Skip to content

Instantly share code, notes, and snippets.

@tensorvijay
Created October 3, 2023 08:50
Show Gist options
  • Select an option

  • Save tensorvijay/ff365171602c127f34659ce8f3b5c6cd to your computer and use it in GitHub Desktop.

Select an option

Save tensorvijay/ff365171602c127f34659ce8f3b5c6cd to your computer and use it in GitHub Desktop.
Random_Forest_Creditcard_Fraud.ipynb
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/tensorvijay/ff365171602c127f34659ce8f3b5c6cd/random_forest_creditcard_fraud.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "XVbif3K6SXwY"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.ensemble import RandomForestClassifier\n",
"from sklearn.metrics import average_precision_score\n",
"from sklearn.metrics import recall_score\n",
"from sklearn.metrics import accuracy_score\n",
"import scipy.stats\n",
"import seaborn as sns\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MCdIUyJgRxnZ"
},
"outputs": [],
"source": [
"\n",
"\n",
"df=pd.read_csv('/content/drive/MyDrive/Fraud.csv')\n",
"df = df.replace(to_replace={'PAYMENT':1,'TRANSFER':2,'CASH_OUT':3,\n",
" 'CASH_IN':4,'DEBIT':5,'No':0,'Yes':1})\n",
"df.drop(['nameOrig','nameDest','isFlaggedFraud'],axis=1,inplace=True)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 175
},
"id": "LiuYRDCMSpke",
"outputId": "9084aceb-96fd-4d48-9a4b-f272192500e3"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-a228dd9d-b2b6-4310-bdd2-6915ebf3f727\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>step</th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>newbalanceOrig</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>newbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1814542</th>\n",
" <td>163</td>\n",
" <td>4</td>\n",
" <td>131783.46</td>\n",
" <td>1544963.45</td>\n",
" <td>1676746.92</td>\n",
" <td>4624925.7</td>\n",
" <td>4493142.24</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3643655</th>\n",
" <td>275</td>\n",
" <td>3</td>\n",
" <td>86656.57</td>\n",
" <td>402013.00</td>\n",
" <td>315356.43</td>\n",
" <td>0.0</td>\n",
" <td>86656.57</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6015227</th>\n",
" <td>451</td>\n",
" <td>3</td>\n",
" <td>184559.81</td>\n",
" <td>82705.00</td>\n",
" <td>0.00</td>\n",
" <td>3079590.5</td>\n",
" <td>3264150.31</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1915608</th>\n",
" <td>166</td>\n",
" <td>3</td>\n",
" <td>63102.08</td>\n",
" <td>12497.00</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>63102.08</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-a228dd9d-b2b6-4310-bdd2-6915ebf3f727')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-a228dd9d-b2b6-4310-bdd2-6915ebf3f727 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-a228dd9d-b2b6-4310-bdd2-6915ebf3f727');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-e1753b54-5478-4ecb-9f41-d5ddb03dd4fc\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-e1753b54-5478-4ecb-9f41-d5ddb03dd4fc')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-e1753b54-5478-4ecb-9f41-d5ddb03dd4fc button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" step type amount oldbalanceOrg newbalanceOrig oldbalanceDest \\\n",
"1814542 163 4 131783.46 1544963.45 1676746.92 4624925.7 \n",
"3643655 275 3 86656.57 402013.00 315356.43 0.0 \n",
"6015227 451 3 184559.81 82705.00 0.00 3079590.5 \n",
"1915608 166 3 63102.08 12497.00 0.00 0.0 \n",
"\n",
" newbalanceDest isFraud \n",
"1814542 4493142.24 0 \n",
"3643655 86656.57 0 \n",
"6015227 3264150.31 0 \n",
"1915608 63102.08 0 "
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.sample(4)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Ycoo_tWYSqmJ"
},
"outputs": [],
"source": [
"y = df[['isFraud']]\n",
"X = df.drop(['isFraud'],axis=1)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "93fyTPDqS09I"
},
"outputs": [],
"source": [
"train_X, test_X, train_y, test_y = train_test_split(X, y, test_size = 0.2, random_state = 121)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Nd6QkY7AS_nE"
},
"outputs": [],
"source": [
"clf = RandomForestClassifier(n_estimators=50,criterion=\"entropy\",max_depth=10,min_samples_leaf=5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3kLNvs2NTWB9"
},
"outputs": [],
"source": [
"if True:\n",
" probabilities = clf.fit(train_X, train_y.values.ravel()).predict(test_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "zeXcTaJjVAKk",
"outputId": "d7a043f3-674b-4a60-bfed-8bd31d07eab8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.7154750639146131\n"
]
}
],
"source": [
"if True:\n",
" print(average_precision_score(test_y,probabilities))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Pr4NH4xeVT1x"
},
"outputs": [],
"source": [
"from sklearn.metrics import confusion_matrix"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "HI4gWqnJWOks",
"outputId": "d82cd37c-50d9-4f44-8469-c10c8041310d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.860777662661556\n"
]
}
],
"source": [
"import numpy as np\n",
"\n",
"\n",
"print(recall_score(test_y,probabilities, average='macro'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Dcfy7DcpWSd9"
},
"outputs": [],
"source": [
"from sklearn.metrics import accuracy_score"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "xxFzqmOVYnwf",
"outputId": "16c221b4-c6dc-486f-849e-4ea1769c9ca0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9996220110583376\n"
]
}
],
"source": [
"print(accuracy_score(test_y,probabilities))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "qIKaweZSY_Xx"
},
"outputs": [],
"source": [
"clf1 = RandomForestClassifier()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4-7hyRWsZIpP"
},
"outputs": [],
"source": [
"if True:\n",
" probabilities = clf1.fit(train_X, train_y.values.ravel()).predict(test_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "BMIHe9OhZMvX",
"outputId": "2b9a4f7e-832c-47bd-cef0-0d9f158111b2"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.7654222817166213\n"
]
}
],
"source": [
"if True:\n",
" print(average_precision_score(test_y,probabilities))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pFUtxQYMZUM4",
"outputId": "cd6a13ea-0beb-461d-b807-99e937f74649"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.8903922206733668\n"
]
}
],
"source": [
"print(recall_score(test_y,probabilities, average='macro'))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XKqw5YkhZVBI",
"outputId": "a5f835a1-e789-478c-d088-1a56778ad22f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9996880216011643\n"
]
}
],
"source": [
"print(accuracy_score(test_y,probabilities))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4M_BNbSqGumJ"
},
"source": [
"Let us reduce the number of estimators"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cKcvh6IId6Qb"
},
"outputs": [],
"source": [
"clf1 = RandomForestClassifier(n_estimators=10,criterion=\"entropy\",max_depth=10,min_samples_leaf=5)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zmkUuDeXG-fq"
},
"outputs": [],
"source": [
"if True:\n",
" probabilities = clf1.fit(train_X, train_y.values.ravel()).predict(test_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8BKyXOprI3yA",
"outputId": "c5ceebc3-1234-42ac-ad66-48fe60fb1dec"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.6929567392759193\n",
"0.8480426630458983\n",
"0.9995921491461065\n"
]
}
],
"source": [
"if True:\n",
" print(average_precision_score(test_y,probabilities))\n",
" print(recall_score(test_y,probabilities, average='macro'))\n",
" print(accuracy_score(test_y,probabilities))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UJb6bxfTJXtS"
},
"source": [
"The ideal number of estimators is around 15, 10 gives you less precision and recall. However, there is an slight increase in accuracy when the estimator size is reduced and deotg and minimum number of samples are adjusted. Further fine tuning will be interesting.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pjX27afxKQd8"
},
"outputs": [],
"source": [
"if True:\n",
" probabilitiest = clf1.fit(train_X, train_y.values.ravel()).predict(train_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "OS0lBiZHOLvL",
"outputId": "aa012486-e00d-4409-d232-ad7613bfd631"
},
"outputs": [
{
"data": {
"text/plain": [
"array([0, 0, 0, ..., 0, 0, 0])"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"probabilitiest.predict(train_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x3sx3uT1PagO",
"outputId": "50baaf70-4964-404a-bb5a-921ab00f45f9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.7431942749256791\n",
"0.8740196443998027\n",
"0.9996703402057643\n"
]
}
],
"source": [
"if True:\n",
" print(average_precision_score(train_y,probabilitiest))\n",
" print(recall_score(train_y,probabilitiest, average='macro'))\n",
" print(accuracy_score(train_y,probabilitiest))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "O9XEgE_EQ63f"
},
"source": [
"Here wer are comparing the performance between the training and the test data set, and we can see that the difference between the raining results and the test results are not particularly high. THis shows that there isn't much overfitting. However, it is highly likely that there is some undefitting since both training and test values are close together, so this is a case of underfitting."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "H1COVTppRIVB"
},
"outputs": [],
"source": [
"clf15 = RandomForestClassifier(n_estimators=15)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "QhpEMjc3R04V"
},
"outputs": [],
"source": [
"\n",
" probabilities15 = clf15.fit(train_X, train_y.values.ravel()).predict(test_X)\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0pgto4OLViPk"
},
"source": [
"These are the results for the training data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cvEegDT-VpkC",
"outputId": "13535188-42bc-4353-f8bf-a79ae6eb2a2c"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.763744863422387\n",
"0.890686855436983\n",
"0.9996856640817776\n"
]
}
],
"source": [
" print(average_precision_score(test_y,probabilities15))\n",
" print(recall_score(test_y,probabilities15, average='macro'))\n",
" print(accuracy_score(test_y,probabilities15))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "x3szVV9WV7Fb"
},
"outputs": [],
"source": [
"probabilities15t = clf15.fit(train_X, train_y.values.ravel()).predict(train_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "jlNnyCRZWFh5",
"outputId": "27d76ac0-eac1-4b86-cc8c-2fc6dbb481ad"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.98484673816048\n",
"0.9925668530963148\n",
"0.99998055046506\n"
]
}
],
"source": [
" print(average_precision_score(train_y,probabilities15t))\n",
" print(recall_score(train_y,probabilities15t, average='macro'))\n",
" print(accuracy_score(train_y,probabilities15t))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "56Ea137hXtUF"
},
"source": [
"This is a case of overfitting, where the training model has high variance. The training parameters need to be changed to reduce overfitting. So the previous result with n=10 parameters is a much better option than a highly overfitting model."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "IYLUN1IBWax4"
},
"outputs": [],
"source": [
"clf12 = RandomForestClassifier(n_estimators=12)\n",
"\n",
"probabilities12 = clf15.fit(train_X, train_y.values.ravel()).predict(test_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3fHOFgIAZNNE",
"outputId": "e27a1e86-a72b-4284-b950-304ec8b1120a"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.7692047292921947\n",
"0.8948318076592758\n",
"0.9996927366399376\n"
]
}
],
"source": [
" print(average_precision_score(test_y,probabilities12))\n",
" print(recall_score(test_y,probabilities12, average='macro'))\n",
" print(accuracy_score(test_y,probabilities12))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "mJnz__wcaKYt"
},
"outputs": [],
"source": [
"probabilities12 = clf12.fit(train_X, train_y.values.ravel()).predict(train_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "JmunW9RjfiFH",
"outputId": "3a90bf05-2a72-4e0b-e2fe-3e35d7c8ef45"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9761224293704273\n",
"0.9881225070079275\n",
"0.9999693522479733\n"
]
}
],
"source": [
" print(average_precision_score(train_y,probabilities12))\n",
" print(recall_score(train_y,probabilities12, average='macro'))\n",
" print(accuracy_score(train_y,probabilities12))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OS4901l68a0S"
},
"source": [
"Data Analysis"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "bLXBoFVI7iTi",
"outputId": "af38d0ac-38f0-40ea-9d26-0f5bf0bf3f43"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-38ba0967-e9c5-4186-9bff-c50c044f9f49\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>step</th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>newbalanceOrig</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>newbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>9839.64</td>\n",
" <td>170136.0</td>\n",
" <td>160296.36</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>1864.28</td>\n",
" <td>21249.0</td>\n",
" <td>19384.72</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>181.00</td>\n",
" <td>181.0</td>\n",
" <td>0.00</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>181.00</td>\n",
" <td>181.0</td>\n",
" <td>0.00</td>\n",
" <td>21182.0</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>11668.14</td>\n",
" <td>41554.0</td>\n",
" <td>29885.86</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-38ba0967-e9c5-4186-9bff-c50c044f9f49')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-38ba0967-e9c5-4186-9bff-c50c044f9f49 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-38ba0967-e9c5-4186-9bff-c50c044f9f49');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-a2fd117f-919f-4061-9c93-a83447ffeaba\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-a2fd117f-919f-4061-9c93-a83447ffeaba')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-a2fd117f-919f-4061-9c93-a83447ffeaba button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" step type amount oldbalanceOrg newbalanceOrig oldbalanceDest \\\n",
"0 1 1 9839.64 170136.0 160296.36 0.0 \n",
"1 1 1 1864.28 21249.0 19384.72 0.0 \n",
"2 1 2 181.00 181.0 0.00 0.0 \n",
"3 1 3 181.00 181.0 0.00 21182.0 \n",
"4 1 1 11668.14 41554.0 29885.86 0.0 \n",
"\n",
" newbalanceDest isFraud \n",
"0 0.0 0 \n",
"1 0.0 0 \n",
"2 0.0 1 \n",
"3 0.0 1 \n",
"4 0.0 0 "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fgPe1gyBCJaE"
},
"source": [
"From the data analysis in"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "9JYpKg_u7mVW",
"outputId": "601419ed-43e7-4ab6-932e-5bd52ff68376"
},
"outputs": [
{
"data": {
"text/plain": [
"PearsonRResult(statistic=0.9988027631729837, pvalue=0.0)"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scipy.stats.pearsonr(df.iloc[:,3],df.iloc[:,4] )"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fx2m3F19FH87"
},
"source": [
"From above it is clear that the oldbalanceOrg and NewbalanceOrig are highly correlated. For highly correlated data pearson correlation coefficient is 1, this data is highly correlated."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "F6OnlCcEFP2h",
"outputId": "3fc82b6b-a35d-43e5-bb3e-4a5b6a59491b"
},
"outputs": [
{
"data": {
"text/plain": [
"PearsonRResult(statistic=-0.020403492367990984, pvalue=7.526433468566388e-253)"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scipy.stats.pearsonr(df.iloc[:,3],df.iloc[:,5] )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "TBCNP7-MYyqQ",
"outputId": "1b14cfff-ee22-49a9-8c21-9d17c6efeebc"
},
"outputs": [
{
"data": {
"text/plain": [
"PearsonRResult(statistic=0.9700604740242301, pvalue=0.0)"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"scipy.stats.pearsonr(df.iloc[:,6],df.iloc[:,5] )"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tqQxGV5mZJhZ"
},
"source": [
"IN additon oldbalacneDest and new balance dest are also showing high correlation"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Ia8tPCu3FwnX"
},
"source": [
"However, other combinations show very little correlation"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "M03XZlOFFXiM"
},
"source": [
"Amount and"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "szhJqw1prfPm"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 484
},
"id": "bWkcTJui9tIT",
"outputId": "b134ad87-8ee1-4e32-939b-51c3cc471076"
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Fraud')"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHCCAYAAAAO4dYCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABI7klEQVR4nO3deXwO9/7//+eVkIuEK4ish0ZUS0JQtBpbLalIU12kC7VVVQ+ip2jR9Dgo5xyOVlVLqbaWthRdv0WL2CtCNRU7RW0tCaVyESQk8/ujv8zH1cTacEXmcb/d5nYy73lfM6/3NZeTZ2fe18RmGIYhAAAAC/NwdwEAAADuRiACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACAACWRyACLsFms6lfv35X7DdjxgzZbDbt37//mvbfsmVL1alT5zqrQ2H2798vm82mGTNm3PRjcz6L1kcffaRatWqpdOnSqlChgrvLMV3vv3cUfwQilDjz5s2TzWbTl19+WWBbvXr1ZLPZtGLFigLbbrvtNjVp0uRmlPiXjBgxQjab7YpLy5Yt3V3qDTN79my9+eab7i4DN8jOnTv19NNP6/bbb9d7772nqVOnurskWEApdxcAFLVmzZpJktasWaNHH33UbHc6ndq6datKlSql5ORktWrVytx26NAhHTp0SB07drzm43Xt2lUdO3aU3W7/68VfhQ4dOqhGjRrm+unTp9WnTx89+uij6tChg9keGBh4U+pxh9mzZ2vr1q3q37+/S3toaKjOnj2r0qVLu6cwFImVK1cqLy9PEyZMcPmsAzcSgQglTkhIiMLCwrRmzRqX9pSUFBmGoccff7zAtvz1/DB1LTw9PeXp6Xn9BV+junXrqm7duub6b7/9pj59+qhu3brq0qXLJV937tw5eXl5ycOj5F4YttlsKlOmjLvLsLQzZ87I29v7L+3j6NGjknTFW2WGYejcuXMqW7bsXzoeIHHLDCVUs2bNtHHjRp09e9ZsS05OVu3atRUbG6t169YpLy/PZZvNZlPTpk0L7Ourr75SnTp1ZLfbVbt2bS1atMhl+6XmFHz77be67777VL58eTkcDt19992aPXt2gf1v375drVq1kre3t/72t79p7Nixf3H0f/wXts1m05w5czR06FD97W9/k7e3t5xOp06cOKGXXnpJkZGRKleunBwOh2JjY7Vp06ZC9zFv3jz95z//UZUqVVSmTBm1adNGe/bscem7e/duxcfHKygoSGXKlFGVKlXUsWNHZWZmmn2mT5+u1q1bKyAgQHa7XREREZo8eXKh9V/uvWvZsqUWLlyoAwcOmLcHq1WrJunSc4iWL1+u5s2by8fHRxUqVNDDDz+sHTt2uPTJvxW5Z88ePf3006pQoYJ8fX3Vo0cPnTlz5qrf+yudz5ycHA0bNkwNGzaUr6+vfHx81Lx580Jv486ZM0cNGzY034fIyEhNmDDhssfPfw9ef/11TZo0SdWrV5e3t7fatm2rQ4cOyTAMjRo1SlWqVFHZsmX18MMP68SJEwX2884776h27dqy2+0KCQlRQkKCTp486dInf95UamqqWrRoIW9vb73yyiuSpOzsbA0fPlw1atSQ3W5X1apVNXjwYGVnZ1+2/mrVqmn48OGSJH9/f9lsNo0YMcLc9uCDD2rx4sVq1KiRypYtq3fffVfS1X++Lt7fn4/79NNPu7Rt27ZNrVu3VtmyZVWlShX9+9//dvn/DZQsXCFCidSsWTN99NFHWr9+vTmXJjk5WU2aNFGTJk2UmZmprVu3mldakpOTVatWLfn5+bnsZ82aNfriiy/Ut29flS9fXm+99Zbi4+N18ODBAn0vNmPGDD3zzDOqXbu2EhMTVaFCBW3cuFGLFi3SU089Zfb7/fff1a5dO3Xo0EFPPPGEPvvsMw0ZMkSRkZGKjY39y+/DqFGj5OXlpZdeeknZ2dny8vLS9u3b9dVXX+nxxx9XWFiYMjIy9O677+q+++7T9u3bFRIS4rKPMWPGyMPDQy+99JIyMzM1duxYde7cWevXr5f0xy/4mJgYZWdn6/nnn1dQUJB+/fVXLViwQCdPnpSvr68kafLkyapdu7YeeughlSpVSvPnz1ffvn2Vl5enhISEq37v/vnPfyozM1O//PKLxo8fL0kqV67cJd+DpUuXKjY2VtWrV9eIESN09uxZvf3222ratKl+/PFHM0zle+KJJxQWFqbRo0frxx9/1Pvvv6+AgAD973//u+L7fTXn0+l06v3331enTp3Uq1cvnTp1Sh988IFiYmL0/fffq379+pKkpKQkderUSW3atDGPvWPHDiUnJ+uFF164Yi2zZs1STk6Onn/+eZ04cUJjx47VE088odatW2vlypUaMmSI9uzZo7ffflsvvfSSpk2bZr52xIgRevXVVxUdHa0+ffpo165dmjx5sjZs2KDk5GSXW5LHjx9XbGysOnbsqC5duigwMFB5eXl66KGHtGbNGj333HMKDw/Xli1bNH78eP3000/66quvLln3m2++qQ8//FBffvmlJk+erHLlyrlcEd21a5c6deqkv//97+rVq5dq1qwp6eo/X1crPT1drVq10oULF/Tyyy/Lx8dHU6dO5WpUSWYAJdC2bdsMScaoUaMMwzCM8+fPGz4+PsbMmTMNwzCMwMBAY9KkSYZhGIbT6TQ8PT2NXr16uexDkuHl5WXs2bPHbNu0aZMhyXj77bfNtunTpxuSjH379hmGYRgnT540ypcvbzRu3Ng4e/asyz7z8vLMn++77z5DkvHhhx+abdnZ2UZQUJARHx9/1WM9duyYIckYPny42bZixQpDklG9enXjzJkzLv3PnTtn5ObmurTt27fPsNvtxsiRIwvsIzw83MjOzjbbJ0yYYEgytmzZYhiGYWzcuNGQZHz66aeXrfPPdRiGYcTExBjVq1c316/2vYuLizNCQ0ML7G/fvn2GJGP69OlmW/369Y2AgADj+PHjZtumTZsMDw8Po1u3bmbb8OHDDUnGM88847LPRx991PDz87vs2Azj6s/nhQsXXN5PwzCM33//3QgMDHQ59gsvvGA4HA7jwoULVzz2xfLfA39/f+PkyZNme2JioiHJqFevnnH+/HmzvVOnToaXl5dx7tw5wzAM4+jRo4aXl5fRtm1bl8/JxIkTDUnGtGnTCox5ypQpLjV89NFHhoeHh/Hdd9+5tE+ZMsWQZCQnJ192DPnn4tixYy7toaGhhiRj0aJFBV5zNZ8vwzAK/Fu5eN/du3c31/v3729IMtavX2+2HT161PD19XX5946Sg1tmKJHCw8Pl5+dnzg3atGmTsrKyzG+RNWnSRMnJyZL+mFuUm5tb6Pyh6Oho3X777eZ63bp15XA49PPPP1/y2ElJSTp16pRefvnlAvNZbDaby3q5cuVc5v14eXnpnnvuuez+r0X37t0L/Bet3W435xHl5ubq+PHjKleunGrWrKkff/yxwD569OghLy8vc7158+aSZNaYfwVo8eLFl721dHEdmZmZ+u2333Tffffp559/Nm+tXct7dzWOHDmitLQ0Pf3006pUqZLZXrduXd1///365ptvCrymd+/eLuvNmzfX8ePH5XQ6r3i8qzmfnp6e5vuZl5enEydO6MKFC2rUqJHL+1+hQgVlZWUpKSnp6gd8kccff9w8N5LUuHFjSVKXLl1UqlQpl/acnBz9+uuvkv64opaTk6P+/fu7zDfr1auXHA6HFi5c6HIcu92uHj16uLR9+umnCg8PV61atfTbb7+ZS+vWrSWp0NuDVyssLEwxMTEF2q/m83UtvvnmG91777265557zDZ/f3917tz5+gpHsUcgQolks9nUpEkTc65QcnKyAgICzG+sXByI8v+3sEB02223FWirWLGifv/990see+/evZJ0Vc+kqVKlSoFf9Ffa/7UICwsr0JaXl6fx48frjjvukN1uV+XKleXv76/NmzcX+ovjz+9BxYoVJcmsMSwsTAMHDtT777+vypUrKyYmRpMmTSqwr+TkZEVHR5vzePz9/c35Jvl9r+W9uxoHDhyQJPO2ysXCw8P122+/KSsry6X9SuO9nKs9nzNnzlTdunVVpkwZ+fn5yd/fXwsXLnR5z/r27as777xTsbGxqlKlip555pkC89cu58/jyA9HVatWLbQ9v8ZLvWdeXl6qXr26uT3f3/72N5fALP0xp2zbtm3y9/d3We68805J/zdp+noU9pmWru7zdS0OHDigO+64o0B7YZ8llAwEIpRYzZo1U2ZmprZs2WLOH8rXpEkTHThwQL/++qvWrFmjkJAQVa9evcA+LvXtMcMwiqTGG73/wuY7/Pe//9XAgQPVokULffzxx1q8eLGSkpJUu3btQieMXk2N48aN0+bNm/XKK6/o7Nmz+sc//qHatWvrl19+kfRH0GnTpo1+++03vfHGG1q4cKGSkpI0YMAASSpWE1X/yjm5mtd+/PHH5jN2PvjgAy1atEhJSUlq3bq1y/sQEBCgtLQ0ff3113rooYe0YsUKxcbGqnv37n9pHEX9mSvsM5aXl6fIyEglJSUVuvTt2/e6jnWp4xXF5ys3N/e6a0LJwKRqlFgXP48oOTnZ5Zk1DRs2lN1u18qVK7V+/Xo98MADRXbc/FtsW7duLZbPUPnss8/UqlUrffDBBy7tJ0+eVOXKla97v5GRkYqMjNTQoUO1du1aNW3aVFOmTNG///1vzZ8/X9nZ2fr6669drlz8+dbJ1b53V3v7LDQ0VNIfE3H/bOfOnapcubJ8fHyual9F5bPPPlP16tX1xRdfuIwj/5tVF/Py8lL79u3Vvn175eXlqW/fvnr33Xf1r3/964Z9ti5+zy7+j4ScnBzt27dP0dHRV9zH7bffrk2bNqlNmzbXdavzWl3t50v644rdn78tl5OToyNHjri0hYaGavfu3QVeX9hnCSUDV4hQYjVq1EhlypTRrFmz9Ouvv7pcIbLb7WrQoIEmTZqkrKys63r+0KW0bdtW5cuX1+jRo3Xu3DmXbUV15eev8PT0LFDHp59+as4huVZOp1MXLlxwaYuMjJSHh4f5Fev8qxIXHzczM1PTp093ed3Vvnc+Pj5XdRskODhY9evX18yZM11+CW7dulVLliwp0iB8tQp7L9avX6+UlBSXfsePH3dZ9/DwML9tdaWvrv8V0dHR8vLy0ltvveVS4wcffKDMzEzFxcVdcR9PPPGEfv31V7333nsFtp09e7bAbcq/6mo/X9IfYW316tUubVOnTi1wheiBBx7QunXr9P3335ttx44d06xZs4qydBQjXCFCieXl5aW7775b3333nex2uxo2bOiyvUmTJho3bpyk63sg46U4HA6NHz9ezz77rO6++2499dRTqlixojZt2qQzZ85o5syZRXas6/Hggw9q5MiR6tGjh5o0aaItW7Zo1qxZhd4yvBrLly9Xv3799Pjjj+vOO+/UhQsX9NFHH8nT01Px8fGS/gg6+Vc7/v73v+v06dN67733FBAQ4PJf5lf73jVs2FBz587VwIEDdffdd6tcuXJq3759ofW99tprio2NVVRUlHr27Gl+7d7X17fQ59HcaA8++KC++OILPfroo4qLi9O+ffs0ZcoURURE6PTp02a/Z599VidOnFDr1q1VpUoVHThwQG+//bbq16+v8PDwG1afv7+/EhMT9eqrr6pdu3Z66KGHtGvXLr3zzju6++67L/vwz3xdu3bVvHnz1Lt3b61YsUJNmzZVbm6udu7cqXnz5pnPESoqV/v5kv54X3v37q34+Hjdf//92rRpkxYvXlzg6ujgwYP10UcfqV27dnrhhRfMr92HhoZq8+bNRVY7ig8CEUq0Zs2a6bvvvjNvkV2sadOmGjdunMqXL6969eoV6XF79uypgIAAjRkzRqNGjVLp0qVVq1Ytc06DO73yyivKysrS7NmzNXfuXDVo0EALFy7Uyy+/fF37q1evnmJiYjR//nz9+uuv8vb2Vr169fTtt9/q3nvvlfTHRNTPPvtMQ4cO1UsvvaSgoCD16dNH/v7+euaZZ1z2dzXvXd++fZWWlqbp06dr/PjxCg0NvWQgio6O1qJFizR8+HANGzZMpUuX1n333af//e9/l5ygeyM9/fTTSk9P17vvvqvFixcrIiJCH3/8sT799FOtXLnS7NelSxdNnTpV77zzjk6ePKmgoCA9+eSTGjFixA1/2viIESPk7++viRMnasCAAapUqZKee+45/fe//72qP4vi4eGhr776SuPHjzefKeTt7a3q1avrhRdeMCdXF5Vr+Xz16tVL+/btM+dvNW/eXElJSWrTpo1Lv+DgYK1YsULPP/+8xowZIz8/P/Xu3VshISHq2bNnkdaP4sFmFIdr+AAAAG7EHCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5BCIAAGB5PIfoKuTl5enw4cMqX778TXkMPQAA+OsMw9CpU6cUEhJyxed3EYiuwuHDhwv8hWgAAHBrOHTokKpUqXLZPgSiq1C+fHlJf7yhDofDzdUAAICr4XQ6VbVqVfP3+OUQiK5C/m0yh8NBIAIA4BZzNdNdmFQNAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsr5S7CwCAK6n28kJ3l/CX7R8T5+4SAFwGgQgoREn4BSzxSxgArha3zAAAgOURiAAAgOURiAAAgOUVm0A0ZswY2Ww29e/f32w7d+6cEhIS5Ofnp3Llyik+Pl4ZGRkurzt48KDi4uLk7e2tgIAADRo0SBcuXHDps3LlSjVo0EB2u101atTQjBkzbsKIAADAraJYBKINGzbo3XffVd26dV3aBwwYoPnz5+vTTz/VqlWrdPjwYXXo0MHcnpubq7i4OOXk5Gjt2rWaOXOmZsyYoWHDhpl99u3bp7i4OLVq1UppaWnq37+/nn32WS1evPimjQ8AABRvbg9Ep0+fVufOnfXee++pYsWKZntmZqY++OADvfHGG2rdurUaNmyo6dOna+3atVq3bp0kacmSJdq+fbs+/vhj1a9fX7GxsRo1apQmTZqknJwcSdKUKVMUFhamcePGKTw8XP369dNjjz2m8ePHu2W8AACg+HF7IEpISFBcXJyio6Nd2lNTU3X+/HmX9lq1aum2225TSkqKJCklJUWRkZEKDAw0+8TExMjpdGrbtm1mnz/vOyYmxtwHAACAW59DNGfOHP3444/asGFDgW3p6eny8vJShQoVXNoDAwOVnp5u9rk4DOVvz992uT5Op1Nnz55V2bJlCxw7Oztb2dnZ5rrT6bz2wQEAgFuG264QHTp0SC+88IJmzZqlMmXKuKuMQo0ePVq+vr7mUrVqVXeXBAAAbiC3BaLU1FQdPXpUDRo0UKlSpVSqVCmtWrVKb731lkqVKqXAwEDl5OTo5MmTLq/LyMhQUFCQJCkoKKjAt87y16/Ux+FwFHp1SJISExOVmZlpLocOHSqKIQMAgGLKbYGoTZs22rJli9LS0sylUaNG6ty5s/lz6dKltWzZMvM1u3bt0sGDBxUVFSVJioqK0pYtW3T06FGzT1JSkhwOhyIiIsw+F+8jv0/+Pgpjt9vlcDhcFgAAUHK5bQ5R+fLlVadOHZc2Hx8f+fn5me09e/bUwIEDValSJTkcDj3//POKiorSvffeK0lq27atIiIi1LVrV40dO1bp6ekaOnSoEhISZLfbJUm9e/fWxIkTNXjwYD3zzDNavny55s2bp4ULS8bfqgIAAH9dsf7jruPHj5eHh4fi4+OVnZ2tmJgYvfPOO+Z2T09PLViwQH369FFUVJR8fHzUvXt3jRw50uwTFhamhQsXasCAAZowYYKqVKmi999/XzExMe4YEgAAKIZshmEY7i6iuHM6nfL19VVmZia3zyyCv3ZfvJSE81FSzgVwK7mW399ufw4RAACAuxGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5RGIAACA5bk1EE2ePFl169aVw+GQw+FQVFSUvv32W3N7y5YtZbPZXJbevXu77OPgwYOKi4uTt7e3AgICNGjQIF24cMGlz8qVK9WgQQPZ7XbVqFFDM2bMuBnDAwAAt4hS7jx4lSpVNGbMGN1xxx0yDEMzZ87Uww8/rI0bN6p27dqSpF69emnkyJHma7y9vc2fc3NzFRcXp6CgIK1du1ZHjhxRt27dVLp0af33v/+VJO3bt09xcXHq3bu3Zs2apWXLlunZZ59VcHCwYmJibu6AAQBAseTWQNS+fXuX9f/85z+aPHmy1q1bZwYib29vBQUFFfr6JUuWaPv27Vq6dKkCAwNVv359jRo1SkOGDNGIESPk5eWlKVOmKCwsTOPGjZMkhYeHa82aNRo/fjyBCAAASCpGc4hyc3M1Z84cZWVlKSoqymyfNWuWKleurDp16igxMVFnzpwxt6WkpCgyMlKBgYFmW0xMjJxOp7Zt22b2iY6OdjlWTEyMUlJSbvCIAADArcKtV4gkacuWLYqKitK5c+dUrlw5ffnll4qIiJAkPfXUUwoNDVVISIg2b96sIUOGaNeuXfriiy8kSenp6S5hSJK5np6eftk+TqdTZ8+eVdmyZQvUlJ2drezsbHPd6XQW3YABAECx4/ZAVLNmTaWlpSkzM1OfffaZunfvrlWrVikiIkLPPfec2S8yMlLBwcFq06aN9u7dq9tvv/2G1TR69Gi9+uqrN2z/AACgeHH7LTMvLy/VqFFDDRs21OjRo1WvXj1NmDCh0L6NGzeWJO3Zs0eSFBQUpIyMDJc++ev5844u1cfhcBR6dUiSEhMTlZmZaS6HDh26/gECAIBiz+2B6M/y8vJcblddLC0tTZIUHBwsSYqKitKWLVt09OhRs09SUpIcDod52y0qKkrLli1z2U9SUpLLPKU/s9vt5qMA8hcAAFByufWWWWJiomJjY3Xbbbfp1KlTmj17tlauXKnFixdr7969mj17th544AH5+flp8+bNGjBggFq0aKG6detKktq2bauIiAh17dpVY8eOVXp6uoYOHaqEhATZ7XZJUu/evTVx4kQNHjxYzzzzjJYvX6558+Zp4cKF7hw6AAAoRtwaiI4ePapu3brpyJEj8vX1Vd26dbV48WLdf//9OnTokJYuXao333xTWVlZqlq1quLj4zV06FDz9Z6enlqwYIH69OmjqKgo+fj4qHv37i7PLQoLC9PChQs1YMAATZgwQVWqVNH777/PV+4BAIDJrYHogw8+uOS2qlWratWqVVfcR2hoqL755pvL9mnZsqU2btx4zfUBAABrKHZziAAAAG42AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8twaiyZMnq27dunI4HHI4HIqKitK3335rbj937pwSEhLk5+encuXKKT4+XhkZGS77OHjwoOLi4uTt7a2AgAANGjRIFy5ccOmzcuVKNWjQQHa7XTVq1NCMGTNuxvAAAMAtwq2BqEqVKhozZoxSU1P1ww8/qHXr1nr44Ye1bds2SdKAAQM0f/58ffrpp1q1apUOHz6sDh06mK/Pzc1VXFyccnJytHbtWs2cOVMzZszQsGHDzD779u1TXFycWrVqpbS0NPXv31/PPvusFi9efNPHCwAAiiebYRiGu4u4WKVKlfTaa6/psccek7+/v2bPnq3HHntMkrRz506Fh4crJSVF9957r7799ls9+OCDOnz4sAIDAyVJU6ZM0ZAhQ3Ts2DF5eXlpyJAhWrhwobZu3Woeo2PHjjp58qQWLVp0VTU5nU75+voqMzNTDoej6AeNYqfaywvdXUKR2D8mzt0lFImScD5KyrkAbiXX8vu72Mwhys3N1Zw5c5SVlaWoqCilpqbq/Pnzio6ONvvUqlVLt912m1JSUiRJKSkpioyMNMOQJMXExMjpdJpXmVJSUlz2kd8nfx+Fyc7OltPpdFkAAEDJ5fZAtGXLFpUrV052u129e/fWl19+qYiICKWnp8vLy0sVKlRw6R8YGKj09HRJUnp6uksYyt+ev+1yfZxOp86ePVtoTaNHj5avr6+5VK1atSiGCgAAiim3B6KaNWsqLS1N69evV58+fdS9e3dt377drTUlJiYqMzPTXA4dOuTWegAAwI1Vyt0FeHl5qUaNGpKkhg0basOGDZowYYKefPJJ5eTk6OTJky5XiTIyMhQUFCRJCgoK0vfff++yv/xvoV3c58/fTMvIyJDD4VDZsmULrclut8tutxfJ+AAAQPHn9itEf5aXl6fs7Gw1bNhQpUuX1rJly8xtu3bt0sGDBxUVFSVJioqK0pYtW3T06FGzT1JSkhwOhyIiIsw+F+8jv0/+PgAAANx6hSgxMVGxsbG67bbbdOrUKc2ePVsrV67U4sWL5evrq549e2rgwIGqVKmSHA6Hnn/+eUVFRenee++VJLVt21YRERHq2rWrxo4dq/T0dA0dOlQJCQnmFZ7evXtr4sSJGjx4sJ555hktX75c8+bN08KFt/63VgAAQNFwayA6evSounXrpiNHjsjX11d169bV4sWLdf/990uSxo8fLw8PD8XHxys7O1sxMTF65513zNd7enpqwYIF6tOnj6KiouTj46Pu3btr5MiRZp+wsDAtXLhQAwYM0IQJE1SlShW9//77iomJuenjBQAAxVOxew5RccRziKynJDz3Rio5z74pCeejpJwL4FZySz6HCAAAwF0IRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPLcGohGjx6tu+++W+XLl1dAQIAeeeQR7dq1y6VPy5YtZbPZXJbevXu79Dl48KDi4uLk7e2tgIAADRo0SBcuXHDps3LlSjVo0EB2u101atTQjBkzbvTwAADALcKtgWjVqlVKSEjQunXrlJSUpPPnz6tt27bKyspy6derVy8dOXLEXMaOHWtuy83NVVxcnHJycrR27VrNnDlTM2bM0LBhw8w++/btU1xcnFq1aqW0tDT1799fzz77rBYvXnzTxgoAAIqvUu48+KJFi1zWZ8yYoYCAAKWmpqpFixZmu7e3t4KCggrdx5IlS7R9+3YtXbpUgYGBql+/vkaNGqUhQ4ZoxIgR8vLy0pQpUxQWFqZx48ZJksLDw7VmzRqNHz9eMTExN26AAADgllCs5hBlZmZKkipVquTSPmvWLFWuXFl16tRRYmKizpw5Y25LSUlRZGSkAgMDzbaYmBg5nU5t27bN7BMdHe2yz5iYGKWkpBRaR3Z2tpxOp8sCAABKLrdeIbpYXl6e+vfvr6ZNm6pOnTpm+1NPPaXQ0FCFhIRo8+bNGjJkiHbt2qUvvvhCkpSenu4ShiSZ6+np6Zft43Q6dfbsWZUtW9Zl2+jRo/Xqq68W+RgBAEDxVGwCUUJCgrZu3ao1a9a4tD/33HPmz5GRkQoODlabNm20d+9e3X777TeklsTERA0cONBcdzqdqlq16g05FgAAcL9iccusX79+WrBggVasWKEqVapctm/jxo0lSXv27JEkBQUFKSMjw6VP/nr+vKNL9XE4HAWuDkmS3W6Xw+FwWQAAQMnl1kBkGIb69eunL7/8UsuXL1dYWNgVX5OWliZJCg4OliRFRUVpy5YtOnr0qNknKSlJDodDERERZp9ly5a57CcpKUlRUVFFNBIAAHArc2sgSkhI0Mcff6zZs2erfPnySk9PV3p6us6ePStJ2rt3r0aNGqXU1FTt379fX3/9tbp166YWLVqobt26kqS2bdsqIiJCXbt21aZNm7R48WINHTpUCQkJstvtkqTevXvr559/1uDBg7Vz50698847mjdvngYMGOC2sQMAgOLDrYFo8uTJyszMVMuWLRUcHGwuc+fOlSR5eXlp6dKlatu2rWrVqqUXX3xR8fHxmj9/vrkPT09PLViwQJ6enoqKilKXLl3UrVs3jRw50uwTFhamhQsXKikpSfXq1dO4ceP0/vvv85V7AAAgyc2Tqg3DuOz2qlWratWqVVfcT2hoqL755pvL9mnZsqU2btx4TfUBAABrKBaTqgEAANyJQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACzvqp9D1KFDh6veaf5fogcAALgVXPUVIl9fX3NxOBxatmyZfvjhB3N7amqqli1bJl9f3xtSKAAAwI1y1VeIpk+fbv48ZMgQPfHEE5oyZYo8PT0lSbm5uerbty9/GR4AANxyrmsO0bRp0/TSSy+ZYUj642+KDRw4UNOmTSuy4gAAAG6G6wpEFy5c0M6dOwu079y5U3l5eX+5KAAAgJvpuv64a48ePdSzZ0/t3btX99xzjyRp/fr1GjNmjHr06FGkBQIAANxo1xWIXn/9dQUFBWncuHE6cuSIJCk4OFiDBg3Siy++WKQFAgAA3GjXFYg8PDw0ePBgDR48WE6nU5KYTA0AAG5Z1xWILkYQAgAAt7rrCkRhYWGy2WyX3P7zzz9fd0EAAAA323UFov79+7usnz9/Xhs3btSiRYs0aNCgoqgLAADgprmuQPTCCy8U2j5p0iSXp1cDAADcCor0j7vGxsbq888/L8pdAgAA3HBFGog+++wzVapUqSh3CQAAcMNd1y2zu+66y2VStWEYSk9P17Fjx/TOO+8UWXEAAAA3w3UFokceecRl3cPDQ/7+/mrZsqVq1apVFHUBAADcNNcViIYPH17UdQAAALjNX34w47lz55STk+PSxsMaAQDAreS6JlVnZWWpX79+CggIkI+PjypWrOiyAAAA3EquKxANHjxYy5cv1+TJk2W32/X+++/r1VdfVUhIiD788MOirhEAAOCGuq5bZvPnz9eHH36oli1bqkePHmrevLlq1Kih0NBQzZo1S507dy7qOgEAAG6Y67pCdOLECVWvXl3SH/OFTpw4IUlq1qyZVq9eXXTVAQAA3ATXFYiqV6+uffv2SZJq1aqlefPmSfrjylGFChWKrDgAAICb4boCUY8ePbRp0yZJ0ssvv6xJkyapTJkyGjBgAH/cFQAA3HKuKxANGDBA//jHPyRJ0dHR2rlzp2bPnq2NGzde8g+/Fmb06NG6++67Vb58eQUEBOiRRx7Rrl27XPqcO3dOCQkJ8vPzU7ly5RQfH6+MjAyXPgcPHlRcXJy8vb0VEBCgQYMG6cKFCy59Vq5cqQYNGshut6tGjRqaMWPG9QwdAACUQNcciM6fP682bdpo9+7dZltoaKg6dOigunXrXtO+Vq1apYSEBK1bt05JSUk6f/682rZtq6ysLLPPgAEDNH/+fH366adatWqVDh8+rA4dOpjbc3NzFRcXp5ycHK1du1YzZ87UjBkzNGzYMLPPvn37FBcXp1atWiktLU39+/fXs88+q8WLF1/r8AEAQAlkMwzDuNYX+fv7a+3atbrjjjuKtJhjx44pICBAq1atUosWLZSZmSl/f3/Nnj1bjz32mCRp586dCg8PV0pKiu699159++23evDBB3X48GEFBgZKkqZMmaIhQ4bo2LFj8vLy0pAhQ7Rw4UJt3brVPFbHjh118uRJLVq06Ip1OZ1O+fr6KjMzk4dOWkS1lxe6u4QisX9MnLtLKBIl4XyUlHMB3Equ5ff3dd0y69Kliz744IPrKu5yMjMzJUmVKlWSJKWmpur8+fOKjo42+9SqVUu33XabUlJSJEkpKSmKjIw0w5AkxcTEyOl0atu2bWafi/eR3yd/HwAAwNqu6zlEFy5c0LRp07R06VI1bNhQPj4+LtvfeOONa95nXl6e+vfvr6ZNm6pOnTqSpPT0dHl5eRX45lpgYKDS09PNPheHofzt+dsu18fpdOrs2bMqW7asy7bs7GxlZ2eb606n85rHAwAAbh3XFIh+/vlnVatWTVu3blWDBg0kST/99JNLH5vNdl2FJCQkaOvWrVqzZs11vb4ojR49Wq+++qq7ywAAADfJNQWiO+64Q0eOHNGKFSskSU8++aTeeuutAldfrlW/fv20YMECrV69WlWqVDHbg4KClJOTo5MnT7pcJcrIyFBQUJDZ5/vvv3fZX/630C7u8+dvpmVkZMjhcBS4OiRJiYmJGjhwoLnudDpVtWrVvzRGAABQfF3THKI/z7/+9ttvXb4Rdq0Mw1C/fv305Zdfavny5QoLC3PZ3rBhQ5UuXVrLli0z23bt2qWDBw8qKipKkhQVFaUtW7bo6NGjZp+kpCQ5HA5FRESYfS7eR36f/H38md1ul8PhcFkAAEDJdV1ziPJdxxfUXCQkJGj27Nn6f//v/6l8+fLmnB9fX1+VLVtWvr6+6tmzpwYOHKhKlSrJ4XDo+eefV1RUlO69915JUtu2bRUREaGuXbtq7NixSk9P19ChQ5WQkCC73S5J6t27tyZOnKjBgwfrmWee0fLlyzVv3jwtXHjrf3MFAAD8ddd0hchmsxWYI3S9c4YkafLkycrMzFTLli0VHBxsLnPnzjX7jB8/Xg8++KDi4+PVokULBQUF6YsvvjC3e3p6asGCBfL09FRUVJS6dOmibt26aeTIkWafsLAwLVy4UElJSapXr57GjRun999/XzExMdddOwAAKDmu6TlEHh4eio2NNa+8zJ8/X61bty7wLbOLA0tJwHOIrKckPPdGKjnPvikJ56OknAvgVnItv7+v6ZZZ9+7dXda7dOly7dUBAAAUM9cUiKZPn36j6gAAAHCb63pSNQAAQElCIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJbn1kC0evVqtW/fXiEhIbLZbPrqq69ctj/99NOy2WwuS7t27Vz6nDhxQp07d5bD4VCFChXUs2dPnT592qXP5s2b1bx5c5UpU0ZVq1bV2LFjb/TQAADALcStgSgrK0v16tXTpEmTLtmnXbt2OnLkiLl88sknLts7d+6sbdu2KSkpSQsWLNDq1av13HPPmdudTqfatm2r0NBQpaam6rXXXtOIESM0derUGzYuAABwaynlzoPHxsYqNjb2sn3sdruCgoIK3bZjxw4tWrRIGzZsUKNGjSRJb7/9th544AG9/vrrCgkJ0axZs5STk6Np06bJy8tLtWvXVlpamt544w2X4AQAAKyr2M8hWrlypQICAlSzZk316dNHx48fN7elpKSoQoUKZhiSpOjoaHl4eGj9+vVmnxYtWsjLy8vsExMTo127dun333+/eQMBAADFlluvEF1Ju3bt1KFDB4WFhWnv3r165ZVXFBsbq5SUFHl6eio9PV0BAQEurylVqpQqVaqk9PR0SVJ6errCwsJc+gQGBprbKlasWOC42dnZys7ONtedTmdRDw0AABQjxToQdezY0fw5MjJSdevW1e23366VK1eqTZs2N+y4o0eP1quvvnrD9g8AAIqXYn/L7GLVq1dX5cqVtWfPHklSUFCQjh496tLnwoULOnHihDnvKCgoSBkZGS598tcvNTcpMTFRmZmZ5nLo0KGiHgoAAChGbqlA9Msvv+j48eMKDg6WJEVFRenkyZNKTU01+yxfvlx5eXlq3Lix2Wf16tU6f/682ScpKUk1a9Ys9HaZ9MdEbofD4bIAAICSy62B6PTp00pLS1NaWpokad++fUpLS9PBgwd1+vRpDRo0SOvWrdP+/fu1bNkyPfzww6pRo4ZiYmIkSeHh4WrXrp169eql77//XsnJyerXr586duyokJAQSdJTTz0lLy8v9ezZU9u2bdPcuXM1YcIEDRw40F3DBgAAxYxbA9EPP/ygu+66S3fddZckaeDAgbrrrrs0bNgweXp6avPmzXrooYd05513qmfPnmrYsKG+++472e12cx+zZs1SrVq11KZNGz3wwANq1qyZyzOGfH19tWTJEu3bt08NGzbUiy++qGHDhvGVewAAYHLrpOqWLVvKMIxLbl+8ePEV91GpUiXNnj37sn3q1q2r77777prrAwAA1nBLzSECAAC4EQhEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8ghEAADA8twaiFavXq327dsrJCRENptNX331lct2wzA0bNgwBQcHq2zZsoqOjtbu3btd+pw4cUKdO3eWw+FQhQoV1LNnT50+fdqlz+bNm9W8eXOVKVNGVatW1dixY2/00AAAwC3ErYEoKytL9erV06RJkwrdPnbsWL311luaMmWK1q9fLx8fH8XExOjcuXNmn86dO2vbtm1KSkrSggULtHr1aj333HPmdqfTqbZt2yo0NFSpqal67bXXNGLECE2dOvWGjw8AANwaSrnz4LGxsYqNjS10m2EYevPNNzV06FA9/PDDkqQPP/xQgYGB+uqrr9SxY0ft2LFDixYt0oYNG9SoUSNJ0ttvv60HHnhAr7/+ukJCQjRr1izl5ORo2rRp8vLyUu3atZWWlqY33njDJTgBAADrKrZziPbt26f09HRFR0ebbb6+vmrcuLFSUlIkSSkpKapQoYIZhiQpOjpaHh4eWr9+vdmnRYsW8vLyMvvExMRo165d+v333ws9dnZ2tpxOp8sCAABKrmIbiNLT0yVJgYGBLu2BgYHmtvT0dAUEBLhsL1WqlCpVquTSp7B9XHyMPxs9erR8fX3NpWrVqn99QAAAoNgqtoHInRITE5WZmWkuhw4dcndJAADgBiq2gSgoKEiSlJGR4dKekZFhbgsKCtLRo0ddtl+4cEEnTpxw6VPYPi4+xp/Z7XY5HA6XBQAAlFzFNhCFhYUpKChIy5YtM9ucTqfWr1+vqKgoSVJUVJROnjyp1NRUs8/y5cuVl5enxo0bm31Wr16t8+fPm32SkpJUs2ZNVaxY8SaNBgAAFGduDUSnT59WWlqa0tLSJP0xkTotLU0HDx6UzWZT//799e9//1tff/21tmzZom7duikkJESPPPKIJCk8PFzt2rVTr1699P333ys5OVn9+vVTx44dFRISIkl66qmn5OXlpZ49e2rbtm2aO3euJkyYoIEDB7pp1AAAoLhx69fuf/jhB7Vq1cpczw8p3bt314wZMzR48GBlZWXpueee08mTJ9WsWTMtWrRIZcqUMV8za9Ys9evXT23atJGHh4fi4+P11ltvmdt9fX21ZMkSJSQkqGHDhqpcubKGDRvGV+4BAIDJZhiG4e4iijun0ylfX19lZmYyn8giqr280N0lFIn9Y+LcXUKRKAnno6ScC+BWci2/v4vtHCIAAICbhUAEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsr1gHohEjRshms7kstWrVMrefO3dOCQkJ8vPzU7ly5RQfH6+MjAyXfRw8eFBxcXHy9vZWQECABg0apAsXLtzsoQAAgGKslLsLuJLatWtr6dKl5nqpUv9X8oABA7Rw4UJ9+umn8vX1Vb9+/dShQwclJydLknJzcxUXF6egoCCtXbtWR44cUbdu3VS6dGn997//veljAQAAxVOxD0SlSpVSUFBQgfbMzEx98MEHmj17tlq3bi1Jmj59usLDw7Vu3Trde++9WrJkibZv366lS5cqMDBQ9evX16hRozRkyBCNGDFCXl5eN3s4AACgGCrWt8wkaffu3QoJCVH16tXVuXNnHTx4UJKUmpqq8+fPKzo62uxbq1Yt3XbbbUpJSZEkpaSkKDIyUoGBgWafmJgYOZ1Obdu27ZLHzM7OltPpdFkAAEDJVawDUePGjTVjxgwtWrRIkydP1r59+9S8eXOdOnVK6enp8vLyUoUKFVxeExgYqPT0dElSenq6SxjK356/7VJGjx4tX19fc6latWrRDgwAABQrxfqWWWxsrPlz3bp11bhxY4WGhmrevHkqW7bsDTtuYmKiBg4caK47nU5CEQAAJVixvkL0ZxUqVNCdd96pPXv2KCgoSDk5OTp58qRLn4yMDHPOUVBQUIFvneWvFzYvKZ/dbpfD4XBZAABAyXVLBaLTp09r7969Cg4OVsOGDVW6dGktW7bM3L5r1y4dPHhQUVFRkqSoqCht2bJFR48eNfskJSXJ4XAoIiLiptcPAACKp2J9y+yll15S+/btFRoaqsOHD2v48OHy9PRUp06d5Ovrq549e2rgwIGqVKmSHA6Hnn/+eUVFRenee++VJLVt21YRERHq2rWrxo4dq/T0dA0dOlQJCQmy2+1uHh0AACguinUg+uWXX9SpUycdP35c/v7+atasmdatWyd/f39J0vjx4+Xh4aH4+HhlZ2crJiZG77zzjvl6T09PLViwQH369FFUVJR8fHzUvXt3jRw50l1DAgAAxVCxDkRz5sy57PYyZcpo0qRJmjRp0iX7hIaG6ptvvinq0gAAQAlyS80hAgAAuBEIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIIRAAAwPIsFYgmTZqkatWqqUyZMmrcuLG+//57d5cEAACKAcsEorlz52rgwIEaPny4fvzxR9WrV08xMTE6evSou0sDAABuZplA9MYbb6hXr17q0aOHIiIiNGXKFHl7e2vatGnuLg0AALiZJQJRTk6OUlNTFR0dbbZ5eHgoOjpaKSkpbqwMAAAUB6XcXcDN8Ntvvyk3N1eBgYEu7YGBgdq5c2eB/tnZ2crOzjbXMzMzJUlOp/PGFopiIy/7jLtLKBIl5TNbEs5HSTkXwK0k/9+dYRhX7GuJQHStRo8erVdffbVAe9WqVd1QDXD9fN90dwXIx7kA3OfUqVPy9fW9bB9LBKLKlSvL09NTGRkZLu0ZGRkKCgoq0D8xMVEDBw401/Py8nTixAn5+fnJZrPd8HpvFKfTqapVq+rQoUNyOBzuLsfSOBfFB+eieOF8FB8l4VwYhqFTp04pJCTkin0tEYi8vLzUsGFDLVu2TI888oikP0LOsmXL1K9fvwL97Xa77Ha7S1uFChVuQqU3h8PhuGU/3CUN56L44FwUL5yP4uNWPxdXujKUzxKBSJIGDhyo7t27q1GjRrrnnnv05ptvKisrSz169HB3aQAAwM0sE4iefPJJHTt2TMOGDVN6errq16+vRYsWFZhoDQAArMcygUiS+vXrV+gtMquw2+0aPnx4gduBuPk4F8UH56J44XwUH1Y7Fzbjar6LBgAAUIJZ4sGMAAAAl0MgAgAAlkcgAgAAlkcgAgAUG0xrhbsQiAAAxYbdbteOHTvcXQYsyFJfuwfc5ezZs0pNTVWlSpUUERHhsu3cuXOaN2+eunXr5qbqrGXHjh1at26doqKiVKtWLe3cuVMTJkxQdna2unTpotatW7u7REu4+M8jXSw3N1djxoyRn5+fJOmNN964mWXh/5eVlaV58+Zpz549Cg4OVqdOncxzUlLxtXsLO3TokIYPH65p06a5u5QS7aefflLbtm118OBB2Ww2NWvWTHPmzFFwcLCkP/6mXkhIiHJzc91cacm3aNEiPfzwwypXrpzOnDmjL7/8Ut26dVO9evWUl5enVatWacmSJYSim8DDw0P16tUr8GeRVq1apUaNGsnHx0c2m03Lly93T4EWExERoTVr1qhSpUo6dOiQWrRood9//1133nmn9u7dq1KlSmndunUKCwtzd6k3jgHLSktLMzw8PNxdRon3yCOPGHFxccaxY8eM3bt3G3FxcUZYWJhx4MABwzAMIz09nfNwk0RFRRn//Oc/DcMwjE8++cSoWLGi8corr5jbX375ZeP+++93V3mWMnr0aCMsLMxYtmyZS3upUqWMbdu2uakq67LZbEZGRoZhGIbRuXNno0mTJsbJkycNwzCMU6dOGdHR0UanTp3cWeINxxWiEuzrr7++7Paff/5ZL774IlcmbrDAwEAtXbpUkZGRkv6YNNq3b1998803WrFihXx8fLhCdJP4+voqNTVVNWrUUF5enux2u77//nvdddddkqStW7cqOjpa6enpbq7UGjZs2KAuXbqoffv2Gj16tEqXLq3SpUtr06ZNBW4t48by8PBQenq6AgICdPvtt2vKlCm6//77ze1r165Vx44ddfDgQTdWeWMxh6gEe+SRR2Sz2S77rQ2bzXYTK7Kms2fPqlSp//unZrPZNHnyZPXr10/33XefZs+e7cbqrCf/M+/h4aEyZcq4/CXs8uXLKzMz012lWc7dd9+t1NRUJSQkqFGjRpo1axb/n+RG+e/9uXPnzFv6+f72t7/p2LFj7ijrpuFbZiVYcHCwvvjiC+Xl5RW6/Pjjj+4u0RJq1aqlH374oUD7xIkT9fDDD+uhhx5yQ1XWVK1aNe3evdtcT0lJ0W233WauHzx4sMAvAtxY5cqV08yZM5WYmKjo6GiulLpRmzZt1KBBAzmdTu3atctl24EDB0r8pGquEJVgDRs2VGpqqh5++OFCt1/p6hGKxqOPPqpPPvlEXbt2LbBt4sSJysvL05QpU9xQmfX06dPH5RdunTp1XLZ/++23TKh2k44dO6pZs2ZKTU1VaGiou8uxnOHDh7uslytXzmV9/vz5at68+c0s6aZjDlEJ9t133ykrK0vt2rUrdHtWVpZ++OEH3XfffTe5MgAAihcCEQAAsDzmEAEAAMsjEAEAAMsjEAEAAMsjEAG4pZw5c0bx8fFyOByy2Ww6efKku0tyK5vNpq+++srdZQC3PAIRYFE2m+2yy4gRI9xdYqFmzpyp7777TmvXrtWRI0dcHqwoSS1btrzsuFq2bOmewv+iESNGqH79+gXajxw5otjY2JtfEFDC8BwiwKKOHDli/jx37lwNGzbM5WFsf34OSXGxd+9ehYeHF3iGUL4vvvhCOTk5kv74A8b33HOPli5dqtq1a0uSvLy8XPqfP39epUuXvrFF30BBQUHuLgEoEbhCBFhUUFCQufj6+spmsykoKEjly5fXnXfeqUWLFrn0/+qrr+Tj46NTp05p//79stlsmjNnjpo0aaIyZcqoTp06WrVqlctrtm7dqtjYWJUrV06BgYHq2rWrfvvtt8vW9fnnn6t27dqy2+2qVq2axo0bZ25r2bKlxo0bp9WrV1/yak+lSpXMcfn7+0uS/Pz8zDY/Pz9NnjxZDz30kHx8fPSf//xHubm56tmzp8LCwlS2bFnVrFlTEyZMcNnv008/rUceeUSvv/66goOD5efnp4SEBJ0/f97s88477+iOO+5QmTJlFBgYqMcee8zctmjRIjVr1kwVKlSQn5+fHnzwQe3du9flGL/88os6deqkSpUqycfHR40aNdL69es1Y8YMvfrqq9q0aZN5pWvGjBmSCt4y27Jli1q3bq2yZcvKz89Pzz33nE6fPn1N4wAsyW1/VhZAsTF9+nTD19fXXO/Vq5fxwAMPuPR56KGHjG7duhmGYRj79u0zJBlVqlQxPvvsM2P79u3Gs88+a5QvX9747bffDMMwjN9//93w9/c3EhMTjR07dhg//vijcf/99xutWrW6ZB0//PCD4eHhYYwcOdLYtWuXMX36dKNs2bLG9OnTDcMwjOPHjxu9evUyoqKijCNHjhjHjx+/7Ljy69y4caPZJskICAgwpk2bZuzdu9c4cOCAkZOTYwwbNszYsGGD8fPPPxsff/yx4e3tbcydO9d8Xffu3Q2Hw2H07t3b2LFjhzF//nzD29vbmDp1qmEYhrFhwwbD09PTmD17trF//37jxx9/NCZMmGC+/rPPPjM+//xzY/fu3cbGjRuN9u3bG5GRkUZubq5hGH/8RfHq1asbzZs3N7777jtj9+7dxty5c421a9caZ86cMV588UWjdu3axpEjR4wjR44YZ86cMcfz5ZdfGoZhGKdPnzaCg4ONDh06GFu2bDGWLVtmhIWFGd27d7/qcQBWRSACUCAQrV+/3vD09DQOHz5sGIZhZGRkGKVKlTJWrlxpGMb/BY0xY8aYrzl//rxRpUoV43//+59hGIYxatQoo23bti7HOXTokCHJ2LVrV6F1PPXUU8b999/v0jZo0CAjIiLCXH/hhReM++6776rGdalA1L9//yu+NiEhwYiPjzfXu3fvboSGhhoXLlww2x5//HHjySefNAzDMD7//HPD4XAYTqfzqmo7duyYIcnYsmWLYRiG8e677xrly5e/ZMgbPny4Ua9evQLtFweiqVOnGhUrVjROnz5tbl+4cKHh4eFhpKenX9U4AKvilhmAAu655x7Vrl1bM2fOlCR9/PHHCg0NVYsWLVz6RUVFmT+XKlVKjRo10o4dOyRJmzZt0ooVK1SuXDlzqVWrliQVuFWUb8eOHWratKlLW9OmTbV79+4i/aOfjRo1KtA2adIkNWzYUP7+/ipXrpymTp2qgwcPuvSpXbu2PD09zfXg4GAdPXpUknT//fcrNDRU1atXV9euXTVr1iydOXPG7Lt792516tRJ1atXl8PhULVq1STJPEZaWpruuusuVapU6brHtWPHDtWrV08+Pj5mW9OmTZWXl+cyP+xy4wCsikAEoFDPPvusOU9l+vTp6tGjh2w221W//vTp02rfvr3S0tJclt27dxcIVjfbxYFBkubMmaOXXnpJPXv21JIlS5SWlqYePXqYk7Pz/Xnytc1mU15eniSpfPny+vHHH/XJJ58oODhYw4YNU7169czHArRv314nTpzQe++9p/Xr12v9+vWSZB6jbNmyN2KohbrcOACrIhABKFSXLl104MABvfXWW9q+fbu6d+9eoM+6devMny9cuKDU1FSFh4dLkho0aKBt27apWrVqqlGjhsvy50CSLzw8XMnJyS5tycnJuvPOO12uaBS15ORkNWnSRH379tVdd92lGjVqXPIq1uWUKlVK0dHRGjt2rDZv3qz9+/dr+fLlOn78uHbt2qWhQ4eqTZs2Cg8P1++//+7y2rp16yotLU0nTpwodN9eXl5XvEoWHh6uTZs2KSsry2VsHh4eqlmz5jWPB7ASAhGAQlWsWFEdOnTQoEGD1LZtW1WpUqVAn0mTJunLL7/Uzp07lZCQoN9//13PPPOMJCkhIUEnTpxQp06dtGHDBu3du1eLFy9Wjx49LvmL/cUXX9SyZcs0atQo/fTTT5o5c6YmTpyol1566YaO9Y477tAPP/ygxYsX66efftK//vUvbdiw4Zr2sWDBAr311ltKS0vTgQMH9OGHHyovL081a9ZUxYoV5efnp6lTp2rPnj1avny5Bg4c6PL6Tp06KSgoSI888oiSk5P1888/6/PPP1dKSookqVq1atq3b5/S0tL022+/KTs7u0ANnTt3VpkyZdS9e3dt3bpVK1as0PPPP6+uXbsqMDDw+t8gwAIIRAAuqWfPnsrJyTFDzp+NGTNGY8aMUb169bRmzRp9/fXXqly5siQpJCREycnJys3NVdu2bRUZGan+/furQoUK8vAo/P96GjRooHnz5mnOnDmqU6eOhg0bppEjR+rpp5++UUOUJP39739Xhw4d9OSTT6px48Y6fvy4+vbte037qFChgr744gu1bt1a4eHhmjJlij755BPVrl1bHh4emjNnjlJTU1WnTh0NGDBAr732msvrvby8tGTJEgUEBOiBBx5QZGSkxowZY14Zi4+PV7t27dSqVSv5+/vrk08+KVCDt7e3Fi9erBMnTujuu+/WY489pjZt2mjixInX/+YAFmEzDMNwdxEAiqePPvpIAwYM0OHDh10eaLh//36FhYVp48aNhT49GQBuNTypGkABZ86c0ZEjRzRmzBj9/e9/L/B0ZwAoabhlBqCAsWPHqlatWgoKClJiYqK7ywGAG45bZgAAwPK4QgQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACyPQAQAACzv/wO04sEbQOu7WQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"var = df.groupby('type').isFraud.sum()\n",
"fig = plt.figure()\n",
"ax1 = fig.add_subplot(1,1,1)\n",
"var.plot(kind='bar')\n",
"ax1.set_title(\"Which Transaction has more fraud\")\n",
"ax1.set_xlabel('Type of Transaction')\n",
"ax1.set_ylabel('Fraud')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jzuYw4kKIFAG"
},
"source": [
"{'PAYMENT':1,'TRANSFER':2,'CASH_OUT':3,'CASH_IN':4,'DEBIT':5}"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VB75WHM1JF8j"
},
"source": [
"It is clear that the Fraudulent transactions are among the Transfer and Cash out transactions. Only two types of transactions are fraudulent"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "tMsfmIkgDoTA"
},
"outputs": [],
"source": [
"df2=df.copy()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "RQUfyp-oOxpR"
},
"source": [
"Removing all those contributions which do not contribute to a fraud"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0CYK1n_iJ06x"
},
"outputs": [],
"source": [
"df = df.drop(df[df['type'] == 1].index)\n",
"df = df.drop(df[df['type'] == 4].index)\n",
"df = df.drop(df[df['type'] == 5].index)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "ztaVgbkEN677",
"outputId": "558346e5-16cf-4b9e-ad9c-441d548abfef"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-2100021e-3d4c-4a69-816f-95e342820615\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>step</th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>newbalanceOrig</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>newbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>5774894</th>\n",
" <td>400</td>\n",
" <td>2</td>\n",
" <td>307161.86</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>974551.18</td>\n",
" <td>1281713.04</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1059852</th>\n",
" <td>119</td>\n",
" <td>2</td>\n",
" <td>2495.37</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>810922.40</td>\n",
" <td>813417.77</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1126821</th>\n",
" <td>131</td>\n",
" <td>2</td>\n",
" <td>507953.32</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>2190855.92</td>\n",
" <td>2728658.94</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2680670</th>\n",
" <td>210</td>\n",
" <td>3</td>\n",
" <td>147178.76</td>\n",
" <td>27590.0</td>\n",
" <td>0.0</td>\n",
" <td>190691.71</td>\n",
" <td>337870.47</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3240962</th>\n",
" <td>250</td>\n",
" <td>3</td>\n",
" <td>168555.07</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>378995.71</td>\n",
" <td>547550.78</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-2100021e-3d4c-4a69-816f-95e342820615')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-2100021e-3d4c-4a69-816f-95e342820615 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-2100021e-3d4c-4a69-816f-95e342820615');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-eefe9c55-aaee-439e-9f9d-a7331935e64d\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-eefe9c55-aaee-439e-9f9d-a7331935e64d')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-eefe9c55-aaee-439e-9f9d-a7331935e64d button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" step type amount oldbalanceOrg newbalanceOrig oldbalanceDest \\\n",
"5774894 400 2 307161.86 0.0 0.0 974551.18 \n",
"1059852 119 2 2495.37 0.0 0.0 810922.40 \n",
"1126821 131 2 507953.32 0.0 0.0 2190855.92 \n",
"2680670 210 3 147178.76 27590.0 0.0 190691.71 \n",
"3240962 250 3 168555.07 0.0 0.0 378995.71 \n",
"\n",
" newbalanceDest isFraud \n",
"5774894 1281713.04 0 \n",
"1059852 813417.77 0 \n",
"1126821 2728658.94 0 \n",
"2680670 337870.47 0 \n",
"3240962 547550.78 0 "
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.sample(5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Qfdig9RYN8_J"
},
"outputs": [],
"source": [
"new=df.iloc[:,3]+df.iloc[:,4]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "NrJxtE2lWhlM"
},
"outputs": [],
"source": [
"df2=df.copy()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "AHeTOKlVWl8l",
"outputId": "3fa83804-40b5-45a5-d041-edcb06fd1fad"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-d25fbc4e-1e79-41a8-8f89-151740eca5f8\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>step</th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>newbalanceOrig</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>newbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>181.00</td>\n",
" <td>181.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>181.00</td>\n",
" <td>181.0</td>\n",
" <td>0.0</td>\n",
" <td>21182.0</td>\n",
" <td>0.00</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>229133.94</td>\n",
" <td>15325.0</td>\n",
" <td>0.0</td>\n",
" <td>5083.0</td>\n",
" <td>51513.44</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>215310.30</td>\n",
" <td>705.0</td>\n",
" <td>0.0</td>\n",
" <td>22425.0</td>\n",
" <td>0.00</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>311685.89</td>\n",
" <td>10835.0</td>\n",
" <td>0.0</td>\n",
" <td>6267.0</td>\n",
" <td>2719172.89</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-d25fbc4e-1e79-41a8-8f89-151740eca5f8')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-d25fbc4e-1e79-41a8-8f89-151740eca5f8 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-d25fbc4e-1e79-41a8-8f89-151740eca5f8');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-2a8717c2-0ed2-402f-bb36-41badb1744c9\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-2a8717c2-0ed2-402f-bb36-41badb1744c9')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-2a8717c2-0ed2-402f-bb36-41badb1744c9 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" step type amount oldbalanceOrg newbalanceOrig oldbalanceDest \\\n",
"2 1 2 181.00 181.0 0.0 0.0 \n",
"3 1 3 181.00 181.0 0.0 21182.0 \n",
"15 1 3 229133.94 15325.0 0.0 5083.0 \n",
"19 1 2 215310.30 705.0 0.0 22425.0 \n",
"24 1 2 311685.89 10835.0 0.0 6267.0 \n",
"\n",
" newbalanceDest isFraud \n",
"2 0.00 1 \n",
"3 0.00 1 \n",
"15 51513.44 0 \n",
"19 0.00 0 \n",
"24 2719172.89 0 "
]
},
"execution_count": 48,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "aHF00JItXMCM"
},
"outputs": [],
"source": [
"df2['oldbalanceOrg']=(df2['oldbalanceOrg']+df2['newbalanceOrig'])/2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "XvXbhqMCXkUE",
"outputId": "9d10bcc3-6b91-48f3-f334-e61bf38042eb"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-50baf5e1-a3e2-402a-8eb8-153659839e5f\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>step</th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>newbalanceOrig</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>newbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>181.00</td>\n",
" <td>90.5</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>181.00</td>\n",
" <td>90.5</td>\n",
" <td>0.0</td>\n",
" <td>21182.0</td>\n",
" <td>0.00</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>229133.94</td>\n",
" <td>7662.5</td>\n",
" <td>0.0</td>\n",
" <td>5083.0</td>\n",
" <td>51513.44</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>215310.30</td>\n",
" <td>352.5</td>\n",
" <td>0.0</td>\n",
" <td>22425.0</td>\n",
" <td>0.00</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>311685.89</td>\n",
" <td>5417.5</td>\n",
" <td>0.0</td>\n",
" <td>6267.0</td>\n",
" <td>2719172.89</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-50baf5e1-a3e2-402a-8eb8-153659839e5f')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-50baf5e1-a3e2-402a-8eb8-153659839e5f button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-50baf5e1-a3e2-402a-8eb8-153659839e5f');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-168729e6-0faf-4b91-9686-1e3d58b3b556\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-168729e6-0faf-4b91-9686-1e3d58b3b556')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-168729e6-0faf-4b91-9686-1e3d58b3b556 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" step type amount oldbalanceOrg newbalanceOrig oldbalanceDest \\\n",
"2 1 2 181.00 90.5 0.0 0.0 \n",
"3 1 3 181.00 90.5 0.0 21182.0 \n",
"15 1 3 229133.94 7662.5 0.0 5083.0 \n",
"19 1 2 215310.30 352.5 0.0 22425.0 \n",
"24 1 2 311685.89 5417.5 0.0 6267.0 \n",
"\n",
" newbalanceDest isFraud \n",
"2 0.00 1 \n",
"3 0.00 1 \n",
"15 51513.44 0 \n",
"19 0.00 0 \n",
"24 2719172.89 0 "
]
},
"execution_count": 52,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-e7z5L7fX8wd"
},
"outputs": [],
"source": [
"df2.drop(['newbalanceOrig'],axis=1,inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "iFPN-jQ6YPx0",
"outputId": "8d5d0bb3-f7c4-4d61-f2a7-50ea4b63039e"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-64e652b6-550e-4457-aea7-c38f7986a206\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>step</th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>newbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>181.00</td>\n",
" <td>90.5</td>\n",
" <td>0.0</td>\n",
" <td>0.00</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>181.00</td>\n",
" <td>90.5</td>\n",
" <td>21182.0</td>\n",
" <td>0.00</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>1</td>\n",
" <td>3</td>\n",
" <td>229133.94</td>\n",
" <td>7662.5</td>\n",
" <td>5083.0</td>\n",
" <td>51513.44</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>215310.30</td>\n",
" <td>352.5</td>\n",
" <td>22425.0</td>\n",
" <td>0.00</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>1</td>\n",
" <td>2</td>\n",
" <td>311685.89</td>\n",
" <td>5417.5</td>\n",
" <td>6267.0</td>\n",
" <td>2719172.89</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-64e652b6-550e-4457-aea7-c38f7986a206')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-64e652b6-550e-4457-aea7-c38f7986a206 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-64e652b6-550e-4457-aea7-c38f7986a206');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-9c27649e-cff6-430d-9de8-718c93e2ceaf\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-9c27649e-cff6-430d-9de8-718c93e2ceaf')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-9c27649e-cff6-430d-9de8-718c93e2ceaf button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" step type amount oldbalanceOrg oldbalanceDest newbalanceDest \\\n",
"2 1 2 181.00 90.5 0.0 0.00 \n",
"3 1 3 181.00 90.5 21182.0 0.00 \n",
"15 1 3 229133.94 7662.5 5083.0 51513.44 \n",
"19 1 2 215310.30 352.5 22425.0 0.00 \n",
"24 1 2 311685.89 5417.5 6267.0 2719172.89 \n",
"\n",
" isFraud \n",
"2 1 \n",
"3 1 \n",
"15 0 \n",
"19 0 \n",
"24 0 "
]
},
"execution_count": 56,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9PJiu0hKZc0B"
},
"source": [
"We are averaging all the correlated values and removing the redundant ones"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "yJ4_y2jKYRrK"
},
"outputs": [],
"source": [
"df2['oldbalanceDest']=(df2['oldbalanceDest']+df2['newbalanceDest'])/2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "B2ZHCzG0Z3m5",
"outputId": "51d1d6bf-9fb8-44a2-d09c-73bf10282d8e"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-d4dd5424-7873-4248-b6d6-97c3fe671ea8\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>181.00</td>\n",
" <td>90.5</td>\n",
" <td>0.000</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>181.00</td>\n",
" <td>90.5</td>\n",
" <td>10591.000</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>3</td>\n",
" <td>229133.94</td>\n",
" <td>7662.5</td>\n",
" <td>28298.220</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>2</td>\n",
" <td>215310.30</td>\n",
" <td>352.5</td>\n",
" <td>11212.500</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>2</td>\n",
" <td>311685.89</td>\n",
" <td>5417.5</td>\n",
" <td>1362719.945</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-d4dd5424-7873-4248-b6d6-97c3fe671ea8')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-d4dd5424-7873-4248-b6d6-97c3fe671ea8 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-d4dd5424-7873-4248-b6d6-97c3fe671ea8');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-8ab3dcdf-61fc-462e-99e2-013c62cf48bc\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-8ab3dcdf-61fc-462e-99e2-013c62cf48bc')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-8ab3dcdf-61fc-462e-99e2-013c62cf48bc button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" type amount oldbalanceOrg oldbalanceDest isFraud\n",
"2 2 181.00 90.5 0.000 1\n",
"3 3 181.00 90.5 10591.000 1\n",
"15 3 229133.94 7662.5 28298.220 0\n",
"19 2 215310.30 352.5 11212.500 0\n",
"24 2 311685.89 5417.5 1362719.945 0"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vumRKvchZ4ve"
},
"outputs": [],
"source": [
"df2.drop(['newbalanceDest'],axis=1,inplace=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vPqre8uzbeu6"
},
"source": [
"Actually step is also logically unnecassary"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TPaYuWYabiBC"
},
"outputs": [],
"source": [
"df2.drop(['step'],axis=1,inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Y6b9Z-3UcAXy"
},
"outputs": [],
"source": [
"y = df2[['isFraud']]\n",
"X = df2.drop(['isFraud'],axis=1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "RO7ncKrYcEA8"
},
"outputs": [],
"source": [
"train_X, test_X, train_y, test_y = train_test_split(X, y, test_size = 0.2, random_state = 121)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-lHUZFOKcc_K"
},
"source": [
"We will now apply the lessons learn't from our previous experiments on the raw data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "-3pWb1eEcWiV"
},
"outputs": [],
"source": [
"clf1 = RandomForestClassifier(n_estimators=10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "8TFs0-hhccKL"
},
"outputs": [],
"source": [
"probabilities = clf1.fit(train_X, train_y.values.ravel()).predict(test_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Agp3zJ6NdKZK",
"outputId": "21f5a097-1d8f-459b-87e9-39f8775a1e8e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.7256710801241542\n",
"0.8768268835457358\n",
"0.9992004793514317\n"
]
}
],
"source": [
" print(average_precision_score(test_y,probabilities))\n",
" print(recall_score(test_y,probabilities, average='macro'))\n",
" print(accuracy_score(test_y,probabilities))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sxOhEq6mdsy6"
},
"source": [
"The results are similar to the ones we applied to the raw data earlier. However, there is a slight improvement and more importantly, computational time is reduced to a considerable extent. So clearly, we have removed unncessary data. Ths is our final result"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HaAG7a2rd5zT"
},
"outputs": [],
"source": [
"probabilitiest = clf1.fit(train_X, train_y.values.ravel()).predict(train_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "BCHBB8zuew7P",
"outputId": "5d826387-30bf-4633-d25b-06d935846b93"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.9547410553377302\n",
"0.9776808174915346\n",
"0.9998646409126452\n"
]
}
],
"source": [
" print(average_precision_score(train_y,probabilitiest))\n",
" print(recall_score(train_y,probabilitiest, average='macro'))\n",
" print(accuracy_score(train_y,probabilitiest))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Yde-Su7Ie91s"
},
"source": [
"Now we are suffering from a problem of only slight overfitting, in the case of precision, However, in the case of recall the difference between the training and test case is moderate and indicated ambient training (neither overfitting nor underfitting). It is clear that over data cleanup of removing redundant and unncecarry information has impvoed Machine learnign performance to a great extent. Perhaps with further tuning, we can improve the performance!"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "X_7gT84nrDVe"
},
"source": [
"1. Data cleaning including missing values, outliers and multi-collinearity.\n",
"\n",
"Missing Values: There were no missing values or 'Nan' hence data cleaning did not take much of an effort. However, we have removed redundant columns: 'step' and 'IsFlaggedFraud'.\n",
"\n",
"Outliers: As indicated by the graph above, only 'Tranfer' abd 'Cash out' has contributes to fraud, so we are removing all other types. This contributes to improvement in machine learning parameters and keep the overall process cogent.\n",
"\n",
"Multicollinearity: The balance transfer columns have shown considerable correlation as we have seen through the Pearson correlation coefficient. We are averaging them and eliminating the redundant column. This has demonstrated computational efficiency and has evidenced some positive changes in training parameters."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "uiLYoSHTsQY0"
},
"source": [
"2. Describe your fraud detection model in elaboration.\n",
"\n",
"We use the Random forests ML algorithm, they are ensemble decision trees which use multitude of descision trees during the training phase, they deal with the overfitting charactersistics of basic decision trees. They create a multitude of descision trees and select the descisions through voting.\n",
"\n",
"We are using a random forest algorithm to detect fraud. Random forest algorithms are good with data with unbalanced data. There are many zeros in the data. After several trails and errors of both the input parameters in like number of estimators and error detection index, we have obtained good results with respect to minimal overfitting. We are using a total of 10 estimators. The difference between evaluation metrics on the training data and test data is minimal when we use around 10 estimators. We observe the performance metrics: precision, recall and accuracy are better when we use 'cleaned' data rather than the raw data. However, we note high metric values for training data, which can possible indicate overfitting.\n",
"\n",
"The interesting feature of this algorithm is that the cleaned data is responding much more positively with minimal difference between the train metrics and test metrics for accuracy and Recall. But for precision there is slightly higher difference. We dealt with multicollinearity through averaging, removed the redundant columns and chose the rows wit Transfer and Cash out alsone since they are the only ones that involve fraud."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "F6hdEr7av_ux"
},
"source": [
"3. How did you select variables to be included in the model?\n",
"\n",
"The variables where choosen on the basis of relevance with respect to fraud. We also used basis common sense. This realizaiton happened after working with the raw data. The computational time for Random Forest was very high, this was unnecessary, so, we removed the step, IsFlaggedFraud is a rule based model so is unndecessary. Columns for source and destination for money were highly correlated with each other, so we averaged them to single columns. Types of transactions which wre not relevant to the fraud are excluded."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "CrZYQnoZyHyI"
},
"source": [
"4. Demonstrate the performance of the model by using best set of tools.\n",
"\n",
"Accuracy, Precision and Recall are the performance tools that we have choosen. We have proactively carried out several experiments on the Raw data. Although the resuslts are in general not very different for the raw and the cleaned data, overfitting and underfitting are much lesser with the cleaned up data. We find that the difference in recall for test and train prediction involves optimal value. While the difference is slightly higher for the precision. However, high evaluation metrics for training data may possible indicate overfitting."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ToSHZdYczBhe"
},
"source": [
"5. What are the key factors that predict fraudulent customer?\n",
"\n",
"Transfer and Cash out are the modes in which Fraud takes place. Authorities have to be careful with these transactions. Fraud are anomalous transactions that take place. We have demonstrated very clearly as well as it is well published that Random Forests are the best machine Learning algorithms available. Since Random Forests are highly successful, Fraudulent transaction has a highly non linear nature. This means that it is not easy to detect. Random Forests are known to fail when the data contains considerable number of outliers. Frauds are implicit in the data set. The non linear yet implicit nature of frauds, help random forests predict the fradulent customer.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Sf5-1BAcS2rj"
},
"source": [
"6. Do these factors make sense? If yes, How? If not, How not?\n",
"\n",
"These factors make sense if the fraudulent activities are unorganized crimes: hence th non linearity. If it is a syndicate that involves in this crime then there will be a well established pattern and there would be considerable linearity in the data. If the crime is not organized this data does not make sense, if it is unorganized, then it makes a lot of sense. ALso the threat is not internal (Bank Employees), there would have been some linear pattern."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "7Q0VE4S1Wmhj"
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {
"id": "WRJClXAPT3lR"
},
"source": [
"What kind of prevention should be adopted while company update its infrastructure?\n",
"\n",
"Since it is clear that there is no established explicit pattern, the best way is to reduce Transfer and Cash out transactions. Debit transactions have not shown much fraud. The key is to establish a pattern, that will take us to the source. Pattern can be established if Banks in crease the documentation in every transaction, more information is needed for better data analysis"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5wJYgydKWiK1"
},
"source": [
"Assuming these actions have been implemented, how would you determine if they work?\n",
"\n",
"If the measures are working, Fraud will leave a detectable trail, a distinct pattern at least if not linearity"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OmMJ5Y9NWnxl"
},
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "imYJLUeye5Sw",
"outputId": "68feb3c8-2044-4dd3-f92e-27609d54dbab"
},
"outputs": [
{
"data": {
"text/plain": [
"2"
]
},
"execution_count": 74,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"1+1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "oZSdQxg53IMS"
},
"outputs": [],
"source": [
"df5=df2.copy()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HRihJFI-DJwd"
},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "doFfXYbWqj53"
},
"outputs": [],
"source": [
"df5 = df5.drop(df[df['type'] == 0].index)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5kNM4cxc_qEO"
},
"source": [
"Smaller amounts of transaction show more fraud"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 484
},
"id": "QoYXty3z-vWp",
"outputId": "165ad9c5-c5a7-4e63-8ff6-fdb87c4bfd38"
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Oldbalnce')"
]
},
"execution_count": 98,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHCCAYAAADBz+LBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoS0lEQVR4nO3de1SU9aL/8c+AMiLCqFxlC2pSXhCvWNvMslKIrZZ2jl22u7zk6SJqbnZ15LTzUtugliVpqaUprVLT2kdOKy+InMxT4j28pJmUCrW9VQpeakiY3x+t5uc0aDAiz1d5v9Z61nKe58szn2k1+PH7fOcZm8vlcgkAAMBAflYHAAAAuBCKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKgKvOunXrZLPZtG7dOqujALhEFBUAV6zZs2crOzu7WmMXL16srKysy5oHQO2z8V0/AK5UnTp1UlhYmNfMSWVlpcrLyxUQECA/v1/+PTZw4EDt3r1bBw8erPugAHzWwOoAAFDb/Pz81KhRI6tjAKgFXPoBcEGffPKJevbsqUaNGqlt27Z6/fXXNWXKFNlsNknSwYMHZbPZqrz8YrPZNGXKFPfjQ4cOacyYMWrXrp0CAwMVGhqqoUOHes1wZGdny2az6dNPP1VaWprCw8MVFBSkIUOG6Pjx4+5xrVu31ueff66PP/5YNptNNptNffv2leS9RqVv375asWKFDh065B7bunVrnT59WkFBQXr88ce98n/zzTfy9/dXRkbGJf03BHBpmFEBUKVdu3YpKSlJ4eHhmjJlis6dO6fJkycrMjLSp/Nt2bJFGzZs0H333aeWLVvq4MGDmjNnjvr27as9e/aocePGHuPHjRunZs2aafLkyTp48KCysrI0duxYLV26VJKUlZWlcePGqUmTJnr66acl6YLZnn76aZWWluqbb77RjBkzJElNmjRRkyZNNGTIEC1dulQvv/yy/P393T+zZMkSuVwuDRs2zKfXC6B2UFQAVGnSpElyuVz6v//7P8XGxkqS/u3f/k0JCQk+nW/AgAH693//d499gwYNUq9evfTPf/5TDzzwgMex0NBQrVmzxj17U1lZqZkzZ6q0tFQOh0ODBw/W3//+d4WFhekvf/nLRZ+7f//++sMf/qATJ054jX3wwQe1aNEi5eXl6Y477nDvf+edd3TzzTe7XzsAa3DpB4CXiooK5ebmavDgwR5/UXfo0EHJyck+nTMwMND9559//lnff/+94uLi1LRpU23fvt1r/MMPP+wuKZLUp08fVVRU6NChQz49/4X069dP0dHRWrRokXvf7t27tXPnzt8tQAAuv6umqKxfv16DBg1SdHS0bDabcnJyavTzP/30k0aMGKGEhAQ1aNBAgwcPrnLcunXr1L17d9ntdsXFxVX7o5HAleT48eP68ccfde2113oda9eunU/n/PHHHzVp0iTFxMTIbrcrLCxM4eHhOnnypEpLS73G/3Ymo1mzZpKkEydO+PT8F+Ln56dhw4YpJydHZ8+elSQtWrRIjRo10tChQ2v1uQDU3FVTVM6cOaMuXbrotdde8+nnKyoqFBgYqPHjx6tfv35Vjjlw4IAGDBigW2+9VYWFhZowYYJGjx6t3NzcS4kOXLHOn/E4X0VFhde+cePGadq0abrnnnu0bNkyrVmzRnl5eQoNDVVlZaXX+PPXi5zvctxR4cEHH9Tp06eVk5Mjl8ulxYsXa+DAgXI4HLX+XABq5qpZo5KSkqKUlJQLHnc6nXr66ae1ZMkSnTx5Up06ddILL7zg/pRAUFCQ5syZI0n69NNPdfLkSa9zzJ07V23atNFLL70k6Zdp8E8++UQzZszweTocMFF4eLgCAwO1f/9+r2P79u1z//nXWY7fvl+qujzz/vvva/jw4e73j/TLTGZV77XqulBRqunYTp06qVu3blq0aJFatmyp4uJizZo1y+dcAGrPVTOj8nvGjh2rgoICvfvuu9q5c6eGDh2qO+64o8pfxBdSUFDgNduSnJysgoKC2o4LWMrf31/JycnKyclRcXGxe//evXs9ZhBDQkIUFham9evXe/z87Nmzqzznb2dDZs2aVeXsS3UFBQVVu+gEBQVVeYnpVw888IDWrFmjrKwshYaGXvQfPgDqzlUzo3IxxcXFWrhwoYqLixUdHS1JeuKJJ7R69WotXLhQzz//fLXOc+TIEa+PP0ZGRqqsrEw//vijx2JB4Eo3depUrV69Wn369NGYMWN07tw5zZo1S/Hx8dq5c6d73OjRo5WZmanRo0crMTFR69ev15dfful1voEDB+rtt9+Ww+FQx44dVVBQoLVr1yo0NNTnjD169NCcOXP0j3/8Q3FxcYqIiNBtt912wbFLly5VWlqaevbsqSZNmmjQoEHu43/+85/11FNPafny5XrsscfUsGFDn3MBqD31oqjs2rVLFRUVuu666zz2O53OS/olCVzNOnfurNzcXKWlpWnSpElq2bKlpk6dqsOHD3sUlUmTJun48eN6//33tWzZMqWkpGjVqlWKiIjwON8rr7wif39/LVq0SD/99JN69+6ttWvXXtJl00mTJunQoUN68cUXderUKd1yyy0XLCpjxoxRYWGhFi5cqBkzZqhVq1YeRSUyMlJJSUlauXKl10elAVinXhSV06dPy9/fX9u2bfNaoNekSZNqnycqKkpHjx712Hf06FGFhIQwm4Kr0s0336ytW7d67Dv/brPSLx87nj9/vubPn++x/7eXeZo2baoFCxZ4Pcdv70w7YsQIjRgxwmtc3759vc4ZGRmpDz/8sFpjg4KCPD6CXJWAgAC1bdtWvXr1uug4AHWnXhSVbt26qaKiQseOHVOfPn18Pk+vXr20cuVKj315eXn8UgOuAocPH9aKFSvcd7kFYIarpqicPn1aRUVF7scHDhxQYWGhmjdvruuuu07Dhg3Tgw8+qJdeekndunXT8ePHlZ+fr86dO2vAgAGSpD179qi8vFw//PCDTp06pcLCQklS165dJUmPPvqoXn31VT311FMaNWqU/vd//1fLli3TihUr6vrlAqglBw4c0Keffqr58+erYcOGeuSRR6yOBOB8rqvERx995JLktQ0fPtzlcrlc5eXlrkmTJrlat27tatiwoatFixauIUOGuHbu3Ok+R6tWrao8x2+fp2vXrq6AgADXNddc41q4cGEdvkrAepMnT/Z6X1zJFi5c6JLkio2Ndb333ntWxwHwGzaX6zLcPQkAAKAW1Jv7qAAAgCsPRQUAABjril5MW1lZqX/9618KDg6u0a20AQCAdVwul06dOqXo6Gj5+V18zuSKLir/+te/FBMTY3UMAADgg5KSErVs2fKiY67oohIcHCzplxcaEhJicRoAAFAdZWVliomJcf89fjFXdFH59XJPSEgIRQUAgCtMdZZtsJgWAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFiWFpWKigo988wzatOmjQIDA9W2bVs999xzcrlcVsYCAACGaGDlk7/wwguaM2eO3nrrLcXHx2vr1q0aOXKkHA6Hxo8fb2U047WeuMLqCKhDBzMHWB0BACxhaVHZsGGD7rrrLg0Y8Msv4datW2vJkiXavHmzlbEAAIAhLL30c+ONNyo/P19ffvmlJGnHjh365JNPlJKSUuV4p9OpsrIyjw0AAFy9LJ1RmThxosrKytS+fXv5+/uroqJC06ZN07Bhw6ocn5GRoalTp9ZxSgAAYBVLZ1SWLVumRYsWafHixdq+fbveeustTZ8+XW+99VaV49PT01VaWureSkpK6jgxAACoS5bOqDz55JOaOHGi7rvvPklSQkKCDh06pIyMDA0fPtxrvN1ul91ur+uYAADAIpbOqJw9e1Z+fp4R/P39VVlZaVEiAABgEktnVAYNGqRp06YpNjZW8fHx+uyzz/Tyyy9r1KhRVsYCAACGsLSozJo1S88884zGjBmjY8eOKTo6Wo888ogmTZpkZSwAAGAIS4tKcHCwsrKylJWVZWUMAABgKL7rBwAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwlqVFpXXr1rLZbF5bamqqlbEAAIAhGlj55Fu2bFFFRYX78e7du9W/f38NHTrUwlQAAMAUlhaV8PBwj8eZmZlq27atbrnlFosSAQAAkxizRqW8vFzvvPOORo0aJZvNZnUcAABgAEtnVM6Xk5OjkydPasSIERcc43Q65XQ63Y/LysrqIBkAALCKMTMqb775plJSUhQdHX3BMRkZGXI4HO4tJiamDhMCAIC6ZkRROXTokNauXavRo0dfdFx6erpKS0vdW0lJSR0lBAAAVjDi0s/ChQsVERGhAQMGXHSc3W6X3W6vo1QAAMBqls+oVFZWauHChRo+fLgaNDCiNwEAAENYXlTWrl2r4uJijRo1yuooAADAMJZPYSQlJcnlclkdAwAAGMjyGRUAAIALoagAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMayvKh8++23+stf/qLQ0FAFBgYqISFBW7dutToWAAAwQAMrn/zEiRPq3bu3br31Vq1atUrh4eHav3+/mjVrZmUsAABgCEuLygsvvKCYmBgtXLjQva9NmzYWJgIAACax9NLPBx98oMTERA0dOlQRERHq1q2b5s2bd8HxTqdTZWVlHhsAALh6WVpUvv76a82ZM0fXXnutcnNz9dhjj2n8+PF66623qhyfkZEhh8Ph3mJiYuo4MQAAqEs2l8vlsurJAwIClJiYqA0bNrj3jR8/Xlu2bFFBQYHXeKfTKafT6X5cVlammJgYlZaWKiQkpE4ym6L1xBVWR0AdOpg5wOoIAFBrysrK5HA4qvX3t6UzKi1atFDHjh099nXo0EHFxcVVjrfb7QoJCfHYAADA1cvSotK7d2/t27fPY9+XX36pVq1aWZQIAACYxNKi8te//lUbN27U888/r6KiIi1evFhvvPGGUlNTrYwFAAAMYWlR6dmzp5YvX64lS5aoU6dOeu6555SVlaVhw4ZZGQsAABjC0vuoSNLAgQM1cOBAq2MAAAADWX4LfQAAgAuhqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjGVpUZkyZYpsNpvH1r59eysjAQAAgzSwOkB8fLzWrl3rftyggeWRAACAISxvBQ0aNFBUVJTVMQAAgIEsX6Oyf/9+RUdH65prrtGwYcNUXFxsdSQAAGAIS2dUbrjhBmVnZ6tdu3Y6fPiwpk6dqj59+mj37t0KDg72Gu90OuV0Ot2Py8rK6jIuAACoY5c0o1JeXq59+/bp3LlzPv18SkqKhg4dqs6dOys5OVkrV67UyZMntWzZsirHZ2RkyOFwuLeYmJhLiQ8AAAznU1E5e/asHnroITVu3Fjx8fHuyzXjxo1TZmamz2GaNm2q6667TkVFRVUeT09PV2lpqXsrKSnx+bkAAID5fCoq6enp2rFjh9atW6dGjRq59/fr109Lly71Oczp06f11VdfqUWLFlUet9vtCgkJ8dgAAMDVy6eikpOTo1dffVU33XSTbDabe398fLy++uqrap/niSee0Mcff6yDBw9qw4YNGjJkiPz9/XX//ff7EgsAAFxlfFpMe/z4cUVERHjtP3PmjEdx+T3ffPON7r//fn3//fcKDw/XTTfdpI0bNyo8PNyXWAAA4CrjU1FJTEzUihUrNG7cOElyl5P58+erV69e1T7Pu+++68vTAwCAesKnovL8888rJSVFe/bs0blz5/TKK69oz5492rBhgz7++OPazggAAOopn9ao3HTTTSosLNS5c+eUkJCgNWvWKCIiQgUFBerRo0dtZwQAAPWUzzd8a9u2rebNm1ebWQAAADz4NKOycuVK5ebmeu3Pzc3VqlWrLjkUAACA5GNRmThxoioqKrz2u1wuTZw48ZJDAQAASD4Wlf3796tjx45e+9u3b3/Bu8oCAADUlE9FxeFw6Ouvv/baX1RUpKCgoEsOBQAAIPlYVO666y5NmDDB4y60RUVF+tvf/qY777yz1sIBAID6zaei8uKLLyooKEjt27dXmzZt1KZNG3Xo0EGhoaGaPn16bWcEAAD1lE8fT3Y4HNqwYYPy8vK0Y8cOBQYGqnPnzrr55ptrOx8AAKjHfL6Pis1mU1JSkpKSkmozDwAAgJvPRSU/P1/5+fk6duyYKisrPY4tWLDgkoMBAAD4VFSmTp2qZ599VomJiWrRokWNvjEZAACgunwqKnPnzlV2drYeeOCB2s4DAADg5tOnfsrLy3XjjTfWdhYAAAAPPhWV0aNHa/HixbWdBQAAwINPl35++uknvfHGG1q7dq06d+6shg0behx/+eWXayUcAACo33wqKjt37lTXrl0lSbt37/Y4xsJaAABQW3wqKh999FFt5wAAAPDi0xoVAACAulDtGZW777672if97//+b5/CAAAAnK/aRcXhcFzOHAAAAF6qXVQWLlx4OXMAAAB4YY0KAAAwls9fSvj+++9r2bJlKi4uVnl5ucex7du3X3IwAAAAn2ZUZs6cqZEjRyoyMlKfffaZrr/+eoWGhurrr79WSkpKbWcEAAD1lE9FZfbs2XrjjTc0a9YsBQQE6KmnnlJeXp7Gjx+v0tLS2s4IAADqKZ+KSnFxsftLCQMDA3Xq1ClJ0gMPPKAlS5bUXjoAAFCv+VRUoqKi9MMPP0iSYmNjtXHjRknSgQMH5HK5ai8dAACo13wqKrfddps++OADSdLIkSP117/+Vf3799e9996rIUOG1GpAAABQf/n0qZ833nhDlZWVkqTU1FSFhoZqw4YNuvPOO/XII4/UakAAAFB/+VRU/Pz85Of3/ydj7rvvPt133321FgoAAEC6hPuonDhxQm+++ab27t0rSerYsaNGjhyp5s2b11o4AABQv/m0RmX9+vVq06aNZs6cqRMnTujEiROaOXOm2rRpo/Xr1/sUJDMzUzabTRMmTPDp5wEAwNXHpxmV1NRU3XPPPZozZ478/f0lSRUVFRozZoxSU1O1a9euGp1vy5Ytev3119W5c2df4gAAgKuUTzMqRUVF+tvf/uYuKZLk7++vtLQ0FRUV1ehcp0+f1rBhwzRv3jw1a9bMlzgAAOAq5VNR6d69u3ttyvn27t2rLl261OhcqampGjBggPr16/e7Y51Op8rKyjw2AABw9ar2pZ+dO3e6/zx+/Hg9/vjjKioq0h//+EdJ0saNG/Xaa68pMzOz2k/+7rvvavv27dqyZUu1xmdkZGjq1KnVPj8AALiy2VzVvJWsn5+fbDbb79551mazqaKi4nfPV1JSosTEROXl5bnXpvTt21ddu3ZVVlZWlT/jdDrldDrdj8vKyhQTE6PS0lKFhIRU52VcNVpPXGF1BNShg5kDrI4AALWmrKxMDoejWn9/V3tG5cCBA5cc7Hzbtm3TsWPH1L17d/e+iooKrV+/Xq+++qqcTqfHGhhJstvtstvttZoDAACYq9pFpVWrVrX6xLfffrvXp4NGjhyp9u3b6z//8z+9SgoAAKh/ql1Ufv1un+q48847f3dMcHCwOnXq5LEvKChIoaGhXvsBAED9VO2iMnjwYI/Hv12vYrPZ3H+uzhoVAACA31PtjydXVla6tzVr1qhr165atWqVTp48qZMnT2rlypXq3r27Vq9e7XOYdevWXXAhLQAAqH98ujPthAkTNHfuXN10003ufcnJyWrcuLEefvjhKu+xAgAAUFM+3fDtq6++UtOmTb32OxwOHTx48BIjAQAA/MKnotKzZ0+lpaXp6NGj7n1Hjx7Vk08+qeuvv77WwgEAgPrNp6KyYMECHT58WLGxsYqLi1NcXJxiY2P17bff6s0336ztjAAAoJ7yaY1KXFycdu7cqby8PH3xxReSpA4dOqhfv34en/4BAAC4FD4VFemXjyMnJSUpKSmpNvMAAAC4VbuozJw5s9onHT9+vE9hAAAAzlftojJjxoxqjbPZbBQVAABQKy7pSwmPHz8um82msLCwWg0FAAAg+fCpn5MnTyo1NVVhYWGKiopSZGSkwsLCNHbsWJWWll6OjAAAoJ6q0WLaH374Qb169dK3336rYcOGqUOHDpKkPXv2KDs7W/n5+dqwYYOaNWt2WcICAID6pUZF5dlnn1VAQIC++uorRUZGeh1LSkrSs88+W+31LAAAABdTo0s/OTk5mj59uldJkaSoqCi9+OKLWr58ea2FAwAA9VuNisrhw4cVHx9/weOdOnXSkSNHLjkUAACAVMOiEhYWdtEvHTxw4ICaN29+qZkAAAAk1bCoJCcn6+mnn1Z5ebnXMafTqWeeeUZ33HFHrYUDAAD1W40X0yYmJuraa69Vamqq2rdvL5fLpb1792r27NlyOp16++23L1dWAABQz9SoqLRs2VIFBQUaM2aM0tPT5XK5JP1yN9r+/fvr1VdfVUxMzGUJCgAA6p8afylhmzZttGrVKp04cUL79++X9Mu3KbM2BQAA1Dafvz25WbNmuv7662szCwAAgIca30IfAACgrlBUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADCWpUVlzpw56ty5s0JCQhQSEqJevXpp1apVVkYCAAAGsbSotGzZUpmZmdq2bZu2bt2q2267TXfddZc+//xzK2MBAABDNLDyyQcNGuTxeNq0aZozZ442btyo+Ph4i1IBAABTWFpUzldRUaH33ntPZ86cUa9evaoc43Q65XQ63Y/LysrqKh4AALCA5Ytpd+3apSZNmshut+vRRx/V8uXL1bFjxyrHZmRkyOFwuLeYmJg6TgsAAOqS5UWlXbt2Kiws1KZNm/TYY49p+PDh2rNnT5Vj09PTVVpa6t5KSkrqOC0AAKhLll/6CQgIUFxcnCSpR48e2rJli1555RW9/vrrXmPtdrvsdntdRwQAABaxfEbltyorKz3WoQAAgPrL0hmV9PR0paSkKDY2VqdOndLixYu1bt065ebmWhkLAAAYwtKicuzYMT344IM6fPiwHA6HOnfurNzcXPXv39/KWAAAwBCWFpU333zTyqcHAACGM26NCgAAwK8oKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1laVDIyMtSzZ08FBwcrIiJCgwcP1r59+6yMBAAADGJpUfn444+VmpqqjRs3Ki8vTz///LOSkpJ05swZK2MBAABDNLDyyVevXu3xODs7WxEREdq2bZtuvvlmi1IBAABTGLVGpbS0VJLUvHlzi5MAAAATWDqjcr7KykpNmDBBvXv3VqdOnaoc43Q65XQ63Y/LysrqKh4AALCAMTMqqamp2r17t959990LjsnIyJDD4XBvMTExdZgQAADUNSOKytixY/Xhhx/qo48+UsuWLS84Lj09XaWlpe6tpKSkDlMCAIC6ZumlH5fLpXHjxmn58uVat26d2rRpc9Hxdrtddru9jtIBAACrWVpUUlNTtXjxYv3P//yPgoODdeTIEUmSw+FQYGCgldEAAIABLL30M2fOHJWWlqpv375q0aKFe1u6dKmVsQAAgCEsv/QDAABwIUYspgUAAKgKRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMJalRWX9+vUaNGiQoqOjZbPZlJOTY2UcAABgGEuLypkzZ9SlSxe99tprVsYAAACGamDlk6ekpCglJcXKCAAAwGCWFpWacjqdcjqd7sdlZWUWpgEAAJfbFbWYNiMjQw6Hw73FxMRYHQkAAFxGV1RRSU9PV2lpqXsrKSmxOhIAALiMrqhLP3a7XXa73eoYAACgjlxRMyoAAKB+sXRG5fTp0yoqKnI/PnDggAoLC9W8eXPFxsZamAwAAJjA0qKydetW3Xrrre7HaWlpkqThw4crOzvbolQAAMAUlhaVvn37yuVyWRkBAAAYjDUqAADAWBQVAABgLIoKAAAwFkUFAAAY64q64RsA1AetJ66wOgLq0MHMAVZHMBozKgAAwFgUFQAAYCyKCgAAMBZFBQAAGIuiAgAAjEVRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBYFBUAAGAsigoAADAWRQUAABiLogIAAIxFUQEAAMaiqAAAAGNRVAAAgLEoKgAAwFgUFQAAYCyKCgAAMJYRReW1115T69at1ahRI91www3avHmz1ZEAAIABLC8qS5cuVVpamiZPnqzt27erS5cuSk5O1rFjx6yOBgAALGZ5UXn55Zf1H//xHxo5cqQ6duyouXPnqnHjxlqwYIHV0QAAgMUsLSrl5eXatm2b+vXr597n5+enfv36qaCgwMJkAADABA2sfPLvvvtOFRUVioyM9NgfGRmpL774wmu80+mU0+l0Py4tLZUklZWVXd6gBqp0nrU6AupQffx/vD7j/V2/1Mf396+v2eVy/e5YS4tKTWVkZGjq1Kle+2NiYixIA9QdR5bVCQBcLvX5/X3q1Ck5HI6LjrG0qISFhcnf319Hjx712H/06FFFRUV5jU9PT1daWpr7cWVlpX744QeFhobKZrNd9rywVllZmWJiYlRSUqKQkBCr4wCoRby/6xeXy6VTp04pOjr6d8daWlQCAgLUo0cP5efna/DgwZJ+KR/5+fkaO3as13i73S673e6xr2nTpnWQFCYJCQnhFxlwleL9XX/83kzKryy/9JOWlqbhw4crMTFR119/vbKysnTmzBmNHDnS6mgAAMBilheVe++9V8ePH9ekSZN05MgRde3aVatXr/ZaYAsAAOofy4uKJI0dO7bKSz3A+ex2uyZPnux1+Q/AlY/3Ny7E5qrOZ4MAAAAsYPmdaQEAAC6EogIAAIxFUQEAAMaiqAAAAGMZ8akfoCrfffedFixYoIKCAh05ckSSFBUVpRtvvFEjRoxQeHi4xQkBAJcbn/qBkbZs2aLk5GQ1btxY/fr1c99X5+jRo8rPz9fZs2eVm5urxMREi5MCAC4nigqM9Mc//lFdunTR3Llzvb7HyeVy6dFHH9XOnTtVUFBgUUIAl1NJSYkmT56sBQsWWB0FFqOowEiBgYH67LPP1L59+yqPf/HFF+rWrZt+/PHHOk4GoC7s2LFD3bt3V0VFhdVRYDHWqMBIUVFR2rx58wWLyubNm/maBeAK9sEHH1z0+Ndff11HSWA6igqM9MQTT+jhhx/Wtm3bdPvtt3utUZk3b56mT59ucUoAvho8eLBsNpsuNqn/28u+qJ+49ANjLV26VDNmzNC2bdvc07/+/v7q0aOH0tLSdM8991icEICv/vCHP2j27Nm66667qjxeWFioHj16cOkHFBWY7+eff9Z3330nSQoLC1PDhg0tTgTgUt15553q2rWrnn322SqP79ixQ926dVNlZWUdJ4NpuPQD4zVs2FAtWrSwOgaAWvTkk0/qzJkzFzweFxenjz76qA4TwVTMqAAAAGNxC30AAGAsigoAADAWRQUAABiLogKgXpkyZYq6du1qdQwA1URRAeCzESNGaPDgwb87bsqUKbLZbF7b2rVrL39IAFc0Pp4MoE7Ex8d7FZPmzZt7jSsvL1dAQEBdxQJgOGZUANSK999/XwkJCQoMDFRoaKj69evncZ+MBg0aKCoqymMLCAhwz8pMmzZN0dHRateunSTp7bffVmJiooKDgxUVFaU///nPOnbsmPt82dnZatq0qUeGnJwcr9uuZ2ZmKjIyUsHBwXrooYf0008/Xb7/CABqHUUFwCU7fPiw7r//fo0aNUp79+7VunXrdPfdd1/0e1zOl5+fr3379ikvL08ffvihpF/uSPzcc89px44dysnJ0cGDBzVixIga5Vq2bJmmTJmi559/Xlu3blWLFi00e/bsmr48ABbi0g+AS3b48GGdO3dOd999t1q1aiVJSkhI8Biza9cuNWnSxP24Y8eO2rx5syQpKChI8+fP97jkM2rUKPefr7nmGs2cOVM9e/bU6dOnPc5zMVlZWXrooYf00EMPSZL+8Y9/aO3atcyqAFcQZlQAXLIuXbro9ttvV0JCgoYOHap58+bpxIkTHmPatWunwsJC9/bPf/7TfSwhIcFrXcq2bds0aNAgxcbGKjg4WLfccoskqbi4uNq59u7dqxtuuMFjX69evWr68gBYiKIC4JL5+/srLy9Pq1atUseOHTVr1iy1a9dOBw4ccI8JCAhQXFyce4uJiXEfCwoK8jjfmTNnlJycrJCQEC1atEhbtmzR8uXLJf2y2FaS/Pz8vC4t/fzzz5frJQKwCEUFQK2w2Wzq3bu3pk6dqs8++0wBAQHuclFTX3zxhb7//ntlZmaqT58+at++vcdCWkkKDw/XqVOnPBbsFhYWeozp0KGDNm3a5LFv48aNPmUCYA3WqAC4ZJs2bVJ+fr6SkpIUERGhTZs26fjx4+rQoYNP54uNjVVAQIBmzZqlRx99VLt379Zzzz3nMeaGG25Q48aN9V//9V8aP368Nm3apOzsbI8xjz/+uEaMGKHExET17t1bixYt0ueff65rrrnG15cKoI4xowLgkoWEhGj9+vX605/+pOuuu05///vf9dJLLyklJcWn84WHhys7O1vvvfeeOnbsqMzMTE2fPt1jTPPmzfXOO+9o5cqVSkhI0JIlSzRlyhSPMffee6+eeeYZPfXUU+rRo4cOHTqkxx57zNeXCcACNld1Pz8IAABQx5hRAQAAxqKoAAAAY1FUAACAsSgqAADAWBQVAABgLIoKAAAwFkUFAAAYi6ICAACMRVEBAADGoqgAAABjUVQAAICxKCoAAMBY/w84UqupxfNrRAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"var = df2.groupby('isFraud').oldbalanceOrg.sum()\n",
"fig = plt.figure()\n",
"ax1 = fig.add_subplot(1,1,1)\n",
"var.plot(kind='bar')\n",
"ax1.set_title(\"quantity\")\n",
"ax1.set_xlabel('IsFraud')\n",
"ax1.set_ylabel('Oldbalnce')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 484
},
"id": "Yb2tyUMv-8sK",
"outputId": "f19daad3-436b-42a4-85ac-74a056aa92bc"
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Oldbalnce')"
]
},
"execution_count": 99,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHCCAYAAADBz+LBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAkhUlEQVR4nO3de1iUdf7/8deAgogwKqBoglrmGdQ8ZWVZoUamabvawfXcdhC1lg6baylYKdtlaboeSlOuqzxgltTmWa6U3Tzm2TRXTMTKU6WAloPC/P7o13ydRg2GgfujPB/XNdfF3HNzz3u6Ap7e9z332JxOp1MAAAAG8rN6AAAAgCshVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAXHfWrVsnm82mdevWWT0KgFIiVABcs2bMmKHU1NRirbtgwQJNmTKlTOcB4Hs2PusHwLWqZcuWCg8P99hzUlRUpIKCAgUEBMjP79d/jz3wwAPau3evsrOzy39QAF6rZPUAAOBrfn5+qlKlitVjAPABDv0AuKL//ve/at++vapUqaKbbrpJ77zzjpKSkmSz2SRJ2dnZstlslz38YrPZlJSU5Lp/5MgRDR8+XE2aNFFQUJDCwsLUt29fjz0cqampstls+uKLL5SYmKiIiAgFBwerT58+OnXqlGu9Bg0a6KuvvtL69etls9lks9nUpUsXSZ7nqHTp0kXLli3TkSNHXOs2aNBAZ8+eVXBwsJ555hmP+b/99lv5+/tr4sSJpfpvCKB02KMC4LL27Nmjbt26KSIiQklJSbp48aLGjRun2rVre7W9rVu3asOGDXrkkUdUr149ZWdna+bMmerSpYv27dunqlWruq0/cuRI1ahRQ+PGjVN2dramTJmiESNGKC0tTZI0ZcoUjRw5UtWqVdOYMWMk6YqzjRkzRrm5ufr22281efJkSVK1atVUrVo19enTR2lpaXrrrbfk7+/v+p6FCxfK6XSqf//+Xr1eAL5BqAC4rLFjx8rpdOo///mPoqOjJUl/+tOfFBMT49X2evTooT//+c9uy3r27KlOnTrpo48+0oABA9weCwsL0+rVq117b4qKijR16lTl5ubKbrerd+/eevnllxUeHq6//OUvV33url276oYbbtDp06c91h04cKDmz5+vNWvW6L777nMt/+CDD3TnnXe6XjsAa3DoB4CHwsJCrVq1Sr1793b7Q92sWTN1797dq20GBQW5vr5w4YJ+/PFHNWrUSNWrV9f27ds91n/iiSdckSJJnTt3VmFhoY4cOeLV819JXFyc6tatq/nz57uW7d27V7t37/7DAAJQ9q6bUMnMzFTPnj1Vt25d2Ww2paenl+j7z58/r8GDBysmJkaVKlVS7969Pdb5+OOP1bVrV0VERCg0NFSdOnXSqlWrfPMCAIOcOnVKv/zyi26++WaPx5o0aeLVNn/55ReNHTtWUVFRCgwMVHh4uCIiInTmzBnl5uZ6rP/7PRk1atSQJJ0+fdqr578SPz8/9e/fX+np6fr5558lSfPnz1eVKlXUt29fnz4XgJK7bkLl3LlzatWqlaZPn+7V9xcWFiooKEijRo1SXFzcZdfJzMxU165dtXz5cm3btk133323evbsqR07dpRmdOCadekej0sVFhZ6LBs5cqRef/119evXT4sXL9bq1au1Zs0ahYWFqaioyGP9S88XuVRZXFFh4MCBOnv2rNLT0+V0OrVgwQI98MADstvtPn8uACVz3ZyjEh8fr/j4+Cs+7nA4NGbMGC1cuFBnzpxRy5Yt9c9//tP1LoHg4GDNnDlTkvTFF1/ozJkzHtv4/cWiJkyYoE8++UT//ve/1aZNG1+9FMByERERCgoK0sGDBz0eO3DggOvr3/Zy/P7n5XKHZ5YsWaJBgwbpzTffdC07f/78ZX/WiutKoVTSdVu2bKk2bdpo/vz5qlevnnJycjRt2jSv5wLgO9fNHpU/MmLECG3cuFGLFi3S7t271bdvX913332X/UVcXEVFRcrPz1fNmjV9OClgPX9/f3Xv3l3p6enKyclxLd+/f7/b4c7Q0FCFh4crMzPT7ftnzJhx2W3+fm/ItGnTLrv3pbiCg4OLHTrBwcGXPcT0mwEDBmj16tWaMmWKwsLCrvoPHwDl57rZo3I1OTk5mjdvnnJyclS3bl1J0vPPP6+VK1dq3rx5mjBhglfbnTRpks6ePat+/fr5clzACMnJyVq5cqU6d+6s4cOH6+LFi5o2bZpatGih3bt3u9Z7/PHHlZKSoscff1zt2rVTZmam/ve//3ls74EHHtD7778vu92u5s2ba+PGjVq7dq3CwsK8nrFt27aaOXOmXnvtNTVq1Ei1atXSPffcc8V109LSlJiYqPbt26tatWrq2bOn6/HHHntML774opYuXaqnn35alStX9nouAL5TIUJlz549KiwsVOPGjd2WOxwOr39JLliwQMnJyfrkk09Uq1YtX4wJGCU2NlarVq1SYmKixo4dq3r16ik5OVnHjh1zC5WxY8fq1KlTWrJkiRYvXqz4+HitWLHC4+fi7bfflr+/v+bPn6/z58/r9ttv19q1a71+F9Fvz33kyBG98cYbys/P11133XXFUBk+fLh27typefPmafLkyapfv75bqNSuXVvdunXT8uXLPd4qDcA61+Vn/dhsNi1dutT1zp20tDT1799fX331lccJetWqVVNkZKTbssGDB+vMmTNXfOfQokWLNHToUH344Yfq0aNHWbwEwFhJSUlKTk4uk5NardanTx/t2bNHWVlZVo8C4P+rEHtU2rRpo8LCQp08eVKdO3cu1bYWLlyooUOHatGiRUQKcB05duyYli1b5rrKLQAzXDehcvbsWbd/BR0+fFg7d+5UzZo11bhxY/Xv318DBw7Um2++qTZt2ujUqVPKyMhQbGysKzj27dungoIC/fTTT8rPz9fOnTslSa1bt5b06+GeQYMG6e2331bHjh11/PhxSb9eyIq3MQLXpsOHD+uLL77QnDlzVLlyZT355JNWjwTgUs7rxOeff+6U5HEbNGiQ0+l0OgsKCpxjx451NmjQwFm5cmVnnTp1nH369HHu3r3btY369etfdhu/ueuuu676HEBFMG7cOOd19KvDOW/ePKckZ3R0tPPDDz+0ehwAv3NdnqMCAACuDxXmOioAAODaQ6gAAABjXdMn0xYVFen7779XSEhIiS6lDQAArON0OpWfn6+6devKz+/q+0yu6VD5/vvvFRUVZfUYAADAC0ePHlW9evWuus41HSohISGSfn2hoaGhFk8DAACKIy8vT1FRUa6/41dzTYfKb4d7QkNDCRUAAK4xxTltg5NpAQCAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYq5LVA8A7DV5aZvUIKEfZKT2sHgEALMEeFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGsjRUkpKSZLPZ3G5Nmza1ciQAAGAQyy/41qJFC61du9Z1v1Ily0cCAACGsLwKKlWqpMjISKvHAAAABrL8HJWDBw+qbt26uvHGG9W/f3/l5ORYPRIAADCEpXtUOnbsqNTUVDVp0kTHjh1TcnKyOnfurL179yokJMRjfYfDIYfD4bqfl5dXnuMCAIByZmmoxMfHu76OjY1Vx44dVb9+fS1evFjDhg3zWH/ixIlKTk4uzxEBAICFLD/0c6nq1aurcePGysrKuuzjo0ePVm5urut29OjRcp4QAACUJ6NC5ezZszp06JDq1Klz2ccDAwMVGhrqdgMAANcvS0Pl+eef1/r165Wdna0NGzaoT58+8vf316OPPmrlWAAAwBCWnqPy7bff6tFHH9WPP/6oiIgI3XHHHdq0aZMiIiKsHAsAABjC0lBZtGiRlU8PAAAMZ9Q5KgAAAJciVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGMiZUUlJSZLPZ9Oyzz1o9CgAAMIQRobJ161a98847io2NtXoUAABgEMtD5ezZs+rfv79mz56tGjVqWD0OAAAwiOWhkpCQoB49eiguLs7qUQAAgGEqWfnkixYt0vbt27V169Zire9wOORwOFz38/Lyymo0AABgAMv2qBw9elTPPPOM5s+frypVqhTreyZOnCi73e66RUVFlfGUAADASjan0+m04onT09PVp08f+fv7u5YVFhbKZrPJz89PDofD7THp8ntUoqKilJubq9DQ0HKb3QQNXlpm9QgoR9kpPaweAQB8Ji8vT3a7vVh/vy079HPvvfdqz549bsuGDBmipk2b6u9//7tHpEhSYGCgAgMDy2tEAABgMctCJSQkRC1btnRbFhwcrLCwMI/lAACgYrL8XT8AAABXYum7fn5v3bp1Vo8AAAAMwh4VAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxipVqBQUFOjAgQO6ePGir+YBAABw8SpUfv75Zw0bNkxVq1ZVixYtlJOTI0kaOXKkUlJSfDogAACouLwKldGjR2vXrl1at26dqlSp4loeFxentLQ0nw0HAAAqtkrefFN6errS0tJ06623ymazuZa3aNFChw4d8tlwAACgYvNqj8qpU6dUq1Ytj+Xnzp1zCxcAAIDS8CpU2rVrp2XLlrnu/xYnc+bMUadOnXwzGQAAqPC8OvQzYcIExcfHa9++fbp48aLefvtt7du3Txs2bND69et9PSMAAKigvNqjcscdd2jnzp26ePGiYmJitHr1atWqVUsbN25U27ZtfT0jAACooLzaoyJJN910k2bPnu3LWQAAANx4tUdl+fLlWrVqlcfyVatWacWKFaUeCgAAQPIyVF566SUVFhZ6LHc6nXrppZeKvZ2ZM2cqNjZWoaGhCg0NVadOnQgdAADg4lWoHDx4UM2bN/dY3rRpU2VlZRV7O/Xq1VNKSoq2bdumL7/8Uvfcc48efPBBffXVV96MBQAArjNehYrdbtc333zjsTwrK0vBwcHF3k7Pnj11//336+abb1bjxo31+uuvq1q1atq0aZM3YwEAgOuMV6Hy4IMP6tlnn3W7Cm1WVpaee+459erVy6tBCgsLtWjRIp07d+6K12JxOBzKy8tzuwEAgOuXV6HyxhtvKDg4WE2bNlXDhg3VsGFDNWvWTGFhYZo0aVKJtrVnzx5Vq1ZNgYGBeuqpp7R06dLLHlaSpIkTJ8put7tuUVFR3owPAACuETan0+n05hudTqfWrFmjXbt2KSgoSLGxsbrzzjtLvJ2CggLl5OQoNzdXS5Ys0Zw5c7R+/frLxorD4ZDD4XDdz8vLU1RUlHJzcxUaGurNy7hmNXhp2R+vhOtGdkoPq0cAAJ/Jy8uT3W4v1t9vr0OlrMTFxemmm27SO++884frluSFXm8IlYqFUAFwPSnJ32+vL/iWkZGhjIwMnTx5UkVFRW6PzZ0719vNqqioyG2vCQAAqLi8CpXk5GSNHz9e7dq1U506dbz+xOTRo0crPj5e0dHRys/P14IFC7Ru3brLXkwOAABUPF6FyqxZs5SamqoBAwaU6slPnjypgQMH6tixY7Lb7YqNjdWqVavUtWvXUm0XAABcH7wKlYKCAt12222lfvL33nuv1NsAAADXL6/envz4449rwYIFvp4FAADAjVd7VM6fP693331Xa9euVWxsrCpXruz2+FtvveWT4QAAQMXmVajs3r1brVu3liTt3bvX7TFvT6wFAAD4Pa9C5fPPP/f1HAAAAB68OkcFAACgPBR7j8pDDz1U7I1+/PHHXg0DAABwqWKHit1uL8s5AAAAPBQ7VObNm1eWcwAAAHjgHBUAAGAsrz+UcMmSJVq8eLFycnJUUFDg9tj27dtLPRgAAIBXe1SmTp2qIUOGqHbt2tqxY4c6dOigsLAwffPNN4qPj/f1jAAAoILyKlRmzJihd999V9OmTVNAQIBefPFFrVmzRqNGjVJubq6vZwQAABWUV6GSk5Pj+lDCoKAg5efnS5IGDBighQsX+m46AABQoXkVKpGRkfrpp58kSdHR0dq0aZMk6fDhw3I6nb6bDgAAVGhehco999yjTz/9VJI0ZMgQ/e1vf1PXrl318MMPq0+fPj4dEAAAVFxevevn3XffVVFRkSQpISFBYWFh2rBhg3r16qUnn3zSpwMCAICKy6tQ8fPzk5/f/+2MeeSRR/TII4/4bCgAAACpFNdROX36tN577z3t379fktS8eXMNGTJENWvW9NlwAACgYvPqHJXMzEw1bNhQU6dO1enTp3X69GlNnTpVDRs2VGZmpq9nBAAAFZRXe1QSEhLUr18/zZw5U/7+/pKkwsJCDR8+XAkJCdqzZ49PhwQAABWTV3tUsrKy9Nxzz7kiRZL8/f2VmJiorKwsnw0HAAAqNq9C5ZZbbnGdm3Kp/fv3q1WrVqUeCgAAQCrBoZ/du3e7vh41apSeeeYZZWVl6dZbb5Ukbdq0SdOnT1dKSorvpwQAABWSzVnMS8n6+fnJZrP94ZVnbTabCgsLfTLcH8nLy5Pdbldubq5CQ0PL5TlN0eClZVaPgHKUndLD6hEAwGdK8ve72HtUDh8+XOrBAAAASqLYoVK/fv2ynAMAAMBDsUPlt8/2KY5evXp5NQwAAMClih0qvXv3drv/+/NVbDab6+vyOkcFAABc34r99uSioiLXbfXq1WrdurVWrFihM2fO6MyZM1q+fLluueUWrVy5siznBQAAFYhXV6Z99tlnNWvWLN1xxx2uZd27d1fVqlX1xBNPXPYaKwAAACXl1QXfDh06pOrVq3sst9vtys7OLuVIAAAAv/IqVNq3b6/ExESdOHHCtezEiRN64YUX1KFDB58NBwAAKjavQmXu3Lk6duyYoqOj1ahRIzVq1EjR0dH67rvv9N577/l6RgAAUEF5dY5Ko0aNtHv3bq1Zs0Zff/21JKlZs2aKi4tze/cPAABAaXgVKtKvb0fu1q2bunXr5st5AAAAXIodKlOnTi32RkeNGuXVMAAAAJcqdqhMnjy5WOvZbDZCBQAA+ESpPpTw1KlTstlsCg8P9+lQAAAAkhfv+jlz5owSEhIUHh6uyMhI1a5dW+Hh4RoxYoRyc3PLYkYAAFBBlehk2p9++kmdOnXSd999p/79+6tZs2aSpH379ik1NVUZGRnasGGDatSoUSbDAgCAiqVEoTJ+/HgFBATo0KFDql27tsdj3bp10/jx44t9PgsAAMDVlOjQT3p6uiZNmuQRKZIUGRmpN954Q0uXLvXZcAAAoGIrUagcO3ZMLVq0uOLjLVu21PHjx0s9FAAAgFTCUAkPD7/qhw4ePnxYNWvWLO1MAAAAkkoYKt27d9eYMWNUUFDg8ZjD4dArr7yi++67z2fDAQCAiq3EJ9O2a9dON998sxISEtS0aVM5nU7t379fM2bMkMPh0Pvvv19WswIAgAqmRKFSr149bdy4UcOHD9fo0aPldDol/Xo12q5du+pf//qXoqKiymRQAABQ8ZT4QwkbNmyoFStW6PTp0zp48KCkXz9NmXNTAACAr3n96ck1atRQhw4dfDkLAACAmxJfQh8AAKC8ECoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjGVpqEycOFHt27dXSEiIatWqpd69e+vAgQNWjgQAAAxiaaisX79eCQkJ2rRpk9asWaMLFy6oW7duOnfunJVjAQAAQ3h9CX1fWLlypdv91NRU1apVS9u2bdOdd95p0VQAAMAUlobK7+Xm5krSFT/g0OFwyOFwuO7n5eWVy1wAAMAaxpxMW1RUpGeffVa33367WrZsedl1Jk6cKLvd7rpFRUWV85QAAKA8GRMqCQkJ2rt3rxYtWnTFdUaPHq3c3FzX7ejRo+U4IQAAKG9GHPoZMWKEPvvsM2VmZqpevXpXXC8wMFCBgYHlOBkAALCSpaHidDo1cuRILV26VOvWrVPDhg2tHAcAABjG0lBJSEjQggUL9MknnygkJETHjx+XJNntdgUFBVk5GgAAMICl56jMnDlTubm56tKli+rUqeO6paWlWTkWAAAwhOWHfgAAAK7EmHf9AAAA/B6hAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADCWpaGSmZmpnj17qm7durLZbEpPT7dyHAAAYBhLQ+XcuXNq1aqVpk+fbuUYAADAUJWsfPL4+HjFx8dbOQIAADCYpaFSUg6HQw6Hw3U/Ly/PwmkAAEBZu6ZOpp04caLsdrvrFhUVZfVIAACgDF1ToTJ69Gjl5ua6bkePHrV6JAAAUIauqUM/gYGBCgwMtHoMAABQTq6pPSoAAKBisXSPytmzZ5WVleW6f/jwYe3cuVM1a9ZUdHS0hZMBAAATWBoqX375pe6++27X/cTEREnSoEGDlJqaatFUAADAFJaGSpcuXeR0Oq0cAQAAGIxzVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGMiJUpk+frgYNGqhKlSrq2LGjtmzZYvVIAADAAJaHSlpamhITEzVu3Dht375drVq1Uvfu3XXy5EmrRwMAABazPFTeeust/fWvf9WQIUPUvHlzzZo1S1WrVtXcuXOtHg0AAFjM0lApKCjQtm3bFBcX51rm5+enuLg4bdy40cLJAACACSpZ+eQ//PCDCgsLVbt2bbfltWvX1tdff+2xvsPhkMPhcN3Pzc2VJOXl5ZXtoAYqcvxs9QgoRxXx//GKrOW4VVaPgHK0N7m71SOUu99+pzmdzj9c19JQKamJEycqOTnZY3lUVJQF0wDlxz7F6gkAlJWK/POdn58vu91+1XUsDZXw8HD5+/vrxIkTbstPnDihyMhIj/VHjx6txMRE1/2ioiL99NNPCgsLk81mK/N5Ya28vDxFRUXp6NGjCg0NtXocAD7Ez3fF4nQ6lZ+fr7p16/7hupaGSkBAgNq2bauMjAz17t1b0q/xkZGRoREjRnisHxgYqMDAQLdl1atXL4dJYZLQ0FB+kQHXKX6+K44/2pPyG8sP/SQmJmrQoEFq166dOnTooClTpujcuXMaMmSI1aMBAACLWR4qDz/8sE6dOqWxY8fq+PHjat26tVauXOlxgi0AAKh4LA8VSRoxYsRlD/UAlwoMDNS4ceM8Dv8BuPbx840rsTmL894gAAAAC1h+ZVoAAIArIVQAAICxCBUAAGAsQgUAABjLiHf9AJfzww8/aO7cudq4caOOHz8uSYqMjNRtt92mwYMHKyIiwuIJAQBljXf9wEhbt25V9+7dVbVqVcXFxbmuq3PixAllZGTo559/1qpVq9SuXTuLJwUAlCVCBUa69dZb1apVK82aNcvjc5ycTqeeeuop7d69Wxs3brRoQgBl6ejRoxo3bpzmzp1r9SiwGKECIwUFBWnHjh1q2rTpZR//+uuv1aZNG/3yyy/lPBmA8rBr1y7dcsstKiwstHoUWIxzVGCkyMhIbdmy5YqhsmXLFj5mAbiGffrpp1d9/JtvvimnSWA6QgVGev755/XEE09o27Ztuvfeez3OUZk9e7YmTZpk8ZQAvNW7d2/ZbDZdbaf+7w/7omLi0A+MlZaWpsmTJ2vbtm2u3b/+/v5q27atEhMT1a9fP4snBOCtG264QTNmzNCDDz542cd37typtm3bcugHhArMd+HCBf3www+SpPDwcFWuXNniiQCUVq9evdS6dWuNHz/+so/v2rVLbdq0UVFRUTlPBtNw6AfGq1y5surUqWP1GAB86IUXXtC5c+eu+HijRo30+eefl+NEMBV7VAAAgLG4hD4AADAWoQIAAIxFqAAAAGMRKgAqlKSkJLVu3drqMQAUE6ECwGuDBw9W7969/3C9pKQk2Ww2j9vatWvLfkgA1zTengygXLRo0cIjTGrWrOmxXkFBgQICAsprLACGY48KAJ9YsmSJYmJiFBQUpLCwMMXFxbldJ6NSpUqKjIx0uwUEBLj2yrz++uuqW7eumjRpIkl6//331a5dO4WEhCgyMlKPPfaYTp486dpeamqqqlev7jZDenq6x2XXU1JSVLt2bYWEhGjYsGE6f/582f1HAOBzhAqAUjt27JgeffRRDR06VPv379e6dev00EMPXfVzXC6VkZGhAwcOaM2aNfrss88k/XpF4ldffVW7du1Senq6srOzNXjw4BLNtXjxYiUlJWnChAn68ssvVadOHc2YMaOkLw+AhTj0A6DUjh07posXL+qhhx5S/fr1JUkxMTFu6+zZs0fVqlVz3W/evLm2bNkiSQoODtacOXPcDvkMHTrU9fWNN96oqVOnqn379jp79qzbdq5mypQpGjZsmIYNGyZJeu2117R27Vr2qgDXEPaoACi1Vq1a6d5771VMTIz69u2r2bNn6/Tp027rNGnSRDt37nTdPvroI9djMTExHuelbNu2TT179lR0dLRCQkJ01113SZJycnKKPdf+/fvVsWNHt2WdOnUq6csDYCFCBUCp+fv7a82aNVqxYoWaN2+uadOmqUmTJjp8+LBrnYCAADVq1Mh1i4qKcj0WHBzstr1z586pe/fuCg0N1fz587V161YtXbpU0q8n20qSn5+fx6GlCxculNVLBGARQgWAT9hsNt1+++1KTk7Wjh07FBAQ4IqLkvr666/1448/KiUlRZ07d1bTpk3dTqSVpIiICOXn57udsLtz5063dZo1a6bNmze7Ldu0aZNXMwGwBueoACi1zZs3KyMjQ926dVOtWrW0efNmnTp1Ss2aNfNqe9HR0QoICNC0adP01FNPae/evXr11Vfd1unYsaOqVq2qf/zjHxo1apQ2b96s1NRUt3WeeeYZDR48WO3atdPtt9+u+fPn66uvvtKNN97o7UsFUM7YowKg1EJDQ5WZman7779fjRs31ssvv6w333xT8fHxXm0vIiJCqamp+vDDD9W8eXOlpKRo0qRJbuvUrFlTH3zwgZYvX66YmBgtXLhQSUlJbus8/PDDeuWVV/Tiiy+qbdu2OnLkiJ5++mlvXyYAC9icxX3/IAAAQDljjwoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBY/w9dZ2fh+ZkhYgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"var = df2.groupby('isFraud').oldbalanceDest.sum()\n",
"fig = plt.figure()\n",
"ax1 = fig.add_subplot(1,1,1)\n",
"var.plot(kind='bar')\n",
"ax1.set_title(\"quantity\")\n",
"ax1.set_xlabel('IsFraud')\n",
"ax1.set_ylabel('Oldbalnce')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 484
},
"id": "9hsAe3XqABrG",
"outputId": "8224c575-2ea0-4cd3-b81d-dafd1bf56f1d"
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Oldbalnce')"
]
},
"execution_count": 100,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAHCCAYAAADBz+LBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAj+ElEQVR4nO3deViU9f7/8deAgoiACiiaqJS5oLgkWmaWpwjzuKSdY3kyU7PTIm7RcvSYeyp1TElPalouV6lhduR05YpcmqdcczeXNBesXCgVXHJQmN8ffZuf06DBMHJ/hOfjuua64J4P97ynK/Tpfd8zY3M4HA4BAAAYyMfqAQAAAK6HUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABUOKsXbtWNptNa9eutXoUAEVEqAC4ZU2bNk1z584t0NoFCxYoOTn5ps4DwPtsfNYPgFtVo0aNFBYW5nbkJC8vTzk5OfLz85OPz6//HuvYsaP27Nmjo0ePFv+gADxWxuoBAMDbfHx8VK5cOavHAOAFnPoBcF1ffvmlWrRooXLlyumOO+7Qe++9p1GjRslms0mSjh49KpvNlu/pF5vNplGjRjm/P3bsmPr166d69eopICBAoaGh6tatm9sRjrlz58pms+mrr75SYmKiwsPDFRgYqK5duyozM9O5rnbt2vrmm2/0xRdfyGazyWazqW3btpLcr1Fp27atli5dqmPHjjnX1q5dWxcuXFBgYKAGDRrkNv/3338vX19fTZgwoUj/DQEUDUdUAORr9+7dio+PV3h4uEaNGqWrV69q5MiRqlq1qkf727Jli9avX6/u3burRo0aOnr0qKZPn662bdtq7969Kl++vMv6AQMGqFKlSho5cqSOHj2q5ORk9e/fXykpKZKk5ORkDRgwQBUqVNCwYcMk6bqzDRs2TFlZWfr+++81efJkSVKFChVUoUIFde3aVSkpKZo0aZJ8fX2dP7Nw4UI5HA716NHDo+cLwDsIFQD5GjFihBwOh/73v/+pZs2akqS//OUviomJ8Wh/HTp00F//+leXbZ06dVKrVq306aefqmfPni73hYaGatWqVc6jN3l5eZoyZYqysrIUEhKiLl266PXXX1dYWJieeuqpGz72ww8/rNtuu01nz551W/v0009r/vz5SktL0yOPPOLc/tFHH+n+++93PncA1uDUDwA3ubm5Wrlypbp06eLyF3WDBg3Url07j/YZEBDg/PrKlSv6+eefVadOHVWsWFHbtm1zW//cc885I0WS2rRpo9zcXB07dsyjx7+euLg4Va9eXfPnz3du27Nnj3bt2vWHAQTg5isxobJu3Tp16tRJ1atXl81mU2pqaqF+/vLly+rdu7diYmJUpkwZdenSxW3NiRMn9OSTT6pu3bry8fHR4MGDvTI7YJrMzEz98ssvuvPOO93uq1evnkf7/OWXXzRixAhFRkbK399fYWFhCg8P17lz55SVleW2/vdHMipVqiRJOnv2rEePfz0+Pj7q0aOHUlNTdenSJUnS/PnzVa5cOXXr1s2rjwWg8EpMqFy8eFFNmjTRu+++69HP5+bmKiAgQAMHDlRcXFy+a+x2u8LDw/X666+rSZMmRRkXKBGuPeJxrdzcXLdtAwYM0Lhx4/T4449r0aJFWrVqldLS0hQaGqq8vDy39ddeL3Ktm/GOCk8//bQuXLig1NRUORwOLViwQB07dlRISIjXHwtA4ZSYa1Tat2+v9u3bX/d+u92uYcOGaeHChTp37pwaNWqkN9980/kqgcDAQE2fPl2S9NVXX+ncuXNu+6hdu7beeecdSdLs2bO9/hwAU4SHhysgIEAHDx50u+/AgQPOr387yvH735f8Ts8sXrxYvXr10ttvv+3cdvny5Xx/1wrqeqFU2LWNGjVSs2bNNH/+fNWoUUMZGRmaOnWqx3MB8J4Sc0Tlj/Tv318bNmzQxx9/rF27dqlbt2565JFH8v2DGCjtfH191a5dO6WmpiojI8O5fd++fVq5cqXz++DgYIWFhWndunUuPz9t2rR89/n7oyFTp07N9+hLQQUGBhY4dAIDA/M9xfSbnj17atWqVUpOTlZoaOgN/+EDoPiUmCMqN5KRkaE5c+YoIyND1atXlyS98sorWrFihebMmaPx48dbPCFgntGjR2vFihVq06aN+vXrp6tXr2rq1Klq2LChdu3a5Vz37LPPKikpSc8++6xiY2O1bt06ffvtt27769ixoz788EOFhIQoOjpaGzZs0OrVqxUaGurxjM2bN9f06dP1xhtvqE6dOqpSpYoefPDB665NSUlRYmKiWrRooQoVKqhTp07O+5988km99tprWrJkiV588UWVLVvW47kAeE+pCJXdu3crNzdXdevWddlut9uL9IckUJI1btxYK1euVGJiokaMGKEaNWpo9OjROnHihEuojBgxQpmZmVq8eLEWLVqk9u3ba/ny5apSpYrL/t555x35+vpq/vz5unz5slq3bq3Vq1d7/Cqi3x772LFjeuutt3T+/Hk98MAD1w2Vfv36aceOHZozZ44mT56sWrVquYRK1apVFR8fr2XLlrm9VBqAdUrkZ/3YbDYtWbLE+cqdlJQU9ejRQ998843bBXoVKlRQRESEy7bevXvr3LlzN3zlUNu2bdW0aVM+5AylzqhRozR69OibclGr1bp27ardu3fr0KFDVo8C4P+UiiMqzZo1U25urk6fPq02bdpYPQ4AA504cUJLly51vsstADOUmFC5cOGCy7+Cjhw5oh07dqhy5cqqW7euevTooaefflpvv/22mjVrpszMTKWnp6tx48bq0KGDJGnv3r3KycnRmTNndP78ee3YsUOS1LRpU+d+f9t24cIFZWZmaseOHfLz81N0dHRxPVUAXnTkyBF99dVXev/991W2bFk9//zzVo8E4FqOEmLNmjUOSW63Xr16ORwOhyMnJ8cxYsQIR+3atR1ly5Z1VKtWzdG1a1fHrl27nPuoVatWvvu4Vn7316pVqxifKWCtkSNHuv1e3MrmzJnjkOSoWbOm45NPPrF6HAC/UyKvUQEAACVDqXkfFQAAcOshVAAAgLFu6Ytp8/Ly9OOPPyooKKhQb6UNAACs43A4dP78eVWvXl0+Pjc+ZnJLh8qPP/6oyMhIq8cAAAAeOH78uGrUqHHDNbd0qAQFBUn69YkGBwdbPA0AACiI7OxsRUZGOv8ev5FbOlR+O90THBxMqAAAcIspyGUbXEwLAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYZaweAJ6pPWSp1SOgGB1N6mD1CABgCY6oAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiWhkpubq6GDx+uqKgoBQQE6I477tDYsWPlcDisHAsAABiijJUP/uabb2r69OmaN2+eGjZsqK+//lp9+vRRSEiIBg4caOVoAADAAJaGyvr16/Xoo4+qQ4cOkqTatWtr4cKF2rx5s5VjAQAAQ1h66ufee+9Venq6vv32W0nSzp079eWXX6p9+/b5rrfb7crOzna5AQCAksvSIypDhgxRdna26tevL19fX+Xm5mrcuHHq0aNHvusnTJig0aNHF/OUAADAKpYeUVm0aJHmz5+vBQsWaNu2bZo3b54mTpyoefPm5bt+6NChysrKct6OHz9ezBMDAIDiZOkRlVdffVVDhgxR9+7dJUkxMTE6duyYJkyYoF69ermt9/f3l7+/f3GPCQAALGLpEZVLly7Jx8d1BF9fX+Xl5Vk0EQAAMImlR1Q6deqkcePGqWbNmmrYsKG2b9+uSZMm6ZlnnrFyLAAAYAhLQ2Xq1KkaPny4+vXrp9OnT6t69ep6/vnnNWLECCvHAgAAhrA0VIKCgpScnKzk5GQrxwAAAIbis34AAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLMtD5YcfftBTTz2l0NBQBQQEKCYmRl9//bXVYwEAAAOUsfLBz549q9atW+tPf/qTli9frvDwcB08eFCVKlWyciwAAGAIS0PlzTffVGRkpObMmePcFhUVZeFEAADAJJae+vnss88UGxurbt26qUqVKmrWrJlmzZp13fV2u13Z2dkuNwAAUHJZGiqHDx/W9OnTdeedd2rlypV68cUXNXDgQM2bNy/f9RMmTFBISIjzFhkZWcwTAwCA4mRzOBwOqx7cz89PsbGxWr9+vXPbwIEDtWXLFm3YsMFtvd1ul91ud36fnZ2tyMhIZWVlKTg4uFhmNkXtIUutHgHF6GhSB6tHAACvyc7OVkhISIH+/rb0iEq1atUUHR3tsq1BgwbKyMjId72/v7+Cg4NdbgAAoOSyNFRat26tAwcOuGz79ttvVatWLYsmAgAAJrE0VF566SVt3LhR48eP16FDh7RgwQLNnDlTCQkJVo4FAAAMYWmotGjRQkuWLNHChQvVqFEjjR07VsnJyerRo4eVYwEAAENY+j4qktSxY0d17NjR6jEAAICBLH8LfQAAgOshVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgrCKFSk5Ojg4cOKCrV696ax4AAAAnj0Ll0qVL6tu3r8qXL6+GDRsqIyNDkjRgwAAlJSV5dUAAAFB6eRQqQ4cO1c6dO7V27VqVK1fOuT0uLk4pKSleGw4AAJRuZTz5odTUVKWkpOiee+6RzWZzbm/YsKG+++47rw0HAABKN4+OqGRmZqpKlSpu2y9evOgSLgAAAEXhUajExsZq6dKlzu9/i5P3339frVq18s5kAACg1PPo1M/48ePVvn177d27V1evXtU777yjvXv3av369friiy+8PSMAACilPDqict9992nHjh26evWqYmJitGrVKlWpUkUbNmxQ8+bNvT0jAAAopTw6oiJJd9xxh2bNmuXNWQAAAFx4dERl2bJlWrlypdv2lStXavny5UUeCgAAQPIwVIYMGaLc3Fy37Q6HQ0OGDCnyUAAAAJKHoXLw4EFFR0e7ba9fv74OHTpU5KEAAAAkD0MlJCREhw8fdtt+6NAhBQYGFnkoAAAAycNQefTRRzV48GCXd6E9dOiQXn75ZXXu3NlrwwEAgNLNo1B56623FBgYqPr16ysqKkpRUVFq0KCBQkNDNXHiRG/PCAAASimPXp4cEhKi9evXKy0tTTt37lRAQIAaN26s+++/39vzAQCAUszj91Gx2WyKj49XfHy8N+cBAABw8jhU0tPTlZ6ertOnTysvL8/lvtmzZxd5MAAAAI9CZfTo0RozZoxiY2NVrVo1PjEZAADcFB6FyowZMzR37lz17NnT2/MAAAA4efSqn5ycHN17773engUAAMCFR6Hy7LPPasGCBd6eBQAAwIVHp34uX76smTNnavXq1WrcuLHKli3rcv+kSZO8MhwAACjdPAqVXbt2qWnTppKkPXv2uNzHhbUAAMBbPAqVNWvWeHsOAAAANx5dowIAAFAcCnxE5bHHHivwTv/zn/94NAwAAMC1ChwqISEhN3MOAAAANwUOlTlz5tzMOQAAANxwjQoAADCWxx9KuHjxYi1atEgZGRnKyclxuW/btm1FHgwAAMCjIypTpkxRnz59VLVqVW3fvl0tW7ZUaGioDh8+rPbt23t7RgAAUEp5FCrTpk3TzJkzNXXqVPn5+em1115TWlqaBg4cqKysLG/PCAAASimPQiUjI8P5oYQBAQE6f/68JKlnz55auHCh96YDAAClmkehEhERoTNnzkiSatasqY0bN0qSjhw5IofD4b3pAABAqeZRqDz44IP67LPPJEl9+vTRSy+9pIcfflhPPPGEunbt6tUBAQBA6eXRq35mzpypvLw8SVJCQoJCQ0O1fv16de7cWc8//7xXBwQAAKWXR6Hi4+MjH5//fzCme/fu6t69u9eGAgAAkIrwPipnz57VBx98oH379kmSoqOj1adPH1WuXNlrwwEAgNLNo2tU1q1bp6ioKE2ZMkVnz57V2bNnNWXKFEVFRWndunXenhEAAJRSHh1RSUhI0OOPP67p06fL19dXkpSbm6t+/fopISFBu3fv9uqQAACgdPLoiMqhQ4f08ssvOyNFknx9fZWYmKhDhw55bTgAAFC6eRQqd911l/PalGvt27dPTZo0KfJQAAAAUiFO/ezatcv59cCBAzVo0CAdOnRI99xzjyRp48aNevfdd5WUlOT9KQEAQKlkcxTwrWR9fHxks9n+8J1nbTabcnNzvTLcH8nOzlZISIiysrIUHBxcLI9pitpDllo9AorR0aQOVo8AAF5TmL+/C3xE5ciRI0UeDAAAoDAKHCq1atW6mXMAAAC4KXCo/PbZPgXRuXNnj4YBAAC4VoFDpUuXLi7f//56FZvN5vy6uK5RAQAAJVuBX56cl5fnvK1atUpNmzbV8uXLde7cOZ07d07Lli3TXXfdpRUrVtzMeQEAQCni0TvTDh48WDNmzNB9993n3NauXTuVL19ezz33XL7vsQIAAFBYHr3h23fffaeKFSu6bQ8JCdHRo0c9GiQpKUk2m02DBw/26OcBAEDJ41GotGjRQomJiTp16pRz26lTp/Tqq6+qZcuWhd7fli1b9N5776lx48aejAMAAEooj0Jl9uzZOnHihGrWrKk6deqoTp06qlmzpn744Qd98MEHhdrXhQsX1KNHD82aNUuVKlXyZBwAAFBCeXSNSp06dbRr1y6lpaVp//79kqQGDRooLi7O5dU/BZGQkKAOHTooLi5Ob7zxhifjAACAEsqjUJF+fTlyfHy84uPjPX7wjz/+WNu2bdOWLVsKtN5ut8tutzu/z87O9vixAQCA+QocKlOmTCnwTgcOHPiHa44fP65BgwYpLS1N5cqVK9B+J0yYoNGjRxd4DgAAcGsr8IcSRkVFFWyHNpsOHz78h+tSU1PVtWtX+fr6Orfl5ubKZrPJx8dHdrvd5T4p/yMqkZGRfCghSjw+lBBASVJsH0qYmZkpm82msLCwQg/50EMPaffu3S7b+vTpo/r16+sf//iHW6RIkr+/v/z9/Qv9WAAA4NZU6Ff9nDt3TgkJCQoLC1NERISqVq2qsLAw9e/fX1lZWQXeT1BQkBo1auRyCwwMVGhoqBo1alTYsQAAQAlUqItpz5w5o1atWumHH35Qjx491KBBA0nS3r17NXfuXKWnp2v9+vW8zBgAAHhFoUJlzJgx8vPz03fffaeqVau63RcfH68xY8Zo8uTJHg2zdu1aj34OAACUTIU69ZOamqqJEye6RYokRURE6K233tKSJUu8NhwAACjdChUqJ06cUMOGDa97f6NGjXTy5MkiDwUAACAVMlTCwsJu+KGDR44cUeXKlYs6EwAAgKRChkq7du00bNgw5eTkuN1nt9s1fPhwPfLII14bDgAAlG6Fvpg2NjZWd955pxISElS/fn05HA7t27dP06ZNk91u14cffnizZgUAAKVMoUKlRo0a2rBhg/r166ehQ4fqtze1tdlsevjhh/Xvf/9bkZGRN2VQAABQ+hT6QwmjoqK0fPlynT17VgcPHpT066cpc20KAADwNo8/PblSpUpq2bKlN2cBAABwUei30AcAACguhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADCWpaEyYcIEtWjRQkFBQapSpYq6dOmiAwcOWDkSAAAwiKWh8sUXXyghIUEbN25UWlqarly5ovj4eF28eNHKsQAAgCHKWPngK1ascPl+7ty5qlKlirZu3ar777/foqkAAIApjLpGJSsrS5JUuXJliycBAAAmsPSIyrXy8vI0ePBgtW7dWo0aNcp3jd1ul91ud36fnZ1dXOMBAAALGHNEJSEhQXv27NHHH3983TUTJkxQSEiI8xYZGVmMEwIAgOJmRKj0799fn3/+udasWaMaNWpcd93QoUOVlZXlvB0/frwYpwQAAMXN0lM/DodDAwYM0JIlS7R27VpFRUXdcL2/v7/8/f2LaToAAGA1S0MlISFBCxYs0H//+18FBQXp5MmTkqSQkBAFBARYORoAADCApad+pk+frqysLLVt21bVqlVz3lJSUqwcCwAAGMLyUz8AAADXY8TFtAAAAPkhVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxylg9gCS9++67+te//qWTJ0+qSZMmmjp1qlq2bGn1WABgidpDllo9AorR0aQOVo9gNMuPqKSkpCgxMVEjR47Utm3b1KRJE7Vr106nT5+2ejQAAGAxy0Nl0qRJ+vvf/64+ffooOjpaM2bMUPny5TV79myrRwMAABazNFRycnK0detWxcXFObf5+PgoLi5OGzZssHAyAABgAkuvUfnpp5+Um5urqlWrumyvWrWq9u/f77bebrfLbrc7v8/KypIkZWdn39xBDZRnv2T1CChGpfH/8dKM3+/SpTT+fv/2nB0Oxx+uNeJi2oKaMGGCRo8e7bY9MjLSgmmA4hOSbPUEAG6W0vz7ff78eYWEhNxwjaWhEhYWJl9fX506dcpl+6lTpxQREeG2fujQoUpMTHR+n5eXpzNnzig0NFQ2m+2mzwtrZWdnKzIyUsePH1dwcLDV4wDwIn6/SxeHw6Hz58+revXqf7jW0lDx8/NT8+bNlZ6eri5dukj6NT7S09PVv39/t/X+/v7y9/d32VaxYsVimBQmCQ4O5g8yoITi97v0+KMjKb+x/NRPYmKievXqpdjYWLVs2VLJycm6ePGi+vTpY/VoAADAYpaHyhNPPKHMzEyNGDFCJ0+eVNOmTbVixQq3C2wBAEDpY3moSFL//v3zPdUDXMvf318jR450O/0H4NbH7zeux+YoyGuDAAAALGD5O9MCAABcD6ECAACMRagAAABjESoAAMBYRrzqB8jPTz/9pNmzZ2vDhg06efKkJCkiIkL33nuvevfurfDwcIsnBADcbLzqB0basmWL2rVrp/LlyysuLs75vjqnTp1Senq6Ll26pJUrVyo2NtbiSQEANxOhAiPdc889atKkiWbMmOH2OU4Oh0MvvPCCdu3apQ0bNlg0IYCb6fjx4xo5cqRmz55t9SiwGKECIwUEBGj79u2qX79+vvfv379fzZo10y+//FLMkwEoDjt37tRdd92l3Nxcq0eBxbhGBUaKiIjQ5s2brxsqmzdv5mMWgFvYZ599dsP7Dx8+XEyTwHSECoz0yiuv6LnnntPWrVv10EMPuV2jMmvWLE2cONHiKQF4qkuXLrLZbLrRQf3fn/ZF6cSpHxgrJSVFkydP1tatW52Hf319fdW8eXMlJibq8ccft3hCAJ667bbbNG3aND366KP53r9jxw41b96cUz8gVGC+K1eu6KeffpIkhYWFqWzZshZPBKCoOnfurKZNm2rMmDH53r9z5041a9ZMeXl5xTwZTMOpHxivbNmyqlatmtVjAPCiV199VRcvXrzu/XXq1NGaNWuKcSKYiiMqAADAWLyFPgAAMBahAgAAjEWoAAAAYxEqAEqVUaNGqWnTplaPAaCACBUAHuvdu7e6dOnyh+tGjRolm83mdlu9evXNHxLALY2XJwMoFg0bNnQLk8qVK7uty8nJkZ+fX3GNBcBwHFEB4BWLFy9WTEyMAgICFBoaqri4OJf3yShTpowiIiJcbn5+fs6jMuPGjVP16tVVr149SdKHH36o2NhYBQUFKSIiQk8++aROnz7t3N/cuXNVsWJFlxlSU1Pd3nY9KSlJVatWVVBQkPr27avLly/fvP8IALyOUAFQZCdOnNDf/vY3PfPMM9q3b5/Wrl2rxx577Iaf43Kt9PR0HThwQGlpafr8888l/fqOxGPHjtXOnTuVmpqqo0ePqnfv3oWaa9GiRRo1apTGjx+vr7/+WtWqVdO0adMK+/QAWIhTPwCK7MSJE7p69aoee+wx1apVS5IUExPjsmb37t2qUKGC8/vo6Ght3rxZkhQYGKj333/f5ZTPM8884/z69ttv15QpU9SiRQtduHDBZT83kpycrL59+6pv376SpDfeeEOrV6/mqApwC+GICoAia9KkiR566CHFxMSoW7dumjVrls6ePeuypl69etqxY4fz9umnnzrvi4mJcbsuZevWrerUqZNq1qypoKAgPfDAA5KkjIyMAs+1b98+3X333S7bWrVqVdinB8BChAqAIvP19VVaWpqWL1+u6OhoTZ06VfXq1dORI0eca/z8/FSnTh3nLTIy0nlfYGCgy/4uXryodu3aKTg4WPPnz9eWLVu0ZMkSSb9ebCtJPj4+bqeWrly5crOeIgCLECoAvMJms6l169YaPXq0tm/fLj8/P2dcFNb+/fv1888/KykpSW3atFH9+vVdLqSVpPDwcJ0/f97lgt0dO3a4rGnQoIE2bdrksm3jxo0ezQTAGlyjAqDINm3apPT0dMXHx6tKlSratGmTMjMz1aBBA4/2V7NmTfn5+Wnq1Kl64YUXtGfPHo0dO9Zlzd13363y5cvrn//8pwYOHKhNmzZp7ty5LmsGDRqk3r17KzY2Vq1bt9b8+fP1zTff6Pbbb/f0qQIoZhxRAVBkwcHBWrdunf785z+rbt26ev311/X222+rffv2Hu0vPDxcc+fO1SeffKLo6GglJSVp4sSJLmsqV66sjz76SMuWLVNMTIwWLlyoUaNGuax54oknNHz4cL322mtq3ry5jh07phdffNHTpwnAAjZHQV8/CAAAUMw4ogIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADDW/wN3YjO1fiqsEQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"var = df2.groupby('isFraud').amount.sum()\n",
"fig = plt.figure()\n",
"ax1 = fig.add_subplot(1,1,1)\n",
"var.plot(kind='bar')\n",
"ax1.set_title(\"quantity\")\n",
"ax1.set_xlabel('IsFraud')\n",
"ax1.set_ylabel('Oldbalnce')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "1qO4g2KhcOVS"
},
"outputs": [],
"source": [
"from sklearn.decomposition import PCA\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "MPsn7uvxADVX",
"outputId": "d44639c4-2049-467e-8e9e-5d844b9120e0"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-2a554f64-5041-4e2d-bf4f-973174d3457d\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>181.00</td>\n",
" <td>90.5</td>\n",
" <td>0.000</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>181.00</td>\n",
" <td>90.5</td>\n",
" <td>10591.000</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>3</td>\n",
" <td>229133.94</td>\n",
" <td>7662.5</td>\n",
" <td>28298.220</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>2</td>\n",
" <td>215310.30</td>\n",
" <td>352.5</td>\n",
" <td>11212.500</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>2</td>\n",
" <td>311685.89</td>\n",
" <td>5417.5</td>\n",
" <td>1362719.945</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-2a554f64-5041-4e2d-bf4f-973174d3457d')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-2a554f64-5041-4e2d-bf4f-973174d3457d button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-2a554f64-5041-4e2d-bf4f-973174d3457d');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-048b2eb6-d476-4544-86bb-e8480c39dcaa\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-048b2eb6-d476-4544-86bb-e8480c39dcaa')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-048b2eb6-d476-4544-86bb-e8480c39dcaa button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" type amount oldbalanceOrg oldbalanceDest isFraud\n",
"2 2 181.00 90.5 0.000 1\n",
"3 3 181.00 90.5 10591.000 1\n",
"15 3 229133.94 7662.5 28298.220 0\n",
"19 2 215310.30 352.5 11212.500 0\n",
"24 2 311685.89 5417.5 1362719.945 0"
]
},
"execution_count": 107,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 323
},
"id": "AZEQiGA2cCIe",
"outputId": "73d95c96-5702-4dae-d6b7-ae85acbb6995"
},
"outputs": [
{
"ename": "ValueError",
"evalue": "ignored",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-131-f902c1760de2>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mFraud\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mdf2\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'isFraud'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mgroupby\u001b[0;34m(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, dropna)\u001b[0m\n\u001b[1;32m 8400\u001b[0m \u001b[0maxis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_axis_number\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8401\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 8402\u001b[0;31m return DataFrameGroupBy(\n\u001b[0m\u001b[1;32m 8403\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8404\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, mutated, dropna)\u001b[0m\n\u001b[1;32m 963\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mpandas\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouper\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mget_grouper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 964\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 965\u001b[0;31m grouper, exclusions, obj = get_grouper(\n\u001b[0m\u001b[1;32m 966\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 967\u001b[0m \u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/grouper.py\u001b[0m in \u001b[0;36mget_grouper\u001b[0;34m(obj, key, axis, level, sort, observed, mutated, validate, dropna)\u001b[0m\n\u001b[1;32m 897\u001b[0m \u001b[0;31m# allow us to passing the actual Grouping as the gpr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 898\u001b[0m ping = (\n\u001b[0;32m--> 899\u001b[0;31m Grouping(\n\u001b[0m\u001b[1;32m 900\u001b[0m \u001b[0mgroup_axis\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 901\u001b[0m \u001b[0mgpr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/grouper.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, index, grouper, obj, level, sort, observed, in_axis, dropna)\u001b[0m\n\u001b[1;32m 478\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlevel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 479\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_orig_grouper\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgrouper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 480\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrouping_vector\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_convert_grouper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrouper\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 481\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_all_grouper\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 482\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_index\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/groupby/grouper.py\u001b[0m in \u001b[0;36m_convert_grouper\u001b[0;34m(axis, grouper)\u001b[0m\n\u001b[1;32m 941\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgrouper\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mIndex\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mCategorical\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 942\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgrouper\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 943\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Grouper and axis must be same length\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 944\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 945\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgrouper\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mlist\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: Grouper and axis must be same length"
]
}
],
"source": [
"Fraud = df2.groupby(df2[df2['isFraud'] == 1].index)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "E7EI2zC2iFqZ"
},
"outputs": [],
"source": [
"df = df.drop(df[df['type'] == 1].index)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZQWLxEXgdp1s"
},
"outputs": [],
"source": [
"fraud = df2.loc[df2.isFraud == 1]\n",
"nonfraud = df2.loc[df2.isFraud == 0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "uhcgNwpzdqoM",
"outputId": "e1a89ddf-d036-496c-ceca-15ee80b06cbe"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-bf8df98e-803a-4ee8-878b-d60f97b4ccf0\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>181.0</td>\n",
" <td>90.5</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>181.0</td>\n",
" <td>90.5</td>\n",
" <td>10591.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>251</th>\n",
" <td>2</td>\n",
" <td>2806.0</td>\n",
" <td>1403.0</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>252</th>\n",
" <td>3</td>\n",
" <td>2806.0</td>\n",
" <td>1403.0</td>\n",
" <td>13101.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>680</th>\n",
" <td>2</td>\n",
" <td>20128.0</td>\n",
" <td>10064.0</td>\n",
" <td>0.0</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-bf8df98e-803a-4ee8-878b-d60f97b4ccf0')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-bf8df98e-803a-4ee8-878b-d60f97b4ccf0 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-bf8df98e-803a-4ee8-878b-d60f97b4ccf0');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-44c378e7-4f24-4eb7-867f-f45bb2c11688\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-44c378e7-4f24-4eb7-867f-f45bb2c11688')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-44c378e7-4f24-4eb7-867f-f45bb2c11688 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" type amount oldbalanceOrg oldbalanceDest isFraud\n",
"2 2 181.0 90.5 0.0 1\n",
"3 3 181.0 90.5 10591.0 1\n",
"251 2 2806.0 1403.0 0.0 1\n",
"252 3 2806.0 1403.0 13101.0 1\n",
"680 2 20128.0 10064.0 0.0 1"
]
},
"execution_count": 135,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"fraud.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "gdBjK2KKeJny",
"outputId": "67d64cec-e0d2-4b2a-9c45-a30bf706271a"
},
"outputs": [
{
"data": {
"text/html": [
"\n",
" <div id=\"df-30ee164c-ad2b-4800-ab6f-47b665de1cc6\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>type</th>\n",
" <th>amount</th>\n",
" <th>oldbalanceOrg</th>\n",
" <th>oldbalanceDest</th>\n",
" <th>isFraud</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>3</td>\n",
" <td>229133.94</td>\n",
" <td>7662.500</td>\n",
" <td>28298.220</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>19</th>\n",
" <td>2</td>\n",
" <td>215310.30</td>\n",
" <td>352.500</td>\n",
" <td>11212.500</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24</th>\n",
" <td>2</td>\n",
" <td>311685.89</td>\n",
" <td>5417.500</td>\n",
" <td>1362719.945</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>42</th>\n",
" <td>3</td>\n",
" <td>110414.71</td>\n",
" <td>13422.705</td>\n",
" <td>145607.580</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>47</th>\n",
" <td>3</td>\n",
" <td>56953.90</td>\n",
" <td>971.010</td>\n",
" <td>67179.590</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-30ee164c-ad2b-4800-ab6f-47b665de1cc6')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-30ee164c-ad2b-4800-ab6f-47b665de1cc6 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-30ee164c-ad2b-4800-ab6f-47b665de1cc6');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-27424477-c88d-4075-b2c0-7a6cca4df7b4\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-27424477-c88d-4075-b2c0-7a6cca4df7b4')\"\n",
" title=\"Suggest charts.\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-27424477-c88d-4075-b2c0-7a6cca4df7b4 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
" </div>\n",
" </div>\n"
],
"text/plain": [
" type amount oldbalanceOrg oldbalanceDest isFraud\n",
"15 3 229133.94 7662.500 28298.220 0\n",
"19 2 215310.30 352.500 11212.500 0\n",
"24 2 311685.89 5417.500 1362719.945 0\n",
"42 3 110414.71 13422.705 145607.580 0\n",
"47 3 56953.90 971.010 67179.590 0"
]
},
"execution_count": 138,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nonfraud.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "silH8ybukcS0"
},
"outputs": [],
"source": [
"f=fraud.sample(1000)\n",
"nf=nonfraud.sample(1000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 463
},
"id": "iouoSVn3eNeK",
"outputId": "12703f6b-27ca-466c-fecc-b09fc4c40fdc"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAG+CAYAAABBOgSxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFvUlEQVR4nO3dfXxU5Z3///dkIEElEwkIhMwAVoTiDUKpSLApoWLBUhdMI9a2QrfeVBe6SV3tV1q7qK2/aJVKtrrerCusVaTcBGitgojcRMVWER5F4EHVIoGYBLwhE9AGmLl+f4wTMslMcmYyMyeTeT0fj/OAOXOdOdeZSeZ8ct18LocxxggAAMAmGXZXAAAApDeCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYKuUCka2bNmiK6+8UoMGDZLD4dDq1aujOv6uu+6Sw+Fos51xxhmJqTAAAOhQSgUjx44d00UXXaRHHnkkpuNvu+021dbWhmznnXeerr766jjXFAAAWJVSwcgVV1yhX//617rqqqvCPt/U1KTbbrtN+fn5OuOMM3TJJZdo06ZNzc/37t1bAwcObN7q6+u1e/duXX/99Um6AgAA0FpKBSMdmTt3rrZu3aqlS5fqb3/7m66++mpNnTpV7777btjyTz75pIYPH67CwsIk1xQAAAR1m2CkurpaixYt0vLly1VYWKhzzjlHt912m772ta9p0aJFbcr/85//1LPPPkurCAAANuthdwXiZefOnfL5fBo+fHjI/qamJvXt27dN+VWrVqmxsVGzZ89OVhUBAEAY3SYYOXr0qJxOp7Zt2yan0xnyXO/evduUf/LJJ/Xtb39bAwYMSFYVAQBAGN0mGBkzZox8Pp8OHTrU4RiQffv2aePGjfrjH/+YpNoBAIBIUioYOXr0qN57773mx/v27dOOHTuUm5ur4cOH6/vf/75mzZqlBQsWaMyYMTp8+LA2bNigUaNGadq0ac3HPfXUU8rLy9MVV1xhx2UAAIAWHMYYY3clrNq0aZMmTZrUZv/s2bO1ePFinThxQr/+9a/19NNPq6amRv369dP48eN1991368ILL5Qk+f1+DRkyRLNmzdK9996b7EsAAACtpFQwAgAAup9uM7UXAACkJoIRAABgq5QYwOr3+/Xhhx8qOztbDofD7uoAAAALjDFqbGzUoEGDlJERuf0jJYKRDz/8UB6Px+5qAACAGBw4cEButzvi8ykRjGRnZ0sKXIzL5bK5NgAAwAqv1yuPx9N8H48kJYKRYNeMy+UiGAEAIMV0NMSCAawAAMBWBCMAAMBWBCMAAMBWBCMAAMBWBCMAAMBWBCMAAMBWBCMAAMBWBCMAAMBWKZH0rLvw+X2qqq5SbWOt8rLzVDi4UM4Mp93VAgDAVgQjSVK5p1Kla0t10HuweZ/b5VbF1AoVjyy2sWYAANiLbpokqNxTqZJlJSGBiCTVeGtUsqxElXsqbaoZAAD2IxhJMJ/fp9K1pTIybZ4L7itbWyaf35fsqgEA0CUQjCRYVXVVmxaRloyMDngPqKq6Kom1AgCg6yAYSbDaxtq4lgMAoLshGEmwvOy8uJYDAKC7IRhJsMLBhXK73HLIEfZ5hxzyuDwqHFyY5JoBANA1EIwkmDPDqYqpFZLUJiAJPl44dSH5RgAAaYtgJAmKRxZrxcwVynflh+x3u9xaMXMFeUYAAGnNYYxpO+e0i/F6vcrJyVFDQ4NcLpfd1YkZGVgBAOnE6v2bDKxJ5Mxwqmhokd3VAACgS6GbBgAA2IpgBAAA2IpgBAAA2IpgBAAA2IpgBAAA2IpgBAAA2IpgBAAA2IpgBAAA2IpgBAAA2IpgBAAA2IpgBAAA2IpgBAAA2CqqYOTRRx/VqFGj5HK55HK5VFBQoBdffDFi+cWLF8vhcIRsvXr16nSlAQBA9xHVqr1ut1v33Xefzj33XBlj9H//93+aPn26tm/frvPPPz/sMS6XS3v37m1+7HA4OldjAADQrUQVjFx55ZUhj++99149+uijeuONNyIGIw6HQwMHDoy9hgAAoFuLecyIz+fT0qVLdezYMRUUFEQsd/ToUQ0ZMkQej0fTp0/Xrl27OnztpqYmeb3ekA0AAHRPUQcjO3fuVO/evZWVlaWbb75Zq1at0nnnnRe27IgRI/TUU09pzZo1euaZZ+T3+zVhwgQdPHiw3XOUl5crJyenefN4PNFWEwAApAiHMcZEc8Dx48dVXV2thoYGrVixQk8++aQ2b94cMSBp6cSJExo5cqSuvfZa/epXv4pYrqmpSU1NTc2PvV6vPB6PGhoa5HK5oqkuAACwidfrVU5OTof376jGjEhSZmamhg0bJkkaO3as3nzzTVVUVOjxxx/v8NiePXtqzJgxeu+999otl5WVpaysrGirBgAAUlCn84z4/f6QVoz2+Hw+7dy5U3l5eZ09LQAA6CaiahmZN2+errjiCg0ePFiNjY1asmSJNm3apHXr1kmSZs2apfz8fJWXl0uS7rnnHo0fP17Dhg3TkSNH9MADD2j//v264YYb4n8lAAAgJUUVjBw6dEizZs1SbW2tcnJyNGrUKK1bt06XX365JKm6uloZGacaWz799FPdeOONqqurU58+fTR27Fi9/vrrlsaXAACA9BD1AFY7WB0AAwAAug6r92/WpgEAALYiGAEAALYiGAEAALYiGAEAALYiGAEAALYiGAEAALYiGAEAALYiGAEAALYiGAEAALaKetXe7szn96mqukq1jbXKy85T4eBCOTOcdlcLAIBujWDkC5V7KlW6tlQHvQeb97ldblVMrVDxyGIbawYAQPeWtsFIy1aQdz95V/M3zW9TpsZbo5JlJVoxcwUBCQAACZKWwUi4VpBwjIwccqhsbZmmj5hOlw0AAAmQdgNYK/dUqmRZSYeBSJCR0QHvAVVVVyW4ZgAApKe0CkZ8fp9K15bKyER9bG1jbQJqBAAA0ioYqaqustwi0lpedl6cawMAAKQ0GzMSS+uGQw65XW4VDi5MQI0AAEBatYxE27rhkEOStHDqQgavAgCQIGkVjBQOLpTb5W4OMjridrmZ1gsAQIKlVTeNM8OpiqkVKllWIoccIQNZgwHKXUV36dzcc8nACgBAkqRVMCJJxSOLtWLmirDZVhdOXUgrCAAASeYwxkQ/zzXJvF6vcnJy1NDQIJfLFZfXZB0aAAASy+r9O+1aRoKcGU4VDS2yuxoAAKS9tBrACgAAuh6CEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYKuogpFHH31Uo0aNksvlksvlUkFBgV588cV2j1m+fLm+/OUvq1evXrrwwgv1wgsvdKrCAACge4kqGHG73brvvvu0bds2vfXWW/rGN76h6dOna9euXWHLv/7667r22mt1/fXXa/v27ZoxY4ZmzJihd955Jy6VBwAAqc9hjDGdeYHc3Fw98MADuv7669s8d8011+jYsWN6/vnnm/eNHz9eo0eP1mOPPWb5HFaXIAYAAF2H1ft3zGNGfD6fli5dqmPHjqmgoCBsma1bt2ry5Mkh+6ZMmaKtW7e2+9pNTU3yer0hGwAA6J6iDkZ27typ3r17KysrSzfffLNWrVql8847L2zZuro6DRgwIGTfgAEDVFdX1+45ysvLlZOT07x5PJ5oqwkAAFJE1MHIiBEjtGPHDv3lL3/RLbfcotmzZ2v37t1xrdS8efPU0NDQvB04cCCurw8AALqOHtEekJmZqWHDhkmSxo4dqzfffFMVFRV6/PHH25QdOHCg6uvrQ/bV19dr4MCB7Z4jKytLWVlZ0VYNAACkoE7nGfH7/Wpqagr7XEFBgTZs2BCyb/369RHHmAAAgPQTVcvIvHnzdMUVV2jw4MFqbGzUkiVLtGnTJq1bt06SNGvWLOXn56u8vFySVFpaqokTJ2rBggWaNm2ali5dqrfeektPPPFE/K8EAACkpKiCkUOHDmnWrFmqra1VTk6ORo0apXXr1unyyy+XJFVXVysj41Rjy4QJE7RkyRLdeeed+vnPf65zzz1Xq1ev1gUXXBDfqwAAACmr03lGkoE8IwAApJ6E5xkBAACIB4IRAABgq6in9nYXPr9PVdVVqm2sVV52ngoHF8qZ4bS7WgAApJ20DEYq91SqdG2pDnoPNu9zu9yqmFqh4pHFNtYMAID0k3bdNJV7KlWyrCQkEJGkGm+NSpaVqHJPpU01AwAgPaVVMOLz+1S6tlRGbScQBfeVrS2Tz+9LdtUAAEhbaRWMVFVXtWkRacnI6ID3gKqqq5JYKwAA0ltaBSO1jbVxLQcAADovrYKRvOy8uJYDAACdl1bBSOHgQrldbjnkCPu8Qw55XB4VDi5Mcs0AAEhfaRWMODOcqphaIUltApLg44VTF5JvBACAJEqrYESSikcWa8XMFcp35Yfsd7vcWjFzBXlGAABIsrRdKI8MrAAAJJbV+3daZmCVAl02RUOL7K4GAABpL+26aQAAQNdCMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGxFMAIAAGwVVTBSXl6uiy++WNnZ2erfv79mzJihvXv3tnvM4sWL5XA4QrZevXp1qtIAAKD7iCoY2bx5s+bMmaM33nhD69ev14kTJ/TNb35Tx44da/c4l8ul2tra5m3//v2dqjQAAOg+ekRTeO3atSGPFy9erP79+2vbtm36+te/HvE4h8OhgQMHxlZDAADQrXVqzEhDQ4MkKTc3t91yR48e1ZAhQ+TxeDR9+nTt2rWr3fJNTU3yer0hGwAA6J5iDkb8fr/Kysp06aWX6oILLohYbsSIEXrqqae0Zs0aPfPMM/L7/ZowYYIOHjwY8Zjy8nLl5OQ0bx6PJ9ZqAgCALs5hjDGxHHjLLbfoxRdf1Kuvviq32235uBMnTmjkyJG69tpr9atf/SpsmaamJjU1NTU/9nq98ng8amhokMvliqW6AAAgybxer3Jycjq8f0c1ZiRo7ty5ev7557Vly5aoAhFJ6tmzp8aMGaP33nsvYpmsrCxlZWXFUjUAAJBiouqmMcZo7ty5WrVqlV555RWdffbZUZ/Q5/Np586dysvLi/pYAADQ/UTVMjJnzhwtWbJEa9asUXZ2turq6iRJOTk5Ou200yRJs2bNUn5+vsrLyyVJ99xzj8aPH69hw4bpyJEjeuCBB7R//37dcMMNcb4UAACQiqIKRh599FFJUlFRUcj+RYsW6Yc//KEkqbq6WhkZpxpcPv30U914442qq6tTnz59NHbsWL3++us677zzOldzAADQLcQ8gDWZrA6AAQAAXYfV+zdr0wAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFsRjAAAAFv1sLsCdvL5faqqrlJtY63ysvNUOLhQzgyn3dUCACCtpG0wUrmnUqVrS3XQe7B5n9vlVsXUChWPLLaxZgAApJe07Kap3FOpkmUlIYGIJNV4a1SyrESVeyptqhkAAOkn7YIRn9+n0rWlMjJtngvuK1tbJp/fl+yqAQCQltIuGKmqrmrTItKSkdEB7wFVVVclsVYAAKSvtAtGahtr41oOAAB0TlTBSHl5uS6++GJlZ2erf//+mjFjhvbu3dvhccuXL9eXv/xl9erVSxdeeKFeeOGFmCvcWXnZeXEtBwAAOieqYGTz5s2aM2eO3njjDa1fv14nTpzQN7/5TR07diziMa+//rquvfZaXX/99dq+fbtmzJihGTNm6J133ul05WNROLhQbpdbDjnCPu+QQx6XR4WDC5NcMwAA0pPDGNN2JKdFhw8fVv/+/bV582Z9/etfD1vmmmuu0bFjx/T888837xs/frxGjx6txx57zNJ5vF6vcnJy1NDQIJfLFWt1mwVn00gKGcgaDFBWzFzB9F4AADrJ6v27U2NGGhoaJEm5ubkRy2zdulWTJ08O2TdlyhRt3bo14jFNTU3yer0hWzwVjyzWipkrlO/KD9nvdrkJRAAASLKYk575/X6VlZXp0ksv1QUXXBCxXF1dnQYMGBCyb8CAAaqrq4t4THl5ue6+++5Yq2ZJ8chiTR8xnQysAADYLOZgZM6cOXrnnXf06quvxrM+kqR58+bp1ltvbX7s9Xrl8Xjifh5nhlNFQ4vi/roAAMC6mIKRuXPn6vnnn9eWLVvkdrvbLTtw4EDV19eH7Kuvr9fAgQMjHpOVlaWsrKxYqgYAAFJMVGNGjDGaO3euVq1apVdeeUVnn312h8cUFBRow4YNIfvWr1+vgoKC6GoKAAC6pahaRubMmaMlS5ZozZo1ys7Obh73kZOTo9NOO02SNGvWLOXn56u8vFySVFpaqokTJ2rBggWaNm2ali5dqrfeektPPPFEnC8FAACkoqhaRh599FE1NDSoqKhIeXl5zdsf/vCH5jLV1dWqrT2VvXTChAlasmSJnnjiCV100UVasWKFVq9e3e6gVwAAkD46lWckWeKdZwQAACReUvKMAAAAdBbBCAAAsBXBCAAAsBXBCAAAsBXBCAAAsBXBCAAAsBXBCAAAsBXBCAAAsBXBCAAAsBXBCAAAsBXBCAAAsBXBCAAAsFUPuytgF5/fp6rqKtU21iovO0+FgwvlzHDaXS0AANJOWgYjlXsqVbq2VAe9B5v3uV1uVUytUPHIYhtrBgBA+km7bprKPZUqWVYSEohIUo23RiXLSlS5p9KmmgEAkJ7SKhjx+X0qXVsqI9PmueC+srVl8vl9ya4aAABpK62CkarqqjYtIi0ZGR3wHlBVdVUSawUAQHpLq2CktrE2ruUAAEDnpVUwkpedF9dyAACg89IqGCkcXCi3yy2HHGGfd8ghj8ujwsGFSa4ZAADpK62CEWeGUxVTKySpTUASfLxw6kLyjQAAkERpFYxIUvHIYq2YuUL5rvyQ/W6XWytmriDPCAAASeYwxrSd59rFeL1e5eTkqKGhQS6XKy6vSQZWAAASy+r9Oy0zsEqBLpuioUV2VwMAgLSXdt00AACgayEYAQAAtiIYAQAAtiIYAQAAtiIYAQAAtiIYAQAAtiIYAQAAtiIYAQAAtiIYAQAAtiIYAQAAtoo6GNmyZYuuvPJKDRo0SA6HQ6tXr263/KZNm+RwONpsdXV1sdYZAAB0I1EHI8eOHdNFF12kRx55JKrj9u7dq9ra2uatf//+0Z4aAAB0Q1EvlHfFFVfoiiuuiPpE/fv315lnnhn1cQAAoHtL2piR0aNHKy8vT5dffrlee+21dss2NTXJ6/WGbAAAoHtKeDCSl5enxx57TCtXrtTKlSvl8XhUVFSkt99+O+Ix5eXlysnJad48Hk+iqwkAAGziMMaYmA92OLRq1SrNmDEjquMmTpyowYMH6/e//33Y55uamtTU1NT82Ov1yuPxqKGhQS6XK9bqAgCAJPJ6vcrJyenw/h31mJF4GDdunF599dWIz2dlZSkrKyuJNQIAAHaxJc/Ijh07lJeXZ8epAQBAFxN1y8jRo0f13nvvNT/et2+fduzYodzcXA0ePFjz5s1TTU2Nnn76aUnSwoULdfbZZ+v888/XP//5Tz355JN65ZVX9NJLL8XvKgAAQMqKOhh56623NGnSpObHt956qyRp9uzZWrx4sWpra1VdXd38/PHjx/Uf//Efqqmp0emnn65Ro0bp5ZdfDnmNrsTn96mqukq1jbXKy85T4eBCOTOcdlcLAIBuq1MDWJPF6gCYzqrcU6nStaU66D3YvM/tcqtiaoWKRxYn7LwAAHRHVu/frE3zhco9lSpZVhISiEhSjbdGJctKVLmn0qaaAQDQvRGMKNA1U7q2VEZtG4mC+8rWlsnn9yW7agAAdHsEI5KqqqvatIi0ZGR0wHtAVdVVSawVAADpgWBEUm1jbVzLAQAA6whGJOVlW8t5YrUcAACwjmBEUuHgQrldbjnkCPu8Qw55XB4VDi5Mcs0AAOj+CEYkOTOcqphaIUltApLg44VTF5JvBACABCAY+ULxyGKtmLlC+a78kP1ul1srZq4gzwgAAAlC0rNWyMAKAEB8dOlVe7syZ4ZTRUOL7K4GAABpg24aAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgK4IRAABgqx52VyCV+Pw+VVVXqbaxVnnZeSocXChnhtPuakWUavUFAKSntA1Gor1RV+6pVOnaUh30Hmze53a5VTG1QsUji5NR5aikWn0BAOnLYYwxdleiI16vVzk5OWpoaJDL5er060V7o67cU6mSZSUyCn2rHHJIklbMXNGlbvCpVl8AQPdk9f6ddmNGgjfqloGIJNV4a1SyrESVeypD9vv8PpWuLW1zY5fUvK9sbZl8fl/iKh2FVKsvAABpFYzEcqOuqq5qE7i0Pu6A94CqqqviX+EYpFp9AQBIq2Aklht1bWOtpde2Wi7RUq2+AACk1QDW1jfgzOPSgvXSsE+k93Kl2y+TLj0gDbnlF1L1Eenjj/UvvXro4X7SbZdLBR9Kk98PbNn/DLzGx2dIn/WUhtf/SfpOf6moSHI6pePHpf/+b2nvXqmuTsrLk4YPl/7t3wLPV1VJtbWB/YWFgX0+n7RpU2CTAq8VfD2fL3BMTY10+LB01llSfv6pY7+Ql50Xco0Zfqlwv5R3VKrtLVUNkfwZbcslVLDura+3s2UBoCuy83ssVb9DTZQ2b95svv3tb5u8vDwjyaxatarDYzZu3GjGjBljMjMzzTnnnGMWLVoU1TkbGhqMJNPQ0BBtdUPrsW+j0V0yukumcoSMXzKmxdb6sdXnQra+fY2ZPt0YpzP88xkZxvTuHbrP7Tbm9tsDx4Z7vdtvD5QJ93putzErVzZf40nfSeP+rds47nKYq2bKVLtCy1e7ZG78YV9z0neyU++lZStXtq17qzrHVBYAuiI7v8e64Heo1ft31MHICy+8YH7xi1+YyspKS8HIP/7xD3P66aebW2+91ezevdv87ne/M06n06xdu9byOeMVjJz0nTR97+/bHIgkJBixY3M4Qn7YVu5eaYpnyvgU2FqW9UnG71DyfjEcjvD1bVXnqMoCQFdk5/dYF/0OtXr/7tTUXofDoVWrVmnGjBkRy/y///f/9Oc//1nvvPNO877vfve7OnLkiNauXWvpPPGa2uvz++T5//qp5pdHAvWP+ZW6GIdDcrulffuau3Q+yx+gXvUfhx8U1Lp8Ivh80tCh0sEIY3Ra1kGyXjYVmhsBpJ9ovvPi/T1m57k70GWm9m7dulWTJ08O2TdlyhRt3bo14jFNTU3yer0hWzxUVVfp5388Ioe6USAiBeLfAwcC/YSSVFWl0yMFIuHKJ0JVVeRfjNZ1iKYsAHRFdn6PdYPv0IQHI3V1dRowYEDIvgEDBsjr9erzzz8Pe0x5eblycnKaN4/HE5e61DbWatgncXmprqm2NvRfq+UTWRcr5bpCfQGgM+z8HusG36FdcmrvvHnz1NDQ0LwdOHAgLq+bl52n93Lj8lJdU94XM2T694+ufCLrYqVcNGUBoCuy83usG3yHJjwYGThwoOrr60P21dfXy+Vy6bTTTgt7TFZWllwuV8gWD4WDC/XQd/JkpDBpz1KYwyF5PIEpXJWV0uzZ1ssnSmFhoI/SEaFDrGUdoikLAF2Rnd9j3eA7NOHBSEFBgTZs2BCyb/369SooKEj0qdtwZjj1wL88rNUjAo+7VUCycKG0Zo1UUhLIRRJJ8Id14cLEDmRyOqWKitBzRqpDNGUBoCuy83usO3yHRjtNp7Gx0Wzfvt1s377dSDK//e1vzfbt283+/fuNMcbccccd5rrrrmsuH5zae/vtt5s9e/aYRx55xLapvUErdy4zn/WwabpuuDwjHk/seUY8nsCUrZMnI5dpuSV7znm4ee/BOnemLAB0RXZ+j3XB79CETe3dtGmTJk2a1Gb/7NmztXjxYv3whz/UBx98oE3BLKJfHPPTn/5Uu3fvltvt1i9/+Uv98Ic/tHzOeK/aq02bpDDXkBR/+IP0ne/EPwOr1Wt6+WXpsssSdnlhkYEVQDohA2szq/fvTuUZSZa4ByPPPSd973udf51wMjIkvz/8c4mc6231mpYska69Nr7nBgAgjC6TZ6RLStSI4jPPjByISImd690NRlMDANJTegYjHY08jtU551grl4i53t1gNDUAID2lZzDS3sjjWM2cKW3bZq1sIlonusNoagBAWkrPYESSioulFSsCg0DjweI6OzrrrEDrRHCw6nPPBf71+Tpfh0jX5HYH9hcXd/4cAADEWXoOYG2p5SyVl1+WVq+WjhyJ7zlaKisLBCOlpaFrCbjdgZaNeAQMXWw0NQAgPVm9f/dIYp26JqdT+uQT6Y47QoODPn2kceOkdevie74+fQKJyVrHgDU1gf0dtGD4/D5VVVeptrFWedl5KhxcKGdGq0DD6QxMCQYAIAWkbctI8KaeUblahf8RGGsRMtLC4WgbMHRWdraUlSV99FH45zuY+lu5p1Kla0t10HsqaHK73KqYWqHikXTBAAC6Fqb2tqNyT6WGVgzVZYsm6ey7K2TUKhCR4h+ISFJjY+RAJHjOCFN/K/dUqmRZSUggIkk13hqVLCtR5Z7KeNcWAICkSLtgpOVNvXC/5PHG6U3o2zd+M3NaTf31+X0qXVsqE2Y1neC+srVl8vnjMAgWAIAkS6tgpPVNPe9oHF988uTAeJB4aDX1t6q6Sh8eOaiJ+6Tv7pQm7pMyWuRWMzI64D2gquoEJFMDACDB0moAa1V1VUg3R21viwdec01gTZn2dPS8FcExI60SkzlXrdEHCwOtOEEHXFLpVGnVeaf21TYmIJkaAAAJllYtI61v1lVDAjf1SAncjUOB4ODllxNet4iJySor9bX/WKh8b2jxfK+0Ypl01e5T+/KySfUOAEg9aRWM9D+jf8hjf0agdUFqG5D4JclIuvRS6eOPE1+5cInJfL5APhLT9oMKPl64VnL6JY/Lo8LBpHq3XSKS2QFAN5dWwUi4AZ6rzpNKZko1rWYcHcyW5k+UTvxpdeIqdNZZ0jPPSBs3Bqbzts4vUlUlHTzYdqbPFzIkDfZKhfulhVMXts03guSqrJSGDpUmTQqsoDxpUuBxJTOdAKA9aTdmJJw1X5aO9JKK9klySCcd0o3bpXs2S1JT/CsS7JJ57LH2M65aXFDv/gvKNI48I/aqrOxUMjsASGdpFYyEc9VuqWJt6OBQ88UWN05naHO92x0YG9LRzcnignrjvjo99rqh85q708L81BgTCD7LyqTp00nLDwBhpFU3TdHQopDHV+0ODAJtPThUitMb43AEtueeC3TFLFkSuUsmnMLCQOASKX+JwyF5PG1m3yDJvuhOi6idZHYAgDRrGSkaWqS+p/XVx59/rAx/oEXEobbZV+OUuiywem5nFr9zOgPHl5S0TU8fafYNks9id5rlcgCQZtKqZcSZ4dQTVz4hSfr5lkDXTNwCj3AWL+78OIHi4sB4g/z80P3hZt/EgtkfnWexO81yOQBIM2nVMiJJxSOLtbXP7Rq36YHEn+zQofi8TnFxYLxBVVXgr+u8vEDXTGdbRCorA2MdWnYxuN2da81JR8HutJqa8ONGIiSzAwAEpFXLiCTJ59P4B56LvUUkN1f6zW+slY3nX8JOp1RUJF17beDfeAQiJSVtxzoEZ38wHdW6YHea1HZ8D91pANCh9AtGOsjdEdTm79vgYNTrr5f+67/aP9iOgaXRdLd0NPtDCsz+oMvGukR3pwFAN5Z23TRWBxG2CVbcbum735UefDD8TbwlYxL/l7DPd6rb5t13pf/5n/a7W1qWr6+3PvujqChx19DdJKo7DQC6ubQLRh6rWaOboz1owQLpggsCXSQdBSLJEG6sR2stk21JHZcPh9kf0Qt2pwEALHMY0xXuru3zer3KyclRQ0ODXC5XxwdEcPzkcfX+9Wl6/yG/8r1R9FHl5kqffGL9RMEBi/v2nfqruGXLRGf+Yo6U6TNSPXJzY19bZ+NGbqwAgJhZvX+n1ZiR/37rv3XC4Vfp1Cin9EYTiEhtk1zFa82S9sZ6RKpHLIEIydQAAEmUVsHI+5+8LymwFo23ZxJOWFMTedbKwYPRz1rpKNNnPDD7A9EiVw2ATkqrMSPn5J4jKbDKbc6JJJywrCzQOhGpJcOY6NYsScYYjuC6OdOnB24sDMREe8hVAyAO0qpl5N+++m9yOpzKO5qkE370UcfdJNGsWZKoDJ4PPRS6bo4Un24ldG/kqgEQJ2kVjGT2yNS3h39btb3trkkrNTXWynW0cF5Lwbwofft2vNDeT35yKpnamjXcYNAxctUAiKO0CkZ8fp+21W5T1RDpgEvyRyjnV5ikZ5H06tX5ih0+bK1ce5k+Wwsm23riifDlw40N4QYDq1ipGEAcpVUwUlVdpYPeg/JnSKVTA/taByR+RTnTJjOz8xU766xT/+9oMGB7mT7vvju0u6W4OLrMoNxgYBUrFQOIo7QawFrbeOqLcdV5UslMqWJtYPXeIIeiDEa83o7LdCQYKFgdDBhtpk+r5bnBwCpWKgYQR2kVjORlh34xrjovMM23cL+Ud1S6tFqa+2aSKxXM5xEpmdnBg9J3vhNo9fjFL04FENFm+rRS3uqN4913rZ8X3RMrFQOIo5i6aR555BENHTpUvXr10iWXXKK//vWvEcsuXrxYDocjZOsVj3EWMSgcXCi3yx2yz58hbT5bWnqhZGJeyje8kLEn4cZsOByBMRtSx8nM5s+XhgxJ7ADS4A2mI//zP4wbSXesVAwgjqIORv7whz/o1ltv1fz58/X222/roosu0pQpU3To0KGIx7hcLtXW1jZv+/fv71SlY+XMcOrQ0cj1fL9PfM93+HRp4Xhp19xr2h+zYTWZWaJmtATHqSxbJl1+ecflDx7s3LgRkmR1D6xUDCBOol6b5pJLLtHFF1+shx9+WJLk9/vl8Xj0k5/8RHfccUeb8osXL1ZZWZmOHDkScyXjtTZN3ZE65VVE7orocVL6/F7JaaIcNxLGPzOkXi1Gx5r8fDluukk699y2Yzaeey6Qz8OKcOvedIaVRffCKSsL5CeJx/msJsmK1/o+iC8+FwARJGRtmuPHj2vbtm2aPHnyqRfIyNDkyZO1devWiMcdPXpUQ4YMkcfj0fTp07Vr1652z9PU1CSv1xuyxcPo/xnd7vMne0h/Gh74f2dXD+zVeprOhzXSXXdJWVmBsRstv6yjGeQXzxktkZJWWfHss9ZaNFq2gtxzT2D8Syw5TOK1vg/iLzgeKZirhkAEQJSiCkY++ugj+Xw+DRgwIGT/gAEDVFdXF/aYESNG6KmnntKaNWv0zDPPyO/3a8KECTrYzg2wvLxcOTk5zZvH44mmmhF98nn7C95l+KWv1gYCkXAtI35J3h6B56MNVhzBA8Ll6YgmmVlQZ2e0RLvoXmuHD3ccELUOIObPD1+uoxwmZPoEgG4t4XlGCgoKNGvWLI0ePVoTJ05UZWWlzjrrLD3++OMRj5k3b54aGhqatwMHDsSlLk5H+3+xFe4PTPON9KZkSHKdjGH6b1CkVo2WgwGt6uyUyXgsutdeQBRtq0uk94ZEbADQ7UUVjPTr109Op1P19fUh++vr6zVw4EBLr9GzZ0+NGTNG7733XsQyWVlZcrlcIVs8nNPnnHafT9qaNeHSvxcXB7pxrHC5Oj9lMh65QiIFRJ1pdWldLxKxAUC3F1UwkpmZqbFjx2rDhg3N+/x+vzZs2KCCggJLr+Hz+bRz507l2ZAM6YQJv1Rvhl+auE86vz7s0/FXVha+a+Hcc60d72+byN7n92nTB5v03M7ntOmDTfL5O2gp6Mz7H1zT5ouAqM25N2+KvdWldb1IxAYA3V7USc9uvfVWzZ49W1/96lc1btw4LVy4UMeOHdO//uu/SpJmzZql/Px8lZeXS5LuuecejR8/XsOGDdORI0f0wAMPaP/+/brhhhvieyUWuF1u/f2Tv4fsu2p32yysCffRR4EujBUrQjOj1luMho4eDRzzRRKzyj2VKl1bqoPeUwGA2+VWxdQKFY+MMEOlo6RVQQ5H6POtcki0PneGX1qwNVtl1q4k9HXDJcki0ycAdHtRByPXXHONDh8+rP/8z/9UXV2dRo8erbVr1zYPaq2urlZGxqkGl08//VQ33nij6urq1KdPH40dO1avv/66zjvvvPhdhUVTzpmiVz54pfnxVbulFcs6P403ZjfdJP37v4d227S++UfyRUtA5Z5KlSwrkWk1pLbGW6OSZSVaMXNF+IAkOE6lpCRywHHbbYFZMK2n4S5cKBUXtzn3qcCu0crVtz1fuCRZqZjpk6muABCVqPOM2CFeeUae/duz+sGqH0gK/AX/wUIpv50Bq13axo3yfb1QQyuGhrSItOSQQ26XW/tK98mZEeFmGC7vh8fTHHBEurH6/L6QcwcDOymG97Pl+SLVsaQk8P9wQVNXSrDVmTwqANDNWL1/p9XaNPmuU5kigzNnUk6LloDgKsSRGBkd8B5Q1b5NKjrgDP+XekeL6EVY06bluTP8gRYRKYZApKREuvnm9tfNCWb6DHeTby+ISbZI6wsFpyB3paAJALqQtApGLhl0SfP/kzZzJp5adWe0XIU4kqt2S+MunSnVt8ix0vov9WgX3VPoCsidCuxWrAhsHbUeRLtScbJ1NAXZ4QgMXJ4+vevUGQC6iJTsoYjVo9sebf5/bW8bK2JVbm7o41ZrfrRehbi1q3ZLK5dJp9W3SvYWXAm4E8nCWp47LoGdlQRmXTnTJ1OQASBmaRWMbPlgS/P/q4ZIjZk2VsaKZcukjRulJUsC/+7bF9JyEFyF2BFmCG6GX3riT4H/Rxyge9NNMScLa3nuuAR2qZ7AjCnIABCztApGjp04FvI4o226jq4hmMejqKjdlgBnhlMVUwOZW1sHJEUfSP0+72Cm0McfB9aNiUHLc786RDrgCqTL75RUbj1gCjIAxCytgpH+Z/Rv/v/Pt0hnnLSxMpG0N801jOKRxVoxc0XI4FxJ+pfabGvnizEYaXnuvDPdKp0a2BeX+C4VWw86Wl+oVaI4AMApaRWMDD1zqKRAi0jZX+L/+nG5EbcaF2JF8chifVD6gTb+4GW97LlTu/rcqZ/0/5d41Mbyuf/9/o167bdlOj7wrNACffsG/o1mEcBUbD1oub5Q62uNMsAEgHSTVnlG1r27TlOXTNXEfdKm/4tjBb/QkCnlHI/x4N69pdWrYx+YGS6/hRUvvyxddln054skXF6SNWus1S04bXnfvtS9aXeUtwUA0gh5RsLYeXinpMRM6zWSGrKkBQXSXZtjWNn3aItKbdoUefpqpJt9uPwWHcnNtT6l12pW0XDThFtOy12zJnBj7iDNfMrq6lOQAaALSqtg5LXq1yQlZlqvQ9LgRun21089jtovfxkYwNk6sddDD0n9+gVu5M8+Kx0+HPr855/HtkKuwxF4zY7+Yo9HVtFgkFJUFLg5d/UEZp0RQ94WAEhnadVN872V39Nz7zynDL9U/4DUt6PZJt2dlXTqkbKKdjYVO+u3AEC3RzdNGNmZp2aYZKZgKou46ygzqM8XyEViJauoFF1wQetBfBDUAegG0mo2Td3ROknSxA8k1/E0bxUJai+3x733BnKRdHTsvfdKQ4dKkyZJ3/te4N+hQzuV4RUWVFbyvgPoFtIqGPns+GeSpKJ9NlekK2qd28PnOzVVtSPz57edKWMlvTtiF+w+430H0A2kVTDS9/RAzovLCEbaap3bo6pK+uST8GWtSKX07j5fYAbTc88F/u1q9W1dv+PH21+UT0qN9x0AvpBWY0Z8xqceJ6XxUabi6NaCuT1aZwaNRxbUll1AXXV8SDxmCiVSuPqddVbojKrWUuF9B4AW0qplZHvtds39q8Twvi+0l9sjnllQa2ri91rx1NW7OiLVr71ApKVUTKsPIC2lVTBy+NhhFVbbXYsupL3U8x2ttSJJVqdZl5XZf2Nvzefr2l0d7dXPqlRMqw8gLaVVMHLcf1xHM+2uRRexYIG0aJHU1BR5nMSNN7Z/M3zyyY4DFkn66KOu0dLQUlVV++np7V5BuKP6tYdF+QCkmLQKRiTp/0bZXYMuoG/fQFbXyZPDTwkNThmdPz/88R6PtHKldPXVkReHC6crDaq02oVhV1dHrOftLmn1AaSVtApG/H6/Nn1J8mYG1pJJWx9/3Pav7oMHA60XP/tZ+HEKQXffHVjILti1U1wc6OrJzg5fPsjulobW+vePb7l4s9rF0q9f6OMYVn0GALulVTBijJE/Q7r+X754bG91ki8rK9AqEokxge6bSF0zDkega6a1cNlbI2FQpTUdjdkJdsXU1EgbN0pLlgT+bRkoAkCKSKupvRkZGZJfuvmtFM6+evrp0mefxXZsU1Nga4/fH/m5SFNGq6qkTz+1VoeuMqjy0KH4los3pzPQBVZS0v4Kx5mZTN8FkPLSqmVEknqclCZ9YHctOuErX5F6d7DssMsVWAE4UVq3blht7ejbNzmDKq0kMXv3XWuvZWfwFOwCy88P3U9XDIBuJq1aRpr8TSp9M8UjsFdf7bjMk09Kt96auDr07x+4ydfWBv7/4YfWjvv3f4/cnROvBd+sJDHz+aQnnuj4tcIlg0u24uJANxiL4QHoxtIqGJGkcyz2JqSsXr2kZ56JfVpoR/r2lWbPjj6RWd++0qWXBlorWt9Q45UFNZgkrPWYl2ASs2BrQlWVtfrfeGPXuOmnwgrHrB4MoBPSLhh5v4/dNUiwf/5T+uMfE/f67a3iq8Cg4IjjcSZPPvX/YLAhWQsgOtJREjOHIzC1ePp0691K555rrVw82HEzT2ZrFAC0I6V7LGLx+Jg0nEWTRK0DkaacL8a3tA5igsHGTTfFJwtqNEnMrI4DSdZ4kWBel0mTwud96crn7Oop9QGkhLQLRn68PYVn0qSgHg1Hwwd/xgS29lpaoslNEk0SM6vTZpMxXsSOm3m8zhnPlPrBQcfPPhuYJfTss11zBWXEV1dfMRtJk3bdNMPa72VAnMWlo6F1oBGueyGa1g6r02aT0U1itWspXnWJ5zmjaY1qb8xLuG6eIKvdPYxZST1076GFtGsZyffaXQNErWWgEal74aOPAl9kHfnoo8CNKzc38EVoZwZTO9bHiec516yxds72Wq0itdIEBTMDB1trwv0lbUc3FzqH7j20knYtI4OO2l0DWOZwBHJs+HyBm8+770p33dX2r/qDB6WZMwPTmRcsaP81f/xj6ZZbAkFJUL9+0g9+EGgNSOZf1PG4mXekdYuB1VlQGza038qwfHmg9ciKSK1WVlcmNibQWuP3Sz/9aegNrG/f8F19wZvasmWBz5cWk8SIpUXKjhZBdH0mBTQ0NBhJpqGhoVOvk/GfMkedzaMV2FJh693belmXq3PnWr687Q/NyZPGbNxozJIlgX9PnuzUz2CzZcus12vjxtjOsXKlMW536Gv16xf9++J2B14raPlyY5zOjo9zOIzxeCK/Zxs3Jv7np3U9W18LYhfu58vK+2v1c4/15x7RSdR33Bes3r8Vy4s//PDDZsiQISYrK8uMGzfO/OUvf2m3/LJly8yIESNMVlaWueCCC8yf//znqM4Xr2Bk4mybbqhsqbE5nYEgISjWL9uOWL2ZS+3fzNuzcmUgGIjH++JwBLaVKwNbNMe2914tWZL8z7jltSB2kX6+rLy/Vj/3JUuSdz3pKlHfcS0kLBhZunSpyczMNE899ZTZtWuXufHGG82ZZ55p6uvrw5Z/7bXXjNPpNL/5zW/M7t27zZ133ml69uxpdu7cafmc8QpGvlfcBW54bF1/C950Y/2ybU88b+aRnDzZ9gsm3BZNsOJwBF7TyutarX8yWkYiXUusQR46/vmKV4sYLSOJlajvuFYSFoyMGzfOzJkzp/mxz+czgwYNMuXl5WHLz5w500ybNi1k3yWXXGJ+/OMfWz5nvIKRWyd3gRsdW9ffOrrpxnozsxokBLeysth+0K1+2Z91VuLfy/bep+D7Ea8WnGg3bnax6Www0dHnTrCYeJ0NKKNg9f4d1Wya48ePa9u2bZrcIpNmRkaGJk+erK1bt4Y9ZuvWrSHlJWnKlCkRy0tSU1OTvF5vyBYPF9XH5WXQ3R08mJhZLh3NZGlt+vToXj/I6oDXhx6SNm6UliyR7rwztnN1pL33KTjF2i6dGRiczqLJ6RNOy8+9da6fZE6tT2d2zOTrQFTByEcffSSfz6cBAwaE7B8wYIDq6urCHlNXVxdVeUkqLy9XTk5O8+bxeKKpZkRnHI/LywAB0d7MoinfmaRrVnOu5OcH8n9ce6102WWxncuK9q47uDJxpGnZHk9gRkx7SepiZeeKzKksHhmMWZHaXp0NKBOgS07tnTdvnm5tseqs1+uNS0Dy6hDpO3s7/TJpz3zxb9pnso32ZhZN+c78ZRjMMFtTE/gLpzWHo+2KxFaOyc8PrH3Uclq0FR1dd8uViWtqpMOHpbPOCpwvOFXU6YycpM6YtlN8nc7I2TzDXT+si+XnKxxWpLZPV1sSQ1EGI/369ZPT6VR9fWh/R319vQYOHBj2mIEDB0ZVXpKysrKUlZUVTdUseXic9OBLgeagtL+RxoFfXTBrXm6udPrpkb8oOxK86Uqd/7JtraMvcSnwRfzcc537yzCWDLNWjqmoCNzgZ860Vo9o3qeOViYO/iUdLmPnwoVtb2qHD0vXXBMoY+X6YV08MxinworU3VG8Asp4inYwyrhx48zcuXObH/t8PpOfn9/uANZvf/vbIfsKCgpsGcBqjDH3TZDxK7DZMmiuC27RvBf1p8t852qZq2bKVLtsqG9HeUdazoSJdmBk6yms4V4jHrNp2qtbuFwnsQo3bc/jab/uVo65/fbo3st4iiYnQizXD+t4f1Nbor7jWkno1N6srCyzePFis3v3bnPTTTeZM88809TV1RljjLnuuuvMHXfc0Vz+tddeMz169DAPPvig2bNnj5k/f75tU3uD7psgc7ILBAHJ2joMNvr2Ne/MvcbM/V4fUzpF5vszZEqnyMz9Xh+z+an5xrz8sjFLlpiTG142L/99nblzw53mzg13mpf/vs6c3PByYNZH62RaZ5556oaxZEngNb54HbNxYyCfR+svstxcY+6+O/xzffsGnjt50trc+HBlWuf2yMho/4s0UV+2yfwSjyWhkZVjli9vfzZOV7kpJTihU9rj/U1tSfgusnr/dhhjTLStKQ8//LAeeOAB1dXVafTo0fqv//ovXXLJJZKkoqIiDR06VIsXL24uv3z5ct1555364IMPdO655+o3v/mNvvWtb1k+n9frVU5OjhoaGuRyuaKtblg9f+nQT1+Vfva61OeLga1Gga4Hv0PymcAibz0V6NIxkoI90M4W+z7PkI73OUPZR09ITcebuy18GVL1wNN0pve4XJ/55PSfOnfw2JOu3urZ7yxl/LNJysyUGhvldzr1+Wk95O3n0mlyKrt3Xx3wHlTPjz5VZs8s5Y65VM6mJunzz6XPPgukyK6vl04/Xf6LRulvl4+Sf8d2DV/7pk5XpjImTZLuv19atEj+d9/VP/oYVbuz9aVdH2pwzmBlTPpGoJnU6ZTP71NVdZVqG2uVl52nwsGFcmZYbMqONS10pGM6ej0r52tdZsIE6fXXIz+28hrx6tPuDgu7tbyG/v0D+w4dSt3rAdJRgr+LrN6/YwpGki0RwQgAAEgsq/fvLjf+EAAApBeCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYCuCEQAAYKuoVu21SzBJrNfrtbkmAADAquB9u6Nk7ykRjDQ2NkqSPB6PzTUBAADRamxsVE5OTsTnU2JtGr/frw8//FDZ2dlyOBxxe12v1yuPx6MDBw502zVvuMbugWtMfd39+iSusbuI5zUaY9TY2KhBgwYpIyPyyJCUaBnJyMiQ2+1O2Ou7XK5u+0MVxDV2D1xj6uvu1ydxjd1FvK6xvRaRIAawAgAAWxGMAAAAW6V1MJKVlaX58+crKyvL7qokDNfYPXCNqa+7X5/ENXYXdlxjSgxgBQAA3Vdat4wAAAD7EYwAAABbEYwAAABbEYwAAABbdftg5JFHHtHQoUPVq1cvXXLJJfrrX//abvnly5fry1/+snr16qULL7xQL7zwQpJqGrtornHx4sVyOBwhW69evZJY2+hs2bJFV155pQYNGiSHw6HVq1d3eMymTZv0la98RVlZWRo2bJgWL16c8Hp2RrTXuGnTpjafocPhUF1dXXIqHIPy8nJdfPHFys7OVv/+/TVjxgzt3bu3w+NS5fcxlutLtd/FRx99VKNGjWpOhFVQUKAXX3yx3WNS5fMLivYaU+0zDOe+++6Tw+FQWVlZu+US/Vl262DkD3/4g2699VbNnz9fb7/9ti666CJNmTJFhw4dClv+9ddf17XXXqvrr79e27dv14wZMzRjxgy98847Sa65ddFeoxTIqldbW9u87d+/P4k1js6xY8d00UUX6ZFHHrFUft++fZo2bZomTZqkHTt2qKysTDfccIPWrVuX4JrGLtprDNq7d2/I59i/f/8E1bDzNm/erDlz5uiNN97Q+vXrdeLECX3zm9/UsWPHIh6TSr+PsVyflFq/i263W/fdd5+2bdumt956S9/4xjc0ffp07dq1K2z5VPr8gqK9Rim1PsPW3nzzTT3++OMaNWpUu+WS8lmabmzcuHFmzpw5zY99Pp8ZNGiQKS8vD1t+5syZZtq0aSH7LrnkEvPjH/84ofXsjGivcdGiRSYnJydJtYsvSWbVqlXtlvnZz35mzj///JB911xzjZkyZUoCaxY/Vq5x48aNRpL59NNPk1KnRDh06JCRZDZv3hyxTCr+PgZZub5U/l0M6tOnj3nyySfDPpfKn19L7V1jKn+GjY2N5txzzzXr1683EydONKWlpRHLJuOz7LYtI8ePH9e2bds0efLk5n0ZGRmaPHmytm7dGvaYrVu3hpSXpClTpkQsb7dYrlGSjh49qiFDhsjj8XQY9aeaVPsMO2P06NHKy8vT5Zdfrtdee83u6kSloaFBkpSbmxuxTCp/llauT0rd30Wfz6elS5fq2LFjKigoCFsmlT8/ydo1Sqn7Gc6ZM0fTpk1r8xmFk4zPstsGIx999JF8Pp8GDBgQsn/AgAER+9br6uqiKm+3WK5xxIgReuqpp7RmzRo988wz8vv9mjBhgg4ePJiMKidcpM/Q6/Xq888/t6lW8ZWXl6fHHntMK1eu1MqVK+XxeFRUVKS3337b7qpZ4vf7VVZWpksvvVQXXHBBxHKp9vsYZPX6UvF3cefOnerdu7eysrJ08803a9WqVTrvvPPClk3Vzy+aa0zFz1CSli5dqrffflvl5eWWyifjs0yJVXsRPwUFBSFR/oQJEzRy5Eg9/vjj+tWvfmVjzWDViBEjNGLEiObHEyZM0Pvvv6+HHnpIv//9722smTVz5szRO++8o1dffdXuqiSE1etLxd/FESNGaMeOHWpoaNCKFSs0e/Zsbd68OeLNOhVFc42p+BkeOHBApaWlWr9+fZcabNttg5F+/frJ6XSqvr4+ZH99fb0GDhwY9piBAwdGVd5usVxjaz179tSYMWP03nvvJaKKSRfpM3S5XDrttNNsqlXijRs3LiVu7nPnztXzzz+vLVu2yO12t1s21X4fpeiur7VU+F3MzMzUsGHDJEljx47Vm2++qYqKCj3++ONtyqbi5ydFd42tpcJnuG3bNh06dEhf+cpXmvf5fD5t2bJFDz/8sJqamuR0OkOOScZn2W27aTIzMzV27Fht2LCheZ/f79eGDRsi9v8VFBSElJek9evXt9tfaKdYrrE1n8+nnTt3Ki8vL1HVTKpU+wzjZceOHV36MzTGaO7cuVq1apVeeeUVnX322R0ek0qfZSzX11oq/i76/X41NTWFfS6VPr/2tHeNraXCZ3jZZZdp586d2rFjR/P21a9+Vd///ve1Y8eONoGIlKTPMm5DYbugpUuXmqysLLN48WKze/duc9NNN5kzzzzT1NXVGWOMue6668wdd9zRXP61114zPXr0MA8++KDZs2ePmT9/vunZs6fZuXOnXZfQoWiv8e677zbr1q0z77//vtm2bZv57ne/a3r16mV27dpl1yW0q7Gx0Wzfvt1s377dSDK//e1vzfbt283+/fuNMcbccccd5rrrrmsu/49//MOcfvrp5vbbbzd79uwxjzzyiHE6nWbt2rV2XUKHor3Ghx56yKxevdq8++67ZufOnaa0tNRkZGSYl19+2a5L6NAtt9xicnJyzKZNm0xtbW3z9tlnnzWXSeXfx1iuL9V+F++44w6zefNms2/fPvO3v/3N3HHHHcbhcJiXXnrJGJPan19QtNeYap9hJK1n09jxWXbrYMQYY373u9+ZwYMHm8zMTDNu3DjzxhtvND83ceJEM3v27JDyy5YtM8OHDzeZmZnm/PPPN3/+85+TXOPoRXONZWVlzWUHDBhgvvWtb5m3337bhlpbE5zG2noLXtPs2bPNxIkT2xwzevRok5mZab70pS+ZRYsWJb3e0Yj2Gu+//35zzjnnmF69epnc3FxTVFRkXnnlFXsqb1G465MU8tmk8u9jLNeXar+LP/rRj8yQIUNMZmamOeuss8xll13WfJM2JrU/v6BorzHVPsNIWgcjdnyWDmOMiV87CwAAQHS67ZgRAACQGghGAACArQhGAACArQhGAACArQhGAACArQhGAACArQhGAACArQhGAACArQhGAABIU1u2bNGVV16pQYMGyeFwaPXq1VG/hjFGDz74oIYPH66srCzl5+fr3nvvjeo1uu2qvQAAoH3Hjh3TRRddpB/96EcqLi6O6TVKS0v10ksv6cEHH9SFF16oTz75RJ988klUr0E6eAAAIIfDoVWrVmnGjBnN+5qamvSLX/xCzz33nI4cOaILLrhA999/v4qKiiRJe/bs0ahRo/TOO+9oxIgRMZ+bbhoAABDW3LlztXXrVi1dulR/+9vfdPXVV2vq1Kl69913JUl/+tOf9KUvfUnPP/+8zj77bA0dOlQ33HBD1C0jBCMAAKCN6upqLVq0SMuXL1dhYaHOOecc3Xbbbfra176mRYsWSZL+8Y9/aP/+/Vq+fLmefvppLV68WNu2bVNJSUlU52LMCAAAaGPnzp3y+XwaPnx4yP6mpib17dtXkuT3+9XU1KSnn366udz//u//auzYsdq7d6/lrhuCEQAA0MbRo0fldDq1bds2OZ3OkOd69+4tScrLy1OPHj1CApaRI0dKCrSsEIwAAICYjRkzRj6fT4cOHVJhYWHYMpdeeqlOnjyp999/X+ecc44k6e9//7skaciQIZbPxWwaAADS1NGjR/Xee+9JCgQfv/3tbzVp0iTl5uZq8ODB+sEPfqDXXntNCxYs0JgxY3T48GFt2LBBo0aN0rRp0+T3+3XxxRerd+/eWrhwofx+v+bMmSOXy6WXXnrJcj0IRgAASFObNm3SpEmT2uyfPXu2Fi9erBMnTujXv/61nn76adXU1Khfv34aP3687r77bl144YWSpA8//FA/+clP9NJLL+mMM87QFVdcoQULFig3N9dyPQhGAACArZjaCwAAbEUwAgAAbEUwAgAAbEUwAgAAbEUwAgAAbEUwAgAAbEUwAgAAbEUwAgAAbEUwAgAAbEUwAgAAbEUwAgAAbPX/A4RTsyCy38NTAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.add_subplot(1,1,1)\n",
"ax.scatter(nf['oldbalanceOrg'],f['oldbalanceOrg'],c='g')\n",
"ax.scatter(nf['amount'],f['amount'],c='r')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vbyEb9E6jn4J"
},
"source": [
"Relationship between fraud amount and non fraud amounts. Shows how largely, the pattern is non linear and invisible. Therefore more doccumentation is necessary to establish more patterns and help with analysis"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "T2jltndPriDb"
},
"source": [
"Lest us try some hyperparameter tuning"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2Vsh8pV6jou-"
},
"outputs": [],
"source": [
"clf1 = RandomForestClassifier(n_estimators=7)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "R25uEvCCsCl3"
},
"outputs": [],
"source": [
"probabilities = clf1.fit(train_X, train_y.values.ravel()).predict(test_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-q4VTnLnsGpk",
"outputId": "4cf77d99-b166-4fe7-cbe2-b925a2b76b6e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.7205768043616442\n",
"0.8802368059448755\n",
"0.9991824314812608\n"
]
}
],
"source": [
" print(average_precision_score(test_y,probabilities))\n",
" print(recall_score(test_y,probabilities, average='macro'))\n",
" print(accuracy_score(test_y,probabilities))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "UNJVHckdviLT"
},
"outputs": [],
"source": [
"clf1 = RandomForestClassifier(n_estimators=7,max_depth=3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 74
},
"id": "mSSK3RCSwIpj",
"outputId": "d6937439-11e3-473d-fd0e-9544fc435061"
},
"outputs": [
{
"data": {
"text/html": [
"<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomForestClassifier(max_depth=3, n_estimators=7)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestClassifier</label><div class=\"sk-toggleable__content\"><pre>RandomForestClassifier(max_depth=3, n_estimators=7)</pre></div></div></div></div></div>"
],
"text/plain": [
"RandomForestClassifier(max_depth=3, n_estimators=7)"
]
},
"execution_count": 154,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"clf1.fit(train_X, train_y.values.ravel())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_9xT3by0yUEH"
},
"outputs": [],
"source": [
"prob=clf1.predict(test_X)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "VTyarFsEygMY",
"outputId": "93e6fe18-473a-41e9-edfe-47a2bec4211d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.5614608394916616\n",
"0.7873847634686285\n",
"0.9987258203659386\n"
]
}
],
"source": [
" print(average_precision_score(test_y,prob))\n",
" print(recall_score(test_y,prob, average='macro'))\n",
" print(accuracy_score(test_y,prob))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Sz6OuoL7y3ss"
},
"source": [
"Maximum depth has brought the precision down"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3ubUZ4o4y06f"
},
"outputs": [],
"source": [
"estimator = clf1.estimators_[5]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 606
},
"id": "4Ua-oj-Py2j3",
"outputId": "f87c2199-7982-42ce-86c9-426486b3386e"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAHXYAAAwkCAYAAAD+Iy1VAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeXzdZZ0v8O/J1jRJ932hCy1dQcBSGLiDCiIFKpZhsUULimAZQQcG8NJL8SIDeKlUOiiIAiOyCdxSBC6LVig7SJEd2tIduqdr0jRJs537B9e5OEJzUnLOSXPe79eLv/J9nudzaPPkR16c80kkk8lkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkjjl52U4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJBpil0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJyj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDmKXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnKPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIOYpdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICco9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMg5il0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJyj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDmKXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnKPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIOYpdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICco9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMg5il0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJyj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDmKXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnKPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIOYpdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICco9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMg5il0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJyj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDmKXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnKPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIOYpdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICco9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMg5il0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJyj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDmKXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAnFOQ7QAAAAAAAAAAAAAAAAAAQPMaGxtj1apVsXLlytiwYUOUl5fHunXrory8PLZt2xa1tbVRX18fVVVVkUwmY/v27dmODAAAAEAadO3aNRKJRJSVlUVhYWEUFxdHt27donfv3tG/f//o3bt39O3bN4YOHRpDhgyJ/Pz8bEcGAAAAAAAAAAAAgDZLsSsAAAAAAAAAAAAAAAAAtDErV66MBQsWxBtvvBFLliyJ999/P5YtWxZ1dXXZjgYAAADAXqSoqCiGDx8eI0eOjBEjRsTnP//5GD9+fAwdOjTb0QAAAAAAAAAAAACgTUgkk8lktkMAAAAAAAAAAAAAAAAAQK6qr6+PP//5zzF//vxYsGBBvPrqq7Fp06ZsxwIAAACgHevVq1eMHz8+Dj300DjqqKPi8MMPj8LCwmzHAgAAAAAAAAAAAIBMm6PYFQAAAAAAAAAAAAAAAAAy7L333ot58+bFk08+Gc8991xUVVVlOxIAAAAAOay0tDS++MUvxjHHHBPHHntsjB07NtuRAAAAAAAAAAAAACATFLsCAAAAAAAAAAAAAAAAQCa89tprMXfu3Jg7d24sWbIk23EAAAAA4FONGDEiTjnllDjllFNi3Lhx2Y4DAAAAAAAAAAAAAOmi2BUAAAAAAAAAAAAAAAAA0mXx4sXx29/+Nu6///5YtWpVtuMAAAAAQIsNGTIkpkyZEt/+9rdj5MiR2Y4DAAAAAAAAAAAAAK1JsSsAAAAAAAAAAAAAAAAAtKbKysp46KGH4q677oqnnnoqvI0PAAAAgPZi3LhxMW3atDj99NOjU6dO2Y4DAAAAAAAAAAAAAJ+VYlcAAAAAAAAAAAAAAAAAaA2LFi2KG264Ie66666orq7OdhwAAAAASJvS0tI444wz4oILLohRo0ZlOw4AAAAAAAAAAAAA7CnFrgAAAAAAAAAAAAAAAACwp5LJZMybNy9mz54d8+bNi0y9ZS+RiOhZWhg9Sgqjd6ei6FVWGB0L8yI/LxFlRfkZyQAAAABAdlXVNUZjUzJq6ptiU1V9lO+oiy3V9bF5Z31k6pOlEolETJgwIS688MI49thjI5FIZOZgAAAAAAAAAAAAAGgdil0BAAAAAAAAAAAAAAAAoKWampri/vvvj2uuuSbee++9tJ1T1iE/DuhXFvv16hjDen70z749imNglw6Rn6ckAwAAAIC/19iUjDUVu2LFltpYtqkmVmypiaWbquPtdTtjZ11j2s4dO3ZszJgxIyZPnhx5eXlpOwcAAAAAAAAAAAAAWpFiVwAAAAAAAAAAAAAAAABIVWNjY9x3331x9dVXx+LFi1t9/2E9O8YRQ7vEwQPK4qABZTG8Z0cFrgAAAAC0isamZCzdXBNvrqmKN9buiJdXVcbyzTWtfs7o0aNjxowZMWXKlMjPz2/1/QEAAAAAAAAAAACgFSl2BQAAAAAAAAAAAAAAAIDmJJPJmDNnTvzoRz+KJUuWtNq+PUoL40vDu8Y/Du0SRw7rGv06F7Xa3gAAAADQnHUVu+L5FRXxwoqKeGbZ9thaXd9qe48cOTKuuuqqOPXUUyORSLTavgAAAAAAAAAAAADQihS7AgAAAAAAAAAAAAAAAMDuLFiwIC6++OJ44YUXWmW/7iWFcfR+XeOrY3vEUcO7RUG+UgsAAAAAsq+xKRmvrdkRj763JR5buCU2VNa1yr7jx4+PWbNmxRe+8IVW2Q8AAAAAAAAAAAAAWpFiVwAAAAAAAAAAAAAAAAD4JMuWLYvp06fH3LlzP/NepUX5ceL+PeLrB/WO8YM6R54uVwAAAADasKZkxKsfVsb9b5THo+9tiZ11jZ9pv0QiEaecckpce+21MWzYsFZKCQAAAAAAAAAAAACfmWJXAAAAAAAAAAAAAAAAAPi42trauPbaa2PmzJlRW1v7mfY6bHDnmHJw75g4tkeUFuW3UkIAAAAAyJyddY3x6Htb4r7Xy2PBh5Wfaa/i4uKYPn16XHrppVFcXNxKCQEAAAAAAAAAAABgjyl2BQAAAAAAAAAAAAAAAIC/evrpp+O8886LxYsX7/EehfmJmDCqe/zzEf3j4IGdWjEdAAAAAGTXwg07445XN8QDb22K2vqmPd5n2LBhceONN8Zxxx3XiukAAAAAAAAAAAAAoMUUuwIAAAAAAAAAAAAAAABAeXl5XHDBBXHfffft8R7dSwrj24f2jTPH941eZYWtmA4AAAAA2pZNVfVx56sb4rcLNsTW6vo93uf000+PG264IXr16tWK6QAAAAAAAAAAAAAgZYpdAQAAAAAAAAAAAAAAAMhtjz32WHz3u9+N9evX79H6vxa6Tju8f3Qqzm/ldAAAAADQdlXXNcbvXi+Pm55fE+VVe1bw2rt377j55pvj5JNPbuV0AAAAAAAAAAAAANAsxa4AAAAAAAAAAAAAAAAA5KZt27bFD37wg7jnnnv2aH2P0sI4778NiDPH94mSIoWuAAAAAOSu6rrGuOPVDXHzi+tiy849K3idOnVq/PznP49u3bq1cjoAAAAAAAAAAAAA+FSKXQEAAAAAAAAAAAAAAADIPU899VSceeaZsW7duhavLS7Mi+/+Q/84/8gB0amDQlcAAAAA+KsdtY1x4wtr4rY/r4/a+qYWr+/fv3/ccccdccwxx6QhHQAAAAAAAAAAAAD8HcWuAAAAAAAAAAAAAAAAAOSOxsbGuOqqq+Lqq6+OxsbGFq1NJCImjukRM74yOAZ1K05TQgAAAADY+62vrIt/f3Z13Pt6eTQ2texjrhKJRPzgBz+IWbNmRWFhYZoSAgAAAAAAAAAAAEBEKHYFAAAAAAAAAAAAAAAAIFesXr06vvGNb8QLL7zQ4rX79yuNmScOi4MGlKUhGQAAAAC0T2+s2RHTH10R767f2eK1Rx55ZPzud7+LgQMHpiEZAAAAAAAAAAAAAESEYlcAAAAAAAAAAAAAAAAAcsETTzwRZ5xxRmzZsqVF6zp1yI9Ljh4UZx3aN/LzEmlKBwAAAADtV2NTMm5fsCFmzf8wduxqbNHanj17xt133x0TJkxIUzoAAAAAAAAAAAAAcpxiVwAAAAAAAAAAAAAAAADar2QyGdddd11cdtll0djYstKIE0b3iKsnDo0+nYrSlA4AAAAAcsfGHXUx47EV8cSirS1al5+fH9dee21ccsklaUoGAAAAAAAAAAAAQA5T7AoAAAAAAAAAAAAAAABA+1RbWxvnnntu3HnnnS1a17m4IGZ8ZXBMPaRPmpIBAAAAQO569L0tMf3R5bGtuqFF66ZMmRL/8R//ESUlJWlKBgAAAAAAAAAAAEAOUuwKAAAAAAAAAAAAAAAAQPuzZs2amDRpUrz++ustWnf0ft1i1qRh0adTUZqSAQAAAAAbd9TFJQ8vj/lLt7Vo3bhx4+Lhhx+OAQMGpCkZAAAAAAAAAAAAADlGsSsAAAAAAAAAAAAAAAAA7cvbb78dJ5xwQqxduzblNcWFefHjCUPijPF905gMAAAAAPi4u17dEFf8YVXsamhKec3AgQPj8ccfjwMOOCCNyQAAAAAAAAAAAADIEYpdAQAAAAAAAAAAAAAAAGg/5s+fHyeffHJUVFSkvGZYz47xq9NGxJi+pWlMBgAAAAB8kiWbquN7/3tJLC6vTnlNWVlZzJkzJ4477rg0JgMAAAAAAAAAAAAgB8zJy3YCAAAAAAAAAAAAAAAAAGgNc+bMiYkTJ7ao1PXUA3vFE+d+TqkrAAAAAGTJiF4l8di0z8XUQ/qkvKaqqiomTZoUd999dxqTAQAAAAAAAAAAAJALFLsCAAAAAAAAAAAAAAAAsNe74YYbYvLkyVFbW5vSfGF+ImaeOCxuOHm/KC3KT3M6AAAAAGB3igvzYuaJw+Lar+4bhfmJlNbU1dXFmWeeGT//+c/TnA4AAAAAAAAAAACA9kyxKwAAAAAAAAAAAAAAAAB7tZkzZ8aFF14YyWQypfnuJYVx75ljYuohfdKcDAAAAABoiTPG9405394/epcVpjSfTCbjggsuiCuvvDLNyQAAAAAAAAAAAABorxLJVN+pDgAAAAAAAAAAAAAAAABtzMyZM2P69Okpz4/tWxq/OX1UDOzaIY2pAAAAAIDPYkNlXZx93+J4c21VymsuvfTSuPbaa9OYCgAAAAAAAAAAAIB2aE5ethMAAAAAAAAAAAAAAAAAwJ645JJLWlTqOmFU93j4nAOUugIAAABAG9e3c1E8cNb+MWFU95TXzJw5M374wx+mMRUAAAAAAAAAAAAA7ZFiVwAAAAAAAAAAAAAAAAD2OjNmzIif/exnKc9/Y1yfuGXyyOhY6G11AAAAALA36FiYF7dOHhlnHdYv5TWzZs2Kiy++OI2pAAAAAAAAAAAAAGhvvAMdAAAAAAAAAAAAAAAAgL3KVVddFT/5yU9Smk0kIi760j5x3deGRUFeIs3JAAAAAIDWlJ+XiKtPGBpXHj80Uv313vXXXx/XXHNNeoMBAAAAAAAAAAAA0G4kkslkMtshAAAAAAAAAAAAAAAAACAV119/fVx88cUpzRbkJeJnJw2PUw/sleZUAAAAAEC6PfDWprjooWXR2JTax2Zdf/318a//+q9pTgUAAAAAAAAAAADAXm6OYlcAAAAAAAAAAAAAAAAA9gq33XZbTJs2LVJ5W1xhfiJuOnVETBzTIwPJAAAAAIBMeGzhljj/gSVR39j87wgTiUTceuutcfbZZ2cgGQAAAAAAAAAAAAB7KcWuAAAAAAAAAAAAAAAAALR9jz/+eEyaNCkaGhqanS0qyIubTxsRx43qnoFkAAAAAEAmzV+6Lb57//tRW9/U7Gx+fn7MnTs3Jk2alIFkAAAAAAAAAAAAAOyFFLsCAAAAAAAAAAAAAAAA0Lb95S9/iaOOOiqqqqqanS0uzIvffmN0HLlvlwwkAwAAAACy4fkVFfHt3y1Kqdy1rKwsnnnmmRg3blwGkgEAAAAAAAAAAACwl5mTl+0EAAAAAAAAAAAAAAAAAPBpVq5cGSeeeGJKpa6F+Ym45esjlboCAAAAQDt35L5d4jenj4qiguY/RquqqiqOP/74WLp0aQaSAQAAAAAAAAAAALC3UewKAAAAAAAAAAAAAAAAQJtUUVEREydOjA0bNjQ7W5CXiJtPGxlfHtEtA8kAAAAAgGz74rCucdOp+0VBXqLZ2U2bNsWkSZOioqIiA8kAAAAAAAAAAAAA2JsodgUAAAAAAAAAAAAAAACgzWlqaoqpU6fGokWLmp3NS0TM/qfhcfzo7hlIBgAAAAC0FSeM7hG/PG1E5KdQ7rpo0aKYPHlyNDY2ZiAZAAAAAAAAAAAAAHsLxa4AAAAAAAAAAAAAAAAAtDmXX355PProoynNXnn80Dj5c73SnAgAAAAAaIsmjukR10zcN6XZP/7xj3HFFVekOREAAAAAAAAAAAAAe5NEMplMZjsEAAAAAAAAAAAAAAAAAPzVgw8+GKeeemqk8va38/9xQFz2lcEZSAUAAAAAtGVXzVsVv3pxXbNziUQi7r333pg8eXIGUgEAAAAAAAAAAADQxs1R7AoAAAAAAAAAAAAAAABAm7Fw4cI49NBDY+fOnc3OnnRAz7jxlBGRSGQgGAAAAADQpjUlI85/YEk88u7mZmfLyspiwYIFMXr06AwkAwAAAAAAAAAAAKANm5OX7QQAAAAAAAAAAAAAAAAAEBFRU1MTkydPTqnU9fAhnWP2ScOVugIAAAAAERGRl4i44Z+Gx2GDOzc7W1VVFZMnT46ampoMJAMAAAAAAAAAAACgLUskk8lktkMAAAAAAAAAAAAAAAAAwLRp0+LWW29tdm5g1w7x+LTPRY/SwgykAiIivjdnSTzy7ua07D31kD4x88Rhadm7LdtaXR8HzHw1bfs/df5BMap3Sdr2BwAAgLZqW3VDnHDL2/HhttpmZ88999z41a9+lYFUAAAAAAAAAAAAALRRc/KynQAAAAAAAAAAAAAAAAAA5syZk1Kpa3FhXtw6eaRSVwAAAADgE3UrKYjbpoyMjoXNf8TWr3/967jnnnsykAoAAAAAAAAAAACAtkqxKwAAAAAAAAAAAAAAAABZ9cEHH8Q555zT7FwiETH7pOHxuf5lGUgFAAAAAOytxvYtjVmThkci0fzseeedF6tWrUp7JgAAAAAAAAAAAADapoJsBwAAAAAAAAAAAAAAAAAgdyWTyTjrrLOisrKy2dlzj+gfX9u/ZwZSAQCkT3lVfby9rireXlcVyzfXxPrKuthQWRc7djVGbUNT1NY3Rn5eIooL8qJjYV70KC2MPp2Kon+XDjGiV0mM7lMSBw4oi04d8rP9UgD+U11DUyzcWB3vrt8ZCzfujLXbd8X6yrrYtLM+auuborahKRoam6JDQV50KMiLkqL86F320f02oEuHGNWnJMb2LY0xfUqiqCAv2y+Hvcy26oZ4aVVFLN5YHe+XV8eKLTVRWdsYO3Y1RnVdYxTmJ6JTh/wo61AQnYvzY0j34hjVpyRG9S6J/fuVRb/ORdl+CS3iWQJSd9IBPePNtVVx68vrdjtXWVkZZ599djz55JORSKUJFgAAAAAAAAAAAIB2RbErAAAAAAAAAAAAAAAAAFnzi1/8Ip5++ulm5w4aUBbTvzw4A4mA9i6ZjLjl5XVx7VMfRl1D025nxw/qFA+dfUCGkgHt2aKN1fHIu5vjT+9vjUUbq5udb2pMRn3jR4V05VX1f7cmPy8Rn+tfFl8a3jVOOqBnDO/ZMV3R/8YTi7bGOfctzshZrel/HDM4vn/kgBavG3DFS2lIk13zvndgjO1butuZXH3dbUFDUzK+dus78da6qpTmb5k8MiaO6ZHmVJ9ue01D/J93N8eflmyLl1ZWRE397p+tIiJq6puipr4pttc0xLqKXX/39Y6FeXH4kC7x5RHd4sSxPaJHaWE6on+iXLvj9nZbdtbH/W+Ux7z3t8bra6qisSn5qbMNTcmoqW+K8qr6iIh4c21VxDv//+vDe3aM40Z3j9MO6p2xn6kt1V6eJSAbLv/K4Hh9zY54bfWO3c7Nnz8/brrppvj+97+foWQAAAAAAAAAAAAAtBWKXQEAAAAAAAAAAAAAAADIihUrVsSMGTOanetcXBA3nzYiCvMTGUgFtGfrKnbFvzy4LF5eVZHtKEAOaEpGPPLu5vjNK+ubLZFqqcamZLyxZke8sWZHzH5mdRzYvyymHdE/ThzbI/Lz0vfMVFnbkLa9gYhfPLcm5VLXbHprXVXc8tK6eHzR1qhraL7MtSVq6pti/tJtMX/ptrjiDytjwsjucfY/9IvDBndu1XM+iTtu77B0U03c/OLa+P07m1vt79+yzTVx4/Nr48bn18YXh3WNC780MA4dlP6/c81pj88SkA0F+Ym4+bQRcezNb8X2mt3f9ZdeemlMmDAh9ttvvwylAwAAAAAAAAAAAKAtUOwKAAAAAAAAAAAAAAAAQMY1NTXFmWeeGVVVzZcW/eykYTGoW3EGUgHt2YNvb4rLHlsRO2obsx0FyAF/WLw1Zj75YSzZVJ2R895aVxXnP7AkrptfHFcePzSOGdEtLecoPYT0eXf9zvj359ZkO8ZuvV9eHVfP+yDmL92WkfMaGpPx2MIt8djCLXHE0C4x4yuD46ABZWk7zx3XtlXtaoxZT6+O219ZHw1NybSd8+zy7fHs8u3xtf17xr8dPzR6lRWm7azdaa/PEpAtA7p0iJ9+bVhMu//93c5VV1fHd77znXj22WcjLy8vQ+kAAAAAAAAAAAAAyDbFrgAAAAAAAAAAAAAAAABk3G233RYvvvhis3PfHNcnThjdIwOJgNZw9xlj4qjhXbMd429U1DTE9EdXxCPvbs52lL/RvaQw1l55RIvXffXWd+KNNTvSkAhoDRt31MVlj66IPyzempXzV22tjW/dsyhOGN0jfnbSsOhc3LofKVChHBvSoq6hKS54cGk0NKavrPKzaGhMxs+eWR2/fHFt1jK+tLIiTrz17fjWof3ismMGRUlRfquf4Y5ru15aWRHnz10a5TvqMnbmI+9ujpdWVsQvTtkvvjAsc/+N096fJSCbJo7pEd8c1yfueW3jbudeeOGF+M1vfhPnnHNOhpIBAAAAAAAAAAAAkG152Q4AAAAAAAAAAAAAAAAAQG7ZsmVLzJgxo9m5fbp2iP85YUj6AwHt1vMrKuLoX77Z5kpdgfbp5VUVcezNb2WtiO3jHl+0JY771duxeGN1q+5bWdvQqvsBH/np/NWxuLx1v19by8YddXHy7e/Gz59bk/Xi2aZkxO2vrI+v3vpOrNhS0+r7u+PaplteWhdT7lyY0VLXv9q8sz7OuHtR3Pd6eUbOy4VnCci2Hx83JAZ3L2527tJLL43y8sx87wMAAAAAAAAAAACQfYpdAQAAAAAAAAAAAAAAAMioiy66KDZv3n3JYl4iYvY/DY+yDvkZSgW0J7samuLHf1gZp9/5XmyozHwBFJB77nu9PCbfsTA276zPdpT/9MG22jjl9nfj7XVVrbZnhdJDaHWvfrgjfv3S2mzH+ETLN9fECbe8Ha+t3pHtKH/j/fLqmHjLO/Hm2ta73yLccW1NMhkx/dEVceUfV0VjU/ZKhRuaknHJI8tizpvpLXjMlWcJyLaSovyY9bVhkUjsfm7r1q1x6aWXZiYUAAAAAAAAAAAAAFmn2BUAAAAAAAAAAAAAAACAjHn22WfjrrvuanburMP6xeFDumQgEdDevLdhZxz/67fj1pfXRzJ7/U9ADrljwYa45JFlWS2d+zTbaxpiyp0LY9XW2lbZr7KmsVX2AT5SU98UF/5+abTB6yNWbvmo0HFDZV22o3yiytqGmHLne61aOOmOa1t+9MTKuOvVDdmOEREflcxe/PDyeHFlRVr2z6VnCWgLjhjaJb59aL9m5+6444547rnnMpAIAAAAAAAAAAAAgGwryHYAAAAAAAAAAAAAAAAAAHJDU1NTXHjhhZFspmlxYNcOMf3LgzKUCmgvmpIRN7+4Nq6b/2HUN7a9QiSgfXps4ZaY8fiKPSqSLirIi0P26RSHDe4c4wd1in6di6Jbx8Lo1rEgauqbYmtNfWyrboiFG3bGKx9UxsurKmNtxa4Wn1NR0xBn/W5xPDrtgCgtym950I+prG34TOuBv3XVvFVtsiyxsrYhvvW7RbGpqr7Fa8s65MeR+3aJ8YM6x5i+pdG/c1H0KiuM4oK8KMjPi10NTVFd1xibqupj9fbaWLihOl5eVRGvfLgj6hqaWnTWjtrGOOvexfHEuQdG77LCFmf9r9xxbcfMpz6M219Z3+J1/bt0iIljesS4gWUxpm9p9CgtjLIO+VFT1xTbaupj2eaaeHNtVcxbvDXeWb+zRXs3NiXjvDlL4k/fOzB6dypqcbZPk2vPEtBWXHbMoJi3eOtuvyeSyWRceOGF8Ze//CXy8vIymA4AAAAAAAAAAACATFPsCgAAAAAAAAAAAAAAAEBG3HHHHfHmm282O3fVCUOjRFEI0AKrt++KCx5cGq98UJntKEAOWbyxOv7lwaUtLmLr27kozjykb0w9pE/0KP3kIsJO+fnRqTg/BneLOGhAWdzoLy4AACAASURBVHxjXJ+IiHh62fb49Ytr4/kVFS06c8mm6vjpUx/GlccPbVnY/6JC6eFeLZGIKMvB5+y2+rqfW7497nx1Q7ZjfKIfPrI8lm+uadGawd2KY9oR/WPywb2jY+Gnl991LMyLjoV50aO0MEb1KYmvjOweF3xxYFTWNsTctzbFzS+ua1Hx5IbKurjgwaVx75ljWpT3k7jj2oZ572+NXzy/pkVrxu3TKS4+ap/4wr5dI5H4+693Kv7o5+qgbsVx9H7d4qIv7ROLNlbH7GdWx2MLt6R8zuad9XHZYyvitimjWpTv0+TiswS0FSVF+fFvJwyNs+9dvNu5N954I+6666741re+laFkAAAAAAAAAAAAAGSDYlcAAAAAAAAAAAAAAAAA0q6mpiauuOKKZucmjOoex47snoFEQHvxwJub4vLHV8SOXY0prynIT0RDYwvbkwA+pq6hKb4/d0nU1jelvCYvEXHO4f1j+pcHRYeCTy893J2jhneNo4Z3jWeXb49/mbs0Nu+sT3nt7Qs2xNcP7h1j+5bu0dkREZW1qd21S2ccFiVtsEizpdZeeUS2I6Rk9fZdcfRNb0Z13e7/fE7/fJ8Y3L242f1y9XVn0o7axrjooWUtLnPMhCcWbY1H30u96LIgLxGXfnlQnHtE/8jP+4RGzRR1Li6Isw7rF1MP6Rv//uzq+MXza6OxKbV/Qc8t3x5z39oUpxzYa4/Pj8i9O64t+mBbbVzwYOrfG2Ud8uOq44fG1w/u3eKzRvcpiVsmj4yXV1XGeQ8sifIddSmte2LR1pi/dFscvV+3Fp/5cbn6LAFtyXH/7/eQ897futu5GTNmxGmnnRYlJSUZSgYAAAAAAAAAAABApu3Z/6ENAAAAAAAAAAAAAAAAAC0wa9asWL169W5nOhbmxY+PG5KZQMBeb1t1Q0y7//244PdLUy51zc9LxMVH7ROnf75PmtMB7d2vXloXizZWpzzfvaQw5py1f1wxYcgeF7F93BeHdY0/fe/A+PzATimvaWxKxuxndv881pzK2oZmZwryEgoPMyiZjLj4oWXNlpv2LiuMHx07OEOp0m9vf92XP7Ei1lemViKZSY1NybjmT6tSnu9RWhgPnLV/nPePAz5TqevHFeYn4odHD4o7vjm6RfflT+d/GA0pFsF+Gndc9l3y8PKU/hwiIgZ3L455/3zgHpW6ftzhQzrH49M+F6P7pF7YOPOpDz9zMXOuPktAW3P1xKFR2sy9vnbt2pg9e3aGEgEAAAAAAAAAAACQDYpdAQAAAAAAAAAAAAAAAEirzZs3x3XXXdfs3A+OHBiDuhVnIBGwt3tm2fY4+pdvxmMLt6S8ZkCXDvHAWWPjoi/tE/mt0zsG5KhNVfVx0wtrU57v0rEg7vvWmPiHwZ1bNUfvTkVx5zdHx+DuqT8//WHx1li2uWaPzmtKRlQ1U6IZEdGpWOFhJt3z2sZ4cWVFs3NXT9w3OhcXZCBRZuzNr/uPi7fGA29u2u1McWF2Pg7k9+9sjpVbalOaLchPxK2TR8b4QamXQrbEUcO7xrVf3Tfl+TXbd8VDb2/e4/Pccdn34Nub4qUUvq8jIkb0KomHzj6gRT8Dd6df56K4a+qY6FVWmNL8u+t3xtPLtu3xebn6LAFt0YAuHeK8fxzQ7NxPf/rT2LIl9d9BAAAAAAAAAAAAALB3UewKAAAAAAAAAAAAAAAAQFpdf/31sWPHjt3O9O1cFN89vF+GEgF7q9r6prj88ZUx9e6FUb6jLuV1E8f0iCfPOzAOHdS6RUhAbrrtz+uialfz5X8REYX5ibhn6ugY27c0LVm6lRTEnd8cHaVFqRUNJpPRbKHkp9lR2xDJZPNzba1Esz1bW7Errpq3qtm5Y0d2j4ljeqQ/UIbsza97a3V9/PdHlu92Ji8Rceb4vhlK9Lfu+cvGlGcv/8qQOKyVSyb/q68f3DumfL53yvP3vVG+x2e547Jrx67GuOqPq1Ka7VlaGHdOHR29UyxhTVW/zkVx82kjUp6/Y8GGPT4rV58loK365yP6R/8uHXY7U1lZGbNnz85QIgAAAAAAAAAAAAAyTbErAAAAAAAAAAAAAAAAAGmzdevWuPHGG5udm/7lQVGSYokIkLvOf2BJ3P7K+pRKtyIiOhbmxcwTh8Utk0cq4SJrPtxWG9f86YP4yZ8+yHYUWkFtfVPc3YLiw+8fOTAOHtgpjYkihvfsGN85rF/K8w+/u3mPztle25DSXBf3bcb88OHlzRYDduqQH//rq/tmKFFm7M2v+/+yd5/xbZV3G8cvWfLeI16xncSJs/dkBQgbQtmrLZQNLS1lFUoHT0sLndAyy2xJC5RVCDNQRgKEmUVCyLQTx0mceCTeQ7Y1nhf50AINOrdt6Uiyf99XEP11znVs6dYtf2xdN760VXvaewLOnDUtV+Nyk2xK9F87m7q0bHuL0Wx+WpwunG1P+ey1hxfLFeMwmv2oqll1rd19Og9rXHg98vFu1bUFfm5IksMh3XfmaBVnBC5g7KsDh6cbF0IvLm80yvxVg3kvAUSqhNgYXXd4seXc3XffrYaGBhsSAQAAAAAAAAAAAAAAAAAAwG4UuwIAAAAAAAAAAAAAAAAAAAAAAAAAQuZPf/qTWltbA86Mz0/W6VNybUoEIJo1GxZuSfvWllcvn6JzZ+aFMBGwf37/vrKv7zy+QQffuUp/ea9aDR3mj19Ertc3Naip0+x7OTInUT+cOzTEifb57sGFSo13Gs1ub3SrqsHd63O0uAMXaX7ONAf654lVtXpnS5Pl3E+PHqb8tDgbEtkjmq/7uU/r9cr6vQFnkuKcuuGIEpsSfZnJ1/Vzlx5QKJfTrGy1v4amx2v+BLOiTb9fer/SrJz2q1jjwsfd49PDH+02mr1gdoEOGpEe0jw3HlUiky5hn196bUPg5/T+DOa9BBDJzpqWq4kFyQFnWlpadMcdd9iUCAAAAAAAAAAAAAAAAAAAAHai2BUAAAAAAAAAAAAAAAAAAAAAAAAAEBKNjY265557LOd+YliaAgCmLppToFcunaSyIYnhjoJBpqnTo/vf36WD71ql8x7boLc2N8rnD3cqBNNLn5kXuF05d6jiXPb8SX9GoktnTcs1nl+2vffFhy2G5drpCa5eHxu9s7ulWzf/e5vl3KySVJ03Mz/0gWwSzddd09Ktny+qtJy74uBC5aWGp5B2WZX5unD8+KwQJvlfx44xP19f1jeJNS6cHl9Zq73tPZZz2cmx+slRoS8+Ls1ODFgemxgbo6lDU/TN6Xkamh7f6+MP5r0EEMliHDIqV7/rrrvU2NhoQyIAAAAAAAAAAAAAAAAAAADYib8WAAAAAAAAAAAAAAAAAAAAAAAAAACExP3336/m5uaAM5MLUzRvVKZNiQAMdFlJsfrzqaN01GjWFdhrza42LVhWoxfW7lGXxxfuOAgRr8+vpVubjGZT4p06cUJOiBN92XFjs/TXj3Ybza6r6dCZvTx+s2HpYVqis5dHRm/d8OIWtbq9AWdinQ798aRRcjhsCmWDaL7uH71QoebOwM+hgrQ4fffgoTYl+l/l9Z1Gc7mpcRqWmRDiNF82qyTVeLZij9l1fBVrXPg8sszstevKuUVKjrPn63/mlFy9X9ms4owEjctL0ri8JI3PT9a4vCQNz0pUTB/XmMG+lwAi3ZGjMzV1aIpWV7d97Uxzc7MeeOAB3XjjjTYmAwAAAAAAAAAAAAAAAAAAQKhR7AoAAAAAAAAAAAAAAAAAAAAAAAAACDqPx6P77rvPcu5H84ojrnQJQHQ6pDRdd59WptzUuHBHwSDR5fHpxc/2aMGymoDFPxg41u5uV2tX4FLJz500MUeJsTEhTvRl04pS5YpxyOPzW87uaHT3+vgtnWbXnpbAxxiE0r/W1GtxeaPl3A8PLVLZkEQbEtkjmq/7sRW1WlJhXeR40zHDbV83vqjKcF2YWpgS4iT/qzA9XjnJsdrT3mM525f1TWKNC5eVO1pVudf6e5aTHKvzZ+XZkGifUybl6PjxWUEvkh3sewkgGlx9WJEu+OfGgDP33HOPrrvuOsXGxtqUCgAAAAAAAAAAAAAAAAAAAKEWvr/oAAAAAAAAAAAAAAAAAAAAAAAAAAAMWM8884x27NgRcGZiQbKOKMu0KRGAgcoV49CNR5Xoie9MoNQVtqhqdOuW16s04/YVunphBaWug8jaXebf64OGp4cwyf4lxsaoJDPBaLa6uavXx29xe4zm0uKDW4KH/2rq9OhX/95mOTciO0E/OGRo6APZJJqve3uj2yj7EWWZOnlSTugDBdBmWDaZkxKeErvsZLPzNrvNruOrWOPC4+nVdUZz50zPVZzLvo/JcTkdQS91ldhLANHg6DFZmjo0cIl5dXW1nn32WZsSAQAAAAAAAAAAAAAAAAAAwA6ucAcAAAAAAAAAAAAAAAAAAAAAAAAAAAw8d911l+XM1YcVy+GwIQwQJP/e2KCLnthoNJuW4NI7P5hqe9Foj9evo+9brfL6TqP5i+YU6NcnjAhxqtAZlpmgv5w52rJ0Begvn196u6JRC5bVaEl5o3z+cCdCOJTvMVtbpX0F9uEwND1OW/da52zr7n3xYbNp6WECH2MQKre+UaW97T3Wc/NLbS1ADLVovW6fX7pmYYXaLZ5vGYku3X7ySJtS7Z/H55fH8MUtIzE8z3HT87o9vj4dnzXOfh6vXy+t22s553BI356RZ0Oi0BvsewkgWnx/7lBd+uSmgDN33nmnzjnnHJsSAQAAAAAAAAAAAAAAAAAAINT4awEAAAAAAAAAAAAAAAAAAAAAAAAAQFAtW7ZMH330UcCZYZkJOmZMpk2JgOA4dmyWzpmeqydX1VnOtrg9+tkrlXronDE2JPuvu97daVzqWjYkUT87eliIE4XOqZNz9NsTRyo13hnuKBjAGjs8evKTWj26vFZVje5wx0GYXXt4sc6elqv6th7Vt3Wrvq1HdW092tPerbrWnn3/3t6tbo9fI3MSw5IxNd7sIwQ6untffNjiNitwS6f0MCRW7GjVE6tqLedOnJCtw0Zm2JDIHtF83Q99uEsfVbVYzt06v1S5qXE2JPp6rhiHEmNj1NljvTbEh6k8NzHW7LxpfdwbssbZb9n2FjV3WhfqThuaqpLMBBsShd5g30sA0eLYMVkalpkQ8D3gRx99pOXLl2vWrFk2JgMAAAAAAAAAAAAAAAAAAECo8NcCAAAAAAAAAAAAAAAAAAAAAAAAAICg+utf/2o5c9EBBXLGOGxIAwTXzceN0AeVLdpuUPC4aMNevbaxQceNzbIhmVRe36m7l+40mnU5Hbr79NFKMCzIiiTJcU7dOn+EzpyaG+4oGMBWV7fp78tr9MLaPeryBKe0Kic5NijHQfhkJLqUkWj9J/pen1/h2ubEusxO7O/DsVvc1uV7kpSWSOF2sHl8ft340hb5Lb5xyXFO3XzcCHtC2SCar7u8vlO/f2u75dyJE7J1yqQcGxJZy0h0qbOn23Ku1XAtCLa2LrPi1cykvn2UCmuc/ZZUNBnNHT/OnvdTdhjsewkgWjhjHLpwTr5++dq2gHN/+9vfKHYFAAAAAAAAAAAAAAAAAAAYIKLvr20BAAAAAAAAAAAAAAAAAAAAAAAAABGrs7NTTz/9dMCZlHinzqaQEVEqJd6pu04rMy7Z+enLW9XqNiuh6g+/X7rhxS3q8ZrV61x3eLEmFSSHOFXwTRmaote/N4VSV4REl8enpz+p0/wHP9X8Bz/V05/U9bvUNc4VozOmDtGiyyfrxqNKgpQUkS6c5fWmrznJcb3/qIFmw2OnxvetVBFf7+EPd2tDbYfl3HXzipWfFmdDIntE63V7fH5d9Vy55WvIkJRY/fbEUptSWcs2LCBv6AhPsWurYbFrVlLfitRZ4+y3pLzRaO7YsQOn2NXUQN1LANHkm9PzlJoQuMz7iSeeUEeH9V4FAAAAAAAAAAAAAAAAAAAAkY/fkAYAAAAAAAAAAAAAAAAAAAAAAAAABM2zzz6rpqamgDPnTMu1LEYAItmsklRdcchQo9na1m7d8sa20AaS9PjKWi3b3mI0O6skVd83zB9pbjpmuIZnJYQ7BgaYqka3bnm9StNvW6Frnq/Q6uq2fh+zMD1ePz6yRCuunaE7Ty3TlMKUICQFrLW4zQoXcwwLHPty7HT2eUG1q7lLt7+9w3JubF6SLj6gwIZE9ojm677r3Z1as8v6teQPJ43scwlpKEzITzaa21hnf4Gd3y/taOoymh1veB1fxRpnrz3tPUbFzbkpsRqZk2hDInwulHsJIJqkxDt11tTcgDPNzc1auHChTYkAAAAAAAAAAAAAAAAAAAAQSq5wBwAAAAAAAAAAAAAAAAAAAAAAAAAADByPPPKI5cw50/NsSAKE1vXzSrSkvEnratotZx9fWavTpwzR7JK0kGSp60V5bHKcU3eeViZnjCMkWYBo4fNLS8obtWBZjd6uaJTPH5zjHjg8XRfOyddxY7P6/TxbUtGkcx9dH5xgEeqSAwp08/Ejwh1jQKlscBvNDetDSXazYdFbWgIfYxBMNy2qVEe3N+CMwyH99sRSuQbQ63u0Xvfa3e26892dlnNnTcvVMWOybEhkbmZxqp76pM5ybnN9h7o9PsW5YmxItU9Na7fl4+Fzs0tS+3QO1jh7fbKz1WhuzvD0ECfBV4VyLwFEm2/NyNNfP9odcGbBggX69re/bVMiAAAAAAAAAAAAAAAAAAAAhAp/LQAAAAAAAAAAAAAAAAAAAAAAAAAACIrq6mq9/fbbAWemDk3RuLwkewIBIeRyOnT36WU6/oFP1eXxBZz1+6XrX9iiN743JSQFWD9fVKlWt1nR1a+OH6FhmRTwYPBq7PDoyU9q9Y/ltdreaFZaZSUpzqnTJufowjkFGpvLaxzCp7a1W3vbe4xmJ+Yn9/r4zZ1mpYfplB4GzZubG/XaxgbLuTOm5IasQD4covW6uz0+XfVcuTzewG3hhenx+tVxkVdqPXuY2dfS4/Vr+Y5WHTzCvsLNNbvajGdn9fExwRpnrzW72o3mZhX3ragXfRPqvQQQbcbmJmlKYUrA16HFixdr165dKiwstDEZAAAAAAAAAAAAAAAAAAAAgi34f/0LAAAAAAAAAAAAAAAAAAAAAAAAABiUnn32Wfl8gQsuz5mWa1MaIPTG5CbpJ0eVGM1W7OnUHe/uDHqG1zc16JX1e41mjx2bpXOm8xzE4LS6uk1XL6zQjNtX6JbXq4JS6jo8K0G/PG64Vl03U7//xkhKXRF2H1S2GM+aFjh+UYtBibjDISXHO3t9bPyvbo9PNy2qtJxLS3DppmOG2ZDIHtF83X9YvEOb6joCzjgc0p9OGaXUhMh7nozKSdQEw6LG5z6tD3GaL3vdoOhXkmaVpKogLa5P52CNs9eaarOy3vH57K/sFOq9BBCNzrL4WabP59PChQttSgMAAAAAAAAAAAAAAAAAAIBQodgVAAAAAAAAAAAAAAAAAAAAAAAAABAUViUG8a4YnTwpx6Y0gD0uOaBQB49IN5q9971qbbQo++qNti6vfvryVqPZISmx+uNJI4N2biAadHl8evqTOp3wwKea/+CnemZ1nbo8gQvIrTgc0rxRGXr03HF674fTdemBhRFZzofB6eV1e4zm8lLjNKkgpVfH9vr8au+2Lj1MiXcqxtGrQ+NrPPDhLqMS6msOK1J2cqwNiewRrde9fHurHvig2nLu/Fn5mltqtncMh+/Myjeae+7TPapu7gpxmn32tvfopXV7jWbPnWmW/6tY4+y3drdZsevYXLOyYQRHKPcSQLQ6dVKO4l2BP6br2WeftSkNAAAAAAAAAAAAAAAAAAAAQoViVwAAAAAAAAAAAAAAAAAAAAAAAABAv9XW1mrp0qUBZ44sy1RagsumRIA9HA7pjlNHGT22PV6/rn9hi3z+4Jz7t29WaXdLt9Hs7SePiqjyMyCUqhrd+vXr2zT9thW65vkKrdllVhwWSGqCU5ceWKD3fjhdj503XkeUZcpBsRsiSF1bjxZXNBnNnjQxu9fFhC1u68JDSUpnrxcUdW09umepdUnoiOwEXTSnwIZE9ojW6+7o9urqheWWe7zhWQn6+THDbcnUV6dOzjHa13Z7fPr5K5U2JJL+sHi7OgxKV7OSYvWNCdl9OgdrnL1a3V7Vt/VYzuWmxCozia+5XUK9lwCiVXqiS/NGZQSceffdd1VfX29TIgAAAAAAAAAAAAAAAAAAAIQCv70OAAAAAAAAAAAAAAAAAAAAAAAAAOi3F154QV5v4DKc48dn2ZQGsFdherx+M79UP3h2s+Xsqp2teuTj3br4gP6Vka3a2ap/LK8xmj13Zp6OHJ3Zr/MBkc7nl5aUN2rBshotqWiUP0gFymNyk3Th7HydPmWIkuKcwTkoEAJ/ea9a3R6f5ZwzxqELZ/f+NajF7TGaMymE3NnUpU92tmrNrnZt3dup3S3dqm3tVkePV+4en3x+KTE2RkmxMcpMilVRRryKM+I1Pj9ZM4pTNXpI0oAvk/vdm1Vq67IumvzFscPlcg6cL0a0XvevX6/StgZ3wJkYh3TnaWVKjI2xKVXfJMc5dcMRxfr5IuvS1tc3Nej+93fpuwcXhizPqxsa9NiKWqPZG48qUbyrb19f1jh7bWsM/Hz5XFFGQq+O29Ht1QfbWrRud7s21Xeoor5TTZ0etXZ51dHtlcvpUGJsjNLiXSrKiFdJZoLG5ydpVkmaxuclyTnQv/AWQr2XAKLZ8eOz9drGhq+93ev16sUXX9TFF19sYyoAAAAAAAAAAAAAAAAAAAAEE8WuAAAAAAAAAAAAAAAAAAAAAAAAAIB+W7RoUcDb41wxOno0xa4YuE6dnKPXNzXoxc/2WM7+/q3tOm5cloamx/fpXB6vX9e/sEU+g+LKEdkJ+sWxw/t0HiAaNHT06MlVdfrH8hrtaOoKyjGdMQ4dMyZTF80p0EEj0oNyTCCUdjR16bEVZmXf35iQrWFZvSvKk6Rm09LD+P0XIG9vdOupT+r02sYGbaztsDxOW5dXbV1e1bX1aFPdl+fTE106ZkyW5o/P0rxRmRFV8BkM62ra9czqOsu5uaXpOnrMwNlfR+t1v7ulSY8aPP++e/BQzSxOtSFR/50/u0BPfVKntbvbLWdveWObXE6HLjkg+CWPi8sb9f1/bTaanVaUqm9Nz+vzuVjj7FVlUYT8ucL0OMuZHq9fL6zdoxc+26P3K5vVFaCY1OPzy93jU2OHR1WNbr1f2fyf2zISXTpuXJZOnpijuaUZcgy8L3tAduwlgGh2zJhMxTod6vF+/Q9iFi1aRLErAAAAAAAAAAAAAAAAAABAFKPYFQAAAAAAAAAAAAAAAAAAAAAAAADQL16vV++8807Ambml6UpN2H8JDjBQ/O7EUi3b3qKalu6Ac+3dXv3k5a36x7fH9ek8f3m/WhvrrAujXDEO3X1amZLieO5h4Fld3aZHlu3WS5/tDVjg1RtZSbH61oxcnT8rX4V9LF4GwuEnL21RZ4/188DhkK6cW9Snc7S4vUZzaQlf/giDj6padO/Sai2paJTfoJDcRHOnR8+srtMzq+uUnxanC2cX6LyZeUpPHBgfn/CbN6osy9sdDulnxwy3JY9dovG6W91eXft8heVje0xukq6fV2xPqCCIcUh/PrVMJz+8Vu3dgZ/7fr/0i1crtbq6Vb86foSykmL7ff5uj093vrtTdy+tltfqQSEpNd6p204e2a8iTtY4e1U1mhW7Dg2wH+vo9upvH9forx/vVl1r4PdfJpo6PXpyVZ2eXFWn0UOS9N2DC3XGlCFyxgyOhlc79hJANEtLcOmQEelaUtH0tTOLFy+W1+uV08nPYAAAAAAAAAAAAAAAAAAAAKLRwPmtfQAAAAAAAAAAAAAAAAAAAAAAAABAWCxfvlxNTV9fbCBJx4zJsikNED7piS79+ZRR+taj6y2Lnd7a3Kjn1+7RKZNyenWOyr1u3fHOTqPZHx5apGlFqb06PhDJ3D0+vfDZHi1YVqNPd7UF7bhTClN0wex8nTIpR3GumKAdt7/mjcpQ9c0HhTsGItyTq+oCFkx90fzx2Rqbl9Sn8zS7PUZzaYn7iqw21Hbo/16t1AeVzX06n6malm799s0q/eX9al17eLEumJUvlzN6S/g+3Nastw2+n/PHZ2tSQbINiewRrdf980VbtbslcKGky+nQnaeVRdTri4lxeUl64OwxuuDxDfIYlKsu/HSPFpc36bIDC3XuzDzlJPe+4LW926uFn+7Rve9Va7th8afL6dBD54zV2Ny+rW2fY42zV3Vzl9HckJT9P44WlzfqJy9v1c4ms+P01ub6Dl37fIUe+nCXbp1fqjnD0kJynkhh114CiHbHjM0K+FxpamrSihUrNGfOHBtTAQAAAAAAAAAAAAAAAAAAIFgodgUAAAAAAAAAAAAAAAAAAAAAAAAA9Mubb75pOXPoyHQbkgDhd+jIDF04u0B/+3i35ewvXq3U4aMylJFo/uee17+4RV0en+Xc1KEpuuqwIuPjApGsqsGtvy+v0VOf1Kmp06x4zUqs06ETJ2TrojkFmk4BMqJUeX2nfr5oq9FsWoJLvz6htM/najEsPUyMdeo3b1Tp/g92yWtQBhkszZ0e/eLVSj2xqlZ/OWO0xvSz5DFcbn1ju+WMM8ahG44osSGNfaLxul/b2KB/ram3nLv60KKIKqPtjXmjMnT7KaN03QsV8nitn8/NnR79cfF2/fntHTpweJoOGJ6uSQXJKsqIV15qnBJjYxTrjFGP16fOHp/q23pU3dyl9TXtWrmjVe9saVJnj/U+93Mup0N3nlqmuaX9f6/JGmevve09RnPpCV9+n+Tx+vXTV7bq8ZW1oYj1PzbUduj0Rz7T9w8ZquuPKJErJvpLdb/Kzr0EEO3mlmZYzrz55psUuwIAAAAAAAAAAAAAAAAAAEQpil0BAAAAAAAAAAAAAAAAAAAAAAAAAP2yimzE+AAAIABJREFUePHigLcPy0xQSWaCTWmA8PvZ0cO0dGuTyus7A87tae/RL1/bpjtOHWV03CdW1erDbc2Wc4mxMbr79LIBWTyEwcPnlxaXN2rBx7v19pYm+YPUnZaXGqfzZubp3Jn5GpISG5yDAmHQ3OnRxU9uNC5B/L9jhym3H4/5FrfXaO6fK2ttLTv8qo21HTrhwU/1m/mlOntabthy9MVrGxv0yc5Wy7mzpuZqZE6iDYnsEY3X3dDRox+/uMVybnJhiq48tMiGRKFzxpQhKs6I1+VPb1J9m1kZp8fn19KtzVq61Xrf2lf5aXF68KwxmlEcnHJ21jh7NXaYFemmJ/73Y3Fau7y69MmNIX1c7Y/fL92ztFord7TpkW+NVWq809bzh5Ldewkg2o3ITlBxRrx2NHV97cybb76pn/3sZzamAgAAAAAAAAAAAAAAAAAAQLDEhDsAAAAAAAAAAAAAAAAAAAAAAAAAACB6eb1eLVu2LODM3JHpNqUBIkNCbIzuOq1MLqd1seozq+uMyon2tPfo169XGZ3/F8cOV2l2ZBSfAb3V0NGje9+r1kF3rNT5j2/QkorglLrOLknTfWeO1rJrZ+iaw4spdUVU83j9uuSpTdqyJ3CB+OcOHpGub07P69c5m91mJXzhLDz8nLvHp2ufr9Cf394R7ijG/H7ptsXbLedcToeuPiy6i0K/KFqv+8aXtmpPe+CS03hXjO48bZRcMdb7wUg3Z1iaXrt8io4oywx3FEnS0WOy9NrlU4JW6iqxxtmtocOsJDgtYV+xa5fHp2/9Y73tpa5f9OG2Zp21YJ1x9kgXjr0EMBDMHZkR8PZly5bJ4zF7TQEAAAAAAAAAAAAAAAAAAEBkodgVAAAAAAAAAAAAAAAAAAAAAAAAANBn69atU3t7e8CZg0dQ7IrBZ3Jhiq49rNho9scvblFnjy/gzE2LKtXcaV0OckRZps6blW90XiCS7Gnv0VULyzXj9pX6zRtV2tHU1e9jJsTG6JvT8/TG96Zo4cUTddLEnAFRsIfBzePz64p/bdYHlWbldvlpcbrnjNH9Pm+L29vvY9jttiU79Pu3rEtDI8G/NzVoQ22H5dzpk4eoKCPehkT2iMbrfnZNvV5Zv9dy7sdHlmj0kCQbEtkjPy1Oj547Ts9dNFEzg1io2huHlKbrqfMnaMG3xga9oJ01zl6NBu9rJCnBFSO/X7pqYYVW7WwNcSprn+5q0wX/3KguT+D3bpEuXHsJYCA4xOJnnB0dHVq/fr1NaQAAAAAAAAAAAAAAAAAAABBMrnAHAAAAAAAAAAAAAAAAAAAAAAAAAABEr48++shyJlzFP0C4/WDuUL1V3qiVOwKXEFU1unXbku266Zjh+719cXmjXvxsj+X5spJidfspo/oSFQi7rXs79a/V9UE5Vklmgr4zK0/fnJ6njET+nBoDh8fn1w+fKzcqlZSkOFeM/nrOWOUGoQDRpFzcREaiSwcNT9fsYakamZOokdmJSktwKTkuRjEOhzp6vGro8Gh7o1uf7W7Xsu2tWrq1SW6LAvSvc9e7O1WQFqfvRHjp+R1v77CcccY4dOXcIhvS2CfarrumpVs3vVppOTdnWJouPbDQhkT2mzMsTS9cMknratq1aP1evbqhQZvqrMt5+yIhNkYHDkvTwaXpOmF8toZlJoTkPBJrnN3ausyKdGOdDj344S69ZPBeqCQzQbNLUjW9KFWTC5OVnRyrzKRYJcbGqLPHp6bOfV/39TXt+nBbi96uaOpTQevKHa269vkK3RulRafh3EsAA8EMg59xLl++XJMnT7YhDQAAAAAAAAAAAAAAAAAAAIKJv0QEAAAAAAAAAAAAAAAAAAAAAAAAAPTZ8uXLA96emxKrwvR4m9IAkcUZ49Ddp5XpqPvWqKM7cHnRQx/u1imThmhSQfKX/r2j26ufvLzV6Hx/OGkkhTsYtBwOaW5phi6ck6+jRmcpxhHuREBwuXt8uvzpTXpzc6PxfX53YqmmDk0Jyvmb3X0vPXQ5HTppQo7OmDpEc0szAj4/05wupSW4NDwrQYeOzNAVktq7vXpl3V498MEubexDgeRNiyo1qSBZ04qsi7jC4c3NjVq7u91y7qSJ2RqRHbpiS7tF43Vf90KFZQFoUpxTfz511IB/HcpNidPwrATNKklVVaO7z8WkgbhiHEqOdyox1qnObp/8/n2v96HAGmcv00LV3S3d+uPi7V97u8vp0KmThuiC2fkBX+9S451KjXeqOCNeB49I16UHFqq1y6vn1tTr3veqVd3c1av8z6/do3llmTpjypBe3S/cwr2XAAaCoox4DUmJVX1bz9fOLF++XBdffLGNqQAAAAAAAAAAAAAAAAAAABAMFLsCAAAAAAAAAAAAAAAAAAAAAAAAAPps5cqVAW+fMjR6ymWAUBiWlaBfHjdcN7y4JeCc1+fXj16o0CuXTZbrC21Qf1i8XTubrIuGzp6Wq+PHZfU7LxBtUuKdOnNqri6cna+ROYnhjgOERIvbo/Mf36hl21uM73PN4cU6e1puUDP0VoxD+ub0PF11WJGGpsf3+dzJcU6dNS1XZ07N1bNr6nXLG9sClml9lcfn1/f/Va7XvzdFKfHOPucIlbve3Wk094O5RSFOYq9ou+5Hl9fo7Yomy7n/O2aYhmVGRhFtsPn80qsb9urR5TV6r7JZfn9oz9fW5dXL6/bq5XV7JUkjshN0/qwCnT1tiNISgvtxKaxx9vL4zB48t7y+TZ1fUxp8SGm6fjO/tM/7v9R4p86fna9vTs/VXUurdffSnfJ4zR/UNy2q1KEjM5SbEtun89stEvYSwEAxuTBFbwUoSF6xYoWNaQAAAAAAAAAAAAAAAAAAABAsMeEOAAAAAAAAAAAAAAAAAAAAAAAAAACITj6fT5s2bQo4M21oik1pgMj17Rl5OnqMdenqZ7vb9eAHu/7z/2t2telvH9dY3q8kM0G/On5EvzIC0WZUTqJuOWGEVl43U7ecMIJSVwxYda3dOvVvn/WqiO3ygwr1o3nFQc3R4vb2an5UTqJevGSS/nDSyH4VHn6RwyGdMXWI3rpiqg4dmdGr+1Y1unWnYZGonZZvb9XKHa2Wc4eNzNDY3CQbEtkj2q67qtGtX79eZTl32MgMnTcr34ZE9nu/slnz7vlElz21SUu3hr7UdX8q97r1y9cqNf22Ffrdm9vV5dl/4WdfsMbZx+P1Gz9+tjW4/+ffHA7pxqNK9OR3JgRl/xfnitGP5hXr6fMnKCvJvKS1xe3Rn97e0e/z2yFS9hLAQDHV4medGzdulD8cL5QAAAAAAAAAAAAAAAAAAADoF4pdAQAAAAAAAAAAAAAAAAAAAAAAAAB9smPHDnV0dAScGZcf/iImIBLcdvJIZSdbFwXd/vYOVTW45fH5df0LW+T1BS4DiXFId51WppR4Z7CiAhErxiEdPSZLT3xnvN65cpounFPAYx8D2obaDn3j4bXaWBt4v/VF583K1/8dOzzoWZrdHuPZ+eOz9cplkzWtKDXoOSQpOzlWj547TqdPGdKr+z304S5V7ackMJzuf7/aaO7SgwpDnMRe0XTdPr90zcIKtXcHLv5MS3DpT6eMsimVfVrdXt3w4hadtWCdKvZ0hjuOJKmzx6e7l+7UkX9ZrQ+3NQflmKxx9un29r2Q1+GQ7jilTFfOLZLDEcRQkuYMS9MzF0xQZpLL+D5PrKyN+K95JO0lgIFifH5ywNvb29u1c2d0lG0DAAAAAAAAAAAAAAAAAADgv8x/mxwAAAAAAAAAAAAAAAAAAAAAAAAAgC/YvHmz5czI7EQbkgCRLyc5Vn88aaQuemJjwDl3j083vLRFh47M0Lqadsvjfv+QIs0qCU2pFBBJMhJdevicMTpweHq4owC2eHVDg374XLk6LMokv+i8Wfn67fzSkOQZmZ2ogrR4y7lvTMjW5TaUcbpiHLrj1DK1ur16fVOD0X16vH7d+161/nDSyBCnM1O5122UvWxIog4fmWFDIntE23U/9OEufVzVYjn36xNGKD8tzoZE9qlqdOubf1+vqsbeFVcmxsZobmmGZhSnakJBsorS45WbEquE2Bi5Yhzq8vjk9vhU19qjXS1d2lDbodU727S0skmtbvM1r3KvW2cuWKdfHz9CF84p6O3lfQlrnH28/r7f94YjSnTG1N4V3vbG2LwkPXT2WJ3993Xy+qyDenx+/e3j3br5+BEhy9QfkbaXAAYKk591bt68WcXFxTakAQAAAAAAAAAAAAAAAAAAQLBQ7AoAAAAAAAAAAAAAAAAAAAAAAAAA6JNNmzYFvN0V49CwzASb0gCR79ixWTpneq6eXFUXcO69rc36oLLZ8ngTC5L1o3kUhWBwaOr06KwF63T0mCxdNKdAh5RS8IqBye+X7nhnh25/e4f8vSi/+/4hQ/XTo4eFLNfTF0wI2bH7KsYh3XtGmY65f40q95oVT/5rTb1uOLJEOcmxIU5n7cEPd8mgN1CXHFAohyP0eewSTdddXt+p37+13XLu+HFZOmNK6Momw2FTXYfO+cd61bV2G99nXF6SvnvQUJ0wPktJcc6vnUuKcyopzqmspFiNzUvSEWWZkvYVky6paNRfP9qt97Za74WlfWvmzxdVqrPHpysOGWqc9atY4+zjiunbE/vA4em6cm5RkNPs7zxpunLuUN3xzk6j+adW1+nHR5YEfMzbLVL3EsBAMTwrQa4YhzwBNjSbNm3SkUceaWMqAAAAAAAAAAAAAAAAAAAA9FdMuAMAAAAAAAAAAAAAAAAAAAAAAAAAAKJTRUVFwNuLM+Plcg6gFiogCG4+boRKDAqPrQrP4l0xuuf00TzHMKj4/NK/Nzbo7L+v0+H3fKK/L6tRe7c33LGAoOns8enypzfptiW9K2L72dHDBm0RW1KcU3eeWmZcANrl8elfq+tDG8pAa5dXz66xzpES79Spk3NsSGSPaLpuj8+vq54rV5fHF3AuOzlWv/vGSJtS2WNbg1unP/KZcalrbkqs7jytTG98b6rOmDqkzwWXsU6HjhmTpafOn6DnL56kSQXJxve99Y0qPfLx7j6dN5JF6xoXSGwf3r84Yxz63TdKbSt7/uGhRSrOiDeabXV79ebmxhAnMsdeAgi9WKdDRRZrRHl5uU1pAAAAAAAAAAAAAAAAAAAAECwUuwIAAAAAAAAAAAAAAAAAAAAAAAAA+mT37sDFOSOyEm1KAkSPlHin7jqtTDH9LCX62dHDVDaE5xgGr/L6Tv30la2acdsK/eLVSlXudYc7EtAvO5q6dNLDa/XK+r3G93HFOHT7yaN0xSFDQ5gs8s0oTtVJE81LQF9atyeEacw8u6beqJj6lEk5Su5jSWYkiqbrvuvdnVqzq81y7nffKFVOcqwNiezR4/Xre89sVmOHx2j+oBHpeuOKqTpjypCglm7OKknVy5dN1ncPLjS+z69fr9LGuo7ghYgQ0bjGBeKKcfT6vdCpk3M0Kse+9z7xrhh972Dz19bXNjaEMI059hKAfUqzA69JVj8zBQAAAAAAAAAAAAAAAAAAQOSh2BUAAAAAAAAAAAAAAAAAAAAAAAAA0Cc1NTUBb89Pi7MpCRBdZpWk9qs459CRGbpoTkEQEwHRq7XLq4c/2q25d6/SuY+u1+LyRvn94U4F9M6H25p1wgOfan1Nu/F9UuKd+vu3x+mc6bkhTBY9fnhokfHs6uo27WruCmEaa48uD7yP/ty3ZuSFOIm9ouW61+5u153v7LScO33KEJ0wLtuGRPa59Y1t+tSg0FaSjh6TpcfPHReyYltXjEM3HTNcvzh2uNF8l8enH/xrs7o9vpDkCadoW+OsxDp793E358/KD1GSr3fWtFzjgunF5Y3yhXn/yV4CsFduauDXvtraWpuSAAAAAAAAAAAAAAAAAAAAIFgodgUAAAAAAAAAAAAAAAAAAAAAAAAA9IlVsWuoCn6AgeD6eSWakJ/c6/ulJ7r051NGyeEIQSggivn90pKKJp332AYdfNcqPfThLrW4PeGOBVhasKxG5/x9vRo6eozvk5cap4UXTdThozJCmCy6jM1N0gHD0oznP65qDWEaq3O3aGNdh+Xc+PxkTSlMsSGRPaLlurs9Pl31XLk8Fi2N+WlxuuWEETalssfa3e16+KPdRrOTC1N0/5mjFecK/ceWXHZQoS45oMBodkNth/5uWCAcTaJpjTNhWpgq7XuuTS9KDWGa/UuMjdHx47KMZlvdXpXXW69vocJeArDfkOS4gLdT7AoAAAAAAAAAAAAAAAAAABB9KHYFAAAAAAAAAAAAAAAAAAAAAAAAAPSJVUnBkBSKXYGv43I6dPfpZYrvZRnW708sVX5a4AIRIBoNz0zQ8eOy5Izpf2txVYNbv3xtm2bcvlI/fmmLUZEgYDePz68bXtyin72y1bJA8osmFiTr5UsnaXwfysEHuhMnZBvPrtjREsIkgf1zpVnR11lTc0OcxF7Rct2/X7xdmwxeN247eZTSElw2JLLPHW/vkN9gOUqIjdG9Z5QpIda+jyz5+THDNSY3yWj2oQ9392pdjRbRssaZyEoyf+4cPCI9hEkCO6wXpaerq9tCmGT/2EsA4ZNj8TNPil0BAAAAAAAAAAAAAAAAAACiD8WuAAAAAAAAAAAAAAAAAAAAAAAAAIBe6+npUXNzc8CZIckUuwKBFKbHK7MXpUaSlBTnDFEaILxyU+P08Dlj9fE1M3TVYUVBKQfv6PbqsRW1OvLe1TpzwTq9uqFB3gFY9Ibo09bl1Xce26DHDYsuPzd/fLaev3iSCtPjQ5Qsuh1Rlmk8u6E2PIXPnT0+vbqhwXIuxiGdNNG8xDHSRct1L9/eqgc/2GU5d+7MPM3rReFjNNhY16F/b7L+HknSZQcWqjQ7McSJvizW6dBPjx5mNFvd3KUX1u4JcSL7RcMaZ6o374HGGhb6hsJBw81LZTfX2/s1Zy8BhJfVzzwbGxvl9XptSgMAAAAAAAAAAAAAAAAAAIBgoNgVAAAAAAAAAAAAAAAAAAAAAAAAANBrnZ2dljMpCb0rrAQGm5sWVaqmpbtX97nuhQrtbe8JUSIg/ArS4nTDESVace1M/eWM0ZozLC0ox/2gslmXPLlRB96xSvcsrVZDB88jhEdNS7dO+etavbOlqVf3u+qwIj1w1hglxvIRAV9nWFaCsi1Ktj63vdEd4jT79+qGvWrvti75mjMsTXmpcTYkskc0XHdHt1dXLSyXVf/32Nwk3XzcCHtC2eiBD3bJb9B9Hu+K0eUHFYY+0H4cNTrTuFB2wbKaEKexXzSscaayksyuQ9p33eGSnxZnXEJb3dy793X9wV4CCL+UeGfA2/1+v9zuyF6LAQAAAAAAAAAAAAAAAAAA8GX8pjUAAAAAAAAAAAAAAAAAAAAAAAAAoNdMygkSXA4bkgDR6dUNDXpmdV2v71ff1qMbXtwSgkRAZHE5HTp5Uo6eu2ii3rpiqs6bla/kuMDlOSaqm7v02zerNPP2lbrm+Qqt3d0ehLSAmfU17Zr/0KfaUNthfJ+E2Bjdd+Zo3XBEiRxsrSyNyjErfaxt7ZbHa9BiGWTPrqk3mjt5Yk6Ik9grGq77169Xqaoh8HucpDinHjh7jBIGWCmix+vXaxsajGaPHZuljESzostQOGlittHcJ9Wtqmu1r2jTLpG+xpkakmJe7JoZxsebZP41r27qCnGSfdhLAJHBZC/Q2dlpQxIAAAAAAAAAAAAAAAAAAAAEy8D6axEAAAAAAAAAAAAAAAAAAAAAAAAAgC26uqxLS+Jd/AkbsD/1bT368Ut9L2d9bWODnlzV+1JYIFqNzUvS704s1cofzdQtJ4zQ6CFJ/T5ml8enpz+p03H3r9HJD6/V82v3RHQBGqLf+5XNOvVvn6mmxbxoMD8tTs9dNFEnDbCSz1Aqyog3mvP5pbZub4jTfFl9W4+Wbm22nHPGOHTCeLPyymgQDdf97pYm/WN5jeXc704sNS55jCbLd7Sqxe0xmj10ZHqI0wQ2qyTNaM7vl9HjLtpE8hrXG8UZCcaziWEuUs5NiTOaM30O9Qd7CSBymPzM0+0OXBgPAAAAAAAAAAAAAAAAAACAyOIKdwAAAAAAAAAAAAAAAAAAAAAAAAAAQPQxKSeIc1LsCuzP9S9u0d72nn4d4xevVeqgEWkqyTQvRQKiXWq8UxfOKdCFcwr0QWWzFiyr0b83Nsjj618h64odrVqxo1U3p8bpvJl5OndmvnJTYoOUuu+WVDTp3EfXhztGSF1yQIFuPn5EuGOE3JKKJl38xEZ1eXzG95k6NEWPfHOsclPNCuWwT2q803i2o9urjET7PnLhtQ175TVYr6YXpSg7OfxrULBE+nW3ur269vkKy7kLZufr9ClDbEhkv1U7W41n5wwzK1YNlWlDU+Rw7CtutbJmV9uA+55F8hrXG8MyzQpqpX0lteGUZbguuXvxGt8X7CWAyEKxKwAAAAAAAAAAAAAAAAAAwMATmb+BDwAAAAAAAAAAAAAAAAAAAAAAAACIaD091qWUsU6HDUmA6PLPlbV6Y1NDv4/T1uXVD58r13MXTVIMTzUMQgeNSNdBI9JV29qtx1bU6vGVtapt7e7XMetau3X7kh26892dOnF8ti6aU6AZxalBSozB6vVNDbrsqU3q8Zo30500MUd3nDrKqDAKX5YYa1562N2L70kwvLbR7PX/yNGZIU5ir0i/7g+2NWt3i/Xrx4JlNVqwrMaGRL1z2VObjGdPmzxEd59e9j//vrG2w+j+aQkulWYnGp8vFNITXcpPjTP6npXXd9qQyF6RvMb1RklWgvFsb4pMQyHBZfZmy90TupzsJYDIE2fwM8/u7v69PwUAAAAAAAAAAAAAAAAAAIC9+O1rAAAAAAAAAAAAAAAAAAAAAAAAAECv+f2RWxIDRKrtjW7d/O9tlnOuGIfy0+Is55Zvb9W97+0MQjIgeuWlxum6ecVadu0MPXDWGB04PL3fx/R4/Xp+7R6d9PBaHf/Ap3r6k7qwl4ohOr2yfq8u7WUR27WHF+u+M0dTxNZH3V7z56qdX+PWLq/er2w2mj1qdFaI09gnGq6bdzX79qgmhqTEhjiJmYxEl9FcdXNXiJPYL1LXuN4qzU6Uw6wvVY2dntCGseCMMQsaa1Dy2BfsJYDoxc9OAQAAAAAAAAAAAAAAAAAAogu/gQ0AAAAAAAAAAAAAAAAAAAAAAAAAABBiPr909cIKtXV5LWevOGSo7jm9zKjs6LYlO/TZ7vYgJASimyvGoRMnZOtfF07Qkh9M1QWz85Ua7+z3cT/d1aZrnq/QzNtX6ndvbteuAVgSh9BY+Okefe+ZzfIYFrHFu2J035mjdd284hAnG9jcPealh4mx9n3cwlubG41K+QrS4jQuL8mGRPYYrNcdbfZ29BjNZSWZFaqGWkaiWcFsY0d4C0FDIVLXuN5KjXdqWGaC0Wxta3eI0wTW5TF7HU8IwdebvQQAAAAAAAAAAAAAAAAAAAAA2CdyfwsfAAAAAAAAAAAAAAAAAAAAAAAAAABggLj//Wp9XNViOVc2JFHXHFakA4en69sz8iznPV6/rny2XF0e85InYKAbPSRJt84v1cofzdRvTyzV2CCUBTZ09OjupTt1wB2rdOmTm/ThtuYgJMVAtbi8UVcvLJfXZ1bElp7o0pPnj9dJE3NCnGzg29NuVlDpcEgpcf0vfzb1+qYGo7lDR2aEOIm9But1R5uObrN9ZLKNz5lA4pwOo7nOHm+Ik9gvUte4vphcmGI0t72xK8RJAuvoNnscJcUG9+vNXgIAAAAAAAAAAAAAAAAAAAAA7EWxKwAAAAAAAAAAAAAAAAAAAAAAAAAAQAhtrO3QHxZvt5yLcUh/PmWU4lz7/vzz58cMV2F6vOX9Ntd36NY3qvqdExhokuOc+s6sfL11xVQ9e9FEnTQxRy7DMriv4/X5tWjDXp3xyDodee9qPbai1rjwC4PDml1tuvzpzfIYFrHlp8Vp4UUTNbskLcTJBoealm6juSHJsf1eD0z5/dLSLWZl0AcOHziPg8F63dHItDiytSsyXu9aDHMYXlZUicQ1rq8mFyYbzW2sbQ9xksBqW82+5nmpcUE7J3sJAAAAAAAAAAAAAAAAAAAAALAfxa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAh0uP168rnytXjtS7lueygQk0rSv3P/6fGO/X7b5QanedvH+/W0q1m5WnAYHTAsDTdd+ZoLb92pq4/okQFaf0v39pY16Efv7RFM25fqZv/vU1VDe4gJEU0297o1vmPbzAu+x2Vk6iXLpmkMblJIU42OPj90ta9nUazQzMSQpzmv9bVtKuho8do9oDh6SFOY5/Bet3RKDHW7KNHmjs9IU5iptVtlsP0uqJFpK5xfTXLsIR07e52+cNY0rur2azYtTA9OMWu7CUAAAAAAAAAAAAAAAAAAAAAIDwG1l8hAAAAAAAAAAAAAAAAAAAAAAAAAAAARJA/Lt6u9TXtlnMjshN0/byS//n3I8oydcaUIZb39/ulqxeWR0zhFhCpclNidfVhRfr4mhl66JwxOqQ0XQ5H/47Z4vbowQ926ZC7Vuk7j2/Q2xVNYS0gQ3g0dnj07Uc3qL7NrMhyTG6Snr1oogrT40OcbPCobOhUa5dZEV5ptn2lh+9uaTKaG5oer+KMgfN4GKzXHY2S4pxGcy2GhaqhZvo8N72uaBGpa1xfTRuaorQEl+VcU6dHG2qt30+FQo/Xb1ymWxSEdYy9BAAAAAAAAAAAAAAAAAAAAACEj/VvuAMAAAAAAAAAAAAAAAAAAAAAAAAAAKDXlm9v1X3vV1vOORzSn04ZpYTYmP3efvPxI/TOlibLgp+alm7d+PJW3Xfm6D7lBQYTZ4xDJ4zL1gnjsrVlT6f+vrxGT6+uU6vbrDBtf3x+6a3NjXprc6NKsxN1wex8nTUtV6nxfSuWmzcqQ9U3H9TnPLBPt8enC/65wbj8bWxukp6+YII4DIoQAAAgAElEQVSyk2NDnCy0Orq9qm7u1q6WLs0qTg17ieJH21qMZ6cUpoQwyZct3dpsNDdnWFqIk9hrsF53NMpNidWmOuu5+vYetbq9Sk0I33O9rcururZuo9n81Lh+nYs1LrScMQ7NLU3XK+v3Ws7+e2ODxucn25Dqy9bVtMvj8xvNTuhnvsG6lwAAAAAAAAAAAAAAAAAAAACASEGxKwAAAAAAAAAAAAAAAAAAAAAAAAAAQJC1d3t11XPlMukBunB2gWaXfH2pWUaiS7fOL9VlT22yPNaLn+3RMWOydOrknN7EBQa1kTmJ+tXxI3TjkSV67tM9+sfyGq2rae/XMbfu7dT/vVqp37+1XWdOHaIL5xRoVE5ikBIj0tz0aqVW7Gg1mo2mIrb2bq/W13SourlL1c1d2tXcperm7v/8d1On5z+z954xWqdMCu9rz5ubG41npxXZU3ro9fmNHxuTo6CI0VQ0XfdxY7MiskT76U/qdM3zFZZzD549RvPHZ/frXMWZCZKsi3j9fmn1rjbNLU3v1/n6Y11Nu/xmPZsqzowPeDtrXPgdPirDqNj16dX1uvqwYjkcNoT6gqVbm4xnJxX072s+UPcSAAAAAAAAAAAAAAAAAAAAABAtKHYFAAAAAAAAAAAAAAAAAAAAAAAAAAAIsl++tk1VjW7LuZLMBP3kqBLLufnjszV/fLZR8dFPX9mqOcNSVZgeuMwKwJclxTl17sw8nTszTyt2tGrBst16ed1e9XgNG+T2o73bqwXLarRgWY2um1esaw8vDmJiRILnPq3XYytqjWYL0uL0+Hnjo6aIrbq5S6f8da3R7KL1e8NaetjY4dGSCrMCvtQEpyb3s4DP1Ob6TnV0e41mJxYkhziNfQbrdUer3hSPf7KzNezFrqbKLK6LNS785o/P1s8WVarb4ws4t73Rrfcrm3WIzY+9NzaZlekOy0rQkJS+v7YP5L0EAAAAAAAAAAAAAAAAAAAAAESLmHAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAGEje2tyof660LuZxOKTbTh6ppDin0XFvnV+qjESX5VyL26OrF1bI3/cuSmDQm1mcqntOH60V183Uj48sUVFG/4uSdzV3ByEZIsm2Brd+/NJWo9nUBKceO2+88tPiQpwqeMpykpSVZFYc98bmRtW39YQ40dd76pM6y2LAzx1RlimX0xHiRPus2tlqPDsxf+AUnA7W645W04rMS0CXbm0OYRJrH21rMZ6dVpQa8HbWuPBLT3Tp6NGZRrOPG7y/CqaqBrdW7jBby44oM7uG/RnoewkAwP+zd+fhdZZ13sB/OTnZk7ZJ27RpupeWUqAtBWUT1CIIKCoIroyMKCowgIO+js7oK45e+vI648zogLzqjAuODoOWEUQEARmWAa1CgQKl+74k3dLs63n/YNygbZ60OTlpzudzXfxB83ue+3vfSZ4erotzvgAAAAAAAAAAAMCRQrErAAAAAAAAAAAAAAAAAMAg2d3WHR//yepEs+89cUKcPmN04nuPryyKz503I9HsY+ua4puPb018b2D/xlUUxbVnTo7HP3pifPs9c+O1s8ZEwZHRlUaWZTIRH//Jmmjr6u13Np0qiH9519yYW1s+BMkGT0FBxOLZYxLNdvX0xbd/vS3LifavvbsvbvnvLYnnz5tbk8U0f+qpzS2J5qZVl0ZVabKi9yNBvu77SDW/rjKK08k+fuSJ9U2xpakzy4n2r7WrN365em+i2XSqIBb1U1jrGTc8vOOE2kRzdz23M54aQGn04frmE8m/30l/jl4uH15LAAAAAAAAAAAAAAAcKRS7AgAAAAAAAAAAAAAAAAAMkk/etTYaWrr7nZs0uiQ+c870Ad//4gXjY/Hs6kSzX3pgY6xoaBvwGsArpQoizjm6Jn7wvnnx6LWL4opTJ8XosnSuY5FD//bbHfH4+qZEs39z9rQBFXkPJ+fPG5t49ju/3h47W/v/O3Cwfe2RzdGY4O/eiJdK0s89JvmeDteyLclKCI8eYUV9+brvI1VpUSrOnJnsGdWXibjlsa1ZTrR///5kQ6ICzIiIk6eNilGl/f897RmXe68/akxMryntdy6TifjUT9dGb18m65m2NnXGD5/ckWi2trIozpx1aMWu+fJaAgAAAAAAAAAAAADgSKDYFQAAAAAAAAAAAAAAAABgEPxoWWPc/fyuRLNffsusqCwpPKR1brxgZqJru3r64pofr4ru3uyXH0E+mV5TGjecOz2e/NhJ8fdvPSrmT6rMdSSG2K7W7vjCL9Ynml08uzo+dNqk7AbKorNmV8f4yqJEs03tPfG/71mX5UR/6tltrXHTo1sSz7/nxAlRVFiQxUR/0JeJWLOrI9HstJqSLKcZOvm67yPdQApOb/3N9li9sz2LaV6pubM3vvbI5sTzb0q4H8+43CtMFcTVr6lPNPvsttb47tLtWU4UccPP10dHd1+i2UsW1kY6NfAzz6fXEgAAAAAAAAAAAAAAR4J0rgMAAAAAAAAAAAAAAAAAABzptjZ1xqfvWZto9p0n1MbrjhpzyGtNGl0Snz57Wnzyp/2v9/z21vi/D26Mvzl72iGvB+xfaVEq3rWoNt61qDae2twc31m6Pe5avis6e5IVgXHk+rtfbormjt5+56pKC+PLb5k1BImyJ11YEO9eNCG++nCyQsWfPLszzppdHW9fMD7LySJ2tnbHB364InoSFphXlhTG5SfXZTnVH2za2xFdCZ8HU6tLs5xm6OTrvo90Fxw7Nj537/poau/pd7a7NxPXLVkVd1x+XBSnU0OQLuKz96yLxpbuRLMVxYVx0fxkzyDPuD/4+Yrd8YEfrkg0e3RteTx49cJDXuvlLllYG195aFNs29fV7+wX7tsQiyZXxcL6ykFb/4/98MkdcffzuxLNpgsL4n2vmnhI6+TTawkAAAAAAAAAAAAAgCPB0LxDAgAAAAAAAAAAAAAAAABghMpkIj56x+pExTwTqorjhnOnH/aal540MU6dPjrR7C2PbYknNuw77DWBAzthclX804Wz47cfOyn+5uxpygpHsNU72+MHv92RaPajZ06JiaOKs5wo+644tS7KiwsTz1//n6vjvhd3ZzFRRGNLd7zzu8/FlqbOxNdcdXp9jKsoymKqP7VmZ3vi2Wkj6JmRr/s+0pUXF8Z7T5yQeH7Zlpa4/iero7cvWeno4fjm49vitqcaEs+/a1FtVJUmf2Z5xuVeUWFB/PXZ0xLNdvb0xZ//4IV4saFt0HM8srYp/vrudYnn33VCbUweUzLgdfLxtQQAAAAAAAAAAAAAwHCn2BUAAAAAAAAAAAAAAAAA4DB864lt8di6pkSz/+eCmTGqNH3YaxYURPz9W2dFWVH/bxXty0R8dMmqaO7sv3gWODzV5em46jX18dh1i+J77z0mFs+ujlRBrlMxmG68f2P0JCgynDS6JD5wSt0QJMq+mvKi+PBpkxLP9/Rl4sP/sTJuXbo9K3mWb2uNt37r2VixI3mp3/Sa0vjQAPYwGNbu6kg8O6V64MWAw1W+7nskuOr0+hhdlvx16h3P7IyP/MfKaMnSa8xMJuKrD2+OG36evGizsqQwrjlj8oDW8YwbHi6aPz5OnzE60WxjS3dc/O3nYunG5kFb/54Xdsf7f/BCdPX0JZqvKC6Mj752yiGtlY+vJQAAAAAAAAAAAAAAhjvFrgAAAAAAAAAAAAAAAAAAh2hVY3t86f4NiWYvnD8uzjm6ZtDWnlZTGp9YPDXR7Ka9nfGZnyUvxQIOT6og4qw51XHrpcfEY9ctiitPr4+a8sMvdSa3VjW2xz0rdiWa/fBpk6KocOS0+l5zRn1MqylNPN/V0xef/OnauOzfXojt+7oGJUNnT1/8w0Ob4i3fejY27EleHlqYKoivvX12ojL0wbR+d/KMdVUjp+A0X/c9ElSXp+OvEr62/J2fvbArzrnl6fjl6r2DmmX97o74s+8/Hzc+sHFA1/3la6fE+MqiAa/nGTc8fOnNM6M04T52t3XHxd9ZHjc9uiVRSeqBdHT3xefuXR9X3LYi2ruTlbpGRPz12dOiblTxgNfL59cSAAAAAAAAAAAAAADDmXf/AQAAAAAAAAAAAAAAAAAcgp6+TFy7ZFV09vRfADSuoig+f97MQc/wwVMnxV3P7YonNzf3O3v7soY4Z251nH/M2EHPkU0NLd1xwpeX5mTtpRubo/6z/z1o9/vqRbPj7QvGD9r9ODJMrS6NT58zLdcxGAQ3PbolMgm74z57z7r47D3Dv1D7visXxLETK/qdK0mnXnqGfXt59PQmL9C7f+WeOPkffxsXHj8+PnLapJg7oXzAGXe2dsd/PNUQ33piW+xoHniB4icWT41Fk6sGfN3hakiYNV1YEFWlhVlOM3Tydd8jxfteNTHuX7knHly1J/E1G3Z3xKW3Ph+nTBsVl59SF2fPqY7i9KGVjD6ztSW+8+vtseSZxugewLMmIuLU6aPjilPrDmldz7jhYda4srjxgllx3ZJVieZ7ejPxxV9siCVPN8b1r58S5x0zNlIJe1Bbu3rjx083xlcf3hzbBljOe/qM0XHZqyYO6JrfyefXEgAAAAAAAAAAAAAAw5liVwAAAAAAAAAAAAAAAACAQ/APD22KZ7a2JJr94ptnRnX54L+tM1UQ8fdvmxXnfP3pROVXn7hzTZw0uSpqq4oHPQvASLavoyfueLYx1zFy6qQpVfHZN06Pz/xsYCVzPb2ZuH1ZQ9y+rCHm1pbHmUeNifl1lTFzXGnUjSqJqpLCKEmnorcvE21dvbG9uSs27OmIp7e0xBPr98XSTc3R2zewgsffee+JE+Ivzqg/pGsP187W7kRzNWUj62Mf8nXfI0VBwUtF9Od/45nYuKdjQNc+sWFfPLFhX1QUF8ZrZo6OEyZXxrwJFVE/uiRqq4qivKgwiv/nd72juy92t3XH1n1dsWZnezyztSUeXrM3Nu3tPKTcE6qK4+aLZ0dh0lbP/fCMGx4uXjA+frupOb63dHvia1Y0tMWHbnsxJo0uiXPn1sQp00fFMRPKY3xFcZQXp6K7NxP7Onpiw57OeGFHazy2rikeXLU32rp6B5xvypiSuOUdc6LgEH7UvJYAAAAAAAAAAAAAABi+vNMFAAAAAAAAAAAAAAAAAGCAlm1pia89siXR7JvmjY03zRubtSxzxpfHX752SvzfBzf2O7unrSeu/8/V8f0/m5e1PAAjUWtXX/QkKNAe6S4/uS4amrvja49sPqTrVzS0xYqGtkFOtX9vOW5cfPHNM4dkrf1pbElWcFpdXpTlJEMrX/c9klSXp+O2y+bFRf+6PLbt6xrw9a1dvXHvit1x74rdWUj3StXl6fjh++ZFbVXxYd/LM254+Pz5M2JXa3fc/fyuAV23takz/vVX2+Jff7UtK7lqyoviO+89JmoO8fnltQQAAAAAAAAAAAAAwPCVynUAAAAAAAAAAAAAAAAAAIAjSXt3X1zz41XR29d/KU91eXpICpeuPqM+jp1YkWj2l6v3xnd/vT3LiQAYqT75hqlx/eum5DrGQV1+cl3cfPGcSKcKcpahsTVZIWZNeTrLSYZWvu57pJlaXRo/ev9xMXNsWa6jHNTEUcVx22XHxtG15YN2T8+43EunCuLmS+bE+ceMzXWU3xtXURS3v//YmDuIP2sAAAAAAAAAAAAAAAwfil0BAAAAAAAAAAAAAAAAAAbg8/etj7W72pPNnjczxlUUZTnRS+VHX3nbUYnLnQayBwB4uY+9fkr804Wzo6xoeH1kQXlxYfzdW2fF58+fEQU57Dvsy0Q0d/Qmmi0vLsxymqGTr/seqabXlMbdHzo+Fs+uznWU/VpYXxk/+9D8OHZixaDf2zMu99Kpgvj6O+bEFadOynWUmDexIu684nilrgAAAAAAAAAAAAAAI9jwegcBAAAAAAAAAAAAAAAAAMAw9l9r9sb3lm5PNHvO0TVx4fxxWU70B8fVVcSVp9cnmm3v7otrfrwqevoyWU4FwEh18cLxcd+VC2LR5KpcR4mIiFOmjYr7PrIg3r1oQq6jRGdPX+LZksKR87EP+brvkWxUaTpuvfSY+PJbZsWo0nSu40RERHE6FX911tT4yQePjwlVxVlbxzMu99Kpgrjh3OlxyyVzoqpk6MugCwoiLj1pQtz1weNjWnXpkK8PAAAAAAAAAAAAAMDQ8U4XAAAAAAAAAAAAAAAAAIAEmtp74vr/XB2ZBF2oo0rTceMFM7Mf6mWuf93kOGpcWaLZZVta4h//a3OWEwEwks0cWxZ3fvD4+KeLZsfkMSU5yTC9pjS+8c6j48eXHxczxg6P4r2BFJwWpQuymGRo5eu+88F7TpwQj1x7Qlxxal2UpHPzUSWFqYK4eMH4eOjqhXHtmZMjncr+z5Bn3PBwwXHj4uFrF8XbF4wfsjXnTiiPJZcfFzdeMCtKi3w8DwAAAAAAAAAAAADASJfOdQAAAAAAAAAAAAAAAAAAgCPBp+5eG9v3dSWa/dy506O2qjjLiV6pOJ2Kr7ztqHjbvzwbfQkKaL/68OY4a/aYOGFyVfbDATAiFRREXLxgfLzt+HFx5/Kd8S9PbItlW1qyvu6p00fHB06pizfOrYkh6HcckK6BFJwWDrPwhyFf950vxlUUxQ3nzogrT6+P7y3dHv/+VEPi18aHY0xZOi5eMD4ue/XEmDm2LOvrvZxn3PBQW1kUX71odlz2qolx86Nb4hcr90Rvkv/gGaDj6yrimjMnx3nHjHXuAAAAAAAAAAAAAAB5RLErAAAAAAAAAAAAAAAAAEA/7ly+M37y7M5Es687aky844TaLCc6sBOnVMXlJ9fFt57Y1u9sb18mrlmyKu77yIIoLy4cgnQAjFTpVEFcNH98XDR/fKzd1R4/eXZn/HL13nh6S0v0DEL5XrqwIBbVV8W5x9TEecfUxNTq0kFInR2dvcn3W1yYymKSoZWv+843E6qK438tnhrXv25KPLquKe5/cU88uGpPrN/dMWhrTBxVHItnV//PP2OiJJ37nxfPuOHhxClV8S/vnhub93bGD5/cEfev3BPPbW+NzGF8C+pHl8T588bGhfPHxYJJlYMXFgAAAAAAAAAAAACAI0ZBJnM4/2s6AAAAAAAAAAAAAAAAAPnoueeei+OOO+6gMw9evTCOri0fokRANl15+8q4c3n/xbbf/7N58fqjxgxBovz15m8+G09tbu537oGrF8Zcz2BgGGju7I1ntrbEih1tsbKxLbY2dcWO5q5obO2O9q7e6OzNRHdvXxQVpqKsKBWl6VTUlKejfnRJ1I8piVljy2JhfWUcV1cxLModgf1raOmO5dta4vntbbFud3ts39cV2/d1xe627mjv6YvOnpd+19OpgihNp6K0KBVjytIxsao4Jo4qiWnVJTFvYkUcO7EiJo8pyfV2EvOMy72Glu54fF1TvNjYFqsb22PtrvZo6uiN1q6X/omIKCtKRVlRYYyvKIqp1SUxtbo0jquriFdNHRVTjqCfN2B4eLGhLRbftOygM8uXL49jjz12iBIBAAAAAAAAAAAAcJhuT+c6AQAAAAAAAAAAAAAAAAAAADAyVZUUxukzRsfpM0bnOgqQRbWVRbF4dnUsnl2d6yhDyjMu92ori+Ktx4/LdQwAAAAAAAAAAAAAAI5gqVwHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYaopdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC8o9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMg7il0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLyj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDuKXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAvKPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIO4pdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC8o9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMg7il0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgLyj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyDuKXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAvKPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADIO4pdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIC8o9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMg76VwHAAAAAAAAAAAAAAAAAABgZLj01ucHfs1JE+LGC2ZlIc3wtrutO46/cWmuYwAAAAAAAAAAAAAAAAAA5LVUrgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw1xa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQN5R7AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5B3FrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA3lHsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkHcWuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDeSec6AAAAAAAAAAAAAAAAAAAAw9vXL5kTX79kTq5jjCg15UWx5XOn5ToGAAAAAAAAAAAAAAAAAEBeS+U6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAUFPsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkHcWuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDeUewKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQdxa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQN5R7AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5B3FrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA3lHsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkHcWuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDeUewKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOQdxa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQN5R7AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA5B3FrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA3lHsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADkHcWuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDeSec6AAAAAAAAAAAAAAAAAAAAAAOzoqEtzrppWaLZ33zspKgbVZzlRCOHswUAAAAAAAAAAAAAAADIH6lcBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGqKXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAvJPOdQAAAAAAAAAAAAAAAAAAAAAADl1PbyaWb2+NJzc3x8rG9ti0pyM27+2Mpo6eaO/ui/buvkinCqK8OBWVxYVRP7okplSXxqxxpXHi5KpYWF8Z5cWFud7GEcWZAwAAAAAAAAAAAAAAjAyKXQEAAAAAAAAAAAAAAAAAAACOMHvaeuLeFbvjnhd2xSNrm6Kzp++g8719mejs6Ys9bT2xaW9nPLFh3++/VpgqiFdPrYo3zRsb588bGxOqirMd/4jkzPcvk4n4xuNb4/88sDG6+jmTV02tiv/8wPFDlAwAAAAAAAAAAAAAAKB/il0BAAAAAAAAAAAAAAAAAAAAjhBrdrbHNx7fGrcva+y3WDSp3r5MPL5+Xzy+fl/c8PP18ZbjxsVVr6mPYyaUD8r9j3TO/MC2NnXGtUtWx+Prm3IdBQAAAAAAAAAAAAAA4JAodgUAAAAAAAAAAAAAAAAAAAAY5lo6e+OL92+I7y3dHplM9tbp6cvEkmcaY8kzjXHJwtr43LnTY3RZfn48hTM/uCXPNMZf3702mjt6cx0FAAAAAAAAAAAAAADgkA3/d3EAAAAAAAAAAAAAAAAAAAAA5LHH1jXFdUtWxbZ9XUO67u3LGuKh1XviK287KhbPrh7StXPNmR9YU3tPfPKna+PO5TtzHQUAAAAAAAAAAAAAAOCwpXIdAAAAAAAAAAAAAAAAAAAAAID9+/cnG+I9tz4/5AWjv9PY0h1//oMV8b2l23Oyfi448wN7ZG1TLL55mVJXAAAAAAAAAAAAAABgxEjnOgAAAAAAAAAAAAAAAAAAAAAAr/TVhzfHjQ9szHWM6O3LxKd+ujYaW7rjY6+fkus4WeXM96+zpy++dP+G+NYT2yKTyXUaAAAAAAAAAAAAAACAwaPYFQAAAAAAAAAAAAAAAAAA4Agzt7Y8tnzutFzHGJGcLcPFv/12x7AoGP1jX3loU4yrKIrLXj0x11Gywpnv33PbW+OaH6+KFxvacpYBAAAAAAAAAAAAAAAgWxS7AgAAAAAAAAAAAAAAAAAAAAwjD67aE5/66doBX1eSTsUp00bFmbPGxNwJ5TFzbGmMKUtHeXFhdPdmormzNzbt6YiVjW3x2LqmeGj13tjT1jOgNT79s7VRP6Yk3jCnesD5hjNn/kp9mYivP7YlvvzgxujuzQzp2gAAAAAAAAAAAAAAAENFsSsAAAAAAAAAAAAAAAAAAADAMLGztTs+esfq6O1LXqQ5vrIorjy9Pt55Qm2MKdv/R0mkUwVRVpSK2sqiOHFKVbx70YTo7s3EXc/tjH9+ZEu82NCWaK2+TMRf3rE6Hrh6YdRWFiXOOJw581fatLczrluyKn61Yd+QrAcAAAAAAAAAAAAAAJArqVwHAAAAAAAAAAAAAAAAAAAAAOAln7hzTexq7U48f+lJE+KRaxbFh/Q/NYcAACAASURBVE+bdMCC0QMpKiyIi+aPj/s+siA++YapUZgqSHTd7rbu+PhPVg9oreHMmf+pHy1rjLNvXjagUtd0YbJ9AAAAAAAAAAAAAAAADDeKXQEAAAAAAAAAAAAAAAAAAACGgbuf3xX3rtidaLYwVRA3XjArbrxgVlSVFh7WuunCgrjmjMnxnffMjbKiZB9F8cDKPXHn8p2Hte5w4Mz/YE9bT3zothfjujtWRXNnb6JrClMF8bHXT4l3L5qQtVwAAAAAAAAAAAAAAADZpNgVAAAAAAAAAAAAAAAAAAAAIMd6+zJx4wMbE89/4fwZcelJg1umuXh2ddx08ZxIFSSbv/GBjdHTlxnUDEPJmf/BQ6v3xuKbl8Xdz+9KfE396JL40fuPjetfNyUKE+YHAAAAAAAAAAAAAAAYbhS7AgAAAAAAAAAAAAAAAAAAAOTYbU81xJqd7Ylm//zVE+N9r5qYlRxvnFsT179uSqLZ9bs74ge/3ZGVHEPBmUd0dPfFp3+2Li79/vPR0NyV+Lo3zRsb91+1IF49ddSgZQEAAAAAAAAAAAAAAMgFxa4AAAAAAAAAAAAAAAAAAAAAOdSXifjnR7Ykmp1eUxqfPmd6VvNcc+bkOHZiRaLZrz2yJXr7MlnNkw3O/CVX/2hlfPtX2yKT8HZlRam48YJZ8Y13Hh2jStODkgEAAAAAAAAAAAAAACCXFLsCAAAAAAAAAAAAAAAAAAAA5NBDq/fEhj0diWb/9rwZUVaU3Y+LSKcK4m/Pn5FodmtTZzywak9W82SDM39JU0dP4tl5Eyving8viEtPmjAoawMAAAAAAAAAAAAAAAwHil0BAAAAAAAAAAAAAAAAAAAAcuj7v9mRaO6EyVVx1pzqLKd5ySnTRsVpM0Ynmv3er7dnOc3gc+YDc/nJdXH3FcfH7PFlQ7ouAAAAAAAAAAAAAABAtil2BQAAAAAAAAAAAAAAAAAAAMiRhuauuH/lnkSzV71mUpbTvHy9+kRz/7Vmb2ze25nlNIPHmSdXU14U333vMfH582dEcdrHlAAAAAAAAAAAAAAAACOPd0wAAAAAAAAAAAAAAAAAAAAA5Mi9K3ZHb1+m37ma8qI4Z07NECT6g9fOGhMTRxX3O9eXibjnhd1DkGhwOPNkXjNzdDxw1YJ4w5zqrK4DAAAAAAAAAAAAAACQS+lcBwAAAAAAAAAAAAAAAAAAABgqPb2Z+O3m5vjVhn2xZld7rN3ZETuau6K1qzfauvsik8nE6NJ0VJUWxoTK4jiuriKOr6uMV0+riqnVpbmOP2I0d/TGbzY3x/JtLfHs1tbYsKcjmjt6Y19nTzR39kZERGk6FeXFhTGhsijqRpXE0bXlcVxdRZw6fVSMrSjK8Q5g8Ny7Ilk554Xzx0W6sCDLaf5UqiDi7fPHx02Pbul39ucv7IorTq0bglSHz5kfXDpVEB9fPCWufs3kSA3t9gEAAAAAAAAAAAAAAIacYlcAAAAAAAAAAAAAAAAAAGDEe3x9U3x36Y745ao90fI/xaEHsrO1O3a2dse6XR3xxIZ9v//zRZOr4qL54+LihbVRVVLY75o/WtYY192xqt+5TyyeGte9dnL/m/gjKxra4qybliWa/c3HToq6UcUDun9ExPJtrfHGW57ud+6aMybHJ98wtd+57t5M3Ltid9zxTGM8uHpvdPX0HXS+pbc3Wjp7o6G5K57d1hr3vfhSEWNBQcSCSZXxjoW1cdGC8Ym+FwMxFGcLv9PS2RuPrmtKNHv20TVZTrN/Z82pTlQyunRTc+xu646a8uFdvOzMD25adWncfMmcWFhfOWj3BAAAAAAAAAAAAAAAGM4UuwIAAAAAAAAAAAAAAAAAACPWQ6v3xufvXR8rGtoO+15Pbm6OJzc3x1ce2hzXnjk5LnvVhChOpw44v2lvR6L7ji4bnm/7TlqY2tTRc9Cv92Ui7nimMb784MbYtLfzsHNlMhHLtrTEsi0t8aUHNsQ1Z0yOK06pO+j3Aoarh9fuje7eTL9z5cWFcfLUqiFI9EonTqmKqtLCaO44eCl2b18mHly1Ny5eMH6Ikh0aZ35gF84fF19686xBL8wGAAAAAAAAAAAAAAAYzrwzDQAAAAAAAAAAAAAAAAAAGHF2tXbH5T9cEe+99flBKXX9Y7vbuuOGn6+Ls25+Op7b3nrgDG0HLzz9nfKi4fm277KEuVq7Dlw8uHFPR7z5G8/EtUtWDUqp68s1d/TGF3+xId70zWdjzc72Qb8/ZNvj6/Ylmjt5alXOyovTqYI4ddroRLOPr2/KcprD58xfqaK4MP7xwqPin98+R6krAAAAAAAAAAAAAACQd4bnO/wAAAAAAAAAAAAAAAAAAAAO0ZObm+ONtzwd967YndV11u5qjwu++Wx8/zc79vv1ve3die6TtEB1qJUVJyv3a+3cf7HrL17cHW+85Zl4emvLYMbar+e3t8YF33o2lm3J/lowmJZuTFYyesLkqiwn6W/9ykRzv9qQbD+55Mz/1IL6yrjvygVxycLaw7oPAAAAAAAAAAAAAADAkWp4vsMPAAAAAAAAAAAAAAAAAADgEDy6tiku+c5zsW1f15Cs19nTF39115q46dEtr/javo79F56+XOlwLXZNJ8vV2vXKff70uV3xgX9/MfZ19Ax2rANqau+Jd333uVizs33I1oTD0dXTFy80tCWaXVifrOQzW5Kuv353RzQnfPblgjN/pc+cMz2m15Qe8vUAAAAAAAAAAAAAAABHunSuAwAAAAAAAAAAAAAAAAAAAAyGX23YF3/+gxeio7tvyNf+4i82RDpVEB8+bdLv/6y1M1nRXnHCAtWhli4siIKCiEzm4HNtLzvvB1ftiat/vDJ6+/q5MAuaO3vj8h+uiHs/smDYFubm0i9X741Lb30+1zGy6oOn1MXnzpuR6xiJrGhoi57eZL8nx9dVZDlNf+snKxnNZCKe3dYSp80YneVEh8aZAwAAAAAAAAAAAAAA8HLeiQYAAAAAAAAAAAAAAAAAABzxGpq74kO3vRjtOSh1/Z3P37c+Hl6z9/f/3tKVsNi1sCBbkQ5bOtV/tj8+8/W7O+LK21cmLk7MhtU72+Nrj2zO2fqQ1MrG9kRzlSWFUVtVnOU0B1ddno4xZelEs0n3lQvOHAAAAAAAAAAAAAAAgJdL9g4OAAAAAAAAAAAAAAAAAACAYSqTibjqRytjZ2v3gK9NFUScOn10vPaoMTF/UmXMqCmNMWXpKCtKRXt3XzS2dMcLDa3xyJqmuHfF7tjR3HXQHNcuWRX3X7UwxlUURWvCYtfCBOWpuVJUmIru3oPvo+1/9tndm4krb18ZLZ0Hni8tSsXio6rjtBmjYt7EipheUxpVJYVRWlQYXT190dLVG40t3bG6sS2WbW2JX67aGy82tA0499cf2xrvP7kuxlUUDfhaGCprdiYr45xRU5rlJMnMGFsWT21u7nduVePAf2eHijMHAAAAAAAAAAAAAADg5RS7AgAAAAAAAAAAAAAAAAAAR7TblzXE4+v3DeiawlRBvPfECXHVa+pjypiS/c5UlhRGZUlhzBhbGucfMzY+f/6MuHfF7vi7BzfFygOU6DW2dMff3L02/t87jo727r5EWdLDuNg1SbaOnpf2+ZWHNsUzW1v2OzOhqjj+4oz6uGRhbVSVFO53prQoFaVFqRhXURTHTCiPC44bF585J+I3m5rjC/etj6Ub+y83/J3Onr74zq+3x8dfPyXxNTDU1u3uSDQ3Y2xZlpMkM3NsaaKS0fUJ95ULzhwAAAAAAAAAAAAAAICXS+U6AAAAAAAAAAAAAAAAAAAAwKFq6eyNL92/YUDX1I8uibuuOD6+9OaZByx13Z90qiDeNG9s3H/VgvjUG6ZFunD/pac/fW5XLNvSEl09mUT3TRUc2cWuXT2ZWLurPb7+2JZXfK2gIOKKU+visesWxeUn1x2w1PVgTppSFUsuPz6uOLVuQNf9x1MNA14LhtLmvZ2J5upGFWc5STITq5Ll2Lgn2b5ywZkDAAAAAAAAAAAAAADwcopdAQAAAAAAAAAAAAAAAACAI9atv9keDS3diednjSuLuz80PxZMqjzkNQtTBfEXZ9THbZcde8Ci0i/ctz66e/sS3W8Y97omytbV2xefvGttdPf+aZFtWVEqvvnOuXHDuTOirOjw3tqeKoi44dwZccnC2sTXbGnqjKe3thzWupBNW5uSlXHWVg6PktHxCXNsSbivXHDmAAAA/H/27jRMrrM8E/DbVdX7pq27ZclaLduSJcsajI3FErADMSaEgAMJYScGQsJkSAaSgcw1yTiTa7IRkkCGhCUzGcxih2AIsVkyYMCMbCdecORNtqzF2tVSS+p9q2V+MApeWtLpVledLtV9/7TeOu/zfbrq+FfpAQAAAAAAAAAAeDbFrgAAAAAAAAAAAAAAAAAAQFXKF0vxN/ccTDw/vyUXN7/tkuhqq5+V/Vet6Ii/e8f6aG14brnr3bsHYnC8kOg5mTnc7JpJEG1ovBBbdvU/47815jLxt29aF9etWzCreX7/Vauiuz154eKdO07M6n6YLaVSRN9wslLq2Xpnna3uhDnG88XE779KcucAAAAAAAAAAAAAAABMRbErAAAAAAAAAAAAAAAAAABQlb617VgcHJhIPP+Rn10TSzobZzXDxiVt8dc/f1GcTTdrkvLUtNTN8GB//DMXxItXd85ymoi2xmy878VLE8/ft2dw1jPAbDg+Ohn5YinR7JwpGW1PnuPIUPJ3c6W4cwAAAAAAAAAAAAAAAKaSSzsAAAAAAAAAAAAAAAAAAADATPzDQ0cTz75szbx45doFZclxzYXz492bl8Sn7jpQluenaSals6/buChev6lr9sP8f2+4rCt+/592x2ThzAWNDx0cLluOanT1mnmx/8YXph2DiDg2kk8829E0N/5piLbG5DmOj+QjFpYxzAy4cwAAAAAAAAAAAAAAAKaSSTsAAAAAAAAAAAAAAAAAAADAdA1PFOI7248nnv+tn1xexjQRH/7J5bF8flNZd1SDtsZs/M61q8q6o7M5F1cs70g0e3hwIoYnCmXNAzMxMJa8ZLStMVvGJMm1NSTP0T+N81WKOwcAAAAAAAAAAAAAAGAqil0BAAAAAAAAAAAAAAAAAICqc/fugRibLCaafd757XHZkray5mnIZeJDZS6PrQbvuHJxdLfVl33P5pXJil0jIvYcHy9jEpiZgbHkhcPTKfcsp9aG5P9ExXTOVynuHAAAAAAAAAAAAAAAgKkodgUAAAAAAAAAAAAAAAAAAKrO3bv7E8/+/KauMib5sddsWBQXLGquyK65KJupixtecF5Fdq3raU08e2RoooxJYGZGJpOXcLY2zpGS0WnkGJmYeyWj7hwAAAAAAAAAAAAAAICpKHYFAAAAAAAAAAAAAAAAAACqzj27BxLN1dVFXLt2QZnT/HhXpYpN56KXXjAvutsbKrJr1YKmxLN9w/kyJoGZGZssJp5tzNaVMUlyjdnk/0TFWD75+SrFnQMAAAAAAAAAAAAAADAVxa4AAAAAAAAAAAAAAAAAAEBVyRdL8ejhkUSza7tbKlY2GhFx/cauaMjV5s+4r1tXmQLdiIglncn/TofGFbsy94xPo4Qzm5kbJaO5aZSdTud8leLOAQAAAAAAAAAAAAAAmEpt/iIQAAAAAAAAAAAAAAAAAACoWjv7RmMiYYHdFcs7ypzmmdqbsnH1mnkV3TlX/MQFlTt3R1MucfHieKFU5jQwfYVpdHDOlZLRiIikUfLFufe9c+cAAAAAAAAAAAAAAABMRbErAAAAAAAAAAAAAAAAAABQVZ7oHU08u2lpWxmTTO26dQsqvjNtC1vr4/x5jRXd2daYTTQ3OZ02R6iQYilZCWduDhWMRiQvPC3Owa+dOwcAAAAAAAAAAAAAAGAqil0BAAAAAAAAAAAAAAAAAICqsrMvebHrhV3NZUwytReu6qz4zrSt62mp+M7GbLKyQ72uzEXFZB2jkZljJaNJS0+TlqhWkjsHAAAAAAAAAAAAAABgKopdAQAAAAAAAAAAAAAAAACAqnJgYCLx7JpFlS92XdrZGMvnN1V8b5rSOG8u6+fyVK/EZZ1J20grJJ8wTy5h8XIluXMAAAAAAAAAAAAAAACm4pdqAAAAAAAAAAAAAAAAAABAVdl/YjzRXGtDNjqacmVOM7V1PS2p7E1LT3tDxXcm7GiEOakhYQln0lLPSikkzNM4B4uX3TkAAAAAAAAAAAAAAABT8asMAAAAAAAAAAAAAAAAAACgqvQOTSSaW9xR+bLRky7qqq1i186mbNoRoKrUT6OEM2mxZ7mVShFJo9QnLFGtJHcOAAAAAAAAAAAAAADAVBS7AgAAAAAAAAAAAAAAAAAAVaV/NJ9orqu1vsxJTm31wqbUdqehMeen6zAdDbnkJZxzpWQ0P40cDXPwneDOAQAAAAAAAAAAAAAAmIpfZQAAAAAAAAAAAAAAAAAAAFXlxFiyYteOplyZk5zaorb0SmXTkMskL0wEIuqzyb8zY/liGZMkN50cDdM4X6W4cwAAAAAAAAAAAAAAAKai2BUAAAAAAAAAAAAAAAAAAKgaxVLE0Hgh0Wx7U7bMaU6tu60htd3A3NfakPz9NJjwnVdugwlLtSMiWqZxvkpx5wAAAAAAAAAAAAAAAExFsSsAAAAAAAAAAAAAAAAAAFA1JvLFKJWSzTbXp/dz6s7mXGq7gblvQUt94tmkZdblNjCNHAtbk5+vUtw5AAAAAAAAAAAAAAAAU1HsCgAAAAAAAAAAAAAAAAAAVI3JYsJW14ioz6b3c+rGbF1qu4G5b0FL8vLnuVIyOp0c0zlfpbhzAAAAAAAAAAAAAAAApqLYFQAAAAAAAAAAAAAAAAAAqBqThWLi2VyKv6ZuSHM5MOctaKlPPHtiNF/GJMn1TyPHwmmcr1LcOQAAAAAAAAAAAAAAAFPxa0AAAAAAAAAAAAAAAAAAAKBqFEvJZ+vq6soX5AyymfR2A3NffbYu2hqziWZ7hybKnCaZgwPJctTVRcxrzpU5zfS5cwAAAAAAAAAAAAAAAKai2BUAAAAAAAAAAAAAAAAAAKgauWkUpham0wI7y8bzxdR2A9Whu60h0Vzv4GSZkyRzaDBZyWhXW8OcLbd25wAAAAAAAAAAAAAAADybYlcAAAAAAAAAAAAAAAAAAKBqTKfYNZ9iseuEYlfgDFYuaEo01zuUrNyz3HoTloyuTniuNLhzAAAAAAAAAAAAAAAAni2XdgAAAAAAAAAAAAAAAAAAAICk6rPJi10nC+kVu45MKnZl7vnukyfiLTc9mnaMsnrXVefFjdetSjtGIqsXNsUd2888t+f4ePnDJLD72FiiudWLmsucZObcOQAAAAAAAAAAAAAAAM+WSTsAAAAAAAAAAAAAAAAAAABAUg3ZTGQSdrsOjRfKG+Y0jgxNpLYbqA4rFzQlmtvRN1rmJMk8eTRZjtULk50rDe4cAAAAAAAAAAAAAACAZ1PsCgAAAAAAAAAAAAAAAAAAVI26uoi2xlyi2cGxfJnTnFrv4GRqu4HqsGphc6K5fSfGY7JQKnOa0xscL8ThwWSF1asTnisN7hwAAAAAAAAAAAAAAIBnU+wKAAAAAAAAAAAAAAAAAABUlXnNyYpd+8cKZU5yavv6x1PbDVSHDee1JporFEux4+homdOc3uO9I4lnL1vSVsYkZ8edAwAAAAAAAAAAAAAA8GyKXQEAAAAAAAAAAAAAAAAAgKrS2ZRNNHd4cKLMSU5t2+HkhXxAbVrUWh8r5jclmn1w/1CZ05zeA3sHE80t7WyMxR0NZU4zc+4cAAAAAAAAAAAAAACAZ1PsCgAAAAAAAAAAAAAAAAAAVJWe9mQFdr1DE1EqlTnMKWzrVewKnNnly9oTzf1wf7KSz3K5f1+y/VcsT3aeNLlzAAAAAAAAAAAAAAAAnk6xKwAAAAAAAAAAAAAAAAAAUFWWdDYmmpsslOLw4ESZ0zzXwFg+HlfsCiSQtGT0vj3plozem3D/Fcs7ypzk7LlzAAAAAAAAAAAAAAAAnk6xKwAAAAAAAAAAAAAAAAAAUFWWdDYknt1+dLSMSaa2ZddAFIqliu8Fqs+LVnUmmtvWOxIHBypfVB0R8cih4cQl2S9Znew8aXLnAAAAAAAAAAAAAAAAPF0u7QAAAAAAAAAAAAAAAAAAAADTsXphc+LZx3tHKl569+0njlV0HyR19Zp5sf/GF6Ydg6e5sKs5Vi1sil19Y2ecvWP78Xjz5T0VSPVM33nieKK5i7pa4oJFyd/PaXHnAAAAAAAAAAAAAAAAPF0m7QAAAAAAAAAAAAAAAAAAAADTcXF3S+LZ+/YOljHJc03ki3H7o30V3QlUt2vXLkg09/WU3i23PZJs7yvXJTvHXODOAQAAAAAAAAAAAAAAOEmxKwAAAAAAAAAAAAAAAAAAUFVWLWiKxlyyn0r/y1MDZU7zTF9/7FgMjhUquhOobq9cuzDR3J07TsTBgYkyp3mmhw4OxyOHhhPNXldFJaPuHAAAAAAAAAAAAAAAgJMUuwIAAAAAAAAAAAAAAAAAAFUlm6mL9YtbE80eHpyIfz0wVOZEP/bJuw5UbBdwbnj+svZYsaDpjHPFUsQtP+ytQKIf+9x9hxLNretpiY1L2sqcZva4cwAAAAAAAAAAAAAAAE5S7AoAAAAAAAAAAAAAAAAAAFSdzSs7Es/e/khfGZP82B3bj8fWCpbIAueGurqIt1zek2j2M/cciOGJQpkT/cjBgYn4uwePJJp9+xWLy5xmdrlzAAAAAAAAAAAAAAAATlLsCgAAAAAAAAAAAAAAAAAAVJ3NqzoTz978w96YyBfLmCYiXyzFjd/cXdYdwLnrjc/rjvps3Rnnjo/k42/uOViBRBF//v29id6dbY3ZuP6yrgokml3uHAAAAAAAAAAAAAAAgAjFrgAAAAAAAAAAAAAAAAAAQBXavKIjWhuyiWb7hifjlh/2ljXPR7+3N548OlrWHcC5a0FLfVy/MVlR51/cuS92Hxsra5779w7GF+4/nGj2zZf3JH4fzyXuHAAAAAAAAAAAAAAAgIiIXNoBAAAAAAAAAAAAAAAAAAAApqupPhM/tXZ+fGXr0UTzH/nu3njtpV3R3jT7RXh37jgRH79z36w/F6gtv/GyZXHr1iMxWSiddm5sshi//pXt8ffv2BC5bN2s5xgaL8RvfPXJKJ4+RkREtDdm49decv5Z7/zmtmNxwxe3JZq9uLsl7njfprPeGVHbdw4AAAAAAAAAAAAAAMCPZNIOAAAAAAAAAAAAAAAAAAAAMBOvu7Qr8ezR4cn4zX/cMesZHj44HO+55fHnlPF1NudmfRdwbls2rzHedHlPotl79wzGb5XhnVYoluJXvvRE7Dg6mmj+vS9aGvNbqvd9584BAAAAAAAAAAAAAABQ7AoAAAAAAAAAAAAAAAAAAFSlqy+cH6sWNiWe/8eHj8Yf37Fn1vbfvXsg3vC3j8TgeOE5f/YfX7Zs1vYAteM3Xros5iUshr7lh73xodt2RuHZzdIzNJ4vxq986Ym4Y/vxRPPL5zfFezafNyu70+TOAQAAAAAAAAAAAAAAaptiVwAAAAAAAAAAAAAAAAAAoCpl6iLes3nJtD7zF9/fFx+6bWeM54sz3lsoluLjP9gXb/zsIzEwln/On1/Y1Ry/sKl7xs8HaldXW338t1etSjx/072H4q2feyz294+f1d4njozE9f/z4bj90b5E85m6iD973Zpoacie1d65wJ0DAAAAAAAAAAAAAADUtlzaAQAAAAAAAAAAAAAAAAAAAGbqF5/XE5+860DsPjaW+DM33Xsotuzsjw9evSx+ev3CyGXqEn0uXyjF1x/ri49+b29sPzI65UxdXcQfvHp1ZDKJ4wA8w/Ubu+Lrj/bFNx47lmj++ztOxNV/+WDccNV58c4rF0d3e0PiXXuOj8Vn7jkYn733UEwWSok/967NS+KqFR2J5+e6Wrvz3qHJ+Hd/cu+sPGu67t0zGEt/965Ze97Hrr8wfu6yrll7HgAAAAAAAAAAAAAAUHsUuwIAAAAAAAAAAAAAAAAAAFWrPlsXN163Kt7++cem9bmdfaPxq3//RCz4en381Nr58YLlHXFRd0ss7WyM9sZsNOQyMTxRiIMD47Ht8Ej835398c1tx6JvePK0z33XVUti88rOGJ4onM2xgBr3Z6+9MHYcfSieODKSaH54ohAfu3NffGLL/njB8o645sL5sf681li9sCk6m3LRXJ+J0cli9I/lY/uR0Xjo4FDc8cSJuG/vQBSTd4tGRMRLVnfGf375ihmcam5z5wAAAAAAAAAAAAAAALVJsSsAAAAAAAAAAAAAAAAAAFDVXn7R/Hj9pq74+wePTPuzx0Ym4+YHeuPmB3rPOsempW3x4ZcvP+vnALQ3ZeOmt6yLV396axwZOn2h9NPlC6XYsqs/tuzqL0uutT0t8ek3ro1ctq4sz0+TOwcAAAAAAAAAAAAAAKhNmbQDAAAAAAAAAAAAAAAAAAAAnK0/fPUFsba7JbX9qxc2x01vWReNOT/hBmbH+fMa4+a3rY/u9oa0o0RExLqelvjiWy+J9sZs2lHKxp0DAAAAAAAAAAAAAADUHr8KBAAAAAAAAAAAAAAAAAAAql5zfSY+/9ZLYuWCporvXrOoOb7wtktiQUt9xXcD57a1PS3xtXddGqsXNqeaY/PKzvjKL106ZwpPy8mdAwAAAAAAAAAAAAAA1BbFrgAAAAAAAAAAAAAAAAAAwDlhcUdDfPmdG2JdT0vFdl5z4fy47d0bY9m8xortBGrLsnmNcdu7L42fvXRRxXdnM3Xx71+yNL74tkuivSlb8f1pcecAAAAAAAAAAAAAAAC1Q7ErAAAAAAAAAAAAAAAAAABwzljc0RC3vXtjvPF53WXd096Yjd+9dmX87zevO+vivbpZygScuzqbc/GJ118Uf/WGi6KnvaEiO9f1qfMRPAAAIABJREFUtMRXb9gQH375iqjP1t6byp0DAAAAAAAAAAAAAADUhlzaAQAAAAAAAAAAAAAAAAAAAGZTU30m/vRn18TrL+uO3/vW7th6YGjWnp3L1MXrNnbFb79iRXS31Z9yrlRK/sxsRnkfkMxrNiyKa9cuiM/ddzg+sWV/HBqYmPUd6xe3xvtfen68at3CqPN6cucAAAAAAAAAAAAAAADnOMWuAAAAAAAAAAAAAAAAAADAOWnzyo74+ns2xpZd/fG5+w/HP207FuP54oyetXx+U/zi87rjjc/rOW2h60nT2dOUy8woE1CbGnOZuOGq8+IdVy6OH+zsj69sPRLffuJ4nBjNz/iZy+Y1xnWXLIzrN3bFpee1zmLac4M7BwAAAAAAAAAAAAAAOHfVlUqlUtohAAAAAAAAAAAAAAAAAKgujzzySGzYsOG0M3e8b1Nc3N1SoUQAcGYT+WLcv28w/vmpwdh+ZCR29Y3FocGJGJksxOhEMUrxo5LVzuZcLG5viAsWNceG81rjRas6Y13P9P6fdqB/PK746P2JZu//wPNjcUfDDE4E8COlUsS23pH4l6cGYlvvSOzqG409J8ZjcKwQI5OFmMgXo7k+Gy0NmZjfXB8rFjTFqoVNsWFxa1y1siOWdjamfYSq484BoDY93jsS1/yPB0878/DDD8f69esrlAgAAAAAAAAAAACAs/SlXNoJAAAAAAAAAAAAAAAAAAAAKqEhl4nNKztj88rOsu/qG8knnm1vypYxCVAL6uoi1vW0TLuEmplz5wAAAAAAAAAAAAAAAOeGTNoBAAAAAAAAAAAAAAAAAAAAzjVHhiYSzbU1ZqO1QbErAAAAAAAAAAAAAAAAAKRBsSsAAAAAAAAAAAAAAAAAAMAs23F0LNFcT3tDmZMAAAAAAAAAAAAAAAAAAKei2BUAAAAAAAAAAAAAAAAAAGCWPXZ4ONHcivlNZU4CAAAAAAAAAAAAAAAAAJyKYlcAAAAAAAAAAAAAAAAAAIBZds9TA4nm1i9uLXMSAAAAAAAAAAAAAAAAAOBUFLsCAAAAAAAAAAAAAAAAAADMoqeOjcVTx8YSzV6yuKXMaQAAAAAAAAAAAAAAAACAU8mlHQAAAAAAAAAAAAAAAAAAAGC2lEoRhwYnYlffaOzsG4vdx8aid2gi/vx1F0amrjIZvrz1SOLZq1Z0lDEJAAAAAAAAAAAAAAAAAHA6il0BAAAAAAAAAAAAAAAAAICq9NSxsdiyqz92HRuLXX2jsatvLHYfH4uxyeJzZt90eU9FSlQnC6X4wv2HE82u7WmJ7vaGMicCAAAAAAAAAAAAAAAAAE5FsSsAAAAAAAAAAAAAAAAAAFCVtvWOxG9+bUei2c/dd6gixa6fv/9wHByYSDT7UxcvKHMaAAAAAAAAAAAAAAAAAOB0MmkHAAAAAAAAAAAAAAAAAAAAmIkXreqMxlyyn0x/9aGj8eD+obLm6R2ciD/6zp7E8z+/qbuMaQAAAAAAAAAAAAAAAACAM1HsCgAAAAAAAAAAAAAAAAAAVKW2xmxcu3ZBotlSKeLXvrw9Tozmy5JlIl+Md9/yeAyMJXv+5pUdsWphU1myAAAAAAAAAAAAAAAAAADJKHYFAAAAAAAAAAAAAAAAAACq1jtfsDjx7M6+0XjnF7ZF/yyXu45OFuOXvrgt7ts7mPgz73/pslnNAAAAAAAAAAAAAAAAAABMn2JXAAAAAAAAAAAAAAAAAACgal25vCM2r+xIPP8vewbilZ/cGg/uH5qV/Y8dHolXf2prfPfJE4k/c9WKjnjJ6s5Z2Q8AAAAAAAAAAAAAAAAAzJxiVwAAAAAAAAAAAAAAAAAAoKrdeN2qyGbqEs/vOT4Wr/701njPLY/HQweHZ7TzscMj8YF/eDKu/et/jW29I4k/15DLxB/8zOoZ7QQAAAAAAAAAAAAAAAAAZlcu7QAAAAAAAAAAAAAAAAAAAABnY/3i1njfi5fGx+7cl/gzpVLE7Y/2xe2P9sWK+U3xiovnx/rFrXFxT0v0tDVEa2M2WuozMTxRiOOj+Tg+ko/tR0bin58ajHue6o9dfWMzyvqfrlkeF3W1zOizAAAAAAAAAAAAAAAAAMDsUuwKAAAAAAAAAAAAAAAAAABUvQ9cvSzu3zsYW3b1T/uzTx0fi8/cc7AMqZ7p+o1d8d4XLSn7HgAAAAAAAAAAAAAAAAAgmUzaAQAAAAAAAAAAAAAAAAAAAM5WLlMXf/OLa2Pjkra0o0zppRfMi4++dk3aMQAAAAAAAAAAAAAAAACAp1HsCgAAAAAAAAAAAAAAAAAAnBPaG7Pxd+9YH5tXdqYd5Rlet3FRfPbN66I+W5d2FAAAAAAAAAAAAAAAAADgaRS7AgAAAAAAAAAAAAAAAAAA54z2xmzc/PZL4pdfuCTqUu5RbarPxO9dtyo+fv1FkVPqCgAAAAAAAAAAAAAAAABzjmJXAAAAAAAAAAAAAAAAAADgnJLL1MXvXLsyvnrDpbF+cWsqGX7yovnxrfdeFjdcdV7qBbMAAAAAAAAAAAAAAAAAwNRyaQcAAAAAAAAAAAAAAAAAAAAoh+cva49vvfey+Ma2vvjklgNx397Bsu7LZeriFRfPj19+4dK4Ynl7WXcBAAAAAAAAAAAAAAAAAGdPsSsAAAAAAAAAAAAAAAAAAHDOqquLeNW6hfGqdQvjiSMj8bWH++L/PH4sHjk0HKXS2T+/MZeJq1Z0xDUXzY/XbFgU3W31Z/9QAAAAAAAAAAAAAAAAAKAiFLsCAAAAAAAAAAAAAAAAAAA14aKulvjg1S3xwauXRf9oPh7YPxSPHhqOnX2jsef4eBwdmoxjI5MxMlmMiXwxiqVS1Gcz0VSfiZb6THS1NURPe0Ms7WyIdT2tsX5xS1yyuDUac5m0jwYAAAAAAAAAAAAAAAAAzIBiVwAAAAAAAAAAAAAAAAAAoOZ0Nufi6jXz4uo189KOAgAAAAAAAAAAAAAAAACkJJN2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACASlPsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUHMWuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDNUewKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQcxa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM1R7AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1BzFrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzVHsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUHMWuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDNUewKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANQcxa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQM1R7AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1BzFrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAzVHsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADUHMWuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDNyaUdAAAAAAAAAAAAAAAAAAAAoBYdHJiI5//pfYlmv/O+TbG2u6XMiQAAAAAAAAAAAAAAAACgtmTSDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUGmKXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAmpNLOwAAAAAAAAAAAAAAAAAAAAAAUDn5QikePjQcD+wbjCeOjMbe42Ox78R49I/lY3SyGKOTxchl6qKlIRNtDdlY2tkYy+Y3xQWLmuLy89tj09K2aGnIpn2MGanls590fCQfd+3uj22HR+Lx3pHY2TcaA2OFGBwvxMhEIeqzddHemI22xlx0NGVj5YKmWNvTEmu7W2LDeW1xXkdD2kcAAAAAAAAAAAAAAIBZo9gVAAAAAAAAAAAAAAAAAAAAgH9TKkV86u4D8Yff2RMT+eJpZ69Y3h5fveHSCiWbO/LFUrzm0w/Fvx4YSjT/qV+4OH76koVlTnV6x0fy8a1tx+Ibj/XFD3b2x/gZ/m4LxVKM54txfCQfe0+Mxz1PDfzbn2UzdXHl8vb46UsWxqsuWRg97XO76LOWz35S3/Bk3PLD3vinx4/FA/uGolAsnXI2XyzF6GQxeocmIyLiwf1DEQ/9+M/XLGqOV65bEG/Y1B1rFjWXO3pqqvF7fjre7QAAAAAAAAAAAAAAU1PsCgAAAAAAAAAAAAAAAAAAAEBERBzoH4//cOuTcffu/rSjzGkfv3Nf4rLHtO04OhqfuvtAfOnBI2csNE2qUCzF3bsH4u7dA/Ffv7k7XrNhUfzqi5fGup6WWXn+bKnls5+0/cho/NWW/fGVh46escwzqSePjsZf/mB//OUP9sdLL5gXv/6y8+PK5R2z8uy5pJq+52fi3Q4AAAAAAAAAAAAAcGqKXQEAAAAAAAAAAAAAAAAAAACIW7ceid++fWcMjhXSjjKnPXxwOP78zn1pxzijofFC/PdvPxWfvfdQlErl25MvluLWrUfi1q1H4g2buuPGV66MzuZ0/0mTWj77SUPjhfjId/fG//rng5Evlu8Svr/jRHx/x4l4zYZF8XvXrYqutvqy7aqkavmeJ+HdDgAAAAAAAAAAAABwenPjlwAAAAAAAAAAAAAAAAAAAAAApKJ/NB8fum1nfO3ho2lHmfMm8sV4/63bI18oY1voLNiyqz/ef+v2ODgwUdG9X3qwN7735PH46GvXxDUXzq/o7pNq+ewn3bWrP9735e3RO1i5O/jaw0fjrl398fGfuzB+4oJ5FdtbDtXyPT8T73YAAAAAAAAAAAAAgGQyaQcAAAAAAAAAAAAAAAAAAAAAIB0/2Nkf13ziQcV/Cf3xHXtjW+9I2jFO6+YHeuNNNz1a8WLTk44MTcY7vrAtPnvvoYrvruWzn/Spuw7EGz/7aEVLXU86OjwZb/3cY3HzA70V3z2bquF7fibe7QAAAAAAAAAAAAAAyeXSDgAAAAAAAAAAAAAAAAAAAABAZY3ni/EH334qPnPPwSiV0k5THe7dMxifvGt/2jFO62N37os/+s6etGNEoViKD9+2M44MTcYHrl5WkZ21fPaIiFIp4sO374ybUiyVjYjIF0vxwa89GdlMxBs2daeaZSaq4Xt+Ot7tAAAAAAAAAAAAAADTp9gVAAAAAAAAAAAAAAAAAAAAoIY8cmg4fu3L2+Px3pG0o1SN0cli/PpXtkdxDhclfv7+w3Oi2PTpPvq9vbGotT7efuXisu6p5bOf9F++sSv1UteTSqWID/zDjljS2RgvWtWZdpzEquF7fjre7QAAAAAAAAAAAAAAM6PYFQAAAAAAAAAAAAAAAAAAAKAGFEsRf7Vlf/zJHXtisvD/2Lvz+Lirev/j71mTTPY9bdIt3Vu6UfZNNkE22UEFBa6gAiLKdQHFey8iP0XvdQcFN24BAUUQpAiFFmjZy9LSvVmapk2TZk8mmcw+vz96q6UkmTPJLEnn9Xw8eLR0Pt9zPmdmzplvH49O3uM0uTBF7lzRoIZOb6rbGNKqmi7d9kx9zNdl2K06ZkqeTppeoDnlLlUXZ6ogyy6X06ZAKCK3L6RdXV5tb/PotR09erm2W12eYExz3P5svSoLMnT6rMKY+zORzmvf7+6VjfrjW80xXzcxP0PnzCvW0qoczavIVnG2QzkZNg34w+oaCKi2fUDrmvq0YmunNjT3xzR2KBzRDX/ZrheuX6SyXGfMvaXCWN/nQ+FsBwAAAAAAAAAAAAAAAAAAAIDRIdgVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgELer26ebn6jRWzt7U93KuLO6rlvL1rakuo0htfcH9NUnaxUKmwc6luY4dP3xlbp8SZkKsgb/8SN2q0VZDqvKchxaOilXnz68XIFQRH/f1K5frWnStlaP0VzhiPS1J2u18sbFKstxGPdoIp3Xvt+KbZ365ZrdMV2zdFKu/v2USTqpukAWy0cfz820KTfTpsmFmTp1ZqFuOXmStuz16Kcv79LyzR3G87T3B/Tt5fX63afmxNRfKoz1fT4UznYAAAAAAAAAAAAAAAAAAAAAGD1rqhsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABA4jy+rk0fv3ddTMF/dtsgaY9pyO0N6Za/1SpinhuadN98uk4d/QHj+iuPKNeamw7XF4+bOGSw6VAcNosuWliqFV9apFtPnyyb1ex90ukJ6OtP1cY0l4l0Xrsk7ezy6uYnzN+fORk2/fSCGXr62gX62PTBQ12HMrfcpfsvn63HrzlMZblO4+v+saVTq2q6zCdKgfGwzwfD2Q4AAAAAAAAAAAAAAAAAAAAA8UGwKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwCGoyxPUFx7bppufrJHbFzK6xma16N9PmaRPH16e4O7Gh9v/Ua/mXn+q2xjS8s0den5rp1GtzWrR3edN193nTVdupm1U89ptFt10YpUe+MwcZTnMfnzJyu1denpj+6jmPVA6r32/rz9Vp15v0Kh2SlGmVnxpkS5bUjaqOY+dmqdnv7BQc8tdxtfcvbJxTIemjvV9fjDOdgAAAAAAAAAAAAAAAAAAAACIL4JdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjEv13br1HvXafnmDuNrKvMz9Pg183XLyZNksySwuXHi+a2denxd27A1mYbBnokQCkd098pG4/rvnz1NVx4R31DHU2cW6p5LZslq+H65e2WjguHRJ3ym89r3e+KDNr2+o8eodlapS3/7/AJNKcqMy9wT8px68Mp5Ks1xGNVvbO7XS7VdcZk73sb6Pj8YZzsAAAAAAAAAAAAAAAAAAAAAxN/Y+VfjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBVvIKzbn92hKx/arFa33/i6c+YV68UbFumoyXkJ7G786PQE9M2n64atsVqkzx1ZkaSOPuqx91tV1z5gVHv1URUJ6/XMOUW65eRJRrUNnV796d29o54zndcuSW5fSHc+32BUW5Lt0LIr56rMMITV1IQ8p3596Szj+v99uyWu88fDeNjn+3G2AwAAAAAAAAAAAAAAAAAAAEDiEOwKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwiLjx8e3641vNikTM6rMcVt193nTdf/ls5WXaE9vcOHLr3+vV3h8YtuayJWWaW+ZKUkcfFo5Iv1rTZFQ7tShTt58xNaH93HRSleZXZBvV/nJNk0JhwzfoINJ57fv98a1mtfYN//6UJItF+vWlszSpIGPUcw7m2Kn5OmdesVHtqpouo56Taazv8wNxtgMAAAAAAAAAAAAAAAAAAABA4hDsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcIjo8QaNa+dVZOsfX1ykK48oT2BH488TH7Rp+eaOYWtcTpu+eerkJHX0US/Xdmlnl9eo9ntnTVOWI7E/YsRuteh7Z08zqt3T49PKmq4Rz5XOa5ckbyCs373ZbFR79VETdNy0/FHNF82tp0+W1RK9LhyRntsy/L5KpvGwzw/E2Q4AAAAAAAAAAAAAAAAAAAAAiUOwKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQJr5t6MnaPl1CzSzNCvVrYwpLb1+3f7sjqh1Nxw/UeW5ziR0NLiH3tlrVLekKlenzSpMcDf7HDMlzzhEdNnbLSOeJ53XLkkPv7tXHf2BqHXF2Q7ddnriQ0mri7OGXXuWw6rFlTn69OHlqszPSHg/JsbLPh8JznYAAAAAAAAAAAAAAAAAAAAAiJ091Q0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgOYpcDv30whk6PUmBl+PN15+qVc9AcNiaCXlOfen4yiR19FGtbr9e3N5lVHvDCRMT3M3B81Xq9R09UeteqevW7m6fqgpiC/pM57Xv98e3m43qbjqxStlO24jmiNWli8r02o4eTSrI1Nxyl+aWuzSvIltzy12aWpQlqyUpbRgbD/s8VpztAAAAAAAAAAAAAAAAAAAAADByBLsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkgROq8/XLi2aqLNeZ6lbGpIfe2auXaruj1n33jKnKcliT0NHgnt/aqVA4ErWuyOXQGbOKktDRv3xseoEq8pxq6fUPWxeOSP/Y0qnrjp0Q0/jpvHZJeneXWzs6vFHrSrIduurI8pjHH6kLFpTorHlFSQuSHY3xss9jwdkOAAAAAAAAAAAAAAAAAAAAAKNDsCsAAAAAAAAAAAAAAAAAAAAAAAAAAECchMIR1bQN6IM9farv8GpH54Baev3q9ATVPRCUNxiWPxRWOByR3WaV02ZRToZNBVl2lWY7VFWQqSlFGZpXnq0FE7LHfDBPfceA1jf1q65jQPUdA9rb61eHJ6BOT1C+YFi+YFjBcEQOm1UZdouynTaVZjtUmuPU1KJMzS5z6bAJ2TpsQrbsVkuqlxMXnZ6A3trp1romt9Y19Wmv269eb0i93qAC4YhynLZ/vuazSl2aW+7Swok5OmZqXkKeg617PXpvt1vr9/RpU4tH3QOBf/YjSZkOqwoy7ZqQl6GpxZlaNDFHx0zJ05xyV9x7SQV/MKy3Gve9HnXtXtV3DKitLyCPP6R+f0j+UERZDqtcTpvyMmyaWpSp6SVZmleerZOm54/5PZgsvd6gNjT3a31Tn7a3Daipx6c9PT71ekMaCITkC4bltFvlctjkclqVm2HTlMJMTS3O1LSiLB1elaO55dmyjPFtnm5nONKL3WrR10+dpBtPqNIh8pEbd41dXn3v+YaodafOLNT5C0oS39Awnt/aaVR34cIS2W3JfcGtFunihaW659WmqLXPbekYUbCriUNx7ZL053WtRnWfOrxMTnvyQkntNovstrEf6jqe9rkJznYAAAAAAAAAAAAAAAAAAAAAiA+CXQEAAAAAAAAAAAAAAAAAAAAAAAAAAEah0xPQs5s79cK2Tr3R0Kt+f8joOn8wLH9Q6vOF1NLr11ZJUs+HaqYVZ+rE6gKdM69Yx07Nky3FaT0DgbBW1XTp2c0derW+R+39AaPr9q/V7d23Vqn/Q4/nZNh09JQ8fXJ+ic6aV6RsZ+JDoTY29+vM36yPWnfTiVW69fTJw9ZEItLKmi498u5evVjTpWAoMmRt98C+gMjd3T5tbP7X81DkcujseUW65ugJmlM2ulDVvW6//ryuVY+va1Nt+8CwtYFQSG5vSLu6fXq7sVd/fn9fWNjkwkx9akmZPntkuYpcjlH1Y+KBt1v0neX1UetuOKFS3/n4lKh1L9V2a9nbLXp1R488UfZkny+kPl9IrW6ptn1AL27v+udjc8tdunxJmT61pFy5mWM/rCyeatoG9Mymdq2q6da6JrfCQ7+tJUneQFjeQFidnn3/v2Wv50OPF7rsOnZKvi5YWKIzZxclPWxvKOl0hiN9TSnM1L2XztLiypxUtzJmhSPS156sjXoGFGTZ9T/nT09SV4Pr84X06o6e6IWSPj67KMHdDO60WYVG4aZrd7nV6QkY32uk89olKRiK6O+bOqLWWSzSFUvLjcdNF+Npn5vgbAcAAAAAAAAAAAAAAAAAAACA+CHYFQAAAAAAAAAAAAAAAAAAAAAAAAAAYAQ+2NOne1/bo+e2dCgwTJDnaOzo8GpHR4uWrW1RRZ5TnzuiQlcdVaGCrOR+RbSxy6s/vNWsR99vldtrFnoYiz5fSCu3d2nl9i7d+oxVVywt15eOr9SEPGfc59ovN8MspLPHGxz28fd3u3X7szu0rqlvVP10egJ66J29euS9Vl22uEy3nj5ZJdmxBaq6fSHds6ZJ97+xR75geFT9NHZ59aNVjbrn1SbdcvIkXXvsBNkTGEqZZxia2trnH/bxVTVd+uGLjdrU0j9snaktez36r+ca9ONVu/RvR0/QzR+rUpbDGpexx6JwRHpqQ7uWrW3R2429cR27yxPUs1s69OyWDpVkO/Spw8t0/fGVST/P9kunMxzp7cKFJfrBudONP/fS1W/f2KM3d0Y/9+46p1pluYm7PzGxur7b6NxyOW06enJuEjr6qKWTcpWbaYt63xgKR7SqpluXLCo1Gjed1y5Jbzf2qmdg+HtTSVpSmavJhZnG46aL8bTPo+FsBwAAAAAAAAAAAAAAAAAAAID44htfAAAAAAAAAAAAAAAAAAAAAAAAAAAAMdjT49N//GOH/rGlM6nztvT69aNVjfr160368glV+tLxExMatClJvd6g/vulXVq2tiVhwYcHGwiE9bs3m7Xsnb26+aQq3XhCpRy2+K/TNJyz3z94KFc4It31QoPue32PInF8akLhiB55b69eqevWsivmam65y+i61XXd+vJfa9TRH4hfM9q3/jtXNGhlTZfuv2y2Cl2J+XpyttMslKrLM3iYWb8/pDuea9DD7+6NZ1sfGv+Xa3briQ/a9OPzp+tj0wsSMk8qrarp0l0rdmprqyfhc7X3B/SrNU1atnbfPv/8MRMSss8Hk05nONJbttOmu86ZpksXl6W6lTGvpm1Ad69sjFp37vxiXbCgJAkdDe+NHWbB20dPzpXTnpowcrvVomOn5GvFtuhn7RsNPcbhpum8dkl6qbbbqO6suUXGY6aL8bbPh8LZDgAAAAAAAAAAAAAAAAAAAACJkZpvIQAAAAAAAAAAAAAAAAAAAAAAAAAAAIxDj69v0yn3rEt6IOCB3N6QfvDiTp193weq7xhI2Dxr6nt0yj3r9Ps3m5MW6nogfzCsH69q1Nn3f6Bd3b64j59lGCTa7/tosGu/P6Rr/rRFv3ktvqGuB9rT49MFv9+gd3e5o9b+ak2Trnhwc9xDXQ/0+o4eXfLARnUPDB6sOlqmQbtu70dZ8z2PAAAgAElEQVRfj9a+gM777YaEhboeqKnHpysf3KxfrN6d8LmSpdcb1Jf/ul2ffWhLUkJdD577zhUNOuf+D1TbnrjzbL90OsOR3hZV5mjF9YsI/jMQDEd08xM18gXDw9aV5jj0g3Ork9TV8NY2moWbLqnKTXAn0ebPMap7a6fZeqT0XrskvVTTZVR35hyCXQ80Hvf5YDjbAQAAAAAAAAAAAAAAAAAAACBxCHYFAAAAAAAAAAAAAAAAAAAAAAAAAAAw8MMXG3XzEzXqGyToMxU2tfTr3N9u0BsNsQVCmfjDW8264sHNaun1x33sWG1u6ddZ963Xuqa+uI6bZTf7mm2//8Ovdygc0Rcf26YXt5sFa41Gny+k6x7bpra+oQNb717ZqB+8uFPhJGTvbt3r0bWPbkvIXJmGwa69vg8Hy7b0+nXxHzZqWxIDScORfc/7t5fXJ23ORNnY3K/T7l2vJz9oT2kfm1r69YnfrNcTH7QlbI50OsOB754xVVOLMlPdxrjwi9W7tX5P9HuMH31yuopcjiR0NDx/MKwthp95iyvNwkUTxXT+hk7voMHtB0vntUtSe39AW/ZGX39ZjkPTS7KMxkwX422fD4WzHQAAAAAAAAAAAAAAAAAAAAASx57qBgAAAAAAAAAAAAAAAAAAAAAAAAAAAMa6u1c26pdrdqe6jY/oGQjqqoe36NGr5unwqty4jHnPq036fy/sjMtY8dLlCeozD27W41fP17yK7LiMabdZZLFIkSghpZ5A+EP/f/uzO/RSbXdcejCx1+3XV56o0SOfm/eRx373ZrN+sTq578s3Gnr0m9eadMMJlXEd12kzC3Y9MJTTHwzrcw9vUX3HQFx7MfW/b7cox2nTtz8+JSXzj9bqum5d99i2MRN0OhAI6ytP1KhnIKhrjp4Q17HT6QxPtJdqu3Xlg5tT3UZCXXvMBN1x1rRUt4Ek2NDcr58bfI5etqRMZ8wuSkJH0W1t9SgYMktYXzAhPvdMI7Vgglm4aSQibWju03HT8oetS+e1S9L7u91GYx49NfpY6WQ87nMAAAAAAAAAAAAAAAAAAAAAQPKZfcMRAAAAAAAAAAAAAAAAAAAAAAAAAAAgTT2zqSPp4Zmx6PeH9PlHt6mtLzDqsZ78oH3Mhbru1zMQ1DWPbFX3QDBuY9qtlqg1AwcEuy7f3KFla1viNr+p1XXdWl334TDZtxt7dcdzO5LeiyT9fPVutfeP/v12oEy72dee3QeEkP7ncw3a1NIf1z5idc+rTVq+uSOlPYzE6rpuffbhLWMm1HW/SGRfePLv32yO25jpdIYDMOcPhnXzEzVRg0In5mfoe58YO0G/29vMwsxzMmwqy3UmuJvhFbrsKsiyG9WarCud1y5J6/eY3fMcOWl8BIUnw3jd5wAAAAAAAAAAAAAAAAAAAACA5DP7FgAAAAAAAAAAAAAAAAAAAAAAAAAAAEAa6ugP6BtP18V8XabDqqMn5+noKXmaWpSpKUWZKs91KtNuVZbDKofNIm8wrIFAWG19Ae3u9mpHh1fv7HLr7cbemAP+Wt1+ffPpOv3xM3Ni7nW/HR1efevvsa9VkuaUufSxGQWaX5GtyYWZmpjvVLbTpiyHVTarRW5vSL2+oDr7A/pgT7/W7enT6rputfT6Y5pnd7dP33y6TvdfPntEfR7MYbMqEBo+2NLj3/d4pyeg256pH7KuyOXQOfOLdWJ1vmaXuVSe61SWwyqPP6SugaDa+wJ6Z5dbbzb06uW6bvmD4SHHGszdKxt10vQCSfvCTb/y1xqFh8moWjgxR2fMLtRRU/JUXZylgiy7HFaLerxBdQ8Etavbp7d29mpNfY/e3+2OqZc+X0j3vb5H3/n4lJiuG47dFj1kV/pX0O6qmq6oIbsFWXYdMSlXR03J05LKHBVnO1Tocqgwy65QOKI+f0i7u33a1urRK3XdWlXTJbc39qDTf3+qVosm5qiqICPma1Nhc0u/rntsW9SQs8FkO206dmqeDq/K1ZKqfWsuzHIoL9Mmfygity+k5l6f6toHtK6pTy/VdKu+wyyw7kB3PN+g6SVZOnlGQczXHiidznAAsfnRql3a1uoZtsZikX5ywQzlZtqS1FV0de1mZ+q0oswEd2JmWnGW0X1GTdvwr4WU3muXpPVNfUZ18ypcRnXpYLzucwAAAAAAAAAAAAAAAAAAAABA8hHsCgAAAAAAAAAAAAAAAAAAAAAAAAAAMISfvrJbvd6gcf2cMpe+fGKVzp5XpAy7ddjabKdN2U6bSrIdmlu+L4DpC5IiEWlNfbcefnevlm/uUMQwe3HFtk69XNs94iDE25+tV7/fPNTSZrXoggUl+urHqlRdnDVsbaHLrkKXXVMKM7WkKldXSQqGI3puS6fufbVJ6/eYBVVJ0vLNHVpd1/3PkNPRsFujh4l6/y+A9Y7nG9TR/9GwxrIch75+6mRduqhUzkFe87xMu/Iy96196aRcffG4iWrvD+iHLzbqkff2Gve6rqlPG5r7tWBCtv7fCzu1q9s3aN0pMwr0zdMma+HEnEEfL852qDjb8c/QzG+dJn2wp0+3PVOvdYaBYZL06Hut+uapk+UwDGSNxuS1kCR/MKxgOKI7n985ZM0Rk3J144mVOm1moWxDjOuwWZTpsKok26HFlTm6fEmZ+v0hPfTOXv30lV0xBby6vSHduaJB910Wn8DhRHJ7Q7r6T1vV54stwHZuuUs3nFCps+cWK9Mx+NmWZbUoy2FVWY5Diybm6KKFpdJZ+4Jkf/dmsx5f36bQcGnEBwiFI7r+L9v1wvWLRhWYm05nOABzaxvduu/1pqh1Vx1ZoROr85PQkbkdnV6jumlR7s2Spbo40yjctMFgXem8dkna0Gx2nzanLNuo7lA3nvc5AAAAAAAAAAAAAAAAAAAAACD5hv82GQAAAAAAAAAAAAAAAAAAAAAAAAAAQJrq9QaNgzetFulbp03Wizcs1oULS6IGAg7HYpFOml6g+y6brb9fu0DzK8zDmX72yq4Rzfnajh69XNttXF+c7dDj18zXLy6aGTXUdSh2q0Xnzi/W09ct0A0nVMoSQz7oD15sHNGcg/UQjT8Y0cbmfv11fdtHHjtnXrFeuWmJrlhaPmio61BKsh367/On665zqmPq95lN7drW6tHD7370fely2vTzi2bqoc/OGzLUdSgLJ+boyX87TGfOKTK+ptMT0Jp68/dMNLG8/svWtmh7m+cjf55ht+rHn5yuv31+gc6YXTRkqOtQsp02ffG4iXrpxiU6anJeTNc+s6lDaxujh7el2u3P1qupZ/BQ4MHkZNj0w3OrteL6xbpoYemQoa7DmVeRrZ9cMEMvXL9IiyvN35u93qBue6Y+5vkOvD5dznAA5jz+kL76ZI2i5UxPLcrU7WdMTUpPsdg9RLD7wSbkORPciZmKXLM+Gruiryud1+72htTWF4haV5bjUKHLbjTvoWy873MAAAAAAAAAAAAAAAAAAAAAQPLxr/EBAAAAAAAAAAAAAAAAAAAAAAAAAAAG8fTGDnkDYaPa/z5/hi5fUhb3HpZU5erpaxfoi3/ephe3d0WtX9vo1obmfi2YYB4kKEn3vtpkXFvosuuZ6xZocmFmTHMMxW616Dsfn6JpRZn6xtN1Rtd8sKdPbzT06tipsYVvHswkTNQfCuu/ntuhyEHBUNcdO1H/eebUmAJJD3b1URWq7xjQ799sNqr/+8YOvb+7T6GDUqrys+z602fnxRSaeTCn3ap7L5mls+//QNtaPxqaOpgV27p06szCEc95IGsMT+Qdzzd85M/yMu165HOjew72m5Dn1KNXzdN1j23TSoN9t9/PXtmlhz87b9TzJ8qL27v0+CABxUOZUZKlP35mzojDmw82u8ylpz6/QN9eXj9oOPFgVtV06akN7Tp/QUnM86XTGQ7A3J0rdqqh0ztsjdUi/fyimcoaQZh1ou0xDOcuyxkb4aalhn2YhI6n89obuoZ/z+5XVRDb/bnHH9LrDb3a1NyvbW0e1bYNqHsgKLcvJI8/JLvNoiyHVXkZdlUVZGhyYabmVbh05OQ8zSt3yWYdxY1wAo33fQ4AAAAAAAAAAAAAAAAAAAAASD6CXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAaxqsYs0PG8w0oSEgi4X6bDqt9/eo4uf2CT3tzZG7X+bxvaYgoFbOrx6ZW6buP6n1wwI26hrgf6zNJyvd/Upz8ZBj7+ZV3rqINdTbKo+nwhvdHw4ef90sVl+q9PTB3V3PvdetpkPbWhXe39gai1O7u82nlQsJfDZtEfPj0nLoGmmQ6rvn/2NF36wCaj+jcbekY9536xxIIFQx8Ots2wW/XQlXPj8hwcOOZvLp2l83+/UZtb+o2ueaWuWzVtA5pZGp8g1HgKhSO6a8VO4/o5ZS49dvV8lWQ74tqH3WbRjz45XTarRcvWthhdc/fKRp0zv1j2GMPj0uUMB2BudV23Hnwn+tnzpeMrdcSk3CR0FJtIROowuF+QpNKc+J7fI1Vm2IcvGJbbF1Juhm3Qx9N57ZK0M0pI6X4T86OHyQZCET21oV1PbWzXazt65AsOHYIeDEfkDYTV5QlqZ5dXr+34171fQZZdn5hbpPMPK9GJ1QWyjJGM1/G+zwEAAAAAAAAAAAAAAAAAAAAAqWFNdQMAAAAAAAAAAAAAAAAAAAAAAAAAAABj0dpGt1HdF46dkOBOJLvVop9cOEPZzqEDn/Z7YZtZmOF+T29sVyQSvU6SzppbpDNmF8U0fiy+ffoUozVK0optnQqFDRsfgmUECVSzy1z60XnVo5r3QC6nTVcdVTHi67956mQdM2V0AbcHOm5avhZNNAtIrWsfUJ8vFJd5bTGGdh7o9jOmaGkCgrlcTpt+cdFM40DRSER6yCBILBX+sq5N29s8RrUl2Q4tu3Ju3ENdD/T9s6fpuGn5RrU7u7x6fF1bzHOkyxkOwIzbG9Itf6uNes8zu8ylb5wyKTlNxahrIKCg4b3PmAk3zTXvo63PP+Rj6bx2ad9noYnK/IwhH/P4Q/rVmiYd9dN3dfOTNVpV0zVsqGs03QNBPfpeqz69bLNOvWedHnu/ddT35qN1KOxzAAAAAAAAAAAAAAAAAAAAAEBq2FPdAAAAAAAAAAAAAAAAAAAAAAAAAAAAwFjT5Qmq0xOIWlea49DhVfEPlBzMlMJMXbiwRA+9s3fYuuZev7oHgirIMvsa6aqabuMePn9MYgMQC112Xbq4VA+8HT0cs8sT1KaWfi00DCEdzEiyRP/n/Oly2q0jnnMwFywo0f+8tCvm6+aUu/Sl4yvj2sv+ftbv6YtaF45I29s8SdsDgzliUq7+7ejEvS/nlrv0uSMr9Ie3mo3ql2/u0H99YppGkBmcMJGI9KtXdxvX//TCGcMGw8WDzWrRzy6coVN+tU79/ujhwL9+rUmfOrzMePx0OsOT7ZQZBWq647hUtwHE7PZn69XcO3x4pt1m0c8vmhn3z/l46fQEjWvzMsfGGZKTYd5HlycoFQ/+WDqvXZKaenxG4wwVaruqpku3PVOv3d1m48Rqe5tHt/ytVr99Y4/uOqdaR0/JS8g80RwK+xwAAAAAAAAAAAAAAAAAAAAAkBpj49sIAAAAAAAAAAAAAAAAAAAAAAAAAAAAY4hpeFKiww8PdtHCUj29sUOTCjJUtf+//AxVHvD74uzBA50GEwxF9M4ut1Ftocuuo6fkj7R1Y+cvKDEKdpWkdU19owp2jdU584q1JAEhkNXFWZqYn6E9hu+7/W49bfKIwmmjOXF6gXFtQ6c3pcGut58xNeFz3HhCpR58p0WBUCRqbXOvX+83uVP6nBxsdX23dnR4jWovXFiiU2cWJrijfSrzM/TF4ybqJy9HDzWubR/Qe7vNn9d0OcMBmHlua6ceX98Wte6rJ1VpwYTsJHQ0Mr1e83DTnAxbAjsxl+M076NnmPWl89olqaM/eli5JOUfFGobDEX07eX1evjd4UPF42XLXo8u/uNG3XhCpb5x6mTZE3GjOoRDZZ8DAAAAAAAAAAAAAAAAAAAAAFKDYFcAAAAAAAAAAAAAAAAAAAAAAAAAAICDuH0ho7qDw5MS7egpedpy21FxG297m0f+YNio9shJeQkJET3Y4ZW5ynJYNRCI3tfmvZ7EN3SALx43MWFjL6nMiSnYdWpRpk6fVZSQXmaXuYxfg11dsYXRxtORk3N15OTEB6hW5Dn18VlFenZLh1H9K7XdYyrYdZlhULLDZtG3TpuS4G4+7AvHTdT9b+xRn8GZ+9j7rcbPa7qc4QCi6/QE9K2n66LWLZyYo5tOqkpCRyPX6zU726TYQkUTKdtpNa4dbn3pvHZJ6vKYBdvmZ/3rc83tC+m6R7dqTX2PcR/xEIlIv1rTpHd39emPn5mj3CQE7R5K+xwAAAAAAAAAAAAAAAAAAAAAkBoEuwIAAAAAAAAAAAAAAAAAAAAAAAAAABwkGI4Y1XUPmIUsjVVzyrO17htHqr0/oNY+v9r6Amrv2/f79v6AWt1+tfUH1NYX0JxyV1J6stssmlnq0gd7+qLWNnUnL1R0dplLSyclLqxzRmlWTPWXLymTJUFBu1aLVF2cpU0t/VFrOzyBxDRh4KojJyRtrosXlxoHu77d6E5wN+bcvpBerOkyqr1wYakmFWQkuKMPy82w6eJFpfpfg/DZFVs79cNzpxu979PlDAcQ3a1/r1d7//CfVRl2q35+0QzZk5FgPwqegHm4aXYSwjRNxNKHxz/0+tJ57dK+4FITef8XWO4LhvWZZZv13u7U3ZO80dCjyx7YpIc/O1dFLkdC5zqU9jkAAAAAAAAAAAAAAAAAAAAAIDUIdgUAAAAAAAAAAAAAAAAAAAAAAAAAADhIttNqVLe11SNfMKwMu1n9WGO1SKU5DpXmODQ3ScGtJqqLM42CXZt7kxfseva84oSOX5UfW6DmWXMT3E9BhlGwa5cnNcGYWQ6rPjG3KGnznVidL7vNomAoemDou7vcCoUjso2B4LBXaruNepakK5eWJ7ibwV24wCzYtbUvoC17+zWvIjtqbbqc4QCG99f1bVq+OXoo97dOm6xZpWPnPmgo3kDYuDbDlvrPIEnKsJmfr97g0OtL57VLUpdhEHmm3apIRLr5ydqUhrru98GePl39p636y9XzE/ZZe6jtcwAAAAAAAAAAAAAAAAAAAABAahDsCgAAAAAAAAAAAAAAAAAAAAAAAAAAcJDCLIdRnS8Y1lMb2nXZkrIEd5ReSnPMnn+P3zzka7ROmVGQ0PEr8pzGteW5Ts0szUpgN/vmMNHnCyW0j6GcPKNAWY7khXFmO21aWpWrt3b2Rq3t94fU2OXTtOLMJHQ2vBe2dRrVTchzaumk3AR3M7ilk3JVmuNQW18gau3quh6jYFfOcAAtvX599x87otYdPSVP1x07MQkdjZ4vSvjngcZCuLgk2WMIWR1ufem8dsn8fsths+j+N/bo7xvbo9ZOLszUUZNzdXhVrhZOzFZxtkOFLoeyHFYNBMLqHgiqscurzS39eqOhVy/Xdsf0Ouz37i63bvlbre65ZFbM10ZzKO5zAAAAAAAAAAAAAAAAAAAAAEBqEOwKAAAAAAAAAAAAAAAAAAAAAAAAAABwkMmFGcqwW43Ci36wslEnTS+IKZgTw8vJMPsK7EAgOaGiGXarFk7MSegceZnmX/s9cnLiAzjzDfvxh5IXrnugk2cUJn3OhRNzjIJdJWl7m2dMBLu+tqPHqO7E6YkNLh6O1SIdMzXfKITuvd1uozE5wwH8+1O16hkIDlvjctr00wtnaIzkgEYVy0fuWAk3lfad8+FI9LrgMEXpvHbJPNi2udevH69qHPJxu82iCxeU6uqjKrS4cuh729wMm3IzbJpUkKHjp+XrumMnyu0L6Yn1bbrn1SY19fiM+tnvbxvadcrMQl2yqDSm66I5FPc5AAAAAAAAAAAAAAAAAAAAACA1rKluAAAAAAAAAAAAAAAAAAAAAAAAAAAAYKyxWS1aMCHbqLbV7dclD2zUXrc/wV2lD6fNLHkpYJKUFQezSrPkMOxppHKcNuPaueVm783RyM4w+xqyP5Sc1+BgRyQh3PZgh1WYP+/b2zwJ7MRMR39Azb1m59IRk5L/fB7oaMPXc2Nzv1EdZziQ3h5c26KXa7uj1v3HGVM0pTD1IdymwhGzz1z7GEuwNA1aDQ+TXZrOa5eiB7/u9/0VDRoIDD7YCdX5WnXDYv3swhnDhroOJTfDpquOqtCrX1mir508SfYY742/++wOtfYFYp53KIfqPgcAAAAAAAAAAAAAAAAAAAAApAbBrgAAAAAAAAAAAAAAAAAAAAAAAAAAAIM4a26xce2ODq/O+PV6PflBewI7Sh9Wy9gK5ZpRmpXwOZx28zXPKEl8Pxk2s68hRwyD1uIpJ8OmWaWupM87rdg8FGx3ty+BnZjZYBiCKiklz+eB5huGsO7s8srtDRnVcoYD6Wlnl1d3rtgZte5j0wv02SMrktBR/Jjm2VvHWLipadjqcOGt6bz2YCgi09uthk7vR/7MYpFuPX2yHv3cfE2Pwz2k027V10+ZpD9fNV9FLofxdb3eoH7y8q5Rzy8d2vscAAAAAAAAAAAAAAAAAAAAAJAaBLsCAAAAAAAAAAAAAAAAAAAAAAAAAAAM4uJFpcpymH8Vs70/oC//dbsu/P1GPbulQyHTBCqMeRPzMhI+h2nwlyRV5DkT2Mk+dtvYCkY7UHVxllKR2zalyDzYdU+PP4GdmNncYh7sOr3EfG2JMKfMPFi2rmPAqI4zHEg/4Yj0tSdr1e8fPgA6L9Oun1wwI0ldxY9xSOgYO7+Chv0Md++Rzmv3h8Ijnt9ikX52wUzddGKVLHG+dzp6Sp7+cvV8Fbrsxtc88u5e7RwkfDYWh/o+BwAAAAAAAAAAAAAAAAAAAACkBsGuAAAAAAAAAAAAAAAAAAAAAAAAAAAAgyjNcejaYybGfN3bjb267tFtOvZn7+n7K3bqvd1uRcZWxhRiVJrjSPgclhjStkqyk9BPwmcYuakxBKzGU0m2wzjwdk+PL8HdRLer26wHm9WiwqzEv6eGk5dpV36WWTBcY5dZIBxnOJB+fvvGHr21szdq3Z1nT0tKSHq8OQ0/g0zDRJPFNCg7wzb0j0BJ57WHRrGkb546WZcsLh35AFHMKXfpt5fPkc0weDcYjugPbzWPas5DfZ8DAAAAAAAAAAAAAAAAAAAAAFLD7NttAAAAAAAAAAAAAAAAAAAAAAAAAAAAaehrJ1dpxbZObWv1xHxtU49Pv36tSb9+rUlluU6dVJ2vE6rzdUJ1gSYcIiFD/mBYjd0+NXR61dDpVacnoF5vSG5vcN+vvqB8wYhC4YgC4X2/BsMRBUP/9+sB/4XCEQVC/6oZS3IybKlu4UOynWOrn2RLVbCrJBW7HNrr9keta+8PJKGb4bX0Ru9Tkgqy7IohVzhhqvIz1DMQjFrX0GkW7CpxhgPppKZtQHevbIxad9bcIl2yKHFBl4nkGCb882ChcMQ4bDORIhHJ9LbOMUx4azqv3T7CtRw7NV83nVg1omtjmydPN51YqZ+9stuo/rF1rfrWaZPlGsH9bDrscwAAAAAAAAAAAAAAAAAAAABAahDsCgAAAAAAAAAAAAAAAAAAAAAAAAAAMIQMu1X3Xz5b5/9ug7oNAgeH0ur26/H1bXp8fZukfcGUx03L17FT83Tc1HxVjIOQwGAoorcae/X2zl69t7tP21o9au71GQdWjWfOGMLEkiHDnvqwslQqyXakdG6TYNce78jPi3hp7vUZ1XX0B1T5n68nuJv4MXn+9+MMB9JDMBzRzU/UyBcMD1tXnO3QD8+bnqSu4s8Zw+f/WAk3DcZwo+i0D32/lc5rHy70dSg2q0U/PK86acHtXzmpSn9d36Zd3dHvPdzekF7c3qVPHlYS0xzpss8BAAAAAAAAAAAAAAAAAAAAAKlBsCsAAAAAAAAAAAAAAAAAAAAAAAAAAMAwZpRkadkVc3XFQ5vl9obiMmZDp1cNnV796d29/5zjpOkFOnF6vo6dmq/cDFtc5omHN3f26pF392rFti71joGwylSwj4FwsAONhbCyVCp0pe4r0jmGezMQisgbCCvTkbpQ4Na+QMrmTqSuGANa0/0MB9LBL1bv1vo9fVHrfnhedUrDwUcrloBPbzA8bFhosnijhHAeyDnM+tJ57XarRVaLFENOrC5cWKIZJVnmF4xSht2q64+v1LeX1xvVP7e1M+Zg13TZ5wAAAAAAAAAAAAAAAAAAAACA1CDYFQAAAAAAAAAAAAAAAAAAAAAAAAAAIIqlk3L1xDWH6ZpHtmp3ty/u49e2D6i2fUB/eKtZdqtFS6pydOacIp05p0jVxckLZTrQ8s0d+slLu7S11ZOS+YGhFLpSF9aV7TQP7Ozzh1Ia7DoQMA+UG086+2MPrE3HMxxIFxua+/XzV3ZHrbt4UanOnluchI4SJ5bPILcvpLzM1P9IEbfXPIzbNcz60nntkuSwWeWLISj2qiMrjGvj5bIlZbrrhZ3q90cPUV9V06VwRLIa5vWm0z4HAAAAAAAAAAAAAAAAAAAAAKRG6r4JCAAAAAAAAAAAAAAAAAAAAAAAAAAAMI7Mq8jWii8t0oULSxI6TzAc0dpGt76/YqdO/MX7OvM36/WHt5rV5TEPhxqN7W0enfvbDfrCY9sIdcWY5EphWGqG3TCBTFIwFElgJ9HFEgA3nrh90QPjBpMuZziQTvzBsG5+okbB8PDnbUWeU98/e1qSukqcohiCzftGeFbGW28MfRRnD72+dF67FFuwbUWeU4dX5RrXx0uWw6qz5hYZ1bq9IdW0mf09I932OQAAAAAAAAAAAAAAAAAAAAAgNQh2BQAAAAAAAAAAAAAAAAAAAAAAAAAAMJSfZdevLp6lp69doMWVOUmZc2Nzv7777A4d8ZN39O3l9drZ5U3YXMvWtugTv/lA7+92J2wOYLScNvNw1bGdboYAACAASURBVHizWc3n9odSG6ya6vkTZTSBtYf6GQ6km7tXNWqbQQj9f58/Q3mZ9iR0lFhFLvM1jJVw01j6GG596bx2k8cPdPy0fOPaePvYjALj2nVNfUZ16bbPAQAAAAAAAAAAAAAAAAAAAACpQbArAAAAAAAAAAAAAAAAAAAAAAAAAABAjJZOytUz1y3UfZfN1rFT85IypzcQ1v++3aITf/G+bnumXp2eQNzGjkSku17YqdueqR9VaCKQDA5b6r4i7YghVDYYjiSwk+EFQhFFUjd9QvlDo1/YoXaGA+lobaNb97++J2rdlUeU65QYwibHsiKXw7i2eyCYwE7M9cTQR/Ew60vntUtSYQzBrnPKXMa18XbcVPNQ2e1t0cNa03GfAwAAAAAAAAAAAAAAAAAAAABSw/xf7gMAAAAAAAAAAAAAAAAAAAAAAAAAAOCfLBbp3PnFOnd+seraB/Twu3v19MZ2Nff6EzpvKBzRsrUtenJDm+48a5ouXVw26jF/tKpR977aNKoxirMdmlPm0oR8pybmZWhCnlM5GTa5nDa5HFZlOWxy2Cxy2CyyWy3/93urHFaL7DaLnP/8c6vue32PfvDizlGvC4cmu9U8XDXeYslqtVlS16cthc9RogXiEOwqHVpnOJBuPP6Qbn6yJuqZPKfMpTs+MS05TSWBw2ZRToZNfb5Q1NrWvsSeZaZMz1SLRSrIGvpHoKTz2qXYgm2nFGUa18ZbRZ5ThS67ujzRQ22beoZ/ftJ1nwMAAAAAAAAAAAAAAAAAAAAAUoNgVwAAAAAAAAAAAAAAAAAAAAAAAAAAgFGaXpKl/zhzqv7jzKna1NKvldu79MK2Lq1rcscUBBkLtzekrz5ZqzX1Pbr7vOnKclhHNM7j69r0i9W7Y77OapHOmF2kM+cU6YjJuaouzhrR/ECsQpEEbSoDwRhCRR221IWrWi2S3WaJqd/xIpyA1388n+FAOrpzxU7t7PQOW+Ny2nTf5bOVeYjtrbIcp/p8A1HrWt2BJHQTXYvbLNy0NMcZNZQ8nddemmMe7FoYJSQ20WaUZGltoztqXVO3b9jH03mfAwAAAAAAAAAAAAAAAAAAAACSj2BXAAAAAAAAAAAAAAAAAAAAAAAAAACAOJpfka35Fdn6yklV6vQEtGp7t16s6dIrtd3q9QbjPt9f17eppdevZVfMjTnUaHe3T995tj6mazLsVl11VIWuOapCkwszY7oWiIdACsNKQzGkfNptqQ0Zy7BZFQyFotYtrszR8i8sTEJH48N4OsOBdLS6rlvL1rZErfvhudWaUXLohc5PLcpUfYdBuGmfWahoorUahptWF0W/p0zntU8qML/nTnVQeFmO06huuM/UdN/nAAAAAAAAAAAAAAAAAAAAAIDkI9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAgQYpcDl2yuFSXLC5VKBzRuqY+vVLXrdV13Xp/d5+CMYREDue1HT36/KNb9eCV82S1mF932zP16vNFD37cb8GEbN176SxVFxOghNTxh8Ipm7vfb75fUh2slumwGvXrjuEMSDdj/QxPhZdqu3Xlg5tT3UZCXXvMBN1x1rRUt4FBuL0h3fK32qh1Vx9VoYsXlSaho+SrLs7UqprodY1dvsQ3Y6Ch02tUV20QzpnOa59SmGE8b5w+mkasKNthVOcNDn4/xz4HAAAAAAAAAAAAAAAAAAAAAKQCwa4AAAAAAAAAAAAAAAAAAAAAAAAAAABJYLNatHRSrpZOytUtJ0+S2xfSGw09Wl3Xo9V13aprHxjV+C/XduvXrzXpxhMqjerf3+3Wqpou4/GPn5avBz4zRy6nbaQtAnHR601dEGmf3yxU1mqRclK8V4pdDnX0B6LWEexqZqyd4UA6er2hR829/qh1D7zdogfebklCR7H5wmPbjGsvWliqX1488yN/PrUo0+j6uo7RnUnxUmt4NlYXR19XOq99suHaJck3RGBqsmTazRLKvYHB+2SfAwAAAAAAAAAAAAAAAAAAAABSgWBXAAAAAAAAAAAAAAAAAAAAAAAAAACAFMjNsOmM2UU6Y3aRJGlHh1fPbe3Qc1s69c4u94jG/PGqRp0+q1Czy1xRa+95tcl43BklWfr9p5MX6hoMR5IyD8anbk8wZXO7vWZz52baZTHLNUuY0hyHtrdFr+sj2HVEUn2GA+mIuwNpWnGWUd3ubp8CoYgcttR9GLl9Ie11Rw/olKRqg3Wl89qri7NksUgRg03QNZC6+yRpXxC6iaFeH/Y5AAAAAAAAAAAAAAAAAAAAACAVrKluAAAAAAAAAAAAAAAAAAAAAAAAAAAAANK04kxdf3ylnrp2gVbeuFhXLC1XpiO2r4IGQhH9cs3uqHUef0gra7qNxrRYpJ9fNFO5GckJdZUkty+1gVQY27oGAimbu73fbO7CLHuCO4muLNdhVOfxhxQMEaM2Wsk8wwGkr8MmZBvVhcIR1bUPJLib4W1r9RjXLpqYE7Umndeem2HTlMJMo/FMA2UTxRc0u6eI9TMSAAAAAAAAAAAAAAAAAAAAAIBE4l+5AwAAAAAAAAAAAAAAAAAAAAAAAAAAjDFzylz60Sen67WvHK5z5xfHdO3TGzvU2OUdtuaVuh75g2Gj8T4xp0iLK6MHTsXTri5fUufD+LK7OzXvj2Aooh6vWejwhLyMBHcTXVW+WQCcJNV1pDYA71CT6DMcQPoqyXYYB3yua+pLcDfDe2+X26iuMj9DFXnOqHXpvHZJWmgQACtJjSm+j/b4Q0Z1LoctwZ0AAAAAAAAAAAAAAAAAAAAAAGCOYFcAAAAAAAAAAAAAAAAAAAAAAAAAAIAxqiLPqfsum627zqmW1WJ2TSgc0TObOoatWdvYa9zDZ4+sMK6Nl22tnqTPifEjVYFlTb0+RSJmtZX5ZiFtiTSjNMu4dute9lwiJOoMB5Delk7KNap7v8ksXDRR3t1tNv+Rk83WI6X32hdOzDaq27q333jMRNjr9hvVleem/l4JAAAAAAAAAAAAAAAAAAAAAID9CHYFAAAAAAAAAAAAAAAAAAAAAAAAAAAY464+qkLfO2uacf2a+p5hH69pGzAaJ8th1XFT843njYcuT1B1HWb9IT2l6v2xK4ZA2Yn5GQnsxMysWIJdCVNOqHif4QDSm2m46TuNqQ03XWs4/5GT84zHTOe1m9ZuaO43DqJPhD09ZsGuE/MJdgUAAAAAAAAAAAAAAAAAAAAAjB0EuwIAAAAAAAAAAAAAAAAAAAAAAAAAAIwD1xw9QafMKDCqfbuxV8Hw0IlOpsGYs0pdctgsRrXxsrKmK6VhVBj7dnQMqM8XSvq8te3mgbLTS8xDVRNlZqlLNqvZ/t3c0p/gbhDPMxxAejt+Wr5R3dZWj5p7zUI2421TS7/2us3mPrHabD1Seq99SWWO8jLtUeu6B4Lasjc1n+uBUET1hn/PqCrISHA3AAAAAAAAAAAAAAAAAAAAAACYi/4v9gEAAAAAAAAAAAAAAAAAAAAAAAAAADAmfPmkKr1U2x21zhsIq8sTVGmOY9DHuzxBo/mmFWfG1F88PLOpI+lzYnwJR6QNzX06dqp5GFo8bGw2D0mbVZr6YNcsh1ULJmRrXVNf1Nq1u9wKhSPGQbAYmXid4al0yowCNd1xXKrbANLazNIsTSvO1I4Ob9TaVTVdumJpeRK6+rD/z959R9lZlnvj/06fTMlM2kwqaZQkQABpAoKioohiQcWGisfe6zrFU9Rzzs/zcs6xvL4qVlTECqIiCqgoiqFKkZZKeu+TTGYmU39/IAqYkD3JlIT9+azFWjD7eu7ruueZfe9nsTL53rhoW0F1R46r6VcYejHvvay0JGfOaMjPH9r3s/INC7ZmzvjagtceKA+u31VwMPnRwzAfAAAAAAAAAAAAAADsjWBXAAAAAAAAAAAAAAAAAIBDxKmHjUx9VVl27u7ZZ+3Wtq69hgK2de77+iSprx7aX0Vd27I7v1lcWBgWxe33D7cMebDrPWt2FlRXWpIc3o+gtsF02rSGgoJdW9q7c9fqnTnlsJFDMFXxGqgzHIrVubNGH5TBwj+8Z2M++JMl+6z7yquOygvnjBmQns+fNTpfmrd2n3W/eGjLsISbXvvgvsNHk+Tc2aP7vXYx7/1ZhzcWFOz6w3s35QPPnJKSIc5rv3npvsPLH3XshLo9ft37HAAAAAAAAAAAAACA4VA63AMAAAAAAAAAAAAAAAAAAFCYkpJkZoGBkdvbu/f49e6evnT39hW0RnX50KZBfemWtekpcDaK242LhjYAeGNrVxZsaCuodlZzbWoqywZ5osKcMaPw8Nur79s8iJOQDMwZDpAk584qLDjy9w9vz7odnYM8zePdv25XHly/q6DaF+xHuGkx7/2Fc8aksnzff1XMym0dmbespd/rH6hfLSzs+Wzq6Grh5QAAAAAAAAAAAAAAHFQEuwIAAAAAAAAAAAAAAAAAHELqqgoLjCwr3XMoa3lZSUoKzGvd0dFT6FgHbOW2jlx+5/oh68eh7cH1u7JwY2FBqwPh1wu3Flx7ymH1gzhJ/zxjekNGVpcXVPuT+zelrXPo3vPF6kDPcIAkOWlKfaaOrt5nXW9f8oN7Ng7BRH91xR8Le56b3VyTuRPr+r1+Me+9YUR5zjlyVEG137lrQ7/XPxArtnbkrlU7C6p99hGF7QEAAAAAAAAAAAAAAIaKYFcAAAAAAAAAAAAAAAAAgL3Y1tadPyxtyZfmrc17frQoz/r8PbnkxpXDOlNHV29BdXWVew8PrCov7FdMt7V1F1Q3EP7hZ0vT1dM3ZP049H3v7qELLLv6vk0F1z596shBnKR/KspK8oLZowuq3dnRk2/eMTzhylt2deW0z96d9/94cX56/+Zsbx+Ys+epeoYDlJQkF53YXFDt125bm11DFNy9bkdnfnhvYZ+Zbzx5/H71KOa9J8mFJzQVVPezBzfnntWFBa0OhK/etq7g2mcf0TiIkwAAAAAAAAAAAAAAQP+VD/cAAAAAAAAAAAAAAAAAAAAHi9tX7MgflrbkgXW78sD6XVnbsvtvalo6NuYjZ09JWWnJMEyYrNzWUVDdpIaqvb7WXFeZFQWs89CGXQXPdSC+euu6/P7h7f2+ThBscfvOXRvz3jMnZ0xtxaD2WbChLbet2FFQbUVZSZ51xKhBnae/Lpg7Lj+4Z2NBtZfOW5vXnticxhFD+2voX7ttXVZu68jKbR256t5NKS1JjptUn7MPb8zZRzTm+En1KeTILZYzHCBJXv20pvz3b1bu83loW1t3vn7burzvrMmDPtNnf7cqnd37DrCuqyrLBceN2+8+xbz3sw9vzLTR1Vm+9ck/T/r6kn+6dml+/ra5g/6Zt7Zld75394aCapvqKnLWTMGuAAAAAAAAAAAAAAAcXEqHewAAAAAAAAAAAAAAAAAAgIPFjYu25dM3rcovF27dYyBgkmzc2Zmr/rRpiCd7xLItHdnY2rXPuub6ytRXl+319UmNhQUGrt6+O2v28n0YKLcsa8l//nL5fl3b0bXv8Cyeuto6e/LZ360e9D6f/f3q9BWYIXzmjMbUV+39vTccnjGjIbObawqq3drWlY9fv3xwB3qCRZva8uVb1j7ua719yT2rd+bTN63K+V+9P3P/+46866pF2bm750nXKpYzHCBJRtdU5IK5hQWE/t/fr95nEOiBumvVznz3rsLCPV93YnNqK/f/nCvmvZeVluTdz5hUUO3963blW3eu3+9ehfr49csLfi5/5fFNKR+mcHUAAAAAAAAAAAAAANgbwa4AAAAAAAAAAAAAAAAAAH/2nCNHFVT37zcsz+Zd+w7nG2hX3FVYMNMpU0c+6euFhjwmyZX3Dl4A4t2rd+bi7y5Id+/jUzMnNhQWPNvd25eW9u7BGI1DxDfvWJc7Vu4YtPXnLWvJzx7YXHD9y48rLGRuqL2rwAC4JLny3o258t6NgzjNX+3q7Mm7r1qc3d1PHga3ra07K7ft3mdobrGc4QCP+uCzpqSibN8hmR1dvfnAjxenu6fApPJ+at3dkw/+ZEl6C1i+vqos7z1z8gH3LOa9v/L4pkwYWVlQ7X/+ckXuXdN6wD335nt3b8jPH9pSUG15WUnecPL4QZsFAAAAAAAAAAAAAAD2l2BXAAAAAAAAAAAAAAAAAIA/O+WwkZnSuO9Q0e3t3Xnr9xemrbNnCKZ6xL1rWvON2wsLBXz24Y1P+vrxk+oK7nvZ7euyaxD2ecOCrXnVtx76m7VrKstyxUWzC15n1fbdAz0ah5DevuTtP1iYNS0D/3OwZVdXPvSTJQXXN9VV5EVzxgz4HAPhxceMzeFjRxRc//c/W5qblmwfxIkeCXV93bcfykPrdxVU/65nTNxnTbGc4QCPmtJYldee2FxQ7Z0rd+bvf/bwgM/Q09uXd165KA9vbi+o/h1nTMqomvID7lvMe68oK8lHz5laUO3u7t5c/N35Wbix7YD7PtHNS1vy0Z8vK7j+1Sc0ZXIBn9MAAAAAAAAAAAAAADDUBLsCAAAAAAAAAAAAAAAAAPxZSUkKDoi6Y+WOvP6K+dmyq2uQp0rWtOzOm7+/ILu7e/dZW1dVlhce/eThks+c2ZjSksJ6b9nVlQ//dOCCsDq7e/Ofv1yRt3x/wR5DFd9/1uQc1VSTmsqygta7b23rgM3Gwa+kJKmuePyvSG9s7cqF33wwK7Z2DFifHR3dufi7C7K6H8HBbzxlQsrLCnxjDbHy0pJ88kUzCq7v/HMI3NX3bRqUeR7e3J6Xff2B3LlyZ0H1x02sy7mz9h2aWyxnOMBjffCZU9I4orCw0B/cszH/eO3S9PT2DUjv3d29eeeVi/KbxdsKqj9sVHXedtqEAemdFPfeL5g7LmdMbyiodlNrV17xjQcL/twtxHXzt+ZN352fzgI+25KktrIsH3jmlAHrDwAAAAAAAAAAAAAAA0mwKwAAAAAAAAAAAAAAAADAY7zplAlpKDAg6rYVO/Ksz9+bn9y/OX0DkxH1N34xf0ued+mfsn5HZ0H1r3lac2r3EYo6prYip04tLAgqSX72wOZ87LplBxyE9ZvF2/K8L/0pl85bkz0tdcS4EXn76ROTJM31FQWt+fulLQc0E4eejz536t98bfnWjrzoq/fn5w9tOeD1H97cnpdd9kDuXl14+NnY2oq85ekDF9Y2GM6Y3pCXzR1bcH1XT1/e+6PF+chPH8729u4BmaGzuzdfv21dzv3yfXlw/a6CriktST75ohkFh1EXwxkO8Fjj6iryH+dNL7j+23euz+uvmJ81LYWHl+/Jok1tueCyBwr+7C0tST7zssNTM4BnXDHvPUn+60Uz/ibwfm+2tnXlFd98IF/4w5p0H8AzfUdXbz5xw/K89QcL0t5VWKhrknz0nKmZMLJyv/sCAAAAAAAAAAAAAMBgKuw30gAAAAAAAAAAAAAAAAAAikR9dVk+cNbkfOKG5QXVb23ryruvWpT//e3KvPHkCXnJMWPSVH9goUXdPX25bv6WXHb7+tyxckfB1zWMKM8Hnjm5oNrXn9ScW5cXHor6tdvW5aENbfn4udNy9Pjagq/r6unLLx7akm/csS53rtx7UGZleWm+8IojU1H2SHrjUeNqsmxLxz7Xv37+lmzc2XnA33MODX19yYUnNOWrt67Nqu2PD2Xb2taVt/1gYc6Y3pB3nzkpZ85oLDgMNEm2t3fn67etyxfnrUlHP4LKkuTDZ09JXdXBH8b5Xy+amXvXtBb03nrU9+7ekOvmb8nbT5+Y1zytOePqCgtdfqwNOztz7YNb8qVb1mZtP8P0Xn/y+Bw/qa7g+mI5w+GJNrZ25YT/uXNYet+5cmcmfeyWAVvvcxcckZcfN27A1isGF8wdl188tCXXzd9aUP3vHt6esz9/b9789Al50ynj+3XurdzWka/dti6X37k+XT2FB4S+5bSJefrUkQXXF6qY9z5z7Ihccv7MvP/qxQXVd/f05ZO/WpGr/7QpHzp7Sl4we0zBz0q7Onvyoz9tyud+vzrrCgwrf9QZ0xvyxpPH9+saHuFsBwAAAAAAAAAAAAAYGoJdAQAAAAAAAAAAAAAAAACe4M1Pn5CfPbgld6/eexDpEy3b0pGPX78sH79+WQ4fOyJPnzYyR46rydTR1TlsVFUaqsszoqI0IyrKUlZako6unnR096Z1d0/W7ujMmu27s3RLe+5cuTN3r96Z9n4GSybJv79gehpHFPbroy86ekz+97cjsnRLe8Hr37KsJc+79E85c0ZDzj5iVE6dOjLj6yvTOKI85aUl2dXZk+0d3Vm2pSOLN7Xl1uU7csuyluzc3bPPtf/5nKmPC4w9blJdrl+w74Curp6+fODHS/LN185KZXlpwXvhENaX/MNzpuY9P1q0x5fnLWvJvGUtaaqryNlHjMqJU+pzVFNNJjdUZWR1WaoryrL7z++9Fds6smBDW25asi03Ldm+X++706aNzEUnHRphZfVVZfnaq2fl/K/en7bOfb8vH7W9vTuX3Lgyn7ppVU49bGSeMaMhR4+vzYwxIzKmtjw1FY+E2rZ29mRXZ082tXZl0ca2LNzUljtW7Mw9a3amr/D8u7+Y1VSTf3vetH5fVwxnOMATfealR+Thzfdn0aa2gup3dfbkc79fnS/OW5NTDxuZZx8xKkdPqM2MMdV/OfPau3rT0tGdxZvac/+61vxm0fb8cdWO9PbzTD9zRkP++blT92NXhSnmvb/iuHG5a9XOXH7n+oKvWbCxLW/7wcJMbKjKubNG5+nTRmZ2c03G1VamprI0XT192dHRnRXbdmf+hl2Zt6wlv1m8vV/PDo+a0liVL114ZEoKDJAFAAAAAAAAAAAAAIDh4Le6AAAAAAAAAAAAAAAAAACeoKy0JF++8Mic95X7sqm1q9/XL9ncniWbCw9MHQgXndScVxw3ruD6stKS/Ovzp+ZN313Q7143L23JzUtb+n3d3rxs7ti8+dQJj/vayYfVF3z97x7envO+cl/eccaknDG9IWNrK7K7uzdb2rqyZFN7zprZmIoyaVJPFZ09vXnZ3LG5cfHW/Pi+zXut29jalR/cszE/uGfjoM0ysro8//eCI1J6CP14zWqqyeWvm5XXXzG/3+Gj3T19fwnOHWzjR1bm8otmp7qi/4HNxXCGAzxRfXVZvn3R7Lzoq/07+wb7bJ/VXJOvvnpWygfxWayY954k/3He9GzZ1ZWfP7SlX9etbdmdy25fl8tuXzcoc42uqcg3Xzc7o2sqBmV9AAAAAAAAAAAAAAAYKP3/LTYAAAAAAAAAAAAAAAAAgCIwsaEql79udhpGlA/3KPt0/jFj88kXzuj3dc87anRePsxBguccNTqffdkRKXlC3tWpUxsyfmRlwevM39CW91+9OCd96o+Z9u+35qhP3p7TP3t33vCd+Wnv6hngqRlO3b19SZJLzp+ZmWNHDNscVeWluew1szKpoWrYZthfp01ryLdeNzs1lWXDPcoeTWmsypUXH31A39tiOMMBnmhyY1W+/4aj01Rf+DPUYJrdXJPvvX5O6qsG//OmmPdeXlqSL77yyJw3e8yg9yrU2NqKXPmmozOrqWa4RwEAAAAAAAAAAAAAgH0S7AoAAAAAAAAAAAAAAAAAsBdzJ9blqouPzoR+BIwOtb87dUI+//IjUlZasu/iPbjk/JmZO7FugKcqzDlHjc6XLzwy5XuYvbQkeeVxTcMwFQe7rp5Hgl1rK8vyvTfMyfQx1UM+Q0VZSS595ZE5bdrIIe89UM6Y3pCfvfXYTBs99N+/J3Pq1JG55q1zM2PMgYf2FsMZDvBEs5prcs1bjh2Qc/RAnDatIT/+u2OHNGi1mPdeXlqSSy88Mm89beKQ9dybOeNrc81bjxXqCgAAAAAAAAAAAADAIUOwKwAAAAAAAAAAAAAAAADAk5gzvjY3vOO4nH1443CP8jijayryxVccmf84b/oeg1ELNaKiNFdcNDvHTKgdwOmeXGlJ8g/POSzfeM2sVJXv/ddd33nGxIyprRiyuTg0dPf2/eXfJzVU5eq/Ozazm4cuOGx0TUV+ePHRef6s0UPWc7DMaqrJ9W8/Li8/btxwj5KKspJ86FlT8sOLj05T3cC975/qZzjAnkxprMq1bz02Lzl27JD3ListyXvOnJTvvWFO6qvLhrx/Me+9vLQkHz93Wr70yiNTXzX0/UtKkotOas7P3nJspo46uILjAQAAAAAAAAAAAADgyQh2BQAAAAAAAAAAAAAAAADYhzG1Fbni9XPyhVccmSmNVcM6S0VZSd54yvj87r3HD1hg1Zjailz1pmPyoqPHDMh6T+aoppr88OKj876zJqdkH1mGDSPK84lzpw/6TBxaevv6HvffTXUV+fnb5uZdz5g06AGZZ85oyHVvn5tTDhs5qH2GUn11WT53wRG56k3HZFbT0AXkPta5s0bn1+86Ph8+e8qg3MOn+hkOsCcNI8rzxVccmUtfeWSa6yuHpOfs5pr85M3H5J+eOzUVZcMXWl3Me0+S848Zm9+/72lDGtw+q7kmV//dMbnk/JmprvDX2QAAAAAAAAAAAAAAcGgpH+4BAAAAAAAAAAAAAAAAAAAOFS89dmxeNGdMrr5vUy7/44bcs3rnkPUeV1eRC49vysWnjM/EhoEPJqyvKsuXLzwqP71/c/7r1yuyavvuAV1/wsjKfOTsw3LhCU3pT27jy+aOTUtHd/7lF0vzhDxPilRP799+raq8NP98ztS85Jix+fRNq/KrhVvTO4A/L5Mbq/LhZ03JhSc0DdyiB5nTpo3Mr991fH69aGsunbc2t6/YMaj9qitK89Jjx+bNp07InPG1g9rrUU/lMxxgb158zNg8f9boXPHHDfnivDVZv6NzwHscPb4273/m5Jw3e0xKhjfT9HGKee9NdRX53AVH5I0nj88X/7Amv1q0LT0D+XD0Z8dOqM17z5qcF8we069nfAAAAAAAAAAAAAAAOJgIdgUAAAAAAAAAAAAAAAAA1PEyyQAAIABJREFU6IfyspJceEJTLjyhKUs2t+eGBVvz28Xbcs+a1nR07SFx8gBMG12dZx7emOcdNTrPmN6Q8rLBT0t6ybFjc96cMbnmgc357l0bcsfKHfsdkFlTWZbnzxqVC+aOy1kzG1O+n2lPF58yPjPGVOffb1ie+Rva9m8YnjJ6nyTh95gJtbnsNbOyfGtHLr9zfX65cGuWbenYrz7lpSU5+bCRed2JzTn/mDH7/fN7KCkpSc45anTOOWp0lm3pyM8e3Jzr5m/NA+taByQot2FEeU6fNjLnzRmT5x01OnVVZQe+aD891c9wgD2pKi/Nm58+IRefMj43L23Jj+/blF8v2pbt7d37veaUxqq8YM6YXDB3XI6dMDQB3fujmPeeJCdOqc/XXzMrq7fvzvfu3pBfL9qWB9fvypM8Tu3TpIaqnDdnTF42d2yOm1g3cMMCAAAAAAAAAAAAAMAwKenrO5A/ag8AAAAAAAAAAAAAAABAMXrwwQdzzDHHPGnNb959fI5qqhmiiWD4dff0Zf7Gtizc2JaHN7dnTcvurNvRma27urK9ozutu3vS2dOX7p5HggPLy0pTVVaS2qqyjKmpyNjaikxurMqMMSNyxLgROWFyXUbXVAzzrpJtbd25een2/GltaxZuaMvaHZ3Z2NqZts7edPb0pqy0JNXlpWkcUZ6xtRWZNro6RzXV5MQp9Tlxcn2qK0oHbJbevuQPS7fndw9vz+0rdmZTa2e2tnWno6snleWlqa0sy9jaikxqqMqs5prMaqrJnPG1mdVUkxJ5ige1dTs6c9Kn/lhQ7Y3vPj6z+vH5snxrR25Z1pKFG9uyaFN7Vm3vSOvunuzq7M3u7t5Ul5emtrI0DSPK//L+O3ZCXZ45szH11UMfPHowat3dk3vXtObeNa1Zsa0jq7Z1ZE1LZ3bu7k57V286unrT29eXyvLSVJWXZmRVWcbWVaap7q9nwtHjazNnfG0O1nzcp+oZDrA3fX3Jgo1tuWPFjizY2JZlW9qzcvvu7OzoSVtXTzq7ezOioiw1laUZNaIiU0dXZ/qY6hwzvjZPnzYykxqqhnsL+62Y954kG1u7cuuylizc1JYlm9qzdEt7Wjp6sqvzkX+SZERFaUZUlGVcbUUOG1WVw0ZV55gJtTn5sJGZ0nho7x/gQC3c2JZnf+HeJ6154IEHcvTRRw/RRAAAAAAAAAAAAAAcoCvLh3sCAAAAAAAAAAAAAAAAAICngvKykhw7oTbHTqgd7lEG1Kia8rz4mLF58TFjh3uUlJYkZ81szFkzG4d7FA4h00ZXZ9ro6uEe45BWV1WWZ8xoyDNmNAz3KIPmqXqGA+xNSUkyu7kms5sLD0t/qijmvSdJU11FXnLs8D/bAwAAAAAAAAAAAADAwaJ0uAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhqgl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKIj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDqCXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoiPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOoJdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICiI9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6gl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKIj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDqCXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoiPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOoJdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICiI9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6gl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKIj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDqCXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoiPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOoJdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICiI9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6gl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKIj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDqCXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAolM+3AMAAAAAAAAAAAAAAAAAAADFbcLIyqz5xOnDPQYAAAAAAAAAAAAAAAAAUGRKh3sAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIChJtgVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6gl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKIj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDqCXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoiPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOoJdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICiI9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6gl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKIj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKDqCXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAoiPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoOoJdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAICiI9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACg6gl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKJTPtwDAAAAAAAAAAAAAAAAAAAc6tbt6MxJn/pjQbU3vvv4zGqqGeSJgKeid165KNc8sHlQ1r7opOZccv7MQVkbAAAYGFvbunLsJXcO2vr+nwUAAAAAAAAAAAAAxah0uAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhqgl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgKJTPtwDAAAAAAAAAAAAAAAAAAAA8NS2sbUr961tzX1rW/Pw5vas29GZ9Ts6s3N3Tzq6e9PR1ZOy0pJUl5dmREVpxtRWpLm+MhMbqnLkuJrMbq7JcZPqUl9VNtxb6Zdi3XeSdPf05YH1u3L36p1ZtKk9q7Z1ZPX23Wnp6E57V2/au3pTXlqSmsrS1FWWZVJDVaaMqs7MsdU5cXJ9jp9Ul5rKQ2vffX3J0i3tuWdNax5cvyurt+3O6pbd2dja+Zc99/T2paayNLWVZRlZVZ5po6szc+yIHDluRE6f3pDJjVXDvQ36wT2nmG1r684ty1uyYENbFm5sy9It7dnR0ZOdu3vS1tmTirKS1FeVpa6qPCOryzJtdHVmNddkVlNNjplQlwkjK4d7C+xDX1+ycGNb/rS2NQs2tmXp5vZs2NmZja1daevsSXt3b/r6kqry0lSXl6amsjTN9ZUZX1+ZyY1VmTO+NsdOqM3hY0ekrLRkuLfTL8X4HAMAAAAAAAAAAAAAxUywKwAAAAAAAAAAAAAAAAAAAANu/oa2XPPA5vxq4dbM39C2z/renr509TwSCLextetvrikrLcnciXV51uGNeemxY3P42BGDNfoBKdZ9J4+E/N2wYGuum78lNy9tye7u3iet7+nty+7u3mxr686q7btz24odf3mtrLQkpxxWnxfOGZPz5oxJc/3BGQDY1dOXm5Zsy3Xzt+ZXC7dla1vXPq/Z2dGTnR09WZ/OLNrUliz862szxozIc44clYtOah6yez3pY7cMSZ+h9Mt3Hpejx9cOytru+cFpMO85f7VlV1d+cM/G/HLh1ty9ujU9vX17re3u7Ut7V282tj7yHrl3TWty/19fP3zsiJw7e3ReeXzTkPzsXzd/a97y/QWD3meg/dNzp+Y9Z04asn6tu3vyq4Xbct38LZm3rCXb27v3eU1b5yNhvlvbktXbd//N6w0jyvOswxtzzpGjc+7s0RlRUToYox+wYnyOAQAAAAAAAAAAAAAeIdgVAAAAAAAAAAAAAAAAAACAAdHbl1zzwOZcdvu63LVq54Cu3dPbl3tW78w9q3fmMzetynET6/K20yfm/KPHpKy0ZEB79Vex7vtRD29uz1duXZsr7920zxC0QvX09uXW5Tty6/Id+fj1y/PiY8bmXc+YlNnNNQOy/oHa1NqVy+9cn2//cX02te472LNQS7e0Z+mt7fnqrWtz+vSGvP+syXnGjIYBW5/9555TzBZvas+l89bkx/dvTucAnfNLNrfn8zevyedvXpNnzmzMB541OaccNnJA1t6THR37DigtZvM3tOWy29fl6vs2paNrYO7xo1rau/PT+zfnp/dvTn11WV4+d1zeetrETBtdPaB99lcxPscAAAAAAAAAAAAAAI8n2BUAAAAAAAAAAAAAAAAAAIADdv2Crbnk1yuzaFPbkPT709rWvPuqRfmf31TnEy+YnuceOWpI+j5Rse47SVp39+STv16Ry+9cn76+wevT3duXq+/blKvv25RXHt+UT5w7LQ0jhuevS2jr7Mml89bm0nlr0j7AwXdPdMuyltyyrCXnzhqdfzt3WqaOOjgC8IqNe04xa93dk//97ap84/Z16e4dvIP+dw9vz+8e3p4XHzM2//6C6RlXVzHgPQS77tnyrR35PzeuzLUPbh7Uz/JH7ezoyTfvWJ8r/rghF57QlI+cPSXN9ZWD33gPivE5BgAAAAAAAAAAAADYM3/CFwAAAAAAAAAAAAAAAAAA4CnkitfPydmHNw5Zvw07O/PRa5fm+gVbh6znYy3f2pE3fmd+zps9Jp966cyMrB6aX6Mv1n0/at6ylrz/6sVZt6NzSPteee/G3LRkWz790sPz7COGNtT2lmUted8w7Pn6BVtz89KW/M+LZ+Ylx44d0t7Fzj2nmN2yrCXv/tHibNw5dD//1zywObcsa8n/e/kROWvmwD7LtHT0DOh6h7qe3r58cd6afPqm1ensHtzQ6j3p7u3Ld+/akGsf3JKPnzstrzqhaUj7H8rPMaNrKrLmE6f3+7oXffX+3LN65371BAAAAAAAAAAAAICnutLhHgAAAAAAAAAAAAAAAAAAAIBD063LW/K8S/80bOGmj/WL+Vty7pfuy4INbYPeq1j3/ajv370xr/32Q0MehvaoTa1dufi7C3L5neuHpF9fX3LJjSvzqm89OGx73tXZk3ddtSj/+otl6e0blhGKintOsfvKLWvz6ssfGtJQ10dt3tWV118xP9+/e+OArrujo3tA1zuUbWrtygWXPZD/8+uVwxLq+lg7OrrzoZ8syfuvXpyunqE57IrtOQYAAAAAAAAAAAAA2DfBrgAAAAAAAAAAAAAAAAAAAPTb9+/emFd966Fs3tU13KP8xYptHXn5Nx7IfWtbB61Hse77UZ/7/ep8+KdL0j1E4Wt709Pbl3+6dmk+9dtVg9qnu6cv7/nRonzu96sPinDNy25flw/+ZPFBMctTlXtOMevrS/7x2qX5xA3L0zOMP3TdvX35yDVLcuW9Axfu2iLYNUmycGNbzvvKffnjqp3DPcrjXPWnTXn1tx5MW2fPoPYptucYAAAAAAAAAAAAAKAwgl0BAAAAAAAAAAAAAAAAAADol2/dsT4fuWbJsIa+7c329u68+vKHsnxrx4CvXaz7ftR37tqQS25cOWjr749P37Qq37pj/aCs3dPbl7f8YGF+cv/mQVl/f11176Z86CdLhnuMpyT3nGL3r9cty7fvHJwztb/6+pIP//ThzFvWMiDr7Wgf3MDQQ8HiTe258JsPZm3L7uEeZY9uW7Ejf/e9BekapNDVYnuOAQAAAAAAAAAAAAAKVz7cAwAAAAAAAAAAAAAAAAAAAHDo+PlDW/LPv1iavv3I3KosL81JU+pz6tSROfmw+kwYWZlRIyoyakR52rt6s7W9K9vauvPQ+l25fcWO3Lp8R9bsR/hYS3t33vTdBbn2bcemtrKs/4PuQbHu+1G/Wbwt/3Tt0n5fV1VemqdPHZmzZjZmVnNNZoypTuOI8tRUlqWrpy87d/dk1baOLNrUlnnLWnLTku3Z1tbdrx7/8oulmdRYleceOarf8z35usvyq4Vb9+vaaaOr85wjR+XUqSMzc8yITBhZmdrKsvT09WVHR09Wbe/I/A1t+e3ibblpyfa0d/X2a/0r792YWU01eccZE/drPvbMPaeYXXLjynzj9nX9vm5iQ1VeOGdMTpxclznjazOmtiJ1VWVp7+zNtvauLNncnnvXtOaXC7bm/nW7+rV2T29f3nXlovzqncelqb6y37M91o6O/n22PNVsau3Kay5/MJt3dfX72vKykjxtUn1OPuyRfyY3PvJZ3jiiPKUlyba27mzv6M6WXV25e/XO3LFiZ+5ctSM7O/ofpnvz0pZ87Ppl+eQLZ/T72idTjM8xAAAAAAAAAAAAAEDhBLsCAAAAAAAAAAAAAAAAAABQkAUb2vK+qxf3O9x0/MjKvOGk8bnopOaMqa3YY019WVnqq8sydVRy/KS6vPbE5iTJb5dsz5fnrcnNS1v61XPRprb8940r84kXTO/fsHtQrPt+1OZdXfnAj5ekp7fwb8C4uoq884xJedUJTWkcsee/2qC8tCQjKkrTVFeRE6fU5zVPa05XT19+9uDmfP7mNVm4sa2gXr19yQd/vCQ3vvv4NNXt+fvcX9+7e0Muv3N9v6979hGj8p4zJ+XUqSP3+Hp5SjKurjTj6irytMn1ed2JzdnR0Z1v3rE+l85b26/gwU/+ekXmTqzN6dMb+j3nU1lJSVK3H8HG7vmha3/vOX/1y4Vb8/9uXt2va06cUp8Pnz0lZ81oTEnJ375eX/3I59tho6rz7CNG5UPPmpL5G9rymZtW5ecPbSm4z+ZdXfnoz5fma6+e1a/5nqiliINdu3v78vYfLsy6HZ39um5MbUUuOqk5F588/kmDdcePrMz4kY+8fsb0huTMpLO7Nz+8d1O+OG9NVmzt6Fffb92xPmfOaMwLZo/u13V7U4zPMQAAAAAAAAAAAABA/wh2BQAAAAAAAAAAAAAAAAAAYJ86u3vznh8tSkdXb8HXlJYkbzltYv7xOYelqrx0v/qefXhjzj68Mb97eHve96PF2byrq+Brv3HH+lx4QlOOHl+7X72T4t33Y/39NQ9nSz/6X3RSc/7lnGmpr+5/0GJFWUkumDsuLz56bC69ZU3+5zerCgpi29rWlY/8dEkuf93sfvd8opXbOvLx65f365pJDVX5n5fMzDNnNva738jq8rzvrMl5zdOa89Frl+YX8wsLPOzp7cv7f7wkv3vP8ak5gFDLNZ84fb+vHUqrtu/Os79wb9o6e5607jVPa87U0dX9Wts9PzgN5j3nr1Zs68j7r15ScHh5XVVZ/uMF03PhCU397jW7uSZfedVRuXX5jrzrqkXZuLOwoNHr5m/NbxZvy7OPGNXvno/a0fHkP0ePWvzPpx7Q++tg9MU/rMntK3b065qLTmrOx54/bb+/F5XlpbnopOa85mlN+fpt6/Kfv1rRr2DVf7tuWc4+vDHVFfv3HPVYxfYcAwAAAAAAAAAAAAD034H/yWUAAAAAAAAAAAAAAAAAAACe8r50y9rM39BWcP3omopc+aZj8rHnT9vvcNPHeubMxvzqncflaZPrC76mp7cvn7lp1QH1LdZ9P+rnD23JDQu2FlRbVlqSS86fmUvOn7lfYWiPVV5WkveeOTnffO2sjCgw1O3GRdtyzQObD6hvknz02qVp3V1YAGCSnDZtZG54x3H7FfD5WOPqKvLVVx+Vj54zNSUlhV2ztmV3PjVA9/pg1teXfPgnS/YZ8NlUV5F/fd7Ufq/vnh98Bvue81cf+enD2dHRXVDt1NHV+eU7jtuvUNfHOm3ayPzibXMzu7mm4GsuuXFlweGze1LIHstLS55yoa5Lt7TnM79bXXB9fVVZLn/d7Fxy/swB+V6UlZbkbadPzPfeMCejasoLvm5ty+58/fZ1B9y/GJ9jAAAAAAAAAAAAAID+E+wKAAAAAAAAAAAAAAAAAADAk9rU2pUv/GFNwfUNI8rz/TfOydOnjhzQOZrqK3P562Zn6ujqgq+5fsHWLNncvl/9inXfj+rp7cslN64suP4/z5uei05qPqCeT/TsI0blC684MqUFhl5ecuPKdPfuf/LfLcta8tsl2wuuP316Q77z+v6F1e3Lu58xKf/feTMKrv/areuyaNP/z959h8dZ3en/v6er92ZbLpJ7tyGmtwQCoQRwMCQkEEgh2bAbks3uJpuy2V+STchm95slWUghHQIJgdBbwJjQO7h3uchW76PRaPr8/vB6Mayt54w0z8xIer+ui8vG+sw5n6PzzDxndEm6zcOHx6M73ujQC3sHLOv+7cJGleSlthfseW6yc8/xtns3dulFg8+zJM2rLtD9n1qa0r1oJFNKvLr9qkWqLvIY1W9uG9LTu/tGNVciKQUsQoIljTnMMxf9YN0BRWIJo9o8j1O//dhCnT2vPO19nNpQqt9cuVBul+ENXdKvX2kb0z19Mp5jAAAAAAAAAAAAAAAAAAAAAIwOwa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBH98uVWBcLWgWiS5HE5dMdVC7W4rtCWXsoL3LrtYwtV6DULX0smpXvWd41qrsm67sPueqtTTYbhsNeeUKePr6ob03zHct6CCn3prOlGtft6Q7rzjY5Rz5VKANysijz9+soF8rnT/6sbrjmhTn972jSj2lgiqR89czDtPeSKloGwvvPEPsu6c+dX6MJFlSmPz57nHrv3HIcMhuP6zl/2GdVWFXp021ULVWMYwmpqSolXP718nnH9715tH9U8g6GYkgZZmRMtJHhHZ1APb+k2qnU4pF98eH7aw+mPtGpGsb557izj+nZ/RE/tHF2YrzQ5zzEAAAAAAAAAAAAAAAAAAAAARodgVwAAAAAAAAAAAAAAAAAAAAAAAAAAAADAMYWiCf3+dfOAqb87vV4r64tt7EiaU5WvT544xbj+gc1moWZHmqzrPiyRlG5+rsWodlZFnr6RQlDbaHz+jHrj0Nz/fq5F8YRBgt+7bG4b0usHBo1qXU6Hfnr5PBX7zIJ2R+MrZ8/QCTPMAvYe2tKj/b0h23rJpn96oMkyYLnY59KNFzWmPDZ7npvs3HO87TevtKkzELWsczikn14+T9PLfLb0cfKsUuOA3nW7+ox6frf+UMyornSCBbve/nqHUaCtJH14ZY3eN7fc3oYkfeqkKVoxrci4/tFtPaOaZzKeYwAAAAAAAAAAAAAAAAAAAACMHsGuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBjemJHr/qHzQLRZlfl64bTp9nc0SF/c+pU44DF5r5QygGIk3Xdh/11d5/295k99tvnNyjfY++vL3A7Hfr2BQ1Gta0DYT21qy/lOX73Wrtx7VXvqdWyqebBdKPhcjr0n5fMltdt/bmNJ5L66YuttvaTDX94s0PPNPVb1n3t/TNVV+JNeXz2PPfYvec4JBRN6JcvtxnVXnvCFJ3SUGprP/98zgw5HdZ1iaT0+CiCPv2hkYOCD7MzuDnTovGk7t/UZVRblu/W198/0+aO3nbDGfXGtet2Wr8eHM1kPMcAAAAAAAAAAAAAAAAAAAAAGD2CXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAx/TQZvMAtc+fPs0okDAdyvLdumJljXH9q83+lMafrOs+7PevdxjVrawv1tnzykc1R6pOmlliHC5426vmgZ3SoZDMR7ea7bnX7dQXUwilG4vZVfn6+HtqjWrv39SlcCxhc0eZ0+aP6Ft/2WdZt2pGsa5+T13K47PnucfuPcfb7nijQz1DUcu6ykKPvnrODNv7aazMH/H1Pd/j1IppRbryuFpNK/WlPL4/ZBbUXprnTnnsXPXyfr/6gmbrvuo9taoo8Njc0dvOnV+hhso8o9reYFR7e1IPqZ9s5xgAAAAAAAAAAAAAAAAAAAAAY0OwKwAAAAAAAAAAAAAAAAAAAAAAAAAAAADgqOKJpJ7b029UW+Rz6aLFVTZ39E4fWFBhXLulPWhcO1nXfVjnYERrd/YZ1V5/2tSUxx+L60+bZlT3TFO/DvaHjcd9tdmv/mGzALzVS6tUU+w1Hnus/u70eqPg4MFQXE/uMNu38eDLDzZpMBQfscbjcug/Lp4jhyP18dnz3GP3nuNtv3m1zaju86fXq9DrsrmbQy5fXiOHQ5pRnqfzFlToi2fW69YPz9dzN6zUzq+fpEc+s0z/ecnsUYVwDhgGu5bkZ2atmfDCngHj2jXLzQPj08HhkM6cXWZcv6E1kNL4k/EcAwAAAAAAAAAAAAAAAAAAAGBsCHYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAABzVprYhDYZHDtk77OIlVcr3ZPZH2FfWF8vtNEv3O9AXMh53sq77sL9s71U8kbSsqyjw6Nx55iGz6XDm7DLVlVgHbCaS0mPbeo3HXbfLLMhXki5fkdkAvOoijy5cZPZ5vmdDl83dZMY9G7q0bpd1KN8NZ9RrbnX+qOZgz3NLJvYch7xxYFB7e6zvDVWFHl2zqjYDHR1y6dIq7fjaiXrpi8fp11cu0D+9b4YuXFSpxsp8Gd7yjsk/bHZPL8lzj22iHPLyfrNg1yVTCrPynDqlodS4tjnFs8xkPMcAAAAAAAAAAAAAAAAAAAAAGJtLGR9uAAAgAElEQVSJ893kAAAAAAAAAAAAAAAAAAAAAAAAAABg3NvTM6wNLUNq6hnWnp5hdfgj6glG1RuMKRxLKBxLKJZIyuNyyud2qNDrUnWhR9VFXs2qyNP8mgItmVKoJVMKjQPvMDn4QzFtahvShpaAdnYNq2UgrNaBsPyhuIajcYVjCXndThV4XCrwOlXsc2lmeZ5mVeapoSJfx9UXaWFtoRxcVphkNrUGjGtPmWUe0JUu+R6nZpTnaU/PsGVty0DYeNzJuu7D/rLdLEhs9bIquV2ZfWF0OqTLllXrludbLGsf39aj606eYjTuWwfN9ryy0KOTZpYY1abTh1fW6r6N3ZZ1zzb1KxxLyOfObNhwOvUPx/Ttv+yzrGuozNPfnTZt1POw57kjU3uOQ/60vtOo7iPH1cibwevK7XLI7XLZMrY/FDOqK/HZM3827Oi0PiNI0vHTi23u5OhWTisyrk31LDMZzzEAAAAAAAAAAAAAAAAAAAAAxoZgVwAAAAAAAAAAAAAAAAAAAAAAAAAA0ux3r7bra4/sMar93KnT9I1zZ9rckZlQNKFlP3hNQ5G4ZW1tsVev/8N7NNbs1OFoQut29enRrT16fs+AuoeiRo+LxBKKxKTBUFzt/oikoXd8vMjn0okzS3Tx4iqdv6hChd7xH9Bz+2vt+ueHra+r4jyXtn/1xAx09LZHtvboM3ftsKwr8Lq06+uZ621X17Ae3tKtdbv6tb5lUInkyPWhaEKhaEK9wUP/v60j+I6Plxe4dfLMUl26rErnza/IeAgQkA27us1CwSRpyZRCGzs5tmmlXqOA04DB/e2wybpuSQqE43p+74BR7fvnV6Q0drqcPa/cKBDttQOD6g1GVVHgGbEumZQ2t5mFfJ7eWJqVkO+TZ5WoJM9tGU4YjiX08n6/zpxdlqHO0u+7T+5Xj8GZ8LsXNo46dJI9zy2Z2HMcEosn9dCWHss6h0P62PG1GegoMwZMg13zJsav4ukMRI3DbBfVZuccU1U48r35SIGw+VlmMp5jAAAAAAAAAAAAAAAAAAAAAIzdxPhucgAAAAAAAAAAAAAAAAAAAAAAAAAAcsjFS6r0zcf3Kha3SJGU9NCW7pwJdl27s88o1FWS1iyvHlOoa3NfSL9+pU1/fKtTg6HUAudMBMJxPbWzT0/t7NM/P+zUx46v1d+cOk1TSrxpnwu5JZGUHtjUrdtea9erzf60jt0XjOnRbT16dFuPqgo9+shxNfrcqdNUls+P7GLi+tJZ0/XhlTXqCkTVFYioKxBVZyCq7qGIOgejh/59KKJILKnZVflZ6bHYZ/YcDEYSxmNO1nVL0rN7+hU1OMMUeF06cUZxSmOny/HTi1Wc57I8Q8QTSa3b1a81y6tHrGv1hzVoGBq3Ylp21ux2OnR6Y6ke2WodyPjM7v5xG/L5+oFB/eHNDsu6ixZXjmmN7HnuyNSe45BXm/0aGLYO/Fw5rVgzyvMy0FFm+A3fc5ZOkGDXmiKP9n3zZPUFo+oNxtT7P38e+f99wzH1DkV1/PTsvMZ53U4VeF0KGnwNYjhqfpaZjOcYAAAAAAAAAAAAAAAAAAAAAGM3Mb6bHAAAAAAAAAAAAAAAAAAAAAAAAACAHFJe4NbZc8v1l+29lrUH+8N66+CgVtZnJ1DkSPdv6jKuvXxFzajm8Idi+s+nD+i219qNwlbSYTia0C9fbtNtr3foC2fU629PmyaPawyptMhZ63b16btP7Nf2zqDtc3UPRXXzcy267bVD19WnTprCdYUJqSzfbRReHE8kxxT4PRYet9nEqdx1Juu6JemlvWah2CfOKJbX7Uxx9PRwOx06eWapnthhfdZ6ad+AZSDawf6w8dyL6gqMa9Nt1Yxio5DPF/YOZKCb9Islkvrnh5qUtLhoC70ufesDDWOaiz3PDZnccxzy9O5+o7rzF1bY3Elm+UPWYbaSVJLvsrmTzPG4HKop9qqm2JvtVo6pJM8s2DXfY37emIznGAAAAAAAAAAAAAAAAAAAAABjl53vLgYAAAAAAAAAAAAAAAAAAAAAAAAAYIK7LIXgjQe3WIc12W0wFNdTu8xCflZMK9Lc6vyU53huz4Dee8t6/erltoyFuh4pEkvoP9Y164JbN+pACmFeyH3+UEx/9+eduvr32zIS6vruub/zxD5deOtG7e4ezujcQC5xZSvdVIfuYSYKven/8fqJuO7Xms0C0bIdSr+yvsio7pX91utpHYgYz1tf5jOuTTfTz/n2zqAisYTN3aTfL19q07YO6/v4P7x3uupKxhZUyJ7nhkzuOQ55elefUd15CyZWsOuA4T2z2Gcd6o70CUXNXrfK8s33ZTKeYwAAAAAAAAAAAAAAAAAAAACMHcGuAAAAAAAAAAAAAAAAAAAAAAAAAADY4P3zylWSZxY+8vCWHiUzn3P6Do9t6zEOg7piRU3K4//6lTZ97Patavebh2jZZWv7kM7/+QatbwlkuxWkwea2IZ39kw26b2N3VvvY0j6kD/xsg+7d2JXVPoDJyB+KGdVVFXps7iSz7Fh3JJbQNsOA7BXTzALJ7GI6/77ekGUIbt9w1HjeuuLshUvOrco3qovFkxkPOh+r1oGw/t9fD1jWLagt0KdOmjLm+djz7Mv0nkPqHooaBenWFHk02/DaGy9M75mleS6bO8FhyaQUiJgF7poGu07WcwwAAAAAAAAAAAAAAAAAAACAsTP7rmUAAAAAAAAAAAAAAAAAAAAAAAAAAJASr9upDy6u1B1vdFjWtg6E9cbBQb1nenEGOju6+zeZhWJ6XA5dsrQqpbFveb5F33ty/2jask1fMKaP3r5V91y7WIvqCrPdDkbp2aZ+XXfXDgXCuRF0MxxN6IZ7d2lgOKZPnDh+A8ie3t2vq27fmu02bPXpk6boW+c3ZLsNpMne3pBR3cyKPJs7ySw71r29M6hY3CxtfumU7N4/l04xC0RLJqVNbQGd0lB6zJrhqFm4vdvlkM/tNKq1Q2m+W+UFbvUFrQMKN7cNadnU7IbWpeJfHt2roEXAn8Mh3XhRo9xOx5jnY8+zL9N7Dumtg4NGdSfOOvbr5Xg1YBjsWpLHr+LJlAP9IeMzx7RSn1HdZD3HAAAAAAAAAAAAAAAAAAAAABi77P30CAAAAAAAAAAAAAAAAAAAAAAAAAAAE9yHllcb1z602SxY1Q49Q1E9v3fAqPbc+RUqyzcPu7lvY3fOhboeNjAc0yf+sF39w2YhP8gtzzb16+o7tuVMqOthyaT0jUf36lcvt2W7FWBS6BiMqGcoalS7ZAIFedu17p1dw0Z1RT6Xaoq9xuPaobzAbXwmsVpXyDDkMy+LAZ+H1RSZfd63dQRt7iR91u7s0+Pbey3r1iyv0QkzStIyJ3ueXdnYc0gbWoeM6lZNL7a5k8wbMHzPV0qwa8ZsaTd/zTre8JqcrOcYAAAAAAAAAAAAAAAAAAAAAGPHd5MDAAAAAAAAAAAAAAAAAAAAAAAAAGCTE2eUaHqZTwf6w5a1D2/t0f/3gQY5HBlo7F0e2tKjeCJpVHvFyhrjcff2hPSVh5pG1dOCmgKdOadMi+sKNaM8T1NLvSr0upTvccrldGgwFJc/HFPvUFQbW4e0vjWgZ5v61e6PpDTPwf6wvvxgk2798PxR9Yns2No+pOvu2qFY3Oy6PVKh16WTZ5XouPpirawvUn2ZT+X5HpXkuRSJJzUYjqvNH1ZT97DWtwT09K5+7elJPUjnW3/Zp9lV+TprTlnKjwVg7sW9fuPaE2ZOnHBAu9bd1G32etdQkWc8pp0aKvP11sFBy7pdXSOHx5mev0IxszBQO1UWeozq9veFbO4kPSKxhP7l0b2WdSV5bv3LuTPTNi97nj3Z2nNIG1oCRnWL6gps7iTz/KG4ZY3DIRX6XBnoBpK0dqd1uLMkFee5NLfa7JqcrOcYAAAAAAAAAAAAAAAAAAAAAGNHsCsAAAAAAAAAAAAAAAAAAAAAAAAAADZxOKTVy6r142cPWta2+yN67YBfJ8zIfOjcA5u6jeqqCj0phVR+49E9GopYB+gc5nI6dOnSKn3xzHo1VuaPWFte4FZ5gVszy/O0sr5Y10iKJZJ6fFuvfvJ8iza0moUWSdIjW3v0bFO/zphNAOd4MBiK69o7tysQNr+2JGlhbYGuP22aLlhYqTyP86g1+U6H8j1O1RR5tHxqkT60rFo6/1CQ7C9fbtM9G7qMQ5DjiaQ+d/dOPfm55aov86XUKwBzD28xu4fVFnu1dEqRzd1kjl3r3ttrFgzZYHGfzpTGyjyjQLR9FuvKcx/9vvBusXhSw9GE8o9xH8kE014P9IVt7iQ9fv5Sq5oNAkn//sx644BTE+x59mRrzyFtajN7j7SgptDmTjIrnkgavS8t8rnkNAx9xtgEwnE9ts0s2PWEGSXG+zJZzzEAAAAAAAAAAAAAAAAAAAAAxi57PzkCAAAAAAAAAAAAAAAAAAAAAAAAAMAksGZ5tXHtg5t7bOzk6FoHwnrtgN+odvWyarkNE1Ve2Dugv+7uN+6jstCjez6xWD/+0FzLUNdjcTsdumhxpR68bqmuP22aHCmE8ty4tnlUcyLzvvHoHrUMmAeXFflc+v5FjXricyv0oWXVxwx1HcmiukL98NI5evJzy7VimnlAoj8U01cf3pPyfADMdAaiWmd4r7l4SeWECWuzc90H+81eX6eUeM0HtVFdsVkfzRaBl6ncG/yhmHGtHXxusw090J/7IXCdgahufq7Fsq6hMk+fPHFKWudmz7Mjm3s+2Q2G4uoKRC3raoo8Ki9wZ6CjzPGHrENdJak0b2KtO5f96uU2DQybvbZesqTKeNzJeo4BAAAAAAAAAAAAAAAAAAAAMHZ8RzkAAAAAAAAAAAAAAAAAAAAAAAAAADaaXZWv5VOLtKE1YFn7yNYeffv8howGzz2wuVvJpFntFSvMQ2p/8rx1YNNh5QVuPXzdUs0ozzN+zEjcToe+/v6ZaqjI0z892GT0mI2tAb20z6+TZ5WkpQfYY+3OPt2zocu4fk5Vvn7z0QWjDgt+t/k1BXrgU0v1tUf26I43Oowes25Xnx7Y1K1LlpoHEgEw85PnWxSJJSzrXE6HPnHCxAkItHPdrYbB2TVFuRGIVm3Yh1UgeEWBx3jO/uGYag2D2OwQilrvvSQNRxPqHoqqqtB8bZn2/bX7FQhbBy7+63mz5Hal94DMnmdHNvd8stvXZxb8W1+W2nuyYCSuF/f5taVtSDu6gtrdNaz+4ZgGw3EFI3G5XQ7le5wq8blVX+bTjPI8Laor0KoZJVpUWyBXBt78moYzlxgEux7sD+utg4Pa0DqkPT3DavNH1DEYUTAaVyiaUCIp5XucKvA4VV7gUX2ZT9PLfFpUV6jjpxdrXnXBhAmaH63d3cP60bMHjWqrizy6aHGl8diT9RwDAAAAAAAAAAAAAAAAAAAAYOwIdgUAAAAAAAAAAAAAAAAAAAAAAAAAwGaXLa82CnbtHIzolf2ZDRe9f1O3Ud3iukItqis0qm0ZCOuZpn7jHn546Zy0hboe6aPH1+qtloDuNAzgvHt9J8GuOSyeSOq7T+w3rl9QU6C7rl2c9nAzt8uhH1w8Wy6nQ7e91m70mH9/qlkXLq6Ue7KnOAFpdKA/rN+/bvYc/ODiSs2sSP99JhvsXHcyKfUMRY1qq4tyIziyxrCPcCyhwXBcxT7XUT8+pcQ84G1397Dm1xQY16fbUMQs5FOSeoO5G/K5pX1Id6/vtKw7vbFU759fkfb52fPMy/aeT3b7e82CXaeWWj83ovGkHtjUrQc2d+uFvQMKjxA2HkskFYom1BeMaX9fSC/sHfjfj5Xlu/WBhRW6ZEmVTm8sk8Omo/KAabDrMe4RzX0h3fVWpx7f3qvtHUHLcQLhuALhuDoDUe3ofGd9ab5b586v0IWLKvTeOeWTLsB4MBTXdX/cMeI1c6TrT50mn9tpVDuZzzEAAAAAAAAAAAAAAAAAAAAAxs7sO5cBAAAAAAAAAAAAAAAAAAAAAAAAAMCoXbK0yjjQ8aEtZkGr6dDUPazNbUNGtZevqDEe98HN3UomzWrPX1ihc20MbvraOTNV6DULP3liR6/iCcPGkXF3r+/Szi7rICVJqir06LarFtoabPZvFzTolIZSo9r9fSHds77Ltl6AyeirDzVpOGodCuZwSJ8/vT4DHWWGnevuG44qZngfzJlAtGLzProCkWN+bFqpz3ic9S0B41o7NPebhTNKUv+wWZhhNnzvyf2yutwcDunr586yZX72PPOyveeT3f4+s+topOdGMBLXzc+16IT/ekNfuG+X1u3qMw7oPJr+4Zj++Ganrrxtq953y3rd9VanLe/H/KG4UV1Jnvsd///yfr+u/v02nfKjN3XTMweNQl2tDAzHdPf6Tl1753adeNMbuvm5Fg3k8PM2nQZDcX38jm3G7+nmVRfokydOMR5/Mp9jAAAAAAAAAAAAAAAAAAAAAIyd27oEAAAAAAAAAAAAAAAAAAAAAAAAAACMRVWhR2fMLtO6XX2WtY9u7dF3zm+QyzAIdizu32QWIut2OrR6WZXxuOt29RvXfuok86CW0SgvcOvyFdX67avtlrV9wZi2tA9p2dQiW3tC6pJJ6ebnDxrX/9fqOSkFto2Gy+nQTavn6L03r9dQxDos6qcvtOgjx5kHJGfTe+eUqeVbp2S7DeCY/vhmp57ebXavuXBRpRbUFtjcUWbYve7eoHmw3LvD77KlyGfeR18wJlUe/WPTSn0q8rkUCFu/nm/IYshnIBxXx6B5sFtfCnuaSS/tG9BfDa7lCxdVaumUQlt6YM8zKxf2fLJrGQgb1R0r8HLdrj599eE9OthvNk6qdnYF9aX7d+sXL7Xquxc26sSZJWkbeyBk9rwoyXdJkrZ1BPXNx/bqxb0DaevhaNr9Ed24dr9+8kKLvnTWdF27qk5ul/1fB8iG7Z1BXX/3Tu3oNAt19bqdunnN3JQ+H5P5HAMAAAAAAAAAAAAAAAAAAABg7JzZbgAAAAAAAAAAAAAAAAAAAAAAAAAAgMlgzfJqo7quQFQv7/fb3M0hD2w2C3Z939xyVRUePeDn3WLxpF4/MGhUW17g1okzS41qx+KSpeahtOuzGNyFY3t2T7/29oSMalcvq9L75pbb3NEh00p9+uwpU41qd3cP682DZs8NAMe2q2tY33h0j1FtSZ5b37mg0eaOMiMT6/YbBt9JUpHPlfL4dijymvcxUrCfwyEtqjULk9zQGlAkljCeN51e2jegZNK8vn84N0M+v/tks2WNy+nQl983w7Ye2PPMyoU9n+x6hqJGdaXvCryMxZP68oNNuvr322wLdT3Sto6gLvvNZt24dr9iiRQu/hGY3t/yPS5978n9Ou9nG2wPdT3SwHBM//rYXp338w3GwafjRSAc178/1awLfr7ReG0Oh/TDS+ZocV1qIc+T+RwDAAAAAAAAAAAAAAAAAAAAYOwIdgUAAAAAAAAAAAAAAAAAAAAAAAAAIAPOW1ChYsPwkAcNA1fHYnPbkJq6h41qL19pFkorSTu7gsbBV6uml8jpMB561I6bVqx8j9mPVG7tmFhBOhPFba+2G9V5XA595eyZNnfzTp85ZapxMNBdb3Xa3A0wsQ0Mx/SpP27XcNTsPvPN82aqpsgsmDyXZWrd/lDcuDaVIDI7FXrNf2WC1fpW1BcZjRMIx/WX7b3G86bT2p19KdUHwuZ7mimPb+/VWwZB51esqNHsqnxbe2HPMyOX9nwy6wuahUKW5r8d7DoYjuuq32/VHW902NXWUSWT0s3Ptegjv9uqwTRc06b3tzvf6NAtz7conqZA2VRt7wjqgls3Toj3DFvbh/SdJ/Zp1Q/f0I+fPaiw4dcInA7p+xfN1uplVSnPOdnPMQAAAAAAAAAAAAAAAAAAAADGxm1dAgAAAAAAAAAAAAAAAAAAAAAAAAAAxirP49QFiyqNQloe29ar713YKJeNqaf3bzILjy3Ld+v98yqMx11QW6j1/7RK3UNRdQYi6gpE1R049Pfuoag6ByPqGoqqKxDVgtqC0bafErfLobnVBdrYGrCsbekPZ6AjpGIwHNfaXWahZquXVWt6mc/mjt6p2OfSZcur9TuD8Nkntvfq+xfNliMDgcbARBOLJ/Xpu3YYh5Kf2lCqK4+rtbkr+2Vy3cGoeWBYoWGgtd1S6SMYGXl9Z84u060vthqN9ce3OvXBJamHzo1FIBzXfRvNzm+HRePZCSc8lmRS+s91zZZ1bpdDXzyz3vZ+2HP75dqeT2a9wahRXUneoV9FE44l9NHbtupNg1Beu7y0b0BX/HaL7rh6oSoKRh/UPhAyC7XNVqDrkULRhL50/261DoT192dNz3Y7x5RISkPhuAKRuPqCUe3tDampe1g7OoN6Zb9fbf5IymMW+1y66UNz9YEF5l9/ONJkP8cAAAAAAAAAAAAAAAAAAAAAGBuCXQEAAAAAAAAAAAAAAAAAAAAAAAAAyJDLllcbBbv2DEX14j6/Tm8staWPZFJ6cLNZSNSlS6vkcZmnUDodUnWRR9VFHi3MUHCricbKPKNg1zY/wa655pnd/YoZhpRddXx2QhxXLzULdu0MRLWtY0iL6goz0BUwccQSSV1/z069uHfAqL6uxKub18yzuSv7ZXrdoWjCuNaXwtnATj6X07g2FBt5fafMKlG+x6lhg8/Ds039OtgfVn0Gw8R/8VKrhlIMdYvEzfc0E/6yo1fbOoKWdZctq87I55Y9t1+u7flk1jdsFm6a53YqmZS+cN/urIa6HraxNaBr79yuu69dLJ/b/DX/SP7Q+AvE/M+nDygST+orZ8/Iah+vNvu1+lebbZ9n1Yxi3bR6rmZV5I16jMl+jgEAAAAAAAAAAAAAAAAAAAAwNgS7AgAAAAAAAAAAAAAAAAAAAAAAAACQISfPKtWUEq/a/BHL2gc3d9sW7PraAb9aBswCTK9YWWNLD5lWXeQxqgtGCEvJNU/u6DWqm1Li1fHTi23u5uiOn16s6iKPugJRy9pnmwYIdgVSEEskdcO9u/TI1h6jeq/bqV99ZIFqDF/3c1U21h1OITDM5cyNQDR3CsFsVuvzup06d0GFHtjUbTlWIil96/F9+sVH5hvPPxatA2H99IXWlB8XS5gFo2fKTX89YFnjcjr0+dPrM9ANe54Jubbnk1kgbBZu6nE5dOtLrXpos/XzYkZ5nk6YUazj6ou1bGqhKgs9Ki/w/G9gcv9wTM19IW1tH9JL+/z66+7+lO41h71xYFBfun+3bhllePmAYaitlbJ8t06ZVaoTZhZrdlW+ZlfmqyTPrUKvU06HQ8FoXL3BQ2ve3DakV5sH9dye/pQCR4/042cPakqJVx9fVZeW/nPR1FKfvnRWvT6yslaOMR4tJvs5BgAAAAAAAAAAAAAAAAAAAMDYEOwKAAAAAAAAAAAAAAAAAAAAAAAAAECGOB3Sh5ZV65bnWyxrH9vWoxsvapTbhsCR+w3CqyRpXnWBlk8tSvv82VDkM/uRyuGoWeARMueFvQNGdafPLrO5k2NzOqSTZpUaBWC9eXAwAx0BE0MomtBn/7RDa3f2GT/m+xc1asW08X3vyta64ynkheVKIJp06DXYJMvSJPDyyuNqjUI+JenRbT1au7NP58wrN6ofrURS+uJ9uzUUSf2MEo3nTsjn2p192tQ2ZFl38ZJKNVTmZaCjQ9hz++Tqnk9WpqGQbf6I/mNd8zE/7nY5tHppta49oW7E+06xz6Vin0vTy3w6taFU1508VYPhuO7d0KVbnm9Ry0A4pf7v39St984t15rl1Sk9TpIGQqMPdnW7HLp4cZXWrKjW6Y1lGun2V+JyqyTPrVkVeTpjdpmulzQUieuRLT36+Yut2t4ZTHn+f3l0r5ZOKdTK+uJRryEXLZ9apKtX1eqyZdXyup1pGZNzDAAAAAAAAAAAAAAAAAAAAICxSM93NgMAAAAAAAAAAAAAAAAAAAAAAAAAACOXGQbR9AVjen6PWaBlKuKJpB7Z0mNUe/mK1ENzcpXXZRbcEiUsJaf0DEXV5o8Y1b5nenbDjk6cYTb/ZoOAMwCSPxTTlbdtTSnc9O/Pmq4Pr6yxsSv7ZXPdiaTZPdCO0PmxMA1nSxgEvp3WUJpSwOTXHt6j/uHRBwaa+M4T+4xDzt/NkUNb9eNnDxrV/d3p9TZ38k7suX1ydc8nK9NQyH97Yp+Go0d/wTytsVTrrl+hm1bPGVWYeLHPpWtOqNPzN6zU3581XW7D92iH/cuje9UZiKY8r38Uwa5Oh/Sx42v14heO039fNldnzh451PVYCr0uXbGyRmuvX6EfrZ6r6iJPSo+PJZL623t2KRBOPeg5l3jdTp00s0RfOXuGnvn8Sj362WW68rjatIW6SpxjAAAAAAAAAAAAAAAAAAAAAIwNwa4AAAAAAAAAAAAAAAAAAAAAAAAAAGTQ/JoCLa4rNKp9aEt32ud/bs+Auoesw3BcTodxCO144MyllCsY25RCCOq86gIbO7G2eIrZ83p/X0iDofEdzATYrXMwotW/3qxXm/3Gj/nsKVP1j++dbmNX9sv2uk2zzZ05FohmGtBmEvjmcEhfOMM8ZLJlIKxr79x2zBDEsfrBumbd+mLrqB/vdeXGr5R4rXlQbxwYtKw7c3aZFtRk9n7Ontsjl/d8MorFkzLMvNS+3tD/+TeHQ/rnc2bojx9frNlV+WPux+t26h/fO11/umaxKgrMg079oZh++NcDKc/nT/HsPacqXw9+eql+cPFsTSv1pTzf0Tgc0poV1Xrq+hU6Y3ZZSo/d3xfSjwyDknNRnsepa1bVas2Kap3aUKrpZen5nL4b5xgAAAAAAAAAAAAAAAAAAAAAY5EbP5EBAAAAAAAAAAAAAAAAAAAAAAAAAMAkssYwMPWxbb2KxdMb3vHAZrOw2DMaS1Vb7E3r3ECqtrabB7vOrsqzsRNrqYSSNfUM29gJML5t6wjqg7/cpO0dQePHXL2qTt88b+QmYpsAACAASURBVJZ9TWVALqzbOFjMNDktQ2KG/bhdZuv70LJqNVaaBxe+1jyoK367Rb3BqPFjrAxHE7rh3l360TNHD/Iz3SuP4Zrt9rMXWozqrjtlqs2dHB17nn65vueTTSQ++iBih0O66dK5+vzp9XKk+fI6cWaJ7r52scoL3MaP+cMbHdp/lPDZkQyEYsa1Fy6q1COfWaaV9cUpzWGqstCj269aqMsMvyZw2C9eak153bkiFE3oFy+16R8faNLFv9yked97RR/8xSb9+NmD2t2dvvdFnGMAAAAAAAAAAAAAAAAAAAAAjAXBrgAAAAAAAAAAAAAAAAAAAAAAAAAAZNily6rlMggdGRiO6dk9/WmbNxJL6LFtPUa1l6+oSdu8wGgd6A8b1bmcDpXne2zuZmQleW6V5puFUjX3jc9QJsBuj23r1cW/3KSDhs996VC46Y0XNtrYlf1yZd1ew8Aw0wCyTIkb9uNzmf16BZfToe9dlNrn9s2DgzrnJxv0TNPYz23PNPXr7J+s1583dB3143UlXp0xu8xoLNM9tdPenpCe2NFrWTe3Ol9nGa4r3djz9BoPez7ZxMfwsv3l983QmhWphZCmYkFtgX7x4QVG74+lQ/egX7/SltIcsyvztbK+2PK/b543S7d+eL6KfK7RLMWY2+nQTavn6tz5FcaPicaTuuV5s8DkXBeLJ/XmwUH9+1PNOvO/39KHfr1Zj2ztUXKMxwvOMQAAAAAAAAAAAAAAAAAAAADGwuynQwEAAAAAAAAAAAAAAAAAAAAAAAAAQNrUFHl0WkOpURDUg5t79L655WmZ96ld/RoMxS3rivNc+sBC85CZdIrEEmruD2tfb0j7ekPqDUblD8U1GIod+jMcUziWVDyRVDRx6M9YIqlY/H/+POK/eCKpaPztGow/7f6IUV1ZvluO7OeYqb7Up4HhmGXdvl6CXYEjJZPSTc8c0P/764GUQr3+9rRp+tr7Z9rXmM1ybd2eFALD4omkcQifnZJJyfQW70kh8PL0xlKtWVGte9YfPWjzaDoGI/robVv1/vkVuuGMaTquvtj4sbFEUk/t7NMvXmrVS/v8I9Z+9ZyZenBzt9G43hwIgbv1pVajPfr0SVOzei9nz9NnvOz5ZOIe5ev1ybNK9fnT69PczdHmKdHnT5+mm545aFR/1/pOfeXsGSrwmgWw/unaxWNpzxZOh3TLmrk692cbtLfH7L3BPRu69OWzZ6iq0GNzd5n1yn6/Xtnv16K6Qn37/Fk6eVbpqMbhHAMAAAAAAAAAAAAAAAAAAABgLAh2BQAAAAAAAAAAAAAAAAAAAAAAAAAgCy5bXm0U7PqX7b2KxpNpCfG4f5NZUNUlS6rkc9sfChWLJ/VKs1+v7vfrzYMB7egMqs0fNg42wcTX5g8b1fUMRTXtX1+0uZv06Rg0C6wFJoPhaEJfuHeXHtnak9Ljvv7+mbr+tGk2dWW/XFy3121+1siVQLRUgtu9KZ5tvndhoza2DGlnVzClxz25o1dP7ujVgtoCvW9uuVbNKNacqnxVF3qV73VqOJpQz1BUXYGo1rcM6sW9fr3S7DcKBj9rTpkuW1atu9d3GvVSaBh6aJfBcFx/3mB9/izyubR6WVUGOhoZez52423PJ4vRvJd0OR36/gcbMxa+e8MZ9frzhi4d6Lc+/w+G4lq7s08XLxnf11CB16UfrZ6rS361ySjgPRxL6J71XfqbU6fa31wWbG0f0prfbNFHj6/Vd85vUJ4ntfs25xgAAAAAAAAAAAAAAAAAAAAAY0GwKwAAAAAAAAAAAAAAAAAAAAAAAAAAWXD+wgoVeF0KRuIj1vlDMT3T1K9z5pWPab6hyKHwGxOXr6gZ01xWXt7v1x/e6NATO/rkD1kHWmHy6gxEs92CLfoMgtyAyeBAf1if/MN2bW0fMn6M2+nQv39wtj5ynL33Kjvl6rpTCf4LxRI5ETAWiiWMa70pBhsWel365Ufm6+JfblL/KF63t3cEtb0jtYDQkcytztfPLp8vh+NQMLCJ8oLs/kqJP2/o0pDFWVeSLl1alfVAUok9T4fxtueThdvpkNMhpZAhqdXLqjSnKt++pt7F53bqc6dO09ce2WNU//j23nEf7CpJx08v1sVLqvTApm6j+oe2dGc02PWEGSVq+dYp/+ffk8lD9+BgJK5gNKF2f0QtA2G1DoS1vTOo15oH1dwXGtWcd77RobcODuq2jy3U1FKf8eM4xwAAAAAAAAAAAAAAAAAAAAAYC4JdAQAAAAAAAAAAAAAAAAAAAAAAAAApc7utfzwtldCYyajA69L5Cyv05w1dlrUPbu4ec7Dr49t6FTIIhGqozNN7phePaa5jeWRrj3749AFt70xf4BUmNtMQs/Gmd2hiBtYCqXhp34A+c9dO9QbNnw9FPpd+fsV8nTWnzMbO7JXL604lZHEwHFdJXvZ/XcFgCgHxBaMIkZxdla8/XrNYV/x2S1bD6KeW+vS7jy5Ucd6hNZiGjlZkOeTz9tfajeo+enytzZ2YY8/HZjzu+WThcTkVTiFE8ppVdTZ2c3RXrKzRd5/cbxQOvG5XnxJJyTkBsi5vOKPeONh1fUtArQPhlAJP7eBwSPkep/I9TlVKml7m0yq98+sInYGontndp9tf79AbBwZTGn9bR1Crf71Zf7p2sWaW5xk9hnMMMilu8EVPj8eTgU4AAAAAAAAAAAAAAAAAAACQLs5sNwAAAAAAAAAAAAAAAAAAAAAAAAAAGH98PusQkVRCYyary5ZXG9U9sb1XkTF+Pu83DIq5YkXNmOY5mp1dQV30i036zF07CHVFSibq68hg2DqsCpjIfvtquz7yu60phZvWFnt13yeXjOtQ11xfd0WBefhUIEdex/wp9FFZOLpwraVTCnX3tYs1pcQ7qseP1ZIphXr4uqWaWfF2sJ3pNZTKnqbbK/v9Rue+RXWFWj61KAMdmWPPR2c87/lkkEroZV2JV8fVF1sXplm+x6nzF1YY1Q6G4trVNTHeWy6oKdBJM0uM61/Zn1pIarbUFHl0+YoaPfjppVp7/QpdvqJGjhSCeA/2h3X177dpwDjYmnMMMidk8LWKvDyzUGIAAAAAAAAAAAAAAAAAAADkBoJdAQAAAAAAAAAAAAAAAAAAAAAAAAApMwknMAk5mOxOayhVTbF1YNRgOK6nd/ePep7+4Zie3WP9eIfDPGzW1G2vtesDP9uotw6Oj/AZ5JZIfGK+jkzUwFrASiyR1JcfbNLXH9mjWCJp/LjDIYeL6gpt7M4+42XdFQVu49pcCURLpY9U1vduS6YU6rHPLteJKQTvpcPqZVW695NLVHvEeTGRlC0hd+l25xsdRnVXrKixuZPRYc9TN973fKJL5TXw1IZSGzsZ2ZkpBJmvbwnY2ElmXbS40rj29QN+Gzuxx8LaAt20eo4evm6ZGirNwy6buof1xft2G9VyjkEmmbynJ9gVAAAAAAAAAAAAAAAAAABgfCHYFQAAAAAAAAAAAAAAAAAAAAAAAACQMpNwggjBhZZcTocuXVplVPvQlu5Rz/Pwlh7F4tZBcqfMKtW0Ut+o5zlSMil998n9+urDewixxKhE40klzfMPx5WIwfMRmGgC4bg+/vttusMw+O+wCxdV6v5PLdXUNN2fMm08rTuVQMh+w5BJu5mGXUpS5RgDL6uLPLrnE0v07fMbVOB1jWksK/VlPt1+1ULdfNk8Fb5rrt5gVCb5wEU+l4rz7O3zWIajCT22rdeyzumQLl5iHmaYaey5uYmy5xNZeQqhkAtqCmzsZGSnzDIPld3ZFbSxk8x639xy49ptHeN33SumFenxzy7XmbPNA3yf2NGrP2/osqzjHINMCsWsb8wEuwIAAAAAAAAAAAAAAAAAAIwv5t91DwAAAAAAAAAAAAAAAAAAAAAAAADA/zAJJwhGCfM0sWZ5tW59sdWy7skdfQrHEvK5nSnPcf8ms1DYK1bWpDz2sfxgXbN+8nzLmMaoLPRoQU2BppR6NbXEpyklXhX5XCrwulTgcSrf45LH5ZDH5ZDb6fifvzvlcTrkdjnk/d9/d+rnL7bqxrX707Q6ZILL6ch2C7aJEuyKSabdH9FVv9+achDZF86s1z+9d4Yc4/TlYLyt2+NyqMjnUiAct6ztDEQy0JG1Nr9ZHw6HVJY/9l+v4HRInzppij64pEq3PHdQt7/ekdYA+5kVefrsyVP14ZU1yvMc/czX3BcyG6s8e2Fij23r0VDE+jo6cWaJaou9Geho9NhzMxNpzyeqVEIvZ1Zk71qqK/GqvMCtvqB14GXLQG7ci9JhZkWeKgs96hmKWtaavibkqiKfS7/96AJdc+d2PdvUb/SYG9fu10WLK0f8egjnGGTScNT6OvP5fBnoBAAAAAAAAAAAAAAAAAAAAOnCd+wCAAAAAAAAAAAAAAAAAAAAAAAAAFKWl5en/Px8DQ8PH7OmO2AdSAJpcV2hFtQUaHvnyKFvgXBcT+3q0wULK1Mav2Mwolf2D1jWFXpdumBhRUpjH8s967v042cPpvw4p0M6d36FzltQoffMKFZjZX5a+sH45HRIbpdDsQkYgppITrw1AceytX1IV9+xTe2GwVWSlOdx6r8unaOLl1TZ2Jm9xuu6a4q8CoSPfb47rHMwN8557YNmn9/qIm9aA8Nrijz61vkNuuGMet27sUt3r+/SlvahUY1Vmu/WOfPKddHiSp0zr0JWbe7vDRuNOyuLwYx/3tBlVHfJOHqOs+cjm4h7PtFUF5kHu5ZnOUByTlW+XmsetKxr6Td7bowXc6ryjYJdOwYjisWTcrsynACfRl63Uz+/Yp7O//lG7eu1Dqpt80f05w1d+ujxtSPWcY5Bplh9zbOwsJBgVwAAAAAAAAAAAAAAAAAAgHGGYFcAAAAAAAAAAAAAAAAAAAAAAAAAwKjU1tZq3759x/x4t0EgCQ65bHm1vvvkfsu6hzb3pBzs+uDmbiUMMiQvXFypAq8rpbGP5mB/WF9/dE9Kj/G5nbrmhDp94oQ6zSjPXiAVco/P5VQsHresWzGtSI98ZlkGOgKQihf2DuiTf9iuQNj6eXxYXYlXv75ygZZPLbKxM3uN53XPqsjTnh6DQLSAeWCtnToNA9EabQq8rCz06LqTp+q6k6eqczCiF/b6tb5lUHt6QtrXG1L/cEzBaFzReFJFPpdKfC5VFno0r6ZAi+sKtXRKoY6fXix3CmFtB/qtA/Ck7IV8dgWiem7PgGWdy+nQBYtSO9fmAvb8/5roez5RTC8zvz7yPU4bO7FWU+Q1qvOHYjZ3kln1ZT69Yv1lASWSUiASV1mWA3jHqiTPrRsvatSVt201qr/99Q7LYFfOMciULotg19raka9VAAAAAAAAAAAAAAAAAAAA5J7x/R3aAAAAAAAAAAAAAAAAAAAAAAAAAICssQp27cqRoIzx4EPLqnXj2v2WAaxrd/YpFE0oL4Wgnfs3dRvVXbGi2njMkXz14T0pBdktnVKon1w+T42V+WmZHxNLnsepoYj19TSYwjUHa0/v7tdVt5sFLI1Xnz5pir51fkO225jQnt7dr0/9YbvCsYTxY1ZMK9JvrlygmmKzQLdcNN7X3ViZp3W7rOua+8L2N2NgX69Z4GVjlf3njJpir1Yvq9LqZVW2zrOtI2hUl62z1ePbehS3OtRKOq6+SJWFngx0ZB/2/JDJtOfj2cxyn3GtwXbaqsLwOgmlcK8dD4p9LuPa4AQIdpWkM2aX6eRZJXppn9+ydmNrQAf6w5peduxrmXMMMqVriGBXAAAAAAAAAAAAAAAAAACAicb8J7cBAAAAAAAAAAAAAAAAAAAAAAAAADhCXV3diB/vCowccoC31ZV4dfKsUsu6YCSup3b1GY+7vzek9S0By7rpZT6dNNN6fitvHRzUuhT6O7WhVPd+cgmhrjimygKzUCeCXYHc8sSOXn3izm0phZtevKRK935ySU6Em47WRFj3rIo8o7qmnmGbOzGzu9usj8ZKs3WNB5vbhozqlk0ttLmTo3t8e69R3dnzym3uZOJgz5EOMwxf3yWldB+zQ57bYVQXik6sYNd8j3mwaySe5fTdNLp8RY1x7fN7+kf8OOcYZEqPxdc8CXYFAAAAAAAAAAAAAAAAAAAYfwh2BQAAAAAAAAAAAAAAAAAAAAAAAACMilVIQXNfKEOdTAxrllcb1T2wqdt4zAc2m9WuWVEjh1l2zohueb7FuHZOVb5+deUCFXjNw2vGIpaYOME3uSgSs+fzW11kFuwaINgVyBmPbO3RdXftUDSFwLEvnTVdP718nnzu8fvj7xNl3Q2GYesH+8MprdUOg+G4OgYjRrUTJUR+KBLXvl7rELh8j1Pzawoy0NE7DYbjemHvgFHtOfMqbO5mYmDPkS6NlfnG7/n6hmP2NmPB5TRr1ONKw5vYHBKJmwfV5tLZYaxObSg1rn3rYGDEj3OOQaY094/8NU+CXQEAAAAAAAAAAAAAAAAAAMafifNd2gAAAAAAAAAAAAAAAAAAAAAAAACAjGpoaBjx4009w0qSpWnsgkWVyvNY/9jful19CkbMQizvNwyBvdwwVHYkwUhcT+3qN6p1OKQffWiuin2ZCXWVpMFwdsOJJrpQzJ5g1Zpis2DXYCSuWJaDeQBI923s1ufu3mn8fPS5nfrp5fP0D++dbnNn9ppI614ypdCoLp5IqqnbOmzSTjs6g8a1y6cW2dhJ5rx+YFAmWfVLphQaByOm01M7+4yC8qaUeLWwNvMhpOMRe450Kfa5NLM8z6jWNGzSLuGY2f3U5P3zeBKKmge75k+gtdeX+VSW7zaq3dMzcpgm5xhkQjIp7bW4FhsbGzPUDQAAAAAAAAAAAAAAAAAAANJl4nyXNgAAAAAAAAAAAAAAAAAAAAAAAAAgo+bNmzfix4ORhDoD2Q2EGU+KfC6dt6DCsm44mtDanX2Wdds7gkZBISfOLNHMCrOAn5E80zSgSMwsiOYDCyq0Ylpmg0kO9IUzOt9kMxiyJ9i1vtT82mzqyW4wDzDZrdvVpy/et0txkwRCSaX5bv3xmkW6eEmVzZ3Za6Ktu6rQYxz8t74lYHM3I3vzwKBR3bRSn+pKvDZ3kxkv7BkwqltZX2xzJ0f3xI5eo7ozZpfZ3MnEwZ4jnZYZhkM2Z/m9UzBi9t6iwOOyuZPM6h6KGtU5HFKRd2KtvabI7D7dPjjytck5BpnQ5g9ryOJ1av78+RnqBgAAAAAAAAAAAAAAAAAAAOlCsCsAAAAAAAAAAAAAAAAAAAAAAAAAYFRMQgqauglaTMWa5dVGdQ9t7rGsuX9Tt9FYl68wm9PKa81+49qrV9WlZc5UmITcThhm2YJp1T5oT4jznOp849rtHZNoj4Ecs6E1oM/+aadihuGmdSVe3ffJJTphRonNndlroq77+OlmAZFvtZgFktnljYNm86+akZ3ASzs8bxjyeXpjqc2d/F/JpPRck1l/J8/K7edALmHPkU7LphYa1W3vGLK5k5F1GL63qC2eWGGX7X6zdVcXeuR2OWzuJrOK88yCaociCcsazjGw256ekGUNwa4AAAAAAAAAAAAAAAAAAADjjzvbDQAAAAAAAAAAAAAAAAAAAAAAAAAAxqc5c+bI5XIpHo8fs2ZHZ1CnNGQ+ZGi8OmN2maoKPeoeio5Y99SuPgUjcRV4jx1+8sBm62DXPI9TFy2uSrnPo9nVZRbim+9x6pRZmb0m+oIxNfVMnpBh04DBdDrYH7Zl3HmpBLt2BnWJLV0AGElzX0jX3LFNwcixzwNHmlOVrz98fJGmlvps7sxeE3ndx08v1r0buyzrXm/ObiDaa4bzr8rxIF1Tbf6INrYFLOvyPE6dmoXz95b2IfUGRz7DHnZShs+C4xV7jnQzfT3c1DakZFJyZCk7tHXALOB0aunECXZNJqU9hu9Zp5XlGdXFEkn1DEXVGYiqKxBRd+DQ37uHIur6n7//8NI5ml6W/bNJ0vAtrMklyTkGdtvZFRzx4263W42NjRnqBgAAAAAAAAAAAAAAAAAAAOlCsCsAAAAAAAAAAAAAAAAAAAAAAAAAYFR8Pp9mzpypPXv2HLNmfat1EBHe5nY6dMnSKv3q5bYR68KxhJ5pGtD5CyuO+vHXDwyquS9kOd/5CytU7Dt2OGwqTINT51UXyOPKbELQU7v6jINicpnDMFkpEs/8Yre0D9ky7tzqgv+fvTuPrrOu8wf+yZ6mTdqkbbrTBUr3jR2RVQFRQNoCgsKwuIIbjHNmcR1HZWRGf26jgoALIoggssoilAFUkLW0dKf7viVps++/PxiQpc190ubepO3rdQ7naO7nud/3k+9N7vPkNHlHTnZWtCYoq12YpgzA7lXWtcRHfr0ottYkK/YbV14Uv7t0UgzonZfmZOm1v5930oLIxVvqYuPOphhSkvlivQWbamNzdbLiv+PH7B+Fkvcv2Jboeua40X2jIDc7/YHe5snlVYnmhvUt6BElgvsCe05XmzGsT5QU5sbOhpYO56rqW2LR5tqYOLh3hpL9XXNre+KC0+H70etqZUV9VDcmK4sf07/jYtebn9sU/zVnTVTVt6T8HvLSuuoe8fVZ35zs3IvyU3+vcx1Dur28vuOfdY4ePTry8/ef4mkAAAAAAAAAAACAA4ViVwAAAAAAAAAAAAAAAAD22GGHHdZxses6xa6dNXvawJTFrhERDy+u2G2x693ztyVa6/zp5Z3K1pHKuo7LgV43OkUJTTrcv2B7xtdMh6SFuK1t7VHb1Bq987umtDeVqvqWREXCe6JXXnZMGdI75qYoTomIeG5tdbS2tUdOdmaLg/dHJx/SL9Z//V3dHYMerqmlLS69dVHi8rXx/1du2n8fKTfdnQPhvMcO7BWj+xfGyu2pv7fPWVYZHzl8UAZSvdVjSysTzR06sCgOHtArzWkyI+n13amHlqY5ya49tWJHormjR5akOcn+w57T1XKys+L4MX3jgYWp748eXlzRLcWuCzbVRktbgkbjiJi0F/nqmlpj/Y6m2LCzMY4cURxFGbp32p1nVu1MPDttaJ8OHy/tlZv4/nzu+po4e/KAxGuny+bq5kRzSe5xXceQbi+l+PnEYYcdlqEkAAAAAAAAAAAAAHSl7O4OAAAAAAAAAAAAAAAAAMC+68gjj+zw8eXb62NnQ7JCEV4zbWifOCRBccdjSytjV3037e2RqKhncEl+vHtMvz2JuEt1Ta2J5ooLc7tszSQ27GiMOcuSlab0dEmLXSOSF+12hT+v2LHL12JXOXZU30RzO+pb4oV11ekLArzFVx5cGc+vTfY1ty+Wm+7OgXLep4/fdXn82/0xwTVHOiQtbX/fhGTn0dPNXV+TqOQ8LycrzpyU+YK+1rb2xF8XU1MUEvIae066nHRIsnvA383dGu1pvMbfnadWVCWenTJk96+t2qbWeG5Nddw9f1v8+M/r40sPrIhLb10cp/705Zj07Wdj7Lf+Fif9z0vx4ZsXxiNLuv9+8dGERZ8RETOGd/w1NaEThbfPrun++6fqhtaoqEtW7Dqsb0GiOdcxpEt1Q2us3F7f4Uyqn5UCAAAAAAAAAAAA0DMpdgUAAAAAAAAAAAAAAABgjx111FEdPt7eHjFvQ22G0uw/Zk8bmHKmoq45XtpFieUL66pjS3VTyuPPnTYwspP3hHaopbU9WhI2exbmdtGiCV331w3Rms7W0QwqLshJPLtxZ+rXQFd5cFF6y3COG5Os2DUi4q5529KYBHjdXfO2xi3Pb040O6QkP35z8cR9stz07Q6k837f+P6J5p5cXpXR95yIiPkba2PBpmTXl2d0cSHaxp1N8VSaC8135Rd/25ho7rRxZVFalJvmNO+0dGt91DW1JpqdPCR54WBPYM93bX/e8/3dByb2j/zc1H9uZk1lQ/xl5Y4MJHqrPyUsWR1ZVhgD++z+PXb9jsY456b58ek7l8Y1f1odv3x2U/xpSUUs3FQbVfUtb5ntrnLP11XWtcTjryYrtC0uzImpHRTaRkQc3L9X4u8LL62rjtWVDYlm02XuhtQl1q87qLQw0ZzrGNLl5Q01Ka8JjjjiiMyEAQAAAAAAAAAAAKBLKXYFAAAAAAAAAAAAAAAAYI8dfvjhkZPTcdnk06syXwazr5s1dWBkJeg/fXTpO0tvkpZsnje9vLOxdis3JytR3oiInQ3JCqC6wprKhrj5uU0ZWy/dOlMOuKqiPo1J/q66oTUeWlyR1jXePbpvlBQmKya6e/7WxCVjwJ5ZVdEQ/3LfikSzxYU5ccvFE2NwSX6aU6XfgXbeR4wojpFlqcvT2tojbn9pSwYS/d0tzyd7b58wqCimDu24/G5XmlvbY+nWunhg4fb44ZPr4nN3LYszrp8Xh37rb3HEd5+PC361IP68IlkBX1dYvq0+7p6frLj8gsO67vquM15cV514dvLgnlfyac87b1/f8wNZ3165ceqhpYlmf/NCsjLzrrK6oiFeWJvstXXK2I7PYeyAoigrSnb/9KellbG1pjnRbDrc/tKWaGppSzR7ytjSyM3p+OY7Kyvi2JF9E69/18tbE8+mw+PLkpX5Rrz23p7EgXwdQ3qlKrzOzs6Oww47LENpAAAAAAAAAAAAAOhKil0BAAAAAAAAAAAAAAAA2GPFxcUxYcKEDmeeXK7YtbOG9yuIow8qSTm362LX1CWbM4YXxyEDeu1Rtt0pyE32K4uVdS1dum5H/uW+FdHc2p6x9dJtQCeKXRdsqktjkr/71XOboqE5WQnRnsrLyYozJpQlmq1uaI1fPts9Zb7ba5vj2O+/GJ//w7K4Z/62qKrP3GsdMqW9PeKf7lmeqEA5NzsrbrpgfIwvT1bA1ZMdiOedlRVx0eGDEs3e+MyGqM1QqfbGnU3xu7nJCuguOXJwp5//s79fFgd/85k4+X/mxiduXxLXPrYmfv/y1pi3oeYt5/j7DJbgffvRNdHSlvp6ZmRpYZx4cL8MJHqnl9bVJJobWVoYxYU5aU7TOfZ8z+zLe07EeAE/+gAAIABJREFU+TOSFQLft2BbvNSJEt+9dcMzGxPPnjK249d+Vlbqmdc1tbTFL55NvnZXqm9ui+v+uj7x/Bnjk90XnTouWXlvRMRtL26JxoTFsl2tta097l+wPfH80SNT/5wk4sC9jiH9nlrR8c84J06cGMXFxRlKAwAAAAAAAAAAAEBXUuwKAAAAAAAAAAAAAAAAwF45+eSTO3z85Q01sbNBwWFnzZ42MOXMwk21sWln0xv/f/GWulhd0ZDyuPOnp37uzhrUJz/R3MLNtV2+9q7c8PTGeHJ5VaeP68lFsEP7FkRuTlai2WdX70xzmtdKVH/29Ia0rxMRMWtq8tfsT/+yoVtKVW98ZmOsqWyIO+dujSvvXBpTrn02zrxhfnz38bXx4rrqSNDPBj3eb17YHE+vSlbY/qVTR8Zxo/umOVFmHKjnfcFh5ZGX4H2nsq4lbupEGd/e+P4Ta6MpQflcn4KcmJXgWurtJg4uitYE37DvX7g9tlQ3pZzbW3OWVcYfFyUrvPvM8cMiJzvZdUJXm7s+WfHjuB5YeGzP98y+vOdEnHxIvxhVVphyrr094t/uX5Hoa2RvbdjRGLe9uDnRbHmfvDghQanx+yf2T7z+L5/dFNtqmxPPd5UfPbUuttYkW3dgn7x434Rk53TquLJE7+EREet3NMb1f83Mfd3b3b9ge6zf0ZhodnBJfqLX7esOxOsY0mtnQ0vM29Bxsfkpp5ySoTQAAAAAAAAAAAAAdDXFrgAAAAAAAAAAAAAAAADslfe85z0dPt7a1h5Pr0p/yeT+5qxJAyI/N/WvAT7+auUb//uRxRUp5/Nzs+ODkwfsVbZdGdavINHcuqrGxMUte+qvK3fENx9ZtUfHNjSnLlnpLrnZWTEi4ed5/saat5T+psM1j66O7RkqP3r3mL4xYVCyYrCKuub494dWpTfQ2yzdWveOMqS29oiX1lXH//vftXHWDfNj6n89G1feuTSqG1szmg26yvba5vjmn1Ylmj1lbGl84l1D0xsoQw7U846IKCvKS1ys/YMn18WqBOXye+OFtdVx6wvJSv8+cvig6J2f0+k13j+xf2Ql6MFraG6L//fEuk4/f2dU1bfEP92zPNHs0L4Fcf708rTm2Z229ojl25Pt/ciyZNcxmWTPO29f33MicrKz4tPvHpZodv7G2vjVc5vSnCji3x9alfhe7Lzp5ZGboNT4PWNLY2CfvETPuaO+Jb764MpEs11l/sba+PGf1yee//DhgxKXtZYW5cZp48oSP/ePnlofG9N8//h2Dc1t8e3H1iSe7+zPMQ7E6xjS688rd6Qsuj711FMzlAYAAAAAAAAAAACArqbYFQAAAAAAAAAAAAAAAIC9cvLJJ0dubm6HM3OWVXb4OO9UXJgTpx5amnLu8WVVb/zvhxMUu542rjT69up4v/ZE0tLNiIg75m7t8vVf9+K66rj01sXR8rayjaF9k5VKtbS1x476lnRE6xKTBvdONNfWHvHbl7akLcfDiyvi5j0oeGpv77gEpSNXJiyfioi4Y+6WuGNu+s7/zWqbWuPTdy6LxpaOi6gq61piTWVjFBco6GHf9J3H10Z1Q+pi4uLCnPjvsw/OQKLMOFDP+3VXnzQiUYlcQ3NbXPWHZdHSuuff5ztS09gaV9/9aqTo0oqIiOKCnPjs8cP3aJ2RpYVxzMiSRLO3vbA55m2o2aN1UmlpbY+P374kNlcnK9m76sThkZuw7K+rra1qiKYU74GvO6i0MM1pOs+ed96+vudvtqqiIYZ97a+J/9ufnDe9PIaU5Cea/eYjq2Pu+vS89iMibntxczywcHui2dycrPiHIwcnnr3wsEGJc9wzf1v8/uX03au+2bba5vjobYsTv2/2KciJy48e0qk1Ljkq2ecpIqKuqTUuvXVR1DalvubpKl99cGWsqUxepjp7WrKS1jc70K5jSK85S6s6fDwvLy9OPPHEDKUBAAAAAAAAAAAAoKspdgUAAAAAAAAAAAAAAABgr5SUlMSRRx7Z4cwfF1a8o2iT1M6dnrq45MkVVdHS1h5ba5rj5QRFU+dPL++KaO8wfVifxLM//9vGtBTGPLy4Ij70q4XveO6i/Jy45aIJiZ9nbVVjV0frMkeMSFY8FhFxw9MboioNJbUvrauOz921bI+O3ZtvA2dPHhCHDOiVeP6f71sR//tqx8Ure6u2qTU+8uuFsXBTbaL5K989NK15IF1e3VYft76wOdHsVSeMiMEJi+J6ugP1vN9sRL+C+PDhyUrxnltTHf983/Iuz9Da1h5X3LE0lm+rTzT/qeOGRWnRnpfYX3REsiK8lrb2+NTvlsbOhq59r21ta4+r7341/rpyR6L5w4YXx4c7UVzY1ZLuS8RrJao9kT3vnP1hz4nIy8mKL546MtFsY0tbXHrroliypa7Lczy1Ykd88YGViecvmFEew/sVJJ7/+LFDoig/J/H8P979ajyypCLx/J7YWtMcH/rVgli/I/l955XHDYsBvfM6tc5xo/vG4SOKE8+/srE2Pnn7koz87OaHT66L3yS8xoqIePeYvjFpcO9Or3MgXseQHq1t7Sm/Nxx99NFRXJz8aw4AAAAAAAAAAACAnkWxKwAAAAAAAAAAAAAAAAB77fTTT+/w8Yq65nhuzc4Mpdl/nHJIacpCj+qG1nhpXU08trQy2lP0rwzskxcnHtKvCxP+3YkH94vsrGSz22ub4wv3dF1hSlNLW3zzkdXxsd8ujrpdFMZ+/oThMa68KHGhz7wEBbnd5YSD+yaerapviX++d3nK10VnPLG8Ki789cKoaXzr53n6sD5R3id10VDbXoTJzc6Ka84ck3i+6f8KqO6at3WP1+zI8m31MfOmV+K5NdWJ5qcN7RPvG98/LVkg3a59dE2ikq+hfQvio8cMyUCizDhQz/vtrj5xRPTrlaxg7PaXtsS/3r8iWruoFK6xpS2uuGNpzFlWmWj+oNLC+MSxe7cXZ03qn7iMcnVlQ1x8y6LY0UVF6vXNbXH5bYsTv3flZmfFtWeNiayE12DpsGJ7Q+LZEaXJyxgzyZ53zv6w57xm1tSBcdzoZPcXW2ua49xfLEh87ZvEg4sq4rJbF0VTS1ui+d75OXHViSM6tUZZUV588l1DE8+3tLXHJ3+3NH793KZOrZPUKxtr44M3zo/Fm5OX5I4qK4xPdOIc3uxLp47s1PeLx1+titk/fyXWVSUvne2MuqbW+Jf7lse1j63p1HFXn9S5fX/LsQfYdQzp8czqnbG9trnDmVQ/GwUAAAAAAAAAAACgZ1PsCgAAAAAAAAAAAAAAAMBemzlzZsqZBxZWZCDJ/iU3JyvOnjwg5dyTy6visaWpi0JmTR0YuUnbVzupf++8OHpk8tLR+17ZFl97cOVeF6bMWVYZp133cvz0L+tjV081dmCvN4p8BhWnLh6NiHhyxY69ypRO48qL4uABvRLPP7Bwe/zr/csTFRN2pKmlLa59bE1cfMuiqG54a6lrdlbEt886OHrlpS7O3duS2eNG942ZU1N/TbyuubU9Pvv7ZfFP9yyPqi4qYGtqaYubntkY77t+XizYVJvomOysiGvOHJO4/Bh6kmVb6+PBxdsTzX7yXUMjL2f/eKEfqOe9KwP75MU33j868fyvn9sUF9+yKNbv2LtSuKVb62LWz1+JBxYm24fsrIjvzTwkcZH77uRkZ8XVJw1PPP/82ur44E3zY1EnSvp25YW11XHqT+fGowmu6V73+ROHx8TBvfdq3b21qiJ5yeeQ4p5Z8mnPO2d/2HP+7j/PHBOFecn+/ExFXXOc+8tX4sd/Xr9X9xcNzW3x9YdXxcdvXxz1zclKXSMivnjqyBhSkt/p9T57/LAYWZasvDnitev9f71/RVzym0WxaWdTp9fblcaWtvje/66Ns2+cH6srk38N5WRnxY9mj41eCffo7Y4eWRIfOXxQp455fm11nHbdy3HXvK27vMfeU39bvTPe+9OX45bnN3fquHOmDIhjRpbs8boH2nUM6ZFkH2fNmpWBJAAAAAAAAAAAAACkS253BwAAAAAAAAAAAAAAAABg3zd16tQYO3ZsLFu2bLczf1y4Pb7+vlGRo9mwU86dNjB+9eymDmf+tKQiViYoWDp/enlXxdqli48YFE+vSl6KeuMzG2Ph5rr49/eNikmdKKhqbm2PPy7cHr94dmM8t6Z6t3P5udnx43MPfaNsb9zAoli5PfXn6aFF22NLdVOUF3e+NCgTPjSjPK750+rE87c8vzle2VgbXz19VBzdyUKcuqbWuGvetvjRU+tiXdWui20uOWpITBnSO3ITlBq27m2za0T855kHx9z1NYn28nW3vbg5Hly0PT75rqFx4WGDYmCfZCW/b7a5uinuX7A9rvvrhtjQyZKfi48cHNOH9en0mtAT/PjP6xOXMn/twZXxtQdXpjdQF3jkimkp33cO1PPenVlTB8YfF26PBxdVJJp/YnlVnPw/c+OjxwyJy44a3Kn31DWVDXHjMxvj5uc2RXNr8veNjx07dK+K397s3Gnl8ctnN8Xc9TWJ5pdtrY/Tr3s5LjlycHz82CFxUGnyAsFFm+viB0+uiwcWbOtUgd4pY0vjqhNHJD8gTbZUJys9zM3JiuLCnltWZ8+T21/2nNccPKBXXHvWwfH5u3Z/L/9mLa3tcc2fVsddL2+Nfzx5RJwxoX8kvcWvbWqN37+8NX745LrY2MnC1ONG941LjhzcqWNeV5CbHT+cNTZm/+KVaOnE+8qjSyvj6O+/EDOnDIxPvWtojB9U1Om1t9U2x+9e2hI3PrMxNif82nmzfz7loDhseHGnj3uzr54+Kp5bUx1LtiQvo95R3xKf/f2y+M6ctfHxY4fEh2aU71HhaEtre9y/cHv8MsW9++4M6J0X/3FG8lLW3TnQrmPoWq1t7SlfO+PGjYuJEydmKBEAAAAAAAAAAAAA6aDYFQAAAAAAAAAAAAAAAIAuMWvWrLj22mt3+/jm6qZ4YnlVnDK2NIOp9n2HDS+O0f0LOyyxnL+xNuXzTB7Se4+KaDrjzEn94zuP94oV2+sTH/PXlTvitJ++HMeP6Rsnjy2No0eWxODi/OjXKzdys7Oitqk1qhpaYuX2hli2tS6eXrUz/rpyR1Q3tqZ87i+dOvItBXbThvWJhxanLnJpbm2Pq/7wavzyw+MjPzc78blkysVHDIofPrkuahJ8Dl43d31NzPr5KzGuvChOGVsa04f1iTH9C6O8OD9KCnIiLyc7mlrbYmdDa6ypbIiFm2rjr6t2xmNLK6O2affrHDKgV3zxvQdFxGuFSam0t79WirI3Bc/FBTlx4wXj46wb5kddB9nerqq+Ja59bE1893/XxtEHlcS7x/SNSYN7x5j+vaJ/79woynutqKimqTVqm1pja01zLN1SF0u21sWzq6vjpfXViUse32x8eVF89bRRnT8QeoCdDS3xh/lbuztGxh2o553K984ZG8u3zY+lW5MVw9U2tcYPn1wXP/nL+jj6oJI4ZWxpTBrSO8b0L4y+hbnRKy876pvbYkdDSyzbWh/zN9bEnKVV8fzanZ0qu4yIOH5M3/jSe0fuwVntWlZWxP8755A44/p50djSluiY1rb2+PnfNsYvnt0Yx47qG8eP6RvTh/WJUWWvnW+fgpyoa26LqvqWWLqlLuaur4kHF22PRZuTF+29blRZYfz43LGJyxTTaVttc6K5sl49+89b2PPk9pc95+/OnTYwXlhbHTc/tynxMYu31MUnbl8SQ/sWxPvGl8Uxo0piwqCiGNg7P4rys6O5tT12NrTE6srGWLS5Nv6yckfMWVbVqev3143oVxDXnX9oZO3F6/+IEcXxtdNHxVf+2Lki9pbW9rhj7pa4Y+6WGF9eFCcc0i+mDukTYwYUxpCSgiguyImC3OxobWuPuqbW2FTdFKsrG+Ll9TXxzKqd8dza6mjt7Jva//nI4YPiM8cP26Nj36x3fk7cdMH4OPOGeVFV39KpY1dXNsSX/7gyvvHI6njXqJI48qCSmDi4KEb0K4zy4rwoysuJ/NzsqG1qjZ0NLbGjviU2VTfFS+tq4sV11fHiuprY2dC5NV+Xm5MVP/vQuOjfO2+Pjn+7A+k6hq71v69WpSw1nz17dobSAAAAAAAAAAAAAJAufgsCAAAAAAAAAAAAAAAAgC4xe/bsDotdIyJuf2mLYtc9MGvqwPju42v36jnOm17eRWl2Lyc7K75y+si47NbFnT72qRU74qkVO7osy8ypA+KjRw95y8eOPKg48fFPLK+K9/9sXnzquGFx3Oi+MaB3XjS2tMX2uuZ4dWt9nHBwv8jL6Z5mrZLC3Pjs8cPjPx9d3eljl2ypiyVbOl8mtisFudlx3fnjoij/tULUorxkJbgte1nsGvFaWerNHxkfF9+yKOqbk5WvvbF+a3v8ZeWO+MvKrnu97c7gkvy4+aIJUZjwcwM9TW1TW7S07lkZ2b7sQD3vVIoLc+LXF02IM2+YF1trkhU7RqT/++74QUVxwwXjI7eL35fHlRfFf5wxOv7lvuWdOq69/bXi+r+m6XxHlhbGHZdOipLCnvHnIpK+FkqLuqaYL53seTL7057zd994/+jYXtscDyzc3qnjNuxojJ//bWP8/G8b05KrrCgvfvmRCVHWBa+ny48eEluqm+NHT63bo+MXb6mLxV10L5XK2ZMHxDVnjumy5xvdvzB+e8mk+NCvFsSOTpa7RkQ0trTF469WxeOvVnVZpo5kZ0V894OHxNEjS7rsOQ+06xi6zu0vbUk5M2vWrAwkAQAAAAAAAAAAACCd/BYoAAAAAAAAAAAAAAAAAF3iiCOOiEMOOaTDmUeWVEZlXedLRA50s6cO3Kvjc3OyYuaUAV2UpmOnjSuL2dP2Lu/eOnVcWXx/5tjIelsvytEj+8bgkvzEz7Noc118/q5lccR3n49R//F0jLvmb/Gu778Y//CbRVHf3NrFqTvnk+8aGhMH9+629bOzIr4/85CYMKjojY/1Slhe2txFZYnHjuobv/rIhDeKZXuaEf0K4o5LJ8WwvgXdHQWgywzvVxC//YdJUV6c/P00nSYMKorbLp4YxQXpeS+46IhBccVxw9Ly3HtiZGlh3HnZpBjag95bttY2JZorK+oZpaSp2PPU9rc95zW52Vnxk/MOjfdP6N/dUd4woHde3HHZpBhfXpR6OKF/fe9B8Y8njeiy50uHy48eEj8599DIze7aos8pQ3rHHZdOiiGduCfuDrnZWfGj2YfGuWn4ucKBdh3D3quoa45HllR0OHPIIYfEYYcdlqFEAAAAAAAAAAAAAKSLYlcAAAAAAAAAAAAAAAAAukRWVlZceumlHc40tbTFXfO2ZibQfmRkWWEcMaJ4j49/z9jS6N87rwsTdezasw6OqUP7ZGy9Nzt1XFlcf/6uS3CysyLOm1beDam6Xl5OVtx4wbjo1yvzhVlZWRH/ffYhcfbkt5YF905YsNrU2tZlWY4b3Tfu+/iUGFVW2GXP2RWOHlkS9358aozp36u7owB0ufGDiuLej03p9u9xx47qG3+4fEray9m+fNrI+NRxQ9O6RhLHj3ntPa8nFXy2tUdUNyQru++pRey7Ys93b3/dc16Tm50VPz3/0Pj4sd3/+p84uHfc+/EpXVrq+rovnDwifjBzbPTK61l/dqcoPye+88GD4xvvHx1ZXdvp+oZJg3vHg5+cFseMLEnPAntpUHF+/O7SSXHOlAGph/fQgXYdw965a962aG5t73Dmsssui6x0fdECAAAAAAAAAAAAkDE961+YAwAAAAAAAAAAAAAAALBPu+SSSyInp+MCn188uzHaOu5EYBdmTxu4x8eeNz2zZaa98rLjlosmxOQhvTO2ZnZWxL+856D4xYXjoyB3978+ecVxQzNacptOI0sL4/ZLJkVZUebOp3d+Tvzk3EPjgsPe+ZrqU5CsvKuhueuKXSMixpcXxUOfnLZXXyNdJS8nK/7xpBHxu0snRXmf/eN1BrArI/oVxP0fnxIfTGPx2u7kZGfFZ44fFrf9w8QoLsxMceRXThsV1551cOR3cI2RLjnZWfH5E4fHrf8wqcddwzS2JH9PL8jZt/68hT3ftf15z1M5UDr7crOz4t/fNyquO+/QKE54fd+VsrIiLjpiUNz3sSkxsrQwbeucO31gPHLFtDhseHHa1uiMY0aWxCOfmhYXHjYo7WsN7JMXd1w2Ob7x/tE9qoD5rMkD4pErpsXRGSidPdCuY9gz7e0RNz+3qcOZ7OzsuPjiizOUCAAAAAAAAAAAAIB02r9+CwIAAAAAAAAAAAAAAACAbjV8+PB4z3ve0+HMyu0N8fiyygwl2n+cPXlA5OV0vk2otCg3Tj20NA2JOta/d17cednkOHNS/7SvNa68KH536aT43AnDUxYu9e2VG19/3+i0Z8qUyUN6x30fnxLThvZJ+1rjBxXFHz85Nc6evOvym6TFrnVdXOwaEVFcmBM/nDU27rxscowvL+ry50/ifePL4tErp8cXTh4RudkHSPMXcEDr2ys3fnLuofHT8w6NQcX5GVlzwqCiuPujk+Pf3jtyj66L9sZFRwyKBz8xNQ4fkbkSwGNH9Y2HPzUt/vmUg6InvrV0puQzL7cHnkAK9vyd9vc978iBdn131uQB8eTnDovZ0wZmbM3xg4rirssnx7VnHRyFeen/kzhj+veKez82JX4wa2wM71eQ9vV2ZVRZYfzsQ+Pi95dPjtH901dk+3bZWRGXHz0k/vK5GXHJUYMz/p76ZjOGF8edl02K6847NAZksMz6QLuOofMeXVoRy7fVdzhz2mmnxYgRIzKUCAAAAAAAAAAAAIB0yu3uAAAAAAAAAAAAAAAAAADsXy6//PJ45JFHOpy54ekN8Z5uKBvdl/XrlRvvGVsaDy2u6NRxM6cMjNxuKgwpLsiJ688fF/fM3xb/+ejqWFvV2KXPP6QkP/7p5IPi/BnlnSq+mjl1QOxoaIkv/3FFtLd3aaRuMaqsMO792JS48ZmN8YMn18XOhpYuff7BJfnxhZNGxIdmlEdOB5/oxMWuTa1dFe0djh1VEo9eOT0eXVoRP/3Lhvjb6p1pWysiojAvO86ZMiA+evSQmDi4d1rXAuipzp48IE4fXxa3PL85fvKX9bFpZ1OXrzFpcO/4/InD4/0T+qcscU+n8YOK4p6PTokHFm6P7z+xNhZtrkvLOseOKomPHzs0Th9flpbn7ypNnSn53EcL7Oz5Wx0Ie747+TnpLxrtacr75MUPZ42NS44cHD/58/r409LKaG3r+huoKUN6x2dPGB5nTOif8ULjrKyIc6cNjHOmDIh7X9kWNz2zMeaur0n7useO6hsfPWZInD6+rFtLnMuL8+OaD4yJz7x7WPz6+c1x24ubY2tNc9rXzc/NjveOLY3LjxkSx44qSft6HTmQrmPonJue2Zhy5rLLLstAEgAAAAAAAAAAAAAyQbErAAAAAAAAAAAAAAAAAF1q5syZMWTIkNi4cfcFCH9euSMWb6mL8eVFGUy275s9fWCni13Pmz4wTWmS++CUAfH+if3j3le2xa0vbI5n1+yMPe0DKsrPidPHl8asqQPjhIP7Re4etuBcetTgGNO/MP7j4VVpK+jKpNycrPjUcUPjI0cMit+/vDV+99KWmLexZo+La3Ozs+L4MX1j5tSBceak/lGQm7rIqqQw2a+tVjemr9g14rVyplPHlcWp48pi5faGuG/BtnhwUUW8srFmj193b9a3V268a1RJvH9i/zhtXFniQluA/VlBbnZ89JghcelRg+OpFTviD/O2xqNLK6Oqfs/Lxkf0K4gzJvaPWVMHxpQhPac8Oysr4sxJ/ePMSf3juTXVcefLW+JPSypjc/XeFcEdPKBXnDK2NC44rHyfuUZubE3+xrovl2La8787UPZ8V3rl7V/n0xmHjyiOmy4cH+uqGuO2FzfHo0srY8Gm2j2+14iIGNa3IN4/sX/MnDogpg3t03Vh91BudlbMmjowZk0dGCu218c987fF469Wxcvra6KlC24icnOy4rBhxfG+CWVxxoSyOKi0sAtSd52hfQviX95zUHzhpBHx5IqqeGRJZTy6pCI2dmHJ6YDeeXHs6L5xyiH94owJ/aO4sOfcRx1I1zEks3hLXfx55Y4OZ4YOHRrnnHNOhhIBAAAAAAAAAAAAkG5Z7e1788/kAQAAAAAAAAAAAAAAAOCdvvGNb8RXv/rVDmdmTxsYP5w1NkOJ6Ekq61riqRVV8fKGmliyuS427GyKLTVNUdfUFk2tbZGTnRWFudnRr1duDOidF6PKCmNceVEcPqI4Dh9eHIVdWKrU1h7x5xVV8cTyqvjb6urYWtMUFXUt0dDcGvm52dE7PycG9M6LYX0LYvygohhfXhQTB/eO8eVFkbVnnbIZs622OZ5euSMWbKqLJVvqYuPOxthc0xy1ja3R2NIWERG9C3Ki+P/+O6i0MCYP6R2Th/SOI0YUR1lRXjefQdeqaWyNuetrYu76mlhd2RBrKxti/Y6mqG5sifrmtmhobou29vbIz82OgtzsKCnIiQF98qO8z99fg5MG946Jg3vHHvYJw1674o6lce8r21LO3XLxxDj5kH4ZSAS7197+WinWs6t3xuItdbFye32sqWqM6obWqGtujaaWtuiVlxNF+dlR2isvRpYVxuj+hTF5cO84ZlRJDOtb0N2nkFh7e8TqyoZYsKk2Fm+ui8Wb62L9jsaobmyNmsaWqGlqi8aWtuiVlx19CnKipCA3DiotiLEDi+LQgb3imFElPa7kj47Z8/3X8m31ccKPXnrHx8cO7BX/+5kZ3ZCoZ9pS89q9xpKtdfHq1vpYsb0+djS0Rm3Ta/9FvFaG2ysvJwb2zouDSgveuN848qCSGNFv3/geX93YGvM21MTizXWxdGtdbNjRFJurm2JrbXPUN7VGY2t7NLe2RV5OdvTKy47C3OwoK8qNYX0LYli/gji4f6+YPqxPTB7SOwpy971y4I07m+JVcI+1AAAgAElEQVSVjTWxYFNdrKlsiI07m2LTzqaoamiJhua2aGhpi+Y33cMX5GZHaa/cKC/Oj8HF+TGqrPCN++iDB/Tq7tPplP3xOubMG+bHS+uqU8499unp+0zheLp89vfL4q55Wzuc+eY3vxlf+tKXMpQIAAAAAAAAAAAAgDS7Q7ErAAAAAAAAAAAAAAAAAF1u69atMXLkyKivr9/tTE52Vjz+6en7XLkHAHQXxa4AkF5z19fEB3427x0fP3pkSdx1+eRuSATQNRS7JrNye0Oc9D8vRUvb7v8sV0FBQaxZsybKy8szmAwAAAAAAAAAAACANLoju7sTAAAAAAAAAAAAAAAAALD/GThwYHz4wx/ucKa1rT1+9NT6DCUCAACAjq2ratzlx4f1LchwEgC6w/eeWNthqWtExMUXX6zUFQAAAAAAAAAAAGA/o9gVAAAAAAAAAAAAAAAAgLS46qqrIisrq8OZP8zbGqsqGjKUCAAAAHZv2da6XX58VFlhhpMAkGkrtzfE3fO3dTiTlZUVn//85zOUCAAAAAAAAAAAAIBMUewKAAAAAAAAAAAAAAAAQFpMnjw5Zs6c2eFMS1t7fPfxtRlKBAAAALv3zOqdu/z4+EFFGU4CQKZ95/E10drW3uHMzJkzY/LkyRlKBAAAAAAAAAAAAECmKHYFAAAAAAAAAAAAAAAAIG2+/vWvR3Z2x7/K9of5W+PlDTUZSgQAAADvVNvUGs+vrd7lY4cPL85wGgAyae76mrjnlW0dzmRlZcVXv/rVDCUCAAAAAAAAAAAAIJMUuwIAAAAAAAAAAAAAAACQNpMnT46zzjqrw5n29ohvPLwqM4EAAABgFx5eXBENzW3v+PjI0sIYXJLfDYkAyJRr/rQ62ts7npk5c2ZMmzYtM4EAAAAAAAAAAAAAyCjFrgAAAAAAAAAAAAAAAACk1de+9rXIysrqcObpVTvjkSUVGUoEAAAAb3XrC5t3+fFTx5VmOAkAmfTQ4or4y8odHc5kZWXFF7/4xQwlAgAAAAAAAAAAACDTFLsCAAAAAAAAAAAAAAAAkFYzZsyI8847L+XcNx5eHU0tbRlIBAAAAH+3YFNtPL1q5y4fO2Ni/wynASBTmlra4luPrE45d/7558fhhx+egUQAAAAAAAAAAAAAdAfFrgAAAAAAAAAAAAAAAACk3be//e0oKCjocGbF9vr4yV82ZCgRAAAAvOa7j6/d5cdH9y+MY0aWZDgNAJnyP39eHyu213c4k5+fH9/61rcylAgAAAAAAAAAAACA7qDYFQAAAAAAAAAAAAAAAIC0Gz16dFx55ZUp537w5LqUZQoAAADQVV5cVx0PL67Y5WOXHDkkw2kAyJRVFQ3xP0+tTzn3uc99Lg4++OAMJAIAAAAAAAAAAACguyh2BQAAAAAAAAAAAAAAACAjvvKVr0T//v07nGlqaYsvP7AyQ4kAAAA4kLW1R3zx/hW7fGxA77y46IhBGU4EQKZ85Y8ro7GlrcOZ0tLS+Ld/+7cMJQIAAAAAAAAAAACguyh2BQAAAAAAAAAAAAAAACAjSktL48tf/nLKuSeWV8Uf5m3LQCIAAAAOZDc+vSHmb6zd5WNXnTg8euX50ywA+6O75m2NOcsqU8597Wtfi7KysgwkAgAAAAAAAAAAAKA7+e0BAAAAAAAAAAAAAAAAADLmM5/5TMyYMSPl3BcfWBEbdzZlIBEAAAAHoiVb6uLbj63Z5WPjy4viH44cnOFEAGTCluqm+MofV6acmzJlSlx55ZUZSAQAAAAAAAAAAABAd8vt7gAAAAAAAAAAAAAAAAAAHDhyc3Pj+uuvj2OOOSba2tp2O7ezoSX+9b7l8auPTMhgOgAAAA4U48qLYsVXjunuGABk2L/dvyKq6ls6nMnOzo7rr78+8vLyMpQKAAAAAAAAAAAAgO6U3d0BAAAAAAAAAAAAAAAAADiwHHnkkfHRj3405dyjSyvj9pe2ZCARAAAAALC/++2LW+KhxRUp5z7xiU/Esccem4FEAAAAAAAAAAAAAPQEil0BAAAAAAAAAAAAAAAAyLhvf/vbUV5ennLuaw+tjNWVDRlIBAAAAADsr1ZXNsS/P7wy5dygQYPimmuuyUAiAAAAAAAAAAAAAHqK3O4OAAAAAAAAAAAAAAAAAMCBp6ysLH72s5/FOeec0+FcdUNrXPG7pXHPx6ZEXk5WhtIBwL7tol8v7PwxRwyKa886OA1pAACArlJR1xxTrn2uu2Psc1pa2+Mzdy6L6obWlLM//vGPo7S0NAOpAAAAAAAAAAAAAOgpsrs7AAAAAAAAAAAAAAAAAAAHpg9+8INx4YUXppx7eUNNfOtPqzOQCAAAAADY33zjkVXx4rrqlHMXXXRRzJ49OwOJAAAAAAAAAAAAAOhJFLsCAAAAAAAAAAAAAAAA0G1+8pOfxPDhw1PO3fjMhnh4cUUGEgEAAAAA+4tHl1bGTX/bmHJuyJAh8YMf/CADiQAAAAAAAAAAAADoaRS7AgAAAAAAAAAAAAAAANBt+vXrF9ddd13Kufb2iKvvfjVWbm/IQCoAAAAAYF+3Ynt9fPb3y6K9PfXsDTfcEGVlZekPBQAAAAAAAAAAAECPo9gVAAAAAAAAAAAAAAAAgG71gQ98IK644oqUczvqW+LSWxdFdUNrBlIBAAAAAPuqmsbW+Nhvl8TOhpaUs5/+9KfjAx/4QAZSAQAAAAAAAAAAANATKXYFAAAAAAAAAAAAAAAAoNt973vfixkzZqSce3VbfXzurmXR1p6BUAAAAADAPqe9PeIf7341lmypSzk7ZcqU+O///u8MpAIAAAAAAAAAAACgp1LsCgAAAAAAAAAAAAAAAEC3KygoiNtuuy369OmTcvaRJRXx3cfXZCAVAAAAALCv+c7ja+KBhdtTzhUXF8edd94ZvXr1ykAqAAAAAAAAAAAAAHqqrPb29vbuDgEAAAAAAAAAAAAAAAAAERG//e1v48ILL0w5l5UV8d0PHhIfmlGegVQAAAAAwL7gD/O2xWfvWhpJ/rLWzTffHBdffHH6QwEAAAAAAAAAAADQk92R3d0JAAAAAAAAAAAAAAAAAOB1F1xwQXziE59IOdfeHvHP9y2PJ5dXZSAVAAAAANDTPbG8Kq66e1miUtcrrrhCqSsAAAAAAAAAAAAAERGR1d6e5J+gAgAAAAAAAAAAAAAAAEBmNDc3x6mnnhpPPPFEytk+BTlx1+WTY9Lg3hlIBgAAAAD0RIs318U5P58f1Q2tKWePO+64mDNnTuTn52cgGQAAAAAAAAAAAAA93B3Z3Z0AAAAAAAAAAAAAAAAAAN4sLy8vbr/99hg+fHjK2ZrG1rj4lkWxurIhA8kAAAAAgJ5mdUVDXPjrhYlKXQ866KC46667lLoCAAAAAAAAAAAA8AbFrgAAAAAAAAAAAAAAAAD0OIMGDYp77703ioqKUs5urm6K836xINZVNWYgGQAAAADQU2zc2RQX3LwwtlQ3pZwtLCyMO++8M8rLyzOQDAAAAAAAAAAAAIB9hWJXAAAAAAAAAAAAAAAAAHqkGTNmxC9+8YvIzk79q3DrdzTGhTcvjC01zRlIBgAAAAB0ty01zXH+LxfEmsqGlLPZ2dlx8803x5FHHpmBZAAAAAAAAAAAAADsSxS7AgAAAAAAAAAAAAAAANBjnX/++fFf//VfiWZXbK+PC3+1ICrqlLsCAAAAwP6soq45LvzVglixvT7R/He+850477zz0pwKAAAAAAAAAAAAgH2RYlcAAAAAAAAAAAAAAAAAerQvfOELcdVVVyWaXbylLmb9/JXYXN2U5lQAAAAAQHfYWtMc5/9yQSzeUpdo/uqrr46rr746zakAAAAAAAAAAAAA2Fdltbe3t3d3CAAAAAAAAAAAAAAAAADoSFtbW3zoQx+KO++8M9H8QaWFcfslE+Og0sI0JwMAAAAAMmXDjsY4/1cLYuX2hkTz5513Xvz2t7+N7OzsNCcDAAAAAAAAAAAAYB91h39pCgAAAAAAAAAAAAAAAECPl52dHb/5zW/ijDPOSDS/prIhzvvlglhVkazgAQAAAADo2dZWNca5v0xe6vre9743br75ZqWuAAAAAAAAAAAAAHTIvzYFAAAAAAAAAAAAAAAAYJ+Qn58fd955Zxx//PGJ5tdVNcasn78SCzbVpjkZAAAAAJBOCzbVxtk3zo/VFclKXU844YS45557orCwMM3JAAAAAAAAAAAAANjXKXYFAAAAAAAAAAAAAAAAYJ9RVFQU999/fxx11FGJ5jdXN8XMm16JOcsq05wMAAAAAEiHp1bsiNk/fyW2VDclmp8xY0bcc889UVRUlOZkAAAAAAAAAAAAAOwPFLsCAAAAAAAAAAAAAAAAsE8pKSmJhx56KKZPn55ovrapNS67bXHcMXdLmpMBAAAAAF3pdy9tiYtuWRjVja2J5qdPnx6PPfZY9OvXL83JAAAAAAAAAAAAANhfKHYFAAAAAAAAAAAAAAAAYJ9TWloac+bMiaOOOirRfEtre1x996vx33PWRFt7msMBAAAAAHulrT3iv+asiX+859VoaU32A72jjjoq5syZE6WlpWlOBwAAAAAAAAAAAMD+JKu9vd2voAMAAAAAAAAAAAAAAACwT6qtrY2zzz475syZk/iYU8aWxk/OPTSKC3PSmAwAAAAA2BM1ja1x1R+WxYOLKhIfc/zxx8f9998fJSUlaUwGAAAAAAAAAAAAwH7oDsWuAAAAAAAAAAAAAAAAAOzT6urqYubMmfHII48kPmZM/17x8wvHx9iBvdKYDAAAAADojFUVDXHZrYtj6da6xMecdNJJcd9990WfPn3SmAwAAAAAAAAAAACA/dQd2d2dAAAAAAAAAAAAAAAAAAD2RlFRUdx7770xe/bsxMes2F4fH7xpfjy8uCKNyQAAAACApB5aXBFnXD+vU6Wu5557bjz00ENKXQEAAAAAAAAAAADYY4pdAQAAAAAAAACA/8/enUdXXd95A//cJIQtAQSEAjoiUC0VkQel4Pig1NGhKiCgiIO2WPU4uDt0Og62iqOijo9WcVCoe7WiGHaiqFjHKiqIC1irsoxAWVSWsAQTErI8f8xpZ9qq94K590Lyep2TcyB5f3+/N+QP8ssh9w0AAAAAB7zGjRtHUVFR/Mu//EvKZ3aUV8VFT38cN8xfHXuqa9PYDgAAAAD4KlU1tXHrgrVx8dMfx87dVSmfu+qqq2LatGnRuHHjNLYDAAAAAAAAAAAAoL5L1NbW+mlzAAAAAAAAAAAAAAAAAOqNiRMnxtixY6OmpiblMz07FsTkEUdE59ZN0tgMAAAAAPjf1m+viEuLVsS760tTPpNIJOKGG26IG2+8MX3FAAAAAAAAAAAAAGgoigy7AgAAAAAAAAAAAAAAAFDvPPPMM3HBBRdEeXl5ymcKm+TGv/3g8Bj5f9qlsRkAAAAAEBEx7b1NMf751VG6uzrlM02bNo1f/epXMWLEiDQ2AwAAAAAAAAAAAKABMewKAAAAAAAAAAAAAAAAQP20dOnSGDp0aKxdu3avzn2/W6v4f2d2iw4t8tPUDAAAAAAars279sS18/4rXvi4ZK/OderUKWbNmhV9+vRJUzMAAAAAAAAAAAAAGiDDrgAAAAAAAAAAAAAAAADUX59//nmcffbZsXDhwr0616ppXtx8+uExvOfBaWoGAAAAAA3PzPc3x/XPrY7t5VV7da5///4xffr0aNeuXZqaAQAAAAAAAAAAANBAGXYFAAAAAAAAAAAAAAAAoH6rrKyMq6++OqZMmbLXZwd0axUTzugSnVs3SUMzAAAAAGgY1pTsjuuKP4nf/tf2vT576aWXxsSJE6NRo0ZpaAYAAAAAAAAAAABAA2fYFQAAAAAAAAAAAAAAAICGYfr06XHxxRfHjh079upco9xEXHJ8x/jJ9w+Nxnk5aWoHAAAAAPVPVXVt/PLNjXHXf66LiqqavTpbUFAQU6ZMifPOOy9N7QAAAAAAAAAAAADAsCsAAAAAAAAAAAAAAAAADcjy5cvj3HPPjaVLl+712S5tmsb1Aw+Lvz+ydRqaAQAAAED98sLHJXHLi2vjk63le322V69eMW3atDjiiCPS0AwAAAAAAAAAAAAA/sSwKwAAAAAAAAAAAAAAAAANy+7du2Ps2LExefLkfTp/fOcWcf3AznFMx4I6bgYAAAAAB76lG3bFLS+uiTfX7Nyn85deemn84he/iCZNmtRxMwAAAAAAAAAAAAD4K4ZdAQAAAAAAAAAAAAAAAGiYiouL45JLLolPP/10r88mEhFDj24b//z9v4nOrQ1MAAAAAMDqrbvjzv/8Q8z5YEvsyytbdejQIR588ME444wz6r4cAAAAAAAAAAAAAHw5w64AAAAAAAAAAAAAAAAANFzbt2+Pa6+9Nh544IF9Op+TiDj9u23iX07+m+jatmkdtwMAAACA/d8ftu2O+xZuiKff3RRVNfv2klYjRoyIyZMnR5s2beq4HQAAAAAAAAAAAAB8LcOuAAAAAAAAAAAAAAAAADBjxoy47LLLYtOmTft0PjcnEUOPbhuX/d9O8Z12zeq4HQAAAADsfz7eVBb3L9wQs3+3Jar3cdC1ffv2MXny5Bg2bFgdtwMAAAAAAAAAAACAlBh2BQAAAAAAAAAAAAAAAICIiO3bt8f48ePjvvvui+rq6n2+Tp+/KYyL+3WM07q3jtycRB02BAAAAIDsqqmNeH31jnjozY3xm5XbYl9fwSqRSMT5558fv/jFL6Jt27Z1WxIAAAAAAAAAAAAAUmfYFQAAAAAAAAAAAAAAAAD+t0WLFsWYMWNi2bJl3+g6Xdo0jQu+960Y3vPgOKhZXh21AwAAAIDMKynbEzPf3xK/euuz+GRr+Te6Vq9evWLKlCnRt2/fOmoHAAAAAAAAAAAAAPvMsCsAAAAAAAAAAAAAAAAA/KWqqqqYNGlS3HzzzVFSUvKNrpWflxOnHnFQnNu7XZzUtVXk5iTqqCUAAAAApE91TW389r+2x9PvbooXl5fEnupv9nJVrVu3jhtuuCEuv/zyyMvLq6OWAAAAAAAAAAAAAPCNGHYFAAAAAAAAAAAAAAAAgK9SUlISEyZMiEmTJkVlZeU3vl67wvw4vXvrOP27baLfYS2MvAIAAACwX6muqY1Fa3fGcx9ujec+KolNpd/8e2KNGzeOK664In72s5/FQQcdVActAQAAAAAAAAAAAKDOGHYFAAAAAAAAAAAAAAAAgGQ++eSTGDduXBQVFUVd/Vhe62aN4gfdW8fJ3z4oTji8RbRoklcn1wUAAACAvbGjvCpeX7MjXl6xPV74uCRKyvbUyXUTiUScc845cdttt8Xhhx9eJ9cEAAAAAAAAAAAAgDpm2BUAAAAAAAAAAAAAAAAAUrV06dK46aabYvbs2XU28BoRkZuTiJ4dC6J/l5ZxwuEt45iOBVHYJLfOrg8AAAAAf1RaUR3LNuyK11fviNc+2RHvb9wV1TV1972uRCIRQ4cOjfHjx8cxxxxTZ9cFAAAAAAAAAAAAgDQw7AoAAAAAAAAAAAAAAAAAe2vZsmVx0003xaxZs+p04PWPEomIrm2aRq9OBdGzY0Ec2a5ZdGnTJDq2bFzn9wIAAACg/tq4oyI+2bo7lm8qi/c37oqlG3bFJ1vLow53XP8kkUjEsGHDYvz48dGzZ8+6vwEAAAAAAAAAAAAA1D3DrgAAAAAAAAAAAAAAAACwrz744IO455574sknn4zdu3en/X7N8nOiS5umcWirxtG+MD/aNG8UBzdvFG0KGkVh47xIRESLJrlp7wEAAABA9u3cXR21EVFaURVbd+2JzV/sia1f7InPdlbG+h0V8cnW8iirrEl7jyZNmsR5550X11xzTfTo0SPt9wMAAAAAAAAAAACAOmTYFQAAAAAAAAAAAAAAAAC+qc2bN8cjjzwS9913X6xbty7bdQAAAAAg7dq3bx9jxoyJyy+/PA4++OBs1wEAAAAAAAAAAACAfWHYFQAAAAAAAAAAAAAAAADqSmVlZcyaNSseffTRWLBgQdTU1GS7EgAAAADUmdzc3Dj11FPjxz/+cQwdOjTy8/OzXQkAAAAAAAAAAAAAvgnDrgAAAAAAAAAAAAAAAACQDhs3bownnngiHn744Vi5cmW26wAAAADAPjv00ENj1KhRMWbMmOjcuXO26wAAAAAAAAAAAABAXTHsCgAAAAAAAAAAAAAAAADp9vvf/z6KiorimWeeiY8++ijbdQAAAAAgqcMPPzwGDx4cI0aMiBNOOCESiUS2KwEAAAAAAAAAAABAXTPsCgAAAAAAAAAAAAAAAACZ9MEHH8Ts2bPj+eefj8WLF0dVVVW2KwEAAABA5OXlRb9+/WLgwIExdOjQ6NGjR7YrAQAAAAAAAAAAAEC6GXYFAAAAAAAAAAAAAAAAgGwpLS2NV155JRYsWBAvv/xyfPTRR1FTU5PtWgAAAAA0ALm5udG9e/c4+eST45RTTokBAwZEYWFhtmsBAAAAAAAAAAAAQCYZdgUAAAAAAAAAAAAAAACA/UVpaWm88847sWTJkliyZEm8++67sWbNmqiurs52NQAAAAAOYHl5edG5c+fo3bt39OnTJ/r06RPHHntsFBQUZLsaAAAAAAAAAAAAAGSTYVcAAAAAAAAAAAAAAAAA2J9VVlbGqlWrYvny5bFixYpYs2ZNfPrpp7Fp06b47LPP4rPPPovy8vJs1wQAAAAgi5o1axbt27ePb33rW9GuXbvo0KFDdO7cOY444oj4zne+E127do38/Pxs1wQAAAAAAAAAAACA/Y1hVwAAAAAAAAAAAAAAAAA40O3Zsyd27doV1dXVsXPnzqitrY3t27dnuxbAAWP16tVx4YUXRmlpadLsMcccE5MnTzaIBAApWr9+fVxwwQUpPaN06dIlHnnkkSgoKMhAM4ADV6tWrSKRSETLli0jJycnCgsLIy8vL9u1AAAAAAAAAAAAAOBAZNgVAAAAAAAAAAAAAAAAAABouLZu3Rr9+vWLVatWJc127tw5Fi9eHO3atctAMwCoP1577bU49dRTo6KiIml24MCBUVxcbKAQAAAAAAAAAAAAAADIhKKcbDcAAAAAAAAAAAAAAAAAAADIhj179sTZZ5+d0qhrYWFhzJ0716grAOyD/v37xy9/+cuUsi+88EJcdtllaW4EAAAAAAAAAAAAAADw3wy7AgAAAAAAAAAAAAAAAAAADdJFF10Ur7zyStJcbm5uTJ06NY4++uj0lwKAemr06NFx3XXXpZR98MEHY+LEiWluBAAAAAAAAAAAAAAAYNgVAAAAAAAAAAAAAAAAAABogCZMmBBPPPFEStmJEyfGoEGD0twIAOq/W265JUaNGpVSduzYsTFnzpw0NwIAAAAAAAAAAAAAABq6RG1tbW22SwAAAAAAAAAAAAAAAAAAAGTKzJkzY8SIEVFTU5M0e+WVV8a9996bgVYA0DDs3r07Tj755HjzzTeTZgsKCuK1116LXr16ZaAZAAAAAAAAAAAAAADQABUZdgUAAAAAAAAAAAAAAAAAABqMd999N0488cT44osvkmYHDhwYxcXFkZeXl4FmANBwbNmyJY4//vhYtWpV0mzHjh1j8eLFccghh2SgGQAAAAAAAAAAAAAA0MAU5WS7AQAAAAAAAAAAAAAAAAAAQCZs3LgxzjzzzJRGXbt37x5PP/20UVcASIO2bdvG3Llzo1WrVkmzGzdujCFDhqT07zcAAAAAAAAAAAAAAMDeMuwKAAAAAAAAAAAAAAAAAADUe+Xl5TF06NBYv3590mybNm1SHpsDAPZN9+7dY9asWZGfn580+95778XIkSOjuro6A80AAAAAAAAAAAAAAICGxLArAAAAAAAAAAAAAAAAAABQr9XU1MSoUaNiyZIlSbP5+fkxffr06NatWwaaAUDDNmDAgLj//vtTyj777LNx7bXXprkRAAAAAAAAAAAAAADQ0Bh2BQAAAAAAAAAAAAAAAAAA6rVx48bF7Nmzk+YSiUQ89NBDMWDAgPSXAgAiIuKiiy6Kn/zkJyll77rrrpSHYAEAAAAAAAAAAAAAAFKRqK2trc12CQAAAAAAAAAAAAAAAAAAgHR47LHH4sc//nFK2Z///Odx8803p7kRAPCXampq4qyzzkppiD03Nzdmz54dgwYNykAzAAAAAAAAAAAAAACgnisy7AoAAAAAAAAAAAAAAAAAANRLr732Wpx66qlRUVGRNHvWWWfFM888Ezk5ORloBgD8pfLy8hgwYEC89dZbSbOFhYXx+uuvx9FHH52BZgAAAAAAAAAAAAAAQD1m2BUAAAAAAAAAAAAAAAAAAKh/Vq9eHX379o3Nmzcnzfbu3TteffXVaN68eQaaAQBf5dNPP42+ffvGunXrkmY7d+4cixYtivbt22egGQAAAAAAAAAAAAAAUE8V5WS7AQAAAAAAAAAAAAAAAAAAQF3auXNnDB48OKVR144dO8acOXOMugLAfqBDhw4xf/78aNmyZdLsmjVrYtCgQVFWVpaBZgAAAAAAAAAAAAAAQH1l2BUAAAAAAAAAAAAAAAAAAKg3qqqq4qyzzorf//73SbNNmzaN2bNnxyGHHJKBZgBAKo466qh46qmnIi8vL2n27bffjtGjR0dNTU0GmgEAAAAAAAAAAAAAAPWRYVcAAAAAAAAAAAAAAAAAAKDeuOqqq+Kll15KmsvJyYmpU6dGnz59MtAKANgbp512Wtx5550pZadPnx7XX399mhsBAAAAAAAAAAAAAAD1lWFXAAAAAAAAAAAAAAAAAACgXrj77rtj8uTJKWVvv/32GDp0aJobAQD76uqrr44rrrgipeytt94aDzzwQJobAQAAAAAAAAAAAAAA9VGitra2NtslAAAAAAAAAAAAAAAAAAAAvonnn38+Bg0aFNXV1UmzF1xwQTz66KMZaAUAfBPV1dUxbNiwmDdvXtJso0aNYv78+fF3f/d3GWgGAAAAAFs5kbIAACAASURBVAAAAAAAAADUE0WGXQEAAAAAAAAAAAAAAAAAgAPahx9+GH/7t38bO3bsSJrt379/LFiwIBo3bpyBZgDAN1VaWhr9+/ePZcuWJc22bt063njjjTjyyCMz0AwAAAAAAAAAAAAAAKgHinKy3QAAAAAAAAAAAAAAAAAAAGBfbdmyJQYPHpzSqOvhhx8eM2bMMOoKAAeQwsLCePbZZ+OQQw5Jmi0pKYnTTjstNm/enIFmAAAAAAAAAAAAAABAfWDYFQAAAAAAAAAAAAAAAAAAOCDt3r07hgwZEp988knSbIsWLWLevHlx8MEHZ6AZAFCXOnXqFHPmzInmzZsnza5evTqGDx8eFRUVGWgGAAAAAAAAAAAAAAAc6Ay7AgAAAAAAAAAAAAAAAAAAB5za2tq4+OKL480330yabdSoUcyYMSOOOuqoDDQDANKhd+/e8fjjj0dOTvKXS1m4cGGMHj06amtrM9AMAAAAAAAAAAAAAAA4kBl2BQAAAAAAAAAAAAAAAAAADjj/9m//Fk8++WRK2YkTJ8Ypp5yS5kYAQLoNHz48brvttpSy06ZNi5tvvjnNjQAAAAAAAAAAAAAAgANdora2tjbbJQAAAAAAAAAAAAAAAAAAAFJVVFQUI0eOjFR+VHrs2LFx1113ZaAVAJApl156aUyZMiVpLpFIxOOPPx7nn39+BloBAAAAAAAAAAAAAAAHoCLDrgAAAAAAAAAAAAAAAAAAwAHj7bffjpNOOinKysqSZn/wgx9EcXFx5ObmZqAZAJApe/bsidNPPz1eeumlpNn8/Px44YUXYsCAAekvBgAAAAAAAAAAAAAAHGgMuwIAAAAAAAAAAAAAAAAAAAeGtWvXRt++fePzzz9Pmv3ud78bb7zxRrRs2TIDzQCATNu5c2eccMIJ8cEHHyTNtmnTJhYtWhTdunXLQDMAAAAAAAAAAAAAAOAAUpST7QYAAAAAAAAAAAAAAAAAAADJlJaWxpAhQ1IadW3btm3MmzfPqCsA1GMtWrSIefPmRbt27ZJmt27dGoMHD45t27ZloBkAAAAAAAAAAAAAAHAgMewKAAAAAAAAAAAAAAAAAADs12pqauL888+P999/P2m2SZMmMXfu3OjSpUsGmgEA2dS5c+coLi6OZs2aJc1+/PHHMWzYsKisrMxAMwAAAAAAAAAAAAAA4EBh2BUAAAAAAAAAAAAAAAAAANiv/fM//3PMnTs3aS6RSMRDDz0Uxx9/fAZaAQD7gz59+sRjjz0WiUQiafa3v/1tjBkzJgOtAAAAAAAAAAAAAACAA4VhVwAAAAAAAAAAAAAAAAAAYL/1yCOPxN13351Sdvz48XHeeeeluREAsL8ZMWJE3HjjjSllH3300bjjjjvSWwgAAAAAAAAAAAAAADhgJGpra2uzXQIAAAAAAAAAAAAAAAAAAOAvvfrqq3HqqadGZWVl0uyIESNi2rRpkUgkMtAMANjf1NbWxujRo+OJJ55Imk0kEjF16tQ499xzM9AMAAAAAAAAAAAAAADYjxXlZLsBAAAAAAAAAAAAAAAAAADAX1q+fHkMHTo0pVHX4447Lh577DGjrgDQgCUSiXj44Yfj+9//ftJsbW1tXHjhhbFo0aIMNAP2xvr16yORSKT09sEHH2S7LgAAAAAAAAAAAABQDxh2BQAAAAAAAAAAAAAAAAAA9islJSUxePDg2LZtW9LsYYcdFsXFxdGsWbMMNAMA9meNGjWK6dOnxxFHHJE0W15eHsOGDYu1a9dmoBkAAAAAAAAAAAAAALC/MuwKAAAAAAAAAAAAAAAAAADsN/bs2RMjRoyIlStXJs0WFhbG3Llzo3379hloBgAcCFq3bh3PPfdctG3bNmn2s88+i9NPPz127NiRgWYAAAAAAAAAAAAAAMD+yLArAAAAAAAAAAAAAAAAAACw37jyyivj5ZdfTprLycmJX//619GzZ88MtAIADiRdu3aNmTNnRuPGjZNmP/zwwxg5cmRUVVVloBkAAAAAAAAAAAAAALC/MewKAAAAAAAAAAAAAAAAAPvgsccei0Qi0eDf+vXrl+1PBVCP3HHHHfHLX/4ypexdd90VQ4YMSXMjAOBA1b9//5S/rnjhhRfisssuS3MjUjFlypSsP+d6jgYAAAAAAAAAAAAAaFgMuwIAAAAAAAAAAAAAAAAAAFn33HPPxXXXXZdS9sILL4xrrrkmzY0AgAPd6NGjU/764sEHH4yJEyemuREAAAAAAAAAAAAAALC/MewKAAAAAAAAAAAAAAAAAABk1dKlS2PkyJFRXV2dNHviiSfG5MmTM9AKAKgPbrnllhg1alRK2bFjx8acOXPS3AgAAAAAAAAAAAAAANifGHYFAAAAAAAAAAAAAAAAAACy5tNPP40hQ4bErl27kmaPPPLImD17duTn52egGQBQHyQSiXj44Yfj+OOPT5qtqamJ888/P5YuXZqBZgAAAAAAAAAAAAAAwP7AsCsAAAAAAAAAAAAAAAAAAJAV5eXlMWzYsFi3bl3SbOvWrWPevHlx0EEHZaAZAFCfNGnSJObOnRvdunVLmt21a1ecccYZsX79+gw0AwAAAAAAAAAAAAAAss2wKwAAAAAAAAAAAAAAAAAAkHG1tbVx4YUXxuLFi5NmGzVqFEVFRfHtb387A80AgPqobdu2MXfu3GjVqlXS7MaNG2PIkCHxxRdfZKAZAAAAAAAAAAAAAACQTYZdAQAAAAAAAAAAAAAAAACAjLv++uvj6aefTik7adKkOPnkk9PcCACo77p37x6zZs2K/Pz8pNn33nsvRo4cGdXV1RloBgAAAAAAAAAAAAAAZIthVwAAAAAAAAAAAAAAAAAAIKOmTZsWt956a0rZa6+9Ni655JI0NwIAGooBAwbE/fffn1L22WefjWuvvTbNjQAAAAAAAAAAAAAAgGwy7AoAAAAAAAAAAAAAAAAAAGTM66+/HqNHj47a2tqk2dNPPz0mTJiQgVYAQENy0UUXxU9+8pOUsnfddVfKQ7AAAAAAAAAAAAAAAMCBx7ArAAAAAAAAAAAAAAAAAOyDCy64IGprazP2NnDgwJS7rVy5MmO9Fi1alMa/ZaC+WbNmTQwfPjwqKiqSZnv16hXTpk2L3NzcDDQDABqaO+64I4YOHZpS9qqrrori4uI0N2Jv/exnP8voc7nnaAAAAAAAAAAAAACA+smwKwAAAAAAAAAAAAAAAAAAkHalpaUxZMiQ2LRpU9Jshw4dYu7cuVFQUJCBZgBAQ5STkxNTp06N733ve0mz1dXVMWrUqPjd736XgWYAAAAAAAAAAAAAAEAmGXYFAAAAAAAAAAAAAAAAAADSam/G0Jo2bRqzZs2KQw89NAPNAICGrGnTpjF79uyUvu7440j9559/noFmAAAAAAAAAAAAAABAphh2BQAAAAAAAAAAAAAAAAAA0uqaa66J4uLipLlEIhGPPPJI9O3bNwOtAAAiOnToEPPnz4+WLVsmza5ZsyYGDRoUZWVlGWgGAAAAAAAAAAAAAABkgmFXAAAAAAAAAAAAAAAAAAAgbR566KGYNGlSStlbbrklzj333DQ3AgD4c0cddVQ89dRTkZeXlzT79ttvx+jRo6OmpiYDzQAAAAAAAAAAAAAAgHQz7AoAAAAAAAAAAAAAAAAAAKTFiy++GJdeemlK2ZEjR8a4cePS3AgA4Muddtppceedd6aUnT59etxwww1pbgQAAAAAAAAAAAAAAGSCYVcAAAAAAAAAAAAAAAAAAKDOffTRRzFy5MioqqpKmj3hhBPiV7/6VSQSiQw0AwD4cldffXVcccUVKWUnTJgQDzzwQJobAQAAAAAAAAAAAAAA6WbYFQAAAAAAAAAAAAAAAAAAqFNbt26NIUOGxPbt25NmO3fuHDNnzozGjRtnoBkAwNe75557YvDgwSllr7jiivjNb36T5kYAAAAAAAAAAAAAAEA6GXYFAAAAAAAAAAAAAAAAAADqTGVlZZx99tmxatWqpNnCwsKYO3dutGvXLgPNAACSy83NjSeffDKOOeaYpNk9e/bEOeecE8uXL89AMwAAAAAAAAAAAAAAIB3ysl0AAAAAAAAAAAAAAAAAACBVS5YsiZdffjleffXVWL16dZSUlMS2bduicePG0bZt2+jUqVP07t077rnnnkgkEtmuWy9t37493n333Xj77bfjww8/jD/84Q+xbt262L59e5SVlcXu3bujcePG0bx582jevHm0bNkyunTpEt26dYtu3bpFv379omfPnj4/9djFF18cr7zyStJcbm5uTJ06NY4++uj0lwIA2AuFhYXx7LPPRt++fWPDhg1fmy0pKYnTTjstFi9eHAcffHCGGkJyK1asiLfffjuWL18eK1asiI0bN8bmzZtjy5YtsXv37qioqIg9e/ZEfn5+NGnSJAoKCqJ9+/bxrW99K7p27Ro9evSIXr16Re/evSMvr2G/TFF1dXV8+OGH8c4778SKFSti1apVsWHDhtiyZUuUlJREeXl5VFZWRnV1dTRq1Cjy8/OjRYsW0bp162jfvn0cdthh0bVr1+jZs2f07t07OnTokO0/Uko8/wMAAAAAAAAAAADQUDTs/zENAAAAAAAAAAAAAAAAAKTV4sWLo1+/fklz48ePjxtvvPErPz5//vy46aabYtGiRV/68crKyigtLY3Vq1fHwoUL46677vrK4ZkpU6bEpZdemrRTy5YtY/v27UlzdWn69OkxYsSIpLnmzZvHrl27MtDov3300UdRVFQU8+fPj7feeitqamq+Nl9eXh7l5eWxZcuWiIh4//33/+zjbdq0iZNOOin+4R/+Ic4888xo1KhR2rqTWRMmTIgnnngipezEiRNj0KBBaW4EALBvOnXqFHPmzImTTjopvvjii6/Nrl69OoYPHx4vvfRSNG7cOEMN4c+VlZXF/PnzY8aMGfGb3/wmNm3alNK5ioqKqKioiB07dnzpkHFhYWGceOKJcc4558Tw4cOjoKCgrqvvl7Zs2RIzZsyI4uLieOWVV1J+Bv/j32dpaWls2LAhfve73/1V5tvf/naccsopcdZZZ8WAAQMiNze3ruvvM8//AAAAAAAAAAAAADREOdkuAAAAAAAAAAAAAAAAAADUX82bN08pV1ZW9qXvr6qqissvvzxOP/30rxx1JT1qampi6tSp0b9///jud78b48ePj0WLFiUddUnF1q1bY+bMmTFixIg45JBDYty4cVFSUlIHrcmmmTNnxg033JBS9oorrojLL788zY0AAL6ZY489Nh5//PHIyUn+Ei0LFy6M0aNHR21tbQaawf9YvXp1/NM//VN07Ngxzj777HjqqadSHnVNRWlpaTz77LMxevToaN++fVxzzTWxfv36Orv+/uadd96JkSNHRqdOnWLMmDFRXFyc8qhrqlauXBmTJ0+OU045JQ477LC45ZZbsvpM7PkfAAAAAAAAAAAAgIbOsCsAAAAAAAAAAAAAAAAAkDZNmjRJKffFF1/81fuqqqrijDPOiPvvv7+ua5HEc889F8ccc0ycd955sXDhwrTea9OmTXH77bdH165d484774zKysq03o/0ePfdd+NHP/pRSsM/f//3fx933313BloBAHxzw4cPj1tvvTWl7LRp0+Lmm29OcyP4b9u3b4+rr746vvOd78Q999wTO3bsSPs9y8rKYuLEidGtW7e4+eab69Xz27p162L48OFx3HHHxTPPPJOxP9uGDRvi+uuvjy5dusTtt98eVVVVGbnvH3n+BwAAAAAAAAAAAADDrgAAAAAAAAAAAAAAAABAGjVt2jSl3K5du/7qfddcc028+OKLdV2Jr7F9+/Y477zz4owzzogPPvgg4/f+6U9/Gn379o2PP/44o/fmm9m4cWOceeaZXzrQ/Je6d+8e06ZNi7y8vAw0AwCoG9dee22MGTMmpeyNN94Yv/71r9PciIbupZdeih49esS9996blXHMioqKuOGGG+J73/terFmzJuP3r2tPPPFEHHXUUTFr1qysddixY0eMGzcu+vTpEytWrEj7/Tz/AwAAAAAAAAAAAMD/MOwKAAAAAAAAAAAAAAAAAKRNqsOupaWlf/b7mTNnxn333ZeOSnyF9957L3r27BlTp07Nao+lS5fGscceG08++WRWe5Ca8vLyGDp0aKxfvz5ptk2bNjF37txo1apVBpoBANSte++9N0455ZSkudra2rjooovilVdeSX8pGqT/+I//iB/84AexYcOGbFeJZcuWxXHHHRdLlizJdpV9dt1118WPfvSjv/q+RLYsXbo0+vXrF7/97W/Tdg/P/wAAAAAAAAAAAADw5wy7AgAAAAAAAAAAAAAAAABpk+qw665du/7064qKivjpT3+arkp8iQULFsRJJ50U69aty3aViIgoKyuLH/7whzFp0qRsV+Fr1NTUxKhRo1IaccrPz4/p06dHt27dMtAMAKDuNWrUKGbMmBE9evRImq2srIyzzz47Vq1alYFmNCT//u//HldddVVUV1dnu8qfbN26NQYOHBjLli3LdpW99vOf/zxuu+22bNf4K9u2bYtBgwbFokWL6vzanv8BAAAAAAAAAAAA4K8ZdgUAAAAAAAAAAAAAAAAA0qZJkyYp5UpLS//060mTJsUnn3ySrkr8hQULFsQZZ5zxZ5+D/UFtbW1ceeWVce+992a7Cl9h3LhxMXv27KS5RCIRDz30UAwYMCD9pQAA0qhFixYxb968aNeuXdLs1q1bY/DgwbFt27YMNKMhmDp1avzrv/5rtmt8qW3btsWZZ54ZJSUl2a6SsqKiopgwYUK2a3ylXbt2xfDhw+Pzzz+vs2t6/gcAAAAAAAAAAACAL5eX7QIAAAAAAAAAAAAAAAAAQP2VSCQiLy8vqqqqvjZXXl4eERHV1dUxceLETFQjIpYtWxZnnXVW7NmzZ6/PFhQUxIABA6Jv377Rt2/fOOyww6JNmzbRqlWrqKioiJ07d8b69etj+fLl8dZbb8Xzzz8fK1as2Ov7jB07No488sgYOHDgXp8lfR577LG44447Usped9118cMf/jDNjQAAMqNz585RXFwcAwYMiLKysq/NfvzxxzFs2LB48cUXIz8/P0MNqY9WrlwZ//iP/7hPZ3v06BEDBw6MXr16xeGHHx6HHnpoFBQURLNmzSIvLy927NgRO3bsiM2bN8c777wTS5YsiQULFsSGDRv26j5r166NSy65JKZPn75PPTNp8+bNcckll+z1uaZNm0b//v2jf//+0a1bt+jatWt06NAhmjZtGs2aNYv8/PwoLy+PsrKy+Oyzz2Lt2rWxcuXKeOONN2LhwoV7PdL66aefxiWXXBJz5szZ665/yfM/AAAAAAAAAAAAAHw1w64AAAAA/5+9O4+usjzbh31lYgijjCoiigrK4DwUNGoV/SlCFBRR1OJraQVrtaV1pLXaqrWiVtSKEw6gKArKKEXROgDiUBUtjhQRcWTQCBhCCPn+6Nf29a1lP4E8OxCOY62sBTvnfd/nzgqsfbPYuQAAAAAAAAAAAIBUFRQUJB7sOnny5Pjoo4++M1O3bt3o1atXHH/88bHffvvF9ttvH40aNYqKioooLS2NZcuWxaJFi+Kvf/1r5ObmVvvzqG1KSkqiuLg4Vq5cWaV1e+65Z1x44YXRt2/fqF+//ndmCgsLo7CwMLbddtvYf//947TTTouIfwySGTFiRIwePToqKioSnVdRURGnnHJKvP7669GuXbsqdSUdzz//fAwePDhRtm/fvvHb3/425UYAANl1wAEHxL333hv9+/ePysrKDWafffbZGDx4cNx9991Zakdt9NOf/jRWrVqVOJ+Xlxennnpq/PrXv44OHTpsMNu8efNo3rx5tG/fPg466KCIiFi3bl089thjce2118Yrr7yS+NwJEybEk08+GUcddVTiNTXht7/9bXz11VeJ8126dIlLLrkk+vbtG/Xq1dtgtmHDhtGwYcNo1apV7LnnnhHxj4GllZWVMXPmzLjzzjtj/PjxGf/u+KfJkyfHjBkzNmnYqfs/AAAAAAAAAAAAAGyYdyUDAAAAAAAAAAAAAAAAAKkqKCjImPnmm28iIuL222//zs+feuqp8f7778f48ePjjDPOiE6dOkXTpk0jLy8v6tSpE02aNIlddtkljjzyyLjwwgsNdk3gpz/9aSxevDhxvlGjRjFy5Mh47bXX4rTTTvuvQ102ZK+99oq777475s2bFwceeGDidV999VUMGTKkyudR/T744IM48cQTo6ysLGN23333jdGjR/vzCADUSv369YvLL788Ufaee+6Ja6+9Nt1C1FpPP/10zJgxI3G+ZcuW8cwzz8SYMWMyDnX9b/Lz86Nfv37xwgsvxIUXXhg5OTmJ115yySUbdWa2fPXVVzFq1KhE2dzc3LjqqqvijTfeiAEDBmQc6rohOTk5cdRRR8XDDz8cL7zwQuy9996J1/7ud7/b6HMj3P8BAAAAAAAAAAAAIBPvggQAAAAAAAAAAAAAAAAAUpVksGtZWVksW7YsZs6c+a3H8/Pz45577omxY8dG27Zt06q41Zk6dWqMGTMmcX733XePV155JQYPHlwtQzo7d+4cs2bNih/96EeJ10yfPj0eeuihTT6bjff1119H7969Y+nSpRmz22+/fUyaNCkaNGiQhWYAADXj17/+dZxxxhmJshdffLHXs2yUqgwFbt68ebz44otxyCGHVMvZ+fn58Yc//CHuuOOOxGv++te/xrPPPlst56dh3LhxUVpamih71113xaWXXlqlwbZJHHTQQTFnzpzo1atXovzs2bPj1Vdf3aiz3P8BAAAAAAAAAAAAIDODXQEAAAAAAAAAAAAAAACAVCUZBFJRURETJkyIioqKb60bN25cnHnmmSm22/pUVFTERRddlDjfpUuXePbZZ6NDhw7V2qOgoCDuuOOOGDJkSOI1w4YNi3Xr1lVrD5IpLy+PE088MebPn58xW79+/Zg4cWLssMMOWWgGAFBzcnJyYtSoUfH9738/Y7aysjLOOuusmDt3bhaaUVssXrw4nnjiicT5u+++O3beeedq7zFo0KAYNGhQ4vx9991X7R2qy/Tp0xPlTj755Pif//mf1HrUr18/HnvssTj00EMT5R988MEqn+H+DwAAAAAAAAAAAADJGOwKAAAAAAAAAAAAAAAAAKQqyWDX8vLyGD169Lce+93vfhd9+/ZNq9ZW67777ou33norUbZVq1Yxbdq0aNWqVWp9br755kSDsCIiFi5c+B/fJ2TH+eefHzNnzsyYy83NjbFjx8YBBxyQhVYAADWvoKAgxo8fn2gQYmlpafTp0ycWL16chWbUBuPGjYvKyspE2T59+kRxcXFqXa655ppo2LBhouzkyZOjoqIitS6bYvbs2YlyP//5z1NuEpGfnx/33HNPoq/rlClTqry/+z8AAAAAAAAAAAAAJGOwKwAAAAAAAAAAAAAAAACQqiSDXVeuXBlz5sz51+/333//uPjii9OstVWqrKyMa665JnH+nnvuiR133DHFRhF5eXlx7733Jh4QNHz48FT78J/++Mc/xsiRIxNlr7nmmjjhhBNSbgQAsHlp1qxZPP7449GiRYuM2c8++yyOPfbYKCkpyUIztnTTp09PnD3vvPNSbBLRvHnzGDhwYKLs8uXL4/XXX0+1z8ZYvnx5LFu2LGOudevW8b3vfS8LjSLat28fp512WsbckiVLYsWKFYn3df8HAAAAAAAAAAAAgOQMdgUAAAAAAAAAAAAAAAAAUpVksOv/dcMNN2zUOjbsySefjPfffz9RdsCAAdGzZ8+UG/3DjjvuGL/4xS8SZd95552YO3duyo34pz//+c9xwQUXJMqeeeaZibMAALXNLrvsEo8++mjUrVs3Y/att96K/v37x7p167LQjC1VeXl5zJkzJ1G2efPmceihh6bcKOKUU05JnH3ppZdSbLJxFi9enCjXrl27lJt822mnnRZNmzaNvffeO44//vg477zz4vrrr4/x48fHyy+/HF988UWsWrUqmjVrlnhP938AAAAAAAAAAAAASM47mgEAAAAAAAAAAAAAAACAzcqhhx4aRUVFNV2jVho5cmSiXJ06deKqq65Kuc23DR06NBo1apQoe++996Zbhoj4x8CxU045JSoqKjJmi4qK4rbbbstCKwCAzVdRUVHcfvvtibIzZsyIc845J+VGbMneeuutKCsrS5Q9+OCDIzc3/R8ldNBBB0VhYWGi7BtvvJFym6r7+uuvE+WaNm2acpNvKyoqii+//DJee+21mDhxYowYMSKGDh0aJ554Yuy///7RsmXLKu/p/g8AAAAAAAAAAAAAyRnsCgAAAAAAAAAAAAAAAABsVs4+++yarlArff311zFt2rRE2QEDBsROO+2UbqH/o3HjxnHGGWckyk6aNCkqKytTbrR1W7ZsWfTu3TtKSkoyZnfeeeeYMGFC1K1bNwvNAAA2bwMHDoxLL700UfbOO++MESNGpNyILVXXrl3js88+i3nz5sWMGTNi9OjRMXz48PjFL34Rp59+evTo0SO6du0aLVu2jK5du2alU0FBQeyxxx6Jsh9++GHKbaquvLw8UW7FihUpN0mX+z8AAAAAAAAAAAAAVE1+TRcAAAAAAAAAAAAAAAAAAPinwsLC6NOnT03XqJVmzJiReIjNj3/845TbfLcBAwbErbfemjH32WefxRtvvBF77bVXFlptfdasWRPFxcWxcOHCjNnGjRvHlClTomXLllloBgCwZbjyyitj0aJFMXbs2IzZoUOHxk477RTHH398FpqxJcnNzY3WrVtH69atY88996zpOv/SoUOH+Otf/5ox9/HHH2ehTdU0bNgwUe5vf/tbrFmzJurVq5dyo3S4/wMAAAAAAAAAAABA1eTWdAEAAAAAAAAAAAAAAAAAgH/q0aNH1K9fv6Zr1EpTpkxJlNthhx2iW7duKbf5bt26dYvWrVsnyj755JMpt9k6gp2wIgAAIABJREFUVVZWxqBBg+KFF17ImC0oKIgJEyZE586ds9AMAGDLkZOTE6NGjUr0unr9+vVx+umnx+uvv56FZrDpkt7ZVq1alXKTqmvevHmi3Jo1a+Khhx5KuU163P8BAAAAAAAAAAAAoGoMdgUAAAAAAAAAAAAAAAAANhtHHHFETVeotf7yl78kyvXo0SPlJv9dbm5uHHbYYYmyL774Yspttk5XXHFFPPDAA4myI0aMqNHvFwCAzVm9evVi8uTJscsuu2TMrlq1Ko477rhYsmRJFprBpmncuHGi3DfffJNyk6pr37591KtXL1H20ksvjY8//jjlRulw/wcAAAAAAAAAAACAqjHYFQAAAAAAAAAAAAAAAADYbHTr1q2mK9RKS5cuTTwkqnv37im32bCioqJEuVdffTXlJlufRx55JH77298myv785z+PIUOGpNwIAGDL1qJFi5gyZUo0bdo0Y/aTTz6J4uLiWL16dRaa1Q5XXXVV5OTkbFEft912W01/2TZZ3bp1E+XKy8tTblJ1eXl5se+++ybKfvrpp/H9738/Pvnkk5RbVS/3fwAAAAAAAAAAAACoOoNdAQAAAAAAAAAAAAAAAIDNRufOnWu6Qq1UlSEonTp1SrFJZnvvvXei3MKFC6OkpCTlNluPV155Jc4888yorKzMmD3mmGNi+PDhWWgFALDl22OPPWLcuHGRn5+fMfvaa69F//79o6KiIgvNYOPk5m7ZP7KoT58+ibPvv/9+7LPPPjF27NgUG1Uv938AAAAAAAAAAAAAqLot+39JAwAAAAAAAAAAAAAAAAC1RuvWraNBgwY1XaNWmjdvXuJsx44dU2ySWZcuXRJn33vvvRSbbD0+/PDD6NWrV3zzzTcZs506dYqHHnoo8vLystAMAKB2OProo+O2225LlJ02bVpcdNFFKTeCrdcZZ5wRhYWFifNffPFFnHbaaVFUVBSPPvroZj942f0fAAAAAAAAAAAAAKrOYFcAAAAAAAAAAAAAAAAAYLPQvn37mq5Qay1atChRLi8vL5o3b55umQyaNm0a22yzTaLswoULU25T+61cuTKKi4vj888/z5ht0aJFTJkyJZo0aZKFZgAAtcsPf/jDGDp0aKLs9ddfH7feemvKjWDr1Lp16zj//POrvG7WrFlx4oknRvv27ePCCy+MuXPnRmVlZQoNN437PwAAAAAAAAAAAABUXX5NFwAAAAAAAAAAAAAAAAAAiDDYNU0ff/xxolyzZs0iJycn5TaZtWvXLr788suMub///e9ZaFN7rV+/Pk4//fR44403Mmbr1asXkydP9ucUAGATDB8+PBYuXBgTJ07MmD3vvPNixx13jF69emWhGbVRWVlZfPDBB7FgwYL4+9//HsuWLYuvvvoqSkpK/vVRVlYW69ati/Ly8li3bl3iX2/pLrvsspg8eXLMnz+/ymsXL14cw4cPj+HDh8d2220XPXr0iCOPPDKOPPLI2GGHHVJoWzXu/wAAAAAAAAAAAABQdQa7AgAAAAAAAAAAAAAAAACbhdatW9d0hVpryZIliXJLly7dLAa7JPXJJ5/UdIUt2i9+8YuYPHlyxlxOTk7cdddd0a1btyy0AgCovXJzc2Ps2LFx+OGHx0svvbTBbEVFRQwYMCBmz54dXbt2zVJDtlTl5eXx/PPPx6xZs2Lu3Lkxf/78WLJkSaxfv76mq22W6tWrF+PHj4+DDz44VqxYsdH7fPrppzFmzJgYM2ZMRETsuuuucfjhh//ro02bNtVVOTH3fwAAAAAAAAAAAACoOoNdAQAAAAAAAAAAAAAAAIDNQmFhYU1XqLU+++yzmq6QiuXLl9d0hS3W3XffHTfeeGOi7GWXXRannXZayo0AALYO9evXj4kTJ8ZBBx0UH3300QazK1eujOLi4pg7d260bt06Sw3Zkjz33HNx1113xZQpU+Krr76q6TpblN133z2mTp0axx57bJSUlFTLngsWLIgFCxbEXXfd9a8zjjrqqOjRo0ccfvjh0bhx42o5Z0Pc/wEAAAAAAAAAAACg6nJrugAAAAAAAAAAAAAAAAAAQEREgwYNarpCrfXNN9/UdIVULFu2rKYrbJGee+65GDJkSKJsv3794je/+U3KjQAAti7bbbddTJ8+PZo0aZIxu2jRoujVq1etfU3PxpkwYUJ07do1DjvssBgzZoyhrhupW7du8eyzz0a7du1S2f+dd96Jm2++OY4//vho3rx5HHLIITF8+PB47733Ujkvwv0fAAAAAAAAAAAAADaGwa4AAAAAAAAAAAAAAAAAwGahsLCwpivUWmvWrKnpCqkoKSmp6QpbnHfffTdOOOGEWLt2bcbs/vvvH/fee2/k5ORkoRkAwNalc+fO8eCDD0Z+fn7G7CuvvBIDBw6M9evXZ6EZm7O33norvve978VJJ50Uf/vb32q6Tq2w1157xWuvvRYDBgxI9Zx169bF7Nmz48ILL4yOHTvGvvvuGzfffHMsX768Ws9x/wcAAAAAAAAAAACAqjPYFQAAAAAAAAAAAAAAAADYLNSvX7+mK9RaZWVlNV0hFbX1eaVlxYoV0bt37/jyyy8zZtu1axdTp041cBkAIEXHHntsXHfddYmy48ePj8suuyzlRluWYcOGRWVl5Rb1MXjw4I1+viNHjoz99tsvXnzxxWr8KhIRsc0228QDDzwQc+bMiQMPPDArZ7722mtx3nnnRdu2beMnP/lJLFy4sFr2ra335Nr6vAAAAAAAAAAAAADYPBjsCgAAAAAAAAAAAAAAAABsFnJycmq6Qq20du3aqKysrOkaqTDYJbny8vLo169fvP/++xmzjRo1ismTJ0fr1q2z0AwAYOt2/vnnx7nnnpsoe9VVV8Udd9yRciM2N5WVlXHRRRfFOeecE2vWrKnpOrVat27dYu7cufHwww/HYYcdlpUzS0tL49Zbb40OHTrEOeecE8uWLdvovdz/AQAAAAAAAAAAAGDj5Nd0AQAAAAAAAAAAAAAAAAAA0pOfX3vfTrp27dqarrDFOPfcc+Ppp5/OmMvNzY37778/9txzzyy0AgAgIuLGG2+MDz/8MKZMmZIxe+6558Yuu+wSRx55ZBaasTn41a9+Fddee+0m7dGyZcvo2rVr7LDDDv/6aNy4cTRo0CAaNGgQhYWFUVBQEHXq1ImCgoIN/vqGG26ISy65pJqe3eYnJycn+vXrF/369Yt333037rzzzhg3blwsWbIk1XMrKipi5MiRMXbs2BgxYkQMHDiwynu4/wMAAAAAAAAAAADAxqm9/xMXAAAAAAAAAAAAAAAAAIDIzc2NgoKCKC8vr+kq1W79+vU1XWGLcO2118Ydd9yRKHv99ddHcXFxyo0AAPjf8vLy4oEHHoiioqKYN2/eBrPl5eVx8sknx5w5c6Jjx45ZakhNGT16dFx99dVVXpebmxvFxcVx/PHHR/fu3aNDhw4ptKv9OnbsGNddd11cd9118frrr8e0adNi6tSp8dJLL6V2Hy0pKYkzzzwzZs6cGbfffnsUFhYmXuv+DwAAAAAAAAAAAAAbJ7emCwAAAAAAAAAAAAAAAAAAkK66desmyh1wwAFRWVm5xXwsWrQo3S9cLfD444/HpZdemih71llnxc9+9rOUGwEA8F0aNWoU06ZNizZt2mTMrlixInr27BlLly7NQjNqyocffhjnnntuldbUq1cvhg4dGgsWLIjHHnsszjzzTENdq8nee+8dw4YNixdeeCE+//zzuO++++Lkk0+Opk2bpnLe/fffH717947S0tIqrXP/BwAAAAAAAAAAAICqM9gVAAAAAAAAAAAAAAAAAKCWq1+/fqLc119/nXITsun111+P/v37R0VFRcbsoYceGiNHjsxCKwAA/ps2bdrEpEmTokGDBhmzCxcujL59+0ZZWVkWmlEThgwZEitXrkyc33fffWPevHlx/fXXx84775xiM1q0aBE/+MEPYty4cbFs2bKYM2dOXH755XHwwQdHfn5+tZ3z9NNPR58+fWL9+vWJ17j/AwAAAAAAAAAAAEDVGewKAAAAAAAAAAAAAAAAAFDLtWzZMlHOYJfa49NPP43i4uJYtWpVxmzHjh1j4sSJUadOnSw0AwBgQ/bbb78YPXp05OZm/rEws2bNioEDB0ZlZWUWmpFNL774YkyfPj1x/ogjjojnnnsuOnTokGIrvkteXl5069YtfvOb38SsWbNi+fLlMWnSpDj33HOjY8eOm7z/jBkzYvjw4Ynz7v8AAAAAAAAAAAAAUHUGuwIAAAAAAAAAAAAAAAAAbCbWrl2byr7bbrttopzBLrVDaWlp9OnTJz766KOM2WbNmsWUKVNim222yUIzAACS6Nu3b1x99dWJsuPGjYvf/e53KTci2/7whz8kzu6+++7x2GOPRYMGDVJs9G/l5eVZOWdL1bhx4yguLo6bb7453nnnnXjvvffi2muvje7du2/0npdddlnMnz8/Udb9HwAAAAAAAAAAAACqzmBXAAAAAAAAAAAAAAAAAIDNRGlpaSr7Jh3ssnr1akN6tnCVlZVx1llnxYsvvpgxW1BQEI888kjstttuWWgGAEBVXHTRRTF48OBE2csvvzzuv//+lBuRLatXr47HH388UTYnJyfuu+++aNy4ccqt/s1A0KrZbbfd4oILLojZs2fHm2++GT/60Y+ifv36Vdpj7dq1iYc9u/8DAAAAAAAAAAAAQNUZ7AoAAAAAAAAAAAAAAAAAsJkoKSlJZd927dolzr733nupdCA7fvWrX8VDDz2UKHvLLbfEEUcckXIjAAA21k033RQ9evTImKusrIwf/ehHMWfOnCy0Im1PPPFElJWVJcqecMIJceCBB6bc6Ns++OCDrJ5Xm3Tp0iXuuOOOeP/996Nfv35VWjtu3LhEX3v3fwAAAAAAAAAAAACoOoNdAQAAAAAAAAAAAAAAAAC+Q2VlZdbP/OSTT1LZd4899kicffPNN1PpQPrGjRsXv//97xNlL7zwwvjxj3+cciMAADZFQUFBTJgwIbp06ZIxu2bNmiguLo4FCxZkoRlpmj17duLs4MGDU2zy3ebPn5/1M2ubNm3axMMPPxy33HJL5OYm+xFQFRUV8cgjj2TMuf8DAAAAAAAAAAAAQNUZ7AoAAAAAAAAAAAAAAAAA8B3WrVuX9TMXLVqUyr6dOnVKnDXYZcs0e/bsGDhwYKKBxD179oyrr746C60AANhUjRs3jsmTJ0erVq0yZpcvXx69e/eOL7/8MgvNSMvbb7+dKFdYWBiHH354umX+j+XLl8e7776b1TNrs5/85CcxYsSIxPmZM2dmzLj/AwAAAAAAAAAAAEDVGewKAAAAAAAAAAAAAAAAAGxVcnOTvb2yrKws5Sb/ad68eansu8cee0ReXl6i7BtvvJFKB9KzaNGi6Nu3b6Lv2b333jvGjRuX+PsBAICat/POO8fUqVOjsLAwY/add96JPn36xNq1a7PQjDQkHZzaqVOnqFOnTsptvu3xxx+PysrKrJ5Z25177rlxzDHHJMrOmjUr1q1bt8GM+z8AAAAAAAAAAAAAVJ3BrgAAAAAAAAAAAAAAAADAVqWgoCBRrqKiIlatWpVym39bsWJFLFy4MJW9CwsLY999902UnT17dlRUVKTSg+q3cuXKKC4uji+++CJjdrvttovJkydHw4YNs9AMAIDqdMABB8S9994bOTk5GbPPPvtsDB48OAutSMPy5csT5XbbbbeUm/ynRx55JOtnbg0uueSSRLnS0tKM3x/u/wAAAAAAAAAAAABQdQa7AgAAAAAAAAAAAAAAAABblTp16iTOJh2oUx2eeuqpWL9+fWr7H3744YlyX375Zbzwwgup9aD6VFRUxIABA+LNN9/MmK1fv3489thj0bZt2yw0AwAgDf369YvLL788Ufaee+6Ja6+9Nt1CpGLVqlWJck2aNEm5ybd99NFH8fjjj2f1zK1FUVFRNG7cOFF22bJlGTPu/wAAAAAAAAAAAABQNQa7AgAAAAAAAAAAAAAAAABblaTDUiIilixZkmKTb3vsscdS3f+II45InH3ggQdSbEJ1Of/882Pq1KkZczk5OXH33XfHQQcdlIVWAACk6de//nWcccYZibIXX3xxPPTQQyk3ojqVl5fHunXrEmXr1auXcptvu+6666KioiKrZ24tcnJyYvfdd0+UXbFiRcaM+z8AAAAAAAAAAAAAVI3BrgAAAAAAAAAAAAAAAADAVqVly5aJswsWLEixyb+VlJTExIkTUz3jiCOOiKZNmybKPvjgg7F69epU+7Bp7rrrrvjTn/6UKPu73/0uTjnllJQbAQCQDTk5OTFq1Kj4/ve/nzFbWVkZZ511VsydOzcLzagOBQUFkZOTkyhbUlKScpt/++CDD+K2227L2nlbo0aNGiXK5eXlZcy4/wMAAAAAAAAAAABA1RjsCgAAAAAAAAAAAAAAAABsVVq3bp04O2/evBSb/NvIkSOjtLQ01TPq1KkTffr0SZQtKSlJPDS0ui1dujTat28fAwcOjIceeihWrFhRIz02Z0888UQMGTIkUbZ///5x6aWXptwIAIBsKigoiPHjx0eHDh0yZktLS6NPnz6xePHiLDSjOtSrVy9Rbvny5Sk3+bezzz471q5dm7Xz0rZ8+fJ46qmn4rrrrovTTjstOnXqFMOGDavRTkn/TSDJAFj3fwAAAAAAAAAAAACoGoNdAQAAAAAAAAAAAAAAAICtStu2baOgoCBR9vnnn0+5zT+GqNxwww2pnxMRcdpppyXODh8+vEaGqowYMSI++OCDGD16dJx66qnRsmXL+N73vheXX355zJ07N9avX5/1TpuTt99+O/r37x/r1q3LmD344IPjvvvui5ycnCw0AwAgm5o1axaPP/54tGjRImP2s88+i2OPPTZKSkqy0IxNtd122yXKzZs3L+Um/3DjjTfGk08+WeV1m9Mg2Oeffz4uv/zyOP7442PHHXeMFi1aRI8ePeKCCy6IsWPHxttvvx333HNPVFRU1FjHhQsXJsrtuOOOiXLu/wAAAAAAAAAAAACQnMGuAAAAAAAAAAAAAAAAAMBWJT8/P3baaadE2VdffTU+/vjjVPtccsklsXTp0lTP+Kcjjzwy9txzz0TZZcuWxdChQ1Nu9G1vvfVWXH/99d96bP369fHiiy/GFVdcEd26dYtWrVrFqaeeGl9//XVWu20Oli9fHsXFxfHVV19lzO60007x6KOPRt26dbPQDACAmrDLLrskfs331ltvRf/+/WPdunVZaMamaNeuXaLchx9+GIsXL061y1/+8pe44IILNmptaWlpNbfZeNOmTYsrrrgiJk+eHB999NF3Zj799NMYPXp0lpv9w/vvvx+fffZZxtz2228fTZo0SbSn+z8AAAAAAAAAAAAAJGewKwAAAAAAAAAAAAAAAACw1dl7770T5davXx933313aj0mTZoUI0eOrPK6ysrKjT7zwgsvTJy977774r777tvos6pi1apVMWDAgFizZs0Gc8uXL48PPvggGjdunJVem4u1a9fGSSedFAsWLMiYbdSoUUyePDlatWqVhWYAANSkoqKiuP322xNlZ8yYEeecc07KjdhUXbt2TZxN8742d+7cKC4u/o9hwG3btk20ft26dfHll1+mUa3KjjvuuES5X/7yl/HFF1+k3OY/3XHHHYlyhxxySJX2df8HAAAAAAAAAAAAgGQMdgUAAAAAAAAAAAAAAAAAtjrdu3dPnL3xxhtjxYoV1d7hxRdfjDPOOGOj1q5fv36jz+3fv3/svvvuifNnn312zJgxY6PPS2LVqlVxzDHHxLx58xLlqzKcprYYNGhQPPPMMxlzeXl5MXbs2CoNgwIAYMs2cODAuPTSSxNl77zzzrjppptSbsSmOPDAAxNnb7755li1alW1d5g0aVL06NHjP/Zu0KBBTJ8+PfE+ixYtquZmG+eQQw6JnXbaKWNuxYoVceKJJ8bq1avTL/X/e/nll+OWW25JlD322GOrtLf7PwAAAAAAAAAAAAAkY7ArAAAAAAAAAAAAAAAAALDVOeqooxJnV6xYEWeffXZUVlZW2/lPPPFE/L//9/9i5cqV33r8wAMPjG233Tbj+k0Z7Jqfnx9/+tOfEufLysqiuLg4HnjggY0+c0PefffdKCoqitmzZyfK77///nHCCSek0mVzddVVV8WYMWMSZW+88cbo1atXyo0AANjcXHnllTFgwIBE2Z///OcxadKklBuxsY4++ujIzU32Y4GWLl0aP/zhD6vt7LKysrjwwgujb9++3znc9Fe/+lV07tw5GjRokGi/v/71r9XWbVPk5OTEj370o0TZWbNmRc+ePWPp0qUpt4pYvHhx9OnTJ9asWZMx26hRozjppJOqtL/7PwAAAAAAAAAAAAAkY7ArAAAAAAAAAAAAAAAAALDV6dy5c3Ts2DFxfvz48TFkyJBYt27dJp1bVlYWw4YNi549e0ZJScm3PpebmxsjR46MwsLCjPtsymDXiIgjjjgi8dCniIi1a9fG6aefHoMGDYoVK1Zs0tn/VFZWFjfddFPst99+8frrrydak5ubG7feemviIUe1waOPPhqXXXZZouygQYPi3HPPTbkRAACbo5ycnBg1alR069YtY3b9+vVx+umnJ34dTna1bNkyDj300MT5hx9+OH72s59FRUXFJp37+OOPxz777BPDhw//zjvnHnvsEUOHDo2IiO233z7Rnk8++eQmdapOP/nJT2KbbbZJlH3uueeiU6dO8eCDD0ZlZWUqfR599NHYZ5994uOPP06UHzRoUDRs2LDK57j/AwAAAAAAAAAAAEBm/tcqAAAAAAAAAAAAAAAAALBV+p//+Z8q5W+//fbo3r17PP/881U+a/Xq1XHHHXdEx44d4+qrr/7OgTvnnHNO7LvvvlFQUJBxv00d2BMRMXLkyNhtt92qtGbUqFGx2267xVVXXRWff/75Rp37ySefxE033RS77bZbnH/++bF69erEawcPHhwHHHDARp27JXr11VfjBz/4QaJBvkcffXSMHDkyC60AANhc1atXLyZPnhy77LJLxuyqVaviuOOOiyVLlmShGVV19tlnVyk/YsSIOOqoo6o8rHft2rXx0EMPxSGHHBLHHXdcvP3229+Zq1u3bowdOzbq1KkTERGdO3dOtP/EiRPj008/rVKntDRp0iR+9atfJc4vW7YsBgwYEB07dowbb7yxWp5HeXl5PPzww1FUVBQnnnhi4sGp22yzTZW6/1/u/wAAAAAAAAAAAACwYTmVlZWVNV0CAAAAAAAAAAAAAAAAANiwY445JmbMmJEo+/7778euu+6acqPkdthhh/j4448z5u68884YNGhQFhr9w1dffRU77rhjrFy5ssprO3fuHD179owDDjggOnToENttt100adIk6tSpE2VlZVFSUhILFy6MefPmxTPPPBPTpk2LVatW/df9dt9993jllVeiQYMGsffee8e8efMydli3bl3k5eVVufv/9re//S2+973vVWm4yj8VFBREUVFRHHnkkbHXXntFhw4domXLltGgQYOIiFi5cmWsWrUqPv/885g/f37Mnz8/Zs2aFS+++GJszNtbu3TpEi+99FLUr1+/ymu3RJ988kkcdNBBiQZt7bHHHjFnzpxo2rRpFpoBALC5e/vtt6N79+7x1VdfZczus88+8fzzz//rdXxNu+2222LIkCGJssOGDYsrr7wy5UY1o6KiIjp16hTvvfdeldf26NEjjjnmmCgqKoo2bdpEs2bNIj8/P1atWhVffvllvP/++/HWW2/Fs88+G3/5y1/i66+/zrjnjTfeGOeff/6/fn/11VfHsGHDEvU5+uijY/LkyVG3bt1E+SVLlkTbtm0TZd98883o0qVLomzEP76uhxxySMydOzfxmv9t9913j8MOOyw6deoU7du3j/bt20fTpk2jsLAwCgsLIz8/P0pLS6O0tDRWrlwZH330USxevDjee++9mD17dsydOze++eabKp87evToOOOMMzaq8z+5/wMAAAAAAAAAAADAf/VIfk03AAAAAAAAAAAAAAAAAACoCU2bNo1LL700Lrnkkiqv/eegkupQr169GDdu3L8GoiQdqFReXr7Jg127dOkSU6dOjeOOO67Kw2XKy8vj6aefjqeffnqTOiTRpk2bmDZt2lYz1KW0tDROOOGERENdmzdvHpMnTzbUFQCAf9ljjz1i3Lhxcdxxx8W6des2mH3ttdeif//+MWnSpE2+X1B98vLyYvjw4XH88cdXee3MmTNj5syZ1dZlwIABcd55533rse7duyde/8QTT8SBBx4Yv/zlL+P73/9+tGrVKsrKymLp0qXx9ttvx1FHHRV16tSptr4bkpeXFw8//HAccMAB8fnnn1d5/TvvvBPvvPNOCs3+ux//+MebPNQ1wv0fAAAAAAAAAAAAADYkt6YLAAAAAAAAAAAAAAAAAADUlKFDh8Zee+1VY+fn5ubGvffeG3vuuee/HissLEy0try8vFo6HH744TFlypTEA2Wzbaeddoqnn346dtxxx5qukhXr16+PAQMGxMsvv5wxW1BQEOPHj49dd901C80AANiSHH300XHbbbclyk6bNi0uuuiilBtRVcXFxXH66afXaIfevXvHfffdFzk5Od96/NBDD402bdok3ueNN96IH/zgB9G2bduoW7duNG7cOHbZZZfo1atXlYeMbqq2bdvGtGnTYptttsnquRvj5JNPjltvvbXa9nP/BwAAAAAAAAAAAIDvZrArAAAAAAAAAAAAAAAAALDVqlOnTjz66KPRrFmzrJ+dk5MTd955Z/Tv3/9bjzds2DDR+rKysmrrcsQRR8TcuXM3uwGhRUVF8cILL0SHDh1qukrWXHzxxTFx4sRE2VGjRsXhhx+ebiEAALZYP/zhD2Po0KGJstdff321DpCketx+++2x33771cjZvXv3jocffjjy8/P/43O5ubnxgx9l/HP6AAAgAElEQVT8oAZaVY/99tsv/vKXv8QOO+xQ01X+q5/+9KfxwAMPRF5eXrXu6/4PAAAAAAAAAAAAAP/JYFcAAAAAAAAAAAAAAAAAYKvWvn37mDlzZrRo0SJrZzZs2DAefPDBOOuss/7jc40aNUq0R2lpabV26tKlS7zyyitx+umnV+u+G6NOnTrxm9/8Jp5++unYdttta7pO1tx7770xfPjwRNlhw4bFGWeckXIjAAC2dMOHD48TTjghUfa8886LqVOnptyIqigsLIzp06fHPvvsk7Uzc3Nz48orr4xJkyZFvXr1/mvuggsuiJYtW2atV3Xba6+94tVXX41jjjmmpqt8S4sWLeLBBx+Mm2666TuH6lYH938AAAAAAAAAAAAA+DaDXQEAAAAAAAAAAAAAAACArd4+++wTL7zwQuy///6pn9W1a9d4+eWXo3///t/5+caNGyfaZ/Xq1dVZKyIimjRpEmPGjIlnnnkmunTpUu37J3HCCSfEvHnz4vLLL09tiM3m6Pnnn4/Bgwcnyvbt2zd++9vfptwIAIDaIDc3N8aOHRsHHnhgxmxFRUUMGDAg3nzzzSw0I6mWLVvGM888E/369Uv9rM6dO8dTTz0Vw4YNi5ycnA1mt9lmm7jxxhtT75Smli1bxvTp02Ps2LGx00471WiXOnXqxDnnnBNvv/12nHLKKamf5/4PAAAAAAAAAAAAAP9msCsAAAAAAAAAAAAAAAAAQETsuuuuMWfOnBg+fHg0bdq02vdv06ZN3HnnnfHaa6/F7rvv/l9zjRo1SrRfGoNd/+mwww6LN954IyZPnhxFRUWpnfNP9evXj7POOitef/31eOyxxzb49amNPvjggzjxxBOjrKwsY3bfffeN0aNHR26utwkDAJBM/fr1Y+LEidG2bduM2ZUrV0ZxcXF8/vnnWWhGUo0bN46HH344HnzwwVQGkO6www4xatSoeOONN+Lwww9PvG7AgAFxyy23ZBwCu7k79dRT47333ot77rknDjrooKye3bp167joootiwYIF8ac//SlatGiR1fPd/wEAAAAAAAAAAADAYFcAAAAAAAAAAAAAAAAAgH8pKCiIX/7yl/Hhhx/GLbfcEvvvv/8mDajJz8+PY445JsaMGRMLFiyIQYMGRV5e3gbXJB0qW1JSstG9ksjJyYnevXvHc889F++9915cddVVsd9++1XbQNFtttkm+vTpE/fff398/vnnMWrUqNhrr72qZe8tyddffx29e/eOpUuXZsxuv/32MWnSpGjQoEEWmgEAUJtst912MX369GjSpEnG7KJFi6JXr17xzTffZKEZVXHKKafEu+++G2PGjIlDDz10k+5nDRo0iAEDBsTjjz8eH3zwQZx11lkbtd9PfvKTmDFjRuy5554b3WVzUFBQEGeeeWbMnTs33n777bjmmmvisMMOi/r161f7Wbvuumucc8458ec//zk++uijuOaaaxINXk6L+z8AAAAAAAAAAAAAW7ucysrKypouAQAAAAAAAAAAAAAAAACwufriiy/imWeeiddffz3mz58fS5YsiU8//TRWrlwZa9asiYiIRo0aRePGjaNJkyax8847xz777BP77LNPdO/ePVq0aFHDz6B6rVy5Ml566aV4+eWX4+9//3ssWrQoFi9eHCUlJfHNN99EaWlprF+/PurWrRv16tWLJk2aROvWrWPbbbeNXXfdNTp37hx777137LXXXtU2JGZLVV5eHj179oyZM2dmzNavXz+effbZOOCAA7LQDACA2mr69OlRXFwc69aty5g96aSTYty4cVv96/bN2fLly2PmzJnxyiuvxN/+9rf46KOP4rPPPovVq1dHWVlZ5OfnR7169aJZs2bRunXr2GWXXaJz587RrVu36NatW7UOLV2/fn089dRT8cQTT8Tzzz8fn332WSxbtixKS0ujbt260bBhw2jVqlXsuOOO0bVr1+jatWvsueee0bVr18jJyam2HtWtvLw83nzzzZg/f368++678eGHH8bHH38cS5cujS+//DK+/vrrWLt2bZSXl0fEPwbE1q1bNxo1ahQtW7aMVq1aRbt27aJDhw6xxx57xEEHHbTF/DuB+z8AAAAAAAAAAAAAW4lHDHYFAAAAAAAAAAAAAAAAAIAacM4558TIkSMz5nJzc2PChAlxwgknZKEVAAC13YgRI+JnP/tZouywYcPiyiuvTLkRAAAAAAAAAAAAAADUmEdya7oBAAAAAAAAAAAAAAAAAABsbf74xz8mGuoaEfH73//eUFcAAKrN+eefH+eee26i7FVXXRV33HFHyo0AAAAAAAAAAAAAAKDm5FRWVlbWdAkAAAAAAAAAAAAAAAAAANha/PnPf45evXpFRUVFxuyZZ54Z99xzTxZaAQCwNamoqIg+ffrElClTMmYLCgpi+vTpceSRR2ahGQAAAAAAAAAAAAAAZNUjBrsCAAAAAAAAAAAAAAAAAECWvPXWW9G9e/coKSnJmC0qKoonn3wy6tatm4VmAABsbVauXBlFRUUxb968jNlmzZrFnDlzomPHjlloBgAAAAAAAAAAAAAAWfNIbk03AAAAAAAAAAAAAAAAAACArcGyZcuid+/eiYa67rzzzjFhwgRDXQEASE2jRo1i2rRp0aZNm4zZFStWRM+ePWPp0qVZaAYAAAAAAAAAAAAAANljsCsAAAAAAAAAAAAAAAAAAKRszZo1UVxcHAsXLsyYbdy4cUyZMiVatmyZhWYAAGzN2rRpE5MmTYoGDRpkzC5cuDD69u0bZWVlWWgGAAAAAAAAAAAAAADZYbArAAAAAAAAAAAAAAAAAACkqLKyMgYNGhQvvPBCxmx+fn5MmDAhOnfunIVmAAAQsd9++8Xo0aMjNzfzj6KZNWtWDBw4MCorK7PQDAAAAAAAAAAAAAAA0mewKwAAAAAAAAAAAAAAAAAApOiKK66IBx54IFH2pptuih49eqTcCAAAvq1v375x9dVXJ8qOGzcurrzyypQbAQAAAAAAAAAAAABAduRUVlZW1nQJAAAAAAAAAAAAAAAAAACojR555JHo379/JHlL789//vO44YYbstAKAAC+25AhQ+K2227LmMvJyYnRo0fH6aefnoVWAAAAAAAAAAAAAACQmkcMdgUAAAAAAAAAAAAAAAAAgBS88sorcdhhh8U333yTMXvMMcfE1KlTIy8vLwvNAADgu5WXl0fPnj1j5syZGbP16tWLp556Krp3756FZgAAAAAAAAAAAAAAkAqDXYH/j717j/K6oPM//v7OiFxEUCCORXYiqFRyZVUcLqGGoYvAxCWukniIzcuycaqz6mlbdqzMU+QuaSmiAxwIhIZoGK4ZuCIqYCxYJmq6ahsi2KJyUS7DzOf3R7+zrVl+vsB8P9+Z4fH4D76v7+fz/BPOYXgDAAAAAAAAAAAAAAAAAA3td7/7XZSVlcXu3btTt+edd1488cQT0b59+wzKAADg/e3bty/69esXv/nNb1K3HTt2jE2bNkX37t0zKAMAAAAAAAAAAAAAgAZXVVLsAgAAAAAAAAAAAAAAAAAAaE72798f5eXleR117dSpUyxfvtxRVwAAGo127dpFTU1NdO7cOXW7Z8+eGDp0aLz55psZlAEAAAAAAAAAAAAAQMNz2BUAAAAAAAAAAAAAAAAAABpIfX19TJgwIX7961+nblu1ahU1NTXxsY99LIMyAADIX9euXWPFihXRpk2b1O1zzz0Xw4cPjyNHjmRQBgAAAAAAAAAAAAAADcthVwAAAAAAAAAAAAAAAAAAaCBf+9rXoqamJnWXy+XigQceiD59+mRQBQAAx65Xr14xd+7cyOVyqdv169fHDTfckEEVAAAAAAAAAAAAAAA0LIddAQAAAAAAAAAAAAAAAACgAcyePTtmzJiR13batGlxzTXXFLgIAABOzKhRo6KioiKv7Zw5c+J73/teYYMAAAAAAAAAAAAAAKCB5ZIkSYodAQAAAAAAAAAAAAAAAAAATdmjjz4aAwcOjCNHjqRuR40aFYsXL45cLpdBGQAAnJgkSWLixIkxf/781G0ul4uFCxfG2LFjMygDAAAAAAAAAAAAAIATVuWwKwAAAAAAAAAAAAAAAAAAnIDnn38++vTpE2+++Wbq9uKLL47169dHmzZtMigDAICGUVtbG1dddVX8x3/8R+q2devW8fDDD0fv3r0zKAMAAAAAAAAAAAAAgBPisCsAAAAAAAAAAAAAAAAAAByvN954I3r37h0vvPBC6rZLly6xefPm6NKlSwZlAADQsPbs2RN9+/aN3/72t6nbs846KzZv3hwf+chHMigDAAAAAAAAAAAAAIDjVlVS7AIAAAAAAAAAAAAAAAAAAGiKamtrY9SoUXkddW3btm2sWrXKUVcAAJqsjh07xqpVq6JTp06p2127dsWgQYNi7969GZQBAAAAAAAAAAAAAMDxc9gVAAAAAAAAAAAAAAAAAACOw5QpU+Lhhx9O3ZWUlMSCBQvib/7mbzKoAgCAwunWrVssXbo0WrZsmbrdvn17jBkzJo4ePZpBGQAAAAAAAAAAAAAAHB+HXQEAAAAAAAAAAAAAAAAA4Bh973vfi1mzZuW1/f73vx/l5eUFLgIAgGz0798/7rvvvry2P//5z+Omm24qcBEAAAAAAAAAAAAAABy/0oqKiopiRwAAAAAAAAAAAAAAAAAAQFOxatWqmDx5ciRJkrqdNGlS3HHHHRlUAQBAdnr27Bm1tbWxYcOG1O3WrVujQ4cOUVZWlkEZAAAAAAAAAAAAAAAck+25JJ+fGAUAAAAAAAAAAAAAAAAAAOKpp56K/v37x4EDB1K3l156afziF7+IU089NYMyAADIVpIkMWHChFi4cGHqtqSkJJYuXRqf+9znMigDAAAAAAAAAAAAAIC8VTnsCgAAAAAAAAAAAAAAAAAAeXjttdeirKwsfv/736duP/nJT8bGjRvjzDPPzKAMAACK49ChQzFgwIDYuHFj6rZt27axYcOG6NmzZwZlAAAAAAAAAAAAAACQl6qSYhcAAAAAAAAAAAAAAAAAAEBjd/DgwRg+fHheR107dOgQy5cvd9QVAIBmr1WrVlFTUxPdunVL3R44cCAGDx4cO3bsyKAMAAAAAAAAAAAAAADy47ArAAAAAAAAAAAAAAAAAAC8jyRJYtKkSbF58+bUbYsWLaKqqio+/vGPZ1AGAADF16lTp1i+fHmcccYZqdudO3dGeXl5vP322xmUAQAAAAAAAAAAAABAOoddAQAAAAAAAAAAAAAAAADgfXzjG9+IRYsW5bW9++67Y8CAAQUuAgCAxuXcc8+NxYsXxymnnJK63bZtW4wZMybq6uoyKAMAAAAAAAAAAAAAgPfnsCsAAAAAAAAAAAAAAAAAAPwVixcvjjvuuCOv7c033xzXX399gYsAAKBxuvLKK2PmzJl5bVeuXBm33HJLgYsAAAAAAAAAAAAAACBdaUVFRUWxIwAAAAAAAAAAAAAAAAAAoLF5/PHHY/jw4XH06NHU7dVXXx0PPPBAlJSUZFAGAACN04UXXhj79++PjRs3pm43btwYnTt3jl69emVQBgAAAAAAAAAAAAAAf9H2XJIkSbErAAAAAAAAAAAAAAAAAACgMXnllVeirKwsXn/99dRtz549Y8OGDdG2bdsMygAAoHGrr6+PkSNHRnV1deq2tLQ0qqurY8iQIRmUAQAAAAAAAAAAAADAe1Q57AoAAAAAAAAAAAAAAAAAAP/H/v37o1+/fvH000+nbs8666x48skn4+yzz86gDAAAmoaDBw/G5ZdfHk8++WTq9vTTT4/HH388zj///AzKAAAAAAAAAAAAAADgXapKil0AAAAAAAAAAAAAAAAAAACNRV1dXYwfPz6vo66tW7eO6upqR10BAODPHMuflffv3x/l5eWxe/fuDMoAAAAAAAAAAAAAAODdHHYFAAAAAAAAAAAAAAAAAID/b+rUqbFixYrUXS6Xi8rKyigrK8ugCgAAmp4PfvCDsXr16mjfvn3q9pVXXokhQ4bEO++8k0EZAAAAAAAAAAAAAAD8icOuAAAAAAAAAAAAAAAAAAAQET/84Q/jRz/6UV7bb33rWzFu3LgCFwEAQNPWo0ePePDBB6O0tDR1u2XLlpg4cWLU19dnUAYAAAAAAAAAAAAAAH9UWlFRUVHsCAAAAAAAAAAAAAAAAAAAKKaHHnoorr322ryOSI0ZMyZ+8IMfRC6Xy6AMAACato9//OPRvn37WLNmTep2+/btUVdXFwMGDMigDAAAAAAAAAAAAAAAYnsuSZKk2BUAAAAAAAAAAAAAAAAAAFAszz77bPTt2zfeeuut1G2/fv1i3bp10bJlywzKAACg+fjHf/zH+OEPf5jX9r777osvfelLBS4CAAAAAAAAAAAAAICoctgVAAAAAAAAAAAAAAAAAICT1p49e6J3797x4osvpm4/+tGPxubNm6Nz584ZlAEAQPNSV1cXw4cPj+XLl6duW7RoEatXr44rrrgigzIAAAAAAAAAAAAAAE5iVSXFLgAAAAAAAAAAAAAAAAAAgGI4cuRIfP7zn8/rqOvpp58eNTU1jroCAMBxKi0tjQULFsQFF1yQuq2trY3Ro0fH888/n0EZAAAAAAAAAAAAAAAnM4ddAQAAAAAAAAAAAAAAAAA46SRJEpMnT45HHnkkdVtaWhoLFy6M888/v/BhAADQjJ1++umxcuXK6NKlS+r2jTfeiKuvvjr+8Ic/ZFAGAAAAAAAAAAAAAMDJymFXAAAAAAAAAAAAAAAAAABOOt/5zndi/vz5eW1nzJgRQ4YMKXARAACcHLp06RLLli2L0047LXX70ksvxYgRI+Lw4cMZlAEAAAAAAAAAAAAAcDJy2BUAAAAAAAAAAAAAAAAAgJPK0qVLY9q0aXltJ0+eHFOmTClwEQAAnFwuuuiimDdvXpSUpP/3N4899lhMnDgxkiTJoAwAAAAAAAAAAAAAgJNNaUVFRUWxIwAAAAAAAAAAAAAAAAAAIAtbt26N8vLyOHLkSOr2yiuvjIULF+Z1bAoAADg25557brRq1SrWrl2bun3mmWeitLQ0LrvssgzKAAAAAAAAAAAAAAA4iWzPJUmSFLsCAAAAAAAAAAAAAAAAAAAKbefOnVFWVhY7duxI3Z5zzjmxcePGOOOMMzIoAwCAk9eNN94YM2fOTN3lcrmYN29eTJgwIYMqAAAAAAAAAAAAAABOElUOuwIAAAAAAAAAAAAAAAAA0OwdPHgwLrvssvjlL3+Zuu3YsWNs2rQpunfvnkEZAACc3Gpra+Pqq6+OtWvXpm5btWoV69ati759+2ZQBgAAAAAAAAAAAADASaCqpNgFAAAAAAAAAAAAAAAAAABQSPX19TF+/Pi8jrq2aNEilixZ4qgrAABkpEWLFvHTn/40PvWpT6VuDx06FOXl5fHiiy9mUAYAAAAAAAAAAAAAwMnAYVcAAAAAAAAAAAAAAAAAAJq1W2+9Naqrq/PaVlZWxuWXX17YIAAA4F3atWsXNTU10blz59Ttnj17YujQofHmm29mUAYAAAAAAAAAAAAAQHPnsCsAAAAAAAAAAAAAAAAAAM3W3LlzY/r06Xlt//mf/zm+8IUvFLgIAAD4S7p27RorVqyINm3apG6fe+65GD58eBw5ciSDMgAAAAAAAAAAAAAAmjOHXQEAAAAAAAAAAAAAAAAAaJY2bNgQN9xwQ17bESNGxDe/+c0CFwEAAO+nV69eMXfu3Mjlcqnb9evXx4033phBFQAAAAAAAAAAAAAAzVlpRUVFRbEjAAAAAAAAAAAAAAAAAACgIb388ssxcODA2LdvX+r2wgsvjJqammjZsmUGZQAAwPvp0aNH5HK5eOSRR1K327ZtizZt2kS/fv0KHwYAAAAAAAAAAAAAQHO0PZckSVLsCgAAAAAAAAAAAAAAAAAAaCj79u2Lvn37xjPPPJO6/dCHPhSbN2+OD3/4wxmUAQAA+UiSJCZOnBjz589P3eZyuVi4cGGMHTs2gzIAAAAAAAAAAAAAAJqZqpJiFwAAAAAAAAAAAAAAAAAAQEOpra2NkSNH5nXUtXXr1lFdXe2oKwAANDK5XC4qKyvjM5/5TOo2SZKYNGlSbNq0KYMyAAAAAAAAAAAAAACaG4ddAQAAAAAAAAAAAAAAAABoNqZOnRpr165N3ZWUlMTChQujV69eGVQBAADHqkWLFlFVVRWf+MQnUrcHDx6M4cOHx3//939nUAYAAAAAAAAAAAAAQHPisCsAAAAAAAAAAAAAAAAAAM3Cv//7v8e9996b1/aOO+6IYcOGFbgIAAA4ER07doxVq1ZFp06dUre7du2KQYMGxd69ezMoAwAAAAAAAAAAAACguXDYFQAAAAAAAAAAAAAAAACAJm/NmjXxT//0T3ltr7vuurj55psLXAQAADSEbt26xdKlS6Nly5ap2+3bt8eYMWPi6NGjGZQBAAAAAAAAAAAAANAcOOwKAAAAAAAAAAAAAAAAAECTtn379hg7dmzU1dWlbj/96U/HzJkzM6gCAAAaSv/+/fP+c/zPf/7zuOmmmwpcBAAAAAAAAAAAAABAc1FaUVFRUewIAAAAAAAAAAAAAAAAAAA4Hv/zP/8TAwYMiF27dqVuu3btGmvXro127dplUAYAADSknj17Rm1tbWzYsCF1u3Xr1ujQoUOUlZVlUAYAAAAAAAAAAAAAQBO2PZckSVLsCgAAAAAAAAAAAAAAAAAAOFaHDh2KAQMGxMaNG1O37dq1iyeeeCJ69OiRQRkAAFAISZLEhAkTYuHChanbkpKSWLp0aXzuc5/LoAwAAAAAAAAAAAAAgCaqqqTYBQAAAAAAAAAAAAAAAAAAcKySJInJkyfnddT1lFNOiZ/+9KeOugIAQBOXy+WisrIy+vTpk7qtr6+PCRMmxFNPPZVBGQAAAAAAAAAAAAAATZXDrgAAAAAAAAAAAAAAAAAANDm33XZbLFiwIK/tXXfdFZ/97GcLXAQAAGShVatWUVNTE926dUvdHjhwIAYPHhw7duzIoAwAAAAAAAAAAAAAgKbIYVcAAAAAAAAAAAAAAAAAAJqUqqqq+OY3v5nX9itf+UrceOONBS4CAACy1KlTp1i+fHmcccYZqdudO3dGeXl5vP322xmUAQAAAAAAAAAAAADQ1DjsCgAAAAAAAAAAAAAAAABAk7Fly5a47rrrIkmS1O3f/d3fxfTp0zOoAgAAsnbuuefG4sWL45RTTkndbtu2LcaMGRN1dXUZlAEAAAAAAAAAAAAA0JQ47AoAAAAAAAAAAAAAAAAAQJPwu9/9LoYMGRLvvPNO6va8886LRYsWRWlpaQZlAABAMVx55ZUxc+bMvLYrV66MW265pcBFAAAAAAAAAAAAAAA0NQ67AgAAAAAAAAAAAAAAAADQ6O3fvz/Ky8tj9+7dqdtOnTpFTU1NtG/fPoMyAACgmL74xS/GV7/61by2d955Z9xzzz0FLgIAAAAAAAAAAAAAoClx2BUAAAAAAAAAAAAAAAAAgEatvr4+JkyYEL/+9a9Tt61atYqampro1q1bBmUAAEBjMH369Bg2bFhe2y9/+cuxcuXKAhcBAAAAAAAAAAAAANBUOOwKAAAAAAAAAAAAAAAAAECj9rWvfS1qampSd7lcLh544IHo06dPBlUAAEBjUVJSEgsXLoxLLrkkdVtXVxfjx4+Pp59+OoMyAAAAAAAAAAAAAAAaO4ddAQAAAAAAAAAAAAAAAABotGbPnh0zZszIaztt2rS45pprClwEAAA0Rq1bt47q6uo4++yzU7f79u2L8vLy2L17dwZlAAAAAAAAAAAAAAA0ZrkkSZJiRwAAAAAAAAAAAAAAAAAAwJ979NFHY+DAgXHkyJHU7ahRo2Lx4sWRy+UyKAMAABqrZ555Jvr16xd79+5N3V588cWxfv36aNOmTQZlAAAAAAAAAAAAAAA0QlUlxS4AAAAAAAAAAAAAAAAAAIA/9/zzz8ewYcPyOup60UUXxdy5cx11BQAAokePHvHggw9GaWlp6nbLli0xceLEqK+vz6AMAAAAAAAAAAAAAIDGyGFXAAAAAAAAAAAAAAAAAAAalTfeeCOGDh0ab775Zuq2S5cusWzZsmjTpk0GZQAAQFMwaNCguPPOO/PaLlmyJKZNm1bgIgAAAAAAAAAAAAAAGiuHXQEAAAAAAAAAAAAAAAAAaDRqa2tj1KhR8cILL6Ru27ZtGytXrowuXbpkUAYAADQlU6dOjSlTpuS1vf3222PWrFkFLgIAAAAAAAAAAAAAoDFy2BUAAAAAAAAAAAAAAAAAgEZjypQp8fDDD6fuSkpKYsGCBXHBBRdkUAUAADRFM2bMiKFDh+a1nTJlSqxbt67ARQAAAAAAAAAAAAAANDYOuwIAAAAAAAAAAAAAAAAA0Ch897vfjVmzZuW1/f73vx/l5eUFLgIAAJqy0tLSWLBgQVxwwQWp29ra2hg9enQ8//zzGZQBAAAAAAAAAAAAANBY5JIkSYodAQAAAAAAAAAAAAAAAADAyW3VqlVRXl4edXV1qdtJkyZFZWVlBlUAAEBz8Oqrr0ZZWVm8+uqrqduPfexjsWnTpvjABz6QQRkAAAAAAAAAAAAAAEVWVVLsAgAAAAAAAAAAAAAAAAAATm5PPfVUjBkzJq+jrpdeemnce++9GVQBAADNRZcuXWLZsmVx2mmnpW5feumlGDFiRBw+fDiDMgAAAAAAAAAAAAAAis1hVwAAAAAAAAAAAAAAAAAAiua1116L8vLyOHDgQOr2k5/8ZFRXV8epp56aQRkAANCcXHTRRTFv3rwoKUn/L3cee+yxmDhxYiRJkkEZAAAAAAAAAAAAAADF5LArAAAAAAAAAAAAAAAAAABFcfDgwRg+fHj8/ve/T9126NAhampq4swzz8ygDAAAaI5GjBgR3/nOd/LaLl68OL797W8XuAgAAAAAAAAAAAAAgGJz2BUAAAAAAHYJjkkAACAASURBVAAAAAAAAAAAgMwlSRKTJk2KzZs3p25btGgRVVVV8YlPfCKDMgAAoDm75ZZb4oYbbshr+6//+q/x4x//uMBFAAAAAAAAAAAAAAAUk8OuAAAAAAAAAAAAAAAAAABk7hvf+EYsWrQor+3dd98dAwYMKHARAABwsrjrrrvis5/9bOouSZL4+7//+3jiiScyqAIAAAAAAAAAAAAAoBhySZIkxY4AAAAAAAAAAAAAAAAAAODksXjx4hg3blzk82OuN998c3z3u9/NoAoAADiZ7Nu3L/r16xe/+c1vUrcdO3aMTZs2Rffu3TMoAwAAAAAAAAAAAAAgQ1UOuwIAAAAAAAAAAAAAAAAAkJnHH388rrjiijh8+HDq9uqrr46ampooLS3NoAwAADjZvPzyy9G7d+94/fXXU7fnnHNOPPHEE3HmmWdmUAYAAAAAAAAAAAAAQEaqSopdAAAAAAAAAAAAAAAAAADAyeGVV16JESNG5HXUtWfPnrF48WJHXQEAgILp2rVrrFixItq0aZO6fe6552L48OFx5MiRDMoAAAAAAAAAAAAAAMiKw64AAAAAAAAAAAAAAAAAABTc/v37o7y8PF5//fXU7VlnnRU1NTXRtm3bDMoAAICTWa9evWLu3LmRy+VSt+vXr48bb7wxgyoAAAAAAAAAAAAAALJSWlFRUVHsCAAAAAAAAAAAAAAAAAAAmq+6uroYNWpUPPbYY6nb1q1bx5o1a+K8887LoAwAACCiR48ekcvl4pFHHkndbtu2Ldq0aRP9+vUrfBgAAAAAAAAAAAAAAIW2vaTYBQAAAAAAAAAAAAAAAAAANG9Tp06NFStWpO5yuVxUVlZGWVlZBlUAAAB/8i//8i/xhS98Ia/trbfeGosWLSpwEQAAAAAAAAAAAAAAWXDYFQAAAAAAAAAAAAAAAACAgrn77rvjRz/6UV7bb33rWzFu3LgCFwEAALxXLpeLysrK+MxnPpO6TZIkJk2aFJs2bcqgDAAAAAAAAAAAAACAQsolSZIUOwIAAAAAAAAAAAAAAAAAgObnoYceisGDB8fRo0dTt6NHj45FixZFLpfLoAwAAOAv27NnT/Tt2zd++9vfpm7POuus2Lx5c3zkIx/JoAwAAAAAAAAAAAAAgAKoKil2AQAAAAAAAAAAAAAAAAAAx27t2rVRUVERSZIUO+UvevbZZ2PMmDF5HXXt27dvzJs3z1FXAACg6Dp27BirVq2KTp06pW537doVgwYNir1792ZQdnweffTRWLt2bbEzAAAAAAAAAAAAAAAaLYddAQAAAAAAAAAAAAAAAACaoNmzZ8dtt90W48aNi4MHDxY751327NkT5eXl8dZbb6VuP/rRj8bPfvazaNmyZQZlAAAA6bp16xZLly7N6+8p27dvj7Fjx8bRo0czKDs2ixcvjquuuiruuuuuYqcAAAAAAAAAAAAAADRaDrsCAAAAAAAAAAAAAAAAADQxe/fujerq6oj446GeAQMGxO7du4tc9UdHjhyJz3/+8/Hiiy+mbk8//fSoqamJzp07Z1AGAACQv/79+8fMmTPz2q5ZsyZuuummAhflL0mSqKioiHHjxsWhQ4di9erVsXPnzmJnAQAAAAAAAAAAAAA0Sg67AgAAAAAAAAAAAAAAAAA0MQsWLIiDBw/+7683bdoUF198cTz11FNFrPrj8aDJkyfHI488krotLS2NhQsXxvnnn1/4MAAAgONw3XXXxde//vW8tvfff3/cddddBS5Kd/jw4bj22mvjtttuiyRJIiLi6NGjMW/evCKXAQAAAAAAAAAAAAA0Tg67AgAAAAAAAAAAAAAAAAA0MXPmzHnP7+3YsSP69+8fy5cvL0LRH91+++0xf/78vLYzZsyIIUOGFLgIAADgxHz729+O8ePH57X9yle+EsuWLStw0V+3Z8+eGDhwYPz4xz9+z2f333///x56BQAAAAAAAAAAAADgT3KJf20NAAAAAAAAAAAAAAAAANBkPPPMM/GpT33qr35eWloat99+e9xyyy0ZVkUsXbo0Ro0aFfX19anbyZMnx/33359BFQAAwIk7dOhQDBgwIDZu3Ji6bdu2bWzYsCF69uyZQdmfvPDCCzF48OB44YUX/upm/fr1cemll2ZYBQAAAAAAAAAAAADQ6FWVFLsAAAAAAAAAAAAAAAAAAID8zZ49+30/r6uri1tvvTWuv/76qK2tzaRp69atce211+Z11PXKK6+Me++9N4MqAACAhtGqVauoqamJbt26pW4PHDgQgwcPjh07dmRQ9kfr1q2LSy655H2PukZEVFZWZlQEAAAAAAAAAAAAANB05JIkSYodAQAAAAAAAAAAAAAAAABAuqNHj8bZZ58du3btyms/cODA+MlPfhJnnHFGwZp27twZZWVleR0tOuecc2Ljxo0F7QEAACiUZ599Nvr27RtvvfVW6vZv//ZvY8OGDXHaaacVtOn++++Pf/iHf4ja2trUbZs2bWLnzp3Rvn37gjYBAAAAAAAAAAAAADQhVSXFLgAAAAAAAAAAAAAAAAAAID8rVqzI+6hrRMQvfvGL6NevX7z00ksF6Tl48GAMGzYsr6OuHTt2jOXLlzvqCgAANFnnnntuLF68OE455ZTU7bZt22LMmDFRV1dXkJb6+vq4+eab40tf+lJeR10jIt5555148MEHC9IDAAAAAAAAAAAAANBUOewKAAAAAAAAAAAAAAAAANBEzJ49+5i/s3379rjkkkti/fr1DdpSX18f48ePj1/+8pep2xYtWsSSJUuie/fuDdoAAACQtSuvvDJmzpyZ13blypVxyy23NHjDoUOH4pprronp06cf83crKysbvAcAAAAAAAAAAAAAoClz2BUAAAAAAAAAAAAAAAAAoAnYtWtXrF69+ri+u2fPnrjqqqti3rx5DdZz6623RnV1dV7be+65Jy6//PIGezcAAEAxffGLX4yvfvWreW3vvPPOuOeeexrs3a+99lr0798/Fi1adFzf37JlS/zqV79qsB4AAAAAAAAAAAAAgKbOYVcAAAAAAAAAAAAAAAAAgCZg/vz5cfTo0eP+/uHDh2PixIkxderUqK+vP6GWuXPnxvTp0/Pafv3rX4/Jkyef0PsAAAAam+nTp8ewYcPy2n75y1+OlStXnvA7n3766ejTp09s2bLlhJ4ze/bsE24BAAAAAAAAAAAAAGguckmSJMWOAAAAAAAAAAAAAAAAAADg/fXo0SO2b9/eIM8aMWJEzJ8/P9q0aXPM392wYUMMHDgwDh8+nNd7qqqqoqSk5HgyAQAAGrWDBw/G5ZdfHk8++WTqtl27dvHYY4/F+eeff1zveuihh2L06NGxd+/e4/r+/9WhQ4d49dVXo1WrVif8LAAAAAAAAAAAAACAJq7KT8ECAAAAAAAAAAAAAAAAADRymzZtarCjrhERS5cujUsvvTR27tx5TN97+eWXY+TIkXkddb3wwgtj3rx5jroCAADNVuvWraO6ujrOPvvs1O2+ffuivLw8du/efczvmTVrVgwePLhBjrpGRLzxxhtRXV3dIM8CAAAAAAAAAAAAAGjq/CQsAAAAAAAAAAAAAAAAAEAjN2fOnAZ/5n/+539Gr169YsuWLXnt9+3bF0OHDo0//OEPqdsPfehDsWzZsjjttNNONBMAAKBR++AHPxirV6+O9u3bp25feeWVGDJkSLzzzjt5Pbuuri6mTp0a119/fRw9evREU9+lsrKyQZ8HAAAAAAAAAAAAANBUOewKAAAAAAAAAAAAAAAAANCIHTx4MH7yk58U5Nk7d+6Myy+/PH72s5+97662tjZGjhwZzzzzTOozW7duHdXV1fHhD3+4oTIBAAAatR49esSDDz4YpaWlqdstW7bExIkTo76+/n13Bw4ciOHDh8ddd93VUJnvsm7duviv//qvgjwbAAAAAAAAAAAAAKApcdgVAAAAAAAAAAAAAAAAAKARW7JkSbz11lsFe/7bb78dI0eOjIqKir+6mTp1aqxduzb1WSUlJbFw4cLo1atXAxYCAAA0foMGDYo777wzr+2SJUti2rRpf/XznTt3xmWXXRbLly9vqLz3SJIk5s2bV7DnAwAAAAAAAAAAAAA0FQ67AgAAAAAAAAAAAAAAAAA0YnPmzCn4O5Ikidtuuy0mTZoUR44ceddn//Zv/xb33ntvXs+54447YtiwYYVIBAAAaPSmTp0aU6ZMyWt7++23x6xZs97z+7/61a+id+/esXXr1obOe4/Zs2dHXV1dwd8DAAAAAAAAAAAAANCY5ZIkSYodAQAAAAAAAAAAAAAAAADAe73yyivRrVu3qK+vz+yd/fr1i6VLl0bnzp1jzZo1MWTIkLwO/UycODHmzp1b+EAAAIBGrK6uLoYPHx7Lly9P3bZo0SJWr14dV1xxRURErF69OsaMGRP79+8vdOb/WrNmTVx11VWZvQ8AAAAAAAAAAAAAoJGpKil2AQAAAAAAAAAAAAAAAAAAf9mcOXMyPeoaEfH4449Hnz59YsWKFTF27Ni8jrp++tOfjvvuuy+DOgAAgMattLQ0FixYEBdccEHqtra2NkaPHh3PP/98/OAHP4ghQ4ZketQ1IqKysjLT9wEAAAAAAAAAAAAANDa5JEmSYkcAAAAAAAAAAAAAAAAAAPBuSZJE9+7d46WXXirK+0tKSvI6Ktu1a9fYvHlzfOADH8igCgAAoGl49dVXo6ysLF599dXUbbt27WLfvn0ZVL3XqaeeGjt27PB3OgAAAAAAAAAAAADgZFVVUuwCAAAAAID/x969Rlld3/ce/86FAYZ7EAJycQkSb5AoBi9RbARqUsXqsp0mzRJMajXpac+MbaKxJ65CmsYT46oZXCbWyzg4g1YgKBERbQQiCgmgkCI3QSSoONzkLjMwl30e9JrTxDgze89vmHm91uIZ/9/vzZNZCnv/PwAAAAAAAAAAAPxPixcvTjbqGhEfadS1d+/esWDBAgNAAAAA/58hQ4bET37yk+jRo8fv/L2pRl0jIk6cOBGzZs1Kdj8AAAAAAAAAAAAAQGqGXQEAAAAAAAAAAAAAAAAA2qHKysrUCR+qsLAw5s2bF+eee27qFAAAgHbpggsuiKqqqsjPb9+v+amoqEidAAAAAAAAAAAAAACQTPv+xDcAAAAAAAAAAAAAAAAAQCd06NChmD9/fuqMD3XffffFpEmTUmcAAAC0a9dff33cddddqTM+1IYNG2LlypWpMwAAAAAAAAAAAAAAkjDsCgAAAAAAAAAAAAAAAADQzjzxxBNx7Nix1Bm/1a233hp/8Rd/kToDAADgpPDNb34zvva1r6XO+FAVFRWpEwAAAAAAAAAAAAAAksjLZDKZ1BEAAAAAAAAAAAAAAAAAAPyXCy+8MFavXp064zcqKiqKF154IT772c+mTgEAADhp1NfXx+jRo2PLli2pU36jnj17Rk1NTfTs2TN1CgAAAAAAAAAAAABAW5qbn7oAAAAAAAAAAAAAAAAAAID/smHDhnY76hoRceLEifj85z8fs2bNSp0CAABwUjhx4kTcfPPN7XbUNSLi6NGj8eMf/zh1BgAAAAAAAAAAAABAmzPsCgAAAAAAAAAAAAAAAADQjjz66KOpE36n48ePx9SpU+OOO+6Ipqam1DkAAADt1v79++Nzn/tcPPbYY6lTfqeKiorUCQAAAAAAAAAAAAAAbS4vk8lkUkcAAAAAAAAAAAAAAAAAABDR0NAQw4YNi127dqVO+chKSkpi5syZUVxcnDoFAACgXdm2bVtMnjw5Nm/enDrlI9u4cWOcffbZqTMAAAAAAAAAAAAAANrK3PzUBQAAAAAAAAAAAAAAAAAA/Jtnn332pBp1jYiYO3duTJgw4aTrBgAAyKUVK1bEJZdcclKNukZEVFZWpk4AAAAAAAAAAAAAAGhThl0BAAAAAAAAAAAAAAAAANqJk3VAZ+XKlfHpT3861qxZkzoFAAAgudmzZ8fEiRNj7969qVOaraqqKurr61NnAAAAAAAAAAAAAAC0GcOuAAAAAAAAAAAAAAAAAADtwO7du2PRokWpM1ps586d8Xu/93vxzDPPpE4BAABIIpPJxPTp0+NP//RPo66uLnVOi+zevTsWLlyYOgMAAAAAAAAAAAAAoM0YdgUAAAAAAAAAAAAAAAAAaAeqqqqivr4+dUarHD16NK6//vq4++67U6cAAAC0qePHj8fUqVPj29/+dmQymdQ5rVJRUZE6AQAAAAAAAAAAAACgzeRlTvZPgQMAAAAAAAAAAAAAAAAAdADnnntubNy4MXVG1vz5n/95/OhHP4ouXbqkTgEAAMip999/P66//vpYtmxZ6pSsKCgoiO3bt8ewYcNSpwAAAAAAAAAAAAAA5Nrc/NQFAAAAAAAAAAAAAAAAAACd3S9+8YsONeoaEfHII4/EhAkTYt++falTAAAAcmbr1q3xmc98psOMukZENDY2RnV1deoMAAAAAAAAAAAAAIA2YdgVAAAAAAAAAAAAAAAAACCxysrK1Ak58corr8Qll1wSmzdvTp0CAACQdYsXL44LL7wwtmzZkjol6x555JHIZDKpMwAAAAAAAAAAAAAAcs6wKwAAAAAAAAAAAAAAAABAQrW1tTFnzpzUGTnz5ptvxqWXXhpLly5NnQIAAJA1jz76aPzBH/xBHDx4MHVKTmzfvj1eeuml1BkAAAAAAAAAAAAAADln2BUAAAAAAAAAAAAAAAAAIKF58+Z12CGg/7B///648sor44EHHkidAgAA0CqZTCamT58eN910U9TX16fOyamKiorUCQAAAAAAAAAAAAAAOZeXyWQyqSMAAAAAAAAAAAAAAAAAADqriRMnxpIlS1JntJnS0tL4wQ9+EPn5+alTAAAAmqWuri6+8pWvxJNPPpk6pU107949du7cGf369UudAgAAAAAAAAAAAACQK3N94xUAAAAAAAAAAAAAAAAAIJFf/epX8bOf/Sx1Rpu67777YvLkyXH48OHUKQAAAB9ZTU1NXH755Z1m1DUiora2tlP9eQEAAAAAAAAAAACAzsmwKwAAAAAAAAAAAAAAAABAIjNnzoympqbUGW1u0aJFMX78+Hj77bdTpwAAAPxO69evj0suuSRWr16dOqXNVVRUpE4AAAAAAAAAAAAAAMgpw64AAAAAAAAAAAAAAAAAAAlkMpmorq5OnZHMunXr4uKLL+6Uw0gAAMDJ47nnnovPfOYzsWPHjtQpSbz22mvxy1/+MnUGAAAAAAAAAAAAAEDOGHYFAAAAAAAAAAAAAAAAAEhgyZIl8dZbb6XOSKqmpiYuv/zyeOKJJ1KnAAAA/A8PPfRQXHvttXHkyJHUKUlVVFSkTgAAAAAAAAAAAAAAyBnDrgAAAAAAAAAAAAAAAAAACVRWVqZOaBfq6urihhtuiLvuuisymUzqHAAAgGhsbIw77rgjvvrVr0ZDQ0PqnORmzZoVtbW1qTMAAAAAAAAAAAAAAHLCsCsAAAAAAAAAAAAAAAAAQBs7dOhQPPXUU6kz2o1MJhPf+ta34sYbb4zjx4+nzgEAADqxo0ePxrXXXht333136pR24+DBg/H000+nzgAAAAAAAAAAAAAAyAnDrgAAAAAAAAAAAAAAAAAAbezJJ5+M2tra1BntztatW+Ptt99OnQEAAHRSjY2NcdVVV8XChQtTp7Q7jz76aOoEAAAAAAAAAAAAAICcMOwKAAAAAAAAAAAAAAAAANDGDOL8uv79+0d5eXksX748Ro0alToHAADopAoKCuLpp5+O0tLSKCgoSJ3TrixZsiS2bduWOgMAAAAAAAAAAAAAIOsMuwIAAAAAAAAAAAAAAAAAtKENGzbEqlWrUme0C126dIm//uu/jm3btkVZWVnk5/vqKwAAkFb//v1jxowZsXLlyrj00ktT57QbmUwmHnvssdQZAAAAAAAAAAAAAABZ59utAAAAAAAAAAAAAAAAAABtqLKyMnVCu/DZz342Xnvttbj33nujT58+qXMAAAB+zQUXXBAvv/xyzJw5MwYPHpw6p12orKyMxsbG1BkAAAAAAAAAAAAAAFll2BUAAAAAAAAAAAAAAAAAoI00NDTE448/njojqSFDhsRjjz0WS5cujTFjxqTOAQAA+K3y8vLixhtvjK1bt8a0adOia9euqZOSevfdd+Nf/uVfUmcAAAAAAAAAAAAAAGSVYVcAAAAAAAAAAAAAAAAAgDaycOHC2LVrV+qMJIqKiqK0tDQ2b94cU6dOTZ0DAADwkfXo0SOmT58e69evj5KSktQ5SVVUVKROAAAAAAAAAAAAAADIKsOuAAAAAAAAAAAAAAAAAABtpLKyMnVCEpMnT45NmzbFjBkzomfPnqlzAAAAWuSMM86IOXPmxIsvvhjnnntu6pwkFixYEHv27EmdAQAAAAAAAAAAAACQNYZdAQAAAAAAAAAAAAAAAADawJ49e+K5555LndGmzjjjjHj22WdjwYIFMWLEiNQ5AAAAWTFx4sRYu3ZtlJeXR58+fVLntKkTJ07ErFmzUmcAAAAAAAAAAAAAAGSNYVcAAAAAAAAAAAAAAAAAgDZQVVUV9fX1qTPaRHFxcUybNi3Wr18fV199deocAACArOvSpUuUlZXFtm3borS0NAoKClIntZmHH344dQIAAAAAAAAAAAAAQNbkZTKZTOoIAAAAAAAAAAAAAAAAAICO7pOf/GS8/vrrqTNybvLkyfHDH/4whg8fnjoFAACgzaxZsyZKS0tj+fLlqVPaxM9//vO4+OKLU2cAAAAAAAAAAAAAALTW3PzUBQAAAAAAAAAAAAAAAAAAHd3KlSs7/Kjrpz71qVi2bFksWLDAqCsAANDpjB07Nl5++eWYM2dOp/h/ooqKitQJAAAAAAAAAAAAAABZYdgVAAAAAAAAAAAAAAAAACDHKisrUyfkTL9+/aK8vDxeffXVGD9+fOocAACAZPLy8qKkpCQ2btwY06ZNi27duqVOypknn3wyjhw5kjoDAAAAAAAAAAAAAKDVDLsCAAAAAAAAAAAAAAAAAORQbW1tzJ49O3VG1uXn58eUKVNi8+bNUVZWFoWFhamTAAAA2oUePXrE9OnT4/XXX4+SkpLUOTlx9OjRmDt3buoMAAAAAAAAAAAAAIBWM+wKAAAAAAAAAAAAAAAAAJBDTz31VBw8eDB1RlZ9+tOfjuXLl0dVVVUMHDgwdQ4AAEC7dMYZZ8ScOXPixRdfjHPPPTd1TtZVVFSkTgAAAAAAAAAAAAAAaDXDrgAAAAAAAAAAAAAAAAAAOVRZWZk6IWv69+8f5eXlsXLlyrj44otT5wAAAJwUJk6cGGvXro3y8vLo06dP6pysWbFiRWzcuDF1BgAAAAAAAAAAAABAqxh2BQAAAAAAAAAAAAAAAADIkR07dsTSpUtTZ7RaYWFhlJaWxrZt26KsrCzy831FFQAAoDm6dOkSZWVlsW3btigtLY2CgoLUSVlRWVmZOgEAAAAAAAAAAAAAoFV8axYAAAAAAAAAAAAAAAAAIEcqKyujqakpdUarXHHFFbF27dqYMWNG9OnTJ3UOAADASa1///4xY8aMWLVqVVx66aWpc1qtqqoq6uvrU2cAAAAAAAAAAAAAALSYYVcAAAAAAAAAAAAAAAAAgBzIZDJRXV2dOqPFhgwZEo899lgsWbIkRo8enToHAACgQxk7dmy8/PLLMWfOnBg+fHjqnBbbs2dPLFiwIHUGAAAAAAAAAAAAAECLGXYFAAAAAAAAAAAAAAAAAMiBJUuWxFtvvZU6o9mKioqitLQ0Nm/eHFOnTk2dAwAA0GHl5eVFSUlJbNq0KaZNmxbdunVLndQiFRUVqRMAAAAAAAAAAAAAAFrMsCsAAAAAAAAAAAAAAAAAQA5UVlamTmi2yZMnx6ZNm2LGjBnRs2fP1DkAAACdQnFxcUyfPj3Wr18fJSUlqXOa7fnnn4933nkndQYAAAAAAAAAAAAAQIsYdgUAAAAAAAAAAAAAAAAAyLLDhw/H008/nTrjIxs1alQsXLgwFixYECNGjEidAwAA0CmNHDky5syZEy+++GKMHj06dc5H1tTUFFVVVakzAAAAAAAAAAAAAABaxLArAAAAAAAAAAAAAAAAAECW/fM//3McO3Ysdcbv1KNHj5g2bVq8/vrrcdVVV6XOAQAAICImTpwYa9asifLy8ujTp0/qnI+koqIimpqaUmcAAAAAAAAAAAAAADSbYVcAAAAAAAAAAAAAAAAAgCyrrKxMnfA7TZ48OTZu3BjTp0+Prl27ps4BAADgv+nSpUuUlZXFtm3borS0NAoKClInfajt27fHSy+9lDoDAAAAAAAAAAAAAKDZDLsCAAAAAAAAAAAAAAAAAGTRG2+8EStXrkyd8Vudd955sWzZsliwYEEMHz48dQ4AAAAfon///jFjxoxYtWpVXHbZZalzPlRFRUXqBAAAAAAAAAAAAACAZjPsCgAAAAAAAAAAAAAAAACQRY888kjqhN+oX79+UV5eHq+++mqMHz8+dQ4AAADNMHbs2Fi2bFnMmTMnhg8fnjrnN5o3b14cOHAgdQYAAAAAAAAAAAAAQLMYdgUAAAAAAAAAAAAAAAAAyJKGhoZ4/PHHU2f8mvz8/JgyZUq88cYbUVZWFgUFBamTAAAAaIG8vLwoKSmJTZs2xbRp06Jbt26pk35NXV1dPPHEE6kzAAAAAAAAAAAAAACaxbArAAAAAAAAAAAAAAAAAECWPPfcc1FTU5M64z+NGzcuVqxYEVVVVTFgwIDUOQAAAGRBcXFxTJ8+PdavXx8lJSWpc37NQw89lDoBAAAAAAAAAAAAAKBZDLsCAAAAAAAAAAAAAAAAAGRJZWVl6oSIiBg0aFA8+OCD8Ytf/CIuuuii1DkAAADkwMiRI2POnDmxePHiGD16dOqciIhYt25drF27NnUGAAAAAAAAAAAAAMBHZtgVAAAAAAAAAAAAAAAAACAL9uzZEwsXLkza0KVLlygt4a2rfAAAIABJREFULY033ngjbrnllsjP91VSAACAjm7ChAmxdu3aKC8vjz59+qTOiYqKitQJAAAAAAAAAAAAAAAfmW/jAgAAAAAAAAAAAAAAAABkQXV1ddTX1ye7/4orrog1a9bEjBkzonfv3sk6AAAAaHuFhYVRVlYW27Zti9LS0igoKEjWMmvWrDh27Fiy+wEAAAAAAAAAAAAAmsOwKwAAAAAAAAAAAAAAAABAFlRVVSW5d+jQofHYY4/FkiVLYvTo0UkaAAAAaB/69+8fM2bMiFWrVsVll12WpOHQoUMxf/78JHcDAAAAAAAAAAAAADSXYVcAAAAAAAAAAAAAAAAAgFZatWpVrFu3rk3v7N69e3zzm9+MTZs2xdSpU9v0bgAAANq3sWPHxrJly2LOnDkxfPjwNr+/oqKize8EAAAAAAAAAAAAAGgJw64AAAAAAAAAAAAAAAAAAK1UWVnZpvdNnjw5NmzYEN/73veiZ8+ebXo3AAAAJ4e8vLwoKSmJTZs2xbRp06Jbt25tdvfSpUvjzTffbLP7AAAAAAAAAAAAAABayrArAAAAAAAAAAAAAAAAAEAr1NXVxezZs9vkrlGjRsXChQtjwYIFcfrpp7fJnQAAAJzciouLY/r06bFly5aYMmVKm9yZyWRi5syZbXIXAAAAAAAAAAAAAEBrGHYFAAAAAAAAAAAAAAAAAGiFp59+Og4cOJDTO3r16hX33HNPbNiwIa666qqc3gUAAEDHNGzYsKiqqooXXnghzj777JzfN3PmzGhsbMz5PQAAAAAAAAAAAAAArWHYFQAAAAAAAAAAAAAAAACgFR599NGcnZ2XlxclJSWxYcOG+MY3vhFdunTJ2V0AAAB0DldeeWWsW7cuHnzwwejfv3/O7tm5c2e88MILOTsfAAAAAAAAAAAAACAbDLsCAAAAAAAAAAAAAAAAALTQu+++G0uXLs3J2eedd14sW7Ys5syZE8OGDcvJHQAAAHROhYWFccstt8SWLVuitLQ0CgoKcnJPRUVFTs4FAAAAAAAAAAAAAMgWw64AAAAAAAAAAAAAAAAAAC1UUVERjY2NWT2zX79+UV5eHq+++mpcdtllWT0bAAAA/ruPfexjMWPGjFi9enWMHz8+6+c/88wzsWvXrqyfCwAAAAAAAAAAAACQLYZdAQAAAAAAAAAAAAAAAABaIJPJRHV1ddbOy8/PjylTpsQbb7wRZWVlUVBQkLWzAQAA4MOcf/75sWzZsnjmmWfitNNOy9q5DQ0NMWvWrKydBwAAAAAAAAAAAACQbYZdAQAAAAAAAAAAAAAAAABaYOnSpbFt27asnDVu3LhYsWJFVFVVxYABA7JyJgAAADTXNddcExs3boxp06ZFt27dsnLmI488EplMJitnAQAAAAAAAAAAAABkm2FXAAAAAAAAAAAAAAAAAIAWmDlzZqvPGDx4cFRXV8fKlSvjoosuan0UAAAAtFJxcXFMnz491q9fH9dee22rz3vjjTdixYoVWSgDAAAAAAAAAAAAAMg+w64AAAAAAAAAAAAAAAAAAM10+PDhmDdvXouf79KlS5SWlsbmzZvjhhtuiLy8vCzWAQAAQOuNHDky5s+fH4sXL44xY8a06qxHH300S1UAAAAAAAAAAAAAANmVl8lkMqkjAAAAAAAAAAAAAAA+TGNjYxw+fDgiIg4ePBiZTCaOHj0a9fX1icsAAIDO6qmnnoq77rqrRc+OGzcubrvtthgxYkSWqwA6hh49ekRRUVF07do1iouLo6CgIHr37p06C6DDOnDgQEREHDlyJBoaGqK2tjbq6uoSVwHtTWNjY/zkJz+JH/3oR3Hw4MFmP9+9e/d44YUXori4OAd1AABAS3Tr1i26d+8ehYWF0atXr4iI6NevX+IqAAAAAAAAAIA2N9ewKwAAAAAAAAAAAACQVCaTiXfeeSe2bNnyn7927doVNTU1sWfPnqipqYlDhw6lzgQAAAAgoYKCghgwYEAMHDgwTj311Bg4cGAMHTo0zjzzzDjzzDPjE5/4hMEBgN9g9+7dsXnz5v/8+/eampqoqamJ3bt3x549e2Lv3r2pEwEAAIB25j/+LvbjH/94DB48OAYPHhyf+MQn4swzz4yzzjorBg4cmDoRAAAAAAAAACCbDLsCAAAAAAAAAAAAAG2noaEhNm7cGKtWrYpVq1bFq6++Gps3b47a2trUaQAAAACc5AYMGBBjxoyJCy+8MMaNGxcXXnhhDB06NHUWQJvIZDKxdevWWL16daxatSpWr14dGzdujEOHDqVOAwAAADqYvn37xjnnnBPjxo37z1+jRo2KvLy81GkAAAAAAAAAAC1h2BUAAAAAAAAAAAAAyJ3GxsZYvXp1LF68OF588cVYvXp1fPDBB6mzAAAAAOgkBg8eHOPHj49JkybFpEmT4vTTT0+dBJAVmUwmNmzYEC+++GIsXrw4li9fHgcOHEidBQAAAHRSffv2jUsvvTQmTpwYkyZNitGjRxt6BQAAAAAAAABOFoZdAQAAAAAAAAAAAIDs2rNnT8yfPz8WLVoUS5cujUOHDqVOAgAAAICIiBg5cmRMmjQp/vAP/zAmTZoURUVFqZMAPrIjR47EwoUL49lnn43FixfHrl27UicBAAAA/EaDBg2KiRMnxjXXXBNXXXVV9OrVK3USAAAAAAAAAMBvY9gVAAAAAAAAAAAAAGi9vXv3xqJFi2Lu3LnxwgsvRH19feokAAAAAPhQxcXFMWHChCgpKYnrr78+evbsmToJ4H84ePBgPPPMM/Hss8/Gc889Fx988EHqJAAAAIBm6datW0yaNCmuueaauO6662LgwIGpkwAAAAAAAAAA/jvDrgAAAAAAAAAAAABAy9TV1cWCBQuiqqoqFi1aFI2NjamTAAAAAKBFunfvHpMnT45bbrklJk6cGHl5eamTgE6sqakplixZElVVVfHjH/84amtrUycBAAAAZEVRUVFceeWVMXXq1LjuuuuiS5cuqZMAAAAAAAAAAAy7AgAAAAAAAAAAAADNs2rVqqioqIjZs2fHoUOHUucAAAAAQFadeeaZ8ZWvfCVuvPHGGDRoUOocoBPZsmVLVFRURHV1ddTU1KTOAQAAAMipU089NaZMmRI33XRTjBo1KnUOAAAAAAAAANB5GXYFAAAAAAAAAAAAAH63pqamWLhwYdx9992xfPny1DkAAAAAkHNFRUVx7bXXxt/8zd/ExRdfnDoH6MBeeeWVuO++++Kpp56KxsbG1DkAAAAAbSovLy8mTpwYpaWlMXny5MjLy0udBAAAAAAAAAB0LoZdAQAAAAAAAAAAAIDf7sCBA/HQQw/F/fffH++++27O7yvMz4th/brGiP7d45QeXWJQ76LoX1wYA3oWRb/iwoiI6NW1IPK9uA0AAEjgf/14S2x/vy7y8iImjOoXN18yOPp0K0ydBdBhHW9oirqGpmhoysT7R+tj3wf1sevIidh/rCHeO3Q8tu2rjT1H69uk5fLLL4+ysrK47rrrIj8/v03uBDq2urq6qK6ujhkzZsSGDRtyfl9+Xl4M6ds1Tj+lOAb16hqn9CyKgb2K4pSeRdG/R1Hk50UUFxVElwI/44Dc2Lb3WDzw8o5Y/96RiIiYetHQ+NK4UxNXAQAAERH1jU1x7ERjNGUi3v/gROw7eiL2HDkRe4+eiN1Hjsdbe4/FzkN10RZvLx09enSUlpbGlClTolu3brm/EAAAAAAAAADAsCsAAAAAAAAAAAAA8Jvs378/fvCDH8R9990Xhw8fzskdA3t2iU8N6RnnD+kZZw/qEWec0j2G9+0ahQVGWwEAgPbnlzuPxtUPvR7nDekZ37369DhvSM/USQBExJHjjfHW+7Xx5t7aeL3mg/jlzqPxes0HUVfflJP7zjnnnLjzzjvjC1/4goFXoEVqa2vj4Ycfjrvvvjvee++9nNzRu1thfGpo7zh/WO8YfWqvGHlKcYw4pTi6Fvq5BaT300374lvPvBF5eRE/v+0zkZ/n3wYBAOBkUFffFNvfPxbb9h2L9e8diTVvH451Ow/H4bqGnNw3ZMiQuP322+Pmm2+O7t275+QOAAAAAAAAAIB/Z9gVAAAAAAAAAAAAAPgv+/bti3vvvTfuv//+OHLkSFbPPq1ftxg/sk9cenqfuGBYzxjSp2tWzwcAAMil8pfejaF9usYffWpA2JwBaN8amjKxefexWLnjcLzy1qH4+a8Ox5HjjVm946yzzoo777wzvvjFL0ZBQUFWzwY6pmPHjsWDDz4Y99xzT9TU1GT17AE9i+KyMz4Wl5/xsbhgeO8YeUoP/80KtGu19Y3xo5d2xOWjPhbjTuubOgcAAGihTCZi274P4tUdh2LZm/tj+bYDsffoiazeMXjw4Lj99tvjq1/9qoFXAAAAAAAAACBXDLsCAAAAAAAAAAAAAP/2Qvl77703vv/972dt0LWoMD/Gj+gTnzurX4wf0TeG9zPkCgAAnLwamzJRkG8dC+Bk1NCUiX/deTR+9ubBWLRpf2zafSxrZ59zzjnx/e9/P66++uqsnQl0LI2NjVFZWRl/93d/l7VB1/y8vBh3Wp/4/LkD4vIzPhZnfbynIVfgpJTJhJ9fAADQgWQyEZt3H42Xtu6P5zfujVd3HIqmLL3y9NRTT42///u/jy9/+ctRUFCQlTMBAAAAAAAAAP6dYVcAAAAAAAAAAAAA6Myampqiqqoq7rzzzti5c2erz+tamB8TRvWNq87pH7//iX7Rq5sXqAEAAADQvmx/vy6e2/R+LNywP/71vaNZOXPChAlxzz33xNixY7NyHtAxPP/883HbbbfF+vXrW31WQX5eXHJ6v7h69ID4g3MHxsBeRVkoBAAAAMid3UeOx/Mb9sbC9Xvj59sPRGNT619/OmbMmLjnnnvic5/7XBYKAQAAAAAAAAAiwrArAAAAAAAAAAAAAHReL730Utx6663xy1/+stVnnTekZ3zh/IFx3Zj+0btbYRbqAAAAACD3tu6tjdlr98S8f90be47Wt+qs/Pz8uOGGG+Luu++OQYMGZakQOBlt3Lgxbr311vjpT3/a6rNOP6U4vnjB4CgZOzgG9e6ahToAAACAtrfr8PGY81pNzF5TE9v3HWv1eVdeeWWUl5fH2WefnYU6AAAAAAAAAKCTM+wKAAAAAAAAAAAAAJ3Nnj174rbbbovq6upozceJe3UtiC+cPzD+9IKBcdbA4iwWAgAAAEDbamjKxNKtB6Nq9e5Y+uaBaM238Pv06RPf/e5342tf+1oUFBRkLxJo944dOxb/8A//EP/4j/8YJ06caPE5XQry49pPDowbLhwS407rG3l5WYwEAAAASCiTiVi142DMWrUznlm3J+obm1p8VlFRUXzjG9+Ib33rW1Fc7DOMAAAAAAAAAECLGXYFAAAAAAAAAAAAgM4ik8lEdXV1fP3rX499+/a1+Jzh/brGDZ/+eNxwwcejT/fCLBYCAAAAQHq/2l8Xj67cFf+8ZnccO9HyUYHzzz8/HnjggbjooouyWAe0V88++2yUlpbG9u3bW3xG/x5F8cVPD44/u2RYDO7TNYt1AAAAAO3P3qMnYs5rNfHIindi9+HjLT5n6NChUV5eHn/0R3+UxToAAAAAAAAAoBMx7AoAAAAAAAAAAAAAncHWrVvjy1/+cqxYsaLFZ3zy1B7xvy8fGp8/62ORn5fFOAAAAABohw7VNsRjq3fHwz9/L/Yfa2jRGQUFBXHrrbfGd77znejevXuWC4H2YO/evfGXf/mXMXfu3BafMbxf9/irz54WJWMHR9fC/CzWAQAAALR/xxuaYu6amrj/Zzvi7QO1LT7nT/7kT+KHP/xhnHLKKVmsAwAAAAAAAAA6AcOuAAAAAAAAAAAAANCRZTKZePjhh+PrX/96HD16tEVnnDOoR5RdPiSuPqd/5Bl0BQAAAKCTOXaiKZ5Yszt++PLO2HO0vkVnjBw5MiorK2P8+PFZrgNSeu655+Lmm2+O9957r0XPD+vXLW6+dHhMvWhIFBl0BQAAADq5+sZMzP/XXTFj6a/irX3HWnTGwIED44EHHojrr78+y3UAAAAAAAAAQAdm2BUAAAAAAAAAAAAAOqodO3bEn/3Zn8WSJUta9Pw5g3rE304aFhNG9ctyGQAAAACcfI6daIrKVTVx/8vvxeG6hmY/X1hYGLfffntMmzYtioqKclAItJWDBw9GaWlpVFdXt+j5IX27xW2/PyKuP29QFObnZbkOAAAA4OTW0JSJeWt3xT0/fSveO1TXojOmTJkS9913X/Tt2zfLdQAAAAAAAABAB2TYFQAAAAAAAAAAAAA6otmzZ8ctt9wShw8fbvazg3oXxTcnDI8/Pm9AeJ88AAAAAPy6A8ca4gcvvRtVq3dFfWPzv64/duzYePLJJ2PUqFE5qANy7ZVXXokvfelL8c477zT72d7dCuOvfu+0+PNLh0e3Lvk5qAMAAADoOOrqm+Lh5W/H/T/bEUeONzT7+WHDhsUTTzwRl112WQ7qAAAAAAAAAIAOxLArAAAAAAAAAAAAAHQktbW1UVZWFg8//HCzny0uyo+/umxI3PKZU6O7F8oDAAAAwIfa/n5dfPenO2LRpv3NfrZXr17xT//0T/GlL30pB2VALjQ1NcX3vve9mDZtWjQ0NG9IpCA/L6ZcOCS+Pun06N+jKEeFAAAAAB3T+x+ciH98cXtUr9oZjU3Ne4VqYWFhfPvb34477rgj8vN9LhIAAAAAAAAA+I0MuwIAAAAAAAAAAABAR7F58+b4whe+EOvWrWv2s5M+0S/+4erTY1jfrjkoAwAAAICOa/n2Q/F/nt0eb+6rbfazU6ZMiQceeCB69OiRgzIgW/bu3RtTp06N559/vtnPjjm1V3zvurPi/GG9c1AGAAAA0HlsrDka35y/OV57+1Czn73iiivi8ccfj8GDB+egDAAAAAAAAAA4yRl2BQAAAAAAAAAAAICOYPbs2XHTTTfFBx980KznhvbtGt+56vS48sx+OSoDAAAAgI6vrr4p7nt5Z/zolZ1R39i8r/CPGTMm5s+fHyNGjMhRHdAaK1asiD/+4z+OmpqaZj3Xp3th/O3nzogbLjw18vPyclQHAAAA0Lk0ZTJRvXJn/N8XtsXhuoZmPTt48OCYN29eXHLJJTmqAwAAAAAAAABOUoZdAQAAAAAAAACA/8fefQZGVaZ/H//NZNI7IQUChN47IthRLEhbrFgQ1F1dG7CWXVkXd8W1YVl3RXHVVZS1ICAKSlUQC0UUpCYEklBCIL33TGaeF/59lnU1cybJnJkk388bX3idc/+GOzkn556Z+wIAAC2Zw+HQ3Llz9dRTT8mdjwZbLNKtozpoztguCgmwejAhAAAAAAAA0HYczqvS7z5M0+6screOi4mJ0fvvv6+xY8d6KBmAxnj99dd19913q6amxq3jLh8Qq6em9FVsWICHkgEAAAAAALRtuWW1mvPRQa1LznPruMDAQC1cuFC33nqrh5IBAAAAAAAAAAAAAIAWiMauAAAAAAAAAAAAAAAAAAAAQEtVVlamm266SStXrnTruE5RgfrblB46p1ukh5IBAAAAAAAAbZfd4dQrW0/q2c9PqNbuMHycn5+fHn/8cT344IMeTAfACLvdrrlz52r+/PluHRcRZNPcy3tq2pmJHkoGAAAAAACA0328L1dzPjqooso6t467/fbb9eKLL8rf399DyQAAAAAAAAAAAAAAQAtCY1cAAAAAAAAAAAAAAAAAAACgJcrIyNCECRN08OBBt467cUS8/nxZksIC/TyUDAAAAAAAAIAkpeRUavaKNB3IrnDruFtvvVX//Oc/aSgAeElxcbGuvPJKff75524dd2HvGD13VT8lRAR6KBkAAAAAAAB+TnZpje7/IEWfHypw67ixY8dq+fLlioqK8lAyAAAAAAAAAAAAAADQQtDYFQAAAAAAAAAAAAAAAAAAAGhpvv32W02aNEk5OTmGjwkP9NPTk3to8sAYDyYDAAAAAAAAcDp7vVNPb8rUwi1Zcueb/WPHjtWKFSsUERHhuXAA/sfJkyc1fvx47dmzx/AxNqtFsy/sqnvHdpPVYvFcOAAAAAAAAPwip1N6fWum/ro2TXX1DsPH9e/fX2vXrlWXLl08mA4AAAAAAAAAAAAAAPg4GrsCAAAAAAAAAAAAAAAAAAAALcmGDRt09dVXq6yszPAxQxPDtPCaXkqKDvJgMgAAAAAAAAC/ZENqke79ME3FVXbDxwwaNEhr1qxRp06dPJgMwI/279+v8ePHKzMz0/AxnaKC9PL1AzWiS6QHkwEAAAAAAMCovVlluuO9fTpaUGX4mA4dOmj16tUaNmyYB5MBAAAAAAAAAAAAAAAfRmNXAAAAAAAAAAAAAAAAAAAAoKX417/+pTvvvFN2u7HmDxaL9NuzO+qPY7vI5mfxcDoAAAAAAAAADTlRXKM7lh3S9yfKDR+TlJSktWvXql+/fh5MBuCzzz7TVVddpdLSUsPHTBwYp2ev6qeIIJsHkwEAAAAAAMBdpdV23f9BilbvzzV8TEREhFasWKGxY8d6MBkAAAAAAAAAAAAAAPBRNHYFAAAAAAAAAAAAAAAAAAAAWoKXXnpJM2fOlNGP/wbarHp6cnddPSTWw8kAAAAAAAAAGFVrd+hPa47o3Z3GGwq0a9dO69at08iRIz2YDGi7Vq9erauvvlrV1dWG6i0W6a7zk/TQZT1lsXg4HAAAAAAAABrF6ZQWfnlMT65Pl8Pg5y4DAgK0ZMkSXXHFFR5OBwAAAAAAAAAAAAAAfAyNXQEAAAAAAAAAAAAAAAAAAABfN3/+fM2ZM8dwfYeIAL1+fR8N6RjmwVQAAAAAAAAAGuvt73L0pzVHZK839nX/qKgorVmzRmeddZaHkwFty9KlSzVt2jTV1dUZqg8L9NOCawfosv6xHk4GAAAAAACA5rAptUB3Ldmv0mq7oXqbzaZFixZp2rRpHk4GAAAAAAAAAAAAAAB8CI1dAQAAAAAAAAAAAAAAAAAAAF/20EMP6cknnzRcPzopQq9O7a2YUH8PpgIAAAAAAADQVNuOluq291NVVGmsoUB4eLg++eQTnX/++R5OBrQNixcv1q233qr6+npD9d3bh+jN6YPVMzbUw8kAAAAAAADQnNLyKnTz4r3KyK80VO/n56c33nhD06dP93AyAAAAAAAAAAAAAADgI2jsCgAAAAAAAAAAAAAAAAAAAPiqBx54QM8995zh+l8Naq+/T+mhAJvVg6kAAAAAAAAANJeMgmpN+3eKjhVVG6oPCQnR6tWrNWbMGM8GA1q5N954Q7fddpscDoeh+jOSIvXW9CGKDvH3cDIAAAAAAAB4QlFlnWYs3qPvjpUYqrdarXrttdd06623ejgZAAAAAAAAAAAAAADwATR2BQAAAAAAAAAAAAAAAAAAAHzRww8/rMcee8xw/a9Hd9Aj47rKavFgKAAAAAAAAADNrqjSrpvfPajvMssM1YeEhGjdunU677zzPJwMaJ2WL1+u6667TvX19Ybqx/WP1cLrBirI3+rhZAAAAAAAAPCkWrtDs5Yla9XeHEP1VqtVixcv1o033ujhZAAAAAAAAAAAAAAAwMto7AoAAAAAAAAAAAAAAAAAAAD4mieffFIPPfSQoVo/q0WPXt5VN5+Z4OFUAAAAAAAAADylstahO5Yd0sZDRYbqo6KitHHjRg0fPtzDyYDWZcWKFZo6darsdruh+l+f3VnzJvaS1WLxcDIAAAAAAACYweF06s+fHNYbWzMN1dtsNi1dulRXXHGFh5MBAAAAAAAAAAAAAAAvorErAAAAAAAAAAAAAAAAAAAA4EsWLFigWbNmGar1s1r0t1/10NVDYz2cCgAAAAAAAICn1Tucum9lupbvzjNU3759e33++ecaOHCgh5MBrcOGDRs0efJk1dTUGKq/+4Ik/WlcTw+nAgAAAAAAgDe89MUxPb4uzVBtQECAVqxYoQkTJng4FQAAAAAAAAAAAAAA8BIauwIAAAAAAAAAAAAAAAAAAAC+YsmSJbrhhhtk5CO+/n4WLbymt8b3a2dCMgAAAAAAAABmqHc49YePM7RkV66h+o4dO2rr1q1KSkrycDKgZduxY4cuuugiVVRUGKr//SXdde9F3TycCgAAAAAAAN608MtjemytseauwcHB+uyzz3T22Wd7OBUAAAAAAAAAAAAAAPACGrsCAAAAAAAAAAAAAAAAAAAAvmDz5s0aN26campqXNYG2Kx65dreurRPtAnJAAAAAAAAAJjJ6ZQeWXdU/9p+ylB9//799fXXXys6mvVC4Oekp6fr7LPPVm6u64bJFov0yITeuu2cziYkAwAAAAAAgLct/iZLD61MlcPA1qwxMTHasmWL+vTpY0IyAAAAAAAAAAAAAABgomVWbycAAAAAAAAAAAAAAAAAAAAA2rp9+/ZpypQphpq6BtqsWnxjX5q6AgAAAAAAAK2UxSI9Mq6rbh2VYKg+OTlZV1xxhaH1RaCtyc3N1WWXXWa4qeuTv+pLU1cAAAAAAIA2ZPqoRD3xqz6yWFzXFhQUaMKECYbWmgAAAAAAAAAAAAAAQMtCY1cAAAAAAAAAAAAAAAAAAADAi06cOKHx48erpKTEZa2/n0WvTu2t87pHmpAMAAAAAAAAgLdYLNKjl3fTDSPiDNV/8cUXmjFjhpxOp4eTAS1HZWWlJk6cqPT0dEP1fxnfS9NHJXo4FQAAAAAAAHzN9FGJ+vP4XoZq09PTNWnSJFVUVHg4FQAAAAAAAAAAAAAAMJPfI4888oi3QwAAAAAAAAAAAAAAAAAAAABtUXV1tcaNG6eDBw+6rPWzWvTClT01vn+MCckAAAAAAAAAeJvFIl3cu52OFVYrJafSZf2BAwckSWPGjPFwMsD3OZ1OTZ8+XRs2bDBU/+ClPXT3BUkeTgUAAAAAAABfdUaXSFmtFm3NKHJZm5WVpZSUFF177bWyWCwmpAMAAAAAAAAAAAAAAB6WTGOH5dKqAAAgAElEQVRXAAAAAAAAAAAAAAAAAAAAwEtmzJih9evXu6yzWKTnr+ipKwfHmpAKAAAAAAAAgK+wWKRL+7bTwZxKpeVXuaz/8ssvNWTIEPXt29eEdIDveuKJJ7RgwQJDtTPHdNUDF3f3cCIAAAAAAAD4urO6Rava7tC3x0pc1h48eFABAQE677zzTEgGAAAAAAAAAAAAAAA8LNnidDqd3k4BAAAAAAAAAAAAAAAAAAAAtDXz58/XnDlzDNU+fGmS7jino4cTAQAAAAAAAPBVNXaHrnsrWTuOl7msDQsL07Zt2zRw4EATkgG+Z926dZo4caLq6+td1l4xNEEvXjtAFosJwQAAAAAAAODznE7pvg+S9f7OUy5rrVarVq5cqYkTJ5qQDAAAAAAAAAAAAAAAeNAyGrsCAAAAAAAAAAAAAAAAAAAAJnNnU/lbRiXosfHdTEgFAAAAAAAAwJcVVdr1q9f3Kz2/ymVtz549tWPHDkVHR5uQDPAdKSkpGj16tEpLS13WXtCrnRbPGCp/P7q6AgAAAAAA4D/q6p2a9uZufZVW6LI2MjJS33zzjfr06WNCMgAAAAAAAAAAAAAA4CHLrN5OAAAAAAAAAAAAAAAAAAAAALQlJ06c0E033WSoqevFvaM1b1xXz4cCAAAAAAAA4POiQ2x6e1o/xYX5u6xNS0vTTTfdJKfTaUIywDdUV1fruuuuM9TUtV9CmF65YRBNXQEAAAAAAPA//P0sen3aYA3oEO6ytqSkRFdddZUqKytNSAYAAAAAAAAAAAAAADyFxq4AAAAAAAAAAAAAAAAAAACASex2u66//nrl5+e7rB3SMUyvXNtbflY2lQcAAAAAAADwgy7RgVp0Q18F2lxvFbB69Wq98MILJqQCfMM999yjvXv3uqyLjwjUu7cMVUSQzYRUAAAAAAAAaInCAv3075uHKD480GXtgQMH9Lvf/c6EVAAAAAAAAAAAAAAAwFMsTqfT6e0QAAAAAAAAAAAAAAAAAAAAQFswd+5cPf744y7rYsP8teb2weoYGWBCKgC+4s5lh7Rqf4FHzj3tjHjNn9TdI+f2dYWVdg2a/63Hzr/x7iHqGxfisfMDAAAAAPBzPtiTp1kr0lzW+fv768svv9To0aNNSAV4z9KlSzV16lSXdQE2q1bcPkLDO0eYkAr4b3e8t1+r9uZ45Nw3jUrU/Cl9PXJuX1ZYUaeBj33psfNv+t0o9Y0P89j5AQAAAAC+b+fxEl312i7V2h0ua99++23deOONJqQCAAAAAAAAAAAAAADNbJnV2wkAAAAAAAAAAAAAAAAAAACAtmDz5s166qmnXNbZ/Cx6+ZreNHUFAAAAAAAA8IuuGhKr287q4LKurq5O06ZNU0lJiQmpAO9IT0/XbbfdZqj2icl9aOoKAAAAAAAAw0Z0idQzV/Q1VHvHHXcoNTXVw4kAAAAAAAAAAAAAAIAn0NgVAAAAAAAAAAAAAAAAAAAA8LCioiLdeOONqq+vd1n7+PhuOqsrm8oDAAAAAAAAaNjcS5N0XvdIl3Xp6emaPXu2CYkA89XX12vatGkqLS11WfvrszvrhpEdTUgFAAAAAACA1uSa4R10y1mdXNaVl5fr5ptvNvRZUQAAAAAAAAAAAAAA4Fts3g4AAAAAAAAAAAAAAAAAAAAAtHYzZ87UyZMnXdZdOyxW086INyERAAAAgNYit7xOe0+Wa+/JCqXnV+lUaa2yS2tVVmNXtd2h6jqH/KwWBdmsCva3KibUX/HhAeoYGaDesSHqFx+iIYlhCg/08/ZLMazW7lByTqX2n6pQck6lsoprdKq0VnkVdaquc6ja7pC93qFAm1WBNqtCAqyKCwtQfHiAEiMD1Dc+RAMSQtU/PkQBNqu3X47b2uKc+wJ7vVP7syu060S5DuVVKrOoRieKa1RSbVdVnUNVdQ7ZrBaFBFgVFuCnxMhAdY4OVI/2wRrRKUxDE8MVEtDyft5OV1Rp19ajJTqYU6nU3CplFFSptLpeZTX1qqytl7+fReGBfgoL9FNEkE1d2wWpb3yI+saFaGCHUHWICPD2SwBaHZvVon9e21uXvrxXWSU1Dda+9dZbmjx5sq688kqT0gHmmD9/vrZv3+6ybljnCP15fE8TEgGtU25ZrfZklWpvVpnS8yp0qqRG2aU1PzyH1P3kOSTAqpjQAMVHBKpjZKD6xIepX0KohnSKUHggW90AQFNwPW7biirrtCWjSKnZ5UrNqVB6fqVKq+0qq7b/39qMVeFBfgoLtP2wNhMTrH4JYeobH6aBHcPVITLQ2y8BBtTVO3XgVJl2HS/RodwKHS+q1omiapVU1amqrv60dcgf1uESo4LUJTpYPWJDNLxLpIZ1ilBIAGu/cM3plA7mlGtvVpkOZpcrI79S2aU1yi2vVWVNvart9XI4pUCbVUH+VoX4+yk+IlAdIgLVKTpI/TuEa1DHcPWMDZGf1eLtlwOY4pEJvbU3q0w7j5c0WLd9+3Y988wzmjNnjknJAAAAAAAAAAAAAABAc7A4nU6nt0MAAAAAAAAAAAAAAAAAAAAArdXKlSs1ZcoUl3XdYoK07reDFUZjHaDNunPZIa3aX+CRc087I17zJ3X3yLl/idMpvbrtpJ7amKlau6PB2pFdwvXRrwd6JEdhpV2D5n/rkXNL0sa7h6hvXIjHzg+0NYl/2ebtCM1uw52DNSAh1NsxXLI7nJr82n7tOVluqP7Vqb01oX9Mk8dlzhsnJadSq/bn69PUIqXkVDb5fH5WiwZ3DNWYnlGaMqi9erYPboaUzau4yq6P9xfo00NF2nqkRFV1Df99YUSwv1VndY3U2N5RmjQgRjGh/s2Q1DPa4pz7gqJKu9YfLNTalEJ9lVGiGhd/1zbEz2rRmV3CNaF/jMb3b6f48JbR5LSgok7vf5+nDamF2nWiXPWOxn8tuWf7YI3r107XDI3lZw5oZtuPlWrqm8myu/gdjY2N1f79+xUXF2dSMsCzkpOTNWLECFVXVzdYFxFk06ezRqlzdJBJyYCfd8d7+7Vqb45Hzn3TqETNn9K3Wc+Zkl2ulXtz9GlKvlKyja0XNMTPatGQxHCN6R2jKUPi1TO26c/OhRV1GvjYl00+zy/Z9LtR6hsf5rHzA2g+Tqf0ytfH9dSGdNfvSyVFaeUdI0xK1nQt4XrsDa15zk9XUFGr93ee0vrkfO3KLGna2kxsqMYNiNW1wxM8Ou8d/7jRY+f2lk9nnakBHcI9dv6iyjqtT87T2gN5+jKtsOnrkElRmjgoTuMHxCo+wvMNfZnzlqO8pl6fpuRpzYE8bckoUnFlXZPPGRls05jeMbq0b3uNGxCrYP+W+dm3tnJfQdNlFVfrkgU7XP7+BAYG6ttvv9WgQYNMSgYAAAAAAAAAAAAAAJpomc3bCQAAAAAAAAAAAAAAAAAAAIDWKj8/X7/97W9d1gXarHrl2t40dQXQapwsqdWsFYe17Wipt6MAAAxa8GWW4aau8A6HU1q1P19vfJOtnZllzXrueodT358o1/cnyvX85hMa0jFMt5/dQZMGxMjPamnWsdy152S5Xt16SmtSCl1upO2uqjqHNh0u0qbDRfrLuqO6rE87/Xp0gkYlRTTrOI3VVufcF6TnV+nVbae0bHdek5oonK7e4dS2o6XadrRUj6w7qskDY3TXuYnqFx/SLOdvbofzqvTylpP6cF9+s/3upeVX6cWvsvTiV1m6oEeUfjemk87s0vqaIwDeMDopQveO6aRnNmU2WJeXl6fZs2frvffeMykZ4Dl2u13Tp0932dRVkp6/uj9NXQGDHE6nVu3N1etbM7XzeEmznrve4dSuzFLtyizV3zYe0ZBOEfrtuV00aVAczyEAmuRkSbVmLU3W1owib0dpNlyPG9Ya5/ynDudWaOGXx/ThnpzmW5vJq9CLmyv04uajuqBXO917UTed2TWqWc6NxknPq9QrXx/Xsl2nmncd8kiRth0p0l8+OaTJg+N19wVJ6pdAs/q2LCW7XK9vzdSK3dmqrmve91pKquxauSdHK/fkKCLIpquGJei2c7qoa0xws47jSW3hvoLmkxgVpH9c0183L94jZwP91mtqajR9+nTt2LFD/v7+5gUEAAAAAAAAAAAAAACNRmNXAAAAAAAAAAAAAAAAAAAAwEPuuece5eTkuKybN66rBiSEmpAIADxvxd58PbQ6Q2XV9d6OAgAwaP+pCv39yxPejoEGrDtYqPmfHdehvCpTxttzslx3Lz+sZzZlat7lXXVx72hTxj1dam6lHttwXJsOm7OJtr3eqdXJBVqdXKCzu0XqT5d00dBE72103xbn3BeU19Tric+Oa/G32Q1uxt1UdodTK/bma8XefF0zNFbzxnVVZLBvfOW3vKZez36eqUXfZMvu8Nw/whfpxfoivViTB8bo0cu7KTaMTc2Bppp1fidtO1qqrzMabvq0ZMkSTZ06VVOmTDEpGeAZTz75pHbu3Omy7pazOunyAbEmJAJavnXJeXpqfboO5VaYMt6eE6W6a8l+Pf1psOZN7K1L+rY3ZVwArcuK3dl6aGWqSqvt3o7SbLgeN6w1zvnpymvq9exnGXpja6Zn12YOF+qLw4WaPDhef53UW7FhAR4bC/+rvKZeT6xL01vfnPD8OuTubK3Yna1rh3fQvIm9fWYdEuY4WlClpzak6+N9OR79WftRabVdi7ad0L+/ydK1Izro9xd3V3xEoOcHboLWfl+BZ1zSt71uHt1Ji7Y1/B777t279fTTT+tPf/qTSckAAAAAAAAAAAAAAEBT8OkqAAAAAAAAAAAAAAAAAAAAwAM+/fRTvf/++y7rLugRpWlnxJuQCEBr8fZN/XRhzyhvx/gfJVV2zfkkQ6v2F3g7yn9pF2JT1ryz3D5u4mv79P2Jcg8kAgDfUmt3aPaKNNnrTdjNGW7LKavVQ58c0bqDhV4Z/2hhtWa8c1Dj+7XTc1N6KCLI819JtNc79dzmTC3cctJrP5dbj5Ro0mv7NOPMBD10cZJCAqymjd0W59xXbDlSotkr0nSqtNbUcZftztPmtGL9bUpPXdTLu3/nbz1Sors/SFNumXn/Bqv2F2jrkVItuKqXzu8Radq4QGtktUgvXNlTF760RyVVDTeimDVrli6++GKFhXmviTnQFOnp6XriiSdc1vWMDdXDl/cyIRHQvN65Zagu7B1j2ng5pTX648pUrUvOM23M0x0tqNKMt/Zo/IA4/e3qfm49h7QL9dfJJ8e6PebEhd9qV2ap28cB8B0lVXY9+NFBrdqb4+0ozaYlX4/N0Brn/Ke2ZBTpniUHlFNWY9qYq/bmaGtGkV68doDO79XOtHHbsq/TizR72QGdKjFvniVp6a5T+vxQgZ6/ur8u6mPe35rwjnqHUwu/PKbnNh5Rrd1h+vh2h1PvfntSn+zL1byJvTV1RAfTM7jSFu4r8Ky/jO+lrRlFSs2paLDu8ccf1/XXX6/u3bublAwAAAAAAAAAAAAAADSWed8mBgAAAAAAAAAAAAAAAAAAANqImpoazZw502VdRJBNz03pIYvFhFAA4EFfZZToooV7fK6pKwDAtac3ZepgbqW3Y+BnbDtaqktf3uu1Bp+nW5NSqHH/3KeDOZ79Wckpq9WViw7ohS+zvN5s2OGUFn2TrYmv7VNGQbUpY7bFOfcVS3bl6oZ/p5je1PVHeeV1uvndg1r8rfc2kH916yldtzjF1KauP8qvqNNNb6doya5c08cGWpv48ADNG9fVZV1mZqYeffRRzwcCPGT27Nmqrm74bzSb1aK/X9NfQf5sqwE0ZGtGkS5ZsMNrTQRPt+ZAri5bsEMp2eXejgLAx32VVqgL/769VTVi43rcsNY45z/1ytfHdd3r35va1PVH+eW1mvbmbi357qTpY7c1S747qRsXfW96U9cf5ZXXasbiPXpr+wmvjA9z5JXX6opXd+rJ9eleaep6utJqu+5dnqxZSw+ort67WU7XFu4r8LwAm1X/uGaA/P0a/vBnVVWV7rrrLpNSAQAAAAAAAAAAAACApuAbKAAAAAAAAAAAAAAAAAAAAEAze/LJJ5Wamuqy7okJ3dQhIsCERADgGTV2hx5Zd1TXL05WtpeaYAEAGu/b42V6ZSsbtfuiJbtyNfWtZOVX1Hk7yv93rKhaVy06oL0nKzxy/vT8Ko1/dZ92ZpZ55PyNlZpbqQmv7tPuLM82smiLc+4rXvgyS/evTPd6M+F6h1N//CRDz32eaeq4Tqc055MMzVt/VPUO7/0b2B1OPbAqXct2e7+BDdDSXTM0VuP7tXNZ9/zzz2vPnj0mJAKa19KlS7V69WqXdXdfkKThnSNMSAS0XEu+O6mpr3+v/HLfWds9Vlilq17bpb1ZvvVsCMA31Ngd+ssnh3TdG98ru9Q7TRE9gevxL2utc346p1Oa89FBzVt92OtrM/evSNHSXae8lqG1+8fnR3XfBymq84V1yJWpeu6zDK/mgGek5lTo8he/1XfHSrwd5b8s/z5bU1//XpW19V7N0RbuKzDX4MRw3XFeksu69evX64MPPjAhEQAAAAAAAAAAAAAAaAoauwIAAAAAAAAAAAAAAAAAAADNKC0tTfPnz3dZN75fO10xuL0JiQDAMw5kV+jyV/bptW2n5PTu3rMAgEaoqnPodx+myYv7xOMXvLUjWw+sSvfqJv6/pLjKrusWJ+toYXWznvdIwQ8NRH21UXxp9Q+v21MNTtvinPuKd3bmaP7G496O8V/+tvmE3tqRbdp4D689on9/m2PaeA1xOqX7V6ZryxHfajoAtESPT+yu6BBbgzV2u1133323nDzUowUpLy/Xfffd57KuX0KY7hvbzYREQMv15vYTun9Fim8+h1TWaerru3S0oMrbUQD4kAOnyjTuxR16bUtmq3pfiuvxL2utc/5Tcz9O1eJvsrwdQ9L/rc18kKKv04u8HaXVeefbLM3fkO7tGP/luY1H9Ob2E96OgWZ0OLdC1/xrl06W+OZ6/vYjxbrl33tVV+/wyvht5b4C890/tpv6xoe5rJs9e7bKy8tNSAQAAAAAAAAAAAAAABqr4W9jAQAAAAAAAAAAAAAAAAAAAHDLnDlzVF3d8AZ5YYF++ut4NpUH0DI5nNLLW7L0zKZM1dWz2yUAtFR/3XCs1TZqbMlWJxfoT2uONGpD6QCbVWd0DteopHCN7BKuDhGBig62KTrYpqo6hwqr6lRUaVdydqW+OVaqbUdLlVVS4/Y4JVV23fLuQX1y+yCFBvi5H/QnSqvtmvHuQeWV17l9bFign87rHqmRXcLVPyFUHSMCFBvmryCbVTY/q2rsDlXW1iuvvE6ZxTVKzq7QtqOl+uZ4mWrt7m0cXlZdr1veO6i1vx2suDB/t7P+krY4575i0+Fi/fGTI24fF2izanRShM7vEam+8SHqHhOsqGA/hQT4qa7eqbKaemUWVetQXpW2HCnR5rRiFVXa3Rpj7pojSowK1MW9o93O5475G49r0TfuN5HtGBmgCf1jNKJTuPonhCgm1F9hgX6qqnWoqMqutPxK7c6q0IaDhdp3yr2GyPUOp+5adlif3jlYceEBbmcD8IO4MH89dHGSfr+q4aYxW7Zs0fLly3XNNdeYlAxommeeeUZZWQ03vbJaLHr6ir7y97OalApoeVbvz9WfVqU2+jlkZJdIjeoWpZFJUeoQGajoEH9FBfurqq5eRZV1KqqsU/Kpcm0/UqRtR4qVVez++kNJlV03L96j1XePbFXPIQDc53A69fKXx/X0pxleawTnKVyPf15rnvOfmr8hXYu2ud9Ys2NkkCYOitPwzhEa0CH8h7WZIJsqa+tVXFWnw7mV2n2iVBuS87TvZJlb5653OHXXkv36dNaZig8PdDsb/tem1ALN+SjV7eMCbVaN7hal83vFqF98qLrHhigq2P//1iEdKquuV2ZRlQ7lVujr9CJtPlSgokr31tnnrjqkxKggXdK3vdv54Fvyymt13RvfK7+81u1j/f0sGtY5UiOTInVmUpQ6RQcpKthfUSE2WS0WFVXWqbiqTvnldfo+s0TfHC3Wd8dKVFrt3rq3JH2VVqi/fHJYT/yqj9vHNlZbuq/AOwJsVj13VT9Nevk7ORr4wy4rK0vPPvusHnnkEfPCAQAAAAAAAAAAAAAAt9DYFQAAAAAAAAAAAAAAAAAAAGgm27dv14oVK1zW/eGizkqIoDkJgJYns7hGs1ek6Ztjpd6OAgAtgsUihflg85Ev00u0+Fv3G/nBtabM+cGcSs1akeZ2I4eEiABNPyNe086IV0zozzccDffzU3iQn5KipaGJYbphRJwk6fO0Yr2y5aS+yihxa8xDeVV6emOm5l3e1b2wP+P3qzKUnl/l1jFJ0UG6/ewOmjosTsH+v9ywK9jfqmB/q2JC/dU3PkSX9InW7At+aCb7wZ58vbzlpFuNTrNLazV7xWG9N72/W3l/SVudc1+QX1Gn332YpnqH8X/82DB/3XlOR00dFqeo4J//eq7NalGwv1VxYf4a0Tlc1w+PU129Ux8fKNCLX2UpNbfS0FgOp3Tvh2naePfQZm0kfLoNqUVa8FXDjfF+akTncN1/YSed3z1KFsv//v/woB9+7rpEB+qiXtG6b0wnpeRU6vnNJ7Q6ucDwOPkVdXpo9RH96zrzNvcHWqPrh8dp6e5cfXu84SY+Dz74oCZPnqzAQBr2wLedPHlSzz33nMu6G0Z21IgukSYkAlqmlOxyzVx6oBHPIYGaPipRN41KVEzoz7/H5e9nU0SQTUntgjW0U4RuGNlRkvT5oQL986vj+iqt0K0xD+VWaP6GdD06sbd7YQG0GplF1Zq19IC+OVrs7SjNjuvxz2vNc/5TG1Ly9cLmo24dM6JLpB64uLvO79nuZ9dmIoJ+mPsu0cEa2ydG94/tppTscv1t4xGt3p9reJz88lo9tDJVr08b7Fa+1spikUIDGrddX355rWYvS3ZzHTJAd56fpOtGdFBUyM+vDdqsfgr291NceIBGdInU9Wd0VF29Qx/vy9WCzUeVmlNhaCyH06l7lydr0+zRigvnc0w/asqce4Pd4dTt7+zTKTfe75CkmNAA3TQqUTNGJzbYyDkhIlAJEYFSvHRuj2jNlFRrd2jprlNa+OUxHS1w7z2eN7ef0Hk92+nyAbFuHdcYbem+Au8a1jlC153RQe9+e7LBuqefflq/+c1v1KlTJ5OSAQAAAAAAAAAAAAAAd7ScTw0BAAAAAAAAAAAAAAAAAAAAPszpdOqBBx6Q08XOq/3iQzTjzASTUgFA81m+O09z1xxRWU294WNsfhbZ693ckRpAm5Y17yxvRzAks7hGF720W5W1jgbrrh8ep6R2QSalMqasul73feR+I0lPYc5/UGt36J4PDqu6ruHzn85qkX5zVgfNGdtFgbZfbm7akAt7RunCnlH6Ir1Ysz5IU35FneFjF+3I1rXDYjUgIbRRY0vS2pRCfXLAeLNHm9WiB8d20W/P7iA/6890LjAoIsimW0YlaNoZ8fr7Fye04Ksswxvrf5leog/25OmqIU3bcLytzrmv+MOqDBW48dqnnRGvuZckKTzI/cbN/n4WXTm4vSYPiNHLW0/qmU2Zhn7eCivtemBluhbf2NftMV05VlSt2W40FQ4L9NNfL++ma4e5/3PfLz5Er07trW1HS3XX8sPKLas1dNzalEJtOlyki3pFuz0mgB9YLNJTk7rrsn/ubfDZ/MiRI1q4cKHuvfdeE9MB7nv44YdVUdFwc6LoEH/NubSHSYmAlqfW7tA97x9w8znEotvO6aw5l/Vo/HNI7xhd2DtGXxwu1MylB5RfbuxvQklatO2Epo7ooAEdwhs1NoCWa9muU5q76pDKauyGj/H3s6iuBbwvxfX457XmOf+pY4VVmuVGY9+wQD/9dVIfTR3Rwe2x+iWE6bUbB2nbkSLd9d4B5ZQZa/y49kCeNqYWaGyfGLfHPPnkWLeP8YbMompd+Pftqqxt+P3v68/oqK4xwY0a4/cfHlRBhfHftWlnJmru5T0VEeT+9oD+flZdOTRBkwbF659fHdPTn2YYW4esqNMDK1K0eMYQt8f8EXPuXS99ccztxqXTzkzUIxN6KSTA/TVvSQqwWTXtzERdf0ZH/Wtrph5bm+ZWA+OHPz6kC3vHKMi/cfc0I9rSfQW+Ye64nlqfnN/gdb+qqkrz5s3Ta6+9ZmIyAAAAAAAAAAAAAABglOc+zQIAAAAAAAAAAAAAAAAAAAC0IcuWLdOWLVsarLFapGd/1UO2JjQgAgCzFVXadfv7hzT7wzTDTV39rBbdf2FnXT88zsPpAMB8Tqd0/0fpLht8xoX56+FLk0xKZdzctUd0qtT4JuIwZ87/ufWUUnIqDde3C7Fp2S0D9JfLuja6kcPpLugRpU/vHKzhnYw3Zqh3OPX85hONHrPe4dTjnx4zXB8T6q/ltwzQXed2bFJT19P5+1n0+4s6660b+7r17/j0pkzZ3dig/Oe0xTn3FauTC7T+YKGhWj+rRfMnddf8Sd0b1dT1dDY/i2ael6g3b+ijYIOb1W88VKRV+403PzbqgZUZKq02tpl9UrsgbbhjcKOaup7urK4RWnP7IPWLDzF8zPyNmT7TiBxoqfrGheg3o103/nnsscdUVFRkQiKgcfbu3au33nrLZd1fJvRSu1B/ExIBLdPLXx1XSna54fp2of5afttw/WVCr+Z5DunVTp/OOlMjukQaPqbe4dTfNh5p8tgAWo6iyjrd9s4+zV6WbLgRm5/Vovsv7q7rz+jo4XTNg+vxf2sLc/5TD3yQYnhtpmtMsDbMHNWopq6nO6tbtNbcPVL9EsIMHzN/Q3qrXZtxOqX7P0h22eAzLjxAfx7fq1FjfLI/V+uT8wzV+lktmj+lr56+om+jmrqezt/PopljuurN6UMU7G9sTfOzg/latTenSeP6OjPm3Bsy8iv1/Cbj1+fwQJsWzxiip6/o2+imrqfzs1r023O76L1bhyk6xPjz+MmSan1X5WkAACAASURBVL2+NbPJ4/+ctnhfgW+ICvHX3Mt7uqxbtGiR9u3bZ0IiAAAAAAAAAAAAAADgLhq7AgAAAAAAAAAAAAAAAAAAAE1UX1+vP//5zy7rrhoSq6GJxjfJBABv25xWrIsW7tHqZOPNpBIjA7X8lgG6b0wn+VloZA2g9XlnZ462HClxWffYhG5N3ny7ua0/WKjluxveRDzIYLPBtsTTc55XXqeXvs4yXB8ZbNOSGf01OinC7bEaEhceoMU39lVSuyDDx6w7WKi0/KpGjffhvnwdKag2VGvzs+i1qb01sovxJqTuuLBnlJ6a2N1w/YniGn20N7/R47XVOfcF9Q6n5m80vln8Y+O7adoZ8c2a4aJe0Xrp6l4y2p94/sbjTW4kfLoVe/O11cA1TZJ6xwbro18PdOtnpCEdIgL072n9FBtmbIP//acq9HkajSaBprr3gk4uf+8KCwv13HPPmZQIcN/DDz+s+vqGm+8M7Biuq4clmJQIaHnyymv10hdHDddHBtv0/q+HaXS3qGbNER8eqMUzhqhrTLDhY9Yl5yktr6JZcwDwTZsPFeiiv3+j1ftzDR+TGBWkD24brvvHdpOf0YdtL+J6/N/awpz/1Ird2dqSYWy9o3dcqD767RluzVNDOkQG6u2bhyo2LMBQ/f6TZdp0yPj7xC3J2zuy9HW663l4bHKfRq371zucmr8h3XD9Y5N666ZRiW6P05CxfWK08LoBshp8z/6pDenNug7pazw9597y9KcZqrU7DNUG+Vv11owhurhv+2bPcW6PaL05fbD8/Yxfl1/fmtnsP3Nt8b4C33Lt8A4a0qnh9/OMftYUAAAAAAAAAAAAAACYj2/ZAwAAAAAAAAAAAAAAAAAAAE20ZMkSpaamNlgT5G/V7y/qbFIiAGia6jqH5q45omlvpyi3rNbwcRP6x+izuwbrTA81XQMAb8sqqdFfNxxzWXdpn2hN6B9jQiLjCivt+sOqjAZrrBZp+sjmbWDY0pkx5//afkrlNQ03qfqRv59F70zrpwEJoY0ay5XoEJsW39hXoQF+huqdTrlsFvxL3vkux3Dt3EuSNKqZm5r+1LXDYnXd8DjD9Uu+N74p+E+11Tn3Be9/n6d0g41pbz4zwWPXxMv6ttN9Y4ytERwtrNa7Oxv/83a6spp6/XX9UUO17UP9tXhaP8UZbMJqVIeIAL18TW/D9W/tMH6tAPDzwgL9NPv8Ti7rFixYoMLCQhMSAe7ZvXu3Pv74Y5d1fx7fy3DDIqAtem1LphvPIVa9c8swDejgmXXe6BB/LZ4xxK3nkGW7sj2SBYBvqK5z6E+rUnXjm7uVU1Zj+LiJA+O0cfYondm1eZueehLX4x+0pTk/XVmNXY+uOWyotn1YgP5981DFhRtrwmpUh8hAvXz9QMP1i7efaNbxfUFWcbX+utb1PFzar70mDjS+Zny693eeUnpepaHaW87qpBmjXT+3N8Zl/WN139huhmqPFlTpnR1ZHsnhbWbMuTek5lTo433G1k8tFum1Gwc3e6Pw041MitKfx/cyXJ9dWqONB/ObZey2el+B77FYpD+P7+mybuXKldq5c6cJiQAAAAAAAAAAAAAAgDto7AoAAAAAAAAAAAAAAAAAAAA0gcPh0FNPPeWy7vazOigxMtCERADQdHcvP6xF32TL6TRWH+xv1fxJ3fXq1N6KCLJ5NhzwC44X1ejxT4/piU+PezsKWrHfr8xwuel+eKCfnpzY3aRExs35OEP5FXUN1lw7LE794jzTPLKl8vScV9c59LYbDU7vOS9RwzqFNWoso3q2D9atoxIM16/c7/6m2yeKa7TjeJmh2oSIAN1ypvE8TXHfmE6yWY01A9t+rFS5ZbVuj9FW59wXOJzSi18Za0zQtV2Q5l6a5NE8M89PNNywd8FXJ1TvMPjHeQMWfZOt3PKG7wXSDxuPv3xNL3WO8sw6xlldIww3w950uMhQZgANu2lkvHrHBjdYU1paqr///e8mJQKMmzdvnpwuFqnG9Y/VuT2iTUoEtDzVdQ697UaTrpljkjS8c4QHE0k9Y0N169mdDdev3GP8OQqt0/GiKj22Nk2Pr0vzdhR4wF1L9mvRthNuvC/lp6ev6KtXbxzUot6X4nr8H21lzn/qja0nDK0pWizSy9cPVOfoII/kOLt7tCYYbF65MbWgUeugvuyBFSkG1v1tempK30ad3+F0asHmo4Zqu8YEa+7lrhsANsWsC7sabhC9YPOxZlmH9DWennNvWfyN8evo1BEdNbaPsTXZpvj12Z01zI1715oDec0yblu9r8A3ndUtWpf0a99gjdPp1BNPPGFSIgAAAAAAAAAAAAAAYBSNXQEAAAAAAAAAAAAAAAAAAIAmWLp0qfbv399gTftQf911bqJJiQCg6Uqq7YZr+yeEau1vB2vaGfEeTAT8PKdT2nS4WNPfOahz/rFLC78+qcJKGn/BM97blasv0otd1j10SZISIgJMSGTcir35Wp1c0GBNSIBVf7jI+Ab+bYEZc74htUjFVcbuuz3aB2vWeeY8V9xxTkeFB/oZqj1eVKNjhdVund/Iv+uPbhvdQTY/Y81WmyoxMlATBhjb2NzplLYcKXV7jLY6575gc1qxjhUZy/3o5V0V7O/Zr+DarBY9Or6rodqTJbXaeNj4783Pqa5z6F/bTxmqvfnMBJ3dLbJJ47ky5+IuMtJH2eGU1qUUejQL0BbYrBY9eHEXl3UvvPCCioqKTEgEGLNnzx6tXLmywRqb1aI/jfNsIySgpduQkqdig2tmPWJDNGtMV88G+j93ntdF4YHGmigdL6rS0YIqDyeCr3E6pU2pBZr+1h6d/cw2LfzymAorWP9tjUoMrpVIUv8OYVp3z0hNO7Plvf/O9fg/2sqcn666zqF/bck0VHvz6E46p3u0R/P88bIeslpcL844nE6tPZDr0Sxmeu+7k/risOu1pofG9VBCRGCjxth8qFDHCo39njw6sbeC/Y2tyzaWzWrRXyf1NlR7sqRaG1Mbfj+ppTFjzr2hrt6hjww2244K8ddcE5+b3bl/bUzNb5Yx2+J9Bb5t7riesrl4E+TDDz/U3r17TUoEAAAAAAAAAAAAAACMoLErAAAAAAAAAAAAAAAAAAAA0EhOp1OPPfaYy7o73WiQAwAtya2jErT6toHqFRvs7ShoY4qr7PrnlpM654XvddPbKdp4qEgOp7dToTU7VVqreeuPuqwb2SVcN/lYo+vs0lrNXXPEZd1d5yQqPty3GtJ6k1lz/vF+4xtWzzwvUQE2c74SGBVs07XD4gzX7zhe5tb5dxwzXn95/3ZunbupLutjvGHCjuPuN3Ztq3PuC97+ztgm98M6hWlsb882zvjR6KQIww1UF+/IbtJY7+zMUYGBBkgxof76o4Hmj03VPSaowdce7G/V0MQwXT88TomR3J+A5jCubzsN6RjWYE1JSYleeOEFkxIBrj3++ONyOht+4L9qWIJ6xIaYlAhomVbtNd6MbeaYruY9h4T469oRHQzX7zhW7ME08CXFlXV6+avjOue5rZr25m59djBfDhf3A7QNt57dWWvuGqlecaHejtIoXI/d19Ln/HTvfJulgopal3UxoQF6yIQGjN3bh+jsBprHBvv7aWinCF1/RkclRgV5PI8ZTpXUaN7qwy7rRiZFafqoTo0e5987sgzVDe8coYv7tm/0OO4Y3S3KcLPgt7af8HAa85g1596w/Uixigw2C592ZqLahfp7ONF/XNovVt3aG3tOL6yo05H8Sg8n+o/WdF+Bb+sVF6orhiY0WGP0s6cAAAAAAAAAAAAAAMA8Nm8HAAAAAAAAAAAAAAAAAAAAAFqqdevW6cCBAw3WtAux6aaRvtXcCwCaql2ITc9f0VMXm9TwCvjRnpPlenNHtlbuK1CN3eHtOGhD/rAqQ2XV9Q3W+PtZ9MzkHrJYTApl0AMr01VSZW+wpkNEgO44p6NJiVoGM+a83uHUVxklhmrDAv00cUBM4wZqpHF9o/X69lOGag9kV+gaxRo+9+G8KkN1ceEBSoo2t2nAyC4RhmvT8qvdOndbnnNvyy2r1WeHigzV3nVuoofT/HS8jtp6xPXPxRfpxTpRXKNOUYGNGmeRwcawM89LVGiAX6PGcNc1Q2K15UiJOkcFql98qPrFh6h/Qoj6xYeqa7sgWX3sngq0BveO6aSb3z3YYM1LL72kBx98UEFBraNxD1quY8eOacWKFQ3W+FktmjmmqzmBgBaq3uHUV2mFhmrDAv00aVCchxP9t3EDYvX61kxDtcmnyj2cBt6250Sp3tx+Qh/tyWH9F/+lXai/nr+6vy4xqQGiJ3A9dk9rmPOfemObsWaZsy7sat7azPAEbckoVOeoYPXrEKb+CWH//79dY4Jl9bU3PJroDx+mqLS64fdL/P2sevbKvo1e988pq9FnB/MN1d51QVLjBmmkuy5I0pYM12ukXxwu1InianVqBQ19zZhzb/k63dh6tyRdM6zh5pLNzWKRxvRqZ7hh656sMsONYBurNd5X4PvuvaibPtydLbvD+Ys1K1asUEZGhrp3725iMgAAAAAAAAAAAAAA8Eto7AoAAAAAAAAAAAAAAAAAAAA00j/+8Q+XNXeeY15DFAAww7ndI7Xgyp6KCw/wdhS0ETV2h1btL9CbO7K1O4vmDTDf8j152nTY9ebIs87vpF6xwSYkMu7t73L0eVqxy7qHL01SsL/VhEQtg1lzvu9UhcpqGm4e+6PJA2NMn6NhncJls1oa3Gz4R5lFNW6d+1iRsYaoQzuGunXe5tAxMkDtQ/2VX1HnsjbT4Ov4UVuec29bf7BI9QZeV7sQmy7tHW1Cov+4oEeUEiIClF1a22CdwymtTSnUbWd1cHuMnZllOlLg+ue1fai/ZoyMd/v8jTVlUHtd3r8d6yaAiS7pE62hiWENPlvl5eXp3Xff1a233mpiMuB/vfDCC6qvb/hvpyuHJqi7h5u/AC3dvpNlKqtpuJnVjyYPjlewv7l/mw3vHGH4OeR4YZUJiWC2GrtDK/fm6K3tJ/R9Zqm348AHndujnRZM7a/48EBvR2kSrsfGtZY5P93O4yWGGhy2DwvQjFGJJiT6wZQhCRo/MK5NrM0s/z5bG1MLXNbNurCresU1fl16fXK+sXXIUH9d0je20eM0xgW92ikhIlDZpQ2v7TqcTq09kKfbzulsUjLPMGvOvWX7Edfv/0nSwI7hXnl9Z3WP1iKDDa2PcV9BK9U1Jli/GhKvD77P/sWa+vp6LVy4UM8++6yJyQAAAAAAAAAAAAAAwC/h2/YAAAAAAAAAAAAAAAAAAABAI6SmpmrDhg0N1kSH2DTdxIYoAOBJNqtFcy7uovem96epK0xxrKhaj204phHP7dTvPkyjqSu8orjKrkfXH3NZ1y0mSPec29GERMYdL6oxlP2iXtH61aD2JiRqGcyc830nKwzXnt01skljNUawv1Vdoo1tcp1V4l6Tz3KDzU3bh/m7dd7mEhNqbNySamOv40dtec69bf3BQkN1VwyOlc3P4uE0/81qka4abKyJw7oUY6/jp5buzjNUd93wOAXYzPvqsc3P0iYahwC+Ztb5rpsEPf/883I6XTeiATylrKxMr7/+eoM1flaLZo3pak4goAXbm1VmuPac7tEeTPLzgv391KVdsKHarOJqD6eBmY4VVumxtWka/uTX+t2yZJq64n/YrBb98bIeWvLroa2iERvXY9da25yfbumuU4bqrjujo6lrM/5tZG2muLJO81YfdlnXrX2IZl6Q1KSx1icbW4e7YkiC/E1fh7ToqmEJhmrXHsj1cBrPMnPOvSU1x9h752d0Mf+9BumHhuFGnSzhvoLW676Luslmbfh6/9prr6m0lOchAAAAAAAAAAAAAAB8gc3bAQAAAAAAAAAAAAAAAAAAAICWyEhzg1vOTPh/7N13eFvl3f/xjyTvvUcSjzjbScgiCQHCnmGFTVtGoXQ/lFIKLS08HdBCW3jKpowWKFDCXmVDElYC2SEkcZbjDCce8d62LP3+4JcCJda5ZUtHkv1+XddzPW311Tlf5ZaOzrmPdX+UFDv4F8EEAu3Nsnpd9uQmo9qUuCi99z9TbA8a7en16vj71mpLbYdR/WWz83TjvJFB7ip4itLjdO+5YzR1eFKoW8Eg5/FKi7c26JFl1Vq0pUEecoQQYn94e4fq2nqs604Zaeti61Y8XumqF7aqrdt36GRafJRuO6PEpq4ig51jvmWf2XmEJE3KTxzQvvpreGqsyuusF9RutXivfZnb45Xb8ACfFh+an0Ca7rfT7fFru0N1zEOttatXH25vMqo9fpz9wSmSdOzYNN3zYaVl3fJdLapvdysjwfyz4e716pX1dZZ1Dof0rRm5xtsFELlOGJehsdnx2uxjTuOzzz7TokWLdMwxx9jYGfCFRx55RE1Nvr+/Ty7N1qjsBJs6QiC9uaFWlz72qVFtSlyU3vvZIbaH8PT0enTcncu0pabNqP6yQwt002ljg9xV/5i+BkmaNCw5iJ30bXhanMr3tVvWRdJ1CA7M4/Vq0eZ6Pfrxbi3cVCcPQfLoQ1FGvO69YJKm+REKF+44Hvs2GMd8v55er17+tNqyzuGQLpw1zIaOhp6b3tiqurZuy7o/nj5uQPP+rV29+nBbg1HtCROy+r2fgThufJbueW+HZd3yHU2qb+tRRmK0DV0Fnl1jHio1Ld1q7nQb1Zbmh+ZvPLISzf+Gp8XwtfhjMH+vILKMzErQSaXZ+vdnfQdmNzc369FHH9UVV1xhY2cAAAAAAAAAAAAAAOBACHYFAAAAAAAAAAAAAAAAAAAA/NTc3KzHH3/cZ01MlFMXz8yzqSNgcDlxfIYumJ6jBav6XtRuv+ZOt3796nY9eME4Gzr7wp3v7zYOdR2THa9fH18U5I6C58yDsnTzqSVKJqgaQdTQ7taC1TV6bHm1djRYh8kBdlixq0VPGnwXnToxU0eOSrOhI3MPLt2jj3c0W9b94ZSRtoejhzO7x/xnR43Q+dOyVdva85//q2nt1r62HtW09Ki2tVu1bT3qdns1Kit+wPvrD9Pv//Zu84DTKKdD8dFOdfRYPyc2RAuqx0eb7TfFz/OjoTrmofZ+eZN6eq3DghJinJpdGJrglBkFyUqOc6ml03cwSq/Hq4VbGnTOlGzjbS/b2aymDuuF8acNT1Zhur2BaQBCw+GQvnNIvn7xSrnPunvvvZdgV4TMvffea1nz3cMLbOgEwXBiabYuOHiYFqzYY1nb3OnWr1/arIcunGxDZ1+4c1GFcQDfmJxEXX/S6CB31H9XHztSFxycr9qW7s+vP1q7VdPS/fn1R0vXf/5zt9sTsrDk5Fiz5W/aCXaNWA3tPXpyxR499kmldtSb3VvB0HXm1DzdMn+c8bEhUnA87ttgHfP9lu1oNJqbmV6QqsL00MwJDmYrdjTpSYPzztMm5+jIMRkD2tf7W+vU02s9b5oQ49Ls4tDcV5pRmKqUuCjLUNBej1cLN9fpnGmR93dPdo55qOQkx2jHTUervr1H9W09//n/De09qm/rVn37/v/coxmFqSHpMSbKqYQYl9F3hsn9In8M9u8VRJ7LDyvwGewqSffddx/BrgAAAAAAAAAAAAAAhAH+4gQAAAAAAAAAAAAAAAAAAADw01NPPaW2Nt8Lep85OUvZSdE2dQQMPr87qVhLtjdpZ0OXZe1rG+v1Rlm9Thpvz6KbW2o7dNcHlUa1US6H7jp7jOIMw8HCSWKMS384ZaTOnWoeGgX4a01lqx5dXqWX1tWpyx2YBVuzEvn+xcC5PV798pVyeS1yABNjXPrdScW29GRqS22H/vTuLsu6Uydmav7kLBs6igyhGPO0+CilxVv/xK/X45XTEZBd+i3aMFjVOjLzq9Lio9TR021ZZxVyGSytXWb7TU/w7yeaQ3nMQ2np9iajutmFKYoJUZhwlNOhOUUpemtTg2Xt0opmv4JdF21tNKo7eUJkhhgA6J9zpmTrlnd3qqG97yCXV155RbW1tcrOZl4A9lqyZInKysp81hw0PFkzi0IThITA+P2pY7VkW4N2NlgHPL62vkZvbKjVSaX2HI+21LTpzsU7jGqjXQ7dff7EsJ7/TUuIVlpCtJTvu+7z65DQXIhERxnuN5IuRCBJWrO7WY9+vFsvrq0O3PxvUkxAtoPwkxjj0h/OGKfzplscsCIUx+OvG+xjvt+iTXVGdSdP5Nor0Nwer37xYpnZvP+pYwe8vyXlZvNws4vTQjoPecjINL21cZ9l7ZLyhogLdrV7zEMp2uVUbnKscpNjQ91Kn1LiooyCXeMDdD01VL5XEHlmFadpWkGKVu9q7rNm48aN+vjjj3XIIYfY2BkAAAAAAAAAAAAAAPhv4fvLAAAAAAAAAAAAAAAAAAAAACBMPfzww5Y13zkkshY3BMJNUqxLd541xjjQ6lf/3m5L8JfXK1378jb19JqtWHz1UQWanJ8Y5K4Cb8rwJL31w4MIdUVQdLk9enp1rU55YJ1OeWCdnl5dO+BF/WOinDpnarZe+/5k/fK4wgB1iqHsoaV7tbG63bLu6qNHKC8lfMIk3B6vrnx+q+VnKjspWjefWmJTV5EhnMfcFaqET5kHqybG+PdTxUzDEO769h6/thsoLYbBrhkJwQkTH4xjHkrLd7YY1U0bkRTkTqz2n2xU98mOvhf+PpBFW8wCJU4cn+7XdgFEtrhopy6ckeuzpru7W08++aRNHQFfMJl//8HcIhs6QTAlxbp01/mlxsF11720Sc2dfYdRB4rXK13zQpl6es3mqq4+tkSTh5mdx4W7UF6HtBqObUKsK8idIBC63B49tXKv5t2zXPPuWa6nVu4NyPzvudPz9fqPZ+q6E0cFqFOEk6kjkvX2T2YTxKahczweSmO+aLNZsOuJE7gvG2gPfrRLG6taLeuuPq5EeSkDD8dcXmE2Dze9IGXA+xqIaQWpRnWfGL6ecGL3mMO3TsNzwPQA3GsZSt8riEzfObTAssZkTgwAAAAAAAAAAAAAAARX5PxyFgAAAAAAAAAAAAAAAAAAAAgDZWVlWrp0qc+a2UUpmpgXeUGOQLiZWZisHx0+3Ki2uqVbN729I8gdSU+srNYyw2ComYXJ+vHhw4LcUXDccEKRijPiQt0GBpkdDZ266a0dmn7rSl314latqbReVNfKsNQY/eLYQq342XTdceZoTRkW2kA2DA57mrp12+JdlnXjcxP0nUPCa3HgO9+v1No91p+tP58+ShkJUTZ0FBkiecyDzTQ4KcswqHU/0+ulspoOv7YbCF6vtKux06i2NC8hyN3YL1hjHirdbo821liHNkvS1OGhPY8w3X9FfadxAO++th6j0OqcpGiNyoo32iaAwePimXmWoVH/+Mc/bOoG+Fx7e7uefvppnzXZSTE6ZVKOTR0hmGYWpelHR5qF9FY3d+kPb2wNckfS48sqtcwwwGpmUZp+bNg/fGsyvg6JCXInGIgd9R266fWtmnbzh7rq2Q1as7t5wNsclhqnX54wSit/eZjuOLdUU0aENggPwXPDvDEqzuS6NNTsPB4PlTHf19ptFDKZkxyjUdmDb64xlPY0deq2d8ot6ybkJenyw6zD9qx0uz0qqza79xnq77NphvuvqGs3ni8OB3aPOXzzeqW2LrP3T1r8wO83DJXvFUSu0ybnKDvJ9znUggUL1N5udk8LAAAAAAAAAAAAAAAEB7++BwAAAAAAAAAAAAAAAAAAAPzwyCOPWNZcMI1F5YFAueboAi3a0qj1VW2WtU+srNbZU7I1qzA5KL3U+BEemxjj0h1njbYMSAEGO49XWrSlQY8sq9birQ3yeAOz3TnFKbp0dp5OGp8xoM/Zoq2NuvCxjYFpKkxdfki+fndycajbiCg3vLZd7d0enzUOh3TzqSWKCqPj/Lq9bbrj/d2WdedNy9YJ49Jt6ChyROqY22F7vVnAaZGfgfAHFyTrqdU1lnWba9vV7fYoJsrp1/YHoqql2/L9sN+swsEXKBOsMQ+VspoOuXvNTkAm55sFDgeL6f69Xmnd3lYdOjLVsnb1brMwidnFg++9DMDasNQYHVGSqkVb+w4wXLt2rVavXq1p06bZ2BmGsueee07Nzb6DAM+Zlqdo19A6Lx/MrjmuRIs21Wn93hbL2seXVersqXmaVZwWlF6qW8zDYxNjXLrzvFLmfwNk+74OozqCmsKPx+vVwk11evTj3Vq0uV4eb2AmgA8tSdelc0bopNLsAX/OFm2u07ceXhOQvsLV5YcV6Penjg11GxgEOB4H3updZiHXh4xkzj7Qrn95s9q7e33WOBzSzWeMC8i8f1l1m3pM5yGHB+fvGUyZ7t/rldbtadFhJZHx/rR7zOHbrsYO48/E8LTIuN8ADES0y6mzp+Xpbx/s7LOmublZzz//vC688EIbOwMAAAAAAAAAAAAAAF9m36+ZAQAAAAAAAAAAAAAAAAAAgEHg6aef9vl4YoxLp0zMsKkbYPCLcjl019mjFWsQ5uX1Ste8tE3dbrMgLn9d/1qFWjp9LwS63+9PLlZROotPYuhqaHfrvo/26LA7VuniJ8q0cMvAQ10TYpy68OBcvfvjKXr20ok6pTST8AwE3DubG/RGWb1l3TlBDBLvj263R1c+v9UyvHBYaox+f9JIm7qKDJE65naobulWXVuPUe2kPP8CMWcVmf1bunu9Wr7LOuApkNbuMQvClKSZg+w9EcwxD5XNte1GdUmxLuUkxwS5G9/SE6KUFh9lVLu51ixoxfT9PLNgcL2XAZg7b1qOZc2CBQts6AT43JNPPmlZc870fBs6gV2iXQ7dff5E4/nfnz9fFrz535c3q7nTbVR742ljVZRBqF0gVDd3qa6t26h2Yn5SkLuBqYb2Ht37/g4d+peluvjRtXp3U92AQ10TYly6aPZwLfzpbD373ek6ZVIO87+AjTgeB8faSrNg15lFqUHuZGh5u2yf3thQa1l37rR8zSpOC8g+Ac88IwAAIABJREFUN9e0GdUlxbqUmxwbkH32V3pCtNISoo1qN1ebva5QC8WYw7f1ftxrmVHIMRBDw/kzhlnWMBcLAAAAAAAAAAAAAEBoEewKAAAAAAAAAAAAAAAAAAAAGFqxYoW2b9/us+a0SZlKjHHZ1BEwNIzLSdB1xxUa1W7d16Hb368MeA9vbWrQqxvqjGpPHJ+hC6ZbB6MAg9Gaylb99IWtmnHbSt301g7tbOga8DaLM+L025OKterqg/Wn00o0PichAJ0CX9ft9uiG13yf60lSSlyUbjihyIaOzP154S5tqvEdXuhwSP83f7SS4zhX3S+Sx9wOS7abhQ5I5kGt+43OitdEw2DQ5z/d59e2B+qtsgajupmFycpPCW0QaKAFc8xDZds+swDUkRlxQe7EzMhMsz62mAa7VpoFL5RGSFAvgMA7eUKGMhJ8h0o/88wzNnWDoa6pqUnvvvuuz5rpBSmakEeQ2GAzLjdR1504yqh2a22bbl9UEfAe3tq4T69+VmNUe2Jpti442DqMBWaWlJtdg0nSbEK4Qm7N7mb99JkNmn7zh7rp9a3a2WB2beJLcWa8fnvKGK267nD9af54jc/lOA+EAsfj4Fi722y+jXPcwOl2e3TDy5st61LionTDvNEB2+/WWrN5uJGZ4XGfsyQz3qjO9HWFUqjGHL69XWZ2byclLkpjuP+PIWJcbqKmjkjxWfPOO++oudn8fh0AAAAAAAAAAAAAAAgsgl0BAAAAAAAAAAAAAAAAAAAAQ88//7xlzXlTs23oBBh6Lj8kX4eNTDWqvefDSpVZhNv5o7WrV7/6d7lRbXZStP5yeknA9g1Egi63R0+vrtW8+9fplAfW6Zk1tepyewa0TYdDOnp0mh67cLw+/Mk0fXdOPmGUCLr7l+41CiO+6sgRykyMtqEjM8t3tuj+JXss6y6Zmae5JWbfpUNFpI65Xf693izUPjc5RpPz/Q8euHhmrlHd85/uU2XTwIPCTdS19eiV9WaLjV94sFn/kSTYYx4K2+s7jepMA1WDzTRQocLwda3b22pUN56F84EhK9rl0OmTsnzWbN++XWvXrrWpIwxlr7zyirq7u33WnDeDMM3B6ruHFerwUelGtfe8V6GyarPzHBOtXb267qUyo9rspBjdetb4gO0b0ivrzAJ1c1NiNXl4cpC7wYF0uT16auVenXzPcs27Z7meXrU3MPO/YzP12Len6qOrD9X3Di9USpzvsHkAwcXxODg+rWwxqiPYNXDu/3CnUfD4VceOVGZiTMD2W1FnFnY+Mis85uFM+9hu+LpCKVRjjr61dvXq9fVm3yuzitPkdDiC3BEQPs6fke/z8a6uLr366qs2dQMAAAAAAAAAAAAAAP4bwa4AAAAAAAAAAAAAAAAAAACAIatg15ykaM0sTLGpG2BocTik288cbbSwt7vXq2teKpfHG5h93/zOTu1t9h0qsd9tZ4waksFvGJp2NHTqxrd2aPqtK3XVi1u1ds/AAzWS41z67px8ffiTaXr8ogk6Zky6WMcVdqhp7dHdH1Ra1o3MjNNls/Ns6MhMe7dHP31hq+V3XnFGnK4/ociepiJEpI65XWpae7Rwa6NR7emTMuXsx7H6zIOyjM7tut0eXf/qdv930A9/XrhL7d3W4TQZCVE6bWKmDR3Zx44xD4XdjWahwPkpsUHuxExeslmwwM4G62DXls5e1bb2WNblJEUrPYEAJWAoO9XgO81qXhQIhOeee87n4y6nQ/MmZtvUDezmcEi3n1tqdI3Q0+vVNc+XyeMNzATwzW9u1d4ms/PG286eQBhUANW0dGvh5jqj2tMn5xD4ZLMd9R268bUtmnbzh7rq2Q1au7t5wNtMiYvSdw8r0EdXH6onLp2qY8dlMv8LhAGOx8HR3OlWbav1Peac5BilJ3B/ORBqWrp11+IKy7qRWQm6bE5BQPe92yBYVJKGpYbJPKThfOjO+vAOdg3lmKNvD320U00dbqPaMw7KDXI3QHiZNylHLoubbFZzZAAAAAAAAAAAAAAAIHj4pSUAAAAAAAAAAAAAAAAAAABg4LPPPtOmTZt81swrjZxwGyASDUuN0R9PGan/eW6LZe2q3S16+JO9+s4h+QPa56rdLfrn8iqj2gsPztWxY9MHtD8g3Hm80qItDXpkWZUWbW1UgPIzNC4nQZfOytPZU7KVEOMMzEYBP9zyzk61dvVa1v3mxGJFucLnhO/GtypUUe873M/pkO44a7Tio/lsfVmkjrld7v2wUt1u64BTl9OhS2f1L/g2Mcala48p0PWvWYe2vrWpQX/7aI9+cNiwfu3LxOsb6/X4imqj2l8eV6jYqMH1mbJjzENhT5N1eIb0ebhpOMg27KPS4HVVGIS/StKItDijuv3auz1aUtGk9XvbtKm2Q1trO9TY4VZLV6/au3sV5XIoPtqplNgojUiLVWF6rErzEjWzMFmluQmWC5YDsN+swmRlJUZrX1vfYdAvvPCCfve739nYFYaa9vZ2vfnmmz5rZhenKSuJQM3BbFhqnG4+Y5x+/NR6y9qVO5v08NLd+s6hAwtnWrmzSY9+XGlUe9Hs4TpufNaA9oevuvf9HebXIQRx2cLj9Wrhpjo98vFuLdpcF7j539xEXTqnQOdMy1NCjCswGwUQMByPg2OHYSBmQXq8X9tt7+7VR+UNWr+nRZtq2rS1pl2NHT1q6XR/aW7GpZS4KBWkx6kgPV4T85M0szhNpXlJg3pu5uY3txrN+/923hhFB3jev7Kpy6guOzk8gl1zDPuobDSbYwyVUI45DmxrbZvuWFRhVJudFKNTJ+cEtyEgzGQnxWhmUao+3t7YZ80bb7yhjo4Oxcf7d44AAAAAAAAAAAAAAAAGjmBXAAAAAAAAAAAAAAAAAAAAwMBbb71lWXPqxEwbOgGGtjMPytJbm+r18md1lrV/eneXTpqQoeGp/Vsc1d3r1TUvlctjsHD5yMw4/ebE4n7tB4gE9e1uLVhVo38ur9KuRrOFia24nA6dMC5dl83O06EjUwOyTaA/1le16Zk1NZZ1c0tSdfy48Anwfn9bkx4zCKH8wWHDdHBBsg0dRY5IHXO77GrsMg44PW1ipooy/AuF/LJLZuXpqdU1Wre3zbL2prd3KMrl0OWH5Pd7f31ZuKVBP352i1HttBFJ+ub03ID3EEp2jrmdvF6pzkdI4ZeZBqoGm2nAbJfbo5auXiXH9h2ItMMi+Hu/YanWAXk9vV69tG6fXvqsTh9tb1KXj7AXt8erzh6PGtrd2tHQqY++lN2cFh+lkyZk6IxJWZpbkioHWQpAWHA5HTppQobP74J169Zp9+7dGjFihI2dYSj54IMP1NHhO/jqlEmEvQwFZ07N05sb9+nlT63PT295c5tOKs3WcD+D6vfr6fXqmufL5DFIrhyZlaDfzBvTr/3gwHY1dOqxT8xCdU+bnKPiTAJtgqm+rUcLVu7Rox/v1q6GwAS4uZwOnTAhS5cdWqDDSobe/AoQKTgeB09FnVmw6zCDe9k9vR69uLZaL39arQ+3NRjOzfT8/3DZhv88lpYQrZNKszX/oFzNHZ0xqOZm1u9t0TOrqizr5o7O0PETsgK6b69XqmvtNqrNSbKei7ODaR+fz0O6lRwbfssVhnLMcWDNnW5d/vg6n8eoL/vRkUWKjXIGuSsg/MybmOMz2LWtrU0fffSRjjvuOBu7AgAAAAAAAAAAAAAAEsGuAAAAAAAAAAAAAAAAAAAAgJF3333X5+OZidGaVUhgFmCHW04t0bKdLapq9r04alt3r67793b981vj+7Wfez/ao7Kadsu6KKdDd501RgkxLDiJwWdNZaseXlalVz6rM16A1UpGQpS+OSNXl8zMMwoSA4Ltj2/vtAzxdjikX59QZE9DBlo6e/WzF7fKKntmXE6Crjm6wJ6mIkgkjrmdrnulXB091sd8h0O6Yu7wAe3L6ZD+euZonfHQZ2rr7vVZ6/VKv3m9QmsqW/X7k0cqI2HgP4/sdnt0x/uVuuuDSvVavSkkJce6dOsZowZV4IFk75jbqaHDLbfBuEpSdrgEKiSb91Hb2uM72NUwjGm4j/CQ9m6P/vHJXv39kyrVtJiFU/jS2OHWglU1WrCqRmOz4/WDw4bpnCnZcjkH2YcKiEAnWwS7StLChQt18cUX29QRhhqr+Xenw6GTJ2bb1A1C7U/zx2tZRaOqmrt81rV19+q6lzbpn5dM6dd+7n1/h8qqWy3ropwO3XXeRCXE9H3uBf/98sUydfT4vg6U/v91yFHFwW9oiFq9q1mPfLxbL39aHbj538RofXPmcH37kOEaltq/4GUA9uF4HDw7682CXX2F1Ld39+ofS3bp70t2q7rF97mRicb2Hi1YsUcLVuzR2JxE/fCIIp0zLW9QzM384Y1t8ljcNHE4pOtPHh3wfTe090TcPGS2P/OQLd1hGewayjHH1zV3unXxo2u1uabNqH5sTqIum8M9TAxN8yZl6zevbvZ5r//tt98m2BUAAAAAAAAAAAAAgBAIv7+UAgAAAAAAAAAAAAAAAAAAAMJMd3e33n//fZ81R41OGxSLXQKRIDU+Sn+dP1rffGyDZaDdu5sb9OK6fZo/OcuvfWyv69Tt7+02qv3JEcM1bUSSX9sHwllnj0cvfbZPjyyr0qd7zBZeNTFlWJK+PStP8ydnKiYqPIKQjx6dpsrfzQl1GwihpRXNWry10bLulNJMTc5PtKEjM9e/tl17LQLOo1wO3XHW6LD5vIWLSB1zuyxYVaNFBv8+0uf/RuNzEwa8zwm5Cbr//LH69hNlRovfv/DpPi3c0qjvzcnXhQfnKisx2u99tnX36oVP9+meDyu1s8EsECHK5dCDF4zT+JyBv+ZwEooxt0t9e49xbUpceIR0JfkIav1vDe09UmbfwR+VTWZBrNlJB/4MLdzSqOv+Xa7djQMPDTmQzbUd+tmL2/Tg0r36wykjNbsoJSj7AWDmsJGpSohxqr2770C3d955h2BXBM0777zj8/HS/CTlpfQdRo7BJTU+SrefU6pvPLzacv73nbJ9enFtteZPyfVrH9v3tev2hduNaq88uljTCzhXCaQFK/Zo0eY6o9pTJ+VoQh7z74HU2ePRS59W6+Glu/RpZUvAtjtlRIq+fcgInTklN6zmo44em6k9Nx8b6jaAsMTxOLgqGzuN6rL6CPpcuKlOv3yxTLsNt+OvzTVtuurZDXrgw5364xnjNLs4LSj7scOS8gYtNngvnzopR5OHJQd8//XtZvNwkpQSHx7L/iXHmffR4Mc8q11CPeb4qrLqVv3wyc+0qdrsbwtiopy654KJinbxd3YYmoalxml8bpI2VrX2WWM1VwYAAAAAAAAAAAAAAIIjPP7CCwAAAAAAAAAAAAAAAAAAAAhjH3/8sVpb+15IS5IOH5lqUzcAJOmIUam6dFae/vFJlWXtb16v0FGj05TmxyKp17y8TV3uvsNM9ps6PElXHjnCeLtAONtR36lHl1frqdU1auxwB2Sb0S6HTp2Yqctm52n6CBbNRfj5w9s7LGtcToeuPabAhm7MvFFWr2fX1lrW/fSIEUMymNRKJI65XbbUduj618yCjVLionTjvJEB2/fRo9N02/xRuvqlbXL3Woe7NnW49ZeFu/TXxbs1pzhFhxSnaHJ+okakxSo3OUbx0U5Fu5zq6fWoo8ej2tYeVTZ1aUNVu1buatF72xrV0WN9rrdflMuhO84crbklg+u6L5RjbofmTvPzGX8CVYMpKca8j6bOXp+P17WZBS6k/leIg7vXq1+9ul1PrKw27mUgNla36+yH1+vHhw/XNccUKMrJYv5AKES7HJpVmKLFPsK+3377bXm9XjkcfE4RWHV1dVq7dq3PmiNGZ9jUDcLFEWMydOmcAv1jyS7L2v/992YdNSZDaQkHDqw/kGteKDOa/51WkKIrj4ms8+Bwt6WmTb9+ebNRbUpclG48bVyQOxo6Kuo69M9PdmvByr1qDFBAW7TLqVMn5+iyOSM0o3BwXTMDgx3H4+CrazML+0yL/+o5TE+vV796aZOeWF4ZjLa+ZmNVq856YKV+fGSxrj2+JCLnZv74xlbLGpfToWuPHxWU/Tf5cV81IuchA3TfOJBCPeb4XGtXr+55r0J/+2Cn0fWVJDkc0l/PnqCJ+fztAIa2I0Zn+Ax2XbNmjWpra5WdnW1jVwAAAAAAAAAAAAAAgGBXAAAAAAAAAAAAAAAAAAAAwMLixYsta+aOYrFiwG6/Pr5IH5Q3aUtth8+6fW09+u0bFbr9zNFG231yVY2WVjRb1sVHO3XX2WMicnFbYD+PV1q4pUGPfFKlxdsa5bXO0jOSmxyjiw7O1YUH5yo7yTxUA7DTG2X1Wr2778VS9ztvarZGZcXb0JG1+na3fvFyuWXdQcMSdcURw23oKLJE4pjbpanDre8s2GQcdvq/JxYpJ8DH93OmZKsgLVbff3qzalvNAmbcHq8+KG/SB+VNAe3ly/JSYvTAeWM1o2BwLTIeDmMebM0Wwadf5k+QQTAlxjiNa62CaxvazQIXUuO/eO0tXb367oJNQf1MHYjXK939QaVW7mrRw98cr+QwCbgAhpq5Jak+g12rqqpUVlamCRMm2NgVhoLFixfL4/F9TnL4qHSbukE4uf6k0fpga7221LT5rNvX2q3fvrpFt59barTdJ1fs0ZLyBsu6+GiX7jpvIvO/AdTU4dZlj3+qjh6zc/XfnDJGOckxQe5qcPN4vXp3U50eWbpbi7fUBW7+NyVWF80arotmD1d2EmMERBqOx/ZoMAzRTon/Yhm4li63Ln98nT7YWh+stg7I65XuXlyhVTub9PDFByk5NnKWpntjQ61W7bK+t3/e9HyNyk4ISg8tFvN0X5YUJv+2CX7Mv1nNQ9otHMZ8qNuwt1XPrd6rJ5bv8ev94XQ4dMv8cTpzal4QuwMiw9zRGbr/w519Pu7xePTee+/pnHPOsbErAAAAAAAAAAAAAAAQHn/hBQAAAAAAAAAAAAAAAAAAAISxjz/+2Ofjo7PilZ/CQqaA3eKinbrzrDE67aF1cvf6Xo38mTW1OntKtuaW+A5h3tfWoxvf2mG0/9+cWKySzDjjfoFwUt/u1pOrqvXY8mrtauwK2HZnFSbr0tn5mleaQegFwprXK926cJdlXZTLoZ8eOcKGjsz88pVy7WvzvRh8bJRTd5xF8Ph/i9Qxt4O716vLn9qsbfs6jOoPG5mqb0zPCUovs4tS9Mb3D9I1L5dr4RbroKVgO35cuv5y+qhBF1IeTmMeTO2GobWSlBgmQaL+9NHe7fv11ZuGh8R9/lPjLrdH3/znRq3a3WLcQ6AtrWjWeY+s1xMXlSojgZ9AA3abO8r3nIkkLVu2jGBXBJzV/Hu0y6lZxWk2dYNwEhft1F3nTdRp9y1Xj8X879Or9ursaXmaOzrDZ92+1m79/rUtRvv/zSljVJJFEFSg9PR6dfnjn2pbbbtR/eGj0vWNg4cFuavBq76tR0+u2KN/frJbuxo6A7bdWcVpumzOCM2blMPcExChOB7bp85iLn+/1C/PzfxjjVbubApmWz4tKW/QuQ+u0r8unaaMxPCfE/V6pb+8XW5ZF+1y6KpjRwatj3bDkGQpfOYh/QmYbe82f33BFi5jPth5vF61dvWqratXDe09Kq9r17badm2qbtUnFY3a2+T/3xckx0bpjvNKdVJpdhA6BiLPISPTFBPlVLe773s9y5YtI9gVAAAAAAAAAAAAAACb8atGAAAAAAAAAAAAAAAAAAAAwMKKFSt8Pj5nZIpNnQD4bwcNS9TPjhyhPxsEtf3i5XK9++Mpio929llzw2vb1dThttzWMWPSddHMXL96BcLB/vDilz+r87lApD/iop06c3KWLpudp9K8xIBsEwi2NzfVa2O19cL1Zx+UrRFpsTZ0ZO25tbV6dUOdZd0vji3Q2Ox4GzqKLJE45nZwe7z60bNbtGS7WVhAXkqM7j5nTFB7ykuJ0WMXjtcnO5r1x7d3asUu+0MmDy9J1RVzh+vwEuuAu0gTjmMeLJ1+BLvGusIjkCjW1fe1yn/rtDiXazC4rpGkuCinvF7pyhe2hjTUdb9P97Tp2/8q0zPfLlVslPm/B4CBK81NVFp8lBp9HD+WL1+uSy65xMauMBQsX77c5+PTC1KUEBMe4Uew30HDk3XVMSP1Z4PwpmtfKNPCn85WfHTf75frX9lsNP977LhMXTx7uF+9om9uj1c/WvCZPipvMKrPS4nV3edPCnJXg9O+1m7d+PpWvfRpdWDnf6fk6TuHFqg0Pykg2wQQGhyP7dXQbhbsGhf9/+dmntkQ0lDX/T6tbNEl/1yrZ787PeznZt7cWKuNVa2WdWdNzdOItLig9eHfPGR4/JvG+DMP6UdwbbCFy5gPFssqGjX//pVB38/MojTdcW6pijO5fwnslxDj0tQRKVpW0dhnjdWcGQAAAAAAAAAAAAAACDyCXQEAAAAAAAAAAAAAAAAAAAAftm3bptraWp8104cn29QNgAP5n7nD9e6WRq20CP3a0dCpWxft0g0nFB3w8YVbGvTyZ9aBeRkJUbpt/qh+9QqEWnldp55d4/t7zVRheqwunpmnb0zPUVo8P1FBZLl98W7LGpfToSvmhkeIS1Vzt254vcKybnZRir47Z1jwG4pAkTbmdnB7vPrJ81uNAoMlKSbKqb9fME45SdFB7uxzs4tS9NLlk7S+qk2vbajX6xvrtanGOpy3P+KinZpTlKLDSlI1rzRDRemDc8H3cB/zQOvyI8TI5QyPYNcoPwJmrV5fa5dZ4EK0y6EHlu7RKwbXQoXpsZpVmKLpI5J00LAkZSZGKz0hSvHRTnX0eNTY4dbOhk5tqGrX0opmLd7a6Nc47LdyV4t+9uI23ROhocJApHI4pKnDk7R4a99hAsuWLbOxIwwFvb29WrnSd4jM9IIUm7pBuLriqGK9u6nOMuhsR32Hbn27XDfMO/A5xLub6vTyp9WW+8tIjNZtZ5f2q1d8ndvj1RVPr9ern9UY1cdEOfX3Cw9STnJMkDsbnMr3teuZVXsDsq3C9HhdfMhwffPgYUpLiMzrQgBf4Hhsv9Yu6zB5SYpyOnX/hzuNzlMK0+M1qzhV0wtTddDwFGUlRSs9IVrx0S519PSqsd2tHfUd2rC3RUu3N2rx5rr+zc3sbNJVz27QvReEd7DvX9/dblnjcjr0k6OKg9pHJM5DRvsxD9kZoLD4QAiXMYeZYalxuvq4kbpgxjA5wuOtD4SVaRbBritWrFBvb69cLpeNXQEAAAAAAAAAAAAAMLSxagYAAAAAAAAAAAAAAAAAAADgg0lYwZThiTZ0AqAvLqdDd501Wsfdt1bt3b4XFX1w6V7Nn5ylyflf/dy2d3t03b+tFwGVpD+fPipiw62AgXI4pLklqbp0dr6OG5uuMFl7GPDLO5sbtG5vm2Xd6ZMyNTIzPMIdr35pm5o6fC8CnxDj1F/PHMXn8gAiccyDrbPHo+8/vVnvbG4wfs4tp47U1OFJQezqwHKSYlScEaeZhcna0dCpzp7ALyIf5XQoMdb1eThlt0derwbdIuORNOaB0uvxGteGS6CCJDkdkknrbosi00CJvc3d+svCXX0+HuVy6MzJWfr2rDyf74fkWJeSY10qSIvVYSNT9d05+Wrp6tXza2t1z4d7VNnUZdTPfi+u26ejx6TpnCnZfj0PwMBYBbuuXbtWXV1dio2NtbErDGbr169Xa2urz5opIwh2HepcTofuOm+ijrvzE7V3+w6vf+CjXZo/NU+ThyV/5X9v7+7VdS+WGe3vL2dOIMQuQDp7PPr+v9bp7bJ9xs/50/zxmkagc8g4HNLc0Rm6bE6BjhufKedguzgGhiiOx6HR5Tabm6pq7tJf3i7v8/Fol0NnTsnTt+eM0FQf58bJsVFKjo1SQXqcDh+Vru8dXqiWLreeW12le97bocrGTr/6f3FttY4Zl6VzpuX59Ty7vF22T+v2tFjWnX5QrkZmJQS1F3dvpM5DOuTxWvfuzzxrMIXTmMO3KSNSdPHs4Tp7ap5iopyhbgcIW76+1yWptbVVmzZtUmlpqU0dAQAAAAAAAAAAAAAAgl0BAAAAAAAAAAAAAAAAAAAAH9auXevz8cQYl0ZnxdvUDYC+FGXE6bcnFeval/te9Fb6fNHRn7+0Ta9+b7KivrRo6p8X7tTuRuugofOn5ejkCRkD7heINEmxLp07NVuXzsrTKL73EOHufL/SqO5/5g4PcidmHlte7TNca7//PaFYRelDI5TUX5E25sHW3OnWJU+UadlO6wXQ97vqqBE6f1pOELv6Ko9Xen1jnR5bXq0PtzfJYG35AWnt6tW/19fp3+vrJEkjM+N0ycw8nT8tWylxkf8zzEgY82AwzRuICqMwBenzcAePQRiEx+IFWgW/7nfTWzvU0Udg8uElqfrjKSP7ff6XHOvSJbPy9I3pObrzg0rd9UGlX0EXN7xWoSNGpSknKbpf+wfgP6tA7+7ubm3YsEHTpk2zqSMMdmvWrLGsmUqgGCQVZ8brd6eO0TXP+w5n7fV4dfVzG/Xaj2d+5TzvT29t026DMLPzZ+Tr5IkEywdCc6dbFz+6VssqrOc09vvZsSN1/oz8IHaFviTFunTu9HxdNqdAo7IJQgMGE47HoeP2HHi+5b/d+PoWdfQcOLz+8FEZuvmMcf0+NifHRunbh4zQNw8epjsXV+iuxRXq8WNu5vqXN+mI0RlhGXp/56IKo7orjioKbiOSUTiqFLnzkOES7BpOY46violyanpBio4ak6l5k7I1Ojsx1C0BEcFkzmv16tUEuwIAAAAAAAAAAAAAYCNnqBsAAAAAAAAAAAAAAAAAAAAAwtmmTZt8Pn7QsES5wmzxRWCo+taMXB0/Lt2y7rO9bXpgyd7//Pe1e1r1j0+qLJ9XmB6r359cPJAWgYgzOiteN80bqZVXz9BN8/of6gWEi+U7W7Ryl3Ww4ZGj0jQ+J/TcyrHeAAAgAElEQVQhFjsaOnXjWzss644claaLZuba0FHkibQxD7aalm6d+Y/1fgV8fv/QYfr50QVB7OqrPtrepKPvXqPvPbVZH5QHP9T1QLbXdeq3b1Ro+q0rdcs7O9XlNgthCEeRMObBYhqo4Ayza3rTgAdfeQruXq/xZ6ei/usBZw6H9MvjCrXg4tKAnP/FRDn186ML9PQlpcpIMA9Lbu506/8W7xrw/gGYmzLMOnjDar4U8MfmzZt9Pp6RGK3CdOYi8LlvzRyu4ydkWdZ9tqdFD3y48z//fe3uZv1j6W7L5xWmx+vG08YNqEd8rrqlS2fev9KvEMEfzC3Uz48rCWJXOJDR2Yn6w+njtOq6ufrD6f0PDgQQnjgeh06PP3MzdR1f+98cDum6E0fpqe9MC8ixOSbKqZ8fV6KnL5+ujMRo4+c1d7r1f++WD3j/gbZ8R6NW7myyrDtyTIbG5yYFvR/T3NPBOA9pl3Abc3whLtqpS2YP17nT83XYqHQVcA0PGCtMj1d6gu/vZeZiAQAAAAAAAAAAAACwF8GuAAAAAAAAAAAAAAAAAAAAgA9Wi2ONHQLhT0AkufWMUco0WIz2tsW7tKO+U26PV9e8VK5ei9VInQ7pzrPGKCnWFahWgbDldEjHj0vXkxeX6r0rpurS2Xm89zFo/O2jPUZ13z00P8idWPN4pate2Ka27l6fdSlxUfq/+aNs6iryRNKYB9vG6nad9tBnKqtuN37ORTNz9b8nFgWxqy+0dPbq2pfLdd4jG7R139fDDEKho8ejuz6o1LH3rtXSiuZQt+O3cB/zYDMOJgiHZIIvcRv2E+Xq+/V19/b/NTkc0u3zR+uKucPlCHDWxOyiFD3z7YlK9yPc9cmVNdpxgPBZAMGRkxyjtHjfn1GrIE7AH1bz7+NyCOTBV9121gRlJsZY1t36Trkq6jrk9nj18+fLDOZ/Hbrr/FLmwAJgY1WrTrt3hTZWtRo/5+LZw/W/88YEsSt8mdPh0PETsrTgsml6/2eH6NI5I3jvA4MQx+PQ6un19Pu5Dod0+zmluuKo4sDPzRSn6ZnLp1uGyH3Zv5bvOWD4bCjd9/5Oo7rvHV4Y5E4+F+1jnu7LInUe0vT1BVO4jTm+0Nnj0YMf7dLVz23Uafet0NjfLtZp963QnYsqtLW2LdTtAWHN4ZDG5CT6rCHYFQAAAAAAAAAAAAAAe5n/8hEAAAAAAAAAAAAAAAAAAAAYYnp7e1VeXu6zpiQzzqZuAJjISozWX04v0WVP+l7YrrPHo2tfKdcRo1K1vsp6MckfHz5cMwuTA9UmELbS4qP00AXjNKc4JdStAAG3va5Tb22qt6wbkx2vo0al2dCRbw8u3aNPdlgHSd44r1h5KdahNkNRpI15ML2+sV4/eX6L2rvNAwUumpmrm08pCWJXX9jR0KlvPLpROxr8C2+Mj3ZqbkmqZhQka2J+okakxionKVpx0U5FOR3qcnvV6faopqVbe5q7tLG6XWt2t+qD7U1q6fQdmvxl2+s6de4j63XjySN16ew8f19eSIT7mNshxuU0qjMNMLCLVejYfrE+Xl+vt/+v6dpjCnXO1Ox+P9/K+NwEPXj+OJ3/6Aaj1+r2ePWPT6r0u5OLg9YTgK8qyYzXqt0tfT5OmAACyer9VJKVYFMniBRZSTG69azxuvSxT33WdfZ4dO0LZTpyTIbW7+37mLbfj48s0syiwX1daIfX19fqiqfXq73b/Hrr4tnDdfMZ44PYFb4sLSFaD31rsg4tSQ91KwCCiONx6A1kbuYXx4/SudPzA9jNV03IS9JDF07WeQ+tNp+bWbpLvz91bNB68sf2fe16a+M+y7oxOYk6akymDR1J0YN8HjImyuz1BUs4jjn61tPr1cqdTVq5s0m3vLVNs4vTdPlhBZo3MSfgYdXAYDAqK0HLKhr7fJy5WAAAAAAAAAAAAAAA7EWwKwAAAAAAAAAAAAAAAAAAANCH7du3q6ury2fNqKx4m7oBYOrE8Rm6YHqOFqyq8Vn3YXmTlmxvstzepPxE/fzogkC1B4S1xg63zntkvY4fl6HLZufp8JLUULcEBMwDS/fIZI3qyw/JD/nCwltqO/Snd3dZ1p08IUPnTAle+F6ki6QxDxavV7r9vd26bfEu+ZMl8OPDh+tXxxcGr7Ev2VTTrgv+uVE1Ld3Gz5mQm6AfHDpM80ozlRDT96LyCTEOJcQ4lZEQpfG5CTpmzOfBNT29Xi3a2qi/f7xXH5Zbnw9Kn/9bXv/adnX0ePSjw4cZ92q3SBhzu0S7zD/YvR6vXM7QHwi8XhkdtyTfry+qn69lTnGKrpg7vF/P7c9+bn9vt1H9U2tq9ItjC31+3gEETklWnM9g182bN9vYDQYzj8ejrVu3+qwZlU2wK77uxNJsXXDwMC1Yscdn3Yfb6rWkvMFye5OGJevnx5UEqr0hyeuV/rpwu257t9y/65Aji/Trk0YHrzF8TWN7j857aLWOn5Cl7xw6QoePygh1SwACiONx+Ojv3MyhJem64qjiwDZzAHNGpusnRxXrrwu3G9U/vXKvfnnCKCXEuILcmbUHPtolj8Eb/PJDC2yb94+J2HlIw2BXw+DaYAnHMYe5Tyoa9UlFo0rzk/T7U8fq0JL0ULcEhBWrua/NmzfL4/HI6eT+CAAAAAAAAAAAAAAAduAOPQAAAAAAAAAAAAAAAAAAANCHiooKy5qSjLjgNwLAb787qViF6bGWdVahSbFRTt199hhF+bEYKxDpPF7pzbJ6nf/oBh119xo9uqxKbd29oW4LGJCWrl49t3afZV1SrEtnHpRlQ0d9c3u8uvL5repye3zWZSZG65bTCJ7pSySNebB09Hj0/ac369ZF/gV8/vr4ItsCPivqO3X2w+uNQ11zkqJ1x1mj9fYPp+icqdn9DnmMdjl0wrh0PXVJqV78ziRNzk80fu4f3t6hhz+p6td+gy0SxtxOMVH+BSqEA7cfffh6ff6E2u7ncjp0y2kltoUf/OSI4SpIs75mk6SWzl69s9k6lA1AYIzOivf5eHl5uU2dYLCrrq5WR0eHz5pRWQS74sB+f+pYFab7Pl5J1mFVsVFO3XP+xH6dP+FzHT29+v6/1unWd/wLEbz+5NGECIaIx+vVmxtqdd5Dq3XkXz/WIx/vZv4XGAQ4HoeX6H4EYbqcDt0yf5x9czNHF6sg3ezvXZo73XqnzHq+Pdhautx6dtVey7qkWJfOmpZnQ0efi44yH+/wmYf0fQ/qy/yZZw20cB1z+G/D3lad8+Aq/fz5jersMX//AYOd1dxXR0eHampqbOoGAAAAAAAAAAAAAABEhboBAAAAAAAAAAAAAAAAAAAAIFxVVfkO63E6pOGGISQA7JUU69KdZ43RWf/4zDK81ZdfH1+oMdnWAQHAYLWltkO/enW7bn5np86flqNvz8rTyExCzRF5nltbaxRQMX9ylhJjXDZ01Lc736/U2j2tlnW3nFairMRoGzqKTJE05sGwq7FLlz25SRuq2oyfE+V06E+nleiC6TlB7OwLPb1e/fCZzWpodxvVHzoyVfedOybg7/uZhcn69/cm6+Z3dupvH+0xes6Nb+3QnJEpGp8TPkFjkTDmdvMnQKPT7VGMHwEMwdJpEer9ZTE+Xl+U0yGnQ35dC515UJZlmGMgxUY59cPDhulXr243qn+jrF6nT8oMclcAJKnQYr6zoaFB3d3diomJsakjDFZW8++SVJDBHAQOLCnWpbvOL9WZ96+yDG/15fqTR2tMTmIAOxtadjV06tLH1mrDXut5jP2inA79+czxuuDgYUHsDKa21LTpVy9t0s1vbNP5B+fr0kNGaCSh2kDE4Xgcfj6fm3H4dZ5y1tQ8jc6277wkNsqpHx5RpF+9tMmo/vUNtTr9oNwgd+Xbs6uqzOb9p+TZOu/va57uv0XiPGR/gooDJVzHfLCYVZymPTcf+7X/3euVOt29au/uVXu3R1XNnaps7NKepk5trGrV8oom7Wzo6Nc+/7V8j1bvatZj356iYalc8wOFGdb3ZaqqqpSXR3g1AAAAAAAAAAAAAAB2CP1fdwEAAAAAAAAAAAAAAAAAAABhymph+czEaEU5HTZ1A8BfMwuT9aPDh/f7+UeMStVls/MD2BEQuVq6evXQx3s1967VuvCxjVq4pUEDyMwAbPfY8mqjum/OCG244bq9bbrjvd2WdWdPyda8CRk2dBS5ImXMg2FpRbPm3f+pXwGfSbEuPfqt8bYGfP7h7R36dI9Zj8ePS9cTF44PWphxlNOhG04o0m9OLDaq73J79D/PblG3H4vfB1OkjLndEmPMf0Lb0mUdDmCHlk7zPhIsXp+/gQuXzLQ/mOO8aTnGgQsLtzT4FVQLoP+yk3x/33q9XtXU1NjUDQYzk2DXnCTfQcMY2mYWpelHRxb1+/lHjMnQZXMKAtjR0LKkvEEn37PMrxDBpFiX/nnJFEIEw1BLl1sPfbRLh//fUn3r4TV6d1Md879AhOB4HL6iXf79LcnFs/t/X7u/zp+Rbzw3s2hTnV9BtcHw2CeVRnXfmmnvezvBj0DRlk53EDsx508foQxMDdcxH+wcDik+2qXMxBgVpMdpZlGa5k/J1Y+OKNJd503Ux9ceqjW/mqvbzy3VjMJUv7e/sapV8/+2Ujvq+xcOCwwm2UkxljXV1Wb3vQEAAAAAAAAAAAAAwMAR7AoAAAAAAAAAAAAAAAAAAAD0wWpRrGCFCgEInGuOLtDEvES/n5caH6W/zh8tB9nNwFd4vdKirY266PEyHXbnaj24dK+aw2QBYqAvn+xoVllNu2VdaV6ipgxLsqGjA+t2e3Tl81vltkity0uJ0U3ziu1pKkJFypgHwyPLqnTBoxtU325+bM5NjtELl03UUaPTgtjZV63b26aHPt5rVHvQsET97dyxiokK/s8hv3dovi4/JN+odmN1ux41DBAOpkgZ81DISDC/Zm8Nk2DX5i7zccy0mJPwJ9g2LyVG00ckG9cHSny0UycbBpW3dPZqS631sR3AwGURJgCbWAW7RjkdSkuIsqkbRKprjivRxHz/z2NS46N0+zmlzP/208NLd+uCv69WfVuP8XNyU2L14vcP1lFjM4PYGQbK65UWba7TRY+s0WG3LdEDH+5k/hcIYxyPw1tirHkYZl5KbL/CEQcqPtqlkydmG9U2d7q1xWDePVg+qWhUWbV1gHFpfpKmjEixoaMvWM3TfVnYzEP68f2emWg9TxAM4TzmkHKSY3Te9Hy98sOD9e6Vs3Xe9Hy/rq92N3bqwkfWqKmDc00MbRmJ0Ypy+v7wMBcLAAAAAAAAAAAAAIB9CHYFAAAAAAAAAAAAAAAAAAAA+mC1sHyOQcgBgNCKcjl019mjFetnENifTi1RXgqfcQw+xemxOnlChlwWC0Oa2FHfqd++UaEZt63UL14pNwpRBELhXytrjOrOm2q2eHmw/GnhLm0y+BzdesYopcQRbuRLpIx5ILk9Xl37crl+/ep2y3DgL5uUn6h/f3eySvMSg9jd192+eLe8Bm3GRTt1zzljFRdt308hrz+hSONyEoxqH1y6169/70CKtDEPhQw/guDCJVDBnz6sgmv9CbY9bKT9wSH7HelHwPCaSusgBwADl5NkffywmjcFTFi9j7KSYuQkdRMWol0O3X3+RP/nf+ePV15KbJC6GrzcHq+ueb5Mv355k3/XIcOS9eqPDlZpflIQu4MkFWXG6+SJ2QGZ/62o69BvX92i6Td/qF+8WGYUrAbAHhyPI0NGgvm95sNGpQexE9/8Cflds7s5iJ349sSySqO682cMC3InX+fPPFxrV3iEWLZ2+jEP6UdwbSCF85jjqybkJen2c0v17x/O1Mgss/srkrSttl1XPrM+iJ0B4c/pcFgeZ5mLBQAAAAAAAAAAAADAPgS7AgAAAAAAAAAAAAAAAAAAAH1obGz0+XhmIoFaQCQYlhqrdD9CnSQpIYY/t8fglJMco4cuGKdPrpquK48coWyDwB4r7d0ePb6iWsfes1bnPrJBr2+sV2+IQu6A/9bR49HrG+st65wO6fRJ5ouXB9rynS16YMkey7oLD87V0X4E4A1FkTLmgdTa1auLHy/TEyur/XreKaWZevE7kzQs1d4w+7Kadr25yXqMJOl7c/JVkhkX5I6+Ktrl0K+OLzSqrWzq0kvr9gW5o6+LtDEPFX8CFRo7wiNQocmPPjItrnH8uQYabxhmHAyHFqcY126u7QhiJwD2S42LUpRFGJzVvClgoqmpyefjmYlD45wFAzcsLVbpfpz7SVJCjCtI3QxerV29uuiRNXpiuVnA1n6nTMrRSz+YoWGp9l7bDVW5ybH6+4UHadm1h+mnx4xUdtLAj6Xt3b167JNKHXP7Jzr3wVV6fX0t879ACHE8jhz+nJ9MyAtd2O6hJeahsptDFPLd0dOr19fXWtY5HQ6dPjnHho6+yp/g04b2niB2Yq6xw7yPzBAEu4b7mOPAphWk6M3/maUjx2QYP+etjfv03GpCKzG0Wc2BMRcLAAAAAAAAAAAAAIB9WGkGAAAAAAAAAAAAAAAAAAAA6ENnZ6fPx1n4G4gMN7y2XVXN3X495+qXtqmuLTwWVQWCIT8lRtceU6AVP5uhe88Zo9lF5oFavizZ3qTLF2zSnNtX6+4PKlXfHh4haRi6Xt9Yr7buXsu62UUpyk0OTWhQe7dHV76wVVZ5GONzEvS7k4pt6SmSRcKYB1JVc7fm//0zvbfNvwV9rzxyhO4/b6zio+3/ieH9S/bIa5D/Ehvl1PcPHRb8hg7guLHpxoGyjyzzL1x1oCJxzEMl2uVQUqzZdXtNa3ic++81vG5xOKS0eN/Brf4E2xZlxBrXBlpeSoxxCG1lU1eQuwEgfX6MibP4vrCaNwVMWM+/D53zFgzMDS9vVlWzf+cJVz+3UXVt/s0ZD2VVzV06428r9N6Wer+e99NjRuqBb05WfDT30+yWnxqra48v0YpfHq77Lpik2cVpAdnuR+UN+s7jn+qQvyzR3YsrVM99FMBWHI8jiz9hn0UZ8UHsxLe8lFjjENpQzc28vr7WbN6/OE25KfbPc0W7nMbzkLWt4XEOanr+/Pk8pP3BruE+5uhbUqxLj148RUf4Ee76xze3qsvtCWJXQHiz+hvUri7ujQAAAAAAAAAAAAAAYBd+yQIAAAAAAAAAAAAAAAAAAAD0wWpRrBiXw6ZOAPTX6xvr9cyaWr+fV9vao2tfLg9CR0B4iXI5dMbkLD1/2US9+6MpumhmrhIDEFxe2dSlm9/ZqYNvW6mrXtyqdXvbAtAt4L/n1pp9B5wxKSvInfTtxrcqtKPeOtDo/vPHWgZsITLGPFA2VLXplAfXaWN1u/Fz4qKduu/csbr2mAI5QnA54+716o2NDUa1J45PtwyuDKbTDd8jqytbVNNiz2L8kTjmoZaTZBY6YNcYWqky7CM7KUYup+8BzTZ87ZKUHsLPmiSNzjILL6lsDI9xAoaC2CiCXRF8VvPvVu9DQPo88OnpVXv9fl5ta7eueb4sCB0NPhv2tmrePcu1sarV+Dlx0U797RuTdO3xJUPyOiScRLscOmNKrl74/gy9e+VsXTx7eGDmfxs79cc3t2nGLR/qqmc3aN2elgB0C8AXjseRJzspxrg2zTBYNVhGZyca1VU2huZa8NnVVUZ1Z0zJDXInfctJNgsXrTYMVA0202DXnKRYy3nIYIiEMUffYqKceuCbk1WcaTbvu7epS88ZjjkwGDEXCwAAAAAAAAAAAABA+OCXLAAAAAAAAAAAAAAAAAAAAEAfrBbFYmF5ILzVtvboF6/0P5z1jbJ6LVhVE8COgPA2PjdBt5xaopU/n6Gb5o3U2GyzhVZ96XJ79PTqWp30t091xkOf6cV1++Tu9QagW8BabWuPPihvsqxzOR2aV5phQ0df9/62Jv1zefX/Y+++w6Qsz76P/2Z3tvfeK3XZlS7NjkpE7KLRiA1FYx67KWqSR02iRhNjojGS6GMsqEEM2IhdoogiTaQuC0vZha3sLtvr7Lx/GF+TKMw1u9N25vv5x+OQc+77HK6Zm3vOnb1+Dut+fUahcehdIBsKa+4qq/Y069yntqqmxTzkMD02VEvnF+uskiQ3dnZkaytb1dLVZ1R7/LB4N3dzZEfnxhjV2e0yet0N1lBdc2/LTzS7dta19bq5EzN1rWZ9FCaGO6zJiTcLk5CkiJDBBzsNRqph0Inp9QPA4IVZjxzaQpgAXIH5Owarvq1HP1428HDWt7bV62/rqlzYkf/5uLxJ5/x5nXHwlySlx4Zp2TWTdNZYQrZ8TVF6tH59zmhtuPNY3XvWKI1MNQvxO5Luvn4tXl+t7zy6RmctXKdXvqhVL/NfwOW4Hg9NuQmO5zdf8fZsJi3GbDbT3On52Ux9W49W7mp0WBccZNGckhQPdPTtCgwDLOvbzOe77lRrOGcu8MLPpobKmuPIYsOt+vXZo43rn/1svxu7AXwbwa4AAAAAAAAAAAAAAPgOq7cbAAAAAAAAAAAAAAAAAAAAAHyVo02xQtlYHvBpP3qtXA3tgwtouuutvZpREKfcBPNQJGCoiwkL1pVT03Xl1HR9sqdZT6+p1duljerrH9yG/OsqW7WuslX3xOzTpZPTNG9ymlKjQ1zU9cCs2HVI857b7tUe3O3qaRm6Z3a+t9vwire2N8pm8LqdmB2tpCjPvxZbu2y69ZVdDuuumJKu88exMbUJX19zV1mx65CuenGHuvv6jR8zPitaf714lFINN+h3lw37W41rp+bFurETxyZkRcti+TK41ZEvqtrd+j4dymvubYVJ4fpgp+O6iibzYBR32ttotjl3YbLjYJA8J8JD+k1e6G6UGGX2685dTrwHAAwOYQLwBObvGKwfLt2uhvbBBWP97xtlmjEsQbkJng+s8nUryho0/7lNzn0OyY7VXy8bq7QY5um+LCbMqiunZ+vK6dlatbtJz3y6X29tqx/8/Hdfs9bta1ZaTJjmTc3SpVOyfOIz6YqyBl3y143ebsOtrj4mR784Y6S324CbcD0eunITze8v7F6fzZjNy7t6bW7u5Jve3FpvNvfPiVNSlPf+3SlIjpR2NDisq2js9EA3ju1r7DCqK0yOdHMn3zRU1hyOHT8iUdMLEvTpniaHtZsOtKqyqUs5Tsy1AX/haBbb2ekb/3YAAAAAAAAAAAAAABAICHYFAAAAAAAAAAAAAAAAAAAADsNmO/KmlMEWDzUCwGkvrK/Tuzscbw7pSFu3TTcu3aml80sUxHseAWhGQZxmFMSptrVHi9bV6vn1daptHVxgRl1rjx5aUak/fLRfZ4xJ0vyp6ZqUE+OijoGvvVXaaFR38sgEN3fy7T7Z26zqFsfvp6fX1OjpNTUe6Mg51ywuM649b2yyHj1/hBu7+ZKvr7krvLOjSdcs3qFem/lG/2eVJOn35w53uCmwJ5TWmm0WHxtuVWGSdzfvjouwKj0m1Oh9urPe7HkNxFBfc2/LTzR7HZU3+Mam2LsOmvVRmOQ4GCQ30Ty8xZlwGHcIN3ytdvUS7Ap4SoiDIUhvb6+HOoE/czR/tzKMwxG8sLZK724/OOjjtHXbdMPibVp27UQFWXjNfeWd7Qe14PnN6rWZ33+dNTZNf7hgDJ9DhphjChN0TGGCalu6tWjNAS1aW6Xalu5BHbO2tVsPvbdbj6zYozklqbpqRo4m5ca5qGMgsHA9HtrynAh27fLybMb09eKNPt/aVm9Ud8roJDd3cmQFSWYBqOUH3TdLdobpTNsbwa5DZc1h5sJJGUbBrpL0cXmjLp6c6eaOAN8T4uBLqH19fR7qBAAAAAAAAAAAAAAA8O1LAAAAAAAAAAAAAAAAAAAAAIBfqWjq1j1v73VYZw2yKD021GHd2opWPfbxARd0BgxdaTGhuu2kHK25daL+fOFITc+PHfQx+2x2vbL5oM56cotm/3mTXvq83uuhYvAfrd02rdrTbFR7ipdCPs0jGmFiKKz5YC3f1qAFTgZ83npith6/YKTPBDlUNJmFw6REh7i5EzPxEVajugPNgws9Pxx/WHNvKzAMCN5/qNupv2d3aO22qbbV7LVkEnxcmBQh02yypk7vbgoebBjc52hzcwAAEBgqmjp19/Iyh3Vfzn8dh92v3XdIj324zxWt+YU3ttRpwfObnAoRvO3kAi28uITPIUNYWmyYbjulUGt/coz+/L2jNKNw8LOTXptdr3xRqzMfX6fT/rhGi9dXM/8FnMD1eOgrTIk0ns0c6uh1bzMOWH10NtPa3adV5WaBkKeMTnZzN0dWkGQW5FvZ1OXU+9odWrv7jIPch3k42HUorTnMHDPM/L5yQ0WLGzsBAAAAAAAAAAAAAAAAHOMbmAAAAAAAAAAAAAAAAAAAAAAAv9Fvl25etktt3TaHtT84NlN/PH+E0Ya6v11RqS3V7S7oEBjarEEWnVGcpJevLNaK68friinpigkLHvRxN1W165ZXdmnyQ+v16/cqVOWmgDwEjvfLmowC+jJiQ1WU5tlNqeEe/r7myzYd1HVLdqrPMHgyzBqkxy8YqdtOynFzZ85pMAwoSIw0C1R1N9Ng1yY3BC/4y5p7W0lGlFGdrd+u8oOdbu7myHbUdRjXjsuMdlgTExasvASzYNvaVu+Gh5iGO4WH8GvRAAAEun67XTe9tM1s/ntCnv743WKz+e97u7WlqtUFHQ5tyzbW6LoXtxh9vpa+/Byy8OIS3XZKoZs7g6dYgyw686hUvbxgov55yzRdOT1bMWGD/4y+6UCrbnl5myb9+mPd/3a5qpq7XNAt4L+4HvuHmDCr8hLNwj5NQzbdpct4NjP4nwk64/3SBqMQ1Iy4MBWlO56XuVNJZoxRna3frl315nNAd9hRY/69h3HZsW7s5JuG0prDTHZ8uOIjQ4xq9zR4970BAAAAAAAAAAAAAAAA8BuMAAAAAAAAAAAAAAAAAAAAAAC/sXBVlT7b1+KwbkRKhG45IVvT82N1yaQ0h/V9Ni9R5VcAACAASURBVLtu+PtO48AhIBCMTInQvXMKtP6Hk3T/GYUa7YKgxMaOPj268oCm/X6DFvxthz7d6/j9DHybd3Y0GdUdPyzezZ3AU/x5zT/Y2aSbl+2Srd8syCEuwqq/XT5GZ5Ukubkz53X0mN1LRYV6NiDgcEKDzX4Fs7PXtfeI/rTm3pYcFWIcbrrxQJubuzmyDZVm58+KC1N6bKhR7dhMs2DbiibvhiqZXhsiPRweAgAAfM/ClRX6bO8hh3UjUqN068wCzShM0LwpWQ7re212Xb94a0DPf9/f0aCblmxz6nPI4qsm6KyxjufrGJpGpkbp3rNGacOdx+r+s0e5JDytsb1Xj/5zr6Y++ImuXrRZn+w2m+cAgYTrsX8Zm2UWiun92YzNqM7Ts5m3t9cb1R0/PNHNnTiWHB1qHOT7xX7v/vxzfWWzUV1WfLjSY8Pc3M1/GkprDnOp0Wbz7Govh1wDAAAAAAAAAAAAAAAABLsCAAAAAAAAAAAAAAAAAAAAAPxCaW2HHvygwmFdkEV6+JzhCrV++ZX6n83KU2ac440ky+o7de+7jo8PBJqo0GBddnSa3v/BOP19frHOKkmSNdgyqGPa+u36x/ZGzf3rVp382BdatK7WOPALsNulleWOQ14kaXq+2abq8G3+vOZfVLXp2pfK1GcY5JAeG6pl84s1JTfGzZ0NjGkgRWu3WZCAu7V09xnVGT4tI/625r5gUo5Z+NDnXg52Xb+/1ajuaCfWemym2XMvre0wPqY71Lb2GNWlxYS4uRMAAODLtte06YF3djusC7JY9PDcMV/Pf2cPV2ZcuMPHldW161dv7hp0n0PRF/tbdO0Lm534HBKmV66drCn58W7uDL4gKjRYl0/L1vs3TdXSaybprLFpCnHF/HdrneY+sUEzf/+ZnvvsgHGoIODPuB77n7FZZnOc7TXenUsZz2ZizcIZXcFul1buajSqnV6Y4OZuzEzKjTOq21Dp3WDXDRVmwa5H55k9H1cZimsOMzHhVqO6Dh/52RAAAAAAAAAAAAAAAAACl9k3XQAAAAAAAAAAAAAAAAAAAAAA8GG9NrtuWLpLvTbHGx1fMyNTE7K/DjiKCQvWA2cO06WLtjt87FOfVevUUQk6rtCzm5gCQ8W0vFhNy4tVXVuvXlhfq0XralXdYrYZ9OGU1nXoJ6/v1r3vVuiiiSm64uh05SU6DuNA4Npa067GDrMwxmlDLOQT385f17yiqVuXP19qHGw9PDlCL142xiiw3lsiQoKM6po7zdbT3Vq7zDYRN31ejvjjmvuCSTkxWrrpoMO6dRVmwarustbw/M4Eu5rWbq5ul90uWQaXzTRgVc3dRnWZcWFu7gQAAPiqXlu/bnhpq3ptju+Vrz02RxNzvv7sFxNm1YPnjta8pzc6fOxTn1ZqVlGyjhueOKh+h5KKpk5d9swXxqGaw1Oi9LerxhuF5cL/TCuI17SCeNW19uj5tQe0aM0BVRvezx9OaW2bfvJKqe59a5cunpypy6dlKz8pwkUdA0MH12P/NCXPLHR3c1Wrd2czh7qM6jz5etta3arG9l6j2ukFvhHyOSk3Tks31jisW7fPLFjVXdYYnv9ow9evqwzFNfemvn67Gtp6VNfWo/rWHtW39ai+tfvL//7r//1u7hjlJAyhfye8dA0EAAAAAAAAAAAAAAAAvkKwKwAAAAAAAAAAAAAAAAAAAABgyPvNB5XaVtPusK4gKVw/OinnG/9/5oh4zR2Xope/qD/i4+126eZlu/TBD8YpLoKv5AOHkxodoptPyNYNx2Xp7R1NemZNjVbtaZbdcfbyYbV09ekvn1TryU+rddKIBM2fmq4ThsV7bZNr+K6Pys02pM6KC1NOPAFx/sAf17ypo0+XPLdN9W1mm5iPSo3US1eMUXJUiJs7G5zI0GCjupYuHwl27TYL0ogMHXywq7+uuS84piDOqK60rkPVLT3KiPV8UO7WmnbVtvYY1R5XaPZ8JGlCVrRiw60O31OHOvu0vbZdY9KjjI/tKr02u3Y3mIWHZA+RazgAAHC9B9/drW3VbQ7rCpIj9aNTh33j/88claS5E9L18udHDtqy26WblmzTipunBcT8t6mjV997aqPq28zuRUelRWnJ1ROVHO35e2b4ltSYUN0ys0A3npivt7fX6+lPD2jV7sZBz3///HGFnlhVqZmjkjR/erZOGJHE/BcBgeux/5qQE2s2m+no1faaNo3JiPZQZ1/rtfVr98EOo1pPBkR+tKvRqC4rPtxngiuPHWYWNlpa26bq5m5lxHl+1rW1ulW1LWah7McPT3RzN/9pKK65Nzyzer8efHe3DnX2Orz3+ryy2Sf+rkxDy01/hgQAAAAAAAAAAAAAAAC4i///FgEAAAAAAAAAAAAAAAAAAAAAwK+trWjV46sOOKyzWKTfnTNc4SHfHrx1z+x8fVh+yGGYVk1Lj25/Y7cev2DkgPoFAklwkEWnFyXq9KJElR/s1DNra/XSxjq1dplt3vpt+u3S+2VNer+sSYVJ4bpiSrounJCqmDDnN3o9aXi8DtwzfcC9wDet3H3IqG5qXoybO4Gn+Nua9/T164oXSo2DDkf/K+AzaQgEfKZGh2hHneO6+vZetXbZFBPuvU2827ptqjMM00iPGdwG/P685r5gREqECpLCtcfg7/eDnU26ZFKaB7r6T++XmV3HRqZEaFhyhPFxg4MsOq4wTsu3NTisfbu0ySvBrltr2tXXb5b+VOyF/gAAgPet3XdIj39U4bDOYpEePr/osPPfX5wxUh/ubHQYmlfT0q2fvFKqhReXDKjfoaKnr1+XP/uFcZDb6LRoLVkwQUlRhAjia8FBFp1enKrTi1NVXt+hp1fv15IN1Q4DDI+k327Xe6UH9V7pQRUmR+rK6dm6cFKGYsIGtk3SSSOTVHX/yQPuB3A3rsf+LTjIouOGJ2r5FsdD0be21Xsl2HVrdZv5bCbDczN205DPqfnxbu7E3IjUKBUkR2qPwfv5g7KDuuToLA909Z/eK3U8J5SkkalRGpYS6eZu/tNQXHNvSIgMUVPHkb/T8pWN+1t01ljPz7v/W22rWZhwFMGuAAAAAAAAAAAAAAAA8DKCXQEAAAAAAAAAAAAAAAAAAAAAQ1Z7j003Ld0lk71mr5ySrim5h99sNj7CqnvnFOiaxWUOj/XalgbNGnVQ545NdqZdIKANS47QL2bn6/aTc7V0U72eXVurrTXtgzrm7oYu/e+be/XA+5W6YHyKrpyaruFOhJ3B/9j67VpX2WpUOzbT8xuk/7vTRif6ZLDwS5/X65ZXdjms+8t3R2rOmCQPdHRkQ2nNTf38zb3Gz2moBXzmJJgFoNrt0saqNh1XGOfmjg5va0277GZ5BsbP63D8ec19xXdGJ2rhqiqHdf/Y1uiVYNc3tpoFKpxWlOj0sU8cHm8U7PrSxjrdfEK2LBanTzEoK3c3G9celUGwKwAAgaa9x6YbX9qmfoOb8yun52jKEUKe4iNDdN/Zo7Tg+c0Oj/Xaplp9pyhZ545Pd6rfoeTnb5Rp3T6zezFCBGFiWEqkfnnmSN3xnWFaurFGz6w+oK3VZp91D2f3wQ79/PUy/frtcl04KUNXTs/W8BQ+F8C/cD32fyeNTDIKdn1pfbVumVng+dmMYZimJB2V5ZlgV1u/3fh9MS471s3dOOe0omQ9vrLCYd3yLfVeCXZ9Y7Pj16IkzS5OcXMn/2kor7mnORMAvWbvITd2Yqalq0+N7WZBtFnx4W7uBgAAAAAAAAAAAAAAADiyIG83AAAAAAAAAAAAAAAAAAAAAADAQN391l7ta+pyWJebEKY7TslzWDdnTJJxSN2dy/eoqrnHqBbA1yJDgzRvcpreuW6sXr26ROeOTVZI8OB2qW7vsenpNTU64dGN+t0/97uoUwxFZfWd6ujpN6otIRzOL/jbmi/ddFCL1tUa1WbEhur5S4uGVMCnM+Hbn+9vc2Mnjm2t6TCuHTGIUHF/X3Nfcdpos0DUj8oPqbrFs/f4m6vbjcPuZxc5H6g9Z0yiQq2Of524oqlbq/aYh6y6yrs7mozq8hLDlRLNax8AgEBz1xtl2tfY6bAuNyFCd35nmMO6OSWpmlOSanTuO17doapmx7PnoWjpxho999kBo9qMuDC9MH88IYIwFhkarHlTsvTujVP02vcn69zx6QoJHtwWR+09Nv310/06/ner9dD7e1zUKeB9XI8Dw5ySVMPZTKdW7TYPWXWVd7YfNKrLT4pQSrRnXn9lde3q6LEZ1ZZkmodcesJphoGoH+1sVHVzt5u7+U+bq1qNQ9dnF5vdM7vKUF5zTxuWHKWESLM56YbKFqPPU+70xf4W49q8xIH/rAUAAAAAAAAAAAAAAABwBYJdAQAAAAAAAAAAAAAAAAAAAABD0vtlTXphfZ3DOotF+u3ZwxQZavYV+nvnFCg+wuqwrqWrTzcv2yW73eiwAL7F5JwY/fH8EVp32yT95ORcZceHDfqYVR7eBBm+ZcN+sw2pJakk3fdDPuGYP6353sYu/eT1cqPamPBgLbq0SOmxQyvIYUJ2jHHtyt2eD5j8d6v3mm82PiF7YBvJB8Ka+4rJOTHKSwx3WNdvlxZ/7vgzhiuZBvsWpUVqbKbz17G4CKtOHZlgVPv8erNeXGVfY5fWV5pdx2eOiHdzNwAAwNe8V3pQL6ytclhnsUi/Pb9IkaHBRse97+xRijcIQmrp6tPNS7b53fx3b0Onfrys1Kg2Ntyq568cr/TYwc/sEJgm58Xpse8Wa/3tx+j2WcOUHe/4c5kjVYf8M3AZgYfrceCIi7Dq1NHJRrWL1ji+93GlvQ2dWl9hNoc9aWSSm7v52oZK89lwcYb5zNkTJufGKz/JcThlv92uv6337HovWmMWJF2UHq2xWZ79ex3Ka+5pFos0vcBs3itJf/+8xo3dOLairMG4tig9sEN7AQAAAAAAAAAAAAAA4H0EuwIAAAAAAAAAAAAAAAAAAAAAhpzGjj798FWzEKxLJqXpmII442OnRIfontn5RrWr9jTriU+rjY8N4NslR4XoxuOz9OnNE/XX743WCcPiZbF4uysMRZ/vbzOqy0sIV0y4WeALfJu/rLndLv3w1XJ19PQ7rLUGWfR/F43S6NRID3TmWmMzohRqNfu1xtV7m3XAS2Hd7T02rdjVZFRrDbJo4gCCXQNlzX2FxSLNm5RmVPvk6mq199jc3NGXqlt69NLGeqPay49OH/B5LpyQYlT3+tYG4+uqKzyx2vyz1MwR5mEFAABg6Gts79UPl243qp03JUvHDjO/V0iJDtUvzhhpVPtxeZP+sqrC+Ni+zm6Xfrh0uzoM7netQRY9OW+sRqcRroTBS44O1Y0n5Wv1j2fo6cvG6YQRicx/EdC4HgeeCydlGNW9vrlWGypb3NzN155w4j7n5FFm4bSusKHC7O8gLzFCseFWN3fjHIvly/tTE0+uqvTcHLK5W4vXm83iLp+W7eZuvmkor7k3nFpk/n58cV2Vuvsc/xzCHWz9dr2+uc64fmp+vBu7AQAAAAAAAAAAAAAAABwj2BUAAAAAAAAAAAAAAAAAAAAAMOTc/vpu1bX1OqzLjAvVz2flOX38ueNSNHOE2aaR979fodK6DqfPAeCbgizSrFEJeuGyIn184wQtmJ6huAg254W5jQfMwuhGpUa4uRN4ir+s+fPra/XpXrONy396ap5TofW+JDwkSMcXmvXeb5cWrqpyc0ff7m8b6owCVyVpal7sgDaSD5Q19yUXTUxVSLDj5KCmjj793+oaD3Qk/f7D/eox2FQ/OixY540beHjGScPjlZ8Y7rDObpfueGO3bP32AZ/LVFVzj17cYLapf2p0iI4fxnsAAIBA8pNXSlXX2uOwLjMuXD+fPcLp48+dkK6Zo5KMau9/u1yltWafPX3dojUH9MnuJqPan84e7lRgLmAiyGLRrKJkvTh/glbdNkPXHJvL/BcBietx4Jk5Mkn5SY5n1Ha7dMcrpR6azXTpxXVm89fUmFAdPyLRzR19beN+s7npqLQoN3cyMBdNylRIsOPt/Zo6evXkqkoPdCT9fsUe4znk+RPSPdDRfxrqa+5ps4qSjV5jknTgUJcWrjQPcXalNzbX6cChLqPa9Ngwo+skAAAAAAAAAAAAAAAA4E4EuwIAAAAAAAAAAAAAAAAAAAAAhpSXN9Zr+bYGo9rfnDVM0WHBAzrPA2eaPbanr183/H2Xem3u32AXCCT5ieG6+7R8bbhtkh46e5jGZrJRL46s3y6VN5htDpxnEG4H3+cva97Q3qtfvbvPqHbmiARdMyPDzR251+ljzAMAnltXq10HO93YzTe1dtv06MoDxvVznHg+Xwm0NfcViZFWnTc2xaj2Dx/t195Gs+vLQK2vbNUL62uNai+ZlKao0IF9rpGk4CCL/ufYLKPazdXtematWV+Dcfdbe9XVaxagfMH4VFmDHIfyAgAA/7BkQ7WWbzELgP/teaMHPP998Fyzx/b09ev6xVvVazO7d/FVDe09uvetXUa1J49K0rXH5rq5IwS6/KQI3T1nhD6/4zj97vwijc2K8XZLgEdwPQ5MwUEWXX9CvlHt5qpWPbN6v3sbknTXGzvNZzMTMzw2m+m321V+sMOoNi/RN0MgE6NCdN74NKPaP6zYo70N7p2Br69o1vNrzEJ8503JGtQcciD8Yc09LSEyRLOKko3rH/3nXlU3d7uxo2/q6u3X/W+XG9efM87sPQMAAAAAAAAAAAAAAAC4k9XbDQAAAAAAAAAAAAAAAAAAAAAAYKqquUc/e3OPUe13J6TqxOHxAz5XZlyofnZqnm5/Y7fD2m017Xrwgwr99NS8AZ8PwLcLDwnSRRNTddHEVH2+v01Pr63R61sa1N03tMM04HqVh7rUY/i6yE3w3ZBPmPOXNf/tikq1dtkc1sWEB+s3ZxV6oCP3OrM4Wfe8vU/NnX0Oa3ttdt20dJeWzS9WqDXIA91Jd725V/VtvUa1UaHBxkGh/y7Q1vy/vVXaqKte3GFUOyo1Uh/8zziXnfuWE7O1dFO9em32I9Z19fbr5mW79PIVxbIGuz60oq3bplteKVf/kduQJMWEBeuG48xCWY/kgvEp+t0/K1Xd0uOw9lfv7NPE7GiNz4oe9Hm/zYsb6rR8W4NRrTXYosuOZlN/AAACRVVzl37+eplR7XcnZejEkUkDPldmXLh+NnuEbn+l1GHttuo2PfDObv1s9vABn8/bfvveHrV0Of4cFhtu1W/OK/JAR8CXwkOCdNHkTF00OVMbKlv0zOr9em1TLfNf+C2ux4Hrgonpeuj93Ubhir98c5cm5MRpQk6sW3p5cV2Vlm+pM6oNCbbo8mnZbunj21Q2mc/9fTnk89aTC7V0Y616bUd+Ll29/bppyTa9vGCiQtw0h7z55W3qtzseRMaEWXXDifku78ERf1lzSXprW73mP7fJqHZUWpRW3DxtwOe6fFq28fu4o8emy5/9QsuuneSx4N6fv16miibz0OLzJ6S7sRsAAAAAAAAAAAAAAADAjGd+kxkAAAAAAAAAAAAAAAAAAAAAgEGy26Wbl+0yCsFKiwnV3acNPmR13uQ0Tc832zB34aoqrd7XMuhzAji8CdnR+sO5w7X+tkn66al5yk0I83ZL8CHlB7uMa/N47fgFf1jzXQc79cJ6s423bz4+W+mxoW7uyP0iQ4N0yaRU4/qNB9p066vlspkkYA7SE59Wa/HnZushSRdNTFVMuHOboAfimvuSnPgwfW+SWUjo2opW/fj13S7vwdZv13VLdqr8oNmm9t8/JlMJkdZBnzck2KI7TzX7jNTd168rXijVjrqOQZ/3v63c3aw7l+8xrr9oQqqy433zGg4AAFzLbpduXrLNKOwuLTZM95wxctDnvHRKlmYUJhjVLlxZodV7Dg36nN6wq75dz685YFR708wCpcdy/wXvmJgTqz9cMEYb7jhWP5s9XLkJvh3eBjiL63FgCwkO0k9PMwuJ7+7r1xXPfqEdte0u72Plrkbd8eoO4/qLJmcqOz7c5X0cTnm9+Twq14dDPnMSwnXJ0ZlGtWv3HdKPl213eQ+2fruue3Gz8d/p94/PVUJkiMv7cMRf1tzTjh2WoEm5ccb1W6padc3zm9XngZ+1/GHFXj2/1uzfO0k6dliiijNi3NgRAAAAAAAAAAAAAAAAYIZgVwAAAAAAAAAAAAAAAAAAAADAkPDk6mqt2tNsVPvrMwsVGz748COLRXro7GGKCHH89ft+u3Tz0l1q7XYcPAtgcBIirfrBsZladdNEPXvJaM0ckaAgi7e7grftbjALyJO+3FAbQ58/rPkD71UYbaKdGReqq6ZleKAjz/jBMVmKizC/V1u26aC+/1KZ2tx0n2W3S498dEB3v7XX+DHRYcG64bgsp88VqGvuS245IVvxhq+/xZ/X6fY3drssWLi7r1/XLdmpD3Y2GdXnJoTpmulmARAmzhubrGMKzDb7r2/r1dy/btXailaXnf/N7Y268oVS9fT1G9VHhQbr5hOyXXZ+AADg2578pFIfl5vdJz1wzmiXzX9/e16RIkKCHdb22+26aclWtXY7Dp71Nb9+e7fh55BwXT2D+y94X0JkiH5wfJ4++dF0PXv5OJ08KklBFgbAGPq4HuO88ek6dphZqHx9W4/Of2K91u5zXbD8m1vrdcWzm5ybzZxU4LLzm9h90H9CPm85uUDxhkGpi9dX6/ZXSl06h/z+i1v0/o4Go/rchAhde2yuS87tLH9ac0/72ezhcuYWaUVZg877y3rtP9Tlln46emz68bJSPfBOuVOPu/Vkz15nAAAAAAAAAAAAAAAAgMMh2BUAAAAAAAAAAAAAAAAAAAAA4PN21nfq/vcqjGrPHZusWaPMNsQ1kZcYrh/PNNvEtPJQt37+jz0uOzeAIwuySCePTNBz80Zr1U0Tdd0xmUo03CAZ/mdvo/kmxBkxoW7sBJ4y1Nd8Z32n3ixtNKq9dkamQoL9J8AkIdKqn8zMceox/9jeqFkLN2nFLtcFGUhfvo4uXbRdD7xvdq/5lVtOyFZKtHP/5gTymvuSlOgQ/fJ0843in1tbq0sXlepAc/egzltW36nzntqq5dvMwhSCLNLD5w5XZKhrfxX4/jMKFB5idszGjj7NfXqrHvv4gFHwzOF09fbrnrf3asHiHersNQsOkaQ7T81VRqzvXb8BAIDr7axr131v7TKqPXd8umYVJbvs3PlJEfrxrEKj2sqmLv38tTKXndsTdta1681tdUa13z8uVyHBbEUD3xFkseiU0cl67orx+uRH0/WD4/OUGMX8F0MT12N85f6zR5vPZtp7NfeJDXrsw32Dn80s36mrn9+kzl6b8ePuPG24MuLCBnzegdjTYB7ymR7r2d6clRIdql+dOdK4/tnPDmje0xt1YJChm2V17TrvL+u1fIvZNSfIYtHvLxijyNDgQZ13oPxpzT1tan68Ljk6y6nHrNvXrFMf+UxLN9ao3+6aIGFJ+mzvIZ3yyGdatOaAU487Z1yaphXEu6wPAAAAAAAAAAAAAAAAYDCs3m4AAAAAAAAAAAAAAAAAAAAAAIAj6eu368alO9Xd5zgAKDkqRL+cbR7SZOrq6Rl6fWuDNuxvdVi7ZGO9Zo1O1OlFiS7vw53q2no14TfrvHLutRWtyrrrU5cd75Hzhuv8cSkuOx6GhtyEMP1sVp6324AX1bX2GtVZgy2KCffO5tRwraG+5o99fECme2bf9eZe3fXmXrf24wrvXDdWxelRRrWXHZ2u98oO6YOdTcbH39fYpXnPbde0vFjNn5auU0cmKNQ6sJCLTVXtenpNjZZuqlevzbnNy6fnx2rB9Aynzxnoa+5LzhubrH9sa9Cb282Cdj8sP6ST/viFrpqWriunpCvVibDoiqZuPbm6Ws+urXHqtXb19AxNy4s1rjc1LDlCD5xZqJuWmgWn9dnsuu/dCi394qBuPSlbs4uSFGSYOdzeY9PfvzioRz7ar+qWHqf6PKYgTpcfne7UYwAAwNDU12/XDS9tNZv/OhmOZWrBMTl6Y3Od1lc0O6x9aUO1Zo1J1unFqS7vwx0e+3Cf8eeQ/32jTP/7hu8H17574xQVZ8R4uw14WG5ChH42e7i324AL1bX2aPx9K71y7rX7DinzjvdddrxHLyzW+ROO/BmW63HgrfnhDEuJ1IPnFunGl7Ya1ffa7Lr3rV36++c1uu2UAs0uTlGQxWw4095j08sbqvXIP/equrnbqT6PHZagK6ZlO/UYV6hvNZshhQRbFBvu+1vonTc+Xcu31OnNrfVG9R/ubNSJD6/W1cfk6Irp2UqLMQ8yrWjq1BMfV+rZzw6o1+b43vorC47J8Wqwpr+tuafdNWeE1u47pB217caPae7s0/WLt+o37+7WNcfm6ruTMgYU7Ntrs2v5ljr99dP9WrvvkNOPT44O1S8H8fmOf1cAAAAAAAAAAAAAAADganxDCQAAAAAAAAAAAAAAAAAAAADg0x7+535tqjLbhPK+MwqUEOn6r8oHWaSHzhmmWY9/YRTG9OPXyjU5O9qpwCcAwOAcbDcL+UyM4Feq/MVQXvOWrj4t23zQ2214lcXyZRj76X/ZpIom50IFVu9r0ep9LYoKDdaxhXGakB2tMWmRyooLU2pMqCJDghRqDZKt366u3n41dvSqqqVH5Qc7tamqXR+VH1LlIefO+ZW0mFD9ae4IBZsmW/4La+57Hj5nuMoPblZZfadRfXuPTY98dEB/WlWlqbmxmjkiXsUZUSpMCldcuFURIUHq7O1Xc1efdtZ3anN1uz4oa9K6ylb1O5cdrOMK4/TTU9wXWD93XIrWV7bq2bW1xo8prevQNYvLlBkXqtNGJ2pafqyK0qKUEhWiyNAg9drsaunq076mbm2v7dCqPc36YGeTOnrMQyS+khMfpoUXjpRhRgkAABjiHn5/jzYdaDWqve/sUUqIDHF5D0EWix46v0inPrLGKATrR0tLqgnPMQAAIABJREFUNSk3zqmgLW9o6erTsi9qvN0GAAQ8rsf4b3MnpGt9RbOeWb3f+DGltW1a8PxmZcaF67TiFE0viFdRerSSo0MVFRqsXptdzV29qmjs1LbqNn2yu0nv72hQR4/N6f5yEsK18OKjvDKbqW8zC/l0xz2huzw8d4zK69eprM7sOw/tPTb9YcVe/emjfZqaH6+TRiWrJCNahcmRiosI+XoO2dmrnXXt2lzVqvd3NGjdvmb1myZI/8txwxN152neDU73xzX3pKjQYD01b6zmPL5OhzrMfm72lX2Nnfrpazv0i3/s1IzCBB2dF6fijBhlJ4QrLSZMkaHBCrVa1N5jU0tnn5o7+1TT0q3PK5u1vrJFGyqa1dLVN6C+Q4IteuKSo5QUxXdqAAAAAAAAAAAAAAAA4Dt87zfSAQAAAAAAAAAAAAAAAAAAAAD4l40H2vToygNGtXPGJGnOmCS39TIyJUK3nJCtBz+odFjb1NGnW18p16JLi9zWDwDgP7Hxc+AZymve3tOvPoOweH+XEGnV4suLdd5TW1TdYrae/669x6a3Sxv1dmmjG7r7poRIq168rEipMc5vNM6a+56Y8GA9N69IZzyxWfVt5hve99nsWrWnWav2NLulr9FpkXriolGyBrs3OeOXpxeoob1Py7c1OPW4quYePfVZjZ76zD2BNImRVj19yWglRvIr0AAABILPK1v0yD/3GtWeUZKqM0pS3dbLyNQo3TIzXw++u9thbVNHr259ebuev3K82/pxhfZum3r5HAIAXsf1GN/ml2eO1MG2Hi3fUufU46qau/TUJ5V66hPHP7MeiMSoED1z+TglRnlnrj6U5/6HExtu1aIrx2vOY2uNn58k9drs+ri8SR+XN7mlr6L0aD057yiFuHkO6Yg/rrmnFSRHavFVE3ThkxvU3Ol80Gp3X79WlDVoRZlzs+KBCrJY9ND5YzQ1P94j5wMAAAAAAAAAAAAAAABMBXm7AQAAAAAAAAAAAAAAAAAAAAAAvk1nb79u+PtO2fodb3ScEGnVfWcUuL2n/zkuS8XpUUa1K3Yd0jNr3BN2BAD4pvp2s1A+guL8B2vuH3ITwvTylcUqTAr3ditHlB4bqsWXj9Go1EhvtwIXyo4P098uGzOgsF53KEqL1IuXFikmLNjt57IGWfSnC0bo9KJEt5/LVHJUiJZcWazRvM8AAAgInb023fDSVsP5b4juO3uU23u6/sR8FWfEGNWuKGvQ06v3u7kjAADgr6xBFj1+cYlOL3ZfcL2zkqND9fKCiRqdFu21Hg4ahnwmRvrGPM9Udny4/nbVBKXFhHm7FUlfhrq+MH+8YsK8//MTf11zTzsqM0YvL5iojDjfeI0djjXIoj9+t1hzJ6R7uxUAAAAAAAAAAAAAAADgGwh2BQAAAAAAAAAAAAAAAAAAAAD4pF++s0+7G7rMamcXKDkqxM0dfbnJ5O/OGSZrkMWo3pnnAAAYuH671NplM6qNDHV/WB7cjzX3L/mJ4Vp+zVGaOSLe2618q/FZ0frHNUepOD3K263ADUanReq1q0u8Hi48PT9Wy+aXeDRk1hpk0eMXjtSC6RkeO+fhjEmP0msLSgh1BQAggPzyH7u0+2CHUe2vzhyp5Gj33ydZgyx6eG6R+fzXiecAAADw36xBFi38XomuOTbX261oTEa0Xr9usldDXfvtdrV09RnVRoUNvbl/UXq0XrtusgqTvTv/mlGYoGXXTvKJkFl/X3NPK86I0VvXT9G0At/8WUtabJiWLJioc8alebsVAAAAAAAAAAAAAAAA4FsR7AoAAAAAAAAAAAAAAAAAAAAA8Dkflh/Ss2trjGpnjUrQuWOT3dzR10oyonTdMZlGtZ29/brh7zvV1293c1cAENi6+/qNa8OCzcJZ4NtYc/8TG27Vc/OK9Juzhik23OrtdiRJodYg/eTkXL16dYnSPBi2Cc/LiQ/TGwuO0tlHee5zxVeCgyy6/rgsvXjZGMWEez6cwBpk0d2n5WvhBSMV44VwBItFmjc5Ta9fXaK8BO+G6wIAAM/5cGejnvlsv1HtrKJknTs+3c0dfa0kM0bXHZ9nVNvZa9P1i7cy/wUAAANmDbLo7jkjtPDiEsWEeX4uarFI86Zk6Y3rjlZeYoTHz//vnJn7hwYPze3zchLCtfwHR+tsLwRbBgdZdP2J+Xpx/nifmcEHwpp7Wkp0qF5eMFG/OnOkIkN9Jwz3rLFpeveGKZqa75uhswAAAAAAAAAAAAAAAIBEsCsAAAAAAAAAAAAAAAAAAAAAwMc0d/bp1lfKZTfYCz823KoHzix0f1P/5dYTszU82Wxj240H2vT7D81CCgAAA+PMxs8hVn6lyh+w5v7re5NStfLG8VowPUNhXlq74CCL5o5L0T//Z5xuPD5L1iDCgQNBXIRVf5o7Qo9fMNJjQb5FaZF65api3XFKrkK8HEJ9ZkmSPrpxgs4fl+Kxc45Oi9TS+SV64MxChYdwrQYAIFA0d/bplpe3mc9/zx3t/qb+y20nF2h4SpRR7cb9Lfr9B3vc3BEAAPB3Z41N08rbpuv8CZ4LtC9Kj9ayaybpwXNH+8RsprvXmbn/0J3ZxkVY9fhFJVp4cYnSYsM8cs6i9Gi9cu0k3fmdYQrxoYDUQFlzTwuyWDR/Ro5W/XC6rpiW7dU1n5gTq5cXTNTCi0uUHO2ZuTsAAAAAAAAAAAAAAAAwUFZvNwAAAAAAAAAAAAAAAAAAAAAAwL+7Y/ke1bT0GNXec1q+Uj0UuvTvQq1B+t05w3TO/21Rv0EAwSMfHdDJIxI0ITva/c0BQADqcSbk08vBeXAN1ty/JUeF6O7T8nXdMZl6dm2t/vZ5nfH94WDER1g1d1yKLp+SrsKkcLefD77prJIkfWd0ghatq9WfVlW55bVXnB6lm07I0ulFSbL40CUqNTpEj5w3XJcfnaY/fVyld8uaZDP5wOOkozKidMPxWZpdlCRykwEACDy3v1qqmpZuo9p7zhiptBjPhF39u1BrkB6eW6SzF65Xv0EC7R9W7NXMUcmamBPrge4AAIC/So0J1aMXFuuKadl67MN9erf0oHtmM5kxuuGkfJ1enKIgHxpOddvM5/6hPhROOlBnjU3Td8akaNGaA3rsw33G98jOKM6I0c0z83V6capPzSG/Emhr7mlpMWG67+xRuv7EPD372QG9uLZK9W3u/1lLqDVIp4xK1lXHZGt6QYLbzwcAAAAAAAAAAAAAAAC4CsGuAAAAAAAAAAAAAAAAAAAAAACf8dqWBr26+aBR7YnD43XhhBQ3d3R4k3JiNH9qhp5cXe2w1tZv1w1Ld+qd749TZCgbjgKAq3XbzDc2DyXk0y+w5oEhLSZUP5qZo1tPzNbHe5r13o4mfbDzkPY2drnsHOmxoZo5Il4zRyRo5oh4hVm5V4MUZg3SVdMydMWUdK3c3axlmw7qvbImHersG/Axc+LDNHtMos4bm6KjMqJc2K3rTcqJ0f9dPEr7D3XrxQ11eq+sSVtr2mWQaXZYWXFhOn1Mos4dm6xxmdGuaxYAAAwpr22q1atf1BrVnjgySd+dlOHmjg5vUm6c5s/I1pOrKh3W2vrtuuGlrXr3himKDA32QHcAAMCfTcqN01OXjtX+Q116cW2V3i09qK3VrYObzcSHa05Jqs4dl6Zx2b4ZRt/TZ/4EQ/xk7h9mDdJVM3J0xbRsrdzVqKUba/TejgYd6ugd8DFzEsJ1enGqzpuQrqMyY1zYresF4pp7Q2ZcuG6fNUy3nVyolbsa9c72er1belDVza4LE06ODtWMwgSdNDJJs4tTFBvOFpcAAAAAAAAAAAAAAAAYeix2+2C+qgcAAAAAAAAAAAAAAAAAAAD4r+LiYm3btu2wf37ridm67aQcD3YEwJ9dt6RMr21pcFi36NIinTQ83gMdBbYzntisz/e3Oax7/3/GaXRqpAc6AgAAX6lr69WW6nZtq2nXnsYu1bT0qKalR40dvers61d3n129tn5ZgywKtwYpPCRI8RFWpceEKj02VHkJ4RqTHqni9Chlx4d5++lgiLDbpdK6Dq3Z16LSug7taehSxaFutXb1qaO3Xz19/YoICVZkaJASIqzKSwxXQVK4StKjNC0/VllxQ/u1VtfWq0/3NGtHfad21Xdqd0Onmrv61N7Tr/YemyQpIiRIESHBSokKUW5CmHITwlWSEaWjc2OUw3sNGFJO+uNGldV3HvbP77rrLt19992eawh+6cILL9SSJUsO++dnHpWqP3/vKA92BLjf91/cotc2OQ62ff7K8TppZJIHOgpcZ/xprTZUtjis++DmqRqdFu2BjgAAOLK61h59urtJO+ratbOuXbsPdqi5s0/tPX3q+P+zmWBFhAQrOTpUuYnhykuMUElmjI7Oi1dOQriXnwFM2e1SaW2bPtt7SDtqv1zryqZOtXR9udY9fXZFhAQpMjRYCZEhykuKUGFSpEoyYzStIF5Z8aw1zFQ3d2tLVau2VLeqorFT1S3dqmnuVnNnnzp7berq6///P2sJswYpzPrlay4tJlRpsWEqSIrQqPRoFaVFa1gK35kABuraFzbr9c11h/3zCy64QC+99JIHOwIAAAAAAAAAAAAAIGAtsXq7AwAAAAAAAAAAAAAAAAAAAAAAAAAAAFOp0SGaOSJeM0cQdg/PsVikorRIFaUF5gb1qdEhOvuoZG+3AQAAAAAAEJBSY0J19rg0b7cBD7BYpKL0aBWlEy4P98qIC1NGXJhOLWLuCwAAAAAAAAAAAAAAAEhSkLcbAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABPI9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMAh2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwCHYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDAIdgVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMAh2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwCHYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDAIdgVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMAh2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwCHYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDAIdgVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMAh2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwCHYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEDAIdgVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQMAh2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAwLF6uwEAAAAAAAAAAAAAAAAAAAAAAGBu3nPbnX/M5DQ9cGahG7rxfY0dfTrqgbXebgMAAAAAAAAAjFzy141OP+bSqVl64JzRbujGtzW296rkVx95uw0AAAAAAAAAAAAAAAAAAAAAwBAX5O0GAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDTCHYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHAIdgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQcAh2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBwCHYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEHAIdgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQcKzebgAAAAAAAAAAAAAAAAAAAAAAAEiPXzBSj1/g7S78T2KkVQfume7tNgAAAAAAAAAEuIUXl2jhxSXebsOvJEaFqOr+k73dBgAAAAAAAAAAAAAAAAAAAABgiAvydgMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgP/H3p3H6V2W9+K/Zl8yk0ky2UNCFgh7CKDsiIAVRbDHBVuXo1aLrVqk269Hezy/1qVa+6v9tbVaa23r1rpgpa1WWQQRUEC2sGXf92TWzL4985w/AEGZZO4nmWeZzPv9X2au7/e+vvdsr1wzz/0BAAAAAAAAAAAACk2wKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw5Qh2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmHMGuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCUI9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhyBLsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFOOYFcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYMoR7AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATDmCXQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKUewKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw5Qh2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACmHMGuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCUI9gVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJhyBLsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFOOYFcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYMqpLHYDAAAAAAAAAAAAAAAAUKrWH+yLqz77eFLtw39wXiyYXp3njo4f9hYAAAAAKKb1B3riyr9+MKn2kQ9eGguaavLc0fHD3gIAAAAAAAAAAAAwmZQXuwEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEIT7AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATDmVxW4AAAAAAAAAAAAAAAAAAErdSCYbT+3vjUd398TGlr7Y1TEYuzsH49DASPQPj0b/8GhUlpdFfXV5NFRXxKKmmlg8syZWzK6L805oiNWLGqO+urzYjzHp2HcAAAAAoBCGM9l4el93PLrzUGw82Bs7OwZid8dAHOofjv7hzAtmkRXRUFMRi2bUxpKZdbFiTn2cu6QpzjlhetRXVxT7MSaVqbrn2WzE1ta+eGx3Vzy9tzt2dQzE7s7+ONg99PPnzoxmY1p1RdRXV8T02spY2lwXJ82ZFifPnRaXrJgZJ8yoLfZjAAAAAAAAAAAAHFcEuwIAAAAAAAAAAAAAAADAGDr6RuK29e3xg3Xtce/WQzE4MnrE+sxoNgZHRqOjbyR2dQ7GAzuef19FeVmcv6QxXnN6c1xz+qyY11id5+4nL/sOAAAAABRCR99w3La2JX7wdEvcs7k9h1nkcOzqGIgHtnX+/H0V5WVx/okz4tqz5sY1Z8yJedNr8t3+pDRV93w4Mxp3b2yP7z99MO5Y3xrtvcPjXtM1MBJdAyOxv2swNh7sjdvXtf78fctn18crTp0dbzt/YZw0Z1o+WwcAAAAAAAAAAJgSBLsCAAAAAAAAAAAAAAAAwAtsae2PL9y/L25e0zLuofKpMqPZuH97V9y/vSv+9Nbt8dozm+N9ly6K0+bVT8j9jwf2HQAAAAAohC0tffEP9+2Mmx/dN7GzyG0dcf+2jviT722M166aF++//MQ4bX7DhNx/spuqe97SMxRfeWB3fOXBPdHSMzRh993a2hdfuG9nfOG+nXHJ8plx05VL49IVsybs/gAAAAAAAAAAAFONYFcAAAAAAAAAAAAAAAAAiIiewUx84oc74ysP7Y9sNn/rjIxm4ztPtMZ3nmiN61fPiY+8amk01U3dl/vZdwAAAACgEHoGM/GJWzfHlx/cnf9Z5Jr98Z01++NN5y6Ij1y7csrOIqfqnvcNZeLv79kRn7tnZ/QPZ/K61k+2dsRPtnbEq06fE3/ympPjxFl1eV0PAAAAAAAAAADgeDQ1/8oPAAAAAAAAAAAAAAAAAF7gJ9sOxU3f2Rz7uoYKuu7Na1ri7s2d8Vf/46S48uQZBV27FNh3AAAAAKAQ7tvSETfd/HTsOzRY0HW/9ei++NHGtvj/33h6XHlKc0HXLrapuuc/2doRH/hW4Z/71rUtce/m9vjL158Wv3r2vIKuDQAAAAAAAAAAMNmVF7sBAAAAAAAAAAAAAAAAACimbzx6MN7y1XUFDxd9TkvPcLzz39bHVx46UJT1i8W+AwAAAACF8I2H98Zb/+WxggdtPqelZyje8ZXH48sP7C7K+sUwFfc8m43489u3xK99sXjP3TuUifd+46n48Hc3xmg2W5QeAAAAAAAAAAAAJiPBrgAAAAAAAAAAAAAAAABMWX97z574g//cEiOZ4h5wnhnNxoe+tzU+/aNdRe2jUOw7AAAAAFAIf/Oj7fH7/74uhkthFvmfG+LTP9xa1D4KYSru+XAmG+//5lPxtz/aXhKBqv/8013xe99eVxK9AAAAAAAAAAAATAaVxW4AAAAAAAAAAAAAAAAAStWpc+tjz0cuKnYbxyV7Syn410cOxKfu3FnsNn7BX929O2ZPq4p3nD+/2K3kjX0HAAAASsGp8xpi7yevKnYbxyV7S6n414f2xKdu31LsNn7Bp+/cFs0N1fHOC08odit5MRX3PDOajd/81yfijnWtebn/0br50X1RFhF/ff3pxW4FAAAAAAAAAACg5Al2BQAAAAAAAAAAAAAAAGDKuWtTZ3zoe9tyvq6msjwuPHF6vGxFU5w6rz6WN9fFjLqKqK+uiOFMNroHM7GrYyA2tvTHT7Ydirs3d0ZH30hOa3z4+9ti0YyaeMXKmTn3V+rsOwAAAABQCHdtaIsP/seGnK+rqSyPC5fNiJed3BynzZsWy+fUx4y6qmdnkaPRPZCJXR39sfFgb9y3pSPu3tgWHX3DOa3x4f/aGItm1MavnDo75/5K2VTd8w9/d+NRh7ouba6Lq06ZHRcsmxErZtfHwqbaqK+uiNFsNroGRmJne3+sP9ATd21oi7s3tkf/cCan+3/r0X1xyvyGeO9lS46qPwAAAAAAAAAAgKlCsCsAAAAAAAAAAAAAAAAAU0pr73D87i2bIzOaTb5mTkNVvPeShfFr58yNGXVjvzSvsrws6qrKY25DVZy3uDHefO7cGM5k47tPt8Xf3bsnNhzsS1prNBvxe7dsjjvfvzrmNlQl91jq7DsAAAAAUAitPUNx081rc5xFVsd7X3Zi/Pp5C2JG/djzwcryiqirqoi5jdVx3pKmePNLFsZwZjS+++TB+Mzd22PDgd6ktUaz2fi9b6+Nu266MOY2Vif3WMqm6p5//eG98eUHdud83ZWnNMeNL18aFyydcZiKspjTUB1zGp557re+dFF0DYzEl+7fHZ+7Z0d0DYwkr/WJWzfHqkWNccnymTn3CQAAAAAAAAAAMFWUF7sBAAAAAAAAAAAAAAAAACikP/qvrdHWO5xc/7aXzIt7bzwnfuvihYcNFz2cqoqyeP2q2XH7b6+KD75iSVSUlyVd1943En/4n1tyWqvU2XcAAAAAoBD+n1vWR1vvUHL9285fFPf+wUXx25ctOWzA6OFUVZTH61fPj9tvvCA+dPWK9Flk73D84XfW5bRWKZuKe76zoz/+5Hsbc7pm0Yza+Pq7zomvvXP1EUJdxza9tjI+cMXSuPcPLoprzpibfF1mNBs3fWtt9A1lcloPAAAAAAAAAABgKhHsCgAAAAAAAAAAAAAAAMCU8d9r2+K29e1JtRXlZfGp65bHp65bHo21Fce0bmVFWdx42aL40ltOibqqtJf23bmxI/7rqbZjWrdU2HcAAAAAoBC+99TBuG1tS1JtRXlZfOp/nBp/8bpTY3pt5TGtW1VRFje+fGl86e1nR11V2lzzh+tb47+eOHBM65aCqbrnH/qPDdEzmB6WetGymXH7jefH5SfPOqZ15zRUxxffdlb871edFGVpmbax99BAfPqHW49pXQAAAAAAAAAAgOOZYFcAAAAAAAAAAAAAAAAApoTMaDY+deeu5PqPX7Ms3vaSeRPaw5Unz4zPvvHkKE88bP1Td+6MkdHshPZQaPYdAAAAACiEzGg2PnX7luT6j1+3Mv7nBYsmtIerTmmOz/36GVGemLj557dvmdSzyKm65z/Z2hE/2tiWXH/J8pnxb+9aHTPrq45p3Rd6/+Unxp+99pTk+n/8ya7YeLB3wtYHAAAAAAAAAAA4ngh2BQAAAAAAAAAAAAAAAGBK+OZjLbGltT+p9p3nz4+3v3Riw0Wfc/Wps+L3X744qXZ7+0D82yMH89JHodh3AAAAAKAQvvnIvtjS0pdU+xsXnRDvuPCEvPRx9elz4vevWpZUu72tP/71Z3vy0kchTNU9zyXMdmlzXfzz21dFTeXEH/v3zgtPiPdffmJS7choNv76rm0T3gMAAAAAAAAAAMDxQLArAAAAAAAAAAAAAAAAAMe90WzE392bdlD70lm18eFXph2EfrRufNmiOGP+tKTaz9y7OzKj2bz2ky/2HQAAAAAohNFsNj5z9/ak2qXCKZA7AAAgAElEQVTNdfHhV5+U134+cMXSOGNBY1LtZ+7eMSlnkVN1z5/a2x0P7ziUVFtRXhaff/NZ0VhTeVRrpfjgK1fE+UtnJNV+98mDsb2tP2+9AAAAAAAAAAAATFaCXQEAAAAAAAAAAAAAAAA47t29uTN2dAwk1X701Uujriq/L7+rLC+Lj16zNKl276GhuHNTZ177yRf7DgAAAAAUwt0b22NHe1pg5UevXRl1VRV57aeyvCw+dt3KpNq9hwbizg1tee0nH6bqnn/pgd3Jtf/z/EWxalFa2OzRqigvi0+//rSorhx/vp4Zzcbn792R134AAAAAAAAAAAAmI8GuAAAAAAAAAAAAAAAAABz3vvbwgaS6c05oiKtWzsxzN8+48MTpcfGypqTar/xsf567yQ/7DgAAAAAUwld/tiep7tzF0+MVp87OczfPuHDZjLhkedrc88s5hIWWiqm455nRbHz/6Zak2urK8rjpyqU5r3E0Vsypj7dfsCip9j8ePxCDI6N57ggAAAAAAAAAAGByEewKAAAAAAAAAAAAAAAAwHHtYPdQ/HBjR1Lt+y5NO/h8orzv0oVJdT/e0hm7Owfz3M3Esu8AAAAAQCEc6B6MH65vTap93+Un5rmbo1vvx5vaY3fnQJ67mThTdc8f3N4ZnX3DSbWvO3tezGusyen+x+LGly+N6srxjxbsGhiJ29elfewAAAAAAAAAAACmCsGuAAAAAAAAAAAAAAAAABzXblvfEZnR7Lh1s+or45UrZxago+ddvmJGzJ9ePW7daDbiB+vaC9DRxLHvAAAAAEAh3La2NW0WOa0qfuXUOQXo6HmXnzwr5k8fP9xzNJuNHzzdUoCOJsZU3fO7NrQl177pvAU53ftYzWmojtecOTep9tuP7ctzNwAAAAAAAAAAAJNLZbEbAAAAAAAAAAAAAAAA4PgzksnGI7u748Ed3bGlrT+2tg7Ege6h6B3KRN/waGSz2WiqrYzG2oqY11AdZy6YFmctmBbnnzg9lswc/6Bl0nQPZOLh3d3x1L7eeHJvb+zoGIjugUx0DY5E92AmIiJqK8ujvroi5jVUxYLp1XHK3Po4c8G0uGjp9GieVlXkJ4CJcdv6tGDO162aE5UVZXnu5heVl0W8YdWc+Ox9e8atvXVde9xwUWEPgj8W9h0AAACOT8OZbDy661A8uK0ztrT2xdbWvtjfNfjM/HcoE9lsRFNdZTTWVsa8xuo4c2FjnLWwMS5YNiOWzKwrdvvHja6BkXhk56F4am93PLmnO7a390f3wEh0DYxEz+BIRETUVJbHtOrKmNtYHQuaauKUeQ1x5sLGuHj5jGieVl3kJ4CJc9vatHDO1509P6oKPossizecMz8+++Md49b+4OmDccMliwvQ1bGbqnu+ZndXUl3ztOq4cOnM5PtOlF8/b0Hcsmb/uHX3bGqPwZHRqKksL0BXAAAAAAAAAAAApU+wKwAAAAAAAAAAAAAAABPm/u1d8eWH9sePNnVGz7PBoYfT2jscrb3Dsa1tIB7Y8fwhyOee0BivXzU73rh6TjTWVIy75rfXtMRNt2wet+6PrlwcN11+wvgP8QLrD/bFVZ99PKn24T84LxZMz/0g/Kf29cbVn39i3LobL1sUH3zFknHrhjPZuG19e9zyRGvctbkzhkZGj1jfk8lEz2AmDnYPxZP7euP2DR0REVFWFnH2woZ40+o58fqz0z4WuSjE3kJERM9gJu7bdiip9ldOKfwh6xERV62ckRQw+tCu7mjvG4lZ9aX/0kD7DgAAAMefn27tiK88uCfu2tA6/vy3Zyhae4ZiW2tfPLCt8+dvP29JU7x+9fx447nzo7Fm/P9r3/zovrjp5rXj1v3RryyP371y2fgP8QLrD/TElX/9YFLtIx+8NBY01eR0/4iIp/Z2xys/87Nx6258+dL40NUrxq0bzozGrWtb45Y1++OujW3jzn+Hn53/HugejCf3dsft61oj4tn576Lp8abzFsQbzkn7WOSiEHsLz+kZzMR9WzqSal952uw8dzO2V5w6Oylk9KEdh6K9dzhmTasqQFdHb6rueTYb8eSe7qT1LztpZpQVNs82IiIuWj4zptdWRtfAyBHrBkdG44FtnXH5ybMK1BkAAAAAAAAAAEBp8ypiAAAAAAAAAAAAAAAAjtndmzvjY7ftiPUH+475Xo/u7o5Hd3fHX929Kz7wshPiHS+dF9WV5Yet39U5mHTfprrSfClNamDqoXEOYB7NRtzyREv8f3ftSt6TI8lmI9bs6Yk1e3rik3fujBsvWxQ3XLjgiB8LKEX3bD0Uw5nsuHX11eVxwZLGAnT0YuctbozG2oroHjhyIEpmNBt3beqIN549p0CdHT37DgAAAMePuze2xUe/vznWH+g55ns9svNQPLLzUHz6zq1x0xXL4h0XLDry/LdjIOm+TXWlGYLYkBiYOl4A32g2G7esORB/cceW5D05kmw2Ys3urlizuyv+/LYtcePLl8YNlyw2/2VSumdzWwxnjhxyHBFRX10RFyydUYCOXuy8JU1JYZuZ0WzctbEt3njO/AJ1dnSm6p7vPTQQ3YNHvt9zzlnclFQ30SrLy+Kyk2bFfz91cNzaH29qE+wKAAAAAAAAAADwLH9FCwAAAAAAAAAAAAAAwFFr6x2Od319Q7z1q+smJNT1hdr7RuJPb90eV33u8Xh6f+/he+gbTrpffVVagGqh1VWlvcSnd+jwB2Tv7BiMa7/wZHzgO5snJNT1l3UPZOITd+yM1/zjU7GltX/C7w/5dP+2Q0l1FyyZXrTgisrysrjoxOlJtfdv78pzNxPDvgMAAMDk19Y7FL/x1SfiLf+yZkJCXV+ovXc4/uR7G+PKv3kwnt7XfcQeUtRXl+j8tzpt7tFzhKDAnR398ZrPPRw3fuvpCQl1/WVdAyPxZ7dujms+91BsaZnYOT8Uwk+3dibVXbB0RlFnkRcuSws4/enWjjx3c+ym6p7v7kz/Hnza/Ibk2on20hPTQmXv21L6n2sAAAAAAAAAAACFItgVAAAAAAAAAAAAAACAo/Lo7u64+vNPxG3r2/O6zta2gbjuH5+Krz18YMz3d/Yf/sD7F0oNUC20usTAgd7BzJhvv2NDR1z9+Sfi8b0TG6wwlrX7e+O6Lz4Va/bkfy2YKA/tPHwwyAudc0LxDll/Zv3GpLoHd0yOgFH7DgAAAJPbIzsPxSs/87O4bW1LXtfZ2toX137u4fjaz/aM+f7JPv9NDZw97Px3XWu88m9/Fo/vzv9sYu2+nrj27x+Kx3aZgzC5PLQ9LWT03MXT89zJkZ2zOC1s88HE5ymmqbrne3MIdl08sza5dqKdm/jcGw70xNDIaJ67AQAAAAAAAAAAmBxK86+RAQAAAAAAAAAAAAAAKGn3bT0U139pbezrGirIeoMjo/G/vrs1Pnvfiw/37xoY+8D7X1Zbogf711Wm9dU79OLn/N7TbfHub2yIroG0cIOJcKh/JH79y2tjS2t/wdaEozU0MhrrDvYl1a5eVNyA0dT1t7cPRHfi971ise8AAAAwud23pT2u/+Kjse/QYEHWGxwZjT+6ZX189sc7XvS+7sTZZ11VWoBqodVWJga7jjH//e6TB+NdX3ui8PPff3ostrSkzXag2IZGRmP9gZ6k2rNPKHLIaOL629v6Cvp1n6upvOcdfcPJa8+fXpNcO9FOnjstqW44k431B3rz3A0AAAAAAAAAAMDkUFnsBgAAAAAAAAAAAAAAAJhcHtzRFe/8t/UxMDxa8LU/ccfOqCwvi9+6eOHP39Y7mBa0V11Zlq+2jkllRVmUlUVks0eu6/ul/b5rU0e8/983RWZ0nAvzoHswE+/6+oa47bdXlWxgbrH8aHNnvO2r64rdRl795oUL4iOvXlrsNpKsP9gfI5m0r5GzFqQddJ4vqetnsxFP7uuJi5c15bmjo2ffAQAAYPJ6cHtnvOPLTxRl/vtnt26OivKy+O3Llvz8bT2DaeGG1ZWlOaesSp3//lKw650b2uJ3vvlUkea/I/EbX30ibr/xfPPfMfxoY1u89V/WFLuNvPrNSxbHR69dWew2kqw/0BvDqbPIRY157mZi1s9mI57c2x2XLJ+Z546OzlTe8/7En41VFWVRU8SfS011lTGzviopiPapvd2xqsgfJwAAAAAAAAAAgFLgr2YBAAAAAAAAAAAAAABIdrB7KN7zzY3JBxfnw8du3xH3bDn083/3DCUGu1aU7ktpKsvHD5194Z5vbx+I9968KTk4MR82t/bHZ+7dU7T1IcXGlr6kuoaaipjbWJ3nbo5sZn1lzKirTKrd2NKf526OjX0HAACAyelA92Dc8K9PRv9w2sw1Hz72g01xz6b2n/+7ZzCtl6qK8WesxVJZPv5s+oV7vr2tP9779SeTgxPzYXNLb3zm7u1FWx9SbTzYm1TXUFMR8xpr8tzNkc2sr4oZ9VVJtRsPpD1XMUzlPR9I/PlYzFDX56TO3tfu78lzJwAAAAAAAAAAAJND2quNAQAAAAAAAAAAAAAAmPKy2Yj3fXtTtPYO53xteVnERUub4vKTmmLVwoZYNqs2ZtRVRl1VefQPj0ZLz3CsO9gX927pjNvWd8SB7qEj9vGB72yKH77v7Jg9rSp6E4NdKxLCU4ulqqJs3EP6+559zuFMNt5788YjBhrUVpXHlSfNiIuXNcXp8+tj6azaaKypjNqq8hgaGY2eoUy09AzH5pb+WLO3J360qTM2HEwLYnyhv//J3viNC+bH7Glph2JDoW1pTQviXDarNs+dpFnWXBuP7R7/EPVNJR4wat8BAABg8slmI9739aejtefws9nDKS8ri4uXz4jLT26OVYsaY9ns+phRV/X8/Ld7MNYd6Il7N3fErWtb4kDX4BH7uPFbT8edN10Qsxuqk+e/lSU//z1yzfPz39H47a8/Of78d+XsuGTFzDh9QUMsnVUXjbXPzX+z0TM4Ei09Q7HpYG88vrsr7trYFhuOIiTyc/fsiN+46ISY3ZAWDgjFsLkl7XN7WXN9njtJs7y5Lh7tG//3bKnPVQxTes/L0n7WDI6MJtXl0+xp1bEhxn+mne3m3gAAAAAAAAAAABGCXQEAAAAAAAAAAAAAAEh085qWuH97V07XVJSXxVvPmxvvu3RRLJ5RM2ZNQ01FNNRUxLLm2rjmtFnxsWuycdv69vjLu3bFxsOE6LX0DMf//u9t8Q9vWhn9w2mHI1eW59R6QVWWl0fEkZ9j4NlDoP/q7l3xxN6xD2Ke11gdv3PZorh+9ZxorKkYs6a2qjxqq8pj9rSqOG1efVx3ZnP8n1eeGA/v6o6P374jHtrZndz34MhofOln++MPr1icfA0U0rb2gaS6Zc2lETC6vLkuKWB0e+JzFYt9BwAAgMnnW4/ui/u3deR0TUV5Wbzt/EXxvpedGItnjv3//Gfmv/WxbHZ9XHPG3PjYdSvj1rUt8Zd3bI2NB8eec7b0DMX//q8N8Q9vOSv6E4NdK0o42DUldHbg2Tn3X925LZ7YM/aMdt70mrjx8hPj+vMWRGPN2EdH1VaVRW1VdcxuqI7T5jfEa1fNi/9zzcnx8I5D8bEfbI6HdnQm9z04MhpfemB3/OErlidfA4W2vS0tlHLZ7NIIGV02uz4e3TX+79q2JT5XMUzlPa+rSvtl43AmG/3DmairGvt3dYVQm9irYFcAAAAAAAAAAIBnlPBxFAAAAAAAAAAAAAAAAJSKnsFMfPKHO3K6ZlFTTXz3hjPjk9cuP2yo61gqy8viNac3xw/fd3Z86BVLorJi7EPvv/d0W6zZ0xNDI2nBruVlpXyw//g1QyOjsbVtIP7+J3tf9L6ysogbLloQP7npnHjXBfMPG+p6JC9Z3BjfedeZccNFC3K67luPteS8FhTK7s7BpLoF09O/R+XT/MbqpLqdHaUdMGrfAQAAYHLpGczEJ2/bnNM1i2bUxvfe+5L45K+ecthQ17FUlpfFtWfOjTtvuiD++OoVUXWY+e93nzwYj+3qiqHMcTD/PcwzvtBQZjS2tvbF5+7Z+aL3lZVF3HDJ4vjpH14U77p48WFDXY/kJSc2xS2/dW7ccMninK775iP7cl4LCml3R1oo5cKmEplFJs5ESzlscyrveW3KL/Se1dU/klybD9WJve4y9wYAAAAAAAAAAIgIwa4AAAAAAAAAAAAAAAAk+OrDB+Jgz3By/YrZdfHf7zkrzl7YcNRrVpSXxe9ctii++Y7TDxtU+vHbd8RwJpt0vxI+1z/KEpobymTjg9/d+qLnrasqj3/8tVPiT1+1NOqqju3lQuVlEX/6qqVx/eo5ydfsOTQYj+/tOaZ1IV/2HhpKqpvbUJXnTtLMSexjT+JzFYt9BwAAgMnlKw/ujoPd6f/vXTGnPr7//pfG2SdMP+o1K8rL4ndevjS++e5zDxtU+vEfbI7hkbT5b3kpz38jYf47Mhof/I/1MfxLQbZ1VRXxxbeuio9cuzLqqsaek6cqLyuLj1y7Mt507oLka/Z0DsTju7uOaV3Ipz2HBpPq5jSWRsjo3MQ+9nSWbtjmVN7zWdOqk9ftLHKw68BwWjB6/3AmWnvMvgEAAAAAAAAAAAS7AgAAAAAAAAAAAAAAcEQjo9n4pwf2JdfPrK+Mb7z99OSgvPFceOL0+NY7z4hp1S8+tP7+7V3RPZhJuk95CSe7poQO9Axm4ifbDv3C22oqy+NLbzk1Xn3arAnt5+PXLIu5jemHU9+z5dD4RVBg2WxEW29aIPVEfb86VqlBp4Mjo8nf+wrNvgMAAMDkMjKajX/66a7k+pn1VfHNd58TcxrS54dHcuGyGXHzDeeOPf/d1hHdg2nBeOUlnOyaOv+9b0vHL7ytprI8vvyOVfHqM+ZMaD8ff+0pMS+HwMV7NrdP6PowUbLZiLbEQMq5E/Q961il9vHMLLK4waBjmep7vqAp/Xvnppbe5Np86B1Kn2W396XN9AEAAAAAAAAAAI5ngl0BAAAAAAAAAAAAAAA4otvWt8e+rrRDmiMi/vJXV8TCpok9rHnVwmnx+TedHMeSzVrC5/pH2VE+2F9ctzwuXd40wd1ENNRUxPsvXZhc//DO7gnvAY5VR/9IjIxmk2onKojkWOUSqNzSU5oHrdt3AAAAmFxuW9sS+w4NJtd/+g2nxcKm2gntYdWixvj8W846bue/5Uc7/33dqXHpilkT3M2z89/LT0yuf3jHoQnvASZCR9/wpJtFzsllFtmd/ru5Qpnqe75oRvrPvzW7upJr82Fne39ybadgVwAAAAAAAAAAgKgsdgMAAAAAAAAAAAAAAACUtv98si259uUnzYhXnTrxB81HRFx58sy44aIF8YWf7svL/YvpaEIHXrdqdrxx9ZyJb+ZZ1589Jz5++44Yzox/QPeT+3rz1sdkc8VJM2LPRy4qdhtERHsOB5FPr63IYyfpGmrS++joG45ontgQlYlg3wEAAGBy+Y/HDyTXvnxlc7zq9PzMJK86pTnec8mS+If7dubl/sV0NLmur1s9P64/d8HEN/Os689dEB/7weYYzoyOW/vE3u689TEZXbGyOfZ+8qpit0FEtPelB59OryuN49Yaa9P76CjBsM2pvueLmmqjoaYiegYz497riT3FC3btGczEge700PZS/FwDAAAAAAAAAAAotPJiNwAAAAAAAAAAAAAAAEDp6h3KxJ2bOpLr/+iqxXnsJuJDVy2JJTNr8rrGZNBQUxH/79VL87pGU11lvHTJ9KTaA91D0Ts0/iHWUEhdAyPJtbkEe+ZTQ3V6H4cGSvNrzr4DAADA5NE7lIk7N7Qm1/+vX1mex24iPnT1ilgysy6va0wGDTUV8SfXnJzXNZrqKuP8E5uSag90DZr/UpIO9R/ns8gcnq9Qpvqel5VFnL6gMelea3Z3xdDI+OHZ+XD/1o7IZtPrO0vwcw0AAAAAAAAAAKDQBLsCAAAAAAAAAAAAAABwWPdv74qB4bRDh889oTHOXtiQ136qK8vjg1ctyesak8E7z58fcxuq8r7ORUvTgl0jInZ2DOaxE8hdVw4BnLkc7J5P06rTX/KXS4BqIdl3AAAAmDx+urUjef573pKmOPuE9Hnh0aiuLI8PXb0ir2tMBu+8aHHMbazO+zoXLp+ZXLuzvT+PncDR6c5hVtdQU5nHTtLV5xB2WoqzSHsecU7iz8KewUzcurYlee2JdMf69ND2iIiewdL7XAMAAAAAAAAAACg0wa4AAAAAAAAAAAAAAAAc1v3bu5Jr37R6Th47ed5rz5wdK2bXFWStUlRRXhbvvmB+QdY6bV59cm1Lz3AeO4Hc9SWGkkRETMvhYPd8yqWPvqH05ysk+w4AAACTxwNbO5Jrrz93QR47ed5rV82LFXPS55LHm4rysnj3xScUZK3T5zck17Z0D+WxEzg6fcOZ5NpSmUXmEnbaN5T+fIVizyMuP3lW8v2+8ci+5NqJ0jOYiVvW7M/pmqFMNk/dAAAAAAAAAAAATB6CXQEAAAAAAAAAAAAAADisBxKDXcvKIq4+dWaeu3l+rUIFm5aiy1c0xdzG6oKstWxWbXJtW69gV0rLQA4BozUVZXnsJF1NRfpL/gZGSjNg1L4DAADA5HH/ts6kurKyiKtPn53nbp5f690XLy7IWqXo8pNnxbzGmoKstbS5Lrm2rVewK6Unt1lkaRy3Vp3LLDKHENVCsecRFy+fGXVVaaG192xqj92dA8nrT4Qv3LczenMMBR429wYAAAAAAAAAABDsCgAAAAAAAAAAAAAAwNhGRrOx9kBfUu2pc+sLFjYaEfH6VXOiunJqvjTm1ac1F2ythU3pH9OewdI7YJypbTCHg8gryksjYLQyh6DTXJ6vkOw7AAAATA4jo9lYu78nqfbUeQ0FCxuNiHj96vlTdv57zRlzC7bWohm1ybXd5r+UoMk4i6zKYRY5UIKzSHseUV1ZHq9MDDsfzWbjT7+3KXn9Y7X30ED8/T07cr5ueDSbh24AAAAAAAAAAAAml6n518sAAAAAAAAAAAAAAACMa2vbQAwlHtD80iWNee7mFzXWVsQVJ80o6Jql4mUrmgq21vTayuSDtwczpXfAOFNbJoeDyEvlgPmIiNRWRkr0oHX7DgAAAJPD1ta+5Pnv+UsLO4udXlsZV6xsLuiapeJlJ88q2Fq5zH9TP1egkEYyk3UWmdZLLrPWQrHnz3jLSxYmr/39pw/GHetbk+uP1mg2G79789roHco9iHvY7/gAAAAAAAAAAAAEuwIAAAAAAAAAAAAAADC2jQf7kmtXL2rIYydje/VphTvgvlQ0T6uKE2bUFHTNhpqKpLrhHA7zhkJIPfO+soQOl49IP+x+tAQP9Y+w7wAAADBZbDjQm1y7+oTpeexkbK8+Y07B1yy25mnVccKM2oKumTr/HRL6RwkazabN6ibrLLIUg13t+TMuXTErls2uT17/j/9zQ3T2DSfXH42PfX9z3Lel46iuTQ2+BQAAAAAAAAAAOJ4JdgUAAAAAAAAAAAAAAGBMW9sGkmtPnlOXx07GdvGywocJFNtp89IPiZ4oNRWT94BxprbUA+bLS+yA+dQD70v1S86+AwAAwOSwrbUvufakOYWfS16yfGbB1yy20+Y3FHzNmsq0I6hGDUUoQamflmaRE8eeP6OsLOKmK5Ymr7+ncyDe8ZUnon84k3xNLv7ijq3xD/ftPOrrqxJ/FwgAAAAAAAAAAHA8E+wKAAAAAAAAAAAAAADAmPZ2DSbXnjS78MGui5pqYsnMmoKvW0zFeN5KhzkzSSUf1F5ip+OPJPZTql+b9h0AAAAmh72HBpJrT547LY+djG3RjNpYMrPwc+diWjKrtuBrVpY7gorJKzWMcrLOIksxbNOeP+8Nq+fH8tnpwecP7eiMN33xsWjvHU6+Zjz9w5m48VtPx1/ftW3M96fO66sr/CwAAAAAAAAAAADwl1QAAAAAAAAAAAAAAACMaU/nUFLdtOqKmF5bmeduxnbavMIHChTTvMbqgq9ZXlZ6B4dDitSDyFMPdC+UTGI/NSV60Lp9BwAAgMlhT2dasGtR578LGoqybrHMn15T8DUTM/+gJFUd57PI6srSm0Xa8+dVlJfFJ3/1lJz6eGTnobjqbx+MH29qz+m6sfx4U3tc9TcPxr8/tn/M98+fXhMvO3lW0r1KMUQYAAAAAAAAAACg0Ervr/YAAAAAAAAAAAAAAAAoCQd70oJd508vfNjoc1bOqSva2sXQVKQABZiMcjmIPPVQ93zLZiNSWynVg9btOwAAAEwOB7oT579NhQ8bfc7KudOKtnYxFCtAFyar6kk7i0wMGU0MUS0ke/6LLjtpVlx/7oKcrjnQNRhv/ufH4h1feTwe2Xkop2tHRrNx29qWeMMXHo03//Njsb2t/7C1f/yqk6K8LO3jVYohwgAAAAAAAAAAAIXmL3kBAAAAAAAAAAAAAAAY06H+kaS6OdOq8tzJ4S1vnlrBrjUOVoZk1ZW5HTBfUV78wM6RHA66z+X5Csm+AwAAwORwqH84qW5OQ3WeOzm85bPri7Z2MZj/Qm6qcviaKZ1Z5GhybSnOIu35i33iV0+Jx3d3xcaDvTldd8e61rhjXWucNr8hrljZHOcvnREnzamP2Q3VUV9dEf3DmWjrGY6WnsF4bFdX/HRrRzy4vTPp97cvX9kcb1g9P771yL6kXqZVV+TUOwAAAAAAAAAAwPFIsCsAAAAAAAAAAAAAAABj6hxIC3adXlu8w35nNxQvVLYYKkvgAGyYLKoq0g+YHxgZjeoSCM4YGMnhgPkcnq+Q7DsAAABMDinBcBER02uLd0RRMUNliyGXuQqQ26xuMs4iS/F7gj1/sWnVFfFPb1sV133+4ejsSwtNf6F1+3ti3f6e+Nw9O3K+diwnz50Wn3/zmVFWFtE/nEm6Zmb91Pp9KwAAAAAAAAAAwFiK/xdvAAAAAAAAAAAAAAAAlJzRbETPYNphv41FPNh/7hQLdgXSTatOf/lcd+L3u3zrHkjvo+fTg4IAACAASURBVD6H5ysk+w4AAAClbzSbje7BtGDXos5/G6dWsCuQm/rqiuTa7oG073n5lksf03J4vkKx52NbMac+vvnuc4oahh4RsbCpNr789rN/3kdnf1rQ7Kxpft4CAAAAAAAAAAB4BTEAAAAAAAAAAAAAAAAvMjQyGtlsWm1dVfFeotJUV9wDkoHSNas+Pfg5Ncg637oSA1UiIpqnlWawtX0HAACA0jc0kk2e/+YS4jfRmur8Pxw4vFxmdSUzi8whZLS5BMM27fnhnbWwMb59w7mxoKnmqO9xLM5c2Bj//b6XxNLmup+/rb03Mdg1h7k+AAAAAAAAAADA8UqwKwAAAAAAAAAAAAAAAC8yPJp4qn9EVFWU5bGTI6sp4tpAaZtVnx78XCoHzOfSR6ketG7fAQAAoPQNj44m11aWF28GW11p/gscXi6zup7B9HDPfOoZyGEWmUOIaqHY8yM7c2Fj3Po758cFS2cc031y9brV8+OW3zov5k1/PlR2NJuNQ/1pH4NS/FwDAAAAAAAAAAAoNMGuAAAAAAAAAAAAAAAAvMhwJj3YtbgH+3t5DDC2XA6Y70w83DzfUg9Zj4hoziFAtZDsOwAAAJS+4ZHJMf+tqTD/BQ4vlzDKjr7hPHaSrrM/vY/mEgzbtOfjm9NQHf/+nnPjY9etjPrqimO+35GcMKM2vvbO1fHZXzsjpv3SWu29wzGaHf/nfUNNRUyvNfcGAAAAAAAAAADwl1QAAAAAAAAAAAAAAAC8SMpBv88pK965/lFRxFABoLRVVZRFQ01F9Axmxq092FMaB8zv6xpKqisri5hRV5ovD7TvAAAAUPpymf+WF3EAXFFh/gscXlVFefIssqUnbQaYb/u7BpPqnplFll6wqz1PU15WFu++eHFcd9a8+Lsfb4+vPrgnBkdGJ+TeERFLm+viPZcuiV8/b2HUVo0dgr6jvT/pXifOqp+wvgAAAAAAAAAAACYzryAGAAAAAAAAAAAAAADgRSpzCEzNTNw5xDmbyEOQgePP3IaqtIDR7hI5YD6xjzkN1SUdbG3fAQAAoLTlMv8dGU0PgZ1og8Pmv8CRzW2siZ7BvnHrDiSGe+Zbasjo3Iaakp1F2vN0cxur46PXroybrlga//7Y/rj50f3x9L7uo7pXU11lvOLU2XHdWfPiFac2jxu8vjMx2HVpc91R9QMAAAAAAAAAAHC8EewKAAAAAAAAAAAAAADAi0yWg/2HRoq3NlD6ls6qi61tA+PWHewZLkA34zvYndbH8lm1ee7k2Nh3AAAAKG2VFeXJtZlizn8zgl2BI1vWXBdbW8cPGW3pGSpAN+M70JXWx7LZpRu2ac9z1zytOt5z6ZJ4z6VL4kD3YPx0S0c8trsrtrX2xba2/ujsH46+oUwMZ7LRUFMR02sro3ladZwyb1qcsaAxzlrUGOctacrp97c7O8af0UcIdgUAAAAAAAAAAHiOYFcAAAAAAAAAAAAAAABepKoi/WDg4SIert83nCna2jCWH23ujLd9dV2x28ir37xwQXzk1UuL3UaS5c21cdem8et2dgzmv5kE29vTDlpfPru0A0btOwAAAJS2XOa/xQxX7Rsy/6X0/GhjW7z1X9YUu428+s1LFsdHr11Z7DaSLJtdH7Ghbdy6ne39BehmfDvaxw9EjYhYPrs+z50cPXt+bOY11sTrVs+P162en9d11u3vSapbUcKfawAAAAAAAAAAAIVUXuwGAAAAAAAAAAAAAAAAKD3VFeVRnni2f89g8Q7Xb+kZLtraQOlbOistiHNLW2kcML+5Na2P5c11ee7k2Nh3AAAAKG3PzH/TBsDFnP8e7B4q2trA5LCsOS2UcktrWrhnvm1qKa2Q0aNhzyeHp/Z2J9WtWjQ9z50AAAAAAAAAAABMDoJdAQAAAAAAAAAAAAAAeJGysoiGmsqk2u4BB/sDpWlZc1rA6O7OwRjOZPPczZF1D2biQOL3tOWJz1Us9h0AAABK2zPz34qk2u6BkTx3c3gt5r/AOJY11yXV7eoYiOHMaJ67ObLuwZE40DWYVLuihENG7Xnp6x3KxPa2/nHr6qoq4pR50wrQEQAAAP+XvTuP07Ms7wV+zb5kJpmZLJOF7CFkA8MqYamssgguKEoVq4WiqLVq9bTVc9oe2/Op2tO6170u7IgCIriggAJhCQmE7AvJZJ/MZCaT2fd5zx8cKhZInknmnXeW7/ffuZ7n+j138rx8uDPvfQEAAAAAAEOfwa4AAAAAAAAAAAAAAAC8qrKiZAf7N2ZwsOuexmSHMQOj05IpyQ4k7+1Lxba6Ix9ynk6ba9sS175uakkakxw76w4AAABDX1lRXqK6pgwOdt1zqCNjvYHhYcnU0kR1vX2peOFA8r3AdNi8vzVx7euOG5vGJMfGmg99K3c2Rl8qdcS6JVNLIyc7axASAQAAAAAAAAAADH0GuwIAAAAAAAAAAAAAAPCqxhXmJqqrae5Kc5LXtqkmswdCA0PbhDF5MbO8MFHt6r0taU5zeM/uTtZ/2riCmDw2P81pjo11BwAAgKFvXFGy/d/9TZ1pTvLaNu7P7L4BMPRNKMmPmRVFiWqf39OU5jSHt2p3Y6K6aWWFMXlsQZrTHD1rPvQ9vu1gorpTpo+cYbYAAAAAAAAAAADHymBXAAAAAAAAAAAAAAAAXlVlabIBdrUtXZFKpTnMa9hU256ZxsCwcer0kkR1z2V4wOiqPc2J6k6fUZrmJAPDugMAAMDQlnSAXW1zBvd/awx2BY7s1BnjEtU9uzuzQ0af3ZVsyOjpM5M9TyZZ86Ht8W0NierOnVeR5iQAAAAAAAAAAADDh8GuAAAAAAAAAAAAAAAAvKqp45INdu3uTUVNc1ea07xSU0dPbK5tG/S+wPBy6vRkAzlX7ko24DNdnknYf7gMGLXuAAAAMLRNLStMVNfd2xc1zZ1pTvNKTR09sbmmddD7AsNP0iGjK3cmG/KZLisS9j99Zlmakxw7az50VTd2xpq9Rx6oW5iXHWfPLR+ERAAAAAAAAAAAAMODwa4AAAAAAAAAAAAAAAC8qqnjChLXbq1rT2OSV7e8qil6+1KD3hcYXs6eneyA+U21bVHdNPhDqiMi1u9vTTwg+9w5yZ4n06w7AAAADG392v+tHfwBq8u3Ndj/BRI5J+Fwyk01LVHdOPiDqiMi1lc3R01Tst5/Mq8izWmOnTUfun6+tiZSCf7zec7ciijIdQwhAAAAAAAAAADAS3IzHQAAAAAAAAAAAAAAAIChac74wsS1m2vbBn3o3W+3NAxqP0ji/HllsfezyzIdg5c5fmJRzB5fGFX1HUesfXhrQ7zn1MpBSPXHHtpyKFHd/IlFMXdCUZrTDAzrDgAAAEPb7AnFiWs317TGuYM89O43m+oGtR8kdf788bHvcxdmOgYvc/ykMTF7QnFU1bUdsfbhLXXxntOnDUKqP/bbTfWJ6uZPGhNzJyb/fM4Uaz503ft8TaK6ixZMSHMSAAAAAAAAAACA4SU70wEAAAAAAAAAAAAAAAAYmk6YlPwQ45W7m9OY5JW6evrigQ3JDmQGuGRBssEjv9hwMM1JXt3965N9nl26cHAHqBwr6w4AAABD14LKMYlrV+5qTGOSV+rq6YtfrKsd1J7A8HbpwmRDKh9YdyDNSV7d/WuTfaZdtnhimpMMHGs+9Kze0xSr9zQdsS4vJzuuPHHSICQCAAAAAAAAAAAYPgx2BQAAAAAAAAAAAAAA4FXNriiMgtxkXz9ZsXNwB7v+YuPBaO7oHdSewPB1acIBo49uOxTVTV1pTvPH1la3xvr9rYlqL1s4Ps1pBpZ1BwAAgKFr9vjixPu/T+84lOY0f+wX6w9EU0fPoPYEhrdLEw7nfHTrwahu7Exzmj+2dl9zrK9O9u9oly0ePsM2rflrq27sjMdeOBh9qdSA3/twvv/E7kR1lyycEOXFeWlOAwAAAAAAAAAAMLwY7AoAAAAAAAAAAAAAAMCrysnOisWTxySqrWnuiuf3taQ50R98+4l9g9YLGP5Om14aMysKj1jXl4q487naQUj0B7esrElUt7CyOE6amuwzeaiw7gAAADB05WRnxZKppYlqa5o64/k9TWlO9AffemznoPUCRobTZpTFrPFFR6zrS6XijlWD+29Mt6zYm6hu4eSSOGlass/loWC0r3l3b19sqW2NB9bVxlce2REf/fH6uPTrK+L4f/xdnPr5x+Nd//lcPP5Cw1Hd+2hsO9AW9z6fbN/7XadNTXMaAAAAAAAAAACA4cdgVwAAAAAAAAAAAAAAAF7TslljE9c+sP5gGpP8wcNbG2LNvtZB6QWMDFlZEdeeWpmo9ntPVUdrV2+aE72ouqkrfrz6QKLa950+Oc1pBp51BwAAgKHtzNlliWvvX1ebxiR/8NDm+lizt3lQegEjR1ZWxLVnTEtU+73luwdvL7KxM+5cVZ2o9n1nHpfmNANrNK/5X965Pub8w+/ivC89FTfcuja+8OC2+Olz+2PN3uY/es6fPJcsx0D43K+3RU9f6oh1MyuK4rzjKwYhEQAAAAAAAAAAwPBisCsAAAAAAAAAAAAAAACvadns5INd73iuNrp6+tKYJqKnLxWf/dXOtPYARqZrTpkUeTlZR6xraOuJ/3xq/yAkivjy7/ck+twsKciJq143YRASDTzrDgAAAEPXWXPKE9fesbJ6cPZ/H9ia1h7AyHXNqVMjL+fIx6o1tHXH95bvHoREEV9+pCrxXuTbT548CIkG1mhd80VTSqI3wRDV+9fVRk1z51H16I+HNtfHL9YnG8D+0fNmRU72kffsAQAAAAAAAAAARhuDXQEAAAAAAAAAAAAAAHhNy2aOjTH5OYlq61u7487nDqQ1zxd/tydeqGtPaw9gZKoozo2rTpqYqPYrj+6JHQc70ppn1e7muG1VTaLa95xamfizeKix7gAAADB0LZtd3o/93664Y1V1WvN88aGqeOFAa1p7ACNXxZi8uGppZaLarzxSFTvq0/vvTat2NcatK/Ylqr32jGnDci9ytK75m5ZMiqwEs1E7uvviSw9VHVWPpA61dcen7t6YqHbquMK4+pQpac0DAAAAAAAAAAAwXOVmOgAAAAAAAAAAAAAAAABDV2FedrxxQXncs6YuUf2/PbI73nrihCgtHPjDpx/d1hhfe3TPgN8XGD0+cd5xcfeaA9HdmzpsXUd3X3z8nhfiJ+9fHLk5CU5n76eWzt74xL3bou/wMSIiorQgJz567rQB6furTQfj+ts3J6o9YVJxPPyR1w1I39G+7gAAADBUFeZlxxsXTYx7Vu9PVP9vv90eb31dZYwtHPhjix7dejC++siOAb8vMLr89YVz4u7VNdHd23fYuo7uvvjYXRviJzecEnlp2ov8+E82RF/qyJuRpQW58dHzZh1zz19tOBDX3bwmUe0JlWPikY+fecw9I0bnms+sKIozZ5XHk1UNR6y97Zl98e7Tp8VJ00qPut9r6e5NxQ23ro2aps5E9Z+4cFZa1h4AAAAAAAAAAGAkyM50AAAAAAAAAAAAAAAAAIa2t504IXFtXWt3/I+fbxvwDOuqW+MDd25+xTC+cUUDP0AAGLmmlxXEu0+tTFT7zK7m+Jufbx/wDL19qfjQXVtjW117ovobz54a5cXD+7POugMAAMDQ9bbXJft/9oiIupau+Jt7Ng14hnX7muOGW9e+Yhif/V+gv6aXF8Z7Tp+aqPaZnYfib+7ZOOAZevtS8aHb18a2A22J6m/8kxlRXpw34DkGy2hd8/e+flqiup6+VHzwtrXR1NFzTP3+u96+VHziJxti+fYjD5eNiDh1xrh492nJMgMAAAAAAAAAAIxGBrsCAAAAAAAAAAAAAABwWOcfXx6zxxcmrv/5uvr414d3D1j/J3c0xdU/3BDNnb2v+Nlfn3fcgPUBRodPvOG4KEs4FOTO52rj7+7fHr3/far0Uers6YsP3bU1Ht6a7KD1GeUF8YFlyQ7EH+qsOwAAAAxNF5wwPmZPKE5cf9+amvjX32wfsP5PVjXEO777bDR3vnLg3ScvnDNgfYDR4xMXzo6yhEM771xVHX9376YB3Yu88fZ18dDm+kT1M8qL4oPnzBiQ3pk0Gtf8yhMnxcyKokS1Ow+2x7U/XB2N7QMz3LW9uzeuu3lN3L16f6L63Oys+MJbF0RW1oC0BwAAAAAAAAAAGJEMdgUAAAAAAAAAAAAAAOCwsrOi3wPuvvL7PfF392+Pzp6+o+7b25eKrz22N665aUM0dbzyoOPjJxbFu5ZOOur7A6PTxJK8+OfLZyeuv/mZmnjvLZtib2PnMfXdcqA9rvr++nhgQ7LD5bOzIr70tnlRnD8yvgZo3QEAAGBoys7Kig+cPb1f13z54ar4u3s3Hfv+7+92xDX/+dyr7/9OGhPvPHXKUd8fGL0mluTH/7lyfuL6m57eG9f+cHXsPdRxTH231LbGVd9ZFQ+sq01Un52VFV++elEU5+ccU9+hYDSueU52VnziwuR73it3Nsabv7UyNu5vOaa+q3Y1xkVfXRG/2VSX+JqPXTA7Fk0pOaa+AAAAAAAAAAAAI51vFgMAAAAAAAAAAAAAAHBEf3rKpJhVUdiva25+piYu+sbz8bO1ddHTl0p8XU9vKu5bVx8XfuP5+Pxvd0VP7yuvzcqK+NwVcyLbt2OAo3DVSRPisoUViet/v+1QnP/15+MLD+2K2uaufvXa1dAZ//DLHfHGbz4fq/cmP7D9L5ZNiTNnju1Xr6HOugMAAMDQ9O7Tp8as8UX9uuamp/fGhV95On72fE2/9n+7e1Nx35qauOArT8fnfr0tul9r//ctJ0ROdla/MgG85Kqlk+OyxRMT1/9+68E470tPxRce3BY1zZ396rWroT3+/udb4uKvrojndjclvu6Gs6fHmbPL+tVrKBuNa371yVPi5OnJ95O31rbGG7+2Iv7Xz7fErob2fvXauL8lbrx9XbzlW6uiqq4t8XUXnjA+PnHBrH71AgAAAAAAAAAAGI1yMx0AAAAAAAAAAAAAAACAoS8vJys+e9mseN+tm/p13fb6jvjwT7ZGxS+q4o0LKuL1M8bG/ElFMW1cQZQW5ER+bna0dvVGdVNXbKppi8e3N8avNh2M+tbuw973L86cEstmjY3Wrt5jeSxgFPvSW+fFtrq1seVAssPTW7t646uP7o1vLN8Xr58xNi44viwWTxkTc8YXxrjC3CjKy4727r5o7OiJrQfaY211azy8pSFW7m6Ofsw2iYiIc+eMi/950cyjeKqhz7oDAADA0JOXkx2fvWJ+vO9Hz/fruu11bfGhO9ZFxc/z4o0LJ8brZ5XF/Elj4rjywigtyI383KwX938bO2PT/pZ47IWG+NWGA1Hf2nXY+95w9ow4a065/V/gmHzpHYti24GVsaW2NVF9a1dvfOWRHfGNR3fG62eVxfknTIglU0pizoTiGFeU94e9yPbu2FrbGmv3NcdDm+tj5c7G6Ev1bzPy3HkV8ZlL5x3NYw1po23Ns7Iivvj2RXHp11dEZ09fomt6+1Lx/Sd2xw+e3B1nzS6Pc+dVxNLjxsasCUUxrjAvSgpyoq27Nw619cTmmpZ4fk9T/GL9gdi4v6Xf+WaNL4r/uGZJZGcZlA4AAAAAAAAAAHAkBrsCAAAAAAAAAAAAAACQyEXzy+MdSyfGT1Yf6Pe1B9t64o5na+OOZ2uPOcfSaSXx6YtmHPN9gNGttDAnbr52YVzx3bVxoOXww6Rfrqc3FcurGmN5VWNaci2oLI7vXnNC5OaMzIPWrTsAAAAMTRcvmBBXnzIl7nq2ut/XHmztjjtW7os7Vu475hwnTx8bn75k7jHfB2BsYW7c8udL403/8UwcaDn8QOmX6+5NxePbGuLxbQ1pybVwckl879oTI28E7kWOxjU/oXJM/POV8+Nv7tnUr+tSqYjl2xti+fb0PPPMiqL4yQ2nxNhCRw0CAAAAAAAAAAAkkZ3pAAAAAAAAAAAAAAAAAAwfn79iTiyYVJyx/nPGF8bN1y6MglxfiwGO3XFlBXHHny2KSaX5mY4SERELK4vj9vcujNKCnExHSSvrDgAAAEPT5996QiyoLMlY/zkTiuPm9y21/wsMmOPKCuOO60+OytKCTEeJiBcHjN523dIoLRi5wzZH45pfe8a0+PCfzEzb/ftrZkVR/PQDp8TUcYWZjgIAAAAAAAAAADBs+A1mAAAAAAAAAAAAAAAAEivKy45b37swZlUM/kHA8yYUxW1/tigqikfuYdfA4FtQWRz3/cWSmDM+swecL5s1Nu65bsmQGXaabtYdAAAAhp6ivJy47bqlMWt80aD3njdxTNx+3clRMSZv0HsDI9vCySVx34dOizkTijOa46w55XHPB08dMgNP02k0rvn/umxefOjcGWnvcyTnzquI+z98mqGuAAAAAAAAAAAA/WSwKwAAAAAAAAAAAAAAAP0yeWx+/PTPF8fCysE7jPmC48vj/htOjOllI/+wa2DwTS8riPtvODHecuKEQe+dk50Vf3nutLj9zxZFaWHOoPfPJOsOAAAAQ8/ksQVx9wdOjYWTSwat54UnjI/7P3xaTC83hA5Ij+nlhfHAh0+Pt7yuctB752RnxV+eNytuv25pjC3MHfT+mTIa1/zvLz8+vvDWBZGfO/jH++VkZ8XHL5gdt1+3NMaPyR/0/gAAAAAAAAAAAMOdwa4AAAAAAAAAAAAAAAD02+Sx+XH/DSfGNadMSmuf0oKc+MdLZsWP3rPgmAfvZQ1QJmBkGleUG994x/HxzavnR2Xp4Bx6vrCyOO69fnF8+qIZkZczOj+lrDsAAAAMPZPHFsQDHz49rjltalr7lBbkxj++6fj40fted8yD97LsAANHMK4oN755zZL41p8uicqxBYPSc+Hkkrj3g6fGZy6ZG3k5o+/It9G45u99/bT45UdOj1NnjBu0nmfNKY8HP3pG/M3FcyI7y38PAQAAAAAAAAAAjsax/TYzAAAAAAAAAAAAAAAAo1ZhXnb8+1vmxjteNzH+6dc7Ys2+1gG7d252VrztpAnxmYtnxqSSvNesS6WS3zMn20HGwJG9ecn4uGRBedyysia+sXxf7G/qGvAeiyePiY+9YVpcvnB8OGP9RdYdAAAAhpbCvOz44tsXxtWnTI7PPrA11uxtHrB752ZnxVVLJ8dnLp0Xk0rzX7PO/i+QDm8+qTIuWTQxblmxN/7j9ztjf1PngPdYPKU0Pn7BrLh88SR7kTH61nzh5JK478bT4v51tfHlh6ti4/6WtPRZNrs8PnDO9Lhk0cS03B8AAAAAAAAAAGA0MdgVAAAAAAAAAAAAAACAY7Js1tj4xQdOiuVVjXHLqpp4cFNDdPb0HdW9ZpQXxJ+eUhnXnDLpsANdX9KfPoW52UeVCRh9CnKz4/ozp8T7z5gcj21vjHvW1MVvtzTEofaeo77n9LKCuGxRRVx10sQ4ccqYAUw7clh3AAAAGHqWzS6PX37kjFi+/WDcsmJf/HrDgWPY/y2Kd58+Na45bephB7q+pLOnN/G9C+z/Av1QkJsd1581Pd5/5nHx2AsH4+7V++O3m+vjUFv3Ud9zenlhXL54Ulx18uQ4cWrpAKYdGUbbmmdlRVx54qS48sRJ8czOQ3HXs/vjN5vqouYYh9rOnVgcF54wIa45bUosqCwZoLQAAAAAAAAAAAAY7AoAAAAAAAAAAAAAAMAxy8qKOGfOuDhnzrjo6umLVXta4umdTbH1QHtU1XfE/uauaOvujfauvkjFi0NWxxXlxOTSgpg7oTCWTBkTZ88eFwsri/vVt7Mnlbj2aA72XzCpOPZ+dlm/r+uvVZ88Ne09jtbTnzglLfcdrLWFY5GTnRXnzSuL8+aVRSoVsam2LVbsbIpNtW1RVd8Ruw51RnNHT7R190VXT18U5eVEcX52lBflxsyKwpg9vjCWTB4TZ84aG9PGFWT6ceLSBRXD4r0baesOAAAAw11WVsQ5cyvinLkV0dXTFyt3NcbTOw7F1trWqKpvj/1NndHe1RttXb0v2//NiynjCmLuhOJYMrU0zp5bHgsn928AXX8GyBbmHcX+b2VJ7Pvchf2+rr+e/fQ5ae9xtFb87dlpue9grS0cq5zsrDhv/vg4b/74F/cia1ri6R2HYnNNa2yva4vdDe3R1NETbV290dWTiqK87CjOz4ny4ryYOb4o5ox/8TPuzNllMa2sMKPPcumiicPivRtJa57U6TPL4vSZL+537zzYHuurm2PT/pbYuL819jZ2RHNHT7R09kRLZ2909vRFUV52lBTkxtjC3JhZURTHTxoTx08aE8vmlMWM8qJMPw4AAAAAAAAAAMCIZLArAAAAAAAAAAAAAAAAAyo/NzuWzRoby2aNTXuv+rbuxLWlhTlpTAKMdFlZEQsri/s9gJpjY90BAABgaMnPzY6z5pTHWXPK096rvrU/+7+OUgKOTVZWxMLJJf0eQs3RG21rnpUVMWt8UcwaXxRvWjIp03EAAAAAAAAAAAB4mexMBwAAAAAAAAAAAAAAAICjdaClK1FdSUFOjMk32BUAAAAAYLiobbb/CwAAAAAAAAAAAACkn8GuAAAAAAAAAAAAAAAADFvb6joS1VWW5qc5CQAAAAAAA2l7XVuiusqxBWlOAgAAAAAAAAAAAACMZAa7AgAAAAAAAAAAAAAAMGxtrEl2sP/M8sI0JwEAAAAAYCBtqG5OVDeroijNSQAAAAAAAAAAAACAkcxgVwAAAAAAAAAAAAAAAIatp3Y2JapbPLk4zUkAAAAAABhIT+84lKhu0ZTSNCcBAAAAAAAAAAAAAEYyg10BAAAAAAAAAAAAAAAYlnYe7IidBzsS1S6aPCbNaQAAAAAAGCg76ttjR317otrFU0rSnAYAAAAAAAAAAAAAGMlyMx0AAAAAAAAAAAAAAACA4SeVitjf3BVV9e2xvb4jdhzsiNqW7vjy2+ZFdtbgZPjpmrrEtWfOLE1jEgAAAACAkSOVitjfDjk0YQAAIABJREFU1Bnb69uiqq4tdtS3R01zZ3zl6kWRnTU4G8A/Xb0/ce3rZ5elMQkAAAAAAAAAAAAAMNIZ7AoAAAAAAAAAAAAAAMBh7TzYEcurmqLqYHtU1XdEVX1H7GjoiI7uvlfUvvvUSXHmzLFpz9Tdm4rbVtUkql1QWRyTSvPTnAgAAAAAYPjZUd8eT2xviO11bVFV3xZVde2x42Dbq+7/vuf0aXHmIAxR7e7ti9ue2ZuoduHkkqgsLUhzIgAAAAAAAAAAAABgJDPYFQAAAAAAAAAAAAAAgMPaVNsW/+O+bYlqb1lZMyiDXW9dVRPVTV2Jat94Qnma0wAAAAAADE+ba1riU3dvTFR784q9gzLY9ZYV+6K6sTNR7cULJ6Q5DQAAAAAAAAAAAAAw0mVnOgAAAAAAAAAAAAAAAABD29mzx0VBbrKvody7ti5W721Ja57a5q74wkO7E9e/c+mkNKYBAAAAABi+zp5bkXz/9/n9sXpPU1rz1DR3xhce3Ja4/l2nTEljGgAAAAAAAAAAAABgNDDYFQAAAAAAAAAAAAAAgMMqKciJSxaUJ6pNpSI++tOtcai9Jy1Zunr64oY7t0RTR7L7L5s1NmaPL0xLFgAAAACA4a6kICcuWTQxUW0qFfGXd66PQ23dacnS1dMXN9y6Nvn+7+zymD2hOC1ZAAAAAAAAAAAAAIDRw2BXAAAAAAAAAAAAAAAAjujPXz8lce32+o7489s2ReMAD3dt7+6L627fHCt3Nye+5mNvOG5AMwAAAAAAjDTXLUu+j7q9ri3ef/OaNOz/9saf37wmVu5sTHzNxy+YNaAZAAAAAAAAAAAAAIDRyWBXAAAAAAAAAAAAAAAAjuiMGaWxbNbYxPUrdjXHpd9eE6v3tgxI/401bXHFd9bGIy8cSnzNmTPHxrlzxg1IfwAAAACAkeqMWWWxbHZ54voVOw7FJV9bEc/tbhqQ/hv3t8Sb/mNlPLKlPvE1Z84ui3PnVQxIfwAAAAAAAAAAAABgdDPYFQAAAAAAAAAAAAAAgEQ+e9msyMnOSly/q6Ezrvju2vjAnVtibXXrUfXcWNMWn/zZtrjkW2tiU21b4uvyc7Pjc1fOOaqeAAAAAACjzT9deXw/93/b44pvPhMfuHVtrN3XfFQ9N+5vib/+6cZ449dWxKaalsTX5edmx+ffuuCoegIAAAAAAAAAAAAA/He5mQ4AAAAAAAAAAAAAAADA8LB48pj4yDlT46uP7k18TSoV8cCG+nhgQ33MLC+Mi08oj8WTx8QJlUVRWZIfYwpyojgvO1q7eqOhvSca2npi64H2eHpnUzy1symq6juOKuvfXjA95k8sOqprAQAAAABGm8VTSuMjb5gZX31kR+JrUqmI+9fVxv3ramNmRVFcvHBCLJ5SGgsqx0Tl2IL/v/+b8+L+b1t3NLR1x5ba1ni66lA8teNQVNW1HVXWv33j3Jg/acxRXQsAAAAAAAAAAAAA8N8Z7AoAAAAAAAAAAAAAAEBinzx/eqza3RLLqxr7fe3Oho743lPVaUj1x646aULcePbUtPcBAAAAABhJPnXRnHh2V2M8vq2h39fuPNge31u+Ow2p/thVSyfHh86dkfY+AAAAAAAAAAAAAMDokZ3pAAAAAAAAAAAAAAAAAAwfudlZ8Z9/ekKcNHVMpqO8qjfMLYsvvnVepmMAAAAAAAw7udlZ8Z/vPSlOmlaa6Siv6g3HV8SX3rEw0zEAAAAAAAAAAAAAgBHGYFcAAAAAAAAAAAAAAAD6pbQgJ378/sWxbNbYTEf5I287aULc9J4FkZeTlekoAAAAAADDUmlBbtx1wylx1pzyTEf5I29bOjluet/SyMtxZBIAAAAAAAAAAAAAMLD8ljIAAAAAAAAAAAAAAAD9VlqQE3e8b1F88KypkZXhOaqFednxT5fNiq9ddXzkGuoKAAAAAHBMSgty447rT44bz50xJPZ///nK+fH1dy6OPPu/AAAAAAAAAAAAAEAaGOwKAAAAAAAAAAAAAADAUcnNzop/uGRm3Hv9klg8eUxGMlw4vzx+feNJcf2ZUzI+YAAAAAAAYKTIzc6Kf7j8+PjZB0+LxVNKM5LhogUT4sGPnhHXnzXd/i8AAAAAAAAAAAAAkDa5mQ4AAAAAAAAAAAAAAADA8Hba9NL49Y0nxS83HYxvL98XK3c3p7VfbnZWXHxCeXzwrKlx+ozMDBQAAAAAABgNTps5Lh786Bnxyw218a3HdsXKnY1p7ZebnRUXL5wQN547I06fWZbWXgAAAAAAAAAAAAAAEQa7AgAAAAAAAAAAAAAAMACysiIuX1gRly+siC0H2uO+dXXxm80NsX5/a6RSx37/gtzsOHPm2Lhgflm8ecmEmFSSd+w3BQAAAADgiLKyIi5fPCkuXzwpttS2xn1rauLBjXWxvrp54PZ/Z5fFhSdMiDefVBmTSvOP/aYAAAAAAAAAAAAAAAkZ7AoAAAAAAAAAAAAAAMCAmj+xKD51/vT41PnTo7G9J57d2xIb9rfG9vqO2NXQGXUtXXGwrSfaunujqycVfalU5OVkR2FedhTnZcfEkryoLM2PaeMKYmFlcSyePCYWTS6OgtzsTD8aAAAAAMCoNn/SmPjURXPiUxfNeXH/d3djbKhuiW11bbH7YHscaOmKg23d0dbVG109fdGXisjLyXpx/zc/JyaW5Efl2II4rqwwFlSWxOKppbF4Son9XwAAAAAAAAAAAAAgYwx2BQAAAAAAAAAAAAAAIG3GFeXG+fPK4vx5ZZmOAgAAAADAABpXlBvnzx8f588fn+koAAAAAAAAAAAAAABHLTvTAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpvBrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAqGOwKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw6hjsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMOga7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACjjsGuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCoY7ArAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDqGOwKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIw6BrsCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKOOwa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKhjsCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMOoY7AoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjDoGuwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAo47BrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAqGOwKwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAw6uRmOgAAAAAAAAAAAAAAAAAjV3VTV5z276sS1T70kdfFgknFaU4EAAAAAADDX3VjZ5z6+ccT1T788dfHgsqSNCcCAAAAAAAAAAAAgOEpO9MBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGm8GuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCok5vpAAAAAAAAAAAAAAAAAADAwEulIjbXtsXz+1piU21bbK/riJrmrqht6Y62rt5o7+mLVCqiIDcrCnOzozg/JypL82NyaX4cV1YQiyYXx4lTxsS8CUWRk52V6cfpl66evthQ0xbrqltjQ01b7D3UGdVNXXGgtTs6uvuio6cvenr7oiA3Owpys6M4PzsmleRHZWl+TBuXHwsqi2Px5DGxqLI48nOzM/04R62hrSee2NEYm2raYnNte2yvb4+mjt5o7uyNtq7eyMvJitKCnCgpyImxhbkxq6IwFlQWx4JJxbFkypiYMjY/048Ah9XTm4p1+1vj2T0tseVAW+xu6Iw9hzqjsaMn2rv7or27L3Kzs6I4PztK8nNi2riCmF5eEHMnFMWpx5XE0mmlUZw/fN9xAAAAAGDwdPemYn11czy7qzG21LbGroaO2NPQEY3t3dHe3fuy/cgX992nlRXGjPKimDuxOE6ZMS5OPm5sFOfnZPoxAAAAAAAAAACAV2GwKwAAAAAAAAAAAAAAAACjTioV8Z0n98XnH9odXT19h609fUZp3Hv9kkFKdmxaOnvjN5sb4pcbD8byqsY41N5zxGvaulLR1tUXB9t6Ys+hzlf8fFxRbpw3rywunl8ely6siKK8oTkE8VB7T/x8XX38ZktDPFHVGO3dh/9zjYj/Gvx4qD1iX2PXK35elJcdy2aNiwvnl8WVi8fH+DF56Yg+oOpbu+PO5w7Eg5sPxrN7WqK3L/WatT19qWjv7ovalu6IiFi9tyVi7R9+Pm9CUVy6sCKuXjox5k0oSnf0ATdS3/OB0tOXijd/d108v68lUf133jU/3rRofJpTHVlDW0/8etPB+OXGg/HY9sboPMKfbW9fKjp7+qKhrSd2H+qMp3b+4Wc52VlxxozSeNOi8XH5ooqoLDXMGAAAAOBYpVIR3358V3z+wW1H3pebWRY/u/HUQUo2NPT0peLKb66M5/c0Jar/zntOjCuWTBrwHL9cfyCuv2XNgN833T5zydz4y/NmDVq/hrbu+PWGA/HL9Qfi0RcO9mM/sjt2N3TEU1WH/utnOdlZccbMsrjixElx+eKJUTm2IN3x08Z7DgAAAAAAAADASGOwKwAAAAAAAAAAAAAAAACjyr7Grviru7fGkzuSHZo+HGysaYvvP10dd6+pi44EA037o7G9J362ti5+trYuSgtz4u0nTYwblk2JWRWFA9rnaD2/ryW+80R1/GLjwSMeHt5f7d198fDWhnh4a0P84692xCUnVMT1Z06O188cO6B9BsLWA+3xzeX74p61dQO2Di/UtcfXH9sbX39sb7xhbll8/Lzj4owZpQNy73Qbie/5QPvao3sTD3UdCrbVtcd3nqyOu1YfOOLwhKR6+1Lx5I6meHJHU/zvX+2INy8ZHx8+Z1osrCwekPsDAAAAjDb7Gjvir368IZ7Y3pDpKEPWVx/ZkXioazo1dfRkOsKQtu1AW3z78V1x17PVA7sfWdUQT1Y1xD/evyXefFJlfOQNM2Ph5JIBuf9g8Z4DAAAAAAAAADASGewKAAAAAAAAAAAAAAAAwKhx95q6+MwD26O5ozfTUQbEjoMd8fmHdsX96+sjlUp/v+aO3vjhiv1xy8qaeOfJE+NT50+PytL89Dd+FZtr2+L/PLgrHt46OAeH9/Sm4oEN9fHAhvo4a/a4+J8Xz4il0zJ/2HpLZ2/82yO74wdP74+evvT9Jfj9tkPx+22H4s1Lxsc/XTY7Jpbkpa3XsRpp73k6rKtujS8/uifTMRJp6eyNf/ntrrjpmf1p/Zzr6UvF3Wvq4u41dXH10onx2UtnxbgiX8UGAAAASOru1fvjMz/bbGDoYazb1xxfeaQq0zEiIqKxvTvTEYakls7e+JdfvRA/enpP+vcjV++Pu1fvj3eeMiU+e8X8YbEf6T0HAAAAAAAAAGCkGvq/vQMAAAAAAAAAAAAAAAAAx6ixvSf+7v7tcd+6+kxHGRC9fan4xvJ98cXf7Ymunr5B79/Tl4rbVtXG/esPxv++dGa86+RJg9e7NxX//rvd8Y3l+6KndxCm2b6KJ6oa48rvro33nTE5PnPRzCjOz85Yjo/89IWobe4atJ73rauPJ6qa4mtvPz7+ZO64QeubxEh7z9Olq6cvPnb3Cxl7f/pjeVVjfOzuF6K6afD+jkdE3LX6QPzuhUPxxbfOiwuOLxvU3gAAAADDTWN7T/ztvZvivjU1mY4ypHX19MVf/XhDdA+RfTmDOV/p8W0N8bG71kd1Y+eg9v3xs9XxyJb6+NI7FsUFJ4wf1N5Jec8BAAAAAAAAABjpMvNNYQAAAAAAAAAAAAAAAAAYJI9tb4wLvvH8iBn2eKClO676/vr4/G93ZWSo68s1dfTEX9+7LT529wuDchh9TXNXXPWD9fHVR/dmfChlXyriB0/vjyu+uza213cMev/vPFEd19y0cVCHur6krrU73nvLxrjj2dpB7/1aRtp7nk7/+vDu2FTblukYR3THs7Xx7ps3DvpQ15ccaOmO99+2KW56xqACAAAAgNfy2AsH4/wvP2XYYwL/+pvtsammJdMx/ktju8GuL3fHyn3xnh88N+hDXV9yoKUr3nfT8/Gjp/ZkpP/heM8BAAAAAAAAABgNcjMdAAAAAAAAAAAAAAAAAADSobOnLz73213xvaeqI5XZGaADZnNtW1x7y8bY15iZQYev5SfPH4g9hzrj5msXRnF+dlp6bKtrj3f+aEPsz9CQx9eyubYt3vSdtXH7ny2MpdNK0t4vlYr49APb4+YMD5vs6UvFp+7bFjnZWXH10okZyzES3/N0emZXc3z7iX2ZjnFEX310b3zhoV2ZjhG9fan49P3b40BLV3zy/OmZjgMAAAAwZHT29MW//OqF+N4Tu+3LJfDMzkPxrccyv9/1ck0dBru+5CuP7IgvPLgt0zFe3I/82eaoa+mKT140J9NxvOcAAAAAAAAAAIwq6fl2NAAAAAAAAAAAAAAAAABk0Pr9rXHZt9fGd58cOcMetx5oj3f+cMOQG+r6kqd2NsV1t2+K7t6BX/Cq+o54+w/WD7mhri9p6uiJa27aEGv2taa919//sirjQ11fkkpFfPJn22J5VWNG+o/E9zyd2rv74uP3vBB9Q3ytbl1VMySGur7cF3+3J360Yn+mYwAAAAAMCeurm+PSr6+I7y437DGJ9u7e+NhdG6JviC1WY3t3piMMCbc+s3dIDHV9uX9/qCp++NSejGbwngMAAAAAAAAAMNrkZjoAAAAAAAAAAAAAAAAAAAyUvlTEN5fvjf/78O60DBjNlAMt3fGnN22Iutb+H7Sem5MVp0wridNnjI3TZ5TGcWUFUVaUG2VFuZGdFdHQ1hOHOnqivrU7nt3TEit2NsX/Y+++w9sszzWA35qW5L33zLKz9wASIEBoCBTC3qNlU6CHltGSDkopqy0tq4xSIBBmCJCQANkTMkjiTMd77yFLsvY6f5i0TmJb72dLsmPfv+s6Vznxo+99JPv7JD2y33tPtQkmm1vyWtvKDPjDNxX4y6JsybftidHmwi0fHENzh/T7HhaiwNycSMzICMfYpFCkRKgRH6aCRimHUiGH3eWBxeFGc4cT1e12HG0w4/sKI3ZVmeBweSStZbK5cduHx/D1XROREKaS3KuIZzdU4e1d0sMlUyLVWDQ2FtPSwjE2SYfYUBXCQhSwOjzQW10oabEgv9aMtcfacKheWjit2+PFvZ8WY909E5EQrpbcW18M1fM80J5cW4mKNttAt9GrjcXt+M1X5ZJvF6KUY3ZmBOaNiERuog45sVpEaRXQqRVwur0w2d2o1ttQ1GzFjnIDNpe0Q29xSVpjyZpypEaF4PzR0ZL7IyIiIiIiIiIaCjxeL/61tQrPrSuD0y1tfjqcPbmmBBWt1oFu4xRGm7T52FC0sbAVj31RKPl2IUo5ZmdHYd6oWOQlhiInXocorerHeaQHJpsb1XoriprM2F6qx+aiVugt0j7jWLKyCKlRGlyQGye5v/7geU5EREREREREREREREREREREwxWDXYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIaEiobrfjwRUl2FVpHOhW/Mrl8eKuT4pQb3RIul1sqAo3Tk/ErTMSew3cTIpQIymi8+tnZkcCc1PhcHnwSX4zXt1Rh0qJQZDv7m7A3JxILMyLkXS7njy8sgylLdI2vc+M1uDOM5JxzZQEaFXyHuu0Kjm0KjliQ1XITdThgjHRePDszg3tPzvQgn/tqEOtwS68boPRgQdXFOPDm8dK6lfE2kI9XtpWK+k209LD8atz0zAvJwoy2alfD9coEK5RICM6BPNHReOhc9JQ0GjBC5trsPpoq/A6LWYnfru6HP++doyk/vpiqJ7ngba11ICle6SHAgdTi9mJX35eArdHPKw3PkyFe85MwTVTEhCl7f7PppVyGbQqORLCVJiWHo7rpibA6fZi1ZFWvLytFoVNFqG1PF7g/z4vwYb7JgcsvJmIiIiIiIiIaLCq1tvwwCdHsKuifaBbOa1sLW7Du7tqBrqNbhmswzvYtaXDgQc/PSpxHqnGPfMyce20ZETpup8RKuUKaFUKJISrMS0jEtdNT4HT7cGqQ014aXMFChvNQmt5vF783/Kj2Pjg7F4/4/EnnudERERERERERERERERERERENJwx2JWIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiE57y/ObsWRNOUx2t/BtlAoZXG7xDbsHyqvb6ySHWN44PRF/uDALOnXPoaa9USvluHF6Iq6bmoC3djbgz+sqJW1u/vuvy3HuyChoeglVFfF1QRu+OiIeMKqUy/DoeRm464xkKOTdJJkKitAocdusJNw4PRH/2FKDl7bVCt//raUGfHagGVdMiu/z+ier1Nvw4IoSeAW/BWEhCjy5MBtXT5HeQ16iDm9cMxrfVxhx7/JiNJnEAoW/LmjDxmI95o+KlrymqKF8ngeSyebGQ1+I//wMlEdWlqHV7BSuv3F6IpZckIlwjULyWiqFDJdPjMNPx8XiX9/V4fmN1ULneJvFhV9/WYqlN+RKXpOIiIiIiIiI6HT16b56LFlZBJNdPAhUpZDBOcznckabC//32dFBO5cz2sS+nyVPnAOdWvoMbrB7+PNjaDWLzb8B4MaZqViycCQiNNK3b1Qp5Lh8chIumZCI17ZV4rl1ZWLzSLMTv15RgKW3TJK8plQ8z4mIiIiIiIiIiIiIiIiIiIhouOvfX0QTERERERERERERERERERERERERERERERERERENIL3FhTs/LsKDn5cIhz0q5DL86tx0XDc1IcDd9V9Zqw0vbKkRrg8PUWDpDbl49pKcPoe6dqWQy3DnGcn48OY8ROvENyuvMzjw1q76fq3t9njx1LpK4frYUBWW3zYO956V0q9Q165UChkenp+Od2/IRYhS/PF8bmM1XBKCcH359ZdlwpvsZ8ZosPbuiX0Kde1qTlYE1tw5AXmJOuHbPLuhOiAhBUP9PA+0JV+Xo94oHlAwEFYfbcW3x9qEahVyGZ69JAfPXpLTp1DXrpQKGe6fm4p3rh8DrWAQ9YYiPVYeFg+cJiIiIiIiIiI6XektTtyx7BAe/PSocNijQi7Dr87PwXXTUwLc3eD3u1VFqDfYB7qNHhmtvr+nSrlsSIa6fnW4Cd8ebRaqVchlePayXDy3OLdPoa5dqRQy3H9OFt65eRK0KrHHdf2xFqw82NivdXvD85yIiIiIiIiIiIiIiIiIiIiIqBODXYmIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiI6LS0uaQd8189gNVHxQP2UiNDsPy2cXjonDQoZP4J/wyk5zZWweHyCNVqVHK8c0Muzhsd7fc+zsyOxNvX5UKpEH/M/rOroV/hpp8fakF5q02oVqmQ4c1rRmNGRnif1+vNuSOj8MzFOcL1Ne12fHGwxS9rrzjYgu/KDUK1o+O1+OLn45EZo/HL2skRarx3Yx7iw1RC9YfrzdhUovfL2scNh/M8kL491obl+b0HFGgEA00Dxe3x4tkN1cL1f74oGzdOT/RrD/NHReOVK0dBNBP62Q1Vfg1vJiIiIiIiIiIabDYXtWL+P3Zh9eEm4dukRmnw2R1T8avzsqEQHbQMUd8ebcan++p7rRnIuZzH60WHw3eIZ3g/g0wHI7fHi2fXlgrX//mS0bhpVqpfezhvTCxevXYc5ILz62fWlgZkHsnznIiIiIiIiIiIiIiIiIiIiIjofxjsSkREREREREREREREREREREREREREREREREREpxWb04Mla8px4/sFaDI5hG+3aGws1t87ETMDFP7pb4VNFnx1RCzMUiYD3rxmNGZnRgSsnxkZ4fj9gkzh+gajAxuK+h7yueyHRuHaJRdkYlYA7zsAXD0lHtdOTRCu/2i/+EboPTHZ3Xjy2wqh2rhQFZbemIcEwRBWUckRavzrqtHC9e/uFv++9Wa4nOeB1GZx4ZGVZb3WyGXAzTP8G5Iq1cf7m1HaYhWqvXVmUsD6vTA3Bg+dky5UW9Fmwwd7+3+OExERERERERENNjanB4+vLMQN7+Sj0WQXvt3F4xOw4cFZmJkVFcDuTg9tZice/vxYrzVymQy3zEoLUkenMtnc8ArkhEZqh16w68d761HabBGqvW1OGm6ZHZjv04Vj4/HQedlCtRWtVizbXeu3tXmeExERERERERERERERERERERGdisGuRERERERERERERERERERERERERERERERERER0WrlveTHe3tUgtOk4AGhVcjx7SQ7euGY0IjSnzybk7/3QKHwfr5mSgPmjogPbEICfz07G5NQw4fo1BW19Wqem3Y7dVSah2qQINW6bmdSndaR66Jw0KOUyodqdlUZJgaTdeXtXA5o6nD7rZDLgX1eNQnpUSL/W68mcrAgsGhsrVLuxWC/Usy/D5TwPpMdWlaHF3Pv34uopCchLCA1SR6fyeIGXt4kFEmTFaLBEQrh0X9w/LxXjksQej5e21cDtEfwBJSIiIiIiIiI6Tdz70WG8/X2NhLmcAs8tzsUbN0zgXO5Hj35xDC0dvc+Gr56WjNwk8Vm7v7VbxWa4Q+176vF68dLmCqHarFgtliwcGdB+Hjg3C+OSw4VqX9pc6bd5JM9zIiIiIiIiIiIiIiIiIiIiIqJTMdiViIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhOKwabS7h2bFIovr5rIm6cnhjAjvzP6fbii0MtQrVRWiUevyCwYYddPTAvVbh2Y5G+T2tsKW0Xrr1jdjKUCrGw1f5KjQzBonETzGYAAAAgAElEQVRiAadeL7Cj3NjntWxOD/69s16o9taZSTgjO7LPa4l47PwMiGTaerzAN30M9O1qOJzngbTiYAtWH23ttUanluOR+elB6qh7m0vaUam3CdX+aWEWtKrA/mm0Ui7Dny7KEqqtMziwoVj8WkVEREREREREdDowWCXM5ZLD8M0vZuDGmeIz46FuRX4DVh9u6rVGp1bg0QtygtRR94yC89ehFuK5uagNlW1Wodo/XTwaWpUioP0o5TI8ecloodo6gw0bCnuf+YrieU5EREREREREREREREREREREdCoGuxIRERERERERERERERERERERERERERERERER0ZD0s1lJWH3HeIyK1w50K5LtrDRCbxHbWPvG6YmI0QVvc/UFY2KQHasRqm2zuFDeKhba2NXuSpNw7cKxMZKP3x8XjokWrt1d1fdg12V7G9Fqdvqsiw1V4TfnZ/R5HVE5sZpew2O1Kjkmp4bhuqkJSI1UB7yf407n8zxQGowOLFlT7rPu3jNTkRgevO9Vd97/oVGobkpaGM4bLX7u9cfszAjhoOSluxsC3A0RERERERER0eD0szPSsebeGRiVEDrQrQwaDUY7Hl9Z6LPu3nmZSIwICUJHPRMN9ozQqALcSXC9t7tWqG5qegTOz40LcDedZmdH4cwcsdnnuztrAtzNiXieExEREREREREREREREREREdFwEry/1CYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIgqCGJ0SLyweifODFAIYCDvKDMK1V06KD2Anp5LJgLNHRKG8VSzQ8EBdh3AQ7HHFzVahuoRwNTKjpR27v2ZkRAjXlrRID7U97m3BwMj756YiVK3o8zpSXDUpHjvKDUiPCkFeYijyEnUYm6RDXmIosmI0kMuC0gaAoXGeB8qvvyz1GcyQHKHG3WemBKmj7jWZHFhfpBeqvfes1AB3c/J6Kfiu3Pd1eEtpO2ra7UiLGtggDiIiIiIiIiKiYIkJVeGFK8figiCFXp5OfvVZge+5XGQI7pmXEaSOema0OYXqIrRDZ6vCRpMd64+1CNXee3ZmgLs5db0dZb5npVuK21DTbkNaVGA/F+F5TkRERERERERERERERERERETD0dD5bSkiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhr2zsqJxEuXj0RCuHqgW+mXnZVGobrxyaEYFa8NcDenOiM7Au8IBo9W6e2Sj1+pFwtEnZwSKvnY/ZUSqUZcqAotZt8b31cL3o+T7a02obzV923jQlW4ZUZin9boi8smxGHh2JigBcn2ZKic54Hw/g+N2FTS7rPudwsyoVXJg9BRz749pofb4/VZF6NTYkGQA3zPHhGFpAg1GoyOXus8XuDrgjbcMSc5SJ0REREREREREQ2cs0bE4KVrxiIxPGSgWxl03ttVi01FrT7rfr9wFLSqgZ2vAoDRRwDtcZGaobNV4bdHW8TmkaEqXJAbH4SO/ufsUTFIighBg7H3z1M8Xi++PtKMO85MD1gvPM+JiIiIiIiIiIiIiIiIiIiIaLgaOr8tRUREREREREREREREREREREREREREREQB5/Z4UdxsxcE6M8parShvs6HB6ECbxYl2qws2lwcOtxcejxdKhRxqhQxhIQpEaZWID1UhLSoEmTEajE3UYUJy6GkRxFTWasOB2g6UtlpR1mpDo9GBVosTbRYX7C4P7C4PXB4vVAo5QpQyhKoViA9VIT5MjayYEIxJ0GF8cijGJ4dCKZcN9N3ptzaLC7sqjciv7UB+bQcaTQ4YbW4YbS44PV6EqRX//Z6PjtciLzEUE1NCMTsrIiD3/1ijBftqOnCgrgNHGsxot7r+2w8AaFRyRGmUSI5QIytWg0kpYZidGYHcRJ3fexkIDpcHu6pMyK/tQGlL589oc4cDFocHZocbDrcXWpUcOrUCESEKZMVoMCJOi7GJOswbEXlanIPBYrS5cKjejAO1ZhQ1W1BrcKDOYIfR5oLV2Xmuq5Vy6H58PMNDFMiM1iArVoPsGA2mpoUhLzEUskF8mg/HazgNL0q5DL+en477zkrFEHjKRWGTVahuWnp4gDvp3pRU8XVrDdKDXTvsbqG6uDCV5GP7Q6xgsKvBJnY/TvZJfrNQ3bVTE6BWBi+cU6mQQakYuNCBoXae+1uV3o4/fVvps27+qGhcOiEuCB317ttjbUJ1iyfGQ6kI7jdcLgOumBiPV7bX+qz9hsGuRERE5CdujxdFTWYcrDWhrMWCilYL6o12tJmdaLc6YXN64HR74PZ0vjbvnN0oEa1TIS5MjbQoDbJitchLCsOE1PDTIoiprMWCAzVGlLZYUNpiQaPRjlazE21mJ+wuN+wuL1weD1QKOTTKzrlcfJgaCeFqZMbqkJsYinHJ4ZiQGj405u9mJ3ZVtGN/jRH51UY0mjrnk0arCy6PB6EhSoSpFYjSqTA6IRRjk8MwMTUcs7OjA3L/Cxo6sL/aiPwaI47Wm6C3dvZyfP6uVckRqVUiOVKD7FgtJqZGYHZ2FPKSwvzey0BwuDzYVdGO/BojSps7f0abTQ5YnG6Y7W443B5oVXKEqpUI1yiRHavFiHgd8pLCMG9UzGlxDgaL0ebCwVoTDtYaUdRoRm27DbUGW+f83XF8/i6DTq2ATqVAuEaJzBgtsmO1yIrVYVpGJPKSwgb9/H24XcNpeFHKZXj4ghzcd3Ym5IP5ZBwgVXor/rSm2GfdeWNicemkxCB05JvBJhbsGj6kgl3F5u6LJyVBFfR5pAxXTEnCK1t8z3e/PtIUkGBXnudERERERERERERERERERERENNwNnd+WIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqKAaLO4sOZoK9YV6vF9hRFmh1g4lcPlgcPVGcrVYHTgWDc12bEazM2JxKKxsZiTFQHFINh43er0YGOxHmuOtmF7mUEosAv43/012TrvL2A+4ethIQrMyozAT8fFYuHYGISqAxuIdbjejAtfO+iz7v65qXjs/Ixea7xeYEOxHh/ubcL6Yj1cbm+Pte1WF9qtLtS023G43gygBQAQo1PiorGxuG1WEnIT+heq2mhy4JP8ZizPb0ZJS++hd063GyabG9XtduyuMuGT/Z2btWZEh+DaKQm4aUYSYnSB//OKd3Y34PHV5T7r7j0rBY9fkOmzblNJO5bubsD2cgMsDk+vtR12NzrsbjSZgJIWK9YX6f/7tbxEHa6ZkoBrpyQgXDNwIW0DpbjZiq+OtGJjcTvya03w9PyjDQCwOT2wOT1os3RudFzQaDnh69E6JeZkRuCyiXG4cExM0APIujPcruE0fGVGa/DqVaMwOXVoBIc0dTj/G5Liy9gBCiuPCxV//hQNaT3O5fHC5eui/KMo7cD8maToujZX78/T3XG5vVh1pNVnnUwG3DBtcIQABMNQO8/9zeMF/u/zEp/P9VFaJf52aU6QuupZh92N7eUGodoLxkQHuJvunTc6SijYdU+1CW0WV1DeVxAREdHQ02Z2YvXhJqw/1oLvyvQSZjfeLrMbe7c12XE6zBsZg0Xj4zEnO3pQzG6sTjc2FrZi9eEmbC/Vo6XDIXS7zlmVB0abq8v9/d/7prAQBWZnR+OSCQm4aHxC4OfvdSYseGm3z7r7z8nCby4c0WuN1wusL2zBh3vqsKGwBc7e5u8WJ9otTtS023C4zoQV+Z3/HhOqwkXjEvCzM9KQm9i/90yNRjs+2VePT/c1oKTZ3Gut0935PanW27C7oh0f760HAGREa3Ht9GTcPCsNMaGqfvUj4u3va/D4ykKfdffOy8SShSN91m0qasW7O2uwvVQPi49z8vj8vdFkR0mzGeu6DFLzksJwzbRkXDs9BRFDKBRPVHGTGasONWFTUSv2Vxvh8fY+67E5vZ3zd3R+LlfQ0HHC16N1KszJjsZlkxNxYV580AP3ujPcruE0fGXGaPHqteMxJT1ioFsZlDxeL3756VHfczmdCn+9Ii9IXflmtIp9BhE5QDN4f+uwu7G9VO+7EMCCvLgAd9O983PjhIJd91Qa0GZ2+vV1Fs9zIiIiIiIiIiIiIiIiIiIiIiIGuxIRERERERERERERERERERERERERERFRDw7WmfHqjlp8U9DW60bi/VHeakN5qw1L9zQiKUKNm6cn4paZSQMS0FWlt+M/u+rx0f4mmGzSwsdEdNjd2FCkx4YiPR77So4bpiXi7jNTkByh9vtaABAeIrZxvcFHaNz+mg4sWVOO/NqOXut8abO48P4PjfhwXxOunhyPx87PQJzEjUZNdjde2VaLN76vh70PIWldVenteG5jNV7ZXoeHzknD7XOSoQzgptiim7Y3dfQeJLyxWI9n1lfjSEPvG+qLKmi04I/fVOD5jdX42awkPHh2GrQquV+OPVh5vMCXh1qwdE8DdleZ/HpsvcWFNQVtWFPQhrhQFa6dmoB7zkwZkGvacLuG0/C2eGIcnr44R/i573SQEKZCxe9nQ29xos3iQtuP/6vv+t9WF9rMTkxLDx+QHtVKOXRquc+AcQCwOqU9byvlMmhVcqHbhSgH5nlL9Pkyog8/l7urjDAIbKo/JTUcGdEhko9/OhqK57m/vfl9HXZWGn3WPbUoGwnhgXkPIsXWMoPQaxSdWo5ZGQNznZuWHo5wjcLn+0O3x4uNxXpcOSk+SJ0RERHRUHCw1oRXt1bi6yPNcLr7N+vsSXmLBeUtFry7swZJESG4eVYqbp2dhihd4IM2T1alt+KtHdX4eG89jD5m0n3RYXdj/bEWrD/Wgse+KMQNM1Nwz9xMJEcG5j1TWIjY/MvXfd1XbcTvVhVif7Xv1/K9aTM78f7uWnz4Qx2unpqM31w4AnFh0l73m+wuvLy5Em9sr/LD/N2K59aV4ZUtlXjo/BzccWZ6QOfvooFzzT6ChDcUtuKZb0txpN4/c+OChg78cXUxnl9Xhp+dkY5fzs+CVjW039d6vF58eaAR7+6qxe6Kdr8eW29xYs2RJqw50oS4MDWunZ6Ce+dmDMg1bbhdw2l4Wzw5Cc9cNgbhgs99w9Eb26uxs9z3Ne8vPx2DxPDBM8/19XsCxw2VcPKtJa1C12ydWoFZWVFB6OhU0zIiEaFR+nwN6fZ4sbGoFVdOSfLLujzPiYiIiIiIiIiIiIiIiIiIiIg68TdoiIiIiIiIiIiIiIiIiIiIiIiIiIiIiOgEdQYHfv91Ob4uaAvqug1GB57bWI1/fVeHX5yVirvPTAnoRt/HGW0u/HVTDZbuaQhY+OHJrE4P/r2zHkt/aMSD81Jx31mpUCn8e19Fw8bMPYSxebzAU+sq8fp3dfD68WFxe7z4cF8TtpS2Y+kNechL1AndbmupAb/4rBit5t6DT6UyO9x4cm0lNhS3442rRyNaF5g/tQhVi30/9JbuN2k1O9x44ptKLNvb6M+2Tjj+S9tqseJgC56/NAdnjxiYzWoDbWOxHk+trcKxJkvA12oxO/Hytlos3dN5nv98drLfz/PuDLdrOA1voWoFnlqUjasmD80gPZVChoRw9aAIYOxJhEYJi6P3UBRA/HVJV1FaJaxO38f2FbgYKB12sXX78tpiU4lY8MnCvBjJxz7dDPXz3F+Km614dkO1z7qLx8XisglxQejIt+/LDUJ1szIioB6gAGelXIY5mRFYW6j3Wft9hZHBrkRERCSkzmDD71YV4esjzUFdt8Fox3PryvDatir84uxM3D0vM2jz9+fXlWHprtqAhR+ezOp04987qrF0Vy0ePDcLvzg7EyqFf19TagXnvR327ue9Hq8XT31dgte2V/l//v5DHbYUt+G9WychLylM6HZbi9tw38dH0Gr2/T5cCrPDjSfXFGPjsRa8ccMERAcokDJULRaWqrd0//mC2eHGH78qxrI9tf5s64Tjv7S5AivyG/DXy/Nw9qih+X5+Q2Ernvq6BMcaOwK+VkuHAy9vrsDSnTV4cH42bj8jze/neXeG2zWchrdQtQJPXToGV09NHuhWBrXiJjOeXVvqs+6SCQm4bFJiEDoSZ7SKfe4eqR0agdLflYnN3WdlRQ3oPHJ2dhTWFrT4rP2uTN/vYFee50REREREREREREREREREREREJxqY3xwiIiIiIiIiIiIiIiIiIiIiIiIiIiIiokFp+YFmnPtKftADAbsy2dx4en0VLnr9EMpabQFda1uZAee+cgBv7awPWqhrVw6XB89vrMZFbxxCdbvdr8fWCm5kbu4mlMzscOO2D47htR3+DXXtqs7gwGVvHcbeapPP2pe31eKG9476PdS1q+/KDbjynSNot3a/0X5/aVVi3w+T7dT1mzqcuOTNwwELde2q1mDHje8V4MWtgdnAfqAYbS784rNi3PT+saCEup689pNrK7HojUMoabEGdK3hdg2n4W1SahjW3jORYY8DzOYUC+WJ0koPN40NFdssvq2HUJZAMwkGu8b0IbRmU7HYBvMX5kZLPvbphOe5GJfHiwdXlMDu6v18jA9T4emLc4LUlW97qny/DwCAKWliQVSBMiUtXKhuV6UxwJ0QERHRULB8fwPOeWFn0AMBuzLaXPjLt6VY+PIelLUEdk62raQN57ywE299Vx20UNeuHC4Pnl9XhoWv7EG13r9zKl1/5+9LD+Jf2/wb6tpVncGGS1/7AXurDD5rX95cgevfzvd7qGtXO8r0uPLNfWgP0Ht40fm7sbv5u8mBi1/dE7BQ165q22244e18vLipIuBrBZPR5sJ9Hx/BTe/kByXU9eS1n1xTjIte+QElzeaArjXcruE0vE1OC8e6B2Yx7NEHl8eLBz49KjCXU+PpS3OD1JU4QzfPi90J14g9zw52eyrE5u5T0yMC3EnvpqRHCtXtErw/PeF5TkRERERERERERERERERERER0Kga7EhEREREREREREREREREREREREREREREA4Jn1VXhwRQk6BEOqAu1IgxkXv3kI31cEJiDnP7sacMN7BWgwBm6zclFHG8xY+PpB5Nf6b8NrrVLsTwbMjhO/326PF3d9XIT1RXq/9dKTDrsbd3xchOaOnjdzf3ZDFZ5eXwVPEHJ3jzVacPtHhQFZS6MS+34YTzr/GowOXPGfwygMYhipx9v5uP92dXnQ1gykw/VmnPfqAXx+sGVA+zjSYMZPXjuIFQHqY7hdw4l+tyATWTGagW5jWPN6gQ6H2DWnL8Gu45JCheqONQU2NLs7Xi9Q3S4WCjQ2SSfp2C1mJwoafT/vJ4SpMCJOK+nYpxue52Je3FqLA3W+30c899MRiNFJPxcDweHyoEDw9e3k1IENdhVdv6LNBpNtcLwOIyIiosHp6W9L8cAnRwbP7KbehEWv7sH35YGZA//nu2pc/3Y+Goz2gBxfiqP1HfjJy7uRX+O/OZVGKRjs2s38/c5lh7DuWOBnlR12N25fdgjNHT1/BvLM2lL85dtSeAKVMNtFQUMHbl92KCBric7fTScF2DUY7bj8jb0obAxsIGhXHq8Xz6wtxW+/LAzamoF0uM6E+f/Yhc/zGwa0jyP1Jlz40h6sCFAfw+0aTvS7i0YhK3Zozx794Z+bKnBA4PXF85fnISZUFYSOpDFaxYJdIzWDr3epHC6PcPj4pLQBDnYVXL+i1dJtaL0onudERERERERERERERERERERERKcaHH+BSUREREREREREREREREREREREREREREQD6tkNVXhpW+1At3EKg9WFW5Ydw0e35GFqWrjfjvvK9lr8ZV2V347nD3qLC9e/V4Dlt47FWMEgs94oFTLIZJ3BY72xOD0n/P9L1pRjU0l7v9cX1Why4IEVxfjw5rGnfO3fO+vx4tbg/lx+X2HEazvqcO9ZKX49rlohE6rruim4w+XBzcuOoaxVLDjO397d3YAwtQK/vSBjQNb3h62lBtzxceGg2Wzd6vTggRXFMFhduG1Wkt+OO9yu4YG2qaQdN75XMNBtBNTts5PxxMKsgW6DTnPV7Xa43GJhLKmRIZKPPz09HB/vb/JZV9RsgcPlgVow1N4fGkwOWBwe34UAZmZI2wR+f43Y5vKzsgZ2c3kaHA7Vm/HPrTU+666eEo8FY6KD0JGYY01W4evHhOT+vzfqD9H1vV7gUH0HzsiODHBHREREdDp6dm0pXtpcMdBtnMJgdeHmdw7go59PwbQM/72OeWVLJZ76psRvx/MHvcWJ6/6zH5/dMQ1jk8P6fTyV6Pz9pGDXJauKsKmotd/ri2o02nH/J0fw0c+mnPK1f++oxoubKoLWCwB8V6bHa9uqcO+8TL8eV3Qm0DXY1eHy4KZ3DqCsxeLXXkS9s7MGoSEKPP6TkQOyvj9sLW7D7csODqL5uxv3f3Kkc/4+J81vxx1u1/BA21TUihvezh/oNgLq9jPT8aeLRw90GxRgh+pMeHFTuc+6a6YlY0FeXBA6kk40FDRCe/pvVXis0Qyn6DwydWA/0xRd3+vt/Dk8M2fwzH2JiIiIiIiIiIiIiIiIiIiIiE53wftLZSIiIiIiIiIiIiIiIiIiIiIiIiIiIiIalL460hr08EwpzA43fv5REZo7nH453ucHWwZdqOtxBqsLt31YiHar2CaqvijlvsNErV2CXVcfbcXSPY1+WVuKraUGbC01nPBvu6tMeOKbiqD3AgD/3FqDFrN/ft6O04huLN9lA/Q/fFOBIw1mv/Yh1Svba7H6aPCCBvxpa6kBNy0rGDSbyh/n9XYGKL+1s94vxxtu13AiGjykPEdNS5cemjMzU2zzcpfbiz3VJsnH748DdWLhqwAwI0PaJvCix56RfvoEZlNgOFwePLiixGdAakqkGn/6SXaQuhJT1CwWnBQWokBCuDrA3fQuWqdElGB4RVGzNcDdEBER0elo1aEm/DPI4ZlSmB1u3P7+ITR3OPxyvM/zGwZdqOtxBqsLty49gHaLf+ZUSrnvma/V+b/Z5FeHm/Duzhq/rC3F1uI2bC1uO+Hfdle044+ri4PeCwD8Y2M5Wvz083ZciPD8/X+fvfxhdTGO1Ad3nnCyV7ZU4qvDTQPaQ19tLW7DTe/mD8r5++MrC/HWd9V+Od5wu4YTkRiHy4MHPjniMyg0JVKDJwZxyG+7Vew1UYTm9A92LWoS+zwjLESBxPCQAHfTu2idClE6lVBtUePA/i4BEREREREREREREREREREREdFQc/r/thQRERERERERERERERERERERERERERER9Vmr2YmHV5ZJvp1GJcesjAjMygxHVowGmTEaJIaroVHKoVXJoVLIYHN5YHV60NzhRE27HeWtNvxQbcLuKqPkgL8mkwOPrCzF29fnSu61q/JWGx5dJf3+AkBugg5nj4zCuCQdMqI1SIlUI1StgFYlh0Iug8nmhtHuQpvZhYN1Hciv68DWUgMajNI2U65pt+ORlWV445r+b/KqUsh8bihrcXRuut1mceE3X5X3WBejU2LRuFjMzYnEmAQdEsPV0KrksDjc0FtdaOlw4odqE3ZWGLG51ACHy9Pjsbrz7IYqzBsxAUBnuOkDnxXD00vrE1NCsWBMDGZmhiMnVosorRIquQwGmwvtVheq2+3YVWnEtjID9teIh68BQIfdjde/q8PjF2RKul1vlArfIbvA/4J2Nxa3+wzZjdIqMT09HDMzwzElNQyxoSpE61SI1irh9njR4XCjpt2OwiYLtpQasLFYD5NN+ibrv/qyFJNSwpAWNbCb2EpxtMGMOz4u9Bl01p1QtQJzsiIwNS0MU9LCkRYVgmitEhEaBRxuL0x2N+qNdpS22JBf24FNxXqUtdokr/PEt5UYEafFOSOjJN/2uOF2DSeiwWV9kV6oLlyjwKh4neTjj4zTYlxSqFCA7IqDLTgzO1LyGn219pjYfZ+REY7kCGmhlAdqxTZiH5sUKum4NPQ8t7EahU29B6TKZMDfLxuJcI0iSF2JKW0RC0DNjtEEuBMx2bEaofcUxQx2JSIiopO0mh14eEWB5NtpVHLMyorCrKwoZMfqkBmrRWJ4CDQqObQqxf9mNw43mjscqNHbUNZqwQ+VBuyuaJcc8NdosuPhFQV45+ZJknvtqrzFgkc+P9an2+YmhuGc0TEYlxyOjBgNUiI1nfN3teLH+bsLRpsLrWYnDtYacaDGiC3FbWgw2iWtU9Nuw8OfH8ObN0zoU59ddc7fe6/57/zd7MRvvijssS4mVIWLxyfgrJExyE0MRWJECLQqRef83eJES4cDeyoN2Fmux+biNunz93WlmDcqBkBnuOn9nxyBx9vz7HRiajgW5MVjZlYURsTpEKVTQimXw2hzot3iQrXeip0V7dhe0oZ91UZJvXTY3XhtWxWWLBwp6Xa9UUmdvxe2+gzZjdKpMCMjEjOzojA5PQJxoerO+btOCbcH6LC7UK23oajJjM3FrdhU2AqjzdXrMbvz688KMDktAmlRg+P9j4ij9R24fdlBn58/dSdUrcAZOdGYkh6BqemRSIvWIFqnQoRGCYfbA5PNjXqDDaUtFuyvNmJTUSvKWnp/79udP64uxog4Hc4ZHSv5tscNt2s4EYl7bl0ZCn0EaspkwAtX5g3qUFSj1ffzlkzWGXZ6uitpFpu7Z8dK/ywjEHJitdhn8f15rOj9IiIiIiIiIiIiIiIiIiIiIiIiMYP3N76IiIiIiIiIiIiIiIiIiIiIiIiIiIiIKOBe2FIjaaPp3AQdfjE3FReNjUGIUt5rbahagVC1AnGhKuQldm6AeSeS4fUC28oMWLa3EauPtqKXvcNPsLZQj80l7f0KQVyyphxmh3iwpUIuw2UT4vDLs9OQE9v7ptrROiWidUpkRgNT0sJwCwCXx4tvCtrw6vY6HKgTDxddfbQVW0sNmDeifwFlSrkcQO8bvNt+3AD+iW8r0Go+dXPQhDAVfj0/HVdNioe6m+95hEaJCI0SmdEaTEsPx11npKDF7MQz66vw4b4m4V7zaztwqN6MCcmh+Mu6SlS3d78h/7kjo/DIeRmYmNJ9mFlsqAqxoar/BmY+eh5wsM6M3/MBqAIAACAASURBVHxVhvxa8e/BR/ua8Mj8DOEN4X1RysWO43B54PJ48eS3FT3WTE8Px31zU3HeqCgoejiuSiGDRiVHXKgKk1PDcM2UBJgdbrz/QyNe2FIjKeDVZHPjybWVeP3q/ocNB4PJ5satHxSiwy4txDYvUYd7z0rFRXkx0Ki6v75p5TJoVXIkhKkwKSUMl0+MAxZm4WiDGf/e2YDlB5rh7i2RuAu3x4t7Pi3Gunsm9jk0d7hdw4lo8Oiwu/F1QZtQ7cyMCAg+DZ7i5hmJeHSV7wDrFQdb8NA5aUiNDHwIeavZiVVHWoRqb5yeKPn4h+rFXq/kJgyODeZpYOypMuH17+p81t0yIwlzc4IXeiyqvM0mVJft4z1YsOTEaoWCXSsE7xcRERENH3/fUC5tdpMYhvvPycRF4xPEZzdhauQlhQEA7joLnbObkjYs21OLrw43ic9uClqwuai1XyGIj68qkj5/n5SI/5ufjZy43t/jdAZqqpAZo8XU9AgAnfP3r48049WtlThQIx4uuvpwE7YWt/036LSvRGa+th+DRJ9YU4xW86lhjQnhajx8QQ6umpLc+/w9RotpGZG4e24GWjocePrbUnz4g+/3BMftrzbiUJ0JE1LC8ZdvSlGt7/6167mjY/HoghGYmBre7ddjQ9WIDVVjRPyPgZkLRuBgrQmPfXEM+RK+Bx/trcOjC3KgUvT+cy6q87MQ347P3/+0prjHmumZkfjF2Vk4b0xsL/N3QKNSIy5MjSnpEbhmWjLMDjfe21WLf2yUdt4bbS48uaYYr1/f/7DhYDDaXLhl6QHp8/ekMNx3diYuGpfQy/xdAa1KgYRwNSalReDyyUkAOoNk39xRheX7GyTN3+/+8DDWPzirz6G5w+0aTkRi9lS247VtVT7rbp2dhrkj+/daI5DcHq/Q67bwECXkMv98Xj6QKlqtQnXZPl6TBkt2nA77qn2/tioXvF9ERERERERERERERERERERERCTGP7/dTERERERERERERERERERERERERERERESnHaPNJRy8KZcBj56XgfX3TsLiiXE+NyTujUwGzBsRidevHo1Vt0/AuKTuAzq7848tNX1ed0e5AZtL2oXrY0NVWH7bOLx4+Uifoa49UcpluHhcLFbeMR73npUCKXuePr2+sk9rnri+7xqHy4PD9WZ8dqD5lK8tGhuLLfdPxg3TErvdVL4ncaEq/PXSEXhqUbaUdvHVkVYUNlmwbO+pP5c6tRz/vHwk3r8pr8dQ155MTAnF5z8bhwtzxTfPbbO4sK1M/OfFFynf+6V7GlHUfOomrCFKOZ7/6Qh88fPxWDAmusdN5XsSqlbgrjNSsOm+yZiZ0f3G/D356kgr9lSZJN1moCxZU45aQ/fBwN0JC1HgmYtzsPaeSbh8YlyPm8r3ZmxSKP5+2Qisu2ciJqeGCd/OaHPhN1/5Dizs6bbD6RpORIPLWzvrYbCKBVtcOr7vgRKLJ8YhQqP0WedwebBkdXmf15HiuY3VsDg8PutidEpcMk7afTfZ3GjucPqsSwhTIVrn+3Ghocni8OCXn5fAV5ZNVowGSxZkBqcpiWraxV6rJUcEPqxZRFK4WqiuqodwLCIiIhqejDaXcPCmXCbDYwtGYMODs7B4clL/ZzejYvD69ROw6p4ZGJcsPgd8YWNFn9fdXqrH5qJW4frYUDU+u2MqXrp6nM9Q154o5TJcMiEBq+6ZjnvnZUqawf7l25I+rXnC+grfCzrcHhyuM2H5/vpTvrZofAK2PjQHN8xIlTZ/D1Pjb1fk4amfjpHU76pDTShsNOP93bWnfE2nVuDFq8dh2W2Tewx17cnE1HB8cdc0XDg2Xvg2bWYntpboJa3TG0nz9501KGoyn/LvIUo5/np5Hr68azoW5MX1af5+99wMbPrlbMzMipJ021WHmrCn0n+fRwTSkpWFqG0Xf+8TFqLAM5flYt0DM3H55KS+zd+Tw/DClWOx/oFZmPJjsLMIo82Fx744Jnm947cdTtdwIhJjcbjx4KdH4fGRupwVq8WShSOD1FXfiAZXi8znTwc1erEA1JTIQTKPFJyLVrUx2JWIiIiIiIiIiIiIiIiIiIiIyJ+Gxm9MEREREREREREREREREREREREREREREZFkKw+3wub0HUoFAH+9dASumZLg9x6mpIVh5e3jcdcnRVhf5HsT7z1VJhyqN2NCsrRgTwB4dbvYBswAEK1T4qs7JiAj2j8bdyrlMjx+QSayY7R4eGWp0G0O1pnxfYURc7LEN6k+mUxgN3OH24s/flOBk/efvWNOMv5wYZakDdFPduvMJJS12vDWzlM3re/OqsOt2F/TAfdJKVWRWiU+uClPUmDmydRKOV69chQueuMQCpssQrdZW6jH/FHRfV6zK7mEB/KJbytO+bcIjRIf3ty/x+C45Ag1PrplLO74uAgbBM674/6xpQbLbsrr9/qBtL5Ij+XdhBT3ZGScFm9fn9vn8OaTjUnQ4cufj8dvV5dj2d5GodtsLG7Hl4dacOmEOElrDbdrOBENHiUtVvxz66khMN2JD1PhYonhpl2FqhV4ZH46lqzxHdq6tlCP13bU4e4zU/q8ni9fF7Th/R/Eru+PnZ8hOcijQjAUMi1K2vOWxeHBdxUGHKk3o7DZipJmK9qtLpjsblgcbigVMmhVckSEKJEWFYKM6BCMTQrFjIxwjE3USQ6zocB6cm0FKtp6/1mRy4B/Xj4S2j4E5gRDncEhVJcQpgpwJ2LiBfuoFbxfRERENDx8eaBReHbztyvycM20ZL/3MDU9AqvumY67PjiEdcdafNbvqWzHoToTJqRIC/YEgFe3VgrXRutUWH3fdGREayWv0x2lXIYlC0ciJ06HX68oELrNwVoTvi/XY0523+e/MgjM310e/OGr4lPm73eelYE/XDSqX/P32+akoazFgre+qxaqX3WwEfnVhu7n77dNkRSYeTK1Uo5/XTseC1/ZjcLGU0NTu7OuoBnnjen7zKArSfP3NcWn/FuERokPf9a/x+C45MgQfPzzKbhj2SGsFzjvjnthYwU+uG1yv9cPpHXHWrB8f4Nw/cj4ULxz88Q+hzefbExiKL64azp++2Uhlu0Rm01tLGzFlwcacemkRElrDbdrOBGJefLrElS09h6kKZfJ8OJV46BVKYLUVd8YrILBrlrf2xTWtNuwr8qAg7UmlLZYUG+wodHkgNXhhtXpgcfrhVYlh06tQLROhfRoLdKjNRibHIZpGZEYnRAq6bm8L2oNdqG6+PDBEeyaINiHlLB1IiIiIiIiIiIiIiIiIiIiIiLyjcGuRERERERERERERERERERERERERERERMPUxuJ2obpLxscGJBDwOI1KjreuG4Nr3jmKnZVGn/VfHGqRHApYa7BjS6nY/QWAv1820m+hrl1dPy0B+2tN+GBvk1D9p/nN/Qp2Fcng6rC78X3FiY/7VZPj8cefZPV53a4eOy8DXx5qQYvZ6bO2Um9D5UmBZiqFDP+5boxfAk01Kjn+fFEWrnrnqFD9zgrfP4+ipGxF63KfuLF+iFKO92/M9ctj0PWYr101Gpe+dRhHG8Q22t9S2o7iZitGxfsncMHf3B4vnlorHiCRm6DDx7eORVyofwPDlAoZnvtpDhRyYOkesfC/ZzdUY9G4WCglBOcNp2s4EQ0eJpsbd3xUCLtLLNji3jNTJYebnuyWmUn4eH8TDtX7fr7687pKKBUy3D7b/2EaG4v1uG/5qeEv3ZmSFobrp0oLDAGASh9hncelRKp91jjdXnx5qAVfHm7FjnJDr98zl8cLm9MDvcWFSr0NO7rk6EZplfhJXgwuHR+HuTmR/Qodov7bWmrAewLhwnefmYLp6YMzyMXrBVoF3hsA4oGqgSYaMGt3eWCyuxEeMriDO4iIiCg4Nha1CtX9dGJiQAIBj9Oo5Hjrpom4+t/7sLPc9zzpi/wGyaGAte02bCkWu78A8MKVY/0W6trV9TNSsK/agA/21AnVf7K3vl/BrsLz93L9Cf929dRk/HHRqD6v29VvLhyBLw82oqXD4bO2ss2KyrYTw+hUCjnevmmSXwJNNSo5/vzTMbjqzX1C9d8L/DyKkvJe1dnN/H3ZbZP98hh0PeZr143HT1/7AUfrO4Rus6W4FcVNZoxKGJyzU7fHi6e+LhGuz00Mwye3T0FcmO8ZhhQqhQzPX54LpUKGd3fWCN3mmbWlWDQhQdr8fRhdw4lIzNbiNizd5fu6c/fcDEzPjAxCR/1jtAkGu2q636awSm/Fxz/U45ujzSho8P1c12F3o8PuRpPJcUoIfKRWiQvz4rFofALOGR0LlcK/Q2ivF2gVeK0EAAl+ft7qK9E+OueRLoSHcDtJIiIiIiIiIiIiIiIiIiIiIiJ/6N9fRBMRERERERERERERERERERERERERERHRaWtPlVho5Z1zArch8XFKuQx/XzwCoWrfATjrCvU+a0628nArvF7fdQCwMC8GC8b0fTN3X357fqbQ/QSAtYVtcHsEG++GrA/JW2MSdHjukpw+r3kynVqOW2Ym9fn2j8zPwOxM/22ofkZ2JCaliAWklrZY0WF3+2VdhYQNw0+2ZEEmpgUgmEunluPFy0cKb2bu9QLvCwSJDZRP85tR1Gz1XQggLlSFpTfm+j3Utas/X5SNM7LFNm6u1NuwPL9Z0vGH0zWciAYHk82Nm5cVCF9rR8dr8bNZfX8NcJxcBryweKTQNcbrBf7wdQV+8Vkx2ixiG9P74nB58PzGatz6gVigbXiIAn+9dESfAlBPDrjvSWpkSI9fszg8eHlbLWa+sA8Pfl6CjcV64SDe7rRbXfhoXxOuW3oU81/Jx8f7m/r1+pT6zmRz46EvSny+rxmToMPD56YHp6k+0FtdcAn+DMUPliCFcPE+mjvEQmuJiIho6NtTKRZaeceZgX/tppTL8MKVY4XeV6091iL5+F8ebBSfv4+Lx4K8OMlriHr8J2LvHwFgbUFLv97fyPsyf08MxXOLc/u85sl0agVumZ3W59s/uiAHs7Oj/NbPmTnRmJQmNs8vbbb4b/7elzfhP/rdwpGYluH/AD6dWoGXrh4naf7+3u5av/fhL5/uq0dRk9l3IYC4MDXeu3WS30Ndu/rzJaNxZo7YZ3mVbVYs31cv6fjD6RpORL4ZbS7832dHfc/lEkPxyAX++5w9kIw2sRnWycGuO8vbceM7+Zjz/Hd4YWO5UKirLwarC5/sq8ctSw9g1nM78PLmChis/pnvA4De4jzt5pHxUuaRJrHQWiIiIiIiIiIiIiIiIiIiIiIi8k3pu4SIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhhq9xSUUdhUfpsLUNP8HSnYnM1qDxRPjfAZH1hvtaLe6EKUV/5X4jcViGzADwM9nBzYEMVqnxFWT4/HO7gaftXqLC0caLJiYEtqntfqSJfq3S0dArZT3ab2eXDYhDn/bVC35drmJOtx9Zopfeznez4E635vMerxAUbMlaOdAd6anh/slFK8neYk63DwjEf/Z5fvnEQBWH23FH3+S1aewukDyeoGXt4tvev/C4hG9huL5g0Iuwz8Wj8C5Lx+A2eE7oOBfO+pw7dQEoWMPt2t4sJ07Mgq1T8wZ6DaIBpVjTRbc+2kxCpssQvVqpRwvXzkKSoV/njDyEnV4/ZrRuHXZMaEN2D8/2IKNxe24c04ybpye2Kcgb7PDjc8PtuCV7bWo0tuFbqNUyPDmtWOQm6CTvB4A1BrENmCPD+v+/mwsbsdvvipDTbtYv1IVNVvx0BelePP7ejy1KBuzMsXCesg/lqwpR72x958RpUKGf14+0u+v5/2pzSIefBqhEQvkCrSwEPE+9BYnEKsJYDdERER0OtBbnGgz+37dEx+mDkigZHcyY7S4fEoS3tvV+wyt3mBHu8WJKJ34+6hNha3CtT8/I7AhiNE6Fa6eloy3v6/xWau3OHGkvgMTU/s2P+vLjPRvV4z1++v1xZMS8bf1ZZJvl5cUhrvnZvi1FwC4bFIiDtQYfdZ5vF4UNnYE7RzozvTMSPwsgD+TeUlhuHl2Gv7zndjnI6sPN+GJRaMH5fz9pS2VwvUvXDkWqVGBfV+kkMvwj6vG4pwXdgrN31/dWoVrp4t93jTcruHBdu7oWNQ9fd5At0EkyZKVhag39D5zVSlkePHqcYN6LteVaHBqpLbzelLQ0IHfryrCjjJ9INtCg9GOv3xbile2VuJX5+XgltlpUPXzc4Y2i3jwacQg+fwyXCPeh17CvJWIiIiIiIiIiIiIiIiIiIiIiHo3OH6DiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiCqtbHxqPHBTr48GSXT4zDysOtSI8KQdrx/4sMQWqU+r//HSsxmMvl9uKHapNQbbROGZSAqksnxAkFuwJAfm1Hn4NdpVo0NhZT0sL8ftycWA1SItWoEwwrO+6x8zL6FE7ry9wR4httV7TZBzTYdcmCzICvcd9ZqXjvh0Y43b6D8uqNDuyvNQ3oY9KdrWXtKG+1CdUunhiH+aOiA9xRp9TIENx1RjL+vtl3kERJixX7asQe2+F0DSeigdVhd+OV7bV4/bt62F0eodvIZMDfLx2BcUn+ff1y7sgo/O2yEfjVl6VwCTxnGawuPL+xGi9srsGcrAjMzorAhORQpEWFIDFcDa1KDpVCDqfbA6vTg+YOJ2oNdhxtsGBvtQlbStthdYrdZ+DHQM3FIzE3p++BHq0CoSEAEHnSpu4utxe/XV2OZXt7D9f2l4JGC654+wjuOysVD89PhzIQL9joBN8ca8PyA80+6345Lw0TkoPz3qGvjDax0AhAWqBqIIWpxfsw2HwHChEREdHQV9suNqdKiw5uIPzlk5Pw5YFGpEdrkRatQVqU5n//++N/x4aqJR3T6fZiT5VBqDZap8Ls7Ki+tC7JpRMThYJdAWB/taHPwa5SLRqfgKnp/v/8ISdOh5RIDeoMYj93xz22YATkAUgQnTcyRri2ss06oMGuv1s4MuBr/OLsTLy3qxZOt+8ZQ73Bjn3VhgF9TLqztaQN5S0WodrFk5Nw3pjYAHfUKTVKg7vnZuBvG8p91pY0m7G3SuyxHU7XcCLy7ZujzVi+3/fn+g+em40JKYPr89PeiM7otCo5nvqmBK9tq4Lb43su7y8Gqwu//6oIH/5Qh1evHY8xiX2feYqG2AKn6TxSwv0jIiIiIiIiIiIiIiIiIiIiIqLeMdiViIiIiIiIiIiIiIiIiIiIiIiIiIiIaBgy2cXCZk4OjQq0WZkRKPjNDL8es6jZAodgENmM9PCABImebGpqGLQquVBY2NFGc+Ab+tFdZyQH7NhTUsNRZ2gVrs+K0eD80YEJ3xyToBN+/Kv10jbD96cZGeGYkRH4DYCTItS4YHQ01hS0CdVvKTEMumDXpbvFguxUChkePS8jwN2c6M4zUvDG9/XoELjufry/WeixHU7XcCIaGEcbzPjsYAs+2NskKYRRLgOevjgHiyfGBaSvKyfFIz0qBHd9UoTmDrEQVJfHi21lBmwrEwsa6oukCDXeuHo0pqX37/lRbxF7rCO1/9vU3WR3446PCgN6/7rj9QIvb6vF3moT3r4+F+GDZMP7oajN4sKjK8t81k1MCcX981KD0FH/GCUEn0oJMAikULVcuFbKNZOIiIiGLpNd7DVBRLBnN1lROPaHs/16zOIms/j8PTMyIEGiJ5uSHgmtSgGr0/drz4KGjoD3c9zdcwM3l5ySHiEp2DUrVovzcwPz3n1MYqjw41/VZg1IDyJmZEZhRmbgg4aTIkJwQW4c1hxpEqrfUtw26IJd390pFpSsUsjx2IIRAe7mRHfOzcDr26uE5u+f7KsXemyH0zWciHrXZnbikc+P+aybmBqOB87NCng//iQaBrpsT11QA11PVtDQgYWv7MbTl+bimml9+10Gk4R5XVjI4NiWUSdh3s55JBERERERERERERERERERERGR/wyO3yAiIiIiIiIiIiIiIiIiIiIiIiIiIiIioqByCW6+2S64oedglpsYivyHp6PF7ERThwPNHU60dDjR1OHs/DeTA81mJ5o7nMhN1AWlJ6VChlHxWhys8x3aWttuD0JHnWGn/Q0j683IeK2k+mumJCBQe/zLZUBOrBZHGnw//q2CAWuBcMuMpKCtdcXkeOFg191VxgB3I43J7sb6Yr1Q7eKJcUiPCglwRycKD1HgiknxeHd3g8/atcfa8MzFOT5/9ofTNZyIAsPjBcx2Nzocbugtzv9n787D5CrL9I/ftfa+r9mTzp6QkBBCCBAWlVVA2RV0gBnEhVHAmZ+OOjo66Cg6OijKIoqIiCL7jkAChCUkIfvaSTrpfd+rl+paf3/EaICk663uOlXVqe/nunJxkX7qnKc6VW+deqr7vXWg06uqdq8qWwe0tqZXTb2+qI+Zk+bQHZfO0HlzCi3o+B+WTcnVS59fqP/3zH6tMlz/rXT27AL95OLpKsl2jfpYnQNmYbWHgkOGAiFd/eAubaz3jPrcI7WmuldXPrBDf/zsPBVm8iurVviPZ/ervX/4x0aa066fXzpTTrv1IVmjNeA3C/2SpKwkCQyOpo8Bn/n9AwAAx65AMHVmN3PKs7TlWyvU3uc7OGvv+9sfz5Da/vZ3h742tzw7Lj25HDbNLM3U1obI75Xqu83DUEdjdlmWpWGdM0uzoqq/asl4C+fvNlUUZ2pHU+Tvf0eE9zpWuu7kCXE71+UnlBsHu66r6ba4m+h4hgJaWdluVHvpojJNKki3uKP3y0lz6vLF4/SAQfjsX3e26UefmBN5/p5CaziA4X39qd1q7xt+Vp7mtOsXV84fE3O5w5mGgSYy1PUQrz+kWx/bqYZur7760WlR337AIGz+kGSZR0YTMDvgM79/AAAAAAAAAAAAAAAAAIbHb8kCAAAAAAAAAAAAAAAAAAAAQArKctuN6na3DmgoEFKa06w+GdltUkm2SyXZLs2NU3CriYois2DXkQSrjcQF86wNYZuYF12Y5vlzLe4nP80o2LXLMGAt1jJcdp1n8ffgcCsq8uR02Iw2LN9Q16dgKCxHkmxQ/Ma+buON1j+zpMzibo7skgXFRsGurX1+7Wrp17zy4YMYUmkNBzA662o9uuS32y0/z9LJObrjkhmaWhif8I7yXLf+8Jk5WlvTq/95pVbv1cU/2PS0ijx9ecUEnVYRu2CeLsNAkHSnXeGwdPOT+xIa6nrI1sZ+Xffwbj163Txec2Ls8S1ten5nR8S6r390kmaVZMSho9HzRhHsmuZIjuvNNIf549obINgVAABImW6zQKjdzX1jfnZjt9lUku1WSbZbc8sT3c0/VBSbBbs29QzFoRvp48eVWnr8ifnRvR+/YH6JRZ0cNLEg3SjYNXHzd4fOs/h7cLgVMwrlctjkN5m/1/Qk1fz99T2dRn1L0mdOil9Y7uEuWVRmFOza6vFpV3Of5o0bPmQ6ldZwAEf3+KZmPb89cij318+ZrllRBqwng57BxIWrj9T/vrpf/mBIXz9nelS3i24emRxrujuaeWQUwbUAAAAAAAAAAAAAAAAAhkewKwAAAAAAAAAAAAAAAAAAAACkoIIMl1HdUCCkp7d16MrF8dvgOlWUZJv9Gwz44hMMdNaMfEuPX55rdn8lqSzHrZkWB1OV5Zj10zeUmI1Qz5yRrwxX/DaOzXI7tGRijtbW9Eas7fcFVds1pGlF8Qnvi+SVyi6junG5bi2ZlGNxN0e2ZFKOSrJdauuLvEny6qqeiMGurOEAksX4PLe+euYkfWpxqWwJyBtZNiVXT99wnHY09+uFnZ16cVenKlsHLDlXusuu5VNydWpFni6YV6gpBbF/HTS97nA5bPr1mkY9uz1y4OfkgjSdNDlXJ0zM1sLx2SrKcqkg06kMl12D/pC6BwOq7fJqZ/OA1lT36vV93RoaQTDlhjqPvvpUlX51+cyob4sja+716dsvVkesWzYlV59bPt76hmIkmsdXsgQZOaMImB3J8wcAABx7CjPNZzdPbWnRVUvGWdxR6inJdhvVDfjiM/89a1aRpccvy02LqnamxQF05Yb99A0FLO3jaM6cVagMl1l4ZyxkuR06YVKe1lZ3R6zt9wVV2zmoacWZcegssld2tRnVjctL05LJeRZ3c2RLJuepJNuttj5fxNo39nVGDHZlDQfQ3Duk/3y2MmLdsqn5uvG0SXHoKPZ6BmPzGpyf6dIp0wp00tQ8zSjJUkVxpvIynMpyO2Sz2TToD6qz36/azkFtb/JobXW33tzXGVXY6uF+/lq1ynPTdO3JE41vMxbnka4o5pFe5pEAAAAAAAAAAAAAAABAzBDsCgAAAAAAAAAAAAAAAAAAAAApaHJBmtKcdqNNLH+4slanT89Tea7ZRugwk51mtmn4oN/6jeXTnHYtHD/8RtajlZtu/isMSydbH76ZZ9iPLxi2uJMjO9PioN0jWTg+yyjYVZL2tA0kTbDr2wd6jOpWTE/MpvKSZLdJJ0/NNQrg21jfF7GGNRxAoh0/PlufXVqmyxYWy+2MXxD50ZRmuzW1MF1LJ+eopss74k3hh+O025SV5jgYiOoLKRxWzMNsTTeYb+r16Ser6o76dafDpksWFOu6k8q1aMLRr/Fy0hzKSXNoUn6aTp2Wp88tHyfPUFBPbGnTr95qVEPPUFT9P7WtXWfNzNflxxMoHgv/9nRVxICFTLdd/3fJdCVJ3oCRYMj8+jpZghSkg9dzJq0Horh/AADg2DW5MMN4dvOjv1bpjJmFxkGYMJNjOP+N2/x9grUzb9N5tySdNMX6Oanp5wGJmr9bHbR7JMdPzDUKdpWkPa39SRPs+vb+LqO602cUWtzJ0dltNi2vKNAzW1si1m6qjfx5Ams4gK8+vstgLufQHVfMkz3WQ+I46fWOPNjV5bDpogVluuKEcVoxo2DY74HL4VRuulNTizJ0+sxCfen0Ker3BfXctlbd+2atdrdE/lz0g7797B4tmJCrmqn0pgAAIABJREFUEyblGtUHorjeSK55pE2hcOTeo5m3AgAAAAAAAAAAAAAAABhe4n9jGgAAAAAAAAAAAAAAAAAAAAAQdw67TQvGZRnVtnp8uvyBHWrx+CzuKrW4HWY/0u+Pw0acs0oy5HJYu0lpttssyFaS5pZZv2F5lmGwbqI2lj8xDuG2H3RcudmaIEl72gYt7MRcR79fTb1ma9OJk+L/PT3csslmmwtvb+qPWMMaDiDe3E67Tp6Sq69/dLLe+PIivfD5Bfr0CaUJDXUNhaXnd3boU7/fqcX/+55ueXKfHnqvxZJQV0nqGwrquR0d+tbzB/TRu7ZoxZ2bdN+aplFtgP9BpoGQ33+5RoNHuZ+nVeRp1ZeO1x2XzBg21PVoctIcuvakcr31lUW69cyJckZ5jfjtF6rV2ueP+rx4vz+sb9Hr+yIH/nznnKmaUpAeh45ix/TtjTOJQhQk81CHEEEKAABAf5vdGAZ5tniGdNl9G9XSO2RxV6nFeP4eh/nvrNIsuQz7GSnTebckzSmP/r1itLIN+/EbBGda4cQ4hNt+0Pxx5t/3Pa2RZ8Tx0NHvU1OP2dqUiO/p4ZZNzTeq29boiVjDGg6ktgfXNuj1PR0R675zwUxNKcyIQ0fWiBRceyR2m03XLJ2gd/79FP3yqvk6Y2bhiIJts9wOXbVknFbevEw/v2KeSrLdUd0+EArrpj9vV99Q0KjeJBxVGrvzSIJdAQAAAAAAAAAAAAAAgNgh2BUAAAAAAAAAAAAAAAAAAAAAUtT5cwuNaw90eHXO3Vv15NZ2CztKLcm0L+iMEus3nY0m+G1GsfX9pBlupB823Og1lrLTHJpVYn247QdNKzIPBavvTo5NyrcZhKAekojv6eHmGwax1nR55fFG3oiYNRxAvKS77Lp2aZkuX1SiU6flalJ+WqJb0tsHenTWLzfrxkf26M39PUrAy7UOdHj13ZeqdcL/btCPXq3V0CjDaALBsPH9qO70fujvbDbpPz42WX/+p3maHoNrKbfTrn8/a5L+cu08FWY6jW/X6w3oZ6/Xjfr8qaymy6vbXq6JWHfG9Hx9dmlZHDqKLdMgBXsyvWGSebADOQoAAOCQ8+eXGtceaB/Q2Xeu05Obmy3sKLUk0+XkjFKzueBopEUzfy+xvh/TzwMScf2cnebQrDj8m3xQRbH5fLqu68Pv+xNhW0PkENRDEvE9PZxpcG5N56B6vZHDDFnDgdRU0zmo217YG7HujJmF+qdlE+LQkXV6vf6o6meUZOmZL56on1w6RxPyzT9THo7NJl1xwjitumWZTp9p/rmndPDf6o5VB4xqTa83mEcCAAAAAAAAAAAAAAAAINgVAAAAAAAAAAAAAAAAAAAAAFLUZceXKMNl/mPl7f1+/evje3XJb7frhV2dCrJD5DFjfK71AW2mG49KUnmu28JODnI6kmtj1sNVFKUnJHhgSqH5JryNPckR7LqzecC4NhYhd6Mxp9T8/FUdgxFrWMMBxIvXH9J9a5r0709X6eLfbNes/1mni+7brl+sbtC+9sjrVSx5vEF97Zn9uvKBnXE/99EM+kO6880GffSuLVpT3Tvi4/iCI1+XbTbpjk/O0JdXTJAtxtcQy6bk6tHr5qsginDXP21oVc0RwmcRWSgs3fpklfp9w4e856Y79bNPTo9TV7FlHEiQZNcqAcN+kvl9BgAAiK/LF5crw+Uwrm/v8+mmR3bok/du0As7WpndHEPG58Vh/h7Fdei4OHwe4EqyYLTDVRRnyh7rN88GphSaz4cbe5LjPfXO5j7j2unFiQ12nVNuFuwqSfvbI3+uwBoOpJ5QOKxbHt1pNJf7v8vnxakr6/QMRg65PuTC40r1wk1LdcKkXEt6Kcpy66HrFumyxeVR3e6+t+tUbfCZqsvwOmmsziNN7x8AAAAAAAAAAAAAAACAyMx/kxYAAAAAAAAAAAAAAAAAAAAAcEwpyXbphpPH6c43G6K63bpaj9bVVmpCXpouPq5IF8wr1OIJOTEPkUL8lGS7LD9HNI+P4qw49GP5GUZuahQBq7FUnOWS02FTwCBYrrHHF4eOIqvrNtvg3mG3qSAjsb9Gk5vuVF6G02ij5NquIS2aMPxG9KzhABIlEAxrY71HG+s9un1lrZZNydW/nFyuC+YWWbqW1HR59enf71JNV3ThJhkuu1ZU5GnJpBzNH5eliXlpKs12Kd1ll9Nu01AgLG8gpFaPT429Q9rVMqDN9X1680CPPN7hN/E/3IEOr654YIduO3+arl8W3Qb0khQMj3zT+K99ZLIuX1Qy4ttHMqcsU/ddNVtX/X6nUTBJIBTW/Wub9b3zp1rW07HqvjWNWlsTOSD4tgumqjzXHYeOYs/tMAumNw0uiBfTUJ40w/sHAACOfSXZbt1w6iTd+Xp1VLdbV92tddXdmpCfrk8sLNP580t0wqQ8ZjdjWEm29dfutigm3sXx6CeJH7BTizITct7ibLdcDpv8JvP37qE4dBRZneEMxmG3qSDT+s91hhPV/L1zUIsmDh9OyBoOpJ5fv1WntdXdEeu+f/FslcchJN1qM0oyjcLnL1xQpi+smGx5P067TT+/Yp483oBe3tVudBt/MKRfvVGjn1w6Z9g61zE+j3Q7mUcCAAAAAAAAAAAAAAAAsUKwKwAAAAAAAAAAAAAAAAAAAACksFvPnKiXK7tU2ToQ9W0beoZ099uNuvvtRpXmuHV6RZ5O+9ufcWM0ZOhIfIGQaruHVN3pVXWnV50DAfV6A/J4gwf/OxTUUCCsYCgsf+jgfwOhsALBv/33sD/BUFj+4D9qkkV2miPRLbxPlju5+om3RAW7SlJRpkstnsihre39/jh0E1lzr1nAbH6GMyk2Tp+Yl2a0sXx1p9mG+azhAJLB2ppera3p1bzyLP33+VO1fOrwwRgjUdk6oE89uEutBq9Rh8wty9QXThmvC+YVKdN99I3NM902ZbrtKsx0ak5Zpj4ys0CS5A+G9dq+bv323Sa9tb/H6JzhsPSfLxzQoD+kL5023rhX6eDG9SOxfGquvrxiwohuO5Lz3PFGvVH9I5tb9fWPTh72e4/329s2qNtX1kWsO39uoS4/3rogX6u5HOaP9WAoLMcInxuxFA5Lpm/forl/AADg2PfVj07Ty7vaVNnSH/VtG7q9umt1je5aXaOynDStmFGg02YUasX0Qo0zCOEaK3yBkGq7BnWgY1A1HYPqHPCrZ9Avj/cfc3hfMKRAKCx/MHTk+XswrEAolLTz95z05NreJyvJPg+It6lFGQk7d2GWWy29kUNb2/vN5x9Wauoxm1PnZ7iSY/6en6GeQU/EuuqOQaPjsYYDqWNva79uf7kqYt3580t0+eLyOHRkvb/ccEKiW/gQu82muz51nM6+c50OtJt99vnYpiZ9/ZyKYYPr3WN2HmkY7GoYXAsAAAAAAAAAAAAAAAAgsuT6yW8AAAAAAAAAAAAAAAAAAAAAQFylOe369VWz9InfbFe3Qdjg0bR6fHpsS5se29Im6WAw5SnTcrV8ap5OmZqr8jESEhgIhrW2tlfrajzaWO9RZeugmnqHjEN8xqpoNjONhzRncvUTb8VZroSe2yTYtcc78vUilpoMg107+v2a8F9rLO4mdkz+DSTWcADJZWdzvy7/3Q5dvaRUt50/Temu2GwmXt3p1WW/26GuAbN1rjTbpW+dM0WXLSwZVaiIy2HTObMLdM7sAq2v9ejbLxzQtiazII8fvFKjDJdd1y8z3+R/JGGQDrtNP7qoIm7hKV85fYIe39Kmuu7IITQeb1Cv7unSxccVxaGzsS8QCuvmJ/ZpKBAatq4oy6UfXVQRp66s4Y7iWj9ZghSiCQWL5v4BAIBjX5rTrvuuWaCL79mg7gH/iI/T4hnSY5ua9dimZkkHgylPqSj4+5/y3LEREugPhrW2ulvrqru1sa5HlS39auoZMg6tGquSLWwrzZlc/cRbyTDBb1YrNgx27RnFrDeWmnoi9ypJHf0+jf/GSou7iZ0Wj9n9Yg0HUkMgFNZXHt1pMJdz6/ZPzolTV6kr0+3QL66Yp4vveU8ml4hDgZAe3dSsL66YfNQaVxTXPskzjxz+8Xg45pEAAAAAAAAAAAAAAABA7BDsCgAAAAAAAAAAAAAAAAAAAAApbkZxhh68Zo6ueWiXPN5gTI5Z3elVdadXD29o/fs5Tp+epxXT87V8aq5y0hwxOU+svFvTqz9taNXLlV3qTZLAynhyJsHmpIdLhs1SE6kgM3HBrtmGz01/MCyvPxSz0L6Rau0b+Wbqyawrio37WcMBDOekyTlq+N7yD/19OCx5AyEN+IIa8IfU3OtTQ8+QGnt82t06oPW1vartMgu5+KCHN7RqU32fHrxmrsbnjS4sxR8M64uP7jEOdT1lWp7uvmJmzEPSl07O0XM3LtAPX63VPW83Gt3mtpdrtHxaruaUZhrVO+022W1SFPmRumRhsWYUZ5jfYJTSnHZ98dTx+ubzB4zqX9rdSbCroV+sbtCWxr6IdT+6qCLmj+94c0URauUNhOROgtApb4Rgj8MlW2gXAABIvBklWfrDtcfrmt9tjtnsubpjUNUdg3p4fePfz3H6zEKdPqNQyyvylZOWXNvJvHugWw+vb9DLu9qZvycB5u9jYf4eSpL5uy+h57dKZxQhrazhwLHv569Va0t9b8S62y+ZreIEhoOnkiWT83TxwjI9vaXFqP7ZrS3DBrtGM68bi/PIaOatAAAAAAAAAAAAAAAAAIbHT3ECAAAAAAAAAAAAAAAAAAAAALRkUo6euH6+rv9Tpeq7RxbiNZx97YPa1z6o+9c2y2m3afHEbJ07p1DnzilURVF6zM9n6vmdHfrZa/Xa3TqQsB6ADyrITNyve2S5zQM7+3zBhG8sP+g339R2LOnsjy6wNlXXcAAjZ7NJGS67Mlx2FUmalJ+mpcp5X01rn19v7OvWH95r0YY6T1TH39UyoEvu366/XDdPUwpGvk784JUabW3sN6o9e3aBfn3lLMs2XXfabfr2OVNUlu3W9/5aHbF+KBDSvz62Vy/cuMC4J5fDrqEoNmy/dmmZcW2sXLm4VD94pVb9vshh4qv2dikUllI8MyiibU39+vkb9RHrLju+RBfMLYxDR9bKcps/Rz1DQeWmJ/5XoT3eyI/3QzKjuH8AACB1LJmcpyduXKLrHtyi+m5vzI+/r61f+9r6df87dQdnN5PydO68Yp03r0QVxZkxP5+p57e36qevHtDulr6E9QB80FgIdpWkvqGA0l2JDRAcNHjvPxZFPX9P0TUcSAXbGj36+aoDEesuW1yuC+aXxqEjHHLzWVONg1031/eqscer8XlH/iwiM4rPvz3eQJLMI83DxKP5fB8AAAAAAAAAAAAAAADA8PjtQAAAAAAAAAAAAAAAAAAAAACAJGleeZZe/sJCXbKw2NLzBEJhra/16Psv12jFLzbp3Hu26v61zeoaMN+ccrT2tA3qwvu26cZH9hDqiqSTmcCw1DSnefJaIBi2sBMz0YTfjSWeoeg3zE+lNRxAfJRmu3TFohI9c8NxevVLx+uKRSWyRRHQWd89pM8+tFs9gyNbH7Y19es37zYZ1S4cn6V7rrAu1PVwN54yTjecPM6odlfLgH6/3mzzeSm6wMvyXLdOmJgTuTDGMlx2nW8YLurxBrW3jWvt4fgCId38xD4FQsNfV5XnuvX9C6bGpymLFUYRotQ3gmsiK/QOma9jRVmJC4kCAADJbd64bL3ylWW6ZFG5pecJhMJaX9Ot77+4T6f9dI3OuXOd7n+nTl0D0QUZjsae1n5deNd6fe6P2wh1RdKJJtwt1qKZW0R6nxgPx+z8PYqwvENSaQ0HUoUvENJX/rLDYC6Xph9cPDtOXeGQOWXZOnlavnH92gPdR/1aNPO6pJlHRvFaVZSV2CB4AAAAAAAAAAAAAAAA4FhCsCsAAAAAAAAAAAAAAAAAAAAA4O/yMpz65WUz9cwNx2nRhOy4nHN7U7++/cIBnfizDfrm8wdU0+W19HwPrm/Refds1aZ6NpRHcnI7EvfrHg67eWKfLwmCXX3BY3Nj+ZFumJ8KaziAxJhblqk7Lpmh5z63QNOK0o1vV9U+qFue3Deic97xer3CBi816S67fnX5LKXHMRj9P8+ZotmlmUa1961pMg5jiSbw8tRpeca1sXbGDPMN9Tc3cM09nNtX1amyNXL47f9+Yrpy051x6Mh6hZnm9yNZghSi6SOa5zEAAEg9eRlO/eqq+Xr2iydq8aTcuJxze6NH//nsHi350Vv65tOVqukctPR8v3+3XufeuU4b63otPQ8wUq4Ezt+dUc3fEz/7ToYerDCa+fuxvoYDqeT2l6tU2dIfse6nl809ZuZyY81FC8qMa9+r7Tnq16KZ1/UNRR/+bYU+bxTzyCiCawEAAAAAAAAAAAAAAAAMj2BXAAAAAAAAAAAAAAAAAAAAAMCHLJmUo+c+t0D3XjlLy6fGZ3Nirz+k369r1opfbNY3ntuvzoHYbpoZDks/eKVG33hu/4g3bQbiweUw39w9kec2Damzij8YNgr8G4tGG5p7LK7hAJLDognZeunzC3XGdPNgz5cru/T4lraozrO7dUB/rew0qr1x+ThVRBE2Gwsuh03fPHuyUW1Dz5Ce3tZuVFsQReDlHMNgWSucEsVry542AkeOZn2tR79+pzFi3WdOLNNZUYTpJrtoghS6B5PjeqInij6KongeAwCA1LVkcp6e++JS3Xv1Ai2fVhCXc3r9IT3wbr1O++kafePpSnX2+2N6/HBY+v6L+/SNpyuZvyOpuRM4f3dGESobGOWMeLT8wdAxPH8f3Rp1LK7hQKpZX9Ote9+qi1j32WUTdNasojh0hCOJ5nu/s6nvqF+LJvi0ayA51tfuQfM+igh2BQAAAAAAAAAAAAAAAGKG3w4EAAAAAAAAAAAAAAAAAAAAAByRzSZdOL9IF84vUlX7oP64oVXPbG9XU6/P0vMGQ2E9uL5FT25r123nT9MVi0pictwfr6rVXW9FDk4aTlGWS3NKMzUuz63xuW6Ny01TdppDmW67Ml0OZbjscjlscjlsctptcjn+9v92m5wOm9wOm5z2g3937zuN+uGrtTG5bzi2OO2J21g+mqzWBO5/f/D8Cfw+Wc0/yo3lpWNvDQeQPLLTHHrg6tm69uHdWl3VY3SbH75aqwvnFynNaRZgcu87jUbhIWlOuz5/ynijY8bax2YVqKIoXfs7vBFrH1jXosuOj7weRhN4OaUwzbg21spz3SrIdKrLIMS7oWcoDh2NPQO+kG5+cl/Ea685pZn63nlT49JTvLgcNmWnOdQ3FIxY29qXHEEKptdPNpuUn8GvbgMAADM2m3TRglJdtKBUVW0D+uP6Bj29tUVNFl9DB0Nh/f7dej25uVn/fdEsXXnCuJgc9/ZXqnTX6ppRHaMoy6255Vkal5eucXlpGpebppx0pzLdjoPzd7ddTrtdbuc/5uyHZvBOu01up/1vc3mb7n2zVv/z16qY3DccWxI5Vw5FkZRqtyV2/n1Mz98Do0+sPdbWcCCVDPiCuvnRnRHX5Dll2frex2fFqSscydSiDBVludXRH3k2V9s1eNSvuRx243lkW5+1n6Oaau41ez05OI8k2BUAAAAAAAAAAAAAAACIFX47EAAAAAAAAAAAAAAAAAAAAAAQ0fTiDH3n3Cn6zrlTtKO5Xyv3dOuVyi5tbvBEFQQZDY83qFue3Kc39/fo9osqlOEyCwI7ksc2t+kXqxuivp3dJp0zu1DnzinUiZNzVFGUPuIeAFPBKDZ3j7VA0PzcLsfIn5OxYLdJToctqp7Hilivq2N9DQeQfNxOu+69cpbOv3ebqjsjB5s29fr0+JZ2Xb2kNGJtIBjWS7u6jPo4d05BQkMULz6uWHe8UR+xblODR60en0pz3MPWlWSbb8BekODwyBnFGVpf64lY19CdHBvhJ5vbXq5WTYTnTqbbrnuvmqX0Y/A1tDTbZRbs6kmOx0+zYR8l2e5jOvwIAABYZ3pJpr5zwUx954KZ2tHk0au7O/Tq7nZtquuNKggyGr3egG55dKfe3NepH18yRxkux4iP9ejGJv3iteqob2e32XTO3GKdO69ES6fkqaI4c8Q9AKasek6ZCEYxy3Y7E/vewm47GJLsPybn77G9T2N9DQdSzW0v7lN1x9FDQCUp0+3Qr6857picy401M0oyjYJdW3p98gfDcjmO/PpZmpOmvqEBg+NYG9BtyjTYtTQ7jXkkAAAAAAAAAAAAAAAAEEMEuwIAAAAAAAAAAAAAAAAAAAAAojK/PEvzy7P0ldMnqHMgoFV7uvTq3i69sa9Hvd5AzM/3+JY2Nff69OA1c0a0eWp995C+9cKBqG6T5rTr2pPKdP1J4zS5IC3qcwKjkciN0oNRpHw6j7IxbjylOewKBCOHgi2akK3nb1wQh46S31hbwwEkr9x0p354YYU+/eBOo/o/vNdsFOy6vs5jvB6dPj3fqM4qSyfnGNWFw9Kb+3t02fElw9ZNyje/7kx0YEdp9vAhtYdY8doy1q2u6tGD61si1v3owgrNKM6IQ0fxN7UwQ/s7IodCt/b549BNZK0esz4qCtMt7gQAAKSC+eNyNH9cjm4+a6o6+/1aWdmulZUden1PhzWzm03Naukd0oPXLhrh/N2rbz1TGdVt0px2XXfyRF1/ykRNLjg2r3mRvHyBxM3fA9HM3+2Jn6W6HXb5TebvE3P1wk1L49BR8htraziQalbv7dTv362PWHf7J+doRklWHDpCJBML0rW2OnJdKBxW/1BA+ZmuI359WlGG9rdHDnZt64scIhsPLb1mfUw7RufHAAAAAAAAAAAAAAAAQKIQ7AoAAAAAAAAAAAAAAAAAAAAAGLHCTKcuX1SiyxeVKBgKa3NDn96o6tHqqm5tqu+LapPq4bx9oEf/8udK/eEzc2WPMkvyG8/tV99Q5I2nD1kwLkt3XTFLFUWE8iAxfAkMdu33mT9XMpJgk/B0l92oZ08Ua0AqGQtreCK8tq9bn/nDrkS3YakbTh6n750/NdFt4Bhw+vQ8LZ+aqzXVvRFrtzb2q657KGJ46cZ6j/H5l03JNa61wuIJ2bLZDga3RrKlsT9isOuUAvPrz5DJSS1UmGX266neQMjiTsYWjzeorz61L2LddSeVR3y8jGUVRelatTdyXW3XkPXNGKjujBxCK0kVxbyHBAAAsVWY5dIVJ4zTFSeMOzi7qe/V63s7tXpvpzbV9cRsdvNWVZf++aGteui642W3RTe8+Y+ndkc3fx+fo7s/fZwqijOjbROICX8wce9To5q/u5Nh/u4wnL/HPrD0WDAW1vBEeG1Ph6753eZEt2GpG06dpP++cFai28AH9HoDuvXxnRHrrl8+UZctLo9DRzCRm26+TeKAP6h8HSXYtThTquyIeIzazkHj81mppjNyCK0krqkBAAAAAAAAAAAAAACAGCPYFQAAAAAAAAAAAAAAAAAAAAAQEw67TUsm5WjJpBx99cyJ8gwFtaa6V6ururW6qkdV7aPbBPP1fd26++0G3XTaBOPbbKrv06q93cb1p07L0wNXz1FmEmyYjdTV603cJuh9hhvL221SttthcTeRFWU61dHvj1hHsGtkybiGAxgbrlhUYhTsKklv7e/Rp08oHbZmd4vZhuW56U5VFCU2RDEvw6nyHLeaen0Ra/e2Rb5fkwuHD7093FCCA1PTnWbXy14/wa6He6e6x+jx8sC6Zj2wrjkOHUXnxkf2GNdeurBYd14284hfm1po9tyt6kiOIIV9htdBFUUZFncCAABSmcNu05LJeVoyOU//9tFp8gwFtGZ/t97Y26HV+zpVZfCeYziv7+nQ3atrddMZU4xvs7GuV6sMArIOOW16gR74p+OVmQRzRaSungTO3/sNA1DtNpuy3YnfFqooy6WO/sjvYfu8zN8jScY1HEg1a/Z3qalnKGLd79bU63dr6uPQUXRu/OM249pLF5Xrl1fNt7Cb+MlwmV83+gJHD8yeVmQWgFrVPrr1OFZMPk+QCHYFAAAAAAAAAAAAAAAAYi3xP8ELAAAAAAAAAAAAAAAAAAAAADgm5aQ5dM7sAp0zu0CSdKDDq5d2d+qlXZ16r84zomP+ZFWdPjarQLNLzTao/NVbDcbHnlGcod9+enbcQl0DoaNvLIrU1j2QuI3lPYYbsOekO2WzWdyMgZJst/a0RQ7a6jPcMB//kAxrOICx4dRpeca1m+r7Iga71nZF3lxfkkqyXcbntVJ+htMoqLOhJ3JNRVGGbDYpbHCZ2DWY2Nc2h93sQsDlSIILhiTCO4CDphmGMtd3D8kfDCf0ceQZCqrFE/n5KynhYdMAACC15KQ5dc7cYp0zt1iSdKB9QC/ubNNLO9v0Xk3PiI7541f262NzijW7LMuo/ldvVBsfe0ZJln772YVxC3X1M3/HUXQP+BN27l7j+bsjKebvpTlu7Wntj1jnYf4etWRYw4FUw5XB2DQUCBnXpjmP/nMe04oyjI5R1+WVPxiSyxGfnxk5Es9QQC29Zp+TTCfYFQAAAAAAAAAAAAAAAIipxP3kEAAAAAAAAAAAAAAAAAAAAAAgpUwrStcXTx2vp284TitvOl7XLClTuiu6H2v3B8O6802zsNYBX0gr93Yb1dps0s8vnaGctPhsKi8dDAgCjiSRQW3t/Wab2hdkOC3uxExpjlmo34AvpECQLZtHI95rOICxY2J+mvINXxf2d0QO4+4wDFgpzEyO1yLT+95lcL9y0hyaUmAWDNniSVwQjWS+oX60rxVIDceNMwuZCYbCqmqPvG5YqbJ1wLj2+PHZFnYCAAAwvGnFmfrS6VP0zBdO1KpblumapRNGMLsJ6RevVxvVDviCWlnZYVRrs0k/v2KectLi9z6uz0vQJI7M5P25Vdr7fUZ1BZlmc2+rleSkGdUN+ILyM38flXiv4QAwVnj95sGuGcOsm8eNzzE6RjAU1r4283mgFSqbI4cbS4pYAAAgAElEQVSqH3L8xFwLOwEAAAAAAAAAAAAAAABSD78RCwAAAAAAAAAAAAAAAAAAAACIuzmlmfrxxRV6+yuLdeH8oqhu+8z2DtV2DUWse6OqWz7DwKnz5hRq0YT4hvDUGdwHpKb67sQ8NgLBsHoMAw/G5bot7sbMxDyzjeUlqcogTBBm4rGGAxhbSrPNAkeaPZEDTAZ8ZtdvWW6HUZ3V3A6zX9McNNyAfuF4s8DL2i6vUZ1VTP+dMl3J8e+E5FKc5TIOMd7c0GdxN8PbWGd2/gl5aSpPkmtkAACAOWXZ+smlc/TOv5+iixaURnXbZ7a2qLYr8hztjb2d5vP3eSVaPCm+oVOJfs+E5FXfnZjHhj8YVs+gWajs+Dyz90tWm5hv3sf+9sSG4B1L4rGGA8BYYRqKbrNJWWnOo369ONutKYUZRsfaUt9rVGeVDXU9RnUT8tNVnmv+WTkAAAAAAAAAAAAAAACAyAh2BQAAAAAAAAAAAAAAAAAAAAAkTHmuW/deOUs/+Pg02W1mtwmGwnpuR0fEuvW1HuM+Pru0zLg2Vipb2eQaR5ao0IGG3iGFw2a1E6IIVLXSjBKzDXglaXcLz7lYs3INBzC25KQffcP0w/UbhIEGQ2YvRp6hoFGd1XqHzELRDe+WFo7PNqpL9Otai0FIrySV5ZiF/iL1LJlk9ljflOBg1w31Zu8rl07OsbgTAACA6JXnpuneqxfoBxfPlt1mNrwJhsJ6bltrxLr1Nd3GffzTsonGtbFS2dIf93NibKjtTEzoZWOP13j+Pj5J5u8zS7OMa3c3J/a927HIyjUcAMaK5t4ho7qSbLdcjuHXyiWT84yOtbEuscGuG2vNgl2XTjG7PwAAAAAAAAAAAAAAAADMEewKAAAAAAAAAAAAAAAAAAAAAEi4604q13+fP824/s39kTeN39tmtjl3hsuuU6bGd9PLroGAqjoSs3k4kl9VR2KCXeu6zDbGlaTxeW4LOzE3qyTTuHY3YcqWsWINByAFQmG1eHza1tSvVXu79ZdNbfrlmw367kvVuumxvbrigZ2q6zZfu61kGkxiEkGR4TL7tceeQbNAVat5vGYBs6b3yzQccltTv/H33QqNPWaPvWQJo0HyWTLJ7LH+Xq1ZsKpV1huen2BXAACQzK5fPlG3XTTLuH71vs6INXtbzYJTM1wOnVKRb3zuWOga8KuqnWBXHFlVe2LmxHVd5p8JTchPt7ATc7OiCHbd1UKwq1WsWMMBYCwIh6X9bWav2xMNXjtNg13fqzELVrXKOsPzL50S32tsAAAAAAAAAAAAAAAAIBU4E90AAAAAAAAAAAAAAAAAAAAAAACSdP2ycq3c06XX9kUO/FtX61EgFJbTfvR4MNPg1FklmXI5TGLGYmfl3q6EBnEhuR3oGFTfUFDZaY64nndfu/nG8tOLMyzsxNzMkgw57DYFQ5GfUDubCXa1UqzXcCCVPbi+RT9eVavuwUDE64VN9X2alJ/44MxBv1m4aaY7crhpptvs9a/XmyTBrkOxu++StHhCtnLTnRHvX/dgQLta+jWv3DxkJVb8wbD2GwbRT0yCxyeS06nTzIIUdrcOqKnXp3G5bos7+rAdzf1q8fiMaldUmN0fAACARLl++US9urtdr+3piFi7rro78vzdMBxzVlmWXA6z90OxsrKyg/k7jupAe2Lm73tbzefT00vi/17/SGaWZhrP33c1EexqpViv4QAwFhzoGJBnyOxzgGnFmRFrTpteYHSs3S19auoZ0ri8+M+2dzR51NI7ZFR7+oxCi7sBAAAAAAAAAAAAAAAAUg/BrgAAAAAAAAAAAAAAAAAAAACApPGvp08wCgX0+kPqGgioJNt11JquAcNNPovSjfuLled2RN54GakrFJa2NfVr+dTcuJ53e1O/ce2sksib48ZDhsuuBeOytLkh8qbx6+s8CobCcrCZuWViuYYn0lkz8tXwveWJbgMprCDDaXwds7mhTxcfV2RxR5GZBh9mGYS2lma7VNka+Vht/X55vEHlpMc3iOVwfUNBtfaZ3ffyHLNN4B12m1ZU5On5nZGvF/+6uyshwa47mvsVMAh1kaT5CegPY8PMkgxNK0rXAYOQ4FV7u3TNkrI4dPV+K/dEvq6RpFklGZpenGFxNwAAAKP35TOnGoUCHpzd+FWS7T5qTWe/3+ic04rif5307LaWuJ8TY0coHNbWhl6dUmEW7hYr2xs9xrWzSpPjvXSGy6EF43O0ub43Yu26mm7m7xaL5RqeSGfNKlLjDz+a6DYAHMGAL6iGbq8ae4a0dEqeMg3m+VZ694DZbE6SFk2M/Ln6zNIsTSvO1IH2yGHrq/a065qlE4zPHyuv7jb7OZJZpVmaniSf1wMAAAAAAAAAAAAAAADHEoJdAQAAAAAAAAAAAAAAAAAAAABJY9nkXOWkOeQZCkas7RzwDxsKOOCLfAxJcQ8Da+zxadVe801IkZpWV3XHPdh1k0E4qiTZbdKMJAquWj411yjYtWcwoA31fTppck4cukpNsVzDgVQ2t9x8M+51tZGDNazm8QbVaRhEOyEvcrjppAKzANRwWNrc2KcVFXlG9VbY0dyvsFm+qfH9kqQzZ+QbBbv+ZXOrbjljomxxzkx5c3+Pce2CcckRRpMszptTmJTh4X/Z1KZbn9oXse7XV83Sx+fFLkz63DmFuuftxoh1L+zsTEiw63M7zIIUzptbaHEnAAAAsbFsar5y0pzyDEV+D9fZP3wooOn8PTc9vlvbNPZ4tarS7DoOqWv1vs64B7uahKNKkt1m04wkCmo7paLAqPeewYA21PbopKn5cegqNcVyDQdS0XnzSpIyVPiRDU269bGdEet+fc0CXXhc6ajO1e8LameTRw3dQ38LcPWqvtv79zDX7gH/32vv+tRx+uTx8Z/HHe6V3e3GtSbBrpJ03txi3f1mbcS657e3JSTY9bltrUZ1588vsbgTAAAAAAAAAAAAAAAAIDXZE90AAAAAAAAAAAAAAAAAAAAAAACH2GzSdMPAyO7Bo29cHAiGFQiZpWylO+P7o/X3vNOooGFvSF0r98Q3/Le1z6/dLQNGtXPKspTpTp5fSTk1ikC/J7a2WdgJYrWGA6luelGGCjLNgm821feppstrcUfD29xoFgwuSZMNwk2jCQ/fVG9+bivsaDZ77ZSkmVHcr4/PK5Tb4Bq1tmtIbx8wD1mNlVcqu4zqphSmE+KNYZ03xywQdXVVt5p6fRZ3837bmvq1o7nfqPb8ubELuwUAALCSzSbNKDULjOwe9B/1a/4o5u9pcZ6/3726lvk7Ilq5O77hv60en3Y1m80w5pRnKdPtsLgjc6dONw/AfWJzs4WdIFZrOIDU1dDt1Sfu2aAv/Xm7fvDSPv1uTb1e2dWunU197wt1laTnt5sFjFqla8Cv1/aYvV7npju1cIJhsKthIOrqvZ1q6hkyqo2VbY0e7WjyGNWeP390Ib8AAAAAAAAAAAAAAAAAjix5dtEAAAAAAAAAAAAAAAAAAAAAAEBSdprZhtUOu+2oX3M6bLId/cvv0+sNmhXGQG3XkB5cz8bWiGxHc78qW83D4kbrVcOANkk6aXKOhZ1E77RpecpNNwtAfGpbuwZ8IYs7Sm2xWMOBVGezScunmG1CLklPbGm3sJvIXttrHkY+tyxy+MTiieavM2/uj3+o6eHere41rl08Mdu4Ni/DqbNnmQWn/HFDi/FxY6Gm06sNdWaby39kZr7F3WCsO3FSjqYUpkesC4WlRzbFN0zioffMnltzyzK1cHyWxd0AAADETpbbbI7mGGbA7opq/h4wK4yB2q5BPbi2IW7nw9i1o8mjypb+uJ3v1d3ms5tlU5PrvfRp0wvM5+9bWjTgi99nbqkoFms4gNQ1syRLhVkuo9pXdrerrc9ncUdH9+cNTfIFzD7TPWt2kVwOs3XvxMn5mlqUEbEuFA7rzxsajY4ZKw+tM7uOnVuerYUTkuvzegAAAAAAAAAAAAAAAOBYQbArAAAAAAAAAAAAAAAAAAAAAKSwroGA3trfo3vebtS/Pr5XZ/5ys25fWZvQnrx+sw06s93DhwemOc1+ZL5rwG9UFwtff7ZK/mA4bufD2PanjfELr3pia5tx7clRhA3Gg8th0/lzC41qPd6gHliXmHDljn6/lt+xUTc/uU9Pb2tX9+DoQy2O5TUcSHVnzzZb16SDrxdDhhucx1owFNZzOzqM65cZvIYsHJclt+F13LvVPWroGTI+fyz1+4J6bZ9ZMLrTbtMJUQS7StKVi0uM6p7d0aFN9X1RHXs07nu3ybj2IzPNwmmRumw26TNLyoxqf/Nuk/rjFBDU1OvTXzabXR9fu7Tc4m4AAMBY1jXg11tVnbr7zVrd9MgOnfF/7+pHL1cltCdvwOyaKitt7M3fv/bkbvmDiXl/jLHn4fXxCwF+fJP5TDrZgl1dDrvOn282o+j1BvTAu/UWd3RkHf0+nfzjd3Tzozv19JYWdcdg7TmW13AAqclmkz4yq8io1hcI6XdrErOmD/qDumd1jXH9+fPMXqekv80jT5pgVPubt+viN4/sGdIjG8xm79eePNHibgAAAAAAAAAAAAAAAIDU5Ux0AwAAAAAAAAAAAAAAAAAAAACA+Flb06u39vdoe1O/tjf3q7HH96GaHm+b/v2sSXLYbQnoUKrt8hrVTchLG/brZdlu1Rgca2fLgNH5Ruu+NU1aXdUT9e0Igk1df9zQoi+vmKCiLJel59ndMqB3a3qNal0Om86cmVwby0vSpQuL9cgmsyDcu99u0NVLSpWfEd9fq/nNu02q7RpSbVebHtvcJrtNOn5Cts6aka+zZuZr0YQcRVp2U2kNB1Ld2bML5HLYjK4DGnqGdO87TfrK6WabkcfSczs6jINVy3PdmlqYHrEu3WXX6RV5enVP5NDUUFi65+1G3XbBNKMeYunPG1s14DMLDFo2JVe56dG97pw1I19TC9NV3Tn8uhoOS994br+ev3GB5Wt/Y4/POHi+NNul06fnWdoPjg2fOqFUP15VG3G96xoI6LfvNsdlrbvjjXr5DAKzs9McuvT4Ysv7AQAAY8fa6m69ta9T2xo92t7Yp8aeD1/P9w4G9P8+VpG42U3noFHdhPzh37+V5aSpxuBYO5v6jM43Wve9XafVezujvh1BsKnrj+sb9ZWzpqooy23peXY19+nd6sgzDulgiOpZs80C9+LpssXlxmFzd62u0dUnjld+prWfa3zQb96uU23XoGq7BvXoxibZbTYtmpijs2YV6cxZRVo8KVd22/Drbiqt4QBS18ePK9VjhoHjv1tTp39ePlHF2da+Vn7Qna/XqK3vw5+BHklJtts4gPyQTy0Zr9tf3h/xOrBrwK/fvF2nm8+aGtXxR+KO1w4YzyMvW1xueT8AAAAAAAAAAAAAAABAqrInugEAAAAAAAAAAAAAAAAAAAAAQPys3NOtn71er5cru44YCChJrR6fHtvSFufODjrQ4VVrnz9iXVmOWznpjmFrJuSbhQbWdw8ZB5KN1DsHevT9l2tGdFuvn43lU9WAL6Q73qi3/Dx3rK5X2DA/eEVFvnLShn/uJcJpFXmaW5ZpVNs5ENB3X6q2tqEP2NM2qHvfef/G96GwtKm+Tz97vV4X3bddC3+8Xl96bK88Q8GjHieV1nAg1RVkOnXO7ELj+jvfrFdTr9lG57Hi9Yf0o5W1xvWfOM48/PCCeeb3/Q/vtWhfu1moRax4hoK6880G4/qPR3F/DnHYbbrpNLMAy21N/fr9+paozxGt775UbXxtesWiUjkTFHKCsaUw06lLF5qFL/x8dX3EsOPR2lDn0cMbzJ5P1ywpU5abaxoAAPAPr+5u109XHtDLu9qPGAgoSS2eIeMwrVg70D6gVk/k945luWnKTXcOWzPRMDSwvturhm5rr+He3t+l217YO6LbMn9PXQO+oP5vVbXl5/n5a9XG8/fTZxQoJ234514inDa9UHPLs41qO/v9+u7zI3s+jtSe1n7d8+b7Z1ShcFgb63r105UHdNHd72nB99/UF/+8XZ6hwFGPk0prOIDU9ZHZxSoxDGrtGQzo28/tsbij99vW6NGv3qg2rr/mpAlyOaLbSrEwy6VLF5UZ1f78tQOq7rD284cNtT3647pGo9rPnDSBeSQAAAAAAAAAAAAAAABgIYJdAQAAAAAAAAAAAAAAAAAAACCFfHRWvlHdf/+1Ru39kcP5Yu0hwwCdk6bkRKwxDXmUpEc3WxeCuLHeo+serlQg9P6du8fnmW2YGgiF1TN49I2mcWx7YF2z1tV6LDv+2wd69Oz2DuP6y443D+WLty8Zht9JB5/zVj7vD9fvC+qmx/ZqKDB8SETXQEC1Xd5hg3NTaQ0HIF17ktnG4tLBMPDrHt6tft/Rw6Fj7TsvVqu2a8i4PprXkIvmFysvwyyAwh8M6+Yn9skXYZ2Npf96sVptBkHWkpTldhiHVn7QFYtKNC7X7Jrx+y/XaHND34jOY+JPG1v1/E6zawanw6Z/Wmr++AVuPXOiXI7IQcBef0i3PLlPgaBhKlKU+oaCuvWpKoUMDp+T5tCXV5hffwIAgNTwsTlm73u+98JetfdFDueLtYfWNRjVLZsaeQY1xzDkUZL+srHJuDZaG2p7dN3vtxxh/m4WPMv8PbU9sKZe66q7LTv+W1Vdemar2cxUki5bPM6yXkbrpjOmGNf+ZWOTpc/7w/X7gvrSn7cbzN/9quscHDY4N5XWcACpy+Ww6eql443rn97SosfjFGjd3ufTP/9hq/yGs7/sNIf+efnEEZ3rqx+tMAqE9fpDuvnRncY9RatvKKhbHtupkEEKfE6aU18+c6olfQAAAAAAAAAAAAAAAAA4iGBXAAAAAAAAAAAAAAAAAAAAAEghJ03O1aT8tIh13YMBfe7PlRrwxS8ga3NDn3631mxT0I/MKIhYs2iC+cby969ttiQI7a+7O3XV73d+6NiZbrse+sxc4+PUdZuHpuHYEgpLn3+kUg09sX8MdPT79dWnqozrS7NdunBeUcz7iJWLjyvSjOIM4/qvPbtfr++zbtN+6eCm8tf8YZd2Nvcb1UcKp02lNRyAdOq0PC2ZZB6EvL2pX59/ZM+Hwmys8IvVDfqjYZizJJ1Wkaf55VnG9Zluu65ZUmpcv7mhT199ukrBONz3+9Y06ZFNrcb1nzqhVDnpRw/tHo7LYdM3zzYLThkKHAz3rWwdGNG5hvPm/h598/kDxvWfWlyqiQavV8Ahk/LTdPUSszDg9bUefe3Z/THvIRgK64uP7lVV+6BR/RdOHa+CTLMAagAAkDpOmpKvSQWRA0W7B/y64Y/bNGDBTPpoNtf36v419Ua1Z82KPANcPCnX+Nz3v1Nvzfx9Z5uu+u2mI8zfHfrj9YuMj1PXZXYNiGNPKBzWjQ9vU0O3N+bH7uj36auP7TSuL81x6+PHmc9C4u3ihWWaUWI+2/nak7v1+p4OCzs6OH+/+v7N2tnUZ1T/pQjhtKm0hgNIbZ87dbIy3eYz61sf26mXd7Vb2JHU1ufTVb/dFNVr8pdOn6LibPeIzjepIF3XGAbcrq/p1tee3DWi8wwnGArri3/apqo2s5n+F06frIJMV8z7AAAAAAAAAAAAAAAAAPAPBLsCAAAAAAAAAAAAAAAAAAAAQAqx2WQcmLOu1qPPPrRLHf1+i7uSGnqG9C9/rtRQIHIIYXaaQx+fXxix7ozpebLbzM7f0e/Xvz1tHnAZiS8Q0vdfrtENRwlWvPn0iZpdmqlMt9mP9W9tNAuFxNhns0nprvc/Llr7/LrygZ2q6Yzd5vK93oCue7hS9VGEBl97UrmcDsMnVQI47Tb9z4XTjOt9fwvAe2KrNRsRV7UP6pLf7tD6Wo9R/fHjs3XenOHXtlRawwEc9K2zJ8sWxdL72r5uXXb/jqjW92gM+EL6+rP7dfvK2qhud+uZE6M+15dOnaC8DPPQxCe3tusLf9mjviFrQjXC4YOBtt99qdr4NtlpDn15xfCh3ZFcurBYp07LM6pt6/Pr8t+Zv/aYeHFXp65/eLd8Bmu8JGW5HbrljOj/vYFbz5iofMPn/CObWvUfz+2PWZjzUCCkLz66V6v2dhnVTy5I043LzYIfAABAarHZpGuWmr0HWFfdrc88sFkd/T6Lu5Iaur365z9sNZ7dXLggcrjkGTMLZTd8w9rR79O/PR67MCxfIKTvv7hP//LQkYMVbzlrqmaXZRkHlm1tiN17KCS3I87fPT5d8ZuNqu6IXcBvrzeg6x7cqvoowumuPXmiXMk+f//EbON6XyCkax/cqic2N1vST1XbgD55zwatr+k2qj9+Yq7Om1cybE0qreEAUlthlktfWDHZuD4QOhiE/uDaBkv62d7o0cV3v6ddzWZB3ZI0tShDn4/iPhzJrR+dpnzDoNRHNjTpP57aHdN55Bf+tF0rK81C0CcXZOjzp43u/gIAAAAAAAAAAAAAAACIjGBXAAAAAAAAAAAAAAAAAAAAAEgx159UbhyS9W5Nr8785WY9ta1d4djsUfkhL+zq1Dl3b1Vzr9nmx58+oVRZBhuyF2W5tGxKrnEfz27v0H+9WD3qzThX7e3SOfds1d1vN+pIh5pZkqHPn3IwBKgsx210zNX7zTamxrHhmx/78Kas1Z1eXXjfNj2/02xz1+FUtQ/qkvt3aGO9eWBBcZZLN5w8btTnttqp0/J0ycJi43p/MKwvP75X//50lboHAzHpwRcI6bfvNum8e7dqR7NZKLPdJv3PhdOMwqhTZQ0HcNCyKbm6xjDQ+ZD36jw6556temJr+xGvRUZqbU2vPnb3Fj30XktUt/vkgmKdHMU12SEFmU59/SOTorrNC7s6dc49W/XavtheO1V3evXZh3ZFH2h7xkSVZJttDD+cH1447UPBM0fTORDQ5Q/s0K/ealBgFA8Arz+k7/21Wp97pFKDfrNQV0n65tmTNS7X7BoXOFxJtku3XTDNuP4P61v02Yd2q6FndEHWe9oGden9O4yvs+026f8umaFMN7+iDQAAjuy65RPNZzcHunXG/72rp7a0WDe72dGqs+9cp+Zes+umq5dOMJy/u3XytHzjPp7Z2qLvPLdn1PP3lZUdOvvOdbprdY1CR/imzSzN+nvIV1lumtExV+/rHFVPGFu+dd6MD/1ddcegLrx7vZ7b3jrq41e1DeiSezdoQ22P8W2Ks9363KnJH9Z22vQCXbKo3LjeHwzpXx/ZoX97fJe6B/wx6cEXCOm379Tp3F+u044ms8847DabfviJ2UZh1KmyhgPAl8+cqqlFGcb1vkBI//HUbl37+y3Ga1IkQ4GQfrbygC66+z3VdJoHrDvsNt155XxluEa33pVku/X9i2YZ1z+4tkGfeWCzGqIIbj+SPa39uvTXG/S84XWH3WbTHVfMUybrOwAAAAAAAAAAAAAAAGA5s58iBQAAAAAAAAAAAAAAAAAAAAAcM3LSHbrl9In63l+rjeo7BwK66bG9+t/X6nTt0nJ94rgilRoGkh5NIBjWi7s6df/aJq2rNQ+XzMtw6pYzJhrXf/bEMq2p7jWu/827TdrZMqDvnjdF88uzjG/nD4b1ws4O/W5ds9YPc3/cTrt+dflMuRwHN4+eXZKpAx2RN/58aVenWj2+UX/fkfzCYenKxaW6b02T6rrfvylu50BANz6yR6dOy9NNK8ZrRUW+URDoId2DAf323Sbd9XajvFEEtEnSv501SdlpY2Oz2B9eWKHNDX1Gz61D/rSxVS/u6tTnTxmvT59QOqIQvhaPT8/t6NA97zSqsccs5PSQzy4t16IJ2Ua1qbSGAx/U2ufX4p+8l5Bzr6/1aMJ/rYnZ8X5x6QxddnyJUe13zp2i9bUeVbYOGB+/Z/D/s3ffcXqWdb74P9N7SZ1Jb6QXQDoiiooiil1sKGBvq571nJdnXX9H3d2Xq+5x96y7q6uurqKuCoqKIihFpIr0FpIQUkhIT6ZkMjOZ+vsj4IKCZMK0ZN7vP/M893V979zPc81zf5+Z69OTv/jxQ/m/127Ku0+ZkjceO/mQQgh7evvzi5W7861n+IzzdCZWleRvXjZ7wMc97u0nNObqNc259qGmgz5m457OnPedB3PyrNq84+TGnLlgXEqLDy2A8d4t+/Kt32/LpffuTHfvwBI6Tpldm3efMjih6PMmVuTz58zNRy5de1DP7+ntz2eveiSX3rMrf3nG9Lxs8YSD/sywr6s3P75nV750/eZsPcjQ7sc9d05dzj/h4ANenspYfZ9zwGtXTMwvV+7OFQ8eXLDWbx9uzhn/ek/eeXJjLjyxcUCfcR5p2p//+N3WXHTbtgG9v991ypRDCqsGAMaO2vLifPSFc/KZyx86qOfv2dedD/zg/vzD1etywcnT88oVk9NQc3CBpE+nu7c/VzywI9+8ZXN+v6H5oI+rqyjOR8+YfdDPf9uJ03LzuoO/X/uPmzblwa1t+fQr5mfplJqDPq67ty+/vH9nvnnL5ty28enPp7S4MF9+09KUFB24B1w4uSrrdz3zvfQVD+zM9r37n/X/O6Nff39y7nFT8rUbH8mmpif3j/fs6857vndfTps3Lh98/uw876hxBxUE+rjm9u584+ZN+bfrNw68//6iOYdN//1zr16Yuze3HtR763Hfv31Lrli5M+89bWbecsLUTKoeeH96e+v+/OL+HfnK9Y9kS8vAAvXeftK0HDP94O7jxtIaDn9sx96uHPPZG0Zk7ts2NmfqX10zaOP9y7lL87pjn12f8khXVlyYL71haV739TsG1Bu7atWuXPeFm/Kaoxvz3ufNzOLGg/t+84l2tXXl4ju35us3bcr2QwiJ/fiZc3PczLoBH/dUXntMYy6/f0eueGDnQT3/tw/tyQv+6Xd513Nn5IJTpg9ozX+kqSNfv3FTLrr10XT3HvxnhXc/d0ZOnlN/0M//c7zPAQAAAAAAAADgzxPsCgAAAAAAAAAAAAAwBr3z5Mb8/IHduXPzwQd0rcG0XNIAACAASURBVN/dmU9fuSGfvnJDjppYkZNn12bBpIrMGl+emePKU1delIqSwlSUFKWosCCd3X3p7OlL2/7ebGndn0eb92fd7s7c9sje3Ll5bzoGuLF1kvzNy2anvuLgfxX+FUsn5P/+ZlPWDSDg8eb1LXnJV+7N8+bW5Yz59TlpVm0aa0pTX1Gc4sKC7OvqTXNnT9bv7sxDOztyy4bW3Ly+JXv39z7j2H995swnBcYePa06V6565tCi7t7+fPQnD+dbb1l4yMFkHEb6k4+/aGY+9OOn3jj8pvUtuWl9SyZXl+SM+eNy3IzqLJxcmel1ZaktL055SWH2P/be29jUmVXb23Pd2uZct7b5kN53p8yuzXnHNzzbsxo2NWVF+Y83Lcw5X78v7V0Hf77NHT35/DWP5IvXbcpJM2tz2ty6LG2szNwJFZlQVZzKkgMb67d19WZfV292tnVnzY6OrN7Znt9v3Ju7Ht2b/oFl/iVJFk2uzP95yawBHTNW1nDggKrSonzjTQvziq/fl+aOngEdu7GpM5/85fr87a835tTZtTlhZk2WNFZlRn1ZJteUprKkMKXFhdnX1ZvWzp60dPRk297u3LV5b+7c3JY7N7eltXNgcz6uuKggX3vjgkyoGnhY9uMKCg6EY579tXvzSNPANnj/3cbW/G5ja6pKi3La3LocO706SxoqM63uyefe29efzu6+7GnvzpbWrjy8qyP3btmX6x9u/pOQ9YPVUFOaL79+fooGksD+DF5/9KTcsWlvLrpt+0Efs2pHe97zwzWZWleasxaNz8mza7O4oSqTqkpSWVqY7t7+tHb2ZGPT/jy4vT03rW/JtQ81Dejn5+Nm1Jfl389dkAFk3sBT+qdXH5WHd92XNTs7Dur5+7p686XrH82Xb9qSk2bW5oXz67N0SlXmTihPXXlxKkoK09Hdl5bOnjy0syP3bd2Xa9c05fZNe9M3wM9uz5tbl79+8cA+twEAY9O7Tp2RX9y3I3c80nLQx6zf1Z5P/WJNPvWLNTlqUlVOmVufBZOrMnN8RWaNrzjw2ab0QP/mD72b7r60dfVkS/P+PNrcmXW72nPbxubc8UhrOrqfuV/9x/72nIWprzz4e7hXLJ+cf7i6MusGEPB407qmnPml3+d5R43PGQsm5KTZ9ZlSV5b6ipIUFRakvas3zR3dWb+rPWt27Mst65tz88NN2bv/me9NP3nWUU8KjD1mem2uXPnMIV3dvX356CUr8+23H63/Pgb09yf/+yXz8sEfPvCUj9/4cFNufLgpk2tKc8aCCTl+Vl0WTq7O9HHlf9p/392RB7e15bqHdue6NXsO6X13ypxxedtJ057taQ2bmrLifOO85XnFl29Pe9fBn29ze3c+/+uH84/XrMtJs+tz2rzxWTKlOvMmVmZCdWkqHuu/79vf81j/vSurt+/Lmu1t+f3Glty5qeXQ+u8N1fk/Z88f0DFjZQ0HOH5WXT519vx88udrBnRcd29/Lr5zay6+c2sWNVTn+fPHZ8W0msydWJkpdeWpKS9K2WO99/auvmxr3Z+Nezpyz+bW3LK+KbdtbEnvQBtzj3nrCdPyoRfMPqRjn84/vX5JHt55e9bs2HdQz9/X1Zt//s2GfPn6jTlpdn3OWDgxy6ZUZ+7EytRVlPx3P7KjOw/t2Jf7tuzNNat35/aNLekb4A+z5x01Pp8466hDOS0AAAAAAAAAAOAQ2AkBAAAAAAAAAAAAAGAMKiosyFfPXZCzv3ZvdrZ1D/j4tbs6snbXwQXtDJbzjm/I64+eNKBjigoL8v+9dHYu/K9VA57vhnUtuWHdwW/a/Exes2Ji3nnSlCf92wkza57m2X/qtw835+yv3Zf3PXdqnjunLhOrSrK/py+727uzdmdHTp9Xn5IiSVpHgq7evrxmxcRc81BTfnLvrqd93o627vzwrh354V07hqyW2vLi/PNrj8og5tINi0WTK3PRWxfnbd99cMABpD29/X8Izx1qjbWluei8RSkvGVhgxFhZw4H/NmdCeX5w/pK88dsr0zLAcNck2d/Tl9+sbc5v1jYPQXV/qrAg+eKr5uWkWbXPeqxxlcX54flL89pv3p+trV0DPn5fV29+tWpPfrVqz7Ou5WCMqyzO99++OJNrSgd97L89e0527+vJ5St3D+i4LS1d+eat2/LNW7cNek1JMr6yON9666KMr/Qnqzx7NeVF+c55i/OKr983oM85Q/0ZblFDZb7+poUpds8FAByEosKCfPUty/Kyf70tO9sGfh+zdue+rN15cMFSg+W8E6fl9cc2DuiYosKC/J+z5+eCi+4Z8Hw3rN2TG9YO3n3aa45pzDtPnfGkfzt+Vt1BH//bh/bkZf92W95/+qw8d+64TKwuyf6e/uze15WHduzL8+ePT0mR0NcjQXdvX15zTGOuXr07P7n76e+Td+ztyg/v2Jof3rF1yGqpLS/Ol85dksKCw+s+Y1FDdS46/+i87Vv3DDiAtLu3/w/huUOtsbYs37ng6EPrv4+BNRwgSd5x6oxs39uVf7luwyEdv2p7W1Ztbxvcop7GK1c05O9fvXDQx60tL853LzwmL/+3ga37Q/0zbXFjdf7jvOV+BwQAAAAAAAAAAIaR3xgHAAAAAAAAAAAAABijptaV5qK3Lk5dxegPYDpn2YR89uVzDunYlywcl9eNcJjgmQvH5f+95qj88d7cJ82qTWPtwYd+Pbi9PR+5dG2O/+Idmf03v8vCz/4+p/6/u/L2760a8ObZjF49ff1Jks+fMzfzJlaMWB1lxYX55psXZlpd2YjV8GycMrs2337rolSWjs4/n5lRX5ZLLlh6yP+/Y2UNB/7b8ilVueSCJZkygM8OI6G4sCD/8rr5gxrmPHNcWX504dLMnVA+aGMOhcba0vzw/CVZOLlySMYvLizIl98wP2cvHj8k4x+KiVUlueTCpVk0ROfM2DS9viw/ePuSIQlIPhSLGyrz/bctTk1Z0UiXAgAcRqbWlec7FxxzWPRuXrmiIX//qkMLyXrJ4ol53QiHCZ65eGL++Q1L/qT/fvKc+jTWHnzv7cFtbfnwxQ/kuM/dmFmf/E0WfPq6nPIPN+ft374nHd19g1w1I6Wn90D//QuvWZR5k0buXrasuDD/+fYVmVY/unsdT+fUuePy7fOPTmXp6LxPmjGuPD9693MO+f93rKzhAEnyVy+dl4+9aHR/j/eOU2fkK29aluLCoQk5nV5fnh+889g01IyO78UXN1bnv95xTGrKRv/PIQAAAAAAAAAAOJKMzp0pAAAAAAAAAAAAAAAYFiumVuVHozwg7B0nNeZfXzc/Rc9ik87PnzM3K6ZWDWJVB+/MhePy1XMXPOUmo4UFyRtGOHSW0af7sY3lq0qL8v23L86cEQixKykqyFfeMD+nzK4d9rkH03Pn1OXn716e2eNH1+b4J82qzWXvXv6sAwrHyhoO/LeljVW54r0rcvKs0bk+N9SU5uILluTVyycO+tizx5fn8vcszwvn1w/62IPhmGnV+eV7lmdp49B+5iwuLMhXzl2Qd58yZUjnORhLGqty2buXCXVlSCxqqMxl71o24oHOp8yuzU/esWzUhMwCAIeXFdNq8uN3H5cpdaMjIOqpvOPUGfnXNy59Vr2bL7xmUVZMqxnEqg7emYsn5mtvWf40/feCvOE5I3/vxOjS3fff/fcfvOPYzJk4/Pe0JUWF+fc3L8spc8YN+9yD6bR54/KLDxyf2RMqRrqUJzlpdn1+/v4TMvdZXtuxsoYDJMnHXjw3//yGJakoGV2B3ZWlRfni6xbn785ZkIIhXuoWN1bnsvcf/6x/fjxbp84dl5+897hREzILAAAAAAAAAABjiWBXAAAAAAAAAAAAAIAxbkljVX71vhU546jRFZI1vrI4X379/Pzt2XOeclP2gagoKcx3z1ucZVOGL9y1sCD5+Itm5j/fvChlxU//6/vvf+7UTKgqGba6GP16HttYPkmm1ZXl0ncsy+KG4dtAdnxlcS6+YGleumj8sM05lBZNrsyV712R142CEOWSooL85Qum5+ILlmRy9eC878fCGg482aTqklxy4dL87dlzUlk6ev5E8JxlE/Lr96/ISUMYOltbXpzvnLc4//DKeaktLx6yeQaitLgwH3/RzPzsXcvSMEzBj8WFBfn0WbPz729YkJqy4d9ov6AgOe/4hvz8Xcsya9zoCk/nyDKjviy/ePfyvGoIwqKfSVFhQT70vGn5/tuXpKZ8dAVaAACHlyVTqvPrvzgxZyyYMNKlPMn4qpJ85U3L8nfnLBiE/ntRvnfhMVk2dfjCXQsLCvLxl8zLt9529J/tv3/g9FmZUDU892ocHnp6n9B/ry/PT95zXBY3Vg/b/OOrSnLJu47NS5eMfL96MCxqqM6VHzoxrzu2caRLSUlRYT72ojm55N3PyeRB6tGMhTUc4HFveM6UXPXhE3PczLqRLiVJcvKc+lz1FyfmzcdPHbY5Z4wrz+UfOCGvOrph2OZ8XFFhQT70gtn5/juOGTXffwAAAAAAAAAAwFgzev5qGwAAAAAAAAAAAACAETOhqiTffdvi/Nvr52dGfdmI1lJSVJDzT2zMb//i2EEN8JlQVZIfXbg0r1g69JsvL5xcmYsvWJoPnz4tBc+wn3JdRXE+c9bsIa+Jw8cTcl2TJJOrS3L5e5bnA6dNHfINup83ty5XvHdFTpw5fCEMw6GmvChfeu1R+dGFS7No8vCF5D7RWYvG5+oPHJ2PnTFj0K/jWFjDgScrLEjecVJjbvrwsTn/xMaUFI1cgMOx06vzowuX5t/fsCAThyms/i3HTc4NHz4m7z5lyp8N8BlKRYUFef3Rk3LdB4/Oh0+fNiIhGucsm5DrP3zssIaXL2qozKXvWJbPnzM35SX+RJWhV1dxICz+K29YMGzhyYsbKvPTdy7NX7145oiurwDAkWNCVWm+d+Ex+fKblmXGuPIRraWkqDAXnDw91/+PUwY1sGpCVWl+/J7n5JzlkwdtzKezsKEqF7/r2HzkjNkH1X//m1fMH/KaOHz09T+5AT+5pjS//OAJ+cDps4a+/37U+Fz5oRNz4uz6IZ1nuNWWF+dfzl2aH7/nOVnUMHwhuU901pJJueYjJ+ZjL547BP33I38NB3jc3ImVuex9x+dL5y7N9PqRWfNmT6jI19+6PJe+57jMmTj83+vWVRTnK29aln9/87I01A7P966LG6vz0/cel0+8dF5KivTdAQAAAAAAAABgpBSPdAEAAAAAAAAAAAAAAIwer14+Ma9YMiGX3rsrF92+LXdtbhu2uSdVl+TcYybnghMbM7VuaAJ7asqK8tVzF+Rn9+3K31/9SDY17x/U8afUluZ/njEj5x47OQPZN/o1KyampbMnn/zl+vzRnuKMQb1/nOyapKy4MH995qy8atnE/ON1m3PV6j1/EgD7bEyvL8vHXjAj5x47fMFwI+GU2bW5+gNH5+o1TfnKTVty68bWIZ2vvKQwr14+Me88qTFLGquGdK7kyF/DgT81uaY0n335nHzotGn5zu3b8v07d2RnW/eQz1taXJgXz6/PO06eklNm1w75fE9lYlVJPn3W7Lz/uVNz0W3b84O7dmRba9eQz1tfUZzXHz0p55/YmLkTRjbMIzkQAP+l1x6V809oyJdv3JKr1jQ95WeJZ2v5lKr8xenT8rLFEwb0ORcGyyuXTchLF43Ld2/fni/ftGVI3u9LG6vykedPy9mLJzxjQBgAwKF49dENefmyybn07m35zq2bc+emoe1NPdGk6tKce9yUXHjK9EytG5p7mZqy4nz1Lctz9j3b89lfrc2mps5BHX9KXVn+14vn5tzjpqRwAB/YXnNMY5o7evLJn6/Wf+dp+++ffNlRefXRDfniNetz1YO7/iQA9tmYXl+ej714bt543JRBG3M0OmXOuFzzkZNy9apd+fL1G3PrhuYhna+8pDCvProx7zp1RpZMGfpA2SN9DQd4XEFB8vpjG/Pqoxty2b3b842bN+WuYVjzTp07Lu88dUZeumTigD7rDZVXrmjIS5dMynd//2j+7bcbs611cH+3JEmWTqnJR184O2cvnawfCQAAAAAAAAAAo4BgVwAAAAAAAAAAAAAAnqS4qCDnHjsp5x47KWt3deRXq/bkNw81565H29LZ3Teoc80eX57nH1Wflywcl9Pm1KW4aHh2q3zV8ok5e8mEXHb/rvzXHTvy+0daDzkks7K0MC9dND6vXTEpp8+rS/EhJl1dcGJj5k6oyN/8akMe3N5+aMVwRPhzG8Yvm1KVb755YTbs6cxFt23Pr1fvyfrdhxaQUFxYkBNm1uStxzXknGUTDvm1e7gpKEjOXDguZy4cl/W7O/PzB3bnigd35/6t+wYlLLeuojinzq7N2Usm5CULx6W6rOjZDzoAY2ENB/7U1LrSfPxFM/OxF8zI9eta8uvVe3L16qZsHcTgw4lVJTllTm1eeNS4vGzx+NSUD+/69nQaakrzv144I3/5gum5cX1Lrl7dlGsfas6GPYMXINRYW5oXzq/PC+ePywvn16esuHDQxh4sx82oyTfevDCbm/fn+3fuyNVrmvLAtn3PKrRoWl1Zzl4yPq9ZMTFHTx36gBR4JmXFhXnnyVNywYmNuWFdS35y765cvaYpzR09hzzmjPqyvGzJgfu55VOqBrFaAICnVlJUkDceNyVvPG5K1u7cl1+t3JVrV+/OXZtbBr93M6EiL5g/IS9ZPDHPnTc+JcPVfz+6IWcvm5TL7t2R7932aH6/oeWQQzIrS4vy0iWT8rpjGnP6/PGH3MO88JTpmTexMp/55UN5cFvbIY3BkeHP9YCXTa3Jf75tRTbs7shFt27Orx7clfW7Du37muLCgpw4uz5vPWFqzlnRMLb674sn5szFE7N+V3t+ft+O/PKBHbl/S9ughOXWVRTn1Lnj8vJlk/OSxZOGvf8+FtZwgMcVFxbktcc05rXHNGbdrvb89J7t+c2a3blnc2t6BuFL1ZKighw7oy5nLZmUs5dNysxxFYNQ9eAqKy7MO0+dkQtOnp4b1u7JpXdvy9Wrd6e5vfuQx5wxrjxnL52c1x7bmOVTawaxWgAAAAAAAAAA4Nkq6O8fhN94BQAAAAAAAAAAAIAj0NKlS7Ny5cqnffwvXzA9HztjxjBWBCOrp7c/D+5oz+od7Xl4V0cebenK1tau7NnXnebOnrTt701Xb396eg9sXFxcVJiyooJUlRVlQmVJJlaVZHp9WeZOKM/8SRU5dnpNxlcWj/BZHdDU3pMb1rXkni1tWb29PVtau7KjrSvtXX3p6u1LUWFByosLU19RnIlVJZk9vjwLJ1fmuBnVOW56TcpLBi/cq68/uXFdS377cHNu3dianW3d2dPenc7uvpQWF6aqtCgTq0oyra40ixoqs2hyZZY0VmXR5MoU2NN51Nra2pXjv3jHQT33mg8enUWTKw967A17OnPz+tas3tGeNTvbs6l5f9r292ZfV2/29/SnvLgwVaWFqasoztwJFZk/qSLLp1Tl+fPqR00o32jQtr83dz/alrsfbcvGps5satqfR1v2Z+/+3nR096Wzuy99/f0pLS5MWXFhasuKMrG6JJOrSx9bEyqytLEqSxqrMhr36D+S13Dg6W1t7cr9W/flgW378kjT/mxt3Z9trV1p7uxNZ3dfOnv60v2EzzplxYUZV1GcyTWlaaw58Jnn8c8b8yaOvk3V/5wdbd25f+u+rNy2L+v3dGZba1e2tXZlT3t3Onr6sr+nP929fSl+7NzLSw581musKU1jbWlmjSvPksbKLG2syvT6spE+nUOyo607t6xvyeqdHVm7syPrdnekpbMn+7r6sq+rN0lSUVKYipKiTKoqycxxZZk5rjzLplTlhJk1mXGYnjdjS39/smpHe36/sTWrdrRn/e7OPNK8P3s7e9Le3Zeunr5UlBSlsvTA+jZrfHnmTCjPssaqnDy7NtPqvM7hqZzxr3dnzc6Op338U5/6VD796U8PX0Eckc4999xccsklT/v4Ocsn56tvWT6MFcHI6u7tz6rtbVm9fV8e3rkvm5s7s61lf3bv605zR3fa9vc81rs5sE1McVFByooKD/Ruqkozsbok0+srMndSZeZPqsxzZtRlfFXJCJ/VAU3t3blh7Z7cs7k1q7bvy5aWzuzY25X2rt50PXZfVlZcmPqKkkyqKc2s8RVZ2FCd42bW5fiZdYPcf+/PjWub8tuHdufWDc3ZsbfrCf33glSVFmdidUmm1ZdnUUN1FjdWZ8mU6ixqqNZ/H8W2tuzPcZ+78aCee+1HT8qihuqDHnvD7o7cvK4pq7a3Zc2OfdnU1Jm2zp7H+u99B/rvZUWpqyjJ3ImVmT+5Ksun1uT588entlz/9HFt+3tz9+aW3L2pNRv2dGRTU2cebe7M3s6edHT3PtZ/T0qLD6wHteXFmVRdmkk1ZZkz4cCasHTKgfdj4Sh8Mx7JazjAH9u7vyf3bN6b1Y+te1taOrO9tSu72g58vtvfe+B7h5KiwlSUFKa8pCjjK0syvb480+rLM29SZY6ZXptlU2tSVjx4n/OGS39/smp7W27d0JzV2/dl3a72bGrqSGtnz4HPtz39qSgpTGVpUcZVlmTWhIrMnVCZZVNrcvKc+kyrLx/pUwBGmff+1335+X07nvbxN7zhDbn44ouHsSIAAAAAAAAAGLMu8du/AAAAAAAAAAAAAAAclOKigiyfUpXlU6pGupRBN66yOK9cNiGvXDZhpEtJYUFy+ry6nD6vbqRL4TAxe3x5Zo+3AeyzVV1WlNPm1uW0uUfme+9IXsOBpzeltjRTaktz5sJxI13KsJtcXZIXzq/PC+fXj3QpI2ZydUletXziSJcBQ6qgIFncUJnFDZUjXQoAwLNSUlSQ5VNrsnxqzUiXMujGVZbklSsa8soVDSNdSgoLCnL6/PE5ff74kS6Fw8TsCRWZPaFipMs47FWXFeW0eeNz2rwj8713JK/hAH+spqw4p80bl9Pmjb3vHZLH+pGN1VncePBB8QAAAAAAAAAAwOGhcKQLAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYboJdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAxR7ArAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDmCHYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMYcwa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJgj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGHMEuwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY45gVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgzBHsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMOYJdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAxR7ArAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDmCHYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMYcwa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJgj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGHMEuwIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAY45gVwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgzBHsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMOYJdAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAxR7ArAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADDmCHYFAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMYcwa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwJgj2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGHOKR7oAAAAAAAAAAAAAAACAI92U2tI8+plTRroMAAAAAAA4okypK8uWv3/RSJcBAAAAAAAAAAAAABzGCke6AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACA4SbYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYcwS7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjjmBXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDMEewKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIw5gl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDFHsCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMOYIdgUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxhzBrgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAmCPYFQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYcwS7AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABjjmBXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDMEewKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIw5gl0BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgDFHsCsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMOYUj3QBAAAAAAAAAAAAAAAcHra2duX4L95xUM+95oNHZ9HkyiGuCDjSvP+SNbns/t1DMvZ5xzfk8+fMHZKxAQCAwbGnvSfLP3/bkI2vXwHAaLW1ZX+O+9yNB/Xcaz96UhY1VA9xRcCR5n3fvz+X3bt9SMZ+20nT8vlXLxqSsQEAGBp79nVn2d9dP2Tju3cFAAAAAAAAAA43hSNdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADA2EZDyAAAIABJREFUcBPsCgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACMOcUjXQAAAAAAAAAAAAAAAAAc7na0defeLW25d8u+PLyrI1tbu7KttSt79/eks6cvnd19KSosSHlxYSpKCjOhqiQNNaWZWleaBZMqs7ihMkdPq05NWdFInwoHoaunLyu3t+f+rfuycnt7Hm3en62tXdm5rzud3X3p7OlLT29fyooLU1ZcmMrSwkyuLk1DTWmm1ZVmUUNlljZWZUlDZUqLC0f6dDgI/f3Jut0duevRtjywbV82N+3P5pb92dHWnY7uvnR096W3rz+VpYWpKi1KbVlRZo8vz7yJFVkwqTKnzqnN9PqykT6NQ9Lfn6ze0Z57trRl1Y72rNvVme17u7KjrTvtXb3p6OlLf39SVnxgjassLUpDTWkaa0ozvb4sSxors3xKVY6aWJGiwoKRPp2DNpavOQAAAMBosmNvV+55tDX3Pro3D+/cl60t+7Otdf+B/nv3H/XfSwszoao0DbVlmVpXloUN1VncWJWjp9empsx2W4eDrp6+PLC1Lfdv2ZsHt7Xl0ebObGnZn11tXeno7n2s/95/oP9eUpjKkqJMrjlwzafVl2dxY1WWTqnJksZq/ffDhGvOWNPd258Htu7NnY+0ZM2OfXmkqTObmzrT0tGdju7edHT3pbiwIJWlRakuK8q0+vLMHFeReZMq85yZdTl2em0qS32nDAAAAAAAAAAAg81vmgIAAAAAAAAAAAAAAMAheHB7ey67f1euWt2UB7e3P+Pz+3r7093bm737e7OjrftPjikqLMiKqVV5wVH1efXyiTlqYsVQlT6k+vuTr92yJZ+7ZlO6evr+7HNPmFmTn75z2TBV9uw0d/Tk5/fvzlVrmnLz+pZ0dP/5c0vyh/DH5o5kS0vXnzxeUVKYU2bX5UUL6nPO0gmZUFUyFKX/wbRP3TKk44+EX79/RZY2Vg3J2N29/blubXOueHBPrlq9J3vae57xmL2dvdnb2ZttSdbs7EhWN/3hsbkTyvOiBeNy3vENo/793ba/N1etbsoVD+7JTetb0tzxzOfe3tWf9q6+7Gnvyebm/X/yeF1FcV5wVH3OXDAuZy0en4qS0bfB/li+5keSKx7ck3f9YPVIlzFgf/XimfnQ86aNdBkD1tPXn1d+/f7cs6XtoJ7/tTcuyMuXTHjW8/qZdoDXOwAAcKR6cFtbfnbv9lz14K48uO2Z7zkP9N/7snf/gSDYPz6mqLAgR0+ryQsWTMirj27IUZOGpqc41Pr7k6/e+Eg+9+uHn7n/Pqs+P3vfccNU2bPT3N6dy+7bkatX7cpNDzelo7v3GY85EH7Ym+Z0Z0tL5588XlFSlFPn1ueFCyfmlSsmZ0JV6VCU/pSueGBn3vnde4dtvsHyiZfOy4deMHtY5jrSrjnP3pG6vj2uqb07v1q5M1c8sDPXr92T/c9wjr19/dnf05em9u5saurM79Y3/+GxosKCnDirPq9YPjlnL52UhtqyoS7/D8by+jaWzx0AAAAAAAAAYKwQ7AoAAAAAAAAAAAAAAAAHqa8/uez+Xfnmrdtyx6a9gzp2b19/7trclrs2t+Wfrtuco6dW5z2nTsk5SyekqLBgUOcaKltauvLhSx/KLRtaR7qUQXPPlrZ87eat+eWDe55xI+mB6ujuy7UPNeXah5ryqSs35KULx+edJzfmpFm1gzoPA7OzrTsX3bYt37l9e3a2dQ/auOt2d2bdLVvz9Vu25tQ5dfnI6dNy2ty6QRt/MDy4vT3fvHVrLr13VzoPIrx4IFo6evKz+3blZ/ftSk15UV63YlLefcqUzB5fPqjzHIqxfM2PRK2dzxzIy+D5l+sfPehQVwaf1zsAAHAk6evvz2X37sg3bt6UOx5pGdSxe/v6c+em1ty5qTX/eM36HD29Nu89bWbOWT75MOq/d+bDF6/MzeuaRrqUQXPP5tZ89cZH8ssHdg5B/70316zenWtW786nL1+TlyyelHc9d0ZOml0/qPM8FffrT+9IveY8O0fi+va4h3e256s3PpJL7tz6jGGuB6u3rz+3rG/KLeub8qlfrMkrVzTkg8+flcWN1YMy/p8zlte3sXzuAAAAAAAAAABjhWBXAAAAAAAAAAAAAAAAOAhXrtqTz1/9SNbs7BiW+e7Z0pYP/uih/MO1m/KZl83OixeMG5Z5D9Wl9+7KJy5fl72dvSNdyqBYvaM9f/frR3LtQ8OziXRPb38uX7k7l6/cnVPn1OWvz5yZY6YN/QbM/Lf2rr585aZH85WbtqRjkENN/9jN61ty8/qWnLVofP7PWbMya9zIhptu2NOZz13zSH7xwO709w/9fHs7e/Ot32/Ld2/fnnOPnZT/ecaMNNSUDv3Ef2QsX/MjWesR8nPocHD/1n35f9dvHukyxjSvdwAA4Ehx5cqd+dyvHs6aHfuGZb57NrfmAz+4P1+4qiKfecWCnLlo4rDMe6guvXtbPvGz1UdMqNzq7fvyd1c8lGtW7x6W+bp7+3P5/Tty+f078ty54/KJs47KsTNqh2y+lo7uIRv7cHWkX3MO3ZG2vj2ubX9vPnvl2nz71s1D+r1LT19/Lr17Wy69e1vOfc6UfOYVC1JXMXTbS47l9W0snzsAAAAAAAAAwFgh2BUAAAAAAAAAAAAAAIDDynfftjhnHFU/bPNt39uVT/xifa5ctWfY5nyiDXs6c/73VuXsxePzxVfPS2356PqToJaOnvzvX6zLZfcPz2bcQ62ntz9fvG5TvnzTlvT0DkPC5VO4eX1Lzvn6fTn/xMZ84sWzUllaOCJ1jCU3r2/Jhy9dm62tXcM675Wr9uSGdS35h1fOzauWD394RG9ff75805b843Wb09UztMGmT6Wnrz//dceO/OKBPfn0WbPyxmMnD9vcY/WajwUtR1gAwGjV1dOXj1y6dsR+VnLAkfh6H19ZnEc/c8qAj3vF1+/LXZvbhqAiAAAYW7534TE5Y8GEYZtve+v+/NXPVufKlTuHbc4n2rC7I+d/+56cvXRy/vH1i0dl//3jP12Vy+7dPtKlDIru3v784zXr8uXrN6Z7hHoKN61ryjlfuT3nnzwtf33WUaksLRr0OY60gMpnY6xccwbuSFvfnujGh5vykUseyNaW/cM678V3bs1v1uzOP71+SV64cGh+lo/l9e1IPPfxVSXZ8vcvGvBxr/jybblzU+sQVAQAAAAAAAAAMLJG12+RAgAAAAAAAAAAAAAAwChyy4bWvO/iNdm1r3ukS8kvH9yTB7a155tvXphFDZUjXU6S5IZ1LfnoT9Zm2zAHIw6V7Xu78u4frskdm/aOdCnp60/+89ZtuXl9a/7jTQszd0L5SJd0ROrvT75w7SP51xseTd8IZRPu6+rNB370UG7ftDefedmcFBYMz7w727rzrh+szu2j4PXe2tmTv/zpw7l5fWv+76vmpaRo6P4TxvI1HytaO3tHuoQx4QvXbsqqHe0jXcaY5/UOAAAczm5e15T3ff/+7Gob+f7yLx/YkQe27s0337YiixurR7qcJMkNa/fkI5eszLbW4Q0GHCrbW/fnXd+7L3c80jLSpaSvvz//ecvm3LyuKd84b0XmThzc71xaOo688L9DMZauOQNzpK1vT/SD27fk4z9dNWJBxjvbunL+Rffk785ZkPNPnj7o44/l9W0snzsAAAAAAAAAwFhRONIFAAAAAAAAAAAAAAAAwGj0gzt35I3fXjkqQl0ft7GpM6/7zwdy75Z9I1rH/p6+fPrKDXnzRSuPmFDXh3d15Oyv3TcqQl2faPWO9rz8a/fl7kfbRrqUI05Pb38+9OOH8qXrRy7g84m+eeu2/I+frh2WWlbvaM/ZX7t3VIS6PtGP7tmZN317Zdq7+oZk/LF8zceSlk6bqw+12x7Zm6/evGWkyyBe7wAAwOHrB7dvyRu/cdeoCHV93MY9HXnd1+/MvY+ObM9sf09fPvWLNXnTN+86YkIPH97Znpf9222jIuDziVZv35ez/+223L25dVDHbXW/PuauOQfnSFzfnuiff7Mhf/njB0cs1PVxvX39+aufrc4Xr1436GOP5fVtLJ87AAAAAAAAAMBYIdgVAAAAAAAAAAAAAAAA/si3f78t//Oyh9M7CtP2mjt68qaLVmbDns4Rmf+Bbfvysq/el6/fsjX9o++/55Cs330gMHe0htS2dh645iMd6Hsk6e3rz7t+uDo/vW/XSJfyJD+6e2f+8qdrh3SOh3Z25NxvrcyWltH5ev/dxta84/urBn3j87F8zcea1g6bqw+lju6+fPQnAolHC693AADgcPSt323Oxy59cHT239u788Zv3JkNuztGZP4Htu7NWf/6+3z9pk1HTv99V3te+7U7Rm2IY2tnT970jbsGNdC3paN70MY6HI3Fa84zOxLXtyf63m2P5vO/fniky3iSL16zPt/63eZBHXMsr29j+dwBAAAAAAAAAMaK4pEuAAAAAAAAAAAAAAAAAEaTy1fuzl//cv0hbSpcWlyY42fU5KRZNTlhZk2m1JZlXEVxxlUUp6O7L3s6utPU3pOV29pz68bW3LKhNY+2DHxj65aOnlz4X6vyi/csT1Vp0cALPQR9/clXbno0/3DtpkEPXBxJrZ09Of+/VmVn28A3460uK8rz5tblhJk1WdJYlam1pZlUXZLy4sIUFxVmf09f2rt6s7OtO5ua92fltn25ZUNrbn1kb7p6+gY0197O3lz4/VW54r0rMrm6ZMC18mSf/OX6XLW66ZCOnT2+PC9aMC4nzarJvAkVmVJbmqrSovT296e1szebmjvz4Pb2/Oah5ly3tjkd3QO71pfcvTOLJlfmfc+dekj1/Tk727rz5otWZte+gb/ei4sK8pxp1TlhZm1OmFmT6fVlqa8oTn1FcQoLkqb2njR39mT3vu7cubktv9/Ymts27c3ezt4Bz3XDupZ86soN+ezL5wz42KczVq/5WNR6CK85Dt7f/nrjiIXL86e83gEAgMPN5ffvyF9ftvqQ++8nzKzLSXPqc8Ks+kypK8u4ypLUV5Sko7s3Te3daWrvzsqtbfnd+qbcsr45jzYP/B62paMnF1x0Ty7/4AnD2H/vz1eufyRfuGpdunsH1lsazVo7e/L2i+7JzrauAR9bXVaU5x01PifMqs/SKdWZWleeSTWlj/XfC/7Qf9+xtyubmzrzwNa9uWV9c27d0Dzg/ntr54FrfuWHTszkmtIB1/pU441VY/Wa8/SO1PXtia5dvTv/+6erB3xcWXFhTp5Tn9PnT8jihqrMnVSZ+oqSVJYWpbu3L3s7e7OpqSNrduzLjQ835bo1u9PUPrDvdz552ZpMqy/PmYsmDri+pzLW1zcAAAAAAAAAAI5sgl0BAAAAAAAAAAAAAADgMau2t+fDl64d8KbyjbWlefvxDTnv+IZMqHrq0M2aoqLUlBdl1rjkmGnVectxk5Mkv1nbnK/etCU3rGsZ0JxrdnbkC9dsymdeNntgxR6CTc3785FL1+bWja1DPtdw+1+XrcvDuzoGdMysceX/P3v3HSZXWfd//DNte++b3WR303svtFAFpBM6AmIBFBRQeVR+ivoooFgeFRXsBRCllwQSIBAgoSaU9Lopu8n23mdnZmd+f4R9nhBD5p7Zmdly3q/r8pILvnPu79lz5pw59+zeH91wXKEun5OnRJf9E+sSXXYluuzKTnZpcn6STp+UqVtPOrjw75MbGvX7N6tDCvatbffo1qd26d+fnRpSvyOVzSalhBGs8O8P6vXgurqQX3fqhAx9dXGRFpWkHfG/O2VTbopduSkuzS1O1VXz8tXu9ukfa+v0+zerQ1rw+ccvV2rmqGQdV5Yecp+fxOcP6EuP7VRNe2gL6mcnu3T1/Hx9bkH+URe4L0iLU0Hawf9+fFm6tLhIHp9fj61v0P1vVqsixCDIB9bWavHYdJ01JSuk1x2JVY+5VbWxuHrUrN7dpgfX1Q52GyNSuPc0zncAAAAAw8m22k7d/NiWMObf4/XZRUW6ZlGRspOPPD/lcjiVluBUSVaiZhen6TMLRkmSXt3ZpD+sqdSa8uaQxtxZ36WfvrRbPzp3YmjNhmF/i1u3PLZF7+5rjfpYsfbNp7Zpd0N3SK8pyUrUDSeM0RXzC5Xo+uRn5USXQ4kuh7KT4zSlIEWnT8nR1/TR/PuHtbp/dUVIwb617b265fEteuQLc0Lq90jaeqz7vG7VY44jG8nXt36NnR7d+vhW9fnNb265KXG68cQSXTGvUBlJR/5e2Wk/eL7npcZp3ph0XTl/lLx9fi3bVK/fvrZPO+q6jMbyBwL6+hNbterWYyISYmzl65uV9x0AAAAAAAAAAAAAAMAqCHYFAAAAAAAAAAAAAAAAAAAAAAAAJHl8fn31yV1ye/3Gr7HbpOuOLdTtp41RvPOTAz6P5pTxGTplfIZe392qW54sV2OX1/i1f19bq8vm5GpaQXJYY5t4Yn2D7li+Vx29fcavcTps8vWFuDr/IFixrVnPbWkyrnfabfr2aWP0peMK5bDbwh43LcGpzy8q0NXz8/Xr1w/ot2uqjBd8Xr27TU9uaNDFs3JDHrfqh8eG/JrBsL+1V6fet17dnqO/F6+cm6eSrISQtl3Z0qv/fmFfSK8pSo/Xzy8Yq5PGZYT0Oungsb7lxCJdOTdP33luj5ZvMwuQ6PMHdOvT5Xr9q3OUFBfeteVw979RHXI489Xz8/WDM0vD7iHOadfV8/N15dw8/fWdWt21siKkxc2/v2KvThmfoYSjBCgHY+VjblXtbrP71a7vLuJnHYIOd5++8Ux5yOE70cI97SDOdwAAAADDhcfn11cf3RLi/LtN1x8/WrefOS78+feJ2TplYrZe39Wsmx/bosZOj/Fr//72AV0+r1DTClPDGtvE4x/U6I6lO9XRax4W53LY5B0O8+9bGrRsU71xvdNu0+1njtOXThgz8Pn3Y4t19cJR+vWqffrNa/vM5993NevJD2t18ZyCsMeXDgaNmij/4clKivvkINPhxsrHHP9pJF/fDvXNp7erqcv83nL1wiLdcdZ4pSWEvgSky2HXRbMLdN6MfP1hTYV+tnKP0bne3OXVfz21TQ9eOyvkMQ9n1eubZO19BwAAAAAAAAAAAAAAsAr+Ag8AAAAAAAAAAAAAAAAAAAAAAACQ9Ie3arStrtu4PivJqcc/P00/OLM07EXlD3XSuAytvHGm5habLxLf5w/oV68dGPDYR9LS7dMNj+7UrU+XG4e6Ouw23XbKaF05Ny8qPUVSnz+gu1dWGNdnJ7v0xOen6aYTRg1ogfFDuRw2ffPU0XrgqskhnUM/W7VfvhDCMYeTQEC67ZndQQPw8lJc+t4ZJSFv/zvP7VFnCCHFx5am6cUvzwwr4PNQuSku/fmKSfrO6WNkMzx9qts8+p/X9g9o3H57mtz61evm14rUeIcevGqyfnre2IgEATrsNt1wXKH+/dkpykwyX6y8us2jv75bM6CxrXrMrcxkcXWn3UbIZYjuWLFXNe3mAQWI/j1N4nwHAAAAMHz8fk2lttV2GtdnJbv0xPVz9YNzJkRm/n1CllbeslDzxqQbv6bPH9AvX9k74LGPpKXbq+sf3qRbH99qHHrosNt026fG6sr5o6LSUyT1+QO664Vy4/rs5Dg9ecNc3XRiSQTn3+365ulj9eC1s0I6h3760u4Bz7+395g+r4+c4D+rH3P8n5F+fTvUc5vr9eLWBqNah92mn144WT9bMjmsUNdDuRw23Xxyqf7x2VlKdJldR17e3qilG+sGNK5kzetbPyvvOwAAAAAAAAAAAAAAgFXwV3gAAAAAAAAAAAAAAAAAAAAAAACwvIZOr+57o8q4Pj3RqUeunapjStIi2kdeapwevGqySrISjF/zwvZmlTf2RLSP18pbder9G/T81ibj1xSlx+uJz0/TN04ulsM0xXAQPb2pUXub3Ea1TodNf758ohaMMQ/dDcUp4zN0z7ljjesPtPbqmY2NUellsD38fp3e3NsWtO6uc8pCXvj6rb1terW81bj+uLJ0PXxNaEGkwXzlhCLdfXaZcf1f3q7RzoaBv79/tqpSHt/RgwX7Jbjs+sdVk3XaxMwBj3u448vS9fcrJ8vpML9G/O3d2rAX1bfyMbcqf0Dq9AQP8k1NYGH1ULy4vVlPrD96QEGCiz9ZPlw072kS5zsAAACA4aOh06P7Xt9nXJ+e6NSjX5yjY8oyItpHfmq8Hrx2lkqzE41f88LWBpU3dEW0j9d2NunUX7+r5zfXG7+mKCNBT14/V7edVhaxEMxoenpDnfY2dhvVuhw2/eXqGVpQEtnj3e+Uidm658LJxvUHWt16en1t2OP5AwF1eoKH/6UOMNhxqLHyMcf/scL1rV+fP6CfvrTbuP6u8ybqmkVFEe3htEnZuv+KabIbfi97zwBDjK16fZOsve8AAAAAAAAAAAAAAABWwl9JAgAAAAAAAAAAAAAAAAAAAAAAwPL+8k6NOnuDB2NJBxecfvjqKZpWkByVXjKTnHrwqslKjjML4QoEFDRszZTb69cdy/fq6n9uU32Hx/h150zN1ss3zdTCKAWfRsPD79UZ195xeokWRTjE93CXzcnVFXPzjOsf+dB8UezhoqqtV3e+VBG07oxJmTpnanbI2//pK/uNa0uzEvS3Kycp3hn5P8G7dmGBvnKC2eLdPn9A975+YEDj7ajv1nNbzEKabTbpz5dPjHho9aEWjEnV988oMa6vbffolZ0tYY1l1WNuZR1unwIG69KHE6JpVc3dPn1r6Z6j1tht0mcX5Meoo+Eh2vc0ifMdAAAAwPDx5zf3hzD/btfDn5+jaYXRmWvOTHLpwWtnhTT//vgHkQl8dHv9+u7SHbrqH+tV19Fr/Lpzp+fplVsXaWFpdEIwo+Gfa6uMa+84a4IWRXnfLp9XqCvmjzKuf/T9mrDH6nD3GT2vpyeOrOd1Kx9zWOv61u/R92u0u8EszPjzxxbr2mOKo9LHmVNz9Y3Tyoxq9zX16OEQ3quHs+r1TbL2vgMAAAAAAAAAAAAAAFgJwa4AAAAAAAAAAAAAAAAAAAAAAACwNLfXr3+GEPL51cVFmlOcEsWOpPE5ifrCogLj+mc3N0Zk3K88sUt/f7fWaGFaSUp02fXT88bqT5dPHFahYQdae7W2ssOotiAtTp9faH4sBuIbJxfLabcZ1b5T0R5S+O5w8M1n9wQNeEiNd+gn544Neduba7r03n6zY+6w2/T7SycqNd4s3CEc3z5ttHEQ8rItTapodoc91kPv1Rm/py+fk6dTJ2SGPZapLx5TqNlF5tfR5duaQx7DysfcylrdPqO69IToHeuR5vZle9TY5T1qzWVz8jQlLzqB98NVNO9p/TjfAQAAAAwHbq8/pMDHm08u0dzRaVHsSBqfm6wvHDfauP7ZDebfHxzNTY9s1t/fPhDC/LtDP1syWX+6asYwm393a+2+VqPagrR4fS5KYYeHu+20MuP597f3toQUTnmo1p6jz6P0G07HNBirH3NY5/rWzx8I6Lev7TOqLc1O1B1njY9qP7ecUmociP7b1yrU5zc8UIex4vWtn5X3HQAAAAAAAAAAAAAAwEoIdgUAAAAAAAAAAAAAAAAAAAAAAIClvbSjRa09ZsFY43ISdcvioih3dNCXjx9lHDJY2dIbkRDANsOAMEmaWpCsFV+aqavn5w943Fh7fbfZAuOSdP0xhXI6zBb+Hqii9HidMy3bqDYQkN7c2x7ljmLn3x/UGx2X75xeooK0uJC3/8C6WuPaq+fna+ao6AYUOuw2/eKCcYpzBv8Tvz5/QL9/qzqscbx9AT2zySz4OSPRqe+eXhLWOOG45UTza+mqnS0hb9+qx9zq2t1HD9LslxrP4uomntrYqOe3Nh21JinOrm+dah6GYwXRvqf143wHAAAAMBy8tK1Brd1mYWjjcpN0y8ml0W3oIzcuHmP8vFTZ0qN9TT0DHrPN8HsISZpamKIXvrpAVy+MzfcRkfT6rqPPJRzq+hPGyBWr+feMBJ0zI8+oNhCQ3tod+pykJLUbfs8yksL/rH7MYZ3rW7/XdjarotnsvvCjcycq0WX2fW+4nHab7jxvolFtdZtbr+wwf88eyorXt35W3ncAAAAAAAAAAAAAAAArIdgVAAAAAAAAAAAAAAAAAAAAAAAAlrZss1nooSTdvLjIKJQvEjISnbpsjtmC05K0trIjit183BcWFej566drQm5izMaMpLUV5j+rs6ZmRbGT/3TmpEzj2rWVIyPYtabdox++uC9o3YIxqbomjCDhPn9Ay7c2G9XGOe36WgiBowMxLidRnzXcn2c2NarX5w95jHcq2tXSbbbY9NXz85WVFLsFp8+YlKWy7ASj2uZun/Y2mYdXW/mYW53p4urpCdFdSH8kqG336I7le4PW3XR8kfJTww8nHWmifU87FOc7AAAAgOFg6cZ649qbTy6N3fx7kkuXzSs0rl9b0RrFbj7uC8eN1vKbFmhCXnLMxoykd/ea/6zOnpYbxU7+06enmI+3tqItrDFMAy7TElxhbX8osvoxh7nhfn3r99DaKqO6uaPT9KnJOVHu5qBjyjJ0/Fiz7xgfeOdAWGNY8frWz8r7DgAAAAAAAAAAAAAAYCUEuwIAAAAAAAAAAAAAAAAAAAAAAMCy+vwBrdljtlBzSrxD507LjnJHH/fpyeYhn1tqu6LYyUFZSU49cNVk3Xl2WcwW2I+GXQ09RnV5qXEqyTQLnoyUBWPSjGvLG82DLoeyby3dow5331FrXA6bfn7+ONlsoW9/bWWHWg0XXF4yI0d5MQwo/KphWHSHu08rd7SEvP03Da9vknTJrNguqG+zSSeNyzCu31DdaVxr5WNudW1BriX90hJjF2I8XP3Xs7uDLlZfmBanLx8/KkYdDQ/RvqcdivMdAAAAwFDX5w9oTXmzUW1KvEPnzciLckcf9+kQAia31pjPTYUrK9mlB66dpbvOmzjM59929m1WAAAgAElEQVS7jeryU+NVkpUY5W4+bkFpunFteX1437m0u71GdSPped3qxxzBjZTrmyTVdfTq5e2NRrU3nVQS5W7CG+/1Xc060Br6d4xWvL71s/K+AwAAAAAAAAAAAAAAWMnw/u0mAAAAAAAAAAAAAAAAAAAAAAAAYAA21XSpo9csFOv86dlKdMX2z3HmFKfKaTdL/drf0hvVXk4Ym65XbpqlT000D5sdqipazBYrnj0qOcqd/KdR6XHKSXYZ1e433I+h7IkNDVq1K3h45S0nFmtCbngLvptsv9+ls2Mbbpqb4tI5U7OMap/Y0BDy9t+paDeqm16YHPbPdyCOKzMPMq4M4Rpn5WNude2Ggb5pCY4odzK8/fO9Or1a3hq07ntnlMT8s9FQFot72qE43wEAAAAMdZuqO9TRa/bscv7MfCW6Yvv8Mnd0mvH8e2VzT1R7OWFcll65dZFOn5wT1XFiocLwZzWrODXKnfynUekJykmJM6qtbAnvmJs+r6cnjJzwP6sfcxzdSLq+SdKLWxvV5w8ErctKdun0ybH9/uGkCVkqSIsPWucPBLRiS+jfP1jx+tbPyvsOAAAAAAAAAAAAAABgJfz2BwAAAAAAAAAAAAAAAAAAAADE0J4mtzZUdWp3U4/2NLlV1+5RU7dXzd0+9fr86vX55fMH5HLYFe+0KTnOodxkl3JT4lSaFa9JeUmaXpis6YXJxgsNwxra3T5tqunShqou7WzoVlWbR9VtvWp3+9TjPXhuxTntSnLZlRTnUGq8QyWZCSrNTlBZVoLmFqdoSn6ybJxWsJhN1V3GtceVpkexkyNLdNk1JjNee5qCB3hWtUUn2NVpt+m/Th2tr5xQpJFy6+k0DPPNSTELWI207GSXGru8Qeva3Gb7MVS19vj0oxcrgtaVZSfoqyeMCnucDw90GtVlJ7t0TIl50GikXD4nT09vbAxat3p3m3p9fsU7zUMUd9SbLUQ/b3TsF9SXpDlF5uOGco2z8jG3unbD62JaPH9e+0kqW3qNrs2nTsjUBTNGRhhDJMTqnnYozncAAP7TnsZubTjQrt2N3drd2K269l41dXnV3OVVr69Pvb6AfH6/XA67EpwH50lzU+KUlxqnkuwkTc5P1rTCVM0oSmX+HR/T7vZpY1WHNla1a2ddl6pa3apqcx+cf/f0z7/blBTnUJLLodQEp0qyElWWnajS7CTNG5OuKQUpzL/DcjZWdRjXHj82M4qdHFmiy6ExWYna09gdtLaqNfgcfTicdpu+efpYfeWkEtlHyEWi020Wfmcathlp2ckuNXZ6gta1GYb4/cfrDPc/dQSF/1n9mOPIRuL1TZJe3GoWiLpkVoFcjtjut91m08VzCnTf68HnKVdsqdf1x48OaftWvL71s/K+AwAAAAAAAAAAAAAAWAm//QEAAAAAAAAAAAAAAAAAAAAgZA+srdV3nt9rVHvj8aN0xxklUe7IjNvr18yfvacuT/Dwk/zUOL1327wBB9j1eP1atatFy7c26409bUYhbZLk8fnl8Ukd7j7VtnskfTx4MCXeoUUlaTp/WrbOmpql5DjHwBodIh5aV6fbn9sTtC41waHt/29hDDr6P89vbdINj+4MWpcUZ9eu7y6KQUfSroYePbelSat2tWp9VYf8gaPXu71+ub1+NXcfXHRyW93HF6rOTHLq2JI0XTgzR2dOypIzxguNAoNhV6NZ6KEkTS9MjmInn6wo3SzYtdPg/haqkswE3X/pBM0uSon4tgeLzx+QL9gF8yMZiYPz51em47p9/ih3El13r6xQk8Fno7vPKVNcmMGWgYC0ucYswHnx2PRBCVg5tjRNaQlOtQdZFLrX59c7Fe06aVyG0XbrO71Bt9lvan6SUV2k5SSbv8dMA5mtfMxhvrh6WsLIeH6KNH9A+vrT5UGfmTMSnfqfC8bGqKvhIRb3tMNxvgPAyPWPdw7oO8/uMKq96cQS3XHW+Ch3ZMbt9WvGXavN5t/T4vX+7ccPOOCpx9unVTua9Pzmer2xu8UosEvqn3/3q93tU21770f/tul//3tKvEPHlGXqvBl5Ont63oiZf3/w3Srd/sz2oHVpCU5t/8FJMejo/zy3uV43PLwpaF1SnEPlPzw5+g1J2lXfpWWb6vXqziZ9uL9d/sDR55Pc3sDB+Xcd/Fy4rbbzY/89M8mlY8sydeHsfJ05JTfmQV/AYNhVbzZHI0nTR6VGsZNPVpSRYBTsGpX596xE3X/FdM0ZnRbxbQ+W0ObfXVHuZmDjhjv/3m4YDpo+SN8/RBrHHEcyEq9v0sHvKd7Y3WJUe8aUnCh3c2SfmpxjFOy6rqJNzV1eZSWbvy+tdn07lJX3HQAAAAAAAAAAAAAAwEr47Q8AAAAAAAAAAAAAAAAAAAAAITt/eo6+/8I++fqCL9C5bEvTkAl2fXlni9Gi8pJ0yazcAYW6Vrb06m/v1uiRD+vV4Y78Qr+dvX16ZWeLXtnZotufs+uqefn68vGjVJgWF/GxMLT4A9Kzmxr14Lpara3siOi2W7p9Wr6tWcu3NSsn2aUr5ubpxuNHDVqwIRAL3zi5WJfPyVVDp/d//1ff6VFjl1f1HV41dHrU0OWVxxfQuJzEQekxNd4sPKTbE9kFp5fMzNFPzh1rPP5w4bTblOiyq8cb/OcVH6HgtVAluszGTRvGx+a9/R369wf1QevOnZY9oFDL6vZedRgGgg5WgLHTbtPisel6fmtT0NrXy9uMfx55KS7t+/4xaun2qrnbp+aP/r/l0H/u8am5y6t5owcnOCPOaVdSnN3o+mXynpWsfcwh4zDj9AQ+3x7Jn9+u1jsV7UHr7j6nTHmpPHv2i9U97XCc7wAwcl0wM18/eG6nvAbz70s31g2ZYNeV2xvN59/nFAwo1LWypUd/fXO/Hn2/xvieGIrO3j69vL1RL29v1O3P7NBVC0fpxsUlKkyPj/hYGFr8gYCe3VCnB96t0tp9rRHddku3V8u31Gv5lnrlpMTpivmjdNPiMcpIGpyQOyAWbjutTFfML1RDh+fgvHunR/UdnoPz7h29//vPHp9f43KTBqXH1HizZ6buCAe7LpldoHsunGQ8/nBxcP7doR5v8J9XguE8eKQlGga2p4X5PN1m+Nkk3O0PNRxzHG6kXt8kaXV5k7x9wb+rSIpzaFHp4MzrzxuTrrQEZ9DnpD5/QKt2NumSOQXG27ba9e1QVt53AAAAAAAAAAAAAAAAK+G3PwAAAAAAAAAAAAAAAAAAAACELDPJqdMmZOrF7c1Baw+09urDA52aUzw4oUmHemZTo3HtpbNzwxqj3e3TL149oAfX1RotvB8JPV6//vJOjR58r063nlikr5xQJJdjAKm0GLJW7WrR3S9Vant9d9THauzy6ndrqvTguoPn1RePKeS8woiUkeg0Ci/u8wcGFPg9EC7DcNFI3XWS4xy6+5yysO+Fw0FGolM9Xk/QumiEs5voNAylzEwann8e5vMHdPuyPQoEOWmT4xz64adLBzTWgdZe49qpBYMTHiFJC8akGoV8vrm3LaTtuhw25aXGDekAxrQEp7o9wd+PpoHHVj/mVtdueN1OM7j3W82uhh799JX9QevOnZatC2fkxKCj4SGW97TDcb4DwMiVmeTSqZNy9OLWhqC1B1rd+mB/u+aOTotBZ0f3zIZa49rL5haGNUa726efr9yjB9+tMgpUioQeb5/+8uZ+PfhulW49pVRfPalELsfghJIhul7Z0aS7V5Rre11n1Mdq7PTod6/t04PvHNCtp5bpuuOKOa8wImUkuQ6GFwe57B+cfx+cCXiX03DcCE3AJ8c5dPcFk8K+Fw4HGUlO9bQFf2aNRji7ic5es3Ezwwzebu/xGtWlJ46cYG+rH3McZIXr21t7Wo3qFpVmKM7w+91Ic9ptOqYsQy9tC/77UW/taQkp2NWK17d+Vt53AAAAAAAAAAAAAAAAK+E3ugEAAAAAAAAAAAAAAAAAAACE5eJZ5kEuS7eYB6pGS4e7T6/sMltkcXZRiibkJoY8xpo9bTrlvg366zs1MQt1PZTH59fPV+3X2X/apP0hBFph6Gt3+/TVJ3fpmn9uj0mo6+Fj3/lShc750yaVN/bEdGxgKHEMVqqrzMNFk+MG/qdCs4pS9NKNM0d0qKskZSebLarb3G22SG+kdRgGu2YN00XG//J2jbbVBb+f3XZKsQrSBhZIWt0WPDC0X3FG/IDGGog5xSlGddvru+XxxSa8KFbcXrP9MQnhljjmVtdmGA6RGu+IcifDi88f0K1Plas3yLmWm+LST84dG6OuhodY3tMOx/kOACPbxSGE6yzbWBfFTsy0u316ZUeTUe3s4jRNyEsOeYw15c06+Vfv6K9v7Y9ZqOuhPD6/fr5yj866b532t7hjPj6ip93t01ce3aJr/rE+JqGuh4995/JdOvu+91Te0BXTsYGhZDDn3zsNn62SIvBsNbs4VStvWTSiQw8lKTvZ7Pm3uWuQ5t8Nj3m48+/Gz+sJI+d53erHHNa5vq3bZ/Y7R3NHp0W5k6ObMzrdqO5dw/3pZ8XrWz8r7zsAAAAAAAAAAAAAAICVEOwKAAAAAAAAAAAAAAAAAAAAICynT8xUWoJZuNJzW5oUiH3O6ces2NZsHIh0WRhhdn97t1ZXPbRNte3mQVLRsrW2S2f9caPWV8V2AXJEx+aaLp12/wY9vXFwA5K31Hbp03/YqKcGuQ/AitoNF4rNMQwrPZrvnVGi0qyEAW9nqJtWYBYgs70+9oHWgYC0v9UsIGZqQVKUu4m86jaP/ue1/UHrJucn6YvHDHwB8JYes/ePJBWkRjZwLxQTchKN6nx9gUE5L6MlEJA6PWZBxqbBrhxza2s3DENPZ3H1j/nN6iptqA7+/Piz88cpK8nsvWgFsb6nHY7zHQBGtjMm5xjPvy/bVD/48+9bGszn3+eFfl/821v79Zm/r1dte2/Ir420rTWd+vTv1mr9gfbBbgURsLm6Q6f++l09vb52UPvYUtOhM3+7Tk8Nch+AFZkGteUYBlcezffOnqDSbLM5oeFsWmGKUV2sw7Slj+bfDQPapxrux+HaDecn0xNGToio1Y85rHF98/j8xufwrOJBDnY1HH9fU7fx99CSNa9v/ay87wAAAAAAAAAAAAAAAFbCX08CAAAAAAAAAAAAAAAAAAAACEuc067zpmXr4ffrgtZWt3n0/oEOzR+dGoPOjuyZTWZhlC6HTRfMyAlp2/e9UaUfr6wMp62oaen26TMPbdMTn5uqqYbhdRh6Vu9u0/WP7lBnr1lgT7T1eP265aldauvx6fOLCga7nbC9Wt6qqx/aNthtRNV1xxTqh2eVDnYbiJC9zWYLTpdYIJA1UuaPTtWjH9YHrdvZ0C2Pz684pz0GXR1U2+FRt8csDGfhmMFdGDoc31u+N+j+2WzST84dK6fdNuDxerxm91Cnw6b4GB7nw6UnOpWZ5FRLd/CFoTfXdGnmqJHx+W5/a698fWYJVEXp8UZ1HHNrMw1jMQ1Js4JNNV26d/WBoHWXzcnVGZMyY9DR8BHre9rhON8BYGSLc9p13ox8PbyuKmhtdZtb71e2aX5Jegw6O7JnNpiFUbocdl04Mz+kbd/3eoXufqE8nLaipqXbqyv/9qGevH4eAWDD2Opdzbru4Y1DaP69Tzc/tuXg/PuxxYPdTthe3dmkq/6+frDbiKrrjh+tH507cbDbQITsbewxqhvpgYWRtKAkQ4++XxO0bld9V+zn39t71e0xu+4vKs0IawzTkMS0xJHzvG71Yw5r2F7XJa/h9xkzigbvd6NCGT8QkDZVd+j4sWbzvla8vvWz8r4DAAAAAAAAAAAAAABYyeD91TEAAAAAAAAAAAAAAAAAAACAYe+iWeYBqMs2N0Wxk6Nr6vLqjb1tRrVnTMpSRggL7T29sXHIhbr2a+vx6fP/3qHWHrMFBjG0rN7dpmse3jZkFpXvFwhIdyzfq7++E3xxXgADV9fhUVOX16h2OkHexhaWmC1o7OsLaN3+jih383EbqjuNaxeMGdyFoUP18s4WvbC9OWjdJbNytTBC++b2moXkJgxiwGe/vJQ4o7ptdV1R7iR2ttSa78u80WZhSRxza2szfPZJJ+hSkuTx+XXrU+VBA5ZHpcfpR58ui1FXw8Ng3NMOx/kOACPfxXMKjGuXbqqLYidH19Tl0Ru7W4xqz5iSo4wkl/G2n15fO+RCXfu19fj0uQc3qLXbbN4GQ8vqXc265oH1Q3L+/btLd+ivb+0f7FYAS6hr71VTl8eodhpB3sYWlpqFzXv7AlpbYfYdfqRsqGo3rl1QEl7IZ2uP2WeDtBH0vG71Yw5r2FlvNk+fEu9Qfmp8lLs5uswkl/Fz184Qvn+w4vWtn5X3HQAAAAAAAAAAAAAAwEr47Q8AAAAAAAAAAAAAAAAAAAAAYVs0Jk2jM+K1v7U3aO1zW5v0358ulc0Wg8YOs2xLk/r8Rw+q6XfZnFzj7e5tcuvby/aE1dPkvCSdND5D0wqSNCYzQaPS45Qc51Ciyy6H3aYOd5/ae31q7vJpY3Wn1ld3avXuNtW2my0u3O9Aa6++tXSP/nT5xLD6xODYWtul6x/dETRg6UiS4xw6tjRNc4tTNKc4VcUZ8cpMdCotwSFPX0AdvX2qae/V7ka31ld16tVdLdrT5A55nB++WKFxOYk6eTwL3ALR9NZe8wWnTcNKIY3PSdS0gmSjUMmnNjbq+DKzRckj4aXtZmE4C8akqjDNLBRyKPD4/Pre8r1B69ISnPreGSURG9dm+OHT7TMLA42m7GSzRbYrWoJ/9h4uXt5pdr6nJjg0ITfJqJZjbm3t7uChTDablBzviEE3Q9/PVu3Xjvruo9bYbNIvLxyv1AR+Zv0G6552OM53ABj5FpVmaHRmgva3BJ+7e25TvX54zsRBmX9furHefP59XqHxdvc2dutbT28Pq6fJ+Sk6eWKWphWmakxWgkalJxycf49zfDT/7lO726emLq82VrVrw4F2vb6rWbXtoX32PtDq1jef3q4/XzUjrD4xOLbWdOq6hzfKG+b8+3FjMzVndJrmjk5XcWaCMpNcSktwytPnV4e7TzVtbu1u7NaH+9v16s4m7Wk8+mfuI/nv53dpXE6STp6YHfJrAZh7a4/Z3JR08L4MM+NzkzWtMFVbajqC1j61vlYnjMuMQVcHvbi1wahuQUmGCtPDC2Zs7/EFrbHZDoY/jhRWP+awhvIGswDUsmyz7zKibWx2oj7oDh5GarpfkjWvb/2svO8AAAAAAAAAAAAAAABWQrArAAAAAAAAAAAAAAAAAAAAgLDZbNKSmTn6zeqqoLW17R6t29+hhWNiHzr37KZGo7qcZFdIIZV3LN+rLk/wIJV+DrtNF87I0ddOKtbY7ISj1mYmOZWZ5FRJpjSnOEXXSvL5A3phW7Puf6NaG6o7jcd9fmuTVu9u04njYhdKh/B1uPv0uX/tUGev+bklSVPyk3TTCUU6e0qWElz2I9Yk2m1KdNmVl+LSrFEpumhmjnRWqbbWdukv79TqiQ0NxiEMff6Abnx8l1beOFPFGSxyC0TLc1uajOryU+M0ozAlyt2MLJ9dkG8U0P7UxkZ94+RiFcVgQe+mLq+WbTH73HL1/PwodxNZf3y7RpUG4ZRfP6nYOOzSRILzyPfEw/n6Aurx+pX4CffQWDDt1STUaTjo7O3Tim3NRrULx6TJbhhQxTG3rj5/wOj5LCXeYXw+jWTrKjv0x7eqg9Zdu6BAi8fyLHmowbqnHYrzHQCswWaTLppdoHtf3Re0tra9V+sqWrVwEELnnt1YZ1SXkxKnU0IIqfzusp2hz7/PytfXTy3T2JyjhyllJrmUmeRSSVai5o5Ok3Rw/n3Flgbdv7pCGw60G4/7/OZ6rd7VrBMnZBm/BoOn3e3TtQ9uCH3+vSBFXzmpRGdPyzvK/LtDiS6H8lLjNKs4TRfNLpB0MEj2z29W6okPa0Oaf//yvzfr5VsXqTjj6N8nAQjfsk31RnX5afGaURT777iHs88uKtK3nwke0P7U+lrddlqZimJwrWvq8hgf82sWFYU1hunzemq8U3bbyHpgt+oxh3Xsa+oxqisL8iwSK2U5Sfpgf/Dnmr2G+2Xl65uV9x0AAAAAAAAAAAAAAMBqBu8vjgEAAAAAAAAAAAAAAAAAAACMCJfMyjWuXbrZLKgskqrbDgbKmlgyM0dOw8STN/e26bXyVuM+spNdeuLz0/Sbi8YHDXX9JE67TedOy9bS66frphNGKZT1AH/yckVYYyL27li+V1VtwUOC+qXEO3TPuWP10o2zdNHMnE9cVP5ophYk65cXjtPKG2dqdpF5MGS726f/91zwUEQA4anv9GqV4b3m/OnZhHaFaMnMHKUlOIPWeXx+3fH83hh0JP1s1X51e/xB67KSnDpvmnkYzmCr7/Tqd2uqgtaVZSfoC4sKIjp2KPfFdrcvomOHKt5p9ibe32r+OWEo++s7NWrrMfuZXzDd/HznmFtXu9ssmCnd4No/0nV7/Pra0+UKlilVmpWgO84oiU1Tw8Rg3tMOxfkOANZxyZxC41rTgNVIqm5za12F2dzFRbMLjOff39jdotd2Nhn3kZ0cpyevn6vfXjYtaKjrJ3HabTpvRp6W3ThfN51YEtL8+49fLA9rTMTeHUt3qKrVbVyfEu/QPRdO1spbFuqi2QXhzb8XpuhXl0zVy7cs0pyPgoRNtLt9ut0gIA9AeOo7PFpleK85f0YeQW0humhOgfH8+3eX7ohBR9JPX9qjboNgvqxkl86bkRfWGKbzjSY/m+HGqscc1nGgxSwAdVR6fJQ7MVOQZtZHZbPZfln5+mblfQcAAAAAAAAAAAAAALAafgMEAAAAAAAAAAAAAAAAAAAAwICMy0nUrFEp2lDdGbT2+a3N+tFZZTENnnt2c6MCQcJq+l022zyk9v43qo1rM5Oceu76GRqTGZkFHJ12m757eonKshL1zaW7jV6zsbpLb+9r17Gl5ouGI/Ze3tmiJzY0GNePz0nU3z8zOeyw4MNNykvSs1+cru88v1cPv28WBLFqV6ue3dSoC2bkRKQHAP/n/jeq5PEFD/l02G36/MLoBYeNVMlxDn3r1NG6Y3nw0NaXdrToD29W68vHj4paPyu2Neuf75lde2//1BjFO0MPEhks97xcqc7e4Iun/+DMUjkdkf2gmJVk/id0rT0+5afGRXT8ULi9wd/vktTj9auxy6ucZFeUO4qe8sYe3bs6eDCiJOWmuHRuCEHGHHPriuTi6gdae/XhgU5tqO7Unia3atp7VdfhVbe3T26vX/6AlOiyK8llV2aSS8UZ8RqdEa+pBUmaNzpVE3OThnTg+p0v7dO+5qOHWdlt0r0XjVdiGMFVI9lg3tMOxfkOANYxLjdJs4rTtOFAe9Da5ZsbdOd5E2MaPPfMhjrz+fe55iG196+uMK7NTHLp+a/M15jMROPXHI3TbtMdZ43X2Jwk/ddT24xes7GqQ2/vbdGxZZkR6QHRsXJ7o574sNa4fnxusv7x2ZlhhwUfblJ+sp750nx959kdenid2TPxqh1NenZDnS6YlR+RHgD8n/tXV5jPvx87OgYdjSzJcQ59+4xxRgGeL21r1O/XVOrGxWOi1s+KLQ3651qza+//O3Nc2PPvbT2Gz+uJJs/rbn1Q2aaNVR3a3ditmja36jo86vH0qcfrlz8QOPi8HudQZpJLozMTNTozQVMLUzRvTLom5iXH9HOhVY85rKOqrdeoLjd1aAS75hn2UdV69Hnifla+vll53wEAAAAAAAAAAAAAAKyGYFcAAAAAAAAAAAAAAAAAAAAAA3bxrByjYNf6Do/erYhtuOgzmxqN6qYVJGtqQbJRbVVbr17f3Wrcwy8vHB+xUNdDfWZenj6s6tC/3q83qn98fQPBrkNYnz+gu18yDyyYnJekRz83NeIBX06HTT87f6wcdunBdWYBgz99Zb/OmZYtJ2k+QMTsb+01Dvk8b1q2SrIiE/BsNdcuLNCjH9ZrU01X0Nq7VlbI6bDpumPMg2hMrdrVoq88scuodk5xij4zd/iEeWyp7dLj64N/Vlk8Nl2nT4p8AE5hmnloZ3ljjyblRSasJRxdnuBBgf2au33DNuSzw92n6x/ZoV6D4AxJuun4opAW1eeYW1eb2+znmRbvOOK/r2zp1aMf1uuF7c3aXtcddDudvX3q7O1TfadXO+o/Xp+e6NQZkzJ1ztRsnTI+I6oBn6FavbtNDxl8xvjy8aM0f3RqDDoaPgb7nnYozncAsJZL5hQYBbvWdfTq3X2tMQ0XfWaD2dzFtMJUTS1MMaqtanXr9V1Nxj386pKpEQt1PdRnFozSB/vb9K911Ub1j71fQ7DrENbnD+juFeXG9ZPzU/TYdXOUk2L+jGnC5bDp5xdNltNh0wPvHDB6zT0v7dY5M/KYfwciaH+LWw+9axb4eN6MPJVmR/4+YwXXHlOkR96r1qbqjqC1d63YJZfdpuuOj3yI7is7mnTTI5uNaueOTtNn5heFPVa72zD8L+HIS79VtvTo0fdq9MLWBm2rDf77F//7vN7h0Y66j3/PkZ7o1JlTcnXO9DydPDFbrhg8r1vxmMMaAgGpqdNjVJsX4c+P4TLto9fnV0evT6nxR1+S0srXNyvvOwAAAAAAAAAAAAAAgNUQ7AoAAAAAAAAAAAAAAAAAAABgwC6YkaMfvVghnz8QtHbZlqaYhYvubuzRZoOgNkm6dHau8XaXbm5SIPiuSpLOmpKlM6IY6PKdT5Xo2U1NRqFQL+1oVp9/rBws/j0kPb6+QTsbeoxqc5JdevDqyVEN97rr7DKVN7r11t62oLUVLW49sb5BV8zNi1o/gNX8v2V71OMNHnpos0k3L2bB6XDZbdKvlozXBX/ZHPReGghIP1ixT+urOvWjs8qUlTTwP83y+Py6d3WVfrumSn0Gn6NS4x36xQXjZBtGt/Ifr6xUsF2z2aTvnlESlfGL0uONaxB3FUoAACAASURBVNdXdeqcqdlR6cNEZWuvcW1rj9ki0kNNh7tPn314m/Fnnom5ifrCooKQxuCYW5f54uofD7p8p6Jd962p0qvlrcbPecG09fj0+PoGPb6+QQVpcfr8wgJdMz9f6YmD+2e9He4+feOZ8qD7OSkvSd88JfKhGsPdYN/TDsX5DgDWcsHMfP3w+V1m8+8b62MWLrq7oVubDUK7JOmyeYXG2312Y535/Pu0XJ0xJcd426H67qfH69kNdWbz79sa1ecPMP8+RD3+QY121pt9X5STEqeHPjcr4qGuh7rrvIkqr+/Sm3tagtZWNPfoiQ9qdMX8UVHrB7Ca25/Zrh5v8Gu7zSbdfHJp9Bsaoew2m3596VSd//v3jObfv//cTn14oF13njtRWRH4DtTj8+veV/fpN6/tM5x/d+oXF08Z0Px7u9trVHd4+N87e1v1u9f36dWd5r+HEExbj0+PfVCjxz6oUUFavL5wbLGuWVQc1ed1Kx5zWENLt9foeUyScodIsGtuqnkfDR0eg2BX617frLzvAAAAAAAAAAAAAAAAVsNvYQAAAAAAAAAAAAAAAAAAAAAYsJxkl04cl6FVu4IvQL18a5PuPKs0JoubP7Op0ajOabdpyUzzxd9X7Wo1rv3iMeYL1ocjM8mpS2fn6h9ra4PWtnT7tKW2WzNHJUe1J4QuEJB+90aVcf2vlowLKbQsHA67Tb9eMk6n/G6DUXDB79+sHjbBrqeMz1DVD48d7DaAT/TIB/V6tdzsXnPO1GxNzk+Kckcj25T8JP3x8on63MPbjRZlfnpjo1btatUNxxbq6vn5YYVsd3n69PTGRt33RpUqW8yCHZ0Om/58xSRNzhs+x/vtfe16zeBcPmdqtmYURufzSVF6vFLiHersDX4v21BlFvASDZ29farr8BjXt3SbLSI9lGyv79ZNj+/Sjvpuo/o4p12/u2SCnI7Qnhs45tbVZhp0+dEC59vquvX9Ffv01t62aLal2naPfvJype5/s1rfOLlYn1tQEPJ5HSl3LN+rmvajn3dOh033XjRecU57jLoaHobCPe1QnO8AYC05KXE6aUKWXtnRFLT2+c31uvO8ibGZf98QfE5a+mj+fVa+8XZfNdjPfl88Lrph9JlJLl02r1B/f/tA0NqWbq+21HRqZlFqVHtC6AIB6bevVxjX/+qSqSrKSIhiRx/Nv186VSf/6h2j+ff7V1cOm2DXUyZmq/onpw12G8AneuS9ar260+xec+70PE0pSIlyRyPblIIU/emqGbr2gQ1m8+/ra7VqR6NuOGGMrllYFFbIdpenT0+vr9XvXqtQZUuP0WtcDpv+cvUMTc4f2PFu6zF7Xk9PPPi9wrbaTn1/2U6joO+BqG3v1Y9f3K37VlfottPG6tpjiuWK0vO61Y45rKG523wuP22IBGymJpj3YfL9g5Wvb1bedwAAAAAAAAAAAAAAAKsZGr/9AwAAAAAAAAAAAAAAAAAAAGDYu2RWjlGwa0OnV+9UtOv4svSo9/TsZrNFeU+dkGEcyubrC+i9/R1GtZlJTi0qSTOqHYgLZuQYBbtK0vqqToJdh6DVe1q1t8ltVLtkZo5OnZAZ5Y4OKkqP15eOK9QvXwseXFDe2KMPDnRobjHBBcBA7Gro0R3L9xrVpiU4defZZVHuyBpOGZ+h/7lwnG57drd8fcEXGm/r8ennq/brV68d0LGlaTqmNE0zCpNVnBGv/NQ4Jbrscjns8vb51eP1q6HTq6q2Xm2t7db7+zv0+u5W9Xj9xv05HTbdu2S8Fo+N/uenSLp7ZfDQFIfdpm+dGr0gHptNmpqfpLWVwT+/bajulMfnH5Qww7f3tSsQ/NT7X62Gi0gPBZ29fbrvjSr98a0a9frMznubTfrlBeM0rSD0z60cc+tqdwcPQ5KkRJddP15ZqT+8Va0+g3CJSGnr8ekHK/bp3x/U6/5LJmhSjIO6X9jerCc2NASt+9qJxTEJJh1uhsI97VCc7wBgPZfMKTQKdm3o9Ojtva06YVz05w+f2VhnVHfqpGzjgC5vX0DrKs2CyDOTXDqmLMOodiAumJlvFOwqSR/ubyPYdQhaXd6svY3dRrVLZhfotEnZUe7ooKKMBH158Rj9zyvB5wLLG7r0fmWb5o0ZXnNDwFCzq75L312606g2LcGpO8+bFOWOrOGUidn65SVTdduTW+U1nX9fuUe/emWvjh2bqWPKMjRjVKpGZyYenH+Pc8jlsMnbF1CPp08NnR5Vtbq1tbZT71W06fVdzerxmj03SwcDPu+9dJoWj88ayG5KktrdZnN4iS677n6hXH9YUxnz5/XvP7dT/36vWvdfMV2T8qMzB2SlYw5rMA32lKSUeEcUOzGXEmfeh8n+Wfn6ZuV9BwAAAAAAAAAAAAAAsBqCXQEAAAAAAAAAAAAAAAAAAABExJmTs5Qa71BHb/AFM5dubop6sOvmmi7tbuwxqr10Tp7xdnc2dMtjGEi1YHSq7DbjTYdtblGKEl12o4C4rXVd0W8IIXtwrVkIgsth07dPGxPlbj7uhuNG6U9v16jT4L396IcNBLsCA9DW49MXH9lhHPj5/TNLlJdiFkyO4C6ZlavRGfH60mM71dDpNXqNzx/Qmj1tWrPHLHQmHAVpcfrTZRM1b/Twur6+sL1ZHx7oDFp32excjctJjGovs4tTjEI+O3v79OL2Fp03PTYBLod6eWdLSPUm9+XBtrW2S09ubNS/3q83XvRakuw26SfnjtWSmTlhj80xtybT8+xf79fHdFH1w22v69bZf9qkH59TpstDeBYdiOZun769dE/QupmjknXziUUx6Gh4GUr3tH6c7wBgPWdOzVVqvFMdvcHvAcs21UU92HVzdYd2N5gFZV42r9B4u7vqu8zn30vSZbdFfwJ+zuh0JbocRmFh22qDf2ZA7D3wjlkwr8th1+1njItyNx93w+Ix+uMblUbPfI99UEOwKzAAbT0+feGfG43DH39wzgTlpZoFkyO4S+YUaHRmgm54eJMaOj1Gr/H5A1pT3qw15c1R66sgLV5/vmpGxK6vpuGPD6+rHtTn9W21nTrrvrX6yQWTdXkIn9VCYZVjDmvoCOE7jpT4obG0Y1IIAbMmc41Wvr5Zed8BAAAAAAAAAAAAAACsZmj89g8AAAAAAAAAAAAAAAAAAACAYS/BZdfZU7P16If1QWtXbGvWj88pkyOKqafPbGo0qstIdOr0ieaL3E/OT9b6b85XY5dX9Z0eNXR61djpVX2n9+C/6/Coocurhk6vJucnhdt+SJwOmybkJmpjdfDQ1qrW3hh0hFB09Pbp5V1mwV5LZuZodEZ8lDv6uNR4hy6elasH1tYGrX1pe7PuOXesYpCnAIw4vr6Arnt0p3Eo+fFl6bpyLuFYkbaoJE0vfGmmvrl0j1YZXpuj6fRJmfr5+eOUO8wCfAMB6Rer9getczps+tpJxVHv56RxGfrTWzVGtY98WB/zkM/O3j49vdHss2s/b9/gLQzdzx+Qunr71OnpU0u3V3ub3drd6NaO+m69W9GumnazxfoPlRrv0K8vGq9PT84aUG8cc2tqc5sFswzmwur93F6/vvHMblW3efT1k6N/Hbx92R41dh09tDzeade9F02QM4rP6cPRULun9eN8BwDrSXDZdfb0XD36fvDPucs3N+jH50+K7vz7hjqjuowkl06fnGO83ckFydrw3cVq7PQcnGvv/Oh/Hb1q+Ojf9f+3KQUp4bYfEpfDpgl5SdpY1RG09kCrOwYdIRQdvT69ssPs+eui2fkanZkQ5Y4+LjXeqUvmFOofBuGzL25t0D0XTGb+HQiDty+g6/650TiU/IRxmbpy/qgod2U9i0oz9OLNC/XNp7bplR1Ng92OTp+So19cNEW5KZEL8DUJR5SGzvP615/YqqpWt75xWllUxrDCMYc1dBuGgktScgiBqtEUSsBstyf4/ln5+mblfQcAAAAAAAAAAAAAALAagl0BAAAAAAAAAAAAAAAAAAAARMzFs3KMgl2burx6a1+7Fo9Nj0ofgYC0dLPZwqAXzsiRy2G+CrbdJuWmuJSb4tKUGAW3mhibbRbsGk7AFqLr9fJW+QyDuq6elx/lbo5syYwco2DX+k6vttV1aWpBcgy6AkYOnz+gm57Ypbf2thnVF6TF6XeXTIhyV9ZVkBanh66erHcr2vXjlZV6b3/w4JZIO2Fsum5eXKQTovRZKdpe3NGsbXXBQxIunpmr4hgElh9XmqZEl109Xn/Q2tW7W3WgtTcmffX789s16jJYNPtQnhiGfK6t7NCSv26O+jgLxqTq10vGqzRr4CE6HHNrMl1cfSj5xav75enz69unjYnaGE9uaNDzW4M/H3/7tNGamJsYtT6Gq6F2T+vH+Q4A1nTxnEKjYNemLo/e2tOixeOzotJHICA9u9Es2HXJrHy5HHbjbdttNuWmxCk3JU5TCsLtMPLG5pgFu9a09cagG4TitZ3N8prOvy8sinI3R7Zkdr5RsGt9h0fbajs1tTA2ocbASOHzB3TTI5v15p4Wo/qCtHj97vLpUe7KugrS4vXQ52br3X2tuvuFcr1XYfa9SCSdMC5Lt5xSohPGRf6zUluPN+LbjLZfvLxH3j6/vn3GuKhsf6Qfc1iD2+C7hn7xITz/RFNcCH24DYJrrXx9s/K+AwAAAAAAAAAAAAAAWA3BrgAAAAAAAAAAAAAAAAAAAAAi5tjSdBWmxRmFhy7d3Bi1YNd1+ztUZbiA+mVzcqPSQ6zlpriM6ro95gtOIjZW7jBbSLowLU7zRqdGuZsjmzc6VbkpLjV0Bl+wcvXuNoJdgRD4/AHd8lS5UeCaJMU57frrFZOUZ3jdR/gWlaTp2euma0ttl5ZvbdaKbc3aUR882C0cCS67ji1J0/Fj03X21CyVZA482HIw/fq14GEkDrtNNy+OTWBKnNOuMyZn6dlNjUFr/QHphy/s05+vmBSDzqTqNo9+/2Z1yK/z+UdOyOeo9Dh94+TRumJOnmy2yGyTY25NbT2RCbrMSHTquNI0LSxJ07icRI3LTlBaglPJcXbZbTZ1e/vU3O1TZUuvNtd0aW1lu9bsaQtpcf9D/WZ1lQrT4vXZBfkR6f9Qte0efW/FvqB1i0rSdP2xoyI+/kgw1O5p/TjfAcCajhubocL0eKPw0Gc31kUt2HVdRauqWt1GtZfNLYxKD7GWmxJnVNftCR6IhNhaua3BqK4wPV7zxkTnO6tg5o1JV25KnBo6g3+39np5M8GuQAh8/oBufmyLnt9cb1Qf57Trr1fPVF6q2XUf4VtUmqGlX56vLTUdWr65Qcu31GtHXVdUxkpw2XVsWaaOH5epc6bnqSQrMSrjSBF8Xk9y6biyTC0sTdf43GSNzUlSeqJTyXEO2Ww29Xj71NzlVWVzjzbXdOjdfa1aU94c9vP6va/uU0FavK49pjgi/R/JSD3msIZen/l7y2GP0BcdA+RymPfhNtg/K1/frLzvAAAAAAAAAAAAAAAAVkOwKwAAAAAAAAAAAAAAAAAAAICIsduki2bm6r43qoLWrtjWrJ+cO1bOKCxq+IxBgJMkTcxN1KxRI2MB7JR4h1Fdj5eF5YeaN/e2GdUtHjc4i8pLB9/bx5Smadnm4MGTHxzojEFHwMjg9vr1pcd26uWdZgHPknTPuWWaXTQy7l3DRV5KnEqzErRgTKoqWtxhL557NE67TcnxDiW67Orx+BUIKGIBl7H28s4WbaoJvhj7+dOzVZYduwDbK+fmGYV8StLybc16eWeLPjUxM6o9+QPS154uV1cYwT/evsifh7E2a1SKrlmQr4tn5ijOaY/49jnm1tPmDv9Zx+mw6fxp2bpkdq4Wj83Q0R5T0xxOpSU4VZqVoBPHpesmjVKXp0/Pb2nWH9+q1vYwQsC/t3yvZhQma05xZO/xtz27O+ii80lxdv1qybij7rNVDdV7msT5DgBWZbfZdNHsAt33ekXQ2hVbGnTPhZOjM/++oc6obmJesmYVp0V8/MGQmmC2PAvz70PPm3vM5t1OjFIQsgm7zaZjx2Zq6cbg760PK82+TwDw0fz7vzZp5Xaz+SFJ+umFkzVn9Mi4dw0XeanxKslO1IKSDFU090Rt/j0l3qFEl0Pdnr6ozr+3u8MP/3M5bDpvRr4unVuoxeMzZT9Kk67+5/XsRJ04IUs3nViiLk+fnttUrz+uqdT2utC/r/3esp2aUZSmuVF+D4y0Yw5r8PUFjGuHSrCrdPBzpj8QvPc+f/AaK1/frLzvAAAAAAAAAAAAAAAAVkOwKwAAAAAAAAAAAAAAAAAAAICIunhWjlGwa0u3T2/sadPJ4zMiOn6fP6DntwQPn5SkS2fnRXTswRTnMAvD8hosyIjYaeryqqbdY1Q7f3RqlLs5ukVjzIJdNxsEHwE4uADstQ9v19rKDuPXfP3kYl0+Z+Tcu4Yyf0Basa1JD62r0xt722Sw5vGAdPb26bktTXruo88wZdkJunZBgS6fk6s0w/CYoeI3q4N/DpSkry4uinInH3dCWbrKshO0t8ltVP+d5/Zq/o2pykiM3s//zpf2GQe8H842DFehj3PaNbcoRSeNz9DZU7M0PicxquNxzK0nnMXV7Tbpyrn5uvWkIhWlx4c9dnKcQ5fNydWls3P15IYG3bWyQg2dXuPX+/wBfeWJXXrpxplKiXeE3cehHlpXp9fKW4PWff+MUpVkxjaUdLgYqvc0ifMdAKzskjmFRsGuLd1evVHerJMnZkd0/D5/QM9trjeqvWxeYUTHHkzG8+8hBD4h+pq6PKpp6zWqnV+SHuVujm5RaYZRsOumavO5RMDK2t0+ffaBDVq7L/hzcb9vnFamy0fQvWso8wcCWrGlQQ++W6U3djfHZP592aZ6Ldt08DNMWU6SPndMsS6fVxjx+fe2nnCe1226cv4ofe3UUhVlhD9Hkxzn0OXzCnXZ3EI98WGN7lpRroZOs++hpY+e1x/ZrJW3LIr48/pIPuawBpNwVOlgqPBQ4rDb5Dd4RjEJdrXy9c3K+w4AAAAAAAAAAAAAAGA1Zn85AAAAAAAAAAAAAAAAAAAAAACGJuUlaVpBslHtMsMA1lCs2dOmxq7ggSIOu00Xz8qJ+PiDZYitDwlDm0IIQZ2YmxTFToKbVmj2vq5ocavD3RflboDhrb7DoyV/2xJSqOuXjhul/zpldBS7Qr8397bplN+t1w2P7tSaPdEPdT2SvU1u/fcL+zT3F+/rnpcr1evzx76JMKyr7ND7+4Of1yeNy9DkvNje12w26dYTi43rq9p69bl/bVePNzo/+5+t2q8/vVUT9uvjHMPrw1+Cy65rF+Trktm5Or4sTaMzwg8UNMUxt572ED+Djs9J1NLrZuhn548dUMjloWw26ZLZuXrlplk6cVxowVAVLW7du/pARPqoaHHrzpeCB76dNC5D1yzIj8iYI81QvqdJnO8AYGWT8pM1rTDVqHbpJrMA1lCsKW9Wo0GIjMNu08WzCyI+/mBh/n142lRlPvc2Mc9s/jtaphWmGNVVNPf8f/buOzyu8kwb+D1VvVndli0XufdugzG9GIwptgk1lIQSsgnJJkuSj03YJARCdrOBsLQAwfRuMBgMxiXYBuNuuahLVu99pNH0+f5wHAxIc54jzZnRzNy/6+JKQM+Z8x6dM6c8M3pvdNvUB0sRRZImix1XPX1AVajrXWeNwc8vGK/hqOiUXeUdOOcve3D7K0exs0z7gM/+nGi14v6NJZj74C489Em5X/vv3Tbl7ymcLi89Du//YAH+++opQwr+O51OB6ydl41tP1mM5RNHqFq2qr0Pj2w74ZdxnBLu+5wigyD3FACgH2YPDtKgWcn2RfL5LZK3nYiIiIiIiIiIiIiIiIiIiCjSMNiViIiIiIiIiIiIiIiIiIiIiIiIiIiI/G7N7HRR3abCdrjc/p25c8OxVlHd8vFJyEww+3XdRGoVNFrFtRPSYjQcibIpGfL1l7f1aTgSotBW2GTF5c8eQ1GT/P1/08JM/ObiXA1HRQBgsblx7/sVuGZdAcpah8d5rM/pwWM763D+E/nYXdkd7OEoeurzelHd7WdkazyS/l09Kw3jU+UTKO+rtuCadQVot/ovMKXP6cGP15fh0c/6D7OTTrJtCrGQT5vTg2d2N+DnG8qx6tljmPTgXlz+zDH8dUedpu837vPI0qUi3Oiyaan48I6ZmJsjC09SKzXOhJdunIrVwmfjU57Z3YCqdtuQ1u3xAj99txy9Dt/Bn4nRRvzvlROGtK5wNtyvaTzeiYgi25p5ssDUTceb4fR3//1Ik6hued4IZCb6J0ycaLAKGnvEtRPSghvsOiVLfq9W0SrvKxJFmsLGHlz+xH4Uqnj/f3fxKPzm0okajooAoNvmwn+sL8I1zx5EWUtvsIcDAOhzuvHYPypx3qN78EVFh19es6tP/ry+ckYGPvrhQswbneiXdX9TapwZL98yB6vnyu4dT3nm8xpU+uGz3kjZ5xQZpP15jzQBNkBcwvFIti+Sz2+RvO1EREREREREREREREREREREkcYY7AEQERERERERERERERERERERERERERFR+LlyVhoe+LQKboVJArv6XNhR0YnzJqb4Zb0OlwebCttFtWvnqAscIdJCTacsxMag1yElJrh/ApAYbURSjFE0aWV1hx1zRmkTGkQUyjYVtuPH60thdXjEy9y0MBMPXTZew1ERAFR12HDdC4Wo6lAXLhZj0uOs8UmYPzoB07PjkJMUhYx4E6JNehj1OthdXthcHjRbHKjvtqOwyYrDtT3YeaILFpvvwL3TnWizYe264/j9inG4dbG6iXoD5USbDZuLle/DJqbH4JwJyQEY0bcZ9Do8uHI8rn2hQLzMwVoLLngiH3+5agLOHuK4PyvvxK82nhgwxC4r0YxpmbHYVtqp+Fpmg35IYwk2l9uLg7UWHKy14OGt1Vicm4jvLcnCpVNTofNjfin3eWSZkBqD7ESzYt3l01Nx5xkjNR+PUa/DI1flwWJzYXOxLCjC6fbi8V31+NOqwV/7n9ldjz1VymHgv790LLIEv69IFArXNB7vRESR7arZWXhgU5ms/17WjvMnp/plvQ6XB5uOt4hqr5kXnPBzotPVCPs8Br0OKbEmjUfjm6r+e3sf5uRoExRFFMo2HW/Bj948DqtD3nf97uJReOiKKRqOigCgqr0P1z53CFXt6gLlYkwGnJWXggVjkjB9ZAJykqORkRB1Wv/dA5vTgyaLHfVddhQ19uBQTTd2lbej2yYP4TvRasXaZw/igcsn49alOWo372vy0mMxMkk53H7lzEzcddaYIa1LwqjX4dG1004+rxe2ipZxuj14/LMq/PfVg39vRNI+p8hgEvbnpUGqgaL0zHiK2ai8fZF8fovkbSciIiIiIiIiIiIiIiIiIiKKNAx2JSIiIiIiIiIiIiIiIiIiIiIiIiIiIr/LiDdh2bgkfFauHFD0/rE2vwW7bi3tFIWkJUQbcMnUEX5Zp1oOlwfVnXZUtttQ2W5Du9WFbpsLFpv75P/a3bC7vHB7vHB6Tv6vy+OFy/3P/z3tH7fHC6f7qxoKPY3dDlFdcozRryFng5WTFCWaWL5ygPAyokjl9QKPfFaLP/+jBl4Vp+sfLhuF/3eh9pO/RrriZiuufbEQzRbZORkApmbG4q4zRuLSaamINQ882XGsWYdYsx4jYo2Ykhn7r3sep9uL7WWdeO7LBuyq6BKt0+sF/vOjE+hzenD3Mu0D2tT62+56SG5Hvr8kO6jXtLPGJ2HNnHS8fVgWRgQATRYHrn+xEBdOTsGPl4/CvJwE8bIujxdbSzrwzO4G7K70HbT4qwvG4P1jbaLXNRuGwY2BH+2p6saeqm5My4rD71aMxdKx/guo4T6PHG/eMi3YQ/gWvQ54fM0kXPRUPk60ye6R385vwb3nj0ZanPpgqdKWPjy8tUaxbsXUEVgzO13160eKULim8XgnIopsGQlmLJuQgs9KlYPIPzjS5Ldg163FbaLArMRoIy6ZHpx7DYfLg+qOPpxo60NVWx/arU509TlhsX3Vh3e4PXB5vHC6Pf33391euDwe9t/DQEOX7J4kOcY0PPrvyTHo6rMo1lW2qQvJIwp3Xi/wl20n8OetFer672fn4r5L8rQbGAEAipt6ce1zh9BksYuXmZoVj7vOGoPLZmQg1mwYsC7WbECs2YARcSZMzYr/1z2P0+3B9pJ2PPt5DXaVK98vASePo/veL0af0427l+eKx/pNb35/3qCX1Ypep8MT187AhY/txYlWq2iZtw814BcXjUdavFn1+iJtn1NkUNOfd3u8MOiDf3Pp9QIe4YXRLAiujeTzWyRvOxEREREREREREREREREREVGkYbArERERERERERERERERERERERERERERaWL17DRRsOsnRR1wur0w+SGo6L2jraK6K2akIcqoPDHhULncXuyp7sbeKgsO1lpQ3NyHhm67KCCGIkODMNi1rdeJUffv1ng0/tOkIhyRKNz1OT24Z30ZPiyQBfedct+FucMyvDPcVLbbsPr54+iwKgfTACfD6++7KBerZ6UPKfDDZNDhoskpuGhyCvZVW/Drj07gaEOvaNk/fFqFGJMety7OGvwA/Mxid+OdfOX7sPgoA66alRaAEfn24GXjcKSuByUt6oJQPi3uwKfFHf8M6U3GwjGJyEuLQXqcCTFmPfqcHrT1OtHS48Thuh58caILe6otolD0c/KSsXpWOt4Sho/G+ZjcPpQVNPZizfPHcf38DPx+xThEm/xzz859TsEUa9bj0avycMVzx0QBM3aXB28fbsFdZ6q7D3B5vLhnfRnsLo/PutQ4E/54+XhVrx1JQu2aNtwE6ngnIiJgzdxsUbDrxwUtcLo9MAmCepS8l98oqls1KzMg/Xen24s9lZ3YW9mJgzVdKG7qRUOXXRxeROGvoUsWKNfW68DIX23VeDT+oyYojyjc9TnduOfNAmw81qxquf9ckccg/l1g2AAAIABJREFUxwCobOvD1X87gA6rU1SfkWDGf66YiNVzsobYf9fjoqlpuGhqGvZVdeI/3y/B0Xrl4GwAeGBTGWJMBty6NGfwAxiGYs0G/HXtNKx6ar/4ef2tQ434wVljVK2H+5zClUnF881wCXZ1eXz3iU9nNgZ/vIMVqPPbcBTJ205ERERERERERERERERERESkFQa7EhERERERERERERERERERERERERERkSZWTE1FrLkCVofvyQK7bS58Vt6JCyalDGl9vQ43tpR0iGrXzkkf0rqUfFnVjdcONGNzcQe6bbKgOIpMzT2ySW1DTYcgzIwoEtR02nHba8UoaJQFdgKAUa/Dw5ePx7XzMjQcGQEnA2B+8FaJONT1jHFJeHLtRKTFmfw6joVjErDxjpl4aEs1nvq8XrTM7zdXYem4REzJiPXrWAbrnfwW9DrcinVXzkwbFuGUcWYDnr12MlY9ewydg7hmFTVZUdRkBSDbX0ompsfgqbWToNOdDIOWSIkN3J8GLhqTgLrfLv3Wf/d6AZvLA6vDDavTg8ZuB+q67KjvcqCo2Yp91d2o7hhc2MyrB5pxqLYHL94wFSOTzEPdBO5zCrr5oxOwakYaNhxVDgwFgA+Ot6kOuvzrjjrk1/co1v3x8vF+v5aFk1C7pg1HgTjeSXtKWRC6oSTuEAkxm9O3FdPTEWs2wKpw3eq2ufCP0nZcOGVogeS9Djc+LZKd26+Zlz2kdSn58kQnXt1Xh82Frey/k0/NPY5gD0ET7cKwPKJwV9Nhw60v5aOgQflZ+BSjXoc/XTUF1y7gM4jWnG4P7nrtqDjg88zxKXjyuhlIix96L/B0C3OT8eEPF+Khj8vw5M5q0TK/+6gUS8cnY0pmvF/HEmzzxyRh1axMbMhvEtV/cKRJVfgf9zmFM7NBHuxqc3lgVhEEqxWbSx7salKxfcOR1ue34SyStz2csAdGREREREREREREREREREQ0fIT2N2mIiIiIiIiIiIiIiIiIiIiIiIiIiIg0ZDb7nkDS5eGsWr7EmvVYMTVVVPv+sbYhr+/jwnbYBKFI41KjsWB0wpDX158PC9pw/uP5WP3343g7v4WTypMiaZBXqGnv5cTyRLsru3Hp00dUhbrGRxnwwg1TGOoaIH/4tApH6mX758LJKXjlximaBeEZ9Tr8+qJc3H/xWFG93eXBv71dCoeKSZm19NI+2WTB188fPsf2hLQYvH7zNCRGBzcsc2SSGS9cPwUJ0SfDAaWhoyNigx/KqNMBMSY9UuNMGJ0chYVjEnDlzDTcvWwk/np1Hnb/ZB4O/ccCPHJVHuYP4v67sMmKq/5+DFUdNr+Ml/ucgu3Hy0eJaw/X9aC+Sx5CdbShF49+VqtYt3p2Oi6dOkL8upEoFK9pw5GWxzsFhsPtu++p1DclklA6jpzsv/sUazZgxfR0Ue37R2TXN18+Pt4i67+nxWJBbtKQ19efD48147xH9uDqvx3A24ca2X8nRX0Kwcehiv13IuCLig6seHyvqlDX+CgDXrx5NkNdA+SBTWU4UmcR1V44NQ2v3DrH7wGfpxj1Ovz60om4/7KJonq7y4Mfvn582PTf/emec8eKaw/XdqO+S96b5T6ncBZrNohrLcPkOUXNOOJUbN9wpeX5bbiL5G0PFw637+tPVFRUgEZCREREREREREREREREREREDHYlIiIiIiIiIiIiIiIiIiIiIiIiIiIagNKkWDZO6qho9ew0Ud3movYhT5L53lFZOOw1c/wfvlLS0oeVzxzFHW+UoKjZ6vfXp/BlD9PziMUenhPmE0mt29uIa18oQLtVPmFuZoIZ7942HefkJWs4MjrlaEMvnv2yQVQ7a2Qcnlo7CWaj9n+KdccZ2fj+kmxRbWGTFS8Iw+e0tKeqW3T/My0rDrNHxgdgRHIzs+Pw1i3TkJ0YnGCyGdlx2Hj7TOSOiP7Xf2u3ysJZRsQGN5xUKiPehLVz0vH+92dgy92zsXZOOnQ6+fK1nXbc9HIRuoThp0q4zymYpmTEYkluorh+T1W3qM7h8uCe9WVwKYTfZSWa8cClY8Xrj0ShfE0bbrQ63ilwlPoV0dHRPn9OJKHUfw/Xvpk/rZkre37cXNA69P57fqOo7pp5sjGpUdLci5VP7MPtrxxFUZM8wI8oXM8jwyUsjChYnt9di2ufO6Qq5DgzMQrv3bkA50xK1XBkdMrRegue/aJGVDtrVAKevm5mQPrvdy4bg++fOVpUW9jYg3Vf1mo8osCbkhmPJePkn0PtOdEpquM+p3CXGmcS1/YMk+9KdKu4Z0yNC85nJv6k1fktFETytocL9mKJiIiIiIiIiIiIiIiIiIiGDwa7EhERERERERERERERERERERERERERDUBpUiyHy3doCgHLxiUhI0F5AkCL3Y3tZYOfOK6zz4UdFcrL63TysFmpF/c14ZKnjuBQLSeUJ/Uc7vCcWD5cJ8wnUuLyeHHv+xW478MTiuFqpzsV9DctK07D0dHpHvlHLbyCXRRt0uPxNZMQbQrcn2H950W5mJwRK6p9ZneDqmNNC68eaBbVXTMnXeORDM6M7DhsunMWFqsIn/OHq2alYf1t05F52r2yxwtxgOmIWPkk4sPF1MxYPHJVHjbePhPjUuUTEJe39uEn75b5bRzc5xRMK6fLA2T211hEdQ9vq0GxIIz0f66YgMRoBgT7EurXtOFGi+OdAsfmZJgAaU+5/87+kpJlE1KQmeA7IBcALHYXtpe0DXo9nVYndpS1K9bpdMCauVmDXk9/XviyFhc/thcHaxgCTuqx/04UXlweL/5jfRHue79YXf99ZAI+vHsBpmXHazg6Ot1ftp4Q99+fuHZGQPvvv16Rh8mZss9invm8Juj9dy1cPjNTXLu/uktUx31O4U5Nf77HLg9U1VKPTR4wO0JFcO1wpsX5LVRE8raHA/ZiiYiIiIiIiIiIiIiIiIiIhg8GuxIREREREREREREREREREREREREREQ1AaVIsTpyszKDX4cqZsiCPD44PfmL5jcfb4HIrT7B5xtgkjEpSnuhewusF/vBpFX61sYLHAg2K0+0VTXAbihyC9yNRuOmxu/Hdl4vwyoEmVctdNi0V731vBkYmKQehk38UNVvxSbFyIA0A3LE0G+NVBFD6g8mgw/+7cIyotq7Ljg1HWzUe0cD6nB5sKlT+Xep1wKoZ8nC3QEuPN+HtW6fjdyvGItas7Z/c5SRH4aUbp+L/Vk9EnNnwtZ+1W52QzBkfH2VAQrRBuXCYmjMqHh/fOQtnT0gWL7O5uAPv5Lf4bQzc5xQs502UH/eFTcphrfuqLfjbF/WKdTcuyMS5efJ1R6JwuaYNJ/4+3imwlHpdMTExARoJhTP234fOoNfhytmy8Jb3j8oCzPuz8VgznIJ+35njUzAq2T/P0F4v8MCmMvxqQzGPBRoUp9sTxv13vico8vTY3bhp3WG8sq9O1XKXzcjAhrvmY2QSw7ACpaipB58Uyvp4dywbg/FpsRqP6OtMBj3+3yV5otq6Ths25Kv7zCcUnDtJ3tcoaOhRrOE+p0igJvi0w+rUcCRynX3ycaSGSbCrv89voSSStz0cKPU9GOxKREREREREREREREREREQUOMZgD4CIiIiIiIiIiIiIiIiIiIiIiIiIiGi4Ugoo6La5AzSS0LZmdjr+9kWDYt2nxR2wuzyIMqoPVnpPGGh2zdx01a89kD9tq8YTu5QDdHxJjTNhSkYsspPMGJloRnZiFOKjDIg16xFrMiDGpIfJoIPJoINRr4PJ8M9/1+tgNOhgNuhg1J/8b09/UY+HtlT7aesoEAx6XbCHoBknJ5anCNPY7cCNLxeqDqS65+wc/Me5o6EL39PBsPT0F/WiYI8oox53njFS+wH144JJKRifGo2KNpti7bq9TVg923/3OGpsKmxHr0P5nnhxbiIyE4Z3eLFeB3xvSTYun5GGx3fW4aX9TX4ND8odEY07l2bjO3MzEG3q/363ukN5fwNAbkroT94bH2XAuusn4+ZXi7CjvEu0zENbqrFyeuqgnhf6w31OwZA7IhqpcSa09SpPqq90fFgdHtzzbpliOPCUjFj89pKxKkYZmcLpmjZc+PN4p8Byub2wMdiVAkC5/+4K0EhC25p5WXh6l3Jf+NPClsH334XhVtfM998z9MOfluOJHVVDeo3UODOmZsUhOyka2UlRyE6MQkK0EbFmw8n+u1kPo14Ps/GrPvupHrxRr4PZqP9nX16Hp3dW48FPyv20dRQIYd1/d4VpYi3RABq77bjh+cMobFQXQvaT88bhPy4Yz/57gD29s1rcf79r2RjtB9SPC6ekYXxaLCpalT/TWfdlLVbPzQrAqAJnbGoMUuPMaOt1KNZWd/Qp1nCfUyQwGfSIjzKgx67cP2zpUX5vBUJjt11Up9MByTHhEezq7/NbKInkbQ8HFrvvHhh7sURERERERERERERERERERIHDYFciIiIiIiIiIiIiIiIiIiIiIiIiIqIBpKf7DshqFQRTEDA9Kw5TMmJR1Ox7ksweuxtbSztx6dQRql6/yeLAnqpuxbo4swGXTk1V9doDeftwC/66o071cnodcNHkEbh4yggsGJOA8akMaIpkeh1gNOjgcoffJOxK4VJE4aSgsRc3vVKExm75JL3RJj3+cmUeVs3wz3WJ5FxuLz4u7BDVXjwlBckxwfvzq1Uz0vDIZ7WKdYfqLGi2OJARhJC5d/JbRHVXzEjTeCT+kxFvwm9XjMWPl4/C+iOteOtwC4439g7qtZJijLhgUgpWTk/FBZNSoJQpU9Uum2R77IjwuIc0G/V4+ppJWPH0UVS2Kwf6NXQ78E5+K66fn+HXcXCfU6DlpcWIgi6bLA643F4YDf0fSL/fXIkqhfdOrFmPp78zacBwYfpKOF7ThgN/He8UWK29TsVQHqW+KZFEWprvc+pwCcMZ7qZnJ2BKZjyKmnyH3fXY3dha3IpLp6u7n27qtuPLE52KdXFmAy6d7p9zw1sHG/DX7ZWql9PrdLhoahounpaOhblJGJ8W65fxUGjS606G8jrDsv8efttENJCChh7cuO6wOJwOONl/f2TNNKyalanhyKg/TrcXm47Lnq8vnpaO5NjgBQleMSsTf9l2QrHuYE0Xmix2ZCZEBWBUgZOXHisK/2vqdsDp9sI0wPM69zlFkoyEKPTYlcOBm1Rcs7QkvXZmxEfBoPRhRgjx1/ktFEXytoe6Fovv/cZeLBERERERERERERERERERUeAw2JWIiIiIiIiIiIiIiIiIiIiIiIiIiGgAmZm+J3tt5sTyYqtnp+MPn1Yp1n1wrFV1sOv7x9pEIZKXTR+BWPPQw2xqO+247yPlCT9PF2XU4+ZFmbh1UTbGpHACUPpKlEEPl9utWDdnVDw+vGNmAEZERGp8fqILt71WjB678vv4lKxEM/5+3WTMHhmv4choIPtqLOi2uUS1yyckazwa3xaOSRDVeb3AzoourJ4d2AldW3qc2FnRpVhn0Otw6TR193fDQWqcCbcvzcbtS7PRbHHg8xPdOFzXg4o2Gyrb+9DZ54LV6YHT7UV8lAGJUQakxpkwKSMG07PiMDM7DvNHJ8CoYjLsms7IC/lMjDbioZXjcd2LBaL6l/Y3+j3Y9RTucwqUnOQo7FF+PIbHC/Q43P2GjO8o78KL+5oUX+OPK8cjLy1mMMOMKOF+TQsmfxzvFHjNPcphvEp9UyKJrKwsnz/v6nPC4fLAbGRAuZI187LwwKYyxbr3jzSrDnbdcKRJFCK5cmYGYs0GVa/dn9pOG+57v1jVMlFGPW5ZkoNbz8jBmBTe+9BXzAY9nJL+e04iPvrhwgCMiIjU2FXegdteylfZf4/C8zfNwuycRA1HRgPZX90p7r+fPTG4z9cLc5NEdV4vsKusA6vn+r53DTU5KdHYU6lc5/F60Wt3DRjIyn1OkWRcagwqWpWDXVuGyXfJmrpl4xgXZv1jf53fQlEkb3sos7s8itdS9mKJiIiIiIiIiIiIiIiIiIgCh3/dRkRERERERERERERERERERERERERENAClSbFaBSEHdNLVs9Lw0JYqxQDWLSUdsDk9iDbJJ+t/72irqO6aOf4JgPrVxgpVEwjPzI7DE2snYXwqw5jo26JNevQ6lI8ni4pjjpRtL+vEjS8VBnsYmvr+kmz8dsXYYA8jrG0v68T3XiuG3eURLzNnVDyev24yMhLMGo6MfDlYaxHXLs4N7uT/c0fFQ6c7OYm4kvz63oAHu35c2A630s0dgHk58UiNC+2JgTMSzLhqVhqumpWm6XoKm3pFdeF2X7l8QhKWjk3E7spuxdoj9b2o6bRjdHKUpmPiPictJUTJA8+sDg+SvzGvvsXmxr+/pxzcdsuirIBfG0JVJF3TAm2oxzsFR2uvcvCHUiAnkYRS/93rPXk8jkzivZCSq+dk4cGPyxUDWLcUtarvv+crh8kDwNp52eLX9OWX7xWp67+PTMCT183A+LRYv6yfwku0ySDsv8sC6Uhme0kbbnj+cLCHoanvnzkav1s5KdjDCGvbS9pw20tH1PXfcxLx/HdnITNB274RDexgtXJ/75TFY5M1HImyuaOTxP33w7XdYRfymRgtn3rO6nQjGf33Q7jPKZKMS4sFitsU66rb+wIwGmVV7cohtADC7lnKX+e3UBTJ2x7KJGHQ7MUSEREREREREREREREREREFDoNdiYiIiIiIiIiIiIiIiIiIiIiIiIiIBqA0KZbF7obV4UGsWT4JeqTKSjRj6dgkfH6iy2ed1eHB1tIOXDYtVfS6Ve02HK7rUawbnRyFJX4IZztU24NtpZ3i+jPHJWHd9VN4jNCAUmONaOtVDolmsCvR8LK5uAN3vFEMp1sw+/M/rZqRikeuykOUkdeEYCpqkk1inBhtDHqQYlKMEVkJZjR0K0/mWtoi2y5/+rioXVR3/qQUjUcSPo41yEI+Z42M03gkgbd2Troo2BUAdlV04bp5GRqPKDAieZ9HshgVQWoO97cDbL6o7BJdG9btbcS6vY2qxhYId7xRIq69elYaHls9UcPRnMRrmnaGerxTcDRbfPcpTCYTUlL4fqChk4RSNHUz2FUiKzEKZ4xPxq7yDp91VocbW4pbsXKG7H66sq0Ph2uV79NHp0Rj6bihnxcO1nRjmyAo6ZRlE1Kw7ruzEWuWB4lTZEmNM6FNEFjeY2P/nWg42VzYittfOQqnimeEVbMy8ejaaey/B1lho/Ln9sA/++9BDhJMijEiKzEKDV12xdrSFlkPL5TEmOT3Tw7XwJ+FcZ9TJBmXKjuGy1sD/5ldf6SfHQb7velv/jq/haJI3vZQ1mxRfmbNyAiPz0WJiIiIiIiIiIiIiIiIiIhCAb+JSkRERERERERERERERERERERERERENIDs7GzFmhPtfQEYSXhYMztdVLfhqHzi9g3HZLVr5qRDpxO/7IAe31Unrs1Li8Fz100OWKiry8NJ97SmxcSG6fFmUV2P3eX3dRPR4HxY0IbbVYa6/vs5OXhy7SROKj8MVHcoT9gNAOnxJo1HIpMcYxTV1XUpT/jqTxa7G5+f6BLVXsAQPJFehxuV7TbFuhiTHpMzwmuSbQA4c1ySuPZQrSwsYLiL9H0eyRwq7iH6u3fgk59/8ZqmraEe7xQcStenzMxM6PXcXzR0kv57ZdvwCMQJBavnKv8+AeD9/Cbxa244IqtdOy/bP/33zyrFtXnpcXjuplkBC3V1sv+uOafL/yHvGQmy/ruF/XeiYWPjsWbc/soRVaGuPzt/HJ66bgafKYaB6g7ZdyfShednrSXHyD4HqOtU7uGFGruK666v9xb3OUWScakxorqaDpuq65gWLHYXmrpln4lOCLNgV3+d30JRJG97KJP0viQ9NCIiIiIiIiIiIiIiIiIiIvIPfquCiIiIiIiIiIiIiIiIiIiIiIiIiIhoAHl5eYo1Fa2c0FHq0mkjEG1S/grzttIOWB2yyebeO9oqqlsrDJX1xerwYGtpp6hWpwMevToPCVGBmVQeOBlGQ9qyaTKxvGzyWKvDA5eKQBwi0sa7R1rxg7dKxe/HKKMeT66dhJ+dO1rjkZFUm9UpqhsRKwtU1Zo02LVDuF3+srWkQxRunJ1oxtTM8JoQWiv7ayyQ5ATNyI6DQe+HxKRhJic5Sny8V7TJwgKGu0jf55HM5pQ/V8QInqFpaHhN0xaP99BU3ur7Wjtx4sQAjYTCXXJyMtLS0nzWVLQy2FXqshkZov771uI2WB2yXvJ7+Y2iujXCUFlfrA43tha3iWp1OuDRtdOQEBW4Z/ceG4M/taZF/z09IUpUZ3W4RfeERKStdw834gevHRO/H6OMejx13Qz87ILxGo+MpNp6pf334RHymRIr+5w20P33QPDX8zr3OUWSGSMTRHVujxdlLcF9li1u7BXXzs5J1HAkgRfJ/chI3vZQVq5wvsjIyEBSUlKARkNERERERERERERERERERET8VgUREREREREREREREREREREREREREdEAMjMzkZyc7LMmXEKFAiE+yoCLp4xQrOtzerClpEOxrqjJiuJm5ckQF+cmIndEtGiMvnxW3gmHcGLxS6aMwJxR8UNepxo1HfaAri8SWWz+D8/NSZJNLA8A5TzfEAXVttIO/OTdMrglKXwAkmKMeP3maVg1I1XjkZEa0vD4OHPgwtl9MRtkf/7Vp2KiXn/YXKx8rwYAyyf4vpemr3xe0S2qm5sT2HvMQMqIl02q32hxaDySwOA+j1ytwsALnQ6IHybXo3DGa5q2eLyHpvI2m8+fT548OUAjoUgwadIknz8vY7CrWHyUARdPS1es63O6saWoVbGusLEHxU3KYUCLxyZjbGqMaIy+fFbaLu+/T0vH3NGBDR+q7vB9bqSh69YgPDcnWf7ZEIOkiYJra3Eb7nmrQFX//Y3vzcWqWZkaj4zUkIbHx0UNj+c/k0EnqusTfq4QSlp7ZT1WnQ6IizIO+HPuc4okafFm5I6QPfvk18r6/1o5UNMlqhuVHI2sRPl3VkKBv85voSiStz2UlSs8i7IXS0REREREREREREREREREFFgMdiUiIiIiIiIiIiIiIiIiIiIiIiIiIvJBaXIspaAD+ro1s9NEdR8cU55Y/r2jyjUAsHaO8mT2EvuqLeLamxYGfhJhSchtWJHN6+xXWoSI5aXLQw+KmiJsHxMNI/n1PbjzzRK4hJPKZyWa8e5t07FoTILGIyO1pMEAFrv/w7wHo9suCzURbpZfeL3AzvJOUe3SsYEN2glluypkk2yfNT58gwUTomWTSPeGyaT63OeRq7Fb9lyRHmeCURg2QYPDa5r2eLyHHrfHi8p23/1OpSBOIjUU++8t7IepsWZutqju/SPNijXv5TeJXuua+bJ1KtlXJbsmA8B3F+f4ZZ1qSEJuw4k3CP33pm67319zYkacuLaoscfv6ycimfzabtz56lEV/fcovHfnAiway57JcCPuv2sQ5j0Y0nF4gnFh1Fij8LqbHm/2GYbKfU6RZv6YJFHdwZrgBrserJZ9/rAwV7Y9ocRf57dQFMnbHsqUel/sxRIREREREREREREREREREQWW7C+diYiIiIiIiIiIiIiIiIiIiIiIiIiIItTEiROxZ8+eAX9+vDGyJvMequUTkpEWZ0Jrr9Nn3dbSTlgdHsSa9QPWbBCEv0ab9Fg5PVX1OPtT2tInqosx6XHG2MBOfthhdaG8TTa+cCGd3Nmfajv9P7H8pPRYcW1RsxVX+H0ERKSkusOOm18pglUYJJiXFoPXvjsNI5PMGo+MBiPGNPC9xem6+obLJOOygFnpdvnD8cZetFtlv58lDMETaeh24EiDcoBMtEmPM8ep+526PF609TrR3ONES48TrT1ONPc40Np78t+be5z43ysnYHRy1GCH7zfSufLDYappLfc5DW9eL1AhfHYbNQzel+GO1zRt8XgPTWWtfbC7fD/7TJkyJUCjoUigFE5R0twLh8sDszFwzzyh7OyJI5AWb0Zrj+9g7a3FrbA63Ig1Gwas2SAIdo026bFyZobqcfantFn2WUuMyYAzxgc2yK/D6kR5a2R9FhSM/ntNh+9g8cGYpCLYtbCpB1cg0+9jICLfqjv68N0X8mF1yPqgeelxeP17czAyKVrjkdFghFr/vVvaf/dxzxSKvF6gQiFE7pScZN/vNe5zijTzxyRh/eFGxbr9VbJgVa3sFa5/YW54haT78/wWaiJ520OZ0+1BaYvvfgN7sURERERERERERERERERERIHFYFciIiIiIiIiIiIiIiIiIiIiIiIiIiIfpk2b5vPnpS196HW4EceJHUWMeh2umJmG575s8Flnd3nwWXknVkwd0e/P99dYUN2hHLK5YuoIJET5Z99Ig1MnpcfCZAhs3NTW0g5xENZwpxP+6hzuwG+wFkHOE9NjYNDr4BZMlF/QKJuEkYj8p8Pqwg0vFaClx3cg+SmTM2Lx5i3TkBZn0nhkNFi+QmtO120bHpOMW+yyScZjzYELOdpRLpsMelRS1LAICw0FG4+3ie7lzhyXhChhoNWL+5rwp23V6OxzKb72odqeYbGv+pzD73jXihb7nELDiXab+Nw+PjVG49EQr2na4vEemo7UK/c+GCZA/qTUf3e4PChq6sWsUQkBGlFoM+p1uGJWJp77osZnnd3lwWel7VgxPb3fn++v6kJ1h3I/fMX0DCRE+WfakvJWWe9zUmYcTIbA3iNvLZbdv4cCvbj/7jvkWwvHGyx+f82JGbHi/nthQ4/f109EvnVYnbj+74fRohBIfsrkzDi89f15SIs3azwyGix5/132mYvWLHbZ5wCxpvD6LsiJNqt428elxfr8Ofc5RZplE1JEdUVNPWjosiM7KfA9xeMNFjR1K3+fCgCW5/X/naxQ5c/zW6iJ5G0PZQUNPXC4fD9/sxdLREREREREREREREREREQUWAx2JSIiIiIiIiIiIiIiIiIiIiIiIiIi8mH0HwvxAAAgAElEQVTBggU+f+72eHG0oRdLchMDNKLQt3q2crArAHxS1D5gsOt7R1tF67pmToaqsfnSYRVOgJca7bd1Sm083hbwdWpFGorr9ngDGqrc2edCdYfN768bY9JjZnYcDtcpTxq/r8YCt8cLg3T2fRrQuXnJqPvt0mAPg4Y5h8uDW14tQkWb7L0/5Z+hrqkMdR3WMuJNKG5WrmvpdcJicyMhOniTd/fY3WgWhhpkJQRuYuidFZ2iusW5DF6Skt7bXjhJNmE4AKTEGMX3r4frerBqRqr4tbXSZJEd74G6/9OSFvuc+md1eFDXZUd9tx0LRycGPRj4y8puce3skXEajoSA8Lum8Xgnfzik0J9ITU3F2LFjAzMYiggLFy5UrDlU08VgVxXWzM1SDHYFgE8KWgYMdn03v1G0ru/My1Y1Nl/ae2VhX+OCEAb+wdGmgK9TK9JQ3ID3361OVLdr0X83YObIBByuVb4v2VvVyf67n5w7KRX1D50f7GHQMOdweXDzi/moEAZ7T8mMx1u3z0VqHENdh7OMhCgUN/Uq1rX0ONBtcyExOnjTn/XY3Wi2yIIPhxrMaHW4UddpQ32XHQtzk8RhqFr58oSsHwIAc3J8fw+G+5wizcSMOIxLi8UJwfVrW0krblg4KgCj+rotRbLvD03KiMOE9KEFfIbz+U1JJG87+c8hwbPq/PnzAzASIiIiIiIiIiIiIiIiIiIiOoXBrkRERERERERERERERERERERERERERD4sWrQIOp0OXq93wJrDtT0MdlVh9sh45KXFoKy1z2fd1pIOeLzAN+fQ9nqBDwvaFdeTlWjGsvFJQxnq11gdblFdoAPg6rsc2FYqn6BvuJNOLA+cDNsN1MTyuyq64Bn4NDAkS8cmioJdu/pcOFDbg0VjGGRBFAi/3lSJ/TUWUS1DXUPH6BTZZNxeL3C4vgdn+fFeQq3jjb3wcQv6NdLtGiq3xyt+X8waGa/xaMLD4boe0X2AyaDDyuny8NWpWfLJuPdWy4P3tGKxudEuDKIdFeKT6mu1zyNVr8ONgkYr6rrsJwMtuxz//P8O1HfZ0dn31XH1+JqJuHJmWhBHC2wp6RDXzs3p/zx6yZQRqPvtUn8NyW/ePNSCn75Xplj3t+9MwmXTgn9sh+I1LRKPdwq8fIVr1KleKZG/ZGdnY9SoUairqxuw5nBtN24O4JhC3eycROSlx6GsxXfA1pbiVni8Xui/8Z72eoGPjrUoricrMQrL8lKGNNbTSfvvgQ4Dq++yYVuxLBgpFJgM8nN4h9UZsP77zvIOeKRNEJXOGJ8iCnbt6nPhQHUXFo1N1mQcRPR1v95Ygv1VXaJahrqGjtEp0aI6rxfIr+3GWXkjNB7RwI43WMT99xyF7ep1uFHQYEFdp/2fIX821Hba/hX412n9KsD+iWtn4MrZmUMZ+pB9WtQqrlUK/4vUfU6R7ZKpaXhyZ7Vi3YfHWoIS7LrxaLOobsX0dMWaSD6/RfK2U+DkKzyrjhkzBtnZ2QEaDREREREREREREREREREREQEMdiUiIiIiIiIiIiIiIiIiIiIiIiIiIvIpKSkJEydORElJyYA1B2uVQ3no61bPTsfDW31PdNhudeFQrQXzR389xPJArQXNFofiOtbMTv9WKOxgudxeuISpntFGeTCpPzz1RT3cWiWOBkFClHyi+IZuB3KSAxPstalQOUx4sM4cn4QnP68X1a4/0sJgV6IAWH+kFS/vbxLVZiea8cpNUxnqGiLy0mLEtYdqgx3sahXXTlSxXUNR0tIHq8Mjqp2RHafxaPyroduBstY+nDkuyW/3kBLP72kU1V00eQRSYuV/DjghNQYpsUZ0CMJSD9X2oKrDhtwgTlZ/uF7+TDXGT0HG4bbPI1VdlwNXPndMVPtRQXtQgy47rC5sL+sU1SZEGzArm0GXWgrFaxqPd9KazelBQZPve9AFCxYEaDQUSRYtWoR33313wJ8fqFYOZKSvWz03Cw9vLvdZ097rxKGabswf8/Xn3gPVXWiy2BXXsWZe9rdCYQfLqaL/HhXg/vuTO6rDrP8uf8Zo6LIhJzkwz4mbjsvCpwbjzAkpeGJHlah2/eFGBrsSBcD6w414ac/Aoe6ny06Kwqu3zWGoa4jIS5c/Px+qCXLIZ71FXDtRYbvqOm244qkDotf68FhzUMP/OqxObC+RhdYnRhsxa5Tv8L9I3ecU2S6Zni4Kdt1R2o6GLjuykwLznRYAOFpvwfEG2bG+YnqGYk0kn98iedspcJR6XuzFEhERERERERERERERERERBV5g/2KBiIiIiIiIiIiIiIiIiIiIiIiIiIgoBC1atMjnz7+o7EIYzesdEFfPSoNkzvctJR3f+m/SgM21c9LVDmtARoNONF4A6La5/bZeJdUddry4TxYMFSpS4+QTy1e22zQcyVcsNjc+LtIu2HXZuCQkRsu2+72jreLwISIanMp2G37xge/wk1MSog14+aapyErkpPKhYm6OPBx7Z0WXhiNR9mWlPLxobk5gwtAO1sonPp+RNfwmPne6vShp6cOHBW346446/Hh9GVY8fQST/rAXC/58ANe+UIBdAdzv5a19eO9oq6j22nnq7m11OmBprnxi5vX5snFoZXupLPwPAKZmxoprI2mfR6qJaTEYIQzA/bSkAy09To1HNLA3DjXD4ZLdy583MQVGQwAThyNQKF7TeLyT1vZUdyvuN6U+KdFgLFy40OfPy1p60dClHDRKX1k9N0vUz/606Nv3ptKAzWvmZakd1oBMqvrvLr+tV0l1Rx9eFAYPhooRcSZx7Ym2Pg1H8pVumwsfF7Ro9vrLJqTI++/5TbA6AvcZD1Ekqmzrw73vFolqE6ONeOXWOchKDFwgHg3NvNHyfuTOMu0+e5X48oS8H6m0XRPT48TX2E+LWtHS4xCv299eP9Agfl4/d3IqTArP65G6zymyLRiTjLGpMYp1Hq8Xrx+oD8CIvvLyXtnzy9SseMwapfyZaSSf3yJ52ykwGrvtKGvp9VnDXiwREREREREREREREREREVHgMdiViIiIiIiIiIiIiIiIiIiIiIiIiIhIwdKlS33+vMPqwrEG3xNt0dflJEdh8RjlyTC3lHx7ck1JsOvcnHjkpSlPpKhGlFH29esOa+CCU37xQTmc7vBKFU6Lk4cjHm8MzPvuhX2NsDm1C1M1GXRYMXWEqNZic2Pd3uCE+bb1OrH0kYO4590ybDjais6+wIUoEAWK1wv8fEO5KEDZqNfhuWsnY0qGPGCQgm9WdhzMwmv6l5VdqAtSeFCvw43tZd8OuO+PUa/DvAAFux6q7RHV5aZEIyHaoPFo1PnRO6WY8MAenPt/h3HHGyV4eGs13slvwZH6XvSeFtryTr52YTLf9Mct1XB5lO/lclOicfaEZNWvf+Fk2f0FALx2sBl24aTP/ub2eLHxeJu4frEwsDYS93kk0ulOhkJKOFwePB+ke+k+pwdPfSGfxH/FFPn7lwYnFK9pPN5JazvLfYed63Q6LF68OECjoUhyxhlnKNbsKg9uCFSoyUmOxuKxyveTW/oLdhUEbM4bnYi8dP8Gnw/H/vu97xbB6Q7Oc5JW0hPk/feCBtn90lC9+GWtxv13PVZMTxfVdttcWPdlrWZj8aWt14Elf/oC97xVgA35TegM4LFOFCheL/Dz9YWiAGWjXodnb5yFKZmB6XuSf8walSjuv+8+0Ym6TpvGI+pfr8ONbSWyfqRRr8O8MUk+a3Q64LxJqaLXc7g8eH53cK41fU43ntpRJa5fMU35+hmp+5wim04H3LholKj22c9rvvZ5hJYauux440CDqPbmJTmiukg+v0XytlNg7BAEni9ZsiQAIyEiIiIiIiIiIiIiIiIiIqLTMdiViIiIiIiIiIiIiIiIiIiIiIiIiIhIwfnnn69Ys6vCd/ABfdvq2cqTxRU09qKx2/Gvfy9qtqKqXXmyz2vmZAxpbP3JjJdNeF7QZPX7uvvzzO4G7FAI3OjPcA+CHZlkhtGgE9XurbJoPJqTQap/2y2b/HIorp6VJq598vO6oISqPvtlA6o77Hj7cAvufrsUMx/eh5XPHMWft9fgYK0FgowyomHvlQNN2F3ZLaq978JcnDmOEzuHmmiTHsvHy/abxws89bk8lMyfXj/YLAoYBk6GXCZGGzUe0UmH62ShLpMzYjQeiXrTsuLgFlysNha0odniUKwbqm2lHfioUBZO9W9njYJBL7s/Ot2Fk1NgEt5X1XXZ8fQX2t/z9Gfj8TZxiHJWohljR0SLaiNxn0eqS6fJQyHX7W1Ea2/gA5Ie21mHlh7ZetPjTbhkKoMutRaq1zQe76QlpT7T7NmzkZ7O8Afyv6VLlyIuzndI6K7yjgCNJnysmZutWFPQ0IPG7q/uxYuaelDZ1qe43Np5yq+tVmZClKguUGGjz3xegx2l6gOFh3sQ7MikaPFz4p7KTo1HczJI9eldNZqvZ/XcLHHtEzuqghKq+uznNaju6MNbBxvwg9ePYcYDO7HyiX3485YKHKjugsfLBjyFvpf31uGLCtk1/b4VeVg2IUXjEZG/RZv0ODtP9ozn8Xrx5M5qjUfUv9f314sChgFgybhkUf/9shny7yc8v7sGrT3a9yO/6bF/VKFFuN70eLMoGD2S9zlFtmvnj4TJoDyFY4fViWc/1/5+FwAe2X4CDpfy80h8lEHV/XGknt+AyN520p5SzyEuLo7BrkREREREREREREREREREREHAYFciIiIiIiIiIiIiIiIiIiIiIiIiIiIFkydPxujRo33W7CjXfoLrcHP59FSYjcpfad5e9tXvdnOR8mS/ZqMeV8xIHdLY+jMqWTaxfG2nXRxMNVhfnOjCA5urBrWszTm8J5Y36nUYLfxdH23o+VrwrxYe3FKFtgAE4Swbn4SpmbGi2narC//1caW2A/qGkpa+b4W9ebzAodoe/O8/anH5M8cw60/7cPfbpbDYZZPiEg03bb1OPPCp7Nx63sQU3HGG/0NMKDDUBKK9tL8JZa3KoTb+ZLG78djOOnH9ZSq2Zyg8XqC8zSaqzRUGbwbSpdNGQCfIrrE5Pfjfz2o1HUtnnws/31Ahqh2ZZMY1cwY3yXJKrBEXTZYfH4/trEWDxvdW32RzevDHrfLJ/K+YkSaujcR9HqnOn5iC9HiTqLarz4XfbKrUdkDfcLShF4/vkp/Xr5+fKQ7bosEJ5Wsaj3fSSmuvE4VNvT5rLrjgggCNhiKN2WzGWWed5bNmR1k7mGmozsqZGbL+e0nbv/7/JwWtivVmox5XzpaHAEnlJMuuubWdNtR1yq7jg/V5RQd+/1HpoJYNhf57ToosuP5oneVrwb9aeOiTcrT1av8cumzCCEzNihfVtvc68V8fDm7/D1ZJcy+e+kbQncfrxcGabvx56wlc/uR+zHxgJ37w+jFY7K6Ajo3IX9p6HfjDx2Wi2vMnp+LOZWM0HhFp5VIVIXgv7alDWYvv5xB/s9hd+Ov2SnG9dHvOm5yG9HizqLarz4VfbywRj8EfjtZb8PhnleL6GxaNEoVWApG7zymyjYgz4eo5maLaR7efQGWbtp81Hqjuwit760W1Ny4ahTizQfzakXx+i+RtJ215vcCuct/BrsuXL0dUlOz7c0REREREREREREREREREROQ//HYFERERERERERERERERERERERERERGRgFJwwe6qbnT1cTJlNRKiDbhwUopi3fbSr4JdPynyPakZAFw0OQVJMcYhja0/0tBNAHjrcIvf13/KwVoLbnm1GC7P15MMRibJJhN0ebzD/lidnhUnqvN4gdcPNWs2jk+K2vHivibVyw02ZOLuZaPEtW8dbtH0ODtdr8ONH75dCrvLdyhBh9WF6g4bEqLkk4ASDSf/s70GFptyMHFCtAH/vWp8AEZEWrl8epr4XsHp9uKe9WVwKJwD/en+TZVo6ZGFiseZDbh6VmACIGs6beLfw5iU4RWCBwC5KdFYkpsoqn3tQDOO1GszubzL7cXtb5SgySILrvnJ2TkwDiHw7uZFsonFAcDq8OCWV4vQ6whcSPtvNlWiukMeFLR6tjzYNVL3+TdVttsw6v7d4n9CkdGgw3Xz5IELG4624p38wNxLt/Y68b3XiuFyyx4S4qMMuG2x/4PS6OtC+ZrG4520srmoAx6FXXfhhRcGZjAUkc4//3yfP2/qtiO/rjtAowkPidFGXDRF+f55W/FXwa6bC5WvGRdPlT9TqzFFGLoJAG8ebPD7+k85UN2FW17I76f/LrsnCIX++4xs2e/a4/Xitf2ycKjB+KSgBS98Wat6ucH23394dq649s2DDZoeZ6frdbhx9+vHBP13J2ra+5AQ5f/3H1Eg/M+WE+i2KZ8fE6ON+O+rpwZgRKSVy2dmqOi/e3DPWwUB7b//5oMStPTI+nRxZgOuniN7bjUZdLh+4UjxODbkN+GdQ43i+qFo7XHgtpeOwKnmeX1pjvj1I3Wf96eyrQ8jf7VV/A+Ftn8/f7woJNPmPHncS9+DavXY3fjJ2wXwCG6UE6KM+NE5Y1W9fiSf3yJ520lbB2u60KzwuSF7sURERERERERERERERERERMHBYFciIiIiIiIiIiIiIiIiIiIiIiIiIiIBpYnlXW4vPi3pCNBowseaOcpBZDsqOuHyeNHS40R+fY9i/TWC1xyMOaPkE8v/fU+jJoFYnxS14zsvFHzrtWPNerx8o3yS45pOeXhWMCwYnSCufWZ3Azo1mCj/UG0Pfry+bFDLKgWhDGTVjFTkpcWI6+/9oAL/KOtULhyCXocbN7xUiIJGWdCZmnBaouGkrLUPrx6QBUX/ZHkOshJlYdo0PMWa9bhhvjwQ7XBdD/59Qzncgz3Bq/DM7ga8oSK0/Np5GUiIDkygdnmrTVybmxKl4UgG78YFspBTl8eLu94sEYVNqOH2ePHT98rwxYkuUf28nARcP08ezNqfM8clYb6Ke6tjDb24842Sb4UYaeGvO+rwyoEmcf2y8UmYnhWnah2RuM8j1e1LRyLWLP+T2X9/rxybi7V9hm/pceI7LxSgrkv+/HX3mSORFmfScFQEhP41jcc7aWFTYZvPn0dHR2PZsmUBGg1FogsuuECx5sNj8mclOmnNvGzFmp1l7f/svztwuFY5PHet4DUHY+7oRHHt37+o1ab/XtCC7zx3qJ/+uwGv3DpH/Do1HX3+HppfLchNFtc+83kNOq1Ov4/hYE03fvTm8UEtKwms6s+qWZnIS5c/U977bhH+UeL7+jhUvQ43rv/7YRQ0KH/2BQB3qwinJRpOylp68creOlHtPeeNQ1bi8HsOI7lYswE3LJR/Xniophs/facwMP33z2vwxgF5cPe1C0YiMVoeqH37mWMQa5b363/6dgE2F7aK6wejpceB7zx3CHWd8l7I3ctzkRYv/xwskvc5RbbRKdG4QRj6ua+qE/e+W+j3Mbg9XvzgtaMob7GK6u9aPgYpser7cZF6fgMie9tJOx8JelwMdiUiIiIiIiIiIiIiIiIiIgoOBrsSEREREREREREREREREREREREREREJXHzxxTAafU/g+FFBe4BGEz7Oy0tGSqzv36vF5sah2h5sLemA0nzd6fEmnJ0nn5RcjbMnJEGvk9W29Trxsw3lflu3w+XBA5ur8P3Xi2F1eL7183uW52ByRqw42OVIvSykM1iWT0gS13b2uXDv+xWKx4Yan5V34rqXCtBj//oE/nNGxSMjXnmSy8FOLG/U6/DgynHieofLg1teLcL6I9pMClne2oernjuOfdUWUf3skfG4ZMoITcZCpLWHt1SLQgxHJpnxvSXaBJhQYN195igkxcgn5373SCvuerPkW9cGf/F6T4Zc/tfHleJl4qMM+NFZgQvUrmiTB9OMTonWcCSDd/n0VOQKx1bVYcNNLxehy08B8n1OD257rVh83TbqdXj48nHQCe8/fbnvwjGqXmd7WSdW//04ajvl4XxqWB0e/OKDCjy8tVrVcj89J0f1uiJ1n0eiEbFG3HmGbBJ94GSY751vluClffJwYTWONfTiimePoahJNqE+AIwdEY07VGwDDV6oX9N4vJO/WWxu7KzwHUJ+zjnnIDY2NkAjokg0e/Zs5OT4vt9jsKt6505KVQzt6ba5cKimC1uLWgX9dzPOmZTqxxF+5eyJI6AX3gy39Trws3f8F4rkcHnwwKYyfO/lo7D2Exj7k3PHYnJmnDjM50idrJ8aLMvz5D3cTqsT975b5N/+e2k7rv/7oW/1WOaOTkRGgnLQ0GAz4Ix6HR68YrK43uHy4OYXj2D94cbBrVBBeYsVVz51APuqOkX1s3MSccm0dE3GQqS1P35SIey/R+P7Z6jv/9Dw88Ozc9X13w834s5Xj2naf390eyXu31giXiY+yoAfnztW1XpGxJlw11ljxPUujxd3vHoUL+6RBR+rdazeglVP7kdhoyxAHADGpsbgThXbcEqk7nOin54/DsnCoNQ3DjTgl+8V+S3U2O7y4K7XjmFrcZuofkxKDO5cpv79DUT2+S2St52089HxFp8/HzNmDKZPnx6g0RAREREREREREREREREREdHpGOxKREREREREREREREREREREREREREQkkJaWhuXLl/us+UdZJywaTTwZrowGHVbNSFOs21Heia0lHYp1V89Kh1GavqpSapwJi3MTxfUfHGvD/Zsqhzwp47bSDlz01BE8+Xl9vxOWT0yP+VegS6Zg0nMA2FEhmyg8WCZnxGJCWoy4/sOCNvxyo2xSaF8cLg8e3lqNm14ugsX29feyXgf88fLxiDEpT94/lEnuzxyXhKtmKb8nTnG6vfjRO6X4+YZydPophMzh8uC5LxtwydNHcLxRFgKs1wEPrhwnDj8mGk5KW/qwqUgWzn7nGSNhMvBADwcpsUb84rzRqpb5qLAdFz11BNvL/HsdrWy34aaXC9WHXJ6dg3RB4Li/VLbbxLXZwnuSQDPodarCQffXWHDFc8dQqCKorj8Haiy48Ml8bBHcz55yz9k5mJYVN6T1nrI4NxE3zM9Utcz+GgsueuoI1h9pHXRoTn/2VHXjgifz8fJ+deGCV85MwxIV9+KnROo+j1Q/OmsUckfIQzgdLg9+ubECN79ShMZuh1/GYHd58Jd/1GLVs8dQ1SE/bxr0Ojy2Og8xJv7ZbyCEwzWNxzv50+bidjjdvi/4q1evDtBoKFLpdDpcddVVPmsq2/pQ0CAPLiHAZNDhilnKzwI7StuxpUg5DGj13CwN++9mLBmXLK5//0gTfrOxZMj9963Fbbjwsb14YkcVPP00didmxP0rACczMUr0mjvKZH2mYJmcGYcJ6fKw7o3HmvHLDUV+6b//cXM5blx3GN22r/ey9Tod/njlFGH/ffDjWDYhBVfNyRLXO90e/Nsbx/GzdwrRaXUOer2nc7g8eO6LGlz8f3txvEEWAqzX6fDQFZPF4cdEw0lpcy82FcjC2e86awxMBj4nhIOUWBN+cdEEVct8dLwZFz22B9tLZAGFUpVtfbhx3WE8vLlc1XI/PX880uPV9wR+dM5YjE2Vf87tcHnwy/eKcPML+WjstqteX3/sLg/+d+sJXP7kflS194mXM+h1eOya6aLr8TdF8j6nyJYeb8YDl08S17+4pw43rjuMuk55L60/Jc29uPpvB/DhMdk1Vq/T4ZG10xBrVv/+PiVSz29AZG87+d+xeoviPly9ejV0fP4jIiIiIiIiIiIiIiIiIiIKCmOwB0BERERERERERERERERERERERERERBQqVq9ejW3btg34c7vLg0+K2rFmdnoARxX61sxOwwt7G33WfFrcgROC4JVr5mj7u79pQSZ2V3aL65/9sgEFTVb81yW5mK4ipMnp9uKjgjY8v7cR+6oHntjbbNTj8TUT/xUyODk9FifalH9PHxe2o9niQMYwDagBgO/MTceDn8oD7l7e34RjDb34zcW5qgJ4AcDq8GD9kRY8trMOtZ39T6p486IszMyOg1EQ6OgeSrIrgIdWjsfhuh7RvjzltYPN2FTYjjvPGInr5mUMKuivyeLAxuNteOqLetR3qQv6uWlhFuaMile9TqLh4PFddeJA5vs3VeL+TZWajscfNv9glqrrTnOPE3P/e7+GIxrYvmoLRt2/22+v99er87BaeC/23YVZ2FLSiW2l8uDFqnYbbnypEEtyE3HbkixcOCkFZuPgwgaO1Pdi3d5GrD/Sohik9U1Lxybi9qXZg1rvYDVbZAEmRoMOCdHDd3LgNbPTsW5vIw7XyQKhSlv6cPFTR3DzwkzcvnQkxqTIgnwAoLDJikd31OLD422qwlHPm5iCn5wtDyOV+M3FudhXbUFxszywtKvPhR+9U4r/2VaD25dm4ztzMxBrVn+8u9xebCxowzqFe9uBpMWZ8LsVY1Uvd0qk7vNIFGXUn7wOPH8cLhXn1S0lHVj8yEFcNTMNd50xElMy5SFXp7T2OvHmoRY8+2UDmizqQzPvPW805uUkqF6OBiccrmk83smfNhzzHaJjMBiwatWqAI2GItnq1avx2GOP+ax5N78R07LzAjSi8LB6bhbWfVnrs2ZzYStOtCk/K6ydp+1z6E2LRuGLiv/P3n1HV13ffxx/3ZubvQfJDSGQhJGEMMJQVkXZFBEFQa2oIOIAkVq3ttUO26rVUhxYRKWOagVcaFWGUlFEUDHsIRBGAlmQvcf9/YH+6gh3JPd+s56Pczyec/P+3vtK7uWOz73383L+Nfqzm45r78ky/W5yT6XFOv/YUlvfoPd25ev5zVn64mjRWed8LGYtuSLt/0sGk6MDlVng+O/0/u585ZZWKybY+dcSRrtiUGf96YODTs+/tCVbO7NL9cCFPTUkwfkCXkmqqKnXGxk5enzDEWWdpcBq1tA49e0cbMj6+0OXJCsjq8Sp6/I7r355Qu/vydeNP+uqK8/p3KTSt9ySar27K09PbzymE8WuFXldMyRO6V1ce98DaC2e+vio0+vv90DU1FkAACAASURBVL97QPe/e8Czgdxg3cJzXXrcySutUfqfP/FgorP74miROt/7odvO74nL0nTpAOcKsmcN6aIP9xXow/3Ol3YeOVWpmcszNDQxTNcNj9e4lKimr79nl2r55uN6IyNXtfUNLh07PClcN4yIb9Ll+lrMenxGmi5d9pVL6/7r9hXov49s0tT+Vt14XlelWl1/37WgrEYrtp3Usk3HlduEIsG7xyVpUNdQl4/7Tke9zjuyjnr/9mPT0q36z648vb8736n5j785rQsWfa65I+I1e1gXl143HCus1LJPj+vFLdku3c6vHxGvoYmuPY//sY58/9aRf3e431vbcx3OTJ061YAkAAAAAAAAAAAAAACgMRS7AgAAAAAAAAAAAAAAAAAAAE6aNm2abrnlFjU0nH1zvBVf51Ps6qKBXYKVGOlnt8Ry58lyh+fTJzawSYUkrpicFqlHNxzXYRcKNz/LLNb4p3fovKRQjeoZpiHdQmQN9lGYv0UWs0nlNfUqqqpT5qkqfZNfqc1HSvRZZrFKq+sdnvevx3X9QXFf/7ggfbDvtMPjauttuvXNQ/rnlclN3hjV064eHKPHN2arzIm/w3cysss07fndSo4O0OieYUqPC1JSpJ+ig30U4uslby+zauobVFJVr2OFVdqTU6HPjhTrwwNFKq85++X0iPLXfWO7STqzYaMjNptU32CTl9nxJvSNCfb10rNXJOuiZTtVUeP8ZpxFlXV6+MNjeuy/xzWka4h+lhSqNGuAkiL9FRloUYD3mUKispp6ldfUK7+sVgfyKrU/v0Jbj5bq6+xSpzfX/r6U6ADdP76b6wcCrUBJVZ3e3FnQ0jHQQkymM0Wwk57ZoWOFrm2E+/nREn1+tESBPl76WVKoBnQJUu+YAMWF+io62EcB3mb5WMyqb7CpqrZBpytqdaKkRocKKrXjRLk2HirS8bOUiTsSE+yjJdN7NvlxpqkKyp0rwYvwb91fWTOZpL9d0l0/X7pT1XXOPc7WN9j0/JYcLd+ao2EJoTovKVTpcUFKiPBTqJ+Xgny9VFHboKLKOh3Iq1BGdpne33tae3OdL4n5TkKEn56a3kPuvnoDfbz03BXJmrxsp4oq61w69mhhlX7zXqb+uPaohieE6JyuweptDVR82A9v7+U19SqpqlNxZZ1ySmv1dVaptmWVaVtWmUqqXLvM71i8THrm8l6KDHS9tP47HfU676gGxwfrgQkJ+u17mS4dV1dv08qMfK3MyFdKdIBG9ghVv9ggJUX5KTbEV8G+XvL99n69oqZeOaU1OlpYre3ZZfr8SIm+OF6qelfafL9n5qAYLTgvrknHomnay2Mat3e4Q15ZrT4+ePZSQ0kaOXKkoqOjDUqEjuy8886T1WpVTk7OWWdWbjupu8d3l4UnT04b1DVUiVEBdkssd54odXg+fToHN6mExhWT+0brr+sDdNiFws1Nhws17vGtOq9HhEb1itSQhDDFhvoqzN9bXmaTKmrqVVRZq8yCCh3IK9fmzCJ9dqhQpdWOX6P8ZmKPHxT3pXcJ0Qd7HJc11dY36NaVe/TCNf1b7/r7kDgt3pDp2vp7VommLv1KyTGBGpMcpf5dQtQ9KuDM+ruf5Xvr73U6drpSu0+W6bPDhfpwX4H99fdOgfr1xDOFzcasv1v03FV9NXnJl6qwk+vHiipq9fDaQ/rbh4c1JCFMP+seod6xQeoeFaDIIB/5f7v+Xl5d9+36e43255brQG6Zth4t1rbjxU1bf48J0v2Terp+INAKlFTV6c3tZ39cR/tmMkmPX5amnz/5hY4VVrp07OeZRfo8s+jM+nuPCA2MD1GqNUhxYX6KCfZVgI+XfCwm1TfYVFnboNPltTpZUqVD+RXanlWqjQdP6XihayXa34kJ8dVTV6Q1a/19cLdQPTCpp37zjmtFxbX1Nq3YdlIrtp1USkyQzu8ZoX5xwUqKClBsqJ+C/b7/er1BOSXVOnq6UtuzSrQ5s1BfHC1u+uv1c+K04IKEJh37nY58nQOLpvfWofwvdSDP8WebJKm8pl6LNxzRko1HNSQhTKOSo9QnNkhJUQEK9feWv7dZlbUNKq6s1Td55dp5olQf7j+lL48Wq8HFJ5Xn9YjQfd8+326ujnr/JnXs3x3uU9dg0+sZ9p8fx8TEaPjw4QYlAgAAAAAAAAAAAAAAP9a6v1EIAAAAAAAAAAAAAAAAAAAAtCJWq1XDhg3Tpk2bzjrz2ZFiHSusVtdwXwOTtX3T+nXSYxuON+s8ZqR7vlDXy2zSbyck6NpX9rl87CeHi/XJ4WK3ZZnaL0rXDYn9wWnndA0+y/RPfXyoSJOe2ambRnTWiMRQRQV6q7quQacqanUwv1Iju4fJ26vlNi8N8bPolvPi9Jf1x1w+dn9ehfbnuV6q1Rhfi1n/uKyXAnzObCgf4O3cRvx1zdhYXjpTlvrizFRd/fJeVdY6X+4qnSnp2ZRZrE2Z7ru9nY01xEcvXpUiPyf/LkBrU17ToLr6pm2EivYhPMCi12aladrzu3SypMbl48tr6rVm32mtcaJY3R3CAyx69ZpURQf7GHJ535df5tzfJzyg6QWcRkmODtAffp6gu9857NJxNpv0WWaxPvPQY2y3cD+tnJ2mED/PfO0vMdJP/57VW5e/sEfFLpa7SlJ1XYM2HCzSBgflb+5iNkmPXdxdQ7qFNPu8Oup13lHNGWJVXmmNnvgku0nH78ur0D43vZ5wZEqfSP15cqIhl4X/aU+Padze0VwrM/JU56AcYurUqQalQUdnNps1ZcoUPfPMM2edySut0X8PnNLYlCgDk7V909Ktemy9a8+Ff+yygbGOh5rJy2zS/ZN6avaL210+9pODp/XJQfe9Np+abtV1w+N/cNrgbqFOH//xN6f186e+0LyR3TQiKVxRQd6qrrPpVHmNvskr1/k9I+Tt1XJrqiF+Fi28IEF/XnPI5WP355Zrf65zhVWO+FrMWnplHwX4nClF/e7/jjR7/T0mSC/O6q+r/7ldlbXOl7tKZ4qZPj1UqE8PFTb58p1lDfHVS7P7s/6ONqu8ul61rL93aOEB3lpx/QBNXfqVThZXu3x8eU291uzJ1xonitXdITzAW/+eM0Axwc3/rMec4fHKLa3RE/890qTj9+WWaV9uWbNzOGNKvxj95ZJkt5xXR77O0bGF+Fn08rXpuvCpL5xee5Q8/9wy1RqkZ6/q69bP/nTU+zepY//ucI8NB04pt8T+4+Mll1wiLy/nXhsDAAAAAAAAAAAAAAD345PbAAAAAAAAAAAAAAAAAAAAgAuuuuoquz+32c4UIsA1l/Zr3kb8Fi+TpvY1ZjP/8cnhurS/50tk7RmXHK6/T+0h04/2XhzSLUTWEOeL3vbmVuiXbxzU4Me+UsIfPlfyn7dq+N+/1jX/2ufyZuaecOPwzuptDWyxyzebpL9P7aHUmID/P83fyQ3U3bFR9bCEEL0wM+X/S2Vbm/gwX62cnaa4UDa6BdC2dQ331apr05QU6dfSUeyyhvjotVm9lRwd4HjYA/LLa52aiwhoGwWVVw2O0bwRnVs6xv/rFu6nVdemqXOoZ0t7+8YGauXs3op14TljS7CYTXri0p6a7sbn3R31Ou+o7hnbVbdd0KWlY9g1Z4hVS6b3kqUZhVRomvb2mMbtHc2xMsN+WY7FYtGMGTMMSgM4Xn+XpBVfnTQgSftyabq1Wcd7e5k0NT3GTWnsG58apUsHNC9vc41LjdLiGb1/sv4+NDFM1hDn10L35pRp4YrdGvTQp+r2mw3q9bv/athfP9M1L2xXZW2Dm1O77sbzuqp3bFCLXb7ZZNLiGb2Vav1fBn9v58pr3LH+PjwpXC/M6u90mazR4sP9tOr6gYoLa93rVQDgSNdwf71+/SAlRbXMurazrCG+WjF3gJJj3Pfe9L0Tuuv2MYluOz9PmDM8Xk9f0cetr9c78nWOjq1LmJ/+fV3rKQpOtQbplTnpCvZ1/xpnR71/kzr2747me+1Lx2taV199tQFJAAAAAAAAAAAAAADA2bTO3V0AAAAAAAAAAAAAAAAAAACAVuqKK66Qv7+/3ZnXvs5XXUPzN5XuSLpF+GlwfHCTjx/TM1yRgd5uTGTfwxclqV/nltngc1xyuJZe1ngZitkkzWjh0ll38vYy6dkreinM3/gyHZNJ+uuU7prSJ/IHpwc6ucl7jRs2lpekEYmheuf6vkqIaF2btw/pFqLV1/dt9SWIAOCshAg//eeGvhrdM6ylozQqPS5I793QV2ktVHjeYJNKq5wrfW+thSiN+c34brqpFRR9npcUqneu72NYwWeaNVDv39hPQ7uFGHJ5rooJ9tGK2b11Sd8ot593R73OO6rbR8Vr8dQe8vduXV+lDfAx69GLu+uPkxJ/UhYGz2uvj2nc3tEUW46W6Jv8SrszkydPltXasgWL6Fh+9rOfqWfPnnZn1uwtUH5ZjUGJ2oeESH8N7hba5ONHJ0cpMtC4566PTE1Rv7imv1/QHONSo/TMlX3Psv5u0oyBsS2QyjO8vcx67qp+Cgsw7r2V75hM0qPTUjSl3w8Lg51ef69zTzHuz7qH6935g5UQaf99P6MNSQjTO/POafWFeADgrIRIf7138zkanRzpeLgFDIgP0fs3n6O0WPc//7h9bJIWz+jtdHm5UQJ8vPTYpal68KJeHnm93pGvc3RsqdYgrZ43uMWfxw1PCtebNw7yaMlsR71/kzr2746myyut0bp9BXZnevXqpeHDhxuUCAAAAAAAAAAAAAAANKZ1fTsPAAAAAAAAAAAAAAAAAAAAaOXCwsI0depUuzPZxdX6YO9pgxK1H5c2o5B0RrqxZab+3ma9fFWq+sQaV65mNkl3j+mq5b9Ika/l7B8Fnzeis6Elt57WLdxPr83qrYgA48pdA328tGR6L10xMPonPwvydW5jxqpa92wsL0kp0QH64MZ+zfo34i7eXibddkEXrZjdW9FB7ed2BgCSFOJn0UtXpeqvU7orxM/4UvHG+FjMuntMV709t49igluuALLahcIUX6+2tVPwb8d308MXJcnHzvMrT/Eym/TL87volWt6G/78rVOQt1Zem6Y/TkpUgE/r+ZrhRX0itXZePw3xYOlsR73OndEeN/qent5Ja+f118AuraOkYWi3EK29qb9+0chrDRijPT+mcXuHq577PMfhzJw5cwxIAvyPyWTS7Nmz7c7U1jfoxc+zjAnUjlya3vSS5ssMLjP19/bSv65NV5/Oxj2mmU0m3T2+u/55dX+76+/zR3YztOTW07pF+GvFdQMUYeDrk0AfLz19RR9dMbjzT37m9Pp7Xb3b8qTEBOmDBefq0gEtX2Tu7WXW7WMStfL6gYpuwXUgAPCEED+LXp6drkenpbaq9fd7xnfX2zcNVkyI58oPZwyM1bqF52pQ11CPXYYrhiaGad0t5+oXjTwWu1NHvs6d0R7XYnFGfLif/jP/HF3cP8bwy/Yym7TgggS9OifdkH93HfX+TerYvzua5sUtWaqtt//+xLXXXisTDxAAAAAAAAAAAAAAALSo1vONawAAAAAAAAAAAAAAAAAAAKCNuPbaax3OLNt80oAk7cuUPpHybkJpSniAReN6hXsgkX2Rgd5adW2aJqdFevyykqMDtGJ2mhaOjHO4wWeov0W/n5jg8UxG6hMbqHeu76v+nYM8flkpMQF678a+mtKn8evV2Y3lK2rdt7G8JAX7eenxaT206to0pUQHuPW8nTUxJULr5/fX7aPiZTGzkSCA9uvKQdH6ZGG6rh8Wa7fMxZO8zCZN799J/725vxaOjGvx+11XSvC8W+hv1hxXDY7R+zf01aB440qDhiWEaM1N/XTX6Hi11NVrNklzhli1aeEAzTrX2qTn4u4yoEuQVl2bpn/M6KUoAwqFOup17khL39d4SlKkn1bP7aPF03qoS1jLFDYkRPjpmct76fU5aUqM9GuRDDijvT+mcXuHs7KKqrVm32m7MzExMZo4caJBiYD/mTVrlry87K/BvbAl26X7dEgX94uRt5frj23hAd4amxLlgUT2RQb66PUbBuqivp4vCE+OCdSKuQP0y1EJTq2//2FyT49nMlKfzsF6d9456t8lxOOXlWoN0vsLztGUfo2XXAU7WT5VUePe9fcQP4ueuCxNr98wUCkxnn8fojETe3fSh788V7ePTWq3r80AQJKuPKezPr19mK4fEd+y6+8DrPrvrUO1cFSCIfe7SVEBWn3TYD1+WZq6hLXMa+WESH8tm9lXb9wwSIlRxr3f3FGvc0cs5ra37gTnhfpb9PQVffSPX/QxrEQ41Rqkt24cpPsmdG/Sa7+m6sj3bx35d4drauoa9NKWbLszXl5emjlzpkGJAAAAAAAAAAAAAADA2Tj3iXYAAAAAAAAAAAAAAAAAAAAA/2/06NFKTExUZmbmWWe+PF6qjOwypce1zAbQbVGYv0VjeobrAwelEj82tW+ULC1UQhXs66Wll/XS2zsL9Jf1x3S8qNqt5x8b4qM7RsXrsgHRLpU/Te0XpeKqOv3mvUzZbG6N1GISIs6U0zz7+Ukt3pitkqo6t56/NcRHt18Qr8sHdJKXnT+208WuNZ4plhiWEKL18/tr/YFCPb3phLYcLfHI5XzHz9usS/pG6bohVvW2Bnr0sgCgNYkK9NbvJiZo3ojOevGLXP376zzllNR4/HLD/C2a3r+TZp1rVVIrKkKrcaUErwXLQZsjJSZAb1/XR//Zc0p//zhLe3MrPHI5wxJCdP2wWE1IifDI+TdFdLCP/nxhohb8LE4vfZmjV7flKb+s1uOX62Mxa2zPMM0ZGqthCZ4vEPqxjnydn42PgZu9G81kkqb376RL+kZp9a5Teu7zk8rILvP45Q5LCNF1Q89c/62gLwLqGI9p3N7hjOVbc1TXYH/RaNasWfL29nzhOvBjcXFxmjBhgt57772zzhSU1eit7bm6fFCsgcnatrAAb41JjtQHe/JdOm5qurXFHhODfS1aemVfTdqeqz+vOajjhVVuPf/YUF/dOTZJlw2KldlRo+v3TE23qqiyTr95Z3/7WX+P9Nfqmwbr2c+Oa/FHmR5Yf/fVHWOTdPmgWLvr74G+zha7emj9PTFcH/5yiNbvK9CSjUe15UiRRy7nO37eZl3S36q5w+PVO5b3EwF0HFFBPvr95F6aP7KbXtySrVe/PKGcEve+z96YsABvTR9g1eyhXZTUAuV3JpM0fYBVl/SP0eoduXrus+P6+rhn3+uVpOFJ4bpueLwm9I5y6TmPO3XU69wenza67gTXTOkXowm9O+nlrdl66uOjHrndp8UG69bRCZqUFq0W+ifeoe/fOvLvDue9uT1X+WX2P2swceJExcfHG5QIAAAAAAAAAAAAAACcDcWuAAAAAAAAAAAAAAAAAAAAgIvMZrMWLFig22+/3e7css0n9dT0ngalah8uTe/kcrHrjPRoD6Vx3sV9ozSpd6RW7yrQK1/laeuxEjnoxjirAB+zJqREaFq/ThrZPVSWJrahzD7XqqRIf/1hzRGPlVQZzeJl0k0jOmvm4Bi9vj1fK77O146TZU3ePN9iNum8pFBN7RelyWmR8rU4LrIK8XOu2LW02r0b33+fySSNSw7XuORwZZ6q0ju7T+n9vae062R5k2933xfqb9HwhBBN6h2p8cnhTpfZAkB7FBPsoztHx+u2C7ro08xird9fqI++KdKR0+4rk7GG+Gh0zzCN7hmu0T3DnHo8Mlp1vfMPMG15M3KTSZqcFqnJaZH64lipVm3P17r9hcotbV6pb/cof43uGaYrBkYrJbp1bR7/fZ1DfXT3mK66/YJ4bTxcrLX7T2v9/kKddGOpcVSgt4Ylhmh0j3D9PDVCwU4+t/KUjn6d/5i/d+u7/3E3i9mkaf2iNK1flA6fqtLbOwu04WCRtmeXOSw4dOr8vUwaGBekiakR+nlqpLqG+7ohNdypozymSdzecXZl1fV65as8uzMWi0Xz5883KBHwUwsXLrRb7CpJyzYd02UDY1usuKYtmj7Q6nKx62UDW7489+L+MZrUp5NW78jTv77I1tYjxWpo4qJwgI+XJvTupEvTrRrZM6LJ6+/XDuui7lEB+v1732hvjucL1I3g7WXSvPO66qpzO2vVthyt2HZSO7JLmrf+3iNC09Ktmtw32qn1jlA/57bBcXfx7PeZTNK41CiNS41SZkGF3tmZp/d252nXibIm3+6+L9TfouFJ4bqwT7TGp3Zi/R1AhxYT4qs7xyXptjGJ+vRQodbtK9BH+wt05FSl2y7DGuKr0cmRGpMcpdHJzr0f7GkWs0nT0q2alm7V4YIKvbU9VxsOnNL2rBK3vF739jJpQHyoJvbupEl9OqlruL8bUrtHR73OG+Pvw3OAjsLXYtZ1w+M1e2gXfXLwtN7IyNH6/adUVFHb5POMD/fTpLRoTRtgVd/OwW5M2zwd+f6tI//usM9mk5759JjDuYULFxqQBgAAAAAAAAAAAAAAOGKy2dzwqXEAAAAAAAAAAAAAAAAAAACggykpKVF8fLxKSkrOOuNlNmnDzf3VPYrN1Dqawoo6fXK4WNtPlGl/boVOlNQor6xGFTUNqqlvkJfZJD+LWWH+FkUFeishwk/J0QEaFB+kQV2C5efGQqUGm/Tp4WJ9fKhIW46WKL+sVqcralVV2yAfi1mBPl6KCvRWXKiPUmIClBIdoN7WQKVEB7SJUoSC8lptzizR7pxy7c+r0MmSGuWW1aq8ul7VdQ2SpEBfLwV/+1/XcD/1iQ1Un9hADY4PVkSAcxvFtwVl1fXKyC5TRnaZjhZW6XhhtbKLq1VaXa/K2gZV1TaowWaTj8UsX4tZIb5eigryVnSQz7e3QX+lWQPV2xqoJvYZAM02b+UBrd51yuHcy1enalSPMAMSAY3LK6vVrpPl2pNTrszTVcopqVFOSY1OV9Sqsq5B1XU21dY3yPLtY76f95nHfWuwj6whPuoW7qfe1gClWQPVJYwStNbMZpOOFlZpd0659uVWaF9uhbKLa1RaXaey6nqV1dSrus4mf2+zgny9FPLt842enfzVq1OAhiaEtPmiu5MlNdp1sly7c8p1rLBaJ0uqlVNSo6KqelXVNqiqrkG133uO62sxK9zfouhgH1mDzzzX/e55Zlt4bdQRrvNDBZUa+UTGT07v2clf/12Q3gKJWl5pdb12nCjTvtwKHciv1IniauWW1iq/vFaVNfWqrj9zv+7tZZa/t1l+FrMiAiyKC/VVXJivukf6KT0uSH1iA1ttWQTwnfZ6e5+8bKe+znJcrPfhzf3bVOm2Jzy+MVsPf2i/TGDGjBlasWKFQYmAn7LZbEpLS9PevXvtzr1wTX+NS40yKBVai8KKWn1y8LS2Z5VoX265ThRXKa+0RhU19ar59rW4r8WsMH9vdQr2UbcIfyXHBGlQ11AN7hrq5vV3mz49WKiPvzmlLUeKlFda8731d5MCfSyKCvJWXJifUmKClGoNUu/YIKXEBLWN9feyGn12uFC7T5Zpf26ZThZXK6+0RmXVdT9af7co2M+irhH+6tM5WH07B2tw11BFBHq38G/gPmXV9crIKlbG8RIdOV2p44VVyi6qUmlVnSpr679df5d8LGdufyF+FnUK8lGnYF8lRp65DabFnrn+zW3hyke7dNOru7R6R67DuX9dm65RvSINSAQ0Lq+0RrtOlGrPyVIdPlWpnJJq5RRX63RFzQ/WIy1m8//W3wO8ZQ3xVWyIr7pG+CstNkhpnYPVJcyvpX8dp5VW12l7Vqn255Zp/7fPcXJLalRQduZ5TnV9ww9fr3t7KSLAW13C/BQX5qfunQKU3iVEfToHt6rX685oz9f5ofwKnfe3zT85vWd0oD7+1dAWSITWwGaT9uWWacuRIu3PLdfhggodL6xUSVXdmdc1374HEeDjpfAAb3WL9FdSZID6dA7W0MQwxbWy27kjHfn+rb3+7pOXfKFtx8/+mcnvfHTrEKXEBBmQqPVasydf1760w+5M7969tWvXLpl4rQgAAAAAAAAAAAAAQEtbSbErAAAAAAAAAAAAAAAAAAAA0EQLFy7UE088YXdmRnon/X1qD4MSAQDQtlHsCgCA52Vkl+nCZ3b+5PQh3UL0xpy0FkgEAM1HsatzKmoaNPTv23SqvNbu3KeffqoRI0YYlApo3D/+8Q/NmzfP7kzfzsH6YMG5baIgEwCAlkaxKwAYLyOrRJOe+uInpw9JCNObNw5qgUQA0HwUuzpv0lNfKCPL/t9q6dKluuGGGwxKBAAAAAAAAAAAAAAA7FhpbukEAAAAAAAAAAAAAAAAAAAAQFu1cOFCmc32P5L7xo4CHT5VZVAiAAAAAADsyyqqbvT0uFAfg5MAAIz2/JaTDktdBw4cSKkrWoVrrrlGkZH2S+V2nijVRwdOGZQIAAAAAFxzvLDxzwvFhfkZnAQAYLR1ewsclrqGh4dr5syZBiUCAAAAAAAAAAAAAACOUOwKAAAAAAAAAAAAAAAAAAAANFGPHj00depUuzP1DTY98UmWQYkAAAAAALDvm/zKRk9PiKBMAADas/Kaei397ITDubvuusuANIBjAQEBmj9/vsO5v3142IA0AAAAAOC6b/LKGz09MdLf4CQAACPZbNLfPsp0OLdgwQIFBgYakAgAAAAAAAAAAAAAADiDYlcAAAAAAAAAAAAAAAAAAACgGX73u9/JbLb/sdzXtxdoX16FQYkAAAAAADi7z4+WNHp6SkyAwUkAAEZ6etMJna6oszuTmpqqGTNmGJQIcOy2225TWFiY3Zmvj5foP7vyDEoEAAAAAM77PLOo0dOTrUEGJwEAGOmdnbnantX4+3HfCQkJ0a233mpQIgAAAAAAAAAAAAAA4AyKXQEAAAAAAAAAAAAAAAAAAIBm6NOnj6ZMmWJ3pr7Bpj+tPWZQIgAAAAAAGldeU68vj5c2+rNBXYINTgMAMEpuaY2WfnbC4dz9998vs5ktCNB6hIWF6eabcTe30QAAIABJREFUb3Y49+D7B1VT12BAIgAAAABwTnlNvb481nix6+CuoQanAQAYpba+QQ+tPeRw7pe//KUiIiIMSAQAAAAAAAAAAAAAAJzFt6oAAAAAAAAAAAAAAAAAAACAZnrggQdkMpnsznz0TaE2Hio2KBEAAAAAAD+1Zl+hqmp/WnrWLdxP1hCfFkgEADDCXz86rooa+6WXqampuuyyywxKBDjvtttuU3Cw/QL6o6cr9eKWbIMSAQAAAIBja/bkN74WG+Eva4hvCyQCABjh+c1ZOnKq0u5MSEiIbr31VoMSAQAAAAAAAAAAAAAAZ1HsCgAAAAAAAAAAAAAAAAAAADRTenq6pkyZ4nDuwbVH1WAzIBAAAAAAAI145avcRk8flxxucBIAgFH25VVoRUa+w7nf/va3MpvZfgCtT0REhG655RaHc4s+ylRJVZ0BiQAAAADAsX9tPdHo6eNSowxOAgAwSnFlnRZvOOJw7pZbblFERITnAwEAAAAAAAAAAAAAAJfwzSoAAAAAAAAAAAAAAAAAAADADR566CFZLBa7M7tzyvXyl42X6AAAAAAA4Em7c8q1+UhJoz/7eW82jwaA9shmk+5/74jqG2x259LT03X55ZcblApw3T333KOYmBi7M4UVtXp47SGDEgEAAADA2e0+WarNmYWN/mxSWrTBaQAARnl47SEVVdTanenUqZPuvPNOgxIBAAAAAAAAAAAAAABXUOwKAAAAAAAAAAAAAAAAAAAAuEFKSormzp3rcO7P644qr7TGgEQAAAAAAPzPYxuyGj09MdJPQ7uFGJwGAGCE17fna1NmscO5Rx99VGYzWw+g9QoODtavf/1rh3MvfJ6tbccbL7IHAAAAAKM8uj6z0dMTowI0NDHM4DQAACNszyrRS1uzHc498MADCg0NNSARAAAAAAAAAAAAAABwFd+uAgAAAAAAAAAAAAAAAAAAANzk97//vUJC7JfhlFbX68F1xwxKBAAAAACAtC2rVGv2nW70Z7POsRqcBgBghOLKOv1x7VGHc1OmTNGYMWMMSAQ0z7x585Sammp3psFm031v71N9g82gVAAAAADwQ18dK9aaPfmN/mz20C4GpwEAGKHBZtN9q/c7XJNKTk7WDTfcYFAqAAAAAAAAAAAAAADgKopdAQAAAAAAAAAAAAAAAAAAADeJjo7WnXfe6XDujR352pRZbEAiAAAAAEBH12CT7ns3s9GfRQV666rBMQYnAgAY4c/rj6mgvNbujMVi0UMPPWRQIqB5LBaL/vSnPzmc25Fdqhe3ZBuQCAAAAAB+qMFm031v72/0Z1FBPrrq3M4GJwIAGGH55ix9fbzE4dxDDz0kb29vAxIBAAAAAAAAAAAAAICmoNgVAAAAAAAAAAAAAAAAAAAAcKPbbrtNiYmJdmdsNunO1YdVUdNgUCoAAAAAQEf17OaT2nmyvNGf3Xp+F/l781VTAGhvPsss1itf5Tqcmz9/vlJTUw1IBLjH1KlTNWbMGIdzf1lzUMcLqwxIBAAAAAD/s2zTce08Udroz341OlH+3l4GJwIAeNqxwko9vPaQw7kxY8bokksuMSARAAAAAAAAAAAAAABoKr5tCwAAAAAAAAAAAAAAAAAAALhRQECAlixZ4nDu6OkqPbjuqAGJAAAAAAAd1f68Cj304bFGf5YSHaBrzokxOBEAwNMqahp0x+rDarDZn7NarfrDH/5gTCjAjZ5++mn5+fnZnSmrrtctK3arwebgHwIAAAAAuMn+3HI9tKbxYr+UmCBdMyTO4EQAAE9rsNl026q9Kquutzvn4+OjJ5980qBUAAAAAAAAAAAAAACgqSwtHQAAAAAAAAAAAAAAAAAAAABobyZOnKipU6fqzTfftDv34hc5Gp8crgt6hBmUDAAAAADQkSRHB+jwb4e0dAwAgIF+v+aIjp6ucji3ePFihYaGGpAIcK+ePXvqjjvu0IMPPmh3buuRIv1zc5bmDI83KBkAAACAjiw5JlCZfxzV0jEAAAZ6/rMsfXa40OHcvffeq5SUFAMSAQAAAAAAAAAAAACA5jC3dAAAAAAAAAAAAAAAAAAAAACgPVq8eLGCgoLszths0l2rD6u0ut6gVAAAAAAAAADaq48PFelfX+U6nJswYYIuu+wyAxIBnnHfffepe/fuDuf+9MEhZRZUGJAIAAAAAAAAHUlmQYX+suaQw7kePXronnvuMSARAAAAAAAAAAAAAABoLopdAQAAAAAAAAAAAAAAAAAAAA+Ij4/XH//4R4dz2cXVuvudwwYkAgAAAAAAANBeFZTX6tY3D8lmsz8XEBCgp556yphQgIf4+/tryZIlMplMducqa+s1/7Xdqq1vMCgZAAAAAAAA2rva+gbNf223Kmvr7c6ZTCY9/fTT8vPzMygZAAAAAAAAAAAAAABoDktLBwAAAAAAAAAAAAAAAAAAAADaq4ULF+qtt97Sxx9/bHfu7Z0FGpEYopmDYgxKBgBA23bVS3tdP2ZwjB6+KMkDaQAAAAC4y+mKOvV9+IuWjtHmNNikha8fVF5pjcPZhx9+WN27dzcgFeBZ48eP19y5c7Vs2TK7c9uzSvTg+wf1+8m9DEoGAEDbNnN5hsvHXD0kTg9fkuKBNAAAAPCU0+W16vPgxpaO0Sb94b2D2p5V4nDuxhtv1NixYw1IBAAAAAAAAAAAAAAA3MHc0gEAAAAAAAAAAAAAAAAAAACA9spsNmv58uUKDg52OPvb945oT065AakAAAAAAAAAtCdPfpKtjw8VOZwbNWqUbr75ZgMSAcZYtGiRU0XFz352XB/syTcgEQAAAAAAANqzdfsK9Pzm4w7nEhIS9MgjjxiQCAAAAAAAAAAAAAAAuAvFrgAAAAAAAAAAAAAAAAAAAIAHJSYm6qGHHnI4V13XoJtXfaOKmgYDUgEAAAAAAABoDz4/WqLHNjguEggODtbzzz8vk8lkQCrAGIGBgVq2bJnMZvtbZ9hs0m2v71VWUZVByQAAAAAAANDeHC+s0sIVu2Wz2Z8zm81avny5goODjQkGAAAAAAAAAAAAAADcgmJXAAAAAAAAAAAAAAAAAAAAwMPmzZunsWPHOpw7kF+pW9886HDjLwAAAAAAAAA4WVKjm1YcUF2D4wXFxx57TAkJCZ4PBRhs1KhRWrBggcO5oopazXlphypr6w1IBQAAAAAAgPaksrZec17aoeLKOoezt9xyiy644ALPhwIAAAAAAAAAAAAAAG5FsSsAAAAAAAAAAAAAAAAAAADgYSaTSS+//LKsVqvD2f/sOaXHN2YZkAoAAAAAAABAW1Vd16C5/96v/LJah7PTp0/X9ddfb0AqoGU88sgjGjBggMO5XSdKtXDFHtkcdyEDAAAAAAAAkiSbTbrt9b3afbLU4Wzfvn31l7/8xYBUAAAAAAAAAAAAAADA3Sh2BQAAAAAAAAAAAAAAAAAAAAwQExOjV155RWaz44/w/nXDcf1nzykDUgEAAAAAAABoi+59N1MZ2WUO57p27aqlS5cakAhoOb6+vlqxYoVCQkIczv5nV56WbDxqQCoAAAAAAAC0B09+fERvb891OBcUFKQVK1bI39/fgFQAAAAAAAAAAAAAAMDdKHYFAAAAAAAAAAAAAAAAAAAADDJq1CjdddddDudsNun2tw5pX16FAakAAAAAAAAAtCVPbzqh177Oczjn4+OjVatWKSIiwoBUQMvq0aOHnnrqKadmH1p7SOv2FXg4EQAAAAAAANq6dXsL9PDaw07NLl26VCkpKR5OBAAAAAAAAAAAAAAAPMVks9lsLR0CAAAAAAAAAAAAAAAAAAAA6Cjq6up0wQUXaNOmTQ5nY0N89O71fWUN8TEgGQAAAAAAAIDWbvWuU7p51QE1OLFLwKJFi3Trrbd6PhTQisyZM0fLly93OBfg46VV1w9UepcQA1IBAAAAAACgrcnIKtH0ZdtUUVPvcHbu3LlatmyZAakAAAAAAAAAAAAAAICHrKTYFQAAAAAAAAAAAAAAAAAAADBYTk6OzjnnHGVlZTmcTY4O0FvXpSnEz2JAMgAAAAAAAACt1edHS3Tli3tVXdfgcHb69OlasWKFTCaTAcmA1qOqqkrnn3++tm7d6nA2ItBb79w0WIlRAQYkAwAAAAAAQFtxrLBSFy35UvllNQ5nBw4cqE8//VT+/v4GJAMAAAAAAAAAAAAAAB6y0tzSCQAAAAAAAAAAAAAAAAAAAICOxmq16u2333ZqI6/9eRWa8+p+1ThR1gAAAAAAAACgfTqQX6k5r+53qtQ1PT1dL7zwAqWu6JD8/Pz01ltvqXPnzg5nT5fXauY/M1TgREEHAAAAAAAAOobCilrNXJ7hVKmrK58FBQAAAAAAAAAAAAAArRvFrgAAAAAAAAAAAAAAAAAAAEALGDhwoJYuXerU7OYjJbp51Teqa7B5OBUAAAAAAACA1ia7uFpXv7xXxZV1DmcjIyP1xhtvKCAgwIBkQOsUGxurlStXytfX1+HskVOVunJ5hkqqHP/7AgAAAAAAQPtWWl2nmcszdCi/wuGst7e3VqxYoS5duhiQDAAAAAAAAAAAAAAAeBrFrgAAAAAAAAAAAAAAAAAAAEALufrqq7Vw4UKnZt/be1p3vH1IdLsCAAAAAAAAHUdOSY1mLN+jrKJqh7Pe3t56/fXXlZiYaEAyoHUbPny4Hn/8cadmd50o1awXtquytt7DqQAAAAAAANBaVdTU6+p/bldGVolT80uWLNF5553n4VQAAAAAAAAAAAAAAMAoFLsCAAAAAAAAAAAAAAAAAAAALehvf/ubpk6d6tTsyox83bn6kGyUuwIAAAAAAADt3qnyWv3ixT06WljlcNZkMmnZsmU6//zzDUgGtA033HCD7rrrLqdmtxwp0qwXdqi6rsHDqQAAAAAAANDa1NY36IZXdmrrkSKn5u+9917NnTvXw6kAAAAAAAAAAAAAAICRTDYb2zoBAAAAAAAAAAAAAAAAAAAALamiokKjR4/Wli1bnJq/flisHpiQIJPJw8EAAAAAAAAAtIhT5bW6/IU92ptb4dT8gw8+qF//+tceTgW0PTabTTNnztSrr77q1PzYlCg9O7OvfCxmDycDAAAAAABAa1BT16C5/9qp9fsKnJq/8sor9fLLL8vEBzgBAAAAAAAAAAAAAGhPVlLsCgAAAAAAAAAAAAAAAAAAALQCBQUFGjFihA4cOODU/FWDY/SXyUkyszcYAAAAAAAA0K7kldXqFy/u0T4nS13nzp2rZcuWeTgV0HbV1tZq0qRJWr9+vVPzw5PC9cKs/gr08fJwMgAAAAAAALSkytp6zXlphz7+5rRT8+eff77WrFkjX19fDycDAAAAAAAAAAAAAAAGo9gVAAAAAAAAAAAAAAAAAAAAaC0OHjyoESNGKC8vz6n56emd9LeLu8uLdlcAAAAAAACgXcgqqtblL+zRkdNVTs1fdNFFeuONN2SxWDycDGjbioqKNHLkSO3cudOp+aGJYXpxVrqCfCl3BQAAAAAAaI9Kq+t0zT+3a8uRIqfm+/Xrp40bNyo0NNTDyQAAAAAAAAAAAAAAQAtYaW7pBAAAAAAAAAAAAAAAAAAAAADO6NGjh9atW6eIiAin5ldl5Gv+qm9UW2/zcDIAAAAAAAAAnpZ5qkrTnt/tdKnrmDFjtGLFCkpdASeEhYVp7dq16tWrl1Pzn2cW6fLntqmootbDyQAAAAAAAGC0oopaXfHc106XuiYnJ2vt2rWUugIAAAAAAAAAAAAA0I6ZbDYbuzgBAAAAAAAAAAAAAAAAAAAArUhGRoZGjx6twsJCp+ZHJIbquSuSFezn5eFkAAAAAAAAADwhI7tMs/61TwXlzpVIDhs2TGvXrlVQUJCHkwHtS1ZWlkaOHKnMzEyn5hMi/fXKtQOUEOnv4WQAAAAAAAAwwvHCKl31zwx9k1fu1HzXrl21ceNGdevWzcPJAAAAAAAAAAAAAABAC1pJsSsAAAAAAAAAAAAAAAAAAADQCm3evFnjx49XWVmZU/PJ0QF66aoUxYX6ejgZAAAAAAAAAHdas++0bl71jSprG5yaT09P10cffaTw8HAPJwPap2PHjmnkyJE6evSoU/PRwT56cVa6+sUFezgZAAAAAAAAPGlvTplmLs9QTkm1U/NxcXHauHGjkpKSPJwMAAAAAAAAAAAAAAC0sJXmlk4AAAAAAAAAAAAAAAAAAAAA4KeGDRumt99+W4GBgU7N78+r0MXP7tK+3AoPJwMAAAAAAADgLi9szdH1rx1wutR14MCBWr9+PaWuQDN07dpVa9asUVxcnFPzeaU1mr7sK204cMrDyQAAAAAAAOApGw6c0pSnv3Sp1PXDDz+k1BUAAAAAAAAAAAAAgA7CZLPZbC0dAgAAAAAAAAAAAAAAAAAAAEDjNm3apAsvvFDFxcVOzQf6eGnxtB76eWqEh5MBAAAAAAAAaKq6Bpse+fC4nvo02+ljBg8erDVr1igigrU/wB2OHDmisWPH6tChQ07Ne5lNumd8d918fjcPJwMAAAAAAIA7vbw1W79evV+19c5tv9qtWzetX79ePXr08HAyAAAAAAAAAAAAAADQSqyk2BUAAAAAAAAAAAAAAAAAAABo5bZt26YJEyaooKDAqXmTSZo/Ik73jO0qs8nD4QAAAAAAAAC4pLCiTjetPKBPDxc7fczIkSP17rvvKjg42IPJgI7n5MmTGjt2rPbs2eP0MVPTrXpsWqr8vM0eTAYAAAAAAIDmqqlr0N1v7dNrX510+phevXpp/fr1io+P92AyAAAAAAAAAAAAAADQylDsCgAAAAAAAAAAAAAAAAAAALQFO3bs0Pjx45Wbm+v0MRf2jtSiqd0V6OPlwWQAAAAAAAAAnLU7p1xzXt2vrKJqp4+ZOHGi3njjDfn7+3swGdBx5eTkaNy4cdq1a5fTxwyMD9FzV/VTTIivB5MBAAAAAACgqXJKqjXnpR3KyCpx+pg+ffpo3bp1slqtHkwGAAAAAAAAAAAAAABaoZXmlk4AAAAAAAAAAAAAAAAAAAAAwLF+/fpp8+bNSk5OdvqY/+w5pZ8v3ak9OeUeTAYAAAAAAADAGasy8nXxs7tcKnW9+uqr9fbbb1PqCniQ1WrVxo0bNXLkSKeP2Xa8RGMf36qP9p/yYDIAAAAAAAA0xaeHCjXxya0ulboOGzZMGzZsoNQVAAAAAAAAAAAAAIAOymSz2WwtHQIAAAAAAAAAAAAAAAAAAACAc06fPq0pU6Zo06ZNTh/jazHrvnFdNXdorAeTAQAAAAAAAGhMWXW97n33sN7YUeDScQsXLtSiRYtkNps9lAzA91VXV2v27Nn697//7fQxJpM0Z1i87p/UU95eJg+mAwAAAAAAgCN1DTYt/ihTiz46ogYXtlqdNm2aXn75Zfn7+3swHQAAAAAAAAAAAAAAaMVWUuwKAAAAAAAAAAAAAAAAAAAAtDEVFRX6xS9+odWrV7t03MV9o/TwRUkK9vXyUDIAAAAAAAAA37frZLluWnlAmaeqnD7Gy8tLTz75pG666SYPJgPQmIaGBt1xxx1atGiRS8edmxCmJVekqXOon4eSAQAAAAAAwJ4TxVWa/+/d2nqkyKXjfvWrX+nRRx+V2Wz2UDIAAAAAAAAAAAAAANAGUOwKAAAAAAAAAAAAAAAAAAAAtEX19fW6/fbbtXjxYpeOiwv11WOXdNd5SaEeSgYAAAAAAACgrsGmpz7J1qKPs1Rb7/xX+kNCQvTKK6/owgsv9GA6AI488cQTuu2221RXV+f0MSF+Fv1+ci9dPijWg8kAAAAAAADwY699dVIPvHtAJVXOr+VYLBYtWrRICxYs8GAyAAAAAAAAAAAAAADQRlDsCgAAAAAAAAAAAAAAAAAAALRlr7zyiubOnavKykqnjzGZpJmDYnT/hG4K9PHyYDoAAAAAAACg4zmQX6lfvXlQGdllLh3Xs2dPvfXWW+rdu7eHkgFwxSeffKLp06crLy/PpeNG9YrUY5emyhri66FkAAAAAAAAkKT8shrd/eY+fbAn36XjIiMj9dprr2nMmDEeSgYAAAAAAAAAAAAAANoYil0BAAAAAAAAAAAAAAAAAACAtm7Lli2aNm2aTpw44dJx3SL89MhFSfpZUqiHkgEAAAAA8H/s3W101fWdNvrvDgl54lFAAUWpIqAEjDypU3QKgjII2FUWnN5Vw7R3C11n2oSetaZYOx2CXTOFdu4uQmfVSte0BbTTA962FbUsjWIVLWoKQqME0CqU8iAgREwC5Om8uM88d0h22DshyeezFq/2vn7/6/Uvm/8F0H00NDbHQ68ciu++cDDONTQllZ01a1b89Kc/jb593dXBxeS9996LT37yk7Fz586kcv3zsmL57JExr3BwJBJpKgcAAADQTTU3Rzy243Ase2pfnKqtTypbWFgYP//5z2P48OHpKQcAAAAAAAAAdEaGXQEAAAAAAAAAAACgKzh8+HAsWLAgtm7dmnT2U+MGxt/eOTwG9cpKQzMAAAAA6Pq27f8wHnjy3djzfm1SuYyMjPja174WDz74YGRkZKSpHXAhampq4gtf+EL88z//c9LZj1/dP771yVExYlB+GpoBAAAAdD/73q+Jr/1yT7zy+5NJZz/zmc/ED3/4w8jLy0tDMwAAAAAAAACgEzPsCgAAAAAAAAAAAABdRUNDQyxbtixWrFgRTU1NSWX75GTG16ZfGfdOvCwyEmkqCAAAAABdzAe1DfHNZ96LjW8ci2T/5/6ll14a69atizvvvDM95YCUWrNmTSxZsiTq6uqSymX1yIj/+7Yro2TqxyIny4AzAAAAQFucqW+Ksi3vxvdfPBD1jcn9PjI3NzfKysriC1/4QpraAQAAAAAAAACdnGFXAAAAAAAAAAAAAOhqnn/++bj33nvj8OHDSWdHDsqNv7njqrh9ZP80NAMAAACArqG+sTnWvn4k/teWg/HhmYak83/+538eP/3pT2Po0KFpaAeky+7du2PBggVRWVmZdHZI3+z4yrSPxf+YODR6ZCTS0A4AAACg62lujniy8v34u1+9HQdO1iWdHzVqVGzYsCHGjRuXhnYAAAAAAAAAQBdh2BUAAAAAAAAAAAAAuqLDhw9HUVFRlJeXtyk/7dp+8fU7rorRl+aluBkAAAAAdF7NzRG/rDweK8oPxB9OnU06n5mZGd/4xjfi61//evTo0SMNDYF0q6mpieLi4vjRj37Upvy4y3vHN2ZdGx+/un+KmwEAAAB0LVvfORnffHpf/O7Q6TblP/e5z8Xq1asjPz8/xc0AAAAAAAAAgC7GsCsAAAAAAAAAAAAAdFXNzc3x0EMPxVe/+tWoqalJOt8jIxGfGjcwlvz5FTH8kpw0NAQAAACAzqG5OeK5fSfjf235Q+w6lPxdW0TEmDFj4ic/+UlMnDgxxe2AjrBp06ZYtGhRHDlypE3520cNiP/n9qvjxmF9UtwMAAAAoHPb/ocP47vP/T6e33OiTfkhQ4bEmjVrYvbs2SluBgAAAAAAAAB0UYZdAQAAAAAAAAAAAKCre++99+Jzn/tcbNmypU35jETErOsHxFenDYtrBuamuB0AAAAAXNxe+n11rCg/EG/88aM25TMyMuJLX/pSfPvb347s7OwUtwM60qlTp2Lp0qWxZs2aNp8x6aq+sfSOa+LPru6fwmYAAAAAnc9vD1TH6i3vRfme49HWN6XOnz8/HnrooRgwYEBqywEAAAAAAAAAXZlhVwAAAAAAAAAAAADoDpqammL16tXxjW98Iz76qG0DFD0yEjF7zIBYdMuQKLy8V4obAgAAAMDFo76xOTa9eSIefuVQVB6uafM5Y8aMiR/+8Idxyy23pLAdcLF57LHHori4OA4fPtzmM2679pJYPOXK+MS1AyKRSGE5AAAAgItYc3PEC/tOxMNbD8SL+z5o8zlDhw6N733ve/GpT30qhe0AAAAAAAAAgG7CsCsAAAAAAAAAAAAAdCeHDh2K+++/P9avX39B54wbmh//86Yh8clxAyMzwxvmAQAAAOgaPjzTEBveOBYPv3IoDlWfa/M5ubm58dWvfjUeeOCB6NmzZwobAhermpqa+OY3vxn/8A//EI2NjW0+Z/iA3PjcLcPiM5OGRl7PHilsCAAAAHDxONvQFE/sOhrff3F/7Dla0+ZzMjIy4vOf/3x85zvfiT59+qSwIQAAAAAAAADQjRh2BQAAAAAAAAAAAIDu6Kmnnoovf/nL8e67717QOUP79oz/68ZLY37hoLiqf06K2gEAAABA+2lqjvjNe9Xx/+44Fk++eSLONjRd0Hlz5syJ733ve3HVVVelqCHQmfz2t7+NL37xi1FRUXFB5/TLy4pPFQ6OT08YEgVDe6eoHQAAAEDHqjx0On7228Pxv3ccjuq6hgs6a9KkSfGDH/wgxo8fn6J2AAAAAAAAAEA3ZdgVAAAAAAAAAAAAALqrurq6+O53vxsrV66M06dPX9BZiUTEzVf1iU+PvzRmjr4kemX3SFFLAAAAAEiP/SfPxP/eeTw2vvF+HDh59oLPu/766+Pb3/523HXXXSloB3RmjY2N8eMf/zj+9m//Ng4fPnzB540Z0js+PXFI3D3ushjYq2cKGgIAAAC0n+MfnYtf7joaP6s4HG8evrDfKkZEDB06NB588MH47Gc/GxkZGSloCAAAAAAAAAB0c4ZdAQAAAAAAAAAAAKC7O3HiRDz44IPx/e9/PxoaGi74vOzMjJh8Ze+YPqp/fHLswBiYn5WClgAAAABw4fafPBPP7jkZT755Iir+cDpS8b/tBw4cGH/zN38Tf/VXfxWZmZkXfiDQZdTW1sb3vve9+Pu///v48MMPL/i8jEQiJlzZJ+aMvSzuKrg0hvTNTkFLAAAAgNQ7XH02nttzPJ7dfTxe2Hci6hsv/DI2Pz8/vvSlL8XXv/716N27dwpaAgAAAAAAAABEhGFXAAAAAAAAAAAAAOBf7N69Ox544IH45S9/Gal2ciHiAAAgAElEQVT6mXFmj0TcdGWfuO2avnHrNX1j7JBekZFIydEAAAAA0KKac42x7b0P48V3quOFt0/F28frUnZ2nz59YsmSJfHXf/3X0atXr5SdC3Q9hw8fjtLS0vjxj38c9fX1KTkzkYgovKJP3Dbikrh1xCUx6aq+kdUjIyVnAwAAACSrvrEpXt9fHS+9/UH8et8HsfOPH0aq3nbas2fP+OxnPxulpaUxePDg1BwKAAAAAAAAAPBvDLsCAAAAAAAAAAAAAP/RG2+8EQ8++GD84he/SNnA67/ol5sZH/9Y35gwrFfccHmvGDskP/J79kjpMwAAAADovo58eC7eOPRR7PzjR/Hq/tPx24Ono6ExtXdcffr0ieLi4vjKV74Sl1xySUrPBrq29957L771rW/FT37ykzh37lxKz87r2SNu/li/mHBl3yi8ok8UXtEn+udlpfQZAAAAAP/iZG197Dz4Ybxx8MOoOFAd2949FbXnGlP6jH8ZdP3a174WV111VUrPBgAAAAAAAAD4dwy7AgAAAAAAAAAAAAB/2s6dO/914LWpqSktz+iRkYhrB+bGdYPz4poBuXHNwNy4ekBOXD0gN/J6ZqTlmQAAAAB0fsc+qo+3j9fF70/Uxe9PnIm3j9XF7w7XxNHTqR1K/Pf69esXX/7yl+MrX/lK9O/fP23PAbq+AwcOxLe+9a348Y9/HGfPnk3bc4YPyI2CIb3j6kF5cc3AvLhmUH5cMzAv+uZmpu2ZAAAAQNdSXdcQ7xyvjXeO1cQ7x2vj98dqo/Lw6XjvRF3anpmdnf2vg65XXnll2p4DAAAAAAAAAPD/M+wKAAAAAAAAAAAAAJzf22+/HatXr46f/OQncfr06XZ7bn7PHnFp76wYmP9//vXPy4yMRCLye/aIzIxE5PXMiKweiXbrAwAAAED7qD3XFPWNzVFX3xjnGpvjTENTnKxtiOMf1cfRj87FiZr6qG9sv/8mf+2110ZxcXH85V/+ZfTq1avdngt0fUePHo0f/OAH8dBDD8XRo0fb7bk5WRkxML9nXNYnOwbkZ0X/vKzI6pERuVkZ0TMzI3IyMyInq0e79QEAAAA6xpn6xjjT0BTnGpqirr4p6hub4mRtfZyoqY+jH56N4zXn4kx9U7v1GTx4cHzxi1+ML37xi3HZZZe123MBAAAAAAAAgG7PsCsAAAAAAAAAAAAA0DrV1dXxT//0T/GP//iP8e6773Z0HQAAAABIm0QiEbfffnuUlJTErFmzIiMjo6MrAV3Y2bNn42c/+1mUlZXFjh07OroOAAAAQLsaP358FBcXx6c//enIzs7u6DoAAAAAAAAAQPdj2BUAAAAAAAAAAAAASE5TU1O88sorsX79+nj00UejpqamoysBAAAAQEpcfvnlce+998bnP//5GDFiREfXAbqhN998M9avXx8/+tGP4tixYx1dBwAAACAt+vXrFwsWLIj77rsvpkyZ0tF1AAAAAAAAAIDuzbArAAAAAAAAAAAAANB21dXV8bOf/SweeeSReOWVV6KpqamjKwEAAABAUnr37h1z5syJhQsXxvTp0yMjI6OjKwHE2bNn4xe/+EWsX78+nn322Th37lxHVwIAAAC4INnZ2TF9+vQoKiqKu+++O7Kzszu6EgAAAAAAAABAhGFXAAAAAAAAAAAAACBVjhw5Ej//+c/j8ccfjxdeeCEaGho6uhIAAAAA/EmXXHJJzJ07Nz71qU/FjBkzIicnp6MrAfy3qqur48knn4zHH388Nm/eHLW1tR1dCQAAAKBV8vLyYubMmTFv3ry46667om/fvh1dCQAAAAAAAADgPzPsCgAAAAAAAAAAAACk3okTJ+LZZ5+NZ599NsrLy+PAgQMdXQkAAACAbqxHjx4xfvz4mDFjRkyfPj1uvfXWyMzM7OhaAEmrra2N5557LsrLy6O8vDzeeuutjq4EAAAA8B9cf/31MX369JgxY0ZMmzYt8vLyOroSAAAAAAAAAMD5GHYFAAAAAAAAAAAAANJv7969UV5eHr/5zW/i9ddfj71794afMgMAAACQLrm5uVFYWBiTJk2K2267LaZOnRqXXHJJR9cCSLk//vGPUV5eHlu3bo3XX3893nzzzWhoaOjoWgAAAEA3kZmZGQUFBTFp0qSYMmVKTJ8+PYYOHdrRtQAAAAAAAAAAkmHYFQAAAAAAAAAAAABof6dOnYqKioqoqKiIqqqqqKqqir1798bJkyc7uhoAAAAAnUgikYgrr7wyRo4cGSNHjoxx48bFpEmToqCgILKysjq6HkC7q62tjR07dsTrr78eb731Vuzduzeqqqri6NGjHV0NAAAA6OQuu+yyGD16dIwcOTLGjBkTkyZNihtvvDFyc3M7uhoAAAAAAAAAwIUw7AoAAAAAAAAAAAAAXDyOHTsWe/fujaNHj8bhw4fj/fffjyNHjsTJkyf/dfS1uro6mpqa4vTp09HQ0NDBjbuXhoaG+OCDD+Kjjz5KOtujR48YNmxYZGRkpKEZAHRv+/fvj8bGxv/28wEDBkTfvn3bsREAwIXJy8uL7OzsyMnJidzc3OjZs2f07ds3Bg0aFJdeemkMHTo0Lr300rjiiiti5MiRRgMAWqG6ujr27t0bhw8fjiNHjsSRI0fi/fffj2PHjkV1dXU0NjbGRx99FPX19VFbWxtnz57t6MoAQJIaGhriwIED5/3O0KFDIycnp50aAdDZVFdXx4kTJ5LK5ObmxqBBgyIzMzNNrUin7OzsyMvLi6ysrOjVq1dkZmZGnz594tJLL41BgwbF4MGDY/DgwTFkyJAYOXKkvzsDAAAAAAAAAF2VYVcAAAAAAAAAAAAAAM6vrq4uvvOd78TKlSujtra2TWdMnTo11q5dG8OGDUtxOwBgxIgR8c477/y3n//d3/1dPPDAA+3YCAAAAACA9rZ3794YNWrUeb+zffv2uPHGG9upEQCdzfPPPx8LFy6MgwcPJpXr379/PPzwwzF//vw0NQMAAAAAAAAAgLTamNHRDQAAAAAAAAAAAAAAuHht2rQpxowZE8uWLWvTqOvll18ea9eujeeee86oKwCkSV5e3nk/r6ura6cmAAAAAAB0lNb8Pbel+2QAurdp06ZFZWVl3HPPPUnlTp48GQsWLIgFCxbEqVOn0tQOAAAAAAAAAADSx7ArAAAAAAAAAAAAAAD/xb59++Kuu+6KuXPnxrvvvpt0vmfPnlFcXBy7d++OoqKiSCQSaWgJAES0/CL+toyzAwAAAADQuRh2BSAV+vbtG4888khs2LAh+vXrl1R248aNUVhYGC+99FKa2gEAAAAAAAAAQHoYdgUAAAAAAAAAAAAA4F/V1NREaWlpjB07Np5++uk2nTF9+vTYuXNnlJWVRe/evVPcEAD4zwy7AgAAAABg2BWAVJo/f37s2LEjpkyZklRu//79MW3atLj//vujvr4+Te0AAAAAAAAAACC1DLsCAAAAAAAAAAAAABDNzc2xcePGuO6662L58uVx9uzZpM8YMWJEPPnkk/Hss8/G6NGj09ASAPhTDLsCAAAAAGDYFYBUGz58eGzZsiVWrFgRWVlZrc41NDTEypUrY8qUKbFv3740NgQAAAAAAAAAgNQw7AoAAAAAAAAAAAAA0M3t2LEjbr311liwYEH84Q9/SDqfl5cXy5Yti8rKyrjrrrvS0BAAOB/DrgAAAAAAtHQXnEgkIicnp53aANBVZGZmxtKlS2Pr1q0xYsSIpLKvvfZaTJgwIdasWZOmdgAAAAAAAAAAkBqGXQEAAAAAAAAAAAAAuqkPPvggSkpKYtKkSfHyyy+36YzZs2fH7t27o7S0NLKzs1PcEABoDcOuAAAAAAC0dBecl5cXiUSindoA0NVMnjw5tm/fHosWLUoqd/r06Vi8eHHMmzcvTpw4kaZ2AAAAAAAAAABwYQy7AgAAAAAAAAAAAAB0M01NTbFu3boYNWpUrF69OhobG5M+o7CwMF588cXYtGlTXHnllWloCQC0lmFXAAAAAABaM+wKABeid+/e8fDDD8djjz0WAwYMSCr7+OOPR0FBQfzqV79KUzsAAAAAAAAAAGg7w64AAAAAAAAAAAAAAN3Iiy++GOPHj4+FCxfG8ePHk873798/Vq1aFRUVFXHrrbemoSEAkCzDrgAAAAAAGHYFoL3MmzcvKisrY+bMmUnljhw5EnfddVeUlJTE2bNn09QOAAAAAAAAAACSZ9gVAAAAAAAAAAAAAKAbOHToUBQVFcUnPvGJ2LlzZ9L5jIyMuO+++2LPnj1RUlISPXr0SENLAKAtDLsCAAAAAGDYFYD2NHjw4Hj66adj1apVkZ2d3epcc3NzrF69OiZOnBi7du1KY0MAAAAAAAAAAGg9w64AAAAAAAAAAAAAAF1YfX19lJWVxejRo2P9+vXR3Nyc9BmTJk2KV155JdatWxeDBg1KQ0sA4ELk5uae93PDrgAAAAAAXV9dXd15PzfsCkCqJRKJKCkpiYqKihg3blxS2crKyrjpppuirKysTb9nAgAAAAAAAACAVDLsCgAAAAAAAAAAAADQRZWXl8cNN9wQS5YsidOnTyedHzJkSKxduzZeffXVuOmmm9LQEABIhZZexm/YFQAAAACg62vpLtiwKwDpUlBQEK+++moUFxdHIpFode7MmTOxZMmSmDlzZhw6dCiNDQEAAAAAAAAA4PwMuwIAAAAAAAAAAAAAdDHvvPNOLFiwIGbMmBG7d+9OOp+VlRXFxcVRVVUVRUVFSb1wEQBof4ZdAQAAAAAw7ApAR8rJyYmysrLYvHlzDBkyJKnsM888E4WFhfHEE0+kqR0AAAAAAAAAAJyfYVcAAAAAAAAAAAAAgC6itrY2SktLo6CgIDZu3NimM26//fbYsWNHlJWVRZ8+fVLcEABIB8OuAAAAAAAYdgXgYnDHHXfEzp07Y86cOUnljh07FnfffXcUFRVFTU1NmtoBAAAAAAAAAMCfZtgVAAAAAAAAAAAAAKAL2LRpU1x//fWxfPnyOHPmTNL5YcOGxdq1a6O8vDzGjBmThoYAQLq09DL+hoaGOHfuXDu1AQAAAACgIxh2BeBiMWjQoHjiiSdi7dq1kZ+fn1R2/fr1MXHixNi+fXua2gEAAAAAAAAAwH9l2BUAAAAAAAAAAAAAoBOrqqqKO++8M+bOnRv79+9POp+bmxvLli2LvXv3RlFRURoaAgDp1pqX8dfU1LRDEwAAAAAAOkpL98CGXQFob0VFRVFRURHjx49PKldVVRU333xzlJaWRmNjY5raAQAAAAAAAADAvzHsCgAAAAAAAAAAAADQCZ06dSpKSkpi7Nix8cwzz7TpjNmzZ8dbb70VpaWlkZOTk+KGAEB7ac3L+Gtra9uhCQAAAAAAHaWle2DDrgB0hNGjR8e2bdti2bJlkZHR+tdf1tfXx/Lly2PGjBlx8ODBNDYEAAAAAAAAAADDrgAAAAAAAAAAAAAAnUpzc3OsW7cuRo0aFatXr46Ghoakzxg1alRs3rw5Nm3aFMOHD099SQCgXRl2BQAAAADAsCsAF6usrKwoLS2N8vLyuOKKK5LKbtmyJQoKCuLRRx9NUzsAAAAAAAAAADDsCgAAAAAAAAAAAADQaVRUVMSf/dmfxcKFC+P9999POt+vX79YsWJF7Nq1K+688840NAQAOoJhVwAAAAAAWroHzs3NbacmAPCnTZ06NSorK+Oee+5JKlddXR333ntvLFiwIE6dOpWmdgAAAAAAAAAAdGeGXQEAAAAAAAAAAAAALnJHjhyJxYsXx0033RTbtm1LOp9IJOK+++6LqqqqWLp0afTs2TMNLQGAjmLYFQAAAACAlu6BW3OXDADp1rdv33jkkUdiw4YN0a9fv6SyGzdujMLCwnjppZfS1A4AAAAAAAAAgO7KsCsAAAAAAAAAAAAAwEWqvr4+ysrKYvTo0bFmzZpoampK+owJEybEyy+/HOvWrYvLLrssDS0BgI5m2BUAAAAAAMOuAHQm8+fPjx07dsSUKVOSyu3fvz+mTZsW999/f9TX16epHQAAAAAAAAAA3Y1hVwAAAAAAAAAAAACAi9CWLVti/PjxsWTJkqiurk46P2DAgFi1alW8+uqrccstt6ShIQBwsTDsCgAAAACAYVcAOpvhw4fHli1bYsWKFZGVldXqXENDQ6xcuTKmTJkS+/btS2NDAAAAAAAAAAC6C8OuAAAAAAAAAAAAAAAXkYMHD0ZRUVFMmzYtKisrk85nZmbGokWLYs+ePVFSUhI9evRIQ0sA4GKSl5cXiUTivN8x7AoAAAAA0HU1NjbG2bNnz/sdw64AXIwyMzNj6dKlsXXr1hgxYkRS2ddeey0mTJgQa9asSVM7AAAAAAAAAAC6C8OuAAAAAAAAAAAAAAAXgbq6uli5cmVcd911sX79+jad8YlPfCK2b98eDz/8cAwYMCDFDQGAi1UikYjc3NzzfsewKwAAAABA19WaO+D8/Px2aAIAbTN58uTYvn17LFq0KKnc6dOnY/HixTFv3rw4ceJEmtoBAAAAAAAAANDVGXYFAAAAAAAAAAAAAOhgmzZtijFjxsT9998fH330UdL5yy+/PNauXRtbtmyJsWPHpqEhAHCxy8vLO+/nhl0BAAAAALqu1twBt3SPDAAdrXfv3vHwww/HY489FgMGDEgq+/jjj0dBQUFs3rw5Te0AAAAAAAAAAOjKDLsCAAAAAAAAAAAAAHSQvXv3xqxZs2Lu3Lnx7rvvJp3v2bNnFBcXR1VVVRQVFaWhIQDQWRh2BQAAAADovgy7AtCVzJs3LyorK2PmzJlJ5Y4cORKzZs2KkpKSOHv2bJraAQAAAAAAAADQFRl2BQAAAAAAAAAAAABoZzU1NVFaWhpjx46NX/3qV206Y/bs2bF79+4oKyuLXr16pbghANDZGHYFAAAAAOi+DLsC0NUMHjw4nn766Vi1alVkZ2e3Otfc3ByrV6+OiRMnxq5du9LYEAAAAAAAAACArsSwKwAAAAAAAAAAAABAO2lubo5169bFiBEjYvny5XHu3Lmkz7j22mvjqaeeik2bNsXVV1+dhpYAQGfU0gv56+rq2qkJAAAAAADtzbArAF1RIpGIkpKSqKioiHHjxiWVraysjJtuuinKysqiubk5TQ0BAAAAAAAAAOgqDLsCAAAAAAAAAAAAALSD7du3x6233hoLFy6MI0eOJJ3Pz8+PZcuWxe9+97uYNWtWGhoCAJ1ZSy/kb81L/QEAAAAA6JwMuwLQlRUUFMSrr74axcXFkUgkWp07c+ZMLFmyJGbOnBmHDh1KY0MAAAAAAAAAADo7w64AAAAAAAAAAAAAAGn0wQcfRElJSUyePDlefvnlpPOJRCLmz58fu3fvjtLS0sjOzk5DSwCgszPsCgAAAADQfRl2BaCry8nJibKysti8eXMMGTIkqewzzzwThYWF8cQTT6SpHQAAAAAAAAAAnZ1hVwAAAAAAAAAAAACANGhqaop169bFqFGjYvXq1dHY2Jj0GYWFhfHiiy/Ghg0bYtiwYWloCQB0FYZdAQAAAAC6L8OuAHQXd9xxR+zcuTPmzJmTVO7YsWNx9913R1FRUdTU1KSpHQAAAAAAAAAAnZVhVwAAAAAAAAAAAACAFPv1r38dN954YyxcuDCOHz+edL5///6xatWqqKioiClTpqShIQDQ1Rh2BQAAAADovlq6A+7Zs2dkZma2UxsASK9BgwbFE088EWvXro38/PyksuvXr4+JEyfG9u3b09QOAAAAAAAAAIDOyLArAAAAAAAAAAAAAECKHDp0KIqKimLq1Kmxa9eupPMZGRlx3333xZ49e6KkpCR69OiRhpYAQFdk2BUAAAAAoPtq6Q64pTtkAOiMioqKoqKiIsaPH59UrqqqKm6++eYoLS2NxsbGNLUDAAAAAAAAAKAzMewKAAAAAAAAAAAAAHCB6uvro6ysLEaPHh3r16+P5ubmpM+YPHly/OY3v4l169bFoEGD0tASAOjKDLsCAAAAAHRfhl0B6K5Gjx4d27Zti2XLlkVGRutfr1lfXx/Lly+PGTNmxMGDB9PYEAAAAAAAAACAzsCwKwAAAAAAAAAAAADABSgvL48bbrghlixZEqdPn046P2TIkFi7dm1s27YtJk+enIaGAEB3YNgVAAAAAKD7MuwKQHeWlZUVpaWlUV5eHldccUVS2S1btkRBQUE8+uijaWoHAAAAAAAAAEBnYNgVAAAAAAAAAAAAAKAN3n777ZgzZ07MmDEjdu/enXQ+KysriouLo6qqKoqKiiKRSKShJQDQXeTm5p73c8OuAAAAAABdV11d3Xk/N+wKQHcwderUqKysjHvuuSepXHV1ddx7772xYMGCOHXqVJraAQAAAAAAAABwMTPsCgAAAAAAAAAAAACQhNra2igtLY2CgoJ48skn23TG7bffHm+88UaUlZVFnz59UtwQAOiOWnopv2FXAAAAAICuq6U7YMOuAHQXffv2jUceeSQ2bNgQ/fr1Syq7cePGKCwsjJdeeilN7QAAAAAAAAAAuFgZdgUAAAAAAAAAAAAAaKVNmzbFddddF8uXL4+zZ88mnb/mmmtiw4YNUV5eHtdff30aGgIA3ZVhVwAAAACA7suwKwD8R/Pnz48dO3bElClTksrt378/pk2bFvfff3/U19enqR0AAAAAAAAAABcbw64AAAAAAAAAAAAAAC2oqqqKO+64I+bOnRsHDhxIOp+XlxfLli2LysrKmD9/fhoaAgDdnWFXAAAAAIDuy7ArAPxXw4cPjy1btsSKFSsiKyur1bmGhoZYuXJlTJkyJfbt25fGhgAAAAAAAAAAXCwMuwIAAAAAAAAAAAAA/DdOnjwZJSUlMXbs2Hj22WfbdMbs2bPjrbfeitLS0sjJyUlxQwCA/6Oll/KfOXMmmpqa2qkNAAAAAADtybArAPxpmZmZsXTp0ti6dWuMGDEiqexrr70WEyZMiDVr1qSpHQAAAAAAAAAAFwvDrgAAAAAAAAAAAAAA/0lTU1OsW7cuRo8eHatXr46Ghoakzxg1alRs3rw5Nm3aFFdddVUaWgIA/JuWXsrf3NwcdXV17dQGAAAAAID2ZNgVAM5v8uTJsX379li0aFFSudOnT8fixYtj3rx5ceLEiTS1AwAAAAAAAACgoxl2BQAAAAAAAAAAAAD4d15//fX4+Mc/HgsXLoz3338/6Xy/fv1ixYoVsWvXrrjzzjvT0BAA4L9qzUv5a2pq2qEJAAAAAADtraX7X8OuABDRu3fvePjhh+Oxxx6LAQMGJJV9/PHHo6CgIDZv3pymdgAAAAAAAAAAdCTDrgAAAAAAAAAAAAAAEXH48OFYvHhx3HzzzbFt27ak84lEIu67776oqqqKpUuXRs+ePdPQEgDgT2vNS/lra2vboQkAAAAAAO2tpftfw64A8G/mzZsXlZWVMXPmzKRyR44ciVmzZkVJSUmcPXs2Te0AAAAAAAAAAOgIhl0BAAAAAAAAAAAAgG6tvr4+ysrKYvTo0bFmzZpoampK+owJEybEyy+/HOvWrYvLLrssDS0BAM7PsCsAAAAAQPdl2BUAkjN48OB4+umnY9WqVZGdnd3qXHNzc6xevTomTpwYu3btSmNDAAAAAAAAAADak2FXAAAAAAAAAAAAAKDbev755+PGG2+MJUuWxIcffph0fsCAAbFq1ap47bXX4pZbbklDQwCA1jHsCgAAAADQfbV0/5ubm9tOTQCg80gkElFSUhIVFRUxbty4pLKVlZVx0003RVlZWTQ3N6epIQAAAAAAAAAA7cWwKwAAAAAAAAAAAADQ7Rw8eDCKiori9ttvjzfffDPpfGZmZhQXF8c777wTJSUlkZHhp9kAQMcy7AoAAAAA0H21dP/bmjtkAOiuCgoK4tVXX43i4uJIJBKtzp05cyaWLFkSM2fOjEOHDqWxIQAAAAAAAAAA6ebtQQAAAAAAAAAAAABAt1FXVxelpaUxcuTIWL9+fZvOmDp1auzYsSPKysqib9++KW4IANA2hl0BAAAAALovw64AcGFycnKirKwsNm/eHEOGDEkq+8wzz0RhYWFs2rQpTe0AAAAAAAAAAEg3w64AAAAAAAAAAAAAQLewadOmuP7662P58uVRV1eXdP7yyy+PtWvXxvPPPx8FBQVpaAgA0Hb5+fktfsewKwAAAABA19TS38ANuwJA69xxxx2xc+fOmDNnTlK5Y8eOxdy5c6OoqChqamrS1A4AAAAAAAAAgHQx7AoAAAAAAAAAAAAAdGl79+6Nv/iLv4i5c+fGe++9l3Q+Nzc3li5dGlVVVVFUVJT6ggAAKZCVlRVZWVnn/Y5hVwAAAACArufMmTPR2Nh43u8YdgWA1hs0aFA88cQTsXbt2sjPz08qu379+pg4cWJs3749Te0AAAAAAAAAAEgHw64AAAAAAAAAAAAAQJdUU1MTpaWlMXbs2Ni8eXObzpg9e3a8+eabsWLFiujVq1eKGwIApFZLL+Y37AoAAAAA0PW05u432VE6ACCiqKgoKioqYvz48Unlqqqq4uabb47S0tIWx9cBAAAAAAAAALg4GHYFAAAAAAAAAAAAALqU5ubmWLduXVxzzTWxfPnyOHfuXNJnXHvttfHUU0/Fpk2b4mMf+1gaWgIApJ5hVwAAAACA7qc1d78t3R8DAH/a6NGjY9u2bbFs2bLIyGj96zvr6+tj+fLlMWPGjDh48GAaGwIAAAAAAAAAkAqGXQEAAAAAAAAAAACALmP79u0xZcqUWLhwYRw9ejTpfH5+fixbtix+97vfxaxZs9LQEAAgfQy7AgAAAAB0P4ZdASC9srKyorS0NMrLy+OKK65IKrtly5YoKCiIRx99NE3tAAAAAAAAAABIBcOuAAAAAAAAAAAAAECn98EHH0RJSUlMnjw5XnnllaTziUQi5s+fH7t3747S0tLIzs5OQ0sAgPRq6cX8dXV17dQEAAAAAID2YtgVANrH1KlTo7KyMj7zmc8kldJwwY8AACAASURBVKuuro577703FixYEKdOnUpTOwAAAAAAAAAALoRhVwAAAAAAAAAAAACg02poaIg1a9bEqFGjYvXq1dHY2Jj0GTfeeGO8+OKLsWHDhhg2bFgaWgIAtI+WXszfmpf7AwAAAADQuRh2BYD207dv33j00Udjw4YN0a9fv6SyGzdujMLCwnjppZfS1A4AAAAAAAAAgLYy7AoAAAAAAAAAAAAAdEq//vWvY8KECbF48eI4fvx40vlLLrkkVq1aFa+//npMmTIlDQ0BANqXYVcAAAAAgO7HsCsAtL/58+fHjh07kv7d2f79+2PatGlx//33R319fZraAQAAAAAAAACQLMOuAAAAAAAAAAAAAECn8sc//jGKiopi6tSpsWvXrqTzGRkZcd9998WePXuipKQkevTokYaWAADtz7ArAAAAAED3Y9gVADrG8OHDY8uWLbFixYrIyspqda6hoSFWrlwZU6ZMiX379qWxIQAAAAAAAAAArWXYFQAAAAAAAAAAAADoFM6dOxdlZWVx3XXXxfr166O5uTnpM2677bbYvn17rFu3LgYOHJiGlgAAHcewKwAAAABA99PS3W8ikYicnJx2agMA3UtmZmYsXbo0tm7dGiNGjEgq+9prr8WECRNizZo1aWoHAAAAAAAAAEBrGXYFAAAAAAAAAAAAAC565eXlccMNN8SSJUvi9OnTSeeHDh0aa9eujRdeeCFuuOGGNDQEAOh4hl0BAAAAALqflu5+8/LyIpFItFMbAOieJk+eHNu3b49FixYllTt9+nQsXrw45s2bFydOnEhTOwAAAAAAAAAAWmLYFQAAAAAAAAAAAAC4aL399tsxe/bsmDFjRlRVVSWdz8rKiuLi4qiqqor/j707CK+yvNMG/j9IgJgiWEqFKW2ZkZGgkUaIgIptQcAMYjYICy857GCXkx3scrKDXU52sEtysQHtwrQ0IjYzghVoDAJRgtTpUCnSUiqIMcEA+VbzTb9vZkhezBuSk99v+577ue71c53rubPZrMdqAYCiZtgVAAAAAGDiGc6wKwCQvunTp8eePXvi9ddfj1mzZiXK/uIXv4iKiopob29PqR0AAAAAAAAAAHdj2BUAAAAAAAAAAAAAGHO+/vrryOfzUVFREb/61a/u6Yw1a9bEqVOnolAoxPTp00e4IQDA2GPYFQAAAABg4jHsCgBjy8aNG6O7uzuqq6sT5S5fvhzr16+PXC4XN2/eTKkdAAAAAAAAAAD/E8OuAAAAAAAAAAAAAMCY0tbWFosWLYqGhoZ7eqDu0Ucfjf3798fbb78dixYtSqEhAMDYZNgVAAAAAGDiMewKAGPPnDlz4uDBg9HY2BhTp04ddm5wcDCampqiqqoqTp8+nWJDAAAAAAAAAAD+nmFXAAAAAAAAAAAAAGBM+PDDD+OnP/1p1NTUxB//+MfE+QcffDDq6+uju7s7Nm3alEJDAICxrbS09K7fDbsCAAAAABSfvr6+u3437AoA90cmk4lcLhednZ2xePHiRNnu7u5Yvnx5FAqFGBwcTKkhAAAAAAAAAAD/ybArAAAAAAAAAAAAAHBfffHFF5HL5aKqqiqOHDlyT2ds2LAhPv7448jn8zFt2rQRbggAMD4M9Ti/YVcAAAAAgOIz1N2vYVcAuL8qKiri+PHjUVtbG5lMZti5/v7+qKuri+rq6rh06VKKDQEAAAAAAAAAMOwKAAAAAAAAAAAAANwXd+7ciZaWlli4cGE0NTXF7du3E59RXl4eb731VrS1tcWPf/zjFFoCAIwfhl0BAAAAACYew64AMPZNmzYtCoVCtLe3x9y5cxNlDx06FJWVldHW1pZSOwAAAAAAAAAADLsCAAAAAAAAAAAAAKPud7/7XTz77LOxdevWuHLlSuL8zJkzo7GxMc6cORPr1q1LoSEAwPhj2BUAAAAAYOIx7AoA48e6devi1KlT8fLLLyfKXblyJWpqaiKbzUZvb29K7QAAAAAAAAAAJi7DrgAAAAAAAAAAAADAqPn8888jm83G8uXL4/jx44nzmUwmtmzZEufOnYtcLheTJ09OoSUAwPg01OP8t27dim+++WaU2gAAAAAAMBoMuwLA+DJ79ux48803o7m5OcrKyhJlW1tbo6qqKrq6ulJqBwAAAAAAAAAwMRl2BQAAAAAAAAAAAABSNzAwEIVCIcrLy6O1tTUGBwcTn1FVVRW//e1vo6WlJb7//e+n0BIAYHwbzuP8vb29o9AEAAAAAIDRYtgVAManbDYbnZ2dsWTJkkS5np6eWLFiReTz+bh9+3ZK7QAAAAAAAAAAJhbDrgAAAAAAAAAAAABAqt5555146qmnoq6uLr788svE+Tlz5sSePXvi+PHjsWLFihQaAgAUh+E8zj/UA/8AAAAAAIwvvb29d/1u2BUAxq7y8vI4duxY1NfXx6RJw38edGBgIBoaGmLt2rVx8eLFFBsCAAAAAAAAAEwMhl0BAAAAAAAAAAAAgFR89tlnkc1mY82aNfHRRx8lzpeUlERtbW309PTEtm3bEj1cBwAwERl2BQAAAACYeIa69zXsCgBjW0lJSeTz+Th8+HDMmzcvUbajoyMqKipi3759KbUDAAAAAAAAAJgYvGwEAAAAAAAAAAAAAIyovr6+yOfz8dhjj0Vra+s9nbFq1aro6uqKQqEQM2bMGOGGAADFybArAAAAAMDEM9S9b2lp6Sg1AQC+jVWrVkV3d3e8+uqriXLXr1+P1157LTZv3hzXrl1LqR0AAAAAAAAAQHEz7AoAAAAAAAAAAAAAjJi2trZ4/PHHo6GhIfr7+xPn582bF83NzfGb3/wmKioqUmgIAFC8DLsCAAAAAEw8Q937DufuGAAYG2bMmBH79u2L/fv3x8yZMxNlDxw4EJWVlXHkyJGU2gEAAAAAAAAAFC/DrgAAAAAAAAAAAADAt3bu3Lmorq6Ompqa+I//+I/E+dLS0tixY0ecPXs2stnsyBcEAJgADLsCAAAAAEw8hl0BoPhs2rQpTp48GStXrkyUu3DhQqxevTp27twZAwMDKbUDAAAAAAAAACg+hl0BAAAAAAAAAAAAgHt27dq12LlzZyxevDjeeuutezpjw4YN8dFHH8WuXbviO9/5zgg3BACYOMrKyob8jWFXAAAAAIDiYtgVAIrT/Pnzo6OjI3bt2hUlJSXDzt26dSt2794dK1eujPPnz6fYEAAAAAAAAACgeBh2BQAAAAAAAAAAAAASGxwcjJaWligvL4/du3fHN998k/iMxx57LA4ePBhtbW3xj//4jym0BACYWEpLSyOTydz1N4ZdAQAAAACKx+3bt+PmzZt3/Y1hVwAYvyZPnhw7duyIo0ePxoIFCxJlT5w4EUuXLo29e/em1A4AAAAAAAAAoHgYdgUAAAAAAAAAAAAAEvnggw/iueeei61bt8af//znxPmysrKor6+PM2fOxL/8y7+k0BAAYGLKZDJRWlp6198YdgUAAAAAKB7DufM17AoA49+yZcuiq6srtm3blih348aN2L59e2zcuDGuXr2aUjsAAAAAAAAAgPHPsCsAAAAAAAAAAAAAMCxXr16NXC4Xy5cvj/fffz9xPpPJxJYtW+L3v/995PP5mDJlSgotAQAmtqEe6DfsCgAAAABQPIZz51tWVjYKTQCAtE2fPj327NkTr7/+esyaNStR9he/+EVUVFREe3t7Su0AAAAAAAAAAMY3w64AAAAAAAAAAAAAwF3dunUr9u7dGwsXLoympqa4fft24jOWLFkSR44ciZaWlpgzZ04KLQEAiDDsCgAAAAAwkQznzneoe2MAYHzZuHFjdHd3R3V1daLc5cuXY/369ZHL5eLmzZsptQMAAAAAAAAAGJ8MuwIAAAAAAAAAAAAA/6t//dd/jSVLlsT27dvj6tWrifPf/e53o7GxMU6cOBHPPfdcCg0BAPh7hl0BAAAAACYOw64AMDHNmTMnDh48GI2NjTF16tRh5wYHB6OpqSmqqqri9OnTKTYEAAAAAAAAABhfDLsCAAAAAAAAAAAAAP/Nn/70p8hms7Fq1ao4c+ZM4vykSZNiy5Ytce7cucjlcvHAAw+k0BIAgP/fUA/09/X1jVITAAAAAADSZtgVACauTCYTuVwuOjs7Y/HixYmy3d3dsXz58igUCjE4OJhSQwAAAAAAAACA8cOwKwAAAAAAAAAAAADwf33zzTdRKBSivLw8Wltb7+mMn/3sZ3Hy5MloaWmJ733veyPcEACAuxnqgf7hPPIPAAAAAMD4YNgVAKioqIjjx49HbW1tZDKZYef6+/ujrq4uqqur49KlSyk2BAAAAAAAAAAY+wy7AgAAAAAAAAAAAAAREdHW1haLFi2Kurq6+OqrrxLn/+Ef/iGam5ujo6MjFi9enEJDAACGYtgVAAAAAGDiMOwKAERETJs2LQqFQrS3t8fcuXMTZQ8dOhSVlZXR1taWUjsAAAAAAAAAgLHPsCsAAAAAAAAAAAAATHDnz5+Pl156KWpqauLf//3fE+dLSkqitrY2enp6IpvNRiaTSaElAADDYdgVAAAAAGDiMOwKAPy9devWxalTp+Lll19OlLty5UrU1NRENpuN3t7elNoBAAAAAAAAAIxdhl0BAAAAAAAAAAAAYILq7e2NfD4fTz75ZBw8ePCezlizZk2cOnUqCoVCTJ8+fYQbAgCQlGFXAAAAAICJY6g73ylTpsTkyZNHqQ0AMBbMnj073nzzzWhubo6ysrJE2dbW1qiqqoqurq6U2gEAAAAAAAAAjE2GXQEAAAAAAAAAAABgghkcHIwDBw7EokWLoqGhIW7evJn4jAULFkRbW1u8/fbbsWjRohRaAgBwLwy7AgAAAABMHEPd+Q51ZwwAFK9sNhudnZ2xZMmSRLmenp5YsWJF5PP5uH37dkrtAAAAAAAAAADGFsOuAAAAAAAAAAAAADCBfPjhh/HTn/40Nm/eHJ999lni/IMPPhj19fVx5syZ2LBhQwoNAQD4Ngy7AgAAAABMHIZdAYC7KS8vj2PHjkV9fX1MmjT850cHBgaioaEh1q5dGxcvXkyxIQAAAAAAAADA2GDYFQAAAAAAAAAAAAAmgC+++CJyuVxUVVXF0aNH7+mMDRs2xNmzZyOfz8e0adNGuCEAACPBsCsAAAAAwMRh2BUAGEpJSUnk8/k4fPhwzJs3L1G2o6MjKioqYt++fSm1AwAAAAAAAAAYGwy7AgAAAAAAAAAAAEARu3PnTrS0tMTChQujqakpbt++nfiM8vLyOHToULS1tcWPfvSjFFoCADBSSktL7/rdsCsAAAAAQPHo6+u763fDrgDAf1q1alV0d3fHq6++mih3/fr1eO2112Lz5s1x7dq1lNoBAAAAAAAAANxfhl0BAAAAAAAAAAAAoEidOHEinnnmmdi6dWtcuXIlcf7hhx+OxsbGOHPmTKxduzaFhgAAjLShHuk37AoAAAAAUDyGuvM17AoA/L0ZM2bEvn37Yv/+/TFz5sxE2QMHDkRlZWUcOXIkpXYAAAAAAAAAAPePYVcAAAAAAAAAAAAAKDKff/55ZLPZWLFiRZw4cSJxftKkSbFly5bo6emJXC4XkydPTqElAABpMOwKAAAAADBxGHYFAO7Fpk2b4uTJk7Fy5cpEuQsXLsTq1atj586dMTAwkFI7AAAAAAAAAIDRZ9gVAAAAAAAAAAAAAIrEwMBAFAqFKC8vj9bW1hgcHEx8xtNPPx3vvfdetLS0xPe///0UWgIAkCbDrgAAAAAAE4dhVwDgXs2fPz86Ojpi165dUVJSMuzcrVu3Yvfu3bFy5co4f/58ig0BAAAAAAAAAEaPYVcAAAAAAAAAAAAAKALvvPNOVFZWRl1dXXz55ZeJ83Pnzo09e/bEsWPHYsWKFSk0BABgNAz1SH9/f3/cvn17lNoAAAAAAJAmw64AwLcxefLk2LFjRxw9ejQWLFiQKHvixIlYunRp7N27N6V2AAAAAAAAAACjx7ArAAAAAAAAAAAAAIxjn376aWzevDnWrFkTH3/8ceJ8SUlJ1NbWRk9PT2zbti0mTfIXYwCA8WyoR/oHBwejr69vlNoAAAAAAJAmw64AwEhYtmxZdHV1xbZt2xLlbty4Edu3b49XXnklrl69mlI7AAAAAAAAAID0eXUJAAAAAAAAAAAAAMahr7/+OvL5fFRUVMSBAwfu6YzVq1fHyZMno1AoxEMPPTTCDQEAuB+G80j/UA/9AwAAAAAwPhh2BQBGyvTp02PPnj3x+uuvx6xZsxJl33jjjaioqIj29vaU2gEAAAAAAAAApMuwKwAAAAAAAAAAAACMM21tbfH4449HQ0ND9Pf3J87Pmzcvmpub45133oknnngihYYAANwvhl0BAAAAACYOw64AwEjbuHFjdHd3R3V1daLc5cuXY/369ZHL5eLmzZsptQMAAAAAAAAASIdhVwAAAAAAAAAAAAAYJ86dOxfV1dVRU1MTFy5cSJwvLS2N+vr6+OSTTyKbzabQEACA+82wKwAAAADAxNHb23vX74ZdAYB7MWfOnDh48GA0NjbG1KlTh50bHByMpqamqKqqitOnT6fYEAAAAAAAAABgZBl2BQAAAAAAAAAAAIAx7tq1a7Fz585YvHhxvPXWW/d0xoYNG+Ljjz+OfD4fpaWlI9wQAICxwrArAAAAAMDEMdR9r/8HAAD3KpPJRC6Xi87Ozli8eHGibHd3dyxfvjwKhUIMDg6m1BAAAAAAAAAAYOQYdgUAAAAAAAAAAACAMWpwcDBaWlqivLw8du/eHd98803iMx577LH49a9/HW1tbTF//vyRLwkAwJhi2BUAAAAAYOIY6r53OHfGAAB3U1FREcePH4/a2trIZDLDzvX390ddXV1UV1fHpUuXUmwIAAAAAAAAAPDtGXYFAAAAAAAAAAAAgDHogw8+iOeeey62bt0af/7znxPny8rKor6+Ps6cORPV1dUpNAQAYCwy7AoAAAAAMHEYdgUARsO0adOiUChEe3t7zJ07N1H20KFDUVlZGW1tbSm1AwAAAAAAAAD49gy7AgAAAAAAAAAAAMAYcvXq1cjlcrFs2bJ4//33E+czmUxs2bIlPv3008jn8zFlypQUWgIAMFaVlZUN+RvDrgAAAAAAxaGvr++u3w27AgAjad26dXHq1Kl4+eWXE+WuXLkSNTU1kc1mo7e3N6V2AAAAAAAAAAD3zrArAAAAAAAAAAAAAIwBt27dikKhEI8++mg0NTXFnTt3Ep+xZMmSOHr0aLS0tMQjjzySQksAAMa6kpKSKCkpuetvDLsCAAAAAIx//f39cfv27bv+xrArADDSZs+eHW+++WY0NzdHWVlZomxra2tUVVVFV1dXSu0AAAAAAAAAAO6NYVcAAAAAAAAAAAAAuM86Ojriqaeeirq6urh+/Xri/He/+91obGyMEydOxLPPPptCQwAAxpOhHuo37AoAAAAAMP4N567XsCsAkJZsNhudnZ2xZMmSRLmenp5YsWJF5PP5IUfqAQAAAAAAAABGi2FXAAAAAAAAAAAAALhP/vSnP0U2m43Vq1dHd3d34vzkyZNj27Ztce7cucjlcvHAAw+k0BIAgPHGsCsAAAAAQPEbzl1vWVnZKDQBACaq8vLyOHbsWNTX18ekScN/3nRgYCAaGhpi7dq1cfHixRQbAgAAAAAAAAAMj2FXAAAAAAAAAAAAABhlfX19sXv37igvL4/W1tZ7OuNnP/tZfPDBB7Fnz5743ve+N8INAQAYzwy7AgAAAAAUv+Hc9Q51XwwA8G2VlJREPp+Pw4cPx7x58xJlOzo6oqKiIvbt25dSOwAAAAAAAACA4THsCgAAAAAAAAAAAACjqK2tLZ544onYuXNnfPXVV4nzP/jBD6K5uTk6Ojpi8eLFKTQEAGC8G+qh/r6+vlFqAgAAAABAWgy7AgBjyapVq6K7uzteffXVRLnr16/Ha6+9Fps3b45r166l1A4AAAAAAAAA4O4MuwIAAAAAAAAAAADAKDh//ny89NJLUVNTE3/4wx8S56dMmRK1tbVx9uzZyGazkclkUmgJAEAxGOqh/uE89g8AAAAAwNhm2BUAGGtmzJgR+/bti/3798fMmTMTZQ8cOBCVlZVx5MiRlNoBAAAAAAAAAPzvDLsCAAAAAAAAAAAAQIp6e3sjn8/Hk08+GQcPHrynM9asWROnTp2KQqEQ06dPH+GGAAAUG8OuAAAAAADFz7ArADBWbdq0KU6ePBkrV65MlLtw4UKsXr06du7cGQMDAym1AwAAAAAAAAD47wy7AgAAAAAAAAAAAEAKBgcH48CBA7Fo0aJoaGiImzdvJj5jwYIF8ctf/jLefvvtKC8vT6ElAADFyLArAAAAAEDxM+wKAIxl8+fPj46Ojti1a1eUlJQMO3fr1q3YvXt3rFy5Ms6fP59iQwAAAAAAAACA/2LYFQAAAAAAAAAAAABG2MmTJ+P555+PzZs3x2effZY4/+CDD0Z9fX10d3fHSy+9lEJDAACKmWFXAAAAAIDiN9RdbyaTiWnTpo1SGwCA/27y5MmxY8eOOHr0aCxYsCBR9sSJE7F06dLYu3dvSu0AAAAAAAAAAP6LYVcAAAAAAAAAAAAAGCF/+9vfIpfLxdNPPx3vvffePZ2xYcOGOHv2bOTz+Zg6deoINwQAYCIw7AoAAAAAUPyGuut98MEHI5PJjFIbAID/3bJly6Krqyu2bduWKHfjxo3Yvn17vPLKK3H16tWU2gEAAAAAAAAAGHYFAAAAAAAAAAAAgG/tzp070dLSEgsXLoympqa4fft24jMqKyvj3Xffjba2tvjRj36UQksAACYKw64AAAAAAMVvOMOuAABjxfTp02PPnj3x+uuvx6xZsxJl33jjjaioqIj29vaU2gEAAAAAAAAAE51hVwAAAAAAAAAAAAD4Ft59991YsmRJbN26Nf76178mzj/88MPR2NgYnZ2d8fzzz6fQEACAicawKwAAAABA8TPsCgCMRxs3bozu7u6orq5OlLt8+XKsX78+crlc3Lx5M6V2AAAAAAAAAMBEZdgVAAAAAAAAAAAAAO7BpUuXIpvNxs9//vM4depU4vykSZNiy5Ytce7cucjlcvHAAw+k0BIAgInIsCsAAAAAQPEz7AoAjFdz5syJgwcPRmNjY0ydOnXYucHBwWhqaoqqqqo4ffp0ig0BAAAAAAAAgInGsCsAAAAAAAAAAAAAJDAwMBCFQiHKy8ujtbU1BgcHE5/x9NNPx29/+9toaWmJ2bNnp9ASAICJrLS09K7fDbsCAAAAAIx/fX19d/1u2BUAGMsymUzkcrno7OyMxYsXJ8p2d3fH8uXLo1Ao3NN/OAEAAAAAAAAA/n+GXQEAAAAAAAAAAABgmA4fPhw/+clPoq6uLm7cuJE4P3fu3Ghubo7jx4/H8uXLU2gIAABDP9Zv2BUAAAAAYPwb6q7XsCsAMB5UVFTE8ePHo7a2NjKZzLBz/f39UVdXF9XV1XHp0qUUGwIAAAAAAAAAE4FhVwAAAAAAAAAAAAAYwqeffhqbN2+OtWvXxtmzZxPnS0pKora2Nnp6eiKbzSZ6fAwAAJIy7AoAAAAAUPwMuwIAxWLatGlRKBSivb095s6dmyh76NChqKysjLa2tpTaAQAAAAAAAAATgWFXAAAAAAAAAAAAAPhffP3115HP56OioiIOHDhwT2e88MILcfLkySgUCvHQQw+NcEMAAPjvDLsCAAAAABQ/w64AQLFZt25dnDp1Kl5++eVEuStXrkRNTU1ks9no7e1NqR0AAAAAAAAAUMwMuwIAAAAAAAAAAADA/6CtrS0ef/zxaGhoiP7+/sT5H/7wh9Hc3ByHDx+OJ554IoWGAADwPxvqsf5bt27FzZs3R6kNAAAAAABpMOwKABSj2bNnx5tvvhnNzc1RVlaWKNva2hpVVVXR1dWVUjsAAAAAAAAAoFgZdgUAAAAAAAAAAACAv9PT0xMvvvhi1NTUxIULFxLnS0tLo76+Pj755JPIZrMpNAQAgLsbzmP9Qz34DwAAAADA2GbYFQAoZtlsNjo7O2PJkiWJcj09PbFixYrI5/Nx586dlNoBAAAAAAAAAMXGsCsAAAAAAAAAAAAARMS1a9cil8vFk08+GYcOHbqnMzZs2BAff/xx5PP5mDZt2gg3BACA4THsCgAAAABQ/Ay7AgDFrry8PI4dOxb19fUxadLwn08dGBiIhoaGWLNmTVy8eDHFhgAAAAAAAABAsTDsCgAAAAAAAAAAAMCENjg4GC0tLbFw4cJoamqKW7duJT5j4cKF0d7eHm1tbTF//vyRLwkAAAkYdgUAAAAAKH6GXQGAiaCkpCTy+Xy8/fbbMW/evETZjo6OqKioiH379qXUDgAAAAAAAAAoFoZdAQAAAAAAAAAAAJiwOjs749lnn42tW7fGX/7yl8T5mTNnxq5du+L06dPx4osvptAQAACSM+wKAAAAAFD8ent77/q9tLR0lJoAAKRv9erV0d3dHa+++mqi3PXr1+O1116LzZs3x7Vr11JqBwAAAAAAAACMd4ZdAQAAAAAAAAAAAJhwLl++HNu3b4/ly5fHsWPHEuczmUxs2bIlenp6YseOHTFlypQUWgIAwL0x7AoAAAAAUPyGuucdzl0xAMB4MmPGjNi3b1/s378/Zs6cmSh74MCBqKysjCNHjqTUDgAAAAAAAAAYzwy7AgAAAAAAAAAAADBh3Lp1KwqFQpSXl8fevXvjzp07ic9YunRpvPfee9HS0hKPPPJICi0BAODbMewKAAAAAFD8DLsCABPVpk2b4uTJk7Fy5cpEuQsXLsTq1atj586dMTAwkFI7AAAAAAAAAGA8MuwKAAAAAAAAAAAAwITQ0dERTz31VNTV1cX169cT52fNmhWNjY1x/PjxeOaZZ1JoCAAAI6OsrGzI3xh2BQAAAAAY3wy7AgAT2fz586OjoyN27doVJSUlw87dunUrdu/eHStXrozz58+n2BAAAAAAAAAAmsidewAAIABJREFUGE8MuwIAAAAAAAAAAABQ1C5evBjZbDZWr14d3d3difOTJ0+Obdu2xblz5yKXy8UDDzyQQksAABg5paWlkclk7vobw64AAAAAAOPX7du34+bNm3f9jWFXAKDYTZ48OXbs2BFHjx6NBQsWJMqeOHEili5dGnv37k2pHQAAAAAAAAAwnhh2BQAAAAAAAAAAAKAo9fX1xe7du2PRokXR2tp6T2f8/Oc/j66urtizZ0/MmjVrhBsCAEA6MplMlJaW3vU3hl0BAAAAAMav4dzxGnYFACaKZcuWRVdXV2zbti1R7saNG7F9+/Z45ZVX4urVqym1AwAAAAAAAADGA8OuAAAAAAAAAAAAABSdtra2eOKJJ2Lnzp3x1VdfJc7/4Ac/iObm5ujo6Ignn3wyhYYAAJCuoR7sN+wKAAAAADB+GXYFAPh/TZ8+Pfbs2ROvv/56zJo1K1H2jTfeiIqKimhvb0+pHQAAAAAAAAAw1hl2BQAAAAAAAAAAAKBofPLJJ7F+/fqoqamJP/zhD4nzU6ZMidra2ujp6YlsNptCQwAAGB2GXQEAAAAAipdhVwCA/9nGjRuju7s7qqurE+UuX74c69evj1wuFzdv3kypHQAAAAAAAAAwVhl2BQAAAAAAAAAAAGDc6+3tjXw+H4sXL45f//rX93TGhg0b4uzZs1EoFOI73/nOCDcEAIDRZdgVAAAAAKB4DeeOt6ysbBSaAACMPXPmzImDBw9GY2NjTJ06ddi5wcHBaGpqiqqqqjh9+nSKDQEAAAAAAACAscawKwAAAAAAAAAAAADj1uDgYLS0tMSCBQuioaEhbt68mfiMf/7nf45f/epX0dbWFv/0T/+UQksAABh9Qw279vX1jVITAAAAAABG2nCGXYe6JwYAKGaZTCZyuVx0dnbG4sWLE2W7u7tj+fLlUSgUYnBwMKWGAAAAAAAAAMBYYtgVAAAAAAAAAAAAgHGpq6srnn/++di6dWtcvnw5cb6srCzq6+vjzJkzsX79+hQaAgDA/TPUg/3DefQfAAAAAICxybArAMDwVFRUxPHjx6O2tjYymcywc/39/VFXVxfV1dVx6dKlFBsCAAAAAAAAAGOBYVcAAAAAAAAAAAAAxpW//e1vkcvlYtmyZfHee+8lzmcymdi0aVOcPXs28vl8TJ06NYWWAABwfxl2BQAAAAAoXoZdAQCGb9q0aVEoFKK9vT3mzp2bKHvo0KGorKyMtra2lNoBAAAAAAAAAGOBYVcAAAAAAAAAAAAAxoU7d+5ES0tLLFy4MJqamuL27duJz6isrIx333039u/fHz/84Q9TaAkAAGODYVcAAAAAgOJl2BUAILl169bFqVOn4uWXX06Uu3LlStTU1EQ2m43e3t6U2gEAAAAAAAAA95NhVwAAAAAAAAAAAADGvH/7t3+Lp556KrZu3Rp//etfE+cffvjhaGxsjM7Ozli5cmUKDQEAYGwx7AoAAAAAULyGuuOdMmVKTJ48eZTaAACMH7Nnz44333wzmpubo6ysLFG2tbU1qqqqoqurK6V2AAAAAAAAAMD9YtgVAAAAAAAAAAAAgDHr0qVLkc1mY9WqVXH69OnE+UmTJsWWLVvi3Llzkcvl4oEHHkihJQAAjD2GXQEAAAAAitdQd7xD3REDAEx02Ww2Ojs7Y8mSJYlyPT09sWLFisjn83Hnzp2U2gEAAAAAAAAAo82wKwAAAAAAAAAAAABjzsDAQBQKhSgvL4/W1tYYHBxMfMayZcvi/fffj5aWlpg9e3YKLQEAYOwy7AoAAAAAULwMuwIAfHvl5eVx7NixqK+vj0mThv8868DAQDQ0NMSaNWvi4sWLKTYEAAAAAAAAAEaLYVcAAAAAAAAAAAAAxpTDhw/HT37yk6irq4sbN24kzs+dOzeam5vj2LFjsWzZshQaAgDA2GfYFQAAAACgeBl2BQAYGSUlJZHP5+Ptt9+OefPmJcp2dHRERUVF7Nu3L6V2AAAAAAAAAMBoMewKAAAAAAAAAAAAwJjw+9//Pl5++eVYu3ZtnD17NnG+pKQkamtro6enJ7LZbGQymRRaAgDA+FBaWnrX74ZdAQAAAADGr76+vrt+N+wKAJDM6tWro7u7O1599dVEuevXr8drr70WmzdvjmvXrqXUDgAAAAAAAABIm2FXAAAAAAAAAAAAAO6rr7/+OvL5fDz55JPxy1/+8p7OeOGFF+LDDz+MQqEQDz300Ag3BACA8WeoR/sNuwIAAAAAjF9D3fEadgUASG7GjBmxb9++2L9/f8ycOTNR9sCBA1FZWRlHjhxJqR0AAAAAAAAAkCbDrgAAAAAAAAAAAADcN21tbbFo0aJoaGiI/v7+xPlHH3009u/fH4cPH47HH388hYYAADA+GXYFAAAAAChehl0BANKzadOmOHnyZKxcuTJR7sKFC7F69erYuXNnDAwMpNQOAAAAAAAAAEiDYVcAAAAAAAAAAAAARl1PT0+sW7cuampq4o9//GPi/IMPPhj19fXR3d0dmzZtSqEhAACMb4ZdAQAAAACKl2FXAIB0zZ8/Pzo6OmLXrl1RUlIy7NytW7di9+7dsXLlyjh//nyKDQEAAAAAAACAkWTYFQAAAAAAAAAAAIBR88UXX0Qul4snn3wy3n777Xs6Y8OGDfHxxx9HPp+PadOmjXBDAAAoDkM92t/f3x+3b98epTYAAAAAAIwkw64AAOmbPHly7NixI44ePRoLFixIlD1x4kQsXbo09u7dm1I7AAAAAAAAAGAkGXYFAAAAAAAAAAAAIHV37tyJlpaWKC8vj6amprh161biMxYuXBjt7e3R1tYWP/7xj1NoCQAAxWOoR/sHBwejr69vlNoAAAAAADCSDLsCAIyeZcuWRVdXV2zbti1R7saNG7F9+/Z45ZVX4urVqym1AwAAAAAAAABGgmFXAAAAAAAAAAAAAFL1u9/9Lp577rnYunVr/OUvf0mcnzlzZuzatStOnz4dL774YgoNAQCg+Azn0f6hHv4HAAAAAGBsMuwKADC6pk+fHnv27InXX389Zs2alSj7xhtvREVFRbS3t6fUDgAAAAAAAAD4tgy7AgAAAAAAAAAAAJCKzz//PLZv3x4rVqyIY8eOJc5nMpnYsmVL9PT0xI4dO2LKlCkptAQAgOJk2BUAAAAAoHgZdgUAuD82btwY3d3dUV1dnSh3+fLlWL9+feRyubh582ZK7QAAAAAAAACAe2XYFQAAAAAAAAAAAIARNTAwEIVCIcrLy2Pv3r1x586dxGcsXbo03nvvvWhpaYlHHnkkhZYAAFDcDLsCAAAAABQvw64AAPfPnDlz4uDBg9HY2BhTp04ddm5wcDCampqiqqoqTp8+nWJDAAAAAAAAACApw64AAAAAAAAAAAAAjJjf/OY38dRTT0VdXV18+eWXifOzZs2KxsbGOHHiRDzzzDMpNAQAgInBsCsAAAAAQPHq7e296/fS0tJRagIAMDFlMpnI5XLR2dkZixcvTpTt7u6O5cuXR6FQiMHBwZQaAgAAAAAAAABJGHYFAAAAAAAAAAAA4Fu7ePFiZLPZeOGFF+Kjjz5KnJ88eXLU1tbGp59+GrlcLiZN8jdXAAD4Ngy7AvB/2Lv/6Krr+37gr4uJ/IhUqqWFajs6qYBGGiACrVQrozRFSNcp7Ezl0rUVtp4dkrWnB862c3Jz1rPCes5Okq1ng7PtLMlhZwf0nM1UGsE2XUULSINAhCCt1UqpllJBDEkMId8/9t3Otk6SG/LJzQ2Pxz8Kn8/z7ZM//ZzwfgIAAACjV3/fdwfyjRgAgCtXXFwc+/bti/Xr10cqlRpwrqurKyorK6OsrCxOnTqVYEMAAAAAAAAAYCDceAUAAAAAAAAAAADAoHV2dkYmk4lbb701GhsbB3XGvffeGwcPHoza2tq4/vrrh7ghAABcnYqKivp9x7ArAAAAAEB+MuwKADByjBs3Lmpra6O5uTmmTp2aVXbXrl1RUlISTU1NCbUDAAAAAAAAAAbCsCsAAAAAAAAAAAAAg9LU1BS33XZbVFdXR2dnZ9b5m266Kerr6+O73/1uFBcXJ9AQAACuXgO5tN+wKwAAAABAfurv5zQMuwIADL+lS5fGoUOHYsWKFVnlTp8+HeXl5ZFOp6OjoyOhdgAAAAAAAADA5Rh2BQAAAAAAAAAAACArL774Ynz605+O8vLyePnll7POjx8/PjZs2BDt7e2RTqeHviAAABCFhYVRWFh42XcMuwIAAAAA5J+urq7o7e297DuGXQEAcmPy5Mnx+OOPR319fRQVFWWVbWxsjNLS0mhtbU2oHQAAAAAAAADwTgy7AgAAAAAAAAAAADAgHR0dkclk4o477ojm5uZBnbF8+fJ44YUXYtOmTXHdddcNcUMAAOC/6+/ifsOuAAAAAAD5ZyDfdg27AgDkVjqdjgMHDsTcuXOzyrW3t8fChQsjk8nEpUuXEmoHAAAAAAAAAPxvhl0BAAAAAAAAAAAAuKy+vr5oaGiIW265Jaqrq+Ptt9/O+owPf/jD8cQTT0RTU1N86EMfSqAlAADwvxl2BQAAAAAYfQy7AgDkh5kzZ8bevXujqqoqxowZ+PWvPT09UV1dHUuWLImTJ08m2BAAAAAAAAAA+E+GXQEAAAAAAAAAAAB4R62trbFo0aJYs2ZNvP7661nni4qKoqqqKo4cORLLli1LoCEAAPBODLsCAAAAAIw+hl0BAPJHYWFhZDKZ2L17d9x8881ZZVtaWqK4uDi2bduWUDsAAAAAAAAA4D8ZdgUAAAAAAAAAAADg1/zqV7+KioqKmD9/fjz77LNZ51OpVKxcuTKOHTsWmUwmxo4dm0BLAADgcvq7uL+zs3OYmgAAAAAAMFQGMuxaVFQ0DE0AABioxYsXR1tbWzz44INZ5c6dOxcPP/xwrFq1Ks6ePZtQOwAAAAAAAADAsCsAAAAAAAAAAAAA/+XixYuxdevWmDFjRtTV1UVvb2/WZ8yZMye+//3vx/bt2+MDH/hAAi0BAICB6G/YdSCX/wMAAAAAMLIM5Ntuf9+HAQAYftdff31s27Yttm/fHpMmTcoqu2PHjigpKYmnn346oXYAAAAAAAAAcHUz7AoAAAAAAAAAAABARET8+7//e8ybNy/WrVsXv/zlL7PO33DDDVFTUxPPPfdcLFq0KIGGAABANgy7AgAAAACMPoZdAQDy28qVK+PgwYNZ/6ztK6+8EosXL46NGzdGT09PQu0AAAAAAAAA4Opk2BUAAAAAAAAAAADgKvezn/0s0ul03HvvvXH48OGs82PGjInVq1fH8ePHo6KiIq655poEWgIAANky7AoAAAAAMPoYdgUAyH/Tpk2LlpaW2LRpUxQWFg44d/Hixdi8eXMsWrQoTpw4kWBDAAAAAAAAALi6GHYFAAAAAAAAAAAAuEr19PREbW1tzJo1KxobG6Ovry/rM+6+++5obW2NhoaGeM973pNASwAAYLAMuwIAAAAAjD79fdtNpVIxbty4YWoDAMBgFRQUxIYNG2LPnj0xffr0rLL79++PefPmxdatWxNqBwAAAAAAAABXF8OuAAAAAAAAAAAAAFehp556KmbPnh2VlZVx/vz5rPPvf//7o76+Pr73ve/FRz7ykQQaAgAAV8qwKwAAAADA6NPft90JEyZEKpUapjYAAFyp+fPnR2tra6xduzar3Pnz52PdunXxwAMPxJkzZxJqBwAAAAAAAABXB8OuAAAAAAAAAAAAAFeRH/3oR7F8+fL45Cc/Ge3t7VnnCwsLY/369dHe3h7pdNpFoAAAMIIZdgUAAAAAGH0GMuwKAEB+mThxYmzZsiUeffTRuPHGG7PKPvbYY1FcXBzNzc0JtQMAAAAAAACA0c+wKwAAAAAAAAAAAMBV4MKFC5HJZKK4uDieeOKJQZ2xZMmSeP7556O2tjYmTpw4xA0BAIChZtgVAAAAAGD0MewKADB63X///dHW1hZlZWVZ5V577bVYtmxZVFRURHd3d0LtAAAAAAAAAGD0MuwKAAAAAAAAAAAAMMo1NTXFrFmzorq6elCXNd1yyy2xffv22L17d9x2220JNAQAAJJg2BUAAAAAYPQx7AoAMLpNmTIldu7cGTU1NTF27NgB5/r6+qKuri5KS0vj8OHDCTYEAAAAAAAAgNHHsCsAAAAAAAAAAADAKPX888/H3XffHeXl5fHTn/406/yECROiqqoq2traYuXKlQk0BAAAkjR+/PjLPjfsCgAAAACQfzo7Oy/73LArAED+S6VSUVFREQcOHIjZs2dnlW1ra4sFCxZEbW1t9PX1JdQQAAAAAAAAAEYXw64AAAAAAAAAAAAAo8wbb7wRFRUVUVpaGk8//fSgzli+fHkcPXo0MplMjBs3bogbAgAAw6G/y/sNuwIAAAAA5J/+vu0adgUAGD2Ki4tj3759sX79+kilUgPOdXV1RWVlZZSVlcWpU6cSbAgAAAAAAAAAo4NhVwAAAAAAAAAAAIBR4tKlS9HQ0BAzZsyIurq66O3tzfqMmTNnxpNPPhlNTU3xG7/xGwm0BAAAhothVwAAAACA0cewKwDA1WXcuHFRW1sbzc3NMXXq1Kyyu3btipKSkmhqakqoHQAAAAAAAACMDoZdAQAAAAAAAAAAAEaB5557Lj72sY/FmjVr4vTp01nnJ02aFDU1NXHkyJFYunRpAg0BAIDh1t/l/R0dHcPUBAAAAACAoWLYFQDg6rR06dI4dOhQrFixIqvc6dOno7y8PNLptJ8TAAAAAAAAAIB3YNgVAAAAAAAAAAAAII/9/Oc/j3Q6HQsWLIh9+/ZlnU+lUrF69eo4fvx4VFRUREFBQQItAQCAXOjv8v7e3t7o7u4epjYAAAAAAAwFw64AAFevyZMnx+OPPx719fVRVFSUVbaxsTFKS0ujtbU1oXYAAAAAAAAAkL8MuwIAAAAAAAAAAADkoZ6enqitrY2ZM2dGY2Nj9PX1ZX1GaWlpPPvss9HQ0BDvfe97E2gJAADk0kAu7+9vAAAAAAAAgJHFsCsAAOl0Op577rmYO3duVrn29vZYuHBhZDKZuHTpUkLtAAAAAAAAACD/GHYFAAAAAAAAAAAAyDPf+c53Ys6cOVFZWRlvvvlm1vkpU6bEli1bYt++fbFw4cIEGgIAACOBYVcAAAAAgNHHsCsAABERs2bNir1790ZVVVWMGTPw62V7enqiuro6lixZEidPnkywIQAAAAAAAADkD8OuAAAAAAAAAAAAAHni1VdfjXQ6HUuWLIkXXngh63xBQUGsX78+2tvbY+3atVld4gQAAOQfw64AAAAAAKOPYVcAAP5TYWFhZDKZ2L17d9x8881ZZVtaWqK4uDi2bduWUDsAAAAAAAAAyB9u4wIAAAAAAAAAAAAY4To7OyOTycStt94ajY2Ngzrj3nvvjYMHD0ZtbW1cf/31Q9wQAAAYiQy7AgAAAACMPv191x0/fvwwNQEAYKRYvHhxtLW1xYMPPphV7ty5c/Hwww/HqlWr4uzZswm1AwAAAAAAAICRz7ArAAAAAAAAAAAAwAjW1NQUt912W1RXV0dXV1fW+Ztvvjnq6+vju9/9bhQXFyfQEAAAGKkMuwIAAAAAjD4dHR2XfT6Qb8MAAIw+119/fWzbti22b98ekyZNyiq7Y8eOKCkpiaeffjqhdgAAAAAAAAAwshl2BQAAAAAAAAAAABiBjh8/HmVlZVFeXh4vv/xy1vnx48fHhg0b4tixY5FOp4e+IAAAMOIVFRX1+45hVwAAAACA/NLfd13DrgAAV7eVK1fGwYMHY9GiRVnlXnnllVi8eHFs3Lgxenp6EmoHAAAAAAAAACOTYVcAAAAAAAAAAACAEeTs2bOxcePGmD17djz55JODOmP58uXxwgsvxKZNm+K6664b4oYAAEC+GMjl/YZdAQAAAADyi2FXAAD6M23atGhpaYlNmzZFYWHhgHMXL16MzZs3x6JFi+LEiRMJNgQAAAAAAACAkcWwKwAAAAAAAAAAAMAI0NfXFw0NDTFz5szYvHlzvP3221mfceutt8bOnTujqakpPvShDyXQEgAAyCfjx4+PVCp12XcMuwIAAAAA5I/e3t7o7u6+7DuGXQEAiIgoKCiIDRs2xJ49e2L69OlZZffv3x/z5s2LrVu3JtQOAAAAAAAAAEYWw64AAAAAAAAAAAAAOfbDH/4w7rrrrlizZk28/vrrWeeLioqiqqoqDh8+HJ/+9KcTaAgAAOSjVCoV48ePv+w7hl0BAAAAAPLHQL7pGnYFAOC/mz9/frS2tsbatWuzyp0/fz7WrVsXDzzwQJw5cyahdgAAAAAAAAAwMhh2BQAAAAAAAAAAAMiRM2fOREVFRSxYsCB+8IMfZJ1PpVKxevXq+NGPfhSZTCbGjh2bQEsAACCf9XeBv2FXAAAAAID8YdgVAIDBmDhxYmzZsiUeffTRuPHGG7PKPvbYY1FcXBzNzc0JtQMAAAAAAACA3DPsCgAAAAAAAAAAADDMLl68GFu3bo0ZM2ZEXV1d9Pb2Zn3G3Llz4+mnn46GhoaYMmVKAi0BAIDRwLArAAAAAMDoYdgVAIArcf/990dbW1uUlZVllXvttddi2bJlUVFREd3d3Qm1AwAAAAAAAIDcMewKAAAAAAAAAAAAMIy+973vxdy5c2PdunVx5syZrPM33HBD1NTUxP79++Ouu+5KoCEAADCaGHYFAAAAABg9DLsCAHClpkyZEjt37oyampoYO3bsgHN9fX1RV1cXpaWlcfjw4QQbAgAAAAAAAMDwM+wKAAAAAAAAAAAAMAx+9rOfRTqdjnvvvTeOHDmSdX7MmDGxevXqOH78eFRUVMQ111yTQEsAAGC06e8C/87OzmFqAgAAAADAlRrIsGtRUdEwNAEAIJ+lUqmoqKiIAwcOxOzZs7PKtrW1xYIFC6K2tjb6+voSaggAAAAAAAAAw8uwKwAAAAAAAAAAAECC3n777aitrY2ZM2dGY2PjoM6455574uDBg9HQ0BDvec97hrghAAAwmvU37DqQEQAAAAAAAEaGgXzT7e+7MAAA/Kfi4uLYt29frF+/PlKp1IBzXV1dUVlZGWVlZXHq1KkEGwIAAAAAAADA8DDsCgAAAAAAAAAAAJCQpqammDVrVlRWVsZbb72Vdf79739/1NfXR0tLS8yePTuBhgAAwGhn2BUAAAAAYPQw7AoAwFAbN25c1NbWRnNzc0ydOjWr7K5du6KkpCSampoSagcAAAAAAAAAw8OwKwAAAAAAAAAAAMAQO3HiRNx3331RXl4eL730Utb5wsLCWL9+fbS3t0c6nY5UKpVASwAA4Gpg2BUAAAAAYPQw7AoAQFKWLl0ahw4dihUrVmSVO336dJSXl0c6nY6Ojo6E2gEAAAAAAABAsgy7AgAAAAAAAAAAAAyRjo6OyGQycccdd8TOnTsHdcaSJUvi0KFDUVtbGxMnThzihgAAwNXGsCsAAAAAwOjR3zfda6+9NgoKCoapDQAAo83kyZPj8ccfj/r6+igqKsoq29jYGKWlpdHa2ppQOwAAAAAAAABIjmFXAAAAAAAAAAAAgCvU19cXO3bsiFmzZkV1dXV0d3dnfcb06dOjqakpdu/eHbNmzUqgJQAAcDUy7AoAAAAAMHr09023v2/CAAAwEOl0Op577rmYO3duVrn29vZYuHBhZDKZuHTpUkLtAAAAAAAAAGDoGXYFAAAAAAAAAAAAuALPP/983H333bFq1ap49dVXs85PmDAhqqqq4siRI7F8+fIEGgIAAFczw64AAAAAAKOHYVcAAIbLrFmzYu/evVFVVRVjxgz8+tqenp6orq6OJUuWxMmTJxNsCAAAAAAAAABDx7ArAAAAAAAAAAAAwCC88cYbUVFREaWlpbFnz55BnbF8+fI4duxYZDKZGDdu3BA3BAAAMOwKAAAAADCaGHYFAGA4FRYWRiaTid27d8fNN9+cVbalpSWKi4tj27ZtCbUDAAAAAAAAgKFj2BUAAAAAAAAAAAAgC5cuXYqGhoaYMWNG1NXVRW9vb9ZnzJw5M3bt2hVNTU3xwQ9+MIGWAAAA/2H8+PGXfW7YFQAAAAAgf3R2dl72uWFXAACSsHjx4mhra4sHH3wwq9y5c+fi4YcfjlWrVsXZs2cTagcAAAAAAAAAV86wKwAAAAAAAAAAAMAA7d+/Pz760Y/GmjVr4vTp01nn3/3ud0dNTU0cOXIkPvnJTybQEAAA4H/q7xJ/w64AAAAAAPmjv2+6hl0BAEjK9ddfH9u2bYvt27fHpEmTssru2LEjSkpK4umnn06oHQAAAAAAAABcGcOuAAAAAAAAAAAAAP34+c9/Hul0OhYuXBj79+/POj9mzJhYvXp1tLe3R0VFRRQUFCTQEgAA4NcZdgUAAAAAGD0MuwIAkGsrV66MgwcPxqJFi7LKvfLKK7F48eLYuHFj9PT0JNQOAAAAAAAAAAbHsCsAAAAAAAAAAADAO+jp6Yna2tqYOXNmNDY2Rl9fX9Zn3HnnnfHMM89EQ0NDvPe9702gJQAAwDvr7xL/jo6OYWoCAAAAAMCVMuwKAMBIMG3atGhpaYlNmzZFYWHhgHMXL16MzZs3x6JFi+LEiRMJNgQAAAAAAACA7Bh2BQAAAAAAAAAAAPg/fOc734mSkpKorKyMN998M+v81KlTY8uWLbF3795YuHBhAg0BAAD6198l/l1dXdHb2ztMbQAAAAAAuBKGXQEAGCkKCgpiw4YNsWfPnpg+fXpW2f3798e8efNi69atCbUDAAAAAAAAgOwYdgUAAAAAAAAAAAD4b3784x/HqlWrYsmSJXH06NGs84WFhbF+/fpob2+PtWvXxpgxflwTAADInYFc4t/Z2TkMTQAAAAAAuFKGXQEAGGnmz58fra2tsXbt2qxy58+fj3Xr1sUDDzwQZ86cSagdAAAAAAAAAAyMm8IAAAAAAAAAAAAA4j8uvsxkMlFcXBw7duwY1BmLFy+OgwcPRm1tbby2UN9sAAAgAElEQVTrXe8a4oYAAADZG8gl/v0NAQAAAAAAMDIYdgUAYCSaOHFibNmyJR599NG48cYbs8o+9thjUVxcHM3NzQm1AwAAAAAAAID+GXYFAAAAAAAAAAAArnpNTU1x++23R3V1dXR1dWWdv/nmm6O+vj6+853vxO23355AQwAAgMEx7AoAAAAAMHoYdgUAYCS7//77o62tLcrKyrLKvfbaa7Fs2bKoqKiI7u7uhNoBAAAAAAAAwDsz7AoAAAAAAAAAAABctY4fPx5lZWVRXl4eL7/8ctb58ePHR1VVVbz44ouRTqeHviAAAMAVMuwKAAAAADB6GHYFAGCkmzJlSuzcuTNqampi7NixA8719fVFXV1dlJaWxuHDhxNsCAAAAAAAAAC/zrArAAAAAAAAAAAAcNU5e/ZsbNy4MWbPnh1PPvnkoM5Yvnx5HD16NDKZTIwfP36IGwIAAAwNw64AAAAAAKNHf99z/QwLAAAjQSqVioqKijhw4EDMnj07q2xbW1ssWLAgamtro6+vL6GGAAAAAAAAAPA/GXYFAAAAAAAAAAAArhp9fX3R0NAQM2fOjM2bN8fbb7+d9Rm33nprfPvb346mpqaYNm3a0JcEAAAYQoZdAQAAAABGj46Ojss+H8g3YQAAGC7FxcWxb9++WL9+faRSqQHnurq6orKyMsrKyuLUqVMJNgQAAAAAAACA/2DYFQAAAAAAAAAAALgq/PCHP4y77ror1qxZE6+//nrW+aKioqiqqoojR45EWVlZAg0BAACGXlFRUb/vGHYFAAAAAMgP/X3PNewKAMBIM27cuKitrY3m5uaYOnVqVtldu3ZFSUlJNDU1JdQOAAAAAAAAAP6DYVcAAAAAAAAAAABgVDtz5kxUVFTE/Pnz4wc/+EHW+VQqFatXr44f//jHkclk4tprr02gJQAAQDIGcom/YVcAAAAAgPzQ2dl52eeGXQEAGKmWLl0ahw4dihUrVmSVO336dJSXl0c6nY6Ojo6E2gEAAAAAAABwtTPsCgAAAAAAAAAAAIxKFy9ejNra2rjllluirq4uLl26lPUZc+fOjT179kRDQ0O8733vS6AlAABAsgoLC6OwsPCy7xh2BQAAAAAY+bq6uqK3t/ey7xh2BQBgJJs8eXI8/vjjUV9fH0VFRVllGxsbo7S0NFpbWxNqBwAAAAAAAMDVzLArAAAAAAAAAAAAMOq0tLTEnDlzorKyMs6dO5d1/oYbboiamprYv39/fOxjH0ugIQAAwPDp7yJ/w64AAAAAACPfQL7lGnYFACAfpNPpeO6552Lu3LlZ5drb22PhwoWRyWTi0qVLCbUDAAAAAAAA4Gpk2BUAAAAAAAAAAAAYNX72s59FOp2OxYsXR1tbW9b5goKCWLt2bRw/fjwqKirimmuuSaAlAADA8DLsCgAAAACQ/wy7AgAwmsyaNSv27t0bVVVVMWbMwK/H7enpierq6liyZEmcPHkywYYAAAAAAAAAXE0Kcl0AAAAAAAAAAAAA4Ep1dnZGXV1dfO1rX4u33nprUGfcc889UVdXF7Nnzx7idgAAALmV9LDrG2+8ET09PfHWW2/FhQsXoru7O86dOxc9PT3x5ptvRmdnZ3R1dcWbb74ZPT09ce7cueju7o4LFy7E+vXr4/bbb7+i/z4AAAAAwNXAsCsAAKNNYWFhZDKZuPvuu2PNmjVZDbW2tLREcXFxfPOb34yHHnoowZYAAAAAAAAAXA1SfX19fbkuAQAAAAAAAAAAADBYTU1NUVlZGS+99NKg8jfddFP8xV/8RaxevTpSqdQQtwMAAMitzs7OKC0tjaNHj77jO8uWLYulS5dGV1dXdHZ2xhtvvPFf//6///m/n509ezYG+1fUxo4dG6dPn46JEycO9o8HAAAAAHDVeP7552POnDmXfefYsWMxc+bMYWoEAABD59y5c/GlL30p/vmf/znr7MqVK2Pr1q0xadKkBJoBAAAAAAAAcBXYYdgVAAAAAAAAAAAAyEsnTpyIysrK2Llz56DyhYWF8Yd/+Ifxta99zYgQAAAw7P6v0dTLDatm+3sdHR3x9ttv5/qPeVmf/vSnB/3/dAAAAAAAV5tnn3027rrrrsu+89Of/jQ+8IEPDFMjAAAYejt27Ii1a9fG2bNns8pNmzYtGhoa4uMf/3hCzQAAAAAAAAAYxXYU5LoBAAAAAAAAAAAAQDY6OjriG9/4RmzatCm6u7sHdcaSJUvir//6r2PmzJlD3A4AAOD/VltbG9XV1XkxuDpcysvLc10BAAAAACBvXLhwod93JkyYMAxNAAAgOStXrow777wzVq9eHXv27Blw7uWXX47FixfHV77ylfjzP//zKCwsTLAlAAAAAAAAAKPNmFwXAAAAAAAAAAAAABiIvr6+2LFjR8yaNSuqq6sHNeo6ffr0+Na3vhW7d+826goAAAyrz372s/Hmm28adf3/UqlUrFixItc1AAAAAADyhmFXAACuFtOmTYuWlpbYtGlTVgOtFy9ejM2bN8eiRYvixIkTCTYEAAAAAAAAYLQx7AoAAAAAAAAAAACMeAcPHoyPf/zjsWrVqnj11Vezzk+YMCGqqqqira0t7rvvvgQaAgAAXN4HP/jBWLp0aa5rjBjz5s2Lm266Kdc1AAAAAADyRn/DrqlUKsaNGzdMbQAAIFkFBQWxYcOG2LNnT0yfPj2r7P79+2PevHmxdevWhNoBAAAAAAAAMNoYdgUAAAAAAAAAAABGrF/96ldRUVERd955ZzzzzDODOmP58uVx7NixyGQyMXbs2CFuCAAAMHBf/OIXc11hxPjMZz6T6woAAAAAAHmlv2HXCRMmRCqVGqY2AAAwPObPnx+tra2xdu3arHLnz5+PdevWxQMPPBBnzpxJqB0AAAAAAAAAo4VhVwAAAAAAAAAAAGDEuXTpUjQ0NMSMGTOirq4uent7sz6jpKQkvv/970dTU1N88IMfTKAlAABAdlasWBFTpkzJdY0RYcWKFbmuAAAAAACQVwYy7AoAAKPRxIkTY8uWLfHoo4/GDTfckFX2sccei+Li4mhubk6oHQAAAAAAAACjgWFXAAAAAAAAAAAAYET5/ve/H3Pnzo01a9bEL3/5y6zz7373u6OmpiYOHDgQH//4xxNoCAAAMDiFhYXxuc99Ltc1cm7atGnxkY98JNc1AAAAAADyimFXAACudvfff3+88MILUVZWllXutddei2XLlkVFRUV0d3cn1A4AAAAAAACAfGbYFQAAAAAAAAAAABgRTp06Fel0Oj7xiU/EoUOHss6PGTMmVq9eHcePH4+Kioq45pprEmgJAABwZb7whS9EKpXKdY2cKi8vz3UFAAAAAIC8Y9gVAAAipkyZEjt37oyampoYO3bsgHN9fX1RV1cXpaWlcfjw4QQbAgAAAAAAAJCPDLsCAAAAAAAAAAAAOdXT0xO1tbUxc+bMaGxsjL6+vqzPuPPOO+PZZ5+NhoaGmDx5cgItAQAAhsb06dPj3nvvzXWNnDLsCgAAAACQvc7Ozss+N+wKAMDVIpVKRUVFRRw4cCBmz56dVbatrS0WLFgQtbW1g/q59ZHqqaeeitra2lzXAAAAAAAAAMhbhl0BAAAAAAAAAACAnHnqqaeipKQkKisr4/z581nnp06dGvX19bFv375YsGBBAg0BAACG3iOPPJLrCjkzadKkuPvuu3NdAwAAAAAg71y4cOGyzw27AgBwtSkuLo59+/bF+vXrI5VKDTjX1dUVlZWVUVZWFqdOnUqw4fB444034vOf/3xs2LAhDh06lOs6AAAAAAAAAHnJsCsAAAAAAAAAAAAw7H784x/HqlWr4pOf/GQcPXo063xhYWGsX78+2tvbI51OZ3URDwAAQK79zu/8TkyePDnXNXJi2bJlUVhYmOsaAAAAAAB5x7ArAAD8unHjxkVtbW00NzfH1KlTs8ru2rUrSkpKoqmpKaF2w+MP/uAP4tVXX43u7u548MEHo7OzM9eVAAAAAAAAAPKOYVcAAAAAAAAAAABg2Fy4cCEymUwUFxfHjh07BnXGb/3Wb8XBgwejtrY23vWudw1xQwAAgORde+218dBDD+W6Rk6Ul5fnugIAAAAAQF4y7AoAAO9s6dKlcejQoVixYkVWudOnT0d5eXmk0+no6OhIqF1y/uEf/iG2b9/+X78+evRobNiwIYeNAAAAAAAAAPKTYVcAAAAAAAAAAABgWDQ1NcVtt90W1dXV0dXVlXX+Ax/4QNTX18dTTz0Vt99+ewINAQAAhs+6desilUrlusawKiwsjE996lO5rgEAAAAAkJcMuwIAwOVNnjw5Hn/88aivr4+ioqKsso2NjVFaWhqtra0JtRt6L730UvzxH//xr/3+3/zN38S3vvWtHDQCAAAAAAAAyF+GXQEAAAAAAAAAAIBEtbe3x6c+9akoLy+PV155Jev8+PHjo6qqKl588cVIp9MJNAQAABh+M2fOjI9+9KO5rjGs7r333pg0aVKuawAAAAAA5CXDrgAAMDDpdDqee+65mDt3bla59vb2WLhwYWQymbh06VJC7YbGxYsX46GHHorz58//2rO+vr74whe+EK+99loOmgEAAAAAAADkJ8OuAAAAAAAAAAAAMEx+/vOfxxe+8IVc1xg2Z8+ejYqKirjjjjti165dgzpj+fLlcfTo0chkMjFu3LghbggAAJBbjzzySK4rDKvy8vJcVwAAAAAAyFuGXQEAYOBmzZoVe/fujaqqqhgzZuDX7/b09ER1dXUsWbIkTp48mWDDK1NdXR179+59x+e/+MUv4vd///ejr69vGFsBAAAAAAAA5C/DrgAAAAAAAAAAADAMOjs747Of/Wz84z/+Y/zbv/1bruskqq+vLxoaGmLGjBlRV1cXFy9ezPqMGTNmRHNzczQ1NcW0adOGviQAAMAI8Lu/+7vx7ne/O9c1hs19992X6woAAAAAAHnLsCsAAGSnsLAwMplM7N69O26++eassi0tLVFcXBzbtm1LqN3gPfPMM/H1r3+93/eam5vjb//2b4ehEQAAAAAAAED+M+wKAAAAAAAAAAAACevr64vPf/7zsW/fvoiI+PKXvxxdXV05bpWMAwcOxMc+9rFYs2ZN/OIXv8g6P2nSpNi0aVMcPnw4PvWpTyXQEAAAYOQYP358/N7v/V6uawyLOXPmxLRp03JdAwAAAAAgb/U37Dp+/PhhagIAAPll8eLF0dbWFg8++GBWuXPnzsXDDz8cq1atirNnzybULjtvvfVWfO5zn4ve3t4Bvf+Vr3wljhw5knArAAAAAAAAgPxn2BUAAAAAAAAAAAAS9qd/+qfxL//yL//165deeim+8Y1v5LDR0Dtz5kxUVFTEggULYu/evVnnU6lUrF69Otrb22PDhg1x7bXXJtASAABg5Fm3bl2uKwyL8vLyXFcAAAAAAMhr/Q27TpgwYZiaAABA/rn++utj27ZtsX379pg0aVJW2R07dsScOXPi6aefTqjdwH3pS1+KH/3oRwN+v6urK9LpdHR3dyfYCgAAAAAAACD/GXYFAAAAAAAAAACABDU0NMTXv/71X/v9r3/96/Hyyy8Pf6EhdvHixaitrY1bbrkl6urq4tKlS1mfMW/evHjmmWeioaEh3ve+9yXQEgAAYOSaPXt2lJaW5rpG4j7zmc/kugIAAAAAQF4z7AoAAFdu5cqVcfDgwVi0aFFWuZdffjkWL14cGzdujJ6enoTaXd5jjz0WjY2NWeeef/75+LM/+7MEGgEAAAAAAACMHoZdAQAAAAAAAAAAICF79uyJtWvX/p/POjs746tf/eowNxpaLS0tMWfOnKisrIxz585lnb/xxhujpqYm9u3bFx/96EcTaAgAAJAfHnnkkVxXSNRNN90UJSUlua4BAAAAAJDXOjo6LvvcsCsAAAzMtGnToqWlJTZt2hSFhYUDzl28eDE2b94cixYtihMnTiTY8NedPHnyHf9uwkD81V/9VTz11FND2AgAAAAAAABgdDHsCgAAAAAAAAAAAAn4yU9+Evfff390d3e/4zuPPvpoPPnkk8PYamicPHky0ul0LF68ONra2rLOFxQUxNq1a+P48eNRUVER11xzTQItAQAA8seDDz4YEydOzHWNxPz2b/92pFKpXNcAAAAAAMhbvb29l/05pAjDrgAAkI2CgoLYsGFD7NmzJ6ZPn55Vdv/+/TFv3rzYunVrQu3+p0uXLkU6nY5f/epXV3TGmjVr4syZM0PYDAAAAAAAAGD0MOwKAAAAAAAAAAAAQ+zs2bNx3333xS9+8Yt+3/3KV74SPT09w9DqynV2dsbmzZtj1qxZ0djYOKgzPvGJT0Rra2ts2bIlbrzxxiFuCAAAkJ+uu+66WLVqVa5rJKa8vDzXFQAAAAAA8tqFCxf6fcewKwAAZG/+/PnR2toaa9euzSp3/vz5WLduXTzwwAOJj6X+5V/+ZbS0tFzxOadOnYovfvGLQ9AIAAAAAAAAYPQx7AoAAAAAAAAAAABDqLe3Nx5++OE4duzYgN5/4YUX4pvf/GbCra5cU1NT3H777bFx48Z46623ss7fdNNNUV9fHy0tLXHHHXck0BAAACC/PfLII7mukIjrrrsu7rnnnlzXAAAAAADIa4ZdAQAgORMnTowtW7bEo48+GjfccENW2cceeyyKi4ujubk5kW4//OEPo6qqasjO+9d//df4+7//+yE7DwAAAAAAAGC0MOwKAAAAAAAAAAAAQ+iP/uiP4oknnsgqk8lk4vXXX0+o0ZV58cUXY9myZVFeXh4/+clPss5fe+21sX79+mhvb490Op1AQwAAgNFhwYIFUVJSkusaQ27ZsmUxduzYXNcAAAAAAMhrhl0BACB5999/f7zwwgtRVlaWVe61116LZcuWRUVFRXR3dw9ZnwsXLsTDDz8cb7/99pCdGRFRWVkZx48fH9IzAQAAAAAAAPKdYVcAAAAAAAAAAAAYIjU1NfF3f/d3WefOnTsXf/Inf5JAo8Hr6OiITCYTs2fPjm9/+9uDOmP58uVx7NixqK2tjeuuu26IGwIAAIw+n//853NdYciVl5fnugIAAAAAQN4z7AoAAMNjypQpsXPnzqipqYmxY8cOONfX1xd1dXVRWloahw8fHpIuX/7yl6O9vX1IzvrvOjo64qGHHhrywVgAAAAAAACAfGbYFQAAAAAAAAAAAIZAc3NzfPWrXx10/p/+6Z9i3759Q9hocPr6+qKhoSGmT58e1dXV0d3dnfUZH/7wh+OJJ56Ipqam+M3f/M0EWgIAAIxOq1evHlUX7xcUFMSyZctyXQMAAAAA4P+xd99hVpdn4v/v6TAMvYmgUYkNRRFUjGhiGSVRGYjKakJRo+DqqmAsJJaIRl0Scxkwko2azUZZsxvUX4xgUCGWaCxBKRbEgkgJAgIibYBpvz82y3dNEWY4Z54pr9d1zZVL5nzu561/meM5z93oWewKAAD1JycnJ8aMGROvvvpqHHbYYbV69s0334z+/fvHpEmToqamps4NM2bMiHvvvbfOz+/Ma6+9FjfffHPW5gMAAAAAAAA0Nha7AgAAAAAAAAAAwG5asGBBnHvuuVFZWVnnGdXV1fEv//IvUV1dncGy2pkzZ04cf/zxcd5558XKlStr/XyrVq3ipptuijfeeMPiHgAAgDpo165dnHnmmakzMubLX/5ytG/fPnUGAAAAAECjtyuLXVu1alUPJQAA0Hwceuih8corr8QVV1wROTk5u/zc1q1bY+zYsfHVr341VqxYUetzV69eHRdccMFuLYbdFRMmTIhnnnkmq2cAAAAAAAAANBYWuwIAAAAAAAAAAMBuWLNmTQwaNCg+/fTT3Z712muvxS9/+cvdj6qldevWxZgxY+Loo4+OP/7xj7V+PicnJ4YOHRpvv/12jB8/PoqKirJQCQAA0DyMGjUqdULGlJWVpU4AAAAAAGgSdmWxa3FxcT2UAABA89KiRYuYNGlSPPHEE9GtW7daPfvUU09Fnz59Ytq0abv8TE1NTXzrW9+KVatW1Ta11qqrq2PkyJGxbt26rJ8FAAAAAAAA0NBZ7AoAAAAAAAAAAAB1tHXr1hg0aFB88MEHGZv53e9+N9avX5+xeZ+nuro6HnjggTjwwAPjrrvuiqqqqlrP6NOnT/zhD3+IqVOnxl577ZWFSgAAgObly1/+chx88MGpMzLCYlcAAAAAgMyw2BUAANI69dRTY968eTFo0KBaPffxxx9HWVlZjBw5MjZv3rzT1999993x+OOP1zWz1pYvXx4XX3xxvZ0HAAAAAAAA0FBZ7AoAAAAAAAAAAAB1UFNTExdddFG8/PLLGZ27evXqGD9+fEZn/j1/+MMf4ogjjojzzjsv1qxZU+vn27dvHxMnToxXX301jjvuuCwUAgAANF/f+ta3Uifstt69e8e+++6bOgMAAAAAoEnY2WLXwsLCyM/Pr6caAABonrp06RKPPfZY3H///dGqVataPTtlypQ48sgjY86cOf/wNQsWLIhx48btbmatPfzwwzFlypR6PxcAAAAAAACgIbHYFQAAAAAAAAAAAOrg5ptvjgcffDArsydPnhyvv/56VmavWLEiRo4cGSeccEKdzsjNzY0RI0bEO++8E2PGjIm8vLwsVAIAADRv559/fhQVFaXO2C2DBw9OnQAAAAAA0GTsbLFrcXFxPZUAAAAjR46M2bNnR9++fWv13MKFC+OYY46J8ePHR3V19Wd+t23btvjmN78Z5eXlmUzdZZdeemm89957Sc4GAAAAAAAAaAgsdgUAAAAAAAAAAIBaeuihh+KWW27J2vzKysq47LLLoqamJmMzKyoqYtKkSXHQQQfFlClT6jT7qKOOipdeeikeeOCB6Ny5c8baAAAA+KxOnTpFWVlZ6ozd0tj7AQAAAAAaEotdAQCgYTn44IPj5Zdfjptuuilyc3f9et+Kioq4+eabo7S0NJYvX77jz6+77rqYP39+NlJ3yaZNm2LYsGFRUVGRrAEAAAAAAAAgJYtdAQAAAAAAAAAAoBZeffXVOP/88zO6dPXvef755+Phhx/OyKxZs2bF4YcfHmPHjo2NGzfW+vlu3brF/fffH6+88kocffTRGWkCAADg840aNSp1Qp1169YtjjzyyNQZAAAAAABNhsWuAADQ8BQUFMT48eNj5syZ0aNHj1o9+8wzz8Shhx4aDz74YDz33HMxceLELFXuutmzZ8ftt9+eOgMAAAAAAAAgCYtdAQAAAAAAAAAAYBctWbIkzjjjjJ1elJgp3/72t2Pz5s11fv7999+PQYMGxSmnnBJvv/12rZ8vKCiIK664IhYuXBgjR46MnJycOrcAAABQO6WlpdGzZ8/UGXVSVlbm/0MCAAAAAGRQeXn55/7eYlcAAEjnpJNOivnz58fZZ59dq+c+/fTTGD58eJx++ulRXV2dpbraufXWW+Oll15KnQEAAAAAAABQ7yx2BQAAAAAAAAAAgF2wcePGKCsri1WrVtXbmcuXL48JEybU+rktW7bE+PHjo3fv3jF9+vQ6nX3yySfHvHnzYtKkSdGmTZs6zQAAAKDucnJy4oILLkidUSdlZWWpEwAAAAAAmpQtW7Z87u8tdgUAgLQ6dOgQDz30UEydOjXatWtXq2c3b96cparaq6ysjGHDhsWGDRtSpwAAAAAAAADUK4tdAQAAAAAAAAAAYCeqqqpi2LBh8frrr9f72XfccUe89957u/z6adOmRa9eveLmm2+OrVu31vq8nj17xtSpU2PWrFnRq1evWj8PAABA5lx44YVRUFCQOqNWSkpK4qSTTkqdAQAAAADQpFjsCgAAjcPQoUNj7ty5cdxxx6VOqbPFixfHFVdckToDAAAAAAAAoF5Z7AoAAAAAAAAAAAA7ceWVV8a0adOSnL1t27a4+uqrd/q6hQsXxqmnnhplZWWxZMmSWp9TXFwcN910U7z55psxdOjQuqQCAACQYXvssUd87WtfS51RKwMHDowWLVqkzgAAAAAAaFIsdgUAgMZjn332iWeeeSYmTJgQBQUFqXPq5P7774//+q//Sp0BAAAAAAAAUG8sdgUAAAAAAAAAAIDP8fOf/zx+8pOfJG147LHH4ne/+93f/d0nn3wSY8aMid69e8fMmTPrNP+MM86It956K8aPH2/5DgAAQAMzatSo1Am1UlZWljoBAAAAAKDJsdgVAAAal/z8/Bg3bly88MIL8cUvfjF1Tp1ceumlsWTJktQZAAAAAAAAAPXCYlcAAAAAAAAAAAD4B5566qm45JJLUmdERMSYMWNi27ZtO/66uro6HnjggTjooIPirrvuisrKylrPPPDAA+OJJ56IadOmxT777JPBWgAAADLla1/7Wuy9996pM3ZJXl5enHbaaakzAAAAAACaHItdAQCgcTr66KNjzpw5MXr06NQptbZ+/foYMWJEVFVVpU4BAAAAAAAAyDqLXQEAAAAAAAAAAODvePvtt+Occ86p08LUbHj//fdj0qRJERHx6quvxoABA+K8886L1atX13pWu3btYsKECfH666/HwIEDM50KAABABuXl5cV5552XOmOXDBgwIDp16pQ6AwAAAACgybHYFQAAGq/WrVvHPffcEw8//HC0adMmdU6tPP/88/HDH/4wdQYAAAAAAABA1lnsCgAAAAAAAAAAAH9l7dq1UVZWFuvXr0+d8hm33HJLDB8+PPr37x8vv/xyrZ/PycmJESNGxMKFC2PcuHFRWFiYhUoAAAAybdSoUZGXl5c6Y6fKyspSJwAAAAAANEkWuwIAQOM3cODA6NChQ+qMWvve974Xr7zySuoMAAAAAAAAgKyy2BUAAAAAAAAAAAD+j+3bt8fZZ58d77//fuqUv7F58+Z48MEHo7q6utbP9u/fP1555ZV44IEHomvXrlmoAwAAIFv22muvKC0tTZ2xU4MGDUqdAAAAAADQJFnsCgAAjd+ll14aH374YeqMWqusrIzhw4fHxo0bU6cAAAAAAG1j5LcAACAASURBVAAAZI3FrgAAAAAAAAAAAPAXNTU1cdFFF8Wzzz6bOiVjOnbsGBMnTowXX3wxjjrqqNQ5AAAA1NGoUaNSJ3yuXr16xQEHHJA6AwAAAACgSdrZYteWLVvWUwkAAFAXjzzySEyZMiV1Rp29//77cfXVV6fOAAAAAAAAAMgai10BAAAAAAAAAADgL2677bZGfVnK/5Wfnx9XXHFFLFq0KMaMGRO5uT4yCAAA0JgNHjw4unXrljrjHyorK0udAAAAAADQZO1ssWtxcXE9lQAAALW1fPnyGD16dOqM3XbvvffGQw89lDoDAAAAAAAAICvc0gYAAAAAAAAAAAAR8cgjj8RNN92UOiMjTjzxxJg7d25MmjQp2rZtmzoHAACADMjPz48RI0akzviHLHYFAAAAAMgei10BAKBxqq6ujvPOOy/WrVuXOiUjLr744li2bFnqDAAAAAAAAICMs9gVAAAAAAAAAACAZu+1116LkSNHRnV1deqU3dK9e/e4//774+mnn45DDz00dQ4AAAAZNnr06MjJyUmd8Te6dOkS/fv3T50BAAAAANBkWewKAACN0w9/+MN4+umnU2dkzCeffBIXXnhho//uBQAAAAAAAMBfs9gVAAAAAAAAAACAZm3FihUxePDgnV5+2JC1bNkyxo0bFwsXLoyRI0emzgEAACBLevbsGV/5yldSZ/yNsrKyyM31VTUAAAAAgGzYunVrVFVVfe5rLHYFAICGZ86cOXHTTTelzsi4mTNnxsSJE1NnAAAAAAAAAGSUb8sDAAAAAAAAAADQbG3atClOO+20+POf/5w6pc6OO+64ePPNN2PChAlRUlKSOgcAAIAsGzVqVOqEv1FWVpY6AQAAAACgydqyZctOX2OxKwAANCxbtmyJYcOGxfbt21OnZMV1110X8+bNS50BAAAAAAAAkDEWuwIAAAAAAAAAANAsVVdXx/Dhw2P+/PmpU3ZLdXV17LvvvqkzAAAAqCdnnXVWdOrUKXXGDi1btoyTTz45dQYAAAAAQJNlsSsAADQ+V111VSxcuDB1RtZs27Ythg0bFuXl5alTAAAAAAAAADLCYlcAAAAAAAAAAACapWuuuSZ++9vfps7YbS+++GL86le/Sp0BAABAPSkqKorhw4enztjh1FNPtTAAAAAAACCLLHYFAIDGZcaMGXHPPfekzsi6BQsWxLXXXps6AwAAAAAAACAjLHYFAAAAAAAAAACg2fnFL34Rd955Z+qMjLn66qtjw4YNqTMAAACoJxdffHHk5OSkzoiIiLKystQJAAAAAABNmsWuAADQeKxevTouuOCCqKmpSZ1SLyZPnhzTpk1LnQEAAAAAAACw2yx2BQAAAAAAAAAAoFn5wx/+EJdccknqjIxauXJl3HbbbakzAAAAqCcHHXRQfOlLX0qdEbm5uXHaaaelzgAAAAAAaNIsdgUAgMahpqYmLrzwwli1alXqlHrzv3/PK1euTJ0CAAAAAAAAsFssdgUAAAAAAAAAAKDZeOedd2LIkCGxffv21CkZN3HixHjnnXdSZwAAAFBPRo0alTohjjnmmNhjjz1SZwAAAAAANGkWuwIAQONw9913x/Tp01Nn1LuPP/44zj///KipqUmdAgAAAAAAAFBnFrsCAAAAAAAAAADQLKxbty7Kysrik08+SZ2SFdu3b4/LL788dQYAAAD15Jxzzol27dolbSgrK0t6PgAAAABAc7Ari11btWpVDyUAAMA/smDBghg3blzqjGSefPLJmDx5cuoMAAAAAAAAgDqz2BUAAAAAAAAAAIAmr6KiIoYOHRrvvvtu6pSsmjlzZjz22GOpMwAAAKgHLVu2jG984xtJGwYPHpz0fAAAAACA5mBni11zcnKiRYsW9VQDAAD8tW3btsWwYcOivLw8dUpS11xzTbzxxhupMwAAAAAAAADqxGJXAAAAAAAAAAAAmrzLLrssnn766dQZ9eLKK6+MrVu3ps4AAACgHvzzP/9zsrO/+MUvxkEHHZTsfAAAAACA5mJni12Li4sjJyennmoAAIC/dv3118e8efNSZyS3devW+OY3v+n7DAAAAAAAAECjZLErAAAAAAAAAAAATdoPfvCDuPfee1Nn1JsPPvggfvSjH6XOAAAAoB4cdthh0a9fvyRnDxkyJMm5AAAAAADNza4sdgUAANJ47rnn4sc//nHqjAbjzTffjBtuuCF1BgAAAAAAAECtWewKAAAAAAAAAABAk/X444/H9ddfnzqj3t1+++3x4Ycfps4AAACgHowaNSrJuWVlZUnOBQAAAABobix2BQCAhmn9+vUxcuTIqK6uTp3SoNx5550xY8aM1BkAAAAAAAAAtWKxKwAAAAAAAAAAAE3S3Llz45xzzomqqqrUKfWuvLw8rr322tQZAAAA1INhw4ZF69at6/XMjh07xpe+9KV6PRMAAAAAoLmy2BUAABqmiy66KJYuXZo6o8GpqamJiy66KNasWZM6BQAAAAAAAGCXWewKAAAAAAAAAABAk/PRRx/F4MGDY/PmzalTknnooYfiqaeeSp0BAABAlpWUlMTQoUPr9cxBgwZFfn5+vZ4JAAAAANBclZeXf+7vLXYFAID694tf/CIeeeSR1BkN1ooVK2LUqFGpMwAAAAAAAAB2mcWuAAAAAAAAAAAANCnl5eUxZMiQWLZsWeqU5K688sqoqKhInQEAAECW1fdFmGVlZfV6HgAAAABAc7Zly5bP/b3FrgAAUL8WLVoUY8aMSZ3R4D366KNx3333pc4AAAAAAAAA2CUWuwIAAAAAAAAAANBk1NTUxAUXXBB/+tOfUqc0CAsWLIif/vSnqTMAAADIsmOOOSYOP/zwejmrqKgoSktL6+UsAAAAAAAsdgUAgIaksrIyRowYEZs2bUqd0ihceeWV8c4776TOAAAAAAAAANgpi10BAAAAAAAAAABoMr773e/Gr3/969QZDcr3vve9+Oijj1JnAAAAkGXf+ta36uWc0tLSaN26db2cBQAAAACAxa4AANCQfP/734+XXnopdUajsXnz5hg+fHhUVFSkTgEAAAAAAAD4XPmpAwAAAAAAAAAAACAT7r///vjBD36QOqPB2bBhQ9xwww3x7//+76lTAAAAyKKRI0fGd7/73Z1e8L+7ysrKsjofAAAAAKAhmjJlStx3331RVFQUbdu2jcLCwmjdunW0bNkyWrRoEW3atImCgoJo27ZtFBUVRXFxcZSUlERBQUG0b98+CgoKoqSkJIqLi3fMyM3N3aWzLXYFAICG4cUXX4zbbrstdUaj8+qrr8ZNN90Ut99+e+oUAAAAAAAAgH8op6ampiZ1BAAAAAAAAAAAAOyOF154IUpLS2Pbtm2pUxqk3NzcePHFF6N///6pUwAAAMii4cOHx4MPPpi1+Tk5ObFs2bLo3r171s4AAAAAAGiI3njjjTjssMMyPrdFixY7lsP+7/+2b9/+M3/2wgsvxEcfffQPZ5x66qlxzTXX/N0ZrVu3jvz8/Ix3AwBAc7Np06bo27dvvPfee6lTGqXc3NyYOXNmnHTSSalTAAAAAAAAAP6ehyx2BQAAAAAAAAAAoFFbvHhx9O/fPz7++OPUKQ1av3794k9/+lPk5uamTgEAACBLnnvuuTjhhBOyNr9///7x8ssvZ20+AAAAAEBDtt9++8XixYtTZ9RaSUlJFBQURPv27aOgoCBKSkqiuLg4ioqKom3btlFYWBitW7fesRS2TZs2UVBQEG3bto2ioqIoLi7+hzPat28fRUVFqf8WAQAg61avXh1TpkyJGTNmxPPPPx/bt29PndTo7LXXXjF//vxo37596hQAAAAAAACAv2axKwAAAAAAAAAAAI3Xhg0b4thjj4233nordUqj8Itf/CIuuOCC1BkAAABkUa9eveLtt9/OyuzbbrstrrvuuqzMBgAAAABo6MaOHRuTJk1KndGg/PGPf4xjjz02dQYAANSrLVu2xIsvvhjTpk2L3/72t7FkyZLUSY3GWWedFQ8//HDqDAAAAAAAAIC/9lBu6gIAAAAAAAAAAACoi4qKijjzzDMtda2F73znO7F+/frUGQAAAGTRBRdckLXZZWVlWZsNAAAAANDQeY/0sw455BBLXQEAaJaKi4ujtLQ0Jk2aFB9++GEsWrQoJk6cGKWlpVFUVJQ6r0F75JFH4v7770+dAQAAAAAAAPA3cmpqampSRwAAAAAAAAAAAEBtXXzxxXHvvfemzmh0xowZExMnTkydAQAAQJasWbMmevToEdu2bcvo3H322ScWL16c0ZkAAAAAAI1JRUVFdO3aNT755JPUKQ3Cj3/84xg7dmzqDAAAaFC2bNkSL774YkybNi1+85vfxLJly1InNTglJSUxZ86c2H///VOnAAAAAAAAAPyvh3JTFwAAAAAAAAAAAEBt3XnnnZa61tHkyZPjjTfeSJ0BAABAlnTq1CkGDRqU8blf//rXMz4TAAAAAKAxKSgoiK997WupMxqEFi1axIgRI1JnAABAg1NcXBylpaUxadKkWLp0aSxatCgmTpwYpaWlUVhYmDqvQdi0aVMMGzYsKioqUqcAAAAAAAAA7GCxKwAAAAAAAAAAAI3KjBkz4tprr02d0WhVVlbG2LFjU2cAAACQRaNGjcr4zLKysozPBAAAAABobAYPHpw6oUE488wzo2PHjqkzAACgwdtvv/1izJgxMXPmzFi3bl089thjMXr06OjRo0fqtKRmz54dt912W+oMAAAAAAAAgB1yampqalJHAAAAAAAAAAAAwK6YP39+HH/88bFx48bUKY3e1KlTY+jQoakzAAAAyIKamprYf//9Y9GiRRmZ16FDh1i1alXk5+dnZB4AAAAAQGO1YcOG6Ny5c2zfvj11SlJPP/10nHjiiakzAACgUXvrrbdi+vTpMWvWrHjuueeioqIidVK9ys3Njaeffjq+8pWvpE4BAAAAAAAAeCg3dQEAAAAAAAAAAADsipUrV0ZZWZmlrhly1VVXxebNm1NnAAAAkAU5OTlx/vnnZ2zeaaedZqkrAAAAAEBEtGnTJk444YTUGUn17Nmz2f8zAACATDjkkENi3LhxMXPmzFi3bl089thjMXr06OjevXvqtHpRXV0dF1xwQWzYsCF1CgAAAAAAAEBY7AoAAAAAAAAAAECDV15eHoMHD46lS5emTmkyli1bFhMmTEidAQAAQJZceOGFGVvGWlZWlpE5AAAAAABNQXN/z3TUqFGRk5OTOgMAAJqUkpKSGDRoUNxzzz2xfPnyePPNN2PChAlRWloaBQUFqfOyZvHixXH55ZenzgAAAAAAAACInJqamprUEQAAAAAAAAAAAPCP1NTUxLnnnhtTp05NndJk7LffftG3b98YMGBAjB07NnUOAAAAWTJ48OB47LHHdmtGYWFhfPzxx9GmTZsMVQEAAAAANG7Lli2LL3zhC9Ecr+8qKCiIZcuWRdeuXVOnAABAs7Fu3br4/e9/H7NmzYrp06fHihUrUidl3K9+9av4xje+kToDAAAAAAAAaL4estgVAAAAAAAAAACABu3GG2+MW2+9NXVGo9WtW7fo16/fjp9jjjkmOnfunDoLAACAejBt2rQoKyvbrRkDBw6MJ554IkNFAAAAAABNQ9++fWPu3LmpM+rdWWedFQ8//HDqDAAAaLaqq6tj7ty5MWvWrJg1a1Y8++yzUVlZmTprt7Vt2zbmz58fX/jCF1KnAAAAAAAAAM2Txa4AAAAAAAAAAAA0XFOnTo1zzz03fNRt1/z1EtcvfelL0alTp9RZAAAAJFJVVRX77rtvLFu2rM4zJk+eHJdeemkGqwAAAAAAGr/x48fHzTffnDqj3j3xxBMxcODA1BkAAMBfrF27Np5++umYNWtWTJs2LT766KPUSXV23HHHxbPPPht5eXmpUwAAAAAAAIDmx2JXAAAAAAAAAAAAGqYXX3wxTjrppNi2bVvqlAbJElcAAAB2xY033hi33nprnZ7NycmJJUuWxF577ZXhKgAAAACAxm3u3LnRt2/f1Bn1aq+99orFixdbsgQAAA1UdXV1zJ07d8eS15deeimqq6tTZ9XKbbfdFtddd13qDAAAAAAAAKD5sdgVAAAAAAAAAACAhufDDz+M/v37x+rVq1OnNAh/vcT12GOPjY4dO6bOAgAAoBFYunRp7LffflFVVVXrZ/v16xevvvpqFqoAAAAAABq/fffdNz788MPUGfXmlltuiRtvvDF1BgAAsIvWrFkTzzzzTEybNi0ef/zxWLduXeqkncrPz48XXngh+vfvnzoFAAAAAAAAaF4sdgUAAAAAAAAAAKBh2bhxYwwYMCDeeOON1ClJ/PUS1wEDBkSHDh1SZwEAANCIDRw4MJ566qlaP3fzzTfH9773vSwUAQAAAAA0fpdddllMnjw5dUa9yMvLiw8++CD23nvv1CkAAEAdVFVVxcsvvxy/+93vYsaMGTFv3rxoqFcS77///jFnzpwoKSlJnQIAAAAAAAA0Hxa7AgAAAAAAAAAA0HBUVVXFkCFDYvr06alTsi4vLy8OPPDAzyxxPeKII6JVq1ap0wAAAGhiHn744Rg6dGitn5s7d2706dMnC0UAAAAAAI3fU089FQMHDkydUS/OOOOMmDZtWuoMAAAgQz7++ON49tlnY9q0aTF9+vT45JNPUid9xkUXXRT33Xdf6gwAAAAAAACg+bDYFQAAAAAAAAAAgIbjsssui8mTJ6fOyDhLXAEAAEipoqIi9t5771i5cuUuP7P33nvHhx9+GDk5OVksAwAAAABovCoqKqJLly6xfv361ClZ99vf/jbKyspSZwAAAFlQVVUV8+bN27Hkdc6cOdEQriv+9a9/Hf/0T/+UOgMAAAAAAABoHix2BQAAAAAAAAAAoGG4++674/LLL0+dsdvy8/PjkEMOiX79+kXfvn2jX79+cfjhh0fLli1TpwEAANCMXXvttXHHHXfs8usvv/zyuOuuu7JYBAAAAADQ+J177rnx61//OnVGVu2xxx6xdOnSKCgoSJ0CAADUg9WrV8cTTzwR06dPj5kzZ8b69euTdLRv3z7mz58fe+21V5LzAQAAAAAAgGbFYlcAAAAAAAAAAADSe/LJJ+OMM86IysrK1Cm1kp+fHwcccED069dvx0/fvn2juLg4dRoAAAB8xqJFi2L//fePXf062cyZM6O0tDTLVQAAAAAAjduvfvWrGDZsWOqMrLr++uvj1ltvTZ0BAAAkUFFRES+88ELMmDEjZsyYEW+++Wa9nl9aWhpPPvlk5Obm1uu5AAAAAAAAQLNjsSsAAAAAAAAAAABpvfXWW3HsscfGhg0bUqd8rsLCwujdu3f07dt3xxLX3r17R1FRUeo0AAAA2CUnnnhiPPvsszt9Xdu2bWP16tVRWFiY/SgAAAAAgEbs008/jc6dO0dFRUXqlKzIycmJ9957L3r27Jk6BQAAaABWrVoVTz75ZEyfPj2eeuqp+PTTT7N+5o9+9KO46qqrsn4OAAAAAAAA0KxZ7AoAAAAAQN1t3LgxVqxYEatXr46PP/441q9fH5WVlVFeXh5bt25NnQcAAAA0Aps3b46f/vSnsXbt2tQpn5GXlxcdO3aMHj16RPfu3aN79+7Ro0ePyM/PT53WoOTm5kbbtm0j4n+W/nTo0CG6desWnTt3ji5dukROTk7iQoDGacuWLbFq1ar46KOPdrz/vm3btti2bVts2bIldR4A0IjNmzcv/vu//3unrzvssMPim9/8Zj0UAQDUTkFBQZSUlEROTk60a9cuunTpEp07d4499tgjOnTokDoPAABopk4++eR4+umnU2dkxSmnnBJPPfVU6gwAAGgSmtr9DNXV1bF06dJ4++234/33348VK1ZENq45zs/Pj0svvTT23HPPjM8GAABoalq0aBEtW7aM/Pz8z3zGrnv37lFSUpI6DwAAABoyi10BAAAAAPh8a9eujTfeeCPefffdePfdd+Odd96Jd955J5YvXx7l5eWp8wAAAABooPLz86NLly5xwAEH7Pg58MAD4+CDD46ePXumzgNIbuPGjfHWW2/FwoULd7wH/+6778bixYtj06ZNqfMAAAAAGp2ioqLo1q3bjvekDzrooDjggAOiV69e0b1799R5AABAEzZp0qQYO3Zs6oysmDp1agwdOjR1BgAANBruZwAAAKChatmyZfTo0SMOPPDAHT8HHHBA9O7dOzp06JA6DwAAAFKz2BUAAAAAgP9n69at8eqrr8bs2bNj9uzZ8ac//SkWLVqUOgsAAACAJqZDhw5x1FFH7fg55phjokuXLqmzALKmqqoq5s+fH6+88sqO9+DffvvtqKqqSp0GAAAA0CzsueeecdRRR8XRRx8dRx11VPTv3z/atGmTOgsAAGgilixZEvvss0/qjIzr1KlTLF++PIqKilKnAABAg+R+BgAAAJqKnj177vh83VFHHRVHHnlktGjRInUWAAAA1CeLXQEAAAAAmrsPPvggZs2aFbNmzYonnngiNm7cmDoJAAAAgGZov/32i9LS0igtLY1TTz012rZtmzoJYLf83/fff//738e6detSJwEAAADwF3l5edGnT58d70sff/zxFhUBAAC75fDDD4/XX389dUZGXX311XHHHXekzgAAgAbF/QwAAAA0By1btowBAwbs+IzdEUccEbm5uamzAAAAIJssdgUAAAAAaG62bdsWM2fOjEceeSSmT58ea9asSZ0EAAAAAJ9RWFgYX/nKV+Kss86KIUOGRNeuXVMnAexUVVVV/PGPf4xHHnkkHn300Vi6dGnqJAAAAAB2UUlJSQwcODDOOuusOP3006NNmzapkwAAgEbmxhtvjFtvvTV1RkYtWLAgDj744NQZAACQlPsZAAAAIKJTp04xaNCgOPPMM+OUU06JoqKi1EkAAACQaRa7AgAAAAA0B9u3b4/HH388HnrooXj88cdjw4YNqZMAAAAAYJfk5eXFgAED4qyzzopzzjnHklegQamuro5nn302pk6dGo8++misWrUqdRIAAAAAu6moqChOOeWUOPvss+PMM8+M1q1bp04CAAAagdmzZ8fRRx+dOiNjvvzlL8dzzz2XOgMAAJJwPwMAAAD8Y23atIkzzjgjhg4dGqeddloUFhamTgIAAIBMsNgVAAAAAKApW7BgQTzwwAPxH//xH7F69erUOQAAAACwW/Ly8uLEE0+M0aNHx5AhQ6KgoCB1EtBMLV++PB588MG4995744MPPkidAwAAAECWtGjRIgYNGhSjR4+Ok08+OXJyclInAQAADVRNTU3svffesXz58tQpGTFlypQYPnx46gwAAKhX7mcAAACA2mnfvn0MHTo0Lr744ujbt2/qHAAAANgdFrsCAAAAADQ1W7ZsiSlTpsS9994bc+bMSZ0DAAAAAFnRtWvXGDlyZFx66aWxzz77pM4BmoHKysr4zW9+Ez/72c/i2Wefjerq6tRJAAAAANSjL37xi3HhhRfGqFGjomPHjqlzAACABuiSSy6Jn/3sZ6kzdlu7du3iz3/+cxQXF6dOAQCArHM/AwAAAGRGv379YvTo0TF8+HD/nQkAAIDGyGJXAAAAAICmYvny5TF58uS49957Y926dUkaWhXmRX5eThTl50bL/NwkDQAAAEDDtHrT9iiv+H8L8HJzIgrycqPwL+8lFOblRkFeTsJC6qKqpiY2bquKiIgNWysjxScS8/LyYsiQITF27Ng47rjj6j8AaPLWr18f9913X9x9992xdOnSJA0tCnKjKD83CnJzolVhXpIGAKDp2V5VEx9t2PaZP+vWpjAK8/z3fgCg4dpeVR1bKqqjuqYmNm6tStLQsmXLGDFiRIwZMyZ69eqVpAEAAGiYZsyYEaeddlrqjN12+eWXx1133ZU6AwAAsqoh3M+QV9QqcvLyI7egKHILWyZpaFRqaqK6YltUbd8S1dvLI3Jyoqhdt4gc30UBAAD4X9Xby6O6YlvUVFVG1bbNSRo6duwYo0aNin/5l3+JHj16JGkAAACAOrDYFQAAAACgsXv99ddjwoQJ8fDDD0dFRUXWzsnNiejRrij269gy9uvYInp2ahnd2hRGp1YF0aV1YXRuVRAtClzuCgAAAPytHz2zLF744NM4bM+SOKxbq+i9Z6vYv3Nx5Lo7o0mpqq6JtZsrYs3mili5sSLWbKqIxevKY9GarfHB2vL4YO3W2FZZvfNBu6Ffv35xzTXXxNChQyM313tVwO5ZunRp3HHHHfHLX/4yNm3alNWz9mhT+D/vv3dqGT07towe7YqiU6uC6FRSEF1bF1rmCgBkzVf/bX688dH//LtO19aF8drVR7nrEgBoNCqqamLN5opYtXF7rNm0PVZu3B6L126NRWvKY9Ga8li6fmtUVmXvq/Q5OTlxyimnxLhx4+Kkk07K2jkAAEDjsW3btujcuXNs3LgxdcpumTt3bvTp0yd1BgAAZEV93c8QOblR1LFHtNxjv2jRdb9ouUfPKGzfLQradIrCtl2ioE3nyC1skb3zm4HyFe9GbmGLKOq0d+oUAACABql6+9ao2PBxbP90dVRsWBPbP/koylcuiq0rF0X5qsWxbe3yiJrsffe7oKAgzj777PjOd74Thx12WNbOAQAAgAyx2BUAAAAAoLGaN29e3HLLLfHoo49GNt7q3bdji+jTvWTHz6F7tLK4FQAAAIA6q66J+GBtecxbvinmrdgUc5dvirdWbo6KLFyq36tXr7j++uvj3HPPteAVqLUPP/ww/vVf/zV++ctfxvbt2zM+f482hXFE99bRp0dJHNG9dRzWvSRaF1ncCgCkMWX2yvjOtEURETHy6D3iX8/ombgIACBzKqtqYuHqLTF3+caY9+dNMW/5xnhvTXlUVWf+fenjjjsubrrppigtLc34bAAAoHE5++yz45FHHkmdUWf9+/ePl19+OXUGAABkXLbvZ2jRdd8o2adPlOzXJ0r26ROt9j7U4lYAAAAatOrtW2PzfC3x/wAAIABJREFU0jdj0+K5sWnx/Ni0eG5sXf1hxs/JycmJr3/963HjjTdGnz59Mj4fAAAAMsRiVwAAAACAxmbevHkxfvz4eOyxxzL6haFubQrj+J5t47h928bxPdtFl5KCjM0GAAAAgL9na0V1vLJ0Q7zwwafx/KJP462VmyOT9+kfdNBBccMNN8Q3vvENC16BnVqyZEl8//vfjwceeCAqKioyNrd9cX4M2LddHLdf2/hyz3bxhQ4u6QIAGo5N26qi7x2zY/P2qvjPEb3ixP3bp04CAMiqDVsr44+LP/3L+9LrY9Ga8ozOP/bYY+Pmm2+24BUAAJqxBx54IM4777zUGXX285//PC688MLUGQAAkDHZup+hsH23aNvr+Gh78HHRrtfxUdC2S8ZmAwAAQCrbP10dny54/n9+3n4+tn+yMmOzc3JyoqysLMaPH2/BKwAAAA2Rxa4AAAAAAI3FsmXL4oYbboj//M//jOrq6ozMPLRbqzi9V8f46sEd4oDOLTMyEwAAAADqat2Wypj5zrr43YJ18YcPPo3tlZl5H+yII46IH/3oR3HSSSdlZB7QtKxfvz5uv/32+MlPfhJbt27NyMwvdGgRp/fqGKf36hSHdS+J3JyMjAUAyIpv/+a9mP7W2njjO0dHUX5u6hwAgHr150+3xRNvr4vfLVgTf1qyIaoz9M37gQMHxh133BG9e/fOzEAAAKDRWLduXXTt2jUqKytTp9RaSUlJrFixIlq3bp06BQAAdls27mdotfeh0bHf6dGh71ej5Z4HZGQmAAAANGRbVrwT6+Y8Eeteezw2L30rIzNzc3NjxIgRceutt0aPHj0yMhMAAAAywGJXAAAAAICGbsOGDfGDH/wgfvzjH0d5efluzzuoS3GcdXjnOP2QDvGF9i0yUAgAAAAAmbdxW1XMeueT+O2ba+KZ99ZHZQZu0z/99NPjhz/8YfTq1SsDhUBjV1FREf/2b/8Wt9xyS6xdu3a353VvWxRn9ekcZxzSKQ7Zo1UGCgEA6sdryzbGvS+uiHvOOTB1CgBAUh9vqogn3l4b/9/rH8fspRtid7+Fn5eXF+eff37ccsstseeee2YmEgAAaBROOOGEeO6551Jn1Nro0aPjnnvuSZ0BAAC7JdP3MxR3Pyg6f+ms6HDk6dGi8xcyUAgAAACN09bVS2Lda4/Hxy89Elv+vHC35xUXF8eVV14Z48aNi9atW2egEAAAAHaLxa4AAAAAAA1VTU1NTJkyJa699tpYtWrVbs1q0yI/hvTuGOcc0SX6dC/JUCEAAAAA1I/VG7fHw/PXxK/nro731+ze5Tr5+flxySWXxPe///1o27ZthgqBxmbmzJlx2WWXxbvvvrtbc4ryc+NrB3eMc/p2ieP2axe5ORkKBACoZ/OWb4o+PXyeAADgf32wtjymzl0dD81bHSs3bN+tWa1atYobbrghrrrqqigoKMhQIQAA0JDdeeedcdVVV6XOqLXZs2fHkUcemToDAADqJJP3M+QXt4mO/YdElwHnRMm+fTJUCAAAAE3HpsXzYvUffx1rX3k0Krds2K1ZXbt2jTvuuCOGDx8eOTm+pAkAAEAyFrsCAAAAADRECxYsiEsvvTSee+653ZrTa49WMeqYbjG4d8coys/NUB0AAAAApPOnpRvj5y99FE8uXBeV1XX/CGS3bt3izjvvjHPPPTeDdUBD99FHH8W3v/3t+O//n737DI+yTN8/fk5JJYGEQBIILZTQmyIqC0qx0EUsERaRIogiigqKLq6oWAJiB1ZBBFTkLwqIKKwFsQCKiiIdQ4AAISEhvWfK/wW7+9NdzMyEzDMp389x7Cuu+77P2WWTcOd5rmv16gvap2lYgMZf2kijLo5S3UBrJaUDAAAAAABAVWN3OPXF4Swt/S5F25JyLmivDh06aPHixbriiisqKR0AAACAqurIkSNq3bq1r2N4pEuXLtq9e7evYwAAAAAVUln9Geo07aBGV09SRM/rZPYLqKR0AAAAAADUXI6yEmV8v16pny9VwYn9F7RX3759tWjRIrVv376S0gEAAAAA4BEGuwIAAAAAAABAVVJUVKQnn3xSCxYsUGlpaYX2MJukq+LCNenyRuoVW6+SEwIAAAAAAABVw8nsEr25M1Wrfjqj3GJbhfe55pprtHDhwmrXTBOAZxwOhxYuXKhHH31UOTkVH8DRs3ld3X55Yw1sV18Ws6kSEwIAAAAAAKCq259aoKU7UrRuT4ZKbY4K7WEymXTbbbdp/vz5atCgQSUnBAAAAFCVdOzYUfv3X1jzaiMtXLhQd911l69jAAAAAB6pjP4MMpkV3vUqNbp6kuq161W5AQEAAAAAqEVyDm7X6c+WKGv355KzYs/Y+fv7a8aMGZo9e7aCgoIqOSEAAAAAAOVisCsAAAAAAAAAVBU7duzQuHHjdPjw4Qqtt5hNGtG5ge69IkatGvAgEgAAAAAAAGqH/BK73tyZqte3pyizsGIDXoODg/X0009r2rRpMpvNlZwQgK8lJiZq3Lhx2rZtW4X36NcmXPf1baqLm4ZWYjIAAAAAAABUR2fyS7Xo21N6+4dUFZVVrPlcZGSkFi9erJEjR1ZyOgAAAABVxSOPPKJnnnnG1zHcEhQUpFOnTik8PNzXUQAAAAC3XWh/BpPZogaXjlDM0HsVFN2qktMBAAAAAFB7FaUe0amNLynj+/VyOuwV2qNt27Zavny5LrvsskpOBwAAAADAn2KwKwAAAAAAAAD4WllZmZ566inNnTtXdrvnDx+ZTdLgDhF6sH9TBroCAAAAAACg1iosdWjVrjQt/DZFZ/JKK7RHr169tHz5crVp06aS0wHwBafTqSVLluiBBx5Qfn5+hfbo0ypMDw1opu5NGOgKAAAAAACAPzpbUKblO09ryfYU5ZVUrPncTTfdpMWLFysiIqKS0wEAAADwtR07dqhXr16+juGWcePG6c033/R1DAAAAMAtF9qfQSazIi4erKbXP8hAVwAAAAAAvKgkI1mnPlmoM9+sltNh83i92WzW3XffrXnz5ikgIMALCQEAAAAA+AMGuwIAAAAAAACAL/3yyy+69dZbtXfv3gqtH9y+vh65urliIwIrORkAAAAAAABQPRWWOvTa9hQt3paiglLPG/WEhobqueee0+TJk72QDoBRTpw4ofHjx+uLL76o0PpLmtXV369toYuaMtAVAAAAAAAA5csoKNOCL5O16sc02Ryev7rfuHFjLV26VIMGDfJCOgAAAAC+4nA4FBMTo9TUVF9HcWnbtm3VZggtAAAAarcL7c9Q/6LBan7jIwqMiq3kZAAAAAAA4M8UpyXp+PtPK3PXpgqt79Spk1auXKnu3btXcjIAAAAAAP6Awa4AAAAAAAAA4CsrV67UlClTVFRU5PHabjEhevTa5rqseV0vJAMAAAAAAACqv8xCm1786qRW7EytUCP9ESNGaNmyZQoPD/dCOgDetGHDBk2YMEFnz571eG2TsADN7N9MN3SNlMnkhXAAAAAAAACosY5kFGneF8nauC/D47Umk0nTpk3T/Pnz5e/v74V0AAAAAHxh0qRJWrp0qa9jlKtdu3bav3+/TPySHAAAAFXchfRnCIntpuY3P6q6cZd5IRkAAAAAAHBHftLPOvbeE8r7bafHawMCApSQkKB77rmH32sBAAAAALyFwa4AAAAAAAAAYLSsrCxNmDBB69ev93htVKi/Hru2uYZ3akBDeQAAAAAAAMANh84UavYnx7T9aI7Ha2NjY7V69Wr17NnTC8kAVLaSkhI99NBDevnll+XpI9KhARY90K+Zxl/aSFYLF/AAAAAAAACouB1Hc/S3j5N06Eyhx2t79uyp1atXKzY21gvJAAAAABjto48+0vDhw30do1wvvPCCpk+f7usYAAAAwJ+6kP4M/mFRah7/mBpcMlw0aAAAAAAAoApwOpWx80Mdf+8JlWanebz8+uuv1xtvvKHw8HAvhAMAAAAA1HIMdgUAAAAAAAAAI+3YsUO33HKLkpOTPVpnMZs0vme0ZvRvqtAAi5fSAQAAAAAAADWT0ymt/TVdT356XOn5ZR6t9fPz0zPPPKP7779fJpr5AFXWkSNHFB8fr59++snjtUM7NtDjg2IVXdffC8kAAAAAAABQG9nsTr2+I0UvbD2hwlK7R2vDwsK0dOlS3XDDDV5KBwAAAMAoRUVFatiwoQoKCnwd5bz8/f118uRJNWzY0NdRAAAAgPOqaH8Gk9mi6P7j1XTEDFmCQr2UDgAAAAAAVJS9KE8n1s9X6pblcjo8e8auefPmWr16tS677DIvpQMAAAAA1FIMdgUAAAAAAAAAoyxZskR33323SktLPVrXLSZECcNaqlOjOl5KBgAAAAAAANQOOUU2PfNFst75MU0OD5+ejI+P17JlyxQcHOydcAAq7NNPP9Utt9yirKwsj9Y1rx+op4a0VL824V5KBgAAAAAAgNruZHaJZn+cpM8OZXq0zmQyadasWZo7d67MZrOX0gEAAAAwwogRI/Thhx/6OsZ5jRo1SqtWrfJ1DAAAAOC8KtqfISS2m1qOTVCdZp28lAwAAAAAAFSWguN7lPTWLOUf/cWjdQEBAVq4cKEmTpzopWQAAAAAgFqIwa4AAAAAAAAA4G02m02zZ89WQkKCR+usFpPu6ROj6Vc2kcVs8lI6AAAAAAAAoPb58USepq9L1NGzxR6t69Kli9avX6/Y2FgvJQPgqddff11Tp06VzWZze43JJP314mj9fWAL1fG3eDEdAAAAAAAAcM7GfRma9dERZRW6f48lSQMHDtS7776rsLAwLyUDAAAA4G3Lli2rsg2lt2zZon79+vk6BgAAAPAHFe3PYLJYFTPkHjUZNl0mM8+HAgAAAABQbTgdOv3FMiWveUoOW6lHSydPnqxXX31Vfn5+XgoHAAAAAKhFGOwKAAAAAAAAAN6UkZGh+Ph4bdmyxaN17aOC9dLI1uoYXcdLyQAAAAAAAIDarajMoRe2ntTibafk8OBJyoiICL333nvq37+/98IBcKm4uFh33nmnli9f7tG6JmEBWjCitXq3ZBAGAAAAAAAAjJWeX6aHNiTqnwczPVrXpk0brV+/Xh06dPBSMgAAAADedObMGTVu3Fh2u93XUf6gZcuWSkxMlMlk8nUUAAAA4D8q2p8huEl7tZ74kuo06+ilZAAAAAAAwNsKUw7pyBv3Kf/Ybo/W9e7dW++//76ioqK8lAwAAAAAUEsw2BUAAAAAAAAAvOXQoUMaNGiQjh496vYai9mke66I0fQrmshq4aV4AAAAAAAAwNu+OpKt6euO6Exeqdtr/Pz8tGTJEt12221eTAbgz2RkZGjYsGH67rvvPFoX3z1Sjw9uqdAAi5eSAQAAAAAAAK69uytNf//kqApL3R/qFB4ernXr1unKK6/0YjIAAAAA3tK7d29t27bN1zH+4Nlnn9VDDz3k6xgAAADAf1SkP4PJbFHM0HvUZOh0mSxWL6YDAAAAAABGcNptOrnxRZ3a+LKcDvefsWvZsqU2bdqkuLg4L6YDAAAAANRwa8y+TgAAAAAAAAAANdF3332nPn36ePTSUMMQP709pr1m9GvKUFcAAAAAAADAIFe2CtPnd3ZR/zZhbq8pKyvT+PHjNWfOHO8FA3BeR48eVe/evT0a6hoSYNHLN8Tp+evbMNQVAAAAAAAAPjfqoihtntJVHaLruL0mKytL11xzjVatWuXFZAAAAAC8Zfjw4b6O8AdWq1Vjx471dQwAAADgPyrSn8GvbkO1v+9tNb1uBkNdAQAAAACoIUwWq5peN0MdZvw/+YdHu70uKSlJl19+ub755hsvpgMAAAAA1HSWOXQVAwAAAAAAAIBKtX79eg0fPlw5OTlur+nTsp5Wje2gDtHBXkwGAAAAAAAA4HyC/S26vnND1Quy6tujOXI43Vv31Vdf6fjx4xoyZIgsFoZFAt72ww8/qH///kpOTnZ7TdvIYL0ztqP6tHJ/eDMAAAAAAADgbfWD/RTfPVL5JXb9fDLfrTV2u13r1q2T0+lU3759vRsQAAAAQKWKiIjQwoULfR3jP0aMGKGJEyf6OgYAAAAgqWL9Gep16KMO969ScNMOXkwGAAAAAAB8JaBBU0X2uklFKYdUnHbUrTVFRUVatWqV2rRpo06dOnk5IQAAAACgBtpvcjqdbrYfAwAAAAAAAAC4smjRIk2bNk0Oh8OteovZpJn9m+ru3jEymbwcDgAAAAAAAIBLO5PzdMd7h3Umr9TtNUOGDNGaNWsUFBTkxWRA7bZ582bdeOONKigocHvNXy+O0pNDWirAavZiMgAAAAAAAODCrN+TrhnrE1VU5t6zp5J077336oUXXpCJh08BAACAaqNdu3Y6dOiQr2NIkjZt2qSBAwf6OgYAAADgcX8Gk9mipiNmKmbw3aJBAwAAAAAAtYDTqVOfvKLkdfMlp3v3B2azWa+++qruvPNOL4cDAAAAANQwa+hSBAAAAAAAAACVZP78+br77rvdfmkoJMCiJfFxmtaHoa4AAAAAAABAVdGzWag239FZ3ZuEuL3m448/1sCBA5WXl+fFZEDttXHjRl1//fVuD3W1mk165Ormmndda4a6AgAAAAAAoMob0bmhPprcRc3CA91e89JLL2ns2LGy2WxeTAYAAACgMg0fPtzXESRJTZs21dVXX+3rGAAAAIDH/RksgSGKu2uJYoZMY6grAAAAAAC1hcmkmCH3qP30lbIG13VricPh0F133aW5c+d6ORwAAAAAoKahUxEAAAAAAAAAVIKEhAQ9+OCDcjqdbtXHRgRq46TOurZdfS8nAwAAAAAAAOCpqFB/rR3fUbdcFOn2mq+//loDBgxQZmamF5MBtc//+3//TyNHjlRxcbFb9fWD/bRqbEdN7dPEy8kAAAAAAACAytM+qo4+uaOreres5/aat99+W7feeqvKysq8mAwAAABAZakqg11vv/12WSwWX8cAAABALedpf4bAqFh1nr1R9btf6+VkAAAAAACgKgrr1E+dH92koMZxbq959NFHNWvWLC+mAgAAAADUNCanu7/FBgAAAAAAAACc16xZs5SQkOB2/ZWtwvTazXEKDeQFeAAAAAAAAKCq+8e2FD312XE53HzaskePHtq8ebMiIiK8GwyoBd58801NmjRJdrvdrfp2kcFaMaaDmoQFeDkZAAAAAAAA4B02u1N/+yRJb/+Q6vaakSNH6t1335W/v78XkwEAAAC4UA6HQ40bN1ZaWprPMpjNZh09elTNmjXzWQYAAADA0/4MYR2vVNydr8kSFOrFVAAAAAAAoDqwF+Xp8OI7lL3vK7fXPPTQQ3r22We9mAoAAAAAUEOsMfs6AQAAAAAAAABUZ4888ohHLw3d1K2hVv61HUNdAQAAAAAAgGpiyl8a6/X4tgr0c++Ryx9//FEDBgxQZmaml5MBNdvKlSt1++23uz3UtVdsPa27vTNDXQEAAAAAAFCtWS0mJQxrpccHxcpscm/N2rVrFR8fr7KyMu+GAwAAAHBBzGazBg0a5NMMgwYNYqgrAAAAfMrT/gwNe92kdveuZKgrAAAAAACQJFmCQtVu+kpFXTnG7TUJCQm6//77vZgKAAAAAFBTMNgVAAAAAAAAACro8ccf1zPPPON2/dTeMXphRGtZLW522gIAAAAAAABQJQxqX19rxnVQ/WCrW/W7d+/W4MGDlZeX5+VkQM30wQcfaOLEiXI4HG7VD+kYobdv7aC6ge79fxQAAAAAAACo6m6/vLEW39xWAVb32gGsX79eo0ePlt1u93IyAAAAABdi+PDhPj1/0qRJPj0fAAAAtZun/RliBk1V6wkvyGTh+VAAAAAAAPB/TGarWo5NULMbH3F7zQsvvKAnn3zSi6kAAAAAADWByel0On0dAgAAAAAAAACqm+eee04zZ850q9ZiNilhWEuNuijSy6kAAAAAAAAAeNNv6UUa/dZ+peSUulXft29fffLJJwoKCvJyMqDm+PDDD3XTTTeprKzMrfq7esfokatbyGTycjAAAAAAAADAB75NytaEVQdVUOrewNYJEyZo6dKlMnFhBgAAAFRJhYWFatiwoQoLCw0/Ozo6WsnJyfLz8zP8bAAAAMCT/gwms0UtxyYoss8oL6cCAAAAAADV3ZmvVynprVlyOtx7xu65557TAw884OVUAAAAAIBqao3Z1wkAAAAAAAAAoLpZtGiRHnzwQbdqrRaTXr2hDUNdAQAAAAAAgBqgTcMgrZ3QSc3DA92q37p1q0aOHKnSUvcGwQK13aeffqr4+Hi3h7o+OKCZ/nYNQ10BAAAAAABQc/VuGaZ3b+uouoFWt+qXLVume++918upAAAAAFRUcHCw+vfv75OzJ0yYwFBXAAAA+IQn/RlMFqvaTHqVoa4AAAAAAMAtkVeMVutJr8hkce8Zu5kzZ+of//iHl1MBAAAAAKory5w5c+b4OgQAAAAAAAAAVBcfffSRxo0bJ4fD4bLWz2LS4pviNLRjhAHJAAAAAAAAABihXqBVwzo10FeJ2coocD18MjExUYmJibrhhhtkYvok8Kd27dqlQYMGqaioyGWtyST9/doWmtqniQHJAAAAAAAAAN9qXC9AfVuHa9OBsyoqc/386s6dO+Xv768+ffoYkA4AAACApwoKCvTRRx8ZeqbJZNKyZctUv359Q88FAAAAPOnPYLL6KW7KYkX0GGpAMgAAAAAAUFMEx7RTneZdlLnrEzkddpf1mzZtUqdOndShQwcD0gEAAAAAqpH9JqfT6fR1CgAAAAAAAACoDrZv366rrrrKrabygX5mvXFLW/VtHWZAMgAAAAAAAABGyygo0y0r9utAWqFb9Q8//LCefvppL6cCqqdjx47p8ssvV2pqqstak0l6ekgrje0ZbUAyAAAAAAAAoOo4dKZQtyzfpzP5pS5rTSaTVq5cqTFjxhiQDAAAAIAn0tLS1LhxY7cGW1WWq666Sp999plh5wEAAACSZ/0ZzP6Bajv1DYV16uv9YAAAAAAAoEbK3rtVhxZOlKO02GVtUFCQPv/8c/Xq1cuAZAAAAACAamKN2dcJAAAAAAAAAKA6OHLkiEaMGOHWS0N+FpNevzmOoa4AAAAAAABADdagjp/eG9dRbSOD3ap/5pln9Morr3g5FVD9ZGZmatCgQW4PdX1qSEuGugIAAAAAAKBWahsZrPcndFLDED+XtU6nUxMmTNCnn35qQDIAAAAAnoiKitIll1xi6JmTJk0y9DwAAADAk/4MJquf4u58naGuAAAAAADggoR16qt2096U2S/AZW1RUZGGDx+uQ4cOGZAMAAAAAFBdMNgVAAAAAAAAAFxIT0/XNddco/T0dJe1VotJr90cpwFx4QYkAwAAAAAAAOBL9YOtendse7WoH+hW/X333aeNGzd6ORVQfZSWlmrEiBE6ePCgW/Wzr2mh23o28nIqAAAAAAAAoOpq1SBIb9/aUXUDrS5ry8rKdNNNN2nv3r0GJAMAAADgieHDhxt2VkREhK677jrDzgMAAAA86c9gslgVN+U1hXcZYEAyAAAAAABQ09XrcIXa3LFIJovrZ+zOnj2rwYMHu3WHAQAAAACoHRjsCgAAAAAAAADlKCsrU3x8vJKSklzWWswmvXR9a13brr4ByQAAAAAAAABUBVGh/lozrqOahgW4rLXb7Ro9erT27dtnQDKg6ps2bZq++eYbt2pn9G+mKX+J8XIiAAAAAAAAoOrr1KiOVo3toJAAi8va3NxcDRs2TBkZGQYkAwAAAOAuIwetjhs3TgEBrp9rAQAAACqDJ/0ZTGaLWk98SfW7X2tAMgAAAAAAUFvU7z7w3HBXs+vhrklJSRo5cqRKS0sNSAYAAAAAqOoY7AoAAAAAAAAA5Zg+fbq+/PJLt2oThrXUiM4NvJwIAAAAAAAAQFXTuJ6/3h3bQRF1/FzW5uXlaeTIkcrOzjYgGVB1LVy4UK+//rpbtZN7NdZ9fZt6OREAAAAAAABQfXRvEqo3R7eXv9V1u4Bjx45p1KhRstlsBiQDAAAA4I6OHTuqTZs2hpw1YcIEQ84BAAAAJM/6M7Qcm6AGl47wciIAAAAAAFAbRVw8RLG3Pu1W7bfffqsHHnjAy4kAAAAAANUBg10BAAAAAAAA4E8sX75cixYtcqv2gX5NNeqiSC8nAgAAAAAAAFBVxUYE6q0x7RTs7/rRzMOHDys+Pl52u92AZEDV8+233+r+++93q3ZYpwZ69NpYLycCAAAAAAAAqp9esfX08sg2Mptc137++ed66KGHvB8KAAAAgNuGDh3q9TP69OmjDh06eP0cAAAAQPKsP0PT6x5QZJ9RXk4EAAAAAABqs6gr/qomw6a7Vfvqq69qyZIlXk4EAAAAAKjqLHPmzJnj6xAAAAAAAAAAUNXs2LFDN954o1uDFeK7R+qxa1vI5EZjLAAAAAAAAAA1V3Sov9pF1dHGfWfldJZfe+TIEZWVlWnAgAHGhAOqiOTkZA0YMEB5eXkuay9rUVdv3NJOVgsX8AAAAAAAAMD5tI0MVqCfRd8cyXZZu2PHDrVp00ZdunQxIBkAAAAAVwICArRixQqvnjF37lx17drVq2cAAAAAkmf9GSJ7x6tF/GOiQQMAAAAAAPC2em17qSTjhApP7HdZ++mnn+rqq69WkyZNDEgGAAAAAKiC9pucTletwwAAAAAAAACgdsnKylL37t11/Phxl7V9W4dpxWiaygMAAAAAAAD4Pyt/SNPDG5Nc1pnNZn388ccaOHCgAakA37PZbOrbt6+2bdvmsjauYbDW395Z9YKsBiQDAAAAAAAAqre/fZyk5d+fdlkXEhKiH3/8UW3btjUgFQAAAIDy2O12RUdHKyMjwyv716tXTykpKQoODvbK/gAAAMC/edKfIaxTX7W7Z4VMFp4PBQAAAAAAxnDabTr40lhl7/vKZW2LFi20a9cuhYeHG5AMAAAAAFDFrOE32QAAAAAAAADwXyZOnOjWS0N7qqNxAAAgAElEQVStGgTpHzfFMdQVAFDp7lxzWBv2nvXK3mN6RClhWEuv7F3VZRba1DnhB6/t/8XUrmoXSdMbAAAAANLYS6L0W3qhln2fWm6dw+HQ2LFj9csvv6hx48YGpQN85+9//7tbQ13Dgqx686/tGeoKAPC6O987pA17vdMsfcwl0UoY1sore1d1mYVl6vzsTq/t/8Xd3bmPBwAAAP7Lk4NbKjmzWFt+yyq3Lj8/XzfeeKN27typoKAgg9IBAAAAOB+LxaJBgwbprbfe8sr+t956K0NdAQAAYAh3+zMERbdS3JR/MNS1Cjv82p06u3ODV/aOunKMWo5N8MreVZktP1M/3NvZa/t3feILBce089r+AAAAAFATmCxWxd31uvY8NUxFKYfLrT127JjGjh2rDRs2yGSixyQAAAAA1DZmXwcAAAAAAAAAgKrklVde0bp161zWhQZYtPSWtgoNtBiQCgAAAAAAAEB189jAFvpLbD2Xdenp6Ro9erTsdrsBqQDf+fLLLzVv3jyXdRazSa/eGKcW9QMNSAUAAAAAAADUDGaT3L5X27t3rx544AEDUgEAAABwZdiwYV7be+LEiV7bGwAAAPg3d/szWIJC1XbqUlmCQg1IBQAAAAAA8EeWwBC1nbpU1uC6Lms3btyohQsXGpAKAAAAAFDVMNgVAAAAAAAAAP7ll19+0cyZM13WWcwmLbopTnENgwxIBQAAAAAAAKA6sppN+sfNcWoaFuCy9quvvtLcuXMNSAX4RlpamkaNGuXWAONHr2mhfm3CDUgFAAAAAAAA1Cz1gqxaNrq9QgIsLmsXL16s999/34BUAAAAAMozaNAgBQYGVvq+PXv2VLdu3Sp9XwAAAOD33O3PYDJbFHfHIgU1jjMgFQAAAAAAwPkFRbdS69tfkUyux/TMmDFDP//8swGpAAAAAABVidXXAQAAAAAAAACgKigpKdGtt96qkpISl7UP9m+q/m3CDEgFAED14nRKh84UandKvg6eKVRSRrHS8kp1Jr9MhaV2FdkccjqlAKtJgVazgv0tigr1V3Sov5qEBahDdLA6N6qj1g2CZDGbfP1xANQQNrtTe1MLtOtkvg6nF+pEVolOZpcop9imojKHisocsppNCvY3K8Tfoph6AWoaHqBWDYJ0cZMQdYsJVbC/6wfy8Udn8sv0a0q+fk0p0JGMIp3OLVVqbqnySmwqtjlUXOaQxXzu+0GQn1kRdfwUFeqvxvX8FdcwWO2jgtU1JkShbjQcBgCgKqsfbNWyUW01fOleFZU5yq2dO3euhgwZoh49ehiUDjDOHXfcobS0NJd1N3aN1KRejQ1IBABA9fefe68Tef+69you/94rLEBNwwLP3Xs1DVW3mBAF+3P3AqDynMkv1a+nfn8vXPKve2H7v+6F7b+7F7b8617YT43rBSgu8t/3wqHcCwMAcIHaRgbrxZFtNGn1QTmd5ddOmTJFvXv3VnR0tDHhAAAAAPyPkJAQ9e3bV5s3b67UfSdNmlSp+wEAAAD/zZP+DE2vf1BhnfsbkAoAgKqjLOeM8o/9qoLjv6oo9YhKs06rNCtVtqI8OcqK5SgtlslikdkvUGb/IPmFRsg/LEr+9RsruHGcgpu0V0iLrrIEhfr6o7jNYStV4Yn9Kkjeq8IT+1WSeUqlWadVlpP+n8/ssNtk9gs495+AYPnXi/zX545RcJN2qtO0o4KbdpDZ6u/rj+Mxp92mguS9yk/apcKUwyrJOKGSsydlK8iRo7RIjtIimSxWmQOCZQkMUUD9GAU0aKqgRq0U0vJihcZ2kzkg2NcfwzNOp4rSkpR/9GcVJO9TScZJlZw9qbLcM3KUnPvMTof9X5+5jixBdRUY2UJB0a0U3DhOddv1UkBEE19/CgBALRPe9So1GzFTyesSyq0rKSnRbbfdph9++EEBAQEGpQMAAAAA+BqDXQEAAAAAAABA0mOPPaa9e/e6rOvfJkxTe8cYkAgAgOohv8Suzw5ladOBTG07mqPsIpvLNYWlThWWOpRZaNPJ7P99abdekFV9W4fp6rhwDWxfX0F+DFQE4JmsQpv+eTBTmw5k6pukHJXYyh+iZnc4VWJzKKvQphPZJfru+P/9mcVsUs9moRrSIUKDO9RXVGj1exHQKAfSCrVhb4Y+O5SlA2mFLusddqfK7Hblldh1Jr/sf9ZYzCZ1aVxHfVuHaUTnBmrdIMhb0f9g04FM3b76kCFnVaaHr2qmu/vw71UAqIo6RNfRE4NiNXPDkXLrbDabbr31Vu3atUtBQcZ83wOMsGLFCn344Ycu61pGBOmpoS0NSAQAQPV17t7r7Ll7ryPZnt97Kfc/f3bu3quuhnSM0OAOEdx7AaiQA2kF2rDn3/fCBS7r/3gvXKoDaX/883P3wiHn7oW7NDTsXtjXNh04q9vfPejrGB57+OrmursPTfUAoCoa1D5Ct1/WWEt2pJRbd/bsWU2aNEkfffSRQckAAAAAnM/w4cMrdbBrSEiI4uPjK20/AAAA4Hzc7c8Q1rm/YgZNNSAR8F+cTqV8+rpOrH1WDltpuaWhrS9Rp4fXGxQMQE1WePKAMnZuUNbuz1R48oDLeqfNIbutTPaiPJXlnPmfNSazRXVadFFYp75q0HOEghq19lb0CrMVZOvsDx8pa/dnyjm4XY7SIpdr/j3kVAXZKs38399rm/2DVK/d5QrrPEARlwyTX2iEN6JXClt+ljJ/+acyd21Szv5v5Cgrf+i902GXo6xEtvwslWSckA5/958/M5ktCm3TUxE9hqj+RYPlHxbl7fgV4rSVKXvfVmXu2qTMXz6TLT/T5Rp7UZ7sRXlSVqqKUg4r63d/FhjVUuFdByjqijFV8u+4R/j5o1xOh017nxqu/GO73aqPu/N1RfQY4uVUxqiNn33HxJrX96DLY5+qTrOOHq3J3LVJhxbe7qVE3tPshocVM/huX8fwqpgh05SXtEtZuz8rt27Pnj2aM2eOnnnmGYOSAQAAAAB8jcGuAAAAAAAAAGq9HTt26LnnnnNZ1zDET8+PaC2TyYBQAABUcQfSCrXs+9Na+2uGisvKbxzvqZwimz7ck6EP92QoNNCiG7o01KTLG6lF/cBKPQdAzXMko0iv7zitNb+kuxxq4S67w6kdx3K141iu5mw+puGdInRX7xi1jwqulP2rO4dT2rA3Q8u+T9VPJ/IqdW+7w6mfT+br55P5emHrSXVtHKLJvRppWMcIWcze+4dZbrHrIeUAAHhq9MWR+u54rj7YnV5u3cGDB/XYY49p3rx5BiUDvOvUqVO67777XNYFWM16Lb6tQgIsBqQCAKD6OZJRpNe3p2jNL2cq+d4rRzuO5WjOpqMa3qmB7uoTo/ZRdSplfwA117l74XQt++60l+6F8/TzyTy9sPWEusaEaHKvxhrWsYFX74V9LbfY7usIAIAaaPY1LbTrZJ7L79cbN27UihUrdNtttxmUDAAAAMB/u+666zR16lQ5nc5K2W/06NEKDQ2tlL0AAACA83G3P4Nf3YZqPeF50aABRivNTNFvS+9R7qEdvo4CoDZwOpSxc4NSv1imvCM/VfLWduUn/az8pJ91csMLCmnRVY2umayIS4bJZPbt+xf5x3br9KevK/OnT1wOsPSUo7RIWb9uUdavW3Rs9WOq3+1aRV81UXXjLq3Ucy5EUeoRnf70daVvX+NymKu7nA67cg/tUO6hHTr27hxF9ByumEF3KbhJ+0rZ/0KV5aYr9cuVStv6lspyy39HzhPFaUk6/WmSTn+6RPXa9VLM0HtVr33vStvfKPz84dqpja+4Pdi0pqnNn722sxXm+joC/ozJpFbjF+jXOVerNDut3NJ58+ZpyJAh6t27+n1/AgAAAAB4jsGuAAAAAAAAAGq1wsJCjRs3TnZ7+Q0SLWaTFt8Up4YhfgYlAwCgajqWWaxnv0jWxn1nVUl9Y8qVV2zX8p2pevvHNN3cvaFm9GuqqFB/7x8MoFrJL7Hr6c+TtfKHVK9+bbI5nFr7a4bW/pqhm7o11OMDW6heUO199GLzwUwlfJ6sw+lFhpy3OyVfU9//TfO3nNDjg1roqrhwr5xDA30AgLc8PSRWu07m6ejZ4nLrnn/+eY0YMUK9evUyKBngHU6nUxMnTlRWVpbL2icGx6pDNEPkAAD4b/kldj392XGt/OG0Afde6Vr7a7pu6hapxwfF1up7LwB/bvOBs/+6Fy405Lzdp/I1dc1hzf8iWY8PitVVbesbcq7Rcotsvo4AAKiBrBaTXrkxTtcu/kV5Ln4HOn36dA0YMEBNmjQxKB0AAACA32vcuLEuuugi/fRT5Qz+mDRpUqXsAwAAAJyPu/0ZTGaL4qYsll/dhgYlA87J+G6tkt5+RPaiPF9HAVALZP68WclrE1SUctiQ8/KP7dZvr0/VifXz1eKWxxXe9SpDzv29wpRDSl4zV1m/bjHkPKfdprM/fayzP32seu16qdmNf1NIbDdDzj4fe3G+kt9/WqlbV8qbD/c6HTZlfLdWGd+tVcNeN6nFqMdlDa7ntfPK4ygp1KnNi5WyebEcpd59pzzn4HblHNyu+t0Hqnn83xXYsLlXz6ss/PzhWkHyXp3c+KKvY/hEbf7skOwMdq3S/EIj1GbyQu1/Ll5Ox5/fczgcDk2aNEm7du1SUFCQgQkBAAAAAL5AlwUAAAAAAAAAtdrcuXN1+LDrh6PvuSJGl7eoa0AiAADc9/at7dWvdZghZ9kdTi3alqLnt55Uqc1hyJm/Z3M4teqnM9q4L1NzBjZXfPdIj/eoH2zVqccv93jd0CV79PPJfI/XATDGtqM5undtok7nlhp67ppf0rU1MVvPj2it/m2M+VpcVaTlleqRjUe1+WCmT84/llms2945qMHt62vBiFaqG1i5j7/kFNNAHwDgHSEBFv3jpjgNXbJHZfY/f3Hfbrdr8uTJ+vnnn+Xn52dgQqByvfPOO/rnP//psm5IxwiN6RFtQCIAACru7Vs7qF+bcEPP3JaUo3vXHvbBvdcZbU3M0vPXt1H/Cn7m+sF+OvXEXzxeN/T1X/XzSRoaAVXRuXvhJG0+cNYn55+7Fz6gwR0itGBE60q/F/Y17qUBAN7SPDxQ84e31pT3DpVbl52drWnTpmndunUGJQMAAADw34YPH14pg127dOmiHj16VEIiAAAA4Pzc7c8QM/Qe1W3r+fucqB7a3/e2wjr183WMP7AV5ijprVk6u3ODr6P8gTWkvi5/45TH6/Y8NVT5ST97IRGAylCanaajbz+izJ83++T84jPHdPDl21T/osFqNX6BrMHe74nktNt0YsMCpWxaJKfdN8875Rzcrj1PDVN0v9vU/MZHZA4INvb8A9uU+Ma9Ks06bei56dvXKHvvVrWe8LzCOvc39Oycg9uVuPQewz9z5s+blbP/G7UcN18Nel5n6NmeqKo/f1Q1DlupEpfe67OvHb5Umz87zrEV5fg6Alyo2/ZyxQy9Ryc3vFBu3cGDB/XUU09p7ty5BiUDAAAAAPiK2dcBAAAAAAAAAMBXDh8+rOeff95lXadGdTT9iiYGJAIAoGpKzy/TyGX79OznyT4Z6vp7ucU23b/+iO5dm1juICQAtcPqXWc0+q0Dhg+3+Lf0/DKNW3VQK39I88n5vrDjWK6uWfyrz4a6/t4nBzI18B97dDCtsFL3zS22V+p+AAD8XqdGdXTfla7vGvft26cFCxYYkAjwjpycHD344IMu6yLq+Onpoa0MSAQAQPWyeleaRr+1z7f3Xu8c0MqdqT45H0DVsuNojq5Z9IvPhrr+3if7z2rg4t2Vfi/sa7kMdgUAeNGwTg10XecGLuvWr1+vDRtoNAoAAAD4ynXXVc5wgsmTJ1fKPgAAAMD5uNufoU6zTmoydLoBiYBzcvZ/o91/789QNQCGyD20Q78+fo3Phrr+XuauT7TniYEqPHnQq+eUZqdpX8JIndr4su+HEzodSt3ypvbMHaritCTDjj3z7WodeGG04QNO/60sN10HXx6ntC9XGnOg06nktQna/1y8zz6zvaRAv712l46uelRy+rbPyfnw84f7Tqybp8JT3v06VVXV5s+Oc+yFub6OADc0GTZdIbHdXNbNnz9fBw4cMCARAAAAAMCXGOwKAAAAAAAAoFZyOp268847VVJSUm6dv9Wsl65vLavFZFAyAACqlkNnCjX49V/144k8X0f5g/d3p+uWFftVWFr1XsAAYIyXvz6lBz48IpuPhzzbHU49vDFJC7484dMcRli964ziV+xXRkGZr6P8x/GsYt3w5j79mlJQaXvm0EAfAOBlU/vEqFtMiMu6J554QkePHjUgEVD5Zs2apdOnXTdueHZYKzWo42dAIgAAqo+XvzqpB9YnVpF7ryNa8GWyT3MA8K3Vu9IUv2Jf1bsXXrZHv6bk+zpKpckptvs6AgCghnt2WCtF1/V3WTdt2jQVFFTe714BAAAAuK9r166KjY29oD2CgoI0evToSkoEAAAA/JG7/RnMVn+1nviSTBarQclQmznKSnRs9Rztf36USrNSfR0HQC1w5tvV2v9cvMpyM3wd5T+K049r37wbVHD8V6/sX5R6RHvmDlbekZ+8sn9FFaYc0p65Q5R/9Bevn3Vq48s68uYDPh9q63TYlfT2wzrx4QLvnmO36bcld+vUxy9XiYGqqV8sU+Ky+6pEFomfPzyVl/iDUv75mq9j+ERt/uz4P7bCHF9HgBtMZqtaT3xRZr+AcutKS0s1ZcoUOZ2+fd8HAAAAAOBdDHYFAAAAAAAAUCutXLlSW7ZscVk3s19TtYsKNiARAABVz2/pRbp5+X6l5JT6Osp5fXc8VxPePagyHze3B2C8d35KU8IXVWugxPNbT2rFzpr78tWKnamaseGI7I6q9zU3u8imW1bu17HM4krZL7eIwa4AAO+ymk16aWRrBfqV/whnUVGRpk6dalAqoPL88MMPWrJkicu6m7tHanCHCAMSAQBQfZy79zru6xh/8PyXJ7Rip+uB7QBqnhU7T2vGh4lV9154xb5Kuxf2tdxi7qUBAN5VN9CqhGGtXNYlJydr7ty5BiQCAAAAcD5Dhw69oPU333yzwsPDKykNAAAA8Efu9mdoOmKmgpu0MyARaruC5H3a88Qgnf5sicRQHQAGSP1yhY4snyGnw+7rKP/DVpCt/c/douIzxyp13+K0o9qXcEOVHV5pK8zV/gW3eG2orSSlff2OktcleG3/iji54XmlfrnCK3s7HXYdWni7Mr5f75X9Kyp9+/tKXHa/r2Pw84eHHKVFSnxjepUZymuk2vzZ8Ue2wlxfR4Cbghq1UZPhrr/XfP3113r77bcNSAQAAAAA8BWrrwMAAAAAAAAAgNFyc3P10EMPuazrFhOiO3o1MiARAABVT3p+mUat3K+MgjKP11otJl0UE6JLmtXVJc1C1SQsQGFBVoUFWWU2SVmFNmUX23S2oEy7TuZr5/Fc/XAiT3nFnr/E9E1Sjh7bfExPD4n1eC2A6mnLb9l6eONRj9cFWM26rHldXdGqntpFBatlRJDCgiwK9reozO5UXoldJ7KKdTi9SNuO5mhrYrayCj1rpD77k6OKCQvQVXE1qynWx/vP6m+fHK3Q+2X+VrN6NA3Vpc1DdUmzUDWqG6DwIKvCg6wqKnMos6hMWYU27U8t1PfHc7XjWK5O5ZR4fE5OkU3jVx3UxsmdVcff4nnQ38mtwPcjAAA81bpBkO67some+bz8YfWbNm3Sxo0bL7hxJ2AUp9Opu+66S3Z7+T9TRYb66/FB/FseAIDf2/Jblh7+6IjH6wKsZl3Woq6uaBWmdlF11DIiUGFB1t/de9l0IqtEh9MLtS0pR1sTszy/9/o4STH1AnRV2/oe5wNQPX28/6z+9nHSBd4L19UlzeqqUT1/hQf5nedeuEDfH8vVjmM5Fb8XfueANt7R5YLvhX2Nwa4AACNc1ba+bujaUB/sTi+3bsGCBRo/frzi4uIMSgYAAADg34YPH65XXnmlwusnTZpUiWkAAACA/+Nuf4aQ2G5qdO0dBiRCreZ06NTmxTqxfr6cNs/fgQaAijj708c6+s7fKjTI0Wz1V2jrHgqNu1ShrS9RQHgjWUPCZa0TLkdpkcryM2XLz1Lhif3KPfy9cg/tUEnmKY/PsRXm6OAr49V59kZZAup4vP5/98vVwZdvU1lu+b9jPh9LYIjqdeij0NaXqE7TDvKv31h+dRvK7B8os8UqR1mJ7CWFKstJV8nZEyo4sV+5h3Yo7/D3cthKPTrLXpSng6+MV5dHN8mvXqTHWcuTvWeLjr71sMfrzH4Bqht3mep1vELBMe0UFN1SluAwWQKD5bSVyV6Up+KMEypKOaycA9uUvW+rbPlZHp1x9J3ZCqgfo/CuV3mcr9x9V81W1u7PKrQ2MLKFwrsMUGibSxUU3Ur+9RvJElBHTodd9qJcFWecUOHJA8re86Wy926Vo7TIo/3Tt69RcJN2anztlArluyD8/FEhx997stIHTlcXtfmz44/sDHatVhoPvFOZuzYp/+gv5dbNnDlTI0aMUGhoqEHJAAAAAABGYrArAAAAAAAAgFonISFBaWlp5dZYzCYlDGspi9lkUCoAAKoOm8OpO947rNO5nr30ElHHT2N6RGncJVGKDPX/07rouv6Krnvuz/8SW0/qE6NSm0Pv/ZKuRdtSdDyz2KNzV+xMVZ+W9TSoPQ3lgZouo6BM09clyu5w/8XHhiF+uvMvjRXfPVJhQed/TMJqNinIz6zIED9d3DRUoy6KVJndqY/2ndWr35zSoTOFbp3lcEr3rUvUF1O7KTLEz+2MVdnBtELdszbR43dNo+v6a2yPKI3pEaWIOuf/7yLUYlFooEXNw6VuMSEaffG5Fya/TMzWa9tS9E1SjkdnHk4v0rwvTujxQS08C/tfcmigDwAwyJS/NNaHe89qf2pBuXUzZ87UwIEDZbXyyCeqvnfeeUc//vijy7rHB8WqbiB/pwEA+LeMgjJNX/tbBe69YhR/UZSLey9/RYb4/+veK+pf914ZevXrk57fe93dTZEhf37/D6BmOJhWqHs+OFyxe+FLojWmR7QH98JRkqQvf8vSa9tT9M2RbI/OPJxeqHlfJOvxQbGeha1icorsvo4AAKgl5gyK1Ze/ZSuz8M+bjJaVlWnWrFlau3atgckAAAAASNKVV16p8PBwZWV5NsRBktq1a6devXp5IRUAAADgXn8Gk9milmMTZDJbDEqF2qgk44QS37hXuYe/93UUALVI4cmDSlx6j8dDXf3DoxXVd6yirhwjv9CI89ZYgkJlCQqVGjZXSGw3RV4xWpKUvfdLpfzzNeXs/8ajM4tSDuvE2nlqMepxj9adT9KKmSpKPeLRmsCGzdXomsmK7B0vs3/Qn9aZ/YNk9g+SX2iEgpu0U3jXq6Wh98pWmKuM7z5QyqbFHg23Lc1K1W9L71WHB971KG95ynIzlPjGdDkd7j/b5Ve3oRoPvFORveNlrRN23hqTv/XcZ68XqdBWFyuyzyg5bWU6++NHOvXxqypMOeTeYU6HEpfdp25PfFFpA23PfPOu0r5c6fG6sM79FTP4btWNu/S8f26yWGX2ayi/ug0V2vIiRV3xV9kKc5X25XKlbF4smwdDD5Pff1p1mndRvXbG3YXy80fF5Oz/WqlbPf/7VBPU5s9eo5lMsgSGeLzMVuhZzwz4lslsUctbn9GeuUPL/RkgLS1N8+bN05NPPmlgOgAAAACAUeiIBAAAAAAAAKBWOXXqlF588UWXdeN7RqtTozoGJAIAoOpZ9G2Kvj/u/ssPkjSmR5Qeu7aFgv3NFTrT32rWmB5RGnVRpN74LlVzPzvuUQP7v286qn6twxToV7HzAVQPD25I0tmCP28w+9/G9IjS7KubKzTQ84YAfhaTRnZpoOEdI7R4e4rmbznh1telzEKbZnx4RCv/2s7jM6uaUptDd3/wm4rLHG6vMZuk2y9vpFkDminAWrGvyf1ah6lf6zB9dSRb93yQqAwP/jd/c2eqbu7eUB2jK/7vudxi916y/O1vl1b4+x4AANK5IVtPDYnVyGV7y+3tcPDgQS1dulRTpkwxLhxQAcXFxZo9e7bLuitahWl4pwYGJAIAoPp48MNED++9ojX7mhYXcO/VUMM7NtDibac0f0uym/deZZqxPlErx3Tw+EwA1UepzaG73z9cgXvhxpp1VfOK3wu3CVe/NuH6KjFb93xw2LN74e9P6+bukRd0L+xrucU2t+p+m32Zgv1pggwAqLj6wX56cEAzzfqo/Oa769at05YtW9S/f3+DkgEAAACQJD8/Pw0cOFDvvuv5AIrJkyfLZDJ5IRUAAABqO3f7M0T3H686zToZkAi1Vfr293V01WzZi/LcXmOyWOW0u/c7eQA4H4etVL8tuVuO0mL3F5nManT17Wo2cpbMfgEVOjesUz+Fdeqn7H1fKXHpPSrLzXB7beqWN9XwLzerTrOOFTpbkjJ3bdLZHze6XW8yW9Vs5ENqdO0dFzTk3RpcV9H9xyvqijE6ufFFnfr4FbcHq+bs/1rpOz5Qw8tvqPD5v5e08kGV5Z11uz7qyjFqftPsc4N6PWSy+qnBZSMVcclwpfxzsU6sm+/W57blZ+rI8hlqd++FD5AsyUjWsdVzPFoTUD9GLcfNV1jHKz0+zxpcVzFD7lFkn1FKeusRZe76xK11ToddiW/cq+5zv5I5INjjcz3Fzx8VYy/KU+Ky+z0eiF0T1ObP/t8uf8P9Ad2+VJJxQr/8vb8cJYXl1kX2GaXAyOYe7293c3j1pYt+M+TrGlyr07yLovrdptQvlpVbt2DBAk2aNEnNmjUzKBkAAAAAwCh0lwQAAAAAAABQqzzyyCMqLHTxAFWIn2b0a2pQIgAAqpaks8V64auTbteHBli08q/tlDCsZaUMt7OYTZrcq5HeHdte4cFWt9el5JTqje9PX/D5AKquj/ef1T8PZrpVazGblDCspRKGtazQcIvfs1pMmtHXosYAACAASURBVNYnRstHt1WQm8OjvzicpQ173X9Zr6r6x/bTOpBW/r+ffq9+sFVrxnfUY9e2qHDz/t+7slWYPruziy5q4v5LjHaHUy9sdf/72Pm400DfajYx1BUAUCl6NgvVzd0iXdY99thjys117wVOwFdefPFFHT9+vNwaf6tZc4e0NCgR/j979x0edZX9D/w9JZPeeyGNBEIRCL0oUhSRoiKsFV3Bsvuzrrr6ta0ouApfKyK64oo0FQVRRFRAQJpKkBKCgiSQAullUibJ9Pn9Ef2uumY+d5KZz8xk3q/n2Wf32Zzce4bAlJN7zyEiIu+w9QdH6169seSK3s6pe41Pwaob+jlY9xJvDkZE3udfBypwsrpVOD4qyA8b5l2ABVMznFMXzorAjjuHYGgvB+vCu891e293Eq9Lc6grERF1343DEzBM4LX20UcfhY1NJomIiIiIZHfFFVc4/D0ajQZz5851QTZERERERGL9GfzC49Drqr/LlBH5GrNOi9Ov34Git+8THqqmUKrQ68oHEXfR9S7Ojoh6usov/4W28yeF49UhURjw8AakX7ugy0Ndfy1iwMUY9NQOhGYOFf4em9WC81te7vKeNqsFpRv/KRzvFxqNAf+zEUmX39mtoa6/plD7oddVDyHnvtUO/Tme+/h/YbN2f6Bm/fdb0XB0m1CsQqlC5s1LkHnzki4Ndf3NWio1kqfdg773rIJSEyj0PdrjO1Gf92m39gWAs2sfg0WvE44P6zsGgxZs69JQ11/zC4tF37veQuqcxwCFQuh7jA0VOLf5xW7tK4XvP7qn+L0nYNT6Zv8XX37sXslmw5lVD0oOdfULj0Pan/7RpS3M7dL3ghVKNYe6epjUWQ9DE5lgN6a9vR0LFiyQKSMiIiIiIiKSEztMEhERERERERERkc84duwY1q1bJxn31NT0bjfBJSIi8lb/u6sMRrNVKDbAT4lVN+Zgcp9Ip+cxLiMc71yfA7VK7PIFAKw8WAWzlQ0liXoii9WGJTvFm7I/My0Dc4fHOzWHSdmRWD4nG0rBp6UlO8u8+jmpVmfC8v3lwvHhgWqs/3N/jE4Lc2oecaEarLkxB2lRAcLf8+WpBhTVtXdpP6sN0BktknH8zEhERM70xJQ0hAWo7cbU1NTghRdekCkjIsfV1dVh8eLFknF3XpiM3jFizSWIiIh8QUfdy/5g9F97Zlom5o6w3xzCUZP6RGL5n/qK172+KvXquhcRda6jLnxeOD48UI31twzA6HRX1IX7O1gXru9yXdjdWJcmIiK5KRXAszN6S34GyMvLwwcffCBPUkRERERE9H8uv/xyaDQah77n6quvRmxsrIsyIiIiIiJfJtqfIf26p7o9yIzojzSe+Br5T05C/eGtwt/jH5WMAQ9vRMoVDzhtwCAR+SZTcy3Kv1guHK8OCkf/B9cjrM9op+ahCY9Dzn1rEBCXJvw9DUe/RHtlUZf2qzv4MfTVxUKxCpUafe58C6FZI7q0l5SIgROReZP0XZVfGOrPo+67T7q1p81qwbmPlwjHZ9zwDOIvntutPX8vctAkZN+xHFCIjQ8o+3hJtwbaNp36Bo0ndgvHh+eMRb/734U6xHl9RpIvvwsZN4oPFK7c8W+0V5x22v6/xvcf3dNwdBtqv9loN0apET8f6k18+bF7q+q976Lp5AHJuIwbnoE6qAvnpW1WoaHZqiB+nvY0qsBQoWG+a9asQX5+vgwZERERERERkZw42JWIiIiIiIiIiIh8xlNPPQWr1f6gutyUEFwxMEamjIiIiDzLTzVt+OyHeqFYhQJ469o+Th/g92sjUkPx5BTxC0ZVzUbsPK11WT5E5D4fHK3FGcGG7LeMTMDNI5w71PUXl+VE4YEJvYRiSxr0eO9wjUvykMO/v6uEziDdSB4A/FQKvDu3HwYkBLskl8ggNdbcmINgjdhFNpsN2Histkt7tejNsAnMJZEavkdEROSIqCA17hufLBn38ssvo66uToaMiBz30ksvoampyW5MbIgf/t846b/rREREvuSDozXida9Ribh5pHOHuv7ispwoPDAxVSi2pEGP976vdkkeRORe//62wrG68E39XVsXntvfwbqwd9bkWZcmIiJ3GJgYjDlD4iTjnnzySVgsYu8PiIiIiIjIOcLDwzF+/HiHvuf22293UTZERERE5OtE+jOEZOYiZsQVMmVEvsJq1KP43Sdw8pW5MDaJnweIHj4dg57+CqHZI12YHRH5isod/xYaxgYACrUf+t3/LoJTB7gkF3VIJHLuXQOVv+B5LZtNcrhgZ6r3vCscm/anJxDWZ1SX9hEVO+4axF14nXB8zf713dqvdv8HaK86IxSbMOkWxE+8uVv7dSYq9zL0uuIBoVh9TQlq9rzX5b0cGWQbEJeOvnevhNLPv8v7dSZh4p+RfPldQrE2qxnnP1vq1P35/qP7zLoGnF3zsP0ghRLxE1zz78adfPmxeytDQzlKP1wkGRc5ZAqih0/v0h7m9haIHBLu0tBYcrmYkVciNGu43Rir1Yqnn35apoyIiIiIiIhILrzNS0RERERERERERD7h2LFj+PTTTyXjnrwsHQqFDAkRERF5oLXfVws1DQaAa3PjMCk70rUJAbh1dCI2Ha/DsXKxS0+fn2zAZTlRLs6KPFmZ1oC131dBAQUeu1RsEAF5NqsNeG1fuVBselQAnnBgIHRX3DM+GV+cbMAPVa2Sscv2nceNw+KgUnrXhwy9yYp1DgznuPuiZOSmhLgwIyArJhDzRyVgmeDfhc0n6vDIJY4/BzTqzUJx4QFiwwSIiIhE3To6EWu+r0Zpg77TGJ1Oh6VLl2LRIunLokRyamhowGuvvSYZ9/DkNIT4830UERHRL6w24LW954ViO+pe6S7N557xKfjix3rxutfweK+re5FzlWn1WHuoCgqFAo9d6tq6LLleR124Sjj+7otSkJsS6sKMfq4Lj07EMsHnys0FdXjkEu/7uyhel+ZVUCIicq7/mZyGz36oR5ux88GthYWF2LBhA667TrxJLhGRu+n1epw+fRqnT5/GuXPnUFlZierqalRXV6OyshI6nQ7t7e3Q6/UwmUzQ6cTOJhIREXmyyZMnuzsFIiLqYfz9/REUFASVSoWwsDBoNBrExcUhMTER8fHxiIuLQ0pKCvr06YM+ffogOjra3SkTkQuI9mdIv+ZJsEEDOVvhirvQcPRL4XilJhDp1z2F+IvnujArIvsMdWWo+notFFAgdc5j7k6Huslq1KN6zzrh+ORpdyMkM9eFGQGBiVlImDwf5Z8vE4qvy9uM1NmPOLSHof48WgrzhGI1kQlImDTPofW7KuXKB1D7zUbYrNJnrZpPfwdjUw004XGOb2Szovxz6fsxQMeA07Q/PeH4Hg5InnEPGo5+gdayHyRjz3++DHEX3wiF0rF7O61lJ9BS9L1QrEKpQp+/vgFVoOvODva6+n/QXHRI6O9h/aEt6HXVwwiIc865Qb7/6L6zax6BqbnObkzcuGsQnNJPpozk48uP3VudXfWQ5AB3VWAoMuc+1+U9zK2NQnGqwPAu70EupFAg7ZonceK5K+0O6P3kk0+Qn5+PwYMHy5gcERERERERuRJv8xIREREREREREZFPWLhwIWwSk+qm94/GyFTXNp0kIiLyVCaLDZ8U2D8k/ouIQDUel7FB973jkzH//Z+EYned1ro4G/JENhuwu6gRq/KqsLtQC6sNuH5oFy5bkUf6uqgRpdrOB5z92sLL0xHop3RpPmqlAgunpWP2SulLcBVNRuwsbMSUvq4fhO1M23/SorFdrJF875hA3HtRsosz6vDXcUlYlVeFFkPnjYV/UaY1oLRBj7SoAIf2aNZLrw0Aof48ckNERM7lp1Lg4Um9cNfGQrtxr776Ku6//35ERUXJlBmRtJdeegktLS12Y7JjA3FNLj+nERER/drXRVrxute0TJnqXpmYvbJAMraiyYCdp7WYksP3pb6mox6vxaqDlb+qx8e7Oy1ygu0/NThWFx6f4uKMOvx1XDJWHawUrAvru1QXdrdmwcGuoQGONdwjIiKSkhCmwe1jkrB0zzm7cQsXLsQ111wDpdK1n0mIiLqirKwMeXl5yMvLQ35+Pk6fPo2ysjJYrVZ3p0ZEREREROTVDAYDDAYDAKCuruO+2alTpzqNj46ORt++fTFgwACMGDECI0aMwMCBA6FW89w9kTcT6c8QPXw6QrNHypQR+RJzW5NwbHCv/sj+y+sITMx2YUZEnbDZ0HhiN6p2rYK2YDdgsyLuouvdnRU5gfbYduFhbIEJvZE8/V4XZ9QhaepfUbV7FSzt9u9wAB3DhvU1pQ4NvWz8YY9wbOKlt0Ohkuc9v39UMqKHT0dd3mbpYJsNzacOIGbULIf3aTzxNfS1pUKx6dcvhFIT6PAejlAo1Ui/fiF+WDJbMtbYUIHG4zsROWSKQ3tU7V4tHBt/8VwEpw1yaH1HKZQq9L7lBRxfcAmsZqPdWJvVgoptbyDzpsVO2ZvvP7qn7rtNqD+81W6M0j8IvWY9jCYHnmu8gS8/dm9Vs+99ode8tNmPQROZ0OV9LG3NQnHqIPY99FShvYchKncqGo580WmMzWbDokWLsHHjRhkzIyIiIiIiIlfiDSoiIiIiIiIiIiLq8Y4fP45PPvnEboxaqcCjl6TKlBEREZHn+a60Gdo2sabBc4fHIypIvov1U/pGISNarAFzQ5sZxfVijfDJ+zW2m/GvAxUY9+pR3LTuJHae7mgiTz3Luu+rheJyU0IwuY88A1RHp4VhbEa4UOyavCoXZ+N8W06IDfoGgHsuSoZGLc/xk4hAtUPDwPLKpC+m/p5oA/1wNtAnIiIXuHJgDAYnhdiNaW5uxiuvvCJTRkTStFotli1bJhn35GUZUCsVMmRERETkPdYdEqsb5aaEylf3Sneg7iWYP/UMHfX4coxbehg3rf2R9fgeyKG68PgUD64LizVA8iTN7dJDawEgPICNz4mIyPnuvDAZ0cF+dmNOnjyJDRs2yJQREVHnbDYb8vPz8dJLL+GKK65AQkIC0tLS8Kc//QnPP/88tm/fjpKSEg51JSIiIiIicoP6+np88803eOutt3DHHXcgNzcXYWFhuPDCC/Hwww9j+/btaG9vd3eaROQAkf4MCqUaqVc/KlNGRH8sYfJ8DHxiK4eqkezMrY2o2PYvHH1sHE6+chO0x3cCNtane5K6Q1uEY5On3wOlWuPCbP5DHRyBuHHXCMe3FOU5tH7LafH4qKGXO7R2d0XmXiYc21zo2OP+RfWedUJxIZm5iBw0uUt7OCqsz2iE54wViq3avcahtW1WCxoOfy4Uq1RrkDzzbw6t31WBCb0RP+Fmodi6g5/AajK4OKPf4vuP/2bUVqH43Sck45Kn3glNRLwMGcnHlx+7tzJqK1HywdOScaFZIxA/4aZu7WUWHOyqChS7w0HukTr7USiU9s9xb9q0CcePH5cpIyIiIiIiInI1DnYlIiIiIiIiIiKiHm/x4sWw2ex3FL16cIzwwDgiIqKe6MDZJuHYOYNjXZjJf1MogIt7RwjH51foXJgNeYL8Ch3u/6QIQ184jEXbS1HawGG+PVVNixFfndYKxd55YbKLs/n9fklCcXvONOJ8o7wXwrrDYrVhn+BrQoi/CjMGRLs4o9+amiM+xOSHqlaH12/SizXQDwtkA30iInI+hQJ4YGKKZNyyZcug0/FzD3mG5cuXo7nZ/gXjISkhmCTTMDoiIiJv4dl1L7H99hRpvaruRV2TX67D/R8XYujzh7BoWwnr8T2UxWrDvjONQrEddeEYF2f0W1P7idehu1IXdrcmvVkoLoyDXYmIyAVC/FX46zjpzwDPPfecDNkQEf232tparFy5EjfccAMSEhIwZMgQPPjgg9iyZQuqq6vdnR4RERERERHZ0d7ejgMHDuD555/HZZddhqioKEyePBnPPfccCgoK3J0eEUkQ6c8QM+ZqBMRnyJQR0W+pQ6KQc+9qZNywSLZhikQAoCvJR9HK+3H4waEo/XAR9DWl7k6JXMBmtaDp5D6hWFVACKKHz3BxRr8VmTtVOLb13A8Ord1eWSgUpwmPQ0BsmkNrd1dY1gjhWH1lkcPrG5tqoM3/Sig2+fI7HV6/O5IE92v8YQ8M9eeF120pzIO5VezsYMzoWdCExwmv3V3J0+8Weo23tLdAm79Dhoz4/sOeM6v+DnOb/f4EmshEJE39q0wZyceXH7u3OrvmYVjaW+zGKNR+6H3L8x2XfrvB0i7Wt0MdFNatfci1AhN6I2b0VXZjbDYbFi9eLFNGRERERERE5Goc7EpEREREREREREQ9Wnl5OTZu3Gg3RqVU4J6LpAcmEBER9WTfldofwvKLgYnByI4NdHE2/21shvgh5DItG8n3RAazFRuO1WL6igJMe7MAHx6thcFsdXda5GLbTmlhsdpvAgAAUUFqTJF5UNTFvSOQECZ96cpqA7442SBDRs5RUNmKFoPYcNMrBkYj0E/eoye5KaFQK8UuwJzrwutBc7toA32Vw2sTERGJuKRPJIYkh9iNaWxsxDvvvCNTRkSdMxqNeP311yXjHpiQKkM2RERE3mXbqQbBupcfpvSNkiGj/7g4K9KBule9DBmR3Drq8TWYviIf097Mx4dHa1iP7+EcqwvH9Li6sLs1Cw92ZV2aiIhc45aRCYgO9rMbk5+fj127dsmUERH5uoqKCixfvhyTJk1CYmIibr31Vrz//vuoqalxd2pERERERETUDXq9Hrt27cJjjz2GQYMGoW/fvnjsscdw+PBhd6dGRL8j0p9BoVQhZfo9MmVE9Fvh/S7E4IU7ETn4EnenQj7CajKg9psNKHhmOgoWTUPtgQ9hNXnfGRUS11paIDnw7RfRI6+AUiNv74XQzFwolGqhWEPtOYfW1teKDSsOzhji0LrOoIlKgl9YjFCsvs6xxw0A2qPbYLNKn6NTh0QhcvAUh9fvjogBF0MTmSAdaLOi4cgXwutqC8TPAcSO/ZNwrDP4hcUiath0odjab+y/d3UGvv/oXPWedWg8sVsyLu2af8j+fOlqvvzYvVXttxuhPS793Jcy/V4EJmZ3ez9zm1gvJxUHu3q8lJn3S77/2rBhA86dc/w9CBEREREREXkeDnYlIiIiIiIiIiKiHu21116DyWSyGzPrghhkRgfIlBEREZFn+qmmXShuWK9QF2fyx3KTxfctb+JluJ6kVKvHM9tLMezFw/jbx0U4Vq5zd0oko22nxAaizhoUC7VKrKm7sygVwOxBsUKxX3rTYNeKVuHYsenhLszkjwX6KZEa6S8U25XXg2a92PCCMH+xS69ERERdcd/FKZIxr776KqxWDlYi91q/fj0qKyvtxlyQGIJJ2ZEyZUREROQ9xOteMe6pew2OE4r9koNde5SOenwJhr1wCH/bVIhj51mP9xUFFeI/67EZ7qoLi53rKW/0vt8TCtelA1iXJiIi1wjSqHD7mCTJuKVLl8qQDRH5Kp1Oh3feeQfjx49Hr169cPfdd2P37t2wWMTeLxMREREREZH3OX36NJ577jkMHz4cGRkZWLBgAYqLi92dFhFBrD9DzKhZCIjPlCkjog4KpRqpsx9B/wffhyZc7HwTUXfoa0tRuuEZHP77MBS9/Tfoio+5OyWSSWtpgXBseM5YF2byx5SaQPjHpgrFGhrKHVrb0i52lkx0wKqz+YVEC8VZ2pocXrvh6DahuNjRs6BQyXyWS6FE7OjZQqENR74UXlZ39qhQnF9oNML6jBZe11niLrxWKK7px70uG7jN9x/2GerKUPrBQsm4yEGTEDPyShkyko8vP3ZvZW5tFPqZBcRnIGna3U7Z0yI42FUdyMGuni4gLh3RI6+wG2M2m/HGG2/IlBERERERERG5Em/zEhERERERERERUY/V1taGFStW2I1RKoB7xyfLlBERETlq26kGzH//J6HYsAA19tw9GHGhGhdn9Vsmiw2XvpGPwlqxwajzRyVg0bQMF2flmBqdCc16s1Bs//ggF2fzx2KCxX+1qTOwmZu3s9qAr4u0WJVXjd2FWlht7s6I3EFnsGB/sdjFuUv7umdQ1OQ+EVi+X/pS46FzLWhoMyMqyPOPaRTWib2eAcDAxGAXZtK55HB/nK3XS8bpjI6/HjQJvh6GBagcXpuIiEjUpX0iMTAxGCcqOx+4XlRUhK1bt2LmzJkyZkb0WyKDHO6f2AsKeWfRERFRF2071YD5750Uig0LUGPPPbnuqce/flS8Hj86EYumeV4DSZ3Bgv1nG4ViL+0b5eJs/tjkPpFYvu+8ZNyhshY0tJkQFeQnQ1bkClYb8HWhFqvyKlmP92GFtW3CsQMTQ1yYSeeSI/xxtl76+b8rdWF3E69Le/7vGIiIyHvNG5WIfx0oR2N7569Ln332GYqKipCVlSVjZkTUk9lsNuzfvx8rV67Exo0bodOJNQonIiIiIiKinqekpAQLFy7EokWLMGHCBMybNw+zZ89GUJB77rER+TKR/gxQKJE84155EnKThqPb8NNr84Vi1UFhGPzMHtkHfdnMJuQ/dSnaKwuF4hMmz0fGDYtcnJXrBMSmIfsvryMkY4i7U6GezmaFtuBrVO9eBW3BbsBmdXdG5Aaiz60AEJw60IWZdM4/Ohn66rOScRa9+O9fbFYzbFaxs0zq4AjhdZ1JHSK2r9UofQf51yx6HZpO7ReKjRx8qUNrO0vEoMko/2K5ZFxL0SGYdQ1Qh0icQbbZ0Fp2Qmjv8P4XwR2Xg8JyxkAdFAazxGBEq8mA5tPfIWLAxU7dn+8/JNisKHr7flgMnd+BBDqeLzJveVGmpGTiy4/di5Vu/CdMLfWScRk3/hNKtXPuypgFB42rgjjY1RukzLgPdQc/sfsZYcWKFXjiiSdY1yQiIiIiIvJyvM1LREREREREREREPdbatWvR0NBgN+aSPpHoHRMoU0ZEROSoy3KicN3QOKw/UiMZ26w34/GtxXjrur4yZPYfr+49L9xEPjs2EI9fmubijBwXF+KHkidHQ9tmQkObGQ0//7f21/+73YyGVhOG9Qp1S44atRJBGiXajNIX4NpNvCTnrbRtZqw/WoO1h6pRqnXswhT1PHvPNsFkkZ4iEKRRYlSqe56bhvUKRWiACi16+43iLVYbdhVqMWdwrEyZdd0DE1JwbW4sanWm//tPjc6IulYTalpMqNUZUdtqgtFsc9tnqVB/saGqIq8Zvyc66DycDfSJiMiFFArgL2OTcM9H9htBLF26lINdyW327duHI0eO2I3JjA502zA6IiJyXEc9Ph7rj1RLxnbU48/iretyZMjsP17de87Beny6axPqor1nGgXrXiqMSnNPgw7H617yNqak7tO2mbH+SDXWHqpiPZ7wwMRUXDs0/ueasPE/deGf/7u2xYTaVqOX1IW9b7CreF1a7M+AiIioK0L8VbhpRAKW7T3faYzVasWyZcuwdOlSGTMjop7IYDDggw8+wAsvvICCggJ3p0NEREREREQexGazYffu3di9ezfuvvtu3HLLLXjggQeQluZ59/GIeiqR/gyRgy9BYEJvmTJyj6jcyxB34XWo2b9eMtbc1ozidY+j711vyZDZf5zf+qrw4MHAxGykzXncxRm5TsyoWci86TmoAt1zh5B8g1mnRc3+9aj+ei30taXuTofcLOWKBxA77lqYmms7/tNUC2NzDUxNdTA118DY1PH/20xGt70mqgLEnhOthjbhNRVKNZSaQFiN0md1lX7+wus6k1Ijdn7N0QF5TT/uhc1skt7fPwihfUY5tLazhGYNgyowFJb2FrtxNqsF2oJdiB0zx26cQVshudYv3DXYVKFUI7zfRag/vFUytumHPU4d7Mr3H9Iqtr+F5tPfScZl3PhPaMJ71llzX37s3qql6HvU7HtfMi56+AynPpdIDab+hToo3Gl7kusEJmYhcvAl0B7b3mlMfX091q1bhzvuuEPGzIiIiIiIiMjZ2GWSiIiIiIiIiIiIeqwVK1ZIxtwxNkmGTIiIqDuenpqOb4qbUKY1SMZ+frIBX55qwNQceYaGFNa2Y9m+cqFYtUqBZbOzEeCndHFWXeOnUiAuVIO4UI27U+lUWIAabUajZFygh/4ZU+eOleuw+lAVNhfUw2B2zmDemGA/p6xD7vNtcZNQ3KjUMGjU7vl3r1YqMCYtDNt/0krGflvS7BWDXSMC1YgIlD5OYrHaoFTIkNAf8BP8eUuPR/lvzRLDSn4RJvBnRERE1B1XDIjGsztKUdnc+WegXbt2oaioCFlZWTJmRtRBpP5+25hEt71nJCKirnn68oyf6/HSQx4//7EeX56sx9R+0TJk9nM93s6AoV9TqxRYNqePx9bjvy0RrHulubnulR6O7afsN+oEgG+LmznY1YscK9dhdV4lNhfUOa8eH8J6vLfzirqwSmzjrtSF3a25XbAuHcC6NBERuda8UYn414FymCydv6KuXr0aixcvRmCge4a9E5F3q6iowPLly7FixQrU1dXJsmeovwrJ4f6IDfFDXKgGUUFqxAT7wV+tRKCfEiqlAqH+KllyISIi6gqz1YYHN5+B3vTbeu7AxGDcc1Gym7IiIiJfoDdboTdZYbHaoDNa0Gq0oqrZiPpWE2p1JlS2GFHTIn3Hqzuam5vx6quv4vXXX8fVV1+N++67D2PHjnXpnkQkdj40aYpvDCdJv/5pNJ36Boa6MsnYhiOfo+Hol4jKnSpDZkB7ZSHKP18mFKtQqZF9+zIoNQEuzsr5VP7ByJj7T8SO/ZO7U6EeTFd8DFW7V6M+bzOsJuleBiL8QmOcsg65jzo4AurgCMk4m9UCKNxzzlOpFjy3Z3PsRJU6OAJGgcGuljaxgaDOZtHrhOLUwZEOrdt06luhuLDsUVCq3dOPQ6FUI6zvGLvD5H7RfOpb6cGudWLnsgEgKKW/cKyzhWaNEBvsevKAU/bj+w8x7ZWFOPfxEsm46OEzEDPqKhkyko8vP3Zvsf+BMAAAIABJREFUZbOacXbtI5KviSr/YKRf97RT97YID3Z1bCA5uU/ipbdLvhavWLGCg12JiIiIiIi8HG/zEhERERERERERUY9UUFCAI0eO2I3JiQ/C6DQeaCIi8nQh/iq8enU2rl55AlaBeyOPfVaMcenhCA1wbbMtmw14+NMzdpsZ/tqDE3rhgsRgl+bU0/2+IU1nRBpPk/sZzFZsLqjH6kNVOFYudolKikatxBUDozF/VAIGJ4U4ZU1yn0NlYpf6clPc+7POTQkVGux6sFTs0oW3ULlxQleL4PDVYI3jF2Kb9GahODb1JCIiV1OrFLh5RAKW7Oy8EZDNZsPq1auxaNEiGTMj6miYt2nTJrsx4YFqzBnCAW9ERN4mxF+FV2dn4+q3CwTr8WcxLiNCpnp8kXg9fmIqLkj03PrgoVIvqXslhwoNdu1pda+eqKMeX4fVeZVOrsfHYP6oRAxO9tx/b+Rcbq0LG0Trwt5XuxWuS7v49ZaIiCg+VIMZA2Lw8fHaTmOampqwefNmXHfddTJmRkTerrS0FIsXL8bKlSthNLpm6E+QRokLEkMwKCkY2bGByIwORO+YQMSFCDY1JyIi8mBfnGzAZz/U/+b/u39CCqbmRLkpIyIiog6tRgvO1utxtq4dRXXtOFHZimMVrU4f+Go2m/Hhhx/iww8/xPjx4/Hkk09i8uTJTt2DiDqI9GcISslBWJ/RMmXkXqqAEGTf/ipOLL4asEnfbS1e9xjCc8ZBFRjq2sRsNpxZ/TBsZpNQeK8rH0Rw2gWuzckFQtIHo/ctLyAgLt3dqVAPZDUZUJ+3GVW7V0NXfMwpayrVGkSPvAIJk+cjJH2wU9Ykz6dQuu88j0UvdhZVGeBYfwu/0GgYtZWScSad9PlSVxAdKOsX6ljtrKXokFBcSGauQ+s6W2hGrthg18KDkjFGbYXwvv4xKcKxzib6Z95WfgpWs7Fbg3f5/kOMzWpG0b/vkxyI7hcWi8ybnpMpK3n48mP3ZpU7/o228ycl41KufBCayASn7m1uaxKKc/nnSHKa8JyxCE4dgNayHzqNOXz4MPLz8zF4MD8XEBEREREReSt2NCYiIiIiIiIiIqIe6e2335aM+evYJCjc13OSiIgcMCI1FHdemIzX9pVLxla3GPHMjlIsmZnp0pzePVyNPMGhgyNSQ3HXhUkuzaens9kAnVGsYTMHu3q2Uq0eaw9V4/0jNWhsF2tULSUpXIObhifgxmFxiA5mM76ewGi24mRNm1DsEDcPDRDdv6RBjxa9hY3XnaBZsMl9TBeeD5oFh8aG8+dIREQymDs8Hkv3nofe1HkjoNWrV+Ppp5+GUun4QHOirlq/fj3a2uy/X79xWLxXDlQiIiJgRGoY7rwwBa/tOy8Z21GPL8GSmb1dmtO731chT3B46IjUMNx1YbJL8+mOjrpXq1DskGT3NucYIjhYtqShnXUvD9VRj6/C+4ernViP98dNIxJw47B41uNJVq6sC7ub6GMLD+DvQImIyPVuG51kd7ArAKxcuZKDXYlISHFxMZ577jmsXr3a6QNd40I1GJ8ZjlFpYchNCUGf2EColLwYQEREPdOUvpG/GewaF+KHS7Ij3ZgRERFRh2CNChckBuOCxN8OiqpoMuJYhQ55pc3Yf7YJp2raYLM5Z8+9e/fikksuwbhx47BgwQJceumlzlmYiACI9WdIuuyv8KUGDaFZI5B8+Z0o//w1yVhjYzVKNzyDzJuXuDSn6r3voqUwTyg2NGsEki6/y6X5uEraNf9wdwrUA+lrS1H99VrU7Hsf5tZGp6ypiUpCwoSbEDf+RviFRjtlTSIR5jaxc7V+oTEOrdsxqOyEZFx7+SmH1nUKmw36+nNCoUEp/YWXtZqNQgP/ACAkY4jwuq4Qkim2v76mBJb2FruDAs06rfC+mgjnDjp0RGBStlCczWJGe/kpBKcN6vJefP8hpvyzV6EryZeM6/3n/4U6xLEhy57Olx+7tzI2VODc5hcl44JScpB46a1O39/SLvZ6rQoKd/re5DoJk2/FmXcesBuzatUqvPzyyzJlRERERERERM7G27xERERERERERETU4xiNRrz33nt2Y0IDVJg5gIfiiYi8yUMTe2F3YSN+qJJueP7u4WrMHhyLkamuaXpe8/PwWBHBGhWWXp3FpmHddK7RALNF7BZ/cri/i7MhR1ltwO5CLVblVePrIi2sTmrIMCY9DPNGJWBqTlS3/43tLmrE3LVil6681W2jE/H05enuTkPIqZp24X/zv28CIjfR/W02oKBSh7EZvFTRXcUNeqG4tKgAh9duEmygH8YG+kREJIOoIDWm94/GR/mdN9E/d+4cvvrqK0yZMkXGzMjXrVy50u7XFQpg7nD3NW0gIqLue2hSKnYXasXq8d9XYfagWIxMC3NJLjU/D48VEaxRYensbI+ux5+qafOiupfYYFfWvTzLf+rxlfi60In1+IxwzBuV6Jx6fKEWc9f+6JzEPNRtY5Lw9OUZ7k6jRymud11d2N1YlyYiIk8yJCUEAxODcaKy88+DO3fuRFlZGVJTU2XMjIi8SXV1NRYsWICVK1fCZDI5ZU0/lQIXZYZjQlYELswMR9+4IKesS0RE5A0m94mEWqmA+eeC77W5cVCrPPd3IUREREnhGiSFR2Fav44BJnWtJuw/24R9Z5uw/VQDGtrEfjdiz4EDBzBlyhSMGzcOzz//PMaMGdPtNYl8nUh/BlVgKKKHz5QpI8/R66qH0HhiN1rLfpCMrd77LmLHzEZo9kiX5GJsqkHphmeEYlX+wci6bSkUSpVLciHyGjYrtAW7Ub17FbQFXwM2q1OWDes7BgmT5yEqd2q3/501ntiNky/PdUpenirxktuQfv3T7k6jR9FXFwvFBcSlObRuaO/hqNn/gWRcW8VpWM1GKNUah9bvDmNjFayGNqHYMAdei9vLT8FmEfucEpx2gfC6rhCcKri/zQZdaQHCc8Z2GmIxtgstpVCpofRzX/8OdVA41CGRQoNoW0tPdGuwK0lrLS3A+c+WSsbFjrsGkUN61n1HX37s3qz4vX9Iv3YoFMic+xwUSuef0zW3NQnFqYNccx+HXCNm1FUo/eApmNs6H9y7du1aLF68GP7+7IFFRERERETkjZTuToCIiIiIiIiIiIjI2bZu3Yra2s6HHQDArAtiEODHEikRkTdRqxRYNjsL/mrp52+bDXho8xkYzc65XPV7T3xegha9RSh24eXpSIv0vgbCnkZkgMAvhvUSazZPrqdtM+ONAxUYt/QIbn73FHY5oYl8kEaJucPjsfOuwdg4bwCm94/26EEN1DWna8Uu1oX4qxAXKt+lvz8SGaRGRKDYJY3TtWKX3Khz1S1G1LeKNf0cmOD48JOmdrHLl+FsoE9ERDK5LjdWMmbVqlWuT4ToZ6dOncLBgwftxoxOC/fKYUpERPQfapUCy+b0caAeX+S6evzWs+L1+GkZHl+P77F1rxqxx0Wuo20z44395Rj3ymHcvO5H7DrtjHq8CnNHJGDn3bnYOG8g6/HkNq6uC7sb69JERORprhsab/frVqsVa9eulSkbIvImbW1tWLJkCfr06YM333yz20Nd/dVKXNInEktmZuLwg8Owdm4/3Do6kUNdiYjI50QEqjEyraOht0IBXDc0zs0ZEREROSYm2A9XXRCDF6/sjWMPDcfHtw7EraMTkRDW/d+JHzhwAGPHjsXMmTNRVFTkhGyJfJdIf4aY0bOg1Hj22RxXUKjUyLp9mdhAM5sNZ1Y/BKvZ6JJcSt59Apb2FqHY9BsWIiDWsWF+RD2JWadFxZdv4Mgj43Bq6c3QHt/V7aGuSv8gxF88F4MX7sSAhzcieth0Dk8mtzA2VsPUUi8UG9xroENriw4nt1nMaCk85NDa3aUryReODc0eIRzbVnFaKE4VEAJNuHtrc+qQSKiDI4Ri2yUel9WoF1pH6ef+93+aMLE/99bzJ12ciW+zmo0o+vd9koOQNVFJyLh+oUxZycOXH7s30+Z/hYajX0rGxY6ZI/z65yhzq+hg13CX7E+uofTzR/TIK+3G1NfX44svvpApIyIiIiIiInI2Ti0gIiIiIiIiIiKiHufDDz+UjOEldiIi79Q3LgiPXpIqFFtU145X9pY7PYftP2mx9Uexiy6X5UTxNcdJvjqtFYoLDVAhO5aN29ztWLkOf/u4CMNePIxntpeiTGvo9prpUQF4amo6jjw4HEtmZiKHDfp6tDN1YgNQMzxkWFRGtFgehRzs2m3fFDcLx45MC3V4/WaBQTEKBRDszwvXREQkjzHp0gMyt2zZAr1e7DI9UXdt2LBBMoa1ECKinqGjHi/W2K+orh2v7Dnv9By2n2pwsB5vf/iQJzgjWB/KiAp0cSZiMqLF8igUrOeR8x0r1+Fvmwox7IVDeGZ7Ccq03f9s0FGPz8CRv4/Akpm9WY8nt/umWKypEYD/G3DhTViXJiIiTzNrUCw0avstCDZu3ChTNkTkDWw2G1avXo2+ffvikUceQXOz+NmOPzIiNRQvXNkbxx8ejtU35mDu8HhEB/s5KVsiIiLvNKVvJABgXEY40j3k7CwREVFXqJQKjEwNxcLL03HogWH44M/9cfWgGAT4da8l5meffYYBAwbggQceQGNjo5OyJfItIv0Z4i68ToZMPFNQUl+kXv2oUGx7ZRHKt7zi9By0x7aj/vBWodio3Mt8+udFvk1XfAxFb/8Nh/8+DKUbnoGhrqzbawbEpSP92qcw/MUjyLx5CYKSc5yQKVHXNf/0jXBsaB/HBtUFJmYhOHWAUGzdd5scWru7tMe2C8WFZo2AJjJReN32yjNCcQHxGcJrupJoHu2VhXa/rlAohNaxmtx/Z80vLFoozlBb6uJMfNu5j/8XbRU/2Q9SKJA17yWoAh2/4+/JfPmxeyur2Yji9/4hGacOCkPaNdJxXWVpEzg/oVBAFRDsshzINUQ+c/OMHRERERERkffiYFciIiIiIiIiIiLqUQwGAz7//HO7MTlxQRicFCJTRkRE5Gy3jU7EuIxwodjl+8txqqbNaXvrDBY89tlZodjYED88f0Wm0/b2ZTqDBV+cbBCKHZkaBqXYHRJyMoPZig+P1mLamwWYvqIAG47VwmC2dmtNhQKYmBWBtXNzsP/eXNw+JhGhAWxa7QuKG8QueYkOVHW1TMEBFyWCj4s699kPYsNc4kM1uCDRsc99FqsNrUbpBvoh/iq+1hARkWwUCmDO4Fi7MTqdDjt27JApI/J1H330kd2vB2tUuLy/WMMEIiLyfLeNScK4TNF6/HkX1OPFGiXFhvjh+SuznLa3K3lf3Ussj5J6DnaVU0c9vgbT3szH9DfzseFYjXPq8dmRWDu3P/bfNwy3j01iPZ48hkN1YS87D8S6NBEReaKIQDUuy4myG3Ps2DGcOSP2mY2IerYTJ05g/PjxuOWWW3D+/PkurxMd7Ie7LkzG3nuG4JNbB+L6oXEI8efnUiIiol9M7dfxHv3GYfFuzoSIiMh5lArgwsxwLJudjaN/H4bFMzJxQWLXh1gYjUa8/PLL6NevH959910nZkrU84n0ZwhKzkFI+mCZMvJMiZfehvB+44Riy79YjrbyU07b26LX4ey6x4Ri/cJikfnn5522N5E3sJoMqD3wIQoWTUPBM9NR+80GWE2G7i2qUCBi4ETk3LcWuc/uR+KU2zmojTxG/aHPhOI0EfEISbvA4fXjJ9wsFFf33SYYGsodXr8rTC31qDu0RSg2fsJch9bW1xQLxXnKYNfAeLEeJvqaErtfV/qJnRG2WcywGt17TlipEctVX3fOxZn4rpaiQ6jY9qZkXMLEPyO8/0UyZCQfX37s3qxy+5sw1JVJxqXMvB9+oa65C2mzWmAxtErGqQJCAAXHxXibkIwhCErpZzfm008/hV7PHjNERERERETeiJ/UiYiIiIiIiIiIqEfZsWMHmpub7cbMGWJ/EAIREXk2hQJ4ZVYWwgLUkrFmiw0PbT4Lq805ez/3VRkqm41CsS9e2RvRwX7O2djHvf1dJZrazUKxVw7k8Bi5lWr1WLS9FENfOIz7PylCfoWu22uGBqhw+5hE7L83F+tu6odJ2ZFQsFm1TznfKHZpNjHM38WZiEkI1QjFlWl56L47anQm7CpqFIq9YmC0w03um/XSzfMBIFzgPQgREZEzzR4cIxkjNWyTyBnOnDmD/Px8uzHTB0QjWMNG60REPUVHPT7bgXp8kRPr8aXi9firsr2mHi9c9wr3kLqXYP2tTNvNJngkpFSrx6JtJRj6/CHc/3Eh8sudVY9Pwv77hmHdTf0xqQ/r8eRZanRG7CrUCsVeMTDG64afsi5NRESeas5g6XO2mzZtkiETIvJUbW1teOqppzBs2DDs37+/y+tkRgfg6cvTcfD+oXjs0lT0jgl0YpZEREQ9R68If4xJD8PUnEh3p0JEROQSYQFq3DQiHl/+dRC++MsgzBkcC3UXf/FTVVWFuXPnYsKECfjxxx+dnClRzyTSnyF27ByZsvFgCgWy5r8CdVCYZKjNYsbZVQ8BNqtTti776DkYtZVCsb3nveiywUREnkZfW4rSDxfh8INDUbTyfuhK7J91F6EKDEXipbcj99n96Hf/OkQOmgQeqCJPYmqqQWPBLqHY6BFXdGlQXMzoWUKvd1azEcXvPuHw+l1x7uP/hdXQJhmnDolC9PCZDq1tqD8vFOcfmejQuq6iiUgQitPX2h9oKDosFQDMbfbfK7qaQi12ntnAwa4uYTW0oejtv0m+tw2IS0fan+R5TpCLLz92b2ZqqkH51tck4wLiM5Aweb7L8rAIPneqg8JdlgO5VszoWXa/3tLSgl27xN63ERERERERkWfhjV4iIiIiIiIiIiLqUTZu3CgZM61flAyZEBGRKyWFa/Ds9Azc/VGhZOyR8y1452Albh3dvYsSR863YM2hKqHYucPjMbkPm6Y4Q1FdO5buLReKjQ3xw4wBvHAqB6sN2F2oxaq8KuwuaoTNScMa+sYFYd7IBMweHIsgjeMXxajnqGgSG9oRF+IZAztiBfMoF3xc9Mde318Oo1m6oYFKqcC8kWIXE3+tWS82RFxkmM35RgOOntchv0KHs/V6VDYbUN1iQpvJAr3JCqsNCPRTIshPicggP6RE+KNXhD/6JwRhWK9Q9IkN8roBBERE5DppkQG4IDEYBZWtncZs3rwZRqMRGo3YwHmirhAZIDxjgPQgYiIi8i5J4f54dkYm7t54WjL2yDkn1ePPtWBNnlgjwrkjEryqHl/RJDYA1fvqXhzs6ir/V48/WIndRVrn1uNHJf5cj1c5Z1EiF3CoLjzKMxrnOcL5demWjrp0XTsqm42objH+QV1ahcggdUddOjIA/ROCWZcmIqL/Mr53BEL9VWgxdD6EfNOmTXjooYdkzIqIPMW2bdtwxx13oKzMfjNoey7uHYH/d2ESLspkg1IiIiJRL12VBY2a56uJiKjnG5QUjKVXZ+HBib3w9neVWHe4GnqT44MR9+zZg6FDh+Kxxx7Do48+Cj8/z/g9PJEnEunPEDV0mgyZeD5NVBIy5j6LwhV3S8a2nD2Cyp3vIPGSW7u1Z8vZI6javUYoNv7iuYgcNLlb+xF5PJsV2oLdqNq1Co0ndsNZB6qCkvoiYfI8xI6ZDaV/kFPWJHKF8i9fh9UsfVdZoVQhYdK8Lu2h8g9Gr1kPCw1t1R7bjopt/0LSZX/t0l4iGo58geo964RiU2c/AqWf2BDQXxgbKoTi/MLjHFrXVfzCY4XijA32e3SoQ8T7b5nbGqGJiBeOdzarUS8Y1w5Tcx38wni3yZlKNiyCvqbEfpBCiaxbl0KpCZQlJ7n48mP3ZmWbFsOi10nGpV+7AAqV68a0iA7FFhmmbqg/D93Zo9CV5ENffRaGhkqYmqphMbTBatIDViuUmkAo/YPgFxwJ/5gU+Mf0QlCv/gjtPQxBSX26NOyd7IsZMRNlG5+1G7Np0yZMm8aaChERERERkbfhYFciIiIiIiIiIiLqMaxWK7Zu3Wo3ZkBCMNKiAmTKiIiIXGnWoBhs/6kBn56ol4xdsvMcpvaLQnK4Y5cwfmG22PDQ5rOwCtztyogOwILL0ru0D/1Wi96C29f/BINAs2YAuHNcMvzZrMalGtrMWH+kBmsOVeFco3Ma9auUCkzpG4n5oxIwNoON+qjjHm19q0koVnSwhKuJDtowmK1oMVgQ6s9BCY4612jAuu+rhWJnDoju0ue+Jn3nTYl/LayTn1+Z1oAPjtbgy1MNOFXdJrmOzmCBzmBBjc6En2p+Gx8eqMaUvpGY3j8aE7MioFaxmz4Rka+b1j/a7mDXxsZGHDhwABMnTpQxK/I1n376qd2vh/qr2ICdiKiHmjUoFttPNeDTE3WSsUu+KnVCPb5IsB4f6FX1eMfqXhoXZyMmTjAP1r2cr6HN1FGPz6t0cj0+CvNHJ7IeT17hXKMB6w5VCcXOHBDjleeBmoQHu3ZWl9Z31KVP1jtYlzZ2UpeOwvQB0ZiYFcm6NBGRj9OolZjcJwqfFNR2GnPw4EFUVVUhISFBxsyIyJ3a2trw6KOPYtmyZbB1sVH+RZnheHhyLwxNCXVydkRERD1famTXfvdCRETkrVIj/fH05em4d3wyVuVV4a1vK9FiEDvz/wuDwYAFCxbgo48+wurVqzFkyBAXZUvkvUT6MwSnDkBAXJpMGXm+mFGz0HBsO+rz7J+rBYBzm5YgauhU+Ecld2kvm8WMs6seAmzSd2wD4jOQfu2CLu1D5A3MugbU7FuPqq/XwFB3zilrKpQqRA6ZgoTJ8xGeM9YpaxK5kqHuHKq/FhtwGj1iZrdevxMm/hk1+z9Aa2mBZGzphmegUKmReMltXd6vM9rju1C44i6h2JDMXMRfdINjG9hsMDVL9ysBAL8wsYGqriY6YNZqMsDS3gJV4B//Xk4TmSi8Z3tFEYKS+grHO5vF0Pmdut8z6xo42NWJmn7ci+qv10rGJU39K0KzhsuQkXx8+bF7s9ayH1BzYINkXHj/ixA5+FKX5mJpbxKKUwX+8WBXQ10ZavZ/gIajX6Lt/Cnp/fQ6WPQ6mJpq0Fbx02++pg4KR+SQKYgePh0RAye6dKCtL/GPSUVwr/5oPfdjpzFbtmyBzWaDQsFz2URERERERN6En5yJiIiIiIiIiIioxzh69Cjq6uw3E54xIFqmbIiISA6LZ2Qir6wFVc1Gu3GtRgse/awYa27M6dI+rx+owKka6Ua4aqUCy67ORpCGw0W7q0Vvwc3vnsTp2nah+D6xgZg/io0iXeVYuQ7v5FVhy4l64UG7UqKC1LhhWDz+PCIBSeGeMaSAPIO23QyzyOQOeNCAi1DxPGp1Jg646IJHt5xFu0n6+UehAO65qGvNDpq72ED/u9JmLN9Xjt1Fjehi39L/0tRuxoZjtdhwrBYJYRrMG5mAm4bHIzyQR32IiHzVjAHRWLKzzG7MV199xcGu5DItLS3Iy8uzG3NJ3yho1KyJEBH1VItn9kZeWbNYPX7LGayZ279L+7y+v1y8Hj87G0Ea76mzaNtNDtS9/FycjZg4B/Ko1RkR6h/owmx8w7HzOryTV4ktJ+qcWI/366jHj0xAUheHLhO5w6NbzojXhcenyJCR84nXpX9bG/6upBnL953H7iKtk+vSNdhwrKajLj0qETcNT2BdmojIh00bEG13sKvNZsPOnTtx4403ypgVEbnLnj17MG/ePBQXF3fp+ydmReDvk3phSHKIkzMjIiIiIiKini462A8PTuyFP49MwBsHKvDOwSqHf5d6/PhxjB49Gk8//TT+/ve/Q6XynrMGRK4m0p8hetgMmbLxHpk3LUZLYR6M2iq7cRZDK4rXPoqc+9Z0aZ+KL15HW7n0AB+FUo3s25ZB6R/UpX2IPJmu+Biqdr2D+kNbYDUZnLKmOiQK8eNvQMLEP0MTleSUNYnkcHbto7AaBXovKBRInnZP9zZTKJE1/2WcePZK6aGaNhtK3l8A3dljyLhhIdQhUd3bG4DVbET5Z0tRvnUZbFaLZLwqMBS9b3mh4zCZA8ytWtisYme4NOGeMdhVIzjYFQBMzbWdDnb1jxa/i60rOYbo4dOF453NUGf/Tt2vmVsbXZiJb7G0t6Bo5QOQOqQYlNQXva56SKas5OHLj93blX30LGCTqBspFEib87jLczG3NQvFqYJ+O9i1+fR3KP98ORpP7Jb8OyieSxNqv9mA2m82QBOZgIRJ8xA/4Saog8Kdsr4vixo6ze5g15qaGuTn52PIkCEyZkVERERERETdxVu1RERERERERERE1GPs3LlTMmZqv+4f/iUiIs8RHqjGy1dl4Ya1P0qeRd15WotPCupw1QUxDu1RXK/HK3vOC8XeOz4ZuSlsPNZdp2racOeGQvwk0LwfADRqJV6bkw21yrGLNmSf3mTF5hN1WJVXheMVEheuHDA4KQS3jEzAVRdEe9TAn4lZESh/eoy70yAADW0m4djfD9h0lxAHBrVq20xAdIALs+l51h+pwe4isYt00/tHIye+a00ImkQb6P/cxP5kdRue/KIE3xQ3dWk/UVXNRjz3VRleP1CBByak4JYRCXzNIyLyQZnRAciODURhbecNGHbs2IF//vOfMmZFvmTPnj0wmey/V7+8X7RM2RARkTuEB6rx8qxs3LDmB8F6fC2uusCxBkbF9e14Zc85odh7L05BbsofNxryVA1tYrUH4L8H+LlLiAP1N22bGeDbgS75v3r8wUocr9A5bd3BySG4ZWQirrogxrPq8dmRKF84zt1pkIdbf6Qauwu1QrHT+8d0uS7sbk166aaDwH9eF05Wt+LJz4vlqUvvKMXr+8vxwIReuGVkIuvSREQ+aGJWBAL8lNDbGbS+Y8cODnYl6uFMJhMef/xxvPjii7BaHRuaAwD9E4Lx5GVpuCiTzUCJiIiIiIioe2KC/fCPKWmYPyoBi78qw8cFdQ7NtjAYDHjkkUewZcsWvPfee0jKm2SZAAAgAElEQVRNTXVdskReRKQ/Q9TQqTJk4l3UQeHImv8yfnzpBslBO9rjO1F38BPEjLrKoT301cU4/9krQrHJM+5FSGauQ+sTeTKrUY+6vM2o2rUKraXHnbZuSPpgJEy6BdGjroJSrXHaut0VMXAixrxd7u40yMPV7F/fMeBNQPSw6QhKyen2nkEp/dDnzjdxauktQsNP6w5+jMaCXUiccgfiL54LvzDH+noAHUPR6777GOWfLxce5qlQqdH3zrcQlOz4Yza1NAjHqgLDpINkoAoQ72di0mkREP/HX/OPSoYqIAQWvfS51daSfOE9nc2i18HYWC0cb9KJnTskacXvPgGjttJujEKlRtZtSz3qddUZfPmxe7Pmn75F44mvJeOih01HcNoFLs/H3CZ21lf982DXtvMnUfL+k2g69Y0r04JRW4Wyj55DxRevI+XKB5Aw8RYoVJ5xf8UbRQ29HOc2v2A3ZseOHRzsSkRERERE5GX4SZmIiIiIiIiIiIh6jK+++sru1xPCNOgTGyhTNkREJJfxvcMxb2QCVh6skoxd8EUJJmRFICJQ/NdkD316BgazdEOyIckhuO/iFOF16b/pDBYs31+ON7+pFPozBwCFAnjpyt4YkBDs4ux8R2mDHqsPVeODozVobBcfNGCPn0qBGQOiMX9UAoZ62bAFkl+z4HBNwLGBqq4UohHPQ7RJO3UorG3HE58XC8WGBaixaFpGl/dqFvzZBPop8eyOMvzrmwpYrA50gummpnYzFnxRgveP1OD1OdnoG+edgwqIiKjrLu4dYXew65EjR9DQ0ICoqCgZsyJfIVV/VykVuJBN2YmIerzxvSMwb1QiVn5nv0kJACz4vBgTsiJdU49PCcF9F/cSXtdTNDtQb/XOupdz6sm+pKMeX4UPjlQ7uR4fg/mjEjG0F+vx5J0Ka9vxxNazQrFhAWosmt71urC7if5OpKMuXYp/HSh3Q126GO8fqcbrf+rLujQRkY8J0qgwIjUM+840dhojVTckIu9WXFyM66+/HgcPHnT4exPCNPifSamYMyQWSoULkiMiIiIiIiKflRzuj2Wzs3H7mCQs3FaCb0uaHfr+AwcOIDc3FytXrsSVV17poiyJvIdUnVcTmYDApD4yZeNdwvuPR8KkeajauVIytmT9AkQMnAB1cITw+mdWPwSrySAZF5IxBCkz7xNel8iT6WtKUf31atTs/wDm1s5/R+UIhdoP0cNmIOGS+QjNHOqUNYnk1l5ZiOJ3nxCKVQeFIeOGRU7bO2LgRPSe/yLOvPMgbBbps07mtiac++R5nP/0ZYTljEFYn9EITrsA/jEp0ITHQ6kJhFLtB6vZBKuxHabmWhjqy9F27ke0nDmMxh/2wGrs/O7U7ylUamTduhTh/S/q0uMzt4t/nnBkoKorOZKHxd5QQYUCQb36o6UwT3IdXXE+rGajWwZYNv/0LWATPzPnrNcPX9dw9EvUfrtRMi5lxt9kGZApJ19+7N6udOM/JWMUShV6zXpYhmwAS5vYa4xSE4iyjc+iYtu/YLPK14vE3NaEkvcXoGbf+8j+y+sISuor2949SVBKDjSRCTBqO+979tVXX+Ghhx6SMSsiIiIiIiLqLg52JSIiIiIiIiIioh7BYDBg//79dmMu7i1+0YWIiLzL45emYd/ZJrsDbgCgrtWEp74swSuzsoTWff9IjdDl7kA/JZbNzoaaHci65MeqVnx0vA7vHa5xaKCjUgE8NyMTswbFuDA732C1AbsKtVh1sApfn2l05G6LXfGhGtw0PB5zh8cjNsTPOYtSjyc6XBNwbLCEKwVrlMKxjjzP+bqmdjNuXf8T2k1iw76fvCwNcd14rhH92bx3uEbWxvm/d6q6DdNWFODZ6Rm4NjfObXkQEZH8Luodjn/bGaJmsViwa9cuzJkzR8asyFdINe4alBSCcAcG9xERkfd6/NJ07DvTKFaP/6IYr1ydLbTu+0eq8W2xneZBP+uox/fxynp8s8Eb617iebDuJcZqA3adbsCqvCp8XaR1bj1+RALmDk9gPZ68WlO7Gbe+f1K8Ljw1HXEh8jeLcxbRod/vHa52f136zXw8O6M369JERD7mosxwu4Ndy8vLcfLkSfTr10/GrIhIDp988gnmz58PrVbr0PeplQr8eWQCHp7UCyH+nlHfICIiIiIiop5pUFIwNs4bgB0/afHoZ2dR2WwU/t6GhgZcddVVuOOOO/Dqq6/C39/fhZkSeS6R/gwRAy6WKRvvlDbncTT9uA/tlYV240zNdShZ/xSybn1FaN2afe93DDGToNQEIvv2ZVAoeYaXvJjNCu3xXajatQqNP3zt0PA+ezQR8Yi/+CbET5gLv7BYp6xJ5A7mtib89NqtwsNO0655En7hzj3fEztmDvyje+H0G3+BqblW6HtsVjOaftyHph/3OTWXX9NEJqDP/1uB0N7DuryG6NA9wHMGuyoDgoVjzRKPLyRjiNBgV4teB+3RbYgeMVN4b2fR5tu/z/R7Fr3ORZn4DrOuAWfX/I9kXHDaICTPuEeGjOTjy4/d2zUc/RK6s0cl42LHXYPAhN4yZCT9HPyLmr3vyTrQ9ffazp9CwaJpyLjxWcRdeK3b8vBm4TkX2h0IvXfvXrS3tyMwMFDGrIiIiIiIiKg7+NtXIiIiIiIiIiIi6hG+//57tLfbP4R8YWa4TNkQEZHcAvyUePXqbMz8dwHMFvsXtjYcq8XswbG4SOJ1oa7VhEXbS4X2X3BZOjKjA4Tz9TVWG9BqsEBntEDbZkJxgx5n6vT4qaYNB0ubHbo4/4tQfxVeuToLU3OiXJCx72hoM+P9I9VYe6ga5xoNTlt3ZGoo5o1KxP9n7z4DoyrTNgDf0ye9d9ILvXcFpNhAQJAirKKAhV1dCxbY1XUVV1dEXBVxUcGOZRUQUVdFgbXB0lsgAUJCQiCV9ExmkinfjyyWT5jzTjJn6n39gzznnPuEkEmeOe/7TOgR6ZUDFsi9DIKbtQNAkIdsAOlIDkOr+P35M7PFhlv/dRwnq8UWm16aHobZAzq32LRecKiwOzfPP8/YZsV9G0/ibH0rFo7u4u44RETkIsNSQ6FWKez+3vv9999zsCs5XU1NDY4ePWq3RqrPQkREvkOvUWLFtBxMWn1IoB9f2d6Pzwy3W1fd3Ia/fXVK6PqPXp2OjCjv3MzA0Cq+2Qb7Xr6nxtCG9/dW4J3d5c7tx6eG/q8fH8V+PHk9s8WGWz/IF+8LZ4Rh9oA4mVPJy+v60h+fwNl6ExaOTnZ3HCIicpFRWeH4+9f2n5/67rvvONiVyIeYzWbcd999ePHFFx0+dlByCJ6amI4e8eKbSRMRERERERF11hVdIzAstR+WbinBO3sqHHpf5dVXX8W+ffuwYcMGJCfz/Q/yPyL7M4R1H+GiNN5JqdUj+7YVOPzkJNgsZru1Vds/QszwaQjrMdJuXVtDNYo//JvQ9dOufxT6uAzhvESexNxUg4rv30fFf96Bqfq0084bkj0ECWPnIXLQBA49Jq9ns5hx/KVb0VJ+Uqg+rPuliB05W5YsoTlD0eevX6Lw7QdRe2irLNdwRETfK5A595lOD262thqEa1UODFSVkyM5rCb79xfe8zKUbX5V6FyVP3zg8sGuFmMTqv/7sUPH2CxtMqXxH4Vv/wltDdV2a5QaHbJvfcHnXmv9+d69ms2G0xuXS5YpVGp0mXSvCwK1sxjqhercOdT1PGurESffuA+tNWfRZfJCd8fxOmE9R9od7Go0GrF3716MGMEeCxERERERkbdg54eIiIiIiIiIiIh8ws6dO+1+XKEARqSHuigNERG5Q5/EINx3WRcs2yq9eGvxpkJsubMvAjTKi9Y88u8i1LfYX0gJAGOzIzBnsHdvGOwsu0oaMfW1XNmvMzglBM9PzUJaJIfpdtT5wcWbcs+h1eyczfb1GiWm9o7G/KHx3JyPOsXowGBXncozBhXoVBd/Pfn/jE76P+fLzFYb7lh3AtuLxBarxIdqsXJ6dqev22CUft33NMu3nUarxYrF41LcHYWIiFwgWKfCgKRg7CppvGjNrl27XJiI/MWuXbtgs9nf7E5qYB8REfmWPonBuG90MpZtKZGsXbzpJLb8sb/9fvznhWL9+JwIzBkc71BWT+JIX8gr+14O9PX8yfnBxZtyq53cj4/B/GEJ7MeTzzBbbbjjo2MO9oVzZE4lP6/sS28t+V9fOtXdUYiIyAV6xgcjKkiDc80X3/h09+7dWLBggQtTEZFcqqurMXPmTGzbts2h44J1KvzlylTcMDAOSs9oaRAREREREZGfCdGr8OQ16ZjRLwb3bzyJ/Erx4Ux79uzB4MGDsW7dOg5XIL8jtT8DFAqEcrCrpKDUPugy+T6c/niZZG3h24vR9/EtUGoDLlpT9P4jMAsMAIroMxZxo+c4lJXIE7Q1VKP4o7/h3K5NsJpbnXJOpVaP6KFTET9uPoKSezjlnETuZrOaceKVO1Cfv12oXhsRj+zbVsqaSRsRj273vIOG4ztRsv7vaCzYI+v1LiSs+wgkXXOX04bPW1uNwrUKjc4p1+wspVo8h7XN/v2FdrsESm0ArK0tkueqO/IdTOdKoYvqInz9zirbvBoWU7NDx9ic9Nrir6p2rMe5vZ9L1iVPXYyARO9/hvOX/PnevV3Nga9gKM2TrIsZPs2l38PMhgaXXctZTn+yHFZLK1KmLnZ3FK8S1n1k+yaXdtbg7t69m71HIiIiIiIiL8LBrkREREREREREROQTdu/ebffjaZF6xIZoXZSGiIjc5Y8jk7DlRB32nr74kBsAKK41Yvm203jkygtvNrv1RC025Z6TvF5koBrPTsnsUFZyXGKYFveNTsas/rFQcAO4Tik8Z8S6A1VOOVdKhA43DY7H7AGxCA/gW9DUeSYHhhuoPGQ3SLUDgzYcuT9/ZLbacPeGAnx+VPp1GAC0aiVem9UVscGaTl9bZICMiPAANS5JC8WQ1FBkRgcgM0qPUL0aQVollAoFDG0W1BjMKKk1IbesGbtKGvB9YX2Hh5+s+O4MEkJ1uImD5omI/MLQ1FC7g10PHDiAtrY2aDSdf20kOk9qYLBaqcCALiEuSkNERJ7ijyO7YMvxWrF+/NYSPHJV2gU/vvV4LTblVkteLzJQg2enZHUkqsdg38s/FVa3YN2BSqecKyVC396PHxjHfjz5FLPVhrvXH3ewL9wdscHe/xyQU/vS6WEYkhKKzJgAZEYFXKQvbWzvSxc34PvCuo73pb8tRUKIDjcN8d6B60REJEapAAYmh2Bzfs1Fa6Se3yUi73Do0CFMmTIFRUVFDh03OCUEz0/NQlqkXqZkREREREREROL6JQXjq9/3wQvfleKF787AYr34MIVfqqiowJgxY/DEE09g8WIOriD/IdXf1cemQRsW66I03i1pwh9Rd2gLGk/utVtnrCrG6Y3LkTrzkQt+vPbQVpzbtUnyeurgSGTOfbZDWYnczVhRiKrt65xyLl10CuLH3ITYkbOhDgp3yjmJPIHNakbB6ruFBgwCgFKtRdc7X4PGRa/boTlD0evPn6C55Ahq9v0bNXu/gOHsMVmupdTqEZozHGHdL0XkwAnQx1x4f5COsraZhGsVSpVTr91RCpX486NS96dUaxHZ70pU7/pE+mQ2K059sARd71wtfP3OaK05i7NfrnL4OJvFOc/k+aPW2nKceu/CP6f+UmjOUCReeZsLErmOP9+7Lyj99HnJGoVShaQJd7kgzc/MhnqnnEcdFI7QrpcgNHsIAhIyoY/LhDowFEp9EBQKJSwmA8xNNTBVl6C5OBcNJ3ahPu97h4aX/9KZz1ZAF56AuDE3OSW/P9CGx0EfkwJjZfFFa/iMHRERERERkXfhKn4iIiIiIiIiIiLyCVIby/dPCnZREiIicieVUoEXr8vC5asOwtBqfxPa1TvKMKV3NHonBP3q7w2tVvz5M7HNyZZNznTKIDmyr29iMOYMjsO0PtHQqpXujkMAFApgZEYY5g1NwOU5EfCQGQPkI0Q3zgA8Z8AF0L6hrUh0swP352+MbVYs+PA4vjleK3zM0onp6Oek3/fqjZYOH6tWKTC5ZxSm94vByIxwu98XQ1VqhOrVSIvUY1RmGO5AIppbLfj8SA1e2X4W+ZUGh6//yL+L0DshCP278HdfIiJf11fidc9oNOLw4cMYMGCAixKRP5BaNNotLhB6DX9fJyLyNyqlAi9Oy8Hl/zwAQ6v936lX7ziLKX2i0Tvh1z/LGFot+PNnJ4Wut+zaTK8f4GexsO9Fjmvvx4e39+O7RrIfTz6nvS98DN8cu/iwuP9v6aRM9PORXmi9seObyLX3paMxvV8sRmY60pcOxx0jkv7Xlz6HV34808G+dCF6Jwahf5eQDt8DERF5h35JwXYHux45cgTNzc0ICgq6aA0RebYNGzbgpptuQnNzs/AxARol/nx5CuYNTeDvqkRERERERORR1CoF7h+TjDHZ4bj345M4Wd0idJzZbMaf/vQnFBcXY8WKFVCruU0n+T6p/RmC0/u7KIn3UyhVyLr1RRx87HJYTfbffy37ejWih05BUGrvX/291WRA0do/C10v8+ZlLhveR+RxFAqEdR+JhHHzENH3ckDB59jJt1hbjTj+8gLUHvxG+Jj0OUsRnN5PxlQXpg2PhT42DSHZg2GsLu7wADl7FEo1VPogKLUBsJpaAJut/cFKJ7FZxdcVe8pgVwDt3/ts9vdTAdqHBEuJHTlbbLArgJp9/0btwW/av//KyWZFwev3wmISf//yPKu5TYZA/uHkm/dLDqJU6gKROf85n3v99ed793a1B79Bc/FhybqowZOhj0t3QaKfWTox2FWhUiNq8GTEXDId4T1G2v26UweGQh0YCn1sGsJ6jELi+DtgMTWjZs/nOPvVKzCcyXf4+kXvPYKg1N4IzmBfQFRwen8OdiUiIiIiIvIhfGKEiIiIiIiIiIiIvF51dTWKiuwP4OuT6BsbOhIRkbTUSD0euzoNizYV2q2zWG144JOT+Pz23lD/YmexZVtLUFpnkrzO9f1jMb57ZKfz0m9p1UoMSArGZVnhmNAjElnRAe6ORP8TrFNhRr8YzBsSj0z+u5BMROc/qD1sV0iVUgGrwHAOKwdcXFCD0Yyb383HrpJG4WMWju6C6/s7bxOChg5soK9UALMHxOGey5KQFKbr8LWDtCrM7B+DGf1isP5gFZ74uhhVTeKLB81WG+5cdwKb/9AHwToPWhxKRERO119goPnu3bs52JWcSmrRaL8kDvEhIvJXqZF6PDY+HYs+KbBbZ7Ha8MDGAny+oO+v+/FbHOnHR3U6r7v5fN/Lxr6XM7X342Mxb2gC+/Hks9r7wnnYVdwgfMzC0clO7Qu7W4NRfGPA837qS49OdkJfOhYz+sVi/cFKPLH5lON96Y+OY/Md/diXJiLycVL9P4vFgv3792PEiBEuSkREzrRixQosXLgQVqv0xs/nZccE4OWZOegWGyhjMiIiIiIiIqLOGdAlBF//oQ+e/LoEr/23TPi4VatWoaCgAOvXr0dICJ+NI98lsj9DcFofF6XxDfrYVKTNegyFby2yW2ezWnDyzQfQ+5HPoVD+vCVwycfLYDpXKnmd2BHXI3LA+E7nJfI2Kn0wYi6Zgfhx8xAQn+nuOESyMBsakL/iZjSesD98/Ze6TF6I2BHXy5jq/7FZcW7fF6j4zzuoz/uhfdCqjCzGJpzb8xnO7fkMAKCPS0f8mJsRc+n1UAeGdv4Cgu+R/fI12xMoVCrYzCKDXaVrwrqPgD4uHcYK+z8bnle09iGEZA2COihcqL4jTn34N9Tn/dihYxVOHPzrTyr+8w7qcv8jWZc286/Qx6TKH8iF/PnefcGZz1cI1SVd80eZk/yW2SD+fPRPFErEjZyNpEn3QBeZ1OFrq3RBiLl0JmIumYGqHetR/NETaGuoEj7eZjXjxKt3os9jm6HSc+9GEcFp/VC9c+NFP37y5EnU1NQgMpJ7lREREREREXkDpbsDEBEREREREREREXVWbm4ubBIP+g7owoeDiIj8yQ0D43BF1wjJutyyZry6/eeF2QfPNuH1neWSx6VE6PD4+LTORKSL0GuUuHlwHKb3i8Gl6aFIDu/4ZsTkPFnRAXhiQjr23j8QT0xI5ybyJCvRARBKDxtwITpwg3Ndf6uysRVTXz/i0FDXBZck4oExyU7N4egG+lnRAdh0a28sm5zRqc3zf0mhAKb3i8GWO/piVGaYQ8cW1xrxwnfSGzgQEZF3iw/VIi5Ea7cmNzfXRWnIH1RWVqKiosJuTT/234mI/Fp7P156Y4H2fvzZn/588EwTXt8pvXFqSoQej0/I6FRGT8G+F4nIig7AE9dkYO8Dg/HENRnsx5PPqmxsxdTXDjs01HXBpUl4YGyKjKlcr8Fodqg+KzoAm27rg2XXZjm5Lx2LLXf2x6hMxzbbK6414oVvTzslBxERea6+ScGQ2veUfWki72Oz2fDYY4/hnnvucWio6/S+MfhiQR8OdSUiIiIiIiKvoFMr8fj4NLx6fQ5C9eKDmL7++muMGDECZ86ckTEdkXuJ7M8QnDHARWl8R9yoGxDR9wrJuuaSXJR99epPf246dRDlW16XPE4XnYK02Y93KiORtwlIyEL6DU9g4LN7kX7DExzqSj6rtb4SR56e6tBQ18SrFiD52gdkTPVr9Xk/4sAjY3D8n7ej/uj3sg91vRBjRRFOffAY9t4/ACXrl8LaZurU+Ww20cGunrWNv/CgWZH3ARUKdJl4j/C1TTVnkL9iLqytLcLHOOL0x8tQtvlV6cKLUKjtr7uj3zJWFaP4w79J1oX3vAxxo+e4IJHr+PO9+4LGgt1oPLlXsi6852UITOrmgkS/ZnFwsGtAQhZ6P7QJGTcv69RQ119RKBBzyXT0fXwLwnqMcuhQY1UxSj97wTk5/EBwel+7H7fZbDhy5IiL0hAREREREVFneVZHmIiIiIiIiIiIiKgDjh8/bvfjSgXQIz7IRWmIiMhTLL82E1FBGsm6Z/9zGsU1RpitNjz4SSEsEjuPKxXAiuuyEaxTOSsq/YKxzYrVO8rwwCcnMXlNLnL+vguTVudixXdnUFAtz+IOujClAriiawTev6kHvr2rH+YNjefXPbmE8KAID5sUYRbMo1Z51mAOd8urMGDSmlzkVxiEj5kzOA5/vSrV6VnqHdhA/5oeUfj89t7oL9MQs6ggDd65sTum9Y1x6LjVO8pQXGOUJRMREXmO3gn2e53Hjh1zURLyB1L9dwDoncDBrkRE/m75lCyxfvy2kl/04wvE+vHTfKcfL9oX8tq+l4cNpPUm7f34SLx/c098e/cAzBua4DNf90QXklfRjEmrDznYF47HX69Kky+UmzjUl+4Zhc8X9EX/LiGyZIkK0uCdOT060Jc+y740EZGPCw9QIyVcb7eGfWki72IymTBr1iwsWbJE+JgQnQovz8jBC9dlIUDDbUqIiIiIiIjIu5x//r+nA2vNDx06hFGjRrH3RT5L8vlQhRJByT1cE8bHZM5dDk1IlGTd6U3PwlhZDJvVjMK3HoTNarF/gEKJ7NtWQKXnc7vkBxRKRPS9Aj3ufx/9nvgW8WPn8WuffJqhNA+5T06CoTRf+Ji40XOQOvOvMqb6maWlEYVvLcLR5TPRUlbgkmtKsba24My/X8TBR8eh4diODp9HoRIbkGoTGZDqQjar2HNnCrXY/UUPuw76uAzh6zcW7MbRZ2bC3FQjfIwUa2sLCtbcfdEhgqLDbBVq6Wfa6RdsVpx8fSEspma7ZerAUGTO+4eLQrmIP9+7jzj75ctCdQlX3iZzkgszt9QL10YNuga9//I5gjP6y5JFExKF7gvfQczwaQ4dV/b1ahgri2XJ5GuCUnoBCvvP0+Tni/+sR0RERERERO4l1o0kIiIiIiIiIiIi8mBSi+KSwnTcQIaIyA9FB2nwzOQMzH/f/uuEsc2KRZ8WYlRmGI6U23/gGgDuHJGEwSnybJZLv2W22LCvtBH7Shvx9JYSDE0NxS3D4jGhexQU3CNeNuEBaqyZ1RXD00LdHYX8kFYl9rO76EAJV5EaRHKeTvD+/MEXeTW4e8MJGFrFFzTOGRyHp64RXxzoiMyoACSEaiXrJvWMwoJLEmXJ8EtqpQLPT81Co9GMzcdqhY5ps9jw0g9nsWyyPJ8jIiLyDFkxAfjm+MVfG7iJGDmT1NeTQgGkR9kf6kBERL4vOkiDZ67Nwvz38uzWGdusWLTppHg/fmQXDE7xnR6lz/e91Ox7dUR7P74bhqeHuTsKkUt8kXcOd68/AUOrxIa0vzBncDyempgpYyr3yYwOQEKoTrJuUs8oLLg0SfY8aqUCz1+Xg0aTBZvzxTbda7PY8NL3pVh2bZbM6YiIyJ0yowNQXHvxQd7sSxN5D4PBgKlTp2Lz5s3Cx6RF6vHG77ohJyZAxmRERERERERE8sqI0uPT23rhT58V4sP9VULHFBYWYtSoUfjqq6/Qr18/mRMSuZZUX1cXlQSllv2gjtCERiPj5mdwbOV8u3XWViMK316EsJ6j0FxyRPK8SePvREjWYGfFJPJY6qBwdL1zDUK7Dnd3FCKXqNn3BU6suRtWk0H4mLjRc5Bx41MypvqZsaoYec/OhrHKsaFuSm0AwnqMREjmQASl9IQuqgs0YbFQavRQqNSwtZlgbTOita4SppqzMJzJQ1PhAdTnfQ9LS6N4vooiHHlmBtJ/9zfEj53n6O1BqZZeUwyID1J1FZtF7Pk7pVr62TQAUChVyLjx7zj67CzhDI2F+3Dw0cuROf85hPe8TPi4C6k78i2K1v75osMDtRHxCOzSA3WHt0qeS6kS+zeldmc3r0bD8Z2SdWm/+xu0EfEuSOQ6/nzvvsBYUYSaA9LPPQQkZCO852j5A13o2vGZ0EYkSNZFDZqExKsWyJ5HoVQj65bnYW5pRK3A5w4AbOY2nP3iJWTcvEzmdN5PqQuELiIBppozF1h+6a8AACAASURBVK05fvy4CxMRERERERFRZ3CwKxEREREREREREXk9qYVDmdFcNERE5K+u6haJWQNi8cG+Srt1PxTWY3tRveT5eiUE4YExyc6KRx2ws7gBO4sb0CM+CI+PT+PgUZnUtZgx880juKJrJOYPjceIDG4oT66jUYlPbbZYbVAp3T/l2WYDROdtOHJ/vspmA57/thTP/uc0bA7MKblzRBIeuiJFtlwfzu0h27k7SqkAXpqegytfPoiicxffKPmX1h2swqJxyYgO0sicjoiI3CVDYojm6dOnYTAYEBgY6KJE5Muk+u8JoToEaVUuSkNERJ6svR8fhw/2Vdit+6GwDtuL6iTP196Pl68P4A7se9GFtPfjc9v78cMSMCIj3N2RiGTR3hc+jWe3lTjWFx7ZBQ9dkSpfMDf7cG4vd0f4jZ/60qsOouhci9Ax6w5WYdHlqexLExH5sIzoAGw9UXvRj3OwK5F3aG5uxuTJk7F1q/SGx+eNyQrHP2dkI1TPrUmIiIiIiIjI++nUSjw3JQsDu4Tg4c+LYBZ4Q7yyshJjxozBF198gWHDhrkgJZFrSPV1A+IzXZTEN0X2vwqxI2ah8ocP7NbV5/2A+vztkucLSumF5CkPOCsekUczN9fhyDMzEdnvCsSPm4+w7iPcHYlIHjYbSj99Hqc3PQtHHqhKGn8nUqY/JGOwnxnOHkPe8llorbe/V8cvBXbpjsSrfo+ogROg1F18XZNCFwilLhDq4EgEdumGiD5jAbQPkKvL3Yayb15Dfd4PYhe12VD07l9gNbUgcfwdwlkBQKEWf97JZrVAofSA9TM2G2CzCpU6cn9hPUYi5pLpqNq+TviY1roK5P3jd4joewWSJt6NkIwBwsfarGbUHtyCsq9Xo+HYDru1KdP+jHO7NgmdV6HhYFdRLWUncPrjpyXrIgeMR8zw6S5I5Dr+fO++4uzXrwp9L0y44lZA4Z51Dj0e+NAt17VLoUTO7S/h4JIrYawoEjqkasc6JE9dBE1otMzhvJ8+PsPuYFc+Y0dEREREROQ9lO4OQERERERERERERNRZJ06csPtxqUEHRETk25ZcnYaUCJ1kndQ6bJ1aiZXTsqHmxuQe4Wh5M6a/cQQPbjoJY5vYwhNyjNUGfJVfg+vfOorRKw/grV3laG61uDsW+QGt2rEBF55AZDOP8xy5P1/U0mbFgg+PY/k2x4a6PnxFqqxDXT1ZoFaJF6ZmCa8ZMpmtWHegSt5QRETkVpnRAXY/brPZJHumRKLYfyciIkcsGZ+OlAjp1wahfvz0rj7Xj9eqxJfweGffi0uUOuqnfvybRzD6xX14a1cZ+/HkU9r7wvlYvtWxoa4PX5nm00NdPVmgVoUXrst2sC8tvoEjERF5nyyJvnRxcTFMJpOL0hBRR9TW1mLcuHEODXW9c0QS3rqhG4e6EhERERERkc+5cVAc3rqhG8ICxH7nraurw1VXXYUffhAcLEXkBaSeD9XHZbgoie9Km70EumiBtVASw4iUGh2yb18JhYp9OvIjNitq9n+Fo8uvx4G/jEb5trdgMTW7OxWR01hbW3D85QU4/clyh4a6pk5/2GVDXY2Vp3Dk6WnCQ101YbHIuvUF9H3sa8RcMt3uUFd7FGoNIvpdiR4P/Au9/rwRQam9hY8tXvckyre+4dj1VOJDQG1Wz3iu02YxC9cq1I4NOU2/8e8ISMxxNBJqD36N3Ccn4eCj41C87knUHtgMY0UhLC2NsFnNsLQ0wlh5Co0Fu1G2eTXyX5yHPff0wbGV8yWHuob3Go2YYdNgbRN7JkGlC3I4vz+yWc0oWHOP5OdVExKFjDlLXZTKNfz53n2FpaUR1dvXS9ap9MGIHjbVBYm8i1IXiKxbXhAeeGttM6Fqh/jQb38WEJ9l9+PHjx93URIiIiIiIiLqLL4zS0RERERERERERF6vtLTU7sczouxvKEVERL4tWKfCiuuycd3ruZKbxdvz8BUpyI7ha4o9Q1JCcGbJ8N/8vc0GGM1WGFotMLRZUd7QijP1Jpytb0V+pQG7SxpQUtuxzR3f21uJ/aVNePuG7kgMc2xhCYk7UdWChz4vwlPflOD6/rGYOyQe6RzeQzLRODDgwmi2esTACKNZfMC0IwM8fM3pOhPmv38MR8vFF1GrlQo8PSkDswbEypjM8w1MDsHkXtH45HC1UP2nR87h95cmypyKiIjcJVOg31laWoq+ffu6IA35utOnT9v9eGZ0xzbbICIi3xSsU2HFtGxc99rhzvXjr0zzyX68xoFBtd7Z9/KtQbzucqKqBQ99Voinvi7G9QPi/teP973/D+Q/TteZMP+9PMf7wpMzMWtAnIzJSIrDfencavz+0iSZUxERkbtIPYdrsVhQVlaGtLQ01wQiIofU1NTg8ssvx/79+4Xq1UoFlk7KwGw/f1aDiIiIiIiIfNvorHBsvKUX5qzNQ2md9Lq2hoYGXH311fj0008xZswYFyQkkpfU/gwB8Rzs2lkqfTCyb1uB3KXXSQ5vtSdl+sMISMh2YjIi79JSdgJFax9CyfqnEHvp9YgfOxf6uHR3xyLqMFP1aRxbOR/Np48KH6NQqpFx89OIHTFLxmQ/s5nbcPzlP8DcVCtUH9btEmQvWAVNaLRTc4RkDUbvv3yGknVP4exXLwsdU/zh3xDadTgCk7oJ1SvVGuE81lYjlA4OSpWDtc0oXOtoXpUuCF3vXIPcv0+GubnO0WgwlObDUJqPsw4feWEBCdnI+f3LgEIBa2uL0DHq4AgnXd23nflsBZpOHZSsy7hpqdP/b7ubP9+7r6jasR4Wk/RzydFDp3DY80WEZA5E9ODJqN71iVD9ud2fIvGq38ucyvtJ9VKkejFERERERETkOdy/ywMRERERERERERFRJ9TX18NgMNitSQrXuSgNERF5qsEpIbhjRMc3kR2VGYb5QxOcmMi/KBRAgEaJqCANksN1GJwSgim9o3HHiESsuC4LO+4dgP0PDsLzU7MwMDnE4fPnVRgw9fVcFNeKL0Khjmk0WbDmv2UY+eJ+3PhOHraeqIWtEwMaiC4kSCv+KEOjySJjEnGNRvEcgQ7cny/ZcaoBE1455NDm/cE6Fd66oZvfD3U97+5R4j/LHDjThLP1rTKmISIid4oO0kgO+aqoqHBRGvJ15eXldj+eGOb+TSmIiMizDE4JxR0junT4+FGZ4T7bjw/SqoRrPafvZRauDXTg/khao8mCNTvOYuSKfbjxnaPYepz9ePI+O4rqMeHlg473hW/swaGuHuLuy5KFa9v70tKbnhMRkXdKEOgDsi9N5JnOD50RHeoaqFXi9dldOdSViIiIiIiI/EJOTAA+va03+iSKDflobm7GxIkT8f3338ucjEheIvsz6CI7vh6XfhaSNRhJ4+/o8PFhPUYhYdx8JyYi8l6WlkaUfbMG+x8eibznbkTtoa3gA1XkbRqO7cChv01waKirSh+Mbve85bKhrgBQvO5JNBcfEqqN6HsFui18V7bhhwqlGqkzH0Ha9Y8K1VvbTDjx6h9hNYutr1U6MPDPYmwUrpWTpUU8h1IX6PD5A+Iz0eP+D6AODHX4WGfSRiai291vQRXQvv+I6KBZTXCknLF8QnPxYZR++oJkXczwaYgcMMEFiVzHn+/dl1T85x2huthRv5M5iXdLmni3cG1T0QG01jhrbLfv0kbYXwvV3NyMpqYmF6UhIiIiIiKizvDP3UKJiIiIiIiIiIjIZ4hsBBUTpHFBEiIi8nQPjklGz3jxhRXnhQWo8dyULCgUMoSin8QGazCjXww23doL39zRFzP6xTj0OS+tM2HO2nzUt4hvMk8dZ7MB2wrqMGdtPi5dsR+rd5ShwYEN/onsiQwU//m9yUMGXDSYxL/+o/zw95M3d5Vj1ltHUWMQ/zzFhWjx8fyeGJ0VLmMy79ItNhDDUsUXQu4sbpAxDRERuZNCAUQFqu3WSA3jJBJhs9lQWVlptyYmmINdiYjotx4cm9LxfvzUbJ/tx0cG2f8Z7pc8p+8lniPKgb4eibPZgG0najFn7VFc+sJerN5+lv148gpv7izDrLeOoMbQJnxMXIgWH9/Sm31hD9ItNhDD0tiXJiIisT4g+9JEnsdgMGDSpEnYvXu3UH1ssAbr5/XCuJwImZMREREREREReY7YYA3Wzesp/Pvw+d+39+zZI3MyIvmI7M+gCY1xQRL/kDzlQQSl9HT4OHVgGLLmPweffZiKqKNsNtTlbkP+C3Ow/6FLUbZ5NcwGPq9Anq9865s4unwWzE01wsdow+PQ808fI7zXaPmC/T/NxYdR9s0aodqg1D7I+f3LUKrlX1eScOXtSLj8VqFaQ2keKra+JVSrCREfAmoxesYgNnOL+Pc8TUhUh64RlNobPR78SHJAnVyCUnqh98OfQR+b+tPftQn+31FzsKtdVnMrCtbcA5vV/rPI2oh4pP3uCRelcg1/vndf0nB8Jwxn8iXrgpJ7IDitrwsSea/ApG4IzRkmXN9wYqeMaXyDJixWsobP2BEREREREXkHDnYlIiIiIiIiIiIirybykEpMMDeQJSIiQK1S4MVpWdCpHXuL7OmJGYgP5ZASV+oeF4jnp2bhs9t6Iz1KL3zcyeoW3PtxgYzJfEdahA7ju0dCpez8ot7iGiMe+/IUBj67F4s/LUR+pcEJCcmfRUoMKfslTxlw4UgORwbXejuz1YZFmwrx8OdFMFttwsf1SgjCZ7f1Ro8ODIDxdRN7ii+i3HO6UcYkRETkblI9T5ENl4iknDt3Dm1t9ocwsf9OREQXolYp8OL0HMf78ZMyfbof70hfyGP6XkYH+l4ODK71J2mReozvHuXEfnwRBi7fg8WfnmQ/njyS2WrDok8K8PDnhY73hW/vw76wB5rYM1q4ln1pIiLfFaJTQa+x/zse+9JEnqWlpQWTJk3Cd999J1SfHK7Dxlt7oU8ifyYnIiIiIiIi/xOkVeH1WV0xuZfY8/r19fW4+uqrkZubK3MyInmI7M+gCeNgV2dRqNTIuu1FKDU6h47LuOlpaCPiZUpF5D662DREDhgPhVLV6XMZK4tx6l+PYe8DA1H49mKhIV9ErmazmlH41iIUvfuw5DDBXzo/2DIouYeM6X6r9NPnAZv0c19KrR45C16CUiu+F0Rnpc74CwITuwrVln29Wujz7cgQUEuLZwx2dSSHphNDToNSeqHPX79AaM7QDp+jI6KHTkXPP22ANjzu57+0WWFurhc63pFhvf7o9IanYTh7TLIuc+5yqANDXZDIdfz53n1J5XfvCdXFXDpT5iS+IWrwROHaxoI9MibxDZpQ6Weu+YwdERERERGRd+BgVyIiIiIiIiIiIvJqlZWVkjXRQdxYnoiI2iWG6RDhwMBAAAjU8i01d+mXFIwvF/TBZZnhwsdsPlaL9QerZEzlG2JDtFgzqyt2LhyAey7r4pRBPIZWK9buqcC4lw5ixptH8UVeDSwObNhNdJ4jAy7qWsQXMcqp3oEcUQ6+DnmrJpMFN63Nx7t7HVtYcE2PKGy8pRcSw3x3iEtnjM0Wf03Mq+BgDyIiXxYTbP+1UqRvSiSF/XciIuqMjvXjO79Rmyfzyr6X0ZG+F38uuJDYEC3WzO6GnfcNwj2XJTupH2/B2t3lGLdyP2a8kYsv8s6xH08eob0vfLRjfeFb+yAxzLFNbMk1xmZHCNfmlTfLmISIiNwtRqIXyE3niDyHxWLBrFmzsHXrVqH69Cg9NszvhdQI1228TURERERERORp1CoFVk7Lxox+YsMsz507hyuvvBJFRUUyJyNyPpHnQzUh0sNISJwuIhHqYPH3XgFAqQuUKQ2Re2nDYtH1zjUYsGwnuky8B5rQzg+StpoMqPh2LQ7+dRyOPjMDNfu+gM1qcUJaos6xGJuQ//xNqPjuXYeOixp4DXr9eSO0kYkyJbsww5l81Bz4Sqg24YrboY/LkDnRrynUGqRMf0io1lRzBtU7P5Gsc2Twqbm5TrhWTmaD2IBTAFCHRHXqWprQGPRctA5psx+X/WcTXVQXdL/3HWTfvhIqXdCvPtbWWAPYrJLnUOmDoQoIkSui12ss2I2zm1+VrIu77EaE9xrjgkSu48/37kusrS2o2feFdKFCiajBk+UP5APCe40VrjWU5smYxDdoBX634TN2RERERERE3oG7UBMREREREREREZFXa262vyFggEYJvYatUCIiavfIv4tQ3tDq0DH3f3IS55rbZEpEUoJ1Krz5u64YlRkmfMxT35TAZJZemEFAQqgWi8YmY899A/HP6dkYmhrqlPNuL6rHrR8cw/Dn92Pl92dQY/CMIQTkHTQqBYJ1YkM8Kps84/tzmeBri0IBhAf4/mDX8oZWTHktF9+edGyR4j2XdcErM3MQwN/hLio1Uo8oweFpJbVGmdMQEZE7RUj8TNHU1OSiJOTLRL6OIjjAjYiILuKRzwsd78dvPOHT/XjH+l6Ofe7kUtZgEqrzl75XZySEarFoXAr23D8Y/5zR1bn9+PfzMfy5vVj5fSlqDL77f4g8W3lDK6asOYxvCxztCyfjleu7sS/swdiXJiKi86R6gexLE3mOe++9F5s2bRKqzY4JwPp5PZEYppU5FREREREREZHnUykVeG5KFm4ZliBUX1ZWhiuvvBJVVVUyJyNyLqn9GZTaACi1ehel8Q9F7z2C1tpyh445+cb9aGs8J1MiIvfTRiQgeeoiDFy+B9kL/onQnKFOOW99/nYce+lW7F88HGf+vRLmphqnnJfIUa215ch9agrqjnzr0HFdJt6DnD+8AqU2QKZkF3f2q1cAm02yTqnRIfGqBS5I9FsRfS8XHihbsfVNyRqFWgOVPljofG31lUJ1cmutLRMrVCigDgrv/AUVSiRcfgsGPPUjEi6/FUqNrvPn/AV9bCrSb/w7+j3xLcJ7X3jAoLG6RPhcdGFWkwEFr90jOSA3MKkb0mYtcVEq1/Dne/c1Nfu+gMVk//dZAAjNGQpteJwLEnk/fWwqNIJDwI1VYt+L/ZlSFyj5Osln7IiIiIiIiLwDVzwTERERERERERGRV2tpabH7cZ2abVAiImr3RV4NPjrg+CLpqqY2LNpUKEMiEqVVK/HKzBykRYotBi5raMX6g9Uyp/ItapUC1/aOxob5PbHljr6YMzgOQVqxAQP2nKk34alvSjDo2b1YuLEAh8ukH5InAoDYYLENwisbPWPARblgjphgLVRKhcxp3OtoeTOuWX0YeRUG4WP0GiVWzcjBorHJUPj2p8cpsqLFFuRWNLbCbJFeREtERN5JLzHwxmjkIBXqPJGvI52aP8AREdFvfZF3Dh8dcHzzovZ+/EkZEnmO2GCxISke0/cSHM7rD30vZ/mpH39Lb2y5sz/mDI53Xj/+62IMWr4HCz8+gcNl3PCDXOdoeTOuefUg8irE3wfSa5RYNbMrFo1LYV/YC7AvTUREgPTzuCaTyUVJiMiepUuXYuXKlUK13eICsWF+L8SFcKgrERERERER0XkKBbDk6jTh4a4FBQWYOnUqn9skryK1P4Ozh3X5u5p9X6Bq+0cOH9fWUIXCtxbJkIjIsyhUakQPuRY9F29A3yVbEDd6DlS6oE6f11RzBiXrn8LeBwah4PWFaC4+7IS0RGKaTx/F4SevgaE0T/gYpVaPnAWrkDx1EdzxQJXNYkbt/i+FaiP6X+WcgaEdFD1kslBdY9F+tAoMY9WExQqdT+RcrtBaJzYsXhsaA4Wy88+nnqcJi0Xa7CUY8MxupF3/GIJSenb4XOrAMMQMn4Zud72B/n//AfFjboZSe/G9RExVxULn1cekdTiTrzv10d9grLT/eVTqAv83WFpsXxdv4c/37muqdqwXqosecq3MSXxLQEKWUF1rXQVsFrPMabyfVE+FPUQiIiIiIiLvwIkGRERERERERERE5NWkHlLhYFciIgLaN4Nf/GnHh7N+mV+DD/Z5xkILfxWqV+OpiRnC9e/sEVuQQr/VLS4QSydmYO8DA/HEhHTkxIht1GyPyWzFh/urcPXLh3DtmlxsPFzNTZ3JrrRIsa+7yqY2mZOIqWwUy5EhOKDaW/1YVI+prx8RHvgBAPGhWmyY3xOTe0XJmMy3dAkX2yDDagOaWi0ypyEiIneR6ntycR85g8jXkZ49eCIi+n+qmtqwuBPDWb/MO4cP9lU4MZFnSYsS6w95Tt9LrM+TIXhf9Gvd4gKxdFIm9j44GE9ck4GcmMBOn7O9H1+Jq1cdxLVrDmHj4Sr240lWPxbWY+prhzvQF+6Nyb2iZUxGzsS+NBERAYBObX/zYPalidzvgw8+wEMPPSRUmx6lx/tzuiMyUC1zKiIiIiIiIiLvc36465zBcUL1P/74I2bOnAmLhe+TkHeQ6udysKvztDVUofDtxR0+vmb/l6j84QMnJiLybIFduiFjzlIMfHYv0m94AgGJOZ0+p7XNhKofP8Shx69G7lPXonrnRg6kIlnV5/2II0unorVWfK8DbUQ8ei7egCjBgaVyaCzYDbOhQag2vMcomdPYF5I1WKzQZkP90e8lywLi0oRO1+Yhg13b6sRy6OPE9+ZwhCYkCglX3oY+j27GwH/sR/btK5Fw+a2I6DMW+rgMqIMjodTqoVCqoA4Mgy46GcHp/RBz6UykzV6Cnos3YNALh5B16wpE9LsSUEivSzJVnRbKpo9N6+Td+ab6o9+hYtvbknUZc5YKD3j0Fv58776mraFK6Hu6QqlC5MAJLkjkO3RRXcQKbVZYjE3yhvEBCo39tTV8xo6IiIiIiMg7cJUFEREREREREREReTWTyWT341IbSRERkX94cNNJnGvu3Cboj355CpekhyElgotS3WVUZhiGp4VixynpRUGHzjbjdJ0JyYKbDNNvhehUmDc0HvOGxmN7UT3e3FWBr/JrYLZ2bgP4Pacbsed0I5aEFGPOoDjcOCgOscEaJ6XuuG0FdbjxnTx3x5DVrcMSsGR8mrtjCMmI0mPrCem6klr7vw+4yqkasYfnM6J9d8DFtoI63PL+MZjMVuFj+iUF443ZXREbopUxme8J0amEaw2tVoR3fj43ERF5IG6gT64g1X8HpIcMExGR/3nwk4LO9+O/KPpfP973eikZUQHYilrJupJaz/h57pRgjowoNiA6o70fn4B5QxP+148vw1d5TujHlzRiT0kjloScwpxB8bhxcBxig93fi9t2ohY3vnPU3TFkdevwRCwZn+7uGLLbdqIWt7yf73hf+Hfd2Rf2MiF68WWohlYLwgO4bJWIyBdJ9QLZlyZyr+3bt2Pu3Lmw2aR/l0yN0GPd3J78uZyIiIiIiIjIDoUC+Ps1GTC0WrH+YJVk/aeffoqHH34YS5cudUE6os6Rej5UoeaaTGc5+eaDaGs816lznHr/UYR1uwS66BQnpSLyfKqAEMSPnYf4sfNQn78dFdveRM2+r2Czdm4ga2PBHjQW7EHxv5YgbvQcxF12IzRhsU5K3XF1uduQ99yN7o4hq4TLb0Xa7CXujiG7utxtOLbyFljbxNc+B6f3Q9e73oDWzV+LjYX7hGtDc4bKmERacEb/9h/YBd4Xaz51EDHDp9mt0cdmANgqeS5TdYloRFkZq04J1enj5Rns+kvasFhED52K6KFTZb1O8xmxPSBccc/extLSiILX75Osix87V/L/irfx53v3RTX7voTNapGsC84YAE1IlAsS+Q5VQIhwrdVkAILCZUzj/ZQa+z0VPmNHRERERETkHbhCloiIiIiIiIiIiLya1MIhrYqbyhMR+bv39lbi62PSm6RLaTJZcPeGE9gwvxeUnBvuNjP6xQgNdgWAHwrrMXuA+xfU+YJL0sNwSXoYKhpbsXZPBd7dW4mKxtZOnbOysRXPbjuNF74rxcQeUZg/NB4Dk8Uf+CbflhYpNrTj5LkWmZOIKagWy+GrAy42H6vF7f86hjaL+KCJyb2i8PzULA4C64AAjfjnrNUiPlCBiIi8CzfQJ1cQGeyqYQ+eiIh+4b29Ffj6WE2nz9NksuDu9Sew4ZbePtePF+57Cfab5FZQ5d99L3f4dT++HO/uqXBSP74EL3x3GhN7RGP+sAT246nTNufX4PZ/5TvYF47G89dlsy/shRzrS3duKDUREXkuvcRreEuLZ/weQ+SPSktLMW3aNKG+fkKoFv+a2wPxoRzqSkRERERERCRFqQD+MSUTxjYrPj8qPZhx2bJl6NevH2bNmuWCdEQdJ9VHUmrYO3KGyu/eQ+3Brzt9HouxCSdW341ef9oAKPh+O/mfsG6XIKzbJWitq0DFt2tR+d27aK2r6NQ5W+srcfqTZ1H62QuIGjQR8ePmIyRzoJMSk7+qPbAZx1bdDpu5TfiYqCGTkTX/eckBYK5gKM0XqlMHhkIf597hmerAMGjD49FaWyZZazh7QrJGH5cmdN2W8pNCdXJrKSsQqgtw87+TMzUX5wrVBaX2kTmJ96nP3y70f6V865so3/qm/IEcdHzV7cK10cOuQ/ZtL/70Z3++d19Us/9LobqIvuNkTuJ7lFrxtSBWc+fWNfgDDnYlIiIiIiLyDXxXloiIiIiIiIiIiLya1Wp/SI2vbfRLRESOKak1YclXpyTr1EqF0EZlu0sa8dIPZ5yQjDrq0vQw4dr9pU0yJvFPcSFa3D8mGbvuG4BXZuZgeFpop89pttiw8XA1Jq/JxfhXDuHD/VUwmTmI0N+lR4kNuCitMzm0abwcGk0W4cEKGYL35U0+P3oOtzk41PW+0V2wakYON+/vIEc2xefnmIjId0m1PaX6pkQiRL6O2IMnIqLzSmqNWPJlkWSdeD++AS99X+qMaB4lXXAAqtf1vaI52NXZ2vvxKdh1/yC8cn1XDHfg/ZGLae/HV2Hy6kMY//JBfLi/kv146pDPj5zDbQ4Odb1vTDJWzezKnqWXanXgewX/jYmIfJdCYb8ZaLNxuDeROxiNRkybNg3l5eWStSE6Fd65sTuSw92/OTgRERERERGRt1ArFXhpejZGW0tm3QAAIABJREFUZEi/Z2uz2TB//nzs2bPHBcmIOk7y+VAOD+00U3UJTv1riWSdQqmGNiJesq6xYDfOfPGSM6IReS1teBySr70fA57ZhZw/vILQrsM7fU6bxYzqnRuR+/fJOPT4eFT9+CGsbfaHXxNdyLk9n+PYP29zaKhrl8n3IWfBKo8Y6gq0v3aJ0ITGyJxEjDooXKiutUZ6bxB9bLrQuUzVpQ79G8vB0tIoPNza3QN4ncViaoax8pRknVIbgMCkrvIH8jr+/CyHP9+7b7G0NKI+/0eh2og+l8ucxvfYHBjW6ik/t3g0iZ4K134TERERERF5B75jTkRERERERERERERERD7JagPu/bgATSaLZO0dIxKxclo2JPYfBAAs33YauWXNTkhIHdElXIfwALVQbeG5FpnT+C+1UoGJPaOwbl5PbPtjP8wdEo8QnarT5z10thkLNxZg0LN7sfSbEpytF38AnHxLr4QgoTqL1YaT1e79v36s0iBc2zcxWMYkrvfxoWr84aMTMAtu3q9TK7FqRg7uH5MsczLfZmwTX6wRoOGjQURERERERCQ/qw24d8MJwX58ElZOyxHsx5f4XD/eq/peFf7b9/Ik7f34aKyb1wvb7uqPuUMTnNSPb8LCj09g0PI9WPpNMc7Wc0NCEvPxoSr84aNjjvWFZ3bF/WNSZE5GcmJfmoiIiMhz3Xnnndi1a5dknUalwOpZXdE9LtAFqYiIiIiIiIh8i0alwJrrxX6vbmlpwbRp01BZWemCZETkkWxWFLx2LyzGJsnSxPF3IPu2lRB5mOr0xuVoLsl1RkIir6ZQqhE1aCJ6LlqHfn/bhvixc6EKCOn0eZuLD6Hg9YXY+8AglKxfitaas05IS/6geufHOPHKH2CzmIXqlRodchasQvK198uczDFtjeeE6tTBkTInESM62LWtqVayJiill9C5bFYLWspPCtXKxXDmmHBtcFpfGZO4TmPBHsAm/fxaUEovKJSdf76WiDxP7aEtQoO1tREJCOzS3QWJfIu11Shcq9QGyJiEiIiIiIiIyHNwlSwRERERERERERERERH5pJd/PIudxQ2SddkxAVh4WRcMTwvFDQPjJOvNFhvuWn8CJrP45rXkXLHBGqG68kYOBXWFnJgAPHlNOvY+MBBPTcxANyds/ldjMOPF789g2PP7cNsHx7DjlPT/ZfIt0UEapEbohWoPnJFe5C6nfafFrp8UpkN8qFbmNK6z9UQt7v24ABar2Ob9YQFqfHBzD0zuFSVzMt9X3Sy98Aho39MhWMtFiERERERERCS/l388I96PH52M4elhuGFQvGS92WLDXeuO+1Q/3rG+V6PMaezbVyp2fV/re3mynJhAPHlNBvY+OBhPTcx0Uj++DS9+V4phz+3FbR/kY0dRvROSkq/aerwW92444WBfuCcm94qWORnJjX1pIiIiIs/0z3/+E6+//rpknUIBLL82EyMzwlyQioiIiIiIiMg3hehVWHtjdySGSb8/XlJSglmzZsFisbggGRF5mrNfvoyG4zsl6wISstFl8kKEdh2OuFE3SNbbLGacWH0XrG0mZ8Qk8gkBiTlIv+FJDHx2LzJufAqBXbp1+pzmphqc+feL2Ld4GI69dBsaju1wQlLyVbWHtqJgzb2wWcV+7lMHhqHH/R8gashkmZM5zmoyCNWp9EEyJxGjVIs9t2ptbZGs0YRGQx+TKnS+plMHhOrk0lS4T6hOF5kEbYT0s9reoCHvR6G64Iz+MichInepPbBZqC685yiZk/imtsZqsUKFAip9sLxhiIiIiIiIiDwEB7sSERERERERERERERGRz8mvMGDZ1hLJOqUCeG5KFrTq9rfN/nJlqtDi6uNVLXjya+nzkzxC9GqhuuZW39ns3xsEaVW4aXActtzRF+vn98TkXlFQqxSdOqfFasO/82ow/Y0jGPfSQazdUwED/139xsBksYf697t5sOtewQEXg1NCZE7iOgfPNmHBh8dhFty8Pz5Ui4/n98QQH/ocuFN5g9jg8pggTae/DxMRERERERFJya8wYNmWYsk6pQJ4bmr2L/rxaUgM00ked7zKgCc3n+psTI8yMFmsR7K/1M19r9Oifa9QmZPQ/xekVeGmIfHYcmd/rJ/fG5N7RTunH3/0HKa/kYtxK/dj7e5yGFq5yTD97OCZJiz48JhjfeFbemNIKr9H+ILyRtG+tJZ9aSIiIiIXOXjwIO6//36h2sXjUjC9b4zMiYiIiIiIiIh8X3yoFm/M7oZArfQWntu2bcPTTz/tglRE5EkMpfko2bhMulChRNb8534aSpc64y/QRiZKHtZy9jhK1j3Z2ZhEPkelC0LcmJvQd8kW9Fy8HlFDJkOhEluLfjE2qwU1+/6NI8um4+Bfx6Hi27XCgy/JPzSdOojjLy+AzWoWqtdGxKPnnz9GSPYQmZN1jOhwWkuL2LOlcjO3NIgV2sT2JQjOHChU11S4X+y6Mmk8uVeoLiR7sMxJXKc+7wehuvAeI2VOQkRuYbOh7uj3QqWhXYfLHMY3tdaWC9VpQmM6/TM2ERERERERkbfgb8BERERERERERERERETkU9osNty1oQBtFulNhW+/JBH9u/w8ODBEp8LTkzIxZ22e5LGv7yzDFV0jMDIjrFN5PYXZasO55jZUNrWhqqkN1U1tqGxqRXVz+58rm9rwjymZSA6X3mhfbjax/aLBLYPdZ1hqKIalhqKyqQ3v7a3A2j0VKBMcRHgx+ZUGLP60EE9+XYJZA2Iwd3A8UiP1TkpMnmhgcgg2HKqWrNtT4t5FgLsFr+8rg11Lak24+d184SHLWdEBeP+mHkKD00mazQYUnmsRqk3ygNdsIiIiIiIi8m1tFhvuWn9csB+fhP5dfu6PhOhUeHpyJua8c1Ty2PZ+fCRGZoZ3Kq+naO97VUnW7SkR3HRKJrsFr+8rfS9vNSwtFMPSQlHZ1Ir39lRg7Z5yJ/XjT+LJr4sxa0As5g5JYD/ez5XUGnHzu0eFh/1mRQfg/Zt7Cg3wJs9nswGF1exLExEREXmS5uZmzJ49G0ajUbL2mh5R+OOIJBekIiLyXvmVBox76aBQ7Z77ByIhlM/CieLnloiIiHxRr4QgvHBdNm7/1zHJNW6PPvooRo0ahREjRrgmHBG5lc3choI1d8FmbpOsTbzydgRn9P/pz6qAEGTe9DTynp8jeWzZltcR0fcKhHF4GdEFheYMQ2jOMLTVV6Liu/dQ8e1atNaWdeqchjP5KHx7MUrWPYmYEbMQP2Yu9LGpTkpM3shUXYL8F24WHvYbkJCFHve9LzTE212U2gChOrOhXuYkYkQHzIreV0jmQFT/d4NkXWPBHqHzyaWxYLdQXUiWbwx2ba0tQ1PxIck6pVaP0G6XuiAREbla8+kjMDfVCNWG5gyTOY0PstnQUlEoVKqL4rMnRERERERE5D+U7g5ARERERERERERERERE5EzPbD2No+XNknXpUXo8OCb5N38/Njsc0/vGSB5vswH3flyA+hZzh3J6ird3V6DX07uR9vh/MWD5Xlz98iHMWZuHhRsL8NQ3JVi9owwbD1dje1E99pc2uTsuAKClTWzT6EAt3w51t9hgDe69rAt2LhyA1bO6YkRGGBSdnLjbYDTj1e1lGLFiP256Nx//KagTHvZL3uXSdLHB2fmVhk4PKuioI+XNqGgUu7YvDAKvNZhxwztHUdUkvcEAAHSNDcT6+T051NWJimqMaDSJvQ5mRIktOCUiIiIiIiLqqGe2lgj24wPw4NiU3/z92OwITO8bK3l8ez/+hNf348+7NENsQK3X9L18ZOCut4sN1uLe0cnYed8grJ7VDSMywp3Ujz+LES/sxU1rj7If76dqDWbc8LaDfeFbenOoqw8pqmlxoC/NIdBERERErnDHHXcgLy9Psq5nfBCen5rV6d8PiYiIiIiIiOjXJnSPxB9HSA+zMJvNmD17Nqqrq12Qiojc7fTGZ9B8+qhknT4uHclTHvzN34f3HouY4dOlL2SzoeD1ez1msB6Rp9KExaLLpHsxYNlOdL1zNcK6j0BnG+ZmQwPKNr+K/Q+NQP4LN6Eu9z/gA1X+x9xUi6P/uAFtDVVC9YGJXdFz0XqPHuoKACptoFCd2dAgcxIxwoNddWL3FdZdbCio4Ux+p4dFd1RzyRG01lUI1frKAPhzuz8T+j4b1u1SKDV8ZpHIF9Uf+U6oTheZBF30b/eQIvuMlUXCr6kBcRkypyEiIiIiIiLyHGp3ByAiIiIiIiIiIiIiIiJylt0ljVj14xnJOoUC+MeULOg1Fx78uWR8Gr49WSe5QXF5Qyv+9FkhVs3I6VBeTxARoEatQWwz/ANnmjC5V5TMiaSJbiYfpFXJnIREqZQKTOgeiQndI3GyugVv7a7Ahwcq0WgU2wT6Qqw2YMvxWmw5XouMKD3mDonHzP6xCNF17N99TFY4ziwZ3uE85HzZMQFIj9Kj6JxRsnbriVrcMDDOBal+bcvxOqG6nJgAZEZ795DNVrMVc9/LR6HAvwcAdIsNxIdzeyAqSCNzMnkZWq04U2/C2QYTBieHun1o+H9PiS967ZsYJGMSIiIiIiIi8ne7Sxqw6odSyTrJfvyEdHx7slasH//pSaya2bVDeT1Je98rAEXnWiRr3db3OlYrVJcTE+j1fS9fo1IqMKFHFCb0iGrvx+8qc3I/PgBzhyZ0rh+fHYEzj4ttgkbu1d4XPopCge9XwP/6wvN6eX1f2N0MrRacqW/F2XoTBqeEINDN73k61JdOCpExCREREREBwPvvv4+3335bsi4qSIPXZ3d1+3MORERERERERL5q0bgUHK0wYMtx+++vl5aW4vbbb8eGDRtclIyI3KGxYDfOfLlKulChQNa8f0Cp1V/ww2mzl6DuyLeSwwJba8tR+M6fkLNA4JpEfk6hVCFywAREDpiAlvKTqNj2Fip//FB4gNUF2ayoPbQFtYe2QB+XgfixcxF76UyoAjr23ER4rzEY/pr0/gjkflZzK/JfnAtjRaFQfWBSN/R48ENoQty/P4MUTXgscPaYZF1bQxUsLY0d/np3BouxCa31lUK1uvB4obqAhGzo49JhrCiSrK09vBVxo24QOq8z1R3aIlQXkJiDgPhMmdO4RvWujUJ1EX2vkDkJEblL3dHvhepCcobKnMQ5rCYDTDVnYKo5i9CswcIDyOXScOy/wrVBaX1lTEJERERERETkWTjYlYiIiIiIiIiIiIiIiHxCc6sF92wogNUmXTtvSDyGpFx8sUh4gBpPXpOO2/91XPJcm3LP4cqu1ZjaJ9qRuB6je7z4Q767SsQ37ZVLo9GCGsFBtElhOpnTUEdkRgfg8fFp+NO4FGw4VIW3d1f8H3v3HSZVef5//DOzs7333ui9KyAqiIoCiooYe8NuRAH9WaLGQmI0scQav4qKXWMhKlgQsSIEQbogu3SWXbb3Ojvz+4OYWGDnmd0pu/B+XVeuK2E/5zz3HM3McO85z62NRXUdOue2skb98aMdeuCz3TprSKIuHZmiHgwTOCSc1CdOTy/d6zL34Q/lfhlwsWBjmVHu5L5xXq7E++78aIdW7jZ7WLkrDXWta27VD0X1Kqhq2j/Atar5P/99/6b5lQ3/+8x5clpPnT7Qv5/3i11s+vJzQzMivFgJAAAAAOBwVtfcqhveyTPrx49M1ZHZUQf9eUyoTX8+pbuufGOzy3O9v6FUE/rE6YxBie6U2ynt73u53ojtw42lfup7lRrlTu7X9fteh7LuCaG6d1I33XpC9v5+/IoiD/TjG/THD7fpgcU7ddbQJF06MpV+/CHszo+2a+UuN/rCDHU1sr8vXbe/F13ZpL3VzSqo/KlH/au+9Fm9dPpA/37uLf6x3Dg7NJ2+NAAAgDcVFhbquuuuc5mzWqSnpvVURgz3zwEAALjL3urUhqI6fb+nVltK6rW7okl7KptU1WhXQ4tDDS0O2awWhQVZFREUoPToYGXGBqt7QqiGZ0RoSHqkwoKs/n4ZXQrXHEBXZbVIT5zZQyc9vU67KprazM6fP1+vvvqqzj/f98OfAHhfa1Od8ufeIDkdLrMp4y9VZM8jD/pzW3iMci/4s7Y8daXLc5WteF+lQyYoYeQZbtULHM5CU7or59x7lTX1VpUsf1f7vnhJdbs2duicjfu2acfrf9Tudx9Q4pizlDL+UoWm9vBQxehsdrx2p2ryVxplu9JQV0kKTsg0Czqdqt2+RtH9jvFuQW2o27VRchrcxCw3XpekuCEnae8nT7vMla/60C+DXctWLTDKxQ072cuV+Ebt9jWq3b7GZc5iC1T8iFN8UFHXFDf05E45PLxk6T+V//wsl7le1zyj+BGT27XG4fzaDxVOR6tqtpp97kbkDPJyNWZam+pUv/sHNZUVqKm8QM3le9VUVqDm/wxztddV/jfb88onlTDydD9WK1WsW2ycjeg21IuVAAAAAADQuTDYFQAAAAAAAAAAAIeEuz/eoZ0VjS5zWbHBuu2EbJe5yf3iNblfvBb+4Hpo3x8WbtfI7CilRQcZ1dqZdI8PVWyYTRUGw1JX76nVzopGZceG+KCyA1uzt9Y4mxXLxnSdWViQVReMSNYFI5K1cneN5q0o0oKNZWppNXuQ6kDqmls1b0WR5q0o0o3HZWr2uAwPVgx/ONlwsOtXWytVWN2s1CjfvQ+vL6wzHoIwsW/XePDyYN5dV6pXVu4zyqZGBenVC/t2mc37C6qadfpzG4yyH/5Q7tfBrhX1dn2eX+k6KCkyJECDUtlAHwAAAADgHXd/tN2wHx/i+X78gm3/6cd37f7vyX3NBrv6p+9Ve9j0vQ4XYUEBumBEii4YkaKVu2o0b0WhFmws7Xg//t+FmvfvQt14XJZmH2e++Rm6hnfXleiV74qMsqlRQXr1ov5dpi/sbwVVTTp97nqj7Icby/w62NXtvnQafWkAAABvuuKKK1ReXu4yd/2xGTq6W7QPKgIAADg0VNTb9cnmcn20qVxfb6tSk73tgVytDqea7A5V1Nu1u7JJy3f+72cBVouOzIrU5H7xmtQvTsmRXe8ZE1/gmgM4VESF2PSPs3rp9Oc2uPz963XXXaexY8cqI4NnnYBDzY437lZjyU6XueCELGWfeZvLXPzwyYofPlllqxa6zG5/5Q+K6jlSQXFpRrUC2M8aHKbksRcoeewFqslfqaIl81S2aoGc9pZ2n7O1qU5FS+apaMk8ZZ52ozKmzPZgxegMSpe/q31fvmKUDYpNVd9Zr3aZoa6SFJpiPpC4dvtqvw52rd9tPpA5NLWncTZu2MlGg10rN36l5opCBcWmGp+7o+p2rjceRB0/bKJH126uKFRDYb6i+46RLFaPnrstRZ+9YJSLGzJBtohYL1cDwB8a9m6Ro6neKBueNcDL1ZhpLivQhr+YDWstX/WhXwe72msrVLn+c6NsQGikIrI7x/BcAAAAAAB8wXedUAAAAAAAAAAAAMBLPttSoddWFbvMWSzSg6d1V1iQ2a/J/jw5VzGhNpe56ka7Zs7Pl7P9+1/7jcUijc6OMs6/u7bUi9W49nme2cbBktQ3OcyLlcCTRmRG6okze2rljcN1y/FZyojp+FCGvVVNHqgM/jYiM1LZca6HSTuc0purXX8OeJLpoNO+yWEalBbu5Wq8Z0d5o275YKtRNjIkQK9c2FcpPhw00lE9E0IVF+b6s16SPt1SoZLa9j+c3VFvri5Ws4uNq34yvmesbAEWL1cEAAAAADgc7e/Hu+6L7O/H91BYUIDRef98Snc3+vF5XbIf/3MjMqPM+17fm/WhPMW87xXOAL8uaERWpJ6Y1ksrbzpCt5yQTT8eB7SjvFG3vO9GX/ii/l2qL+xvPRPCFBdmNgTX/33pffSlAQAAOom5c+dq4ULXgxxGZkdp1jgGxAAAAJjYWtqgWz7YpuEPrdKN723V4i0VLgeMutLqcGrZjmrd8eF2Hfnw95rxTp427TPbeP5wwDUHcCgakh6hP5yQ7TJXWVmp6dOny9nVb3gA8AsV6z5T8VevuQ5aLOp+yYOyBps985p7wZ9lC49xmbPXVyv/+Znq8jdTAX4U2WOEel75hIb/baWypt6i4PiO99ibyvd6oDJ0Jo3FO7T1pVuMsgGhkeo76xUFxaZ4uSrPiuw21Dhb9cPXXqzEteoty42zEW68rsjuIxSS5Pq7vZwOFX/zpvF5PcF0qHBYRl+Ft2PwntPeooa9W1S2aqEKFjym/LnXa929E7Xi2l5addMI/fDQOara9I3b522vhqKtKv33v4yyiWPO8XI1APylZtv3xtnOMtg1NLWnbBFxRtmKtZ+qpbrEyxUdXPHSN+WwNxtlYweOlyXAbE8OAAAAAAAOBQx2BQAAAAAAAAAAQJdWXm/XTe+ZbSx8/vBkjcmNNj53YkSg7pmYY5Rdur1Kzy4rND53Z3Jib7ObgiXp9e+LO7xxRnu1OpxasLHMOD/SjYG16BwSwgN1/bHpWjZzmF44r4/Gdo+Rhf2fD2sWi3TB8GSj7NzlhaprbvVyRfsVVjfrn2vMHpK4+Iiu9fDlzzmd0k3vbVV9s+v3fZvVoufO6a0+SV1rqLbFsn+zeRPNdodeWFHk5YoOrKHFoae/NX+ge2If8892AAAAAABMlde36KZ/5Rtlzx+RojHd3OzHT8o1yi7dVqVnl3Xtjc8sFumCEWZ9o7nL9/q277W62Ch78ZFdt++Fn/rxGVo2a4ReOK+vxvagH4/99veF81Vv8L6zvy/ct8v1hf3N7b70v/3zO+iGFoeeXlpgnJ/YN96L1QAAABzeCgoKdOONN7rMxYXZ9OS0nrJZ+QseAABAW2qbWvWHhds19ok1emXlPq89H2F3OPXuulKd8NRazZyfr6oGu1fW6Qq45gAOdVeMTtWJvV3//ufTTz/Viy++6IOKAPiCvbZcW+fdZJRNPvZ8RfcdY3zuwKhE5Zx7j1G2atNSFX76rPG5ARxYYFSC0idfr2EPLFOfGS8opv9YcUMVJElOp7bOu0mOpnqXUYvVpt6/f05h6X18UJhnhWcPktUWZJSt+nG5msrN7yvypNamOlWs/9woa7HaFNFtmPnJLRYlH3uBUbRw8Vy1NtWZn7sDmisKVbL0n0bZlOMudvv8ec/O0L+v6a41dx6nLU9dqV3zH1DJsndUt3PdL15jybfvuH3u9tr1zv1yOlz3dUISsxUzYKwPKgLgD7XbVhvlQhKzFRAa6eVqDFksih043ijqsDer6LMXvFzQQdZubtDej582zscNm+jFagAAAAAA6HwY7AoAAAAAAAAAAIAu7dYPtqm4tsVlLi06SHdOyHb7/NMGJ2p8zxij7F8+26XNxa4fyulsTuwdq8AAs4fLCqqa9H/f+mfz4AUby1RQ1WSUTYkKUk5ciJcrgrdYLdKE3rF67aK++ub6obpidKqiQ23+Lgt+cs6wJKP3qIp6u55b7puhm3//co+aDTYUiggO0NTBCT6oyDteXbVPy3ZUG2VvPzHbreHpncmkfuZDUOetKFJpnevvHZ72+NcFKjH4viPtH4Rzcl8GuwIAAAAAPO/W97equLbZZS4tOlh3Tshx+/zTBicZD7r7y+KdXbIf/3Nu9b2W+aYv//cvd7vR90r0QUXwNqtFmtAnTq9d1F/f3DBcVxyVRj/+MPfqyiIt215llL19Qo5bQ7zxP5P6mw9Bnbei0D996a/2uNmXZrArAACAt8ycOVPV1a7v37j/1G5KjTLbcBsAAOBwtXR7lcY9sUYvriiS0+m7dd9aU6KxT6zRkrxK3y3aSXDNARwOLBbp4dN7KDEi0GX2pptuUmlpqQ+qAuBt2166VS1VxS5zQXFpyv7dnW6fP3H0NMUYDgTa9c5fVF+w2e01AByAxarYIRPUd/ZrGnrfN0qdcIVsYdwfczjb99Wrqv5xmVE2+6zb3Rrk3ZlYg0IU3f9Ys7DT4dYwOE8q/voNoyG7khTVe6RsYVFunT/pmHNksbn+Xm+vrVDRp8+5de722vPB3+Wwu75/OyAkQgmjp7p9/vDMfnI6Wl3mylYtULPBd5+Oqli3ROXff2iUTZ90nSzWAC9XBMBfarevMcqFpvf2ciXuiRs+yThbtGSeWqp93ycqWPi4WqpLjLKBUYmKG3qylysCAAAAAKBzYbArAAAAAAAAAAAAuqy315Ro4Q9lRtm/TemuiOD23ZT/wKlmxzbbHZrxTr5aWn2424QHxIbZNKG3+QC4x7/eo8Jq1w9/eFJji0P3f7bLOH/agK47SBG/lBMXortPztH3Nw7XQ6d116C0cH+XBB+LC7Np6iCzIRGPfrVHO8obvVrPqt01em3VPqPs+cOTFR7UNR8IK6tr0Z8+3WmUHd8zVlcelerlirzn+J6xRhuoSFJVg11//GiHdwv6lfWFdXrymwLj/HnDk40HtgMAAAAAYOrtNcXm/fjTerS/H2/Yy2+2OzTj7S1drh//c3FhgW70vXb7pu+1ssgoe/6IlC7b98LB7e/H5+r7m47QQ6f30KC0CH+XBB/b3xfeYZQd3ytWVx6V5t2CDmFu96U/3Oblin5pfWGtnvxmj3H+vOEp9KUBAAC85JNPPtHbb7/tMjd1UIIm94v3QUUAAABd1xvfF+u8lzf5/FmIn5TUtuiS1zbrpe/M7kM+FHDNARxO4sJs+uuU7i5zZWVluu2223xQEQBvKvn2bZWtWmiU7X7x3xQQ0r57MLpf9IDRsQ57s/KfnSGnvaVd6wA4sJCkHOWcfbeGP/S9ul/6kMKzB/m7JPhYS02Zdr71J6Ns7KDxSp1wpZcr8q64YeaD6PZ9+bIaCvO9WM1vtTbUqGDh48b5uOGT3V7DFhGnxFFmw1H3LHxUjcU73F7DHTVbV2nfV68ZZZPHnq+AYPf3YYgbPkmyuL73y9HcqD3vP+z2+d1hr6vUthdvMsoGxaUpcczvvFoPAD9yOtRYtNUoGpKY7eVi3BM76HgFRpk9J2Kvr9KO1//o5Yp+qW7nehUhqQ8HAAAgAElEQVR89KRxPvnY84yGngMAAAAAcCix+bsAAAAAAAAAAAAAoD32VjXrjo+2G2XPHpqkcT1i2r1WWnSQ7jgxW7cucL1h7g9Fdfrrkl26/cTOdeOvKxcfmWy8KX99s0OXvLZZ707v77ON2//40Q7tqmgyzp85mMGuh5qQQKvOGZakc4YlafWeWs37rkgfbChTk93h79LgA7PGZejddSUuB3U0tjg0c36+3r6kv2xe2EC8tqlVs/61VQ6DeSGRwQGacUx6h9f8eHO5Lnv9R6Ns76QwLfn94A6vKUkPfr5bNY2tLnORIQH625RuHlnTX2wBFp07LEmPfWU2PPW99aU6vmeMzhxs9kBNR5TWteiy13+U3XBITURwgKaPTPFyVQAAAACAw83eqibdYThQruP9+GDdMSFHt37gehOOH4rq9NfPdur2CTntXs/fZh2XZd73ejdPb186wHt9r/l5bvS9MjxeAzqP/f34ZJ0zLFmr99Ro3ooifbChlH78YeDBz3e50Rfu4YOKfO/jTWW67PXNRtneSWFact3Qdq1jC7Do3OHJeuxLs+Gp760v1fG94nzXl35ts3t96VGpXq4KAADg8NTQ0KDf//73LnNJkUGaMynXBxUBAAB0XY99VaAHPtvl7zLU6nDqtgXbVFLbrBuPy/R3OV7FNQdwOJrQO1ZTByXo3XWlbeaee+45XXLJJRozZoyPKgPgSc3le7X9tTuMsklHn62YAePavVZQXJqyz7pD216+1WW2bvcP2vWvvyp72u3tXg/AgVmDQpR09DlKOvoc1W5braLP56nsuw/kaDF/7h1d0+73HlRrQ43LXEBopLpd9DcfVORdCUecqp1v3iN7fZXLrNPeovznblD/W+fLagvyQXXSjjfuUkt1iVE2IDjceEDrr2WcOksly991OTDd0dyo/Odmqv/Nb8sS4Plt/lsba7X1+VmS0/W9mwGhkUqfNKNd64QkZiuq1yhV/7jMZbb4q9eVfOx5Xhl07Wy1a8tTV6i5cp9RPuPUmV657sChrnz1x/rxicuMsmFpvTV4zhIvV3RgjaW75bA3G2VDErO8XI17LAE2JR17rgoWPGaUL13xnmIGHa/E0Wd6uTKppbpUPz5xmZytdqN8QEiEUo6f7uWqAAAAAADofKz+LgAAAAAAAAAAAABwl9MpzZyfb7SxcHJkkO4+ueNDVi8YkazROVFG2aeX7tXyndUdXtOXxuRGa3hmpHF+Q2Gdrnpzi+wmu7x30GNfFejVVWYPYEjS0d2i1T8l3IsVwd+GZkTo0TN6aNWNw3X7idnKig32d0nwssyYYJ03PNko+92uGt38gdmgEXe0Opy65q08bS1tMMpfPSZNsWFd84Gw/NIGvbaq2Cg789gMpUT55qFLb7pidJrCgsxvo5n9r61a9GOFFyuSSmpbdPaLP6igyvwB72vHpCkhPNCLVQEAAAAADjf7+/F55v34iR0fInLBiBSNzo02yj69tEDLd3StfvzP7e97pRhlv9tVrZvfz/d4Dfv7Xj+60fdK77J9L7hvaEakHp3aU6tuOkK3T8hRVmyIv0uCl+SXNui1lWa/j5s5NvOQ6Av72/6+dIBxfvb8PC3aXO7Fiv7Tl563wb2+9NHp9KUBAAC85C9/+Yu2bt3qMvfglG6KCeXv6gDQXn2SwlRwz2ij/6TSE3EL1xadxaur9nWKAaM/9/AXe/TiiiJ/l+E1XHMAh7M/TcpVcmTb322cTqeuueYa2e1mQzQAdCJOp/Kfn2k05C8oJlnZZ9/d4SWTx16gqN6jjbJ7P35a1VuWd3hNAAcX0W2oelz2qIY/uErZ025XcELnGiQGz2kozFfxl68ZZTNOnamgWLN7QTsza3CYksaeb5yv3b5GW5+fLafD9T3GHVX46bMq/uZN43zSMecoINR874yfC07IVPIx5xlla/K/07aXbm7XOm1xOlqV93/XqKHI9e8KJSntpKtli4ht93rJYy8wrMuuLf+4WvZ6z9677XS0Kv/5Wara/K1RPrLbMON/RgC6pkbD9z9JCk7s+J5SnpZ24hWyBocZ57c+P1sVaxZ5sSKppbpEPzx0tprKC4yPSZt4rQKjErxYFQAAAAAAnRODXQEAAAAAAAAAANDlzF1eqKXbq4yy95/aTVEhHd+0zGKRHjqtu0IDXf+KzeGUZr6br5om7z+E4km3n5gli8U8/3l+pc58fqP2VJpv7OuO+maHbvlgm9sbeswal+GVetD5xIbZdO3RaVp6wzC9dH4fje8ZK6sb/w6ja5k1NsN4E8o3Vxfr1gXb1Oqh4dNNdoeueStPS/LMBnlmxQbrytFpHlnbHx5YvMtocHdadJAuG5Xqg4q8Ly7MpquOMv9nZnc4ddU/t+jl78wHj7tjQ2GdTpu7QZv31RsfkxMXoivdeA0AAAAAAJiYu3yvlm4z7cd392A/vocb/fgtXa4f/3OzxmW61/f6YKtn+17//FFLtpj2veg/HK729+PTtXTmcL10QT+N70U//lDzwOKdhn3hYF02ivcBT4gLC2xHX/pHvfyddwYPbCis02nPrmtHXzrdK/UAAAAc7goKCvTQQw+5zJ0+MEHH92r/Js0AAACHuiV5lbptwXa3jwu2WTW2e4zunJCtVy/sq2Uzh2nTbUdo512jlH/HSK3+fyP0/uUD9OBp3XXGoATFhrn/O7I7PtyuxYa/o+lKuOYADnfRoTbNmZTjMrd+/XrNnTvX+wUB8KjCxXNVtWmpUbbbhffLFhbV8UUtFnW/5CFZg0JdZ50O5T9nNngWQMfYImKVNvFaDbt/qfrc8JJiB42XLGzzfSjZ9e4DcjrsLnNBcWlKPf4yH1TkG+knXytbWLRxvvTf87XlH1ertbHWOwU5nSpY8Jh2vHG38SEBIRFKnzyjQ8tmTJklW3iMUbb4mze17eVbPTbg1tHSpLynr1HFuiVG+eCELKVNuLJDa8YfcapCDAcjNpbs1OZHL5S93uz+clcczQ368YnpKl3+rlHeYrUp96IH5NbGKAC6nIZ924yzIQmZXqykfWwRcUo76Srj/P7B2Vdp3xcve6Weul0btOG+01S/Z7PxMSFJOR3+fAEAAAAAoKviNz4AAAAAAAAAAADoUvJKGvSXxWaDPs8YlKAJvT23aVl2XIhuHp9llN1d2aQ7P3R/Mwp/GpkdpfOHJ7t1zMrdNZrw9Dq9u65UHtpHXpL0753VOuEfa/XKSvcG5p0+MEGjsj3wsCu6FKtFOr5XrF6+oI+W3jBM14xJU1xYoL/LgoclRgRqzqRc4/zL3+3Tha9sVkFVx4ZPbylp0NTnN2rhD2VGeatFeuSMHgoL6pq3ZOSVNOijzeVG2auOSlNgwKHz4NuMY9KVHRdinG+2O3Trgm26+NXNKqpu9kgNTXaHHvlij6bM3aCdFY3GxwVYLXr8TLOBNwAAAAAAmMoradBfPt1plD1jUKIm9Inz2NrZcSG6+XizDYJ2VzbpzoXmG3d0NokRgZozuZtx/uXvinThKz94oO9Vr6nPr3ez79VTYUEBHVoXXdv/+vH9tHTmcF1zdLriwunHd3V5JQ36aJPZe8Gh1hf2txnHZrjfl/5gqy5+dZOH+9K7NeXZde3oS/eiLw0AAOAlt912m+rr69vMRAYH6I8nmfVPAAAADkeldS2aOT9frW486JAYEag/npSt728artcu6qurx6RpXI8YZcUGKyrEJpvVotBAq5IiAjU8M1LnDkvSE2f21OqbRujxM3uqd1KY8VoOpzRrfr6Ka1va8/I6Ja45AOw3uV+8Tujl+pnGu+66S9XV1T6oCIAnNBTmadc7fzHKJow8Q7FDJnhs7ZCkbGWdcbNRtql0t7a/dqfH1gbggsWq2EHHq88NL2vY/UuVdvI1Cozw3L2U8I+GwjyVr/7IKJt20lWy2A6de+hsEbHKnHqLW8eUf/+h1t0zQZUbPvdoLY3FO7Tp7xdq1/wH3DouY8osBUYldmjtwKhE5Z43xzi/74uXtfnvF6qpvKBD6zbs3aKND0xV2aqFZgdYrOpx2SOyBpv3Rw58mgBlTJllnK/JX/mfAYGbOrRuzdZVWnv3iapYu9j4mIxTb1B4Zr8OrQug82vct8M4GxSb6r1COiB90gyFJJnf0+GwN2vby7dq82MXq7miyCM1OFqatOf9R7ThvilqLDF7Nkja/7nQ44rHZQ0K9UgdAAAAAAB0NTZ/FwAAAAAAAAAAAACYsjucuv7dPDXZHS6zCeGBmjPRfACgqctHp+qDjWX6fk+Ny+xba0o0oU+cJvXtOg9g/fGkbH23q0Y/Fre9KdzPVTXYNeOdPD24ZLeuGJ2qs4cmtWugob3VqQU/lGneiiJ9t8v19f21hPBA3Tsxx+3jcGjJig3WHRPYsPBQNXVQgj78oUwfbTIbPPrl1kod98RaXTYqRZcemaKkyCDjtXZVNGnu8kK99F2RWlrNNxe6fHRqlx4w/eQ3BXIavty7Ptqhuz7a4dV6PGHRNYPUPyXcZS7YZtVjU3vozBc2yu7GP/PFWyo08u/f64yBCbr6qDT1SXb/AcjSuhb9c3WJ5i4v1L4a9zfjv3l8poZlRLp9HAAAAAAAB2N3OHX9O1vM+/GTzAeTmrp8dJo+2Fiq73eb9OOL9/fj+8V7vA5fmDooUR9uLDMerPhlfqWOe3y1LhudqkuPTHWz79Woucv2tqPvlaZROV237wXPy4oN0R0TcvxdBjzgya/3uNEX3q67Ptru3YI8YNG1Q4z6wv62vy/dS2e+sN69vvSP5RqZX6EzBibq6jHpHehLF2vusr3t60sfn6VhmfSlAQAAvGHNmjV69dVXXeZuPSFLyW70BAAAAA43N7+/TWV15gM8LxiRrDtOzFZkSIDbawUGWDR1UIKm9I/XP77dq78t2W003LS83q6b3tuql87v4/aanRHXHAD+58+Tc/XtjirVNx/8vovi4mL97W9/05w55gOjAPiH02FX3rPXy9HS5DIbGJXg1iA4U6knXq6y7z5QzbbvXWZLvn1LcUMnKG7YJI/X4U0tVcVaOXuoX9auyf9Oyy5L99j5elz+mBJHn+mx86FrCE7IUvZZd/i7DHhAwYdPyvSGqh2v36Udr9/l5Yo6btBdixSe1d8omzLuIlWuW6yKdUuMz99YvFObHrlAUb1GKeWE6YodfKKstvb9Hqtu5zoVLZmnkuXvymk37zNIUlTv0Uo98Yp2rftrCaOmqmzVhyr/3mzIb+XGL7X2juOUcuJlShl/qYKik4zXairdpcJP56roi5fces2pJ16uqF6jjPNtSRw9TUVL5ql2+xqjfENhntbdc5KSj7tYaROuUHBClvFa9Xs2ac+CR1W2cqHkdH2v+k9iB41XxqkzjfMm+P4BdE4t1cVGOUuATQGhnfNeVmtgsHpc9pg2/vVMOVvtxsdVrF2s7zeMVMLIM5R20tUKy3C/l91SXaqSpf9U4eK5aq7c5/bxmWfcrMhuw9w+DgAAAACAQwWDXQEAAAAAAAAAANBlPPLFHq3bW2eUve+UXMWGef7XYVaL9NDp3TXhH2uNNjy/+f2tGpER4dam6v4UHhSg587prVOeXa/KBvMbgyVpZ0Wj7vhwu+Ys2qmjcqJ0RFak+qWEKzMmWEmRQQoLtCrIZlVdc6uqG+2qarCrqKZFq/fU6Ps9tfp+T62qG91b8ye2AIueObuX4sMD23U8gK7jkdN7aGvpem0paTDK1zW36rGvCvTU0r0amRWl8T1j1D81XN3iQxQdYlNooFUNLQ5VNdqVV9Kg9YV1WrKlQit318hgb59fOKZbtG4/oesOFq5utGv++lJ/l+FXIzIjdddJObrzQ/cGE9hbnXprTYneWlOiPklhOrZHtAalRqhbQohSo4IVGRygYJtVrQ6n6ptbVVTTrJ0VTVpbUKvlO6r13e4ao82kDuT84cm67hjPPbgHAAAAAIAkPfLFbq3bW2uUve+U7l7sx/fQhKfWGPbj8zUiM7LL9ON/7ZEzempraYO2lNQb5euaW/XYl3v01DcFGpkdpfE9Y9U/JVzdEkIP3PfaW6sleRVauava/b5X9xjdfmKO+y8KQKe3vy9c4u8yDmsjsiJ110m5uvPDbW4dt78vXay31hT/py8do0FpEeoWH6rU6CBFBtt+25cub9TavbVavqNK3+3qaF86o13HAgAAwLXZs2fL4Wh7A+PBaRG6cESyjyoCAADoehb+UKZPNpcbZQOsFt03OVcXeOD7lS3AohnHpKt/SpiufHOLGlpcD6b4bEuF3t9QpikD4ju8vj9xzQHglzJigjXjmAw98NmuNnMPP/ywrrrqKmVk8LsXoDPb8/4jqtu5ziibe/59skXEer4Ii1XdL31Ia++ZYDTwbeuLNyui+wi3hsoBACR7fbVK/z3f32X4l8WiHpc9pnVzJqmptO3vs79WvWW5qrcsV0BwuKL7Ha2IbkMVltFPwXHpCopJkjUoTNbAIDlbW+VoaVRLTbmaK/aqoWir6nasU+UPX6mpdHe7yg6KSVbPq56SxRrQruMPpMf0R7S+aKsa9m4xyrc21algwWPa+9FTiuo1UjEDxys8s79CUrrJFhYta1CoHM0NstdXqWFvnup2rVfFuiWqyV/p1oBTSYrud4yyp93enpd1YBaLuk9/WOvvnWg0zF6SnI5WFX32vIqWvKDo3qMV3e8YReQOUUhSjgLCohUQEiFHU73sdZWq37tFtdvXqPz7j1S/Z5Pb5YUk5ajHFU9KFqvbxwLoelqqzfa8sEXEebmSjonsMUI5Z9+l7a/d6dZxzla7Sr59SyXfvqWw9D6K7n+sInIGKSS5m4JjUxUQGilrYLCcra1qba5Xc2WRmop3qnbHWlX/uFw1+d/J6WhtV83Jx56v9EnXtetYAAAAAAAOFQx2BQAAAAAAAAAAQJewpqBWj39dYJSd3C9ek/t5b4OFXomhmjU2Q39d4vqhkIp6u2b/a6teubCv1+rxtNz4EL1xcT+d/eIPqnJzuKskNdkd+jy/Up/nV3qhut+yWqSHTuuukdlRPlkPgH9FhgTo5Qv66pRn16uk1vVD6D+xtzq1dHuVlm6v8kpdfZLD9Ow5vWULsHjl/L5Q1+yQ3WBIyqFu+sgUFdc0G3/v+LXNxfXaXGw2gKWjpgyI132n5PpkLQAAAADA4WPNnlo9/tUeo+zk/vGa3N+b/fgwzRqXqb+62OhU+qkfn69XLuzntXq8KTIkQC9f2E+nPLPW/b7Xtiot3ebNvlefLt33AnBw9IU7h+mjUlVc22z8+ftrvu1LJ+i+U7v7ZC0AAIDD0SeffKLPP/+8zYzFIt0zMUcBVv6uDgAAcCCtDqce+Mx8AMifJnlmwOjPje8Zqyen9dTlb/woh0EL9oHPdmlSvzjZuuh3PK45ABzY1Uel6vXv92lXxcGHItXX1+vee+/VM88848PKALijdvsaFSx83CgbP2Ky4kdM9lotoWm9lHHqLO2e/1eXWXtthbY+P1t9Z73itXoA4FDkaKqTs9X9/RUONbaIWPX/f29qw/1T1VxR6PbxrU11Kl/9icpXf+KF6n7LFhGrvje+7vGB5gGhkeo782Wt/9MpaqkuMT7O2WpX1aalqtq01KP1/CQso496X/usLAGeHS8QltZbOefeq20v3eLegU6nqjZ/q6rN33q0np+EJGar//97S7Yw9hMBDhfNVWbvuYHhsV6upONSjp+u5spiFXxo9vfKX6sv2Kz6gs0erurA4o+cotwL7/PJWgAAAAAAdGZWfxcAAAAAAAAAAAAAuNLQ4tCMd/LUarC7QmyYzScDzn5/TLr6p4QbZT/Pr9SLK4q8XJFnDUwN11uX9FNqVJC/S2mTzWrR42f21LTBif4uBYAPZcQE642L+ikpsnO8R/VNDtPrF/ZVZHCAv0uBh9x6QpZmj8vwdxltmj4yRU9N68WGUgAAAAAAj9rfj9/iRj/e+4Pdfn9Mhnk/Pq9CL65wfwOpziIjJlhvXDygE/W9wvX6Rf3pewGAD9x6QrZmH5fp7zLaNH1Uqp46qzd9aQAAAC/605/+5DIzuV+8jsiK9EE1AAAAXdObq0u0tbTBKHvJkSm66AjPDhj9yUl94jR7nFnPb0d5o15bVeyVOnyBaw4ABxZks+qW47Nc5ubNm6ft27f7oCIA7nI0Nyjv2RlyOlpdZm0Rsco93/sDcNIn/V7hWf2NspUbPlfR5y96uSIAwKEqOCFL/W9+WyHJ3fxdSpuCYlPU78Y3FZbW2yvnD47PUL8b3/D40Nj2Csvoq76zX1dAqHd+X5g89gKlnXyNV87dHiGJ2ep/89sKikvzdykAfMh0mLYtMs7LlXhG1pm3KmPKbH+X0aaU46er15VPyWL17NBwAAAAAAC6Iga7AgAAAAAAAAAAoNObs2intpU1mmUn5iohPNDLFe0fKPrw6d2NN6115zV0Fv1TwvXRVYM0KjvK36UcUHJkkP55ST+dPjDB36UA8IM+yWF6//IB6hYf4tc6RudEaf70zjNsA55z43GZevSMHgoN7Fy314QFWfXgad01Z1KuLOydDwAAAADwsDmf7NC2MrNNl+dM6ua7fvwZPc378W68hs6oT3KY3r9ikLrFh/q1jtG50Zp/2UD6XgDgQzcel6VHp/bshH3pAD14eg/NmdSNvjQAAIAXffrpp/rmm2/azAQGWHSrwUAYAACAw5XDKT3xdYFRNicuRHdMyPZqPTOOTVf/lHCj7ONf71Grw+nVeryBaw4AbTttQIJGZLY9cKmlpUUPPPCAjyoC4I6d/5yjxn3bjLK5581RYJT3n3W1WG3qfunDxsN23HkNAAD8WkhSjgbesVAxA8f7u5QDisgdooF3fGg89Ly9wjL6aMAf3vf7kNuo3qM14Nb5Xh8ym33WHUo76WqvrmEiut8xGnD7Bwx1BQ43TodaG2qMogHBYV4uxnMyT7tRPS57VNYg/z4n8mvW4DB1v+RB5Z43R9wkDAAAAADAfp3rCV8AAAAAAAAAAADgV77cWqmXvisyyk7oHaszBvluyOeA1HBdM8bsIYCGFodmvJMnexfb9CExIlBvXdpfcyblKiyo8/x68dQB8Vp0zSCN7KRDZwH4RmZMsBZcMVCn+WHAc4DVouuOSdfrF/VTZEiAz9eHb0wbkqhF1wzWsIy2N1LxlVHZUVp09WCdO8y7D10CAAAAAA5PX+ZX6qXvCo2yE/rE6YxBiV6u6H8GpIbrmqPTjbINLQ7NeHtLl+vH/1xmTLAWXDnIj32vDL1+UX/6XgDgB9OGJGnRtUM0zMUG374yKidKi64ZrHOHJfu7FAAAgEPenDlzXGYuOTJFufEhPqgGAACga/oiv1I7KxqNsvdOzFFooHefkbBZLbp3Uo5Rdm9Vsz7Lq/RqPd7ANQeAtlks0h9PynY5F+P555/Xjh07fFITADOVG79U0RcvGWVjh0xQwsgzvFzR/4RnDVDaydcYZR3NDcp7doacDruXqwIAHKpsYVHqO/Nldb/4b7KFdY69Hay2IGVNvUUD/vCegmJ8c19TcEKmBt6xQAlHnuaT9X7OYg1Q+qTr1G/26woI9c19Zdm/u1PdLnpAVluQT9b7OYs1QBmn3KB+s19TYGS8z9cH4F+OlibjrMUW7MVKPC/xqGkafPciRXYb5u9SJElRvUZp8F2LlHTMuf4uBQAAAACATqXz7LwMAAAAAAAAAAAA/EpVg12z/7VVToO916NCbHrg1G7eL+pXZo/LUI+EUKPsmoJa/f3LPV6uyPOsFmn6yBQtvX6oLj4yRYEBLp4k96KhGRF6+9L+evqsXkoID/RbHQA6j+hQm56a1lP/OKuXkiN983BY3+Qw/euy/rrthCy/vifCN7rFh+j9ywfo0ak9lBHjn4d7cuJC9MzZvfTO9P5s0AoAAAAA8Ir9/fg8N/rx3b1f1K/MHpfpXj/+i91ersi7okNteuqs3vrH73r7sO8Vrn9dNlC3nZhN3wsA/KhbfKjev3yQHj2zp3/70uf00TvTByo33uzzFwAAAO33+eef6+uvv24zExZk1Yxj0n1UEQAAQNf0ysp9RrmhGRE6vlesl6vZb1R2lI7KjTbKvrSiyMvVeB7XHABcG54ZqeN6xLSZaWlp0V//+lcfVQTAFXt9lba+MFsmN1PZwqLU7aIHfFDVL2WcNluhqT2MsrXb12jPB3/3ckUAgENd0rHnacifv1bqiVfIGuife5os1gAljp6mwXO+UPrk62Wx2ny6vi0sWj2vekq9rvqHzwbKhmX0Vf/b/qWsM2+Txebb/TWSx16ggXd+pMjuw322ZlTv0Rp01yfKPONmycL4BOBw5M5gV6uP3xc9ISS5mwb84X31uPxRBcdn+KeGpBz1uvYZ9b/lHYUk5/qlBgAAAAAAOjM6kwAAAAAAAAAAAOi0blu4XUXVzUbZe07OUZKPNjb/uSCbVQ+f3l1Ww/3NH/uqQKv31Hq3KC9JigzSfZNz9e0Nw3T9selKjPDNDc5BNqsm9Y3T25f214IrBmp0TpRP1gXQtUwZEK9lM4fq3ok5SonyzudB/5RwPXN2L316zWANy4j0yhronCwWadrgRC29YageP7OnhqRH+GTd0TlRmntOb319/VBN7hfvkzUBAAAAAIen2xZsNe/HT8z1Xz/+jJ5u9OP3aPWeGu8W5QNTBiRo2azhundSN+/2vc7po0+vHaJhmfS9AKAz2N+XTtLSmcP1+LReGpLho750brTmnttHX98wnL40AACADz344IMuMxcfkaL48K63KSkAAICvFNc0a/GWCqPstUene7maX6+XZpT7cmul9lSab1rvb1xzADA3e1ymy8y8efNUWlrqg2oAuLL95dvUXGE2AD7nnHsUFJ3k5Yp+y2oLUvdLHzYeeFaw4DHVblvt5aoAAIe6wKgE5Zxzt4bev0wZp85UUGyKT9a1hcco9YTLNeRPX6jH5Y8qJCnbJ+seTPyRUzT0/mXKOfder12D8LTEI7wAACAASURBVKz+6nXtMxp896eK7DbMK2uYCMvoowG3vade1/yfwjL6em2dqN6j1fu659X/5re9ug6Azs9hN3uuRZLPB157jMWixNHTNPT+pep5xeOKyB3ik2Wjeo9W79/P1dD7vlb88Mk+WRMAAAAAgK7I5u8CAAAAAAAAAAAAgAN5f0OZ3ltv9iDyuB4x+t3QRC9XdHDDMyM1fWSq5i4vdJltdTg14908Lbp6sMKCzB6Y7GzSooN0y/FZunFcpr7aVqVFP5Zr8Y8VKjTc9N9EQnigRudGaXyPWE3sG6fIkACPnRvAoSvYZtVlo1J1yZEp+npbleavK9XiLRWqbLC3+5yZMcGa2C9OUwclamBquAerRVdks1o0dVCCpg5K0LayRr23vlSf51dqbUGt7A5nx88fYNGw9Aid3DdOE/vGKys22ANVAwAAAADQtvc3lLrZj/f9RoQ/GZ4Zqemj0jR32V6X2VaHUzPeydOiawYrLKhr95h/0/daW6LFW8o90PeK19TBiRqY6pthgQAA9+3vSydq6qBEbStr2N+XzqvwbF86I1In94nTxH7xyooN8UDVAAAAcEdeXp4+/vjjNjOhgVZdPcZsMBUAAMDh6pPNFWo16JnFhdk0oVesDyr6n7HdY5QSFaQiF89cOJzSR5vKdcXoVB9V1jFccwAwNzQjQuN6xOiL/MqDZhoaGvTMM8/oD3/4gw8rA/BrZSveV+mK94yyMQPGKXHM77xc0cFFdh+u1OOnq3DxXJdZp6NVeXNnaPBdi2QNDvNBdQCAQ1lQTLIyT/9/ypgyW1WbvlHF2sWqXL9EjcU7PLdGbIpiBo5X7MDxihk4XtbAzvW8rTUwWKknXKaU8Zeo6oevVbp8virWLZa97uDf+V0JTshU3LCJShw1VeHZAz1YbQdZLIofcYriR5yimvzvVPLt26pY+6maK/d16LShKd0VM2i8ko4+R2HpfTxULICuztnSZJy12IK8WIn3Waw2JYyaqoRRU9W4b5tK//2eKjd8rtrta+V0tP9Zkf+eP8CmiG7DFDf0ZMUPn6jghCwPVA0AAAAAwKGPwa4AAAAAAAAAAADolKYMiNeUAaP9XYaxeybm6J6JOf4uw6dsARaN7xmj8T1jpFOkwupmbSis08aiOu2qaFJhdZOKqptV2diqxhaHGu0OtbQ6FGC1KMRmVbDNqthQm5Iig5QSGaicuBD1SQ5Tn6QwdU8I9ffLA9CFBVgtGtcjRuN6xMjplDYX12vFzmptLq7X9rJG7apsUk2jXfUtDjXbHQoNDFBY0P73pOy4EOXGh2hASrhG5UQpPdq/D/qd3CdOBff45vMwNSrIZ2sdCrrFh2jWuAzNGpehmqZWrdtbq8376rWlpEF7q5q0r6ZFJXUtamhuVVOrUy2tDgUGWBUaaFWIzaq4MJvSo4OVHhOs7vEhGpIeoQGp4Qq2dc3B7wAAAACArmvKgARNGZDg7zKM3TMxV/dMzPV3GX7x275X3S/7XhWNqmlsVX1L66/6XoH/63ulRnSKvheAziE1KkgF947xdxmdxsl94zv19egWH6pZ4zI1a1zm/r50Qa02F9drS3H9f/rSzS760oFKjwlWenSwuieE0pcGAADoJB555BE5HI42MxcekayE8EAfVQQAZuytTq3aU6N/76zR1rIGbStt1L6aZtU1t6q+xSGn06noEJsiQwKUHBGkAanhGpgariOzo5QVS3/SU2oaW7VyT402FNZp/d467fxPn7i6ya6aplZJUojNqrCgACVHBCo1Kki9k8I0IDVco3OiFM/nCw4hn2wuN8qdMShRtgCLl6v5JatFOnNQop78psBl9uMuNGSUaw4A7rnxuIw2B7tK0pNPPqmbbrpJQUFdezAJ0JXFHzlFo4+c4u8yjOWce49yzr3H32V4RGB0kkY/5/r7GwB4U1BsKu9FbrBYAxTTf6xi+o+VNEctVcWq27VBdbt/UOO+7WquLFJzRZFaasvlaG6Qs6VJjtYWWQJssgaGyBoYIlt4jIJiUxQUk6KQxGyFZfZTeFZ/Bcdn+PvlGbFYAxQzYJxiBoyTnE7VF2xWdd4K1RdsVuO+7Woq3SV7fY0czfVytDQrIChU1uAw2SJiFZKYrZDkXIVnDVBU71EKjkv398txKbLHEYrscYTkvF+NJTtVt3uj6vdsVv2ezWouL5C9oUatjbVqbayVs6VJ1qBQBYRGKCA0SiGJWQpN7amwtF77X28nGDDI9w//SBzzOyWO+Z2/y/ALf7/2uKEnd/p/54MTMjt9jd4QktxNGVNmKWPKLLU21Kh2xzrVF2xWw94tairfq5aqfWqpKlHrzz5PrQGBsgaFyhoUIltEnILj0xUcl66QlO6KyB2i8KwBnW4wOgAAAAAAXQGDXQEAAAAAAAAAAAB4RGpUkFKjgnRi71h/lwIA/2WxSH2Tw9Q3OczfpeAQFhkcoDG50RqTG+3vUgAAAAAAwGFif98rXH2Tw/1dCgDADyKDAzSmW7TGdKMvDQAA0JVVVFTopZdeajMTGGDR1Uel+agiAHBt2Y5qvfhdkT7Pq1TtfwaHHkxpXYtK61q0vaxRy3dW//fPh2VEauqgBE0bkqjI4ACXa769pkQ3zM93mbt5fKZuGOveZv+bi+t1/JNrjbIrbxyu1Cj3B2xtKKzTSU+vc5mbcUy6bj3B9Ub2La1OfbK5XPPXlWpJfqWa7W0PCK9tbVVtU6uKa5q1vrBOi36skLS/zzw4LUK/G5KoqYPN/lm4wxfXFvhJbVOrvtleZZT11/MOx/eKMRoy+t3uGpXX2xUX1rm3h+OaA4D7hmVE6qjcaH3bxvvn3r179fbbb+u8887zYWUAAACAZwRGJylm4HjFDBzv71L8w2JRWEZfhWX09Xcl3mexKCQpRyFJOYofPtnf1QDAISUgNFLRfccouu8Yf5cCAAAAAMBhyervAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDDyQsvvKC6uro2M1MGJCg5kkF3APzvi/xKHf/kWk17YaM+2FDmcqhrW77fU6M7Ptyuo/7+vZ5dVuhyMOnuyiaj80aHds6BfKYDU6sa7W3+3OGU3llbomMeW62r/rlFH28ud3nt2uJ0SmsKavWHhdt1xMOr9OQ3BR06H+BPX22rUkur02UuLMiqkVmRPqjot4ZnRioyxPX7QavDqSV5FT6oqGO45gDQPleMTnWZeeKJJ3xQCQAAAAAAAAAAAAAAAH6Nwa4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAD7344osuM9NHpvigEgA4uLK6Fk1//Ued//ImbS6u9+i5y+vtuvvjHTr+qbXaWHTwQddl9S1G5wsLNBug6muhgWZbPNU1H3yo6q6KJp3yzHpd/26+8aBbd9Q0tuq+T3dp8rMbtLW0wePnB7xt2fYqo9zIrCgF2fyz7ZrNatHo7Cij7LId1V6upuO45gDQPif2ilX3hNA2M8uWLdOmTZt8VBEAAAAAAAAAAAAAAAB+wmBXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwEdWrFihdevWtZkZnROlIekRPqoIAH7r+z01Ounpdfpkc7lX19lW1qhTn92gV1buO+DPKxvsRucxHaDqa6FBZgNn65paD/jnn/5YoZOeXqe1e2s9WdYB/VBUp1PnbtCaAu+vBXjSd7tqjHJDM/z73WpoRqRR7t87O/+QUa45ALSPxSJdfESyy9y8efO8XwwAAAAAAAAAAAAAAAB+oXPejQwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcgl544QWXmUtHpvigEgA4sG+2VemseT+osLrZJ+s12R265YNtevKbgt/8rLrxwANPfy2ksw52tZnVVdf829e5YGOZLnvjR1U3mg239YSqBrvOefEHbS1t8NmaQEc02x3aVFxvlB2S7t8ho6br7yhvVI3he58/cM0BoGPOHpqkiOCANjMvv/yy7HbffQcEAAAAAAAAAAAAAACAZPN3AQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMDhoLGxUW+++Wabmdgwm07sFeujigDgl/69s1qXvLZZjS0On69936e7ZLNadNVRaf/9s7oms0F7QTaLt8rqEFuARRaL5HS2nav/1fVekleh37+Tp1aHiwO9oKapVdNf/1GfXD2o0w7M9afP8yt1wcub/F2GV10+KlX3TMzxdxlGNhc3yN5q9v+TganhXq7GM+s7ndL6wlodlRvt5Yrah2sOAB0TERygU/rH643viw+aKSws1Mcff6xTTjnFh5UBAAAAAAAAAAAAAAAc3rhrFgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAPCBhQsXqqKios3MtMGJCrKxJQgA3yuuadaVb25Rgx+Guv5kzqKd+mpr1X//d22z4WDXgM77vmmzuh46+/NrvqO8Ude8lWc8ONEb8ksb9PjXBX5bHzC1paTeKBcRHKCkyCAvV9O22DCbYkJtRtktJQ1erqb9uOYA0HFnD01ymXnttdd8UAkAAAAAAAAAAAAAAAB+Yna3GQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAOeeedd1xmfjck0QeVAMAvOZ3StW/nqbSuxe1jrRZpdE60xvaI1qC0COXGhSgm1KbQQKsaWhwqqW3RpuJ6fb21Up9srtC+muY267j+3TwtvnawEsIDVWc42DXAYHiqvwQGWNTiYkhr/X9eZ0urU9e8tUW1TQd/3SGBVo3vEaOjcqPVLyVMOXEhigy2KSTQqma7Q7XNrSqpbVF+SYPW7K3V53mV+rHYbBDjz/1j6V5dOjJFCeGBbh8L+MrWUrNhnLlxIV6uxExufIhW76l1mcvrxENGueYA0HFHZkWqR0Ko8tt4T12wYIEaGxsVEtI53k8BAAAAAAAAAAAAAAAOdQx2BQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALysqalJCxcubDMzKC1c/VLCfVQRAPzPW2tKtGxHtVvHBFgtOn94kq49Ol2ZMcEHzEQEBygiOEC58SGa1DdOcyY59cnmcj24ZLe2HGSIXklti25fuF3/97teamhxGNVis7pVuk/ZrFZJbb+ORvv+nz/8xW6t21t3wExyZJCuOyZdZw1JVGRwwAEzIYFWhQRalRAeqL7JYTp1QLzunJCtlbtr9KdFO/XdrhrjupvsDs1bUaSbjss0Pgbwte3ljUa53PjOMRSvW3yo0ZDRHYavyx+45gDgGdOGJOr+xbsO+vOamhp99tlnmjx5sg+rAgAAAAAAAAAAAAAAOHx14tuRAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEPDokWLVF3d9tDEKQMSfFQNAPxPbVOr/rJ4p1vHpEcH64MrBugvp3Q76FDXA7FZLZrcL16Lrx2s207Iki3AcsDcgo1lWlNQq2a72WBXq+XA5+kMTIbONtsd2lbWqH8s3fubn1ks0hWjU7X0hqGaPjLloENd2zIiM1LvTh+gK0anunXcP1eXuL0W4Et7KpuMcqlR5u9T3pQSGWSU21XReYeMcs0BwDNOM/j7/zvvvOODSgAAAAAAAAAAAAAAACAx2BUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwuvnz57vMTOob54NKAOCXXl65T8W1Lcb57gmhWnjlQA1Oi2j3mgFWi647Jl1vXtzvoINK/7Rop1panUbn68RzXWUxKK651albP9j2m9cbGmjVs2f31t0n5yg0sGPbRVkt0t0n5+isIYnGxxRUNWnt3toOrQt4096qZqNcUkSglysxk2hYR4Hh6/IHrjkAeEZWbLD6p4S3mXn//fdlt9t9VBEAAAAAAAAAAAAAAMDhjcGuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgJctWrSozZ8PSA1XdlyIj6oBgP3sDqeeW15onI8Ns+mNi/oZD8pzZVR2lP55SX+FB/12uOuyHdWqaWo1Oo+1E092tRqUVtvUqqXbq37xZ8E2q+ad10cTPTz0+0+TcpUU+f/Zu+84yesyT+BPd3We7unJPTkRhxxEGRRRYUVYcVdWTMuaMeCi7up6+tpwop573BruVl3QPfcUE4qKAQMZCZIGGIYwOefu6ZxDVd0fIEFmun890xV6+v3+Z19MPVXfTz2zNDOPVd+nInH9XRvbRy6CAshmI5q7ky2lHqufWYcq6bLT/qFM4p9/+aTnAGPrwuOG/3Nec3NzrFixIk9pAAAAAAAAAAAmNotdAQAAAAAAAAAAAAAAAAAAACCHnnzyydi5c+ewNX9+3PQ8pQF4zk1rWmJ3x0Di+i/+xRExtz75UtAkTpo7Ka5581FxKLtZkyxPLZSSg3xj/+uipfGKpfVjnCaitjIVH37F3MT1K7Z1jnkGGAutvUMxlMkmqp1ZO7Y/tw7WaJYqN3UlW6CaT3oOMLYuTDAHuOWWW/KQBAAAAAAAAACAskIHAAAAAAAAAAAAAAAAAAAAAIDD2W233TZizblHT8lDEoAX+sXjzYlrX3XklHjdsdNykuM1R02Ny5bPiW/+YXdOXr+QDmbp7BtPmhFvOmXm2Id5xiUnz4zP37w1BtMjL2h8fHd3znKMR68+ckrsvHJ5oWMQES09yZdwTq5K5TBJcrWVyXO09gxGTK/KYZrR03OAsXX0zOpYNLUqtrb2HbDmlltuiX/+53/OYyoAAAAAAAAAgImptNABAAAAAAAAAAAAAAAAAAAAAOBwduuttw77+LSasljWMClPaQCe1j2QjtvWtyau/+S5C3KYJuLT5y6MhVMrc3rGeFBbmYp/OX9xTs+ory6LMxZOTlS7t3MgugfSOc0DB6Ojbyhx7WiWe+ZSbUXyHO19xffvnZ4DjL2zj6gf9vH7778/Ojo68pQGAAAAAAAAAGDistgVAAAAAAAAAAAAAAAAAAAAAHIknU7H73//+2Frzj5iSpSW5CkQwDPu29IRfYOZRLWnza+Lk+fW5jRPRVlpfOrchTk9Yzx410tnx6za8pyfs3xxssWuERHbWvtzmAQOTscolnCOZrlnLk2qSH7t22iWqOaLngOMvVeOsNh1cHAw7rnnnjylAQAAAAAAAACYuMoKHQAAAAAAAAA4OJd+d/Xon/OShrjqoqU5SFP8WnqG4sSrHip0DAAAAAAAxplLv/vU6J9zxuy46qIjcpCm+LX0DMaJ//PBQscAAACAovLUU09FR0fHsDVnLx1+kQtALty3ZfifTc/35lNm5jDJc95wwoz40p07YuO+3rycV2xSpSXx3pfNzstZyxpqEtc2dQ3GsoYchoGD0JNwMXVExKTKIlkyOoocPQPJ31++6DnA2DtrcX2UlkRksgeueeCBB+LCCy/MXyiAEaz+yqWjfk7DOZfG0ndclYM0xW2oqyUe+uiJhY4BAAAAAAAAJFBa6AAAAAAAAAAAAAAAAAAAAAAAcLh66KGHRqw5a8nkPCQBeKH7Ey52LSmJOP/YqTlO89xZ+VpsWozOOaI+ZtVV5OWsJdOqEtc2dw/mMAkcnL5RLBmtTJXkMElylank1771DRXfklE9Bxh7U2vK4vjZk4atSTJXAAAAAAAAAADg0FjsCgAAAAAAAAAAAAAAAAAAAAA58uCDDw77+PRJ5bFoavLlegBjYSiTjaf29iSqPXZWTd6WjUZEXHzSzKgom5hXI12wbHrezppbn/z3tKs/ncMkcHD6R7GEM1VaHEtGy0ax7HQ07y9f9BwgN06dXzvs4w888EBks9k8pQEAAAAAAAAAmJgm5qeXAQAAAAAAAAAAAAAAAAAAACAPRlrseuq84Re4AOTCpua+GEi4wO6MhXU5TvNCdVWpePWRU/J6ZrF45RH1eTtrclVZ4sWL/WnLDik+6UzyBXfFsmQ0IiJplKFRvL980XOA3DhlhLlAS0tLbNmyJT9hAAAAAAAAAAAmKItdAQAAAAAAAAAAAAAAAAAAACAHBgYG4oknnhi25mSLXYECWNfYk7h2pEVTuXDBsml5P7PQpk8qj/lTKvN6Zm1lKlHdYNqyQ4pP0h2cZUW0YDQi+cLTTBEuGdVzgNxI8ufthx9+OA9JAAAAAAAAAAAmLotdAQAAAAAAAAAAAAAAAAAAACAHNm7cGIODg8PWFGJhIsCm5r7EtUfNrM5hkv07a8nkvJ9ZaMsaavJ+ZmUq2bLDtGWHFKFMNtn/X5YW2ZLRpEtPi/FfOz0HyI0jZ1THpIrUsDVr1qzJUxoAAAAAAAAAgInJYlcAAAAAAAAAAAAAAAAAAAAAyIG1a9eOWFOIRX4Auzr6E9ceOSP/i13n1VfGwqmVeT+3kArxfssSLnaFYpR4WWeRbescSpinGP/91HOA3EiVlsRRM4f/M/e6devylAYAAAAAAAAAYGIqK3QAAAAAAAAA4IWuvuTouPqSQqc4/EyrKYudVy4vdAwAAAAAAIrE1W8+Jq5+8zGFjnHYmVZTHjs/+/JCxwAAAICiMdJi15qK0phdV5GnNADP2dk2kKhuUkUqJlcV5pqiZQ2TYltr8gW0411DAf57UFpiiSHjV0WqNFFd0qWe+ZJOmKcy4fvLJz0HyJ0jZlTHyp1dB3x8pPkCwFg4+gNXR3zg6kLHOKyU1U6L5d/aWegYAAAAAAAAQAI+QQYAAAAAAAAAAAAAAAAAAAAAObBu3bphH18yrTrs1AMKobEr2WLX2ZMLt3z66JnVBTu7EOoLtEAXxqvyVPI/RCVd7Jlr2WxE0iijeX/5oucAuXPE9KphH7fYFQAAAAAAAAAgtyx2BQAAAAAAAAAAAAAAAAAAAIAc2LRp07CPHzFj+MUtALnS3juUqG7mpPIcJzmwpdMn1mLXyjLXQcFoVJSNvyWjQ6PIMZr3ly96DpA7R8wY/s++7e3tsW/fvjylAQAAAAAAAACYeHySFwAAAAAAAAAAAAAAAAAAAAByYM+ePcM+vmiqxa5AYbT1JVvsOrkqleMkBzajtnBLZQuhrNRCQRiN8lTyK9T6hjI5TJLcaHJUjOL95YueA+TOomkjzwdGmjEAAAAAAAAAAHDwfIIMAAAAAAAAAAAAAAAAAAAAAHJg9+7dwz4+q64iT0kAnpPJRnT1pxPV1lWV5TjNgc2aYItdgdGZVJH8CrXOhD/zcq2zL3mOmlG8v3zRc4DcSfJn37179+YhCQAAAAAAAADAxOQTZAAAAAAAAAAAAAAAAAAAAAAwxvr6+qK9vX3YGksLgUIYGMpENpustrq8cFcU1VcXbqksUPym1ST/c1TSZda51tE/lLh2+qTi+3OingPkzvRJ5VFaMnyNxa4AAAAAAAAAALljsSsAAAAAAAAAAAAAAAAAAAAAjLE9e/aMWDPDYlegAAYzCbe6RkR5aoTtUjlUWcCzgeI3rSb58udiWTI6mhyjWaKaL3oOkDtlpSUxpXr4n7NJ5gwAAAAAAAAAABwci10BAAAAAAAAAAAAAAAAAAAAYIy1tLSMWDNjkuVRQP4NppMvdi0rLdxy1Yoy1yMBBzaaJZxtvUM5TJJc+yhyTB/FEtV80XOA3JpZWzHs40nmDAAAAAAAAAAAHByfXAYAAAAAAAAAAAAAAAAAAACAMdbX1zdiTW1FKg9JAF4ok02+2LWkcHtdI1XApbJA8StPlURtZbI/SzV2DeY4TTK7OwYS1ZWUREypLr4lo3oOkFs1FcNfD5pkzgAAAAAAAAAAwMGx2BUAAAAAAAAAAAAAAAAAAAAAxliShSsVZa7+APKvbBQLU9OZHAYZQf9QAQ8HxoVZteWJ6ho7ky33zLU9CXPMrK0o2uXWeg6QO1UjzAgsdgUAAAAAAAAAyB3f7gAAAAAAAAAAAAAAAAAAAACAMZZk4UplmeVRQP6NZrHrUCabwyTDGxgq3NnA+LB4WnWiusauwRwnSaaxM1mOpdOqcpzk4Ok5QO5UWuwKAAAAAAAAAFAwZYUOAAAAAAAAAAAAAAAAAAAAAACHm/7+/hFrRlraApAL5anki10H05kcJhlez2C6YGfDgdyxoS0u/e7qQsfIqfedOSeuvGBxoWMksnR6Vdy+fuS6ba0j/7ksH7a0JFvIt3RG8S4Z1XOA3LHYFQAAAAAAAACgcHy7AwAAAAAAAAAAAAAAAAAAAADG2ODg4Ig1ZaXJlysCjJWKVGkk/fHT1V+45apNXSP/HAUmtsXTki3j3Njcm+MkyWzYlyzH0unVOU5y8PQcIHfKU8P/IX1gYCBPSQAAAAAAAAAAJh6LXQEAAAAAAAAAAAAAAAAAAAAAYIIoKYmorSxLVNvZV7jFro2dFlcBw1syPdmS0R1t/TGYzuY4zfA6+9OxN+HPtaUJ31ch6DkAAAAAAAAAAACHI4tdAQAAAAAAAAAAAAAAAAAAAABgAplSnUpU117Axa472vsLdjYwPpwwZ1KiunQmGxv39eY4zfDWNvYkrj15bm0OkxwaPQcAAAAAAAAAAOBwZLErAAAAAAAAAAAAAAAAAAAAAABMIPVVZYnq9nYO5DjJga3Zm3whHzAxzZhUHoumViWqXbmzK8dphvfI9mTnz6uvjNmTK3Kc5uDpOQAAAAAAAAAAAIejZJ+uBgAAAAAAAChSaxp74tyvP5aodsXHT485LttITG8BAAAAAJ6ZlX7t0US1Kz5xhlnpKOgtAAAAABROQ11FPL67e8S6xq6ByGYjSkryEOpPrGnszf+hwLhz+oLa2NraN2Ldozu74q2nzcpDov17eEdnorozFtblOMmh03MAAICJo2fnmnjsX85NVHv6F1dExdQ5OU50eNFfAAAAAAAoHqWFDgAAAAAAAAAAAAAAAAAAAAAAAOTP3PqKRHWD6Wzs7RzIcZoX6+gbirWNPXk/Fxh/Tl+QbCnnim3JlnzmykMJzx8PS0b1HAAAAAAAAAAAgMONxa4AAAAAAAAAAAAAAAAAAAAAADCBzK2vTFy7fl9vDpPs372bOyKdyeb9XGD8efmS+kR1axp7YndH/hdVR0Q8uac78ZLss5cmF5UrpQAAIABJREFUez+FpOcAAAAAAAAAAAAcbsoKHQAAAAAAAAAAYKwMpbPxxJ7ueGRHV6xr6ontrf2xo60/2vuGoncwE72DmSgrLYmaitKorUjFvPrKWDC1Mo6YUR2nz6+NU+bVRU1FaaHfxrii5wAAAADARPHsPHR75zPz0L7h56FTKmPBlKqn56EL6uKUebVRU5Eq9NsYdyZy3xu7BmLVzq5Ytas7Nu7rjd0d/bGnYyA6+9PRN5SJvsF0pEpLoqqsNKrLUzF9Unk01JXH3PrKOHpWTSxrqImT59VFXeX4fP8AAADk1tLpVYlr1zb25H3p3a3rWvN6HiT16iOnxM4rlxc6Bs9z1MzqWDK9KjY3941Ye/v61vjr0xvykOqFblvXlqju6JnVccSM6hynOXR6DgAAADAxZdND0b3tieja9Ej07FoX/fu2R3/zjhjqbo/MQG9kBnqjJFUWpZU1kaqqjcpp86JyxoKonnNE1C49PeqWnBKllTWFfhvjjr4DAAAAQH5Y7AoAAAAAAAAAjGutPUNx05qW+O3qlrh7U3v0D2WGrU9nstE/lInWnqHY3tYf92997rFUaUm8dGFd/Plx0+PC46ZFQ11FjtOPT3oOAAAAAEwUT89Dm5+eh25sG/08NDqefezpeejk+PPjp8eFx003Dx3GRO776r3d8cvH98Uta1tj9d7uEesz6WwMptPR2Z+Oxq6BWL33hY+nSkvipLm18aojp8RfnjQzjrSgAAAAgGccMyv5Bd4rtnfG+86ck8M0LzQwlIlfP9Wct/OA8e/8Y6fFNffuGrHuN0+1FGTJ6I1PJvuZ9rpl03KcZOzoOQAAAMDEMNTVGi0rb4qWR34b7U/dHZnB/mHrs5l0ZAb7Y6irNfr3bY9Yd/+zj5WUpqLuqJfG9Jf8eUw77cKomJL/udF4oe8AAAAAkH8WuwIAAAAAAAAA49LGfb3xzft2x/Urm0a80D2pdCYb923piPu2dMRnfrcl3nDC9Lj8FfNiWUPyC+wOZ3oOAAAAAEwUG/f1xjf/sCuuX9k4xvPQ9rhvS3t85reb4w0nzIjLz54XyxomjcnrHw4mat8z2YhfPtEU/3X/7nh4e+eYvnY6k41Hd3TGozs64yt3bo+T59XG+8+aGxcdPyNSpSVjehYAAADjy5JpVVFZVpro7+APbh3bv6+O5DerW6KzL53XM4Hx7XUJl4zetbEtdncMxJzJFXlI9bTHd3fHk3u6E9VesGx6jtOMHT0HAAAAOLz17tkYu2/+ZjT94foRl4omlc2ko2PtfdGx9r7Y8sPPxPSXviHmXXB51MxfNiavfzjQdwAAAAAoHItdAQAAAAAAAIBxpas/HV+4dVtc+9CeyGZzd85QJhs/W7UvfrZqX1xyysy48nWLo756Yn7UQs8BAAAAgImiqz8dX7hla1z70O48zEOb4mermuKSU2bFlRcsmdDz0Inc99+tbo6rbt0W65p68nLeYzu74sPXr4t/u21bXHnBkjjvmGl5ORcAAIDikyotieNnT4pHdoy8tHVv50A8tqsrTp5bm4dkEd/4w8iLAgGe7yUL6mLRtKrY2tI3bF0mG/GjRxvjY+fMz1OyiO+t2JuobllDTZw0d1KO04wdPQcAAAA4PKX7umLbT74Qe+68NnL5gb5sZij23f+z2Hf/z2LmWZfE4rddGWU19Tk7r9jpOwAAAAAUXmmhAwAAAAAAAAAAJHXv5vZ41ddWxncezO2C0T91/cqmOOdrK+P29W35O7RI6DkAAAAAMFHcu6k9XvXVR+I7D+Z2ueifun5lY5zz1Ufi9vWt+Tu0iEzUvu/tHIj3/nBNvPeHa/K21PX5trT0xTu/vzouu25NdPQN5f18AAAAisPyxZMT1/76yZYcJnnO7etbY9Wu7rycBRw+SkoiLj29IVHt/71/d3QPpHOc6Gm7OwbixyubEtW+84zZOU4ztvQcAAAA4PDTvvreWPlPr4o9d3wnp8tF/1TTH66Plf94TrQ9fnveziwm+g4AAAAAxcFiVwAAAAAAAABgXLjukcZ4+3dXx+6OgYKc39Q1GO/6wZq49qG9BTm/EPQcAAAAAJgorntkb7z9u08Wdh76/dVx7YN7CnJ+oUzUvt+3uT1e+x8r43erm/N67v785qnmeN3Vj8WavflfLgsAAEDhLV+SfLHrdY82xsBQJodpIoYy2bjyd1tzegZw+HrrabOiPFUyYl1rz1B86/78zAT/9+93JPrZWVuZiotPnpGHRGNLzwEAAAAOH433XBerv/L2GGjdXZDzBzuaYs2/vyv23nFtQc4vFH0HAAAAgOJhsSsAAAAAAAAAUPT+/a6d8fFfbIyhdLagOdKZbHz6xk3xpTu2FzRHPug5AAAAADBR/Pvvd8THf76hSOahG+NLd2wraI58mah9v+6RvfGW7zwZ+7oH83JeEltb++Kv/uvxWLWrq9BRAAAAyLPliybHpIpUotrm7sH40aNNOc3z5Tt3xIZ9vTk9Azh8Taspi4tPmpmo9v/ctSO2tPTlNM/D2zvjBw/vTVT716c3JP55XEz0HAAAAODwsPPGf4+N/+/jkU0PFTRHNpOOTd/7dGz/xZcKmiNf9B0AAAAAiktZoQMAAAAAAAAAHIpjZ9XEziuXFzrGYUlvKRbff3hvXHVbcV1i/+U7d8SMSeXxzpfOLnSUnNBzAAAAgOccO6smdn725YWOcVjSW4rB0/PQrYWO8QJfvmP7M/PQOYWOkjMTte/feXB3/OOvN0W2sLts96utdyje+p0n4zcfODkWT6sqdBwAAADypKq8NF577NS4YdW+RPVfvGN7/OWJM6KuauwX4d21sT2+eteOMX9dYGL5u1fNj5+taorB9PBDuL7BTHzshg3xk3cdH2WpkjHP0dWfjr/7+cbIJJgF1lWm4oqz5x3ymb9b0xLv/eHaRLXHzKqJ2z988iGfGTGxew4AADAR1Mw7NpZ/a2ehYxy29JdisPeu78e2G64qdIwX2PHLL0f55Bkx+9XvLHSUnNF3AAAAACg+FrsCAAAAAAAAAEXr9vVt8ekbN4/6eZVlpXHmosnxyiPq49iGmlg6vTqmVKeipiIVg+lsdPanY3trX6xr6o17N7fHnRvaorVnaFRn/NNvNse8KZVx3tFTR52vmOk5AAAAADBR3L6+NT79q42jfl5lWWmcuXhyvPKIKXFsw6RYOr0qplSXPW8eOhTbW/tjXVNP3LupPe7c0Dr6eeivN8W8+so475hpo85X7CZq33/9VPNBL3WtKCuNlyyoi5ctmhxnLJwcc+orYmp1eUytLovewUy09A5Ga89QPLWnOx7Y0hH3bWmPne39oz6nvXco3v391XHjB06KSRVjv6AHAACA4vTGE2ckXuy6r3sw/uFXG+OaS44e0wxP7O6O9/9o7YuW8dVXl0V77+j+fg9MbAumVMbbT2+I7zy4Z8Tah7Z1xid/tSm+/JdHjGmGdCYbH7p+fWzc15uo/oMvnxtTa8bvdXB6DgAAADB+tT1+e2z+7qdH/bzS8sqYfPSZUX/8K6Nm3rFRPXtppGqmRKqqJrJDg5Hu7Yy+fdujd9e6aF99b7Q9eWcMdbWO6ozN3/+nqJw2L6aefN6o8xU7fQcAAACA4uRTZQAAAAAAAABAUdrXPRgfu2FDpP/0prZhzKwtjw+9fG685dRZMaV6/x+LKCstiery0phVWx6nL6iLt502KwbT2fjVk83xtbt3xtrGnkRnZbIRf3fDhrjtw6fErNryxBmLmZ4DAAAAABPFvu7B+NjP1h/EPHRevOW0hhHmoRUxq7bimXlowzPz0H3xtbt2jH4e+renxKzaisQZi91E7fuavT3xkZ+uG/VS19mTK+IdZ8yOS18yO6ZP2v9cvC6VirqqVCyaGnHKvNp4++kNERFxx/rW+MYfdsXdG9tGdea6pp74X7dtiysvWDK6sAAAAIxbrz5qaiyZXhWbm/sS1f/qieZYOn17fPI1C8bk/Pu2dMR7frg2OvvTL3rs7181P/77b7eMyTnAxPF358yPXzy+L9oSLIb+0aONUVFWEv/jwiWRKi055LP7hzJxxU83xO3rky1LWDi1Mt6/fO4hn1toeg4AAAAw/gx27IsN3/pYZDMvns8fSPnkmTH3dR+KWa94S5RNmrLfmpKKsiitqI7y+llRd8TpMevst0V2aDCaV/wqdv76a9Gza22yw7KZ2PBffxenfPa2KK+flThjsdN3AAAAAChepYUOAAAAAAAAAACwP5/85aZo7h5MXH/pSxri7itOjQ+cNfeAF7sfSHmqJC4+aUbc/MGT4lPnLUx8SVBLz1B84hcbR3VWMdNzAAAAAGCi+OQvNoxyHjo77v7I6fGBl887yHnozLj5Q6fEp85bNIp56GB84ucbRnVWsZuIfR8YysTf/mRd9A1mEj+ntCTi/WfNjT987PT46DkLDrjUdTivPmpqXPfO4+MH7zg+Zozy+f/vgd3x5J7uUZ8JAADA+FRaEqNecPd/fr8jPnXjpugfSv733T+VzmTjq3fvjLde+1R09L14EeBRM6vjLae4MBwYvZm15fG5C5ckrv/uQ3vjb763Jna29x/SueuaeuPi/3oyfv1Uc6L60pKIr7zxyKipGP9Xwek5AAAAwPiz6dpPxmBnsrlKRETDOZfGqV+4O+ae/4EDLhc9kJKy8phx5sVx0mdujoV/9akoKU0let5QV0ts/PYnRnVWsdN3AAAAAChePlkGAAAAAAAAABSdXz/VHDetaUlUmyotiasuWhpXXbQ06qqSfZnoQMpSJXHF2fPi228/JqrLk32s4rZ1rfHLJ5J/eapY6TkAAAAAMFH8+snRzkOPiKvecMTYzENfOT++/fZlo5yH7jukc4vFRO37NffuitV7ky9JnVZTHte/+8T4769bEpVlh/4V0HOOnBK3XH5KnLagLvFz0plsfOWO7Yd8NgAAAOPH206bFYunVY3qOd99aG+c9x+PxS8e3xdDmWzi5w2ls/HLJ5rj3P94LP7nrdtiKP3i55aURPzr65dGqduRgIN08Ukz4oJl0xLX/35jW7z6a4/FVbdti8bOgVGdta21P/7lt1vitVc/Fit3diV+3vuWz4kzF00e1VnFTM8BAAAAxo/mFb+OlkdvSlRbUpqKpe+4Kpa+46pIVSf/HNp+XytVFvMuvCKOueLbUVpRneg5ratui+YHf3lI5xYLfQcAAACA4uajywAAAAAAAABAUUlnsnHVbckvC//8hUvi0pc0jGmG1xw1Nb7+pqOitCRZ/VW3bRvVxXTFRs8BAAAAgIni6Xno1sT1n79waVx6xuwxzfCao6fG1y85Jvk89Nat434eOlH73tQ1GF+/Z0fi+vrqsrjuXcfHmYvHdrHArLqKuPavj4tFo1jQ87s1zbFhX++Y5gAAAKB4ladK4soLFo/6eZua++Lyn6yPU/9tRXz8Fxvjx482xcqdXdHUNRh9g5nIZCM6+9Oxrqk3fvlEc3zyl5vitC89HB+6fl2sbzrw3zvfd+acWD7Gfz8GJp6v/OWRcfTMZEsKIiK6B9Lx73ftjDO+8ki8+dtPxTX37oq7N7XHzvb+6OpPRzqTja7+dOxs7487N7TFV+/eGW/81hPx8v/zSHzr/t0xuJ9F1Qdy9tL6+MfzFh3M2ypqeg4AAABQ/LKZdGy/4arE9Uve/vloOOfSMc0w9aTXxFHv/3pESbI1CdtuuCqymaExzZBv+g4AAAAAxa+s0AEAAAAAAAAAAJ7vR482xcaEF4W/66Wz4x1njO2C0T86/9hp8fevWhBfvGPkhadbWvriBw835ixLruk5AAAAADBR/OjRxuTz0JfNiXe8dGyXi/7R+cdOi79/9cL44u3bRqzd0tIXP1ixN2dZ8mGi9v3/3rcruvrTiWrLUyXx/b85Lo6fPemgzxvO1JqyuPbS4+LCax6L7oGRM2WzET9Z2RifsugAAABgwjjv6KnxplNmxk9WNo36uS09Q3HdI41x3SONh5zjlHm18enzFh7y6wDUVaXiu5cui9f/5+PR1DWY+HlD6Wzcu7k97t3cnpNcxzbUxH++9ZgoS5Xk5PULSc8BAAAAil/TPT+K3j0bE9XOfs27ouHV78hJjmmnnh8L3vD3sf0XXxyxtq9xSzT+/gc5y5IP+g4AAAAAxa+00AEAAAAAAAAAAP4ok4342t07E9UunlYV//Ta3F4mfsUr5yW+QP2rd++IdCab0zy5oOcAAAAAwESRyUZ87a4diWqfnocuzmmeK145f0LMQydq3/sGM/G9FXsS1//t2fPj1Pl1B3VWUkfOqI73nDkncf0vHt+XwzQAAAAUo//5+qVx7Kyagp2/dHpVfPfSZVFZ5lokYGzMn1IZ173juJhVV1HoKBERsayhJn74N8uirjJV6Cg5o+cAAAAARSybiZ2/+Vqi0qpZi2PRJf+U0zjzXn9FTFp4fKLaHb/5amQz6ZzmyRl9BwAAAIBxwSeYAQAAAAAAAICiceeGttja2peo9rMXLI7q8tx+9KGstCQ+e+HiRLW72gfitvVtOc2TC3oOAAAAAEwUd25oTT4PvXBpnuahSxPV7mrvj9vWteY0T65M1L7fvLYl2nqHEtUeMaM6PvLK+Qd1zmh98OXzEi8w2NbaF1tbkv3eAQAAcHioLi+N7//Nslg8rSrvZx85ozp+8I7jYlpNWd7PBg5vxzbUxC/fd0IsnZ7/n23Pt3zx5LjhPScUzcLTXNJzAAAAgOLU9sSd0de0NVHt4rd9NkorqnOap6S0LBa/7bOJagdadkXbqttymidX9B0AAAAAxgeLXQEAAAAAAACAovG9FXsT1Z06vzbOPXpqjtM87cxFk+OsJfWJaq99cE+O04w9PQcAAAAAJorvPZRsnnjq/Lr8zUMXj2IemjB/sZmoff/VE/sS117xyvlRUZafr3tOqS6LN586K3H9g9s6cpgGAACAYjR7ckX89N3Hx7KGmryd+ZqjpsaNl50YC6ZU5u1MYGJZMKUybrzsxPiLE2fk/exUaUn87dnz4ofvOC7qqlJ5P79Q9BwAAACg+Oz9/fcS1dUuPTWmnnRujtM8bfLRZ0b9sWclqt1zx7U5TpMb+g4AAAAA44PFrgAAAAAAAABAUWjsHIhb17Umqr38FfNynOZPz5ubqO73G9tiR1t/jtOMHT0HAAAAACaK4p6HJjvv9xtax908dKL2PZ3Jxt0b2xLV1lam4vXH53exweuWTU9c++Se7hwmAQAAoFjNnlwRN152Yrz1tFk5PaeuMhX//fzF8Z2/PvaQF++VjFEm4PBVX10W//Gmo+LqS46OhrqKvJy5rKEmfv7e4+PT5y2M8tTE+0ml5wAAAADFY6C9MVofuzVR7bwLLs9xmheam/C8tid/H/3NO3KcZmzpOwAAAACMHxa7AgAAAAAAAABF4aY1rZHOZEesm1ZTFq89emoeEj3nnCOmxOzJI18mlMlG/HZ1Sx4SjQ09BwAAAAAmipvWtCSch5bHa4+ZlodEzznnyKmjmIc25yHR2JmofX98d3d09qcT1b7hhBlRXZ7fr3qeOr8uykqTLTTY3jq+lgkDAAAwdqrKS+NLf3FE/OTdx8dJcyeN6WuXlZbEJafMjLs+cmq8/6w5caC/pmZHHis8K5Xw77oAbzhhetz3sVPjsxcsTjQjPBjHz54U33zL0XHLh06O0+bX5eSM8UTPAQAAAAqv9dGbIpsZ+XNtZbXTYurJr81DoudMOf6cqJg6e+TCbCZaHvlt7gONIX0HAAAAgPGjrNABAAAAAAAAgMIYSmfj4R2d8cDWztjY3Bub9vXF3s6B6B5IR89gJrLZbNRXlUVdVSoaaivihDmT4sQ5k+KliybHwqmVhY5/2OjsS8eKHZ3xxO7ueHxXd2xt7YvOvnR09A89e9lzVVlp1FSkoqG2POZMrohjZtXECXMmxfLFk2P6pPICvwMYOzetSbac840nzYyyVH4vYCstifirk2bG1+/ZOWLt71a3xGXL5+Qh1aHTcwAAACCXnptDd8TGfb2xqbk39nbsbw5dFg115XHCnNrnzaGrCh3/sNHZl44V2zuenkPv7oqtLcPNoStiTv3z59D15tAcNpLPQ2cUZh568qz4+t07Rqz93ermuGz53DykGhsTte+P7+pKXHvWkvrEtWOlurw0Fk6tik3NvSPW7myz2BUAAGCiW754cvzm/SfFvZvb43sP742b17RG/1DmoF5r4dTKeNtpDfHW02bFrNqRZ4+jOaeqrPSgMgETU2VZabz3zDnxrpfOjrs3tccNq/bFretao6136KBfc8GUyrjguGlx8Ukz48Q5Y7sQ+3Cg5wAAwESUTQ9F58aHo3P9A9G7Z2P07dkUA217I93fHZn+nshGNspq6iNVXRcV9Q0xaeEJMWnRiTH56JdG5YyFhY5/WEj3dkbnxhXRve2J6N76ePQ1bo10b2cM9XZEurczIiJKy6siVVkT5VMaomLqnKiZe0xMWnRCTD5meZTXTS/wO4Cx0/LoTYnqZp75xihJ5Xl9QUlpzDzzr2Lnb78+YmnLI7+LOX92WR5CjQ19BwAAAIDxw2JXAAAAAAAAmGDu29IR33loT9yxvi26nrmw/UD2dQ/Gvu7B2NzcF/dv7Xj210+bXxcXnzQj3nTKzKirTI145k9WNsVHb9gwYt0nX7MgPnrO/JHfxPOsaeyJc7/+WKLaFR8/PeZMrhjV60dEPLG7O86/ZtWIdVecPS8+dd7IX5IbTGfjpjUtccOqfXH7hrYYGOHSqa50Orr609HYORCP7+6Om9e2RkRESUnEyXNr482nzIyLT072ezEa+egt/FFXfzru2dyeqPbPjpma4zT7d+7RUxItGX1oe2e09AzFtJri/liGngMAAAC5ct/m9mfm0K2jmEP3xv1bnjeHXlAXF580M950yqyEc+jG+OjP1o9Y98lzF8ZHz1kw8pt4njWNPXHu1x5NVLviE2cc/Bz66pUj1l3xyvnxqfMWjVj39By6+ek59PrWUc6hI25+ZhHjs3PoU2fFxScn+70YjXz0FiKemYduaktU+2fHTMtxmv079+ipiRaMPrStM1p6BmNaTfEvXZ7IfV/f1JM4wwlzahPXjqV5UyoTLXbtGhj+v+UAAABMDCUlEa9YWh+vWFofA0OZeHhHVzywtSPWN/XG5ua+2NM5ED2D6egdyEQ2nl6yWl+ditl1lXHEjKo4Yc6kePmS+ljWUDOqc/uHsolrKw9iseuxs2pi55XLR/280Xr446fn/IyD9cDfnZaT181Xb+FQpUpL4lVHTolXHTklstmn/7eLB7d2xJrGntjc3Bfb2vqjs28oegYzMTCUieryVNRUlMbU6rJYNK0qlkyvihNmT4ozF0+OefWVBX0vrzt22rj49+5w6jkAAMCBdKy9L/bc8Z1oe/yOSPd1DVs72LEvBjv2Rd/ezdGx7v5nf71u6WkxY/nFMXP5myJVXTfimU1/+Els+NZHR6xb8MZPxvzXj1z3Rz0718Rj/3JuotrTv7giKqbOSfzaf9S97YlYdeX5I9bNu/CKWPhXnxqxLjs0GC0rb4p9998QbY/fHpmhgWHr0+muSPd1xUB7Y3RvfTxaV9789AMlJVG7+OSY+fI3x8wzL070+zBa+egvRESk+7qifc09iWqnnvxnOU6zf1NOOjfRgtHODQ/FUFdLlNUW5nOHo6HvAAAAADC+uM0SAAAAAAAAJog7N7TF527aGmsak18ifCCP7OiMR3Z0xpfv3B4feeX8eOcZDVExzGVI29v6E71ufXVx/k+YSS+qb+8bGvbxTDbihlVN8W+3b0/ck+FksxErd3bFyp1d8a+3bYsrzp4Xl505Z9jfCyhWd21qj8H0yBew1VSUxssWjv0XH5M4fUFd1FWlorNv+AvM05ls3L6+Nd508sw8JTs4eg4AAACMtTs3tMXnfrd5bObQ2zvjke2d8eU7tsdHzpkf7zxj9tjMoasmyBz6tq1jP4e+dWtccfb8uGz5XHNoxp27NrYlnIem4mWLJuch0YuNfh46K0/JDt5E7vvfv3phvOW0hmjqGoymroFo6hqMxq6B2PfM/23qHIym7oEYGMrGETOqx+KtjFrS//b0WOwKAADAn6goK43liyfH8sW5//t8c89g4tq6qmR/1wU4kJKSiGUNNaNeQs3B03MAAOBw0/bEnbH1x5+Lnp1rDvm1Ojc9Ep2bHontv/hyzH/9R6Lh1e+M0rKKA9b379ue6HXLauoPOdtYS1Ul+w7rUG/78AXZTDTdf0Ns//m/Je7H8K+Xja7NK6Nr88rY9tN/jXl/fkXM+bPLhv19gGLV/tRdkR0aeeZeWlkTdUe/LA+JXqzuyNMjVV0X6d7OYeuymXS0Pn57zFz+pjwlO3j6DgAAAADjS3HeRgEAAAAAAACMmebuwfiHX26Km9a0jPlrt/QMxWd+tyWufWhPXPPmo+P42ZP2nyHhpUo15cV5oVJ1ebIL6rsHMgd8bFtrf3zwx+visV1dYxXrBTr70vGFW7bFzx9vjmsuOapgF0DDwbpv8whfpnzGyxZOLtjSiLLSkli+aHLcvLZ1xNr7tnQU/ZJRPQcAAADGSnP3YPzDLzbkaA49GJ/57ea49sE9cc1bjjnwHLo74Ry6YpzPofsPvFxvW2tffPDHa+OxnbmcQ2+Nnz++L6558zHm0Iwr921JOA9dVOB56OL6uDnBz9L7NneMi8WuE7nvU6rLYkr1yF/fTGeyUVqS6CXHXHkq2cEjr+YFAACA3GnqGkhUV1uZiklFOv8FAAAA4PA32Nkcm77zD9Hy6E1j/tpDXS2x5brPxJ47ro2jP3hNTFp4/AEzJJGqrBnLeGOitDLZ5xEzfd0HfKx/37ZYd/UHo2vLY2MV6wXSvZ2x7SdfiOYHfh5HffCaqJ59RE7OgVxpX3NforrJR72sYMuLS0rLYvIxy6N15c0j1nasuW9cLBjVdwAAAAAYXwrzbWcAAAAAAABvzfKIAAAgAElEQVQgLx7Z0RnnX7MqJ5fpP9+m5r646D+fiO+t2Lvfx9t6hxK9TtKL6/OtOuFFTwe6UP+Wta1x/jWrcrbU9fme2tMdF/3fJ2Jlji7uh1x5aFtnorpT59fmOMlI59clqntga0eOkxw6PQcAAADGwiPbO+P8q1fmYQ7dGxd9c1V8b8We/T4+YebQA5n9/vota1vi/Ksfy9lS1+d7ak93XPSfq2LlDnNoxo+Hto6Teei8w2sequ8jSxVqq2tEdA6zLPz5LMUBAACgkDbu60tU11BXmMvOAQAAAKBz0yOx6srzc7LU9fn69m6KJ75wUez9/ff2+/hQd1ui1ymtSLZENZ9SCTOlD7DYtfWxW2LVlefnbKnr83Vvfyqe+B8XRdfmlTk/C8ZS54aHEtXVLj01x0mGV7ck2fkd6x/IcZKxoe8AAAAAML4U520UAAAAAAAAwCG7Z1N7XPLtp2J3x0BezusfysR/+9Wm+Po9O1/0WEdfskuBq4r1Qv2yZLm6B178Pm98sjnee93a6OhLtlRgLLT3DsVbv/NUbNzXm7cz4VAMDGVidWNPotpT5hX2cvek529p6YvOhD/7CkHPAQAAgLFwz6a2uOTbT+R3Dv3LjfH1u3e86LGkM9jDcw69L977wzUFmEM/YQ7NuPD0PHT/F/r9qVMSLvjMlVMSLjjd0tJb9PNQfS9+Sf+7MWNSeY6TAAAAwIGt3pvsc26LplblOAkAAAAAvFj76nviqX+7JAZad+flvMxgf2y69r/Fzt9+/UWPpXs7Er1GaUXxzdKSLptN97/480jNK26MtV97bwz1JHv/Y2Gopz2e+tJbo3fPxrydCYciMzQQPTtWJ6qtXXJKjtOMcP7SZOf3NW6JdG9njtMcGn0HAAAAgPGnrNABAAAAAAAAgLH3wNaOeNcP1kTfYCbvZ3/hlm1RVloSHzhr7rO/1t2f7ILjirKSXMU6JGWpkigpichmh6/r+ZN+376+NT780/WRzozwxBzo7E/He364Nm764ElFu6igkO7Y0BaXfjfZl2DGq/edOSeuvGBxoWMksqaxN4bSyf49OXHOpBynGZvzs9mIx3d3xVlL6nOc6ODoOQAAAHCoHtjaEe/6/uoCzaG3Pj2Hfvm8Z39tfwtP96ciVZzz0sRz6D95n7eva40P/2Rd4ebQP1gdN33oFHPoP3HH+ta49LtPFTpGTr1v+dy48oIlhY6RyJrGnnE0D022YHQ8zEP1vfhtbu5LVLdoWvFd5gkAAMDEcf/WZMsYjp9dk+MkAAAAAPBCHeseiDX//q7IDCT7DMZY2vaTL0RJaVnMPf8Dz/5auu/FS0/3p6SsIlexDlpJqiySfIgy09/zgn9uXXV7rP/mhyObSfYZ0rGU7u2MtV97T5z0LzcV5bLcQmt74o5Y/ZVLCx0jp+ac975Y/LYrCx0jkd6dayKbHkpUO2nRiTlOM8L5CxOen81G19bHo/7Ys3Ib6BDoOwAAAACMP25NAAAAAAAAgMNMY+dAvP9H66K3AJfp/9Hnbt4ad21sf/afu8b5hfoREWWlIy+dfX7Pt7T0xYeuX5/4wupc2LCvN756986CnQ9JrWvqGbkoImorUzGrrrBfGJ1aUxZTqssS1a5r6s1xmoOn5wAAAMChaOwciPdft6bAc+gtcdfGtmf/uas/6Rx65FlvoRzcHHptEcyhdxTsfEjisJ2HNiZ7X4Wi78Vtb+dANHcPJqo9YXZhF+8CAAAwcW1t6YutLcmWYhzn768AAAAA5NFAe2Osu/r9kRko3Hcat17/uWh/6q5n/znd15XoeaVFuNg14pnlriN4fr/7GrfE+m98KPHSxFzo3b0hdv7mqwU7H5Lq2bUuUV2qqjYq6mflOM3wymqnRtmkKYlqexO+r0LRdwAAAAAYf5J92xgAAAAAAAAYF7LZiMt/sj72JbyE9/lKSyKWL66Pc46sj5Pm1saSaVUxpbosqstLo3cwE01dg7G6sSfu3tgWN61pjb2dA8Pm+MjP1setl58cMyaVR3fCxa6pBJfWF0p5qiQGR7gcv+eZ9zmYzsaHrl837CKBqvLSeM2RU+KsJfVx3OyaWDytKuoqy6KqvDQGhjLRNZCOpq7B2NDUGyt3dcUd69ti7UFcFH31vbvi3S+bHTMmlY/6uZAvG/cl++LqkmlVOU6SzJLpVfHojpG/4Lq+iJeM6jkAAABwsLLZiMuvX3fwc+gl9XHOEVOenkNPr/6TOfRArN7bE3dvaoubVreMPIf+6bq49cOnPjOHTrZktrjn0KUxmB5+nv6COfSP1448hz5q6jNz6EnPzKFTUVWeet4ceuDpOfTOrrhjfevBzaHv2Rnvftkcc2iK1saEc8Ml06pznCSZJdOr49EdnSPWrU845y0UfS9uf9jcnrj2pYsm5zAJAAAAxSqbjdjTORCbm3tjU3NfbGnpi8auwfjfbzwy8jVm/emqfYlrz1xUl8MkAAAAAPA82Wys/8blMdiRfH71rJLSqD92edQff07ULjopqhqWRNmkKVFaUR2Zgd4YbG+Knp2ro+2pu6P10ZtioG3v8Dn+8yNx8pW3RvnkGZHu704YITX63HlQkiqP7NDwn01N9z/9Gcfs0GCsu+ZDwy6zLa2oiiknvCbql50VNfOPi6pZi6Osui5KK6oiMzgQ6b6uGOxoit7dG6Jr88poe/yO6Nm1dtS5d/3u6pj9mndH+eQZo34u5Evv7o2J6qoaluQ4STJVDUuia9OjI9b17l6fhzQHT98BAAAAYPyx2BUAAAAAAAAOI9evbIr7tnSM6jmp0pL469NnxeWvmBcLplTut6a2MhW1lalYMr0qLlw2LT53YTZuWtMSX7x9e6w7wKXMTV2D8Y+/3hzfePPR0TuY7EL9stJRRc+rstLSiBj+ffQNPf34l+/cHqt27f/Lbw11FfG3Z8+LS06ZGXWV+//iW1V5aVSVl8aMSeWxrKEmLjphevzzaxfFiu2d8fmbt8ZD20a+VPqP+ocy8e0H98QnXr0g8XMg3za39CWqWzK9OJaMLp1enWjJ6JaE76sQ9BwAAAA4WNevbIz7tiRfBhfxzBz6JQ1x+SvmjzCHro4l06vjwuOmx+cuXBo3rW6JL96+LdY17X/ZaFPXYPzjjZviG285JnoHh1+I+kdlRbzYNUm25+bQ22LVrv3PS56eQ8+PS06dlXAOPSkuOmFG/PP5i2PFts74/M1b4qFtyf+3hv6hTHz7gd3xidcsTPwcyKfxNw+tSrRgdEtzcS8Y1ffiduOTzYnqGuoq4sS5tTlOAwAAQKFtbemLezd3xOaW3tjc3Bebm/tiS2tf9O3n879vP31WnLlocs4zDaaz8YOHh1la8TzHNtTErLqKHCcCAAAAgKc1/eH66Fh736ieU1Kailnn/HXMe93lUTlj/9/5TlXVRqqqNqoalsS00y6M7Ns/Fy2P3BTbf/HF6N21br/PGexois3f/8c4+kPfiMxAws+1pIrzSvLSVNkI3+SPyAw+/Zmk7b/6cnRvXbXfmoopDTHvwr+NmWddEqnquv2fVVEVpRVVUT55RtTMXxbTz7goFr35n6Nzw4rYev3no3PDQ4lzZwb7Y88d344Ff/GJxM+BfOtr3JyorlgWjFY3LE20YLSvcUvuwxwCfQcAAACA8aeIr0UGAAAAAAAARqOrPx3/euvWUT1nXn1l/OqyE+JfX7/0gJfp709ZaUn8+XHT49bLT45Pn7cwylL7v2z+xiebY+XOrhgYSrbYtbSkmC/UH7lmYCgTm5r74up7d73osZKSiMuWz4l7P3pqvOdlsw94mf5wXrKgLn72nhPisuVzRvW8Hz/aNOqzIJ92tPUnqpszOfnPqVyanfACuG2txbtkVM8BAACAg9HVn47/z959x8dVX/n/f0/RjEa9S5ZsWZar3Ok2hIBNNQQSCKEEh2ZKNoQEsgkblnxD2GV/ye6mF0qAFJoNofcEYgLBVFNsY1vutmyr9zqa+vvDy4NmW58rzZ0ivZ5/onPnnHuMxw+dufM5P35hOHPoufrxFyZbn0PPKtSLV8/XDSdNPMgculXv7+lVIBQ1et3knkMPXVsgFNX2tgHd9urez/xs3xy6XKuuPUyXLRg3vDl0ZbYeXTZHVywst3TdQ+81W84FxIvxPDQ3SeahhnPZug6z+0oU+p68mnsDWrmlwyj2zNlFSuKd6AAAAACAGKlt7tf3ntymW1+t13Mb21Xb3L/fpa6SdN9qs2WrI3X/O01q6A4YxZ48Pd/magAAAAAAAIB9wv5e7Xrkx5au8RZUaPaNT6l66Y8PuNR1fxxOtwoPP13zbn5RlV++QY4DLGRtW/20ene8r0jQbJ7mcCTpkeTOoRfORoIB+Zu2q/752z77Q4dD4066Qof8eJXKTrjsgEtdDyZ7yuGa/f1HNe6kKyxd1/LqQ5ZzAfE02LbHKM6bb+0cC7t48sqM4vwtdTZXMjL0HQAAAAAAAEg9SfopCgAAAAAAAAAAAACr7l3dpObeoHH85CKfnrlyjuaVZw07p8vp0DePrdCDF8884AHxt/xtl4JhswP1k/g8fTkMiguEo/r+U9s/c7++NKfuPG+6fnRqlXxpI/uY1umQfnRqlb4yv9j4mr1dg1pT3zuivICd6rvMvixakpVmcyVmig3r2Gt4X4lAzwEAAAAAwHDc+3ajmnvNf/+eXOTTM1fN07yKkc6hx+vBi2cfZA69U8Hw/pcMfFpyz6GHjgmEI/r+U9v2P4c+f4Z+tGRSbObQSybpK/NLjK/Z2zWoNXuZQyM51XeZLeJMvXloci8Ype/J69ZX9yoQGvrfTZfToUuPSo4D4wAAAAAA9jpmUq68brO54uPrWvW+zbPA5p6A/vvvu43jz7UwywQAAAAAAABGoukf9yrY1Wwc7yubrDn/7xllVc0bdk6H06WK076pmd998IDLSnf95RZFw4bnDCTpg5Qm3+WPhgLafu/3FQ198l6dHp+mf+NOVZ3/Izk9vhEW4lTV+T9S8dFfMb5ksH2veneuGVlewEaB9nqjuLTc5Ji3p+WanaURaN9rcyUjQ98BAAAAAACA1MNiVwAAAAAAAAAAAGAUCEWiuvuNBuP4/Ay3Vlw00/iA4qEsmJijhy6ZpUzPZw/Vf31nt3oGw0av40zSL4JJ+w6yH0rvYFirdnR94r953U796asztKSmIKb13HLaJJVke4zjX9nWNXQQkADRqNTWZ/Zl0Vi9Z42U6SHzg6GI8ftfPNFzAAAAAAAwHPvm0GaHy0j/N4e+eFbs5tBVOXro0tkHmEN3mc+hk/ibNMZz6O37mUNfWKMlNYUxreeW06stzqE7Y5ofiAVr81Dz/9/tVGJYRzLPQ+l78trdOaj73m40ij1jVpEmFqTbXBEAAAAAIBlkeV06ZUa+UWw0Kl3zyBZ1DoRsqSUQiuiKBzer22/2+gurcjSpkN9fAQAAAAAAYL9oJKSGF+82jndn5Wvmv65QWo7Zoryh5ExboFnfe0gub+Znfta96XWFB3qMXsfhSNIHKQ3qCvt71bVx1Sf+mzPNqxnf+pMKDl0S03ImXXiLPBaWLXZteCWm+YGYiUYV7G4zCo3V+9VImS46jQQHjd/74o6+AwAAAAAAACkpST9FAQAAAAAAAAAAAGDFX2vb1dAdMI7/6Rcnqzw3tockzy3P1O3nTtVIdrOaHFqfKI5h3tj/nFGtz1XnxriafYdoXf25cuP41XV8MQLJqWMgpFAkahSbNIe7W1hm0dJrdnB9PNFzAAAAAAAwHNbn0FNUnuuNaQ1zy7N0+7nTRziHTt5B9LDn0GdO1ueq82JczYdz6Arj+NW7mUMj+XQMBC3MQ2OziHqkSizU0dJr/r4cT/Q9ed3w1DYNBCNDxjkc0jWfHx+HigAAAAAAyeLSo8YZx25v8+vSB2rVFePlrgPBiC5bvsnSrPHbx/H7KwAAAAAAAOKj/b2/KtDRYBw/+ZKfylNg/l1wE5kT52rq12/XiB6kTNLFrsN9hrL6ov9Rbs3nYlyN5ErPUvlpVxvH92xdHfMagFgI9XUoGjGb53tyk2PBqJWlysHuFhsrGT76DgAAAAAAAKQmd6ILAAAAAAAAAAAAADByT6xrM449fkqeTp1RYEsdi6fm64qF4/T718y/lJYqhrN09qy5RTpnvn1fovjKvGLd8rddCoaHPhh7XUOfbXWkokVT8rT35oWJLgOS2vvNl3DmpLtsrMRclte8jo7+oFSYbmM11tFzAAAAAAAwHE+sNT985fgpeTq1ptCWOhZPy9cVC8v1+9fqbXn9RBreHLpY58w3P0THqq/ML9Etf9tpNoeu77WtjlSzaGq+9v7HMYkuA5La+82Xi+SkJ8dX7bIszGU7+kOSPW+3I0Lfk9OKd5v00pYOo9jTZxZpRmmGzRUBAAAAAJLJkZXZWliVo9d3dhvFv1XXo1PvWKvbvjJN8yuyRpx/Y1O/vvnwFtU29xtfs2Bijo6tzh1xbgAAAAAAAMBE25tPGMfmzT5eBYecaksd+XMXa9xJV6jhb7+35fUTxml94WzRUWep+OhzbChmn+Kjv6Jdf7lF0dDQ38vt27XOtjpSUd7sRVp4995ElwFJwZ5241iXL8fGSsy50s0/dwj2dii91MZihom+AwAAAAAAAKnJ+qcVAAAAAAAAAAAAAJJKXyCsvxsewCtJ158wwcZqpBtOqFRlvtfWHKkgy+vSD0+psjVHrs+tIyrNvqTR1BNQXyBsaz3AcHT7zQ93t7Lc005ZHvM6uvzJ9/eOngMAAAAAAKusz6En2liNdMOJE1WZn25rjlSQ5XXph6dW2ZqDOTRSXffAaJ+Hmt9fPNH35LOlZUA/eGa7UWxOulv/efokmysCAAAAACSjm5dUyeV0GMfXdQzqC3eu05UPbta6hr5h5dzY1K9/fWKbTrl9raWlrh63Uz8+o3pYOQEAAAAAAACrwoN96lj3d+P4CWddb2M1UuWXb5C3qNLWHMnOlZ6lqvN+aGsOd0aucqYcYRQb6GxSeHB4c1LATqGBbuNYK4s97WSljnB/l42VDB99BwAAAAAAAFITi10BAAAAAAAAAACAFPf6zm75gxGj2EPHZ2teub0P9XvcTn3/hLH9RTBJuuTIMpVkpdmeZ2GV2YH60r4DtIBk021hCaeVQ9XtlOkxf9zCyhLVeKHnAAAAAADAqtd3dJnPoSdka15FHObQJ9q7PDYVXHLkOJVkeWzPs7Aq1zi2rsNvYyWAdd2DqTgPNa8jWeeh9D25dA2EtGz5Rg0Y/lv+w1Or4vLvCwAAAAAg+cwqy9TVnyu3dE00Kj2zoU2n3r5WR//yPd303E499F6L1tT3qrE7oJ7BsMKRqLr9Ie3q8Ov9vb36y/st+u4T2/S5X7+nE29doxXvNisciVrK+2+LJ2hasc/SNQAAAAAAAMBwdde+rkjA7Pm47OpDlVU1z9Z6nG6PKr/8fVtzJLuyxZcoLbfE9jw50xcaxw621NlYCTA84f7UWzDqTM80jg1ZuL94ou8AAAAAAABAanInugAAAAAAAAAAAAAAI/P6TvMH3s+dX2xjJR85c3aRfvaPPdrWOhCXfMnG5XRo2VFlcclVU5phHNvSG1RNqY3FAMPQb3iIuCRlepPkcHcLdfQHzO8vXug5AAAAAACwytoc2v5DsqT/m0O/VDe259ALxsUlV00Zc2ikrv6A+YJR5qGxQ9+TRygc1eUrao3/vTymOlcXHMobOQAAAACMZf+6aILe2d2rVTu6LF+7q8Ovu95osKGqTzp7bpG+foy1BbQAAAAAAADASHRvet04tviYc22s5CNFR5ypPU/8TAON2+KSL5k4nC6VnbgsLrkyxtcYxwa7WySZxwPxEAn0G8e6LCz2tJOVOiKD5vcXT/QdAAAAAAAASE3ORBcAAAAAAAAAAAAAYGTeMDxQ3+GQTpmRb3M1H+WK12LTZHTc5FyVZHvikmtSQbpxbFtf0MZKgOHxW1gy6nU5bKzEnNdl/riFP5R8h7vTcwAAAAAAYNUbO80O8N83hy6wuZqPcsVrsWkyOm5yXhzn0D7jWObQSDZW5oUpOQ+1MO+NJ/qeHEKRqL7xl016zXART1mOR789Z5rNVQEAAAAAkp3b6dDdF0zX3PLkOET8046bnKeff2lKossAAAAAAADAGNO9+Q2zQIdD+YecYm8xH8sVr+WmySZ31nHy5JbEJVd6ySTj2GBPm42VAMMTCfiNYx1pXhsrMed0m9cRCZrfXzzRdwAAAAAAACA1sdgVAAAAAAAAAAAASGGhSFQbmvqNYmeUZMTtkHdJOntusTzusfmR5JKawrjlKs81/zPtHQzbWAkwPIMWDnd3OZPjcHe3hUPmrdxfvNBzAAAAAABghbU5dGac59AlY3cOPZM5NGCCeWhi0PfEC0Wi+tYjm/XMBrPDIj1up+4+v0YlWfH7dxwAAAAAkLyyvS49dMksLazKSXQpn3DW3CLdc+EMpVn4PR4AAAAAAAAYqWgkpP7dG4xiMypmxG3hqCQVLzhbTvfYe96j8NAlccvlKSg3jg0P9NpYCTA8keCgcazD6bKxEnMOl9s41sr9xRN9BwAAAAAAAFLT2Dy9AgAAAAAAAAAAABgltrf5FTA8OPiIymybq/mk7HSXFk3Ji2vOZPH5yblxy5WT7jY+8HownPyHTGPsCUeixrHJcri7JJmWErJwf/FCzwEAAAAAgBXb2wbM59ATmUPHy+cnx+++Lc2hU2DZIcaWcJh5aCLQ98TyByNatrxWT6xrNb7mJ2dM1vzxWTZWBQAAAABINdlel1ZcPFNXHV0uR4J/fU9Pc+o/llTpN2dPlZulrgAAAAAAAIgzf+N2RUIBo9jsqUfYXM0nuXzZypuzKK45k0HurM/HLZc7I8d46WIkxKJDJJ9oJGwcmywLRiVJDrP1CdFIyOZChoe+AwAAAAAAAKmJxa4AAAAAAAAAAABACtvc3G8cO78i/gfxLqkpiHvORCvMTNP4PG9cc2Z5zb6oEbRwiDYQL6Znn7uT6GB3yfyg+UgSHu5OzwEAAAAAgBXW5tDxXewqSUtmFsY9Z6IxhwbMjfp5aDQ5/87R98Tp9od0wT3r9eKmduNrrjt+gs47pMTGqgAAAAAAqcrtdOiHp0zU48tma1ZZZkJqOGFavv769blatmBcwhfMAgAAAAAAYGzqr99sHJtVNd/GSvav4NAlcc+ZSGnZhfIWjo9rTle62TkN0VDQ5kqAYYhEjMIcTrfNhVjjcJk9uxw1vL+4o+8AAAAAAABASkquiR0AAAAAAAAAAAAAS7a3+Y1jpxb7bKxk/46elBP3nIlWU5oR95xel9lJVWGWHSIJmR5+7kyyw93dTofRkopk/GtHzwEAAAAAgBWW5tBFiZhD58Y9Z6LVlMZ/gYLX5TSKCyfxskOMTcxDE4O+J0ZzT0AX3LNetU3mS9mvOqZC311caWNVAAAAAIDR4PAJ2frr1+fqudp23bGqXqt399iaz+106KTp+brq6HIdUZltay4AAAAAAABgKP6m7caxvvKpNlayfzkzjo57zkTKGF8T95yONK9RXDQStrkSwLpo1HTBqNmzwvHicLoVlcGy5CRdMErfAQAAAAAAgNTEYlcAAAAAAAAAAAAghdV3DxrHTknAgfoVuV5V5ntV12FeZ6qrzDf7YlYsuQ0XuwLJyG14aHskyU5JDxnWk4x/P+k5AAAAAACwor7Lwhy6OFFz6HTVdZgvoE11zKEBc6b/76bsPDTJFqN+iL7H38amPl1y/0bt6TT/d/trR5Tph6dU2VcUAAAAAGBUcTik02oKdFpNgTa3DOjJD1r1wqYOrW/sUzQGv+J73U4tmJijxdPydObsIpVkpY38RQEAAAAAAIAYGGyvN471lU2xsZL98xZUyFtUqcHWurjnTgRvcWXcczpcHOOO1GX6/280yRZ1RiMhoziHOzn/ftJ3AAAAAAAAIDUx+QIAAAAAAAAAAABS2N7OgFFcpselnPTEfDxYU5o5pha7lmZ74p7T6Ui+w6MBUx6X0yjO9DD1eAkb1uM1vL94oucAAAAAAMCKvYaLXRM7h84YU4tdEzOHjntKICZG/TzUnZzzUPoeX89tbNO3Htmi/kDY+JqvHVGmH39hso1VAQAAAABGs2nFPn130QR9d9EEdQ2E9O7eXm1o7NP2Nr/qOgbV2htQe39I/cGwAqGoItGo0lxOpac5lZHmVHFWmkqzParI9aqmNEOzyjI1sywj6X7nBgAAAAAAACQp0L7XKM7lzZQ7I8fmavYvc0LNmFns6skrjXtOh4PZJVKX02323LHpQs94iYbNnodzur02VzI89B0AAAAAAABITSx2BQAAAAAAAAAAAFJYc6/ZYteynPgf8v6hacU+/bU2YenjLjdBiwuAVJXmMt8IEY5E5UqCDRLRqGR61ryV+4sXeg4AAAAAAKxo7kmBOXRJhv5a256w/PHGHBowxzw0Meh7fESj0i9f3q2fvVSnqIUduVcfO17/ftJE+woDAAAAAIwpuT63Fk3J06IpeYkuBQAAAAAAALBFoLPZKM6TX2ZzJQfmGzdNeu+vCcsfT25fbqJLAFKKw51mHBuNhOVwumysxrSQqBSNGIVaub94ou8AAAAAAABAauIkBwAAAAAAAAAAACCFdQ2EjOKKMxP3UHx1oS9huRPB63YmugQgpXjcqXe4e8j0ZHdZu794oecAAAAAAMAK4zl0FnPoeGEODZjzuMz/vqTmPDQ53w/ou/0GghF9+9HNemZ9m6Xrbjy5St/4XIVNVQEAAAAAAAAAAAAAAIw+of4uo7i0nGKbKzkwX1l1wnLHmzPNm+gSgJTicHmMY5NlwWg0bPb8uiQ53Ob3F0/0HQAAAAAAAEhNLHYFAAAAAAAAAAAAUlin3+zB+Jz0xD3EX5TAw/wTwZ0EB08DqSTNwuHu/lAkKQ5L94cixrFWDq+PF3oOAAAAAACsMJ9DJ+4rKmNuDu1iDgS6YhcAACAASURBVA2YSrPw9yU156HJ+X5A3+21u3NQlz2wURsa+4yvcTsd+u8zJ+v8Q0ttrAwAAAAAAAAAAAAAAGD0CfV1GsW5MnJsruTA0nKKEpY73hwujlQHrHC6zZ+zjgT8cibBws5I0G8cmwz17g99BwAAAAAAAFJT4r/xDAAAAAAAAAAAAGBYIlGpdzBsFJudwAP1S8bYgfoArMn0mD+60GP4nme3Hr95HRkW7i9e6DkAAAAAADBlaQ7tddlczYGVZHEwDID9y/SYvzclzzzUbKG2JGVYuL94ou/2eX1Hl067fY2lpa5ZXpf+vHQmS10BAAAAAAAAAAAAAACsikYU9vcahbp92TYXc2BpuSUJyw0guTm9mcaxYX+PjZWYCw+Y1+H0ZthYyfDRdwAAAAAAACA1Je70ZgAAAAAAAAAAAAAjEghFFI2axfrSErfkLtfHx5IADqwgw3z5s+kSEbt1D5of7l6YmXzLrek5AAAAAAAwZWkOncAld8yhARxIQab5+0PyzEPN6yi0MO+NJ/pujz+92aCbntuhUMTwH2dJpdke3fe1mZpZZn5IHAAAAAAAAAAAAAAAAPaJBAMyfZDS6fHZXM2BuTNyE5YbQHJLyy4wjjVdZG230EC3cWxadqGNlQwffQcAAAAAAABSEydXAAAAAAAAAAAAACkqaOHA3jSXw8ZKDs6bwNwAkl9BRuod7m6lDitLVOOFngMAAAAAAFOW5tBO5tAAko+VeWHSzEP9FuahFhaoxhN9j61QJKp/f2qb7n+nydJ1s8dl6o9frVF5rtemygAAAAAAAAAAAAAAAEa3aDhoHOtwJe67jY40ng8BsH/uLAsLRgeSY8GolTrSLNxfPNF3AAAAAAAAIDUl5ze3AQAAAAAAAAAAAAwpGDY/UN+dwAP1PW5nwnIDSH5WDnfvHAjZWIm5Lgt1FFpYohov9BwAAAAAAJgKhiPGscyhASSjlJyH+q3MQxN3GOTB0PfY6R0M68oHa/Xy1k5L150+s1C/+vI0+dL4NxIAAAAAAAAAAAAAAGC4rC12Tdx3G51uT8JyA0huVhZwhvqsPadml1B/l3GsO7vQxkqGj74DAAAAAAAAqYlv5QIAAAAAAAAAAAApKhI1X+zqSNx5+nIl8DB/AMkvzeVQltdlFNvca/4FWDs1dAeM4hwOKc+XfEtG6TkAAAAAADAVMR9DM4cGkJSszUPN5pB2a+geNIpL5nkofY+Nxu6AvnTXOstLXb993ATdcd4MlroCAAAAAAAAAAAAAACMUDQSMQ9O4IOUDqfZszoAxh6HO02u9Cyj2GBXs83VmAl0NJgFOhxyZ+bZW8ww0XcAAAAAAAAgNfHNXAAAAAAAAAAAACBFuS0cVB+28J2xWBsMJTA5gJRQkpVmFNfckxyHuzca1lGc5UnapSL0HAAAAAAAmLA2h7awBTbGmEMDOJiSLI9RXNLMQ7tHxzyUvo/MhsY+nf77NdrY1Gd8TXqaU7edO13Xn1CZ0IXrAAAAAAAAAAAAAAAAo4XD5TYPjoTtK2So1MHBhOUGkPzSckuM4gLJsmC0s9EozpNTnNSLrek7AAAAAAAAkHpY7AoAAAAAAAAAAACkKCsH6ocSeKB+IJS43ABSQ1WBzyiuuTdocyVmmnvM6qguSLe5kuGj5wAAAAAAwIS1ObSNhQwhwGJXAAdRVWg2N0yeeajZgtFqw/tKFPo+fKu2d+msu9cZL5uVpLIcjx69bI7OnF1kY2UAAAAAAAAAAAAAAABji5XFrtFwyMZKhsgdMn/OBMDY4yutMooLJsmC0WCnWR3ppdU2VzIy9B0AAAAAAABIPeafDAEAAAAAAAAAAABIKmku8wP1g+HEHWrfHwwnLDdwIC9t7dTSezcmugxbXb5gnG5eUpXoMoxUF6Zr5Zah4+o6Bu0vxsDOdr9RXHVR8h6qT88BAAAAAICJ1JlDs9gVyeWlLR1aeu+GRJdhq8sXluvmJZMSXYaR6kKfVqpjyLi6DrM5pN12GtZRXeizuZKRoe/D89KWDi1bXqtBC0vL51dk6Y9frVFJtsfGygAAAAAAAAAAAAAAAMYehyvNODYSDtpYycGFB/sTlhvYn84PXtLGXyxNdBm2Gnfi5aq64OZEl2EkvaRa0soh4wZb6+wvxoC/ZadRXHpZci8Ype8AAAAAAABA6mGxKwAAAAAAAAAAAJCiPC6nnA4pEh06tncwcctVW3oT9yU0AKmhqsBsGee2tgGbKzGztdWsjmQ+VJ+eAwAAAAAAEykzh+4JJCw3gORnPA81nEPabWvL6JiH0nfr/lbbrisfrFUwbPAP7/85c3aRfnn2VHndTtvqAgAAAAAAAAAAAAAAGKucbo/kcErRyJCxYX9vHCrav2B3S8JyA0h+6aVVRnEDjdvsLcTQQMNWozhfaXIvGKXvAAAAAAAAQOrh27oAAAAAAAAAAABAinI4pCyv2yi2x5+4A/WbOVAfwBAmFZod7r6nc9DSYeZ26BkMq8nwfa3a8L4SgZ4DAAAAAAATlubQCVzs2twbTFhuAMlvkuEizpSbhxYl92JX+m7NM+vbdIXFpa7fWTRBt507naWuAAAAAAAAAAAAAAAAdnE45PZlGYWG+3tsLubAAl3NCcsNIPmll0wyihts3aNoKLHPZYcHehTobDKKTU/yBaP0HQAAAAAAAEg9fGMXAAAAAAAAAAAASGF5PpdRXFcCF7vu6RpMWG4AqWH2uEyjuHAkqm2tAzZXc3CbmvuNY+eVm31ZNxHoOQAAAAAAMJXnM1vs2uUP2VzJge3p9CcsN4Dkl1Lz0KbRMw+l7+YeW9uif/nLJoUMl7p63U7ddu50/euiypjXAgAAAAAAAAAAAAAAgE9yZeQZxYX7u2yu5MAG2/YkLDeA5JdZOdsoLhoJa6Bxm83VHFz/3k3GsVlV82ysZOToOwAAAAAAAJB6WOwKAAAAAAAAAAAApLDcdLMD9Zt6AjZXcmC1Fg5CBjA2FWWmaWJ+ulHs+3t7ba7m4N7dbZa/ItershyPzdUMHz0HAAAAAACmjOfQ3cyhASQna/PQHpurObh395jlT4V5KH03s3Jzh659dIvCEbOlrrk+t1ZcPEtnzi6KaR0AAAAAAAAAAAAAAADYP3dmrlFcoLPJ5koOrH9PbcJyA0h+aTlFSi+eaBTbu/N9m6sZIv/2d43ivAUV8uSX2VzNyNB3AAAAAAAAIPWw2BUAAAAAAAAAAABIYaXZZgcHN/cGFDU7CzjmapsHEpMYQEo5bEKWUdx7CV4y+o7h4e5HVGbbXMnI0XMAAAAAAGCi1HCBXWLn0Cx2BXBwh00wmx++tyfB89DdpvPQHJsriQ36fnBr9vbqqoc2KWS41LUsx6PHls3RkRNT488fAAAAAAAAAAAAAABgNPDklRrFBbqblagHKQf2stgVwMFlTT7MKK53+3s2V3JwPdveMYrLnnqEzZXEBn0HAAAAAAAAUos70QUAAAAAAAAAAAAAGL7yXLMD9YPhqJp6AiozPIA/Vrr9IW3iQH0ABg6bkK1H17YOGbe6zuxwdbu8bZg/FZaM0nMAAAAAAGCCOTSA0WDfPLRlyLjVdd1xqObA3jbMnyrzUPp+YHUdfl18/wb1B8JG8VOKfFp+8SyV53pjVgMAAAAAABi+hu6ADv+Z2SHnf796nmaUZNhcEQAAAAAAAOziKSg3iouGggp0NsmTX2ZzRZ8U6u9W/95Ncc0JIPVkTz5MrW88OmRcz9bVcajmYPnfNorLnpIaC0bpOwAAAAAAAJBanIkuAAAAAAAAAAAAAMDwWTm4d0vrgI2V7N+qHd0KR6Jxzwsg9RwzKdcorra5Xw3dAZur2b/1jX1q6jHLfWy12f0kEj0HAAAAAAAmynMszKFb4r9gddWOLubQAIZ0THWeUVzKzEMnm91PotH3/evoD+nCezaopTdoFD+9JEOPLJvDUlcAAAAAAAAAAAAAAIAE8BoudpWkgYYtNlayf921qxSNhOOeF0Bqya05xiiuf2+tAh0NNlezf3116xXobDKKzZ15rM3VxAZ9BwAAAAAAAFKLO9EFAAAAAAAAAAAAABi+6sJ049hNzf1xX3r34uaOuOYDTC2akqe9Ny9MdBn4mKnFPk0qTNeONv+QsSu3dOjCw0rjUNUn/X1zp1HctGKfJhf5bK5m5Og5AAAAAAAwUV1o/jv3pub+uC8bfHETc2gkn0VT87X3P8wOYkJ87JuH+rSjbWDI2ITNQw3fz6YVZ6TMPJS+f1YgFNElD2zQdoOeSNKMkgw9dOlsFWamjTg3AAAAAAAAAAAAAAAArEsvqTaO7a/fFPeldx1rXoxrPsBE3uxFWnj33kSXgY/xjZuq9NJJ8jftGDK2Y91KlX7+wjhU9Umda/9uFOcrnyZf2WSbq4kN+g4AAAAAAACkFha7AgAAAAAAAAAAAClsekmGcezq3T26fME4G6v5pEAoomc2tMUtH4DUd8qMAt2+qn7IuGc3tCfkcPen15u9p51aU2BzJbFDzwEAAAAAwFCml1qcQy+0sZhP2TeHbo1fQgApbd88dOiD4p5d35qgeajZ+9mpM1NrHkrfP+n/PbdDq+t6jGJZ6goAAAAAAAAA+xeNSpua+7Wmvle1zf3a3upXU09Azb1B9QfCGghFFI1KXrdD6W6nMjwulWZ7VJbt0fg8r2aWZWjOuExNKfLJ5XQk+naMBUIRbWjq1wcNfdrQ1K+9nYNq6A6opS8ofzAifyiiUDgir9spr9upDI9TJVkelWZ7VJHr0YzSDM0qy9TM0gx53M5E345lzb1Bra3v1dr6Pm1rHVBDd0CN3QH1DIbkD0XkD0bkcu77M/elOVWYmabSbI/Kcz2aVpyhmtIMzavIUrbXlehbsWSs3jcAAEAyyaiYbhzbs3W1xp14uY3VfFIkFFDbO8/ELR+A1FYw/xTV//X2IePa33k2IQtG29552iiu4NBTba4ktug7AAAAAAAAkDpY7AoAAAAAAAAAAACksEkF6fK6nRoMRYaMfWuX2QHBsfLsxnb1+MNxzQkgtZ1quGT0lW2daugOaFyOJw5V7bOuoU/rG/uMYpfUFNpcTezQcwAAAAAAMBRrc+juOFT0kWc3tjGHBmDs1BqzBaOJmYf2jtp5KH3/yKNrW3Tf241GseNyPLr/olksdQUAAAAAAABgSTQq/f71ev3k77sVGOLzvSMqs/X4stlxqmzkegfDemFTh57b2K5VO7rUORAa8pr+QFT9gYja+0Pa0zn4mZ/n+tw6fkqeTpqWr1NrCuRLS75lp50DIT31QZte2Nyh13Z0aSA49Oe2A8GIBoIRdQ5I9V2Bz/zcl+bUwqpcnTAtT2fMKkzqWfTGpn49+UGrXtjUoY1N/UPGR8JRBcNh9QyG1dwb/Mw1LqdDc8szdfyUPH1pTpGmFPnsKn1Exup9AwAAJKv00klypnkVCX7294pP69nyVhwq+kj7O88qPBDfMwQApK6CQ081WjDauf4VBToa5MkfF4eq9unbtU59deuNYgsPXWJzNbFF3wEAAAAAAIDUwWJXAAAAAAAAAAAAIIW5nA7NKsvUu3uG/sJVU09Aa+p7Na88Kw6VSXe8NvSiQAD4uMMnZGtiQbp2tfsPGheJSg++16xrjxsfp8qk+1Y3GcXVlGZobnmmzdXEDj0HAAAAAABDcTkdmjUuU+/uNpxD7+3VvIo4zaFXMYcGYO7wCTnm89B3m3Tt8RPiVJmVeWim5sbps75Yoe/77Gz369+e3GYUm53u0n0XzVJZHJfcAgAAAAAAAEh99V0BfevRLXp9Z3eiS4mpjU39+sObDXp0bav8BktNregaCOmJda16Yl2rstNd+vLcYl2xcJyqCtJjmmc41tT36vevNejZje1DLum1aiAY0cotHVq5pUM3Pb9Tp0wv0LIFZTpqYk5M8wxXJCo9+UGr/vBmo94x+JzainAkqvf29Oq9Pb36xT/2aF55lq48epzOmFUol9MR01xWjdX7BgAASAUOp0uZE2apZ/u7Q8YGOpvUu3ONsqrmxaEyqf6vd8QlD4DRIXvy4UovmSh/866DB0Yjan71QY0/49r4FCap6eX7jOIyxtcoc+Jcm6uJLfoOAAAAAAAApA5nogsAAAAAAAAAAAAAMDILq8wPTnhmfbuNlXxk5ZYOra3vi0suAKOHwyEtPazUKPauNxrUFwjbXNE+Dd0BPfR+i1HsxUeU2VxNbNFzAAAAAABgYmFVrnHsMxvabKzkIys3d2htfW9ccgEYHRwOaenhZvPEu96oj+889L1mo9iLj0y9eSh9l6JR6btPbFW/wb25nQ7dfX6NZpRkjCgnAAAAAAAAgLHl0bWtWnzr+6NqqevOdr++/pfNOum2NXrgneaYL3X9tB5/WH96q1HH/eZ9fe/JbWrqCdia70A2Nffra/fV6rQ71unxda0xX+r6aaFwVM9saNPZf1ivr/xpg97fm9jPYJ+vbdcJv3tfVz+8JebLTfdnTX2vrn54iz7/m/f14uYO2/MdyFi9bwAAgFSSM32hcWz76mdsrOQjHWtXqm/X2rjkAjBKOBwq/fxSo9CGF+9SeDA+Z4YEOhrUsuoho9iyRRfbXI0N6DsAAAAAAACQMljsCgAAAAAAAAAAAKS4hZPMF7uueK/Z/kMdIlHd/PwuW3MAGL3OP7REaS7HkHEd/SHd/UZjHCqSfvnyHqP3ziyvS2fPK4pDRbFFzwEAAAAAwFAWVlmYQ7/bFKc59A5bcwAYnSzNQ19viENF0i9f3m1hHloch4pib6z3/f7VjXp9R5dR7I0nV+mYavOF6gAAAAAAAADGtq6BkP7lL5t1zSNb1OMPJ7qcmAhHovrNP/dq0e/W6KkP2hSNxjd/KBLVA+806/jfrtGD7zXHL284qv/+e51Ovn2tVm5JzKLN13Z06Yw71+kHz+5Qf8Dez3w/raknoGXLN2nZ8k3a3DIQ19zSvkXCF99fqytWbFK3PxS3vGP1vgEAAFJRzgzzxa7Nr65QJBSwsRopGglp10M325oDwOhUcuz5crjThowL9Xao8YW741CRtOepXxq9b7rSs1S08Ow4VBR79B0AAAAAAABIDSx2BQAAAAAAAAAAAFLcwok5yvS4jGLb+oJ68L0WW+v5+T/2aGtr/A8TADA6FGS4dfZcswPSf/XKHu1s99tazzu7e/TAO01GsRceVmr8fpxM6DkAAAAAABjKwqpci3Noew84/vlLu5lDAxiWgow0C/PQ3fGZh65uNIq98PCylJ2HjuW+t/UFdcsLO41iF0/L15VHlw87FwAAAAAAAICx5Z/bu7T41jV68oO2RJcSMy29QZ39h/X6yYt1CoTiu1j007r9IX3n8W369qNbFQzbu122qSegs/+4Xr9+Za9CNucaSiQq/fHNRn3hznXa3mbvvP5Dr+/s1sm3rdXzte1xyXcwz25s16m3r1NtU7/tucbqfQMAAKSqnGkL5fJmGsUGe9rU8uqDttaz54mfa6Bhq605AIxO7qwCFS8wW9K555lfyd+809Z6era9o6ZXHjCKLT3uQuP34mRD3wEAAAAAAIDU4E50AQAAAAAAAAAAAABGJj3NqZNn5Ouxta1G8T99abe+NKdI2emxP/j5lW1d+s0re2L+ugDGluuOH69H17YMeQCOPxjRtY9t1cOXzJLb5Yh5Hb2DYV33+DZFDM7Gyfa6dM2xFSPO+Xxtu5Yt32QUO70kQyuvnjfinNLY7jkAAAAAABjavjl0gR5b22IU/9OVdfrSnGKb5tCd+s0ru2P+ugDGjusWVZrPQx/doocvnW3fPPSxLRbmoeNjkvf5jW1atrzWKHZ6SYZWfvOQmOQdq33/6Ut16vGHh86V7tL/njllRLkAAAAAAAAAjA2DoYh+/GKd7nqjQdHE7gCNqU3N/Vp630bVdwUSXconPLymRXs6B3Xv0hpleJwxf/1trQM6988b1NidXPe9qblfp/9+nZZfVKP5FVm25VnxbrOuf2q7wiaD+zjZ1eHXl/+4Xssvmqm55fYsLRmr9w0AAJDKnJ505c8/Wa1vPmYUv/uJn6roqC/J5cuOeS1dG17Rnmd+E/PXBTB2jD/jOrW88aiioeBB4yIBv7befa1mXf+wHK7YrzMI+3u17Q/XSdHIkLEuX7YqTrtmxDnb33tem367zCg2o3y65v3nyhHn/NBY7jsAAAAAAACQKmL/hBgAAAAAAAAAAACAuDtrTpFxbGtfUN97alvMa/igoU9XPrjpM4cg5/pi/0UBAKPbhDyvvnpYqVHs23U9uv6p7TGvIRyJ6l/+skXbWgeM4r9+TLnyM1L3/Y6eAwAAAACAoZw1t9g4trUvqO89uTXmNXzQ0KcrV9QyhwYwIvvmoWVGsW/Xdet6G97P9s1DN1mYh1ak/Dx0LPZ9a+uAHljdZBR77XETVJbjGXYuAAAAAAAAAGPD+sY+Lbljne58fXQtdd3SMqBz/7Qh6Za6fuiNXd26bHmtguHYNn1H275Fmsm21PVD3f6Qzr9ng9bW99ny+n9+q1HffXJbUi03/VDnwL5739nuj/lrj9X7BgAAGA2KFpxlHBvsbtW2P38v5jX01X2gTbde+ZllfO6M3JjnAjB6eYsmqPTYrxrF9mx9W9vvuT7mNUQjYW2541800Gh29kn5KV+XOys/5nXEE30HAAAAAAAAkl9qf5sbAAAAAAAAAAAAgCRp0dR8TSpM1442sy/OP/VBm6oLd+v6xRNikv/1nd26bPkm9QyGP/Oz7xw/Xjc9tzMmeQCMHdcdN15PrGtV50BoyNgH32uWx+3Qf502SS6nY8S5B0MRXfPIVq3c0mEUX5nv1ZULy0ecN9HoOQAAAAAAOJh9c2ifdrSZLcN76oNWVRf6dP0JlTHJ//rOLl32QO0B5tATdNNzO2KSB8DYcN3xE/TEuhYL81Cn/uv06tjNQx/erJWbTeeh6bry6NExDx1rff/vF3cpZHAoe3muV8sWjI4/YwAAAAAAAAD2iESl21bt1f+u3B3z5aKJ1tIb1AX3bFBrX9DytW6XQ4dWZOmIyhwdUZmt8Xle5fncyvO55XRIHf0hdfpDausL6t09vXprV7fe3t2jHv9nP3Mcyj+3d+mm53fq/zt9kuVr96fbH9LFD9Sqpdf6fWd5XTq2OldHVGZrZlmmynM8Ks5KU7rbKbfLqcFQRP2BsFp6g9rdOagNjX16fWe33qzrUSAUGTrBx/T4w7p0ea2eu2quSrLSLNd6IM9saNONz+4Y1oJij9upwydk66iJ2TqiMlvjcrzK97mV73NrIBhR+0BQHf0hbWjs15u7uvX6zm7t7Rq0nKdrIKRLH6jV01fOUabHZb3Q/Rir9w0AADBa5M9ZpPTSSfI3mT2v2Pb2U9pdWq0JZ8VmMV/3pte16beXKTzQ85mfjf/id7Rz+U0xyQNgbBh/5nVqfesJhfo6h4xtfvVBOdweTbrwv+Rwjvx3xUhwUFvvvEYda1caxXuLKlV+8pUjzpsM6DsAAAAAAACQ3FjsCgAAAAAAAAAAAIwCTod05cJy3fD0duNrfvXyHrX3B3XzqVXyup3DyhuORHXrqnr99KXdCu3ncJCpxT6dN7+Exa4ALCvOStN/njZJ1zyyxSj+3rebVNc+qP/9YrUqcr3Dzru5ZUDXPbZV7+/tNYp3OqRfnDVFGZ7hvY8mE3oOAAAAAAAO5qM59Dbja3718u59c+glk0Y2h351r376Ut2B59CHlLLYFYAlxVlp+s/Tq3XNw5uN4u99u1F1HX797xenjHAe2q/rHtui9/dYmYdOVcYoOTR7LPV9S8uAntvYZhR71dHlSnONfHktAAAAAAAAgNFpd+egvv3oVr25qzvRpcRcKBLVVQ9tVkN3wNJ1hZlpWnp4qS45olQl2Z4DxpXleFSWs+/nx0zKlY6tUCAU0UPvt+jWVfXa1e63lPfPbzXq2OpcLakpsHTd/nzvye3a1jpg6ZqJ+em68uhxOu+QEvnSDvz5qy/NKV+aU4WZaZpRmqGTpufr28ftWyb7yJpW3baq3tLCz8bugL796BYtv2impXoPpLapX996dKvl5aZlOR5ddHiplh5eqsLM/S+ZzXa5lJ3u0sR8aX5Flr56WIkk6aWtnbpjVb3+ub3LUs7NLQP6n7/v1s1LqqwVux9j9b4BAABGFYdT5Sddqe333WB8yZ6nf6Vgb7uqzr9ZzrThPf8SjYRV//yt2v34TxUNhz7zc9+4qSo55jwWuwKwJC2nWJO++p/acuc1RvFN/7hXgy11qr7kf+UtqBh23oH6zdr6h+vUu+N9swscTk1Z9gs5vRnDzplM6DsAAAAAAACQ3FjsCgAAAAAAAAAAAIwSFxxaojteq9dOCwdL3Pt2k1Zt79J3F03Q6bMK5XaaHRgcCkf17MZ2/fwfu7WlZf8HSTgc0o+/UC0ne/cADNPZc4v07IY2Pbex3Sj+5W2dWvTbNVq2oEyXHll20EN6Pq2uY1B3vdGge95uVHA/C0IO5PKF47RgYo5xfLKj5wAAAAAA4GAuOKxUd7y21+IcunHfHHpx5TDm0G36+Ut1Q8yhJzOHBjAsZ88t1rPr24yXb768tVOLfvOeli0cp0uPHGdxHurXXa/XD2MeWq4FVaNrHjpW+v67f+4xPpj9pud2pMSC8r99Y75mlWUmugwAAAAAAABgTHn4/Rb94Nkd6hkMG1/jdjkUsjATTaRbX623vLB26eGluumUKmV4hvchocft1NLDS3XBoSW6+41G3fLCLoUj5v364XM7tGhKntIPslh1KM9tbNfT683m5JLkdjr0bydU6qqjx8ll+Hnr/uSku3XpUWVaenipfvnyHv3mn3uN7/2VbV16ZE2LvjyveNj5JSkQiuibj2yRPxgxvsbp2PcM+fdPqJTXPby+L5qSp0VT8vTytk5965Gtau0LGl/7x7cade4hxSOakY/V+wYAABiNSo69QPV/u0P+5p3G1zT94151bVylCV/6sQj49QAAIABJREFUrgoPP10Op9mR4NFwSO3vPKvdT/5cAw1b9h/kcKj6az8WD1ICGI6iBWer7Z1n1f7uc0bxnetf1pofLFLZSctUtvhSeXJLjHMNttap4YW71PiPexQNmf9+Ou6ky5UzbYFxfCqg7wAAAAAAAEDyYrErAAAAAAAAAAAAMEqkuRy6eUmVLr6/1tJ129v8+sbDW1Tw7A6dPKNAR1XmaFqJTxW5XmV7XfK4neoLhNXQHVBtU79e3d6l52vb1TbEl/kvXzBOC6ty1BcwP0AEAD7tF1+aom2t67T5AMs7Pq0vENavX9mrW1fV66jKHC2emqdZ4zJVXZiu3HS3fGlODQQj6vKHtKVlQOsa+rRyc4dW7+6RhfN4JEnHVufqxhMnDuOukhs9BwAAAAAAB7JvDj1JF9+/0dJ129sG9I2/bFLBM2n75tATczStOEMVeZ+eQw/um0Nv6zSbQy8s18JJucyhAQzbL86aqm2tA9rc0m8U3xcI69cv79Gtr+7VURNztHhqvmaVZaq6yLf/eWh9r1Zu6dDqum7r89DJebrxpCrrN5UCRnvfu/0hPbauZUSvAQAAAAAAAGBs6+gP6d+e2q5nNpgv/3Q5Hbr2uPFq7g3o3rebbKwuNra3+fWLl/cYx2d7XfrdOVN1wrT8mOR3OR268uhxmjUuQ1c9tFkd/SGj6+q7Arr7zQZd/bmKYeUNR6L6rxd2GccXZqbp7vOn64jK7GHl2580l0PfWzxBh1dma9nyTRoMmS0b/Z+Vu/XFOUVyj2C57O2vNWhjk9nnA5JUkOHWnedP14KJOcPO+XHHTc7TC/8yV8tWbNa7e3qMrglHovrFP/borvOnDzvvWL1vAACA0cjhTlPV+Ter9tcXW7rO37RdW+74hnbcX6CC+ScrZ9pR8pVPk7ewQq70bDnTPAr7+xToaFD/nlp1bXxV7e89r2DPwX8vHHfS5cqZvlDhwb6R3BaAMWzKZb/QusZtGqjfbBQfHuzT3qd/rfrnblXOtKOUN2exMifMUnpZtdwZuXJ6fIoEBhTq79JA/Rb11a1Tx9qV6tm6WoqazSA+lDvzWE0858bh3FbSo+8AAAAAAABAcmKxKwAAAAAAAAAAADCKnDgtX+fML9bD71s/KLi9P6QV7zZrxbvNI65jfkWWbjixcsSvAwDZ6S7du7RGX7hznVp6D77I4+NC4ahW7ejSqh1dttQ1ozRDd54/XW7X8A+lSVb0HAAAAAAAHMyJ0wt0zvwSPfy+9Vlye39QK95t0op3R36Q9PzxWbrhxIkjfh0AY1t2ukv3fm2mvvD7Ndbnodu7tGq7nfPQGaN2Hjra+94XiCgUtrhRFgAAAAAAAAD+zz+2duq6x7epuSdgfE1Frle/PWeqjqzM1o3P7LCxutj5n5V1ChguFE1Pc+pPF86I2ZLLjztmUq7+eMEMnfOn9caz3T+82airji4f1oLTx9a1akeb3yjW7XLozvOmxXSp68ctmpKnn3yhWtc9vtUofk/noB5f26pz5hcPK19Lb1C/e3WvcXyuz60VF8/UrLLMYeU7kJJsj+65cIZOv3OddrWb/Vk8X9uura0DmlLks5xvrN43AADAaJY/70QVH32OWl572PK1od52Nb+6Qs2vrhhxHVmT5qvy7BtG/DoAxjaXL1s1196rdbd8QcFu83NKouGQujauUtfGVbbUlTF+hqZ/4045XKNzjQJ9BwAAAAAAAJKTM9EFAAAAAAAAAAAAAIitn3yhWjNKMhKWv7owXfcurZHXzceRAGJjfJ5XKy6aqZJsT6JLkSTVlGZo+ddqlO11JboU29BzAAAAAABwMD85Y3KC59A+3bt0JnNoADExPs+rFRfPTqJ5aKaWXzRr1M9D6TsAAAAAAAAAfJI/GNEPnt2hpfdttLTU9fSZhXrxG3N1pE3LP+2wqblfT69vM4p1OKQ7z5tmy1LXDx1Rma0fnjzROL6xO6C/b+4YVq77VzcZx/7gpIk6ysb7lqRzDynW+YeWGMeveK952LnueqNBvYNho9g0l0P3L62J+XLTD+VnuHXPhTOU6TH7XCAalR5+33zJyseN1fsGAAAY7aq/9hNlVMxIWP700mrVXHuvnGnehNUAYPTwFo7XzH9dIU+u+YzAThnja1TzneVy+VJn3jUc9B0AAAAAAABIPpxgAQAAAAAAAAAAAIwyvjSn7v9ajaoK0uOee0qRTw9cNFMFGe645wYwus0ozdCTl89WdWH839s+bmFVjh67LHkOmrcTPQcAAAAAAAfiS3Pq/otmJW4OffEsFWSkxT03gNFrRmmGnrxirqoLfQmtY+GkXD22bM6YmYfSdwAAAAAAAAD4yNUPb9Ef32xUNGoW70tz6r/PqNbvz5umnPTU+g7HvaubjO/zvENKtHhqvr0FSVq2YJzmV2QZxz+7sd1yjj2dg3qrrscotizHo0uPLLOcYzi+c/x4uZ0Oo9g3dnVbWjz8IX8wovssLLX95rEVOmS8+Z/HcEwp8umyo8x7/MQHrZZzjNX7BgAAGAucHp9qrrtf6SVVcc/tGzdFM7/zgNxZBXHPDWD0yhg/Q7P//Umll1YntI6c6Qs1+/uPJc2yU7vRdwAAAAAAACC5sNgVAAAAAAAAAAAAGIXKcjx65NJZqinNiFvOxVPz9fQVczQhzxu3nADGlgl5Xj19xRx9cU5R3HO7nA5989gKLb9oprLTXXHPnyj0HAAAAAAAHEhZjkePXDZHNaWZccu5eFq+nr5yHnNoALaYkOfV01fOTeA8dLyWXzRrzM1D6TsAAAAAAAAA7NPlDxnHzizL1HNXzdXSw0ttrMgewXBUj68zWxSZ53PrxpMm2lzRR771+Qrj2JWbOyy//svbOo1jr1gwTm6X2bLVkarI9er0WYVGsdGotGpHt+Ucf9vUoc4Bs//HJxf59K1jzf8sRuLrx5Qr22v2GUFdx6B2tfstvf5YvW8AAICxwpNfplnXP6KM8TVxy5k/d7Hm3Pi0vEUT4pYTwNjhLZqgOT94WkVHfjHuuR1OlypO+6Zmfme5XL7suOdPJPoOAAAAAAAAJA8WuwIAAAAAAAAAAACjVFmOR09fMUfnH1pia55sr0s3nVKlP184Y8QHHsfnyAkAqSzX59at50zVbV+ZptJsT1xy1pRm6PFls3TDiZVKi9PhOMmEngMAAAAAgAMpy/Ho6Svn6vxD7T0wOtvr0k2nTtKfL5zJHBqArXJ9bt36lem67dzpcZyHZurxZXN0w0kTx+w8lL4DAAAAAAAAgLnLjirTM1fM1tRiX6JLGZY3dnWro99s0eXSw0tVkOG2uaKPnDy9QJMK041i2/tD2tFmbdnlW7t6jGOXzCyw9Nojdcr0fOPYt+qsL3Z96gOzZb6SdM2xFfK443NEYp7PrXMPMf/e1Vt15n+G0ti9bwAAgLHEk1+mOTc+rZLPnW9rHpcvW1Xn3aQZ3/rzyBfvOXhWBsCBuTNyNfWqWzXtqtvkybP3GfEPZYyv0awbHlfll2+Qw50Wl5zJhr4DAAAAAAAAySF+T6sBAAAAAAAAAAAAiLv0NKd+9sXJOmdesf7jrzu1tr4vZq/tdjp01twi/ftJE1WSdeCH9KNR89d0OfkiGAAzZ84u1Ckz8nXf6ibduqpejd2BmOeYVZapbx9XodNqCvmequg5APz/7N13dFzVuf7xZ6p675JVXLDcC8Zg00tojgOYAAFSiEMLISH3pvcbUn6khxtSIIHchE5CSQgQMGBCMcXY4IKrbMuSrd7baDT194dwYnDRHmmORtJ8P2t5GeT37P3uo5kzs7ZG5wEAAABweIkuu35+0TRdsiBP33t6rzbV90Zt7MF96Dx945xy5aceOeiPfWgA0XbBnFydOyN7cD/0lf3W7YeeXsp+6EE47wAAAAAAAABwZNnJTv1yxTR9YLp5AOdYtGZPl3HtJfPzLOzkUDabdNrUTFW3NRrVb6zvNQ6ClaSqln6juvw0t8qzzMeNhsVl6ca1u1ojC7QNhsJ62fD7nprg0PLZORGNP1LnzcjSXa83GNVuaezTpTJ7XMbrugEAAOKR3Z2oqSt/rrwTL9Heh76nvppNURvbZncqd8kKlV/yDbky8o9cGMEHKW0ORxQ6AzDR5Rx/gbIWnqumF+9V/dO/la/DbL8kEills1Wy/PPKOXYZodPv4rwDAAAAAAAAsUWwKwAAAAAAAAAAABAHllak66nr5mlNdZfuXd+kVds7NBAIDWussqwEXXFsgS4/Nv+oga4HRDJPotM+rJ4AxKcEp11XLynSJ48v1Mt7uvTYplY9t7NDnf2BYY9Zmpmg82dl6+J5eZpblBLFbicGzjkAAAAAADiSpRUZeur6+VpT3al71zVp1fb2EexDJ+qKRQf2oY8c6HoA+9AArHDIfujGFj23sz0K+6E5unh+nuYWpUax24mD8w4AAAAAAAAAhzp5SoZuu3ia8tOG/tnZWPd6TbdR3ZyiFB2Tl2RxN4c6cXK6/rTWLDCjtmMgorFrOswCURcUj/5nqosz3MpNcam1zz9k7T7DdRywuaFPPQNBo9oL5uQoyTW6P9NdOClNTrtNgdDQQVj7Iviex+u6AQAA4ll65VLN+/ZT6tq+Rk0v3quODasU8g/vvVRCbpkKTr1C+SdffvRA13dFMo/dmTisngDEH7srQUUfuFqFZ35SXVtfVuvrj6lj03MK9HUOe8yE3FJlH3u+8pZcrJTyuVHsduLgvAMAAAAAAACxQ7ArAAAAAAAAAAAAECdstsGbeZw8JUO+QEjr9/fqjZpuVbX0q7rNq8Yenzz+oPp9IYU1eHP7jCSHCtMSNDU3UXOKUnTS5AzNLEiOaN6BwNC/4H9AwjBuqD8jP1l1Ny+N+LhIrf/iIsvnGK43/vtYS8YdrXMLjJTDbtPp0zJ1+rRMhcPS9maP1tZ0a3uzR9VtXtV2DqjHG5DHH5IvEFKSy6Fkt11ZSU6VZydqck6i5hSmaElFukoyEmK6lvNmZI+L591EOucAAAAAACB6BvehM3XylMzBfeh9Pf/Zh27vV2P34fahnSpMd2tqTtLgPvSUDM0siOxGxZEEuw57H/p7J0V8XKTWf2mx5XMM1xtfOM6ScUfr3AIjceh+aN9790M7vOrxBuXxB9+3H+r6z35oUeqY2Q89b2bOuHjejefzXpTuHhfnGAAAAMB7BUNhVbX0a1N9n/a09au63avGbp/aPX519gfkDYTkC4YVCoXldNjldtiUmuBQZpJTeSkuTcpMUHl2omYVJGtuUcqYD13b0+bVxrpe7W7r1542r5q6fWrz+NXuCWggENJAIKRAKCyXw64Ep00pbofyUlzKS3WrIjtBlfnJmlOUojlFKXLabbFeTlS0ewJ6o6ZbG+p6taGuV009PnV7g+r2BuQPhZXqdvz7ez49L0kzC1I0r3jwM1BWnIPtTR69tb9XG+t7taWxT539gX/3I0mJLrsyE50qSnerIidR84tTtaQ8XTMi/JzvWOULhPRGbY821PVqd+vg47Sl1yePL6Q+X1C+YFhJLruS3Q6lJzhUkZ2oqblJmlWQrFOnZoz55+Bo6fYGtLmhTxvr+rSzxaO6Lp/quwbU7Q2o3z/4XHc77Up+91ymJThUnpWoipxETc5O1LGTUjWzIEW2Mf40j7drOOKL027Tl84s1Y0nl2iCvORqR3O/Ud2i0jSLOzm8hSXm89Z1RRbQ1GsY8pmb6opo3GjJMQx27fKareOAzfV9xrUnVmRENHY0JLnsKstK0J62oQNrI/mex+u6AQAA4p7NpoyZJytj5skKBXzq3b1e3TvfUH9DlbxN1fJ1Nio44FFooF9SWHZXohwpGUrILFRi4VSllM9RxoyTlDxpZkTThiMJdnVF9lma5JIZWnpXXUTHDMein623fI7hOvYnb1g29midX2AkbHaHMuecrsw5p0vhsDx129VdtVaeuu3yNlVroLVWAU+PQj6PQn6fHO4k2ROS5UzNUmJeuRILJiulbI7SK5coIbskpmvJXnjeuHnOTaTzDgAAAAAAAIwXBLsCAAAAAAAAAAAAccjttGtpRbqWVqRbPlebZ+ibOhyQluiwsBMA8cBmk2YWJEccQo3h45wDAAAAAIDDcTvtWjo5Q0snW38DWvahAYyWwf3QlIgDqDEynHcAAAAAVmn3BPTU1jY9u6NDr+3tVp/PLKDKFwjJFxgM5mrs9mn7YWom5yTqlCkZ+uCsHC2tSJcjxkls/f6QVld16Kmt7XplT5dRYJf0n7X2eAfXKr03nCo1waETytN1wewcnT8rWylu6/ff3mno07m3bxqy7nOnlOhrHyg7ak04LD1f1aEH1jfruaoOBYLhI9Z29gfU2R/Q/s4BvdPQJ6lVkpSd7NSyWTlaeUKhZuSP7DNUTT0+/WVDix7e0KJdrUcPvfMHg+rxBrWvc0Bra3v0l7dbJEllWQm6fGG+Pr64UNnJ1t9a6E9rG/XNJ6uHrPvMycX65tnlQ9a9sKtTd69t1CvVXfL4Qket7R0IqncgqOYeaVdrv57b2fHvf5tZkKyPLMzX5Qvz425fuKqlX09sadPqqk5tqOtR6MgPa0mS1x+S1x9Su2cwNHhbk+c9/56V7NTS8nRdNC9X51Zmy+kYG8mS8XQNR/wqz0rUby89RgtKUmPdStQ09/r/HVI+lFkx+mxybor566dpUKskBUJhBYa6KL8rMyk2twc0ndcbOPpr9PtVDfG+5mBzimLzs4CSDLOA017D1xspftcNAACA/7A73UqvXKr0yqWWz+XvaTOudSSnWdgJgAnPZlPypJkRB1BjhDjvAAAAAAAAwKgg2BUAAAAAAAAAAACApVp6fUZ1qQmOUbmhFwAAAAAAAABgYmnpMQuhYB8aAAAAAAAAkrSpvk+/XVOnp7e1y3+UIM+RqG7zqrrNq7vfbFJhulufOK5AVx1fOOohXbUdA/rjGw168O1m9XijH8bUOxDU8zs79PzODn3tCbs+uqhAnz6pWEXp7qjPdUBagtkeX9cQoXFv7+/Vt56q1oa63hH10+4J6N51TXrgrWZdtiBPX/tAmXJTXBGN0TMQ1G9ertPvX2vQQIRBae9X2zGgn6zep9+8Uq8vnD5J1ywtktPCUMr0RLPHdHPv0fdxV1d16EfP7dOWxr6j1pna1uTRd5/eq5+u3qdPnVCoz582SUkue1TGHotCYenvm1t195uNWlvbE9WxOzwBPbWtXU9ta1duikuXH5uvG04qjlnoYDxdwxHfVszL1S3Lpxi/7o0X+aku7f3OEnV4/Gr3BNT+7t8dB/93f0DtfX4tKo1N0JDbaVey2z5kwLgk9fvNX7eddpuSXHajYxKcsXnNMn2tTI/wcfmF0yfpIwvz1NLr//ef5l6fWvv8au7xq6XXp5Y+v3yBsKbmJg2n9REzfa6ZPC4OiNd1AwAAIDZ8XS1GdY7EVDkSUizuBgAAAAAAAAAAYHzik6IAAAAAAAAAAAAALLW71WtUV5Bm3U28AAAAAAAAAAAT1+62fqM69qEBAAAAAADiW32XT9/5Z7X+ua19VOdt7PbpJ6v36Xev1uuzJ5fo0ycVWxq0KUnd3oB+9sJ+3f1mo2XBh+/X7w/pztcbdPe6Jn3+1BLdeHKJXI7or9M0cKzvCOFTobD0w2drdMer9QpH8dQEQ2E98FazXtzdqbs/OlMzC5KNjntpd5c++0iV2vqOHnwaqT5fUN9fVaPnqzr1+8umKyvZmtsMpbjNvh8dnsMH7fb5grr56Rrdt74pmm29Z/zbXq7To5ta9dMLp+i0qZmWzBNLq6s69MNVtdre7LF8rtY+v379cp3ufnPweX71kiJLnueHE0/XcMS3FLdDP/zgZF26IC/WrVjG5bApP82t/DH8s7v0RKc8Pt+QdZGGhmcmOdXvH3rcHm8wonGjpXfAbN5I31dkJjmNwrGDobBidYl1GYbpRvL2MV7XDQAAgNjwNu02qnNnFljcCQAAAAAAAAAAwPgV2SfCAAAAAAAAAAAAACBC25rMbhJUnpVocScAAAAAAAAAgIloW2OfUV15NvvQAAAAAAAA8erhjS064zcbRj0Q8GA93qBuea5Wy+7YrD1tXsvmeXlPl874zUbd9XrDqIW6HswXCOmnq/dp2e83a1/nQNTHT3I7jOr6DhNM1ucLauX923X7muiGuh6svsuni+56R+v39QxZ++uX6/TRe7ZGPdT1YK9Wd+mSP21RZ//hg1VHKsll9v3o8R46f3OvXx/6wzuWhboerK5rQB+7Z5t+9VKd5XONlm5vQJ99pEofv3f7qIS6vn/u76+q0Qd/v1m7Wvstny+eruGIb/NLUrXqhnkTOtR1vPD6Dx8Q/34moZ0Hy0lxGdW1e6x7b3A0PYbBrtnJZuuIlCOGwdmmYbqmofaRiNd1AwAAILo8+7cZ1SXml1vcCQAAAAAAAAAAwPjFp2QAAAAAAAAAAAAAWOr1mm6jutmFyRZ3AgAAAAAAAACYiMz3oVMs7gQAAAAAAABj0Y+eq9XnH92lXsOgKqttaezT8j9s1mt7zfa1IvHHNxr10Xu2qbHbF/WxI7W1sU/n37FJG+p6ozpuktPsdjl9vvd+v4OhsK5/aKee29kR1X4Op3cgqGsf2qmW3iOHsv34+Vrd8lytQqOQvbu9yaNrHtxhyVyJLrPvR/f7nn+N3T59+I/vaMcoBpKGwoPn/RtPVo/anFZ5p6FPZ/12ox7b1BrTPrY09um82zfpUQv7iKdrOPDtc8pVkZ0Y6zbiXjgs9frMrjmRBrua/rxye7P1odnvFw5L+zrNgqtnTcDf/+k+TAj94eQahvOOF/G6bgAAgImoe+frRnXJk2Zb3AkAAAAAAAAAAMD4FdknwgAAAAAAAAAAAAAgAjXtXtW0m97YgRvqAwAAAAAAAAAiwz40AAAAAAAAjubHz9fqtpfrYt3GIbr6A7rqvu168KqZOnZSWlTG/M0rdfp/z9ZGZaxo6fAEdOU92/TwJ2dFbX/O6bDJZhsMHzsajz/0nv//1lPVemFXZ1R6MNHU49NNj1bpgU/MOuTf7ny9Qb96aXQfl6/t7dbta+r1mZOLozqu22Ezqjs4lNMXCOkT923Xnjazvd1o+/PaRqW6HfrG2WUxmX+kXtrdpWsf2jFmgk77/SHd9GiVuvoDWnlCYVTHjqdruNVe2NWpj92zLdZtWOqaJUW6+fyKWLeBCWBf54ACQbM09JKMhIjGPq40TQ+93Txk3c4Wj3yBkNyGgfbR0Njjk8cXGrpQ0vFl6RZ3M/qqDX/mXD7Bwpfjdd0AAAATjbe5Rt7mGqPalNJD9ysBAAAAAAAAAAAwaPQ+sQUAAAAAAAAAAABgVIXDUkO3T69Wd+nedU36waoa3fToLoXM7i8RFY9sajWuXVI+Pm5qAwAAAAAAAAAY9N596Eb9YNVe3fTIztHdh97YYly7pHzi3WAYAAAAAAAAR/bElrZRD8+MRJ8vqKsf3KmWXv+Ix3psU+uYC3U9oKs/oJUP7FBnfyBqYzrtQ4eJ9h8U7Prk1jbd/WZT1OY39dLuLr20u+s9X1tb26Obn9476r1I0v++tF+tfSN/vB0s0TBwruegENL/eXqvtjT2RbWPSP3mlTo9ubUtpj0Mx0u7u/Tx+7aNmVDXA8LhwfDku15viNqY8XQNBzC2RPIatag0NaKxjzf8vZlAMKw39/VENPZIbazvNa5dXDaxfv+nqcenNsP3SHMKUyzuZvTE67oBAACiLhyWr6NBXdtfVdOL96rmrz/QrjtvksKhoY+NktbXHzGuTatcYmEnAAAAAAAAAAAA45sz1g0AAAAAAAAAAAAAGLmadq/WVHerur1f1W1eVbd5tbfDK6//0F/6unJR/qjcvN4fDOv+9WY3wZpRkKz8NLfFHQEAAAAAAAAAhmtwH7pL1W0H9qH7j7IPXaglFaO1D91oVMs+NAAAAAAAQHxp6/Pry4/vifi4RJddJ5Sl64TyNFVkJ6o8O1EFaW4lOu1KctnlctjkDYTU7w+ppdev/Z0Dqm7zat2+Hq2t7Y444K+5x6evPL5b/3fljIh7PaC6zauv/iPytUrSjPxknTYtU7MLk1WWlajiDLdS3A4luexy2G3q8QbVPRBQe19Am+p7taG+Vy/t7lJjty+iefZ3Dugrj+/R7z8yfVh9vp/LYZM/GD5qjcc3GHzZ7gno609UH7EuO9mpD87O0SlTMlSZn6yCNLeSXHZ5fEF19AfU2uvXun09en1vt/61u0u+QGSBDD9+vlanTp0raTDc9KZHqhQ6SuvzilN0TmW2ji9P05ScJGUmOeWy29TlDaizP6B9nQN6o6ZbL+/p0tv7zQPYJKl3IKg7Xq3XN88uj+i4o3E6hg7Zlf4TtLu6qnPIkN3MJKeOK03T8eVpWliSqpwUl7KSXcpKcioYCqvXF9T+zgHtaPboxd1dWl3VoR5v5EGnX/z7bs0vTtWkzISIj42FrY19uvahHQoM8dg/nBS3Q0sr0nXspFQtnJSmSZkJykpyKj3RIV8wrJ6BoBq6B7S71asNdb16oapDe9q8Ec9z8zM1mpqbpNOnZUZ87MHi6RoOYOx5bmeHUV1aokPH5CVHNPa03CTNLkwxCo99dFOrTpqcEdH4I7Fqu9m6F5elqSh9Yv3c9dXqbuNa03De8SBe1w0AADAS3uYadW9fo/7manmb3v3Tslch36H7KPmnXqn06daHqIYDfjW9dL9RbfKkGXJn5FvcEQAAAAAAAAAAwPhFsCsAAAAAAAAAAAAwAWxv9ujLj+82qr13XdOoBLvet75JDYY37jqnMsvibgAAAAAAAAAAI7G92aMv/32XUe296xpHJdj1vnWNEexDZ1vcDQAAAAAAAMaSX764X93egHH9jPxkffaUEi2bla0Ep/2otSluh1LcDuWmuDSzYDDM6zoVKRyWXt7TpfvWN+nJrW0KG2YvrtrRoX/t6hx2EOK3nqpWn8881NJht+miubn6r9Ns33JOAAAgAElEQVQmaUpO4lFrs5Kdykp2qjxLWjgpVVdJCoTCenpbu377Sr021psHiz65tU0v7e7SqVNHHlDmtNslHT1g1ftuAOvNz+xVW9+hYY35qS596cxSXTo/T+7DfM/TE51KT3SqPCtRi0rTdP2JxWrt8+tHz9XqgbeajXvdUNerzQ19mluUov/3bI32dQ4ctu6MaZn6ylllmleccth/z0lxKSfF9e/QzK+eJW2q79PXn9ijDXXm34cH32rWV84sk8swkHUoTrvZOL5ASIFQWN9/Zu8Ra44rTdONp5TorGMy5TjCuC6HTYkuu3JTXFpQkqqPLMxXny+oe9c16Zcv7o8o4LXHG9T3V9XojsuiEzhspR5vUJ+8f4d6ByILsJ1ZkKzPnFyiZTOzleg6/LUtyW5Tksuu/FSX5hen6uJ5udL5Fdra2Kc7X2/UwxtbFDxaGvFBgqGwbvhrlZ69Yd6IAnPj6RoOYGzpHQjqn9vajWqPL0uX4cvge3xicYG++o+hw6sf3dSqL5w+SSUZ1geQt/X59Y8trUa1HzuuwOJuRt8TW9qM6grS3JpblGpxN6MnXtcNAAAwEp667dr95y8b1Tb9695RCXZteuk++ToajGqz5p9jcTcAAAAAAAAAAADj29E/hQoAAAAAAAAAAABgXDhpcsaQN6E54G+bWyO6gdNwNPf49OPn9xnXX7Yg38JuAAAAAAAAAAAjFdk+dMso7UPXGtdftpB9aAAAAAAAgHjR7Q0YB2/abdJXzyrTc5+ZrxXzco33wA7HZpNOnZqhOy6brn9cM1ezCw8f0Hk4t764f1hzrqnu0r92dRrX56S49PDK2frVxdOGDHU9EqfdpuWzc/T4tXP0mZOLZYsg0OyW52qGNeehPQxd4wuE9E5Dnx7Z2HLIv31wVo5e/NwCfXRRwWFDXY8kN8Wln104VT/84ORI2tUTW9q0o9mj+9Yf+rhMdtv1vxdP070fn3nEUNcjmVecosc+NVvnzsg2PqbdE9DLe8wfM0OJ5Pt/95tN2tnSf8jXE5x2/fSCqfrb1XN0TmXWEUNdjyTF7dD1JxbrhRsX6PiytIiOfWJLm96s7YnomFj41lPVqus6fCjw4aQmOPSj5VO06ob5unhe7hFDXY9mVmGKfnHRVD17wzwtKDEPc+v2BvT1J4YOLDza8fFyDQcw9tz1eoO6+s2CpS+ckzOsOVbMy1V6onPIOl8gpG89WT2sOSL1k9X75PGFhqzLTnbqQ7OHt+6xqrnXr9WG76cvmJMzrDDfsShe1w0AADBSGTNPkt2VYFTbuvZv6q3eYGk/vq5m7Xvsx8b1+SddZmE3AAAAAAAAAAAA4x/BrgAAAAAAAAAAAMAEkJrg0Lkzsoxqw2Hpc49UqdPwZhOR8gVCuvahner2mo2/tCJdk4d5czAAAAAAAAAAwOgY3Ic2CwcIh6XPPbzT4n3o7RHsQ2dock6SJb0AAAAAAABg7Hn8nTZ5/UMHU0nSzy6cqptOLYkonNLEwkmpevyaOfrAdLPPdr5Z26PNDX0Rz/PbV+qNa7OSnXri2rkRB18eidNu0zfPLtdPPjTV+JhN9X16bW/3iOe2GXzDfMGwvvv0XoXD7/36tUuLdMdl040C1Y7kk8cX6uolRcb1/3inTd9+aq+Cofc2k5Hk1F8/OVuXzM8bdi9up12/veQYVeYnGx+zakfHsOd7P3sET56bn9l7yNfSE5169FOzdeWi/BE/D4vS3Xrwqlk6y/B5d8BYD+V8bmeHHj5MQPGRTMtN0j+vn6ePLy6ISghbZX6y/n71HH10UYHxMaurOvX3za3Dmi+eruEAxpZdrf3635fqjGrzUl1aPsyA0xS3Q185s9SodtWODt2+xvz93nD8c1u77l3XZFT7tQ+UjShEeyz67St18gWGft1x2G1aeXzhKHQ0OuJ13QAAACPlSExV1sJzzYrDYVX94XMK9HVa0kso4NPO316rgMdsvzW9cqkSCyZb0gsAAAAAAAAAAMBEMbE+HQUAAAAAAAAAAADEsZUnmN8gak+bVyvv366uKN9Uv98f0qce2KF1+3qMj/n8aZOi2gMAAAAAAAAAwBqR7UP3a+X92yzah96udbXsQwMAAAAAAODwVleZ3Sj/Q3Ny9JGF+Zb1keiy664rKrWkPN2o/m8RhiDWdQ3oxd3moQC/uGiayrISIprDxJWL8nXlIvPz+NcN5gGVR2ISVtk7EDwkRPbSBXn67nkVUQmB/NpZZcpNcRnV1nR4taa66z1fczls+uMVlVpQkjriXhJddv1gWYVx/etRCNc9IJJTGQi+N9g2wWnXvR+bEZVzcPCYt186XbMKU4yPeXF3p6pa+qPWQzQFQ2H9cFWNcf2M/GQ98qnZmpKTGNU+nA6bfnLBFH1isXm464+f36fA+8KMTcTLNRzA2NLjDeraB3dowCDoUpI+c1LJiAJOrzq+UHOLzF6rfvBsje58vWHYcx3N6qoO3fhwlVHtwkmpuvJY89eB8WBf54BxqO2HZueoPDu6r6+xEq/rBgAAiJaiM1ca13qb9mj7bSsV8HQNXRyBkK9fO277lHp2rTM+ZtLyz0e1BwAAAAAAAAAAgImIYFcAAAAAAAAAAABggji+LE1LK8xuHCNJa2t7dN4dm7Shrjcq829r8mj57zfrhV3mNwlbUp6uU6ZkRGV+AAAAAAAAAIC1ji9P19IK8z3dtTXdOu/2jdqwP1r70H1afsdGvVDVYXzMkop0nTI1MyrzAwAAAAAAYHx4s9YstPK6pUUWdyI57Tb9YsVUpbgdQ9Y+u8N830uSHn+nTWHDzMTzZ2brnMqsiMaPxDc+UG60RklataNdwWGEPR7MNoxk1sr8ZP3kQ1NGNO/Bkt12XXV84bCP/8qZZcaBkSZOnJyh+cVmAam7W/vVOxCMyrwOk5TdI/jWOeVaVJoWlT4Oluy261cXT5PTsLdwWMbhZqPtrxtatNMwdDY3xaW7PzbDOHB4OH6wbLJOnGz2c4KaDq8eHkaQc7xcwwGMHT3eoD5x3zbj6+30vCR96oThvweQBkPqf7limtH1JRyW/uefe/XZR6rU7gmMaN4DfIGQfrp6nz55v1mYbVqCQz+7cKqG8RZsTPv6P/ao3z/0+m026XOnlIxCR6MjXtcNAAAQLWnHHK/0yqXG9T1Va7Xp5vPUW70hKvN79m/T5h8sV+c7Lxgfkz59iTJmnRKV+QEAAAAAAAAAACYyZ6wbAAAAAAAAAAAAABA9N59fofPv2Gx8w6vajgEt/8NmLZuZo8+dWqK5RSkRz7mtyaM7X2/QXze0RHSjLbfTrluieIMsAAAAAAAAAID1bl42WeffvjGCfWivlv9ho5bNytHnTp2kuUVmwQIH29bUpztfa9BfNzQPYx96asTzAQAAAAAAYPzq8ASMAq/yUl06dlL0AyUPpzwrUSvm5Q4ZHNnQPaDO/oAyk8xuB7O6qtO4h6uXWBuAmJXs1KUL8vSntY1D1nZ4AtrS6NG84sg/s3rAcLJEf37hVLmd9mHPeTgXzc3Vz1/YF/FxMwqS9emTiqPay4F+Ntb3DlkXCks7Wzyj9hw4nONK00Ycinc0MwuS9YnFBfrjG0M/JiXpya1t+u55FWMqsC4cln79Sp1x/S9XTFVJRoKFHQ0G+d66YqrO+PVG9fmGDgf+3Zp6XX5svvH48XQNH21nTMtU3c3moTNAvNje7NFn/lqlHc0eo3q3065fX3KMnI6Rv2DMLEjWHR+Zrk/et10Bg5+BPrapVaurOnXd0iJ97LiCYQV59/mCemxTq37zSp1qOwaMjnE6bPrD5ZWakZ8c8Xxj2YNvNeuFXWbvpz84K0czCibG+uN13QAAANFWcfnN2vz98xUODb0/IkkDrbXa/MPlylm0TCXLPqeU8rkRz+nZv00Nz96pllf/ajyvJNmdbk35+C0RzwcAAAAAAAAAABCPxuanQAEAAAAAAAAAAAAMy+zCFN14crF+9ZL5TXzC4cGbET25tU3lWYk6uzJLswtTVFmQpIJUt1ISHEp22dXnC6qjP6AOT0BVLf16o6Zbr9d0q7rNO6xev3pmqabnJQ3rWAAAAAAAAABAbAzuQ5foVy/tNz4mHJae3NKmJ7e8uw89I3twHzo/WQVpR9qH9uiNvQf2ofuH1etXzyrT9DxuNAsAAAAAABBP6rrMAqqsDj98v4vn5erxd9pUmpmgSQf+ZCSoJNP97//OiSCcKxAMa92+HqParGSnTihPH27rxi6cm2sU7CpJG+p6RxTsGqkPzsrRwkmpUR93Sk6iijPcqu/yRXTc184qG1Y47VBOmZphXLu3fSCmwa7fOqfc8jluPLlE96xrkj84dFheQ7dPb9f1xPScvN9LezqNP6e9Yl6uzjwmy+KOBpVkJOj6E4v0i38N/XOCXa39emu/+XmNl2s4gNjrHQjqN6/U6Y5XGzQQCBkdY7NJv7hwqmYXRu89zBnTMvXzi6bqi3/frYDB61VXf0A/Xb1Pv/zXfi2tSNeSinTNLUrRpMwEFaS5leSyy+Wwyx8Mqd8fUkuvX3VdA9ra6NH6fT16cXen+v1m65UGQ13/d8U0nTLF/D3GeFDV0q9vPVVtVJue6NT3l022uKPREa/rBgAAsEJK2WwVn3+j6p78lflB4bDa1j2ptnVPKjGvXFnzz1ZK2WwllVTKnVEgR2KK7AnJCnr7FOjrUKC3Q/0NVere+Ya6d74ub5PZe7n3K734q0oqnj6sYwEAAAAAAAAAAOINwa4AAAAAAAAAAADABPPFM0q1fl+v1lR3RXxsTYdXd77eYEFX73XxvFx9+qRiy+cBAAAAAAAAAETfF88s0/r9PVqzZ5j70K/VW9DVe108L0+fPqnE8nkAAAAAAAAwtvQMBI3qMhJH95YrJ5Sna9vXF0dtvJ0tHvkMQ8gWl6ZZEiL6fseWpCrJZTcKC9va1Gd9Qwe5/sQiy8ZeWJKm+q424/qK7ER9YLo1AZyV+cnG34N9HWaBoVZYXJamxWXWB6gWprt19vQsPbWt3aj+xV1dYyrY9e61TUZ1LodNXz2rzOJu3uu6E4v1+9ca1GtwzX3o7Rbj8xov13AAsbO1sU+PbGrV/eub1e0NGB9nt0m3LJ+iFfNyo97TJfPzVJqZoOv/slMtvX6jYwKhsF7e06WXh/HzWlOF6W79/rLpWlQ6dl4bo6GrP6CrH9xhHHD7nXPLlZ86/sO743XdAAAAViq96Ivq3bNeXdvWRHyst6VGDc/daUFX75W75GIVn/tpy+cBAAAAAAAAAACYKAh2BQAAAAAAAAAAACYYp92mu66o1GV/2qJN9aN74ysTp03N1C8umhbrNgAAAAAAAAAAwzS4Dz1Tl/3fO9pU3xvrdg5x2rRM/WLFMbFuAwAAAAAAADEQCIWN6jr7zYO8xqIZBSna8OXj1NrnV3OvTy29frX2+tXc6x/8Wo9PLX1+tfT6NaMgeVR6cjpsOiYvyeizq3WdA6PQ0aDK/
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment