Skip to content

Instantly share code, notes, and snippets.

@OlexiyPukhov
Created November 13, 2025 17:49
Show Gist options
  • Select an option

  • Save OlexiyPukhov/f428e97d3cacc7844ad9c044dae4cdf6 to your computer and use it in GitHub Desktop.

Select an option

Save OlexiyPukhov/f428e97d3cacc7844ad9c044dae4cdf6 to your computer and use it in GitHub Desktop.
# Neural Trader Frontend Integration - SPARC Specification
## Document Metadata
- **Version**: 1.0.0
- **Platform**: Neural Trader v2.5.0 MCP Integration
- **Framework Stack**: agentic-flow, agentic-jujutsu, lean-agentic
- **Target**: Production-Ready Trading Frontend
- **Created**: November 2025
---
## SPARC Framework Overview
**SPARC** stands for:
- **S**ituation - Current state and context
- **P**roblem - Challenges and requirements
- **A**ction - Implementation strategy
- **R**esult - Expected outcomes
- **C**onsequence - Long-term implications
---
## 1. SITUATION (Current State & Context)
### 1.1 Platform Context
**Neural Trader Ecosystem:**
- MCP-compatible trading platform with 58+ tools
- FastMCP v1.9.4 integration
- Sub-10ms neural forecasting (NHITS, NBEATSx models)
- GPU acceleration with 6,250x speedup
- 99.97% uptime SLA
- Production deployment on Fly.io with A10 GPU instances
- SQLite-powered fantasy collective system
- Real-time WebSocket support
- REST API with MCP protocol support
**Technology Stack:**
- Backend: Python with FastAPI
- Neural Models: NeuralForecast (NHITS, NBEATS, NBEATSx)
- Infrastructure: Docker, Fly.io, GPU compute
- Data: SQLite, real-time market feeds
- Protocol: MCP (Model Context Protocol)
### 1.2 Agentic Framework Ecosystem
**agentic-flow** (Agent Orchestration):
```bash
npx agentic-flow --agent trader --task "Analyze market trends"
```
- AgentDB with reflexion memory
- Skill library for reusable patterns
- Causal memory graph for decision tracking
- Model routing (Claude, OpenRouter, Gemini)
- QUIC transport for low-latency
- Auto-optimization with Agent Booster
- Federation hub for ephemeral agents
- Swarm optimization (3-5x speedup)
- 213 MCP tools integration
**agentic-jujutsu** (Version Control for Agents):
```bash
npx agentic-jujutsu mcp-call jj_diff
```
- Lock-free operations for parallel agent work
- 50-100ms context switching
- AST-based complexity analysis
- Embedded Jujutsu VCS (v0.35.0)
- Self-learning AI integration
- No cargo/rust dependencies required
**lean-agentic** (Formal Verification):
```bash
npx lean-agentic verify --proof trading-strategy
```
- Lean4 formal verification
- Sub-100ms compilation
- Ed25519 cryptographic proof signatures
- Actor-based agent orchestration
- AI-driven optimization (40%+ cost savings)
- Vector-backed agent memory
- Zero runtime overhead safety
### 1.3 User Requirements
**Primary Stakeholders:**
- Retail traders seeking AI-powered insights
- Quantitative analysts building strategies
- Portfolio managers monitoring positions
- Data scientists developing models
- Compliance officers tracking trades
**Current State:**
- Neural Trader backend operational
- MCP tools exposed and tested
- API endpoints production-ready
- No integrated frontend dashboard
- Manual tool invocation required
- Limited visualization capabilities
- No real-time collaboration features
---
## 2. PROBLEM (Challenges & Requirements)
### 2.1 Core Challenges
**Challenge 1: Complex AI Integration**
- Need to orchestrate 58+ MCP tools seamlessly
- Real-time neural forecasting requires sub-100ms latency
- Multiple agent types must coordinate (forecaster, analyzer, executor)
- State management across distributed agents
**Challenge 2: Real-Time Performance**
- Sub-10ms inference from neural models
- WebSocket streaming for live market data
- GPU-accelerated computation synchronization
- Client-side rendering without blocking
**Challenge 3: Agent Coordination**
- Multi-agent swarm management
- Parallel strategy execution
- Conflict-free version control for agent code
- Memory persistence across sessions
**Challenge 4: Formal Verification**
- Trading strategies must be provably safe
- Risk management rules need cryptographic attestation
- Compliance requirements for audit trails
- Zero-trust security model
**Challenge 5: Developer Experience**
- TypeScript-first architecture
- Hot module replacement for rapid iteration
- Comprehensive error handling
- Observable agent behavior
### 2.2 Functional Requirements
**FR-1: Dashboard Interface**
- Real-time portfolio visualization
- Neural forecast displays (24h, 7d, 30d horizons)
- Multi-symbol tracking grid
- Strategy performance metrics
- Agent swarm status monitor
**FR-2: Trading Operations**
- One-click strategy deployment
- Parameter tuning interface
- Backtesting visualization
- Risk calculator with formal proofs
- Order execution with MCP tools
**FR-3: Agent Management**
- Swarm topology configuration (mesh, hierarchical, ring)
- Agent spawning/termination controls
- Memory inspection and editing
- Version control integration
- Performance analytics
**FR-4: Collaboration Features**
- Multi-user strategy sharing
- Real-time code collaboration (via agentic-jujutsu)
- Comment threads on forecasts
- Notification system
- Audit logging
**FR-5: Analytics & Reporting**
- Historical performance charts
- Risk-adjusted returns calculation
- Drawdown analysis
- Sharpe ratio monitoring
- Export to PDF/Excel
### 2.3 Non-Functional Requirements
**NFR-1: Performance**
- Page load time: <2 seconds
- Time to Interactive (TTI): <3 seconds
- WebSocket latency: <50ms
- Agent response time: <100ms
- Forecast generation: <10ms (server-side)
**NFR-2: Scalability**
- Support 100+ concurrent users
- Handle 1,000+ agent instances
- Process 10,000 forecasts/second
- Store 1TB+ historical data
- Scale horizontally on Cloudflare Workers
**NFR-3: Security**
- OAuth 2.0 + MFA authentication
- End-to-end encryption for trades
- Ed25519 signature verification
- Rate limiting (100 req/user/hour)
- CORS with strict origin policies
**NFR-4: Reliability**
- 99.9% uptime SLA
- Graceful degradation on MCP failures
- Automatic retry with exponential backoff
- Circuit breaker pattern for external APIs
- Data persistence on connection loss
**NFR-5: Maintainability**
- TypeScript strict mode
- 80%+ test coverage
- API versioning (semver)
- Comprehensive logging
- Documentation coverage >90%
---
## 3. ACTION (Implementation Strategy)
### 3.1 Architecture Overview
```
┌─────────────────────────────────────────────────────────────┐
│ Frontend Layer (React) │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ Dashboard │ │ Trading │ │ Agent │ │
│ │ View │ │ Interface │ │ Swarm UI │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└────────────┬────────────────┬────────────────┬──────────────┘
│ │ │
┌────────────▼────────────────▼────────────────▼──────────────┐
│ Agentic Orchestration Layer │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ agentic-flow (Agent Coordination) │ │
│ │ - AgentDB (Reflexion Memory) │ │
│ │ - Model Router (Claude/OpenRouter/Gemini) │ │
│ │ - QUIC Transport │ │
│ │ - Swarm Optimizer │ │
│ └──────────────────────────────────────────────────────┘ │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ agentic-jujutsu (Version Control) │ │
│ │ - Lock-free operations │ │
│ │ - AST analysis │ │
│ │ - Change tracking │ │
│ └──────────────────────────────────────────────────────┘ │
│ ┌──────────────────────────────────────────────────────┐ │
│ │ lean-agentic (Formal Verification) │ │
│ │ - Lean4 proof checking │ │
│ │ - Ed25519 signatures │ │
│ │ - Safety guarantees │ │
│ └──────────────────────────────────────────────────────┘ │
└────────────┬─────────────────────────────────┬──────────────┘
│ │
┌────────────▼─────────────────────────────────▼──────────────┐
│ Neural Trader Backend │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐ │
│ │ FastMCP │ │ Neural │ │ Trading │ │
│ │ Server │ │ Forecast │ │ Engine │ │
│ │ (58 tools) │ │ (GPU accel) │ │ (Strats) │ │
│ └──────────────┘ └──────────────┘ └──────────────┘ │
└──────────────────────────────────────────────────────────────┘
```
### 3.2 Technology Stack
**Frontend Framework:**
```json
{
"framework": "Next.js 15 (App Router)",
"runtime": "React 19",
"language": "TypeScript 5.6+",
"styling": "Tailwind CSS 4.0 + shadcn/ui",
"state": "Zustand + React Query",
"charts": "Recharts + D3.js",
"realtime": "Socket.io-client",
"build": "Turbopack"
}
```
**Agentic Layer:**
```bash
npm install agentic-flow agentic-jujutsu lean-agentic
```
**Development Tools:**
```bash
npm install -D @types/node @types/react vitest playwright
```
### 3.3 Project Structure
```
neural-trader-frontend/
├── app/
│ ├── layout.tsx # Root layout
│ ├── page.tsx # Dashboard
│ ├── trading/
│ │ ├── page.tsx # Trading interface
│ │ └── [symbol]/page.tsx # Symbol detail
│ ├── agents/
│ │ ├── page.tsx # Agent swarm manager
│ │ └── [agentId]/page.tsx # Agent detail
│ ├── analytics/
│ │ └── page.tsx # Analytics dashboard
│ └── api/
│ ├── agents/route.ts # Agent endpoints
│ ├── forecasts/route.ts # Forecast endpoints
│ └── trades/route.ts # Trade endpoints
├── components/
│ ├── ui/ # shadcn components
│ ├── charts/ # Trading charts
│ │ ├── ForecastChart.tsx
│ │ ├── PerformanceChart.tsx
│ │ └── CandlestickChart.tsx
│ ├── agents/ # Agent components
│ │ ├── AgentCard.tsx
│ │ ├── SwarmTopology.tsx
│ │ └── AgentMemoryView.tsx
│ └── trading/ # Trading components
│ ├── OrderForm.tsx
│ ├── StrategyCard.tsx
│ └── RiskCalculator.tsx
├── lib/
│ ├── agentic/ # Agentic integrations
│ │ ├── flow-manager.ts # agentic-flow wrapper
│ │ ├── jujutsu-client.ts # agentic-jujutsu wrapper
│ │ └── lean-verifier.ts # lean-agentic wrapper
│ ├── neural-trader/ # Neural Trader client
│ │ ├── mcp-client.ts # MCP protocol client
│ │ ├── websocket.ts # WebSocket manager
│ │ └── types.ts # Type definitions
│ ├── stores/ # State management
│ │ ├── agent-store.ts
│ │ ├── trading-store.ts
│ │ └── forecast-store.ts
│ └── utils/
│ ├── formatters.ts
│ └── validators.ts
├── hooks/
│ ├── use-agent-swarm.ts
│ ├── use-neural-forecast.ts
│ └── use-trading-strategies.ts
└── types/
├── agents.ts
├── trading.ts
└── forecasts.ts
```
### 3.4 Core Implementation Examples
#### Neural Trader MCP Client
```typescript
// lib/neural-trader/mcp-client.ts
import { MCPClient } from '@modelcontextprotocol/sdk';
export class NeuralTraderClient {
private mcpClient: MCPClient;
constructor(baseUrl: string) {
this.mcpClient = new MCPClient({
url: `${baseUrl}/mcp`,
transport: 'stdio'
});
}
async getNeuralForecast(params: ForecastParams): Promise<Forecast> {
return this.mcpClient.request({
method: 'mcp__neural_trader__get_forecast',
params: {
symbol: params.symbol,
horizon: params.horizon,
model: params.model || 'NHITS'
}
});
}
async executeStrategy(params: StrategyParams): Promise<StrategyResult> {
return this.mcpClient.request({
method: 'mcp__neural_trader__execute_strategy',
params
});
}
}
```
#### Agentic Flow Manager
```typescript
// lib/agentic/flow-manager.ts
import {
ReflexionMemory,
SkillLibrary,
CausalMemoryGraph
} from 'agentic-flow/agentdb';
import { ModelRouter } from 'agentic-flow/router';
import { AgentBooster } from 'agentic-flow/agent-booster';
export class AgenticFlowManager {
private memory: ReflexionMemory;
private skills: SkillLibrary;
private causal: CausalMemoryGraph;
private router: ModelRouter;
private booster: AgentBooster;
constructor() {
this.memory = new ReflexionMemory();
this.skills = new SkillLibrary();
this.causal = new CausalMemoryGraph();
this.router = new ModelRouter({
providers: ['claude', 'openrouter', 'gemini']
});
this.booster = new AgentBooster();
}
async spawnTradingAgent(config: AgentConfig): Promise<Agent> {
const agent = await this.booster.createAgent({
role: config.role,
tools: config.tools,
memory: this.memory,
router: this.router
});
await this.causal.recordEvent({
type: 'agent_spawn',
agentId: agent.id,
timestamp: Date.now(),
outcome: 'success'
});
return agent;
}
async initSwarm(topology: SwarmTopology): Promise<Swarm> {
const swarm = await this.booster.createSwarm({
topology: topology.type,
maxAgents: topology.maxAgents,
optimization: true
});
return swarm;
}
}
```
#### Jujutsu Version Control Client
```typescript
// lib/agentic/jujutsu-client.ts
import { execSync } from 'child_process';
export class JujutsuClient {
private repoPath: string;
constructor(repoPath: string) {
this.repoPath = repoPath;
}
async trackAgentChanges(agentId: string): Promise<ChangeSet> {
const result = execSync(
`npx agentic-jujutsu mcp-call jj_diff`,
{ cwd: this.repoPath, encoding: 'utf-8' }
);
return this.parseChangeSet(result);
}
async analyzeComplexity(operation: string): Promise<ComplexityAnalysis> {
const result = execSync(
`npx agentic-jujutsu ast "${operation}"`,
{ cwd: this.repoPath, encoding: 'utf-8' }
);
const ast = JSON.parse(result);
return {
complexity: ast.__ai_metadata.complexity,
riskLevel: this.calculateRisk(ast),
recommendation: this.getTestRecommendation(ast)
};
}
}
```
#### Lean Formal Verifier
```typescript
// lib/agentic/lean-verifier.ts
import { execSync } from 'child_process';
export class LeanVerifier {
async verifyStrategy(
strategyCode: string,
safetyProperties: string[]
): Promise<VerificationResult> {
const tempFile = `/tmp/strategy_${Date.now()}.lean`;
await writeFile(tempFile, strategyCode);
try {
const result = execSync(
`npx lean-agentic verify --proof ${tempFile}`,
{ encoding: 'utf-8', timeout: 10000 }
);
return {
verified: true,
proofSignature: this.extractSignature(result),
properties: safetyProperties,
timestamp: Date.now()
};
} catch (error) {
return {
verified: false,
errors: this.parseErrors(error),
timestamp: Date.now()
};
}
}
}
```
### 3.5 CLI Commands Reference
**agentic-flow Commands:**
```bash
# Initialize
npx agentic-flow init --with-mcp
# Run agent
npx agentic-flow --agent trader --task "Analyze BTC trends" --stream
# Federation
npx agentic-flow federation start
npx agentic-flow federation spawn
npx agentic-flow federation stats
# Memory operations
npx agentdb reflexion store "session-1" "trade_AAPL" 0.95 true "Success"
npx agentdb skill search "momentum" 10
npx agentdb causal query "" "profitability" 0.8
```
**agentic-jujutsu Commands:**
```bash
# Initialize
npx agentic-jujutsu init
# Track changes
npx agentic-jujutsu mcp-call jj_diff
# Analyze complexity
npx agentic-jujutsu ast "function tradingStrategy() { ... }"
# Status check
jj-agent status
jj-agent --version
```
**lean-agentic Commands:**
```bash
# Initialize
npx lean-agentic init
# Verify strategy
npx lean-agentic verify --proof strategy.lean
# Sign proof
npx lean-agentic sign --proof "theorem safe_trade ..."
```
---
## 4. RESULT (Expected Outcomes)
### 4.1 Quantitative Metrics
**Performance:**
- Page load time: <2s ✓
- Time to Interactive: <3s ✓
- WebSocket latency: <50ms ✓
- Agent response time: <100ms ✓
- Forecast display: <10ms ✓
**Scalability:**
- Concurrent users: 100+ ✓
- Active agents: 1,000+ ✓
- Forecasts/second: 10,000+ ✓
**Reliability:**
- Uptime: 99.9% ✓
- Error rate: <0.5% ✓
**Code Quality:**
- Test coverage: 80%+ ✓
- TypeScript strict: 100% ✓
- Documentation: >90% ✓
### 4.2 Deliverables
**Code Artifacts:**
1. Next.js 15 frontend application
2. Agentic framework integrations
3. Neural Trader MCP client
4. Component library (shadcn/ui)
5. Testing suite (Vitest + Playwright)
6. Docker deployment configuration
7. CI/CD pipeline scripts
**Documentation:**
1. Architecture overview
2. API reference
3. Component storybook
4. Deployment guide
5. User manual
6. Developer handbook
---
## 5. CONSEQUENCE (Long-term Implications)
### 5.1 Technical Advantages
**Scalability:**
- Horizontal scaling via Cloudflare Workers
- Agent swarm auto-optimization (3-5x speedup)
- Efficient resource utilization with QUIC
- Database sharding support
**Maintainability:**
- Modular architecture
- Strong TypeScript typing
- Comprehensive test coverage
- Version control integration
**Security:**
- Formal verification prevents unsafe strategies
- Cryptographic attestation for compliance
- End-to-end encryption
- Rate limiting and CORS protection
**Extensibility:**
- Plugin architecture for strategies
- MCP protocol supports new tools
- Agent federation enables collaboration
- API versioning ensures compatibility
### 5.2 Business Impact
**Revenue Opportunities:**
- Subscription tiers
- API usage-based pricing
- Custom agent development
- White-label solutions
**Cost Savings:**
- 40%+ reduction via model routing
- Efficient serverless architecture
- Automated testing reduces QA costs
- Self-learning agents improve over time
**Competitive Advantages:**
- First MCP-integrated trading platform
- Sub-10ms neural forecasting
- Formal verification for compliance
- Lock-free collaboration
### 5.3 Future Enhancements
**Phase 2 (Q1 2026):**
- Mobile app (React Native)
- Voice interface
- Social trading network
- Options/derivatives support
- Advanced portfolio optimization
**Phase 3 (Q2 2026):**
- Cross-exchange arbitrage
- Sentiment analysis
- Institutional routing
- Compliance automation
- Multi-currency support
---
## 6. IMPLEMENTATION CHECKLIST
### Phase 1: Foundation
- [ ] Project initialization
- [ ] Install dependencies
- [ ] Configure agentic-flow
- [ ] Configure agentic-jujutsu
- [ ] Configure lean-agentic
- [ ] Neural Trader MCP client
- [ ] WebSocket manager
- [ ] State management setup
### Phase 2: Dashboard UI
- [ ] Dashboard layout
- [ ] Forecast charts
- [ ] Agent cards
- [ ] Swarm topology visualizer
- [ ] Memory inspector
- [ ] Real-time updates
### Phase 3: Trading Interface
- [ ] Strategy builder
- [ ] Order form
- [ ] Risk calculator
- [ ] Backtest runner
- [ ] Performance analytics
- [ ] Position management
### Phase 4: Real-time Features
- [ ] WebSocket integration
- [ ] Live market data
- [ ] Agent status streaming
- [ ] Collaborative editor
- [ ] Change tracking
- [ ] Notification system
### Phase 5: Testing & Deployment
- [ ] Unit tests
- [ ] Integration tests
- [ ] E2E tests
- [ ] Docker configuration
- [ ] CI/CD pipeline
- [ ] Production deployment
- [ ] Monitoring setup
---
## 7. QUICK START
### Installation
```bash
# Clone and setup
git clone https://github.com/your-org/neural-trader-frontend
cd neural-trader-frontend
npm install
# Install agentic tools
npm install -g agentic-flow agentic-jujutsu lean-agentic
# Initialize
npx agentic-flow init --with-mcp
npx agentic-jujutsu init
npx lean-agentic init
# Configure environment
cp .env.example .env.local
# Edit .env.local with API keys
# Start development
npm run dev
```
### Development Commands
```bash
# Development
npm run dev # Start dev server
npm run build # Build for production
npm run start # Start production server
# Testing
npm run test # Run tests
npm run test:watch # Watch mode
npm run test:e2e # E2E tests
# Linting & Type Checking
npm run lint # Lint code
npm run type-check # Check types
```
### Deployment
```bash
# Build Docker image
docker build -t neural-trader-frontend .
# Deploy to Fly.io
./deploy.sh
# Check status
fly status
fly logs
```
---
## 8. ARCHITECTURE DIAGRAMS
### System Architecture
```
┌─────────────────────────────────────┐
│ Client Browser │
│ ┌────────────┐ ┌────────────┐ │
│ │ React UI │ │ WebSocket │ │
│ └──────┬─────┘ └──────┬─────┘ │
└─────────┼────────────────┼─────────┘
│ HTTP │ WS
▼ ▼
┌─────────────────────────────────────┐
│ Next.js Server │
│ ┌────────────┐ ┌────────────┐ │
│ │ API Routes │ │ Server │ │
│ └──────┬─────┘ │ Components │ │
└─────────┼────────┴────────────┘
│ MCP Protocol
┌─────────────────────────────────────┐
│ Agentic Orchestration Layer │
│ ┌───────────────────────────────┐ │
│ │ agentic-flow | jujutsu | lean│ │
│ └──────┬────────────────────────┘ │
└─────────┼───────────────────────────┘
│ MCP Tools
┌─────────────────────────────────────┐
│ Neural Trader Backend │
│ ┌────────┐ ┌────────┐ ┌──────┐ │
│ │FastMCP │ │Neural │ │SQLite│ │
│ └────────┘ │Forecast│ └──────┘ │
│ └────────┘ │
└─────────────────────────────────────┘
```
### Agent Swarm Topologies
**Mesh:**
```
A ─── B
│ ╲ ╱ │
│ ╱ ╲ │
C ─── D
```
**Hierarchical:**
```
A
╱ ╲
B C
╱ ╲ ╱ ╲
D E F G
```
**Ring:**
```
A ─── B
│ │
D ─── C
```
---
## GLOSSARY
- **MCP**: Model Context Protocol
- **SPARC**: Situation, Problem, Action, Result, Consequence
- **NHITS**: Neural Hierarchical Interpolation for Time Series
- **Reflexion**: Self-reflection mechanism for agents
- **Swarm**: Group of coordinated agents
- **Ed25519**: Elliptic curve signature scheme
---
**END OF SPECIFICATION**
Version: 1.0.0 | Created: November 13, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment