Comprehensive Machine Learning Resources Guide
Random Forest, Decision Trees, SVM, F1 Score & Scikit-learn
π Official Scikit-learn Documentation
Core Algorithm Documentation
π Academic Papers & Research
Book
Author(s)
Notes
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
AurΓ©lien GΓ©ron
Covers DT, RF, SVM with practical code
Introduction to Statistical Learning (ISLR)
James, Witten, Hastie, Tibshirani
FREE PDF available
The Elements of Statistical Learning
Hastie, Tibshirani, Friedman
FREE PDF β Advanced mathematical foundations
Python Machine Learning
Sebastian Raschka
Practical scikit-learn implementations
Machine Learning with Python Cookbook
Chris Albon
Quick scikit-learn recipes
Interpretable Machine Learning
Christoph Molnar
FREE β https://christophm.github.io/interpretable-ml-book/
π Online Courses & MOOCs
Coursera : Build Decision Trees, SVMs, and Artificial Neural Networks
DataCamp : Random Forest, SVM, Decision Trees courses
Pluralsight : ML courses with scikit-learn
LinkedIn Learning : ML with Python courses
O'Reilly Learning : Comprehensive scikit-learn courses
IBM AI Engineering Professional Certificate
Channel
Focus
StatQuest with Josh Starmer
Intuitive ML explanations with visuals
3Blue1Brown
Mathematical visualizations
Sentdex
ML with Python playlist
Tech With Tim
ML tutorials with scikit-learn
Krish Naik
SVM, Random Forest, Decision Trees
codebasics
Scikit-learn tutorial series
PyData Conference β YouTube talks on scikit-learn best practices
SciPy Conference β ML tools presentations
π» Tutorials & Practical Guides
Support Vector Machines Resources
F1 Score & Evaluation Metrics
π¬ Mathematical Foundations
Gini Impurity (Decision Trees):
[
\text{Gini} = 1 - \sum_{i=1}^{n} p_i^2
]
Entropy (Decision Trees):
[
\text{Entropy} = -\sum_{i=1}^{n} p_i \log_2(p_i)
]
SVM Margin Maximization:
[
\text{Maximize: } \frac{2}{|w|}
]
F1 Score:
[
F_1 = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}
]
Precision & Recall:
[
\text{Precision} = \frac{TP}{TP + FP}, \quad \text{Recall} = \frac{TP}{TP + FN}
]
π§ GitHub Repositories & Code Examples
Repository
Description
tanmayjay/Comparative-Analysis-of-Different-Classification-Algorithms
Implements DT, RF, NB, SVM with confusion matrix and ROC
yemifalokun/comparingclassifiers
UC Berkeley ML course comparing classifiers
willkoehrsen
Random Forest implementation notebooks
calvinfeng GitBook
Machine Learning Notebook with Gini index explanation
Model Interpretation Libraries
Built-in Scikit-learn Datasets
from sklearn .datasets import (
load_iris , # Classification
load_breast_cancer , # Binary classification
load_wine , # Multi-class classification
load_digits # Image classification
)
π οΈ Key Scikit-learn Functions & Classes
from sklearn .tree import DecisionTreeClassifier
from sklearn .ensemble import RandomForestClassifier
from sklearn .svm import SVC
from sklearn .metrics import (
f1_score ,
precision_score ,
recall_score ,
accuracy_score ,
confusion_matrix ,
classification_report ,
roc_auc_score ,
RocCurveDisplay
)
from sklearn .model_selection import (
cross_val_score ,
cross_val_predict ,
StratifiedKFold ,
GridSearchCV ,
HalvingGridSearchCV # Faster alternative
)
from sklearn .tree import plot_tree , export_graphviz , export_text
from sklearn .inspection import permutation_importance , PartialDependenceDisplay
π― Hyperparameter Tuning Guide
Parameter
Description
Typical Range
n_estimators
Number of trees
100-1000
max_depth
Maximum tree depth
5-50 or None
min_samples_split
Min samples to split
2-20
min_samples_leaf
Min samples at leaf
1-10
max_features
Features per split
'sqrt', 'log2', int
Parameter
Description
Typical Range
C
Regularization
0.1-100
gamma
RBF kernel coefficient
'scale', 'auto', 0.001-1
kernel
Kernel type
'linear', 'rbf', 'poly', 'sigmoid'
βοΈ Algorithm Comparison Guide
When to Use Each Algorithm
Criterion
Decision Tree
Random Forest
SVM
Dataset Size
Small-Medium
Medium-Large
Small-Medium
High Dimensions
Moderate
Good
Excellent
Interpretability
Excellent
Moderate
Low
Training Speed
Fast
Moderate
Slow for large data
Feature Importance
Yes
Yes
No (native)
Overfitting Risk
High
Low
Low
Memory Usage
Low
High
Moderate
Performance Benchmarks (from research)
Random Forest: ~86-90% accuracy, F1 ~90%
Decision Tree: ~84-88% accuracy, F1 ~89%
SVM with RBF: ~85-92% (depends on scaling)
Always scale features before SVM (StandardScaler or MinMaxScaler)
Use class_weight='balanced' for imbalanced datasets
Apply SMOTE for severe class imbalance
Use Random Forest as initial baseline model
Apply cross-validation with StratifiedKFold to preserve class distribution
Use f1_macro or f1_weighted for multi-class problems
Implement nested cross-validation for hyperparameter tuning
Overfitting Decision Trees (use max_depth, min_samples_leaf)
Not scaling data before SVM
Using accuracy on imbalanced datasets (use F1 instead)
Data leakage during preprocessing
π Community & Forums
Stack Overflow β sklearn tag with 100k+ questions
Cross Validated β https://stats.stackexchange.com/ (statistical ML)
Scikit-learn GitHub Discussions β Official community support
r/MachineLearning
r/learnmachinelearning
π Model Deployment Resources
import joblib
# Save model
joblib .dump (model , 'model.pkl' )
# Load model
model = joblib .load ('model.pkl' )
Flask/FastAPI β REST API deployment
AWS SageMaker β Cloud ML deployment (supports scikit-learn)
Docker β Containerized deployment
MLflow β Model tracking and deployment