv3rymzoKi\nKErCaNeuXVNnQVFUBdYcmTt3rvP7ueeeQyAQgNFZpaIozYz6OrQktZeF3yUCTca5Sqi3LZXzygkl\nVweR/poBeTNUS9EWZHeutO/BVVu5sKSOVUxMELSl14VsU1KSKXJbWldK6j5JV1viKH1vY9lrUk6l\nJ5TcjvAyrXDK3m8YDU9IG/QOrRKgI4dkTBrN0yw3Cj7RPj5z/fVOmOT6S8L1q+IiqTmp4XaMCCsH\nUIMaxzg65Ki+/E2X152gqNr9ziB9AAAgAElEQVQKCzGpq3BVap2wHgA8XmRIXcc7zSyhMUdzqc+R\n7BBaG9GMd6Uy4WVGTuAKmHoKkPZK+wQAcIHdoQNArv2bq6motnxpH3sCKLc/NDwnVE95R06/ea2h\nOuw1eJbWDW2xj9JaHTdFqqWnC3nmPonoimGCgT5vs/Wth5zWXCcVpdmijhAVRVGUxoZssDKFc3w4\nSxO0E9nKQTrPbRpDzlDa/aLlsUE6UWTHy2LpSZPKHgC+A1CJKmTY8ieyXSthg/CutjSIL9IP2wPf\nEjYIl7YD6uQYMvNr/UiepSUP1JK1Zk/7+L1gwxaLVr80XiVAR45o7t95hTranlkOYdfm20f+bsjI\nmFdu6jz4XJcaS7kQJsXjpqLVsOpEDZJtz72RKUVezaHcSlsFuk8idRj59pEPxoudX+69aAWFMXuc\nsKbwIt1ckaRcssGzJVU7l4nyXTG8q2wotX/zt03vzW/C7q2vVGvortXsmlz28SGp30B2LYXxmuT6\nVnHzTPeQtiEoFTxL8yepcOK50HPwdpJvH7mEarh9XMWe4/0odTNWH6AoyuHx/fff49prr0VJSQkC\ngQCmTZuGW2+9NfpFKgFSFEVRFKUlk5KSgj/84Q849dRTEQqFcNppp2HEiBHo10+ykrJRCVDT8sIL\nLzR1Flokb7zxBsaMGdPU2VAUpR7kMekdSfm4JJikcfybJPl8hhjPL1kmySCX8pGrA54enf8XCysH\nsB+R0nBSyLkyxxI7FzmCc88s9ryu7Zqba/rFVVvRvsfSpqnchpPS4TJ7ynksT9CxHKU2d7p3747u\n3bsDALKysnDCCSdgx44d0QdAugosMcgGzxaS+/cfsjBSfY1gsagRF7IwMh3mDcTfHN2GIb1XHo8a\n/Q4WVgzLD5C1D3Lk3sf+zSW9DryCdcSS4SsfJN013bU30+OTv+E3xo7FG/Zv8i4slbNkkNpa1BHR\n/M7w5+7khJ3khE2xO+bX2TXkD4erYul9SMbIW4SwSiHsoH0sZuf4R0r6sEmrXih/vM7R/fgKHOr8\nuWQ7KLjYK7br6xoWRveT1Mw8/3TfbZ4UrU96IHCqExLNMDpeD+ctsW5y1OeP0tgUFhZi7dq1GDRo\nUPSIuhWGoiiK0hDilRqQ7V6qYMjM7cto8sYHvhSPD2hp8sYNi/Ps+/KJVbTBq9dLM13Fh+YVsCwv\nA3AtwOi835pyk+cuVq65oXU0UQP/BtOz8eelMpAMnrm0h67hk1oapDfEE3RLdOq5f/9+jB07Fk88\n8QSys2MYe6sEKDHEK12gfYfOYteS8ackneFNSpKmUOWP5UeiIuLI0+PvvxJWnfDid8Te1X5eqaPi\nnRKtcuB5p/N9WUdJd+AG2dR58YXYo+wj996bY0uI5sQo+5bs/l2S9kT7+HjroSX5+Y/tagAAznD2\n8XLlPR/hAwBAWPDMzD8L9K4i6w3g7cgp3m4WR9rqgK4pZGFUT6WPY18hHpfEUJvwthcrVPJyzdtE\nhSe2BT2btFJnk+cjSjJct52E7N9dmRSzJG5D9fhW6jR3unXrFjuSoiSAcDiMsWPH4qqrrorPRKIW\nagOkKIqiHBk6dOjQ1FlQ2gDGGFx//fU44YQTcMcdd8R3ka4CO/LMmzcPPXr0QHp6elNnpVXz9NNP\n48Ybb2zqbChKmyGao0evBMuSt/E95cjRKpf6Sq4r6TyXykmelknGxjdXLYs4WvnLs39xuTnJFXkO\nymHJFpPgykDpyOWfJEvk8s1q+16ueMF1gutKDel3SBBDcGec0QzApe1gJRcoxws2Z5xojlJbgh3a\nxx9/jEWLFuGkk07CKaecAgD47W9/i1GjRtV9ka4Cqz/R1BGSpf2NN/7KCTvPPnIxPlXQL1iY5HmH\nmpykxuLNNlOIJ62uIPi1HUGboUpG0LzDCPpCiCJPLKuBd2K6cPI4LOWZpxfN3wxXjUy1jxumT8dL\n06cDgNPFSYamsTz1NsdGH317Ab+L+87suc+1j9d4rh4AP1YHvprdi1SdvC5JVhAUxt8L1Ve+GSr/\n2BGSupfqA0+PVg3xNR2UB2mjVOmjwT8+ZLTP1WdhJ16eE1Zg57qQqQbdtLlykD6APIdWrks8m8Va\nqsZ4vZlLqrDmVDcVpTlw7rnn1n/LKJUAKYqiKInGmH1YuHAh+vTpg8GDx9uh/ilYIftd1/Y8deNf\nE7tJ3F1MukZy5sqnnjtgyVT4xq00rC9kYRsizvG03WlCSLSAo2v8i9n5xE+STxGSAbWEdG2bJ5YE\nKIGjllYzAIrH+HTOnDmYMeMxAF4DyHz76HWbbhHL33JHIYyQDFL5e6X7Sf4hIiUslu+LMDLspdIh\nJ9f+e0grFbxNzb9cXlq6743tjcfLKtrKB57ebPs4Wlj5EMvQtDn6voh3bzOS/ATZfl5n25KL33nq\nLXWVXzohWdgEwNsVF9kSkxLPm7HywqWYBJfg0XvZZB/7Qu5rJOmkJNmkMH4PySCb0iv03IXkR+7n\ntERcvE+ty79Qv8RTMiQ34soV+hByCdDEiPg8D64TgmgevCUP5y2F7OxspKS0mq5faW3EWgWWwOaW\nlLikmj/HHHNMU2dBAfDnP/+5qbOgKG2Wjh07IiNDZQ9KM4X8ANX1l0DazDRg0aJF6NmzZ+yIyhHn\n6KOPxpw5c3DzzTc3dVYUpU3hdTvR1f7XlWSSPRiX/JH0TlLr8Hjk86fII9WUvAgV2/d1PTLTRqVB\njyw91xPfYhuAAwBq4Er3SDLo2nTxtAkSKoTYpqmyBVw44giQFFKSmktSUilMckfB5Zf0HiQbSU5z\nlIYnFPUDFJ1o3nYlvzKBQGfn93G2kSX3rHu2feRNtNA+SkbBvNIWR5zjYbF2Cc63j5K9V6Qvn29h\nNSBSGqx3rnLvTI2Fbzjp5sGvg+d5lgynqZOTDGvzWRj95o6+JHUcqch2XHwxAOC3M2Y4nVFDXMI3\nFyQVCH8eKvnLmMGuq/riap3IK2TVZKVdh/nqHck7NF3D3zwpgj62jwPgvhduq1BoHyX1LE+vNOLI\nz/O8yDYjUm2SzK/LIs4BUg/ZyVkE4Br3F+At+5dUw3kYqcXGsbDlALzG69EWVnCao9G+orQIdBWY\noiiKciQhKQkfXEsr/Qg+GHZX7rlfKpJgeLcOoUGuO6DtJNzXXdvKnVPSANW16cpDCP8FkIQD6GFb\nshXYA+MsYd8vTqXwy40pqQTLfCHFQiyOVH50Ny5ryo04Au7w/vMGON5sVQNuXQUWnfi97VqSnwtY\nwyBpD5cA5dvHQhYmrUmQNgqkSs0bxmYhz5IZJ3lT5oNdaiy8Oeba/6+GO4MP2x6ESyPiAd55rZsX\n3vwqfddKs3Ypz5Iki0S7fB8qch8gGZFzSdFxdme4sZkbQUdzsyAZyXrrqFWCf8P/sDAqNb4Um96+\nW+voPfMOnd5HUPC3ksvKic5y89+ciHN94dZd3t1TbeHPQT5i+OeDruUbVpKiWXINwY20S5wdv6R1\nMm5tkjyXhxyv2f6pIm879FEusZe5W5DxMy8Z6hFOZ2HkJ8etxZ2wEACwp5nXV0VpsagESFEURVGU\ntkYjCoBa7wBo0aJFTZ0FRVGUI0p9VR+Sw8pYe8qRNJdLeCUlmTxp90v3ciKO0jkAKBFMrTNhOfFM\nhyuRz7Ul/H6FVV15yhV++90pcEex9LR8T0Uys+4tGJFzuLQ18q48f/TssZzCShqQVqH6smlEAVDL\nHADF6+qdxN+84uXbR65SkDyPSGosSoc3H3pRhSyMOhRJPcXXoUmqAhLOR3pBqYXl+is/4r78HtTQ\neCdCipagoPDy750smUp71VjSigbK86csjBQOvFOifEmqkYY0+mjG8IkmmtrVu2rD72U7CNoKhG+3\nS6X2JQuj0nK70RLbSDyTrWpxyzSfXZtqp/qRE+LfLtet97S5bhiyfx+qwx1jdO6UNq8jFI+nJ31s\n+9pltIOVlZQe1ZegZ5NT/xwxKOxu7naksYyqKayQhVFr6OWEBG3VW2zv0E1bXxWlpaISIEVRFCWB\nWIM5vtlKtJWpfLhYaB+9kwBraMkH+tJ6xvXOENS9S5l9jWR2vMmzRD3fd74Yq1ENoD38W/XwyRtZ\n1nkHzST/kmRefKq2zXOG59W7uL7upfF8oivZjlKprPLdNbaTzdYk7ZFQCRCjviJeivf222/j4Z/9\nDIC3GZHkgkt4qKIXsjCSwPBmQddI3pK5REnypVERceRIHnO5oXAugCpYFYOul6Q9kWnwfHExbXXE\nOZ4OD5M2LaSORVoK/aUQFstHBqXNfZGUxOn7ojGXxsfr9fmH9izfK47/FH6kUqPPjldOAgAFnjdD\nNZBLlKw3yP2ofIkVAOTyrrKPhex8rLpESIbtkvqBKxWoTfC6Tk8pea/2brLpX3HU27O7nUWB/T5K\nmMdtt7ZLNVGSRW4QwniLfwgAYMx4J0TqoyR3HE3lyuGZZ55pkvsqSkNoRDdArdMT9IsvvoicHKk7\nVxRFaVt07do1diRFaSbUotEcQTd/CVBDyM3NVVfvSqPz2muvNXUWlEZi/vz5uOGGGxr1npKkKZpk\nkkuhBtlHyeWGZNvFibbxqWRHyNOj/IWYVDNoq7lSBW/NXmlbL99ZK7UN2I+QY5xNV3BpZRB59i+u\njKI8SBag/Grrt7T5a1ehvPlUm/Lil+F6Ibkvv2uBnefOHulhfLZkrckPUGNKgJr9AChe1YdkkPqQ\nfeSCbhJw80ZKFV0yvOSqHloFIXm45SoryTuupEqQwqhh8Dz3hOX8PVlIW1Kz8eegETN/Xmqw0loI\nDl3L7QHWCGEQwvz7Lst6XclbcYnohq3xiObzR/IAzD2NX2YfuYo16Gj6pTfO3zQ9t2Q6zj8G+faR\nd+5Ui93ulgzfv7R9CQHuOzhgH7fAfUeSGpd3RIX20esQjz40/DNg5b8TU1NJ8lhKT/ocFXhsN6wc\n8g2MyVsPr7er7D5gvfhZ5khPTHfmZS8pga07Tpu2GdOm3WznS7cwUJREoTZAiqIoiof6zu5pAP/B\nBx/g5hEjAHjtHCXJjmQxRUPrE9kALpptGFdTuMNPye2qS1g8J20+lANgO6oRQBFOBgAUiZv2SD6Z\naVrCh/BlQrxwRJ5kx7iEdFceRkNrPkGkCbP3Q29NN4L4qRPSCW/77tfaB9e6CuwwePjJJ3Hqqaci\nJycH/zzpJACudT3gNgHJpFQyieRhdRko83OA26RKPCsarKbzPmt8nzji4SxfPL66Is3OzyG4jagQ\nfmi2zveIIi+6krTH7xvaO9eVRuHROkgu9o1X4kUdCpcQ5LFnJxqz0cfvadwSO/9YWMbNO8oTbclF\nJZNguBIOaUUKp1Q4Vx1xDnBrRCELC/vyUuE5Y6UgGcXTNbzTLhLVClSbeJdv1SL+FsP2s4eEuumV\n/knlQjGKfCG8XpOX9zBTrWyKanjMW0BkyXB4DklG6965BOcCAIz5f05YvEbQR3pp/OOPP45TTjnl\niKStKEcClQAdBh07dkS7du2Qmtq0ahRFUZSmJisrS/tCpUWhEqDDIDMzE8nJyQgIMzBFUZTWRDRp\nJfchQ7I7btMlecCRHKJSvHwWRjN0LiEMORJvfjVJvN05PW1aGttzNH0Guf1bLiyXsIDr14dyIblx\nda3xetubp/aBH64l2GRLISWJNSfSDxGnXPhdyMIox7wMSOofZK4YGksS0pxQCRAjXtUHNb5vx4/H\nt3YYCbh5BaUmw5uK5LlW8kgr+QGiDkXSF2cxUXzI8U0ygIXVbYwZZE1yBzbhoP27MOK+XkdfdF9X\n+UBdB1+JIBlu03PyzpByx8uKlB+SjxeO5Kla0rZnRhyBxlsBANRfBeF1TGapadZ6aoSlIuGrRejZ\nvLMayZMTqX0k03b+Zqj7lMz23Q6/q+Arh1Kh+rSDpRJidcntjHn9orzyt0/PwfPszx+1Y952JdWz\nbKJv1ZgSZwNUYJn9MeNeeySbFlKzRW4uDACVgk2L93npffAaTq3GP0f1eodWFKUh6CowRVEUxUN9\nB+vG7MPLL7+MPn364OdnnAFA9r7Mh66SDRsh2Uh6kUyAafDod5XJ03AnunywWSbEDAOogTWEj7SI\n5INm/8Y7NBnkFmzSIvi8KBIqnjsaHktlVch+S9IyaZUxTc7LUOCEcclUW8Eg8f5+6qLVDYB4pc2N\nOHJ4AVPF5BIRybOttEhZmv9SGBfcrneuknYSkxaLu02jCL2dXBb5mh2/ttwO8RpQRyJVLmnpvmRo\nKpnfUo6lJdO8XCRpVVc7r7E71yOD9DGJ5nqBnws5b5gbmVrvo0TsuiSPIZIsrVqIJ9VIv+ExX3pO\nnyP+rtxl67sBUH3y16Wg0x3zNyPVpuKIY115tZCUFN5UJTkhlbO7lWfQXggfFP2o+9UoPVi5UCpc\nYvQvJ115RzQXSeZrSXU7sX3YgnFLro+srCg5OfmIpq8oiUYlQIqiKMphk5qaioMHD8aOqCjNhBqo\nEbSiKIpyGPCl+GR5yGfWkqsPybBXcgcpSYczbNVNieDEkqcYcq6W5OZc8ke55fvlldl/B0B77HWy\nbS2DHrcjlvQui0n+JLtEyaGsZEsm7QqXbx+5fJBs0rg8VDKSlvbfk+LVLUttvagRdIOwiow3cElY\nTZWMq7vIbDSymQFe8Tylw8XblYIvE8kzCql6Sjx3lqq8tA4jF1ZTDcAVy0s+lIvte7gqlEy7A+Cx\npF2b6YqQ2Hm5nYikTix0YuWxUOpGeBO23kgnQRXA31s0r8sQ4h0O0bw+e41a/e/Z1dD3Y2FkYSAp\nCSWfP1JYIQujWsm7VKqVfuN5ycYj5Pkw0D3IQDkXcjebE3F07+E1vraeM4vZLcjvxcpZ0LMlgt/G\nw/V/FWTx6DxfvyMpmilt/jyW//ZtggqM9wvue+UtPpp5P6fUzuflTkgnWNuiqHdoRakfqgJTFEVR\nDosnn3sOxx1nrZz79TnnAPAODd2Vb+7ArLc9IJOWgMeS1xDHeRyD0mpC/4asfLVqyEndb5LNncKm\nwhoaGwDZtuTHHfS7q27JNsy/llAuAx4m2SqSYTRfTUvDbV5WNE3hH3DKg7S2M1cIa+uoEXSCkCoU\nSXv4fJrm8dKcnc8BqaFxD7c0q8tjMzm6ls+TK4Vfsv9laVF+JizpTzrcZhdtjOxKBihlPnfOt49c\nFiVj5UVquLxcipwOQ9pbyb2ayoivwqCK7jUZtroqLpWRPOsmgvi9Pv8QAPAIk3S8bi/FXisqEXht\noncpGQrnCvE4Vsn8mNWvtc6b8ztuyPSFALLjgQA7V+a7Qt5KQKqvFl7JofXOvQbjkr9wv8QmbLcu\n73qeAjt3XMok7UFGv/3lGGLSyS9taRCXHbmtib9LyfGFpL6h/PslupLn8MaiS5cuyM7ORkpKq+7m\nlVaGSoAURVGUwyIzMxPp6eno0KFDU2dFUeJGbYAURVEUD/E7hbXi3X3++U6YZMgcdKRiroSrwFE7\n+Y2HOZIFouTbxpXJueopki16HYJYz7FDcJTJ1U6lANYCKEOy47LAqyCDnX+/JFHa307yNORKEF15\nahj+/QkrIo6A+7zR9lEEXAm6ZIcmXeuVgLduN5u6FUaDsKpPhS/EG0aqFu5BVtrpV/Ih5HYebiOV\nFFaSosD1BM1TLAQA9GadDeXVu5FqJqxxcTL8axS48ohUGG5Tk3z0fGEfvRtdUqPy72PMO95y+9l5\nY6bORvI/JCn3+KoJyt9aYUPYRHvWpfT4rtrRPiC80yEfxFtYPHoT/P1RufDyDorWB37PzS6uKooM\nxqVdo713sUp3k1COshLTsHMUT/Lk5HdM15W95xKx3li/Q75dvAF5jY0LlX0foY1x5RltrlrNyl7y\n3u4agLv3pa0OKthzUKs8kX2oS+3fJZ73lm8f/T6YuAosiBMByIb0nKbYIFVRmjMqAVIURVEOCz5J\nkSUT0vTIH08apGUIqyKjfbRyhd98aC0ZXUtL8uX9uWhozKe61uCWlwFNXgqE5zmRDU4r7UG15BRW\nsojjzyGtAJa2ZEoVwuh+kpVoU9qSNTYqAWLEO2s6zp6tcXmItEVeNL8KvJGSoS6fdUqNz7/VX10W\n7JKA2Kre3BjT9Q/hzkQ3IdM+cwh+oa2bK1qKzMsnwxdL9ofhymV4c/YbwhYIBqa05xm/UioDSkVy\nLSA5hTfmH06I1OiluiFJeRIB1Y0vWBjVLy7TkOUbJRFHvtJEcoVQyuJZEowwu9atMQNYmLSzFi2h\n5/JOaiG8Fkg7stF5t8X0diR9/K70Dtx3QeUSZHt3yZ8GyVWCVQ+4FIeeVjKMjGUsmWeXm1ciZ5Vp\nEWsnOUJdcvuDEvaLegTpOXgdtn7zenikDPkVpTWhEqB68sQTTzR1FhRFURRFOUxirQKTvHM1lFYx\nAMrMjG5XoCiK0nawpE98hzrJ6UIPW7JV7JEuWnjlvH47NMmLtOso1u8SIZNJ2Ei6x6XEJPPkUrk0\n+xqe50pYWyUASSyX0o6M3nsBXPXl2qaRsbe0Q6Nfnidb0/GPtbSTnd+k2nVLwu8reZEmH00NsSVr\nLrz77ru49dZbUVNTg6lTp+I3v/lN1Pi1iO4HSAdAAtI2iJKvXUm0JlVuCuPXSuokv9mxbOFPaqKQ\n4PellFVoaiTefJbBUn/xXVIoHTeHIccrr5tevn2U1GxeB15WR+DVj/vd2EudDTkxC3ly3dHOSxEi\nkRyRedd6WLnunOCVD/F2HBSPn6N3tMnj7dqCr5iRHMNJ3mlybHVSgbhHtN93eciTsmR6T+XH3+on\nAFw1EE+5xGn6ZXBrB6+b/s8UObXjdUna/5tS2WD7SbLuJ63pkdzphe17rXZCpMUM7oeSe7gixbXr\n4SoXawEAA1ks+uBLauHYNi10lbSxrd+rt1d12zw2SFWUxqKmpgY33XQTli9fjry8PAwcOBCXXHIJ\n+vXrV+c1sSRAiXTq0KwGQEOHDvWFVYrnKj1h//3vfyFZfNC1u1kYmZIdEuLzz+0u+/g5C6NreJdV\nJaSTZB9rWFit86uAhYZ9IcmeM8Q+++4h0P43blfNc1DJ/rWgWQW/B5UBH7S5v/nVlDYvXcphLQuj\nq/mqlYO+1Lbbx50szH1Ov52K95163zlPO1rd8KcQO77ktHK78+u/vnR5PiUrDxpKJLEwt/T4AOi/\nvrNumfLaRCnyweUy++j3pMtz7L4hqs374K5EK2Qx6by7kSaVhlRfpT3HvYaMX9nH7SyMruJ1eL/n\nXvwKXgJuDL6Kjuyb3NpMpcvfET0RL6lAxBGoq6+g0tzPwqgb5XNTeof+rnzo0KE45ZRTjrjqXlqn\nJm2JI21vI28T4kLvlrfaaFug8Eme5IHaHQi6d6uIiE9h3noARFtZyNchkiPWIlYyZA+2gj1xluiM\n058X+l0hhEkriqNPI1287caKacwuJyRee8jmwH/+8x/06dMHvXtbq6AnTJiAJUuWRB0AqQ3QYXDI\n0xVbTYU/JH2EeAWVBkM1wjm6lndzVFl5x0n34x88SqfG83Gz4Hs11zg547nuAKsLSwYc8XK6feQd\nca2dhptijVCV6Mr2LIxiVbHupdL+Xe0pU3pS/nSUV/5s1rW8nKXB3QGnK8j2xTyEbuwOuxBJjfDZ\nTRa6x/rGp3jt2Tn3k8o/K9ZbNexskhPfffKwXS5pLD23pKT88ncvDano/XIB/wFPngAg1e4UeWqV\nzv8o3Ry4b4nXdspXCgupsfPu5jkp4gi47YPnfK/z1nlu6J3zmhiw7+XWkrA4zaA88/dBaftN63k9\npHzx4br0HFTK3jcgTR8oBq//Uq+iKG2LHTt24Oijj3b+n5eXh9WrV0e5og2vAlu5cqUvjFZO8HM0\nAqawN954AzeMHQsAjnMsAMi2PwCSyJ4jrQyj2REfp1LHzuecH9jHWJuN0j2KPGdpA0tXRRESVwcN\nALAC1gdjRsRd+Bau79hHV6rQ206bPwddKS1DLWRh9JzePNN8hn8AJK1+uX0vd2ZCszE+J97k+Eca\nzkLpLbnPkY2FAKLXA0CuL/WNT/GOEVY2hfBjlqL1VjNsNQvgPmORxw7CeuIfeJbaWnjtJei5+bxV\n8qgk7STU0xevEz7yxVrvDDpoMHgei8Hvsa3OMOmd8u1NKDW+1cr7OMb+NZWFnmUfuRRslX1c5oRk\ne2ROFu6mqmexUGoza5yQfrYqja+Xoyfi7Vhax0W58qre6H15rWkseCnQXT5AJFLdVBTFohbJET7E\njhzNagDUUNLSEmkWpSiK0pKxJGB86EUDOz4BlIxzJausaEtM+JCPDJ35kFmyrZKdZ1rX5gnOVCM3\nG7UkcymI5neZ7icNzCs97ih6R1wBhOx89WAqZsqpZJsiObLgQ/q19qCZb/5KqkNum0YTdT7dJHu1\nluoJumfPnvj++++d/xcVFaFnz55RrgAsOWzjLGxqFQMgDteF0uw6R2hUXFYh6RtJpsErct1eS7xN\nWdKtUzo5wmzW6zGajERPZ6H5AD6DVfEpXGqKfn8uxUIsyp80xuazXbpDuWcTSio5ycm8W6rkwViS\nhnk3PpUqejSH8g2nvkbQl7Iwkq2t95SolT9ejj2dM24nK/ltdiU/kpcqybm+W0u62mlnejyIW1Io\n/la41INY79RUUoSeze6xisWU1rj4rUEkI2jK6RZPTKnWZUack8OConG4JE+0Wm0WM6CWzLsJSV7D\nU5PdBEqhkj1SmZ0XviFsfB+uRPuwUpSmYuDAgdi8eTO2bt2Knj174pVXXsFLL70U46oAZMuzxNMq\nBkBGXcYritLKqe8AfhNTrx4nrOCTPjE08eMDWslFaqkQT1ozKhlfk21aeQzDXWkDmRDyYBmicwkQ\n4V++wCe6NAjm5gCb7cldibB0X5JkSZu78OE7lS+f1m2wy97dDgkI2YP6UjZRovWMfJ0kvY/VosG4\nS3PdUiUlJQVz5szBhRdeiJqaGlx33XXo379/jKukLZ+ODK1iAAS4FTRk78FjYTWhMiYBkqzvpcYs\nbXQXea9YeeEdRr595AWAlh0AACAASURBVK+VbCS89iLUhPhdNsMycq0G8FbE1XyeTU3WbfYkaejF\nyoA6B6kM+LyWnp03+pDTJKVlwG43F7TjFQuNNehprJK8wK/SbJz5gIUkLch3frlLuyXfKpK/Y4rn\nlcZJnwtpvywqfffTVeKUlVs7OzlSIX9e+B262lIj16PxZrhv/XUn3nH2e5P8vEj+UfjHwt1y4FwW\nSp8dLv+TUpQ8gNBT8dxQPeTrkKxaPES4Ky8XSkWSAvOwDCHM35PwFHlJW+WbivWoL4fjzfzxxx+v\n9zWKciQZNWoURo0aVY8rVAJUL6qro7lNUhRFaRu0b98+diRFadZwJ5cSB6Kcqx+tYgCUmtqY8gFF\nUZTmi2vI7N/tPp/Fi7aeE0I8yfZRcs8peUHmkmWSNoc8TkXT7DDX5JnsCL0rJXvauUyHq3zyS75J\n3bSF2S9K8kaSEOayslpvS6hLBKeneczujuR9klsUjuuv2s2LpD6jdCSru4b4+WlK1dfhEUB0f89t\naAAUTcftjSctH7eMEqVF3F5DXAuuEqKVCkWsuZAVv6QC4FAFrogRz72ftCfwJ05IJxRgHywPJBn4\nnSc9addhrzfn1Ih7ub+5SkYyv3WX7vMOKF6/2ZV2XiDE83vDltUg3BdM/TgcNQItrOZGxJfYR15v\nyCUlV8JIW95KW42Sh+yQJ5TUXJJaTDJPd8NoWfhmtiRfskegZ/qH/faz8ZRzB252T9fwpeyS/2mC\nl0uBU18yhBj/YmF0Z271EI44B0gK6a52zZJqoSQPllR00gIHXlZyyVt9QFD8dHF6evLUWKSkNPsu\nXVFiEEsCJA3TG0araC26F5iiKIqFNOiiwV6hEI8PIqWl8WSFJg0spVVz0nSOD6RLHGNgvo2J32zZ\nL7+i3KTAawQt2dNZT1zgGfoGfXelK3iZbXO2wvFvosQ/vWURR0DekomQpjqSJRmfUNG6whCbhPLl\n9NFoDkbQDUNtgBzitXjv5EhnPnLCaLYrrV6QxLQ8niR+pXiSkayUHkfaPLBM+EWSnxPZc/eD5QYx\nAGCEHUazWOm+qfA78OOdnLQyQ8Lt3NyrOzkzYJ4ilYjUbcYrB5MW7DeWQ3QvJI+48iIWeKN1OIcJ\nMC79X+v4JItGC8ljlTeJ3kuZUXWBU1a8HK2UujJZWn5EuoC74offg94fL1la+n2UfTyPneP1mtpJ\nmnDe66fEwiv6l1oIpRhL9kpIu+u5TyeZRVMq/AMieRyhj4rkADWf/aYPpSQ9/ZIZN4fs7RRkE/TG\nJeDxF6MoLRH1A1Qv1AZIURRFUVoDKgGqF0lJSbEjKYqitFFI/rZZCOMSLsmJq+TMlMKkjUC5ZI2k\nkEWCXaJXvuh3F+pK4bkMM8POcSpcKaFkPkzn3A+pdFfpM0uS9JBg0swNt9faCjHuz0iyQ5PcjtAT\nZQphfHOjEAbZvzazsHjtYluOx2gvKgGqN1RpuWtxSb9LFVPytSsZN2cwfavkpUVSi0VT9PAm6nYK\nbtOgHYu5s65cliblQfIWFG3XZh6v0D7GckjuetGVViAE2S+pK6XfUsnwlR5Fdhq8sfpz3ZjKMMck\n90YW+LOzrWM/VweWaeu7Brr26k4n5u5G5X93gPsB4R+XjnZZcCURld7ZLIxUM9xzEq34kboNqV5z\nc3T6YHG7hUohjCgTfkvxvEjm4YS0Dknad9ttPaRglfbu4m2M1GGS13N+baQ1CeDWOV6mVDe89y3x\n3B8AQnaMkgZ8hNQTtNK2UQlQvaipqXsHcEVRlJbG0KFDfWGV4rlKT9jOnTuxS0iPOvrvWBiZxvJ9\n6z+zj9ySSDKMpmv41KhKuC/J5rldYq1t91aD71nMsH0v/6SnHbu2Cuvsu1fB3aAm1TnrYg24k+F+\nG2iAyk2IqQz4ENz9vVN4Ev7JtDYULvAMm+lq44uXzFKmhdzbWaywc44PmrfZd3VzfchOj9eDaHWj\n5RFrFVjiaBUDIA6fN0qLrt29mlwkt+nSZnp0nr+anIgjP89nhNJqCLoLt+qnGWZmRKyAnS5JhqQZ\nOs2x84X8cdE3PXuZEE9qMnwsTvfzSmzCEWcBiHuGEe5dXM/JbidX5OSs4XKfw5lFv2Afr+RbY9Hy\n7XfckApb8iMZ00pbBHBpj/SeJb8iUnqSmwXJKJikHtIqH/rApbL7Sm2Hv/svIu7P03YNgfldSoWY\nEML42ppCAEAnZmQsSWglpYfkCqPQNh7nC+3pPUjlwtOjNpMmxJPMnXnZU21uyF5glguHSgwZcm7M\nuIrS+khCdD9AiaNVDIDUE7SiKK2LDKxcudITQsuaeTj5u6Kw2bNnY+Ytt/hSkxzvSRMhgg82afDI\n/WLRNVzVWyikQ58xyYsV3xuLBsu92d5YmZ4zFgXIBrAP1sbQZPAgeXezLGkyIlbTAt790KSpG01c\nC8RpjDTVlax7/Bv3ZjAnipKtFeVhk8cAwvqdjYVOSNC+L68H0epGy0MlQPWiqkoSviqKorQe4jV+\nDdrSuCw2mPDv1ud+oqPJ5gB3YCM5XZV2Z+P3IAl6HyHeBiblkzxVSy5SKxBEEEAYh1hK/tyQATV/\nDpK+e9Oz4JI/SSot+waKJquV5KQu0h567ua1fFhk5TDYYg2aG4LaANUbyeeJNGanYuUibHmzSgs+\nM4jXCBpCvM1C2Lm26os3Kem1Z8LSInPbeIpXKMTnMzVpbkTGs5KvGmkHZFnNwJH81xC8VK1cd2Iq\nP7rS621aUsrERyKcfjk2za+zwCXWYQezPCZtGJ8FSythohkmSytsJJUjT29bxDn+W1Ljcqi+JrO8\nSQpHqT7Q58ar7pI2GKAaI82gpXVD/tbIy0XyyBx5d3iucltjiX1VrjAYkD7o0gapnGjdstc/rT+3\n9d3NvSHMmDEDt9zySIOvV5SmR1eB1YtwuGkc5imKojQ/rI+Hd6BqDQD5ZMa/g5aMpCZKizgCss0l\n/eYSIJoSxdpbTJJQkT2kZfBcGHGVG9OVmLgphuwhb5GwlUInNuiUJrWu2k761hQLMf2Wot5hbQk7\nE3lnPnguBOC1aYxXtdVyVxOqBKjeUEXilVbyvkxVnxsj04w66OkwImUtAOzVC7zSSo1UWnIbmU8A\nGGIfeZ5p2S5vUtWwmvshuPtPEdxnhCSFkvLizjr9/iskyRhPg5Zb8+btSga4X2HqCPyLpnk5+50M\nAFSaxrjrWaRGL82Uo+0BVl//GTdvc8+Ns4/cLvr/7GMB8w1Cy/q5Fp/kEpKdAS9vyciefvMum+qu\nJLHkSCbGJIkkpXEhi8fTk1QDru8XV5pC572ewaU9vuhJXTcCWXZ78r6BSk/eOdKCBK+cRfLzbv2W\nJHKSr2lpGTwnmiWIdxm8dTWXSGbH6aW55W1doCiJRCVA9SIUarjIWFEURVGU5oJKgBRFUZQGQbIt\nV34n7Ucn2X5FU2NxqRfNzyU1Foekx7EcdBKS44TVHsl8Piw5uYHfoQHPoeTchHKR77tvkFlT5thS\nXMnW0yvn8zsPyXKMpaUSdFOptKWo3Natt33fAnCstLn0UDKHbrlenyV0FVi92Lt3r9OYuEhcEuMT\nvBpL+mKpe6BqzJdRSj5KCEn9xMMoHZ4/6gAiTSgPwaoWkg8Ygp6JbwZJDWyAJ6ZfYkbpSc02lr8U\nV8XCuwxJhSiZs9J57gLfUo00pNFHMyCtrxHqU6zj/T+7wwphCos53D66tSmIpwEAA1g35m586iLt\nzi25zJd8A1HNlAyoI/1HRYbR+yNHduWQ6xzdQ9oMldeRzb6zPNfShgqFLC+0EayrUiO7lVL2rqQ2\nRu2I5y9sp1PG0pO8OUsG3tIqKWmAIKnFKG3eLxS0WCd0itLUqAqsXtx2222Yd/vtTZ0NRVGUI0b8\nA/gi+5y7spIG3NK2KBLxxpMGh9JKUmmbFel+PD13cD2EhQ4E8LQdc4QdRlZx0qpRacgqbc/jxiu1\ny49PVinP3Gkt2XlxA2p5Mu23sqMcyNsRuf6C6Im4XVi89pAtF1WB1RvJ4NldWu1vBHmswtDvMAuT\nZoRUWSUDSI60JF/yXLtKCCPpTaQkJg3W0mVqlHRf3tlQY+ESoEL7yA1hKQ3J828sN1+Ed2k8SUp4\nrulq3o1I6z8I9y6Uh+8aYECaSLI8kolZ1o+xd7kRaEn8l793ggbZkh/JFYHU8fN3Re+I16l8+yjJ\nzCRpHe9Q6ZocIYzqYy7cOrLe8zG1ciH5kuGUOM7suPyDahY30S+OOPJ9sngdsXLLjaor7I+OVGs4\nUpcpSYYpZb5PV6XgN8b1y9KLhVlvcbMjvXLd8a1g6TXGkndFaZ0kQyVAiqIoiqK0MVQCpCiKohwW\n3AeO5MCU8Muxw0wNEw3JZQOXotXtmMArUSTpHpfUBR33ElyGmWunkAKvdyFAcuTgleJKNoilEUc3\nf1xC7rr6cMuR1GHeT7Xkv7oQAHAiywvJFLmJdjT7zpa7rUVDUCNoh3jFxgV2vDzPOSrEnr6wIiae\n72pXZC50o8rIhfOSXxxJx01h3Psyaal5o6fmyjcqJbhCoRpALSzDVUqTrpXUWDw9aWcaUs/w55UM\nYSX1AXUE3jznw48kwpR8S/vvTO/S2+jjqwfRfKhI56KpKrznHrQOo5gK7HpKb4ETdJF9lHT70sa1\nUklI1gNSWD4L6yXEk7YkJWrtYzV43ejlixdiOaywy8OryvNvLXqivcUBr+tUb7kaK4jj6rwvz7W0\n8a/kZWqTU0f8n9Yszx7g8MUL2XnY5Gkp9Gzcn5FFCeugV2GtfY/oG5/GqxZTlLZNALoZqqIoiuJQ\n/wF8iXCOLykniYh/ABpkUpdUe0DLpzTS5qo0+OYTP8lRrDQwlwa57kewMOLq/fa5yI1i3Dt3sp/d\nu4eWP4fkjFMyi/Y6tiRbN3fI3SMiPgBk2veVVgHG2iiI7AG5o1h6hw3xBN1yUQmQQ309+n5vDF57\n7TX06NEDP/nJKPssn49TNXSbrjubk8w8/TskbWDi4V5CLKrUQUHsnMlmopVOmIt/UbjLIbjNb4cQ\nT6oyQealmCiz85/PwqSOKto+VCGcKNyZd18k3JXWiUhCXrcboXcZa+VDIohWl7z37wwAOO561xh7\nE94HAOQxg1hCEm3z0pEkIlQqUonxTpZqaaxdvCWVhFTy/pwC9ARd2QeW7lfkefe0QseVCeZH5JPn\nocDTJk63j7wFFPrCpK0aKKcFnvdHrdH/qUll7Y6bV7tQfyAtA5DWNflnqA2pry13uwJFOVI0ng1Q\nUqPcpZG5/PLLUVYWa82IoiiKoijNikAASE2r+y+BNHsJkKIoiuK6guCSpmgSTH6uqxMWa+NovztO\ncheQLzin5PIy+jTFuoPkBJRclnBbrSzbpUTII4ErB7APQHtE7pyYxZyPkuwuKFrPlfri8Vh01qsu\ntOSQx7H8nW0fuSk23WENKytKj0voqZS5upBs4rKYRLlN2pI1ngCo9Q2AvP5iqAJzs2WqhvksjKoo\nF9pLTtxpM0/u+ZdE/5LHY7+ZMVeW5AmGmZLX20pYRqu1kJ2+E9QB8WuzhNUclCvJ4DnyvkBd7u79\nqkFvTCoXaXtJ/57UXgdjh2/wHC/RVKxcjUH33+TpFC3/P7wkqEPjthGSg7jSiHOArNoqEHxZkTFy\noS/n3noheYomyAi6kl3DPyCSXyj3s5HPQukz4ObvX74QvnqG25tQPeBequh3hS+WtGWD1wkd5ZDb\neFjneS10t3FwbWRKnFB+F0mNW2mn65ZVtPrCaVUfKUU5UjSeI+jWNwBSFEVpjdTXCJoP7t2JoTuY\n62pPxypFiYN/054NtjE04Eo9JGec0Wy2ANc9ZhA/9sXowSZC7qJ1N2w9dgA4COvT5V/CToSFXxQv\nS7DD5LGCnkmORZ49kRzOwsbZx4EsjHLC1w2SnIpPbKgMCpyVkC6P/OlPmDFjBgDZAaw0kG5VtmQq\nAYpOvI2+s115guL6BWm5K6dcCIvmVp03cUme0iviCBQJi9lz7MbJZ95huBKgSENZaaDMZ7vSSgXq\noCQJEIeeiGtd3VLhnY60Q5jkTYPwl+O+GF6fEyHtqS/SB8SYXU4YGUbzpyHj9DUx0paMm6WaSZ01\n9z8SzScJf1dU8pJBPUmAwnA/dfyTR+lIdSnocYJA/syXOyGu8f84+Fnl/OqEv/nOSgsHaCUPl/ZQ\nvZf2AuMfiGiG4N6tM0nd4q+v0lYHUn2NZQTdqj5SyhGDBj9tFpUAKYqiKIrS5lAJkKIoinI4yPvn\nuTK9TFuylc/OltphBR7lljUd5xLHSlviyKXIktPVnIhzAJfy+W0kJRu2Qk/+M2HtFRV9vyjKg+Sc\n0qtCkr60YftaV1V2in3kKrChVJQs09XF/lTpNJctujJUrn2wlGVeW7I2SCw3QAlUBrTIAVA0I1nJ\nezAXtQcdh1ZcU00NSaq2kumq5BtZgnci+cJ5uofbHKSOBbDe+UF4O5JIpKYc3e+Li6Tci76awz3r\n7j7NN4OUPO/6kQ1I/dD5plYjeD8qVk65s7UNdj3k70ny7VQRcY4jGQ93Ev3Y8HhWHnqwDl/yUk79\nCvUh1ZBNkaXtCqi2dmU2IyW26qur7Q2Z3zcoPp2bm9OFs584Kr/oXb/kM8n9QLu5LhFLi9q+9MQu\n5CFeUiFK9VWqG4qi1JNYjqAPJu5WLXIApCiKokRHtqtzB4e0Co4PcqvZWRdruHkiG4RLFn609o5P\nLWnQzAeRrl1bIQst9901Ml33zgF4p4N+uy1XyiQ5tvRPRbjXbMktLhl9c+PmajuZzSw5WgG5hcUj\nu0D+HCWCrRt5r94Tw5ZMsoFtjvzlL3/BY489BmMMsrKy8PTTT2PAgAGxL4wlAWrrAyBJCnA4RrLR\njBglo2pp5yKvPwcSa3IRrSSL8ZsyUwdQHBGrCtasXfLYTETzIi3dVZpldxIkCBKSa/YjKZ1pTMlP\ntHtJdYR3SCRTkMzBS1h5UznzeNKKFEmSFk06Iu0N590OwLpvlf2/bairPlgm0RWCG4USzyqZnnbe\nXQkQfTiCeJ3Fs55uECsrajObhOeRDND3NIEhvKIoDePYY4/FqlWrcNRRR2HZsmWYNm0aVq9eHftC\ntQFSFEVRFKWlcvbZZzu/zzzzTBQV+SdTItHNuxKKDoAURVFaKPX1FJzFfPmQ5+FSZtNF3x3upJUk\nelyZRBN0bqpBcm8u65ZMOdx47gdRslfb5OxjGLlHY5J9Bfn1KfHkyZtDbmQs7dxoySF5ieXa6fHn\nlYy5Ka/c5QVZcxayMJIKbwCnl533FU4ISWq5LZkk622JDjWfffZZXHTRRfFFVglQ/ZHUEYTXOLdu\n/alkxCgZVWcI/ki86iL6n2QKK3kkcRUhUkcQtv+4Cszt0Pw+SiRi6Y3pfPAwyoqHxdtIj5SH50QT\nzdtvrI9QMMq7yoqhcoy+1YHfjkDaSFW6h1TPvFjdtlSDvQb9Zb689LM/nqnMroLutzpGWYWEukQ0\n9i7Y0vuN1weZoigWK1aswLPPPouPPvoovgvUD5CiKIoSi/oOuiTDaD7ZJnmJtNUOt0vNt4/8WjIU\n5nZt0rpZCPEIr5SE7pITEeMQUlCFbNt5peTs0v2CcotNWsweOb0EXFNlWXYkOSmlyYHfXNwLnQ85\nEi03D63NoeZTTz2F+fPnAwDeeecd7N69G1OnTsWyZcvQuXPn+BJRCVD9OZxKEa8RNMX73hi8+OKL\nyM3NxdSRI4UUqcpLvpalObob5s42vTNNA+CU007DvHnzkJqaip+cYjXmf61bh9TUVITDYZx90kkA\ngNUbNiAtLQ3JyckA4BwDgQBqay0fwOXl1gx/48aN2L17NwCgQ4cO1nNmZyNgPyvFu+aaa4TnbDvE\nW79k3ysW8195BYFAADU1Nfj5lVfWGU+SOPAwV/rn3z8t1rUURjU91saV8vlCXwjPC9X6aC4bOLE+\nAoqitAxuuukm3HTTTQCA7du3Y8yYMVi0aBF+9KMfxZ9IrFVgCaTVDIAam6uvvhp/+tOfmjobMMag\ntrbWGdjw8EOHDgEAampqAAC1tbVO2MGD1lrCzMxM59rKSmtO9v3336O62lrMescddxz5h2gj7N+/\n3xmsKoqitGYefPBB7NmzB9OnTwcApKSkYM2aWJsEIbYfoASiAyBFUZRWRH0dxXKbRlL79GOxou0L\nx5VTJPfmPnAK7aPkLparmMJC2CZHhljohPW2d1BMYnEli0uA/M3kszCSTXIVGF3lKuToOSUtDPdx\nROd5uVBZ8eeVJKHkPFZ6H954LcPnj8SCBQuwYMGC+l+oEqDEIBlGy8a5dRu4xjLGJNNPb7p1e+uJ\n10jbn89KfPHZZxg2cKDn/MknnxPxFMCgfv0QSbyGnJFldeedM31xIyH1EC8XSWXU2tQb9TW8nzr1\ndhbmjxcZn5//xz+WICkpCTU1NRh9/vl1XivlQa7/lfb/M5zzsbcNINyPBV3DPxb0eZHKQCoryaty\nc3AAJ5Vfa6m7itJsURsgRVE41dXVSE5OdmyzFKUu4l2pRhOStWygOtC+9hT44RaNmRFHwJ3u8Xg0\nGOaOYlMjjoCs8cizjZwjDbKTAByCK3Gia0MeB51k/Myv/tQ+cjVMmX0v14atp33MZ7Eko3C6gzT4\n38HCQra7gU8+eR6bN2/GNddcE9XGFJ5rW96S98NGV4ElhkRby8dbaakDevfjj5GcnAxjDM466wIA\nwN//+U+EQiHs2rULt11/PQDgyScfxqFDh9CuXTsAQP/+/QEAnTt3RlJSEgBg0qRJAICFCxc6Rs3G\nno0ePHgQ69atAwCUlFhLj1NSUtC+fXsAQLdu3QAAnTp1Qlpamv0sVr7D4bBj+7Nnzx4AluHzL37x\ni3qXT6zybm2z54bWr8cffxwAHHusrKwsdO/eHQCQkeHKfsl2K3LQ87cPPvD8n2y4qqos/87l5eXO\n79xcy4dK7969nXcPuEbtzz33HE46yXJYJn041637F5KSkhAMBjHqJz+p85kk035OtA9wc17VoiiJ\nori4uM0vJokLlQC1DgoKCpCeno6UFLeY9+zZg+rqaufjBwC33HILAGDOnDkA4AyEkpKSnAGQBH34\nUlJSkJ1tDc6uvfZa5zylRx/DYNCd5dDgqaamxjF4png8b0riuf12SxVGA6GysjKEQtbgIzPTmvqk\npqY69YDebfv27Z26JNUL/k6pbqSnpwPwDqICgQACgYATPxplZWUIBoPYu3dvPZ9SURTOmDFjmjoL\nLQO1AVIURVEaQjRJazSJNeD64eGbfna0j9xvD0n5yoQwDl0jeYeWjIOlNLj6qRhALYBqZKAIve1Q\nEhf0ZDEppX85IVn4GwCvX2n6znLja7Kg5Nt2kkYmVQjLZ2EbIs5ZWIqxWDamkrqrTUpHk6CrwJqC\neD0Zx4pHYdM94k4r7LLLrvWFSelFqiMqAdQgOaq64u1VqwD4jZHnzp2L39i+GQBg1rx5CIfDmDHj\nbifsz3/+Paqrq52wGTPubpuNL0HEeqfxGNjOnj0b99jSwRfeeAPJyclITk7G0KE/810bDckYmT5M\nlu+oug2eudorulG1n1gGz1L9T4SatCEeo7WuK0ozQSVASkNo166do/biTJ8+3TMA+vnPfw4AngEQ\nt0FSmgczZsxwBkCkDo2mElWUWMTrebiCDV7JIJpLRAhpYx8uFSLpTU8hHpco0fJyLjmpa/MgyzIu\nHa7cZoh95LIdazL4Y1vqAwCjhPxRHvi62eFCGOV5mxDGl7xT2ps8kw7L9CBeR7ttHrUBahoOd/b5\nzjvvOIbEZWVWU5gxY0bc17/66qsAgBNOOMEJow/elClTAFhGq2QEzY1kyZAZAGbP/i1uvvlmT9rS\nsxmzD3/60588Nkrz5/8RU6dOjTvPikyiDL73GYMlS5Z4wv75z787v2tra3HgwAEAQGmpJWovLy93\nDN+PPfZYAJaXb6pLNTU1jq3YCy+8AMC1Efr2229xySWXJCTvTYVKcxSlBaOrwFomo0aNwnvvvQeg\nYVtHxGOUSgaskUR6go6XW265BYsXLwbgGuAqzQvuyTvyPdfW1jqepcmIPSMjw9l3h6/6o/rF6xkN\npmkATasIFUVRmgSVACmKoiiJIppvIMk4l/sGCtth3FBY8gRNv7n9Kk2pNrMwUiOVCfH4d49+SxuM\nWrvZkXJsoH3kG58+DQD4HxZCKjC+4Sr9HsLC8s+yfzCNWpr9AJXfuGFkXs2NuV+2j5KdHFdxSZZz\nbdLnj4RKgFoO0fS2sbwvS/EWLHjcmdFzvy0SXBK0f//+mHmti/Hjxzf4WuXIU1FhfQLatWvnSG8k\nP04kHcrLy0PHjtbaHZLwkBdpwJIoGWM80sTdu3djzIgRAIA7p01z7i2p8qQPpgSv16qWUhQlLlQC\n1HZJSkrCvn3Wx6Jz586OfQ59qLghLH0M9+/f73wE6YOntB5Infryyy87jhKpDlRVVTn2ZqmpVq/x\ngx/8wBk8U7y6PEhTvdmxY4d4XmkdRLNJi+Wckga8Pdhgl2Qv3DD6bPvITZFJSsINmUkCxI2g6Te/\ntq6l9ra3K/gX2bt7fJ2HtQCA8TyD9u+Bq9ygHnZmevJVRyTK4lII+1ZcekTP9hdhoisZPEsG6Byd\nJNg04iqwNrGkZMWKFTjppJOQk5ODzp0747LLLvN0+JMnT0ZaWho6dOjg/NFsORb7jKnzz5h9zl88\n8Z577skjVQRKAti5cycuueQS9OjRA4FAAIWFhU2dpYQy+/nnfXVTor71Wjt2RVHihlRgdf0l+Fat\nnn79+uG9995DWVkZiouL0bdvX9x4442eOL/61a+wf/9+568pJClTpkzBlClTsHv3buzevRtlZWWo\nqanxDMa4EWx1dTWqq6tRXFyMyspKVFZWIiUlxbOqS0kcSUlJGDlyJP761782yf0nTpyIXbt2Ydeu\nXSgpKXH+9u3bh3379qFdu3Zo164d0tPTPcvmk5KSYIxx/lJSUhyJEKU3adIkZ7sVRVGUJoNUYHX9\nJZBm96WcNWsWcDeF1wAAC0xJREFU/v3vf3s+MrfccgsCgQCefLJhEpKuXbt6/p+cnIwtW7YcVj6V\n5s13332HgQMH4oMPPsCpp56K4uJiDBgwAIsXL8bQoUMblGbXrl0xffp03SpEaRVE80YsGey+j05O\n2Bbbtw03UCYTZK7GIm1ShhCvmoWRLx3JO7TXOLgjgP/Cux3qW/ax0In1EP3gWxqSSSXLdE9Kgn9Y\n6Tyz3N5hq8ruY9FWR3EMKtnJSU5AFYFktF0j6KuvvhozZ85EWVkZcnJycOjQIbzyyitYtmwZpk+f\njpdeekm87phjjsFXX31VZ7rbt2/HySefjH379iE5ORnz58/3nJ87dy7mzp2LY489FnfffTfGjh2b\n0OeqD2SU/H//93+ODQdJfsrKyhxbD/I5VFRU5EisIiVbbZUf/vCHeOyxx3D11VdjzZo1mDJlCiZN\nmoShQ4ceVj1qasiJpQS5M0hKSvLZ/PCl73Q+HA5j27ZtUBRFaU40lgKm2Q2AunfvjsGDB2Px4sW4\n4YYb8O6776JLly447bTTcNppp2Hu3LkNSveYY45xNnacP38+jj/+eOfcLbfcgj/84Q/o2LEj3n//\nfVxxxRXo1q0bzjnnnEQ9VoO49tpr8eKLLwIAevSwFp5+//33zqCIBkCRTg8VixtuuAFLly7FoP/f\n3v2HNLX3cQB/H7u7OJ0+alZQgWFagk+yJ5b3pklJPiVBt8Q/rAyEbKWE1D9iGkX0R4SBWBFBQn9E\nUhO1vFZKaol2HyhiaemlQMO0QiVTcl5Naz5/zLOObnNL5zx23i84TM+vfUfCPn3O5/v5/vYbBEHA\nn39a/qcoBrs/G+ljWzEAkgZC4t/Nly9fEB4ejk+fPuGQZMYXKYu9Gq/pukOPj/fZnHddcq1YtCzN\nrUsLmEVih2XptHox8yMtMm6xZpykk+0teaNfMAx/vAYAfJq4OlSSiZF2cZ5y6eTbiYueSVNUE9mH\nIckHybEzPpGr3bVZC+eaRZj8TzSXZFkDlJaWZv3iv3Hjxg81FWxsbLQWMkdGRtocDwoKQlpaGnbt\n2mV9lLF+/XrrjKsdO3YgNTUV5eXl7vkwbqLX66HX6+d7GAuOXq9HS0sLsrKyrCuju8LZ39FCl5OT\nw5ofIpIdLwDe02zuJLsMEADs3r0bmZmZaGlpwd27d5Gfnw8AyMjIsAZGU4WEhKC1tRVxcXFOe+J8\n/foVvb29+Pz5M4KCgmyOS7vmzrf9+/fP9xAWLJPJhGPHjiE9PR2nT59GcnIygoKC3PZ3JDf2it+l\nfYPEn8VuzykpKZ4bHBGRCxbBUunlCcK4XL7pp9Dr9Xjy5AmCg4Px8OHDWd2rvLwckZGRCA8PR19f\nH44cOYK2tjYYjUYAQGlpKRITE+Hj44Pa2lokJyejsrJyxsWyJA/p6ekwmUwwGAw4dOgQBgYGUFJS\nMqt7joyM4Nu3b9BoNHj16hVCQkJks4is+IgvLCzM+rhL2gdIrCPr6uoCACQkJNi5CymZ+AjHXldi\ne8W+k/dZJpusxPflVMRHUdJOy2KRtHQRUTt1x3g28Tp1cdVOWCYKhU7sE6vYpMXXxyde9dI+QDrJ\nTUR/2+5rmmjn/B/827rPDy0A7De3ddbwVjzOR2Cu8dXpEPHsmcPjgk6HZ9Mc/xGyfAQGWB6DvXz5\nckZrak31/v17JCYmws/PD+vWrYOXlxdu3/6+SvCFCxewYsUKBAQEIDs7G0VFRQx+FriKigpUV1fj\nyhVLS/yCggIYjUYUFxfP6r5qtRoajQYAEBERAbVaPeuxuotKpYJKpYIgCDbT4AVBwPDwMIaHh9HV\n1WUNgoiI5ESsAXK0uZNsM0CdnZ2IiIhAd3c3/P39nV9ApHA1NTUALEthTM0Amc1mdHZ2AgD+O7Hk\nBdFMuVrsa6/j8R8TrzGSfWIB9d929tVI9r2DH4B/sAjfbJoFV//1F7y9vTE2Nobff98FAEiVZKMu\nTbxWSa4R1+76n2TfJzsZGxY3e86/dDpsmibD0+PGDJAsa4DMZjMKCgqwZ88eBj9EROTUixcvEBwc\nLJtH0jQzv2D6TE/PNMdm8l6yMjQ0hGXLliEkJATV1dXzPRyiBcNZZmft2rUeGgmR52VkZDg/iWRP\nAOD6fN3ZkV0A5Ovru+Bm3xAR/azsFUaLP7na8VhaHCwuHlo8qWzZspDpMsl5PRA7+H9fNtUPg/gH\nwDcswuCUh2D2xiJdqLTYOrdIugyr5UFbkJ3iZWcdsmFn33SLzpJrPNkHSHYBEBERESmT2AfIExgA\nERGRQ3LLaogzdOvr6+d1HDQ3mAEiIiIixWEGiIiIiBTHk52gGQAREf2EHj16hDNnzsBoNCIwMBAd\nHR2Tjq9atQo9PT3WRXRjYmLw4MEDl+4tFhw76w499Zij466eNyjpA2Svx5ArY3H1fZ3tY/+fueHJ\nDJBsO0ETEdHM+fr64sCBAzh//rzDcyorK2EymWAymVwOfojmkic7QTMDREQkQwaDAenp6dbfx8bG\nsHHjRpeLf6OjoxEdHY3a2lq3j20+sx8sgv65CWAGiIhI0VJSUqzZmQ8fPiA0NBR79+7FuXPnEBAQ\n4HD7EampqViyZAm2bduG5ubmOfok7qXVaqHVaud7GDRHxE7QnsgAMQAiIpIxs9mMffv2YcuWLTh8\n+DCOHz+OgYEBh5uriouL0dHRgbdv3yI+Ph7bt2//oevnS2FhIQoLC+d7GIpWUVGBqKgoaLVa6HQ6\nPH782O55BoMBUVFRiIyMRE5Ojkv3FjNAjjZ3YgBERCRjJ06cwODgIC5evOjW+8bGxkKtVsPHxwe5\nubkICAhAY2OjW99D5C8I1k0Q/B1u9s6zdx/pNdO933Tv5eh97Y2ZJtu6dSuam5vR1NSEa9eu4eDB\ngzbn9PX1ITs7G3V1dWhtbUV3dzfq6uqc3lucBeZocycGQEREMnXr1i3cvHkTpaWlUKlUAICzZ89C\no9E43GZKEASMy6zpIcmTRqOBMBEYDg0NWX+WevPmDcLDw7FkiWXJk4SEBJSVlTm9tzgLzBMZIBZB\nExHJ0PPnz5GVlYWamhrrlwgA5OXlIS8vz+n1ZrMZo6OjGBsbw/j4OEZGRuDl5YVff/0VnZ2d6Orq\nwoYNG2A2m3Hp0iV8/PgRsbGxc/JZ3NVN2tX7uOP95NYBW25u376N3Nxc9Pb24t69ezbHw8LC8Pr1\na3R0dGDlypW4c+cORkdHnd53WXAwEnQ6h8eDg4NnNW4pBkBERDJUUVGB/v5+bNq0ybovLi4OVVVV\nLl3f0NCA+Ph46+9qtRqbN29GfX09BgcHkZmZifb2dnh7e0Or1aKqqgqLFy92++egn1NSUhKSkpLQ\n0NCAkydP2sw2DAwMxJUrV5CSkgIvLy/ExMSgvb3d6X2rq6vnasg2hHHmPImIiGgaly9fRlFREQDg\n/v37WL58ufVYaGgonj59Om125urVq2hra0N+fv6cj9VVDICIiIjIZW1tbVi9ejUEQYDRaMTOnTvx\n7t07m1qg3t5eLF26FP39/YiPj0dJSQnWrFkzT6O2xUdgRERE5LKysjJcv34dKpUKarUaBoPBGvxo\ntVo0NTUBAI4ePWrtL3Xq1ClZBT8AM0BERESkQJwGT0RERIrDAIiIiIgUhwEQERERKQ4DICIiIlIc\nBkBERESkOAyAiIiISHEYABEREZHiMAAiIiIixWEARERERIrDAIiIiIgUhwEQERERKQ4DICIiIlIc\nBkBERESkOAyAiIiISHEYABEREZHiMAAiIiIixWEARERERIrDAIiIiIgUhwEQERERKQ4DICIiIlIc\nBkBERESkOAyAiIiISHEYABEREZHiMAAiIiIixWEARERERIrDAIiIiIgUhwEQERERKQ4DICIiIlKc\n/wMO3FEMz1PAFwAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10f564128>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAADeCAYAAADVab8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnX18FcX1/z83NwkQCISHFAQskYqg\nSEGBL2gtIKI8+FVRQYWqPAhWUQRLtdXKz6dav0prEShYtDxU60OhVgQNiopYrSIIqKAgNAQLSARC\nQh5ICMn+/tg9u2fvnuy9N1xyk9zzfr3CXmZnZ2ZnZ3ZnzjlzJmAYhgFFURRFUZQEIineBVAURVEU\nRaltdACkKIqiKErCoQMgRVEURVESDh0AKYqiKIqScOgASFEURVGUhEMHQIqiKIqiJBw6AFIURVEU\nJeFIjncBQmnXrh3y8vLiXQxFURKMtm3b4sCBA/EuhqIotUSgrjlCDAQC8S6CoigJSh17HSqKcgpR\nFZiiKIqiKAmHDoAURVEURUk4dACkKIqiKErCUW8GQA8++CAOHjwohhuGgUcffVS8bvfu3TAMA4Zh\noLy8HF9//TUeeOABpKSk2HFat26NuXPn4j//+Q+OHTuGffv2YfXq1bjqqqsiLl8s0iAMw8Add9zh\nG2fcuHEwDANNmzaNOn0/Ro8ejXHjxkV93QMPPIA1a9agsLAQhmGgU6dOnji9e/fG4sWLsX37dlRW\nVmLx4sU1TsuPTp06wTAMXH755VHfR33gqquuwueff46ysjLk5OTg7rvvdp1v164dnnzySWzZsgVF\nRUX49ttvsWTJEpx22mmueG3atMHTTz+N9evXo7y8HLt37642z0mTJuGbb77BsWPHsHHjRgwePDgm\n9yI9q927d2PWrFkxSV9RFKU66s0AqDrGjBkDALjhhhuqjfO3v/0N/fv3x6WXXoqXX34ZDz74IH73\nu98BAJKTk7F27VoMHz4cjz32GIYNG4Z7770XeXl5uOSSSyIqQyzSiJY33ngD/fv3R2lpaUzTve66\n6zB+/Pior/v5z39u10N1/OQnP8FFF12EDRs2+K62iSStROXCCy/Eq6++ik8//RRXXHEFFi1ahCee\neALTpk2z4/Tu3RtXX301XnrpJVxxxRW455570K9fP/z73/92DZg7dOiA66+/HgcOHMCWLVuqzfOG\nG27AM888g7/+9a8YPnw4tm3bhlWrVqF79+4nfT/fffcd+vfvjw8//NAOu/rqqzFnzpyTTltRFMUX\no44BQPx78MEHjYMHD7rCzjvvPMMwDGPNmjWGYRhG3759Pdft3r3bmDVrlivs2WefNYqKigwAxpAh\nQwzDMIw+ffpUm3e4v1ikwf8MwzDuuOOOmKQV7d+yZcuMtWvXRn1dIBAwABiXX365YRiG0alTp2rj\nADA2bNhgLF68uMZp+f116tTJMAzDuPzyy+NSh6fyb/Xq1cYHH3zgCvv9739vHD582EhJSTEAGC1a\ntDCCwaArTpcuXQzDMIybb75ZfB6zZs0ydu/eLea5fft24y9/+Yvrui+++MJ4/vnn414fsf5TFCVx\nqNcSoDFjxuDYsWMYP348jh07ZkuDwvHZZ5+hWbNmaNOmDTIyMgDgpPx/RJrG4sWLsWHDBldYdeqa\n1NRUzJ49G4cPH8aRI0cwZ84cl9pOUoE1atQITzzxBL799luUlZVhy5YtGD58uKcckyZNwhdffIFj\nx47hwIEDWLZsGZo3b47Fixdj1KhRGDRokK02fPDBByOqAyOC5cORxIkmXjSQWuVXv/oV9u/fj4KC\nAvz+978HAAwfPhxbt27F0aNH8c9//tN+ngCQlpaGuXPnYvv27SgpKUFOTg7mzZuH9PR0V/oZGRl4\n6aWXUFxcjH379uHee+/FrFmzPGql008/HS+99BIOHz6MkpISrF69GmeddVbE99GrVy+sWbPGFfb2\n22+jVatWuOCCCwAAhYWFqKysdMXZuXMnSkpK0L59ezsskno+44wz0LVrV/z97393Xbds2TKxbXHW\nrl2LZcuWYcyYMdi5cycKCwvx5ptvokOHDnacmqrAUlNTMX/+fBw5cgSHDh3Ck08+iWnTprnuae3a\ntXY75n/VqV6Vukkg0Nz+O5lrpT8lsanXA6Drr78e2dnZ2LdvH958801cd911EfkRysrKQnl5OfLz\n87FlyxZUVlZi0aJF+MlPfoJgMBh1OWKRRigzZsxAx44d8bOf/Qy//e1vceutt+Kxxx7zvWb58uUY\nP348fve73+GKK67Ahg0b8Prrr6Nnz552nN/85jf485//jHXr1mHkyJG4/fbbUVhYiGbNmuHRRx/F\ne++9h02bNqF///7o378/nnvuuZO+l7rCDTfcgP/5n//BhAkT8OSTT2LGjBl46qmn8Oijj2LmzJm4\n7bbbMHDgQDz++OP2NWlpaQgGg/jNb36D4cOHY+bMmRg8eDCWLVvmSnvJkiW49NJLMW3aNNx66624\n7LLLcP3117vitGzZEh9++CG6du2K2267Dddddx2aNm2Kd955B40bN47oHho3bozjx4+7wuj/Z599\ndrXX9ejRA02bNsU333wTUT5Et27dAADbt293hX/99ddo3bo12rRp43t9v379cOedd2LGjBm49dZb\ncf7552PhwoVRlUHiySefxPjx4/Hwww/jZz/7GX74wx9ixowZrjhTpkyx23H//v0xceJEVFVVRV0H\niqLUnIKCAowaNQrdunXD2WefjY8//jjeRXKofaGTP6hGNB2qArvooosMwzCM0aNHGwCMa6+91jAM\nwxg0aJDrut27dxu///3vjWAwaDRp0sS4/PLLjYKCAmPZsmV2nLvvvtsoLy83DMMwSktLjezsbGPU\nqFFRic4jSWPx4sXGhg0bXGGSusYwDOPrr792qSjuv/9+o6SkxGjZsqUBwBg3bpxhGIbRtGlTA4Ax\nePBgwzAMY8CAAa70161bZ/z973+3VSMlJSXGH/7wh2rvo6YqMPqLVG3lpwKLNq3QP6lOd+/ebezc\nudNISkqyw9avX29UVFQYWVlZdtgTTzxhHDhwoNq0g8GgceGFFxqGYRinn366AcDo3r27YRiG63k3\nbtzYOHjwoEut9MgjjxiHDh2ynyEAIyMjwygoKDCmTJkS0b1t3LjRWL58uSvs3nvvNQzDMO677z7x\nmkAgYLz33nvGjh07jOTkZDFOdSqwsWPHGoZhGC1atHCFX3LJJYZhGEaXLl2qLevatWuNgoICIyMj\nww6bNm2aYRiG0bhxY99nFaq25n+tWrUySktLjV/+8peu8K1bt1b7DmnevLmxY8cO4+2333a1gdA/\nRVFiy80332w8++yzhmEYRnl5uXHkyJE4l8ih3kqAxowZg+LiYqxatQqAaRR89OhRUQ02Y8YMnDhx\nAqWlpVi1ahU++OAD1yqrP/7xjzjjjDMwZcoUrFy5Ev369cOyZctsQ+lIiEUanBUrVrjE+a+++irS\n0tJw7rnnivGHDBmC7777Dh999BGCwaD99+6776JPnz4AgAsuuABpaWkJqwJ4//33UVVVZf9/165d\nyM3NRW5urissMzPTpW688cYbsWnTJhQVFeHEiRP46KOPAMBWXVH9rly50r6mrKwM77zzjiv/IUOG\nYM2aNTh69Kj9fIqKivDZZ5/ZaYTjmWeewciRIzFp0iRkZGTgsssuwy9+8QsAcN0b5/HHH8cFF1yA\nm266CSdOnIgon1ixYcMGFBQU2P//6quvAMClBouWHj16oEmTJnj99ddd4bz+OYFAAC+++CIaNWqE\nMWPGVFtPiqLElsLCQnzwwQe45ZZbAJiqa25iEG/q5QAoGAxi9OjRePvtt5GamooWLVqgUaNGeOut\nt3DttdciOdm9xdnzzz+PPn36oEePHkhPT8eVV16J77//3hVn//79WLBgAa6//np07NgR2dnZuOee\ne9CqVauIyxWLNIjQ8tH/Q5cyE23atMFpp52GEydOuP4efvhhnH766QDMpfqAufImEeEfYsBUHUlh\nSUlJSE1NBQCMHDkSzz//PD7++GOMHj0a/fr1w8iRIwHAVlu1a9cOR48eRXl5uSutULcNbdq0wQ03\n3OB5RoMHD7afUTgWLVqEBQsWYMGCBThy5AheffVV2wWEZIN2++2345577sG4cePw6aefRpQH58iR\nIwCAFi1auMJbtmzpOl8dUv0CiFjlJ9GuXTsA3vqV3GQAwCOPPILBgwfjmmuuweHDh2ucr6Io0bF7\n925kZmZiwoQJOO+88zBp0iSUlJT4XjNs2DD06dOn2r9hw4bFrHx1bjPUSBgyZAgyMzNxzTXX4Jpr\nrvGcHzp0KN544w37/3l5efjss88iTr+0tBTz58/H8OHDceaZZ9bowyGlUVZWZn9YCfqQhPKDH/xA\n/H91g5f8/Hzs3bvX/jhL0Mv/tNNO0w9BhIwePRqffPKJS2I4YMAAV5wDBw6gefPmaNSokWsQlJmZ\n6YqXn5+PFStWiD6rioqKIipPVVUVpk6dipkzZ6Jjx47YvXu3bafzySefuOJec801mDt3Lu69916X\nEXM0kO1Pt27d8O2339rh3bp1w+HDh3Ho0KEapXsy0EAvMzPTNQALrW/AHMDef//9uOWWW7Bp06Za\nK2Miw42L02G26yKkVxe9Wuhajl86UvxICVc+wzha47QTmRMnTmDTpk2YO3cu+vXrh2nTpuH//u//\nqvXbBwCHDh3Exo0fVXu+T5+LYla+eikBGjNmDA4fPoxBgwZ5/vLy8iJeDQaYA5CkJG81dOnSBQAi\n2pk+0jT27t2LrKwsNGrUyI5z2WWXiWleddVVLoPua665BqWlpdi6dasY/91330W7du1QXFyMzz77\nzPMHAB9//DFKS0t9HR0eP378pGbnDY0mTZp4JDs/+9nPXP/fuHEjAODKK6+0wxo3boxLL73UFe/d\nd99F9+7dsW3bNs/zidYwt6CgAFu3bkVJSQmmTJmCjz76CDt27LDPDxw4EH/7298wd+5c/OEPf4gq\nbc7u3buxY8cOjB492g4LBAIYPXo0srOza5zuyfDll1/i2LFjHiejV1xxhev/Z599NpYuXYpnnnkG\nS5YsqcUSKooCAB07dkTHjh3Rr18/AMCoUaMimIicAFDg8xc76p0EqFGjRhg5ciRefPFFrFu3znP+\nlVdewcSJE9GkSRMcO3YsbHqDBw/G448/bi9Rr6qqwoUXXohf//rXWLlyJfbs2ROzNF577TU88sgj\neO6557BkyRKcd955mDhxophmeno6li1bhmeffRbdu3fHzJkz8ac//alalcOaNWvw1ltvYc2aNXji\niSewbds2NG/eHL169ULjxo1x//33o7CwEI8++igee+wxpKam4s0330SjRo1w+eWX4+GHH8b+/fux\nfft2XHXVVbjqqquwd+9e7N+/PyKV2YABA5CZmYnevXsDMJeWHzx4EF999RW+/vprAKYKaODAgQDM\nQWOnTp1w7bXXAgD+8Y9/RJVWbbFmzRrMnz8f999/P9avX48RI0Z4nFtu27YNr7/+OhYsWID09HQc\nOHAAv/jFL1BaWuqyN3nqqadw44034r333sPcuXOxb98+tG3bFgMHDsSHH36Il19+OWx5+vXrh4su\nughbtmxB8+bNMWbMGAwdOhQXXeTMirp164bXXnsN27dvxyuvvGK/fABTTZSTk2P/n+r/rLPOQlpa\nmv3/devW2dKdhx56CC+88AJyc3Px0UcfYdy4cejSpQvGjh1rpzNgwAC8++67uOSSS/DBBx9EU8Vh\nuemmm7Bo0SL86Ec/wrfffov8/Hw8++yzePjhh1FRUYGvv/4aEyZMQPPmzV31/dprr6GwsBAvv/yy\nbx0osUWlJQrRrl07nH766dixYwe6du2Kd999F+ecc06YqwwAZbVRvLq37AHVrM6gVWDXXHONYRiG\nccEFF4jx+vbtaxiGYVx33XURrSjp2LGjMWvWLGPz5s3GkSNHjKNHjxpffPGF8etf/9po0qRJRCtz\noklj3Lhxxq5du4ySkhJj5cqVxgUXXGAYhncV2N13323MnTvXyM/PNwoKCox58+YZqamprnQMwzDS\n0tLssNTUVOOhhx4ydu7caZSXlxvfffedkZ2dbYwYMcJVhltvvdXYtm2bUVZWZnz33XfGK6+8YqSn\npxsAjNatWxuvvvqqcfjwYcMwDOPBBx+MqA7Wrl0rPk9+/cCBAyN67pGk5fcX6coiaVVe6Oq6pKQk\nY9asWUZeXp5RWFhoLF++3Pif//kfT/otW7Y0Xn75ZaO4uNg4cOCAMXPmTGPhwoXG5s2bXemfdtpp\nxqJFi4wDBw4YZWVlxu7du43nn3/eOOeccyK6t/PPP9/49NNPjaKiIqOwsNBYtWqVce6554r3IBG6\n8q46Bg4c6Io3adIkY+fOnUZZWZnx2WefGYMHD3adp2fLr1u7dq1rtSWP171794ifFd0PXw3YqFEj\nY/78+UZBQYGRn59vPP3008aDDz5oHDlyJOy9+a0+VOoP06ZNs1cVKnWXzZs3G7179zZ69OhhXHXV\nVUZ+fr5v/N69zzEMY0u1f717945Z2QKGcQq8zp0EkfjxUYA777wTs2bNQpMmTeJdFEUgGAxi69at\nWL9+fY22FlGiZ82aNUhJScGgQYNqnEYdex0qPtBzfv/99+NaDiW29OlzNjZuXOJz/g7b7OBkqXcq\nsEQnKSkJAwYMwE033RSVYbdyahk1ahTat2+PL7/8Es2bN8fkyZPRpUsX3HzzzfEuWoNk0KBB6Nev\nHzZt2oSUlBRcf/31GDJkCEaNGhXvotUJsrKy8Nxzz2HIkCGnJH0ydOaGx2RIHC4sUiTDZJ4O7YLY\n3Jo018TQWko32rIcjdGgOSsrC3l5eQgGg2jWrBmGDRuGefPmoVmzZjFJv/5QiVjb+lSHDoAiwM+z\ns2EYtepXJD09HW+99Ra+/PJL/PznP6+VPP3uv6qqqtZnzXWtPABQUlKCCRMm4Mwzz0QwGMSXX35p\ne+OOlEAgIBrTE6HbWyQyxcXFGDlyJO677z40btwYO3fuxLhx41y2ZIpS31i5ciWGDBmCAwcOYOjQ\noXj88cfD7gDQ8KhCbdkA6QAoAvycx73//vu4+OKLa60shYWFrlVkp5qBAwf6ipgfeughPPzwwwlb\nHiI7O/ukV0UtWrTIV12WlZUVkVF+IrBx40Z77zOl9qkLhs4NWQXWrl07DB06FFu2bIl3UeKASoDq\nFH5eeiP131JfCeeleP/+/bVYmrpXnljy0EMPYd68edWer8/3pihK5OzduxfZ2dkYPHhwvIsSB6oA\nlIeNFQt0ABQBiWxrQ36F6gp1rTyxZM+ePSrhUZQEZuTIkQgEAiguLsbgwYPjIs2OPyoBUhRFUeoA\nksEzwY2DJa/P/p6gU4SwCvtXK+tavnNUDtqyeEet8rW24ud7UmvPfpOf8KYs7Cs7XX8D6ki9Up+s\nYfRrr72GIUOGYN26dRg7diwOHTpUp/bOqh1qzw9QvfQErSiKoigNlYEDB2L8+PH45S9/Ge+ixIEE\n9gTdtm3biLafUBRFiSVt27YNH6keUVFRgbIyZyadnJzs2Sg6EiSDZ5IK8XO0HJ2HUbyLmASFPmFb\n4d0kui2Ll2Ud09j5PnC+DWutY1dL8sM/jSTtyWJhkv/hTtZxI8t3p3U8zKQ4fvcbq2XwoUyfPh1Z\nWVn4/PPP0bNnz1OSR92k9iRAdW4AJO1orSiKokTHiBEjXP//zW9+g9/+9rdxKo0SLZmZmbj55pvx\nyCOPJJh7h0oAhbWSU50bACmKoignR25ubryLgEWLFsW7CPUK6ZktWLCg9gsSd9QPkKIoilLLkKqH\n42fI3JxtXVRkqbS6sbA7rCM3d3Y2MahgoS2so2PITNdkslgUVgpTUcLh8cj4mavPSEVWIoTxePSb\njKs5PIxqw10Hp95jdMNHV4E1CKSOIbmJl/TKErxz0TV+8aNBKp922PqDtB0AtRH+UYt0S4JItxXw\nS09Koy440FMUpS6jEiBFURSllpGkFZEaAF9hhfGl532tI5e6kKcrbvBMps18iTpJYjKEMO4ti2QF\nXJ6UIoTR3mHHWRid5xKqDnZ8RxpF+WaxeB9aEi/DOGyHSfUiSdUUP8JJgGK3AbgOgE4hNZGghLtm\n+vTpJ52H0vDwawfRSl2ojc2ePfukyqQkDtpWlNgRTgKkA6CEJTH3hlFqE21jSjQ8//zzaN3aay+j\nKDUj3CqwljHLSQdAiqIoCYik2iLctoXpQpjJRBZGqq9O7Dypjg6yMFI7uY2bi6yjlwohLA2OF1+6\nRsqjBQuTPEHTtaksTDKgLhXCLrNUZG4bOxOp/jin2odQ/SaB/QCdDFlZWXjuuecwZMiQmKXJGzI1\nVulFEM5o1M9NfKTppKPI7oiS0evJ4LfSQ3JsFitj6aysLOTl5SEYDKJZs2YYNmwY5s2bh2bNmtU4\nzYaE9Jz92k04I+fI2kspgqiMyMA+XHuNJL60MEAKk67RD4iiNDSqgMqS8NFiQIMaACn1k5UrV2LI\nkCE4cOAAhg4discffxyPPfZYvIulKA0avwGqn8Hz008/jQrLTkwyKOYSFvKqvF/In0t7UoXzJNHh\nEiBKuwCOjIDi5cHx5J1umVXz8tHkkRtVk4RIMr7mUBlKhXjcy/WHEa7sjdXEtUFSBfeDO4XoACgM\n0gwznrPOQYMGAQDef//9uOR/Kpcxt2vXDkOHDlUbFEY82lq825hSd5k3bx46d+6MHfEuiNJwqYJ7\npHkK0c1QlTrD3r17kZ2djTPPPDPeRVEUReCss85Cu3bt4l0MpSFjwBS5VfcXQ1QCpMSdkSNHIhAI\noLi4GIMHD8bDDz8c7yIpSsIg+anhYZ2t45pAAAGY6qc+Vhg3PKbf+4Uw/t0i1RFXO1UI8SQhAPn/\nKWDnj6JrSMpAkWXyXCSaRju0sgyZ+UapmZ5Yjh8jvjZJUpV1ttRhkmF0OH9AahhtUQW346hTiA6A\nGOF0tX6GwuGNT1tZ8fI9YbxjthXSobP5SAd1eyor16NLzr8kpPN+RrTh6kAKi0ZV9tprr2HIkCFY\nt24dxo4di0OHDiEjIyP8hQ0MycA8WqPgSI3x/VbblAKoRDAiB27ReoI+mfYlXROp0bdkyK9eqRWl\nDkISoFpAB0BKnWHgwIEYP348fvnLX+K1116Ld3EUpcHgN+gLNzi8xpps8W8S/Q4nAZL22pIkLJQe\n9/8rTej4snaSAJ2wc+ZyHLqay5lCzwH51rW5zKpJylfyGC2F0X12ZgPzHDWMjg6VANWciooKlJU5\nPgSSk5ORnBzZbYYTPVKjlV4Y/Fo/N/G8g39uSYP4y4G6cBYLo7awB0X4yvpNvjb4y0SSmVB+XJxM\nr4scYdVEpC7wT9Xsefr06cjKysLnn3+Onj17npI86iqR1qmfu/1w2xUEAudbv/rCgT5Z66xjKdJR\niXNQ5PrgVITEBpy2Ka3UyWQfAYonqTVqWzqjkp/IWbhwYbyLoCQatSgBanBG0CNGjECTJk3sv4ce\neiiu5Zk9ezaeeeaZuJahPpGZmYmbb74ZjzzySLyLoigJzcKFC5GVlRXvYiiJBq0Cq+4vhjQoCVBu\nbm68i4B58+bZv5csWYIOHTqgSZPY7V3S0JCe2YIFC2q/IIqSoEhei89nYZOso6TuKhDCuPZCmsjT\nN4xfK0kSpc1QSeLdHsAy63d3S5L+Nj5nMUlGLqnAvKXixs1kaM0l83QFvzfJdxGVj6vFyE6N13NN\n7EgTBgPqB6g28fOqLBmf8obsWPg7S0PJtDl7wgQ7bKCQL3Vs3qm6WEfuTp46WgqA3dZvctfei8Xj\nuzATkgos1843zw7Lw0UAgEDgRyym+QqQOq4UFs54N+FXNzD8PDyHC6P21dr14TJXwvRnYaS+ctRe\ngNNi+OcsFwBwrpVXDsztBs+E26qC2tBXLIxS4W2PFJf8w/WOddzAwuijI/WnSD8WkRp9S9TUaF9R\nlFNILfoB0gGQoihKAuO2ETM3Ne3AzpM3Z0mWwofRkhSHJvKSJ2jJWJpD0hQ+kM6yjikAgtZvmiB2\nZIPdvbYch8tiKCVHvJCOvZ5YdB+8THRP7gG3eVVbtrKX0in1xAIOCzZ7ikAl1Ag6HkRq3OwsXwek\ntQBcTEuQaz/+EqFuyGfUfi+CpnA6vSQ9omt5Z6b8eFmkVRhf4UMA8sBbKlM4o2+p/hQHqV78jOx5\nGEl++As11wpbytJ7zv7FPyFma0vHejvkzJBYe2G2s6Zwf8yoXWUKYdyk+i7rmMr8WXbZZR55euTv\nm4dRO+V5VFgfNv7B3BHBlg2ALnlXlHqHLoNXFEVRapNFixbFuwiKoiqwusicOXPiXQRF8fDuu++i\nuLgYieUwQPFDknr5OZPk6hiyA+PuD8hWS/LSvI+FSX5xJINnyZ0CSdUldRI3RiaJ91cA6O7WwUtH\n4X5LBbcjklqPyprvkvRX7786j9VMipWvZCDt9g7t9RiNMPZsCYNKgE4dfg6o+Dlq+oFANxbTdArf\nFTl2CBktH2cdjvTnXIxPLwLJX4q0ezJ/YXDVVmVI2Xk8eqHwDk5l4S80KteFLIwbuxJUVm64+rZl\nns0Na526CtfB3eeAxFCR+almwhnZk3Hz71nY4f+zfjwTwCUU2MY8tD/kXOm8hJ3VMecKrv9DvUJv\ng6OG5+rZjJAjR2qHWSyM+gnf5Y3sR3j+tMWCtGjgHfY7zaq3dkJ/llY1hWuHEpIXaUVRTjHqCFFR\nFEWpCeG2GwmNRwPz7OxsfDpiBAD3RK0g5Ag4S8Ul42Y+AZNWocqYOUqelrmhtWVKhvVoBUcGRJNU\nJ5cW1iRVkvDwMCorL1+eXVeStRuPaX6leX1TmfmVNOjfz+JtjdA7dELasKkE6NQTzmA3EDjd+uU1\nIOWSE1I98AGrJO2RZrv0cpCu5W4QqAQdADSyftMMnr8c6Fru06KpEI86J39RUR6S519+HxuxFQCQ\nby2bN3+fCwAwjC/tsMg9EydgB2eEMybfZoV15zquXOvIH2qh6wDAMSjuydQKF4acA7xemj+B2f46\nsKwAp71wKQ7lx+Otobx2OWHU1vnqInL1wD8pdF7anFLamoB/gKkMW5nqgvbeC9ffE30jymeffRZd\nunQJH1FRoqCsrAwDBgxAeXl7n8eqAAAgAElEQVQ5Tpw4gVGjRoXf7LoWJUANzhN0LHjhhRfiXYR6\nCXcCqShK/aFx48YwEnTwp5w6GjVqhPfeew+ff/45tmzZgtWrV+OTTz7xv4gkQNX9xZCElQBVx4oV\nK9C9e/d4F6Ne0qtXLyxduhTjxo2Ld1EaBG+//bZLYqIokeCn7pKMbnsw1cso6ygZPHPpop/02u0m\nJCXkyGN64Wck1Zsj9EwDUBxytVMaSUIouXEgCbn7u0qyTi4nLQ05Oiny+80UbOxkaX3NvUPXJ6l5\nIBBAs2bNAJj7dFZUVCAgqPpc6Cqw2CDpVAnJYLcbi3+edexgOcoCnIZ8AUuHVEd7WBitjJBE9uEG\nsNLKB8qjE4DG1u8s68g7VUpIfB7GX15kHMvVXaHl5HCv1FdZR/IbBDj3+9OfjgEAjB//gH1O6uBS\n3TcUJFWK3327w0weYHV2O/3gD4tsmjc6QW9aD05SdUpemnlYqHo2HeanhD93np6kKOGfN0qPr86R\nDKelT2OucC31O54GGUvz9yQtIEhhKj/6APK+3dk6SnUvPSPpw1QfPj6KUheorKxE7969sWvXLtxx\nxx3o16+f/wW6FYaiKIoSayQnm9IqVK+prywBynMNDiXrQj/8p4MFQqx8O79COGtizelnWzaZCl3Z\nWF0YDardzl79rubnvF/pzJAj4EwY+LZFlO+Dgh0apyHsGRYMBrFlyxYUFBTg6quvxtatW3HuuedW\nf4FKgGKDtIxV8rZLImA+w6TZLzd4pt88HnUBqStLvi8ihcfnrtlPWL+lzQhptss7n/RKovR495X8\nVkivMaoX/hpw1kc40jLyoRGpx+iGQiSrbQBZjE2uBSqw2Q6zjYf5enTri7WNNRKSwvHnIq1wORhy\njudB7acEZjsrgFvwRNIjLgGSlAUkmJI2u+RQm+MfVukDTPAPCHme5ioO6pe8fNKnjARoLwkfknBe\nuP2kyoqiVE9GRgYuvvhirF69OvwAqJZWgSW8EfSLL74Y7yI0aNSgPDybN2/G+++/H+9iKAmEvveU\n2uDgwYMoKDCnQseOHcOaNWvQrVs3/4toFVh1fzGkQUuA/HjmmWcQDAaRkSFZJyixIisrC3/+85/x\n85//PN5FqZNs3rwZ+fn5OHToUPjIihIBfn6AuASrrXXk3xSSEErGyDzMkdpxGSHJ26QdDyUXsF7L\nsXDSdbq3TDjSv7OtMJ6rpD6DEEaS04NCPLcMs3qf1q0E79WSETmH7pM2nwUaph/o7777DuPGjUNl\nZSWqqqpw3XXX4X//93/9L1I/QNHj5/5dWvnw2O22eaktTufdMcs6cmt+EvNLTsJ4x6Xz3E285DBM\nOkfpSesPvoLzsqKNJHnHldRiVBbJ07O0ySm/D1JvSAauvMxUJn5thvVSuP2nPwUAzLvtNvuc5KlX\nUi3UdZ8sfr5jJANb9z2aprjnn0/OcpJAtcpVk7bmi42PyNszfy6kTpL2vuYv4FzryD969CzJkL8I\n5iTsK7g3OaU2ydVnLa3/tGSdItX6vZPFo7YmfaT4/Up+sKjN8TJLG/pKfZFUtryf5FrHIlztSbFd\nhG1TUt2qYbSiuPnxj3+MzZs3h4/IUU/QiqIoSqyhwfpbb72FScOGAXAPJiVbQMlm0LF148NryQUs\nIVmncUqrjcXLxFfJfm/9zgg5BzgDXqkkknTLve8XXeV48qTJtOQoVhrU8wkiTQR4PVP5rmbSo3+6\nyuDOlyPZGTYowkmAYjhqaTADIL+GQjOzhQsX4lFLFZMlpCEZTEo+KCQJEA+jFwXvaDS7lvxmcEmR\n9ALiTtirQq6VVmtIwuZcIV1+LZWZd1LyQRNuc0MqM1827eeB+j81MIyui556T87gmVwF/MEO64c8\nAO46o/2v2Ip3cSm7tEaF6punRy9mbnhMUBuogrMQQ2r/rn5iNYiW7JvWSXh50bW8rYcuswectlsi\nhIVTK1C5+Iea6s29nx0tw72ZhZotNo/Vals8BAA4EOZZ1jfD6Oeeey68HYaixItwq8BiuG6mwQyA\nwvHss8/ihz/8YbyLoShYu3ZtvIugJDAtW7ZEo0aNwkdUlHigfoBiy7x589C1a1e0auUVMSq1z8sv\nv4wbbrgh3sWIC+vWrcPBg7LJpaJEi5/jTY5kD3mrdZQkcZLUkEOejCWnqweZWsdRLUmOOByZXltB\ngk/p8b3nuASapOGS7eNeuw4ceSUZK3PpYr4QT9K/SNoBknJL3+pwmgPCvQTHzKW+SRRjjvoB8sfP\nFbikPrl/6lT7Nwm4JSNK3umpcX8lnJfUThxq6LksjET/XPUgqcpSQ46A00ky4Ij06T6E/TBdSC8H\ngpdddgnvzp8TzhswIWn7p48Zg+ljTK/RkXqHrot6byqn5O2ahzlehk+Hg/nUL2YfC2qT3Ks4tT9e\nt2SYPJCFkW2C5H2cI33MQp23pcA0ye4C2b6Bh9nbJLBGTGXhZaa2Jm3emynE49dSfrwtSV7MiVwh\nPXddUK0uYGHU45yr8yxDdalthtvCoC6qbBWlXqCrwBRFUZRYYxhHsWrVKrRv3x6f9O4NwL1ClAa5\nezxXynZ/0kSSD1RpW5IKYak4H0hLA1U/e0juFHarLWWS5FHeqR8fXJPkqZRNuqj8kgfqNMHbtOQU\nlt8bpZcphHE7vostG8D3wthD1vf9wcKiq8D8icTgGXBmYUW2xwsgzWpkUseVlgZDCAu375dkKEwd\nqBUrO3VXyfCYdwyStqTAeSlQB+Nlpk350tnLhs6XCvH4qyqdeXEOhd+b5OqdkBQ7/D4onZ1CvPpo\nVOrX5txG0Kavj36sjq+0jvxFSR6KedvLt9puutVuAaddSfvAcaR3CD1xngc9F1KFGDDbWXu4JX0k\ndZFcL3A1QFZIXoDzzLlEleCfLbo3Ls2sEMKo/UnL5aV1Sbwd3mr1wTS8bYfx5f7Ev61jNgvL8Xnm\nnLoosSSqqqpQWVkZPqKixAOVAJ08S5YsiXcRFEVR6hxHjx5FkyZN4l0MRRGpRQFQwx0A/eAHP4h3\nEZQomDdvHu688854F0NR6hWRbpZJ8c5n0qpJ1lHaT1CS8kk2kuEkwZKPHu7WAyG/eZhk58XjVdmh\nkjJKtv4CZNUavw/JNpPgqUn2jZJDUj+7SsndQ0PbHzFaalEA1PAGQJI4+lymPiB9NxeJS8adJSHn\nANnD82b7BSRpeL3C/XymfCBvyTxfSZXBPeEes36TX5NdrpgpnjSoBBVCPE4ROlqldNQ0dEduD8+o\ntsySIzIJXlP5Vl3dP3Wqbawe6Uu9NvXe0Xp95gbPna3nPIRdQxt78rYkzXpaWW2Xt1f6LW1hwPH7\n+HAVGC8DAJRZx52QrSpyWRgZ5fM06N54mSk/3g4lKw06L32AJWNpHk+yWyH4tdR2+eon8q0kfRy5\nyjbHOkrPXFGUk0clQIqiKEoMMYeb3OCZBpt84JhrHaUBKJeI8AkQQZITaRInrSTleRRZK+741buw\nQ7jKJBPOZLCdNUmoYBPdPHtY6siRyDIyRTDIllbJShMxSTIhTQZ5PLpPaZshXgc0YaiJfZk0Qayv\nqAQoDOE88C5duhRnnHEG7h1oLhTuw+JlWUduPEmVLYk0ORSPvwgo3yJxU0BpMz0HGuXy2bjkbZd+\nF8LpxDTzJsmNidkV81leGVb5eHpkUFvkcr1u3j1veNRh+UyeL5V25+ru4N5FxTJOWdp6wjjx7vSR\ne302DZ6vZpI0ki7w5/ycdeQzHTLy5W2T6pnXrfQMJF8j1CK59IPOSx8pMlAutf6y4X5Bk0E0D9sg\nhFEe3IBaakvURngdUI9pESYeSWWkZfVSXfH0pMUHkoSqQohHixgO16OVOnPmzKnV/BTlZKhFN0D1\ncwAUjlatWiE1VRJmK4qiJBZqD6nUJ6pQa46gG94AaM6cOTj33HPjXQxFURowL730EsZYzjzjiZ/B\nM1efkKxXUtdwyST9llRCXHpHUjRJas4ldZJ9ILHXJVUl5ZyTYpF11X5stcOyrGNTAN9Zv8l1CC9z\nnig7NeE+iSRVi5/6JZ+VOU2oe6rffUIYp0Q4R/nWFzcgpwqVADGi9ag6bdoD9u87rGNPdp4aHDds\npMpOFeJJulzewam7Frm8lEg+mb2vgDxh99/w2k+ztGWiuy6zZPylSLlK/nj2u1zWp3hSk5x6SV55\nCcn9eziX+o5qwqv2ihd+bU56OfGwe63j/2PnqQ6msrBVOM/61VSIyWsyxYrlqNToWUpXSn5xuKG8\nZDwc6nunAkAlgshBGlJYW5JeSn4rZSR1XAcWRm2I3y3dE++L1a/nkVfl+K3OAfzrj5eF0rmKhdFn\netbYsZg1dqz1P8mbuaIoNUFtgBRFURQX0doQ0QA+Ozsbd44Y4TnvN6DlUzgavEpGvByaMPHBprS8\n3Rmk82mZVwJEw9JIP4buKaZUwlLPGSqrbBPqnUhyJCMLGkBLS/yl1bl8EE6rEvnEKxGlQboKjBHt\nXjqtwsxYJc/I0v5DoecAWSxM13Rk+Uoz4Hxfd+1eKY7U7dOZeXMLK798Tyy30SYZonpfK6FLp0td\nJQKc++V1QGlLq0T2CGG5Qnq8BjoIYZKkqK4gvZx42GtWWFNWkQXWo5Tal3sxNn0QvLK0HPZJkkTv\nknEzhfHnt9c2NucxqVU5Zv5BVCINRa6SSO2f2gPfsDLLOvI745Kf0PT4xzbXOkqeqiVJEYR4vOeQ\npJd7epaMqiXpLsXj95YRcg4ANlu9yzAO2GF16cPVtKlUW4pSN6lNCVBSLeWjKA2e119/Pd5FUBQX\nf/7zn9Xrcz1j3rx58S5CXCEJUHV/saTOS4AUpb5QXl5ejZRHUWofbpNEzjIkOz1Jysc/NKQe4pK6\nNCGM4knejeUPl+Tsw+tgQ1JmVcCUFFR3pSPVdKRfXS15OZdMSu4jCoQwSkUqsbQPZLhVTJI0nK59\nYepUvBClU9i6vPdctKgNECNaI2hupb9T8IFDInvJQ4/UaCXTZi7+DmcMTLSyOp9bZUXNX9JA865B\n56XVC7wEZmi4TloQcs4sH20Q6Y33lRDG05Pc50sbdtI1kkBeKnO88HvpSIauPZi6gywtKlgFSfXd\nFpsBAHmu2iA7CGmDAUcpVGCVJZwDNso3j/lYkr0I7bHK5KhVaZsBKT1eOr/dr3k/oRbM0yOVKV8x\nI204TPAPl+Tlmvqx9AHmKjjJYJzy5WWh8vP+TPlyv0K0izdXe9VFb+aKUh/QVWCKoiiKi0hn/txB\n5+LFi9GjRw/c2Ne0gpJWtUpbkSBMmHSuIOTIkSc43NIr1zpKG554r00BEAwJ4wPudGuyWMRKmBly\n5NeEbgcDyJaZksRGkm5JDjX5R53qiK9GllZoJiIG1A+QTbQiwLbsHDWycAaVkgGk32xS6gRSo+XS\nFKfT864hzYvpKmm/rlYAjlq/21mh3nl2CZMURaozlVzVE7z+/AzLeZ1KM3hp4T69eCTHAbVBtBJG\nPlMPBH4EANhv7xAFbLGOvN4liRfVd574+fGa57ZlbgK6hBwBRzrCn887dh5Szt6l9nRtFYBKJKMI\nze0PCUe6n3CbZ/KyEtKmkwUh56rLT/rIUpvj+UpG+7nCtXSet3VKj0uepI8oSf3uzc7GsGHDANSd\nLQwqKytRXFx8SvNQlFiiEiBFUZR6RmFhvIbx1dO6dWtUVNSWRYWinDyV0GXwiqIo9YpTLWmRpJSR\neoImuFSaZIGS9E6y6ZLSiXRoJamEZEtCr0mxpGYDZAliaPmKBEk6l5mTLVc4NSBdI+XF0/NzbJIr\nxOOSd0k7kYioEfRJwF1rUSfm4nRSuUh+gCSDXcmbrWSyzDcWldQGTn6SKadkks07LpUwDQC9ZKUS\nekOkDTYl52TSxo9+qgdJkSe9HCQDdK/5beimrmZK/AUurXGIxcqHaFWs7o+KueVKPiv7fstjM1f5\n0Ms4i4VJKkJZIWj6cebtmn7zTX4vFVKjZ7XeVePSPtQmzoa0+QACMD0OcYuNPFe6gKw6lRR5UvuS\nVhxJSP1T6tv0m/dFsgHJZM9Ueh50LX8u+0LOAU4b57YblM7CSfdi0iTTF3jDWZOjKLWLqsAURVGU\nsPgN4J9csAC9e/dGSkoKLjnP3Hplsys+DQUlH8+ONVS6NfDlK98IaS+rSOFOa/PFBele02Rum0kx\naYDKy5JphzmTUbpLPpk4GHKOl4CnJ03y/LZokRySSmGS9Wd7V1h0hu8NATWCjhHOnlcOfkvepQYq\nbQAoyWaaij6ZHfLsRsu7FaUoCXklM9oCOAuUzTvhDZ9mvnmuDuJ1BVC97EgW3UrLmcOtVKCXJZ/x\nS96A6Xnku6QeZmlrwyV8TVbWEK2tMuWjsx0mveyoDckeriWn+c6Lnz4SknUJr89OwvksT6mqQxLc\n0zzM6QH5lj/lfPYp3GuXbJ0d1tkqs7T4gLcHSdbZNOQc4N/W+LVOO/XKbbkULM3qq5L0iufl9STj\ntGupfNexd8DfhX3+att/S2ZmJpo0aYK0NEmJpSh1E5UAKUodZ/ny5fEugqL40rx5c6SmpuoASKlX\nJKwN0KBBg4TQUs85Gh2645uhXDdPMoNKFlYVcqwOOn+MhdGMNiDEOxEmPafU3K2gNPMut47c4JFm\n2SdYTqWuVE1oibZzLc1JeZnpLK8DOs/vNxhyjl8bqYgy3NJ4Jz9+J2aOkT5zud1ERqTphsY7ePAg\nnAXxjqzjW+u4jKVGEoRyFubICric5JB1LLNDKA9eO2us4xcs7El4+a+QG7DBk4fTQ+jpnrB+Hw2J\nR2Xlrw13e+SxeL8j2cdeFkbnJdmeZDTLTYzpjvhePk4f5LVFte609s3W8T9CWQ4L6fF6/saTmoP7\nPswnV10b6tWrF2bPni2kUj2S00Q/qdLUyy6zw0jyVuGSGJPcMItd7VX2kB0Vz6nUegKSUbWEtBGo\n203IVs81fjuYNYXzVnQ2L3XIDDkHOHu68XJGutqIpIvhPsx+qi0u/aTfHYR4/NoNqDn11cmmboZ6\nEvDXNTVa6SXJX84BIR795hUkuUOn1ysfEEiDohQrxwpXCYkg+91IKCF9mJJDwt0v3RQrRz50qhLi\nJQthxAnht9RIDOE3r79GIUeeH8+XdilKYfdFg6J16z5kMXkdUUilJyxaKn3S/XDdOk+8TSyMyl7K\nnindW+Rb+FYJv50ap2eQwloY1alrN2qhwbaxLilgr9R8u3b9huwGzDtJhvsJ0h3zOvMKq6XnLH0Y\nqI74fVDxeQ5UUt6+pMG5rCSlz4pzdYH16Uxl7Udqw9TPeQ1IvZPK537mdWczVEWpT9SmBChgGFFu\nt17LSKPYUOd1Tz/9NKZPnwnAbVhH1gt8wEL6eq/Fibzck4/QpY0KyFojUmeL7m0JsoSc/VwwVrCc\nzFLz+5XkSZJNirQBR2h8jjSzk5aN8rugeuM2VNKePfQceHokxcsT7CP82kFN8GtfHJpV9xNm3Fym\nR3PqgSysp3XkbSTbOq53rX6T5q1mzXRlspOrrOMYFquXYM/6jZXhDBZvlW2v5LfY9ijMoUh7uPdC\npx7A5+Z09+/YIV2tOpJaMIQwyc6OX0v1Jhm5Sn17h6vd0Fo5frU5iP0Ze5ZUFv4sKawnC8sSyiet\njPy71c+lHeJ5e41mlh7Ju5DH421V2gKI7jUfXVmoZNorWWuZdGbSRbKPkvbQkiRFkr2htLUJ7zdU\nfnPLo1KrDOZw9BwWr33IkafNh+yUtrTdD3/GNEgPJ/lOFcKoXvjK0CyhfNJ3g3rVJ2HazMm2rbpE\neiCAXj7nj/XujY0bN8YkrzovAYrWSJXvBdbFCuOvcGpkXFUmGadSx+WDHWqskgiVD6ik9QxOp5N2\ncOIpUi7cHFNSHrWw8vAu73UPHMx46ewDKvmadvaN8hpvchWKJJam9PhgsX3IObOsJvwFRPUrfQRX\nRjgo4cRiUES4XyatAbjbg7QqhsJ4PUkGffSyLmDPZYcdk7cHs2Xxlyd90vnz22dd2oF9Bc6yvtwz\nsp2w45bXaumjQm24FKYnaHcoQAOHdFuJ5PQt/vGhe89lYdSaeUvOtwYJ+RGa6Hdl7ZDaVXifKRkh\nR4Ce4i5hssRjSXvS0YRH6tu8rZ8b4n8b0P3BFCUSEtYGqKYkJSWFj6QoiqIoSp0m3CowScpWUxrE\nAKhJkybhIymKoiQQXCJFqtkzhfP7scMOI0kd/wCR5CpdkMBxJEUZSei4tFQy9qVrJLUpl4UXoZ/1\nKxPAvwEAOVaKLZg0le6XS2KlDUgpba7akqT6Th14JXa8LujjzO+XJOOStyV+v5RfrlDm+szq1asx\nbdo0VFZWYtKkSfj1r3/tG78K/qpGHQAJUAfqKui9JaUT7+CSfpc6H3fFJSms/PwJ8cbteNnl3UWy\nHqCrc+2Qzqxjk+qizLoDLlZvITrDyrDiOc2Gb95JyCJHs6ylgjMxST0QbhWGpGqka7idBakjWp8i\n3z+RQqoIwNlk90p2nl5sfKWGdI+5Qhi9IC9kYe2tei4Q6pt7faa6/zcLo5fnGKYa72B9BXj7J1Ua\nb8NUZvoYfAvAQBnaIwdprK1kWUf+EaV0JA/i3DcRFYv3u3y7dXAFX/UWZyVwjOIl+xBH9Sv5m/ba\nVR0UYkkfKf4RonqWvHTxepH6h6IkGpWVlbjjjjuwZs0adOzYEX379sWVV16Jc845p9prwkmAmsWw\nfA1iANSqlWS3oiiKkrhICxUkA2U+6CsV4pHUg0s1JFtAyfYxLeTIr5UM2KV9yYpwHgulD+dxOJ8v\nM0UusZGsJqU6kLYFkj++KVZZ0j1hEJzgShIySTLGyyLVQX3fxvbTTz/FmWeeic6dzcUXN9xwA1as\nWOE7AFIboBog+Vog6cx+IZ60RxWHGmguC6N0uMGuJOmQXKm3so0iHeNISZpC6fURwr6C4wOmhdXp\neL4kkWjKJEE7QlaNAY6huLSCjKdIhtO8fqQyU4flL9xcT2qyR1/ZJwg8+e6I0IDUz7NutH5UKN4L\nL7yA+266CQBcqxN6hl4IYIt1lGR6XPQu7WWVFRIfkKWYJE1Zx8JoFctSFnah9RXgHzjKQ9ozj/I6\nDHM5+AWQN3qUPKtLUlZ+LZWBy3row7HDlaK0lrHAlUZ1sWRTZiLXc3WO8DFryz5mWSF5AY7kh7f1\nzJAjIHs9V5REY9++fTj99NPt/3fs2BHr16/3vaY2/QA1COvh9HTdelA5daSkqEJDqRmLFy+OdxEU\npV5RhSCK0Krav1jSICRAyckN4jaUOsgf//hH1wxGUaKhoiJ+Sgyec65wXlK5EOFUVhQmGS1zKSxt\n5ikZI3MpmrNJq+S5R3I8UgruJjQ0PZLEcqmrtPWrpCUoEiTkbQU1l6Qqaxpy5Hnw8qUKYX6bq9aE\nuuBGoUOHDvjvfx2f9Hv37kWHDuHko0nw9wMeO+rUyOFk/F9Qg5IclEkdVyKlmt+E48TQUWNJFulS\nQybxuNcbiftlk2UdJadeqQA+Drk2V8ifi+JTrI7LO6ufA8SOrNNTXUnqEp4G3RPPg3TwvINX705N\ndgXJ1V7R+oOKBdz3EDk25Ia9qdZ/OjGDA/qY8Hv0KiH9n1uWcI7HJxXYepcDO7PF5LNXeQVMUfMk\nFmtUSDkBpw1zVWsFTHXfGhbvY3i5QAhz8neQVNTUT3a4SiNZT5gVLCm23G2JUpRabIEQ5lXc5bFS\nkypZSk16p2SxMGnzWkVJNPr27YudO3di9+7d6NChA15++WW8+OKLYa4KoLaWEdSpAVBNUQmQoih1\nkePHI90179Qi+ZenobI0UJUmdtIKOcnRaYHgYJJD84Ucl1d8sqiTZEXSWtICOBsfmfHymXrEca7p\n9TvfWbB95LFI8sPvV3J6SoNc6QmXCL8lB7CRer6uryQnJ2PevHkYOnQoKisrMXHiRHTv3j3MVUEk\npAToZKAGyoVrUveh35KRlVtyYuJ+EZgPhXtabm91lnDLvSlt3pEkr8GSQTEZRF8IYIX1+/9ZxwUs\nHol7+bXUibnkgsrKy0n3Gc44nOqNl1m6tiTkCMgSmwyr/j5nYaeq00cqRaIXYD4ussNaWEuwXVII\n6z9dBAkQr1typcBXplA8aQUOd71A8PQcsT6/2qy1dDgGhsOtI5fSUJvjeZB0q+/Z5nHxHqCyFLgd\nbkPrImvbDu5VXHLfT2WVtkbhHwu6X65qyLdT4j3PTCmXxaOzbqmQWa48l/y0E7z4KXCcT3aO/ZT8\n/d9ICybq+4dLUWLFiBEjMGLEiCiuUAlQVASD3g0tFUVR4k1dkQApSv0hCfJUgzjmcy46GsQAqKqq\nKnwkRVGUWuYXv/hF3PIOt8OaZM8HIUySZknuMCQPz4UhR4C7H8hioSTTk2SnUqkLWCnN1LmE11kt\n5CieyJmp5PVZclshySC4XJKkqdyC7XjIkSNtSC25CZHcM3Cidf9R/wjA39+zDoA8SB5zpVUOkmG0\npNaRG7LXlLPQaoySATVv3FQ+rqKTdmimHLi/lO4kxR8CBN8wf15qucMs2OXEm2Mdua6Z8uW6eMmb\nLZU13GaQksojNC/+261+9K4IkQzBHe/CTkffHAM/QNHj3NHr1nE5OzvWej+nMr1milW5fHdpUu/x\ndii9ZKmtSU7cpJdnPsuF1Ei8/dMrhBsvkwE1f1b2rvK0zfzfgGBzoOnlwF1/4WUwVUySzYjkwE5a\nSSTZRrgxW6+0ea+0NcF5Qhtwq8BIwceVrPRbck3nbcU5osk6j3fQSs1RlZ38Sp5SDBo0yBMGwBVO\nfd0d1wzlK6DInL+ShVWFHKuDzvPPDg1TAkK8EwgHlZr3EumtWW4d+cbG1ApOsJxKXama0EIa51p6\nOrzMdJbXAZ3n9xsMOcevjVTGx9+ZUh938uN3YuYY6TP3thng/fffj7CEdYVwEqDYLTFoEAOgkpLa\ncpukKIpSPyhnv+kDLg12+EeAPuqVQrxwAxvpGnI0575WmlqRQfNxFsu8qgKSiUMAznAkYOXvxAta\n10a6bxQvuxFy5Od5XRbvKUQAACAASURBVFHu3Jke1S/Pl87zu2hkHflwzymDNMxKJNQGKGokjxGh\n5wBnJspnrHQNN1CmUbbcgZyYOZaotSOb/UllOTPkyJH20OJlMazpQmAjQBPe4wfMI59VSH5w/VYb\nSN57eTw/1wJ+e7WEph0axu9NKjO9At3+SeLhjNApaRGuBgA8jn86pw+ZBy51oZldLgujuop0VYkk\nKZIkc22Z9ENq9+QLhc82qT0MYWG0p9ig56wfBTDf0Bvdksgh7DTh50smnHd0KrN70QBtbOn1yOz2\n1WLWAp8LOmXgclaSBjFRqV2DvDSUeqEQT5J5cZlqhfWvU+aTn5KleWbu5CaEh5OrBgqbM2cO1q3b\nBMBtXO6n7uJtR1okIrmvkNqbdM+Sv5t8u+4kpwjOU25l1Wee6w3Jf1N9k9S3gsXyujDwQ5KGS+9H\n6b4lFZi0N57k7oRfS3sK7kVzFmqWxu+ZA3LbqL8kqB+gmlJUFDvfL4qiKPUVw0hEiYHSsFAJUFQ0\naxbL/WEVRVHqP1xuJfmikeJJ827JiSt9nrgEozDkHE/PLbeRZEUpnpiORK06F7WkKqKSFXhiSc5o\nw9mmSVJuye8RwaW5qUI8yaFseyGeI/tyJImRWrvUBa/PsUMlQFFDDUXacLImSH5s5G06TUpZoyWb\nZUkQn8XCqHPmsrCdIUfA8cXS4XPA0nzh99bxHeFanoekAiOqczAfWj5phYTUwTlSepI3YCoDF81L\nK0fisy+yV7GzlTlbWydsSEvwZ0/npVU5XDUgucyX4knqSslQ2PG07JS5wCozf35kirrCUuntAtDs\nBLCU2w0zvOa/8kID98anJt4tToF8dGahZuvYy+4k1VJnuFfHpFlhPEVSMPNPEpVMUup4P3vpzMs7\nGVpzx3kltlrGadmdrTDucUgycq0Npk2bhunTZ8Ypd0WJBSoBipjZs2fj/PPPj3cxFEVR6hTSJIVP\nViQ5DA0y0wX7MslRbKSOTrktJQ0yi1wDX+8ieumXe70qmRVTyZzSSJ9PmmBwSYwk2aFrI5W+hPOa\nLZVFksRRufhkZ2+Em3+ezDZSdY9wq8BiR50aAJ3Mw5O855LUJUWIx2eskoGg3PhLhbNmSpLhMV+M\nSxIB3vkoNS7tIVNNaXekDACHrd/Z1pFP0otwHgD37LkAOZ58Q/MHnFeHdN9SU5SkPgXCb173kuGv\n1/RR9oZdmzivW2eZLi3LlvZok16ovC1JGy5K9yjVPX0kiliKVJZwe1TR786Cgb5kPExSi6MwVxCt\ngPwR5Z8j6k9bLS/RJqlW+XI8+fJ2vdVqr6aPc2K/J2aO3XIkE1T+We4VUlLAuSvey3KtI+8B5u8i\nwQcL/8hTnXdhdUol4B9CXZeqKDUlCZGv3zv5nOo106dPR1JSvb8NRVEURVFsCVB1f7GjTkmAaop6\nglYURXHDZWNZ1pFLCEnWlsvC0gXHrpLFFMnY+Dzd2UPP2eT0oBXGP1tFtrSQW01Rio5skq5Jce0V\nRzK4TgC+t35TmKMHoPJLe89xSWymTzyJSPeV5EjqQr99Kt02hfFw/xFv1AYoaqjRcpVCrnXkVblH\niCf5p5Exu046dtgh1IUlvw88PerMvHP5uUuXVA9pcER2lB9Xg+ywu7ajAthqifT5Ds2ZIUeeL3+h\nkRJCKrPkq4bHy7fy7Sh46uUvIHoekh+OPKb/TmcqB0KyOZC8QxNHo14i7LyM6VlKu1/zsoeqk/hv\nroSR1HuUXr5rl2zK2XkyRbbfGcdgl66VfEpxtZ1kkB3KtzCdsqXBrSqj+5C8PrtbToEnhFokrwPH\nTJq3YqlmKKVwFixUV/wTQmrMjSxM2q6V8JqW57GwpladS75zuBpe8osUKQ3DjkNRaoquAouKsrKy\n8JEURVESCD5Io4maNDSUlopzJBs2aUJH8JV0RJ5rUJ8l5FYQcpS308m3S1EAoNj6ba6Fbesz+eHp\n8KHz8ZBzgL8EiE9q6RoeX5L2SPm6nX+6r3UPnuOx+jXeqAQoaiS/Dwd9wvIF6UFXYeUDfwy0HJZ3\ngiwhD+nRSQ2eunouC+MGzwT3Lhq6EJ/PnQ9aLx63BMFE6tSZwm/uL5fKJ5W9yGX0SngFujxfyciX\n8pBWYfzpT49iypQpABzvp7UJzcSfeuopPDZjBgB5eXMu+10ohDlL572Sjo5szysZqlNee2athtuw\nkuZQkgdqycSwhJ07Ae/HkM7zFzSV7lxm8NzTOnJXALnWkae5165NXkJqMeG8q0gSIMkZBv3m8SWH\nDOZduZfBE075cux27zw3Gly4V+/EY+86RWkI1J4EqEFYD5eWhtuYQamP1BXbrnju6K0oipJYkASo\nur/Y0WAkQIqiKIqDpNbh0juSvxUxW7u2gq1dacgRkFVlhGQnJ5v7ctlyrid/SofLAs6xpGgDUYQF\nVtj/Wells3hvCmWWXIFQCcIpmiQ1lp+MQrpbLj3Oseuc11ahEJaIk/sE9QNUU6qqqkSPuY7nWMkH\nr7eCuaGwpIry2yRPgndvP2dY0sasHK78CO2okjfgfNZpyAi5gxCPp0u/uSEndXa5O0r+nL1ebfjr\nNMX6H6+/9vY5Bzo/der9mDr1fgA4ZYoCP7WEpHbjd0j1wxUuVD/5LgdmZOwrmdk7qhSnDvhLz+uY\nv7OwssZrQeG/8aWkcqQcjsM0gg415JVc+lN75F6f+/rk4V5dtB4AsMNVUj8rFAleV5KXr51CPIL3\nUPNO3KuV6O686rgclh6160Rcr6MosUeNoKPixIkT8S6CoihKncI7vHMPkIuEXdRD4wPOwI4PfKVh\nqjQNkp2Z5npySRcmR5LlF212MgPAKuv36CFWmdi+QGusY5FrSb5p3yVNh7lNKC3n53VANo9FbNrY\nWXAZEJouL3+KGINb43kt9CSD8mhXv9Y/1Ag6aqg5uRuH1726jNnt8ti1GUKDklzCSysVSDLARZ7S\nagOCz02p6fM5L73IMgDQereDLIwgKU9TVnbHc60DXcu9SFOZpY7Lr6WyFLliSibjXt/EpcJL7qAn\nlgNfDnyqjKClpfHSMmTuav6FF15Aeno6Ro68CYD75SN/VHKto3cZt7SCxF0b1CKc9KSPCr2Wefsn\n/ynSfmxyvk5ayTDbb7j94uj58f3GPreecx+hnLxWqG3ux2Y7rAgXsVKYpFsG1m7De0ke+3nIOUel\nwu8xI+QIVGfwL33mKSWnV+ywamHOnOmYOnUqAKe9KIoSLUGoEXQUFBU1pNGvUte58cYbVeqoeCgp\n0Q0wFOXkUSNoRVEUhSFJJv3UITns3EFRXeN1HuK3p1y4DT4ls1UaEkqOTKWScMm3n3TYhSWo4yq6\n1NCTAPLtu3NkqFQuLsV1tAncnYh3JzypTsn2r4DdLzki5ZL0NOvaXS7pMUk4E30grUbQUXHLLbfg\n7kmTrP95NbythJUFhWLDC73Sbf7o50FZWnHBDYo32y+jM+HF8b7TT+hUfM1EqCdm3unJHwkvs6Si\nOxhy5PBmRx1WUgTkiIa6HK/VgWQCnCcYqpOqrCZqr2i9PUu7KFO+UlruMpllD+/LRVpHYyKtFpEV\nqt54OfBu3MnrkcyruTdur0m1U36yfTgOoApme+O5k1Iqx2XgTa/34XZIjm0ovNwOS7cMnqU2UORK\nj0p4nJ2nHcr3esJaMRsJauuSByFpsQAn1zrmu94Fko/zwpBzTpl/d999+N1991ll9SK1E/X6rCih\nBFBbm6E2iAGQoihKIuK3itEwjmLevHno3bs3LrzwauFac/DIJzg0eOQWGDSw5INhsm/kQ3W/rYSK\nBCNjScrEKQk5As7wMxvOCtNvXjKPf2HxcgRnsNJqQskmTrbj87rVdQbuXpeyecwVapY1cO/LYp3p\nim2yx4r3zNq1+PLLLzF16tS4OICNPyoBOgm8Xigir0on5kHhxeJnliW5PpfHsB2EMMf0kgxXpT2d\nSuBs/ycZU9NLRCqntEdaETrbYWRoKu1pxvMqCIlvpkMvFq/TAD5Dl+qDXuBcCkD5cQmMZFQai5UP\n0gw8UsPoSJg7dy4Ax6njGWecgVatWmHET38KAFi1bh0AIDU1FRdccBkAYM2aVxEMBgEAgwdfBSCS\ne5V2+TJbEfc1LX18SEJEz/sYTDPE0A+avBhdau3Uirxm3dz1giN5ldYcZXlyKnK14v0hOfi3fw6V\n4SsWVoR+QkxThpsueOt+csECBINBlJaWYub06QDCt9d4SHvuvPNOrF69utbzVWrOsWPHbGP6xKT2\nVoE1CCNoRamLLFy4EOXl5SgvL4dhGDAMAxUVFTh27JgdxzAMpKSkIDnZmYs0atQIANC4ceNaL7MS\nGYWFhThy5AimTZsW76KE5bvvvot3EZQoOHz4cLyLEF8CASAltfq/GNIAJUCKoiiJgZ8RtFt90sr6\n17GHJDcF3DhXkp6RdHujEMZVRyQh5J8oku11ZhJMSSJP+Up2iZJDiRcBW7Z8m3Vc67IlI+tIR+bY\nypLkcbtJkjNwlyWSlJRkmvx+HRs8yT2qky/dL7f+vNA6clckliYPN900BTfdZO6BmJA7xdWeAKju\nD4AidfokG0qaemAudk8JiW9SGnLWUcnwnMiyX3b17s2Dq5POtVLaY7vvcvLoyF5KfmL8CphtIzQs\n9Le0hoB3XGejRkfJQeqw/Uy1FVomoLrNS806d6/zSLXCHF08eahuxWqV0g63SiTe0MeEt5tIVXBy\nGzYZNOgKz7kBAy73TYPylf0PeQ2tpXJKK3roGIBshkjXNGXPqsIybs5xtbosK98P7RAylc5lsYqE\nfuf01nDbC5OthdMS86xrdghes7k6z/GZdC4LlbY0LbDiee1Xfv3rxwAAv/rVb+2z4Xz/+BnXK4pi\nUXuOoOv+AEhRFEWRCWcETbS2Bl/nsHgjrONAIV2+vQvZSvFJj+QUVrJCk7a6CY3Pf/P0pNWqNLTd\nA4DuzpGiZAgxnYG5tIqX4JNkkmRxa00aHrslVGbdtxccz0oOZXm+3c+2jkz09JJVZP7cIrV9DL8S\ntR6hEiCHaH1f0OzqL3/5CyZNutsT33/W7r/xHLlLj1RWUcHykl4YaUJK1MH4PLSCHcn9HnVrt+da\nE26sKr2UaBab77rfFlaYI7FJs4TMXBIgbdfn7EHGXyPSepKmVjynNCSSr4lkpTaJZNb+wgsvAHC2\nZjl69Cjee+89AMDgwYMBAN26dUN6unmvlZWVAIDk5GSXDRAABAIBJCWZJnqGlTcdL+5jKi/WbdqE\nlJQUlJeXo0+fiwEAK1e+iAMHDmDVqlV4b8UKAHLd8vYV+q6pAGDA69zAzx9MGrbaYQXWb+lDw9sS\neWmWVuC0FfyyuJeoU0rS7nnOHeVYPaqruOcav8M9QpjXGQb1aekjFc5zuUp+FCUCalEC1GCNoG+5\n5ZZ4F0FJMG688UbceOONtsEzDWAAc7BTWVmJ48ed4Wnjxo3RuHFjBINBlJWVoaysDMeOHbP/SkpK\nUFJSguPHj+P48eOeNAOBAMrLy1FcXGyH7du3D6tWOWpWRVGUekXtOYKu+xIgRVEURcZPGu5Wn5j2\nhhmCvaHk2DVXyKsn+y1triq5iCT5nLS3ISdTiEe/uXUZ9w5N0vB82/jZ60e6s6Ce4jJDKgu/koQP\nnVhYlnAt/eZqRcqDqxAlVZ7xtXnk0s9Vlk0alx5G6lCzLkrNa0w4N0AxFKTWywGQn1qMd/rIdaVe\nU2bHP03Ndau8cfttxyp7A/Y/L3Uqv8ExVz04Kiv+KuJrI0wk/8VOfUgdLtzw3FGYEPnWHckGvQ7S\ns4yHSoG/nCj/cMav6Siy1VGEY7Qf/YuLrj3vvAGec/fcdpsnnpRHvo/KsQpmOzsI+YlKm6ty6GPG\n25xkmO/1Xe2URd6sVVrOwD/BVBrvUlmeP5XPvWDCTFsy0Jfav+QRXGobiqJESThH0OWxy6peDoAU\nRVGUyI2gaXC20jCwePFidO3aFSt+8hMA7qXYZO3EB31ZIec4/No9QjwyJM5lYTTtkpy9StIjDm0a\nZNqDkVtYWsjvbD5ENmRcikOx+ISSDLwLhXhc4kXl28XCJJs4aWJK9fJXFkZ18NN330Vubi4mTpyI\ndGGVYKRG0HVxwL1ixQrMnDkTSUlJSE5OxuzZs3HRRReFvzCcBEgHQF4kqZCfcaJkGBpO2iPF8wvj\nOBvsRXZtdVIQauaSuXbonk48X96e6Fq31KUg5Ap/qVVN9r9K9zF4Dtfp60oHj8RL9B//+EcAQFpa\nGsrLzd5Kx5YtW6JzZ9PlADk6JJsfuoaOqampVvpmnidOnHDZAFG6dJ4MqY8dO4adO00hfHZ2th13\n1KhRmHLTTQCAzZs/QFJSEgzDQK9epldq3h4MmM9fagN57Pm1Fdo6qRCkpefHhbB3P/0UZWVl+OlP\nf+rbZ3XfrNgwYcIEtROrI1RUVGDixInxLsYp4ZJLLsGVV16JQCCAL774Atdddx22b98e/kJdBaYo\n9Ze77zZXH86fPx8pKWZPrqgwhxLFxcXIyzNX1zVr1gyAaczctKk5bKABUHJyMgLWh58bTtMAiLbW\nSEpKsled0aqy1NRUtGjhnq/3798fP/jBD+z/Jycno6qqys4jnvTt2zd8JCWm5OR4/X0ptQ+9Cxoi\n9H4DgJKSksjfNUGoHyBFURTFn2glo9xOiVQ8XDrcRQjzkwRL6h8eRgbCfEJPBsJcTUQmH9xbMqmv\n+LWkOipCFhxPQN6Y5JzV7XbEJJxtZpZ1vJCF0TVcBbY/5MhLwO8t1zruZZLTryzJacW4cbhz3DhX\n/uHsWOuKNDwS/vnPf+K+++7D999/jzfeeCOyi1QCVHMk40S3SsVrGCoZi/oZkEZ6baREmq95rtT6\n7VWS0jWSgatsyMyvrX4mUhOVX7h0QgnX6esjU6ZMwYIFCwA46qnjx4+jsNBU/pDUp0WLFvb+XxTP\nMAxbskMqLpL+kB8gzpv/+hcMw3B5kebPasWK96wwkwt79GBXe59LJYIoQlrYtunnOUvyqCO1gUj7\nbLidsf3a18m0qUhV1KqiUxQ3V199Na6++mp88MEHmDlzJt55553wF6knaEVpGNx+++0AgHnz5gFw\nfPcAzmAnJSXFFg+TaquystLjCJFsdiSSk5PtAZOS2ERqGH261ebWsXhksMuNh+lbxO23SGLDJR00\n4OVSF1pbyqdrlB83oKaBtGRAzfcqIwlMHvazEoW67HTsyyTpjLTJCi8flYHfB+XAVxP+2zrySQBJ\n1fiaWse60nkuecLzkGzdwq0wrWv86U9/wrPPPgsAePPNN9G+vVkTAwYMQE5ODg4dOoQ2bdr4J6IS\noJpTH8SDy5cvxxlnnAHA0ZNWVFTYH7dgMAgALu/Ax48fx4U9etidrdI6Si+7r7/+FCkpKaiqqsJZ\nZ/WuNh4nUimYNPP1W7YezuBZiZ73Nmyw7X0CgYA9aAKAf/3rTZSVlWHvXlMFQDYGP/zhD3HOOee4\n0qmoqLDbGtkqJSUlYdy4cdi8cSPSUIR/bdkCwzAQDAbx4x+bq4Y2bN+OiooKbNu2DZNvuAGA+5nS\ni/y3Tz+Nu+66yyqn17hZUZSGxR133IE77rgDALBr1y4YhoFAIIBNmzahvLwcrVu3Dp9IuFVgMaTB\nDYDqA6NGjcKiRYsAmFsjAECrVq3sGTx90GpqpBoIBFBRUYFdu3aFj6zUCiT1SUlJsY2ai4qsTU3T\nvQPIQCAgSnSobfDtMSiM0i0oKEBpaamdHwC0bt3aHuzwdEO32eCDKQoPBAKuwXggEMD333+PI0eO\n+N4zDX4URUk8/vGPf+Cvf/0rUlJS0KRJE7zyyiuRfc/C+QGKIToAUhRFaUBE7h3ajFfIJLxrrTDu\nQZkMk7lxM6nFuEqIznP1j9e9qmyMTL+/YmGkguL5Or55ctgmrW8DAPJsj9AOXEUn7cco7VdHZZHU\nZylCGE+DVIfchIVUeZIHbLftY8PiV7/6FX71q19Ff6FKgGJLOO+90frj4URrFEz5T5w4UdTvfvXV\nehiGge7d+wt5efPlUBm6devrG08iWs/XNVGLEfx5SGq2hqgimzFjBgDgD3/4gy1NOXjQfD03b97c\nIwVKSkqypTEUv6qqyuUTiMLKysoAmJuvAqYEiM6TLyFaXt+jB1/bYkJ1v27TJs+mrNzbNMXr2pUb\nYUse2OEJIyRD5kj7TqR9sSbXRpquZEujKEoMURugxOXAgQPIzJTmJUpDYMaMGZg9ezYAxzfQnj17\n0LGjudM5rQwLBoMew+iqqirb9odUXGVlZfZgh9RshmG4fAIBQKNGjTxOFEMpLi5GampqtYbWSv0g\nWu/QNOFYsmQJJkx4FACQw8ygD2IrAPeeVzRB528qks5cysLI4JjvjeUsZe/IQk35zC4rL5429xJF\nZWgP4ID1e6h1LGD7nBFcykTpceECSYWk5fDctJquzWJhNJXg0h5Km0ueSFK1JDsbw4YNA+DvpDfh\n0VVgsSUS773xgJdh/vz5OPvss+3/f/nlv22bDcD5WE6cOBFJSUlYsmSJ64NGnoRzc3MBmMsPFSWU\nbds+cdn5kN1QSYl7t65evXtj8eLF9v8PHToEwDGqPnLkiL3CTWkYjB8/3h4AKbFHbTIjRCVAiceU\nKVPs38uWLQMAdOjQwfYPQwan5eXlSE1NRXFxsT0Ays/Px7fffgsAmDRpUm0WW6kB06dPB+AsjT96\n9Ch27NgBwFSHAaZhdJMmTQA4qwKrqqo8hvJJSUn2eWoPlZWV9sCmZcuWABxj6FDoWpI2ff/997Yk\naf9+c65eUFBgD5Aofx38KEp03HnnnfEuQv1AbYAURVGUmuBnQyepWdxhZEjsfIFIfXaQqdboLPfR\nM9A6ZrGxdq6lW+I+fxx1GL86w8rLUUZ9hR3sjAmpotoDaGT97hRyBJxFRFyNRWqpPUIYnx6QLJSr\nz6gMfINUMvDmeWwMOQJAjmgnZ9alZA/JqQuailonCboKrL4hGVrXlNGjR9u/SQ1BS6ZLS0tx/Phx\nfPHFFzAMA7feOsOOm44i/GLyZHFj0XC6Zj9j5HAG45S2lG64TU4TsoNb0Ixw7ty5mDp1arXx5syZ\nA8D0GE02QmTbAzhqLFKDlpaW2nY8tCcYV6cS3NaH0istLbXti4YOHeqKT88vHUX45c9/7jonPWc/\nWxQz/9g+ez+nceG2FPCzv2iIRvmKUmdRCZBCTJgwwfX/V199FYCj6uIDIKV+4jf4AZxNToPBoL1K\nixtIhxpBHz9+3Fad0gCIb67KbYBCvU0XFxfj9NNPP/mbUuoU0mAz1Aga4BOmLwGYezldc42p7sxx\nyUlMSc05bGBpy27Yx6ukMORctXhjkDdnbkDNl56TpEZaXi4ZN1M6XDojSbJo2Trfl4zOc2/YJEna\nwMLI4Pkva9fiP//5D2655RbfSWi4CWJCojZA9Y94zRLDzaKl89GWNdKZerh0E1na0xCI9PnF6zmf\nTL4q5ZExF1OovVe07N69G7fccku8i1E/0VVgiqKEwpfBkzSnsrLSlvzQEXC8S5PKTFoCHwgE7HBS\ne5EvIUVRak6o5F6JApUAKYqiKKeSIh/jXNnuj/vtMQfWn1uGygBA+3ynFDqxJCNjMmQuxFpWlrYA\ngFbIs8MknzpcfUVefyhf7nWa/AVxA2UyxC7CeSxfc2l6X8HzNVeLNbV2SC1g9/amdcxm8T607qMm\nBs+ROq1t8KgESFEU4u677wYALFy40LYBIknQ8ePH7SXqFNaiRQt700GyBeKbphq2cbsTlp+fb+e1\nYsWKU35PiqIoIioBUhQllKKiInuQQwOhiooKW33VuHFjAEDnzp1t1Rc3muYDH8BUi5HKi7blUBIH\nyWbKz2DXMP7L4rUDAOxgkowVlgRjH0uPDIpLhDD3SmdT8iMt/uFGziTRyUNn+8wO9LGOzmL7TKss\nfCl7vl1WR4zT0YrHpUckoeJCiO+tS9axsN9Y0p7s7CX45ptvcNddd4UxLPdXL6sdmkUtrgLz943f\nQHjjjTdw0UUXISMjA+3atcOkSZPsZeUA0L17dzRr1sz+S05OxhVXXBHHEit1gfLyckycOBHNmzdH\nu3bt8NRTT8W7SIqi1DGGDRuGu+66K97FaDiQCqy6vxiSEBKgwsJCPPDAAxgwYADKy8sxduxY3HPP\nPXjmmWcAANu2bbPjGoaBzp07u3zxKInJQw89hJ07d2LPnj04cOAALr74Ypxzzjn2fj61DW2oCgBP\nPvkkAODee++1w/76178CgGsvOTJy5gbURFVVlb21xW233XZqCq0oihINiawCmzVrFj755BP84x//\nsMPuuusuBAIBPP300zVKc+zYsfbvtLQ0TJ48GQ8++KAY94MPPsChQ4dw7bXX1igvpW7wn//8B337\n9sU777yD888/H/v370fPnj2xbNkyDBo0KKI0li5diiVLlqBly5Zo2bIlJk+ejCVLlsRtAKQotYVk\nsCsZ9nJIAcUNj2nDUP49Ox5yBBy1k8vw2DpylRr53qlADkihdML2z+z4ad6JPwFw1G0A0NUqcxor\ne1ZI/jzfB1jYx9ZxvaX2AoB0S23nrhcTt2NNr8GzpCpTLIKoNSPoOqcCu/HGG7F69WoUFJjd6MSJ\nE3j55Zdx8803Y8qUKcjIyBD/fvzjH0ecxwcffIDu3buL55YuXYprr73WtqFQ6ic/+tGP8MQTT+DG\nG29EaWkpJkyYgHHjxmHQoEERtaMjR47gu+++Q8+ezku1Z8+eLmlhPLn33ntd0h8AaNKkCZo0aYLU\n1FQkJSW5lr5z54fBYBDBYBAFBQXYv3+/veeXoihKXSAYrP4vltQ5CdBpp52GAQMGYNmyZZg8eTJW\nr16NNm3aoHfv3ujduzfmz59/UumvWbMGS5cuxfr16z3nSktLsXz5crz++usnlceppFevXvEuQr1h\n8uTJWLlyJfr164dAIGA/1/nz54dtR8XFxQAcT8r0m9uO1TXICFoa+PCwsrIyAMB///tfcVNTbWOJ\nS7SG0ZKx75fGoI5jnAAACIBJREFUUSxduhQdO3bEPUOGAHAkQYDjnZl7aSaDaL7vF+3txaVHtJ/6\n82+8gXvuuQcpKSn4/HNT9bthw3tISUlBs2bNcOaZZlgvQVIlaVe4t+nHrP3Q1q37Jw4fPoz//ve/\n+Mu0aQAAwzjgud+aOOBUyU/1BOFuB6eSOjcAAoBx48ZhwYIFmDx5Ml544QXcdNNNEV/7r3/9C8OH\nDwcAdOrUyTVj/+STTzB27FgsX74cZ511lufaV199Fa1atcLAgQM95+oKs2fPjncR6hWTJ0/GlVde\niYULF9pLwiOhWbP/3979hjQd7XEc/2iFRfdagrcIRCOjmyAhpKWR/UEQKQoRyuyPEusPSKQQglGQ\nPhEpkjCjvIGhYWn0IEFwFaUmGFFmf4zoyYWiolam6GSopffB2py3OZdOXf3eLxiM39nv/M5gD747\n53u+5x+S7IUBHYFFT0+Ps8Dg34zfGCYrKytrSvvfsmWLTp8+rc7OTue1Hz9+aO7cuW7PvZuIDRs2\nON+f/BkAYeoFSpo7jc/yO6mpqXrx4oU6OjpUX1+vPXv2SLInarru1nJ9OZa0EhMTZbVaZbVaRwU/\n7e3t2r59uyoqKpSUlOT2uZWVlcrMzHRuE8afzWq1Kjc3VyaTSQUFBc5aN978jkJCQrRkyRI9fz6y\ntfb58+djLp36g6CgIAUFBTmXv9xVf5Yki8Uii8WijIyMaR4h4FuDgyPzSBaLRb29vc7ZW/yZZkla\n4OHlSwHDw/45F3fw4EE9evRIoaGhun///qT66ujoUFJSkkpLS5Wenu72M+/fv9fSpUv15s0bRUZG\nTup58A8mk0lWq1W1tbU6dOiQuru7dePGDa/vz8/P18OHD3Xr1i19/vxZmzdv1pUrV/w2CfrOnTuS\npPDwcOcJ8Y4gKDAw0Lkc9uGDPa30/097BxzGS3j2tpLxyOfmuHzO/kfEtdSLY8njX26uuVaoevRz\neeqf+uas8fPDzVgcz1vvrBc90o/r0tt/f/bnyjG+8b6jo93dNc49nLj5sbFa+eTJmO0BsbF64qH9\nd/jlDJBkn0J9+fLlby1/jeXs2bP68uWLTCbTL//0Ha5evaqEhASCn79EXV2dzGazLl68KEkqKSnR\n06dPVV1d7XUfhYWFioyMVEREhDZu3Ki8vDy/DX4kew6QY7kuICDAedZXYGCgAgICZLPZZLPZ9OHD\nB2cQBAD+xJEDNNbLl/x2Bujdu3dauXKlPn36pODg4PFvAAyutbVVkn35zlHzx7UOkGO3V3Jy8swM\nEPAhRzmLpqYm57Xy8nKFhIRIGtkUII0k/js2MXBSu/9aEBur9R5meD77cAbIL5Ogh4aGVFJSol27\ndhH8AAC8cvjw4ZkeAiZptjzP9Hz20DaRZ/mVvr4+LV68WBERETKbzTM9HOCPsW7dOo/t0dHR0zQS\nAJiYAEne79edHL8LgObPn08WPwD4GXeJ0e7qALnyNoHaW47+7H3Y06CDPezaHe9ZnsY33thHj8WO\n5OfJM3wdIAAAYDzTWQeIAAgAMK7xZjeme/bDXRI0/nzMAAEAAMNhBggAABiOoxL0dCAAAoC/0Jkz\nZ1RZWam3b98qNDRU2dnZysvLk2Q/NiInJ0fNzc3q6+tTdHS0SkpKtHbtWp+OwdvEaG+5Jig7KkG7\ne4a3z/JU7dldG0nOU8/wZ4EBACZneHhYVVVV6urqktlsVllZmWpqaiTZz8mLi4tTW1ubvn37pqys\nLG3dupUduJhxVIIGAIOrra0dVbF4cHBQCQkJE076PXr0qIaHh3X+/Hm37cHBwWpsbNTq1asn1P90\nIwn67/Tv2Fj9x0Ol52NGOAsMAIwsPT1dVqtVVqtVHz9+1LJly5SRkaHi4mItXLhwzJc7w8PDamlp\n+eUMRIdnz55pYGBAy5cvn8qv5FMxMTGKiYmZ6WHAxxyVoKdjBogcIADwY0NDQ9q9e7c2bdrkPOoh\nPz//t/ooKCjQ0NCQ9u/f/0tbT0+P9u3bp1OnTmnBgulKP528c+fOzfQQMI6mpibl5uZqcHBQoaGh\nam5uHveeALELDAAg6cSJE+rt7VVpaemE7i8rK1NVVZVaWloUFDT6kAGbzaZt27YpPj5ex48f98Vw\nJ8RTIrOr301CHq9fkpqnTnd3t7Kzs2U2mxUeHi6LxeLVfewCAwCopqZG169f1+PHjzVnzhxJUlFR\nkYqKisa8xzWRuaKiQsXFxXrw4IHCwsJGfa6/v1+pqakKCwtTeXn51HwBGNa1a9eUlpam8PBwSdKi\nRYu8um86d4GRBA0Afqi9vV3Jycm6e/fuhHJdqqurdezYMTU2NioqKmpU2+DgoNLS0jRr1izdvHlT\ns2fzXxi+5Vj6evXqlXp7e5WTk6PMzMxx70tJSdHXr1/HbA8NDfXZQen86gHAD9XV1amrq0vr1693\nXktMTFRDQ4NX9588eVKdnZ2Ki4tzXtu7d68uXbqk1tZW1dfXa968eaMSpxsaGpSYmOi7LwHD+v79\nu9ra2nTv3j3ZbDYlJCQoPj5eK1as8Hifr4IbbzADBAAAJu3ChQu6fPmyJGnnzp3q7+9XYWGhJMlk\nMiklJUU7duyYySGOQgAEAAB86vXr1zpy5Ihu376tgYEBrVmzRjU1NYqOjp7poTmxBAYAAHwqKipK\nKSkpWrVqlQIDA3XgwAG/Cn4kZoAAAIABUQkaAAAYDgEQAAAwHAIgAABgOARAAADAcAiAAACA4RAA\nAQAAwyEAAgAAhkMABAAADIcACAAAGA4BEAAAMBwCIAAAYDgEQAAAwHAIgAAAgOEQAAEAAMMhAAIA\nAIZDAAQAAAyHAAgAABgOARAAADAcAiAAAGA4BEAAAMBwCIAAAIDhEAABAADDIQACAACGQwAEAAAM\nhwAIAAAYDgEQAAAwHAIgAABgOARAAADAcP4H25T2Tyj7qF0AAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x10e3c2a58>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "from nilearn.plotting import plot_stat_map\n", | |
| "import matplotlib.pyplot as plt \n", | |
| "\n", | |
| "%matplotlib inline\n", | |
| "\n", | |
| "# We'll fetch a total of images specified here \n", | |
| "numberofguys=3\n", | |
| "\n", | |
| "for i in range(numberofguys):\n", | |
| " #pick one guy randomly\n", | |
| " im_ind_rand = np.random.randint(len(IAPSdata.images))\n", | |
| "\n", | |
| " plot_stat_map(IAPSdata.images[im_ind_rand],title=IAPSdata.images_meta[im_ind_rand]['name'])\n", | |
| " plt.show()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Preparing the MNI mask subsampled at 4mm" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 134, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "/Users/nicolasfarrugia/PycharmProjects/nilearn/nilearn/image/resampling.py:510: UserWarning: Casting data from int8 to float32\n", | |
| " warnings.warn(\"Casting data from %s to %s\" % (data.dtype.name, aux))\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAg0AAADeCAYAAAC+LTM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsfXeYFUW6/nvOmTMZEIkqCGJYddPd\nZRfXvVfXgBf1GtcAKlkwrWLOd3+46wVFMZEEJAioqOgqIiIGXMSEXleuAcVEhoEhCBOYmZN+f/R8\nXVVfVZ0+k5gzUO/zzNNzzumuqu6urv7C+31fKJVKpeDg4ODg4ODgEIBwcw/AwcHBwcHBoWXACQ0O\nDg4ODg4OGcEJDQ4ODg4ODg4ZwQkNDg4ODg4ODhnBCQ0ODg4ODg4OGcEJDQ4ODg4ODg4ZwQkNDg4O\nDg4ODhkhp7kHwNG5c2ds2bKluYfh4LBfoVOnTigpKWnuYTg4OGQ5QtmW3CkUCjX3EBwc9ktk2VLg\n4OCQhXDuCQcHBwcHB4eM4IQGBwcHBwcHh4zghAYHBwcHBweHjJB1RMggHHzwwVi1ahWKi4tRXFyM\nioqK5h5Sk+Cdd97Btm3bcNFFFzX3UBqMxjyXTz75BF9++SWGDBmStr+TTjoJ06ZNw/Dhw5XfunTp\ngrVr1yIcDuOkk07C0qVLlWPuvPNO3H///coxpaWlmDBhAv72t78BAEaOHIlrr70WHTp0aPD5NBX2\npfnjsP/g4YcfBgDk5+cDAAoLCwEABQUFAIBoNAoASCaTAICysjIASLseyJgyZQoA4IADDlDaIz7P\nnj17AMB/r1x55ZX1PZV9Fi3O0vDggw+ivLy8uYfhkOUoKyvDn//8Z+TkqHJxv3790gqaN954o79A\nOTg4ODioaFGWhhNOOAGnn346Ro8ejbFjxzb3cByyGEuXLsUJJ5yAPn36YOHChf73/fr1wyuvvILL\nLrtMO+aDDz7Ab3/7W1xxxRV47LHH9uZwHRz2eZxzzlysXr0aACRhXo2Wo+C5cHhP7X4xAEAkUl77\nfbh2P2/HRMKzOEyc+BBuv/1QLVw/kUgAADp27IixYzf6FoxIZGdte2r/ZHGg7ezZEwAA8XgcAFBT\nUwMA6Nq1q3Z+r7xySbrT32fQYiwN4XAY48ePx9///nds27ZN+71bt25IpVLo27cvZsyYgV27dmH9\n+vX+y+HWW2/Fxo0bsXXrVtx///1KaOfIkSNRWlqKXr164ZNPPkFlZSWWLVuG7t27o0OHDnjppZdQ\nVlaGlStX4uSTTw4c6x133IHvvvsOe/bsQUlJCRYtWoROnToBAAYNGoRUKoWioiLlmNWrV+PBBx/U\n2ho+fDhWr16NyspKvPrqqzj44IMz7quwsBDjx4/HN998g4qKCvz444+YMGECWrVqpbSRSqVwww03\nYOzYsdi2bRtKS0tx8803AwAGDhyIH374ATt37sT06dORl5fnH0fn8rvf/Q7vvvsuKisrsWrVKpx3\n3nmB1+jnP/85Xn31VezevRu7d+/G888/749b3ue9997Dnj17sHLlSpx99tmB7RKqqqowf/589OvX\nz//uiCOOQM+ePfHss88aj9m0aRNmzpyJW265Bbm5uRn3ZUJD5tSAAQOwbNkybN++HTt27MCSJUvQ\ns2dPZZ9jjz0WixYtwvbt21FeXo6VK1fimmuusY6ndevWeO+997BixQq0b9++Qefm4OCw/6LFWBqu\nuuoq5OXlYeLEiUYtkTBmzBg8/fTTuOCCCzB06FDMmjULv/nNb9CtWzcMHToUPXv2xKhRo/DZZ5/h\nueee848rLCzE1KlT8cADD6CiogLjxo3DnDlzUF1djUWLFmHSpEm47bbbMG/ePHTt2tX3fXEMGDAA\nd911F26//XZ89dVXaNeuHU455RRNSMgExx9/PH72s5/hpptuQn5+PsaMGYOXX34ZvXr1yqivwsJC\nRCIR3H333SgtLUXXrl1x9913Y968eTj99NOVvm6++WYsXLgQl1xyCc466yyMHTsWHTt2xO9//3uM\nGDEChx56KB555BF8++23GDNmjHLsc889h0mTJmH06NEYNmwY5s2bh549e+Lzzz83ntfhhx+O999/\nH//7v/+L/v37IycnB/feey8WLFjgn1t+fj4WL16Mbdu24dJLL0VBQQEeffRRFBcX48svv8zo+s2d\nOxfPP/888vPzUVVVhUsuuQQfffSRr+2YMGbMGAwbNgxDhgzx/Z/1RX3nVPfu3TF79mz88MMPyM3N\nxSWXXIJly5bh5z//uT/2BQsW4Ouvv0b//v1RXV2Nn/3sZ2jdurVxHG3btsXixYsBACeffDJ27tzZ\noPNycKgrnn/+eWzatAnFxcUAhKUgmSTNPqnsHwp5+mwkElG2OTkR5fhwOFF7RD46d+7sP0O7d+8G\nAL+/zp07Iy9vm89hoPbIcsFBlgbiTpASQZaK7du3AxAciC5dumR2IfYBtAih4cADD8S9996L/v37\n+2YiG5YsWYK7774bALB8+XJceOGFOOecc3D00UcjmUxi8eLFOPfcc3H++edrQsOIESPw7rvvAvAI\nl5MmTcL/+3//Dw899BAAYMOGDVi5ciX+9Kc/4fXXXzf236tXL7zxxht4/PHH/e9eeumlep13x44d\ncfzxx2P9+vUAgLVr1+L9999Hnz59sHjx4sC+tm3bpmifkUgEq1evxvvvv4+uXbv67QLAd999h6uu\nugoA8NZbb+Giiy7C8OHD0a1bN59sdNJJJ+H888/XhIZp06b512jx4sVYuXIl7rzzTlxyidlcN3Lk\nSJSUlOCMM85ALOaZHz///HN88803OPPMM/Haa69hyJAh6NixI4477jhs3LgRALBmzRq8//77GV+/\nN998E9XV1TjrrLPwwgsvoG/fvnjiiSfSHrN27Vo8/fTTuO222zBt2jTfvFkf1HdO3XvvvX4boVAI\nb775Jnr16oX+/fvj3nvvRbt27dCjRw+ce+65vgC1ZMkS4xjat2+Pt956C+Xl5TjjjDP8e+ng4OBQ\nH7QIoWHUqFH46KOPsGjRosB93377bf//srIylJaWYunSpb7ECADff/89Dj30UOW46upqLFu2TNkH\nUBdj+u6QQw6x9r9ixQpcfvnluOeee7Bw4UJ8+umnSt91wb/+9S/lxf7BBx9gy5Yt6NWrFxYvXpxR\nX/3798dNN92EI4880pe6AeCoo45S2pavWyqV8l0i8kvm+++/xx//+EdtnLKgkkqlMH/+/LSs/d69\ne2PWrFlIJpO+xL969WqsWbMGv/vd7/Daa6+hV69e+PTTT32BQT7/TJFIJPDiiy+iX79+WLVqFY4+\n+mg8//zzOPDAA9Med99992HAgAG47LLLMHv27Iz746jvnDr66KMxevRo/PGPf1RcNkcddRQAYMeO\nHVi3bh0mT56McePG4Z133kFpaanWf6dOnbB06VKUlJTg7LPPRmVlZb3PxcEhUzz66KMAgKefFmtR\nXl4e8vPz/eeduAzJZKJ2m1S2ZAGIRLwtWRgiEfWVRUlMI5Ek7r77S1RVVQEQFoC8vGoAQEHB14hE\nIpKFgtrl7amcBtpPJEtN1fanWio2btyInj3HKs/xvspxyHpOw7HHHouhQ4fi73//O9q0aYM2bdr4\nYTht2rTxzUWEn376SflcU1Nj/I4fV1ZWpqTRJcKLfCxpxfxYGTNmzMBdd92Fiy++GB9//DG2bNmC\ne++912oGS4etW7cavzvooIMy6uu8887DnDlz8OGHH+Kiiy7Ccccd5/MNGuu6mcYpj9GE9u3b4447\n7kA8Hlf+Dj/8cJ9g1LlzZ+v51wXPPvsszjzzTFxxxRVYtmwZNm/eHHjMt99+ixdeeAF33HFHg9Ka\n12dOFRcX44033kDXrl1x00034T/+4z/wu9/9DitWrPD3SaVS+M///E+UlJRgxowZKCkpwbvvvot/\n+7d/U/o/9thjceyxx2LOnDlOYHDYr7B580Js3rwweEeHOiPrLQ1HHnkkcnNz8dFHH2m/bdy40RiL\n35xIpVJ49NFH8eijj6JLly647LLLMGrUKGzYsAFTpkzxJeHc3Fwl9K9t27ZaWx07djR+Ry++oL4u\nuugifPTRR/jLX/7iH3/iiSc29imjY8eO2LFjh3GMJuzYsQMvvfQSpk2bpv1GJNeSkhIcffTRxr7q\ngqVLl2Lnzp24+uqrlesQhFGjRmHFihW48MIL69RfQ3H88ceja9euOO2007Bq1Sr/+zZt2ij7rVq1\nChdeeCFycnJwwgknYMyYMVi4cCG6dOniCyrvvPMOPvvsM0ydOhXbtm3Dq6++ulfPxWH/wPTp0wGI\nnAfErQmHd/v7kCIjLAiepp5Mep/J7UxCOm1pP2qbjieLRCpF+1P73v5VVZuV46k9bkkgiPGoFg8+\nHtGvanEgiwVZb0OhEJ566ik/PQC5fvcFZL2l4b333sNJJ52k/FHynTPOOMMYcZAt2LBhA8aMGYPv\nv/8exx57rP8dABxzzDH+fr169dJeCgDw29/+VgntIXP1xx9/nFFfBQUFqK6uVvZLRyKtL84//3z/\n/1AohHPPPdc4RsLbb7+Nn//85/j000+1v7Vr1wLwkjj17NlTMfdxc30mSKVSGD16NBYsWIAXXngh\n4+O++OILLFiwAHfddddeLaJGOSLk+3b88cfjsMMOM+4fj8fxzjvv4OGHH8bBBx/sJ60hjB49Gg89\n9BDmzZuXUeSPg4ODQzpkvaVh+/btftY+Qvfu3QEAy5Yty7qMkJMnT8aOHTvw0UcfYdeuXTj55JNx\n5JFH4vbbbwcAfPzxx9iwYQPGjRuHv/71rzjwwANx2223YdeuXVpbpaWlWLhwIUaOHOlHT3z66ac+\nEz6orzfffBOTJk3CXXfdheXLl+PMM8/Eqaee2ujnPGzYMNTU1ODLL7/EsGHDcMQRR1hJkABwzz33\n4OOPP8bChQsxY8YMbNu2DYcccghOO+00PPnkk1i6dClmzpyJ//7v/8bChQtxzz33oKCgAPfee6/R\ndx+EiRMnYuLEiXU+btSoUWmFn6bARx99hLKyMjzxxBN44IEH0KVLF9xzzz2+sAkAv/zlLzF27Fg8\n99xz+PHHH9G2bVvcfvvtWLFihTEy4s4770SrVq0wf/58nHbaaVi+fPnePCWHLEP37t0xbdo09O7d\nu17HT5jg5S6YM8fjI0Sj3msklfJ4BORyk8G5CiSIk4bONflQKIzJk0/0heDCwkJcfPFLsBViJbme\ny/fCLaz+IKI2Uv7vL710kf+5pqYGF1+sE9hFVIUaXUGWDnKdRyIRTJ1a5hOpp03zMl0efLBw22bK\neejevTu2bNmCSCSC4uJinH766ZgwYYLCUdubyHpLQ0vDhx9+iBNPPBEzZ87Ea6+9hvPPPx/Dhw/H\n/PnzAXgP1Pnnn49kMokXXngBN998M66++mrjYv/BBx9g4sSJePTRRzF9+nR8+eWXSg6EoL6mTJmC\nsWPH4vrrr8c//vEPdOvWDZdeemmjn3O/fv1w/vnn4+WXX8avf/1r9O3bFytWrLDu/9133+EPf/gD\nKisrMXXqVCxatAh/+9vfUF1d7RMD9+zZgz59+qCiogLPPvssRo4ciZtvvtm3ROwNfPLJJ3jjjTf2\nWn+Ax9m46KKL0LlzZ8yfPx833HADrrrqKv+6AJ7rZsuWLbj77rv90M2vv/4a55xzjrXda6+9Fi++\n+CIWLVqEX/3qV3vjVBwcHBoJCxYsQHl5OVasWIHPPvsM9913X7ONJZTizp1mxt40BTs0DIMGDcKT\nTz65T9cA2Z+QZUuBQxOhvpaGyZMnA/CSpAHA3//+HQA9wiAej9VuRbiyiIKI1m49LgDlP+Ccg3A4\njGefPdf/PZVK4cILX/Q1e9Lg6TNZN4hs/MUXXgTHL395g7EfbunIy8vDCy9c4CevSyaTOO+85/xz\nov5isZrafugcY8o1sHEv+PgqKysxfHgxrr/+egSB36/bbrsNX331lZLpdm/CWRocHBwcHBxaADZs\n2IBFixb5gltzIOs5DQ4ODg4OzYdJkyYBAJ56ijgMnqvMFplA38uWK2FBFlyC8eP/6HMWaGuzPNTU\n1CCVSmnRD3brmGpRoN24IVvO/FhTU+NbGiKRCBYsuNS3MJD7mKLCtm/fjrvv/tJqYaAoDp75Mi9P\n5ImYOxd4++25/ljScRzOO+88hEIhlJeX45RTTvEr7jYHnKXBod6YNWsWQqGQc004ODg4NCFefvll\nlJWV4Z///Ce++eYbY/2lvQUnNDg4ODg4OLQA/OlPf8LgwYNxyy23NNsYnHvCwcHBYT9DLBbzE80B\nHiGQp1Qm9OjRAwAQja7x95XBXQQ8VbMK4R8w/c6J8OQeIPcElcLmSZb48dwNIUIyVbeFfA6JRMJv\nV6S79kDJp3ihQkprLZJL0ZbcEpSkSv2e9qMMt3VJWnfDDTege/fu+L//+z/8+te/zvi4xoITGhwc\nHAAA55wzV/tu06ZNaY/hpdoJ+2re/X0FZ555pvL57rvvxv/8z/8o39F8oBcb+fsdmgb8+bM9Qx06\ndMDAgQPx97//HS+++OLeGJqCrBMaOnXqVKeiRA4ODg1HXp6ekdRh38SaNWsy2o9If1TzhGvppF1T\nWWueejmdJSEUCiMnJ0crVU2gtihEsby8HPF4XAu1DCJG2sbMNX4ghHA4rFkaTBYJwBOgwuGw345u\n2VD75deCh6nStTbV7DHdL7my8d5G1gkNJSUlzT2EQMgS4Y8//mjcJ108MCBYwmTeoslH4OYwivOl\nyUZmOmovPz9P+Z3A44QpPTF95lUxOWvZlL7YaZHZDZPFwMHBwaExkHVCQ0uALPnZJEhemIWEBC5Z\n87SqBBIyqBYBSdhr13qpTQ877ILa3/OV9ng7tmRZQvhIGH+n46g0tSx8PProo7jhhhuMxzlkF+Ti\nZoAuJPKSv+J77/PGjQsAAIcccrax/XXr1hm/nz59ulXbGjRoUB3OwGFvY8qUKQDEWsUVCaGNq0Wl\nbFq5/D/tEg6HkJubq4Q4yiClpqysDACwa9cuxGKxQAsDKVs8ElPsR1YRWndpxxSSyaTWPp0Trd80\n3ng8jlAoFGjhsF0bcQ3DSvuU8bZbt27IVjihwYCm1tQee+wPKCoqAiAmoUwuGjTodeuxe/ak9zED\nwIwZp2nmPbJY7Ny5E3fd9UX9Bl6LadMqsGSJ/Ro5S8TeRVPO10zmmwnjx4uQML5gvvhi8HjdHHK4\n+OKXEIt5QgBlYmxKXHrpAkWZmz+/X5P32RLhhIYMwLUpWSoWWhRNNlXCFFtyQ4SRn5/vCwm0Jak+\nlUohHA77kjK1yxnLQgsIK1uS4LnvjyTZVq1aIScnRysQQ8lHhMap+upoPNTv+vVeAaWuXbvwy+Ww\nF/Haa69hy5atSCbV+y0K8iSNx+ks8syS4PDPskAQnHDHA/fRmvzOs2fP1hLn9O3bN227Do0DUXHX\nKw7H76ewVqkWJFv0hXyMbIEtKCjQ+BK0bu3ZswfJZNIXFsiCQL+LuYbabVLZj9YxcuOGQupx4TBf\n76CMIxQKIZlM+uMliy+V/d69ezdCobBm0bBFZ3DLLr+mdO2o4FU2Y5/K09C9e3e89dZbzT0MhwzR\nvXt3FBQUoLi4GJ07d8bgwYP9+vMODg4ODtkHZ2kwgPxKZCUgKZDzFeT/bf5bsgCION0wotGo36Yt\nFasA1+jMkiwHHztJ4NFoFKFQSLJ8qD48YXGo7Y11Q3HHdF4UkkftH3rooWnHxbFgwQL07t0bJSUl\n6NOnD+677z6MGjWqTm3sD3j77bcBwBeqyN1UXV2NmprqOrDHdda4B+4jBvtdhYmLw8dg8w/bPgv2\nfRLl5eUaL2jGjBkAhOWBtv36OTNyY4AKUrVr1w6AiSRNjH91jiUS6pziXAj5GPmeFhUVaSmnaR3Z\nvXs3YrGY/1kUv1LnjiCQq2Pj+RpoyDonQr0G8vORSCT88ZKl9sADD/TbycmJGC0o8mdh+TMX2uLc\nh2jU62fz5s148cUXccEFFyDb4IQGNL5P+IEHfqMsbNdfv7xR229sPPzw733iUTwexx13fN6g9jKN\nN5bRuXNn9OnTJ21J7f0FpvlIaWO5mZYv7PsKJk/e5f9vF8i9z888M9dxIBoBkyZ59RVyc7208Onc\nDSbMneuVZqf7I6eXJ24VcbiKi4sbNtgswJQpJ/kJssitQEIFuTNoXa2oqMDAgYvq1P7996/FrFmZ\n1abYm3BCA4DVq1cD0MMj6cVPn03+KsEpEN8VFhYqVglPGlYzoZmsFoD3MvAKs5hZwjpU33Uq5cUa\n65wKYXnwOBMpf/+8vDz/HGOxmG8VyQyqpWTDBo/r0KVL3bgOVL3tlFNOqdNx+ypISKBFh/tCbSxy\nm2XB9sIVqFtJeh7vbhoLIZP4/boczz+vW7cOM2bM8J/XAQMG1Olc9ndMmDABgHjR8fsj7gePPFC1\nZ3qBEieCilDJ+3BN3Bb9QJwGUQTLbNHlY+Rrtc2SKyyqZgtGKpVCPB7XBCcSDtq3b++PExC5LOh3\nmqP0e1lZmZJngq//fHxk2SD+T/fu3ZEt2Kc4DQ4tD+eddx5atWqFrl27omPHjs1avc3BwcHBIT32\nS0vDtGnTAAjfHZnMSAokjUUkYFJjiGVFiOc0Bzxpl/vw5P1CoZAmYcohknK8MI1J5FMwxyfL23g8\nbs0XIUdOUP+yNJ1KpZgUr/q8eclXDuqPsnomEgk899xzVub7yy+/jN69e2Pp0qW49NJLsW3bNkVD\n2d+wYMECbNmyJQ1b3BzFYOMy2PgDQRD7mS0ZIhOePg/S+YnlLYfN1WLTKuVtVVWVn7jsiSeeACCe\n48GDBxvbdfBAWmxe3noA9kyPPLKGR1FwSwNdf0BYAGyWMgKfK3zt5ftR3xQ9xMHXYemXtONJpVLG\n+Uj9kkWBttwCQteC8kxUVlYikUhYLX68L/qdLBjZhP1CaOA+4nXrtgMAotHdGR3/2GN/UD6PGPFR\nnfqfOPE/NEGkOTF58p80gk5d8MgjggOxZ88e3H33l2n3f/DBDXj66fQ8B7l628svv1znMbVkyPPT\npVCvH0wcCFp4//EPx3kwgeYdzbmG1pYYNuxtpZ39Pc9Bv37zfS6HCAWtP+rDFWsK7HNCg6l6G4FS\nVLdu7UnCpC3RC5BuMM+hQNIe7RcEOYc5wSZB8/jkqqoqJBJJ/zPXOAnEJo5E9Jd+TU2NFp3Boyl4\ne6qkHNKiJkRMdgh5eXlKhsucnKh0Hsnafrz+8vK8a0c+epkcxdHc1duaA2+88QZKS0s17kKQJhZk\nMQjiBfA8HLZIBt6errHJVivapo/gqOu5BPmxg6I21qxZg8mTJ2uC+/7OfaBcK0VFnrYs1iS6xxTZ\nwHN/qFYoWyCX6b7a5jOBxlBUVIScnBxr/hiedp+mq8jbYOP6qFYUPg6ZcyFbSvj6beMQqet4wrDO\nqsdz5Y3Ol9qjMVCuoLpGpzUF9jlOw5lnnomCggL/75577mnuITlkCLl6m4ODg4ND9mGfsjTYqrf9\n4Q+PAYCfutnmX7PlXOD7qznVvS3lYSfOArck2CwM1Jac7jmZTGhcBu5XjMdjtWMjn5/w/VVXV/va\nlCnjpIxMfdyypJ6bm6vEL4sxAMmkmu5V9K9ab4Dsq962N/Dee+8BAHbs2AHAi0evrq62RkMQbNEQ\nQVEUhKAoHK5B8flmG4ecUS+o4mCm4MfZnst0vB7eTiqV8p8xsuoQt4ksif3796/XeFsq8vK8NYJ4\nSgJcqycuSu2vAXOUkI4TYLuH1BdlrtUtX6qlgSyxQlM3cxsIFIWRSpmjinJyRI6JSCRSZ4ue/Px5\nf2qNC5vVJqh2RTZxG/YpocHBIRsh+yJJWGhMX2dj47rr2vvje/jhCDZtSr8QtwQ8/vhP2ncyMfOm\nm/SSxA51w4wZpwEQBPOG4umnz8JPP3n3jUiuIglSFMOHL2lQ+xMn/of/cqaXMuVZIAWzIZgz50zs\n3Onlvkgmk7jmmmUNbjMbsM8LDdu3V/jxxyRFkpRq89sGsb9l7UrP7KVGR8iT3BuDml2SF5YirTMo\nLwPnPEijxZ49e/yHgEhJXHJNZ2WRFQY9zt+LtuB5H8iAEI+rvj1qi8dPb99eiXbtsj/PekPx2Wef\nYdeuXf59qq727nMioWpIHEEZP/l+Ns2N7xeUCwHwrF2kjXv7yRE1dh4CaU9BmSB5RE6mFgobt8G2\nHyGI+5BMehkoKePk0KFD07bf0kHRJdxapPMHeMRMOO1netHytU3eh/v+bdwAspRSJIaoXuntT7w1\nW8ZFaJlz9bwNBxxwgKbJ81oYQdYUm4WP520gLpeeJyIzaxxd02yogrlPCg2/+IWXhrioyMs6VlhY\n0JzDcTDg/PNnARBpkeVkUI7p7uDg4JCd2KeEhsce87gLQmpUy07LvnfALu3asjGaNBxhaaBoBi/b\nIrcw8JwP3CctS9JyrgR7Bj8Yx5hKJZWc7SKjmhpFIeq5q99zti9B1gTkXA80Vj5espxwSwznh5Ak\nng0SdGPis88+A+C5I2KxmH89bFXuMo0Q4Pvzz1zLr2v2RcCzdtm1fXM7tZ+MY7Kfm3ksQbybhlom\nTFEWyWTS115JEycr3cCBA43tt1SQ+yAc9urG6NEQqnbOwfNtECeCZ5Q0WRr4Z9vayms+0O+ZWmRF\nc+YoIaqyyTlf3BKb6Vzk5yVXFabzycnJkSywtpo/6ed2XVN7NwWafwQODvsYzjlnLnbt8vIGZBqm\nm02YMWOP///mzS2fz5AJzHkevBfICy/sG3keiFuzefNmAHXPGfP44ycCEMIBd4E6pMeTT/bx3RTE\n0ZDdzDfe+Emd2muuvA37hNBAudNJa41EKgGYKvmZoXMWPHA/me6TNWstsqWBRzHYND81Y2MYlOdd\nz6KnauzccsH/tzHR5RhkQFg6yGpg8zXK+4jv+Wf9unDonI/mT3rVmOC5P9LnxVB+qd3aWdnp2rFd\nf1sEAoeuuZktXqbj+Rht+fX5/lQ51QaujVEzNouDzUpnexZs+R2Iib9+/XrMnDkTQ4YMSTvObAfF\n+lOxKFtNHdu2bdu2APQ1jWu/6fIzBFl/CHw/nhmyqqqqNnOumYcmtQzAzLOJRCLaOhpkxcqUO8S5\nDfx9IFepBbx1gqzU3ni59cf/l7HKAAAgAElEQVS8bjcH9rk8DQ4ODg4ODg5NgxZtaRg3bhwA4Tey\nR0OICpCAXROyRRaQtmjLgy4fQ8dxKdym2dH3ZOLzMqFFfO2LS9rUTCSiSsjyueTn52tjtfkMuU8v\nHo8rlgbdSqPmoeAatE3b479z1jONY+PGjZg7dy4uuaRlmoPfeecdbNu2TbMw2DX7urUf5AOm34V1\nzPu9vhYH+lkcp9ZSUaH6j01WMHlM3M9sG5ON5Z8p3yPoewJ/ZuQ5WlNT0+KjK2iN4WuTLSqC30+y\nUNisWjY+lNqmClukja1OCblGOnToUJsvxrtnsVhNbTsqh4pzyeQ5GY1GrRYGbmW2jSfo3HkmXoow\noXshczSi0aghQyRdD9Ruvc+bNnl8lIMPPtjYb1OiRQsNhHHjSgGIG0ipi5sKjzzye///nTt34q9/\nXdmk/TU3Jk8+UTNJNiXGjvUEB0K2+5Nl3yKly84mDBmSp5hHp0zJrOaKg8CkSTv9F9HLL+8bHAeO\nOXPOBKC7PtMpS42Jvn1FzZlQKIR58/6cdv8nn+zjR19R/pPSUu9d8Ne/ei/n8eP/CEC4rimEkz6n\nw4UXvqgIM0HjaSiefLKP766Q3RaAJ0Rcf/3yJu0/U7RooeGgg7yELNGol0NdWBrM2iyvi8AtDEKD\nUS0WlZUeR4KkQ1mzoTwFQvr2MiaS5h6UzY5A+xcWFiISiUj7wW+39r/aMatjlyXhoqIizfdlYxnz\nhYH6tml7Zkk7pcXo84WHwCV4oRGoOTQoL35LwfbtXhE0YWFQNR6bhmKLRhAZ66C0o/vvVc3fZHFI\npVIKITOZTAbyDQTqwoEw+62D/Nd+TxYugs26YavPkSkyjWDh/axbtw4zZszwBemWkkmSrxWZ8mMI\nNksuPcs8YkomWtL/PGqL2ojFYn4UC42xqqpKI2vScWRdJusHRYR0794dgNDoqVaDLSMvv7d0LtXV\n1UpVStqXR5/R/pyjwPM/8OgMnreHV1qWLRCAZwGORnOQSKiW6eaA4zQ4ODg4ODg4ZIQWaWmYN28e\nAGFpyM3dCgCIxSjLnlq3QWhV3E+kxhlTxchEwsxcJ6lPlj5btWqFSCTHt17k5ERQXFwcyHLl+Rnk\nKodeBIbfO9uidgz27Gyydh8Ub0zHyZIrz0UfiUSsTHQaL11z4SLK84819WtjRRPknBpTp04FAFxx\nxRXGfZsT7733Hnbs2KFpWWQx0S1MqP2stqNzFVSLA9/PZqmgeREOC8tPJBLx5xfX6MRxZi1fh8or\nkNsR565qkbY2xLmov9qsc1w7tFntOAOdu9NtfnS+tVmHqA2650899RSA7Lc42Hkv3mcqkU3ar1zJ\nFrBfF1rDKM8FXRfZBUCRF7wGjnxPU6kUqqpIs47hiy++8JO+tW/fHoBuKeCcMBqznktCPXfOXaCx\nr1+/HoBXE6asrAyFhUW14zZHiNC5knuEW6XJIkLXglugeXsEOk9qh/gXfN221VtqSrRIoWHMGC90\nKD9/a72O5767vn3np93/lls+BSAm6EMP/U75/ZFHfu+bw1q3bl3n8Qwa9Hpgopq6YPjwJcpDNWvW\n6XU6fubM03wByYRBg173/7eFVMqYPfsM/yEoKyurc874iRO9B/LVVz3uwL7oT25KzJixp1HmVUvC\nX/5yoGIaHjt2Y6O2P2HCdv//faV2xXXXfQAgnQCpuswIQgghYUx1QQDePXjmmbPrNJ677voC+fnf\nAQBycykdvvj9+efPr1N7HBdd9A9NeCA3Q31qwlx99buaosrdtDZCKIEri435XmgstCihgarSEdFR\njw/2tjU1al0G7ofififiBySTaiYzPaueN2OJwQsICZKEBu6D41oRn5yVlZWIxxPgWSiFJuedi/BJ\nq9/TmOncuYYbDodRXV0dqEHS77TQ0rXlrHtqg/NF6FrzaIxQKKRkQiP+h13S1rUZanP16tXGsTcn\nyMrAORo2C4Mt/wIHtzhwTUlqgY6o3Y+OM2tYHPx7PdrD+13O4yEfZxIaxUJnfukELYhBvnZxTuZ+\naX7JFRDl7IF6f+mfjSA+B3FGstXiQFFmZGHlFgb+OYjvot9P1B7Pmf/iOkciEVRXVweSKql6b1lZ\nGQCxThJ3gdbeSCSizL2glzGfp4lEAslkyo+6oP4o+RLnJIRCqqbPI+vKy8sRj4vqxJGIyjlCmpot\nXns80s/2vNa2VnsPmiNDpOM0ODg4ODg4OGSEFmVpoJjUnJz1tVvShj3xi6Q7ymFAlQRJ4yBplCwN\nnHcguA2qNMkl7gMOOMA/hrNjufTOtSTqW5akE4m4IT5X3XL/L0m4Yuz2HBRlZWX+92QZ4RIzN59x\ntjPtH4/HFZ+4HgWh+hR5JIbXT8jqYxRx1kKeFVaL7JNxf/rpJ8RicSnKga57ei4C/55g1+pQ267Z\ncqBrw2ZNxBbJYN96+2XihgrK/GizsnD/tu2z3p9qVZHN5/n5+YrfWZ6zugWRj9M8Pt08T+NLKhEq\n2WpxqKnxxhdUWdVmgeD76VYnuq60Bsl8l1Rakz9xo6gSMa0jtM5RWnZaPwsLC7FhwwZ06NBB2Z9g\nOwcK0Vy/fj3Ky8v8z9wdS1wCW5ZgbmH1+klJ1hZI3wPwqxObrW3c0mDjHNGW52HZm2gRQgPFwW/Z\n4nEY6EVdX1x55T8BiAWVfG1kChs4cFGD2g/CoEGvK8THpsZ1132ghPwQp6OpMGXKST63IycnB5dd\n9qrRZFlfNFfOdYeWg4cf3uz/n4nA01CMG1eqLOz7AsehpaFfv1f8/1eu3M6+S2Hu3HOaYVT7HlqE\n0MBzphMHQWg23n4kpRHTVdaO1f1VaY0WFc74t2nvMivY5qOzMb4rKioQj8eZhKr7AUla5znL6Xtu\nZUkmVZ8zj4OWzyGRSGg8D8694NdAtiykUrpvTU7+VFxcnOa6oHZctFU1AmH5EBI+j7EmhnPXrl2N\nfewNkDbpVdtLSNn1zDHupLCQn19ovbSHqnlwDcem3dm0da4NB8Xg+6Pw74saBUIaoBiPOq50bep9\nmBnsdk2f2k9vkdAjfNL3y61b5PMPsmzwayx4ReI8ampqssbiQAJ8NOol9bJxRILuH78uegQNzV2d\n9BcKmddKOc9BIpHwrzFxF2je1dR4lgCKTqiqqsKyZctwyCGHAAAOP/xwVFdXSdZjWvtj/v5ff/21\nz4sqKSnBjh2V/jmJiBHvHVBYKHhrdO6ULVeG7drxKsM0R+T2vO9tWYz9b2q3fM41HzEy++y9Dg4O\nDg4ODlmJFmFp4HHCBB4xYNNuSeqLx811AMifxSuS2Xx5pjwIHFyapzFUVFQgkUhomjU1w7NV8n50\n1ixZMtT2eOSIbPGorq72oz1s/mcbn8PLgBkCwHO5i/NWM1qmlGvELQy2SqKyL56PIRtK8ZLGk2ko\nlE1DoWqmvJ6CKWqltiXlU3D0RV3HRfdNnb88Tj1dW0F8C67p26xeOhcis/b5uZBuxK1jtnFnyjPh\nuTLkuZ1IJLKG40DZEqNRz/0aFGlAsFmluHWQW8n48fS/3C9vg7hSBMGtUjMphsPeWr1nTyXKy8ux\nYsUKAF7Nmu3bd/rWaAr/3LlzJwDveX333Xf9fAwFBQVIpVL+ms+5adzCSnk5+Noj51MIh8PacXwd\ntlkQ+ecgyyC3ku1NtAihoakxZMibAIRJnHz+NpP9/o5Zs07XSE1yYZYBA14LJLG1JHAOBQCsXbuj\nGUbi0FIwYcJ2Rdh1HIemxzXXtMUxxxwDALjhBk94uPVWLzlUcyRB2lfRIoQGG4NVsHMzS5xBUi1n\n/ItIA1WLt2WM45nh0vXNLQ2eDzyp+bJ4LQlRRTI901loaSpPg44T5yok4JqaGqulwRaHT+fHrT4m\nP7RJUOCSsaxhyL/zaorqd3TO3v1Zu3at1k9Tg/gUQVEQOtPeDBvPhl9/nasA435B87C+kQqZWS7U\nMdr5Fua2uDZmSxpk65dHOYDVwqBnjFtR0uWc8PYzW/2CLBPy97FYTCnCtjeruJJ2TOeha738fpj9\n6HQ6wsKQVPbjOQbSWR64VUm2TvJ9vd/VzLXJZAKdOnXCCy+8wPbzzo2sx/I1l3HxxRejoGCTkvfB\n1K8MOdcH7y8ajSrPHn8OxTVXLbMEYQVTv7dHqqg1fgCRj2PEiBHWc2gMOE6Dg4ODg4ODQ0bIakvD\n5MmTAWTug+OZ4rg3gUcy2CTioP5k03w6K0S6z9zKQdozcRqEf1TVxEU7YMfznOycMyHO2ZQdz2Zx\n4JquXhk0KIOZmbugu37U6AP5HvC+SOvgsdlNCapfbxuTfj1pT1XrtWnBBDpvPUbeFu1gjke3zcu6\nWhiCIB9nU9Jsz5kNNn8uWdNsnAceZSG643NbjbrKNGqAR5Zwy4SNh5RMJhGPx31/OgD84x//AAD8\n+c9NW24ZEFq3qMmjjk+v02CuTCvWEDVagnMaTPeZ8rXYrL3RaBShUBihUPr1hNaHvLw8dOzYUfv9\n1VdfVdrn6N27NwCgS5cuyM/fIZ1rem4B/c8zo/J1kXO2dCtp+mybNgulLdJIPp74H02NrBYamgr3\n3/9rAMK0Q8maqKhKc4yHCDytWrXCFVe806D2xo7t6S9QVVVVGDnymwaPsS6YM+dM7eVHxMGKigo/\nx72Dw/4CmeMAAH/9a5tmHE1mIG4XvSgHDHitQe1xrtNTT/1Xg9obOfIbrFnTw/983HE/pt1/+fIe\n+OEHL+y0devPG9Q3AFxyySv+y5sn26sPpk/vrQhwgwcvbnCbTYGsFhpEXgYvG1hQPDGX5riLko4n\nNjF95nUjeD82hr+8LweXuokL0Lp1a+Tk5CichHbt2vnV0KLRKHJycrSqifb4XdS2Q5p6GO3bt/cz\nTlJ7skRsij6wM9BVNrBMeDRdE665EoOctB3iPNiK4ZgsDfwa82IwTYlXXnkFJSUlGtPflusjiFvA\n75vu9yVLjvl3m5+Yc0G4Fq3H2JujY/RIArXfoEgDeZ8gBFmnuNZley5tse7SN2x8/n+1+6vt28bD\ntWSC7RryZ1ceJz2fTYnx48cDEMoQPYv83nPrIT1XJCzs3u29aCmjpF5jQuU2iKyo+vWUMxlWVVUp\nVRzD4RAoj4nNsgpWi4WqX27bto3tb55bPBePeE5oq65HnM9C15AstrpVLH3/BFOOjMLCQv+46upq\npFJ6VByvSSRbvetRY6tecJwGBwcHBwcHh4yQ1ZYGyrwYCqmZzAhCgictiLYkOetaKwA/XzmXrAlB\n2pk8Ds70tmk/tF+HDh2Qm5uraG4dOnRQzPnk/6sdDTKBiEmPoLi42I879mKLVyqSLcUoy+MOYs3z\nc+clX7kmys9f3l9mSpskbhvEvmqEyYQJEwAA1157rfXY+oKiXWyV/+gzz+tv44oQMrUg2LRWgp69\nNDNLQ6aaUH1/V8eSntfDv+daJR8qnwd2y0N6/7DutzZHd2Sat8Hmnza1Q5a35557DgDQt29fNDbI\n50+W1FTK08ZJW+YWBm5x0fkyau4BbrEgPhaPAJPbkteFWCymrMHeukfPmdq3zhGq/ZShVYvAw+Zt\n/Blh8RTtp1Ip3wIci8VqM1hyPoi65esmjxaTr1UymfRLGXg1bWo0S6bOERPXc2/lr8lqoaGx8PTT\nZwHYOznoM8HTT5+l1V1vSkybdqrfTzYkRpo8+U++EJGTk4OhQ99s5hGpkPMycAKkg0NLwYMPbgBQ\n//wy5FMnIaOxMXz4EuUlO2fOmb4wtWfPHlx11dIm6TdTTJt2qqS4hjBgwGsZhP/WHwMGvOa/o+pz\nzSdM8OptLFjgrV9NVZMnq4UG4hjYNRLa0o0kaVHVJIJelFwqrI8WZtPYeZtyXG+6voQESmMza5Dc\n50ZWCrp2PMKA+2Vt1SZtCa1sFhSbBixyyOcYjwuFQkqdeiE52+8B93EXFxdY960vSkpKqDelL72+\ngTdO0rK4FmazGNm4AZnmNLBFzdiQ6e+6Fp3++PTt1jdqwv9GOV5/xtQx2yNawPa3jJbxN8T36j3h\nsfZ2HohumSTQ81dRUQEAeP311wEAp59+unlwdQBFndGzz62Btkq6clVKedz8eFu0GY8EkxWi4Poi\nHtdJrq4bDocD14XS0lLjNairBYIfFw6HkZubq1iAvTGaNX5utdarYZLFxBY9publEVmMVaICjzaT\n11Vag6i+RlPBcRocHBwcHBwcMkJWWxqCKkhyBGn7mWpvQWxs+Xjep01zp61NciSzXHV1tWKaCpaY\n1XbD4TCqqqqsOQyCtL66+r5tlgYCjYMsKzwnO1W341EYavy/alXhGl5DS6WbwKuNBmVaDKoaGuSG\nslkauPbK+wvyv/Nx2j4Hwebak/trKE/Ctl9QZAdH0DNo5xrw/Xm7nH8Dtj+3fAZbjchHvmvXLvPJ\n1ANt2rSpHaeX6txUf0beEsR+5voItq0+d6F8NvXFNXXK4UCaM9Vy4PvH4yrXwQbb8xaUYVeu0Jmb\nm+t/H4vFkEymDHND5dXZIlCoCjFdBpvHiOdxoHb4GihzLfg5iEqfTYOsFBrIp7x161YAezeJT1Ng\nwIDXAhdzmswUStMQDB36ZsYvqVAohNmzz2hwn80J8t0+80zT+vIc6o9bb+2SNqSR7uH+gscf/0n5\nfPfdzZMjJpsxe/YZfr6ZsrIyLb/LyJFHYcqUdzJu77jjfkT//n8EAHTr1g033/y/yu+PP36iTxpt\nCkVkX0FWCg11hS1bFoHijLnWmylBKJ2mEBR9QJq0bAkw9W1jJpMEK75XJW2ySnApk4+VE2zE/rmI\nxWKaYGY7ryB+Cd/PtpW5FRTzLJ+fidNAjGq9UlzjeNkoS9/mzZs13oRe9U61RPCoEh4TH6Sl2bRr\nrgVzLZmQKW8gaD+dpe1tOTHLZEGRya2AGtlx7LHHav5emtOVlZXIz9/m+30TCTMvxB4Tbz4323Mb\nlB+Cryc8MoVreZk+A6Z+6bvy8nLjmOoDzgXToyTScxOE9VLlP6XLOyG3n+58OWTNXbY0UFtyFJjM\ncYjFYkbrDHFCvv/+e2N/VPXy4IMPVqKiIpEICgoKfA4WfU/zPhaLIZWSa0/wOUBz1ZyjQo/KMGcP\nlatmAjqXI92come1qfPXOE6Dg4ODg4ODQ0bIaktDkBYv9gPbT5WISYonqZVMULZYWhtM0p1NKyEt\n6rvvvkNFRYWfAY6kQMp2SWPiVSRFPC+vx25m81O75JOjIZLPtLzc65/MfaSNtG3bFmVlZTjwwAON\n10Jnjpuz8tlg89HLIaBeHXoat2pRkY9J00vA75lBjqEOyssgtC/Ufm/W6mwZMwm8Xdt+dgsD/yYo\n0ij9/dR/J94IVQNU55tsMTNVKPU+e5n70vEqioq+1bLdkZZHc9iWHyDIxy71qJwT90vzOR20HtTV\nGmfah36jc3zxxRcBABdccEHavtMhqFKqyHNitkZSzhFu8eHWJ9Kug+5DZkgZ11WCV5tC5ZKZwhIp\nN4VN2164cCEAoEePHsraFQ6HkZ+fb7UAmCpcmvazR+aYuWKcm8HzrnDrEIE/K3LfjWV5tSErhQby\nSVPxkTFj1jWovWuuWQbARC5RCU2E5547r0H9BWHEiA44+uijAQCHHHIILr/8rSbt77HHjsPKlSsB\neHkHZs6sCjiiYejX7xXrw0OwPTT1we23HwoAuOiii+p1PHFo9pecDLfccoj/DPDU6VxouOuuAqxd\nu6fJxzRr1ulK+XhAmJIprI7cjPsjB8JBxyOPlGDz5h7Kdxs3rgEArF7thbJu2dKDHwYA2Lp1ZZOO\nbV9GVgoNhEz9wvVlZXPmK/Uj122Qt+m0axuHoKKiAvF4XMmNPn/+B5g/fz4AYNiwYdi9e7dv/aD4\nW8G/IK5BSvm9sLCI9e9t6SVMmcVWr16Ne+5ZpOy7Y0cPXyJPJpO1zGBzjLaNAU798HjieDyOeFzW\nAFTtjrcjJGowiCiTINY7j0ipKzZt2qx9JwRKc6ZKPhcoZz5B50DUj9sgYNZUxO5mHyvXyvPy8tC5\nc2c/Kyolr9GrpHrb4uJiRCIxvzZKfZBKQfEf83Ok72nOkz+3devWADz/MwDs2OFFA2zYsAHR6BaN\nnxPEYRAJefh+5vFwS4TNl2+zNIiIF2jg950XdmsIeG4APs5IhMZri6pQLT00Np7pMRRSjxfaPZ1b\nJgmQxL2QM8Xy54Z+oz5oTSYLKedA0HN7yCGHAAA2btwIQNQd4hbPUMjLb2Pjedh+12Feq2wWWb5O\n0D2LRtXz5O1wqxsgK2CNY3m1wXEaHBwcHBwcHDJCVlsayEzJY2u5v5kQ5C/WpXu1eiVJ2GQVIKmV\nGLVCilV9a3IfXHNo27atZC3Q8dVXX6GsrMaX6knz41wHsGx2tCVJs7ra84mSpkKWBhvkc8nJybFm\niOTnKeeTANR8C4DHmaDfqH25XbFVORrkKxdRC+Ia6xn+1LHJ/dUPelQGHw8Hn0vCkmDmQOhRF+b2\nePSI7T7o2q36O9cOi4o8Dk1eXh6OPPLIwFhu2fKhXgO71q3zJ8RR27Zt09yDPGspj2riFoiDDjoI\ngKcttm69WUk5LJ8zj3Lg15ZrwDYLhZiDdfPR26I7ZAgrhNpnQ+Yy1WDp3r17bdteyLqtEittbbkA\nhG9czXoo7o+atTZdmLeN5yDWM28d4vOKuy9prLQmE2gt59eerFZkWaU5ZsqWmUqlpDmkzgnZCuIh\nfTQT5zjRuPkzwnkZ4hkwWyppvRX3VFxPGh6d05QpUwAAV155pXGM9UVWCw3NhREjPgSgPxR0Mxpa\nB76lY9Cg160LUGNwFBwaF7fe2gVHHnkkAKBTp07NMobrr1+uvCAmTvwP5ffLL38rrZuBP3OzZp3u\np/pet24dRo36samGvlcwZYrH14hEPF/8sGH1b6Ow0As33Bt1bRyyF5MmeZyghQsbN39NVgsNwm+T\n3lcjNAv6bGOam6VYLolznyavaS6/GG2xz9RGmzZtEI3m+FrS5s2q/9yLHogr1dPkc+eRHjYfKOWw\nD2J+n3XWWVizZrsv0YbDYUSjUc3nxtnHNJ4dO3agpqZG0+p0DZSuQxDfxMy8lhc87ufk96u+Me7E\nVJe1CdFnZsmxdGa6urXV7kgmM+PjZOpHF+2r86+oqAiHH364zwuw1SEgmHzKngZmZtKbGO/6c6YX\n+fnuu++UmPTy8nLNXy1bHJLJpBbDfuihHgG2Xbt2aNNmu/8sUIQQPaY88oj4JzY/M9e4BdRzD3op\n6zwn+VqZ+6YxUc6QP//5z2n7kEHXjVsOuJWLIpS4RUhUqeTMfZs/3mzJJWTCNeOcAa6EyBq5l8+F\nrr1a24ZH2vA5SBZcmjs6/yKVtmolj97g0LlJZGEQ66w8HpE3R33H8XWQWxh4lUx5DvL52FT5Gpwo\n6uDg4ODg4JARstrSwCUlLn1y/7iocqlqCkExsiTtkUTNfapcaiVpFhASrM1P6Fkaon5ehq5du2LI\nkD8pvqn8/PWar4r3SX5b3S2ganciK1/U72/w4BN9H1779u3RuvWniqUhPz/fGs/PM6NVVlYaM1za\nWM+6XEr3xqypm8CvBZe+r732euuxJsybNw+Afp9V6wZtzdpTOpa1aX8xR4Ni+833ITiLH8H7PS8v\n398edNBBVosYv7Z0TSncsaqqCslk0tfibVkG5f/5NeDZS+PxOBKJhN/mTz/9hOrqav+54jlLcnNz\nUVJSgrZtvVTLxMeh/lq1aoWcnBw/woPmOlnfOL/DFovPox34lKT1xF6x0f+PtZsJ/6PhPB1xL8xW\nO/7MiWePLHdmTge1Q3ODf6ax16XmgSk/Cf3JkDVsr/aDOQqJ50UR66jXTl6eueJnKiW4XPF43Kqd\n5+Tk+NYQ+fggiGtotjgKa41aGZRHqQXlc1D7NGcdbixktdCwr2LUqB+ti0VTYPTo1f6Cl5e3tsn7\nc2hZGDx4sb+4plJJTJt2apP3ed99a5SX7003CcGGhAIKuezQoQNGjPhQc1vIwskzz5ztv2C2bNkC\nAPjhhx8AeILu2LEbm/iMHOqKyZP/5At6ppff4MGLNeWoKTF06JuKMMJr8syZc6Yfjh+Px3H11e82\n+ZiyEVkpNDzyyCMA4JO3OPOUa0UkKduY+ra4bZ5rwOanJqTL02DTHCnjofClRWv7Vn1UXEqnz2Rh\nWLt2be1nz19LWpmIglDHwf3DtqxtfLw22DJFcvav7RrqWkhK+V3P5ie3afYD1tTUj2nOtRMeoZJ+\nXGZLjF5LxDwfeEZJ8vcH1TMIshDw9kX0TSijgm80HysqKvDFF19gwwYvedKGDRuwZ0+BP/8ov4Ng\n0oslJDdXzWvCs0byuhxypsecnBz/e1qYyVKwc+dOlJdX+O3TsyQLEalUyv9MsfkkdHz//ffIy9vm\n92eLbBHXlM7IPEf5OmDL0aLn8tD5Hxz0vWzNrCvE82KeU/yzztUyz3nOYxL5HlD7WY2qMEWZEaiK\nJK8OK+deUS0P5rGLSI9U7RhUrgLlO7C9A/TPIvpC7p+vY0G5YUR0mzgfQOdj0WfOQ+ERfrY8LumU\nzqYiwjpOg4ODg4ODg0NGyEpLA2XtOuCAAwDo3AZeRtrGuOUxt1xaE1nyuLZOW7OUZ6rzziFrU1TJ\nsfYIpQ2yPNC58KgIW74FSqnLM/rZNF9bRkLy5WXqj/TaD/n98MxkPE8BnbbILkecD7P/2+T/tTH2\naQzjxo0DAIwYMSLt2J966ikAkLJv8iyIYt+gCByb5K/v7/9nacccTWGLbrBxSOgzWRVsfCAC7V9T\nU4NkMulr9xs2bMD06f+0ng/n3Mi+VsoEasvDQN+TpYDOpbq6Bm3btvXnNEU/0NwqLy9HIhFHVZVq\nGaR28vPzUV5ert3XNm3aAAB+8YtfoFWrdf6zVFm5RzkHm8XBZi2yWaE4l4EfZ/rOpvGa6irY8Nhj\njynHcosBn3scnBdls5DwlOMNQSjkWcBsazZlqQ1236rXnnORbJZVfq6iH5HhNZlMar/TOlldXa20\nqbdf2xrL9MirGXNLA5fJ+DcAACAASURBVL8O/B2Ubm7Z1qIff2zccOSsFBoeecTzSRYVeQuZizd2\nSIcnnvBCLt96K7N45NGjVwNoesJQc+Guuw7Db37zGwB6EhwTpk07Ff/6178AALNnN4+fduTIVb7Q\nkUwmceONnZXfr7++o0J8BESyp4MOOgiXX/6WIgTOnXuOcvycOWf6Lpa1a9fi/vsbVs/GwWF/RVYK\nDeSH4twEkrJEBjKbtO7/B8Ae2cD9/QRbHgdTPD9B90UJrUj2jQVJjEHcA9sYeTywruHq2rS/hzQW\nm4Cmno/QALgvzpatU/ARvBcDaZOZnK8tiyT3awaB1xBJlxuCEMRlCLKU8Pus+8/NFiC+H7ck2eK1\nKbMewVZlk9on7X727NnaucsgLkMm90tkKVWzhhLPgmeA5IjHY8jPz9csDjR3fvrpJ6X9PXv2oLKy\n0heQKO8IXTP6/ogjjgDgWSiKi7f7nIkgjkPQM2vbL522a7sfBLpvM2fOBAAMGTLEeK0AUTE3HN6t\nfM+5QPx5Ecx+b39uNSSrIHFJ+By0rVnpwPMy8LVV5quZOAU2/gg3SHCOV5CF0GTxicfjVu5Xbm6u\nnz8kXbsc9DsvmsivuTg/9flND/V+8rxDjQWnwjs4ODg4ODhkhKy0NHD2rU16E99zadDbCr+Smqeb\n50oPimHnFgZTLC/XUvQxmmHri7N0KXd6WRlnqJP2DNYOfbZbGEzjCALPzCayx+Uon7n2T1oPl3r5\nPTDdc3stAdKEzBnrCBSN07VrV2Mf5ntk9geb4svlsdgsDEGwZSfkYYakbVO5aKryRyANiTgxQVEd\n27dvBwD06tULAPDxxx8DAHr37g0A+Prrr1FVFdOuEa9DANi1QNrSmOgzz84nX7uioiIjox7QeT+b\nN29GVVWVv19hYSF2797tcxq4dnfooYeioGCFvz+/VkGRM5n6yYPWL9MxfD5lwm0gDlg0Svwnasts\nMRW5DtToFoK+f/pnIMjqpoKe3ZQxAsGWht52nbhF1WYZEDy1ulkabFq6d81Cgeu7yDlijgAkULQM\nrwHEz4OvS6bcH/xzY1saslJoyHYMGPCa/38oFNLy4g8cuMiQ5Ch7ccUV7ygL3JNP9lF+Hzhwkf+A\nN7w4lENDMWJEB7zyilcf5cQTu2D6dLWc8ujRq1Fc7AkVkUgOZs48Tfl96NA3/f8rKiowatQvlN+X\nL++BH37wTN0bN2ZOyGtO3HLLIejc2eNBHHbYYRg27G3FHfXss+cq+8+dew5Wr/a4LWvWrPF5Lg7N\nhyFD3tRcKs0Jb10UL1z+HO2vyEqhgVsC6ispkeAlGLUqw1+Pzyfpzey/tmW8U/usm9/Txqrnx9t8\n08G1HagdtT1uneF92iJOxPdqxkeeh56sRXR+QoFQeSX82pq0FpsmQ4zkoPlBGi2/f3q7mV1LwMRy\n5veFR5GomoEtFz3tz8dcU+O9vLds2eILDADw7rvvYseOHr4lisZDfID8/AJUVlb67RHk6qRr1671\n+znllFPwww+ilgefrzwSIt2159YY6pPzWXibyWQShYWFUsSNGiXFLQ4kyMrVaaurq5W8AalUSrM4\nkOVp586diEajmpYbbOFUP9s4MiZOhD1PAJRzS1cAjqImiPSak1Oi9C+sgWq2RG69EM8FRXSp95Zf\nbwLdj3RWQoKu2ScRi8XYGi9fA7OlL2j9tINbJgL29p9n9Z4F5VXg4FbqIK6TrfaFjTMnt6PPu8zO\nta7IKqHhpJNOAgB8+aWXvU2E7zWs3aAbyieoPjHVFzR/AM49d6rS1zff7DAQEdOPxbY/f6lUVXkF\nr777zit7SgKWdFa1YzR2k0bgEcddcMETyi/e+XCBykzgs7+A019bXagJPif+IibN8qSTpij7bdq0\nCYB4Oa1bV2Ucq5kkqo7f9j0XUG3Qj8tsrtF1r6mpwXvvqWG4u3d/6rutTKbjAQOeUK7rqlU/KS/y\n+++P+ubRSCSCTZvEy4Hm248/PlHbPidCpj9f+Zz5Qs9fNmK/JG64oUgj5tkWXL4w5+Xl4YcfyqVn\nI4T/+q8pVvdJRUUFVq+uMLzI/f+M/Yn90s9pvT29TUJ+/kE46KD9u4quQ3Yjq4QGgUxeJHVvL/jh\nNx9nExYadyw0BvPvWitWoaD+IzPBYzDLLwlaINWFnvfLeSV8y/dL/wIPuibpTzpIoKnfNaubsBAE\nm/AlCwsZjcrn8YgXbGVlpcLbSSQS0u+exqdatFLWZ6Eh58mFA6EJq22nUl4eEK6pB2l1siDkRfiI\n5zddVI5XwTAMqkNgGLmlP/N+dmHB/kzLgpXHGVKtKiYQn4WiQ3RLGgnVNC5VexVCmbdfNKruxwVE\nbvnh9VRE7pnMNF1TVBlBXEOzoGez3AZZcGywre3y8YlEgkV7pBC0NtnyNAiLgWp5Fbkw6F7SOGgM\nqiBtqv3CrX+JhPd5woQJAIBrr73WONZMEUrVlbG1F3DCCZMA6GbLur60bSQ1W4gd3ViKF6fjSYPl\nIXuEp58+S1mwBg163RpaZ9PY+Zi56ZVMumvWTAcAHHOMd+N5whXucuEvZdvvshls1qzT/c+xWAxD\nhrzp70cvLxoXzR4RRqeSq7hpmocKcnIpPSyyBcVm4qf7FYt5Y6KCRjxPwxNPeFpyp06dAHh1D+S+\n05nYbfeLL7jcPSOOh3Ic7U/kXP5SoOso3BI1GDGiA+bPn28dIwD06ePxUIqKivDII1v88YgCZirZ\nkOZTdTUXRlIYNEgk3Zk+fTo2b07gqKOuBmAuW22DvqB739PCR+RZSlDG5xilC9eLuZnJxrzQFYUi\n5ubm4tlnzzXcG29Aa9euxXXXfeCHYPLfOWzz0R4+qz/rQS89Tvb96qv/1sbx298+qJynzWTO6zfw\nuUf3gadcpv3p+SKhQVxvena9rcnNJF+z6dN7+/egpqYGV1zxjvJ7uutByFRo+OKLRwEAv/rVjUr7\nNheK7XebVSkcDmPatFMVgvLw4Us0xUSUCzALDbxYYqZCA90LeU7bhQavb0rgdthhhwEIzmdjQ1Za\nGvgiY1t8CLqWq95wE9Nbbs/2Ahe58+1CC/n/6yp72SRpsWio/l7uh7RnZ0v/UNhg88mHw2Hl+tI1\n4f5R8SLgnAbzOPg9Secj14vWqNuga297sWXCTRFblYkuFg+zMMaP43HYtHATcnOJw+C1Q9kLS0tL\nMX/+B2nPDxBCQE5OTm3bYnGWt5wfIBYlb7w7d+7Ehx/qGeR4hUNxf3XY7wd/AahCOp/TdC1SKdqa\nayrw7KriWqqRHbbcIUVFRX79Cvl7HrUTHBljc1vw2g46bC/Jww8/3HoMj/W3vehEfhNueTCflxAG\nas8qlKvsTwqD0Lpzaz+T9gtl/9pPivWIqkYGw6zJ294NtrwNQQJgfRRSuU3KXinaIWWJuClmVxud\nH48ksnEYuGVCnuNc0ODIpAZNJnB5GhwcHBwcHBwyQlZbGoQmkl6jDJIiOaNf5BJQpULBHla14XQR\nCiRxck09iJfBSVNiDNQ3bc3mbgKPUsiUoJbOOiNHT5BGwP2WZALmkjNppLJGIe8vMleaJXy94p7J\nwqDum6mVpy7+Ti7h69pYUGy6WQMijYNAGga1QxYGuo5t2x6If//3g3y/NY3nnXfeUdpZunQpAC/6\nIZlMaiFrPErFZnVr3749evfu4VsmPv/8c6RSJksDaf+yNq8Sl21mehsb35axk2tftnobPNOkbFkI\nhUKaH5i2e/bsQSKR8LVCunfCN292HejPrnI6xrlsQ+PwpRwcmh5ZKTQ0FOPGHQ9AJ5dQGlsefnbp\npa+mbW/OnDMB1C1damPi4Yd/j08++QQA8OCDXt//8z8/B+AV5bnxxk+atP85c87UFj5K5VtaWoo7\n7/w87fGzZ59hSHutChOEWCyGQYNeb5Rx7yuYObMakYjKs9m+vYf/+3HHqe6E4cOLNRIhzf1oNIrH\nHtuatr8pU3b796ukJIXOnUMYMMC7Xwcc0AaTJ+9q6Ck1OZ5++ixrmviWgMsv93geN95o9ztzc7R9\nXVKFY76OccE4HKat6jrkwhy5xITioApdfDyRSERLIx1MErUpjGYFgNyluqtJHXtdCcwmN4Y8rzw3\nbgicy6C7cdX1j5eTtykh5JbgXCU+htrRGs8h06KEQchKoUEwxTPTmrkmQFnuSJMgoYG0NSp4QwQs\nYUlQta9MciDYfJHCD1p7JtpkVbUUkblR7TORiKOmpkYjzFHNgLZt29ZeH3N4aqYEHxts5DG6hrFY\nDNFoVBuffDlCoZD/0uLt0L2mrHyVlZV+5UW+r+4zDmaYA3rMO2m8Im+H6j+U9+E8F0Hw9EehHSt/\ntmmb3MJACzCB5iz9TvtTO0Tq3LJli3LckiVLkA6nnnoq4vG4lUNC1gJ+3pQp8vjjj1eut2yxMPlZ\nvbagjJ0voLrVSn3p8GeGk345UTkcDiMajVrzq/B14ttvv0VFRYVUpTOq9MtfULaoKxuZzwT9JZa5\nFczBoTmRlUKDg4ODg0N62Fx8NsK4gHqcIEiqAi4nLfP0+UHaPd+fh9F6lob00RB6tAQ/R9WNSEqI\nUCjMpac5Ed1W3EkPBRWuKfl8KGyXYFNUhAuNIk1UV5ld2SCXmbmYozw2/Rz08MyGICuFBu4f5wxv\ngu1hodApusA0qfU4Y9VMRzwC7ru0+d3lfeVJInzw+lhFhjEeVaAdUtt+GDk5OX44IZ0TWU3IJGaz\nitTV0kAx4rZrROdLk//AAw9ENJqrTVSZNxIOh7U01PRwk4Ytb6m+hTwmE0RIWPpUxyKEj0ov8xz8\ndE3kBxDad/K+fLHjY+VzmL7nFgY5qRIgmP+0SPD7wNtp3749Tj31MLz99ttprwHh7bffxrZtPfwY\nf8E1IXeRGrYVDntVM3v27OmfVyqVMvIS6Du+sPFrYedHmCNOaOHnFf9sXImcnChKSkq0suA0xyhz\n5Lp16wB4LrY9e/YYOEzpzfq6RUS99/w4GTZLQyb5GRwcmhNZmaehZ8+xAOzFmAh2Epr6u3jYve34\n8R7ngRbOoqIiYzu2sEXTCy1d2tchQ94ELUC2OGMbqL3yci+177ffPg4A+MUvbgAgXh4NERpmzBA5\n1TlJzBamxl96ND4CXVNauOk8q6urlRzz3J9qSo8aJDTU1HiCSJcuXQDo8ceU1ITKO3MzOuVtMAkN\nHLYwNT5WXnAoSGgQpD6z0EBCGp9flZWVuOKKVhkLDYBXW8ImNHAN5ssvvVTFXboMUsaZzscbJDTw\neH/KM0BzRk8bnV5ooJBo8g/TusFJxNQeXXMinZIgy+d+UCw/J+jytaA+7gl+raictzynKXPuZ5+1\nrMy5xxzTTulrb2TOLSg4BEDTZM49+mi1WFxLy5y7bdtKyzmmR1ZaGvhCVle5xv6SUavjEaeBFi0O\nm7lH1iT4Qsgz93nx3/biK0HcAu63pYlBC2RQtkpblIYMWVPnDx9/AfBJT0IBvdSoP25uIw5GeXk5\nYrEa7aHiiWdM95D3zUlBNpCGyXMViBe4mhfABJv5lP+eqYWBrjkn69EYbIx7nsM+HA5rfJFMwMnB\nPCGPLY6cC03ysyByUNSwffm9Re3Y1TnLz43a4xEnBCG4qQlyKGGVbW5xS4C4B8HRUl67tvVFFSQz\n4Q3xsdCxJCw0Jo466oC0v69atbNR+5OFhP0BRx99oCKYyjVcGgOHH16cts7Ht9/uHYJyVgoNDg4O\nDg5m/POf/wQA/Pu/exY0nkWUwIWWmTP/09geCSpDhrwBQBcIgwilnNlP+z3zzNl+H6biZQMGvGZV\nHriLyia0k/BNigF9/8MPXhbYHj2GARBCLycYB225siRb4uTMuTzT6pYtW3DLLZ9qyhdXEvg1FG4/\nNXQ9Eolg3LjjtXstK0xXXvlPZawEapOUpp07GyYcZqXQoFf4Ui+wSVuWf7dvvf1s1exs7o10HAf9\n5usV+ZLJZCCz2qaVUPui6iF/gEk7DjLvUb/cxKj6T215CGxx/bZYegJNVOKZlJWV1dYGSH+P5HY4\n54BrgkGWqFtuuQUAMGPGDOM5ZVopVB6f/r3qV7dZGMgUznML8OOCOCi0fzQaRZs2bXDeeecBAF5+\n+eW04z/33HOxdm2pb2UjmCxk3ta75hQtw+exbKWiNrg/nng8tloS1IZITU7PktnCoD9D9Kyld/3Z\n5qotq6rdVEzt1fbOOEw2Mp0anWO2Pmaht9jBQUFWCg1Njbvu+gIAkJf3LQBg3rw/N6i9gQMX1SmR\nS7bhqqve9f+nhVAW3GbPPqNB7Q8cuMh/IWQDwevhhz1/J6/L0FLxwAPr/XlXUtJDy9uwfLnI6bB2\nbeleHZtDUyI954Jvg9xYnMcUVFXUplDYvgfsfA9OFNfDWGlP9XfOGeKwuQN1Jc18LYPAr4VMEM/N\nzdWUMFu5eJ4m2pSMraCgQLMwyLkX7MKqecz1RVaultwPzzM48gmi1yYw+wl5nQDud+db8sMTYYr6\nl29UJBJBIpEwEODUyA9bXLzu/zSTWXRfFic/ma+Nrrmq3+sPG+dvpBCLxawRCnq9AM6+95Ke2KM2\nOMFH78NmMhS+ce+a//ijXjNBBj8Hfs/qVnxJJTyRVsyjSwjEo+EPPV9UOGyJeOi68XbatWuHk0/u\npmWM7NixIwBoEQXk/6frLixaqjZusyTJ46Z9eJSEiFpRn0t+TvSc0TXikSME/R6YLQw2Ymbwomm+\n13oUVXprYToeTDAHqfHRv//CtL9TEju6bwMHLspof5spf2/jmmva+nPhkUci/neANwfGj9+2V8cz\nefKf/GvJEwvG43FcfvlbaY9/8MHf+uTg/Px8XHXV0oyIyE2NrBQaHBwcHBzSQ2fSp3dpBYFHFdmI\n6DZBMt0LzabM8M9cZtItDKShq2H0qVQK1dXVWli9zHWIx+P+7xSlxC9RkAVCFgCTyaT2oqZr0rp1\nawC6oEwuPHLT8mq5svu5devWClFZZJ00X+MgF3hjISuFBnHSalU7Xj6ZQJqmsDioDG8uAfPyvhxU\nQnTHjh1KO6a8/aFQCLFY3GdmkxmeJifXcmxkItGecUhpQnS0PZV2bH5bmx+ZJOFkUpzjjh07/IeQ\nuxdIEqYQPv7QUe0KET6r3hvddKaOW/6fb3kSmiBJm3gV3OTJrQbyOAj6nDSHjNo4DLwd0Q9ZZNTf\nbVq2CJuiaAdVCy4sLES3bt3Qu3dvAJ6F49tvq63RG9zCoFsUzNc2XYSArXIpn2viGqhzwlbnw2Zh\nCKqzYbMAZIqghD8cfF4R0s3putZRcXBoLmSl0NDUmDr1ZACC3MVBdd65v8wswTePKW5vYsSID63S\nK0/VHQqF8PTTZyn7PPPM2QoR8i9/ea+ph5wWt97q5XOgl9qDD25ozuE0OkaPXu2b+lsix8ZBzzWS\nGUiYos9mNy0HrWdyeXUZdS0tb9qfRznE43HL3FQFeFLGeB4cnoIc8Fxz3D1IGn9NTQ0ikSotsZhQ\nIEmR4O5h1VXuf5tShVUbz4Pna6Hn0ktbLgjhlBlSFrSLi4uVz7KlwQQ9fFc9h8ayQGSl0GAzrwnN\nA7VbmpxmTYRfHNr/gAMOMP5OpiOuEdmiKGTwdKEEUU/du6G5uem1HkEAUn8PiobQJ7kKrtHU1KiW\nBj4eMosFaXk8UQ+Rf2g/enhIQCsoKFAIQplEkeghXvV7Ed50000AgKeeegqAXvNAXut0M6l63rZa\nEgSeC4IefmGJ8hYvmg8iR4B6vW2faRuPU0ZJldQpeAJVymdupeGcFL7Q2GCKnqAFkX6T/bFynzZu\niV44SSXk2cbAr40eWaQi2Gxv+918TYKitkz92lwKe9PSMG3aqQDsQgEJ//x61ZezcNllr/rrYLrc\nNfUFEZwBYMMGb46NG+cRf21zqCEYMuRNJfKKOB6ZYuzYnv6zQM8K5Qzi6wkAzJp1usIZu+yy9IUW\nmwpZKTQ4ODg4OKQHd2kEZZvln6lSLde6aUsvLiLP2kqUE7jwIYfxbtu2DTU1NVpoL89bQEoWcRa4\n5k41G4LqbtBY27RpU/s9asesulkFp4Ans1Nfjfq5kgIpXuLyWGykXzpPEqRlZQqQicg6oVxux+TO\nsmUo5fe9R48eaAiyWmjQ4+nT5wrQfdvmSAT6nfuNecbAujCcxWSgaoTepa2qoloL3pbnW9DPxfss\nkpyYLQw8nbMtekLnMlCiDzV1Ln94bf5iPl6eATEajRrNdvQw5uXlGTUb3U+dkn5TrTicV1BXfzAt\nliTd2xZB87hULZgWMW5GJaIVz6shFqtYbTuk+ZMlysy34bwafv/JvKlH64RYv3GlHfFM6ebX2v+U\n/uj7WEytTgro1Wnz89VrJUo5q7wYm/XG9nwHhTeLdSCIEGheH2zQOTBqhsvg4/XoCf68N0UmSAeH\nxkRWCw31xdy55wCwuzmawlTlkDmef/58TQqWTdcDBrzWbGNzqDuuu649AFEIKhwOY+bM6nSHBGLg\nwKjCRJ84cUfDBrkPgsf224RqDpJdKKScC/a05fVOSGvnoeoE7kqTMw+uXr0alZWVmvBrK3SXk1Og\nfNZdRuklNVN4vAcqe25WemzaOXet8bwMubm5iMViWjp9cV7e+ZL7QS04qJPzbRYUOYw5kUgqbh6b\nq7uxoymyUmiwmdl4LLzNZ0gPA90gW0lX7kfk+fh5IhLTRefWEP6Zl2wlDS0SyVf2D/bbmr+3Qc9p\n4O1fXa2mW+W1B/RIAt4PnZ8aA88fTpt/l19z0lTpnlVVVaG6ulo5P/E/187UxfKwww4zXwyGa6+9\nFoDgNphgs7SIhdU7X5qTdH9Fmlcesx4yHsctCsJiQ3kezPfZtvjauA/8POi+6+O0mbZpfN6iSfct\nFov5lpsPP/zQ33/nzh6+VY1HnthyVMhpbj/6SOTcOOGEExCPx60hZUEcKEJQLhTbi8lmbeLXLF14\nHgf/rjkUmTvv/Lz2P7NlZvz4PzaofUprDIjIpbpg8uQTNXM9IYg/0rfvVAB23gYPyaSIOXr+iouL\ncd11H9RpvIMHL1b6qSvHgcPEWTBFeu1tZKXQ4ODg4OCQHkRmFkoRKSDmwlz2fAqo3V99EdGLlGvJ\nQfkZeBVRQE9uxkmvJMSKjI1hJdW5TVDMFEGaP23lRGPhcNi3LNCWOBckAJOQQcKCnNQtHA5r7kye\n9I1gs4bbFGhuVUp3ziIBXeMIplkpNJjqNwDBWjBdeDKLcWY4tUcMdp6BTmjd5qIiJgTlEOCseZJs\nedw8NyWJOUTtmjV+Ap9UNg1WJDfxrg1ptGJ/1V3AtXzOxeCM9UQigcrKSv98iTfAy4/zLIB0Xaqr\nq5FMJi2WhtqRaEzz+knd/fv3BwA89tjD2m98ceK5B2j8oqxyjrLVtWAo7dBnui86W1o93p4xMn3e\nDzqOp9GVF2d5PHo0Do1TtTDIVoFly8yZOMmqRVvy169evVoZA10zubptnz5HYvHixX5fXv0Wday2\nTIS6Fkr78xdOestCphE+tvUhk+iJhkYEOTjsbWSl0NBQXH/9RwDEQvzcc+cpvw8a9DoA3cy4t9Jw\n7usYNuxtyXxO5nzxcnv22XOV/YcPX6KxmPcm7rijmz82Ar0cefhgcXExRo78Zi+PsOXhuON+xB/+\n8AcA4rm67TYv98D48eMBAG3beil+havEmyMlJSVaezLHIRQKYebMqiYcfcsAubhI+yX3QhBBPF1W\nQRk2rZi7a7j7l54dUgRMx/BkcZxXEQqlFKGLrwtcE+eKJucA2JLq2fIr0Gc6ntKtC/Krdzx3S8qE\n8lAopCmsQQKuHPZvKuzHzz+dciXI8XStGkcwzUqhgbQ3HkdP4L7QoIeAa7WCX0ATSq0kSdCTO4WV\n/dUxmKtN8geWHnA+ifgDL45H7f5ca1Lb18126jXg1hqRMla1FPDzshEWbRwFYcaja0tMebLiRDRL\ngtyfSWMOCiFrqKBxwQUXZLzvggULkEwm/TkkrqdaFVJE4Ji1Y5rbZGKm9uh72xzXOQvmxYfA76Ne\nA8XMFxGWL2/Ln4VMBGwyL48YMUL5/rrrrlM+z507F4DIn3LIIYcAAI488kgAwNdffw1AvISi0ShC\noWprvRObJYqvqfXNN2CzLATlczH1R3M3G6MmbrnlUwDi+j7//PkNam/48GKfAMgtX127dsU996xK\ne/ywYW/7/9vWAtp++63Hs6FEfUECEgDMmHFa2v5vvLGTlvGX7t9vf/sb3HbbZ2mPD0L//gsDo9ay\nAVkpNDg4ODg4pIcQ4FQtmUO8MLmSxX83v1C5ay4oFJ3cwzyJl3wczxBp2kduMx6PI5lMBloYCNwV\nzYuXmRTNVCql9S84DTXYuXOnpsjS+CkPRUFBYW17KaW9IBdrLBZDMpm0WkzE4ebPpmvg79FIyhUh\nK4UGYsFv2rQJgJ5DgGsUpjKiMshcVl5eDkBO6KGaa7i7whYPnkiI9smCl5Nj9lHqVhIzA9v+4HJt\nBco52ycllO+DzHuRCNeOyKymciF4DgsefmWTlMknHol45CK5OA49sOpxuv/Xdq57s9z22WefjSee\nmOv75YPMnIKbwKuSeqC8DOL6qvNCWJbMlga7H1+1/BBsLHQObtEiqwFpijQP8vPzcemlnhvimWee\nAeBFOwCiHkkQaGHftWsXAGD79u0AhPbdpYuX9vuHH36oHZNXNVU872pOCn5ujRVyZjueW11seSXk\n44OiphwcshVZKTRQ3vV58+YBUNOD1gdDh74JwJGNsgUDBrym+QwbgptuOggA0L9/ffL11x2vvHKJ\n75dPJpN44onyvdJvtuKBB9YDADZu9DLNfffdHgwdWpDuEAeG+tSaIOVKzo8B2F1iQVtYQi9t/n4b\n+ZsX+qN9ksmkpvmTQNi9e3cUFq5Xxh6JRKzRA1w545km6ThySfPoBc61CofDSCQS/rnk5ub69R68\n9lK19StUqwuhtLQUNTU1/ngikbBiabBZZ2SLiMmSEiT4pnPj6mTbfdjS4ODg4OCQHiRoLFmyBAAC\nOQF7G7LgyF+ytWOlnAAAH/JJREFUADB1ahny89cCAFq12oFJk07wQx/D4TAGD17sW7wai8SXDsOH\nL1FetE88cQq++OILAMCqVaswc2Y1IhGR3Omaa9oqx193Xfs6W9n2Jm68sRMAYODAhilXWS008FLG\n3D1h25LErIdu8mRN1JNqGufEKpurwfvNXLpY+MLUqADuauHgpEsh9atSfibhoDK4G4HGZ6sHzyV5\nWzEhmyTMQ0i5q4dfYz4+VYI2hwHSPqRp7Q1MneoljSGNyXa97K40Ok91rhH062h2Y3HwGHvSvOja\n0CJmJzCm1zJtCZnklwFpjdXV1SgqKjK+KEwYPHgwAOHe2LzZsyz27dsXALBs2TIAwC233OIf89Zb\nc/Hjj16oJ2fxC7+1SvYMclMEPUtByaEyZfTLaAwCJM9SSGRcPvf4uIOImkHcBb4lqyElaqP7JuOM\nM84A4FlJiou/8d1ekUgErVu3VuaM54aiT+r6R+sqwZaCnBMuubvXTmoNIxqNols3L7Jq69atyM3d\nrqybspWUXGtkZSFSb1DBPxp3ZWUlEolEGk6DeX2VOQ12krz3mVtj6gsXY+jg4ODg4OCQEbLa0kAa\nyOTJjwEw+dTMWr7d72MmC+r70e+qxG4SSkXed1Vy5IWhqG2KSQ8O9zKHifGx2vxYHDy3ua0kNici\n8rhkm8arZ5+DcX9RGpeHDqqaq6w5cOmaW3NuuOFG4zk3BWpqajBlym5fg2/Xrh2A4OshfKFUcErd\nP8jyZLPIJJNJPPDAb3ySL5GHX3rJC0879FBg+fIeVmucINaqFiz9fFTLh2m+UchyPJ5AYWGhRsK0\n4aGHHgIgruXNN9+s/H7DDTdox6TjAIwfPx5Tp5ZJ/muzL55g8wFz2I7T/esqafhnPzuqTuOvK0jL\nDbKUiHtHn9MTO/k2aA3gCc9kkIXhmGOOAQB07twZBQXrlGsej8eVUEaZYwDwe2NeE0pLvVLY/B6I\nZGbe/jKXwfte54Hk5OT4c/KXv/wlWrX61L/WpaWleOutj7XzpPPLlOhu5zCAfU4Z95Nhey9Sl5k+\nj0HIaqHBwcHBwaF5MGvW6QDsSZ7qikmTdqK42Kt3kZf3rfb75Ze/5f9fn0iXq68+AIsXLwcAvPee\nR4AkXsVBBx2Ehx7aVKf2Bg163ReWq6r2aL8vX66WmD7uOHNm1EwxfvwffeE/Fovhjjs+DziiedAi\nhAaKhdXDzmxsUNU/m+n8Ezm6SctVJWtqT/Yfi2RHnMugJjniudXFQ5Heb9hQ0Fh5UiGevpksANGo\nCIWUYZOYM5GA5XGIMtfe97oGTP2Jz3SMyIAXV86hKUFFrWwZKzmznPv+7VqtOQRTT0Ck9kP3SaRo\nrsZXX32FV1/Vi9vIoNToXOvmFgY+TvE5/f2V2wiFvPblstkmvPHGGwCAnj17AhD+4CeffBKAsDTW\nFddddx3efHOu9v3atR7pzpYMKgg8fT3dCwonPizDgmmNja1bt9aOx/sclHjLljOAa/VB0RI20DPQ\nu3dv/7sjjjgCRUUrpQR6tG6YNWkCH4NYb73fZQ6OiUNDvIpLL73UOG5xLfRQb69db0vrNx8v51Px\nsH5eLsDGFSJuB7VLkRrE5+IWR16qnl8L+Vxo/bz66qu1868PHKfBwcHBwcHBISO0CEvDihW3AxDM\ndYqLt9VkJwQxVoWWyBnwZu2QNAvSeOW2aNu9e3ejv/LFF18E4PnGrrrqXQh+Rd24CXxMBF2jNR8X\niURw332/wooVKwCICJU777wVADBhwgRMmbJb05yDU/V64NeDJ7HhPnUbW18GL1w2eLAnvV911fXm\nk2xE9O/fH+ecMxfr129SxkCwaUh8TnLNgJ9mUOw8n3tkIdq6dSteffVDBCEvL7e2XXMMP0emli75\neNnaFI/HceWVVxqPIUtCnz59lL42bNgAQFxjKli1Zs0aALC2Z0JdOQPnnCMSdtkyK8rP6NVXH9Bo\nmltDQaXe58yxcb/Urc2qZ3sWbdo/gfvv27RpA0B9Vtq0aZM2mkaPbDFbMnmUBI09JydHK4oHCGtH\nfn6+Xw/CdE78ubSVKMjPz6sdh9cXtzTYsmDaLLTUD1kaRHr5GkSjOdq7h0dTpeurqVJStwihwcHB\nwcGhcTFt2qkAhGIQFA5eV4wZs87/v7Cw6cOiH3poEzZt8ngGu3d7dTOmTPHCPwsKfmjy/pcv7+Er\nFzNnvomZM9PXsgjC1KknKwWsgP/f3vkHV1Vde/ybm+QCSQhEMyQBAqRx1FE7oBT1dawNOjLQQuqz\nzqhpQJBEE8rP1iid4kBbZWh98kRq6g8GBVGC4gMFC6+0HQadPtvXqaAw05lCrfIEZmwJ5Afh/sz7\n42Sdfc4+5+SeJPcmN8n3M5O5ueees/c+N/ve7LX2Wt+l0iaj0Wifa130lkG1aHj44YcBAPv3G/uV\nXpaBrKymTJnSo/Y//9yY5F5RwT1tDwAaGxsBAF/5ylcsY1NWnFeUrY4zPzcR9hW7de995MiRKCkx\nVBT1ioJLly7Fb37j3A8WxOrTrRlBVtpe+7vyN9P39Jx6Bep3ef9LSw0dgLq6/lF+tKL/ndRxe466\nitJ2X+07C5XpBc8M9ChxvX+xqoqKijBv3vXYt2+f67hnzpyJkyfbLNoF0r79PD3v2yuKW3Cbp1Yv\nk15TAAA2bTIs4dGjRwNQ+78yFyVSXeaQ5LrLealGn7MiW+0W7+F2fwNNJCIVF7Ntx730GnTLX/4h\neRWlk/NFSlzP5JHn4mlQ2gj+Zc8V7rFSTqvZ7j0pLi4GALS2BrvGbI/lEfRYL+f3q9f3sngcRnb1\nZ8xdCZRU5xtjSqQJor/XMk6JhZD3UJ6rYouGFL+1eS/dkGTL7DOmgRBCCCG+GFSeBkHfr6ys3Nnt\n6z0lme2J9aJy2I0a6YlyxXW8tCac2Rf+XBFi1bmtQnuzH9yX61PdXjLQlSwLCwu7jvurtqdfr8eI\nKIvee8/Sep5cn5OTg7KyMjMP/sCBA7bzr7zySgSDYTNuR1AeB/d55T3fvJG5NGXKFNTXO/9mYjVJ\nQapDh4yaMFdfbegYiPUmnxWx5ntSury3pMMc6yuiyCnvr7LO5bvFbtW3trYCcFq7XtoBMufEA5Sf\nn297XeaySEFbrXuv7JxEOgXqfPeYBr1d9bkSz6pXDJaeLeE3xsp+r5KOqgryKQ+sV2yM9T5kjuvb\nD16ePf19sw7Py4vjppvRFwblooEQQkjf+P73PwDgvUWgP3/uuX/rn4ENU+rqjnimNicSHutPuGhI\nMRIRLqvy/Px8xGJxU5HMr967F1571M7XjRMikQguXLhg6vbX1dX1qL/hisSkSEyHde8SUFa2XpNC\n0D0MzhgG971ap6Vvt8QCgQCCwaC5jyzceqtRrnrcuHEYMeK8RbMkUdZNz7ImrJaf373ThoYGX+eR\n3qFXkky0GEhUk0MQ3Q3xGElcjR6vIB4jqbPihq6Jozxy8jnQY7L0FmQ+w/aoe02ERFlO6p+yu3aH\n1+dEPBnicZBH8TToXhhBV7Xt6OhAPB7rpuaE2bPr+K2/67VA5LsrWTCmgRBCCCG+GBKehmTvRyaz\nvdraWtvz/fv3IxS6jMxMIy/XK2+4pxXn9Of6+VLh8/Llyzhz5kxSPQzp/P4nA7cYGt3jIJaTWA7i\nUdDT2JyVF/2NwVsJrhOPP37U3Bu9dOkmAMDf/26c8N57J7uirHumA+KFHkUeiUTw1FM3AABOnDgB\nAFi61P5+bd68GYCh1EhSz/jx4wEopUjd6+XlWfDSFJBHXU5aj9MR5DzxbnWHrkOgexi8aqI4vx+N\nR4kt0D0ZXvUzxBsiHgP9vfGqVuul7GjNnrJ6Grz0aiR+JxaLdWVbyB3p2xSJsk0U0keqMnyGxKKB\nEEKGO/ri9tZbNyW1/VWr/heA+gfb1PSdpLY/3Jg//9eeolXJYOlSI9i9tja5RhgXDf3M3Llz8dJL\nO81qbH6rXvr1KOiWoEzK9nYj1720tBQLF6aXJT8YEc0OpTuhRzW7Wyi6xeClEOd1nt6OXmVVrzHi\n1L/ofn87EWq8Rn/hcNi0aEWZUCcdgreGIxKDILoKTmvZSwnSflxHb0f3ginvmpp7Ml9UtVax7LNs\nx9X53Qdn6p6C7GzjuWQfAN171PSsDVEB1mOP9P6dGRHiaXD/vOmfby8NDMluysiQGA/730K9H941\nYKxxawBQW+v+eewrjGkghBBCiC/oaRgA3n33Afzyl78EAEybdh1Wrz5mU08D/FtnXpaoHL906RLW\nrCnHvHkPJ2XsxO4GfuaZZwCoPc1wOIxXXgmZNSLicbGk3NvyqwvvVUclEjH60Wt9WKO4jfO7V6bz\nVsZD1/jtNUOkymY4HEZzc3O3Y1++fHm3r5PUIN6wL774AoA1q8EeX+OlTeBlpeuVXfXzlLWuJn0k\nIha03aOWleXugdMtc1VlttN2nTLsxYNhH1MwOMJ2j/rnQM8u0zMP5HPt5QmR68VTYD3P+r7IfUhm\nSywWc/3sO704ujKmd7aTjDnVaqX0NBBCCCHEF/Q0DBCy/7tlyxa0tbWZevyqRoDd8tNjFRLt1clq\n06hNMC/5N0AAAD/84Q8B2D0OgUDYodeQkdH9R81LvCWRh0GixfWYCC81OtWP2UO349IVR8Nh475k\nfk2ZMmVAaoEQ/8hclEj9RLEM+ldLomqZXrENbla3eODk86D0Q9D16K4UKYj3Qld6lHmsexpED0fP\nQvDKyhC8Y4ngOi4v3R1B4gykqnA4HLZVxEzk5VF/G/fvA2sfvamR1BPoaSCEEEKIL+hpGGBqampQ\nUwO88sorAIDy8nL86Ecfm9G4zghm96hi657ZE09chblz56Z24MSGeByeffZZ1NTkmn+fUaNGoLGx\n2VEZUPccedV+sFaOtB73Uo7T88oFNY/sWTWi36G0+mV85kgA2DXyGxomornZaN+txgRJL0QR8OzZ\nswCs3i93a133ZiaKfRC6ey7zSuaxWMUyFj2WwCsbKLFeg7tH1lnF1XZZwnZ1nQel/5Dper2Orhjb\n0dGBWCzWTRZc9xks+vsFqAqfqYaLBkIIGYLoug0zZmzs1/5ff10ZLq2traip+V2/9t/fbN16l0Na\nuz/pL1E8LhrShEWLFgEAGhsb0draaq7A9XxhWeHK3pi+4iwtLaWXYQBZuXIlAJjZMS0tLYhGo2hr\nM3Qy5O+q/329KtSJRSSGiFeWjJ4jr9e20NFrZ6j8dnnduF7mm+T8d3Z2oqWlBfX19d22T9KPkpIS\nAKoKpj73/D4K8p2jxzS4/cMcOXIkMjMzzT7F4pY29LFYlRXd+vby0OnzWo2t6+xOd4+Bqh5rvwf9\nXmS8cn12tvI0BINBx3uhewDlvqLRKAKBgGeVT8CeDaU/yvkdHanNlHCDMQ2EEEII8QU9DWnGkiVL\nsGSJ9+sVFfsAAIcPr+qnEZHeINkxmzdvRn39qG7rLlRW7jSVJZUHwh5dLuia+rr8rNqvdu9Lj4UR\nC0ja6ejowKJFI/Hoo48CACoq/gsAcPjw457jJ4MLPbNHr7yqW+ky5zo77XE1Fy9eBADk5eUBcCpP\nWgkGgwgEAmafXpoCkuGhW+petXl6WkNF99yq9uXejH4kpkyyFWS88qgrrkqtCa8YC7kvea8Mr0uW\nqQCpexC8skfk4ytZU6WlE3t0/8mAiwZCCBkGyJ73rl27AACNjd2LcpH0pqFhIu67775+75eLBkJS\niN/Kjk5NfffYBbGE9D1Qfc/US8HOq1+xoMrLy/Hoo8yIGMrIP5pNm4zqo7o6o6gOKuvbPWOno6Oj\n6zq7x0JVuVRzUK6Rc3SPmhxXHgbjOsnuEX0HiWXQYw/0fvTnymK3X6+e61lpxqPE+iiFyGzXe9Y9\nDfrnVs7Lyckxr8/KyjRrTHjFNujjl3GMHz9+QBYMAGMaCCGEEOITehoISSN0ZTx1XFkcK1cW4fz5\n8wCM/ent2yMOy8cLfc81FovhqaduwNGjRwEAq1bRyzBckIwYrywKZf3a6yyIdS/78+LdsiocAsrj\nINdY555Y7CNGiCWuZykYbYXDka4xxGxj9cqa0GtLyHOnBW9XTtWzJXTLXo4Hg3ZPg1UXwnqPSrnV\nrthq9cZYz1e6DO6eBhlHKkpo9xQuGgghhPQY0V1wCokZz998899tx5uavmNLGV+06FA/jDJ1bNs2\n21wYuS3W77//XXM7UfCSix9McNFASBogqn2fffYZAJh7nbrlEovF0N7ebn75jhkzBllZFyyxDPLl\n5V49UPc0RCIRnD9/HqtWMRtnuDFp0iQAwJkzhlKkl8aAzCXdGvfSGJG5KlkagDMrwtBtCJiWu25R\nK2XImO06vS+lzBiwna/rm8jnQv6J69lHun6Kql2R5fl6dna2Y1zW2j/xeMym2Gh9z7zEn7xqYMg4\nRWtjIGFMAyGEEEJ8QU8DIWmErjjnZlk9//x501LJzQ0iJyfXrLKnsi7QdR1s7ej9hEIhfPnllym6\nGzIYGD/esF7PnTsHwPACAN71GBJpI8ick+wK6zXiccjKykJGRoYjhsDZl3slTS+LXLUD2/nK82a/\nXsUKGNdJFoWeCSLPrd4Va0yCtCNKvRcvXkQ4HHbcl/4eiSfQK2vCqp+SLnDRQAghwxC9VsHNN/9n\nv/a/c2eluYURDofx0EPpHePw8st3mMGfsk3Rn/zgByWorh74QGUuGghJI8rLy23PT548CQC46qqr\nbMdPn/4/AMCIEUG4oVssOvJlPWXKFNTVDfwXERl4pEriP//5TwDKyu6p6qJYz1brWOah/LNV2hCq\nymUgEHBY9KLTIJa4V5aQrpyox2Gocdhfd+qiuNeeCAQCyMnJccRxSHaE1cMAGJkp1ngGPU5ED5DU\nPSXiYRDFzIkTJ6bFggEYJjEN7733Hm677TaMHTsWxcXFqKmpQWtrq/n6Y489htLSUuTn52Py5MlY\nv379AI6WpAOhUAgPPfQQ8vPzUVxcjI0b+7dCICGEpCPDwtNw8eJFrFmzBrfffjtCoRCqqqrQ0NCA\nF154AQCwePFirF27Frm5ufjiiy8wa9YsXHvttbjnnnsGeORkoFi3bh3+9re/4bPPPsO5c+cwc+ZM\nXHfddZg9e3bS++ppSdvKyp0ORTw9P11HLKNwOIwNG6bik08+AQDU16eH9ULSBzGo8vPzAcCRmeOs\nxKrvw9s1CgCnZS5xE2K5x+NxW4yD9CltynViiXtlIaiYB3u/gq74qHs8vKpcBgIBZGdnm+2Jp048\nDKJ5IZ6BaDSKzs5Om46D23ulj0/uT5Qo0yFbQiftFg1PP/00PvzwQ7z99tvmseXLlyMjIwObNm3q\nVZtVVVXm7zk5OaitrcXatWvNY9dcc43t/EAgYLqFyeDj1KlTmDFjBn7729/ipptuwpkzZzB16lS8\n9dZbqKio8NXGtm3b8Oqrr6KgoAAFBQWora3Fq6++mpJFAyHpgCxeN2825KWbmvrW3rJlfzB/F7e/\npFgGAgHs2nW37fzXXvuWLaDwkUcO920AfWTr1rvMLRpZxFhZsOCAI3VTHp3bJT3niSeuwty5c/vc\nTrJJu0VDdXU11q1bhwsXLmDs2LGIRqNoamrCgQMHsGTJErzxxhuu102aNAkff/yxrz6OHDmC66+/\n3nZsw4YNePLJJ9He3o6ysjLbQiOdmDZt2kAPIe0pLy/Hz3/+c1RXV+PPf/4zFi1ahAcffBAVFRW+\n5lBzczPOnj2LqVOnmq9NnToVe/fu7a9bSEgi5Uc9lsEahX369GnU19f76ofzbfgh9VJeesnYplUe\nB+P1jAzlHQC8PQ5WK1p+lWsCgYAZxyDPATWvc3NzkZmZaVOVtF6v2u1ZZoeOsxaGilnIyspyfM6s\nMQyxWMyySHBXqNTxqk0h3hnxMBQVFaXlggFIw0VDSUkJbr/9drz11luora3FwYMHUVhYiOnTp2P6\n9OlobGzsU/uHDh3Ctm3b8Mc//tF2fPXq1Xj88cdx9OhR7N27F2PGjOlTP6ni2WefHeghDApqa2ux\nb98+3HLLLcjIyMC7774LAGhsbEw4h9ra2gDANgfGjBlji4MZLnC+EUKspGUg5IMPPogdO3YAAHbs\n2IH58+f7vvb9999HXl4e8vLyHN6EDz/8EFVVVdi9ezeuvvpqx7UZGRm48cYbMWrUKNv2BRmc1NbW\n4vjx41i2bJmZH+4HSatqaWkxj7W0tGD06NFJH2NvCQQCZp648aOsOTdCoTBCoTAmTJiABx5gHANJ\nTFlZGcrKynDx4kVTdyAcDiMajXX9RG0/VssbgGVuqp/OTnT9dCIajZrH9fmclZVlZlNkZmYiOzuI\n7OxgV3XILPM8obOz0/ZjxBA4+xdUu9mmsqO1/0AgYOsnEokgEomY74F+j4GA/Eg78iP9dgJQ44vH\n44jH4+Z7GQpdRih0GePGjcO4ceNS/8ftA2nnaQCAu+++G/X19Th+/Dj279+PX/ziFwCAuro6czGh\nM3nyZJw4cQLf+MY3TEvRykcffYTKykps3boVd955Z7f9R6NRnDp1qu83QgaMtrY2rFy5EosXL8a6\ndevw3e9+F1dccYWvOVRQUICSkhIcO3YMd911FwDg2LFjjkUoIUMZiXGQWLJdu5Lb/ve+t9/mpn/j\njXm2160xDq2trairO5LcAWhs2XJnwhgG2YbQUyaTwdq1V2POnDlJbzfZpKWnYeTIkbj33ntRVVWF\nm2++2dRIf+GFF9DW1ub6c+LECc/2jh8/jtmzZ2Pz5s2YN88+MePxOF588UU0Nzejs7MTf/rTn/D8\n888nXFiQ9GbFihX42te+hi1btuDb3/426urqAPifQwsWLMCTTz6J5uZm/PWvf8XLL7+MhQsXDtDd\nOBGLxguxcMT6u3y5A5cvp4+qHBk8rFixAitWrEBhYSEKCwvNuRSJRBGJRE2rWXDzMHh5BqxYX5c2\nxSOQl5eHrKxM09OgewZ0T4N43vT+pT29nUAggGAw6DguHgajloS6R3ld2tPbNcaaaXocxMMi9yXt\nXrrUjkuX2jFu3LhBsWAA0nTRABhbFJ988kmPtia8eOaZZ/Dll19i8eLFrlsXe/bsQXl5OUaPHo3q\n6mosW7bMDAYig4933nkHBw8exK9+9SsAwMaNG/GXv/wFr7/+uu82fvKTn6C8vByTJ0/GN7/5TTQ0\nNDBzghAy7MnoTNManZ9//jmuvfZanDt3zozeJYQY/OEPRjpbQUEBALdqf4ZVdObMGQDArFmz+nuI\nZIhRWbnT9vzsWaM6psQLiUtfZSB05wmD7VwgA01NlaaKpOgdiPchOzsbCxf+t6Nmg/z7kjgD0U04\ndeolAMD06Y9p/epZFkoR8rXXvmVmUVhLeAOGLkN9/RGHPoRe3VLGp1fTlKwLUbgUr5940YGe67UM\nFGkZ0xCPx7Fx40bcf//9XDAQQkgaoP9TmzEjtSqpNTW/63UqZW+YP//XNrnn1177Vkr7W7asEIsX\nD46FgpW0WzS0t7ejqKgIkydPxsGDBwd6OISkJV//+td9nXfDDTekeCSEkOFE2i0acnNzXbMfCCGE\npA8icSwltfViU1b0Uu1OISjYZJeNstKdiMejtjadBaiM6yXLQmU3oOu5e8ltfVxuYkuhUMjcLpEy\n117Bx/r1goxHtieKiorM1wajlwFI40BIQgghhKQXaRsISQghZPAwffp/ADC8xYBd68DLQyAWurVE\nNqA8B+GwFL3qdLQJKAtePALiWTh58kUAwI03Pmrr3yk7LfLV9gBir1oSSm5aSnzbPQxyXiQS7RqX\nUciquLh40AQ6JoKeBkIIGWbMmTPHTD/Py8tDMBjEV7/61YEeFhkEpF1MAyGEkNRy4MAB2/OKigrc\ncccdfWpzwoQJAIBPP/0UAGyy65KW6eVxsBaysj6KZR+P2y1+edRTMyX2wav0tFNQCq7tOgtjqawK\n41E8Euh6tKdWtrcbHobS0okYatDTQAghg4xdu3bZPAUjRozwXfZd5x//+Afef/99LFiwILmDHEBy\ncycgN3fCQA9jSMKYBkIIGcS0tLTglltuwcqVK9Hc3IwNGzZ4nnvhwgXHsZ/+9Kf4/e9/j8OHD6ds\njDt27MDGjWcxalQOACA7W2IC7CWxvTwRKqtBxJEMD4PEPugxA3v27AFg1JMBjCJ0dXVHTM+CHuOg\nezx0T4OOPp6OjstYvXoS7r333u7fiCEAtycIIWSQEo/HUVVVhYqKCjzyyCMAgNWrV/eoje3bt2PN\nmjWpGB4ZgnDRQAghg5Qf//jHaG1txXPPPder6z/44AOcO3cu5RZydXU13nxTyVCfPn0agFGcEACC\nQSPmIStLJKjtWQ4qq8Kw7CWrYvz4Etf+ROJ61KhRAIysi3g85tCQ0D0Zut9df108G6FQqKv/8QCA\nggIMCy8DwJgGQggZlDQ1NWHnzp3YvXu3mYq4fv16W6yD/qOzbds23HPPPa6vEeIGYxoIIWSQ8dFH\nH2HWrFk4dOgQpk2b1qs2Ojo6UFxcjD179vQ5cyJZbN++HQCQn5+P9es/NWMP9FiGsrKyHuke7N69\nG4DyDOTl5WH58v/xjGmIRCL42c+uQ2trKwDgX//6FwCgpqam9zc3RKCngRBCBhnvvPMOmpubcdtt\nt5lehDlz5vSojb1792Ls2LGYOXNmikZJhiL0NBBCCEk79FLcOn1VWKys3GlqSpSVlSW9/aEKPQ2E\nEEII8QU9DYQQQgjxBT0NhBBCCPEFFw2EEEII8QUXDYQQQgjxBRcNhBBCCPEFFw2EEEII8QUXDYQQ\nQgjxBRcNhBBCCPEFFw2EEEII8QUXDYQQQgjxBRcNhBBCCPEFFw2EEEII8QUXDYQQQgjxBRcNhBBC\nCPEFFw2EEEII8QUXDYQQQgjxBRcNhBBCCPEFFw2EEEII8QUXDYQQQgjxBRcNhBBCCPEFFw2EEEII\n8QUXDYQQQgjxBRcNhBBCCPEFFw2EEEII8QUXDYQQQgjxBRcNhBBCCPHF/wOWNBAFS80pQgAAAABJ\nRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x116ce7f60>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# Preparing mni mask at 4x4x4 \n", | |
| "\n", | |
| "from nilearn.image import threshold_img\n", | |
| "\n", | |
| "from nilearn.plotting import plot_roi\n", | |
| "\n", | |
| "from nilearn.datasets import fetch_icbm152_brain_gm_mask\n", | |
| "from nilearn.image import resample_img\n", | |
| "\n", | |
| "mni_mask = fetch_icbm152_brain_gm_mask()\n", | |
| "\n", | |
| "target_affine_4mm = np.diag([4,4,4])\n", | |
| "\n", | |
| "mni_mask_resampled = resample_img(mni_mask, target_affine_4mm)\n", | |
| "\n", | |
| "# Values need to be thresholded \n", | |
| "\n", | |
| "from nilearn.image import threshold_img\n", | |
| "\n", | |
| "mni_mask_resampled_thre = threshold_img(mni_mask_resampled,threshold=0.5)\n", | |
| "\n", | |
| "plot_roi(mni_mask_resampled_thre,title='4mm subsampled MNI mask')\n", | |
| "plt.show()\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "We will only work with a subset of the images. The size of this subset can be specified here" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 77, | |
| "metadata": { | |
| "scrolled": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "### Generate a random subset of the images \n", | |
| "nsub = 700 \n", | |
| "\n", | |
| "im_subset = np.random.choice(len(IAPSdata.images),nsub,replace=False)\n", | |
| "\n", | |
| "# Parcellate the subset of images and select the ratings \n", | |
| "from nilearn.input_data import NiftiMasker\n", | |
| "\n", | |
| "mymasker = NiftiMasker(mask_img=mni_mask_resampled_thre)\n", | |
| "mymasker.fit()\n", | |
| " \n", | |
| "X=[]\n", | |
| "y=[]\n", | |
| "for curind in im_subset:\n", | |
| " curim = IAPSdata.images[curind]\n", | |
| " currating = IAPSdata.images_meta[curind]['Rating']\n", | |
| " #print('parcellating %s' % curim)\n", | |
| " X.append(mymasker.transform(curim))\n", | |
| " y.append(currating)\n", | |
| " \n", | |
| "X = np.vstack(X)\n", | |
| "y = np.stack(y)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "n.b. we could have downloaded only a subset in the first, this would imply feeding a specific list of images to the neurovault fetcher" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Let's look at a few masked and resampled images " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 80, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAADeCAYAAADVab8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztnXl4FFX2/t8OOyQQQiDsRGTAnSgg\nLqigKOoIiKgIKoKAIoiov3FGx/nO7qjjqKiogCjgMu5LxBEUVBRn1BkUVwYGhShhCWELCZCFpH5/\nVE5137e6urJ00p30+TxPns7t2m5V3aq+99z3nBOwLMuCoiiKoihKApEU6wooiqIoiqLUN9oBUhRF\nURQl4dAOkKIoiqIoCYd2gBRFURRFSTi0A6QoiqIoSsKhHSBFURRFURIO7QApiqIoipJwaAdIURRF\nUZSEQztAiqIoiqIkHNoBUhRFURQl4dAOkKIoiqIoCYd2gBRFURRFSTi0A6QoiqIoSsKhHSBFURRF\nURIO7QApiqIoipJwNI11BRRFUZTEYd68eQCA1q1bO5/XXnaZsU4f2qaAyrc88ghuvPHGsPt/6KGH\ncPPNS4zvBmOtUW5N27xvWb71VhofagFSFEVRFKVaFBcX4+STT0b//v1x7LHH4ne/+51rncWLF6Nj\nx47IyspCVlYWFi5cGIOaeqMWIEVRFCXqyI9deno6AKBNmzYAgL59+wIAmja1f36aN29e7X2npaXh\n8ccfBxC0JB04cAAA0KVLl2rvb8mSJSguLgYAJCXZdoHy8nIAwPTp06u9v0SgRYsWeP/995GcnIyy\nsjIMGTIEF1xwAU455RRjvXHjxmHu3LkxqmVk1AKkKIqiKEq1CAQCSE5OBgCUlZWhrKwMgUAgxrWq\nHgHL0slPRVEUpeYEAqfQN1up3IbKqUZpCD4zygN9tl5H5deRQd80o/3nGuWutDaXmdDjHaRlqxP4\nJ7S8vBwDBgzA999/j5kzZ+Lee+81li9evBh33HEHOnbsiL59++LBBx9Ejx49Iu7z/PPPx65duzyX\np6enY/ny5VGpv06BKYqiKA2Sr2NdgQSnSZMm+PLLL7Fv3z6MGTMG3377LY477jhn+ciRIzF+/Hi0\naNEC8+fPxzXXXIP3338/4j537crHmjX/9Fw+cOCQqNVfp8AURVGUGjNnzpyYHbsAbg8xpf5JTU3F\nsGHDXJaZDh06oEWLFgCAqVOn4vPPP6/C3g4D2BfhL3poB0hRFEVRlGqRn5+PffvsDsmhQ4ewYsUK\nHHXUUcY627dvd/5/8803cfTRR1dhzxaA4gh/0UOnwBRFURoxmZmZWLhwIYYPHx6V/c2dOxezZt1L\n355GZY60kx9xn7yUNT4XUvmOys8fKz9vRF7E/TWj8s989l9K5R9D/mcbxFUk/H22hpqgzMxM5OXl\noUmTJkhOTsb555+PuXPnOkLjeGP79u245pprUF5ejoqKClx++eW46KKL8Nvf/hYDBw7EqFGj8PDD\nD+PNN99E06ZNkZaWhsWLF1dhz+WoL7uedoAURVEUJQ5YunQphg8fjh07dmDEiBG4++67cdddd8W6\nWmE54YQTsHbtWtf3f/zjH53/7777btx9993V3HMFom3p8UI7QIqiKIovL730EgDg+OOPj3FN4pun\nn34aADBx4sQa76Nz584YMWIEvvzyy2hVqwFRjmhrfbxQDZCiKIqixBG5ublYtmwZ+vThpCCJgFiA\nVAPU4OlA88NltHx/HceQCATaGuU0FBrl3Qkcw0JRFH+ys7Nx8cW/om/NN1kaXjLKe9Cd1u9IZTNO\n0Ptbtxpal2PbtTOWH0Nbi5pJRvCs4WEN0EYqTystRVmZfQ5FRUVYl2HGEUqFN2yb4GNdc80vjU/L\n2hFhbyYXX3wxAoEAioqKcPbZZ+MPf/hDlbdtPKgFSFEURVESijfeeAOFhYVYtWoV1q9fHzEgYOOl\nAkBJhL/ooRagKCLxMFq2bGl8RuKJJ55wwofL5+HDhwEA119/fZWO+8QTTwCwg1IBwRw2VWHBggVO\nDpybbrqpytspitK4Ec1Pz5496/xYqampTg6ugwc51nL0qaioQKtWrQAEc5LVFU899RQA4Nprr63y\nNmeddRYmTZqEX/ziF3jjjTfqqmpxSv1ZgLQDpCiK0sgpKytzBjqA/aNf1z/8Su24+eabkZmZia++\n+gr9+/ePdXXqEYkDVPdoLrBaYMfDWG18l0Fz4dUlD8fRNzdQmSNkLKMyR7AwR1Pdsccoc7SFQlzn\n/G9Z8z1qqcQjAQ6y+jiVnzxAXyyh8itUZuVEaFsy47xY1ha/6ikxIjMzEz/++KPx3Z133ok///nP\nYddfvHgxJk/+ir5dY5SOw8dGeTyt/T2VFyHFKBcU5Los5GK5PnDgADp27G0sG0zaxdsrP39T+fks\nHY/fktlUfqKgwBVfp7S0tLJuBfht587GstCrwVnO/OxVezDYKFvWp2HXCxev6YYbbsDOnTvx6quv\n+hyl8TBwYAbWrLkywvKPsGbNGs/l1UGHAIqiKI2YnJycWFdBqQLh7tPjj/MoJhGoPwuQdoCqwbx5\n8wAAbdvanlWZmZkAVntv0MCRueeioiIAwN69ewEAs2bNilmdlPjkscceAwDHs4YNy6LvUJ1Z/PLk\nk08CAI444giYNo/ok5SU5GgeKyoqAFRPu1hbioqKXBogqU991kMJh0aCVlzI9AQ7hCpKbZB2dWlM\na6EoimKjkaBjxgiK2/Mu+tEaUwEUVf6/DRzfIg9mPInelKOGte1dXTX4lvbX0fnPxvyhSsOjRnkP\nzbUDvYxSritHT6ZnjcaM+ZGW2ZqRm25aBADoBzMM+nqVk9UL4lVyF3mVJA0w16vwdaToiGC76gh3\nxiSOWhWaQclsRzNnPuyzrV2Z2bPtuCYppEW7r9K6KtYAGY1Pnz7ds/ZKdHjooYdw881dAUjMsN1w\nD7Qiay78cm/1Jg1PUlKSYyUM97lz5w8oKbFdnktLS3HukUca26+s/NxLZYGb/vXvvYc2bdoAANLS\n0nDgwAHHki/es/KZlJSEBa73fuib2jzbFHpnmxGMgD20fiBwiVG2rNeghKJxgGpEZmYmVq7kR0GJ\nRzIzM9GqVSskJyejc+fOmDRpkjPVpiiKoiQqGgk6Jjz8MI9ilbqkISX+iwXPPmv7toh3iuhrpNyY\naN++PQAYo34gqLsTy5BoidQyFD1szU90A8z5kZSU5NxT+ZT4Z9IGDhywvRZD3fdrSrNmzRxtj+xP\nPkULJFbH5s2b1/p4Sm3wswC1itqRtAOkxJzETvynKIqiBPHTAGkHqMZwbqybaW76BVr/Hmwwyn/F\n32gNU8WTRpofnhvn+WFWSnybn++MiA4cOIDevc+sXLKz8vNuY/3PN292RjCWZeHcLl3M/aENHYHL\nPFsfOoXIcWO2Rax7Z9JPcXwMr7xnkvjv7LPPDrs8UQjwwPPpq+xPeUplUCS3jMO4cICSV1+mL+6m\ncj6C7epWDEaua2kom4y2wrmdmMhWKm5194wbZ5T5UvCpiV5ERvU33nijT32UUAIBzjHFmp9PqGxG\n1uFnf9YPP2DfPruBlpSU4L7TTjOWf7hlC9pV5vcSCwtbfsQiU1hYiGOOucjYnpWN8iaSVsZt9T9U\nXnjmmUZ5xddfOxZVti62atUKBw+uxe7duwHYba1nz2ucbfft+9g4j9atpxn7LnRFIYr8zg0ERhpl\ny1qKxMbPC6x91I6UcB0gJX7QxH+KoiiKicYBSlgCgYBrbjwSFRUVzmg4QBaYeOeNN97A8OHD8eGH\nH2LChAnYtWsXUlMj5WFuXLzwgm1vlBEwcFXsKtPA6NChA4Bg3igJGCcWIRnNz5gxIwa1SzxSUlKc\n99ChQ4dcy1u1aoVmzWzLB8f9Eb2XWJDksy5p3TroxcgWIKlnSoptd+LzYa8xJdpUAOU8+1A3NCov\nMKVhEpr4T1EURUlgKmDPbXr9RZFGZwEKl/SvWbNgTIcTSfNT3bCCKaTxKaQ4Ontg5rBhNXtrin+y\ncssWR8NTUVGBvunpxnLJDLap8vNs0mlMpfgY7+XlOSOrQ4cO4cgjz6L6m9sXuuobnE1Po2vF8/4M\nxzTKpHKPQABbPHRAiZT4T7y7rr56GC15wiyO70bLc6jM2gIOZsjKCFPDdRzynHbVG7mu++d+14TO\ny/OxzWP1o3bOmh+OMMWaH7/n8v/5aIZuX7AAgJ2vD1CLUCgLFy4M8y1ny2Idi3kHN1CcnDZt2jgR\nlcvLy7EgP9+xkEjOL7FQc5TwgwcPolevi+l4ZvyyQoo79VVl7B0JnMFtlW1IHJ+tT58TjfKhQztd\nMajEStSkSRMUFr7p1FssREGL+7l0NNbHbUNk+DlNcCrgn2AtSjQ6C9CFF16IVq1aOX+///3vY10l\npQp07NgREydOxB//+MdYV0VRFEWJFRbs0bbXXxRpVBYgr6R/d931fP1WpBo0a9bMGVmIV0JtqKio\ncM1lxyOJkPhv2bJlAGB4xwDB3ENK3dGl0htSgmsWFtrWTIn1JfcgES1CnIU9GjRt2tRTE8OaRrYA\ncTkWhOonWVMp14u/r4pGU6kBFXA7INcR+iZWFEVRFCU+EAtQPZAQHaDejtIBeG3zZiQnJwMIWkhk\nZL5v3z5M6WfObfNcstumwl1VjvRjzl2nkjaiSZMmhmZnD9KM5cdUri83ive+kcqlpaVOfAp7lGtO\nprrrb84/c84eY99U7kPlOets3YDE+xBtk3g5Hd+pk+e+GxNvvfUWAGDkyNXmgvR7aU2/ke+/qMwZ\nulm1w3neWGljtoVUBNtVKoArX7EToxYU2FqfZ6dMMdYP1YRxfiPW/JgKDvf7jMv8FHE7ZVUYa4S4\n/OlIM7YKq15+88gjAIIWoUTIUv/3v/8dgHjQUdt0tS3WeJlxfTZu/Cs6drS1LvKciwWIYzSx5YS9\nVcNbpLhtm96hwZhU9hvwSZhpdNzaRm6R5ps9EAh4apTke7Gsc+6yvXtHAwhaG3v0WBHxWG7Njxnz\nRrxDr7jiCiQk9WgBanQaICZ/x45YV0EJYafeD0VRFMUL1QDVDMkbJCOR1NRU3H755cY6SUlJTk9e\nkPVlJFOfBAIBR/sTjWSgxcXFjr6hvuNUiPedWNiE0Nw6J4REqn5ltT0K/e677wAA119/fV1XsU4R\ny09DTeq6Z49txUmE+CYZGbZX0P79+wEEvcWExhRZWry+fvaznwGIznuuuLjYeW+xRoY/vSwoQjzk\n3rIsy1PT42fBEktXNDScAJBOnsAJRz16gTWqDpCiKIqiKA0YC1GP9+NFo+gALaiM+ZGcnIylV19t\nLJtI677ey5wLnrhnjzMyadmypZEJC3DrXFhlsQeMOZr597/nIy3N1vVIZFHRHoUbKQ2mPcqYQsZM\n39PRNlB8i9LSUmdE0rRpU+Tl/dfZv0RclSzL+/btw6mnXmZsvy9E58E6jDzSJ2VSXXlk9H9p5vo8\nq3/GGWbcmoZqAQpqfp6KvOKux3z2xNoAbm2sY+Bh0odU5lgu5v7KUOi0qzIAn1x3nbGc75e5zLz3\np9FyVpTwc7WJ2i2fS1fSonFkFY6QxFfGT0N0N1mG11LbFhqDJahr1674+c+XAAjVprC1IpPKrDZ0\n537j95eXlxe/F3h5kyZNUFCwytFilpSUoEeP39LR+M0nz4r9TivEYFrOd9xsEdu23em8j5s2bQrL\nspx6eVmqvCLuy/fBiO5r6Nj8HPO1NzVC5557Ce1/PxIKtQApiqIoipJwlEPd4KvCE0/YkXN79uwJ\noGZxbw4fPlynmpn09HRHEyPHYW8DmQOXEUltaNKkiWuuOtTCFe740UL2X9P4Q3I/p02b5rNmfCH5\nqJTGg+Ske+wx22rXEOMFifbnmGOqG+/en5YtW7qec7E8C16WEi8LUYsWLQDUjwYtJSXFeR/75VL0\nek/K+lLfhpaLMW5RN3hFURRFURKOepwCC1jxEIazmpxCPe0LQv7nbEjH+hgjHqKeJscL4Zlvjujw\n0saNrhGCeFlwfAy2vJSXlyM9va+x7YmkrZAsMvJtGYb41NDMO7Nz51KX15vM1cucu0TJFUuGLD//\n5JON7Xgmm3UfPOvOnXiOavMuutM3fPfMODaW9RriiUCA430wHIF8K5U5Tg+rbiLHQnGXTbvxkiV2\nviPxKvn5z81I2xl4y2lXafBXgYQuH0jLOGrM36i81qXR4AeTW5epIjqOcvD9zGfryJFW3PXn920O\nlcdX6gzF06chWIQCgQ4hJbYC+WXu4/tjvlfy8u5xLNvyfhMLkLw/5Ht5/7BGiL2uOGK0aBb37NmD\ny44+2lhXWv7XlZ9tqba5ThZFm4KCfzr14Ejsfl5efl5tov0R78+MDLOuboUat15TM9Q9JG4d4M5z\n90PD+8muFgN7BLDm1gjLnxuANWtYZ1Uz1AKkKIqiKEp8oKkwGg5NmzZ1RhSi5eFsweEsP0D9aEcq\nKipc9eAcN5y1WSxDSnheeumlyv/ax7QefkiMG9ZmKNWnc+fOAIC9e/cCCOatu+GGG2JWp1jSunXr\nKmt1xKLj1Q69JiHk+0OHDtWght54aZEYP00Pa4A4/plSQ+pRA9ToI0EriqIoihJdrr32WnTq1AnH\nHXdc2OUFBQUYOXIk+vfvj2OPPRaLFi2q2o7FAuT1F0UalAVo8eLFANyz16FjsE4cRJMm/y3qWbKC\nJpOPuWuXM8fLkT7F8sOfkbwJ0tI4MpFZg+9JA1SIYZX/ra38PIu2Zx2IqUvp3NlUO+Tnr3XNZYv3\nhViupPyfH34AELQIyQhOPp/IyjL2zfYs1mFwTbsj1yjnujQx9TQMqCZB7QIrSXhemqNI+cHaAM70\nxkoWVt6YOo9Zs+SOSBwRs+3k4QCkXeXhROSR7oZjUoUu5QhDfK83uPRdHNmMy6wgM5UP+/CWUeb3\n4LVLlwIItuE7zj/fWO6nnuIyn9+vR40yyr965hkA8WkJkh+a3iH3Lx8fG+ts3LHDec6rmgOLLR6C\nl6ZH3hNeGkQv5DhyL1NSUlyKJLlf8gPGb8WV+NZz/34WUakv15uvD5+HXJeDB+33mvxuiJYpGCfI\nxitCdqdORxnrZYSJNhcPTJo0CTfeeCMmTuTfNJtHH30UxxxzDJYuXYr8/Hz069cPV155pX/kb/UC\nUxRFURQlXjnzzDORk5PjuTwQCKCwsBCWZaGoqAhpaWkuAXpYNBBieDrFIJu4ZVlOz55HPl4jpHD7\nAOJHW+NVT9YCsbZJRk48kqkvJF9TrKLzPvWUHek5GvGalOgi+ov60juJZ5082/FkCWrbln2i3IRe\nJy8tT1Xfa9VF3h9sieZ6hOZ0rC2BQMCzvl4WKb+I0F7xg/h8WBvK+5PrIbkUGws33ngjRo0aha5d\nu6KwsBAvvviiy6oWlnpMhaEaIEVRFEVRoso777yDrKwsbNu2DV9++SVuvPFGxzEjImIB8vqLIg3C\nAhQIdDbK59Hy0DxDx+wyl/FUIsc24eUcqaW8vNwzUrRX9mMeOchoy87BxbPZpqKp0KVGEI2QbMdq\nC45MxPOr5v4OHz7s8lLzGtHIecv5yHnIeqzFYoUKnylfaz7TXJfmxdTEzJr1lPFpWV+gPhBNhczl\nOyO+U8kL7BNWjvAZs86FNUR8RfgKcj4kVsLwHeDryYq3jiHH6IgU0hrw3kNbGsdZcbeGbVTmuvG1\nYMx2za2a9zZr2DCjnEnL+Ur8h8p85XOozHdi0QUXGOULKttIPFiC2rWz33Khd4TrP7ibmU3tv4WF\nvhYfwcuSUtV4P5ZlIT39d7S1mS1uz55PnP01a9YMH+zb57JAl5SU4PLKnG5/efFFl6UlVJMZWufy\n8nKkpfGzZz4bhYUrnevA8Yn4/e5lCfLSPvFnevrFVBczqlWzONUA+bFo0SLcfvvtCAQC6NOnD444\n4gisX78eJ1N8ORcVUC8wRVEURVEaJj179sR7770HAMjLy8OGDRvQu3dv/w3VCyx+KC4uRps2trcN\n9/B5ZOMV90csBxJxOZaUlJS4vNV45MYjnaqODBsbzz77LICg5UvOX+PqKIzoVOTZmTdvHgBg+vTp\n9VYHsT717+9nXQsPP/d+eHlFeb0Xq/Me2bNnj2PJYkt0qKVHrPIpKSme8c74PZyfz1Z0N6HXwMui\n5eUl5qUJqq43nBfxkp9u/PjxWLVqFXbt2oXu3bvjD3/4g+MpPX36dPzf//0fJk2ahOOPPx6WZeHe\ne+91tHMRUS8wxjTgvgtThLoOwY7FINqSHYt5EiCHyuyIXVtSU8f41IBryAkjxHh/iMpe8BmYarLM\nzBFGefduPl7V4TbKAd95co5rxk7c7jV4wpf3WLdcveIqo2wtMZfPH2eWP2gz2/ziICeE4HQEZIZv\nRlNqZdw2HqIyTzNdSGW+IzxFtxGh7SrcBFkoodNEZeRmnOeaRGJY1cjr84+SOdTbhDQq87mZrekg\nuX1vIrf8fArBwHvLo+NxippMWn/ZGPM5P/Hxx6EojZnnn+dUPyZdu3bFu+++W/0dayRom4cffjjW\nVTBi/7ClROARB48YGgqs9fGyBDV2gpGeL49pPZSGi1gmnnjiCQDAtGnT6vyYD5FFoKPH/4A7d1pp\naamni7LXe88Lr1xaJq8YpQzK9danz8+N8rZtH7jiFnkdM1zE/R49RtEWfAVMdWhSUpLrPe4XByh0\n26pQ1UjauTTgnznz/4xPy9pdpf00GPwsQFHstcR1B0hRFEVRlATCLw6Qf5SHKhPXHaBoxH+oLc2b\nN3dGRl5eXzzXLCODhqCZsSzL5b3GWpeazOE3ZGo6N68ogsTikdxhTz/9NAB4Rs2NNQcPHnTif4nG\nprqWHy+vL0HeG6LFqQ6bN2928rGJJrNp06awLAuBQAAVFRXOccVLTFyuc3Nzw+wxMqH787IAeb0H\n/a6X33VKeOoxDlBcd4CCsHbC1IqUYYPzP6si5u/cWel+HkyqJwEJi4uL8fippxrrv/3pp2jd2jaP\nigivNuzd+5rzEty61XaylwdAgrfJy7JVq1bo1m0E7WF05afkUbmGlv/dKH3zTbbz4IvoWo7XsaNt\nCO/e3dZDVCkqZwRm7d5tHOeqzExj+Z8++ABAcBpxYGU9xJR9ydChxvr9YIrED1C53rvDT39pFAPz\nzNQf/21lrn70m7T9cDa7f0VlGuZ0JA1QPinayljhlmMWW5MGiD19Pwr3VpF2NRqbSEezifRm3Wma\nwoQn7flusZs8T0GwviuLyplUZs2QOcmzCYONcho+M8p8adjNfi3t78dqhAgAgN9dcYVR/vUSEpAp\nihIejQRtE43sus2bN3fiQsjIQTpA4UYinTp1ckZCnC3dy/Ljp/2R40oHhL+XDkE0vItSU1Od85V6\ny/nK9wJbqrjslSNIkP1Lh5Hh+ElSlvONN0T743U+ilJTDh6s+zd6JNkEa4C4AxcahVieV34PCF4a\nSD8LeWhurDTqTLsdIswu5emn303LZXBqx8bq0OG3tJyHwuaguR91aDfQ+ocPH/aM9yP4aUEZ2T40\njpENv294wM93tn6dQeod9QJTFEVRFCXhUC8wG9+ssVWguLjYGdGLBaJVK3vuIpxlg600oeuxhYc1\nMV4jIDkPr1xm7LVQG0ItXnLeMuIQywvP7fN5eMUH8opz4WXRkfOV48v+omUBWrBgAQDguuuuq9V+\nXnjhBQBBi180pj4VJRR59zz55JMAgClTpkRt3/Ic1IZQCxVbvgUvSwgv9/pe3iMNIY5WaMR8r/ee\nl6XLywtMzl8sP/VhFWyQqAXID/PqhJpPH/n3v51kle3bk6YiDF+G5CaJD3FvJpUlqJlMB55Kyzmo\nf+x4c49tVhbNld8Dvm7HDgDBDuKZaWbsFTYE1zVjxnDYBapB618YxaPvzzSXu+KrccIGjrlEG2zj\nM+byWVQm0/lBU7OET1hHw6bz/gi2q/5wT5SsMUq5xvYcj4pPns+dNUBcFy5zzCJe7p40iQTH+eGI\nSUx+iK4QcKfI4drwleOzVRSlatSjASi+O0A1sQCVlZU589kizpWOjYxspIcuIxy2hHjN7XLZK1uw\nl8XET1tT1bgQkQgdfYgFiDU+XtmYqzrC87oeMmISC4p0RNmbjDUGNSVaWp1EiW+kxA5pq/JO+vvf\nbeeFCRMm1HrfGRkZANyOM6GdMO4u8pt1DEWP/lfl4CQcfvHNqqIJ4gE+d59ZI/TLe4bgk08+ccrZ\n2aLZkbM2u6CjRwc9v8466yw8cOvrxnKW6B9HmqBwXmCCX1nwivzcpQvn/upDZb473P32j2TdkKlH\nA1B8d4AURVEURUkc1AJUSU3dtKWnLW7vUpZRWGgcCcA7i29NI316eYcJrCGSOWGxzNSG4uJil+WM\nR2R+FikvbzDGazlbeuQzWrlwhNpqiSTXl4QhUJS6Qt498k6Kpv5D3mfRhDOoA94WndBtALem0Es7\nWR1CrT/VpaaW4qrG8/HzDub1lcgkvAUoEOhA3/CMumnuzMcm5//TTx9J65qu31u2rEF8w2oFMdbK\nrfLL2BS/tGlzUsTl3anMZmp+KKZcbqeqEDnp/lq/YPiIrEO52iz+v/9nlluzaZvHMd2ozKZs1gjx\n8Rn+4SPX3zJWqjSjciqC7So1zP4imdrNY7Fb8dwVKyJsC5x77i30jfmMp5EGh9N7fkDpAdxrmK2F\nuxt8JRh+qngSgq8UtxzO4raScoVlVabIUBTFpB7DAMVnB6gu2bVrlzMKE62KeIV55b7yi4/jNcLx\n09qwpWrfvtrHdygsLHTOy+s85NMrvlGiaGJEsyT3X4keXbvaHRpuS9GwcjYGonEd2pKFgX0XQ98m\nfiNq7vA1adLEMws6W0ZYUylE0sawTYY7lH4d1NGjbavtxx83QceOHXHnnUfilVdeCbtuixYtXO4E\n/APLx7csy/O9X9Ocj0GLEJ8dDzS4duZg4zhK5HsGtYPVDdzSVIF6CwSdeB0gRVEURVHiE7UA1SFF\nRUVOagYeyYimxMvbSfCa+5VPcQP/6aefjOOIt4ZoTmT/MkcdjdwwycnJLu+0goICoz5FRUUAgJ49\newKAk2PHyzvNy+vN7zrFK5KXSSKNc4RspfZIHj8/HVmiIm2uLuICRYNAIOCKWCyf8p6S96VYUL00\nL2wpiYa3KxPp3VkT7Y1lWY40a6KeAAAgAElEQVT3KlvSuU2zl6uXljJRLOu1JeE1QO4ZdDaYmpen\nEL1DSqwXMstnnDHVKK9fn22UU1PNHEK8/b59ryMS6el/NsqrV481ykcddYdR3r79MaP8v//Ndjoo\n0pEqLCzEr35VAcuycNddq50OlC1+vNARQYrbeSjHdTXr/9LKlUb50pNMXc4/t2/3PLf27W+kb8zw\n8gUF/zDK7dqdTOtH1nLlkqE6l3NdRfmxGDv2M/qGlRw8Jcmm6ufN4kF2X/WLDsMxnDhXGG/PHTXW\nFEW+vh984I5Oc/PN9uecOYBlmU4Bw4Z9aKybhg+c/y+g/fiplZjt222NkPxISFoacROXTrv86D46\nfLixfXfKE5frEyeI7yxf6Q+pvAH8HjDjHnUkzRO/sViRxIkZFEUJj3qB1SNlZWXOS7YqPfTQ0URV\n4kH87W9/c/6/6KKLXMtLS0sdry3pwEiHRkYWlmU532VlBYPb8dw759zJy3Mnr3zkkUec/6+++mrX\n8lCqO3oXLVNtk6zWNfGai6yukcjccv5NmjRBy5YtEQgE0Lt376haa3hU7DWKlrbC+frS09MBBDN6\nNzbEaiKDnJpQiPOobA4Q3vzifgBBC7MMnPy8REtLSzG6g+mIwh24TeSysGNH0LnETzMUCARwGu2v\ntkObSG22pKTEFV7Wr8MezqLkpZ3MyDif1uSBkHmP9+5dDSCYJFp+f2R/8izIJ8dv69r1RJ/aN2zU\nAqQoiqIoSsKhFqB6pGnTps5oVaaeInHo0KEaWxDeeustAKaV6bvvvsORRx4JIKhJ4dEyEBzhtGjR\nwtPyxNqj7777LmJ9wllqQr0fqsueylQY8epVtXjxYgBAhw4cZiExCHfe0saaN2/uGwm8Onz++ecA\ngqNlicIuFh6xRkib5/xTMvoVS1BjQ94hEg9o0aJFAIDJkydH7RhyDWV6UY4l95xzXcl6NbG6BQIB\nT+8oP4tQTTnnnHPw3XffIRAIRNTxLV++HBk12D9bldhLuKbPifzeSJ3ZIifHEQuR3JdEIeEtQJb1\nKQBg9WrbVHjmmc/SGnx5Qsvs8Mg6CnMuf+jRRxvl3jDhnED+sC5js1EaPboCQ4cOBQD069cPF164\n2Fi+deuD1TyeyaQ+Zlj1PzzyCFaS7ieUTTiuGnuP7Kx6zDHn0XK/VCasSWHtf+SMSosXDwIAXHPN\nNT7H8YJD0LPWLIfK/JJlQzrHvmFDP8MTC1zm4/H1ZOWKqUT53//mAwh2MqqPqZQJfZL4TrE6asyY\niUb53XdfNcrHH895zcxzzc//1ig/VqlNk1AR/NymhOiTAHfLYU0OK4Y2oB99EzkhLt8p1kRxFjaO\n8PTwpZca5Uueeiri8RQlUUh4L7CHHnoIADBgwIAY18RNQUEB0iqTdooFJdKIYPjw4a4OiMz5btjg\n7lxt3brV8crys9DISGLXrl0AgB9++MG1fjiNwfBKQamXJYRHcqLtiTeqq58Q60NdRM6NRyQelN/I\nXJbJcsmlF00effTRaq0vo14ZHcun6JgaGzWLC8TdLLMTefzxNzn/b9y4IOJ7KsvH0sZPTG+KRRO6\nX7b0hPOGmrt1qyGA/22lFVzgVLpMi+xsfJyd7az36PjxxvIOo0cbZR4C8pvjPz/95LLEsI7NK6J+\nGtYa27Egnvk5Xet3Kjv1rPWR4/fowYMFHlhx975hY0HjACmKoiiKkmAkvAWIIynHE4cPH3aNaCJp\nJ0KtLGJ5kfn/cCPtDRs2OBYK8d4ItfoUFxc7xxFL0saN9rTetm1uZ9u0tDScc845Tt2BYNyfcDmw\nQs9B1o9XT5yq5lOaP9+eCurRoweA6GWRj3e84joJ5eXlsCwLlmWhpKTEsbqI9iCW/Oc/dogA0ceJ\nFqixxmyqzrtO9ELVISUlxZWjT6jvGE1eEeojMXz4cOe92KxZMyzNzo64/jnnnIP33nsPAHD22Wfj\nG5/1mzVr5orrI3i956N13bzirtVFvKSGQDkSXAR9003P0Tf3UJkVB6EvRf5xY53G90Ypz6X64bn/\n6kbwMHUgEyYEjbnZ2c/CfWvNH5urr15mlDMq451I1JFTjjjCWJ7n0vCYsYDKrrvOKOe46jvM9Y03\nvLV5H7qTWZxjr3zrOnfWa/GPG/8Qm3nSbrutXeWnnVfJsqaherChnY/nF4eH2yG3Fb+4Pmy6ZuUK\na354Odenep2DgT16OO3q1N698eH69cby7hTrJvR+5tC+cpFmlDk3WAv6ARpNUxSCdNYvvvghWmKe\nuwju5cdTtEES+uHu00831ue3wMeuzHPme6M33jXKfKf4LcMtIYfK/Cw0zm6cotSehBdBxzMtW7Z0\nxTJpqBGRw1FRUeGMPOpSE1KftG/fHoDb46ix4zWy5BGusGXLFgCxjeMko3Y/5BykrmJpbaj6rup4\nFAU9476kJebPxq5dLwNw33ex9IW2A78Uy5lUZhF5RUVFlbPEC6G5B1mjk0d+W/+ZNcsoS4dS/HY/\npvU/vikXqBS2Z2dvBXAlHcHsEoe+u728v7ze93uo87+VOv/8Y55Hg1TWGMl1kvvz00+rAAB79+4F\nAPTv/3vaY8NJiF0VEnYKTLyj3OO1m6nMTWpvyP8czLCEypETzQE7I25/5ZVXOi/d8KHf/0vbs2mb\nf3z4xWfKv+RROkzlIJsi1pevpLsrYwr4LrvsMteDLlNt7nGteSy+cu668jeRo2q7rw13XMxx9NCh\nbDm0yc+3x+cicgyalvfSmnyvWPzNy7kdsjD0UyrzuJ9N/yz947bMFiG2YJntcQxlIBfkvu6B2a7+\nX2V2e7n/fD9Dj+b+uTanSX+ipXznKz7+OGzdgvBzYoZ0EAuS148Vuxe4J5j47MyfdH4r8CQw34lV\nVOZAEHyn5fq0A3CCq26KkrioCDqOiRQtujFYgMLR0M9LOjxsuWvsRNL+hGPr1q0AghazeEY65aKn\na+i6Cam3eMDOnj3bc93qWrlE0yWWXPGeFO/OaMTlOXz4sDPA8Iv3w95i8UC4Z4WfEy8LVm0R/Rdr\no7xiaDV2EtYCtGrVKgBAIDCSlpgxRNCMxl9lb4cU3jaXuWwgP1KZdShmbJjvv7/RFThMAv3xVBEA\ndOjA2gY2FvPxWXNkOlFeONoWKn9cOWIeMmSIs2zq1KkYOfIZ2t60SrQjKwtHvlkLU1P08ssvuwKo\nia5CXphy/oMGmbnBSinG0rE07s+nuuW6Yq9EzmUFnEtlU1O0atVlCMfy5csBABdcwOLRzlT2E0ez\nkoPhe80WIj6/TCqzhYjtELx/sz4//WTfD/kh8pqalTxbn3/+Of70pz9h586dRrs6++yzAQCzZ5t5\n6o4Nsauw7akIPY3yITqXVmST2bPbfPWMHn0KqsLYsXZuvYkTzThBe/faOfbYgUJCRPTrdwXtiZ97\n8141w0tGmd0F+KnllsGu0OzI/AoURQmHaoDiiBYtWjgvVb+4P14j67oiXByh2hI6gpb/ZZQtHb2G\noqGRyM+9e7PQvXEi7dGvHe7evRsA8OKLL2LnTp4Kik/vS+HVV2UwZHaexcohnT/pxIvHY7wj75aq\nWBWCGi0eJ5sDgiNC4s30ojX95Pb8A8RdcRZ9h+KlBfKKDG1ZFvJczhhmDfNo4JjnDGxlcpKtI1up\nzAFqTSoqKnwjPHud13E00PvWJbDneE3mQPEIigvEnWu33SeNyjwwmuHaoiGhqTAURVEURUk41AIU\nRzRt2tQz67oQqzntuvDWCc3pI+crc8/xNGdfFSQSckOxWNUW0cV4jWSlLN4kgwcPxtdff+3EeRIX\n9IaoNRAPtl69bFuHWIIiafbiCfYEikQ8PodNmzb1tJywJojvSTycT2gd/LRL8e71+/DDDwMAbrrp\nJp814xO1ALlOn3IelUXKEWXOxv/ww8LgZmVlOOoobhSmMXfTpoedH8yaNXDTWJzh8tIyycNA+ua3\nVJ7jc7w7qGxeq1yqT67LNOyXr8ubzZtfABDsiPXoMcpYvpY0PO+9Z2tKJBDhqaeyqdZPA+SX580P\n1l+x5oZ9D/h4rOzgiYCNVPaL08NuzKysMU3bjz9uu/LKFNWsWb82lvfta0ar+emnM4xyr15/Ncp/\n+Ys5LXDTTePo+FuM0lqExqjia8X3wrxWezAekVnrs9xk9Gh7+nfEiBEAgAEDZNrPft727z/KWH//\nfvu5EE1Q795n0h7Na1GIMVTmSSDzXnPcI56cyqHyJ1S+CIqiAGoBiipt27Z15ViJROvWrT3jMnh1\niOpyBHP++eejoqIC69atg2VZOPvssx1NTl3Fa2E3eOkQirZErmNoHI+qIB2f+rIwiFg7lnFtoomI\nuc844wyfNW382mXr1q2RlJSEtLQ0XHDBBfAJlhuXvPPOO5X/mQMJOXe22nrlv4s11fEoKiqS6Dfc\nATcHjqFdUv5B4S2/p3Khb5fM7LwnJSVF1Pgw3bodT9/4JQ42a3xiZYdTuqGpNNDMdXXIIwe07dHD\nTN7744+Lnf85lx5/zwocf+cGs+wXbpVrnuGKM2QmAm7a1Ey029Dw8wKr+ZDdTcOwDyuKoiiK0uBY\nvnw5+vXrhz59+uCeezirg5sK2PZlr79o0jiGxhFISkpyeXH5rV/dqa+6nAs+fPgwSktLnWzdhw4d\ncs6HsxdHC7aAyShaLCqiNamu9kksSfWVi8sd+LBxsHr16iqtJ7oYr9xeycnJaNKkCSoqKmKe/+ui\ni2yLw1tvvRWV/bHVgWOsxBtiXa3KsxS0AMUPkSxYXpaTeCY0sjVrQCPlfowH4smLs7y8HDNnzsSK\nFSvQvXt3DBo0CKNGjcIxx7C8IIifBSg5ivWL0w4QGwH/RWU2OoZeLnNuvkMHc9vdu1/xdc+MJtUz\nxAKsnZg1S36Y7Gmj22/vYa5+JrlYfsT6qf9QmZ0sWXdSc7ZseRNAMHmqxJuRl/uJJ95KW7DZm+87\nG+ZJC+biGp/lfG1Yl8JTc1yfSNozwH23+THmTgZHjzHvxYMP2jFvJD4WM2fOnwAEpxR/Nc0M93/G\nGYNpC3P8NHXqaEh07Vmz+mHOnOcBBF3Hr7gi0vmynorP3S/mkRkZZ9o0uTeizeHkCAzrsVh/xctN\njqOo3d+6DOuc/cuMJ3YlTUNcSGvnUPlOV85Bc8ru+uufMsq33HIL/DHbUwadU2jr5ZbPLY/v1gZf\nPZ574icSmZkn0TeR46+5nxXzDORuSVeKzyfXVT+/Z9lcfgblXPw4Jwde5FIaDv/Mb+Z7hqcjC137\ny6TlfDcjBSWILf/+97/Rp08fJxTJFVdcgezs7IgdINUA1SHFxcVOT94rpYXA3/uNXOJ1RFBd2MtB\nPjkTN4/s5HpKzq1Yjbbnzp0LADjhBDvJQEMYcYbDq+MjfPCBPfc/bFh1Etp6Ix2pYK4pTgDRcPBq\new21LYRy8GB9xcmtOmVlZZ5eso3hmoe+2+PdAhRP3l9bt25Fjx7BQXv37t3x2WefRdxGvcAURVEU\nRUk4KtAEha6Ziroh4TpA27ZtcywZKSl2Vt62be1A9zJqZO8FtoSwl5QQryOC6sLeb3xenPOH58pF\nKySf9T0C5HrXd4TuaHH66acDAP75z39GXE8sQbWlY0d7mqMxjNjZAtQYzkmIJ42HUFZW5mj8WDPT\nGAjXfhrL+74u6datm6NFBIDc3Fx06xY5Krftm1U/nsJx2gHi+WaeEfyKykE9Qgq5Q/KeBg062yj/\n8APHYqktpsCXlRLu+V1e42Eqy1y2zPNSFqGPWMcSOceRW1dTd8bGTp1G+KzB555DZb8A/Fx3Pw0Q\nP1TcOnju3i+31yAqZ1KZ89Lx+XCCArP8y1+aOpjueNcoDxht5p07g8oS2FCmJmfM4LzjTyO0XV18\nsehy7Ov69tvBkP4tW7bE2WeH6mL8Ug3wtWIdH+foY82Nn57KbAsS80iCX/rhVrBwPC5+jkwtnV9W\nOLcqg78xz/+ZZ34FIBinqGqY1+ggvfsyQ/73i0jFLXGDSzvIZ8yaq8hs2RJ8Zzdp0gRdu95Ga/A7\nnfdv3n9pfSWVn/6aET+Nmvlu+DgnxzNwI9MdeUY516VV5KttUogT6RtOncHbc1vyCyEQOwYNGoSN\nGzdi8+bN6NatG1544QX8/e9/99kqAL9rFi3itANUfxQUFDjaB7YcsCWkrrIBxxteEU/5+nhdr1iP\ntmWEzJ+JxnvvvUffcAcoMqFak3j1nhKk4+MVtV1+zOLRgwoI6utuvvlm33Xry4uyOhQVFbnibnlZ\n4RrCezMQCPhqmuIhgnW807RpU8ydOxcjRoxAeXk5rr32Whx77LE+WzVBgluAFEVRFEVp6Fx44YW4\n8EL2k4yEWoDqjUijERkB+Fl+Ym3xiCbhsiL7aZ/YQhRrxAvi7bftKSiJW6RUD4k4DsR/G9+3z57U\n4jZYWmq7/ktIhh07dtRvxapIVawiDz74IADgZz+L7OIfCwoLCx0tpVizvCzoDUGTF669cxygQ4cO\n1WudEocksJTEJHrXPU47QKwNWeOzfnBOlOey3f3I6vUs09LG0jfm3PTevd/QctN0VwiOxcKwZoF1\nLTK/K/PKPJd9P5VZu8Bqh6rH7+jYkcPhm7E68vMj5ynLoPxO/NruSsv9Io2sgRkkr7oTAZ98YtdX\npsTOOOMRWoPbHd8bPgOuYabP+n56LMaMTZOLNKM8wGdrF2eebpY/+h7BdnUagP8zFo8ceQPtILT+\nrPlZQeVMKvPd4vhTrBHi7SM/t716+WlIWHN0XMT9udc3dRccpYiUechz6Tq4LZj7Hz/+r8anZX3h\nUz8AMHPvFZKu5TPjmmbStmbb7YcNtJzvD+tOzLZ8+ukjjfKuXf9DZCLrOrv75FZb8PbbmD9/Pj7+\n+GMAwFFDhjjTh6mpqTjxxCtoC24PfPyqv006dx5O3/Sj8jZaap4Lv+fW0fI9Lg2Qn07zAp/lDY0A\nIie8aKQdoDlz/BJ/Rp/mzZu75nSrY8mwLKvBexuFUl5eXu3cWfFqEZMRmpyPjOA4nlFjZ/hw+4Wd\n/XKMK6IoiuKLnwUoesF746oDpCiKooRHRMbxKIJmAoGA51R6NJwSysvLcd5552HdOtuSNmLECGe/\n0XC/DzeIi5eBXeMnQTVAYsK85ZZX6+2Ybdu29bT4iG4gEqWlpc4DLnqDhkx5eXmVvTTkhcPxk+Il\n/od4/Ej9RNPSEH5AqkJV82d17eqXwkNRFCVeqL84QAErDn0SO1BPm1/fkTKf8FxxIeXg+frrN5ye\nvIj2Qn8QO3acTHtgVRHPHXNsF44rxHOZPH/M87esPZD9v175yXGE+GpwLByecX7cKGW45v6D5Lnm\ntjlWinm18/MXAAh2gIqLiwHY4dAB4M5BZtycc2lvfJ9ZFcIqD2Y1NeUlS5YACN7nTy+5xFieTdtH\nzv4EfIsh9A3fO77WfO95VMNnxG2HO+CsYzD3N3r0KUY5O5s79tz21iHYrsbAnWuNr0hoLBjWS3Hc\nGNa88LF5ez53vxhN3O798i/55Uvy04TwveTBDteXX+CsF+P6mO8Ry1oPJhA4hb7hzNq8z1ClEp8P\nX39WNfH5sB7OrO/GjR87z5kESg1NlpyePoG257bNOpfI79kMFAKAo55Jo7XzXBov83wHV24v5Li2\nN9PLbNnytDN1Lk4V27dvBwCccspvI9a1O741ytxSv3W90y9FZPja8G+Uee8sa5rP/uKLQCAdrG8L\nZcCAr7FmjZ8uuGrElQWoPkhJSXE0IRK5NF7i1zQW5MUnFpf27dvHpB7iGZRomh+lcTF06NDK/7hL\nzjGD+Idxb8j/3Blmz0geOvLAbmfE7a+88krP3Ir2++C/tD1Pg7F+ksflZodTOj6HqRxkE5XN+vKV\nLHZtbzpoXHbZZS4v2KB3aU7EY/GVc9eVv3ndtYYJX5uWVOb3XcPqAGkkaEVRFKXB0LRpU89wGY0h\nYGAgEHCdV7xM9Tc+ElQDVB+0bdvWM5JnY/DiiiV8XWVEmJbGBur6Yfbs2QCAxYsXx+T49c2QIfYU\nnUxBZGevimFtlGixatUqAPE9Bfb66687llbpGMh7oLCwED17TqXtazcFluY7BdabvjHP9xjfKTAz\njMGrrz7nnJdoPffssY/evz+n9TDr2sl3CoxrPwaRqd4UWMPDzwssesRlB2gPNd49rvl28+E5LqQx\nf7h7t/N/zdyz2TjKOY8i5yhKQ65R5tuY64oYwjoLfjHI4yK3ivO++OXHYt2IqePJo4c19FryMnfc\nmur10hdvs/cnpmO+P6N6m/edjfJ+mbn8OOW11wAAHTp0AAAcOOssYzkfL5PK37quB2/BPyp+ucX4\n3kWKfQGkkKm8kF6ct93GOXb4+PwjdwyC7SoV7rbIhNaXnwO/bf3upnkt+tEUxAZcSetzvKunqeyX\n+8nvB5f3z88dP1d+eetY72We/4IFdmdm2rRI0xU5VGYVG9c5UsBEvh+8LWM+6+vWfeAMbKTDHWoh\nSU019YOrVr2Ib76xY6ZJByI5OdlY58AB+56UlJTgjjveMJatX5/taDVDAyxeeqmtl3nlleB7VQay\nEgbjyy+/xLhxZkyrSY8/7tRb3kfvvPMOAOCSSq3g8ccfDwDIyMhA166TnG137LDbWmqq/Xxt2GDH\nExOniwEDzJx8fKVzXZ0z7sDwFtz55Lbs955uiFNgkd+F0SIuO0C1oaKiwhWJlJEHhC0VGtmzdnCH\nRq6z3A954UnutfoykcuLSY4v4mxFiRcid3wUJZFIcAuQoiiKEr+kpqY6FhQJMyEDzrIyt21W0niE\ncvbZZwMIDoDEMtSlSxfXuu3atXPFFQolKSnJWS4DWvk86qijXOsfPHjQCePB0ofXKi3Fsj8ZsAly\nnuLkIfsJd95KTVANUI3ZtWuXy9LAWX05Y7Q8UOotVDv8ssKzRkgsboWF5nx8tLnxxhsBAM8//zyA\nxhGvSVEUpXGS8F5gPCfK8+nmHGlot2X20Ucby17Y43Y6jIz548j5rPJcgjWzrqxfuoDcMR8gHUc2\nZhrl61wxIWQ+2Wt0YXba5sBMJ3ITrZ3kylFkzi+3CdEAdSehYAE+M8r+ec4i05dGeqxpyaBrxUZR\nnimvLo+65uInUnkZlVkPxjoQ1p1wJCOGO9yZVDbn+gtdWji/2DSsDQgXUass5H/GOw7Rp5/aMZYk\nxtOzY82ceRwxaiXeNcocxeOuhx8GEAyZ8MPVVxvL78dzRrmQ4rxwWzWVeID72jB873KozNfST0Nk\nXs8Ueg9wW68Z3D65jqG6Hv5B8ctrZ96hnTs/dSU19fL6KigowA8//AsffPABAGDp0qVha//+++8D\nAE477TTc+6tfGcu+++47R2PExwslEAjAsqyIyUs7deqE7du/w5YtW+wzW7MGv5oxw1j37NGjXduL\nrig9PR3Llt2CE044wVgu9RJLmAy4P/nEzjkjU+3DhnFMG7+YUfwsVnfA5hfzKt5RC1DUKCsrc5lO\nxeTJJst4yWbeUJHrKiZhsajxdY2Vt93uSoG8pBRQao5Y7Q4erG031EaEqLt27YrK/hRFaagkvAVI\nURRFiRdE7wIEp7DZAiQDGxloeFl+mJ49e7q+69Chg6/XbujxQ9flqXixBHXv3h1AaADDqvHjj7Z3\nZ+9KL1UO7CoWIPEKE6KR8ywxUQtQVBFLj5gkWXsS63g1jQWJi7F//34AwRQj6enpRjlWiBZo0aJF\nMa1HY0Dy5EVL+NmjRw8AwLZtPI2jKEpikfBeYPxS5fgq3kv59dknw9TUFLryOfFceJZRyvONNsPL\nzfndN2nu3y/ahncOJLlV3DOOXD9WqbBypneEuEWZPvsqJJ3Escf+gdbwy67FeiSzbm1IA8Qz4bV9\nRN5809ZLyY+4jAxlJNu8+a0Agh3ksWO548T3gq9QdfNLsa6E4bbRjcqs8eFcZRwfZB3MOEB8Pub9\nipQ37pR77wUQHHXLNbvlllsAAL+uXO/ZZ58FAPyqo30uko5mx44dxv5S7r8fQFBXMX76dGN5NgWX\ny6XcTe5rz/eGYyRFzjXWm7SAHJnFL+sb37n8MAkR/OE6MpHiVPHTw/sy37E//viB40wi99Iruztb\ngKri1JCdfSjk/0XYuHEjUlJSwu6XNUYAkJExq/K/jZVlU4O2Y0cwLpBsJ+dx5JFHYsO2bfjvf+30\nHGvXrsUvfrHY2H706COd/5cts7VWp556qrE/ntoXK5kMpKX8zTe2FlAsZ+7Aidw6uMzvjUgBL4GU\nCM9pw0CnwBSlzpg8mRPehic72w40p/Gh3MiPnFiCBNFXibWNueqqqwAAc+fOBQD06mU7ERxd6byQ\nUTlg2bDBfonHYa5mRVHqFJ0CUxRFUWLE3r17HScGsZwIbAFi5xI/Yfz06dORnW3GBQpNUeQXwLYq\nwvuKigpPpxY5n759+wKouiZIND1enXKODyTXT+qtnfmq0gRqAVKUGDO60jV2/vz5Ma5J/CGaHYmy\nLfq6qnr4iYXogQceABC0soklqF8/O5XCxo3uSVxFURozCW4BsqzVAIJxGC67jM3p5vz1HmOONLIm\nx62T4AvNsV54f+b6KaRF4L3z1pyxyC35PIvKMncv6SK4Z5xplB6npe5INGbcogM0XxxaX1YJ8JF7\nI88ob8KHrqOZ8NWIPJJjRUweUozykiX2NMrEiRy/p264/35bZyLaiOuvf4DW8Gt75t3mtuMX58gd\nOyaTytR20k83y7s4rk8pgu2qFO7WaypbQhNEDh8u7cYeZd99N+oUfk7yKA4QMIjKZsfpOHxslDOp\n7X5Jz0EutTV+S/CzwNo+v3v5Wg2sAZa1HgCwZIkdg2nSJM4FFilWEZ9B5FxszZo1q2LuRHdKG/mU\n5Lzt27fH1KlnOOtnZwNbtjzpGUnasix07HgdHYVjw8mzJtfRfFt07coJRc22vXPnfEd/duyxx+LH\nH/+Bzz//HIB9fbOzTU3a6NGdnU6+V45JDrTLAXeFFIqJVejSQnLeOY6qxc+pqdV76Ck7plJVp/rj\nj4QXQdvk5zf0gE5KXZWkGq0AABr+SURBVFLXHZ8nnngCQNDkLibwus5d1hCRH7PZs2dXa7tbb73V\nKD/+uN2FF0Gs5m1TlEQjAE2GqiiKorio69QxgN0BZQuQl4aF4wJJ2Avx4JP4O6G0bNnSU/NTHwOM\n0OjREp4jK8v2AD58+DCys+93bSPTtH7187pu9TVwOnDAz5s03lELEADghhtuAADMmMHu1YpSd4ir\ntrjHs2lbA5y54YSRNUWeeebdmzipi6IojZP60wAFrAYgTZcklt262XFPxpxlah1C+4o8d+/WYfBs\nPcfHMGOluHP48GjGfPEPJi0B92M5Ek6eKx8V11c0STsrP8+j5X2obOpw+lH8kg2u+l/quf2JtC1r\nglhxwAqYTa5jMaxJ4UZvHnH1alv7sHnzZgDA1ZQvKlpIB0gCOkry1HsqY9oI/JPPLSmXNDspFPuF\n7xwbfVmlwdd33ru2liA3147lJG77QnY2xxt5ksorEGxXneCOK8QjyVDtgXn28+aNAABcf/31iAWB\nAGf8Nq/WcfQcD6e1OTcZX2tWoPCz4Bep5dk6eM0GAmfQNzlUDo1pxjoSriHr98y4QLt2bXa8msSS\nIQMCzuZeXFyMXr1MK9XOnZ1cAwkvjZH8JIXG5+rVi7PJZ1Z+PlL5eSYtNzVg//vfU06IBvECE20O\ne4vJc//1118DALZv344bbnjUWb5lix0XyCulDmt+BlDkaIbvBLelPFxE30yhspkTzrIattNGIGkg\n0JSfyCADThiINWu8l1eHuLYACePHjwcAPPkkv8CVRGLTJvtHrK61P/LilRe+fMYbjz76qP9K9URV\nBbMvvfQSgGDaAIkeLp8zKEmloigJRv0ZgBpGB0hRFEWJHYcOHXJZNgSOC2R7V5kWoNB8XRw3SD5Z\nIxPNKeeWLVu6BjJSD65/27ZtAQAnnmh7Z2VQNgEvyxFPpqizRA2pv0DQDasDNGWKbfr75dSpMa6J\nEgvqy91dTPkijuRAcIobuWZeLFy4EABw2mm2i2+HDh0ABD09xdPunXfeAQD89NNPAIBp06ZFv7KK\nosQvagGKzG7qaT/yiD0PLD386ZQ3qKqI27O44EpPX0YoxcXFmDx5Hm1lzq1/5lIXmPOzaaRFyKBy\nKpVFEfR15aeFt4zlha54KPsilAB3nCFvt+V80gD96oUXAMClBRBX5X377KN5pUFgJMCgCGh5v+J1\nce2111Zpf9Fmpk+Hi2O7uJ/ZyHnaIme4iwa3G6UUioXTH8F2dQJysY3ywrk1XJkh/8dXiAqJkVNV\nRtKUXeSoOMDUyneDtPWqtvG6pDfdT25/G4z75ddaM6nMWkQ3Xl5cSUlJyM/PcH0vlpxDhw7hiCP+\nSHvjDrRf3jtRIMp2rJwx8xD27PkMLc+ksnnH8/OvdN5LmZmZ2L59hVN/L0sYXw9Zf5NLl2pyIlnL\nOKLVSnrnbwLT0L2+CLUAVY9Zs2b5r1QFqjLadHeAEodx48ZFdX+xEsz6IfW6rYYd6VgzZowdBC47\ne2G9HdOrQyCDE0kPIC7cMq0gPzKyXIJMihA1XpBBUDx0fBSlUaMWIEVRFCVeaNGihW9cIK/s7WIJ\nkU5tfcQxqi0VFRWOpUcs02z58Yv3oxqgGuIXBiiKDpXaAVKURkbHjv7TF/WFRIiWH7/BgwcDAF57\n7TUAQFqaHSpALEGiBbrsssvqtZ5+xKu1UlEaHX6BoKuWu7ZKaAeomljWpxGXBwIj6RuzK7uHYsOk\nUWwYLy2CzOC3dR3RnU0sFM6fBXxFZTMVgWW9FlLi2BuJRSFduxSaq3/mjTcAAO3atQMAjBo2rFr7\nY3j/tYfvtck6BNsVx6eyYQ1TME/eENKHNTSWxn/4M19+qDwHyQ1266RJtEbo24RVTTzHEDnybrjM\n6mLx4NxXbAkpLCxE375/o605HhtzAZW5LS6p/BQrSyYt5/Ph7Xm5WZ+MDDNrY37+JM+cXxwJ250y\nx68uJjlU5uFMa9IE3VkZJ++KK66IuN9osn79ekyePBlffPEF7rrrLvziF78Iu957772H2267DRUV\nFUhOTsbixYvRpw9HQCP8LEDaAVKU2CO6EMmIXt+MHGl3tpcuXQoAOOeccwAEPaxiyZw5cwDASTjJ\nL8hLLrmk3uukKEp0SEtLw8MPP4w3KgeBXtxwww3Izs7G0Ucfjcceewx//vOfsXjx4sg7Vw2QoiiK\nUhWuueYaAOEsQNGjvLzcld2c4+fIJ0eGlmnNhkxo7jC/oJ8SSLW+BkaxSBreqVMndOrUCf/4xz8i\nrhcIBJzp74KCAnTtypnsw9AE6gXWULGspc7/zzzzDCZOnGks52kONoZ6GUfFYL/HNY0S2ZzKpOBb\no7zf+qZa2ycSlmU/uDJimTzZzEc1aexYo+w3ZVbd5QyvP3WqmZrjfUqFwXsLd3xpV+FbEf9wBdPE\n/HnVKgDAWWdxWAUbiZ3UGH78FEWpGQsXLsSFF16IVq1aoW3btvj008gSEgBqAVIURVGqxx6wBi00\nYxmrvLZSmePsmHF5CgoKnPhoEiDUywLEEZbtT46PxhogzkXmF5lJlDGilmXLQg6VuYvPv7CRM/tF\nsgDx+Uo29r1791aukUn7NvOU8ZlxfDDWAPGZRisMTF3w4IMP4u2338bgwYNx33334dZbb3WConpS\nj3GA3Mo2JWrUVbJOpX6ZNGkSJtXh9EJDZPv27di+fbvn8vLycpSXl+PWW2/Frbfe6rmeoigNg0cf\nfRRZWVnIysrCtm2RnW8Ae2ruq6++cjw/x40bh3/961/+BxILkNdfFFELkKIoihKR/fv3O/FwOAs6\ne4OxpaQxpJIJtQCxR5xX3CPRAjUWZs6ciZkzZ/qvWEn79u1RUFCA//3vf+jbty9WrFiBo48+2n9D\nPy+wKNLwW2acIzoSAHjqqacwZcrNxvKq60AOVml9P1fq/Y3A/TdWyL188sknAQQDpMmLTmLZdOnS\nBQAwdKgZEqG29y7aGiJ7/YOV//u/cUK337lzZ8R1Z8/2TrGiKErDZseOHRg4cCD279+PpKQkzJkz\nB+vWrUPbtm1x4YUXYuHChejatSueeOIJjB07FklJSWjfvj2eeuop/537xQGKItoBUhRFaQRY1vsA\ngOcr48JMmLA4ZClraiJrXlgAP3CgmSaooGCVy+uLs6RL2f7kuQuuD4vln6cyK2FE3yTWGLa2FFCZ\nNU/uLInh9x+ELUASBoM5+ujX6JvxVP6PUcr1iMIl7KFr85dX/wIgtqEkOnfujNzc3LDL3n77bef/\nMWPGOKl5qoxagBon1157rcsCpDQ8pkyZAgCYO3eu8b24/Uo+q8bMTTfd5L+SoihKdVEvMEVRFKUm\njB9vWxxMC1B0CQQCjkVELCGigeEcWpLotiETCARc2h8v7VNds3UrW7MaGZoNvvESqgl67LHHAMAR\nhkkOJ066V1ZWhilTpsCyLDz55JPOi4UfyEOHDgEAcnJyAKD6pkelWkhm8AcftFOGyPUX0/AbbzwD\nIOg2LMgPhrww5X57vUBliqG4uBiA7ZIcWpZ207t3bwDB/Fu8fbgfKvFuW7x4sbOetKs9e4JpWn76\n6ScAwIQJE8LWUVEUJSqoBUhRFEWpHaE6mIG0jFWmrAFiDYzp9hxqEeE4OBwpuk2bNtix41QnInBS\nUhL69Hk24v7dmh6OllNGn365znh/nCfPjK7z1VeT0b59ewDBAQxbvFgTZDkOJlyXTCpfSOWfUXkN\nlU2LTzzH/YkKqgFKDGbMmGGUX375ZQBAt252UDIxHe/duxelpaWoqKjAli1b0KlTJwDukbqM0qdO\nnVr3lVccbrnFjsgslqB9+2yBZWGh7TUl3mFiuZP8WG3b2qltxa1Y3IXDJZ4Egi9YeQGLxUbaCVuQ\nvCxKoUkbLctCRUUFioqKHA2TtKdgILfguSiKotQpSVAvMEVRFCV+4SzoAmtjZEpWOvzBLOnxS6tW\nrVxSA4tCiNS39idhUAtQYnLZZZcZ5UWLFmH2tdcCCDqJjhxpajAWLLgf06aZLqpKbBBLkB+PPPII\nAGDmxInG9zWL4+O9nAm3vrSr4YMHa4woRVFij2qAFEVRlNpgWXbiyYceegg338wpCDiuDs858C+Q\nGYvGsiwn4rFMyXpN4YqFRCwqlmVh164bneWlpaXo2pUjDOdQmeP6iKbpUOUne0ZlUpnPZ5lR2rjx\n94ZmCQieD0d6lvPj8wxatljDw9e2PyJjxih65hk7lcxVV13ls10jQXOBKQAwefJk33XU+tPwmDVr\nVuMXMiqKotQEzQWmKIqiRIPZs2eHsQDVjpKSEscCVFJSAiDo/SUWFA7vwFoZsRx5RVSuT1q2bOlY\ndLy0P5zri73e5PtokzCWH0HjACmC6DKGDh0KAFi1alXsKqNElcWvvgoAaNeuHQBgzPDhEde/f8EC\nAMEX7s2VEamF6mqI7l+wAH/729/QpUsXbVeKosQHqgFSFEVRooVlvej8/+KLL+KKK76gNbpSmeMA\nmXF0ioqKjJxYRx55qbE8DWuNcs7+/Y7FRLQyplcVu/2YmqMMbDLKeWhX+d+hsOtzvi13HCBTZ9Os\nWTNXXJ/QXGfp6aHOJ6Z5Yt++RQBCz4fzjLE+iWMufW+UPvnkPgDAxo0bkZDUoxeYaoAUJUYcOHAA\nBw4cQElJiTONEImKigpUVFSgS5cuTsb52jBt2rSo7EdRFCVqyBSY118UUQuQoihKAjFu3LgwFqDq\ncfDgQSeAp1fgzlAsy/LU1Ii3VSwJjWzNWe6LiooibhttDdO2bXZU7Kuvvjqq+20w6BSYojR+5AX3\n/PPPAwCeeeMNAMEfFMn1JZGZRZwpkcD/9c03AII/ILJcxJhlZWXG97K/L7/8sk7OR1EUpdY0gYqg\nFUVRlLqC9SXtqMyaGXNIfuyxf6DlpgZnD7ob5dLSUicidDiLUX7+HMfiUlpaih497jeW57k0SVLf\nnLD1Y10NsM4obd263qkHe6tJPQ4etM/JTgMTGjfJjEnUocN4PhsqL6OyeS5ppG+65JKlSHQoH3id\noR0gRYkx48fbL9D58+cDCL6QxWIjWeY5RxwHZPObWtixYwcA4JprrqmDs1AURak9TeCW4NcVCSGC\n/sc//oEhQ4YgNTUVnTt3xtSpU43kjnv27MG4cePQoUMHpKen48orr3QyFyuJzfbt2zFq1Ch07doV\ngUAAOTk5sa6SojQ4iouLcfDgQRw8eNAR8yclJSEpKQlNmjQx/uoDOXZSUhICgQACgQAOHz6Mw4cP\nu5wTZApZqR+SALSM8BdNEsICVFBQgN/85jc488wzUVJSggkTJuC2227DvHnzAAC/+c1vsHfvXmze\nvBmWZWHs2LH4/e9/jwceeCDGNVdiTVJSEs4//3zccccdOO200+r0WNdff33E5S+//LJTJ8A7CaUg\n60lW9x9//DEq9VQURakrmsA9IVtXxF0H6L777sOnn36KVyuDxAHATTfdhEAggIceeqhG+5wwIRjD\noXXr1pg2bRp+97vfOd9t3rwZF198sZOteMyYMXjzzTdreAZKrPjhhx8waNAgrFy5EieddBK2bduG\n/v374+WXX3YCSVaXjIwMzJgxo86ivCpKLLCs14xyIHAKrcFxgXr57PEAlU0NUY8eo4zyli1vOhGj\nuUPfvHlz5OXdgQMH7H2WlJTg6KO58y5WGfkJ40kTM5DM1q3rXbm95JMjWh8+fBh9+syl/YXm82In\nAlMTdJxPUuJ92GOUf/nwwwCg6XEqEQtQfR0rrrjqqquwfPly7NtnB5M6fPgwXnjhBUycOBEzZsxA\nampq2L8TTjihysf46KOPcOyxxzrlmTNn4q233sLevXuxd+9evPrqq7jggguifm5K3XLkkUfi3nvv\nxVVXXYWDBw9i8uTJuOaaazB06NCotZ1YwlMEYrqXP0FM+2LCz8nJQU5ODq677jpcd911sai6oihK\nlRANkNdfNIk7C1CXLl1w5pln4uWXX8a0adOwfPlypKenY8CAARgwYAAee+yxWu1/xYoVWLJkCT77\n7DPnu5NOOgmlpaXo0KEDAOCcc87BjBkzanWcaJOVlRXrKjQIpk2bhqVLl2Lw4MEIBAKOJe+xxx6r\nddtpjGi7UmKBZVme8XPEUtO6tW3FiZYuiCM9i7cX5/aqb82PWn5MAohsASqIsKy6xJ0FCLC9VJ59\n9lkAwLPPPlutgFCrV69GcnIykpOTDSsPAHz66aeYMGECXnnlFfTt29f5/vLLL0ffvn1RWFiI/fv3\n48gjj4y7BHRz5szBnDlzYl2NBsG0adPw7bffYtasWY7HVFWI1HbigaZNm4YNGmdZlqH/kXJeXh7y\n8vIwbtw4jBs3Luw+tV0pihJPNEX9WYACFisn44Di4mJ06dIFq1evximnnIJ169ahZ8+emD59utMx\nYnr16oXvvvvOc59r167FiBEj8OSTT2LkyJHGsuTkZPzzn/9E//79AdiB4oYMGeIbAVSJP4qKitC/\nf38MGzYMy5YtwzfffIO0tLRatR3AHiU2a9YMmzdvRmZmZh3U3B+xZvXp0weA2w2e45hs2bIFADDc\nJ8mqojCBwPH0zVlUZivJh0Zpy5Y3ncGHZVmYkpFhLF+4Y4fTaZeAnaHhG7p1W0X7f5vKmZWfz1R+\nsj50W8Ty7t23OhYo1vdZloVu3RbT+Ux0/n+yRw9jGWf++pDKHJFof/z95MYV6QMHYtSaNZ7Lvx44\nEGsiLK8OcWkBatmyJS699FJMmDABJ598Mnr27AkAmDdvHoqKisL+RfoB+/bbb3H++efjkUcecXV+\nAGDQoEFYuHAhDh06hEOHDmHBggUNRheimMyePRsDBw7EwoUL8fOf/xzTp08HUPO2A9gdchFIlpSU\nOPF56ptmzZo5SRsldH84d15px1u2bHE6QYqiKA2B+tQAxWUHCLCnwb755puo5EO5//77kZ+fjylT\npoSd4njqqaeQk5OD7t27o1u3bti0aROWLFlS6+Mq9Ut2djaWL1+Oxx9/HADwwAMP4IsvvsBzzz1X\nq/22atUKycnJAICjjjrKyYGkKEp4Qjvm4TQ1lmU5A5Ddu3dj9+7djhNKaIy2usKyLFc8IpliDqdN\nKioqcgYWSt2icYAA9OzZE61atcLYsWNrva9FixZh0aJFnsuPOOIILF2q4ccbOqNHj8bo0aOdcnJy\nMr7/ng3Q1SdeZolZ/8ORn2XqKz/fDsU/efLkeqydoihK7anPSNBx2QGqqKjAAw88gCuuuMKJzaMo\niqLUD5b1jeey+fPnY/r03fTtMUbpqsq0LQKr0AZ16WKUc/FLWqM/lX9GZcmWKT9hg2g5xzEyc4ul\np/8akTGVPO8ffafz/+9ONddc8YlZPn/5cgBwosb7BThVTOozDlDcdYAOHDiAjIwM9OrVC8srG5Ki\nKMC5555bpfX69etXxzVRFEWpGxI6EnSbNm3U+0pRFCVOuf766zF9+l9iXY24ZcSIEbGuQoMmoS1A\niqIoiqIkJgmvAVIURVHiF8syNTSBQGSrByt0Mqn8If5qlBcgjdYwUxMtXXoFLMvCr3/dGpZl4a67\n1qBXLztfWbt27dC7dz5t/4pR+j0+M8oc5Yi3DlUk7SXNz7lx4iTRWPCLBB1N4tYNXlEURYkOH3zw\nAYYNG4Z27dqFDeSZmZnphHtITk7GeeedV/+VVBTUbyRo7QApiqI0ctq0aYNrr70W9913n+c6S5cu\ndWLzvPvuu/VYu+pz0UUXYeTIkejQoQMsy0JZWRn279+P/fv3xyxQaSKRnZ2NE044AVlZWRg4cCA+\n/vjjsOsNHToU/fr1Q1ZWFrKysrBz507ffYsFKKHjACmKoig2L774IqZMmeKUy8rKcOqpp2LVqlVV\n2v7kk0/GySefjJUrV9ZRDWNDVlYWNm7cGOtqJBznnHMORo0ahUAggK+//hqXX3451q9fH3bd5557\nDgMHDqzyvhPaC0xRFEUxCU1ou3//fgwePBjjx4/HPffcg3vuucdzu337OFOVN1deeSUqKipw4okn\n4r777nNyI1YFy3on4vIllXnqhIm0/FIq98Ieo3ynK8OWTWgi35deegmABAxdYKyXRpqfjrSfMiqz\nBuiDefM0nk8IEhkfsEPXBOj+1gb1AlMURVFcVFRUYMKECRg6dKjzg3z77bfXer/PPfccTjrpJFiW\nhYceeggjRozA+vXrkZpaX/44SkPj9ddfxx133IGdO3fiH//4h+d6kydPRpMmTTB27Fj85je/8e0s\nZaSnY3gEi1F6enqN68zEZTZ4RVEUxc0dd9yBf/3rX1i5cmXYHFt+rFy5ElOnTnWiFHtx1FFH4b77\n7gubPLom+FmA2ALzNyrfie5G2bK8k/zOmzcPN9ywwfguDXOM8p9oG44zzZNqM/Rn0pOPPvoIf/zj\nH8NOr27duhXdunVDYWEhxo4di6uuugoTJ/Ldjx0qglYURWkAvPDCC3j++efxyiuvOJ2fv/zlL47n\nVri/mhIIBOImB54SHzz66KOOmHnbtm3O92eeeSY2bdqEXbt2ubbpVpkSJSUlBRMmTMC///3veqtv\nVVALkKIoSpyzdu1anHfeeVixYgWysrKqvX1FRQVKS0vxwQcfYPr06diwYQOSkpLQvHlz/PTTT9iy\nZQsGDRqEiooKPPLII/jrX/+K9evXo0OHDnVwNkpD5/vvv8eRRx6JQCCAL774AiNHjkRubq4xvXX4\n8GHs27cP6enpKCsrw/jx4zF8+HBMnz49hjU3UQ2QoihKnJOdnY29e/diyJAhzndnnHEGli1bVqXt\nP/roIwwbNswpt2rVCmeddRZWrVqFwsJC3HDDDfjhhx/QsmVLZGVlYdmyZdr5UTx59dVX8fTTT6NZ\ns2Zo1aoVXnzxRafzk5WVhS+//BIlJSUYMWIEysrKUF5ejuHDh2PatGkxrrmJWoAURVEURUk4VAOk\nKIqiKErCoR0gRVEURVESDu0AKYqiKIqScGgHSFEURVGUhEM7QIqiKIqiJBzaAVIURVEUJeHQDpCi\nKIqiKAmHdoAURVEURUk4tAOkKIqiKErCoR0gRVEURVESDu0AKYqiKIqScGgHSFEURVGUhEM7QIqi\nKIqiJBzaAVIURVEUJeHQDpCiKIqiKAmHdoAURVEURUk4tAOkKIqiKErCoR0gRVEURVESDu0AKYqi\nKIqScGgHSFEURVGUhEM7QIqiKIqiJBzaAVIURVEUJeHQDpCiKIqiKAmHdoAURVEURUk4tAOkKIqi\nKErCoR0gRVEURVESDu0AKYqiKIqScGgHSFEURVGUhOP/A4dwbJk4Aq6zAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x11617aa20>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAADeCAYAAADVab8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztnXl4FFXW/7+dENaEJeyyGBbFBTHK\n5gIKyiA6CjqoKIOA7Isg8xtnXn1nHB3f11HH0UFFVETFbRDFkQgqryKiMjOiKC7AwIgQJSxJICSE\nJZClf390n+q63+rqytJJOunzeZ48ndtVXXWr6lbVved+zzk+v9/vh6IoiqIoShyRUNsVUBRFURRF\nqWm0A6QoiqIoStyhHSBFURRFUeIO7QApiqIoihJ3aAdIURRFUZS4QztAiqIoiqLEHdoBUhRFURQl\n7tAOkKIoiqIocYd2gBRFURRFiTu0A6QoiqIoStyhHSBFURRFUeIO7QApiqIoihJ3aAdIURRFUZS4\no0FtV0BRFEVRnnjiCQBAUlISAMDn8wEApk+fXmt1Uuo3agFSFEVRFCXu8Pn9fn9tV0JRFEWpv/h8\nHYzy1cg2yufS+qdSeSOV0xcuRGlpKQDgtttuAwA89thjAAIWpNmz7zTW745CozyStvcvKm9AilH2\n+w9DqX+oBUhRFEVRlApRVFSEAQMG4Nxzz8XZZ5+Ne+65x7HOkiVL0LZtW6SnpyM9PR2LFy+uhZq6\noxogRVEUJWqIlqdjx44AgBYtWkR9H+3bt0dOTg4AWC/Vxo0bAwA6deoU9f099dRTmDlzZtS3W5dp\n1KgR1q5di+TkZBQXF2PQoEG48sorccEFFxjrjRkzBgsWLKilWkZGLUCKoiiKolQIn8+H5ORkAEBx\ncTGKi4st4XpdQTVAiqIoSpXw+S6gb45SuZjKSUapNzYbZdYEfUPlzZhG37Sl8j+pnGuU2tP+mtHa\nO5FqlFOQZ/1fiPOMZX7/V4hXSktL0bdvX+zYsQOzZ8/GQw89ZCxfsmQJ7rrrLrRt2xann346/vrX\nv6JLly4RtzlixAgcOHDAdXmbNm2wevXqqNRfp8AURVGUOs77wc/htVqLeCMxMRFff/018vPzcd11\n12Hz5s3o3bu3tfyaa67BzTffjEaNGuGZZ57BhAkTsHbt2ojbPHAgFxs3/sN1eb9+g6JWf50CUxRF\nUSrN008/XdtVAJAd/FNqg5YtW2Lo0KEOy0zr1q3RqFEjAMCUKVPw5ZdflmNrJQDyI/xFD+0AKYqi\nKIpSIXJzc5GfH+iQHD9+HB988AHOOOMMY519+/ZZ/7/99ts488wzy7FlP4CiCH/RQ6fAFEVR6jFp\naWlYvHgxhg0bFpXtvfjii5g4cTl9eyGV91I5l8rmSH4z2hvljw9uRV5eQHeTn5+Paf37R/w9UBr8\nZO1RgMzMVZY32smTJ9G+Pdc3icqnGaVCIzKReR59vhVG2e+/NmwdvEhLS0N2djYSExORnJyMESNG\nYMGCBZbQONbYt28fJkyYgNLSUpSVleHGG2/E1VdfjT/84Q/o168fRo4ciccffxxvv/02GjRogNTU\nVCxZsqQcWy4FUFDNtQ+gHSBFURRFiQFWrlyJYcOGYf/+/bjiiivwwAMP4P7776/taoWlT58+2LRp\nk+P7++67z/r/gQcewAMPPFDBLZch2pYeN7QDpCiKorgicX3S0tIAAN26dav2fSYkJFiRnk+ePFnl\n7RUVFVmWlJSUFI+1q8Z7770HANixYwcAYM6cORXeRocOHXDFFVfg66+/jmrd6galiLbWxw3VACmK\noihKDJGVlYX33nsPPXv2rO2q1AJiAVINUJ2nOQWG6kfL11ZzGKZraP+rNMeNoige+Hzn0DctqdyU\nyhznx+TTT+9D69atAQSiOLdufZax/PjxTCuI3pEjR3BNq1bG8oaOLbKmiDEtCGecMcqsbfF2y8J0\n9OhRtG5tLj96dBlKSkoABKxH7ds/blvK+hRzX1ddZU75LJo71yh/F+GZf+2118Ln8+HIkSO47LLL\n8Mc//tF13fqLWoAURVEUJa5YsWIFCgsLsW7dOmzbti1iQMD6SxmAExH+oodagKLI/PnzAYRy0shn\nJJ599llr5COfMvKYPn16ufb77LPPAggEpQJgjWzKw6JFi1BUFDArzqWRiqIoSjQoKSmxnmvhkg8k\nJiZaz60TJ6L7kgtHaWkpGjYM2JUaNHC+BhMTEyPWt7q59NJLMXHiRNxxxx1YsWKF9w/qFTVnAdIO\nkKIoSj2nuLjYGugAgZd+uBe/EjvMmzcPaWlp+Oabb3DuuZwcpD4jcYCqH80FVgUWLFiA3aTw55nx\nj6kcOdoEcDOVL6Yf/Imm2nn7PDvNM+UcJeMUKtujd+zXplGnGEN6L762nE+Jo8KkUZkjuXxv+/8L\nWvaVtpWYJS0tDT/++KPx3e9+9zv87//+r1X2+VrTr6702Cq3Dh6xc24us/UdPLjV8saSV5BYfnJz\nczGhRw9j/fXoDZOLqLwq+Hld8PN7Wm4+CfPzP7L2n5AQUIKUlZUBCHidNWkyi35vFyNz5jDeF58b\n827phSyjvC14/OHiNc2cORM5OTl48803ES/069ceGzf+MsLyT7Bx48ao7EuHAIqiKPWYzMzM2q6C\nUg7CXaennnqq5itS69ScBUg7QBVAct40b94cQKDHvrs2K1TNyNzzkSNHAACHDh0CULm4Fkr18fe/\n/722q4BnnnkGQGgULcjoWqZbJk+eXLMVU2KSxMREy/Jjt7zYy9VJfn6+pdEULZCgkyK1jUaCVlx4\nJ/j581qthVJf0PakKEpsoZGga40epKN4z/b/ZQBOJ00OxxFgTQ5rcDZjoFF+n1Q5W7HZKM8kzc93\nwU/x89qAoYgMz82b89PZjvgdofgc111nWnq6B+eu5we9xXjLB3XkVCMsXboUADB2LHuHdDdKvbHT\nKLMy4RiArcH/S+HUBJ1KZXsMq0u5UjNmGEXWsgn+KVMAOO+Tnc89BwBISgrcYLfccovLFpRoE8jP\nxCJbzr3FsAos8nNm48Z30LJlIJZQx44dAYQsLSUlJehJ0Zmz0Zm2xy2ONUBrgp9pwU/W5Zi6nbS0\n64xyaampKTl27EnL8n3s2DGkpb0KdzhGkpceKgtKJDQOUKVIS0vDmjVrvFdUap20tDQ0adIEycnJ\n6NChAyZOnGg9cBRFUZR4RSNB1wqPP/6490pK1KhLif9qA/H8EO+Y4uJi47M+wce2aNEiAE4Nkeg1\nxo4dW9NVrLd07dq12vfRrFkzKxu7XFPWANUmpaWlVhw1+ZR6yqdSU3hZgJpEbU/aAVJqnfhO/Kco\niqKE8NIAaQeo0vh8zY3yUBQa5Qdp/U5UXkeD7/to+Qa0p2840g/PXWcapddzP7JGREePHkW/7qau\nozA437wB5wEAdu16Hk2aBBqE3+9Hx47XGuunYJNRbkF7z0Iv+sY+n23WdacjUsxWo+TznU/Ldxgl\nt7xjkvjvsssuC7s8XhhM+jNWMWRjHn3DugizrW12KNDMKFUb8A0QbB8bcB420B6Hk1aBo5/Y4T2x\nxofvAo5HlU8aIr7veP3Fx44BCFmGJk6cGKF2CtOB2hoccXZY43PMKOXlPWfptcRqd/hw4P4+Frw2\nYjkRy0/TpoH2JxHvJfJzaWkpsh3PIdYkcVQrVqg1cllP4BZkPptKSkocFqBGjQLb9Pv9yM2dZnmp\nyXHLc1cstPn5AatFz54cQ8jcFyuCOAaT33/Q5RjiBS8vsFYRllWMuOsAKbGDJv5TFEVRTDQOUNzi\n8/ksC1B55sbLysqsuXSfY1QX26xYsQLDhg3Dxx9/jLFjx+LAgQOWp0g8IV5dSvmRe0PSO0iMLrEI\nTQl6mylOnnjiiSpvIykpyZFKo1mzgI2QLShiKZHv+fkmlpXaxO/3O563EidIjlNyg0lZLFxSfzle\npaqUAaVssaseVN2l1Dr2xH+KoihKHFMG4GSEvyhS7yxA4ZL+JSWFYkqkkOaHFTnsX/MAlVmXsYfK\n7ZFtlLNp7px1GLt3P2eNkMrKynB2mzbG8jzH3LxsPzCT3KPH9ebS7NXW3Prx48dxF+XUYW19AbZT\n7bbDjWxcR99w5Bje+j+Nks/X3FUHFE+J/9566y0AwC9+8a3xPZ9dPgtPGlGpAKcqh5U4nHmOIwG1\nta3T1rG9YtIA2dUVvKetHmUmD6n0DWfRM+/EXnRfXTR9ulEeSb9eGByVy2h92rRpHjWKH5o3b45s\nikfmlTuL20ZKSj+jfPz415YFSLQ+YiERy7RbhOWABYWfvNx2f6TyciqLZuSfCI8Z7TmV3gPhrOfy\nnXgeivZHkOds69b/41IXwfzdepgxj1KQ51LnOKUMLDmrNuqdBeiqq65CkyZNrL977723tquklIO2\nbdti/PjxuO8+lpUriqIocYMfgf6w218UqVcWILekf/ffv7hmK1IBkpKSrJFRNOK7lJWVWSMvHrHE\nEvGU+G/t2rUAgIMHA94d4iWjVB+iNxHdxoIFCwCE7gnRa8ST95hof9q2ZT+kquPz+RwWH9b6yPey\nnlhQYkG7mJCQ4Ki3PJfdLFnVFb9o/vz5AAJW8bikDE6nvWqiXnWAFEVRFEWpw4gFqAbw+eMg9a3P\nd4b1/65dq5GcnAwgNBq0x3F4vBfHozDxGrtzKD9en2fWt+fmWiOhI0eO4Dc9exrLObFHISSOUZ+w\nW/zxx/etOWu/34+Jp7jFxQiuT+WzbP9zXdc7YnWYcWi2bg2MWCTuh2ibZBTert0k+P0rI9anPvEr\nGtnOd8SIMu/yaaQFMNVdANsxX3fkS+KnhtdT5CwAokPqgyefDGTwkvbzl6lTjbXtdoPIih1nu2eF\nSV4wjlUIbolecWB4D5lGqT3Fv+K1H3zySQAhS9F00hTVN3y+wfQNn1+O3MT6Mo4gZupcioo+dkR4\nluea4BYB+vjx4wCA3NzAE+fEiRNIT/8t7Y+vIOvZcoKfEnGKI0mZ9f/mm9+ic+fA/SPvA474zN61\nbAESi33TprON36XiBaPM90oW3beppLVjP9gf6v8r2qDfWT5sfDnC8ul9sXHjRvcVKkC90wAx+/fz\na1ypTfbvP1TbVVAURVFiFdUAVQ6JBSKjupYtW+LGG+821klISHD09GV9sVjUJD6fzxpJRCMZaFFR\nkeX5IsdVU4j3nYyoBLEoAEDHjuOt/z/99L8AAFu2bAFQf0bhH374YW1XoVLIiJzju9RHOIrxwoUL\nAYTaan2KI/TGG29U+z78fr/DssOWEzdvMLkWEgNMLPLVSYsWLYznUrh6eXmvKdVEDXqB1f8nnaIo\niqIodQM/oh7vx4160QGSzNHJycm45ZZ7aKkpJ//5qWYOmU/y8iyLUOPGjR3xS3g+NpPKPBPNHdcP\nP/8cqamBmCcpKYH4DzLikZGFfa6ZtRKFFDMiNGsZ3sPr5MmT1tx7gwYN8HJ2trV9iVh69GjgnOTn\n5+OVCy80fm/XeXxD206lGEF5dHbYmyM11czvxFlwBg9+3ijXVQvQN98EztT09HTje87UdSvFsuG2\n5pVP6ywqc64utg6zioMjpOQhCfb2NGfOAmM5K77sGrDO1BY4Nzs/vzhC1Kmk0eFj+xc+Mso7cSut\ncRWVzS1k4y9GOQWvGuVp056j35tKDbFi1OX4Qc2N+5GPw0sawG445hXdvv01tAnGLJP4P17eU4Kb\npUgiLyclJeHAgb9Zy0+cOIGzunQxtlHoiGMk8cXSwh5NdvajVn3EAzDSczhcvdlrTbaXk/MQgJCX\n58/ONDVArEbKonIeulPZvDacY9Hv/4oPr36hFiBFURRFUeKOUqgbfHl49tlnAQBdu3YFULm4NyUl\nJdWqmWnTpo2liZH98NyyzEWLhagqJCYmOkYwdgtXuP1HC/sIrjLI9ZxK3kexjmTBVuoPco8888wz\nAOqudbK6aNmypauGhj+9lrPFSCw/YnEpLDSjNleGRo0aWc931rixJYq/dzseqa9oR5s3bw4lCtSg\nG3yd7gApiqIoilKP0CmwyDSnnnqhLa9QZ4qlwvOvHE1kXLt2RplnxjlmKm/v9e+/d4wMZETAWZDZ\n8uL3+9GmzQDjt04bEFtTZDQUUJAMJV3JorNMLcR/5+Q4LEL2rMV37t5tjbAkQrGMfL4ZYNaNz10e\nKZbOPPNaWoNjjZiZ01LxvlGeNu3d4Kd47pnDAL//IGKJC6gdss6F4/Zw3rlTqcxtjbfHpFGZ9WNX\nBCP/SjvMJ8+m9diKkK15K3pTW+Krd6pN99OQlnnV9Uoqp1O5H5U5B99ORxwar7NlKqAKMYiWj6Ky\neZ9Nm2ZG4JJ7R6wHkyZNQqxT6FBx2THPX27uR5bFhS0y8inHzp9sIWGLitdygfcrHD9+3PHs2e54\nLopGSZ7g5t1gj1QtsIWnvPDxiMVbLEBfHzgAIBT/jC1a/H2PHv9Le8ikMqv56jlqAVIURVEUJe7Q\nVBh1hwYNGlgjIc4a7Bb/QkYCNZETqqyszDUeh2h2xEIl5ZqIw6FUPzLijUZ8qXhHrKbiSfnccwEv\nssmTJ9dandx4/PHHK/ybhg0buno/sTdXeXN3sWWFLUyCm2ZRnqcSH6gq2OvMOcoEjlTtFRmaty3P\nfXkfiKVHjltiTnGEbIWoQQtQvY8ErSiKoihKdJk0aRLatWuH3r17h13+8MMPIz09Henp6ejduzcS\nExORl5cXdl0DsQC5/UWROpULbMmSJQCAX99qxgSxaxVOg0lVO5IPHzhg9eQ5W7vbnLjbCKmsrAyX\np6aGXSawBonzxjQNRpGQyBEca4bHStxefpeb6xjJsPeFjHIlsrNYhGTkIp9XU9wbMztQON2FGTVp\nGnZGWOqMkxMrOXE++OADAMCa4cON7/9G62XBvNbnkT7tZ7R+TypzHCZWAuyh8g4qs26C74VMwLoC\n3eFUm3HbsuvfeN//ojLrm/i+5Lrxvu+jchaeRCSWLQvEpJG2fdNN33nsgeMIsaaIozCZd9KiRaaV\nN5YiR7/wQiAOzaRJz9i+5dZlqhkPHbqr3N6wrOXh5wfD2d+Li4uR1rq1sQ7rlQoKPrf+l+evPI/E\nonno0CFr+zNmzAjEPXv5ZUvzxjkf7aSkmC00he7NvYWFDo2T1J81nYyb9oktYHK+Wra8jrbA9e1v\nlPx+1gzVDp988gmSk5Mxfvx4bN68OeK6K1euxF//+lesXbvWc7v92vuw8aYIy/8RvVxgOgWmKIqi\nKEqFuOSSS5CZmVmudZcuXYqbb765fBtWL7DwtCOPrZrA7/dbPX4eGbEFxW1EID3+WNHWuNWTtUCs\nbWIvhppmwYJApOLbbrutVvYvHAh6eSixQ9OmgUjONWXQFiuD3NOxpAmSyMwVwW694XPIlh3W0PBz\n0I2KxB8rLS11PHfluOT5ZNcGNW7cGD6fD23atHF9Xst+y/v8kvry8btpeNy0UvIp9WFLen3n2LFj\nWL16tfX89kRTYSiKoiiKUtdZuXIlLr74YisllCdqATLhuD8cn2SY7X/WOXiVWSPDuovS0lLXuXGv\niKY893v06FFHziPW/LCOpjdljhHbg8wKh9N12GHtRUlJicNLzS0Xjhw3z+HLeubMtPNY1jtUPWa3\nniO3cKyYp6k8es4cAMArwc/PakkTJHGT/kz6LKdKZ2/EpQzH1uH1WTfjFUeIdTnhlAX29sSaK55l\nt5f5vuH4WGke++Yy79vJU1Q2n5DXXMNng+P88HK+E5t6LDdVT7fcYt5Zixd/FvwMRH+qTU1QixYS\nM8l+zPyk+MLxO7s2JSWF70Z+MvL5MrdfULDL+p+1QgkJCShEe/q92bpTU0cb5fz8t6z/w1l4fD4f\nfD6fEeXZHuenZUuOiWSqJU8hDZDdmsXxgpo358x3Xq3ZvFvy8r4FYPcC5gheaR7bq1u89tpr5Z/+\nAgIdII0DpCiKoihKXaWgoAAff/wxXnnllfL/SOMAxQ5FRUXW3LNbrhjBLe6PeFVFI6dNVTlx4oTD\nW429OMKN2OzrxyvihRgvc/dK+ZF7SjyVasMS9NRTASvZOeecU+Hf2q0p0dBR+f1+x3PQLf5OeSgs\nLLR0Xm5aI7/fb8Q9E61PZXL1JSQkuOYyqypV3c7ChQsBALNmzYpGdSrNzTffjHXr1uHAgQPo3Lkz\n/vjHP1qe0jNmzAAAvPXWWxg+fHjFdGkaCdqEzaWnUch++7liYyGfdjbcsvFxfcTw8RWnNwXxYtdi\nnmbg684pAnKCnyfpU/jRY3u3pqUZ5eUHK59eglM7cKe9Lbm5MzyVydN1nehivVZD88JCD+rw7bSC\nDwg8TcITmOYkXy7MDvAHEdd2wo7MHPKAf+9VPhWBwRYQaEc8xcb30nZbopZBdCxeiSl4koDvS772\nt1O5LUw320xa/hK1tZ2Oo/E6u1wDXp8bnznhO3Gi3ImBl3Mwr6+i1FuWLl3quc7EiRMxceLEim1Y\nLUABKhPRNNrYY/+4xbtgy09lc8zUNqz1cbMEKYoSGXluPP/88wBqJnfYfzksAkNt/3MX1Bx6tWw5\n0CgXFoaWh4tnk5rK3XFzqOXz+Vy1hcePH0cKDWILHYMJc3tdulxIy1l1tgkA0KqVWL94MGKOplI8\nBmfhvOJCz3MeNptav7y8wDDUzXLeosU99HvWq7HeyizPnv1N8PORYL1+cB5AXcbLAhTFXktMd4AU\nRVEURYkjvLzAmkdvVzHdAYpGDpiq0rBhQ9esxzyy8cp2HIv4/X6H95rUWyxB5Y13pChKAImdJfo/\nEYGOGzeu1upUUdyyuJcnjo7d+s2/54j6scjJkyddn/teuD0n9blZTjQOkMkgMpfy9OAa2//siv1p\nTg6OHg384vjx4wBCwcuKioow8ULTtPrZZy9aYruQO2nl+e7QIStk+549AVdauZGSk5PxawDNmwe6\ntE2aNME5nUzTLmt6RHkhBmo2bC/97jtL9Ceia9lf27YBpUbnzgH3bbvLaGWYFNQPyX6uI33Rox99\nBCD0wJN6SGLJfwwZYqz/Im1/K40CWL81teJVrhCsa9npcKVmR3PWnZgd+KPUjr1CImRSmTU5rA9j\n+DWTTRqmjdhptCevdBWn2nQ/HOCA9Uw8AcETGLztNCrzBMvpdCsepR2wYme+8VQAnGeXz+YwKrNK\nyevqvG2Upkwx3eZffvkBKIpSDjQOUADJ5VIVGjZsaMW9ESW6dIBkdGanXbt2VqRRzpbuZvnx0v7I\nfqUDwt9LhyAa3kUtW7a0jlfqLcfLOXHYUsVlr8itsn3pMDIcP0nKcryKEi+EYr5UH87YOvZOnNnh\na08i9n/+8K71vG3UqBFKS0uN50KrVhcY63emuDk8WAiH/fnIHdxNDt2L2UV+5JFf4ZNPPjG+E11V\n+/btMXPmTBw/fhz//d//jTfffBMAcP755wMIvEf++utfG7/l7q0jXlxxseO5L+cjBduNdXkgM5Bm\nLr4gL7T8/HsBhCxpbdr8lbZgDi8Gkl6pbkcFKgfqBaYoiqIoStyhXmABZB69KhQVFVkWCrFASB6f\ncJYNttLY12MLD8/1ummE5DjccplxxOiqYLd4yXHLSEMsL+zN5pbDhtfjkZDgZtGR45X9y/aiZQFa\ntGgRAGDatGlR2Z6QkZER1e0pilAdXmFPP80x0ytOYWGhIwK8WEAqE7cnnBeYfHplmw+HPLPt/PTT\nT1b9Tp48idzcXMv6AwBfffUVAGDUKPay8kZiCtmprIaHj18kAZLVXiHUAmSyHmYOkYFkfrXz8uef\nIyUlEK+kVatWntu2mydjUaS2E73pm4DL43Z0DZa94pvUHB/mBa6LaK68zP6T9+8HEOogjqRcMay6\n4O7wNZWrpit/pOu/AaZrcCo+Mso88ZfluGvNNdJoKWt4PqbyJse1N89IW9IUsR7MOTFpTitsRxKA\nn4L/d8VeMu1z/exXc7MtJlAA1suZ0wC5FMeH68rqqjQq85zF16QB4nPHpOB9o1zoiOnEqiRuu5HT\nG6QG3bAFnhZRFKV81KABKLY7QJWxABUXF1vRWEWcKx0b0fSIJYJHOF5xfrjMOb8EN4uJl7amMiMj\nxh6rRyxArPERi4ybF5ub5sfNAiRlsTyJeFw6ouxNJsdZ1Q6nm/ZIUWINsaqIHm/ZsmUAgDFjxlR5\n2+3bi/aHu5VfW/+lUE5B7t5dkZ5ulLccOEDPAVOXwlF4wrmLuFnOExMTHYOZ82hQu4k6pPLstrNm\nTUDoPnr06IjW81atWiGdvuPB1QYaZNstWPbvAKfeiZ9C/PJmbWXbtmyx5utm1o675ntQv6lBA1Bs\nd4AURVEURYkf1AIUpLJu2tLjFrd3KYvFQLyvOCeW4GYJ4uVuuHmHCawhklFheeJreFFUVOSwnLGF\nx8si5eYNxrgtZ0uPfPJ5q4y2wI56kyl1Bb7HopkXMBreskw4C0hFcdMAVSaifCRrcWlpacS6hrMe\neZGYmOipfSwvdS0jQG0T9xag1o6GZs7X55K51G5+/ePFFxvL+ES+tHt31SpXzeSR7sQZn+S54Kdk\n4vpn9VYoioyjhHgcd4Zhx9hsdDbKq26cEfwv8On3Vz6vGQDci9/SN18bpTwyk+c5lCs8MZAfoeTU\nNDnDfprTDu2p3XPb5lGTUx3GxvqLEIrYcxEKaflHFIXKvv8UcqNuQeWFby907N3OgpEjjTJPSaRR\n+VQKPMQRmPhc9CJ9FLe1k+Ra/L4jbhBPPPAezLacR20zl6ac/k6i51GaLExRwlKDYYBiswNUnRw4\ncMCyDIlWRTwM3HJfecXHcfMO89LasKUqP7/qgubCwkLruNyOQz7d4htpzi+lqqQFg2Kyri0aVs76\nQLgYZJUlFJ8my3WdQuq8p1Bn+pPt263I+4mJiWjdmlMVR4ZfWBdTENmPcnMN7eSKffusc3D06FEM\nPytyLjCxklcW1ihx9/bVHZ9bljTRMtqf6xfYPHh5oMGdd4fAn5w7srMDnfOcnEBq63POuTLiFniI\nG/txtKtGGWosEHT8dYAURVEURYlN1AJUjRw5csSKw8AaFNGUeM35us1ty6e4gdvjVAAhbw1JfSHb\nF21SVTUxQEAPwN5pBQUFRn0k/kTXrgFX+g4dOhj1cfN+4O1WdW48Vli5cmVtV6He0bp1awCaD8kN\nuZeqEhdo4cLANONpp3lNJnvtkuzBAAAgAElEQVRjDxlSHVGrw2VXl3NQHq3ne++957osMTExYrsq\nj/UoKSnJNe5ZNJ7LvC8ASCXLUGV57rmALGLy5MlR2V5tE/caoIrCYc3tsHly8ODrjfK2bWYEkZYt\nexnlVNIS7PSYphrbpo1RvvvTT43yRWecYZS37NtnlP/zn5etDop0pEQwWVxcjN/9LgOJiYmYP398\nUMw90xJ1i9u5nVNOGWCU16xZYpTPP9/UYuzb94XboeECiqu0nbRZBQVmLJQWLc4zyrfS9tgs/T2V\ns3EefcMPelYJVQyf70/0zZ1UNs8NTxsUOjRAbBw3j4jzZ3G4RdYApdL+sinVwRfUNr0eGitXzgFg\nhiH47W8DWeUeeugG+P3XW98DwFVXme669r2xHqmicW9eDLZ7ebnIS0qmgfOCMaWk7b903XXG77kl\ncKg7jgvErsPOVzw/RfiI+Orwk8V0jt5OKqamWO/Yo6IoTtQLrAYpLi62Hr7l0b6Ey3LsVgaAv/zl\nL9b/V199tWP5yZMnLa8t6cBIh0ZiW9i3K/PU3bt3d8QzkheX6CxkrtnOE088Yf1/yy23hDnCEF5e\nYIxomaqaZFWpHnr06AEgZOlMTExE06ZN4fP5cPbZZ1vrRcNK4xZlnPchbUVGxdK+xVoqHSL38X/d\nRDyTqqIFmj3b7LAPouX27nchdRl35q4yLL5DHRHwWTNkity51vzCYo3NjPZm533hvn1W20hKSsKn\nu3ZZlqfCwkJccMETtAUzanJGxv22/wEgEUAHZGRMBACMGrXEWl5YWOhIKr3w228t7adY4O0Wn1FB\nq3i44+GuMA+DuHPNMYhGc8DX3FxrvwDQvv0lxvJsR/fedM6YMuW3xmdVnUFqG7UAKYqiKIoSd6gF\nqAZp0KCBZWkpT26W48ePVzr+zKpVqxzfbdmyxRqZy+iXvbcEn89njdrssX7ctEdbtmyJWJ9wlppw\nOXDKi0xbhMvbo9Q+osuxWxSljYVrT1UhKyvgkcSWHrl3xAIin2IB4vq0b88ZzusHch6i6Q1WEYqK\niqz7tLY881gDJG0lGjkR7YTTNJWVlTnaHGt/agq1mJvEvQXoYLABfhrUz1x7iWkS5Nl5uyqHmzrP\n7Hcn3cSZZ5oamfPI1FtReeH7pNNg4+XgUaMwZMgQAECvXr3wx6uuMpb/fU/VAp3f07OnUX7iiSes\nkPHhKb/gcTv4ZWS6a5511lCjzPopvm7cy8925JdiTBXNkiV3AQAmTJjg8bvybc9ZNo3bhQ6V0g6j\nlEpthycVeOuZVOYoQhy1p5jOJzsqsyLq/W8C37QhXVr54bYRut7ZMKdz3ydn3b0XXmiUl2zcaJRP\nO20+bducpMjNfcEo37t3b/D7wHTBk+eaR8/TEHzu1zvaFq/BZZ644LP9IpX5kW0+OTaRZujhsWON\ncrQT+ipKXSXuvcAee+wxAEDfvn1ruSZOCgoKLPW+9NzdcoIBwLBhwxwdENEcbd++3bH+nj17LK+s\nSCODsrIya6R04MABAMAPP/zgWE+sQlwnIGQRYDiCtWh7Yo1wx6aEaBeMXeLmvcd6Ns5WHU2+CXbG\nyqsvkjrIKF0sQp06cTexfrB48WIAwJQpU8r9G9bl8GDN7K6b90qXLqYziDl0AYaSyJ0HkiwBZ7g7\n+ec9e1w1lmwJClgFzWdmRkYa/eoBKoszyXPB9UNHn5GxDb3ghC3t9vthxb59Rty0YV26WMu4K8w1\n47g9fK54GNXDkbSbvcP4OWeqkFIoEW9dxw+NA6QoiqIoSpwR9xYgjqQcS5SUlDgiQ0fKom63sojl\nReb/JWu9ne3bt1teYOyd4PP5DLdhsSR9/31gTLF3L0+yBGJNXH755VbdgVDcH4lHZMd+DLL+4cOH\nHevFAtURr6Q+4Rbp2z6yFctPUVGR5XEVjYjkbpQ3B9a///1vACGLj0Qprq96iYroXp6tg2k0ysrK\nPCPpi5Uv3HMp2jRp0sTVM7G64v8o5aMUcS6Cnjv3XqPcmZbzybErUdhUy49yjj3Tm8zIrFOpeIgx\n8xe/ss31f5aR4XAP3UTmzg23PERrcI0C02bduweCXg3ER8ZSNj2/RNqC9Y5cYxU5Qj67ZoeLzyV3\nT5ZTmTUurKHJcxiPzexZv/nNu8an378WFYNrxA6uBVQ2NU88BRE5mL9Tp8LLufvKucK8Mo+9H9bQ\n706XLuMBbAMQaE9fffWIsXw4TYPYr+d6h5HaPPrN2GqUJ082p3sfeSQQQ+qTTz4JfhPorF1/fWBq\n5vLLOTilOSVy8GDA1VdeUjINvHNnIMfX8p//nH7PExfc7r0yqfHV4dbN54O1fKwJ4oQJiqIAKoKO\naRo3buyIbVJfIiIDgReKWA7k5RLOUlWXidfIz17t81//CqQYff/996u9LqLtYZYvl05pt4i/l3tO\n2qp4izVrFiksauxSEWuDiNr/8e23AEJel7+iiNB2p4JUbDaW8eDDK1Evd/d4aLKTHCQakmC/QYMG\nDm2hWL3Kysow/FSze8+apDTa3hfYYJRF/dgVAU9br8HFnb3MwcLCffsc94e0rdLSUmy3DVT70cDA\njMoD6vqHcx5hDY85OOAAqHkOVZHZxgs9nUfqFnE/BaYoiqIoSvyhIugYpnHjxo4M1/XJAmRHjoeP\nt65THV5OsYhbzja32DM1YfkRxENNdHGRQzU4EXd4sYaINqgm9CPVgVybBQsWAABuu+0213XFyiVW\nNNEK1lWiHfenMpSUlLg+15WaJW4tQBIfBzBFt1lIprKZ3C7JZvDkEIVsWGZZNTdxdkw/b8AAQ7y3\n+oYbXMP7B/jcKB2ipdkO4zJfgv1GqXVrM1dYQUEgWGOLFt+iY8eO+NK0bINDEBY69sdOmOZNf8MN\nNzim9uSFmZ4eeLnI8X/71U7jt2ZUHCccjp4nQfhaJSHLKBeDxdhmfJtQ+wnPvz42M0Txa+MYWH9l\nuu0m0biEJ1s47CS3La+bjc8HBx/gaYf9VB44MGBalwf5dcH8WdwBkhfOWWcVIjPzJE6ePIkWLb7F\nekpXFUmI2ABmZ4kdnLnLfByLjfJNN3U0yq1bc7s3KyPJOiVw4plnmpqeiy/ub5SbXHRRYL8SwmHT\nt1SjbVTmaV7O3cXqQU6wyb/3GgzJGWoPYLjHuooSP6gGKIZISEhweC94ZYmvKarDC8p+bJwFXihP\nzjSl9nBrh/K9dICys7NrLRIxIx2cQ4d4yICI3wvcyZM2WlesI2LBKo/nqxzbDWeeaXzPDhbXwd3j\nzusFwxJuL+cSdr/YQDqXcBHm7d6IvD2+atwZ5/qU0np8fIXkSvMxDa7sdQs/wA0d31aPGElOX1wW\n3JtDnUKHc4U5qu1FdeVzlY3ejj3WZeI2Fca6desAAD4fB+hj/xezidkjDvNDgG8EbjxeD4I33njD\nEaiLBZz2F0u7ducYy9qReC8L7WgPl1LZ7NQMGmQ+NNYHh+mDBg3C4MGD8ac77jCW8622wbE/jnBr\nPmrefHO+dbzyohSPGxlNy0vl0nPMY2UfKiZy/mznvC9fm2z0oW/MONvr1t2BSHShjivXdzN4+sQ8\nN6n0ILqS1uaXBtff6/zw+WBbHXd3ua0/+tprAOCaqkXaqVzPu+++22hPzHcZnK8+hNcLi18K23ER\nfTPZKM2duxsA8OGHH7ru005GxpdG+e233wbgDE4q052tW3NMdj7bmVTm+nLZK663l5dX3RRrK0p1\noxagGKJBgwauWdeF2oobUR0xUez5xuR4RXOgcTFiG7EIcrtgi5BYUwYOHIhvv/3WivMkehyJxxKp\nAxRtUlKq5skieehEEyRt2M3bLNaQepbH4zJWrHYVobS01GGlixQ/raYpKytz5ARTaoe4tQCF4P4f\nj5bMsW+2bbR1jEbpX9vSQxQXF+OMM0ytAG9r5873LJ1BZUTNnP+KjySF6lfoyOCURuXIAuQ8chjd\n4FDaMF9QufIj0S937QIQeuGOtIWLB5yutM8GR/diQZpI+aLYQsR2v2OkyyhEvwrV92dU5td7e0fc\nG7PMcX7Y6uGVHoAtOHyT8/a4pXYKpoiRF8bSefOM5ZPOPtsoL9+92yh37XqDUf7Tn0yryJw5f6c9\nnmeUuttC7rP1ie0pbIkshpkIeCeuR1UYNSqQJkfywJ1++jXG8oICU4t38GDgakv6mYsu+hVtke1z\nfIRMT4/l7AzNHTFuLRWPOKYo9RG1AEWR5s2bWz368syvN23a1KH1iSx6rt4Rw4gRI4z6b9myBT6f\nD1deeWW1RcXlEZp0CGVKTM6jLC+vJkg6PnU1Vktts3ZtxQI9ennXJCUlwefzITU1FcOHD0dGBgeG\nrDnEe2vEiBEAgNWrV5frdzKdx7C1QSws3bpFji9UW1RksFVQwAE6A3CXyz7Z7RXb2ysVLNucuDv3\nPelWvti3z3pOlJaWorS01HiuDqPBEnf2vZLbMjIhKoOMPEfsnch6yW7dzLyTP/64yXi+/fTTB1b9\nL6S689UodGhy+Gzx9KnZ2S6kQW0uBbtl0cTHdO7rOl5eYDywrgqqZlUURVEUpVpYvXo1evXqhZ49\ne+LBBx/0XL8MgQ632180qfcWoISEBIeI2Wv9ik59VWf8n5KSEmvOv7i4GKWlpUhMTERxcbGl1Yg2\nbAETLZBEnJUcZBXVPoklqaY9c1atWuW9Uj1E0kK4WT4bNmyIhIQElJWV1Xq0b85/V168rLp8b8aq\nV5iItcujhylvPrVYQZ4Pdcl7tKyszPFcq2/x0GqC0tJSzJ49Gx988AE6d+6M/v37Y+TIkTjrLBYU\nhPCyACVHWFZRYrID5MwJlUlrmEbH9rb12VR6V2vTo+zgwYOOh0w0xXg8k8/14XIumS/5VT1nDse+\naRr8Xtw62buFA8qZmp+hpFGK5mTU20HNiYhqxVQvUzHnnXcT/aI7lVkXYbYDjsRSGMbhNBIcUD4P\nN9I3rJ8yVTof0fIkqp+XxyHf8uw1xlfuglF8bU0mPvUUgNBLfVNQDyOUXHYZ/cKcFrj99q6QyFm/\n/nV3PPBAIB6NdKx//WvTy2+nLZZPCl43lm0mN+PvSeuW5bjWZrscMYLPFufy4kmZwHRdRsauYLli\nbcHZmvjq8COYt8/rsyaIjyeTymZbnzJlvlGeM2cOKgrXyH6EvPeK3vd89jkP3dL9+60OQrhO6Yzu\n5vXnSSHull5FZT6bXJYXWUvr03zOeXmY8pO5WzfT4zQz8zvr/437AzGrZEDdpg2fHa8JO35LsN7M\nfBIM8/h1TQmGK8Pnn3+Onj17onvw+t90003IyMiI2AFSDVA1UlRUZN2o0oDdLDhu2YLdiAVvhmjA\n+gk3jxoeIcn5TE4O9NFjZcRXX706RCdz1VX8uqgcn332GQBg+PC6H5jPre3Vh2jtsXJf2SkrK3N9\nnsZifStKuGd7fXneVyd79uxBF5tmqnPnztiwYUOEX6gXmKIoiqIocUgZElHosNBWD3HXAdq7d69l\nyZDYI+KBwnEg3Cwh7CUl1JcRAXu/8XHJFAmfJ1lftELyWduj7vpqARLeffddAF75072ROEC1fb2i\nQXmtunWRWMx3VlJSYj1X62MOwXDtpr4876uTTp06YbctHEdWVhY6deIJVCYBNRUoNCY7QE4XRj5h\npgbI7kLJc8scKeY//U2HywtscYKiAfdbWRnA0UbGU/lU0gQ96dDFyENFGoiZ3+o8UhGxTJrnj9nd\nNJq0azfYY+8mA6nuPJO+Cqn0jVfkHROead/uiLnkpSMxW9OP5J7Ks9occYkVRjzPzW23MwUidERX\nJo1Qt2CcIGFnMCK0NXU52YwLFNhiqD3NmWPed48/HsqX1bx5c0ycaFcjmBogYKxRyvJUPHHmOHYm\nZpd8Xm6qOvbt+w+Aioicp1A5jcrsVM71ZxUKty6uh3knplAutUcWLQIATJ06FW74fNzxMYNHDiNN\nmv1Zw4omrh3fa2mutQhQUW+c5ygm1fXkSs76PD67XH++OgwfH28vz+Gqbl6/zMz/K7d4uz3p3bIr\nGMeO29ZQmDkWOQZ5JpX5KciZFPz+8KEiaoL+/fvj+++/x65du9CpUye89tpr+Nvf/ubxKx+8I6lH\nh5jsANUkBQUFlgcKWzzYEsI3Qn0dAbhlEefz43a+Ym2UXd8tQIJ3nKDzPJab2NNSBKxD4VNsxALS\n8XF7WUkbPXLkSI3VqSK4pS+pKxQWFlqWYY6bJtoguQ/F4y3WcYv8z0mFFXcaNGiABQsW4IorrkBp\naSkmTZqEsylgq5NExLUFSFEURVGUus9VV11VQUcNtQDVGJGsODIC8LL8xJrFoyrYc+K4WXbcjj/W\nvD0ef/xxAMApp3ilNVDCMXRoKCJtdUUdjxYSEVpiTXFCX7H87A+6MMcasXbvVJTDhw9bmkrR/rlp\nCOuC5bysrMzh9SrvA6m/JIdWok0CnJOYdqJ33mP0qcYmUjMvdnea67bPR/OrbqPHls/wqMmcVFN3\nwsqF1cHEkgLPx84nPdN5FJ/CK4cS8C8qi4OgzIKbNykrJViJwfsLH1Q/wLy25tq87gu5FdPgOMk0\nSnzt+FycpNxcG0mD48XU4NyzBP37aNJrtIbZOs4jPRafO87ixgoijg7CZ8srgzrrHqo+ccAJB7bC\nbE+mEmPePD7ikPKi0KHHupLKPIL7gMp89kyFVC+6x7c77jxTXde9O++fzy4rKSZQmdWCrPnJpDKr\n+fjq8P5MHWMhqVhm3XKL8Xk4bCeBr4epONxoy9UGmPc+31vctvjeZjdkL/3aMsrr9zt6NpzVoYNR\n5vpwnKgsh5rSvDsefngU1q8P5QZcv349WrVqhTlz5qBbt24YOXKisf559OzIc9yt5rnt3n20Ud69\n+23r//Eex5LtkXajO+U05N9HjgrEb0NgOwbSN1556mIdHyInvKinHaD58+d7rxRlGjZsaFkwKhOx\n1O/3WyOC+jAnXFpaWuHRfqxaxObOnQsAeP31gGA3Vi1ViqIoiuBlAYo0bK/4nhRFURQlavh8Puuv\nOgYcduuPcOjQIaxdu7Zak0THyuCufiMaILe/6BFTFqB58+YBAH71q/+psX02b97c9QZ1y7ps5+TJ\nk5YFRHJ21WVKS0vLPUcvIe85flKsxf+48cZAyguxBMVa/SrLqKAbfAa5yzO/+MUvgutVe5UURVGq\nSJzHAepM87U8W8+6FrtWJJOWvUTlP337rdWLDxdQbBrpXnjW/Vwqz6X5YFYGpJLmh7tUHP/CCStH\nJGmlzASbe9xJ88FHYYYd57g/HE/j426hcHpeGW0mdOxolF+lef+9ewManT17AnqK/v1/S1swG7lX\nvh8+t6yy8OLiMWOM8q20/AXSa/H2OTMXR6p5l8p85Tinj5cuwyuWyaOTJhnlHhQXKCPjcPBzSfAb\nVlUlITSf/j2crYGVH/Yas2aGrw4rFUwlw3C6L9JobdaYnEqxUfZSeTN60S9Y78Qjx4+p7KVAYzUh\n9yb56pjnMtVDT8a/Dg+vZepk1lP7/d52jvnovPLWcVtm/rFjhzXwEbGwiJ/DuY9zbLemdP2dkYW8\ncrO5h7YoLS1FKr1DnIoSLwWe8+knx7P4p58AANnZgWMQMbQc/xUUa64lIiev9dISeucx47bN6sO6\nhnqBVRspKSmWiVQ8RmI1fk1dRSxIEtukVatWtVkdPPPMMwCAq2u1FopSOYYMGRL8jxMjcyfzhFGy\ndwFY1MzdB05f6mUDHjt2rOO5yfF/TMwOSY5jOX/DonmzxuvXmzUUa/369evxww8/OM6UM3Ai74+H\noqaV+IYbbnB4wYrFn7WjvO/Ikmhnh4Y7QHytnNfmW48t3OFRg1gjzi1AiqIoSuxi1/Z4DSCrIxBp\n27Ztjf2LFaZdu3ZR35fsg49PBtJ1wa2/bqEWoGqjefPmDq8voT54cdUmfF7lAZGayi7TNcv06dMB\nAHtmzKjVelQ3l112GYDQyDQjw2siQ6kLrFu3DoAzxYFzQtsc+adWYQrMK+TC0qVLrejbcp/z1Jc8\nB44fP45Onc43ft+OpsCywB2XS6ls2lF+97tfGLkG//CHP6CsrAx33303UlJSMOGaa4z1eUJzg2N/\nPG1kTpG9+eZ86/jkPVFYWGiUpUN20RlmcBWeHGZ4qpwn37ymwLLRh77hyfq6hpcXWPSIyQ4Qmwy9\nos3YT9XlB0N5T/x+Py6zLSvPFBfnb/LK4uKVz8nrQcOaID7WFNI6iAIoFU8CALIpHxDPnWdjqFH+\nnmLnsFLCHv2E68aROSJFagjH3r2vAgBOnAiY6nnkNL67GQvE6yHMkVq8+GdQBC37vZM0QS/Q1V1D\nD2k2o/NDlR+hnLtsL00DsJ4sjcp8fDzhwW3p9tufpW/M1tSdrv1RhCYmUvGkZ9stxnbr/zwwrIgy\n7yTWwrGRns8lHxtnA3ROK/AvTM1RL7qPWMH0Kh6gbzhXGD8ZzNbQmY7PzIzmVLR8TeWznw1cuylT\neL92OE6VGfenInGj+DnjfI5E1sgkJSU5AsXan68tW5rPHYafHb0pn9Zm0lx98cUr1n6Sk5MD22gY\n2kpycjL8fj/69u2LY8eO4cNNm6z18/LyMHTo3bRHbu2Rg6WeckroeHJyPgUQSqYtqT3ECsVb9ip7\nvVP4XHEHqRnFFdrpuHZ1cQqsom+XyhGTHaCqYI/g6dbhkR47Wyo0smfV4A6NnGe5HvLgktxrsn5N\n5eo6dizwipAHl6LECtI2FUWJcwuQoiiKErs0btzY1QIkkdajSbt27RwDW3uqDfm/RYsWDstMdQU+\nleOXcCA6gI4WqgGqNAcOHHBYGnhuWm4Izu3CuV+UiuGVFT6cNgAIzaVXNxMmBAIqLF/O0zWKUrtI\n1HJFUeLcC4y7IeygGGm2/+iZZxrLns5zqhUiwboXLx0Kz6XnoTN9wzO2ZnmVhwqoO2kXxMVSYtTk\nU4yJbyjuTx7pUFhLwTJKe5mN8plUrqrRvj/FEeJZX64bU9WA6Jxl7WHSVLD48Ckqs46FdR7DSSnD\nGXq8tG7c9nh5lkO3wZhbYKPyuQA+Df5/EZwqF66f/fjufOtBAMDu3bsBAHPn3m+s25s0MXwsHGEo\n7eGHAYR0HR/ffnvE3293xP0x12DND+utWPtWTNfqddI0taftsWaJha7sdp5JZY4qVB7a073Ocaq4\n/dnbJ+eTYt3JlgO7XJM+uyVD5u9lYLN3715s2vS8Fa15zZo1ALpa2x02bJixnZMnT2L+HaZOZdu2\nDCtOm9uASn7PU+9yHBKGIzU1FXv2LMO+ffsAAF9++SWmT3/I+M2TT15vWYw++sjUygV0WdegT58+\nYY+fw6os/zRwVx0+HHhaixSAB+DyuyuuuN7YH19nbmt8H/NzyHl31TXUAhQ1iouLHVmJpUFKgxc0\nR1TVkPMqJmGxqPF5rW1vO4kZUu8bfzUi2dc//PDDqGwvXGoDRVHikTi3ACmKoig1R0FBgTVgEUuG\n1wCGLTMyoPzxx4AFImD5ccIWm549ndnLU1JSPOMLsUWK/5flInXoGLQ4n3su2wMDgza3eD6LFy8G\nAPzhD38AAHTubFr5ZfsivRDEmilhKVh6oZILN9QCFFXkxhRxHmtPYiVeTV0nLzjdKKZfiRPSpk0b\no1zbTJ48GQDwYkSXYyUSR44cier2JF/ZgQMHAAA/aOIyRYlT4twLzEsvwFoI+/w764Patx9J33BG\nJp5BPc8oFdLyJEcOG4aVLF5Hwxfa1Ajlk/aAJ+lYe8Dhw/JJ2+ClM7HDcW84Lg3/9oKzzzbKhXQu\nu5PGxivSg1eMpaqmnm2ybFlgu8GRWOJRU7khGgQJuLZj+HBjeeTIMM5rw5ol59y9CbdlzhnkVLZE\njjjyI7UF1hZ4XQ9nOoEQo0ZdAAC46KKAMkVGu3eQtuOVV14BALRsGTg7MhrOpTxy4//8ZwAhR4bZ\ns++kPXIkn/eMkjNWiglrdPha9fbQ/LA+jX/P99l7VN6Aig+2vDR3V1E50/Y/h8TchN5GuUcPM+Pi\n9u3PWQNCe7wdILwmp3lz88nz/PNzHPWTlB4NGjTArFkrjGU7d+50TU3EEoZwmh+fzwe/3299hltP\n2lqXLl2wZ8+nlqXq22+/xYwZy4x1R41y5omUad++fU39UHb2EwBCzxFp2/LckAG41Of00/vSli80\nt0dXupji/PBdn035H72zOMY6OgWmKNWOZIn3wivbejzCQlFBpgFmzZoVdvm4ceMAAM899xyAQEoD\nADg72Hk+GuyE/vvf/wZQczGiFEWJFXQKTFEURakljh07ZllA3QLLimUmnFPD0aNsYwtZks6gVBFA\nwFrClh83ry+JJG9PQVFaWgqfz4eTJ09akga334sl6NRTA3Y8doZxwy1YJVuo2DtMc4VVlESoBUhR\nYoRRowK5ddQOFGLSpEkAgB07dgAIPeTLq/MSHdYzzzwDIKQbE0tQjx49jO0rihIvxLkF6GDwYSoB\n6264YbqxvJBOTrahFuEHMJ9IVl7wSMXs5XMOI9ZJOPO0mNoB1gZMpjI/3v9MsV3cdC9Saz4anh/m\nMr/E/0Jl+/HsRHtjWQqdiyvpt+zLsYn0Tqxp4SuVRmU+dtY3DX/xRQDA+PHjUROkP/YYgNDI8/v/\n9/+M5Xx8rAPh/E88U8/jS96eM18Tn6HIypdCam1HUYhS639nW4l0PKNG/cpY9pe/hJ/yihadKTZK\nFj6m5aa+icf0fJeznorPJJ8Lvpbs35SGyLB+yu8/GHa9SBwOPhdfeuklAMCmCRMirW7cfU69GbcV\nM6pQs2bNLAuGW3gQU2tj7sHuATZixAjMnHk/MjK+tL7bvftfDsuS3avrzPbms8dLDyg1vL1rIN4Q\nPytYA/XS/v3W8XXv3h27d7+ELVu2AACeeuopZGSY+x81KtvqpLOO1M0yxl5q7pYg1oWarZWP3anF\nM8/G3/4WyER38803u+wv1olzEbTAwkhFsVNTHR+xUojpXd1XnYjgs6LmfvHMnD7dHOQsWrQIQPS9\nzRRFiXV80GSoiqIoii1xLZQAABq0SURBVIOaSJzauHHjcndmwwnVhw8fbnnw9e7d27E8KSnJ1VJS\nE8J38RgDnNqkW265BRkZ7zt+E0rZYw6AvCJky/cSILa6qfuDBrUAAQBmzpwJAJg16/e1XBMlHlmy\nZAmAUCCzf/zjHwCAoUOH1laVYhaxAFX0Ie8WFXzatGlG+bHf/KZyFVMUpY4R5xog5m9/WwAA6NQp\nkMnq0kun0Rr23iLPmH5PZXP2vztpC7jfuZl0F21pfY4Hwvl42JDnlV+L68M6jEPBhvG+FUekGa1v\napB4EpHzB7EWYr0Ru8ecSS+kDEb5FJ/Ca1yaR3GB8ugXbbHdKPOVPDOYY2fXrl0ee6oevgu6w8un\n1xiFdSfcVrwiRrF+jHUwi1f/F4BQPq5Vq1YZyzMyOOOTqft4H02BoHbm/TBxaQaS5sveGi6idlbd\n7PawRvh8rY1yFi0/lzRCfGa8/IC8cgSyLmMnPTf8/sOIFjNmzAAAXBYcIAo8TLQrvpz3Jn9jHpE9\ns7loZTiptJ321FY4btPevdsdv5eyYLeg5MGMueXE1M2kBJ8dokTi68HXz25lEkuUdOL79OmD//yn\nDzZsCORVXL58OTIyGiEjQ3RnpkLMzdtMvpdBgaTgcT45zKd8dzqX3BVw5sEz15g6dSrqND4f0ECn\nwCxEzCWxQ5T4ZOfOwEu3urU/LwbF1WKdiNVYNE89xelZaw95SdpfnOFYuXIlAKBFixYAgK5B0apo\nftjyoyhKnFFzBqC60QFSFEVRag67jkQsI17eYJFITEx0jewsAwyxlJQ3Lk9VkOjRdqQsnfPzzz/f\nqmdGhmldDfc7N+2PTKF7DQ6UIDUXCLpudYAkdsiUKQ/Xck2U2qCmvL4mBN2LJQmi24NfceIWAVqs\nt8OGBVyIJWJ0q1atAIReDuI+nZmZCQCYovnaFCW+UAtQZPz+bUb5iSfMXCwyR15Rnn32WQCBTMRA\naI5apkKKiorwP7feavyGdRocb+NjKmc75m95tMMZrngPMvedFvw0Z7t5bYa1D7z+N7Z8XYWkGXnt\ntdsAhM5zWdntAEKuzPn5gbns2267zaMWAcS9XLxFQtsNjAjlpShB92qa/1fBuXSve5b1Vnzu+cp7\n6ce8WW6UUkkHk4eBtq2mgSM5fY9XjTLHVoklKhpXZzqN/vm+5bx384LTouKBVdlnTHXC7aVFxLVZ\noWZmtuvb929GOTc39FwIZ/HJRnejvG/fP1y9vI4ePYqLTzUVcVkUc8z5pDKvUGfSyYi9StQ1fHS8\ntdODmeGFQsqNlpOz1kri3LdvX2zZ0hc5OTkAgKFDH6GtBTr9bOESi1aXLnznRI7fle+hAUolrWQS\nles8agGqGHPmOBPvVYbyiMe4AxRPjBkzJqrb49gvSnQYMWIEACAj49Ma26eY+Zn58+cDCE2jSDA5\nSbQp6RYkEaYMPkKC0digpqyPihL3qAVIURRFiRXCeX6xt5Md+7SxWNBFVxSKqBy7lJWVWcfQunXA\nw9AtzUu445dtKJXAKwxQFFOraQdIUeooV1xxBQDg//7v/4zvxXRfk7gJPMU77NChQwBCGp/TTjsN\nQMjiIxYgmWIaPXp09VVWUZTYxSsQ9Ino7Uo7QBXkBw+Ph9Y0GshzxFdh2x7PVrMmiNUJRcHPTABA\nCsWG4bg//Gsus67ksGYudqWQYrssWhTQAnTr1g0A8LOf/cJYzteGqe5ELyke+bECbcjensy2yG33\nY9qenXEVr16t8kw9aOdrg8ewdOlSAMB/xo41ltsnJTnzF+dTBMX42rfvP9b/km2d4/YIPp8PeXkb\nLc0La4ROnDiBtDSWDnjltTPz1nnFa5NwmqfRp8CaLo7JtZniCo3q0MEor8zJsaZxs7MDgn5OiSOW\nILF4SeqcnTvNzHFXdjf1UnspalUe6ak4ThDnvZsfzJlZk4OGbdu24dZbb8VXX32F+++/H3fccUfY\n9QYPHmxF0M7JycGAAQOwYsWKyBv3sgBpB0hRah+xVtRWzjpx1xUGDRoEoHYsQG7Cd5lGuPPOO8Mu\nVxSl7pGamorHH3/cszPz6achHeLo0aMxatQo742rBkhRFEUpD9XRAbfnGxPLj3Rm2fLhFiZCNDDi\nJVqX8fv9juN00/6IQ4BoncQS5LZ+VakNTVW7du3Qrl07vPPOO+Va//Dhw1i7di1eeOEF75UToV5g\ndZWDNvPvyy+/jPHj59EaP6Ii8DRKIcQMHd4p2stVmlN7RDNEf32DpwOb0wNs3ry7jbLzWqVEXO4F\n/56Z8ctfGuWMjLW0P6/tHQNQZv2fgs0R92cPuLBy3brAd1s56UCABQsC6WvKGxJBUZT6y4oVK3D5\n5ZdbXp8RUQuQoiiKUh7mzp0LAOhy++3G951s/3NuMi/69+hhlD/dssXKmi6fYuFxi/cjnwFNDKsP\nWZVkkkqDBX4f8tbENiO2MM55yDkVKxpTq6yszJHLjI9XkEjW4hjw8379jOVmJjGnCrTQoVAaZpSy\n8E+jfGsdCM2ydOnS8gc1rcE4QBrithq55ZZbarsKilIt5OTkICcnBzNnzsRMSsoJBF4Y6gasKPWH\nJ598Eunp6UhPT8fevdwFdefAgQP4/PPP8fOf/7x8PxALkNtfFFELkKIoihKRkpISh5cXxwESSxBb\nhiQUQl1HjtfN4iXI9/XluIXZs2dj9uzZFf7d8uXLcfXVV1uhLjzx8gKLIvXrCsUg9hD9zz//POYF\n85m5wTqN8LoN9+VeOhTV/FQe0QT99a9/BRASh4ro8Te/uc9Y3+taeOGlGarotfdaXpH65eW5u8QD\noWkZRVHqH/v370e/fv1w+PBhJCQkYP78+di6dSuaN2+Oq666CosXL8YppwQSkLz22msV8wL1igMU\nRbQDpCiKUg/YHeygv/LKKwCAe4wpeB5SmxqcFFsOQOdS4NxzBxnlgoIshwVEBgRiKRJLSaNGjZCZ\n+X+WN1iDBg3Qs+cQ2oMp+uCYVeznxiqZ3VT+nspeORI5W9jzW/5uCXYTExPh9/ut42UtkCDH26WL\nqfkZSHvid3salY/hI6OcR7VfseJ/AaB8LuXVRIcOHZCVlRV22bvvvmuU1wUdJsqNWoDqJ5MmTfK0\nACmxz69+9SsATktQPKF53BRFqRbUC0xRFEWpDOPGBeJy31ONThg+n8+yeLA2hr8X7Udd0gQ1atTI\n8R1rnVgDVV1xfpg9eziudT1Ds8HXX+yxZRYuXAgAOPPMMwEAbdsGDM9sURC3Sr/fj8mTJyMhIQFL\nlixxBOYSt8vMzEwAwHXXXRf9A1AsxBL02GOPAQD+8pd7AIQenp06BRyRk5OTAYQe/HLd5Dqb7sLO\nJIqyviyX0PIHDhwwttunTx8Aoczrsr7AgekSExMxbdo0JCQk4LnnnnO0J3uAPXnoSk4vRVGUakEt\nQIqiKEpVMHUznB0rcvRodnLesWMTmjULDMvlkzvm0pGXSNHiHMAdf5/PhxTKf2UqcIDtDkH+WUYp\nL5gLUWiJbACheD9f0K9ZU8Sxd/ibhg0bOry9WPsjx80DmYMHtxrlqZSaxjwSZ/kbKmfgLaM8a9bf\nHbWvV6gGKD6YNWuWUX7jjTcAhCwHYkmQUXdRURFOnDiBhg0b4siRI9YNKh45P/30EwCUP+CUEhVu\nDwagk+jHR48GHqZigXvqqacAhF4cTZsG7m6ZGpAXhHzKA5UfuGLBEZGpvGBkezy1wG7J/CA/cuQI\nSktLUVJSgpycHGu5tCexNAGhh/2cOXPKe1oURVEqTgLUC0xRFEWJDY4fP25NrTLSoeb4P/w9W0pi\nGftgggckbtofGSTIZ01pguodagGKT2644Qaj/MILL+D2SZOM7yQX2MCBgfDoixY9gqlTp9ZMBZWI\nSN4rsQQJHCn5kUceARBIKAiEsrfL1IE8aAcPviri/qoa9ydAIK7Uz372C40RpShK7aMaIEVRFKUq\niMPFM888gxkznjGWdae4P8xO9DLK55xjxpw5dOhLh0aGvaPsFpM2bSYav+9M++O4PsXUed8J9nwy\nA8KKrUXemwW0NscFcmK6HZ1yihn3KC9vo8NyxRYhmZqeFBzYCJyHjNVYw6jMeqXzli4FANx0003h\nq17fUC8wBQgkuWMLEKPWn9jDKwP6r3/9awDAsmXLAIS0XvEYT0hRFMVALUCKoihKNJg+fbrDAlRV\nioqKHHF/ZArXzXuqLuPz+RzaH86JJk4J0SZuLD+CWoAU4TCZXYcMGQKgEuHFlZjDSyTJGp5FQVN4\nTk4OAOD2238fcf3PtmwB4BShShygL7/8Eg8//DA6duyo7UlRlNhALUCKoihK9DA1M6xL4VxZnbHd\nKGch1fx9fj4aNgz4Kks4B7GEyPd2S1B+/iuWd1RxcTE6dLiZtr/RKPeiznx3ihvETkIHgp+dEB4+\nvp3oTt+YKqTc3FcdYSjY4sOaIAlYy3omrivHIOJ3/RmffQYgFNA27lAvMEWp/4glRsSTHDCOkfhC\nLVq0KNf23SJKFxQEJKJTpkyxEmcqiqLEBDoFpiiKosQqR44csQJwiqWEI0O75QarC5og+yBEBhJi\n4RFkwMIWoqoiKWjGjBkTle3VOXQKTFHqP2KJkQjR/IJY9u67AICDBw8CCOV6S0tLAwBs3PgRgFDu\nL5l6EIuSfMr25AG+dy8nOlAURYkREqEWIEVRFCU6+P3bjLLPN9go5+FS+sXHRmk41hvl3/bvb5Sf\n27nTtq9AR54jQ9u9wvLy3jQ66qec8htje9vxI9WHc5eZSpqkoEbo3WC5La3N+bbysdMob93/T9eI\nzzJwYMuW8GXr1kaZExFtpTIPPy6k8rarr0a8U1NGQu0AKUotIXm1JHJ08+bNAYTiAp04cQJAyFIk\n2p9WrVoBcIbilxcOv3jkc//+/QCAsWPHVsvxKIqiVJVEOEXr1UV4tWU945133sGgQYPQsmVLdOjQ\nAVOmTDESPebl5WHMmDFo3bo12rRpg1/+8pc4fFjTAsQjr7/+Oi666CI0bdrUCjmgKEpkysrKUFJS\ngpKSEvj9fvj9fpSWlhp/QkJCAhISEpCYmIjExERHEt/aQOqUkJBg1b+srMxwJGjQoIHxJ+sr0SUB\nQOMIf9Gk9lteDVBQUIDf//73uOSSS3DixAmMHTsWv/nNb/D0008DAH7/+9/j0KFD2LVrF/x+P0aP\nHo17770Xjz76aC3XXKlpUlNTMW/ePGzbtg1r166tkX16RY4WJHK0vDDYy4stQLLesWMBF+gff+Rp\nBUVRlNgiEUD5/FyrTsx1gB5++GF89tlnePPNN63v5s6dC5/Ph8cee6xS27Sb/Js2bYqpU6finnvu\nsb7btWsXrr32WmsK4rrrrsPbb79dySNQaosffvgB/fv3x5o1a3D++edj7969OPfcc/HGG2+U25oz\nbFggM8/ixYursaaKUrv4/Z8aZV9DWqH4C6PYEgOMshnFx4yCzJGhOYIya218Ph/y8p4wsql36PAE\n7SGTymZnvhiB4KDZaBcsm3GDWBO0ee9eRz0EGUBIvd1yngk/Y48lllOtMYt30+K7X3gBADBx4kQo\nIQtQTe0rphg3bhxWr16N/PxAqK6SkhK89tprGD9+PGbNmoWWLVuG/evTp0+59/HJJ5/g7LPPtsqz\nZ8/GqlWrcOjQIRw6dAhvvvkmrrzyyqgfm1K99OjRAw899BDGjRuHY8eO4dZbb8WECRMwZMiQqLWd\n2qRhw4Zo2LAhfD5fxCjSMrUgJvysrCxkZWVh4sSJ+pBVFCWmEQ2Q2180iTkLUMeOHXHJJZfgjTfe\nwNSpU7F69Wq0adMGffv2Rd++fbFw4cIqbf+DDz7Aiy++iA0bNljfnX/++Th58iRaB9X8l19+OWbN\nmlWl/VQX6enptV2FmGbq1KlYuXIlBg4cCJ/PZ1nyFi5cWOW2Ux/R9qREg8LCQisitHTOObCnWFTs\neiA7bGmpTmSQYN+fWH6kfmwJErwCllYUHZSY+BDZAlQQxX3FnAUIACZMmGBFqH3llVdwyy23lPu3\nn376KZKTk5GcnGxYeQDgs88+w9ixY7F8+XKcfvrp1vc33ngjTj/9dBQWFuLw4cPo0aMHxo0bF52D\niTLz58/H/Pnza7saMc3UqVOxefNmzJkzx/Koqg80atQIjRo1cliApCx/Is4sKChAQUEBrrnmGlxz\nzTVht6ntSVGUWKIB4tgCBADXXnstZs6cic2bN2PVqlX485//DACYMWOGa+j+U089FVu2bMHgwYNx\n5MgRx/JNmzZh5MiReP7553H55Zcby77++ms8+eSTVkC6GTNmYNCgQVE+KqUmOHLkCObNm4fJkyfj\n3nvvxejRo5GamlqutqMo8YqfEpn7mplxfl4/1tsoD8Nmo9xp4ECcCP5/AkCr7793aH7EoiJ6IQnz\nIHF2JJBnYNBiRl0GWKTEiENAQPCfhxRjaX/KLZaYmOiI4Cz1k3rJJ4eV6GkbPAMA5lJVSHB05J6A\n3ko8j3/7008AgOnTp3scU3ziA1BTw9aYtAA1btwY119/PcaOHYsBAwaga9euAICnn34aR44cCfsX\n6QW2efNmjBgxAk888UTYkXD//v2xePFiHD9+HMePH8eiRYvqjC5EMbn99tvRr18/LF68GD//+c8x\nY8YMAOVvO6WlpSgqKkJJSQnKyspQVFTkCIFfW7AFiN1w5fvi4mIUFxdj9+7d2L17dy3WWFEUpWLE\ntQZImDBhAhYvXoznn3++ytt65JFHkJubi8mTJ2Py5MkAzFH/888/j7lz56Jz587w+/0YMGAAXnzx\nxSrvV6lZMjIysHr1anz33XcAgEcffRTp6el49dVX8ctf/rJc23j55Zdx6623WuUmTZpgwoQJWLJk\nSXVUWVHqJQ0aNHBoasTiIhGgxVIvKV5EQyQ5xqqTsrIyh7ZHLFNSL7HYyHri1VZRDhwI5Kq/9tpr\nK/X7eKMmvcBitgPUtWtXNGnSBKNHj67ytl544QW8EHQ1DEe3bt2wcuXKKu9HqV1GjRqFUaNGWeXk\n5GTs2LGjQtuIZU8pEV+yWzGb8g8dOgQgoG1TFEWpS9RkJOiY7ACVlZXh0UcfxU033WTF5lEURVFq\nBr+Zags+30yjPI1yhV2N143y2926mb8fGfq/JYB/UJi1pY4apFD5VCqb09JNEbAqdUceAOAiWptD\n8/jbtTPKH9Nyzjw2y26U6kcLl5vFwZTs61O/Wn4qQlxbgI4ePYr27dvj1FNPxerVq2u7OooSM1x6\nKT/Gw9OrV69qromiKEr1ENeRoJs1axbWi0tRFEVRlPpNXFuAFEVRFEWJT+JeA6QoiqLEDn4/R8YP\nlRcuXIjZs00VzffINsqnn2v++mKKlXMxRZr4n5fMuD09Ke5QHmYb5RJsBwDkB8sPUm1b9aQvyKHr\non+b5Xdp9f86Fvo/c6O57LJgUm2J62NmWVMqilck6GgSk3GAFEVRlOjx0UcfYejQoWjRogXS0tIc\ny4cOHYq2bduiefPmOPfcc5GRkVHzlVQU1GwkaO0AKYqi1HOaNWuGSZMm4eGHHw67/LHHHsO+fftw\n+PBhLFq0COPGjcO+ffvKte1YzZtYU0yfPj3uojpnZGSgT58+SE9PR79+/bB+/fqw6w0ZMgS9evVC\neno60tPTkZOT47ltsQC5/UUTnQJTFEWJcZYtW2YFcQUC6SMuvPBCrFu3rly/HzBgAAYMGIA1a9aE\nXW6PfC/RxHfv3o2OHTtWqd41hVeiDCW6XH755Rg5ciR8Ph++/fZb3Hjjjdi2bVvYdV999VX068ex\nA9yJay8wRVEUxWTMmDEYM2YMAODw4cMYOHAgbr75Zjz44IN48EFWvITIz893XcZcffXVWLNmDU6c\nOIErrriiQi8tv3+/67LXX38de4N1F/rTOs1Ik0OhdJCHzrS/Bdb/gRx/F6BNmzYAgFNOOQW7EQoQ\neuTIEXx+kRkZ6CzaPncLOS7QnW+9haysLADAQ7fdhngnOTnZ+v/o0aNGcuaqol5giqIoioOysjKM\nHTsWQ4YMsaZd7rzzzqhse9WqVSguLsaaNWvw73//28gzpyjMW2+9hbvuugs5OTl45513XNe79dZb\nkZiYiNGjR+P3v/+9Z2epfZs2GBah8y0d3Wjg83NCFEVRFCUmueuuu/DPf/4Ta9asqVRuqjVr1mDK\nlCnIzMyMuN6IESMwa9YsjBw5MuJ65WUdvfS8LEBbyCust8MC5J7kd8WKFQCAli0DktnExER8dckl\nxjoVtQB9pq9JVz755BPcd999YadX9+zZg06dOqGwsBCjR4/GuHHjMH78+FqoZXi0i68oilIHeO21\n17B06VIsX77c6vz86U9/QnJysutfZSkpKcEPP/wQraor9YAnn3zSEjPv3RuapLzkkkuwc+dOK+mr\nnU6dOgEAUlJSMHbsWHz++ec1Vt/yoBYgRVGUGGfTpk0YPnw4PvjgA6Snp1f492VlZTh58iQ++ugj\nzJgxA9u3b0dCQgIaNmyIbdu2YdeuXRgyZAgaNGiAZcuWYdKkSfjss89w/vnnV8PR1CwLFy4EADRq\n1AhASBt04sQJAMDMmTPD/1BxZceOHejRowd8Ph+++uorXHPNNcjKyjKmt0pKSpCfn482bdqguLgY\nN998M4YNG4YZM2bUYs1NVAOkKIoS42RkZODQoUMYNGiQ9d3gwYPx3nvvlev3n3zyCYYOHWqVmzRp\ngksvvRTr1q2D3+/Hvffei61btyIxMRGnnXYali1bVi86P0r18Oabb+Kll15CUlISmjRpgmXLllmd\nn/T0dHz99deWmL64uBilpaUYNmwYpk6dWss1N1ELkKIoiqIocYdqgBRFURRFiTu0A6QoiqIoStyh\nHSBFURRFUeIO7QApiqIoihJ3aAdIURRFUZS4QztAiqIoiqLEHdoBUhRFURQl7tAOkKIoiqIocYd2\ngBRFURRFiTu0A6QoiqIoStyhHSBFURRFUeIO7QApiqIoihJ3aAdIURRFUZS4QztAiqIoiqLEHdoB\nUhRFURQl7tAOkKIoiqIocYd2gBRFURRFiTu0A6QoiqIoStyhHSBFURRFUeIO7QApiqIoihJ3aAdI\nURRFUZS4QztAiqIoiqLEHdoBUhRFURQl7tAOkKIoiqIocYd2gBRFURRFiTu0A6QoiqIoStyhHSBF\nURRFUeIO7QApiqIoihJ3/H/UEml/ADrvvgAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x11604b8d0>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAADeCAYAAADVab8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztnXl4FFXW/79Nwk5YAsiOAVFEBVTA\nhXFBZHBDUMAFBEF2RYVR56fzzjjj+I466gwqIiAGlwF3RbYXcFxA0VFHVFAcxVGMEJYQCJANyNa/\nP7pPdd9vpbq6k053J30+z5Onc7u2W1W3qu8993vO8Xi9Xi8URVEURVGSiHrxroCiKIqiKEqs0Q6Q\noiiKoihJh3aAFEVRFEVJOrQDpCiKoihK0qEdIEVRFEVRkg7tACmKoiiKknRoB0hRFEVRlKRDO0CK\noiiKoiQd2gFSFEVRFCXp0A6QoiiKoihJh3aAFEVRFEVJOrQDpCiKoihK0qEdIEVRFEVRko7UeFdA\nURRFSV7mz58PAGjYsCEAIDXV97Pk8XgAACUlJQCAKVOmVGn/8+bNAwCkpKQAAMrLywEAt956axVr\nrNQV1AKkKIqiKErS4fF6vd54V0JRFEWpmyxcuBBP3Xyz8V0prbMN3embFlTebZQWL34QxcXFAICm\nTZsCAA4fPgwAaNasGaZOfYi2b0LlX4xSZxQY5cO0dr7+TNZJ1AKkKIqiKErElJeX44wzzsCwYcMc\n13nzzTfh8XiwadOmGNYsPFQDpCiKokSNJUuWAADatWsHADjllFOifowuXbrgl198VhzRCKWlpQEA\nunXrFvXjLVmyBPv37wcA/OY3v4n6/msrTzzxBHr16oX8/PxKlxcUFOCJJ57A2WefHeOahYdagBRF\nURRFiYjs7Gz83//9X0hx+r333ou7774bjRo1imHNwkctQIqiKEq1uM7vsSV8QMvrU5k1QECuUeqM\n7Ub5RFr73qFDjTIrfNjeUGQ7Xuj6NKXy/9x4o/X/n+64w1iWrPqg2bNn45FHHkFBQUGly7/88kvs\n3LkTV1xxBR599NGw93vppZda1rbKaNOmDdatWxdxfStDO0CKoihKree//k/uLCnRZ/Xq1TjuuOPQ\nr18/bNiwwba8oqICd9xxB55//vmI971/fy42bfrYcXn//udFvE8ntAOkKIqiRMzjjz8OAGjZsmWc\na+KjMN4VSCI+/vhjrFy5EmvWrMHRo0eRn5+PcePGYenSpQB82p+tW7di0KBBAIC9e/di+PDhWLly\nJfr37++y9zIAh2q0/oJqgBRFURRFCZuHHnoI2dnZyMrKwiuvvILBgwdbnR8AaNGiBfbv34+srCxk\nZWXhnHPOCbPzAwBeAEdD/EUPtQApiqLUYTIyMpCZmYkhQ4ZUaz8LFiwAALRq1Qrbx4yxvi8GwDYg\n1tTkoB19wxNVZpyfLQeykJeXB8BnTbjnzDND1u0QfHYD+Z/ZePCgFWm6qKgIw9q2tW0figZB/xcg\nzVjm8Zh1e/LJSQAijzSdkZGBnJwcpKSkoFmzZrj00ksxb948NGvWLKL9xJM//vGP6N+/P4YPH16N\nvZTDHompZlALkKIoiqIkAKtWrUJhYSE2b96Mr776Cg89xAEdE49BgwZh9erVAID777+/0s7Phg0b\nwrT+AEAF1AKkKIqixJ3nnnsOANC5c2cAQOPGjclHq2YoK/PZdEpL7T5jVdmXuGK3aMFRpqNLnz59\nAAAvvfQSAGDs2LER76N9+/a45JJLsHnz5qjWrXZQDtUAKYqiKEoSkp2djbVr16JHjx7xrkocUAtQ\nneFkio/B/doMKvel8tMuMSYG0/7/Q8t57MTlZI1hoSiKM83pvcI2kwwqu9lovvpqHRo3bgwAaNu2\nLVq3vtBYXlLyPSoqKgD4cnr1bd065P5z0LOSo+zwHQtdkYZtxpKLSPOzpbzcOt7Ro0cxJM3U9byT\nn2/lFisqKsLtJ58ctNSMe7OdYhhdeOFNRvmGG+41yl7vT5XU3cdVV10Fj8eDwsJCDB48GH/+858d\n1627qAVIURRFUZKK5cuXo6CgABs2bMD3338fMiBg3aUCwLEQf9FDLUBRZO7cuQACc8xtadRRFd54\n4w2MHj262vtxIjMzE0eP+syKkXotKIpS93j66aejvs/y8nKUl5cDALwOVmdZfuTIkagfn6moqEBq\nqu/nT7LJB+PxeFCvns8+IJ+x5MILL8TEiRNx1113Yfny5TE/fnyJnQVIO0CKoih1nNLSUmugAwCp\nqalWB0BJTGbPno2MjAxs2bIFffuyOKIuI3GAah6P16k7rrgyb948ALC8C1q1aoVHyVqTS9uUUPl0\nKrPkbTeVOadOAyqvoXLlc+XBmLPrL730Fyu3y7Rp01y2VRKJS0i3wfbHX6jMbYvX57Y4MMS61+hr\nJGHJyMiwMqcLv//97/GXv/zFKns8vWkrftN0onKWUUrD1ojq9EtenhXfRn6Ciop8Gbv27t2LoZRB\nPhvptIeOVG4L4Cv//2cgkBhD6pdtlHcXFKBJE18GMbHwiCbo2LFjuLaJmV0sOJfYeooDZFdIsWIp\ndKRsr/d7AJXHa7r55puxb98+vPnmmyH3UZfo378dNm26IcTyD7Fp06aoHEuHAIqiKHWYrKyseFdB\nCYPK7pMEn0wuYmcB0g5QBIjFR0YMYkJO83sQREPzE286deqEY8d8QjOZez50yDcfO3HixHhVSwnB\nsmXL4l0FSzcio2iBn5XJkyfHtmJKQpKammpZfiTej1iAgqfqaoq8vDyrTUqEaI/fgpqSklLjx1dC\nEbtI0NoBqoWI8S/cuJpKcqLtRFGU2ofEAap5VAMUgoULF2LbzTcb3w2gdf5F5RVU5rnrdsgzyixt\n435vFpVPgTnTzTPhK6lcgPPoG57b5/np4NluVhiZ8+oyd63ElpdffhkAMHbs/zO+70k6hxz/5xn+\nT9YAsZ+FW07vYFUEqxy4VXG7ZAUJx6uatnixbz/1fXsaP368S22UaLF06VKMHz+PvuU3UxGVuTWx\n2tFsIT/8sM7S/LRq1QpAwOJy9OhR9KSM8sW0twJbLjG2tpdC4gABXSupL2Meoaxsn2WtFG+04mLf\nOvv378eAE06w1s3DaS77ZtjLzKyb1/tNhPur2/Tv3xybNvEvbfDyw1HTANWpOEAZGRl49913410N\nJQwyMjLQuHFjNGvWDO3bt8fEiRNRWFgY72opiqIocUUjQceFJ598EkAgLkQT8gRQTN544w0AsLI2\nR+o1tmrVKgwZMgR79+7FJZdcgoceeggPPPBA1OtZWxHPD9FkSU6kaORGSjT43BYtWgTAriFq0MBn\nlaxKfiXFRDSNp50WqUUjctLS0iwLkFh+gr2u4k1ZWZllfZT6SdvzkHdltJH4cbfffnuNHqf24BYH\nqHHUjqQdICXuJHfiP0VRFCWAmwZIO0BR40zq3bNWgQWkPPbmmXB7vAoTN52FW/zLUviah/zPc+Ws\nxbDvkdfgMwq2eoVe9+5rrjHKc6ZPN8rfhykvk8R/gwcPDmv9uorHw5G4+fpzazN1ELmkAQpuJ4BP\nPxZq79xS/gtneN080mgUWwokH6xt4+3nzZhhlDNoOStSMv36DLEMqYdiZJxgs2p0pjJrbHYZpZ9/\nXmZpecQqJ9Y78eoSy4lYVuRTEK1NSUmJ7S1UYNPZsI6GW9AhAGUOywD7m9c8v9LSUqstSb3lvJo2\nbYrvcnKs+GjiNdbSr1sSS1Zurk8H1aPHFZUc3ziaUZo160Hj0+vd67J9XcfNC6xV1I6U9B0gJX5o\n4j9FURTFROMAxYTnn38+3lWo0yz2e/Y4xX5Zvnw5hgwZgg8++ABjx47F/v37rVFVMiFeXUr4BGfy\nBnwem0DAIjRlypT4VKwWkJmZWe19NGnSxKaVEYsJa2nkkx2OpSyWoHji9Xqt+sinxAOSd5JoQuV7\n+RTLEMfAUqpKBVDu5sUXHeqUF5hSOwlO/KcoiqIkMRXw5Yxy+osidc4CFE7Sv2effRaArwc/ECYc\nv4RnIjnOD8czSac4P+xH9lFurlU/GTnJiKlevXr4dZs2xvqs06iPQK+1Puyz3f/ZG5g/Zu+FoqIi\ndO9+GW0RKn6HOVd9Gp1bBm3J53riiScCAP7xj38AAG688UY4kUyJ/9566y0AwMiRO2jJHCrzKGgu\nlc1sXnz9JaiAtCHeG9vaWGXBUaC2GzmQWCNitiN+juzatNCwHJ7jbV1IejNuMfNLfG9KefY1r12A\nFi1aVKKSYRUOK8DMttajnan5yj161BZB2c3CE/x+ssfWCd2+7C2qL4DPg/53sySbb+6UlBSbpYot\nQWIBku9F89SN3tmw5V80r3YathllflaSngrYxa01RJ2zAF1++eVo3Lix9XfffffFu0pKGLRt2xY3\n3ngj7r///nhXRVEURYkXXvj6405/UaROWYAiTfrXogVn8Y0tMmcsI6RoBOUWq1Lw/uU78V6IFenp\nPo848Qp57rnncNNNNwFIrsR/77//PgDgwIEDAAIRZpWaQ0bt0vYk5o1YW+VZSCbvMdH+1ETOwsre\nXfxd8LspeHms30uVETxLwHGKnKipJAoSj+62226rkf0nPBVwD+QdJepUB0hRFEVRlFqMWIBiQFJ0\ngCRTdUlJCd6iaJusHeDrnkXlz6mcbegi7Gzdvc2aO5bRqIwsKioqcE63bsb6PHN9PJUbIDBv2RR2\nDdDJxx1nlP+zd68R1yI39yPLa6GwsBB9+lxurJ8WFL8lUvsYX7sLe/c2yvNfeSXCPdZuPJ7z6RtW\nnF1IZb6bbClilY6pHuC1g9sJwJFc7Ovf+NRTAALePLumTqU1gnUXpuKoHQpC1MyuF+O2xW2HE9qw\nAoTLvP4hiivEipEp/nOVd8N00hTVJebOnYtZs/5A37JOha1CWUYpje5vQSXvPdbOyCdHVGbLScOG\nDZGX9yEOH/YpLouLi3HqqRwSg9WWlbWwb4L+5xZlqmd//HG5ZQlr3Dh0YD22pDP2PGWMqZ/i3xy+\n8g/4f6Pkc2+ypetUC5BSVzly5IjrC0dRFEVJUtQCVDUkp0qXLl0AwMo906mTL77z/v37Y16n1NRU\n28hBLEHyWZOUl5fb8imxN0OsqKiowPLly3Hw4EEAgbl/pzhBtZX33nsv3lWoEjLSZa/JuohogcST\nZ/78+QAC1q+6FEeoG1mZawKPx2NYtgFny498yvfS3po3bw4gNjkY09PTrXvtpPnh+vJ5OVmElGoS\nQy+wuv+mUxRFURSlduBF1OP9OFEnOkCtQ8aTMHUT3WlpdWMw8Nw4U79+fWuEUVZWhlPatw+5/m4q\ns9bheATaxi7YNUN8Pmd2MrObfZeXZ418fCMaM9JR8NiL48CwVZI1JVz3PAwzymPH/pvW8M3rT5ny\nmlEWvN6dqA1s2bIFAHD66ZzL63dUZo0PR7thnQNPhIdWxuRRHrpm/rhNfJ8Efscsc/U6CW4B5rFZ\nY8NtgdVLbpGe+ErwlcuiMg8Y80ijws/pvRQXKId0HDLar83xg7oYccBYp3IildnqYpYL6Arv3r0V\naWm+ayzWNLagcBwyp0jQnDPM4/EgL28hSvyxnPLz83HSSayn4zuehUD6hCzYno2896z9i8VJLDhO\nlimnLPBynrL88OEf/J++d2nXrr821u9MbY+vND8rfGbNqR75dV0TpBYgRVEURVGSjnKoCLqukJKS\nYo0sjh07Fufa+EYvMgJKhPgbdYH8/Px4V0GJMjK6TwYvsaqQlpZm04o5WUzYwiI4WYxYkyNeq9Wh\nXr16rpokN9jyw/HVWrWKXpbypEZF0IqiKIqiJB06BRYeks09D9cGfZtBa5lzwdtJPdAiKO4NYNfU\ncEeUl3OusO937ULTpj7Fg0SjlbnsoiK7Xc8tY83/vvgi8vLyjO3lvB+YMwePXm7G8eGYElz/I0eO\nWHP3KSkpOHRopxWJuri4GEP8HnSVwXok1pzYZ7f5fFlV9Gsqx6jbHyU8ntb0ze1U5rvB14Ofci7z\n9TDvAOcUKiD9W/sevvsz8557AAC/J88m1u1U553D226hchaV+UrwmdrjbXHcGla7mUoK+7VpR2V+\n8swaTZt2p1Fmj6VJkyYh0Qlufdkuz1Z+fqbNgsMWEyfLiZOGhi0rnBOM1xfkvSmWFZ93WGVZEYPJ\nRaAV5YJbZHCuLydvL8FJA+SmFRKNUXHxVwACXr4c6Z8/27Q5ic6F36O1671YbdQCpCiKoihK0qGB\nEEMjeX26hLBWxIvGjRvbsiJL7qeqakXYW0FGFlWJa1RYWGgFIpQRC4+4EoVly5YBAEaOHBnnmtRO\nZGRaWFjosqbihjwbYs1dvHgxgMSMYSW5pCLh2LFj1jnK+4AtIBy3zMmCw/D7kC0jspw1RVJu3Zot\nrVWD4/kIXOa4aU6wRcvJIiT74ePHOg5brSGGFiCN5KQoiqIoStjs3LkTF110EU455RSceuqpeOKJ\nJ2zrvPjii+jTpw969+6NgQMHWuFCXBELkNNfFPF4a2E31OPpTd+MCLF2FpU3GaV00gqwMoBnmjke\nyZa9e624OjKSkRFERUUFOlPGed6fWxyirRhK3zQFsNH///k4A28ZSzvR2v+lMrefrYcCZyQjk6NH\nffE0zupo1i7bpvlxu1rcjT+FyqOpzCoj86FKlLhA77zzDgBg6FA6346DzPLug7TlJ1R2i/vD15Nf\nIFzmzHFf+j8lhkpoTRGXO2O7UQ5WcG13zX/EkX/MJ6edP0aRwDXLc41bY7a9V18dDyAwqr7++rto\nfX4yOArSj0aJY7cwf1y0CEBgtJ9IkaMX+ev2SpDnGr8HWFO1fftaS7vIEZLF0sER7NmC06hRIwD2\nODuyXNYvKSlB69ZDqEamhuvQoW2O2eM54rTUc/jw4QCANWvWGN8z5eXlGNYytPpybUGBZcGRevNx\n5Xs+T8HJ60y2lyjk6en96ejcNk09k9d7IGTdY8GePXuwZ88enHnmmSgoKEC/fv2wfPlynHJK4B3/\nr3/9C7169UKrVq2wdu1a3Hffffjss89c992/nQebrg+x/ON+2LRpk/MKEVArp8AURVEURYkPHTp0\nQIcOHQD4QiL06tULu3btMjpAAwcGkj+fc845yM7ODm/n6gVWOQsXLox3FWzUr1/fZvkReG45EfF6\nvba4FjLyUSonoL3qENd6KAFind9OdHQS2yuRNEFVSTZcWlpqWX5Z6yNlsVjwp7w/Wvit3eJlypYP\ntoiEIicnB23atAFg1+I4WVycYMv2rl1OsdEDBO+bLT5HjhwxPjkeEGsr+XdBrptoQ2s7WVlZ+Oqr\nr3D22Wc7rrN48WJcdtll4e1QU2EoiqIoipLIFBYWYtSoUXj88cetZLbM+vXrsXjxYnz00Ufh7VQt\nQCYeD3t7hcpjw7oInv02537z0Jn2FKaZzk9wfAm3OBi+45k6mpakhTAVQ4C9JWQgoA1pi68o51Eu\naReyXXIiVVRUOM5d87ZMGmlEONaKXeHEZY6Tw5Ync7nHYz5gXm98IjBbkWkvGGMuGEArvkGRYX/h\n88+iMmtyWBPE12ugy/Jv6Hu+vhdS2dTpZNui8QQ0TOkUP8uu2eFjmbFNcmzLmdDb87leeSV7PvG1\n4O15iGkuP+ySv+np8eON8sTMTABApv8znpogiUgc3Jo4Ahe3tXr16lmWjrKyMhx//Fm0vtv9Mo9w\n4MDn1ntELCdmHB5T9ZVG7encnqZGacvOnZZGib1iBdbYyHEPHz6My7qbWSBZLfcLlYOz2wtSPqlD\naMtvge292cM81i/LAQRbgEIre9PpNyJRKC0txahRo3DDDTc4eup+/fXXmDJlCtauXRu+N5+9edQY\ntaIDpCiKoihKYuD1ejF58mT06tULd9xxR6Xr7NixAyNHjsSSJUtw0kkc7DEEGgeo9uDxeBwjjIYz\n152I8Jy14kMicHP8D0URnYroTOJhCZo7dy4A4PTTT49420aNGoWtqQkHr9fraKER7UwkbN68GZ07\n+6z1og0SrRNb3A/5PVtzcnxWpaysrIiPF/wujzRnmBuiAarq/iTO02233RaV+lSFjz/+GEuWLEHv\n3r2t9vbggw9ix44dAIAZM2bg/vvvx4EDB3DLLbcA8D0jYXlvaSRohl1q2RwbbMA0zfh79661HjgJ\nCCfBzIqLi3H++Tcb6xfTFBhPQG3dvdtyEw1HLLzj4EFLNFtUVITTTx9sLOeOLk+CsHuor2VIYLst\nYNdytwm8lev/ivbt2wMAjjvuuJDr7tjxLQCfyyMAnH32DGN5gW1iwOT//u8vAALusWLClrniU07h\n2nKrZ9dl+9WpSa6jDuxrRsoVAC3MtmOrru3ycBAFvrduy3lahw35vH1wO6lseV+XMv+QBp7DPJsL\nP+/bLPMUB0/18hQN3+kC28XldwK3HV7uluSmfoiSvcwT63dMnGiUH37mGShKXeW8885z7cBlZmZa\nA4GIUAtQ9PB4PNZIwS0CaDiUlpY6Rgh18noQ7wjxVIkn6enpVkdE4HgagpyndPgiRbwipAMk59+s\nWbMq7U9Ragsyyn/22WcBxCZ32KxZDxrlYFWWfahmdgC7dDE7vwcP/mT9zxHoi4uLkZFxZsj9Bb9L\nZPvgOEBumiLu2v/uyiuNMndv2wL43v//rRkZtv3x0OFHKvPvbUlJiS2Cs5NFnzU/WVk+7Z2TRa1L\nF46HxphaQVYA3Xf77cbngdoXyi80bhagKPZa6nwHSFEURVGUWoKbF1jlzmZVos53gLxer2WJiCQO\nhRMVFRWOET750yk+RDxp27Zt2BYdWa9FC7tvWjhIPBCx/CSSJUxRahJ5dmS6fenSpQCAcePGxa1O\nkRDsFSaWG4l5JJ9u27M2sjbERRPKysqqrImS971YkGqrFjRuaBwghjsO3D3MCvo/MvXUN9+8bD3Q\nohUS87V0WESz4hTnIBIOHvzJMiUXFBSge/cbaQ3uHFSmEykL+j9USABg9+7Hq1xX5ttvfS9xTpYo\n7pyisQr/Rec20cuG69iSYfuGdC+HXzLLL1NI+ybs+cA6FL7XfD14OT8HrJRhZ97gdmJP+5Jn0+0w\noeobOpUAP4duXX+uid2V2FTdtIMZUt89lUbopDZppJ7jK8/7z7Ht31zjNyR+nr9kCRRFCQONA+Sj\nsgRrkRIc6Zhz1UhPXTo+ohWSDpAg28mndIycLEBu3mDiKVLV7PCRUFJSYoufIUg95XteLh0dseTI\n+cuIkHPk8H7kesrxZfvaNBJUlGgQm6i/5jFCDwXNDuH27Zus5zw1NRUVFRXWQK2oqAhnkq6Gu6f2\nDquzZdz3XjE77wUUH62YlC//88ILWLZsWaVnMmaMLx7XJzNn+vZ/3nnG8rFjx2LhddcZ32235TU0\nr1awFxtrgLiufC05TtCOgweN7Q8d8uU0lOvbpg0PlELnBLR37usY6gWmKIqiKErSoV5gPthbqapw\nD14sOPIpx5EeOVsoxGLE3l9OboBOcSPYGyIWlJWV2c7fyQLjVF85b7lebOkSS485wgusz5FbxQKW\nqKxYsSLeVVDqKDXhFTZv3rxq76OoqMimlTS9tiLD4/E4WsSroq0J5TnqFlco7AjEQXg8Huv3oLra\nUdmPvEfluloR5RUTtQC5wVcn2Jxa2xLMsfqBu758rscD2Bf0P6sV3HQdiQSfm9u1qFn+Ri84jvVi\nb1sfUJk0QsVDaHkGlVm/5Rb3h+G0L3z9Gvk/fU7FeTbdDv+w8fZu2rtQmPvOoymSPNu5sdD+sFFK\np7QrGbS2vaVwqg7GPD5P4bSlVBhmbeykJWi6AkWpbcTQAJTYHSDRjFSHBg0aOPbcWbPi5qXFXhG8\nH4YtKrKeeEHFwjugYcOGNsuPm+WKke05a7xTnCBZzseTkaSOfJRkQ54Vcbh49dVXAQDXkTalKkhA\n09Oo0xY8LMyhnIfcAezd2xRtHziwxnqOGzRoYOvAuuVm83q9tojH8v7wXYvQnWn+AQxlNXKyaA8Z\n4huANGzY0NaV70kdVh56eL1em/daoA587ua58FKxeMt7v5s/krVgV/SYdctBT9sadZkYGoASuwOk\nKIqiKEryoBYgP9GIF5OamupoaYnUG8lNO+OkoRFYgxTN3DtONGrUyNEC5JS1ni0+biHP+frycWQk\nKJ4wMieuKMkCP0vRtILWdGT1qrynysrKLGuXbF+dHIOhdJNulvSqHlfeY6zhqep+lPBQC5ANNzF0\n8Ay9aexs0cI0/fYkM/GmhJuOYbVBDyqfDuC7oP9ZqcLG3PjRvDmHfP81lVn3wYnyOM6NmxKjerAi\nhsPxDyMdymq8TGtwLi2+Fx1dlme57I91M7w/1hRJXCDJ6cVn6JZPi9cPri/fO/NerVw5H6EYPvyR\niI7tFhGJy3ylmpAmKJuOl0bvhdCOyEB32h/Xj1vu70j0/BfNFaYolRLDMECJ3QGqag6qquKU88Up\nHgQv5zljJ8sIb1fTOFl4uN5OEa6dcDrPWJ2XZL++3Z8TR0kcMvxxY9h6oNY/H1XxrHIiPAsHdwkz\njNLOnXMtL7DS0lK0bm0OXlhftJvKLLBv2/Yi2v9ao5579nxrtYWSkhKccMIAY/1sirUjQVYrw8ky\n8+677wIA+vTpY1vGV+OdHTus85c2K/UrKyvD8cefFbS22XnuTJodTts79HhzKJV14ACAQBy4K7t1\nM5ZzZzsnxkmg400FYhYIOrE7QIqiKIqiJA9qAfJT1TnXSKioqLBpZJw0MOwFxXF9nLys3CxHNUl5\nebntfPj4ThYip7KTlig4cmwsqI6mIJhVq1ZFZT9KAIm94taWkhVpu9GIC8SR66tC/fr1LV1SKGtL\nVQmOrMxayHCoLGr+xRdfDMDdW9gtThDg8xQTyw97+9aUhkcib1eX+fN908233HJLVPYXb1QDZMNN\nAbArxLL6IUrAIEr0uf5Q9eLonN02dOyWf+/fb5Rzc9fjkP+YBQUFOPPMybQFG1RbIHDb7ElKv/76\nJbRq1QpA5S+YkX6XWYGv7NJ9+1BVjjvuZKPcnUzDh/CcUeaQ7mmkq2AKbK681WM5/Rizwuh0KrOi\nqYSmAT7BR0a5PpVDOw7bdSPZtrg8A6nMGiBuK2Y7WbXKNxXAudycpngvv5x1PFlB/4fOreXGnj2v\nAwj8uIhgVp6FvDxf25Ef5clLlAIQAAAgAElEQVRXX21sz9fKLXoWq53YDZprzyNQt6hFbseLlUlf\nUWo76gXmJ1oj/EgIHqHKCIAjHAus+QknwnOwxUk+JRJ1NCJEN23a1NFyVtX6MawdipeuI1Zao7rC\nCSecAAA2rUNNWGmcdGV8DI4yLh5N7dr5OseHqjkgSVTEalEdLVBruqYsgQ+mGF8Z5e25/7T+Lyoq\nQvv2I4zlnWkwwvvmDuEWW6JdU8NzeteuRvnbPXuMNrBnz7dWvJzc3FycddaVxvr8jlmx4gusWPGF\nVW6HbIiN6NMVK3DOiMD55Ofn2zq0z3z3HVr4B7/S9oLf533btzfWD5V9izu7bgL9gRSZ+pM8szPe\nPz10njIeSt3vz4Emn3tr+XtRLUCKoiiKoiQdagHyEw8LUL169SzLglNEY7b8yBz8zp07XfdfVlZm\ni4sh3m5VyVnDVBYTREZPe/bscd3+2LFj1uiUrz+fv1iUYpHVvjLUoygypH25xauKhmUtOzsbgN3S\nI9YnaWPyyXnj5JkQS1BdQ65DNL3BIqGoqMjK4RcNDVGkBOcKE/jeB5OWlobz/Fne27RpY1h/3KhM\nw+PxeGyWcn6vxwp5j8YiLlxtIOktQCfYTPCs/TCNju2Q7bgvt/ggnB0pUi4mc+Ur//43srKyfMf2\nv9TFJTicl3lu7j+tF5K8HA8f9qlT5PtbbvEl63z99XEAxkUUWPHxTZvwww8/AAiIlaV+J510Eh4I\nctl8IDdS90uz2bJOguPq5JKZ3U3534Tu87w77jA+f4rwh5s1P5/b6mfCEZl4WoAfWm5b3BbddCOH\nadrCHrGKVUnmGfXv7+vwrFgx0bZlOHTGaqMcXN8cmhRoR5qaB8491yjft8mM8TTzRPPqsXrpEWp7\nW3f7YhDl+r/v2/cK2oKvNl/NXVTmu8+t06QJthplN82RfXuT6WPHGuVp06a57EFRkgP1AosjlY1+\nnTQxlWlqPvnkE7z//vvGd1de6ZvP7tevHwCgvX9+mfcrnzIC4lEzZ2eXEZwTYiGR0fiXX34JAFi3\nbl2l6//+9783yk6WABkhyZx9TXiNKNVHOsbSXljs7GT5qQmLwJYtvsSt4eqLpA5yDvJMdOrEXaW6\nQWZmJgBgypQpLmsG4C4bS+KD7yJ3D4f5Bz0Cq074KnOLcOvM8xpfZmXZss2zRVnaRlpaGtJpcDRl\nyvO0f3Mom4NSSA6tHKTjixUrrGVfrFhhO5+GDRs6xjHzeDzYvGePMRD9VY/A8Id/nN0GPlzm8Kfd\n24ZOzMuwPisj5Nq1Dy80DpCiKIqiKEmGWoDiiNfrdXQPZk2Q5LYKhq0/QCDOjLini/eBeH+FGokA\ngaktt/hCHM/o4MGDAIBvv/0WgLPlR9ixY0fI5Rz3SCxA4sKsJBbhRiyXka54XNWk51W4ObC++86X\n7kUsPi1b+sbRsYgNFg8i8QCdN29eDdakZvB4PI7tUc6dvW5rktTUVOt47Kno5LmoxIZyJLkI2p53\nx9R+8MUJNv2yfM4tpw+bjSNl+S+/YMOGDQCAZcuWua4/atRfjHJOTuhOSXW55NRTjXK/ESMc1vQx\n9I03cPbZZ0fl2F+5xPnhe8FxgdgMzvcq/DBqlfMfKrNpmk3bPOXAChyuD3ePeTkfz/2hZ90Kq5Qi\nm7o6t0sXo7zSP0UqsMYp+Gg5dDY56G6UV1Pd/jPZjG818+9/BwB8+OGHAGApiEaPHg0AWOUPcifw\ntTrgTycgnbj9/vha27f78rVdccX9tIXbxEQGlc27kWObJGJYXWh2IjvW8WkLRYkWSS+Cjjduub/k\npZuT43uphdPxASr3+Age7ThlaXeLx8PIyCaP4ku4IT8iYtli7ZFT/J9oxC+KJcka+dltRPvJJ58A\nAP75z3+GXC8aOEUBfuONNwAA3SpdGoBjc4mDgVhVaxuReB6l+x0vuFPIg7/gK8w2PbfOPYu2eXvu\nrBe4DHZSU1MdLesVFRUYTJok+w9g6OFCGnKsAUcT5CCb6nOY6jOcOv+rd+2yWX6CvXWDW1UOaXTS\nyT2B3/LcNeYz4WvdgvbnFmco9j58NYtOgSmKoiiKknSoCDpBcLLAiOVj927uy5tcTGb8yry2ysvL\nw87CzvGInDRB8lnZKHvw4MHWfmTqTli7di0AYMAAX2Zm0V04WQ5Ej1FZ3I5EJh5xT+IJt2On2DOx\nsPwIx/lTsgwZMgRAIHN3uIg7fJs2bQAE2mLz5s2jVcWYIvdG9D233nqr47pNmrDNIPFJSUlx1KAl\nQjyvUDkh4xGPLplJegsQ/zzx65q1IBlB/7MqgrsAC376yeoYOAVhq1kija1TPdgUXJNs3LgGQOA6\niglZrm+/frNoi9BRmvLwX1puxsUJnXXNzmb/C03UKqtpObc71sBcTuW+VF5D5ZepzA81/4yxqy6v\nv802EWF2wLdvXwggMA10NeXPYh73TzctWbIk5HpCRtD/TUmXx8/oj1TeTu1w1vXXG+VzSJv2M5Wl\no9TVn1Lht716GcuX+AX/Qk7OSt9+fv7Zt/9zbqYacevht0oWlbmtsoYotJqwvov+TVEUH0mrARo0\naBAA+xwpz47zz0Bw/GV+EfO211xzje0HWkaPTl4K/L1YEMTLSgSZYjGR/Yv3leAbuZnJRkeNGmX9\nH67Xgex35MiRldZX8GlzTB3Q3LlzbZYm8foR7zTJTC0jzXC9iZyyyge2/57OhDuc/LNgZnHmeNOc\n41najxMcrYhD43G7WkvlLVTmmNsHqMxpZVkpxWErebk9hzVfgaNGacyYMQDs7Y87QtJ+pXPgBNcn\n+G7xC4ptlva654UoBep6kDoywkcfmYll+XhXXOELjMhtLtAmuTOdReVvqHyUytx6+F5wIl/TM5KP\nLi/eZvB1tOUdFI41RM6Jg1FyHYI78Kwj4c53qBhCgP2dzJ3zdi4OCxUVFTavq2DvL35vcxDVJthu\nlLn7Wh+Ba9wDwFf0LinAaUb5K/xilIMt8ez1m5KSYtSvs4tGx02FxufG58IBVxl23uD3WG1HU2Eo\niqIoipJ0JK0FSDQpnArDTVWfEfQ/TzBxT/Kxxx6zpmQkLk9bfyRO0bKwRUNGZ/K9jJw3btwIIDBq\nE40Pj3Q6dvSNh0466ST06vVroz6vvvqq46jVySJ0zTXXWNsGry8Ez2VnZJgu7Q8++KCVWoNHYqIN\n6d7dN0l02mmnGefFc+Q8h8/1FgtbwFMnYO3y4ZaoxBw3N3eZAmNNE7OZrudcWv4BlS+kMk+iRHsK\njJez1WAbWN9ijrOfffZZAAEdDLcTQdrvxx9/DAD47LPPAASmmeQ5eGX6dGO74JEtP2duU2AF5EbO\nIQ4kCvny5csRDuVBkX4BYM7zzwMIaII4033z5nw3Q71FALuFiO1/blNgps3kRMqWbkuT4n8nSWyt\nUBw5YrevJTrl5eWOluNEoLy83JZKKJHql0wkvQWoMvNmqOWheovRVtz8qoVpwNxqiw8SOh7Id99t\nsDQasQj4lZX1meXe/tNPP+G66/5Ka4Qydps/0bm5Zgckcth4GyrSDMBdAr6yHIfHDe5Q8PY8BeZm\niuYrx/Vzc391G+Vw/W554k8AAu3m89mzjeUc86nzOecY5a5d7zLKDz54ulG+7bZnjXLPEHXjn3vu\nDPKd3UIdnm0u4f7dSPFrhCZMmAAAOOmkfsbyw4dNjdKBAz6R9bZtvo7IwIHP0B75brnFWOJXNLce\ns8xbr6f3xgQoigIksQUoVojFQywXTt5VTtqf6lBZtnYnby6nEYiTFxhbkmREI6Pi6sZI4f2LZcwp\nOq9GUo0uHGXc3pJM3NqRWB2GDh0KAFixIrN6FawGYrW69NJLAbhHLRdEf8fwMyzn2q2bW4Sh+BDJ\ns+JkJeK3U5MQy9ySQrtpgNxiha/etctqd+Xl5SgvLzfO8dd+MbvT8Rm2jlb2JpO9N6h0i1BXBzjh\nBHMw8MsvW41YU5/sDChNu3QxhyasCeKuMdeVz5UHOm7OHb9QObZuNTWPmxdYNH2O1b9PURRFUZQa\nYd26dejZsyd69OiBv/6VZyDsVMA3pe70F02SzgIUHLWYc8845f4SKsv9FSlHjhxxjYfBObbkexlB\nyfcSC0U0OuzNJseR7Z3iv4SLU84xp9w5cvzqHre6rF7NDu/JgbSjH374odLlovUJR3dS04h1MtIY\nN25eU9wmEzWGjliXw5kWl/AdiUzwdXd7TyQiwV5rAmuEFHfKy8sxc+ZMvPPOO+jcuTMGDBiA4cOH\n45RTnAUMbhYgN8t3JCRkB4hNenaXSOf12dDJ5rLBg0cb5c2b7clLQ2GP9mE69G6lGvQk8+hDJ51k\nlFkVs2iLKba84ILPaI0siIN1//7PYdOmm8z1e5rKDburbGgDa1rQ+TSxOStHxhltzWN1puXZdPbt\nXNxL3cL1u8H743vJ++O2xO0yi8qhw2K6553j/R9zydt23oIFAAI/6sUTTCXJW1t8exw6VATD5vJZ\ns0xj/UMPXQsg0DG6884MOmKW9d82MsT/l9qKOaFg1wTtpnt96aVmjKjuJBruT9vLNMJXfjF05Nnr\nsqjs9tZhlRO3Di6brW2rTfNkntGUKf82yrfdhjAwfyZYKxmcOY6nZXgahX+O3J4Fm2B/716rg1NZ\np7R7d/P68VuJnw2+G9mUa66E3OJPR+D821ZaY5PO1F75fPrQVOk3WVnW/zt3+t5bkirouON609ah\nVarp1Lb5vmVR2U14MdBleTz597//jR49eliONddffz1WrFgRsgOkGqAYUlFRYctKLMhIRb4XMXFN\n8uWXX1qWpnBGep9//rmlb6jp0a1T1nr5PlFHSNYINM71iDaik7n8cg7RWDU+/fRTAAFNUG3GKahp\nbbA+uJGI0a69Xm8lcb981IVIyhUVFUZuMCU8du3ahS5Bedc6d+5seZ06kfReYIqiKIqiJB8VSEGB\nzQJbMyR9B6hhw4a2Hj3PVYtFJhYWoMLCQkuTEY52Jthb5vzzz6+xegEBnYKYfmVElOjZ4Ot6PI81\na/wpSKq5H4kDVBesJE7nUJvPbfHixQACcboSiZKSEpsGMVEtwlUhuN245WyMN0888QQAYNYsTj0U\nezp16oSdQR502dnZ6NSJk/4w9eAeTzs6JGQHiF0seWInlNZiAJV5bnlLhLqWy9LMuXuuC7s0ppO2\ngXFLv8A89liqJXL2dcz64pFH3gYAnHpqtm39HFtcIp5h5qtnnlFwvzuD1jyro3k1N7t0CHkeN8em\nAmpLy83weayf4nl6N80Nw91JNrPyzD0/gpupzIET+V7y/vmx5+Px+f2Hgv1tJeXEiBFmnJ9B/hef\ntb4/seY995wJAJg8+QU6gnmGt91mXqG5cy+y/m/evDkmTrw7aKnZ8rklFtNz5qbfKqB2up3aShEd\ngRU5y/fs8e037GlgN4cGfnO4RZ3i/YWOC8T7W7TIV546darjER6cMsUo89PEz1vwu4bbMr8V+L3E\n2sksKhfYjh6anTv/YwReHUhu8Pws54A7eeYdzyaV0IkosNIe+Z47tiDwGZntk+/26qysCDo4fO9Z\nwWTuPY/ObQvpmbjmh6nMzxI/C7v98cHu9n8+HMeO2oABA/Df//4XP//8Mzp16oRXXnkFL730kstW\nHsQqW15CdoBiSfPmzW1RY+Nt2eC8R4xTvqRYj7jkhcbebIk2R15XNUAMxwnKy/O95FeuXOn/pmFE\n+3vvvfes/8U6lKhIx8ep7cmPWWEh5/RKDMSqWlspLCy0NIt8D9hrNNEtxgL/Lsh5hRJ7KyapqamY\nN28eLrnkEpSXl2PSpEk4lQK22klBUluAFEVRFEWp/Vx++eUROmqoBShmNGnSxOa9IJ8FBaGns2qC\nd999N+bHrCrBkVIBe06weDN3ri/bl+Riq+sWoGhz0UWBKTCnaN+JgkSEZiuEWBvE8rN379441M6d\nRLOaRkpxcbH1/EsYBbYQcwT+RCY4N5hT/KJoxIVTKqMeQgc5iV4uvIR8q7mFRc+gcrCWwi2s+PQd\nOyy3cXlQQ8Hz6hw/w219NyXAgmXLrJfy22+/7VofNx577F60bt0aANClSxdcdJGZgLQdzX2XUjl4\nvpnTP/Lcsxtf7vIpC0Q83rfvbFqD77T5QtlGKhozegbQ2aY8Cc0R/9yziMyLJ00ylnOsGjbCci4x\njuHEYxZ+hD+nMusO3Nq9eySh0HTGa0bZrtEyo+nMns1nGFzD0JnP8kg10pJygfGx22GrUXY7U9aM\nnEvC4NCpSQFgGJXdEhDw3eV3B/8Y8tPCU4jm3R4//pD/cz4AwOu9xbUGbsl06zv8X1mZYb2cfULC\nPP8BA8zrmZtr3s/L2rc3ylzXPJxB32RQ2bxec+b8GR98YKrwWm/1HXP6Aw9g/fUP22ocDOtq+PxG\nn3CCUV69K6CSat+eVTeh70QaJXHma8+/Wbx3fu/wb9Aml9rUPjwInfCijneAapKmTZvaRlsyMpGO\nkXg7xWK0WFZWFjWLiWRDHz3aF+yxpkftYiGTuCR8XUXX0Lat249LzXD77bcDAF57zffDz3P5iqIo\nSqLhZgHi7mvVSboOkKIoilKzeDyeGnUXZ+sPABw65LOiOSXIrS61OYRC7UI1QDVGsFWEc2zJp8Tf\niUX8mLS0tKg/sDz3XlPk5PimNTgXmVxXKcvyeHHttb4UD2IJqivxSUb4U2WsIHd5ZuTIkQCAL1zW\nUxRFiT9JHgfILV5LBpWD+4qTDhyw/cBF0nMfS2HmuR/KGh6eyy4Axw0Knd/q2ssuo+05vkYGlY+H\nz00QWLGiGXgGOB3bsDHoh45z7rDOhM8vOIIFxxRqSXqhhWebmpG/uXTkDh5cBiDQMeORYZs2V9EW\nrMoxzaLZttnv0DS47jrfp7/cjZa76bv42rGRlq8l61zc5uo5hpVdt2K2tkmT7jLKI0aYgTAPHPC1\nkwkT/un/xryfZ9D9zLFFg+EsQ8FTmXy25tVLgxnu3k3Tw5OkPajslpeNc23luEaS5XONVCXDNeK3\nVujcYHZY6WGH2wPXkJ+WUNfcLTcYb8sxrD7Y+YE10JKBjkgIBHm+PR4PRfgCCtCTvnFT3HENB8OJ\nI0eOALYjhr6fbgqvYIvWrl1fAghYmnzHC4Ri6N3b1HsV2Fo3txVTy8jvGS5z2+f3iHtLSnTUAlRl\n8vLyLE0KeyNwPAr+Aa4t8SkSFb6ufH3lPkgHlbPV1xRPP/00AHtnUFEURUk0ktwCpCiKoiQu9evX\ntyw/7C7OyaVjnYqmpsNwyHm3bOmzzTRt6vuxritT6/FHLUBVpri42LL88AMqiCWINSvi/aVUDbmO\nTnEz2OJTVFRkfNYU06dPBwAsnzGjRo8TbwYP9k0LiIZtxYpP4lkdRVGUKuDmBRY9amUHiOc4g3U5\nE/uaURTejVBg/Oy+fVZHKC8vDzf27m0st+faMulMugqeO3e7rfbQi6w6csuqZML9aJ5P5pgTwUfj\nvGl8pD/89BOAQPC5SOnalVUvbpFw+FrwbHhoSv0iaOmI/erF64zlJ6401+c4SNw95tqyRsOtdrw/\njhOUR3F5mDSKjDRr1vMuRzSVHbm2vHjsXhpKh2FqaNJIx8Bthe+c2/iOryVr7Xj/59GTEzqZjL2+\nBa65wbjGrOvgu8n7Y82RqWl55hnfszCF8n2FOiIPG1i3E/ymcNNQsWKGYUVVSkqKzXlE8Hq9aNWq\nH23BbZnPxrw+nSku1GOvv440f17GVq1aAQg4V8jzPHHiRADAySefjFWrXrLe423btsUUShTN7Ys1\nZJzT8bSgPIjbcn1XT957MpB2Tl7NrdV8h3Nb3WJrm2bdOEci65XiE3QkmtRD6DhA0aNWdoAioV69\nejaTrHxy7i8pHzt2DEDNWyZqO/LAi/hPriNfT3aHjZelTSK3plGCW0WJNxpVWFEEtQApiqIoCUoo\nC1BNJJw9/fTTrcCqTlobscj06dMHQGAAK5HfowVrjOT8VUIRLVQDFDXKy8stS4U8mDLakgeKvcbk\nAQsnVYZit5yJhU2uI7+44hVQbMKECQCAN954Iy7HVxQnJGq5oihJ7gW209/DfueddwAAtw0daiwP\nlV+L++Bt2pxK35g9y3Y038qXnWd1OXYK53HJCFE3wB7NgudrD1F98mxzoQ0QSOvZwHZEXj+PZvub\nYjtCEXx1+FqyTuCaXr2MMs+r59liGrEiiq8eKxN4CtLUqPzjH08BAMaPH48q8aRZPI4Wl5ImKIuW\nu2mAGNZo8PXdDp6aY92ISYGLHs1sJwC37mzb/eEasSYo8DS89Zbv4u3cuRMA8Bz9gHNb4WvDBu4p\njz7qq6l/0PHErFnGcrdYYNySjiedBJ8ZZznbSm2PtXyM/drxm8NN9RSZfq0yeI9ZIdZ1e7Lez8qy\nrj2HD+HUMcHxfYI/ZaCZlZWFjRtfwObNmwEEBkQyVS5eYWKZSUtLw+TJfzKOsfHnn22pfLgeTgMp\niUfUooVPudSsWTO8s2OHFa9n+/btuOyyicY2CxbcZ2mKpL4yoOvSpQsAoJf/fSf15/OX427e7Mvp\nmJ+fDyBwvWQ5e80NGPAboy4FtohO5q/ENtLmpVOusdqvAVILEIDomy6VukVVNVqHD0cvl0yyIkHg\n3nvvvajs76OP3GTLiqIkB0luAVIURVF8DBo0CIDdisbRddjmtDPof7Zk87YjR460BSoVC4xTOAv+\nXjQwBw8eBBDoJEu8HI4TJPgsQ/uM78aMGWP9H+6U+bfffgsAGDVqVKX1FXwWHtPC97e//c3mrCG5\nxcSSJM4TYslyui5iIXIKuGvXTn1PZ8LJmtkaYmZDzw+5tDaiFiAAwP79++NdBSWBmVHFuD6TJ0/2\n/bPD2eVYCU20ha6Sr0ye+W80b5miJCnqBWbg1hcMdiAtQHdaylmFTHJIyZFO8Sd4Npbj5rD2gOG5\ndz4Xvs15Nh1IZXlkKoL+d4vwYR5hG84wyqU0fxzMdlvyCD4Wn00GlTl6CJ+Lm5nTTZNSPV779FUA\ngbn5omvMKbXmk33ieNEG5JIWze1qsOaHrwbrwTj2CEeFcpvb32argYw8ZfxvV5yZ8Blxa3emqz8x\n68CBvvxhMtq/6y4zX9nSpUsBBKwCYm3IzTXb7YxHHgEQiLJ7/8yZxvIsOj4/5W4RpuwRp0Jrfphs\n27XiMttr3K61Mxs2bAAAtCaLg9vdbOnwP1DJe+nLL43yM19/jXbtfM+/ODFwihuxEFVUVKBLS/MI\n9/397/jwww8BAEOG+HJjBafAmTnz70FrF2L79u9tucScnCacIj2L5YedHMQSw0mipc198cUXmDp1\nvrHN3Lk32aZ3JanyDTfcZny/b9/3ldZLjsMBYjt1Gkk1P4fKfLf4TWK+B8vwLyq7qRETHZ0CAwDc\ndNNNAIA5kybFuSZKXUReaG64ZVtPRtavX1/p982aNQMA3HLLLZUuHzduHABg8eLFAHxB6gDg1FN9\nzgqi6/ruu+8AxD6NgqIo8UanwBRFUZQ4EY7uRtapLIl0SUkJfvWrXwEIWEbEonPCCSfY1m/YsKFj\nXCFBLCmcPJm1O2zxYe8xKXPnO5jKYg0VFNjj9AfvjwPsikWLvdkUN1KgFiBFSRBG+Kd33olzPRKJ\nSX6r7I8/+hze5cdHBKJuiA7r6aefBhBwGZYfI/mRlP0ripIsqAXIgPO0tCNthHmp2N8hsvnQPNK9\n7EKOUeZMXFlU5oD2PC/P2JfzfC+7em8BUBj0P+OmOioNudQ8mrluO9JJcB+9iK5Vjk1DxIoqPjeO\necTLqx87pTqc9MQTAAIjvZ/uuMNYzqoO7gq4qUb4XnBbcstGdch2/aUG0k54D/xshG4Nwffn//k7\nhcLUv/0NNQlfiwKcZpTXknaPW5Lb65RVF/xk2WMuhc5bdxq9o1pSeWMVMpYf8G/z+uuvAwCuvTa0\nE0DToOeV7yRfD35rNm/e3NELjCkrK7Plq/r000+t/4cOHYqZM+81lv/88xe2eENCRUUFzuxkxgzL\nscVd4jvcBPDHOOvS5TLYnw6zre/a9b5l5enSpQt27lyJbdt8ufW+++47zJyZaaw/YkTXoLAb5jta\nro+TpYm1U/a7wbgF4A39Jnj99b8AAEaPHu2yn0RFRdCKkjCIlUICo7FYU7EnpgwXifU1ffp04/tF\nixYBqJm0CoqiJDIeaDJURVEUxUYsck6lpqa6dmZFa+OUBf2iiy4CAPTs2dO2rEGDBjYvr0g7z9FC\n6tG9u8+DWOL/MOLV5gSfB5eds8VHl9of6FUtQIoSd55//nkAgRfXxx9/DCDwYlcCiAWIBapuVCag\nBYBp06YZ5ft/+9uqVUxRlFqGaoAMvF4z1qXH057WCL5YbDpjnYOb8sLseWbT3P9/SAfD2gSGY7/w\n+naFkpsSBAjEASqGW0+ZcxqxCocVR5tC1IU1PzzLzjUpJk1KgauyP7RiittBrCn3u8O/6/90i+zC\n18NNw1NZxKdg+OrdvW4dgEA+rtWrVxvLV6x42/+ftCFTQ3WGS76srbaMWQHc4l9Fm3wX64DHc75R\nfs5Wd/Pqp1Pb5GtfALZasG6Dr5a5nJ+rt6No3XDSojC5Qc++/dkMTXFxsaVhES1QJBaajStWYGNQ\n+Ijt27fbkiKzxkj2X69ePdt7CpQjka9+HtIReGJ2g5/OdNq+oqLCOj85vmST79mzJ7755h/47LPP\nAACrVq3CihXB757Kf5z5+khZOvmB++aWGY+ffI5yxa3VvFpWoNfaiscDpOoUmKLEhRdeeAFA4MWV\nqLFoFixYEO8qWMiPmSScdGLVqlUAAukFunbtCiCg+WHLj6IoSUbsDEDaAVIURalNTJ06FQAwbdrc\nGjtGRUVFJd5LlcPeT5XRsGFDWxZ03q9Mn7p1oqNBSkqKo3dberrP6i8hGQoLC0MGQ3XyAhOccoIp\nDsQuELR2gBSFmTBhAgAgM9PnChvOC17x4RQBWiI/S1oEiRjdqlUrAIEfvXfffRcAkJWVBQCYMkXz\ntSlKUqEWoNB4vXujsqemZZ8AABk9SURBVJ8nn3wS991+u/FdKWlm3ObOd1GZO658H7nM0USKKZ5J\nZVF8pA5NsN11/zxbnEHl0BEpzLPldXmmmmdt/+KPm3M7XePawt3+kXZV4XvBbcNN4+MWlae1y/FT\n4HMxb+KPj8IxrDKo7B5lKbDFB6SpuNp125rF690Y0foej3n17JnAzKv/wgsPAPBpY4CqJ+KNLqxC\nM1tQcOyi+nSG9rhGJj179jfKBw/ucPTWqixq8r9//NESxvMA4ujRo/iLf+pTYDWTWzYs1gC1RR52\n+P/vijy0pfPl/d3Q0dwjt/139uxBR/86vXr1wttv98J//uPTlf3mN/9rrMuWJL5O7dvbFU0m7LXF\nb1LWs7nFS6vlqAUoNtx22222DpASPWprx6e2c+mllwIAVscwh5mTi+/jjz8OIOAlJhGfZZqheXNf\nwlkRoKal+QLqJZor74033hjvKihKcqAWIEVRFCVRKC8vt+W0CqV9Cc7tJRoY8YISK1qiIwFPu3Xr\nBsA5ZIOTZSxRnScSHrcwQFGUUmkHSFFqKZdccgkA4O233za+b9OmTczr4iRclR/NgwcPAghofE48\n0TctIBYfsQDJj+OoUaNqrrKKoiQuboGgj0XvUEnfATrg9WLhwoUAfPEfRgwebCznsUro6B92slyW\nu0UlcsMtJizPbX/gsn6wqiCd4sS4jdse9V9HTmtQW8mj/EZpqDwbtBN8b3Jc9uc26VNdqzArRrKo\nbD++c9Sqmo9FXLN4vQfiXYVq4/X64j9JaIHhwx+jNQIthrWNHB+MJRfv7NhhWTxSU1Nx5MgRNG1q\nrhUc8Tg3d7vjNOixY8cwxh9lWehP64SOxuYeg6wUgXfdiZUs53hsbiqbAR06GOVPdu5ERkYGAOC7\n73wBUWUalzVAcl0kdc4PP3wBIGAROvnkgcb66TYFmvleyLM9uebZrVrly8M3bNgwxIoXX3wRDz/8\nMLxeL9LS0rBgwQL07dvXtt4NN9yATZs2oX79+jjrrLPw9NNPu6cScrMAaQcoukgDjjSKrWKiJt/Y\nIrF0hPPOOw9AfCxAt956a6Xfy/TIPffcE8vqKIpSg3Tr1g0ffPABWrVqhbVr12LatGlW4Mhgbrjh\nBixduhQAMHbsWGRmZuLmm28OvXPVACmKoijhsHdvdLxigzl48KA1oJHpSYnkzCN4jqjMxCoHVk0j\nFjA538q83wB75GfJLVZTOdzEsSCWDBwYsGKdc845yM7OrnS9yy+/3Pr/rLPOclzPIAXqBRZLJCP1\n/v37UeAyTcFNuKanAtzqw3B93KZVQu0/0mO79uxrGfYULM2rtT+36+d2vXlK7oYbTFfs9128vrgt\nuPtZma0pze9ODwCrNmwAAMs1mJk3bx4AZ8uQoih1g8WLF+Oyyy4LuU5paSmWLFmCJ/yhUUKiFiBF\nURQlHAKRoVfSki3Wf5xNiuEB92zSczy2ebMlEWjQwKegCc7dBThrYSoqKmxaSdYmsmbHLb4Z0wQ+\nw4H8z5qfTlTm+vD6GZUcgy0/ThYvQc7/rLMuNr5nbSVjP9fQEcHGjh0bcn81yfr167F48WJ89NFH\nIde75ZZbcMEFF+D8888PuR4AjQMUa2bNmgXAFxhRURR39u3bB8DZ6qd6MEWpWzz11FN45plnAABr\n1qzB/v37MWXKFKxduxatWzuHZf3zn/+M3NxcPP300+EdSC1AiqIoSqJQv359y+JRWfb24E/p/HLW\n99oOnyfnNOPrI5qpusLMmTMxc+ZMAMCOHTswcuRILFmyBCeddJLjNpmZmXj77bfx3nvvhZ9SyM0L\nLIrUjZZZTSRabcOGDTF//sNG0r6pU+8IuS3rNNx0HJHqahjf9sX+/6vfSkLVz63uTz75IADnAGF1\nDdEEPfaYz91Y2omIPO//7W9Dbs/Xj6luW7HvP7J2EklbzMuzJ48IRqOAK0rd5f7778eBAwes3H+p\nqanYtGkTAJ/wOTMzEx07dsSMGTNw/PHH49xzzwUAjBw5En/84x9D79wtDlAU0Q6QoihKHcDr9cUD\nErfjZeNXW8tOoXU/p7KbM8f5/szoQlZ+vmXpEYuHDAj4+0aNGmHNjh0oLCy0vr+lVy9jf7/Q8X6k\nchaVObfXiQBkGFYM++8nR9Lh8+X9/c+331ppWgSOfM0WLyn39if4FXq6HOsztKNvOJ6OWdvly32S\njREjRiBeZGZmWsmimTVr1lj/Vym0jFqAYos0XHHvFJOtm8gt2WnZ0vcoixddsnj+/OY3vwFgtwQl\nE3Ul2KWiKAmGaoAURVGUqjBu3DgAwLLx42v0OKyBkYGjjPrle0mE6xoBOIFo1KiRzcLjlPuMtT81\nTW4u+9DVMdQLLLaIXkG0QE2aNLE+lyyZbwuAJZoXcQeVQGFSlgdd1peQ6Dt27AAQCIglEXtb+U2m\nYnKV7fiFIkyaNAkA8I9//MNYLgGxcnJyAMAyOcsD3KlTJ+M4HLJd8jBJ/eSB5hD4chzJ2C3r13XL\nDyOWIIlt8ae/+ULSi/hRrnezZs0ABO4nu9PKfZB2xR5U3O4KCnxanf379xv77dOnD4DAD45kMH/u\nueeM/YrFTo4v7bVv3/OM47ImaP6SJVZOL0VRlBpBLUCKoihKtOC4NydSmW0KXP5m1y5rgNegQQN4\nvV5bx5wHbjIwku9l+7KyMpsGZ5dLfRmWiHAcILffT7e8eI0bN7Zld+eBC2t/ZP2v/Q4Csvy3lJqG\nj22HzR+7jdKUKVNc91CrUQ1QfJg9e7ZRliSp8kCLZUgeAHnAxQvIKVCWPAg8ApdYKrJ/scwEe6EF\nf7IpVpDlUg/Zr7yYxAIhodnl+IxYAsTiww+4nC9bnJLN8sNIHCnRQMl1vvrqqwEACxYsABC4rtKO\nxHIo918+5f47tSO5/nK/ZX/sbszthMWqYiEMN0T/kSNHcNttt4W1rqIoSpWoB/UCUxRFURKDvLw8\na4DGU7luWiAZiMlnTeXEiiYej8dm2eKBKVuIZIAi2/FyJUzUApQYzJjhy7UkGgoAGDNmWshtWDfx\n5PPPWyNv0dhw9NzXXnvN+v+8vuwCaafY/3kWuZICwIr337csEPwAs4k6NTUV11wzybH+HFfm9def\nBRCwMCW75YeR6yGWIIHv99///ncAwJ/vusv4PtIYUgyvL+1kYO/eIbcT9IWtKErcUQ2QoiiKUh2W\n+Tu0zz//PN686SZj2bm0LqtOuDyGOtHv5eTYBlY8VStT6iUlJbimQwdje/594xmPAVTmXGFc7gHg\nW6kr7LF2NlF5N5XZJjWI6vthTo7NaYG9weS8F7U1a3ch7duePriYyv81Si+++DsA8c35FVPUCyyx\naOtv0KK1iISCggLrwXCKjitajmi4UQbHpPktRSZetGgRgMB5RBqqXSxKEv1TqRw3y9idd94JwG4B\nUhRFSXpiaAEKMzmHoiiKUhuZOHFi1Pd59OhRFBcXo7i4GGVlZUaoDo/HA4/Hg5SUFKSkpNSJXGCS\nCy34T6ioqEBFRQVKSkqswWw02bdvnyU7SArEAuT0F0Vqf8uMAcOGDQMAvP3221i37nXLnVPEfBJ3\n58CBAwDs3mSh8Hia0zehdR4+nHM8XXjhMOv/O++8z8pfBdi91crKyvDcc3Nt3kFiIRLvMVku8YKU\n6BCp5ufll30WPHkZ/sHvfea0vlsusGeemQMgCdxqFUWpPagGSFEURYkWrDs5nsqsqelI5QwqFxUV\n4ciRIwAC3l4S5oEDwaakpGBlXp41ACspKcHlXbsa+2MVDB9/CJVZ49MXwGP+/y+HPdbOu1RmOw3n\nSntx925roMupbmRAyAFM5Xpwhi7WG22mcjoNfPIoClMkA+o6gXqBJSaXXHJJvKtQLSL12nrllVcA\nBF5k1157bdTrpISPePe1aNEiKvtTy4+iKAmHiqAVRVGUREWsHYA9fIJT6hcp14ZwC6mpqTbvNrb8\nyKdYwFQiECV0Cix58Hrzrbgx/fv3BxB4gXAEaOEmv0trcHwiANi+fbvxWV3T6fXXX1+t7ZXQzJ37\nAACgY0efwV/uO0caF22Z/OhkZGQAANZv8jn3Su6v4FQDADDenwxTcsaJqf7rr7+uidNRFEWpPilQ\nC5CiKIoSHX4iq8vJFHKDY9VcRmXW5Czp188oT/r6ayvFDmtnOF5QSkoK3t+3z+rgHz16FKNPOMHY\nnxkJx67h4foAQKH/cwvsGh+G4wyN2rnT0i6Jpcoty7tYgDLbtTO+/zWtt4XKH1A5j5wXFi78MwBg\n+vTplVc+CSDZVY2hHaAEQHJCSXZv8cJyywUm30tWdok0nZYWjieZEm8kr5ZYACXVgMRnEpO63F/R\n/rRq1QqA/QXNOee4nezduxdAEgVUUxSl1pECu8i9pkiKOEDr169H79690bJlS7Ru3RpXX301du0K\n5B/Oy8vDddddh9atW6NNmza44YYbrESfSnLx2muvYeDAgWjSpAkGDRoU7+ooSq3A6/VacXCOHj2K\no0ePWvGBOC5QcHyg1NRUy/IST4LrVa9ePdSrV8+qd3l5ufEncX+kHG2mT5+e1NafegAahfiLJklh\nATrllFPw9ttvo2PHjjh27Bjuvfde3HzzzVi5ciUA4A9/+AMOHjyIn3/+GV6vF6NGjcJ9992HOXPm\nxKR+4o3z7LO+XFtiwZEI1E5iPDEhZ2dnG2WxECiRk56ejtmzZ+P777/H+++/H5Njhuud9+qrrwII\nmOhZG8YWIEEsg7/88ku16qkoilLTpACIjp+rOwnXAXr00Ufx6aef4s0337S+u/322+HxePDEE09U\naZ/taI42JSUFP/74o1X++eefcdVVV1lTEFdffbXVOVJqDz/99BMGDBiAd999F2eeeSZ2796Nvn37\n4vXXXw/bmjNkiC/iSGZmZg3WVFHiy/ekCbqVdC48BZFLZc7ddezYMWvKVgZsMpXL3mAcVwcA1uXk\nWBqi0tJS/KpHD2M5x9LhuEVbgtZZALumiWPztP35Z0urxPWTAaY4EwRHuQ6uv3x/mPbNcX44BhOf\niySZHj16NJSABSgWJFwHaNy4cbjvvvtw6NAhtGzZEmVlZXjllVewdu1a3HLLLXjppZcq3a5r164h\nvVt27NiBPn36ID8/HykpKXjmmWesZTNnzsT8+fMxZswYAMCbb76J4cOHR/fEwmDSJF9m9qVLlwII\neAWJl4+8YGSEL5oh0XaIpiRZOeGEE/Dwww9j3Lhx2LRpE2666SZMmDABgwYNqlbbSRTkhe2WM45/\nYMRCWBMpERRFUaKJmwaIO5zVIeE6QB06dMAFF1yA119/HVOnTsW6devQpk0b9OvXD/369cP8+fOr\ntN+uXbvi0KFDyMvLwzPPPIOTTz7ZWnbmmWeipKQErVu3BgBcfPHFCZ3ws2fPnvGuQsIydepUrFq1\nCmeffTY8Ho9lyZs/f36V205tRduJEisKCgosLY9YfmRKXryluOMuZbHAyECPs6zXBA0aNLAGCvLJ\nKX/EIsUphGQgEq14Rmr5MfEgtAWoTneAAGDChAlYsGABpk6diqVLl1rxTMJh48aNuOwynxPn8ccf\nj2+//dZYnp6ejgkTJqBv377YtWsXUlNTce2116JPnz5YsWIFvF4v7rrrLowbNw6vvfZaVM8rXMaN\nGwcAWLNmDYCApkeE2TKSl5F9slt+mKlTp2L48OFYtGhRxBnvExk5F6cfEv6UTvy5554bqyoqiqJU\ni1SEtgDlRPlYCcdVV12Fm2++GVu3bsXq1avxyCOPAABmzJhhTQ8x0tk5//zzUVhYWOk6QllZGfbt\n24f8/Hykp6dj8+bNeOqpp6xcNjNmzMB5550X3ZNSYkJhYSFmz56NyZMn47777sOoUaOQnp4eVttR\nlGRlHlkzXqJONmtuSqn86sUXG+XbvvnGlitLEO2MWFZkPbEENWzYEDkwdZs5lC0sl/Jn7UYg/9cH\n8OUGC2YABQ7K9Wd3BwIDBqmPDDTld0QsWWIpWu8PWCu4+bBxWqs5L74IQMNROOEBEKtha0J2gBo1\naoTRo0dj7NixOOuss9DVnzhv4cKFWLhwYcT7W7ZsGU499VSceOKJOHDgAO644w6cccYZSE9PBwAM\nGDAAmZmZVkdr0aJF6NOnT/ROqIqIq748iPIpD6xEhFYCzJo1C/3790dmZiamTZuGGTNm4LXXXgu7\n7ZSXl6O0tBRlZWWoqKjA0aNHkZKSkhCuumwB4qkCfpHv3LkTgFqAFEWpPWgcIPimwb755puIpr+c\n2LVrFy699FKkpaWhd+/eqFevHt566y1r+bPPPousrCx07twZnTp1wvbt2/HCCy9U+7hKbFmxYgXW\nrVuHBQsWAADmzJmDL7/8Ei/6R1zhsGTJEjRu3Bg333wzNm7ciMaNG2Pq1Kk1VWVFqZM0aNAAXq8X\nXq/XigckZYmfI/GCioqKUFRUZJVrIrYOIzF+guP8FBcXo7i4GPn5+cjPz0dhYSEKCwstDzdZXl3G\njh2r1p8QxDIOkMeboJnpduzYgZNPPhl79+613NMVJZn54ANfEH0J6yCPLluC9u3bBwA4//zzY1g7\npS7BU2A8jcOu3Jzu4c5t26wI95yrTkTGRUVFAAJTYmLhbNCgATp0OJ32aHY80mkKrGVQnToCuJ22\nnkVTYPu35NoiqIuFPS8vz3dEh87OZxdcYJQP0fLjqczXhqcbFZPO/fvjdn+ew8p4rX9/bAqxPBIS\ncgqsoqICc+bMwfXXX6+dH0VRlBgz1iVOUAatzx2kv5MHIue/2oYzXGrAqiMzElFf6gBlAFjr//9C\nAEW8O+qVtPmE9n934IjdALz+nbk4eErGjFBkj/PDXkra4YmMpI4DVFRUhHbt2uH444/HunXr4l0d\nRUkYLryQw7tVjrq/K4pSW0nqSNBNmzZ19eJSFEVRFKXukdQWIEVRFEVRkpNYeoFpB0hRFEUJSSgd\ny7Jly7B51CjjO45tfBmVrwYn5j2FyllUNiMPZdDS2wF8HfT/Glpe8olZbrCCVqBkZ9cMoeW7Av8u\nJ33QqcuXAwBGjOCMY0pVcIsEHU0S1g1eURRFiQ7r16/HRRddhBYtWiAjI8NYtm/fPowZMwYdO3ZE\nixYt8Ktf/QqfffZZfCqqJD0SCdrpL5poB0hRFKWO07RpU0yaNAmPPvqobVlhYSEGDBiAL774Anl5\neZgwYQKuuOKKsLWYI0eOjHZ1axUjRoxIWuvP559/jtTUVLzxxhsh1xs+fDhOO+20sPYpFqBYxAHS\nDpCiKEqC8+qrr6JZs2bWX8OGDTFo0KCwtz/rrLMwfvx4dO/e3base/fuuOOOO9ChQwekpKRg2rRp\nKCkpwbZt26J4BjVPT/+fEhvKy8tx9913Y+jQoSHXW7ZsGZo1axb2fsULzOkvmqgGSFEUJcG57rrr\ncN111wHw5ao6++yzMWbMGPz1r3/FX//6V8ftDh3iMH3ubN68GSUlJejRgyPeOLO0Eo3Qs88+CwDo\n1q0bTho82Fh2A/KM8ov4r1FOo5SXBehs7tt7wPr/1VdfxTYA0zt0AAA0bNsW/zjF1BRxMMIxi80y\nh13MoMw3G+avtwKMXnvttVCAJ598EqNGjcLnn3/uuE5hYSHmzJmDRYsWhX3d1AtMURRFsVFRUYGx\nY8di0KBBmD59OgDgnnvuidr+8/PzMX78ePzpT39Cixaxisai1DZ27dqFt956C+vXrw/ZAbr33ntx\n5513okkTDpXpTLs2bTCEEs4G06ZNm4jqGgrtACmKotQSfv/736OgoABz586N+r6PHDmCK6+8Euec\ncw5+97vfVXt/kyZNsv7fFWK96iKWseeff77GjhHJdGMyMHv2bDz88MO2NDzBbN68GT/99BMee+wx\nZGVlhb3vWAZA1g6QoihKLeCVV17Byy+/jM8//xz16/vmaB588EE8+OCDjtuEK2Q+duwYrrrqKnTu\n3BlPP/10VOqr1C2eeuopPPPMMwCAw4cP4/rrrwcA7N+/H2vWrEFqaiquuuoqa/1PPvkEmzZtQkZG\nBsrKyrBv3z4MGjQIGzZsiEf1KyVhk6EqiqIoPr766isMHToU77zzDk4/nRUr7lRUVKCkpATr16/H\njBkzsG3bNtSrVw8NGjRAaWkpRo4ciZSUFLzxxhtITa0b42KxCEk+SUnGKkhSVtFJTZ48OXaVq0NM\nnDgRw4YNw+jRHP0pQFZWFoYNG4atW7fGsGbuqBeYoihKgrNixQocPHgQ5513nuUJdtllHF7QmQ8/\n/BCNGzfG5Zdfjh07dqBx48aW986//vUvrF69Gv/85z/RsmVLa/8bN26sqdNR6jBV6aDHC7UAKYqi\nKIqSdKgFSFEURVGUpEM7QIqiKIqiJB3aAVIURVEUJenQDpCiKIqiKEmHdoAURVEURUk6tAOkKIqi\nKErSoR0gRVEURVGSDu0AKYqiKIqSdGgHSFEURVGUpEM7QIqiKIqiJB3aAVIURVEUJenQDpCiKIqi\nKEmHdoAURVEURUk6tAOkKIqiKErSoR0gRVEURVGSDu0AKYqiKIqSdGgHSFEURVGUpEM7QIqiKIqi\nJB3aAVIURVEUJenQDpCiKIqiKEmHdoAURVEURUk6tAOkKIqiKErSoR0gRVEURVGSDu0AKYqiKIqS\ndGgHSFEURVGUpEM7QIqiKIqiJB3aAVIURVEUJenQDpCiKIqiKEnH/wfncqviCDGl5gAAAABJRU5E\nrkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x115f535f8>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAADeCAYAAADVab8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztvXl4FFXa/n93CKth3xUlgoqKQhTE\nZUBBHWEYBbdRYFB2930b/c28M+rrNuPXBUFkBHEZVBQYibigIqI47q+AgssoEGUnEJYEyN6/P6qf\n6jp3dXV1k053J/18ritX53RVV52qrqo+5zn3uZ9AMBgMQlEURVEUJYPISnUFFEVRFEVRko02gBRF\nURRFyTi0AaQoiqIoSsahDSBFURRFUTIObQApiqIoipJxaANIURRFUZSMQxtAiqIoiqJkHNoAUhRF\nURQl49AGkKIoiqIoGYc2gBRFURRFyTi0AaQoiqIoSsahDSBFURRFUTIObQApiqIoipJxaANIURRF\nUZSMQxtAiqIoiqJkHNmproCiKIqiTJ06FQDQuHFj5F1xhbHs6+nTceWVVx7wtv8SCBjl+4LBA96W\nUn/QCJCiKIqiKHFRWlqKfv36oXfv3ujZsyf+9re/udaZPn06jj/+eOTl5aF///747rvvUlBTbwLB\noDaFFUVRlNrl6aefBgA0bdoUgBXpAYBmzZoBABo1amS/HjRokPHZ4vffx759+wAAhYWFAICqqioA\nQJs2bQAAO3bsAAA0aNAAANChQwcAQE5ODhbT9vq//TZKSkqsbRcXAwD27t0LALjuuutqeKSZQTAY\nxN69e5GTk4OKigr0798fkydPximnnGKvs2fPHrRo0QIA8Prrr2PatGlYtGhRqqrsQiNAiqIoiqLE\nRSAQQE5ODgCgoqICFRUVCNBQozR+AKuByctTjUaAFEVRlIRyM/3Q/ULLD6bysVQ+iMrlVH6Zyq2o\nfCSVd/mUGa7vRsf/6/Un06aqqgp9+vTBzz//jGuvvRZ///vfXes8+eSTePTRR1FeXo4lS5bgyCP5\n2zEZMmQItm/f7rm8Xbt2CYsiaQNIURRFSSjJbgD9GnrtFXrVBlBy2bVrFy644AJMmTIFxx13XMR1\nXnrpJbzzzjt4/vnno26rb98++Oqr/0RZ3h9fffVVjeor6CwwRVEUpcZMnz4dAHDIIYckfd+7k7iv\nKVOmAACuv/76JO41vWnVqhUGDRqERYsWeTaARowYgauvvjqGrVXCv4maGFQDpCiKoihKXBQWFmLX\nLquhsn//frz33ns4+uijjXV++ukn+/8333zTd/jLIgigNMpf4tAIkKIoSj0mNzcXM2fOxNlnn10r\n2586dSr2OKIhRQAqaJ2fqPwJlRtS+a1vvkHbtm0BWLO6bu3UyVieS+t/H3oVLRDHD/5361Y0adIE\ngDV9+9SOHY3lexEd5/H844YbjNdEDYnl5uZi69ataNCgAXJycjBkyBBMnTrVFhqnG5s3b8aYMWNQ\nVVWF6upqXHLJJTj33HPx17/+FX379sWwYcMwdepULF68GA0bNkTr1q19h78sqpCsmJ42gBRFURQl\nDVi4cCHOPvtsbNmyBYMHD8aDDz6I+++/P9XVikivXr2wfPly1/v33nuv/f/kyZMPYMvVSHSkxwtt\nACmKoigxM2PGDABh356DDjoIexK8j2bNmtkRm+rq6hpvLxgMomFDK86UlZVY5cdLL70EABg1alTC\nttmpUycMHjwYK1asSNg26w5VUA2QoiiKomQgGzZswNtvv40jjjgi1VVJARIBUg1QvWMGTQ8dSssP\naUZv7I0+vnwhbe+vtHwllcfoFE5FUeJkMj1nWE3E09I/pDL359m3x7W8VSs7wlRaWgpOoNCeylWh\nV9HyRIofiAlfw4YNsRZtIqwRrYYt7f+KSJ9yyx//aLyeRJ9cGMcz9/zzz0cgEEBJSQnOPPNM3HPP\nPTF/tv6gESBFURRFySgWLFiA4uJiLF26FD/88ENUQ8D6SzWAsih/iUMjQEng8ccfB2CNa8drBD5r\n1iyMHz8+4rKZM2fWsGaKoijRefXVV5O+z2bNmtm5vuS1JmRlZUE8f0ULlM6cccYZGDt2LG677TYs\nWLAg1dVJMsmLAGkDSFEUpZ5TUVGB0tKwfiI7OxvZ2fr4T2duuukm5ObmYuXKlejdu3eqq5NExAeo\n9tE7IE4Cgbb0jul40QXFRnkMrc2W74upfMQ+s1w0YQL+34QJdpldFEZSmcfeuTyTxvLZn2MrTnCU\nTEfXYHAhlPSF0w+wk8ZGKrPdfyGVOV3BGY7/WVu2TLVlac3Qoaba8M9//jPuu+8+z/X/RNfSnbS8\nEZW5v86pLJhlO3eivNxKcCFaH5n1BQBHhjLGC6zI4WtVtD+iFeL6dOhwolGurNxma4IqKyutbYSy\nwW/btg1nkKGf87FcTPohtvZjfdTzdC5j1WG2b98el19+Oe69917Mnz8/ps/UD5LnBK0NIEVRlHpM\nQUFBqqugxECk7+mpp55KfkVSjkaAlDREtEw33XRTimuipBvPPPMMgPBMG3kVz5UxYzgWqqQrydD8\nNG7cGE1DUZ4ARUgSofnxo7Ky0o48yVBgbfkEKfGiTtCKB5tDr51TWgulvrMX1rWm15miKMlFnaBT\nRiDQid7h0efoo9E8Ns4an8t++AGNGzcGAPtVeh7BYBDXdehgrM9j6TJ6nBtx78CELVvsHlRZWRmG\nhV4BYN++ffhDnz7G+lvRkbbgPD7TfeOFm98Ivd4ccd+JyomjROett94CAPz+93+iJc2N0gmkR+Mc\n3dFklR/A6oflOt5zqt3YrurmiRONMtu3zRs71ij/jpbnhHIESe9b7olLL700Si2VRDJ16lQAwDHH\nHIPLaRk/196iMkkXXT49fL0EAgH7u5bZWeL4XFVV5doeayf5ufgjotMDG4zy/v377ciP1EPK2dnZ\nrlxj5ryxIqPEGiDOK8ZqlieeeAIAcEMol5jCqA/QAZGbm4vFi7nJoaQjubm5aNq0KXJyctCpUyeM\nHTsWJSUlqa6WoiiKklLUCbre0rBhQ7un0aBBAwDhMfBggiIosl3Zj8xySDf/i7qU+C8VvP/++wBg\nNwz3798PIBzRq0/IMUpvXK7hWbNmAQhfu/I6YsSIZFex3iPZ15MFR37kOeWcrl9blJSUoFkzKy4l\nz1+55iQyX1scfvjhtbr9uo9fBKhplGXxoQ0gJeVkduI/RVEUJYyfBkgbQAmjBc1A6E/Lf8JWo+zW\nzJhRlfnLl9u92KysLBx/vOkKkZWVZSx3UlVVhU209QoqNwi9ypg6e7lUV1fbPRl+zc7Oxlr0MNb/\n5pu5tmaooqIC/frdYi87DmuNdXncfTm6GOVAYIBRDgaXIRYk8d+ZZ54Z0/r1FT5/fG259Wem+qA5\nVhnl3Khru32BjLrAutac2g3ntcg1YT0Raz5YE8LX0pjbrzXfYIMrSgY1a5+lEpGI0GWXXQblwJg9\nezY+o/PHp38eld+j8s9UZh1MpNgzR34kwrlz507Xc4/h60uei3Jd5dJy9rSqqKiw9yvPR3keN2vW\nzHVvOPVzvG/eNsOijKeGDTPKW1Q7SfjNAmudsD1lfANISR2a+E9RFEUxUR+gWkVyaNXGmHd2drY9\nth3JT8I5+0HGnqUnJM6oNaGystIVYWJNENdXSJQGSXjllVcAeM/kWbBgAc4++2x8+OGHGDVqFLZv\n345WrTi2UP9ZuFAdtuNFdCKih5oxYwaAcERoLM06U9w8++yzAKwJCalAnjcSgd6zZw8AKwJU2zRs\n2NB+7ko95Hlc2xogRv3VmGqgimOItUO9mgWm1E2cif8URVGUDKYaQHmUvwRS7yJAkZL+NWzYxXP9\nC6h8MZV7ffut3ausqKjA8cefRmuYjidZWVl2zwIAVq9eYjuOSs+CZ39JD6i0tBQfk5dLN/JykSMT\n7Q/n8iovL3fNMjM0QGvfdmVZNt17w44bq0iR9O23+QDCPaZevX5DezeFGteEZurIa28ASzyiTJmU\n+O/dd98FAFQOHgwgrF/4I63H2oGt4OvYdEthLQJfG6zD4LJTdyFBaKfGrMDxP+uJeFus8WENEJdX\nk/HLkc+Y5Ua0gzGfmpqhg+iSmR56Bsi9K/egaoUsOpH2kfNXcQ5BVmSwTw//Lq2ia/XHH99H586W\nraZ8J/L8KS8vR4cOrH8zn4OF9BxkXyLxjpa4AV9fzMWHHmqUlzmi7w0aNMCasjLs3m0d9ZYtWzCm\nVy97eVfaFmuCuG7sl8b3xpyQr5q8fpbpmqBquC+wWqLeRYCGDh2Kpk2b2n933313qqukxIAz8Z+i\nKIqSoQRh9ca8/hJIvYoAeSX9u//+mQe8zezsbDuiEotGJhAIuCI8rMVh3x/R/sgsiJpQVlbmmeOG\n6x+v5ke2m4hcOZmU+O/jjz8GABQVWQ6yonVo4/kJpabwvVVRYT05Rf8nmcdHjx6dgtqlllRkFm/d\nurXnc0hmY6WSYDDoymMnucpatGiRsnplJNVwTyOsJepVA0hRFEVRlDqMRICSQIY0gLwdTApoTR77\nPhEcyeGsNObot3OWl0R8pOfDuWd49ldZWRk60lg3ayt4rLuIxtr3799v925Fc8ROp+zAas5Kc54f\nc3SbtUVdfMbleeybPYvqK8uXLwcAnHiimVHp45BPj8w9/E0783PNtpvlPNpuAeUzYs+oAq4HXRtH\n0udZadX00Uft///vySexd80aoyO21RGzOtInHxJfty2pzLqJlVR+gcoH0wOxLy0/jTZw9ZRrzDdo\ncuH0y61oozhNjx8/HvWdxx57DADQq1cvl88Pz71kCcbthYUuDaM8P0pLS9G/fXSnJ4mmAO4IUCAQ\nQHPK5sVb4zx2vLyRx/sCP4uYYDDomg0mEe82bdoYGqhP6LP/Cs1EFE2TRLRkhuL/o3NTvxWOCSCJ\nEaB6pwFitmzZ6r+SkjQKt2xJdRUURVGUdEU1QAfG5MmTcdNNiRXRVlZW2hGcAM2ciEQwGHRFfqQn\nwRogdkJNhA+P0+FUtsezwWS//L70YLyQCFAs58GLU0IzQQD3bAqvGWJ1BYn8iNanriHffyI0XumO\nM3oBhH2EJMpx+eWcD73u07KlFYdzzlKNldLSUpdPjjw3JKdWNHh2LC9LNc4IkCD1ckavIiHHJTqz\nvXut8MWBajpffvllAMDIkRynyxCSOAusXjWAFEVRFEWpwwSRcL8fL+pFA2jq1KkApCfCbiicVdYc\nXFxOc3H2kbbhqooKO4Jj9RB4cNIcXXZGgHg2lldPx+nTw1oKHpuXseiTQq8NSdfhjM549Wg4K7xE\njKzPel95PEuCNT+s8+AzxcuT1MhPGiee+Dq9c4ZRWky5un5DJ4D9QaLlQwb8fX860rXB6/P3t+v2\n2+3/KwC0QPg6s+oXvjdYx5BLZc6lxD4yrAfzu1b4XLBmiDUiuZycioIUw681fYQk15V8Jc+GomHj\nxo1DXWfq1KlYdv31xnscW+Dvg8/vreSbM237djsykpWVhRX799vPF3Z4rq6uRnV1tcsBX4jkUM9Q\nKjjXtSxPtPZUFvyeNdGem4FAAD9WVLjqzVFE8Q0aethhxnr8TP8tlfnavnLUKON1Tx2PjMeNRoAU\nRVEURck4qqDT4GPhiSeeAAA0b265hh7I2LYfZWVldsREIjXRqK6utns0fpoZHlM/6CCOAcRPkyZN\nXPXk/UtPjH2C/Pw4eDZZoqmrY98ffPBBqqugJBiZmVkfZol17doVyxK8zZKSEvv5IZFugWeZCl7P\nwdp6nsSD0wdIkPpz5NvLx00iQEoN0WnwiqIoiqJkHDoEFhuSW+aSSx50vGtGUTqS7oJjLH6RtmAw\niH37rG+jcePGWLFitq32LykpwVODBhnrN2rUyI6o8Jg39xwEWb9Zs2auhi/XT64L0Xvw+gcddJBL\n4+M1u4xngVmvYU3Tjz9ajrESoWINE+s0WFNyEpVPpTLrm6aFxrzldVmaj32Pd/VoO1LZ/HbYQWov\n3eSs4WHvEr9OEWsJbn7oIQDh6+udW281lrOPkHP7JQAqqU7Oa5E/y/eVn56JNR18Lfn5vvC5Yc1R\nezpZu6hz/hatz+f24KuuMsqzQq8S7agLDtInOq5P1p3w7wt/nwzfq2VlZa5Zo5xd3ev5x5GhrKws\nbNyzx45Ay/NVthMMBtG5s5l3sBxrjbLEkOS64+vlyjVr7O2xw3ODBg0QDAY9fNH8Z+fycr88eAzP\nhj2DyoGA6UQdDO7x2WIdRyNAiqIoiqJkHJoKIzpz584FEI4A1SbSOwDCzp7SMxDtkZOcnBxXBIZh\n/x/p8fj58MRaX8HZg3LCPTSJ8HhtK94eUaJ4+umnAQBXXHFFUvYXK5LbK92R70muL+XAYdf22bNn\nA6gbkaDaIBAIuDQzXs8bXs6RIoF90uR5mIjrt3nz5vZ2/SLk7AgtsCZIEC2U13NUiZMkRoBS70Cl\nKIqiKEqdYvz48ejQoQOOO+64iMsffvhh5OXlIS8vD8cddxwaNGgQm0msRIC8/hJIIJis7nwCkEzO\nD06aZLzv1BfwWDX7Rcz4/nt7tlWzZs0wsJ2ZkInHb3k8duTy5XaLXxxQZXs8G4LHlOVUi6Zo3759\nOKtHD+MzXH/WOmy1R7sju6+eQPm5/r1unT3m7TUbjCM7Epni+g/0ibjxWPeC7VZyK+nJ5Xc0NTJ8\nrDOp/C7MGysY/Dbq/pPF669bfj/jhg833meND5+Ps6nMnRzWALFOg+OK/CxgF6JinGCUu2B51Po5\nvWD2AKhEA5jXmfMT5t5PgJlyhvVfXFe26eH7lM/VGCofRCdj5jTLyVmu1cETJhjL+Vxzzj+u32lU\nZs1SWWh2mEQT0ikSJLNjn7vxRvu9obQOn48CKrN3Da9/TUEBWrduDSAcAYmk7QHczxdZT54LrBGS\n9+W1uLgYfQ4/3Ng2+1CJ0lMUmVzfZ3ft8vQh4vp6red1fBKhkh/3S7qaqp4C2k8ulfk3ZgWV3yWv\numBwh6vuqeCjjz5CTk4OLr/8cqxatSrqugsXLsRjjz2GJUuW+G63b8cAvhoRZfl/+uCrr76Kt7oR\nqZNDYIqiKIqipI7TTz8dBQUFMa378ssvx25vorPAInPwwdxPjJ+ysjKX/008NG/e3B7rlazrsh12\nQOWejWiIioutKM2B5oqJh+LiYnv/ErHinhhrfSSS5TVWHys1yRmWzuza5efRrCQbuReTFdBmfVU6\naYLaUVS7NmjYsGHMObz8tD+sreH1JWKeaFjr4xXh4fUZWU+uQcVk3759WLRokZ2xwRdNhaEoiqIo\nSl1n4cKF+M1vfoM2bdr4rwxoBIg5lCIJ7BEyzPE/60q4rz45L88oL1y3znBgHt2hg7Gc/UWcs7y8\nHEy9fC/27t2LfkccYazLY+1+Gq8GsKJLzUJan2J0MZY3Ig3QmF69jPJbmze7ssJzD4wjQrKc9Ugc\nP1u6ebP1fuj83Na2rbGc/S7YN5V9hPjbCwS6G+VgcI3rE7WJ9PIlkldEGptC0tjwd8kaJ4aPn1Ve\nfG3z+WdNTzEpbVgXsRzuWYxh9qEBquzrzNqe8xs0FU/L8aVRbkSaID4WPjd+MTVeXkgHc85llxll\n1vLxtcu6C+5wcm4s9slZQRqjM595BkB6RIJatbKuFOf1xPceHx//3rjON5Wd0XOvSC9rCBmO+ETK\nwSWvXH9+bkruMjkO1mxFyvbuRawO1hxBknPCdeVzx2Wuay6Vb0IMwuE0Zs6cOfG5+1dDfYAURVEU\nRam77N69Gx9++KHdMYgJ9QFKHvv27bM1QbGM4WZnZ9sREq8eBUeAZFbV3r1J+lajUFZWZke8vHw8\nvBxR/WAfj/qGaBHq0MRJJUmwZ00qI0HJ8KNxRoD8fHQ4ohJrzkZ5/uTk5BxwPSPVy+t9fm4L7M/m\nFdFKh5xmyWTkyJFYunQptm/fji5duuCee+6xr/+rQk7qr732Gs4555z48lyqE7SJy6aeys4pqxza\n5VBuXyrP7dnTKL9YWOhqCCQyCSgPYxxBZQ6PrgKPm5YAAIphDdU1xwZjKQ+LxC/z9mZ1aIiLk6bK\nefkTDR9yc4+HEXjIxl/35mcqn1gCgdX0zhyj1JGGvPg6jXcYm4fA+Nrl88fXEp+dg2k4tMC1x2jJ\nTDahCg3s68zCeYR8peYapc/p6AdRXXgIg4/Fbyh7MZV5iC2XynwfuNIN0KnYROOzfG3y8O1iMus8\n71//gqLUZyR5dTTGjh2LsWPHxrdhjQCljurqatesLq9cXrGOcUuDQbQjqaS8vNwzAuR3fHJeku0I\nrSh1DekJy49EXBqIA0T8f4491tJnObUo3Dj20/zM3rXL8/nn5Y/Ds7xkPX4+SkSFtT9eucOaNm2K\ndwsL7VmzJSUluPtYU4MmTyJpqC76739tp36O7Ptlq+dINmshvT4n600P+QGJazivfwnNZuZuCHtg\nsYfTP//5TwDAlVdeiXqJXwQoga0WbQApiqIoipIe+M0CaxFlWZykdQNo+vTpSd9nMBj09beQiI5f\nlne/ciqorq529by8IkE8BCjnhWeRpcNxKUo6Ic+I0tJSAMC///1vAMCFF15Y6/vevZsH6OKnurra\n1xmZIyOM13OBnaAlUsLZ2uU5I6/iY8aO+5Fo2bKly+eNczDKd8O+cCx1iFezxNtJ9PPxQPzr6hTq\nA2SyFWYKhUKaYvuJ43/WALFeqN+XX7oufJk2KtbutQkrJ65atswW+TVv3hw30TT55jQFspiUIsU0\nlfmRzxfbx1daWoqHBg9OQK1j46Gt1vciDwJ5wIl4eFi3bsb6rANxw92AZIvInzJKPfCBUeZhg7Wu\naeXmg6ojfZcsC+Tt8WOOl/PZ4LPF5/e3VP6S9GOr0A3RifbgNZ9YbUjz4zcVmM+FW89kwnooPjd8\nLvz0WV2pzcDb559c1u5xfY8kTVDR/PlQFCUG1AfIIlHqfyctW7a0NTDyQ825vLjHwz0WHrNmOMIi\nLfYWLdyxu7Zt29pj1Ylo2bdr1852mo60vUgzRPxy47BjtDQc+XxwJEx0EOmgfYoHyfWlKIlC7sna\nhHNzOYXk3AD085gqLS11RUY4IuQXGWGtjWwvEAigXbt/0NoFRumHH+61O6asPWzYsCGe2rHDiKwM\nGzYMgUAAL7/+uqdGSSJN27dvx13HH2+sw/m3vi8u9tUK8XOR8ZpNxj5BLMjPpTLnrZPnar1FZ4Ep\niqIoipJx6CwwCxnzTSStWrVyqf2lZyJ4aXq8NDHcU/DKKdO+vXsad/v27V1DRjUhJyfHnvUgPR4n\nTZs2dUWo/PyM+LjlfPEYt5fvB5/fRCG5Za677rqEbreuRayU9EeuqVdeeQUAcOmllyZs26KVPPro\nowEkxgeovLzcZXchEXKviK/fqxCLT9ivv/5qRzrahhzlvbQ/gUDA2CbvV2aPFRZaA6/r16/33b8z\nuu+lleTl/NzjSHiicj+KRqreohEgJtcofUwDhIUOvQGP3f+6c6fdsIhVzFabrNu+3a5PpCG0N1y+\nP8dSWYK10piKfqXMWrfO3k8yDNKi8e///hdAuEF0NmmC3M1dfqfmyXCjEQg8YJTb4EmjPJzW57D5\np6R7KabvknUufhoePtqTqMzNW9bV8HJO6+K+cpzB+SIAlTDVLc4amls7gfREp8GE6/YVlVnDU0Dl\nt6n8CZX5XPqd25+ozENAfO54OX+XrD3kdD2KosRGEgNA6d0AikXt70d2drZvBILHtP1U+14Oyl4R\nI3lfIibsM5RIAoGAfd74/EnDixtgXrPC/GZD8OcF+Zz0VPj8x5pF2o/a0IgpSm0g95y4wS9atAgA\nMGTIkBpvu0PIgHTEoEHG+04/GW4w5lKZRd39c801vty82TdS7PUc5QiJdS6i/8SNOOcco1xEAv1t\n2z6LGPWRWa4dOkwz1u+Cu40ye+tEykXn93vgFfGW9eU7n9SunbGcJyfwuAB3rF6gcsGYMQCAP4de\n19ezWbhJDACldwNIURRFUZTMQSNAIRKReqKiosLl7BnrrCfBawzby8nUawycx9RlO6IPSIT2pLS0\n1DNy5hdxite3yCsCJEg9JOLFPhw1JZbcbYqSToguLxFePYLMIq1NWGcDxP684AhQIu7/4uJil19Q\nMBhEeXl5QnIuxiKXiFUbpMRHxkeAAoFD6R3zdHQjrYVzsjfbiqeaDh1OpHf4q82lMqsneCq73JjW\ndtqQJ9Jhh/HnOeBqBnu3bGF1RfJYix4+a7DywvzRGDnyceM1GPyshjX62Sj9jpZy2c97ppB8f3h9\n9rfi75K/uVOpzD+h31H5DZcvEevJ+BPO8l5Y157zem3l8T+wnI7+jpct/ZTXcOc+EgHzfcvfPGt2\nuOZ8V/GR8jADb581Srw/VqP5PaB5/ZOuucZ8Y84cKIriJok2QOnZAEokJSUldgudIxKxRpi8Ikd+\ns6gSpfqvTSoqKlwRo1hnb/it5/WaiNluiURcepXEIfmoRP+V6OhfXaekpKTG2wgEzM4V21g6hdk8\nOcQvse5b33xj+/DIbFy/nIhemp9wfZ33P6ezNbsH3O17/PEb0LlzZwDAwQcfjO7dl9EaVvT8kEO2\nAQAWL+6PTZuso9y2bRseuM1c2+98VFVV+Tri83FxWV4n//orgHDUbzp5ELHPD08Q4MZ+EXVsAoGj\njXIw+APqMtVImhF0/W8AKYqiKIpSN9AIUAIpLi62W+yiGWEnaG7he+Gl/eGs6dLL/eknDqSnH8XF\nxWjTxpquzefBK6uz1+wHxssvJFGzwBKFRiUST7vQzBev3nGmI1qg+aEUGRdddFEqq+OiRYsWnrM4\n+Tnh9VwUeFbUgdiRfPBBOA3NxRdf7Lv+L7/8UiNH96qqKpfGMd5rV0YYxH4kEbOaM4GM1wAFg5ZR\n1RtvvAEAmHLeecbyPFrfGTxdSct69hxA70TPKrRnT0Gs1YwR86ucNetB27DskEMOQdeul/h8ntUE\nMmxnNeI4dH0s+bFMWb4Q331nBVE3bdqEB2+/PcZ6x8/JrczacM2XuzQprKphWDVjBodffdUygPvD\nH/4QU/2YtvRAYwemMVQeSAfUiropPNXYL5R9EGl++Mpk3Qr3itjXh6fPAr2N0quv3gDAnfKFH/CB\nQAB33XUXVq36BabjjdMniFULA3ytAAAgAElEQVQz7JIUnRmbNwMINz5lAsDOnTutrYdM6/bs2QMA\nWDhihPF588jcmh1+gPK5dFuSmhRQ2S+Xmd93lewsdopSV9FZYCFSkfOkpKTElcOLc9F4jW0LsjzS\nbIT8/Hzk5+cDACZOnJjAmkfm7rvvjrq8oqLC83gi/TAC4Z6c/HilKoKikZv4OOaYYwCENR3RZkfW\n1GOJo6JemcSlMSa9ZMmXd/DBVnOwqMgSki+sUW3SD04UfCB0wXKjzLqZeVu2AAhHcLjB6+ULxut7\n4aUB4uWRXtvgR2PdvrRt1uQYxzVvHoDf07vyW2E1TTn6w78k3GBeiy6uusea5d4r0s3aU5mtd8OP\n1rFLo1/WkxEKuT+lLN+DRA07djRdm7rQuazrZHwESFEURVGUzEMjQCFSkZNp27Ztrha5jIVL2UvT\nwj0ryc7sxerVqxNZ9QMiOzvb0xlakDL7FUkEJlWz3TRnV3xEykXnxNlDr6lWZ/v27QDcUQV2KecZ\nmRwZkpk/9ZXavIY5gs7nmHMheum1vLSO8c6KFdJNAxiJYDDoO8uVZxF7rS/HK5Edubb5uSvbk1c5\n34n0iasLaASIYOkYj/87tRN84j53bc0MOXchr5bBeabCiHP+fLZtW8Q6enEO6Tzcy80a/kzLOTQL\nlIZeCwAAw2gpywMfpvKtUWsTnfPpx4jt88+mMuuxmrtyZblVMSam0oK/q5rCmht2UDqDP0DGPL3p\nAPlouLnBPj6cP4qvXdb48HRZ7iVtpYnQX31l+SN17NgRB0YpnGqY4xzXKit+vqTyCSeY76xe/YpR\n7tqVw/bm2SosNK/7h0NTmreEhnXuPNGcAs66QIaHVHgIxE/jw1cma+/4u2P12qe8/PrrjXIyhsMV\npS6QzFlggWAa2VUOHDjQKG/dajUetv1g+hrw49zZQOLmxhZXG88sN7IbFBZ8MtgpqFe/fi7tBOPM\nArzmK1MKmxXKbAxYmemL1qwxlnMspdTV/JNHrXUch9Cjl3901zv217ZtW1SEEpLa6/fr5+trIaz6\n1HyMc05iPtPsdMI/2FWeAm/BPDb+rg47wmqCHXJIfKknRWBb8J3ZZGEzPjYiDPhkM+WmMR8/Kwq4\nP8fL+Vrka4PdlCpgOmOfeuoJANw9eT+qq6vx3Xffobi4BM5vtZnj+2hHnymm8k76bnv2PNyoy6pV\nHAUwFSynnWYm7uVj+P4TU3LOVyxfSVx2nzsT9iHx+zzDlwp/XtRrLQH0AjA6NBvswgsv9NlymBZ0\nnxa7OkvhWqxd+7YdwWZNo5e/DUe0BY4k8Xp+PkAVFRW4kO5Z1gCdk5+PWbNmIRrDh1vN8Pbt2+Ou\nu+7C5s2b0b9/f8/1zz7b6qLl5eVh1gBzcgxPIHgnQkfXazas04na+ernH+c1i07OY2mp9bw7+OB+\nVBOz+d0Rq4zylvT5ST8gDgsEonbU/9WnD776iqeYHBh1IgKkKIqiKEr9J2N9gJYuXWqU54Ts4l8c\nOdJ43yyZQxmcOfdZtKB3zNZzB6w1ytwT5J7c1KlT0alTJwDhMV3p6bA/xv79+3EFZVW+5plnbO1M\nVVUVnqGUAO4hsA70jsS4rEnbf6CYFw+BFc6caY85t2vXDotPPtlYftm8ea4eCc8CkZ7IpXQsPATG\nwwI8BMblYpd3bfQhMP6u4vVZmjt3LoBwj+1v5L3CQ2BTqNyIDjhIB/Qyrc/Hy1EFvyEwXp+vDfcQ\nmDmot2DBAgDevlXszixT0Hfu3IlbbrkFK1d+B6c5QDfHteY3BPYufbf33nsPgLCOYdQojiGZscun\nnrKuPdHRSfRCvruRjsgm4B4m59iiT/Au7iEwP5Emp+Lgz/MQWTz6Dr/ISCRKS0tds1o5kuGX64vf\n99P88HLWuPjV1w9nxCSW6ObixZb79PHkxBzrfvzKXveX13F7fU6OPRFu4XWRKqgI2oDDk6w1cZZZ\nH9SDdCM/0s8MtzT5R4h1IvGSS+UV559vlPlHlwdzysnXZ0fo9bDQjxE/+NlgftMFF/hXMka6UjmX\nyn4Pfb6ol/v87HSjxh3/qNUUVl34uRJxg4fPdT6VuXnG54N1KfyjWETTnHErKV0emWEUu+AKxMPI\nQ82ce098/bVRbooK+zoDzO+b68oanDwKy8+mxua//vUvAOEfhSZNrIe9TIPv3ftd2uJ7Rkmmx0vj\nTYbL14SGlF+i+4y/C26c8rXtp8fi54Zfg4sbs+oLpCiRyXgR9GOPPQYAOPJIVmGknki+OV6zBMTb\nJN3xm/FzIM6t6YjX7A3F4rPPrGSy77zzDjZs2OCzds2QKKPMVCoutlREsWbyZq8u0YFJA+qlxFU1\nKYjHSyyIyzZr1oqjdDkaN27sOeNO8LrPWevj98pEcormBqfLSNLHHyk/fwfy8591vLMu9L7VAB4+\nvLvnZ8vKylyeSZHmR7Imh7U+fpkBWDvlN3tOPif3RDgqyOfCjLVvdRnM1m0ydghMURRFUZTMJYgM\nT4baNjS+36oVq0pST1ZWlqdfjiAt+Hh6damisrLS7hnWNZ544gkAwA033BB1vdmzZwMI54DLlAiQ\n1ywcr+vynXfeqfU6CaLtkVQXonuI1d1b9BH8nbZsyXGRukE8rvdyzPHQokULl98PRzjkuuDZXAL7\nnnn5ovGrrB+P/0+066BPnz7Iz+ch0tiJ1X3bK9LPERsvB2ivSJvA2itZn72yMo2MjwCNGfM4vWNm\naVpMuh6ncoR1FRxqbUUTdjngzsLUmsLeMH66D9YSbKBjbxg6dvkch27f8tl+boQ6xgo/olnBw7mw\n/LxW3LJps7bcLOPPT7vxRuP1Bx8h5Dc0xfguWt6IBF9f0pfFWjS+Vri83JVdzC8jFZ3hi0xlTfD/\nmYsDeycZ5Y/vPAdA2LjTb+jy5tDU6xde4KkDFpUwv5E34BTQ85VqnqwTyJ6ftW5ThwwxypdQHZ59\n1krbIT8KzZtbLkpijHh/V/PO/ntIwC1MCWmCfvnF+lau7GdOJS6GOV16Fd2pbegZU4Tj6Aga0nLz\n299Ln+dvmgXtiqJYZLwGKJ3Jzs52RRC8elR1IVeVs5fn1VPhsey6Rl2NcB0o3IPnHHYSdfFq+KQC\niSZwJEgiI7t2WU0xr9lSPONGGoFHHMFzFdMT+c6efdbStYwbN85zXdEWunvJ5s9GR8cEimAwaO+D\nr4fS0lL0JkF8kWuGJnclzXtq+/aXPHODRcoeP3XbNjsSs3v3btze25y+wumNf8jPN/4/gZYXhF5P\nConvd+SbIvy2w8PzFsvKylwTFpZ+/72tH8vOzjacoPm88X3Vps2dtDWzI9cRrxpljt8t370bgPva\nlfLJ1JhuGSUAUB/QVBiKoiiKomQcGgFKY5o0aWKPpQsSOfHLEp+upJEZeEKR2YSHUu+2viI9ai+/\nEWHHDstMoV9oWOiLL74AEHbKbdSoEb7//nvs2bEDyUJ0LRw9cHpmAd76DYlqiQaIPa3SHZ4BlGi2\nbt1qnwuJiNbWueHIid/sp0iRZ+d7Z555phEBqg2c2d+9ZrXFOustXuQaZ/81iYrGy7Rp0wAA11xz\nTQJql3w0AkTweDxrSwoc/7PmhWVkHMjlE11MiTaWU8ByJJlofVBoBiDPDpkkCvw4K0B02E/lWjr2\nf4dezwu9sgEdw75CrLq5sbs5XfSfG8OOJxfTsTB87vz0TfxdNCedSDFN5+Tt+ylo/OD6uQbGyGDq\npHlm+Uv67eXtsWfUcfTdrXKtYV4d3Sgv3Nr5Rxvl88+3yqeffrr1xmm3GMuPPfYSo7x+/dtGedRh\nhxnl391/v1Fe4shPVQQr3cV5juXzHPUrwh9hYh7bcrrTltOxNscHRvlqxMfAl6yJ7mJKOu/ww43l\nV4SGFYQlIY3QunXWdOkTT5xAWzSvpiLXncIDF6yBMo/vE/ru2SMrswZlFSV2NAJUR6kPkZRAIFBn\nIld+iFaivs36+uijj6x/Lrol6np+2i05L2eeeSYAYGkt97KjIa7qEgGRurNbtbwvWiDJOs94uZun\nazRQjivad3Y83ZecrPdgckp3Nklv4I4betCnuczdD+7OmB2/aM8+1mcFAgGcSgl6eV7i0xPCDdSX\n8vNdpqVcO/HGPsmjDisd1/bs/HxX5+nYY01R/KZNq1wRIdYChZ+T0dMU+xnEnk2u5qzp4br6dWof\nvPZa43V9Hftd8psFlsi5cbHPS1QURVEURYmDRYsWoUePHjjiiCPw0EMP+a5fDatB7PWXSDQCVEMC\ngUC9iPw4qS8RIHa+zTRkuMdLVyJag/37Oc988pGZLxLZkTpL5MfLa8br2LzyW6WrOztHuuoazmeg\nl9anLs0mraqqckWA/LR1ipuqqipce+21eO+999ClSxecdNJJGDZsGI49luNiYfwiQDkJrF+aNoCi\nu/H8SFqR5g5vn2KX94oZIFzrCuWao/HNKf8Ub48/zfh55bBygMOZHNplrYDccrIfDr5yOJRVJ1yf\naGIzv2Pxm37JE5A59OvWQZgeTXyLsH7rU5/9M3zuA1zBW6lMmWWvoRGnuWTm8hR93H1++IxGN+0b\nPvzoqMunlVh7FAHxGMqEN2LQIKO8FaZG6OM7/tcoP/DAAwCsRsI306Zh75o1Ro3N78svXShjfpvF\npKAafsopRpkfgKdSma9zXj++rGgA39lt6DlQRMfbhq5VvpY5TM9ni+v/XsjLSrjlFvfw5rehH9wl\nS5YAAJaddZaxnBPUOodO+In6ARjz7mhD+jxT0QTEq9IYSvozP/0e36vswcX+ajIQKgNd0fJFAu7v\n41g6wlNpqPTjgoIItbTgc8XPKb9nMJc30HDkBjobnEPxBMoXeW8oWW40K4Vk8cUXX+CII45At26W\nrcKIESOQn58ftQGkGqA6RH2MAMXj2JrO1Jfj8EI8cxI1m+fzzy2R8xlnsLqk7iFRiFjzXdUlamum\nWE2oqqpyOR/La12K/HgR6Rmfrs/9WPPpJYONGzcaursuXbrYzxkvdBaYoiiKoigZRzUaoNgnOp4o\ntAFUQ5yOofVBO1OfZoEJ6dpT80N8eaQH/cEH5sDFhx9aA6Ayi6umyPT60tLSOh8pYbdjiU7UBz2Y\nlxt2KqmoqDBmeQHe/mh1EeczMd2fj9ddd12qq2BzyCGHYP369XZ5w4YNOOQQFn4wWfAfUk8MadkA\n6kbjse5wmDniXuzI07NixWzX1FdJKifGUk4hZIcOpg8Oj9++UfC1LdD0MvSKVlfWBuR6ftKCvWX+\n8eWX+PJLy+1n165daDpjBlq0aIHRjz6Kli1b4ru+fY31WaPE2+Px5iLyPXLyeiifEoewJS0B+860\ngWk///aWLQDCD0DZDhuyCT3btTPKNdUgMa5byu/L6UVDaN+ZD/Lh5IDPhvhbybC/OZYb5WI6wrWU\nfuD66x+jLf7V3P/w14zylCmWjkYafE2aWENZcp7vJE0An9/Pbw2LoEoA5Bx+OI6YaE1AbtWqFb4L\nTau1MJNRbnXlyuIxflP1wh5QXtOXBdYAcd2vC02Hjz3tCat0on+ONT98dKzz8HMN4mv3lEcfBQDc\nfPPNUevh5CsqHxmlTu5Bs+iqJK5vQ9KZxPvz9Pb69XYDqby8HFfk5hrLr/r3v7Ex5EGWlZWFfONa\nc+v91qILvWM9q1aFNJtnk4arL639f5Mno13oeXP44Yfjg9PMbHX/KCiIuWPL552lhaz3Yj3WbjB+\nijKznM6pME466ST89NNPWLduHQ455BDMmTMHL4U8vLwJIFlOWWnZAKoJRUXhxhNn15WGTPPmloha\nvEeiEW3WSKIdQSNRXl5uzwxxuuPu2bPHzqhdW7B+QvYv588PeXCwo6lsR7JPx5qdOV5i8VapD4go\n1ouzSCwbK3v27LFdok89lZsg6YU0fOSa5WiEXHM7kuhuHQ/xPENKSkpqsSYHRnl5uf2sZA2QdHii\nzdzbvHkzFi9eDCAc+axNnPfMxInsMmTVlTu8OgssfrKzszF16lQMHjwYVVVVGD9+PHr27OnzqQbI\n6AiQoiiKoih1n6FDh2Lo0KFxfEIjQAeMUwEvPQ/pcbDLbCyzhCJpBrwcQmsj0pCdnW1HerKzs5Gd\nnY2srCw0bdq0Vsaiq6urPXP4yPFKRM0P+bxEsES7IJEfmcUkr4lG9pOOs2aSyfvvv39An2vevDn6\n9OkDIP11HFtCw60S5RXk2hLH6F9//TW5FYuRaP4/AwcONMpbQ0PT22i9NVR23qVbweyhshmF5W1z\nrIOHbUaNGuWKujHOCBDX9f/+Gh7eXbVqlWvavdupimso58/65FxaupTK6z/+2P7/+++/dw0R5l96\nqev3weu4eEr+OirzjyzH79zx77VU5t8gs7Z8Jo480hqUE63N0qVLXXtIb7LgHoR1kjjfskAwDeN4\n3elC41PBF4w5HpxLS01VzkcfTbZ9U9q0scaLpSx4jf16mbFFawAdS34SfoNuPF7MfhnfhF57hV79\n8nFtdfkimVv89df37P9ZKOo1hVjOgzQwOCQv51N+jOQ8dehg2vGz14qfSw6PtfODZwtdylOnTgUA\ntG9vHbM0iOX4jr3gAmP9ozg9FO/webM443uzfAVOpg/wsNEzRqkb6UpYA+Q+A+Z1Onx4W8TDHynV\nBfsWObUJm2D9gPZyvOe8Ntl/qhiD6J3oqRMu8dGUcL4/1uZxE3wjlf10EfwDHt0dzH0f8nKWdfam\nMmuGCqj8OpU/c1zLXg2gjT/8YLzPBnHOH17uYvhNM+Yf7fgUU8DhpKn56pNPjLKp9gPKHOkgWrVq\nhR1rzCbSLpjD6P369TKez999Zz0NjjnmGJSWlmLbN98Y6/Nzd7djf23btsXO//7XXE7rn3jKKfb+\nVnxqKpJYiMDNFW7wcLmCzmYDehLyuWdRBh9bsyMsFVJdbQAFAi0QTRXYp89ufPUVK+AOjHoXAfKj\nrKzMvpBFA5STE9lb0s9LRHptEmGQBoFQF2acOKMjclzyytmJ2V1XGjgSEWLHVClLpu5kI71/+V6k\ngZqubsCKEgn+AZs9ezYAYOpllxnvc6PL2WAtoGXceWD8OmJ+Rob3OxrbwWAQJ3boYCxn08YN/cO5\nuAYOHIjXSQz+AcnMX3zxRVv3FQwGMWLECASDQbz44otYt24dXj7nHGN9boB+7Njfueeei/cmTTKW\nf0Lrz507134eDuzc2VjGiiVuzLOJ40oqcye1GXUMWWDPZT62o0Ommuk0Gyw+/CJAbtn4gZJxDSBF\nUZS6TLt2HD9JPwKBwAFPg49l/SZNmhgd06ysLASDQTRp0iSGadYmb7zxhiuqwjRo0CDtp78LiTJG\nTR2qAao1qqqqXENVPLTl9T5HQOQG5KGwupTXx1lHOY5YZz+w3QA/ICTykipn0ttuuw0AMCtkDe91\nPHWV888/HwCwYMGCqOsNHx7qb6cw27uiKEpsZLgP0FrypmGtiDs4Fg6JdcPHxhJe95ohQ4zym9+T\nkCNOzujUySj/6NJxmLqQYlIbdCE/FA5nspZBfrrluFi7sNW1f3alMIPXPXqwe024Blu2XI+a0KkT\nJdNyiWrM75UVLzz2zdqvrVE8jCJxGw0ZcG1+Z0p0XKPQb1GZdRvugYUCo8ReMu5mIb/D5VyjNG6c\n1MBqsA4fbvacFxSEGjyT8yNujZtDTuXBdljXmlcgupjyFfG3cwJ5HuXR2uzLwpofvg9YH8aaH4av\nHR4e4nPBmiYOsrO2zm9YgtdneLm/IQcwefJkALCF6dxH5mcFn1MnPITFPzd8fnnYhuu79PvvbU1l\npA4Rb//oKVPsae+CWC1kZWW5vHK++GIOOoWetRzhcHZMs7Ky0Lx5c9zz66+28H3NmjWY8Yc/GJ85\n89RT8alDy1M2fLg9/T4vLw+vDuBBOsexbt4MIJxE+Jlu/MyNTi6VD4ogUXfC3xXfG7w83Scs+KMR\noKTRtGlTl6iZtStyocuNlilZxnn2HCPaH/ZeSbccXJk+C0xRFKXukOERIEVRFMUk3ToWTlq0aOE5\nFF5cXOxan6M/vC2mffv2ru1HMqINBAL2em1DM70idYAidV6lTi1buvNQOZNeRzN0TAfqvvGrRoCS\nRiQ3aLlhxVXaK59QXRHFHShy/HJDsaaJ7QTS9XykU3bk2kRC+LazdoFqfhRFqWv4zQJLHGnaADrD\nKBWRtqIZ5Zzq6NBWcLuRx+Yf/L//Q6tW1iTPSCkdrqTpmvzTyTqUH106FD8Vjwn3IVjTw0i/RQKE\nbhOt6N4x7k/whNfwGevd+0da9oJR6o83jPKC0Ji7UFRkaVSkAXLooVcby/nYWXdRTOd2r2usPL4w\n6eMvvwwgrCEYT7oA/qZepvIq8PViXl1tSM/VFe6ebzQOpuNzezpFd6NZcr2p2eJrdyaVWdfhPJoG\ncBvSFxhrm9fNCfjcKLPmh/UorEzLpTJflTyVmLfHj0u+7+PLrgQUu/yzzC32pmcQ+xSxSwnXn6/9\nb2OwY3vyhhui1Mj9fTvPEe+PryR+KvC1V0x57RqSxotnZQHhjtO6devw1JIltobJC+lQde3aFU8v\nXozDDz/c3jbgnoQicARIkPu8ffv2mL52rW2CKZ5BXsyfPx/Dhw/A9aH76ZhjjkF1dbWr4yt2Gnyu\n+AmcS2U+93wt833pp/VivdR3oevk8dDrmvSz+vMhC+47snZI0wZQ7XHwwQe7fGsE9vFR4oNDxPLA\niDV3WG1xyy23AAj7p8SeMFNRFEVJLhkfAVIURVHqCk6fHJEMiEP8unWcHCIyXbt2NV7FaJUjP14O\n/fy/RKQkgiT+QLEasxYUFACAHYmSCJVXkmclUagGqNZo1qyZfYNyziuNANUMnn7JPkGpZtcua4CR\nU58oiqIo6ULGzwLj0W1Wxpjj7069wH+2b3eN1cYjzn2Nxv67UVo+Dsw1d3kUmboY9h95l7a/lXyC\nKkhLwdoC0ffLeD97JrlHmP1GlNkNx2kCz+OwppKBvyU/iostVY1XLrUj2pjnhs9tLm0vuntGDPUh\nTc+mODU7PBrPOgvWBvilE/DP48bKGPMhwfNqclxePaxPMw3/GzrOqByLU1fiPL6ZM63UAeK1suTO\n6Nfts3QsFXRfnf/ggwDCjeX82283lvudS35CsKbFL88cl9u40nFy2YTP/Qeu3Gim0uM4yoUWC3yM\nfoMEG4xng3nt7CO9Gmuy+Pxt2fK2LR3gVDeRNDmn0r189HBvX51LL73UqkMoh5UMmXtFfiKlr4yU\ntoifM5LyqHv37gCAiy+2fMrmzZsXsV4LFy4EAPTt2xd5eRfa72/b9pmxzwdCvkCS7Flmh0kqnonH\nmzkQ+QnM2i1ezt8Fa4b8nxt1DY0AHTBbt261L3R55QgE37jxZjlXouPlq8TnW2YrJStXmOTGES2Q\ncuBINO1TSgx5oHz22WdGOX0nfCuKUrtkfARIURRFSRecdiGRIjBOIvnQnHnmmViyZInx3nnnnQfA\nmmUFAK1bW3nVJYrj5Xsk+5ch92AwiGAwaHv1+GmGZD9HHXUUAGBIKDvAokWLIu7PSxrhlQpI6qeS\nigNFI0AHTFFRkR2CZKdiuWEkVCkOzxLSVVFbzZCIjpxf0dqw5kYekHL+JVScLEaPHg0AuOyya5K6\n3/rEsmXLErq9wYMHAwDeeeedhG5XUZS6RsbPAuNRT1NrwcExp97gfwcMMJY9HxqfFcaE3EGFN9CF\ntmaqC9b6KjfML6oh3o1aV78RYP7a+fNloVcZ92WdTEva/2n0+U+ovIHO7XEOrQPrJliBwpqEww8/\ni94xMz7t3j3DKN9KOXSiu9xEuiWieyz5MW/eswDCPTdpwEkPThpuMpQ6eDDnNjPPEGuKQJoiHqvn\n2vtrflgtUEB7O4GW30hl8xtrg9c861cGoJreixaUbhrSeJxyyikAwp2OO+64w9rXlCkAwr1v6WxI\n52PLli3G9k564AEA4d71HXc8ZCw/lzQ5fv1F1iSxNo99iwqozN8Vlz9w6a1Mhdxx+MAom05nsbEl\ndF2++651j48MNRoFvlqcLF8+xxVZcaawOfpoM/Pdli0/2T43rPnhyQ7cwQwGg/iRtI1OK4xzzz0X\nkyZNQ37+k/Z7mza96YqkcERFOk6lpaXo2vU3dISWFq1jx1ND2/vYc/KFvN+5c2cAQLdu3TB48DOA\nIyf88OFlOPfccwFIRzqskvJKji3bldlrcq3P+OYbAGFtUJ8+ph7qyy+t+9B5/pyv14RypAnLXbrP\nXKP01FNjAQBXXXWV++DrBDoEljACgYAr4qCkBr7BU81FF10U03oihlT8kaGSG8i073oyaXw5ZEop\npqQyRfnIIy1R/vehJMXJjg4qipJqdAhMURRFiUCk3Fp+OPUo0ZyUhZ07d9q5tPxykEWbnSV06tQJ\n48ePB2CZ0TKNGjVy1Us6TDxZIpZJE9u3b7ejThKRkeNgH5/c3FzX58877zy0a9cOgDtdktf54GTZ\nvH8vTZBsXzrqbNMSL+nSwTxw2IO+9siIBpDcQGLMpaQGCQGniy9QrIhYUwkzatQoAMBLL70EABgQ\nGnpu0ya2KbiiE9u920qAsmPHDgDhqdBdulhD02vWrElQjRVFqRtkeAQoGPwnAGDu3LkAgAmXPG0s\n57FuZw4p1qX07tTJKHO7sgf5cbAOhbPGFLnUBO1puTn2/ZpLbcC1f8oosRaBVR+iOhENAvt3cP2Z\nDa7xY1Nv5awtmwJw/8U9AZrPjekx1KHD0Ub5Alqb6846C1aG/etf0wCERc21zRNP3A8g3EMTh1j5\n0R8wYGjUzxeRRqi5y3fILzMcl/3O0J+obD5Uilz6NyfbAJQbe3Du/dJLXw/9Z+mjSHpXC5jX1nek\nARpGa7Naix2Q+C7kM+l3ptk55gNSeLXBi0aZtXhTa9BLl8YiP2uKPJ8WwMknT4h7P3Kde2lyImVj\nD69nXmtDh5r6vy1b3rY7QhyZqa6uxhmk1eQ74zgqi6tRG6wFAPTqxfei+TQrLPzc1ja1atUKW7dO\nwbZt2wAAmzZtwuDBlzQyluwAABvoSURBVNPnw1eMn6+cLJfty3F62axc2rNn1O2t8tGp8q9E3Z99\nlvEiaItMyeKtHBjbKflqbfH001YDXKIW8kCTiJZqy8KC8Vije2PHjgUQjiBtDk1WEFM8mWV22223\nAQBuv/2lhNVVUZR0JgBNhqooiqK4uOKKKwAAV145q9b20bJlSzuCIZEgdtgXYtEAMak2nRXvICDc\naO/QoQOAcJZ3L7w0VLFGhmqbG2/k2Z91DY0AAQj3Em8YNy61FVHSkptuuikp+5GQ8scffwwAGDTI\nSnOgWeXDiJBTomJ+PPLIIwBgC21vvfVWY3myvltFUdKNDNcA+cHj887R92KXHwefSD/dhKnL4ExZ\nn+Mrn+3TaP+p/zTLnxbQ+jONEh8br10Bqxe2NdRCPpLqy0f3rmv82HQgYa2Cs1/GI8m/UNntwsMK\nqwIqm8qLL0nHEdtPZ+pYkp9vvDJuF6Domp+aLp//7hwAlmYBAF57zfT1+ZbqyQPKW116MOf3l4UK\nNLCvMwBo49j/ILpugHNQmwSDX0dd/ifqXXN8ga+tAN22HSgZWAeSWRzFJk67zWIj+m4KaPV/1srM\nHO4l8+wqZy34bjXPEF9bwWDQpSXh2U+RtT/W6/btC+yIEa/vFzEKBAL4qKgIlZWVAKwh5rFdTQ0Y\nP3V/Dr2Gr2DzC/r119V2hyUrKyvivmV569atUVi4yt6/4BUBc9bb+SqRM9mOlzZnles+5O8xl8p8\nJ/PFWccJBIBsHQJTlJQgucLkwcXGb+nCk08+6b9SkmAzSS/ExK9Pnz4ALOd2AHjuuecAhKO+iqJk\nKMkLAGkDSFEURTEpLCy0G/4tW1rhMZnt6Ocj5LU8Ug6vaJ+TSQeJmOxQVlZma324HpxJXiI97HAd\nq4aHnavj8S9SkEwjaG0AKQoj0+qffdZKleFnBKeEo2VXXnllxOUS4ZGcX/IjsWHDBuPzkgusoKAg\n6vYURamnaATIZE/oYSnTkW+jh2KxawzVCY/+c9PS1KX8SGe+DVZR2dStMDuC/3a9N3/+fADA8ccf\njx492FnIrB+P5m5wKUtkynXDiOu7McUMH354BVasWAFAbAYewF133QUAmDp1Kv7pSFng50rjzn31\nk09dzLFr97GZsC7h7qcsz6RU5bhxH290aqr5qen+/TOlRRuuqgI/iZyKk2h5p1LB3+PU2Myg3vxv\nKciQSxqfpyZbnlNXX301AIAzUXE5OfD9xm5DTvej6FdDMSn+BuSZjmQkkcLq3XSC4I6QcKRHNDD7\n9u3D/3cEO5iZ8O8fq2L4aJqGXmWrLVnLeeQg+oSpMekW8g8Svgx5LQHuDpBfBKx16yG0L78ZTfyb\nxPdlgc/now871zk0AhQZmf7JDaB0Zdo066HZLZT0Mx20JE2aNLGTAHICyuuuu85oAKUbyW74SFSC\nxZzpjsxS8xJr1wZeObsmT54MIJwWQNzY5RqUWWAye0xyg6Wba7vmJFOUJKERIEVRFCWd8XKKFkQD\nI7nLJO2JaHvSmaqqKtdxxat9Ug4QPxugBE6o1AZQLSKpEsRYi6dVpgrpdadLfdIViUJwMsR04Xe/\n+x0A4O233zbeb0tpBJKBDA0xMrVY0je89957AICjjjoKQDghpdwjEmm56KKLaq+yB8DNN9+c6ioo\nSmbgZwSdwPZznWwA7XG1vFvY/weDW3j1uAgEzB+PHQn37/ifqEv9dRsmrMtxe+nE5xHxbRzH6zzv\nABAM/hDXvvy2x99zqpk8+T4A4R5s69atAYSHOOXHXFJjyKs0oORVXHClBykNUdYayH5kvdNP/31c\n9Y1XM2RqCaphPYkiL/0kzi2nG5PS7No6EILB9QCA559/HgAwdixnKHPCmh0eYzBFF6y5+WDTJvv6\n9fID4vcllVFhYSGuPuUUY9khUWoaaf+cZXAlleVKld/NXFr+C+V8LCK/uLWUXaxDhzON8vbtSz1z\novFxb9u2EED4/u/a9VqqDbvLRdeFuhV3pl7r5ZcfBgCMGDECyeKHH37AuHHj8PXXX+P++++3U9Yw\nAwYMsCOA27ZtQ79+/bBgwYLoG/eLAGV6A6iuIDNcWrRoYbymkl27dmHtWkvwlyoxcV1Bev2i5ZJo\nhuhVJEK0detWAEBOjpUYVB6Qkh9LfjhkGq4s9zKak6EFKXtF6mR6snBK6EdGLP3Tidtvvz3VVVAU\nJUG0adMGTzzxhG9jRnL6AVZUd/jw4f4bVw2QoiiKEgtjxowB4BcBqhnO3F3sm8NaGGnAiylmfUgW\n7DxGnt3G50GWx5oYuKYkM/IjdOjQAR06dMCbb74Z0/p79uzBkiVLbGuRqDSAzgKLh2AwcQZTweAO\n/5ViZNKkSUb5jTfegDuhRHR4qrQMQzQLTcfnYKl7qvVWo7xp06aERX4Sed5rY3uJ4pprrgEAPBWa\nhi8PNongiLhTIj4SmRFdi6w/qG9fY7vxTov/6CPrYSMP2PMGDjSW86yveAfAeH8NUGlfZwBQ5Fi+\nZIm1r9WrV0fc1pQpUwAA16fxrEJFUZLDggULcNZZZ8U2CqIRIEVRFKVmFNj/sZ9ZEdpE/eTSzZsN\nzUtVVZXLDoJzXjltPnq0N/3HiqhxvZz2dw41/ln1wkpGdr4RFY78bvLnL6byT/jRKH9AGiCgt1Fq\n3z6sGdqxI7LfmUSAZIhcOkgFBVMBhO00Dj30cvok15Z//SkxXR3M/fXyyy9j4sSJsa2sPkD1k3PP\nPTfVVdBcSzVAZjpNnWo90OQHQMTKEukRrRD/QNQU2V6sGddrk23btgGwvKMi4ZXoUlGUusmTTz6J\nGTNmAADeeustHHwwS9Ujs337dnzxxReuZM2eaARIURRFSRV79uxxaVlkaFfKrH3xmhVVX5Hj5MkK\nMjlCXuV8OXVUdZFrr70W117LM9r8mTdvHs4991x7lqwvfrPAEog2gJJMMLjHjiDk5eVh6IABxnK/\nqcsN4kyv8OLrr+O888470OoqEZCIj0R6JNQt0z3F9Zh599NPAbgjQrKdfv3OMt7n71L2s2uXZX4Q\n/zT36Dj3F8lc37l8586dUbd1ww03JKpaiqKkGVu2bEHfvn2xZ88eZGVl4fHHH8d3332HFi1aYOjQ\noZg5c6YdIZozZw7uvPPO2Dfu5wOUQLQBpCiKUg8IBi3/mdmzZwMALrtslr2sCN2MdbtQ7itWmdzb\nw/TJufXrr22RP8O+OIFAAD8XFdnZzzdt2oTTTmMjyY1GaTc19tnfzM8frXHoVfyC8mg5BxR4ELkb\naaTWks5m48Zv7UkNXs7Q0rGRDpL4IF1IkxW60L65s1GE/vSOOdT0r3+NBxBO2pwKOnXqZNu8MG+9\n9ZZRXrp0aXwb1whQ/UZ0EzNnzqz1fWn0J/HceuutAIBHHnkEQDjEXVhoPaZlpgNHgtjnRz4Xq0ao\nqMiakSURoFSiHlKKotQKqgFSFEVRDgSJDDgjQDUlOzvbMymwl0OyREzEILQu49Q1sQ+S3/uJJpWR\nn6Sgs8Ayg4kTJ2LixIm2OVT37t0BhCMIbKQVDAYxfvx4BAIBPPfcc3bkQPInSXb3dJhtlglIJOjx\nxx8HEJ6d9csvltdTly5WsFuGDuQHxGv68NKl1hCGGMjJ9yriSinLD8yjj94DAGjatCkAoE+fPsb+\nOLIkGiIJzYsoU8SJzgf3+PHjUVFRgcceewxA2O3aT/ujKIpSIzQCpCiKotQMp9LF/EXhDjZrTjk7\n1aRevYzye3v22A1zaZDz7DAR91sNclPz04Zyc3GuL79cYKwJktxgchy8Pv+eHkFlHlTu7TAABazO\nixwXa3+kLB2cgXSu2OWHj431SJ+7zn56JmOuNVQDlFmMGzcOQDjnlESApCcvD5rq6mrs3bsXDRo0\nwM8//2y/L07Esh0ludx0000Awv5AIv788UfLbI01QRKxkQemRGqc3zMQ/iGR9aRcVVUFIBzRkaSs\n8oPjBUegxMtHyvL5Xbt2Ye/evaiursa6deuMunllfVcURUkIWdBZYIqiKEp6Ul5ebjf0pQEtDXxp\nSEuDXRr8dRnn8LB0Brjj4KWRUuJEI0CZieSciobkoxo2bFhtV0eJE5ndF2serCeeeAJA2GBOIn5s\nmCaRHkkqKRohGXqQz/MD+LTjj4+r/nsc7s1ynY0fPz6ubSiKotQI1QApiqIoNSEYXGb/3510K0fS\nugVU5pTNxZQ7rF27o4xyD9LMfFpUZEdNGjVqhO3bV9hGoTt37sTZJ55orP/I+vW2GL+6uhr5HTsa\ny9mniDVA74ReJYMXa5wKqHzuypV2R2Lnzp3YNHSosfya1avRrl07AGFtk0R+3uvQwViXf6s57xjv\nm+HRnm50Lm+eYlmZeKWdqXfoLDBFqbvEmgFdtDwSuZEHLc8SkwevGKxJREimGXOKAhZpKoqi1Bk0\nAqQoiqLUVfbu3WtrgqRhLn5AkRro2dnZnrOsaoMmTZrYHQrpSDjJyclx2ZCIfUSyyZjIj6ARIEXJ\nHCTSIxEh+QGQsjyo5VWQHxjRDrEB2yfffmuUZbl4+qxYsQIAcPPNnKZAURQlRWgESFEURUkUaxwC\n99mzZ+O+yy4zlvvpWB7a+r3dgC4tLcXFhx4adX+8/N3du+3ZUjk5Ofjv9u2e2eOrqqpsXx8hl8pn\nUFlUOSNDr+zr8wmVT2zQwI7wtGjRAmO//NIeSm7VynLukY5IaWkpXjw47N7zO9oW65NOXb8eQNg0\ndDb5AhUgOjOXLAEArFzJZyFD0FlgilL/kcjL008/DSA8VMA+PxJ6l/flQd22bVsAcCVplIiSMzml\n833JKaaRH0VR0g4dAlMURVFqg9GjR7siQH6UlJTEnbzXSWlpqe0HJJEg3g6L/muTRo0a2UPIMgmh\nWbNmRlnqUVJSEte2JaIVdETd4qGgoABA2GA149AhMEXJHGR6sER45IdGcovJdF2ZJtytWzcAYe0P\nz/7iyI88kMW4TrLWK4qipB0NoBEgRVEUpXb4wRGdeOuttzDv9783lt9J65eXl9tDsoA71xbrYDi/\nVceOZvat3bs3eObUysrKcvkQ9abySZxQa3doG6Hd7CP5DOfjaty4sW04ytnsy8vLMbRzZ2P9uxz/\n9+xLGyNTpa2hCJJ0WM6m1e+l8l/ffRcAsHGjlS9t7NixyHSSZaqtDSBFSTGSVV74xz/+AQC44447\njPdfeOEFAED79ubPjUR4eDaZIO/L7K+rrroqEdVWFEVJOA3gbrDWFln+q9R93nzzTfTv3x+tWrVC\np06dMHHiRHvYAbB+aA499FC0aNECXbt2xQMPPJDC2iqppKysDOPHj0eLFi3QqVMnPProo6mukqLU\nKkPJBTkSlZWVKCsrQ1lZmT00WxP2799vb6+yshKVlZUIBAIIBAKuVDC1QVZWlv1XXV2N6upq7Nu3\nD/v27bMnCdSUxo0bR/QYYjZu3IiNGzdi7NixGv2B1ShpEuUvkWREBGj37t34y1/+gtNPPx1lZWUY\nNWoUbr/9dkyfPh0AMGHCBPztb3/DQQcdhI0bN+Kcc87B0UcfjQsvvDDFNVeSzd13342ffvoJv/zy\nC7Zs2YJBgwbh2GOPxZAhQ5JWB478CCIilR8IFouyqFTEnDt27AAAbNq0KaH1VBRFSTQNALRM0r7S\nrgH08MMP47PPPsP8+fPt92644QYEAgFMnjz5gLY5atQo+/9mzZph0qRJ+Nvf/ma/16NHD2P9rKws\n/Pzzzwe0LyV1rFmzBieddBIWL16ME088EZs2bULv3r0xd+5cDBw4MKZtPP/883juuefQunVrtG7d\nGpMmTcJzzz2X1AaQoiSbWaQJ+pQ0QRspsS7HjNiX5z0qL0axUe7dqZNR/vLXX+0GfoMGDfBCUZFt\n/FlRUYF/H3aYuUHS8QdDQanykPZnJu1/wvr1djSmuroaVVVVKC0tBWBFo4455rfG+t3o84aO50s2\nqRljlDpON49tA6394DIrR9v6kF/QyJEjoYSRCFCy9pVWjB49GosWLcKuXZaVVWVlJebMmYPLL78c\n11xzDVq1ahXxrxeZTUXjo48+Qs+ePY33HnroIeTk5KBLly7Yu3ev0WhS6gbdu3fH3//+d4wePRr7\n9u3DuHHjMGbMGAwcODCma2fnzp3YvHkzevcOSy579+6N1atXp+qQDJo0aYImTZrYoXtBQvjBYNCY\neltaWorS0lKsX78e69evx9VXX42rr746FVVXFEWJCdEAef0lkrSLAHXu3Bmnn3465s6di0mTJmHR\nokVo164d+vTpgz59+mDatGk12v57772H559/Hp9//rnx/p133ok//elPWLFiBRYsWGCbzaUbeXl5\nqa5CWjNp0iQsXLgQJ598MgKBAF5//XUAwLRp03yvHfH7cH73LVu2NPRimYJeZ5nL0KFD8XwK9y+N\neE4CXBMaOKYVSeRH7utk5/jSyE90AogeAdqdwH2lXQQIAMaMGYPZs2cDsGzbL4vDtGvZsmXIyclB\nTk6OK8rz2WefYdSoUZg3bx6OOuoo12cDgQBOOOEENG3a1BgiSycef/xxPP7446muRlozadIkrFq1\nCtdff31MIkRBkjWKX478L4ZpqUZElU4BJ6cRcLJt2zZs27YNI0eOjPthq9eZoiipIBsZHAECgPPP\nPx9XX301Vq1ahTfeeMOeFnzVVVfZDSOma9euWL16NQYMGBDRuXP58uUYNmwYZs2ahbPOOivq/isr\nK7FmzZqaH4iSdEpKSnDTTTdhwoQJuPvuu3HRRRehTZs2MV07rVu3RufOnbFy5Ur89reWJmDlypWu\nhrSi1HfGOIZSZ8yYgcIrrjCWswaIjXv3UfkIKrPPz12k8WGrTt5eIU1E+yn0en3olXN/PXGwaRxU\nhDZGuQ3MmV/sa+SsT+uPqDatnjKKQRplLg/l9vrlF+uox2rkJyoBALF3W2tGWkaAmjRpgosvvhij\nRo1Cv379cFjo5pg+fTpKSkoi/kXTaaxatQpDhgzBlClTcN555xnLqqur8c9//hM7d+5EMBjEF198\ngSeffNK3kaSkJzfeeCP69u2LmTNn4ve//73teRPrtXP55Zfjvvvuw86dO/HDDz9gxowZaTM1VTRA\ngkwblkiQlPfv34/9+/fb02sVRVHqCsnUAKVlAwiwhsG+/fbbuIa/vHjkkUdQWFiICRMmRBwee+21\n19C9e3c0b94co0ePxvXXX4/rr78+yhaVdCQ/Px+LFi3CU09ZPbJHH30UX3/9NV588cWYt3HPPfeg\ne/fu6Nq1K8444wzcfvvtOgNMyWgmTZqU6irUab755ht888036vMTI+oDBOCwww5D06ZNcdFFF9V4\nW88++yyeffbZiMuysrKwaNGiGu9DST3Dhw/H8OHD7XJOTk7cdgaNGzfGrFmzMGvWrERXr8ZIzi/O\n9SWIA/TOnTsBAOPHj09i7RRFUWpOMp2g07IBVF1djUcffRQjRoxAixYtUl0dRVGUjOYxymx+ITW+\n2RmH5xDeSOUCKnPuy11UZk0Pa4R203qr0NFYfg62GuUjSfOTS9tjzZKx/H/MZQUfmeWPnrfm0F1+\n+eUA3MeuRCeZPkBp1wDau3cvOnbsiK5du2pkRlEcnHbaaTGtd9xxx9VyTRRFUWqHjHaCPuiggyLO\n4lIURVGUdEciP8qBkdERIEVRFEVRMpOM1wApiqIo6cu/SRPk5LnnnsP2ceOM94aSUVCQfHxY08Ma\nIE7j+3fH/ufPn4+P//pXNGzYEI8++ijat2+PXr0GGusPp8+PoXI5laPV5+3xz1nbGGNtJRdKIvFz\ngk4kaTsNXlEURUkMDz/8MI477jg0b94chx9+OB5++GFjeUFBAQYNGoRmzZrh6KOPxuLFi1NUUyXT\nSaYTtDaAFEVR6jnBYBAvvPACdu7ciUWLFmHq1KmYM2eOvXzkyJE44YQTsGPHDtx///24+OKLUVjI\ncZDYSLbXzUUXXYT27dujoqICO3bssBNp1xZjxoyxoz+ZSn5+Pnr16oW8vDz07dsXH3/8ccT1hgwZ\ngt69e6Nnz5646qqrbKuOaEgEKBk+QNoAUhRFSXNeeeUV28Q1JycHjRs3xsCBA2P+/B133IETTzwR\n2dnZ6NGjB4YPH47//Oc/AID//ve/+Prrr3HPPffY3mvHH3885s+fX0tHk3jy8vKQm5ub6mpkDGed\ndRZWrlyJFStWYNasWZg4cWLE9V599VWsXLkSq1atQmFhIebOneu7bZkF5vWXSFQDpCiKkuZceuml\nuPTSSwFYCXpPPvlkjBw5Eg899BAeeughz89FioYEg0EsW7YMV155JQBg9erV6Natm5H0t3fv3lHT\nC/lxWxSNEAA8SD5CubScc4v93Wd7zsS9zzzzDGbO/Ac6dOgAAGjZsiW+OOMMY/0P6fOcMKbqqafs\nNDqKG0kcDVjWNWzKKoiPX2VlJcrLyz3Xc6KzwBRFURQX1dXVGDVqFAYOHGg3YO688864tnH33Xej\nuroa40JC5ZKSErRsafatW7ZsqXnklKi89tpruOuuu7Bt2za8+eabnusNHjwYX3zxBX73u9/h4osv\n9t1ux3btcHbfvp7L27Vrd0D1jYQ2gBRFUeoIf/7zn1FcXIwnnnjigD4/depUvPDCC1i2bBkaN7Zy\nbufk5GDPnj3Genv27DEiQnWJCRMmuN77Is5taPTHnwsuuAAXXHABPvroI/zP//yPp3D+nXfeQWlp\nKf74xz9iyZIl+O1vfxt1u8k0QFYNkKIoSh1gzpw5ePnllzFv3jw0bGgNEj3wwAOGNoj/nMyaNQsP\nPfQQ3n//fXTp0sV+v2fPnli7di2Ki4vt91auXGkkjFaUJ598Enl5ecjLy8OmTWFjgtNPPx1r167F\n9u3bPT/bpEkTDB8+HPn5+cmoaswEgkGfwVVFURQlpSxfvhznnHMO3nvvPeTlcaYtf1588UXceuut\n+OCDD3DMMce4lp9yyino378/7rvvPrz99tsYN24cfvrpJ7Rv3z4R1VfqGT///DO6d++OQCCAr7/+\nGueddx42bNhgaHxKSkpQXFyMzp07o7KyEn/84x8xYMAAXHfddSmsuYkOgSmKoqQ5+fn52LlzJ/r3\n72+/N2DAALz99tsxff4vf/kLduzYgZNOOsl+b/To0Zg+fToAK7o0duxYtG7dGocddhjmzZunjR/F\nk/nz5+OFF15Aw4YN0bRpU7zyyit24ycvLw8rVqzA3r17MWzYMJSVlaG6uhqDBg1Ku6FFjQApiqIo\nipJxqAZIURRFUZSMQxtAiqIoiqJkHNoAUhRFURQl49AGkKIoiqIoGYc2gBRFURRFyTi0AaQoiqIo\nSsahDSBFURRFUTIObQApiqIoipJxaANIURRFUZSMQxtAiqIoiqJkHNoAUhRFURQl49AGkKIoiqIo\nGYc2gBRFURRFyTi0AaQoiqIoSsahDSBFURRFUTIObQApiqIoipJxaANIURRFUZSMQxtAiqIoiqJk\nHNoAUhRFURQl49AGkKIoiqIoGYc2gBRFURRFyTi0AaQoiqIoSsahDSBFURRFUTIObQApiqIoipJx\naANIURRFUZSMQxtAiqIoiqJkHNoAUhRFURQl49AGkKIoiqIoGcf/D1FqUD55+AUZAAAAAElFTkSu\nQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x116f74518>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAADeCAYAAADVab8sAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztnXl4FFX2/t/OImsQwi5bRBYVFRQc\nlIERUQQdBlRwVET2TRFBR2dzvuPyc1wHh01xARHBXQcQBARGRVFRHEFBhVEkQtghLAlhydK/P6pP\ndd+30l1p0lvS5/M8eTq363b1repbVfee+55zPF6v1wtFURRFUZQkIiXeDVAURVEURYk1OgBSFEVR\nFCXp0AGQoiiKoihJhw6AFEVRFEVJOnQApCiKoihK0qEDIEVRFEVRkg4dACmKoiiKknToAEhRFEVR\nlKRDB0CKoiiKoiQdOgBSFEVRFCXp0AGQoiiKoihJhw6AFEVRFEVJOtLi3QBFURQlufnO4zHK+2h7\n9/Lm7L7M3P/ej83NDTQneFKiAyBFURQlZjz77LMAgFq1agEAqlevjtYun1m0aBEOHjwIABg8eHBY\n31OtWjUMcan7zDPP4Pbbby/TfpXKgy6BKYqiKIqSdHi8XrX9KYqiKBGkhrnklF1gbl7C1al8OpUP\nU3lIe3rjDCqvpXJPKn9mFlf8YpbnUPUOAf/fo4/MSoNagBRFURRFCZvi4mJceOGF6NOnj2Pbs88+\ni/PPPx8dOnRA165d8f3338ehhaHRAZCiKIoSMRYuXBjvJigxYsqUKTjnnHNK3TZw4EBs2LAB69ev\nxx//+EfcfffdMW6dOzoAUhRFURQlLHJycvDee+9h5MiRpW4XkTsAHD16FB7y9EsE1AtMURRFKRcn\nAx5uVwNYT9tXUnkGlX8GL6HsMEr3YZ25uTpVp9WVR/ab5RqvmeV0+vgqKv9I5WsC/h9OD/IXk1QT\nNHHiRDzxxBPIy8sLWufpp5/GU089hZMnT+KDDz4o03579+6N/fv3B91er149LFu2LOz2loYOgBRF\nUZRKwcRc67VBfJtR6Vm8eDEaNGiAjh074qOPPgpab9y4cRg3bhxeffVVPPzww5gzh+XlTvbv34ev\nvvo06PZOnbqeSpNLRQdAiqIoSpl5/fXXAQBVqlQBABw7dgwD4tmgANaftF6viuF3yvkoKioCAAwa\nNCiG3x4fPv30U7z77rtYsmQJjh8/jiNHjmDQoEGYN29eqfVvuukm3HbbbWXcexGAQxFrayhUA6Qo\niqIoSpl59NFHkZOTg+zsbLz++uvo0aOHY/Dz44/+hcT33nsPrVu7hbsUvACOh/iLHGoBUhRFqcRk\nZWVh5syZuPLKK0/p8zNnzkSrUaPsciM4w+5QWB28TOVsKn996JBtMUlJsebh6emWMqewsBAXZGYa\n9WvT509+bpZFApTve2VND1XHnoICW5RbVFSEwbAsWQBw4sQJjGjWzKgfqFlaTfal2Tc3Msr332pq\nhLaUUSOUlZWFPXv2IDU1FTVr1kTv3r0xffp01KxZs0yfTwT+/ve/o1OnTujbty+mT5+OlStXIj09\nHXXq1CnT8pdFMZyRn6KDDoAURVEUJQFYtGgRrrzySuzevRu9evXCo48+in/84x/xblZIunfvju7d\nuwMAHnroIfv9KVOmnOIeSxBpS08wdACkKIqiOJAZe4sWLSK+7ypVqqBatWoAYFtiJCnB8ePRf/gV\nFxejRg0r/nRaWpr9XuBrpHjtNcsF7eabby7zZxo1aoRevXph/Xr2p0sGiqEaIEVRFEVJQnJycrB0\n6VK0atUq3k2JA2IBUg1QpaMWxZDIQ4ZRzoAZU+GIy/pxpPenKEpyM2fOHOwYOtQu7wBAqbwc8/Ms\nKvNjeweVvV6vrf0RAi0wF1N9jsvzEJVXUb3/omnIFh4/fhzVq1vBhFJTUwEAp512GgBLE7Sc7qNm\n4KHTaNv/GaWraev/Bg4EADzoe70/xD342muvhcfjQX5+Pnr06IEHH3wwaN3Ki1qAFEVRFCWpWLBg\nAfLy8vDRRx9h06ZNIQMCVl5KAJwI8Rc51AIUBaZOnQrAv6Yt8IwnHvzrX//CXXfdFe9mKIqSYMyc\nORMA0Lp1a4fFJhrI/VFe2SssmuTl5dmpGsTyI15oogmKFvJ8uPPOO4PWueyyyzB06FDcc889WLBg\nQVTbk3jEzgKkAyBFUZRKTmFhoSEuTktLi/qDXikfEydORFZWFr755hu0b98+3s2JIRIHKPp4vGym\nUMqMuPnJGrLcUAKTvv117Niw9pnrWHuu7/IJc6ScgVyjnIeGVN+M4PHCC7fb7Zd2nzxphVMdPXq0\na3uVxOEk6cG+oe3DqbwRbemdQiofpbJfCaLasopDVlYWfvnlF+O9++67Dw8//LBdrkt9J9ehoTEj\n8TTFRqPchWpzmeMEvVRQYHhfDfR5hAmc6msnlWugdOR7+PM5LvfBkpL/2paogoICZGR0ovqB91lT\nEdWQrgWOWcRtYT3VJt/3lhav6bbbbsPevXvxzjvvIFno1KkhvvrqlhDbP8ZXX30Vke/SKYCiKEol\nJjs7O95NUMpAab/TjBmcNjYZiJ0FSAdAp8Dzzz8PAMjIsKw1bPnhte1Epnr16rY3RNWqVQH41+AX\nL14MADh61LIE7Nu3DwBwxx13xLqZSgj+/e9/A4Ajn3Ysee655wAAJSUlxvvSl+QaGTFiRGwbprgi\n13ksSU1NdWh/4klJSYndV8UirsQLjQStuCLeAfoTKpFC+lS9uLZCUZRkJnaRoFUDFIJp06YBgB0x\n9LTTTsOtt95DtUzdRFPS4PBaNa8Pv5GdbXshpKamomHDS6lGMPHbJ77Xqsa7O3d+icJCq03Hjx9H\n27ZX0Od6UplXqP1ZdP5B6/yXfvABANiumTt2WL4iEydODNJGJRpIZNmtvrgiwl+pqxwkEdBvaD8b\n0Zne2eJ77eZ73Ufb/TqITOobTK5Dc2FeJ5l0nTw5axYAvyfOrbfeGnL/Svl58cUXAQDnnHMOunT5\nPW1tEvKzTfGFUT7X5bue27oV9epZA2vJIi9xf8TCnJtr9Ym8vDzM7djR+Pz3MOHWSdyhmb7XdrSd\nNUgbduyw+9rpp58OwN/3xCJ16NAh+/WSNm3sz7I6iG0V2VTmez7H1e7vs56q5tKiU6da+OorjgQV\nuP1wxDRA8ffLjiBZWVlYuXJlvJuhlIGsrCxUq1YNNWvWRKNGjTB06FDk5+e7f1BRFEWpxGgk6Lgi\nGp86deoA8GtjZOYSSVJSUuw150jEvwhcW4/0WnbdunUB+M+HZCl++WUr9/PgwYPD2l9FTPwXS8Tz\n48QJK/iXWPbktTLBxybXIGuIxFo6kKxfSvjI9RwLzUtmZqb927H2Jy/P8qIKtABFm5SUFLtviW6N\n75ui8fSQh1ykOfPMM6O6/4qHWxygaiG2hYcOgJS4k9yJ/xRFURQ/bhogHQCdMh7PRUa5LdYZ5QFU\nfxWY66hszsZzaLW5K2kdzOgT1uzCtPyYuosMzDfKp/te9/pefxVif6mpqbgQOdTa2UY5nT4fmOWG\nFSB5FIyL45MOGWLmrcnAz0Y5WKwYSfzXo0ePUrcnCx5PLXrHVFaw7oJtICtI88N9l3Ua9Wl/n/pe\nG/j6XA5a0if8szKOTsURg3Id6jezBivPxo69l97hnmleZwUFVjQVsQwNDchdpYRm2rRpuPPOV+hd\nU8mSSfcNvm8t2bYNtWtb6ha2jLt5wcr7Ynk5duwYHjjX7J2h7kulIa0XfzK+d3F8tcaNOxjlgoKt\njn1K36pVqxZ2nThht1ssQvJ67Ngx6zt8FqzeZNHha4U1Q1dddZNR9noPONqSXLh5gdWJ2Dcl3QBI\nSRw08Z+iKIpionGAkob09HR7JiFeEeWhIsWzWLBgAa688kqsWrUKAwcOxP79++1ZZTIhXl1K2RHr\ngaR3ePbZZwH4Z+0jR46MT8MqAPXru0WXdyc/Px/VfNGbxXuK7ztsCWItjZQTISVHSkpK0PbJcbFG\nk7VDkToO8T4eP358RPZX8SgBitmmHB0qlReYUjEJTPynKIqiJDElAE6G+Isg8R96R5jSkv41TPev\nKHPkE17bZt3EanSld3j2xB455uo1x4y4bfNmR+RlmUGcPHkSTSmvTLBoHLJCyq0pKSkxcpO9t3On\nvUZdUFCAaeefb9RnrX1gxqDJtG6+lNq22ZG3zDx21px4PHWDrm8nU+K/+fMtjc11adcDAG62nOls\nXZcwkWJAsWbnSphwrJRsKnNP5ZxEouSQPpdFGq7AvsL7YrtdB/osazK47OwtZj7yhqRJmTtmjFHm\nc/GML5+dzMqTPcaKx9OL3jmdymZfq47VRpl/ndGk2Vnhu8eY32lqZZhAbyvuuwzfpzpQWTRlYkPn\n9h5y3LvMe1Vp1nKO7C8WHz6e2rVZK2feF+vTd7O+iXWi63xZ4of7Xl9MtlB9JXDenKJEpbMAXXPN\nNahWrZr998ADD8S7SUoZqF+/PgYPHoyHHnoo3k1RFEVR4oUX1gwr2F8EqVQWoGBJ/2YkUGyZtLQ0\nR+4wiYch8V7KQ2FhoWPNWr4vPZ3nHvEjmRL/feCLoH3ggGX9Eg8mZMarRZUfmdHLtTV9+nQA/mtA\nPJeSwXtMNCXRJFQMs2CWE/mNxCIeTzweT5m914JpmpQIUQKnW2mUqFQDIEVRFEVRKjBiAYoBSTEA\nCvQHuWPbNtt7wev14pIGDYy6zoEnv+NUL5iEXrxMS0sz1ps71DMTT+aQWWDqv2di165dAPwWoubN\nm+Pvf/87qlSpgvnrfjLqz29xnlHes+cnwwLEa+28tm6WTYXRZlJMZWAz1TbL83fuBOC3QDVowDqE\nSs6z1gzRjm40lrQCR8xiP/r4RJiBfdbB/G2nUj4uVk5xJI3F9HlWSrRubcXEGvnHPwIAZo4aZWwP\njOyTTXvKojIrTFi76IzzGnrK56a8oxBIKBg7ttTPizqw+OmnAfiz2I8hTVFlolmzZjgPy433Njpi\nPJlnmPvO9L17HZbkQItyoNXEzYIi1iKxoKSnp+PLggJHNHCxHOXn56NlS1PlVUAas2zf6yF6FT7c\nudNuL0f2DxYRWmAtEB9HYeEeo77sR7x6zyQL1x5HnjyOmfUzkpoYWoAqnQaIydu9O95NUALYvXu/\neyVFURQlOVEN0Kkxffp0fEKxE7KoTpUqVeyZQDxyKp122mn2zCHYTCmQEydOOGYUubm5KCoqKnPu\nMLE4SS6eWCH6C7G4AUDjxlcF1Ght1Pd634hFs6LOf/7zHwDAFXFuR7hEOp5JIsP3gGeeeQaA/xqp\nTHGEJNt5eahZs6bDq8vNUhLMcsJwvB25X8l97+TJ8vs+16hRw96//MZ8/ww3gnWwyNBCJHI7JiUx\n9AKr/Hc6RVEURVEqBl5EPN5PMCrFAEi8h6pUqYKbaVu9Tz5BA5/OJyMjA8XFxcYa7s8usWycsNXI\nXKzMoJgPt23ebGdN5zXn4uJi5DjWg83933wz50jK8r3K0l4r2u6M8irfl56ejrd377ZnVAUFBTj7\n7GuoduBskaO7mMPyPDSlsgnPkA4cWAkAOHrUOmfNm/d0tLUi8s03lgKl/WErOskV0oU4sdwaWtvv\nbRb/5Ngz3wXM859NW7nn/ujY304qZxmln36yIhENGzbL946pE+HcbuHAEzqOv3Uu6Zm457Gf0GdU\nnk/XUUOYuowuVH8wxQXKou3P+2b5FTl+kMczPKDUlLZyhDKzb+wpcE7BxaIrFhB5DeZ1yhYRN8tJ\nMMujZa1rYbyXSyozf+65bwEA8ylh5ivp6bZliS3wbNnh4xKknljig8UHYktWti9GktSvXv0JOkKz\nd64mpabHcwm1Yw0qNWoBUhRFURQl6SiGusGXBVm3l9w2peXSOnbsmO09JWu/sv4fC61D9erVHZaf\nWMeP4JkJx0KJFvI9MvNhLw/mhRdeAACMIu+jROfIkSPulZQKhVwzyeAlVhrFxcUODY5E2JdXuY7F\n0lGrVi0AsC3e8r6cS9mfWJLkviBeWcFyGEYid1lqamrQyM5yHNIueS6wpUi2S2T9vDzL5i3nQ/Yv\nx8MR/xM9N2PCoG7wiqIoiqIkHTFcAvN4y+KKlGBMnToVANCqlaV/uea53/o3fmXW/R3JHp784Qd7\npiLeSTITOHHiBJo0uYO+LbTmhzU33377NzujucwAeOQfOKM4i+IQ8co8ayUk6o+sErPuIxcXGuU9\ne5YFXfMWi1l+fr712dxcXHLJcwGf5mP9hcqmRuWzz6zYKvV8sY3q1KkDwD8zqlevHX0+dDYrr/dr\nJDStyZKXZRa/W2mWWbcyicqbSXOTSZqby6g+90yO8XSXLwKw9PM08mzaQfUf871KdKAvcDnV8P/+\n11HbWHvHuZhepjLHaeFjY7gncs6+z132zxqii6nM6ij+vvE+S5BYB4YPH45Ex+OZElDiO4vpEXro\nUBuHpUYsIwUFBcjKGkaf5yeUqTjbt8+f81DuP4EWlAYNBtHnzchDBQUfBvXGCqYlSk1NRa9eVqyx\n5cuXOyztgZafGjVupL2aV0Ne3se2BVu+TyK416vHFmq+S5sKtu3brZhUcj44In+tWmxBZgXcEjqO\nG1CZ6dTMg6/uDrH9lY746quvglcIA7UAKYqiKIqSGGgqjNA0b94cwKmtDR87dsyhAYqkJqhOnTqO\nmY/Aa8kFpXhaRJrSZlGBEVgB/5p9ebVJYmmQVzn+Uz3OOXPmAACGDBlSrnYlK3L+xcLH80ql7Ihe\nTvQws2ZZnnIjRoyIW5siyeHDhx0aHLEQn0q8tJMnT9ral2DeYKE4cOCAbUlnOHJzaXHVvF6v43vk\nvpuTk+P6/SkpKQ5L+bFSMt6XBdEI8UqAxgkKQgw1QPoLKIqiKIpSZrZv347LL78c5557Ltq1a4cp\nU6Y46mzatAmXXnopqlSpgn/+859l37lYgIL9RZAKZQF66aWXAAA3DKP16AAxRfa75qb1tI+LLjJ1\nJ7/8ss4emVuv2fQJc216w4aFjizGYvHgSMu8Rl1SUoJ69QbS/s34JRdT/BJWyaz1ve71vbKqZi3W\nGeVGjcwYE3v3rnG0S2a3aWlp2Lv3cdtrTl6lfuvWnenbTGVFjRo1jP3VrctKEF4r54xDZp61u32Z\nuuX1QILI1VasWAEA6Elp4R4007LhAUfslSZU5vOzwihxbi/OQsean1zSEL02bpxR/gvV5/3P9L32\n9b1+4VDG+DVf3HK28fEKPWtyWLvGEz627XJLuP6jb1hRxKWvvn/TTcb2JVR/LZU5HldTug53UNb4\n+s8/DwCYOdM6a4kZOTrwLLembWbvadHir7SdVVaM+Quch1xHjWDxdKz7DrfH7EHNmt1mlHNzX7Yt\n9MEsSCUlJYbVRv4/duwYGjb8P6rNQbq4h/hxWtH5Kcy5vMze3br1A7Sdrx62dHHUKn4KxJ+0tDRM\nmjQJF110EfLy8tCxY0f07NkT557rP7bMzExMnToVCxYsCG/nagFSFEVRFCURady4MS666CIAVoDh\nc845Bzt2mELyBg0a4OKLL3aIvl0RL7BgfxGkQlmAGjbkqMnlJ1ATVJZcWbVq1XJkQ+bIpzxDCZyJ\nxJvA9Xie2XD8CzkfpcVXKg2xAMU6zlGs2b9fE7omGmKNjZVTq1h9xUpa2TRB5SVQ78IRlkUTEw4b\nNmywvX7lPhMYUR8wvVxPnjyJ3FzLKvX992wrdaekpMRxHwv7QZ4kZGdnY926dejcmVcIThFNhaEo\niqIoSiKTn5+P/v37Y/LkyXZ4mXKjqTBM/kQj8Y60fdUf/P//1qG7MNUEmaSROftsc711z54fHNmI\nA3OHlfYqsLZGMOPt8Nq3uf77BMzgMStobV1qH0Tp8Go0KGdOcXGxfXxuuWz4ddeu7wD4PWHEO0Qs\nRU2a9KDvdvM7yjZKTRHaO8PjaWaUvd7tLvuPDhIBln/KAkdoCj7+FlS+NOT3fIi36R3WULGKx2Q1\naQd+S5GILqT8W9Kn/D2QF+L9vWth0C2lwxO6LCrzHP1qlzLH9dnyu98ZZT5TrKrgPGmFpPnhqzSL\nygPvutUoz3rM0gIlliYo8PfjX2wplfmMmE+gpkHuQ8HKpVmBxQvLum+wKox7kHnfvuyyibSdrfXS\nw6zjqFuXIz1xzkTuQebFG+jFJvjv9yT2c1WwsXqPn+589rJc9lcHiUBhYSH69++PW265Bddff33k\ndlwCjQStKIqiKEri4fV6MWLECJxzzjm4++4QUQtPBY0DFD+OHz9ur+9zLhuBc8qw5YQjLoulRLKg\nx5OTJ0/ax8fZmNkixBYgOR/i5SWvyZLjRrwQy6qJUpIH0c+JviWelqDp06fH/DtLg+PoyH0lFjkY\ny0tRUZFtsVKcfPrpp5g7dy7OP/98dOjQAQDwyCOPYNu2bQCAsWPHYvfu3ejUqROOHDmClJQUTJ48\nGd9//737UpnmAjNh6RmnFHjMKLHp0xx05OI82u5mvC8fdepwyHV2gWRTsMk6cm32m26tVASLYZpp\nMx3uqKarefPmPY3yvn2rQ35/eLg5L5um45bIM8q8QMTXQKHLElmkyaaBr7RHLpq9MGFn1Tm0xLTH\nsTDDpnE3x3fGeYZMsqhsJpxY59j+AQDgQ7vPcd/0lzciw9iSQb9lHm3nq3gdtZX7grlwC/SjMvc0\nbilfZW71+Xj2UHt/oetqH+ngB5Ob/Du+xL6KUhnp2rWrq8NBo0aNyhR00oFagOLHsWPH7BmKvAbT\nzLjNaCqaNxRHWJWZmxknSSOYKoobYvV98cUXAcQ2d5h4SZlaEc6WxtPI0KpTjtjFqpXVNIBMSUmx\ntYLiKSdaQUtbw6ov1vTwtNecPDkH3OIhfML3ypMHc8ibieUIhcfjsdsv9zv//ZzbxuI/3s7Dbz7X\nPBznmEQcRPADVGrcLEARHLXoAEhRFEVRlMTAzQssQs5mQIIPgJ577jn3SlGANT3Bsgq7vVYUCxC3\nV17FAsTnQ2DtkKIoFmLtECvCvHnzAACDBnEW9MpJSUmJnYNOtDRyn2DvqkTE4/HYcdvEIi7aSSXK\naBwgEw5bzwZFUy/A7pxsrDU1Px9//KR9QUYsjkEABw++YbtNb9++Hb/+tWnOXLPmIdtknZGRgV5Z\nWcb2Q6Q92GPrMyTYonk2Vn690r7xHDt2DL16DTa2b9iw0g4oGekB2s6dbwLwJz/9bSvT9ZQVLllU\n3kFldjZldVe04X53GZUbkG92T7JkD6FVhyccZv5w4b7NVwK79vIRsDKG60ufkukXL3wEmvbNq+50\nx5IELwOw/sm8Dn+mO94sClfxC32ar2p2cuZv50UGdnMvpPa7aYSmUn0zeAXQisTPHefOhaIoZUDj\nAFnEYsRdv359W8MjAxEZELHFg7U/wbZz3CDZX506zvgN9erVi2gE5bp16zo0TIEERjNly08wrzY+\nXvb6ks/JvpPFK0xRyopMCmKB33spMJ9X6Dg7mSTYz0WmUc6j+Go7HQ4J5hC0YcPf0HbW5JiD7wza\nXx7lZmPNDw/l4Yvj5FcWmSIS3h8P/XNogFu//i1UI7D9pkLXqUdiR5vwHF9COR8kBeoFpiiKoihK\n0qFeYBZlyc1VXho3bhxU4yIE0/a41RcNjVhiSstlFmgVikR8mapVq9qWmIwMdkW2lvn4eIJpewS2\nbDFSX77X74USXWbMmAEAuO2221xqhsfChRw1V1EiQzS9wp73ZagvzdKsVB6eeeYZAMDtt98e55ZE\niWS3AHk8dY3y5bT9Gyo/+Y31TqCWBvAvPfESTzxFuwcOzAy6hAY4jaXO2DhW/J/5vnJVbA75fVu3\nromb+PD97GwAfpdg+R1kQCgDXA6oKANBZzh782wsvt3SuNzue/V6XyxXe/f62icJKhr8H1W4k8r1\nyJD+ornM8TgJV/btXGyUZ1MqEKfKiH991vywroY1QqtCbm9Jyw6SovI6Xx/jRZv1Af9zHB++X7Ul\n7dpmx6KDmybIXDJZSW3lM8OLBLydNUGhE9I49WgFLhqh9VRmJ+9zoChKWYihASgxB0DhIg9M8bgQ\n9b4MMOQBG8xiw1oXhi0iHCE5WPZ3fp/j6XD9SODxeBzZ6gWO7xP4mdLqBYtwzZ/jz8tAS75fNAnB\nco2xxUwjLSuVDRn0S0ycN954AwBw440cKPXU+XjMGHonUIvCLgjmkM8ZIJYxB9+5jsE4w1M5Myjq\njz/Os51O5H4o94kjR46gTRszt1Qe7e9HfGiUO/le5YHGawd5NOBeteUze6LMUbyPHDmCs8/mCN6B\nDgHm1CAPbanuACrzYJ+Hx6yP4nM7xCiNG7fKePV630BlIoYGoMoxAFIURVEUpeKjFqAw4aUtmUnI\niF4sCrLkwhGNg1l+eP9CMG+tYNogbhfXl3bKUlF5OH78uG3xYoLF+wkWzyfc42TYG40tY3I+5NVN\na6QoFRW+xiQ0RrJSVFTkiKTP3rjRpGbNmvbzgO9HaoGOL0lvAWpK+gFen3+byrM73mD//913i6LT\nqFOkQYPzjfLevRtC1ucfno2hIiuRIYJbtiimfaNGRvmb3bvD3EP0OOOM6+gd1o3w0bJpuXw4bruc\nyuw1Kl9MKpnhZPYfnm0UX7zHrP//Jpmux78jV+R1GE1fyMqW0OH+uTdl+FyFg+1tE32KY5EF9sVM\n0sTsITfiF959BaGY2LevUf4Z7CBQn7abd4FDdK5Y48Ow5ofhMxcqAlJpZb5OWb1W0yd6rin711xh\nilIqMQwDlJgDoPJQUlLiGMnLrEssPzLDkDhDHC+HLRs8I2DNSrDIz6VlEy4qKnLsXyw/Bw8eDH1w\nZeDo0aP28fCsUyxNgRQXF9v1WJztZokJN+J1sIjaOuOqfGT5Anqy3k0zbFuIXjESTJs2DYAzcKgJ\nj+Z5WslDRKcM3IRVNm7HY273eDyO61/uD1afyaLPm5OdXDqenT5nEMkEdtCRjNecDAR6GJee45Gn\nooFDZJ54sd6Jy7wvPnd8bjm3GMNhQSsXJYhZIOjKNwBSFEVRFKViohagclBUVOTQlPBaM1s6gmlh\nyqqV4bJ4of3www+O9m3atAktWliLD2KBEq+p2rV5VhY+NWvWtP8Xj5Nt27YBAH7++WdH/b179zri\nE/GMKJjmx007FcxLjPcX78jZ+3UrAAAgAElEQVTRixZZy6Y94tqKykXdulYoi2C/fbIjfT8ScYFK\ni/ie6KSnpwe10McCr9fr8IpNlPtRspP0GiA+eNYqcDlQDXDFhRca23itnkeWebiK3jFX8/Pyni21\njcGoW9d0N12+fC72798PAGhE+pvSmLJliy2QlNcjR44AsC7U82ENcr646y6kpqbi+eeft905q1dn\nzYyTx196yX4IXXDBBbjwwqnG9p07/+G6D6F27XH0TmjXV+cv+xmVWYnRgcr8y3NEqPBYQA/jObQ9\na5ZZZs+Ea6hc42pyb6WwPHtpjYKP3qnn4nc4rk/o9AK8zPHqIusI5QbPA/o//elPAIBrH38cAHDN\nNcNof4EqKTZShxe09NNduwD4B9EyWD90yOoDubmWDlCugeuuGx9yf9wTWMPj5mjMZ84tl5g/J59g\nTi64fuwSYShKxUa9wBKI/Px8e73YzeupNLZs2YJly5YZ7910000AgHPPtQYMmZlW3h0ZwIhlSGbR\nbIkJrNOwYUP7gSYPMnmIbNpkyVrnzDEf7ZdccgkA2JYoN4JplpSKxVlnnQXAGXhS+pVo4847zy0m\njDvBrKwCB8WUmFFiwRSrpPTlyoZYfSOhBZJz+QU4f1WoYRcP8Tg2DWuAeMjIQ0oecrJLgdmWLr6+\nKHzhC5pqf/uO5+w+dOTIEbRr9yDtz2y/P1mt9T2cn+u///u3bWH3eDwoLi62LT+FhYVo1szMbMy5\n0QKP3hnUk88lnxsenvPE0Ayj2YeCfh7FaqMcWdePxCPpLUCKoiiKoiQfagFKIHbt2mVbZiRyKeco\nC6VrKC2mxeuvvw4A+O1vfwsAaNOmDQCgaVMr47JYd2SGzmv8Xq/X0NGId9dun0v7//73PwDA/Pnz\nURqSK0i+h2FNk8zExPIjGielYiEWxWAaNrbKlIecnJxS9ynWJ7GAcNRwsRjJNVZa/rzKgJyHSFiA\nYp3iJlqwplAsNJE4vmrVqjks6Rp5PjFJegvQbt8NeenSpQCAF64x1RZOqbDf5OiW84eNj3kOl0PT\nvHnbRWY8k9Op9qs+fU8wBg9eDMAfmLBfvxPG9tGjPwfwecA7ZpSjnTtD5/q6qEkTo7wHmUa5X79u\nRnnhwguxcKHE/lkK5xH56USapRyHayknx+Kz/blR6gwzFxanMM2m8gOO/ZnlOXN+BQAYPHgwToU/\nh9y7M3kAG7ZX8g6Xhq7Pmbo2OnQknAuMezPPi0K7137zjTUArlevHk4Nc/+XB+hc+Ny8TOV7L73U\nKE/+yrzOnm5tnu0s+vwt+8yzt3PnlwCAfb73f9vebIGb5ocX0nhBh+8p2VTeg6Yh97CHfqtVlKOP\np0EvvjjQfGM0x3xSlOREvcB8VBSPEY6jU1bKEg22uLi4VO8rr9cbtZlLRTnvBQUqLQ1FgwYNADjj\nOrklBY5kjBrhG1/C4rL2LbE2imVILEJNaMBfWZg5cyYAYORIzkEVnOeeew5AoJXMnN61pHxZgfxM\nk5k+pJnJpvobHUNGc8jZlj6/2aEp4gFjZ6Ocmppq99OioiKc59AnckpsVsLIENeaYHaCeW8c0KyZ\nUV64e7dxX21Imh8eEJsDaB7O8nDbnA5k4AujbE4NnBPBa+nQjtKs/VGqP2XKFADAhAkTUBnwQuMA\nKYqiKIqSZKgFyEdFsURwvKFQ9OnTJywPkPz8fIfmpnr16iguLi5TVN3+/fvb9TIyMrBw4Xch65dm\ncUpUxo4dG+8mJDTsHVh6xFu/tUX6Y2nxoiJFWXNgSQwtsfiIB09FjHlTFk7Fmitavljkzoo26enp\ndj+MhZdpSUmJfX2IlbGiUhl+/0CKoSJoAzclBLs8BsKG0i6OfZt5x45SmbsWa4iYvXu/ti/gXbt2\n4ZZOnYzto0ax5ohNveE5OfJImfOoDR78JtVoZZS2bBlv3wB4wJnj0D3wjWkJldkUbP5yX9D+jpK7\np3PUz+cispcFG/WzqczDU9YIcetYh8JmdF4UCG7GF/h4s6jslhssNOfSskCbjh2NclvqS08F/N+B\nZEUXkxSOe8bXI0YY5ZaTJgEAPv74YwDAVt/7AwYMAABMuOIKoz73vG8OHADgH8RJrC0ZvA33ORgI\nWfT5TlTmvsBlUF/lMvddVtbxL72DBWQDHF+oKElJ0ougn33WCj4o3lGJjMfjcVh+IunB8tNPP9mR\nnGWA0rp1a5w4ccLhjXYqlLaPyp6NXSI/JxtuFlUJuCmagmgSbNb99tuc6rh0OHqwXGsVdTYcjn5Q\nfp+JE3mYacrsA2XizomfOWnkARqH3NzoGFybQ7x9tL9MGjznknPJtm0rjGzsjRpdaWxndwtn/qtW\nVJYhqzWJSKfpCw9Iu55hHvG3e/bYFtCioiL0PvNMY7spguc4QDz1Mac6rPnpSWU+s0tolr2Ctk/G\n7803Rn1kvfhevd55qMjoEpiiKIqiKElH0ougJTJyRZjNeb1eh8VENDeRsKSId0gg77//Pnbs2IEz\nzih/TNDCwsIKuwY+a5aVq2IELa+4kSyRrFn7IxagYNozST8RC8RD7corrZn/ypWOoAIhEXd4cfEX\nbZDE6qpoyG8zffp0AMAdd9wRtG79+s4FuopGWlqa3S/LomWMNl6v15ErUokPSW8B2nbjjdarr8xu\ngpOoHHiy+FHOjzqOxcKwOZJVFm5Dsot8N/bg9d1iuYQ3GMnDdVQObarmrtWy5R+M8vbtZm6wUJ9t\niHVGeY8jHxRHizEN8RsdZyebyllUvscojRz5kO/1bwAAr/dhhMLre8jIGWtG23lBgQPY80XJhm8m\nm8pO/Ri/wxogc4B7IYXEB5Xf8elfyjpxmO1bbpo7d661t9Xm/jaTZmtlgO7laOjwVw4NDfeMI750\nMHaErH79jO1nUVkGSs2bNwcA/Pucc4zttx88aJS/3bMHALB1q6UuuseX/kVgPRcvEWVTme8D3LMv\npjL/srykxAt9VaAoCqAaoAqHeE3FOqKoRICOJBXFA0xxwhFuGZlxiyeWDHwSgSt8ouf//Oc/pW5n\nC9GvaLscs8ziJcp569Y81ElMpN1lsYb4A1uyLsYcogeeMZ52cdpiFuxnUbklib55qM4DRH6Ard/2\nmSMquFharGM2P+EMz2p6Jgaf6FnWTXY14RCjfPwlJSX2vS8lJQUrt283Ikc3b949oLabK4zZ+gLS\nR7GCiCf0mylGkrP1bPF+zaU9FQtNhaEoiqIoStKhFqAKRLRjFfXo0cNhlfF6vfjuu+9sD5hIUlFi\nLylOJDJ2abnjAjnoWy7q3NmaaX7xhRWpVuLKXONLPbNw4X+j11giI8Pp9xMOol8S64j044qib5N2\nlsWqW7NmzWg3J+IE9kHW/iRCLq6ioiJHPjrOHabEhqS3ALF+gA29bH59e8MGoxw4YPhdu3bGNr4d\nummGePtLv/xiayxKuzBYJ+IcybrdkM2jnzDhS9ouAUNENXA1bWe1AZuK2TgcfKy9a9daAP6HC59L\n/h2cfEZl8xOffGKZbvnGIwO7jh05tDvrk1ggHloD5GE7PXUs1nEwHMcn3PxSV1K5kMz6a2n7HjK1\nD/W5P8sDpP7Eicb26+n3Wbl9u1Fu3txMs/DII92N8k8/WX1qzBjRsXUwtj8asAzCGhhWHfENzC3O\nTrjZyr70aYSGDBkCAOhGITP+d9hUaC30xQ3avNnK0fXHLqbqh69bt/sCw8safH5Yds76MkVRLNQC\nFCYSJZaJRjwbyeIM+AdAlSlujsfjccyAqlfn23tkEI8diQciA5/KGu23vHzwwQdG+fdB6gluM2sZ\neF511VUAgIULfzrltpUX6Qu9e/cGACxbtqxMnzvgG9gw7Pkmx3omxXdJFMpiZfB4zjbKmZRwNZdE\n63kB4R6X0yNlOQ2ur6J9uWVccxvQskqmpKTE0Kg1a9aXaphDZhbN5zmCsvI9X4bg1sA3F3Vo73tK\nrS00b24O9rdtW2/f/6z7YeDsiY+OH9emwmg1bb+a2uKcErN3L59dnuSa7fF4ehhlr9e8byQ6bl5g\n5Y9+50cVr4qiKIqiRIVly5ahbdu2aNWqFR577DHX+iWwLKbB/iJJpZhqi4UiFhaZ1NRUx2ytMlmA\nAOdsNNDqFUnkd5NXmaVHWtu0ePFiAECfiO418ZG0EME8i8TyFg1vwnCRZeVwrY1uXlPcl6NlzSwv\nEpuqst1LhMDjqghxdkpKSmwLajS0lslCcXExxo0bhxUrVqBp06a4+OKL0bdvX5x7Lvvh+XGzAEVS\nAZeQA6A5VGYVC2uC6tYNXM/nLD+mS+GuXQvItGm6sV9HwQVnZ2fbA4BTWZrZA06HkUVlviGbbruT\nJ7e2k6FaN5EfUL16dUybdhxVq1bFd47cpp9T2VSqNMSpB7tbsmkTAL8mqEuXYcb27dvN6CaHDlnf\nLW7XXbqYizatW/cK2Van6ZejOLHSwgWqfjGd+iU/mGU2k7Nhmo3wbAjncuhMac7YNJf064ZQHJkx\nA4D/of6OTw8jtHvENIWPo89PmPa+UT7zTAnCZw2c/vAH8wTl4kL7/w8dhugdVObfzjz6NymK0nm+\npS/BLc/aF77rauHCNb53LkQ4rEZXo3yIYiqx4zH3BdaDzaIy9+RpVL6d9WjvmPosjB8P5jxapuKH\nRK6jlVkB/3NvM3vv57Rvfjxx3+W7FpcXbd1q3zePHz+O9i1bUg3+vcz+5Mxqx8fGZbENyEDLvPr4\nmcHwfTEr6yKjvG3bensQ16LFr+nTfC2Ejuc1lZbA9iCT6vPZDK2ldN45Eif0w5dffolWrVqhpe/3\nv+mmm7Bw4cKQA6Ck1QB1794dgFMgyGavE45Pbgv4/yBtMzOp9+/fP+j3e71ex43t5ptvdswiQ1mA\njjj2ygOOb6nMs4uNRmn69Oq2145Qt25d7Ny509eOf9LneX3anCG7DX+uv/76oMfnjNy6zagniSw5\nLpJfi7KXvo1XYHk2f4zKnMPLtFxI/2FEJ/LPXaF3z+eGhbzc7/ji4bk7l/loGO7n6as58KGJBC6s\nW7cuAIBjINcgvbsjCGhOd6O4vcgSTUsuPueNNvAIWLPCZ4c/y0dn6pM4/zwPp5x2ntC/Vp8+bvY+\n8zrk7+e981XKvz0P0Li9NLxBzd3Wa4fTgMn8/KsEpKSkOOL+VHQ0Rlr47NixA80Cki43bdrU9joN\nRtJ7gSmKoiiKknyUIBV5pYTCjAYJNQD66KOPAAA9yALhtgSWh+YBJV4CMz1bnnvuOXvJQHQHssZb\nUlKCvpTBfcGCBY6lMkaW1EpKSnAOfT7XYd5k82ToJbD777/EXkqSHE5nnXUW7rvvPqSmpuLbbzln\nEIvMzJk4Z2lm5s+fb58PmcHJ8YkF6MQJa7bfvLmZ1/iVV14B4I9TwpqsRo34t3EzHfMyCi9MZBul\njz56H6WxYMECAMC1s820IWwS4SUwtgayVSLcJbBw07DU7dq11HrB+Mf//meU29HpvoPSbT3d9COj\nnOXre3fddRcA4Pbbze3mEZRvCYxtJi1dspM7l8D4ujI/sXTpUoQiI8MMH9EyzCUwvj2HXnh2LoF1\naBSyeRWetLQ0+35ZGSxAgd6xStlp0qQJtgeE48jJyUGTJm4+hilwTzoVGRKyZ37o0M24rQgG3vx4\nCcjtsWPy7p49DhfacPhhzx57yaewsBCXtzAX+0/S+i8/JtbRsd56KxvPZbu1vp6J0cZWrs0r/9lU\nfnjrVvsGFW7QuA0bLM1P2QOZ8bov/1b8kDTLGXjeKLOMwpWFoW9g1zQxxZnp1DwevvFAnIey3PN4\nwMT1+egXLjTjW2XSQk03ypf1H1+cIGG1T4Mhv+v3KymE/k/mkuRPvkW022+3jnTqVP9CTq1atTB0\naGDcJdZfXUrlLCqzUds8uRvp6Dc6dA989syoTbt2PQIgHJGzub+NYI2Kea75OuWj5wHPahqgfUYT\njw4UvuuFi6y+PWrUqFLaasGDQmdCBj5HgeecB6zm8N7tyucrl4e7bskh+FfJc3yiNW3nISbX5xZL\nCyVW1XnG1s2O6YypoDqPBuC1Q0wUm1JaEH5UH6K+wzpQfppl0HflOe4sfO3wnYJ/d7dfI3ZcfPHF\n+PHHH7F161Y0adIEr7/+Ol599VWXT3kQbk7MUyUhB0DRZN++ffZNUiwbp59uXWxuEUC5zJYRHjhV\nhJlP4ExNYE8U2S7vi7hR4i+JFxEfr5TjHUm1InidRAKOE1ReAvNySTLSREWu6WCzdOm7+fn5MWtT\nOETL0zJepKen29d9ImR7Ly+pqalqAToF0tLSMH36dPTq1QvFxcUYPnw42lHAViepSGoLkKIoiqIo\nFZ9rrrnGTq9TNtQCFDUKCwttt3LJnSRRaGWELzMXLgeLMyRljuURb8tHWWELibSfj1+QctWqVQH4\n48nI50RDJOV4xZmZOtVKnXHGGbx4oJSFyy+/3P4/0a2Z4uknfZI9EcXys3v37ji0zp3KZl1ITU11\nhBup6FSW40h8UuBcNA3EzZ+27CToXe1mKptrmm3xplGujQ+D7onX5v/ey4w98/w3kc3KMyvA5Q8A\nSHXhWJ11BnQ3j2U1HqUaokawbuQ8TubV4iFUdgwFAtrrBeDZwav7p069etfSO6WnLBHa0jo8Hxvr\nLkLvzclrr80D4B+QDftyuLHdSz+OmS0KqEEN+tRFmuaWW4zh324VaQlYxZCD8PjQIRx+mcoyOLAi\ncU2cGCrkPv86rEvgnpZFZbcoSaw6YVmyOaNs2ZKP5W0qc9Sc0JFsuDVskGdRtlPdZuo6SH+O2s+a\n5S3P3goAePBW6/X+UgIiuikhM2C6F+cZdz9WsJlXz+Z9/iOWgYs4XRw5cgTDadli6YYN9hK4LN/x\nxDGctjth1ZV5Nb7/fl/89JPl4CJOGRdccAHuvnsTUlJSsH49P0PYOcRskTPuUHC+8N0j5XjlfrJn\nj6XvvPTSoUZ90UpyyqYjR6ygKe3acTw0fkq4OYdwOVZO5NHCg9AJLyr9ACh2lJalWHCzgAgyy5QL\nsSJz8uRJ26ITzPuNNVLsNZYolq8777wTAPDmm9aAOdQNWlEURUkE3CxAPP04dZJ+AKQoipLIxCJA\nbD/yKAyktACxo0ePjmuA2HHj3i81QOz27dujEiC2f//+pxwgduRIyzc3XgFiKx6qAYoZVatWdWh7\npCwWHTEFSwcWC0lgduPA14pM4DEE8w6TV7YEJZoFSPj9760UHGIJqiy5feShtXDhwpD1rr/+el+9\nT6LeJkVRlPIRuzhAHm8CZt/zeIa71Ah+w+dAfxyIsCVtX7JpEzIzzTqB7ps3NG5sbOPYMzxvuoEt\ndzSQ/RtZ71hlwcoJymZgrwbLjOoS2s4r/f+qR2+wGJ9O5ZKA9q1wacu/91ozF15aktc76tQx6rup\nrbhpvLLNsDrqgFtXrm8OzFbsNzdz5BluD/+03L4GregNFillU5mXuenHP0onnHs9z5FeoVn8AzQw\n4jkwX2UHfK+SUoN1LYF9i/VR3G85DGE2lXnffB3x5++lnH44fY1ZPryePsFHx0fPqhTzbDaleF1m\nyE9nX2ALyYdoa5QvpFxb3Lf4PvBJKX35fJpYbKR7Wx+6twVaiJY74hyZR7Bjx/v2xIAF7/yI4AlO\nMKlAYDy0xo27h/x+dyiAbPs3zLLIXiS9y/EtxuarSDFnhscFfnbEnjOv7l27VgSdOMlEUJxgWPwt\n51Mm0uJ8I5xzzuxS9+tnbci2lRaJKBCv998u+08sPJ56APoG3d6x47f46it+Gp0aSW8BysjIcFgu\npKPu378/6OcU/4UsMVgScCwNwIr+DQBj4twORVEUxY0kjwStKIqixI6TJ0/aE0BZ4mdnCF4CF4sI\nW4CCBYityJSUlAR1CpHjZm84OW6WRnD4EIVRDVDMCIzAKh12n88lVNwUldLZtctKry65XapVqwYg\n8SIvjxnjs/38bWx8GxJlevToAcBvwYSLNkhRFCXxcPMCixwJqgHiTIGcQNSM2tAyYH2dNTBPZGfb\n6nwZucuDmnNfeb1e/LG+ub7KGWk4tgsnCGjA4SdoufZ/U83yDKrOhj/WVohyQZIrsg6G67NWg3U4\nS6gceKZ5DM46B85Y8w/fwJFnSrI2npdnxfmRuBmPUGwRt1ghvPLNuokNLl35rbfeAuAf6P79xhuN\n7ZsxjD5hZvO6jhJm/j+q3Y4EYgfpBPHxNWBBGZ3woyRUcEs36rp/4i1q3198r+N9r6yaCdTtDOEL\nI8ssZlNH48gkVB01SD+1no6dfXpeobxwSKccWoWsAWKNEAu0zAazVpCjEHHcmMUuyVnbkhcTa6Cu\neeEFAH6PodLweJrRO+ZeWmK5UQ58hGwkTZITszf99NNLdoog0bCwJUPeT0lJQa1aHWh/5i+eSZqq\nXGRQfe6sWUbpjTdutZNqnn766Rg1ytz/OEwEAMz3lf8waZIdALVRo0Y4FBDUE3Ded5fjQnqHf6FA\n8abpf7dv3ytGOVjKJHlt1IhjEvFThe+8HEXKVCt2pb7FfXNT4j3iQ+LxNEEowULHju+qBqisSJTn\n0pCBkZhyWZymnBrsHSZWNjH5xstbTn7fjAy++SpKfNF7j6IIsbMAVfoBkKIoihIeBQUF9kQhmNcX\nW3ijyd69ex0pekLh9XptJxax+EcLTqLN7ZQJdmUJvxF9VAMUMVJSUoK6Z7oF8lLCgy0/HFcpmIgw\nVgwZYiUGefttTpOgKPFFopYripL0XmBsDmb1ibl+H5gjatL27bbKnjU+ZeFHKrul0eT6NV6jMi1t\ns27DLV8Uaw9k5ftV3ytrfHguxo961gCxuuqGwFNGybeuoWVXXpkOl6m+BJZi/n+sGWscTDgXWHnZ\njOvoHRa2mDqAz0gDNJNqDyRNDasaGpxDb9A1znF/OAOQm8+IQ/PDnZcuqxtILPBP3/arfWXWWAUa\npRe8ZKktRJcx/lzzAZ7FHf1SsziI2tJhzJMA/MukL02YYGxf59DYUOsKB9B2VuexCsn8sZqS5udn\n0sz87FBEuantzO/bTD/2Zoeiyx2OZfM9lX926GoC+zP/IHxvNO+pRUVFDotGsFQyVqJZc3+s+eGz\nVZ/y/m0GY17t6enphjfZeT7NjzDd93Nv9F1DgR5Whw4dctw7+L633JFegZ9BgUcQOgshO4E4J3ys\nX+HvclP3mX2Je3ZFzwSmFqBysHfvXtSsWRMAUMcXiC/Q06s05MJSt8TywW6vbBrmUPCHD1s3ndxc\nt0D0kUW+Vzl1JPv6f/7zHwDAeNaMhsnq1avdKymKkgQkvQVIURRFiScc10fgiY0MhqNJlSpVwnKe\nSE9Pt1cAoj2x5aV/t/cVN9QCdMocP37c7vDSAeXCEa8vWXIRt2y5UMTtUzk1JG7S0aOWEbZGDWsU\nX7u2ZTIWSxz/LrFmxIgRAICRI9+Ly/dXBqxlj8gh+cpEuDpPYxgpSpKS9F5gHM2H19/NkxM4Vvzn\nr39tbJuxe7dR7taggVHmtWH+ZtboXI3QsFqpFelC6lC8k/YU74Rj6zAyl5E5BY+TWTfCGiWuzysX\n3oDlZp63nEZ98gxauv6xTRujzPEorqOlpy9bmyvxvLLOvw2X3XKLufHGGzcB8A+AZeAmSAgF8SK5\n6irzoTyZ1uZXko6EV/LP/cEsc99ySSPnUAJkUfliukz2UmfivsCfl99b+lgT2h4o43mZtl07zcrm\n1aWLpYURK8E999xjVfCd2nnz5gEAbvINisUzRoKPCjc/8QQA/yB63DhWJLGJfASV+eyZJycTXxhl\npx8Tq0S4zPDkiTVI3Ls5Apc7/HvwvcZ59wqE7wzcHvP8V61a1ZETTOCUQVZAVPN856IPlTl3PWfj\nCh37ZtiwbKN8FdX+zlddruDU226D2K3yAcyh+nwttMXPRtmpSQq885tXqkzoAuMiAU7tlF/DlE37\n5t/G7c5g3gnXOc5tRQ+poEtgESMlJcXO6n7s2LE4tya5EQtcopiEJUu8G27Z1pORDz/8sNT3RX93\n++23l7p90KBBAIBZs2YBAOr7Ao+28wXFlEHoDz9Yo8VEiyquKEq00SUwRVEUJU5kZmba1rlglgwZ\nrLL1LtmQiZ1YgIJppxIw6UKCkgq1AEWIEydO2KkX5FWJD2KJkzAFFYV+/fr5/tN88sLw4VaqiZ9+\nspYy5OZevXrZ1u5Fh/Xcc88B8OvHxBJ01llnGftXFCVZSHILkNf7AQDgnXfeAQAMGPBKqOrYiXX2\n/6vR0Ng2v9ltRrkrfTaLyqGjYwB1eKmfllurk5iAlQtd6H7OOhG3ca+sFhf5XjmiBOsC7kNLo9yU\n1rp5tTlwbbyJS7oV1uR0oHNzkrzNvznDjAbC55bPPX89a366vGL1i4EDB4ZoZeSYMuWvAPzi7fvv\nvtvYzvqtjRSX5SuKfbKU6nPXYt8VHlpcQ+V06nusc3CL1yt9SvpYKNVG38f6Gdsm9edsXZFlMt40\nytzP2QbBx76Rcj3lOnI/ZVHZLW4O6zbcMuWZ+jKv932Ey2xHnB+OfcQ9JPAscG/i3mC2v2rVqrYl\ng3Mper1enH66qcKZNs0/OUhJScG4caF1mzt2zDbi43Ro3NjYzikV3yXN1u+mTbOdXTweDz6D5dxy\ncNo0pKSkYPSPLHfoR2Xzzrxtm1+TlZeXh3btelB9/515yhQrvEpmphWbqkmTzkbNAwfMO5XT8uMW\nc2gtlVl/FlrfFivrSfRIehG0hcZrUUKxd+/emHyPWCnEgnUqATYrOyIUD9fML1bZMWNM69rzz1vJ\nTsXbTM+4oiQLHriHfY0MCT0AUhRFUWJPaY4KoQa3J0+exMcffwwA6N69u+v+Az0uTyUcxsqVfi+x\nyy6z4uWvWrUKhw4dsgPghkNaWprdDjfhvWw/ePBg2N+jlAW1AAHw6wxGjFgc55YoicjEiRPdK5WD\nl156CYDf3ffTTz8FAFx++eVR/d6KiFiAZLmkrAR7+I0ePdooT7n33lNrmKIoFYwk1wA54TVO8+SY\nK66cdcbMucO6Ex5n8uWBzVYAABpNSURBVDfxyv7ptCrHi3Qn58+3Zwa5ubk4IXFQfMyg+rwyzbm/\nWGkgOgwJQ5dN2z8DYyaIyiEtQs5zD6FevXoArECQk670xy9hzQ1rQm6jcn06GawyYD0Un2suf0F6\nrgzKL/QwYsvChR8YryBNRgZpfJg8h4bDrM86Fq6fSfX/tGwZAH8+rgcWmxOFLeS+79BsUVn6lPzu\nfAsKVJSc/Jw2jkJUmeCytPYnslhw3zsUoBMEnIqf9rSdVRlO/Q0lN6NPZGC5UT4SAQ8gr9cSiksy\n3xtueIFqsG4puIRg27ZXbWcEjl8TLEyFaQEy71Ri/QGAhg0bwhlFzFRltWlziVF+kmoPpjKrWjYG\n/L9qlXlnse6/F9An+NyYV9tQ0ic2pdo5AXevjz5qZGzLpJxscv6CJdvevt16qojwX8KzyOThkktY\n28V3RvNcdqX4YxPeegsAMGAA76eC4PEAaboEViHZtWuXbd4tLHSTncaf0aNHY9q0aQAiH923ojJn\njhU2rawm8XgxYwYPp+OHPETdYm0tWrQIgD/qevPmzQH4NT9s+VEUJcmInQFIB0CKoigViUjk3kpP\nT3dELObcVZz9neMBBXLJJZfYKW9atmwJIDYOCokIa6X4fElKIDlfEjoiUmFaDh3idYMKRuwCQesA\nKNLcdpt/Yeipp55CRYg8NH78ePv/T4cMiWNLEoMhvnMwc+ZMADDcdZXQBIsALZGfr/QtsUrEaBGs\niuVIxK3Z2dkAgJEjR0atrYqiJCBqATLxetcYZY/nIqOcZ2hFeNnJXPtdVMpa/IsvvgjAiuvw2nXX\nGdtYB3Pm22/ba7eyZCRrt3fddZdj39wa3h9rjFgn49QyWIga5jXazqvF/I2ZtF7MPOf1YsqUKQCA\nX/keUhkZlv7hxhvvNOpOIk3O/a++CsA/Q73jjjsAAM888wwAYOm4cUZ9nqe4LRhGQkcRDnePMoUt\nrAJhWLMTviYoNOEuqHIkGj7f3Bfl15S8STwJC7ySONNVvHk8zL5xB83K76TtbShnX/f/mw7An0h5\n7NixYX1fJJGQAWPH/ou2sG4iMLKUqVFq3Lg71TV7186dq22NkDOXFcAamr/8BQDEK2orgPW0f/NO\n15nuQ5zFjPs6Kzs3Iji1a9eG94CZqqU2zDLvj9VSnHft3IA4RLspMw7rShm2qA2oW9fYznqzTCrn\n0je0pXPH56rCTxrUAhRbxNsMAP7sUrd///5l3m+dOnVcHoGJyYQJE0p9nwdAzM03c/gyC7EKTKIB\nkBIdevfuDQD4IIY5zMRTjpk8eTIAv5eYTB4kiJwknJWHrQy2Ey0G2ODBLMtVFCUqqAVIURRFiRcH\nDhywNSo1apjT8UTPaZUoS9bsVZcoSaATHrcwQBHsfjoAiiKNGjXCtng3woWXXnoJQ4cOjXczlFOg\nV69eAID33zfTKkhYg1gSzPtLvMMkNIRofFq3tsL7i8VHLECyxBSOpVVRlEqEWyDoE5H7qgo5APJ6\nv47avjdFeHbDmhxee2adBueHCmYJFId11hDxenAGrRfnhqk7CcTr3X3KnwWALQk+c2QemDQJgH8G\nLMs8khJDXLnPPPNMAE5vDgmHIF4f/LCXGaHs98rOZk6hJZ98AsDvnXPZZX3Car9b3CFeZJIhTLA4\nQIHlo7StW1gtiz/TK1hfLI0pU6yl5Q4drIhOl132PNVwKgL98K9r/qLHjh2zLRgyiJV+XFJSggMH\n/mmH+fj+++/Ro8dc2h/ficzexgumK6nM90XW2VxHy7szA751z4ED+A3Vd4v3xnn4+PvODfifdZqv\nf/klAP+gPlh2eIGPLdR1Vlpr+cw+4YuD9N133zk+GS1eeeUVPP744/B6vcjIyMCMGTPQvj1HGgOm\nT5+OyZMnY8uWLdi3b1/ZJmduFqBkHwBVFCLhrhpt1PoTnLt9yU4l3o7kAJMbnFgr9u2zBKEyUOLM\n6OLxJA+Q1NRUAP6BUjD9jBAsWrIMwISuXa1Uv/GwAIngnZGH6J//7KauUxSlonDmmWdi1apVqFOn\nDpYuXYrRo0fjiy++cNT79a9/jT59+pQpPYqNaoAURVGUUNx5p+WU8O6770Z83yUlJfbAXJY3Jfu6\nDPClHI8BdyIhgn6Ok8SWn2hpp8TSHBiCJdp06dLF/v+SSy5BTk5OqfUuvPDC8HeeCvUCqwwMGjQI\ngwYNwkKfubZly5bofoEZot3NtTn4klWBb3t4SeM+++x9rF9vuajG8oKpyMh58nhqhazHbu9ubu5u\nbvLdul0Tsv4tt5iu2Oz1Fa7bvlufCvz+2z/6CIC1/FEa06dbbuPBLEOKolQOZs2ahauvvjpyO1QL\nkKIoilIWtm7d6vuPlaMXB/zPA1WOD2YOri+5xMxS+MMPH9laNPZuspZiOcoU594yl2sP0/dlU21+\n/mW57F3KcgZY08Oxdnj/HPeHtZqBZf5uWeIWC4+cHzlfrTI5so9JriPzmKmX6kM6TjO7pZV+KV58\n+OGHmDVrFlavXh25nWocoMpFv37WzWTBggVxbok1Y1fLj1Je9u61Uh0E60uJmj9NUZRT4+mnn8YL\nL1gJeJcsWYL9+/dj5MiRWLp0KepScMdyoRYgRVEUpSxI4NKJE4e71Dx1ioqK7EGteDeJxUOCXCYr\ncj7k/IiTg3iLRpvAQL7RZNy4cRjnC2a7bds2XH/99Zg7dy7atGkT2S9y8wKLIDoAiiHXXnstrvV6\nMX/+fACW2+T553cJ+ZlgOhEx6VZ30ZF8sHYt1q1bBwAYRakdlPDweq0oxv/6l5WCQG50Iha9996H\njPrlTYXhpikKV3Pktn+3PhW4/9zc0ClVRKCrKErl46GHHsKBAwfsKP9paWn46quvAADXXHMNZs6c\niTPOOANTp07FE088gd27d+OCCy6wt4XELQ5QBNEBkKIoSqXgXCq3CPh/rbHlPBrksoInl9wzupx/\nvlHefuiQbfFIT0/HwYMvYv/+/da27dvRo8djRv2mML2EKNWaQ+PDmp1sKrMOhmHnEo5btY/KvOLC\nBojA/Y1cvhwA0LZtW6OOaKIyMy813m8Ikywq76Bz05O296XyJMSfmTNnBh3ILFmyxP7/zjvvDH8y\npBagys11voSrixcvjvp3/fDDD2r5iTCS9JYtQcmEJORUFEWJKKoBUhRFURIVj8fjiHMj3lAcoLOy\nIXGPWPuUKDnIKjzqBZYc9OnTB17vETuQWYsWlsmaA46JqTkw0NawYcPg8Xjw8ssv2+9LBu0ff/wR\nAHDrrbfG6EiSE7EETZkyBQDwz3/eD8Af8blJE8u5Vh4MIpaUG6VYjuT3k4jP7EEl9WV7Xp61fCFL\nDrLfC3wxpuTGzBGkZb8SgVq+XyJcjxgxAgAwe/ZsAP4I1wCwY4e16CA5vRRFUaKCWoAURVGUcPB6\n7zHKHs9FASVzSr3RoUxh1YwpwmBZfEpKimPgLgNpK4u8mfEqiz7PGlf+dk4O8yOVW1C5te/1K98r\nx/FhgwLnwWPNEUdNCtRIjfFZuDgekh9TYcRxgzhjFgeSGEKNP0qJy7b5JlyV1tFANUDJRd++lsxt\n3rx5AKws8oA/aaa4U0oOqho1atj/79u3z/bI2bnTulI0zk9sETdkiX4soelF6yW5xCRXmOQIk99X\nLDjyKpYZeZUbrFhw5LcX7zPZn3xe4IBssh/Zb36+lVJXklrK/n744QcAfksT4H/IjR8/3v2EKIqi\nnCopUC8wRVEUJXGRgTQv0cuAvLLC2h9eyo42ldbyI6gFKDkZNGhQmeuK0LBbt27Rao4SJpL3SixB\nAlvkJk2yHFkbNGgAwC+qvL6n6QC75JNPjLJYfsTCNG6cmWHdLe4Qw3GDLrvMWjK54YYbwtqPoihK\nxFANkKIoilIevN6vAQBvv/02brjhLdp6JZW/obKpgtm792t7STU9PR0lJSV2WZZeZSnVKncyPr+a\nIg1diD1GedaePbYFpbCwEH9o1szY7pY0Wp6Xosb5ibZzHKDZ339vt7ewsBDjOpnt5bhIgWVemmYN\n0K5d3wHwOynMpRhKHK1pSD16g0RDi596HQBw4403IilQLzBFqbi4ZUD/wx/+AAB44403APi9xhj2\n/hKNTkEBSzYVRVEqCWoBUhRFUSLBgAEDALAFKDxyc3Nty4eEdRAtDFuCZKk2HIqKihxhG6LJaaed\n5tAwlRU5XvYCEwuWnIeMjPBS0wQjaSw/glqAFKXyw6Zz1vyw1xd7bb3yyrMAYCcjrFWrlvF5+Zzs\nh/POvfDCUwCAkSNHAgC6d+9+ikeiKIoSIdQCpCiKosQOU2XTEJuN8pCzzzbKczZtsv8XS1Bg+IZD\nh562B+pHjhzBWWeZU/p1WGKUe/iChgoc54cNAuwlzRogjhvEmp6rWpnZyPh5y5qjVVu22BadYGEq\nhGH1TRGPmRUNaOcSKHsKybEmhK5e+VAvMEWp/EhEZrHUcKRoWRI4duwYAL/3l3gA1vfdaCVyOMf9\ncTPti+VHURQlYdAlMEVRFCVRyc/Pty0gMvBmTZBsrwxxgapXr+44Xk5VFEsNU6VGl8AUpfIjudsk\nQrTcUOVGK0sIEulbbrRZWVkAnDnGBLb8yP42bPgMAPDtt99G7iAURVEiSSrUAqQoiqJEBq/3DaPs\n8YyhGqbqhifgnaj8BMXN2Ufb383LM+IG7d//iJHSp0WLz+gTOUaJNT4cx4e/T2Q14n/GNqfNyKR3\nWOVjHvGaNUvQuHFja18+C5YcT9vatRGKm6ncrhW9QcnAPn3HLDd6Pcni/pSCb84WdXQApChxQvJq\nSeRo8eKSuEDywBBLkWh/6tSpA8AZiI21P+yuu3v3bgDAwIEDo3I8iqIo5SUVQOghZuRIidH3xJX3\n3nsPXbt2Re3atdGoUSOMHDnSSPQIACtXrsRFF12EGjVqoGnTpnjzzTfj1Folntxzzz1o3bo1MjIy\ncPbZZ+Pll1+Od5MUpcJRVFSElJQU4y89Pd3+S3Tq16+PqlWromrVqkhNTbWXkWPBjTfemNTWnxQA\nVUP8RZKksAAdPnwYf/vb3/Cb3/wGJ06cwMCBA3Hvvffi2WetOCrff/89Bg4ciDlz5qBnz544fPgw\nDh1ix0klGahRowYWLVqENm3aYO3atejduzdatWqFLl26uH/4FHGLHC1I5GjR/LDWhy1AUk8iR//y\nyy/lb6yiKEoUSYV/STPaJNwA6Mknn8SaNWvwzjv+hdE777wTHo8HU6ZMOaV9Bpr8q1evjlGjRuH+\n+++333v44YcxZswYXH311QCAunXrom7duqd4BEq82LJlCy6++GLbmrdz5060b98eb731VpmD/D34\n4IP2/507d0a3bt3w+eefR3UApCixxut9zv7/hRdewOjRh43th6k+J19hDQ6Xm/uWaYXthw7Rkq25\nyLGZEvPWp8S+bDPiOD/9fK+SVGYAba+P3JDt5eOtXr26EZaidu2WAVvbUm2zdauw0Sh/SonJ6lP5\n4KJFAIA+ffpA8VuAYvVdCcWgQYOwbNky2wJTVFSE119/HYMHD8btt9+O2rVrl/p3wQUXlPk7Pv74\nY7Rr184ur1mzBgBw/vnno3Hjxhg0aJDteaNUHM466yw8/vjjGDRoEAoKCjBs2DAMGTIE3bt3P6W+\nc+zYMaxdu9boK/HktNNOw2mnnQaPx+MIvhaImOxLSkpQUlKCnJwc5OTkYOjQoRg6dGjsGqwoihIm\nogEK9hdJEs4C1LhxY/zmN7/BW2+9hVGjRmHZsmWoV68eOnbsiI4dO+KZZ54p1/5XrFiBOXPm4Isv\nvrDfy8nJwdy5c7F8+XKcccYZGDJkCMaPH49XXnmlvIcTNTp06BDvJiQko0aNwqJFi9C5c2d4PB68\n++67AIBnnnkm7L4zduxYtG/fHr169YpGUxMO7VPJyahRozB69D+j+h0ej8cW41cE0tPTHQFJo4Va\nfkw8CG0BYmtdeUi4ARAADBkyBDNmzMCoUaMwb9483HrrrWX+7CeffGIvZbVo0QLfffedvW3NmjUY\nOHAg3n77bTt/EmAF8Bo2bJj93l//+ldceeWVETqa6DB58uR4NyFhGTVqFPr27Yvnn38+aKZ1N+69\n915s3LgRH374YUhrSyyRY+H2sDeYvIoV83e/+12Z9q99SlGUeJOG0JaePRH+roTj2muvxW233YaN\nGzdi8eLFeOKJJwBYM/J58+aV+hkZ7HTr1s1OGhnIunXr0LdvX7z44ou44oorjG0XXHCB8VBJlAee\nEj75+fmYOHEiRowYgQceeAD9+/dHZmZmmfqOcP/992Pp0qVYtWqVI8GoolRGvN577P/nzZuHN2jO\nWZ/qZ1N5Iy6kd841SuIV5oedTMz6P+ILo8wKPNYEyaclfp5TA2TCGiCS5cDj8djOBIWFhWgboCHa\njDNCtmYnbeVcYHcuXw7Acr4BgDZQAvHAr+WKNglpk6xatSoGDBiAgQMH4le/+hWaN28OAHj22WeR\nn59f6l/gA4zZuHEjevfujWnTppU6Gx42bBhmz56Nn3/+GQUFBXjsscfULFlBmTBhAjp16oSZM2fi\nt7/9LcaOHQug7H3n0UcfxauvvoqVK1cmnBC+SpUqqFKliq0BEvdiQd4vLCxEYWEhtm/fju3bt8ex\nxYqiKOERSw1QQg6AAGsZbMOGDWEtfwVj0qRJ2LdvH0aMGIGaNWuiZs2ahrB1+PDhGDx4MDp37owW\nLVqgSpUqmDp1arm/V4ktCxcuxLJlyzBjxgwAwFNPPYWvv/46LC3XX//6V2zbtg2tWrWy+8ojjzwS\nrSYrSsIxaNCgiO9TEv8CFcPCXlJSguPHj+P48eN2QNJI0bNnT/Ts2RMTJkzAhAlJl+vdFY0DBKB5\n8+aoVq0a+vfvX+59zZ49G7Nnzw5Z58EHHzRcoJWKR79+/dCvXz+7XLNmTfz0Exu3QyP5uBIRccuV\nNrLmR94/ePAgAOD3v/99rJuoKIpSLmIZCTohB0AlJSV46qmncNNNN6kGQ1EUJcYsCpgIvPzyy3hw\nyBBj+89oSZ9gD0IzAVaTJmZk46YUK4c1OllU5lxkrPFpc471+oQv1mcbEgkVkusQK5BaU3l5/fpB\nt2+GGVA0k2IWsftMP19WgRtuuAGKO7GMA5RwA6CjR4+iYcOGaNGiBZYtWxbv5ihKwnDZZZeVqV7b\nthyoTVEUpWKQ1JGga9SoUaoXl6IoihJ7Bg8e7LAAKWVHLT/hkdQWIEVRFEVRkpOk1wApiqIoicOW\nAE3QtGnTcOedJVSjOpU58a4ZHWfjoUO2d1VeXh4yW5maoTrt6eOc/IsDAYlIZ6/vlcISteP6n5nF\nnI3bbSeDoqIifN6smbF9R8D/LUnzw/qkbr4k22PGjIESPm6RoCOJDoAURVGShJMnT6J9+/bIy8tD\nTk5OvJujKA7cIkFHkoSNA6QoiqJElieffBL167PPVXiMHz++3O0oLi62A3mearqaSFJQUGAnD05N\nTS3XvsaMGZM01p+1a9ciLS0Nb7/9dqnbe/fujfbt26Ndu3YYO3ZsmfKqiQUoFnGAdACkKIqS4Lzx\nxht2YM6aNWuiSpUq6N69e1j72Lp1K+bNm4e//OUv0WlkAtDhdOtPiT7FxcX405/+hKuuuiponTff\nfBPffPMNNm7ciH379uGtt95y3a94gQX7iyS6BKYoipLg3HjjjbjxRiuWzpEjR9C5c2fcfPPNeOyx\nx/DYY5xtys+hQ/6IN+PHj8cjjzyCatWqlbs9Xm/wCMbvv/8+evf+3HgvEz8b5bmUZmYk76QFlVli\n9JkX7777rvFWVlYWhsNKpYQLKRQE7e9/nFK8bVsE+h5zXKDAuEOdV64EAPzyi6VzGj58OLc+KZg2\nbRr69++PtWvXBq0jcfyKiopw8uTJMkUBVy8wRVEUxUFJSQkGDhyI7t2728ssf/7zn10/N3/+fBQX\nF+O6667DRx99FOVWKpWdHTt2YP78+fjwww9DDoAAoFevXvjyyy9x9dVXY8AADmHppGG9eriyE0vL\n/dSrVy/s9gZDB0CKoigVhPvuuw95eXlh5So8evQo/vjHP2LJkiVRbJmfXr16AXgj6t/Tt29fAMCs\nWbMAALVrW9LZ8mqc3Ljiiiuiuv+KwMSJE/H4448byZiD8f777+P48eO45ZZb8MEHH6Bnz54h68cy\nALIOgBRFUSoAr7/+Ol577TWsXbsW6emWX/cjjzwSMllvfn4+fvzxR2RnZ6Nbt24ALE+ww4cPo1Gj\nRlizZg2ysrJi0XylgvP000/jhRdeAAAcPnwYN910EwBg//79WLJkCdLS0nDttdeW+tmqVauiX79+\nWLhwoesAKJZ4vImc/VFRFEXBunXrcNVVV2HFihXo0IHzboWmqKgI+/fvt8ufffYZ7rjjDnz99deo\nX79+ub2ewmXu3LmYN3iw8R5rbrg8oQyPqenTpwPwp4Jp0KABAOvhO/fss426+1y+r8OKFXaYgKFD\nh7p+dzIzdOhQ9OnTx7G8lZ+fj7y8PDRu3BhFRUW45ZZb0K1bN9xxxx1xaqkTtQApiqIkOAsXLsTB\ngwfRtWtX+71u3bph6dKlrp9NS0tDo0aN7HJmZiZSUlKM9xQlUnTo0AHr16/H0aNH0bdvX5w4cQIl\nJSW4/PLLMXbs2Hg3z0AtQIqiKEpM6UXeQJGwADGik8rMzMSmW281trlZgO7Rx2JSoHGAFEVRFEVJ\nOtQCpCiKoihK0qEWIEVRFEVRkg4dACmKoiiKknToAEhRFEVRlKRDB0CKoiiKoiQdOgBSFEVRFCXp\n0AGQoiiKoihJhw6AFEVRFEVJOnQApCiKoihK0qEDIEVRFEVRkg4dACmKoiiKknToAEhRFEVRlKRD\nB0CKoiiKoiQdOgBSFEVRFCXp0AGQoiiKoihJhw6AFEVRFEVJOnQApCiKoihK0qEDIEVRFEVRkg4d\nACmKoiiKknToAEhRFEVRlKRDB0CKoiiKoiQdOgBSFEVRFCXp0AGQoiiKoihJhw6AFEVRFEVJOnQA\npCiKoihK0qEDIEVRFEVRkg4dACmKoiiKknT8f22xqAAQYC/9AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x116059f60>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "for curx in X[:5]:\n", | |
| " testim = mymasker.inverse_transform(curx)\n", | |
| "\n", | |
| " plot_stat_map(testim)\n", | |
| " plt.show()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Decoding test using Feature Selection (2000-best using ANOVA) and SVM, using all rating levels. \n", | |
| "As we use the SVC classifier, it will give accuracies for an average of all OneVsOne models" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 89, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[ 0.50704225 0.55714286 0.54285714 0.53956835 0.57553957]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "from sklearn.feature_selection import f_regression, SelectKBest, f_classif\n", | |
| "\n", | |
| "from sklearn.model_selection import cross_val_score,train_test_split\n", | |
| "\n", | |
| "from sklearn.svm import SVC\n", | |
| "\n", | |
| "featureselet = SelectKBest(score_func=f_classif,k=2000)\n", | |
| "\n", | |
| "lowdim = featureselet.fit_transform(X,y)\n", | |
| "\n", | |
| "from sklearn.preprocessing import StandardScaler\n", | |
| "\n", | |
| "lowdim_sc = StandardScaler().fit_transform(lowdim)\n", | |
| "\n", | |
| "cvscores = cross_val_score(estimator=SVC(),X=lowdim_sc,y=y,cv=5)\n", | |
| "\n", | |
| "print(cvscores)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Chance level should be approximately 0.2 because there are 5 categories, so it's quite good. " | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Let's see what happens when training on only rating 1 Vs rating 5" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 102, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "ind_lh = (y<2)|(y >4)\n", | |
| "y_lowhigh = y[ind_lh]\n", | |
| "X_lowhigh = X[ind_lh]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 103, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[ 0.82352941 0.80952381 0.82142857 0.80722892 0.8313253 ]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "from sklearn.feature_selection import f_regression, SelectKBest, f_classif\n", | |
| "\n", | |
| "from sklearn.model_selection import cross_val_score,train_test_split\n", | |
| "\n", | |
| "from sklearn.svm import SVC\n", | |
| "\n", | |
| "featureselet = SelectKBest(score_func=f_classif,k=2000)\n", | |
| "\n", | |
| "lowdim = featureselet.fit_transform(X_lowhigh,y_lowhigh)\n", | |
| "\n", | |
| "from sklearn.preprocessing import StandardScaler\n", | |
| "\n", | |
| "lowdim_sc = StandardScaler().fit_transform(lowdim)\n", | |
| "\n", | |
| "cvscores = cross_val_score(estimator=SVC(),X=lowdim_sc,y=y_lowhigh,cv=5)\n", | |
| "\n", | |
| "print('All Folds : ')\n", | |
| "print(cvscores)\n", | |
| "\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 108, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Decoding accuracy (5-fold) : 81.86 %\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print('Decoding accuracy (5-fold) : %0.2f %%' % (100*cvscores.mean()))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "Features selected by ANOVA" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 109, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABVIAAADJCAYAAADB2slZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXl4FEX6x78zkzsEAkEuOQIIKuiu\nB6K4qyg/xFsUFwQPRARB5BRRvMFjXVzFAJEbUUBA8EJZxZNVRFlBwQMUFQGRcIbc15y/PyZVqX5n\numYmM5PJ8X6eJ0+6p7qrq7vfrqquft9vWTwejwcMwzAMwzAMwzAMwzAMwzCMKdZYF4BhGIZhGIZh\nGIZhGIZhGKa2wwOpDMMwDMMwDMMwDMMwDMMwAeCBVIZhGIZhGIZhGIZhGIZhmADwQCrDMAzDMAzD\nMAzDMAzDMEwAeCCVYRiGYRiGYRiGYRiGYRgmADyQyjAMwzAMwzAMwzAMwzAMEwAeSGUYhmEYhmEY\nhmEYhmEYhglAXKwLoKNVq1Y4cuRIrIvBMA2Oli1b4vDhw7EuBsMwDMMwDMMwDMMwTK3B4vF4PLEu\nhBkWiyXWRWCYBkstrhoYhmEYhmEYhmEYhmFqHA7tZxiGYRiGYRiGYRiGYRiGCQAPpDIMwzAMwzAM\nwzAMwzAMwwSAB1IZhmEYhmEYhmEYhmEYhmECUKsnm/LHP/7xD9x2220499xz0aRJE+zevRvPPfcc\nVq9e7bPtiBEjcP/996Ndu3bYuXMn7r//fnz66aeGbdq0aYPs7Gz07dsXFRUVWL16Ne6//36UlZWF\nnJc/PB4Pxo4dixdffDG8Ew9Aly5dcPPNNyMrKwsFBQUBt3/00UcxatQotG7dGsuWLcMdd9wRsbKM\nHDkSR48exbp16yKWZ7SZNGkSrr32WvTp08cnbePGjbjkkkvQt29ffPLJJ4a0Dh06YN++fbDb7Tjl\nlFNw4MABmXb11Vdj/fr1yMzMxP79++XvzZo1wyOPPIIbbrgBrVu3Rm5uLjZs2IDp06fjjz/+AACc\nc845+Oabb3DjjTfizTff9ClTixYtcPDgQTz88MN49tln5e+dO3fGb7/9hr1796JTp04++82bNw8W\niwWjR48O/SIxTBjMmTMHAJCQkIDExEQAQFycsQkqLi4GgKDsc/bs2QCA5ORk+ZvT6QQA3H333eEX\nmKnTzJw5EwCQlJQEAEhJSZG2Eh8fDwBwu90AgKKiIgAIqh1csGABACA9PV3mI/SkRb+hpKQEADBq\n1KjwT4RhGIZhGIZhmFpFnfNIvffee1FcXIxJkybhuuuuw8aNG7Fq1SqMHTvWsN3gwYMxf/58LFu2\nDFdeeSV27tyJ9evXo3v37nKbuLg4fPDBB+jQoQMGDx6MCRMmYODAgVi4cGHIecWarl27Ytq0aUhP\nTw+47bnnnosnnngC2dnZ+Nvf/oYnn3wyomW56667cP3110c0z2iSmpqKqVOn4l//+pdPWps2bXDR\nRRcBAIYMGWKaR0JCAh544IGAx2rdujW+/vpr/OMf/8CMGTPQr18/TJ06FT179sS2bdvQrVs3AMC3\n336LX375BYMHD/abz8CBA2G1Wn0+IIgyduzYERdccIHPfv/+979x++23IzMzM2BZGYZhGIZhGIZh\nGIZhmCosnlo8NbfFYvH5LSMjA7m5uYbfXn31VfTq1cvggffzzz9j8+bNuPPOO2Ve3333Hb777jvc\ndtttALwDpCtWrMApp5yCffv2AfAOUK1evRqnnnoqfvvtt6DzMqOmPFLNvB/9ccstt2DFihVo3Lix\n9MSJJFu3bsWPP/4YMS/XxMREVFRURCQvf4wYMQKPPfYY2rdv75M2adIkPPfcc9i4cSPOOecctGzZ\nEg6HQ6YLj9SNGzfiggsuQMeOHXHkyBEA/u/JW2+9hYsuugh/+ctfkJOTI/NJS0vDtm3bUFJSgnPO\nOQcAMG3aNEyZMgUtWrSQHk6CTZs2wWKx4O9//7vh9507dyIvLw9nn302Fi9ejAkTJvic08aNG/G/\n//0PU6dO1V6XWlw1MLWYdkq9fRJJO1lZjidpJWRd9aun2zqUZbpfqaZsNJ+f2cbrLBmkf6DaBL3P\nOlLI+sw1a2QdDgAulwuANwrg3zffLH+nrawDwaOWL5dtkGEYhmEYhmnAHDhwAEOHDsWRI0dgsVhw\n1113YcKECZgyZQreffddJCQkoHPnzli6dGlQjoM1QZ3zSKWDqACwfft2tGnTRq537NgRp556Ktas\nWSN/83g8WLt2La688kr525VXXomtW7fKQVQAePvtt2G323HFFVeElJeOhIQEZGVlITc3F3l5eZg9\ne7YMCRS0a9cOq1atQm5uLkpKSrBhwwZ07drVsM3UqVPx66+/oqysDIcPH8b777+Pli1bonfv3li/\nfj0AYN++ffB4PNi7d6/fsixduhQrVqwAABQWFsLj8aB3794AgKZNm2LBggU4fPgwysrKsHnzZvTs\n2dOw/7333ouvv/4a+fn5OHz4MN555x107txZpm/cuBE9evTAsGHD4PF44PF4cPvtt8vrds899xjy\ne/zxx3Hs2DG5fvvtt8Pj8eC8887Dxo0bUVpaiilTpgDwDqjOmDEDf/zxB8rLy7Fjxw6fe3Dttddi\n27ZtKC4uxokTJ7BlyxZcfPHFmrvjPaa/8HnA6+G5ZcsWzJgxA02bNjW95/Pnz0dxcTHuu+8+0+N0\n6NAB1113HWbNmmUYRAW8oaVPP/00zj77bOkBu2rVKqSkpKB///6Gbdu2bYsLL7wQq1atMvz+l7/8\nBd26dcOSJUuwfv16DBo0CFar7yP+xhtvBPwAwDAMwzAMwzAMwzAME03i4uLw/PPPY9euXdiyZQte\nfPFF7Nq1C5dddhl+/PFHfP/99+jatSueeeaZWBdVUuc0Uv3Rq1cv/PLLL3L9tNNOA+D1JFX56aef\nkJGRgebNm+P48eM47bTTsGvXLsM2DocDe/bskXkEm5eOyZMnY8uWLbjlllvQvXt3PP300ygvL8f9\n998PwDuA+cUXXyA3NxejR49GaWkppk6dio8//hhdu3ZFeXk5brvtNjz00EN44IEHsHPnTmRkZKBP\nnz5ITU3Ft99+i8mTJ+P555/HDTfcgEOHDpl6cD755JM4cOAAHn30UVx66aUoKyvDrl27kJCQgI8/\n/hjp6emYMmUKjh49irvvvhsff/wxunTpIj102rZti+zsbOzfvx+NGzfG6NGj8eWXX6JLly4oLCzE\nmDFj8MYbb+D333+XkgF79uzRXh9/rFq1CnPnzsX06dORn58PAHj99dfRs2dPPP7449izZw8GDRqE\nd955Bz169MB3332HTp064fXXX8esWbMwZcoUJCUl4dxzz0WzZs1Mj5OSkoLzzz9f6jeqdO7cGeed\ndx7Gjx+PTz75BEeOHMGQIUPwzjvv+GxbUlKCrKwsPPjgg3jmmWdw4sQJn20uuugiWK1WvP32237L\nIn6/+OKLsWnTJuzevRvbt2/H4MGDsXLlSrndTTfdBLfbjbVr1xr2HzJkCCoqKvDmm28iLy8PgwYN\nwqWXXuqj6/rll1+iTZs26Natm4/9M0x1WLRoEQCgZcuWMS5JaCxfvlx65Y8ZMybGpWGCRf2wGWla\ntWqFsrIyFBYWAgAaNWokf2eYUJk1a5bUhE5ISABQFW1lt9sB6LV0s7OzAVRp/cbHx0tt3/LycgCs\nCc0wDMMwTN2mdevWaN26NQBvpO7pp5+OgwcPol+/fnKbCy64AK+//nqsiuhDnR9I7dOnD66//noM\nHz5c/ta0aVMAkANwgry8PJl+/PhxNG3a1GcbsZ3II9i8dBQVFWHgwIHweDzYsGEDEhMT8fDDD+OZ\nZ55BXl4eJk2ahNTUVJx11lky382bN2Pfvn0YPnw45s6di549e+LDDz/EvHnzZL5vvfWWXN69ezcA\nr3euLrT/999/lwObW7dulSHjw4cPxxlnnIHu3btLSYOPP/4Yu3fvxuTJk+Wg77333ivzslqt+Oij\nj3D06FH0798fy5cvx08//YSSkhIcO3YM//vf/7TXRcfs2bPlZDKA9z5fc8016N27Nz7//HMAwEcf\nfYSuXbvi4YcfxqBBg3D22WejqKhIlhUA3n//fe1x/vrXvyI+Ph4//vijT9qQIUPgcrmwZs0aOXB5\nxx13ICUlBaWlvgHE2dnZmDJlCiZOnIjHHnvMJ/3kk72BzWb3p7CwEPn5+XI7wDug/OSTTyI9PV3a\n4ODBg/Hpp5/i6NGjhv0HDx6MDz74AAUFBXjvvfeQn5+PIUOG+Ayk/vDDD3C73ejZs6d2IFWEzgbr\nPH+MrNPwWjWfPRzOWmc5jYRU09B6NcSZPiXqtpkkjdqZup5D0tR86DF8a/QqaBj300OHyuXZxFue\nw/5rF42J3enC9+l91pFA1icoEQwnkzR1W53cRCi0Iud1mO2uTqFKmdA6LFibeGH0aG198+m4caZp\n+QDWKh+B1HaY1pssI8EwDMMwTG1n37592L59O84//3zD7y+99BJuuummGJXKlzoX2q/SoUMHrFy5\nEuvWrcMrr7wS07LYbDb5R8Op161bZ9CbfPPNN5GSkoIzzjgDANC3b1989NFHKCwslHkUFRXhm2++\nQY8ePQAAO3bswFVXXYVp06bhvPPO8xuyHQ59+/bFN998g71798oyAMBnn30mywAA559/Pj788EMc\nP34cLpcLZWVlSEtL85EhCJf//Oc/PuU7dOgQNm/ebLjWn3zyiSzfDz/8gCZNmuDll1/GZZddhpSU\nwK/TwsvI32D4kCFD8Nlnn0lv3NWrVyM1NdUn1F5QWFiI7OxsjB07FmlpaSGdrxmrV69GfHw8brjh\nBgBAp06d0KNHD5+w/l69eiEzM1NOPmW32/H2229jwIABPjISDocDhYWF7GHFBE12djays7OxfPny\nWBelxhCeYEzsycrKinURGCaqrFy5EgsXLsTy5cuxfPlyLFq0CIsWLapzXv4MwzAMwzDVpbi4GDfe\neCOysrLQuHFj+fvTTz+NuLg43HLLLQHzuOKKK9CjRw/TPyHhGS51diC1adOmeP/997F//36fCyq8\nOps0aeKzj5qel5fns43YTt0mUF4dOnSA0+mUfzSUnXoOinXhvty8eXMMHjzYkIfT6USfPn3Qrl07\nAN4R+IceegiDBg3C119/jSNHjuDJJ5+M2IBq8+bN0atXL58yDB8+XJahXbt2+PDDD2GxWDBq1Chc\neOGF6NGjB44cOSLDziKFOtmHKF/r1q19yjd9+nRZvl9++QX9+/dHp06d8N577+H48eN49dVX0bx5\nc9PjiHJTKQShN7p+/Xo0adIETZo0wc6dO5GTk4MhQ4aY5peVlYX4+HiMHTvWJ+3gwYMAvB8A/NG4\ncWOkp6fL7QCv8PKXX36JwYMHA/B6nZaXl/toug4ZMgTl5eX4/PPPZXn/85//mOq6VlRURPye1UYy\nMzORnJyMRo0aoVWrVhg2bBiKi4tjXayok5mZiY8//jisPMSL/FtvvYVTTz0Vp556KjIzMyNTwDrA\nGWecgZUrVxpkNUKhIdpeJOxOsGTJEixbtgzLli0zdKTqOytWrMD8+fMxf/78au3Pdhd9Fi5ciIUL\nF0q9+Uhw8sknIyEhAQUFBSgoKEBqaipSU1Nl/yYSVNemgqEh2h1Q87bHGGG7Y2IB2x0TCxqC3Tkc\nDtx444245ZZbMGDAAPn7yy+/jPXr1+PVV1/1Oxk95fjx49i2bZvpX6Bo8mCpkwOpycnJWL9+PRIS\nEnDNNdegrKzMkC70TIW+qeC0005Dbm6uvHg///yzzzbx8fHo1KmTzCOYvHJycgyj3Ndee61h2xYt\nWvhdP3ToEADgxIkTWLdund8RczE5k8fjQVZWFrp164Z27drhueeew4MPPoiRI0eGcOXMOXHiBLZu\n3eq3DMIb8oorrpCTH73xxhv46quvsGPHDq0GqUp5ebnUCBOIAWkKnTH+xIkT+PPPP/2W74ILLpDb\nvffee7j44ouRkZGBO++8E3379vWrf6rmC8Bn9jcxWDpz5kzk5+cjPz8feXl5aNOmDS6//HLTcufm\n5mLBggWYNGmSj0fspk2b4Ha7cd111/ndV/wupAsEq1atQp8+feSA+/vvvy/1+wCvxMLAgQORlJSE\nP//8U5ZXaKj6G/hNT0/3q+NaH3n33XdRXFyMHTt2YPv27bVKpJqp37DtMbGA7Y6JBWx3TCxgu2Ni\nAdsdEwvqs915PB7ceeedOP300w1Skhs2bMCzzz6Ld955J6ho48rcAJRr/iJDndNItdlsWLt2Lbp0\n6YILL7zQMOO7YO/evdi9ezcGDhyIDz/8EIBX3H/gwIEGzcz3338fN998M9q3b48//vgDgHcwKzEx\nERs2bAg6L4fDgW+++ca0zP3798eDDz4oBwcHDBiA0tJSqcv5ySefYNCgQdi5c6ecPEDHn3/+iRkz\nZuCOO+5At27dAFRNWlBdL8NPPvkE/fr1wx9//OH3mgLeAWy32w2n0yl/GzRokE/ouN1u91uOP//8\nE6effrpct1gs+L//+7+gyzd58mQUFxdLPVgdhYWFWLVqFXr37o1evXqZbify6tixo0G7VOiQPvHE\nE4btW7dujVWrVuHGG2/E4sWL/eb53HPP4Z577sHo0aMNv+/fvx/vvPMOJk6ciCVLluDw4cMyLTU1\nFY888gi2b9+OTZs2GfZbu3YtZs2ahccffxxnnnmmnMRL0KdPH7Rq1QqTJ0/2scMRI0bghhtuMOi6\ntmrVComJiYYJ2vzxVz+/Uc03VavSTtJSyXobZbkz+ZpUE5qprVq1wuWXX44dO3ZE/Vh1mbfffhuP\nVn488Ucg3T+1NqDbvrx/Pxo1aoTk5GQMIo0hjQ3Q5aPqolK721tQIPWES0tL8TelztGVlXLbpZfK\n5QduucVwzFC1Btn2ApOdnY3HiRZkKLqjqjVR3dP3d+9Geno6UlJS0IPIrui0nH3jVao4SNZz7XbZ\nxtvtdnTQyLvouoETbrtNLj9MJhFiu4sNQpu+efPmGDdokOl2VK9Zta02JI3qqf7zkkvksq7tpFBb\nUstAbfv+u+/G/ZU2VRjFNpftjokFbHdMLGC7Y2JBfbS7zZs3Y/ny5TjzzDNx1llnAQD++c9/Yvz4\n8aioqMBll10GwDvhVOAIGzciOWBqRp0bSJ07dy6uvvpqjB8/HhkZGcjIyJBp27dvlwOK06ZNw4oV\nK7Bv3z5s3rwZt99+O7p06YKbb75Zbv/666/j4YcfxptvvolHH30UTZo0wQsvvICVK1fKCZeCzUtH\nWloa1q5di0WLFqF79+549NFH8eKLL0rZgJkzZ+LWW2/Fp59+ijlz5uDgwYNo2bIlevfujS+++AKr\nV6/G/PnzceLECWzZsgUFBQW49NJL0aVLFzzwwAMAqgYER40ahdWrVxsGaoNh2bJlGD16NP773//i\nueeew++//46MjAz07NkThw8fRlZWFj799FPYbDYsXboUS5YsQffu3XHffffJ8xD8/PPPuPzyy9Gv\nXz/k5uZi7969OHHiBN566y3cc8892L59O37//XeMGDEi6JDNjz76CB988AE++ugjzJgxAzt37kTj\nxo1x1llnISkpCQ899BDuuusu9OrVCxs2bEBOTg66dOmCgQMHYtmyZab57tu3Dzk5OTj33HPx3//+\nF0CV3ugDDzyAzz77zGefBx98EEOGDDEdSD18+DBeeuklv7OAjxkzBps2bcKWLVvwzDPPYNeuXejQ\noQPuv/9+NGvWzODGLjh27Bg++eQTjBkzBkVFRXj33XcN6UOGDEFubi7mzJkDh8M49FBaWopbb70V\n/fv3l7qqPXr0gMvlwldffWV6Xeojf/75J95//3306dMn1kVhGhhse0wsYLtjYgHbHRML2O6YWMB2\nx8SC+mh3f//7330ikgHgqquuqkZuPJDql379+gGAYUZ3QWZmpvQqXL16NRo1aoQHHngAjz76KHbu\n3IlrrrkGO3fulNs7nU5cccUVyM7Oxpo1a1BRUYHVq1djypQphnyDyUvH888/j06dOmHVqlWwWq1Y\nsmQJHnroIZmem5uLCy64AE8//TReeOEFpKen49ChQ/jiiy/w/fffAwC++uorjBw5EqNGjUJSUhJ+\n++03jBw5EuvWrQMA/PHHH5g8eTLGjx+PcePG4c8//0THjh2Dvq4VFRW49NJL8cQTT2D69Olo2bIl\njh49iq+//hrvvPMOAODHH3/EsGHDMG3aNNxwww347rvvMHDgQLz22muGvJ566im0b98ea9asQZMm\nTTBs2DC88sormD59Olq0aIGnnnoKdrsd2dnZ2Llzp5QvCMSAAQPw0EMPYeLEiWjfvj1OnDiBHTt2\nyND977//Htdddx1mzpyJZs2a4dChQ1i0aBEee+wxbb5vvvkmrrzySjz//PMAvAOTBQUF8rwpK1as\nwDPPPKOdrGnGjBkYMWKEj5TBoUOH0LNnTzzyyCOYOnUq2rRpg9zcXGzYsAHTpk2TntGUVatW4fLL\nL8e6desMXssJCQkYMGAAVq5c6TOICgBbt27F7t27MWTIEDmQesUVV+DTTz9FQUGB9rrUF66//npY\nLBYUFxejT58+mD59eqyLVCsR9t6+ffuoHSMxMdHnmYg0ycnJ0mte9Z6PJG+88QZuvPHGgNux7QVG\nfFWm8jmRpFWrVkhISPDbQYsULpcLiYmJACAna4w0s2bNwoQJEwJux3YXGZYsWQKgStfcTNKnLiIm\naD1x4gQmTZoUkTzZ7phYwHbHxAK2OyYWsN3VLiyeaL5ZhEkwYrIMEy5nnXUWtm7dirZt2/pMclXf\nsNlsOHDgACZNmuQzAE4RAYxqqGAJ2SZfWabDsjQsVg1l3E/SohXan5mZicWLF6Nv37747LPPcPPN\nN+Ozzz7DKaecEpXj1RbU8w6WVkp9S0NLdaHIuvDrFVu3yon6hPd5amoqbDYb+pHQft0xqL3k+93K\nywG7HUVFRd7tKkP8i4qK4HA4cMd55xm2VUNf6fAuPYYqeEJDZg/7sd+GaHvVsbsMTTuv2pauPgGA\nTysncRRSMy6Xy7AuBlJ7Ers7ieSjrtNjqOWhwVRflpXJgVS32y3/C0mV3NxcAN4JKm/p0cP0GFQy\nQD0mfS791Ztsd+FzpmKTtH6j63ZNmnq/6BSTXTTHp3WhWjftI2lUiClHk6ZC6zAqSxBq6H9DtDsg\n8rbHhAbbHdtdLGC7Y7uLBQ3V7qpDjx5/wbZt/h3ivOn/wLZt28I+Tp2cbIphIsmOHTvwwQcfYOzY\nsbEuStQZPHgwCgoK5ERUDYnevXtj2LBhuO+++2JdlFrFa6+9FnBQvbokJiYiKSkJSUlJchbq+Ph4\nKcESDaxWKxo1amT4S0pKironrA62PV/mzp2LuXPnRiy/iooKVFRUIC4uDnFxcUhLS0NaWhqSk5OR\nnJwMq9UqB1ejgWrTNpsNNpsNVqsVDocDDocDJSUlKCkpkYP8NQHbHRML2O6YWMB2x8QCtjsmFrDd\nBcINoELzFxl4IJVhAEyePNl0kq36hMfjwYgRI6THVENj4sSJ+Oijj/Ddd9/FuihRx+FwoLy8XP5F\nK8ydCY6GYntsd7ULtjsmFjQUuwPY9moTbHdMLGC7Y2JBQ7K70PHAq5Fq9hcZeCCVYeCdrMuf7m59\nY+XKldi8eXOsixEzTjrpJAwdOhRPPPFErIsSda666irpjZecnIxp06b5bDNv3jy0aNECLVq0iEoZ\nUlNTpWdgQkICEhISDOHO0cBut0uvxCZNmsi/lBSdeEB4vP766wG3aSi2F4zdAUCnTp3QqVOnqJXD\nYrEY5IFcLldUPaFdLhfcbrfPRyqn0wmn04mysjKUlZVF7fhmsN0Fh/CQ1k1O2ZAI11u8odgdEL7t\nMZGD7Y6JBWx3TCxoSHYXOmKyqegOpLJGKsMwfrmm8r86/EQ14HYpy+/t2SN1MAsLC3FZ586GbVWN\nQ+r7e6D2VkP1llakflWHNql+nmoDVKeR2sRHe/YAqNJETUtLA1BVn5eXlyMvLw+XZ2Zq89FpD+r2\n+zEnBxkZGQCAuDjvfIoitBqo0q+0Wq24sHI7wFeXkJ6nqg9Mh4HV6/UD27KWxiG06+o9aUPSqFDD\nusOHvflX2p249+J+l5eXo6CgAP06GNUqab463Vw1jdZh6/Pz5WC90GV1u904WqndKibCdLvduOvC\nC/3mCehti6JuGy2d6frOyy+/jOfvuMPwG9Wt1aHaAdVVVu/dySSNKpplao6v1j1fkrRdZF3VKqe2\no6tHaf2nlmcL2xbDMAzDMHWEHj1OxbZtCzXpkyOikRoXdg4MwzAMwzAMwzAMwzAMwzAxQ4T2Rxce\nSGUYJiI4HA4IB3fhDcbUTtasWRO1vJs08foep6Z6fTqtVq+CjJjox+PxRHXip9zcXCQlJRnKEh8f\nLz1jRTlY16nmWbBgQdTyTkxMBOCd6EnF4fD64RUVFaGgoMBnv0ihhvWLetBisUhbF+Vju6sdiBD+\njh07xrgktZ8FCxZg1KhRsS4GU01EvSvqRtEGBnNPFy1aJJdHjhwZhdIxDMMwTN2kVmuktmzZMtZF\nYJgGSezmN2cYhmEYhmEYhmEYhgkV1khlGCYMLlC0CJuQNNUvi2qjUX02nT6mqs/2a4Dy6LQHWd8v\n+nQm2pR02h2dr96RysmhhKex8KoT3n7CEy8uLk564AlNVNHEuFwudFQmfNJpkALBa7ZSTUmqA3i8\nokJqVqrlEf+pF6FadpHmcDgwtNKjFQByyDF0eq6smVrF6tWrcdeQIYbf4k2WAaONBNJ73Fk5kRP1\nuioqKkIfZTI1Wr/RfKgdqqj70u32k/WjTiesVivKy70dtkOHDgHw6kffdvbZcjtqvzRf+pyYwXVo\ncMyZMwcA8Oz48fK3k8g2qp5pILtTNVL/W1YG2qW2WCxwOp3opdQfgK82b2aQx6Rz826y26XNi3q5\noqICdrsd3Zs3N2wbrC0Bxj4D3W8T21qt5kylrae2TduuB156CS6XS0ZxFBUVAfBqm993221yO2r3\ndL2QbYJhGIapJfTo0Rnbtv1Tk/5v1khlGIZhGIZhGIZhGIZhGKahIzxSowsPpDIMwzBahM6p8HwS\n/6nWqcfj8fH4VD1SY4HL5fJfx5T2AAAgAElEQVSr2UvPRfUko96qFRUV0S5mvWb+/PkAgIyMjKgd\ng95H4Z1XWFgYtWPqcLlcsFqt8hlp1qwZgCqbijRvvPEGAODGG2+MSv71hdatW0ctb4vFIutKtQ6J\n1j0HvN7y4phqFEA0j8nUHoT+qdAkD1V/vHnz5jh8+LCMLhFa4u3btw8pn6ysLEycODGkfRiGYRgm\nOrgBRP/djQdSGSbGZJCQaxoyVV3UkC4axq0eg4b901AwdVsqA9BBWT5G0ui6Cu3qq2HntKw09FWH\nWlYONTNCw0XpdVbTI2WDFDVfWp5A6yqq/QQKOYwU+coyvXaMOa1I/Ubvq1rf0Prl07w8AFUD+SUl\n3sB3u917B8QETo0aNdKWwWGyDBjvK02n5dHlEwpv/fqrDPlPqZS7aNasGZKTk715Vw5qlJSUoEer\nVnI/Wm+q5XvxH//w/q9c/5TrPwPtiB2qdkevK7UJFV1ovw7artJ1VdKBtnn5JsvhQJ9DKilRYLIM\nGK/lAbazmJChCd9XZSOolAmVaRhz3XVymdq2TsqE2ui/Jk3CvyZN8nsMlh1hGIZhahYP2COVYRiG\nCZvs7Oyw9qczoQuEB5Q/TyiqMxorDykzGXB/Wobid+pNKwa2mNAI1+7EYGOTJt7PPenp3ld74d0s\n7NJqtfrcM+GRWlapnVrTOJ1Ogye0GDBtXqlbKcoltAlTUlLkMyLShF4hU/dQPfGFLUYDh8Pho0tt\nsVjYI7UeI3R+GYZhGIaJHTyQyjAMwzAMwzAMwzAMwzBMHYY1UhmGYZgI0Llz57D2t5CwWDNvTgA+\nGoFm+9QUNpvNp/xAcJ6q1OO2OixbtgxDhw6t9v51mczMzLD2px6p8fHegGTh6anqUJrZpLDHmoZ6\nBIryCM9U8V+1MXG+whO1tDQUYRPGjLVr19bYsagHvsvliqpHu8Vikbav2hJ70dc/Fi1aBCD8epVh\nGIZh6jcc2s8wDYJQdPh02qZ0W7smLRTNQBWqq6a+5ofy2kbPWTdcoNPK5GEGPWdqdNToPVB18L7I\nyZFh1GLwSocaVm02QGmxWAw2Qu2M6qqphDJ9Bi2t2UCaGspP/4tlsW9KSgrWFRYiP99b6qvIRByq\nlhw9r+m3347pt98u1xuCXpyqi0qf0TZkvYsmn2s7dpTL/ysp0Q7O08FuEfafmppquCeB6in1udBZ\nPs3HR+O38rmhA7r+Br0A74BbeXk5zm3Z0pBPuskyLSt9fq4l1+PdBmB3lMWLFwMAunTp4mNnqh1S\nDVBV9zSQZvd3lYPe4n7TierEfaX2QutjtQz7SVqOSdkE4ljCxsT/bQcOSFkBu92OHqee6mdvL7p+\nCEVXVzOR55VXXsG4YcMMv6WYLANG26L3ivYb1X2p3akE6gXQukmFNXUZhmGYmoU9UhmGYRiGYRiG\nYRiGYRiGYQLAA6kMwzBMDEhLSzNMMKXzMqWYbatOvFOTmE28QifD0iEmc2natGlkC8eEhFm4vBre\nTL2J09LSarCEVdhsNq2chT/v2nAkJBhf2rZtCyC6NkA9UalHamlpKQoLC6N2/PLycr/ez+I3MTFb\nYmJiVI6/evVqAMDgwYOjkn9DZsmSJQCA9iQCoi4zd+5cAMCYMWNiXBKGYRim/lIzof0WT6yE6xim\ngXIaeVkOFCKqoob1BQpR7aAs0/CuEk0aDf1SQxlp2dTy5JA03XnRsEYdNGRMLXugY6oUNsCqboBi\na7p7BwBrjnl/EbOIi8FDNTSeDvT4006lg110FvUTJ04gJycHfc8/37AdtTs1nL8E5tB7/mNOjhw4\nEefib4AqmIFUOigidAedTqc8H4fDgbvaVAUK+wu9VdnSAOxQDe2n9cspZF2tC2jY9Kw//gAAZGRk\nAIBhcB8w3lezgSyhO5qfn4+KigpDPvHx8biyUyfT8uhkT97cuVMeX9hZs2bNAHjlBGj5aDnpObhc\nLhQUeAO88/Ly5DkMPP10v2UDjOHpJ5M0+sxkNwC7U2lHrn03kq4LT883WQb8hPZX2he1O6fTia5N\nqmq1TLIflbg4ZrJMy6CT6QGA4xUVcLvd0paE/QPAmRptTV2/g6apbTK1yU0NzM4iSYZis6FIkGSS\nNLXvR+8dlbhQ7+WvJC3HZJkeHzDaAZUIUO2Z1kv0eWqI/bT6SEaA9xzdfVb3pXbG0hAMwwRDjx7N\nsW3bdZr077Ft27awj8MeqQzDMPWQl19+OaTthccSHazSeXOKQVZ/kzLRASOxbaNGjeSAUzRISUnx\n8dBSzyGUybDob+LaCN1DAFH1NquLiAlRIoEYkBT3TNxHf/qiZtqj4oNAkyZN5OC32FYdZAqV9PR0\naQ9iIJUO3Os0XOnAr8VikfuLiahKSnSfEBgzhJdkTeJvIDUWeDweWK1WJCcnAwBPOsUwDMMwDBMF\neCCVYRiGYRiGYRiGYRiGYZg6jAdARdSPwgOpDMMw9RDhkRQsRZWzT4v9/HmoUk87Mw9BdRu6b0JC\nQlS1Rm02mywz9frz95vOM9UstL+oqEh6orJHqhERhh8JhC2aeaQKVI1Umib2TUhIkGl2u3cudhHq\nX92yCd1f4QEdjN2ZrVssFuk9K6QpVFkNJjBZWVkAgDPOOKPGjmlWjwht0ppGaO0KWxLezeHYOhN9\nFi5cGOsiMExEiGRUCsMwTPXgyaYYpl7yM3nhOpO8+KuaVVQfSE2j2m1UCytek6bqWVGtOHpMVcOK\nHlPdV6f5RqHlUfOxkzSar7ov1ddS92UtJb3eI712t55cpbJI7922MEKgzdh7/DiKi4sBeAe2Luja\n1bR8tOyqje744w80atQIQNWAVjS4PLXKSqlur6rvSp+RhhCcTeswnQZyAll/9OefAVQNmorw9mhN\njhMI1YLovYvFvfzg4EEZ4l9RUSEH6JxOJ17o0UNuR+tt+iTcpNyj1+pp3fjYpElyOVB7pNYv6/Pz\n5UCow+GQkg/l5eUYQOql93//Henp3hog0McqtZ6g2sC0TivRpKn3UqftGojdOTlycL5Lq1aGtD9L\nS6UcgXr+ANCfTHbkMFkGgItIXcCaqea0CqAjqaJr2Wi9pOYzbdcu+XErLi4OMzUfuugzo+azrKjI\n8EFxQvPmhm3Vep324ei6Cj2vxso1Yb3UukVjYs/VRW3LaD+VHoNthGEY//BAKsMwDFNNIjmoKAZv\nqDYqnSHd4/H4eHEKxDZWq1V6SwkNzHDLKvIWHoICf2Ux86rVeaIKD0Ym8gjvZGET4h6q99LMmzMU\nT2iLxeKj/xuORqrNZpNlNPNE9aeRaubBaLFYfCavEvmKa1NWViY9C9kmI4fH4zHYHfXmVGnatKlh\nkF/UEbQeidU8rmLCP2pLqp6wP1TvZ+qBz9RdmjZtKtvXcOo7t9stbYTWowwzd+7ckLe32WzSNsVH\ndVFfMQzDhIcHPJDKMAzDVItIvuyUlZUB8B2wpMdQX8bFQIJ4cRfbWq1Wub94YQ8nDDYuLk7mTSeX\nEvm6XC55TLNJYdTf6TalpdQvgokUwpuYDop6PJ6gBn0EdCCLDvqr+whPwpNO0vnO6omPjzcdQFXt\nz9/x1W39naPIV9is+OCQmJgYEVkCxog6KJ2QkCCvv78PPImJiQYb9TcZHxC7wSYR2i/sS5RD2LxZ\nedU0MYCq25YJj8WLF9fIcZKTk6V9C/me6uB0OuUHBpYcYebNmwegqo3y99FJR2pqKkpKSnw+xocq\nDZSdnY2xY8eGtA/DMA0B9khlGIZhGIZhGIZhGIZhGIYJQCCP1MhIkfBAKsPEGKq3qAtyVnXWaNDd\nfrJeYrIMGPWs6PFowKi6L/XLU8ug0z2l6To/MPpdu4Mm3xySRvUpGzrq9dDp5AK+Gn4qYxQ9NGpn\nG/LypKeKP4Q3jPC8a9SokU+IYHx8vFYfTkd8fLyP1IDwpBJee/7CVqlH6nNkAix6vVQ7pGer88X4\nLUD56wM6Ddv/5OT4hOvbbDafCaQEqqemsB2xjbAz8V/8brPZDBqXmcSrZV9ursFGhd2lpaVha2Gh\nYV/xX5SVemGp3s/UC1bYeEVFBborz8xvRUVyP+otLby9Kyoq5DYivJFOYhUfHy/LlZiYiPlFRTIf\n6qn6r3btDNcgeurBtYOFCxeim7IeSPhAbdcubtnSkPZtpSat1WrF1rIynwnMdJ70YlubzWZo2zPJ\ndrTt0ulZq/eO1jV0W9UbVYXab26lvQivWtUD3OPx4HZFF7UbzCnQpDG+qLqo9JlU763OBgBjP2jF\njh1St1dMVBcfH+9Tr5WVlfnkQ/ufKmoZKioqDHXhfEUzVZ3Er7CwEFd26mTIx7x3oD+v08hzR+cX\nYGqWOXPm4OHx4+V6E5JONXZ1PDNsmFymdVoXZZm+c9A+/oxx4zBj3DgAvs/MYbYXhmGiDA+kMgzD\nMAzDMAzDMAzDMAxThwkU2q+fLDRYeCCVYRimHiI8LaNNcXExGjduDMA4YY5AeMXk5eUB8HpxNWni\n9WUQXlLhTDal7is8ZISXn/gvyqcivK9Y/zS65ObmymXVy1PcN6plKnA6nXJyFOFtKXTYxARVIg+h\nCwn413X84Ycf0LZtWzSv9BKlmrriv5hEKCEhwceOqdezqo8pynngwAEAQGFhoen1EPuLczpx4gQA\nrx2K4wuvMnG+4jz9aRALxDmpEyE1BGbPng0AaEc8cMNBePAJDzwz7WUV6mFN7SdWUP1ef+USbYU4\nb57IrG6h1nnCDlXPZJEejrZpRUWF1Gqmus+qti5PUFb/WLhwIQDg5JNPjnFJGIap7wwfPhzr169H\nixYt8OOPP8rf58yZgxdffBE2mw1XX301nn322QA58UBqraId6Xyq4UyFDSR84BxyDdTu0g8N5BpE\ng03k2o1SrjMNyVfDno6RtINkXR0eosNUupB8GvKt5kNfr9SQLRrWQ0PG1LLTkCD1GPScaQikWl7a\nZWc7NKKGQdHwOnq/1C4ytQk11IraXShceNppcvlAifFOHywsRH6+t8RHjhxBn/POM83n9U2b0Lp1\na79pnVKNohLbKge3AvEPsk6vwWfKsi7cjIaehTYFQ92E1hnqsz/izDO1+8abLNN1+qy/UTkA6Q9a\nv9x6ySVymd67/dWcgKUdsTN6n3Uhsyr3Kc8EoJfY0IXIUuhzSqVW6gOXkz6Jeu0C1VNqHy5aQz8f\n5OejsLAQJ06cwL/POsuQRu1QvbeZJE0nr7N0xw45wJGaGrm7rNrvWSSth7JMpV52kPWxyj3K5vbZ\ncP9oPaWrC3X9KR1jmhiPcjNJV1PpvVQZ0LGjYf1zTb1J+3A66Hmp6/VdjqQu0JjUseo9oTaoyh/R\nIVd6L9V+Eq3T1PcM2q7SdxBd3a2WvaG8pzNMXWfYsGEYO3Yshg4dKn/buHEj1q1bh++++w6JiYk4\nevRoEDl5AER/UlYeSA2COXPmaNPnz5+P0aNH11BpmPrI7NmzeSbUCDBz5kzce++9sS5GraCmPENK\nS0vljNBWq9VHC9KMkpISuZ/wkhLakOK/GfHx8dLzzmq1+sw2reJwOAzeOeK/8MIqKQnltY+hCI/A\nmkbVFA0Hf95cgK8HXzgzmKsariIf9vqrvahaoer/YDxRqd0kJydL/cpokJKSIj296QzY6m/UfkX5\nPB6PzzbsVRh51qxZE7W84+LifLSco43a7gpd5kLlYyhT9xGeqAzDMDXFxRdfjH379hl+mzdvHqZO\nnSrf+1q0aBFEToE8UiMDj9wwDMMwDMMwDMMwDMMwDFMr+OWXX7Bp0yacf/756N27N7Zu3RrEXh54\nB1LN/iIDe6RqWLp0KQCgS5cu2u06d+6MtWvXAgCOHz8OALj77rujW7gaZP78+VLT0Iw5c+ZgXOXM\niUxg5s+fD8A7gzkAnHTSSX69XZjQSE5Oxrx58wDUr2ewOtSUx5vdbpfenQkJCdKOxX/h8UnLk5ub\nKzUrVe9SoEpL0wx19nJ1tumCAt85pN1uNxwOh4+nrPhfU1qyTGQxu2+h1qN//vknTjrJK04gvLr8\nIbz2iouLQ8pfwHZXd6D3iqLTG6XatfHx8bKdjwZpaWk+dZuqVU09qnV6mWLbSHh6M1WsWLECrVq1\nilr+SUlJPprTgK8tRhL12RAezGVlZQZN7EizePFijBgxImr5M15EFGbLli1jXJLIkZWVBQCYOHFi\njEvCMEyoOJ1OnDhxAlu2bMHWrVsxaNAg/P777wG06GvGI5UHUjU8NXy4XNZNR3Jjv36G9Rlz50ap\nRDVLhkYbh7Jw/HgsHD9errNWpTn0uv6VpKvKkFQfSKclSnGYLOu2A/SapDRAUdVG1H9uMGob0WPq\n9Ozo0IaaDw0ie2DMGL/LQMPUSNLpnlJdS93zrdPbfZBoYK5StNM6aUJa/3b66Yb1fWSCHp0+pkpP\n8pEnk6RffUqVcuK3JIz/5sqBXAC4XXMMQP/s6fS+GgK0DlNt61eSRoe6dfVLN2VZ/ynPiE4/MJC2\n4BmKzdK655vKCdMA3+eHEqy+H9VEpddAtS36aUStN6ndNYTgbKr3qLaXtG2g1+dXk+VoMev4cR/J\nADHR3aFDh/DM3/4mt6X3efYPP8gJyNRQfCGNEg0uVJapjfbW7Ee1txt6oHcr0t9T641Q9LN17fVt\nXbsa0j5S2lLaL7uK3MzPl3yGQ4cOyYkZ27ZtCwBIT0/Hr4pOeSD/n9OUiYh0Wte0/tXpbNL6d+3I\nkVg7ciQA4IMG2J+LFuo7SaB2Q7VZapOqrdF6gG6rHmcXSfvVZDvA115UG9Hppz45aZLhP21n97A9\nMUytpW3bthgwYAAsFgt69uwJq9WK48ePSyeIWMIDqX545ZVXwtq/bdu2UlumuLiYNRsZyUsvvRTr\nIjANBKFbVtMI75RQj19eXh60vpvNZqvWrNgOh8Nn9nUmPBo3bhyT41KvOTFIJQYEgmXTpk1ysp7O\nnTtrt/3pp5+wd+/ekPIHvF/Tqb2yJnZ4hNtP0yHqMOEpT705xb0M5h5aLBZpq2I/qkEayAM0MTHR\noEMtEF6IFI/HY1o/+tNMpV7SXDdGhiVLlsTkuBaLBW63OyhdZ2oPdLA/2OMxDMMwTDS4/vrrsXHj\nRlx66aX45ZdfYLfbZUSjlhqI9OWBVMLSpUuRkZERVh7p6emyY5GTk1NnQo1feOEFAFVfpMNh4cKF\nuOuuu8LOp74gbKBDhw4BtmSiRUObFC5WUhFC3iTU8NC8vDwpIRLoJa66g1AlJSVSEoDDVyNDuO1l\ndaET6gh7DzVkvri4GDt2eOcaP3jwoHbbzz//HOXloYcK2e12OSgnYPsLj6SkpKgFbQkZEmFTZh9f\n1IEqOjGVCv1N2JCQPQk0EGW1Wg2yJ7T+8zcxGg3tp2VW8xDnKcpVXfkKxosII+5IZrqvaYKpC8Wg\nO51oLNCHUHWwXieJwtRuhMwYwzBMbWDIkCH473//i+PHj6Nt27aYPn06hg8fjuHDh+OMM85AQkIC\nXnnllcAf8NzwdVOPAjyQyjAMwzAMwzAMwzAMwzBMjbNq1Sq/v69YsSK0jDyoEY0rHkitZMWKFRhz\n222G3+JNlgHjvaFpV198sWF9/quvAgDWrVsHAOjfv3/1CxpBXn/9dQBVE7ScfPLJmHzTTTKd2p9O\n841u++6oUXh31CjvMoeJYbqi10k1q6h22z5lmeoBqWogl5E06hPwWZBlo9B7qa5TXSFVG5FqIlHd\nU/U8qd6WqpsYiuKJTk+Qnsf9d9+N+xWv8PqumerxeHBO5aQBSUlJ+LVSWywY6L1TdXOp5h314buA\n6LWp6OrN/zv1VMO6TiP1sr/8xfQYtHzqvqqOG2DU3VxM9tPZoa5tpscfMGeO9BirjxPyJSYm+tRT\nqv1QTVT6gVhdpzaRr0lTv0arYaw2m81H51lHy5YtZVsIAOf2749rrrlGeke/Wtl+A8BXX30ll6lO\nrk4b1+12+3glCo/Uk/3toPClskzPSz0mtVedVuXs2bMBAOMVXfO6hsPh8NGYVNsjane0TlP3pffO\nbGIm8d/fhD40jFr1UKXeqmVlZRhINKJVPWBqW9crOs+b8vJMJ7tSf6fetKJ8/sorthXeiE6n06CL\nSuu7/coytTt6T6j+YX2nXYC5BdTrQ/svqw4cAFDlEXzixAkAQH5+Pp64+mrDtmq9SW1d2JzD4fDt\nt5ODXrL0Url8cJkxTa1DqA620+mU0hJUYoLai2ojq779FgDQtGlTWceK883Pz8cLStuucyY6jVzn\nn+t5fy6SUN1eXX+GPs/qe4buXYHWC+Zq+fq2KtA4iNr30Okx0zqentflyjVh/V2GqQfwQCrDMAzD\nMAzDMAzDMAzDMEwAeCC1ZhBeoq1bt47aMcQkAcID5bPPvL6CvXvr5j6NPkIrsFGjRgAgvw5Hmtde\new0AcJPi7dqQmDt3bqyLwDRAXC6X1GVMSQllfmAmklit1pB1O+sSsZrUTPW6c7lc0jvPbAIeM1q0\naOHz2/r163H99df73b5v374AgG8q+w7BllXYgJl2ZU1SHzQNy8rKkBh4s2pBNUhDuWdiG51Hajio\n+enKZVZW3TmI9sJisYTk1c14Edqo1UU8l6oervp7KHg8nqAmm6ouLpdL1rWh1GXiPSguLk7uJ35L\nTaWxDQzDMAxTDTxgjdRo0DiEBl8dyNYNQwQa8L57wAC5vPjdd4M+fk1w5w03GNZ15xKKvIHK44MH\nG/7TDnp9D7EGfENXVGhotBqCSKemUu3wFJJGQ6/2Kcv7SZourJHausNkGQC2Kcu0vqJdf9VGdGGw\nNB8arqML9z3JZDugRj5M1To+UyZ8C3SfVbuj1+6YybK/fIOVAKH3Q1c++olH3TaU+6orG62X6DVQ\nbUtXdhqWO++ee+TyogkT8EM9rO90fRV6PdYcOwaPxyMHFu9qY147qrZGr/lwMgD6cuUkZ4Cvbath\nhTSff1x+uWG9j0Z6Z8+6ddhTOYBK7ZWGMurs8qKmTeVyN5JGQyDVa0CPuXH/fjnocme7doY0XZhj\nfYHK1+jOmQ7RqNeyBvraPoTSPsWi7dLZnXrdad1M24d9kSpQHSVQO2cGlbqhqPl8sWsXTjrJWwPR\nSe3o8Y9uM66nK+tUckkn4UA5WFiI8vJyFBUV4arOnQ1pan1811+NPdUNeXmGdVUKQieLoOtTM3qo\nTaRo0ui63WQZMLb1tD9F61/1mFTeRrVt3Xsn4FvfmB2Tvo/QsvOHo/rDADLOQ+/tFk0fvLOyL+27\nHq6HfXcmfBrcQGqsqaiokB6qsWTDhg0oKyuLdTEaBPyVnalJFi5cCMCri8ow0WJOpf5uU2VQMBjs\ndjssFgsKCwsjWh7hfRWqR6oZkfYiFvqTkfBKFKSkpFQrv7rsIf3yyy8D8GrbRgvqkUo9SlVPUDOd\nUoHFYvH5LZy62e12+xyTesGqv5lpt6p5iPMV5YrUM0R54YUXAACTJk2KSv6xJtw2V3iehvqOoD7P\nqg0Ij9Zo4E8n2OFwoLQ02KFiLzabTQ7+Cs9UJnosWbIk1kVgGIaJPhzazzAMwzAMwzAMwzAMwzAM\nEwAeSK2fuN1uqSn39ttvA4CpFls0qaioiKlGW0OCv7LXTrKzszF27NhYFyNiLF26FADQvHlzAGx3\ntZXFixdjxIgRsS5G2Aht0VA97u12OxISEqS+aaQQXlnR9MKqLh6PB3a7N5hQeKZGArfbXa3IEhr+\nW5doVylh0Lhx46gdI5CXqb9theenv21pfpGOFqDH9Hg8PvqTOr1MqrUarb5hs2bNopJvbSFSnt5i\n3oJgsdlsfu9ZNPsAVqvVx1O7vLwcJSU0IFaPxWKR5eQoueiRnZ0NwL8mOGNk4cKFuEuRxWLqDjwn\nCSPhgdTooOr8UI0UnZYRTYsPMg0wap5ZrVb5QhVNIXgz3nrrLQDel7mEhISQbCwUDS9Vt4Z2qxrC\ntDcXkE6taktU06eArKv2Q3Wp1DQ6fEG3VTWkqB4bPaYKzfffb7yBI0eOoLi4GACQlpYGwNshm3Lj\njXI7el664ECd7lEoenW6IDKaRm30oXHj8NC4cQDqtk7v7NmzAQCdOnXChGuvNaTpnjVqLzodSZVA\nQZ+6YTXd/dJpcwXSydKhXgNatniT7fwdQ/fMqHVcoMDGR0aOxCMjRwKom5pL8+fPBwBk3X23/I3q\nfKrrmSRteMeOhnXds69ey30kjWqe3aBorX5/5IhcLi8vx6AOVWrT1JbM6ht/A7KqZiDVqD6LrD91\n8KAcMO5DXl7V+vhLsh/VSFXLS3UBb1PC26m96jR+51W+JIr/39YBOxQh/VPvuEP+1oVso14Deq3o\n9dmnLJvp7JmF+PtD9OfUAdW/KPdnp6LhGxcXh+3HjsmBt/LycgBAaWmpj0SFGPQW4d7qgJnb7UbH\nyg9ngt+PHYPFYpFlD6af6W+CLF0dq+vfUT069Zn5eNgwAMBzlf/rm150fHy8VuMY8L1eKsIOUlJS\nAmo6/uerrwBAaqOKwUhxD91uNzwej099t4usq/frV01Z/T0jdCBVTHC19MsvZf2ZlpaGm08/3fQ8\ngKoBaLvdbtDcpdqZOp3WOXPmYFxlf47x5Snl2tDrqPZ9AmngOzRp6r5P79sn6yy73Y5lRMObtpdm\nxxh76JC0r+LiYizu2tX0mOHMi6BuO3/UKMwfNUqu14X2sSFwptL26frytA4OluzsbEO/gT4Locyx\nU5ffKesNPNkUwzAMwzAMwzAMwzAMwzBMANgjNfK88sorsS4CLBaL/OoswrtUV/QxY8ZE9HizZs0C\nUCVi37p1awDeL4R1ObyvNrNmzZpYFyGi2O12WK1Waa/CeyXUSQWY6CBCtaIZ6spEh2XLlgEAhg4d\nGuOSBE+TJnSe7tqHy+WSHlHVbedEm1ldEhISYLFYIhrK35BJT6+un0noCNsxm9RJ95u43yLySFBR\nUSFtSuwjjpOS4vUJU22OhuarHodqKDWlvLwcCQkJPhNG+Qv/p+UX3qtCfooJjkWLFgEATj6Z+lCG\nRigT0gnbMbvPqoxYNFYqKZIAACAASURBVHC5XNLrWdiQanfCyzRQqL/L5YqIJAJP6uqfrKysmBw3\nKSlJ1oGhyj2olJSUSKmLUCUvGMYf8+fPx+jRo/Haa68BAPLy8gDwBL31Dh5IjQwZpJPbQVkOFAqn\nQ92XhoTS7n7Ndf9Dh4a/6UJUA0kYmOVDX0dpPqq7fl0O9TpHE3agEui5VtMPkjQ1LGs/9KjXPZOk\nqeFcz77+uhwUFZ1g0aD4e1FTmb58uaHxEZ371NRU3Nivn2Fb1V5CCfGm2+rsTn2GA9mrmk5DNupS\nWMZdQ4bIZVoXqdeDpoViow5NGr2u8Zo0dWhBFyoPBA6Rrw6hyIoEGwIO6J9pXbjZ2NtvN/yvS3an\nntdWkrZPWaZhhLoQa4pqo3Q/OpyrG8JYd/gwysvLUVRUhMlnnmlIW/jee1iwYIFm7yr69O+PW2+9\nFQDwysCBhrQHfv5ZvszTDjntA6i2HSgcUXcN1HWaD311VduDujy0q5adhpGfZLId4Bump65HSm7o\nbyTMviauMy17byWEdntBoFrWHPX60H6imisNFdeFjptJKNR1Zit6ipkBttVdg4Ht28vlb/Pz5UBU\nfn4+biMhzbeed55c/nC/eW/wtwDlUesiXZ0RynvM/UrZaD4r9+wBADRt2hRWqxWDyAcStR6ndqdC\ny/rWnXfirTvvlOvv1qG2tCbQhT7rrjOtQdR+EK17nv/hByQlJSEtLQ1DWrUypFEZlkxlmT4T+5Tl\nKacYRXRezMmR+uqJiYm4SZHNoX023SdfXc2okx1gaie6945AcmQqOkmxcCTGmPpLvR9IrW1YLBaf\nSTGE5iQALFmyBABwp9IhqA7C+1Z4qQmvHPHlmHpLMA2X/Px8FBYWAqjSYeta2WlvVdkZstvt0maE\n3YrOzJFKPcLjx49Ljxr+csww9ZNwPTVrAtUjVXjyqR4yKgV+BpuuuOIKUw8n4b1ASU5OlvWn8NRy\nOBzskRoh1H5StBH9JXEfzbw53W63j46qGfn5+XKyJaq/K/Kg3oWA/4mvxAfOY8f0Q5MWi8VQVjU/\nNV9xfPE/0AdUJvqo9y7QxHzx8fE+OrdOpzOq99HpdEo7FnaTmJgY0DNUtb9YzBPR0KjJyMO0tDQk\nJiZG9b4mJCTI/IOte5m6j4iujQRWqxXLly/3qTNFZEgkeOGFFzBp0qSI5cdUA/ZIZRiGYRiGYRiG\nYRiGYRiGCQBPNlV/oV+X4+PjpZdqJHR+5s6di6ZNmwKo0lwSXyXFlzy73R7wKzfTMEhOTsaJEycA\nVHnECPsR6xUVFTJcVfynnqkHDx6Uv/mb8ZqJLLVB85lpeNSFdkP1IFSX/Xn8+fMYbdGihakW7H/+\n8x+/vyclJfmd5Z29riKD8PatCWj7ZeaRquJPP1XlyJEjsh8mvGvNPF79oXoa5ud7hRwOHqTiP8GX\nST2mKIfwNmetuOCZP39+1PL25z3sj7i4OB/vqmhrpDocDh/NX5vNFtB2RB3M+tE1Q032xVNSUmCx\nWHj+BCbiRHIOiLi4ODgcDh+P+khGUkbSu5WpJuyRGhm6adKomdPrrQb80WZB3ZdqwFG9GTXfuwcM\nMKQtfvddTQmjwwilDLTs6jBuIHUt9bx0zSZ9daXXvb40uer1osPhoWi0qNvSe/CdZj96TNUO6fFH\nPvMMWrdu7XdgIVIsXLVKhs06HA48NW6cTKPPmmoTgbS4dLqAoWiv1sdmLpTz18n/69J0Oo2BCFbv\nka7rtIrCySfdZDt/6+qHTRrcrtOZq6+virr6X02jGn06PTZah6nPaCDt5GCns6D1y1tDh0Id/twF\n4KF16wD41i/qvrTt1EG3Vc8rkIahui+132Mmy4D+ekWv1o887ehkTsoyPef5lTIzZWVlAKomRKyo\nqMC4s882bPvKzz8DgM8HwnCkK3T60UP69DGkfV9Z1lDpXjlhqIDac6QcMG759VfZfpeVlckPAh6P\nB/+85BK53aObNgEwXkfx0puamoqORDdWRdUmr0v60BT1PtN+BX0HUTVjaZ2l65Po6k0dOwKkq5+L\ndPV4KO0YrTd1T1Rvsq72eakGcrwmrb7q70YKXTuirmeSNHqd1fpF1wZSW/pVsy19DkK5l2rZqZ2p\nz5PuvZxSm+c1aUicqWn7aTun1mO6fj4AZCvSiTpN+kD56ObVeXz0aDw+ejQA4HAdbtvqNDyQ2jAQ\nGluikxqJL7RWq9X0SzR7x0SelStXxroIIZOYmIjDhw/LL3JTpkwBUDX77P7KyQuEpmBSUpL8wiY0\nUYV3jfCASExMlJpcx48fBwAUFxcDqFlvooZCRkZGrIvANEDqQhtis9mkl5Qor9vtlnqp0UDVNBRY\nrdaA3mRM5BAfBsV/EeHjb1ZwoVcqbEK0hf7uo4B6Y6v3NhivUpWKioqQ9Aur+9wFo5GqzroOQHpj\ni2tTVlYm+wL0GohtRRvfqFEjOahaF+qKcIlWO6xeu0BakP7S3W53yDYZCk6n0yd/i8USsI4VNubx\neKLqMct4qcln0GazwePxRFW71O12yzqoptrWmTNn4t57762RYzEMEyF4IJVhGIZhGIZhGIZhGIZh\nGCYAbrBGakMhJSVFekOI2dPDwel0yi+CwiNDfAVmTaLIUxc9AzMzM3H48GHcfffdht9Hjhzpd/sl\nS5ZIj9Tc3FwAwNixYwF4NXkBYPz48T77ZWdnAwBatWoVmYLXELNmzcKECRNiXQwtkdBTZphgEc9y\nZmZmbAsSBHFxcT6eeNHWdvV4PD6eMsF4aNUGFixYgFGjRsW6GGFTUuINEhUekdTbVEV4rYq+kurd\nFMiLy58Gb6jef6WlpbJ8qo1QrUvxX3iEhoKq0asrnzimuBZUBz0lJUX2Helz1KJFCwBVfUyr1So9\ngIXEQn0mPT06gcCqt2YgzzszL+poeuypHq/iv8ViCXhMYWMOh0M+r0z0qMmICJfLFZRObrjHqOn3\nWI6oq3lmzZoV6yIwTFDU+4FUncZZoKpY1Vf56vffZafQZrPhqtNOM82H6lrq9Mg8Hg+aNGkiO6ci\nFDocXC6XnMygeaU+lQi5pp1xqn8TCr8cOiQ7Rae0bGlIU/VKwrk+tZlWpIOi6gXp9OmodhDVGVK7\nluHo3Kn70u7q+Eqd3H+OGYMps2b5HQRVuVPRlKGMGTPG57fs7Gw8pGiiAsby0mlcdLo0Oh1U3TOs\nO0agfZ+bOBHPTZwIADhQy/RtqN3p7ECncUava7Bd0+pqogJ6DTid3pBO0yvQa6yqt0XrO1VTi2po\n6XS7qIZXdTW96LWszZqBuueZotMMpNeqg7JM76XuGLQeVdctFoshpB/wtrUOhyOgfp9Ol1WHy+WS\n7aH6Pz4+XqvDRe2Olk9tsUPRkgtFi7w263mFoqH+13bt5PI3e/fKj382mw1vHz9uCDmlA+3+0tQB\nIjPENi6Xy8de1ftO78ftSh8SAN7KyfE7IOZ2u3H+ySeb5qOrNz0eT1ADvfQ8xX8x2Kx+mPB4PFiT\nn+9zTcR17BSlgcXaBNXtVZ/nZ/bskf35srIyPPvXvxq2Na4ZUe2nqKhIXn+Hw6Gda8CfxITNZkNC\nQoJPm0fvjq486r7UzszCty0Wi0+dqvbFhJ04nU6/HwfUOo1OpabmO/v33wFUfYTo16GDYVtVX/GH\nWlan1QTnaN5PdJq1gbS/1TZowd698qNJUlKSnJTWarXivdxcmWa323GdUjcDwD5lWad3/t6hQ/Ie\nV1RUwOl0yo8MHo8Hi/bvR2pqKtxuN0ZVftQRqDZL7b4DWVfraqrn+uWYMVhb+Z7zaQO0pVhgs9l8\n9Hr3Kcu6/t/JJE3XIuk+T9KxCv/TjwbOh4kRHNrPMAzDMAzDMAzDMAzDMAwTAB5IrV0cOXJEenUK\nb89IUFpaiqSkJBmqEKmQBZGP+PorvuCJWWwjQX5+vt+QOaZu0Vwzq26oZGVlAQBak5mFGYZhagrV\nE0/gdDr9TjoUKZxOp9/2kNvI2CBmnAcgPVPV0GP635/HJv3Nn3cn9XyuLiIslh4rnD6hv/Brs+1U\nhLdhMF6swvtS9I8bOvHx8VLmIJwQZ9UjNZhJmei9stlscv9oEBcX5+OVbLFYAk40JOzE4XCE9cyI\n43D9GjsqKip86qm4uDhZj4n2NhxZHbXNFvmI34T9qXJ2TP0g2lJMNcnMmTMBgCcsq2l4IDUy7Cfr\naqhKoBAGtQsyplcvQ5rqxk1DXmi4XaDj1DSqXQUbFuyPv51+umk+6jkHCnutL6qtuvB9Xfjdii+/\nRIsWLXwG6Km2mcfjwWlKiF+g6xZKWGw00IWiUdRQHlo2ep67DhyQnSa32y070uLlpaioCABwF9Fy\npM+hLmytJq5PdaFlCzbEWicTQdN1oTChSErQZ//D335DfHy8fMETtl1aWoprunQxbKtTT1PL9/6B\nA4YQSKDqxdPtdqNP165yWxqqo4YO6uwTMF4vel5qyA8Nm9OdRyjh17GGhjXpwgPV5ylQPaXeE12Y\nfaB29JVDhwD4Dzm9Rqk3u2mOT6H3Rw3hpfnMbN/esD718GG5vOTIEVkvOZ1OjNBIA1Hb0tlEddvv\nutTm0nugu18qF511lmH9tyNHIlIeHbpnfdyMGfKj5SmnnIKJvXtX6xhz33kHe/fuBeANHX966tRq\n5RMpuhCN+FBsK1CdW1uhoaO6Pu4uzb70/NUWcPU55xjSaJsc7HUO1BdVnydan6j2HIoMmO594FkS\ngk/zVddpuKyuzaHPXl2q46KB7vyp3aVr0qj0zORKSQV/sgzXdeokl6ndnULW1XtJ63R1375EEoCW\nb+1vv8nlBUePyr5fcXExhinvqNTuaX9in7K8jaSxkm9soH0sXX2kpukkQQBjfa2T49FJQwLGPrFO\nnoKJETyQGj51Qay4sLAQVqtVDpqJL2zz5s0DUDU4RL/EAb4vjGIQITk5WTZyYmIg0biIlzmm9pCc\nnIz4+HifCR/MJp2INJH0sBZ5RWsCBgBITEw0XCP6HETTC4MJj8TERNhsNh9vpnC8rlwulxxMpxPI\nVGeCFqZuIrxg6AeoaHqh6hBesVRvMlblqYusXLkyovmp7YWZR6q/iaR00LrMDFXbz5/3ptvtNrRl\nqpakSllZmeFDkY5gPFI9Ho9PG6rbh2rLMkYcDofst9dUX8Sfhq/FYonq8VU931Amm4oU4hrX5GRK\ndQUxMWQ0EO+Q4rqLdjda7yeBENrnArEcq/IwkaE+tS/sLR0jPKgR8dp6PZDKMAzDMAzDMAzDMAzD\nMEw9hz1Sw6dp06axLkJAysvLYbfbkZiYCKBKU0l8jREeVeIrmzq7utCjpKHNSUlJMj+qkRopDdaG\nzvz58yOWV2pqKhISEky/WglPF1XzLZJ4PB7pvT1hwoSw8qoJ3SrV68FqtfpcN2H79ZFI2l0ssFqt\ncLlcsl6KRH3kdDqlV4T4L2yiPttCTVIXojuoJ2okvJ3DLY/qtRWK3iHjJZKRDTabDVar1ccTVaD+\nTr1h6Lq4p1arNWjPJ5fLZZjFmuJ2uw3HMfN0tdvt2Lx5MwCgR48e2mMKG/RXdoG/Gd/9XSOaxh5f\n/iksLERycjKA2HikRjuCST2Ov2PVlIeoOpM7YySa/e/CwkIAVX0r+q5Z07hcLpSXl0sbFPZQVlYW\nk/Iw4TFnzhwA3vfi+gLrONdvGtzdVfVVqMYG1YBT9Ypod0jVwwhleOufS5bEPLz+yawsJCYmolmz\nZhh/002GtOpq9NFX1QJNGqWu6mTR8wpFF7C66DQvqSaLTrdLzefW/v3l8qMTJ6Kwmh3wxgE60NUd\nBq7uq4hOTwsw2jq9lrVZHKC6z0soNhmKvu5He/bIjoLH45Ev/jSkmQ54DyNaaXTIRD1Pei9V3a6n\nTzGqbz2dY6zZv87Jgd1ul+US5aDluYWUh+oj6XSO1S5foPujptN7Upc+c+lsRD3HQG2KOqREta1U\nPUHarQ6lrVL37ULSaD9ArTep3amW1oGkUT12HTodQIquzo+UvdRmuwul3fjy558BVH1Upi/70SaU\nslL7vaBjR7ms020LRE23Xd/u2wfAO/koAOTl5ck+rsvlwuQbbpDb0rqxNtudjl/JunoeF599tiEt\nlPZabWOoDiu9r3MrNaHFoK0ZVAuS1qP7NMdQ68JQNP/WHjqEo0ePAvDaw6xLLpFpv5FtaZ2vQutf\nta48t2VLQ1pt1hePBbT/r9royzk5sj9UWlqKR089VaZRe6X9nscuukguz/j6a0PaW7/+ikaNGsFi\nseDCVq0Mabq6kR5DZ2ufHjwoB0vpB6mbFD18wNfWVWi7//gvv8h24mzSF6yr9VRdY3iAd0j1HUGn\n/UzrGIpaz+k02APVecH2zR4fN87wP5c/QtYM7JEaPrVVK1FU1kIny+12y0atpMT76I4cOTJgPhMn\nTvT7u6qPQ3XZxFfc5OTkWjnLqvCyNTu32kIkPWXS0tIMGqn0K39eXh4A4Ndfafc9OmRlZfl8QbNa\nrdKG1ImegJrXqCooKDBcf3r82vrcR4LGjRvHugg+WK1WaS+qVwIdqBR1nL8Z1SOJ6sGleqqqXmT+\nyseY06hRo1gXISB0AN9MY7KmcDqdhrpJLItBPiYwgQaJKBmVEx9RvXGqiwqYe2aqurYC6m2lbivS\nAmmkfvPNN3J5+PDhQZyNf9SyBDqmy+WS5+5Pz1L8N/PS1WlfinyFPaekVL2SCm+i+ljHLly4MNZF\nAODr5UTvr6rJGw2cTqe0RX+a9f6eOaZ2EBcXF5HoMZfLJesgYQtU6znSqDamTi4a7izvSUlJbKsx\nRLz7M0zE4IHU8KmNnbjk5GTZ0RGDpmVlZfJrfrih1YDXM0CENYgXEfrSkJqaWisnvagrLvCRDDsw\ne7EWHYNDlZ4HNRWq0rlzZ9lByan07vvwww9l+oUXXggAaN26NYDoTizlj0OHDsmXtsTERB/R+/rc\nGRLSH7UJ+pJt9uKuptdUGJi/QdXaMklCXSKDzMxdG6E2Fe6LVbg4nU6/fRBhd0xgQu3DhTJIHcrA\nom5CquqEuofTRqnH2b59u3Zbf/UsPYdQ7ZHWn6JNEn23tLQ0n49WwVBXPqK3aNEi1kUA4PvBmE4C\nZrfbUVoaPT9Nh8PhV/JC2IXoI/OEjzWHkOAJ5IGvDkaG0x7Fx8f7fcZr6t1bHVAN96NBYmIi22oM\nadKExgTXX1544QVMmjQp1sWo//BkU9WnlaaTqnazA4UZqV0Qei/UsIlA/m+6kFAdulBpXbjQ2Cef\nrOYRQ0M30K+eM70+tLpU70l2peu7+P9zLR7kCCX87tfDhwH4DuYEeqH6e5s2hnVdKAHtMuuGeuNN\nlgHgluuuM6z/s1Kzxh/Thg6Vy/S+hhLmqHuGaNpVSmjRvtxc0/1WVYYXqi8YYoC4vLwcPdq1M92X\nhsPVJnQyBKH44upCUWhYmGpLtC48JzPTNJ8f95sHPAcK1VZzpeelrofSTp7Xvr1hXb3PgT4HqOel\ne/Z1khp037oUMkaHqNSy6+4BbatoPjr7VUOrdmiOT6HPtlqLfqbZDzCeCz2Gas20fqPXoHfnznL5\nqwMHTI8XKFxfd310NkmpK6Gv7UibSCUU1HMOJdw4Fix/+20sXbrUb1qw0juB6NO/P/r16wcA6N69\nOwYoYdS1gb7KMu0Lq8/TksoXS/H/h1rW91P747o+LW3XaAixuk7zUdNW5ebKgR0xICr6MoE+5Hc6\nqaplO4WkhRLKqtoorT96KeHgAPDL8eOm5Xnkm2/koKsYeE9NTUVKSgq6kBBwlVDqO9p+q3X+AFKn\nvFnLbCsSZAR4l9C9h07/6Se5POX00w1ptJ5S168nGs2f7N4tl3XvzP7Sq8vl3bvLZWoDqj3Tnujr\nBw7IAedQPoLR9/LqSqExXk7T2K1O7kv3ThBKv4DWa7r+n26dHtNhsgwAj997Lx6/9165zjZkZPjw\n4Vi/fj1atGiBH3/8EQCwdu1aTJs2DT/99BO+/vrrgPrwANgjtb5it9ulJ+rkyZPl70899RQA4Nln\nnwUQXghveno6iouLAQBjx471u83LL79cK73b6gqhhmcK7yg6KQ5NB8wnmYgV1ONUnHs7zUBkTaGG\nz5qFkonr6XA4pJxFKN7YixYtAhCc3Ea0qY1e9jocDkeNTEBmhionwISO8HA5m+j+1UaoBm5tQtUO\nritRF3URMxvw50lqVifoPLT87aOrW8z08MPxSPW3r2jXqFeWy+XShuvTPM2iCFS5A/qf9mlU6ZZY\nTUBTH7BYLLKPLvpc/ryI/d2rWCBsRDx7YrBX2Il4NlXd4vocPVSbUb3u1XeZcJ/XhIQExMXFRTXq\nQp1gNpy2NC4uzkcGiGGY2DNs2DCMHTsWQxVHrTPOOANvvvkmRo0aFXxGPJDKMAzDMAzDMAzDMAzD\nMEx95eKLL8a+ykksBacTT/mg4IHU+kleXp5fDSjh9ZdZGSbbksxIGQo9evTAgcpQwueeew4AcN99\n9xm2KS4uRkFBdedRZ0L96i9CtHRfUMVX0drmPSe0UAXCVsOx0UhRUVHh42FDr7HwhCgvL5f3IZQv\n0KFOeBJN6tqXc5fLJe+Pel9qysZVb+S6hlndXZM0a9YMQO16Bsww86arDaiTctR2LywxWaVZNEtt\nxswG/E0IZXYfrFZrwHuk5q9OskIpLCw0rIsQ/HAmHPPXh/j8888BAB07djT87na7fcol1oPxavQ3\n2ZQ/TVn1d7fbLdtZ1hysPm63W94jf/fcrL8Yy/pFLYvQcKXRdaq9sH1EhlAnQPN4PNKmkpKSfDye\nq0tycrLB0zMa2Gw2aVvhlDc+Pt6nnquN0SwMw9Ru6uVAqk5HR9WxCKQZps6RrtMto+SaVO6BZqUT\nuqBmx1DLoCt7v169DOuP/fvfpts+mJVlOsGVTqPVX/nMoGpOdL82mrTahE57FzDqt9DXpP9TXnC+\nOnJEm8+5mgFK3XCQTjdXp99Cr3kXsr6wb18I6fp8AKvWrQMArEL1dWkouvPSpXUnmpd/5OWZbttN\nI0Wg0yqbcNtthv//396Zh0lRXW387e7ZmWFYBGQREEEEQZGIO3EJiOCCKLK5yyqyGRPNZ0xijBoT\nTBRBAYMmLB+CoIjmA3dNNK6IIhEXEAYBWQeGWZnuma7vj5lbc+p0163u6X36/J5nnqnqW111u+6p\nW7dOnfNeu+s7VnANIZ1Oj84GOHxbeg50r1ictMne+P57AHXyCWOYjhrtC7hmVwe23luzLV3fxsou\nZO1Mf+d7331nDsI9Hg/GEfvh54MfU2eH4egdNtOU0XM5/5e/tPz/PsF2p3vk5edG9xt167zfpG3A\nj/H6zp3mg4/X68VA0sfyY9D24ZqFunsOv8/q2lmnWvgT5uDaWFRkOknOZfbKj6mzu3DqTtHpw/+u\nfhyi/se7v9tFjvfaa69h3mWXWcp1Y7jzyKRoH2nuBbEinOkydO3K+99ItK/jzZT6ly8KnSY0PV8T\nFy0CAIwfPz4m9YoU3e/4tH5C0IyMDFzcxqqwHol2fDTgddX1YeH0PdGyM35+dGNTen/g2q9//uIL\ncxLS2tparCQRTE665akKfUbTzT0BhK5J+veDB80XTroJHPkLFT752ZeHD5vb+3w+nMHme9C1M72X\nvv/jj+a9Mpij8z87d6KmpibgZRl3sipncW5uruOLLF1/y8e7XNN7VxK+yE0m+HO0bty04PPPLS+T\nbu3d23bbcPojnV5wOHNO6MYi72/aZNrihf37a/dDr2PRS40iMtlU08NuNtK5c+eiT58+MTtujx7c\nNVaHnQNViC01NTUBEQaGYUQ866RgnSlb9I8SgxqkJuPb/YyMDPPaS8b6CaETLa20RJCMUbPJSCQ6\n4S6XKyBa1O/3B+io8gkgqR6oU/QlXQ52n3n99dct60ofMpIIb92M3DzLiNYp0vug+n6wcwBErume\nyuOfw4cPA4gs0phjGEZAmymbpTq0djYab1Sd+PjLTq+YRi5Hg9atW5vnP5VtKR5Q7Xq32x1w/wzl\nfmoXCU3tNhpj72DzINCX4U7H4d/1eDzmMr8XJHu2SLpB9XZTbYyXl5cnEfeJRlL7BUEQBEEQBEEQ\nBEEQBEEQHBBHatNDaY+pGcPV27A+ffqgDUsHiiYnnXQSnnvuOQDA2LFjY3YcITTo21P1Vtfr9aKi\nIpLkeAGo00HlEYcSkRpfeIpXMpGdna1NExNSBxpZkmqRJGJ7oRHJ7M886goIHi3FZ5+ncLvS1ScU\nHebCwroE3IKCAsdt7eCak5SSEmvSYrCoRoUuujaYZiov4/uNNMo6le/T++vlmiJpVw7Vtw0WPW3X\nVonWSNXZEF+PZl3z8/Mt42nBnsrKSot2PW8Huyhnqh9tFwFN+xwVGayeeRtDRUWFGcFvl0VAxwKc\nYP0Wt0W1v1TU0m/q6DI+kp1UG5cmC2PHjsW7776LQ4cOoVOnTvj973+PVq1aYfr06Th48CAuv/xy\n9OvXD6+99pp+R36II7WxUE0vrsexL4zBntI0zc/Pxz0TJ9oeIxL+RiYS4dpt4bhW6bCBa3Xc1Lev\nuTx73DhsDLHuwbQ65syZA6DunNw5YYL5+cNz55o3S+XI0k1WQSe06E/aKNS6JQJ+Xp20/yi6YV2/\n446zrNN259pOOl0hrt2j02+hGnlc+OF0zTF5n9RGUxYPfS1+DqgO6m6W5qhrr3DqnmjC0U7W2eSb\nmzejoKDATBVVg0j1EKIGl9nZ2QFpmzyFkQ686SBVp4/sZL+6/o9+l2uk8mtNt58XDxwIGOxUVlaa\ngzb1O1XK7JF63cXa2lrk5+cDqEspBOombQCA7kzjWPe7dDqs4ejdxgJ+P+LobIv2PdwGdPqcOv3S\ncJJm+ba6vlD3O8LpF3T7jUd/ouvjgdDPZbK9zuPXCP0dXFeZll3KXk7z80P3u2nfvkbVjaPrazav\nXYt76vXFgUC70/ULtO7X1k9Ypbhk+HDLeixeY3VhuqdUj7Ej25Yfn9oh7wuilwifWIZfcom5zH//\nV3v3IjMzE+Xl2fiGxgAAIABJREFU5QCAs+snlA22bbT6iaLiYvh8Phw7dgxDyPGCHYOu83unrg/b\nXFRkjh0ieeGh00jk19PKPXvM+/W3THOzomVLc9nFvut0L0tV6Bng6pF83LGHLF/f3aow+8qBA+by\nJW3bWsp4v7mhXsYiXHSa3dy2nOYvCZUeRDObX2tbiost62eR5zDdPB5dWVlRI+uWroQz/hpEfBdO\n2366dy88Ho/5rKKeY6qrq3HOySdbtg312fSrH34wA0OUf0Pt1+fz4bxTTrHdT38bSUXBGRX4xxkx\nYkR4OxKN1MRDNU25I7UxcOdDx458CBofFixY0OjoAaqrSh2p4c7wm4ozAkcL+lY3kje1gh7+Vl2w\nUlpaipqamgBHINfgc7lcAZFdXNhf2XG0o0yiDX2rrerOI1RzcnICylSkEdXkUhNbqGgJiWaIL1Qj\nNdU0R2ndhcRTW1sbVNORa+kFi15VfUpZWZnt/ocOHYrNxIkaK959913Lek1Njdmf8+hGXT+diCig\nZs10LrXEoV76Nxav14vMzEzzfhEqyvEKNDw7qHt0ML1A3p5utzsiB2ek8EjAYJGz4eoeZmRkJHXG\nS6oSjqbssWPHAARGh9J+RbW12m9VVVWj61ZWVmYeQ9k/758MwzDHoHQsqsPr9abs+EEIxOv1Ijs7\n2+xTlM1E0l8Eu8/TCdSEJEdS+5seaqCj0vi7deuWkHp069YN27dvT8ixhbrOWXXKkoIUO9TgSBwW\nwVGRl2pwqhyCwSZa4YMRu4m86OAikQ9xdtDrjU9UQCUheOqYOjfqgdYwDHMbdZ4ieVgQwsfj8Zjt\nE+lEN/GG1l2wp7IyWrFJelwul/kATl8cOU3g43K5TNvbp4lqTdRL86qqKjNynr8MU7hcroA+n78g\niwfqPpRsRFqvyspKuFyusB2ppaWlAY5GOsmO3aRf1IkVy+sn2KRsdtsBDbZEHfrh9oEej0ccGDFA\njYtCud7VCyM1/lFjIvXCJiMjI6CPiWRsFGw8pmyIOk+VXSjnrZOdVFZWBozhhNSlqqoKfr/ftEPV\nV0YySRWNcOX/5dldUDR5R2o4qfw6opXK/8CkSZZ1OswphB7dMIyWOQ2dHhkyBADw/O234+0Iflew\n1P/GkMzp/Dr4bZomkofzDoyn4OhS6cNJR9fZAS3j8gH8e1s121K74/bL07LobedoGGW6c8mvCV2q\nYKrGMejSv4HG/65rBg+2rG8/yFu3cdxNUlq4TESoae18nbcz/S63O11a1osnnWQpu66oCNHgJJIO\n5yT5oUszpyT6cdHpd9C6b9za0EvQh+Pa2lr8tGdP7X5CTbt/b8cOM2ot2AM47Td430Nj3fgxdNcT\nt7tw3BJ0P7yPp3y6dy+AukifvXv34orzzrPdlteH/mZ+Haz68EPTecMfKi5hqW70/CS6n2zO2pa3\nZRtNGU1v3crK+H2Ftnsflib8fb2ERyiMIt+9f+1aPPvss0G3m/PKK+hR3zcqO+YR/vSBPliEIVD3\nwLhz504AwBNPPBFwnIHDh2PYsGE455xzMOp0aw/89p49AdvbcQpL8aVQewnncZJfa/SOc9+4cZb/\n3yfZuJBew7o7Jb/WZ/bqZVnfXJ9GXVpaiqksxTo6d2CgN0lp5vIXurEXR9cXnnbiiZb1bfU6seHC\nbYLWd/aHH6JD/fXVrFkzrCTp1zyVnV/vW8hyU03tp+3Dx1rjd+1CVlaWGUG6rEsXs+xDtu1IMi5y\nGpf9jNzPedmXxAZ6Osz7sfyVV7Bv3z7TMav0o9u2bYtxV15pbnfxmWdavsft7JRGvqQawMaC9Lrl\ntvXk1q3mC6kH27e3lG2BEA7cb/DMM88AqLvf/W78eEuZ7pmAlw0gafbf/hj6FR+OvMqZLPitsWP0\nJWvWoLS0FABw0003NXIvgiMSkdr0UFFNQnrjdrvNt6Xydj128MlEBD089VMRLHrOLj001ezZMIyA\nSK1g6TwKGhmhfru8ma6LRgl2nUUz0iM3Nzfo5EF0PVWgUY/UxqL5O/Ly8sxoIWW3kURnpBO8L+Tt\nYndv+THIA9yYMWPQuXNnAA0OVNUOugl47CZ8yc3NRfv6h/mbb74ZALB48WLLfg4fPmzqOVNovxVM\nyoCnLwrRv2bU+W7RQvd6pe646rrlEXnU7vi9OFGTsnB9dLvoQRUxGIoMUOvWrc3nJrHJ8FBjm3g+\ndx47dsxyn9bh8/ksYyflSG1NXgLYoWxJOYljTbNmzZIywyrVmTt3rnlP5NKHkRAs86wx+P1+09ai\n+WxTWFho7k/NxUOlJIUoIY5UQRAEQRAEQRAEQRAEQRAEB2SyqabH8ccfn+gqBLBw4UJMnjw50dVI\nK/x+v6kZJLqKsUO9SUzlyQnU28pEQKMKaBQJ0HBO1TbqbXKqRY14PJ4Acfpg0T58wgz6ljvVonBj\nQU5OTswjvzMzMwMiXZS9paLGGY8uy8rKQis2O3ok5ObmBkSipnJfGE+CTYxDP7eL/nv11VfN5Suu\nuAIA0LlzZzP6kEc3BpuIx+7YCrfbbU5+pyJd1Wy2a9asAQB89NFHpowA31ewSFSF+j2JimpMB44e\nrUuud4oUpBGrVL9bYaffm6jofJ2OMBAYOev1eh3HC/QcqFRYITTUuY1mpJ8TJSUlcLlcIUXBtmjR\nAocPHzb7GnXvUyn0dtTW1prav+paijU5OTkyMXAMyMzMNCORW7ZsGbX9lpWVmffISMY8Pp/PjHou\nLi6OSt2Aur5PMibjgFNEapQ8oOJIjQNU80t3SfM5S3X6IFzHRqfdxm819Lb6uylT8LspU8z1aGnK\nNkWctFR0+qW07EzmUOfDnFA1A3l9uE2ECk9G/IKt0zro9JP4ix/d8K2CreuuC34uqVaXTl/2tHbt\ntPsJtb0S7SZzOn6o9QtHC4jTg9gs10r7+vBhyzq1kS7WTdGVLHNNM26HH5BlnQ04/Q6qO/cpKxtN\nlk8m+mvB+DZEDVleH37NUNvX1T0+0+zYE4596PQUvz140JLe2V+jabZ13z6LgyCUGcaDEU7/wnlo\n/nxLShedROPOCRNsv6e7vsI5/kfffWceW010o+qgO3erPqxTvlOpcj9hOqgUfg3TusbvsTs4Og1d\nXq67B/Krla9/9cMPAOocWn2Ynt+ppC/4xkEvldaPJ6X+fOJEc/m/9bqm0eYWpiF40vDh5rI+edxK\nF+bEp+d26759FmfeaWRbJ83uCk2Z3XbJiC6whV5P3VlZP7a+kGgz8rKf109YFs2Xc+HsSXfPCceW\nwmHt5s2m08/tduOx004zy5az+wr9LXy8wO+zJZqypsLm+ue15cuXY8v112u3nVCvLVpSUoINTLc8\nnHGIbmx8MdFk/vbgQbNdy8vLcQbTAx5+ySXa+ir+u3OnZZJPrmcdKk6a73Ss+viWLaaDjzuFeS9+\n39KluOGGGxpVp3SEa6Dr7ue6eWF0WvcX9u1rWxYOZ3ThTzCho7vXXXfZZQGf/aY+tT9ac88IEEeq\nIAhCuhNPXSbutFLHdnoT7/V6A76TKoQ7e7qKFvP7/eb5SrUo3HjjcrkCon7t8Hg8FjvkUVdOM1VH\ng+rqavh8voBo12geg9qPIiMjA82bNzfLKaHo8KrvJuvs58mG0hB1uv515bydLrzwQtPWO7AHfp3W\npi4yNdjx1XWki2AuLy+3LbM7vh30uk03Teh4RgypdlDXsC66lNcrFv1UONAXX2qd/uezvGdkZARo\nEUvEfOMIphVaVVWFjIwMS8YDEJoGaTSoqamJijZ3sMyoWFNYWBiQZWU3DpaMJEFIUpwcqVGSj06t\nGRoEQRAEQRAEQRAEQRAEQRASgESkNpK+5G0wd3jrUpTCSSHmYe00lF23H/69cNIcQ5UhAIDiNAtB\np793zZo1mHDNNbbbtmHrhWSZpyToZBp0NqArc0LXtroERJ3dRaJWFE4cQleyfCYr+1cYx9CdL/o7\nH3/mGQDAbbfd5lS1qONyucJKS9GlxvD9rH3vPeTn5wdEKPBIEq/Xa9kvP29cqoKmAG5h21Ib6T93\nrhmp0KdPH/xi4EDLtrpEeno93ffCCzhcLy/QvHlz/GH0aMu29Pri9aGp0vz8BEsgCxYh5Ha78dUP\nP+DQoUMAgAv797eUNzZFP9lic8K5d325YweAunNTUVFhtnNGRga+3L8/aCSwLvKLn3efz4cTmRSD\nrj66Nihk609oZk/V9eM6eBrqKcTuttWnXLpcLjOCR0VqqWgXpaW99qOPzM9UCr/SlKMSBADw3d69\n5v7cbrclXV1X90TbnVOqOIWPbei6UzrvBSQN9csdO0xNNRrFZYeK+qutrbXUt6CgwNzP8ccfj3c/\n+wxt27YN0LjkWqTBtEnttFJp/bKzs/Hanj1m//f1118DAPbu3Qsg9JRmwzCw49ChgAhbdZxubfiI\npgFd+iWH74XeKxJtd3aoiLRQrxluv/w+RvsQvu3N7duby09u3Wpe4+raDhatDwBd66PRFbrzytuL\nxhfrxhpO0gtUGmcbkfvhEak8anUUsy26xs8drTuvj04KranHDPr9frzJPivp3du6Tpb5eX2zXlKi\ntrYWA5l8jO763rB9OyoqKszvAkBeXp6ZHaHaOpJMJbfbbfZLXq8XH377rdnfqSjR/Px8NGvWDOcw\nORtdu7/w8cdmvTweD/54xhlm2Rx2DvaQ5SK2n3hFyTYV+Liajo2crlNqi+HIwenQbRvOWESHTkoJ\nSLyMV5NFJptKXlasWJHoKggJJl4i50LiSWRbxzJtPDs7G9nZ2QHpdNyJEKuBot/vN9NPv/vuu0bv\nZ/fu3ZaU+1hC5Q7UMVUKWHP2MJvOlJTUPbYpW1I2pv5nZ2eb2mPKyRRsAh/uQFVpxcpp3RSg15ud\nI0udh5ycHNNRp86fcrJwR4Xb7badFEmwkpOTY7FDXVo9hffPbdq0MV9MqbR76vjk0hTKEaCc4zU1\nNRa9SCBwYj+K2p+yifb1jjifz2faBd/ebpKiYMcQu0mco6S4uNh8gaLuLeqlSWZmpq3MSbJgJ8tC\nSda6pxqRyk+oiXSCSQToyMvLM539qi3dbnfAxJ2RTHhF+yS1n+Pqnfb0Ggh3rHzCCScETCbaGKaQ\nOUYEQUginFL7o4Q4UgVBEARBEARBEARBEARBSF3EkZp8vPLKKwCAE088McE1SQ7Wr19vRpLNnDkz\nwbWJL7fccgvuuvXWRFdDiAN33nlnwo49c+ZMczbHaNOqVSvk5uZaZkQFAqOmVOpWtMnLyzMjDF9+\n+eVG7+fYsWPIy6tLnmnRIlZzC1snTwAazo/6LFgEWLpSWloKwJqOTP9nZWWZESRqdlx1Hml0CI8Y\nURME7aiXDmgKqGjErKysgMgYdU5UJFpubm5AlC+P/lEYhhEQ8SgEh55XwzAC+kKekk+jryidOnUy\n+yA6YRDvU1V7qAgw1Q+Wl5ebEZAqypRHc7nd7oAsAtX3tK2f5dzv94ccZUXthk9Y5DTRYDpw++23\nAwDumzo1rsfNyckx+0hlL9z+khUa+cyzRehvkYjn6DB+/Hj8bcKERn9fPcfpJjcLhs/nM+9NtL25\nVEmkqf1q3yr6VaGuj6NHj4Z9j/P5fAH3UEEQmhDiSE0uLmEPKbQ738q25XoYOv0kuu6kZxWq9qqT\n3YRqV07b3TBsmLmcbo5UQK8dxHX36Lnk+kRcd+V0sszdQh9ovqfTYdHVleuz6No9HJ1RHbq680R6\nXnd6frjeTg/NMXS/M5XdDJk2y0D0fmM4+pO6Pm0bWT6PlR0/fLi5/LOf/QwA8NZbb5mfDRo0yLL9\nm29yVbDg9dFpS1N05y5e0DrYqxImB/T88HM34sILg24HAG998kmjjndqobVX5de+ro9b8e23yM7O\nDnhg4o4jnYOCP2TW1taajrCysjIAVs22YaedZm5rffyztu0NTI9t5YEDml9iz3VMM5bTlSzzsQS9\nJyVatKaUtMHbb7+NifV9gYK2Mz+vujFSrK5vup+rz7Sqdn9ar1UajMu7dLGsdyXLfPxA+7Andu3S\n1uenPXsGrVusCEfXTqcf+ovHHweQvGNJXX9Hy7jGPL8H0jEKt1/azlf062cpe2crf9IIfvxwCfV3\nRcuWHiQ6sADQm5XT81XEymi/uY2VfcHWk6lPiwcfGQbmz58PoM5J+BK7jritUR4YMcJc5jbQWF3I\n3kx7X7dfnd2d1q6dpWyz5v6o07TkxxjF+l9qh7r749x33gHQtF7mxpNvyP19wYIFmF3/ogpw1mGm\n6OwpnGdap/3GAn6M0iR/MZayiEZq4lm4cCEAoFu3bgmuSfIzf/588829IAjJT8uWLS3OIa7Np9bD\n1c0KlcLCQjMSi0MdqAo7x+kHH3yAkSNHAgA6dAg2RVR0qK6uNiO/aBQXn0xD0FNVVYXq6uqAaEuu\nlUqjmuzsJFRUxDJ3mIajLRcsWlTVXf1X14zSNmwMdHINdS0G05iLVBcvFYhXRCSPyrRzqHP7cbrm\n1aRq3I4jsQ+v1xv0WgFC02kOZjfBopntto0V4UbDpRsFBQUB7Q4kZ3RqsPpF2ocLztDJyOIBnTRS\n9dUVFRUxjTT2+/1mv0szXOJlX/vrJ4cUexaEJCdOEakychEEQRAEQRAEQRAEQRAEQXBAIlIZy5cv\nN9/qqxlQRcfHmdatW2PVqlUAGnTsJk2alMgqCYKgQb3V5/0bj0iNVaRlfn5+VKJdL7nkEjPiMJZR\noVSDK9jM3ly3UAiO0o7kcC09FW0CAJWVjRURCb5vBddyUzbv9/sDIo25FqlhGAERgXZ6peHgcrkC\nNDlppBGPimzKkTHx+m20vdxut2kHTtIPTv2N0vfjbRWJPR87dsy8hniEIr1m7NDNos63CWV/0SLc\nWbfTjZycnLhHHEYC10gVvd3YM3nyZADAvHnz4nI8j8dj2qSKsj9w4EBM2/rgwYNm/6f0qLOzs1FS\n4iSOFx3idZx0QHwrQkwRjdT4c5tmcMLbgmp58Mfnrmyddrs/hlEf3l2/8p//wOv1moPxQqIZN/ic\nc8xlpyF6tHQtKY+MHm1ZPwjgD/U39V1JmHoUC2jyJddBpRpNXPvwTLY+gCzzc15ElrkWl45IdFCp\nxhlPMKXXQThaaVz7VWdbHdk6Vcocycr+RZbXsjJ+vjaRZd5eqQpvgx1Hrepg6uEm3AEMtVneL+k0\nSXWMJhrLAHAJ0UgNhzlMC4y7Xqit6YbA3AYbO1zeUq9hyCcIAeoePH5CJivkx2xhs5zK8N849Oyz\nLevfhKgJ2pWtXzdnDnJzcwFYJ4444YQTcP/Qobb7GdLVuid+nmlfwOtOhSO4na/64QfbY967eLE5\niRC3i4+mT7f9nhN92jRcmaezMq6JR9e5LiFlT6NrExu4XihFpznP2VhUhJycHFMmIVpOwveY/do5\nKi9iGrZd2X50msh03Djk1FMtZZ/Vp5oq/nvwIAzDCHBMRuJ827Jrl+lAUP+VLjDvx3V6h/w+m6ra\n5Dq70z0rANbrkF+zVD91zcGDpqM+XNkDep75/ZCP4Wh9+La0j3PSGA61Lad+9RWAuhTwiooK/Hjx\nxZZyOi7bwr5LRzO8n+LjO1pfXR/SVGjNrm8uckTbmfc1dJ0/o3L7pe38E6ZfSm2LHyMc/V26zm1y\nUN++ttvydu6qqU8Xtk6fM4pYGb0O5k2ZYilTzmuhcTy4fDmAOmf4Y9deaykrYtvStubjG/p8ye8z\numcSbpe6/jCc52a6zut6/3PP4dChQwCAadOmafYqREKcJFLFkfrMM88AAE466aQE18SZTz75BDU1\nNebbPjWDYbK/nX766acBSISqIMQbrnuq4NEidJnPSB2K7l46QKPPgukoqvOlnHtKT1XeuusJpvun\nUOdYZTlQ6PY+n88xupnOYh8LaIQq58iRI6ajV9mDXX3pfriN0ejGcGcpTkUqKsKZfkJPcXExcnNz\nUVBQACBQm5ee61DHVDR6mH832CzWsYDWIVi0tNOxdb+b92nByqLFrFmzorq/VKesrMy0TXUvUZF4\nHo/HbNdkHP8H0xBXv0Vlj7hcLrk3CkIaU1tba46rVb+QDlRXV0uEfhyIU0CqOFIFQRAEQRAEQRAE\nQRAEQUhd4uVIdRnJOOVjHFi8eDFW33KLdhsaEnyUlR20WQb0KQw89YDul7+PWfjSS/j73/+urSNl\nyJAhAIB7pk7V1oeucyOjdeCpEDw8vrGpr/uaiMnxVBoKP6/0nPdgZTwJ9UKyzM85TVf/FyvjsTv0\nu5F0JtRmeRostQHdbwb0qYs6BrD1/yHLXcezwg0Ni+9ushbxVP/1ZFknuVGaYHvldqY7z7xsc1ER\ngIZIFhUVR7UcuYYZjxCsrKzEuHq9aCDwutfJWPA+TZfOxe1loCbV/6O1Da3ppExK7U7Xh/Eyvt/N\ne/aYb81pNKAuohKwRqTV1NTgwuOPN8t08XY8BfP7BNrh22+/jat/9jPLZ6FKdXB74e3+Xb38BJ/9\nNyMjw4yo/uKLLwAAn332mVkGNNixYRj454wZ5j7nfP21GXHodrtxSseGxD3eD3EbpX0Br2s4aeYf\nbt+OzZs349tvv8WCu++2lP1y/nyUl5cDAFq2bAkAGDhwIFq1amXWGQiMKHe73ZbZkalMBE/l5L+T\nppfpfselixcDAG666SbNVvFh/vz5+Bsbz9DrQpd65yRBsrW4GECgtrHf7w/QpuWatTSSzu66p99R\nbaaikH0+H57o1s2yvU6CZBtZfmzrVrM/V5GKwbR5g9U12LbBtH6Dofbj9XrRj9wPnKRcdPcnSqLv\ns04cT84NvzfQe55uvA1YZTX42Ib2RcM//9y8N6t2Vv1Dfn5+gE0qyS8lueD3+5GZmYnTTzjBcgxd\n/6eTbuLtvPLTT81jqvti+/btLRGngFV3mq4fO3YMVVVV+OLkky37pSn6n7Jj0jKe2s+f0Wgfx3/z\nxiS3tcbQ3CG1n54DXewfv0Z1/ejrO3ea9y+v14t+RL5El3rtdEzdmI6380f1mqxFRUV48rzzLGV0\nTSd1AABbyfIGVvYFWebXwTdN0JbiSV9Nv6pL0ef2RO07nNR+vh9qF04yLTpofbit8folcmzflOnn\ncuENTfnQn/wEGzbwqz180jYitT0ZCCYrR44cwaBBdYqQarBfUFBgDqBU2pvSrFIPZsnO4sWLcfPN\nNye6GoLQ5Dla76RSDy/KuUQnx+HOArWt6nOSbRKlQYMGWRyp8SIzM9OSBsvTae3SsQ3DMB2v0Zhc\nKxHEI4082MQ+ygFVWloKAHjvvfcs3xlar4V64okn4p/k8+bNm8d1opxgZGZmokuXLjgQRAOWpnWp\na/Tw4cPm5BnKtvg58fv95vUZ6QRcdiTT5FW33357gCM11rhcLluHYjCHo10KPZ2MTrWncohF0qfm\n5eXZptXzCfCC1VknoaEItn/lgLWbLE6ILocOHTJtijvMs7Ozzc8USvtX9SG0r4gFrVu3NvevbELV\ngWInfZGbmxt1eQghvpSUlJh9mZKaizcejwfl5eUpO7YSBCG1SVtHqiAIgiAIgiAIgiAIgiAIqY9M\nNhUjVq1aBSA1IlLz8vLMt3zqTXTr1q3NZRWRot4Cp8obuRYtWmDRokUAgAkTJiS4NoLQdFHRZSpy\nRKfkoqJDVPRhosXQr7nmGnOmc6AhiktF1cYbl8tlOY/BJnih0HR+9TtSpY/mqKjJWMCj6GjEnDrf\n1A6AhkjUXr16AQCOJ3IJQN05V3acqAlNMjIy0Lp1a/RlswwDwJtvvhnwWa9evQImkAl2TuxStqNF\nOkxiBTTYljq3qn+hcid27aGgsh3BJgaj2wGISmS63+8PiOQLFgXP6+oUZUv3o7tPpKkaWNzJysoK\naGc15j927JgZkcpT/GmEdCyz1Jo1axYwkRTNAgiWyg80jEkkGjX1qaysNGcfT1S/4PV6UVZWlvDx\nqiAIyYVMNhUjnhg1qlHf4zoa3TVlr//4o+XhumeHBnUW3eMoT9SbMXp0yPVrrLHwBLNPfmxQiLul\ng1VVZifbln5Xpy/ItWl+fvXV5vIfJ05MWX2Q4vp6L1myBAAwTSNXQNuHn/Pz2PpFxKCK2IktIstb\n2Pcaq1nrhM62aDIP/1080YdqVnF7ocfg1xPfL9Uy6sp0UOnG3O540hk9Dj/GHxcuxKRJk5AMFJPr\n4+WXX8Ykph2qS/C9ZECDCttn333X6Dos2bULAFBVVYUbmaYZh55X3ga0rk4ahvR60ulOc3vhep3N\nbJb5fvjx3/vqKzRv3hxAZOmsD7RrZ1k/nSzrtBDvnDsXADBt2rRGHzua8DagbduRlVEtKd5/vL5z\nJ7KysoKmgYbDY1Om2NavT5culjLa9zi9oX7wqafw2muvmesDBw4EUPfy9efXX29+7qTrNoC8rOXb\nvk2kKS7RaAE78a/Nm01nyb3nnmsp49cBbRN+L6f1O7/RtYkNXE+M/i5dG3y4a5dpY1QqIVEP/OOI\nfiAQeN+n15NOg3Mo07x8O4h0RKz5+vBhc5k7aPvWayYqdOOHVHLZK23/5cuXYzrpBzhO2vC0nGvu\n0W0PX3ihpYz3ElUVoSn2Oc2FTXthfr/W9Rnh8Ga9tisQOEdAODqEur6bn3d6P2+KmqgcqjG8aNEi\n/H7iREu5brxLx0ULtm83dW6zsrIwnrRdOPB25eMrWh8+LtMJn+gEBHTzMPy0XhO7trYWPp8P/+lo\nHbWEqr+bqs+ryQo977z/4WMYHbo5QXgf+MCzzyInJweFhXUjw3379tXto7IS86ZPD+OoDehslvdp\nySOe1LQRR2qKowbrsdQoigU0wkIIjcPkoUJoGiSLE5Wzf//+Rn83JycnQDeSvsXnWqmqzOVyBZ3M\npKmTkZFhmcwIaIiyycjIsI1EVUTajyaLAxVAUJ3PxuJ2u+HxeELSblQou1Wa4d27d7fdNlL4NaJ0\nWceNGxezYwJ1GufqmlPRZsHOkaqfetiNtmPw9ttvj+r+EoVhGKiqqgLQMA6rra0NiERVWT/qpYnb\n7Q6wRXXanCrmAAAgAElEQVQtB5uoSaGz41hGS/n9/qD14f25jmCRtvS/1+sN6M/sJrFq6hTXO2QS\njbJj3l+pdqmuro5pRGpFRYV57QSLalb1U9egED8iuSdUVFQEaN/akZ+fb0ZJJ+o5qLy8HF6v13SK\n2UE1/5NN91+IL263G2PHjg34/Omnn05AbYRYIY5UQRAEQRAEQRAEQRAEQRAEB/wQjdSos3r1aks6\nNH8npUvJ6c3KaBg5TzWgbwOd3gw6pd3Y1Yd72cNJ69Z56GkELc+abuwcwTw1LzFzO8aOWbNmAQAe\nufNO221055ynM1BD5J0APXddWFmR5pjhvH91Sk2zOwb/jbqULV1qUVeH41vSJLayQmKkG1gRl0Kg\npMr76YkTJ+JXLFqW1l1nZ9nZ2Wa0CtVBVX2Uij5Qb+upFiPVA9WlPQFWe+bJ27QPcep/KbyfpL+T\np//w60KXHkT3w9NvaNSpOhf0PPBsAzvdwtNhhdo677fXIjmZNm0aHmQpT7QtuU28uGMHgIZoKWVT\n9Pw5RbTRSLvCwkJc97OfWcp1ts5jU6gN6GRoAOAZcn3R/veRtWtDvtb4MXVppyrNX/3fsmuXbbQu\n1eZVEanq3P5tW50whNIgrK6uNpdramow53z7pH1+j04mdFId/LzSfuLBzp0tZfz6pvcD3od9Xq8J\nbBepGQwexck1lPkxfmTrtC/g7XHQZjugbszGI+d16LRcqd7mmSSlV9c38/6WSxbQ1E1+u05Fpk+f\njl/PmGFbHslY4kyyzJ85XOwmqMuE6N26dcj1oX0c35bev/n1c3q3bpb1XSUlMAzDjL5WutYVTILA\nSYpHJ7djVzf+PafvNnUmTpyIiRMn4umnnzbvAc+S+7duzLSCaXrz8Tfti25i29I2CceBwW2Ctp3u\nGQgAft2jQSyC/y7a9yytzziw2w+1fd5X3/Xkk5KpGSOoJEVrdr/ltkfbjPdHuudd3TMshY9BnWyY\n7pfbE/0u74t2iTxEXIhXRKqofQuCIAiCIAiCIAiCIAiCEBe6du2Kvn37ol+/fjjzzDMDyt99910U\nFhaiX79+6NevHx544IEE1DI4aRWRGq9JBugb/lTTFEy1+gqCEBp+v9+MTqCRarQcaNAKDBbllE4z\n7Xo8HtsZ5X0+nxnVy2cslj40ULdP2ZuK4qWziqttc3NzAVjtTi076Z81Jdxut+1YxTAMyzkEGs6X\n0lVVEarZ2dnmeVe2KoSGk2Yo1aFU59guEjUrKyum+qEul8s8VrD+WdXVri9zuVwB35Poq+SHt6Oy\nsUTeo/1+v9nXlJaWAhCN1ESi+iYhMtxuN6ZOnZroaghR4mabiaH5uFWIL++88w6OY5NyUgYOHIh/\n/vOfIe9PNFJjQLwGGPQhUXBm6dKluPHGGxNdDUFo0lRVVZnpdsqBWltba/ZVPKVfDSrcbnfAZCvp\nAJ10hk/ARSfxUA6sRM0GnoyUlZUBQIDTj8pFcEdgixZ1iXnKkU/T2PPz8+NU88Sju8Zqa2tx7Ngx\nAA2ps9yRp3C5XAHnXQiNYJIKAAKkUegEYXQyE8A6wVVWFk9Ejh4ejyfAWUrrrrBz9FJHLHcYC8mL\nsi/uQE2kM8AwDLNfUo5UIXFMmzYN8+bNS3Q1Up5YThYoJA8333wz/njLLYmuhhAlxJEaI3QnlWtc\ndCTLXONCp1nF0cXS6LQ7+DGp/gvXB6Hr4RiOblsnLTndfug615vh602FffUPH2+++SbuHDzYUrYz\n2Bfq+YCtl5ATxM8rtTuuB6TTmtK1s5NWJf1uOFp6umNyTSR6HTjVhz6SFjFjohpsn7LvFbF1Wr8F\na9YAAK6++mokO+Fc37TvGc80zXpYN7W0wZ2HDtnu0+n6DUf3OdTv8b6Zbsv70I5snWrNcS1P2neH\nqqMEANVEl6uaHYPfDy7U7IdfT/8Kow7xht8PdPpQ9/duOCNc64/rJP7yiy9COj63e95ehZoyahPc\nBvh+qaYtd3/R9uH70Wn28WPQPq2x1wsA+Hr2hHKXtWVl/DxT7Uquf57M9+TN9ffVBQsWAADW3H67\nWabTT+VjJJ1mYiRtcFavXrb7oe3MrxHeBrrYMZ0t9WrXzrKu6xtf3b9fcxQrVOua66BSeH/bna3T\na6aIlT367LO49dZbQ65TskB1/VauXImJY8aY607XErUD3pZ0nMjvIz5mwINhz7ayMlRVVaG2thb9\n2re3lPF7DrUXnZ44t99/ff+9mSng5Lylv4Vr1+v0z/k1Ec7riCeXLJEADcKk+fMBAK1atcJbo0db\nymjb6vowjm6+C34d8P441OdJfo04aePawft/rlFN75dTFy82I6klmyN+FLMXeFwzlaK7Z0fy2lKn\n0ax7Htf5gUQT1RmXy4VLL70ULpcLkydPxiQ2FwgAfPjhhzj99NPRoUMHPProozj11FO1+zQgk01F\nnXh2iLpUK8FKU0s/OXz4cKKrIIQJjTAU6uApg0B6pb54PJ6A6C0+cYYQOZWVdcNVFcnXrFnd4xmN\nCFYToaUDVFIiWMq1GsdUVVWl1QBuypQpAKyO1Fijzj+P1FQRSqk2dqF9Oe/bgMD0/1iTik5Uzv4w\nnNPRRI1Z1KRzqo9U7ep2u83o0FiQlZUVNHKbR++pjI14I07UOqZNmwYAWLhwIQDENDq+qaCyPoCG\n8ycIQux4//330bFjRxw4cACDBw/GKaecgp/+9Kdmef/+/bFz507k5+dj3bp1uPrqq7F1q376Spls\nShAEQRAEQRAEQRAEQRCEJkXHjnW5LW3btsWIESPwySefWMqbN29uSnwNGzYMPp8PhzSZk0CDI9Xu\nL1qklSM1XqLnVI8s1SJS1WQWSn8pHqiIpKbCkSNHEl0FIUxKSkpQUuIk0pE+qGhANRGJ+kuniFT6\nu1WfWFFRIVGpUSYrK8sSJaPONY2KS6coGho1qK5BwzBMzdjs7GxkZ2enVZRuvPF4PPB4PAF9oFr3\n+/2W6OBUgv8W0fOPjBkzZiTkuMXFxSguLjbHLtXV1aiurjbblGrnxgJ1jdDrRF0Xfr/f7Neln0oO\nKisrUVlZaYm2FILjcrlQVVUlE6UJQhyoqKgw51WoqKjA66+/jj59+li22bdvn5kx88knn8Dv96N1\n69ba/cbLkZo+T8X1UF0WpxNJt9VpknKtjrEnnGBZp7pD3FXDdVrsvgdY9TjC0bzUaWdyvaRTO3c2\nl520ckJ1f/L96HSYmgo6lxwv47qIVFuIa5xRXT7edjptUZ29OF0H1NbD0cnVodMc5sH63H62kOUi\nVkbPLddo4nVPVbdpqUZHSKc9y22Ja1fy9WjA9aFpIqzOljg6DWZ+HejaPVo3T64v62qQSUTLYday\nlrxRyAX/47+tRec9/jhmzpwZafViAre7a4jdcduhfbzT/ejJM880l3/x1Vch14fbM9Vm7KrZlteH\n9ze0fnw/RWTZSS+a9ps6PetwXiOuZ3qY55Llth2s23LNVDrY4Pqc459+GhMnTgyjJokj1HGQk8Y7\n1fZceuSIZXK9cKB9HHf30/5Op68G6O+zWZoyvq7TLg6Hlw4dMh1xj7a1WlOmzTJgvT8DobdXKkMv\nPd2YHrC2M78O6bni95jrN20yU/UNw8C7/fqZZVd+/73t8bgNcLur1JTR3xWOjvA/elhrf9O335rR\nRHM6WlV1+RiB1kGns8lFNcIZT6Q7RWydjoV1Yy1AP4bT6czz9qLH5M/XtL9zsjvdfZh+l2ua836K\n6hMPcjimEB+4ZurxZMzJ7XL+K6/AMAxTbkcFaIUr8fE9Oeby5ctNySkuhVNbW4vxo0bZ7oePlwV7\n9u/fjxEjRgCok00aN24cLrvsMlMXf8qUKVi9ejXmz5+PjIwM5ObmYsWKFUnzEjitHKm33norfnHb\nbYmuhsCYPn16oqsQVSZPnowH6/XchNRAdJCsqAg4AGZEFpB6EfaRQDU6VeRZrDURk9WJGi8yMzMt\n+uLKkaMGs+kCn0U91hkiqeJEjRd81nquBamihpNlIB8qNAKV/ue/V63HMqJRCI/a2lqUlpYCCGyX\n0tJS0ybVC4GMjIyY3q9zcnIsTgWgTlsy1XSD04U777wTADBv3rwE1yT5qa6uxqxZsxJdDSEM9u/f\nbxkn3nTTTRHvc9y4cfjb3/4GoEEXXfV18czabep069YNmzbx14oNuvhA3TN6uM/pMtmUIAiCIAiC\nIAiCIAiCIAiCA/GabCrtHKk09YCn9vIUAeof515tn80yYE2HAYA39u4FEDgjak1NDXoTGQCewsDr\npzsm/a5TCvOnP/wQNJLCMAz0I6n9TqlxvhDLeGpROqT27zIMLFu2DEBd9MrkcePMMt4ePH2J2prO\nRneyMr6fUNtHlw7O0aX98PQcXh+Krj78d+mkKXT74dczr/sfly7FDTfcYFvHVEGlv7z88st4fPhw\nSxlNsOPp1zx1kLZ7bW2tRQ+VRi85xQb+o/7NYlVVFWaec46lTJfGzPerS0stsVkOBr2eXtq504zS\nqaqqwm0nn2z7PRqRyiOAsvjLbtrp80nFO7Mz/2pDUlnNb94AAGzevNmMGEkV6PV0Oiuj6ga8X9jA\n1mnKXWZmZtBoP4/H42h3uvRn2hfw+nCbpPakS//TjQmC1UG3LYX+bhX1oFJ6eZ9m6Rt5I7ALow3J\nOU7l+N6N9f3dggUL8H+3Wy822pZOqb/ziooA1M167vP5TLuj2qdqzKYiXVTbqL4xMzPT0k/p2jWS\nyAjdd/n9mtbHSX5CwaNUVVShmhl+wnffmTrFmZmZeIqkZ/NjfMDWaar77+fOBdD0MkC+IRG9rdnY\nWnfP06VNc6h2cm5uruW8PnHGGZZt6aWvk9fh8HsuTcLnv+OqVq0s6zr5lPLycvMa0kla8HKejq0b\n++2SVNqQUJFdKm22c+fOmHz55WY5twHd8wEfm4dzz2ustBa3F13/q5Ot2MbW7120yNREbWr9U1Nh\nXwKucV22TrpnkCU74kgVBEEQBEEQBEEQBEEQBEFwQBypTQga6QA0RDnQN8zxhGrQ0XoJ0UVFO65Z\nsybBNRGC0RSiUSlXXXUVHo/Svnw+X4DIeqioSSWUplAy4Xa7zWgrp9lraWSg6rNplG40OHToEACk\nXDRqrMjOzraI+qf7PUpFRlZU8DgcYcqUKQERqeGgoo+ys7Mtn/t8Phw9as2nKCgoANAQmarGbipK\nM5VQ15KyrYyMjAANYtVHqpl0/X6/uU0kfaBEejUev99v2mqLFqmV11VRUYHc3NxEV0MgKP1BFZma\n7lRWVja5+ToEIZ0RjdQmhErP4+n0iZ6oQA2ouYNXiC4jRozAzYmuhCCEQXV1NXJycgDUOR/DmXwk\nLy8v5G3jjc/nMx2oTpNi0ElY1H/udImUMWPGRHV/qU5WVpblvpjoe2SiUS8jVGq/ED34xFFqnFZe\nXo4jR44AaHAaquueO1JTcRI0NZux+p+bm4vCwroEcJ7ir85JVVVVwl78C3VUVVWZL5ZSzYFfXV0t\nfViSMmXKFDwUwQuppoI4UQWhaSERqTFCaRm9//77GDtwoHZbqqkSjvYL12Lp1759SHXTaSkBVq0a\nnValrgwAziS6rByd0YVTlmezDAC/WLUKI0eO1Oyt6fG/L78MoC4KbvqoUZayLmxbqqjIdXxonAzX\nGOIxS7r2ovEMXEOLa2nq9EvpMTuyMr5O9a50jwE6fUNezvWcaH34+fnl4sVRmckxmeHD4fPIckcu\n3qw50Ts0x+DXM+ciTX9H2yecGxxvZ2oTur4HsParU7p1s5S1sVl2ZDG/Ss4myzNY2WvW1S6/CudI\nScsr5MXbu8zh2awXWWaNdy4TSV0S4vG2HT5sOufLyspw2YknWsqpTehslGs3821p9XjfE47d6fq4\nIrL86Q8/AACaNWvmGP3N+/i29KAXskI2CWrlhw3LC5vIS1N+znXtw9ty5CmnmMtvHzhge4zXTjvN\nsj7pqE7924pOt5ej03/UxSPzcaNOF5DyXM+elvU7Nb/rvosusqzrrq8f2bpO67opUkyurYULF+KX\nZOZhIHTNVH4e7z/vPMs6tS2dzii/Dnh76O7DOvvhNkDX+W98avBg2+9xtpJl3ZX22KJFAIDx48c7\n7FFw4pdz5gAAjjvuONxz/fWWMt5e1H74kDIcaB8XznwK4cRiU1viNvnrZ54xMw8kI0gQhMaSdo5U\nxb59+xJdhbQl3ZyoAHDllVcCANatW5fgmqQvTd2JGk28Xq8ZjeTxeNIyWt3lcpnnQDnwJCortvj9\nfsukjMqxyB2MKlq6KaCiy+jvVedAradi5GMq4fF4zIi5srIyU0qhGX8LgLq2URGbqRYZWFtba0oa\ncLxerxl5q35Xqv2+ZGPy5MkBjlQhOogDNXrMmNHw8pc7Upsqt912W6KrIAhCDJGIVEEQBEEQBEEQ\nBEEQBEEQBAfEkRpjRo4cCQnmF+LNsGHDEl0FQQiJYFGo6aZZqSJRVWSqEFtKSkrMKMz8/HxzghIe\nkdqUIuVUlHMwbVgVIagmcBNig9/vt2gn6/Sd/X6/qZ2aapHChmHY9mXHjh0zI73V/+bNm8etboIg\nCIIgCNHAD5lsKuY4aZJSwvFq8/1yDUq7Mq4Tw7+nq4NON5JrRer0VCk6rUGnbWkdwjnP6cA+w8Cr\nr74KoG4203eY1AHVFuU2QXUct7IynTYuf9zz2mwX7Jh0W51WG7dXXbvzzo3qHul0TwGrbhc/Bt12\n6vLlAICxY8dqatK0uI44P5966il0XHNHQ+GZbGMuzss0Fe34/OBBM/X16NGjuOX002231dkkbztu\no3Rbbi+h9oV8nbvfaNnD2+oUiQsKCkJwkHzF1mkv+w0r+9ayNv/dp3B7E5vc4SJidytXrgRuI5No\nDbJu27KXdb3D1407JtfvozbB70c6XTWuRajTF9TB7Zn2Y7p7cDgE6PjSD7qzMnZ9fzt8BUaPHt3I\nIycnK9nLnpOIM9pJZ1R3f/r1hQ2Cs4M02wHAS1/XGfCePXswaZB1a9pvOdkkrZ/Otjm6bTcXFZlO\neO5A5b//S6adf+7hw+Yyt19+zej2uy8NZWEopfW/f968eQCAe8mkNvxc6dqZtwG1b25LtIzvUzeG\n02lC8+uJ23OoysF8nMjvybr6PbZokaT0x5hd5HqdM2cOHp01y1JO72u6Z0SnPmxj/XE+//xzAHX9\nJ1AnrXLnuHG29dON4YpYGe2nitO8HxKEdEMiUgWhCXPZZZcBANavX5/gmjRd0smBGoypU6cC1JEa\nBllZWUEnvuFRqk0pQpX+Xh6J6vP5LJ9HQlNzonJGjx5tdaSGAZ2ZOiMjw4zWVBGoXEO0KUAjUtX1\npH6fKsvLc5qixZmm5kSNJj6fz7y2nfo0n89ntovH4zF1VNXM98lEZmamec3U1NQACP3aycjIkIjU\nKDJt2jQAVkeqEB7iRI0vM2fODHCkRpszzjjD8v/555+P6fEEQUgPxJEqCIIgCIIgCIIgCIIgCILg\ngDhS4wAN9V+6dCnu0MzqrUtd5ykvurQn3qi69DKeKkPrwI9JM/x4mg9Pi6XH1KXTcnTJrjwdm277\nTROKHoo2Q4cOxa/ZZ13JMs++vpAs89SZcCQcKm2WAb39cqit6VJk+XG4LbXQlOnWuW3zc5DuzHmz\nYXnmuaxwJFsf0LCYl5dniZSjM6k/1MaaYNyV7Yam5j1dVGTqXHq9XlxI0ked0horNGXh9EUrv/oK\nx44dQ21tLe456yxLGbWfR7p1s5Q9dPCgGZGqotUaIlI/YkfZT5anWouy2JXhfVZT+6bBOtK4w7hk\nRA/r6gCS2r+OyUTQrz508KAlMnXH0aNm+1RUVKA3sS1dH7aHrUcr7V4nn8Jt/au9ewOibF0uF/x+\nP0a0sN7B6RkZAAat7DZW9ke23rgg4ZTi+/p+6qmnnsJv7rBG4/MxHG2vszp0sJT1JsvcPqqrq82+\nMSMjw4wWbt26tXastam42IwKLSsrw9XduRZD8O8B1mb+7LvvUFVVBQAoLS3FsIEDbfeTlZUVEOWs\n6sClgfjvXEyiUfk1obPtpS+9hOHDh9vWKd0pJePh5iz6ORzpm1Bj1HmqvK5/06XnO0mN6VLydfDf\nRevwp6eangxOqrHL5vnt8ccfxx/utJ9phNvHk0uW4MYbb3Q83qhRozBq1CgsWrQIAPDziRMt5byf\nonfL7+VZUxCEOBOYu5mmhNLBC4IgpAMZGRmWVGO32w23221OshIqfr/f/EvkBEEej8ecuCfc76nv\nZmdnIyMjI+xzIEQHr9eL6upqVFdXm58pu1ST46QKKuXa7Xab15nf7zcdZEJkTJ061XmjRlJVVYWK\nigpUVFTA5/OZfYJTGrzb7YbX64XX6zU1phtDVlaWeUynPtXj8cAwDBiGAZ/PB5/PF3ANRRtxogrR\nQpyoycusMFP+w33GnjBhAiZMmBDWdwRBEBQG6l762v1FC3kiFARBEARBEARBEARBEAQhZZHUfkEQ\nBCEheL1eM+VYRWUCCDoBlQ4VEdWY70aLzMxMZGbqxACCQ6NYVWTusWPH6ktLo1U9IURoxKZqD9U+\nqRYlrCJRgYZU64qKChw9Gurc10KiKC0tNe2wpqbGnGQqFBtUEaT5+fmNPn5mZqY5wVUox1T2pSbM\na+jDBEEQBEEQmh7iSE0ASrvomWeeAQD8mqQV6PTPnEKE6aMR1zWiukM6vVQO10GlmnBOhkN/i+6Y\nThpNdJ3rJ20UrZqQ4eeqP9HN6s227UeWT2dlRWydapTqNNfC0d7itsV1UBuLrj46HV/+u8TurMyk\n5+M8Nhv1ILbxeQ2L7T+wagYe6XvYXL6/pMR0jvp8Pkxr29ayrS7ZlPYTTrZD+02dTXRgZbxvpHB7\nobb+0MG6GlEnF6X9c+RI/MKk/Iate9PPJocRu/uUncsBrOFpGzD51LD6l6379gGoewlwXufOljKq\nqxbOfY1D68rtXKej/tz27abzzMn51ZWt0+Pwuh0gN37fr6xl7yxdihtuuEF7rKYM1cBfsmQJpt18\ns6WcnkveZ9Bzzu1l9gCrUu1Thw6Zy/8lfaPSU7Z7gRSOlr6ODd9+a/ZXSo86Nzc36HGHnXSS7X7a\nsHVqz7w+tG9+8Y03AACDBvEbiuBEqc14ZcmSJQBgOunz8vJw7aWXWrahbaCzF6f+bu7//i/atGlj\nvhyorKw0j33rsGFBjxcJS9asAVD3UkFJXBysv/fGUpJDiD7FcRhv210jgiAIOsSRmkDGjx8PwOpI\nFQRBSFfUA4/SolQRnk6RnrW1teZDvopqjTfZ2dlwuVzmxER2GEEG7KrujYloFaJLbW2tGU2n2ko5\nJal+b7B2TDR88jagIUJQXVtHjx41nRjRIJ2dqJybbropwJEaLbzeulfpPMJYfQ40RKKqfqSgoKDR\nx3O73abDlEfMK+ep3+83j6/qEytd1G+++QaAOFKjyU1s4lvlWI0F48aNC/q5CiiJNvv3103MWF1d\njRkzZsTkGIIgCEJ6ozRSY404UgVBEARBEARBEARBEARBSFniFZHqMpIxfCNJWbBgAQCgQ4cOmERm\nJuUNxddpihRPIaPpVDzVi8/rSr/L01m3kGWnmBZaH57OpZMI4DFZf3vhBezevRsA5M1yjGjN0mJp\ne3EbKGHrNBWLv5XRpcfz/d63dCkKCgrMaBcVQVVVVYXf3nZb0OMBeskAnhababNdMOhxvpfuq1Es\nXboUN/7RGvUCGoDPG4EExOx8rsjU6FNRdir6qbKyEn/p1s3clqdmP7ZnD7KysmAYBk5ikgDhoEsH\nf27XLnPZ4/Hgjg4NFs2vkWV79piRjDRitra2Fm2vbmd7fOND6zrtNze+/DIA4Morr7T9froyd+5c\nDNTcK/7F1j8ly/z+yNvy7SNHADREelLt0St6cCuxRzfwyrRZBgLvpYt/+AFZWVlmFKKKGvR6vfif\n4483t+P9rU7KhCtK0G1zX3kFAHDFFVcEr7wAAHj22WcBALPqM4+AwLbrYLMMBNrHVrLMbbSxg3id\nDUQCl2CiNGPrtI/lv2vp66+bkajTp0+PQs2EcHj66afx28mTzXVuHwuefx7V1dVmFPJ4YuuhsnTp\nUgANkcwej8fsy1Rmioq0zsjIwG2XX25+l48pJT1bEARBiCctXC4M1JTv/clPsGHDhoiPIxGpgiAI\ngiAIgiAIgiAIgiCkLBKRmuQcTyIF0zUiNR5C4+lOMkSkfsPaee3atXX78Plw53XXBT0eIBGpSU9v\nNqFSiBGpWxZ9ZWr0qchUNbFKRUUFHuve3dyWR6T+uagIOTk5cLvdMYtIXf7DD2Z0qdvtxtT27c0y\nfo2sPHAgQLvV6/WiuroaXcZ2tT2+LiK1o9ikli+CTOSliCQi9d36Ge9VRKrSxK2trcXFHXivZk+0\nIlL/98cfkZmZaUbyqwjZ8vJyPEgm/YlWROp1Yndh0ZzYoUSkhheRuk9sLeHonkGKDQNz5szBzJkz\nIz7O/PnzAdT1o+pxMdhkjA+SyGSJSBUEQRASSXOXCwM05UclIlUQBEEQBEEQBEEQBEEQhHQnXpNN\nSURqlFi2bBkAoGPHjhh7ySW22/G3/l3IMo9C4FEAm22aauHChZg3ZYq5ziN1dHXgkRg0uuLv69YB\nAHbv3o2JEyc67FWIBzxClcKDCHnUJ4V2LjyS9Jnnn8d1JNLUjlWrVgFoiEacOGaMpZzbsy6aS1dX\nHpkt0TDRRUUYV1x9tfkZtyXaT5zPw5pYp/YG6bh4hOEHZHkrK+NRLNRGeMQNjc7vzsp4n0arV8TK\naDTrbzXHB6y/hb/DHPTOO/jyyy8BiF50qMyZMwcAUDFrlvnZNrYNv/Ypuii9Zw4fNiNAFTU1NSgr\nK8O1PXtaPtdF/4VT9uKOHQGzs7vdbtTU1GAs0UQFgNPJcj+2nyK2Tq8TPn64et06DB06FEJk8Puq\nLouItzu9f3J71WUHRSvqlO9Ht0/6u8I5/pOrV+Paa68Nq16CIAiCIAiJIN/lQh9NeY1EpCYXN9xw\nQ6NDQK4AABO8SURBVMKOPXnyZIsjNVrIA1p6EooTlW63fPnyWFZHiDHD6yfOk1ZsPF988QVmEYeg\n4IxKO304BueNpp6qFz0ejwf5+flRP5YiKyvLnLhMpfP7fD5zspZYIPdoIR6IE1UQBEEQhFTBSSPV\nPiwtPMSRKgiCIAiCIAiCIAiCIAhCyuLkSNVlwoaDOFIFQYiIcePGAQCmXH99gmsiCIlBolGTC5fL\nZU42dezYMfMzlXIfCzIyMsyIVHrsWEakCoIgCIIgCIIQf8SRGgMSoeFop5+qeOKJJyzrouOXmhST\ndtbppQKBOpeUWMx2X2oYWLFiBYAGjcC8vLpa5OTkYDjRDg7HnTH/xRcxYsSIqNVTCM64eptYs2YN\n/nLNNZYyqunoY6K6Pdh6/0OHAADV1dX4oGNHS1kzm+Vg6/RNItd99tps57S+YPt2i7Nr/oknmmXr\n2fc+ZetUs3qiaFNGjXtJXzSQ9Wl0lnrdzOqAvk+5krQzh7+VppqYXONS93b7snbtLOuvHThgWzd6\nyXzByrhO7B6yfMeiRRg/frymFkJjKLa5H/7973/HzNtus3zWWFd8ON+LRD+VbqsbAyz/978BAGVl\nZaiqqgIAHD58GABEE18QBEEQhJTFD/1kUxKRKoSFOE6FeDCmfsKpl19+GUCDVqDLwemrQ5yo8WXE\niBH4axT2E0mbx4qKigpzQqBIECdqcmMYhml/Xm885u0MpLq6GlVVVVE9vjhR48utt94a4EhtKhw8\neBAAsG/fPkydOjXBtREEQRAEQYgOTqn90cIdh2MkNVu2bMGZZ56Jli1bomXLlhg0aBC2bNli2Wbj\nxo346U9/ivz8fLRr186cbVgQGstHH32EwYMHo1WrVmjTpg2uu+467N271yw3DAP33HMPWrdujdat\nW+Oee+6BIbPVC1HmgQcegMvlwptvvpnoqghNjOrqakyZMgXt2rVDq1atcOWVV2LPnj3OXxSECJg9\nezb69OmDgoICnHjiiZg9e3bQ7f71r3/B5XLhvvvui3MNhaaM1+tFr1690KlTJ8vnb7/9Nvr374/m\nzZujW7duePrppxNUQ6GpoXtGLSoqwsUXX4y8vDyccsopMtYTosLQoUORn59v/mVlZaFv374AgAMH\nDmDs2LHo0KEDCgsLcf755+Pjjz9OcI2FpsCrr76Knj17onv37njkkUe02ypHqt1ftEj7iNQOHTpg\n9erV6NKlC/x+P5588kmMGTMGX375JQDg0KFDuOyyy/DYY49h5MiR8Hq92L17d4JrLaQ6R44cwaRJ\nkzBkyBBkZGRg2rRpuPXWW/Hqq68CAJ5++mm89NJL2LRpE1wuFwYPHowTTzwRU6ZMMfdhl46YDFx1\n1VUAgHXr1gGo0wp8fv16eDweM1KspqYGAMy0wiNHjgAAbmuiEUDJxvfff49Vq1ahffv2AWXvEdta\nvHgxlt9yi7m+lm3LU/IPHnecufwjK6NuNJ6uz5m3ahUqKirMmdbbtKlL7vb7/bjq4ovN7bay7/Fj\n0pTwP9QP9BQ0jXsR+95Btv7Q6tUye3UYzJkzBx9++CG+/PJLFBYWYtKkSZg+fTpefPFF2++8x/q0\nviSq+XS2bQu2TuM+J7dsaSmjqdI8XV8XL8ptS5c2za+DQSecYC7zulK4nRWxdSfZHsGKYRhYsmQJ\nTjvtNHz//fe49NJLccIJJ5jZEgDg8/kwc+ZMnH322Y77K9Wc/+XLl2M60Qbng3Nqd9xeeFw8l9tZ\nuXIlAOC4447DiEGDbOugeyDgtr5o5Urs27cPAHANk28RosPs2bPRpk0blJWVmZ/5fD6MGDECf/7z\nnzFp0iRs2LABF198Mc4++2ycfjrv2QQhdJyeUceOHYtzzz0X69atw7p16zBy5Ehs3brVHE8JQmNY\nv94qhnXRRRfhknr5tvLycgwYMAB//etf0bZtWzzzzDO4/PLLUVRUZI7nBSFcamtrcccdd+CNN95A\np06dMGDAAFx11VXo3bt30O0lItWGlStXWt6CZGdn46KLLmr0/lq0aIGuXbvC5XLBMAx4PB5s29ag\nUvbXv/4VQ4YMwfXXX4/s7GwUFBSgV69eUfglQioRbbsbOnQorrvuOjRv3hx5eXmYNm0a/vOf/5jl\nixcvxl133YVOnTqhY8eOuOuuu/CPf/wj8h8ipBzRtj3FHXfcgT/96U9RSXUXmh6R2t2OHTswZMgQ\ntGvXDjk5ORg9ejS++uqr2FVYaBJEand33303+vfvj4yMDPTs2RPDhw+33FsB4C9/+QsuvfRSnHLK\nKVGuvZCqROM+u2PHDixbtgz/8z//Y/n88OHDKC0txY033giXy4UBAwagV69eAdlvQvoRqd3pnlG/\n++47bNy4Eb///e+Rm5uLa6+9Fn379sULL7wQo18jpArRfK4oKirCe++9h5tuugkA0K1bN/z85z9H\n+/bt4fF4MGnSJHi9Xnz77bdR/AVCuvHJJ5+ge/fu6NatG7KysjBmzBisXctDexowUBcoYfcXLVxG\nCucLl5aW4uyzz8asWbNw5MgRbZhvSYk+/qlFixYoLy+H3+/HAw88YKZ7XXLJJejbty8+/fRTbNu2\nDWeffTaefPJJdO7cOaq/RUgdoml3iscffxwrVqzARx99BAAoLCzE66+/bkbMqAgGGuUgpB/Rsr1V\nq1Zh2bJlWLt2Lbp27YpFixZhkCbqaQiJDOTv/gIiUsmyLiKVl3H+vm4djh49Cr/fDwBoVz+ZT7Nm\nzXDpueea2xU61IfGXfAJimikIH+k5ZGC36TurTJiGmN3GzZswMyZM7Fq1Sq0aNECEyZMQNu2bfH4\n44+HfFxdRGo/tk4HRptYGY0s5VF6ukjBSCJSaTQij0ilNstfYxSx9XSOSI20vzMMA/3798fkyZPN\nbI6dO3di8ODB2LhxI6ZNm4ZOnTrhwQcfbHQd6aSP0YxIVQSb8Kqx6KJrhQYaa3dXXHEFxo8fj5Yt\nW+KGG26wRAaOGzcO559/PqZMmYJPPvkEw4cPx2effYYTSOS6kN40xu50z6hr1qzBvffei6+//tr8\n3rRp0+ByuTB37tyY/x4hNYj0PvvAAw/g7bffxrvvvhv0O1988QXOOecc7N+/H4WFfMQuCKGxevVq\nvPrqq1i0qC5/cOnSpfj4448xb968oNt7XK6AcTnl5J/8BBs2bIi4Ximb2u/3+zFu3DhcdNFFmDx5\nMgDgV7/6VaP3V1JSgoqKCixevBhdunQxP9+9ezc2btyIN954A3379sXdd9+NsWPHBkQ4COlBtO0O\nAL788ks88MADljcr5eXllhtOYWEhysvLLZOoCOlFtGyvrKwM9957L954441oVzGqDB06FM8//zx8\nvjr3RG1tLQAgOzs7kdVKOxprdz169MAJJ5yAjh07wuPxoG/fvrYDHkHgRKO/u//+++H3+3Hrrbea\nn82YMQN/+MMfUibFsClPeJWMNNbu1qxZg9raWowYMSKoQ2Hs2LGYMGECZs6cCQCYP3++OFEFk8ba\nne4ZlT9HAHXPEqJVLiiicZ9dsmSJrda4isT/3e9+J05UIa4MHjIEhw4dsi0/jsjQRULKOlJ//etf\no6ysDE888UTI3/nhhx8sWgrl5eWW8mbNmmHKlClo06YNvv76a7Rt2xa5ubkYMWIEBgwYAAD43e9+\nh+OOOw5Hjx6VTiENibbdbdu2DUOHDsWcOXMwcOBA8/P8/HyUlpaa66WlpcjPzxcnahoTLdu7//77\nceONN6Jr164h7+c1Fsm0ZMkSAED37t1x2/nnW8oqyDKP0OLRgJRMTZmOow7H0Gnk0Hfrf6p/ObZv\n3z7RDyQ0xu6AOumI6upqFBcXo1mzZvjzn/+MoUOHhjXpgF005rJly/CnG2+0/R6PmcjSlHH7UFF7\na9asAQDzxWp+fj7G9OxpbreNfU9nZ7yMRs/eu2oVAGDkyJGaPaQfjbU7xbx587BkyRK899575suX\nV155BWVlZRg9enTU6hkPrXIeScrPyYwZM2Jeh3ShMXZXUVGBu+++29SE53zzzTcYM2YMXnzxRQwe\nPBhbt27FFVdcgQ4dOuDyyy+PVtWFFKax/Z3uGZU/RwB1zxIFBQVRq7eQ2kR6n33//fexb9++oOOX\nqqoqXHnllTjnnHMC5E4EIVw6duyIXbt2meu7d+9Gx44dbbdXc87EmpR0pK5YsQLPPfccPv30U2Rm\n1j1+P/zww3j44Ydtv1NeXo7OnTsHOE85fr8flZWV2LNnD9q2bYvTTjvN4rwSR1b6Em2727lzJwYN\nGoTf/OY3uJE5BU499VRs2rQJZ511FgBg06ZNOPXUU6P4a4RUIpq299Zbb2H37t146qmnAAAHDx7E\nqFGjcM899+Cee+4JqT5KCynWjBo1Co8++igAIC+vLjm2RQvd1D2N57zzzovJflOZxtodUJfO9dBD\nD6FVq1YAgOnTp+O3v/0tDh06FPGb4BtuuEHrSI0Ge/fuBVD3oArA/P3RRhyogURidwDw7LPP4pFH\nHsG///1vy+zpb731FjZs2IDjjz8eAHD06FF4PB5s3rxZq7WVbIjjNDY01u62bt2KoqIi82W41+vF\n0aNHcfzxx+Ojjz7Cf//7X5x88skYMmQIAKBnz564/PLLsX79enGkChH1d7pn1FNPPRXbt29HWVmZ\n6TzdtGkTxo0bF4ufIaQYkd5ngbr5PK655pqADI/q6mpcffXV6NSpExYuXBj9ygtpx4ABA7B161bs\n2LEDHTt2xIoVK7B8+fJEVwswUoyNGzcaxx13nPH5559HZX+vv/66sXHjRqOmpsY4evSoMX36dKN9\n+/ZGVVWVYRiG8dZbbxktWrQwPv/8c8Pr9RqzZs0yLrjggqgcW0gdom13u3fvNrp162bMnj07aPn8\n+fONU045xdi9e7exZ88eo3fv3sb8+fOjcmwhtYi27R06dMjYu3ev+depUyfj+eefN8rKyhq1v56A\n5a8T+WvH/go0f63Yn2L27NnG7NmzjdWrVxurV682Pv7447D20438XcD+LiV/gpVI7e6WW24xrrnm\nGqOkpMTwer3GQw89ZHTo0CFq9esD2P51Yn/UBrh9cPtRPPnkk8aTTz5prF+/3li/fr3x5ZdfGmcA\n5p+T3dnZYDeyjzPE7gKI1O6WLVtmtGvXztiyZUtAWWlpqaXvGzVqlDFr1iyjuLg40moLKU4kdufz\n+Sx29cILLxjt27c39u7da9TU1Bjbtm0zmjVrZrz11luG3+83tm3bZpx00knGwoULY/BLhFQi0v7O\n6Rn17LPPNu666y6jqqrKePHFF43CwkLjwIED0aq+kKJE47misrLSaN68ufHWW29ZPvd6vcYVV1xh\nDB8+3PD5fJFWVRBM/u///s/o0aOH0a1bN+PBBx9MdHUMwzCMlItIXbt2LY4cOYILLrjA/GzgwIFY\nv359o/ZXUlKC6dOnY/fu3cjNzcVZZ52FV199FTk5OQDqhLwffvhhXH755aisrMQFF1yQHB5wIa5E\n2+4WLVqE7du34/7778f9999vfq7e9k2ePBnbt29H3759AQATJkww9WuE9CLatte6dWvLusfjQcuW\nLRutGWg3CdOSJUsw7eabLZ/RmL5QU2J/8YtfWNaXLVuGp5YuRYcOdVNHFRYWmqm7Ho8HF/S2TodF\npQb+8M47OHLkCABgxIgRIR0/XYnU7h599FHMmDEDPXr0gNfrRZ8+fcx0+WjgNAmTkp9o3rw5btK0\ntd0EPFOnTrWsr169GveuWmXa3ZVM0oKn77/4xhsoKytDcXExgLo+XHAmUru77777UFxcbKa6AnUR\nzAsWLEBBQYElrTU3NxfNmjUzo6aF9CUSu8vIyDCjnAGgVatWcLvd5mcnnXQSnn32WcyYMQM7d+5E\nYWEhrr/+eukThIj7O6dn1BUrVuCWW25By5Yt0blzZ6xevRpt2rTR7FFIB6LxXPHSSy+hRYsWuPji\niy2ff/DBB/jnP/+J3NxcSwbZ+vXrLRJ2ghAuw4YNw7BhwxJdDQsuw5BpPAVBEIToEi1HKmfZsmUA\nELIjlR5zhThS04ZIHamc1atXA4A4UgVBEARBEAQhzRFHqiAIghATmjNN6Wg4UoPx7LPPAqiLDLpT\n47zdJ7e7tITbISVURyqnNdun3aRVgiAIgiAIgiA0LdyJroAgCIIgCIIgCIIgCIIgCEKyIxGpgiAI\ngiAIgiAIgiAIgiAIDkhEqiAIgiAIgiAIgiAIgiAIggPiSBUEQRAEQRAEQRAEQRAEQXBAHKmCIAiC\nIAiCIAiCIAiCIAgOiCNVEARBEARBEARBEARBEATBAXGkCoIgCIIgCIIgCIIgCIIgOCCOVEEQBEEQ\nBEEQBEEQBEEQBAfEkSoIgiAIgiAIgiAIgiAIguCAOFIFQRAEQRAEQRAEQRAEQRAcEEeqIAiCIAiC\nIAiCIAiCIAiCA+JIFQRBEARBEARBEARBEARBcEAcqYIgCIIgCIIgCIIgCIIgCA6II1UQBEEQBEEQ\nBEEQBEEQBMEBcaQKgiAIgiAIgiAIgiAIgiA4II5UQRAEQRAEQRAEQRAEQRAEB8SRKgiCIAiCIAiC\nIAiCIAiC4IA4UgVBEARBEARBEARBEARBEBwQR6ogCIIgCIIgCIIgCIIgCIID4kgVBEEQBEEQBEEQ\nBEEQBEFwQBypgiAIgiAIgiAIgiAIgiAIDogjVRAEQRAEQRAEQRAEQRAEwQFxpAqCIAiCIAiCIAiC\nIAiCIDggjlRBEARBEARBEARBEARBEAQHxJEqCIIgCIIgCIIgCIIgCILgwP8DZiPZpsZU9HIAAAAA\nSUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x115802860>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAABj4AAADJCAYAAACT40umAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsnXmYHWWZ9p/Te7bORjYg0mFRVtnC\npiwDBhCRTZRNBAyBLJAEnHGd0dFPx5nxm/kMBJOQhCUhQwIiEkVFJ7KIBIQQwcgikNikCdk6a3en\n0/v3x+mnuuo+VeepOvs5ff+uK1fnPbW9VfVuVfW89x3r6enpEUIIIYQQQgghhBBCCCGEkBKgLN8Z\nIIQQQgghhBBCCCGEEEIIyRT88EEIIYQQQgghhBBCCCGEkJKBHz4IIYQQQgghhBBCCCGEEFIy8MMH\nIYQQQgghhBBCCCGEEEJKBn74IIQQQgghhBBCCCGEEEJIycAPH4QQQgghhBBCCCGEEEIIKRn44YMQ\nQgghhBBCCCGEEEIIISUDP3wQQgghhBBCCCGEEEIIIaRk4IcPQgghhBBCCCGEEEIIIYSUDPzwQQgh\nhBBCCCGEEEIIIYSQkoEfPgghhBBCCCGEEEIIIYQQUjLwwwchhBBCCCGEEEIIIYQQQkoGfvgghBBC\nCCGEEEIIIYQQQkjJwA8fhBBCCCGEEEIIIYQQQggpGfjhgxBCCCGEEEIIIYQQQgghHhoaGuTcc8+V\no48+Wo455hi56667RETkq1/9qhx55JHy8Y9/XK644grZvXt3nnOaSKynp6cn35kghBBCCCGEEEII\nIYQQQkjhsHnzZtm8ebOcdNJJ0tTUJCeffLI88cQT8sEHH8h5550nFRUV8vWvf11ERP7zP/8zz7n1\nUpHvDBBCCCGEkNKgNhbzpPca8TW4/kBYvoXxOaTAiFrGR8L6lbCcZZwQQgghhBQy48aNk3HjxomI\nyJAhQ+Soo46STZs2yQUXXOCsc/rpp8tjjz2WrywGwg8fhBBCSJb58Y9/LCIilZXeV17d3d2edKz3\nBZlOxpw1a1YOckdIeixdulRERCoqEoeVjz32mHR2doqIyL59+0REZP/+/SKSWB/8WLZsmbO9/m1v\nbxcRkRkzZqSZc0KisWzZsoTfnnjiCads7t27V0T6ynqYMr5kyRKnTHd1dYmIyLRp0zKSX0IIIYQQ\nQjJJfX29/PnPf5bTTjvN8/v9998vV199dZ5yFQw/fBBCCCGEEEIIIYQQQgghxJfm5ma58sorZc6c\nOVJbW+v8/m//9m9SUVEhX/ziF819fPrTn5bGxsak6xxwwAHy1FNPpZ1fEXp8EEIIISmBcicIxvl2\nRNz/D+66yzPjA493OKw/DNJPQ/d+GGyPtmM7OBwgIUDZHiRqOcd6glJXVZBuMbYfBek6SG+H9PMs\n9wQYa5TxfRH3F7WMtxvLcXurr1nHMk4yALb91pjBGiNZEnGEEEIIKSw6Ojrks5/9rFx44YXyla98\nxfn9wQcflHvvvVd+//vfy8CBOFJNZOLEibJmzZq01wkLZ3wQQgghBciECRPkgQceEBGRlhZ83Wuz\nZMkSufHGGzOdLUIIIYQQQgghhPQTenp65Oabb5ajjjrK89Hjqaeekh/96Efy3HPPhfro0bs3Edmf\nlXz6wQ8fhBBCCCGEEEIIIYQQQgjx8MILL8hDDz0kxx13nJxwwgkiIvLDH/5QZs2aJW1tbXL++eeL\nSNzgfMGCBcbeuoUfPgghhJACY9GiRSIiUl5enpPjjR071jG6ra6ujrz96NGj5fHHHxcRkd27Udgq\nkfnz5zsGu7Nnz458PFLcPPLIIyIi0tbWJiJ9Jsvd3d0iEp/aXIosXbpUWltbRURk6tSpec4NyQcP\nPfRQvrOQVebPny/Tp0/PdzZIgTB37lwREScq0z2m0fa+s7PT96+bpUuXOmMT7S+am5sD10fuu+8+\nZzarW9aTEEIIIYXHmWeeKX5OGZ/5zGdS2FtuP3zQ44MQknFQ1/cQWI560+g9gBrsqF+NusLjYXvU\nw8bt32azRwA/TXd8zYveASg+hbrvWO4scH3cH04cPchYjp4f+OkD6xmer5V/6saXBicZOuxYTix/\ng3Q9PhBrwjS290dD+kBIfwhprBdW/l9iuS86cIwRtW3GMhG1zFhYnh1YxrEvGgrpPcbxcP9YJ9az\njJcERxrlfhCksVxbApvYF6RbD6yxPiGEEEJKg4kTj5c1a35rrPNZenwQQoqbOXPmiIhIRUX0ZuiR\nRx6RsrIyEREnUpcQQgghhBBS/MydO1dmzpyZ72wQQgghJOPQ44MQQgghhBBCCCGEEEIIISVDt4i0\n5exo/PBBCMk5S5culZEjR4pIat4F48ePl1jvFP5du3ZF3n7FihXOdtS9JiQ17rnnHhERuf322/Oc\nE5IKy5Yty3cWihI165s2bVqec0JIdpg/f76IcHxUrJRK2z5s2DC56667REScWd5VVV7hN/We4jiE\nEEIIKSZyO+ODHh9FjuVtQJ1ekg1QLxv1plEnGHV76yC9CdKoKY/lGsHj4/EwjRrw97Ce9DtGQhk+\nwmeddkhb+tW2fXg08Hg/X71aRo2Kl/aBAwfKhQd5XT6wnKMHCOrAI6gLb3mCWDr31OcuPLDtFrHb\nT9R5x3KC9cTyAFlbXy+VlfGjlJWVyUfHjUu6/up165yXXZWVlTLx0EM9y9HL5nhIY93G80F/A1yO\nOviWP8LzLPd5xc+vyfI2wDJklWls+3D5mw0NThmPxWJy+JgxvnlVXvjLX5wgkOrqajmprs6zHD1A\nsM7i+WAZxvUt/6f3jeVbWMbzznk+5fwUSL8JaezDsVxZfTyCfb41RlqzYYMTtNTZ2SlXHeFtnbFc\nWvX2wgUL+OGDZB18XsByvpftISGERGbixKNkzZoHjXVuo8cHIYRkihUrVsiePfHXefoQ1d3dLSIi\ns2bNylu+CHEzYMAA52VaKt44pH9TKFHAlZWVTvRuzDBWF4m/INOXwiz3pBhwz2QNG19WXl4uIn2R\n7YSUGjU1NU457+zsTHt/Y8aMccbsS5YsERGR/fvj0aNTp05Ne/+EEEIIyRbdQo8PQgghhBBCCCGE\nEEIIIYSUCDQ3J4SQnDJu3Dgn+mz37vjkfo0sfuCBB0REEqLU2triZkwaXXbnnXfmLsMkLdSbotgo\nLy93ooEZFUzCsnTpUhERGTrUEjvLDe6yGyYavru7O9IMkXyj1/uGG27Ic076DzqbqZBmBGnZ1tmj\nyYjFYkVVxufNmyciIjNmzMhzTvonc+bMyXcWUqK8vNypo5lQ2h4+fLjs2xcXmtN61tXVJSJ9PjXu\nmSUzZ85M+5ikf3HfffeZ6yxevFimTJmSg9wQQghJFXp8FBm3wwNRHSxHrwRURKuHNGp1U6eSIOgj\nI5LokYG6u6h5jnrZqOOLusK/3rjReYjZunWrXHvaaZ7lqEu86MUXZUyvhrZKTOjLg66uLvn8+PGe\n9VED/hBIo1435u91SL8LaXobFB6o+45l9nCfbdBbBnXTUec3qj62Bebxib/8RYYNi9eeAQMGyGmj\nULndy4GQxnKOYP4tnXfU37bA60Wd+MxzJJRzLLN+fknYnlr31aoXWI4s3XcE13/21VedjzbV1dVy\nPLTnWM4xjdQZy/F8cH3L4wN19en5kVn8fGrc4HhDJLHMYpm3PDIsj4+oZRzL0HPr1smgQfFcVFZW\nykQo47g+jqGs/aPfE46B8HpY3hD47PASy3jWwTEM+nmIiEwy9oFjVSy3qyGNbZvVN+D+sFy9unWr\n8+Gjo6NDPj92rGc5tt1YL3HEg/vHsTmWWzwf+mASP/z8c9xY5QrrAdYbPiMSQojIxImHy5o1/22s\n8316fJQyP/7xj0Wk7wXu4MGDPX8JKXUqKysj6f8OGjTI8T7QvzpDIx/fdhctWiQiIrfcckvOj01K\nl1gs5nzQK4aoYEIygbvcF+NMpwcffFBERG666aa85oMULm7fm2KEM0BIGDiGIflEn81E+p4VFQ22\n02dHQggh2YZSV4QQQgghhBBCCCGEEEIIKRlobt6vUK15ty6xzuwYMGCAiIgceGB88m+h6HOT/oM7\nOibXRIl+HDBggFOHNFonn9Fkhx56qIiI/OxnPxMRkZ07d4oIZ4DkC9XcLyUYLUmUxYsXi4jIkCFD\n8pyT7FBeXu6U9zB+CYXGRz/6URERWblypYiIbNu2TUTYH5A+ysrKinrGx4QJE0Skz2ulqalJRESm\nT5+etzyVEnpdSwFtywtBaXvu3LmeND1ASgO9rzU1NSLSp6BRW1vrrKMzPlRdoLm5WUT6/BuzyYoV\nK5zjqk+kHv+OO+7I+vEJIaQw6BaR7Le5Cj0+cgz6JaB+KepAop4peitMfvVV50MJvvDt7u6WHx5x\nhGf952B7S7Mdj4/L17L4lBxYRj/hs84RkEY97PcgjZrbWO7rIf3rzZudF1wffPCB3AweH1gOH333\nXaceVFXF1bzx4cptfDgLdIVRL9vyZkD9Vsw/6r2iPjj1XrPPWVCOsS3DMusHllML1EW32lcsR5Y+\n9m/WrXM8PgYOjC/t6IhvtWfPHrnoYx/zrI+eHj9+7TXPh/UvH+RVfkfdYsurAc8HdfSx3mM98NPF\np89UNE6Hco7hEdgW+bVteB+scQmWSwS9YaL6HyCWHwPWbbwGWI6xvcf+DOtNHaTxeuA1RSVaHHeJ\nJN4XhPWgD8ufKQxWGcJ7iv0DelpYHiBRwTLs51PiBvOP54dlHPdfB2k8/3pIYx1C/Oo4+kngNeK4\nJznYtofx7EIvFywXl2zcKCLi+Mn8YeRIz3IMEXkF0lZbbo0R1m3b5rxwbmtrk8tgLG75kGG5trxp\nsN4i2HZjOWcZLU7QBwrHBFb7ie3lV197zQkscQeqisSfMa+oq/P8FnUMhPnDMcnTLIeEkBJk4sSP\nyJo1/2Sss5QeH8WGzuzINLW1tc4AFjvjrq6urByTlC7qL5Nvenp6nA95YfRW/fSx8YOHUsxRlaR/\nk6zsholhKC8vd/ZRjJHzxIvO9CCEEEIsNJpdA4RyTbHFWurMAc4EKWz0HUu2ynVVVZWzb51FonAs\nTQghxQE/fBBCCCGEEEIIIYQQQgghJIvQ46Ooufvuu0WkT0dSIwTGjBmTlePV1NQ4x9AZH7mMqFm0\naJHs2xefwD579uycHZdklnvvvVdE+nSa801XV5dTnsNE8Lj1sVXiSmc8aTROIekKk+yST2+abFJe\nXh5qBlQQ7hkjKpFVaNxzzz1y++235zsbRYHKnpHSY968eTJjxox8ZyPvqE8WIf2JefPmZWW/6r1S\nCDOfi8GnTGW5dEZBe3tchO4rX/lK3vJERObPny8iIiNGjBARkY985CMikr0y1d7e7jw7at3RsXgu\n1DWWLl3qzNbSZ2Mdw+vvnJVECCk+eoQfPoqE2hAdLOpEItarJ9TERf3Rn40f70nftNurWIr6pZi2\nNOUtHczf3Hqr8//n7rjD1IhH3uZL6LyD5RjLrN+rNT/fj2T7uOrduNrznj1xxd0fT5yY9BizoFzj\n8nRf2VpeA5a3Aeqx4qcZ1DW2vB1Gwj2grnB00JsGNXKxDKXyyvhbveVYXzh/cZS3pN//wgsi4n0Q\n0v/X1NTIF844w7P+X7ZulZaWuFr8nj175FMnnuhZHlU3Htvnbz/9tOMFMmTIELnrmGM8y7F9x3KP\ny8P4okTJn189/tbMmfKtJA9w/d37AMs5arpb3gWZ+NxledOke0zcHs8J21/L38DyWMK24lJjf6g0\ni/tHLza/cZDlkzL/tttk/m23Oel1/ajco6eHVb7CYLX/6KkRta0L07ZFwQr3wGtg9WeYHzw/q85Z\nnjR+xz8F0vWQPhLuc39/HrB8ySyfFhG7XCPYf6CPCC7/3lNPycheX5CxY8fKGTBWRyw/Hix32JZa\n7aSF5S9o1Zv/O326J33bf/93mjkiUcExj0hie4blBscIUdtjXP9XJ5zgSU/bscOTxnqCfT56zVh+\nqlhOf3fjjZ40ltvXReTRWbOcdD0sb+jnbSuJcxLUJSxH9JIhuYczPkiaFEMUDSkMHnzwwZwcp7q6\nWkT6DJkzTSwWCzQz17/pRMoTItJXtoIivDT6TKMCRfqistCDSSReJjWiMIxOsNujw/2b+6+biooK\n53f2C4QQQkj/ZefOnSKS+nigoqIi7VnTeuxCmHUSFZ2BruoOs1wvm0n/ob293fH64NialAr3339/\nwnMu/uWMfJJZ+OGDEEIIIYQQQgghhBBCCCElA6WuioKFCxfmOwu+dHd3M/qAmCxZskRE+nRRs42W\nSY1uzzTuaPegaAX0AClk5s6dKyLUbA2L6i9nG8tHSSUgVHNXxDv7AykrK3PqRJjZUJWVlU75xahJ\nPy+cyspKZzm9bYqfZcuW5TsLJE8sXbpUbrjhhnxng5Cs8cADD8iXv/zlfGcjLyxevDgnx9GxyY5e\nqZ7aiNuXl5enNYbu6elJ8EooJtSvU2fy6ruAW12yzyRz5GpsH5W2tjbnecBvNnehoeoON910U17z\nQXKDu94MGTJERPqUN5LhfifU2dkpIn2+UM3NzSLS1+ZpP6BqBdq3cBYciQZnfBQs6IXg9wrX0vZH\nLJ3ddF8Tv5Lm9oilH255iiCo5byFL+eyDpZjfN1q3VO/beogbeljox6qpcGOOpTpeg3cv22btLa2\niojI3r17Ze5xxyU9/vuQxvxifiwdYbymqP/63d6Bw3ddAwj6fnhB3V+8J3iN8R7hPfHzY7I+RTza\n66mkD/KWYfhz69c7Hzj8BqEvvPWWM7jcvz8+EBg8eLCIiAwfPtzIjciv3n/fkbLQ7d1E1YHfBGm8\nhnjN8dMLXlOr3ojYWvnYfvV3zw+8hqgtbfkZidjjjqjjEGucYHnXWHXT0u/Gum/paWMa+ycsk2dA\nGv0P3oX0REnEqot4Dj+88Ub5oUvnu5T9EKzygtcOywP2pyKJ9xC9DPB6Yz2yvBIsjwwE6601hsBz\ntPweovqM4fEsf0LMr58niZUHrDffmTxZvjN5spPub7r0hxjLwzxf4X1DvyG5+GJPcsC6dfHtev3K\n6saONY/hxvJ7enTNGkcC1C+4Y+WOHY73X1NTk3z1+OM9y7Ge4vlds26d8wGlu7tbvgNjeWwLrDGM\n9Wwx86qrEn7bJyL/NHWqk+7vY5J0Qc/DMGD7aI1BsFxh2vIQQaKOkbAmYLnG5di+Ws+YuP5/935Q\n1r/9yTOslMF3aFHHTtg/zDv/fE8ay+UnRMT95Ipj3SUi8n9nz3bS/a0PJ4UPP3yUGPv373cif4sh\nsp3kllx5egQRxscgVXCmh76ERs8Pjc7Rh6VijDoj+SGozGiZ0plH7plNGjWD5U/bZ91GP3DotjpT\nBPeNx9b96IeUAQMGeI6HUTmk+NB2W8sIIQsWLJBp06blOxuEZI358+fLdDCXLjUWLFggInGj8Hyw\nd+9eEREZNMj6VNdH0FjEj56engS/PZzxoWMXv2ANCx3vuPefb+bMmSN33HFHvrNBskhra6szVi9G\n/0htdziGINlk8eLFMmXKlHxngxQ0PSLSZq6VKfjhgxBCCCGEEEIIIYQQQgghWYRSVwVJviPlw9LU\n1ORMJ66pqclzbqIzZ84cERFGy2SY+++/X0RE6urq8nJ8nX3h9j7IJD09PU5kvR5DI+aDPBD092KJ\n1qHGe/7R2USKRi7qX5zF4f4N18GoR22vNfpRy7OCM0Vw/+gVgjOfCiUakoRHdd+1PEWJyiWlzZgx\nY+Tee+8VEZGpLpmVYufhhx/OdxZIgVCqZVykT4P9oIPiwnr5attV8lX/WlRVVTn9URhVgZ6ensBx\nE85WTeWZ1S0ZWig+ZsOHD2dEfYrkyusmXfbt2+eMuYvB4wPRdofeHySbHHbYYbJixQoREbnmmmvy\nnBtSmOT2w0esp1BGCgWI5elhW9HaOs6oI4yg7uQJkEb9vdcg/T/btzsv1rq6uuSk0aM9y1H/1NJB\nRj1A1MF8E9LW+Vm6w/T8SB/L08PSkq7z2edlkEZt4jWQRt1c9MxAnUjM4/9s3y67du0SEZFdu3bJ\ntNNO8yxHrWjUtcT9HQ/pUyCN+X3d2P8vtm71fFjROqcfX3QKv758vvgQ7xVDHWU/HX7LB6XUPUBQ\nyxSvB5ZbbHvrII1tGbZ1IiInPveciPR9TFCtapUc0nuOLwLc3SrKO+A6QTIQQR8+UG4LpaxaWuKl\nVw3p9MNHLBaT74J+NpY7yydl4XPPeR7yLvnkJz3LsR3A/gn7G7/+Iap/D9aVUqoHixcvlq/fcovn\nN0s3H9tzvJ5+/geWB4YF3gNrbBRVL9vSw7Z02q224HBIfwLS2FaMRtMOqCi/fs+b9vNaw2tmeWvB\nLhP6zGL2/LDadsu3AJejN5GI7WmBHh44psB0cjcnuwxb3giWJj2eM54Prm+dLy7HthzPH8dwfuA5\nYHuP+7Q8LErpeeCee+6RH8yc6fkNx6V4jy0PLb99YFOFdWvHqlUiIjJu3DjntwMOOEBE4mOO74wc\n6Vn/uhdecMY/6guiYwL16lDjdB2jDB0aH52hya772VQkLrt17aGHJs3/5FdfldrauCU7fijBQJSy\nsjK5dPx4zzp4Df/r+edFpO/Dz7QLLvAst7x9ROy2oJTKbTawnlH9yrnVniFW3cExgFX3MI+f37rV\n+RDS1tYmn3TVJ5HEtg+fV9BXDI9vtf9YBvFdkMVvWUaLgqjvJa1xBY51LX9VHHthuV4FaXwnaD1r\n0Hum/zFxYq2sWYNv4XCdPbJmDb5ZTI3i+0xNItHd3e28lMMXaaT0mTdvXr6zkBHKysqchyU/U+h8\n093d7alfGJ2vD3j8zlxcqH40mpfrg3rQjA93JCT+huviBwwFZyJh2cE0Rk+it0gmZny4oz1J9pg/\nf76IeL1iCEnGokWL5Bb4SEZIKXHvvfeWzMyP8fBCPl/oWMY9G1v/79f/DBw4MHCsoh8i9MOE7ht9\nyhD93e3XEURVVZWTL/2LXiM4xrL257ePTHLffffJzTffnLX9k/zT1tbm6/FXLCxbtkxERK6//vo8\n54QQ0r+g1BUhhBBCCCGEEEIIIYQQQkqGHrE/fNhBDGHhh48AikVnMgwa/bJvnyUwUXjMnTtXRERm\nwpRwEo4JEybkOwsZobu724lk12n2hURnZ6dnxodG/KAEEqPliwuVZtB7izN3rFkYqWDtw5plotGV\nKs+lZMJfZ8CAAaGiKEl6aOQsZ2mSsBx88MFy3333iYgUVXQxPT1IWA488EDn2WzKlCl5zk1q/PSn\nPxWRPo39fKP9ucqxivSNFfxmYAwaNMhZrjM60KdMx7lBMz78ZsaKJPrw+VFeXp4g9xnkfxYGzXM2\nPdAGDhwoCxcuFBGRW2+9NWvHIfmjra3NKYfFOOND5e0486MwWbRoUb6zkBMeffRRR9a8VGZ3ksKC\nHh8uLO081LpDjUaRRD09S5cftagtnd06Y3v0IkANXdSJxOVr6+udgaB24upToDIv7hdv/wderKO2\nsqUDjPnB64X6gaj5K1Jamu6ZAMsxgpqKVjlH7VORRF1Iy+sFQX1yLCeYpz9u3+48RDU3N3uW9fT0\nyLlHHJH0eKhr//fGRuelYnNzs/zb4d6zxHqF+cXz/U1DgyeNHz6w7pwED71hhslYN/A+oRbyIyVW\nL6Jqm1rapFhi/O7B1W+9JSJ9L6D145sakWJb6ffgbX0cwQ8ZQV1y0PKglwha5vSDt76s0O1xWj5K\nPWh90xcibq8Q5UzwDLHuAdYbPz+PqH4RloZtQxHWgwceeEBE4uXuG/CiBM8X23NL49fPVwXXwbEN\nvo5CPW1L49zykbL8Dqx7bIHjKMwP7g/bis9A+hQYuLTAQOrfYX2//tAa2+F9xPuGnh/1kH66SMr9\nww8/LDO/+EXPb3julv45lke/EB8sQ7gNlnEcy/p546RDGI9AN9iWWtvjNcNxnFWnsQ4gL0Lab2yO\nebY8PLAe4jXHPK4tkjKujIc+GtshLNfWPffzJYt637GcH7t6tePdMWzYMLl1lDdX2A4tb2hwgpF0\nnISSoPhCGD9cKLq++pPt3r1bvnaC19lyzptvOscLM/4S8Y6ZdDyzd+9eEekbF+mHj0tOPNGzreUN\nJGL3R/icvbfIym2mierXV+ezD7zm6XownQNpfMa1tq+H9FJIY/5+8cwzjq+OBljphz8t/zt37hSR\neLl+5OSTPdtb7T8+U2O9tfo/v/b8+X5ebvMB9hlYV6znJWvsbD0HYx9TJ8lZDWl8d2L1eQjLXOkz\nceIAWbPm0BDr0OODZIFYLJagCY/eCvohJBMRxISEobOz0xkU6ktnNA6PQiwWy2jkekdHh/PQhscR\n4UyPYgUjHoM8W4KMy5OBZuZK1A8jmCf9qy8Z9KEKzwXXD9K41pcYWt/0L8ke2l64jeQJiUKxeH5w\nHEn6A8USsbt///6EYIdklJWVJcw2DRpL4Jgbx03a7+kY328cVVFR4ayH/miY1u3dszk0jzoe0rTf\n+D1bLFy4kDM/+jlDhgxxnmlxRpSO3dUrh+NA0l9ZtmyZMwOEyi+Fw+TJk+XJJ5+U0aNHy1//+lfn\n97lz58pPfvITKS8vl4svvlh+9KMfhdhbGI8P2/8rLGxNCSGEEEIIIYQQQgghhBDi4aabbpLbb79d\nbrjhBue3Z555RlauXCmvv/66VFdXy7Zt20LurUdEchcAxQ8fxEN7e7sT+aIzPDTaQKNnNAqopcVP\nqITkE9WRLTU6Ozud8qjRMBjlFRXdj5+OcVTc9Uakr85gRA/9EVJDdWdzjZYRjLjCyEJFIwvD3Oeg\n2SEoXYUzQ4LWD8pDqrMHUD87F1rY/R31Oxg2LC5yEkbznBA/hg8fnu8sJGXFihUikpn+l/RPHnnk\nEbn66qvznY1QjB8/Pt9ZCEV3d7e0traKSLjZWBUVFQljkKDxkfsYIsE+ZdrvaT/opra21hnToGcI\n4jfjGp8bdNyeyxkfEyZMkEcffVRERD78MC6CdMcdd+Ts+CT/VFdXB5Zf9efT549CmWU9Z84cltMc\ncffdd+c7CwXB2LFjnWfPefPmiYjIjBkz8pklIiJnn3221NfXe36bP3++fOMb33De1Y0ePTrk3sLM\n+Mgc/frDh+WFgFp3mPbT+kS5gpmLAAAgAElEQVQsrWpLa/o/1q51pnlVVFTIwnO8SpSWXTnuD/X0\nUHfyQvBKeH6TVwH2n0aO9KRRixO7Z9SVtCZOoz4hpguj+y8sopZj5Plt2zw6t5cf4lUf99OERy8Z\nxLrvVjmwJ9h7ebGhwfEy2LZtm1x71lme5X96803nIUobZTc/2LTJedjTByB9+Bo4cKB8aswYz/p/\n2LkzQSs4GUdAvXlzyxYR6fNfmHSoV9/Q755ZWv14T06CclFsetiWp4fVHuNyq0xZbSlJ5J3Nm0Wk\nrxzrx3BtTy485ZSk2/vdk1T62WTbFzpRyzmCGryWxq8ffnrOyfaJebK2tzwY/LTq3eA4xToelhnL\nO8zSQUaPjlGQIcsDyu/8ME94jqjNb2kjY54f/sIXxG0b/nge23/UdLfut9XXYXnCa+MXkmN9QsQy\nhetjHch0f2H1V5i2/C8QLC9+HoXJQO8I9ADxq5N4H9DXBq8hngOeI9azf73mGvnXa65x0m8X2BgH\n9dnxNb5Vpy0dfz/fGUurH8sRLkel7f/39787cpk6Ntb+3W8snWke2bXLCbbLRdAFXj9Mp+LtidtM\nvuCChPW/f+edTrrUfCstTw/EKqMitjdA1LDMqa++6vy/oqJC/gf86ywwj9bxzznuOE/6bYiO/iY8\nM2Lbie0xtp3YVkZ9d1Js4+hS4DCfdzlWe2S17wgurzfWt7xFsZxYHiRYLxI/bXv53vnne9LX/uQn\nxhYkX7zzzjvy/PPPyz//8z9LTU2N/Nd//ZecYrwDiNMj/PBBHKqrq/Maadvd3e1E5VCLuTSJxWLO\nS/5CjeZ2l0OMRFf0HLS+uCkvLw+MSlM9YY08xWg0vxklbW1tSXWQUfM4aLlG9JDCxJotEWZmB87Q\nyFYdw/JqGX0GRVta67mvhf4fZwc2NzencyoZZdmyZXL99dfnOxuEEEJIQVNVVeWMUdSsXNPo4RHk\nXWfNSg3y4MDZGDizw9pvEO71gvZZqM8+JDcMHDjQKe/58GTs7Ow061W+OeSQQ+See+4REZHbb789\nz7kh/ZFhw4bJ3LlznTR9PwqHzs5O2blzp7z00kvyyiuvyFVXXSUbNmwI0U/ndsZHahoxhBBCCCGE\nEEIIIYQQQgjpVxx88MHyuc99TmKxmJx66qlSVlYmjY2N+c5WAvzwUeAMHjxYamtrnX+5RiPlY7GY\nEw1RaGgEAkmNWCwm5eXlzr9CpKyszCmHZWVlnrTmu6KiQioqKpwZHG5qamqc9XQ7Bfej//Q4ftq/\nLS0t0tnZ6XiPVFdXy+DBg51/AwYMkAEDBjh5QnQbXY8UJljWNI3/lJ6eHvOftW53d7fnH26H5Rd/\nD1oelqDtk51LZWWlVFZWyrBhw2TYsGEyYsQIGTFiRMp5yCQHHXSQrFixwvEUKCQWLFiQ7yyQfsJD\nDz2U7ywQklXuu+++fGeh6Bk6dGjC+FXHOTo2rqqqkqqqqoTxLY4Purq6PP9wTINjHl1Px9a4XRA4\nZgkz/sJtC+n5h8+0uae2tlYGDRrk/Ms16hOZS6+ZqIwaNUoOOuggOeggFNoiJDcMHjzYec7U2R/u\nGSAkf1x++eXyzDPPiEhc9qq9vV0OOOCAcBt3dSX/l0H6tdSVJTJjaW2H0c5+pte4TM2qtFNTeRxN\nuyVvdPDlJxfytddfl8GDB4tIn/TUtl5tyPb2dvk6aIe+uGFDgkGWeobs27dPLj/7bM/6lg4kajP7\n+T+4Qf0+S4/QuqZ+Os0/mDlTfuCa7oZDlvUlppeaLliOL4aG6bfbtnle5p7g03C9B+llq1eLSJ9c\n1OQTT/Qsx3vyg2efdYyPdBstz+oToA9UqbxA/d2bbzoPOVpf0uFplw9KGMm3w8ETBOvNhWDamErb\ngtugRnyxY10T1L+2tEdRWxT399k//MGRSSt0Y+Bi4U/vxpWG1QPk3BC6yVbZtzxAUE/7m+ed5/x/\nzrXXJmgfF5qetlXusZxj24LLLf8Kv21wHBB1n5ZGN9ZF657iOGPVunUJkof4gRml2tzyLdcfc0yk\n4z0HaTwfbItQj9tPoxx9QxBrbITXzCoHy264QZbdcIOT/m0Oyz3mxc+bIBlYHq1r4acbHcYHJBlR\nvXcsrWtr+2ffesuUWlRQnlMk0a8vwafGyI/lQYNl2q88432eCOkjII31Du8ZlgPMww+nTJEfTpni\npPM99sfzx+cXvAdWGu/R+z7H/Jdezzl9ttTnyKamJhFJNBDXgDaVbu3vvAaefUdDwKFf27Xk+eed\n61hRUSE3gscgluOoz73FjtX2WW1hmOuzescOEel7f6Jtor5rSSZd7CdXfNv77zvPplpn9uyJ3/2m\npib5Ojzjfvv5553nhwMOOEC+KX2yyx9++KH8w8knRzonbNuwrUSPpXpIW/2P5aPl967l+65yvUAS\n259C81gqNvzGJJZ3JY49sX2yxuZYTixfqXTXt/wBsc/DJ8Z3LrvMk66mCXxeuPbaa+XZZ5+VxsZG\nOfjgg+V73/ueTJ48WSZPnizHHnusVFVVyZIlS8IFYXZLTg2c+/WHj1ygg0/sdIP+ivR13Gooh/4L\nuq7uUzvXIC8C/LiCL5qTUVFREagBT0oTjfASCX/PNULGekBXNIrevY3+1fKs9UDLK5ZvXa6/63q6\nH60fuB6C9UrzpfVGX9qq+bkuV18D9DcoVObNmyczZszIdzYKllgs5txDbSutsuMXQSiSXC86aBv8\nPUjPOmg9PCa220F1OWr7HhQ1KdJ3nfRjI9YR4mXYMMvaj/gxYsSIwHIbVI79Xg4TUqi4vcq0H7La\naC3j9CvIP/mafaLjVi0z2hdrGn0MsM92o8+eOh4K6xsWtvwFrRc09sFxRtB+0JcszL5xeRSFA50B\no/9Pl7q6urT30d/A9xxaRvR3v/uJ432cfY/trgbh+Y1nR44cmVDuNA8a+JqM9vZ2Z78coxASjjG9\nQaZ3934AmTVrVj6z029Yvny57+/Lli2LvrMeyenX/8J+U0cIIYQQQgghhBBCCCGEkOKGHz5yw8KF\nC3NyHJ1VgdHoqCXqTuv/g6a54+wRTauUlZuKioqESAiNJHNHlAXhjjxg1G7hkdLXVQP3bIygSHdE\ndfzCRnoNGzbMiYLRcqjlPOrMIpw5EqTTG5Q3XR+jbLTeqASA1i+M6NL1wl6rfHHooYcWTVRENsq1\nRU1NjVMWta2zZnqEnb2RCqnuw5opgnUbfw9aPxlYt3Tfeh3dUo6kb/zxkY98JM85KU7cYyKrfOry\nQtFvJyQM7pm3hT62IImE1rbOMDjjQ9tKndER1N+7scY11t+gWXjW79bYIxOzU4MImvkRhqqqKud6\nh3muthg6dKg8+uijIiJy1VVXpb2//oC+a9HnM3yPojM+3GNVvcfWs6e2v7ovv/HsqFGjHMksHHOE\nkVtua2tz3hPxXUv/g74+qTF27FgRoVRjUcMPH9ljJHRqUTV3LS1xv33mmmVvvBFpqi0KbVieHbO3\nbZMdvVqazc3N8uAppyTdn5UT/FTjp1nrxm/CKGoC5lAqLi+MhXKM1yRdPVXkrV5tYJG+waMO8DSN\nDwm/aGgQkb7OSHWGS+Xl03VHHeVJo/41tg14j1a5rqmIyPG9snbJsPSuEax737roIuf/D86eLWsL\nbDq11T6/vmGDU378/FamHHecZ/0l69c75VJfBujHKyy/lPHLDe/29h16H/Qh1P3x8Zhx4zzbWO0Z\n1gMs9+h9EFXbP9PUGmXN0mLGtsXS/MV2w68PRd8Ty1fE8sux2ibss+uM/eM5nAweSpZ2Pl4jXL50\nyxZPG3HNhAme5di+10O6DtJ4j/zGhajFjFrI6JmAWsh4TwpJNA3LeLoa7pbONeJ3LfCeW2UMx8KW\nXwPWKzyetT7e30njx3vSeE5YxizflMcaGjxSWJdAGcdriuePabxnfmN3XGc1pLFeWdfQ8jeynl+y\njVXurfNDbyDLQvi8P/zBeQmbihcesXll82YR6RtrYiBUV1eXXAl+D4jVXyLXubw3//Hqq6WhwMbq\nFocZY5yo71r81s/3u5afNTUleLZGwboGC3budPbb2Ngod4Ev2eGwPl4zbEswjWD77edLhn1YIY05\nihF85g1zPbGkWeMKHFciuH4dpL+7apWMGhXvqUaMGCGzYFwS1SsZiTquxfz+7pxzvD+4fOxIkdAj\n9PgoJdQXQKPbg6LS3RFdQZEmGEWAEfMY0YAvqTFaIazuJHow6HbUoSxNYrFY4ItgLQMY0Y2gsbhq\n2bv3i/vCbd358fs9rCdC2EguKzJe65XW6XTQfRW6L0ghUV5enhBpZWmao4avfhTWNhFn62jbputh\nmQgqc8nawqjRiVa7apXfqJ4elkdCsvoT1nckqM9C/eVM1C1ColJeXh7aSLpUWLx4sYiITHGZQZPS\npaenp9+UbaXUy7ifB6Plh6Ggt51fJHzYmR9K0MyNdAkagwTNNEmWf9xX0LM4BhAGRfPnImjmoYce\nki996UtZP04xox+kgjxP/Z4VUC3A8gdDcFaJPg/ruFa3CzMLqLW11XlexufDTMwiygUrVqyQa665\nJt/ZIBmkq6srrQ98uaZYVC1I/uhfo2BCCCGEEEIIIYQQQgghhOQWSl2VFvv2xSeaaaSrajiir4BG\nvIr0fVXVZRqtHBStFRSholED+rUWo2DC6E62t7c70QaajyG9sjxRJLVI8ZBsxocSNEvDminit03Y\nqDDLiwDXCwK3w8g3rE9aZ7WOqmxXOug0+Xxqd69cuVIuu+yyvB0/Kt3d3c6908gqTbvbT8XtVRM0\nUwn9krSNsyTZrIhHv3Wt36OW67AznpLlLZX1/X639o11F6Mlsa/KJU888YRcfvnlWT+ORh+TwmPv\n3r1Oe99fxjVDh/qJtZJSZdOmTU6/N2gQCqOUJkNCSIgWMzU1Nc7YBn0kEYxax/Gve/wQNJPC8uKI\nOmsV82DNXsFzsGZ1J4vy1zEfjkmCfkfZVPSHyCbDhw8v+dlL6aKzhfF9hd4nlLcVCfZ3xPcyKOmM\nzwlYZrRMaFkJMyuoo6MjoWzhTPRCZ/jw4fLAAw+IiMiXv/zlPOeGZIJYLBb5XU0+0bo5Z84cEemr\no9oHzJ49Oz8ZI8Hww0f+QC06y9PDT48P7923TzvNk35k166kefg46LRaet/vg1dAVJ5raJDdu+Mq\nezt37pSrUC/P4F969U9F4h33f4JZ69GwPl5D1B/Ea44613767LjPIyB9Fgw6ni+CxjsZWAZQ55hk\nH9Rmtl4jWL4C61ria+jA95Ta2oR1LL1orEuWfvTiyy8X96vYXxZYvcDzPQs0ydds2eJJL9+wwfPA\nMBnWX7Zpkyd924F2zXlgt5/SLckmr23cKC299UEfZtGbRdEHQ/29ra1Nvn/hhUn3j/Vk2hVXyDRX\nekuO60G6GrmWVwTiN27B36yxD+pBW/r/lrY9bm+1l/hpAmvpynXrjD30vZyoqqqSfzrsMM8yvOa4\nf2tchufrd82tVxl4H6PeV2s8+41e09xv9KbXZ7HcZ/qZBq+FdT/8sPpTBOsA+i+gRDHWy6g+J1jm\nEsr4Sy8l7CPoA3JFRYXMOOOMpPnB42OdxOsT5vMgXhP09MBrhGMUy58Ix/rYrtzTK7uif/M99re8\nhjAdVa+d5Ieoo8SofXqxgW2H1dZg34XtgF//idf8Cx//uCf9J2PsfuLh6JLhBfP89rZtSde3eH/n\nTk/w3EWHHhpp++9t3uyMh2OxmPwanm8QbBvxzQ4+/TwH6d/47LMe0tg+zf70p53//+fkyfJ2gT1T\nFhpWf+AHlmrLP8jyeMV+HPf37xdckDQ/1nsGfIeHx8c+DduO1yFttbWjZswQERHnrV+v9BUpYPjh\no7TRjg8jDVSfMipuDw6MHscI9qAoHl3uF+Xc3d2dEGWjx9P9qOmbvpwipUvYqPMwvhphZ2YEpa31\ng8q7dXxdD71w9GWC21A7VXQA63755j4msSkrK3OiHFFT1w+3jn9U342g/Vr62e7/W7OiwpZPa/2g\naEyc2RR2v6gB7t4ePTwUfPGG1y8oqhKjJ/EcNGIZj6fLC1kLefTo0fnOQr9h6NChpl63fizjuIUU\nI2PHjg2ceYtjFXonlSaDBw92xkA6gz/I2yBoLOM3ayKoXOGzZNCMjKDxUpA3B874CHpmxTGRNfM8\nmd9Z2Chm3VafA3TsoXUq2ZgzU7hnLlHDPhw4S0P7+1R9CrZv3+7cax2Hap3TcSfOAMFxrv71m3FX\nW1sbWL9w3JuLMpcJli1bJtdff32+s0H6MfrcpfV+/vz5IiIyffr0vOWJADQ3J4QQQgghhBBCCCGE\nEEJIycAZH6VNkPZoqjM+GhsbpbZXFkcjUoIi5fF3ja7V7fy0SqurqwOjajSabM+ePWmdAyk8rOh0\nK+LEmm2RbB9BxwzriWB5JVjnFKTXqvUkExHCGH2Eke/5YMGCBTJt2jR7xQyzfPnylLZra2tzIqFw\npoxfFF8qWsyouRt0n5JpSltRi2E9ajAaDLF0t4PqA4LRncnquhUZGgTWNb03GkGH2shWlJ5G3Gl5\nSIe5c+eKiMjMmTPT3peIyMKFC0VE5KijjsrI/ohNeXm5qRevkdLFoFtMCFJZWZkQIa/o79qeFkuE\ncDGT6jgmHYYOHer0eUH9ddD4I9lsiKBnyKAZGngsK23NgrXKqzWWwTF8svGI5fmH+9B+Q8ecqc4g\niMKgQYOcMeeYMWOyfrxSQP1V0Vc11fcUO11SVTpjA31esA5iHQvyYxUROeCAA5z/W2P3TPhM5oKx\nY8fSm4bkFZ3xoXVX2wPO/CggcvzhI9bTj576amFwZVk7onZdXQrHRA3EH/fqRGrHd+gwr3rlmg0b\nZFvvOm1tbXIFeG5YZQPzjMI5a5qaAqcZ6wtdHRjgCwId6OnvLS0tchXo5KMW5/GQRs8PXP9dSP8a\n0qj/5wdeA7xmeIyGIqsC46Ec18FyvKb4mh41FX+9d2/gsSzTQIt0Pny4/34UjFj/tnt3aGmgoA8f\nQb/jA4/mUz/0qSeO+hD4nSNOdUbpH526rn+1PcAX6jqg9ns4+yxMl8b7inUfy4WlIb4uy/VipCE3\nhfnFtvQ3DQ2B0kd+ZeGTrgcLP/x8BVBr+e+NjUmPZ334OGfsWM92lv4qToh/bMuWyA/71gtgJUji\nKug4fttGHU7gvvQlgn5M1zqW7OXCZccd50lj+5+uJm66/cNhcF0tjVorP6jNjPXE8svw0+bHa4b9\nNh4Tz+E9SNdD+r4//SlQ1gz/lpWVyWlHeBWqrWtiaePjOf9i69aEMqsPRjr+cUsaXnC0d+SC1/y3\nvf5BWl6//tGPJl1fxC6HqJWM9xXTlu8Uro/ay+nocePYOtPg/bQEIf3KOO4DyzR6dlj1CO/pN/70\nJ+f/2Ab7/f0kaNJbfQFiLX/VVcZR3k3L6V7X2O9Lp56adP9P1teLSN9YZgr44qB/h4hdxrGMYplH\nnXq8ZzjmweNhnh7P4phm+fLl8rXrrku6Dp4vPg/h+WKZ/dL69U47iR/7gwIjrA8fOE7A//vtK+jF\nLo5/wn74CALrDeYvKJ9BUll+BF2HoPGTov1FR0eHHALenBZYjqP669y1YoVcffXVkY6ZS6x3Ldg+\no9vGKSGOUQ/pNZD+340bRaTv/cWxo7w95Kp165w6NHz4cJlgPB/gOWBdxrbnjT17zOdnbUtxfKt1\n3C3Ne/Xw4Z51zk+a28TxAHp8YFuLHh+LJRH0W7C8tfDdQ7G9a8k0+CyAZQbH3SKJ99Eaa0f1+MD1\n8XiWE6Y17lwF6TDv8JIdH/tMLMd1xvZYzu/p52WyEJh4ZEzWLDLWufNkWbMGW/nU6DczPjSKM9/o\nw3Sy6GPtDPXhJJO0trY6L1nR20MHAfqBIyiqR9GBH8kdixYZrUMKxGKx0A9Lftv6bRcU0ZVMa1fB\nDyJ+H0ja29sDdVQxb9bvVoS87l8fMIf3DkA16sfP+wD3hS/T8GMKzizQfWldRO1YItLk+oirbRdG\nXkX9UBeWoDKb7AE7EzEG3d3dgZGJVjrIA8r64BHkFeJeV8tv0DGQoJcw2jeN6H2RoLOsNHovaAYO\nKWyGDx+e8IIuaHZbLmJx2traEj42a/70b5Txje4rlVllhQIjM9OjtrY2sB9SUv1AnAqdnZ0JL9Bw\nrD90qBX+1UdTU5OI+OvTFwv33nuviIhMnTo14/seNSqMNW16DBgwwGlrMGrc+qgQFH0eZkxuBU1Y\nHzqilnfrYw0S1f/P/RvWySAfEVxfx+b5GJMPGTLEiVgWYdSyH/rMFeT7Vl5e7nxwyMa7jLa2tsCZ\nzfg8p79b9YgQklnomVQAUOqKEEIIIYQQQgghhBBCCCElA83Ns4Nq3eYbnVoeFBlYWVnpRCi4pRYy\nxfbt251oWj0ORgBp3qJG+5PsM2yYn2hG5giaqm5FfCFhvEGCoubR90YjDd1s377dmcKM0f0opYLR\nNZgOivwKiphHiQG/+oHnr9voOaH0ldZ1jUDCY2t0n55zJrwMih23TEeQtEiuZnzg7+7jqYSgyjel\ng7vcYH3BGRlBclxBM6CCpDLCSmC5j23ty2o/NJpS67CWf60/GqFXyNr1Gl1MxPEhEwmOZtR729gr\nJ5dNnnnmGUcrfWyv/JyOi1DaMwyqua0zlIoR9z0i0Rk5cqTz/6CI9XQ9/aLwwgsvOPrW+ldneGh7\nGqWM79q1S0Qy43GWL1RaNJMsWbJERESOPPLIjO8bqampcfp1a2wTNMMjlWjysOOdoHIf1lfMmkEe\nNPYImoHiN94I6/mH+1LwuSEfvnyVlZVZfxYsdvAZC+np6fHIlWWanTt3Ou28lhFtf9GbMGhWdiGP\nb1Nh4cKFcuutt+Y7G4Q4HGBI3JEcwBkf2QN1JFFPFa+7pTH/vs8x8JEAHysmH3NM0uXHjx+fdLlV\nNjCPeA5Xw/HxHHD7d4yXdcsbGmTLli0iEu/o5154oWd5PayP4l2oq4zHr0t69DioGYgaiHhM1AUu\ndMbCwNwa7mIZzGF7kjGOAC8E5CwoxwjWG+uef5CBl9K55ok9e5yBcWtrq1wAfjt43y297VzXC8vP\nwmrLppx+uif9m4aGpMfDdiJMvQj/WijO6b0vmJTVvW2j8ti6dU57qR9u9GFn2LBhcvO553rW99NN\nd3PuIV6F02d7dY37E5aGrdWPY7m3PDiiErU9RvGZOkjj+VlePZb3jx9R/SP+9ZVXnBdB+kJGPwKE\nkQI59UBLSdgLXkM85yMvuyxw28997nPm/k8D2ZrXd+wQkb4Pbiq9pi+BPzVhgmd9LGM41hSxxyVW\nucb1sa2wNMgzOS6IOk7N9P4srfEw+8R7hmX++3/+s7S2topI3wsslb0MI3F2zLhxSY8XtT8+z6eM\nX3zxxSISLkAGy/jLvR8c9SWgepnpB4/bPvEJz/p4BL8j4jmhtr91T6z+z9KUj6onHhXLbw/bJavd\n2gTp72/Y4ATNBEn2FBp1rg+AIiIbtmf7LuSf7fv3O/Vm586dciyMy7BPt9p2XB/bgisvuMCTvvba\na8NmNSdYY/c6SKNu/ycg7SciVw9pvEZfOOqopPvAdyFWWxT1eeoc+BBq9e8bdicfea7YudORP//w\nww9l1WmnJT0+7h+9DbCtxLbW7/0W1mTrGQ7fuREv6Lvi14darSdec7yvuE8sh9gn40jcGkfi/qKO\n/bAMvfTOO04QTmVlpRwP/YnlWYj7Qy87LOeLv/hFz18RkacpLZdb+OEjOxTLoLHQSBYpo1FjqI1N\niouenp5A0zX0nLBeYoU1EvdblstoSKSzszNwVosVKZ8sYgxnmWidCTK3033pDBC9FvpXl2OdK2Zt\n+Uyxf//+BB8BJVMauUFlIShi7J133pGdO3eKSHyWkojIk08+6VnnkksuEZFw0ajuCDC/aLCenp7A\neoWRn0FeOskMeXE7y2cnqlZ4kL426pnrC8hszIrMFAdGfJlf7GjEO3oAYDnUv/oRYUfvR4Vc8fjj\nj/v+fuWVV4qIyGFg2izSdw4aoakvvgu5/EWlmGer5IL29nanjdYoQYy+x3GT/s2VH96vfvWrpMuv\n6zXfngAf6txoW6ueFcXs6YEU26ymWCyW4EUUNIsC+3fF8v5I5p9hjXHDlPOuri5zP9bY2honBPlR\nhpnxETSjAwk6Bo5RhoMJdS5YsGCBiIhMmzYt58cmmWHfvn3Oe6qg8TTO/C82hgwZIvfcc4+IiNx+\n++15zg0pRNxlmz7C/QR++CCEEEIIIYQQQgghhBBCSMnQLfT4yAac8ZEa7mgdjJTR6Ef1TynW6Me7\n775bZs2ale9s5A2/yPGoHh5htXyTRV5ptKRGc+cS1WgXSYxi13Ku0TZR/U7c6+DMDL0GOlMB/X1U\nDknTeo1UYiVKHqKyfPnyrEyhX7hwYcb3KRK/NqnoV0cBr7NGpHz4ob8ox+rVq+XFF18Mte9MRHH5\nnW/YuokzOlDDOtmsL/wtanmMOvND60E+ZodZaETb8ccfn+ec5I5BgwaFLr86O2rr1q0iIlJfX5/x\n/EyaNElWrVoVaZuf/exngcvWr18vIiLje6VIi01+Jgx6LupNM3Xq1Hxmp+CIxWLOTB+MvnevI9LX\nhmpZd48vMsWVV17p+EaFLesPP/xw4LL334+Lm+hMNW1rC8UfMRPoOGvRokUiInLLLbektJ+5c+dm\nLE/JqKqqSvBcVDAqPGhmR9BMD8Xv+c6amRG0L79nifb29oSxM55DENZYG+tbUH7cx7FmdiM4LtKx\nB7YBup989AmlVEf7Kzt27HC8mPSZE8uWtgXaDxUbo0aNSpi9TQiikm758E8SEbnrrrtk9uzZeTk2\nyT4l/eHjJBgkWTqSlpbduynkAfX5MB1VVx/FCFDPDnUsUWwD10cdR1x+OkzbTdCB7JVxCQLP9zt/\n+5uI9A0OVTpAO3p9kagvtC7tTeuL3m/6yFAg6NZgXeN/mT1b/sXVyO0tMH0/S1/d0rCf19gY+IAR\nRn89H7z81luORFBraxox6QgAACAASURBVKtcMWlSpO2xHFv63ReDJm+63jf5wNKQtTTEsb2787rr\n5M5eaQwRkS1p1gv0qsG2Ca+opW26fN0654NQmAe/t7ZuddqR/fv3y5lHeJX3/WZapqtXGhW8B6+4\nPDsy/RGnVPjfjRulqalJROIvGqeecIJnOd4TS5s53Rm398+c6Ulb9RLbokMgbQnNWGr+YcYYlm9I\nPaTTFb85s67Ok7byiFrR+OiM2vg/gHtwehLPDz+Ou+wyueKKK5z0RaCn/R6Me17pletS7w/0avMj\n3ftmldOo3jJfPv98TzrZh4/DjA+bUdtBa31LS9xaLpLYhyNY5v105aMQ1bcG84f+d8i3brjBkz45\nhTL++c9/3kl/4eSTPctfAQm6327bJiLijMtuBA17P4V6LIPWKy/cB7bVljeC5e/0FfBGiPrhYySU\n+6jPY1YdnPWnPzmScyNGjIiUN1I47Ghvdz6Q6BhVx54azKQSj83NzTL7U5/ybI91H+sFjo1nf+lL\nnr87cjxWPM9414LtMbaMWM/xfM/wOSbu43VI4zXCtsAa80R9j4BYbRO2BZ847rik+8N3Ldb53rdh\ng4gkyizruxf9mKIf5zXgUMvp6sMTHTrqkuYwsT3E+/411xjj30RkbT97prkI0qdAGuuBiMgaSOM7\nOKvPwXQ9pLFcY7nH41keiNZ7hvodO5xAkI6ODjnRp5y5sZ41MD+WPxIFXQsQSl0RQgghhBBCCCGE\nEEIIIaRk4IcPUkzEYjEn2lojBZKhUzU1+kBnHGA0M0YlFKuMViHQ0dEROEVc7wdOmw+6L0GyOWHX\nS7YOmt5qpEo+zAIt2trakk7bD5oGj+viX90O5Q30r0bnaIS7zozqj9OHhwwZkmDyjlNjsTzrddX1\nU0Xvh17/hoYG3/XCyFxpXvykgvwkJ5LVre7u7tAydUEyLfo7tgF+x8W6q6A8lpX3ZAarbnR/aMSs\n22VDJo/GoTZueY+gNl9/L5a+/Oc//3ngsu3b4/GVanKt7YrOYCWlR0VFhTMzOUhaR8mHKedll10m\nK1eujLTNY489Frhs9+54LOWwYfFYaT13NT0nmWfEiBFOW6p9HPbDKNGkZRElrcKamvstx/Eo9uc4\nVggyVtf9h+3fLUmroN+tcUaY2bJBY/Qg83PdJ0pf4bNVkByXLh80KN35k6Q/sH//fuc5D8e/fmi5\n1HYbn/VRylnbnVz2Xffdd5/cfPPNOTseyT89PT1Om6fvM9zs3r3b+T1fbSPb5BzDDx+EEEIIIYQQ\nQgghhBBCCCkZ+OEjc6B+nuXxgbwJactLQSRRbw/18SzNWuTP778vjY2NIiLS2NgoN1x4oWe59V0S\nyxKuj3p4qO+HaczveRCN/+SmTY4GcEdHh0w/6STPcowyOHeY96r+AiKnNbJBo6Lv3rJFRPrMj3p6\neuSroBFo6YdaWp21EPmTb88PjK/De4D38AhIt7a2JkRM6fUPmnmgBEV0Z3LGR1AklDsS/pW333aW\nNzU1yWdP8dZuvCY4/8GaD2Hpv2I9PqnXhE6x9LgtHc5lveUZI+20/GsUjuoDt7a2yplgnozt0ZqG\nBie6uqenRz57BJYML9nud7BeYvuLvir/+MwzziwI1bvW2WUYLYeRiCIih4BG9rtbtjhlrry8XNZu\n2uQpe5f66PLjfcfoSNUq1Rk46M9g8dLKlfKSK0oX78HRkKc3Gxo8dQrbtp6enoQ6F2TEi8af3d3d\nciLo0q/bti1p9CTuAyNBg6JUg5YrQe0QLtf7r+c4YMAA+VVjoydfF/dG5SsvuPx5urq65OOGlvrX\npk/3/LX6g/cgjfUS2xpMY/+E9QLBMhdVV14kUScXyz3mCfucWCxm3lON4tq/f7/pq4L7x/YbzxHX\nx2u2HiLhD4voh3BW7/on9Y5nLvrYxzzLX+4do2m/+r7Lc0ZE5AyfMoaa3FhO/PSe3eA1sXwuMulK\nhdffGtdiXq1zs8os7v94SNf5bFMPaSwjWG/xesViscD2S9F2R2cEucFzwvuN18jyJcNr+M3Jkz3p\nVHxt3EwBP73Hej0JtK39be+MEB2Ln3VQ4igIz9kah1nPK4jV1kXV5bew7gm25d9eu9a5XtpX6bhW\nxzAKavFrOmh2kUZ069+gmR2HwVjV0uHH/mTJxo1ONLi2b0EzMPzMaMvKygJnavT09MixxgwizB/m\nH+8x1jxsK/A9AB4dn/tf6R1zhzV8D5pJq9dQjan1/nd2dpqehIils59r8F0LqvZjvbD8NKx7LJJ4\nn7Hu4zEwjXl6Ys0ax1x88ODBCc8PFpanB4L5tdY/E8bmL7nG5vv27ZPPTZjgWY7tyVVQz1b2lmtt\nP3Cm0mO9y9W3rLm5Wb5l+DFY9wDv451TpsidU6Y46Xy/a8k26FSK5d6vv8Pn5npI4zgA647V3id4\ncBjL02UCPI8hk8DrBt9aWG0JXg+8xmF8x359yy3ya5f/1+MlXi7zTo8k3pgsUtIfPgghhBBCCCGE\nEEIIIYQQkmc444O4GTBggNTW1oqIrStcCFRXVztR2RoNHQWNnMYoGt2nRsBrVEI2NN1LjdbWVidC\nWqPNgmZ4KMkitMKsr2D0r58/AEaaaJS/pjXKTPHThSx2dCYHzmjQc9c2QKNzwujku+97MXqA1NTU\nOL5B2pboeejfIC8Uv7bSXW6w/IdtW3Xmje5L71sqvgUXXnihZ7ZHWIKiLUX862fQbAtFy5Tfth0d\nHQmRp+42w2+mjXtdzEPYmSHW7AH8Hcu3Hl/PzU1zc7PvuaTLgw8+mLF9FRudnZ1mHdLI8PXr1+ci\nSykzaRLG5YmsWrVKRETWrl3ru42e0+G9EZFaHrHvIsVLR0eH0+5rv4NlXtsbvxkfuebMM8+UP/7x\njxnb38aNG0VE5JBD4nMCtF/QMQtJpK2tzSkzOkbQmR/aRuhMgCCfMgW9InQsEjTjI4yvRRgaGxsT\nZtxiP57s+aC8vDyw/85UHrOJet3gfcOxQ5AXCD7f6DXU/ZTi80wx0traKrt27RKRxNlYhUhTU5Pj\nKebnD4jP+og+U2m7pOtpe6T7xFnVhBBSzBR+604IIYQQQgghhBBCCCGEkOKFMz4yx3RIn4Bidygy\nv8mbPOQtbxq15fxiulBv7vFN8Z2qTqL6X+hX9i+cfbZnfbz3ZWVlTrR3WVmZrF6/3tlXe3u7fObk\nk31yEZwfS3MX4xOtsoj6f5eDfl+QVqlG+qC+6teO9iqw4jX+Xa8+uzviztJOxvtm6Yvnm+MgOgqL\naVR917uOOcaT/nZDQ4KOsGJ5d1gzP3A9jSLxWx+XYcQJRnG7o7ctfVQrjTqXlgcHguUe10ddTksL\n+sZx4zxp1VfViGH9q/rAHR0d8tr69U7UTk9Pj1x/wgmefXR0dHgigvCaoRZmtusB7h+vEeq0/+iM\nMzzp7/3lL4FeM93d3VI3cqRnGV7z6eCXgctR+9mPj4HOLuph4zld6PJk6ujokAdnz3bSi1aujNwW\nnQHn4BdPbs3K0kjRzs5OuQZ0gfEaTAXddmyPf9XrbRDk9eHnI+JeHjXvSFB50NkFLS0tsuzdd2X/\n/v0iEm9Dtm/f7vEEyVR/MGbMGN/fsUxgn4vSppZmrZU/PB62VX59suUzgvcd83Q9+Af9dONGz6yc\nT3zkI0n3j+ByGJolnAPqAFvz28pgplX3ZZc5dXXw4MHyrRtu8CxHneDzwA/h5ZdfFpG+KMu6ujoR\n6etf1/aWR/dMsfONa2L1cdY5WuXIYu7cuSIiMnPmzIRlWGYx75bXEZ6L5cOG1wI9aLA/96sj6OmB\nZQq3weVfP/VUT3op+C1hGbc8VSxde+v+W+e8+Ktf9aSPhDL7NNQBvGfqg3N8r5fYmjVr4vnsnXWt\n7Z22zX/uHZvrLMgPPvhAvgB9OJ4DtjuINV/Kaqcsv4cFCxaIiMi0adOMI8U5AdKoeI/Ln4Tzv3j1\namcWa1AEdZCnVk9Pj5w0zLpidj3//sKFIiKyp/d+6aygCy64QEREVt92m2f9fwSfxv/58EMn7xhN\nHovFZOOuXR7/kZMD+sUgrLE4LscyYPllYP+I/hRYD2ZAvX6wd8wTNEMHZx3jmEjXd6sWWG1Fus/p\n2WYipM+B9Gi86HgCUFG3wU31e+bFXdy5ebOI9F3vab19rt6HU8GfAtuG8vJyZ9xYXV0tr7z9tozs\nfaaIxWKmNwGS6XuC53sdeDBhPcFZK9j/fRWeZdChSa+nzlAqLy8322O8T5YPi/WcXWrUQRrbpjDv\nFK32ENsKa6xtjb3+/N57jrJKZ2enXHLiiZ7lmfSOE7Hfz1nvNK0xBl4/P2uJfLen/Q5++CCEEEII\nIYQQQgghhBBCSMlAc/PSRKNDVDcxrKZ8W1ubs63O/NCIeI1OKCbCzhgIIkifnoSnpqYmIRokKMos\naLlieYEELffbN0aDB2mT9getUdUV1mgb1IHWSCSdFaOzwNzU1NQ42+nfdIgaHZlphg8fnqCvnMzL\noRDo6upy8uqnw5tL9Fpl8pppJBB6GqD2d1D0o+XdkczPxL2+ouek+UIdY92P3oug/aaCzsYi8fud\nyWubC9BjKhnqA6LeHzt27BARkTfeeENE+trnYRChrfVEo+YLmWL0hcol7e3tRaEFny6vv/66iPS1\n7e+8846IxPtjkUQteX1OUV+IQkbzniuGDBniXEdtZ8LOHMiUx6P2hej/EtYvsaWlJWHGeNSZmsWM\nzpTRth395pQgn7KgsRFJDy2/Ostdn53CjnPLy8ud2Vg6Q1ifq9TnopjQmd2p1kE9dx2rZNIPjxQP\nQ4cOdfoorReETJ48WZ588kkZPXq0/PWvfxURkZ/+9Kfy3e9+V9566y15+eWXZeJEnAsYQI5nfLAl\nI4QQQgghhBBCCCGEEEKIh5tuukmeeuopz2/HHnusPP7443I2WDiY6IePZP8ySEmHK52A1x5NP1B3\n8g/e5PDHvOlJr3vTqAEsIvIbSJ8FGum/e+89EemLurH8KY48CJUXvby9aZPjG6JR4hqFM2TIEPnE\ncccl3T5drVCcc2Lps97aq32tYEwh3pKgGFqNYqisrEzQRcQZU5bfA2Kr6GYXy38C9VMR1L/+xoYN\nTsSKfrkPO6Mj7EyPj0N0H54Dluvf95ZZv31a2rhVVVXy8nvvybZt20QkHtV9Za8+cRB4T625Upbe\nNqaxDGK5x7TlQ/MF0BUWEXly+3YnikmjBTV6cODAgQnX3B253N7envZMwlRnjdxzzz0ikqjN+Sak\nz4f0Tz780Dk/1JTW8qjRXB0dHWY9t84/jFZpGE1WN/eCPr61PrZ3WM4sXXe/6C6N/BIRmQUeIdje\nIlZbeCns76mtWz350ChIrMtB7YkVnWbNINPjuSPrP/WxjyXdZ1S/oCC0fuD6yXtwkXpIWxq2Vn4t\nXftU2gHcxvId2b59uxMp2NLSIo+//LJs2LAhvm5Hh/zrl76UdH8W1jgF44xw/XpIv7dypdzn8jyw\n9v8DqNfPg1/Cc+vWiUjiLCAtr9XV1WmXO7xm1lgM0+nMT7LaSmyn8Fg4PzHducs4Fq/3WSddLx/M\n87vvvuvMeujp6ZHHXnpJGhoaRERk8+bN8pNZszzrW1ra1lgcryl6YmG7gePAdVBGEVx/H6z/KqRX\nb9woIomzJrStHzp0aMK4B88B+xfLl8YqJ9Y9xv476uxhq92zvIe+A89j87dscfoq7Bv9Zny8tG2b\n8+y4b98+udLo2/zyqGMqRI+PdRvvyWng51Tf6+nity+/42OZsOoBth3Yn2IZqoe0NVbH80OfMzze\ndPBWEBF5dPduZ+wRNsJe64nfzDq8B1bbYOn4Z5s6SI8+A364QZLTCNvDu5fR+LAgIrvgIvzi0EM9\n6Ut7nzG1jlv97bWnneZJ45jnr++/74xp9B5rXWxvb5ePg1+ehTXWRyw/DCzXJ8G7I8sbB9s2bIfK\ny8vNcmZ50SB4zHnz5smMGTOMrYoXbKvqoBAM8hlYvQdpbJ+w334X0ti+4SEsD8BjRyUvebh+1LbI\natvwfCy/VMsLDeu1X72jx4fN2WefLfX19Z7fjjrqqNR2xhkfhBBCCCGEEEIIIYQQQgghqVGyMz7u\nuusumZ3vTPigUdgaKZAu1dXVjpauRpzovktRk1GjD/TcNAKeBFNdXZ2yFjVGfVga/VH36ybI2wM1\ncjXCULVcS1FH2I/t27c70WEaXY7Rgm66uroSvA3SIdUylGod3bdvn9Ne6vkG6V67ZzX0Z9z1Kh/a\n0dj34F/FKo/YPoT1CNEyGjSzLRvcfffdIiJyzjnWXLz+g/oCiCRqxx9wwAG5zk7OCZodZ/lXFRK5\nqDvFzMaNG2X9+vUi0jfzMJP9baGjkdR4rlq2g2YWkD4qKioCZ0Ni/63r4SzKqATV61Q9fTo7OwNn\nzvSHeiAS7+P0GgT5nAV5fvQHn6B8kilPyL179zr3Dj0XS9EPS88tl2OWUryOhBADmpsTQgghhBBC\nCCGEEEIIIaRkyLHUVcl++CjUL8f6Fb22tjYj+2tpaXGiojWSUqPP8hHxm232798vIn1RHJmK5ih1\nMKoMQX+NoKgwjFZKlfb29kD9fyvyTeu26qf3lzLQ2trqRE/jTA+/+9HW1iYdHfHeJJ/XCDXAw9LU\n1JQQPRrkEcGouT6C6m4uoi8x4lnvC87YCMpT1PYlyPND95OpmZXJKIbo/VzT0tIiTz/9tO+ySy+9\nNMe5yT3q/RDUPhfD2Ky/RGunyv79+5325Y9//KNn2amnnpqPLOUUfe7AiGBrDFlIhC3j8+fPz8rx\n3eOyoBkBuK6OhVId8+iYEEm1H2ttbXVm9VoeXKWK34xjjgvyS9CYM1X27dvntPda91R1QP+WEqgg\nkotZ9cXQZxBCMgw/fGQQdCU7BdKHnQQ/rPUmX4PFYG7ud5/QrOnVXbs8af0oofzxzbhrl3Yunz7x\nRM9ya7L4sYcc4klv2O61uPrbhx86HX9HR4dcBGa0aIyE4PEtU2bLQAu3x89TlhGeH7/escMZYOug\n3t1ZXwSmZ0ihT8hHcyrM72cg3fDii86DyAgwHc8Wf+4td/ph6looZ1hOPjNunCeNxmyv79gR6fh/\nevNN596XlZXJOWAiaZmu4TW2Zt1ZhsGWSSeaSqNRqR9fOPlkT/oNkJB5trVVmpqaRCQ+LRt5+p13\nPBJZx48d61mOdTPTWMajx65Z49zDVIzU123aJO3t8TvR1tYmlx15pGf5f6xd6zHqc//V33Vwr+3H\njDO8Lo1439EoDttTy1ARrzkasa3qNcsVifcdZ9bVJd3/iYcf7kn/9f33Pem7Nm70vIz4BtRTy3zd\nMug9F4xP10H/VwhYfY51zyxwe8uQF9uKqOaAUQ0n/bBMezE998EHRcT74k7rTEuLbVWNBo0ImlXj\nOeI1Q+9TqxxjPbXWR9I1yhZJPAerLbDKFd5nHDtZZudRyjnmHbGM1q3tLazrH+Z+WKaa5112mYiI\nTJo0yflNXwYFvTx2g2XcOmcrP7g9jqmwjmCZjmogb7UJqWCdk9W/WHnCOoPXNN1wONzfra+/7pGg\n2gHmnni8z2zbllGJo2e2b3eCYbTdvRzygHn+51mzPGltJ9aBeb0StdwgbzQ2OuOq1tZWmQom0DiG\nwrE0lnNs16xxK9YDywwYx+J4vFeM46XC2t27ZVfvWKm5uVkug+eXbNTFTJLQd1wL6Wnnwg/eZw9p\nXe5N403x6aAHwY085Y03RCRYWveDPfGSpmP98cO8Jcu6ppPA/Pz517wviNZv2+b8v62tTY6HsbXV\nH2O5xHKN6+MlwbbSMnlGrOUiIot37HA+vOqzVmNj3Jl+9+7dMvf005PmoR7SOVS3KQjqboAfJnqT\nB/1H4jaHQ8HAcvS/kMY+FcuJj3+6B6vcWOMUaxxplVPrHaI1Dv73X/5SRPo+fM7pHccFbe83Liv0\nd4KFwLXXXivPPvusNDY2ysEHHyzf+973ZMSIETJz5kzZvn27XHzxxXLCCSfIb3/7W3tn3cIPH5mg\nUKLAdcCn+dFBskZL6e+Zikzt6upKmO2iH1v0pXQxo4NDfWjQv/owoddbO+ViiKzMNIMGDXIGfxpt\nr+Uu1YiKoGg0/YvlO13c+Qzy/EAN0lxGphQC3d3dCR4KWh/whb62CdrupDILAz/ahiXssWKxmJNv\nza8OsoPKFb5E0O39PpyMGTMmsD3A8p3quWaDdOpuWVlZoF9GLtDrGPSSJ6g9CcKaEYLlIRcRZLff\nfruIiKxdu9ZYs3T4+c9/LiIi556LLzTs8rVnj/XoVfxgv6tofUDfk0KEEctxVq1aFXmbl19+WUr9\n6qGHB870CPMBNN+EnZEQpCAwaNAg5zpUVVWJFa7T09MTOFYO8vTAmc+aZz2u7m/gwGyHrvjT0tLi\nHDvIr6TUZ+j7tZVBM9gR9Mphu5saGuSH9StdP8ogGhsbE96pDBo0yJOHYkaD53TMou2N1nVN6zNl\nJp4rSuEdFckv+o4wTHAKSZ3ly5f7/n7FFVdE3xk9PgghhBBCCCGEEEIIIYQQUjJQ6iozFEqkf1Ck\nvEYjuKVnMsHu3bsdvUnUxccIrWJEv+ZqRKVGVmCEtp5zKpI5xc7QoUOdqAy9PjoLAusFRsNgdBL+\nrtu7ZaXcx8lUOW5tbU3QNMZ7rXkqVD+fbOOOYAoq73rf9RpqvUllRkOqbWrY6KeqqiqnPGFUkYL+\nRThDQ3/3y2t7e3vgDCVcv1AitjLRjwX59+RiNoQ1w8bSBA9qn4K8QbD85HIcoLMM+xPPPPNM6HV1\ndsghIM9ZymB7pDM9/KQIC41CmvVWLKgs1uGHHy4LA6SDShUt4/v2xcUpimFmV9io0KBnp+rq6kiz\nZ92zdIO87IL6rKB+PN+eKh0dHU6ktkZ/K0GzVEqNqqoqc6YB3h98ftExS3+ZsZ5p0A8wSCkgU/Wk\nrKzM6c93744L5ug9xXpQjKiElY5rtZyqmoR6bGq5zYR0X6G8tyPFS3Nzs4iITJ8+XURElt18cz6z\nQwqQkv3wISKJHh0oHD0UpClQKHqNN4kT3v2GzHVh8pWENxobnc5UHyB0UIkvnTs6OuTTn/ykZ/tT\nQNferTspkqj3l66eOYKvoHHyNXob1Bn7w/wuhvP1Wwcn2GMerAn4+Z6gPxTSqHGL2tEHeW0IZGOG\n85MKj2yKVzaVO5j60Y96llua3KiPisvRywaxyrGlU2npUOI9wTKGupHvQRrrCe7Pj9///e/OoFOn\nVKeDdU6ZJurx3gUtaHyN9D6k8bUz3pNPw/7c/hkiIpdCmfPD0t23/Basa4D6rXfAS+LVGzcmyEbo\ng0lnZ6ccb/gZnQv7i1pPomquFwJ/dumgt7W1yWfBhyTTr2JwfzissLT50wXvQZh6jXXHuo/Pw0vd\ns0BHF9mycqUsd22DfRjWVas9xVeqmF+85rh9VE8Iy5vnlc2b478HyM0cPBR7dbvcYZ6se4R9Ch4R\n2xZcH4fHybCul+VbY42xoupIW15zfr9ZfkwvQRk/3SjjG1eulPtd2xwBy7HMW5rtCF7D1ZC2yni6\n7cza+noRERk2zL9F+ahPGbewRjFR2yUk0207XsPfw5jhIlje2nvNRPwlP/+pttaT/o+dOz3pWw44\nwJNG6wM/op4zljtsway28qxjjvGkN+yO5uBjabxbz6zpetlY+8d6jOlsgDUJ2+pCG3cleHEmXKTZ\nkD7HmxwAAYoHPuBN+zQtlZZBqUHD7t0JHxP1XYvbt0IkPra+FGQ9LzvvPE/62Vdf9aSjjjGw3ln+\ngdb2eE/w3Qumsd497POuxRqHWZ5NSLafOQuOb0AaH2IPlwRGwY3HTbBcYB+Vbr9vec9h+xnVEyRq\nPcEy9bUFC+LbBQQxPJ2ngAASAc74yAyFEn1pRar6/a4Pzxq9rRVaI/DUyyBM1ODevXud6INMfJEn\nhU9ZWZkT7YJlRtP48hS9IoLKKUbI6/40SgnLc7YiX2KxWELUuEaklKpGbm1trXOOQXq1Wse1DQmK\nrE9FYz4VXxCRaFE86NWRTfbu3ZvxGXfZpqOjI+HaWBrGViRpNsEoO81DUNRr2BkeCK6H0WlKNqPY\nNVCB9D+03Gm7quW5mKN3C2UMTQoD7Su1TAfNIi4mMuWtGERTU5MTpIJ+hH59UXNzc1FfT5F4uUDf\nCj3XUh2bV1dXB3qyWM9UWi50rEJt+tTY2fvRUK9j0EwE933Acae2cegXEqad2LdvX8JzNIlGsTyH\nkcJh1Kj4Jz79WHnrrbfmMzskFfjhgxBCCCGEEEIIIYQQQgghJQPNzTPDrFmzRBbg9Mrco54UGkmg\nEfDJIprRN0EjFjQ6Af0tktHS0uJEZpWC7iSxqaiocMqKRqpoNLJGtmgZwig0xPodZ5ZoWcN0ptm7\nd68TSYcRVaU6s6mystK5rzolG7WTg3SGFb0vqejcpnpdo0RVBukhZ4Pm5mYnuq5Y2sbOzk7nHur9\nwP7BjTuqNB8a4DhDDNOWDjaC0gT4O0baBfkDZYNi0LTPFpdccon88pe/9F02adIkWVbifgcq6eiW\nIRUp7mj4WbNm5TsLRcPll18ud5d4GQ8q08XsBTNt2rRQ66UyQ1Yk3u8E9UHaZrjZs2ePs36+PDvS\npampKcFjMKjfLhXKy8sTnrXwuRt964JmqQ4fPjxHuS4tdPylz0Y680M9T/UdjHuMiOVSl+mzpT4n\nh5mF09XV5bQTnPGRGrxuJCrqNaP1nhQhYWZ8ZPC1Xmm+Iexl0Vve9C34HIeiu0ALiOmhlh1qJIok\n6tndBd4G3zW8CaLyl7//3ZG8am9vl8+ecopn+bnHH+9JW2XLWm692rG0mFH/76+9uskXXHBB/Ifb\nbvMsx0cDP51LS0fS0iQsNDB/qNWZoKdqsOugg5Jvv3VrxD0mcuyB3toQ1cvA0u1FJoKXwd+gXv1l\n61bnAbOjo0MuAG8DS1vU0tC1Pk7jctwfplEbFXU8/TgMHpAwjzsMqZLXGhudtqOlpUWmH3ecZzle\no29efbXn7/qId/VOqQAAIABJREFUD+YHQRrLwF/g+KjTj/rWUbVC8XxmnXaaJ+03ydpqW6Jqz1vl\nGrfHa/Ttj33Mk54LdRe7tPPq6jxpPJ+oPgMWxSDSgHnEchlVex95+rW4uZi+9PkElOuofhJRNXJx\n/TCK61hOsc/EcmOJer3qegn86sqVCfurhzSWW1wfzwHt0TH/lhZ+1HuK1xjHQSccdljS7f2cP6K6\nNEVdH9uzdP2J3OyFtr8WPrBHLeNR17c8trBOiyS2pbiO1b8gVhnHNOb5FUjj9T8e0ng/rXYgqt9U\nVN81vOZ+fYnlZxTVq8AqB9Y5+DvwhAfzi/cQ26lRRx+ddDnmZwH0FdguhhlP4DGs9t/qb6LyKfBS\ne7lXgkRZsnmzR0IIvdUsn0jLb8ny/LD8gPCe4jPn1I1xF0V9oe4nz3PCuHGe9BtwDSxe2LfPMza/\nDvoXq9znGvQ/vRG9DIZd7k1jB2498Pi8q4nBZT/ty6d70u/9IowjTnje2bzZ+Zi1e/fuhHHd5/7h\nHzzpqONIq5xjOcT1rT5x0k9+IiJ9Epbv33ln0v2HGTdi3cIrbnllZtqDqeBZnjz9BpqBishzkH4d\n0lh1rGc8q0+03o1YXmKWL1dUTw8Ey9QXJ03ypK+77rqIeyR5hx8+Shs1y9JoBI3+SBaFgNGsOtDS\nwaOmU41KKgSciN8856MUiMViToRKmK/gsVgsUEs/KOoMI7fzzf79+xMiejTvpaIb2t7e7kQ1hfET\n2L9/f8L91PulbYdGNmk7lA36cyR8tunq6jL9L/JJUDsRNAMDvRE0HTSjSdFrgBGm+lejLbPZXu3Y\nsUNERA7s/QhcLLOIMsHo0aNlUu8DyKpV+BqEkOLn85//vDz22GP5zgbJA1OnThURkXtDzhAhfeza\ntcsZm+vsVO2HsznuzBbomanPWvpsr+MAN9u3b5dhw+KvFHXMHeRJqGMYjWRO1Vuvv6Oa//oMjNdf\nJHFcie9cdLn+LZTn3VRANYZChFH7JF3mz58vIiLTp0/Pc05IaMJ8+Mjg4zTnlRFCCCGEEEIIIYQQ\nQgghpGTgjI8c09TU5ElrJKo7qiNI51CjX9HLQCMYijHC9NxzzxURV/RMPjNTIrS2tjplJEwERXd3\nd8LMjqCZHhhJXSjR5ps3b3YipGpra0UkMYqn2NmxY4cTTRZmxseuXbsS2hKtZ0G/ZwONlnyA0ZIZ\np7Gx0bl3YTyfcg1qJ2u7or/rX9XHVt1zLN/ax2nkKHoYoe+J9qf6V6Mrsxk9OWXKFBER+d3vfici\n/UuvuKamxomoPOecczwyQISUAjU1NfKpT31KROLtFss4ITZNTU1O9L32iap4oH+LCXyu0DGLPtv7\njc1jsZizviozoPedLi9Wb5dCQ++LznTQv26/Dn1WRN8VvQf4V5e7Z40UC4X2zO7H7Nn59+UlxQ1n\nehQhOTY3j/WUcC97OzTw5xjro3YdajLiS3k/r4UjjGPUQ3oNpH/Y2Bgo44Fp7KR14KQdPL4U6ujo\nkDOP8OYwqg4wpnF71AusgzRKdaKOseV14Ke5j/cF18H7iMI7libhljxVkSeffFJERP7fJZd4fp8E\n650Pabym6JWA3jSjD0+ej20+upMo+HBVr8eGlsXTR4/2LP/de/Gd6MPBJSee6Fmejt64H0MhvWbL\nFuf/sVhMLh0zxrMcy62lY4nDXkuf9QRIY9vxGqR/vG2biPTV8Z07d8rZ4O9gXSMrTygAhtcMz/H5\nNOvBWdCOocwvXmO8B5Y+OC6P+hE1jOiCVS7wmlt5wmtgPU5ZniN1kMaqjVV5E6Qxv9h2Whrrqxoa\nRKTvA4WifRr+nTAUS10ilocFXnPLywDrntH8ySd6tZFnzJhhrBlHP3yoSeklp57qWW7pHiNRtfit\nK+on/GeVW+wjsQ+NqiOM9wD7NNwe9aevhbTln4C6yNgnYr3Ga2Sdv1UG/cBrhnUb9+HnKecG6ype\nE9we18drEmXcM9J4mRJ1HGmtb/VdfmNz656gPnkYny03OLa9CNJYpn8NabwGE43jRW3Lkah9F5Yf\nSwvcb5/WM5YF3sOobSMS1afsOCjnlochjsUt3X8s11HbCL9tsF5bz1TparBb/bNV1/GcwtRtNz6P\nK0m3xzEYltFvP/98fLtR8S1H9z7b6AeQ5uZmuR58FPGa4zm/t3Wr5zn/0FHeXFnX0Conb+f4mfVq\n413LKZDGMdfwBEOKEAfFgokNJhYEeGj9+982pPzhAwN29GOX/u3o6JCLTjrJczyrD4vqo4Zg/4PX\n2PI6xXLvNy61fEDSFTVG77BS57+g3mC7IZL4zjDqc7H1bsUau0Ydu1nPyJkG87Ojn5WhUmBiVUzW\nGB37xHEny5o1+MY8NTjjo8Bobm52Zm5gZxz0pR71zdH7Qz98tBtmx6Sw8NOKLVS0bAVFOWuZzpe+\naCwWc/JWyBEviuYxKAKekEJE+xzUSsYHyGLS8g37wUPRdpva3IQQQkjxos8NOptUxzQ6c6O5uTny\nPvfu3csZHnlmz549znOrKm/oX/ReDbpXOKNYZ4LwXQshhIQkjMdHBuGHD0IIIYQQQgghhBBCCCGE\nZA9++OjftLS0JEynxJkcQZHrQf4LGLFCioMbb7xRRESW3HRTfjMSgt274xMcg8qYlkWNqMk1u3bt\ncjxANJqnkFEdWkYOkWJCZRZxFqL+rlGS6HVVSlx7bVyIaSU9AAghhJCiRWera3S/PpfrrFX06ghD\nU1NTgnwSyS0dHR3Ovdu7d6+I9N1rlcDSGRzojYjy4vq7zvwohmdMQggpCOjxkR0WLVokv7j1Vs9v\neJ39tK/dYFfmp8GLtjqoXbkJFGtQ0285pC0d4IbdfYp6liSW3mo0+dKXq2gCXV5eLhPHj/f8htfA\n0vrG19wHQRo1cPGjH94jP8Ef1DS0PDwsTcSGAqsSlq4wanveCGm8pqh/bvkO1CXJm4LX8DlIvwjp\neiMP2f74+/fGRqeedHR0yDljxyY9PpZjvOZ1kMZ7hNfU0lf300rFbVDT2/IhQax+ButJutqZ8+bN\nExGR008/XUREZp98ctL1USsUiaptaj2KhNHlt/IUtdyibnpUjxAEZTItjXHU+8YygZq+FpjfF7du\nFZH/396dh0dRpfsD/zZ7SCAJAQmLEgiowMAFAjPOiKiP1w0dFhWRGHbCdhNAr+DvKgPqDPx0BAHD\nBJAlIAoM26A4CoiyyEUFBtGJigsa2dcAiUCAhLp/hNNJv+n06UpXd3W6v5/nyaNFV1ed6j5VfarO\nOe9b8tvTWZxn7j5zs7GOdbHn5bKMfSxfl7/BFY2XrTo+1M2z+u/jf/iDy3q6eqqL0Su/c10MdHd1\n2Gycd7P13GzuL7m+zL8gc6nJevzsJ5/g7NmzAIofRsx+4AGX13XHq8tFoIuTLOukN5+Xbpvye5Xn\njiyzPEZdTHH5GfoSb1uX80P3eeji+uuui+6u9fLf5DbldyyvfWavvTLOvby2yrwzupwaOWL57W3b\nnB3JADBQ1HFJ1hfddVa2Wczm93NHlxtHd+3S5fMzmwesom2aDz/8EAAw5L77XP5dnmPyM5S/Nbo6\npTun5XUTKHttlfU6RyzL70Rea33N8WE2n4/cn66NJOnypujyqumeC7i7tuhyU3pzH1ua7noml/+6\nZAkAYMCAAZot+9/y5cuxLDnZ5d9km0ue5/K8kO1Wd/U8Vm50jFiWH/Jm18WtYnmOWF2eB1vOnSs3\nr2p5IV3lgJ/S12ugpIOkevXquL2Za83UtftkHZDnifyMdXnTdPn7APN5cHX1dmJGBtLS0tzsKTzI\nvJfurrVm82BJvubnk8x26cnrtdX5XBetWgUAzvZ+amqqj1ukQOtcxYE9mnH5ndszx4dpqampZTo+\nQsHly5fLzAjRzfxQoxLU+mo0gxr9oDpE1I82Uai5dOmSc3SPOg/Iv1SuhPfee8/mklCgqBs9lasm\nnBw9Wnxr2bBhQwCM5R1IX331lfN6M2eOfKRBVPllZ2c72+q1atWyuTTh5cCBA3YXgcgpGDo8lMqU\nm9KMc+fOOa+z5SVDV9S/q/Vk3lU1W0gOQg034dzpQdZQ0QPY4UHeCpuODyIiIiIiIiIiIiIisgFz\nfJAZZ86ccY5CUDFI1SgDGZdS5gaRM0XUf1Xoq4rELiWqDH7++Wc0uz612K68I+Hq4YcfBgC8YnM5\nyP/U6L+LF32d0Fz5jBpVHPgyKysLAGeWBZKa7QEUfw/vl1omCgWjRZ2ePHKkTSUJPyOvf9ZTRsng\nxkThLS0tDRvT0+0uhuXOnTvnnLGhnq2oZZnbQ7b11LMX9YxGPmsJ1xkfRL5S+Xmo8gpwio/w6vhY\nbxiYO3cuAKBRo0Z4sVcvl9f/4O5Npci4nTIuPwCsFst/EM97ZFzFnWJZFxBEPqJ9uE0bj6/LmIzf\nmLxI7D540CXJ+p0i54ckf77d5SrwRJa/7/XvSz04W/v002XeI49RPmLTxVf1NXeBv/27VPk++OAD\npHTv7vK6PJ4OYlnG+pT1WBcD2F09l7la5D5kDHZd7GVdLgFdXEmzsUV7devm8f2S7rySdcxsDHlv\n8kvo4szrYme+kpnpfBgbDF76+GMAQP369QEAye3bu7yue1RuNheEJOuEux9eX+Nb6+qlLs6uJOuh\njD8t64jMtaOL+yv3nyCWdTlA5P7vEnlcvIkjrCuj7novzyWZC0fGbpbH4EtuA2/MXreu3Bvka9eu\n4SlxfZf1XJfjSeZHkNdvdzk+zF5fde/X5QQx28iV7Yg3xfK2vXuxe3dx9qrhbkKarjcMzJs3DwDQ\noUPxL6R62PD9998DKInX3aBBAzwt2oY6uuOV8beBsnVffi+6XDXyXJOvy33K9eV5YGW9P2MYeP/9\n4gx1MpxH1apVkd67t8v68vuV1zWz+Zrc1XGzMdN1sal1dVpee+V5qcv3IK9LSz76CNnZ2QCAMWNk\nQHvgeKnv79133wUANG/eHACQk5NTvM7x4wCAuLg4jH/0UZf3J4jtyRyGMieJ/M7cXSPktVh+prKd\nKF/XtVXl+rrvLND5+8zmBNP91unqCFD2Mzdbb+VnaPYezup8ffI71+VPMps3RXcdkNzdo8tt6tqW\n8jN+ZuZMjB07VrPnymO9YWD16uKnIbVr18bEhx5yeV1e+2SbT7ZZ3P1+dvnRdfne/xYr6BKIal6W\ny307dPD4uqynv+Tmet6hsP2nn1BUVASgeHBqx5YyiYkrXZtLlkd3//ja/PkASsLTvuHmN0Z3XyvJ\n14P9WUugfVLq88jKysKkIUPKrKP7DZV098G6emN2GKgu15d8VqT7jff1vp4qnwBP+Aivjg+gZKQO\nALxoYznsUlRUVGYGiCJniKiHMjL3RyCphxFPPfUUAPcdH+HkwQcftLsIVEkFU6cHANx9990AgA0b\nNthcEiL/GTx4sHadZcuWAeCskIo6fPiwdobqiBEjAACZmZkAgMTERABA06ZNAQCnT58GwNGXVuku\nOvBKC73xwP537ty5Mm328vTo0QMAsG7dOgBwzm6NjCx+jMJRkkTBI5Q6PZTHHnvM+f8TbSyHXS5d\nuuScCeIQSazVsxaZZ9XOGSDqtyEcZ2cHAzUYiswJxWtnuGHHBxERERERERERERERhQx2fJBfFRQU\nOONMKmo0gvqvjEfp7Sgzf5BlJaLQ8sADDwAAxttcDiK7JCcnAwD+/ve/21ySyik3Nxd169b1al2Z\nG+Gtt94CUDLzQ42+JAom58+fd44g9lav6yHbli5dCgBo3bo1gJLwkkREZL3Tp0+jTp06AErySKoZ\nHvJZi8wdUlBQENCyAiVlVDljKbBSUlLwP/37212MSmfWrFkAOPODvBfWd3h7RbzB+8V0xASxvow9\n5y7Wp4zrq4urKOPmyrjLuvijsgwylqjsRWvbqJHL8s/nzUVw/eTIEZeQEr9v0cLj/nTLupi9ZfbP\nGJFl4mTWFfV2t1hf1pkfNa/LeLXu4gjLuIzuYvWXlqPZhy7OpG77uljKki7OpSTPQ3n8clmSsaxl\nvG+5fXkdAIC0uXOd4VpCUelcNqtXr8bEPn08ru9r/g1v6oCuXuriacvrm9lcCJKsJ7o8L5Iul46s\nl13Esjx+3fZ03J238tGe/E0LdJz2QNPlyZLxsOVnKHOaeBOL39fRNrpJ+rLMujwsutw17mJ+W0l+\nprLe6/JByONLcLMP3W+c7lzTXVt0n9H0rCwAwKBBgzRrWk9+PrpWqK69IHkTrENeV+TnJ8uky0+k\nqyOSfL/8fs22acyS9Ud+Hrq2uYxA7+470eVT0OW40t0PyTouP9NZ69cDAB5++GE3pfOd7rcoTrTN\n5fGabV/I78hdu1MXc113HfH1t0B3XTNbr82WR/eZmf0OdPceAPDs0qVISUnxYs3wJJ+1yHtW+ZnL\n9oJcBsrex24TX+R/7HFdThDr634/5bIuT6XU9T9ck4z8cD2/kre+OXTIGfrqypUruP16p3V5dPk3\nzOZy+HeIt7ODUenfEzVY4bkBA1zW0V2PzF7fdPeQZp+V6F6Xv9m6dpc3z6OocmNyc5uoUX/hpnTO\nDxmHUv27GoUQEREBoCTvhkqCRUT+F8qdHpLZka1ElZlKBPrrr7/aXJLK6erVqxUeJakeWMlR8aHO\njg4PAFiwYIEt+63sCgoKKpynq//1kaTz5s0DALRp08aycgUzf3V4eGP58uW27ZsCi50eeuH6jEXJ\nz893zqpQ+Rzksxc1I0SuFwhq3wY7PIKC+s2WHR/kinkRKz+GuiIiIiIiIiIiIiIiopDBjo8AU6PP\noqKibC6JPQoKCpwzORQ1o+Pq1eKqKEcjREbKycT+o8pC7i1ZssTuIhBZzo4Yt0R2UbMno6NlsDHy\nRq1atTBs2DCftqFG2HFGgn8sXLgQAGOIV5Rsp1eEmjX62muv+bwtcm/RokUAmEeFqDQ1kyAmxpvg\nYaEnLy/P+Rmo503l5RNTM0HUjA+VKyQQ1HMfosqgqKjI7iKQj9jxEUAy/moz8boMtiJjzbkLxiLj\nz8l4dTK+nXzMoZvY6Gv8PRnf77eNXUuUfc5cBFZdHElZPtllIl93F8uTzNmseV1+5jL/hC62KaCP\nCyzjjZrLJFOWbCrrYqzL/ely30i6eK9m40zKs0oez9jMTAAlP+Jr09JM7iH0+Brj3GzMXm9+eHX1\nWNclbLbezVq61DntPSYmBn3uuUezBc/b012f5fHliOUEzfYyr4cLOnPmDAAmnPNGO9EOkddOeW2T\nbYYcsexrG8EdswEXdHGFdddTXTxtfzeSX5k/H41LtY1q1qwJoDhhKVBSv9UDijdECCJ5vPL3Eih7\nDPJ6J9ujuu9VkvkRes2ahTFjxmje5R+3ijpultnccRUh62Bnzfoyv4J8vy4HyD6xLK+98vu32gvT\np+OGG25wLquHcOev5/27eLH4LFQP355LT3d5vzw+d213XR4RmdtHfo+6HIfynHlxxQr07dvXTUkC\nI1HUc/kZyeOX7QX5eVWk3Sz3oQsaavae0Wx+HXmMctls/h5dXhhdG0yX/0fu/7/mzAFQMgAwnELO\nWkVe/2V+IFnP5Xfs7n5L/r7Jer5aLMvrqe6+V25PtkF0uXTk632SklyWdxw1dxdp9jfPinYf2U/m\nkVIDSFQ4aBkKS37Psp7L31zdfbHZ6798PUcsy+u9LjedbFcELvgbBco1MMcH2cgwDBQWFgIoGXWt\nRgDI+JOBmPnBkd+eMc9KaFAPHdTDhnCXn59vdxGCwsWLF3H27FkAlSP/A2Ndkx1UB4QnGRkZAMq2\nY9RvqMqfkJubCwCmZpDIjo9gZFenB1lD5uBzZ/bs2QBKRhSr0dWqHX3qVPGjdTWT2sz1WnZ8BCM7\nOz0otKn74Llz5wIARo4caWdxqJK7dOlSmWcoqo6p/6p2jRp44U9qn2kcdBfUhg4d6rIc7jlAOLiu\n8gv0jA/93SIREREREREREREREYWFhIQEtGvXDh06dEDnzmXnRW/duhXR0dHo0KEDOnTogJdeesmG\nUnrGGR/konRODRV258KF4kmeV64UT0ZSow/q1q3r9/Jw9IFnly9ftrsIZAEVvzs1NdXmkgQHzmQq\nVlBQ4DJS+6mBA20sjd60adMAlIw45qhICgRP1wsVGkDVSRUv+6abbgJQMqryvffeA8A8KxScPLX1\nVF4aNYtJhbBKSEgAUBKuSoVo++677/xVTKKQxBHxZKWCggJnuCI1C1VF21Az3tU1X12//akyzCgn\nIvtt2bLFYw6zO+64w3k/5Q3m+LCRDDIjY+HJOJTubo9lnDIZs1XGy5MxYBPE8ujMTGcIBm9lXs8X\n0KpVKzxx330ur8ngVDJuZau4OJdls3GldY8M5Ocj9y/j+5GeLpeB2fdLss66e48u54fZMshzcdj8\n+c6kqLVr18bkRx/1uD9dfghdvZbH/MWpkiO8evUqbhG5cdx9RqXJ42FAKz2zsUR1eQSsiAuvq6e6\neNq67enKdMYwnNf32NhYpCUne9yeLj6rrh7K81r+fqRdDx+kbtAMEY+W9BLEsvxO5LXMbBx4GSNX\nd61yVwZZr5Z99FHxetdD84394x89vl+WUdYj2Q6qbPGo95qs9zIkkTpvVAfO6NGjLSyd/WScaRmf\nXZfHRrYbddctd+1QeW2W25TvGXI9X5F6IPQP0Q6X55Vsy+piWeuOIdjaCHkm6/i8efNwP0o6GlUH\noxpApQZUmb2/CWZm2+KyDprNyeWOvNbqrv+63AS6dpb0bEaGM4RPVFQU/t/jj7u8bjZfk9lcbWbP\nG7m9eevWFW/n+m+bynlDFadLZ272OwbM57+R7SaZYWPU3/5W4d/dFStWYFy/fh7XkfX+jrZtXZbN\n3s/oyPfr2lxUOckcIFbKyMjA8yJEqu4ZpvxNk+epLoeIrKcyHxBzfISeQHd8OIwwflIhk5vrGoje\ndHxI8stsI5blRUP+GK/38euRxyj3p2uEmm14e/NQxdP25efzcfhWT6/J79jsD4P8zL0hvzfZqJQ3\n/bqbEd0Nn7zplgmBdeWRzHZ8/OvECeeNu8PhQHPR222240Naev1mq2fPnpo1w4es15KvHR8VebCk\nO7fk9VXWQ937dfW+tBkzZuAvTz/tcXu+dnzI37gEsTzq7bcBlHR8qHNEjTxWI9V69eql2VP4+qOo\n59+I1+W1VNcukXQPaN3R3Zz8+Y03AJTkHfj/YqaarPeyDLoBDrrfE1mPz7g5T+bPnw+gZDSlmsEa\nd31wR7NmxelOVV1VD7i7dOmiKR2ZJeu47PiQ36+sH2Y7+yrS8SElid/iS++847EMOWJZ1lF5DugG\ni8j1D7ip4/PmzQNQUsfVqPSmTZsCAJo3bw6gpI6rh7m/+c1vymyLfCeTOOse4Oo69CrS8aGrR/Ja\nLuuhrtNb19aVD+JkwnddkmipIg/FzZDb+8e2bQBKOqFVXhzmL6u42zRteXn9N3v/6A1dEuV/+/is\nIV4co9kk0br7GbMPBs12fCTPmgWAucDIVV1Rr3X1StfxIcntJYhl2fEh74/MDjoi3zRv3hyxsbFw\nOBwYMWIEhg8f7vL61q1b8eijj6Jp06Zo3Lgxpk2bhraik1e62eHA3zT7/Z+kJOzZs8fH0hfjjA8i\nIiIiIiIiIiIiIgIA7NixA02aNMHJkydx77334tZbb0W3bt2cr3fq1Am//PILoqKi8P7776NXr174\n4Qc51MkVQ10REQWZa9euOfPfqFGVVlIjNom89dRTT2lnfPibCmOiZnaomR/qHAnjCaUhTeUKUCFN\ngsnrr78OoGSUe15eHgBg3LhxAEpmglSrVtz8Vcdwzz33BLScRBU1c+ZMACX5aFQdHzt2LIDiEBVA\nSVgplY8vNzcXAGd8EJVH5bBU7X21TBTKONODiHSaNGkCoDiPXO/evbFr1y6Xjo/SuZ+7d++O0aNH\n4/Tp0x5zgrDjI4DkBy3DTFlBTvuS+5DTIeW0ZF+dMQzng4A2bdrgkXvvdXldF+/V7GMNXegs3ZTV\nx/5WPOEp1GJc+5NuKrgM8SCntn+peb+7sCSyXshwWbIe/CiWdfVMF47F3bRkVc+bN2+OQT16eHy/\nPCa5P/mZdWjUyOP2fM0fkSxi5JuNpx2KzIaFMhvi7fNvvnGGv6latSoeb1M26Juccq+btivPrWZi\nWV7/ff2xP2MYzodgsbGxeHbQIJfXdddvGXtfF0ZCHl+qOM+mXY+LT97LEcu6a58u5KZ8XW7PH7Gd\n5XmiC69itq1lRX4esk+OWNaFLjMbctWba79si5utU59qXjebn0EXss6bkHQUXPaXaretXLkSw/r2\n9bi+r3nJ3IWdkuvIeqSLmS7b6rp7uDVbtiA7OxuA+8TfMkSbDJ2iY/Y8NZs3Tb7e/bbbXJbnrlyp\n2QLp6K73ZsOfuWP2N0GXB9Ks46Xq+fLly8vk35PHLNthsh2nC0En7y1kW1/3LGnA9XrNHDbkiXwW\n0UkTPv8XsWw2h5Ss9/La4GtIOqq4Cxcu4Nq1a6hTpw4uXLiATZs2YdKkSS7rHD9+HA0bNoTD4cCu\nXbtw7do1Z3jh8rDjgyxXmXry2eFBFaXq+azrsUqJPImMjHTmpKjM1Eh2AGU6PgJNzfxQ+RKGDh1q\nZ3HIT9QMNTVrIpioEboqRnvp8wMAUkU+EiJ3/vM//xMAsHnzZptLUpYcla5meijp6ekBLxO5UrNt\nQt3Zs2fddngQVSbLli1DsuisqKh+/fqV6fgINqqNPmzYMJtLQkSVwYkTJ9C7d28AQGFhIZKTk/HA\nAw9g7ty5AICRI0di9erVmDNnDqpVq4aIiAisWLHCmQsyWATfXSsREREREREREREREQVcixYt8OWX\nMkZMcYeHkpaWZnoghIGyM7L9iR0fRBRSxo4di5fEKF8iqbCwELVq1bK7GCGFuWrCQ1RUFIDi8GrB\nQoU6VLNQOOqdfBETUxzE4b777gMAfPzOO3YWx4W6zqpZTRR8zp49a3cRAuLYsWN2F8GvVN4yCm3h\nlstl8OBszd2rAAAbCUlEQVTBdheBiIihrgIpT8RkzBRTE2WsORkT0psYvLr4dXI5x4tt+qL0Mb/z\nzjsY0auXy+u62Jq6mPEyN4LO4jVrAACPPPKIyXeSIvNVyIidMhaoLt6q5O71VeJmRyUxVv9VIRhU\nDoWHExI87kNmV+j/8cf47rvvALj2JnvrjGE4p98lJiai//WHF4o8JllvdfFhZdxKmStBfsYy7qXc\n/l8XLADA0ECe6K5Nst6bzfmx8cgR5/+r+ivr9W+buZ5Nsky+5iWZOncuRowY4UVp3SsdZ3jx4sUA\nSs7B6tWrY+bAgS7r6+LM54hl5lqwXumYtWvXrkXqo496XF9+ZzLGru48cPeduYsVX5qs5y9qQlLq\n2kZydI+uzDJe9dwtW3DXXXdp9kLBQsZllnH+5fetywGju466q+Nmr82j+/c3tQ9d/gV5DsllGeP9\n7W3bXJJGUuVjNt+ELg+MtPvgQefgDRm2s7w2jGyby+Xft2jhcZ++5oiSMePjxbXAbBtDnjeSLoOB\n2e+IzCud+2bTpk0YcP/9Lq9bkdNDks8qfM0zZtaZUsf85ptvYoJoe5sd4SyPV/csSW5/2kcfAQBO\nnz5tcs9EJfZ6yLExf/58vDx8uKnt/SUzE6NGjfK1WFSJsePDJv369SvT8RHqevbsiYo/YrPG0aP+\nbn6QP+Tn5wMAatQo7jKQMd/Vsor5b9bhw4cr1OFRmnr/0kqQcJkdHoFXum6qm38p0LEprZwxce5c\ncfdb3bp1AQAFBQWWbbs8Kq45R0lWzKFDh+wuQqWQk5NT5t/Uuco8YRQKDh48WObfZs6cCaBkdDJz\nKwSv9PR0vODn/IqXLl1yXvdUW1wtyw6P8via5yzUr7cpKSl2FyGk/PKLHAYWHFR72R8GDBhQpuMj\n0FROj+PHj9taDgpdqamppjs+2OlB7PggIiIiIiIiIiIiIqKQwRwfFFY4Yq1yUqPHr14t7qdVo+fl\nDJCK6i/CTPi6rfEDBli2PQoNDoej3Jke7tYNhMaNG+Ott94C4PtIw3HX89xkZWUBqPjsKzPOny8O\nLBHqo0D9hfmJvDNo0KAy/8acHhRK3F3/x/HaQKXUrFnTOWNDtVHUspzpIZflTA/mi6FASE1NxZ9M\njgoPhFCv/z///DOA4jYmEVGw4IwPG32jeV0XV9jdOpKMfS1jWy5Yu9b5A5wcgNBbMg6mjBMp46N6\n8xl42j7jp1qvdMzFpUuX4jnxkP9Lk9vT5aUBgNvbt3dZlnF2zX7POSbX95U8JlmPdXGMdbGY3X1m\nnt5PZZXOV7Fu3ToM6N3b1Pt1dfA/brzRZdndd7JHhB5Sy+ohQoebbvK4TzmpXxf33d/SFy1yPvCo\nWbMmxvXr57E8uhjjZD9d/iBvct/Idonud15Xb3Xnntl6z4CY4a0iech068g67Wt+Jl0ZdCPazObH\no8pHdx2V7WjddbKTm9x53/sYw1+Xq2bi0qXOULdWhCk5LnJtppm877X6nnLlBx8AYEggf9LVa2/a\nybrrsWzTyOUVmzbhwoXifz18+LCmRL7THbN83dffPLaZyA4HNKEViezGjg8iIiIiIiIiIiIiIvIb\nzvgIc7GxsSgqKrK7GFRJ9e/fv8yMD6LKrlevXrbsV4Vyq1at+KdShZPwV+ir/Px8y5NpqnBetWsX\nj6NTvy/+OAYmqiMiIrKHt/ePMgm6tyIiIvyW8FuFyrTTTz/9BIDhOkNdRESEs+6bPQcqI4a4IqJg\nxI4PIiIiIiIiIiIiIiIKGdfA5Oa2OVOq13/hwoWYMGyYy+tmYwK7o4vzWFRU5Iw7GQgyHl+cGAUs\ne+F0MeDl+ofCYCRFsDHbc2o2trW79/iaq0CXX8dXpeMIz507FxPEyHR5jLqLsDxeWX7We//zNSa7\nbn0A6NyihfcFcrMPuU3duXnu3DlT+/OGmq2ikptHREQAKE5uqjtvZY4mWbpXMjMBcKaHlc64uXao\nhPcNGzbEE/fd5/Karl57007x92+GrGdmz5M8Xk9Diqfvc+nSpRgnZq2azafhDd02zO5Td07Ic0Dm\nEXsqIwNpaWmarVBlUvpavmrVKox8/HGX13Xt6IrcY7Zu2NDU+mbzOan8Hv4wcuTIMm1zHXke6X57\n5q9YAQA4e/asc58UWHkif99Qkb/PivNAd72uWrUqLl4s3lN6enoF9mCO/M2rq3nWYvb355XMTLbD\niajS4YwPIiIiIiIiIiIiIiIKGYHu+HAY4RDcsILk7AfJ3SgEX7+8hf/4B3755RcA9sRk1M34kHQz\nPtyNXiX/ijf5HQYDeS4d93O9kaNtpGixrBuRLM8DzviwnvzOrJ7x4Q9mR3EFYmT7m2++CQCIjIzE\n4Mce87huA7EsZ3zw+h5YmZmZ+NN//ZfdxdCyejQ9Z3yEF13bOxDXdl9H4+vquBypLmdfU+jR1Ws7\nmD2X/P2br2ubS43FsjyeU2KZvyXBR/fcwR/X9yXr1+PYsWMAgNTUVD/swTNdPWcbiYjCwQ0OB/pq\n1vk0KQl79uyxZH9VLNkKERERERERERERERFREOCMDw/MjgoH9CPDdSMZ/rpgAYYOHaovHJEX5s6d\ni+c1+SysGE1jdmS7fH3l5s347rvvAACjR4+2oETmLVy4EADw66+/4k/jxnlcl6Nr7CdnNklm8xF5\nw9eR7PL1F4Mgrvu8efMAACNGjLC1HGTenDlzAAA1a9YEUJwjDAAKCgoAANeuXStzLfNmpqrZ3wSz\no+NXf/wxfvrpJwBge4c8mjVrFgCgVq1aLv/uuH79r1q1apl8fBXha4x1afsXXzhHFD/44IMVLRaF\nELMzmSRvrstmr8XBOCtVUr9zsbGxGN6vn8tr8j580htv2DKCnyrOjhkfry1ejIEDB/phy0RE5K0G\nDgce0azzLwtnfDDHBxERERERERERERER+Q1zfAQRO2Z8MGY6WS0Qo2l8nfExe9ky9BMjueykO/c5\n48N+oTDjg9d78jdvcuMEesbH8o0bsX//fgDAmDFjTO6NwpmaAaJuXapUqYIXLciHZ/WMjy179iA7\nOxsAOLKYAITGjI8V//wnunfv7kVJ/EP+nsn7cObXq3zsmPHBtjcRkf3iHA7oWhTfcsYHERERERER\nERERERFVBoGe8cGODw90o7pv1IzecSdz6VKX5ZSUFNPbIDKj9MiWt956C6P797exNMUCeZGrCM7o\nCH7HxXekmwESDNZu3YqcnBwAHAVM4Ss/P58zPahCxorZHa+++qol27V6VHF+fj6v8eRCjjLXzQAJ\nBu9/8gmuXi1usd999902l4Zt81DkafaFuzyV3pi3apXL8mOPPWZ6G0RE5F8GgCsB3B87PoiIiIiI\niIiIiIiIyG844yPEcYYH2SklJSUoZnxI1arxUkShLycnh6OAKezl5+fbXQQKEePHj8fLEybYXYwy\ncnNz7S4Ckc9Onz6NXr162V0MClMjR46s0IyPvLw8AMCQIUOsLhIREVVSfNpIRERERERERERERER+\nwxkflcghxhqlSkjGyK2riTPsLva1/DfdRUvltuGMJ/IXmfOjtOXLl2NCcrLLv10U61gd4x0AFq5c\niePHjwMA0tPT/bAHIs9KX+/feOMN/M+IEWXWMVv35fXe7PvPnTtn8h1E5SsdI37x4sX478GDfd6m\n2RsxeQ6wjpOOp9wGf//735H6xBMe3++ujtbW7FPW08mzZgEAcy5R0PJ0nhARUeUV6I6PKgHcFxEF\noTzDwA/HjtldDCK/6devHw4ZBv7Fek5EREREREREZAuV3NzTn5XCruNjyJAhcDgc+PHHH13+fcWK\nFWjdujUiIyORmJiITz75xKYSEpm3ZcsWtGvXDjExMYiLi0Pv3r1x5MiRMuvl5uaiQYMG6Nq1q8u/\nN4yP92v5UlJSONuDfPbPf/4TXbt2RUxMDOLj4zFs2DCXfAHPPPMMWrVqhTp16uDWW2/Fm2++6fL+\nG/xcz6U+ffogPT2dsz3ItFOnTiE5ORnR0dGIjY3Fk08+6fM2hw8fbkHJfDdu3Di7i0A22bx5Mzp1\n6oTIyEg0bdoUK1eutHT7gwYNsnR7FcXY8uFpwoQJuPHGG1G3bl00a9YMU6dOdXl93759SEpKQu3a\ntZGUlIR9+/a53U7fvn0DUVyMGTOGsz2owsq7p7x48SJGjx6N+vXrIzo6Gt26dbOphEQVN2jQINSo\nUQNRUVHOv6KiIufrK1euROvWrVGnTh20adMG69ats7G0RJWPmvHh6c9KYdXxsWPHDhw4cKDMv3/4\n4Yd49tlnkZWVhfz8fGzfvh0tWrSwoYREFdOmTRts3LgR586dw9GjR9GqVSuMcpMQ7tlnn0Xr1q1t\nKCGR786fP4+JEyfi6NGj+Pbbb3HkyBGMHz/e+XpkZCTWr1+P8+fPY8mSJRg7dix27txpY4mJKuaR\nRx5BfHw8Dh48iJMnT+KZZ56xu0hEPvnmm2+QnJyMKVOm4Pz58/jyyy+RlJRkd7GILDN06FDs378f\neXl52LlzJ95++22sXbsWAHDlyhX07NkTKSkpOHv2LAYOHIiePXviyhWrxzQSBUZ595TDhw9Hbm4u\nvv32W+Tm5mLGjBk2lI7IdxMmTMCvv/7q/KtatSoA4MiRI0hJScFrr72GvLw8vPrqq0hOTsbJkydt\nLjFR5RH2HR8HDhxAvXr1sHfvXgDA0aNH0aBBA2zdutWn7RYWFiI9PR0ZGRllXps8eTImTZqE2267\nDVWqVEGTJk3QpEkTn/ZHVB5/1PGGDRuicePGzuWqVauWmdW0c+dOZGdnY3A58a/zDMPt3xk3f8fF\nn+49FH78Uc+Tk5PxwAMPoHbt2oiNjUVqair+93//1/n6iy++iFtvvRVVqlTB7373O9xxxx349NNP\nXbZxyDBwyMt6Lv/KO0dY78OXP+r5pk2bcOjQIbz66quIjo5G9erV0bFjR0vKW7p+TpkzB1PmzDHd\nyKwu/nRezMjgeVHJWVHP//KXv2DEiBF48MEHUa1aNcTFxSExMdHyspauazOWLMGMJUtMb8NsHZ+x\nZAnreCVnRR2/5ZZbEBkZ6VyuUqWKsy2+detWFBYWYty4cahZsybGjBkDwzDw8ccfu92Wrn2RZxiY\nmpGBqRkZ+OucOfjrnDl4NiMDz2ZklNvOkW13Cj9WtVnKu6fcv38/3n33Xbzxxhto0KABqlatyg5u\nCjh/PU9UDh8+jJiYGDz44INwOBx46KGHEBkZ6XaANRG5F/YdH4mJiXjllVeQkpKCixcvYvDgwRg4\ncCDuuusujB49GjExMW7/2rdv73G7M2bMQLdu3cqsV1RUhD179uDUqVNo2bIlmjZtirS0NFy6dMmf\nh0lhzF91/ODBg4iJiUFERASmTZuGCRMmOF8rKipCWloaZs+eDYcmmTmRFfxVz0vbvn072rZt6/a1\nS5cuYffu3eW+TmQFf9Tzzz77DLfccgsGDhyIuLg4dOnSBdu2bQvgURG5sqKef/bZZwCAdu3aoVGj\nRkhJSUFubq5dh0Tkwqpr+csvv4yoqCg0bdoUFy5cQHJyMgDg66+/Rvv27V3a4O3bt8fXX38d0OOk\n8GZFPfd0T7lr1y40a9YMkydPRv369dGuXTusWbMm0IdJYc6q63lmZibq1auHpKQkl3rcuXNntG7d\nGu+++y6Kioqwbt061KxZ09Q9LBEFlsMwgnPIR48ePfDzzz/D4XBg9+7dqFmzZoW3dejQIdx99934\n17/+hejoaDgcDvzwww9o2bIljh49iiZNmiApKQnr169H9erV0bNnT9x1112YMmWKhUdE5MrKOl5a\nbm4u5s+fjzvvvBO33XYbgOKOv++//x5z5szB4sWLsWDBAuzYscOS/RF54q96/uGHH+Lxxx/H559/\njptvvrnM6wMHDsSJEyfwwQcfsLOP/M7Kej58+HDMnz8fCxYswIABA7BmzRqMHDkSP/74I+rXr29h\nqYvVFeeHNyPcPa1/USznBWczkyrAl3peo0YNNG7cGJs2bULjxo0xcOBA1KpVC2+//bYfS1wszsff\nAN2oM9bx0GHFtdwwDOzbtw/r1q3DM888gzp16uDPf/4zvv76a6xYscK53pNPPolWrVrhhRdesPAI\niPR8qeee7imnTp2K559/HpMnT8Zzzz2HTz/9FA899BB2797NUMsUcL7U871796JZs2aIjo7Gpk2b\n0LdvX2zYsAG33347AGDhwoUYO3YsCgoKUKNGDaxatQoPPfSQvw6FKOTUcjiQoFknKikJe/bssWR/\nQTfjQ0lNTUV2djbS09NNXaQ++eQTZwIiNdJ33LhxmDRpEqKjo8usHxERAQBIT09Ho0aNUL9+fTz9\n9NN4//33rTkQonJYWcdLq1evnjN2cGFhIY4ePYrXX3+dHXlkC3/U888++wzJyclYvXq1206P8ePH\nIzs7GytXrmSnBwWElfU8IiICCQkJGDp0KKpXr44nnngCN954o0tYNyI7VLSeA8X1evDgwbj55psR\nFRWF5557jm1tCjq+1HHF4XCgY8eOiIiIwOTJkwEAUVFRyMvLc1kvLy8PderU8bnMRGZVtJ7r7ikj\nIiJQvXp1TJw4ETVq1MCdd96Ju+++G5s2bbKq6ERe8+V63qlTJ8TFxaFatWro3r07nnzySWfOps2b\nN2PChAnYunUrrly5gm3btmHYsGHYt2+fPw6DKCSFfagrAPj1118xbtw4DB06FC+88IJzKvzIkSOd\nDwjkn3pgcMcddzgTEKnpwx999BHGjx+P+Ph4xMfHAwB+//vfY9myZYiNjUXTpk1dHo7xQRn5m9V1\nXCosLMTJkyeRl5eHXbt24dixY2jTpg3i4+MxduxY7Nq1C/Hx8SgqKgrYMVP48Uc9/+KLL9CjRw8s\nWrQI99xzT5l9Tp48GR988AE2bdqEunXrBuZAKaxZXc9lOBTAv+0Sb/PdTM/KwvSsLO32pmZkuGyP\nQoMv9RwoW68D2dbW5W96fvp0PD99OpasX48l69drt7d4zRrW8RDkax2XCgsLnTHf27Zti6+++gql\nAy189dVXDMdJAedLPdfdU7oL9cPnKmQHq6/nDofDef3et28funXrhs6dO6NKlSro0qULfve732Hz\n5s0BOTaiYLRhwwbccsstaNmyJV5++WXt+oHu+IARhIYMGWI8/vjjhmEYRmpqqtGnTx+ftnfixAnj\n2LFjzj8AxqeffmpcvHjRMAzD+NOf/mR07tzZOHHihJGbm2t07drVmDhxos/HQVQeq+v4mjVrjP37\n9xtFRUXGyZMnjT59+hgdO3Y0DMMwCgoKXOr/zJkzjd/+9rfGsWPHfD4OIk+sruf//ve/jRtuuMFY\nsWKF29enTp1qtGzZknWbAsrqen7mzBkjJibGWLx4sVFYWGisWrXKiI2NNU6dOmVFcSssKyvLyMrK\nMuoBLn8NxV9GRoat5ST/8LWeL1y40EhISDAOHDhgXLhwwejTp4+RkpLij6KaNn36dGP69OnG+vXr\njfXr15ep43XE35o1a+wuMvmBL3W8qKjImDt3rpGbm2tcu3bN+Pzzz434+Hhj1qxZhmEYxuXLl42b\nbrrJmDlzplFQUGBkZGQYN910k3H58mW/HAtReXyp57p7yitXrhiJiYnGSy+9ZFy9etXYsWOHERUV\nZXz77bd+ORai8vjaZlm1apWRn59vFBUVGRs3bjSioqKMLVu2GIZhGFu3bjXi4uKML774wjAMw9i7\nd69Rr149Y+PGjZYeA1FlUVhYaLRo0cI4cOCAcfnyZaN9+/bG119/7fE91QAjXvOXlJRkWRmDruNj\n3bp1RuPGjY0zZ84YhmEY+fn5RmJiovHWW29Ztg8Axg8//OBcvnLlijFq1CgjOjraaNiwoZGenm5c\nunTJsv0RleaPOv76668bCQkJRu3atY2GDRsaffv2NXJyctyum5WVZdx+++0V3heRN/xRzwcNGmQ4\nHA4jMjLS+demTRvn6wCMGjVquLw+ZcoUn4+FqDz+arNs377d+M1vfmNERkYaSUlJxvbt260ork8W\nLVpkLFq0SNvxQaHHqno+adIko379+kb9+vWNlJQUIzc31x/FrTBvOz4WLFhgd1HJYr7W8aKiIuP+\n++83YmNjjcjISKNVq1bGlClTjGvXrjnX2bt3r9GpUyejVq1aRseOHY29e/f65ViIymN1m8XdPWV2\ndrZx2223GbVr1zZat25trF271udyE5lhRT3v2rWrUbduXaNOnTpG+/btjeXLl7u8npGRYSQmJhpR\nUVFG8+bNjWnTpll6DESVyc6dO4377rvPuTx16lRj6tSpHt9TVbS13f1Z2fERtMnNiYiIiCg4ZF0P\nc/XMkCEu/y6Tmx9ns5Iqqffeew8AMPCPf3T5dzndfsaCBRg6dGiASkVEREREFJxWr16NDRs2YMGC\nBQCApUuX4vPPP8fs2bPLfU9VhwORmu3ebGFy82qWbIWIiIiIQpYaJ6NyIBQWFjpfO3bsGABg1KhR\ngS8YkcU27t5d5t+OHj0KAOjRo0egi0NEREREFDLuvf9+nD592uM69evXt2x/7PggIiIiIiIiIiIi\nIiKvNGnSBIcOHXIuHz58GE2aNPH4ng0bNvi7WC4Y6oqIiIiIiIiIiIiIiLxSWFiIm2++GR999BGa\nNGmCLl26YNmyZWjbtq3dRXPijA8iIiIiIiIiIiIiIvJKtWrVMHv2bNx///0oKirCkCFDgqrTA+CM\nDyIiIiIiIiIiIiIiCiFV7C4AERERERERERERERGRVdjxQUREREREREREREREIYMdH0RERERERERE\nREREFDLY8UFERERERERERERERCGDHR9ERERERERERERERBQy2PFBREREREREREREREQhgx0fRERE\nREREREREREQUMtjxQUREREREREREREREIYMdH0REREREREREREREFDLY8UFERERERERERERERCGD\nHR9ERERERERERERERBQy2PFBREREREREREREREQhgx0fREREREREREREREQUMtjxQURERERERERE\nREREIYMdH0REREREREREREREFDLY8UFERERERERERERERCGDHR9ERERERERERERERBQy2PFBRERE\nREREREREREQhgx0fREREREREREREREQUMtjxQUREREREREREREREIYMdH0REREREREREREREFDLY\n8UFERERERERERERERCGDHR9ERERERERERERERBQy2PFBREREREREREREREQhgx0fRERERERERERE\nREQUMtjxQUREREREREREREREIYMdH0REREREREREREREFDL+DycmZO2OL91tAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x115bbc908>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "pvals = featureselet.pvalues_\n", | |
| "logpvals = -np.log10(pvals)\n", | |
| "\n", | |
| "plot_stat_map(mymasker.inverse_transform(logpvals),cut_coords=8,display_mode='z',title='2000-best features (ANOVA)')\n", | |
| "plt.show()\n", | |
| "\n", | |
| "\n", | |
| "plot_stat_map(mymasker.inverse_transform(logpvals),cut_coords=8,display_mode='x')\n", | |
| "plt.show()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 110, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(array([ 343., 0., 70., 0., 0., 105., 0., 106., 0., 76.]),\n", | |
| " array([ 1. , 1.4, 1.8, 2.2, 2.6, 3. , 3.4, 3.8, 4.2, 4.6, 5. ]),\n", | |
| " <a list of 10 Patch objects>)" | |
| ] | |
| }, | |
| "execution_count": 110, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD8CAYAAAB5Pm/hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEXJJREFUeJzt3X+MZWddx/H3x+5aiBAL7FjX3cUl\numoKkW0d1xqMqW3QUgxbIjZLIhRSs/4oEaJRC3+IGJtgolTxR81iK4vyow0/ZK1FraUJ4Q9ap3Up\n/QG6wpLuZumO/CgQtGbL1z/us3JdZufemTt37vTx/Upu5pznPOc+3/t072fOnHvObaoKSVK/vmXW\nBUiSpsugl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHVu06wLANiyZUvt3Llz1mVI\n0pPKvffe+x9VNTeq34YI+p07d7KwsDDrMiTpSSXJZ8fp56kbSercyKBP8pQk9yT5eJIHk7yptb89\nyWeSHG6P3a09Sd6a5EiS+5NcNO0XIUk6u3FO3TwOXFpVX02yGfhokg+1bb9eVe89o/+LgF3t8SPA\nje2nJGkGRh7R18BX2+rm9ljuu433Au9o+30MOC/J1slLlSStxljn6JOck+QwcBK4o6rubpuub6dn\nbkhybmvbBjwytPux1nbmc+5PspBkYXFxcYKXIElazlhBX1VPVNVuYDuwJ8nzgNcDPwD8MPBM4DdX\nMnBVHaiq+aqan5sbeXWQJGmVVnTVTVV9CbgLuLyqTrTTM48Dfwnsad2OAzuGdtve2iRJMzDOVTdz\nSc5ry08FXgh88vR59yQBrgQeaLscAl7Zrr65GHisqk5MpXpJ0kjjXHWzFTiY5BwGvxhurarbknw4\nyRwQ4DDwi63/7cAVwBHga8Cr175sSdK4RgZ9Vd0PXLhE+6Vn6V/AtZOXNp6d1/3deg31TY6++cUz\nG1uSxuWdsZLUOYNekjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucM\neknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdGxn0SZ6S5J4kH0/y\nYJI3tfbnJLk7yZEktyT51tZ+bls/0rbvnO5LkCQtZ5wj+seBS6vq+cBu4PIkFwO/B9xQVd8LfBG4\npvW/Bvhia7+h9ZMkzcjIoK+Br7bVze1RwKXAe1v7QeDKtry3rdO2X5Yka1axJGlFxjpHn+ScJIeB\nk8AdwL8DX6qqU63LMWBbW94GPALQtj8GPGsti5YkjW+soK+qJ6pqN7Ad2AP8wKQDJ9mfZCHJwuLi\n4qRPJ0k6ixVddVNVXwLuAn4UOC/JprZpO3C8LR8HdgC07d8OfH6J5zpQVfNVNT83N7fK8iVJo4xz\n1c1ckvPa8lOBFwIPMwj8l7VuVwMfbMuH2jpt+4erqtayaEnS+DaN7sJW4GCScxj8Yri1qm5L8hDw\nniS/C/wLcFPrfxPwV0mOAF8A9k2hbknSmEYGfVXdD1y4RPunGZyvP7P9v4CfXZPqJEkT885YSeqc\nQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0\nktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM6NDPokO5LcleShJA8meW1r/+0kx5Mc\nbo8rhvZ5fZIjST6V5Kem+QIkScvbNEafU8CvVdV9SZ4O3Jvkjrbthqr6/eHOSS4A9gHPBb4L+Kck\n31dVT6xl4ZKk8Yw8oq+qE1V1X1v+CvAwsG2ZXfYC76mqx6vqM8ARYM9aFCtJWrkVnaNPshO4ELi7\nNb0myf1Jbk7yjNa2DXhkaLdjLP+LQZI0RWMHfZKnAe8DXldVXwZuBL4H2A2cAP5gJQMn2Z9kIcnC\n4uLiSnaVJK3AWEGfZDODkH9nVb0foKoeraonqurrwNv4xumZ48COod23t7b/o6oOVNV8Vc3Pzc1N\n8hokScsY56qbADcBD1fVW4batw51eynwQFs+BOxLcm6S5wC7gHvWrmRJ0kqMc9XNC4BXAJ9Icri1\nvQF4eZLdQAFHgV8AqKoHk9wKPMTgip1rveJGkmZnZNBX1UeBLLHp9mX2uR64foK6JElrxDtjJalz\nBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQ\nS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjo3MuiT7EhyV5KHkjyY5LWt/ZlJ7kjy\nb+3nM1p7krw1yZEk9ye5aNovQpJ0duMc0Z8Cfq2qLgAuBq5NcgFwHXBnVe0C7mzrAC8CdrXHfuDG\nNa9akjS2kUFfVSeq6r62/BXgYWAbsBc42LodBK5sy3uBd9TAx4Dzkmxd88olSWNZ0Tn6JDuBC4G7\ngfOr6kTb9Dng/La8DXhkaLdjrU2SNANjB32SpwHvA15XVV8e3lZVBdRKBk6yP8lCkoXFxcWV7CpJ\nWoGxgj7JZgYh/86qen9rfvT0KZn282RrPw7sGNp9e2v7P6rqQFXNV9X83NzcauuXJI0wzlU3AW4C\nHq6qtwxtOgRc3ZavBj441P7KdvXNxcBjQ6d4JEnrbNMYfV4AvAL4RJLDre0NwJuBW5NcA3wWuKpt\nux24AjgCfA149ZpWLElakZFBX1UfBXKWzZct0b+AayesS5K0RrwzVpI6Z9BLUucMeknqnEEvSZ0z\n6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNe\nkjpn0EtS5wx6SeqcQS9JnTPoJalzBr0kdW5k0Ce5OcnJJA8Mtf12kuNJDrfHFUPbXp/kSJJPJfmp\naRUuSRrPOEf0bwcuX6L9hqra3R63AyS5ANgHPLft82dJzlmrYiVJKzcy6KvqI8AXxny+vcB7qurx\nqvoMcATYM0F9kqQJTXKO/jVJ7m+ndp7R2rYBjwz1OdbavkmS/UkWkiwsLi5OUIYkaTmrDfobge8B\ndgMngD9Y6RNU1YGqmq+q+bm5uVWWIUkaZVVBX1WPVtUTVfV14G184/TMcWDHUNftrU2SNCOrCvok\nW4dWXwqcviLnELAvyblJngPsAu6ZrERJ0iQ2jeqQ5N3AJcCWJMeANwKXJNkNFHAU+AWAqnowya3A\nQ8Ap4NqqemI6pUuSxjEy6Kvq5Us037RM/+uB6ycpSpK0drwzVpI6Z9BLUucMeknqnEEvSZ0z6CWp\ncwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjpn\n0EtS5wx6SeqcQS9JnTPoJalzm0Z1SHIz8NPAyap6Xmt7JnALsBM4ClxVVV9MEuCPgCuArwGvqqr7\nplO6tD52Xvd3Mxn36JtfPJNxZ/V6YXavuXfjHNG/Hbj8jLbrgDurahdwZ1sHeBGwqz32AzeuTZmS\npNUaGfRV9RHgC2c07wUOtuWDwJVD7e+ogY8B5yXZulbFSpJWbrXn6M+vqhNt+XPA+W15G/DIUL9j\nre2bJNmfZCHJwuLi4irLkCSNMvGHsVVVQK1ivwNVNV9V83Nzc5OWIUk6i9UG/aOnT8m0nydb+3Fg\nx1C/7a1NkjQjqw36Q8DVbflq4IND7a/MwMXAY0OneCRJMzDO5ZXvBi4BtiQ5BrwReDNwa5JrgM8C\nV7XutzO4tPIIg8srXz2FmiVJKzAy6Kvq5WfZdNkSfQu4dtKiJElrxztjJalzBr0kdc6gl6TOGfSS\n1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcyPvjJWk3vX+f9XyiF6SOmfQS1LnDHpJ6pzn6J+Eej+f\nKGlteUQvSZ0z6CWpcwa9JHXOoJekzhn0ktQ5g16SOmfQS1LnJrqOPslR4CvAE8CpqppP8kzgFmAn\ncBS4qqq+OFmZkqTVWosj+p+oqt1VNd/WrwPurKpdwJ1tXZI0I9M4dbMXONiWDwJXTmEMSdKYJg36\nAv4xyb1J9re286vqRFv+HHD+hGNIkiYw6Xfd/FhVHU/yHcAdST45vLGqKkkttWP7xbAf4NnPfvaE\nZUiSzmaiI/qqOt5+ngQ+AOwBHk2yFaD9PHmWfQ9U1XxVzc/NzU1ShiRpGasO+iTfluTpp5eBnwQe\nAA4BV7duVwMfnLRISdLqTXLq5nzgA0lOP8+7qurvk/wzcGuSa4DPAldNXqYkabVWHfRV9Wng+Uu0\nfx64bJKiJElrxztjJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUucMeknqnEEvSZ0z6CWpcwa9JHXO\noJekzhn0ktQ5g16SOmfQS1LnDHpJ6pxBL0mdM+glqXMGvSR1zqCXpM4Z9JLUOYNekjo3taBPcnmS\nTyU5kuS6aY0jSVreVII+yTnAnwIvAi4AXp7kgmmMJUla3rSO6PcAR6rq01X138B7gL1TGkuStIxp\nBf024JGh9WOtTZK0zlJVa/+kycuAy6vq59v6K4AfqarXDPXZD+xvq98PfGqVw20B/mOCcqdlo9YF\nG7c261oZ61qZHuv67qqaG9Vp0yqffJTjwI6h9e2t7X9V1QHgwKQDJVmoqvlJn2etbdS6YOPWZl0r\nY10r8/+5rmmduvlnYFeS5yT5VmAfcGhKY0mSljGVI/qqOpXkNcA/AOcAN1fVg9MYS5K0vGmduqGq\nbgdun9bzD5n49M+UbNS6YOPWZl0rY10r8/+2rql8GCtJ2jj8CgRJ6tyTJuiT3JzkZJIHzrI9Sd7a\nvnLh/iQXbZC6LknyWJLD7fFb61DTjiR3JXkoyYNJXrtEn3WfrzHrmsV8PSXJPUk+3up60xJ9zk1y\nS5uvu5Ps3CB1vSrJ4tB8/fy06xoa+5wk/5LktiW2rft8jVnXLOfraJJPtHEXltg+vfdkVT0pHsCP\nAxcBD5xl+xXAh4AAFwN3b5C6LgFuW+e52gpc1JafDvwrcMGs52vMumYxXwGe1pY3A3cDF5/R55eB\nP2/L+4BbNkhdrwL+ZD3na2jsXwXetdR/r1nM15h1zXK+jgJbltk+tffkk+aIvqo+AnxhmS57gXfU\nwMeA85Js3QB1rbuqOlFV97XlrwAP8813Jq/7fI1Z17prc/DVtrq5Pc788GovcLAtvxe4LEk2QF0z\nkWQ78GLgL87SZd3na8y6NrKpvSefNEE/ho38tQs/2v78/lCS567nwO1P5gsZHA0Om+l8LVMXzGC+\n2p/7h4GTwB1Vddb5qqpTwGPAszZAXQA/0/7Uf2+SHUtsn4Y/BH4D+PpZts9kvsaoC2YzXzD4Jf2P\nSe7N4JsBzjS192RPQb9R3cfgNuXnA38M/M16DZzkacD7gNdV1ZfXa9xRRtQ1k/mqqieqajeDu7j3\nJHneeow7yhh1/S2ws6p+ELiDbxxFT02SnwZOVtW90x5rJcasa93na8iPVdVFDL7V99okP75eA/cU\n9CO/dmEWqurLp//8rsG9BZuTbJn2uEk2MwjTd1bV+5foMpP5GlXXrOZraPwvAXcBl5+x6X/nK8km\n4NuBz8+6rqr6fFU93lb/AvihdSjnBcBLkhxl8M20lyb56zP6zGK+RtY1o/k6Pfbx9vMk8AEG3/I7\nbGrvyZ6C/hDwyvbJ9cXAY1V1YtZFJfnO0+cmk+xhMOdT/QffxrsJeLiq3nKWbus+X+PUNaP5mkty\nXlt+KvBC4JNndDsEXN2WXwZ8uNonaLOs64xzuC9h8LnHVFXV66tqe1XtZPBB64er6ufO6Lbu8zVO\nXbOYrzbutyV5+ull4CeBM6/Um9p7cmp3xq61JO9mcEXGliTHgDcy+HCKqvpzBnfhXgEcAb4GvHqD\n1PUy4JeSnAL+E9g37X/wDI5sXgF8op3fBXgD8OyhumYxX+PUNYv52goczOB/mPMtwK1VdVuS3wEW\nquoQg19Qf5XkCIMP3/dNuaZx6/qVJC8BTrW6XrUOdS1pA8zXOHXNar7OBz7QjmE2Ae+qqr9P8osw\n/fekd8ZKUud6OnUjSVqCQS9JnTPoJalzBr0kdc6gl6TOGfSS1DmDXpI6Z9BLUuf+B+B7S3ydpGOB\nAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x116ce7c50>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "plt.hist(y)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 115, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "pics = []\n", | |
| "for meta in IAPSdata.images_meta:\n", | |
| " pics.append(meta['Picture'])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 117, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([ 2053., 3051., 3102., 3120., 3350., 3500., 3550., 5720.,\n", | |
| " 5800., 6831., 7000., 7006., 7010., 7040., 7060., 7090.,\n", | |
| " 7100., 7130., 7150., 7217., 7490., 7500., 9040., 9050.,\n", | |
| " 9210., 9252., 9300., 9400., 9810., 9921.])" | |
| ] | |
| }, | |
| "execution_count": 117, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "np.unique(pics)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 120, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n" | |
| ] | |
| }, | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Train\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n", | |
| "Test\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "\n", | |
| "for meta in IAPSdata.images_meta:\n", | |
| " print(meta['Holdout'])" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.0" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment