A Streamlit-based web interface for editing photo metadata.yaml files.
Install the required dependencies:
pip install -r requirements-metadata-editor.txt| absl-py==2.1.0 | |
| accelerate==1.0.1 | |
| adlfs==2024.12.0 | |
| aiobotocore==2.16.1 | |
| aiohappyeyeballs==2.4.3 | |
| aiohttp==3.10.10 | |
| aioitertools==0.12.0 | |
| aiosignal==1.3.1 | |
| altair==5.5.0 | |
| annotated-types==0.7.0 |
| // allpapers is stored in a cookie | |
| for (p of allPapers) { | |
| if (p.content.read) { | |
| // Chop off the .pdf | |
| console.log(p.content.pdf_url.slice(0, -4)) | |
| } | |
| } | |
| // Improved version that doesn't have line numbers | |
| console.log(allPapers.filter(p => p.content.read).map(p => p.content.pdf_url.slice(0, -4)).join('\n')) |
| from typing import Text | |
| import socket | |
| import os | |
| import comet_ml | |
| import toml | |
| from allennlp.training.callbacks.callback import Callback, handle_event | |
| from allennlp.training.callbacks.events import Events | |
| @Callback.register("log_to_comet") |
| name: qb | |
| dependencies: | |
| - python=3.7 | |
| - pytorch=1.4.* | |
| - cudatoolkit=10.1 | |
| - numpy | |
| - scipy | |
| - pandas=1.0.* | |
| - requests | |
| - flask |
| $ allennlp make-vocab --include-package zero -s /tmp/stuff config/manual/qanta/ai2.jsonnet (zero) | |
| Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex. | |
| 2019-12-16 18:11:49,080 - INFO - allennlp.common.params - random_seed = 13370 | |
| 2019-12-16 18:11:49,081 - INFO - allennlp.common.params - numpy_seed = 1337 | |
| 2019-12-16 18:11:49,081 - INFO - allennlp.common.params - pytorch_seed = 133 | |
| 2019-12-16 18:11:49,182 - INFO - allennlp.common.checks - Pytorch version: 1.0.1 | |
| 2019-12-16 18:11:49,185 - INFO - allennlp.common.from_params - instantiating class <class 'allennlp.data.dataset_readers.dataset_reader.DatasetReader'> from params {'evidence': True, 'lazy': False, 'type': 'qanta_rc'} and extras {} | |
| 2019-12-16 18:11:49,185 - INFO - allennlp.common.params - dataset_reader.type = qanta_rc | |
| 2019-12-16 18:11:49,186 - INFO - allennlp.common.from_params - instantiating class <class 'zero.datasets.qanta. |
| from typing import Dict, List, Union | |
| import json | |
| from overrides import overrides | |
| from allennlp.data import DatasetReader, TokenIndexer, Instance | |
| from allennlp.data.fields import TextField, LabelField, Field, MetadataField, ArrayField, ListField | |
| from allennlp.data.token_indexers import SingleIdTokenIndexer, TokenCharactersIndexer | |
| from allennlp.data.tokenizers import Tokenizer, WordTokenizer, Token | |
| from allennlp.data.tokenizers.word_splitter import SpacyWordSplitter, WordSplitter |
| (gdb) thread apply all backtrace | |
| Thread 17 (Thread 0x7fc90f3ff700 (LWP 3228)): | |
| #0 0x00007fc90fe56945 in pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/libpthread.so.0 | |
| #1 0x00005563e30ed814 in rayon_core::sleep::Sleep::sleep::h403e051017a83b73 () | |
| #2 0x00005563e30ebd0e in rayon_core::registry::WorkerThread::wait_until_cold::h4c91d94806702f48 () | |
| #3 0x00005563e30ec54b in rayon_core::registry::main_loop::hbbba263316bb2911 () | |
| #4 0x00005563e30ed17c in std::panicking::try::do_call::h8a19372e663d596b () | |
| #5 0x00005563e310c48f in __rust_maybe_catch_panic () at /checkout/src/libpanic_unwind/lib.rs:101 | |
| #6 0x00005563e30e983e in _$LT$F$u20$as$u20$alloc..boxed..FnBox$LT$A$GT$$GT$::call_box::h24e52bc8c236002e () |
| from qanta.guesser.tfidf import TfidfGuesser | |
| guesser = TfidfGuesser.load('output/guesser/qanta.guesser.tfidf.TfidfGuesser') | |
| questions = [ | |
| "Name this first president of the united states", | |
| "This man invented the theory of general relativity" | |
| ] | |
| n_guesses = 1 |
| In [9]: model.predict(np.random.random((10, 3, 2))) | |
| W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. | |
| W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. | |
| W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. | |
| W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. | |
| --------------------------------------------------------------------------- | |
| InvalidArgumentError Traceback (most recent call last) | |
| /home/pedro/anaconda3/lib/python3.6/site-pac |