Skip to content

Instantly share code, notes, and snippets.

@EauDeData
Created November 9, 2024 01:58
Show Gist options
  • Select an option

  • Save EauDeData/24650ed0e9cec4aa52dc6f0ffd2fddbe to your computer and use it in GitHub Desktop.

Select an option

Save EauDeData/24650ed0e9cec4aa52dc6f0ffd2fddbe to your computer and use it in GitHub Desktop.
File sent from Gephi
This file has been truncated, but you can view the full file.
<?xml version='1.0' encoding='UTF-8'?>
<gexf xmlns="http://gexf.net/1.3" version="1.3" xmlns:viz="http://gexf.net/1.3/viz" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://gexf.net/1.3 http://gexf.net/1.3/gexf.xsd">
<meta lastmodifieddate="2024-11-09">
<creator>Gephi 0.10.1</creator>
<title></title>
<description></description>
</meta>
<graph defaultedgetype="undirected" mode="static">
<attributes class="node" mode="static">
<attribute id="0" title="type" type="string"/>
<attribute id="1" title="content" type="string"/>
<attribute id="2" title="n_subastracts" type="long"/>
<attribute id="degree" title="Degree" type="integer">
<default>0</default>
</attribute>
<attribute id="modularity_class" title="Modularity Class" type="integer">
<default>0</default>
</attribute>
<attribute id="eccentricity" title="Eccentricity" type="double">
<default>0.0</default>
</attribute>
<attribute id="closnesscentrality" title="Closeness Centrality" type="double">
<default>0.0</default>
</attribute>
<attribute id="harmonicclosnesscentrality" title="Harmonic Closeness Centrality" type="double">
<default>0.0</default>
</attribute>
<attribute id="betweenesscentrality" title="Betweenness Centrality" type="double">
<default>0.0</default>
</attribute>
</attributes>
<attributes class="edge" mode="static">
<attribute id="3" title="relationship" type="string"/>
</attributes>
<nodes>
<node id="0" label="0">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="21"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30495838340677"/>
<attvalue for="betweenesscentrality" value="64159.29688855376"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1163.1737" y="-1112.0217"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="1" label="1">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="90027.92976388973"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1671.4971" y="-1175.4854"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="2" label="2">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912987669687658"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043463746828633"/>
<attvalue for="betweenesscentrality" value="216368.00170357744"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="981.1799" y="3127.2126"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="3" label="3">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.30480259936795734"/>
<attvalue for="betweenesscentrality" value="181914.33327107065"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1697.7008" y="1999.2922"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="4" label="4">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3048248542306449"/>
<attvalue for="betweenesscentrality" value="97013.92065162913"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="78.148994" y="884.7096"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="5" label="5">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042573552321133"/>
<attvalue for="betweenesscentrality" value="106722.32641773584"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-441.30865" y="1345.5288"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="6" label="6">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038790225664255"/>
<attvalue for="betweenesscentrality" value="60040.32120402663"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1211.4484" y="504.11963"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="7" label="7">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039124048604568"/>
<attvalue for="betweenesscentrality" value="55773.75743472842"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-481.39972" y="969.2578"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="8" label="8">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040014243112068"/>
<attvalue for="betweenesscentrality" value="55444.45156964709"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1443.48" y="-174.24101"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="9" label="9">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038790225664255"/>
<attvalue for="betweenesscentrality" value="51002.41734118454"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="691.1849" y="-1111.8005"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="10" label="10">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="28046.21194008927"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="411.7013" y="-575.60187"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="11" label="11">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.30491387368139494"/>
<attvalue for="betweenesscentrality" value="158679.91894416997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1389.3591" y="1084.5415"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="12" label="12">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30410157119330067"/>
<attvalue for="betweenesscentrality" value="94535.87285364167"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1671.5511" y="-607.588"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="13" label="13">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="0"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039124048604568"/>
<attvalue for="betweenesscentrality" value="76673.5332763678"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1507.1578" y="-1717.7787"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="14" label="14">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.30375662082164423"/>
<attvalue for="betweenesscentrality" value="43583.68541844243"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="603.5636" y="-1788.0753"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="15" label="15">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="83587.0457151077"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1380.0999" y="371.73004"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="16" label="16">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911628630302088"/>
<attvalue for="harmonicclosnesscentrality" value="0.30481372679930113"/>
<attvalue for="betweenesscentrality" value="132551.51571308315"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1301.1685" y="558.07794"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="17" label="17">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30415720835001947"/>
<attvalue for="betweenesscentrality" value="79010.02351421084"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-677.0821" y="-139.13548"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="18" label="18">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="1"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.30370098366492543"/>
<attvalue for="betweenesscentrality" value="59861.00170357746"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-688.1668" y="-1830.6649"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="19" label="19">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="49152.96686139946"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="251.39499" y="-866.79675"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="20" label="20">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="10558.451569638139"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="931.0135" y="73.815735"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="21" label="21">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.30375662082164423"/>
<attvalue for="betweenesscentrality" value="43115.48237664664"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1206.8403" y="-393.60938"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="22" label="22">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="78961.82737932226"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="226.87129" y="358.07507"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="23" label="23">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30415720835001947"/>
<attvalue for="betweenesscentrality" value="74190.63857938621"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1542.7185" y="-580.72815"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="24" label="24">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="21"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912081502508069"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051586771709576"/>
<attvalue for="betweenesscentrality" value="150630.26228150385"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1634.9346" y="1097.3265"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="25" label="25">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="83154.85747249228"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-61.003834" y="1241.4425"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="26" label="26">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912081502508069"/>
<attvalue for="harmonicclosnesscentrality" value="0.3048804913873637"/>
<attvalue for="betweenesscentrality" value="133529.25391680413"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="607.02075" y="-998.2957"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="27" label="27">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="113"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.3035340721947691"/>
<attvalue for="betweenesscentrality" value="7629.370796186152"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-379.85358" y="328.70996"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="28" label="28">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039124048604568"/>
<attvalue for="betweenesscentrality" value="65586.27587777494"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1518.0718" y="467.61984"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="29" label="29">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039791694485193"/>
<attvalue for="betweenesscentrality" value="86604.52177461372"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-602.5609" y="1427.785"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="30" label="30">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="3325.516636287076"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="194.83362" y="675.35333"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="31" label="31">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30412382605598814"/>
<attvalue for="betweenesscentrality" value="83551.1723733862"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1072.32" y="-456.4122"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="32" label="32">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="23"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2913214299607111"/>
<attvalue for="harmonicclosnesscentrality" value="0.3054368629545515"/>
<attvalue for="betweenesscentrality" value="148594.35745427024"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-272.12616" y="-2131.7012"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="33" label="33">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29136676652530835"/>
<attvalue for="harmonicclosnesscentrality" value="0.3044465215649571"/>
<attvalue for="betweenesscentrality" value="231986.46689080374"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="265.46457" y="2798.6604"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="34" label="34">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="69995.32120401788"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-6.748047" y="1160.0663"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="35" label="35">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041905906440507"/>
<attvalue for="betweenesscentrality" value="85418.4359882545"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1564.2213" y="-671.2201"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="36" label="36">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3047692170739261"/>
<attvalue for="betweenesscentrality" value="117016.95099913752"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="72.76738" y="-2013.8705"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="37" label="37">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041905906440507"/>
<attvalue for="betweenesscentrality" value="105703.51819055571"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-340.34192" y="-2728.2524"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="38" label="38">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.30441313927092584"/>
<attvalue for="betweenesscentrality" value="127451.4785135257"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="995.75977" y="-1640.3246"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="39" label="39">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="59974.15546718614"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-32.450863" y="-1846.7605"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="40" label="40">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="10613.092634858675"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="594.3369" y="28.553896"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="41" label="41">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051364223082701"/>
<attvalue for="betweenesscentrality" value="151864.9320142446"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-71.70805" y="2004.4104"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="42" label="42">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040459340365818"/>
<attvalue for="betweenesscentrality" value="96142.16646112282"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="857.61414" y="1728.4069"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="43" label="43">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30410157119330067"/>
<attvalue for="betweenesscentrality" value="82378.56295130646"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-82.526306" y="-913.0079"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="44" label="44">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30373436595895664"/>
<attvalue for="betweenesscentrality" value="60047.821204026484"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1407.1187" y="-764.95386"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="45" label="45">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="78610.92181085971"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1443.0449" y="1009.93884"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="46" label="46">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29134409647928416"/>
<attvalue for="harmonicclosnesscentrality" value="0.30530333377842644"/>
<attvalue for="betweenesscentrality" value="160486.6287810988"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1328.0203" y="-578.3017"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="47" label="47">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.30446877642764464"/>
<attvalue for="betweenesscentrality" value="118393.21042057328"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-182.74365" y="1973.7474"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="48" label="48">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043018649574883"/>
<attvalue for="betweenesscentrality" value="94858.68661142033"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-661.7153" y="1637.339"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="49" label="49">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042573552321133"/>
<attvalue for="betweenesscentrality" value="101643.97663586208"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-955.2989" y="-2354.8093"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="50" label="50">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30406818889926945"/>
<attvalue for="betweenesscentrality" value="23500.032851850872"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1026.2992" y="-647.5609"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="51" label="51">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038790225664255"/>
<attvalue for="betweenesscentrality" value="51002.41734118426"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="225.38083" y="428.1339"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="52" label="52">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041905906440507"/>
<attvalue for="betweenesscentrality" value="81121.35257200866"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1537.7092" y="-545.30426"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="53" label="53">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30443539413361337"/>
<attvalue for="betweenesscentrality" value="103692.62106394906"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-267.91412" y="-1220.0349"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="54" label="54">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30399029687986306"/>
<attvalue for="betweenesscentrality" value="101117.92622345268"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2305.007" y="-74.45922"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="55" label="55">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039569145858318"/>
<attvalue for="betweenesscentrality" value="83372.5321612993"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1146.9784" y="-1669.3992"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="56" label="56">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.30496951083811374"/>
<attvalue for="betweenesscentrality" value="109301.47727374807"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1063.02" y="862.1418"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="57" label="57">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30403480660523813"/>
<attvalue for="betweenesscentrality" value="62918.451569649485"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1542.1965" y="187.05545"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="58" label="58">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30415720835001947"/>
<attvalue for="betweenesscentrality" value="70948.07559367931"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-86.56186" y="198.99232"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="59" label="59">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3044131392709259"/>
<attvalue for="betweenesscentrality" value="92003.77507938776"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1696.6426" y="-589.07874"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="60" label="60">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="22"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3050474028575201"/>
<attvalue for="betweenesscentrality" value="103029.95143245209"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1798.7803" y="-870.26843"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="61" label="61">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040014243112068"/>
<attvalue for="betweenesscentrality" value="65836.11669296319"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1385.8552" y="414.9022"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="62" label="62">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.303856767703738"/>
<attvalue for="betweenesscentrality" value="61271.93703150653"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1303.3661" y="1027.793"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="63" label="63">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="24"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912987669687658"/>
<attvalue for="harmonicclosnesscentrality" value="0.30545911781723906"/>
<attvalue for="betweenesscentrality" value="176682.83798558248"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2405.7202" y="645.5969"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="64" label="64">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="63247.75743472611"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-537.6334" y="1077.782"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="65" label="65">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30379000311567544"/>
<attvalue for="betweenesscentrality" value="54374.418694807966"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1247.1377" y="88.50714"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="66" label="66">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.30472470734855106"/>
<attvalue for="betweenesscentrality" value="134683.35587097215"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1525.6519" y="-1169.5834"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="67" label="67">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918006"/>
<attvalue for="betweenesscentrality" value="82454.32120402683"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1337.871" y="-1278.9589"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="68" label="68">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040904437619569"/>
<attvalue for="betweenesscentrality" value="123344.2842570473"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="589.94006" y="-2055.536"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="69" label="69">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.303856767703738"/>
<attvalue for="betweenesscentrality" value="64840.96203009605"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1204.5612" y="554.9513"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="70" label="70">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="19"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.3047803445052699"/>
<attvalue for="betweenesscentrality" value="80449.87617360236"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-896.3535" y="700.9511"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="71" label="71">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="3792.8811073090333"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="161.98659" y="1074.0137"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="72" label="72">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.30415720835001947"/>
<attvalue for="betweenesscentrality" value="32433.410050072085"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-449.50146" y="652.549"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="73" label="73">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038233854097067"/>
<attvalue for="betweenesscentrality" value="53644.34007897737"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="603.24176" y="-714.0144"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="74" label="74">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="19"/>
<attvalue for="modularity_class" value="101"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912987669687658"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051809320336451"/>
<attvalue for="betweenesscentrality" value="164377.9263931526"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1708.8394" y="-359.95023"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="75" label="75">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30383451284105045"/>
<attvalue for="betweenesscentrality" value="78115.51663629238"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-584.593" y="1675.7748"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="76" label="76">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037232385276129"/>
<attvalue for="betweenesscentrality" value="35171.65170356834"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1103.9746" y="617.57806"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="77" label="77">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037232385276129"/>
<attvalue for="betweenesscentrality" value="35171.65170356834"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="10.979586" y="351.87216"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="78" label="78">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039346597231443"/>
<attvalue for="betweenesscentrality" value="46734.720853792125"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-109.17878" y="886.8584"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="79" label="79">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039124048604568"/>
<attvalue for="betweenesscentrality" value="63244.07271813941"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-706.08093" y="97.01413"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="80" label="80">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.3035340721947691"/>
<attvalue for="betweenesscentrality" value="3389.0727181523553"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="318.7364" y="340.32098"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="81" label="81">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039124048604568"/>
<attvalue for="betweenesscentrality" value="56190.165528614314"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1407.0208" y="317.55356"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="82" label="82">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040681888992694"/>
<attvalue for="betweenesscentrality" value="87672.29589011216"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="135.60919" y="-1585.108"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="83" label="83">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="113"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039791694485193"/>
<attvalue for="betweenesscentrality" value="82663.40246726155"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1584.0807" y="789.211"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="84" label="84">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30373436595895664"/>
<attvalue for="betweenesscentrality" value="55532.912194252596"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1293.9888" y="358.45398"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="85" label="85">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="3"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29066563167087134"/>
<attvalue for="harmonicclosnesscentrality" value="0.30335603329326893"/>
<attvalue for="betweenesscentrality" value="7488.001703577507"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="404.09335" y="48.623943"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="86" label="86">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.303812257978363"/>
<attvalue for="betweenesscentrality" value="39839.3369335954"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="845.82855" y="-1758.3762"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="87" label="87">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043908844082383"/>
<attvalue for="betweenesscentrality" value="149381.86440169706"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1882.6931" y="-2229.276"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="88" label="88">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30407931633061314"/>
<attvalue for="betweenesscentrality" value="92330.63854655133"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1670.028" y="-1135.1945"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="89" label="89">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043018649574883"/>
<attvalue for="betweenesscentrality" value="145898.92622344577"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1204.8828" y="1808.5286"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="90" label="90">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="16181.382008015806"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1035.7104" y="-544.8852"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="91" label="91">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="65102.11177423523"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-873.93384" y="-1265.569"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="92" label="92">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="11"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="87063.46913374687"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="548.22253" y="-1898.799"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="93" label="93">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.30416833578136315"/>
<attvalue for="betweenesscentrality" value="109465.87285365353"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1354.4928" y="-1698.5249"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="94" label="94">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.291502860924059"/>
<attvalue for="harmonicclosnesscentrality" value="0.305370098366489"/>
<attvalue for="betweenesscentrality" value="217072.4281914736"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1652.36" y="233.11018"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="95" label="95">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="2286.1975747195647"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-227.74611" y="-732.32263"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="96" label="96">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.3035340721947691"/>
<attvalue for="betweenesscentrality" value="5402.466922279651"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-398.22052" y="-308.915"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="97" label="97">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="11"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="85245.40910605536"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1724.3097" y="-905.29675"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="98" label="98">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918006"/>
<attvalue for="betweenesscentrality" value="82360.89893832635"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1347.8466" y="-665.0723"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="99" label="99">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.3035785819201441"/>
<attvalue for="betweenesscentrality" value="44903.00170357747"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1486.8296" y="-303.9438"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="100" label="100">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="9928.310743940376"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="612.16284" y="354.16718"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="101" label="101">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="8513.265706776365"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="224.96016" y="297.95633"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="102" label="102">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="9314.961262386854"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="348.52893" y="-351.6421"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="103" label="103">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="14975.001703577502"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-196.96178" y="249.86214"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="104" label="104">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="9295.30214665458"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="21.873772" y="238.6957"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="105" label="105">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="8397.06516057943"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="844.75024" y="109.97637"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="106" label="106">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="9905.371497156164"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="857.272" y="281.51517"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="107" label="107">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="16394.945493216983"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="928.4161" y="-413.02298"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="108" label="108">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="10790.656335106349"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="736.38165" y="-452.48914"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="109" label="109">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="14725.235243583218"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="529.33185" y="-238.57271"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="110" label="110">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="19772.784629461257"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="369.19308" y="-648.32166"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="111" label="111">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30383451284105045"/>
<attvalue for="betweenesscentrality" value="77697.92928388731"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="925.6633" y="1310.2869"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="112" label="112">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="64619.739782196615"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1074.7562" y="-1880.8322"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="113" label="113">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30426848266345696"/>
<attvalue for="betweenesscentrality" value="126869.73806747062"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1104.4346" y="-1784.3353"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="114" label="114">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="4254.966861405532"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="586.7071" y="-146.24292"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="115" label="115">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="16947.564435602606"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="706.76306" y="9.620512"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="116" label="116">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041460809186757"/>
<attvalue for="betweenesscentrality" value="50848.13583078375"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="968.21967" y="-161.1341"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="117" label="117">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="10655.856274415031"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="882.29095" y="-321.02606"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="118" label="118">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.3035340721947691"/>
<attvalue for="betweenesscentrality" value="10122.759609027627"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="822.461" y="-227.02539"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="119" label="119">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="12445.3508645513"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="160.5376" y="124.0459"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="120" label="120">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.30389014999776925"/>
<attvalue for="betweenesscentrality" value="39457.20533264128"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="905.20514" y="-964.60925"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="121" label="121">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30389014999776925"/>
<attvalue for="betweenesscentrality" value="70369.20652146387"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="994.90643" y="-1457.6692"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="122" label="122">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041349534873319"/>
<attvalue for="betweenesscentrality" value="105334.55714977132"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1862.6412" y="125.324394"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="123" label="123">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3044799038589884"/>
<attvalue for="betweenesscentrality" value="77029.23335618504"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-179.58063" y="1637.9543"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="124" label="124">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="90393.55714977052"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="833.3137" y="1603.0376"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="125" label="125">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043018649574883"/>
<attvalue for="betweenesscentrality" value="67717.95722134512"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-288.50198" y="1611.2654"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="126" label="126">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040348066052381"/>
<attvalue for="betweenesscentrality" value="80484.80312798725"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-862.0674" y="-314.70953"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="127" label="127">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040348066052381"/>
<attvalue for="betweenesscentrality" value="86103.80912198729"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1162.238" y="1071.8767"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="128" label="128">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038233854097067"/>
<attvalue for="betweenesscentrality" value="54775.81288580729"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-210.05226" y="792.26404"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="129" label="129">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037566208216441"/>
<attvalue for="betweenesscentrality" value="41292.77071892497"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="524.2739" y="863.7416"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="130" label="130">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040681888992694"/>
<attvalue for="betweenesscentrality" value="37124.85101003366"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-118.78011" y="-2078.2139"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="131" label="131">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="113"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30412382605598814"/>
<attvalue for="betweenesscentrality" value="69851.11671977711"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="76.30642" y="1250.1836"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="132" label="132">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040014243112068"/>
<attvalue for="betweenesscentrality" value="56735.380407936354"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1269.4382" y="443.98184"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="133" label="133">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="113"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040014243112068"/>
<attvalue for="betweenesscentrality" value="64183.82360242979"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-655.5224" y="991.93256"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="134" label="134">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.30391240486045673"/>
<attvalue for="betweenesscentrality" value="61300.97357877251"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="930.81085" y="-1288.8158"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="135" label="135">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30387902256642546"/>
<attvalue for="betweenesscentrality" value="112124.00170357744"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1580.4658" y="-2369.1445"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="136" label="136">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851927"/>
<attvalue for="betweenesscentrality" value="78939.10320794831"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1351.0034" y="270.42133"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="137" label="137">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="101"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038901499977693"/>
<attvalue for="betweenesscentrality" value="30578.06158517393"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1227.8119" y="552.6604"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="138" label="138">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="101"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038901499977693"/>
<attvalue for="betweenesscentrality" value="41211.78259643761"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="896.4561" y="993.2669"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="139" label="139">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="83330.70992047973"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-107.10198" y="1663.9875"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="140" label="140">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="13095.483509964726"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-273.47827" y="1685.9724"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="141" label="141">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038233854097067"/>
<attvalue for="betweenesscentrality" value="53821.857424723814"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-652.92303" y="1236.6141"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="142" label="142">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="13757.962808795635"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-58.529217" y="1057.553"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="143" label="143">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.30385676770373793"/>
<attvalue for="betweenesscentrality" value="61118.34007897811"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1107.7517" y="567.4958"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="144" label="144">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30454666844705097"/>
<attvalue for="betweenesscentrality" value="106205.71591354835"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-523.4196" y="1838.2733"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="145" label="145">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="19"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29134409647928416"/>
<attvalue for="harmonicclosnesscentrality" value="0.3052476966217076"/>
<attvalue for="betweenesscentrality" value="174247.309489716"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="590.6103" y="2078.7952"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="146" label="146">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040904437619569"/>
<attvalue for="betweenesscentrality" value="113380.34007898963"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1794.7833" y="-450.66318"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="147" label="147">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037343659589566"/>
<attvalue for="betweenesscentrality" value="54003.308533871226"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-400.30133" y="1075.4371"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="148" label="148">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="3"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29066563167087134"/>
<attvalue for="harmonicclosnesscentrality" value="0.30335603329326893"/>
<attvalue for="betweenesscentrality" value="7488.001703577507"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="230.03859" y="197.67123"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="149" label="149">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851927"/>
<attvalue for="betweenesscentrality" value="84952.46488218401"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1318.7947" y="1394.2311"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="150" label="150">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="30138.82120401952"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="653.74115" y="832.09216"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="151" label="151">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30399029687986306"/>
<attvalue for="betweenesscentrality" value="97384.32120402704"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1778.757" y="530.24005"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="152" label="152">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="19"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3045355410157072"/>
<attvalue for="betweenesscentrality" value="94769.25801384216"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1395.1763" y="471.29565"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="153" label="153">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="57693.06907220416"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-499.87" y="1113.4805"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="154" label="154">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.30461343303511346"/>
<attvalue for="betweenesscentrality" value="153418.70453922756"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1693.7397" y="1572.1696"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="155" label="155">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="84909.2884903001"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1973.8193" y="269.97073"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="156" label="156">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3046023056037697"/>
<attvalue for="betweenesscentrality" value="130786.21866680657"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="456.84216" y="1634.2979"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="157" label="157">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30389014999776925"/>
<attvalue for="betweenesscentrality" value="76793.41869480436"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="921.30145" y="-793.3041"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="158" label="158">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30412382605598814"/>
<attvalue for="betweenesscentrality" value="67772.9046265878"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1252.5254" y="-510.94424"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="159" label="159">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="76281.35088752453"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1681.3032" y="24.929964"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="160" label="160">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="12885.163515071348"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="489.48242" y="-584.3667"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="161" label="161">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851927"/>
<attvalue for="betweenesscentrality" value="68817.29078841709"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1377.6013" y="219.84961"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="162" label="162">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30426848266345696"/>
<attvalue for="betweenesscentrality" value="124151.46482499129"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="566.5733" y="-2196.727"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="163" label="163">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918005"/>
<attvalue for="betweenesscentrality" value="75996.38200801912"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="814.76105" y="-1732.0807"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="164" label="164">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="31"/>
<attvalue for="modularity_class" value="25"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29141211720300403"/>
<attvalue for="harmonicclosnesscentrality" value="0.3060154893844269"/>
<attvalue for="betweenesscentrality" value="218603.30877604394"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1161.0751" y="1526.8097"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="165" label="165">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30389014999776925"/>
<attvalue for="betweenesscentrality" value="82366.10168810374"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-240.86885" y="-1909.4166"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="166" label="166">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.3035340721947691"/>
<attvalue for="betweenesscentrality" value="3912.071204018141"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1143.4268" y="484.089"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="167" label="167">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.3035340721947691"/>
<attvalue for="betweenesscentrality" value="3912.071204018141"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1109.7941" y="525.86536"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="168" label="168">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30451328615301965"/>
<attvalue for="betweenesscentrality" value="94669.32680298074"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="879.24316" y="-831.3956"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="169" label="169">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041015711933006"/>
<attvalue for="betweenesscentrality" value="92225.66440195494"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-603.0064" y="-2324.0532"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="170" label="170">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.303534072194769"/>
<attvalue for="betweenesscentrality" value="9969.576143637274"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-297.97025" y="-868.09064"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="171" label="171">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3045132861530197"/>
<attvalue for="betweenesscentrality" value="41442.478513536866"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-555.8202" y="-1345.8344"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="172" label="172">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="80771.11669295264"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-905.02576" y="-1273.463"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="173" label="173">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="63738.77345070036"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="702.1989" y="1052.7242"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="174" label="174">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041015711933006"/>
<attvalue for="betweenesscentrality" value="77860.45156963816"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1265.5339" y="-903.7687"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="175" label="175">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041460809186756"/>
<attvalue for="betweenesscentrality" value="114434.53627255793"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1154.1827" y="431.32687"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="176" label="176">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040348066052381"/>
<attvalue for="betweenesscentrality" value="71609.958110603"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="835.2645" y="-1440.6047"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="177" label="177">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="90393.55714977061"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1197.0518" y="-690.09937"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="178" label="178">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="21"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29118550487966094"/>
<attvalue for="harmonicclosnesscentrality" value="0.30506965772020755"/>
<attvalue for="betweenesscentrality" value="163025.42426650465"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2159.4048" y="-1866.2606"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="179" label="179">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912081502508069"/>
<attvalue for="harmonicclosnesscentrality" value="0.3049361285440824"/>
<attvalue for="betweenesscentrality" value="124533.92672136363"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-23.301588" y="-334.8072"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="180" label="180">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="8985.290788412887"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="680.8304" y="-252.58882"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="181" label="181">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="25"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29138944009960704"/>
<attvalue for="harmonicclosnesscentrality" value="0.3056482841500829"/>
<attvalue for="betweenesscentrality" value="234271.86619550112"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2896.1245" y="-324.0198"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="182" label="182">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918005"/>
<attvalue for="betweenesscentrality" value="80466.46274017372"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1319.343" y="389.6246"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="183" label="183">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="65414.10016897222"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="166.80553" y="-1873.0264"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="184" label="184">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.30391240486045673"/>
<attvalue for="betweenesscentrality" value="56564.726767418775"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1374.8896" y="-1209.5345"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="185" label="185">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="92028.31745769377"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-398.89966" y="-2465.0288"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="186" label="186">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="50275.476636618376"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="905.5472" y="254.60109"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="187" label="187">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="54574.4120834864"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="637.8435" y="650.52277"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="188" label="188">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="78542.88417278757"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-43.692665" y="-1159.012"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="189" label="189">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851927"/>
<attvalue for="betweenesscentrality" value="71072.88417279025"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1691.903" y="-520.1021"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="190" label="190">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30469132505451985"/>
<attvalue for="betweenesscentrality" value="53800.02439699222"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-619.78625" y="-1492.9708"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="191" label="191">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30445764899630084"/>
<attvalue for="betweenesscentrality" value="113601.16474864203"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1652.2693" y="-110.1553"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="192" label="192">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="8723.328061652071"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-922.9354" y="232.24521"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="193" label="193">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.30391240486045673"/>
<attvalue for="betweenesscentrality" value="54854.98706302262"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1310.111" y="774.8094"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="194" label="194">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="34"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2915709558107845"/>
<attvalue for="harmonicclosnesscentrality" value="0.30641607691280215"/>
<attvalue for="betweenesscentrality" value="266191.8379855744"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2348.3135" y="1481.5778"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="195" label="195">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038233854097067"/>
<attvalue for="betweenesscentrality" value="55846.859423021815"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1672.7231" y="128.70123"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="196" label="196">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037566208216441"/>
<attvalue for="betweenesscentrality" value="40892.85942301349"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1488.4493" y="427.21542"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="197" label="197">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="64619.73978219718"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-847.7121" y="-2017.4825"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="198" label="198">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.304591178172426"/>
<attvalue for="betweenesscentrality" value="102550.13604916813"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1337.1212" y="-1198.9657"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="199" label="199">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="28"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29148016969602614"/>
<attvalue for="harmonicclosnesscentrality" value="0.30594872479636437"/>
<attvalue for="betweenesscentrality" value="220969.49417958304"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1260.9838" y="1838.6416"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="200" label="200">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="12373.201292681844"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="656.8777" y="310.1629"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="201" label="201">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042462278007695"/>
<attvalue for="betweenesscentrality" value="64063.57121276134"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="924.61676" y="614.3481"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="202" label="202">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="1516.4308040793185"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-88.509995" y="-772.70135"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="203" label="203">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30406818889926945"/>
<attvalue for="betweenesscentrality" value="26860.167118086778"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="585.82794" y="-1386.71"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="204" label="204">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30433524725151956"/>
<attvalue for="betweenesscentrality" value="48869.92976388948"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1848.8793" y="-745.83594"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="205" label="205">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="34"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29136676652530835"/>
<attvalue for="harmonicclosnesscentrality" value="0.3061156362665208"/>
<attvalue for="betweenesscentrality" value="231947.4297638845"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2004.204" y="2179.5935"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="206" label="206">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="12890.466922280306"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-488.80875" y="-276.21252"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="207" label="207">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="26749.098231741118"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="864.16846" y="-1347.2437"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="208" label="208">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="23015.643486723344"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="608.52386" y="-1239.0771"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="209" label="209">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="12719.651703579426"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="768.18195" y="402.74133"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="210" label="210">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="12719.651703579426"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="719.53973" y="444.16153"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="211" label="211">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.30391240486045673"/>
<attvalue for="betweenesscentrality" value="57335.42311417176"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1061.1754" y="309.36737"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="212" label="212">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30423510036942575"/>
<attvalue for="betweenesscentrality" value="117226.28524761359"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-755.5465" y="-1639.7924"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="213" label="213">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040681888992694"/>
<attvalue for="betweenesscentrality" value="69378.20622436516"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-365.45242" y="-225.2639"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="214" label="214">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="68775.8574247219"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="740.5002" y="-47.465614"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="215" label="215">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="69803.20815492686"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1486.3938" y="-1455.1725"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="216" label="216">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30404593403658176"/>
<attvalue for="betweenesscentrality" value="143123.3801131119"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2424.6072" y="-1719.7849"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="217" label="217">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912081502508069"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042128455067381"/>
<attvalue for="betweenesscentrality" value="180960.57438572668"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2874.335" y="981.8499"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="218" label="218">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038122579783629"/>
<attvalue for="betweenesscentrality" value="93456.05240667007"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1559.7345" y="1557.2941"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="219" label="219">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="78680.77345069981"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1277.4052" y="-305.0348"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="220" label="220">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="17509.990801027318"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1018.89716" y="200.67343"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="221" label="221">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851927"/>
<attvalue for="betweenesscentrality" value="77046.90545475409"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="786.7464" y="1354.4293"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="222" label="222">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.3044465215649571"/>
<attvalue for="betweenesscentrality" value="62592.40471030095"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="974.85" y="-79.306404"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="223" label="223">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.30387902256642546"/>
<attvalue for="betweenesscentrality" value="53055.7958437107"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="863.51166" y="1168.7106"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="224" label="224">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30384564027239425"/>
<attvalue for="betweenesscentrality" value="44078.150403730666"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1001.05475" y="869.4229"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="225" label="225">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="63808.88515380132"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="933.4766" y="971.5341"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="226" label="226">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.30427961009480076"/>
<attvalue for="betweenesscentrality" value="88710.88984998103"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1666.2017" y="-392.18237"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="227" label="227">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040793163306131"/>
<attvalue for="betweenesscentrality" value="93123.86963138253"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-267.72968" y="759.87415"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="228" label="228">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042017180753945"/>
<attvalue for="betweenesscentrality" value="61299.12604872157"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="894.6529" y="-18.54213"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="229" label="229">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041015711933006"/>
<attvalue for="betweenesscentrality" value="79227.24581693209"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-866.2895" y="93.536644"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="230" label="230">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="19"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.30478034450526986"/>
<attvalue for="betweenesscentrality" value="61857.76424060742"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="245.29303" y="-792.2249"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="231" label="231">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037566208216441"/>
<attvalue for="betweenesscentrality" value="45084.32120402408"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1496.7944" y="38.75435"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="232" label="232">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.3044131392709258"/>
<attvalue for="betweenesscentrality" value="171907.07120400088"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2343.4175" y="1234.2205"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="233" label="233">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.291253451561467"/>
<attvalue for="harmonicclosnesscentrality" value="0.30444652156495705"/>
<attvalue for="betweenesscentrality" value="179351.0712039959"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2642.9155" y="773.38477"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="234" label="234">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29136676652530835"/>
<attvalue for="harmonicclosnesscentrality" value="0.30444652156495694"/>
<attvalue for="betweenesscentrality" value="232993.60749366123"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="559.533" y="2931.6987"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="235" label="235">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.30436862954555083"/>
<attvalue for="betweenesscentrality" value="98711.56896433221"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-264.12912" y="2211.635"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="236" label="236">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851927"/>
<attvalue for="betweenesscentrality" value="77467.3212040227"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1668.0773" y="543.1783"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="237" label="237">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="88675.66646111789"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1764.9705" y="-610.13446"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="238" label="238">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.3045800507410822"/>
<attvalue for="betweenesscentrality" value="99369.04572953726"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="516.65717" y="205.9373"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="239" label="239">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30379000311567544"/>
<attvalue for="betweenesscentrality" value="52769.42885329768"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-693.5499" y="1148.9805"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="240" label="240">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="8935.8574247209"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-162.1699" y="680.2441"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="241" label="241">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040904437619569"/>
<attvalue for="betweenesscentrality" value="113557.85742470995"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-781.5528" y="1944.5077"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="242" label="242">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="22"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.30524769662170764"/>
<attvalue for="betweenesscentrality" value="129647.91680699785"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-654.8216" y="392.0846"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="243" label="243">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="36"/>
<attvalue for="modularity_class" value="101"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29148016969602614"/>
<attvalue for="harmonicclosnesscentrality" value="0.3063938220501147"/>
<attvalue for="betweenesscentrality" value="211759.44900280845"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2268.4937" y="488.61957"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="244" label="244">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040904437619569"/>
<attvalue for="betweenesscentrality" value="113557.85742470995"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1277.6298" y="1485.4429"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="245" label="245">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040348066052381"/>
<attvalue for="betweenesscentrality" value="81076.96280879904"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-84.48411" y="1799.391"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="246" label="246">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3046023056037697"/>
<attvalue for="betweenesscentrality" value="92284.99048826544"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="759.929" y="1072.7266"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="247" label="247">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="101"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911628630302088"/>
<attvalue for="harmonicclosnesscentrality" value="0.3048137267993011"/>
<attvalue for="betweenesscentrality" value="125886.5404392624"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1637.8091" y="-270.99725"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="248" label="248">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="19"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30456892330973845"/>
<attvalue for="betweenesscentrality" value="92523.58790828302"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-989.2627" y="400.52063"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="249" label="249">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042017180753944"/>
<attvalue for="betweenesscentrality" value="113973.29142316179"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1212.4539" y="-1382.3164"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="250" label="250">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3046023056037697"/>
<attvalue for="betweenesscentrality" value="94039.53212020636"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-488.98096" y="1910.3527"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="251" label="251">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036676013708941"/>
<attvalue for="betweenesscentrality" value="44953.68877043982"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-48.799934" y="-975.2812"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="252" label="252">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="19"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29118550487966094"/>
<attvalue for="harmonicclosnesscentrality" value="0.30501402056348875"/>
<attvalue for="betweenesscentrality" value="105551.45727131356"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-787.0773" y="-632.6487"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="253" label="253">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="50"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2919119080101345"/>
<attvalue for="harmonicclosnesscentrality" value="0.30780700583077186"/>
<attvalue for="betweenesscentrality" value="329329.9273727464"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-405.71274" y="3539.5063"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="254" label="254">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038233854097067"/>
<attvalue for="betweenesscentrality" value="56655.53861421132"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-18.471731" y="1444.8185"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="255" label="255">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30426848266345696"/>
<attvalue for="betweenesscentrality" value="124446.36537128677"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="730.9618" y="1914.0463"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="256" label="256">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918005"/>
<attvalue for="betweenesscentrality" value="84789.02994572688"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1019.3512" y="1335.4078"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="257" label="257">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.30422397293808195"/>
<attvalue for="betweenesscentrality" value="108722.74649126733"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="20.649603" y="2060.8145"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="258" label="258">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043352472515195"/>
<attvalue for="betweenesscentrality" value="102300.90083624121"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="124.655655" y="1868.7606"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="259" label="259">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="101"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041905906440507"/>
<attvalue for="betweenesscentrality" value="108454.46225673376"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2044.2976" y="-104.36183"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="260" label="260">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="8758.340078980784"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="106.99877" y="377.13632"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="261" label="261">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042573552321132"/>
<attvalue for="betweenesscentrality" value="96637.14702953839"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="421.85107" y="1929.9012"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="262" label="262">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3047135799172073"/>
<attvalue for="betweenesscentrality" value="81603.90991480873"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="139.12701" y="-757.20886"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="263" label="263">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29118550487966094"/>
<attvalue for="harmonicclosnesscentrality" value="0.30484710909333235"/>
<attvalue for="betweenesscentrality" value="120086.42407322118"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="544.3563" y="-1625.388"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="264" label="264">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040570614679256"/>
<attvalue for="betweenesscentrality" value="53191.980176944395"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-399.05246" y="-1848.84"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="265" label="265">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30446877642764464"/>
<attvalue for="betweenesscentrality" value="89488.85101004019"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-9.733906" y="-2343.6797"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="266" label="266">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.30419059064405063"/>
<attvalue for="betweenesscentrality" value="137699.4578068974"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2476.6958" y="-635.50696"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="267" label="267">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851927"/>
<attvalue for="betweenesscentrality" value="70141.94614920505"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1847.8865" y="-197.15515"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="268" label="268">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30379000311567544"/>
<attvalue for="betweenesscentrality" value="46210.37070059697"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1428.4916" y="-222.24634"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="269" label="269">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042907375261445"/>
<attvalue for="betweenesscentrality" value="127878.98625404215"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2298.9812" y="-225.05608"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="270" label="270">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="17895.39729296073"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="649.3459" y="-1552.8865"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="271" label="271">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="62717.439539152605"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1487.8062" y="-432.93927"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="272" label="272">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30389014999776925"/>
<attvalue for="betweenesscentrality" value="69736.92367198151"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1560.105" y="-921.7391"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="273" label="273">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="78301.82644982304"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-592.227" y="479.7772"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="274" label="274">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.30391240486045673"/>
<attvalue for="betweenesscentrality" value="61175.79631980616"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1214.8602" y="-283.669"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="275" label="275">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30384564027239425"/>
<attvalue for="betweenesscentrality" value="41172.884172796345"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1319.1515" y="-289.09836"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="276" label="276">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="3"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29066563167087134"/>
<attvalue for="harmonicclosnesscentrality" value="0.30335603329326893"/>
<attvalue for="betweenesscentrality" value="1494.4017035774086"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="429.34464" y="195.44048"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="277" label="277">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="23"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.291253451561467"/>
<attvalue for="harmonicclosnesscentrality" value="0.30533671607245766"/>
<attvalue for="betweenesscentrality" value="110803.69956253005"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="346.77713" y="-970.3121"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="278" label="278">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042017180753944"/>
<attvalue for="betweenesscentrality" value="101924.21408869373"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="114.30703" y="-1715.7665"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="279" label="279">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="75722.47742769172"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1162.8215" y="-488.67938"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="280" label="280">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="18368.499641115104"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="991.4176" y="-1018.63983"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="281" label="281">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040014243112068"/>
<attvalue for="betweenesscentrality" value="72723.23153364012"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1280.1287" y="-1347.508"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="282" label="282">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.3048582365246762"/>
<attvalue for="betweenesscentrality" value="110736.83886845195"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="549.47754" y="-2069.2402"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="283" label="283">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.291253451561467"/>
<attvalue for="harmonicclosnesscentrality" value="0.30505853028886376"/>
<attvalue for="betweenesscentrality" value="130120.0289730512"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1400.3435" y="-142.18181"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="284" label="284">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30390127742911294"/>
<attvalue for="betweenesscentrality" value="104675.00170357744"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2599.8914" y="-738.45624"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="285" label="285">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29134409647928416"/>
<attvalue for="harmonicclosnesscentrality" value="0.30530333377842644"/>
<attvalue for="betweenesscentrality" value="130732.82954390443"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="448.7354" y="-1566.6217"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="286" label="286">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="30"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041460809186757"/>
<attvalue for="betweenesscentrality" value="70296.86540678506"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1298.8442" y="-1650.8419"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="287" label="287">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30476921707392607"/>
<attvalue for="betweenesscentrality" value="92073.88967205232"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1784.2028" y="-234.02058"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="288" label="288">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.30474696221123854"/>
<attvalue for="betweenesscentrality" value="115340.74690156628"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1731.6687" y="754.7857"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="289" label="289">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30473583477989485"/>
<attvalue for="betweenesscentrality" value="84311.99451965948"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1493.1097" y="62.015995"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="290" label="290">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="9546.206224361904"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="852.0605" y="-219.82056"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="291" label="291">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.30474696221123854"/>
<attvalue for="betweenesscentrality" value="117871.97785883237"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1318.6416" y="-1312.765"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="292" label="292">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912081502508069"/>
<attvalue for="harmonicclosnesscentrality" value="0.3049917657008012"/>
<attvalue for="betweenesscentrality" value="140677.0537905955"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-785.6395" y="-2167.8413"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="293" label="293">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3047135799172073"/>
<attvalue for="betweenesscentrality" value="100553.91219564244"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-594.00854" y="-237.27905"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="294" label="294">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="19"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.3049472559754262"/>
<attvalue for="betweenesscentrality" value="89678.46073861964"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="810.786" y="-746.8252"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="295" label="295">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30383451284105045"/>
<attvalue for="betweenesscentrality" value="78115.51663629519"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-398.17557" y="1781.1569"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="296" label="296">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911628630302088"/>
<attvalue for="harmonicclosnesscentrality" value="0.3048693639560199"/>
<attvalue for="betweenesscentrality" value="149773.21099835358"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2198.4087" y="-818.44543"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="297" label="297">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912081502508069"/>
<attvalue for="harmonicclosnesscentrality" value="0.3049917657008012"/>
<attvalue for="betweenesscentrality" value="136322.2785361046"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="465.5586" y="-1341.3915"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="298" label="298">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051364223082701"/>
<attvalue for="betweenesscentrality" value="128821.92502316946"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1022.628" y="-1704.9613"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="299" label="299">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.3048916188187074"/>
<attvalue for="betweenesscentrality" value="97333.35211489421"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-75.70309" y="-1606.0779"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="300" label="300">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038901499977693"/>
<attvalue for="betweenesscentrality" value="31983.1939107705"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1199.5244" y="-958.08057"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="301" label="301">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.30486936395601993"/>
<attvalue for="betweenesscentrality" value="66011.83641100812"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1073.745" y="-1143.5148"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="302" label="302">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="13637.22641101105"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="909.1781" y="-574.2077"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="303" label="303">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30469132505451985"/>
<attvalue for="betweenesscentrality" value="25626.286444481728"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="129.39474" y="-852.91846"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="304" label="304">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30442426670226963"/>
<attvalue for="betweenesscentrality" value="35019.39663143399"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-869.0046" y="-236.09074"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="305" label="305">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="47"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2916617984967091"/>
<attvalue for="harmonicclosnesscentrality" value="0.30727288912627154"/>
<attvalue for="betweenesscentrality" value="304096.4318135285"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2959.2349" y="704.9828"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="306" label="306">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="38"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2914574820003892"/>
<attvalue for="harmonicclosnesscentrality" value="0.306471714069521"/>
<attvalue for="betweenesscentrality" value="173454.21426157007"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-541.6967" y="892.81744"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="307" label="307">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="9338.416898448999"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-632.9678" y="-205.80956"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="308" label="308">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="9902.980059972746"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-453.55453" y="-211.43709"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="309" label="309">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="8364.982203691972"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="848.1373" y="-371.59183"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="310" label="310">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3046023056037697"/>
<attvalue for="betweenesscentrality" value="39349.65513568606"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-430.87976" y="-833.3192"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="311" label="311">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.30411269862464435"/>
<attvalue for="betweenesscentrality" value="158271.30848565817"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-174.28036" y="2284.5735"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="312" label="312">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="21"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29127610750262534"/>
<attvalue for="harmonicclosnesscentrality" value="0.30525882405305144"/>
<attvalue for="betweenesscentrality" value="153472.6883454932"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1145.9281" y="-88.21434"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="313" label="313">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.30461343303511346"/>
<attvalue for="betweenesscentrality" value="123618.92976390752"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2236.71" y="-687.54443"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="314" label="314">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="19"/>
<attvalue for="modularity_class" value="11"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29118550487966094"/>
<attvalue for="harmonicclosnesscentrality" value="0.30501402056348875"/>
<attvalue for="betweenesscentrality" value="100713.42484297206"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1221.7317" y="-536.1668"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="315" label="315">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="11"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30417946321270695"/>
<attvalue for="betweenesscentrality" value="78991.05983330662"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1452.8324" y="-1407.7473"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="316" label="316">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.3045021587216759"/>
<attvalue for="betweenesscentrality" value="102894.97192387699"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1680.4038" y="-1092.2789"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="317" label="317">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="11"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.30469132505451973"/>
<attvalue for="betweenesscentrality" value="96089.80243846454"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-526.9503" y="-487.84076"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="318" label="318">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="21"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051920594649889"/>
<attvalue for="betweenesscentrality" value="132706.7285157101"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-781.0831" y="124.6374"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="319" label="319">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043797569768946"/>
<attvalue for="betweenesscentrality" value="66548.49195071122"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="483.07715" y="-949.2679"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="320" label="320">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3045132861530197"/>
<attvalue for="betweenesscentrality" value="68484.56956188282"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="773.0511" y="902.4405"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="321" label="321">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851927"/>
<attvalue for="betweenesscentrality" value="71235.54692434763"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="72.77427" y="1383.4249"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="322" label="322">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="29"/>
<attvalue for="modularity_class" value="113"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29141211720300403"/>
<attvalue for="harmonicclosnesscentrality" value="0.30590421507098936"/>
<attvalue for="betweenesscentrality" value="196660.41135023776"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1518.4663" y="-47.529076"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="323" label="323">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30468019762317605"/>
<attvalue for="betweenesscentrality" value="93146.72673119596"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-142.94705" y="475.43286"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="324" label="324">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="29"/>
<attvalue for="modularity_class" value="113"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2914347978363233"/>
<attvalue for="harmonicclosnesscentrality" value="0.3059375973650206"/>
<attvalue for="betweenesscentrality" value="198713.10797498506"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1317.2551" y="758.4425"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="325" label="325">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.304635687897801"/>
<attvalue for="betweenesscentrality" value="94048.87307058826"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-632.3012" y="-920.494"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="326" label="326">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3046579427604885"/>
<attvalue for="betweenesscentrality" value="102653.44910501764"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-781.81586" y="-1357.5763"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="327" label="327">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037677482529879"/>
<attvalue for="betweenesscentrality" value="60594.07316275295"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1236.5449" y="1026.5651"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="328" label="328">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040459340365818"/>
<attvalue for="betweenesscentrality" value="87061.63340995189"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1147.166" y="-1501.3743"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="329" label="329">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="19"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041126986246444"/>
<attvalue for="betweenesscentrality" value="112900.60070411232"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-54.172733" y="1504.5326"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="330" label="330">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037121110962691"/>
<attvalue for="betweenesscentrality" value="30359.4830139779"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-187.88167" y="-1400.8772"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="331" label="331">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30454666844705097"/>
<attvalue for="betweenesscentrality" value="99252.1986809838"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-883.07654" y="-679.7707"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="332" label="332">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="11"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041015711933006"/>
<attvalue for="betweenesscentrality" value="90500.2671221991"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1198.2943" y="-1692.6063"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="333" label="333">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29141211720300403"/>
<attvalue for="harmonicclosnesscentrality" value="0.30523656919036385"/>
<attvalue for="betweenesscentrality" value="189295.47562807758"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-461.54175" y="3001.4487"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="334" label="334">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29138944009960704"/>
<attvalue for="harmonicclosnesscentrality" value="0.3052031868963326"/>
<attvalue for="betweenesscentrality" value="183372.47851356099"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-941.8945" y="-376.42206"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="335" label="335">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="31"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041015711933006"/>
<attvalue for="betweenesscentrality" value="98665.57603424387"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2151.7239" y="-881.4565"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="336" label="336">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040793163306131"/>
<attvalue for="betweenesscentrality" value="151177.66739563138"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1514.6199" y="-2608.0757"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="337" label="337">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30387902256642546"/>
<attvalue for="betweenesscentrality" value="106422.87475210242"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2001.1155" y="-1514.2858"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="338" label="338">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30404593403658176"/>
<attvalue for="betweenesscentrality" value="143378.8544036232"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-425.2617" y="2449.6897"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="339" label="339">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851927"/>
<attvalue for="betweenesscentrality" value="127728.78887083694"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-635.74646" y="2247.652"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="340" label="340">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039791694485193"/>
<attvalue for="betweenesscentrality" value="37005.002207557496"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1063.0344" y="-1400.7382"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="341" label="341">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29136676652530835"/>
<attvalue for="harmonicclosnesscentrality" value="0.30489161881870736"/>
<attvalue for="betweenesscentrality" value="192350.70741321708"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1784.8823" y="-1101.1569"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="342" label="342">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051364223082701"/>
<attvalue for="betweenesscentrality" value="149891.2437734179"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-323.22665" y="-2042.6167"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="343" label="343">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="25"/>
<attvalue for="modularity_class" value="11"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912987669687658"/>
<attvalue for="harmonicclosnesscentrality" value="0.3055147549739578"/>
<attvalue for="betweenesscentrality" value="143431.81068721536"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-844.05597" y="-1338.2228"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="344" label="344">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.3048359816619886"/>
<attvalue for="betweenesscentrality" value="103527.67024786178"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-235.92955" y="316.0196"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="345" label="345">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="19"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29118550487966094"/>
<attvalue for="harmonicclosnesscentrality" value="0.30501402056348875"/>
<attvalue for="betweenesscentrality" value="130576.87641070783"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-913.9563" y="1262.8622"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="346" label="346">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040348066052381"/>
<attvalue for="betweenesscentrality" value="62215.73322756149"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="728.8445" y="657.2004"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="347" label="347">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="30"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040904437619569"/>
<attvalue for="betweenesscentrality" value="65833.80752120593"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="603.1909" y="-1996.808"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="348" label="348">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30412382605598814"/>
<attvalue for="betweenesscentrality" value="73428.0946173888"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="53.285164" y="1676.6205"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="349" label="349">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="21"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912081502508069"/>
<attvalue for="harmonicclosnesscentrality" value="0.30515867717095757"/>
<attvalue for="betweenesscentrality" value="170620.12877434684"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2448.8218" y="200.30168"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="350" label="350">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="16908.34965611499"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1461.0619" y="-739.2294"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="351" label="351">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041905906440507"/>
<attvalue for="betweenesscentrality" value="105344.55714977146"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1384.1123" y="1144.911"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="352" label="352">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="23"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912307991444682"/>
<attvalue for="harmonicclosnesscentrality" value="0.30530333377842644"/>
<attvalue for="betweenesscentrality" value="104570.53026072307"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="814.6677" y="-817.5038"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="353" label="353">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043352472515195"/>
<attvalue for="betweenesscentrality" value="101239.15129502017"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1624.616" y="-1204.8009"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="354" label="354">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3046579427604885"/>
<attvalue for="betweenesscentrality" value="113146.0278796454"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1565.2057" y="944.56305"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="355" label="355">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3046468153291447"/>
<attvalue for="betweenesscentrality" value="84164.14395746718"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1328.0039" y="-755.88367"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="356" label="356">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="33"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2915255556853128"/>
<attvalue for="harmonicclosnesscentrality" value="0.3062936751680208"/>
<attvalue for="betweenesscentrality" value="220705.02411277563"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-758.2231" y="-1968.1631"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="357" label="357">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="30"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29141211720300403"/>
<attvalue for="harmonicclosnesscentrality" value="0.3059598522277081"/>
<attvalue for="betweenesscentrality" value="211264.31762064394"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2529.194" y="-24.755568"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="358" label="358">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038233854097067"/>
<attvalue for="betweenesscentrality" value="53797.93703151256"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1103.0436" y="1020.60095"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="359" label="359">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.304635687897801"/>
<attvalue for="betweenesscentrality" value="106819.15541768384"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-564.37" y="667.86316"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="360" label="360">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3046023056037697"/>
<attvalue for="betweenesscentrality" value="41227.74378889019"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="243.35934" y="928.8922"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="361" label="361">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30399029687986306"/>
<attvalue for="betweenesscentrality" value="91171.85742471273"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1574.8767" y="-157.3816"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="362" label="362">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="21"/>
<attvalue for="modularity_class" value="11"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29118550487966094"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051252948769263"/>
<attvalue for="betweenesscentrality" value="124383.63362444878"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="186.2522" y="-1051.0907"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="363" label="363">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3045355410157072"/>
<attvalue for="betweenesscentrality" value="89890.76656641564"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1080.944" y="-545.8597"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="364" label="364">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043241198201758"/>
<attvalue for="betweenesscentrality" value="67743.88712016233"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-648.54144" y="-682.891"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="365" label="365">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30421284550673816"/>
<attvalue for="betweenesscentrality" value="79472.22582076698"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1344.5142" y="-922.7361"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="366" label="366">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.291253451561467"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051698046023013"/>
<attvalue for="betweenesscentrality" value="130493.2019245433"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-571.60236" y="-1573.4625"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="367" label="367">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="79587.18213181038"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1462.8258" y="284.25476"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="368" label="368">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30399029687986306"/>
<attvalue for="betweenesscentrality" value="95373.05704884253"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-678.8645" y="1350.0345"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="369" label="369">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.304635687897801"/>
<attvalue for="betweenesscentrality" value="117275.57724194333"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1141.1733" y="-154.94777"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="370" label="370">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30469132505451985"/>
<attvalue for="betweenesscentrality" value="57500.59246108088"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="454.33017" y="-860.77875"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="371" label="371">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="19"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912081502508069"/>
<attvalue for="harmonicclosnesscentrality" value="0.3050474028575201"/>
<attvalue for="betweenesscentrality" value="148583.70444084908"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1373.705" y="754.355"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="372" label="372">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="21"/>
<attvalue for="modularity_class" value="30"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29127610750262534"/>
<attvalue for="harmonicclosnesscentrality" value="0.30525882405305144"/>
<attvalue for="betweenesscentrality" value="133407.90998798958"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="810.7835" y="-1827.8501"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="373" label="373">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="78661.42404565647"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="993.1022" y="-1418.4692"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="374" label="374">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918006"/>
<attvalue for="betweenesscentrality" value="76466.88744751038"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1877.6564" y="-624.70087"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="375" label="375">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042462278007695"/>
<attvalue for="betweenesscentrality" value="76887.7260735993"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1588.9177" y="-371.85754"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="376" label="376">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039680420171756"/>
<attvalue for="betweenesscentrality" value="68075.55318169402"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="99.1997" y="-1394.1893"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="377" label="377">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040681888992694"/>
<attvalue for="betweenesscentrality" value="92431.82120402501"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1383.7169" y="1462.2255"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="378" label="378">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040459340365818"/>
<attvalue for="betweenesscentrality" value="93858.43799724498"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-986.16125" y="-896.3415"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="379" label="379">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29118550487966094"/>
<attvalue for="harmonicclosnesscentrality" value="0.30495838340676995"/>
<attvalue for="betweenesscentrality" value="154151.11299620545"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1634.9517" y="696.69934"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="380" label="380">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="17575.44315825956"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="226.63007" y="833.4962"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="381" label="381">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.291253451561467"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051698046023014"/>
<attvalue for="betweenesscentrality" value="159729.95108193482"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1882.2372" y="238.28842"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="382" label="382">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="97"/>
<attvalue for="modularity_class" value="28"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29291665036961706"/>
<attvalue for="harmonicclosnesscentrality" value="0.3118907731339244"/>
<attvalue for="betweenesscentrality" value="621072.3742393146"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-240.67203" y="-4458.8174"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="383" label="383">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30445764899630035"/>
<attvalue for="betweenesscentrality" value="127711.21706831589"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="803.34937" y="1999.6621"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="384" label="384">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.3048582365246762"/>
<attvalue for="betweenesscentrality" value="122955.4492488159"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1503.7012" y="1065.769"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="385" label="385">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3044799038589884"/>
<attvalue for="betweenesscentrality" value="94635.8870803212"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1842.7048" y="433.33133"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="386" label="386">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30399029687986306"/>
<attvalue for="betweenesscentrality" value="92945.45780689134"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="307.73978" y="-866.1814"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="387" label="387">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038233854097067"/>
<attvalue for="betweenesscentrality" value="55595.457806910956"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1708.3767" y="45.42779"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="388" label="388">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.303856767703738"/>
<attvalue for="betweenesscentrality" value="63069.457806910985"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1686.3685" y="345.99536"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="389" label="389">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042351003694255"/>
<attvalue for="betweenesscentrality" value="129588.39358209285"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1402.1299" y="1514.7952"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="390" label="390">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.30353407219476897"/>
<attvalue for="betweenesscentrality" value="15137.976848113252"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="674.68665" y="413.06274"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="391" label="391">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039124048604568"/>
<attvalue for="betweenesscentrality" value="55773.75743473145"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-289.15366" y="-114.56893"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="392" label="392">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30409044376195676"/>
<attvalue for="betweenesscentrality" value="67604.52054130728"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-721.4449" y="294.94122"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="393" label="393">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626906"/>
<attvalue for="betweenesscentrality" value="6953.78953615697"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-76.22927" y="-1058.0194"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="394" label="394">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.30496951083811374"/>
<attvalue for="betweenesscentrality" value="77175.06800601575"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-759.07605" y="-1213.9736"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="395" label="395">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040459340365818"/>
<attvalue for="betweenesscentrality" value="95320.978124637"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-915.8685" y="-1934.1968"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="396" label="396">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040681888992694"/>
<attvalue for="betweenesscentrality" value="69687.73322756097"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-402.57138" y="-586.33124"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="397" label="397">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042239729380818"/>
<attvalue for="betweenesscentrality" value="109049.29671862416"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2087.5583" y="-343.4678"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="398" label="398">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.304123826055988"/>
<attvalue for="betweenesscentrality" value="81248.40201272148"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="801.7945" y="1160.7296"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="399" label="399">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30403480660523813"/>
<attvalue for="betweenesscentrality" value="64086.94228440605"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="563.2803" y="-1275.5343"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="400" label="400">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="9855.733227554088"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="661.7422" y="-81.45451"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="401" label="401">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="14975.001703577502"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="727.201" y="-166.58008"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="402" label="402">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.30389014999776903"/>
<attvalue for="betweenesscentrality" value="37950.95748684502"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1232.7609" y="9.805204"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="403" label="403">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038011305470192"/>
<attvalue for="betweenesscentrality" value="23630.360175708574"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="161.37677" y="1239.1072"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="404" label="404">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="101"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="18203.312806054404"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-615.32983" y="330.07782"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="405" label="405">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30469132505451973"/>
<attvalue for="betweenesscentrality" value="49633.19655641139"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-583.40845" y="-855.94885"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="406" label="406">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="8758.340078980857"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="173.76413" y="405.45227"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="407" label="407">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="9794.803154109752"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-83.60886" y="-62.927685"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="408" label="408">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.303801130547019"/>
<attvalue for="betweenesscentrality" value="17423.81076854252"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-147.16719" y="-632.5239"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="409" label="409">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="21"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.3049583834067699"/>
<attvalue for="betweenesscentrality" value="110143.88598757911"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1521.798" y="-1662.4647"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="410" label="410">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="8758.340078980857"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="123.57232" y="444.40088"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="411" label="411">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918006"/>
<attvalue for="betweenesscentrality" value="77982.17343907202"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="859.58496" y="1471.8297"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="412" label="412">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="10456.622764292497"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-500.34152" y="-1055.5469"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="413" label="413">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041572083500191"/>
<attvalue for="betweenesscentrality" value="24034.303910228664"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-289.26746" y="-1409.9598"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="414" label="414">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041572083500191"/>
<attvalue for="betweenesscentrality" value="24034.303910228664"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-263.54233" y="-1428.9279"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="415" label="415">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918006"/>
<attvalue for="betweenesscentrality" value="77096.80315410056"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1217.4261" y="-798.2015"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="416" label="416">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.30472470734855106"/>
<attvalue for="betweenesscentrality" value="118097.81180213447"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="121.03055" y="-1764.6268"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="417" label="417">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.30436862954555066"/>
<attvalue for="betweenesscentrality" value="101759.42725904785"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1109.3127" y="296.0448"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="418" label="418">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="22"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912987669687658"/>
<attvalue for="harmonicclosnesscentrality" value="0.30534784350380006"/>
<attvalue for="betweenesscentrality" value="206129.43772712562"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3111.8108" y="-1007.2424"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="419" label="419">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039124048604568"/>
<attvalue for="betweenesscentrality" value="54643.26645760833"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-197.61143" y="-886.5622"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="420" label="420">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455189"/>
<attvalue for="betweenesscentrality" value="26150.21960482849"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1033.4153" y="722.2448"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="421" label="421">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.303945787154488"/>
<attvalue for="betweenesscentrality" value="70025.83463275865"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1383.7438" y="700.3403"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="422" label="422">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040014243112066"/>
<attvalue for="betweenesscentrality" value="78875.31241546862"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1479.5695" y="-1113.1515"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="423" label="423">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="131"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30392353229180036"/>
<attvalue for="betweenesscentrality" value="97221.00170357745"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2512.5818" y="-269.0202"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="424" label="424">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="132"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30384564027239397"/>
<attvalue for="betweenesscentrality" value="67346.00170357744"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1909.5881" y="569.0222"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="425" label="425">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="24"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912987669687658"/>
<attvalue for="harmonicclosnesscentrality" value="0.30545911781723906"/>
<attvalue for="betweenesscentrality" value="112290.94827834236"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="640.7358" y="-876.8184"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="426" label="426">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30384564027239425"/>
<attvalue for="betweenesscentrality" value="43047.1181804073"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-97.87891" y="853.80585"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="427" label="427">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.304268482663457"/>
<attvalue for="betweenesscentrality" value="81936.63129546221"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="723.0163" y="1125.437"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="428" label="428">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042796100948006"/>
<attvalue for="betweenesscentrality" value="96309.56725041418"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-912.04156" y="710.0188"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="429" label="429">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="7650.976848113459"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="474.6693" y="296.04828"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="430" label="430">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="21"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30495838340676984"/>
<attvalue for="betweenesscentrality" value="75848.28142783033"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-715.9332" y="-436.19574"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="431" label="431">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30419059064405046"/>
<attvalue for="betweenesscentrality" value="105681.24307529924"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1863.1738" y="438.00662"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="432" label="432">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.30375662082164423"/>
<attvalue for="betweenesscentrality" value="38732.37070059396"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1414.2231" y="194.30338"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="433" label="433">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2913214299607111"/>
<attvalue for="harmonicclosnesscentrality" value="0.30526995148439473"/>
<attvalue for="betweenesscentrality" value="180764.92696925031"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2422.0527" y="-601.3722"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="434" label="434">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.291253451561467"/>
<attvalue for="harmonicclosnesscentrality" value="0.30500289313214474"/>
<attvalue for="betweenesscentrality" value="151422.95046237437"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="975.11865" y="-1423.668"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="435" label="435">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="113"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29127610750262534"/>
<attvalue for="harmonicclosnesscentrality" value="0.3052031868963321"/>
<attvalue for="betweenesscentrality" value="172127.22396031083"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1442.123" y="-1993.9913"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="436" label="436">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="18"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.30489161881870724"/>
<attvalue for="betweenesscentrality" value="124929.02363818407"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="170.22372" y="-1492.4373"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="437" label="437">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30410157119330067"/>
<attvalue for="betweenesscentrality" value="84751.61035763902"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1238.8872" y="628.64575"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="438" label="438">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042573552321133"/>
<attvalue for="betweenesscentrality" value="106435.72161451254"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1078.9021" y="-1977.3073"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="439" label="439">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30403480660523796"/>
<attvalue for="betweenesscentrality" value="82629.22167682149"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="63.384808" y="-2125.0425"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="440" label="440">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.303712111096269"/>
<attvalue for="betweenesscentrality" value="26631.599134304903"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="650.65936" y="-626.78296"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="441" label="441">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="113"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911628630302088"/>
<attvalue for="harmonicclosnesscentrality" value="0.3048693639560196"/>
<attvalue for="betweenesscentrality" value="146909.60033977174"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1969.0469" y="-1523.712"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="442" label="442">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="30"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2913214299607111"/>
<attvalue for="harmonicclosnesscentrality" value="0.30510304001423844"/>
<attvalue for="betweenesscentrality" value="207036.71502296886"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2199.3076" y="-2564.3386"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="443" label="443">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.3037900031156754"/>
<attvalue for="betweenesscentrality" value="60305.3591609976"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1554.2372" y="-243.17216"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="444" label="444">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="69629.37155919707"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1203.5825" y="483.42157"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="445" label="445">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="19"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038233854097067"/>
<attvalue for="betweenesscentrality" value="60618.60070411526"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-120.3325" y="750.50104"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="446" label="446">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3044353941336132"/>
<attvalue for="betweenesscentrality" value="108689.97597379824"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-989.0331" y="830.5013"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="447" label="447">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30424622780076915"/>
<attvalue for="betweenesscentrality" value="90519.81045665342"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-219.98354" y="1381.1139"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="448" label="448">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="25"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.304034806605238"/>
<attvalue for="betweenesscentrality" value="77334.89719502167"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="349.08344" y="1456.3302"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="449" label="449">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30401255174255043"/>
<attvalue for="betweenesscentrality" value="89014.34401510547"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1605.7518" y="-1388.9865"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="450" label="450">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="9546.206224361915"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="898.1705" y="-216.56908"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="451" label="451">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="30"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043241198201758"/>
<attvalue for="betweenesscentrality" value="115534.08221345661"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-173.42116" y="-2514.798"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="452" label="452">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039569145858317"/>
<attvalue for="betweenesscentrality" value="87601.54380985542"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="599.19916" y="1243.2445"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="453" label="453">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="35"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2917526978066929"/>
<attvalue for="harmonicclosnesscentrality" value="0.30673877242176883"/>
<attvalue for="betweenesscentrality" value="333442.8902699229"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="772.7103" y="3147.775"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="454" label="454">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30389014999776925"/>
<attvalue for="betweenesscentrality" value="68590.34007898027"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1297.1696" y="262.4845"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="455" label="455">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="43"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29177543148790275"/>
<attvalue for="harmonicclosnesscentrality" value="0.30721725196955013"/>
<attvalue for="betweenesscentrality" value="312996.91043686453"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-707.6915" y="3259.4817"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="456" label="456">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039569145858318"/>
<attvalue for="betweenesscentrality" value="83528.34007898303"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1364.7733" y="134.80193"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="457" label="457">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.30422397293808157"/>
<attvalue for="betweenesscentrality" value="119825.82120402559"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1373.7653" y="1651.124"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="458" label="458">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.30396804201717553"/>
<attvalue for="betweenesscentrality" value="54262.56662988703"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-116.69764" y="-750.7131"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="459" label="459">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="21"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2913214299607111"/>
<attvalue for="harmonicclosnesscentrality" value="0.3052699514843949"/>
<attvalue for="betweenesscentrality" value="190746.68617234984"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2507.0776" y="-1110.5864"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="460" label="460">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="21"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038901499977689"/>
<attvalue for="betweenesscentrality" value="34498.76585729309"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1714.2046" y="-914.72833"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="461" label="461">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851916"/>
<attvalue for="betweenesscentrality" value="91235.49701058"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1853.5425" y="-609.14343"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="462" label="462">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30417946321270684"/>
<attvalue for="betweenesscentrality" value="118049.67712316108"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-635.2998" y="1857.4296"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="463" label="463">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.30433524725151945"/>
<attvalue for="betweenesscentrality" value="76158.50949451362"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="485.9374" y="493.72888"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="464" label="464">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2910723308329123"/>
<attvalue for="harmonicclosnesscentrality" value="0.30429073752614444"/>
<attvalue for="betweenesscentrality" value="101138.2084559995"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1551.618" y="568.95264"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="465" label="465">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911628630302088"/>
<attvalue for="harmonicclosnesscentrality" value="0.30447990385898793"/>
<attvalue for="betweenesscentrality" value="161198.38394604874"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1759.5061" y="1074.1592"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="466" label="466">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.304491031290332"/>
<attvalue for="betweenesscentrality" value="124299.60220428008"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1373.2034" y="-2157.4"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="467" label="467">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="62086.529312029765"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1460.2522" y="-438.7687"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="468" label="468">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30407931633061314"/>
<attvalue for="betweenesscentrality" value="92820.39063297695"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="887.6545" y="-1841.9266"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="469" label="469">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="20"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912987669687658"/>
<attvalue for="harmonicclosnesscentrality" value="0.3052365691903639"/>
<attvalue for="betweenesscentrality" value="156623.50119948498"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="403.2446" y="-1780.7714"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="470" label="470">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="30"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29127610750262534"/>
<attvalue for="harmonicclosnesscentrality" value="0.30575955846351827"/>
<attvalue for="betweenesscentrality" value="182030.3371231916"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2509.588" y="-1286.7405"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="471" label="471">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043686295455503"/>
<attvalue for="betweenesscentrality" value="107270.33712320193"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2183.0903" y="-197.29622"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="472" label="472">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="17"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29136676652530835"/>
<attvalue for="harmonicclosnesscentrality" value="0.3051698046023009"/>
<attvalue for="betweenesscentrality" value="209787.30217922822"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2440.7498" y="-275.55774"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="473" label="473">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.303945787154488"/>
<attvalue for="betweenesscentrality" value="66653.95360160996"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="471.9666" y="924.865"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="474" label="474">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30401255174255043"/>
<attvalue for="betweenesscentrality" value="90220.79517229706"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1144.6904" y="-975.0415"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="475" label="475">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038122579783628"/>
<attvalue for="betweenesscentrality" value="48724.87521558038"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1508.1804" y="-375.71753"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="476" label="476">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.3045577958783942"/>
<attvalue for="betweenesscentrality" value="143859.29142316827"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="696.0655" y="1346.424"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="477" label="477">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="25"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2913214299607111"/>
<attvalue for="harmonicclosnesscentrality" value="0.3055481372679884"/>
<attvalue for="betweenesscentrality" value="145912.4966362883"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1179.7021" y="-1709.5552"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="478" label="478">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30400142431120664"/>
<attvalue for="betweenesscentrality" value="62891.93113756318"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="543.96387" y="774.969"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="479" label="479">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.30454666844705075"/>
<attvalue for="betweenesscentrality" value="111044.84923424105"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-819.8355" y="-123.01985"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="480" label="480">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.30415720835001947"/>
<attvalue for="betweenesscentrality" value="31566.63337099794"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="604.22656" y="-956.3255"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="481" label="481">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.30375662082164423"/>
<attvalue for="betweenesscentrality" value="45637.55318169709"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1187.633" y="309.14645"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="482" label="482">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="66847.89759905769"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="719.3398" y="-1847.1534"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="483" label="483">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="84"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29261907552846483"/>
<attvalue for="harmonicclosnesscentrality" value="0.310733520274173"/>
<attvalue for="betweenesscentrality" value="624476.2386873345"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2284.2197" y="-4953.8984"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="484" label="484">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="30"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30430186495748807"/>
<attvalue for="betweenesscentrality" value="76400.557479397"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="615.2677" y="-2367.068"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="485" label="485">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="30"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30430186495748823"/>
<attvalue for="betweenesscentrality" value="72702.21102031882"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="809.0235" y="-2080.0518"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="486" label="486">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040681888992694"/>
<attvalue for="betweenesscentrality" value="76740.34965611128"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1991.5635" y="-761.1003"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="487" label="487">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.30444652156495683"/>
<attvalue for="betweenesscentrality" value="91084.14582391348"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2163.3235" y="326.38727"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="488" label="488">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.30416833578136315"/>
<attvalue for="betweenesscentrality" value="99144.34965611082"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1946.2932" y="-1421.9391"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="489" label="489">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="71212.16014762511"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="863.6281" y="589.34357"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="490" label="490">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29080107171979963"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038901499977693"/>
<attvalue for="betweenesscentrality" value="15635.557455346074"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="152.39833" y="974.64374"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="491" label="491">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30379000311567544"/>
<attvalue for="betweenesscentrality" value="53014.90080763379"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-704.2713" y="505.60104"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="492" label="492">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.291253451561467"/>
<attvalue for="harmonicclosnesscentrality" value="0.30489161881870686"/>
<attvalue for="betweenesscentrality" value="168806.06865664228"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1668.9502" y="412.8435"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="493" label="493">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041905906440505"/>
<attvalue for="betweenesscentrality" value="89724.37469381539"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="888.9472" y="1204.6539"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="494" label="494">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="49"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29102708584308085"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043352472515191"/>
<attvalue for="betweenesscentrality" value="106152.85742471709"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1118.8257" y="1453.7778"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="495" label="495">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918006"/>
<attvalue for="betweenesscentrality" value="79830.43587297764"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1583.9363" y="832.8374"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="496" label="496">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="19"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30397916944851916"/>
<attvalue for="betweenesscentrality" value="86026.71399059088"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1841.1396" y="390.75873"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="497" label="497">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="26"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2913214299607111"/>
<attvalue for="harmonicclosnesscentrality" value="0.30560377442470715"/>
<attvalue for="betweenesscentrality" value="126129.9282711362"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1165.1702" y="-1471.9778"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="498" label="498">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040459340365818"/>
<attvalue for="betweenesscentrality" value="95090.36636528563"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1218.5508" y="-1298.2719"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="499" label="499">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30405706146792555"/>
<attvalue for="betweenesscentrality" value="57075.19140600552"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-472.19638" y="-1615.4171"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="500" label="500">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.3035340721947691"/>
<attvalue for="betweenesscentrality" value="8234.073162744911"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-734.7363" y="193.28232"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="501" label="501">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455189"/>
<attvalue for="betweenesscentrality" value="22653.82120401797"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="463.99402" y="673.89905"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="502" label="502">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="28"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040681888992691"/>
<attvalue for="betweenesscentrality" value="40986.52916425307"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-312.8736" y="-1024.7761"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="503" label="503">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626906"/>
<attvalue for="betweenesscentrality" value="19772.78462945989"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="438.90497" y="-656.37994"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="504" label="504">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="101"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30433524725151884"/>
<attvalue for="betweenesscentrality" value="75548.03934915534"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2.4222844" y="1471.5585"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="505" label="505">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626906"/>
<attvalue for="betweenesscentrality" value="23076.44195529444"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1037.5448" y="286.60532"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="506" label="506">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.30362309164551904"/>
<attvalue for="betweenesscentrality" value="17884.079313623773"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="515.71204" y="570.9025"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="507" label="507">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626906"/>
<attvalue for="betweenesscentrality" value="19246.339514916403"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1039.8622" y="-97.02136"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="508" label="508">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038011305470192"/>
<attvalue for="betweenesscentrality" value="20380.339675998035"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1142.2094" y="-763.2265"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="509" label="509">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="15583.034577963059"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="589.3007" y="-119.529236"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="510" label="510">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="20"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908688390880491"/>
<attvalue for="harmonicclosnesscentrality" value="0.304157208350019"/>
<attvalue for="betweenesscentrality" value="51385.51000464638"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-260.506" y="1807.7733"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="511" label="511">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="25"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29104970657961216"/>
<attvalue for="harmonicclosnesscentrality" value="0.30431299238883175"/>
<attvalue for="betweenesscentrality" value="108467.53207704591"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1689.1619" y="243.44994"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="512" label="512">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="132"/>
<attvalue for="modularity_class" value="32"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29378996508571653"/>
<attvalue for="harmonicclosnesscentrality" value="0.3151066007922652"/>
<attvalue for="betweenesscentrality" value="999661.6519319285"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5786.7354" y="1960.3064"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="513" label="513">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="22"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30401255174255043"/>
<attvalue for="betweenesscentrality" value="92217.31652355714"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1783.0752" y="72.535934"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="514" label="514">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30401255174255043"/>
<attvalue for="betweenesscentrality" value="87995.04216670243"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="453.16315" y="-1536.7704"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="515" label="515">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="27"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448783"/>
<attvalue for="betweenesscentrality" value="70222.66264583431"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1266.697" y="740.0497"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="516" label="516">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="27"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448783"/>
<attvalue for="betweenesscentrality" value="66463.20546673182"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1314.7642" y="436.93347"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="517" label="517">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="27"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30409044376195643"/>
<attvalue for="betweenesscentrality" value="74778.44567986212"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-104.809135" y="1245.0206"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="518" label="518">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039569145858318"/>
<attvalue for="betweenesscentrality" value="84117.42524925682"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1572.8792" y="-1052.3319"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="519" label="519">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.303945787154488"/>
<attvalue for="betweenesscentrality" value="66653.95360161002"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1454.9703" y="-71.773224"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="520" label="520">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.303712111096269"/>
<attvalue for="betweenesscentrality" value="20197.016233635757"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-674.21783" y="494.63913"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="521" label="521">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="16"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3047135799172064"/>
<attvalue for="betweenesscentrality" value="130448.09661417664"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1457.3835" y="-1629.0865"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="522" label="522">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041015711933005"/>
<attvalue for="betweenesscentrality" value="94509.23329166757"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-871.6812" y="558.5093"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="523" label="523">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038011305470192"/>
<attvalue for="betweenesscentrality" value="14441.78953615665"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-75.52875" y="-1119.9039"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="524" label="524">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30433524725151906"/>
<attvalue for="betweenesscentrality" value="54977.20977888453"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-78.456314" y="-1710.3763"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="525" label="525">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29073333592142553"/>
<attvalue for="harmonicclosnesscentrality" value="0.3036230916455191"/>
<attvalue for="betweenesscentrality" value="10237.745583548574"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-287.51364" y="-924.6991"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="526" label="526">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907107643336827"/>
<attvalue for="harmonicclosnesscentrality" value="0.3035340721947691"/>
<attvalue for="betweenesscentrality" value="7759.92976389146"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="758.36505" y="-811.74365"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="527" label="527">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038011305470192"/>
<attvalue for="betweenesscentrality" value="14686.104240284243"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-223.95853" y="-1201.1187"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="528" label="528">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626906"/>
<attvalue for="betweenesscentrality" value="4053.733605927666"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="76.95804" y="1005.0526"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="529" label="529">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30400142431120675"/>
<attvalue for="betweenesscentrality" value="56427.7336059304"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="547.1348" y="1397.5286"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="530" label="530">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038011305470192"/>
<attvalue for="betweenesscentrality" value="11541.733605927182"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="102.6627" y="1067.344"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="531" label="531">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30390127742911294"/>
<attvalue for="betweenesscentrality" value="33993.733605927766"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="214.41039" y="1244.7966"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="532" label="532">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040459340365818"/>
<attvalue for="betweenesscentrality" value="143379.5267449912"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2100.3044" y="1816.3834"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="533" label="533">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29114022470162887"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041126986246444"/>
<attvalue for="betweenesscentrality" value="160482.0908950585"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2548.9211" y="-1343.1364"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="534" label="534">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2915255556853128"/>
<attvalue for="harmonicclosnesscentrality" value="0.30468019762317594"/>
<attvalue for="betweenesscentrality" value="284933.49686278537"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1641.9862" y="2803.9292"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="535" label="535">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30391240486045673"/>
<attvalue for="betweenesscentrality" value="114541.90868721028"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2639.302" y="-19.376749"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="536" label="536">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30391240486045673"/>
<attvalue for="betweenesscentrality" value="112753.29578922522"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1055.4954" y="2024.5764"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="537" label="537">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30387902256642546"/>
<attvalue for="betweenesscentrality" value="106499.77402465616"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1408.4454" y="1449.6853"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="538" label="538">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30387902256642546"/>
<attvalue for="betweenesscentrality" value="106469.87787038063"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2011.9576" y="-1578.5571"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="539" label="539">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30384564027239425"/>
<attvalue for="betweenesscentrality" value="100902.28558325004"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2171.779" y="1037.9746"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="540" label="540">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="4"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2906881962504367"/>
<attvalue for="harmonicclosnesscentrality" value="0.303445052744019"/>
<attvalue for="betweenesscentrality" value="14975.001703577502"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="36.22704" y="438.31903"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="541" label="541">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.30394578715448806"/>
<attvalue for="betweenesscentrality" value="68680.40557087555"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1288.4636" y="-688.14307"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="542" label="542">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="27"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041905906440503"/>
<attvalue for="betweenesscentrality" value="105885.56623820185"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1954.9667" y="138.04462"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="543" label="543">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="27"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038122579783627"/>
<attvalue for="betweenesscentrality" value="47374.19441955602"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="926.04425" y="-43.105236"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="544" label="544">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.304257355232113"/>
<attvalue for="betweenesscentrality" value="63325.79334983415"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-136.17714" y="1525.3761"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="545" label="545">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039124048604568"/>
<attvalue for="betweenesscentrality" value="54643.266457610014"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="853.8096" y="-780.04395"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="546" label="546">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="31"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2912987669687658"/>
<attvalue for="harmonicclosnesscentrality" value="0.3049583834067691"/>
<attvalue for="betweenesscentrality" value="203147.57603423926"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2104.1675" y="-2436.623"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="547" label="547">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30379000311567544"/>
<attvalue for="betweenesscentrality" value="51378.14425267284"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="226.76038" y="1383.476"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="548" label="548">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041015711933004"/>
<attvalue for="betweenesscentrality" value="93738.35646898703"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-294.9095" y="1171.3649"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="549" label="549">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039791694485193"/>
<attvalue for="betweenesscentrality" value="72339.70387173587"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1558.0111" y="150.25404"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="550" label="550">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701896"/>
<attvalue for="betweenesscentrality" value="32855.07931362537"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="411.66635" y="686.8452"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="551" label="551">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30410157119330056"/>
<attvalue for="betweenesscentrality" value="83914.22187877544"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="446.4157" y="-1844.7704"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="552" label="552">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30401255174255043"/>
<attvalue for="betweenesscentrality" value="91739.41869480796"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1125.422" y="-1656.9291"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="553" label="553">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="18"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.30469132505451985"/>
<attvalue for="betweenesscentrality" value="113178.76492656716"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-308.34552" y="-1148.4292"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="554" label="554">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908236573336958"/>
<attvalue for="harmonicclosnesscentrality" value="0.303756620821644"/>
<attvalue for="betweenesscentrality" value="53294.06516057947"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1591.0201" y="435.8896"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="555" label="555">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="27"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30410157119330034"/>
<attvalue for="betweenesscentrality" value="89698.05305955335"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1045.6444" y="64.377975"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="556" label="556">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.3041905906440505"/>
<attvalue for="betweenesscentrality" value="87280.77962931198"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1265.6877" y="-1478.8097"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="557" label="557">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039457871544878"/>
<attvalue for="betweenesscentrality" value="78524.61246632577"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="601.7914" y="1483.0347"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="558" label="558">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.303945787154488"/>
<attvalue for="betweenesscentrality" value="64225.72011516139"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="47.12936" y="937.5925"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="559" label="559">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30417946321270667"/>
<attvalue for="betweenesscentrality" value="76088.12811416014"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1603.861" y="-708.7964"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="560" label="560">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="105"/>
<attvalue for="modularity_class" value="28"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2929854074566723"/>
<attvalue for="harmonicclosnesscentrality" value="0.31243601726976733"/>
<attvalue for="betweenesscentrality" value="648158.439498049"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-693.8099" y="-4806.5024"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="561" label="561">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.303856767703738"/>
<attvalue for="betweenesscentrality" value="62382.311305632626"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-245.00404" y="-1178.8325"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="562" label="562">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="27"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29109495860380147"/>
<attvalue for="harmonicclosnesscentrality" value="0.3043241198201753"/>
<attvalue for="betweenesscentrality" value="119305.12020726615"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-310.0564" y="-1098.2327"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="563" label="563">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.30392353229180036"/>
<attvalue for="betweenesscentrality" value="90774.7594425589"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1776.6345" y="1368.7291"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="564" label="564">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.30421284550673805"/>
<attvalue for="betweenesscentrality" value="70832.29167587523"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-574.07587" y="-739.3465"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="565" label="565">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="83130.79020727104"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="754.3396" y="861.41754"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="566" label="566">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.3038456402723941"/>
<attvalue for="betweenesscentrality" value="49830.546175417774"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1035.8981" y="-1057.4292"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="567" label="567">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30379000311567544"/>
<attvalue for="betweenesscentrality" value="46210.37070059611"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-310.84842" y="788.6869"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="568" label="568">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909140348832692"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040014243112066"/>
<attvalue for="betweenesscentrality" value="82846.64348672722"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-430.1044" y="-2255.965"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="569" label="569">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="29"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040348066052378"/>
<attvalue for="betweenesscentrality" value="77819.67956225449"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1392.157" y="-1477.7157"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="570" label="570">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="31"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2907559110144815"/>
<attvalue for="harmonicclosnesscentrality" value="0.30371211109626917"/>
<attvalue for="betweenesscentrality" value="15728.20452441364"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-57.05168" y="-1651.2432"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="571" label="571">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="23"/>
<attvalue for="modularity_class" value="30"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2913214299607111"/>
<attvalue for="harmonicclosnesscentrality" value="0.30543686295455136"/>
<attvalue for="betweenesscentrality" value="167075.1767644102"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1589.384" y="-2351.3918"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="572" label="572">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="31"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="83030.20452441751"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-892.6348" y="-1971.4061"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="573" label="573">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30379000311567544"/>
<attvalue for="betweenesscentrality" value="46210.370700596046"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1010.0335" y="-657.9261"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="574" label="574">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2908462464561731"/>
<attvalue for="harmonicclosnesscentrality" value="0.30379000311567544"/>
<attvalue for="betweenesscentrality" value="46766.070281967084"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1606.2892" y="336.81348"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="575" label="575">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.303856767703738"/>
<attvalue for="betweenesscentrality" value="61160.37070059475"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-640.07184" y="1130.3156"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="576" label="576">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2911175898931001"/>
<attvalue for="harmonicclosnesscentrality" value="0.3046356878978005"/>
<attvalue for="betweenesscentrality" value="125381.64818643323"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-810.17706" y="906.32837"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="577" label="577">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="27"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29089143523014177"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039124048604566"/>
<attvalue for="betweenesscentrality" value="59009.31031450769"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="958.82025" y="804.91077"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="578" label="578">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909818549170455"/>
<attvalue for="harmonicclosnesscentrality" value="0.3042684826634567"/>
<attvalue for="betweenesscentrality" value="91913.9774306962"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="955.2343" y="589.78955"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="579" label="579">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918006"/>
<attvalue for="betweenesscentrality" value="76060.34007897945"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-701.1678" y="1172.316"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="580" label="580">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29077848961366726"/>
<attvalue for="harmonicclosnesscentrality" value="0.30380113054701924"/>
<attvalue for="betweenesscentrality" value="17208.258822018797"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="568.23224" y="138.9277"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="581" label="581">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918004"/>
<attvalue for="betweenesscentrality" value="89935.4262234499"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2091.3643" y="260.54694"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="582" label="582">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29100446862249857"/>
<attvalue for="harmonicclosnesscentrality" value="0.30407931633061314"/>
<attvalue for="betweenesscentrality" value="101033.9816097025"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1682.701" y="1405.7948"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="583" label="583">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="46"/>
<attvalue for="modularity_class" value="176"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2917072410703852"/>
<attvalue for="harmonicclosnesscentrality" value="0.30728401655761167"/>
<attvalue for="betweenesscentrality" value="338509.6466532093"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3454.68" y="-2028.9025"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="584" label="584">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.2909366380482499"/>
<attvalue for="harmonicclosnesscentrality" value="0.3039235322918006"/>
<attvalue for="betweenesscentrality" value="77982.17343906879"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="771.8193" y="-694.68964"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="585" label="585">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.3040125517425506"/>
<attvalue for="betweenesscentrality" value="77886.39063297638"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1695.3394" y="-196.1019"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="586" label="586">
<attvalues>
<attvalue for="0" value="publication"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="32"/>
<attvalue for="eccentricity" value="4.0"/>
<attvalue for="closnesscentrality" value="0.29095924472590234"/>
<attvalue for="harmonicclosnesscentrality" value="0.30401255174255043"/>
<attvalue for="betweenesscentrality" value="88877.79320761861"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1750.2712" y="-458.44952"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_0" label="abstract_0">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Recently, deep convolutional neural networks (CNNs) have provided outstanding performance in single image super-resolution (SISR). Despite their remarkable performance, the lack of high-frequency information in the recovered images remains a core problem. Moreover, as the networks increase in depth and width, deep CNN-based SR methods are faced with the challenge of computational complexity in practice. A promising and under-explored solution is to adapt the amount of compute based on the different frequency bands of the input. To this end, we present a novel Frequency-based Enhancement Block (FEB) which explicitly enhances the information of high frequencies while forwarding low-frequencies to the output. In particular, this block efficiently decomposes features into low- and high-frequency and assigns more computation to high-frequency ones. Thus, it can help the network generate more discriminative representations by explicitly recovering finer details. Our FEB design is simple and generic and can be used as a direct replacement of commonly used SR blocks with no need to change network architectures. We experimentally show that when replacing SR blocks with FEB we consistently improve the reconstruction error, while reducing the number of parameters in the model. Moreover, we propose a lightweight SR model a Frequency-based Enhancement Network (FENet) a based on FEB that matches the performance of larger models. Extensive experiments demonstrate that our proposal performs favorably against the state-of-the-art SR algorithms in terms of visual quality, memory footprint, and inference time. The code is available at https://github.com/pbehjatii/FENet"/>
<attvalue for="2" value="13"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22545684438691033"/>
<attvalue for="harmonicclosnesscentrality" value="0.2313170427738597"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1943.5155" y="-1500.407"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="abstract_1" label="abstract_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This work addresses the detection of Helicobacter pylori a bacterium classified since 1994 as class 1 carcinogen to humans. By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest. This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples.We propose to use autoencoders to learn latent patterns of healthy tissue and detect H. pylori as an anomaly in image staining. Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance. In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0.97 AUC in the detection of H. pylori."/>
<attvalue for="2" value="10"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22551115661417084"/>
<attvalue for="harmonicclosnesscentrality" value="0.2318111007255224"/>
<attvalue for="betweenesscentrality" value="67355.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4125.451" y="-2286.6885"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="subabstract_1_1" label="subabstract_1_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="By its highest specificity and sensitivity, the preferred diagnosis technique is the analysis of histological images with immunohistochemical staining, a process in which certain stained antibodies bind to antigens of the biological element of interest"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4910.5127" y="-2469.8848"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="subabstract_1_2" label="subabstract_1_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This analysis is a time demanding task, which is currently done by an expert pathologist that visually inspects the digitized samples"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4811.543" y="-2587.1897"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="subabstract_1_3" label="subabstract_1_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose to use autoencoders to learn latent patterns of healthy tissue and detect H"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4899.3633" y="-2716.7915"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="subabstract_1_4" label="subabstract_1_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="pylori as an anomaly in image staining"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4844.188" y="-2679.1616"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="subabstract_1_5" label="subabstract_1_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Unlike existing classification approaches, an autoencoder is able to learn patterns in an unsupervised manner (without the need of image annotations) with high performance"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4959.281" y="-2717.338"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="subabstract_1_6" label="subabstract_1_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In particular, our model has an overall 91% of accuracy with 86\% sensitivity, 96% specificity and 0"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4891.228" y="-2595.9731"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="subabstract_1_7" label="subabstract_1_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="97 AUC in the detection of H"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4957.6343" y="-2623.386"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="subabstract_1_8" label="subabstract_1_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="pylori"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4839.3193" y="-2500.0933"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="subabstract_1_9" label="subabstract_1_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="16"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4967.4507" y="-2529.1853"/>
<viz:color r="211" g="179" b="176"/>
</node>
<node id="abstract_2" label="abstract_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Word spotting can be defined as the pattern recognition tasked aimed at locating and retrieving a specific keyword within a document image collection without explicitly transcribing the whole corpus. Its use is particularly interesting when applied in scenarios where Optical Character Recognition performs poorly or can not be used at all. This thesis focuses on such a scenario, word spotting on historical handwritten documents that have been written by a single author or by multiple authors with a similar calligraphy.This problem requires a visual signature that is robust to image artifacts, flexible to accommodate script variations and efficient to retrieve information in a rapid manner. For this, we have developed a set of word spotting methods that on their foundation use the well known Bag-of-Visual-Words (BoVW) representation. This representation has gained popularity among the document image analysis community to characterize handwritten wordsin an unsupervised manner. However, most approaches on this field rely on a basic BoVW configuration and disregard complex encoding and spatial representations. We determine which BoVW configurations provide the best performance boost to a spotting system.Then, we extend the segmentation-based word spotting, where word candidates are given a priori, to segmentation-free spotting. The proposed approach seeds the document images with overlapping word location candidates and characterizes them with a BoVW signature. Retrieval is achieved comparing the query and candidate signatures and returning the locations that provide a higher consensus. This is a simple but powerful approach that requires a more compact signature than in a segmentation-based scenario. We firstproject the BoVW signature into a reduced semantic topics space and then compress it further using Product Quantizers. The resulting signature only requires a few dozen bytes, allowing us to index thousands of pages on a common desktop computer. The final system still yields a performance comparable to the state-of-the-art despite all the information loss during the compression phases.Afterwards, we also study how to combine different modalities of information in order to create a query-by-X spotting system where, words are indexed using an information modality and queries are retrieved using another. We consider three different information modalities: visual, textual and audio. Our proposal is to create a latent feature space where features which are semantically related are projected onto the same topics. Creating thus a new feature space where information from different modalities can be compared. Later, we consider the codebook generation and descriptor encoding problem. The codebooks used to encode the BoVW signatures are usually created using an unsupervised clustering algorithm and, they require to test multiple parameters to determine which configuration is best for a certain document collection. We propose a semantic clustering algorithm which allows to estimate the best parameter from data. Since gather annotated data is costly, we use synthetically generated word images. The resulting codebook is database agnostic, i. e. a codebook that yields a good performance on document collections that use the same script. We also propose the use of an additional codebook to approximate descriptors and reduce the descriptor encodingcomplexity to sub-linear.Finally, we focus on the problem of signatures dimensionality. We propose a new symbol probability signature where each bin represents the probability that a certain symbol is present a certain location of the word image. This signature is extremely compact and combined with compression techniques can represent word images with just a few bytes per signature."/>
<attvalue for="2" value="31"/>
<attvalue for="degree" value="28"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22596023293003048"/>
<attvalue for="harmonicclosnesscentrality" value="0.23363377397962887"/>
<attvalue for="betweenesscentrality" value="201824.9999999999"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2177.803" y="7432.457"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_1" label="subabstract_2_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Its use is particularly interesting when applied in scenarios where Optical Character Recognition performs poorly or can not be used at all"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2170.841" y="8224.608"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_2" label="subabstract_2_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This thesis focuses on such a scenario, word spotting on historical handwritten documents that have been written by a single author or by multiple authors with a similar calligraphy"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2470.7373" y="8340.195"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_3" label="subabstract_2_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This problem requires a visual signature that is robust to image artifacts, flexible to accommodate script variations and efficient to retrieve information in a rapid manner"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2170.185" y="8315.403"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_4" label="subabstract_2_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="For this, we have developed a set of word spotting methods that on their foundation use the well known Bag-of-Visual-Words (BoVW) representation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2527.9683" y="8298.105"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_5" label="subabstract_2_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This representation has gained popularity among the document image analysis community to characterize handwritten wordsin an unsupervised manner"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2440.9438" y="8055.9307"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_6" label="subabstract_2_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, most approaches on this field rely on a basic BoVW configuration and disregard complex encoding and spatial representations"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2541.85" y="8131.8115"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_7" label="subabstract_2_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We determine which BoVW configurations provide the best performance boost to a spotting system"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2252.1897" y="8272.013"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_8" label="subabstract_2_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Then, we extend the segmentation-based word spotting, where word candidates are given a priori, to segmentation-free spotting"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2244.2214" y="8346.256"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_9" label="subabstract_2_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The proposed approach seeds the document images with overlapping word location candidates and characterizes them with a BoVW signature"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2632.3245" y="8191.8403"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_11" label="subabstract_2_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This is a simple but powerful approach that requires a more compact signature than in a segmentation-based scenario"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2474.8325" y="8214.134"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_12" label="subabstract_2_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We firstproject the BoVW signature into a reduced semantic topics space and then compress it further using Product Quantizers"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2288.3386" y="8090.1357"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_13" label="subabstract_2_13">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The resulting signature only requires a few dozen bytes, allowing us to index thousands of pages on a common desktop computer"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2463.567" y="8398.493"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_14" label="subabstract_2_14">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The final system still yields a performance comparable to the state-of-the-art despite all the information loss during the compression phases"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2259.2207" y="8194.458"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_15" label="subabstract_2_15">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Afterwards, we also study how to combine different modalities of information in order to create a query-by-X spotting system where, words are indexed using an information modality and queries are retrieved using another"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2353.109" y="8140.399"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_16" label="subabstract_2_16">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We consider three different information modalities: visual, textual and audio"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2345.7146" y="8336.144"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_17" label="subabstract_2_17">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our proposal is to create a latent feature space where features which are semantically related are projected onto the same topics"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2279.6821" y="8404.123"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_18" label="subabstract_2_18">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Creating thus a new feature space where information from different modalities can be compared"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2525.7183" y="8040.995"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_19" label="subabstract_2_19">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Later, we consider the codebook generation and descriptor encoding problem"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2215.1975" y="8134.219"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_21" label="subabstract_2_21">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a semantic clustering algorithm which allows to estimate the best parameter from data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2390.209" y="8204.159"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_22" label="subabstract_2_22">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Since gather annotated data is costly, we use synthetically generated word images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2362.7388" y="8048.1104"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_23" label="subabstract_2_23">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The resulting codebook is database agnostic, i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2420.992" y="8283.17"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_24" label="subabstract_2_24">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2370.1907" y="8407.717"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_25" label="subabstract_2_25">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="a codebook that yields a good performance on document collections that use the same script"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2332.9834" y="8253.34"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_26" label="subabstract_2_26">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We also propose the use of an additional codebook to approximate descriptors and reduce the descriptor encodingcomplexity to sub-linear"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2556.1501" y="8210.463"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_27" label="subabstract_2_27">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Finally, we focus on the problem of signatures dimensionality"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2604.5818" y="8096.3853"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_28" label="subabstract_2_28">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a new symbol probability signature where each bin represents the probability that a certain symbol is present a certain location of the word image"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2597.293" y="8279.716"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_2_29" label="subabstract_2_29">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This signature is extremely compact and combined with compression techniques can represent word images with just a few bytes per signature"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="33"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18431739312347714"/>
<attvalue for="harmonicclosnesscentrality" value="0.18796011928607262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2456.8032" y="8131.797"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_3" label="abstract_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The determination of precise skin lesion boundaries in dermoscopic images using automated methods faces many challenges, most importantly, the presence of hair, inconspicuous lesion edges and low contrast in dermoscopic images, and variability in the color, texture and shapes of skin lesions. Existing deep learning-based skin lesion segmentation algorithms are expensive in terms of computational time and memory. Consequently, running such segmentation algorithms requires a powerful GPU and high bandwidth memory, which are not available in dermoscopy devices. Thus, this article aims to achieve precise skin lesion segmentation with minimum resources: a lightweight, efficient generative adversarial network (GAN) model called SLSNet, which combines 1-D kernel factorized networks, position and channel attention, and multiscale aggregation mechanisms with a GAN model. The 1-D kernel factorized network reduces the computational cost of 2D filtering. The position and channel attention modules enhance the discriminative ability between the lesion and non-lesion feature representations in spatial and channel dimensions, respectively. A multiscale block is also used to aggregate the coarse-to-fine features of input skin images and reduce the effect of the artifacts. SLSNet is evaluated on two publicly available datasets: ISBI 2017 and the ISIC 2018. Although SLSNet has only 2.35 million parameters, the experimental results demonstrate that it achieves segmentation results on a par with the state-of-the-art skin lesion segmentation methods with an accuracy of 97.61%, and Dice and Jaccard similarity coefficients of 90.63% and 81.98%, respectively. SLSNet can run at more than 110 frames per second (FPS) in a single GTX1080Ti GPU, which is faster than well-known deep learning-based image segmentation models, such as FCN. Therefore, SLSNet can be used for practical dermoscopic applications."/>
<attvalue for="2" value="16"/>
<attvalue for="degree" value="15"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22574227581009795"/>
<attvalue for="harmonicclosnesscentrality" value="0.2325788934882412"/>
<attvalue for="betweenesscentrality" value="104741.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3912.2935" y="4578.618"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_1" label="subabstract_3_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Existing deep learning-based skin lesion segmentation algorithms are expensive in terms of computational time and memory"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4605.628" y="5205.0176"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_2" label="subabstract_3_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Consequently, running such segmentation algorithms requires a powerful GPU and high bandwidth memory, which are not available in dermoscopy devices"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4331.743" y="5261.3037"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_3" label="subabstract_3_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Thus, this article aims to achieve precise skin lesion segmentation with minimum resources: a lightweight, efficient generative adversarial network (GAN) model called SLSNet, which combines 1-D kernel factorized networks, position and channel attention, and multiscale aggregation mechanisms with a GAN model"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4578.6953" y="5118.6626"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_4" label="subabstract_3_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The 1-D kernel factorized network reduces the computational cost of 2D filtering"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4538.396" y="5210.2676"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_5" label="subabstract_3_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The position and channel attention modules enhance the discriminative ability between the lesion and non-lesion feature representations in spatial and channel dimensions, respectively"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4464.7754" y="5142.639"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_6" label="subabstract_3_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="A multiscale block is also used to aggregate the coarse-to-fine features of input skin images and reduce the effect of the artifacts"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4466.0454" y="5216.054"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_7" label="subabstract_3_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="SLSNet is evaluated on two publicly available datasets: ISBI 2017 and the ISIC 2018"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4467.858" y="5358.5264"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_8" label="subabstract_3_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Although SLSNet has only 2"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4465.0474" y="5289.331"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_9" label="subabstract_3_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="35 million parameters, the experimental results demonstrate that it achieves segmentation results on a par with the state-of-the-art skin lesion segmentation methods with an accuracy of 97"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4384.8354" y="5337.7227"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_11" label="subabstract_3_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="63% and 81"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4347.2417" y="5159.4565"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_12" label="subabstract_3_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="98%, respectively"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4409.791" y="5090.4497"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_13" label="subabstract_3_13">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="SLSNet can run at more than 110 frames per second (FPS) in a single GTX1080Ti GPU, which is faster than well-known deep learning-based image segmentation models, such as FCN"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4508.497" y="5078.198"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_14" label="subabstract_3_14">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Therefore, SLSNet can be used for practical dermoscopic applications"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4392.707" y="5225.491"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_3_15" label="subabstract_3_15">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841723434080122"/>
<attvalue for="harmonicclosnesscentrality" value="0.18755953175769752"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4552.9966" y="5299.07"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_4" label="abstract_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings."/>
<attvalue for="2" value="5"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22552473875990003"/>
<attvalue for="harmonicclosnesscentrality" value="0.23164418925536603"/>
<attvalue for="betweenesscentrality" value="29945.99999999999"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-385.01648" y="2663.1292"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_4_1" label="subabstract_4_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18718565006454768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-738.59283" y="3337.1785"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_4_2" label="subabstract_4_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18718565006454768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-684.3444" y="3261.8533"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_4_3" label="subabstract_4_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We compare the models and highlight their differences in performance, with their advantages and shortcomings"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18718565006454768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-595.82196" y="3352.117"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_4_4" label="subabstract_4_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18718565006454768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-578.1223" y="3283.7722"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_5" label="abstract_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Tabular structures in business documents offer a complementary dimension to the raw textual data. For instance, there is information about the relationships among pieces of information. Nowadays, digital mailroom applications have become a key service for workflow automation. Therefore, the detection and interpretation of tables is crucial. With the recent advances in information extraction, table detection and recognition has gained interest in document image analysis, in particular, with the absence of rule lines and unknown information about rows and columns. However, business documents usually contain sensitive contents limiting the amount of public benchmarking datasets. In this paper, we propose a graph-based approach for detecting tables in document images which do not require the raw content of the document. Hence, the sensitive content can be previously removed and, instead of using the raw image or textual content, we propose a purely structural approach to keep sensitive data anonymous. Our framework uses graph neural networks (GNNs) to describe the local repetitive structures that constitute a table. In particular, our main application domain are business documents. We have carefully validated our approach in two invoice datasets and a modern document benchmark. Our experiments demonstrate that tables can be detected by purely structural approaches."/>
<attvalue for="2" value="13"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22559267403681055"/>
<attvalue for="harmonicclosnesscentrality" value="0.23209151199538494"/>
<attvalue for="betweenesscentrality" value="82312.99999999993"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2062.1804" y="4284.879"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_1" label="subabstract_5_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="For instance, there is information about the relationships among pieces of information"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2672.6416" y="5153.7017"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_2" label="subabstract_5_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Nowadays, digital mailroom applications have become a key service for workflow automation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2695.0176" y="5048.978"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_3" label="subabstract_5_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Therefore, the detection and interpretation of tables is crucial"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2627.683" y="5110.371"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_4" label="subabstract_5_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="With the recent advances in information extraction, table detection and recognition has gained interest in document image analysis, in particular, with the absence of rule lines and unknown information about rows and columns"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2433.2654" y="5186.701"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_5" label="subabstract_5_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, business documents usually contain sensitive contents limiting the amount of public benchmarking datasets"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2499.5312" y="5050.294"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_6" label="subabstract_5_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we propose a graph-based approach for detecting tables in document images which do not require the raw content of the document"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2567.0898" y="5074.9746"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_7" label="subabstract_5_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Hence, the sensitive content can be previously removed and, instead of using the raw image or textual content, we propose a purely structural approach to keep sensitive data anonymous"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2474.8506" y="5124.254"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_8" label="subabstract_5_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our framework uses graph neural networks (GNNs) to describe the local repetitive structures that constitute a table"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2385.0583" y="5114.696"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_9" label="subabstract_5_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In particular, our main application domain are business documents"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2630.1587" y="5007.837"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_11" label="subabstract_5_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our experiments demonstrate that tables can be detected by purely structural approaches"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2540.627" y="5212.846"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_5_12" label="subabstract_5_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2554.4426" y="5154.868"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="abstract_6" label="abstract_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The most common tool for population-wide COVID-19 identification is the Reverse Transcription-Polymerase Chain Reaction test that detects the presence of the virus in the throat (or sputum) in swab samples. This test has a sensitivity between 59% and 71%. However, this test does not provide precise information regarding the extension of the pulmonary infection. Moreover, it has been proven that through the reading of a computed tomography (CT) scan, a clinician can provide a more complete perspective of the severity of the disease. Therefore, we propose a comprehensive system for fully-automated COVID-19 detection and lesion segmentation from CT scans, powered by deep learning strategies to support decision-making process for the diagnosis of COVID-19."/>
<attvalue for="2" value="6"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2254025583145222"/>
<attvalue for="harmonicclosnesscentrality" value="0.23138380736192235"/>
<attvalue for="betweenesscentrality" value="37429.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3314.8154" y="688.7164"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_6_1" label="subabstract_6_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This test has a sensitivity between 59% and 71%"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4158.791" y="836.42126"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_6_2" label="subabstract_6_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, this test does not provide precise information regarding the extension of the pulmonary infection"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4165.5205" y="655.3488"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_6_3" label="subabstract_6_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Moreover, it has been proven that through the reading of a computed tomography (CT) scan, a clinician can provide a more complete perspective of the severity of the disease"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4096.6187" y="682.61395"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_6_4" label="subabstract_6_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Therefore, we propose a comprehensive system for fully-automated COVID-19 detection and lesion segmentation from CT scans, powered by deep learning strategies to support decision-making process for the diagnosis of COVID-19"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4191.682" y="738.9653"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_6_5" label="subabstract_6_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4108.4067" y="766.5362"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="abstract_7" label="abstract_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper presents a domain adaptation strategy to efficiently train network architectures for estimating the relative camera pose in multi-view scenarios. The network architectures are fed by a pair of simultaneously acquired images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of overlapped images, a domain adaptation strategy is proposed. The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios. For this, the networks are firstly trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images. Different virtual 3D scenarios are generated to evaluate the relationship between the accuracy on the result and the similarity between virtual and real scenariosasimilarity on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the scene. Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used, highlighting the importance on the similarity between virtual-real scenarios."/>
<attvalue for="2" value="7"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22542969808253815"/>
<attvalue for="harmonicclosnesscentrality" value="0.23149063070282236"/>
<attvalue for="betweenesscentrality" value="44912.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="708.55585" y="2752.3062"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_7_1" label="subabstract_7_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The network architectures are fed by a pair of simultaneously acquired images, hence in order to improve the accuracy of the solutions, and due to the lack of large datasets with pairs of overlapped images, a domain adaptation strategy is proposed"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1155.2916" y="3420.8328"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_7_2" label="subabstract_7_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The domain adaptation strategy consists on transferring the knowledge learned from synthetic images to real-world scenarios"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1182.9774" y="3323.701"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_7_3" label="subabstract_7_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="For this, the networks are firstly trained using pairs of synthetic images, which are captured at the same time by a pair of cameras in a virtual environment; and then, the learned weights of the networks are transferred to the real-world case, where the networks are retrained with a few real images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1254.3682" y="3312.2593"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_7_4" label="subabstract_7_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Different virtual 3D scenarios are generated to evaluate the relationship between the accuracy on the result and the similarity between virtual and real scenariosasimilarity on both geometry of the objects contained in the scene as well as relative pose between camera and objects in the scene"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1239.1198" y="3233.2217"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_7_5" label="subabstract_7_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Experimental results and comparisons are provided showing that the accuracy of all the evaluated networks for estimating the camera pose improves when the proposed domain adaptation strategy is used, highlighting the importance on the similarity between virtual-real scenarios"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1090.2191" y="3392.9246"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_7_6" label="subabstract_7_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1118.6521" y="3278.8662"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="abstract_8" label="abstract_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Handwritten Text Recognition (HTR) is still a challenging problem because it must deal with two important difficulties: the variability among writing styles, and the scarcity of labelled data. To alleviate such problems, synthetic data generation and data augmentation are typically used to train HTR systems. However, training with such data produces encouraging but still inaccurate transcriptions in real words. In this paper, we propose an unsupervised writer adaptation approach that is able to automatically adjust a generic handwritten word recognizer, fully trained with synthetic fonts, towards a new incoming writer. We have experimentally validated our proposal using five different datasets, covering several challenges (i) the document source: modern and historic samples, which may involve paper degradation problems; (ii) different handwriting styles: single and multiple writer collections; and (iii) language, which involves different character combinations. Across these challenging collections, we show that our system is able to maintain its performance, thus, it provides a practical and generic approach to deal with new document collections without requiring any expensive and tedious manual annotation step."/>
<attvalue for="2" value="7"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22544327041753215"/>
<attvalue for="harmonicclosnesscentrality" value="0.2315240129968536"/>
<attvalue for="betweenesscentrality" value="44912.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3494.7393" y="-643.3612"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_8_1" label="subabstract_8_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To alleviate such problems, synthetic data generation and data augmentation are typically used to train HTR systems"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4142.792" y="-769.10815"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_8_2" label="subabstract_8_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, training with such data produces encouraging but still inaccurate transcriptions in real words"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4141.289" y="-869.8439"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_8_3" label="subabstract_8_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we propose an unsupervised writer adaptation approach that is able to automatically adjust a generic handwritten word recognizer, fully trained with synthetic fonts, towards a new incoming writer"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4204.0728" y="-812.6952"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_8_4" label="subabstract_8_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We have experimentally validated our proposal using five different datasets, covering several challenges (i) the document source: modern and historic samples, which may involve paper degradation problems; (ii) different handwriting styles: single and multiple writer collections; and (iii) language, which involves different character combinations"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4274.8926" y="-826.1677"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_8_5" label="subabstract_8_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Across these challenging collections, we show that our system is able to maintain its performance, thus, it provides a practical and generic approach to deal with new document collections without requiring any expensive and tedious manual annotation step"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4218.7476" y="-897.1466"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_8_6" label="subabstract_8_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4232.652" y="-730.31696"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="abstract_9" label="abstract_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work we target the problem of hate speech detection in multimodal publications formed by a text and an image. We gather and annotate a large scale dataset from Twitter, MMHS150K, and propose different models that jointly analyze textual and visual information for hate speech detection, comparing them with unimodal detection. We provide quantitative and qualitative results and analyze the challenges of the proposed task. We find that, even though images are useful for the hate speech detection task, current multimodal models cannot outperform models analyzing only text. We discuss why and open the field and the dataset for further research."/>
<attvalue for="2" value="6"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2254025583145222"/>
<attvalue for="harmonicclosnesscentrality" value="0.23138380736192235"/>
<attvalue for="betweenesscentrality" value="37429.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1199.061" y="-2930.0244"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_9_1" label="subabstract_9_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We gather and annotate a large scale dataset from Twitter, MMHS150K, and propose different models that jointly analyze textual and visual information for hate speech detection, comparing them with unimodal detection"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1208.5565" y="-3591.09"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_9_2" label="subabstract_9_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We provide quantitative and qualitative results and analyze the challenges of the proposed task"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1293.993" y="-3600.5046"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_9_3" label="subabstract_9_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We find that, even though images are useful for the hate speech detection task, current multimodal models cannot outperform models analyzing only text"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1263.067" y="-3478.209"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_9_4" label="subabstract_9_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We discuss why and open the field and the dataset for further research"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1305.9719" y="-3523.99"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_9_5" label="subabstract_9_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1399.8486" y="-3472.3904"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="abstract_11" label="abstract_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for aProcedural Human Action Videosa. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos."/>
<attvalue for="2" value="14"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22571506073118539"/>
<attvalue for="harmonicclosnesscentrality" value="0.23243201139450367"/>
<attvalue for="betweenesscentrality" value="89790.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3198.038" y="4125.4023"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_1" label="subabstract_11_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3636.4712" y="5096.419"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_2" label="subabstract_11_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3662.5686" y="4895.5728"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_3" label="subabstract_11_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for aProcedural Human Action Videosa"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3790.4375" y="4905.781"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_4" label="subabstract_11_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3594.6914" y="5033.6924"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_5" label="subabstract_11_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3775.4558" y="4996.677"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_6" label="subabstract_11_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3675.0173" y="4811.472"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_7" label="subabstract_11_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3712.7651" y="5057.252"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_8" label="subabstract_11_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In order to leverage PHAV, we introduce a deep multi-task (i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3662.9983" y="4995.7334"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_9" label="subabstract_11_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3589.7632" y="4940.5703"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_11" label="subabstract_11_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3720.0127" y="4938.9624"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_12" label="subabstract_11_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3593.705" y="4851.2646"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_11_13" label="subabstract_11_13">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="109"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841542282440308"/>
<attvalue for="harmonicclosnesscentrality" value="0.18750612008724762"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3755.0527" y="4833.645"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_12" label="abstract_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Depth estimation provides essential information to perform autonomous driving and driver assistance. A promising line of work consists of introducing additional semantic information about the traffic scene when training CNNs for depth estimation. In practice, this means that the depth data used for CNN training is complemented with images having pixel-wise semantic labels where the same raw training data is associated with both types of ground truth, i.e., depth and semantic labels. The main contribution of this paper is to show that this hard constraint can be circumvented, i.e., that we can train CNNs for depth estimation by leveraging the depth and semantic information coming from heterogeneous datasets. In order to illustrate the benefits of our approach, we combine KITTI depth and Cityscapes semantic segmentation datasets, outperforming state-of-the-art results on monocular depth estimation."/>
<attvalue for="2" value="10"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22552473875990003"/>
<attvalue for="harmonicclosnesscentrality" value="0.23184448301955368"/>
<attvalue for="betweenesscentrality" value="67356.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4648.4956" y="-422.69662"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_12_1" label="subabstract_12_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="A promising line of work consists of introducing additional semantic information about the traffic scene when training CNNs for depth estimation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5550.2314" y="-483.58734"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_12_2" label="subabstract_12_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In practice, this means that the depth data used for CNN training is complemented with images having pixel-wise semantic labels where the same raw training data is associated with both types of ground truth, i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5645.1885" y="-230.91164"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_12_3" label="subabstract_12_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5485.316" y="-356.90704"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_12_4" label="subabstract_12_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value=", depth and semantic labels"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5562.0903" y="-362.54663"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_12_5" label="subabstract_12_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The main contribution of this paper is to show that this hard constraint can be circumvented, i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5522.2847" y="-244.0381"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_12_6" label="subabstract_12_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5633.0156" y="-339.5477"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_12_7" label="subabstract_12_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value=", that we can train CNNs for depth estimation by leveraging the depth and semantic information coming from heterogeneous datasets"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5493.2446" y="-436.07825"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_12_8" label="subabstract_12_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In order to illustrate the benefits of our approach, we combine KITTI depth and Cityscapes semantic segmentation datasets, outperforming state-of-the-art results on monocular depth estimation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5609.261" y="-434.34583"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_12_9" label="subabstract_12_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="34"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5584.443" y="-243.64726"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_13" label="abstract_13">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The impressive performance of Convolutional Neural Networks (CNNs) when solving different vision problems is shadowed by their black-box nature and our consequent lack of understanding of the representations they build and how these representations are organized. To help understanding these issues, we propose to describe the activity of individual neurons by their Neuron Feature visualization and quantify their inherent selectivity with two specific properties. We explore selectivity indexes for: an image feature (color); and an image label (class membership). Our contribution is a framework to seek or classify neurons by indexing on these selectivity properties. It helps to find color selective neurons, such as a red-mushroom neuron in layer Conv4 or class selective neurons such as dog-face neurons in layer Conv5 in VGG-M, and establishes a methodology to derive other selectivity properties. Indexing on neuron selectivity can statistically draw how features and classes are represented through layers in a moment when the size of trained nets is growing and automatic tools to index neurons can be helpful."/>
<attvalue for="2" value="7"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="0"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22542969808253815"/>
<attvalue for="harmonicclosnesscentrality" value="0.23149063070282236"/>
<attvalue for="betweenesscentrality" value="44912.99999999996"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3124.5503" y="-3193.2368"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_13_1" label="subabstract_13_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To help understanding these issues, we propose to describe the activity of individual neurons by their Neuron Feature visualization and quantify their inherent selectivity with two specific properties"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="0"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3631.4287" y="-3763.5046"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_13_2" label="subabstract_13_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We explore selectivity indexes for: an image feature (color); and an image label (class membership)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="0"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3748.0535" y="-3708.0532"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_13_3" label="subabstract_13_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our contribution is a framework to seek or classify neurons by indexing on these selectivity properties"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="0"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3665.186" y="-3616.925"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_13_4" label="subabstract_13_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="It helps to find color selective neurons, such as a red-mushroom neuron in layer Conv4 or class selective neurons such as dog-face neurons in layer Conv5 in VGG-M, and establishes a methodology to derive other selectivity properties"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="0"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3623.1802" y="-3680.4314"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_13_5" label="subabstract_13_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Indexing on neuron selectivity can statistically draw how features and classes are represented through layers in a moment when the size of trained nets is growing and automatic tools to index neurons can be helpful"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="0"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3738.7268" y="-3602.3577"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_13_6" label="subabstract_13_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="0"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3709.289" y="-3770.542"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_14" label="abstract_14">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Estimation of intrinsic images still remains a challenging task due to weaknesses of ground-truth datasets, which either are too small or present non-realistic issues. On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored. In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses. Our proposal is versatile, presents low computation time, and achieves state-of-the-art results."/>
<attvalue for="2" value="5"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="35"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22536186091300292"/>
<attvalue for="harmonicclosnesscentrality" value="0.2312436017269911"/>
<attvalue for="betweenesscentrality" value="29945.999999999978"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="826.5337" y="-3446.6863"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_14_1" label="subabstract_14_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="On the other hand, end-to-end deep learning architectures start to achieve interesting results that we believe could be improved if important physical hints were not ignored"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="35"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839190549866156"/>
<attvalue for="harmonicclosnesscentrality" value="0.18697200338274775"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="850.7734" y="-4082.6409"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_14_2" label="subabstract_14_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we present a twofold framework: (a) a flexible generation of images overcoming some classical dataset problems such as larger size jointly with coherent lighting appearance; and (b) a flexible architecture tying physical properties through intrinsic losses"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="35"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839190549866156"/>
<attvalue for="harmonicclosnesscentrality" value="0.18697200338274775"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="975.91095" y="-4016.252"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_14_3" label="subabstract_14_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our proposal is versatile, presents low computation time, and achieves state-of-the-art results"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="35"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839190549866156"/>
<attvalue for="harmonicclosnesscentrality" value="0.18697200338274775"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="940.41327" y="-4095.886"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_14_4" label="subabstract_14_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="35"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839190549866156"/>
<attvalue for="harmonicclosnesscentrality" value="0.18697200338274775"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="888.99176" y="-4003.137"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_15" label="abstract_15">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target, but the personality external observers attributed to it. Hence, they have to deal with human bias, inherently transferred to the training data. However, bias analysis in personality computing is an almost unexplored area. In this work, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation. To this end, we propose a multi-modal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality. We also analyse spatio-temporal aggregation schemes and the effect of different time intervals on first impressions. We base our study on the ChaLearn First Impressions dataset, consisting of one-person conversational videos. Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model. Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions."/>
<attvalue for="2" value="11"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22551115661417084"/>
<attvalue for="harmonicclosnesscentrality" value="0.2318111007255224"/>
<attvalue for="betweenesscentrality" value="67356.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4187.7974" y="-27.051373"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_15_1" label="subabstract_15_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Approaches developed for automatic personality perception are not expected to predict the real personality of the target, but the personality external observers attributed to it"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4954.7354" y="-335.2641"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_15_2" label="subabstract_15_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Hence, they have to deal with human bias, inherently transferred to the training data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5026.583" y="-366.43085"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_15_3" label="subabstract_15_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, bias analysis in personality computing is an almost unexplored area"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5063.3467" y="-264.0933"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_15_4" label="subabstract_15_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4964.983" y="-158.11044"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_15_5" label="subabstract_15_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To this end, we propose a multi-modal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4932.5474" y="-246.36676"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_15_6" label="subabstract_15_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We also analyse spatio-temporal aggregation schemes and the effect of different time intervals on first impressions"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5004.8833" y="-244.47025"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_15_7" label="subabstract_15_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We base our study on the ChaLearn First Impressions dataset, consisting of one-person conversational videos"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5097.076" y="-175.29095"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_15_8" label="subabstract_15_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5112.625" y="-294.01642"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_15_9" label="subabstract_15_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5037.0903" y="-131.75566"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_16" label="abstract_16">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface structural damage detection, such as delamination and rebar exposure. It is well known that the quality of a deep learning model is highly dependent on the quality of the training dataset. Bridge damage detection, our application domain, has the following main challenges: (i) labeling the damages requires knowledgeable civil engineering professionals, which makes it difficult to collect a large annotated dataset; (ii) the damage area could be very small, whereas the background area is large, which creates an unbalanced training environment; (iii) due to the difficulty to exactly determine the extension of the damage, there is often a variation among different labelers who perform pixel-wise labeling. In this paper, we propose a novel model for bridge structural damage detection to address the first two challenges. This paper follows the idea of an atrous spatial pyramid pooling (ASPP) module that is designed as a novel network for bridge damage detection. Further, we introduce the weight balanced Intersection over Union (IoU) loss function to achieve accurate segmentation on a highly unbalanced small dataset. The experimental results show that (i) the IoU loss function improves the overall performance of damage detection, as compared to cross entropy loss or focal loss, and (ii) the proposed model has a better ability to detect a minority class than other light segmentation networks."/>
<attvalue for="2" value="10"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22563345485221897"/>
<attvalue for="harmonicclosnesscentrality" value="0.23211154137180365"/>
<attvalue for="betweenesscentrality" value="67355.99999999996"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3169.0466" y="2796.049"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_16_1" label="subabstract_16_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409990412743676"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873725909111226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3830.2834" y="3506.7422"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_16_2" label="subabstract_16_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we focus on the problem of bridge surface structural damage detection, such as delamination and rebar exposure"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409990412743676"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873725909111226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3701.1355" y="3506.4397"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_16_3" label="subabstract_16_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="It is well known that the quality of a deep learning model is highly dependent on the quality of the training dataset"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409990412743676"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873725909111226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3813.6724" y="3409.938"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_16_4" label="subabstract_16_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Bridge damage detection, our application domain, has the following main challenges: (i) labeling the damages requires knowledgeable civil engineering professionals, which makes it difficult to collect a large annotated dataset; (ii) the damage area could be very small, whereas the background area is large, which creates an unbalanced training environment; (iii) due to the difficulty to exactly determine the extension of the damage, there is often a variation among different labelers who perform pixel-wise labeling"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409990412743676"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873725909111226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3616.4758" y="3528.2998"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_16_5" label="subabstract_16_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we propose a novel model for bridge structural damage detection to address the first two challenges"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409990412743676"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873725909111226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3641.1484" y="3596.44"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_16_6" label="subabstract_16_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper follows the idea of an atrous spatial pyramid pooling (ASPP) module that is designed as a novel network for bridge damage detection"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409990412743676"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873725909111226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3728.5688" y="3404.8696"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_16_7" label="subabstract_16_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Further, we introduce the weight balanced Intersection over Union (IoU) loss function to achieve accurate segmentation on a highly unbalanced small dataset"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409990412743676"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873725909111226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3770.4956" y="3483.5327"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_16_8" label="subabstract_16_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The experimental results show that (i) the IoU loss function improves the overall performance of damage detection, as compared to cross entropy loss or focal loss, and (ii) the proposed model has a better ability to detect a minority class than other light segmentation networks"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409990412743676"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873725909111226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3723.9814" y="3594.142"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_16_9" label="subabstract_16_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409990412743676"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873725909111226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3652.1943" y="3442.1458"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_17" label="abstract_17">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Super-resolution (SR) has achieved great success due to the development of deep convolutional neural networks (CNNs). However, as the depth and width of the networks increase, CNN-based SR methods have been faced with the challenge of computational complexity in practice. More- over, most SR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements. To address these limitations we introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model. We make the following contributions: first, we introduce a lightweight feature extractor that enforces efficient reuse of information through a novel recursive structure of skip and dense connections. Second, to maximize the performance of the feature extractor, we propose a model agnostic reconstruction module that generates accurate high-resolution images from overscaled feature maps obtained from any SR architecture. Third, we introduce a multi-scale loss function to achieve generalization across scales. Experiments show that our proposal outperforms previous state-of-the-art approaches in standard benchmarks, while maintaining relatively low computation and memory requirements."/>
<attvalue for="2" value="9"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22551115661417084"/>
<attvalue for="harmonicclosnesscentrality" value="0.23177104197268492"/>
<attvalue for="betweenesscentrality" value="59876.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="459.1064" y="2437.141"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_17_1" label="subabstract_17_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, as the depth and width of the networks increase, CNN-based SR methods have been faced with the challenge of computational complexity in practice"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="794.99316" y="3292.3193"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_17_2" label="subabstract_17_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="More- over, most SR methods train a dedicated model for each target resolution, losing generality and increasing memory requirements"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="854.7293" y="3151.438"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_17_3" label="subabstract_17_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To address these limitations we introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="877.39984" y="3281.5627"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_17_4" label="subabstract_17_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We make the following contributions: first, we introduce a lightweight feature extractor that enforces efficient reuse of information through a novel recursive structure of skip and dense connections"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="920.4268" y="3332.015"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_17_5" label="subabstract_17_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Second, to maximize the performance of the feature extractor, we propose a model agnostic reconstruction module that generates accurate high-resolution images from overscaled feature maps obtained from any SR architecture"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="806.8773" y="3364.1846"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_17_6" label="subabstract_17_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Third, we introduce a multi-scale loss function to achieve generalization across scales"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="959.95624" y="3222.568"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_17_7" label="subabstract_17_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Experiments show that our proposal outperforms previous state-of-the-art approaches in standard benchmarks, while maintaining relatively low computation and memory requirements"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="893.08923" y="3204.531"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_17_8" label="subabstract_17_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="753.9999" y="3238.4795"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="abstract_18" label="abstract_18">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This volume presents the results of the Neural Information Processing Systems Competition track at the 2018 NeurIPS conference. The competition follows the same format as the 2017 competition track for NIPS. Out of 21 submitted proposals, eight competition proposals were selected, spanning the area of Robotics, Health, Computer Vision, Natural Language Processing, Systems and Physics. Competitions have become an integral part of advancing state-of-the-art in artificial intelligence (AI). They exhibit one important difference to benchmarks: Competitions test a system end-to-end rather than evaluating only a single component; they assess the practicability of an algorithmic solution in addition to assessing feasibility."/>
<attvalue for="2" value="6"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="1"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22537542508050198"/>
<attvalue for="harmonicclosnesscentrality" value="0.23131704277385987"/>
<attvalue for="betweenesscentrality" value="37429.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1496.425" y="-3553.262"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_18_1" label="subabstract_18_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The competition follows the same format as the 2017 competition track for NIPS"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="1"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18392808900459268"/>
<attvalue for="harmonicclosnesscentrality" value="0.18699870921797276"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1812.4733" y="-4041.82"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_18_2" label="subabstract_18_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Out of 21 submitted proposals, eight competition proposals were selected, spanning the area of Robotics, Health, Computer Vision, Natural Language Processing, Systems and Physics"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="1"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18392808900459268"/>
<attvalue for="harmonicclosnesscentrality" value="0.18699870921797276"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1900.017" y="-4083.7131"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_18_3" label="subabstract_18_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Competitions have become an integral part of advancing state-of-the-art in artificial intelligence (AI)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="1"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18392808900459268"/>
<attvalue for="harmonicclosnesscentrality" value="0.18699870921797276"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1686.942" y="-4146.943"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_18_4" label="subabstract_18_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="They exhibit one important difference to benchmarks: Competitions test a system end-to-end rather than evaluating only a single component; they assess the practicability of an algorithmic solution in addition to assessing feasibility"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="1"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18392808900459268"/>
<attvalue for="harmonicclosnesscentrality" value="0.18699870921797276"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1750.684" y="-4095.7354"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_18_5" label="subabstract_18_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="1"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18392808900459268"/>
<attvalue for="harmonicclosnesscentrality" value="0.18699870921797276"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1842.4374" y="-4133.705"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_19" label="abstract_19">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Text contained in an image carries high-level semantics that can be exploited to achieve richer image understanding. In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks such as image retrieval, fine-grained classification, and visual question answering. In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities. The novelty of the proposed model consists of the usage of a PHOC descriptor to construct a bag of textual words along with a Fisher Vector Encoding that captures the morphology of text. This approach provides a stronger multimodal representation for this task and as our experiments demonstrate, it achieves state-of-the-art results on two different tasks, fine-grained classification and image retrieval."/>
<attvalue for="2" value="6"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22541612738163322"/>
<attvalue for="harmonicclosnesscentrality" value="0.2314171896559536"/>
<attvalue for="betweenesscentrality" value="37429.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-454.269" y="-2913.3674"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_19_1" label="subabstract_19_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks such as image retrieval, fine-grained classification, and visual question answering"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-773.7618" y="-3578.1453"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_19_2" label="subabstract_19_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-702.04364" y="-3642.3198"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_19_3" label="subabstract_19_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The novelty of the proposed model consists of the usage of a PHOC descriptor to construct a bag of textual words along with a Fisher Vector Encoding that captures the morphology of text"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-913.0087" y="-3576.66"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_19_4" label="subabstract_19_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This approach provides a stronger multimodal representation for this task and as our experiments demonstrate, it achieves state-of-the-art results on two different tasks, fine-grained classification and image retrieval"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-852.56354" y="-3620.129"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_19_5" label="subabstract_19_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-763.1399" y="-3670.0598"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="abstract_20" label="abstract_20">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Sequence-to-sequence models have recently become very popular for tacklinghandwritten word recognition problems. However, how to effectively integrate an external language model into such recognizer is still a challengingproblem. The main challenge faced when training a language model is todeal with the language model corpus which is usually different to the oneused for training the handwritten word recognition system. Thus, the biasbetween both word corpora leads to incorrectness on the transcriptions, providing similar or even worse performances on the recognition task. In thiswork, we introduce Candidate Fusion, a novel way to integrate an externallanguage model to a sequence-to-sequence architecture. Moreover, it provides suggestions from an external language knowledge, as a new input tothe sequence-to-sequence recognizer. Hence, Candidate Fusion provides twoimprovements. On the one hand, the sequence-to-sequence recognizer hasthe flexibility not only to combine the information from itself and the language model, but also to choose the importance of the information providedby the language model. On the other hand, the external language modelhas the ability to adapt itself to the training corpus and even learn themost commonly errors produced from the recognizer. Finally, by conductingcomprehensive experiments, the Candidate Fusion proves to outperform thestate-of-the-art language models for handwritten word recognition tasks."/>
<attvalue for="2" value="11"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22528051018259485"/>
<attvalue for="harmonicclosnesscentrality" value="0.23088307295145352"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1667.6814" y="308.06027"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="abstract_21" label="abstract_21">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks."/>
<attvalue for="2" value="5"/>
<attvalue for="degree" value="5"/>
<attvalue for="modularity_class" value="36"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22536186091300292"/>
<attvalue for="harmonicclosnesscentrality" value="0.2312436017269911"/>
<attvalue for="betweenesscentrality" value="29945.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2908.0435" y="-231.52797"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_21_1" label="subabstract_21_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="36"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839190549866156"/>
<attvalue for="harmonicclosnesscentrality" value="0.18697200338274775"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3457.628" y="-247.39032"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_21_2" label="subabstract_21_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="36"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839190549866156"/>
<attvalue for="harmonicclosnesscentrality" value="0.18697200338274775"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3454.679" y="-130.31645"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_21_3" label="subabstract_21_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="36"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839190549866156"/>
<attvalue for="harmonicclosnesscentrality" value="0.18697200338274775"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3536.6548" y="-105.87855"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_21_4" label="subabstract_21_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="36"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839190549866156"/>
<attvalue for="harmonicclosnesscentrality" value="0.18697200338274775"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3538.4219" y="-220.49854"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_22" label="abstract_22">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Approaches that use more than two consecutive video frames in the optical flow estimation have a long research history. However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation. As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset."/>
<attvalue for="2" value="10"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22551115661417084"/>
<attvalue for="harmonicclosnesscentrality" value="0.2318111007255224"/>
<attvalue for="betweenesscentrality" value="67356.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1413.6998" y="2866.697"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_22_1" label="subabstract_22_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1966.6567" y="3731.5637"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_22_2" label="subabstract_22_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In contrast, this paper differs from previously developed techniques"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1898.852" y="3692.5764"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_22_3" label="subabstract_22_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2059.5986" y="3676.9521"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_22_4" label="subabstract_22_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1834.4198" y="3616.8752"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_22_5" label="subabstract_22_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Implementation of our idea increases the robustness of optical flow estimation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2059.546" y="3547.0967"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_22_6" label="subabstract_22_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2040.545" y="3614.922"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_22_7" label="subabstract_22_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1947.0458" y="3518.1492"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_22_8" label="subabstract_22_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1846.9315" y="3544.0342"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_22_9" label="subabstract_22_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="37"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1925.6016" y="3624.6975"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_23" label="abstract_23">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Variable rate is a requirement for flexible and adaptable image and video compression. However, deep image compression methods (DIC) are optimized for a single fixed rate-distortion (R-D) tradeoff. While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models. Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder. However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bitrates. To address these limitations, we formulate the problem of variable R-D optimization for DIC, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific R-D tradeoff via a modulation network. Jointly training this modulated autoencoder and the modulation network provides an effective way to navigate the R-D operational curve. Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters."/>
<attvalue for="2" value="9"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="38"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22551115661417084"/>
<attvalue for="harmonicclosnesscentrality" value="0.23177104197268492"/>
<attvalue for="betweenesscentrality" value="59875.99999999999"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4091.957" y="-959.2883"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_23_1" label="subabstract_23_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, deep image compression methods (DIC) are optimized for a single fixed rate-distortion (R-D) tradeoff"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="38"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4799.0894" y="-1042.7788"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_23_2" label="subabstract_23_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="While this can be addressed by training multiple models for different tradeoffs, the memory requirements increase proportionally to the number of models"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="38"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4892.8394" y="-1074.6927"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_23_3" label="subabstract_23_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Scaling the bottleneck representation of a shared autoencoder can provide variable rate compression with a single shared autoencoder"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="38"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4817.0767" y="-1122.21"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_23_4" label="subabstract_23_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, the R-D performance using this simple mechanism degrades in low bitrates, and also shrinks the effective range of bitrates"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="38"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4995.7017" y="-1059.5704"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_23_5" label="subabstract_23_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To address these limitations, we formulate the problem of variable R-D optimization for DIC, and propose modulated autoencoders (MAEs), where the representations of a shared autoencoder are adapted to the specific R-D tradeoff via a modulation network"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="38"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4980.182" y="-973.79553"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_23_6" label="subabstract_23_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Jointly training this modulated autoencoder and the modulation network provides an effective way to navigate the R-D operational curve"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="38"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4903.149" y="-1006.454"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_23_7" label="subabstract_23_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our experiments show that the proposed method can achieve almost the same R-D performance of independent models with significantly fewer parameters"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="38"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4873.7944" y="-948.2925"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_23_8" label="subabstract_23_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="38"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4938.3896" y="-1129.133"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_24" label="abstract_24">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Many historians and linguists are working individually and in an uncoordinated fashion on the identification and decryption of historical ciphers. This is a time-consuming process as they often work without access to automatic methods and processes that can accelerate the decipherment. At the same time, computer scientists and cryptologists are developing algorithms to decrypt various cipher types without having access to a large number of original ciphertexts. In this paper, we describe the DECRYPT project aiming at the creation of resources and tools for historical cryptology by bringing the expertise of various disciplines together for collecting data, exchanging methods for faster progress to transcribe, decrypt and contextualize historical encrypted manuscripts. We present our goals and work-in progress of a general approach for analyzing historical encrypted manuscripts using standardized methods and a new set of state-of-the-art tools. We release the data and tools as open-source hoping that all mentioned disciplines would benefit and contribute to the research infrastructure of historical cryptology."/>
<attvalue for="2" value="7"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2256198596089537"/>
<attvalue for="harmonicclosnesscentrality" value="0.2319579828192598"/>
<attvalue for="betweenesscentrality" value="44912.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3812.3694" y="1775.0469"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_24_1" label="subabstract_24_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This is a time-consuming process as they often work without access to automatic methods and processes that can accelerate the decipherment"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873280811857476"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4678.222" y="1909.7698"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_24_2" label="subabstract_24_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="At the same time, computer scientists and cryptologists are developing algorithms to decrypt various cipher types without having access to a large number of original ciphertexts"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873280811857476"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4578.921" y="1923.8976"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_24_3" label="subabstract_24_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we describe the DECRYPT project aiming at the creation of resources and tools for historical cryptology by bringing the expertise of various disciplines together for collecting data, exchanging methods for faster progress to transcribe, decrypt and contextualize historical encrypted manuscripts"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873280811857476"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4712.093" y="2003.4366"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_24_4" label="subabstract_24_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We present our goals and work-in progress of a general approach for analyzing historical encrypted manuscripts using standardized methods and a new set of state-of-the-art tools"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873280811857476"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4545.621" y="2010.2958"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_24_5" label="subabstract_24_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We release the data and tools as open-source hoping that all mentioned disciplines would benefit and contribute to the research infrastructure of historical cryptology"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873280811857476"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4644.558" y="2052.6194"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_24_6" label="subabstract_24_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.1873280811857476"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4630.647" y="1976.8383"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="abstract_25" label="abstract_25">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods."/>
<attvalue for="2" value="11"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22551115661417084"/>
<attvalue for="harmonicclosnesscentrality" value="0.2318111007255224"/>
<attvalue for="betweenesscentrality" value="67355.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1244.6302" y="3857.2922"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_25_1" label="subabstract_25_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1647.0137" y="4657.262"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_25_2" label="subabstract_25_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, it is well known that graph embedding functions usually suffer from the loss of structural information"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1663.7513" y="4576.801"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_25_3" label="subabstract_25_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1584.764" y="4561.9277"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_25_4" label="subabstract_25_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1599.7751" y="4776.5615"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_25_5" label="subabstract_25_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1695.3892" y="4699.1406"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_25_6" label="subabstract_25_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1505.8156" y="4620.7637"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_25_7" label="subabstract_25_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1577.8363" y="4660.386"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_25_8" label="subabstract_25_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1488.2761" y="4708.374"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_25_9" label="subabstract_25_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1552.3035" y="4736.675"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="abstract_26" label="abstract_26">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="During the last years, graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their ability to capture both structural and appearance-based information. Thus, they provide a greater representational power than classical statistical frameworks. However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques. Despite their representational power, they are very sensitive to noise and small variations of the input image. With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation. Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology. Abstract nodes attributes summarise information about the contracted graph partition. For the proposed representations, a coarse-to-fine matching technique is defined. Hence, small graphs are used as a filtering before more accurate matching methods are applied. This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i.e. word spotting)."/>
<attvalue for="2" value="13"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2256878522134828"/>
<attvalue for="harmonicclosnesscentrality" value="0.23232518805360367"/>
<attvalue for="betweenesscentrality" value="82312.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3585.008" y="-2699.527"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_1" label="subabstract_26_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Thus, they provide a greater representational power than classical statistical frameworks"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4515.9727" y="-3260.1184"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_2" label="subabstract_26_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, graph-based representations leads to high computational complexities usually dealt by graph embeddings or approximated matching techniques"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4519.8936" y="-3089.298"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_3" label="subabstract_26_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Despite their representational power, they are very sensitive to noise and small variations of the input image"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4324.013" y="-3183.4282"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_4" label="subabstract_26_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="With the aim to cope with the time complexity and the variability present in the generated graphs, in this paper we propose to construct a novel hierarchical graph representation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4347.2646" y="-3257.0134"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_5" label="subabstract_26_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Graph clustering techniques adapted from social media analysis have been used in order to contract a graph at different abstraction levels while keeping information about the topology"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4399.41" y="-3332.4114"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_6" label="subabstract_26_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Abstract nodes attributes summarise information about the contracted graph partition"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4547.341" y="-3177.9553"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_7" label="subabstract_26_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="For the proposed representations, a coarse-to-fine matching technique is defined"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4473.1274" y="-3153.365"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_8" label="subabstract_26_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Hence, small graphs are used as a filtering before more accurate matching methods are applied"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4385.2456" y="-3129.8276"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_9" label="subabstract_26_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This approach has been validated in real scenarios such as classification of colour images or retrieval of handwritten words (i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4433.871" y="-3067.2385"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_11" label="subabstract_26_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="word spotting)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4454.097" y="-3296.9795"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_26_12" label="subabstract_26_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.18746161036187264"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4437.7007" y="-3216.4138"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_28" label="abstract_28">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Manual transcription of handwritten text is a time consuming task. In the case of encrypted manuscripts, the recognition is even more complex due to the huge variety of alphabets and symbol sets. To speed up and ease this process, we present a web-based tool aimed to (semi)-automatically transcribe the encrypted sources. The user uploads one or several images of the desired encrypted document(s) as input, and the system returns the transcription(s). This process is carried out in an interactive fashion withthe user to obtain more accurate results. For discovering and testing, the developed web tool is freely available."/>
<attvalue for="2" value="7"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22542969808253815"/>
<attvalue for="harmonicclosnesscentrality" value="0.23149063070282236"/>
<attvalue for="betweenesscentrality" value="44912.999999999956"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3600.0886" y="557.0118"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_28_1" label="subabstract_28_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In the case of encrypted manuscripts, the recognition is even more complex due to the huge variety of alphabets and symbol sets"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4265.788" y="576.67035"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_28_2" label="subabstract_28_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To speed up and ease this process, we present a web-based tool aimed to (semi)-automatically transcribe the encrypted sources"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4349.608" y="465.56046"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_28_3" label="subabstract_28_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The user uploads one or several images of the desired encrypted document(s) as input, and the system returns the transcription(s)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4359.339" y="672.1488"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_28_4" label="subabstract_28_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This process is carried out in an interactive fashion withthe user to obtain more accurate results"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4270.548" y="475.84467"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_28_5" label="subabstract_28_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="For discovering and testing, the developed web tool is freely available"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4378.8696" y="558.8927"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_28_6" label="subabstract_28_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18396423395317987"/>
<attvalue for="harmonicclosnesscentrality" value="0.18707882672364773"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4284.041" y="664.58246"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="abstract_29" label="abstract_29">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Images with visual and scene text content are ubiquitous in everyday life. However, current image interpretation systems are mostly limited to using only the visual features, neglecting to leverage the scene text content. In this paper, we propose to jointly use scene text and visual channels for robust semantic interpretation of images. We do not only extract and encode visual and scene text cues, but also model their interplay to generate a contextual joint embedding with richer semantics. The contextual embedding thus generated is applied to retrieval and classification tasks on multimedia images, with scene text content, to demonstrate its effectiveness. In the retrieval framework, we augment our learned text-visual semantic representation with scene text cues, to mitigate vocabulary misses that may have occurred during the semantic embedding. To deal with irrelevant or erroneous recognition of scene text, we also apply query-based attention to our text channel. We show how the multi-channel approach, involving visual semantics and scene text, improves upon state of the art."/>
<attvalue for="2" value="9"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2254839972300003"/>
<attvalue for="harmonicclosnesscentrality" value="0.2317042773846224"/>
<attvalue for="betweenesscentrality" value="59875.99999999995"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1591.107" y="3801.4949"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_29_1" label="subabstract_29_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, current image interpretation systems are mostly limited to using only the visual features, neglecting to leverage the scene text content"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871678461743977"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1828.2426" y="4533.1626"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_29_2" label="subabstract_29_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we propose to jointly use scene text and visual channels for robust semantic interpretation of images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871678461743977"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1851.5295" y="4456.638"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_29_3" label="subabstract_29_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We do not only extract and encode visual and scene text cues, but also model their interplay to generate a contextual joint embedding with richer semantics"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871678461743977"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1927.9791" y="4630.367"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_29_4" label="subabstract_29_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The contextual embedding thus generated is applied to retrieval and classification tasks on multimedia images, with scene text content, to demonstrate its effectiveness"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871678461743977"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1916.6592" y="4543.522"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_29_5" label="subabstract_29_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In the retrieval framework, we augment our learned text-visual semantic representation with scene text cues, to mitigate vocabulary misses that may have occurred during the semantic embedding"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871678461743977"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2000.8762" y="4590.3936"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_29_6" label="subabstract_29_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To deal with irrelevant or erroneous recognition of scene text, we also apply query-based attention to our text channel"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871678461743977"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2004.025" y="4511.411"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_29_7" label="subabstract_29_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We show how the multi-channel approach, involving visual semantics and scene text, improves upon state of the art"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871678461743977"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1849.3671" y="4614.916"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_29_8" label="subabstract_29_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871678461743977"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1935.2839" y="4453.8804"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="abstract_31" label="abstract_31">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Recent studies have shown that the environment where people eat can affect their nutritional behaviour. In this work, we provide automatic tools for a personalised analysis of a person's health habits by the examination of daily recorded egocentric photo-streams. Specifically, we propose a new automatic approach for the classification of food-related environments, that is able to classify up to 15 such scenes. In this way, people can monitor the context around their food intake in order to get an objective insight into their daily eating routine. We propose a model that classifies food-related scenes organized in a semantic hierarchy. Additionally, we present and make available a new egocentric dataset composed of more than 33000 images recorded by a wearable camera, over which our proposed model has been tested. Our approach obtains an accuracy and F-score of 56\% and 65\%, respectively, clearly outperforming the baseline methods."/>
<attvalue for="2" value="8"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2254839972300003"/>
<attvalue for="harmonicclosnesscentrality" value="0.23166421863178485"/>
<attvalue for="betweenesscentrality" value="52394.99999999999"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="839.47205" y="-3043.8313"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_31_1" label="subabstract_31_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we provide automatic tools for a personalised analysis of a person's health habits by the examination of daily recorded egocentric photo-streams"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871589442293227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="655.67926" y="-3868.7783"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_31_2" label="subabstract_31_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Specifically, we propose a new automatic approach for the classification of food-related environments, that is able to classify up to 15 such scenes"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871589442293227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="776.79974" y="-3828.7302"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_31_3" label="subabstract_31_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this way, people can monitor the context around their food intake in order to get an objective insight into their daily eating routine"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871589442293227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="748.69855" y="-3884.47"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_31_4" label="subabstract_31_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a model that classifies food-related scenes organized in a semantic hierarchy"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871589442293227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="614.92346" y="-3939.8574"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_31_5" label="subabstract_31_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Additionally, we present and make available a new egocentric dataset composed of more than 33000 images recorded by a wearable camera, over which our proposed model has been tested"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871589442293227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="576.8807" y="-3841.641"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_31_6" label="subabstract_31_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our approach obtains an accuracy and F-score of 56\% and 65\%, respectively, clearly outperforming the baseline methods"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871589442293227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="667.5169" y="-3789.903"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_31_7" label="subabstract_31_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="83"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871589442293227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="722.4566" y="-3950.9077"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_32" label="abstract_32">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Social networks have attracted the attention of psychologists, as the behavior of users can be used to assess personality traits, and to detect sentiments and critical mental situations such as depression or suicidal tendencies. Recently, the increasing amount of image uploads to social networks has shifted the focus from text to image-based personality assessment. However, obtaining the ground-truth requires giving personality questionnaires to the users, making the process very costly and slow, and hindering research on large populations. In this paper, we demonstrate that it is possible to predict which images are most associated with each personality trait of the OCEAN personality model, without requiring ground-truth personality labels. Namely, we present a weakly supervised framework which shows that the personality scores obtained using specific images textually associated with particular personality traits are highly correlated with scores obtained using standard text-based personality questionnaires. We trained an OCEAN trait model based on Convolutional Neural Networks (CNNs), learned from 120K pictures posted with specific textual hashtags, to infer whether the personality scores from the images uploaded by users are consistent with those scores obtained from text. In order to validate our claims, we performed a personality test on a heterogeneous group of 280 human subjects, showing that our model successfully predicts which kind of image will match a person with a given level of a trait. Looking at the results, we obtained evidence that personality is not only correlated with text, but with image content too. Interestingly, different visual patterns emerged from those images most liked by persons with a particular personality trait: for instance, pictures most associated with high conscientiousness usually contained healthy food, while low conscientiousness pictures contained injuries, guns, and alcohol. These findings could pave the way to complement text-based personality questionnaires with image-based questions."/>
<attvalue for="2" value="11"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2257286674503421"/>
<attvalue for="harmonicclosnesscentrality" value="0.23234521743002237"/>
<attvalue for="betweenesscentrality" value="67355.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="971.3926" y="-4834.1284"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_32_1" label="subabstract_32_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Recently, the increasing amount of image uploads to social networks has shifted the focus from text to image-based personality assessment"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18416328538054838"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874972181421726"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1400.7632" y="-5696.6016"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_32_2" label="subabstract_32_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, obtaining the ground-truth requires giving personality questionnaires to the users, making the process very costly and slow, and hindering research on large populations"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18416328538054838"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874972181421726"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1235.786" y="-5668.241"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_32_3" label="subabstract_32_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we demonstrate that it is possible to predict which images are most associated with each personality trait of the OCEAN personality model, without requiring ground-truth personality labels"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18416328538054838"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874972181421726"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1470.6261" y="-5607.4375"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_32_4" label="subabstract_32_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Namely, we present a weakly supervised framework which shows that the personality scores obtained using specific images textually associated with particular personality traits are highly correlated with scores obtained using standard text-based personality questionnaires"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18416328538054838"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874972181421726"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1325.3141" y="-5606.3257"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_32_5" label="subabstract_32_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We trained an OCEAN trait model based on Convolutional Neural Networks (CNNs), learned from 120K pictures posted with specific textual hashtags, to infer whether the personality scores from the images uploaded by users are consistent with those scores obtained from text"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18416328538054838"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874972181421726"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1382.844" y="-5640.281"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_32_6" label="subabstract_32_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In order to validate our claims, we performed a personality test on a heterogeneous group of 280 human subjects, showing that our model successfully predicts which kind of image will match a person with a given level of a trait"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18416328538054838"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874972181421726"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1432.0796" y="-5748.0493"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_32_7" label="subabstract_32_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Looking at the results, we obtained evidence that personality is not only correlated with text, but with image content too"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18416328538054838"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874972181421726"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1294.4592" y="-5704.6387"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_32_8" label="subabstract_32_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Interestingly, different visual patterns emerged from those images most liked by persons with a particular personality trait: for instance, pictures most associated with high conscientiousness usually contained healthy food, while low conscientiousness pictures contained injuries, guns, and alcohol"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18416328538054838"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874972181421726"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1323.5586" y="-5764.829"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_32_9" label="subabstract_32_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="These findings could pave the way to complement text-based personality questionnaires with image-based questions"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18416328538054838"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874972181421726"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1504.389" y="-5669.4834"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="abstract_33" label="abstract_33">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Image generation is arguably one of the most attractive, compelling, and challenging tasks in computer vision. Among the methods which perform image generation, generative adversarial networks (GANs) play a key role. The most common image generation models based on GANs can be divided into two main approaches. The first one, called simply image generation takes random noise as an input and synthesizes an image which follows the same distribution as the images in the training set. The second class, which is called image-to-image translation, aims to map an image from a source domain to one that is indistinguishable from those in the target domain. Image-to-image translation methods can further be divided into paired and unpaired image-to-image translation based on whether they require paired data or not. In this thesis, we aim to address some challenges of both image generation and image-to-image generation.GANs highly rely upon having access to vast quantities of data, and fail to generate realistic images from random noise when applied to domains with few images. To address this problem, we aim to transfer knowledge from a model trained on a large dataset (source domain) to the one learned on limited data (target domain). We find that both GANs andconditional GANs can benefit from models trained on large datasets. Our experiments show that transferring the discriminator is more important than the generator. Using both the generator and discriminator results in the best performance. We found, however, that this method suffers from overfitting, since we update all parameters to adapt to the target data. We propose a novel architecture, which is tailored to address knowledge transfer to very small target domains. Our approach effectively exploreswhich part of the latent space is more related to the target domain. Additionally, the proposed method is able to transfer knowledge from multiple pretrained GANs. Although image-to-image translation has achieved outstanding performance, it still facesseveral problems. First, for translation between complex domains (such as translations between different modalities) image-to-image translation methods require paired data. We show that when only some of the pairwise translations have been seen (i.e. during training), we can infer the remaining unseen translations (where training pairs are not available). We propose a new approach where we align multiple encoders and decoders in such a way that the desired translation can be obtained by simply cascadingthe source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). Second, we address the issue of bias in image-to-image translation. Biased datasets unavoidably contain undesired changes, which are dueto the fact that the target dataset has a particular underlying visual distribution. We use carefully designed semantic constraints to reduce the effects of the bias. The semantic constraint aims to enforce the preservation of desired image properties. Finally, current approaches fail to generate diverse outputs or perform scalable image transfer in a single model. To alleviate this problem, we propose a scalable and diverse image-to-image translation. We employ random noise to control the diversity. The scalabitlity is determined by conditioning the domain label.computer vision, deep learning, imitation learning, adversarial generative networks, image generation, image-to-image translation."/>
<attvalue for="2" value="34"/>
<attvalue for="degree" value="31"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22604207539766383"/>
<attvalue for="harmonicclosnesscentrality" value="0.2339542440023289"/>
<attvalue for="betweenesscentrality" value="224204.9999999999"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="147.4867" y="7630.2954"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_1" label="subabstract_33_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Among the methods which perform image generation, generative adversarial networks (GANs) play a key role"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="139.74205" y="8655.7705"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_2" label="subabstract_33_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The most common image generation models based on GANs can be divided into two main approaches"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-37.781147" y="8479.66"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_3" label="subabstract_33_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The first one, called simply image generation takes random noise as an input and synthesizes an image which follows the same distribution as the images in the training set"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-0.28110626" y="8542.172"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_4" label="subabstract_33_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The second class, which is called image-to-image translation, aims to map an image from a source domain to one that is indistinguishable from those in the target domain"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="132.39629" y="8590.2"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_5" label="subabstract_33_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Image-to-image translation methods can further be divided into paired and unpaired image-to-image translation based on whether they require paired data or not"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="276.7456" y="8534.541"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_6" label="subabstract_33_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this thesis, we aim to address some challenges of both image generation and image-to-image generation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="248.26169" y="8586.47"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_7" label="subabstract_33_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="GANs highly rely upon having access to vast quantities of data, and fail to generate realistic images from random noise when applied to domains with few images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="28.6437" y="8405.186"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_8" label="subabstract_33_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To address this problem, we aim to transfer knowledge from a model trained on a large dataset (source domain) to the one learned on limited data (target domain)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-86.59802" y="8417.85"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_9" label="subabstract_33_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We find that both GANs andconditional GANs can benefit from models trained on large datasets"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="135.38773" y="8380.145"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_11" label="subabstract_33_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Using both the generator and discriminator results in the best performance"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-102.3757" y="8543.59"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_12" label="subabstract_33_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We found, however, that this method suffers from overfitting, since we update all parameters to adapt to the target data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2.8697824" y="8289.035"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_13" label="subabstract_33_13">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a novel architecture, which is tailored to address knowledge transfer to very small target domains"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="236.779" y="8641.896"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_14" label="subabstract_33_14">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our approach effectively exploreswhich part of the latent space is more related to the target domain"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-61.588707" y="8357.481"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_15" label="subabstract_33_15">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Additionally, the proposed method is able to transfer knowledge from multiple pretrained GANs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="336.46722" y="8367.336"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_16" label="subabstract_33_16">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Although image-to-image translation has achieved outstanding performance, it still facesseveral problems"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-45.45064" y="8612.192"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_17" label="subabstract_33_17">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="First, for translation between complex domains (such as translations between different modalities) image-to-image translation methods require paired data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="239.6696" y="8355.368"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_18" label="subabstract_33_18">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We show that when only some of the pairwise translations have been seen (i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="59.396782" y="8664.155"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_19" label="subabstract_33_19">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="121.03025" y="8530.745"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_21" label="subabstract_33_21">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a new approach where we align multiple encoders and decoders in such a way that the desired translation can be obtained by simply cascadingthe source encoder and the target decoder, even when they have not interacted during the training stage (i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="132.61191" y="8297.018"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_22" label="subabstract_33_22">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-142.27757" y="8469.097"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_23" label="subabstract_33_23">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="unseen)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="204.01013" y="8493.014"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_24" label="subabstract_33_24">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Second, we address the issue of bias in image-to-image translation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="45.526016" y="8336.572"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_25" label="subabstract_33_25">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Biased datasets unavoidably contain undesired changes, which are dueto the fact that the target dataset has a particular underlying visual distribution"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="52.71099" y="8477.478"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_26" label="subabstract_33_26">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We use carefully designed semantic constraints to reduce the effects of the bias"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="37.928925" y="8607.129"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_27" label="subabstract_33_27">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The semantic constraint aims to enforce the preservation of desired image properties"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="138.35843" y="8453.41"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_28" label="subabstract_33_28">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Finally, current approaches fail to generate diverse outputs or perform scalable image transfer in a single model"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="229.1289" y="8291.025"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_29" label="subabstract_33_29">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To alleviate this problem, we propose a scalable and diverse image-to-image translation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="353.61798" y="8542.194"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_31" label="subabstract_33_31">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The scalabitlity is determined by conditioning the domain label"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="300.80383" y="8465.508"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_32" label="subabstract_33_32">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="computer vision, deep learning, imitation learning, adversarial generative networks, image generation, image-to-image translation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="245.82126" y="8415.729"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_33_33" label="subabstract_33_33">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="39"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18437184568797854"/>
<attvalue for="harmonicclosnesscentrality" value="0.18809364846219756"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="374.1669" y="8451.128"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_34" label="abstract_34">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Medical image fusion plays an important role in the clinical diagnosis of several critical neurological diseases by merging complementary information available in multimodal images. In this paper, a novel CT-MR neurological image fusion framework is proposed using an optimized biologically inspired feedforward neural model in two-scale hybrid a1a aa a0 decomposition domain using gray wolf optimization to preserve the structural as well as texture information present in source CT and MR images. Initially, the source images are subjected to two-scale a1a aa a0 decomposition with optimized parameters, giving a scale-1 detail layer, a scale-2 detail layer and a scale-2 base layer. Two detail layers at scale-1 and 2 are fused using an optimized biologically inspired neural model and weighted average scheme based on local energy and modified spatial frequency to maximize the preservation of edges and local textures, respectively, while the scale-2 base layer gets fused using choose max rule to preserve the background information. To optimize the hyper-parameters of hybrid a1a aa a0 decomposition and biologically inspired neural model, a fitness function is evaluated based on spatial frequency and edge index of the resultant fused image obtained by adding all the fused components. The fusion performance is analyzed by conducting extensive experiments on different CT-MR neurological images. Experimental results indicate that the proposed method provides better-fused images and outperforms the other state-of-the-art fusion methods in both visual and quantitative assessments."/>
<attvalue for="2" value="8"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22545684438691033"/>
<attvalue for="harmonicclosnesscentrality" value="0.23159745404372237"/>
<attvalue for="betweenesscentrality" value="52394.999999999956"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2148.5955" y="2285.919"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_34_1" label="subabstract_34_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, a novel CT-MR neurological image fusion framework is proposed using an optimized biologically inspired feedforward neural model in two-scale hybrid a1a aa a0 decomposition domain using gray wolf optimization to preserve the structural as well as texture information present in source CT and MR images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2899.842" y="2601.6824"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_34_2" label="subabstract_34_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Initially, the source images are subjected to two-scale a1a aa a0 decomposition with optimized parameters, giving a scale-1 detail layer, a scale-2 detail layer and a scale-2 base layer"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2791.5903" y="2588.2756"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_34_3" label="subabstract_34_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Two detail layers at scale-1 and 2 are fused using an optimized biologically inspired neural model and weighted average scheme based on local energy and modified spatial frequency to maximize the preservation of edges and local textures, respectively, while the scale-2 base layer gets fused using choose max rule to preserve the background information"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2813.814" y="2661.23"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_34_4" label="subabstract_34_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To optimize the hyper-parameters of hybrid a1a aa a0 decomposition and biologically inspired neural model, a fitness function is evaluated based on spatial frequency and edge index of the resultant fused image obtained by adding all the fused components"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2918.0444" y="2675.6614"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_34_5" label="subabstract_34_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The fusion performance is analyzed by conducting extensive experiments on different CT-MR neurological images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2994.349" y="2633.3125"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_34_6" label="subabstract_34_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Experimental results indicate that the proposed method provides better-fused images and outperforms the other state-of-the-art fusion methods in both visual and quantitative assessments"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2867.7668" y="2534.058"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_34_7" label="subabstract_34_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2975.8564" y="2551.9834"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="abstract_35" label="abstract_35">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Perceiving text is crucial to understand semantics of outdoor scenes and hence is a critical requirement to build intelligent systems for driver assistance and self-driving. Most of the existing datasets for text detection and recognition comprise still images and are mostly compiled keeping text in mind. This paper introduces a new aRoadText-1Ka dataset for text in driving videos. The dataset is 20 times larger than the existing largest dataset for text in videos. Our dataset comprises 1000 video clips of driving without any bias towards text and with annotations for text bounding boxes and transcriptions in every frame. State of the art methods for text detection,recognition and tracking are evaluated on the new dataset and the results signify the challenges in unconstrained driving videos compared to existing datasets. This suggests that RoadText-1K is suited for research and development of reading systems, robust enough to be incorporated into more complex downstream tasks like driver assistance and self-driving. The dataset can be found at http://cvit.iiit.ac.in/research/projects/cvit-projects/roadtext-1k"/>
<attvalue for="2" value="11"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22553832254178588"/>
<attvalue for="harmonicclosnesscentrality" value="0.23187786531358492"/>
<attvalue for="betweenesscentrality" value="67355.99999999994"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4291.5103" y="-1658.0297"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_35_1" label="subabstract_35_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Most of the existing datasets for text detection and recognition comprise still images and are mostly compiled keeping text in mind"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5052.446" y="-1963.2809"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_35_2" label="subabstract_35_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper introduces a new aRoadText-1Ka dataset for text in driving videos"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5143.011" y="-1842.5321"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_35_3" label="subabstract_35_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The dataset is 20 times larger than the existing largest dataset for text in videos"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5038.3647" y="-2037.0594"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_35_4" label="subabstract_35_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our dataset comprises 1000 video clips of driving without any bias towards text and with annotations for text bounding boxes and transcriptions in every frame"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5207.2485" y="-1875.2177"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_35_5" label="subabstract_35_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="State of the art methods for text detection,recognition and tracking are evaluated on the new dataset and the results signify the challenges in unconstrained driving videos compared to existing datasets"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5059.371" y="-1887.7477"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_35_6" label="subabstract_35_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This suggests that RoadText-1K is suited for research and development of reading systems, robust enough to be incorporated into more complex downstream tasks like driver assistance and self-driving"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5172.0903" y="-2008.451"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_35_7" label="subabstract_35_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The dataset can be found at http://cvit"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5118.3013" y="-2066.263"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_35_8" label="subabstract_35_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="iiit"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5230.084" y="-1948.9553"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_35_9" label="subabstract_35_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="ac"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5133.906" y="-1940.7745"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="abstract_36" label="abstract_36">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Finding a person across a camera network plays an important role in video surveillance. For a real-world person re-identification application, in order to guarantee an optimal time response, it is crucial to find the balance between accuracy and speed. We analyse this trade-off, comparing a classical method, that comprises hand-crafted feature description and metric learning, in particular, LOMO and XQDA, to deep learning based techniques, using image classification networks, ResNet and MobileNets. Additionally, we propose and analyse network distillation as a learning strategy to reduce the computational cost of the deep learning approach at test time. We evaluate both methods on the Market-1501 and DukeMTMC-reID large-scale datasets, showing that distillation helps reducing the computational cost at inference time while even increasing the accuracy performance."/>
<attvalue for="2" value="6"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22553832254178588"/>
<attvalue for="harmonicclosnesscentrality" value="0.2317176303022348"/>
<attvalue for="betweenesscentrality" value="37430.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="259.03952" y="-3836.5427"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_36_1" label="subabstract_36_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="For a real-world person re-identification application, in order to guarantee an optimal time response, it is crucial to find the balance between accuracy and speed"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="373.2245" y="-4457.5005"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_36_2" label="subabstract_36_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We analyse this trade-off, comparing a classical method, that comprises hand-crafted feature description and metric learning, in particular, LOMO and XQDA, to deep learning based techniques, using image classification networks, ResNet and MobileNets"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="296.77292" y="-4394.691"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_36_3" label="subabstract_36_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Additionally, we propose and analyse network distillation as a learning strategy to reduce the computational cost of the deep learning approach at test time"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="428.8321" y="-4430.0273"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_36_4" label="subabstract_36_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We evaluate both methods on the Market-1501 and DukeMTMC-reID large-scale datasets, showing that distillation helps reducing the computational cost at inference time while even increasing the accuracy performance"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="446.4714" y="-4532.7554"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_36_5" label="subabstract_36_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.1872123558997727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="323.22824" y="-4493.307"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_37" label="abstract_37">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work we contribute a novel pipeline to automatically generate training data, and to improve over state-of-the-art multi-object tracking and segmentation (MOTS) methods. Our proposed track mining algorithm turns raw street-level videos into high-fidelity MOTS training data, is scalable and overcomes the need of expensive and time-consuming manual annotation approaches. We leverage state-of-the-art instance segmentation results in combination with optical flow predictions, also trained on automatically harvested training data. Our second major contribution is MOTSNet - a deep learning, tracking-by-detection architecture for MOTS - deploying a novel mask-pooling layer for improved object association over time. Training MOTSNet with our automatically extracted data leads to significantly improved sMOTSA scores on the novel KITTI MOTS dataset (+1.9%/+7.5% on cars/pedestrians), and MOTSNet improves by +4.1% over previously best methods on the MOTSChallenge dataset. Our most impressive finding is that we can improve over previous best-performing works, even in complete absence of manually annotated MOTS training data."/>
<attvalue for="2" value="10"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22553832254178588"/>
<attvalue for="harmonicclosnesscentrality" value="0.23187786531358492"/>
<attvalue for="betweenesscentrality" value="67355.99999999996"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-612.46954" y="-5822.6616"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_37_1" label="subabstract_37_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our proposed track mining algorithm turns raw street-level videos into high-fidelity MOTS training data, is scalable and overcomes the need of expensive and time-consuming manual annotation approaches"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-755.79645" y="-6698.5273"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_37_2" label="subabstract_37_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We leverage state-of-the-art instance segmentation results in combination with optical flow predictions, also trained on automatically harvested training data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-676.83795" y="-6771.2456"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_37_3" label="subabstract_37_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our second major contribution is MOTSNet - a deep learning, tracking-by-detection architecture for MOTS - deploying a novel mask-pooling layer for improved object association over time"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-657.61707" y="-6839.7725"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_37_4" label="subabstract_37_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Training MOTSNet with our automatically extracted data leads to significantly improved sMOTSA scores on the novel KITTI MOTS dataset (+1"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-637.25555" y="-6718.83"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_37_5" label="subabstract_37_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="9%/+7"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-858.0405" y="-6723.5547"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_37_6" label="subabstract_37_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="5% on cars/pedestrians), and MOTSNet improves by +4"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-775.2614" y="-6764.266"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_37_7" label="subabstract_37_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="1% over previously best methods on the MOTSChallenge dataset"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-752.68604" y="-6836.0933"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_37_8" label="subabstract_37_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our most impressive finding is that we can improve over previous best-performing works, even in complete absence of manually annotated MOTS training data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-577.8031" y="-6786.3896"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_37_9" label="subabstract_37_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="64"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-848.4609" y="-6805.813"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_38" label="abstract_38">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="BACKGROUND:Content-based image retrieval (CBIR) is an application of machine learning used to retrieve images by similarity on the basis of features. Our objective was to develop a CBIR system that could identify images containing the same polyp ('polyp fingerprint').METHODS:A machine learning technique called Bag of Words was used to describe each endoscopic image containing a polyp in a unique way. The system was tested with 243 white light images belonging to 99 different polyps (for each polyp there were at least two images representing it in two different temporal moments). Images were acquired in routine colonoscopies at Hospital ClAnic using high-definition Olympus endoscopes. The method provided for each image the closest match within the dataset.RESULTS:The system matched another image of the same polyp in 221/243 cases (91%). No differences were observed in the number of correct matches according to Paris classification (protruded: 90.7% vs. non-protruded: 91.3%) and size (&lt;a10 mm: 91.6% vs.a>a10 mm: 90%).CONCLUSIONS:A CBIR system can match accurately two images containing the same polyp, which could be a helpful aid for polyp image recognition.KEYWORDS:Artificial intelligence; Colorectal polyps; Content-based image retrieval"/>
<attvalue for="2" value="15"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22566065025461776"/>
<attvalue for="harmonicclosnesscentrality" value="0.2323385409712162"/>
<attvalue for="betweenesscentrality" value="97265.99999999991"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4623.0464" y="-2400.3362"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_1" label="subabstract_38_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our objective was to develop a CBIR system that could identify images containing the same polyp ('polyp fingerprint')"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5540.2095" y="-2509.6052"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_2" label="subabstract_38_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="METHODS:A machine learning technique called Bag of Words was used to describe each endoscopic image containing a polyp in a unique way"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5631.3438" y="-2471.496"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_3" label="subabstract_38_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The system was tested with 243 white light images belonging to 99 different polyps (for each polyp there were at least two images representing it in two different temporal moments)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5568.5986" y="-2764.404"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_4" label="subabstract_38_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Images were acquired in routine colonoscopies at Hospital ClAnic using high-definition Olympus endoscopes"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5676.5386" y="-2632.9656"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_5" label="subabstract_38_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The method provided for each image the closest match within the dataset"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5476.5415" y="-2662.152"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_6" label="subabstract_38_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="RESULTS:The system matched another image of the same polyp in 221/243 cases (91%)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5542.0083" y="-2437.9744"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_7" label="subabstract_38_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="No differences were observed in the number of correct matches according to Paris classification (protruded: 90"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5538.5186" y="-2625.9512"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_8" label="subabstract_38_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="7% vs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5475.9883" y="-2560.2214"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_9" label="subabstract_38_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="non-protruded: 91"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5502.281" y="-2744.296"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_11" label="subabstract_38_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="6% vs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5591.6045" y="-2675.811"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_12" label="subabstract_38_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="a>a10 mm: 90%)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5645.538" y="-2725.551"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_13" label="subabstract_38_13">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="CONCLUSIONS:A CBIR system can match accurately two images containing the same polyp, which could be a helpful aid for polyp image recognition"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5651.351" y="-2560.2874"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_38_14" label="subabstract_38_14">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="KEYWORDS:Artificial intelligence; Colorectal polyps; Content-based image retrieval"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874438064717226"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5587.483" y="-2565.7537"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_39" label="abstract_39">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Computer-aided diagnosis (CAD) is a tool with great potential to help endoscopists in the tasks of detecting and histologically classifying colorectal polyps. In recent years, different technologies have been described and their potential utility has been increasingly evidenced, which has generated great expectations among scientific societies. However, most of these works are retrospective and use images of different quality and characteristics which are analysed off line. This review aims to familiarise gastroenterologists with computational methods and the particularities of endoscopic imaging, which have an impact on image processing analysis. Finally, the publicly available image databases, needed to compare and confirm the results obtained with different methods, are presented."/>
<attvalue for="2" value="6"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22541612738163322"/>
<attvalue for="harmonicclosnesscentrality" value="0.2314171896559536"/>
<attvalue for="betweenesscentrality" value="37429.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="336.90057" y="-3687.218"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_39_1" label="subabstract_39_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In recent years, different technologies have been described and their potential utility has been increasingly evidenced, which has generated great expectations among scientific societies"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="548.76904" y="-4249.7134"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_39_2" label="subabstract_39_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, most of these works are retrospective and use images of different quality and characteristics which are analysed off line"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="584.38806" y="-4340.6616"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_39_3" label="subabstract_39_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This review aims to familiarise gastroenterologists with computational methods and the particularities of endoscopic imaging, which have an impact on image processing analysis"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="493.28534" y="-4335.422"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_39_4" label="subabstract_39_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Finally, the publicly available image databases, needed to compare and confirm the results obtained with different methods, are presented"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="634.14" y="-4284.4956"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_39_5" label="subabstract_39_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="17"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839551963842696"/>
<attvalue for="harmonicclosnesscentrality" value="0.1870521208884227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="457.91943" y="-4267.032"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_40" label="abstract_40">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratioa14 1/4 for new/known classes; even for more challenging ratios such asa14 4/1, the results are also very positive."/>
<attvalue for="2" value="8"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22525340632237495"/>
<attvalue for="harmonicclosnesscentrality" value="0.230816308363391"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1124.2874" y="170.05254"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="abstract_41" label="abstract_41">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future."/>
<attvalue for="2" value="9"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22566065025461776"/>
<attvalue for="harmonicclosnesscentrality" value="0.2321382472070286"/>
<attvalue for="betweenesscentrality" value="59876.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="412.25867" y="4624.543"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_41_1" label="subabstract_41_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Despite their importance, it is only recently that researchers are starting to explore these aspects"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.18739929674634745"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="578.92566" y="5440.7764"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_41_2" label="subabstract_41_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.18739929674634745"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="651.5456" y="5498.244"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_41_3" label="subabstract_41_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To the best of our knowledge, this is the first effort in this direction"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.18739929674634745"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="567.2799" y="5507.323"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_41_4" label="subabstract_41_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We describe a challenge we organized on explainability in first impressions analysis from video"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.18739929674634745"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="438.462" y="5461.2715"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_41_5" label="subabstract_41_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.18739929674634745"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="670.8664" y="5368.208"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_41_6" label="subabstract_41_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We investigate the issue of bias in detail"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.18739929674634745"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="486.04947" y="5518.0186"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_41_7" label="subabstract_41_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.18739929674634745"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="696.74884" y="5425.9707"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_41_8" label="subabstract_41_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841180086047941"/>
<attvalue for="harmonicclosnesscentrality" value="0.18739929674634745"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="535.6615" y="5400.86"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="abstract_42" label="abstract_42">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Nutrition and social interactions are both key aspects of the daily lives of humans. In this work, we propose a system to evaluate the influence of social interaction in the nutritional habits of a person from a first-person perspective. In order to detect the routine of an individual, we construct a nutritional behaviour pattern discovery model, which outputs routines over a number of days. Our method evaluates similarity of routines with respect to visited food-related scenes over the collected days, making use of Dynamic Time Warping, as well as considering social engagement and its correlation with food-related activities. The nutritional and social descriptors of the collected days are evaluated and encoded using an LSTM Autoencoder. Later, the obtained latent space is clustered to find similar days unaffected by outliers using the Isolation Forest method. Moreover, we introduce a new score metric to evaluate the performance of the proposed algorithm. We validate our method on 104 days and more than 100 k egocentric images gathered by 7 users. Several different visualizations are evaluated for the understanding of the findings. Our results demonstrate good performance and applicability of our proposed model for social-related nutritional behaviour understanding. At the end, relevant applications of the model are discussed by analysing the discovered routine of particular individuals."/>
<attvalue for="2" value="12"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22553832254178588"/>
<attvalue for="harmonicclosnesscentrality" value="0.23191792406642245"/>
<attvalue for="betweenesscentrality" value="74834.99999999996"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="965.5342" y="4667.759"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_1" label="subabstract_42_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we propose a system to evaluate the influence of social interaction in the nutritional habits of a person from a first-person perspective"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="960.3035" y="5424.3267"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_2" label="subabstract_42_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In order to detect the routine of an individual, we construct a nutritional behaviour pattern discovery model, which outputs routines over a number of days"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="880.65424" y="5464.055"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_3" label="subabstract_42_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our method evaluates similarity of routines with respect to visited food-related scenes over the collected days, making use of Dynamic Time Warping, as well as considering social engagement and its correlation with food-related activities"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="983.1709" y="5603.2944"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_4" label="subabstract_42_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The nutritional and social descriptors of the collected days are evaluated and encoded using an LSTM Autoencoder"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1075.0012" y="5556.1533"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_5" label="subabstract_42_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Later, the obtained latent space is clustered to find similar days unaffected by outliers using the Isolation Forest method"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1011.9721" y="5514.49"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_6" label="subabstract_42_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Moreover, we introduce a new score metric to evaluate the performance of the proposed algorithm"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="894.19147" y="5609.7344"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_7" label="subabstract_42_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We validate our method on 104 days and more than 100 k egocentric images gathered by 7 users"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1096.8442" y="5471.9717"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_8" label="subabstract_42_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Several different visualizations are evaluated for the understanding of the findings"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="935.8122" y="5522.7383"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_9" label="subabstract_42_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our results demonstrate good performance and applicability of our proposed model for social-related nutritional behaviour understanding"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1040.2158" y="5416.0317"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="subabstract_42_11" label="subabstract_42_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="8"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18725686562514768"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="845.25323" y="5547.589"/>
<viz:color r="255" g="85" b="132"/>
</node>
<node id="abstract_43" label="abstract_43">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Recurrent neural networks (RNN) are popular for many computer vision tasks, including multi-label classification. Since RNNs produce sequential outputs, labels need to be ordered for the multi-label classification task. Current approaches sort labels according to their frequency, typically ordering them in either rare-first or frequent-first. These imposed orderings do not take into account that the natural order to generate the labels can change for each image, e.g.\ first the dominant object before summing up the smaller objects in the image. Therefore, in this paper, we propose ways to dynamically order the ground truth labels with the predicted label sequence. This allows for the faster training of more optimal LSTM models for multi-label classification. Analysis evidences that our method does not suffer from duplicate generation, something which is common for other models. Furthermore, it outperforms other CNN-RNN models, and we show that a standard architecture of an image encoder and language decoder trained with our proposed loss obtains the state-of-the-art results on the challenging MS-COCO, WIDER Attribute and PA-100K and competitive results on NUS-WIDE."/>
<attvalue for="2" value="11"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22552473875990003"/>
<attvalue for="harmonicclosnesscentrality" value="0.23184448301955368"/>
<attvalue for="betweenesscentrality" value="67356.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1670.2028" y="-3457.9124"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_43_1" label="subabstract_43_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Since RNNs produce sequential outputs, labels need to be ordered for the multi-label classification task"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2275.1643" y="-4251.161"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_43_2" label="subabstract_43_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Current approaches sort labels according to their frequency, typically ordering them in either rare-first or frequent-first"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2103.4631" y="-4157.351"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_43_3" label="subabstract_43_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="These imposed orderings do not take into account that the natural order to generate the labels can change for each image, e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2209.3115" y="-4216.2017"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_43_4" label="subabstract_43_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="g"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2199.1938" y="-4307.3125"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_43_5" label="subabstract_43_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="\ first the dominant object before summing up the smaller objects in the image"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2220.954" y="-4141.016"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_43_6" label="subabstract_43_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Therefore, in this paper, we propose ways to dynamically order the ground truth labels with the predicted label sequence"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2121.6633" y="-4292.5464"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_43_7" label="subabstract_43_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This allows for the faster training of more optimal LSTM models for multi-label classification"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2195.7883" y="-4083.7896"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_43_8" label="subabstract_43_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Analysis evidences that our method does not suffer from duplicate generation, something which is common for other models"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2132.5244" y="-4218.4287"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_43_9" label="subabstract_43_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Furthermore, it outperforms other CNN-RNN models, and we show that a standard architecture of an image encoder and language decoder trained with our proposed loss obtains the state-of-the-art results on the challenging MS-COCO, WIDER Attribute and PA-100K and competitive results on NUS-WIDE"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="40"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723015978992266"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2296.7842" y="-4155.4297"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_44" label="abstract_44">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Today, we witness the appearance of many lifelogging cameras that are able to capture the life of a person wearing the camera and which produce a large number of images everyday. Automatically characterizing the experience and extracting patterns of behavior of individuals from this huge collection of unlabeled and unstructured egocentric data present major challenges and require novel and efficient algorithmic solutions. The main goal of this work is to propose a new method to automatically assess day similarity from the lifelogging images of a person. We propose a technique to measure the similarity between images based on the SwainaTMs distance and generalize it to detect the similarity between daily visual data. To this purpose, we apply the dynamic time warping (DTW) combined with the SwainaTMs distance for final day similarity estimation. For validation, we apply our technique on the Egocentric Dataset of University of Barcelona (EDUB) of 4912 daily images acquired by four persons with preliminary encouraging results."/>
<attvalue for="2" value="7"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="41"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2254025583145222"/>
<attvalue for="harmonicclosnesscentrality" value="0.23142386611475987"/>
<attvalue for="betweenesscentrality" value="44912.99999999996"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2922.941" y="-2298.3936"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_44_1" label="subabstract_44_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Automatically characterizing the experience and extracting patterns of behavior of individuals from this huge collection of unlabeled and unstructured egocentric data present major challenges and require novel and efficient algorithmic solutions"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="41"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18704321894334777"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3294.049" y="-2944.0618"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_44_2" label="subabstract_44_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The main goal of this work is to propose a new method to automatically assess day similarity from the lifelogging images of a person"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="41"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18704321894334777"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3365.4756" y="-2998.8674"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_44_3" label="subabstract_44_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a technique to measure the similarity between images based on the SwainaTMs distance and generalize it to detect the similarity between daily visual data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="41"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18704321894334777"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3432.898" y="-2950.6887"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_44_4" label="subabstract_44_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To this purpose, we apply the dynamic time warping (DTW) combined with the SwainaTMs distance for final day similarity estimation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="41"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18704321894334777"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3401.4111" y="-2820.222"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_44_5" label="subabstract_44_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="For validation, we apply our technique on the Egocentric Dataset of University of Barcelona (EDUB) of 4912 daily images acquired by four persons with preliminary encouraging results"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="41"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18704321894334777"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3323.0557" y="-2830.5632"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_44_6" label="subabstract_44_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="41"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18704321894334777"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3364.281" y="-2906.4568"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_45" label="abstract_45">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="One of the main characteristics of agricultural fields is that the appearance of different crops and their growth status, in an aerial image, is varied, and has a wide range of radiometric values and high level of variability. The extraction of these fields and their monitoring are activities that require a high level of human intervention. In this article, we propose a novel automatic algorithm, named deep network energy-minimization (DeepNEM), to extract agricultural fields in aerial images. The model-guided process selects the most relevant image clues extracted by a deep network, completes them and finally generates regions that represent the agricultural fields under a minimization scheme. DeepNEM has been tested over a broad range of fields in terms of size, shape, and content. Different measures were used to compare the DeepNEM with other methods, and to prove that it represents an improved approach to achieve a high-quality segmentation of agricultural fields. Furthermore, this article also presents a new public dataset composed of 1200 images with their parcels boundaries annotations."/>
<attvalue for="2" value="8"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22545684438691033"/>
<attvalue for="harmonicclosnesscentrality" value="0.23159745404372237"/>
<attvalue for="betweenesscentrality" value="52394.999999999956"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3338.7783" y="2363.1797"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_45_1" label="subabstract_45_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The extraction of these fields and their monitoring are activities that require a high level of human intervention"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4060.039" y="2820.756"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_45_2" label="subabstract_45_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this article, we propose a novel automatic algorithm, named deep network energy-minimization (DeepNEM), to extract agricultural fields in aerial images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3945.5217" y="2734.7493"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_45_3" label="subabstract_45_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The model-guided process selects the most relevant image clues extracted by a deep network, completes them and finally generates regions that represent the agricultural fields under a minimization scheme"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4029.6387" y="2736.3357"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_45_4" label="subabstract_45_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="DeepNEM has been tested over a broad range of fields in terms of size, shape, and content"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3915.8096" y="2894.4272"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_45_5" label="subabstract_45_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Different measures were used to compare the DeepNEM with other methods, and to prove that it represents an improved approach to achieve a high-quality segmentation of agricultural fields"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4015.9111" y="2898.082"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_45_6" label="subabstract_45_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Furthermore, this article also presents a new public dataset composed of 1200 images with their parcels boundaries annotations"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3975.389" y="2820.5134"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_45_7" label="subabstract_45_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="14"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3888.1482" y="2819.133"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_46" label="abstract_46">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Hand sign language recognition from video is a challenging research area in computer vision, which performance is affected by hand occlusion, fast hand movement, illumination changes, or background complexity, just to mention a few. In recent years, deep learning approaches have achieved state-of-the-art results in the field, though previous challenges are not completely solved. In this work, we propose a novel deep learning-based pipeline architecture for efficient automatic hand sign language recognition using Single Shot Detector (SSD), 2D Convolutional Neural Network (2DCNN), 3D Convolutional Neural Network (3DCNN), and Long Short-Term Memory (LSTM) from RGB input videos. We use a CNN-based model which estimates the 3D hand keypoints from 2D input frames. After that, we connect these estimated keypoints to build the hand skeleton by using midpoint algorithm. In order to obtain a more discriminative representation of hands, we project 3D hand skeleton into three views surface images. We further employ the heatmap image of detected keypoints as input for refinement in a stacked fashion. We apply 3DCNNs on the stacked features of hand, including pixel level, multi-view hand skeleton, and heatmap features, to extract discriminant local spatio-temporal features from these stacked inputs. The outputs of the 3DCNNs are fused and fed to a LSTM to model long-term dynamics of hand sign gestures. Analyzing 2DCNN vs. 3DCNN using different number of stacked inputs into the network, we demonstrate that 3DCNN better capture spatio-temporal dynamics of hands. To the best of our knowledge, this is the first time that this multi-modal and multi-view set of hand skeleton features are applied for hand sign language recognition. Furthermore, we present a new large-scale hand sign language dataset, namely RKS-PERSIANSIGN, including 10a2000 RGB videos of 100 Persian sign words. Evaluation results of the proposed model on three datasets, NYU, First-Person, and RKS-PERSIANSIGN, indicate that our model outperforms state-of-the-art models in hand sign language recognition, hand pose estimation, and hand action recognition."/>
<attvalue for="2" value="15"/>
<attvalue for="degree" value="14"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22579672566104864"/>
<attvalue for="harmonicclosnesscentrality" value="0.23267236391152865"/>
<attvalue for="betweenesscentrality" value="97265.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4264.4106" y="-3071.734"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_1" label="subabstract_46_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In recent years, deep learning approaches have achieved state-of-the-art results in the field, though previous challenges are not completely solved"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5051.3174" y="-3848.1282"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_2" label="subabstract_46_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we propose a novel deep learning-based pipeline architecture for efficient automatic hand sign language recognition using Single Shot Detector (SSD), 2D Convolutional Neural Network (2DCNN), 3D Convolutional Neural Network (3DCNN), and Long Short-Term Memory (LSTM) from RGB input videos"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5023.96" y="-3713.4922"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_3" label="subabstract_46_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We use a CNN-based model which estimates the 3D hand keypoints from 2D input frames"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5166.29" y="-3675.4421"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_4" label="subabstract_46_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="After that, we connect these estimated keypoints to build the hand skeleton by using midpoint algorithm"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4960.2593" y="-3636.095"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_5" label="subabstract_46_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In order to obtain a more discriminative representation of hands, we project 3D hand skeleton into three views surface images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5099.126" y="-3705.0369"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_6" label="subabstract_46_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We further employ the heatmap image of detected keypoints as input for refinement in a stacked fashion"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4957.872" y="-3753.3928"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_7" label="subabstract_46_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We apply 3DCNNs on the stacked features of hand, including pixel level, multi-view hand skeleton, and heatmap features, to extract discriminant local spatio-temporal features from these stacked inputs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4906.669" y="-3722.0032"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_8" label="subabstract_46_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The outputs of the 3DCNNs are fused and fed to a LSTM to model long-term dynamics of hand sign gestures"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5042.909" y="-3639.404"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_9" label="subabstract_46_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Analyzing 2DCNN vs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5127.155" y="-3600.4612"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_11" label="subabstract_46_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To the best of our knowledge, this is the first time that this multi-modal and multi-view set of hand skeleton features are applied for hand sign language recognition"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5127.252" y="-3774.3425"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_12" label="subabstract_46_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Furthermore, we present a new large-scale hand sign language dataset, namely RKS-PERSIANSIGN, including 10a2000 RGB videos of 100 Persian sign words"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5028.008" y="-3790.382"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_13" label="subabstract_46_13">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Evaluation results of the proposed model on three datasets, NYU, First-Person, and RKS-PERSIANSIGN, indicate that our model outperforms state-of-the-art models in hand sign language recognition, hand pose estimation, and hand action recognition"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4950.5034" y="-3835.6829"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_46_14" label="subabstract_46_14">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="12"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1842085844299594"/>
<attvalue for="harmonicclosnesscentrality" value="0.18762184537322263"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5046.257" y="-3569.0623"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_47" label="abstract_47">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Face anti-spoofing is essential to prevent face recognition systems from a security breach. Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years. However, existing face anti-spoofing benchmarks have limited number of subjects (a170) and modalities (a2), which hinder the further development of the academic community. To facilitate face anti-spoofing research, we introduce a large-scale multi-modal dataset, namely CASIA-SURF, which is the largest publicly available dataset for face anti-spoofing in terms of both subjects and modalities. Specifically, it consists of 1,000 subjects with 21,000 videos and each sample has 3 modalities ( i.e. , RGB, Depth and IR). We also provide comprehensive evaluation metrics, diverse evaluation protocols, training/validation/testing subsets and a measurement tool, developing a new benchmark for face anti-spoofing. Moreover, we present a novel multi-modal multi-scale fusion method as a strong baseline, which performs feature re-weighting to select the more informative channel features while suppressing the less useful ones for each modality across different scales. Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability. The dataset is available at https://sites.google.com/qq.com/face-anti-spoofing/welcome/challengecvpr2019?authuser=0"/>
<attvalue for="2" value="14"/>
<attvalue for="degree" value="13"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22564705173400826"/>
<attvalue for="harmonicclosnesscentrality" value="0.23226509992434743"/>
<attvalue for="betweenesscentrality" value="89790.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1043.8588" y="5120.87"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_1" label="subabstract_47_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Much of the progresses have been made by the availability of face anti-spoofing benchmark datasets in recent years"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1300.4316" y="5895.3545"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_2" label="subabstract_47_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, existing face anti-spoofing benchmarks have limited number of subjects (a170) and modalities (a2), which hinder the further development of the academic community"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1339.1083" y="5955.0156"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_3" label="subabstract_47_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="To facilitate face anti-spoofing research, we introduce a large-scale multi-modal dataset, namely CASIA-SURF, which is the largest publicly available dataset for face anti-spoofing in terms of both subjects and modalities"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1170.1698" y="6022.5015"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_4" label="subabstract_47_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Specifically, it consists of 1,000 subjects with 21,000 videos and each sample has 3 modalities ( i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1426.4496" y="5942.6416"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_5" label="subabstract_47_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1381.2246" y="6020.5283"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_6" label="subabstract_47_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value=", RGB, Depth and IR)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1169.271" y="5884.3394"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_7" label="subabstract_47_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We also provide comprehensive evaluation metrics, diverse evaluation protocols, training/validation/testing subsets and a measurement tool, developing a new benchmark for face anti-spoofing"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1264.5254" y="5838.3726"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_8" label="subabstract_47_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Moreover, we present a novel multi-modal multi-scale fusion method as a strong baseline, which performs feature re-weighting to select the more informative channel features while suppressing the less useful ones for each modality across different scales"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1264.525" y="6006.9785"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_9" label="subabstract_47_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Extensive experiments have been conducted on the proposed dataset to verify its significance and generalization capability"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1281.3685" y="6065.6313"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_11" label="subabstract_47_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="google"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1387.2872" y="5863.877"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_12" label="subabstract_47_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="com/qq"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1116.7169" y="5959.4033"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_47_13" label="subabstract_47_13">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="com/face-anti-spoofing/welcome/challengecvpr2019?authuser=0"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18410895592103646"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874171006364976"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-1217.9302" y="5946.119"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="abstract_48" label="abstract_48">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="First impressions strongly influence social interactions, having a high impact in the personal and professional life. In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup. The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera. In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the personaTMs motions and background) and the face of the person. Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation. Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem. Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art."/>
<attvalue for="2" value="8"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22551115661417084"/>
<attvalue for="harmonicclosnesscentrality" value="0.23173098321984736"/>
<attvalue for="betweenesscentrality" value="52394.99999999999"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2285.1565" y="3397.0498"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_48_1" label="subabstract_48_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we present a deep Classification-Regression Network (CR-Net) for analyzing the Big Five personality problem and further assisting on job interview recommendation in a first impressions setup"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18719455200962265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2954.5217" y="3830.967"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_48_2" label="subabstract_48_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The setup is based on the ChaLearn First Impressions dataset, including multimodal data with video, audio, and text converted from the corresponding audio data, where each person is talking in front of a camera"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18719455200962265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2850.6453" y="3903.9763"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_48_3" label="subabstract_48_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In order to give a comprehensive prediction, we analyze the videos from both the entire scene (including the personaTMs motions and background) and the face of the person"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18719455200962265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2897.7844" y="3940.2527"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_48_4" label="subabstract_48_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our CR-Net first performs personality trait classification and applies a regression later, which can obtain accurate predictions for both personality traits and interview recommendation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18719455200962265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2993.576" y="3884.3103"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_48_5" label="subabstract_48_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Furthermore, we present a new loss function called Bell Loss to address inaccurate predictions caused by the regression-to-the-mean problem"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18719455200962265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2935.924" y="3987.1885"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_48_6" label="subabstract_48_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Extensive experiments on the First Impressions dataset show the effectiveness of our proposed network, outperforming the state-of-the-art"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18719455200962265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2841.807" y="4053.8113"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="subabstract_48_7" label="subabstract_48_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="13"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18719455200962265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2786.021" y="4013.7695"/>
<viz:color r="76" g="70" b="62"/>
</node>
<node id="abstract_49" label="abstract_49">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Fine-grained image recognition is central to many multimedia tasks such as search, retrieval, and captioning. Unfortunately, these tasks are still challenging since the appearance of samples of the same class can be more different than those from different classes. This issue is mainly due to changes in deformation, pose, and the presence of clutter. In the literature, attention has been one of the most successful strategies to handle the aforementioned problems. Attention has been typically implemented in neural networks by selecting the most informative regions of the image that improve classification. In contrast, in this paper, attention is not applied at the image level but to the convolutional feature activations. In essence, with our approach, the neural model learns to attend to lower-level feature activations without requiring part annotations and uses those activations to update and rectify the output likelihood distribution. The proposed mechanism is modular, architecture-independent, and efficient in terms of both parameters and computation required. Experiments demonstrate that well-known networks such as wide residual networks and ResNeXt, when augmented with our approach, systematically improve their classification accuracy and become more robust to changes in deformation and pose and to the presence of clutter. As a result, our proposal reaches state-of-the-art classification accuracies in CIFAR-10, the Adience gender recognition task, Stanford Dogs, and UEC-Food100 while obtaining competitive performance in ImageNet, CIFAR-100, CUB200 Birds, and Stanford Cars. In addition, we analyze the different components of our model, showing that the proposed attention modules succeed in finding the most discriminative regions of the image. Finally, as a proof of concept, we demonstrate that with only local predictions, an augmented neural network can successfully classify an image before reaching any fully connected layer, thus reducing the computational amount up to 10%."/>
<attvalue for="2" value="13"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22559267403681055"/>
<attvalue for="harmonicclosnesscentrality" value="0.23209151199538494"/>
<attvalue for="betweenesscentrality" value="82313.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2698.4983" y="-5019.8564"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_1" label="subabstract_49_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Unfortunately, these tasks are still challenging since the appearance of samples of the same class can be more different than those from different classes"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3339.027" y="-5744.665"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_2" label="subabstract_49_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This issue is mainly due to changes in deformation, pose, and the presence of clutter"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3140.8513" y="-5810.2715"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_3" label="subabstract_49_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In the literature, attention has been one of the most successful strategies to handle the aforementioned problems"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3316.5117" y="-5833.5425"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_4" label="subabstract_49_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Attention has been typically implemented in neural networks by selecting the most informative regions of the image that improve classification"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3227.1094" y="-5884.311"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_5" label="subabstract_49_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In contrast, in this paper, attention is not applied at the image level but to the convolutional feature activations"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3263.5264" y="-5748.342"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_6" label="subabstract_49_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In essence, with our approach, the neural model learns to attend to lower-level feature activations without requiring part annotations and uses those activations to update and rectify the output likelihood distribution"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3217.1484" y="-5682.9165"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_7" label="subabstract_49_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The proposed mechanism is modular, architecture-independent, and efficient in terms of both parameters and computation required"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3120.757" y="-5662.9795"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_8" label="subabstract_49_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Experiments demonstrate that well-known networks such as wide residual networks and ResNeXt, when augmented with our approach, systematically improve their classification accuracy and become more robust to changes in deformation and pose and to the presence of clutter"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3225.0083" y="-5816.322"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_9" label="subabstract_49_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="As a result, our proposal reaches state-of-the-art classification accuracies in CIFAR-10, the Adience gender recognition task, Stanford Dogs, and UEC-Food100 while obtaining competitive performance in ImageNet, CIFAR-100, CUB200 Birds, and Stanford Cars"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3303.2627" y="-5657.4375"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_11" label="subabstract_49_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Finally, as a proof of concept, we demonstrate that with only local predictions, an augmented neural network can successfully classify an image before reaching any fully connected layer, thus reducing the computational amount up to 10%"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3161.8914" y="-5739.017"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="subabstract_49_12" label="subabstract_49_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="2"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18407275408627258"/>
<attvalue for="harmonicclosnesscentrality" value="0.18733698313082262"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3208.6328" y="-5609.663"/>
<viz:color r="0" g="189" b="148"/>
</node>
<node id="abstract_50" label="abstract_50">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Humans are capable of learning new tasks without forgetting previous ones, while neural networks fail due to catastrophic forgetting between new and previously-learned tasks. We consider a class-incremental setting which means that the task-ID is unknown at inference time. The imbalance between old and new classes typically results in a bias of the network towards the newest ones. This imbalance problem can either be addressed by storing exemplars from previous tasks, or by using image replay methods. However, the latter can only be applied to toy datasets since image generation for complex datasets is a hard problem.We propose a solution to the imbalance problem based on generative feature replay which does not require any exemplars. To do this, we split the network into two parts: a feature extractor and a classifier. To prevent forgetting, we combine generative feature replay in the classifier with feature distillation in the feature extractor. Through feature generation, our method reduces the complexity of generative replay and prevents the imbalance problem. Our approach is computationally efficient and scalable to large datasets. Experiments confirm that our approach achieves state-of-the-art results on CIFAR-100 and ImageNet, while requiring only a fraction of the storage needed for exemplar-based continual learning"/>
<attvalue for="2" value="11"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="5"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2253211782050125"/>
<attvalue for="harmonicclosnesscentrality" value="0.23098321983354725"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="1749.821" y="-1064.1168"/>
<viz:color r="223" g="137" b="255"/>
</node>
<node id="abstract_51" label="abstract_51">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="People from different parts of the globe describe objects and concepts in distinct manners. Visual appearance can thus vary across different geographic locations, which makes location a relevant contextual information when analysing visual data. In this work, we address the task of image retrieval related to a given tag conditioned on a certain location on Earth. We present LocSens, a model that learns to rank triplets of images, tags and coordinates by plausibility, and two training strategies to balance the location influence in the final ranking. LocSens learns to fuse textual and location information of multimodal queries to retrieve related images at different levels of location granularity, and successfully utilizes location information to improve image tagging."/>
<attvalue for="2" value="6"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2254025583145222"/>
<attvalue for="harmonicclosnesscentrality" value="0.23138380736192235"/>
<attvalue for="betweenesscentrality" value="37429.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-568.8475" y="2326.3389"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_51_1" label="subabstract_51_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Visual appearance can thus vary across different geographic locations, which makes location a relevant contextual information when analysing visual data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-908.51544" y="3131.566"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_51_2" label="subabstract_51_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we address the task of image retrieval related to a given tag conditioned on a certain location on Earth"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-824.9799" y="3120.2468"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_51_3" label="subabstract_51_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We present LocSens, a model that learns to rank triplets of images, tags and coordinates by plausibility, and two training strategies to balance the location influence in the final ranking"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-834.26624" y="3049.3706"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_51_4" label="subabstract_51_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="LocSens learns to fuse textual and location information of multimodal queries to retrieve related images at different levels of location granularity, and successfully utilizes location information to improve image tagging"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-922.79486" y="3010.93"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="subabstract_51_5" label="subabstract_51_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="7"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18394615970328887"/>
<attvalue for="harmonicclosnesscentrality" value="0.18703431699827272"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-962.1006" y="3063.129"/>
<viz:color r="255" g="136" b="5"/>
</node>
<node id="abstract_52" label="abstract_52">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="One of the attractive characteristics of deep neural networks is their ability to transfer knowledge obtained in one domain to other related domains. As a result, high-quality networks can be trained in domains with relatively little training data. This property has been extensively studied for discriminative networks but has received significantly less attention for generative models. Given the often enormous effort required to train GANs, both computationally as well as in the dataset collection, the re-use of pretrained GANs is a desirable objective. We propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods such as mode collapse and lack of flexibility. We perform experiments on several complex datasets using various GAN architectures (BigGAN, Progressive GAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs."/>
<attvalue for="2" value="10"/>
<attvalue for="degree" value="10"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22553832254178588"/>
<attvalue for="harmonicclosnesscentrality" value="0.23187786531358492"/>
<attvalue for="betweenesscentrality" value="67356.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4075.7231" y="-1425.609"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_52_1" label="subabstract_52_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="As a result, high-quality networks can be trained in domains with relatively little training data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4910.6523" y="-1783.6884"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_52_2" label="subabstract_52_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This property has been extensively studied for discriminative networks but has received significantly less attention for generative models"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4957.377" y="-1639.163"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_52_3" label="subabstract_52_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Given the often enormous effort required to train GANs, both computationally as well as in the dataset collection, the re-use of pretrained GANs is a desirable objective"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4775.5884" y="-1630.8575"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_52_4" label="subabstract_52_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4864.252" y="-1594.6486"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_52_5" label="subabstract_52_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4766.197" y="-1716.254"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_52_6" label="subabstract_52_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods such as mode collapse and lack of flexibility"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4863.11" y="-1664.6746"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_52_7" label="subabstract_52_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We perform experiments on several complex datasets using various GAN architectures (BigGAN, Progressive GAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4972.867" y="-1707.1217"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_52_8" label="subabstract_52_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4865.201" y="-1733.0792"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_52_9" label="subabstract_52_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="42"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18403656648563635"/>
<attvalue for="harmonicclosnesscentrality" value="0.18724796368007265"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4808.04" y="-1791.7113"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_53" label="abstract_53">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Class-incremental learning of deep networks sequentially increases the number of classes to be classified. During training, the network has only access to data of one task at a time, where each task contains several classes. In this setting, networks suffer from catastrophic forgetting which refers to the drastic drop in performance on previous tasks. The vast majority of methods have studied this scenario for classification networks, where for each new task the classification layer of the network must be augmented with additional weights to make room for the newly added classes. Embedding networks have the advantage that new classes can be naturally included into the network without adding new weights. Therefore, we study incremental learning for embedding networks. In addition, we propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars. We approximate the drift of previous tasks based on the drift that is experienced by current task data. We perform experiments on fine-grained datasets, CIFAR100 and ImageNet-Subset. We demonstrate that embedding networks suffer significantly less from catastrophic forgetting. We outperform existing methods which do not require exemplars and obtain competitive results compared to methods which store exemplars. Furthermore, we show that our proposed SDC when combined with existing methods to prevent forgetting consistently improves results."/>
<attvalue for="2" value="13"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2256198596089537"/>
<attvalue for="harmonicclosnesscentrality" value="0.23215827658344743"/>
<attvalue for="betweenesscentrality" value="82312.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2498.7231" y="-3582.909"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_1" label="subabstract_53_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="During training, the network has only access to data of one task at a time, where each task contains several classes"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3152.3135" y="-4322.7686"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_2" label="subabstract_53_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this setting, networks suffer from catastrophic forgetting which refers to the drastic drop in performance on previous tasks"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3061.1558" y="-4163.0244"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_3" label="subabstract_53_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The vast majority of methods have studied this scenario for classification networks, where for each new task the classification layer of the network must be augmented with additional weights to make room for the newly added classes"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3258.64" y="-4147.856"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_4" label="subabstract_53_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Embedding networks have the advantage that new classes can be naturally included into the network without adding new weights"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3175.7715" y="-4246.574"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_5" label="subabstract_53_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Therefore, we study incremental learning for embedding networks"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3006.6921" y="-4257.442"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_6" label="subabstract_53_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In addition, we propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3282.3765" y="-4221.0464"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_7" label="subabstract_53_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We approximate the drift of previous tasks based on the drift that is experienced by current task data"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3171.037" y="-4180.1113"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_8" label="subabstract_53_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We perform experiments on fine-grained datasets, CIFAR100 and ImageNet-Subset"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3158.6697" y="-4115.807"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_9" label="subabstract_53_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We demonstrate that embedding networks suffer significantly less from catastrophic forgetting"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3084.8591" y="-4236.2656"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_11" label="subabstract_53_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Furthermore, we show that our proposed SDC when combined with existing methods to prevent forgetting consistently improves results"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3065.6743" y="-4324.276"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_53_12" label="subabstract_53_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="43"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18409085322386373"/>
<attvalue for="harmonicclosnesscentrality" value="0.18737259091112257"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3240.7754" y="-4295.4"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_54" label="abstract_54">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In recent years, convolutional neural networks (CNNs) have achieved impressive performance for various visual recognition scenarios. CNNs trained on large labeled datasets can not only obtain significant performance on most challenging benchmarks but also provide powerful representations, which can be used to a wide range of other tasks. However, the requirement of massive amounts of data to train deep neural networks is a major drawback of these models, as the data available is usually limited or imbalanced. Fine-tuning (FT) is an effective way to transfer knowledge learned in a source dataset to a target task. In this paper, we introduce and systematically investigate several factors that influence the performance of fine-tuning for visual recognition. These factors include parameters for the retraining procedure (e.g., the initial learning rate of fine-tuning), the distribution of the source and target data (e.g., the number of categories in the source dataset, the distance between the source and target datasets) and so on. We quantitatively and qualitatively analyze these factors, evaluate their influence, and present many empirical observations. The results reveal insights into what fine-tuning changes CNN parameters and provide useful and evidence-backed intuitions about how to implement fine-tuning for computer vision tasks."/>
<attvalue for="2" value="13"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2255519079601241"/>
<attvalue for="harmonicclosnesscentrality" value="0.23199136511329121"/>
<attvalue for="betweenesscentrality" value="82312.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="5476.8267" y="-53.385933"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_1" label="subabstract_54_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="CNNs trained on large labeled datasets can not only obtain significant performance on most challenging benchmarks but also provide powerful representations, which can be used to a wide range of other tasks"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6430.202" y="17.1808"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_2" label="subabstract_54_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="However, the requirement of massive amounts of data to train deep neural networks is a major drawback of these models, as the data available is usually limited or imbalanced"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6238.344" y="-59.323044"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_3" label="subabstract_54_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Fine-tuning (FT) is an effective way to transfer knowledge learned in a source dataset to a target task"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6366.35" y="95.70288"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_4" label="subabstract_54_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this paper, we introduce and systematically investigate several factors that influence the performance of fine-tuning for visual recognition"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6384.6924" y="-32.89549"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_5" label="subabstract_54_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="These factors include parameters for the retraining procedure (e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6270.264" y="-157.49098"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_6" label="subabstract_54_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="g"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6417.188" y="-113.47714"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_7" label="subabstract_54_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value=", the initial learning rate of fine-tuning), the distribution of the source and target data (e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6327.109" y="-114.92599"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_8" label="subabstract_54_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="g"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6367.475" y="-192.12808"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_9" label="subabstract_54_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value=", the number of categories in the source dataset, the distance between the source and target datasets) and so on"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6259.9375" y="23.168344"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_11" label="subabstract_54_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The results reveal insights into what fine-tuning changes CNN parameters and provide useful and evidence-backed intuitions about how to implement fine-tuning for computer vision tasks"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6321.733" y="-14.048507"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_54_12" label="subabstract_54_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="44"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18404561205180506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18728357146037267"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="6287.322" y="99.98664"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_55" label="abstract_55">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper addresses the problem of inferring unseen cross-modal image-to-image translations between multiple modalities. We assume that only some of the pairwise translations have been seen (i.e. trained) and infer the remaining unseen translations (where training pairs are not available). We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs. We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses. We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches. We also propose zero-pair cross-modal image translation, a challenging setting where the objective is inferring semantic segmentation from depth (and vice-versa) without explicit segmentation-depth pairs, and only from two (disjoint) segmentation-RGB and depth-RGB training sets. We observe that a certain part of the shared information between unseen modalities might not be reachable, so we further propose a variant that leverages pseudo-pairs which allows us to exploit this shared information between the unseen modalities"/>
<attvalue for="2" value="12"/>
<attvalue for="degree" value="11"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22552473875990003"/>
<attvalue for="harmonicclosnesscentrality" value="0.23188454177239118"/>
<attvalue for="betweenesscentrality" value="74835.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2489.8862" y="-4599.825"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_1" label="subabstract_55_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We assume that only some of the pairwise translations have been seen (i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2960.1582" y="-5395.8804"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_2" label="subabstract_55_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2857.4229" y="-5560.27"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_3" label="subabstract_55_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="trained) and infer the remaining unseen translations (where training pairs are not available)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2886.7158" y="-5474.806"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_4" label="subabstract_55_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose mix and match networks, an approach where multiple encoders and decoders are aligned in such a way that the desired translation can be obtained by simply cascading the source encoder and the target decoder, even when they have not interacted during the training stage (i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2777.1929" y="-5562.173"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_5" label="subabstract_55_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2873.9946" y="-5396.341"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_6" label="subabstract_55_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="unseen)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2939.0786" y="-5539.109"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_7" label="subabstract_55_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The main challenge lies in the alignment of the latent representations at the bottlenecks of encoder-decoder pairs"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2982.4902" y="-5465.6675"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_8" label="subabstract_55_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose an architecture with several tools to encourage alignment, including autoencoders and robust side information and latent consistency losses"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2716.5764" y="-5509.5776"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_9" label="subabstract_55_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We show the benefits of our approach in terms of effectiveness and scalability compared with other pairwise image-to-image translation approaches"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2801.3027" y="-5482.935"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_55_11" label="subabstract_55_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We observe that a certain part of the shared information between unseen modalities might not be reachable, so we further propose a variant that leverages pseudo-pairs which allows us to exploit this shared information between the unseen modalities"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="45"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18402752180857598"/>
<attvalue for="harmonicclosnesscentrality" value="0.18723906173499769"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="2780.242" y="-5417.068"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_56" label="abstract_56">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We present the results of recent challenges in Automated Computer Vision (AutoCV, renamed here for clarity AutoCV1 and AutoCV2, 2019), which are part of a series of challenge on Automated Deep Learning (AutoDL). These two competitions aim at searching for fully automated solutions for classification tasks in computer vision, with an emphasis on any-time performance. The first competition was limited to image classification while the second one included both images and videos. Our design imposed to the participants to submit their code on a challenge platform for blind testing on five datasets, both for training and testing, without any human intervention whatsoever. Winning solutions adopted deep learning techniques based on already published architectures, such as AutoAugment, MobileNet and ResNet, to reach state-of-the-art performance in the time budget of the challenge (only 20 minutes of GPU time). The novel contributions include strategies to deliver good preliminary results at any time during the learning process, such that a method can be stopped early and still deliver good performance. This feature is key for the adoption of such techniques by data analysts desiring to obtain rapidly preliminary results on large datasets and to speed up the development process. The soundness of our design was verified in several aspects: (1) Little overfitting of the on-line leaderboard providing feedback on 5 development datasets was observed, compared to the final blind testing on the 5 (separate) final test datasets, suggesting that winning solutions might generalize to other computer vision classification tasks; (2) Error bars on the winnersaTM performance allow us to say with confident that they performed significantly better than the baseline solutions we provided; (3) The ranking of participants according to the any-time metric we designed, namely the Area under the Learning Curve, was different from that of the fixed-time metric, i.e. AUC at the end of the fixed time budget. We released all winning solutions under open-source licenses. At the end of the AutoDL challenge series, all data of the challenge will be made publicly available, thus providing a collection of uniformly formatted datasets, which can serve to conduct further research, particularly on meta-learning."/>
<attvalue for="2" value="13"/>
<attvalue for="degree" value="12"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22570145565233116"/>
<attvalue for="harmonicclosnesscentrality" value="0.2323585703476349"/>
<attvalue for="betweenesscentrality" value="82312.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4218.422" y="2130.5786"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_1" label="subabstract_56_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="These two competitions aim at searching for fully automated solutions for classification tasks in computer vision, with an emphasis on any-time performance"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5051.6245" y="2408.935"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_2" label="subabstract_56_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The first competition was limited to image classification while the second one included both images and videos"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5149.133" y="2456.0188"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_3" label="subabstract_56_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our design imposed to the participants to submit their code on a challenge platform for blind testing on five datasets, both for training and testing, without any human intervention whatsoever"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5098.196" y="2632.4883"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_4" label="subabstract_56_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Winning solutions adopted deep learning techniques based on already published architectures, such as AutoAugment, MobileNet and ResNet, to reach state-of-the-art performance in the time budget of the challenge (only 20 minutes of GPU time)"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5034.347" y="2552.7156"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_5" label="subabstract_56_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The novel contributions include strategies to deliver good preliminary results at any time during the learning process, such that a method can be stopped early and still deliver good performance"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5156.767" y="2312.7563"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_6" label="subabstract_56_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This feature is key for the adoption of such techniques by data analysts desiring to obtain rapidly preliminary results on large datasets and to speed up the development process"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5187.2563" y="2557.3354"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_7" label="subabstract_56_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The soundness of our design was verified in several aspects: (1) Little overfitting of the on-line leaderboard providing feedback on 5 development datasets was observed, compared to the final blind testing on the 5 (separate) final test datasets, suggesting that winning solutions might generalize to other computer vision classification tasks; (2) Error bars on the winnersaTM performance allow us to say with confident that they performed significantly better than the baseline solutions we provided; (3) The ranking of participants according to the any-time metric we designed, namely the Area under the Learning Curve, was different from that of the fixed-time metric, i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5117.8906" y="2558.9329"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_8" label="subabstract_56_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5216.4087" y="2385.6711"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_9" label="subabstract_56_9">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="AUC at the end of the fixed time budget"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5226.643" y="2472.5833"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_11" label="subabstract_56_11">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="At the end of the AutoDL challenge series, all data of the challenge will be made publicly available, thus providing a collection of uniformly formatted datasets, which can serve to conduct further research, particularly on meta-learning"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5129.3013" y="2377.845"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_56_12" label="subabstract_56_12">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="3"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18414517199832797"/>
<attvalue for="harmonicclosnesscentrality" value="0.18747941425202255"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5077.8813" y="2484.593"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_57" label="abstract_57">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Despite the latest transcription accuracies reached using deep neural network architectures, handwritten text recognition still remains a challenging problem, mainly because of the large inter-writer style variability. Both augmenting the training set with artificial samples using synthetic fonts, and writer adaptation techniques have been proposed to yield more generic approaches aimed at dodging style unevenness. In this work, we take a step closer to learn style independent features from handwritten word images. We propose a novel method that is able to disentangle the content and style aspects of input images by jointly optimizing a generative process and a handwrittenword recognizer. The generator is aimed at transferring writing style features from one sample to another in an image-to-image translation approach, thus leading to a learned content-centric features that shall be independent to writing style attributes.Our proposed recognition model is able then to leverage such writer-agnostic features to reach better recognition performances. We advance over prior training strategies and demonstrate with qualitative and quantitative evaluations the performance of boththe generative process and the recognition efficiency in the IAM dataset."/>
<attvalue for="2" value="8"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22547041999096792"/>
<attvalue for="harmonicclosnesscentrality" value="0.2316308363377536"/>
<attvalue for="betweenesscentrality" value="52394.999999999956"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="3837.4692" y="746.9363"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_57_1" label="subabstract_57_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Both augmenting the training set with artificial samples using synthetic fonts, and writer adaptation techniques have been proposed to yield more generic approaches aimed at dodging style unevenness"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839913519887969"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4688.5474" y="916.648"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_57_2" label="subabstract_57_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we take a step closer to learn style independent features from handwritten word images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839913519887969"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4660.701" y="1010.6418"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_57_3" label="subabstract_57_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a novel method that is able to disentangle the content and style aspects of input images by jointly optimizing a generative process and a handwrittenword recognizer"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839913519887969"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4580.2197" y="1018.4447"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_57_4" label="subabstract_57_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The generator is aimed at transferring writing style features from one sample to another in an image-to-image translation approach, thus leading to a learned content-centric features that shall be independent to writing style attributes"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839913519887969"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4557.223" y="841.7971"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_57_5" label="subabstract_57_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our proposed recognition model is able then to leverage such writer-agnostic features to reach better recognition performances"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839913519887969"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4641.392" y="838.5156"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_57_6" label="subabstract_57_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We advance over prior training strategies and demonstrate with qualitative and quantitative evaluations the performance of boththe generative process and the recognition efficiency in the IAM dataset"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839913519887969"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4611.9297" y="925.7261"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_57_7" label="subabstract_57_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839913519887969"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="4535.1406" y="933.3074"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="abstract_58" label="abstract_58">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Although current image generation methods have reached impressive quality levels, they are still unable to produce plausible yet diverse images of handwritten words. On the contrary, when writing by hand, a great variability is observed across different writers, and even when analyzing words scribbled by the same individual, involuntary variations are conspicuous. In this work, we take a step closer to producing realistic and varied artificially rendered handwritten words. We propose a novel method that is able to produce credible handwritten word images by conditioning the generative process with both calligraphic style features and textual content. Our generator is guided by three complementary learning objectives: to produce realistic images, to imitate a certain handwriting style and to convey a specific textual content. Our model is unconstrained to any predefined vocabulary, being able to render whatever input word. Given a sample writer, it is also able to mimic its calligraphic features in a few-shot setup. We significantly advance over prior art and demonstrate with qualitative, quantitative and human-based evaluations the realistic aspect of our synthetically produced images."/>
<attvalue for="2" value="9"/>
<attvalue for="degree" value="9"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22551115661417084"/>
<attvalue for="harmonicclosnesscentrality" value="0.23177104197268492"/>
<attvalue for="betweenesscentrality" value="59875.99999999999"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2613.148" y="771.47144"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_58_1" label="subabstract_58_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="On the contrary, when writing by hand, a great variability is observed across different writers, and even when analyzing words scribbled by the same individual, involuntary variations are conspicuous"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3426.8853" y="1049.8175"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_58_2" label="subabstract_58_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we take a step closer to producing realistic and varied artificially rendered handwritten words"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3491.6987" y="841.845"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_58_3" label="subabstract_58_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We propose a novel method that is able to produce credible handwritten word images by conditioning the generative process with both calligraphic style features and textual content"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3419.5483" y="911.41266"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_58_4" label="subabstract_58_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our generator is guided by three complementary learning objectives: to produce realistic images, to imitate a certain handwriting style and to convey a specific textual content"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3470.406" y="953.0873"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_58_5" label="subabstract_58_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Our model is unconstrained to any predefined vocabulary, being able to render whatever input word"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3391.4238" y="826.14307"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_58_6" label="subabstract_58_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Given a sample writer, it is also able to mimic its calligraphic features in a few-shot setup"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3461.0425" y="773.6283"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_58_7" label="subabstract_58_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="We significantly advance over prior art and demonstrate with qualitative, quantitative and human-based evaluations the realistic aspect of our synthetically produced images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3363.593" y="1053.535"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="subabstract_58_8" label="subabstract_58_8">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="46"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1840184780204929"/>
<attvalue for="harmonicclosnesscentrality" value="0.18720345395469767"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3358.7693" y="941.7542"/>
<viz:color r="0" g="196" b="255"/>
</node>
<node id="abstract_59" label="abstract_59">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Current CNN-based stereo depth estimation models can barely run under real-time constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models. In our experiments, we achieve real-time inference speed, in the range of 5a32 ms, for 1216 A 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices."/>
<attvalue for="2" value="6"/>
<attvalue for="degree" value="6"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2254839972300003"/>
<attvalue for="harmonicclosnesscentrality" value="0.23158410112610983"/>
<attvalue for="betweenesscentrality" value="37430.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-3635.0234" y="-846.9768"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_59_1" label="subabstract_59_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4265.9736" y="-900.66864"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_59_2" label="subabstract_59_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4402.928" y="-794.4378"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_59_3" label="subabstract_59_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4289.399" y="-788.244"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_59_4" label="subabstract_59_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In our experiments, we achieve real-time inference speed, in the range of 5a32 ms, for 1216 A 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4365.512" y="-898.14996"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_59_5" label="subabstract_59_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="47"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18400039311073438"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871411403391727"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4328.5415" y="-843.56683"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_60" label="abstract_60">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper presents the design and implementation details of a system build-up by using off-the-shelf algorithms for urban video analytics. The system allows the connection topublic video surveillance camera networks to obtain the necessary information to generate statistics from urban scenarios (e.g., amount of vehicles, type of cars, direction, numbers of persons, etc.). The obtained information could be used not only for traffic management but also to estimate the carbon footprint of urban scenarios. As a case study, a university campus is selected to evaluate the performance of the proposed system. The system is implemented in a modular way so that it is being used as a testbed to evaluate different algorithms. Implementation results are provided showing the validity and utility of the proposed approach."/>
<attvalue for="2" value="10"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22547041999096792"/>
<attvalue for="harmonicclosnesscentrality" value="0.23135042506789094"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2524.7944" y="-1335.8077"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_61" label="abstract_61">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper presents a full pipeline to classify sample sets of corn kernels. The proposed approach follows a segmentation-classification scheme. The image segmentation is performed through a well known deep learningbased approach, the Mask R-CNN architecture, while the classification is performed hrough a novel-lightweight network specially designed for this taskagood corn kernel, defective corn kernel and impurity categories are considered. As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated. This dataset has been used for training the segmentation and the classification modules. Quantitative evaluations have beenperformed and comparisons with other approaches are provided showing improvements with the proposed pipeline."/>
<attvalue for="2" value="7"/>
<attvalue for="degree" value="7"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22544327041753215"/>
<attvalue for="harmonicclosnesscentrality" value="0.2315240129968536"/>
<attvalue for="betweenesscentrality" value="44912.99999999996"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2476.9329" y="2186.4417"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_61_1" label="subabstract_61_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The proposed approach follows a segmentation-classification scheme"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2765.879" y="2898.1523"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_61_2" label="subabstract_61_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The image segmentation is performed through a well known deep learningbased approach, the Mask R-CNN architecture, while the classification is performed hrough a novel-lightweight network specially designed for this taskagood corn kernel, defective corn kernel and impurity categories are considered"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2805.9675" y="2813.669"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_61_3" label="subabstract_61_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="As a second contribution, a carefully annotated multitouching corn kernel dataset has been generated"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2765.2888" y="2751.1274"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_61_4" label="subabstract_61_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This dataset has been used for training the segmentation and the classification modules"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2706.7207" y="2844.981"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_61_5" label="subabstract_61_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Quantitative evaluations have beenperformed and comparisons with other approaches are provided showing improvements with the proposed pipeline"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2893.877" y="2756.8357"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="subabstract_61_6" label="subabstract_61_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="15"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18709663061379772"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2888.1113" y="2825.9788"/>
<viz:color r="192" g="192" b="192"/>
</node>
<node id="abstract_62" label="abstract_62">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper proposes a novel CycleGAN architecture for thermal image super-resolution, together with a large dataset consisting of thermal images at different resolutions. The dataset has been acquired using three thermal cameras at different resolutions, which acquire images from the same scenario at the same time. The thermal cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem.The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator. The novelty on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal imagesaimages of the same scenario with different resolutions. The proposed approach is evaluated in the dataset and compared with classical bicubic interpolation. The dataset and the network are available."/>
<attvalue for="2" value="8"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22544327041753215"/>
<attvalue for="harmonicclosnesscentrality" value="0.23156407174969112"/>
<attvalue for="betweenesscentrality" value="52394.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2463.8828" y="3057.0085"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_62_1" label="subabstract_62_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The dataset has been acquired using three thermal cameras at different resolutions, which acquire images from the same scenario at the same time"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18710553255887274"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2708.8777" y="3710.1272"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_62_2" label="subabstract_62_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The thermal cameras are mounted in rig trying to minimize the baseline distance to make easier the registration problem"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18710553255887274"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2812.9395" y="3740.0142"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_62_3" label="subabstract_62_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The proposed architecture is based on ResNet6 as a Generator and PatchGAN as Discriminator"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18710553255887274"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2905.605" y="3684.9897"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_62_4" label="subabstract_62_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The novelty on the proposed unsupervised super-resolution training (CycleGAN) is possible due to the existence of aforementioned thermal imagesaimages of the same scenario with different resolutions"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18710553255887274"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2778.351" y="3848.909"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_62_5" label="subabstract_62_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The proposed approach is evaluated in the dataset and compared with classical bicubic interpolation"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18710553255887274"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2712.9353" y="3791.4824"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_62_6" label="subabstract_62_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The dataset and the network are available"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18710553255887274"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2808.8782" y="3664.835"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_62_7" label="subabstract_62_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1839732724101506"/>
<attvalue for="harmonicclosnesscentrality" value="0.18710553255887274"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-2894.444" y="3759.902"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="abstract_63" label="abstract_63">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper summarizes the top contributions to the first challenge on thermal image super-resolution (TISR), which was organized as part of the Perception Beyond the Visible Spectrum (PBVS) 2020 workshop. In this challenge, a novel thermal image dataset is considered together with state-of-the-art approaches evaluated under a common framework. The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images. From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations. The first evaluation consists of downsampling the low-resolution, mid-resolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution results with the corresponding ground truth images. The second evaluation is comprised of obtaining the x2 super-resolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered high-resolution thermal image. Out of 51 registered participants, 6 teams reached the final validation phase."/>
<attvalue for="2" value="8"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.2256878522134828"/>
<attvalue for="harmonicclosnesscentrality" value="0.23216495304225354"/>
<attvalue for="betweenesscentrality" value="52394.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-4865.2983" y="910.47473"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_63_1" label="subabstract_63_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In this challenge, a novel thermal image dataset is considered together with state-of-the-art approaches evaluated under a common framework"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874260025815724"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5654.669" y="906.4641"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_63_2" label="subabstract_63_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The dataset used in the challenge consists of 1021 thermal images, obtained from three distinct thermal cameras at different resolutions (low-resolution, mid-resolution, and high-resolution), resulting in a total of 3063 thermal images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874260025815724"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5613.539" y="1029.4443"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_63_3" label="subabstract_63_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="From each resolution, 951 images are used for training and 50 for testing while the 20 remaining images are used for two proposed evaluations"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874260025815724"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5724.825" y="896.0441"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_63_4" label="subabstract_63_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The first evaluation consists of downsampling the low-resolution, mid-resolution, and high-resolution thermal images by x2, x3 and x4 respectively, and comparing their super-resolution results with the corresponding ground truth images"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874260025815724"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5756.0435" y="966.6258"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_63_5" label="subabstract_63_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The second evaluation is comprised of obtaining the x2 super-resolution from a given mid-resolution thermal image and comparing it with the corresponding semi-registered high-resolution thermal image"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874260025815724"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5681.393" y="992.1353"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_63_6" label="subabstract_63_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Out of 51 registered participants, 6 teams reached the final validation phase"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874260025815724"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5644.233" y="1114.9595"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_63_7" label="subabstract_63_7">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.1841361166433085"/>
<attvalue for="harmonicclosnesscentrality" value="0.1874260025815724"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="-5712.096" y="1081.4512"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="abstract_64" label="abstract_64">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="This paper presents a novel Siamese network architecture, as a variant of Resnet-50, to estimate the relative camera pose on multi-view environments. In order to improve the performance of the proposed model a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered. The transfer learning consists of first training the network using pairs of images from the virtual-world scenarioconsidering different conditions (i.e., weather, illumination, objects, buildings, etc.); then, the learned weightof the network are transferred to the real case, where images from real-world scenarios are considered. Experimental results and comparisons with the state of the art show both, improvements on the relative pose estimation accuracy using the proposed model, as well as further improvements when the transfer learning strategy (synthetic-world data transfer learning real-world data) is considered to tackle the limitation on thetraining due to the reduced number of pairs of real-images on most of the public data sets."/>
<attvalue for="2" value="8"/>
<attvalue for="degree" value="8"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="5.0"/>
<attvalue for="closnesscentrality" value="0.22545684438691033"/>
<attvalue for="harmonicclosnesscentrality" value="0.23159745404372237"/>
<attvalue for="betweenesscentrality" value="52394.99999999997"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="403.06815" y="3124.4348"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_64_1" label="subabstract_64_1">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="In order to improve the performance of the proposed model a transfer learning strategy, based on synthetic images obtained from a virtual-world, is considered"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="850.41534" y="3718.5044"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_64_2" label="subabstract_64_2">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="The transfer learning consists of first training the network using pairs of images from the virtual-world scenarioconsidering different conditions (i"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="664.792" y="3770.773"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_64_3" label="subabstract_64_3">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="e"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="741.9794" y="3710.3167"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_64_4" label="subabstract_64_4">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value=", weather, illumination, objects, buildings, etc"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="840.476" y="3833.84"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_64_5" label="subabstract_64_5">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="); then, the learned weightof the network are transferred to the real case, where images from real-world scenarios are considered"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="757.13965" y="3779.9622"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_64_6" label="subabstract_64_6">
<attvalues>
<attvalue for="0" value="abstract"/>
<attvalue for="1" value="Experimental results and comparisons with the state of the art show both, improvements on the relative pose estimation accuracy using the proposed model, as well as further improvements when the transfer learning strategy (synthetic-world data transfer learning real-world data) is considered to tackle the limitation on thetraining due to the reduced number of pairs of real-images on most of the public data sets"/>
<attvalue for="degree" value="1"/>
<attvalue for="modularity_class" value="24"/>
<attvalue for="eccentricity" value="6.0"/>
<attvalue for="closnesscentrality" value="0.18398231175531263"/>
<attvalue for="harmonicclosnesscentrality" value="0.1871233364490227"/>
<attvalue for="betweenesscentrality" value="0.0"/>
</attvalues>
<viz:size value="10.0"/>
<viz:position x="725.4049" y="3847.2043"/>
<viz:color r="115" g="192" b="0"/>
</node>
<node id="subabstract_64_7" label="subabstract_64_7">
<attvalues>
<attvalue for="0" val
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment