Skip to content

Instantly share code, notes, and snippets.

@WardBrian
WardBrian / BoostUT.cmake
Last active September 22, 2025 03:49
CTest registration for Boost.UT. License: BSD-3-Clause
FetchContent_Declare(boost_ut
GIT_REPOSITORY https://github.com/boost-ext/ut.git
GIT_TAG v2.3.1)
FetchContent_MakeAvailable(boost_ut)
# link this object to your test executable, then call discover_boost_ut_test() on it
add_library(boost_ut_runner OBJECT test_runner.cpp)
target_link_libraries(boost_ut_runner PUBLIC Boost::ut)
@WardBrian
WardBrian / data.json
Created July 22, 2025 14:05
Multimodal model with a neat coding style
{
"D": 2,
"r": 2.5,
"p": 0.6666666666666666
}
@WardBrian
WardBrian / ge_ac.lircd.conf
Last active November 5, 2025 17:16
lirc remotes
# based on tutorial from https://www.cnx-software.com/2017/03/12/how-to-control-your-air-conditioner-with-raspberry-pi-board-and-anavi-infrared-phat/
begin remote
name ge_ac
flags RAW_CODES
eps 30
aeps 100
ptrail 0
let style_of_string : string -> Fmt.style option = function
| "b" | "bold" -> Some `Bold
| "i" -> Some `Italic
| "u" -> Some `Underline
| "f" | "faint" -> Some `Faint
| "r" | "reset" -> Some `None
| "reverse" -> Some `Reverse
| "black" -> Some (`Fg `Black)
| "cyan" -> Some (`Fg `Cyan)
| "green" -> Some (`Fg `Green)
@WardBrian
WardBrian / analysis.R
Last active December 2, 2025 15:45
Lotka-Volterra
# code adapted from https://github.com/stan-dev/example-models/blob/master/knitr/lotka-volterra/lotka-volterra-predator-prey.Rmd
library(posterior)
library(reshape2)
library(ggplot2)
lynx_hare_df <-
read.csv("https://raw.githubusercontent.com/stan-dev/example-models/refs/heads/master/knitr/lotka-volterra/hudson-bay-lynx-hare.csv",
comment.char="#")
@WardBrian
WardBrian / linear_regression.py
Last active November 5, 2025 17:16
functional-style jax models (take 2)
from jax import random, jit
import jax.numpy as jnp
from jax.scipy import stats
from util import ravelize_function, make_log_density
__all__ = ["log_density", "log_density_vec", "init_draw_zero"]
def constrain_parameters(sigma_unc, alpha, beta):
@WardBrian
WardBrian / analysis.R
Last active February 4, 2025 16:56
Disease Transmission
# posterior predictive check using the pred_cases generated quantity
install.packages("bayesplot")
library(posterior)
library(ggplot2)
# load from data
d <- jsonlite::read_json('./data.json')
cases <- unlist(d$cases)
n_days <- d$n_days
@WardBrian
WardBrian / analysis.R
Last active December 2, 2025 15:15
Linear Regression
install.packages("ggplot2")
library(posterior)
library(ggplot2)
# load data from data.json
data <- jsonlite::read_json("./data.json")
x <- unlist(data$x)
y <- unlist(data$y)
# posterior predictive check
#include <stdexcept>
#include <iostream>
void maybe_throw(int should_throw) {
if (should_throw)
throw std::domain_error("exception in C++: dummy");
}
extern "C" int some_fn(int should_throw) {
try {
/**
* Demonstration of `scalar_type_t`, `base_type_t`, and `value_type_t`, for
* examples where they do the same thing and examples where they differ.
*
* Place in math repo directory and compile with:
make -f make/standalone test_types
*/
#include <stan/math/prim.hpp>
#include <stan/math/prim/fun/typedefs.hpp>