Skip to content

Instantly share code, notes, and snippets.

View Stefan-Heimersheim's full-sized avatar

Stefan Heimersheim Stefan-Heimersheim

View GitHub Profile
# Make sure to add your SSH key to your RunPod account
echo "export HF_HOME=/workspace/hf_home/" >> ~/.bashrc
apt-get update
apt-get upgrade -y
apt-get install -y sudo git vim ssh net-tools htop curl zip unzip tmux rsync libopenmpi-dev iputils-ping make fzf restic ripgrep wget pandoc poppler-utils pigz bzip2 nano locales
pip install uv
# Alternative: curl -LsSf https://astral.sh/uv/install.sh | sh
uv pip install --system --compile-bytecode ipykernel kaleido nbformat numpy scipy scikit-learn scikit-image transformers datasets torchvision pandas matplotlib seaborn plotly jaxtyping einops tqdm ruff basedpyright umap-learn ipywidgets virtualenv pytest git+https://github.com/callummcdougall/eindex.git transformer_lens nnsight
apt-get install -y libnss3 libatk-bridge2.0-0 libcups2 libxcomposite1 libxdamage1 libxfixes3 libxrandr2 libgbm1 libxkbcommon0 libpango-1.0-0 libcairo2 libasound2
# Optional:
@Stefan-Heimersheim
Stefan-Heimersheim / figure1.py
Last active August 18, 2025 11:27
Code: [Interim research report] Activation plateaus & sensitive directions in GPT2
# 1.py (Figure 1 is a zoom into one panel of Figure 3/4)
import os
import random
from collections import defaultdict
from collections.abc import Callable
from dataclasses import dataclass
import matplotlib
import matplotlib.pyplot as plt
@Stefan-Heimersheim
Stefan-Heimersheim / tms_spiky_activation_space.py
Created April 2, 2025 10:38
Demo of activation space geometry in a simple Toy Model of Superposition setup
import itertools
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import plotly.graph_objects as go
import torch
import torch.nn as nn
import torch.optim as optim
from jaxtyping import Float
import math
import os
from abc import abstractmethod
from collections import defaultdict
from functools import partial
from typing import Optional
import joblib
import numpy as np
import sae_bench.custom_saes.base_sae as base_sae