Created
March 29, 2020 11:33
-
-
Save tomkreker/661fd95ed29ab5284ac7c7040d4ff442 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 122, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import numpy as np\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "\n", | |
| "class MagnetSimulation:\n", | |
| " \n", | |
| " def __init__(self,N,T):\n", | |
| " self.N = N\n", | |
| " self.T=T\n", | |
| " self.state=np.ones((N,N))\n", | |
| " self.time=0\n", | |
| " \n", | |
| " def initialize(self):\n", | |
| " # initialize the grid to either 1 or -1 randomly\n", | |
| " for i in range(self.N):\n", | |
| " for j in range(self.N):\n", | |
| " if np.random.random() < 0.5:\n", | |
| " self.state[i,j] = -1\n", | |
| " def observe(self):\n", | |
| " plt.pcolormesh(self.state, cmap = plt.cm.binary)\n", | |
| " plt.xticks(range(self.N))\n", | |
| " plt.yticks(range(self.N))\n", | |
| " plt.show()\n", | |
| " \n", | |
| " def update(self):\n", | |
| " i,j = np.random.randint(0,self.N,size=2)\n", | |
| " E=0\n", | |
| " for dy in [-1,1]: #row neighbors\n", | |
| " E+= self.state[i, ((j+dy)+self.N)%self.N]\n", | |
| " for dx in [-1,1]: #column neighbors\n", | |
| " E+= self.state[((i+dx)+self.N)%self.N, j]\n", | |
| " E = E * -self.state[i,j]\n", | |
| " p_flip = np.exp(2*E/self.T)\n", | |
| " if np.random.random() < p_flip:\n", | |
| " self.state[i,j] = -self.state[i,j]\n", | |
| " \n", | |
| " def get_magnetism(self):\n", | |
| " return np.sum(self.state)/(self.N**2)\n", | |
| " \n", | |
| " #if synchronus (I was happy with this until realized it's only needed for a cell)\n", | |
| " #Ematrix = np.zeros((self.N,self.N))\n", | |
| " #for dx in [-1,1]:\n", | |
| " # shift_row = np.roll(self.state, shift=dx, axis=1)\n", | |
| " # for dy in [-1,1]:\n", | |
| " # shift_col = np.roll(shift_row, shift=dy, axis=0)\n", | |
| " # Ematrix+=shift_col\n", | |
| " #Ematrix=np.multiply(-self.state,Ematrix)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 128, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "# Run simulations for different T values\n", | |
| "Ts = [1,2,3,4,5]\n", | |
| "num_steps = 100000\n", | |
| "num_sims = 100\n", | |
| "results = np.zeros((len(Ts),num_sims))\n", | |
| "for i in range(len(Ts)):\n", | |
| " for j in range(num_sims):\n", | |
| " sim = MagnetSimulation(N=10,T=Ts[i])\n", | |
| " sim.initialize()\n", | |
| " for k in range(num_steps):\n", | |
| " sim.update()\n", | |
| " results[i,j]=sim.get_magnetism()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 129, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEChJREFUeJzt3X+QXWddx/H3h4S2KmITuq2hBdKO\nsdLRoWV2asc6Ii2UAk4Tx4JB0KBhMiA6OOhIEP9QR8fWP6zj6AxGQKLyo6VYG0GsIW2HcQYKWynQ\nEkPSUjEmNltogY4Yafv1j3uWuaZ3c+/u3rubPHm/Zu7cc57znHO++9ybz549956TVBWSpJPf01a6\nAEnSeBjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGupqU5LG+x5NJvtU3/9oFbOeHk9yW5OEk\nXrShE1q8sEitS/Ig8Iaq+vgi1r0Q+HHgYeDvqypjLk8am9UrXYB0IquqfcC+JD+w0rVIw3jKRaek\nJD+X5NHjPJ670jVKC+URuk5JVfV+4P0rXYc0Th6hS1IjDHSdkpK89phvwhz78JSLTjqectEpqare\nB7xvWL8kAU4HTuvmz+itXkcnW6G0cB6hS8f3POBbwH3d/LeAfStXjjQ/v4cuSY3wCF2SGmGgS1Ij\nDHRJaoSBLkmNWNavLZ511lm1fv365dylJJ307r777oerampYv2UN9PXr1zMzM7Ocu5Skk16Sfx+l\nn6dcJKkRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpESfN/1i0fvtHV2S/D173\nyhXZryQtlEfoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtS\nI0a6l0uSB4FvAk8Aj1fVdJK1wI3AeuBB4NVV9chkypQkDbOQI/QXV9XFVTXdzW8H9lTVBmBPNy9J\nWiFLOeWyEdjZTe8ENi29HEnSYo0a6AX8c5K7k2zr2s6pqsMA3fPZg1ZMsi3JTJKZ2dnZpVcsSRpo\n1PuhX15Vh5KcDexO8m+j7qCqdgA7AKanp2sRNUqSRjDSEXpVHeqejwC3AJcCDyVZB9A9H5lUkZKk\n4YYGepLvSfK9c9PAVcC9wC5gS9dtC3DrpIqUJA03yimXc4Bbksz1f39V/VOSzwA3JdkKfAV41eTK\nlCQNMzTQq+oB4AUD2r8KXDmJoiRJC+eVopLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJA\nl6RGGOiS1IhR77YoSSe99ds/uiL7ffC6Vy7LfjxCl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w\n0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANd\nkhoxcqAnWZXks0k+0s2fn+SuJPuT3JjktMmVKUkaZiFH6G8B9vbNXw/cUFUbgEeAreMsTJK0MCMF\nepLzgFcC7+rmA1wB3Nx12QlsmkSBkqTRjHqE/ifAbwJPdvPPAh6tqse7+YPAuYNWTLItyUySmdnZ\n2SUVK0ma39BAT/JTwJGquru/eUDXGrR+Ve2oqumqmp6amlpkmZKkYVaP0Ody4JokrwDOAJ5J74j9\nzCSru6P084BDkytTkjTM0CP0qnp7VZ1XVeuBzcDtVfVa4A7g2q7bFuDWiVUpSRpqKd9Dfxvw1iQH\n6J1Tf/d4SpIkLcYop1y+o6ruBO7sph8ALh1/SZKkxfBKUUlqhIEuSY0w0CWpEQa6JDXCQJekRhjo\nktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5J\njTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktSI\noYGe5Iwkn07yuST3Jfndrv38JHcl2Z/kxiSnTb5cSdJ8RjlCPwpcUVUvAC4Grk5yGXA9cENVbQAe\nAbZOrkxJ0jBDA716Hutmn949CrgCuLlr3wlsmkiFkqSRjHQOPcmqJPcAR4DdwP3Ao1X1eNflIHDu\nPOtuSzKTZGZ2dnYcNUuSBhgp0Kvqiaq6GDgPuBR4/qBu86y7o6qmq2p6ampq8ZVKko5rQd9yqapH\ngTuBy4Azk6zuFp0HHBpvaZKkhRjlWy5TSc7spr8LeAmwF7gDuLbrtgW4dVJFSpKGWz28C+uAnUlW\n0fsFcFNVfSTJF4EPJvl94LPAuydYpyRpiKGBXlWfBy4Z0P4AvfPpkqQTgFeKSlIjDHRJaoSBLkmN\nMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgD\nXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAl\nqREGuiQ1YmigJ3lOkjuS7E1yX5K3dO1rk+xOsr97XjP5ciVJ8xnlCP1x4Ner6vnAZcCbk1wEbAf2\nVNUGYE83L0laIUMDvaoOV9W/dtPfBPYC5wIbgZ1dt53ApkkVKUkabkHn0JOsBy4B7gLOqarD0At9\n4Ox51tmWZCbJzOzs7NKqlSTNa+RAT/IM4MPAr1XVN0Zdr6p2VNV0VU1PTU0tpkZJ0ghGCvQkT6cX\n5u+rqr/rmh9Ksq5bvg44MpkSJUmjGOVbLgHeDeytqj/uW7QL2NJNbwFuHX95kqRRrR6hz+XAzwNf\nSHJP1/ZbwHXATUm2Al8BXjWZEiVJoxga6FX1L0DmWXzleMuRJC2WV4pKUiMMdElqhIEuSY0w0CWp\nEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhph\noEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6\nJDViaKAneU+SI0nu7Wtbm2R3kv3d85rJlilJGmaUI/T3Alcf07Yd2FNVG4A93bwkaQUNDfSq+gTw\ntWOaNwI7u+mdwKYx1yVJWqDFnkM/p6oOA3TPZ8/XMcm2JDNJZmZnZxe5O0nSMBP/ULSqdlTVdFVN\nT01NTXp3knTKWmygP5RkHUD3fGR8JUmSFmOxgb4L2NJNbwFuHU85kqTFGuVrix8APglcmORgkq3A\ndcBLk+wHXtrNS5JW0OphHarqNfMsunLMtUiSlsArRSWpEQa6JDXCQJekRhjoktQIA12SGmGgS1Ij\nDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJA\nl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjlhTo\nSa5Osi/JgSTbx1WUJGnhFh3oSVYBfw68HLgIeE2Si8ZVmCRpYZZyhH4pcKCqHqiq/wU+CGwcT1mS\npIVavYR1zwX+o2/+IPCjx3ZKsg3Y1s0+lmTfIvd3FvDwItddtFw/tMuK1DUC61oY61oY61qAXL/k\nup43SqelBHoGtNVTGqp2ADuWsJ/ezpKZqppe6nbGzboWxroWxroW5lSvaymnXA4Cz+mbPw84tLRy\nJEmLtZRA/wywIcn5SU4DNgO7xlOWJGmhFn3KpaoeT/IrwG3AKuA9VXXf2Cp7qiWftpkQ61oY61oY\n61qYU7quVD3ltLck6STklaKS1AgDXZIacUIFepJXJbkvyZNJ5v2Kz3y3HOg+oL0ryf4kN3Yf1o6j\nrrVJdnfb3Z1kzYA+L05yT9/jf5Js6pa9N8mX+5ZdvFx1df2e6Nv3rr72lRyvi5N8snu9P5/kZ/uW\njXW8ht2iIsnp3c9/oBuP9X3L3t6170vysqXUsYi63prki9347EnyvL5lA1/TZarr9Ulm+/b/hr5l\nW7rXfX+SLctc1w19NX0pyaN9yyYyXknek+RIknvnWZ4kf9rV/PkkL+xbNv6xqqoT5gE8H7gQuBOY\nnqfPKuB+4ALgNOBzwEXdspuAzd30O4E3jamuPwK2d9PbgeuH9F8LfA347m7+vcC1ExivkeoCHpun\nfcXGC/hBYEM3/WzgMHDmuMfreO+Xvj6/DLyzm94M3NhNX9T1Px04v9vOqmWs68V976E3zdV1vNd0\nmep6PfBnA9ZdCzzQPa/pptcsV13H9P9Vel/UmPR4/QTwQuDeeZa/AvgYvet2LgPumuRYnVBH6FW1\nt6qGXUk68JYDSQJcAdzc9dsJbBpTaRu77Y263WuBj1XVf49p//NZaF3fsdLjVVVfqqr93fQh4Agw\nNab99xvlFhX99d4MXNmNz0bgg1V1tKq+DBzotrcsdVXVHX3voU/Ru9Zj0pZyS4+XAbur6mtV9Qiw\nG7h6hep6DfCBMe17XlX1CXoHb/PZCPx19XwKODPJOiY0VidUoI9o0C0HzgWeBTxaVY8f0z4O51TV\nYYDu+ewh/Tfz1DfTH3R/ct2Q5PRlruuMJDNJPjV3GogTaLySXErvqOv+vuZxjdd875eBfbrx+Dq9\n8Rll3UnW1W8rvSO9OYNe0+Ws62e61+fmJHMXGJ4Q49WdmjofuL2veVLjNcx8dU9krJZy6f+iJPk4\n8P0DFr2jqm4dZRMD2uo47Uuua9RtdNtZB/wIve/nz3k78F/0QmsH8Dbg95axrudW1aEkFwC3J/kC\n8I0B/VZqvP4G2FJVT3bNix6vQbsY0HbszzmR99QQI287yeuAaeBFfc1PeU2r6v5B60+grn8APlBV\nR5O8kd5fN1eMuO4k65qzGbi5qp7oa5vUeA2zrO+tZQ/0qnrJEjcx3y0HHqb358zq7ihrQbciOF5d\nSR5Ksq6qDncBdOQ4m3o1cEtVfbtv24e7yaNJ/gr4jeWsqzulQVU9kORO4BLgw6zweCV5JvBR4Le7\nP0fntr3o8RpglFtUzPU5mGQ18H30/oye5O0tRtp2kpfQ+yX5oqo6Otc+z2s6joAaWldVfbVv9i+B\nuVvYHQR+8ph17xxDTSPV1Wcz8Ob+hgmO1zDz1T2RsToZT7kMvOVA9T5puIPe+WuALcAoR/yj2NVt\nb5TtPuXcXRdqc+etNwEDPxGfRF1J1sydskhyFnA58MWVHq/utbuF3vnFDx2zbJzjNcotKvrrvRa4\nvRufXcDm9L4Fcz6wAfj0EmpZUF1JLgH+Arimqo70tQ98TZexrnV9s9cAe7vp24CruvrWAFfx//9S\nnWhdXW0X0vuQ8ZN9bZMcr2F2Ab/QfdvlMuDr3QHLZMZqEp/8LvYB/DS931xHgYeA27r2ZwP/2Nfv\nFcCX6P2GfUdf+wX0/sEdAD4EnD6mup4F7AH2d89ru/Zp4F19/dYD/wk87Zj1bwe+QC+Y/hZ4xnLV\nBfxYt+/Pdc9bT4TxAl4HfBu4p+9x8STGa9D7hd4pnGu66TO6n/9ANx4X9K37jm69fcDLx/x+H1bX\nx7t/B3Pjs2vYa7pMdf0hcF+3/zuAH+pb95e6cTwA/OJy1tXN/w5w3THrTWy86B28He7eywfpfdbx\nRuCN3fLQ+4+A7u/2Pd237tjHykv/JakRJ+MpF0nSAAa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJ\nasT/AbadpoxSALAlAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x260bfaa61d0>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEGZJREFUeJzt3X+wXGddx/H3x4S2IkITeltDS0k7\nE5HOOLTMndKxM2B/AAW0CWPBIGjAMBkQHRhkJIjOqKNjyx/WcXSE8EOi8qOl2GnkhxjSdhhnoJBK\noS2xJC0VQ2KTQgt01Erbr3/sucya7s3uvbt7b/rk/ZrZ2XOe85xzvnl287lnz57dTVUhSXri+7Hl\nLkCSNBkGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEga4mJXmo7/ZYkv/um3/NArazKcmtSb6f\nZH+SdydZOc3apcUy0NWkqnrK3A34FvCLfW0fXsCmngy8FTgFeD5wCfD2yVcsjc8jDekoquqv+2a/\nneTDwEXLVY90NB6h67iU5FeSPHiU25nzrPoC4M6lrFUalUfoOi5V1UeAjyxknSSvB2aBN0ylKGlM\nBro0giQbgCuBS6vq/uWuRxrEUy46LiV5zRFXwhx5O7Ov72XA++i9sXr78lUtHZ1H6DoudVe6DL3a\nJcnFXb9XVNWXpl6YNAaP0KWj+33gacCn+47eP7PcRUmDxB+4kKQ2eIQuSY0w0CWpEQa6JDXCQJek\nRizpZYunnHJKrV27dil3KUlPeLfeeuv9VTUzrN+SBvratWvZvXv3Uu5Skp7wkvz7KP085SJJjTDQ\nJakRBrokNcJAl6RGGOiS1AgDXZIaMdJli0nuBX4APAo8UlWzSVYD1wBrgXuBV1XVA9MpU5I0zEKO\n0C+qqnOrarab3wrsqqp1wK5uXpK0TMY55bIe2N5Nbwc2jF+OJGmxRv2kaAH/nKSA91bVNuC0qjoI\nUFUHk5w6aMUkW4AtAGeeOd8PqUvS9K3d+qll2e+9V758SfYzaqBfWFUHutDemeTfRt1BF/7bAGZn\nZ/01DUmakpFOuVTVge7+EHA9cD5wX5I1AN39oWkVKUkabmigJ/mJJD85Nw28GLgD2AFs6rptAm6Y\nVpGSpOFGOeVyGnB9krn+H6mqf0ryZeDaJJuBbwGvnF6ZkqRhhgZ6Vd0DPHdA+3eAS6ZRlCRp4fyk\nqCQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBL\nUiMMdElqxKg/QbfsWv8tQEkal0foktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY\n6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1IiRAz3JiiRfSfLJbv6sJLck\n2ZvkmiQnTK9MSdIwCzlCfwuwp2/+KuDqqloHPABsnmRhkqSFGSnQk5wBvBx4fzcf4GLguq7LdmDD\nNAqUJI1m1CP0Pwd+B3ism3868GBVPdLN7wdOH7Riki1JdifZffjw4bGKlSTNb2igJ/kF4FBV3drf\nPKBrDVq/qrZV1WxVzc7MzCyyTEnSMCtH6HMhcHmSlwEnAU+ld8R+cpKV3VH6GcCB6ZUpSRpm6BF6\nVb2zqs6oqrXARuDGqnoNcBNwRddtE3DD1KqUJA01znXo7wDelmQfvXPqH5hMSZKkxRjllMuPVNXN\nwM3d9D3A+ZMvSZK0GH5SVJIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGg\nS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrok\nNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktSIoYGe5KQkX0ry\n1SR3JvnDrv2sJLck2ZvkmiQnTL9cSdJ8RjlCfxi4uKqeC5wLXJbkAuAq4OqqWgc8AGyeXpmSpGGG\nBnr1PNTNPqm7FXAxcF3Xvh3YMJUKJUkjGekcepIVSW4DDgE7gbuBB6vqka7LfuD06ZQoSRrFSIFe\nVY9W1bnAGcD5wHMGdRu0bpItSXYn2X348OHFVypJOqoFXeVSVQ8CNwMXACcnWdktOgM4MM8626pq\ntqpmZ2ZmxqlVknQUo1zlMpPk5G76x4FLgT3ATcAVXbdNwA3TKlKSNNzK4V1YA2xPsoLeH4Brq+qT\nSb4OfCzJHwNfAT4wxTolSUMMDfSq+hpw3oD2e+idT5ckHQP8pKgkNcJAl6RGGOiS1AgDXZIaYaBL\nUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1\nwkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMM\ndElqhIEuSY0w0CWpEQa6JDViaKAneWaSm5LsSXJnkrd07auT7Eyyt7tfNf1yJUnzGeUI/RHgt6vq\nOcAFwJuTnANsBXZV1TpgVzcvSVomQwO9qg5W1b920z8A9gCnA+uB7V237cCGaRUpSRpuQefQk6wF\nzgNuAU6rqoPQC33g1HnW2ZJkd5Ldhw8fHq9aSdK8Rg70JE8BPgG8taq+P+p6VbWtqmaranZmZmYx\nNUqSRjBSoCd5Er0w/3BV/UPXfF+SNd3yNcCh6ZQoSRrFKFe5BPgAsKeq/qxv0Q5gUze9Cbhh8uVJ\nkka1coQ+FwK/Ctye5Lau7XeBK4Frk2wGvgW8cjolSpJGMTTQq+pfgMyz+JLJliNJWiw/KSpJjTDQ\nJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJekRhjoktQIA12S\nGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhphoEtSIwx0SWqEgS5JjTDQJakR\nBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqxNBAT/LBJIeS3NHXtjrJziR7u/tV0y1TkjTMKEfo\nHwIuO6JtK7CrqtYBu7p5SdIyGhroVfV54LtHNK8HtnfT24ENE65LkrRAiz2HflpVHQTo7k+dr2OS\nLUl2J9l9+PDhRe5OkjTM1N8UraptVTVbVbMzMzPT3p0kHbcWG+j3JVkD0N0fmlxJkqTFWGyg7wA2\nddObgBsmU44kabFGuWzxo8AXgGcn2Z9kM3Al8KIke4EXdfOSpGW0cliHqnr1PIsumXAtkqQx+ElR\nSWqEgS5JjTDQJakRBrokNcJAl6RGGOiS1AgDXZIaYaBLUiMMdElqhIEuSY0w0CWpEQa6JDXCQJek\nRhjoktQIA12SGmGgS1IjDHRJaoSBLkmNMNAlqREGuiQ1wkCXpEYY6JLUCANdkhqxcrkLkHT8Wbv1\nU8tdQpM8QpekRhjoktQIA12SGmGgS1IjfFN0iOV88+beK1++bPuW9MTjEbokNcJAl6RGGOiS1AgD\nXZIaMVagJ7ksyV1J9iXZOqmiJEkLt+hAT7IC+CvgpcA5wKuTnDOpwiRJCzPOEfr5wL6quqeq/hf4\nGLB+MmVJkhZqnOvQTwf+o29+P/D8Izsl2QJs6WYfSnLXIvd3CnD/ItedpqnVlavGWv24G68xWdfC\nWNcC5Kqx63rWKJ3GCfQMaKvHNVRtA7aNsZ/ezpLdVTU77nYmzboWxroWxroW5niva5xTLvuBZ/bN\nnwEcGK8cSdJijRPoXwbWJTkryQnARmDHZMqSJC3Uok+5VNUjSX4T+CywAvhgVd05scoeb+zTNlNi\nXQtjXQtjXQtzXNeVqsed9pYkPQH5SVFJaoSBLkmNOKYCPckrk9yZ5LEk817iM99XDnRv0N6SZG+S\na7o3aydR1+okO7vt7kyyakCfi5Lc1nf7nyQbumUfSvLNvmXnLlVdXb9H+/a9o699Ocfr3CRf6B7v\nryX55b5lEx2vYV9RkeTE7t+/rxuPtX3L3tm135XkJePUsYi63pbk69347EryrL5lAx/TJarrdUkO\n9+3/DX3LNnWP+94km5a4rqv7avpGkgf7lk1lvJJ8MMmhJHfMszxJ/qKr+WtJnte3bPJjVVXHzA14\nDvBs4GZgdp4+K4C7gbOBE4CvAud0y64FNnbT7wHeNKG63g1s7aa3AlcN6b8a+C7w5G7+Q8AVUxiv\nkeoCHpqnfdnGC/hpYF03/QzgIHDypMfraM+Xvj6/Abynm94IXNNNn9P1PxE4q9vOiiWs66K+59Cb\n5uo62mO6RHW9DvjLAeuuBu7p7ld106uWqq4j+v8WvQs1pj1eLwCeB9wxz/KXAZ+h97mdC4BbpjlW\nx9QRelXtqaphnyQd+JUDSQJcDFzX9dsObJhQaeu77Y263SuAz1TVf01o//NZaF0/stzjVVXfqKq9\n3fQB4BAwM6H99xvlKyr6670OuKQbn/XAx6rq4ar6JrCv296S1FVVN/U9h75I77Me0zbOV3q8BNhZ\nVd+tqgeAncBly1TXq4GPTmjf86qqz9M7eJvPeuBvq+eLwMlJ1jClsTqmAn1Eg75y4HTg6cCDVfXI\nEe2TcFpVHQTo7k8d0n8jj38y/Un3kuvqJCcucV0nJdmd5Itzp4E4hsYryfn0jrru7mue1HjN93wZ\n2Kcbj+/RG59R1p1mXf020zvSmzPoMV3Kun6pe3yuSzL3AcNjYry6U1NnATf2NU9rvIaZr+6pjNWS\n/6Zoks8BPzVg0buq6oZRNjGgrY7SPnZdo26j284a4GfpXZ8/553Af9ILrW3AO4A/WsK6zqyqA0nO\nBm5Mcjvw/QH9lmu8/g7YVFWPdc2LHq9BuxjQduS/cyrPqSFG3naS1wKzwAv7mh/3mFbV3YPWn0Jd\n/wh8tKoeTvJGeq9uLh5x3WnWNWcjcF1VPdrXNq3xGmZJn1tLHuhVdemYm5jvKwfup/dyZmV3lLWg\nryI4Wl1J7kuypqoOdgF06CibehVwfVX9sG/bB7vJh5P8DfD2payrO6VBVd2T5GbgPOATLPN4JXkq\n8Cng97qXo3PbXvR4DTDKV1TM9dmfZCXwNHovo6f59RYjbTvJpfT+SL6wqh6ea5/nMZ1EQA2tq6q+\n0zf7PmDua+T2Az9/xLo3T6CmkerqsxF4c3/DFMdrmPnqnspYPRFPuQz8yoHqvdNwE73z1wCbgFGO\n+Eexo9veKNt93Lm7LtTmzltvAAa+Iz6NupKsmjtlkeQU4ELg68s9Xt1jdz2984sfP2LZJMdrlK+o\n6K/3CuDGbnx2ABvTuwrmLGAd8KUxallQXUnOA94LXF5Vh/raBz6mS1jXmr7Zy4E93fRngRd39a0C\nXsz/f6U61bq62p5N703GL/S1TXO8htkB/Fp3tcsFwPe6A5bpjNU03vld7A14Bb2/XA8D9wGf7dqf\nAXy6r9/LgG/Q+wv7rr72s+n9h9sHfBw4cUJ1PR3YBezt7ld37bPA+/v6rQW+DfzYEevfCNxOL5j+\nHnjKUtUF/Fy3769295uPhfECXgv8ELit73buNMZr0POF3imcy7vpk7p//75uPM7uW/dd3Xp3AS+d\n8PN9WF2f6/4fzI3PjmGP6RLV9afAnd3+bwJ+pm/dX+/GcR/w+qWsq5v/A+DKI9ab2njRO3g72D2X\n99N7r+ONwBu75aH3Q0B3d/ue7Vt34mPlR/8lqRFPxFMukqQBDHRJaoSBLkmNMNAlqREGuiQ1wkCX\npEYY6JLUiP8DZ7bBRv5gt/wAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x260bf7bdc50>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAEHlJREFUeJzt3XuMpXV9x/H3R7bUIqDYHbwA46gF\nUkqMtBOrtdYLYrZiwCamhUKDLXUTTdVe1K6hiU0bE7y3iba6UQq1gFaKSkQtiBKqBXS5yFVEcQuL\n1F1KtaVekPrtH/OsnYyzc27PnJn97fuVnMw5z/nN+X1yduazzzznuaSqkCTt/R6x1gEkSf2w0CWp\nERa6JDXCQpekRljoktQIC12SGmGhS1IjLHQ1KcmDi24/SvK9RY9PG+F1TklyR5LvJNmZ5LwkB69m\ndmlc8cAitS7JduD3q+ozY3zvEcD3qur+JAcC7wP+o6pe03NMaWIb1jqAtJ5V1T1LFv0v8HNrkUUa\nxELXPinJbwN/s8KQp1XV3d3YXwUuBQ4Gvgv8xuonlEZnoWufVFUXABcMOfbzwKOTHAa8Ati+itGk\nsfmhqDSkqroX+DTwobXOIi3HQtc+KclpS/aEWXqb3cO3bgCeOs2s0rAsdO2Tqur8qjpwhdvu7een\nJZnNgicBbwauWNv00vIsdGllxwD/CjwIfAG4g4Xt6NK6437oktQI19AlqREWuiQ1wkKXpEZY6JLU\niKkeKbpx48aam5ub5pSStNe77rrr7q+qmUHjplroc3NzbNu2bZpTStJeL8m/DTPOTS6S1AgLXZIa\nYaFLUiMsdElqhIUuSY2w0CWpEQMLPck53dXOb1my/NXd1dBvTfLW1YsoSRrGMGvo5wKbFi9I8nzg\nZBauu/gLwNv7jyZJGsXAQq+qq4AHlix+JXB2Vf2gG7NzFbJJkkYw7pGiRwHPSfJm4PvA66rqS8sN\nTLIZ2AwwO7unq3pJ+665LZeuybzbzz5xTebV6hn3Q9ENwCHAM4HXA/+YJMsNrKqtVTVfVfMzMwNP\nRSBJGtO4hb4DuLgWfBH4EbCxv1iSpFGNW+gfA14AkOQoYH/g/r5CSZJGN3AbepILgecBG5PsAN4E\nnAOc0+3K+BBwRnlxUklaUwMLvapO3cNTp/ecRZI0AY8UlaRGWOiS1AgLXZIaYaFLUiMsdElqhIUu\nSY2w0CWpEeOenEtTsFYnbdoXeaIqtcA1dElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGh\nS1IjBhZ6knOS7OyuTrT0udclqSReT1SS1tgwa+jnApuWLkxyBHACcHfPmSRJYxhY6FV1FfDAMk+9\nC3gD4LVEJWkdGGsbepKTgHur6ss955EkjWnkk3MlOQA4C3jRkOM3A5sBZmdnR51OkjSkcdbQnwo8\nGfhyku3A4cD1SR6/3OCq2lpV81U1PzMzM35SSdKKRl5Dr6qbgUN3P+5Kfb6q7u8xlyRpRMPstngh\ncDVwdJIdSc5c/ViSpFENXEOvqlMHPD/XWxpJ0tg8UlSSGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1\nwkKXpEZY6JLUiJEP/ZdaNLfl0rWOIE3MNXRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhph\noUtSI4a5BN05SXYmuWXRsrcl+UqSm5J8NMljVjemJGmQYdbQzwU2LVl2OXBsVT0N+Crwxp5zSZJG\nNLDQq+oq4IElyy6rqoe7h9cAh69CNknSCPrYhv57wKf29GSSzUm2Jdm2a9euHqaTJC1nokJPchbw\nMHD+nsZU1daqmq+q+ZmZmUmmkyStYOyzLSY5A3gJcHxVVX+RJEnjGKvQk2wC/hR4blV9t99IkqRx\nDLPb4oXA1cDRSXYkORN4N3AQcHmSG5O8d5VzSpIGGLiGXlWnLrP4A6uQRZI0AY8UlaRGWOiS1AgL\nXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAl\nqREWuiQ1wkKXpEYMcwm6c5LsTHLLomWPTXJ5kju7r4esbkxJ0iDDrKGfC2xasmwLcEVVHQlc0T2W\nJK2hgYVeVVcBDyxZfDJwXnf/POClPeeSJI1o3G3oj6uq+wC6r4fuaWCSzUm2Jdm2a9euMaeTJA2y\n6h+KVtXWqpqvqvmZmZnVnk6S9lnjFvq3kjwBoPu6s79IkqRxjFvolwBndPfPAD7eTxxJ0riG2W3x\nQuBq4OgkO5KcCZwNnJDkTuCE7rEkaQ1tGDSgqk7dw1PH95xFkjQBjxSVpEZY6JLUCAtdkhphoUtS\nIyx0SWqEhS5JjbDQJakRFrokNcJCl6RGWOiS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDXC\nQpekRkxU6En+KMmtSW5JcmGSR/YVTJI0mrELPclhwGuA+ao6FtgPOKWvYJKk0Uy6yWUD8DNJNgAH\nAN+cPJIkaRwDLxK9J1V1b5K3A3cD3wMuq6rLlo5LshnYDDA7OzvudJJ6Nrfl0jWbe/vZJ67Z3C2b\nZJPLIcDJwJOBJwKPSnL60nFVtbWq5qtqfmZmZvykkqQVTbLJ5YXAN6pqV1X9ELgY+JV+YkmSRjVJ\nod8NPDPJAUkCHA/c3k8sSdKoxi70qroWuAi4Hri5e62tPeWSJI1o7A9FAarqTcCbesoiSZqAR4pK\nUiMsdElqhIUuSY2w0CWpERa6JDXCQpekRljoktSIifZD31es5UmMJGlYrqFLUiMsdElqhIUuSY2w\n0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjJir0JI9JclGSryS5Pcmz+gomSRrNpIf+/zXw6ap6\nWZL9gQN6yCRJGsPYhZ7kYODXgJcDVNVDwEP9xJIkjWqSTS5PAXYBf5fkhiTvT/KopYOSbE6yLcm2\nXbt2TTCdJGklkxT6BuAXgb+tquOA/wG2LB1UVVurar6q5mdmZiaYTpK0kkkKfQewo6qu7R5fxELB\nS5LWwNiFXlX/DtyT5Ohu0fHAbb2kkiSNbNK9XF4NnN/t4XIX8LuTR5IkjWOiQq+qG4H5nrJIkibg\nkaKS1AgLXZIaYaFLUiMsdElqhIUuSY2w0CWpERa6JDVi0gOLJGmvMbfl0jWbe/vZJ676HK6hS1Ij\nLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyYu9CT7JbkhySf6CCRJGk8fa+iv\nBW7v4XUkSROYqNCTHA6cCLy/nziSpHFNenKuvwLeABy0pwFJNgObAWZnZ8eeaC1PqiNJe4Ox19CT\nvATYWVXXrTSuqrZW1XxVzc/MzIw7nSRpgEk2uTwbOCnJduBDwAuS/EMvqSRJIxu70KvqjVV1eFXN\nAacAn62q03tLJkkaifuhS1IjerliUVVdCVzZx2tJksbjGrokNcJCl6RGWOiS1AgLXZIaYaFLUiMs\ndElqhIUuSY2w0CWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJaoSFLkmNsNAlqREWuiQ1YuxC\nT3JEks8luT3JrUle22cwSdJoJrkE3cPAn1TV9UkOAq5LcnlV3dZTNknSCMZeQ6+q+6rq+u7+fwO3\nA4f1FUySNJpeLhKdZA44Drh2mec2A5sBZmdn+5hO0l5ubsulax2hSRN/KJrkQOCfgD+sqv9a+nxV\nba2q+aqan5mZmXQ6SdIeTFToSX6KhTI/v6ou7ieSJGkck+zlEuADwO1V9c7+IkmSxjHJGvqzgd8B\nXpDkxu724p5ySZJGNPaHolX1eSA9ZpEkTcAjRSWpERa6JDXCQpekRljoktQIC12SGmGhS1IjLHRJ\naoSFLkmNsNAlqREWuiQ1wkKXpEZY6JLUCAtdkhphoUtSIyx0SWqEhS5JjbDQJakRk14kelOSO5J8\nLcmWvkJJkkY3yUWi9wPeA/w6cAxwapJj+gomSRrNJGvozwC+VlV3VdVDwIeAk/uJJUka1dgXiQYO\nA+5Z9HgH8MtLByXZDGzuHj6Y5I4J5lxtG4H71zrEAGbshxn7sTdkhHWQM28ZOGSljE8aZo5JCj3L\nLKufWFC1Fdg6wTxTk2RbVc2vdY6VmLEfZuzH3pAR9o6cfWScZJPLDuCIRY8PB745SRhJ0vgmKfQv\nAUcmeXKS/YFTgEv6iSVJGtXYm1yq6uEkfwD8M7AfcE5V3dpbsrWxN2waMmM/zNiPvSEj7B05J86Y\nqp/Y7C1J2gt5pKgkNcJCl6RG7NOFnuSxSS5Pcmf39ZA9jJtNclmS25PclmRuvWXsxh6c5N4k755W\nvmEzJnl6kquT3JrkpiS/NaVsK56eIslPJ/lw9/y10/y3HSHjH3c/dzcluSLJUPskTzPjonEvS1JJ\npr6L4DAZk/xm917emuSCaWfsMgz6955N8rkkN3T/5i8e+sWrap+9AW8FtnT3twBv2cO4K4ETuvsH\nAgest4zd838NXAC8e729j8BRwJHd/ScC9wGPWeVc+wFfB54C7A98GThmyZhXAe/t7p8CfHjK790w\nGZ+/+2cOeOV6zNiNOwi4CrgGmF9vGYEjgRuAQ7rHh04z4wg5twKv7O4fA2wf9vX36TV0Fk5VcF53\n/zzgpUsHdOen2VBVlwNU1YNV9d3pRRycESDJLwGPAy6bUq7FBmasqq9W1Z3d/W8CO4GZVc41zOkp\nFme/CDg+yXIHza1Zxqr63KKfuWtYOOZjmoY9zcdfsvCf+/enGa4zTMZXAO+pqv8EqKqdU84Iw+Us\n4ODu/qMZ4fiefb3QH1dV9wF0Xw9dZsxRwLeTXNz9CfS27sRk6yZjkkcA7wBeP8Vciw3zPv5Ykmew\nsHby9VXOtdzpKQ7b05iqehj4DvCzq5xr2fk7y2Vc7EzgU6ua6CcNzJjkOOCIqvrENIMtMsz7eBRw\nVJIvJLkmyaappft/w+T8c+D0JDuATwKvHvbFJzn0f6+Q5DPA45d56qwhX2ID8BzgOOBu4MPAy4EP\n9JEPesn4KuCTVXXPaq1c9pBx9+s8AfggcEZV/aiPbCtNt8yypfvpDnUKi1U09PxJTgfmgeeuaqJl\npl5m2Y8zdisU72Lh92KtDPM+bmBhs8vzWPgr51+SHFtV317lbIsNk/NU4NyqekeSZwEf7HIO/H1p\nvtCr6oV7ei7Jt5I8oaru64pmuT/BdgA3VNVd3fd8DHgmPRZ6DxmfBTwnyatY2Ma/f5IHq6q3c9T3\nkJEkBwOXAn9WVdf0lW0Fw5yeYveYHUk2sPAn7gNTyLZ0/t2WPYVGkhey8J/nc6vqB1PKttugjAcB\nxwJXdisUjwcuSXJSVW1bJxl3j7mmqn4IfKM7UeCRLBz1Pi3D5DwT2ARQVVcneSQLJ+4auIloX9/k\ncglwRnf/DODjy4z5EnBIkt3be18A3DaFbLsNzFhVp1XVbFXNAa8D/r7PMh/CwIzd6SE+2mX7yJRy\nDXN6isXZXwZ8trpPo9ZLxm5zxvuAk9Zou++KGavqO1W1sarmup/Ba7qs0yrzgRk7H2PhA2aSbGRh\nE8xdU8wIw+W8GzgeIMnPA48Edg316tP+lHc93VjYVnoFcGf39bHd8nng/YvGnQDcBNwMnAvsv94y\nLhr/cqa/l8vAjMDpwA+BGxfdnj6FbC8GvsrC9vqzumV/wULh0P2yfAT4GvBF4Clr8HM4KONngG8t\net8uWW8Zl4y9kinv5TLk+xjgnSyskN0MnDLtjEPmPAb4Agt7wNwIvGjY1/bQf0lqxL6+yUWSmmGh\nS1IjLHRJaoSFLkmNsNAlqREWuiQ1wkKXpEb8H9soR/pSQAGRAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x260bf9d19e8>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEICAYAAABPgw/pAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADTtJREFUeJzt3X+M5PVdx/Hni57YRKCCLPSknOsP\nNEWjYDdYQ7BVWkNLUjCpUaR6TTBn0jZi/JWLNamxiUGbin9UG08hXA1UbC1CpCpwbW1MCuUQQqGk\nPSRne+UKR7C1pP6ivP1j55rNsXszOzM7s/u+5yOZ7Mzsd3fen9ztc7/3vfnOpKqQJG19J817AEnS\ndBh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdDVUpLnVlxeSPJfK25fPeb3/FiSSrJt2vNK0+Bf\nTLVUVaccvZ7kIPDLVXXPuN9v8EvAnxdtau6hS0MkeRnwLuC35z2LdDwGXSekJL+Q5CvHuexYsfkf\nAO8HvjyncaWR+E9InZCq6hbglmHbJVkCLgauBV6x0XNJk3APXVpDkpOAPwOurarn5z2PNIxB1wkp\nydXHPBPm2MsO4DRgCbg1yZeB+wdffijJJXMbXlqDh1x0Qqqqm4Gbj7dNkgDfueKuc4FPA68Cjmzc\ndNJ4DLq0hlp+s4Bv/kdokpcOrj7lIRhtRvENLiSpB4+hS1ITBl2SmjDoktSEQZekJmb6LJczzzyz\nFhcXZ/mQkrTlPfDAA89U1cKw7WYa9MXFRfbv3z/Lh5SkLS/Jv4+ynYdcJKkJgy5JTRh0SWrCoEtS\nEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQnf4EICFnffObfHPnjd5XN7bPXiHrokNWHQJakJgy5JTRh0\nSWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2Smhga9CTnJvl4kseS\nPJrk2sH9ZyS5O8mBwcfTN35cSdJaRtlDfx74jap6JfBq4O1Jzgd2A/uq6jxg3+C2JGlOhga9qg5X\n1b8Orn8NeAw4B7gC2DvYbC9w5UYNKUkabl3H0JMsAhcC9wFnV9VhWI4+cNa0h5MkjW7kt6BLcgrw\nt8CvVdV/Jhn163YBuwB27NgxzoySNoBvu9fPSHvoSb6F5ZjfXFUfGdz9VJLtg89vB55e7Wurak9V\nLVXV0sLCwjRmliStYpRnuQS4AXisqv54xafuAHYOru8Ebp/+eJKkUY1yyOVi4BeBzyR5aHDf7wDX\nAX+T5BrgC8DPbsyIkqRRDA16Vf0LsNYB80unO44kaVyeKSpJTRh0SWrCoEtSEwZdkpow6JLUhEGX\npCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBL\nUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAl\nqYlt8x5AOtEt7r5z3iOoCffQJakJgy5JTRh0SWrCoEtSEwZdkpoYGvQkNyZ5OskjK+77vSRfSvLQ\n4PLGjR1TkjTMKHvoNwGXrXL/9VV1weDy0emOJUlar6FBr6pPAs/OYBZJ0gQmOYb+jiQPDw7JnD61\niSRJYxk36O8Hvhe4ADgMvHetDZPsSrI/yf4jR46M+XCSpGHGCnpVPVVV36iqF4C/AC46zrZ7qmqp\nqpYWFhbGnVOSNMRYQU+yfcXNnwEeWWtbSdJsDH1xriQfBF4LnJnkEPAu4LVJLgAKOAj8ygbOKEka\nwdCgV9VVq9x9wwbMIkmagGeKSlITBl2SmjDoktSEQZekJnwLOr3IPN8S7eB1l8/tsaWtzj10SWrC\noEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh\n0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow\n6JLUhEGXpCYMuiQ1YdAlqQmDLklNGHRJasKgS1ITQ4Oe5MYkTyd5ZMV9ZyS5O8mBwcfTN3ZMSdIw\no+yh3wRcdsx9u4F9VXUesG9wW5I0R0ODXlWfBJ495u4rgL2D63uBK6c8lyRpnbaN+XVnV9VhgKo6\nnOSstTZMsgvYBbBjx44xH04nisXdd857BGnL2vD/FK2qPVW1VFVLCwsLG/1wknTCGjfoTyXZDjD4\n+PT0RpIkjWPcoN8B7Bxc3wncPp1xJEnjGuVpix8EPgX8QJJDSa4BrgNen+QA8PrBbUnSHA39T9Gq\numqNT1065VkkSRPwTFFJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpCYMuSU0YdElqwqBLUhMG\nXZKaMOiS1IRBl6QmDLokNWHQJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1YdAlqQmD\nLklNGHRJasKgS1ITBl2SmjDoktSEQZekJgy6JDVh0CWpiW3zHkBrW9x957xHkDbEvP5uH7zu8rk8\n7qy4hy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYmetpikoPA14BvAM9X1dI0hpIkrd80nof+k1X1\nzBS+jyRpAh5ykaQmJg16AXcleSDJrtU2SLIryf4k+48cOTLhw0mS1jJp0C+uqh8F3gC8PclPHLtB\nVe2pqqWqWlpYWJjw4SRJa5ko6FX15ODj08BtwEXTGEqStH5jBz3JtyU59eh14KeBR6Y1mCRpfSZ5\nlsvZwG1Jjn6fW6rqH6cylSRp3cYOelU9AfzIFGeRJE3Apy1KUhMGXZKaMOiS1IRBl6QmDLokNWHQ\nJakJgy5JTRh0SWrCoEtSEwZdkpow6JLUhEGXpCYMuiQ1MY03iZ6Jxd13zu2xD153+dweW5JG5R66\nJDVh0CWpCYMuSU0YdElqwqBLUhMGXZKaMOiS1IRBl6QmtsyJRZI0qe4nKLqHLklNGHRJasKgS1IT\nBl2SmjDoktSEQZekJgy6JDVh0CWpCU8sGsE8T0aQpFG5hy5JTRh0SWrCoEtSEwZdkpow6JLUhEGX\npCYmCnqSy5J8LsnjSXZPayhJ0vqNHfQkLwH+FHgDcD5wVZLzpzWYJGl9JtlDvwh4vKqeqKr/Bf4a\nuGI6Y0mS1muSM0XPAb644vYh4MeO3SjJLmDX4OZzST435uOdCTwz5tduBZ3X59q2rs7rm+na8ocT\nffl3jbLRJEHPKvfVi+6o2gPsmeBxlh8s2V9VS5N+n82q8/pc29bVeX0d1zbJIZdDwLkrbr8CeHKy\ncSRJ45ok6PcD5yX57iQnAz8P3DGdsSRJ6zX2IZeqej7JO4B/Al4C3FhVj05tsheb+LDNJtd5fa5t\n6+q8vnZrS9WLDntLkrYgzxSVpCYMuiQ1sWmDnuSMJHcnOTD4ePoa2+1IcleSx5J8NsnibCcdz6jr\nG2x7WpIvJXnfLGcc1yhrS3JBkk8leTTJw0l+bh6zjmrYy1wk+dYktw4+f99W+XsII63t1wc/Ww8n\n2ZdkpOdEbxajvkRJkjcnqSRb9qmMmzbowG5gX1WdB+wb3F7NB4D3VNUrWT579ekZzTepUdcH8G7g\nn2cy1XSMsravA79UVT8IXAb8SZJvn+GMIxvxZS6uAf6jqr4PuB6Y7DSSGRlxbQ8CS1X1w8CHgT+a\n7ZTjG/UlSpKcCvwqcN9sJ5yuzRz0K4C9g+t7gSuP3WDwB7Otqu4GqKrnqurrsxtxIkPXB5DkVcDZ\nwF0zmmsahq6tqj5fVQcG159k+RfxwswmXJ9RXuZi5Zo/DFyaZLWT7zaboWurqo+v+Lm6l+VzTraK\nUV+i5N0s/6L671kON22bOehnV9VhgMHHs1bZ5vuBryT5SJIHk7xn8Bt5Kxi6viQnAe8FfmvGs01q\nlD+7b0pyEXAy8G8zmG0cq73MxTlrbVNVzwNfBb5jJtNNZpS1rXQN8A8bOtF0DV1fkguBc6vq72c5\n2EaY5NT/iSW5B3j5Kp9654jfYhtwCXAh8AXgVuCtwA3TmG9SU1jf24CPVtUXN9vO3hTWdvT7bAf+\nCthZVS9MY7YNMMrLXIz0Uhib0MhzJ3kLsAS8ZkMnmq7jrm+w03Q9y93Y8uYa9Kp63VqfS/JUku1V\ndXjwQ7/asfFDwINV9cTga/4OeDWbJOhTWN+PA5ckeRtwCnBykueqau6vPT+FtZHkNOBO4Her6t4N\nGnUaRnmZi6PbHEqyDXgZ8OxsxpvISC/hkeR1LP+yfk1V/c+MZpuGYes7Ffgh4BODnaaXA3ckeVNV\n7Z/ZlFOymQ+53AHsHFzfCdy+yjb3A6cnOXrs9aeAz85gtmkYur6qurqqdlTVIvCbwAc2Q8xHMHRt\ng5eLuI3lNX1ohrONY5SXuVi55jcDH6utcdbe0LUNDkn8OfCmqtoqTzo46rjrq6qvVtWZVbU4+Dm7\nl+V1brmYA1BVm/LC8vHHfcCBwcczBvcvAX+5YrvXAw8DnwFuAk6e9+zTXN+K7d8KvG/ec09rbcBb\ngP8DHlpxuWDesx9nTW8EPs/ycf53Du77fZZ/+AFeCnwIeBz4NPA98555imu7B3hqxZ/THfOeeZrr\nO2bbT7D8jJ65zz3OxVP/JamJzXzIRZK0DgZdkpow6JLUhEGXpCYMuiQ1YdAlqQmDLklN/D+qpMZS\n/sSaEgAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x260bf722128>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAE5VJREFUeJzt3X+QZWV95/H3JyhmIxghtMiPGSbZ\nEHbREnR7h1isBoMgoAF3i9pATDLuYnVUrI217tbOrknYwqpd3C1jJcGSzMqUmFKkTESnAiIjawqp\nArWhhl9BHWTHZZwpZhAFie66o9/9o89Urs3t7jv3R/eF5/2qutXnPOc55/l2T09/7jn3/EhVIUlq\n18+sdQGSpLVlEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQRqWpKne14/SfLDnvm3HMJ23prk\nx4u2d9YES5fG5nlrXYC0lqrqiIPTSXYBb6uqLwy5uTur6p+NpTBpFblHIEmNMwikZST5rSTfW+a1\nvqf7K5M8nuQbSf4wiXvcelbwF1VaRlV9AvjEAF1vB14OfAt4GXADcAD4r5OrThoP9wikMaiqR6rq\nf1XVT6rqfuBK4OK1rksahEEgLSPJWxadCbT4tX6JVQvIatYqDcsgkJZRVR+vqiOWef1vgCTnJzm2\nm/5HwB8Cn13L2qVBGQTSeJwN3Jfk74CbgU8D/2VtS5IGEx9MI0ltc49AkhpnEEhS4wwCSWqcQSBJ\njZvKK4uPOeaY2rBhw1qXIUnPGnfffffjVTUzzLpTGQQbNmxgfn5+rcuQpGeNJN8adl0PDUlS4wwC\nSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuOm8spiaVpt2HzTmoy766o3rsm4aoN7\nBJLUOINAkhpnEEhS4wwCSWqcQSBJjVsxCJKsS/LFJA8leTDJ73ftRyfZnmRn9/WoJdbf1PXZmWTT\nuL8BSdJoBtkjOAC8p6r+MfCrwOVJTgU2A7dV1cnAbd38T0lyNHAFcAawEbhiqcCQJK2NFYOgqvZW\n1T3d9PeBh4ATgIuA67pu1wFv7rP6G4DtVfVEVX0X2A6cN47CJUnjcUifESTZALwS+DJwbFXthYWw\nAF7SZ5UTgEd75nd3bZKkKTFwECQ5Avgr4N1V9dSgq/VpqyW2P5dkPsn8/v37By1LkjSigYIgyfNZ\nCIGPV9Wnu+bHkhzXLT8O2Ndn1d3Aup75E4E9/caoqi1VNVtVszMzM4PWL0ka0SBnDQW4Fnioqv64\nZ9E24OBZQJuAz/ZZ/fPAuUmO6j4kPrdrkyRNiUH2CM4Efgf49SQ7utcFwFXAOUl2Aud08ySZTfIR\ngKp6Angf8NXudWXXJkmaEivefbSq7qD/sX6As/v0nwfe1jO/Fdg6bIGSpMnyymJJapxBIEmNMwgk\nqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIa\nZxBIUuNWfDBNkq3Am4B9VfXyru0G4JSuy4uB71XV6X3W3QV8H/gxcKCqZsdUtyRpTFYMAuCjwNXA\nxw42VNVvHpxO8gHgyWXWf11VPT5sgZKkyRrkUZW3J9nQb1n3YPt/Cfz6eMuSJK2WUT8jeA3wWFXt\nXGJ5AbcmuTvJ3HIbSjKXZD7J/P79+0csS5I0qFGD4FLg+mWWn1lVrwLOBy5P8tqlOlbVlqqararZ\nmZmZEcuSJA1q6CBI8jzgXwA3LNWnqvZ0X/cBNwIbhx1PkjQZo+wRvB74WlXt7rcwyQuTHHlwGjgX\neGCE8SRJE7BiECS5HrgTOCXJ7iSXdYsuYdFhoSTHJ7m5mz0WuCPJvcBXgJuq6pbxlS5JGodBzhq6\ndIn2t/Zp2wNc0E0/Apw2Yn2SpAnzymJJapxBIEmNMwgkqXEGgSQ1ziCQpMYZBJLUOINAkhpnEEhS\n4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMGeULZ1iT7kjzQ0/afk3w7yY7u\ndcES656X5OtJHk6yeZyFS5LGY5A9go8C5/Vp/2BVnd69bl68MMlhwIeA84FTgUuTnDpKsZKk8Vsx\nCKrqduCJIba9EXi4qh6pqh8BnwQuGmI7kqQJWvGZxct4V5LfBeaB91TVdxctPwF4tGd+N3DGUhtL\nMgfMAaxfv36EsqTnng2bb1qzsXdd9cY1G1urY9gPiz8M/EPgdGAv8IE+fdKnrZbaYFVtqarZqpqd\nmZkZsixJ0qEaKgiq6rGq+nFV/QT4HywcBlpsN7CuZ/5EYM8w40mSJmeoIEhyXM/sPwce6NPtq8DJ\nSX4xyeHAJcC2YcaTJE3Oip8RJLkeOAs4Jslu4ArgrCSns3CoZxfwe13f44GPVNUFVXUgybuAzwOH\nAVur6sGJfBeSpKGtGARVdWmf5muX6LsHuKBn/mbgGaeWSpKmh1cWS1LjDAJJapxBIEmNMwgkqXEG\ngSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4gkKTGjfLMYmnNrOUzfFuz\nVj9rn5W8elbcI0iyNcm+JA/0tP33JF9Lcl+SG5O8eIl1dyW5P8mOJPPjLFySNB6DHBr6KHDeorbt\nwMur6hXAN4D/uMz6r6uq06tqdrgSJUmTtGIQVNXtwBOL2m6tqgPd7F0sPJhekvQsNI4Pi/818Lkl\nlhVwa5K7k8yNYSxJ0piN9GFxkvcCB4CPL9HlzKrak+QlwPYkX+v2MPptaw6YA1i/fv0oZUmSDsHQ\newRJNgFvAt5SVdWvT/cwe6pqH3AjsHGp7VXVlqqararZmZmZYcuSJB2ioYIgyXnAfwAurKofLNHn\nhUmOPDgNnAs80K+vJGntDHL66PXAncApSXYnuQy4GjiShcM9O5Jc0/U9PsnN3arHAnckuRf4CnBT\nVd0yke9CkjS0FT8jqKpL+zRfu0TfPcAF3fQjwGkjVSdJmjhvMSFJjTMIJKlxBoEkNc4gkKTGGQSS\n1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJatxAQZBk\na5J9SR7oaTs6yfYkO7uvRy2x7qauz87uOceSpCky6B7BR4HzFrVtBm6rqpOB27r5n5LkaOAK4AwW\nHlx/xVKBIUlaGwMFQVXdDjyxqPki4Lpu+jrgzX1WfQOwvaqeqKrvAtt5ZqBIktbQis8sXsaxVbUX\noKr2JnlJnz4nAI/2zO/u2p4hyRwwB7B+/foRymrPhs03rXUJkp7FJv1hcfq0Vb+OVbWlqmaranZm\nZmbCZUmSDholCB5LchxA93Vfnz67gXU98ycCe0YYU5I0ZqMEwTbg4FlAm4DP9unzeeDcJEd1HxKf\n27VJkqbEoKePXg/cCZySZHeSy4CrgHOS7ATO6eZJMpvkIwBV9QTwPuCr3evKrk2SNCUG+rC4qi5d\nYtHZffrOA2/rmd8KbB2qOknSxHllsSQ1ziCQpMYZBJLUOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlx\nBoEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklq3CjPLJak56S1eg74rqveuCbjukcgSY0bOgiSnJJk\nR8/rqSTvXtTnrCRP9vT5o9FLliSN09CHhqrq68DpAEkOA74N3Nin65eq6k3DjiNJmqxxHRo6G/hm\nVX1rTNuTJK2ScQXBJcD1Syx7dZJ7k3wuycuW2kCSuSTzSeb3798/prIkSSsZOQiSHA5cCHyqz+J7\ngJOq6jTgz4DPLLWdqtpSVbNVNTszMzNqWZKkAY1jj+B84J6qemzxgqp6qqqe7qZvBp6f5JgxjClJ\nGpNxBMGlLHFYKMlLk6Sb3tiN950xjClJGpORLihL8nPAOcDv9bS9HaCqrgEuBt6R5ADwQ+CSqqpR\nxpQkjddIQVBVPwB+YVHbNT3TVwNXjzKGJGmyvLJYkhpnEEhS4wwCSWqcQSBJjTMIJKlxBoEkNc4g\nkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxo3jmcW7ktyfZEeS+T7Lk+RP\nkzyc5L4krxp1TEnS+Iz0YJoer6uqx5dYdj5wcvc6A/hw91WSNAVW49DQRcDHasFdwIuTHLcK40qS\nBjCOPYICbk1SwJ9X1ZZFy08AHu2Z39217e3tlGQOmANYv379GMqS9Gy2YfNNa11CM8axR3BmVb2K\nhUNAlyd57aLl6bPOMx5gX1Vbqmq2qmZnZmbGUJYkaRAjB0FV7em+7gNuBDYu6rIbWNczfyKwZ9Rx\nJUnjMVIQJHlhkiMPTgPnAg8s6rYN+N3u7KFfBZ6sqr1IkqbCqJ8RHAvcmOTgtj5RVbckeTtAVV0D\n3AxcADwM/AD4VyOOKUkao5GCoKoeAU7r035Nz3QBl48yjiRpcryyWJIaZxBIUuMMAklqnEEgSY0z\nCCSpcQaBJDXOIJCkxhkEktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXEGgSQ1bhzPLBY+X1XSs5d7\nBJLUuKGDIMm6JF9M8lCSB5P8fp8+ZyV5MsmO7vVHo5UrSRq3UQ4NHQDeU1X3dM8tvjvJ9qr620X9\nvlRVbxphHEnSBA29R1BVe6vqnm76+8BDwAnjKkyStDrG8hlBkg3AK4Ev91n86iT3Jvlckpcts425\nJPNJ5vfv3z+OsiRJAxg5CJIcAfwV8O6qemrR4nuAk6rqNODPgM8stZ2q2lJVs1U1OzMzM2pZkqQB\njRQESZ7PQgh8vKo+vXh5VT1VVU930zcDz09yzChjSpLGa5SzhgJcCzxUVX+8RJ+Xdv1IsrEb7zvD\njilJGr9Rzho6E/gd4P4kO7q2/wSsB6iqa4CLgXckOQD8ELikqmqEMSVJYzZ0EFTVHUBW6HM1cPWw\nYwzDK3wl6dB4ZbEkNc4gkKTGGQSS1DiDQJIaZxBIUuMMAklqnEEgSY0zCCSpcQaBJDXOIJCkxhkE\nktQ4g0CSGmcQSFLjDAJJapxBIEmNMwgkqXGjPrP4vCRfT/Jwks19lr8gyQ3d8i8n2TDKeJKk8Rvl\nmcWHAR8CzgdOBS5NcuqibpcB362qXwY+CLx/2PEkSZMxyh7BRuDhqnqkqn4EfBK4aFGfi4Druum/\nBM4++DB7SdJ0GOXh9ScAj/bM7wbOWKpPVR1I8iTwC8DjizeWZA6Y62afTvL1EWpbzjH9xp8S1jYc\naxuOtQ1nYrVltGMmJyWZq6oth7riKEHQ7519DdFnoXGh+EP+Bg5Vkvmqmp30OMOwtuFY23CsbTjT\nXhtD/B0d5dDQbmBdz/yJwJ6l+iR5HvDzwBMjjClJGrNRguCrwMlJfjHJ4cAlwLZFfbYBm7rpi4H/\nWVV99wgkSWtj6END3TH/dwGfBw4DtlbVg0muBOarahtwLfAXSR5mYU/gknEUPaKJH34agbUNx9qG\nY23Dec7VFt+gS1LbvLJYkhpnEEhS457zQZDk6CTbk+zsvh61TN8XJfl2kqunpbYkJyW5O8mOJA8m\nefsU1XZ6kju7uu5L8pvTUlvX75Yk30vy1xOuZ2pvtTJAba9Nck+SA0kuXq26Bqzt3yb52+5367Yk\nJ01RbW9Pcn/3//KOPndVWNP6evpdnKSSLH+6a1U9p1/AfwM2d9Obgfcv0/dPgE8AV09LbcDhwAu6\n6SOAXcDxU1LbrwAnd9PHA3uBF09Dbd2ys4HfAP56grUcBnwT+KXu3+pe4NRFfd4JXNNNXwLcsEq/\nX4PUtgF4BfAx4OLVqOsQansd8HPd9Dum7Of2op7pC4Fbpuln1/U7ErgduAuYXW6bz/k9An76NhfX\nAW/u1ynJPwGOBW5dpbpggNqq6kdV9X+72Rewentxg9T2jara2U3vAfYBM9NQW1fTbcD3J1zLNN9q\nZcXaqmpXVd0H/GQV6jnU2r5YVT/oZu9i4VqlaantqZ7ZF7LEhbJrVV/nfSy8afo/K22whSA4tqr2\nAnRfX7K4Q5KfAT4A/Ptpqw0gybok97Fwu473d390p6K2nho3svDu5JvTVtuE9bvVyglL9amqA8DB\nW61MQ21r5VBruwz43EQr+nsD1Zbk8iTfZOGP7b9ZpdpggPqSvBJYV1UDHRYd5RYTUyPJF4CX9ln0\n3gE38U7g5qp6dNxv1MZQG1X1KPCKJMcDn0nyl1X12DTU1m3nOOAvgE1VNZZ3luOqbRWM9VYrY7ZW\n4w5i4NqS/DYwC/zaRCvqGbJP2zNqq6oPAR9K8lvAH/D3F89O2rL1dW9sPwi8ddANPieCoKpev9Sy\nJI8lOa6q9nZ/sPb16fZq4DVJ3snCcfjDkzxdVUt+CLOKtfVua0+SB4HXsHCIYc1rS/Ii4CbgD6rq\nrlFrGmdtq+RQbrWye5VvtTJIbWtloNqSvJ6F8P+1nkOkU1Fbj08CH55oRT9tpfqOBF4O/E33xval\nwLYkF1bVfL8NtnBoqPc2F5uAzy7uUFVvqar1VbUB+HfAx8YRAuOoLcmJSf5BN30UcCYwqTuzHmpt\nhwM3svDz+tQq1DRwbatomm+1Mkhta2XF2rrDG38OXFhVqxn2g9R2cs/sG4Gd01JfVT1ZVcdU1Ybu\nb9pdLPwM+4bAwZWe0y8WjsXexsI/1G3A0V37LPCRPv3fyuqdNbRibcA5wH0snBlwHzA3RbX9NvD/\ngB09r9OnobZu/kvAfuCHLLyLesOE6rkA+AYLn4+8t2u7svvPB/CzwKeAh4GvAL+0Gv+GA9b2T7uf\nzd8B3wEenKLavgA81vO7tW2KavsT4MGuri8CL1ut2gapb1Hfv2GFs4a8xYQkNa6FQ0OSpGUYBJLU\nOINAkhpnEEhS4wwCSWqcQSBJjTMIJKlx/x8aWReSfVR4zgAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x260bf781390>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "# Plot histogram for each T value\n", | |
| "\n", | |
| "for i in range(len(Ts)):\n", | |
| " plt.hist(results[i])\n", | |
| " plt.title('T={}'.format(Ts[i]))\n", | |
| " plt.show()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "The results are as expected, since low values of T were expected to be uniform so either close to -1 or 1 whereas higher values of T were expected to be random, so values towards the center." | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.8" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment