Skip to content

Instantly share code, notes, and snippets.

@AlpinDale
Last active March 11, 2024 19:36
Show Gist options
  • Select an option

  • Save AlpinDale/f5bdaa91f3cc77f06688e7d0b7e08c53 to your computer and use it in GitHub Desktop.

Select an option

Save AlpinDale/f5bdaa91f3cc77f06688e7d0b7e08c53 to your computer and use it in GitHub Desktop.
Merging a LoRA adpater into a model
"""
Script for merging PEFT LoRA weights with the base model. Uses code from https://github.com/eugenepentland/landmark-attention-qlora/blob/main/llama/merge_peft.py
Usage: python merge_peft.py [-h] [--base_model_name_or_path BASE_MODEL_NAME_OR_PATH] [--peft_model_path PEFT_MODEL_PATH] [--output_dir OUTPUT_DIR] [--device DEVICE]
[--push_to_hub]
"""
import torch
import os
import logging
import argparse
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model_name_or_path", type=str)
parser.add_argument("--peft_model_path", type=str)
parser.add_argument("--output_dir", type=str)
parser.add_argument("--device", type=str, default="auto")
parser.add_argument("--push_to_hub", action="store_true")
return parser.parse_args()
def main():
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
try:
args = get_args()
if args.device == 'auto':
device_arg = {'device_map': 'auto'}
else:
device_arg = {'device_map': {"": args.device}}
logger.info(f"Loading base model: {args.base_model_name_or_path}")
with tqdm(total=1, desc="Loading base model") as pbar:
base_model = AutoModelForCausalLM.from_pretrained(
args.base_model_name_or_path,
return_dict=True,
torch_dtype=torch.float16,
**device_arg
)
pbar.update(1)
logger.info(f"Loading PEFT: {args.peft_model_path}")
with tqdm(total=1, desc="Loading PEFT model") as pbar:
model = PeftModel.from_pretrained(base_model, args.peft_model_path)
pbar.update(1)
logger.info("Running merge_and_unload")
with tqdm(total=1, desc="Merge and Unload") as pbar:
model = model.merge_and_unload()
pbar.update(1)
tokenizer = AutoTokenizer.from_pretrained(args.base_model_name_or_path)
model.save_pretrained(f"{args.output_dir}")
tokenizer.save_pretrained(f"{args.output_dir}")
logger.info(f"Model saved to {args.output_dir}")
except Exception as e:
logger.exception("An error occurred:")
raise
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment