Created
October 31, 2025 10:40
-
-
Save adam-dziedzic/76df4cdbd71e2550127cf177a2e7d745 to your computer and use it in GitHub Desktop.
MNIST training on Juelich with GPUs
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import argparse | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import torch.optim as optim | |
| from torchvision import datasets, transforms | |
| from torch.optim.lr_scheduler import StepLR | |
| class Net(nn.Module): | |
| def __init__(self): | |
| super(Net, self).__init__() | |
| self.conv1 = nn.Conv2d(1, 32, 3, 1) | |
| self.conv2 = nn.Conv2d(32, 64, 3, 1) | |
| self.dropout1 = nn.Dropout(0.25) | |
| self.dropout2 = nn.Dropout(0.5) | |
| self.fc1 = nn.Linear(9216, 128) | |
| self.fc2 = nn.Linear(128, 10) | |
| def forward(self, x): | |
| x = self.conv1(x) | |
| x = F.relu(x) | |
| x = self.conv2(x) | |
| x = F.relu(x) | |
| x = F.max_pool2d(x, 2) | |
| x = self.dropout1(x) | |
| x = torch.flatten(x, 1) | |
| x = self.fc1(x) | |
| x = F.relu(x) | |
| x = self.dropout2(x) | |
| x = self.fc2(x) | |
| output = F.log_softmax(x, dim=1) | |
| return output | |
| def train(args, model, device, train_loader, optimizer, epoch): | |
| model.train() | |
| for batch_idx, (data, target) in enumerate(train_loader): | |
| data, target = data.to(device), target.to(device) | |
| optimizer.zero_grad() | |
| output = model(data) | |
| loss = F.nll_loss(output, target) | |
| loss.backward() | |
| optimizer.step() | |
| if batch_idx % args.log_interval == 0: | |
| print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | |
| epoch, batch_idx * len(data), len(train_loader.dataset), | |
| 100. * batch_idx / len(train_loader), loss.item())) | |
| if args.dry_run: | |
| break | |
| def test(model, device, test_loader): | |
| model.eval() | |
| test_loss = 0 | |
| correct = 0 | |
| with torch.no_grad(): | |
| for data, target in test_loader: | |
| data, target = data.to(device), target.to(device) | |
| output = model(data) | |
| test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss | |
| pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability | |
| correct += pred.eq(target.view_as(pred)).sum().item() | |
| test_loss /= len(test_loader.dataset) | |
| print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | |
| test_loss, correct, len(test_loader.dataset), | |
| 100. * correct / len(test_loader.dataset))) | |
| def main(): | |
| # Training settings | |
| parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | |
| parser.add_argument('--batch-size', type=int, default=64, metavar='N', | |
| help='input batch size for training (default: 64)') | |
| parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | |
| help='input batch size for testing (default: 1000)') | |
| parser.add_argument('--epochs', type=int, default=14, metavar='N', | |
| help='number of epochs to train (default: 14)') | |
| parser.add_argument('--lr', type=float, default=1.0, metavar='LR', | |
| help='learning rate (default: 1.0)') | |
| parser.add_argument('--gamma', type=float, default=0.7, metavar='M', | |
| help='Learning rate step gamma (default: 0.7)') | |
| parser.add_argument('--no-accel', action='store_true', | |
| help='disables accelerator') | |
| parser.add_argument('--dry-run', action='store_true', | |
| help='quickly check a single pass') | |
| parser.add_argument('--seed', type=int, default=1, metavar='S', | |
| help='random seed (default: 1)') | |
| parser.add_argument('--log-interval', type=int, default=10, metavar='N', | |
| help='how many batches to wait before logging training status') | |
| parser.add_argument('--save-model', action='store_true', | |
| help='For Saving the current Model') | |
| args = parser.parse_args() | |
| # use_accel = not args.no_accel and torch.accelerator.is_available() | |
| use_accel = True | |
| torch.manual_seed(args.seed) | |
| # if use_accel: | |
| # device = torch.accelerator.current_accelerator() | |
| # else: | |
| # device = torch.device("cpu") | |
| device = torch.device("cuda") | |
| print("device: ", device) | |
| train_kwargs = {'batch_size': args.batch_size} | |
| test_kwargs = {'batch_size': args.test_batch_size} | |
| if use_accel: | |
| accel_kwargs = {'num_workers': 1, | |
| 'persistent_workers': True, | |
| 'pin_memory': True, | |
| 'shuffle': True} | |
| train_kwargs.update(accel_kwargs) | |
| test_kwargs.update(accel_kwargs) | |
| transform=transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.1307,), (0.3081,)) | |
| ]) | |
| dataset1 = datasets.MNIST('../data', train=True, download=True, | |
| transform=transform) | |
| dataset2 = datasets.MNIST('../data', train=False, | |
| transform=transform) | |
| train_loader = torch.utils.data.DataLoader(dataset1,**train_kwargs) | |
| test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs) | |
| model = Net().to(device) | |
| optimizer = optim.Adadelta(model.parameters(), lr=args.lr) | |
| scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma) | |
| for epoch in range(1, args.epochs + 1): | |
| train(args, model, device, train_loader, optimizer, epoch) | |
| test(model, device, test_loader) | |
| scheduler.step() | |
| if args.save_model: | |
| torch.save(model.state_dict(), "mnist_cnn.pt") | |
| if __name__ == '__main__': | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment