Skip to content

Instantly share code, notes, and snippets.

@Lay4U
Created November 3, 2024 05:25
Show Gist options
  • Select an option

  • Save Lay4U/28157c253d37247b6b5c0b80af9e6c70 to your computer and use it in GitHub Desktop.

Select an option

Save Lay4U/28157c253d37247b6b5c0b80af9e6c70 to your computer and use it in GitHub Desktop.
WSL tensorflow, pytorch Cuda Toolkit, Cudnn 구성하기

WSL에서 TensorFlow 및 PyTorch GPU 환경 설정 가이드

사전 준비: CUDA 및 cuDNN 설치

CUDA 12.1 설치

WSL(Ubuntu 22.04)에서 CUDA 12.1을 설치하려면 다음 명령어를 순서대로 실행하세요.
Base Installer에 있는 내용 전부 입력합니다.

# CUDA Repository 설정
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.1/local_installers/cuda-repo-ubuntu2204-12-1-local_12.1-0_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2204-12-1-local_12.1-0_amd64.deb
sudo cp /var/cuda-repo-ubuntu2204-12-1-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-1

cuDNN 9.5.1 설치

CUDA 12.x와 호환되는 cuDNN 9.5.1을 설치합니다.
cuDNN 다운로드 페이지에서 Base Installer에 있는 내용 전부 입력 후 아래 명령어를 사용하세요.

# cuDNN Repository 설정
wget https://developer.download.nvidia.com/compute/cudnn/9.5.1/local_installers/cudnn-local-repo-ubuntu2204-9.5.1_1.0-1_amd64.deb
sudo dpkg -i cudnn-local-repo-ubuntu2204-9.5.1_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2204-9.5.1/cudnn-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cudnn
sudo apt-get -y install cudnn-cuda-121

Conda 설치 및 가상환경 설정

미니콘다를 사용하여 Python 가상 환경을 설정합니다.

# Miniconda 설치
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh
source ~/.bashrc

# 가상환경 생성
conda create -n tf python=3.9 anaconda

TensorFlow 및 PyTorch 설치

TensorFlow 설치

TensorFlow는 자동으로 CUDA 버전에 맞춰 설치됩니다.

# TensorFlow 설치
python3 -m pip install tensorflow[and-cuda]

# 설치 확인
python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"

PyTorch 설치 (CUDA 12.1)

PyTorch는 CUDA 버전을 명시적으로 지정하여 설치해야 합니다.

# PyTorch 설치
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

# 설치 확인
python3 -c "import torch; print('CUDA is available' if torch.cuda.is_available() else 'CUDA is not available'); print(f'Available GPU count: {torch.cuda.device_count()}'); print(f'Current GPU: {torch.cuda.get_device_name(0)}' if torch.cuda.is_available() else 'No GPU')"

CUDA 및 cuDNN 버전 업그레이드 (예: CUDA 12.4, cuDNN 9.5.1)

CUDA 12.4 설치

CUDA 12.4로 업그레이드하려면 아래 명령어를 사용합니다.

# CUDA 12.4 Repository 설정
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.4.1/local_installers/cuda-repo-ubuntu2204-12-4-local_12.4.1-550.54.15-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2204-12-4-local_12.4.1-550.54.15-1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2204-12-4-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-4

cuDNN 설치 (CUDA 12.4와 호환)

CUDA 12.4에서 cuDNN 9.5.1을 설치하려면 다음과 같이 진행합니다.

# cuDNN 설치
wget https://developer.download.nvidia.com/compute/cudnn/9.5.1/local_installers/cudnn-local-repo-ubuntu2204-9.5.1_1.0-1_amd64.deb
sudo dpkg -i cudnn-local-repo-ubuntu2204-9.5.1_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2204-9.5.1/cudnn-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cudnn
sudo apt-get -y install cudnn-cuda-124

WSL 관련 팁

WSL에서 Ubuntu 버전 설정 및 관리

WSL에서 특정 Ubuntu 버전을 설치하려면 다음과 같이 진행합니다.

# WSL에서 기본 Ubuntu 설치 제거
wsl --unregister Ubuntu

# 특정 버전 설치 (예: Ubuntu 22.04)
wsl --install -d Ubuntu-22.04
  • WSL에서 시스템을 내보내고 가져오려면 --import--export를 사용할 수 있습니다.
Cuda Toolkit 설치
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pin
sudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/12.4.1/local_installers/cuda-repo-ubuntu2204-12-4-local_12.4.1-550.54.15-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2204-12-4-local_12.4.1-550.54.15-1_amd64.deb
sudo cp /var/cuda-repo-ubuntu2204-12-4-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda-toolkit-12-4

Cudnn 설치
wget https://developer.download.nvidia.com/compute/cudnn/9.5.1/local_installers/cudnn-local-repo-ubuntu2204-9.5.1_1.0-1_amd64.deb
sudo dpkg -i cudnn-local-repo-ubuntu2204-9.5.1_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2204-9.5.1/cudnn-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cudnn
sudo apt-get -y install cudnn-cuda-12

환경변수 안해도 됨.
미니콘다 설치
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
sh Miniconda3-latest-Linux-x86_64.sh

source ~/.bashrc 하면 (bash) 뜰거임, anaconda 설치는 근본
conda create -n tf python=3.9 anaconda

텐서 자동 버전
python3 -m pip install tensorflow[and-cuda]
python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"

토치 자동 버전
python3 -m pip install torch torchvision torchaudio
python3 -c "import torch; print('CUDA is available' if torch.cuda.is_available() else 'CUDA is not available'); print(f'Available GPU count: {torch.cuda.device_count()}'); print(f'Current GPU: {torch.cuda.get_device_name(0)}' if torch.cuda.is_available() else 'No GPU')"

python3 -m pip install tensorflow[and-cuda]
python3 -m pip install torch torchvision torchaudio
python3 -c "import tensorflow as tf; print(tf.config.list_physical_devices('GPU'))"
python3 -c "import torch; print('CUDA is available' if torch.cuda.is_available() else 'CUDA is not available'); print(f'Available GPU count: {torch.cuda.device_count()}'); print(f'Current GPU: {torch.cuda.get_device_name(0)}' if torch.cuda.is_available() else 'No GPU')"
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment