Skip to content

Instantly share code, notes, and snippets.

@aivarasko
Created December 1, 2013 10:53
Show Gist options
  • Select an option

  • Save aivarasko/7731958 to your computer and use it in GitHub Desktop.

Select an option

Save aivarasko/7731958 to your computer and use it in GitHub Desktop.
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <codecell>
import pandas as pd
from pandas import Series
# <codecell>
train_data = pd.read_csv('digit_recognizer/data/train.csv')
test_data = pd.read_csv('digit_recognizer/data/test.csv')
# <codecell>
digits = train_data.pop('label')
# <codecell>
from sklearn.ensemble import RandomForestClassifier
from sklearn.tree import DecisionTreeClassifier
'''
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.lda import LDA
from sklearn.qda import QDA
classifiers = [
KNeighborsClassifier(3),
KNeighborsClassifier(15),
SVC(kernel="linear", C=0.025),
# SVC(kernel="poly", C=0.025),
SVC(gamma=2, C=1),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(max_depth=None, n_estimators=100, random_state=0),
# RandomForestClassifier(max_depth=20, n_estimators=25, max_features=3),
GaussianNB(),
# LDA(),
QDA(),
SVC(),
GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=1, random_state=0),
GradientBoostingClassifier(n_estimators=100, learning_rate=1.0, max_depth=3, random_state=0)
]
'''
cl = RandomForestClassifier(max_depth=None, n_estimators=100, random_state=0)
# cl = DecisionTreeClassifier(max_depth=5),
# <codecell>
# cl = classifiers[5]
cl.fit(train_data, digits)
# <codecell>
# <codecell>
# cl.score(train_data[100:], digits[100:])
# <codecell>
predictions = cl.predict(test_data)
Series(predictions).to_csv('digit_recognizer/results/results_random_forest.csv', index=False)
# <codecell>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment