Created
November 14, 2025 06:14
-
-
Save rezamarzban/51019ee5c404efc55715ebfcf80fb614 to your computer and use it in GitHub Desktop.
Mag_tube_anode.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "nbformat": 4, | |
| "nbformat_minor": 0, | |
| "metadata": { | |
| "colab": { | |
| "provenance": [], | |
| "authorship_tag": "ABX9TyNnk85joXQJkUToMCjhCeDP", | |
| "include_colab_link": true | |
| }, | |
| "kernelspec": { | |
| "name": "python3", | |
| "display_name": "Python 3" | |
| }, | |
| "language_info": { | |
| "name": "python" | |
| } | |
| }, | |
| "cells": [ | |
| { | |
| "cell_type": "markdown", | |
| "metadata": { | |
| "id": "view-in-github", | |
| "colab_type": "text" | |
| }, | |
| "source": [ | |
| "<a href=\"https://colab.research.google.com/gist/rezamarzban/51019ee5c404efc55715ebfcf80fb614/mag_tube_anode.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 1, | |
| "metadata": { | |
| "colab": { | |
| "base_uri": "https://localhost:8080/", | |
| "height": 602 | |
| }, | |
| "id": "kODIRdyT48km", | |
| "outputId": "56267bf8-9090-46ae-ebee-31ef5938fa54" | |
| }, | |
| "outputs": [ | |
| { | |
| "output_type": "display_data", | |
| "data": { | |
| "text/plain": [ | |
| "<Figure size 1000x1200 with 3 Axes>" | |
| ], | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAASmCAYAAAAzjMgKAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8U1XjBvAn3S2lzJa99x6yt+whQ5AlylTUF0XE8YoDxAXiKyqIiP4U1FemCDgKgmwElCl7771boEBHzu+P+yZN2rQ0zbnJOc3z/Xz40N6kyZOTm5v75I5YhBACRERERERERCRdgK8DEBEREREREeVULN1EREREREREJmHpJiIiIiIiIjIJSzcRERERERGRSVi6iYiIiIiIiEzC0k1ERERERERkEpZuIiIiIiIiIpOwdBMRERERERGZhKWbiIiIiIiIyCQs3UREpL1ly5ahdu3aCAsLg8ViwY0bN3wdyVSDBw9G6dKlfR2D7mPWrFmwWCw4ceKEr6MQEZEPsXQTEZF0u3fvxiOPPIJSpUohLCwMxYoVQ7t27TB16lTp93X16lX06dMH4eHhmDZtGr7//nvkypVL+v1kx/bt22GxWPDGG29keJ3Dhw/DYrFg9OjR2b6fhIQEvPXWW1izZk22b8MbunXrhoiICNy8eTPD6wwYMAAhISG4evWqF5NlXatWrWCxWO7776233vJ1VCIiUoRFCCF8HYKIiHKOjRs34sEHH0TJkiUxaNAgFC5cGKdPn8bmzZtx9OhRHDlyROr9LVu2DJ06dcKKFSvQtm1bqbctQ5UqVZCYmIijR4+6vHz8+PF46623sG3bNtStWzdLtzl48GCsWbPGvgX1ypUriI6Oxrhx45Que/PmzUO/fv3w7bffYuDAgekuT0hIQExMDFq3bo2ff/7ZBwnvb8WKFbh48aL99y1btmDKlCl47bXXUKVKFfv0mjVrolq1akhKSkJoaCgsFosv4hIRkQKCfB2AiIhylvfeew958uTBli1bkDdvXqfLLl26JO1+bt++jVy5ctlvM+19qWLAgAF48803sXnzZjRq1Cjd5XPmzEHlypWzXLh11q1bN+TOnRuzZ892WbqXLFmC27dvY8CAAT5IlzXt2rVz+j0sLAxTpkxBu3bt0KpVq3TXDwwM9FIyIiJSFXcvJyIiqY4ePYpq1aq5LMExMTH2n0+cOAGLxYJZs2alu17a3XPfeustWCwW7Nu3D48++ijy5cuHZs2aoVWrVhg0aBAAoH79+rBYLBg8eDAAYP369ejduzdKliyJ0NBQlChRAi+88ALu3LmT7v4OHDiAPn36IDo6GuHh4ahUqRJef/11p+ucPXsWQ4cORaFChRAaGopq1arhm2++ue942Ark7Nmz0122bds2HDx40Klkfv7556hWrRpCQ0NRtGhRjBgxItNj1E+cOIHo6GgAxlbztLs379q1C4MHD0bZsmURFhaGwoULY+jQoS53316zZg3q1auHsLAwlCtXDjNmzLCPfVr//e9/8cADDyA8PBz58+dHv379cPr06UzHIjw8HD179sTKlStdfgAze/Zs5M6dG926dbNPmzt3Lh544AHkzp0bUVFRqFGjBj799NMM7yMpKQn58+fHkCFD0l0WHx+PsLAwvPTSS/ZpU6dORbVq1RAREYF8+fKhXr16Lp+r7HB1THfp0qXx0EMP2cc6PDwcNWrUsB8a8NNPP6FGjRoICwvDAw88gB07dqS73QMHDuCRRx5B/vz5ERYWhnr16im7ZwAREbF0ExGRZKVKlcK2bduwZ88e6bfdu3dvJCQk4P3338eTTz6J119/HcOHDwcAvP322/j+++/x1FNPAQAWLFiAhIQEPPPMM5g6dSo6dOiAqVOnptvCumvXLjRs2BCrVq3Ck08+iU8//RQ9evTAL7/8Yr/OxYsX0ahRI/zxxx949tln8emnn6J8+fIYNmwYPvnkk0wzlylTBk2aNMH8+fORkpLidJmt3D366KMAjA8XRowYgaJFi+Kjjz5Cr169MGPGDLRv3x5JSUkubz86OhrTp08HADz88MP4/vvv8f3336Nnz54AjN2hjx07hiFDhmDq1Kno168f5s6di86dO8PxCLMdO3agY8eOuHr1KsaPH49hw4bh7bffxuLFi9Pd53vvvYeBAweiQoUKmDx5MkaNGoWVK1eiRYsW9z2J3YABA5CcnIz58+c7Tb927Rp+//13PPzwwwgPD7dn79+/P/Lly4cPPvgAEydORKtWrfDnn39mePvBwcF4+OGHsXjxYiQmJjpdtnjxYty7dw/9+vUDAHz11VcYOXIkqlatik8++QTjx49H7dq18ddff2X6GDx15MgRPProo+jatSsmTJiA69evo2vXrvjhhx/wwgsv4LHHHsP48eNx9OhR9OnTB1ar1f63e/fuRaNGjbB//368+uqr+Oijj5ArVy706NEDixYtMjU3ERFlkyAiIpJo+fLlIjAwUAQGBorGjRuLV155Rfz+++8iMTHR6XrHjx8XAMTMmTPT3QYAMW7cOPvv48aNEwBE//7901135syZAoDYsmWL0/SEhIR0150wYYKwWCzi5MmT9mktWrQQuXPndpomhBBWq9X+87Bhw0SRIkXElStXnK7Tr18/kSdPHpf35WjatGkCgPj999/t01JSUkSxYsVE48aNhRBCXLp0SYSEhIj27duLlJQU+/U+++wzAUB888039mmDBg0SpUqVsv9++fLldGOW2TjMmTNHABDr1q2zT+vatauIiIgQZ8+etU87fPiwCAoKEo6rCydOnBCBgYHivffec7rN3bt3i6CgoHTT00pOThZFihSxP26bL774It0YPf/88yIqKkokJydneptp/f777wKA+OWXX5ymd+7cWZQtW9b+e/fu3UW1atXcuu20FixYIACI1atXp7vMNm8eP37cPq1UqVICgNi4cWO6vOHh4U7z4YwZM9Lddps2bUSNGjXE3bt37dOsVqto0qSJqFChgkePhYiIzMEt3UREJFW7du2wadMmdOvWDf/88w8mTZqEDh06oFixYh7vAvv0009n+bq2raWAcfz3lStX0KRJEwgh7LvsXr58GevWrcPQoUNRsmRJp7+37VIthMDChQvRtWtXCCFw5coV+78OHTogLi4O27dvzzRL3759ERwc7LTb8tq1a3H27Fn7ruV//PEHEhMTMWrUKAQEpL49P/nkk4iKisJvv/2W5cee0TjcvXsXV65csR9bbsudkpKCP/74Az169EDRokXt1y9fvjw6derkdHs//fQTrFYr+vTp4zQWhQsXRoUKFbB69epM8wQGBqJfv37YtGmT027Xs2fPRqFChdCmTRv7tLx58+L27dtYsWKFW4+5devWKFiwIObNm2efdv36daxYsQJ9+/Z1uv0zZ85gy5Ytbt2+p6pWrYrGjRvbf2/YsCEAI7fjfGibfuzYMQDG3gCrVq1Cnz59cPPmTfvYX716FR06dMDhw4dx9uxZLz4SIiLKCpZuIiKSrn79+vjpp59w/fp1/P333xgzZgxu3ryJRx55BPv27cv27ZYpUybL1z116hQGDx6M/PnzIzIyEtHR0WjZsiUAIC4uDkBqmalevXqGt3P58mXcuHEDX375JaKjo53+2Y4bvt8J4goUKIAOHTpg0aJFuHv3LgCjZAYFBaFPnz4AgJMnTwIAKlWq5PS3ISEhKFu2rP1yd127dg3PP/88ChUqhPDwcERHR9vH0TYOly5dwp07d1C+fPl0f5922uHDhyGEQIUKFdKNx/79+7N0sry0x7mfOXMG69evR79+/ZxOPPavf/0LFStWRKdOnVC8eHEMHToUy5Ytu+/tBwUFoVevXliyZAnu3bsHwPiwICkpyal0//vf/0ZkZCQaNGiAChUqYMSIEZnuui5L2g948uTJAwAoUaKEy+nXr18HYOyWLoTAm2++mW7sx40bB0DuyQqJiEgOnr2ciIhMExISgvr166N+/fqoWLEihgwZggULFmDcuHEZfoVS2uOeHTlutc1MSkoK2rVrh2vXruHf//43KleujFy5cuHs2bMYPHiw0zGy92O77mOPPWY/aVtaNWvWvO/tPPbYY/j111/x66+/olu3bli4cCHat29vPwmaWfr06YONGzfi5ZdfRu3atREZGQmr1YqOHTu6NQ42VqsVFosFS5cudXlm7sjIyPvexgMPPIDKlStjzpw5eO211zBnzhwIIdKdtTwmJgY7d+7E77//jqVLl2Lp0qWYOXMmBg4ciG+//TbT++jXrx9mzJiBpUuXokePHpg/fz4qV66MWrVq2a9TpUoVHDx4EL/++iuWLVuGhQsX4vPPP8fYsWMxfvz4LI6I+zI6o3lG08X/jr23PV8vvfQSOnTo4PK6rj44ISIi32LpJiIir6hXrx4A4Pz58wCAfPnyAUC6E29ld4uuo927d+PQoUPpvg867W7KZcuWBYBMT/oWHR2N3LlzIyUlxaPvAXf8uqzg4GBcv37dqWSWKlUKAHDw4EF7LgBITEzE8ePHM73vjD7AuH79OlauXInx48dj7Nix9umHDx92ul5MTAzCwsJcfod62mnlypWDEAJlypRBxYoVM3nEmbN9ldquXbswe/ZsVKhQAfXr1093vZCQEHTt2hVdu3aF1WrFv/71L8yYMQNvvvlmpgWzRYsWKFKkCObNm4dmzZph1apV6c5IDwC5cuVC37590bdvXyQmJqJnz5547733MGbMGISFhWX78ZnBNl8EBwcr+Z30RETkGncvJyIiqVavXu10Vmyb2NhYAKm7T0dFRaFgwYJYt26d0/U+//xzjzPYthg65hBCpPuqqejoaLRo0QLffPMNTp065XSZ7W8DAwPRq1cvLFy40GU5v3z5cpYyhYeH4+GHH0ZsbCymT5+OXLlyoXv37vbL27Zti5CQEEyZMsUp99dff424uDh06dIlw9uOiIgAkP4DDFfjACDdGdcDAwPRtm1bLF68GOfOnbNPP3LkCJYuXep03Z49eyIwMBDjx49Pd7tCCJdfReaK7QOHsWPHYufOnS6/mzvtbQUEBNj3KrDtNp6RgIAAPPLII/jll1/w/fffIzk52WnXcle3HxISgqpVq0IIkeHZ4n0pJiYGrVq1wowZM+wfXjnK6rxIRETexS3dREQk1XPPPYeEhAQ8/PDDqFy5MhITE7Fx40bMmzcPpUuXdvr+5CeeeAITJ07EE088gXr16mHdunU4dOiQxxkqV66McuXK4aWXXsLZs2cRFRWFhQsX2o+NdTRlyhQ0a9YMdevWxfDhw1GmTBmcOHECv/32G3bu3AkAmDhxIlavXo2GDRviySefRNWqVXHt2jVs374df/zxB65du5alXI899hi+++47/P777xgwYABy5cplvyw6OhpjxozB+PHj0bFjR3Tr1g0HDx7E559/jvr16+Oxxx7L8HbDw8NRtWpVzJs3DxUrVkT+/PlRvXp1VK9eHS1atMCkSZOQlJSEYsWKYfny5Th+/Hi623jrrbewfPlyNG3aFM888wxSUlLw2WefoXr16vZxAIwt3e+++y7GjBmDEydOoEePHsidOzeOHz+ORYsWYfjw4U7fg50R21epLVmyBABclu4nnngC165dQ+vWrVG8eHGcPHkSU6dORe3atVGlSpX73kffvn0xdepUjBs3DjVq1Ej3N+3bt0fhwoXRtGlTFCpUCPv378dnn32GLl26IHfu3Pe9fV+YNm0amjVrhho1auDJJ59E2bJlcfHiRWzatAlnzpzBP//84+uIRESUltfPl05ERDna0qVLxdChQ0XlypVFZGSkCAkJEeXLlxfPPfecuHjxotN1ExISxLBhw0SePHlE7ty5RZ8+fcSlS5cy/Mqwy5cvp7u/jL4ybN++faJt27YiMjJSFCxYUDz55JPin3/+cfk1ZXv27BEPP/ywyJs3rwgLCxOVKlUSb775ptN1Ll68KEaMGCFKlCghgoODReHChUWbNm3El19+meWxsX1dFgARGxvr8jqfffaZqFy5sggODhaFChUSzzzzjLh+/brTddJ+ZZgQQmzcuFE88MADIiQkxGn8zpw5Y39sefLkEb179xbnzp1z+RVjK1euFHXq1BEhISGiXLly4v/+7//Eiy++KMLCwtLlXLhwoWjWrJnIlSuXyJUrl6hcubIYMWKEOHjwYJbHw/ZVag0aNHB5+Y8//ijat28vYmJiREhIiChZsqR46qmnxPnz57N0+1arVZQoUUIAEO+++266y2fMmCFatGghChQoIEJDQ0W5cuXEyy+/LOLi4rL8GLLzlWFdunRJd10AYsSIEU7TbF+r9+GHHzpNP3r0qBg4cKAoXLiwCA4OFsWKFRMPPfSQ+PHHH7Ocm4iIvMcihIt9AImIiIgA9OjRA3v37k13HDgRERFlDY/pJiIiIgDAnTt3nH4/fPgwYmNj0apVK98EIiIiygG4pZuIiIgAAEWKFMHgwYPt3ws+ffp03Lt3Dzt27ECFChV8HY+IiEhLPJEaERERAQA6duyIOXPm4MKFCwgNDUXjxo3x/vvvs3ATERF5gFu6iYiIiIiIiEzCY7qJiIiIiIiITMLSTURERERERGSSHH9Mt9Vqxblz55A7d25YLBZfxyEiIiIiIqIcQAiBmzdvomjRoggIyHh7do4v3efOnUOJEiV8HYOIiIiIiIhyoNOnT6N48eIZXp7jS3fu3LkBGAMRFRXl4zQZS0pKwvLly9G+fXsEBwf7Og75Oc6PpBLOj6QSzo+kGs6TpBJ/mx/j4+NRokQJe+fMSI4v3bZdyqOiopQv3REREYiKivKLGZTUxvmRVML5kVTC+ZFUw3mSVOKv8+P9DmPmidSIiIiIiIiITMLSTURERERERGQSlm4iIiIiIiIik7B0ExEREREREZmEpZuIiIiIiIjIJCzdRERERERERCZh6SYiIiIiIiIyiU9L97p169C1a1cULVoUFosFixcvdrpcCIGxY8eiSJEiCA8PR9u2bXH48GHfhCUiIiIiIiJyk09L9+3bt1GrVi1MmzbN5eWTJk3ClClT8MUXX+Cvv/5Crly50KFDB9y9e9fLSYmIiIiIiIjcF+TLO+/UqRM6derk8jIhBD755BO88cYb6N69OwDgu+++Q6FChbB48WL069fPm1GJiIiIiIiI3KbsMd3Hjx/HhQsX0LZtW/u0PHnyoGHDhti0aZMPk5nnyJE8WLXKgqQkXyfJ3KZNwJo1QEqKr5Nkbt06YP16wGr1dZLM/fEHsHGj2jmFAGJjgb/+Mn5WldUKLFkCbN+uds7kZGDhQuCff9TOmZgIzJsH7N3r6ySZS0kxnveDB32dJHOJicbzfuSIr5Nk7s4dYMEC4MQJXyfJ3K1bxvx5+rSvk2Tu+nVg7lzg3DlfJ8ncpUvGeF665OskmTt7Fpg/H7hyxddJMnf8uPE6un7d10kyd/YssHgxEBfn6ySZO3HCWM7fvOnrJJk7dAj45Rfg9m1fJ8ncnj3Ar78ay3vyDp9u6c7MhQsXAACFChVyml6oUCH7Za7cu3cP9+7ds/8eHx8PAEhKSkKSwm325s0kvPZacyQmBqJgQYGePa3o00egaVOBwEBfp0t1/TrQrFkQrFYLChUS6NXLyNmokUCAQh/hnDkDtGwZDAAoWlTgkUeMnPXrC1gsPg7nYN8+oF07I2eJEgK9e1vRp48VderApzltrxXb/5s3W9Cli7G4KF3ayNm7txW1avk2Z1rLl1vQo4eRs3z51PGsVs3HwdL48UcLHn3UyFmpkkCfPkbOSpV8HCyNWbMseOopI2e1akbO3r2tKF/euznSzo9pzZ5tweDBRs5atVJzli7trYRZM2NGAEaONBboDzxgLJMeecSKEiV8HCyNyZMD8MYbRs6GDY2cvXpZUbSoj4Ol8fbbAfjwQyNn06ZGzp49rUiz2iDd/ebHtF57LQBffBEIi0WgRQuB3r0FHn7YiuhoM1O6b9SoQMyZY7yRt2ljLJN69BDIl8/HwdJ46qlA/PabkbNDB+O13r27QJ48Pg6WxuDBgVi3zsjZubMxnl27CuTOLf++3J0nHQ0dGojlywMQEiLQsaOx/OzSRSBXLtkpPdOvXyD++isAYWECnTsbOTt1EggP93UyZz16BGH/fgsiIgQeesjI2aGDQGior5M569gxCGfPWhAZKdCtm5GzbVuBkBDPb9uT+VFHWX2cFiHU2M5isViwaNEi9OjRAwCwceNGNG3aFOfOnUORIkXs1+vTpw8sFgvmzZvn8nbeeustjB8/Pt302bNnIyIiwpTsMty8GYzHH++cbnr+/HfQpMk5NG9+FhUrXvd5wbl4MRxPPdU+3fSCBRPQrNlZNGt2FuXKxfk854kTURg16sF002NibqN587No2vQsypSJ93nOffvy47XXmqebXqTILTRrdhbNm59FyZK+/1h369ZCePfdRummFyt2056zePFbPkjmbN26Ypg8uV666SVLxqN5c2P+LFLE9x8///57KUyfXjvd9DJlbtjnz0KFfP/x86JF5fHtt+k/sShf/jqaNTuLpk3PITra9zl//bUs/u//aqSbXqnSNXvO/Pl9fy6QefMqYs6cKummV6lyFc2bn0WTJueQN+89F3/pXbNmVcXixRWcplksAtWqXUGzZufQuPE55MmT6KN0qT7/vBaWLy/tNC0gQKBGjcto1uwsGjU6j9y5fb/S99FHD2D9+uJO0wICrKhVy8jZsOF5REYm+yhdqrffboTt250/sQgKsqJ27Uto3vwsGjS4gPBw3+ccM6YZ9u8v4DQtKCgFDzxwCc2bn0G9ehcRFub7XfFGjnwQp05FOU0LCUlBvXoX0KzZWTzwwEWEhvp+F7eXXmqBI0ecP1kJDU1GgwYX0LTpWdStewkhIb7P+a9/tcG5c5FO08LCktGw4Xk0b34WtWpdQnCw7yvN4MEdcONGmNO0iIgkNGp0Hs2anUXNmpcRFOT7nH36dEFiovO218jIRDRufA7Nmp1D9epXEBjo+5w6SEhIwKOPPoq4uDhERUVleD1lS/exY8dQrlw57NixA7Vr17Zfr2XLlqhduzY+/fRTl7fjakt3iRIlcOXKlUwHwtcuXEhCyZLGhwJLliRj0aIALF5swY0bqa2wdGnbFlvfbWE8fhyoVCkYYWEC8+enYP78ACxZYsHNm6lhypVL3cJYvbr3MwLGbrv16wejYEGBL780cv7yiwW3b6fmrFgxdQtj5cq+yblhgwWtWwehdGmBSZOMnL/9ZsGdO6k5q1ZN3XJXoUImNyZRUlISVqxYgXbt2iE4OBi//WbBww8HoXp1gddfN3LGxlpw715qzpo1U3OWKeOdnGnNnWvBwIFBqF/fiuees2L+/AD8/rsFSUmpOevWTd3CWLKkb3J+9VUARowIROvWVjz2mBULFgRgxQoLkpNTczZokLqFsVgx3+T86KMAjBkTiIcesqJ7d2M8V62yICUlNWeTJqlbGAsXNidH2vkxralTA/Dii4Ho2DE155o1Fghh5LRYBJo3F+jTx7dbGN99NwBvvx2Inj2tePBBgfnzLdiwITVnQIBAq1bCvoUxf37f5Pz3vwPw8ceBePxxK+rWNXJu2pS6K1NgoECbNkbObt0E8ub1Tc5nngnE118H4OmnU1CuHDB/vgVbtqTmDA4WaNfOeD/q1k3eFsb7zY9pDRgQiAULAjB6dAqio4H58wOwY0fqaygkRKBDB2M8H3rId1sYu3ULxLJlAXjttRSEhxs5d+9OzRkWJtCpk5Gzc2ffbWFs1SoQGzcG4L33Uv53CEwADhxIzRkRIdClS+oWxrCwTG7MRHXrBmHPHgs+/jgFV64YOY8cSc0ZGSnQtauRs107z7YwujtPOmrUKBDbtwdg4sQUXL8OLFgQgGPHUnNGRQl0727kbN1awM2bl6Zq1SAcOWLBlCkpOHnSyHnqVGrOfPkEevQwcrZsKRDko315ixcPwqVLFnz1VTL27LHgxx8DcPZsas4CBVL3Zm3WzHd7s0ZFBeHuXQv++99kbN5s5LxwITVnTEzq3qyNG7u3N6sn86OO4uPjUbBgwfuWbghFABCLFi2y/261WkXhwoXFf/7zH/u0uLg4ERoaKubMmZPl242LixMARFxcnMy40p0/nyiMozuFSEoypt27J8QvvwgxYIAQuXIJ++WAEJUqCTF2rBD79nk357Fjxv1HRKROu3NHiJ9+EqJPHyHCw51zVqsmxDvvCHHokHdz7txp3H/hwqnTbt8WYv58IXr2FCI01DlnrVpCTJhgPD5vWrfOuP+KFVOn3bwpxJw5QnTvLkRIiHPOBx4Q4sMPhTh50txciYmJYvHixSIxMVEIYcyHgBD16qVeJy5OiO+/F6JLFyGCgpxzNmwoxMcfC3HmjLk50/rhB+P+W7dOnXbtmhDffCNE+/ZCBAY652zaVIipU4U4f967OadPN+7/4YdTp125IsRXXwnRpo0QAQGpGS0WIVq2NP7m0iXv5vzgAyPDoEGp0y5eFOLzz41MFktqzoAAI/tXXwlx9arcHGnnx7Q+/tjI0K9f6rRz54SYMkWIJk2cn/PAQCE6dBBi5kwhrl+Xm/N+xo83Mjz1VOq006eFmDxZiAYNnHMGBRmvre+/N15r3vTii0aGl19OnXbihBCTJhnLIMecISHGsmrOHCFu3fJuziefNDK8807qtKNHjWV5rVrOOcPChOjVS4gFC4z3Ak/cb35Mq29fI8Onn6ZOO3hQiLffFqJKFeecERHG9X/6yXhv9aaOHY0MM2emTtu711jXqFjROWdkpLFu8ssvxrqKN9le0z/9ZPxutQqxa5cQr70mRNmyzjmjoozl19KlQmTx6ZKmenUjwx9/pObcvl2IV14RomRJ55z58gkxbJgQK1akrgO6w9150lHdukaG335Lzfn330KMHi1E8eLOOQsUMJZfq1cLkZzsfk5PlC9vZNiwITXnxo1CjBxprOs55oyJEWLECCHWrxciJcW7OWNijAy7dhm/p6QY63r/+pcQ0dHOOYsUEeL554XYtMl4PN4UFmZkOHHC+D05WYhVq4QYPlyI/PmdcxYvbrwvbNmStZyezI86ymrX9GnpvnnzptixY4fYsWOHACAmT54sduzYIU7+r1FMnDhR5M2bVyxZskTs2rVLdO/eXZQpU0bcceOdSJfSfe5caul2tSC7fdtYWejVK/WFYvtXs6YQ779vrGyY7ehR4z5z5XJ9eWaFsW5dY6XN9gI3044dqQs0V1QpjGvXpn6I4sr168YKUIcO6QtjkyZGqTCjMKZdYP78s3Gf9eu7vv7VqxkXxhYtjJLmjcL43/8a99umjevLL10yyqurwti6tRBffmmUX7N9/rlxvz17ur78/Hnjw4CmTdMXxvbtjQ8RvFEYJ0407nfwYNeXnzljvFYaNkxfGDt3FuK77+QUxqyW7v79Xf/9yZPGh1W+LoxvvWXc79NPu77cG4UxK0aPNu73lVdcX37okFF0q1b1bWF84gnjft991/Xl+/YJMW6csXxNWxgffdRYrt296/79urtC2aePcb9TpqS/zFYYX39diHLl0hfGgQOFiI31TmHs0MG431mzXOfcsUOIf/9biFKlnHPmzSvE0KFCLF+evcLorsaNjft12E7jlHPLFqMguCqMw4cbxcIbhbFaNeN+V650nXPjRqNwFSniujCuW5f1wiijdMfGpr8sJcUoriNGpJbJtIVx40bvFEbb6+PPP9NflpxsfBDw1FPG8+xJYfSUrVjv3p3+sqQk43UydKjxunHMWaqU8fravt07OW0bn1xtxElMNOaHgQON5ZBjzrJljQ+4du3KOCdLt2s+Ld2rV68WANL9G/S/zSpWq1W8+eabolChQiI0NFS0adNGHDx40K370KV0nz2bWrrvt5C1FcaHHhIiONj5xdCggbHV5PRpc3IeOZK60nI/viqMQhgLLUCIokXvf11fFsY1a4z7qlz5/te1FcZWrcwvjGkXmEuWpM5f9+PLwvj998Z9tW17/+t6qzC6Mm2acV+9et3/urbCWK9e+sLYrZsQs2cbH3aZYcIE476GDLn/dY8dc10YQ0ONDxfmzct+YbzfG/jkycZ9Pfro/W8ro8IYHm6UIzML47hxxn0988z9r2tWYcyKF14w7uvf/77/dXfv9l1hHDbMuK/33sv8erbC+OqrQpQu7XlhdHeFsndv476mTr1/zowKY/785hfG9u2N+/r22/vn3LTJdWGMjja26LlTGN3VqJFxX4sXZ369zApj4cLGFtI//zQvp20Zs2pV5tfLrDAWK2Z8CPb335kXMU9KTp06xn0tXZr59ZKSjC3xw4a5LoyvvGJuYbTtxbBxY+bXS0w0HsugQdkrjJ4qWNC4rz17Mr9eZnuzVqxo/t6stg1jp05lfr07d4wPuPr2Tb83a9Wqxh47aasZS7drPi3d3qBL6T5zJrV0u7MguHpViP/7P6NkOBZGQIjmzY2V+4sX5eU8fNi47dy53fu7jAqjxSLEgw8KMWOG3C2M27alvmG548IFIT77TIhmzbxTGFevNm6/ShX3/u7sWSE++SR15UN2YUy7wFy82Lj9hg3du51Tp4T4z3/SF8bgYKMw/vCD3ML43XfG7bdr597fHTtmbNWtXTt9YXz4Yc8KoyuffWbc/iOPuPd3hw8bW/Vsuy06FsbevYVYuFCIhAR5Od9/37j9oUPd+7v9+42tumkLY65cxtboJUvcK4z3ewP/6CPj9gcMcC9nRoUxd25zCuPYscbt/+tfWf8b2YUxK0aNMm7/1Vfdy7l1qxAvveS9wjh0qHH777/vXs7Nm43HmN3C6O4K5SOPGLf/2WdZz2krjM8+67owPvec/MLYrp1x+999l/W/SU42Pjx++mnXhfGFF4T46y+5Bcf2QemSJVn/m8wKY8mSxqEU27bJzWk7dGD16qz/ja0wDh7sXmH0pOTY3veWLcv63zgWxshI14Vx7163o2SqTBnj9jdtyvrf2Apjv37GnjhZKYyesr0O3Hn8vtib1bbRzp2NdFndm5Wl2zWWbkWcPp1aurPLVhibN3d+IQQEGG+m//d/nh9reehQ6laM7MqsMHbqZOzaduOGZzm3bjVus3jx7N9GZoWxa1ejMMbHe5Zz1arUhX92ZaUwurvrbNoF5qJFxm02apT9nN4ojN9+a9xm+/bZvw1bYaxcWU5hdGXqVOM2e/fO/m3s3i3EG2+kHufmWBgff1yIX3/1/FjL994zbnPYsOz9vdVqnF/h1VdTV5hs//LkMbagL1t2/2J7vzfw//zHuM3HHst+TlthLFEifWF88kljF1FPC+Obbxq3OWJE9nNmVhifecY4ZMXTnM8/b9zmmDHZ+/uUFOO4S7ML45Ahxm1OmJC9v3csjLatU2kL4+bNnhecXr2M25w2LXs5k5KM44KfeMI49tdVYdy61fPC2LatcZvff5+9v09MNF7PrgpjmTLG/LRzp+c5bec/+Pnn7P39vXvG8vGxx9IXxgoVjNfp/bZSZoXtPWTNmuz9/Z07xgfeGRXG8eNTC6MnJce2d9Lvv2cvZ0KCED/+aHy4lLYw1qhhvI8cOZK923Zk+9Bx8+bs/f2tW0LMnStEjx6uC+MHH8g5/NF2PHR2t1LHxxuHyrnam7V+feNDZhl7s9oOrczuoZTXrxvr6x07pt+btVGjFPHEE7vEyZMs3Y5YuhVx6pTnpdv59owXZv36rovtzJnGCabcdfBg6gqzDBkVxpAQo9hm9yRCW7YYt1OihJycGRXGsDCj2M6Zk70ttitXGrdTrZqcnBkVxogIo+Bl9ZjQtG/gP/1k3E7jxnJyZlQYIyONYrtoUfZ28Z01y7idDh08z2grjGPGpC+MUVFGsf3ll+wVcFvp7tNHTs5t24wV77SFMW9eo5jExmavgNtK9xNPyMn5119GkSlaNH2xfeKJjLfY3m+F8sMPjdt5/HHPc2ZWGGNijGKb3S22b7xh3M6zz3qeM7PCWKSIUWyzexKhkSON23ntNc9zZlYYixc35oeNG7OXc/Bg43YmTvQ8p60wDhlivL855ixVyvhAxraLr7sFp2dP43Y+/9zznJkVxrJljQ+4sruLb5s2xu3897+e57x71yiM/funL4wVKxqvhezu4msr3b/84nnOzApj1arG+2l2t9ja3ofXrvU8Z2aFsVYtIcaPTxbTpq3IVumuWdO4neXLPc+ZWWGsW9d4rWZ3i63tXAJ//eV5zhs3Mi6MDRoYH+Rm94S1tuXc/v2e58xsb9YmTYwNWNktzbbHffas5zkvXxbiiy9c7c1qFS1aGBsEvX3CWm9i6f4fXUr3yZOJ9hlUtiNHjJXnGjWcX7DBwcauyLNmZX2X6QMHUlfmZTtwwPjkNu3ZXG3Hrv73v1kv4H//nboVQLY9e4xPwitUSF/Ae/Y03hizWsD/+ENu6baxWoX45x/XhTEiwih7P/6YcQE3u3Q75rQVxrRnc7Udu7p4cdYLuK10d+woP6etMBYr5pwzTx5jV2R3tixPmSKvdDtKSTG2ID73XPqzuebLZ+yO685ZfN99V17pTptz7VqjwKY9m2vBgsaWZcez+N6v5EyaZPztwIFyczoWxrRncy1UyNgV2Z2z+L7+uvG3zz0nN6fjFsa0hbFoUaNEb9iQ9WL73HPG377+utyc9+4ZZ0h+7DFjjwzHnCVKGMeuunMW30GD5JVuR3fvGnu09OuX/ljL0qWFGD06WfznP2vEvXtZeyE9/LC80u0oIcHYQ+iRR9Ifa1munLH837Ej6+NpK90//CA3561bxh5XDz+c/ptDKlUy3k937856TtvGBBml21FmhbFaNWP9xJ2tl7bDa2SUbkeOhTHtiWBr1bKK995z7xtjbOuGK1bIzelYGNMW23r1jC3L7nxjjG0d4e+/5ea8fNk4xLFVq/TFtlEjYwOWOwXcdvjCgQNyc164YOwt07y5c7EFjHPofPqpewXc9lhllG5HZ88KMXlysqhU6apTRts3sUyblvMKOEv3/+hSuk+cMK90O9q/3ziGxVUB79LF2D03swK+f795pdvGajXegMeOTb/FNjTUOJbkfrt2//WXeaXbMefOncbWoLRbbMPDjV0K77drt610V69ubs6tW42TnKQt4LlyGSfHSLtrd9qSs3Bh6ierZubcvNlY8U67xTZ3buPYsSVLMi/gM2eaU7od2baEPv98+i22efIYReC33zIv4J9+aly/b1/zciYnGyt7I0YYBdExZ/78xi7j99u1+513jOs/+aR5OZOSjD0+nnoq/RbbggWNY4GXLUsSCxcuybB0u/pqM9lsxXbo0PRbbAsVMsZ5zZrMC/hrrxnXHznSvJy2LaGDBqUv4MWKGfPt/XbtfvZZc0q3ozt3jNezq2NCS5Y0TibmatduR7bS/cEH5uW0Fdu+fdNvsS1TxipeeeX+u3bbSvf06ebltBVbV8eEVqhgzHv327W7dWtzSrej+Hjj9rt3T1/AK1c23vfvt2u37ZCvX381L+f168b6UJcu6Qt49erGetT9tmTavmZt3Trzcl69KsTXXwvRvn2KCAxMccpZu7ZxLPDhw5nfRtqvNjPDpUtGsU17wlrA+BBl0iQhjh/P/DZs6wVbtpiX8/x5oxSm/YYTwNjoMHny/U88Zlvuyi7djs6cMdYj0p5/yGIxpk2Zcv8ybXsezp2Tn8+2Dnn0aKKYPDn94aQWi/Ehx+efGx8m6I6l+390Kd3HjxulOyDAe1/Ut2+f8clt2l2mQ0KMT3q/+y79sdX79hnXyZfPOxltX6fy5pvpT8oUGmrsajV7dvoCbivdpUp5L+eOHcaWhbQnZQoPN7ZEzJ+fvoCvWGFcp0YN7+XcssXYspz2pEy5chlbdn76SYi4OOfS/eOPqZ+mekNKirHF64UX0p+UKSrK2FLm6uzN33xjXKdTJ+/lXL/e2DKY9hjbvHmNLY+udu3+5BPjOo7fK20m29lx//Wv9LtM23bt/v339AX87beN6wwf7p2cti3Lw4enPylTnjx3xZNPJouVK9Pvgm77ajMzS7cj28mOhgxJX8ALFzZKq6tjq8eMMb90O7p719ga6OprX4oVM44Nd7Vrt610v/GGd3ImJBiHlDz6aPoCbtu129XJuAYONK4zaZJ3ct6+bdsVOUWEhiY55Sxb1jjbu6uTcfXoYVzniy+8k/PmTWOPq5490xfwihWND1P++Sd9zgcfNK4ze7Z3csbFGVuWu3VLv8t01arG2ftd7dpt++o/2/dKm+3aNWPLcufO6bcs16hhfDjpqmDZ9oZbv978jImJieK7734TM2Ykifbt029ZrlPHOPeBq2OrbV9tZmbpdnTxovFaaN06fQFv0MA4XMjVsdW2dQEzS7ejc+eM3aJbtEhfwJs0Mb79xNWx1bbSLfsEbRk5fdpYp0j7jTEWi7FVfOpU18Xa9pi88bWzQhh7C3z0UfpvjAkIMJY906fLPfGzN7F0/49upTsw0Hul29HevcaxS2m/RiftsdW20p0/v/cz2naZfuON1E+Qbf/SHlu9ebMxvXRp3+Tcvt04ts72FRe2f2mPrV6+3Jhes6Zvcv79t7FCm/Z7VyMjraJFi1NiwYIkceeOkRcwPkH1tpQUoxiMGpV+127b1xLZjq3++mtjeufOvsm5bp1RWNLu2m07ttq2a/f9vlfaTMnJxjHJrnbtLlDAedfu8eON6U895f2ctu8zffJJIQoUsDrlTHtste2rzTL6PnEz3btnfLAyeHD6syLbjq22nQ3bVrqff977Oe/eNT6oevzx9AW8RAnjAy7brt0jRhjT33zT+zkTEowP/vr3d71r98svp37f7uOPG9M//NC7GRMTE8Xcub+I2bOTRO/eGe/abTu2unt3Y/qMGd7NKYTxgfScOZnv2m07trpVK2P6nDnez3njhrGe0bVr+gJerZqxfmLbtTuz75U227Vrxh5VnTqlL+A1axqH5NjKlm0PuA0bzM+VtuRcvmx8FWq7dukLeNpjq23rfa6+T9xsFy8aZevBB9MX8IYNnY+ttpXurVu9n/PcOaO8ZrRrt+Ox1bblqzu7+Mty+rSxfmH7LnvHAp722GrbZWZsab7fIWEnThjPre38DI4FvHVr40MZs76q1wws3f+jS+k+dswo3UFBvindjvbsMT5hTntsdWho6ie3BQr4NqNt1+7XX3d9bLWtnJUp4/uc27YZW0BcHVttW0mvVcv3Of/6y9ilM+2x1blzp64ENW/u25z327Xb9nOXLr7Neb9du20/Z+V7pc3kuGu3q2OrbT8//bRvc96+nSjGjftTDB2a4vLYatvPWfk+cTPZjll2tWu34/w6apRvc9p27XZ1bLXj63/sWN/mdNy1O20Bd1ye/uc/3s2VdoXScdfutAXc8dCjL7/0bs60bLt29+jhetdu289z5/o2540bxp52ro6tdtwz737fK222q1eNvatcH1ud+vOff5qfJbOSc/myMe+5OhmXba8B4P7fJ262CxeM3Y3TnowLcN49eds23+Y8e9bYfTvtrt2A87T77dZvtlOnRIa7drdsmfq7GVuX3TnZ5PHjxgenaU/8HBBgHI4wY4bcr+o1A0v3/+hSuo8eNUp3cLDvS7dNZsdWFyzo63SpbLt2uzq2umxZX6dL5Xhsddpdu2vX9nW6VFarEBs2JIlu3Q6LEiWctzC2aOHrdKlsu3aPHJl+1+6HHvJ1ulS2s0y72rXb3e+VNlNmu3b7unQ7voFndmy1u98nbqa7d41jTgcOTF/AX3jB1+lS2b6WyNWx1ePG+TpdKtuu3X36pD+2+qOPvJslsxXKzHbt/uor7+bMjG3Xblfftztvnq/Tpcrs2Gp3vlfabLZjqzt0SL9l2del21Fmx1a7833iZsvs2Ort232dLpXt2Oq0u3YDcr4mTZaMdu0GzNminN2vsDt2zDhHR9qv6pX9ne+yZbVrBoCUIITxv8Xi2xyOLBagenVg/Hhg3z5gzRrny1RhsQC1awPvvQccOgT88ovzZaqwWIAHHgA++AA4dgyYM8f5MlVYLECDBgJDh+7F4cPJmDHD14lcCwgAmjUDPv0UOHMG+M9/Ui9TaTwDA4GWLYFp04Bz54C33vJ1IteCgoA2bYAZM4ALF4AXX0y9TKXxDA4GOnQAvv4auHgReOqp1MtUyhkaCnTpAnz7rZHzX/9KvUylnGFhQPfuwH//C1y6BAwcmHqZSjkjIoBevYB584DLl4GePVMvUylnZCTQty+wcKGRs3371MtUyhkVBQwYACxebDzvTZumXqZSzrx5jXny11+N11Ht2r5O5Fr+/MDQocCyZUbOChVSL1NpPKOjgeHDgT/+AM6fB4oWTb1MpZyFCxvLzDVrgLNngZIlUy9TKWexYsDIkcCGDcDp00DBgqmXqZSzZElg9Ghg82bgxAljuW+jUs4yZYBXXgG2bAGOHgUmTgT69QOqVvV1MjmCfB2ADCqWbkcWi7pvIo4sFqB8eeffVWSxAGXL+jrF/QUEGAtBG1XHMyAAKF3a1ynuLzBQ3ZUHR0FBQIkSqb+rmjM4WN2VRkehoXo87+HhQPHiqb+rmjMiQo/nPTISKFTI1ynuL08e57Kgqnz5jH82qj7vBQoYH2rYqJozJsZ4LdmomrNIESB37tTfVc1ZvLixDLVRNWepUsZ7vI2qOcuWBf79b1+nkItbuhWheulOiznlYk65mFMu5pSLOf2TLuPJnHIxp1zM6Tlb5yDvYulWBEu3f9NlPJlTLuaUizn9ky7jyZxyMadczOmfOJ7ew9KtCH7qZA5dFibMKRdzysWccjGnXMwpF3PKxZz+SeXxdOwcKufMaVi6FaPLzM+ccjGnXMxJ5Dld5k/mlIs5/ZMu48mcnmPp9g2WbkVw93JzMKdczOmfdBlP5pSLOeViTv/E8ZRLl/FUOSdLt2+wdCuCpdsczOmfdBlP5pSLOeViTrmYUy7mlIs55VI5J0u3b7B0K4Kl2xzMKZcuOXWhy3gyp1zMKZcuOUkuXZ535pSLOT3H0u0bLN2KYOk2hy45daHLeDKnXMwpF3P6J13GkznlYk65mNNzLN2+wdKtCJZuczCnXMwply45daHLeDKnXMwpF3PKxZxyMSfpiqVbESzd/k2X8WROuZhTLub0T7qMJ3PKpUtOXegynszpOW7p9g2WbkXo9j3durxImVMu5vRPuownc8rFnHIxp3/SZTyZ0z9xPL2HpVsROmzpVjmbI8ecKmdmTrmY0zzM6TldnnfmlIs55WJO86icU+VsjnR53rml2zdYuhWjy8zPnHLpkpPkUvl512XlQeVsutNlbHXJSXLp8ryrnFOX5bwj5vQcS7dvsHQrQoct3Y6YUy7mlIs55WJOuZhTLuaUiznl0iWnLlQeT13KrC45cxqWbkWwdJtDl5y60GU8mdM/6TKezCkXc8rFnP5Jl/FUOacuZVaXnDkNS7ciWLrNwZxyMadczCkXc8qlS05d6DKezCkXc8qlck6WWcoMS7ciWLrNwZxyMad/0mU8mVMu5pSLOf2TLuPJnJ7TsXTrkjMnYOlWBEu3f9NlPJlTLuaUizn9ky7jyZxyMadczOk5lm7KDEu3Ili6zcGccjGnXMwpF3PKxZxy6ZJTF7qMJ3PKpXJOx9KtC5XHM6dh6VaEbi9UXV6kzEkq4/Muly7jyZxy6ZJTF7qMJ3PKxZxyMSelxdKtGM78cukynswpF3PKxZxyMadczCkXc/onjqfnuHs5ZYalWzG6zPzM6Z90GU/mlIs5/ZMu48mccjGnXMwpl8o5WbopMyzditDhmG7HbCrndMSccjGnf+J4eo7LT9JlPHXJqQtdxlPlnFx+Uk7A0q0IIYxXpy4vUpVz6rJwZk7zMKdczCmXyjl1eb0zp3mYUy5dcupC5fHUcUs3eQ9LtyJ02NLtSJecutBlPFXOqcvKLXOahznlYk65VM6py+udOeXSJacjlXOydFNmWLoVwdJtDuYklfF59xxXGkmX8dQlpy50GU/mlEvlnCzdlBmWbkWwdJuDOeViTrmYUy7mlIs5/ZMu46lLTl3oMp4q59Tt63/Ju1i6FaHbC1XlhZ4j5pSLOf2TLuPJnHIxp1zMKRdzysWccumSk7yHpVsRum3p1oUu48mccjGnXMwpF3PKxZxy6ZJTF7qMp8o5ddltW5ec5Bss3YrR5UXKnP5Jl/FkTrmY0z9xPOXSZTyZUy7m9Jwue4OydFNmWLoVoduWbuaUiznlYk65mFMu5pSLOeViTrmY03O6lFldcpJvsHQrgqXbHMwply45dcHx9E+6PO/MKZcuOXXB8ZRL5fHUpczqkpN8g6VbESzd/o3jKZcu48mccjGnXMwpF3PKxZz+SeXxZOmmzLB0K0KX41VsdFmYMKdczOmfdBlP5vRPHE+5dBlP5pSLOT3H0k2ZYelWhA5buh2zqZzTEXPKxZxyMadcKufk8tM8zCmXLjl1oct4qpxTxzKrS07yHpZuRehQuh2pnFOXlVtdcjpiTrmYUy7m9JwuyyVdcjpiTrmYUy6Vc+pYuonSUrp0p6Sk4M0330SZMmUQHh6OcuXK4Z133oHQbV/sLNDtIemy0NMlp8p0WbnVJacjXXLqQpfxZE65VM6py3KJOc3DnJ7TpXTrkpN8I8jXATLzwQcfYPr06fj2229RrVo1bN26FUOGDEGePHkwcuRIX8czBV+kcukynswpl8o5dVlpZE7zMKd/4njKpfJ4qpzNkS7LT13KrC45yTeULt0bN25E9+7d0aVLFwBA6dKlMWfOHPz9998+TiYfdy83B3PKpUtOXegynszpn3QZT+aUiznlYk7P6bI3qC45yTeU3r28SZMmWLlyJQ4dOgQA+Oeff7BhwwZ06tTJx8nkY+k2B3P6J46nXLqMJ3PKxZxyMadczCmXyjl12YLM0k2ZUXpL96uvvor4+HhUrlwZgYGBSElJwXvvvYcBAwZk+Df37t3DvXv37L/Hx8cDAJKSkpCUlGR65uxKSkqB8XQIJCUl+zqOS8bwBf/vN+v/MqvHMacQ6uZMTgZUzWl7rSQlJSE52QLbokK1nI6cc6YgKcnq20AZcMxptaqbMyUlAEAgAN/ndJwf03LMmZLC8fSU83gmIylJzbVIq9V3OTObH9OyWgNh276RnKzyeKbmTElJgqqrS0Kk5jTW63ybJyOOOZOTzc/pzjzpSIggAEaL9UbO7NIxp8qdI3Vd3pyc2Z0fdZXVx6l06Z4/fz5++OEHzJ49G9WqVcPOnTsxatQoFC1aFIMGDXL5NxMmTMD48ePTTV++fDkiIiLMjpxt//wTDaAJbt++hdjY1b6O49KNG6EAOv7v5+uIjd3g20AZOHcuF4C2AIArVy4jNnazbwNl4MiRPABaAQAuXDiP2NitPs3jyooVK7BrV0EATQEAZ86cRmzsTp9mysi2bYUBNAQAnDhxHLGxe30bKAO7dpUAUBcAcOTIYcTGHvRtoAzs3VsGQE0AwIED+xEbe9S3gWDMj2kdOlQRQBUAwMGDBxAbe8TLqbLmwIFyAKoDAPbu3Y3Y2JO+DZSBI0cqA6gEAPjnn53Ik+esbwNl4Pjx6gDKAQC2bduKgICLXs/gan5M68yZOgBKAgD++mszbt++anKq7LlwoT6AogCAP//8E+fPx/k2UAauXGkMIAYAsHbtGhw6lODbQBm4caMFgHwAgJUr/0CePIleud+szJOObt9uDSA3AGDVqpXIl+9e5n/gI7dvtwWQCwCwfPnvCA1V88P/lJSHYPswMDY21rdhMtXd/pOZOd2dH3WVkJC15ZDSpfvll1/Gq6++in79+gEAatSogZMnT2LChAkZlu4xY8Zg9OjR9t/j4+NRokQJtG/fHlFRUV7JnR0BAcYCJHfuSHTu3NnHaVy76LBOkz9/PmVzHj6c+nNMTLSyObdvT/25aNEiSuVMSkrCihUr0K5dO4SHh9inlyxZAp07F/VhsowlJaXuc1a2bBl07lzKh2kydvVqas6KFSugc+dyPkyTsRMnUo8+qlKlCjp3ruSzLI7zY3BwsNNl//zjmLMyOneu6O14WXLgQGrOGjWqo3Pnaj5Mk7G//07NWbt2bXTuXMuHaTK2cmVqzvr166FzZ+9u6c5ofkzrp58C7T83btwIzZuruaV71qzUnM2aNUXt2r7LkpmpU1NzPvhgK5Qt67MomXr33dScbdu2RXS0uffnzjzpKFeu1BrQpk0bFC5sRjrPRUSk5uzYsQPCw30YJhMWS+pySaV1usyYkTO786OubHtV34/SpTshIQEBAc6HnQcGBsJqzXi3vNDQUISGhqabHhwcrPQTHxhorIgHBFiUzekYKyAgAMHBap4SQJecQQ6vPlVzBgcHI8ghaGCgmjkB5/EMDAxEcHBgxlf2IcecQUHq5gx0iKVKTlfLcRVzuuKcMwiKLuadcgYHq5vTcdXAVzmzsl6hQs6scMwZEhKsbE7H43lVzunImzndXdfVZTwdj5XWJaeq6/JpmZlT9e4lS1Yfo9Klu2vXrnjvvfdQsmRJVKtWDTt27MDkyZMxdOhQX0eTjidSMwdzyqVLTl3oMp7MKRdz+ieOp1wqj6eOJ/5iTiJzKV26p06dijfffBP/+te/cOnSJRQtWhRPPfUUxo4d6+to0ul2xkNdFnrMKRdz+iddxpM55WJOuZhTLpVz6lgSmZPIXNkq3adOncLJkyeRkJCA6OhoVKtWzeUu3Z7KnTs3PvnkE3zyySfSb1tVKi9MVM6WEV0y65JTF7qMJ3PKpXJOx2wq53TEnHIxp//QpXQzp1y6bUAj78py6T5x4gSmT5+OuXPn4syZMxAOc1ZISAiaN2+O4cOHo1evXumOw6b74+7l8uiycqtLTkfMKZcuOXXB8fScLsslXXLqSJfxZE7PsczKpUtO8o0steORI0eiVq1aOH78ON59913s27cPcXFxSExMxIULFxAbG4tmzZph7NixqFmzJrZs2WJ27hyHpdu/qTyeOq7cMqdczCkXc8qlck5dlp+65HSkck5dypeOpVuXnERpZWlLd65cuXDs2DEUKFAg3WUxMTFo3bo1WrdujXHjxmHZsmU4ffo06tevLz1sTpZaugUAhZco/6PyQs8Rc8qlck5dVhp1yelIl5y60GU8mVMu5vQcl5/mUTknSzflBFkq3RMmTMjyDXbs2DHbYfwZt3SbQ5ecutBlPJnTc7qs3OqS05EuOXWhy3jqklMXKo+njiVR5ZyOdMlJlFaWD76uV68evvjiiyx/ATi5h6XbHMwply45SS5dnnfmlIs55WJOuVTOqUuZ1WXLrC7jSZSZLJfuWrVq4ZVXXkGRIkXw+OOPY82aNSbG8j8s3eZgTv+ky3gyp1zMKZcuOXWhy3jqklNlupRE5iTyniyX7q+//hoXLlzAtGnTcPr0abRp0wbly5fH+++/j7Nnz5qZ0S/o8mmjjS4LPeaUiznl0iWnLnQZT+aUiznlYk65VM6pS5nVbR2ZyBW3vtsrIiICgwcPxpo1a3Do0CH069cPM2bMQOnSpdGlSxf89NNPZuX0Gyov9Bwxp1zMKRdzysWccjGnXLrk1IUu46lyTl1KIks3kfdk+wu1y5Urh3fffRcnTpzAnDlzsHnzZvTu3VtmNr+i2+7lutBlPJlTLuaUiznlYk65mFMu5vScLmXWkco5WbopJ8jS2cszsmbNGsycORMLFy5EUFAQnnzySVm5/I5upVuXnLrQZTyZUy7mlEuXnLrQZTyZ0z+pPJ66lG4dcxLpyu3SfebMGcyaNQuzZs3CsWPH0Lx5c3z++efo3bs3wsPDzcjoF1i6zcGccumSk+TS5XlnTrmYUy7mlEvlnDqWWZVzEuUEWS7d8+fPxzfffIOVK1ciJiYGgwYNwtChQ1G+fHkz8/kNHUo3vw+XdBlP5vRPKo+njstPXegynszpOR23eOoynrrkJNJVlkv3Y489hi5dumDRokXo3LkzAgKyfTg4uaBD6Xakck5dVm51yakjXcaTOf2TyuOpy3JJ5WwZ0SWzyjlZEuXSZTyJcoIsl+4zZ84gJiYG8fHxGRbuI0eOcMt3NrF0m4M5PafLSrgj5pSLOeViTrlUzqlytozoklnlnLqUWR1zEukqy5urY2JiAABdunTB3bt3011+8OBBtGrVSlowf8PSbQ7mlEvlnPxwwDzMKRdzysWcntNl+alLSXSkck5dyqwuOYky4/Y+4pGRkejZsyeSk5Pt0/bv349WrVqhV69eUsORulR+E3HEnHIxp+d0WbnVJacj5pSLOeViTs/pUrp1yelI5Zws3ZQTuF26f/rpJ8TFxWHAgAEQQmDPnj1o1aoV+vfvj08//dSMjH5Bty3dutBlPJmTVKby884PB8zDnHLpklMXKo+nLqVbx5xEunK7dIeHh+O3337DwYMH0adPH7Rp0wYDBw7E5MmTzcjnN3Qr3brk1IUu48mccumSUxe6jCdzysWccqmcU8fypct46pKTSFdZOpFafHy80+8BAQGYN28e2rVrh169euHNN9+0XycqKkp+Sj/A0m0OXXLqQpfxZE65mNM/6TKezCmXyjlZEs3D8SQyV5ZKd968eWFx8WoUQuCLL77AjBkzIISAxWJBSkqK9JD+gKXbHMzpn3QZT+aUizn9ky7jyZye07F0M6fnWLopJ8hS6V69erXZOfweS7c5mFMu5pSLOeViTrl0yUlyqfy861gSmdNzLN2UE2SpdLds2dLsHH6PpdsczCkXc8rFnP5Jl/FkTrmY03MsiXLpMp5EOUGWTqR26tQpt2707Nmz2Qrjz3Qr3brQZTyZUy5dcpJcujzvzCkXc/onlcdTx9JNRObKUumuX78+nnrqKWzZsiXD68TFxeGrr75C9erVsXDhQmkB/YUOCz5+NY95mNM/6TKezOk5XZafuuR0xJxyqZxTh3UlnegynrrkJMpMlnYv37dvH9577z20a9cOYWFheOCBB1C0aFGEhYXh+vXr2LdvH/bu3Yu6deti0qRJ6Ny5s9m5cyyV3+wcqZyTK43mYU65mFMu5pRL5ZxczptH5Zy67A6tS0lkTiLvydKW7gIFCmDy5Mk4f/48PvvsM1SoUAFXrlzB4cOHAQADBgzAtm3bsGnTJhbubOLu5f5Hl+eaK7fmYU65mFMu5vQcl59ysXTLxZxE3pOlLd024eHheOSRR/DII4+Ylcfvqfwm4og55dIlp8q4cmse5pSLOeViTrmY03O6lETm9G8qv4Zyoixt6Sbz6balmznlYk65VM6pcraM6JJZl5xEKlP5daTLlm6Si6XbHHwNeRdLtyJYus3BnHIxp1wq51Q5W0Z0ycyccjGn53QsNSqPJ8ml4/ypA76GvIulWxEs3eZgTrl0yakLXcZT5Zw8rMA8zCmXyjl12YKsS/liTrl0yUmUGZZuRei2QFH5TdkRc8rFnHIxp3/SZTyZUy6Vc+pYunXJqTJdcpI5VH4N5UQs3Yrglm5zMKdczCkXc8rFnHIxp1wq59SxzOqSU2XM6d9Ufg3lRG6X7m+//Ra//fab/fdXXnkFefPmRZMmTXDy5Emp4UhdurxQmdM/6TKezCkXc8rFnHKpnFPHMqtLTpUxp39T+TWUE7ldut9//32Eh4cDADZt2oRp06Zh0qRJKFiwIF544QXpAf2Fblu6yT/pMn/qkpPk0uV5Z065mNNzOpZZXXKqTJecZA6VX0M5kVvf0w0Ap0+fRvny5QEAixcvRq9evTB8+HA0bdoUrVq1kp3PbwhhzPl8Acily3gyp1zMKRdzeo4nfCNd6PK865JTZbqUbl1y6oavIe9ye0t3ZGQkrl69CgBYvnw52rVrBwAICwvDnTt35KbzIzps6eZKo3mYUy7mlIs55VI5p8rZMqJLZpVz6lJqmFMu5iTyHre3dLdr1w5PPPEE6tSpg0OHDqFz584AgL1796J06dKy8/kNHUq3I5Vz8sMB8+iSUxe6jCdz+ieVx5PLebl03G1bl5wqY04i73F7S/e0adPQuHFjXL58GQsXLkSBAgUAANu2bUP//v2lB/QXLN3mUDknVxrNw5xyMadczCkXc3qOZVYuXXKSf1P5tZ4TZXlL9549e1C9enXkzZsXn332WbrLx48fLzWYv2HpNgdzeo4fDpiHOeViTrmY03NcfsqlS5llTtKByq/1nCjLW7pr1qyJhg0b4quvvsLNmzfNzOSXWLrNwZz+Q8eVW/JPusyfzCmXyjl12dJNcrF0+ze+1r0ry6V77dq1qFatGl588UUUKVIEgwYNwvr1683M5ld0W/Dp8kLVJacudBlPlXPq+OEAc8rFnHIxp1y65CTP6bbuSXLxte5dWS7dzZs3xzfffIPz589j6tSpOHHiBFq2bImKFSvigw8+wIULF8zM6Td0eQHoklMXuownc8qlck5+OGAe5pRLl5wq06V8MSeRPFx2epfbJ1LLlSsXhgwZgrVr1+LQoUPo3bs3pk2bhpIlS6Jbt25mZPQLuu1ergtdxpM5/ZMu46lyTn44YB5dcqpMl922dcypMuYkHaj8Ws+J3C7djsqXL4/XXnsNb7zxBnLnzo3ffvtNVi6/o1vpZk65mFMu5pSLOeXSJacuVB5PHcusLjlVxpykA5Vf6zmR29/TbbNu3Tp88803WLhwIQICAtCnTx8MGzZMZja/wtJtDuaUiznlYk65mFMu5pRL5Zws3XIxJxGl5VbpPnfuHGbNmoVZs2bhyJEjaNKkCaZMmYI+ffogV65cZmX0Cyzd5mBOuZiTVMbnXS5dxlPlnDqWWV1yEpFnVH6t50RZ3r28U6dOKFWqFKZOnYqHH34Y+/fvx4YNGzBkyBBTC/fZs2fx2GOPoUCBAggPD0eNGjWwdetW0+7PV3Qo3Spny4gumXXJqQtdxpM55VI5J489N4/KOXUssyrn1AU/HCAd8LXuXVne0h0cHIwff/wRDz30EAIDA83MZHf9+nU0bdoUDz74IJYuXYro6GgcPnwY+fLl88r9e5MOpdsRc/onXcaTOeViTrlUzskPB+TSscyqnFOXMqtLTvJvKr/Wc6Isl+6ff/7ZzBwuffDBByhRogRmzpxpn1amTBmv5/AGlm55uNJoHuaUiznlYk65mNNzupQv5pRLl5xE5D0enb3cbD///DPq1auH3r17IyYmBnXq1MFXX33l61gEtVdydMEPB0iX8dQlpy50GU+Vc6qcLSMqZ9Zli7wuZVaXnOTfVH6t50TZPnu5Nxw7dgzTp0/H6NGj8dprr2HLli0YOXIkQkJCMGjQIJd/c+/ePdy7d8/+e3x8PAAgKSkJSUlJXsmdHcnJAkAghLAiKSnF13FcMoYvGAAgRAqSkqw+zZMRx5xWK3Nmh+21kpSUhJQUC2yLCtVyOkpOTs2ZkpKMpCQ113p0yZmSEgDAOJQoOdm3OR3nx7Qcc+oynrrkTE5Ogqpvm1ar73JmNj+mlZISCNv2DZXHUwjnnFY1F/OwWoMAGE1B5XU6Ibyb05150llwuttQE3PKZeS0WASSkpKl33r250c9ZfVxKl26rVYr6tWrh/fffx8AUKdOHezZswdffPFFhqV7woQJGD9+fLrpy5cvR0REhKl5PXHoUHkA1XDhwjnExu7wdRyXbt4MBtAZAHDy5CnExu7ybaAMXLwYDqA9AODYsaOIjd3v20AZOHEiCsCDAIBDhw4iNvawbwO5sGLFCuzdmx9AcwDAvn17ERt73LehMrBtWyEAjQAAu3fvQmzsad8GysDOncUA1AMAbN++HSEh530bKAN79pQGUAsAsGXL30hMvOzTPIAxP6Z18KCx7ASAv//+C/fuXfFyqqzZt68sgBoAgI0b/8SlSzd8micjhw5VBFAFgPHVoMeO3fJtoAwcO1YVQAUAwOrVq1CgwF2vZ3A1P6Z19mxdACX+d/3liIiQv4Irw5UrTQBEAwCWLo1VdgvY7dttAEQCAGJjY30bJhMpKV1gW8X2Zs6szJPOutt/Unk8mVM2I2dSUiJiY5eZdi/uz496SkhIyNL1lC7dRYoUQdWqVZ2mValSBQsXLszwb8aMGYPRo0fbf4+Pj0eJEiXQvn17REVFmZbVU7t2GVs9ihYtis6di/g4jWvXrqX+XLp0SXTuXNx3YTJx4kTqz+XLl0PnzmqeB2CXw2cWlStXQufOFXwXJo2kpCSsWLEC7dq1Q1RUiH169erV0LlzFR8my0zqWmKtWjXRuXMNH2bJWHx8as4HHqiLzp3V3OJ55kzq0UcNGzZA69a+3dJtmx+Dg4OdLtu7NzVno0YN8eCDao7n0aOpOZs1a4K6dX0YJhM7dqTmbNmyBSpV8mGYTKxbl5qzTZvWKFrUe/ed2fyY1vz5qSee7dChPXLnNjtd9nz8cWrOLl06+zBJ5nLlSl1t7dxZ3ZyOJxz2Rk535smMqDyejphTnpCQEFNyypgfdWLbq/p+slW6v//+e3zxxRc4fvw4Nm3ahFKlSuGTTz5BmTJl0L179/vfQBY1bdoUBw8edJp26NAhlCpVKsO/CQ0NRWhoaLrpwcHBSj/xAQHGLuWBgQEIDlbzUHvH4QsMDERwsHfOYu8ux5xBQczpieDgYAQFpS4mVH7eHWIiODgIqr7cdcnp+CUVquR0tRxXMacrzjmDtcgZEqJuzgCHt0lf5czKeoXjFmOVx9Mxp8rrSo5Uzul4TLc3c3qyrqvyeDpiTnksFoupOVXvXrJk9TG63e5sx1h37twZN27cQEqKURbz5s2LTz75xN2by9QLL7yAzZs34/3338eRI0cwe/ZsfPnllxgxYoTU+1EBz15uDl1y6kKX8WROz/FEf6TLeKqckycok4s5ieRReZmUE7lduqdOnYqvvvoKr7/+utPuM/Xq1cPu3bulhqtfvz4WLVqEOXPmoHr16njnnXfwySefYMCAAVLvRwUs3eZgTrl0yakLXcZT5Zz8cMA8zOk5XcoXc8qlS07ybyovO3Mit3cvP378OOrUqZNuemhoKG7fvi0llKOHHnoIDz30kPTbVQ1LtzmYUy7mlEuXnLrQZTyZUy6Vc3JLt1y65CTSgcrLpJzI7S3dZcqUwc6dO9NNX7ZsGapUUfUES+rT7Y2EL1S5dBlP5vRPuownc8qlS06VsXTLxZxE8qi8TMqJ3N7SPXr0aIwYMQJ3796FEAJ///035syZgwkTJuD//u//zMjoV1R+AaicLSO6ZGZOuZhTLl1yqoy7wculS5l1pHJOlkS5OJ6kA5WXSTmR26X7iSeeQHh4ON544w0kJCTg0UcfRdGiRfHpp5+iX79+ZmT0C9y93BzM6Z90GU/mlIs5PadyNke6lG5dcupClzKrS04i8p5sfWXYgAEDMGDAACQkJODWrVuIiYmRncvvpJZuLqk9xS1K5mFOuZhTLuaUizk9p0vp1qUkMifpQOXXOvlOtkq3TUREBCIiImRl8Wvc0m0OlXPywwHieMqly3gyp+d0KbOOVM6pS0lkTtKByq91R7rkzCncLt116tSBxcWzZLFYEBYWhvLly2Pw4MF48MEHpQT0Fyzd5tAlp8r44YB5mFMu5pRL5Zy6lG6WL7k4nkTyqLzszIncPnt5x44dcezYMeTKlQsPPvggHnzwQURGRuLo0aOoX78+zp8/j7Zt22LJkiVm5M2xWLrNwZxyMad/0mU8dcmpC5XHU8fSrUtOlTEn6UDl17ojXXLmFG5v6b5y5QpefPFFvPnmm07T3333XZw8eRLLly/HuHHj8M4776B79+7SguZ0LN3mYE65VM7JLfLmYU65mNN/sHT7J46nf1P5te5Il5w5hdtbuufPn4/+/funm96vXz/Mnz8fANC/f38cPHjQ83R+hKXbv+kynszpOX44YB7mlEvlnLqUWUcq52RJJJJH5de6I11y5hRul+6wsDBs3Lgx3fSNGzciLCwMAGC1Wu0/U86kywuVOf2TLuOpck5+OGAe5vScLqVbl5y60OXDAV1ykjl0ea3rkjOncHv38ueeew5PP/00tm3bhvr16wMAtmzZgv/7v//Da6+9BgD4/fffUbt2balBczpu6TYHc8rFnHLpkpPk0uV5VzmnLmVWx5wq0yUn+TeVX+vkO26X7jfeeANlypTBZ599hu+//x4AUKlSJXz11Vd49NFHAQBPP/00nnnmGblJcziWbnMwp1y65CS5VH7euUXeP7HMysWcRPKovExypEvOnCJb39M9YMAADBgwIMPLw8PDsx3IX+lWunXB8ZRLl/FkTrmYUy7m9BxLt1zMSSSPysskR7rkzCncPqabzKFD6VY5W0Z0ycyccjGnXMzpOW6Rl4ulWy5dchKRPCovO3Mit7d0p6Sk4OOPP8b8+fNx6tQpJCYmOl1+7do1aeH8iQ6l2xFzysWccjGnXMwpl8o5+eGAXLqUWeYk8j8qLztzIre3dI8fPx6TJ09G3759ERcXh9GjR6Nnz54ICAjAW2+9ZUJE/8DSLQ9XGs3DnHLpklMXHE/P6bIFmfwTSzfpgMtOcsXt0v3DDz/gq6++wosvvoigoCD0798f//d//4exY8di8+bNZmT0Cyzd/kfHDwd0oct4MqdczOk5XUq3Ljl1oUuZ1SUn+Tddlkm65Mwp3C7dFy5cQI0aNQAAkZGRiIuLAwA89NBD+O233+Sm80O6vACYUy7mJJXp8rwzp+d0KbM65lQZcxLJo/IyiXzH7dJdvHhxnD9/HgBQrlw5LF++HIDxXd2hoaFy05GydFmgMKfndNwiz5xyMadcKufUsczqkpOI/IPKyyRHuuTMKdwu3Q8//DBWrlwJAHjuuefw5ptvokKFChg4cCCGDh0qPaC/4O7l5tAlpy5UHk9+OGAeXXLqguPpOZZuuXTJSaQDlZdJjnTJmVO4ffbyiRMn2n/u27cvSpUqhY0bN6JChQro2rWr1HD+hG945tBlgcKccjGnXMwpl8o5dSyzuuRUGXMSyaPyMsmRLjlzCrdL97p169CkSRMEBRl/2qhRIzRq1AjJyclYt24dWrRoIT2kP+CWbnMwp1zM6Tkdt8jrQpfxVDmnjmVWl5zkOY4n6UDlZZIjXXLmFG7vXv7ggw+6/C7uuLg4PPjgg1JC+SOWbnMwp1zMKZfKOXX8cIA5PadLmSW5dCmzuuQk0gGX8d7ldukWQsDi4lm6evUqcuXKJSWUP2LpNgdz+ieOp1y6jCdzek6X0q1jTpUxJ5E8Ki+THOmSM6fI8u7lPXv2BABYLBYMHjzY6UzlKSkp2LVrF5o0aSI/oZ9g6fZvuoynLjl1oct4qpxTxy3yKtOxzOqSU2W65CTSgcrLJEe65Mwpsly68+TJA8DY0p07d26Eh4fbLwsJCUGjRo3w5JNPyk/oJ3Qo3Spny4gumZlTLuaUizk9p+OHAyrnZOmWizmJiMyV5dI9c+ZMAEDp0qXx0ksvcVdyP6fySo4jXXLqQpfxZE7/pMt4qpyTZVYu5pRLl5zk31RedjrSJWdO4fbZy8eNG2dGDr+nw5ZuRyrn5BYl8zCnXMwpF3OSanQpicxJJA+X8eRKlkp3nTp1XJ48zZXt27d7FMhfsXSbQ+Wc/HDAPMwpF3PKpXJObukmlfF5Jx2ovOx0pEvOnCJLpbtHjx4mxyDdSrcudBlPXXLqguMpF8fTczqWWZVzkly6lFldcpJ/02XZqUvOnCJLpZu7lJtPt9LNnHKpnFPHLfK60GU8mdNzupRZHXOqTJecROR/VF7G50RuH9Nts23bNuzfvx8AUK1aNdSpU0daKH/E0u3fdBlP5pSLOeVSOaeOZVaXnCpjTrl0yUn+TeVlpyNdcuYUbpfuS5cuoV+/flizZg3y5s0LALhx4wYefPBBzJ07F9HR0bIz+gWWbnMwp1wq59Rxi7wuOXWh8njqWGZ1yaky5iTyPyovOx3pkjOnCHD3D5577jncvHkTe/fuxbVr13Dt2jXs2bMH8fHxGDlypBkZ/QJLtzmYUy7m9Bw/HDCPLjlVxtItF3PKpUtO8m8qLzvJd9ze0r1s2TL88ccfqFKlin1a1apVMW3aNLRv315qOH8ihPEK1eWFypz+SZfxZE65mNNzOpZZXXKqTJecuuB4kg5UXnY60iVnTuH2lm6r1Yrg4OB004ODg2G1WqWEIvXp8kJlTrmY039wi7x5dMmpMl3KF3PKpUtO8m+6LON1yZlTuF26W7dujeeffx7nzp2zTzt79ixeeOEFtGnTRmo4f8Ldy83BnKQyXZ53lXPq8uGAjluQdclJnuN4Esmj8rLTkS45cwq3S/dnn32G+Ph4lC5dGuXKlUO5cuVQpkwZxMfHY+rUqWZk9As6lG6Vs2VEl8zMKRdz+ieVx1OXMutIl5wq06XMMieR/+Ey3ruyfEz3Sy+9hCeeeAKVK1fG9u3b8ccff+DAgQMAgCpVqqBt27amhfQHOpRuHekynswpF3PKpUtOlelSunXMqTLmlEuXnGQOlZdJjpiTXMly6V6yZAk+/vhjNGzYEE888QT69u2Ldu3amZnNr+hWulXOqXK2jOiSmTnlYk65VM6pY5lVOacudCmJzEk64DKJdJbl3csPHz6M1atXo2LFinj++edRuHBhDBs2DBs3bjQzn99g6TaHyjl1ORbVEXPKxZxyqZxTlzKrS6lhTv/E8SQdqLyMJ99x65juFi1aYNasWbhw4QI+/fRTHDp0CM2aNUOVKlXwn//8BxcvXjQrZ47H0m0OXXLqQpfx1CWnLnQZT5VzsnTLpUtOXegynrrkJHOovOx0xJzkitsnUgOAXLlyYejQoVi/fj0OHTqEnj17YsKECShZsqTsfH6DpdsczOk5bpE3D3PKpUtOlelSaphTLl1ykn/TZRnPnORKtkq3ze3bt7F+/XqsXbsW169fR9myZWXlIsXp8kJlTlIZn3e5VB5PXbZ064Il0T/xefdvuiw7mZNcyVbp3rBhA4YOHYoiRYpg5MiRqFixItavX4/9+/fLzuc3uKXbHMwpl8o5uUXePMzpOV1KN0uNXLqMpy45yb+pvOx0xJzkSpbPXn7+/Hl8++23mDVrFg4dOoRGjRph8uTJ6NevHyIjI83M6BdYus3BnHIxp1zM6Tkdy6wuOVXGnHIxp39TeZnkiDnl0iVnTpHl0l2iRAkUKFAAjz/+OIYNG4YqVaqYmcvvsHSbgznlYk7PcYu8XDqWWV1yqow55dIlJ5lD5WWSI+aUS5ecOUWWdy+fP38+zp49i//85z8+K9wTJ06ExWLBqFGjfHL/ZtKtdJNcujzvzOmfVB5PHcsCx9NzzEkkj8rLJDIPn3fvyvKW7p49e5qZ4762bNmCGTNmoGbNmj7NYRaWbnNwPOXSZTyZ03MqZ8uIypm5pVsu5pRLl5xkDpWXSY6Yk3Tm0dnLveXWrVsYMGAAvvrqK+TLl8/XcUyhQ+nmbrHm0SUnyaXL865yTh3LrMo5daFLSWROIlIV34u8K8tbun1pxIgR6NKlC9q2bYt333030+veu3cP9+7ds/8eHx8PAEhKSkJSUpKpOT1htVoABMBqTUFSktXXcVwyhi8YALTJmZKSjKQkNdcmVM5pe60kJSUhOdkC26JCtZyOHHMmJydB1Ze7LjlTUtTJ6Tg/ppWcHAAg8H8/qzueaXNa1Vx8IiUlNafK75kpKYGwbTfwds7M5se0hAgCYMny9X1Fl5y290yAOR25M086M3JaLAJJScmSU8mkV05Al5xWJCWlSL/17M+Pesrq41S+dM+dOxfbt2/Hli1bsnT9CRMmYPz48emmL1++HBEREbLjSXP+fD0AxXDo0EHExh7zdRyX7twJAtAFALB3727Exp70baAMXL0aBqADAGDHju0IDz/v20AZOH06N4DWAICtW/9GSspl3wZyYcWKFThwIB+AFgCAzZs3IS7umm9DZWDHjmgATQAAf/65AWfPxvs2UAZ27CgKoD4AYO3aNThwIMG3gTKwa1dJAHUAACtX/oE8eRJ9GwjG/JjWgQMVAFT93+XLERmp5orO4cMVARjnQ4mNjUWAovuZnTpVE0AZAEZOVV261BBAYQC+y+lqfkwrLq4lgLwA1B7Pe/c6AggFoHZOoLv9J+ZMLyvzpDMjpxBCi/G0WlO0yJmQcAuxsat8nCUzRs6rV68iNnajaffi/vyop4SErK3HZbt0HzlyBEePHkWLFi0QHh4OIQQskvdTOH36NJ5//nmsWLECYWFhWfqbMWPGYPTo0fbf4+PjUaJECbRv3x5RUVFS88n0/ffG2FWqVAmdO1f2cRrXbt5M/blGjero3Lma78Jk4uzZ1J8feKAuOndWc8vsvn2pPzdo0ADt2qmTMykpCStWrEC7du2QP3+IfXqTJo3RuLE6OR0FBaUuf5o3b4YaNXwYJhMJCak5H3ywFUqX9lWSzJ0/n5qzXbu2KFjQd1kc58fg4GCny3btSm2vHTq0R5483k6XNdu2pebs0qWzsrv1/fpras7OnTv7MEnmvvwy0P6zt3NmNj+mNXZs6mqWyuMZHKxHTkfMmcqdedKVgACLFuMZFBSoRc7IyEgtchYsWMCUnJ7Oj7qx7VV9P26X7qtXr6Jv375YtWoVLBYLDh8+jLJly2LYsGHIly8fPvroI7fDZmTbtm24dOkS6tata5+WkpKCdevW4bPPPsO9e/cQGBjo9DehoaEIDQ1Nd1vBwcGKP/HGvoZBQYEIDg68z3V9w3H4goKCoOpwOuYKDlY3Z0hql1U2Z3BwMIKCghx+VzMnADjEREhIsBY5jeWS77JkxnHRqsp4ulqOq5jTFcct2yEhioaE8zF+Kr9nqpAzK+sVKuR0F3PK5c2c2V3XtVgsWoynLjkDAnTJGYDgYPN2u1K/e8mR1cfo9ki/8MILCAoKwqlTp5x21+7bty+WLVvm7s1lqk2bNti9ezd27txp/1evXj0MGDAAO3fuTFe4dabDidQcMadcKufkCfTMo3JOXU6spMsJynQcT5Uxp1y65CRzqLzsdMSccumSM6dwe0v38uXL8fvvv6N48eJO0ytUqICTJ+Ue45s7d25Ur17daVquXLlQoECBdNN1p1vpJrl0ed6ZUy6Vc+pYZnXJqTLmlEuXnOTfVF52OtIlJ5Erbm/pvn37tssTkl27ds3lbt2UNbqVbuYk1ej4XKucWccyq0tOlTGnXMxJOlB52emIOeXSJWdO4Xbpbt68Ob777jv77xaLBVarFZMmTcKDDz4oNZwra9aswSeffGL6/XgbS7c5mFMu5pRL5Zwss3Ixp1y65NQFx9O/qbyMd8SccumSM6dwe/fySZMmoU2bNti6dSsSExPxyiuvYO/evbh27Rr+/PNPMzL6BZZuczCnXMzpOZWzOdKxdOuSU2XMKRdzkg5UXnbqSJfx1CVnTuH2lu7q1avj0KFDaNasGbp3747bt2+jZ8+e2LFjB8qVK2dGRr/A0m0O5pSLOeViTs/pUrrJP7HMkg647JRLl/HUJWdOka3v6c6TJw9ef/112VmIpNNlgcKccjGn/2DplkuXksiccumSk/ybLst45iRX3N7SPXPmTCxYsCDd9AULFuDbb7+VEsofpW7pVvedj18dZR7mlIs5PadjmVU5J0uNXLqMJ3MSyaPyMl5HHE/vcrt0T5gwAQULFkw3PSYmBu+//76UUP6Iu5ebgznl0iWnLlQeT11Kt445VcaccjEn6UDlZacj5iSduV26T506hTJlyqSbXqpUKZw6dUpKKH/E0i2PytnIO3SZB1TOqUuZdaRyTl1KjS45daHLeOqSk8yh8rLTkS45iVxxu3THxMRg165d6ab/888/KFCggJRQ/owLFLl0GU/mlEuXnLpQeTx1+XBAl1LDnP6J4+nfVF52OmJOuXTJmVO4Xbr79++PkSNHYvXq1UhJSUFKSgpWrVqF559/Hv369TMjo1/glm5zqJyTx8ibhzk9p8tKOEu3XMzpnzie/k3lZacj5pRLl5w5hdtnL3/nnXdw4sQJtGnTBkFBxp9brVYMHDiQx3R7gKXbHMwpF3N6TseSqEtOlTGnf+J4kg5UXsY7Yk65dMmZU7hdukNCQjBv3jy88847+OeffxAeHo4aNWqgVKlSZuTzGyzd5mBOz3GLvFw6llnm9BzLl1y6jKcuOcm/qbzs1JEu46lLzpwiW9/TDQAVK1ZExYoVZWbxa7q9MevyQmVOuXTJqTIdSyJz+g9d3ouYUy5dcpI5dFl2MqdcuuTMKbJVus+cOYOff/4Zp06dQmJiotNlkydPlhKM1KbLC5U55VI5J7fIy6VLmdUxp8qYUy7mJB2ovOx0xJxy6ZIzp3C7dK9cuRLdunVD2bJlceDAAVSvXh0nTpyAEAJ169Y1I6Nf4O7l5tAlJ8nF510ulcdTl7LAnHIxp1y65NSNystOHekynrrkJO9y++zlY8aMwUsvvYTdu3cjLCwMCxcuxOnTp9GyZUv07t3bjIx+gaXbv+kynszpOW6ZlUuXnLrQZTx1yakLjqc5VF7GO9Ilpy50GU9dcuYUbpfu/fv3Y+DAgQCAoKAg3LlzB5GRkXj77bfxwQcfSA/oL3Qo3Spny4gumZlTLpVz6lK6HemSU2W6lBrmlEuXnOTfdFnG65JTFxxP73K7dOfKlct+HHeRIkVw9OhR+2VXrlyRl8zP6FC6daTLeDKnXCrn1KV065hTZbrkJLl0ed51yUnmUHkZ70iXnLrgeHqX28d0N2rUCBs2bECVKlXQuXNnvPjii9i9ezd++uknNGrUyIyMfkG30s2ccjGnXCrn1LHMqpxTF7qUGuaUizn9G5edcukynsxJrrhduidPnoxbt24BAMaPH49bt25h3rx5qFChAs9c7gGWbnl4Fmvz6JJTF7qMp8o5dSkLuuQkuXR53nXJqRuVl52OdMmpC44nuZKl0j1lyhQMHz4cYWFhCAoKQo0aNQAYu5p/8cUXpgb0Fyzd5mBO/6TyeOqycsuccjGnXMwply45daPye5Ej5pSLOcmVLB3TPXr0aMTHxwMAypQpg8uXL5saitSnywtV5ZwqZ8uILplVzqnLbts65iTP6TKeuuTUBcfTHCovOx0xp1zMSa5kaUt30aJFsXDhQnTu3BlCCJw5cwZ37951ed2SJUtKDegvuKXbHMwpF3N6jmVWLuaUizn9E8fTHCov4x0xp1y65CTvylLpfuONN/Dcc8/h2WefhcViQf369dNdRwgBi8WClJQU6SH9AUu3f1N5PHmMvFws3XIxp1zMKZcuOcm/qfxe5Ig55dIlZ06RpdI9fPhw9O/fHydPnkTNmjXxxx9/oECBAmZn8yss3eZgTrmY03Ms3XIxp1zMKZcuOckcKi/jdcTxlIvj6V1ZPnt57ty5UaVKFcycORNVqlRBkSJFzMzld3Qr3brQZTyZ03M6rtyqPJ660OV5Z07/xPH0b7os45lTLuYkV7J0IjWbwMBAPPXUUxkez03Zp1vpZk65mFMuXXKqjGVBLl3Gkznl0iUnmUOX9yLmlIs5yRW3SjcAVK9eHceOHTMji19j6TYHc/oPHXfb1iWnynTJSXLp8rzrkpPMofIy3pEuOXWhy3jqkjOncLt0v/vuu3jppZfw66+/4vz584iPj3f6R9mjQ+lWOVtGdMnMnJ7TsczqklNlzCkXc8qlS07ybyq/F+lIl/HUJWdOkeVjum06d+4MAOjWrRssDs8Wz17uGR1KtyPm9E8qj6eOZVblnLrQpdToklMXHE8ieXR5L9Ilpy44nt7ldulevXq1GTlIM7q8UJlTLpVz6lJmdcmpC5YvuXQZT+YkHeiyjGdOuXTJSd7ldulu2bKlGTn8Hrd0y6NytozoklnlnDqWWZVzsizIpct46pJTFxxP/6byMl5Huownc5IrbpfudevWZXp5ixYtsh3Gn7F0m4M55dIlp8p0WQlnTrmY0z9xPP2bLu+ZzElkPrdLd6tWrdJNczy2m8d0Zw9LtzlUzumYTeWcjlTOqcuWbh1zqow55WJOuXTJSeZQeRmvI13GkznJFbfPXn79+nWnf5cuXcKyZctQv359LF++3IyMfkG30q0LXcZTl5wq07HM6pJTZcwpF3MS+R+V34scMadcuuTMKdze0p0nT55009q1a4eQkBCMHj0a27ZtkxLM3+hWuplTLpVz6rJFXscyq0tO8hzHUy5dxlOXnGQOlZfxjphTLuYkV9ze0p2RQoUK4eDBg7Juzu8IYcz5urwAmNM/qTyeLLP+SZfxZE65dMlJ/k3l9yJHzCkXc5Irbm/p3rVrl9PvQgicP38eEydORO3atWXl8jvc0m0O5pSLOf2HLqWGOeViTrl0yUnm0OW9SJecuuB4kitul+7atWvDYrFApHknadSoEb755htpwUhtuixQmNNzumxB1oUuK+HM6Z90GU/mJB3o8p7JnHIxJ7niduk+fvy40+8BAQGIjo5GWFiYtFD+iFu6/ZvK46lL6dYlpy50KQu65NSFLuPJnKQDXd6LdMmpC13GU5ecOYXbpbtUqVJm5PB7OpRulbNlRJfMzOk5XUq3LivhzCkXc/onjifpQOX3TEe65NQFx9O7snwitU2bNuHXX391mvbdd9+hTJkyiImJwfDhw3Hv3j3pAf2FDqXbEXPKpXJOXVYaWbr9ky7jqUtOXegynrrkJHOo/F7kiDn9E8fTu7Jcut9++23s3bvX/vvu3bsxbNgwtG3bFq+++ip++eUXTJgwwZSQ/oCl2xzM6Tkdy6wuOclzuownc8rFnETyqPye6Yg55dIlZ06R5dK9c+dOtGnTxv773Llz0bBhQ3z11VcYPXo0pkyZgvnz55sS0h/oVrpVpsv3SutCxzKrck5d6FIWmJOIVMX3Irl0GU/mJFeyXLqvX7+OQoUK2X9fu3YtOnXqZP+9fv36OH36tNx0fkS30s2ccqmcU8cyq3JOXcqXLjl1oct4MqdcuuQkc6j8XqQjXcZTl5zkXVku3YUKFbKfuTwxMRHbt29Ho0aN7JffvHkTwcHB8hP6CZZuc6icU5ct8rqUbl1WbpnTP+kynswply45yb+p/N7uiDlJZ1ku3Z07d8arr76K9evXY8yYMYiIiEDz5s3tl+/atQvlypUzJaQ/YOk2B3N6TsfSrUtOlTGnXMwply45yb+p/F7kSJecutBlPHXJmVNk+SvD3nnnHfTs2RMtW7ZEZGQkvv32W4SEhNgv/+abb9C+fXtTQpJ6+EKVi+PpOZZu/6TLeDKnf+J4+jeV34scMadczEmuZLl0FyxYEOvWrUNcXBwiIyMRGBjodPmCBQsQGRkpPeCECRPw008/4cCBAwgPD0eTJk3wwQcfoFKlStLvy5e4pdsczCmXyjl1Kd260KUs6JJTF7qMJ3OSDnR5L2JOuZiTXMny7uU2efLkSVe4ASB//vxOW75lWbt2LUaMGIHNmzdjxYoVSEpKQvv27XH79m3p9+VLLN3mYE7P6VhmVc6py0o4c8rFnHIxp39TeRnviDnl0iWnLjie3pXlLd2+smzZMqffZ82ahZiYGGzbtg0tWrTwUSr5WLrNwZye06V067Jyy5xy6ZJTF7qMpy45yRwqvxc5Yk7/pMt46pIzp1C+dKcVFxcHwNiy7sq9e/dw7949++/x8fEAgKSkJCQlJZkfMJuECARgQUpKMpKS1FybMIbPOEN9crIuOZOg6tPumNOYP30ax4nttWLkssC2qFB5PJOTU3Oq/FpPTg4AYOwtpHLOlBR1cjrOj2mlpATCttOWr3NmRpecxnuRDjmDABhrjN7Omdn8mJYvc7on9dtndMhpsQgkJSX7OEtmbOPpnZzuzJPObDmtSEpKkZpJLr1yCqFLzhQkJVml33r250c9ZfVxalW6rVYrRo0ahaZNm6J69eourzNhwgSMHz8+3fTly5cjIiLC7IjZdvt2GwCR2Lp1CxISrvk6jkuJiQEAugIANm3aiOvXr/s2UAZu3AgF0BEAsHbtGhw4kODbQBk4dy4XgLYAgJUr/0DevIm+DeTCihUrsHt3QQBNAQDLl/+O0FA130h27CgGoB4AIDY21rdhMnHgQDkAxvJL5ZzHjlUHYHwjhSo5V6xYkW7auXMPACgOQJ2crpw/Xx9AUQBq57x2rTkA40NtlXPevt0OgPGe7qucrubHtKzWrrCVbpXHE+hu/0mHnEIILXLevXsHsbH3n09kyco86czIGRcXh9jYdfIDSWPkvHHjBmJj1/s4S2aMnBcunEds7FYfZ8mMkfPEiROIjd1j2r24Pz/qKSEhaz3DIoQ+O2k988wzWLp0KTZs2IDixYu7vI6rLd0lSpTAlStXEBUV5a2obqtcORDHjgXgjz/uokWL9MfMq+DuXSAqyvh0bN26ZDRqpOasc/EiUKKEkfPQoSSULu3bPBk5dAioXt3IefZsEqKjfRzIQVJSElasWIF27drhzz9D0L698flcXFwSwsN9HC4Ds2dbMHiwkTMxUd1PVz/6KABjxhivcZVzvvRSAKZMUSOn4/wYHBzsdNmjjwbixx+NLbO+zpmZPn0CsXix+jlbtAjE5s3q5yxfPginThll1ts5M5sf0woPD0JKim9yuiMkJPVx6JAzMFDgzh11t3TbcpYsKXDkiHe2dGd1nnRky1mvnhUbN6r5gTqQmrNxYyvWrlU/Z69eVsyZo37O555LwUcfmbOlOzvzo67i4+NRsGBBxMXFZdo1tdnS/eyzz+LXX3/FunXrMizcABAaGorQ0NB004ODgxV/4o0CGxwchOBgNZ+WFIflh5HTd1ky45grJCRY2ZxBDk+zqjmDg4MRGBjk9LuKOQHA8fyOKr/WdckZ4HCaTVVyulqOq5jTFcdj51TO6Yg573+/97tvx80aHE95LBaLFjkB7+bM7rpuQEAAgoPdPrey1+mSMzBQl5yBCA42b0Of+t1Ljqw+RjXbnQMhBJ577jksWrQIa9asQZkyZXwdyVS6nNRA5ZwqZ3Ok4wnKdMmpMuaUiznlYk65dMmpG5Xfixwxp3/SZTx1yZlTKF+6R4wYgdmzZ2PJkiXInTs3Lly4AMD46rJwVfdzzQbd3ph1eaEyp+dYuuViTrmYUy5dcuqC42kOld+LHDGnXMxJOlN+34fp06cjLi4OrVq1QpEiRez/5s2b5+toUvErw8zBnJ7TpXTrQpeVcF1ykly6PO+65CRz8L3IP/F5l4vj6V3Kb+nW6DxvHmHpNofKOXWZtXUp3TqOJ3lOl/FkTrl0yUnmUPm9yBFzysWccumSM6dQfku3v2DpNofKOXUps45UzqnLSjhzysWc/onjSTpQ+T3TEXPKxZzkCku3InQr3bpQeTxZuuXiSrhcuownc8rFnKQDld+LHDGnXMxJOmPpVoRupZs5PadL6dZl5ZY55WJOuZhTLl1ykjlUfs90xJz+SZfx1CVnTsHSrYjU0q3HmoQuL1SVc+pYulXOqQtdygJz+ieOJ+mA70WkMl3mT11y5hQs3Yrglm7/o0uZ1SWnLnQpNczpn3QZT11ykjl0eS9iTrmYUy5dcuYULN2UZTq+OHXJrHJOXUo3V8JJZbrMn8xJJI/K75mOmNM/cTy9i6VbEbqtQOjyQlU5py7POXPKxZxyMad/4niSDlReB3HEnP6J4+ldLN2K0G33cl2oPJ7cgiyXLjl1oct4Mqd/4nj6N5XfMx0xp1zMKZcuOXMKlm5F6Fa6Vc6pY5lVOacudFkJ1yWnLnQZT+aUS5ecZA6+Z8qly3gyJ+mMpVsRLN3mYE7P6bJyy5xyMadczEkkj8rvmTrieMrF8SRXWLoVwdItjy4rjbps6dZlPHXB8ZSL4ykXx5N0oPJ7piPmlIs55dIlZ07B0q0Ilm55dCmzjlTOqctKOHPKpUtOXegynsxJOlD5PdORLjl1wfGUi+PpXSzdimDplkeX0s2VRrl0GU/mlIs5/RPHk3Sg8jqIjnQZT+YkV1i6FcMXgOd0LN265FSZLjl1oct4MqdczEk6UPk90xFzysWccumSM6dg6VaEbisQurxQVc6pS+nWhS6vIeb0T7qMJ3OSDnR5z2RO/8TxJFdYuhXB3cvl0WVlTJfSrct46kKX8WRO/8TxJB2o/J6pI46nXLqMpy45cwqWbkXoVrpVpmOZ1SUneY7jKRfHUy5dxlOXnGQOld8zHTGnXMwply45cwqWbkXoULods6mcU5cy60jlnLqs3DKnXMwpF3PKpUtO8m8qv7c7Yk7/xPH0LpZuRehQunWk8njqstLInP5Jl/FkTv/E8SQdqLwO4og5/RPH07tYuhWhW+lWOacuK2M6bpFXmS7Puy50GU/m9E8cT/+my3smc8rFnKQzlm5FsHSbQ+Wcuqw0MqdczCkXc8qlS07ybyq/tzvS5fWky3jqQpfx1CVnTsHSrQgdSrcuW2Z1eZPThS7jyZz+ieMpF8eTdKDyOogj5pSLOUlnLN2UZTqWbpVz6oIr4XJxPOXSZTyZUy5dcpI5dHlv1yWnLjiecnE8vYulWxE6bOl2pHJOXUq3LiuNzCkXc/onjqdcHE/SgcrrIDrSZTyZk1xh6VaEDqVbl5Uclm7/xPGUi+Mply7jyZykA5Xf2x0xp1zMKZcuOXMKlm5F6Fa6Vc7pSOWcXGmUS5fxZE65mFMu5iQdqPze7og5/RPHk1xh6VYES7c8uqyMMadczCkXc/onjifpQOV1EB2pPp6lSxv/9+3r0xhZpvp42uiSM6dg6VaEDqU7wGFuCQryXY774YcDcumSUxccT7l0Gc9Jk4z/X37ZtznuR5fx1CWnblR+z3TEnHKpnnPnTmDjRqBPH18nyRrVx9NGl5w5hcLVyb/oULrDw4Hhw4GEBKB4cV+nyZgupVsXXLmVS5fxZE65mjY1lp3h4b5OkjldxlOXnGQOXd7bdcmpujx5gMaNfZ0i5+H86V0s3YrQoXQDwIwZvk5wf7qUbl1WGplTLub0X6oXbp1w/jSHyu+ZOtJlPHXJqYtmzXydIGv4vHsXdy9XDF8AntNlDLnSKBfHUy5dxlOXnLoYN874f+BA3+a4Hz7v5tDl/ZM55dIlp+qOHgUWLAB69fJ1ElIRt3QrgisQ8pQvb3zKmDevPseeq4w5/ZMu46lLTl0MHQq0bg2ULOnrJOQLLF/+ic+7HGXLGv90wefduxSuJP5Fl93LdRAQAKxbp/5Y6lIWmFMuXXLqguMpn+1MwSrj8+7fVH9/t2FOUoEQAsnJyUhJSQEAlCplTK9WDbh7V/79JSUlISgoCHfv3rXfp84CAwMRFBQEi4cvFJZuRbB0y8VxlIcrt3JxPOXiePqnF14APvoIeOQRXyfJWXR572ROuXTJSe5LTEzE+fPnkZCQYJ+2eDFw7x4QFQUcPy7/PoUQKFy4ME6fPu1xUVVFREQEihQpgpCQkGzfBku3IoQwZsocMm9SFjRqBISGAhUr+jpJ5nQpNcwpF3OSyiZOBLp1Axo08HWSnIXrIEQ5h9VqxfHjxxEYGIiiRYsiJCTEKyXYarXi1q1biIyMRECA3qcPE0IgMTERly9fxvHjx1GhQoVsPyaWbsXwDc9/5MoFxMWpfdw5oE+p0SWnLjiepLKgIKBFC1+nyHl0WQdhTrl0yUnuSUxMhNVqRYkSJRAREeG1+7VarUhMTERYWJj2pRsAwsPDERwcjJMnT9ofV3boPxI5gC5fcUXyhYYCgYG+TpEz6FISmZPIf3TsaPzfrZtvc2SVLusgzCmXLjkpe3JC8fU1GWOo+DY2/8DSTSpr08b4P29en8a4L11KInPKpUtO8k9z5wI//wx07+7rJDkL15WISDcs3Qpg6SaVlSwJnD2rfunWBUuiXBxPUlmePMDjj/s6Rdbpsg7CnHLpkpNIZ9zfgIjuq2hRwIuHA2WLLuWLOeXSJSeRyooVM/5v29a3ObJKl5KoS06inOjrr79G+/btM73OlStXEBMTgzNnzpieh6VbAdzSTeQ5XVYWdSmJuuQkIs9t3Ai8/z4wa5avk+QsuqzT6ZKT/EPXrl3R0XZCjDTWr18Pi8WCXbt2ZXobd+/exZtvvolx48bZpw0ePBg9evRwul7BggUxcOBAp+uZhaVbASzdRJ5r3Bj46y/g4kVfJ8kZdCnduuQkUlnJksCYMUD+/L5OkjW6rCsxJ5H7hg0bhhUrVrjc+jxz5kzUq1cPNWvWzPQ2fvzxR0RFRaFp06b3vb8hQ4bghx9+wLVr17KdOStYuhXA0k0kR4MGQEyMr1NkTpeSyJxEpKrq1X2dIGfhuqf/EAK4fdv7/9x5r37ooYcQHR2NWWl2vbl16xYWLFiAYcOG4fr16xgwYACio6MRHh6OChUqYObMmfbrzp07F127drX//tZbb+Hbb7/FkiVLYLFYYLFYsGbNGgBAtWrVULRoUSxatMiTob0vnkhNASzdRP6jeXPgyy99nSLnYOkm8h9btwJffw2MH+/rJFmjyzqdLjnJcwkJQGSk2fcSACCv05Rbt4BcubL210FBQRg4cCBmzZqF119/HZb/zaALFixASkoK+vfvj9dffx379u3D0qVLUbBgQRw5cgR37tyx38aGDRvwuMNZLF966SXs378f8fHx9nKe32HXngYNGmD9+vUYNmxY9h5yVh6XabdMWcbSTeQ/Hn0UCAoytsqrTJcyq0tOIvLcAw8Y/3ShyzqdLjnJfwwdOhQffvgh1q5di1atWgEwdi3v1asX8uTJg1OnTqFOnTqoV68eAKB06dL2v71x4wbi4uJQtGhR+7TIyEiEh4fj3r17KFy4cLr7K1q0KHbs2GHqY2LpVgBLN5H/CAgA+vXzdYr706XM6pKTiPxPkSK+TkDkLCLC2OpsJqvVivj4eERFRSEgIMB+v+6oXLkymjRpgm+++QatWrXCkSNHsH79erz99tsAgGeeeQa9evXC9u3b0b59e/To0QNNmjQBAPsW77CwsCzfX3h4OBISEtwL6SYtjumeNm0aSpcujbCwMDRs2BB///23ryNJxdJNRKqpX9/XCYiI9PTLL0DXrsBHH/k6SdZw3dN/WCzGbt7e/pedeWzYsGFYuHAhbt68iZkzZ6JcuXJo2bIlAKBTp044efIkXnjhBZw7dw5t2rTBSy+9BAAoUKAALBYLrl+/nuX7unbtGqKjo90P6QblS/e8efMwevRojBs3Dtu3b0etWrXQoUMHXLp0ydfRTMEFHxGp4NVXgQkTgN27fZ0kc9zSTUSqeegh4Oef1T+xpw3XPUlFffr0QUBAAGbPno3vvvsOQ4cOtR/fDQDR0dEYNGgQ/vvf/+KTTz7Bl/87YU5ISAiqVq2Kffv2Od1eSEgIUlJSXN7Xnj17UKdOHfMeDDQo3ZMnT8aTTz6JIUOGoGrVqvjiiy8QERGBb775xtfRpOFKIxGpJizMKN6qnyWYy08iIs+4u+svkTdERkaib9++GDNmDM6fP4/BgwfbLxs7diyWLFmCI0eOYO/evfj1119RpUoV++UdOnTAhg0bnG6vdOnS2LVrFw4ePIgrV64gKSkJAJCQkIBt27ahffv2pj4epY/pTkxMxLZt2zBmzBj7tICAALRt2xabNm1y+Tf37t3DvXv37L/Hx8cDAJKSkuyDq5rERAAIBgAkJydB0ZjkR2yvFVVfM+RfMpsfK1cOxJ49ARleTiQbl4+kmuzOk59+GoBZswLw+uvJXPfMgZKSkiCEgNVqhdVq9dr9iv99Gm67b08MGTIEX3/9NTp16oTChQvbby84OBhjxozBiRMnEB4ejmbNmmH27Nn2y4cMGYIGDRrg+vXryJMnDwBjd/XVq1ejXr16uHXrFlauXIlWrVph0aJFKFmyJJo2bZphXqvVCiEEkpKSEBgY6HRZVl93FiHU3U5w7tw5FCtWDBs3bkTjxo3t01955RWsXbsWf/31V7q/eeuttzDexXdJzJ49GxGKfpR3504Q+vfvAgCYN+9XhIa63vWBiIicxceHYPbsymjT5hQqVLjh6zhERERKCAoKQuHChVGiRAmEhIT4Oo7XDR48GDVr1sTo0aMzvV67du0wfPhw9O7dO8PrJCYm4vTp07hw4QKSk5OdLktISMCjjz6KuLg4REVFZXgbSm/pzo4xY8Y4DW58fDxKlCiB9u3bZzoQvnTvHvDWW4k4cuQIOnRojYiIYF9HIj+XlJSEFStWoF27dggO5vxIvnW/+dE4G3xxr+ci/8TlI6mG8yS5cvfuXZw+fRqRkZFuncnbU0II3Lx5E7lz53Y6BtvbJk+ejF9//TXT/nflyhU88sgj6Y4XT+vu3bsIDw9HixYt0o2lba/q+1G6dBcsWBCBgYG4ePGi0/SLFy+6/I41AAgNDUVoaGi66cHBwcouiIKDgddeS0Js7GFERFRQNif5H5VfN+R/OD+SSjg/kmo4T5KjlJQUWCwWBAQE2L+6yxtsu2jb7ttXypYti5EjR2Z6nZiYGPz73/++720FBATAYrG4fI1l9TWn9InUQkJC8MADD2DlypX2aVarFStXrnTa3ZyIiIiIiIhIRUpv6QaA0aNHY9CgQahXrx4aNGiATz75BLdv38aQIUN8HY2IiIiIiIgoU8qX7r59++Ly5csYO3YsLly4gNq1a2PZsmUoVKiQr6MREREREREpS+FzZmtDxhgqX7oB4Nlnn8Wzzz7r6xhERERERETKsx1rnJCQgPDwcB+n0VtCQgKArB+/7YoWpZuIiIiIiIiyJjAwEHnz5sWlS5cAABEREV45m7jVakViYiLu3r3r0xOpySCEQEJCAi5duoS8efOm+45ud7B0ExERERER5TC2b3uyFW9vEELgzp07CA8P9+lXhsmUN2/eDL85K6tYuomIiIiIiHIYi8WCIkWKICYmBklJSV65z6SkJKxbtw4tWrTIEV9hFxwc7NEWbhuWbiIiIiIiohwqMDBQSnHM6n0lJycjLCwsR5RuWfTe0Z6IiIiIiIhIYSzdRERERERERCZh6SYiIiIiIiIySY4/ptv2Zebx8fE+TpK5pKQkJCQkID4+nsc/kM9xfiSVcH4klXB+JNVwniSV+Nv8aOuYts6ZkRxfum/evAkAKFGihI+TEBERERERUU5z8+ZN5MmTJ8PLLeJ+tVxzVqsV586dQ+7cuZX+rrj4+HiUKFECp0+fRlRUlK/jkJ/j/Egq4fxIKuH8SKrhPEkq8bf5UQiBmzdvomjRoggIyPjI7Ry/pTsgIADFixf3dYwsi4qK8osZlPTA+ZFUwvmRVML5kVTDeZJU4k/zY2ZbuG14IjUiIiIiIiIik7B0ExEREREREZmEpVsRoaGhGDduHEJDQ30dhYjzIymF8yOphPMjqYbzJKmE86NrOf5EakRERERERES+wi3dRERERERERCZh6SYiIiIiIiIyCUs3ERERERERkUlYuhUwbdo0lC5dGmFhYWjYsCH+/vtvX0eiHGjChAmoX78+cufOjZiYGPTo0QMHDx50us7du3cxYsQIFChQAJGRkejVqxcuXrzodJ1Tp06hS5cuiIiIQExMDF5++WUkJyd786FQDjRx4kRYLBaMGjXKPo3zI3nT2bNn8dhjj6FAgQIIDw9HjRo1sHXrVvvlQgiMHTsWRYoUQXh4ONq2bYvDhw873ca1a9cwYMAAREVFIW/evBg2bBhu3brl7YdCmktJScGbb76JMmXKIDw8HOXKlcM777wDx9MwcX4kM61btw5du3ZF0aJFYbFYsHjxYqfLZc1/u3btQvPmzREWFoYSJUpg0qRJZj80n2Hp9rF58+Zh9OjRGDduHLZv345atWqhQ4cOuHTpkq+jUQ6zdu1ajBgxAps3b8aKFSuQlJSE9u3b4/bt2/brvPDCC/jll1+wYMECrF27FufOnUPPnj3tl6ekpKBLly5ITEzExo0b8e2332LWrFkYO3asLx4S5RBbtmzBjBkzULNmTafpnB/JW65fv46mTZsiODgYS5cuxb59+/DRRx8hX7589utMmjQJU6ZMwRdffIG//voLuXLlQocOHXD37l37dQYMGIC9e/dixYoV+PXXX7Fu3ToMHz7cFw+JNPbBBx9g+vTp+Oyzz7B//3588MEHmDRpEqZOnWq/DudHMtPt27dRq1YtTJs2zeXlMua/+Ph4tG/fHqVKlcK2bdvw4Ycf4q233sKXX35p+uPzCUE+1aBBAzFixAj77ykpKaJo0aJiwoQJPkxF/uDSpUsCgFi7dq0QQogbN26I4OBgsWDBAvt19u/fLwCITZs2CSGEiI2NFQEBAeLChQv260yfPl1ERUWJe/fuefcBUI5w8+ZNUaFCBbFixQrRsmVL8fzzzwshOD+Sd/373/8WzZo1y/Byq9UqChcuLD788EP7tBs3bojQ0FAxZ84cIYQQ+/btEwDEli1b7NdZunSpsFgs4uzZs+aFpxynS5cuYujQoU7TevbsKQYMGCCE4PxI3gVALFq0yP67rPnv888/F/ny5XN6v/73v/8tKlWqZPIj8g1u6fahxMREbNu2DW3btrVPCwgIQNu2bbFp0yYfJiN/EBcXBwDInz8/AGDbtm1ISkpymh8rV66MkiVL2ufHTZs2oUaNGihUqJD9Oh06dEB8fDz27t3rxfSUU4wYMQJdunRxmu8Azo/kXT///DPq1auH3r17IyYmBnXq1MFXX31lv/z48eO4cOGC0/yYJ08eNGzY0Gl+zJs3L+rVq2e/Ttu2bREQEIC//vrLew+GtNekSROsXLkShw4dAgD8888/2LBhAzp16gSA8yP5lqz5b9OmTWjRogVCQkLs1+nQoQMOHjyI69eve+nReE+QrwP4sytXriAlJcVphREAChUqhAMHDvgoFfkDq9WKUaNGoWnTpqhevToA4MKFCwgJCUHevHmdrluoUCFcuHDBfh1X86vtMiJ3zJ07F9u3b8eWLVvSXcb5kbzp2LFjmD59OkaPHo3XXnsNW7ZswciRIxESEoJBgwbZ5ydX85vj/BgTE+N0eVBQEPLnz8/5kdzy6quvIj4+HpUrV0ZgYCBSUlLw3nvvYcCAAQDA+ZF8Stb8d+HCBZQpUybdbdguczy8Jydg6SbyQyNGjMCePXuwYcMGX0chP3X69Gk8//zzWLFiBcLCwnwdh/yc1WpFvXr18P777wMA6tSpgz179uCLL77AoEGDfJyO/M38+fPxww8/YPbs2ahWrRp27tyJUaNGoWjRopwfiTTF3ct9qGDBgggMDEx3Nt6LFy+icOHCPkpFOd2zzz6LX3/9FatXr0bx4sXt0wsXLozExETcuHHD6fqO82PhwoVdzq+2y4iyatu2bbh06RLq1q2LoKAgBAUFYe3atZgyZQqCgoJQqFAhzo/kNUWKFEHVqlWdplWpUgWnTp0CkDo/ZfZ+Xbhw4XQnQU1OTsa1a9c4P5JbXn75Zbz66qvo168fatSogccffxwvvPACJkyYAIDzI/mWrPnP397DWbp9KCQkBA888ABWrlxpn2a1WrFy5Uo0btzYh8koJxJC4Nlnn8WiRYuwatWqdLv0PPDAAwgODnaaHw8ePIhTp07Z58fGjRtj9+7dTgvSFStWICoqKt0KK1Fm2rRpg927d2Pnzp32f/Xq1cOAAQPsP3N+JG9p2rRpuq9QPHToEEqVKgUAKFOmDAoXLuw0P8bHx+Ovv/5ymh9v3LiBbdu22a+zatUqWK1WNGzY0AuPgnKKhIQEBAQ4r6IHBgbCarUC4PxIviVr/mvcuDHWrVuHpKQk+3VWrFiBSpUq5bhdywHw7OW+NnfuXBEaGipmzZol9u3bJ4YPHy7y5s3rdDZeIhmeeeYZkSdPHrFmzRpx/vx5+7+EhAT7dZ5++mlRsmRJsWrVKrF161bRuHFj0bhxY/vlycnJonr16qJ9+/Zi586dYtmyZSI6OlqMGTPGFw+JchjHs5cLwfmRvOfvv/8WQUFB4r333hOHDx8WP/zwg4iIiBD//e9/7deZOHGiyJs3r1iyZInYtWuX6N69uyhTpoy4c+eO/TodO3YUderUEX/99ZfYsGGDqFChgujfv78vHhJpbNCgQaJYsWLi119/FcePHxc//fSTKFiwoHjllVfs1+H8SGa6efOm2LFjh9ixY4cAICZPnix27NghTp48KYSQM//duHFDFCpUSDz++ONiz549Yu7cuSIiIkLMmDHD64/XG1i6FTB16lRRsmRJERISIho0aCA2b97s60iUAwFw+W/mzJn269y5c0f861//Evny5RMRERHi4YcfFufPn3e6nRMnTohOnTqJ8PBwUbBgQfHiiy+KpKQkLz8ayonSlm7Oj+RNv/zyi6hevboIDQ0VlStXFl9++aXT5VarVbz55puiUKFCIjQ0VLRp00YcPHjQ6TpXr14V/fv3F5GRkSIqKkoMGTJE3Lx505sPg3KA+Ph48fzzz4uSJUuKsLAwUbZsWfH66687fbUS50cy0+rVq12uMw4aNEgIIW/+++eff0SzZs1EaGioKFasmJg4caK3HqLXWYQQwjfb2ImIiIiIiIhyNh7TTURERERERGQSlm4iIiIiIiIik7B0ExEREREREZmEpZuIiIiIiIjIJCzdRERERERERCZh6SYiIiIiIiIyCUs3ERERERERkUlYuomIiIiIiIhMwtJNRESkmcGDB6NHjx4+u//HH38c77//vpTbSkxMROnSpbF161Ypt0dERKQaixBC+DoEERERGSwWS6aXjxs3Di+88AKEEMibN693Qjn4559/0Lp1a5w8eRKRkZFSbvOzzz7DokWLsHLlSim3R0REpBKWbiIiIoVcuHDB/vO8efMwduxYHDx40D4tMjJSWtnNjieeeAJBQUH44osvpN3m9evXUbhwYWzfvh3VqlWTdrtEREQq4O7lRERECilcuLD9X548eWCxWJymRUZGptu9vFWrVnjuuecwatQo5MuXD4UKFcJXX32F27dvY8iQIcidOzfKly+PpUuXOt3Xnj170KlTJ0RGRqJQoUJ4/PHHceXKlQyzpaSk4Mcff0TXrl2dplssFixevNhpWt68eTFr1iwAxi7kzz77LIoUKYKwsDCUKlUKEyZMsF83X758aNq0KebOnZu9QSMiIlIYSzcREVEO8O2336JgwYL4+++/8dxzz+GZZ55B79690aRJE2zfvh3t27fH448/joSEBADAjRs30Lp1a9SpUwdbt27FsmXLcPHiRfTp0yfD+9i1axfi4uJQr149t7JNmTIFP//8M+bPn4+DBw/ihx9+QOnSpZ2u06BBA6xfv97tx01ERKS6IF8HICIiIs/VqlULb7zxBgBgzJgxmDhxIgoWLIgnn3wSADB27FhMnz4du3btQqNGjfDZZ5+hTp06TidE++abb1CiRAkcOnQIFStWTHcfJ0+eRGBgIGJiYtzKdurUKVSoUAHNmjWDxWJBqVKl0l2naNGiOHnypFu3S0REpANu6SYiIsoBatasaf85MDAQBQoUQI0aNezTChUqBAC4dOkSAOOEaKtXr7YfIx4ZGYnKlSsDAI4ePeryPu7cuYPQ0ND7nuwtrcGDB2Pnzp2oVKkSRo4cieXLl6e7Tnh4uH0rPBERUU7CLd1EREQ5QHBwsNPvFovFaZqtKFutVgDArVu30LVrV3zwwQfpbqtIkSIu76NgwYJISEhAYmIiQkJCMs2TkpJi/7lu3bo4fvw4li5dij/++AN9+vRB27Zt8eOPP9qvc+3aNURHR9/nURIREemHpZuIiMgP1a1bFwsXLkTp0qURFJS11YHatWsDAPbt22f/2ebixYv2ny9fvoxbt245XR4VFYW+ffuib9++eOSRR9CxY0dcu3YN+fPnB2Cc1K1OnTrZf0BERESK4u7lREREfmjEiBG4du0a+vfvjy1btuDo0aP4/fffMWTIEKet1I6io6NRt25dbNiwId1lH3/8MTZv3oz9+/fjmWeeAQAcPHgQV69exeTJkzFnzhwcOHAAhw4dwoIFC1C4cGGn7xlfv3492rdvb8pjJSIi8iWWbiIiIj9UtGhR/Pnnn0hJSUH79u1Ro0YNjBo1Cnnz5kVAQMarB0888QR++OGHdNM7duyIfv36oV69eihevDhGjBiBadOmYc+ePcidOzcmTZqEevXqoX79+jhx4gRiY2Pt97Np0ybExcXhkUceMe3xEhER+YpFCCF8HYKIiIj0cOfOHVSqVAnz5s1D48aNARjHiy9atMjpu8Pd0bdvX9SqVQuvvfaaxKRERERq4JZuIiIiyrLw8HB89913uHLlipTbS0xMRI0aNfDCCy9IuT0iIiLVcEs3ERERecTTLd1EREQ5Gc9eTkRERB7h5/dEREQZ4+7lRERERERERCZh6SYiIiIiIiIyCUs3ERERERERkUlYuomIiIiIiIhMwtJNREREREREZBKWbiIiIiIiIiKTsHQTERERERERmYSlm4iIiIiIiMgkLN1EREREREREJmHpJiIiIiIiIjIJSzcRERERERGRSVi6iYiIiIiIiEzC0k1ERERERERkEpZuIiIiIiIiIpOwdBMREWWiVatWaNWqlf33EydOwGKxYNasWVLvp3Tp0hg8eLDU2yQ1mDXPEBGRHli6iYhIilmzZsFisdj/BQUFoVixYhg8eDDOnj2b7vqtWrVyur7jvwMHDmR6X2mvHxUVhZYtW+K3334z6+FJsXHjRrz11lu4ceOGr6PYpX3ewsLCULFiRTz77LO4ePGir+Mp66233spw/nX85/iBDRER+acgXwcgIqKc5e2330aZMmVw9+5dbN68GbNmzcKGDRuwZ88ehIWFOV23ePHimDBhQrrbKFq06H3vp127dhg4cCCEEDh58iSmT5+Orl27YunSpejQoYO0x5NWqVKlcOfOHQQHB7v9txs3bsT48eMxePBg5M2b1+mygwcPIiDAd5+FOz5vGzZswPTp0xEbG4s9e/YgIiLCZ7lU1bNnT5QvX97++61bt/DMM8/g4YcfRs+ePe3TCxUq5NE8Q0RE+mPpJiIiqTp16oR69eoBAJ544gkULFgQH3zwAX7++Wf06dPH6bp58uTBY489lq37qVixotPf9urVC1WrVsWnn35qaum2bQ2WLTQ0VPptuiPt81agQAFMnjwZS5YsQf/+/X2aLTNWqxWJiYmmPCeZqVmzJmrWrGn//cqVK3jmmWdQs2ZNl/O0t/MREZE6uHs5ERGZqnnz5gCAo0ePmno/VapUQcGCBdPdz5IlS9ClSxcULVoUoaGhKFeuHN555x2kpKSku40vv/wS5cqVQ3h4OBo0aID169enu46r43N37dqFwYMHo2zZsggLC0PhwoUxdOhQXL161X6dt956Cy+//DIAoEyZMvbdj0+cOAHA9THdx44dQ+/evZE/f35ERESgUaNG6XahX7NmDSwWC+bPn4/33nsPxYsXR1hYGNq0aYMjR464M4ROWrduDQA4fvw4ACA5ORnvvPMOypUrh9DQUJQuXRqvvfYa7t27Z/+b0aNHo0CBAhBC2Kc999xzsFgsmDJlin3axYsXYbFYMH36dPu0e/fuYdy4cShfvjxCQ0NRokQJvPLKK063Dxgfejz77LP44YcfUK1aNYSGhmLZsmUuH8NDDz2EsmXLuryscePG9g8ZAGDFihVo1qwZ8ubNi8jISFSqVAmvvfZaVocrU67mmcGDByMyMhKnTp3CQw89hMjISBQrVgzTpk0DAOzevRutW7dGrly5UKpUKcyePTvd7d64cQOjRo1CiRIlEBoaivLly+ODDz6A1WqVkpuIiOTglm4iIjKVrVTmy5cv3WUpKSm4cuWK07SwsDBERka6fT9xcXG4fv06ypUr5zR91qxZiIyMxOjRoxEZGYlVq1Zh7NixiI+Px4cffmi/3tdff42nnnoKTZo0wahRo3Ds2DF069YN+fPnR4kSJTK97xUrVuDYsWMYMmQIChcujL179+LLL7/E3r17sXnzZlgsFvTs2ROHDh3CnDlz8PHHH6NgwYIAgOjoaJe3efHiRTRp0gQJCQkYOXIkChQogG+//RbdunXDjz/+iIcfftjp+hMnTkRAQABeeuklxMXFYdKkSRgwYAD++usvt8cSSP2QpECBAgCMrd/ffvstHnnkEbz44ov466+/MGHCBOzfvx+LFi0CYHzA8vHHH2Pv3r2oXr06AGD9+vUICAjA+vXrMXLkSPs0AGjRogUAY2t1t27dsGHDBgwfPhxVqlTB7t278fHHH+PQoUNYvHixU7ZVq1Zh/vz5ePbZZ1GwYEGULl3a5WPo27cvBg4ciC1btqB+/fr26SdPnsTmzZvtz//evXvx0EMPoWbNmnj77bcRGhqKI0eO4M8//8zW2GVVSkoKOnXqhBYtWmDSpEn44Ycf8OyzzyJXrlx4/fXXMWDAAPTs2RNffPEFBg4ciMaNG6NMmTIAgISEBLRs2RJnz57FU089hZIlS2Ljxo0YM2YMzp8/j08++cTU7ERE5AZBREQkwcyZMwUA8ccff4jLly+L06dPix9//FFER0eL0NBQcfr0aafrt2zZUgBI92/QoEH3vS8AYtiwYeLy5cvi0qVLYuvWraJjx44CgPjwww+drpuQkJDu75966ikREREh7t69K4QQIjExUcTExIjatWuLe/fu2a/35ZdfCgCiZcuW9mnHjx8XAMTMmTMzvY85c+YIAGLdunX2aR9++KEAII4fP57u+qVKlXJ67KNGjRIAxPr16+3Tbt68KcqUKSNKly4tUlJShBBCrF69WgAQVapUccr+6aefCgBi9+7d6e7Lkavnbe7cuaJAgQIiPDxcnDlzRuzcuVMAEE888YTT37700ksCgFi1apUQQohLly4JAOLzzz8XQghx48YNERAQIHr37i0KFSpk/7uRI0eK/PnzC6vVKoQQ4vvvvxcBAQFOj1UIIb744gsBQPz555/2aQBEQECA2Lt3b6aPSwgh4uLiRGhoqHjxxRedpk+aNElYLBZx8uRJIYQQH3/8sQAgLl++fN/bzMjly5cFADFu3Lh0l7maZwYNGiQAiPfff98+7fr16yI8PFxYLBYxd+5c+/QDBw6ku+133nlH5MqVSxw6dMjpvl599VURGBgoTp06le3HQkREcnH3ciIikqpt27aIjo5GiRIl8MgjjyBXrlz4+eefUbx48XTXLV26NFasWOH075VXXsnS/Xz99deIjo5GTEwM6tWrh5UrV+KVV17B6NGjna4XHh5u//nmzZu4cuUKmjdvjoSEBPtZ0rdu3YpLly7h6aefRkhIiP36gwcPRp48ee6bxfE+7t69iytXrqBRo0YAgO3bt2fp8aQVGxuLBg0aoFmzZvZpkZGRGD58OE6cOIF9+/Y5XX/IkCFO2W279R87dixL9+f4vPXr1w+RkZFYtGgRihUrhtjYWABIN7YvvvgiANh3eY+OjkblypWxbt06AMCff/6JwMBAvPzyy7h48SIOHz4MwNjS3axZM1gsFgDAggULUKVKFVSuXBlXrlyx/7Pt4r569Wqn+23ZsiWqVq1638cUFRWFTp06Yf78+U67vM+bNw+NGjVCyZIlgf9n777jo6jzP46/N5sllRB67yKIVMESekcQlQMVsYGnZzms/GzoCeKpWM5yKop6KoeHIngKqLRI5wClF+kdaaGFAAlhk53fH0mWTcKGlNnsTPJ6Ph48+O7s7Ox7Z76zmc9Ok7wXtZs2bVqxH5p9//33e9uxsbFq3LixoqKisl3/oHHjxoqNjc22LKdMmaKOHTuqfPny2eZZjx49lJ6e7l0GAIDg4/ByAICpxo4dq8svv1ynTp3SF198oUWLFvm9SFhUVJR69OhRqPe5+eab9cgjj+j8+fNasWKFXnvtNSUnJ+e6Avjvv/+uv/3tb5o3b56SkpKyPXfq1ClJGYcbS1KjRo2yPe9yufyeE+zrxIkTGj16tCZNmqSEhISLvkdB7d27V9dee22u4VdccYX3+axDuCV5C8gsWYfznzx5Ml/vl7XcQkNDVbVqVTVu3Ng7L/fu3auQkJBsV+uWpGrVqik2NtY7/6SMYj+rSF+8eLHatm2rtm3bqkKFClq8eLGqVq2qdevW6Y477vC+Zvv27dq8ebPfQ+1zztOsQ6zzY9CgQZo6daqWLVumdu3aaefOnVq1alW2w68HDRqkf/3rX7r//vv13HPPqXv37howYIBuueWWgF5RPjw8PNdnLleunGrVquX9QcJ3uO+y3L59u9avX5/veQYACB6KbgCAqa655hrvBar69++vDh066I477tDWrVsLda62P7Vq1fIW7H379lWlSpX0yCOPqGvXrt5bNiUmJqpz586KiYnRyy+/rIYNGyo8PFyrV6/Ws88+a9pezdtuu01Lly7V008/rVatWik6Oloej0fXX399se05dTqdFx3uu4c3L77LzZ+cheDFdOjQQZ999pl27dqlxYsXq2PHjnI4HOrQoYMWL16sGjVqyOPxePfESxnndDdv3lzvvPPORaeZ85x63yMLLuXGG29UZGSkJk+erHbt2mny5MkKCQnRrbfemm16ixYt0vz58/Xzzz9r1qxZ+vbbb9WtWzfNmTPH77wtKn/Tzc+y9Hg86tmzp98jQy6//PKiBwQAmIKiGwAQME6nU2PGjFHXrl314Ycf6rnnngvYez344IN699139be//U1/+tOf5HA4tGDBAh0/flzff/+996Jd0oUrcmepW7eupIy9h1mHNEuS2+3W7t271bJlS7/ve/LkSc2dO1ejR4/WyJEjvcOzDqX2lZ+i1TfT1q1bcw3POiQ+K3NxqFu3rjwej7Zv3+7d0y5lXOwtMTExW5asYjo+Pl4rVqzwLvNOnTrp448/Vo0aNRQVFaU2bdp4X9OwYUOtW7dO3bt3L9A8yo+oqCj169dPU6ZM0TvvvKNvv/1WHTt2zHUv+JCQEHXv3l3du3fXO++8o9dee00vvPCC5s+fX+ijMQKpYcOGOnPmjCWzAQCy45xuAEBAdenSRddcc43ee+89nTt3LmDvExoaqv/7v//T5s2bNW3aNEkX9hj67iE8f/68Pvroo2yvbdu2rSpXrqxx48bp/Pnz3uHjx49XYmJinu97sfeQdNGrR0dFRUnSJacpZey9/+2337Rs2TLvsLNnz+rTTz9VvXr18nVOs1n69u0rKfdnytozfcMNN3iH1a9fXzVr1tS7774rt9ut9u3bS8ooxnfu3KnvvvtO1113nUJDL/zuf9ttt+nAgQP67LPPcr13SkqKzp49W6T8gwYN0sGDB/Wvf/1L69at06BBg7I9f+LEiVyvadWqlSTlumWZVdx2221atmyZZs+eneu5xMREpaWlBSEVAOBi2NMNAAi4p59+WrfeeqvGjx+vhx56KGDvM3ToUI0cOVJvvPGG+vfvr3bt2ql8+fIaMmSIHnvsMTkcDn311Ve5CmSXy6VXXnlFDz74oLp166ZBgwZp9+7d+vLLLy95TndMTIz3lk9ut1s1a9bUnDlzcu1Nl+Tdu/vCCy/o9ttvl8vl0o033ugtxn0999xz+uabb9SnTx899thjqlChgv79739r9+7d+u9//xvQc41zatmypYYMGaJPP/3Ue8j+b7/9pn//+9/q37+/unbtmm38jh07atKkSWrevLn33PKrrrpKUVFR2rZtW7bzuSXp7rvv1uTJk/XQQw9p/vz5at++vdLT07VlyxZNnjxZs2fPvuSh73np27evypYtq6eeekpOp1MDBw7M9vzLL7+sRYsW6YYbblDdunWVkJCgjz76SLVq1cp2ITsrefrppzV9+nT169dPQ4cOVZs2bXT27Flt2LBB3333nfbs2eO9LR0AILjY0w0ACLgBAwaoYcOG+sc//qH09PSAvU9ERIQeeeQRLV++XAsWLFDFihX1008/qXr16vrb3/6mf/zjH+rZs6fefPPNXK994IEH9NFHH+ngwYN6+umntXjxYk2fPv2S9+iWpK+//lq9e/fW2LFjNWLECLlcLs2cOTPXeFdffbX+/ve/a926dRo6dKgGDx6so0ePXnSaVatW1dKlS9WzZ0998MEHGjFihMqUKaMff/wx1z26i8O//vUvjR49WitWrNATTzyhefPmacSIEZo0aVKucbMOMfctWENDQxUXF5ft+SwhISGaOnWqXn/9dW3YsEFPPfWU970ef/zxIp+fHB4erptuukmnT59W165dVaVKlWzP33TTTapTp46++OILDRs2TGPHjlWnTp00b968fF29PhgiIyO1cOFCPf3001qwYIEef/xxvf7669q+fbtGjx5t2dwAUBo5jPxeYQUAAAAAABQIe7oBAAAAAAgQim4AAAAAAAKEohsAAAAAgACh6AYAAAAAIEAougEAAAAACBCKbgAAAAAAAiQ02AECzePx6ODBgypbtqwcDkew4wAAAAAASgDDMHT69GnVqFFDISH+92eX+KL74MGDql27drBjAAAAAABKoP3796tWrVp+ny/xRXfZsmUlZcyImJiYIKfxz+12a86cOerVq5dcLlew46CUoz/CSuiPsBL6I6yGPgkrKW39MSkpSbVr1/bWnP6U+KI765DymJgYyxfdkZGRiomJKRUdFNZGf4SV0B9hJfRHWA19ElZSWvvjpU5j5kJqAAAAAAAECEU3AAAAAAABQtENAAAAAECAUHQDAAAAABAgFN0AAAAAAAQIRTcAAAAAAAFC0Q0AAAAAQIAEtehetGiRbrzxRtWoUUMOh0NTp07N9rxhGBo5cqSqV6+uiIgI9ejRQ9u3bw9OWAAAAAAACiioRffZs2fVsmVLjR079qLPv/nmm3r//fc1btw4/frrr4qKilLv3r117ty5Yk4KAAAAAEDBhQbzzfv06aM+ffpc9DnDMPTee+/pb3/7m26++WZJ0oQJE1S1alVNnTpVt99+e3FGBQAAAACgwCx7Tvfu3bt1+PBh9ejRwzusXLlyuvbaa7Vs2bIgJgucsnv2KOSzz6SDB4MdJW+rVkmffiodPRrsJHlbvlz6/HPp5MlgJ8nbokXSl19KSUnBTpK3X36RJkyQzp4NdpK8zZghTZwoWfmIGMOQpk2TJk2S3O5gp/EvPV367ruMf+npwU7jn8cjff+9NHmylJYW7DT+paVlZPz++4zMVpWaKn3zjfTjjxl91apSUqSvvpJmzQp2krydOSONHy/NmxfsJHlLTJS++EJasiTYSfJ2/Lj02WfSb78FO0nejhzJ2FZauzbYSfJ29GhGzlWrgp0kb4cOSZ98Im3YEOwkedu3Txo3Ttq6NdhJ8rZzZ0bOXbuCnaTUCOqe7rwcPnxYklS1atVsw6tWrep97mJSU1OVmprqfZyUWci43W65Lbxx63a71fmpp+RMS5Nn+nSl//hjsCNdXFqaXG3bSpI88+crfcKEIAfy48wZueLiJEnpa9bI8+67QQ7kx9GjcnXuLElK37ZNnpdfDnKgDFnrined2bNHrp49JUnpBw7I89RTwYqWt/Xr5brhBklSemKiPA88EORAF+f43/8U2r+/JCltwgQZFj1yxzFzpkJvvVWSlDZ1qoy+fYOSI1d/zMExb55CBw6UJKV9+62MP/2p2LIVhOOHHxQ6aJAkKW3mTBnduwc50cU5/vMfhd5/vyQpbelSGZnf+VYTMm6cnMOHS5LcGzZIjRsXy/teqj/mFPL223K+9FLGa3bvlmrWDFS0Ign5+9/lfOcdSZL7yBGpfPkgJ7o45zPPKOSLLyRJ7qQkKTw8yIkuzvnQQwrJvFaROzVVcjgC9l4F7ZO+nI8/rpBvvsl4fXKyFGrN0sA5dKhC5syRERamtNOngx3HL+cttyhkxQoZVaoo7Y8/gh3Hr9Drr5djxw4Zl1+utI0bTZ12UfqjHeX3c1pzzSqCMWPGaPTo0bmGz5kzR5GRkUFIlH83Z+6hSVm7Vr/MmBHkNBfnTE1Vv8z2iQ0b9D+L5gw7eVLXZ7YPrV+vVRbNGXXggLKO5di3Zo3WWyxnfHy8JCl2xw51zhy267fftMliObNUWrdO7TPb25Yu1bZatYKax5/qy5frmsz2pkWLtDsmJqh5/Kk9b56uymyvnzdP+4Oa5kJ/zKnm4sXKKgs3LligvWFhxReqAOouWKBWme21v/yiAz4/EFvJZYsX68rM9oqZM5WQkBDUPP40WbZMWWX28p9+0omdO4v1/f31x5yarVyphpntxdOm6XS9egHLVBSt16xRncz2/GnTlFKlSlDz+HPt+vWqltmOnz5d7ujooObxp/O6dYrNbM/4+WcpJPAHl+a3T/pqv369KmW2Z/34ozwW/f7ssXatoiQ5UlM1w6LbIJJ04+rVkiRHQoKlc968Y4ckybFtW8ByFqY/2lFycnK+xrNs0V2tWsZX6pEjR1S9enXv8CNHjqhVq1Z+XzdixAgNz/zlW8rY0127dm316tVLMRbdsJWy/0oSGRWlvkHao3RJPh2rQoUK1s3pczREjRo1VNWqObdt8zbr1KmjWhbJ6Xa7FR8fr549e8rlcsnhc9hZgwYNVM8iOXNy+OzxuPzyy3WZVXOeP+9tX3nllbrCqjmPHfO2W7RooeZB3NPt2x9zcvjs9WjWvLmutOj8DDlwwNtu1aqVWlo15+bN3vbVV18t4/rr8xg7eEJ+/dXbjouLk9GuXbG876X6Y04hv/zibXfs2FFq3jyQ8QrN+d//ettdu3aV6tYNYhr/nJ9+6m337NnTsnvkQ0eN8rb79u0b0KK7oH3Sl/Ptt73t66+/XoqIMDueKUJ9dpxZdttTksPniAYr5/Rlds6i9Ec7Ssrn6aGWLbrr16+vatWqae7cud4iOykpSb/++qsefvhhv68LCwtT2EV+pXO5XLZZ8A7Jull9coU4HAqxQ86QEFvkdIaEyGmxnN71xudwM6fTabmcXuQ0l0/O0NDQbP01GPx+j/vmdDqDntMvp9PbtML89Iuc+ZLv7QqfYsvlcll3fpLTXD7Fl8vlKpY93YXa1s2Z06rz04dlt5FzKO057VR7FUV+P2NQi+4zZ85oR+bhDVLGxdPWrl2rChUqqE6dOnriiSf0yiuvqFGjRqpfv75efPFF1ahRQ/0zz4UEAAAAAMDKglp0r1y5MuMQpkxZh4UPGTJE48eP1zPPPKOzZ8/qgQceUGJiojp06KBZs2Yp3KIXzQAAAAAAwFdQi+4uXbrIyON2JA6HQy+//LJetsgVnQEAAAAAKAjL3qcbFmXle7b68s1p5czkNBc5zUVOc5HTXOQ0l11y+iKnueySE7Ahim4AAAAAAAKEohsAAAAAgACh6AYAAAAAIEAougEAAAAACBCKbgAAAAAAAoSiGwAAAACAAKHoRsHY5XYSdrn1CTnNRU5zkdNc5DQXOc1ll5y+yGkuu+QEbIiiGwAAAACAAKHoBgAAAAAgQCi6AQAAAAAIEIpuAAAAAAAChKIbAAAAAIAAoei2IitfPdIuVzclp7nIaS5ymouc5iKnuchpLitn82XH+WnlnHbBPIQfFN0AAACwHwocADZB0W1FDkewE+SPXXICAICSwS7bHuQsnZif8IOiGwAAAACAAKHoBgAAAAAgQCi6AQAAAAAIEIpuAAAAAAAChKIbBWOXK4Xa5RYY5DQXOc1FTnOR01zkNJddctqRXeanXXICNkTRDQAAAPuhSARgExTdAAAAAAAECEU3AAAAAAABQtENAAAAAECAUHQDAAAAABAgFN0AAAAAAAQIRbdV2OUKnHbMaeXM5DQXOc1FTnOR01zkNJddctqRXeanlXM6HMFOABQJRTcAAADsx8pFIszFsobNUXQDAAAAABAgFN0AAAAAAAQIRTcAAAAAAAFC0Q0AAAAAQIBQdAMAAAAAECAU3VZhl6sy2jGnlTOT01zkNBc5zUVOc5HTXHbMaRd2yWzlnL63DLNyTsAPim4AAADYD8VX6cGyhs1RdAMAAAAAECAU3QAAAAAABAhFNwAAAAAAAULRDQAAAABAgFB0AwAAAAAQIBTdVmGXqzLaMaeVM5PTXOQ0FznNRU5zkdNcdsxpF3bJbOWc3DIMNkfRDQAAAPuh+Co9WNawOYpuAAAAAAAChKIbAAAAAIAAoegGAAAAACBALF10p6en68UXX1T9+vUVERGhhg0b6u9//7sMzusAAAAAANhAaLAD5OWNN97Qxx9/rH//+9+68sortXLlSt17770qV66cHnvssWDHCxwr/6hgx6ubkrPoyGkucpqLnOYip7nIaS4rZ/Nlx/lp5Zx2uXq5lbMhqCxddC9dulQ333yzbrjhBklSvXr19M033+i3334LcrIAYCUFAAAAgBLH0oeXt2vXTnPnztW2bdskSevWrdOSJUvUp0+fICcLMN9f86zMLjkBAEDJY+UdFnbZRrJLTisva192mZ8odpbe0/3cc88pKSlJTZo0kdPpVHp6ul599VXdeeedfl+Tmpqq1NRU7+OkpCRJktvtltvtDnjmwnK73XJltg1JaVbN6pPTYxhKt0NOj4ecBZS1rmT970hL835ZpHs88lgkZ07Zcqank7OIQtLT5cxsBzNnzv6YkyM93XbzMy09XYYdcqalWTenxxOUnJfqjzkFK2dBOT0e754Yt9stWTWnYdgiZ6hhKKv8CnTOgvZJX7aZn1L2+enxBDOOX7lyWpTLp212zqL0RzvK7+e0dNE9efJkTZw4UV9//bWuvPJKrV27Vk888YRq1KihIUOGXPQ1Y8aM0ejRo3MNnzNnjiIjIwMdudAc6em6KbOdfPasfpkxI6h5/HGdPq2+me0TJ07ofxbNGXHkiHpltg8fOaIVFs0Zs2ePuma2//jjD62xWM74+HhJUoVNm9Qxc9jePXu0wWI5s1RduVLXZbZ37NypLRbNWXPtWrXNbG/ZskU7LJqz7saNapXZ3rBxo/YGOWdWf8yp9rp1uiqzvWnTJu2y6PxssGmTmme2169bp/0WzXn5tm26IrO9evVqHSpTJqh5/Gm6a5caZbZ//fVXHTt3rljf319/zKnlvn2ql9n+3//+p8SEhIBlKoo2hw6pVmZ70aJFOrNzZ1Dz+HNdQoKqZrbnzp2r1AoVgprHn85JSYrNbM+ePVvpYWEBf8/89klf7U+cUCWf17ujo80NZZIeycmKymzPmDFDcjrzHD9YbvT5sWWGRb/jJelmn3agchamP9pRcnJyvsazdNH99NNP67nnntPtt98uSWrevLn27t2rMWPG+C26R4wYoeHDh3sfJyUlqXbt2urVq5diYmKKJXdhuFNSvO3IqCj17ds3j7GD6MQJb7NChQrWzblnj7dZrWpV6+Zcv97brFWrlqpbJKfb7VZ8fLx69uwpl8slR7ly3ufq1qun2hbJmZPvQV2XNWyoBlbNmXkEjiQ1adJEl1s0Z8iBA95282bNdGWQcubsjzk5jh3ztps2baomVp2fPkVMi5Yt1dyqOdes8bavuuoqGVbNuWiRt33ttdfK6NatWN73Uv0xp5CffvK227dvL6Nt2zzGDh7nxInedqdOnaTGjYOYxj/nuHHedvfu3aXq1YOYxr/QUaO87d69e0sB3PFT0D7py/n22952z549pfLlzY5nilCf+de3b1/LFt0On8PLLbvtmYPZOYvSH+0oyWebLi+WLrqTk5MVEpL9tHOn0ylPHoeUhIWFKewivya6XC5rL/i0NG/TIVk3q0+uEIdDIXbIGRJCzkLyrjehF74qnCEhclosp5dvTqeTnEXls1FjhZx+v8ctltMvn5yhTme29d9SfHOGhlo3p8/2QTBy5nu7Isg5880np8vlsm5On6KGnNkValvXLvPTh8vlsmzR7cuy2/I5BCqn5Wsvk+T3M1q66L7xxhv16quvqk6dOrryyiu1Zs0avfPOO/rzn/8c7Gjms8sFIuyY08qZyWkucpqLnOYip7nIaS475rQLu2S2ck673DIM8MPSRfcHH3ygF198UX/961+VkJCgGjVq6MEHH9TIkSODHQ0AAAAAgEuydNFdtmxZvffee3rvvfeCHQUAAABWwh7P0oNlDZuz9H26AQAAAACwM4puAAAAAAAChKIbAAAAAIAAoegGAAAAACBAKLqtwi4XiLBjTitnJqe5yGkucpqLnOYip7nsmNMu7JLZyjm5ZRhsjqIbAAAAAIAAoegGAACA/bDHs/RgWcPmKLoBAAAAAAgQim4AAAAAAAKEohsAAAAAgACh6AYAAABgXb5XLwdsiKLbKuxygQg75rRyZnKai5zmIqe5yGkucprLjjntwi6ZyQkEDEU3AAAAAAABQtENAAAA+2GPZ+nBsobNUXQDAAAAABAgFN0AAAAAAAQIRTcAAAAAAAFC0W1FVj5vxY5XNyVn0ZHTXOQ0FznNRU5zkdNcVs7my47z08o5fW8ZZuWcVs6GoKLotgpWUgAAAAAocSi6rcj31zwrs0tOAABQ8lh5h4VdtpHsktPKy9qXXeYnih1FNwAAAAAAAULRDQAAAABAgFB0AwAAAAAQIBTdAAAAAAAECEW3FVn5YhF2ubUEOc1FTnOR01zkNBc5zUVOc1k5my87zk8r5+SWYbA5im6rYCUFAAAAgBKHotuKuN0AAABA3qy8w4JtOXNZeVn7YrnDD4puAAAAAAAChKIbAAAAAIAAoegGAAAAACBAKLoBAAAAWBfnSsPmKLqtwi4XiLDLrSXIaS5ymouc5iKnuchpLnKay8rZ/LFyZrssd192yQn4oOgGAAAAACBAKLoBAABgP+zxLD1Y1rA5im4AAAAAAAIktKAvSExM1A8//KDFixdr7969Sk5OVuXKldW6dWv17t1b7dq1C0ROAAAAAABsJ997ug8ePKj7779f1atX1yuvvKKUlBS1atVK3bt3V61atTR//nz17NlTTZs21bfffhvIzAAAAAAA2EK+93S3bt1aQ4YM0apVq9S0adOLjpOSkqKpU6fqvffe0/79+/XUU0+ZFhQAAABAKcQtw2Bz+S66N23apIoVK+Y5TkREhAYPHqzBgwfr+PHjRQ5XqtjlAhF2ubUEOc1FTnOR01zkNBc5zUVOc1k5mz9WzmyX5e7LLjkBH/k+vLxixYpKTU3N94QvVaADAAAAAFDSFehCauXKlVNcXJy6du2qrl276rrrrpPL5QpUNgAAAODi2ONZerCsYXMFumXYuHHjVLduXX3xxRfq3LmzYmNj1bNnT40ZM0bLly9Xenp6oHICAAAAAGA7BSq6hw4dqvHjx2vPnj3asWOHPvjgA9WoUUPjxo1T+/btVb58ed1www2BygoAAAAAgK0U+D7dWRo0aKAGDRroz3/+s3bv3q3PP/9cH3zwgWbNmmVmPgAAAAClGVcvh80Vqujet2+f5s+frwULFmjBggU6duyYrrvuOj311FPq3Lmz2RkBAAAAALClAhXdf/7zn7VgwQKdOHFC7du3V8eOHfXAAw/o6quvVmhooXeaQ7LPBSLscmsJcpqLnOYip7nIaS5ymouc5rJyNn+snNkuy92XXXICPgp0Tvf48ePl8Xj0wgsv6O9//7ueffZZxcXFBbTgPnDggO666y5VrFhRERERat68uVauXBmw9wMAAAAAwCwFqpY3b97sPaz87bffVmpqqjp06KDOnTurS5cuuuqqqxQSUqA6Pk8nT55U+/bt1bVrV82cOVOVK1fW9u3bVb58edPeAwAAADbEHs/Sg2UNmytQ0d24cWM1btxYDz30kCRp06ZNWrhwoebPn69//OMfOnfunDp06KCffvrJlHBvvPGGateurS+//NI7rH79+qZMGwAAAACAQCvSbummTZtqwIABGjBggG6++WYZhqGZM2ealU3Tp09X27Ztdeutt6pKlSpq3bq1PvvsM9OmDwAAAABAIBX4ZOyEhAQtWLDAe5j5tm3bVKZMGV1zzTV68skn1bVrV9PC7dq1Sx9//LGGDx+u559/XitWrNBjjz2mMmXKaMiQIRd9TWpqqlJTU72Pk5KSJElut1tut9u0bGZzu91yZbYNSWlWzeqT02MYSidnkTjS0rwrocfjsUzOrHUl63+r5szJN2e6xyOPVXOmp1/ImZ5u2Zwh6elyZraDmTNnf8zJKjkvxY4509LSZFg1p8cTlJyX6o85OT0e7x4OK89P35xut1uyak7DsEXOUMNQ1k2uAp2zoH3Sl23mp8NRbPOzKEKl7DktyuXTNjtnUfqjHeX3cxao6L7iiiu0bds2hYaG6uqrr9Ytt9yiLl26qH379goPDy9U0Lx4PB61bdtWr732miSpdevW2rhxo8aNG+e36B4zZoxGjx6da/icOXMUGRlpekazOFNS1C+znXz2rH6ZMSOoefwJP35cvTPbiSdOaLFFc0bv36/ume2jCQlabtGc5bdtU6fM9qGDB7XSYjnj4+MlSZXXrlW7zGH79u3TOovlzFJ99Wpdk9nevXOnfrdozjrr1ql1Znvbtm3aZtGcDX7/Xc0z25t+/127gpwzqz/mVG/DBrXMbG/ZskU7LDo/G23ZoqaZ7Y0bNmiPRXNesWOHLs9sr12zRgdiYoKax5/me/aoQWZ75YoVOlLM7++vP+Z01R9/qHZme/myZTqeuTPAaq45ckTVM9tLFi9W0oEDQc3jT7tjx1Q5s71gwQIlb94c1Dz+dDl1SuUy2/Fz5shdDOtRfvukr44nTqhCZnve3Lk6V6FCnuMHS4/kZEVltmfPmqX0iIig5vHnRo/HW3TPsOh3vCTd7NMOVM7C9Ec7Sk5Oztd4BSq6+/fvr65du6pDhw7FUsBWr15dTZs2zTbsiiuu0H//+1+/rxkxYoSGDx/ufZyUlKTatWurV69eirHohoMkuU+c8LYjIyPVt2/fIKbJg88f4djy5a2b0+ePcOXKlS2b01GpkrddvXp1y+R0u92Kj49Xz5495XK55ChTxvtcndq1VdMiOXNypKR42/UbNFBdq+ZMSPC2L2/USJdZNGfIjh3edtOmTdUkSDlz9secQvbv97abNG6sy606Pzdu9LabNWumplbNuXSpt92qVSu1tGrO2bO97bZt28ooppyX6o85OadM8bavu+46GR07BjJeoTn/9S9vu0OHDlKrVsELkwfnu+962126dJEseq2f0JEjve2ePXtKFSsG7L0K2id9OV9/3dvu1q2bVKOG2fFMEepTd/Tu3VuKjg5iGv8cDoe3bZVtuksxO2dR+qMdJeXzh9QCFd1jxowpVJjCat++vbZu3Zpt2LZt21S3bl2/rwkLC1NYWFiu4S6Xy9oL3iebw+GwblafXCEOh0LIWTQ+t9sLCQmxXE7vemPxnF4+OZ0hIXJaNafT6dN0kjOf/H6PWyynXzbMGRoamu371FJ87pYSjJz53q4Ics5888npcrmsm9OnqLF0ziDMz0Jt69plfvqwdM6c89MGApXT8rWXSfL7GfN9IbXXX39dKT57kfLy66+/6ueff87vpP168skntXz5cr322mvasWOHvv76a3366acaNmxYkacNAAAAG+M2UqUHyxo2l++ie9OmTapTp47++te/aubMmTp69Kj3ubS0NK1fv14fffSR2rVrp0GDBqls2bJFDnf11Vfrhx9+0DfffKNmzZrp73//u9577z3deeedRZ42AAAAAACBlu/DyydMmKB169bpww8/1B133KGkpCQ5nU6FhYV5TyBv3bq17r//fg0dOtS0C6v169dP/fr1u/SIAAAAAABYTIHO6W7ZsqU+++wzffLJJ1q/fr327t2rlJQUVapUSa1atVIln4tCAQAAAECR+ZwrDdhRge/TLWVcSKlVq1ZqZdErW9qelc9b8c1GzqIjp7nIaS5ymouc5iKnueyY08rsOD+tnNOXlXNaORuCKt/ndCPAWEkBAAAAoMSh6LYiDqEBAACwL7blSieWO/yg6AYAAID9cJRg6cGyhs1RdAMAAAAAECAFLrrdbrdCQ0O1cePGQOQBAAAAgAs4bBs2V+Ci2+VyqU6dOkpPTw9EHgAAAAAASoxCHV7+wgsv6Pnnn9eJEyfMzlN62eVcFbvcWoKc5iKnuchpLnKai5zmIqe5rJzNHytntsty92WXnICPQt2n+8MPP9SOHTtUo0YN1a1bV1FRUdmeX716tSnhAAAAAMDu0tPT5Xa7gx0jQ926F9rnzpk66axTkc+dO1cijox2uVxyOp1Fnk6hiu7+/fsX+Y0BAAAAoCQzDEOHDx9WYmJisKNcMG7chfbu3aZO2jAMVatWTfv375ejhJyLHxsbq2rVqhXp8xSq6B41alSh3xAAAAAoMg4zLj1svKyzCu4qVaooMjLSGoXo2bMX2vXrmzppj8ejM2fOKDo6WiEh9r5RlmEYSk5OVkJCgiSpevXqhZ5WoYpuSUpMTNR3332nnTt36umnn1aFChW0evVqVa1aVTVr1ix0IAAAAACwu/T0dG/BXbFixWDHubjwcFMn5/F4dP78eYWHh9u+6JakiIgISVJCQoKqVKlS6EPNC1V0r1+/Xj169FC5cuW0Z88e/eUvf1GFChX0/fffa9++fZowYUKhwgAAAABANlbYO1wIWedwR0ZGBjkJiiJr+bnd7kIX3YX6+WH48OEaOnSotm/frnCfX0f69u2rRYsWFSoIAAAAAJQ0ljikHIVmxvIrVNG9YsUKPfjgg7mG16xZU4cPHy5yqFLJLueq2OXWEuQ0FznNRU5zkdNc5DQXOc1l5Wy+7Dg/rZzTl11yAj4KVXSHhYUpKSkp1/Bt27apcuXKRQ4FAAAAAEBJUKii+6abbtLLL7/sPU/B4XBo3759evbZZzVw4EBTAwIAAAAAisfQoUPlcDjkcDjkcrlUv359PfPMMzqX457eWeP4/uvUqVO+plumTBlddtllevnll5WWlhbojxR0hbqQ2ttvv61bbrlFVapUUUpKijp37qzDhw8rLi5Or776qtkZAQAAgOw4zLj0sOOytmNmH9dff72+/PJLud1urVq1SkOGDJHD4dAbb7yRbbwvv/xS119/vfdxaGje5WXWdFNTUzVjxgwNGzZMLpdLI0aMCMjnKIjz58+rTJkyAZl2ofZ0lytXTvHx8frxxx/1/vvv65FHHtGMGTO0cOFCRUVFmZ0RAAAAAFBMwsLCVK1aNdWuXVv9+/dXjx49FB8fn2u82NhYVatWzfuvQoUK+Zpu3bp19fDDD6tHjx6aPn26JOnkyZO65557VL58eUVGRqpPnz7avn27pIx7ZleuXFnfffedd1qtWrXKdu/sJUuWKCwsTMnJyZIybnF9//33q3LlyoqJiVG3bt20bt067/gvvfSSWrVqpX/961+qX79+tguEm61Qe7rPnTun8PBwdejQQR06dDA7EwAAAABkKElX/zYMKbMoLFaRkYWejxs3btTSpUtVt25dk0Nl3Af7+PHjkuS9O9b06dMVExOjZ599Vn379tWmTZvkcrnUqVMnLViwQLfccotOnjypzZs3KyIiQlu2bFGTJk20cOFCXX311d5bfN16662KiIjQzJkzVa5cOX3yySfq3r27tm3b5v1xYMeOHfrvf/+r77//vtC3A8uPQhXdsbGxuuaaa9S5c2d17dpVcXFx3huHAwAAAAAuIjlZio4u/vc9c0YqwBHJP/30k6Kjo5WWlqbU1FSFhIToww8/zDXe4MGDsxWrEyZMULdu3S45fcMwNHfuXM2ePVuPPvqot9j+3//+p3bt2kmSJk6cqNq1a2vq1Km69dZb1aVLF33yySeSpEWLFql169aqVq2aFixYoCZNmmjBggXq3LmzpIy93r/99psSEhIUFhYmSfrHP/6hqVOn6rvvvtMDDzwgKeOQ8gkTJgT8YuCFKrp/+eUXLVq0SAsWLNC7776rtLQ0tW3bVp07d1aXLl3Us2dPs3OWfHY578Mut5Ygp7nIaS5ymouc5iKnuchpLitn82XH+WnlnL7sktPmunbtqo8//lhnz57Vu+++q9DQ0IteMPvdd99Vjx49vI+rVq2q9PR0v9PNKubdbrc8Ho/uuOMOvfTSS5o7d65CQ0N17bXXesetWLGiGjdurM2bN0uSOnfurMcff1xHjx7VwoUL1aVLF2/Rfd9992np0qV65plnJEnr1q3TmTNnVLFixWzvn5KSop07d3of161bt1juvlWoojvrsPLnn39eaWlpWrFihT755BO9+eabev311/Oc0QAAAABQKkVGZux1Dsb7FkBUVJQuu+wySdIXX3yhli1b6vPPP9d9992Xbbxq1ap5x5Mkj8dz0VtLZ8kq5suUKaMaNWpc8sJrvpo3b64KFSpo4cKFWrhwoV599VVVq1ZNb7zxhlasWCG32+3dS37mzBlVr15dCxYsyDWd2NjYbJ+zOBSq6JYy7sm9YMEC77/U1FT169dPXbp0MTEeAAAAAJQQDkeBDvO2gpCQED3//PMaPny47rjjjiKdVuxbzPu64oorlJaWpl9//dVbOB8/flxbt25V06ZNJWXcoqxjx46aNm2afv/9d3Xo0EGRkZFKTU3VJ598orZt23qL6KuuukqHDx9WaGio6tWrV+i8ZinU1ctr1qyp6667TrNmzdJ1112nmTNn6tixY/rhhx/0+OOPm50RAAAAyI7DjGFlJax/3nrrrXI6nRo7dmxApt+oUSPdfPPN+stf/qIlS5Zo3bp1uuuuu1SzZk3dfPPN3vG6dOmib775Rq1atVJ0dLRCQkLUqVMnTZw40Xs+tyT16NFDcXFx6t+/v+bMmaM9e/Zo6dKleuGFF7Ry5cqAfIa8FKrorly5spKTk3X48GEdPnxYR44cUUpKitnZAAAAAABBFhoaqkceeURvvvmmzp49G5D3+PLLL9WmTRv169dPcXFxMgxDM2bMkMvl8o7TuXNnpaenZzu6ukuXLrmGORwOzZgxQ506ddK9996ryy+/XLfffrv27t2rqlWrBiR/Xgp1ePnatWuVmJioRYsWaeHChXr++ee1adMmtWrVSl27dtWrr75qdk4AAAAAQICNHz/+osOfe+45Pffcc97HRgH35vubbpby5ctrwoQJeY7TqlWrXO/7xBNP6Iknnsg1btmyZfX+++/r/fffv+i0XnrpJb300kt5vp9ZCn1Od2xsrG666Sa1b99e7dq107Rp0/TNN9/o119/peguKisfjmKXq1yS01zkNBc5zUVOc5HTXOQ0l5Wz+bLj/LRyTl9WzmnlbAiqQhXd33//vfcCaps2bVKFChXUoUMHvf3229mOpUcBsJICAAAAQIlTqKL7oYceUqdOnfTAAw+oc+fOat68udm5SjeHI9gJAAAAABQE2/Dwo1BFd0JCgtk5AAAAAAAocQp9Tnd6erqmTp2qzZs3S5KaNm2qm2++WU6n07RwAAAAwEVxah6szKd/FvSCY7AWM5ZfoYruHTt2qG/fvjpw4IAaN24sSRozZoxq166tn3/+WQ0bNixyMAAAAACwq6xbXSUnJysiIiLIaVBYycnJkpTt1mUFVaii+7HHHlPDhg21fPlyVahQQZJ0/Phx3XXXXXrsscf0888/FzoQAAAAANid0+lUbGys99TcyMhIOax23ve5c6ZOzuPx6Pz58zp37pxCQkJMnXZxMwxDycnJSkhIUGxsbJGO6C5U0b1w4cJsBbckVaxYUa+//rrat29f6DDIZOVDUOxyawlymouc5iKnuchpLnKai5zmsnI2X3acn1bO6cvKOS+SrVq1apIsdk2sY8cutHfvNnXShmEoJSVFERER1vuBoZBiY2O9y7GwClV0h4WF6fTp07mGnzlzRmXKlClSoFLLyl8gAAAAAArM4XCoevXqqlKlitxud7DjZOjT50J7yxZTJ+12u7Vo0SJ16tSpSIdjW4XL5TLlmmWFKrr79eunBx54QJ9//rmuueYaSdKvv/6qhx56SDfddFORQ5V6JeRXIQAAAKDUyGMb3ul0WueC03v3XmiHh5s6aafTqbS0NIWHh5eIotsshTrQ/v3331fDhg0VFxen8PBwhYeHq3379rrsssv0z3/+0+yMAAAAAADYUqH2dMfGxmratGnasWOH95ZhV1xxhS677DJTwwEAAAAXxal5sDL6J3wUqOj2eDx66623NH36dJ0/f17du3fXqFGjuAQ+AAAAAAAXUaDDy1999VU9//zzio6OVs2aNfXPf/5Tw4YNC1Q2AAAAAABsrUBF94QJE/TRRx9p9uzZmjp1qn788UdNnDhRHo8nUPlKD7scgmKXW0uQ01zkNBc5zUVOc5HTXOQ0l5Wz+bLj/LRyTl92yQn4KFDRvW/fPvXt29f7uEePHnI4HDp48KDpwQAAAAAAsLsCFd1Zl3/35XK5rHPPOQAAAAAALKRAF1IzDENDhw5VWFiYd9i5c+f00EMPKSoqyjvs+++/Ny8hAAAAAAA2VaCie8iQIbmG3XXXXaaFAQAAAPKFc3thZfRP+ChQ0f3ll18GKke+vP766xoxYoQef/xxvffee0HNAgAAAADApRTonO5gWrFihT755BO1aNEi2FEAAAAAAMgXWxTdZ86c0Z133qnPPvtM5cuXD3acwLDLISh2ubUEOc1FTnOR01zkNBc5zUVOc1k5my87zk8r5/Rll5yAjwIdXh4sw4YN0w033KAePXrolVdeyXPc1NRUpaameh8nJSVJktxut6Wvsu52u+XKbBuS0qya1TenYdgip8cwlG7RnI60NO9K6PF4LJMza13J+t+qOXPyzZnu8chj0Zwh6elyZrbT09PJeQk5+2NOVsl5KbbJ6fF4c6alp8uwaE6nx+Pdc5CWllZsOS/VH3MKVs6CchqG7XK63W7JojlDDUOOzHagcxa0T/oqzpxFESrZM6dFuXzaZucsSn+0o/x+TssX3ZMmTdLq1au1YsWKfI0/ZswYjR49OtfwOXPmKDIy0ux4pilz6pT6ZLaTz57VLzNmBDWPP5GHDqlnZvtUUpIWWjRnuV271CWzffz4cS21aM6KGzeqQ2b7SEKCfrNYzvj4eElS1ZUrdV3msAMHDmi1xXJmqbVundpktvft3av1Fs1Zb+NGtcxs79y5U5stmrPR1q1qmtneunWrtgc5Z1Z/zKnB5s1qntnevn27tlp0fjbevl1NMtubNm/WLovmvHL3bl2W2d6wfr32WTRnq/37VTezvXrNGh2KiCjW9/fXH3Nqe+iQama2f/vtNx216IZo3NGjqpLZXrp0qU4ePx7UPP50TExUhcz2okWLdGb37qDm8afrmTOKyWzPmzdP5ypWDPh75rdP+uqclKTYzPaCBQuUvGWLqZnM0iM5WVn3Sfrll190PiYmz/GD5UafHzFmzpwpI9SapdbNPu0ZAfqOL0x/tKPk5OR8jWfNnpBp//79evzxxxUfH5/r/uD+jBgxQsOHD/c+TkpKUu3atdWrVy/FWHQFlST3wYPedmRUlPr27RvENHnYudPbLBcTY92ca9Z4mxUrVrRsTkd0tLddtUoVy+R0u92Kj49Xz5495XK55PB4vM/VrFlT1SySMyfHyZPedp26dVXLojlD9u3zths2bKj6Vs25caO33bhxYzUKUs6c/TGnkO3bve1GjRqpoVXn58qV3nbTK65QE6vmnD/f227eooWaWTSnc9o0b/uq1q1lFFPOS/XHnJxffeVtX3PNNTJ69sxj7OBxjh3rbbdr107GtdcGMY1/zjFjvO1OnTpJV1wRxDT+hY4Y4W1369ZNqlkzj7GLpqB90lfoSy952126dJEaNDA3nElCfXac9ejRQ6pUKYhp/HM4HN52nz59pAIuj2Awe9uzKP3RjrKOqr6UAhXdnTp10vTp0xUbGytJmj59unr27KmIAP26vGrVKiUkJOiqq67yDktPT9eiRYv04YcfKjU1VU6nM9trwsLCst1HPIvL5bL2gvfJ5pCsm9U3p8Nhi5whDodCrJrT5xfQkJAQy+X0rjcWz+nlk9MZEiKnVXP6fG85nU5y5pPf73GL5fTLLjlDLlzuJdTptO5Go2/O0NBiz5nv7Yog58w3n2LBLjlddsnpchVLzkJt6wYhZ1HZJqeV+6ePQG3LW772Mkl+P2OBiu4lS5bo/Pnz3sd33XWX1q5dqwYB+lWse/fu2rBhQ7Zh9957r5o0aaJnn302V8ENAAAAAICVFOnwciPAVw8sW7asmjVrlm1YVFSUKlasmGt4iWLlqzLa5SqX5DQXOc1FTnOR01zkNBc5zWXlbL7sOD+tnNOXlXNaORuCyha3DCsVWEkBAAAAoMQp8J7u2bNnq1y5cpIybh00d+5cbfS52I4k3XTTTeaku4gFCxYEbNqW4XN+DQAAAAAbYBsefhS46B4yZEi2xw8++GC2xw6HQ+np6UVLBQAAAABACVCgotvjc9sgAAAAAACQN9PP6U5JSTF7kgAAAEB2XA8HVkb/hA/Tiu7U1FS9/fbbql+/vlmTBAAAAADA1gpUdKempmrEiBFq27at2rVrp6lTp0qSvvzyS9WvX1/vvfeennzyyUDkLF2s/MuYXW4tQU5zkdNc5DQXOc1FTnOR01xWzubLjvPTyjl9WTmnlbMhqAp0TvfIkSP1ySefqEePHlq6dKluvfVW3XvvvVq+fLneeecd3XrrrXI6nYHKWrKxkgIAAABAiVOgonvKlCmaMGGCbrrpJm3cuFEtWrRQWlqa1q1bJweXyAcAAABQWlEPwY8CHV7+xx9/qE2bNpKkZs2aKSwsTE8++SQFNwAAAAAAF1Ggojs9PV1lypTxPg4NDVV0dLTpoQAAAAAAKAkKdHi5YRgaOnSowsLCJEnnzp3TQw89pKioqGzjff/99+YlBAAAAHLiejilhx2XtR0zI2AKVHQPGTIk2+O77rrL1DAAAAAAAJQkBSq6v/zyy0DlgC8r/zJml1tLkNNc5DQXOc1FTnOR01zkNJeVs/my4/y0ck5fVs5p5WwIqgKd040AYiUFAAAAgBKHohsAAAAAioo7OsEPim4AAAAAAAKEohsAAAAAgACh6AYAAID9cD2c0sOOy9qOmREwFN0AAAAAAAQIRbdV2OWWDeQ0FznNRU5zkdNc5DQXOc1lx5xWZsf5aeWcvuySE/BB0Q0AAAAAQIBQdAMAAAAAECAU3QAAAAAABAhFNwAAAAAAAULRDQAAAPvhglqlhx2XtR0zI2AougEAAAAACBCKbquwyy0byGkucpqLnOYip7nIaS5ymsuOOa3MjvPTyjl92SUn4IOiGwAAAACAAKHoBgAAAAAgQCi6AQAAAAAIEIpuAAAA2A/n9pYedlzWdsyMgKHoBgAAAAAgQCi6rcjKv4zZ5SqX5DQXOc1FTnOR01zkNBc5zWXlbL7sOD+tnNOXlXNaORuCiqLbKlhJAQAAAKDEoegGAAAAgKJyOIKdABZF0Q0AAAAAQIBQdAMAAAAAECAU3QAAALAfrodTethxWdsxMwKGohsAAAAAgACh6LYiK/8yZpdbS5DTXOQ0FznNRU5zkdNc5DSXlbP5suP8tHJOX1bOaeVsCCqKbqtgJQUAAACAEoeiGwAAAACKiluGwQ+KbgAAAAAAAoSiGwAAAACAAKHoBgAAgP1wPZzSw47L2o6ZETAU3QAAAAAABAhFtxVZ+Zcxu9xagpzmIqe5yGkucpqLnOYip7msnM2XHeenlXP6snJOK2fLYoeMJZDli+4xY8bo6quvVtmyZVWlShX1799fW7duDXYs87ECAAAAAECJY/mie+HChRo2bJiWL1+u+Ph4ud1u9erVS2fPng12NAAAAADIwC3D4EdosANcyqxZs7I9Hj9+vKpUqaJVq1apU6dOQUoFAAAAAMClWb7ozunUqVOSpAoVKlz0+dTUVKWmpnofJyUlSZLcbrfcbnfgAxZSWlqaXJltQ1KaVbO63RdyGoZlczrS0ryd22MYSidngWStK1n/Z8vp8VgmZ06O9HRb5AxJT5czs53u8chjh5zp6UHLmbM/5mSVnJdim5wejy1yOj0e7+F6aWlpMoop56X6Y07ByllQTsOwRc5Qw1DWvkS32y1ZNadUbDkL2id9MT/NZYuchuHdlpcK12/yUpT+aEf5/Zy2Kro9Ho+eeOIJtW/fXs2aNbvoOGPGjNHo0aNzDZ8zZ44iIyMDHbHQwo8eVe/M9rlz5zRnxoyg5vGn7L596pbZPnPmjOZZNGf5LVuUdRxEYmKiFls0Z+U1a9Qus33s6FEts1jO+Ph4SVKNNWt0deawQ4cPa6XFcmaps2GDWme29+/fr7UWzdlw82ZlfYPt3r1bv1s0Z+Pt29Uks719+3ZtDXLOrP6YU6OtW9U0s71z1y5ttuj8bLprlxpltrdu3artFs3ZYu9e1c9sb9y4UXssmvOqgwdVO7O9bt06/VG+fLG+v7/+mNM1CQmqntletWqVDjudeY4fLO1PnFClzPby5ct13KKn8XVOSlJsZvt/S5bo1KFDwYzjV4+zZxWV2V6wYIGSi+F6RPntk766nTmjspntxYsX6/SePaZmMkuvlBRFZLbnzZunc5Uq5Tl+sNzo8yPGnNmzlWbF2sMwdLPPwxkB+o4vTH+0o+Tk5HyNZ6uie9iwYdq4caOWLFnid5wRI0Zo+PDh3sdJSUmqXbu2evXqpZiYmOKIWShpu3d72+Hh4erbt28Q0+Th99+9zejoaMvmdPgcCREbG2vdnKEXVsFKlStbJqfb7VZ8fLx69uwpl8slh88XSvVq1SyTMyfH4cPedu3atVXDojlDtm3ztuvXr6+6Vs25cqW33ahRIzUMUs6c/TGnkA0bvO2GDRqovlXnp8/frsaNG6uRVXPOnOltN2vWTE0tmtP57bfedsuWLdWimHJeqj/m5PzsM2+7TZs2Mqw6P99+29u+7rrrZHTuHMQ0/oWOGuVtt+/QQWrdOo+xgyc0Ksrb7tKli9SwYcDeq6B90ldodLS33bFjR6lp0zzGDp7Q8HBvu1u3blKtWkFM45/D55zuXr16SVasPXJcvNnsbbqi9Ec7yjqq+lJsU3Q/8sgj+umnn7Ro0SLVymNFCwsLU1hYWK7hLpfL2gve55dvh2FYN6tPkeiQrJvTZ36GSAohZ6F41xvfnA6H5XJ6hVy4NqRdcjodDjntkDMkJOg5/X6PWyynX3bJ6bPRaJecoU6nVMw5871dEeSchWGXnK7QUOvm9ClsiitnUbd1LT0/fdgmp8tlzZweT7aHgdqWt3ztZZL8fkbLF92GYejRRx/VDz/8oAULFqh+/fqXfhEAAAAAABZg+aJ72LBh+vrrrzVt2jSVLVtWhzMPHy1XrpwiIiIu8WoAAAAAAILH8vfp/vjjj3Xq1Cl16dJF1atX9/771udcLgAAAAAArMjye7qNHCf7AwAAAABgF5bf0w0AAADkwo6Z0sOOy9qOmREwFN1WZOWV1DcbOYuOnOYip7nIaS5ymouc5rJjTiuz4/y0ck5fVs5p5WxZcma0Q+YSgKLbKujwAAAAAFDiUHQDAAAAQFE5HMFOAIui6AYAAAAAIEAougEAAAAACBCKbgAAAAAAAoSiGwAAAPbDRWhLDzsuaztmRsBQdFuRlVdSu9xagpzmIqe5yGkucpqLnOYip7msnM2XHeenlXP6snJOK2fLwi3DgoKi2yro8AAAAABQ4lB0AwAAAEBRccsw+EHRDQAAAABAgFB0AwAAAAAQIBTdAAAAAAAECEU3AAAA7IeL0JYedlzWdsyMgKHotiIrr6R2ubUEOc1FTnOR01zkNBc5zUVOc1k5my87zk8r5/Rl5ZxWzpaFW4YFBUW3VdDhAQAAAKDEoegGAAAAgKLilmHwg6IbAAAAAIAAoegGAAAAACBAKLoBAAAAAAgQim4AAADYDxehLT3suKztmBkBQ9FtRVZeSe1yawlymouc5iKnuchpLnKai5zmsnI2X3acn1bO6cvKOa2cLQu3DAsKim6roMMDAAAAQIlD0Q0AAAAARcUtw+AHRTcAAAAAAAFC0Q0AAAAAQIBQdAMAAAAAECAU3QAAALAfLkJbethxWdsxMwKGotuKrLyS2uXWEuQ0FznNRU5zkdNc5DQXOc1l5Wy+7Dg/rZzTl5VzWjlbFm4ZFhQU3VZBhwcAAACAEoeiGwAAAACKiluGwQ+KbgAAAAAAAoSiGwAAAACAAKHoBgAAAAAgQCi6rcjKF1Wzy1UuyWkucpqLnOYip7nIaS5ymouc5iKnueyQk6uXBwVFt1XQ4QEAAACgxKHoBgAAAICi4url8IOiGwAAAACAAKHoBgAAAAAgQCi6AQAAAAAIEIpuAAAAAAAChKLbiqx8JXM73ApBIqfZyGkucpqLnOYip7nIaS5ymouc5rJDTm4ZFhQU3VZBhwcAAACAEoeiGwAAAACKiluGwQ+KbgAAAAAAAsQWRffYsWNVr149hYeH69prr9Vvv/0W7EgAAAAAAFyS5Yvub7/9VsOHD9eoUaO0evVqtWzZUr1791ZCQkKwowEAAAAAkCfLF93vvPOO/vKXv+jee+9V06ZNNW7cOEVGRuqLL74IdjQAAAAAAPIUGuwAeTl//rxWrVqlESNGeIeFhISoR48eWrZs2UVfk5qaqtTUVO/jpKQkSZLb7Zbb7Q5s4MI6d04hDz7ofWicPi3jz38OYqA8HDvm/aXGOHrUujkPHbqQc+9e6+bct+9Czq1bLZPT4fGo1YEDcvzwgzwhIdKOHRdyrl1rmZy5bNp0Iefy5dbNuW7dhZzz5lk2p2PFCmVdEsb4+WcZQTrCKFd/zPn86tUXcs6ebd35uXz5hZzTpsnYvz+oefxxLF7szemZNEnauDGoefxxrFx5IeeXX0pLlxbP+16iP+Ya//ffL+T8+GNp1qzABiwkx65dF3K+8440eXJQ8/jjOHToQs5XXpGqVg1qHn8cJ09eyPm3v0nlywfuvQrYJ7O99ujRCzlfekmqVMn0fGZwnD59Ieezz0rlygU1jz8haWnetuexx6SIiCCm8SMtLdteV88DD0hOp2mTL0p/vJj0N9+07PKWlO/60mEY1r1X1cGDB1WzZk0tXbpUcXFx3uHPPPOMFi5cqF9//TXXa1566SWNHj061/Cvv/5akZGRAc1bWM6UFPUbPDjYMQAAAADAMmaNH6/U2Nhgx/ArOTlZd9xxh06dOqWYmBi/41l6T3dhjBgxQsOHD/c+TkpKUu3atdWrV688Z0RQnT+v8y+9pB07duiyunXlDA8PdqK8ORxSaqpUpkywk+QtJERKSZHCwoKdJG8WnJ/p6ekZ/fGyy+T0/fXT7ZZcruAFyw/DkNLTpVCLf715PBlZTfx1OSDS0zP+D2JOv/3Rl53mp8OR8f1kZWlpGfPS6re/CcJ3Ur76Y07nz2f8LbLufo4MqalSeDg5zXL+fLH8bS9Un/Rll/5ZTPOzyOywrSQFLGeR+2MO3W++WYqKMiFZYGQdVX0plt4qrVSpkpxOp44cOZJt+JEjR1StWrWLviYsLExhFymyXC6XXFZdAVwuuZ9/XttnzFCjvn3ltGpOlBoet5v+CMugP8JK6I+wGvokrMTs/mjxn9LzXV9a+qf2MmXKqE2bNpo7d653mMfj0dy5c7Mdbg4AAAAAgBVZek+3JA0fPlxDhgxR27Ztdc011+i9997T2bNnde+99wY7GgAAAAAAebJ80T1o0CAdPXpUI0eO1OHDh9WqVSvNmjVLVS16tUoAAAAAALJYvuiWpEceeUSPPPJIsGMAAAAAAFAglj6nGwAAAAAAO6PoBgAAAAAgQCi6AQAAAAAIEIpuAAAAAAAChKIbAAAAAIAAoegGAAAAACBAKLoBAAAAAAgQW9ynuygMw5AkJSUlBTlJ3txut5KTk5WUlCSXyxXsOCjl6I+wEvojrIT+CKuhT8JKSlt/zKoxs2pOf0p80X369GlJUu3atYOcBAAAAABQ0pw+fVrlypXz+7zDuFRZbnMej0cHDx5U2bJl5XA4gh3Hr6SkJNWuXVv79+9XTExMsOOglKM/wkroj7AS+iOshj4JKylt/dEwDJ0+fVo1atRQSIj/M7dL/J7ukJAQ1apVK9gx8i0mJqZUdFDYA/0RVkJ/hJXQH2E19ElYSWnqj3nt4c7ChdQAAAAAAAgQim4AAAAAAAKEotsiwsLCNGrUKIWFhQU7CkB/hKXQH2El9EdYDX0SVkJ/vLgSfyE1AAAAAACChT3dAAAAAAAECEU3AAAAAAABQtENAAAAAECAUHRbwNixY1WvXj2Fh4fr2muv1W+//RbsSCiBxowZo6uvvlply5ZVlSpV1L9/f23dujXbOOfOndOwYcNUsWJFRUdHa+DAgTpy5Ei2cfbt26cbbrhBkZGRqlKlip5++mmlpaUV50dBCfT666/L4XDoiSee8A6jP6I4HThwQHfddZcqVqyoiIgINW/eXCtXrvQ+bxiGRo4cqerVqysiIkI9evTQ9u3bs03jxIkTuvPOOxUTE6PY2Fjdd999OnPmTHF/FNhcenq6XnzxRdWvX18RERFq2LCh/v73v8v3Mkz0RwTSokWLdOONN6pGjRpyOByaOnVqtufN6n/r169Xx44dFR4ertq1a+vNN98M9EcLGoruIPv22281fPhwjRo1SqtXr1bLli3Vu3dvJSQkBDsaSpiFCxdq2LBhWr58ueLj4+V2u9WrVy+dPXvWO86TTz6pH3/8UVOmTNHChQt18OBBDRgwwPt8enq6brjhBp0/f15Lly7Vv//9b40fP14jR44MxkdCCbFixQp98sknatGiRbbh9EcUl5MnT6p9+/ZyuVyaOXOmNm3apLffflvly5f3jvPmm2/q/fff17hx4/Trr78qKipKvXv31rlz57zj3Hnnnfr9998VHx+vn376SYsWLdIDDzwQjI8EG3vjjTf08ccf68MPP9TmzZv1xhtv6M0339QHH3zgHYf+iEA6e/asWrZsqbFjx170eTP6X1JSknr16qW6detq1apVeuutt/TSSy/p008/DfjnCwoDQXXNNdcYw4YN8z5OT083atSoYYwZMyaIqVAaJCQkGJKMhQsXGoZhGImJiYbL5TKmTJniHWfz5s2GJGPZsmWGYRjGjBkzjJCQEOPw4cPecT7++GMjJibGSE1NLd4PgBLh9OnTRqNGjYz4+Hijc+fOxuOPP24YBv0RxevZZ581OnTo4Pd5j8djVKtWzXjrrbe8wxITE42wsDDjm2++MQzDMDZt2mRIMlasWOEdZ+bMmYbD4TAOHDgQuPAocW644Qbjz3/+c7ZhAwYMMO68807DMOiPKF6SjB9++MH72Kz+99FHHxnly5fP9vf62WefNRo3bhzgTxQc7OkOovPnz2vVqlXq0aOHd1hISIh69OihZcuWBTEZSoNTp05JkipUqCBJWrVqldxud7b+2KRJE9WpU8fbH5ctW6bmzZuratWq3nF69+6tpKQk/f7778WYHiXFsGHDdMMNN2TrdxL9EcVr+vTpatu2rW699VZVqVJFrVu31meffeZ9fvfu3Tp8+HC2/liuXDlde+212fpjbGys2rZt6x2nR48eCgkJ0a+//lp8Hwa2165dO82dO1fbtm2TJK1bt05LlixRnz59JNEfEVxm9b9ly5apU6dOKlOmjHec3r17a+vWrTp58mQxfZriExrsAKXZsWPHlJ6enm2DUZKqVq2qLVu2BCkVSgOPx6MnnnhC7du3V7NmzSRJhw8fVpkyZRQbG5tt3KpVq+rw4cPecS7WX7OeAwpi0qRJWr16tVasWJHrOfojitOuXbv08ccfa/jw4Xr++ee1YsUKPfbYYypTpoyGDBni7U8X62++/bFKlSrZng8NDVWFChXojyiQ5557TklJSWrSpImcTqfS09P16quv6s4775Qk+iOCyqz+d/jwYdWvXz/XNLKe8z29pySg6AZKoWHDhmnjxo1asmRJsKOglNq/f78ef/xxxcfHKzw8PNhxUMp5PB61bdtWr732miSpdevW2rhxo8aNG6chQ4YEOR1Km8mTJ2vixIn6+uuvdeWVV2rt2rV64oknVKNGDfojYFMcXh5ElSpVktPpzHU13iNHjqhatWpBSoWS7pFHHtFPP/2k+fPnq1atWt7h1apV0/nz55WYmJhtfN/+WK1atYv216zngPxatWqVEhISdNVVVyk0NFShoaFauHCh3n//fYWGhqpq1ar0RxSb6tWrq2nTptmGXXHFFdq3b5+kC/0pr7/X1apVy3UR1LS0NJ04cYL+iAJ5+umn9dxzz+n2229X8+bNdffdd+vJJ5/UmDFjJNEfEVxm9b/S9jecojuIypQpozZt2mju3LneYR6PR3PnzlVcXFwQk6EkMgxDjzzyiH744QfNmzcv1yE9bdq0kcvlytYft27dqn379nn7Y1xcnDZs2JDtizQ+Pl4xMTG5NliBvHTv3l0bNmzQ2rVrvf/atm2rO++809umP6K4tG/fPtctFLdt26a6detKkurXr69q1apl649JSUn69ddfs/XHxMRErVq1yjvOvHnz5PF4dO211xbDp0BJkZycrJCQ7JvoTqdTHo9HEv0RwWVW/4uLi9OiRYvkdru948THx6tx48Yl7tBySVy9PNgmTZpkhIWFGePHjzc2bdpkPPDAA0ZsbGy2q/ECZnj44YeNcuXKGQsWLDAOHTrk/ZecnOwd56GHHjLq1KljzJs3z1i5cqURFxdnxMXFeZ9PS0szmjVrZvTq1ctYu3atMWvWLKNy5crGiBEjgvGRUML4Xr3cMOiPKD6//fabERoaarz66qvG9u3bjYkTJxqRkZHGf/7zH+84r7/+uhEbG2tMmzbNWL9+vXHzzTcb9evXN1JSUrzjXH/99Ubr1q2NX3/91ViyZInRqFEjY/DgwcH4SLCxIUOGGDVr1jR++uknY/fu3cb3339vVKpUyXjmmWe849AfEUinT5821qxZY6xZs8aQZLzzzjvGmjVrjL179xqGYU7/S0xMNKpWrWrcfffdxsaNG41JkyYZkZGRxieffFLsn7c4UHRbwAcffGDUqVPHKFOmjHHNNdcYy5cvD3YklECSLvrvyy+/9I6TkpJi/PWvfzXKly9vREZGGn/605+MQ4cOZZvOnj17jD59+hgRERFGpUqVjP/7v/8z3G53MX8alEQ5i276I4rTjz/+aDRr1swICwszmjRpYnz66afZnvd4PMaLL75oVK1a1QgLCzO6d+9ubN26Nds4x48fNwYPHmxER0cbMTExxr333mucPn26OD8GSoCkpCTj8ccfN+rUqWOEh4cbDRo0MF544YVst1aiPyKQ5s+ff9FtxiFDhhiGYV7/W7dundGhQwcjLCzMqFmzpvH6668X10csdg7DMIzg7GMHAAAAAKBk45xuAAAAAAAChKIbAAAAAIAAoegGAAAAACBAKLoBAAAAAAgQim4AAAAAAAKEohsAAAAAgACh6AYAAAAAIEAougEAAAAACBCKbgAAbGbo0KHq379/0N7/7rvv1muvvWbKtM6fP6969epp5cqVpkwPAACrcRiGYQQ7BAAAyOBwOPJ8ftSoUXryySdlGIZiY2OLJ5SPdevWqVu3btq7d6+io6NNmeaHH36oH374QXPnzjVlegAAWAlFNwAAFnL48GFv+9tvv9XIkSO1detW77Do6GjTit3CuP/++xUaGqpx48aZNs2TJ0+qWrVqWr16ta688krTpgsAgBVweDkAABZSrVo1779y5crJ4XBkGxYdHZ3r8PIuXbro0Ucf1RNPPKHy5curatWq+uyzz3T27Fnde++9Klu2rC677DLNnDkz23tt3LhRffr0UXR0tKpWraq7775bx44d85stPT1d3333nW688cZswx0Oh6ZOnZptWGxsrMaPHy8p4xDyRx55RNWrV1d4eLjq1q2rMWPGeMctX7682rdvr0mTJhVupgEAYGEU3QAAlAD//ve/ValSJf3222969NFH9fDDD+vWW29Vu3bttHr1avXq1Ut33323kpOTJUmJiYnq1q2bWrdurZUrV2rWrFk6cuSIbrvtNr/vsX79ep06dUpt27YtULb3339f06dP1+TJk7V161ZNnDhR9erVyzbONddco8WLFxf4cwMAYHWhwQ4AAACKrmXLlvrb3/4mSRoxYoRef/11VapUSX/5y18kSSNHjtTHH3+s9evX67rrrtOHH36o1q1bZ7sg2hdffKHatWtr27Ztuvzyy3O9x969e+V0OlWlSpUCZdu3b58aNWqkDh06yOFwqG7durnGqVGjhvbu3Vug6QIAYAfs6QYAoARo0aKFt+10OlWxYkU1b97cO6xq1aqSpISEBEkZF0SbP3++9xzx6OhoNWnSRJK0c+fOi75HSkqKwsLCLnmxt5yGDh2qtWvXqnHjxnrsscc0Z86cXONERER498IDAFCSsKcbAIASwOVyZXvscDiyDcsqlD0ejyTpzJkzuvHGG/XGG2/kmlb16tUv+h6VKlVScnKyzp8/rzJlyuSZJz093du+6qqrtHv3bs2cOVO//PKLbrvtNvXo0UPfffedd5wTJ06ocuXKl/iUAADYD0U3AACl0FVXXaX//ve/qlevnkJD87c50KpVK0nSpk2bvO0sR44c8baPHj2qM2fOZHs+JiZGgwYN0qBBg3TLLbfo+uuv14kTJ1ShQgVJGRd1a926deE/EAAAFsXh5QAAlELDhg3TiRMnNHjwYK1YsUI7d+7U7Nmzde+992bbS+2rcuXKuuqqq7RkyZJcz7377rtavny5Nm/erIcffliStHXrVh0/flzvvPOOvvnmG23ZskXbtm3TlClTVK1atWz3GV+8eLF69eoVkM8KAEAwUXQDAFAK1ahRQ//73/+Unp6uXr16qXnz5nriiScUGxurkBD/mwf333+/Jk6cmGv49ddfr9tvv11t27ZVrVq1NGzYMI0dO1YbN25U2bJl9eabb6pt27a6+uqrtWfPHs2YMcP7PsuWLdOpU6d0yy23BOzzAgAQLA7DMIxghwAAAPaQkpKixo0b69tvv1VcXJykjPPFf/jhh2z3Di+IQYMGqWXLlnr++edNTAoAgDWwpxsAAORbRESEJkyYoGPHjpkyvfPnz6t58+Z68sknTZkeAABWw55uAABQJEXd0w0AQEnG1csBAECR8Ps9AAD+cXg5AAAAAAABQtENAAAAAECAUHQDAAAAABAgFN0AAAAAAAQIRTcAAAAAAAFC0Q0AAAAAQIBQdAMAAAAAECAU3QAAAAAABAhFNwAAAAAAAULRDQAAAABAgFB0AwAAAAAQIBTdAAAAAAAECEU3AAAAAAABQtENAAAAAECAUHQDAFAAL730khwOR7BjIID27Nkjh8Oh8ePHBzsKAKAEoOgGAFjeRx99JIfDoWuvvTbYUQJm586devDBB9WgQQOFh4crJiZG7du31z//+U+lpKQEO16hzZgxQy+99FKwY3h/LLnUvy5dugQ7KgCghAkNdgAAAC5l4sSJqlevnn777Tft2LFDl112WbAjmernn3/WrbfeqrCwMN1zzz1q1qyZzp8/ryVLlujpp5/W77//rk8//TTYMQtlxowZGjt2bNAL7wEDBmTrN2fOnNHDDz+sP/3pTxowYIB3eNWqVVW3bl2lpKTI5XIFIyoAoISh6AYAWNru3bu1dOlSff/993rwwQc1ceJEjRo1KtixTLN7927dfvvtqlu3rubNm6fq1at7nxs2bJh27Nihn3/+2ZT3Onv2rKKionINNwxD586dU0REhCnvY0UtWrRQixYtvI+PHTumhx9+WC1atNBdd92Va/zw8PDijAcAKME4vBwAYGkTJ05U+fLldcMNN+iWW27RxIkTc42TdQ7uP/7xD3366adq2LChwsLCdPXVV2vFihW5xp83b546duyoqKgoxcbG6uabb9bmzZtzjbdkyRJdffXVCg8PV8OGDfXJJ5/4zfmf//xHbdq0UUREhCpUqKDbb79d+/fvv+Tne/PNN3XmzBl9/vnn2QruLJdddpkef/zxbJ/zYucaOxyObHuTsw6n3rRpk+644w6VL19eHTp0kCTVq1dP/fr10+zZs9W2bVtFRER4P1tiYqKeeOIJ1a5dW2FhYbrsssv0xhtvyOPxeKed3/k9dOhQjR071psv658//fr1U4MGDS76XFxcnNq2bet9HB8frw4dOig2NlbR0dFq3Lixnn/+eb/TLoiLzeehQ4cqOjpa+/btU79+/RQdHa2aNWt6P9+GDRvUrVs3RUVFqW7duvr6669zTTc/8xYAUPKwpxsAYGkTJ07UgAEDVKZMGQ0ePFgff/yxVqxYoauvvjrXuF9//bVOnz6tBx98UA6HQ2+++aYGDBigXbt2eQ8V/uWXX9SnTx81aNBAL730klJSUvTBBx+offv2Wr16terVqycpo4jq1auXKleurJdeeklpaWkaNWqUqlatmut9X331Vb344ou67bbbdP/99+vo0aP64IMP1KlTJ61Zs0axsbF+P9+PP/6oBg0aqF27dqbMr5xuvfVWNWrUSK+99poMw/AO37p1qwYPHqwHH3xQf/nLX9S4cWMlJyerc+fOOnDggB588EHVqVNHS5cu1YgRI3To0CG999572aZ9qfn94IMP6uDBg4qPj9dXX311yayDBg3SPffck2v57t27V8uXL9dbb70lSfr999/Vr18/tWjRQi+//LLCwsK0Y8cO/e9//zNnpvmRnp6uPn36qFOnTnrzzTc1ceJEPfLII4qKitILL7ygO++8UwMGDNC4ceN0zz33KC4uTvXr15ekAs9bAEAJYgAAYFErV640JBnx8fGGYRiGx+MxatWqZTz++OPZxtu9e7chyahYsaJx4sQJ7/Bp06YZkowff/zRO6xVq1ZGlSpVjOPHj3uHrVu3zggJCTHuuece77D+/fsb4eHhxt69e73DNm3aZDidTsP3z+eePXsMp9NpvPrqq9kybdiwwQgNDc013NepU6cMScbNN9+cr/mR9Tm//PLLXM9JMkaNGuV9PGrUKEOSMXjw4Fzj1q1b15BkzJo1K9vwv//970ZUVJSxbdu2bMOfe+45w+l0Gvv27cuWIz/ze9iwYUZ+NzdOnTplhIWFGf/3f/+Xbfibb75pOBwO77J49913DUnG0aNH8zXdizl69GiueZblYvN5yJAhhiTjtdde8w47efKkERERYTgcDmPSpEne4Vu2bMk17fzOWwBAycPh5QAAy5o4caKqVq2qrl27Sso4RHnQoEGaNGmS0tPTc40/aNAglS9f3vu4Y8eOkqRdu3ZJkg4dOqS1a9dq6NChqlChgne8Fi1aqGfPnpoxY4akjD2as2fPVv/+/VWnTh3veFdccYV69+6d7T2///57eTwe3XbbbTp27Jj3X7Vq1dSoUSPNnz/f7+dLSkqSJJUtW7ZA86UgHnrooYsOr1+/fq7PMmXKFHXs2FHly5fP9ll69Oih9PR0LVq0KNv4l5rfBRUTE6M+ffpo8uTJ2fbKf/vtt7ruuuu8yyLryIFp06YV+6HZ999/v7cdGxurxo0bKyoqSrfddpt3eOPGjRUbG5ttPhR03gIASg6KbgCAJaWnp2vSpEnq2rWrdu/erR07dmjHjh269tprdeTIEc2dOzfXa3wLZEnegvDkyZOSMg5TljKKopyuuOIKHTt2TGfPntXRo0eVkpKiRo0a5Rov52u3b98uwzDUqFEjVa5cOdu/zZs3KyEhwe9njImJkSSdPn06r1lRJFmHN+dn+Pbt2zVr1qxcn6NHjx6SlOuzXGp+F8agQYO0f/9+LVu2TFLGrdRWrVqlQYMGZRunffv2uv/++1W1alXdfvvtmjx5csAL8PDwcFWuXDnbsHLlyqlWrVq5zlUvV65ctvlQ0HkLACg5OKcbAGBJ8+bN06FDhzRp0iRNmjQp1/MTJ05Ur169sg1zOp0XnZbvXlOzeTweORwOzZw586LvHx0d7fe1MTExqlGjhjZu3Jiv9/J3EbKL7fXP4u+K5Bcb7vF41LNnTz3zzDMXfc3ll1+e7XEg5veNN96oyMhITZ48We3atdPkyZMVEhKiW2+9NVv2RYsWaf78+fr55581a9Ysffvtt+rWrZvmzJnjN1dR+ZtufuZDQectAKDkoOgGAFjSxIkTVaVKFe/VoX19//33+uGHHzRu3LgC3eaqbt26kjIuIpbTli1bVKlSJUVFRSk8PFwRERHavn17rvFyvrZhw4YyDHjuIu8AAGZPSURBVEP169cvVOHUr18/ffrpp1q2bJni4uLyHDdrT3JiYmK24Vl78IuqYcOGOnPmjHfvqxnyulr5xURFRalfv36aMmWK3nnnHX377bfq2LGjatSokW28kJAQde/eXd27d9c777yj1157TS+88ILmz59van6zBGLeAgDsgcPLAQCWk5KSou+//179+vXTLbfckuvfI488otOnT2v69OkFmm716tXVqlUr/fvf/85WuG7cuFFz5sxR3759JWXsuezdu7emTp2qffv2ecfbvHmzZs+enW2aAwYMkNPp1OjRo3Pt4TUMQ8ePH88z0zPPPKOoqCjdf//9OnLkSK7nd+7cqX/+85+SMvaMV6pUKdf5vx999NGlP3w+3HbbbVq2bFmuzyhlFPppaWkFnmbWfcFz/lCQl0GDBungwYP617/+pXXr1mU7tFySTpw4kes1rVq1kiSlpqYWOGNxCMS8BQDYA3u6AQCWM336dJ0+fVo33XTTRZ+/7rrrVLlyZU2cODFXQXYpb731lvr06aO4uDjdd9993luGlStXLtt9rkePHq1Zs2apY8eO+utf/6q0tDR98MEHuvLKK7V+/XrveA0bNtQrr7yiESNGaM+ePerfv7/Kli2r3bt364cfftADDzygp556ym+ehg0b6uuvv9agQYN0xRVX6J577lGzZs10/vx5LV26VFOmTNHQoUO9499///16/fXXdf/996tt27ZatGiRtm3bVqB54M/TTz+t6dOnq1+/fho6dKjatGmjs2fPasOGDfruu++0Z88eVapUqUDTbNOmjSTpscceU+/eveV0OnX77bfn+Zq+ffuqbNmyeuqpp+R0OjVw4MBsz7/88statGiRbrjhBtWtW1cJCQn66KOPVKtWLe+9yK0mEPMWAGAPFN0AAMuZOHGiwsPD1bNnz4s+HxISohtuuEETJ0685J7knHr06KFZs2Zp1KhRGjlypFwulzp37qw33ngj28XFWrRoodmzZ2v48OEaOXKkatWqpdGjR+vQoUPZim5Jeu6553T55Zfr3Xff1ejRoyVJtWvXVq9evfz+cODrpptu0vr16/XWW29p2rRp+vjjjxUWFqYWLVro7bff1l/+8hfvuCNHjtTRo0f13XffafLkyerTp49mzpypKlWqFGg+XExkZKQWLlyo1157TVOmTNGECRMUExOjyy+/XKNHj1a5cuUKPM0BAwbo0Ucf1aRJk/Sf//xHhmFcsugODw/XTTfdpIkTJ6pHjx65PttNN92kPXv26IsvvtCxY8dUqVIlde7cudAZi0Mg5i0AwB4cRiCvLgMAAAAAQCnGOd0AAAAAAAQIRTcAAAAAAAFC0Q0AAAAAQIBQdAMAAAAAECAU3QAAAAAABAhFNwAAAAAAAVLi79Pt8Xh08OBBlS1bVg6HI9hxAAAAAAAlgGEYOn36tGrUqKGQEP/7s0t80X3w4EHVrl072DEAAAAAACXQ/v37VatWLb/Pl/iiu2zZspIyZkRMTEyQ0/jndrs1Z84c9erVSy6XK9hxUMrRH2El9EdYCf0RVkOfhJWUtv6YlJSk2rVre2tOf0p80Z11SHlMTIzli+7IyEjFxMSUig4Ka6M/wkroj7AS+iOshj4JKymt/fFSpzFzITUAAAAAAAKEohsAAAAAgACh6AYAAAAAIEAougEAAAAACBCKbgAAAAAAAoSiGwAAAACAAKHoBgAAAAAgQIJadL/00ktyOBzZ/jVp0sT7/Llz5zRs2DBVrFhR0dHRGjhwoI4cORLExAAAAAAA5F/Q93RfeeWVOnTokPffkiVLvM89+eST+vHHHzVlyhQtXLhQBw8e1IABA4KYFgAAAACA/AsNeoDQUFWrVi3X8FOnTunzzz/X119/rW7dukmSvvzyS11xxRVavny5rrvuuuKOCgAAAABAgQR9T/f27dtVo0YNNWjQQHfeeaf27dsnSVq1apXcbrd69OjhHbdJkyaqU6eOli1bFqy4AbUnZY8+W/2ZDp4+GOwoeVp1cJU+XfWpjp49GuwoeVr+x3J9vvpznUw5GewoeVq0d5G+XPOlklKTgh0lT7/s+kUT1k3Q2fNngx3FL8MwNGP7DE1cP1Hn0s4FO45fhmFo2pZpmrRxktzp7mDH8Svdk67vNn2n7zZ9p3RPerDj+OUxPPp+8/ea/PtkpXnSgh3HrzRPmib/Plnfb/5eHsMT7Dh+paal6psN3+jHrT/KMIxgx/ErxZ2ir9Z9pVk7ZgU7Sp7OnD+j8WvHa97uecGOkqfEc4n6Ys0XWrJvyaVHDqLjycf12arP9NuB34IdJU9HzhzRp6s+1drDa4MdJU9Hzx7Vp6s+1aqDq4IdJU+HTh/SJys/0YYjG4IdJU/7Tu3TuJXjtPXY1mBHydPOEzs1buU47Tq5K9hRSo2g7um+9tprNX78eDVu3FiHDh3S6NGj1bFjR23cuFGHDx9WmTJlFBsbm+01VatW1eHDh/1OMzU1Vampqd7HSUkZhYzb7Zbbbd2NW7fbrae2PaW0rWmavm26frz9x2BHuih3ulttP2srSZq/e74m3DwhyIku7sz5M4r7PE6StObQGr3b690gJ7q4o2ePqvP4zpKkbce26eUuLwc5UYasdSXr/z2Je9Tzq56SpAOnDuipuKeCli0v646s0w1f3yBJSkxJ1ANXPRDkRBe3ZN8S9f+2vyRpws0TdPuVtwc3kB8zdszQrVNulSRNvW2q+l7WNyg5cvbHnObunquBkwdKkr4d8K3+1ORPxZatIL7f8r1u/z5jWc8cPFPd63cPcqKL+2rdV/rLz3+RJC0dulRta7QNcqKL+/i3j/V/v/yfJGnDgxvUuGLjYnnfS/XHnP7xv39o9KLRkqTdj+5WzbI1A5atKP6+4O9659d3JElHnjyi8hHlg5zo4p6Jf0ZfrP1CkpT0TJLCQ8ODnOjiHvzxQU3bNk2SlDoiVQ6HI2DvVdA+6euxmY9p0u+TJEnJzyUrNCToB8Fe1NCpQzVn1xyFOcN0+tnTwY7j18BvB2rloZWqEllFfzzxR7Dj+HX9xOu148QOXV7hcm18aKOp0y5Kf7Sj/H7OoK5Zffr08bZbtGiha6+9VnXr1tXkyZMVERFRqGmOGTNGo0ePzjV8zpw5ioyMLHTW4pBmZOyhWfvHWs2YMSPIaS4u1XPhB40NezZYNudJ94W92+t3rNeMNGvmPHDugLe9ZusazUi2Vs74+HhJ0o7kHd5hv/3+m2actFbOLOtOr/O2l65dqlqHawUxjX/LE5d724tWLlLM3pggpvFv3okLe+bmLZ8nbQtiGF3ojzktPrnY217w2wKF7QorrkgFsvDYQm/7l6W/KHVzah5jB8+ShAt7OmcumqmEmIQgpvFv+aEL69FPc3/Szuidxfr+/vpjTqv+uLAHcdqcaaoXUS9AiYpmzd413va02dNUpUyVIKbxb/2u9d729BnTFR0aHcQ0/q3ffyHnzzN+Vogj8AeX5rdP+tqw58Ke4x9n/KiwEGt+f679Y60kKTU91bLbnlLGjh5JSkhOsHTOHScytuu2ndgWsJyF6Y92lJycnK/xLPVzVmxsrC6//HLt2LFDPXv21Pnz55WYmJhtb/eRI0cueg54lhEjRmj48OHex0lJSapdu7Z69eqlmBhrbthKmb+SrM1oR0VGqW/f4OxRupRkd7KU+XekQoUKls15+Mxh6feMdo0aNSybc9vxbdKWjHadOnXUt481crrdbsXHx6tnz55yuVxadWiVt+Bq0KCB+nazRs6cwneHS5nb3Zdffrn6drBmzvNbz0t7MtpXNr1Sfa+2Zs5j649JGWf8qEWLFurbInh7un37Y06nfz8t7c1oN2/eXH1bW3N+Hlh9QMrc8dGqVSv1vdKaOTcv3yxlnuV09dVX6/qG1wc3kB+/LvxVyryhSVxcnNrVblcs73up/pjTL3N+kY5ltDt27KjmVZoHOGHh/PfH/0qZv1d37dpVdcvVDW4gPz6d/KmUeTZWz549LbtHftShUVJKRrtv374BLboL2id9vf3V21LmWWPX975eEa7C7fQKtMjdkdL5jLZVt+kkybHeIWWePWTlnFk1h2R+zqL0RzvKOqr6UixVdJ85c0Y7d+7U3XffrTZt2sjlcmnu3LkaODDjsMGtW7dq3759iouL8zuNsLAwhYXl/pXO5XLZZ8E7ZNmsLl3I5QhxWDenT66QkBByFlLWehMaeuGrwhnitFzOLNlyOi2c02m/nKHO0KDn9Pc9bpfl7nQ6ve3Q0ODPT3+cIT45LbDc/cmWMwjzM7/bFSEhF4otV6h1t0VsmdPC23a+h5O7XK5i2dNdmPnhCMme06rzUz5H51s2Yw6lPael+5OJ8vsZg1p0P/XUU7rxxhtVt25dHTx4UKNGjZLT6dTgwYNVrlw53XfffRo+fLgqVKigmJgYPfroo4qLi+PK5QAAAAAAWwhq0f3HH39o8ODBOn78uCpXrqwOHTpo+fLlqly5siTp3XffVUhIiAYOHKjU1FT17t1bH330UTAjA6WSla9gDAAAAFhZUIvuSZMm5fl8eHi4xo4dq7FjxxZTIlyKXYovcpZOhuwxP8lpLrusR7aZn+Q0FTnNZZv1nZymIifsLuj36QYCjQ0Jc5HTXLbpn3bJaZflbpecdlnu5DQVOc3F+g6AohsAAAC2EMj7XZuJnOYiJ+yOohsAAAAAgACh6AYAAAAAIEAoulEgdjnfh5zmsk1Ou5w3R05T0T/NRU5zkdNc5DQXOc1ll5wofhTdFuSQPc4HsUtOAAAAAAgWim4AAAAAAAKEotuCbHOopF1y2uRQH9vMT3Kayjb90y457bLc7ZLTLsudnKYip7lY34uOq4LD7ii6AQAAYAt2Kb7IWToxP+EPRTcKxMq/gvoip7lsk9MuexPIaSr6p7nIaS5ymss26zs5TUVO2B1FtwXZ5QJldskJAAAAAMFC0Q0AAAAAQIBQdAMAAAAAECAU3RZkm/OqyGkqu5wHRE5z2aZ/2iWnXZa7XXLaZbmT01R2yWkXrO8AKLoBXBJ/iAEAVsPfptKDq4LD7ii6USB2+QNHztLJNnsTyGkqu6xHtpmf5DQVOYGio3/C7ii6LcguVwW3S04AAAAACBaKbgAAAAAAAoSiGwAAAACAAKHoBgAAAAAgQCi6LcIuF4iwY04rZ86W08IXg7JNTtkwp5X7p11y0j9NZZvlTk5T2SWnHVl5fffFcgcCh6IbAAAAtkORCMAuKLoBAAAAAAgQim4AAAAAAAKEohsAAAAAgACh6AZwSXa5CAwAAABgNRTdFmGXooac5rJLTruwy0V1yGkuu6xHtpmf5DQVOc1lm/WdnKUS8xP+UHSjxLPLF6BtNnjIaSrb9E+75LTLcrdLTrssd3Kayi457YL1HQBFNwAAAGzBIYe3beUi0Tenldklp10wP+EPRTcAAAAAAAFC0Q3gkuxyaBwAAABgNRTdFmGXooac5rJLTruw8qGGvshpLrusR7aZn+Q0FTnNRU5zkdNcdsmJ4kfRbUEOhz3OB7FLTgAAAAAIFopuAAAAAAAChKLbgmxzqCQ5TWWXQ5LIaS7b9E+75LTLcrdLTrssd3Kayi457YL1veiyXbXewjkBfyi6AQAAYDtWLr7scusou+S0C+Yn/KHoBnBJdvmVHgAAALAaim6LsEtRQ05z2SWnXVh5r4cvcprLLuuRbeYnOU1FTnPZJqddvpfIaSq75ETxo+i2ILtcFdwuOQEAAAAgWCi6AQAAAAAIEIpuAAAAAAAChKLbgmxzvpJdctrk/Bor5/Rd1rZZ7nbJaeHl7ss2Oe2y3O2S0y7LnZymsktOu2B9L7pstwyzcE7AH4pui7DNFzI5TWWXnHZhlz/E5DSXXdYj28xPcpqKnObyzWmXzCg6ljXsjqLbguxygTK75AQAAACAYKHoBgAAAAAgQCi6AQAAAAAIEEsV3a+//rocDoeeeOIJ77Bz585p2LBhqlixoqKjozVw4EAdOXIkeCGBUohzqQAAAIDCsUzRvWLFCn3yySdq0aJFtuFPPvmkfvzxR02ZMkULFy7UwYMHNWDAgCClLB62uSgQOU1lm5w2KcBtk9Muy90uOe2y3O2S0y7LnZymsktOu2B9L7psVy+3cE7AH0sU3WfOnNGdd96pzz77TOXLl/cOP3XqlD7//HO988476tatm9q0aaMvv/xSS5cu1fLly4OY2Hy2+UImp6nsktMu7PKHmJzmsst6ZJv5SU5TkdNcdskJc9nlex7wxxJF97Bhw3TDDTeoR48e2YavWrVKbrc72/AmTZqoTp06WrZsWXHHLDZ2uSq4XXICAICShwIcgF2EBjvApEmTtHr1aq1YsSLXc4cPH1aZMmUUGxubbXjVqlV1+PDhi04vNTVVqamp3sdJSUmSJLfbLbfbbV5wk2XLZsiyWX1zGR7DFjk9Ho91c6ZZM2dWjqz/09LSvM9ZKWdOaekXcqanp9sjp8e6OdPT07O1g5UzZ3/MySo5LyXdY7+caelpls3p8Xi87bS04st5qf6Yk8cITs6C8p2f7jTrbjP5Ftq2yel2y63A5Sxon/RleHLkDLXm/PTd0e12u+UJ8fgf1yKs2jdzMjtnUfqjHeX3cwa16N6/f78ef/xxxcfHKzw83JRpjhkzRqNHj841fM6cOYqMjDTlPQLB7bmwwM6ePasZM2YEMY1/SWlJ3vbxE8ctm/Nw6oUfZY4cOWLZnLuSd3nbf/zxh+VyxsfHS5J+P/O7d9iePXsslzPLylMrve2dO3dqRrI1c647sc7b3rJli2acsGbOjcc2Xmhv3KgZh4ObM6s/5rT++Hpve9OmTZpx1Jrzc3PCZm973bp1mvGHNXNuP7zd2169arXK7CwTxDT+7Tpw4fvz199+1bnN54r1/f31x5z279vvbf9v6f+UEJkQqEhFcujwIW970cJF2hm+M4hp/Dt69Ki3PXfuXFVwVQhiGv9OJ532tmfPnq2wkLCAv2d++6SvEydPZHt9dGi0mZFMk5KS4m3PmDlDTocziGny4PPjgFW3lXIKVM7C9Ec7Sk5Oztd4QS26V61apYSEBF111VXeYenp6Vq0aJE+/PBDzZ49W+fPn1diYmK2vd1HjhxRtWrVLjrNESNGaPjw4d7HSUlJql27tnr16qWYmJiAfZaiOnvurJS53RgVFaW+ffsGN5Afx5KPSZnb4RUrVLRszl0nd0mZ27dVq1a1bM61R9ZK2zLatWrVskxOt9ut+Ph49ezZUy6XS9F7o6UdGc/Vq1dPfXtZI2dOnu0eaXdGu2HDhurbxZo5EzcmSvsy2k2aNFHf66yZc/+q/dIfGe1mzZqp71XByZmzP+aUsC5ByqxrmjZtqr5XW3N+bv9tu3Qwo92yZUv1bWHNnKsWr5Iyf7e8qs1V6tvYmjkX/LJAyqy/rr3mWnWr361Y3vdS/TGn6TOmS5l1Tft27dW2RtsAJyycr77/SkrMaHfq3EmNKzYOah5/Ppr0kZRZz3bv3l3Vo6sHN5AfLx58Ucr8Hah3796KdAVux09B+6Svtya8JZ3NaPfs2VPlI8rn/YIgidgVoayDBfr26StniEWL7nXyFt5W2aa7qLUXmmbnLEp/tKOso6ovJahFd/fu3bVhw4Zsw+699141adJEzz77rGrXri2Xy6W5c+dq4MCBkqStW7dq3759iouLu+g0w8LCFBaW+9dEl8tl6QUfmuazKByybNbQ0As5HSEOW+QMCQmxbk6ntXNmrTd2mZ9OpzNb2xY5Q6ybM8R54bIfVpif/r7HQ0KsldMfO+YMdYZaNqcj5MJ1RUJDiz9nfrcrfK9/Eoyc+eU7P12hFt5m8rmcjKVz+iiubdBCvY/v/LTytnKOnFYtun1PK7DsvMwhUDkt3Z9MlN/PGNSiu2zZsmrWrFm2YVFRUapYsaJ3+H333afhw4erQoUKiomJ0aOPPqq4uDhdd911wYgMG7LLFS9tk9MmF66xTU67LHe75LTLcrdLTrssd3Kayi457YL13Vx2yQn4CvqF1C7l3XffVUhIiAYOHKjU1FT17t1bH330UbBjAQAAABdllzu82CWnXTgcDtv8yILiZbmie8GCBdkeh4eHa+zYsRo7dmxwAgEAAMBy2OMJwC4KVHQnJibqhx9+0OLFi7V3714lJyercuXKat26tXr37q127doFKieAIGLDBgAAACickEuPIh08eFD333+/qlevrldeeUUpKSlq1aqVunfvrlq1amn+/Pnq2bOnmjZtqm+//TbQmUskuxQ15DSXXXLahV0O6SKnueyyHtlmfpLTVOQ0FznNRU5z2SUnil++9nS3bt1aQ4YM0apVq9S0adOLjpOSkqKpU6fqvffe0/79+/XUU0+ZGrQ0ccge59fYJScAAAAABEu+iu5NmzapYsWKeY4TERGhwYMHa/DgwTp+/Lgp4QAAAAAAsLN8HV5+qYJbkjwej3766ad8jw//bHOopF1y2uRQH9vktMtyt0tOuyx3u+S0y3K3S067LHdymsouOe2C9b3ofK+ybuWcgD9Fvnr5jh079MUXX2j8+PE6evSo3G63GbkAWAh/4AAAyD+73IrLLjntgluGwZ987enOKSUlRRMmTFCnTp3UuHFjLV26VCNHjtQff/xhdj4AAAAgF4obAHZRoD3dK1as0L/+9S9NmjRJDRs21J133qmlS5fqo48+8nuBNeSPXf5wkNNcdslpF7Y5hI+cprLLemSb+UlOU5HTXLbJaZfvJXKayi45UfzyXXS3aNFCSUlJuuOOO7R06VJdeeWVkqTnnnsuYOFKK64KDgAAAAAlQ74PL9+6das6deqkrl27slcbAAAAAIB8yHfRvWvXLjVu3FgPP/ywatWqpaeeekpr1qzhAgwAAAAAAoZ6A3aX76K7Zs2aeuGFF7Rjxw599dVXOnz4sNq3b6+0tDSNHz9e27ZtC2TOUoXzlcxlm/lp4Zy+2Wyz3O2S08LL3Zdtctpludslp12WOzlNZZecdsH6bi675AR8Ferq5d26ddN//vMfHTp0SB9++KHmzZunJk2aqEWLFmbnKzXs8gVCTnPZJadd2GbDhpymsst6ZJv5SU5T0T/NZZecMBfLHXZXqKI7S7ly5fTXv/5VK1eu1OrVq9WlSxeTYpVuXEgNAAAgb3b5QQMAilR0+2rVqpXef/99syYHAAAAAIDtFeg+3ZJ0/PhxjRw5UvPnz1dCQoI8Hk+250+cOGFaOAAAAAAA7KzARffdd9+tHTt26L777lPVqlW5miBQCnAuFQAAAFA4BS66Fy9erCVLlqhly5aByAPZ5xwl2+S0ScFom5x2We52yWmX5W6XnHZZ7nbJaZflTk5T2SWnXbC+F53vTj4r5wT8KfA53U2aNFFKSkogspRqdvkCIae57JLTLmyzYUNOU9llPbLN/CSnqeif5rJLTpjLLusR4E+Bi+6PPvpIL7zwghYuXKjjx48rKSkp2z8UHVcvBwAAyBuFGAC7KPDh5bGxsUpKSlK3bt2yDTcMQw6HQ+np6aaFAwAAAADAzgpcdN95551yuVz6+uuvuZAaUEpwOB8AAABQOAUuujdu3Kg1a9aocePGgcgDAAAAAECJUeBzutu2bav9+/cHIkupZpc9ieQ0l11y2oVdzu8jp7nssh7ZZn6S01T0T3PZJqddlrtNctoF8xP+FHhP96OPPqrHH39cTz/9tJo3by6Xy5Xt+RYtWpgWDtbGHz5z2SanXZa7XXLaZbnbJaddlrtdctpluZPTVHbJaRes7+ayS07AV4GL7kGDBkmS/vznP3uHORwOLqQGAAAAAEAOBS66d+/eHYgcAAAAQL5ZeY8nt38tnRxyWLpfIngKXHTXrVs3EDkAWJhdDo0DAAAArCZfF1Jbvnx5vieYnJys33//vdCBAAAAAAAoKfJVdN99993q3bu3pkyZorNnz150nE2bNun5559Xw4YNtWrVKlNDlgZ22ZNITnPZJadd2OWQLnKayy7rkW3mJzlNRf80FznNZZf+aRd2We4ofvk6vHzTpk36+OOP9be//U133HGHLr/8ctWoUUPh4eE6efKktmzZojNnzuhPf/qT5syZo+bNmwc6d4nmcHAeEAAAAACUBPkqul0ulx577DE99thjWrlypZYsWaK9e/cqJSVFLVu21JNPPqmuXbuqQoUKgc5bKtjlV0e7/Jpnm/lpl5x2We52yWmX5W6XnHZZ7nbJaZflTk5T2SWnXbC+m8suOQFfBb6QWtu2bdW2bdtAZAFgUXbZYAAAwAq4ennpxNXL4U++zukGAAAArIQ9ngDsgqLbIuzyqxg5zWWXnHZhlw0wcprLLuuRbeYnOU1F/zSXbXLaZbmT01R2yYniR9FtQVxIDQAAAABKBopuAAAAAAAChKIbwCXZ5XA+AABQ8nBhOthdga9eLklnz57VwoULtW/fPp0/fz7bc4899pgpwUozuxQ4tslpk/NrbJPTLsvdLjntstztktMuy90uOe2y3MlpKrvktAvWd3PZJSfgq8BF95o1a9S3b18lJyfr7NmzqlChgo4dO6bIyEhVqVKFohsAAAClGntmSyduGQZ/Cnx4+ZNPPqkbb7xRJ0+eVEREhJYvX669e/eqTZs2+sc//hGIjKWCbX4FJaep7JLTLuzyh46c5rLLemSb+UlOU9E/zeWb08qZrZzNF/3TXHbJieJX4KJ77dq1+r//+z+FhITI6XQqNTVVtWvX1ptvvqnnn38+EBlLHa5eDgAAAAAlQ4GLbpfLpZCQjJdVqVJF+/btkySVK1dO+/fvNzcdAEvgl1sAAACgcAp8Tnfr1q21YsUKNWrUSJ07d9bIkSN17NgxffXVV2rWrFkgMgIAAAAopThHHnZX4D3dr732mqpXry5JevXVV1W+fHk9/PDDOnr0qD799FPTAwIAAAAAYFcF3tPdtm1bb7tKlSqaNWvWRcf73//+p7Zt2yosLKzw6UoRuxy+a8cLmFj5IiF2yenL0svdsEn/NOyx3G2T0y7fS/RPU9kmp02+520zPy2czR9Lr+926Z82yQn4U+A93fnVp08fHThwIM9xPv74Y7Vo0UIxMTGKiYlRXFycZs6c6X3+3LlzGjZsmCpWrKjo6GgNHDhQR44cCVRkAAAAAABMFbCiOz+/QtWqVUuvv/66Vq1apZUrV6pbt266+eab9fvvv0vKuD3Zjz/+qClTpmjhwoU6ePCgBgwYEKjIAAAAsAn2eAKwiwIfXm6mG2+8MdvjV199VR9//LGWL1+uWrVq6fPPP9fXX3+tbt26SZK+/PJLXXHFFVq+fLmuu+66YEQGSiU2bAAAAIDCCdie7oJKT0/XpEmTdPbsWcXFxWnVqlVyu93q0aOHd5wmTZqoTp06WrZsWRCTAgAAAACQP0Hd0y1JGzZsUFxcnM6dO6fo6Gj98MMPatq0qdauXasyZcooNjY22/hVq1bV4cOH/U4vNTVVqamp3sdJSUmSJLfbLbfbHZDPYIbz7vPetmEYls1KTnP55vJ4PJbJmZUj6/+09DTvc1bKmZM7zZrzMyff+ZnuSbdHzvTg5czZH3NKS7NGzkuxyvy8lDTPhZxp6WmWzZnuSfe2izPnpfpjTunpPjnTrDs/PR6Pt+1Os+42ky1zut1yhwYuZ0H7pC+7zE/fa9G53W65HRbN6cOy8zIHs3MWpT/aUX4/Z8CKbocjf/fTa9y4sdauXatTp07pu+++05AhQ7Rw4cJCv++YMWM0evToXMPnzJmjyMjIQk830M6knfG2z549qxkzZgQxjX8J5xO87RMnTlg2556UPd52QkKCZXNuPrPZ2z546KDlcsbHx0uSViWt8g7bt2+f5XJmWXtyrbe9c9dOzUi1Zs4NxzZ429u2bdOMJGvm3JKwxdv+fdPvmnEsuDmz+mNOvx/93dvesmWLZpy05vzcdnibt71h4wbNOGzNnLsO7vK216xdo5i9MUFM49++/fu87RUrVkjb8hg5APz1x5wOHjzobS9bvkxJG5MCFalIEo5e+Pu+ePFiHYjM+2K4wXLi5Alve8H8BdoctjmPsYPnzJkL23Vz4ucoJjTw61F++6SvU6dOedtz585VBVcFMyOZJuVcirc9a/YsRTgjgpgmf6y6rZRToHIWpj/aUXJycr7GC1jRnd9zQMuUKaPLLrtMktSmTRutWLFC//znPzVo0CCdP39eiYmJ2fZ2HzlyRNWqVfM7vREjRmj48OHex0lJSapdu7Z69eqlmBhrbjhIUsLpBGljRjsqKkp9+/YNbiA/9p7aK23KaJcvX96yOTckbJC2ZrQrV65s2Zyx+2OlHRnt6tWrWyan2+1WfHy8evbsKZfLpZCdIVLmdnjtOrUtkzOn07+flvZmtBvUb6C+PayZ8+Cag9IfGe1GjRqpb0dr5tyyfIuUWS80bdpUfa8JTs6c/TGn3St2S5n1QeMmjdU3zprzc+2StVLmgVrNrmymvm2smXPRvEVSZv3VqlUr9b3Smjl/nvmzdDyj3bZtW/VtVDw5L9Ufc/pm6jdSYkb7uuuuU8c6HQMbsJA++fYTKfP3gA4dO6hV1VZBzePPWxPeks5mtLt07aL6sfWDmsef5/94XjqX0e7Zo6cqRlYM2HsVtE/6euXIK1JmzdCtWzfVKFsjAAmLLmJnhJS5Q7F3796KLhMd3ED+rL3QtOq2kqSA5ixKf7SjrKOqLyVgRffp06cL9TqPx6PU1FS1adNGLpdLc+fO1cCBAyVJW7du1b59+xQXF+f39WFhYRe9N7jL5bL0gneFXsjmcDgsm9WWOUOsmzM09MIqGBISYrmcWeuN0+n0DgtxWC9nFqvPzyy+89PpdJIzn/x9j2fLGRL8nP5YbX764wy5kDPUGWrZnCEhFy5LExpa/Dnzu10R7Jz55Qi5cISiK9S620x2yem73ItrG7Qw7+N7ZKqlt5V9DqC1dE4fdsgoBS6nXZZTUeX3M+a76G7dunW+DhlfvXp1fiepESNGqE+fPqpTp45Onz6tr7/+WgsWLNDs2bNVrlw53XfffRo+fLgqVKigmJgYPfroo4qLi+PK5QAAAKWcIe6sAcAe8l109+/f3/Q3T0hI0D333KNDhw6pXLlyatGihWbPnq2ePXtKkt59912FhIRo4MCBSk1NVe/evfXRRx+ZngMAAAAAgEDId9E9atQo09/8888/z/P58PBwjR07VmPHjjX9va3GLr/WktNcdslpF3a5nzg5zWWX9cg285OcpqJ/mouc5rJL/wTszjL36cYFDuXvyu8AAAAAAGuj6LYgu/zqaJucdvm12cI5fbPZZrnbJaeFl7sv2+S0y3K3S067LHdymsouOe2C9d1cdskJ+KLoBgAAAAAgQCi6AQAAABPl544/AEqPAhfdEyZMUGpqaq7h58+f14QJE0wJVRrZ5VAZcprLLjntwjaH8JHTVHZZj2wzP8lpKvqnuXxzWnneWjmbL3ICxaPARfe9996rU6dO5Rp++vRp3XvvvaaEKu24kBoAAAAAlAwFLroNw7joITN//PGHypUrZ0ooAAAAAJA4XB/2l+/7dLdu3VoOh0MOh0Pdu3dXaOiFl6anp2v37t26/vrrAxISQHDZ5bBDAAAAwGryXXT3799fkrR27Vr17t1b0dHR3ufKlCmjevXqaeDAgaYHLI3sUuDY5fwa28xPu+S0y3K3S067LHe75LTLcrdLTrssd3Kayi457YL13Vx2yQn4ynfRPWrUKElSvXr1NGjQIIWHhwcsFAAAAGBXHA6NYEtPT5fb7b7oc3Wj6nrb586dM/V93W63QkNDde7cOaWnp5s67WBwuVxyOp1Fnk6+i+4sQ4YMkZRxtfKEhAR5PJ5sz9epU6fIoUoju/xqR05z2SWnXdhmbwI5TWWX9cg285OcpqJ/mouc5qJ/ljyGYejw4cNKTEz0O8649uO87d27d5v+/tWqVdP+/ftLzI9PsbGxqlatWpE+T4GL7u3bt+vPf/6zli5dmm141gXWSsIvGsHG1csBAADyZpeCEShOWQV3lSpVFBkZedFC8WzCWW+7fpX6pr6/x+PRmTNnFB0drZCQAl+z21IMw1BycrISEhIkSdWrVy/0tApcdA8dOlShoaH66aefVL169RLzCwYA//iFGQAAwNrS09O9BXfFihX9j+hTAZp9yrDH49H58+cVHh5u+6JbkiIiIiRJCQkJqlKlSqEPNS9w0b127VqtWrVKTZo0KdQbAgAAAEB+sZMvf7LO4Y6MjAxykpIla3663e5CF90F/vmhadOmOnbsWKHeDAAAAAAQOPxIYS4z5meBi+433nhDzzzzjBYsWKDjx48rKSkp2z8Ujl0O3/XNaeVzqbLltPC8tUtOX5Ze7rJJ/5Q9lrttctrle4n+aSrb5LTJ97xt5qeF1x1ftlnf7dI/bZIT8KfARXePHj20fPlyde/eXVWqVFH58uVVvnx5xcbGqnz58oHICAAAAABAvnz++efq1atXnuMcO3ZMVapU0R9//BHwPAU+p3v+/PmByAHAwqz8Kz0AAADsbejQoUpMTNTUqVOLPK1z587pxRdf1JQpU/KcfqVKlXTPPfdo1KhR+vzzz4v8vnkpcNHduXPnQOQAAAAA8o3DjGFlWbdTRvH77rvvFBMTo/bt219y3HvvvVdt2rTRW2+9pQoVKgQsU6Gu47548WLdddddateunQ4cOCBJ+uqrr7RkyRJTwwEAAAAAIEmzZs1Shw4dFBsbq4oVK6pfv37auXNntnEmTZqkG2+80fv4pZde0r///W9NmzZNDodDDodDCxYskCRdeeWVqlGjhn744YeA5i5w0f3f//5XvXv3VkREhFavXq3U1FRJ0qlTp/Taa6+ZHhAAAABA6cUe48IzDENnz5/N9i/FneL9l/M5U/65zwbsSJSzZ89q+PDhWrlypebOnauQkBD96U9/ksfj8Y6zZMkStW3b1vv4qaee0m233abrr79ehw4d0qFDh9SuXTvv89dcc40WL14ckLxZCnx4+SuvvKJx48bpnnvu0aRJk7zD27dvr1deecXUcKWJXc6ZJae57JLTLuxyqCE5zWWX9cg285OcpqJ/mouc5qJ/lnzJ7mRFj4ku9vdNejZJZZ1lTZ/uwIEDsz3+4osvVLlyZW3atEnNmjVTYmKiTp06pRo1anjHiY6OVkREhFJTU1WtWrVc06xRo4bWrFljelZfBd7TvXXrVnXq1CnX8HLlyikxMdGMTLAJu3wB2uYPCjlNRf80l21y2mW52yWnXZY7OU1ll5x2wfpuLrvkRGBs375dgwcPVoMGDRQTE6N69epJkvbt2ydJSklJkSSFh4fne5oRERFKTk42PauvAu/prlatmnbs2OH9gFmWLFmiBg0amJULgIXYZYMBAAAAF0S6InVmxJlsw1YfWu1tX1X9KlPfz+PxKOl0kiJdkaZON8uNN96ounXr6rPPPlONGjXk8XjUrFkznT9/XpJUsWJFORwOnTx5Mt/TPHHihCpXrhyQvFkKXHT/5S9/0eOPP64vvvhCDodDBw8e1LJly/TUU0/pxRdfDERGAAAAAEABORwORZWJyjYswhXhbed8rqg8Ho/+v707j26qXNcA/qRzS2kLFNoiFFA4IIJYQBDFCWoRWCgOxwldOBw9l1tEQEVxwFkGrziBoF4VzzogOFxQOUxlkEEoSKHWMpTBAkJpy1TSAdq02fcPJE060ZQv3d+bPL+1XGbvhOTJft9vN1+ys1MRWOGR7+GfOHECWVlZ+Oyzz3D99dcDQLUTeQcFBaFr167YuXOny+90BwUFoaKiosb7zczMxE033aQ8rzO3J93PP/887HY7Bg4ciJKSEtxwww0IDg7GM888gyeffNITGYmIiIiIXPAwY9KZAQMW8ARwKjVr1gwtWrTAp59+iri4OBw6dAjPP/98tdsNGjQIGzZswNixYx3r2rdvj+XLlyMrKwstWrRAZGQkAgMDUVJSgrS0NI+fENyt73RXVFRg/fr1SE5OxsmTJ5GZmYnU1FQcO3YMb7zxhqcy+gQph+8yp1pSckoh5QUYc6olZRyJ2Z7MqRT7Uy3mVEtKfxIBgJ+fH+bPn4+0tDR069YN48aNwzvvvFPtdo899hiWLFmC06dPO9Y9/vjj6Ny5M3r37o2WLVvil19+AQD88MMPiI+Pd3xy7ilufdLt7++PpKQk7Nq1C1FRUejataunchEREREREZEPmDNnTr1ul5iYiJ07d7qsq/rmUdeuXTF06FB8/PHHmDhxIgCgZcuWWLFiRbX7++CDDzBp0qSGhXaD22cv79atG/744w9PZKG/iHl3VEpOIe/i6pzTudY653TG/lRLTE4pdZeSU0rdmVMpKTml4HhXS0pOMtc777yD8PC6fyrt+PHjuPPOO3H//fd7PI/bk+4333wTzzzzDBYvXoyjR4/CarW6/EdERERERETkjkOHDiE8PLzW/87/LFh9tG/f/oLnG4uOjsaECRM8ctK3qtw+kdqQIUMAALfddptLQMMwYLFYaj0rHBEREREREVFNWrdujfT09Dqvl8rtSfeaNWs8kYOIiIiIiIh8VEBAADp27Gh2DI9wa9Jts9nw+uuvY/bs2ejUqZOnMvkkMd/3YU6lpOSUQsr3vJhTLSnjSMz2lJJTSt2l5JRSd0PGOUZ0zuZMSn9KZBgGzPrFMCn9J4WK7enWd7oDAwORkZFx0Q9KRLJw501ERESkt8DAQABASUmJyUm8y/nteX77NoTbh5c/+OCD+PzzzzFlypQGPygRERERERGp4+/vj6ioKOTn5wMAwsLCaj5JWHnlxbNnzyrNYLfbUVZWhrNnz8LPz+1zdmvFMAyUlJQgPz8fUVFR8Pf3b/B9uT3pLi8vxxdffIGVK1eiV69eaNKkicv106dPb3AYOkfKp4picgo5dIo51WJ/qiUmp5S6S8kppe7MqZSUnFJwvKslJadZYmNjAcAx8a7J8YLjjsvZxdlKH98wDJw5cwahoaGNclbwxhAVFeXYrg3l9qQ7MzMTPXv2BADs2bPH5Tpv2bBERERERETSWCwWxMXFoVWrVrDZbDXeZvCMwY7Lu0fvVvr4NpsN69atww033HBRh2PrIjAw8KI+4T6PZy/XhJR37cS8W8ucPknMOGJOpaSMIzHbU0pOKXWXklNK3ZlTKfan9/L39691sniw+KDjckhIiPLHLS8vR0hIiFdMulWRfaA9ERERERERkcbc/qT75ptvrvMw8tWrV19UICLSD99hJiIi3fBvE+mM/UnO3J50X3XVVS7LNpsN6enpyMzMxMiRI1XlIiIiIiIigsWsH7wmUsTtSfd7771X4/pXX30VRUVFFx2IiIiIiIiIyFso+073gw8+iC+++ELV3fkc5xNZ6Hw4inM2MTk1PkmIlJzOdM4pZhwZMuouJqeU/RL7Uykp+08xOaXUXeNszsSMdyn9KSQnUW2UTbo3bdqk/Ox3RERERERERJK5fXj5nXfe6bJsGAaOHj2KrVu34uWXX1YWjIj0wXeViYiIiIgaxu1Jd2RkpMuyn58fOnfujNdffx1JSUnKghERERERERFJ5/ak+8svv/REDiIiIiKieuNRWL5D4tnL2Z/krN7f6T516hQ++ugjWK3WatedPn261uvqMnnyZFx99dVo2rQpWrVqheHDhyMrK8vlNmfPnkVycjJatGiB8PBw3HXXXcjLy3PrcYiIiIiIiIjMUO9J94wZM7Bu3TpERERUuy4yMhLr16/HRx995NaDr127FsnJyUhNTUVKSgpsNhuSkpJQXFzsuM24cePw008/4dtvv8XatWuRk5NT7Xvl3kDnM1s6k/KuHXP6JjHjiDmVkjKOxGxPKTml1F1KTil1Z06l2J9EjaPeh5d///33ePfdd2u9/p///CeeeeYZvPjii/V+8GXLlrksz5kzB61atUJaWhpuuOEGnD59Gp9//jnmzZuHAQMGADh3ePvll1+O1NRUXHPNNfV+LEnE7ACl5BSyo9Y5p5SfZHLG/lRLTE4pdZeSU0rdmVMpKTml4HhXS0pOImf1nnTv378fnTp1qvX6Tp06Yf/+/RcV5vTp0wCA5s2bAwDS0tJgs9mQmJjouE2XLl0QHx+PTZs21TjpLi0tRWlpqWP5/CHvNpsNNpvtovJ5Urmt3GVZ16y28spchmFom7O8vHJ7GnaNc1ZU5rTb7drkPJ/j/P+dt6dOOauqqKhwXJaSs8JeISNnhXk5q/ZjVRV2IdtTSE673e64bGbdL8Q5Z3l5eaPlvFA/VmU3zMnpLsNeOZHROqfTBNZWrvFrO6d5oadzutuTzly2p86vlZ23p845ndhsNsB+4duZTfW2vJh+lKi+z7Pek25/f3/k5OQgPj6+xutzcnLg59fwn/222+0YO3YsrrvuOnTr1g0AkJubi6CgIERFRbncNiYmBrm5uTXez+TJk/Haa69VW79ixQqEhYU1OJ+nnSg74bhcXFyMJUuWmJimdn+e/dNx2Wq1aptzT/Eex+UTJ09omzO9MN1xOT8vX7ucKSkpAIDtBdsd644cOaJdzvMyTmQ4Lh88dFDbnDvzdzou79+3H0tK9My5N3ev43JWVhaWFJib83w/VpWVV3kukL1792JJoZ7bc39O5RvTu3buwpLjeuY8ePig43JGRgaWHNEz55EjRxyXt2/fjtDs0EZ9/Nr6saq83Mrz0GzZsgW23Xq+ED1xsvJ1yMaNG3GiyYk6bm2e8x/QAMC6deuQHZJtYpraOX9VcvWq1WgR1MLjj1nfnnRWVFTkuPzzzz9jd/BulZGUOVt61nF55cqViAio/nVX3SxdthQBFrfPWd3oPPVaqSH9KFFJSUm9blfvTkhISMCiRYtqPaR74cKFSEhIqO/dVZOcnIzMzExs2LChwfcBABMnTsT48eMdy1arFW3btkVSUlKN30fXxcGTB4G/Xoc3adIEQ4YMMTdQLXYd3wX8tT+OiIjQNmf0kWjgr/lCi+YttM0ZlB0E/PU6vFVMK21y2mw2pKSk4JZbbkFgYCDO7DoDHDh33SWXXKJNzqryf8sH/npfqF18Owy5Vc+c+7bsA3LOXb6s42UYcpOeObet3wb89f5m586dMeRac3JW7ceqdmzaARw9d7lTp04Ycr2e23PjzxuB/HOXL+96OYb00TPn8uXLgePnLl955ZUY0kPPnN/++C1w6tzlhIQEDLm8cXJeqB+r+vy7z4G/zjPbp08f3HLpLR5O2DDv/fs94K/517XXXou+l/Q1N1AtXst9DThz7vINN9yAy6MvNzdQLZocbAKUnbs8YOAAXNL0Eo89lrs96eyFwy8Af81nb7rpJlza7FIPJLx4IftCgL/er0pMTER0WLS5gWqTXnlx8K2DEejvXj0aTXrlRdWv6S6mHyWq74nE6z3pHj16NO677z60adMGo0aNgr+/P4Bzh559/PHHeO+99zBv3rwGhR09ejQWL16MdevWoU2bNo71sbGxKCsrQ0FBgcun3Xl5eYiNja3xvoKDgxEcHFxtfWBgoNaF9w/wd1nWNWtAQGXLWCwWbXM6b0+Ln8Y5/Stz+vn5aZfz/LhxrruOOc9zPtpGSk5/P38ZOf3Nz1nbflzM9rTIyGmxVP40jw51r43FrzJnQEBAo+es7+sK5+1pRs56c/pFJq1zOtE5p/P3jgMDGuc1aINe6zrVXevXylJyOgkIDNB30u3EU9tSSp0uVn2fY72PB7/rrrswYcIEjBkzBs2bN0dCQgISEhLQvHlzjB07FuPHj8fdd9/tVkjDMDB69GgsXLgQq1evRocOHVyu79WrFwIDA7Fq1SrHuqysLBw6dAj9+vVz67GIiIiIiIiIGptbXzR46623cPvtt2Pu3LnYt28fDMPAjTfeiAceeAB9+vRx+8GTk5Mxb948/PDDD2jatKnje9qRkZEIDQ1FZGQkHnvsMYwfPx7NmzdHREQEnnzySfTr189rz1wOyDkro5icUs4aqnFO52w653TG/lRLTE4pdZeSU0rdmVMpKTml4HhXS0pOImduf7u/T58+DZpg12TWrFkAzn2HxNmXX36Jhx9+GADw3nvvwc/PD3fddRdKS0sxaNAgfPzxx0oen4iIiIiIiMiTTD2lXn3eqQoJCcHMmTMxc+bMRkhEREREREREpE7Df+OLiIiIiIiIiOrESbcm+H0ftZjTN4kZR8yplJRxJGZ7Sskppe5SckqpO3MqJaU/SR3W3BycdBPRBUl58UBERL6DkwfSGfuTnDVo0l1eXo6VK1fik08+QWFhIQAgJycHRUVFSsMRERERERERSeb2idQOHjyIW2+9FYcOHUJpaSluueUWNG3aFFOnTkVpaSlmz57tiZw+Rco7Y2JyCvmUljnVYn+qJSanlLpLySml7syplJScUnC8qyUlJ5Eztz/pfuqpp9C7d2+cOnUKoaGhjvV33HEHVq1apTQcERERERERkWRuf9K9fv16bNy4EUFBQS7r27dvjyNHjigL5mv4LqhazOmbxIwj5lRKyjgSsz2l5JRSdyk5pdSdOZVif/oeKTX3Nm5/0m2321FRUVFt/eHDh9G0aVMloYhIL/xjR0RERETUMG5PupOSkvD+++87li0WC4qKivDKK69gyJAhKrMRERERERERieb24eXvvvsuBg0ahK5du+Ls2bN44IEHsHfvXkRHR+Prr7/2REYiIiIiIhc8TJZ0xv4kZ25Putu0aYPffvsN8+fPR0ZGBoqKivDYY49hxIgRLidWIyIiIiIiIvJ1bk+6ASAgIAAPPvig6iz0FynvjInJKeT7yMypFvtTLTE5pdRdSk4pdWdOpaTklILjXS0pOYmc1WvS/eOPP9b7Dm+77bYGh/Fl3CGrxZy+Scw4Yk6lpIwjMdtTSk4pdZeSU0rdmVMp9qfvkVJzb1OvSffw4cNdli0WS7WCWSwWAKjxzOZEJBv/2BERERERNUy9zl5ut9sd/61YsQJXXXUVli5dioKCAhQUFGDp0qXo2bMnli1b5um8RERERERERGK4/Z3usWPHYvbs2ejfv79j3aBBgxAWFoYnnngCu3btUhqQiIiIiIiISCq3f6d7//79iIqKqrY+MjISBw4cUBCJiIiIiKhu/G4q6Yz9Sc7cnnRfffXVGD9+PPLy8hzr8vLy8Oyzz6JPnz5Kw/kSKQNTynd7mdM3iRlHzKmUlHEkZntKySml7lJySqk7cyrF/vQ9UmrubdyedH/xxRc4evQo4uPj0bFjR3Ts2BHx8fE4cuQIPv/8c09k9DlSdixicgrZueic07nWOud0xv5US0xOKXWXklNK3ZlTKSk5peB4V0tKTiJnbn+nu2PHjsjIyEBKSgp2794NALj88suRmJjoOIM5ERERERERETVg0g2c+3mwpKQkJCUlqc5DRERERERE5DXcPrwcANauXYthw4Y5Di+/7bbbsH79etXZiIiIiIiIiERze9L973//G4mJiQgLC8OYMWMwZswYhISEYODAgZg3b54nMhIRERERERGJ5Pbh5W+99RamTZuGcePGOdaNGTMG06dPxxtvvIEHHnhAaUBfIeWkEGJOBsKcSonpT+ZUSkxOjiOlxOSUUncpOaXUHTJO7KlzNmfsT8/RNbOUmnsbtz/p/uOPPzBs2LBq62+77TZkZ2crCUVERERERETkDdyedLdt2xarVq2qtn7lypVo27atklC+Ttd3xqoSk1PIO3rMqRb7Uy0xOaXUXUpOKXVnTqWk5JSC410tKTmJnLl9ePnTTz+NMWPGID09Hddeey0A4JdffsGcOXPwwQcfKA9IREREREREJJXbk+5Ro0YhNjYW7777Lr755hsA536ne8GCBbj99tuVByQiIiIiIiKSqkG/033HHXfgjjvuUJ3Fp0k5VEbMIVLMqZSY/mROpcTk5DhSSkxOKXWXklNK3ZlTKfan75FSc2/ToEk3AJSVlSE/Px92u91lfXx8/EWHIiIiIiKqCydipDP2Jzlze9K9d+9ePProo9i4caPLesMwYLFYUFFRoSwcERERERERkWRuT7offvhhBAQEYPHixYiLi4PFYvFELp8m5Z0xMTmFHEbDnGqxP9USk1NK3aXklFJ35lRKSk4pON7VkpKTyJnbk+709HSkpaWhS5cunshDRERERERE5DXc/p3url274vjx457I4tOkvGsn5t1a5vRJYsYRcyolZRyJ2Z5Sckqpu5ScUurOnEqxP32PlJp7G7cn3VOnTsWECRPw888/48SJE7BarS7/EZH34R87IiIiIqKGcfvw8sTERADAwIEDXdbzRGpERERERERErtyedK9Zs8YTOYiIiIiI6o1HYZHO2J/kzO1J94033ljrdZmZmRcVhoiIiIiIiMibuP2d7qoKCwvx6aefok+fPujRo4eKTD5PyjtjYnIKOWEEc6rF/lRLTE4pdZeSU0rdmVMpKTml4HhXS0pOImcNnnSvW7cOI0eORFxcHP7nf/4HAwYMQGpqqspsPkXKDkTMHw7mVEpMfzKnUmJychwpJSanlLpLySml7sypFPvT90ipubdx6/Dy3NxczJkzB59//jmsVivuuecelJaWYtGiRejataunMhIRERERERGJVO9PuocNG4bOnTsjIyMD77//PnJycvDRRx95MhsRERERERGRaPX+pHvp0qUYM2YMRo0ahU6dOnkyExEREREREZFXqPcn3Rs2bEBhYSF69eqFvn37YsaMGTh+/LgnsxERERER1Yjf8yWdsT/JWb0n3ddccw0+++wzHD16FP/85z8xf/58tG7dGna7HSkpKSgsLPRkTq8n5aQGUnYgzKmWmP5kTqXE5OQ4UkpMTil1l5JTSt2ZUyn2p++RUnNv4/bZy5s0aYJHH30UGzZswO+//46nn34aU6ZMQatWrXDbbbd5IqPPkTIYxOQUsqNmTrXYn2qJySml7lJySqk7cyolJacUHO9qSclJ5Oyifqe7c+fOmDZtGg4fPoyvv/7a7X+/bt06DBs2DK1bt4bFYsGiRYtcrjcMA5MmTUJcXBxCQ0ORmJiIvXv3XkxkIiIiIiIiokZzUZPu8/z9/TF8+HD8+OOPbv274uJi9OjRAzNnzqzx+mnTpuHDDz/E7NmzsXnzZjRp0gSDBg3C2bNnVcQmIiIiIiIi8ii3fqdbtcGDB2Pw4ME1XmcYBt5//3289NJLuP322wEA//rXvxATE4NFixbhvvvua8yoRERERERERG4zddJdl+zsbOTm5iIxMdGxLjIyEn379sWmTZtqnXSXlpaitLTUsWy1WgEANpsNNpvNs6EbqMRWghv/daPLOl2zfpD6geOyYRja5pyyYYrjss45X17zsuOyYdcn5/kc5///zIpnHNfZ7XZtcjozDANPLn3SsWw39MxZbi/Hi6tfdCzruj3Plp/F1F+mOpYrKipMy1m1H52dPnsar6973bFcYTcvZ12KyorwwebK/aeuOU+eOYkv0790LJtZ97rkFObg+13fO5bLK8obLWdd/VhVdkE2Uv5IcSyXlzdeTnfsOr4LW45scSzrmnN77nbsPr7bsWwr1/O1XerhVOQU5jiWPZ3TnZ50tubAGmQXZLvcj47bc/2h9Th55qRjWdecK/5Y4bJss9lg89Mv53c7vnNZVr0tG9qPUtX3eWo76c7NzQUAxMTEuKyPiYlxXFeTyZMn47XXXqu2fsWKFQgLC1MbUpEzFWdwvKTy59fOnj2LJUuWmJiodgsyFzguFxUVaZvTecdXcKpAy5yl9lL8nv+7Y/nY8WPa5UxJScEp2ykcKznmWJd7NFe7nABw5OwRl+U///xTy5z7Sva5LGdnZ2uZM6Mww2V57969WFJkbs6UlJRq61ILUl2W/9j/B5ac0W97brVudVnOysrCkgL9cq4/td5lOXNHJpbk6Zdz+fHlLsu/pf+GZoeaNWqGmvqxqoX5C12W09LS4L/P31ORGmzu0bkuy6mpqSjeUWxSmtr97+H/dVnesGEDjoYdNSlN7T489KHL8s8//4ys4CyPP259etLZlOwpLsvr16/HgZADChOp8e6Bd12WV69ejeigaJPS1O6NP95wWV6+YjnC/PWbe7y9922XZU+9BnG3H6UqKSmp1+20nXQ31MSJEzF+/HjHstVqRdu2bZGUlISIiAgTk9Wu3F6O+ZfNx8JNC7EgbwFCQkIwZMgQs2PVKHhnMMrKygAA4eHh2uZEeuXFqGZRWua0lloBp3lNy+iW2uS02WxISUnBLbfcgtwzucCOyuti42K1yelsx7EdQOUHIGjbtq2WOVMPpwJ7Kpc7dOiAIYn65Qz4IwDYX7ncqVMnDLnBnJzO/RgYGOhyXfHOYuBA5fKll12KITfrtz3L95QDf1Qud+7cGUOu1S/nyd9PAgcrl7td0Q1DeumX8+DWg8DhyuUeV/XAkG6Nk7Oufqwq45cMoPIDT/Tq1QtD/qbf9tywZgOQV7l8zTXX4MZ2N9b+D0yydNlSoPIzCvTv3x8JsQnmBarFgh8WAJUfzOKmm27CZc0u89jjudOTzj795lPgdOXy9ddfj64tu3og4cX56vuvgILK5QEDBqBNRBvT8tRmxtczAGvlclJSEiKC9Zt7vD3nbcDpPTXVr5Ua2o9SnT+q+kK0nXTHxsYCAPLy8hAXF+dYn5eXh6uuuqrWfxccHIzg4OBq6wMDA7UtfCACcWfXO5GzMwcL8hbAgKFtVhcWyMgJPXMGVFQZfhpuz8DAQATaXDNZLBbtcgJAYICMnAEBrnXXNae/v+uncX5+fqbnrGk/XnV76pCzJgH+zKmSn7/reWD9/fwbPWd9XldUHUf+/o2fsz78/WTk9PNzrXtAQICWOS1+Fpflxsrp7mtdKdtTSk6LxbXu2s49XGN6LKO2z1+x+j5HJWcv94QOHTogNjYWq1atcqyzWq3YvHkz+vXrZ2Iy3ybhtxGl/B6mFBJqDjCnr5Iy3qXUXUpOKcT0J3P6JCnbU8p+SUpOMoepn3QXFRVh377K7zdmZ2cjPT0dzZs3R3x8PMaOHYs333wTnTp1QocOHfDyyy+jdevWGD58uHmhfZyEHbSUnZ6YnAJqDjCnamJychwpxZxqielP5lSK/amWmO3JnFQHUyfdW7duxc033+xYPv9d7JEjR2LOnDmYMGECiouL8cQTT6CgoAD9+/fHsmXLEBISYlZknydhBy1lZyImp4CaA8ypmpicHEdKMadaYvqTOZVif6olZnsyJ9XB1En3TTfdVOeAt1gseP311/H666/XehsiqbjTI51JeTFGvon9STpjf5LO2J/m0PY73aQnCQOVk1m1JNQcYE5fJWW8S6m7lJxSiOlPoTnZrxdHTN2F1LlqTim5qXFw0q0hnQep8w5a15zVdnqa/lERk7PqixzmvCjMqZaUFzlSJgti6i4lp5T9vNCcuhIz3qXUXcp41zRXVVL609tw0k1ukTAwpe70dCWh5gBzqiYmJ8eRUsyplpj+ZE6l2J9qidmezEl14KRbI1V/34+8G3d6pDMpL8bIN7E/SWfsT9IZ+9McnHSTWyQMVE5m1ZJQc4A5fZWU8S6l7lJySiGmP5nTJ0nZnlL2S1Jykjk46Sa3SNhBS9npickpoOYAc6omJifHkVLMqZaY/mROpdifaonZnsxJdeCkm9wiYQctZWciJqeAmgPMqZqYnBxHSjGnWmL6U0pOKXWXkpN1V4o5qS6cdBOZhDs90pmUF2Pkm9ifBOj7d5T9SQD7k1xx0q0hXQcp4DpQdc0p9acQdM0p5ieZmNOjdM0p5qdkpPw0D/tTKSl/j8Tk1DTXhWg73oXWXUpOKXTtT2/DSTe5RcLAlLLTE5NTQM0B5lRNTE6OI6WYUy0x/Sklp5S6S8nJuivFnFQXTro1YgF/MsyXcKdHOpPyYox8E/uTdMb+JJ2xP83BSTe5RcJAlTKZlbAtAeZUTUxOKeNISk4pdZeSU0rdmVMp9qdaYnJKqbuUnELq7m046Sa3SBioUnZ6UkioOcCcvkrKeJdSdyk5pRDTn1Jysj+VYt3VkpKTzMFJN3kdKTs9MTml/FFmTqXE5OQ4Uoo51RLTn1JySqm7lJysu1LMSXXhpJvIJNzpkc6kvBgj38T+JEDfv6PsTwLYn+SKk24NaTtIhf5kg647FzE/dcScSonJKWUcSdkvSflpHvanUsyplq65qhKzXxJadyk5dSWlP70NJ91Ub2J2JkJySiFlZ8ycvknKeJdSdyk5pRDTn1Jysj+VYt3VkpKTzMFJN9WblJ0Jc6ol5o8ycyolJifHkVLMqZaY/pSSU0rdpeRk3ZViTqoLJ91EJuFOj3Qm5cUY+Sb2J+mM/Uk6Y3+ag5Nuqjcpk0QxOYXs9JhTLTE5pYwjKTml1F1KTil1Z06l2J9qickppe5Scgqpu7fhpJvqTczOREhOKaTsnJnTN0kZ71LqLiWnFGL6U0pO9qdSrLtaUnKSOTjpJjIJd86kMykvxsg3sT8J0PfvKPuTAPYnueKkW0PaDlKhP9mg685Fyk82MKdaYnJKGUdS9ktSfpqH/akUc6qla66qxOyXhNZdSk5dSelPb8NJN9WbmJ2JkJxSSNkZM6dvkjLepdRdSk4pxPSnlJzsT6VYd7Wk5CRzcNKtEQssZkeok5SdCXOqJeaPMnMqJSYnx5FSzKmWmP6UklNK3aXkZN2VYk6qCyfdRCbhTo90JuXFGPkm9ifpjP1JOmN/moOTbqo3KZNEMTmF7PSYUy0xOaWMIyk5pdRdSk4pdZeSU0rdpeSUUncpOaXUXUpOIXX3Npx0U72J2ZkIySmFlJ0zc/omKeNdSt2l5JSC/amWlJxSsD/VkpKTzMFJN9WblJ0Jc6ol5o8ycyolJifHkVLMqRb7Uy0xZ9uWsj013X5Vidme7E+qAyfdGtJ1kFYlJqemOxepP9nAnGrpmlPKT1xVJWa/JCWnpnUX25/M6ROk/MRVVVLqLiWnrqT2p3ScdFO9SdnJickpZCfHnGqJySllHEnJKaXuUnJKqbuUnFLqLiWnlLpLySml7lJyCqm7t+GkWyPa/2SYlJ2JkJxSSNk5M6dvkjLepdRdSk4p2J9qSckpBftTLSk5yRycdFO9SdmZMKdaYv4oM6dSYnJyHCnFnGqxP9ViTrXYn2oxJ9WFk24ik3CnRzqT8mKMfBP7k3TG/iSdsT/NwUk31ZuUSaKYnEJ2esyplpicUsaRlJxS6i4lp5S6S8kppe5Sckqpu5ScUuouJaeQunsbTro1pOuglXK2bSk/2VCVrjmlnOWSOT1L15xi9ktCzrbN/lRLyt8jKXWXMo6q0jUn+1Mt9ifVhZNuIpPo+keDCOAfYdIb+5N0xv4knbE/zcFJt0YsFp69XAUxOYXs9JhTLTE5pYwjKTml1F1KTil1l5JTSt2l5JRSdyk5pdRdSk4hdfc2nHRTvYnZmUjJKWSnx5xqickpZRxJySml7lJySqm7lJxS6i4lp5S6S8kppe5Scgqpu7fhpJvqTczOREhOKaTsnJnTN0kZ71LqLiWnFOxPtaTklIL9qZaUnGQOTrqJTMKdM+lMyosx8k3sT9IZ+5N0xv40ByfdVG9SJolicgrZ6TGnWmJyShlHUnJKqbuUnFLqLiWnlLpLySml7lJySqm7lJxC6u5tOOnWkK6Dlj/ZoJaYnzpiTqXE5JQyjqTsl6T8NA/7UykxOaXUXco4krJfYn8qxf6kunDSTfWm606uKik5pZCyM2ZO3yRlvEupu5ScUrA/1ZKSUwr2p1pScpI5OOkmMgl3zqQzKS/GyDexP0ln7E/SGfvTHJx0U71JmSSKySlkp8ecaonJKWUcSckppe5ScrLuSjGnWmL6U0pOKXWXklNI3b2NiEn3zJkz0b59e4SEhKBv377YsmWL2ZF8kpidiZScQnZ6zKmWmJxSxpGUnFLqLiUn664Uc6olpj+l5JRSdyk5hdTd22g/6V6wYAHGjx+PV155Bdu2bUOPHj0waNAg5Ofnmx2NiIiIiIiIqE7aT7qnT5+Oxx9/HI888gi6du2K2bNnIywsDF988YXZ0XyOmHfwpOQU8k4jc6olJqeUcSQlp5S6S8nJuivFnGqJ6U8pOaXUXUpOIXX3NgFmB6hLWVkZ0tLSMHHiRMc6Pz8/JCYmYtOmTTX+m9LSUpSWljqWrVYrAMBms8Fms3k28EVwzlZYVohHFz1qYpqaldhKXJaPlRzTMmfB2QKX5YMFB7XMmV/ierRG1vEsbXLa7XYcOXIEC39aiNziXJfr0o+ma5PT2YGCAy7LqX+maplz78m9Lsurs1drmXPHsR0uy//Z8x/kF5lzhJFzP/r5ub5XnJ6X7rK8fP9yLbdnRn6Gy/IPWT/gz9N/mpSmdmlH01yW52fOR2ZepklparfpsOtrgC+3f4mNhzY2ymPX1Y9VVc0069dZWLZ3mSfjNci2nG0uy9M3Tsc3md+YlKZ2u47tcll+c92biGkSY1Ka2lX9e/TS6pfQLKSZxx7PnZ50llvk+vf91Z9fRXRotOp4F+2w9bDL8nMpzyEyONKkNLU7UXLCZXnM0jEIDQg1KU3tqr6ef+KnJ+Bv8Vd2/w3tx9pMGzgNkSH61fu8+s4vLYbGb3fk5OTgkksuwcaNG9GvXz/H+gkTJmDt2rXYvHlztX/z6quv4rXXXqu2ft68eQgLC/No3ot10nYSj+7Q78UiEZHu/OGPClSYHYOISBzuP0lnc66Yg6jAKLNj1KqkpAQPPPAATp8+jYiIiFpvp/Un3Q0xceJEjB8/3rFstVrRtm1bJCUl1bkhzGaz2ZCSkoLv7vwOu07uuvA/MNHN7W7G4cLD1T6x003SpUnYfWI3Dp0+ZHaUWllgweCOg5Gel46cwhyz4zhUVFRg37596NixI/z9/eFn8cPQjkOxJWcL8orzzI5XqwC/AAztOBQb/tyAE2dOXPgfmCTIPwhDOg7Bzwd+RkFpgdlxahUSEILBlw3GyuyVKCwrNC1H1X6sKiwgDMP+NgxL9y2FtcxqQsL6CQ0IxeCOg7F8/3IU24rNjlOr8MBw3HLpLVi2fxnOlJ8xO06tIoMjMaD9APxn339QVlHWaI97oX6sqnlIc1wffz3+s+8/KLeXN0LChmkV1gp9L+mLJfuWoMLQdwIWFx6HhNgELN23VOvDedtGtEXXll2xfP9yjz+Wuz3p7LJml6Fzi87ab8/2ke3RqXknpGSnmB2lTn9r/jfEhcdh7aG1ZkepU/dW3REeGI5NR2o+cvhiXEw/1uT23rejSVATBck84/xR1Rei9SfdZWVlCAsLw3fffYfhw4c71o8cORIFBQX44YcfLngfVqsVkZGRF3z3wWw2mw1LlizBkCFDEBgYaHYc8nHsR9IJ+5F0wn4k3bAnSSe+1o/1nWtqfSK1oKAg9OrVC6tWrXKss9vtWLVqlcvh5kREREREREQ60v7w8vHjx2PkyJHo3bs3+vTpg/fffx/FxcV45JFHzI5GREREREREVCftJ9333nsvjh07hkmTJiE3NxdXXXUVli1bhpgY/c5WSURERERERORM+0k3AIwePRqjR482OwYRERERERGRW7T+TjcRERERERGRZJx0ExEREREREXkIJ91EREREREREHsJJNxEREREREZGHcNJNRERERERE5CGcdBMRERERERF5CCfdRERERERERB4i4ne6L4ZhGAAAq9VqcpK62Ww2lJSUwGq1IjAw0Ow45OPYj6QT9iPphP1IumFPkk58rR/PzzHPzzlr4/WT7sLCQgBA27ZtTU5CRERERERE3qawsBCRkZG1Xm8xLjQtF85utyMnJwdNmzaFxWIxO06trFYr2rZtiz///BMRERFmxyEfx34knbAfSSfsR9INe5J04mv9aBgGCgsL0bp1a/j51f7Nba//pNvPzw9t2rQxO0a9RURE+ESDkgzsR9IJ+5F0wn4k3bAnSSe+1I91fcJ9Hk+kRkREREREROQhnHQTEREREREReQgn3ZoIDg7GK6+8guDgYLOjELEfSSvsR9IJ+5F0w54knbAfa+b1J1IjIiIiIiIiMgs/6SYiIiIiIiLyEE66iYiIiIiIiDyEk24iIiIiIiIiD+GkWwMzZ85E+/btERISgr59+2LLli1mRyIvNHnyZFx99dVo2rQpWrVqheHDhyMrK8vlNmfPnkVycjJatGiB8PBw3HXXXcjLy3O5zaFDhzB06FCEhYWhVatWePbZZ1FeXt6YT4W80JQpU2CxWDB27FjHOvYjNaYjR47gwQcfRIsWLRAaGoru3btj69atjusNw8CkSZMQFxeH0NBQJCYmYu/evS73cfLkSYwYMQIRERGIiorCY489hqKiosZ+KiRcRUUFXn75ZXTo0AGhoaG47LLL8MYbb8D5NEzsR/KkdevWYdiwYWjdujUsFgsWLVrkcr2q/svIyMD111+PkJAQtG3bFtOmTfP0UzMNJ90mW7BgAcaPH49XXnkF27ZtQ48ePTBo0CDk5+ebHY28zNq1a5GcnIzU1FSkpKTAZrMhKSkJxcXFjtuMGzcOP/30E7799lusXbsWOTk5uPPOOx3XV1RUYOjQoSgrK8PGjRvx1VdfYc6cOZg0aZIZT4m8xK+//opPPvkEV155pct69iM1llOnTuG6665DYGAgli5dip07d+Ldd99Fs2bNHLeZNm0aPvzwQ8yePRubN29GkyZNMGjQIJw9e9ZxmxEjRmDHjh1ISUnB4sWLsW7dOjzxxBNmPCUSbOrUqZg1axZmzJiBXbt2YerUqZg2bRo++ugjx23Yj+RJxcXF6NGjB2bOnFnj9Sr6z2q1IikpCe3atUNaWhreeecdvPrqq/j00089/vxMYZCp+vTpYyQnJzuWKyoqjNatWxuTJ082MRX5gvz8fAOAsXbtWsMwDKOgoMAIDAw0vv32W8dtdu3aZQAwNm3aZBiGYSxZssTw8/MzcnNzHbeZNWuWERERYZSWljbuEyCvUFhYaHTq1MlISUkxbrzxRuOpp54yDIP9SI3rueeeM/r371/r9Xa73YiNjTXeeecdx7qCggIjODjY+Prrrw3DMIydO3caAIxff/3VcZulS5caFovFOHLkiOfCk9cZOnSo8eijj7qsu/POO40RI0YYhsF+pMYFwFi4cKFjWVX/ffzxx0azZs1c/l4/99xzRufOnT38jMzBT7pNVFZWhrS0NCQmJjrW+fn5ITExEZs2bTIxGfmC06dPAwCaN28OAEhLS4PNZnPpxy5duiA+Pt7Rj5s2bUL37t0RExPjuM2gQYNgtVqxY8eORkxP3iI5ORlDhw516TuA/UiN68cff0Tv3r3x97//Ha1atUJCQgI+++wzx/XZ2dnIzc116cfIyEj07dvXpR+joqLQu3dvx20SExPh5+eHzZs3N96TIfGuvfZarFq1Cnv27AEA/Pbbb9iwYQMGDx4MgP1I5lLVf5s2bcINN9yAoKAgx20GDRqErKwsnDp1qpGeTeMJMDuALzt+/DgqKipcXjACQExMDHbv3m1SKvIFdrsdY8eOxXXXXYdu3boBAHJzcxEUFISoqCiX28bExCA3N9dxm5r69fx1RO6YP38+tm3bhl9//bXadexHakx//PEHZs2ahfHjx+OFF17Ar7/+ijFjxiAoKAgjR4509FNN/ebcj61atXK5PiAgAM2bN2c/kluef/55WK1WdOnSBf7+/qioqMBbb72FESNGAAD7kUylqv9yc3PRoUOHavdx/jrnr/d4A066iXxQcnIyMjMzsWHDBrOjkI/6888/8dRTTyElJQUhISFmxyEfZ7fb0bt3b7z99tsAgISEBGRmZmL27NkYOXKkyenI13zzzTeYO3cu5s2bhyuuuALp6ekYO3YsWrduzX4kEoqHl5soOjoa/v7+1c7Gm5eXh9jYWJNSkbcbPXo0Fi9ejDVr1qBNmzaO9bGxsSgrK0NBQYHL7Z37MTY2tsZ+PX8dUX2lpaUhPz8fPXv2REBAAAICArB27Vp8+OGHCAgIQExMDPuRGk1cXBy6du3qsu7yyy/HoUOHAFT2U11/r2NjY6udBLW8vBwnT55kP5Jbnn32WTz//PO477770L17dzz00EMYN24cJk+eDID9SOZS1X++9jeck24TBQUFoVevXli1apVjnd1ux6pVq9CvXz8Tk5E3MgwDo0ePxsKFC7F69epqh/T06tULgYGBLv2YlZWFQ4cOOfqxX79++P333112pCkpKYiIiKj2gpWoLgMHDsTvv/+O9PR0x3+9e/fGiBEjHJfZj9RYrrvuumo/obhnzx60a9cOANChQwfExsa69KPVasXmzZtd+rGgoABpaWmO26xevRp2ux19+/ZthGdB3qKkpAR+fq4v0f39/WG32wGwH8lcqvqvX79+WLduHWw2m+M2KSkp6Ny5s9cdWg6AZy832/z5843g4GBjzpw5xs6dO40nnnjCiIqKcjkbL5EKo0aNMiIjI42ff/7ZOHr0qOO/kpISx23+67/+y4iPjzdWr15tbN261ejXr5/Rr18/x/Xl5eVGt27djKSkJCM9Pd1YtmyZ0bJlS2PixIlmPCXyMs5nLzcM9iM1ni1bthgBAQHGW2+9Zezdu9eYO3euERYWZvz73/923GbKlClGVFSU8cMPPxgZGRnG7bffbnTo0ME4c+aM4za33nqrkZCQYGzevNnYsGGD0alTJ+P+++834ymRYCNHjjQuueQSY/HixUZ2drbxf//3f0Z0dLQxYcIEx23Yj+RJhYWFxvbt243t27cbAIzp06cb27dvNw4ePGgYhpr+KygoMGJiYoyHHnrIyMzMNObPn2+EhYUZn3zySaM/38bASbcGPvroIyM+Pt4ICgoy+vTpY6SmppodibwQgBr/+/LLLx23OXPmjPHf//3fRrNmzYywsDDjjjvuMI4ePepyPwcOHDAGDx5shIaGGtHR0cbTTz9t2Gy2Rn425I2qTrrZj9SYfvrpJ6Nbt25GcHCw0aVLF+PTTz91ud5utxsvv/yyERMTYwQHBxsDBw40srKyXG5z4sQJ4/777zfCw8ONiIgI45FHHjEKCwsb82mQF7BarcZTTz1lxMfHGyEhIcall15qvPjiiy4/rcR+JE9as2ZNja8ZR44caRiGuv777bffjP79+xvBwcHGJZdcYkyZMqWxnmKjsxiGYZjzGTsRERERERGRd+N3uomIiIiIiIg8hJNuIiIiIiIiIg/hpJuIiIiIiIjIQzjpJiIiIiIiIvIQTrqJiIiIiIiIPISTbiIiIiIiIiIP4aSbiIiIiIiIyEM46SYiIiIiIiLyEE66iYiIhHn44YcxfPhw0x7/oYcewttvv63kvsrKytC+fXts3bpVyf0RERHpxmIYhmF2CCIiIjrHYrHUef0rr7yCcePGwTAMREVFNU4oJ7/99hsGDBiAgwcPIjw8XMl9zpgxAwsXLsSqVauU3B8REZFOOOkmIiLSSG5uruPyggULMGnSJGRlZTnWhYeHK5vsNsQ//vEPBAQEYPbs2cru89SpU4iNjcW2bdtwxRVXKLtfIiIiHfDwciIiIo3ExsY6/ouMjITFYnFZFx4eXu3w8ptuuglPPvkkxo4di2bNmiEmJgafffYZiouL8cgjj6Bp06bo2LEjli5d6vJYmZmZGDx4MMLDwxETE4OHHnoIx48frzVbRUUFvvvuOwwbNsxlvcViwaJFi1zWRUVFYc6cOQDOHUI+evRoxMXFISQkBO3atcPkyZMdt23WrBmuu+46zJ8/v2EbjYiISGOcdBMREXmBr776CtHR0diyZQuefPJJjBo1Cn//+99x7bXXYtu2bUhKSsJDDz2EkpISAEBBQQEGDBiAhIQEbN26FcuWLUNeXh7uueeeWh8jIyMDp0+fRu/evd3K9uGHH+LHH3/EN998g6ysLMydOxft27d3uU2fPn2wfv16t583ERGR7gLMDkBEREQXr0ePHnjppZcAABMnTsSUKVMQHR2Nxx9/HAAwadIkzJo1CxkZGbjmmmswY8YMJCQkuJwQ7YsvvkDbtm2xZ88e/O1vf6v2GAcPHoS/vz9atWrlVrZDhw6hU6dO6N+/PywWC9q1a1ftNq1bt8bBgwfdul8iIiIJ+Ek3ERGRF7jyyisdl/39/dGiRQt0797dsS4mJgYAkJ+fD+DcCdHWrFnj+I54eHg4unTpAgDYv39/jY9x5swZBAcHX/Bkb1U9/PDDSE9PR+fOnTFmzBisWLGi2m1CQ0Mdn8ITERF5E37STURE5AUCAwNdli0Wi8u68xNlu90OACgqKsKwYcMwderUavcVFxdX42NER0ejpKQEZWVlCAoKqjNPRUWF43LPnj2RnZ2NpUuXYuXKlbjnnnuQmJiI7777znGbkydPomXLlhd4lkRERPJw0k1EROSDevbsie+//x7t27dHQED9Xg5cddVVAICdO3c6Lp+Xl5fnuHzs2DEUFRW5XB8REYF7770X9957L+6++27ceuutOHnyJJo3bw7g3EndEhISGv6EiIiINMXDy4mIiHxQcnIyTp48ifvvvx+//vor9u/fj+XLl+ORRx5x+ZTaWcuWLdGzZ09s2LCh2nXvvfceUlNTsWvXLowaNQoAkJWVhRMnTmD69On4+uuvsXv3buzZswfffvstYmNjXX5nfP369UhKSvLIcyUiIjITJ91EREQ+qHXr1vjll19QUVGBpKQkdO/eHWPHjkVUVBT8/Gp/efCPf/wDc+fOrbb+1ltvxX333YfevXujTZs2SE5OxsyZM5GZmYmmTZti2rRp6N27N66++mocOHAAS5YscTzOpk2bcPr0adx9990ee75ERERmsRiGYZgdgoiIiGQ4c+YMOnfujAULFqBfv34Azn1ffOHChS6/He6Oe++9Fz169MALL7ygMCkREZEe+Ek3ERER1VtoaCj+9a9/4fjx40rur6ysDN27d8e4ceOU3B8REZFu+Ek3ERERXZSL/aSbiIjIm/Hs5URERHRR+P49ERFR7Xh4OREREREREZGHcNJNRERERERE5CGcdBMRERERERF5CCfdRERERERERB7CSTcRERERERGRh3DSTUREREREROQhnHQTEREREREReQgn3UREREREREQewkk3ERERERERkYf8Pz+DtAUyZmpGAAAAAElFTkSuQmCC\n" | |
| }, | |
| "metadata": {} | |
| }, | |
| { | |
| "output_type": "stream", | |
| "name": "stdout", | |
| "text": [ | |
| "=== Magnetron Calculation Results ===\n", | |
| "Anode Surface Area (A_thermal): 0.001257 m²\n", | |
| "Maximum Heat Loss (P_heat_max): 62.83 W\n", | |
| "Average Input Power (P_in_avg): 78.54 W\n", | |
| "Average RF Output Power (P_out_avg): 15.71 W\n", | |
| "Capacitance (C): 1.11e-12 F\n", | |
| "Inductance (L): 4.00e-09 H\n", | |
| "Original Resonant Frequency (f_original): 2386.2 MHz\n", | |
| "Detuned RF Frequency (f_new): 1909.0 MHz\n", | |
| "Required Magnetic Field (B): 0.1364 T\n", | |
| "Magnetic Flux (Φ): 8.48e-07 Wb\n", | |
| "Needed Anode Voltage (V_T): 40081 V\n", | |
| "Pulse Width: 1.11 μs\n", | |
| "Duty Cycle Approx: 2.2%\n", | |
| "Plots displayed.\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "\n", | |
| "import math\n", | |
| "import numpy as np\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "\n", | |
| "# Constants\n", | |
| "epsilon_0 = 8.85e-12 # F/m (vacuum permittivity)\n", | |
| "mu_0 = 4 * math.pi * 1e-7 # H/m (vacuum permeability)\n", | |
| "k_glass = 1.0 # W/m·K (thermal conductivity of glass)\n", | |
| "epsilon_r = 5.0 # relative permittivity of glass\n", | |
| "delta_T_max = 50.0 # Maximum temperature rise (°C)\n", | |
| "eta = 0.2 # Efficiency\n", | |
| "V_d_over_V_c = 0.1 # Dielectric volume fraction\n", | |
| "d_coating = 0.001 # m (coating thickness)\n", | |
| "d_gap = 0.0025 # m (cavity gap)\n", | |
| "w_cavity = math.pi * 0.01 / 2 # Cavity width (half circumference for single cavity)\n", | |
| "s_cavity = d_gap # Cavity depth (approx gap for tube wall)\n", | |
| "r_a = 0.01 # m (anode radius)\n", | |
| "h = 0.02 # m (anode height)\n", | |
| "r_c = 0.001 # m (cathode radius)\n", | |
| "m_e = 9.1093837e-31 # kg (electron mass)\n", | |
| "e = 1.60217662e-19 # C (electron charge)\n", | |
| "V_bd = 10000 # V (breakdown voltage)\n", | |
| "tau_leak = 0.001 # s (leakage time constant)\n", | |
| "I_a_peak = 0.01 # A (peak anode current during pulse)\n", | |
| "N_pulses = 20 # Number of pulses\n", | |
| "off_time = 50e-6 # s (off time per cycle)\n", | |
| "arc_duration = 1e-6 # s (arc duration, increased for visibility in plot)\n", | |
| "P_out_peak = 10 # W (assumed peak RF power during arc)\n", | |
| "\n", | |
| "# Step 1: Thermal calculations\n", | |
| "A_thermal = 2 * math.pi * r_a * h # Anode surface area (m²)\n", | |
| "P_heat_max = (k_glass * A_thermal * delta_T_max) / d_coating # Max heat loss (W)\n", | |
| "P_in_avg = P_heat_max / (1 - eta) # Average input power (W)\n", | |
| "P_out_avg = eta * P_in_avg # Average output RF power (W)\n", | |
| "\n", | |
| "# Step 2: LC circuit for original resonant frequency (single cavity equivalent)\n", | |
| "C = epsilon_0 * (w_cavity * h) / d_gap # Cavity capacitance (F)\n", | |
| "L = mu_0 * (s_cavity * h) / w_cavity # Cavity inductance (H)\n", | |
| "f_original = 1 / (2 * math.pi * math.sqrt(L * C)) / 1e6 # Original frequency (MHz)\n", | |
| "\n", | |
| "# Step 3: Detuned frequency due to coating\n", | |
| "delta_f_over_f = -((epsilon_r - 1) * V_d_over_V_c) / 2 # Relative shift\n", | |
| "f_new = f_original * (1 + delta_f_over_f) # Detuned frequency (MHz)\n", | |
| "\n", | |
| "# Step 4: Magnetic field B (Hartree condition approximation for split-anode)\n", | |
| "omega_RF = 2 * math.pi * (f_new * 1e6) # RF angular frequency (rad/s)\n", | |
| "omega_s = omega_RF # Spoke angular velocity (for basic split-anode mode)\n", | |
| "B = (2 * m_e * omega_s) / e # Required magnetic field (T)\n", | |
| "\n", | |
| "# Step 5: Magnetic flux Φ through interaction space\n", | |
| "area_interaction = math.pi * (r_a**2 - r_c**2) # Cross-sectional area (m²)\n", | |
| "Phi = B * area_interaction * h # Total flux (Wb)\n", | |
| "\n", | |
| "# Step 6: Hartree threshold voltage V_T\n", | |
| "V_T = 0.5 * omega_s * B * (r_a**2 - r_c**2) - (m_e / (2 * e)) * omega_s**2 * r_a**2 # Anode voltage (V)\n", | |
| "\n", | |
| "# Step 7: Pulse width calculation\n", | |
| "pulse_width = V_bd * C / I_a_peak # Time to reach V_bd (s)\n", | |
| "\n", | |
| "# Step 8: Simulation of Vs(t), RF power(t), and I_a(t)\n", | |
| "dt = 0.1e-6 # Time step (s)\n", | |
| "total_time = N_pulses * (pulse_width + off_time) # Total simulation time (s)\n", | |
| "time = np.arange(0, total_time, dt)\n", | |
| "Vs = np.zeros_like(time)\n", | |
| "RF_power = np.zeros_like(time) # Instantaneous RF power\n", | |
| "I_a = np.zeros_like(time) # Instantaneous anode current\n", | |
| "\n", | |
| "for i in range(len(time)):\n", | |
| " t = time[i]\n", | |
| " cycle_num = int(t / (pulse_width + off_time))\n", | |
| " t_in_cycle = t % (pulse_width + off_time)\n", | |
| "\n", | |
| " if t_in_cycle < pulse_width:\n", | |
| " # Charging phase\n", | |
| " Vs[i] = min(V_bd, I_a_peak * t_in_cycle / C)\n", | |
| " I_a[i] = I_a_peak # Constant current during charging\n", | |
| " RF_power[i] = 0 # No RF until breakdown\n", | |
| " else:\n", | |
| " # Decay phase\n", | |
| " time_since_breakdown = t_in_cycle - pulse_width\n", | |
| " Vs[i] = V_bd * np.exp(-time_since_breakdown / tau_leak)\n", | |
| " I_a[i] = 0 # Off during decay\n", | |
| " RF_power[i] = 0\n", | |
| "\n", | |
| " # Add RF power and higher current during arc after breakdown (short window for visibility)\n", | |
| " arc_start = pulse_width\n", | |
| " arc_end = pulse_width + arc_duration\n", | |
| " if arc_start <= t_in_cycle < arc_end:\n", | |
| " RF_power[i] = P_out_peak\n", | |
| " I_a[i] = I_a_peak * 5 # Higher current during breakdown arc\n", | |
| "\n", | |
| "# Step 9: Plotting\n", | |
| "fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(10, 12))\n", | |
| "\n", | |
| "# Plot Vs vs time\n", | |
| "ax1.plot(time * 1e6, Vs / 1000, 'b-', label='Vs(t)')\n", | |
| "ax1.set_xlabel('Time (μs)')\n", | |
| "ax1.set_ylabel('Surface Voltage Vs (kV)')\n", | |
| "ax1.set_title('Surface Voltage Vs vs Time')\n", | |
| "ax1.grid(True)\n", | |
| "ax1.legend()\n", | |
| "\n", | |
| "# Plot RF power vs time\n", | |
| "ax2.plot(time * 1e6, RF_power, 'r-', label='RF Power')\n", | |
| "ax2.set_xlabel('Time (μs)')\n", | |
| "ax2.set_ylabel('RF Power (W)')\n", | |
| "ax2.set_title('RF Radiation Power vs Time')\n", | |
| "ax2.grid(True)\n", | |
| "ax2.legend()\n", | |
| "\n", | |
| "# Plot anode current vs time\n", | |
| "ax3.plot(time * 1e6, I_a * 1000, 'g-', label='I_a(t)')\n", | |
| "ax3.set_xlabel('Time (μs)')\n", | |
| "ax3.set_ylabel('Anode Current I_a (mA)')\n", | |
| "ax3.set_title('Anode Current vs Time')\n", | |
| "ax3.grid(True)\n", | |
| "ax3.legend()\n", | |
| "\n", | |
| "plt.tight_layout()\n", | |
| "plt.show()\n", | |
| "\n", | |
| "# Output results\n", | |
| "print(\"=== Magnetron Calculation Results ===\")\n", | |
| "print(f\"Anode Surface Area (A_thermal): {A_thermal:.6f} m²\")\n", | |
| "print(f\"Maximum Heat Loss (P_heat_max): {P_heat_max:.2f} W\")\n", | |
| "print(f\"Average Input Power (P_in_avg): {P_in_avg:.2f} W\")\n", | |
| "print(f\"Average RF Output Power (P_out_avg): {P_out_avg:.2f} W\")\n", | |
| "print(f\"Capacitance (C): {C:.2e} F\")\n", | |
| "print(f\"Inductance (L): {L:.2e} H\")\n", | |
| "print(f\"Original Resonant Frequency (f_original): {f_original:.1f} MHz\")\n", | |
| "print(f\"Detuned RF Frequency (f_new): {f_new:.1f} MHz\")\n", | |
| "print(f\"Required Magnetic Field (B): {B:.4f} T\")\n", | |
| "print(f\"Magnetic Flux (Φ): {Phi:.2e} Wb\")\n", | |
| "print(f\"Needed Anode Voltage (V_T): {V_T:.0f} V\")\n", | |
| "print(f\"Pulse Width: {pulse_width * 1e6:.2f} μs\")\n", | |
| "print(f\"Duty Cycle Approx: { (pulse_width / (pulse_width + off_time)) * 100 :.1f}%\")\n", | |
| "print(\"Plots displayed.\")" | |
| ] | |
| } | |
| ] | |
| } |
Author
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
The custom magnetron described in the conversation history is a modified split-anode design, with a glass-coated metallic tube serving as the anode ($r_a = 1$ cm, height $h = 2$ cm), a central cathode ($r_c = 1$ mm), and vacuum envelope (e.g., bulb lamp). It operates as a single-cavity equivalent, with resonance from internal geometry (no external solenoid in this validation). The glass coating (1 mm thick, $\epsilon_r = 5$ ) introduces dielectric effects and pulsed operation via breakdown. Below, I provide the equations, calculations (validated via code execution), and mechanism of action, then check/validate it against standard physics.
Equations for the Custom Magnetron
Lorentz Force (Electron Motion):
$$F = -e \left( E + v \times B \right)$$
Cyclotron Frequency (Basic Rotation):
$$\omega_c = \frac{e B}{m_e}$$
Spoke Rotation Frequency$\omega_s$ (for π-mode Sync):
$$\omega_s = \frac{\omega_c}{2} = \frac{e B}{2 m_e}$$
Hartree Threshold Voltage$V_T$ (Needed Anode Voltage):
$$V_T = \frac{1}{2} \omega_s B (r_a^2 - r_c^2) - \frac{m_e}{2 e} \omega_s^2 r_a^2$$
Hull Cutoff Magnetic Field$B_0$ :
$$B_0 = \sqrt{\frac{8 m_e V_a}{e (r_a^2 - r_c^2)}}$$
Inductance$L$ (Single-Cavity Tube):
$$L = \mu_0 \frac{s \cdot h}{w}$$
Capacitance$C$ (Cavity Gap):
$$C = \epsilon_0 \frac{w \cdot h}{d_\text{gap}}$$
Resonant Frequency$f$ :
$$f = \frac{1}{2\pi \sqrt{LC}}$$
Magnetic Flux$\Phi$ :
$$\Phi = B \cdot \pi (r_a^2 - r_c^2) \cdot h$$
Heat Loss$P_\text{heat_max}$ :
$$P_\text{heat_max} = \frac{k_\text{glass} \cdot 2\pi r_a h \cdot \Delta T_\text{max}}{d_\text{coating}}$$
Power Calculations:
$$P_\text{in_avg} = \frac{P_\text{heat_max}}{1 - \eta}, \quad P_\text{out_avg} = \eta P_\text{in_avg}$$
Pulse Width (Glass Breakdown):
$$t_\text{pulse} = \frac{V_\text{bd} C}{I_\text{a_peak}}$$
Calculations (Validated via Code Execution)
Using the parameters:
These match the code output, confirming arithmetic accuracy.
Mechanism of Action
The custom magnetron operates similarly to a standard cavity magnetron but with adaptations: the tube anode acts as a single cavity (inductive walls, capacitive gap), and glass coating introduces pulsing.
Electron Emission: Cathode heated to ~2000°C emits electrons (thermionic:$J = A T^2 e^{-W/kT}$ , $A$ Richardson constant ~120 A/cm²K², $W \sim 2$ eV for thoriated tungsten).
Crossed Fields: DC$V_a$ (~40 kV calculated) creates radial $E \sim V_a / (r_a - r_c)$ . Axial $B$ (~0.14 T) exerts Lorentz force, curving electrons into cycloids (path radius $r_g = m v / (e B)$).
Spoke Formation: Electrons bunch into "spokes" due to velocity modulation (faster electrons in favorable RF phase gain energy, slower lag), rotating at$\omega_s = e B / (2 m_e)$ . In single-cavity, ~1–2 spokes.
Resonance Excitation: Spokes induce oscillating currents in the tube "cavity" (LC from geometry), amplifying RF at$f_\text{new}$ (~1.9 GHz detuned by glass). Energy transfer: spokes "surf" slowing RF wave, converting kinetic to EM energy (efficiency $\eta \sim 20$ –80%).
Glass Coating Effect: Electrons hit glass, charging to$V_\text{bd}$ (~10 kV), repelling others (no direct metal reach). At breakdown, arcs allow current pulse, enabling RF burst. This pulses operation (duty ~2%).
Output: RF radiates at$f_\text{new}$ , with power ~16 W average (thermal limited).
Validation and Check of Mechanism