Skip to content

Instantly share code, notes, and snippets.

@yoniLavi
Last active September 4, 2024 00:31
Show Gist options
  • Select an option

  • Save yoniLavi/2d731cb241a6f529b42c97ff94c9878a to your computer and use it in GitHub Desktop.

Select an option

Save yoniLavi/2d731cb241a6f529b42c97ff94c9878a to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is a simulation of Steve Ballmer's binary search game, as described in [John Graham-Cumming's blog](https://blog.jgc.org/2024/09/steve-ballmers-binary-search-interview.html)"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Expected value per game: $0.20\n"
]
}
],
"source": [
"from statistics import mean\n",
"\n",
"INITIAL_PAYMENT = 5 # dollars paid if first guess is correct, minus 1 for each incorrect guess\n",
"MIN_GUESS = 1 # The range of numbers to guess from\n",
"MAX_GUESS = 100\n",
"\n",
"def format_payout(payout: float, precision: int = 0) -> str:\n",
" return ('-' if payout < 0 else '') + f'${abs(payout):.{precision}f}'\n",
"\n",
"def calculate_payouts(low: int, high: int, depth: int = 0) -> list[float]:\n",
" if low > high:\n",
" return []\n",
"\n",
" mid = (low + high) // 2\n",
" payout = INITIAL_PAYMENT - depth\n",
" left_payouts = calculate_payouts(low, mid - 1, depth + 1)\n",
" right_payouts = calculate_payouts(mid + 1, high, depth + 1)\n",
"\n",
" return left_payouts + [payout] + right_payouts\n",
"\n",
"payouts = calculate_payouts(MIN_GUESS, MAX_GUESS)\n",
"average_payout = mean(payouts)\n",
"print(f\"\\nExpected value per game: {format_payout(average_payout, 2)}\")"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABdEAAAJOCAYAAABYwk4SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDwElEQVR4nOzdeVzU1f7H8ffMIIsoomwuhLhvlSYumZVrkdFiqZUtKlqpaSV2tfWnpbe83srl3jQr91JLbU/LzC1308Cy1LyKmSIqiKCAIMz39wfNV0b4KhgI2uv5eHhvc+bMd85nzvl+5/CZM2dshmEYAgAAAAAAAAAABdjLugEAAAAAAAAAAJRXJNEBAAAAAAAAALBAEh0AAAAAAAAAAAsk0QEAAAAAAAAAsEASHQAAAAAAAAAACyTRAQAAAAAAAACwQBIdAAAAAAAAAAALJNEBAAAAAAAAALBAEh0AAAAAAAAAAAsk0QEAAFAsOTk5GjlypK666irZ7XZ17969rJtkmj17tmw2m/bv31/WTflb6dixo66++uqybka5s3r1atlsNi1evLism4JS0K9fP4WHh5d1MwAAwCVAEh0AAKAQrmSs65+3t7caNmyooUOH6siRI2XdvCLbsGGDXn75ZZ04caLEjjlz5ky9/vrr6tmzp+bMmaOYmJgSO3ZhOnbs6NYXnp6eqlOnjh5//HH98ccfpfrcl9qxY8f09NNPq3HjxvLx8VFwcLDatGmjZ599VqdOnSrr5pUqp9OpuXPn6pZbblFgYKAqVKig4OBg3XrrrXr33XeVlZVV1k0sF0rjnC5vPvroIz388MNq0KCBbDabOnbsWNZN+ku2bNmiJ554QhEREapQoYJsNtt568+YMUNNmjSRt7e3GjRooP/+97+F1jt06JDuu+8++fv7y8/PT3fffbf27dtXGiEAAPC351HWDQAAACjPxowZozp16uj06dNat26d3n77bS1dulQ7duxQxYoVy7p5F7Rhwwa98sor6tevn/z9/UvkmCtXrlStWrU0ceLEEjleUYSGhmrcuHGSpOzsbP3666+aNm2ali1bpp07d5p98cgjj+iBBx6Ql5fXJWtbSTl+/LhatWqltLQ09e/fX40bN1ZycrJ++uknvf322xo8eLAqVapU1s0sFZmZmbrnnnu0bNky3XDDDfrHP/6hkJAQHT9+XGvWrNETTzyhzZs3a8aMGWXd1DJXGud0efP2229r27Ztat26tZKTk8u6OX/Z0qVLNX36dF177bWqW7eufvvtN8u677zzjgYNGqQePXpo+PDhWrt2rZ566illZGTo2WefNeudOnVKnTp1Umpqql544QVVqFBBEydOVIcOHRQXF6eAgIBLERoAAH8bJNEBAADOo1u3bmrVqpUk6dFHH1VAQIAmTJigzz//XL179y7j1pWNo0ePlmjyzul0Kjs7W97e3pZ1qlSpoocfftitrE6dOho6dKjWr1+vW265RZLkcDjkcDhKrG1Fdfr0aXl6espuv/gves6YMUMHDhzQ+vXrdcMNN7jdl5aWJk9Pz7/azGJJT0+Xr6/vJXmumJgYLVu2TJMmTdLTTz/tdt8zzzyjPXv2aPny5ZekLSh777//vmrVqiW73X5FbBM0ePBgPfvss/Lx8dHQoUMtk+iZmZl68cUXFRUVZW4B9Nhjj8npdGrs2LF6/PHHVbVqVUnS1KlTtWfPHm3ZskWtW7eWlPd+dfXVV+vNN9/Ua6+9dmmCAwDgb4LtXAAAAIqhc+fOkqT4+HhJ0htvvKEbbrhBAQEB8vHxUURERIH9jzt06KDmzZsXerxGjRopMjLSvJ2enq5nnnlGV111lby8vNSoUSO98cYbMgzDrLN//37ZbDbNnj27wPFsNptefvllSdLLL7+sESNGSMpLOLu2Q3HtF758+XLdeOON8vf3V6VKldSoUSO98MILlrG7nnfVqlX65ZdfzOOtXr26yG13tXHo0KGaN2+emjVrJi8vL33zzTeWz2ulevXqkiQPj7PrQgrbEz08PFx33HGH1q1bpzZt2sjb21t169bV3Llz3Y53/Phx/eMf/9A111yjSpUqyc/PT926ddP27dvd6rn2uf7www/10ksvqVatWqpYsaLi4uJks9kKXaG/YcMG2Ww2LViwwDKevXv3yuFw6Prrry9wn5+fX4EPGTZv3qzbbrtNVapUUcWKFdWhQwetX7/erc7vv/+uJ554Qo0aNZKPj48CAgLUq1evAnvGu14316rv4OBghYaGmvd//fXX6tChgypXriw/Pz+1bt1a8+fPL9DOX3/9VZ06dVLFihVVq1Yt/fvf/7aM1+WPP/7Q9OnTddtttxVIoLs0aNBATzzxhFtZUc496ex4W7RokZo2bSofHx+1a9dOP//8s6S8lb/169eXt7e3OnbsWOh++kV5rc8nNzdXL7zwgqpXry5fX1/dddddhW5FdKHnOd85fe+996ply5Zux7vzzjtls9n0xRdfuD2HzWbT119/bZadOHFCw4YNM8/d+vXra/z48XI6nW7HczqdmjRpkpo1ayZvb2+FhIRo4MCBSklJcatX1HPOiuv3Fi5Gdna2Ro0apYiICFWpUkW+vr666aabtGrVKrd6ruvZG2+8oXfffVf16tWTl5eXWrdurR9++KHAcT/77DNdffXV8vb21tVXX61PP/20yG0KCQmRj4/PBeutWrVKycnJBcb6kCFDlJ6eriVLlphlixcvVuvWrc0EuiQ1btxYXbp00cKFC4vcNgAAUDSsRAcAACiGvXv3SpL5VfnJkyfrrrvu0kMPPaTs7Gx9+OGH6tWrl7766itFRUVJytti5LHHHtOOHTvcVlX+8MMP+u233/TSSy9JkgzD0F133aVVq1ZpwIABatGihZYtW6YRI0bo0KFDxd4+5d5779Vvv/2mBQsWaOLEiQoMDJQkBQUF6ZdfftEdd9yha6+9VmPGjJGXl5f+97//nTcxGBQUpPfff1+vvvqqTp06ZW6v0qRJk2K3feXKlVq4cKGGDh2qwMDAC/44X25urpKSkiRJZ86c0c6dOzV69GjVr19f7du3v+Br8b///U89e/bUgAED1LdvX82cOVP9+vVTRESEmjVrJknat2+fPvvsM/Xq1Ut16tTRkSNH9M4776hDhw769ddfVbNmTbdjjh07Vp6envrHP/6hrKwsNW7cWO3bt9e8efMK7BM/b948Va5cWXfffbdlG2vXrq3c3Fy9//776tu373njWblypbp166aIiAiNHj1adrtds2bNUufOnbV27Vq1adNGUt4Y27Bhgx544AGFhoZq//79evvtt9WxY0f9+uuvBbYkeuKJJxQUFKRRo0YpPT1dUl6CvX///mrWrJmef/55+fv7KzY2Vt98840efPBB87EpKSm67bbbdO+99+q+++7T4sWL9eyzz+qaa65Rt27dLGP5+uuvlZubW+CbBhdSlHPPZe3atfriiy80ZMgQSdK4ceN0xx13aOTIkZo6daqeeOIJpaSk6N///rf69++vlStXFvu1Pp9XX31VNptNzz77rI4ePapJkyapa9euiouLM5OrRXme853TN910kz7//HOlpaXJz89PhmFo/fr1stvtWrt2re666y7ztbDb7eZ5k5GRoQ4dOujQoUMaOHCgwsLCtGHDBj3//PM6fPiwJk2aZMYxcOBAzZ49W9HR0XrqqacUHx+vt956S7GxsVq/fr0qVKhg1i3KOVca0tLSNH36dPXu3VuPPfaYTp48qRkzZigyMlJbtmxRixYt3OrPnz9fJ0+e1MCBA2Wz2fTvf/9b9957r/bt22fG8+2336pHjx5q2rSpxo0bp+TkZEVHR7t90FQSYmNjJcn89pNLRESE7Ha7YmNj9fDDD8vpdOqnn35S//79CxyjTZs2+vbbb3Xy5ElVrly5RNsHAMDfmgEAAIACZs2aZUgyvvvuO+PYsWPGH3/8YXz44YdGQECA4ePjYxw8eNAwDMPIyMhwe1x2drZx9dVXG507dzbLTpw4YXh7exvPPvusW92nnnrK8PX1NU6dOmUYhmF89tlnhiTjn//8p1u9nj17Gjabzfjf//5nGIZhxMfHG5KMWbNmFWi3JGP06NHm7ddff92QZMTHx7vVmzhxoiHJOHbsWLFeF8MwjA4dOhjNmjVzKytq211ttNvtxi+//FLk55NU4F+TJk2Mffv2udV19Vv+eGvXrm1IMr7//nuz7OjRo4aXl5fxzDPPmGWnT582cnNz3Y4XHx9veHl5GWPGjDHLVq1aZUgy6tatW6D/33nnHUOSsXPnTrMsOzvbCAwMNPr27XveOBMTE42goCBDktG4cWNj0KBBxvz5840TJ0641XM6nUaDBg2MyMhIw+l0muUZGRlGnTp1jFtuucWt7FwbN240JBlz5841y1yv24033mjk5OSY5SdOnDAqV65stG3b1sjMzCzQDhdXH+U/ZlZWllG9enWjR48e5407JibGkGTExcW5lWdlZRnHjh0z/yUlJbndX5RzzzDyxpuXl5fbmHD1U/Xq1Y20tDSz/Pnnn3cbP8V5rQvjGiu1atVye56FCxcakozJkycX+3mszukffvjBkGQsXbrUMAzD+OmnnwxJRq9evYy2bdua9e666y7juuuuM2+PHTvW8PX1NX777Te34z333HOGw+EwDhw4YBiGYaxdu9aQZMybN8+t3jfffFOgvKjnXFE0a9bM6NChQ5Hr5+TkGFlZWW5lKSkpRkhIiNG/f3+zzHUdDQgIMI4fP26Wf/7554Yk48svvzTLWrRoYdSoUcPtXPz2228NSUbt2rWLFc+QIUMMqz/DhwwZYjgcjkLvCwoKMh544AHDMAzj2LFjhiS365LLlClTDEnGrl27itUuAABwfmznAgAAcB5du3ZVUFCQrrrqKj3wwAOqVKmSPv30U9WqVUuS3L6in5KSotTUVN1000368ccfzfIqVaro7rvv1oIFC8ytTXJzc/XRRx+pe/fu5r7TS5culcPh0FNPPeXWhmeeeUaGYbhtv/BXufY0//zzzwts2XAxitv2Dh06qGnTpkU+fnh4uJYvX67ly5fr66+/1qRJk5Samqpu3brp2LFjF3x806ZNddNNN5m3g4KC1KhRI+3bt88s8/LyMreQyM3NVXJysrnNTf7+dOnbt2+BLRruu+8+eXt7a968eWbZsmXLlJSUdMGV1iEhIdq+fbsGDRqklJQUTZs2TQ8++KCCg4M1duxYc+zExcVpz549evDBB5WcnKykpCQlJSUpPT1dXbp00ffff2/2af72nTlzRsnJyapfv778/f0Ljemxxx5z21N++fLlOnnypJ577rkC28nYbDa325UqVXKL0dPTU23atHF7jQuTlpZmPj6/pUuXKigoyPxXu3Ztt/uLcu65dOnSxe3bDm3btpUk9ejRw221rqvc1ebivNbn06dPH7fn6dmzp2rUqKGlS5eW2PNcd911qlSpkr7//ntJeSvOQ0ND1adPH/3444/KyMiQYRhat26d27mwaNEi3XTTTapatar5vElJSeratatyc3PN4y1atEhVqlTRLbfc4lYvIiJClSpVKrBdSlHOudLgcDjM3w9wOp06fvy4cnJy1KpVq0LHxv3332/uMy7JbLOrnYcPH1ZcXJz69u2rKlWqmPVuueWWYl3DiiIzM9Pytw+8vb2VmZlp1pNU6A8ou85TVx0AAFAy2M4FAADgPKZMmaKGDRvKw8NDISEhatSokdtevV999ZX++c9/Ki4uTllZWWb5uQnGPn366KOPPtLatWt1880367vvvtORI0f0yCOPmHV+//131axZs8BX8Js0aWLeX1Luv/9+TZ8+XY8++qiee+45denSRffee6969ux5UXsRF7ftderUKdbxfX191bVrV/P2bbfdphtvvFGtWrXSv/71L7355pvnfXxYWFiBsqpVq7rt5ex0OjV58mRNnTpV8fHxys3NNe9zbd9zoRj8/f115513av78+Ro7dqykvK1catWqZe6nfz41atTQ22+/bf5o4LJlyzR+/HiNGjVKNWrU0KOPPqo9e/ZI0nm3fElNTVXVqlWVmZmpcePGadasWTp06JDb/vSpqakXjMm1fVFRftwxNDS0wLivWrWqfvrpp/M+zjVmTp065Vbevn1788dEX3/99QJbDRX13JMK9r8rGXrVVVcVWu4aF8V5rc+nQYMGbrdtNpvq169v7r9eEs/jcDjUrl07rV27VlJeEv2mm27SjTfeqNzcXG3atEkhISE6fvy4W3J7z549+umnnxQUFFTocY8ePWrWS01NVXBw8HnruRTlnCstc+bM0Ztvvqldu3bpzJkzZnlh5+y57XS9xq52uq5d5/ahJMsP2C6Wj4+PsrOzC73v9OnT5gdHrv/PP+7z18tfBwAAlAyS6AAAAOfRpk2bAvvTurj2Gb755ps1depU1ahRQxUqVNCsWbMK/OhiZGSkQkJC9MEHH+jmm2/WBx98oOrVq7slhouqsCShJLek74X4+Pjo+++/16pVq7RkyRJ98803+uijj9S5c2d9++23bquRS0NJJHhcPxzoWil7Plbx5E8qv/baa/q///s/9e/fX2PHjlW1atVkt9s1bNiwQlcBW8XQp08fLVq0SBs2bNA111yjL774Qk888USxPpyw2Wxq2LChGjZsqKioKDVo0EDz5s3To48+arbl9ddfL7C/s4trVfeTTz6pWbNmadiwYWrXrp2qVKkim82mBx54oFgxFUVRXuPCNG7cWJK0Y8cOtx/gDQoKMs+PDz74wO0xxTn3zte2C7W5OK/1X1FSz3PjjTfq1Vdf1enTp7V27Vq9+OKL8vf319VXX621a9cqJCREktyS6E6nU7fccotGjhxZ6DEbNmxo1gsODnb7lkV+5ybhL3Y8/FUffPCB+vXrp+7du2vEiBEKDg6Ww+HQuHHjzA+FykM7C1OjRg3l5ubq6NGjbh9WZGdnKzk52fxdhmrVqsnLy0uHDx8ucAxX2bm/4QAAAP4akugAAAAX6eOPP5a3t7eWLVvm9rX6WbNmFajrcDj04IMPavbs2Ro/frw+++yzAltn1K5dW999912BH4TbtWuXeb90dqXkiRMn3J6jsJXqVgl3SbLb7erSpYu6dOmiCRMm6LXXXtOLL76oVatWFTu5X9S2l7Tc3NwCK5gv1uLFi9WpUyfNmDHDrfzEiRPmDzgWxW233aagoCDNmzdPbdu2VUZGhts3Doqrbt26qlq1qpkcq1evniTJz8/vgv20ePFi9e3b122l/unTpwuMHSuu59qxY4fq169/Ea2/sG7dusnhcGjevHl66KGHivSY4px7f0VxXuvzca00dzEMQ//73/907bXXFvt5zndO33TTTcrOztaCBQt06NAhM1l+8803m0n0hg0bmsl013OfOnXqgs9br149fffdd2rfvn25XuW8ePFi1a1bV5988onbazV69OiLOp7r2nVuH0rS7t27L66RFlwfoGzdulW33367Wb5161Y5nU7zfrvdrmuuuUZbt24tcIzNmzerbt26/KgoAAAljD3RAQAALpLD4ZDNZnNbAb5//3599tlnhdZ/5JFHlJKSooEDB+rUqVMF9si+/fbblZubq7feesutfOLEibLZbOrWrZukvERbYGBggRXYU6dOLfCcrv3Wz02aHj9+vEBdV4KmsC0CLqSobS9Jq1at0qlTp9xWL/8VDoejwOrTRYsW6dChQ8U6joeHh3r37q2FCxdq9uzZuuaaa8xk6fls3rxZ6enpBcq3bNmi5ORkNWrUSFLeCvx69erpjTfeKPQDhPx7xBcW03//+98if2vh1ltvVeXKlTVu3DhzmwiXklqpGxYWpv79++vrr78uMH6snqu4597FKs5rfT5z587VyZMnzduLFy/W4cOHzfOiOM9jdU5LeXu6V6hQQePHj1e1atXUrFkzSXnJ9U2bNmnNmjVuq9ClvH38N27cqGXLlhU43okTJ5STk2PWy83NNbcpyi8nJ6fIH8yUNtcHk/nHzObNm7Vx48aLOl6NGjXUokULzZkzx20LpOXLl+vXX3/9a409R+fOnVWtWjW9/fbbbuVvv/22KlasqKioKLOsZ8+e+uGHH9wS6bt379bKlSvVq1evEm0XAABgJToAAMBFi4qK0oQJE3TbbbfpwQcf1NGjRzVlyhTVr1+/0H2gr7vuOl199dVatGiRmjRpopYtW7rdf+edd6pTp0568cUXtX//fjVv3lzffvutPv/8cw0bNsxcrSpJjz76qP71r3/p0UcfVatWrfT999/rt99+K/CcERERkqQXX3xRDzzwgCpUqKA777xTY8aM0ffff6+oqCjVrl1bR48e1dSpUxUaGqobb7yx2K9Fcdp+MVJTU80tPXJycrR79269/fbb8vHx0XPPPfeXju1yxx13aMyYMYqOjtYNN9ygn3/+WfPmzVPdunWLfaw+ffroP//5j1atWqXx48cX6THvv/++5s2bp3vuuUcRERHy9PTUzp07NXPmTHl7e+uFF16QlLcKdfr06erWrZuaNWum6Oho1apVS4cOHdKqVavk5+enL7/80ozp/fffV5UqVdS0aVNt3LhR3333XaF7vBfGz89PEydO1KOPPqrWrVvrwQcfVNWqVbV9+3ZlZGRozpw5xX5tCjNp0iTFx8frySef1Icffqg777xTwcHBSkpK0vr16/Xll1+aHyJIxT/3LlZxXuvzqVatmm688UZFR0fryJEjmjRpkurXr6/HHnus2M9jdU77+vqqYsWKioiI0KZNm3TnnXeaK7FvvvlmpaenKz09vUASfcSIEfriiy90xx13qF+/foqIiFB6erp+/vlnLV68WPv371dgYKA6dOiggQMHaty4cYqLi9Ott96qChUqaM+ePVq0aJEmT56snj17lsjr/v3335sfEh47dkzp6en65z//acZy8803Wz72jjvu0CeffKJ77rlHUVFRio+P17Rp09S0adOL/tbKuHHjFBUVpRtvvFH9+/fX8ePH9d///lfNmjUr0jF///13vf/++5JkJr1d8dSuXdv8poqPj4/Gjh2rIUOGqFevXoqMjNTatWv1wQcf6NVXX1W1atXMYz7xxBN67733FBUVpX/84x+qUKGCJkyYoJCQED3zzDMXFScAADgPAwAAAAXMmjXLkGT88MMP5603Y8YMo0GDBoaXl5fRuHFjY9asWcbo0aMNq2nWv//9b0OS8dprrxV6/8mTJ42YmBijZs2aRoUKFYwGDRoYr7/+uuF0Ot3qZWRkGAMGDDCqVKliVK5c2bjvvvuMo0ePGpKM0aNHu9UdO3asUatWLcNutxuSjPj4eGPFihXG3XffbdSsWdPw9PQ0atasafTu3dv47bffLvjadOjQwWjWrNlFt12SMWTIkAs+T/7nk2T+s9lsRrVq1Yy77rrL2LZtm1tdV7/Fx8ebZbVr1zaioqIKPW6HDh3M26dPnzaeeeYZo0aNGoaPj4/Rvn17Y+PGjQXqrVq1ypBkLFq06LztbtasmWG3242DBw8WKc6ffvrJGDFihNGyZUujWrVqhoeHh1GjRg2jV69exo8//ligfmxsrHHvvfcaAQEBhpeXl1G7dm3jvvvuM1asWGHWSUlJMaKjo43AwECjUqVKRmRkpLFr1y6jdu3aRt++fc16FxrvX3zxhXHDDTcYPj4+hp+fn9GmTRtjwYIF5v1WY6Jv375G7dq1ixR/Tk6OMWvWLKNz585m/IGBgUaXLl2MadOmGZmZmW71i3ruFTbe4uPjDUnG66+/7lZu1bdFea0L4zreggULjOeff94IDg42fHx8jKioKOP3338vUL+oz1PYOe0yYsQIQ5Ixfvx4t8fUr1/fkGTs3bu3wPOePHnSeP7554369esbnp6eRmBgoHHDDTcYb7zxhpGdne1W99133zUiIiIMHx8fo3LlysY111xjjBw50khISDDrFPWcs+Lqx8L+nXt9O5fT6TRee+01o3bt2oaXl5dx3XXXGV999VWBsWg1BgzDKPR5Pv74Y6NJkyaGl5eX0bRpU+OTTz4p8vh2jYPC/hX2erz77rtGo0aNDE9PT6NevXrGxIkTC1xHDcMw/vjjD6Nnz56Gn5+fUalSJeOOO+4w9uzZc8H2AACA4rMZRhn8YgoAAMDf1OTJkxUTE6P9+/crLCysrJuDUnTdddepWrVqWrFiRVk3BQAAAMBfwJ7oAAAAl4hhGJoxY4Y6dOhAAv0Kt3XrVsXFxalPnz5l3RQAAAAAfxF7ogMAAJSy9PR0ffHFF1q1apV+/vlnff7552XdJJSSHTt2aNu2bXrzzTdVo0YN3X///WXdJAAAAAB/EUl0AACAUnbs2DE9+OCD8vf31wsvvKC77rqrrJuEUrJ48WKNGTNGjRo10oIFC+Tt7V3WTQIAAADwF7EnOgAAAAAAAAAAFtgTHQAAAAAAAAAACyTRAQAAAAAAAACwwJ7ofxNOp1MJCQmqXLmybDZbWTcHAAAAAAAAAMqUYRg6efKkatasKbvder05SfS/iYSEBF111VVl3QwAAAAAAAAAKFf++OMPhYaGWt5PEv1vonLlypLyBoSfn18ZtwYAAAAAAAAAylZaWpquuuoqM3dqhST634RrCxc/Pz+S6AAAAAAAAADwpwttf80PiwIAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggT3RAQAAAAAAAJSJ3NxcnTlzpqybgStUhQoV5HA4/vJxSKIDAAAAAAAAuKQMw1BiYqJOnDhR1k3BFc7f31/Vq1e/4I+Hng9JdAAAAAAAAACXlCuBHhwcrIoVK/6lBCdQGMMwlJGRoaNHj0qSatSocdHHIokOAAAAAAAA4JLJzc01E+gBAQFl3RxcwXx8fCRJR48eVXBw8EVv7cIPiwIAAAAAAAC4ZFx7oFesWLGMW4K/A9c4+yt775NEBwAAAAAAAHDJsYULLoWSGGck0QEAAAAAAAAAsEASHQAAAAAAAABwUfr161fWTSh1JNEBAAAAAAAAoBg2btwoh8OhqKiosm5KubZo0SI1btxY3t7euuaaa7R06dLz1v/kk090yy23KCgoSH5+fmrXrp2WLVtWoN6UKVMUHh4ub29vtW3bVlu2bCmtECSRRAcAAAAAAACAYpkxY4aefPJJff/990pISCjV5zIMQzk5OaX6HMVlGIZefvllNWzYUPPnz9dVV12lW2+9Vb/88otZZ8OGDerdu7cGDBig2NhYde/eXd27d9eOHTssj/v999/rlltu0dKlS7Vt2zZ16tRJd955p2JjY806H330kYYPH67Ro0frxx9/VPPmzRUZGamjR4+WWrwk0QEAAAAAAACgiE6dOqWPPvpIgwcPVlRUlGbPnm3e9+CDD+r+++93q3/mzBkFBgZq7ty5kiSn06lx48apTp068vHxUfPmzbV48WKz/urVq2Wz2fT1118rIiJCXl5eWrdunfbu3au7775bISEhqlSpklq3bq3vvvvO7bkOHz6sqKgo+fj4qE6dOpo/f77Cw8M1adIks86JEyf06KOPmqu9O3furO3btxfrNZg5c6b+/e9/65VXXtGdd96phQsXqlu3bjp9+rRZZ/Lkybrttts0YsQINWnSRGPHjlXLli311ltvWR530qRJGjlypFq3bq0GDRrotddeU4MGDfTll1+adSZMmKDHHntM0dHRatq0qaZNm6aKFStq5syZxYqhOEiiAwAAAAAAACgX0rPTLf+dzjld5LqZZzKLVPdiLFy4UI0bN1ajRo308MMPa+bMmTIMQ5L00EMP6csvv9SpU6fM+suWLVNGRobuueceSdK4ceM0d+5cTZs2Tb/88otiYmL08MMPa82aNW7P89xzz+lf//qXdu7cqWuvvVanTp3S7bffrhUrVig2Nla33Xab7rzzTh04cMB8TJ8+fZSQkKDVq1fr448/1rvvvltghXavXr109OhRff3119q2bZtatmypLl266Pjx45Kk/fv3y2azafXq1ZavQWxsrNq3b6/evXurcuXKateunWJiYhQREWHW2bhxo7p27er2uMjISG3cuLHIr7XT6dTJkydVrVo1SVJ2dra2bdvmdly73a6uXbsW67jF5VFqRy6mfv36uX1qAwAAAAAAAODvpdK4Spb33d7gdi15cIl5O/iNYGWcySi0bofaHbS632rzdvjkcCVlJBWoZ4w2it3GGTNm6OGHH5Yk3XbbbUpNTdWaNWvUsWNHRUZGytfXV59++qkeeeQRSdL8+fN11113qXLlysrKytJrr72m7777Tu3atZMk1a1bV+vWrdM777yjDh06mM8zZswY3XLLLebtatWqqXnz5ubtsWPH6tNPP9UXX3yhoUOHateuXfruu+/0ww8/qFWrVpKk6dOnq0GDBuZj1q1bpy1btujo0aPy8vKSJL3xxhv67LPPtHjxYj3++OOqUKGCGjVqpIoVK1q+Bu3bt9eMGTP03nvvuX1gkF9iYqJCQkLcykJCQpSYmHjhF/lPb7zxhk6dOqX77rtPkpSUlKTc3NxCj7tr164iH7e4yvVK9H79+slms7n9u+222y74uAttLH/69GkNGTJEAQEBqlSpknr06KEjR4641Tlw4ICioqJUsWJFBQcHa8SIEQX2Hlq9erVatmwpLy8v1a9fv9APAS5VWwAAAAAAAACUrt27d2vLli3q3bu3JMnDw0P333+/ZsyYYd6+7777NG/ePElSenq6Pv/8cz300EOSpP/973/KyMjQLbfcokqVKpn/5s6dq71797o9lysR7nLq1Cn94x//UJMmTeTv769KlSpp586d5kr03bt3y8PDQy1btjQfU79+fVWtWtW8vX37dp06dcrMRbr+xcfHm89fq1Yt7dq1S23atLF8HXr37q233npL7777rj799FOFh4dr5MiROnny5EW9roWZP3++XnnlFS1cuFDBwcEldtyLUaYr0ZOSkvTMM89o1apVOnLkiNatW6frrrtO8+bNk6enp6S8T3NmzZplPsb1CYkV18by06ZNU9u2bTVp0iRFRkZq9+7d5osdExOjJUuWaNGiRapSpYqGDh2qe++9V+vXr5ck5ebmKioqStWrV9eGDRt0+PBh9enTRxUqVNBrr70mSYqPj1dUVJQGDRqkefPmacWKFXr00UdVo0YNRUZGXtK2AAAAAAAAAFeCU88XvqpZkhx2h9vto/+w/iFJu8197fD+p/f/pXa5zJgxQzk5OapZs6ZZZhiGvLy89NZbb6lKlSp66KGH1KFDBx09elTLly+Xj4+PuTDYtWp7yZIlqlWrltuxz817+vr6ut3+xz/+oeXLl+uNN95Q/fr15ePjo549eyo7O7vI7T916pRq1KhR6FYt/v7+RT6OJA0YMEADBgzQww8/rPvvv1/Dhw/XwYMHNX/+fElS9erVCywWPnLkiKpXr37BY3/44Yd69NFHtWjRIretWwIDA+VwOC76uBfNKEMPP/yw0bBhQ2P16tVG9+7djZUrVxojR440MjMzDcMwjL59+xp33313sY7Zpk0bY8iQIebt3Nxco2bNmsa4ceMMwzCMEydOGBUqVDAWLVpk1tm5c6chydi4caNhGIaxdOlSw263G4mJiWadt99+2/Dz8zOysrIMwzCMkSNHGs2aNXN77vvvv9+IjIy85G0pitTUVEOSkZqaWuTHAAAAAAAAACUtMzPT+PXXX80c4OXizJkzRkhIiPHmm28aP//8s9u/evXqGW+//bZZt06dOsZ//vMfo1u3bsagQYPM8rS0NMPLy8uYO3eu5fOsWrXKkGSkpKS4lV999dXGmDFjzNsnT540qlSpYjz99NOGYZzNK27dutWss2fPHkOSMXHiRMMwDOPbb781HA6HER8ff/EvxDn69u1rGIZh/Oc//zFCQ0PN8vvuu8+444473Oq2a9fOGDhw4HmPN3/+fMPb29v47LPPCr2/TZs2xtChQ83bubm5Rq1atcyc67nON96KmjMt05XosbGx6tOnjzp06KBZs2apU6dO6tSpk1ud1atXKzg4WFWrVlXnzp31z3/+UwEBAYUez7Wx/PPPP2+Wnbux/LZt23TmzBm3TzAaN26ssLAwbdy4Uddff702btyoa665xm1vncjISA0ePFi//PKLrrvuOsuN8YcNG3bJ21KYrKwsZWVlmbfT0tIkSTk5OeZWMHa7XXa7XU6nU06n062ddrtdubm55o8inK/c4XDIZrMV2GLG4cj7dDA3N7dI5R4eHjIMw63cZrPJ4XAUaKNVOTEREzEREzEREzEREzGVTUwHD6YpKSnjz/bkrfwyDKdbfbvdoYAAH9WqdXav0/IcU1HKL7d+IiZiIiZiIiZiKg8xuf7bMAy3uudjs9kKrXspy7/88kulpKSof//+8vf3d6t/7733asaMGRo4cKCkvO1Opk2bpt9++00rV64061aqVEnPPPOMYmJi5HQ61b59e6Wmpmr9+vXy8/NT3759zWOe+/o0aNBAn3zyie644w7ZbDaNGjXK7BvDMNSoUSN17dpVjz/+uKZOnSpPT08988wz8vHxMet06dJF7dq1U/fu3TV+/Hg1bNhQCQkJWrJkie69915FRETo0KFD6tq1q+bMmWO5pcukSZNUs2ZN3XzzzZKknTt3at68eYqIiDDb/NRTT6ljx4564403dMcdd2jBggXaunWr3nnnHbPOCy+8oEOHDmnOnDmS8rZw6devnyZPnqw2bdro8OHDkiQfHx9VqVJFNptNMTEx6tevnyIiItSmTRtNmjRJ6enp6tevX4E+dPWfYRhmXjT/eVPULbPLNInevn17zZo1y21D/Pxuu+023XvvvapTp4727t2rF154Qd26ddPGjRvNYPMrysbyiYmJ8vT0LPD1hPyb2ltteu+673x10tLSlJmZqZSUlEvWlsKMGzdOr7zySoHy2NhY86sgQUFBqlevnuLj43Xs2DGzTmhoqEJDQ/Xbb78pNTXVLK9bt66Cg4O1Y8cOZWae/YXjxo0by9/fX7GxsW4X52uvvVaenp7aunWrWxtatWql7Oxs/fTTT2aZw+FQ69atlZqa6vYjAD4+PmrevLmSkpK0b98+s7xKlSpq0qSJEhISdPDgQbOcmIiJmIiJmIiJmIiJmC59TGvXbtKq1fvlzM37I+711/fLz89DAweGmnWzs516/fXf1aRpZU15q418fDzKdUxXYj8REzEREzEREzGVp5gqV64sKW/P8Px8fX3ldDrdjmGz2eTr66vc3FydPn3aLLfb7apYsaJycnLcFpM6HA75+PjozJkzbludeHh4yNvbW1lZWW7JU09PT3l6eur06dNubfTy8lKFChWUmZkpp9Opd999Vx07dlSlSnkLAjIyMsyk7e23367XX39dP/30k+rVq6d77rlHr732msLCwtS+fXu3mJ577jlVqVJF48aN0759+1SlShW1aNFCzzzzjFvc6enpqlChghnThAkTFB0drfbt2ysgIEAxMTE6ceKEJJkxvf322xoyZIg6dOig6tWr65VXXtGOHTtkt9uVnp4uLy8vLV26VM8++6yio6OVlJSkkJAQ3XTTTQoJCVFGRoZSU1O1e/duHT9+XE6n03xsfg0bNtSECRP0xBNPKCUlRV9++aU6dOigKVOmmP3UvHlzzZw5U2PHjtWLL76o+vXra8GCBapTp47S09PlcDh0+PBh/f777+bxp02bppycHA0ZMkRDhgwxn+/BBx/UrFmz5OnpqbvvvluvvvqqRo0apSNHjqh58+b65ptv5Ofn59ZOb29veXh4KDMzU9nZ2dqxY4ck9/Pp3Lis2IyiftxTCtLT0/Xaa69p4cKF2rt3r6699loNGjRIgwYNKrT+vn37VK9ePX333Xfq0qVLgfsTEhJUq1Ytbdiwwfx1W0kaOXKk1qxZo82bN2v+/PmKjo52O7EkqU2bNurUqZPGjx+vxx9/XL///ruWLVtm3p+RkSFfX18tXbpU3bp1U8OGDRUdHe220nzp0qWKiopSRkaGUlJSLllbClPYSvSrrrpKycnJ8vPzk8SnpMRETMRETMRETMRETMRUMjFt23ZI7dvPVI/RnRUUXlVO2fKOJ/c/NRLjT2jxqO+0efMAtWhRvVzHdCX2EzEREzEREzERU3mJ6fTp0/rjjz8UHh4ub29vFUV5WIlelPLiuBRt/OOPPxQWFqbly5eb+dSSjik6Otr8Tcvy1h82m02ZmZmKj49XWFiYvL293c6btLQ0BQQEKDU11cyZFqZMV6L7+vrq1Vdf1auvvqru3burW7duiomJkd1u1+OPP16gft26dRUYGKj//e9/hSbRi7KxfPXq1ZWdna0TJ064rQA/t86WLVsKHMN1n+v/C3sePz8/+fj4yOFwXLK2FMbLy6vQH2H18PCQh4d7t7sucudyDaiilp973Ispt9lshZZbtbG45cRETFblxERMEjFZtbG45cRETBIxWbWxuOWXS0x2u0PZ2YYCwgNUo0lQoXUkySm7nM68+kWdk9JPxGTVxuKWExMxScRk1cbilhMTMUl/LSbXf9tsNtlstkLrF8aqbnkrL46SbsvKlSt16tQpXXPNNTp8+LBGjhyp8PBwdejQwe2xJR3TXzn2pSh3nQ/njkOrc+pcBc+AMuLv76+BAweqW7duWrt2baF1Dh48qOTkZNWoUaPQ+z09PRUREaEVK1aYZU6nUytWrDBXg0dERKhChQpudXbv3q0DBw6Yddq1a6eff/5ZR4+e/YXf5cuXy8/PT02bNjXr5D+Gq47rGJeyLQAAAAAAAABw5swZvfDCC2rWrJnuueceBQUFafXq1ea2MKVh9uzZpXbs8qJMk+gxMTFas2aNUlNTlZubq1WrVmnNmjWKiIjQqVOnNGLECG3atEn79+/XihUrdPfdd6t+/fqKjIw0j9GlSxe99dZb5u3hw4frvffe05w5c7Rz504NHjxY6enpio6OlpS3z9OAAQM0fPhwrVq1Stu2bVN0dLTatWun66+/XpJ06623qmnTpnrkkUe0fft2LVu2TC+99JKGDBliru4eNGiQ9u3bp5EjR2rXrl2aOnWqFi5cqJiYmEveFgAAAAAAAACIjIzUjh07lJGRoSNHjujTTz9V7dq1y7pZl70y3c4lLCxMw4cP1549e5Senq7Vq1erf//+evLJJ80fRZgzZ45OnDihmjVr6tZbb9XYsWPdksd79+5VUlKSefv+++/XsWPHNGrUKCUmJqpFixb65ptv3H6cc+LEibLb7erRo4eysrIUGRmpqVOnmvc7HA599dVXGjx4sNq1aydfX1/17dtXY8aMMevUqVNHS5YsUUxMjCZPnqzQ0FBNnz7dLcF/qdoCAAAAAAAAACgdZfrDovn169fvb7H0v6ykpaWpSpUqF9wkHwAAACiuH388rIiIdzV03n2qdZ490Q/tPKa3HlqobdseV8uWhW/RCAAArnynT59WfHy86tSpU+QfFgUu1vnGW1FzpuVmT3QAAAAAAAAAfx9Op7Osm4C/gZIYZ2W6nUt+rEIHAAAAAAAArnyenp6y2+1KSEhQUFCQPD09ZbPZyrpZuMIYhqHs7GwdO3ZMdrtdnp6eF32scpNEBwAAAAAAAHDls9vtqlOnjg4fPqyEhISybg6ucBUrVlRYWJjs9ovflIUkOgAAAAAAAIBLytPTU2FhYcrJyVFubm5ZNwdXKIfDIQ8Pj7/8TQeS6AAAAAAAAAAuOZvNpgoVKqhChQpl3RTgvPhhUQAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACyQRAcAAAAAAAAAwAJJdAAAAAAAAAAALJBEBwAAAAAAAADAAkl0AAAAAAAAAAAskEQHAAAAAAAAAMACSXQAAAAAAAAAACxcNkn0fv36lXUTAAAAAAAAAAB/M5dNEv1CBg0aJJvNpkmTJl2w7pQpUxQeHi5vb2+1bdtWW7Zscbv/9OnTGjJkiAICAlSpUiX16NFDR44ccatz4MABRUVFqWLFigoODtaIESOUk5PjVmf16tVq2bKlvLy8VL9+fc2ePbtU2gIAAAAAAAAAKB3lOomelJSkvn37KiwsTAsWLFD9+vXVq1cvZWdnu9X79NNPtWnTJtWsWfOCx/zoo480fPhwjR49Wj/++KOaN2+uyMhIHT161KwTExOjL7/8UosWLdKaNWuUkJCge++917w/NzdXUVFRys7O1oYNGzRnzhzNnj1bo0aNMuvEx8crKipKnTp1UlxcnIYNG6ZHH31Uy5YtK9G2AAAAAAAAAABKT7lOosfExGjTpk16//33dfvtt+u9995T3bp15XQ6zTqHDh3Sk08+qXnz5qlChQoXPOaECRP02GOPKTo6Wk2bNtW0adNUsWJFzZw5U5KUmpqqGTNmaMKECercubMiIiI0a9YsbdiwQZs2bZIkffvtt/r111/1wQcfqEWLFurWrZvGjh2rKVOmmAn+adOmqU6dOnrzzTfVpEkTDR06VD179tTEiRNLtC0AAAAAAAAAgNJTrpPosbGx6tOnjzp06KAqVaqoU6dOGj9+vLy9vSVJTqdTjzzyiEaMGKFmzZpd8HjZ2dnatm2bunbtapbZ7XZ17dpVGzdulCRt27ZNZ86ccavTuHFjhYWFmXU2btyoa665RiEhIWadyMhIpaWl6ZdffjHr5D+Gq47rGCXVFgAAAAAAAABA6fEo6wacT/v27TVr1iw1b9680PvHjx8vDw8PPfXUU0U6XlJSknJzc92S35IUEhKiXbt2SZISExPl6ekpf3//AnUSExPNOoUdw3Xf+eqkpaUpMzNTKSkpJdIWK1lZWcrKyjJvp6WlSZJycnLMvdvtdrvsdrucTqfb6n5XeW5urgzDuGC5w+GQzWYrsCe8w+GQlLf9TVHKPTw8ZBiGW7nNZpPD4SjQRqtyYiImYiKmyymmhIR0HTuWLsNwb7vNZpdhGGZ5YGBFXXVVlcsipiuxn4iJmIjpwjE5nbny9LTJLqdszlwZtry1OrZ817ezz5FX33Ws8hrTldhPxERMxFT0mA4dOqXk5Ew5ne5ttP15fcs/TwsN9bssYroS+4mYiImYiOmvxnTufVbKdRJ9woQJeu211xQTE6O9e/cqLi5OgwYN0qBBg7Rt2zZNnjxZP/74o2w2W1k3tdwZN26cXnnllQLlsbGx8vX1lSQFBQWpXr16io+P17Fjx8w6oaGhCg0N1W+//abU1FSzvG7dugoODtaOHTuUmZlpljdu3Fj+/v6KjY11O0GuvfZaeXp6auvWrW5taNWqlbKzs/XTTz+ZZQ6HQ61bt1Zqaqr5IYIk+fj4qHnz5kpKStK+ffvM8ipVqqhJkyZKSEjQwYMHzXJiIiZiIqbLJaasLKe63b5aNap7qHfv6mZ5UtIZvfPOQbVoUVlRUYGSJLvDrqjbr1bbti3KdUxXYj8REzERU9FiSk7eqxEjwhXudVjeSck6FNhIDmeOqh/fa9Y17HYdVIDCw32UnLxXW7ceLNcxXYn9REzERExFiykzM0dDhm7Rzl9PasSI2vL0PPsl/nfeOai0tByNGBEuKW+e1qljuG666fpyHdOV2E/EREzEREwlEVN6erqKwmbkT8+XY927d1e3bt0UExOjSZMmKSMjQ8OHD5fdfvbNLDc3V3a7XVdddZX2799f4BjZ2dmqWLGiFi9erO7du5vlffv21YkTJ/T5559r5cqV6tKli1JSUtxWgNeuXVvDhg1TTEyMRo0apS+++EJxcXHm/fHx8apbt65+/PFHXXfddbr55pvVsmVLTZo0yawza9YsDRs2TKmpqSXWFiuFrUS/6qqrlJycLD8/P0l8UkVMxERMxFSWMcXFJap16xm6/59dFFKnqlt9p+yyyZBNho7tT9HHr6zUhg0DFBFRq1zHJF15/URMxERMRYtp27ZDat9+pgbN6qGajQItV6If3H1cUx9ZqM2bB6hFi+rlOqYrsZ+IiZiIqWgxxcUlqm3bGeo5pquq1/F3a6NTeYv47PnmaevX91dERK1yHZPrdb+S+omYiImYiKkkYkpLS1NAQIBSU1PNnGlhyvVK9Pz8/f01cOBAffvtt1q7dq0mTZpU6J7jjzzyiKKjows9hqenpyIiIrRixQozce10OrVixQoNHTpUkhQREaEKFSpoxYoV6tGjhyRp9+7dOnDggNq1aydJateunV599VUdPXpUwcHBkqTly5fLz89PTZs2NessXbrU7fmXL19uHqOk2mLFy8tLXl5eBco9PDzk4eHe7a6Bdi7XgCpq+bnHvZhym81WaLlVG4tbTkzEZFVOTMQkXdqY7Pa8YwbVCVCNJkGF1pfyEurZ2Yb51eHyHJPLldRPLsRETBIxWbUx7/gOZWcbcsouw372sYat4HGczrz6RZ2T0k/EZNXG4pYTEzFJRYvJbnfI6ZSC61Qr0jzNbneY35AvrzHld6X004XaWNxyYiImiZis2ljc8sspJqv7CtQtUq0yEhMTo+7du6tFixbKzc3VqlWrtGbNGr300ksKCAhQQECAW/0KFSqoevXqatSokVnWpUsX3XPPPWZievjw4erbt69atWqlNm3aaNKkSUpPTzcT71WqVNGAAQM0fPhwVatWTX5+fnryySfVrl07XX/99ZKkW2+9VU2bNtUjjzyif//730pMTNRLL72kIUOGmInrQYMG6a233tLIkSPVv39/rVy5UgsXLtSSJUvMtpVEWwAAAAAAAAAApadcJ9HDwsI0fPhw7dmzR+np6Vq9erX69++vJ598ssjH2Lt3r5KSkszb999/v44dO6ZRo0YpMTFRLVq00DfffOP2A58TJ06U3W5Xjx49lJWVpcjISE2dOtW83+Fw6KuvvtLgwYPVrl07+fr6qm/fvhozZoxZp06dOlqyZIliYmI0efJkhYaGavr06YqMjCzRtgAAAAAAAAAASk+5TqLHxMSY+37369dPs2fPPm/9wvZBL6xs6NCh5sr0wnh7e2vKlCmaMmWKZZ3atWsX2K7lXB07dlRsbOx565REWwAAAAAAAAAApaPgpjIAAAAAAAAAAEDSZZREv9AqdAAAAAAAAAAAStplk0QHAAAAAAAAAOBSI4kOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFi4opLo/fr1K+smAAAAAAAAAACuIFdUEr0wL7/8sho3bixfX19VrVpVXbt21ebNmy/4uClTpig8PFze3t5q27attmzZ4nb/6dOnNWTIEAUEBKhSpUrq0aOHjhw54lbnwIEDioqKUsWKFRUcHKwRI0YoJyfHrc7q1avVsmVLeXl5qX79+po9e3ax2wIAAAAAAAAAKB2XfRI9KSlJffv2VVhYmBYsWKD69eurV69eys7OliQ1bNhQb731ln7++WetW7dO4eHhuvXWW3Xs2DHLY3700UcaPny4Ro8erR9//FHNmzdXZGSkjh49ataJiYnRl19+qUWLFmnNmjVKSEjQvffea96fm5urqKgoZWdna8OGDZozZ45mz56tUaNGmXXi4+MVFRWlTp06KS4uTsOGDdOjjz6qZcuWFastAAAAAAAAAIDScdkn0WNiYrRp0ya9//77uv322/Xee++pbt26cjqdkqQHH3xQXbt2Vd26ddWsWTNNmDBBaWlp+umnnyyPOWHCBD322GOKjo5W06ZNNW3aNFWsWFEzZ86UJKWmpmrGjBmaMGGCOnfurIiICM2aNUsbNmzQpk2bJEnffvutfv31V33wwQdq0aKFunXrprFjx2rKlClmgn/atGmqU6eO3nzzTTVp0kRDhw5Vz549NXHixCK3BQAAAAAAAABQejzKugF/VWxsrPr06aMOHTpo1qxZ6tSpkzp16lRo3ezsbL377ruqUqWKmjdvblln27Ztev75580yu92url27auPGjZKkbdu26cyZM+ratatZp3HjxgoLC9PGjRt1/fXXa+PGjbrmmmsUEhJi1omMjNTgwYP1yy+/6LrrrtPGjRvdjuGqM2zYsCK3xUpWVpaysrLM22lpaZKknJwcc0sZu90uu90up9NpfuiQvzw3N1eGYVyw3OFwyGazFdiqxuFwSMpblV+Ucg8PDxmG4VZus9nkcDgKtNGqnJiIqTgxHTyYpqSkDNntDhmGIcNwb7vNZpdhGAoI8FZoqN9lEZPLldRPV2pMTqfrvw3ZnPnq22wybHbJMGQznLLLKU9Pmzk+y3NM0pXXT5dTTAcOpOrYsVNu5TZb3nqJ/Ne3wMCKCg+vdlnEJF15/XSlxuR05srT0ya7nLI5c/OuY5Js+cbe2efIq+86VnmN6Ursp8stpoMH05ScfFo2my3f+6brefPGWP552uUQk6uNV1I/XYkxOZ25sv+55NB2ztjLf31zzdOczrOPLa8xuV73K6mfrvSY9u8/rqSkjHzPW3BeJ0lBQZUUFlblsojpSuwnYrr8Yzr3PiuXfRK9ffv2mjVrlmVSXJK++uorPfDAA8rIyFCNGjW0fPlyBQYGFlo3KSlJubm5bslvSQoJCdGuXbskSYmJifL09JS/v3+BOomJiWadwo7huu98ddLS0pSZmamUlJQLtsXKuHHj9MorrxQoj42Nla+vryQpKChI9erVU3x8vNv2NqGhoQoNDdVvv/2m1NRUs7xu3boKDg7Wjh07lJmZaZY3btxY/v7+io2NdTtBrr32Wnl6emrr1q1ubWjVqpWys7Pdvg3gcDjUunVrpaamusXm4+Oj5s2bKykpSfv27TPLq1SpoiZNmighIUEHDx40y4mJmIoaU2Zmjlat3q/TmTl6/fXfVbeuj3r3rm7WTUo6o3feOagWLSrrzruC1aljuHx8PMp1TFdiP13JMaWlnZEkVbZnqVbSbrM8x8NLidXqyff0CVU9eVgBXtkaMSJcaWkJkmqV65iuxH66XGIKDKyjVq1nauiQWm4xvf76fvn5eWjgwFCzLDdXGjz4bvn5GeU6piuxn67kmJKT92rEiHCFex2Wd1KyDgU2ksOZo+rH95p1DbtdBxWg8HAfJSfv1datB8t1TFdiP11OMbnmavM+SNC+fZkaMaK2PD3PfpH6nXcOKi0tR88+V9ecp5X3mK7EfrpSY0pNzVJ4uI8kqebxPbLlS+AkVqunXLuHaiXtNudpycl7lZtbvVzHdCX205UcU1qaTe+885X+zPNJOnvdGzEi3C2mt6Yc0tYf+ispKb5cx3Ql9hMxXRkxpaenqyhsRv70/GUoPT1dr732mhYuXKi9e/fq2muv1aBBgzRo0CC3OocPH1ZSUpLee+89rVy5Ups3b1ZwcHCB4yUkJKhWrVrasGGD2rVrZ5aPHDlSa9as0ebNmzV//nxFR0e7rfSWpDZt2qhTp04aP368Hn/8cf3+++9u+5tnZGTI19dXS5cuVbdu3dSwYUNFR0e7rTRfunSpoqKilJGRoZSUlAu2xUphK9GvuuoqJScny88vb6UGn1QR0985pri4RLVvP1M9RndWQHiAJEN2uV8OnbLrWHyyPh2zUuvX91eLFtXLdUz5XSn9dCXHFBeXqNatZ2jovF4KbRRwtvI5K9ETdidpWvTH2rBhgCIiapXrmKQrr58ul5i2bz+qVq3eU+9XuygovKpZ7pQt73h/Xt+O7U/Rx6+s1MaNj+m666qX65iuxH66kmPatu2Q2refqUGzeqhmo0DLlegHdx/X1EcWavPmAWrRonq5julK7KfLKSbXXO2eUZ0VVCdAdrmPJadsOhp/XJ/lm6eV95jyv+5XSj9dqTHFxSWqbdsZeuL9+xTaqJpbG/Nf31zztPXr+ysiola5jsn1ul9J/XQlxxQbm6h27d5Tj9GdzbndufM6KW9ut+DFFdq69TE1b+6e4ypvMV2J/URMV0ZMaWlpCggIUGpqqpkzLcxlvxLd19dXr776ql599VV1795d3bp1U0xMjOx2ux5//HGzTv369VW/fn1df/31atCggWbMmOGWvHYJDAyUw+HQkSNH3MqPHDmi6tXzJmbVq+d9wnzixAm31ejn1tmyZUuBY7juc/1/Yc/j5+cnHx8fORyOC7bFipeXl7y8vAqUe3h4yMPDvdtdA+1crgFV1PJzj3sx5TabrdByqzYWt5yYiMlVbrc7lJ1tKCA8QLWaBBVazyU725Dd7nA7XnmM6VxXQj+d60qKyW53HdMmw17I8W02GTaHnLIrO9swv75ZnmM62/Qrp59cyntMNlveH1UB4QGqcZ5rmms8uR5TnmO6mHJiKruYXO+rTtndrmmGreBxnE4VeF+9mLbTT1d2TK4xFVTnfHM1W6HzNKl8xnSuK6GfitLG4paXh5jsdodcOZtC52mS2zzNbneY78XlNab8rpR+ulAbi1te3mJy/b16obnd+dpe3mK6EvuJmC7/mKzuK9CWItW6TPj7+2vgwIHq1q2b1q5da1nP6XQWWEXu4unpqYiICK1YscKt/ooVK8zV4BEREapQoYJbnd27d+vAgQNmnXbt2unnn3/W0aNHzTrLly+Xn5+fmjZtatbJfwxXHdcxitIWAAAAAAAAAEDpueyT6DExMVqzZo1SU1OVm5urVatWac2aNYqIiFB6erpeeOEFbdq0Sb///ru2bdum/v3769ChQ+rVq5d5jC5duuitt94ybw8fPlzvvfee5syZo507d2rw4MFKT09XdHS0pLz9egYMGKDhw4dr1apV2rZtm6Kjo9WuXTtdf/31kqRbb71VTZs21SOPPKLt27dr2bJleumllzRkyBBzhfigQYO0b98+jRw5Urt27dLUqVO1cOFCxcTEFLktAAAAAAAAAIDSc9lv5xIWFqbhw4drz549Sk9P1+rVq9W/f389+eSTOnPmjHbt2qU5c+YoKSlJAQEBat26tdauXatmzZqZx9i7d6+SkpLM2/fff7+OHTumUaNGKTExUS1atNA333zj9gOfEydOlN1uV48ePZSVlaXIyEhNnTrVvN/hcOirr77S4MGD1a5dO/n6+qpv374aM2aMWadOnTpasmSJYmJiNHnyZIWGhmr69OmKjIwsVlsAAAAAAAAAAKXjsk+ix8TEmCu3+/Xrp9mzZ5v3ORwOffLJJxc8xv79+wuUDR06VEOHDrV8jLe3t6ZMmaIpU6ZY1qldu7aWLl163ufu2LGjYmNjz1vnQm0BAAAAAAAAAJSOy347FwAAAAAAAAAASssVlUTPvwodAAAAAAAAAIC/6opKogMAAAAAAAAAUJJIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFkiiAwAAAAAAAABggSQ6AAAAAAAAAAAWSKIDAAAAAAAAAGCBJDoAAAAAAAAAABZIogMAAAAAAAAAYIEkOgAAAAAAAAAAFjwu5kEHDhzQ77//royMDAUFBalZs2by8vIq6bYBAAAAAAAAAFCmipxE379/v95++219+OGHOnjwoAzDMO/z9PTUTTfdpMcff1w9evSQ3c4CdwAAAAAAAADA5a9I2e6nnnpKzZs3V3x8vP75z3/q119/VWpqqrKzs5WYmKilS5fqxhtv1KhRo3Tttdfqhx9+KO12AwAAAAAAAABQ6oq0Et3X11f79u1TQEBAgfuCg4PVuXNnde7cWaNHj9Y333yjP/74Q61bty7xxgIAAAAAAAAAcCkVKYk+bty4Ih/wtttuu+jGAAAAAAAAAABQnrB5OQAAAAAAAAAAFoqVRN+5c6diY2PN26dOndLDDz+s2rVrq0ePHjpy5EiJNxAAAAAAAAAAgLJSrCR6TEyMvv/+e/P22LFjtWXLFo0YMUIJCQkaNmxYSbcPAAAAAAAAAIAyU6wk+q+//qrrr7/evL1o0SJNnDhRQ4cO1ezZs7VixYoSbyAAAAAAAAAAAGWlSD8sGh0dLUk6cuSI3njjDVWqVEmnTp3SgQMH9NFHH+njjz+WYRg6fvy4+vfvL0maOXNm6bUaAAAAAAAAAIBLoEhJ9FmzZkmSNmzYoJ49e+r+++/X9OnT9fvvv2vu3LmSpMTERH311VckzwEAAAAAAAAAV4wiJdFdevfurQEDBmjmzJlat26d3nrrLfO+tWvXqkWLFiXdPgAAAAAAAAAAykyxkugvv/yyrrrqKsXFxSk6OloPPPCAeV9CQoKGDx9e4g0EAAAAAAAAAKCsFCuJLkkDBgwotPzpp5/+y40BAAAAAAAAAKA8sRelkmEYpd0OAAAAAAAAAADKnSIl0Zs1a6YPP/xQ2dnZ5623Z88eDR48WP/6179KpHEAAAAAAAAAAJSlIm3n8t///lfPPvusnnjiCd1yyy1q1aqVatasKW9vb6WkpOjXX3/VunXr9Msvv2jo0KEaPHhwabcbAAAAAAAAAIBSV6QkepcuXbR161atW7dOH330kebNm6fff/9dmZmZCgwM1HXXXac+ffrooYceUtWqVUu7zQAAAAAAAAAAXBLF+mHRG2+8UTfeeGNptQUAAAAAAAAAgHKlSHuiAwAAAAAAAADwd0QSHQAAAAAAAAAACyTRAQAAAAAAAACwQBIdAAAAAAAAAAALJNEBAAAAAAAAALBQ7CS6w+HQ0aNHC5QnJyfL4XCUSKMAAAAAAAAAACgPip1ENwyj0PKsrCx5enr+5QYBAAAAAAAAAFBeeBS14n/+8x9Jks1m0/Tp01WpUiXzvtzcXH3//fdq3LhxybcQAAAAAAAAAIAyUuQk+sSJEyXlrUSfNm2a29Ytnp6eCg8P17Rp00q+hQAAAAAAAAAAlJEiJ9Hj4+MlSZ06ddInn3yiqlWrllqjAAAAAAAAAAAoD4q9J/qqVasu6wR6v379yroJAAAAAAAAAIDLRLGT6P379z/vv8vNmTNn9Oyzz+qaa66Rr6+vatasqT59+ighIeGCj50yZYrCw8Pl7e2ttm3basuWLW73nz59WkOGDFFAQIAqVaqkHj166MiRI251Dhw4oKioKFWsWFHBwcEaMWKEcnJy3OqsXr1aLVu2lJeXl+rXr6/Zs2f/5bgBAAAAAAAAABdW7CR6SkqK27+jR49q5cqV+uSTT3TixIlSaOJfl5SUpL59+yosLEwLFixQ/fr11atXL2VnZysjI0M//vij/u///k8//vijPvnkE+3evVt33XXXeY/50Ucfafjw4Ro9erR+/PFHNW/eXJGRkTp69KhZJyYmRl9++aUWLVqkNWvWKCEhQffee695f25urqKiopSdna0NGzZozpw5mj17tkaNGmXWiY+PV1RUlDp16qS4uDgNGzZMjz76qJYtW1byLxQAAAAAAAAAwE2R90R3+fTTTwuUOZ1ODR48WPXq1SuRRpW0mJgYbdmyRe+//74mTZqkp556St98842cTqeqVKmi5cuXu9V/66231KZNGx04cEBhYWGFHnPChAl67LHHFB0dLUmaNm2alixZopkzZ+q5555TamqqZsyYofnz56tz586SpFmzZqlJkybatGmTrr/+en377bf69ddf9d133ykkJEQtWrTQ2LFj9eyzz+rll1+Wp6enpk2bpjp16ujNN9+UJDVp0kTr1q3TxIkTFRkZWYqvGgAAAAAAAACg2CvRCz2I3a7hw4dr4sSJJXG4EhcbG6s+ffqoQ4cOqlKlijp16qTx48fL29u70Pqpqamy2Wzy9/cv9P7s7Gxt27ZNXbt2Ncvsdru6du2qjRs3SpK2bdumM2fOuNVp3LixwsLCzDobN27UNddco5CQELNOZGSk0tLS9Msvv5h18h/DVcd1DAAAAAAAAABA6Sn2SnQre/fuLbCXd3nRvn17zZo1S82bN79g3dOnT+vZZ59V79695efnV2idpKQk5ebmuiW/JSkkJES7du2SJCUmJsrT07NAIj4kJESJiYlmncKO4brvfHXS0tKUmZkpHx+fQtuYlZWlrKws83ZaWpokKScnx+wnu90uu90up9Mpp9Np1nWV5+bmyjCMC5Y7HA7ZbLYC/e9wOCTlbVtTlHIPDw8ZhuFWbrPZ5HA4CrTRqpyY8soPHjypY8dOuZXbbHbZbDY5nWfbEhhYUbVrV70sYirpfnI6c+XpaZNdfz6/YchmnG2LbDYZNrtsMuTpmfe65eTklOuY8ivJftq/P0VJSelu9W02uwzD6db2oCBf1a5d9bKIqTz009lz0ZAt33npGnuuMWmXU56eNhl/js/yHJNUOv108GCakpIyLMee6/pWrZqXQkPPvneX55jOLf+r/eSqY5fTbTwZtrz1Eq7rm2s8uR5TnmMqzX46eDBNx49nFTKWzo6xgAAfczxdDjGVdT/lf1+1OXMLjL387HaZ76vlOabS6qdDh04VMk8reH0LDKyosDD/yyKm0ugn15iS8uq4vVfKdX1zn6eV95jyv+4l2U+//56ipKQMs+15Y8kw5w6u8qCgSgoNrXxZxFTW/eR05sr+55LDwsee3OZpTufZx5bXmFyve0n3U8F5WsGxZ7PZFRDgrVq1Kl8WMeVve1n1kyS391Wp4LxOkvn3rGEYBV6D8hZTafXT2Xld4WPP9d4aGFhRoaF+l0VMV2I/leeYiprPLnYSffjw4W63DcPQ4cOHtWTJEvXt27e4h7skJkyYoNdee00xMTHau3ev4uLiNGjQIA0aNMit3pkzZ3TffffJMAy9/fbbZdTakjFu3Di98sorBcpjY2Pl6+srSQoKClK9evUUHx+vY8eOmXVCQ0MVGhqq3377TampqWZ53bp1FRwcrB07digzM9Msb9y4sfz9/RUbG+t2glx77bXy9PTU1q1b3drQqlUrZWdn66effjLLHA6HWrdurdTUVPODCEny8fFR8+bNlZSUpH379pnlVapUUZMmTZSQkKCDBw+a5cQkVaoUojZtF6jPIyEKDKxgli9YkKh9+zI1YkRteXrmvfnaHXb1eeQWhYcHlOuYSqOfUlOzNGJEuMK8EnVcIfI+k67AEwfMujkeXkqsVk9VHRkaMSJcycl7tXXrwXIdU2n0U4UKgYoZ/pGaNa1olq9dm6Lvvz+h3r2rq27dsx/kLf8uRYsW9lNKyv5yHVN56ae0tDOSpMr2LNVK2m2Wu8ae7+kTqnrysAK8sjViRLjS0hIk1SrXMZVGPx04cFirVu+XM9dpOfaWLElSXNxJDRkSph49GsjHx6Ncx1Qa/WS3V5enp03XeB2Wd1KyWX4osJEczhxVP75XkhTgla2nn87bqq68x1Ra/ZSZmaNZs3fq/bkJuvlmf910U1WzflzcSS1ZkqSoqEC1jKiiTh3D5ePjUe5jKg/9lJy8VyNGhCv8zzF47tiTJMNu10EFKDzcx3xfLc8xlUY/2Wze6tR5qVq38rUcey1a5CWZ7A677r2njVq0aFiuYyqtfnLN1Zz2vIVBNY/vkS3fH9GJ1erJLsNtnlbeYyqNftq9+5DmL1gtZ27ea5OUdEbvvHNQLVpUVlRUoFl/375MffZ5sjas76nTp4+X65jKQz+lpmYpPDxvrlHY2Mu1e6hW0m5znpacvFe5udXLdUyl0U+xsTvMedr5xt6CBYnq0jVQL77Q3JynldeYyks/SdLTT4epYb65Xf6x5xLglS1PT5tyc7PdYi2PMZVGP2Vm5ujjj/doypQDlmPPNd+zO+zq1DFcYWE1ynVMV2I/lfeY0tPPLho8H5uRPz1fBJ06dXK7bbfbFRQUpM6dO6t///7y8Cixxe2lonv37urWrZtiYmI0adIkPf7445LOJtD37dunlStXKiAgwPIY2dnZqlixohYvXqzu3bub5X379tWJEyf0+eefa+XKlerSpYtSUlLcVqPXrl1bw4YNU0xMjEaNGqUvvvhCcXFx5v3x8fGqW7eufvzxR1133XW6+eab1bJlS02aNMmsM2vWLA0bNsxtsJyrsJXoV111lZKTk80V9nxSdWXGtH37UbVq9Z4eeLWLgsPP/nHmlE3S2ZXXx/an6ONXVmrDhkfVsmWNch1TafRTXFyi2refqUGzeqhGkxDLlegJO4/qnejFWr++v1q0qF6uY8qvpPopLu6I2rZ9T71e6aygP8eTIZuMfGNJyhtPH/3fCv3ww+Nq3jy4XMdUXvopLi5RrVvP0NB5vRTaKN97zjkr0RN2J2la9MfasGGAIiJqleuYpJLvpx9/TFD79jPVY3RnBYZXKzD2pLwxeSQ+RZ++skIbNuSdq+U5ptLoJ9e1/6l5PVWz0dk/Hs5dseQaTxs3PqbrrqtermMqrX6Ki0vUDTfM1D2juyikTlXZdLYtrutb0v5kffLKSvPaX95jOl/5peqnbdsOme+rNRsFWq5EP7j7uKY+slCbNw8wz9XyGlNp9NP27UfUqtV03f/PvPHn4hp7tj//6+w8Le/aX55jKq1+cs3VHp/VU7WaBBe6GvjQrmN6N988rbzHlP91L6l+2rYtQTfcMF09Rp+dqzllN8eSy9H9KfrwxRXauvVRNW9+9pvO5TGm8tBPcXGJatt2hp54/z6FNqrm1sb81zfX++r69f0VEVGrXMfket1Lsp9c137X+Cts7ElSYvwJfTz6O23adPbaX15jKi/9FBubqHbt3jPfV6XCV6In7E7Sfx5arK1bH1Pz5sHlOqbS6Kfzzeuks9fDpP3H9fGfc7uWLWuW65ikK6+fyntMaWlpCggIUGpqquWuJNJFrERftWpVcR9Srvj7+2vgwIH69ttvtXbtWj3++ONmAn3Pnj1atWrVeRPokuTp6amIiAitWLHCTKI7nU6tWLFCQ4cOlSRFRESoQoUKWrFihXr06CFJ2r17tw4cOKB27dpJktq1a6dXX31VR48eVXBw3sVu+fLl8vPzU9OmTc06S5cudXv+5cuXm8ew4uXlJS8vrwLlHh4eBT7ocA20c7kGVFHLrT5AKU65zWYrtNyqjcUt/zvEZLPlfU0/MDxANZoEFdpOKe/NJDvb+PMrToW3USofMV2o/GL6yW53KDvbkNP10xA2mwxbweMbsik725Dd7nA7XnmM6Vwl1U85OYYCijCeXO9rl0NM5aGf7HbXMW0y7IUc/88xefZctZ+37eUhprNNL8l+yjtXA8IDVPM8Y9CQTWfOFDxXi9t2q/LyPvZc136n7IWOJ9f1zTWeXI8pzzFdTHlRYrLbHTpzxlBwnWrnHVOFXfvLa0x/pbykYsr/vpp/DBb23up0qtBztbzFVBr95LqWB9Up6jzNft62l4eYLrb8QjG5xpT05xZUhb1XWszTpPIZ07lKqp9c75MXGlN59e3Feg3+jmMv77EOc25b+NiT2zzNbneY78XlNab8Sqqf8s/TLjT+cnOLd+3/u469/Ap7X5Xc31vPntuFt728xVTS/VTUeV3+v+vPzgnLZ0z5XSn9VJQ2lmVMRV0QftE/LHrs2DGtW7dO69atc1tWXx7FxMRozZo1Sk1NVW5urlatWqU1a9YoIiJCZ86cUc+ePbV161bNmzdPubm5SkxMVGJiorKzs81jdOnSRW+99ZZ5e/jw4Xrvvfc0Z84c7dy5U4MHD1Z6erqio6Ml5X0dYcCAARo+fLhWrVqlbdu2KTo6Wu3atdP1118vSbr11lvVtGlTPfLII9q+fbuWLVuml156SUOGDDET4IMGDdK+ffs0cuRI7dq1S1OnTtXChQsVExNzCV9BAAAAAAAAAPh7KvZK9PT0dD355JOaO3euuZze4XCoT58++u9//6uKFSte4AiXXlhYmIYPH649e/YoPT1dq1evVv/+/fXkk0/qjz/+0BdffCFJatGihdvjVq1apY4dO0rK++HUpKQk8777779fx44d06hRo5SYmKgWLVrom2++cfsR0IkTJ8put6tHjx7KyspSZGSkpk6dat7vcDj01VdfafDgwWrXrp18fX3Vt29fjRkzxqxTp04dLVmyRDExMZo8ebJCQ0M1ffp0RUZGlsIrBQAAAAAAAADI76J+WHTNmjX68ssv1b59e0nSunXr9NRTT+mZZ54plz/IGRMTY67c7tevn2bPnm3eFx4e7rZXjpX9+/cXKBs6dKi5fUthvL29NWXKFE2ZMsWyTu3atQts13Kujh07KjY29oJtBAAAAAAAAACUrGIn0T/++GMtXrzYXKEtSbfffrt8fHx03333lcskOgAAAAAAAAAAF6PYe6JnZGS4bVniEhwcrIyMjBJpVGnKvwodAAAAAAAAAIDzKXYSvV27dho9erROnz5tlmVmZuqVV15Ru3btSrRxAAAAAAAAAACUpWJv5zJ58mRFRkYqNDRUzZs3lyRt375d3t7eWrZsWYk3EAAAAAAAAACAslLsJPrVV1+tPXv2aN68edq1a5ckqXfv3nrooYfk4+NT4g0EAAAAAAAAAKCsFDuJnp6eLl9fXz322GOl0R4AAAAAAAAAAMqNYu+JHhISov79+2vdunWl0R4AAAAAAAAAAMqNYifRP/jgAx0/flydO3dWw4YN9a9//UsJCQml0TYAAAAAAAAAAMpUsZPo3bt312effaZDhw5p0KBBmj9/vmrXrq077rhDn3zyiXJyckqjnQAAAAAAAAAAXHLFTqK7BAUFafjw4frpp580YcIEfffdd+rZs6dq1qypUaNGKSMjoyTbCQAAAAAAAADAJVfsHxZ1OXLkiObMmaPZs2fr999/V8+ePTVgwAAdPHhQ48eP16ZNm/Ttt9+WZFsBAAAAAAAAALikip1E/+STTzRr1iwtW7ZMTZs21RNPPKGHH35Y/v7+Zp0bbrhBTZo0Kcl2AgAAAAAAAABwyRU7iR4dHa0HHnhA69evV+vWrQutU7NmTb344ot/uXEAAAAAAAAAAJSlYifRDx8+rIoVK563jo+Pj0aPHn3RjQIAAAAAAAAAoDwodhI9fwL99OnTys7Odrvfz8/vr7cKAAAAAAAAAIBywF7cB6Snp2vo0KEKDg6Wr6+vqlat6vYPAAAAAAAAAIArRbGT6CNHjtTKlSv19ttvy8vLS9OnT9crr7yimjVrau7cuaXRRgAAAAAAAAAAykSxt3P58ssvNXfuXHXs2FHR0dG66aabVL9+fdWuXVvz5s3TQw89VBrtBAAAAAAAAADgkiv2SvTjx4+rbt26kvL2Pz9+/Lgk6cYbb9T3339fsq0DAAAAAAAAAKAMFTuJXrduXcXHx0uSGjdurIULF0rKW6Hu7+9foo0DAAAAAAAAAKAsFTuJHh0dre3bt0uSnnvuOU2ZMkXe3t6KiYnRiBEjSryBAAAAAAAAAACUlWLviR4TE2P+d9euXbVr1y5t27ZN9evX17XXXluijQMAAAAAAAAAoCwVOYnudDr1+uuv64svvlB2dra6dOmi0aNHq3bt2qpdu3ZpthEAAAAAAAAAgDJR5O1cXn31Vb3wwguqVKmSatWqpcmTJ2vIkCGl2TYAAAAAAAAAAMpUkZPoc+fO1dSpU7Vs2TJ99tln+vLLLzVv3jw5nc7SbB8AAAAAAAAAAGWmyEn0AwcO6Pbbbzdvd+3aVTabTQkJCaXSMAAAAAAAAAAAylqRk+g5OTny9vZ2K6tQoYLOnDlT4o0CAAAAAAAAAKA8KPIPixqGoX79+snLy8ssO336tAYNGiRfX1+z7JNPPinZFgIAAAAAAAAAUEaKnETv27dvgbKHH364RBsDAAAAAAAAAEB5UuQk+qxZs0qzHQAAAAAAAAAAlDtF3hMdAAAAAAAAAIC/G5LoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiV6Ifv36lXUTAAAAAAAAAADlAEn0Ivrkk0906623KiAgQDabTXFxcUV63KJFi9S4cWN5e3vrmmuu0dKlS93uNwxDo0aNUo0aNeTj46OuXbtqz549bnWOHz+uhx56SH5+fvL399eAAQN06tSpkgoNAAAAAAAAAGCBJPqfkpKS1LdvX4WFhWnBggWqX7++evXqpezsbElSenq6brzxRo0fP77Ix9ywYYN69+6tAQMGKDY2Vt27d1f37t21Y8cOs86///1v/ec//9G0adO0efNm+fr6KjIyUqdPnzbrPPTQQ/rll1+0fPlyffXVV/r+++/1+OOPl1zwAAAAAAAAAIBCkUT/U0xMjDZt2qT3339ft99+u9577z3VrVtXTqdTkvTII49o1KhR6tq1a5GPOXnyZN12220aMWKEmjRporFjx6ply5Z66623JOWtQp80aZJeeukl3X333br22ms1d+5cJSQk6LPPPpMk7dy5U998842mT5+utm3b6sYbb9R///tfffjhh0pISCjx1wEAAAAAAAAAcBZJ9D/FxsaqT58+6tChg6pUqaJOnTpp/Pjx8vb2vuhjbty4sUDSPTIyUhs3bpQkxcfHKzEx0a1OlSpV1LZtW7POxo0b5e/vr1atWpl1unbtKrvdrs2bN1902wAAAAAAAAAAF+ZR1g0oL9q3b69Zs2apefPmJXbMxMREhYSEuJWFhIQoMTHRvN9Vdr46wcHBbvd7eHioWrVqZp3CZGVlKSsry7ydlpYmScrJyVFOTo4kyW63y263y+l0mivu85fn5ubKMIwLljscDtlsNvO4+cslKTc3t0jlHh4eMgzDrdxms8nhcBRoo1V5WcR08GCakpPztt8xDKdbfbvdIcMwZBhOBQZWVGioX6nH5Ppvu5yyOc+207DZJZvNLLPLKU9P25/tM0q9nw4cOKGkpAyz3GazyzCcbm232WwKCqqkWrUqlfrYczpz5elpk11O1wsnW/7+s9lk2OyyyZCnp01OZ65ycnJKfewdOnRKycmZcjrd226z2f9sZt6xXeOptM+nvGPZ3MaTYbNJNnve65VvvP1Z/ZJdI/LOvcw/x5Lhdv65xlhAgLdq1arsFlN5ue6d7WPD7Vx1jT3XmDx7rjr/fFzpXvf27z9unqt5zXEfey5BQZUUFlblElzL852rhrPA2JP+vL5JqlDh7LmaP6bSeH86eDBNx49nWY491/XNda6W9tg777VfMq9vrvHkekxpv+f+8Udqvmu/XTabrZBrv11BQb6qWdO3SP3xV697TmeuKlSw/fkCOWVzG0t/Xt/OufZfimvEgQOpOnbM/Tdv8s8jXAIDKyo8vFq5mxvlP1dtztwCY889Lrmdq6U5N3LN06zGns2W18+uczV/TKUxN3L1pe2ca79r7LnG5LnX/tJ+f/r99xS3a39hY881TwsNrXxJxp5rTEl5dWznzI3yxpj7uXq+WEvq/engwZM6duxUgTnsuXPbwMCKCgvzvyR/P+U/986dR5ht/3POaxhOt+ctrWvEwYNpSkrKsJxHuMoDArzNcy9/TGX9N6HTmWvObQsfe3KbpzmdZx9bmnOj/ftTlJSU7la/sL+rgoJ8Vbt21VIfe27XfsNZ6NiTzfbnsdyv/aX9/nTo0CklJWVYjr38f6Pnj6msx17+193t3FbBeZ2U/9w2CrwGpRHT2XPb6m/6vPfWatW83M7t0pqXu8/rCv+bXuecq06ns9TnRoXN6wq7HrrmdeVp7P0d83vn3meFJPqfJkyYoNdee00xMTHau3ev4uLiNGjQIA0aNKism3ZRxo0bp1deeaVAeWxsrHx98/5IDQoKUr169RQfH69jx46ZdUJDQxUaGqrffvtNqampZnndunUVHBysHTt2KDMz0yxv3Lix/P39FRsb63aCXHvttfL09NTWrVvd2tCqVStlZ2frp59+MsscDodat26t1NRU7dq1yyz38fFR8+bNlZSUpH379pnlVapUUZMmTZSQkKCDBw+a5Zc6pszMHK1avV/j/7VPfn4eGjgw1Kybne3U66//rrp1fdS7d3XZHXZ16hiuatUql2pMTqe/JKmB5zH5JyWb5Un+YTrtWUk1j++RzelUgFe2RowIV25utnJzc0u1n3766X/65NMtcubmXfji4k5qyZIkRUUFqkWLswnOtWtT9MPWdK1aebsM4+zvApTG2EtNzdKIEeEK80rUcYXI+0y6Ak8cMOvmeHgpsVo9VXVkaMSIcCUn79XWrQdLdexlZuZoyNAt2vnrSY0YUVuenme/LPTOOweVlpajESPCJckcTzfddH2pnk9SRUVGBugar8Py/nM8pfkGKc03SAGpf8g7O28SH+CVrWuvzevLS3GNcJ17R49k6Z13DqpFi8qKigo06+/bl6kFCxLVpWugXnyhuXx8PEqsn0oqprS0M5KkyvYs1UrabZa7xp7v6ROqevKwea6mpSVIqlWq1720NJveeecr/TmfkFRw7Lm8NeWQtv7QX0lJ8Zb95PJXruXJyQc1YkS4wr0OKzvDXmDsSVJK5RqSpP79a5nnakn1U2ExZWbm6OOP92jKlAOWY+/mm/11001VzXM1LKxGqY49u726PD1tbueqJB0KbCSHM0fVj++VlHeuPv10mCSV+nvu1q0/a8nSHea1f8mSJMXFndTAgaEKDKxg1l+wIFGHE3P09dKO8vI6e90rrXlEamqWevbMW8Dgl5Esv/SzbU/38VdK5ZoK9Tjhdu0v7WtE9eoNddPNM9S3z9mFFefOI1xOnMjVyJH3yts7q1zNjZKT95rnqndScoGxJ0mG3a6DClB4uI/buVpa8z3Xe8WXXxy1HHv79mVqxIja8vbxUKeO4fLx8SjVOWxmZt4FNthxUrWSksxy19ireipRvpknzGt/RsZxSbVK9f1p//5kzX1/uXmuWo29pKQzmvv+EW3Z3FunTh0psX6yisk1V3Pa8xYGueawLonV6skuw+1cLal+sorJw6Oybu7wuTp3qlJgDvv99yfUu3d11a3rIylvrnZfr/a6+uo6pTo3OnMmw+3cO3ce4eL5Z5IpI+O4tm79o8T6qbCYTp3K0qrV++XMdVrOI15/fb/8/Dw0+Ikw89wrT38TpqZmKTw8ry8LG3u5dg/VStptnqvJyXuVm1u9VOflFSoEKmb4R2rWtKJZXtjYk6Tl36Vo0cJ+SknZX6rz8vzXfo+UU4WOvdOevjqoimrf3t/tXC3N96fMzBz16btRR49kWo69gQNDzXlapUpe5WbsuWKSpKefDlPDfHO7/GPPJcArW56eNuXmZrv1X2mcTwcOHDbPbaux55rvDRkSph49Gph/h5XWvDw1NUv9+9eSpELHXpJ/bfllJCvQ67B5rsbHZ5Xq3CgwsI5atZ6poUNqucWUf+y55OZKgwffLT8/o9yMvb9jfi89/ezfludjM/Kn5yFJ6t69u7p166aYmBhNmjTJ7Uc89+/frzp16ig2NlYtWrQ473HCwsI0fPhwDRs2zCwbPXq0PvvsM23fvl379u1TvXr1ChyrQ4cOatGihSZPnqyZM2fqmWeeUUpKinl/Tk6OvL29tWjRIt1zzz2FPndhK9GvuuoqJScny88v79NAPqn66zHFxSWqffuZ6j6qs4LrVJNd7qeTU3krZJL3H9fHr6zU+vX9dd11NUo1pu3bj6pVq/f01LyeqtnobGLn3JXoCbuTNC36Y23Y8KhatqxRqv20bdsh3XDDDPUY3VlB4VVl5K2/+vN/z7b9SHyKPnpphbZufVTNm59NJJTG2HP13aBZPVSjSYjlp9YJO4/qnejFWr++v1q0qF6qYy8uLlFt285QzzFdVb2Ov1vbncr7w8cuQ8f2p5jjKSKiVon1U2Ftj4s7orZt39MTc3qY46mwlegJu5P01iOL9cMPj6t58+BSv0a4+u/e0Z0VGB5QYCxJUmL8CX08+jtt2jRALVpUd3vdy8N1Ly4uUa1bz9DQeb0U2ijgbOVzVpCdPVcHKCKiVqle92JjE9Wu3XvmuSq5jz2XY/tTtODFFdq69TE1b17w21IleS3/8ceEs+dq4yDLleiHdiXpnX6LtGFDf7O/S+v9KS4uUTfcMFP3jO6ikDpVC4w9p/JWMiflu/a3bFmzVMfeea/9OrtiyTWeNm58TNddV71U33Otrv3mN4D+5Lr2//DD2XP1fP3xV9+fXP03cHYv1WocUOhK9HOv/aV9jdi+/ahat35PD/yzi3nuSWfnEa7z79j+FC1+eaU2bXpMLVqElKu50bZth8xztWajQMuV6Ad3H9fURxZq8+az/V1a8z3Xe8U9ozorqE5AgbGXd32zKXl/snmutmhRvVTnsNu3H1GrVtP15LxeqpXv2n/uSvRzr/2l+f7044+HdcMN08+59ruPPUk6uj9FHxZy7S+tsefqv8dn9VStJsGFrgY+tOuY3s13rpZUP12o/x54tYuC852r517fXHO1DRseVUREzVL9+2nbtgTdcMN089yzWomesDtJ/3loseU8uySvEa6+6zG6swLCq+U9rsB7pU1H44/rszEr3fqvvPxN6JqXP/H+fQptVM2t7fmvb65z9VLOy3u9cvZcLey99dj+FH30fysuybzc7drfOMhyJfrBXcl6u8/CSzYvj4tLVJs2M9RrbBdVr3P2XJXOzm3z/43eokX1cjP2XDG55uXmua3CV6KfPbcv3by8x+jOCgyvVui8zpBNR+JT9OkrKy7pvDxvXhdouRL98K5j5rl6qeblvV89d17n/neV673iUszLye+dP6a0tDQFBAQoNTXVzJkWhpXohfD399fAgQP17bffau3atW5J9OJo166dVqxY4ZZEX758udq1aydJqlOnjqpXr64VK1aYSfS0tDRt3rxZgwcPNo9x4sQJbdu2TREREZKklStXyul0qm3btpbP7eXlJS8vrwLlHh4e8vBw73bXQDuXa0AVtfzc415Muc1mK7Tcqo3FLS/pmOx2h7KzDQXXCVCtJkGF1s1jU3a2IbvdYT5XacVk+/Prck7ZZdgLxuUqc8qu7Gzjz69hFf6654/13OcoTj/ZbHnPFRAeoBrneZ2cf/5Mg81mL/T4JTn2XH3nes68N9hCXq98fZf/eKUx9ux2h5xOKbhOtQu+Tq42ufq7NM+nnByj0PGU98HM2Ta53tcuxTXC1X+B4dbnnlN25eaqQN9J5eO6ZzdfT1uh56prTJ49V+3nbXtJxVS8c7XwMVay1/J856rrK5D5xl5+Z84UPFelkn9/stsdOnPGUHCdaqp5ntcp//XDFV9pjb0LXvtt7tf+c2PKr6Ten4p77S+s76SSn0e4+i/vAXYZhYwlq2t/aV0j8rYaUZFeK1fby9vcKP+5mn8MFvbe6nQW79p8sTG52hR0wXmaCu3v0pgbmV/ltrz2543Jc6/9pfn+ZLPZSuTaX9Jjz9V/rgt+oa+Xxbkqlc7cyNUfgUV4rVzz7Pwxnauk3p8KO/fOndteaJ5dktcIV98FnGee9mcjC+2/8vA3oWteLlmNPbnN0y7lvLwo5+qlmpe7Xftt5/+76lLOy/O2pJKC65zvtSo4/srD2Muv0HNbsji3L928PCA84IJz4Es9L//zjkLHnmx2t3P1Us3Li3KuXqp5Ofm987fd6r4CbSlSrb+BmJgYrVmzRqmpqcrNzdWqVau0Zs0aM3F9/PhxxcXF6ddff5Uk7d69W3FxcW77kvfp00fPP/+8efvpp5/WN998ozfffFO7du3Syy+/rK1bt2ro0KGS8gbUsGHD9M9//lNffPGFfv75Z/Xp00c1a9ZU9+7dJUlNmjTRbbfdpscee0xbtmzR+vXrNXToUD3wwAOqWbPmJXp1AAAAAAAAAODviZXof3JtvbJnzx6lp6dr9erV6t+/v5588klJ0hdffKHo6Giz/gMPPCApb3uWl19+WZJ04MABt09HbrjhBs2fP18vvfSSXnjhBTVo0ECfffaZrr76arPOyJEjlZ6erscff1wnTpzQjTfeqG+++Ube3t5mnXnz5mno0KHq0qWL7Ha7evToof/85z+l+XIAAAAAAAAAAEQS3RQTE6OYmBhJUr9+/TR79my3+/v166d+/fqd9xirV68uUNarVy/16tXL8jE2m01jxozRmDFjLOtUq1ZN8+fPP+9zAwAAAAAAAABKHtu5AAAAAAAAAABggSR6Ic5dhQ4AAAAAAAAA+HsiiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAAAAFggiQ4AAAAAAAAAgAWS6AAAAAAAAAAAWCCJDgAAAAAAAACABZLoAAAAAAAAAABYIIkOAAAAAAAAAIAFkugAAAAAAAD4//buPT6K6v7/+Ht2N3dIAklICCEEtAheAAkXkXqrVFTkV7xRLVVAv4gKlos3tBVFReu1toKCtIKtyFftt16ptBYRqSCXQGxRLiogQkhIAiQQQpLdmd8fYSe7yU7YQJaAvp6PB607ezI5s59zPnPmk8kEAOCAIjoAAAAAAAAAAA4oogMAAAAAAAAA4IAiOgAAAAAAAAAADiiiAwAAAAAAAADggCI6AAAAAAAAAAAOKKIDAAAAAAAAAOCAIjoAAAAAAAAAAA4oogMAAAAAAAAA4IAiOgAAAAAAAAAADiiiAwAAAAAAAADggCI6AAAAAAAAAAAOKKIDAAAAAAAAAOCAIjoAAAAAAAAAAA4oogMAAAAAAAAA4IAiOgAAAAAAAAAADiiiAwAAAAAAAADggCI6AAAAAAAAAAAOKKIDAAAAAAAAAOCAIjoAAAAAAAAAAA4oogMAAAAAAAAA4IAiOgAAAAAAAAAADiiiAwAAAAAAAADggCI6AAAAAAAAAAAOKKIDAAAAAAAAAOCAIjoAAAAAAAAAAA4oogMAAAAAAAAA4IAiOgAAAAAAAAAADiiiAwAAAAAAAADggCI6AAAAAAAAAAAOKKIDAAAAAAAAAOCAIjoAAAAAAAAAAA4oogMAAAAAAAAA4IAiOgAAAAAAAAAADjwt3QEcXxXVFXJXuxtsd7vcivXEBrVz4jJciouKO6q2B2sOyrKskG0Nw1B8VPxRta2sqZRpmY79SIhOOKq2h7yH5DN9jm0D1fgOybJCt60xD0qqO5Yqb5W8ptdxX/FR8TIMI6y2cVFxchm1Pw+r9lWr0ntQiqpWjXlQ1d7g2HjcdW19VrUUVds+VAxjPbFyu9z2fmt8NY59CGxb46tRta866P3APvlMr9yu2tTjM2vkM+va1pgHg/oU44mR53Bbr+lVlbfKsQ/R7mhFuaPCbutnWr4Gn1Mgn1XXP5/p0yHvIce2Ue4oe9+mZaqyprJJbZ1i5zI88rhjJEmWZTX4nAJ5XB7FeOraHqw56NiHcOa9v09eM/jzrP+ZBfapsqbyuOQIp3F+uHXwcbRQjmisbf14R7nr5r3XVyXTqp33oeJ9LDmisbkceNxes1qmGbptjXlQMuraHmuOCBQ472t8NY3mNLcrxs4npuVtNKc1NUf424aa94F98prV8rj8c9knr6+ubf3YHWuOcOL/vKTaed9oTgvIuc2RIxpr6xQ7w3Apyl037xvLaZFYR/j7FajGVykrYPzX79PxyBHy1DSS06Qod92xVfuqGo1HpHJEY23rx9vjjpXLqJ33gfkkVLyPJUc01jbwuH2mVz4z9LyvMQ9Krro4HWuOCBQ4l32mr9Gc5nJF2fnEssxGc1pTc0Rja4OgnOarCl5z+Ora1o/dseYIJ/XnfWPzwmsGf/aRvtZwil+0p24u1/gqG81rzbWOsPt2uE+BxxK4jrD7FdAny7IiniPk9jYaO4+7bjzUmNWNjolI5YjGrjXqx9rtipbb5Z/3dfkkVKyPJUc01rYm4BxuWqa8vtDzvsY8KLm9QW2PJUc01raxnGYYbkUFxLmxnNbc9Yi6a5jgz7PaW3ddXj92J2I94khrg8DcU+U71GxrA6e2oeIdWGPwn++dcmBT8km49YhKb/B1Sf0ag5+/T4HHfSw5or761xqNXasG5hMZpuO8kJqWIyJ5rXG0OSKS1xpOjqVmeSSG5ZQV8L1SXl6upKQkaYqk2IbvX/6jy7XwFwvt1wmPJTgO9gs6XaCPR31sv057Kk0lB0tCtu2T2Uerx6y2X+c8l6Nvy74N2fb0tNP1xe1f2K/PeOEMfVn8Zci2nZI6advEbfbrvnP6ak3BmpBtU+NTVXx3sf36wnkXaum3S0O2jY+KV8X9dRNsyGtD9Pev/h6yrSTlDS1Qbu5LGj9/uD4+cK/W73rPsa2m36+8z8ard+/2GvX2KL3y+SuOTXfftVtpCWmSpHELx+mFNS84tt06YatyknMkSXf/8249veJpx7YTL1ym9MRukqS//ftBrd7jvN9V/7NKfTv0lSQ99elTuudf9zi2XTJyiS7MuVCSNHPVTI3/YLxj25H956tb+iWSpLztC/TX/F85tn3jmjd07RnXSpLe/OJNDf/rcMe2c382V6N6jZIkLdy8UFcsuMKx7YzLZmiA5yrl5r6kYXNy9PbOUY5tz029U8vHt1Ze3i3ype9Qvz/2c2z74AUP6qELH5IkfbH7C5354pmObe8acJeeuuQpSdK2fdvU+fedHduekzNaP+vxpCTpQFWJpv+ju2PbkT1Hat6weZJqTxatHm/l2Paa06/Rm9e+ab82phmObTvFn69bB/2f/Xrqwk5BF9aBjkeOWLt2l3L/1FNqVxyybXJcR/0y6x+aMeIN5eXdorF5/69FcoT1YN0p9to3r9Vfv/yrY9tpl2+zF8Jvrhuvtd+97tg2UjnijQuXaPiFSzV+/nBtMOZq8eanHNvqpTHKe2+aevdu36w54v3r39eQrkMkSfPy52n0O6Md2/6izx91VubPJElLV/1FiwonO7Ztao4Y12+cJOnjbR/rolcucmx72ekP6vxTa4/nu73r9MKySxzbRipH3N7ndt3c/jfKzX1JN78ySH/a+mPHtt1aD9PGO3spL+8WnXZmYrPliKasIzqnnKtbBr5jv562sKsO+faGbBupdYT2JWl83xXq0L12Hs345KfauS8/ZNPjkSPWrt2l3N8Oks5w6K9qc0TxVwc1Y8QbuuKPX+r9HW84to1Ujlh/23qd0e4MSdJDHz+kaUunOba9/bx/qmObsyVJn3w9Qx986dw2Ujnit7mzNWXoLo2fP1x7kpbrtTX/49hWb/9MeX96Ub17t2/WHPHkoCd198C7JUmrd65udB1xcde7NahbbS79T/5yLdj+M8e2Tc0RM4fMlCQVVxSr3dPtHNv27vhzXXv2DEm1PzB/8O85jm0jlSP864i1a3cpN/clxT7ye8cc0S7mTO2+7xrl5d2i3r3bt8i1RkJ0in5z6Ub79Uuf/kxbS5eHbBvJdcTYU9Yo54xOklpuHeHPEWvX7lLunddLF4bOlVJtjnAVZmnGiDc04XWvfr/hUce2kcoRTbnWuKbXH5Sbfb0kaWPRP/XKyhGObSOVI27pOlkv/SJR4+cPl6dDqZ77+DzHtvr0XOX99q/q3bt9s+aIplxrnNl+qEb0fVmStHNDsWZ8dbpj20jVI9rFnKlJg5fYr5/4sLf2VX4Xsu2JVo9Yu3aXcp+5QOr6Vci2kvT4/yuu/WxHvKGLZ6/R4l3vO7Y9cN8Bu0DfnPWIewblqU18tiTp7188pGXfzHRs25R1RFPqEZo3UuOn36sO3dO0Yuuf9O5/pzg2fa7fnzXhshtqv6wZc0TgtcbvP/iLJq660bHt/zvrtxrQ+eba2P36CWmUcyyakiMiea0RiRwR6XWEXzj1CH/NtKysTImJiY794HEuAAAAAAAAAAA44E70Hwj/T1UKigtC/lSFx7mEbnukX7HctL7cvhO9XdfWjo9zKdhUotk3vKe8vLHq3bt9RB/nsjrvO/34xy9r7MtXKfO01KC2gb9qtf3LnXpx9Bv6979vUq9eGQ3225yPc8nPL7T71LF7B8fHuRRsKtHsm/5m9ymSj3P57+clys19Sbe/erXSu7Z2bFu4eZ9e/OXbysu7RT17tYvor08Ffk6Bsav/OJdvv9we9DkFau5fn/L36daXr1WnM7Ls7fV/LS0wdr3Pzox4jli7dpdyz5kRcpwfbq3iryrsO9G7n5V8wj3OpX68nR7nUn9eSJF7VMOG/+5T3z5/1Pj5w5V+WpLj41wKNpVo9o3vKm/Nrerdu31EH+eyKm+7Y04LfJzLd1/u0guj/9cxpzXn41wCY5fVvb3j41zqxy6Sv2L5xX/2KDf3JY179Vq165rg2LZw0z69eENtTjv77IyI/oqlU06r/ziXbV9865jTIrGO8Pdr/Lxf2nei13+cS/3YRTpHrF27S7n9Z2rs3Csdclrt41wKNpZoxog3tGLVSJ3VM81xvy3xOJf68XZ6nEuonBapRzV88Z896t/3ZY2fP1wZp7VxfJxLwaYSzR75jvJW36bevdtH9HEun63Z5pjTAh/nsuPLIs0c/ZpjTmvOX8MOymndMhwf51I/dpH+NWz/nehj/3KF47zYtWmPZt3wrn0neqSvNZzyWv3HuezcuNsxrzX341z8fRo3d4SyTq+9OzDU41wC43du3y4RzRFr1+5Sbr8XNHbeMMfYedyx2rVxj2aMeEOfrR6lM3uEbie1zONc6sfa6XEuoXJapB7nsv4/JTqn7zyNnz9c7bulOD7OpWBTiWaPelt5q25X797tI/qohuWrtzjmtMDHuezcUKwZo151zGnNXY+ou4a5Rp3O6GhvD3ycS/3YnWj1iHDWBtGeBPtO9OWrblSPns53CDfH41xC5cBQj3MJNS+kyDzOJT+/UD8+588a/+p16tA9zfFxLv4+rVx+q/r1qR0TkXqcy6o136n/ubMcr1X9+WTnhmLN+OX/6t+f3RhyXkg8zuVo2h5NzTLcO9F5JvoPTEJ0QvAzthpp15R9hivoecbN2LYpzzBqStvASRpauf1fQc97qyfKdVCBz2iO8cQoRjFh9aEpbaPd0YrzxEs10YpyxQct6OtzG9FSTW37I8Uw2h0d9BzxxkS5o+yTh19gn9wBz+51u6LqngWmw5+TQ588Lo880eGlrKa0dRnuI3xOdUnf7XKHPd5dhqvJbcOJnWEYinLFhxU7wzCOeS77++RxBY/B+v0LjF39ORapHHHkcR78/L1wNW+OcG7bWLxrCxi1n3lj80Jqeo5obC67jLqc5nFFS67QbaNcByWr7pfZjjVHNNY23JzmMjxh57Sm5IhQ8z6wT56Az6h+PmksdkeTI8JhGEbjOc11MKhtpM734eY0SWHnNKl51hH+fgX1wR087xuLXaRyhLxRR/ys/KLdMWHHozlzRGNtG81pAfnkSDmtqTmisbYeV11Oc7s8QWuQoP24Dkpm3d8MOtYc0VjbcOeFYbjCnhdNzRGN5jR3TFDbcHOaFLnrh8Y+K48r+OI80tca4cQvyh0Xdl47lnWE3bfDffIXvKTgdYTdr4D4BbaNVI6QzxN2TotyRYc9JpozRwSqP+8bi3VgPjnSvGhqjmisbVRATnMZLucx6Doo+TxBbY8lRzTWNtycJinsnCYdez6pu4YJnjfRnrp5f6TYnQj1iKasDWLcsRFZGwS2PVK8/ef7I3220rGtOQLFeeKDrkvq1xj8/H0K/FtCx5IjjtQ27HlhucKeF5GuR4SjqTkiktcakWh7JDzOBQAAAAAAAAAABxTRAQAAAAAAAABwQBEdAAAAAAAAAAAHFNEBAAAAAAAAAHBAER0AAAAAAAAAAAcU0QEAAAAAAAAAcEARHQAAAAAAAAAABxTRj8KoUaNaugsAAAAAAAAAgOOAInozsSxLU6dOVfv27RUXF6dBgwbpq6++OuLXzZw5Uzk5OYqNjVX//v21atWqoPcPHTqkcePGKSUlRa1atdLVV1+toqKiSB0GAAAAAAAAACAARfQwlZSUaOTIkcrOztaCBQt06qmn6tprr1V1dbUk6cknn9Qf/vAHzZo1SytXrlRCQoIGDx6sQ4cOOe7z9ddf1+TJk/Xggw9q7dq16tmzpwYPHqzdu3fbbSZNmqT33ntPb775ppYuXaqCggJdddVVET9eAAAAAAAAAABF9LBNmjRJn332mf7yl7/o8ssv15w5c9SlSxeZpinLsvTcc8/pN7/5jX72s5+pR48e+vOf/6yCggK9/fbbjvt89tlnNWbMGI0ePVqnn366Zs2apfj4eL388suSpLKyMv3pT3/Ss88+q5/85CfKzc3V3LlztXz5cn322WfH6cgBAAAAAAAA4IfL09IdOFmsW7dON954oy644ALNnTtXF110kS666CJJ0pYtW1RYWKhBgwbZ7ZOSktS/f3+tWLFC1113XYP9VVdXKy8vT/fdd5+9zeVyadCgQVqxYoUkKS8vTzU1NUH77datm7Kzs7VixQqdc845jv2tqqpSVVWV/bq8vFyS5PV65fV67e/ncrlkmqZM0wzqh8vlks/nk2VZR9zudrtlGIa938DtkuTz+cLa7vF4ZFlW0HbDMOR2uxv00Wl7/WMqLDygwsIDMgxDhuGSZZlBfTcMlwzDUHp6nNLTW0mS9u/YoarSUhmGIV/AviXJZRiSpJiUFLXOypJp+hQdbWj31lJJllyygtqbckmyVLptj6KjDZmmTzt37lNRUaUsy5JlBR9TYB8zMlopI6OVXC6XDuzYoYri4np9N+QyDJmWZW+PS02VZUVLkkq2lcolM6AvhiTD3la6ba+iow1ZlqWCgnIVFJQH9d0wan/GFtjHjIxWyspKlmVZ2vftt6osKQnqi2VZMuv1MSEtTZblVnS0odLDfbJkyJJx+H/r2hdv3Wt/T6/XGxC/2jiFil9mZmulpcXZsassKbHjFNiX+vEzTY/dp1qh41e8tdSOndfrVVHRgcPxq9+X0PE7sHOnqkpLg+Lk74sREL+41FSZpkcul7R7656g2NXFT3LJsmNnmrVzcdeu/Q3i53K5G4yx9u1bqUOHZO379lsdLC4O6nv9sSRJ8ampkmLk8dTFrvaTqo1cYB9Lt+2V6/CPZX0+n3bt2q/CwgN2nAyjtr+BDMOl9u1bqV27eDt2gXGqHz+3y6XYlBQldOhgz72Sw/GrP5YkaffWfXK7Zcdu/44dOlRaGvJYAz+D2MPzu7DwgIqKDjqOPf8x+WMtSRU7d6qypMRx7JkBc9U0a0/BxVtLQ8TbZR9T3Vw17Vg3Nvak2rmamZkol8ulvdu22Z+tvy9GiM8gIS1NUnTQXK3tS93Y8yvd5p+rlnbs2GfHWgo99gzDUGZmotLTE2Saph1vp7Hn3x7Ttm3QXDVkNRh7Uu2Y3L11r6Ki6uZqYPxCjT1JSk+Pt2Pnz/2BcfJzu1x2fvPHLirK0O6te0KOPX/8AnO/aZoqKqpoUvxC5X5//ALPT4G5vzRk7q+Ln388+eO3c2dZwFz198U5fmXbtzfI/aHi11jurx8/f+4PjJ0/99f2M7h9/fj5x1NgnAL74j8/BZ67neLn72PJtvq5v0JFRQcdc0H93F+xc6cOlZY6riMCc0HrrCxZliXDCBW/2nVEYPyiomr30ZRcnpyTo507y7Rr1/6g9qHWRpmZrZWZmSSfz6fy774Lys1Oa6PaeREc71C5Q6rNzS6X6s3VCsexZxgupafHKz09QZKalMv9+aN4a+nhvoQ6t9b2OTDeu3cf1K5dBxzHnmWZQbn/YEGBDhYXO469wHhbVpSkhrm//tooMPdL0s6d+7Rr14GA/YdeG2VmJiozMzFk7pca5rfauRoVIvcHjz1JKgnI/cFz1WmdHRy/I+V+/xiLbts2aJ3dWPx2b90TFDt/7vfHKVDg+ckfv/07dqh6zx7H3BG4Tqudq+bhzyJ0/EKts0OfuxuujTIyWqlDhySVb9+uioC57RS/uNRUtcnJkWVZIeNXP7/Vxc8MOnc3Fr/MzES1axcfMheEil98WpriMzPt2NWus63D8at/rgyOn3/MhpvLJYW1Lk9PT7DnKuvy5l+XN8z9Dcee1HBdHpz7jxy/wGt0p/j5TNOeq6bpk2FIu0Ous43Dn1Nw/mhKLk/s2FG7dx9kXR7Gutzfp8bGnnRirsuPVJNp7nV5U2osrbKyVFBQHtFcHvS5nwD1vfrbm7NmWf89JxTRwzRw4EDNnTtXPXv2bPBeYWGhJCk9PT1oe3p6uv1efSUlJfL5fCG/ZuPGjfZ+o6OjlZycHPZ+/R5//HFNmzatwfZ169YpIaH2IiQtLU2nnHKKtm7dquKAE3dWVpaysrK0efNmlZWV2du7dOmidu3aaf369aqsrLS3d+vWTcnJyVq3bl3QBOnRo4eio6O1Zs2aoD706dNH1dXV+s9//mNvc7vd6tu3r8rKyuzjl6S4uDj17NlTJSUl2rJli709KSlJ3bt3V0FBgXbs2GFvr39MmzeXavPmUi1btleffLJP11+foS5d4uz2CxeWKD9/v+bM6aczz2wjb2WlvluyRCXz56tqyxZl3H23jOhou33x7NnylZcr89571fGii1SjKN07pYueePgjJSZ6NHZslt22utrUU099qy5d4nT99Rm6d0oX7d+/Tfn5+zVmzCr16tVaQ4ak2u23bKnUggWFOv/8ZJ13Xht17Zqirl1TlOjx6J/nnaeEiy9WfK9edvsDy5Zp/yefqO311yumSxdJtUnjRz+5QnHxUUravkmtD0bZ7RcsKNSWLZW6++5Oio52qbWke6d0UVKSW3Pm5Kmm5rugOD311LYGx3TqqakaNepyFWzapE9ee81OZN6SEhXPnq34Xr2UNGSI3b5qyxaVv/WWBvz9I907pYvMg1ukL6X8/P1auLBEQ4akqlev1nb7/GV7FRcfJa+3WGvWfGfHzx+nsWOzlJoafEw33NBPQ4YkqOrAAX23ZIlM07TjlHH33UHHVPjUU3InJir9ttuUNuA83Tuliw7t+1pPjVhsx8mvpKRGs2fvUK9ere3YrVmzQ/n5+3TbbSvtONl9r3dMXbumqEvHeG2YPl1lixcHxUmSyhYu1MH8fKWNHStPaqpcLpfSBpyn07q11hu/+ZcdJ7/Zs3eovNyru+/OsWO3f/82+XwZmjt3jSor6+ZB/bHnl5OTpuGXnKHXhw9Xq5/+NChOexYsUOvzz1er886r2/7FFxpwzyO6Ymg7dTkcO0kh51NrSX36Jis1NV7r16/X55/v0ObNpSHHXuAxjR8/QBefLzt2gXFKGzvWbmtVV6vwqacU362berzwgj33dm/fpBm/3hFyPr2xoFAXD0rV/v3b9Nmyr/TdkiU6sHatyhYuVNKQIY7zKe7UU9Xxoou05buD+t3vNjmOPf8xnXlmmrp2TZG3slLrbrhB1cXFjmPPf0wul0vtzj1fcfFRWv3ycsexN2RIqh1vr7dYs2d/pSVLPm907ElS164p+slPeirRNPXO1KmKys52HHv29v/7P1308puaPDlH7oB4B449v9aSkpKjlZTk1kcffWrH2mnslZTUKCPjFN1+++na/MUXdrydxt7B/HyVLVyotsOGKfuW2+38sWx2XqO5fNy4bHuubt5cqmnTvnAce+XlXs2Zk2vH7rslS1TwxBOOYy+mSxe1vf56e67ecktHzfzNv46Yy/1zdevWKv3lL99pzZovgvJeqPnUtWuKzu/dSW/37as2I0cGxWnPggUNzk8ul0tnXHKlkpKjg+aq1DCXt5Y0eXKOUlPjVVZWFhS/+mMv8Ji6dj1NI4Yla83f/mbPVX+cQs2nylWrlPvuP4Jyv1Muf39BoeLio1RRsd2O3ebNpSHHXuAxPfNMT3XpGK/vliyR79ChoDj5BZ6f2gwdap+7r7u+vf7ym381mssDc//KleWaOHGF49jzH5M/9//n9tt1cONGx3WEP0e4XC51vOgiZXXuqQ5Z8UHxCzWfWku65ZaOiqsq1evDbw47l1/z+9/r7fc2aNeuur+r47Q2atOmve6886da+9ln+vof/7DjHWrs+Y/JqK7WGf/716B4h1pHVFebeuOpb9X99NZBc3X58kLHsbdgQaGee26A+vdPtOdquLncf65/76+r9PoRcnlgvBcvPqiHH/6349gbOzbLXqeZVVVademlcmdmOo49/9rI5XIp67xBiouP0q5/5unURnK5P/e73RWSpPfe+0w7dtQ98tFpPrVu3UG3Xf8j/X3WLMlTd6nntDYqef55XbTw46DYOeXyqpIaxcVHKSamSmvWrLHnav28V/+YZsw4Rz1Pj7Zzf6g1rFR3fkq//XZ1vuYa+1w//+XljebywNht3lyqMWPyjrgu98/VrX/9q4peeCHkGjZwPvnnamzrdoqLj9L+5Z/rlIPOudwfv5iYKs2evVmFhd84jj3/MXXtmqJLzz1NC3JzlXrHHUFxCrU2kterobffroQEV1D8nHJ58ZZKxcVHye2u0Ecf5du532ldvmzZXl10UU8NuyxOGxYutHOB0zpiz4IF8hUUqN+iRaoy3XafZk/4pNFcfu+ULtpXvEGL3l3WpFzuiYsLa10+fHiOfa5nXd786/Kuz/7BjnXJJ87riMB1uX+uvvHGNsex5z+mSy/Nss/1e997z3Hs+c9P7thY+1zfIStebz/8UaO53B+7VZ9+06Rc3n3IEL39QSXr8jDW5V9+WabNm0sbHXsn6rrcf67PaNUq4uvyptZYhqxYoRX/2RnRXO6KibG3nwj1Pb9I1CwrKioUDsOy6v1YByFVVFToscce0xtvvKFvvvlGPXr00K233qpbb71Vy5cv18CBA1VQUKD27dvbXzN8+HAZhqHXX3+9wf4KCgrUoUMHLV++XAMGDLC333PPPVq6dKlWrlyp1157TaNHjw66o1yS+vXrp4suukhPPPGEY39D3YnesWNHlZaWKjExURJ3otfuJ/hO9N35+VowcKAu9XqVapryBVwkSpKrpkallqVF0dG6/tNP1a5XL+3YUa7S0tpn3zd2x0tqaryyshID7pgI70704s8/1/w+fXSZx6M2rrqTjeHzyeXzyYyKkmUY2iPpH5JGLF+u6rRTVVx84Ih3vKSmxqtTpzYh75ho7E70wrw8zT/3XA2W1FaSYVly1dTIcrlkBlyw7bEsLaqp0Yg1a1SV0lklJQdDHmvgZ5CW1kodOrSSZVlNuhPdH7vBklJraiTLklk/ftXVKjUMLYqK0vWffqrq1C4qKTno+BN6/11xKSmxysqqnTdNuRPdVfi1XjvnHF3u86nN4TjZffF6ZZimzKgolRqG/iHp+k8/VU3aqSotrXT8Cb2/j/7x5Ha7m3THi6doi/7St68u9XjU1r/vw/Ez3W5Zh+fnHkmLTFM3rFypyradVVJSd1Jxil9aWoI6dWrT5DteVLDZjl3bw3GSYciMigpqv6+6Wn93ufSLlSsD5l5lo3cvpqTEqkOH1nVz2zSV6vXK9HhkhZhPxVFR+odh6PpPP5WZcWqT7kTfnZ+v1/r102WWpTYhxp7/mPxz9fpPP5W33Y9UXFzhOPYC492xY1KT73gpzs/Xq+eco8GGYcc7cOz5x+QeSYu8Xt2werUq2+bYc9V/rFLD/JaW1krZ2UlBdzJLR77jpXDtWjveKSHGniQZpqm9Xq/+7vHoFytW2HP1SLm8bdsYe6425U50e3xUVyslxNhzV1fLcrlU4vHYsatO7aI9e6qOmMv9c9XlcjXpTnRP0Td6tU8fXRoVpbYhcof//BSY+6tST1FxcV0snOKXmhqvnJy2auqd6CrYrNcCc79pyhViPu31+fSBzxci9zvn8rS0BGVmJtixC/dOdFfh1/Z4Sjscp8DzkD+/lbhcWuTxBJ27a+PnnMtTUuICcn/4d6K7Cr/Wa/3763LTVHKIdYT//BSYC9rn5mr79rIG8Qs1n1JT4xW3Z1uTc7k3/ZQm3Ym+Ky8vKN71x54d75oafWBZ+sXq1fZcDYxTqLVRSkqcOnSovdusKXeiH00ur07totLSQ0fM5f65KqlJd6Lvzs/Xa3376jKXS21CjD3/mPTH+xfLl6sm5DqtYTxSU+OVnZ0sl8vVpDvR3YVf69UBA+zYScFjz2+PpEXV1frlmjU6FDBX/XEKFY+0tFbKymod5jq7Ln7Grq/qcn+9Naz9Pb1e7TFNfRAVpeuXLw9aZzeWywPXaU25E91V+LUWnHuuLqupUVuH3GG63Sp1u+25mtG7t3bs2N+k+IXO/aHvRLdzf3S0HTup4drIP55+uWKF2p19tr79dm+IdbZz/Jpy92L93B9qHSFJe71efWCa+sXq1Xbsas/djefylJRYRZdsOapc3pQ70Xfn57MuV2TW5Q3XaY2vy6X6ub/x+PnP9f5r9FC5wzBNFUdH27Fr16uXdu48oJKSg43mcn/sjiaXK7Mr6/Iw1uX1r+lPpnW5/1xf8vnnEV+XH02NxZd+SsRzuf25nwD1vfrbm7NmWV5erpSUFJWVldk101C4Ez1MCQkJmj59uqZPn65hw4bpsssu06RJk+xHsEhSUVFRUBG9qKhIvQIGXaDU1FS53W4VFRUFbS8qKlJGRu1PCTMyMlRdXa19+/YF3Y0e2MZJTEyMYgJ+auTn8Xjk8QSH3T/Q6nMHJM5wttff79FsNwwj5HanPh5pe1ZWsrKykkN+/1DcLpes6mqlSkqXpMN/ODaoj6r9Cajb5ZLH41FOTlvl5IT9LdShQ7I6dAi/T/5foUv1epUeqkFNTW3fVfvLkoZhKDs7SdnZSWF/D/+v/obLMAxZ1dVKk4L7ZJpBn5l/pLgM4/DnFHg5cGRNiZ8/dkF9ChU/y7LjdzR9akr8ina7JJ9PKZLSD8epgZqaw78wXXsMmZ2S1alTePv3a0r8iookmabSqqsbjiefr/af6mInSTk5bZST06Z+a0dut7tJsSsqDBE7y2oQP7dq+340c6/B3Hb6da2amrpYHEX+kGXVfo8QY89/TP656na5lNnEudq+fWu1b9/6yA0Dv21NTcO5Ktm5Q6of76bNi6PNs0F9Chh7fi5J8nqPeq4eTf5IlZQeYuxJkkxTRnW1Hbum5n6pafEr2l2b+9NqakLn/sN9DMz9nZqYPwzDaNpc3eWQ++svSA////HI/UW7642neuchm2ke47k7SR06hDdXi3a7JNOszf2h+iI1yAVNjV/Rnm1NzuVNOQapNn4h4x0qN0vHf65KYeXyo5mrTTmvug+vQ1NNM3S8D49Jf7xdR7FOk5q4/ihU6NhJIddpxlHM1aaus4uKQuT+EGsjQ7XnraOdq03OHzU1tXPVKXccLvj7x5PL5Wpy/I4q94ea2wHnJ/94ko4ufs2S++vFLzAX1MUuvD4V7dl2VLm8KfPC7WJdHlafjmJdfrzO9Xbud4pfwDrN4/E06bx6NLk8nXV5RPt0Iq3LDeP4rMubWmNpfxxyeX0tWd+rrzlrlk7vNehLWK0QJDk5WWPHjtVll12mZcuWqXPnzsrIyNDixYvtNuXl5Vq5cmXQXeaBoqOjlZubG/Q1pmlq8eLF9tfk5uYqKioqqM2mTZu0fft2x/0CAAAAAAAAAJoPRfQwTZo0SUuXLlVZWZl8Pp+WLFmipUuXKjc3V4ZhaOLEiXr00Uf17rvv6r///a9uvPFGZWZmatiwYfY+Lr74Ys2YMcN+PXnyZM2ZM0evvPKKNmzYoNtuu00VFRUaPXq0pNrnAt18882aPHmylixZory8PI0ePVoDBgxo9I+KAgAAAAAAAACaB49zCVN2drYmT56sr776ShUVFfr4449100036Y7Df/TlnnvuUUVFhW655Rbt27dPP/7xj7Vo0SLFxsba+/jmm29UEvCXmH/+85+ruLhYU6dOVWFhoXr16qVFixYF/bHR3/3ud3K5XLr66qtVVVWlwYMH64UXXjh+Bw4AAAAAAAAAP2AU0cM0adIkTZo0SZI0atQozZs3L+h9wzD08MMP6+GHH3bcx7Zt2xpsGz9+vMaPH+/4NbGxsZo5c6Zmzpx5VP0GAAAAAAAAABw9HucCAAAAAAAAAIADiuhHof5d6AAAAAAAAACA7yeK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roEbBt2zY99NBDLd0NAAAAAAAAAMAxooh+nL300ku68MILlZiYKMMwtG/fvrC+bubMmcrJyVFsbKz69++vVatWRbajAAAAAAAAAACK6M1p69atuvLKK3XOOefoySefVLdu3XTrrbcGtTl48KAuvfRS3X///WHv9/XXX9fkyZP14IMPau3aterZs6cGDx6s3bt3N/chAAAAAAAAAAACeFq6A98nN954o3w+n1588UV9+OGH+tnPfqZPPvkkqM3EiRMlSR9//HHY+3322Wc1ZswYjR49WpI0a9YsLVy4UC+//LKmTJnSXN0HAAAAAAAAANTDnejNaN26dRo3bpzOPvtstWvXToMHD9b06dOPaZ/V1dXKy8vToEGD7G0ul0uDBg3SihUrjrXLAAAAAAAAAIBGcCd6Mxo4cKCee+45mabZbPssKSmRz+dTenp60Pb09HRt3LjR8euqqqpUVVVlvy4vL5ckeb1eeb1eSbXFeJfLJdM0g/rs3+7z+WRZ1hG3u91uGYZh7zdwuyT5fL6wtns8HlmWFbTdMAy53e4GfXTafqzH5DNNGdHRKvF6JdOULzo6qI+umhqVWpaM6Gj5TNM+5kgek3m4vyUej3yuup97GT6fXD6fzKgoWYahPZIMyT6+SMfJiI5WsSSfJMOy5KqpkeVyyfTUpZU9liXV1Mi0rKDvG4mx549dsSSrpkayLJn141ddrVLDkBEVFRS/SI09n2lKbrdKA+Jkt/d6ZZimzKio2j4dbm9ZVkTn0+HOqtjjkf8df/xMt1vW4f3tkaTDxxHxHBEQO59q4yTDkBkVFdR+X3W15HIFxS7cONlz2zQlr1emxyMrxHwqjoqSYRj292jKMflMUzIMlVhWw9wRcEz+ueo73N9I5j1JMqKiVGwYdrwDx55/TO6RpMPHEulcHhhvM8TYkyTDNLXX65U8nqB4R+r8ZI+P6mpZIcaeu7palsulEo/Hjp3P54vo+cn/38VRUfKFyB3+MRaY++t/7qGO1e+o8l793G+acoWYT3t9Psnnc8z9zXl+ChxPOhynwPOQP7+VuFwyAsZTpNYR0uG57XKp1GEd4T8/BeaCwHN3OHE6/M0jmsvrx7v+2PPbe/iYAudq/TiFc0wnSi5vrO+htvtzeYnLJV+Isecfk/54+9d1kRh7gX0MjJ0UPPb89ki186beXJWaf20UlPvrrWHt9l6v9phmg3VapK41fIe/V2mINWzgfCp1u+25appmRK+f7NwfHa3A3tdfG/nHk/9rInn95JQL6sdvr//6KcxccLxzOevyuj629Lq8fh+PdEz1r9Gd4lccHW3Hzuv1nnC5XGJdzrq85WosxyOXhzqmlqzvBfbxSGOv/ntOKKIfpfnz52vs2LH26w8++EDz58/XtGnTdP/996uwsFD/+Mc/dOedd+qaa6457v17/PHHNW3atAbb161bp4SEBElSWlqaTjnlFG3dulXFxcV2m6ysLGVlZWnz5s0qKyuzt3fp0kXt2rXT+vXrVVlZaW/v1q2bkpOTtW7duqAJ0qNHD0VHR2vNmjVBfejTp4+qq6v1n//8x97mdrvVt29flZWVBf1wIC4uTj179lRJSYm2bNlib09KSlL37t1VUFCgHTt22NuP9Zi8lZXKvPdefTR/vqq2bFHGhAkyAi42imfPlq+8XJn33qst+/dr++Fji+QxJXo88sTGavnFFyu+Vy97+4Fly7T/k0/U9pprFNOliyQp0+XSoZgYSYponHwJCcq89159fjiReUtKVDx7tuJ79FDSkCF2+6otW+R56y0dcLv1bcD+IzH2qg4csPvkj1PG3XcHHVPhU0/JnZiozNtus+MXybHnraxU0oUX6u+LFwfFSZLKFi7Uwfx8pd10kzypqcp0ubRl/37Fl5VFdD51Tk1V6z599PlPfxoUpz0LFqj1wIFqdd559va2X3yhuNTUiOeILfv3B40nf5zSAnKsVV2twqeeUnzXrkFzL9w4+ef28rVrVbZwoZIGD3acT5mnnmp/j6Yck7eyUjGZmVpUXOw49vzHlOlyaVtFhTKliOa9xNRUpVx3nT7Pzra31x97fvH/93+KS02NfC4PiLfT2DuYn6+yhQvV9oorguIdqfOTf3wseuIJx7EXk5Ojttdfb8/V4vXrI3p+ymjVSp7YWOWNHBkUpz0LFjQ4P2W6XHIlJcnn80X0nHvA7Q6aq/44hZpPnlWrVOT1BuX+SKwj/LHLP3QoKE5+geenzKFD7fEUqXWEVDue4rt21d83bnRcR/hzhH88tfP5TrhcvuPQoaB4hxp7/mOKqq4Omqv14xTOMZ0ouVxqWt4zq6rkiY3VR5mZjmPPvzbKdLlU5PWqvRSRsec/prjUVGVMmqTPAy66ndZGUc8/L1dSUtCxRmJttCsg94daw0p156f0MWOCxlOkrjW8lZVqN2aM/v7CCyHXsIHzyT9XK7dujej1U5fUVEUlJurzO+4IOqZQa6MMr1dxqakRv34q8nqDcoHTOmLPggXyFBRoW0VFUC44UXI56/JaJ8K6vLE4hTom//hY+t57jmPPf37KjI21+3Si5XLW5azLW7LGcjxyef1jaun6nl84Y6+iokLhMKzA8jzCtn//fhUVFdmvO3TooLi4OEnStm3b9Nvf/lY5OTn69a9/rQ8++ECXXHJJ0Nd//PHHuuiii7R3714lJyc7fp/q6mrFx8frr3/9q4YNG2ZvHzlypPbt26d33nkn5NeFuhO9Y8eOKi0tVWJioiTuRHfavn/HDlWVltp3MAVyHf4JXUxKilpnZR23YzqwY4cqiouD+m4YhlyGIfPwTzklKS41VUnZ2cclTvu+/VaVJSVBfbEsy/6pvH97QlqaWmVlHZefKO7fsUOVJSV2nMx66c0pfpEcewd27lRVaWlQnPx9MQLiF5eaqtZZWcdlPu379lsdDDgJhRpLkhSfmqrknJzjkiP8sfN/NlLD+LldLsWmpCihQ4cGxxROnPbv2KFDpaUhjzXwM4gNGB9NPaaKnTtVWVLiOPbMgLnaOivruOS9vdu22Z+tvy9GiM8gIS1NSZ06HZdc7o+309jzb49p21atAuZqJM9P/twvhR57/vzmj93xOD+Fyv3++AWen+JSU5XcqVPIeDT3+als+/YGuT9U/BLS0pTQocNxWUf4x1NgnAL74j8/Beb+SN/xUrFzpw6VljquI+rnghM1l5d/911QbnZaG8WlpgblZilya6PjkcubmvcOFhToYHGx49gLjHdix47H5W6rULlfapjfEtLSlJidfVzW5UfK/f4xFt22bYN1dqTWRvt37FD1nj2OuaP+Ou14XD+Vb9+uioC57f9spOD4xaWmqk1OznG5fgqVC0LFLz4tTfGZmQ2OSToxcjnr8hNnXR7Yx3COKfAa3Sl+PtO0Y9dYPFoyl7MuZ10eavvxqrEcj1xe/5haur7n7+ORxl55eblSUlJUVlZm10xDoYgeAdu2bdO8efP00EMPKTc3V5dffrkeeeSRoDbhFtElqX///urXr5+ef/55SbW/MpSdna3x48eH/YdFy8vLlZSUdMQBAQAAAAAAAAA/BOHWTPnDos3o5ptv1qpVq1RRUaGqqir97W9/0xdffKHc3Fy7TWFhofLz8/X1119Lkv773/8qPz9fe/bssdtcfPHFmjFjhv168uTJmjNnjl555RVt2LBBt912myoqKjR69Ojjd3AAAAAAAAAA8APEM9GbUbt27XTTTTdp69atqqqqUnZ2th555JGgx7DMmjUr6Fnl559/viRp7ty5GjVqlCTpm2++UUnAr/j8/Oc/V3FxsaZOnarCwkL16tVLixYtavDHRgEAAAAAAAAAzYvHuURA4ONcThQ8zgUAAAAAAAAA6vA4FwAAAAAAAAAAjhF3ov9AcCc6AAAAAAAAANThTnQAAAAAAAAAAI4RRXQAAAAAAAAAABxQRAcAAAAAAAAAwAFFdAAAAAAAAAAAHFBEBwAAAAAAAADAAUV0AAAAAAAAAAAcUEQHAAAAAAAAAMABRXQAAAAAAAAAABxQRAcAAAAAAAAAwAFFdAAAAAAAAAAAHFBEBwAAAAAAAADAAUV0AAAAAAAAAAAcUEQHAAAAAAAAAMABRXQAAAAAAAAAABx4WroDOD4sy5IklZeXt3BPAAAAAAAAAKDl+Wul/tqpE4roPxD79++XJHXs2LGFewIAAAAAAAAAJ479+/crKSnJ8X3DOlKZHd8LpmmqoKBArVu3lmEYLd2dZlNeXq6OHTvqu+++U2JiYkt3B0AzYW4D30/MbeD7i/kNfD8xt4HvJ+Z2HcuytH//fmVmZsrlcn7yOXei/0C4XC5lZWW1dDciJjEx8Qc/6YHvI+Y28P3E3Aa+v5jfwPcTcxv4fmJu12rsDnQ//rAoAAAAAAAAAAAOKKIDAAAAAAAAAOCAIjpOajExMXrwwQcVExPT0l0B0IyY28D3E3Mb+P5ifgPfT8xt4PuJud10/GFRAAAAAAAAAAAccCc6AAAAAAAAAAAOKKIDAAAAAAAAAOCAIjoAAAAAAAAAAA4oouOkNXPmTOXk5Cg2Nlb9+/fXqlWrWrpLAJrg8ccfV9++fdW6dWu1a9dOw4YN06ZNm4LaHDp0SOPGjVNKSopatWqlq6++WkVFRS3UYwBH47e//a0Mw9DEiRPtbcxt4OS1c+dO/fKXv1RKSori4uJ01llnac2aNfb7lmVp6tSpat++veLi4jRo0CB99dVXLdhjAEfi8/n0wAMPqHPnzoqLi9Mpp5yiRx55RIF/Qo+5DZwcPvnkEw0dOlSZmZkyDENvv/120PvhzOU9e/ZoxIgRSkxMVHJysm6++WYdOHDgOB7FiYkiOk5Kr7/+uiZPnqwHH3xQa9euVc+ePTV48GDt3r27pbsGIExLly7VuHHj9Nlnn+nDDz9UTU2NLrnkElVUVNhtJk2apPfee09vvvmmli5dqoKCAl111VUt2GsATbF69WrNnj1bPXr0CNrO3AZOTnv37tXAgQMVFRWlDz74QF9++aWeeeYZtWnTxm7z5JNP6g9/+INmzZqllStXKiEhQYMHD9ahQ4dasOcAGvPEE0/oxRdf1IwZM7RhwwY98cQTevLJJ/X888/bbZjbwMmhoqJCPXv21MyZM0O+H85cHjFihL744gt9+OGHev/99/XJJ5/olltuOV6HcMIyrMAfLQInif79+6tv376aMWOGJMk0TXXs2FF33HGHpkyZ0sK9A3A0iouL1a5dOy1dulTnn3++ysrKlJaWptdee03XXHONJGnjxo3q3r27VqxYoXPOOaeFewygMQcOHFDv3r31wgsv6NFHH1WvXr303HPPMbeBk9iUKVP06aefatmyZSHftyxLmZmZuvPOO3XXXXdJksrKypSenq558+bpuuuuO57dBRCmK664Qunp6frTn/5kb7v66qsVFxenV199lbkNnKQMw9Bbb72lYcOGSQrvPL1hwwadfvrpWr16tfr06SNJWrRokS6//HLt2LFDmZmZLXU4LY470XHSqa6uVl5engYNGmRvc7lcGjRokFasWNGCPQNwLMrKyiRJbdu2lSTl5eWppqYmaK5369ZN2dnZzHXgJDBu3DgNGTIkaA5LzG3gZPbuu++qT58+uvbaa9WuXTudffbZmjNnjv3+1q1bVVhYGDS/k5KS1L9/f+Y3cAI799xztXjxYm3evFmS9Pnnn+vf//63LrvsMknMbeD7Ipy5vGLFCiUnJ9sFdEkaNGiQXC6XVq5cedz7fCLxtHQHgKYqKSmRz+dTenp60Pb09HRt3LixhXoF4FiYpqmJEydq4MCBOvPMMyVJhYWFio6OVnJyclDb9PR0FRYWtkAvAYTrf//3f7V27VqtXr26wXvMbeDktWXLFr344ouaPHmy7r//fq1evVq/+tWvFB0drZEjR9pzONQ6nfkNnLimTJmi8vJydevWTW63Wz6fT9OnT9eIESMkibkNfE+EM5cLCwvVrl27oPc9Ho/atm37g5/vFNEBAC1u3LhxWr9+vf7973+3dFcAHKPvvvtOEyZM0IcffqjY2NiW7g6AZmSapvr06aPHHntMknT22Wdr/fr1mjVrlkaOHNnCvQNwtN544w3Nnz9fr732ms444wzl5+dr4sSJyszMZG4DwGE8zgUnndTUVLndbhUVFQVtLyoqUkZGRgv1CsDRGj9+vN5//30tWbJEWVlZ9vaMjAxVV1dr3759Qe2Z68CJLS8vT7t371bv3r3l8Xjk8Xi0dOlS/eEPf5DH41F6ejpzGzhJtW/fXqeffnrQtu7du2v79u2SZM9h1unAyeXuu+/WlClTdN111+mss87SDTfcoEmTJunxxx+XxNwGvi/CmcsZGRnavXt30Pter1d79uz5wc93iug46URHRys3N1eLFy+2t5mmqcWLF2vAgAEt2DMATWFZlsaPH6+33npLH330kTp37hz0fm5urqKiooLm+qZNm7R9+3bmOnACu/jii/Xf//5X+fn59r8+ffpoxIgR9n8zt4GT08CBA7Vp06agbZs3b1anTp0kSZ07d1ZGRkbQ/C4vL9fKlSuZ38AJ7ODBg3K5gstDbrdbpmlKYm4D3xfhzOUBAwZo3759ysvLs9t89NFHMk1T/fv3P+59PpHwOBeclCZPnqyRI0eqT58+6tevn5577jlVVFRo9OjRLd01AGEaN26cXnvtNb3zzjtq3bq1/Xy1pKQkxcXFKSkpSTfffLMmT56stm3bKjExUXfccYcGDBigc845p4V7D8BJ69at7b9t4JeQkKCUlBR7O3MbODlNmjRJ5557rh577DENHz5cq1at0ksvvaSXXnpJkmQYhiZOnKhHH31UP/rRj9S5c2c98MADyszM1LBhw1q28wAcDR06VNOnT1d2drbOOOMMrVu3Ts8++6xuuukmScxt4GRy4MABff311/brrVu3Kj8/X23btlV2dvYR53L37t116aWXasyYMZo1a5Zqamo0fvx4XXfddcrMzGyhozpBWMBJ6vnnn7eys7Ot6Ohoq1+/ftZnn33W0l0C0ASSQv6bO3eu3aaystK6/fbbrTZt2ljx8fHWlVdeae3atavlOg3gqFxwwQXWhAkT7NfMbeDk9d5771lnnnmmFRMTY3Xr1s166aWXgt43TdN64IEHrPT0dCsmJsa6+OKLrU2bNrVQbwGEo7y83JowYYKVnZ1txcbGWl26dLF+/etfW1VVVXYb5jZwcliyZEnI6+yRI0dalhXeXC4tLbWuv/56q1WrVlZiYqI1evRoa//+/S1wNCcWw7Isq4Xq9wAAAAAAAAAAnNB4JjoAAAAAAAAAAA4oogMAAAAAAAAA4IAiOgAAAAAAAAAADiiiAwAAAAAAAADggCI6AAAAAAAAAAAOKKIDAAAAAAAAAOCAIjoAAAAAAAAAAA4oogMAAAAAAAAA4IAiOgAAAIAfhIceeki9evVq6W4AAADgJEMRHQAAADgJGIbR6L+HHnqoRfv29ttvh9UuNjZW3377bdD2YcOGadSoUZHpHAAAAHCMKKIDAAAAJ4Fdu3bZ/5577jklJiYGbbvrrruatL/q6uoI9bRxhmFo6tSpLfK9I6WmpqaluwAAAIAIoogOAAAAnAQyMjLsf0lJSTIMw35dUVGhESNGKD09Xa1atVLfvn31r3/9K+jrc3Jy9Mgjj+jGG29UYmKibrnlFknSnDlz1LFjR8XHx+vKK6/Us88+q+Tk5KCvfeedd9S7d2/FxsaqS5cumjZtmrxer71fSbryyitlGIb92sn48eP16quvav369Y5tcnJy9NxzzwVt69WrV9Dd9oZhaPbs2briiisUHx+v7t27a8WKFfr666914YUXKiEhQeeee66++eabBvufPXu2fczDhw9XWVlZ0Pt//OMf1b17d8XGxqpbt2564YUX7Pe2bdsmwzD0+uuv64ILLlBsbKzmz5/f6DEDAADg5EYRHQAAADjJHThwQJdffrkWL16sdevW6dJLL9XQoUO1ffv2oHZPP/20evbsqXXr1umBBx7Qp59+qltvvVUTJkxQfn6+fvrTn2r69OlBX7Ns2TLdeOONmjBhgr788kvNnj1b8+bNs9utXr1akjR37lzt2rXLfu1k4MCBuuKKKzRlypRjPm7/DwXy8/PVrVs3/eIXv9DYsWN13333ac2aNbIsS+PHjw/6mq+//lpvvPGG3nvvPS1atEjr1q3T7bffbr8/f/58TZ06VdOnT9eGDRv02GOP6YEHHtArr7wStJ8pU6ZowoQJ2rBhgwYPHnzMxwIAAIATl6elOwAAAADg2PTs2VM9e/a0Xz/yyCN666239O677wYVkX/yk5/ozjvvtF//+te/1mWXXWY/CqZr165avny53n//fbvNtGnTNGXKFI0cOVKS1KVLFz3yyCO655579OCDDyotLU2SlJycrIyMjLD6+/jjj6tHjx5atmyZzjvvvKM+7tGjR2v48OGSpHvvvVcDBgzQAw88YBe1J0yYoNGjRwd9zaFDh/TnP/9ZHTp0kCQ9//zzGjJkiJ555hllZGTowQcf1DPPPKOrrrpKktS5c2f7hwf+z0CSJk6caLcBAADA9xt3ogMAAAAnuQMHDuiuu+5S9+7dlZycrFatWmnDhg0N7kTv06dP0OtNmzapX79+Qdvqv/7888/18MMPq1WrVva/MWPGaNeuXTp48OBR9ff000/XjTfeeMx3o/fo0cP+7/T0dEnSWWedFbTt0KFDKi8vt7dlZ2fbBXRJGjBggEzT1KZNm1RRUaFvvvlGN998c9DxPvroow0eC1P/swQAAMD3F3eiAwAAACe5u+66Sx9++KGefvppnXrqqYqLi9M111zT4I+HJiQkNHnfBw4c0LRp00LedR0bG3vUfZ42bZq6du2qt99+u8F7LpdLlmUFbQv1xzujoqLs/zYMw3GbaZph9enAgQOSap8T379//6D33G530Ouj+SwBAABwcqKIDgAAAJzkPv30U40aNUpXXnmlpNpi8LZt2474daeddlqDZ5jXf927d29t2rRJp556quN+oqKi5PP5mtTnjh07avz48br//vt1yimnBL2XlpamXbt22a/Ly8u1devWJu3fyfbt21VQUKDMzExJ0meffSaXy6XTTjtN6enpyszM1JYtWzRixIhm+X4AAAA4+VFEBwAAAE5yP/rRj/S3v/1NQ4cOlWEYeuCBB8K6+/qOO+7Q+eefr2effVZDhw7VRx99pA8++MC+g1uSpk6dqiuuuELZ2dm65ppr5HK59Pnnn2v9+vV69NFHJUk5OTlavHixBg4cqJiYGLVp0yasft93332aM2eOtm7dqp///Of29p/85CeaN2+ehg4dquTkZE2dOrXBneBHKzY2ViNHjtTTTz+t8vJy/epXv9Lw4cPt57lPmzZNv/rVr5SUlKRLL71UVVVVWrNmjfbu3avJkyc3Sx8AAABwcuGZ6AAAAMBJ7tlnn1WbNm107rnnaujQoRo8eLB69+59xK8bOHCgZs2apWeffVY9e/bUokWLNGnSpKDHtAwePFjvv/++/vnPf6pv374655xz9Lvf/U6dOnWy2zzzzDP68MMP1bFjR5199tlh97tt27a69957dejQoaDt9913ny644AJdccUVGjJkiIYNG9bgbvWjdeqpp+qqq67S5ZdfrksuuUQ9evTQCy+8YL//P//zP/rjH/+ouXPn6qyzztIFF1ygefPmqXPnzs3y/QEAAHDyMaz6DxsEAAAA8IM1ZswYbdy4UcuWLWvprgAAAAAnBB7nAgAAAPyAPf300/rpT3+qhIQEffDBB3rllVeC7swGAAAAfui4Ex0AAAD4ARs+fLg+/vhj7d+/X126dNEdd9yhW2+9taW7BQAAAJwwKKIDAAAAAAAAAOCAPywKAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgAOK6AAAAAAAAAAAOKCIDgAAAAAAAACAA4roAAAAAAAAAAA4oIgOAAAAAAAAAIADiugAAAAAAAAAADigiA4AAAAAAAAAgIP/D7Xz42QTIO4mAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 1500x600 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"\n",
"plt.figure(figsize=(15, 6))\n",
"positive_mask = np.array(payouts) >= 0\n",
"negative_mask = np.array(payouts) < 0\n",
"\n",
"# Plot positive bars in blue and negative bars in red\n",
"xs = np.r_[MIN_GUESS:MAX_GUESS+1]\n",
"plt.bar(xs[positive_mask], np.array(payouts)[positive_mask], color='skyblue', edgecolor='navy')\n",
"plt.bar(xs[negative_mask], np.array(payouts)[negative_mask], color='red', edgecolor='darkred')\n",
"\n",
"plt.axhline(y=average_payout, color='green', linestyle='--', label=f'Average: ${average_payout:.2f}')\n",
"\n",
"plt.title(f'Payouts for Binary Search Game between {MIN_GUESS} and {MAX_GUESS}')\n",
"plt.xlabel('Target Number')\n",
"plt.ylabel('Payout ($)')\n",
"plt.legend()\n",
"plt.grid(axis='y', linestyle='--', alpha=0.7)\n",
"plt.gca().yaxis.set_major_formatter(plt.FuncFormatter(format_payout))\n",
"\n",
"plt.tight_layout()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment