Created
July 2, 2024 12:34
-
-
Save adam2392/38d9a275224d85607ea4a6b842fa7ca0 to your computer and use it in GitHub Desktop.
Benchmark on data with missing-values on `ExtraTree*`
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| """Instructions | |
| 1. Build this PR and run: | |
| ```bash | |
| python bench_missing_extratrees.py bench ~/bench_results pr_no_pythoncheck | |
| ``` | |
| 2. On main run: | |
| ```bash | |
| python bench_missing_extratrees.py bench ~/bench_results main | |
| ``` | |
| 3. Plotting | |
| ```bash | |
| python bench_missing_extratrees.py plot ~/bench_results pr main results_image.png | |
| ``` | |
| """ | |
| import argparse | |
| import csv | |
| from functools import partial | |
| from itertools import product | |
| from pathlib import Path | |
| from statistics import mean, stdev | |
| from time import perf_counter | |
| import numpy as np | |
| from scipy.sparse import csc_matrix | |
| from sklearn.datasets import make_classification, make_low_rank_matrix, make_regression | |
| from sklearn.tree import ExtraTreeClassifier, ExtraTreeRegressor | |
| def make_poisson_data(n_samples, n_features=50, random_state=0, has_missing=False): | |
| rng = np.random.RandomState(random_state) | |
| X = make_low_rank_matrix( | |
| n_samples=n_samples, n_features=n_features, random_state=rng | |
| ) | |
| coef = rng.uniform(low=-2, high=2, size=n_features) / np.max(X, axis=0) | |
| y = rng.poisson(lam=np.exp(X @ coef)) | |
| if has_missing: | |
| missing_mask = rng.choice([True, False], size=X.shape, p=[0.1, 0.9]) | |
| X[missing_mask] = np.nan | |
| return X, y | |
| def make_low_card_data(n_samples, n_features=50, random_state=0, has_missing=False): | |
| rng = np.random.RandomState(random_state) | |
| X = rng.choice([0.0, 1.0, 2.0], size=(n_samples, n_features)) | |
| y = rng.choice([0, 1], size=n_samples) | |
| if has_missing: | |
| missing_mask = rng.choice([True, False], size=X.shape, p=[0.1, 0.9]) | |
| X[missing_mask] = np.nan | |
| return X, y | |
| def make_regression_custom(*args, has_missing=False, random_state=None, **kwargs): | |
| X, y = make_regression(*args, random_state=random_state, **kwargs) | |
| rng = np.random.RandomState() | |
| if has_missing: | |
| rng = np.random.RandomState(random_state) | |
| missing_mask = rng.choice([True, False], size=X.shape, p=[0.1, 0.9]) | |
| X[missing_mask] = np.nan | |
| return X, y | |
| def make_classification_custom(*args, has_missing=False, random_state=None, **kwargs): | |
| X, y = make_classification(*args, random_state=random_state, **kwargs) | |
| rng = np.random.RandomState() | |
| if has_missing: | |
| rng = np.random.RandomState(random_state) | |
| missing_mask = rng.choice([True, False], size=X.shape, p=[0.1, 0.9]) | |
| X[missing_mask] = np.nan | |
| return X, y | |
| N_REPEATS = 20 | |
| benchmark_config = [ | |
| ( | |
| ExtraTreeRegressor, | |
| list( | |
| product( | |
| ["squared_error"], | |
| [ | |
| partial(make_regression_custom, n_targets=2), | |
| make_low_card_data, | |
| ], | |
| [40_000], | |
| ["dense"], | |
| ["random"], | |
| [False], | |
| ) | |
| ), | |
| ), | |
| ( | |
| ExtraTreeRegressor, | |
| list( | |
| product( | |
| ["poisson"], | |
| [make_poisson_data], | |
| [40_000], | |
| ["dense"], | |
| ["random"], | |
| [False], | |
| ) | |
| ), | |
| ), | |
| ( | |
| ExtraTreeClassifier, | |
| list( | |
| product( | |
| ["gini", "entropy"], | |
| [ | |
| partial(make_classification_custom, n_informative=10, n_classes=5), | |
| make_low_card_data, | |
| ], | |
| [40_000], | |
| ["dense"], | |
| ["random"], | |
| [False], | |
| ) | |
| ), | |
| ), | |
| ] | |
| def bench(args): | |
| bench_results, branch = args.bench_results, args.branch | |
| results_dir = Path(bench_results) | |
| results_dir.mkdir(exist_ok=True) | |
| results_path = results_dir / f"{branch}.csv" | |
| with results_path.open("w") as f: | |
| writer = csv.DictWriter( | |
| f, | |
| fieldnames=[ | |
| "criterion", | |
| "n_samples", | |
| "make_data", | |
| "container", | |
| "splitter", | |
| "has_missing", | |
| "n_repeat", | |
| "duration", | |
| ], | |
| ) | |
| writer.writeheader() | |
| for Klass, items in benchmark_config: | |
| for config in items: | |
| ( | |
| criterion, | |
| make_data, | |
| n_samples, | |
| container, | |
| splitter, | |
| has_missing, | |
| ) = config | |
| if isinstance(make_data, partial): | |
| make_data_str = make_data.func.__name__ | |
| else: | |
| make_data_str = make_data.__name__ | |
| default_config = { | |
| "criterion": criterion, | |
| "n_samples": n_samples, | |
| "make_data": make_data_str, | |
| "container": container, | |
| "splitter": splitter, | |
| "has_missing": has_missing, | |
| } | |
| combine_config = " ".join(f"{k}={v}" for k, v in default_config.items()) | |
| klass_results = [] | |
| for n_repeat in range(N_REPEATS): | |
| X, y = make_data( | |
| n_samples=n_samples, | |
| random_state=n_repeat, | |
| n_features=100, | |
| has_missing=has_missing, | |
| ) | |
| tree = Klass( | |
| random_state=n_repeat, criterion=criterion, splitter=splitter | |
| ) | |
| if container == "sparse": | |
| X = csc_matrix(X, dtype=np.float32) | |
| start = perf_counter() | |
| tree.fit(X, y) | |
| duration = perf_counter() - start | |
| klass_results.append(duration) | |
| writer.writerow( | |
| { | |
| **default_config, | |
| **{ | |
| "n_repeat": n_repeat, | |
| "duration": duration, | |
| }, | |
| } | |
| ) | |
| results_mean, results_stdev = mean(klass_results), stdev(klass_results) | |
| print( | |
| f"{combine_config} with {results_mean:.3f} +/- {results_stdev:.3f}" | |
| ) | |
| def plot(args): | |
| import matplotlib.pyplot as plt | |
| import pandas as pd | |
| import seaborn as sns | |
| results_path = Path(args.bench_results) | |
| pr_path = results_path / f"{args.pr_name}.csv" | |
| main_path = results_path / f"{args.main_name}.csv" | |
| image_path = results_path / args.image_path | |
| df_pr = pd.read_csv(pr_path).assign(branch=args.pr_name) | |
| df_main = pd.read_csv(main_path).assign(branch=args.main_name) | |
| df_all = pd.concat((df_pr, df_main), ignore_index=True) | |
| df_all = df_all.assign( | |
| make_data=df_all["make_data"] | |
| .str.replace("_custom", "") | |
| .str.replace("make_", "") | |
| .str.replace("_data", "") | |
| ) | |
| gb = df_all.groupby(["criterion", "make_data"]) | |
| groups = gb.groups | |
| n_rows, n_cols = 2, 4 | |
| fig, axes = plt.subplots(n_rows, n_cols, figsize=(12, 8), constrained_layout=True) | |
| axes_flat = axes.ravel() | |
| for i, (keys, idx) in enumerate(groups.items()): | |
| ax = axes_flat[i] | |
| ax.set_title(" | ".join(keys)) | |
| sns.boxplot(data=df_all.loc[idx], y="duration", x="branch", ax=ax) | |
| if i % n_cols != 0: | |
| ax.set_ylabel("") | |
| axes_flat[-1].set_visible(False) | |
| fig.savefig(image_path) | |
| print(f"Saved image to {image_path}") | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| subparsers = parser.add_subparsers() | |
| bench_parser = subparsers.add_parser("bench") | |
| bench_parser.add_argument("bench_results") | |
| bench_parser.add_argument("branch") | |
| bench_parser.set_defaults(func=bench) | |
| plot_parser = subparsers.add_parser("plot") | |
| plot_parser.add_argument("bench_results") | |
| plot_parser.add_argument("pr_name") | |
| plot_parser.add_argument("main_name") | |
| plot_parser.add_argument("image_path") | |
| plot_parser.set_defaults(func=plot) | |
| args = parser.parse_args() | |
| args.func(args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment