Created
November 13, 2025 17:49
-
-
Save OlexiyPukhov/f428e97d3cacc7844ad9c044dae4cdf6 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Neural Trader Frontend Integration - SPARC Specification | |
| ## Document Metadata | |
| - **Version**: 1.0.0 | |
| - **Platform**: Neural Trader v2.5.0 MCP Integration | |
| - **Framework Stack**: agentic-flow, agentic-jujutsu, lean-agentic | |
| - **Target**: Production-Ready Trading Frontend | |
| - **Created**: November 2025 | |
| --- | |
| ## SPARC Framework Overview | |
| **SPARC** stands for: | |
| - **S**ituation - Current state and context | |
| - **P**roblem - Challenges and requirements | |
| - **A**ction - Implementation strategy | |
| - **R**esult - Expected outcomes | |
| - **C**onsequence - Long-term implications | |
| --- | |
| ## 1. SITUATION (Current State & Context) | |
| ### 1.1 Platform Context | |
| **Neural Trader Ecosystem:** | |
| - MCP-compatible trading platform with 58+ tools | |
| - FastMCP v1.9.4 integration | |
| - Sub-10ms neural forecasting (NHITS, NBEATSx models) | |
| - GPU acceleration with 6,250x speedup | |
| - 99.97% uptime SLA | |
| - Production deployment on Fly.io with A10 GPU instances | |
| - SQLite-powered fantasy collective system | |
| - Real-time WebSocket support | |
| - REST API with MCP protocol support | |
| **Technology Stack:** | |
| - Backend: Python with FastAPI | |
| - Neural Models: NeuralForecast (NHITS, NBEATS, NBEATSx) | |
| - Infrastructure: Docker, Fly.io, GPU compute | |
| - Data: SQLite, real-time market feeds | |
| - Protocol: MCP (Model Context Protocol) | |
| ### 1.2 Agentic Framework Ecosystem | |
| **agentic-flow** (Agent Orchestration): | |
| ```bash | |
| npx agentic-flow --agent trader --task "Analyze market trends" | |
| ``` | |
| - AgentDB with reflexion memory | |
| - Skill library for reusable patterns | |
| - Causal memory graph for decision tracking | |
| - Model routing (Claude, OpenRouter, Gemini) | |
| - QUIC transport for low-latency | |
| - Auto-optimization with Agent Booster | |
| - Federation hub for ephemeral agents | |
| - Swarm optimization (3-5x speedup) | |
| - 213 MCP tools integration | |
| **agentic-jujutsu** (Version Control for Agents): | |
| ```bash | |
| npx agentic-jujutsu mcp-call jj_diff | |
| ``` | |
| - Lock-free operations for parallel agent work | |
| - 50-100ms context switching | |
| - AST-based complexity analysis | |
| - Embedded Jujutsu VCS (v0.35.0) | |
| - Self-learning AI integration | |
| - No cargo/rust dependencies required | |
| **lean-agentic** (Formal Verification): | |
| ```bash | |
| npx lean-agentic verify --proof trading-strategy | |
| ``` | |
| - Lean4 formal verification | |
| - Sub-100ms compilation | |
| - Ed25519 cryptographic proof signatures | |
| - Actor-based agent orchestration | |
| - AI-driven optimization (40%+ cost savings) | |
| - Vector-backed agent memory | |
| - Zero runtime overhead safety | |
| ### 1.3 User Requirements | |
| **Primary Stakeholders:** | |
| - Retail traders seeking AI-powered insights | |
| - Quantitative analysts building strategies | |
| - Portfolio managers monitoring positions | |
| - Data scientists developing models | |
| - Compliance officers tracking trades | |
| **Current State:** | |
| - Neural Trader backend operational | |
| - MCP tools exposed and tested | |
| - API endpoints production-ready | |
| - No integrated frontend dashboard | |
| - Manual tool invocation required | |
| - Limited visualization capabilities | |
| - No real-time collaboration features | |
| --- | |
| ## 2. PROBLEM (Challenges & Requirements) | |
| ### 2.1 Core Challenges | |
| **Challenge 1: Complex AI Integration** | |
| - Need to orchestrate 58+ MCP tools seamlessly | |
| - Real-time neural forecasting requires sub-100ms latency | |
| - Multiple agent types must coordinate (forecaster, analyzer, executor) | |
| - State management across distributed agents | |
| **Challenge 2: Real-Time Performance** | |
| - Sub-10ms inference from neural models | |
| - WebSocket streaming for live market data | |
| - GPU-accelerated computation synchronization | |
| - Client-side rendering without blocking | |
| **Challenge 3: Agent Coordination** | |
| - Multi-agent swarm management | |
| - Parallel strategy execution | |
| - Conflict-free version control for agent code | |
| - Memory persistence across sessions | |
| **Challenge 4: Formal Verification** | |
| - Trading strategies must be provably safe | |
| - Risk management rules need cryptographic attestation | |
| - Compliance requirements for audit trails | |
| - Zero-trust security model | |
| **Challenge 5: Developer Experience** | |
| - TypeScript-first architecture | |
| - Hot module replacement for rapid iteration | |
| - Comprehensive error handling | |
| - Observable agent behavior | |
| ### 2.2 Functional Requirements | |
| **FR-1: Dashboard Interface** | |
| - Real-time portfolio visualization | |
| - Neural forecast displays (24h, 7d, 30d horizons) | |
| - Multi-symbol tracking grid | |
| - Strategy performance metrics | |
| - Agent swarm status monitor | |
| **FR-2: Trading Operations** | |
| - One-click strategy deployment | |
| - Parameter tuning interface | |
| - Backtesting visualization | |
| - Risk calculator with formal proofs | |
| - Order execution with MCP tools | |
| **FR-3: Agent Management** | |
| - Swarm topology configuration (mesh, hierarchical, ring) | |
| - Agent spawning/termination controls | |
| - Memory inspection and editing | |
| - Version control integration | |
| - Performance analytics | |
| **FR-4: Collaboration Features** | |
| - Multi-user strategy sharing | |
| - Real-time code collaboration (via agentic-jujutsu) | |
| - Comment threads on forecasts | |
| - Notification system | |
| - Audit logging | |
| **FR-5: Analytics & Reporting** | |
| - Historical performance charts | |
| - Risk-adjusted returns calculation | |
| - Drawdown analysis | |
| - Sharpe ratio monitoring | |
| - Export to PDF/Excel | |
| ### 2.3 Non-Functional Requirements | |
| **NFR-1: Performance** | |
| - Page load time: <2 seconds | |
| - Time to Interactive (TTI): <3 seconds | |
| - WebSocket latency: <50ms | |
| - Agent response time: <100ms | |
| - Forecast generation: <10ms (server-side) | |
| **NFR-2: Scalability** | |
| - Support 100+ concurrent users | |
| - Handle 1,000+ agent instances | |
| - Process 10,000 forecasts/second | |
| - Store 1TB+ historical data | |
| - Scale horizontally on Cloudflare Workers | |
| **NFR-3: Security** | |
| - OAuth 2.0 + MFA authentication | |
| - End-to-end encryption for trades | |
| - Ed25519 signature verification | |
| - Rate limiting (100 req/user/hour) | |
| - CORS with strict origin policies | |
| **NFR-4: Reliability** | |
| - 99.9% uptime SLA | |
| - Graceful degradation on MCP failures | |
| - Automatic retry with exponential backoff | |
| - Circuit breaker pattern for external APIs | |
| - Data persistence on connection loss | |
| **NFR-5: Maintainability** | |
| - TypeScript strict mode | |
| - 80%+ test coverage | |
| - API versioning (semver) | |
| - Comprehensive logging | |
| - Documentation coverage >90% | |
| --- | |
| ## 3. ACTION (Implementation Strategy) | |
| ### 3.1 Architecture Overview | |
| ``` | |
| ┌─────────────────────────────────────────────────────────────┐ | |
| │ Frontend Layer (React) │ | |
| │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ | |
| │ │ Dashboard │ │ Trading │ │ Agent │ │ | |
| │ │ View │ │ Interface │ │ Swarm UI │ │ | |
| │ └──────────────┘ └──────────────┘ └──────────────┘ │ | |
| └────────────┬────────────────┬────────────────┬──────────────┘ | |
| │ │ │ | |
| ┌────────────▼────────────────▼────────────────▼──────────────┐ | |
| │ Agentic Orchestration Layer │ | |
| │ ┌──────────────────────────────────────────────────────┐ │ | |
| │ │ agentic-flow (Agent Coordination) │ │ | |
| │ │ - AgentDB (Reflexion Memory) │ │ | |
| │ │ - Model Router (Claude/OpenRouter/Gemini) │ │ | |
| │ │ - QUIC Transport │ │ | |
| │ │ - Swarm Optimizer │ │ | |
| │ └──────────────────────────────────────────────────────┘ │ | |
| │ ┌──────────────────────────────────────────────────────┐ │ | |
| │ │ agentic-jujutsu (Version Control) │ │ | |
| │ │ - Lock-free operations │ │ | |
| │ │ - AST analysis │ │ | |
| │ │ - Change tracking │ │ | |
| │ └──────────────────────────────────────────────────────┘ │ | |
| │ ┌──────────────────────────────────────────────────────┐ │ | |
| │ │ lean-agentic (Formal Verification) │ │ | |
| │ │ - Lean4 proof checking │ │ | |
| │ │ - Ed25519 signatures │ │ | |
| │ │ - Safety guarantees │ │ | |
| │ └──────────────────────────────────────────────────────┘ │ | |
| └────────────┬─────────────────────────────────┬──────────────┘ | |
| │ │ | |
| ┌────────────▼─────────────────────────────────▼──────────────┐ | |
| │ Neural Trader Backend │ | |
| │ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │ | |
| │ │ FastMCP │ │ Neural │ │ Trading │ │ | |
| │ │ Server │ │ Forecast │ │ Engine │ │ | |
| │ │ (58 tools) │ │ (GPU accel) │ │ (Strats) │ │ | |
| │ └──────────────┘ └──────────────┘ └──────────────┘ │ | |
| └──────────────────────────────────────────────────────────────┘ | |
| ``` | |
| ### 3.2 Technology Stack | |
| **Frontend Framework:** | |
| ```json | |
| { | |
| "framework": "Next.js 15 (App Router)", | |
| "runtime": "React 19", | |
| "language": "TypeScript 5.6+", | |
| "styling": "Tailwind CSS 4.0 + shadcn/ui", | |
| "state": "Zustand + React Query", | |
| "charts": "Recharts + D3.js", | |
| "realtime": "Socket.io-client", | |
| "build": "Turbopack" | |
| } | |
| ``` | |
| **Agentic Layer:** | |
| ```bash | |
| npm install agentic-flow agentic-jujutsu lean-agentic | |
| ``` | |
| **Development Tools:** | |
| ```bash | |
| npm install -D @types/node @types/react vitest playwright | |
| ``` | |
| ### 3.3 Project Structure | |
| ``` | |
| neural-trader-frontend/ | |
| ├── app/ | |
| │ ├── layout.tsx # Root layout | |
| │ ├── page.tsx # Dashboard | |
| │ ├── trading/ | |
| │ │ ├── page.tsx # Trading interface | |
| │ │ └── [symbol]/page.tsx # Symbol detail | |
| │ ├── agents/ | |
| │ │ ├── page.tsx # Agent swarm manager | |
| │ │ └── [agentId]/page.tsx # Agent detail | |
| │ ├── analytics/ | |
| │ │ └── page.tsx # Analytics dashboard | |
| │ └── api/ | |
| │ ├── agents/route.ts # Agent endpoints | |
| │ ├── forecasts/route.ts # Forecast endpoints | |
| │ └── trades/route.ts # Trade endpoints | |
| ├── components/ | |
| │ ├── ui/ # shadcn components | |
| │ ├── charts/ # Trading charts | |
| │ │ ├── ForecastChart.tsx | |
| │ │ ├── PerformanceChart.tsx | |
| │ │ └── CandlestickChart.tsx | |
| │ ├── agents/ # Agent components | |
| │ │ ├── AgentCard.tsx | |
| │ │ ├── SwarmTopology.tsx | |
| │ │ └── AgentMemoryView.tsx | |
| │ └── trading/ # Trading components | |
| │ ├── OrderForm.tsx | |
| │ ├── StrategyCard.tsx | |
| │ └── RiskCalculator.tsx | |
| ├── lib/ | |
| │ ├── agentic/ # Agentic integrations | |
| │ │ ├── flow-manager.ts # agentic-flow wrapper | |
| │ │ ├── jujutsu-client.ts # agentic-jujutsu wrapper | |
| │ │ └── lean-verifier.ts # lean-agentic wrapper | |
| │ ├── neural-trader/ # Neural Trader client | |
| │ │ ├── mcp-client.ts # MCP protocol client | |
| │ │ ├── websocket.ts # WebSocket manager | |
| │ │ └── types.ts # Type definitions | |
| │ ├── stores/ # State management | |
| │ │ ├── agent-store.ts | |
| │ │ ├── trading-store.ts | |
| │ │ └── forecast-store.ts | |
| │ └── utils/ | |
| │ ├── formatters.ts | |
| │ └── validators.ts | |
| ├── hooks/ | |
| │ ├── use-agent-swarm.ts | |
| │ ├── use-neural-forecast.ts | |
| │ └── use-trading-strategies.ts | |
| └── types/ | |
| ├── agents.ts | |
| ├── trading.ts | |
| └── forecasts.ts | |
| ``` | |
| ### 3.4 Core Implementation Examples | |
| #### Neural Trader MCP Client | |
| ```typescript | |
| // lib/neural-trader/mcp-client.ts | |
| import { MCPClient } from '@modelcontextprotocol/sdk'; | |
| export class NeuralTraderClient { | |
| private mcpClient: MCPClient; | |
| constructor(baseUrl: string) { | |
| this.mcpClient = new MCPClient({ | |
| url: `${baseUrl}/mcp`, | |
| transport: 'stdio' | |
| }); | |
| } | |
| async getNeuralForecast(params: ForecastParams): Promise<Forecast> { | |
| return this.mcpClient.request({ | |
| method: 'mcp__neural_trader__get_forecast', | |
| params: { | |
| symbol: params.symbol, | |
| horizon: params.horizon, | |
| model: params.model || 'NHITS' | |
| } | |
| }); | |
| } | |
| async executeStrategy(params: StrategyParams): Promise<StrategyResult> { | |
| return this.mcpClient.request({ | |
| method: 'mcp__neural_trader__execute_strategy', | |
| params | |
| }); | |
| } | |
| } | |
| ``` | |
| #### Agentic Flow Manager | |
| ```typescript | |
| // lib/agentic/flow-manager.ts | |
| import { | |
| ReflexionMemory, | |
| SkillLibrary, | |
| CausalMemoryGraph | |
| } from 'agentic-flow/agentdb'; | |
| import { ModelRouter } from 'agentic-flow/router'; | |
| import { AgentBooster } from 'agentic-flow/agent-booster'; | |
| export class AgenticFlowManager { | |
| private memory: ReflexionMemory; | |
| private skills: SkillLibrary; | |
| private causal: CausalMemoryGraph; | |
| private router: ModelRouter; | |
| private booster: AgentBooster; | |
| constructor() { | |
| this.memory = new ReflexionMemory(); | |
| this.skills = new SkillLibrary(); | |
| this.causal = new CausalMemoryGraph(); | |
| this.router = new ModelRouter({ | |
| providers: ['claude', 'openrouter', 'gemini'] | |
| }); | |
| this.booster = new AgentBooster(); | |
| } | |
| async spawnTradingAgent(config: AgentConfig): Promise<Agent> { | |
| const agent = await this.booster.createAgent({ | |
| role: config.role, | |
| tools: config.tools, | |
| memory: this.memory, | |
| router: this.router | |
| }); | |
| await this.causal.recordEvent({ | |
| type: 'agent_spawn', | |
| agentId: agent.id, | |
| timestamp: Date.now(), | |
| outcome: 'success' | |
| }); | |
| return agent; | |
| } | |
| async initSwarm(topology: SwarmTopology): Promise<Swarm> { | |
| const swarm = await this.booster.createSwarm({ | |
| topology: topology.type, | |
| maxAgents: topology.maxAgents, | |
| optimization: true | |
| }); | |
| return swarm; | |
| } | |
| } | |
| ``` | |
| #### Jujutsu Version Control Client | |
| ```typescript | |
| // lib/agentic/jujutsu-client.ts | |
| import { execSync } from 'child_process'; | |
| export class JujutsuClient { | |
| private repoPath: string; | |
| constructor(repoPath: string) { | |
| this.repoPath = repoPath; | |
| } | |
| async trackAgentChanges(agentId: string): Promise<ChangeSet> { | |
| const result = execSync( | |
| `npx agentic-jujutsu mcp-call jj_diff`, | |
| { cwd: this.repoPath, encoding: 'utf-8' } | |
| ); | |
| return this.parseChangeSet(result); | |
| } | |
| async analyzeComplexity(operation: string): Promise<ComplexityAnalysis> { | |
| const result = execSync( | |
| `npx agentic-jujutsu ast "${operation}"`, | |
| { cwd: this.repoPath, encoding: 'utf-8' } | |
| ); | |
| const ast = JSON.parse(result); | |
| return { | |
| complexity: ast.__ai_metadata.complexity, | |
| riskLevel: this.calculateRisk(ast), | |
| recommendation: this.getTestRecommendation(ast) | |
| }; | |
| } | |
| } | |
| ``` | |
| #### Lean Formal Verifier | |
| ```typescript | |
| // lib/agentic/lean-verifier.ts | |
| import { execSync } from 'child_process'; | |
| export class LeanVerifier { | |
| async verifyStrategy( | |
| strategyCode: string, | |
| safetyProperties: string[] | |
| ): Promise<VerificationResult> { | |
| const tempFile = `/tmp/strategy_${Date.now()}.lean`; | |
| await writeFile(tempFile, strategyCode); | |
| try { | |
| const result = execSync( | |
| `npx lean-agentic verify --proof ${tempFile}`, | |
| { encoding: 'utf-8', timeout: 10000 } | |
| ); | |
| return { | |
| verified: true, | |
| proofSignature: this.extractSignature(result), | |
| properties: safetyProperties, | |
| timestamp: Date.now() | |
| }; | |
| } catch (error) { | |
| return { | |
| verified: false, | |
| errors: this.parseErrors(error), | |
| timestamp: Date.now() | |
| }; | |
| } | |
| } | |
| } | |
| ``` | |
| ### 3.5 CLI Commands Reference | |
| **agentic-flow Commands:** | |
| ```bash | |
| # Initialize | |
| npx agentic-flow init --with-mcp | |
| # Run agent | |
| npx agentic-flow --agent trader --task "Analyze BTC trends" --stream | |
| # Federation | |
| npx agentic-flow federation start | |
| npx agentic-flow federation spawn | |
| npx agentic-flow federation stats | |
| # Memory operations | |
| npx agentdb reflexion store "session-1" "trade_AAPL" 0.95 true "Success" | |
| npx agentdb skill search "momentum" 10 | |
| npx agentdb causal query "" "profitability" 0.8 | |
| ``` | |
| **agentic-jujutsu Commands:** | |
| ```bash | |
| # Initialize | |
| npx agentic-jujutsu init | |
| # Track changes | |
| npx agentic-jujutsu mcp-call jj_diff | |
| # Analyze complexity | |
| npx agentic-jujutsu ast "function tradingStrategy() { ... }" | |
| # Status check | |
| jj-agent status | |
| jj-agent --version | |
| ``` | |
| **lean-agentic Commands:** | |
| ```bash | |
| # Initialize | |
| npx lean-agentic init | |
| # Verify strategy | |
| npx lean-agentic verify --proof strategy.lean | |
| # Sign proof | |
| npx lean-agentic sign --proof "theorem safe_trade ..." | |
| ``` | |
| --- | |
| ## 4. RESULT (Expected Outcomes) | |
| ### 4.1 Quantitative Metrics | |
| **Performance:** | |
| - Page load time: <2s ✓ | |
| - Time to Interactive: <3s ✓ | |
| - WebSocket latency: <50ms ✓ | |
| - Agent response time: <100ms ✓ | |
| - Forecast display: <10ms ✓ | |
| **Scalability:** | |
| - Concurrent users: 100+ ✓ | |
| - Active agents: 1,000+ ✓ | |
| - Forecasts/second: 10,000+ ✓ | |
| **Reliability:** | |
| - Uptime: 99.9% ✓ | |
| - Error rate: <0.5% ✓ | |
| **Code Quality:** | |
| - Test coverage: 80%+ ✓ | |
| - TypeScript strict: 100% ✓ | |
| - Documentation: >90% ✓ | |
| ### 4.2 Deliverables | |
| **Code Artifacts:** | |
| 1. Next.js 15 frontend application | |
| 2. Agentic framework integrations | |
| 3. Neural Trader MCP client | |
| 4. Component library (shadcn/ui) | |
| 5. Testing suite (Vitest + Playwright) | |
| 6. Docker deployment configuration | |
| 7. CI/CD pipeline scripts | |
| **Documentation:** | |
| 1. Architecture overview | |
| 2. API reference | |
| 3. Component storybook | |
| 4. Deployment guide | |
| 5. User manual | |
| 6. Developer handbook | |
| --- | |
| ## 5. CONSEQUENCE (Long-term Implications) | |
| ### 5.1 Technical Advantages | |
| **Scalability:** | |
| - Horizontal scaling via Cloudflare Workers | |
| - Agent swarm auto-optimization (3-5x speedup) | |
| - Efficient resource utilization with QUIC | |
| - Database sharding support | |
| **Maintainability:** | |
| - Modular architecture | |
| - Strong TypeScript typing | |
| - Comprehensive test coverage | |
| - Version control integration | |
| **Security:** | |
| - Formal verification prevents unsafe strategies | |
| - Cryptographic attestation for compliance | |
| - End-to-end encryption | |
| - Rate limiting and CORS protection | |
| **Extensibility:** | |
| - Plugin architecture for strategies | |
| - MCP protocol supports new tools | |
| - Agent federation enables collaboration | |
| - API versioning ensures compatibility | |
| ### 5.2 Business Impact | |
| **Revenue Opportunities:** | |
| - Subscription tiers | |
| - API usage-based pricing | |
| - Custom agent development | |
| - White-label solutions | |
| **Cost Savings:** | |
| - 40%+ reduction via model routing | |
| - Efficient serverless architecture | |
| - Automated testing reduces QA costs | |
| - Self-learning agents improve over time | |
| **Competitive Advantages:** | |
| - First MCP-integrated trading platform | |
| - Sub-10ms neural forecasting | |
| - Formal verification for compliance | |
| - Lock-free collaboration | |
| ### 5.3 Future Enhancements | |
| **Phase 2 (Q1 2026):** | |
| - Mobile app (React Native) | |
| - Voice interface | |
| - Social trading network | |
| - Options/derivatives support | |
| - Advanced portfolio optimization | |
| **Phase 3 (Q2 2026):** | |
| - Cross-exchange arbitrage | |
| - Sentiment analysis | |
| - Institutional routing | |
| - Compliance automation | |
| - Multi-currency support | |
| --- | |
| ## 6. IMPLEMENTATION CHECKLIST | |
| ### Phase 1: Foundation | |
| - [ ] Project initialization | |
| - [ ] Install dependencies | |
| - [ ] Configure agentic-flow | |
| - [ ] Configure agentic-jujutsu | |
| - [ ] Configure lean-agentic | |
| - [ ] Neural Trader MCP client | |
| - [ ] WebSocket manager | |
| - [ ] State management setup | |
| ### Phase 2: Dashboard UI | |
| - [ ] Dashboard layout | |
| - [ ] Forecast charts | |
| - [ ] Agent cards | |
| - [ ] Swarm topology visualizer | |
| - [ ] Memory inspector | |
| - [ ] Real-time updates | |
| ### Phase 3: Trading Interface | |
| - [ ] Strategy builder | |
| - [ ] Order form | |
| - [ ] Risk calculator | |
| - [ ] Backtest runner | |
| - [ ] Performance analytics | |
| - [ ] Position management | |
| ### Phase 4: Real-time Features | |
| - [ ] WebSocket integration | |
| - [ ] Live market data | |
| - [ ] Agent status streaming | |
| - [ ] Collaborative editor | |
| - [ ] Change tracking | |
| - [ ] Notification system | |
| ### Phase 5: Testing & Deployment | |
| - [ ] Unit tests | |
| - [ ] Integration tests | |
| - [ ] E2E tests | |
| - [ ] Docker configuration | |
| - [ ] CI/CD pipeline | |
| - [ ] Production deployment | |
| - [ ] Monitoring setup | |
| --- | |
| ## 7. QUICK START | |
| ### Installation | |
| ```bash | |
| # Clone and setup | |
| git clone https://github.com/your-org/neural-trader-frontend | |
| cd neural-trader-frontend | |
| npm install | |
| # Install agentic tools | |
| npm install -g agentic-flow agentic-jujutsu lean-agentic | |
| # Initialize | |
| npx agentic-flow init --with-mcp | |
| npx agentic-jujutsu init | |
| npx lean-agentic init | |
| # Configure environment | |
| cp .env.example .env.local | |
| # Edit .env.local with API keys | |
| # Start development | |
| npm run dev | |
| ``` | |
| ### Development Commands | |
| ```bash | |
| # Development | |
| npm run dev # Start dev server | |
| npm run build # Build for production | |
| npm run start # Start production server | |
| # Testing | |
| npm run test # Run tests | |
| npm run test:watch # Watch mode | |
| npm run test:e2e # E2E tests | |
| # Linting & Type Checking | |
| npm run lint # Lint code | |
| npm run type-check # Check types | |
| ``` | |
| ### Deployment | |
| ```bash | |
| # Build Docker image | |
| docker build -t neural-trader-frontend . | |
| # Deploy to Fly.io | |
| ./deploy.sh | |
| # Check status | |
| fly status | |
| fly logs | |
| ``` | |
| --- | |
| ## 8. ARCHITECTURE DIAGRAMS | |
| ### System Architecture | |
| ``` | |
| ┌─────────────────────────────────────┐ | |
| │ Client Browser │ | |
| │ ┌────────────┐ ┌────────────┐ │ | |
| │ │ React UI │ │ WebSocket │ │ | |
| │ └──────┬─────┘ └──────┬─────┘ │ | |
| └─────────┼────────────────┼─────────┘ | |
| │ HTTP │ WS | |
| ▼ ▼ | |
| ┌─────────────────────────────────────┐ | |
| │ Next.js Server │ | |
| │ ┌────────────┐ ┌────────────┐ │ | |
| │ │ API Routes │ │ Server │ │ | |
| │ └──────┬─────┘ │ Components │ │ | |
| └─────────┼────────┴────────────┘ | |
| │ MCP Protocol | |
| ▼ | |
| ┌─────────────────────────────────────┐ | |
| │ Agentic Orchestration Layer │ | |
| │ ┌───────────────────────────────┐ │ | |
| │ │ agentic-flow | jujutsu | lean│ │ | |
| │ └──────┬────────────────────────┘ │ | |
| └─────────┼───────────────────────────┘ | |
| │ MCP Tools | |
| ▼ | |
| ┌─────────────────────────────────────┐ | |
| │ Neural Trader Backend │ | |
| │ ┌────────┐ ┌────────┐ ┌──────┐ │ | |
| │ │FastMCP │ │Neural │ │SQLite│ │ | |
| │ └────────┘ │Forecast│ └──────┘ │ | |
| │ └────────┘ │ | |
| └─────────────────────────────────────┘ | |
| ``` | |
| ### Agent Swarm Topologies | |
| **Mesh:** | |
| ``` | |
| A ─── B | |
| │ ╲ ╱ │ | |
| │ ╱ ╲ │ | |
| C ─── D | |
| ``` | |
| **Hierarchical:** | |
| ``` | |
| A | |
| ╱ ╲ | |
| B C | |
| ╱ ╲ ╱ ╲ | |
| D E F G | |
| ``` | |
| **Ring:** | |
| ``` | |
| A ─── B | |
| │ │ | |
| D ─── C | |
| ``` | |
| --- | |
| ## GLOSSARY | |
| - **MCP**: Model Context Protocol | |
| - **SPARC**: Situation, Problem, Action, Result, Consequence | |
| - **NHITS**: Neural Hierarchical Interpolation for Time Series | |
| - **Reflexion**: Self-reflection mechanism for agents | |
| - **Swarm**: Group of coordinated agents | |
| - **Ed25519**: Elliptic curve signature scheme | |
| --- | |
| **END OF SPECIFICATION** | |
| Version: 1.0.0 | Created: November 13, 2025 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment