Skip to content

Instantly share code, notes, and snippets.

@allgenesconsidered
Created December 4, 2017 21:31
Show Gist options
  • Select an option

  • Save allgenesconsidered/4a344254385678783387ce3f7723735e to your computer and use it in GitHub Desktop.

Select an option

Save allgenesconsidered/4a344254385678783387ce3f7723735e to your computer and use it in GitHub Desktop.
## Generate combine files
# freq_1 <- read.delim('filter_for_common/dat_vc/BEST1_very_common.tsv', header = T, stringsAsFactors = F)
# freq_1$gene <- 'BEST1'
# freq_2 <- read.delim('filter_for_common/dat_vc/HSPB1_very_common.tsv', header = T, stringsAsFactors = F)
# freq_2$gene <- 'HSPB1'
# freq_3 <- read.delim('filter_for_common/dat_vc/MFN2_very_common.tsv', header = T, stringsAsFactors = F)
# freq_3$gene <- 'MFN2'
# freq_4 <- read.delim('filter_for_common/dat_vc/NEFL_very_common.tsv', header = T, stringsAsFactors = F)
# freq_4$gene <- 'NEFL'
#
# merged <- rbind(freq_1, rbind(freq_2, rbind(freq_3, freq_4)))
# colnames(merged)[5] <- "ID"
# write.csv(merged, 'filter_for_common/dat/domneg_verry_common.csv',row.names = F)
wgs_dat <- read.delim('filter_for_common/dat/wgs_filtered_het.tsv', header = T, stringsAsFactors = F)
merged_targets <- read.csv('filter_for_common/dat/domneg_verry_common.csv', header = T, stringsAsFactors = F)
wgs_dat_filt <- wgs_dat[which(wgs_dat$ID %in% merged_targets$ID),]
wgs_dat_filt <- merge(wgs_dat_filt, merged_targets[,c('ID',"gene",'af',"makes_SpCas9","breaks_SpCas9", "var_near_SpCas9")], by='ID',all.x = T)
#write.table(wgs_dat_filt, file = "filter_for_common/dat/wgs_filtered_het_very_common.tsv", sep = "\t", row.names=FALSE, quote=FALSE)
# chr = 'chr11'
# gen = 'hg38'
# from = 61945821
# to = 61970461
# name="BEST1"
chr = 'chr1'
gen = 'hg38'
from = 11978181
to = 12015515
name="MFN2"
library(Gviz)
library(GenomicFeatures)
wgs_dat_filt <- dat[which(wgs_dat_filt$CHROM == chr),]
wgs_dat_filt <- wgs_dat_filt[apply(wgs_dat_filt[,grep('SpCas9',names(wgs_dat_filt))], MARGIN = 1, function(x) any(x > 0)), ]
color_list <- c("#999999", "#E69F00", "#56B4E9", "#009E73", "#911eb4", "#0072B2", "#D55E00", "#CC79A7", '#cb4154')
wgs_GT <- wgs_dat_filt[,grep('.GT',names(wgs_dat_filt))]
wgs_af <- wgs_dat_filt$af
tracks <- list()
i = 1
for(name in names(wgs_GT)){
genotypes = wgs_GT[[name]]
specific_data = c()
for(gen_i in 1:length(genotypes)){
alleles = unlist(strsplit(genotypes[gen_i], '/'))
if(alleles[1] != alleles[2]){
specific_data = c(specific_data, wgs_af[gen_i])
} else {
specific_data = c(specific_data, NaN)
}
}
tracks <- c(tracks,DataTrack(GRanges(seqnames = wgs_dat_filt$CHROM,
ranges = wgs_dat_filt$POS, dat=specific_data), background.title=color_list[i],
name = substr(name,1,5), type=c('p','g'), col=color_list[i], ylim=c(0,1)))
i = i+1
}
txbd = makeTxDbFromUCSC(gen, "knownGene")
genome <- GeneRegionTrack(txbd, chromosome = chr, start=from, end=to, name = 'Genes')
tracks <- c(tracks, genome)
tracks <- c(tracks, GenomeAxisTrack())
plotTracks(tracks, from = from, to = to, collapseTranscripts = "longest", transcriptAnnotation = "symbol")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment